Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Monthly EM&A Report June 2022

Client	:	Drainage Services Department
Project	:	Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works
Report No.:	:	0041/17/ED/0677A

Prepared by: Andy K. H. Choi

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung Environmental Team Leader Fugro Technical Services Limited

Our Ref. 1458/22-0032

42/F, Revenue Tower,

Wan Chai, Hong Kong

5 Gloucester Road

27/F, Overseas Trust Bank Building 160 Gloucester Road Wan Chai Hong Kong T: +852 2815 7028 F: +852 2815 5399

www.asecg.com

Attn: Mr. LAU Ka Kin, Marcus (E/CM16)

Drainage Services Department

Projects and Development Branch

Consultants Management Division

15 July 2022

By E-mail & Post

Dear Sir,

RE: CONTRACT NO. CM 13/2016

INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (JUNE 2022)

Reference is made to the submission of Monthly Environmental Monitoring and Audit (EM&A) Report for June 2022 (Report No.: 0041/17/ED/0677A) from the Environmental Team (ET), Fugro Technical Services Ltd., received on 15 July 2022 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Should you have any queries, please feel free to contact the undersigned, or our Mr. Henry POON at 2815 7028.

Yours faithfully,

For and on behalf of **Allied Environmental Consultants Ltd.**

Grace M. H. KWOK Independent Environmental Checker

GK/jn/hp

c.c. Fugro Technical Service (ET Leader) AECOM Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI (By E-mail) (By E-mail)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	. 10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	. 20
5.	CHINESE WHITE DOLPHIN MONITORING	. 27
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	. 28
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	. 29
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	. 30
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	. 31
10.	FUTURE KEY ISSUES	. 32
11.	CONCLUSION	. 33

FIGURE

Figure 1	Monitoring Stations of Air Sensitive Receivers
Figure 2	Odour Patrol Points of Modified Odour Patrol
Figure 3	Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey
_	

Figure 4 Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

APPENDICES

Appendix A	Project Organization Chart
Appendix B	Monitoring Schedule for Present and Next Reporting Period
Appendix C	Event and Action Plan for Air Quality Monitoring
Appendix D	Results and Graphical Presentation of Air Quality Monitoring
Appendix E	Copy of the Calibration Certificates for Water Quality Monitoring Equipment
Appendix F	Results and Graphical Presentation of Water Quality Monitoring
Appendix G	Tidal Data obtained from Ma Wan Marine Traffic Station
Appendix H	Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey
Appendix I	Benthic Survey Report
Appendix J	Photos of Grab Samplers
Appendix K	Environmental Complaints Log and Incident Report
Appendix L	Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1

Report No.: 0041/17/ED/0677A

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the Fifty-ninth Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 June 2022 to 30 June 2022 (the "reporting period").

Breaches of Action and Limit Levels

Odour patrol monitoring was resumed from January 2020 and carried out on 10, 16, 22 and 28 June 2022. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and modified odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at ASR were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 15 June 2022. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Complaint Log

There were no complaints received in relation to environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 2

Report No.: 0041/17/ED/0677A

Summary of the Environmental Mitigations Measures

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Future Key Issues

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

Page 3

Report No.: 0041/17/ED/0677A

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 **Project Description**

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Engineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

1.3 **Project Organization**

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Marcus Lau	2594 7218	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

Table 1.1 Contact Persons and Telephone Numbers of Key Personnel

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 4

1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

2. AIR QUALITY MONITORING

2.1 Methodology of H₂S Concentration Monitoring

2.1.1 15-min H₂S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H₂S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H₂S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H₂S monitoring.

Table 2.1Equipment used for H2S Concentration Monitoring

Equipment	Manufacturer	Serial	Sensor
	/ Model	Number	Number
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D

2.2 Methodology of Modified Odour Patrol Monitoring

- 2.2.1 Due to the complaint case received on 28 November 2019, a modified version of odour patrol monitoring is proposed and approved on 13 March 2020. According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), a modified version of odour patrol monitoring was commenced on 20 March 2020 to ensure the mitigation measures are effectively implemented. The modified odour patrol conducted once per week by two independent trained personnel/competent persons (the "patrollists") patrolling and sniffing along the SHWSTW boundary and the air sensitive receivers (ASRs).
- 2.2.2 The odour monitoring should not be undertaken on rainy days. Subject to the prevailing weather forecast condition, odour patrol shall be conducted by two patrollists at the downwind locations. During the patrol, the sequence should start from less odourous locations to stronger odourous locations.

Page 5

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 6

- 2.2.3 The two patrollists shall be satisfied the below requirements during odour patrol:
 - Have their individual odour threshold of n-butanol in nitrogen gas in the range of 20 to 80 ppb/V required by the European Standard menthod: BS EN13725.
 - Be free from any respiratory illnesses.
 - Not be allowed to smoke, eat, drink (except water) or use chewing gum or sweets 30min before and during odour patrol.
 - Take great care not to cause any interference with their own perception or that of others by lack of personal hygiene or the use of perfumes, deodorants, body lotions or cosmetics.
 - Not communicate with each other about the results of their choices.
- 2.2.4 During the odour patrol monitoring, the meteorological and surrounding information are recorded as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed;
 - iv. Location where Odour is detected;
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected;
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected
- 2.2.5 The perceived intensity is to be divided into 5 levels which are ranked in a descending order as follows:

Table 2.2	Categories of Odour Inte	ensity for Modified	Odour Patrol Monitoring
-----------	--------------------------	---------------------	-------------------------

Odour	Odour	Classification Criteria
Level	Intensity	
0	Not detected	No odour perceived or an odour so weak that it cannot be easily characterised or described.
1	Slight	Slight identifiable odour, and slight chance to have odour nuisance.
2	Moderate	Moderate identifiable odour, and moderate chance to have odour nuisance.
3	Strong	Strong identifiable, likely to have odour nuisance.
4	Extreme	Extreme severe odour, and unacceptable odour level.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 7

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 Monitoring Location

- 2.4.1 H₂S concentration monitoring and odour sampling at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant, were temporarily suspended from 14 May 2018. The location of ASR is shown in **Figure 1**.
- 2.4.2 9 odour patrol points is chosen to conduct the modified odour patrol for collecting more representative data and identify the particular source of odour in the site. The nine odour patrol points is as below:

Odour Patrol Point	Description
OD1	Eastern Site Boundary
OD2	Southern Site Boundary
OD3	Western Site Boundary
OD4	Northern Site Boundary
OD5	Spur Road near Discovery Bay Tunnel Outlet
OD6	Cheung Tung Road near the Bus Depot
OD7	Cheung Tung Road near O·PARK1
OD8	Sham Shui Kok Dr near MTR Depot
OD9	Discovery Bay Tunnel Toll Plaza

Table 2.3 Odour Patrol Point

2.4.3 The odour patrol points of modified odour patrol is shown in **Figure 2**.

2.5 Monitoring Frequency and Duration

2.5.1 The durations and frequencies of H₂S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.4** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 8

Table 2.4 Durations and Frequencies of Air Quality Monitoring Programme

	Duration	Frequency		
H ₂ S concentration		¹ Weekly basis for 6 months during the initial operation		
monitoring	15 minutes	stage		
Odour patrol		^{4,5} Weekly basis		
Odour sampling for olfactometry analysis	³ 15 minutes	² First week of the odour patrol monitoring		

Remark:

1) In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

2) In case the relationship between H₂S concentration (ppb) with the odour unit (OU/m³) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.

3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.

4) As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis from 15 January 2020.

5) As instruction from the company of Discovery Bay Tunnel, odour patrol monitoring at OD5 (Spur Road near Discovery Bay Tunnel Outlet) was conducted on monthly basis.

2.5.2 The monitoring schedule for the present and next reporting period is provided in Appendix B.

2.6 Event and Action Plan

2.6.1 According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), updated Action and limit levels for air quality monitoring are presented in **Table 2.5**.

	and Linni Levels for All Quality	y wontoning
Parameter	Action	Limit
Odour Nuisance	One complaint received for specific odour event / Odour intensity of 2 or above is measured from odour patrol	complaints received for specific

Table 2.5 Action and Limit Levels for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 9

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis. The odour patrol monitoring was carried out on 10, 16, 22 and 28 June 2022. As instruction from the company of Discovery Bay Tunnel, odour patrol monitoring at OD5 (Spur Road near Discovery Bay Tunnel Outlet) was conducted on monthly basis.
- 2.8.2 The meteorological data including temperature, wind speed and direction of the reporting period at ASR is summarised in **Table 2.6**.

Date	Location	Temperature (°C)	Relative Humidity (%)	Wind Direction	Wind Speed (m/s)
10 June 2022	OD1	26.6	87	E	2.6
	OD2			-	0.0
	OD3			E	1.2
	OD4			N	1.4
	OD6			E	2.5
	OD7			NE	0.2
	OD8			NE	0.5
	OD9			-	0.0
16 June 2022	OD1	30.0	76	-	0.0
	OD2			-	0.0
	OD3			SW	0.4
	OD4			-	0.0
	OD6			-	0.0
	OD7			-	0.0
	OD8			-	0.0
	OD9			-	0.0
22 June 2022	OD1	31.0	68	NE	0.3
	OD2			-	0.0
	OD3			SW	0.6
	OD4			-	0.0
	OD6			NE	0.8
	OD7			-	0.0
	OD8			NE	2.8

Table 2.6 Summary of Meteorological Data in Reporting Period

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 10

Report No.: 0041/17/ED/0677A

	OD9			-	0.0
28 June 2022	OD1	32.9	50	SW	0.8
	OD2			-	0.0
	OD3			-	0.0
	OD4			-	0.0
	OD5			NE	0.5
	OD6			NE	1.1
	OD7			NW	1.0
	OD8			NE	0.7
	OD9			NW	0.9

2.8.3 The monitoring results in the reporting period are summarised in **Table 2.7**. Graphical pots of results and details of monitoring data are shown in **Appendix D**.

Table 2.7 Summary of All Quality Wolf	Monitoring Period				
	Monitoring Parameter				
Monitoring Location	Odour Patrol [^] (Odour Level)				
	Range				
OD1	0 – 1				
OD2	0 – 1				
OD3	0 - 0				
OD4	0 - 0				
OD5	1				
OD6	0 - 0				
OD7	0 - 0				
OD8	0 - 0				
OD9	0 - 0				

Table 2.7 Summary of Air Quality Monitoring Result in Reporting Period

Remark:

[^]Odour Level: 0 – Not detected, 1 – Slight, 2 – Moderate, 3 – Strong, 4 – Extreme

- 2.8.4 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 2.8.5 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.6 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 11

Report No.: 0041/17/ED/0677A

3. WATER QUALITY MONITORING

3.1 Monitoring Station

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 3**.

Table 3.1	Location of Water Quality Monitoring
-----------	--------------------------------------

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2Parameters for Water Quality Monitoring

Monitoring Parameters							
In-situ Measurement	Laboratory Analysis						
Dissolved oxygen (mg/L)	<i>E. coli</i> (cfu/100ml)						
Temperature (degree Celsius)	5-day BOD (mg/l)						
pH value	Suspended Solids (mg/l)						
Water depth (m)	Ammonia as N (mg/l)						
Salinity (ppt)	Nitrate as N (mg/l)						
Turbidity (NTU)	Nitrite as N (mg/l)						
Current Speed (m/s)	Total inorganic nitrogen (mg/l)						
Current Direction (degree magnetic)	Total phosphorus (soluble and particulate) (mg/l)						

Page 12

- 3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3. Table 3.4** summarizes the equipment used in water quality monitoring. Copy of the calibration certificates for water quality monitoring equipment are presented in **Appendix E**.

Parameter	Equipment	Model	Range	Equipment Accuracy
UXVAAA	Water Quality Monitoring Device	 YSI 6920V2-2-M Sonde Aqua TROLL 600 Multiparameter Sonde 	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning	DGPS	Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

 Table 3.3
 Water Quality Monitoring and Sampling Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 13

Report No.: 0041/17/ED/0677A

Table 3.4Equipment used for Water Quality Monitoring

Equipment	Manufacturer / Model	Serial Number		
Water Quality Monitoring Device	Aqua TROLL 600 Multiparameter Sonde	525120		
Acoustic Doppler Current Profiler	RiverSurveyor M9	5906		

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 With reference to EPD's letter (Ref: Ax(7) to EP 2/No/F/50 Pt.7) dated 8 February 2022, Change of Laboratory on Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey (0041_17_ED_0632A) is approved. Fugro Technical Services Limited (HOKLAS Reg. No. 015), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Analysis Description	Method	Reporting limits		
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL		
5-day Biochemical Oxygen Demand	APHA 23rd edition 5210B	1 mg/L		
Total Suspended Solid	APHA 23rd edition 2540D	0.5 mg/L		
Ammonia as N	APHA 23rd edition 4500 - NH ₃ H	0.005 mg/L		
Nitrate as N	APHA 23rd edition 4500 - NO3 ⁻ I	0.005 mg/L		
Nitrite as N	APHA 23rd edition 4500 - NO2 ⁻ A & NO3 ⁻ I	0.005 mg/L		
Total Inorganic Nitrogen	By Calculation	0.01 mg/L		

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Report No.: 0041/17/ED/0677A

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 14

Analysis Description	Method	Reporting limits
Total phosphorus (soluble and particulate)	APHA 17th edition 4500-PB5 (digestion) and In-house method E- T-056 (determination)	0.01 mg/L

3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in Appendix B.

3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 15

Report No.: 0041/17/ED/0677A

3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out was 15 June 2022. A summary of the in-situ water quality monitoring results are presented in **Table 3.6** (Mid-ebb) and **Table 3.7** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix F.**

Monitoring	Water	San	nplin	Dissolved	Temperature	рН	Salinity	Turbidity	Current	Current
Station	Depth		epth	oxygen	(degree	•	(ppt)	(NTU)	speed	velocity
	(m) (m)		•	(mg/L)	Čelsius)			× ,	(m/s)	(degree
				((magnetic)
		S	1	5.74	27.42	7.84	10.81	4.4	0.13	326.1
		S	1	5.78	27.48	7.89	10.82	4.6	0.14	322.4
•	47	М	8.5	5.43	27.31	7.84	11.93	4.5	0.17	306.8
A	17	Μ	8.5	5.44	27.33	7.84	11.94	4.8	0.16	304.1
		В	16	5.26	27.20	7.86	12.11	4.6	0.23	309.2
		В	16	5.29	27.26	7.81	12.13	4.4	0.28	304.0
		S	1	6.13	28.13	7.41	10.23	3.2	0.12	204.5
		S	1	6.14	28.14	7.43	10.24	3.4	0.16	201.1
Р	11	Μ	7	6.07	27.93	7.42	10.07	3.4	0.20	173.4
В	14	Μ	7	6.06	27.94	7.41	10.06	3.7	0.21	177.2
		В	13	6.04	27.82	7.44	10.82	3.1	0.15	198.1
		В	13	6.02	27.83	7.44	10.81	3.2	0.16	198.6
		S	1	5.47	25.48	8.03	14.54	6.8	0.14	237.1
		S	1	5.48	25.49	8.01	14.55	6.7	0.17	224.8
С	12	Μ	6	5.38	27.18	7.98	15.49	6.9	0.19	201.4
U	12	Μ	6	5.40	27.14	7.99	15.47	6.7	0.17	202.3
		В	11	5.11	26.24	7.91	16.01	7.1	0.14	214.1
		В	11	5.08	26.23	7.92	16.02	7.2	0.16	220.6
		S	1	4.91	27.10	7.83	13.13	4.1	0.24	94.1
		S	1	4.89	27.12	7.84	13.19	4.3	0.27	93.6
D	13	Μ	6.5	4.82	25.93	7.81	13.18	5.6	0.19	90.2
D	15	Μ	6.5	4.87	25.94	7.80	13.84	5.4	0.14	90.1
		В	12	4.72	24.86	7.72	14.73	5.3	0.28	89.4
		В	12	4.74	24.81	7.71	14.71	5.4	0.26	89.6
		S	1	5.83	27.42	7.98	11.17	4.9	0.14	76.4
		S	1	5.86	27.41	7.94	11.19	5.0	0.19	77.1
Е	16	Μ	8	5.64	27.22	7.91	12.14	5.4	0.13	74.8
	10	Μ	8	5.63	27.21	7.93	12.15	5.3	0.17	74.4
		В	15	5.54	27.03	7.98	12.81	6.4	0.18	71.1
		В	15	5.54	27.04	7.94	12.83	6.3	0.14	71.4
		S	1	5.74	27.93	7.95	11.22	3.4	0.08	90.2
		S	1	5.76	27.94	7.96	11.24	3.6	0.08	90.4
F	23	Μ	11.5	5.23	27.33	7.92	12.38	4.1	0.13	87.1
Г	23	М	11.5	5.24	27.39	7.91	12.37	4.2	0.14	86.4
		В	22	5.01	27.10	7.84	12.87	4.9	0.12	87.1
		В	22	5.06	27.06	7.88	12.88	4.6	0.13	87.2

 Table 3.6
 Summary of In-situ Monitoring Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 16

Report No.: 0041/17/ED/0677A

Monitoring Station	Water Depth (m)	Samplin g Depth (m)		Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
		S	1	5.84	27.19	7.92	10.24	3.4	0.21	172.4
		S	1	5.86	27.14	7.93	10.22	3.1	0.22	177.1
G	22	Μ	11	5.81	27.01	7.84	11.21	3.1	0.12	180.1
G	22	Μ	11	5.80	27.03	7.83	11.24	3.4	0.13	182.4
		В	21	5.63	27.24	7.81	11.92	4.5	0.14	141.2
		В	21	5.64	27.22	7.80	11.94	4.6	0.18	142.6
		S	1	6.84	24.51	7.74	11.16	2.2	0.08	108.1
		S	1	6.83	24.27	7.71	11.14	2.4	0.05	109.2
н	19	Μ	9.5	6.61	24.02	7.64	11.34	3.5	0.12	124.1
п	19	Μ	9.5	6.58	24.03	7.66	11.38	3.6	0.13	122.3
		В	18	6.54	23.80	7.61	11.59	3.2	0.16	119.4
		В	18	6.56	23.82	7.61	11.56	3.6	0.13	118.2

Table 3.7 Summary of In-situ Monitoring Results (Mid-flood)

Table				of In-situ Mo	nitoring Results	s (Mid-i				. <u> </u>
Monitoring	Water	Sam	npling	Dissolved	Temperature	pН	Salinity	Turbidity	Current	Current
Station	Depth	Dep	th	oxygen	(degree		(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Celsius)				(m/s)	(degree
	· · /	. ,			,				. ,	magnetic)
		S	1	6.12	28.07	7.71	18.59	4.6	0.17	124.5
		S	1	6.16	28.09	7.74	18.56	4.5	0.18	122.6
^	45	М	7.5	6.02	28.01	7.79	18.68	4.1	0.13	109.3
A	15	М	7.5	6.05	28.02	7.78	18.64	4.2	0.14	109.4
		В	14	5.83	27.93	7.81	18.91	5.3	0.17	127.5
		В	14	5.82	27.94	7.83	18.94	5.4	0.16	128.4
		S	1	5.80	28.40	7.41	18.44	4.2	0.06	73.4
		S	1	5.83	28.31	7.43	18.43	4.4	0.03	70.1
В	14	М	7	5.72	28.20	7.52	18.71	4.6	0.17	59.4
Б	14	М	7	5.71	28.19	7.51	18.72	4.4	0.14	59.6
		В	13	5.64	28.01	7.50	18.80	4.1	0.13	81.4
		В	13	5.69	28.07	7.50	18.81	4.3	0.12	81.2
		S	1	5.39	24.12	7.93	16.02	5.2	0.26	321.4
		S	1	5.30	24.11	7.94	16.04	5.4	0.27	317.2
С	12	М	6	5.11	23.84	7.91	16.23	5.8	0.22	306.4
C	12	М	6	5.14	23.88	7.92	16.24	5.4	0.24	305.9
		В	11	5.02	23.64	7.89	16.59	6.7	0.14	311.4
		В	11	5.01	23.68	7.84	16.58	6.2	0.16	317.0
		S	1	6.03	26.12	7.83	14.11	9.3	0.13	94.1
		S	1	6.04	26.14	7.84	14.13	9.4	0.14	92.6
D	14	М	7	5.84	24.94	7.71	14.87	9.4	0.21	84.7
D	14	М	7	5.88	24.92	7.72	14.86	9.3	0.23	84.6
		в	13	5.62	23.47	7.43	15.26	9.8	0.13	90.6
		в	13	5.63	23.44	7.46	15.27	9.6	0.18	92.2
		S	1	5.01	27.94	7.83	12.34	3.9	0.06	204.5
		S	1	5.00	27.99	7.84	12.41	3.8	0.08	206.1
Е	14	М	7	4.87	27.99	7.94	12.83	4.2	0.15	224.5
	14	М	7	4.82	27.43	7.93	12.86	4.3	0.17	226.7
		В	13	4.61	27.41	7.91	13.41	4.6	0.19	209.1
		В	13	4.54	27.23	7.92	13.42	4.5	0.12	209.2
F	18	S	1	5.82	27.24	7.93	11.32	3.2	0.36	131.2

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 17

Report No.: 0041/17/ED/0677A

Monitoring	Water	Sam	pling	Dissolved	Temperature	pН	Salinity	Turbidity	Current	Current
Station	Depth	Dep		oxygen	(degree	P	(ppt)	(NTU)	speed	velocity
olalion	(m)	(m)		(mg/L)	Celsius)		(PP)	((m/s)	(degree
	~ /	()			,				()	magnetic)
		S	1	5.81	27.24	7.94	11.80	3.3	0.34	131.6
		М	9	5.68	27.18	7.98	11.94	3.5	0.27	124.5
		М	9	5.69	27.17	7.94	11.96	3.6	0.26	122.8
		В	17	5.51	26.94	7.96	12.28	3.8	0.13	140.5
		В	17	5.48	26.93	7.96	12.27	3.4	0.14	141.2
	13	S	1	5.34	27.86	7.84	14.18	5.0	0.31	261.1
		S	1	5.31	27.88	7.82	14.17	5.4	0.32	266.2
G		Μ	6.5	5.20	27.64	7.91	14.59	5.1	0.27	248.6
6	15	Μ	6.5	5.24	27.61	7.93	14.55	5.2	0.28	244.1
		В	12	5.10	27.42	7.95	14.86	5.3	0.19	251.3
		В	12	5.08	27.41	7.96	14.87	5.6	0.14	252.4
		S	1	6.01	27.24	7.93	11.41	5.1	0.14	79.1
		S	1	6.04	27.21	7.94	11.43	5.2	0.12	77.4
Н	19	М	9.5	5.84	27.13	7.91	11.82	5.4	0.16	87.1
	19	М	9.5	5.83	27.10	7.91	11.83	5.6	0.18	86.4
		В	18	5.62	27.03	7.96	12.16	5.7	0.12	80.7
		В	18	5.61	27.04	7.96	12.17	5.6	0.14	80.6

3.8.2 Results of laboratory analysis of water quality are presented in **Table 3.8** (Mid-ebb) and **Table 3.9** (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in **Appendix F**.

				TOC				/	E aali	Tatal D	
Monitoring	Water		npling	TSS	NH ₃	NO ₂	NO ₃	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	3	0.11	0.09	2.1	2.3	190	0.04	<1
		S	1	3	0.12	0.09	2.2	2.4	180	0.04	1.0
Δ	17	Μ	8.5	3	0.11	0.09	1.7	1.9	270	0.04	<1
A	17	Μ	8.5	3	0.10	0.09	1.5	1.7	200	0.04	<1
		В	16	3	0.10	0.09	2.2	2.3	160	0.03	<1
		В	16	3	0.10	0.09	2.0	2.2	170	0.03	<1
		S	1	3	0.08	0.09	1.9	2.0	170	0.03	<1
	14	S	1	3	0.09	0.09	1.9	2.1	160	0.03	1.1
В		М	7	3	0.09	0.09	2.0	2.2	150	0.03	<1
D		М	7	3	0.09	0.09	1.9	2.0	150	0.04	1.0
		В	13	4	0.10	0.09	2.0	2.2	160	0.04	<1
		В	13	4	0.10	0.09	1.9	2.1	170	0.04	<1
		S	1	11	0.09	0.09	1.6	1.8	800	0.03	<1
		S	1	11	0.09	0.09	1.6	1.8	860	0.04	<1
С	12	Μ	6	8	0.09	0.09	1.8	2.0	870	0.04	1.1
C	12	М	6	9	0.08	0.09	1.9	2.0	820	0.04	<1
		В	11	7	0.08	0.09	1.2	1.4	800	0.03	<1
		В	11	8	0.08	0.09	1.3	1.5	830	0.03	<1
		S	1	7	0.09	0.09	1.2	1.4	900	0.02	1.2
		S	1	6	0.08	0.09	1.3	1.4	930	0.02	<1
D	13	Μ	6.5	10	0.09	0.09	1.8	2.0	890	0.01	1.1
		Μ	6.5	12	0.08	0.09	1.7	1.9	800	0.01	<1
		В	12	11	0.09	0.09	1.7	1.9	760	0.02	1.3

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 18

Report No.: 0041/17/ED/0677A

Monitoring	Water	Sam	npling	TSS	NH ₃	NO ₂ ⁻	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep		(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
Station	(m)	(m)	uı	(IIIg/L)	(mg/L)	(mg/L)	(mg/L)	(IIIg/L)		(IIIg/L)	(IIIg/L)
	(111)	B	12	10	0.09	0.09	(mg/L) 1.7	1.9	800	0.01	1.0
		S	1	5	0.09	0.09	1.7	2.1	320	0.01	<1
		S	1	5	0.09	0.09	2.1	2.1	260	0.01	1.3
		M	8	5	0.09	0.09	2.1	2.3	290	0.02	<1
E	16	M	8	5	0.08	0.09	1.8	2.1	310	0.04	<1
		B	15	5	0.08	0.09	2.1	2.0	270	0.04	1.3
		B	15	6	0.09	0.09	1.8	2.2	260	0.02	<1
		S	1	5	0.08	0.09	1.0	2.0	300	0.02	1.5
		S	1	5	0.06	0.09	1.5	1.6	350	0.03	<1
	23	M	11.5	5	0.08	0.09	1.5	1.9	370	0.03	1.7
F		M	11.5	5	0.08	0.09	1.7	1.9	330	0.03	1.1
		B	22	5	0.09	0.09	1.8	2.0	260	0.03	1.0
		B	22	5	0.08	0.09	2.1	2.0	370	0.04	1.4
		S	1	5	0.09	0.09	2.1	2.2	300	0.04	1.4
		S	1	4	0.08	0.09	1.7	0.7	360	0.02	<1
		M	11	4	0.00	0.09	1.6	1.6	270	0.03	<1
G	22	M	11	5	0.10	0.09	1.5	1.5	310	0.02	1.8
		B	21	3	0.10	0.09	1.9	1.9	280	0.01	<1
		B	21	3	0.07	0.09	1.9	1.9	330	0.02	1.1
		S	1	3	0.07	0.09	2.0	2.2	260	0.02	<1
		S	1	3	0.08	0.09	1.9	2.1	240	0.03	<1
		M	9.5	5	0.00	0.09	1.8	2.0	300	0.03	<1
Н	19	M	9.5	4	0.07	0.09	1.8	2.0	380	0.03	<1
		B	18	4	0.07	0.09	2.0	2.0	300	0.06	<1
		B	18	5	0.06	0.09	2.0	2.2	330	0.05	<1

 Table 3.9
 Summary of Laboratory Analysis Results (Mid-flood)

	ADIE 3.9					1		/	E coli	Total D	
Monitoring	Water		pling	TSS	NH₃	NO ₂	NO ₃	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	5	0.10	0.09	2.0	2.2	260	0.03	1.7
		S	1	4	0.10	0.09	2.2	2.4	220	0.04	<1
^	15	М	7.5	4	0.11	0.09	2.3	2.5	180	0.06	<1
A	15	М	7.5	4	0.11	0.09	2.1	2.3	200	0.06	1.4
		В	14	3	0.13	0.09	2.3	2.5	200	0.04	1.1
		В	14	3	0.13	0.09	2.1	2.4	190	0.04	1.3
		S	1	3	0.10	0.09	2.1	2.3	180	0.04	<1
		S	1	3	0.10	0.09	2.2	2.3	180	0.04	<1
В	14	М	7	3	0.09	0.09	2.1	2.3	170	0.04	<1
D		М	7	3	0.09	0.09	1.9	2.1	170	0.05	1.0
		В	13	4	0.08	0.09	1.9	2.1	170	0.03	1.1
		В	13	4	0.08	0.09	2.1	2.3	180	0.02	<1
		S	1	8	0.08	0.09	1.5	1.7	1000	0.04	1.1
		S	1	8	0.08	0.09	1.7	1.8	1100	0.03	1.2
<u> </u>	10	М	6	7	0.09	0.09	1.6	1.8	1200	0.05	<1
С	12	М	6	8	0.09	0.09	1.5	1.7	1100	0.04	3.2
		В	11	8	0.08	0.09	1.8	2.0	950	0.04	1.1
		В	11	9	0.08	0.09	1.7	1.9	980	0.04	<1
	11	S	1	8	0.07	0.09	1.9	2.1	900	0.01	1.0
D	14	S	1	8	0.07	0.09	1.8	2.0	960	0.02	1.3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 19

Report No.: 0041/17/ED/0677A

Monitoring	Water	Sam	npling	TSS	NH₃	NO_2^-	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		M	7	10	0.10	0.09	1.8	2.0	960	0.05	1.6
		М	7	9	0.10	0.09	1.9	2.1	1000	0.05	1.1
		В	13	8	0.10	0.09	1.9	2.1	920	0.05	<1
		В	13	9	0.10	0.09	1.9	2.1	850	0.04	<1
		S	1	6	0.09	0.09	2.0	2.2	400	0.05	1.0
		S	1	6	0.09	0.09	1.9	2.1	220	0.05	<1
Е	14	М	7	6	0.07	0.09	1.9	2.1	200	0.05	<1
	14	М	7	5	0.07	0.09	1.9	2.1	320	0.06	<1
		В	13	4	0.09	0.09	1.8	2.0	280	0.04	<1
		В	13	4	0.08	0.09	1.9	2.1	370	0.04	1.0
		S	1	6	0.07	0.09	1.7	1.9	400	0.04	<1
		S	1	6	0.07	0.09	1.9	2.1	280	0.05	<1
F	18	М	9	7	0.07	0.09	1.8	1.9	470	0.04	<1
Г	10	М	9	6	0.07	0.09	1.7	1.9	410	0.04	<1
		В	17	6	0.08	0.09	1.7	1.8	410	0.03	<1
		В	17	6	0.08	0.09	1.6	1.8	320	0.03	<1
		S	1	4	0.08	0.09	1.8	2.0	200	0.04	<1
		S	1	4	0.08	0.09	1.6	1.7	250	0.03	<1
G	13	М	6.5	4	0.07	0.09	1.9	2.1	260	0.03	<1
G	15	М	6.5	4	0.07	0.09	1.7	1.8	240	0.03	<1
		В	12	4	0.08	0.09	1.4	1.6	250	0.02	<1
		В	12	4	0.08	0.09	1.6	1.8	230	0.03	1.0
		S	1	3	0.07	0.09	1.6	1.8	240	0.05	1.2
		S	1	3	0.07	0.09	1.9	2.1	330	0.04	<1
Н	19	М	9.5	4	0.08	0.09	1.7	1.9	340	0.05	<1
п	19	М	9.5	4	0.09	0.09	1.8	2.0	260	0.04	<1
		В	18	4	0.06	0.09	1.7	1.9	250	0.05	<1
		В	18	4	0.07	0.09	1.6	1.7	270	0.04	<1

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Tidal data obtained from Ma Wan Marine Traffic Station is present in **Appendix G**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and may affect the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

Table 3.10	Weather condition	of water qu	uality monitoring
------------	-------------------	-------------	-------------------

Date	Ai	r Temperat	Mean	Total	
	Maximum	Mean	Minimum	Relative	Rainfall
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)
				(%)	
15 June 2022	30.5	26.7	24.0	88	11.0
0 11 14	<u>.</u>				

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 20

4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

4.1 Monitoring Station

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 3**.

Table 4.1	Location of Sediment Qualit	y Monitoring and Benthic Survey
-----------	-----------------------------	---------------------------------

	Sampling Location	Easting	Northing
А	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
ш	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Monitoring Paramet	ters
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey
Grain size profile* (i.e. Particle Size Distribution) (%)	Cadmium (µg/L)
Total organic carbon* (%)	Chromium (µg/L)
pH value	Copper (µg/L)
Ammonia as N (mg-N/kg)	Lead (µg/L)
Total nitrogen (mg-N/kg)	Mercury ((µg/L)
Total phosphorus (mg-N/kg)	Nickel (µg/L)
Cadmium (mg/kg)	Zinc (µg/L)
Chromium (mg/kg)	Arsenic (µg/L)
Copper (mg/kg)	Silver (µg/L)
Lead (mg/kg)	
Mercury (mg/kg)	
Nickel (mg/kg)	
Zinc (mg/kg)	
Arsenic (mg/kg)]
Silver (mg/kg)	

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey

Page 21

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix J**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix J**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Page 22

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb sufficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 With reference to EPD's letter (Ref: Ax(7) to EP 2/No/F/50 Pt.7) dated 8 February 2022, Change of Laboratory on Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey (0041_17_ED_0632A) is approved. Fugro Technical Services Limited (HOKLAS Reg. No. 015), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Analysis Description	Method	Reporting limits
Particle Size Distribution	Geospec 3 : 2001 Test 8.1, 8.5 and 8.7	1%
Total Organic Carbon	APHA 23rd edition 5310B	0.05%
pH value	APHA 23rd edition 4500-H ⁺ B	0.1 pH unit
Ammonia as N	APHA 23rd edition 4500 NH3: B & C / In house method E-T-039	0.5 mg/kg
Total Nitrogen	APHA 23rd edition 4500 N _{org} : D (digestion), In-house method E-T-036, E-T-037 & APHA 23rd edition 4500 - NO_3^- I	10 mg/kg
Total Phosphorus	APHA 17th edition 4500 – PB.5 (digestion) & In house method E-T-056 (determination)	10 mg/kg
Cadmium	USEPA method 3050B (digestion) and	0.1 mg/kg
Chromium	6020A (determination)	0.5 mg/kg
Copper		0.2 mg/kg
Lead		0.2 mg/kg
Mercury		0.05 mg/kg
Nickel		0.2 mg/kg
Zinc		0.5 mg/kg
Arsenic]	0.5 mg/kg
Silver		0.1 mg/kg

 Table 4.3
 Laboratory Measurement/Analysis Methods and Reporting Limits

4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted

Page 23

and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.

4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 15 June 2022. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix H**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 24

Report No.: 0041/17/ED/0677A

 Table 4.4
 Summary of laboratory analysis results for sediment monitoring

Monitoring Station	pH value	NH ₃ as N (mg/L)	Total N (mg- N/kg)	Total P (mg- P/kg)	Cd (mg/ kg)	Cr (mg/ kg)	Cu (mg /kg)	Pb (mg /kg)	Hg (mg/k g)	Ni (mg /kg)	Zn (mg /kg)	As (mg /kg)	Ag (mg/k g)
A	8.5	5.6	730	1000	<0.1	18	14	21	0.05	8.5	48	8.8	0.1
В	8.0	8.6	990	1200	<0.1	27	28	33	0.09	16	81	10	0.3
С	7.9	10	110	1100	<0.1	33	31	37	0.11	18	92	11	0.3
D	8.3	5.6	850	1200	<0.1	20	20	25	0.06	12	64	7.9	0.2
E	8.0	9.6	1300	1200	<0.1	29	34	37	0.13	17	92	9.9	0.4
F	7.8	31	1500	1300	<0.1	29	30	34	0.09	17	85	9.7	0.3
G	8.1	8.1	1100	830	<0.1	25	26	31	0.09	15	76	9.7	0.3
Н	8.1	9.8	1000	1100	<0.1	26	35	31	0.08	15	76	9.3	0.4

 Table 4.5
 Summary of laboratory analysis results for benthic survey

Monitoring Station	Total organic carbon (%)	Grain size profile (%)				Description	
Station		Gravel	Sand	Silt	Clay		
А	0.32	28	16	13	13	Moist, dark grey, clayey, silty, very gravelly SAND with shell fragments	
В	0.77	0	15	45	40	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	
С	0.86	1	9	45	45	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	
D	0.57	5	40	28	27	Moist, dark grey, slightly gravelly, sandy SILT/CLAY with shell fragments	
E	0.89	0	10	46	44	Moist, brown, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	
F	0.98	0	1	47	52	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	
G	0.73	26	21	27	26	Moist, dark grey, slightly sandy, slightly gravelly SILT/CLAY with shell fragments	
Н	0.52	0	6	49	45	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix H**.
- 4.10.3 Construction works from expansion of Hong Kong International Airport was observed nearby the Project site and its vicinity and may affect the sediment quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 4.6**.

 Table 4.6
 Weather condition of water quality monitoring

Date	Air Temperature			Mean	Total
	Maximum	Mean	Minimum	Relative	Rainfall
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)
				(%)	
15 June 2022	30.5	26.7	24.0	88	11.0

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 25

4.10.4 The benthic survey data are summarized and presented in Table 4.7.

Monitoring Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)		
	· · ·			0.00	0.00		
A	51	3.90	18	2.69	0.93		
В	28	0.72	11	2.17	0.91		
С	26	1.21	9	2.01	0.92		
D	32	2.79	11	2.13	0.89		
E	17	0.62	7	1.82	0.94		
F	11	0.62	7	1.89	0.97		
G	44	4.31	13	2.40	0.94		
Н	30	1.87	13	2.42	0.94		

Table 4.7Summary of benthic survey data on 15 June 2022

4.10.5 The benthic survey results are analyzed and presented as below:

i) Abundance

A total of 239 benthic organisms was recorded from the eight monitoring stations during June 2022 monitoring period. Current monitoring results showed lower total monthly abundance compared to both dry (March 2004) and wet (August 2004) seasons baseline data results. Similar with previous monitoring periods, total monthly abundance of benthic organisms exhibits significant seasonal variation (F-value = 4.59; F-crit = 1.54; p-value = 1.28E-10; $\alpha = 0.05$).

In terms of spatial distribution, the lowest abundance of 11 ind. was recorded in the reference station, Station F, while the highest (51 ind.) was also noted in other reference station, Station A. Total macrobenthic abundances, similar with the previous monitoring periods, showed statistically significant spatial distribution (F-value = 3.53; F-crit = 2.05; P-value = 0.001; $\alpha = 0.05$).

ii) Biomass

The total wet biomass recorded in the eight monitoring stations was 16.04 g with the highest biomass recorded in the reference station, Station G (4.31 g) while the lowest biomass (0.62 g) was observed in both reference stations, Station E and Station F. Relative to the April 2022 period, a general decrease in biomass was observed during the current monitoring period. Most of the current decrease was attributed to the biomass decrease of Potamocorbula in the benthic community.

iii) Taxonomic Composition

A total of six phyla comprising of 29 families and about 33 genera were identified. During the current monitoring period, the annelids (57.32%) dominated the macrobenthic assemblage, and followed by the molluscs (28.87%). Relative to April 2022 community assemblage, current results showed a shift to annelid-dominated community.

Currently, a shift in the community assemblage was noted as shift in season started (from dry season to wet season).

Hong Kong.

Page 26

iv) Diversity

Benthic diversity index (H') in the impact stations ranged from 2.01 to 2.13. In the reference stations, H' values ranged from 1.82 to 2.69. Currently, reference station, Station A had the highest diversity value among the different monitoring stations, while the lowest was the reference station, Station E. In terms of evenness index (J) values, impact Station C was noted with relatively high values as compared to impact station D and reference station B. Moreover, current monitoring results indicated an overall increase in both diversity and evenness values from the baseline survey condition.

The detailed benthic survey results are provided in Appendix I.

Website : www.fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 27

5. CHINESE WHITE DOLPHIN MONITORING

5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report dated 27 August 2021, "Monitoring of Marine Mammals in Hong Kong Waters (2020-21)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in August 2021. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2021-22) is uploaded to AFCD's webpage.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 28

6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

6.1 Implementation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix L**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 29

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in Appendix L.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 30

8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Odour patrol monitoring was resumed and carried out on 10, 16, 22 and 28 June 2022. No exceedances of Action/Limit levels at ASRs were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 15 June 2022. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Page 31

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	0	0	1
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Table 9.1 Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

9.1.2 The cumulative complaint log and summaries of complaints are presented in **Appendix K**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 32

Report No.: 0041/17/ED/0677A

10. FUTURE KEY ISSUES

10.1.1 The key issues to be considered in the coming reporting month include:

- i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
- ii. According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

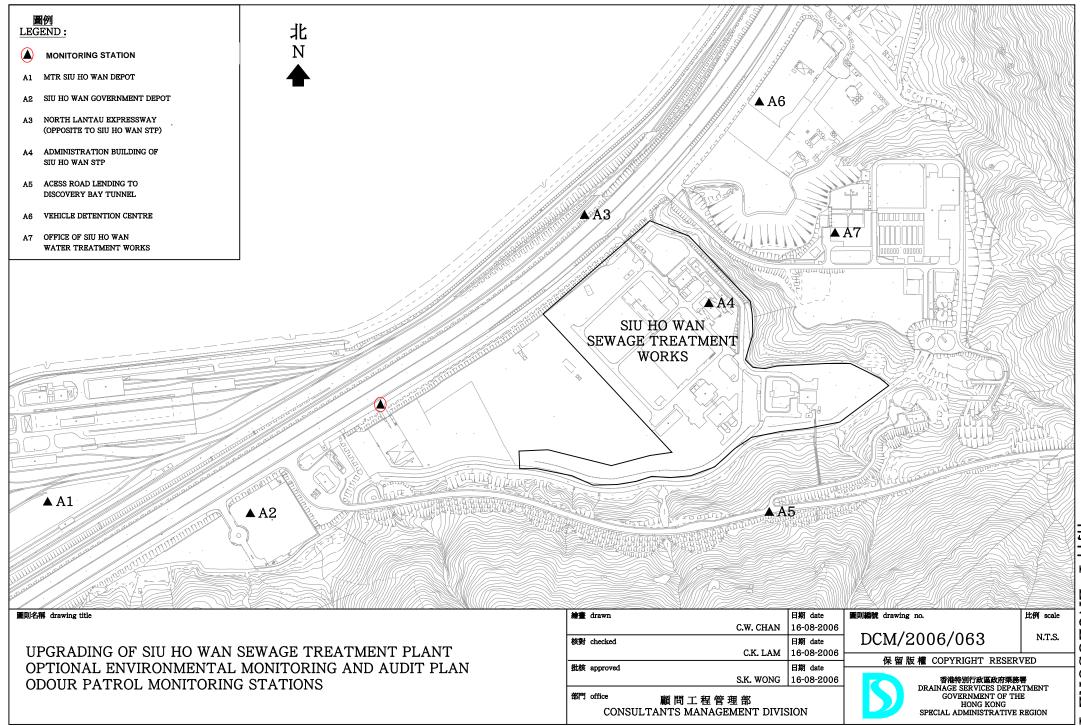
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 33

Report No.: 0041/17/ED/0677A

11. CONCLUSION

- 11.1.1 Odour patrol monitoring was resumed from January 2020 and carried out on 10, 16, 22 and 28 June 2022. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at odour patrol points were recorded in the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 15 June 2022 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic and construction works from expansion of Hong Kong International Airport were observed nearby the Project site and its vicinity and may affect the water and sediment quality The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 27 August 2021, "Monitoring of Marine Mammals in Hong Kong Waters (2020-21)" in terms of the distribution and abundance of CWDs was reviewed in the Monthly EM&A report in August 2021. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2021-22) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions. All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

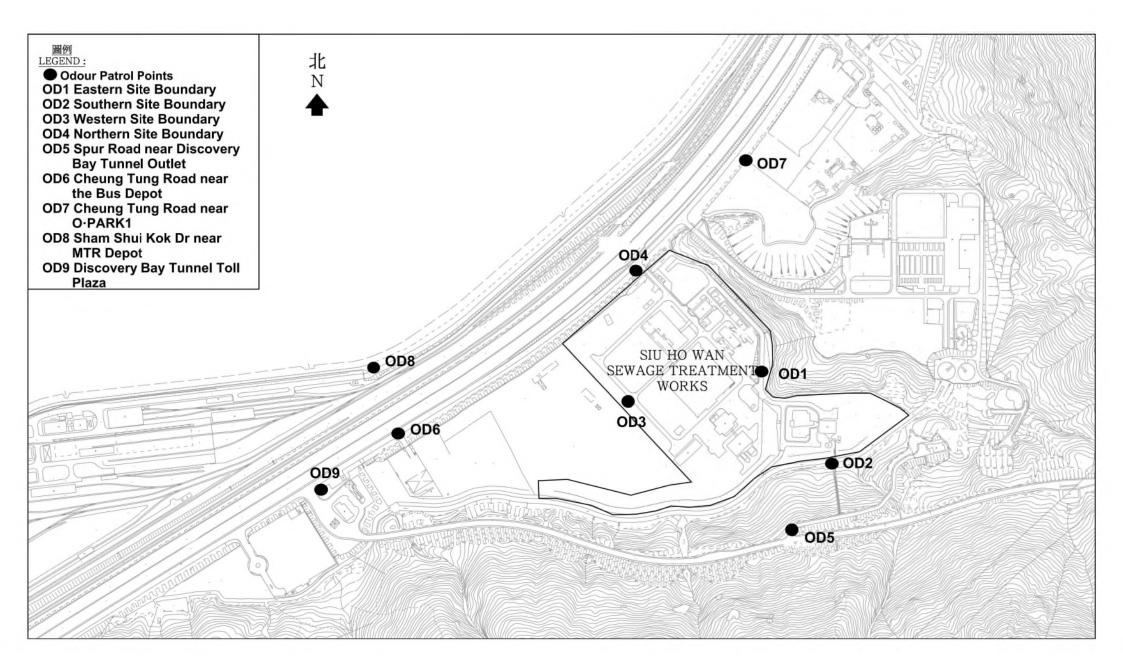
Report No.: 0041/17/ED/0677A

Figure 1

Monitoring Stations of Air Sensitive Receivers

.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

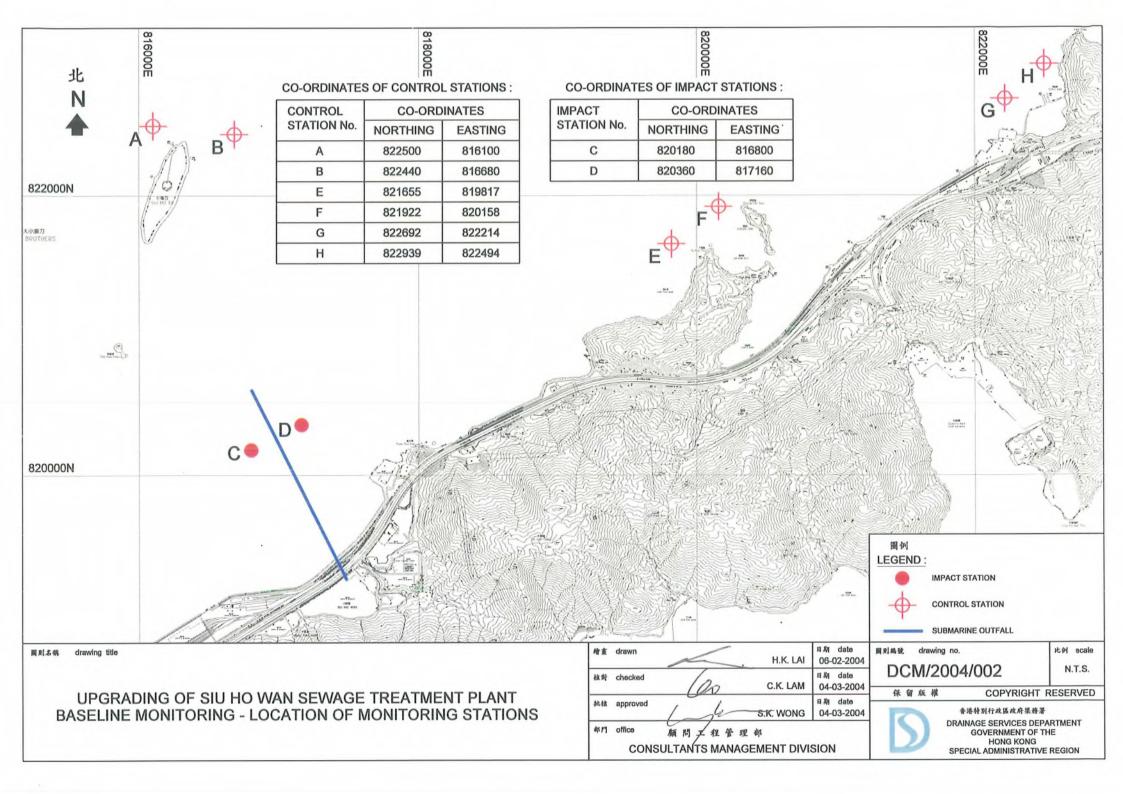

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Figure 2

Odour Patrol Points of Modified Odour Patrol

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Figure 3

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Figure 4

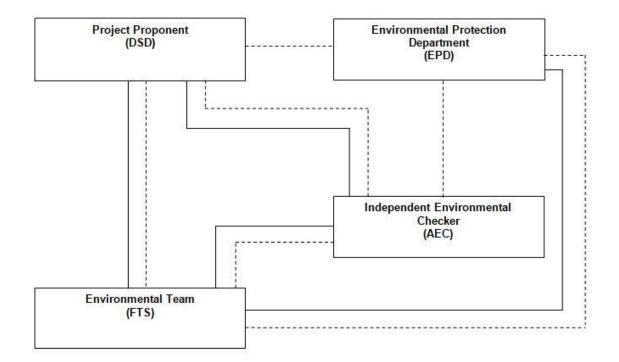
Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Legend:	
	Line of Reporting
	Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Monitoring Schedule for the Present Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
			1 June	2	3	4
5	6	7	8	9	10 Odour Patrol	11
12	13	14	15 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Flood (06:03) Mid-Ebb (13:07)	16 Odour Patrol	17	18
19	20	21	22 Odour Patrol	23	24	25
26	27	28 Odour Patrol	29	30		

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Monitoring Schedule for the Next Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
					1 July	2
3	4 Odour Patrol	5	6	7	8	9
10	11	12	13	14	15 Odour Patrol	16
17	18	19	20	21 Odour Patrol	22	23
24	25	26	27 Odour Patrol	28	29	30
31						

Remarks

1. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

		ACTION	
EVENT	ET	IEC	*Operator
Action Level			
One complaint received for specific odour event / Odour intensity of 2 or above is measured from odour patrol	 Identify source/reason of exceedance or odour complaints; Notify the IEC and Operator of exceedance; Repeat odour patrol to confirm finding; If exceedance continues, notify the IEC and Operator; Carry out investigation to identify the source/reason of exceedance or complaints; Check Operator's working methods; and Discuss with Operator on required remedial actions. 	 Check odour patrol results submitted by ET; Discuss with ET and Operator on the possible remedial actions; Advise the Operator on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Notify the ET and IEC when receipt of odour complaint; Confirm receipt of notification of exceedance in writing; Identify/ confirm source with ET; Discuss with ET for remedial actions required; Ensure remedial actions properly implemented Rectify any unacceptable practice; and Amend operation methods if appropriate.
Limit Level			
More than one complaint in 3 months / Odour intensity of 3 or above is measured from odour patrol	 Identify source/reason of exceedance or odour complaints; Notify the IEC and Operator of exceedance; Repeat odour patrol to confirm finding; If exceedance continues, notify the IEC and Operator; Carry out investigation to identify the source/reason of exceedance or complaints; Check Operator's working methods; Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; Arrange meeting with ET and EPD to discuss the remedial actions to be taken; Discuss with EPD and the 	 Check odour patrol results submitted by ET; Discuss amongst ET and the Operator on the potential remedial actions; Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; Supervise implementation of remedial measures. 	 Notify the ET and IEC when receipt of odour complaint; Confirm receipt of notification of exceedance in writing; Indentify/ confirm source with ET; Inform ET, IEC and EPD; Discuss with EPD and ET on the required remedial actions; Ensure remedial actions properly implemented; Take immediate action to avoid further exceedance; Implement the agreed proposals.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

control.

* The operator who is the constructor responsible for the operation during the maintenance period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Appendix D

Results and Graphical Presentation of Air Quality Monitoring

Tel

Fax

Room 723 - 726, 7/F, Block B,
Profit Industrial Building,
1-15 Kwai Fung Crescent, Kwai Fong,
Hong Kong

: (852)-24508238 : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

18/6/2022 Weather Close	udy	Temperatur	re 26.6	··C Hu	midity 67%
Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
Eastern Site Boundary	1103	E	2.6	0	/
Southern Site Boundary	1105	-	0	1	Effluent
Western Site Boundary	1011	E	1.2	0	1
Northern Site Boundary	1059	P	1.4	0	/
Spur Road near Discovery Bay Tunnel Outlet	/	/	/	/	/
Cheung Tung Road near the Bus Depot	1047	E	2.5	0	(
Cheung Tung Road near O·PARK1	1051		0.2	2	/
Sham Shui Kok Dr near MTR Depot	1040	NE	0.5	0	/
Discovery Bay Tunnel Toll Plaza	1045	/	0	0	/
	Location Eastern Site Boundary Southern Site Boundary Western Site Boundary Northern Site Boundary Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot Cheung Tung Road near O·PARK1 Sham Shui Kok Dr near MTR Depot	Location Time Eastern Site Boundary 1103 Southern Site Boundary 1105 Western Site Boundary 1105 Western Site Boundary 1101 Northern Site Boundary 1059 Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot 1047 Cheung Tung Road near O·PARK1 1051 Sham Shui Kok Dr near MTR Depot 1040	Location Time Wind Direction Eastern Site Boundary 1103 E Southern Site Boundary 1105 E Western Site Boundary 1101 E Northern Site Boundary 1101 E Northern Site Boundary 1059 N Spur Road near Discovery Bay Tunnel Outlet ////////////////////////////////////	LocationTimeWind DirectionWind Speed (m/s)Eastern Site Boundary1103E2.6Southern Site Boundary11050Western Site Boundary1101E1.2Northern Site Boundary1059N1.4Spur Road near Discovery Bay Tunnel Outlet//Cheung Tung Road near the Bus Depot1047E2.5Cheung Tung Road near O·PARK11051NE0.1Sham Shui Kok Dr near MTR Depot1040NE0.5	LocationTimeWind DirectionWind Speed (m/s)Odour intensityEastern Site Boundary1103E2.60Southern Site Boundary110501Western Site Boundary110501Western Site Boundary1101E1.20Northern Site Boundary1059N1.40Spur Road near Discovery Bay Tunnel Outlet//////////////////////////////

Classification Criteria:

Slight

Strong Extreme

Moderate

Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance

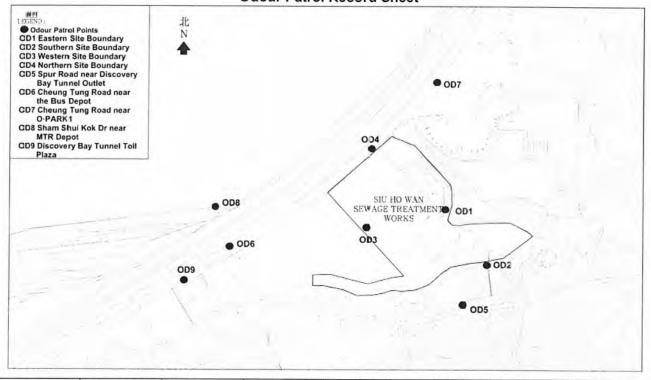
Moderate identifiable odour, and moderate chance to have odour nuisance

Strong identifiable, likely to have odour nuisance

Extreme severe odour, and unacceptable odour level

Recorded by: Name:

27 147 Date: 202


Checked by: NO Name: CHO Am 10 2022 Date: June

Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date		10 JUN 2022 Weather	Cloudy	Temperatu	re 26	.6 Hu	midity 87%
ID	Locat	tion	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Easte	ern Site Boundary	11:03	E	2.6	D	/
OD2	South	nern Site Boundary	11:05	1	O	1	Effluent
OD3	West	ern Site Boundary	11:01	E	1.2	D	
OD4	North	ern Site Boundary	10:59	N	1.4	D	1
OD5	Spur	Road near Discovery Bay Tunnel Out	let /	/	1	/	/
OD6	Cheu	ng Tung Road near the Bus Depot	10:47	E	2.5	D	1
OD7	Cheu	ng Tung Road near O·PARK1	10:51	NE	0.2	6	1
OD8	Sham	Shui Kok Dr near MTR Depot	10:40	NE	0.5	0	1
OD9	Disco	overy Bay Tunnel Toll Plaza	10:45	/	0	D	/
Classi	fication	Criteria:		/			

*Classification Criteria

Slight

Strong

Extreme

Moderate

Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance

: Moderate identifiable odour, and moderate chance to have odour nuisance

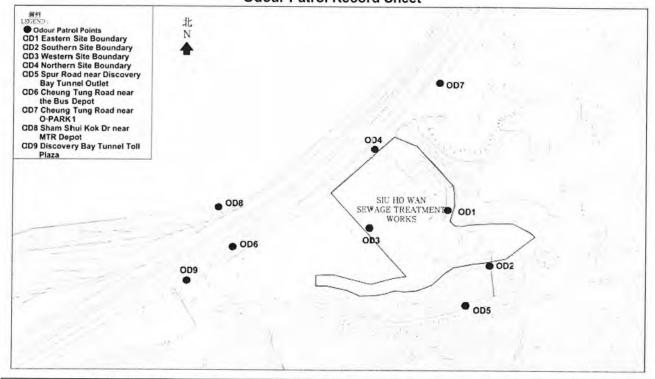
: Strong identifiable, likely to have odour nuisance : Extreme severe odour, and unacceptable odour level

Recorded by: Name:

Chan Date: 10

Checked by: KAM Name: CHOI HO 2022 Date: 10 June

FUGRO TECHNICAL SERVICES LIMITED Room 723 - 726, 7/F, Block B,


Tel Fax

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

16 June 2012 Weather Clo	udy	Temperatu	re 30°	C Hu	midity 76%
Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
Eastern Site Boundary	1049	/	0	0	/
Southern Site Boundary	1051	/	0	1	Effluent
Western Site Boundary	1047	SU	0.4	D	
Northern Site Boundary	1045	1	0	D	1
Spur Road near Discovery Bay Tunnel Outlet	1	/	1	/	1
Cheung Tung Road near the Bus Depot	1035	/	0	0	1
Cheung Tung Road near O·PARK1	10:50	/	0	0	1
Sham Shui Kok Dr near MTR Depot	1025	/	D	0	1
Discovery Bay Tunnel Toll Plaza	1030	/	Ō	0	1
	Location Eastern Site Boundary Southern Site Boundary Western Site Boundary Northern Site Boundary Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot Cheung Tung Road near O·PARK1 Sham Shui Kok Dr near MTR Depot	Location Time Eastern Site Boundary 1044 Southern Site Boundary 1051 Western Site Boundary 1051 Western Site Boundary 1047 Northern Site Boundary 1047 Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot 1035 Cheung Tung Road near O·PARK1 10.56 Sham Shui Kok Dr near MTR Depot 1025	LocationTimeWind DirectionEastern Site Boundary1044/Southern Site Boundary1051/Western Site Boundary1047/Northern Site Boundary1047/Spur Road near Discovery Bay Tunnel Outlet//Cheung Tung Road near the Bus Depot1035/Cheung Tung Road near O·PARK110.54/Sham Shui Kok Dr near MTR Depot1025/	Location Time Wind Direction Wind Speed (m/s) Eastern Site Boundary 1044 0 Southern Site Boundary 1051 0 Western Site Boundary 1051 0 Western Site Boundary 1047 500 Western Site Boundary 1047 0 Spur Road near Discovery Bay Tunnel Outlet ////////////////////////////////////	LocationTimeWind DirectionWind Speed (m/s)Odour intensityEastern Site Boundary104400Southern Site Boundary105101Western Site Boundary105101Western Site Boundary10475000.4Northern Site Boundary104700Northern Site Boundary104700Spur Road near Discovery Bay Tunnel Outlet103500Cheung Tung Road near the Bus Depot103500Sham Shui Kok Dr near MTR Depot122500

Classification Criteria:

Not detected Slight

Moderate

Strong

Extreme

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance

: Moderate identifiable odour, and moderate chance to have odour nuisance

: Strong identifiable, likely to have odour nuisance

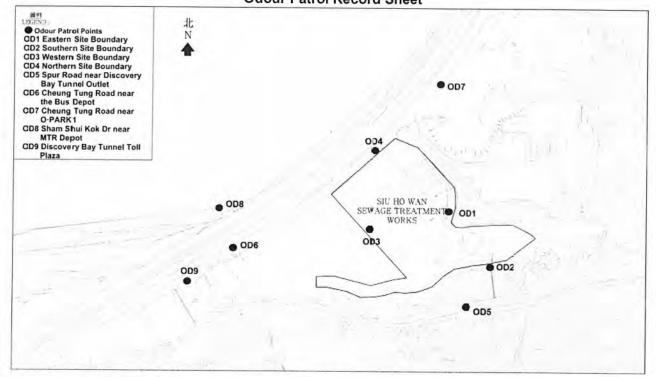
: Extreme severe odour, and unacceptable odour level

Recorded by: Name:

Date:

Checked by: KAM Name: 1-10 HO Date: 2022 16 Tune

Tel


Fax

Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

16 JUNE ZON Weather Clour	dy	Temperatu	re 30	°C Hu	imidity 76%
Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
Eastern Site Boundary	10:49	1	2	D	1
Southern Site Boundary	10:51	/	0	0	
Western Site Boundary	10:47	SW	0.4	Q	1
Northern Site Boundary	10:45	1		D	1
Spur Road near Discovery Bay Tunnel Outlet	1	/	/	-	1
Cheung Tung Road near the Bus Depot	10:35	1	D		/
Cheung Tung Road near O-PARK1	10:56	/	D	D	1
Sham Shui Kok Dr near MTR Depot	10:25	1	0	0	1
Discovery Bay Tunnel Toll Plaza	10:30	/	Ð	5	
	Location Eastern Site Boundary Southern Site Boundary Western Site Boundary Northern Site Boundary Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot Cheung Tung Road near O·PARK1 Sham Shui Kok Dr near MTR Depot	Location Time Eastern Site Boundary [0:49] Southern Site Boundary [0:57] Western Site Boundary [0:47] Northern Site Boundary [0:47] Northern Site Boundary [0:47] Spur Road near Discovery Bay Tunnel Outlet [0:47] Cheung Tung Road near the Bus Depot [0:37] Cheung Tung Road near O·PARK1 [0:56] Sham Shui Kok Dr near MTR Depot [0:25]	Location Time Wind Direction Eastern Site Boundary [0:49] // Southern Site Boundary [0:51] // Western Site Boundary [0:41] // Northern Site Boundary [0:45] // Northern Site Boundary [0:45] // Spur Road near Discovery Bay Tunnel Outlet // // Cheung Tung Road near the Bus Depot [0:35] // Cheung Tung Road near O·PARK1 [0:56] // Sham Shui Kok Dr near MTR Depot 10:25 //	LocationTimeWind DirectionWind Speed (m/s)Eastern Site Boundary[0:49]/2Southern Site Boundary[0:57]/0Western Site Boundary[0:47]5000Western Site Boundary[0:47]5000Western Site Boundary[0:465]/0Spur Road near Discovery Bay Tunnel Outlet///Cheung Tung Road near the Bus Depot[0:56]0Cheung Tung Road near O·PARK1[0:56]0Sham Shui Kok Dr near MTR Depot10:25]0	LocationTimeWind DirectionWind Speed (m/s)Odour intensityEastern Site Boundary[0:44]-00Southern Site Boundary[0:51]-00Western Site Boundary[0:41]50000Western Site Boundary[0:44]-00Northern Site Boundary[0:44]50000Spur Road near Discovery Bay Tunnel Outlet00Cheung Tung Road near the Bus Depot[0:54]000Cheung Tung Road near O-PARK1[0:56]000Sham Shui Kok Dr near MTR Depot10:25000

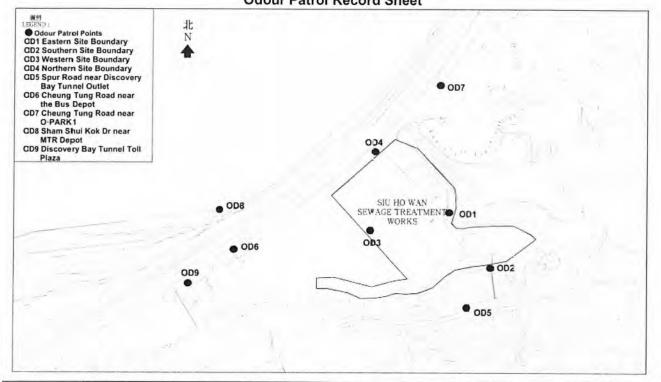
Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described Slight Slight identifiable odour, and slight chance to have odour nuisance Moderate Moderate identifiable odour, and moderate chance to have odour nuisance Strong Strong identifiable, likely to have odour nuisance Extreme

Extreme severe odour, and unacceptable odour level

Recorded by:

Wa Name: Wang You Date: TUNE 2022

Checked by: Name: CHOI KAU 140 Date: 2022 16 June


Tel

Room 723 - 726, 7/F, Block B,	
Profit Industrial Building,	
1-15 Kwai Fung Crescent, Kwai Fong,	
Hong Kong.	

: (852)-24508238 : (852)-24508032 Fax : mcl@fugro.com.hk Email

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	21 JUNE 2012 Weather Flv	2	Temperature	e 31°	C F	lumidity	69%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	, Odour Cł	naracteristics
OD1	Eastern Site Boundary	11:20	INE	0.3	0		1
OD2	Southern Site Boundary	11:22	/	D	1	Ef-	luent
OD3	Western Site Boundary	61:11	SW	0.6	0		/
OD4	Northern Site Boundary	11:16	1	D	0	_	1,
OD5	Spur Road near Discovery Bay Tunnel Outlet	/	1	/	1		/
OD6	Cheung Tung Road near the Bus Depot	11:05	NE	0.8	0		/
OD7	Cheung Tung Road near O·PARK1	11.09	/	O	0		/
OD8	Sham Shui Kok Dr near MTR Depot	10:57	NE	2.8	O		/
OD9	Discovery Bay Tunnel Toll Plaza	11:02	1	D	0		1

: No odour perceived or an odour so weak that it cannot be easily characterised or described Not detected

: Slight identifiable odour, and slight chance to have odour nuisance : Moderate identifiable odour, and moderate chance to have odour nuisance

Slight Moderate Strong Extreme

: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by:

Name: Tim 2022 Date: 22 UNE

Checked by: HO KAM Name: CI-COI Date: 22 2022 June


Tel

Room 723 - 726, 7/F, Block B,
Profit Industrial Building,
1-15 Kwai Fung Crescent, Kwai Fong,
Hong Kong.

: (852)-24508238 : (852)-24508032 Fax Email mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	22 June 2022 Weather Fins	2	Temperatur	e 31°C	- Hu	imidity 63°/s	
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteris	
OD1	Eastern Site Boundary	1120	INE	0.3	0	/	_
OD2	Southern Site Boundary	1122	/	0	D	1	
OD3	Western Site Boundary	1118	500	0,6	0	/	
OD4	Northern Site Boundary	1116	/	0	0	1	
OD5	Spur Road near Discovery Bay Tunnel Outlet	1	/	/	/	1	_
OD6	Cheung Tung Road near the Bus Depot	1105	NE	0.8	0	1	
OD7	Cheung Tung Road near O PARK1	1109	/	0	2	/	-
OD8	Sham Shui Kok Dr near MTR Depot	1057	NE	2.8	0	1	
OD9	Discovery Bay Tunnel Toll Plaza	1102	1	D	O	1	
Classi	fication Criteria:					1	-

Not detected Slight

Moderate

Strong Extreme : No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance

Moderate identifiable odour, and moderate chance to have odour nuisance

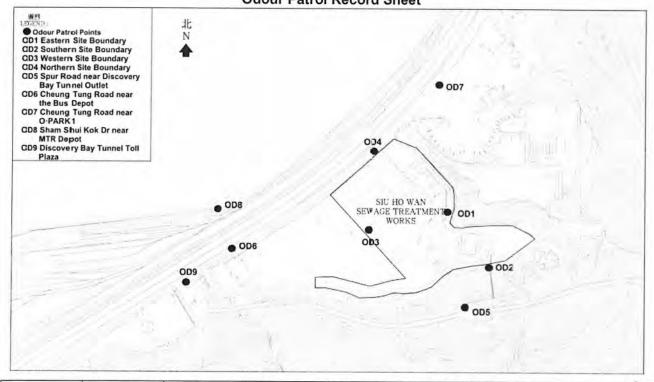
Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by: Name:

Tong hun 2012 Date: 22 huno.

Checked by: Name: KAM (1-10I Ho Date: 22 2022 June


Tel

Room 723 - 726, 7/F, Block B,	
Profit Industrial Building,	
1-15 Kwai Fung Crescent, Kwai Fon	g,
Hong Kong	

: (852)-24508238 Fax (852)-24508032 Email mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

29JUNE2022 Weather Fin	e	Temperatu	re)).	4 C Hur	midity 50°
Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
Eastern Site Boundary	14:59	Su	3.8	1	Effluent
Southern Site Boundary	(5.0)	/	D	0	1
Western Site Boundary	14:57	/	0	0	1
Northern Site Boundary	14:55	/	0	0	1
Spur Road near Discovery Bay Tunnel Outlet	15:14	NE		0	1
Cheung Tung Road near the Bus Depot		NE	1.1	0	/
Cheung Tung Road near O PARK1			1.0	0	1
Sham Shui Kok Dr near MTR Depot	14:37	NE	0.7	0	1
Discovery Bay Tunnel Toll Plaza	14:41	NW		0	1
	Eastern Site Boundary Southern Site Boundary Western Site Boundary Northern Site Boundary Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot Cheung Tung Road near O·PARK1 Sham Shui Kok Dr near MTR Depot Discovery Bay Tunnel Toll Plaza	Eastern Site Boundary14:5%Southern Site Boundary14:5%Western Site Boundary14:5%Western Site Boundary14:5%Northern Site Boundary14:5%Spur Road near Discovery Bay Tunnel Outlet15:14Cheung Tung Road near the Bus Depot14:4%Cheung Tung Road near O·PARK114:4%Sham Shui Kok Dr near MTR Depot14:5%Discovery Bay Tunnel Toll Plaza14:41	LocationTimeDirectionEastern Site Boundary14:59500Southern Site Boundary14:57100Western Site Boundary14:57100Northern Site Boundary14:57100Spur Road near Discovery Bay Tunnel Outlet15:14NECheung Tung Road near the Bus Depot14:43NECheung Tung Road near O·PARK114:44N00Sham Shui Kok Dr near MTR Depot14:57NEDiscovery Bay Tunnel Toll Plaza14:41N00	LocationTimeWind DirectionSpeed (m/s)Eastern Site Boundary14:595000.9Southern Site Boundary(5:0)70Western Site Boundary14:5770Northern Site Boundary14:5770Spur Road near Discovery Bay Tunnel Outlet(5:14NE0.5Cheung Tung Road near the Bus Depot14:43NE1.1Cheung Tung Road near O·PARK114:45NE1.0Sham Shui Kok Dr near MTR Depot14:57NE0.7	LocationTimeWind DirectionSpeed (m/s)Odour intensityEastern Site Boundary14:59Sw3.91Southern Site Boundary(5.0)-00Western Site Boundary14:57-00Northern Site Boundary14:57-00Northern Site Boundary14:57-00Spur Road near Discovery Bay Tunnel Outlet15:14NE0.50Cheung Tung Road near the Bus Depot14:43NE1.10Cheung Tung Road near O·PARK114:44NW1.00Sham Shui Kok Dr near MTR Depot14:41NW0.90

Not detected

Slight

Strong

Extreme

Moderate

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance

Moderate identifiable odour, and moderate chance to have odour nuisance

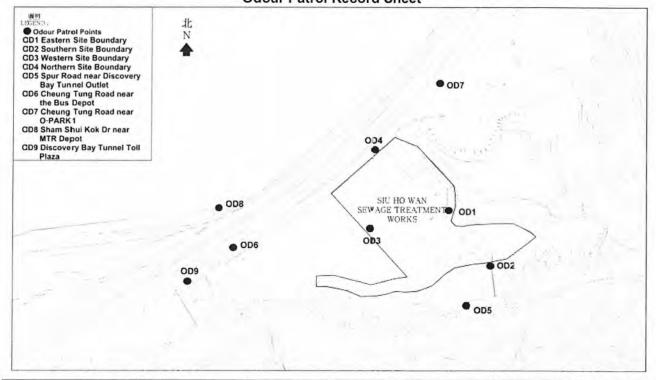
Strong identifiable, likely to have odour nuisance

Extreme severe odour, and unacceptable odour level

Recorded by:

Name: Yar An Date: LUNTE ZUIZ

Checked by: 6407 Ho Name: KAM 23 Date: June 2027


Tel

Room 723 - 726, 7/F, Block B,	
Profit Industrial Building,	
1-15 Kwai Fung Crescent, Kwai Fon	g,
Hona Kona.	

(852)-24508238 : (852)-24508032 Fax Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	22 June 2012 Weather P	The	Temperatur	re 37,0	1°C H	lumidity	50%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	, Odour Cł	naracteristics
OD1	Eastern Site Boundary	1459	SUN	098	0	1	
OD2	Southern Site Boundary	150	1	0	0	/	
OD3	Western Site Boundary	1457	/	0	0	/	
OD4	Northern Site Boundary	1455	1	0	0	/	
OD5	Spur Road near Discovery Bay Tunnel Outlet	1514	NE	0.5	1	Efflu	ont
OD6	Cheung Tung Road near the Bus Depot	1443	NE	[1]	0	/	
OD7	Cheung Tung Road near O·PARK1	1446	INN	0.1	0	/	· · · · · · · · · · · · · · · · · · ·
OD8	Sham Shui Kok Dr near MTR Depot	1437	INE	0.7	0	/	
OD9	Discovery Bay Tunnel Toll Plaza	1441	NW	0.9	0	1	
Classi	fication Criteria:						

Classification Criteria:

Not detected

Slight

Strong

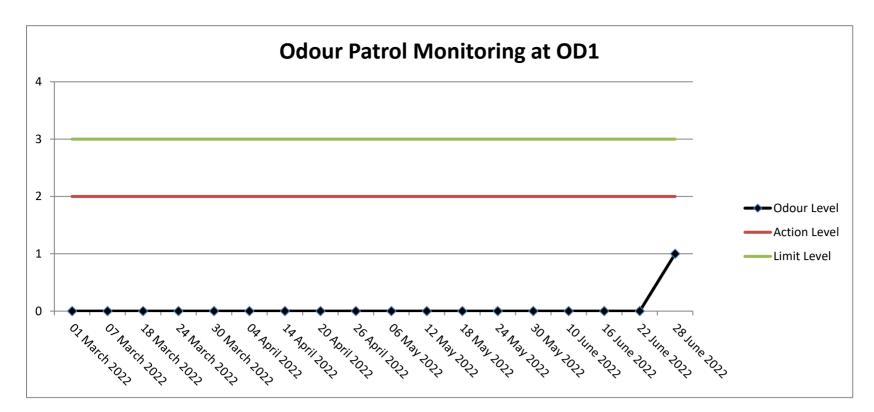
Extreme

Moderate

: No odour perceived or an odour so weak that it cannot be easily characterised or described

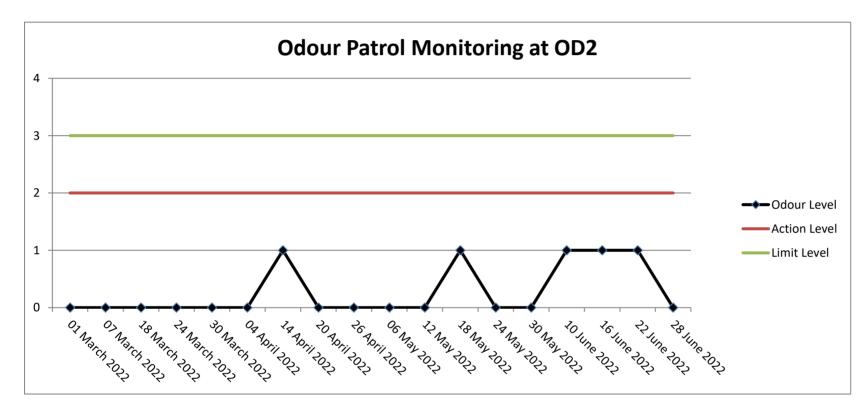
: Slight identifiable odour, and slight chance to have odour nuisance

: Moderate identifiable odour, and moderate chance to have odour nuisance

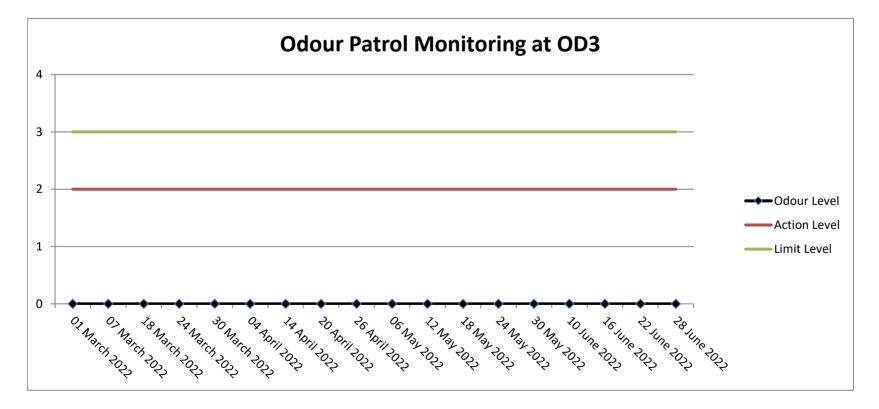

: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by: Name:


Forg KN hun 2022 Date: 22 Tune

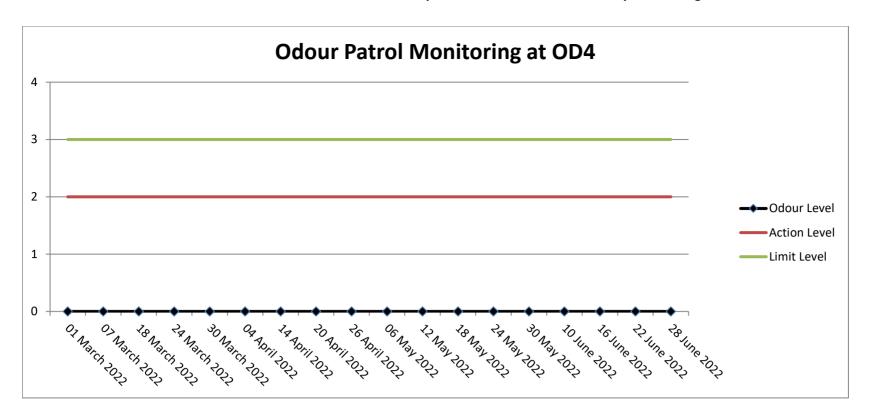
Checked by: KAM Name: Ho CHOI Date: ime 2022


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

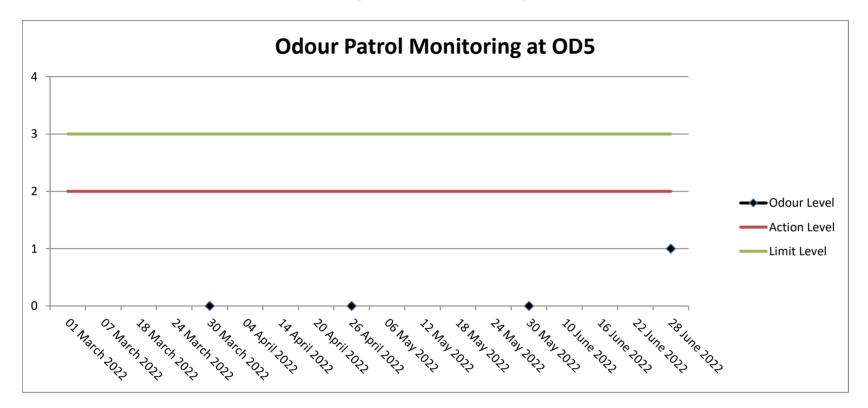
Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

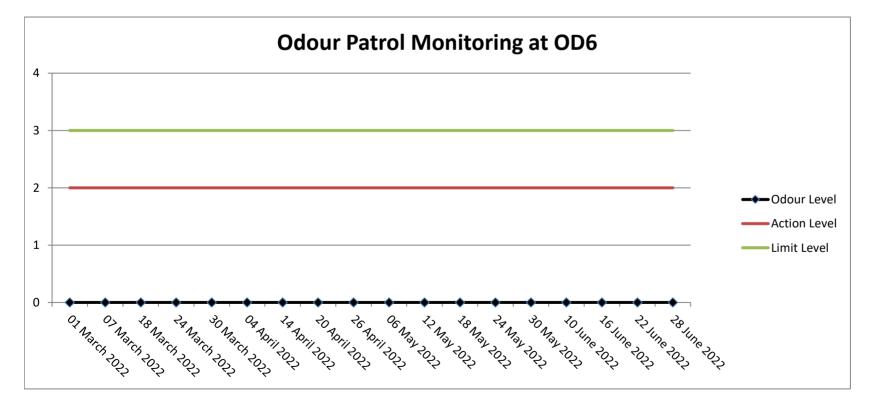


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Contract No. CM 14/2016

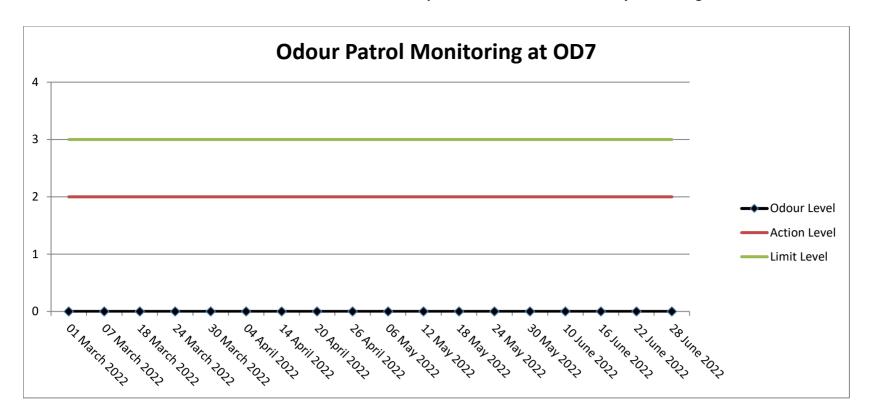
Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

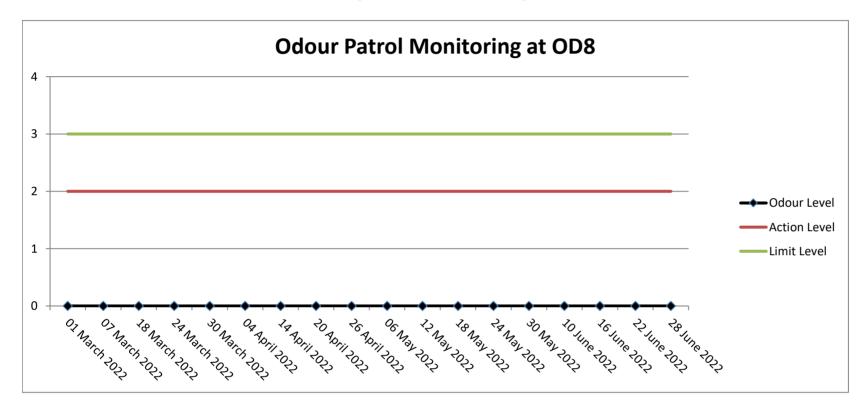
Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

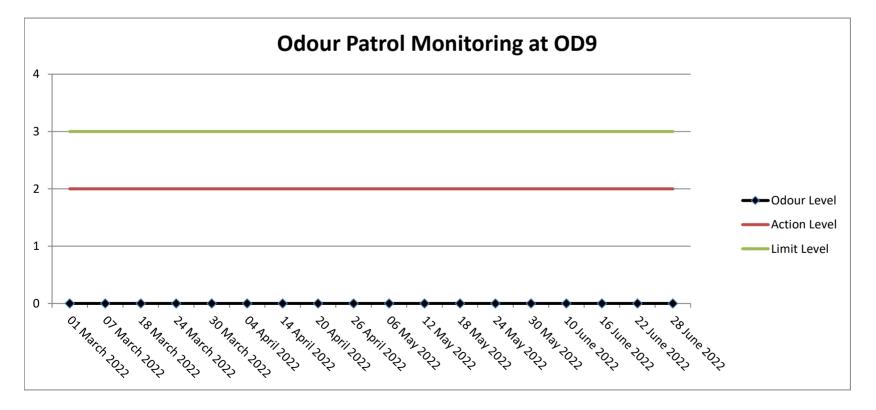


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Contract No. CM 14/2016

Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Contract No. CM 14/2016

Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Appendix E

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 142626WA220802

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client	:	Fugro Technical Services Limited (MCL)
Client's address	:	13/F, Fugro House – KCC2, No. 1 Kwai On Road, Kwai Chung, N.T., H.K.
Sample description	:	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID	:	Serial No. 525120
Test required	:	Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	:	WA220802/1
Date of calibration	:	05/04/2022
Next calibration date	:	04/07/2022
Test method used	:	In-house comparison method

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Report No. : 142626WA220802

Page 2 of 3

Results:

A. pH calibration

pH reading at 25°C for Q.C. solution(6.86) and at 25°C for Q.C. solution(9.18)						
Theoretical	Measured	Deviation				
9.18	9.19	+0.01				
6.86	6.87	+0.01				

B. Salinity calibration

	Salinity, ppt								
Theoretical	Measured	Deviation	Maximum acceptable Deviation						
10	10.05	+0.05	± 0.5						
20	20.08	+0.08	± 1.0						
30	29.86	-0.14	± 1.5						
40	40.13	+0.13	± 2.0						

C. Dissolved Oxygen calibration

Trial No.	Dissolved oxygen content, mg/L					
Trial No.	By calibrated D.O. meter	By D.O. meter				
1	7.42	7.43				
2	7.40	7.41				
3	7.40	7.40				
Average	7.41	7.41				

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L.

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Report No. : 142626WA220802

Page 3 of 3

Results :

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
25.03	24.98

E. Turbidity calibration

Turbidity, N.T.U.			
Theoretical	Measured	Deviation	Maximum acceptable Deviation
4	4.08	+0.08	± 0.6
8	8.07	+0,07	± 0.8
40	39.83	-0.17	± 3.0
80	79.63	-0.37	± 4.0

Certified by Approved Signatory : HO Kin Man, John Assistant General Manager - Laboratories Л \mathcal{V} 70 n Date ** End of Report *

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

a xylem brand

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

Serial Number	5906	
System Type	M9	
System Orientation	Down	
Compass Type	Sontek	
Compass Offset (degrees)	N/A	
Communications Output	RS232	
Recorder Size (GB)	14.9	
Firmware Version	4.02	
Date Tested	05/23/2017	

POWER TEST

Command Mode (W):	0.17	Range : 0.00 – 0.30
Sleep Mode (W):	N/A	Range : N/A
Ping Mode - 18V (W):	2.67	Range : 1.50 – 3.50
Power Check		PASS

NOISE TEST

Beam 1 – 3.0 MHz (counts)	95
Beam 2 – 1.0 MHz (counts)	96
Beam 3 – 3.0 MHz (counts)	95
Beam 4 – 1.0 MHz (counts)	101
Beam 5 – 3.0 MHz (counts)	93
Beam 6 – 1.0 MHz (counts)	95
Beam 7 – 3.0 MHz (counts)	91
Beam 8 – 1.0 MHz (counts)	100
Beam Vertical – 500KHz (counts)	88
Noise Test	PASS

VERIFICATION

Velocity Check	PASS
Transmit Output	PASS
Sensitivity	PASS
Temperature Sensor	PASS
Compass Heading Check	PASS
Compass Level Check	PASS
Burn-in (24 hrs)	PASS
Load Default Parameters	DONE

OPTIONS

Bottom Track	Installed	
SmartPulse HD TM	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Appendix F

Results and Graphical Presentation of Water Quality Monitoring

												I	n-situ Meas	sureme	nt						Laborato	ry Analysi	S		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Α	15/6/2022	Mid-Ebb	Fine	Moderate	12:11	17	S	1	1	7.84	10.81	27.42	76.6	5.74	4.4	0.13	326.1	3	0.11	0.09	2.1	2.3	190	0.04	<1
Α	15/6/2022	Mid-Ebb	Fine	Moderate	12:11	17	S	1	2	7.89	10.82	27.48	76.4	5.78	4.6	0.14	322.4	3	0.12	0.09	2.2	2.4	180	0.04	1.0
A	15/6/2022	Mid-Ebb	Fine	Moderate	12:11	17	М	8.5	1	7.84	11.93	27.31	74.1	5.43	4.5	0.17	306.8	3	0.11	0.09	1.7	1.9	270	0.04	<1
A	15/6/2022	Mid-Ebb	Fine	Moderate	12:11	17	M	8.5		7.84	11.94	27.33	74.2	5.44	4.8	0.16	304.1	3	0.10	0.09	1.5	1.7	200	0.04	<1
A	15/6/2022	Mid-Ebb	Fine	Moderate		17	В	16		7.86	12.11	27.20	72.9	5.26	4.6	0.23	309.2	3	0.10	0.09	2.2	2.3	160	0.03	<1
<u>A</u>	15/6/2022	Mid-Ebb	Fine	Moderate	12:11	17	B	16	2	7.81	12.13	27.26	72.8	5.29	4.4	0.28	304.0	3	0.10	0.09	2.0	2.2	170	0.03	<1
B	15/6/2022	Mid-Ebb	Fine			14	S S	1		7.41	10.23	28.13	81.4	6.13	3.2	0.12	204.5	3	0.08	0.09	1.9	2.0	170	0.03	<1
B	15/6/2022 15/6/2022	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	12:28 12:28	14 14	M	7		7.43	10.24	28.14 27.93	81.9 80.6	6.14 6.07	3.4 3.4	0.16 0.20	201.1 173.4	3	0.09	0.09	1.9 2.0	2.1 2.2	160 150	0.03	1.1 <1
B	15/6/2022	Mid-Ebb	Fine	Moderate	12:28	14	M	7	2	7.42	10.07	27.93	80.4	6.06	3.4	0.20	173.4	3	0.09	0.09	1.9	2.0	150	0.03	1.0
B	15/6/2022	Mid-Ebb	Fine	Moderate	12:28	14	B	13	-	7.41	10.06	27.94	79.2	6.06	3.1	0.21	198.1	4	0.09	0.09	2.0	2.0	160	0.04	<1
B	15/6/2022	Mid-Ebb	Fine	Moderate	12:28	14	B	13	2	7.44	10.81	27.83	79.3	6.02	3.2	0.16	198.6	4	0.10	0.09	1.9	2.1	170	0.04	<1
C	15/6/2022	Mid-Ebb	Fine	Moderate		12	S	1		8.03	14.54	25.48	74.9	5.47	6.8	0.14	237.1	11	0.09	0.09	1.6	1.8	800	0.03	<1
Č	15/6/2022	Mid-Ebb	Fine	Moderate		12	Š	1		8.01	14.55	25.49	74.8	5.48	6.7	0.17	224.8	11	0.09	0.09	1.6	1.8	860	0.04	<1
Č	15/6/2022	Mid-Ebb	Fine	Moderate		12	M	6	1	7.98	15.49	27.18	73.7	5.38	6.9	0.19	201.4	8	0.09	0.09	1.8	2.0	870	0.04	1.1
Ċ	15/6/2022	Mid-Ebb	Fine	Moderate		12	M	6	2	7.99	15.47	27.14	73.9	5.40	6.7	0.17	202.3	9	0.08	0.09	1.9	2.0	820	0.04	<1
С	15/6/2022	Mid-Ebb	Fine	Moderate	12:48	12	В	11	1	7.91	16.01	26.24	71.7	5.11	7.1	0.14	214.1	7	0.08	0.09	1.2	1.4	800	0.03	<1
С	15/6/2022	Mid-Ebb	Fine	Moderate	12:48	12	В	11	2	7.92	16.02	26.23	71.6	5.08	7.2	0.16	220.6	8	0.08	0.09	1.3	1.5	830	0.03	<1
D	15/6/2022	Mid-Ebb	Fine	Moderate	13:03	13	S	1	1	7.83	13.13	27.10	69.9	4.91	4.1	0.24	94.1	7	0.09	0.09	1.2	1.4	900	0.02	1.2
D	15/6/2022	Mid-Ebb	Fine			13	S	1		7.84	13.19	27.12	69.2	4.89	4.3	0.27	93.6	6	0.08	0.09	1.3	1.4	930	0.02	<1
D	15/6/2022	Mid-Ebb	Fine			13	M	6.5		7.81	13.18	25.93	68.4	4.82	5.6	0.19	90.2	10	0.09	0.09	1.8	2.0	890	0.01	1.1
D	15/6/2022	Mid-Ebb	Fine	Moderate	13:03	13	M	6.5		7.80	13.84	25.94	68.6	4.87	5.4	0.14	90.1	12	0.08	0.09	1.7	1.9	800	0.01	<1
D	15/6/2022	Mid-Ebb	Fine			13	B	12		7.72	14.73	24.86	67.7	4.72	5.3	0.28	89.4	11	0.09	0.09	1.7	1.9	760	0.02	1.3
F	15/6/2022 15/6/2022	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	13:03 13:27	13 16	B	12		7.71	14.71	24.81 27.42	67.2 78.5	4.74 5.83	5.4 4.9	0.26	89.6 76.4	10 5	0.09	0.09	1.7	1.9 2.1	800 320	0.01	1.0
F	15/6/2022	Mid-Ebb	Fine			16	S	1		7.90	11.17	27.42	78.4	5.86	5.0	0.14	77.1	5	0.09	0.09	2.1	2.3	260	0.02	1.3
F	15/6/2022	Mid-Ebb	Fine	Moderate		16	M	8	-	7.94	12.14	27.22	76.1	5.64	5.4	0.13	74.8	5	0.09	0.09	2.0	2.3	290	0.02	<1
F	15/6/2022	Mid-Ebb	Fine			16	M	8		7.93	12.15	27.22	76.2	5.63	5.3	0.13	74.4	5	0.08	0.09	1.8	2.0	310	0.04	<1
Ē	15/6/2022	Mid-Ebb	Fine	Moderate			B	15		7.98	12.81	27.03	75.1	5.54	6.4	0.18	71.1	5	0.09	0.09	2.1	2.2	270	0.02	1.3
E	15/6/2022	Mid-Ebb	Fine	Moderate		16	В	15		7.94	12.83	27.04	75.2	5.54	6.3	0.14	71.4	6	0.08	0.09	1.8	2.0	260	0.02	<1
F	15/6/2022	Mid-Ebb	Fine	Moderate		23	S	1		7.95	11.22	27.93	77.1	5.74	3.4	0.08	90.2	5	0.06	0.09	1.9	2.0	300	0.03	1.5
F	15/6/2022	Mid-Ebb	Fine	Moderate		23	S	1		7.96	11.24	27.94	77.3	5.76	3.6	0.08	90.4	5	0.06	0.09	1.5	1.6	350	0.03	<1
F	15/6/2022	Mid-Ebb	Fine			23	M	11.5		7.92	12.38	27.33	75.1	5.23	4.1	0.13	87.1	5	0.08	0.09	1.7	1.9	370	0.03	1.7
F	15/6/2022	Mid-Ebb	Fine	Moderate	13:43		M	11.5		7.91	12.37	27.39	75.3	5.24	4.2	0.14	86.4	5	0.09	0.09	1.6	1.8	330	0.03	1.1
F	15/6/2022	Mid-Ebb	Fine	Moderate	13:43	23	B	22		7.84	12.87	27.10	74.1	5.01	4.9	0.12	87.1	5	0.08	0.09	1.8	2.0	260	0.04	1.0
G	15/6/2022 15/6/2022	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate		23 22	B	22		7.88	12.88	27.06 27.19	74.2 79.1	5.06 5.84	4.6 3.4	0.13	87.2 172.4	5	0.09	0.09	2.1	2.2 2.0	370 300	0.04	1.4 1.3
G	15/6/2022	Mid-Ebb	Fine	Moderate		22	S	1		7.92	10.24	27.19	79.1	5.86	3.4	0.21	172.4	5 4	0.08	0.09	2.0	2.0	300	0.02	<1
G	15/6/2022	Mid-Ebb	Fine	Moderate		22	M	11		7.84	11.21	27.14	79.3	5.81	3.1	0.22	180.1	4	0.08	0.09	1.6	1.6	270	0.03	<1
G	15/6/2022	Mid-Ebb	Fine			22	M	11		7.83	11.24	27.01	78.4	5.80	3.4	0.12	182.4	5	0.10	0.09	1.5	1.5	310	0.02	1.8
Ğ	15/6/2022	Mid-Ebb	Fine			22	B	21		7.81	11.92	27.24	76.3	5.63	4.5	0.13	141.2	3	0.07	0.09	1.9	1.9	280	0.01	<1
Ğ	15/6/2022	Mid-Ebb	Fine	Moderate	14:04	22	B	21		7.80	11.94	27.22	76.4	5.64	4.6	0.18	142.6	3	0.07	0.09	1.9	1.9	330	0.02	1.1
Ĥ	15/6/2022	Mid-Ebb	Fine	Moderate			S	1		7.74	11.16	24.51	90.1	6.84	2.2	0.08	108.1	3	0.08	0.09	2.0	2.2	260	0.03	<1
H	15/6/2022	Mid-Ebb	Fine	Moderate		19	Š	1		7.71	11.14	24.27	90.3	6.83	2.4	0.05	109.2	3	0.08	0.09	1.9	2.1	240	0.03	<1
Н	15/6/2022	Mid-Ebb	Fine	Moderate			М	9.5		7.64	11.34	24.02	87.2	6.61	3.5	0.12	124.1	5	0.07	0.09	1.8	2.0	300	0.03	<1
Н	15/6/2022	Mid-Ebb	Fine	Moderate	14:21	19	M	9.5		7.66	11.38	24.03	87.1	6.58	3.6	0.13	122.3	4	0.07	0.09	1.8	2.0	380	0.03	<1
Н	15/6/2022	Mid-Ebb	Fine	Moderate	14:21	19	В	18	1	7.61	11.59	23.80	85.1	6.54	3.2	0.16	119.4	4	0.07	0.09	2.0	2.1	300	0.06	<1
Н	15/6/2022	Mid-Ebb	Fine	Moderate	14:21	19	В	18	2	7.61	11.56	23.82	85.2	6.56	3.6	0.13	118.2	5	0.06	0.09	2.0	2.2	330	0.05	<1

Note: 1. ND: Not Detected

												I	n-situ Meas	sureme	nt						Laborato	ry Analysis	S		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	рН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD ₅ (mg/L)
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Α	15/6/2022	Mid-Flood	Fine	Moderate	07:18	15	S	1	1	7.71	18.59	28.07	82.2	6.12	4.6	0.17	124.5	5	0.10	0.09	2.0	2.2	260	0.03	1.7
A	15/6/2022	Mid-Flood	Fine	Moderate	07:18	15	Š	1	2	7.74	18.56	28.09	82.4	6.16	4.5	0.18	122.6	4	0.10	0.09	2.2	2.4	220	0.04	<1
A	15/6/2022	Mid-Flood	Fine	Moderate	07:18	15	M	7.5	1	7.79	18.68	28.01	80.5	6.02	4.1	0.13	109.3	4	0.11	0.09	2.3	2.5	180	0.06	<1
A	15/6/2022	Mid-Flood	Fine	Moderate	07:18	15	M	7.5	2	7.78	18.64	28.02	80.4	6.05	4.2	0.14	109.4	4	0.11	0.09	2.1	2.3	200	0.06	1.4
A	15/6/2022	Mid-Flood	Fine	Moderate	07:18	15	В	14	1	7.81	18.91	27.93	78.8	5.83	5.3	0.17	127.5	3	0.13	0.09	2.3	2.5	200	0.04	1.1
A	15/6/2022	Mid-Flood	Fine	Moderate	07:18	15	В	14	2	7.83	18.94	27.94	78.7	5.82	5.4	0.16	128.4	3	0.13	0.09	2.1	2.4	190	0.04	1.3
В	15/6/2022	Mid-Flood	Fine	Moderate	07:02	14	S	1	1	7.41	18.44	28.40	78.7	5.80	4.2	0.06	73.4	3	0.10	0.09	2.1	2.3	180	0.04	<1
В	15/6/2022	Mid-Flood	Fine	Moderate	07:02	14	S	1	2	7.43	18.43	28.31	78.9	5.83	4.4	0.03	70.1	3	0.10	0.09	2.2	2.3	180	0.04	<1
В	15/6/2022	Mid-Flood	Fine	Moderate	07:02	14	M	7	1	7.52	18.71	28.20	77.2	5.72	4.6	0.17	59.4	3	0.09	0.09	2.1	2.3	170	0.04	<1
В	15/6/2022	Mid-Flood	Fine	Moderate	07:02	14	M	7	2	7.51	18.72	28.19	77.1	5.71	4.4	0.14	59.6	3	0.09	0.09	1.9	2.1	170	0.05	1.0
В	15/6/2022	Mid-Flood		Moderate		14	В	13	1	7.50	18.80	28.01	75.3	5.64	4.1	0.13	81.4	4	0.08	0.09	1.9	2.1	170	0.03	1.1
B C	15/6/2022	Mid-Flood	Fine	Moderate	07:02	14	B	13	2	7.50	18.81	28.07	75.4	5.69	4.3	0.12	81.2	4	0.08	0.09	2.1	2.3	180	0.02	<1
C	15/6/2022 15/6/2022	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	06:41	12 12	S	1	2	7.93	16.02 16.04	24.12 24.11	74.2	5.39	5.2 5.4	0.26	321.4 317.2	8	0.08	0.09	1.5 1.7	1.7 1.8	<u>1000</u> 1100	0.04	1.1 1.2
C	15/6/2022	Mid-Flood	Fine	Moderate	06:41	12	M	6	1	7.94	16.04	23.84	74.1	5.30	5.4 5.8	0.27	317.2	8	0.08	0.09	1.6	1.8	1200	0.03	<1
0 C	15/6/2022	Mid-Flood	Fine	Moderate	06:41	12	M	6	2	7.91	16.23	23.88	72.4	5.14	5.4	0.22	305.9	8	0.09	0.09	1.5	1.0	1100	0.05	3.2
C C		Mid-Flood	Fine	Moderate		12	B	11	1	7.89	16.59	23.64	72.4	5.02	6.7	0.24	311.4	8	0.09	0.09	1.5	2.0	950	0.04	1.1
C C	15/6/2022	Mid-Flood	Fine	Moderate		12	B	11	2	7.84	16.58	23.68	70.7	5.01	6.2	0.14	317.0	9	0.08	0.09	1.7	1.9	980	0.04	<1
D	15/6/2022	Mid-Flood	Fine	Moderate	06:26	14	S	1	1	7.83	14.11	26.12	80.1	6.03	9.3	0.13	94.1	8	0.00	0.09	1.9	2.1	900	0.04	1.0
D	15/6/2022	Mid-Flood		Moderate			š	1	2	7.84		26.12	80.2	6.04	9.4	0.14	92.6	8	0.07	0.09	1.8	2.0	960	0.02	1.3
D	15/6/2022	Mid-Flood	Fine	Moderate	06:26	14	M	7	1	7.71	14.87	24.94	77.9	5.84	9.4	0.21	84.7	10	0.10	0.09	1.8	2.0	960	0.05	1.6
D	15/6/2022	Mid-Flood	Fine	Moderate	06:26	14	М	7	2	7.72	14.86	24.92	78.1	5.88	9.3	0.23	84.6	9	0.10	0.09	1.9	2.1	1000	0.05	1.1
D	15/6/2022	Mid-Flood	Fine	Moderate	06:26	14	В	13	1	7.43	15.26	23.47	74.3	5.62	9.8	0.13	90.6	8	0.10	0.09	1.9	2.1	920	0.05	<1
D	15/6/2022	Mid-Flood	Fine	Moderate	06:26	14	В	13	2	7.46	15.27	23.44	74.2	5.63	9.6	0.18	92.2	9	0.10	0.09	1.9	2.1	850	0.04	<1
E	15/6/2022	Mid-Flood	Fine	Moderate	06:06	14	S	1	1	7.83	12.34	27.94	68.8	5.01	3.9	0.06	204.5	6	0.09	0.09	2.0	2.2	400	0.05	1.0
E	15/6/2022	Mid-Flood	Fine	Moderate	06:06	14	S	1	2	7.84	12.41	27.99	68.7	5.00	3.8	0.08	206.1	6	0.09	0.09	1.9	2.1	220	0.05	<1
E	15/6/2022	Mid-Flood	Fine	Moderate	06:06	14	M	7	1	7.94	12.83	27.99	67.8	4.87	4.2	0.15	224.5	6	0.07	0.09	1.9	2.1	200	0.05	<1
E	15/6/2022	Mid-Flood	Fine	Moderate	06:06	14	M	7	2	7.93	12.86	27.43	67.4	4.82	4.3	0.17	226.7	5	0.07	0.09	1.9	2.1	320	0.06	<1
E		Mid-Flood	Fine	Moderate	06:06	14	В	13	1	7.91	13.41	27.41	65.9	4.61	4.6	0.19	209.1	4	0.09	0.09	1.8	2.0	280	0.04	<1
	15/6/2022 15/6/2022	Mid-Flood Mid-Flood	Fine	Moderate	06:06	14 18	B	13	2	7.92	13.42	27.23 27.24	65.7 77.9	4.54 5.82	4.5 3.2	0.12	209.2 131.2	4	0.08	0.09	1.9	2.1 1.9	<u>370</u> 400	0.04	1.0 <1
F	15/6/2022	Mid-Flood	Fine Fine	Moderate Moderate	05:50	18	S	1	2	7.93	11.32	27.24	77.5	5.82	3.2	0.36	131.2	6	0.07	0.09	1.7	2.1	280	0.04	<1
F	15/6/2022	Mid-Flood	Fine	Moderate	05:50	18	M	9	1	7.94	11.94	27.18	76.3	5.68	3.5	0.34	124.5	7	0.07	0.09	1.9	1.9	470	0.03	<1
F	15/6/2022	Mid-Flood	Fine	Moderate	05:50	18	M	9	2	7.94	11.94	27.10	76.4	5.69	3.6	0.27	124.3	6	0.07	0.09	1.7	1.9	410	0.04	<1
F	15/6/2022	Mid-Flood	Fine	Moderate	05:50	18	B	17	1	7.94	12.28	26.94	74.8	5.51	3.8	0.20	140.5	6	0.07	0.09	1.7	1.8	410	0.04	<1
F	15/6/2022	Mid-Flood	Fine	Moderate			B	17	2	7.96	12.20	26.93	74.4	5.48	3.4	0.13	141.2	6	0.08	0.09	1.6	1.8	320	0.03	<1
Ġ	15/6/2022	Mid-Flood	Fine	Moderate	05:28	13	S	1	1	7.84	14.18	27.86	74.1	5.34	5.0	0.31	261.1	4	0.08	0.09	1.8	2.0	200	0.00	<1
Ğ		Mid-Flood	Fine	Moderate	05:28	13	Š	1	2	7.82	14.17	27.88	73.8	5.31	5.4	0.32	266.2	4	0.08	0.09	1.6	1.7	250	0.03	<1
Ğ	15/6/2022	Mid-Flood	Fine	Moderate	05:28	13	M	6.5	1	7.91	14.59	27.64	72.1	5.20	5.1	0.27	248.6	4	0.07	0.09	1.9	2.1	260	0.03	<1
G	15/6/2022	Mid-Flood	Fine	Moderate	05:28	13	М	6.5	2	7.93	14.55	27.61	72.4	5.24	5.2	0.28	244.1	4	0.07	0.09	1.7	1.8	240	0.03	<1
G	15/6/2022	Mid-Flood	Fine	Moderate	05:28	13	В	12	1	7.95	14.86	27.42	70.6	5.10	5.3	0.19	251.3	4	0.08	0.09	1.4	1.6	250	0.02	<1
G	15/6/2022	Mid-Flood	Fine	Moderate	05:28	13	В	12	2	7.96	14.87	27.41	70.4	5.08	5.6	0.14	252.4	4	0.08	0.09	1.6	1.8	230	0.03	1.0
Н	15/6/2022	Mid-Flood	Fine	Moderate	05:11	19	S	1	1	7.93	11.41	27.24	79.1	6.01	5.1	0.14	79.1	3	0.07	0.09	1.6	1.8	240	0.05	1.2
Н	15/6/2022	Mid-Flood	Fine	Moderate	05:11	19	S	1	2	7.94	11.43	27.21	79.4	6.04	5.2	0.12	77.4	3	0.07	0.09	1.9	2.1	330	0.04	<1
Н	15/6/2022	Mid-Flood	Fine	Moderate	05:11	19	M	9.5	1	7.91	11.82	27.13	77.2	5.84	5.4	0.16	87.1	4	0.08	0.09	1.7	1.9	340	0.05	<1
Н	15/6/2022	Mid-Flood	Fine	Moderate	05:11	19	M	9.5	2	7.91	11.83	27.10	77.1	5.83	5.6	0.18	86.4	4	0.09	0.09	1.8	2.0	260	0.04	<1
H	15/6/2022	Mid-Flood	Fine	Moderate	05:11	19	B	18	1	7.96	12.16	27.03 27.04	75.4 75.3	5.62	5.7	0.12	80.7	4	0.06	0.09	1.7	1.9 1.7	250 270	0.05	<1
Н	15/6/2022	Mid-Flood	Fine	Moderate	05:11	19	В	18	2	7.96	12.17	27.04	/5.3	5.61	5.6	0.14	80.6	4	0.07	0.09	1.6	1./	270	0.04	<1

Note: 1. ND: Not Detected

Report No. : 181172WA221155

Page 1 of 18

Test Report on Analysis of Water

Information Supplied by Client

Client	:	Fugro Technical Services Lim	ited	
Client's address	:	13/F, Fugro House – KCC2, N N.T., H.K	lo. 1 Kwa	ai On Road, Kwai Chung,
Project	:	Contract No. CM 14/2016 Env Environmental Monitoring and Treatment Works		
Sample description	:	Ninety-six samples of water ta 15/06/2022	aken by t	he staff of FTS on
Client sample ID	:	Refer to pages 3 to 18		
Tests required		 Biochemical oxygen dema Total suspended solids dr Ammoniacal Nitrogen content Nitrate-Nitrogen content Nitrite-Nitrogen content Total Inorganic Nitrogen content Total phosphorus content Total phosphorus content E. coli count 	ied at 10 tent content	
Laboratory Information				
Lab. sample ID	:	Chemical tests	Mic	robiological tests
		WA221155/1-96	WA	221155/1B-96B
		Chemical te	ests	Microbiological tests

	Chemical tests	Microbiological tests
Container	Ninety-six 250 mL and 3 L plastic bottles	Ninety-six sterilized 250 mL plastic bottles with thiosulphate addec
Appearance	C	olourless
Temperature		Cooled

Date of receipt of sample	e:	15/06/2022
Date test commenced	:	15/06/2022

Date test completed : 29/06/2022

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172WA221155

Page 2 of 18

Test methods used : Biochemical oxygen demand APHA 23ed. 5210B

> Total suspended solids dried at 103°C – 105°C APHA 23ed. 2540D

Ammoniacal Nitrogen content APHA 23ed. 4500-NH₃ H

Nitrate-Nitrogen content APHA 23ed. 4500-NO₃⁻ I

Nitrite-Nitrogen content APHA 23ed. 4500-NO₂⁻ A & NO₃⁻ I

Total Inorganic Nitrogen content In-house method E-T-112 (By Calculation)

Total phosphorus content APHA 17ed. 4500-PB.5 (Digestion) & In-house method E-T-056 (Determination)

Total phosphorus content (Filtered) APHA 17ed. 4500-PB.5 (Digestion) & In-house method E-T-056 (Determination)

E. coli count The Bacteriological Examination of Drinking Water Supplies 1982, DoE (1983) Membrane Filtration Procedure: Sections 7.8, 7.9.4.2 Bacterial Confirmation: Section 7.9.4.4 & in-situ urease test

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Tuen Mun, NT Hong Kong Fugro Development Centre 5 Lok Yi Street, Tai Lam FUGRO TECHNICAL SERVICES LIMITED

Report No. : 181172WA221155

TUGRO

Results :

Page 3 of 18

Tast narameters			Sample id	Sample identification		
	A/S/E	A/S/E/Dup	A/M/E	A/M/E/Dup	A/B/E	A/B/E/Dup
1. Biochemical oxygen demand, mg/L	۲	1.0	2	2	2	2
2. Total suspended solids dried at 103°C - 105°C, mg/L	S	ę	ę	m	ę	m
3. Ammoniacal nitrogen content, mg/L	0.11	0.12	0.11	0.10	0.10	0.10
4. Nitrate-Nitrogen content, mg/L	2.1	2.2	1.7	1.5	2.2	2.0
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	2.3	2.4	1.9	1.7	2.3	2.2
7. Total phosphorus content, mg/L	0.06	0.06	0.07	0.06	0.05	0.05
8. Total phosphorus content (Filtered), mg/L	0.04	0.04	0.04	0.04	0.03	0.03
9. E. coli count, cfu/100ml	1.9 x 10 ²	1.8 x 10 ²	2.7 x 10 ²	2.0 x 10 ²	1.6 x 10 ²	1.7×10^{2}

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories S17/201 Certified by : X

Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Fugro Development Centre 5 Lok Yi Street, Tai Lam FUGRO TECHNICAL SERVICES LIMITED Tuen Mun, NT

Hong Kong

Report No. : 181172WA221155

fucero

Results :

Page 4 of 18

Test narameters			Sample ic	Sample identification		
	B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup	B/B/E	B/B/E/Dup
1. Biochemical oxygen demand, mg/L	۲	1.1	Ŷ	1.0	Ÿ	2
2. Total suspended solids dried at 103°C - 105°C, mg/L	ო	e	ო	e	4	4
3. Ammoniacal nitrogen content, mg/L	0.08	0.09	0.09	0.09	0.10	0.10
4. Nitrate-Nitrogen content, mg/L	1.9	1.9	2.0	1.9	2.0	1.9
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	2.0	2.1	2.2	2.0	2.2	2.1
7. Total phosphorus content, mg/L	0.06	0.08	0.05	0.05	0.06	0.06
8. Total phosphorus content (Filtered), mg/L	0.03	0.03	0.03	0.04	0.04	0.04
9. E. coli count, cfu/100ml	1.7 × 10 ²	1.6 x 10 ²	1.5 x 10 ²	1.5 x 10 ²	1.6 x 10 ²	1.7 x 10 ²

Assistant General Manager – Laboratories Approved Signatory : HO Kin Man, John KJ Certified by

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Date

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

FUGRO TECHNICAL SERVICES LIMITED

Hong Kong Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Report No. : 181172WA221155

TUGRO

Results :

Page 5 of 18

Test narameters			Sample id	Sample identification		
	C/S/E	C/S/E/Dup	C/M/E	C/M/E/Dup	C/B/E	C/B/E/Dup
1. Biochemical oxygen demand, mg/L	۲	4	1.1	2	2	2
2. Total suspended solids dried at 103°C - 105°C, mg/L	11	11	ω	თ	7	ω
3. Ammoniacal nitrogen content, mg/L	0.09	0.09	60.0	0.08	0.08	0.08
4. Nitrate-Nitrogen content, mg/L	1.6	1.6	1.8	1.9	1.2	1.3
5. Nitrite-Nitrogen content, mg/L	0.09	60.0	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	1.8	1.8	2.0	2.0	1.4	1.5
7. Total phosphorus content, mg/L	0.05	0.05	0.08	0.09	0.04	0.06
8. Total phosphorus content (Filtered), mg/L	0.03	0.04	0.04	0.04	0.03	0.03
9. E. coli count, cfu/100ml	8.0 × 10 ²	8.6 x 10 ²	8.7 x 10 ²	8.2 x 10 ²	8.0 x 10 ²	8.3 x 10 ²

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Assistant General Manager - Laboratories Approved Signatory : HO Kin Man, John nocici Certified by |: ∠

Date

GEN02/0819

Tuen Mun, NT Hong Kong Fugro Development Centre 5 Lok Yi Street, Tai Lam FUGRO TECHNICAL SERVICES LIMITED

Report No. : 181172WA221155

fucero

Results :

Page 6 of 18

			Sample id	Sample identification		
l est parameters	D/S/E	D/S/E/Dup	D/M/E	D/M/E/Dup	D/B/E	D/B/E/Dup
1. Biochemical oxygen demand, mg/L	1.2	Ŷ	1.1	4	1.3	1.0
2. Total suspended solids dried at 103°C - 105°C, mg/L	7	9	10	12	11	10
3. Ammoniacal nitrogen content, mg/L	0.09	0.08	0.09	0.08	0.09	0.09
4. Nitrate-Nitrogen content, mg/L	1.2	1.3	1.8	1.7	1.7	1.7
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	1.4	1.4	2.0	1.9	1.9	1.9
7. Total phosphorus content, mg/L	0.06	0.06	0.04	0.05	0.05	0.05
8. Total phosphorus content (Filtered), mg/L	0.02	0.02	0.01	0.01	0.02	0.01
9. E. coli count, cfu/100ml	9.0 x 10 ²	9.3 x 10 ²	8.9 x 10 ²	8.0 x 10 ²	7.6×10^{2}	8.0 x 10 ²

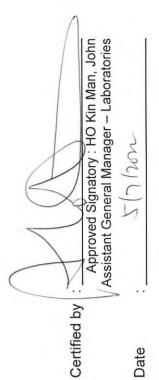
Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories mall Certified by

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Date

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT FUGRO TECHNICAL SERVICES LIMITED


Report No. : 181172WA221155

TUGRO

Results :

8	
-	
of	
~	
Φ	
D	
ð	
Δ	

Taet noromatare			Sample id	Sample identification		
	E/S/E	E/S/E/Dup	E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
1. Biochemical oxygen demand, mg/L	7	1.3	۲	4	1.3	4
2. Total suspended solids dried at 103°C - 105°C, mg/L	5	5	5	5	5	9
3. Ammoniacal nitrogen content, mg/L	0.09	0.09	0.08	0.08	0.09	0.08
4. Nitrate-Nitrogen content, mg/L	1.9	2.1	2.0	1.8	2.1	1.8
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	2.1	2.3	2.1	2.0	2.2	2.0
7. Total phosphorus content, mg/L	0.06	0.07	0.05	0.05	0.05	0.05
8. Total phosphorus content (Filtered), mg/L	0.01	0.02	0.04	0.04	0.02	0.02
9. E. coli count, cfu/100ml	3.2 x 10 ²	2.6 x 10 ²	2.9 x 10 ²	3.1 x 10 ²	2.7 x 10 ²	2.6 x 10 ²

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Date

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172WA221155

fucero

Results :

Page 8 of 18

Test narameters			Sample id	Sample identification		
	F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E	F/B/E/Dup
1. Biochemical oxygen demand, mg/L	1.5	2	1.7	1.1	1.0	1.4
2. Total suspended solids dried at 103°C - 105°C, mg/L	5	5	Ω	5	5	ۍ
3. Ammoniacal nitrogen content, mg/L	0.06	0.06	0.08	0.09	0.08	0.09
4. Nitrate-Nitrogen content, mg/L	1.9	1.5	1.7	1.6	1.8	2.1
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	2.0	1.6	1.9	1.8	2.0	2.2
7. Total phosphorus content, mg/L	0.06	0.07	0.06	0.08	0.05	0.06
8. Total phosphorus content (Filtered), mg/L	0.03	0.03	0.03	0.03	0.04	0.04
9. E. coli count, cfu/100ml	3.0 x 10 ²	3.5 x 10 ²	3.7 × 10 ²	3.3 x 10 ²	2.6 x 10 ²	3.7 × 10 ²

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories mal L 5 Certified by Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

fuero

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172WA221155

Results :

Page 9 of 18

ast narameters			Sample rue minicanon	כוווויעמוועוו		
	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup	G/B/E	G/B/E/Dup
1. Biochemical oxygen demand, mg/L	1.3	2	7	1.8	2	1.1
2. Total suspended solids dried at 103°C - 105°C, mg/L	5	4	4	5	3	ю
3. Ammoniacal nitrogen content, mg/L	0.08	0.08	0.10	0.10	0.07	0.07
4. Nitrate-Nitrogen content, mg/L	2.0	1.7	1.6	1.5	1.9	1.9
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	2.1	1.8	1.8	1.7	2.1	2.0
7. Total phosphorus content, mg/L	0.06	0.07	0.08	0.05	0.05	0.06
8. Total phosphorus content (Filtered), mg/L	0.02	0.03	0.02	0.01	0.01	0.02
9. E. coli count, cfu/100ml	3.0 x 10 ²	3.6 x 10 ²	2.7×10^{2}	3.1 x 10 ²	2.8 x 10 ²	3.3 x 10 ²

Certified by Certified by Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories Date : TDDM

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

fuero

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172WA221155

Page 10 of 18

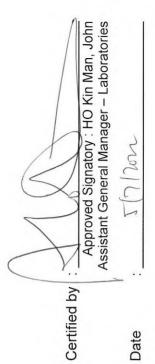
	•		
	4	3	
1	Ξ	3	
	U	ŋ	
	Q	0	
1	2	2	

Tast naramatars			Sample id	Sample identification		
	H/S/E	H/S/E/Dup	H/M/E	H/M/E/Dup	H/B/E	H/B/E/Dup
1. Biochemical oxygen demand, mg/L	2	2	2	∑	2	2
2. Total suspended solids dried at 103°C - 105°C, mg/L	ĸ	m	S	4	4	5
3. Ammoniacal nitrogen content, mg/L	0.08	0.08	0.07	0.07	0.07	0.06
4. Nitrate-Nitrogen content, mg/L	2.0	1.9	1.8	1.8	2.0	2.0
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	2.2	2.1	2.0	2.0	2.1	2.2
7. Total phosphorus content, mg/L	0.08	0.09	0.08	0.06	0.11	0.11
8. Total phosphorus content (Filtered), mg/L	0.03	0.03	0.03	0.03	0.06	0.05
9. E. coli count, cfu/100ml	2.6 x 10 ²	2.4 x 10 ²	3.0 x 10 ²	3.8 x 10 ²	3.0 x 10 ²	3.3 x 10 ²

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong


Report No. : 181172WA221155

TUGRO

Page 11 of 18

	1	2
	4	n
1	÷	ċ
1	-	÷
	2	2
	U	ŋ
	Q	υ
4	2	1
1	-	-

Test narameters			Sample id	Sample identification		
	A/S/F	A/S/F/Dup	A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.7	2	₽	1.4	1.1	1.3
2. Total suspended solids dried at 103°C - 105°C, mg/L	5	4	4	4	3	3
3. Ammoniacal nitrogen content, mg/L	0.10	0.10	0.11	0.11	0.13	0.13
4. Nitrate-Nitrogen content, mg/L	2.0	2.2	2.3	2.1	2.3	2.1
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	2.2	2.4	2.5	2.3	2.5	2.4
7. Total phosphorus content, mg/L	0.09	0.09	0.09	0.09	0.06	0.07
8. Total phosphorus content (Filtered), mg/L	0.03	0.04	0.06	0.06	0.04	0.04
9. E. coli count, cfu/100ml	2.6 x 10 ²	2.2 x 10 ²	1.8 x 10 ²	2.0 × 10 ²	2.0 x 10 ²	1.9 x 10 ²

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Hong Kong Tuen Mun, NT Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories B/B/F/Dup 1.8×10^{2} 0.05 0.08 0.09 0.02 2.1 2.3 v 4 Page 12 of 18 10/01 1.7×10^{2} B/B/F 0.03 0.08 0.09 0.07 1.9 2.1 4 B/M/F/Dup 1.7×10^{2} 0.09 0.09 0.06 0.05 Sample identification 1.0 1.9 2.1 3 Certified by 1.7×10^{2} Date B/M/F Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received. 0.09 0.04 0.09 2.3 0.07 2.1 v 3 B/S/F/Dup 1.8×10^{2} 0.10 0.09 0.06 0.04 2.2 2.3 v 3 1.8×10^{2} B/S/F 0.10 0.09 0.06 0.04 2.1 2.3 v 3 2. Total suspended solids dried at 103°C - 105°C, mg/L 8. Total phosphorus content (Filtered), mg/L 6. Total Inorganic Nitrogen content, mg/L 3. Ammoniacal nitrogen content, mg/L 1. Biochemical oxygen demand, mg/L Test parameters Report No. : 181172WA221155 7. Total phosphorus content, mg/L 4. Nitrate-Nitrogen content, mg/L 5. Nitrite-Nitrogen content, mg/L 9. E. coli count, cfu/100ml

Fugro Development Centre 5 Lok Yi Street, Tai Lam FUGRO TECHNICAL SERVICES LIMITED

Results :

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

Fugro Development Centre FUGRO TECHNICAL SERVICES LIMITED 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Hong Kong

Report No. : 181172WA221155

UGRO

Results :

Page 13 of 18

Tast naramatars			Sample id	Sample identification		
	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F	C/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.1	1.2	2	3.2	1.1	2
2. Total suspended solids dried at 103°C - 105°C, mg/L	ω	ø	7	8	ø	6
3. Ammoniacal nitrogen content, mg/L	0.08	0.08	0.09	0.09	0.08	0.08
4. Nitrate-Nitrogen content, mg/L	1.5	1.7	1.6	1.5	1.8	1.7
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	1.7	1.8	1.8	1.7	2.0	1.9
7. Total phosphorus content, mg/L	0.06	0.04	0.06	0.07	0.06	0.06
8. Total phosphorus content (Filtered), mg/L	0.04	0.03	0.05	0.04	0.04	0.04
9. E. coli count, cfu/100ml	1.0 × 10 ³ *	1.1 × 10 ³ *	1.2 x 10 ^{3 *}	1.1 × 10 ^{3 *}	9.5 x 10 ²	9.8 x 10 ²
Remarks: * Estimated for E. coli count means the colonies counted was not in the range of 10 to 100 cfu/100ml	s counted was r	not in the range	if 10 to 100 cfii/	100ml		

COUNTED WAS NOT IN THE FAILURE OF TO TO TOU CTU/ TOUMI.

Assistant General Manager - Laboratories Approved Signatory : HO Kin Man, John mor. 5 Certified by :

Date

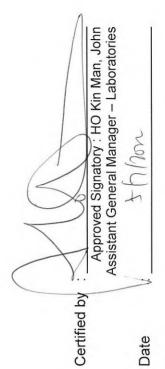
Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

Test narameters			Sample io	Sample identification		
	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup	D/B/F	D/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.0	1.3	1.6	1.1	⊽	2
2. Total suspended solids dried at 103°C - 105°C, mg/L	ω	ω	10	6	ø	6
3. Ammoniacal nitrogen content, mg/L	0.07	0.07	0.10	0.10	0.10	0.10
4. Nitrate-Nitrogen content, mg/L	1.9	1.8	1.8	1.9	1.9	1.9
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	2.1	2.0	2.0	2.1	2.1	2.1
7. Total phosphorus content, mg/L	0.05	0.06	0.07	0.06	0.09	0.06
8. Total phosphorus content (Filtered), mg/L	0.01	0.02	0.05	0.05	0.05	0.04
9. E. coli count, cfu/100ml 9.	9.0 x 10 ²	9.6 x 10 ²	9.6 x 10 ²	1.0 × 10 ^{3 ×}	9.2 x 10 ²	8.5 x 10 ²

GEN02/0819

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong


Report No. : 181172WA221155

fucero

Results :

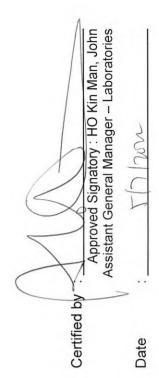
Page 15 of 18

Tast noromators			Sample io	Sample identification		
	E/S/F	E/S/F/Dup	E/M/F	E/M/F/Dup	E/B/F	E/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.0	۲ ۲	Ŷ	2	Ŷ	1.0
2. Total suspended solids dried at 103°C - 105°C, mg/L	9	9	9	5	4	4
3. Ammoniacal nitrogen content, mg/L	0.09	0.09	0.07	0.07	0.09	0.08
4. Nitrate-Nitrogen content, mg/L	2.0	1.9	1.9	1.9	1.8	1.9
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	2.2	2.1	2.1	2.1	2.0	2.1
7. Total phosphorus content, mg/L	0.09	0.06	0.07	0.08	0.07	0.09
8. Total phosphorus content (Filtered), mg/L	0.05	0.05	0.05	0.06	0.04	0.04
9. E. coli count, cfu/100ml	4.0 × 10 ²	2.2 x 10 ²	2.0 × 10 ²	3.2 x 10 ²	2.8 x 10 ²	3.7 × 10 ²

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

fuero

FUGRO TECHNICAL SERVICES LIMITED


Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172WA221155

Results :

Page 16 of 18

Tast naramatars			Sample id	Sample identification		
	F/S/F	F/S/F/Dup	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup
1. Biochemical oxygen demand, mg/L	4	۲>	Ł	2	2	2
2. Total suspended solids dried at 103°C - 105°C, mg/L	9	9	7	9	9	9
3. Ammoniacal nitrogen content, mg/L	0.07	0.07	0.07	0.07	0.08	0.08
4. Nitrate-Nitrogen content, mg/L	1.7	1.9	1.8	1.7	1.7	1.6
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	1.9	2.1	1.9	1.9	1.8	1.8
7. Total phosphorus content, mg/L	0.06	0.07	0.04	0.05	0.05	0.07
8. Total phosphorus content (Filtered), mg/L	0.04	0.05	0.04	0.04	0.03	0.03
9. E. coli count, cfu/100ml	4.0×10^{2}	2.8 x 10 ²	4.7 × 10 ²	4.1 × 10 ²	4.1 × 10 ²	3.2 x 10 ²

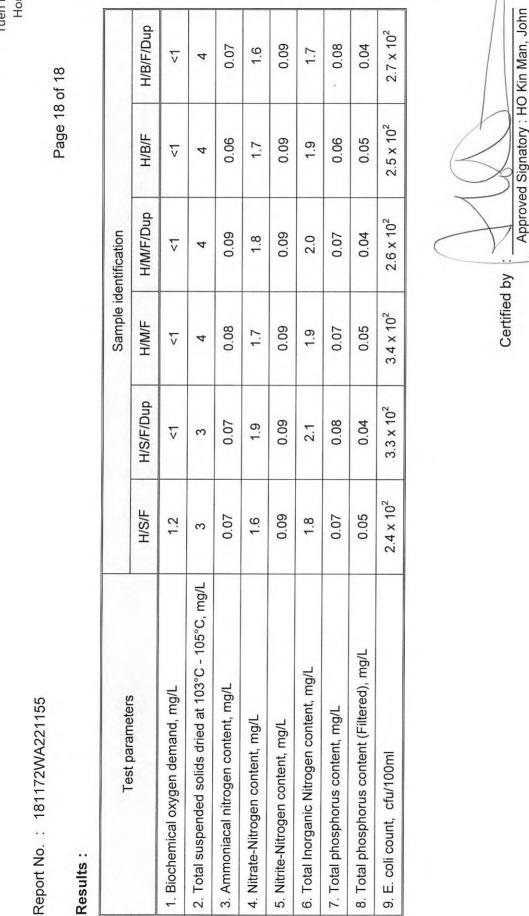
Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

fucko

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172WA221155


Results :

Page 17 of 18

Totemore			Sample id	Sample identification		
	G/S/F	G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup
1. Biochemical oxygen demand, mg/L	4	4	2	2	Ŷ	1.0
2. Total suspended solids dried at 103°C - 105°C, mg/L	4	4	4	4	4	4
3. Ammoniacal nitrogen content, mg/L	0.08	0.08	0.07	0.07	0.08	0.08
4. Nitrate-Nitrogen content, mg/L	1.8	1.6	1.9	1.7	1.4	1.6
5. Nitrite-Nitrogen content, mg/L	0.09	0.09	0.09	0.09	0.09	0.09
6. Total Inorganic Nitrogen content, mg/L	2.0	1.7	2.1	1.8	1.6	1.8
7. Total phosphorus content, mg/L	0.06	0.05	0.06	0.08	0.07	0.08
8. Total phosphorus content (Filtered), mg/L	0.04	0.03	0.03	0.03	0.02	0.03
9. E. coli count, cfu/100ml	2.0×10^{2}	2.5×10^{2}	2.6 x 10 ²	2.4 × 10 ²	2.5 x 10 ²	2.3 x 10 ²

Certified by : Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories Date : Three

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Fugro Development Centre FUGRO TECHNICAL SERVICES LIMITED

5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT

Results :

GEN02/0819

Assistant General Manager – Laboratories

NOCICIN

Date

** End of Report **

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre

5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Note

LGRO

Laboratory Duplicate, Quality Assurance/Quality Control Report

Biochemical	oxvaer	Biochemical oxvgen demand mg/l	Biochemical oxvaen demand, ma/l	-		Nitrate-Nitrogen content mg/l	Daen con	itent ma/l			
	うわらいつ	acinatia, mg/					00 000	10111 Ingr =			
Reporting	Jucia	Spike	Labo	Laboratory Duplicate		Reporting	Jacid	Spike	Laboi	Laboratory Duplicate	
Limit	NIIII	recovery (%)	Original result	Duplicate result	RPD%	Limit	DIAIIN	recovery (%)	Original result	Duplicate result	RPD%
			0.87	0.88	1.14						
			1.84	1.79	2.75						
-	$\overline{\mathbf{v}}$,	0.81	0.85	4.82	0.005	1	1	1	1	ī
			0.96	0.98	2.06						
			0.95	0.94	1.06						
Total suspen	ded sc	olids dried at 10	Total suspended solids dried at 103°C – 105°C, mg/L	1/F		Nitrite-Nitrogen content, mg/L	igen cont	tent, mg/L			
Reporting	Jacid	Spike	Labo	Laboratory Duplicate		Reporting	Jacid	Spike	Laboi	Laboratory Duplicate	
	DIGIN	recovery (%)	Original result	Duplicate result	RPD%	Limit	DIdIIK	recovery (%)	Original result	Duplicate result	RPD%
		98.50	6.45	6.25	3.15		<0.005	92.50	0.089	0.089	0.00
		98.25	5.20	4.45	15.54		<0.005	110.75	0.091	0.092	1.09
~	v	99.35	3.85	4.50	15.57	0.005	<0.005	108.25	0.089	0.088	1.13
		97.85	6.05	5.60	7.73		<0.005	108.00	0.089	0.089	00.00
		99.65	3.90	3.55	9.40		<0.005	108.75	0.091	060.0	1.10

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories non + ... Certified by Date

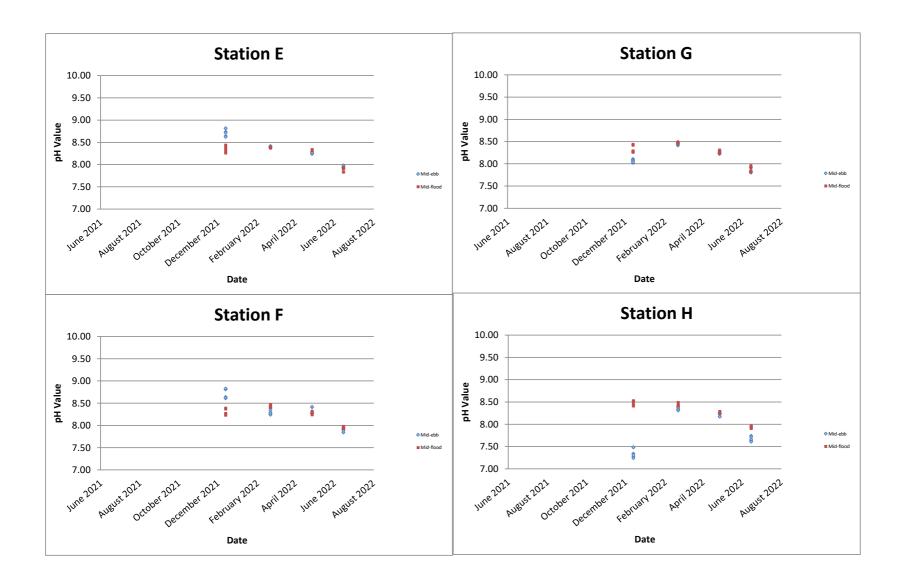
Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

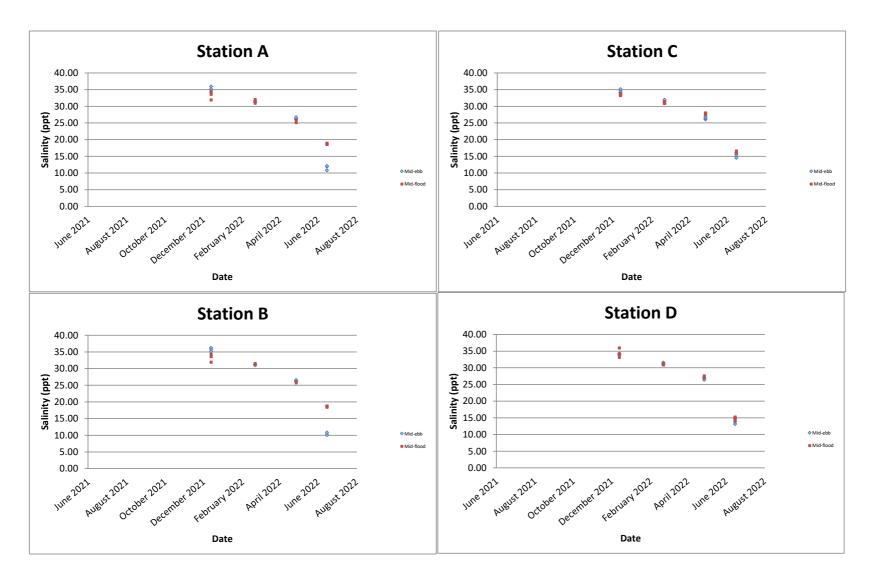
	te, Quality As:	-aboratory Duplicate, Quality Assurance/Quality Control Re	Control Report							
Ammoniacal Nitrogen content, mg/L	en content, mg.				Total Inorg	anic Nitro	Total Inorganic Nitrogen content, mg/L	mg/L		
Reporting Blank	Spike	Labo	Laboratory Duplicate		Reporting	Rlank	Spike		Laboratory Duplicate	
	recovery (%)	Original result	Duplicate result	RPD%	Limit		recovery (%)	Original result	Duplicate result	RPD%
<0.005	110.50	0.081	0.089	9.41						
		0.10	0.10	0.80						
0.005 <0.005	109.17	0.082	0.08	2.47	0.005	i		ł	1	,
<0.005	110.25	0.075	0.074	1.34						
<0.005	111.75	0.067	0.064	4.58						
Total phosphorus content, mg/L	ontent, mg/L				Total phosp	phorus co	Total phosphorus content (Filtered)	d) , mg/L		
bu	Spike	Labo	-aboratory Duplicate		Reporting	ī	Spike		Laboratory Duplicate	
Limit Dialin	recovery (%)	Original result	Duplicate result	RPD%	Limit	blank	recovery (%)	Original result	Duplicate result	RPD%
<0.01	103.30	0.065	0.062	4.72		<0.01	101.70	0.022	0.023	4.44
	98.70	0.055	0.054	1.83		<0.01	100.30	0.013	0.014	7.41
0.01 <0.01	102.40	0.055	0.053	3.70	0.01	<0.01	99.80	0.024	0.026	8.00
<0.01	97.60	0.069	0.071	2.86		<0.01	100.30	0.045	0.048	6.45
<0.01	94.00	0.088	0.082	7.06		<0.01	100.20	0.041	0.043	4.76
E. coli count, cfu/100ml	Oml							-		
Reporting Blank	Spike	Labo	Laboratory Duplicate							
Limit	recovery (%)	Original result	sult	Precision						
		9.5×10^2	9.0×10^2	0.023						
		3.4×10^2	2.7×10^{2}	0.10						
1 0	1	1.6×10^2	1.9×10^2	0.075				((
		3.2×10^2	2.4 x 10 ²	0.12					1	
		2.7 x 10 ²	2.6 x 10 ²	0.016				14		

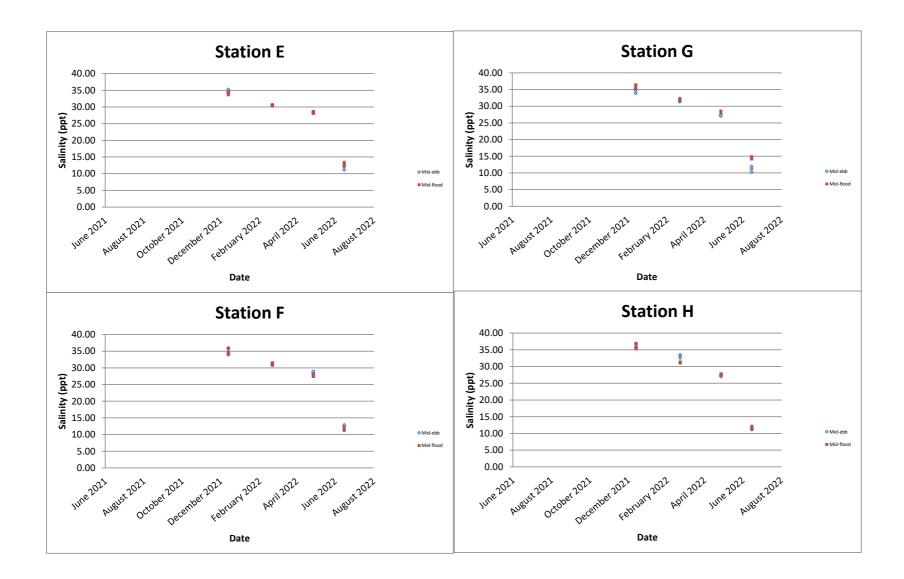
FUGRO TECHNICAL SERVICES LIMITED

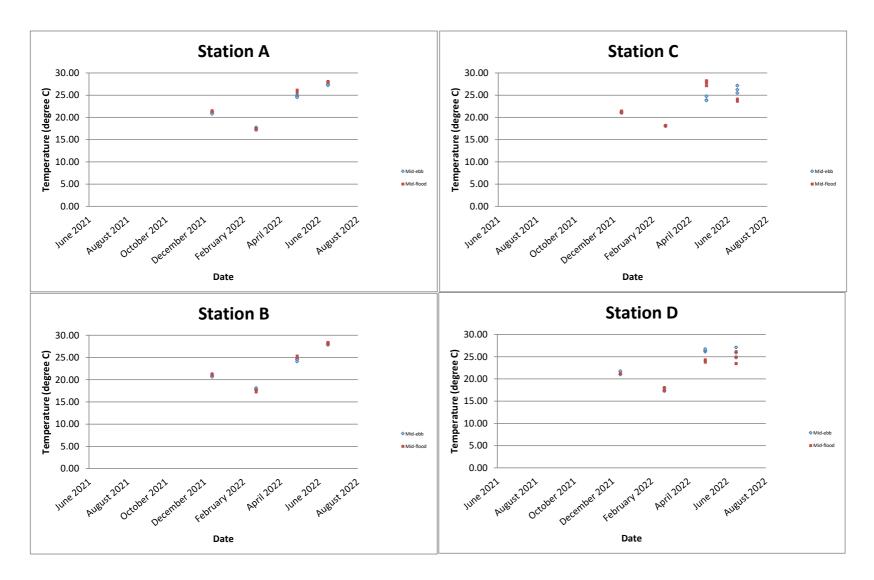
fuero

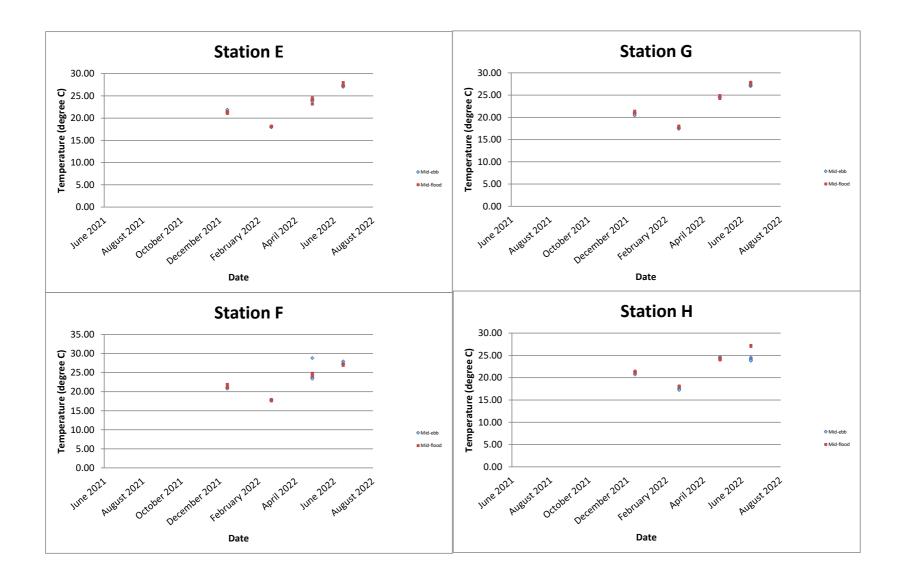

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

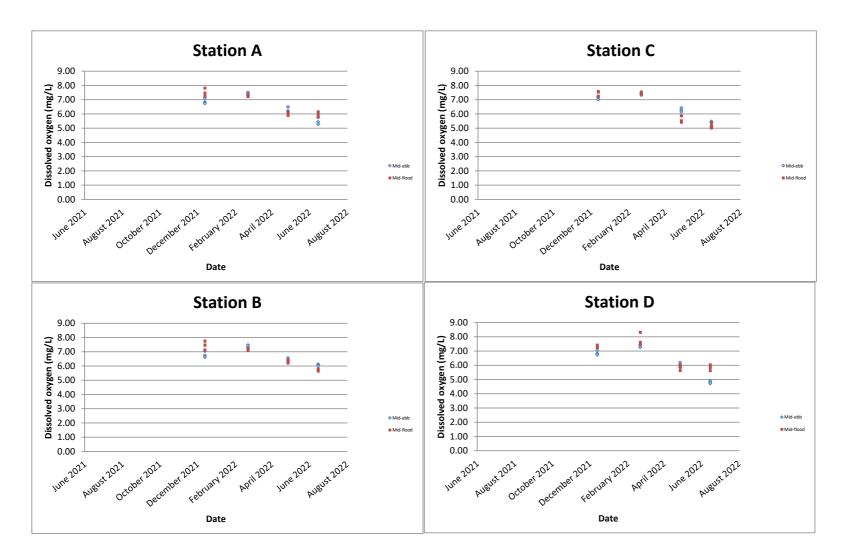
The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. **T** +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com

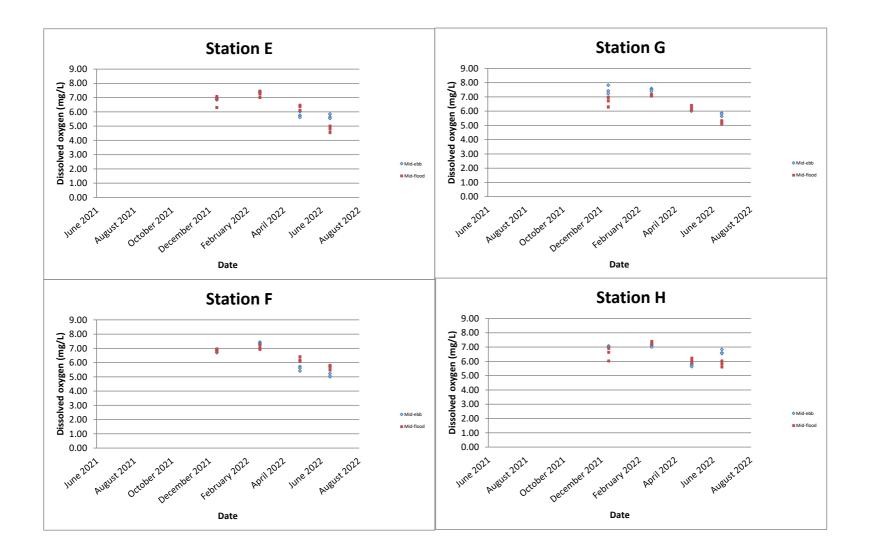

pH value

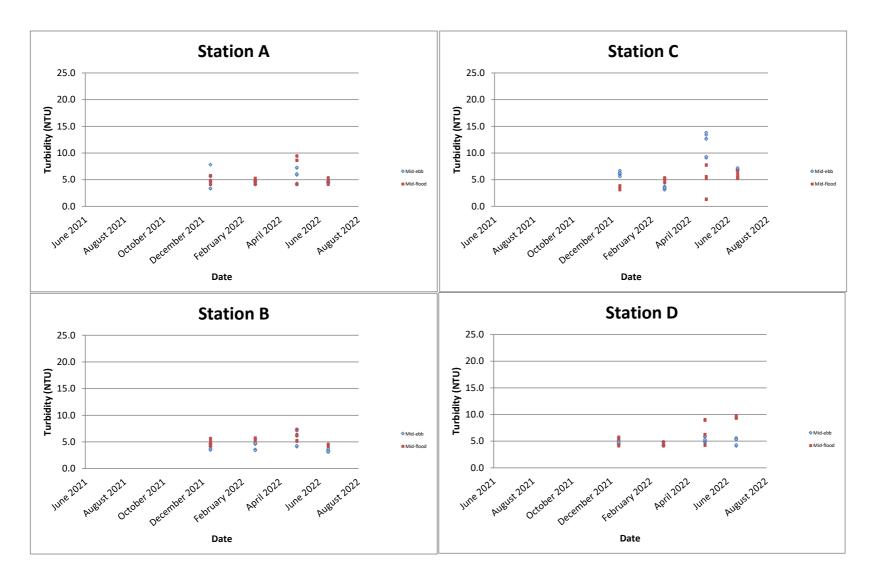

pH value

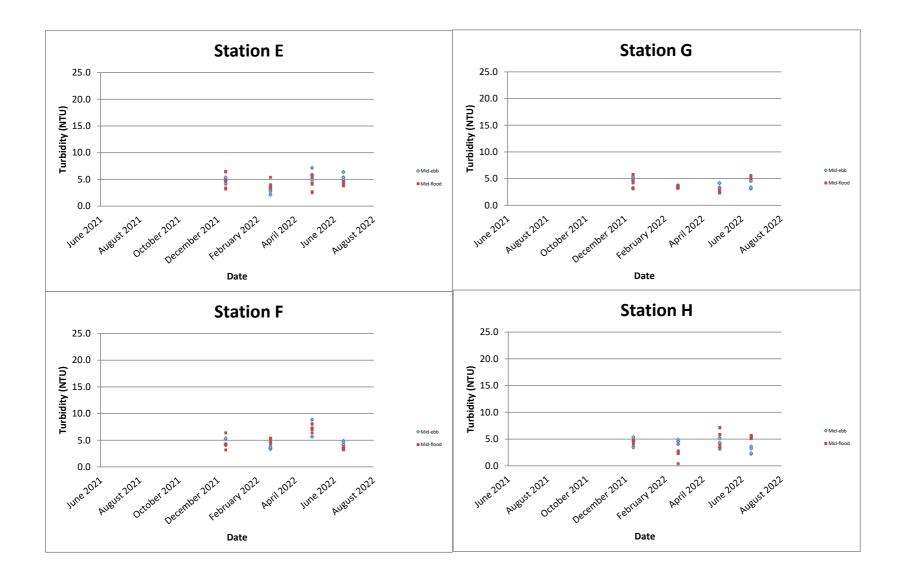

Salinity (ppt)

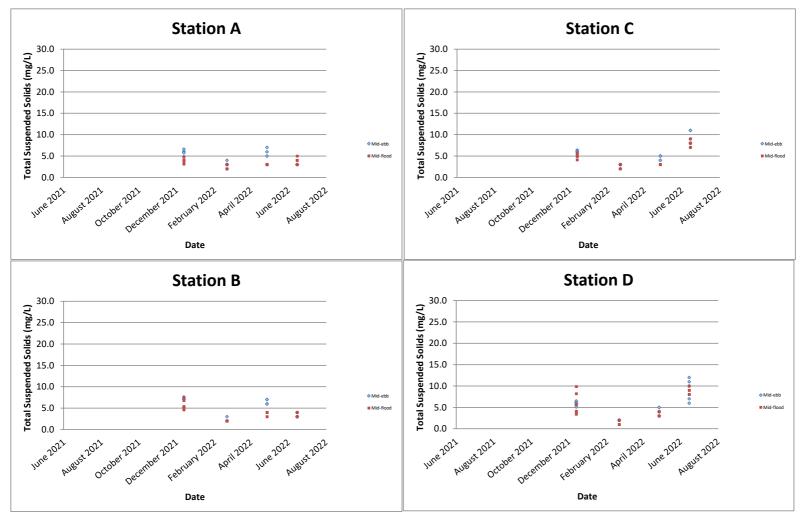

Salinity (ppt)


Temperature (degree C)

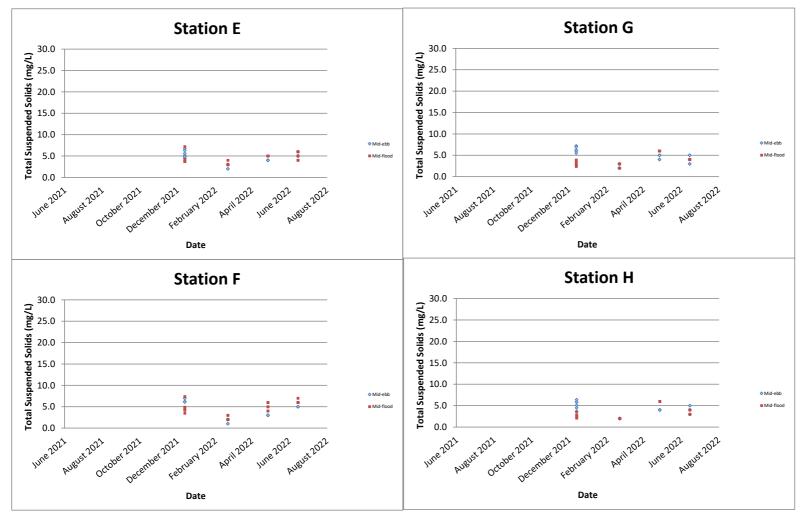

Temperature (degree C)


Dissolved oxygen (mg/L)

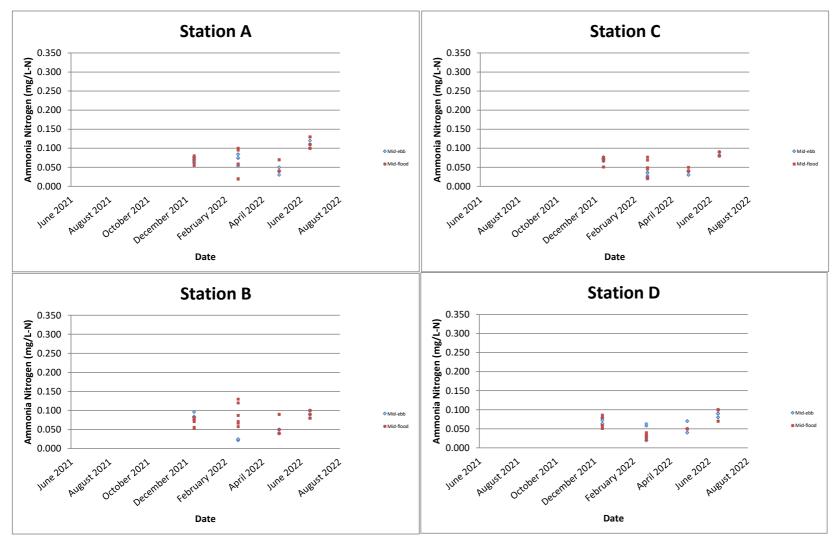

Dissolved oxygen (mg/L)

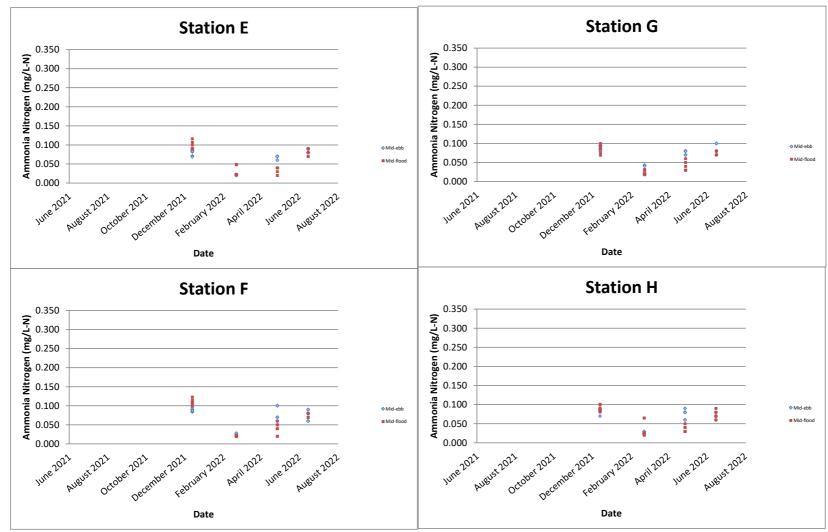


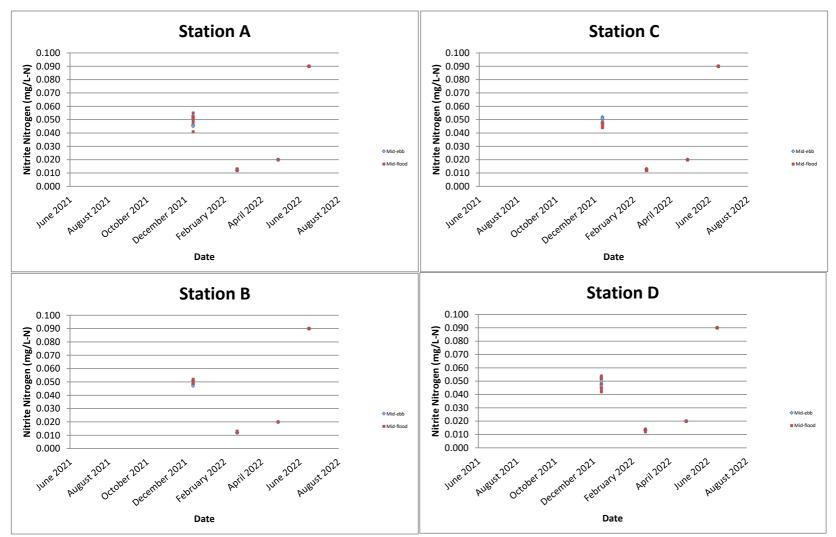
Turbidity (NTU)

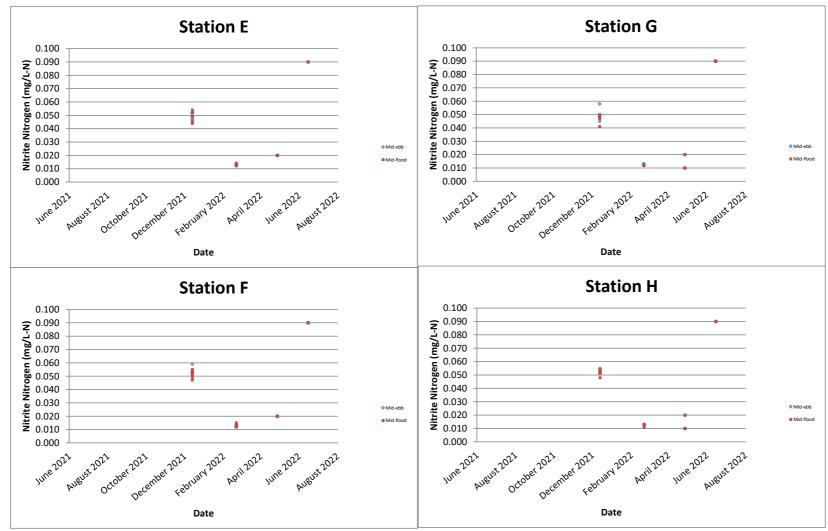


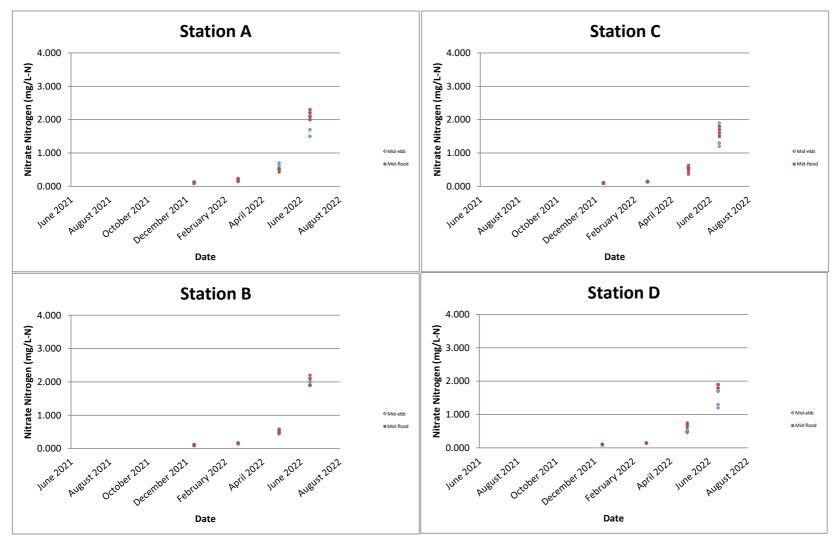
Turbidity (NTU)

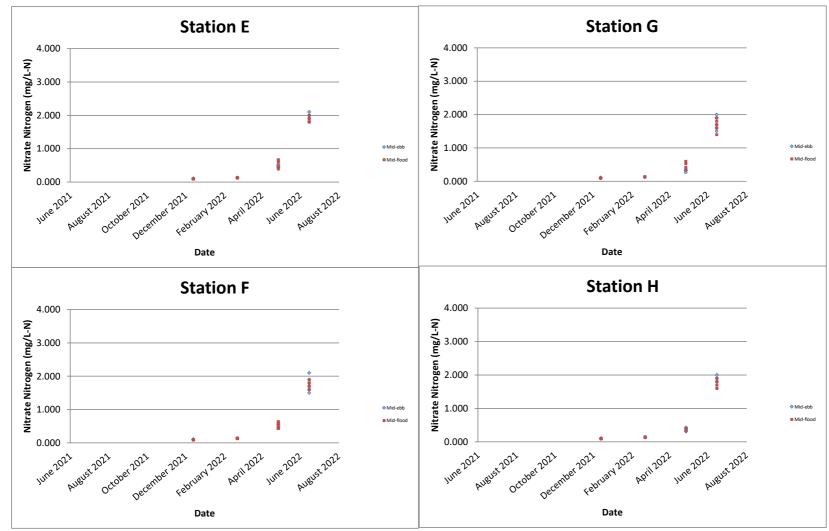


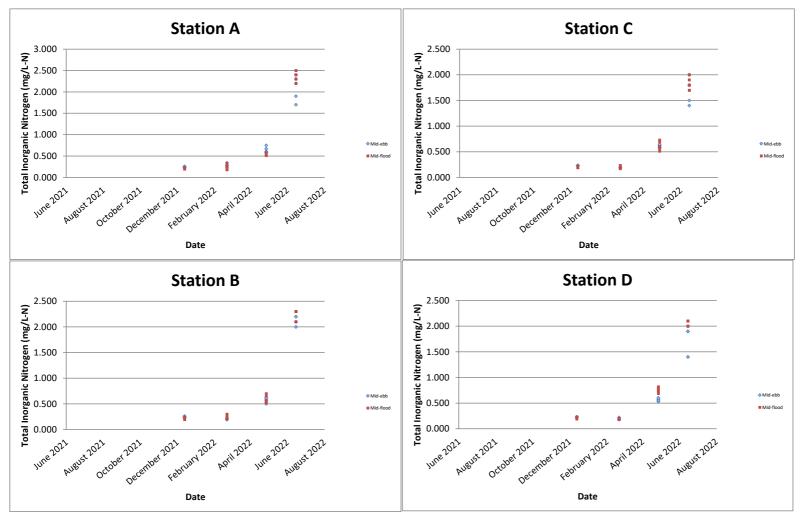

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

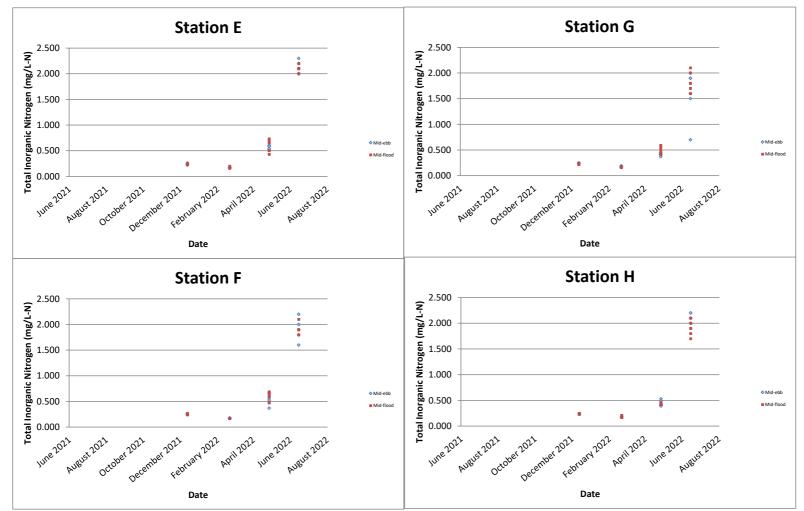

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

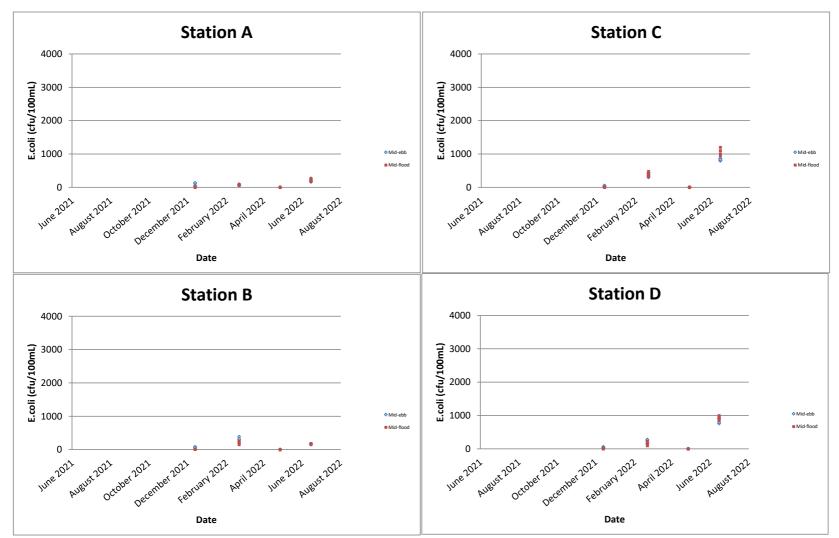

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

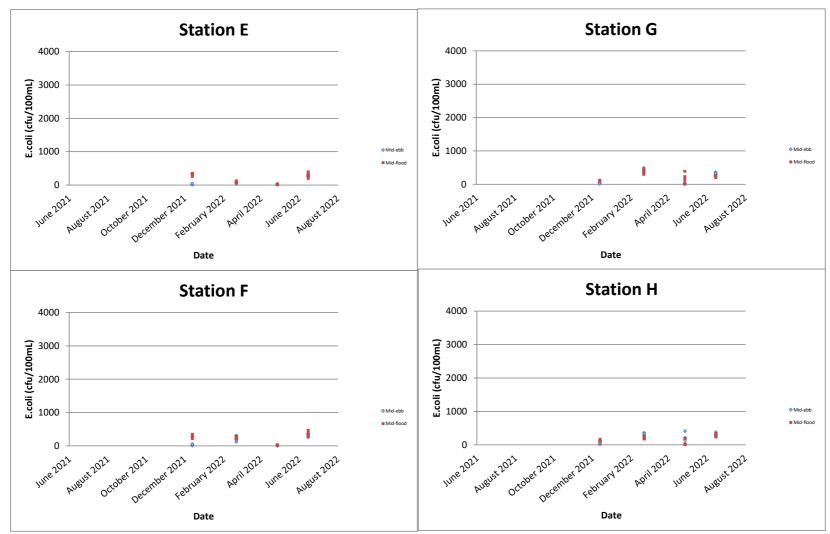

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

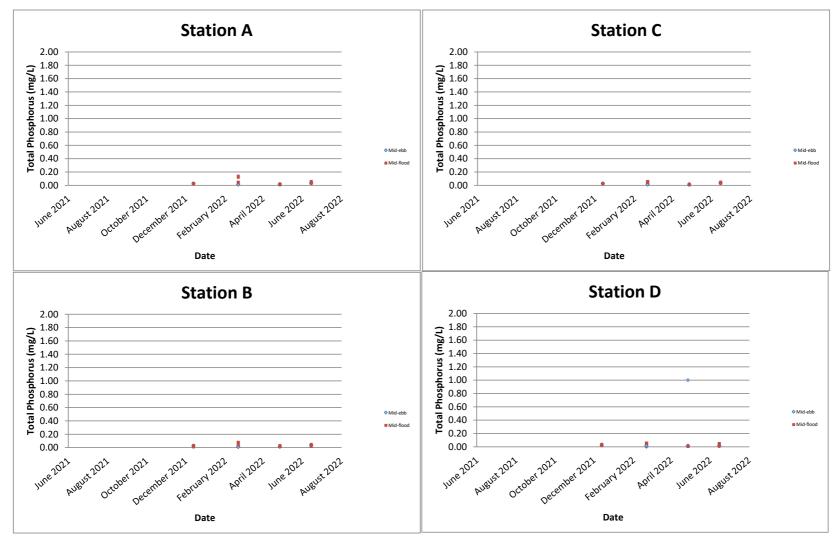

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.

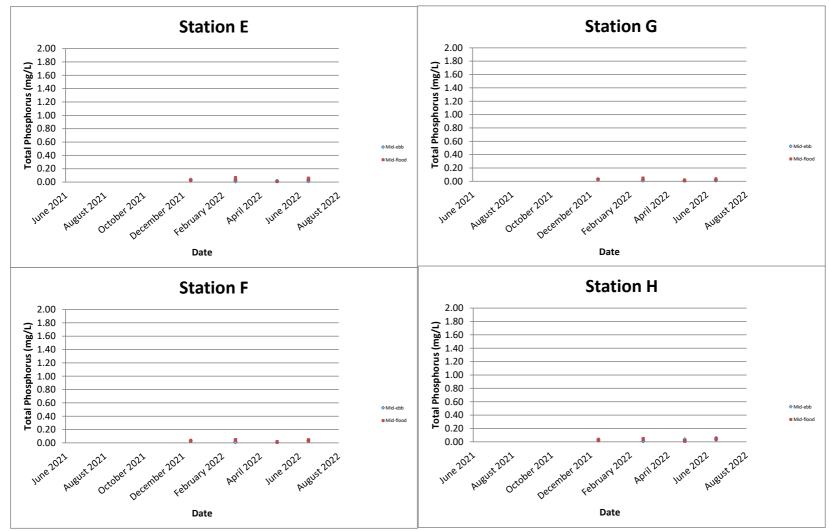

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.

Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.

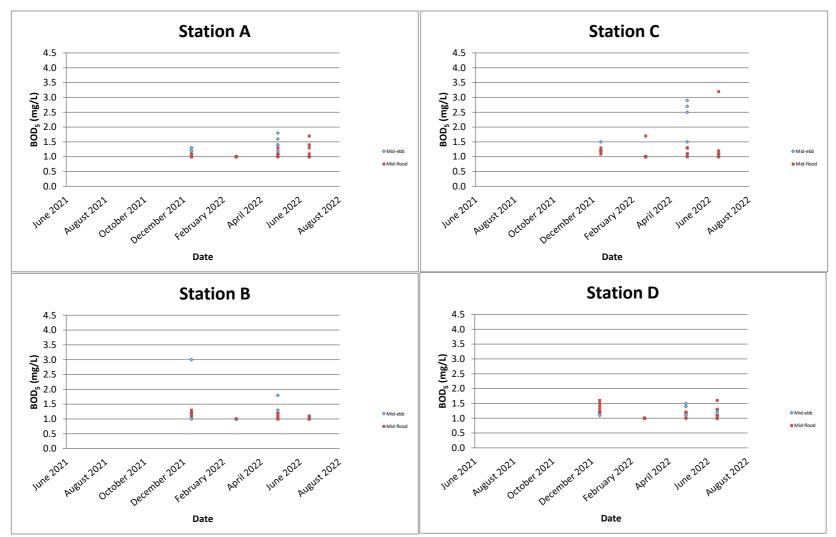


Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.

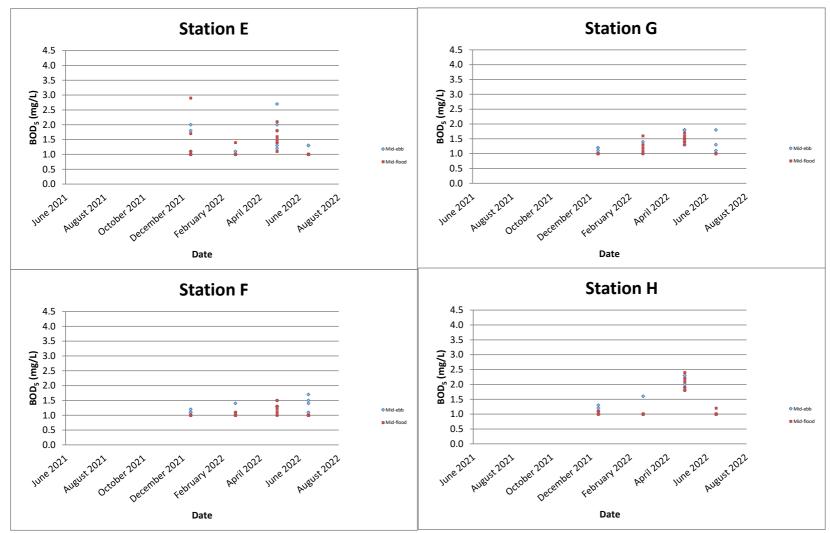



E.coli (cfu/100mL)

Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.



Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

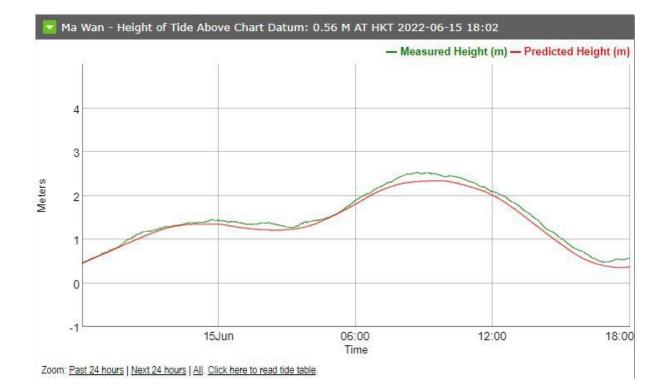
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Appendix G

Tidal Data obtained from Ma Wan Marine Traffic Station


The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Appendix H

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

											Sediment Monitoring						
Monitoring Location	Date	Weather	Sea Condition	Time	рН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
A	15/6/2022	Fine	Moderate	10:51	8.5	5.6	730	1000	<0.1	18	14	21	0.05	8.5	48	8.8	0.1
В	15/6/2022	Fine	Moderate	10:39	8.0	8.6	990	1200	<0.1	27	28	33	0.09	16	81	10	0.3
С	15/6/2022	Fine	Moderate	10:20	7.9	10	110	1100	<0.1	33	31	37	0.11	18	92	11	0.3
D	15/6/2022	Fine	Moderate	10:02	8.3	5.6	850	1200	<0.1	20	20	25	0.06	12	64	7.9	0.2
E	15/6/2022	Fine	Moderate	09:44	8.0	9.6	1300	1200	<0.1	29	34	37	0.13	17	92	9.9	0.4
F	15/6/2022	Fine	Moderate	09:28	7.8	31	1500	1300	<0.1	29	30	34	0.09	17	85	9.7	0.3
G	15/6/2022	Fine	Moderate	09:12	8.1	8.1	1100	830	<0.1	25	26	31	0.09	15	76	9.7	0.3
Н	15/6/2022	Fine	Moderate	08:57	8.1	9.8	1000	1100	<0.1	26	35	31	0.08	15	76	9.3	0.4

							Benthic Survey		
Monitoring Location	Date	Weather	Sea Condition	Time	Total Organic Carbon		Particle Size	Distrbution	
Location			Condition		(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
А	15/6/2022	Fine	Moderate	10:51	0.32	28	16	13	13
В	15/6/2022	Fine	Moderate	10:39	0.77	0	15	45	40
С	15/6/2022	Fine	Moderate	10:20	0.86	1	9	45	45
D	15/6/2022	Fine	Moderate	10:02	0.57	5	40	28	27
E	15/6/2022	Fine	Moderate	09:44	0.89	0	10	46	44
F	15/6/2022	Fine	Moderate	09:28	0.98	0	1	47	52
G	15/6/2022	Fine	Moderate	09:12	0.73	26	21	27	26
Н	15/6/2022	Fine	Moderate	08:57	0.52	0	6	49	45

Report No. : 181172WA221155(1)

Page 1 of 3

Test Report on Analysis of Sediment

Information Supplied by	Clie	nt
Client		Fugro Technical Services Limited
Client's address		13/F, Fugro House – KCC2, No. 1 Kwai On Road, Kwai Chung, N.T., H.K
Project	:	Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works
Sample description	:	Eight samples of sediment taken by the staff of FTS on 15/06/2022
Client sample ID	:	Refer to page 3
Tests required	:	 pH value Moisture content Ammoniacal nitrogen content Total nitrogen content Total phosphorus content Cadmium content Cadmium content Copper content Lead content Mercury content Nickel content Zinc content Arsenic content Silver content
Laboratory Information		
Lab. sample ID	:	WA221155(1)/1-8
Date of receipt of sample	е:	15/06/2022
Date test commenced	:	16/06/2022
Date test completed		04/07/2022

Hong Kong

Report No. : 181172WA221155(1)

:

Page 2 of 3

Test methods used

pH value APHA 23ed. 4500- H^*B

Moisture content In house method E-T-186

Ammoniacal Nitrogen content In house method E-T-095

Total nitrogen In house method E-T-114 (By Calculation), In house method E-T-036 & APHA 23ed.4500-NO₃⁻-I

Total phosphorus content APHA 17ed. 4500-PB.5 (Digestion) & In house method E-T-056 (Determination)

Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc, Arsenic, Silver content USEPA method 3050B (Digestion) & 6020A (Determination)

Hong Kong Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Report No. : 181172WA221155(1)

Page 3 of 3

	Test narameters				Sample id	Sample identification			
		A/Sediment	B/Sediment	C/Sediment	D/Sediment	E/Sediment	F/Sediment	G/Sediment	H/Sediment
-	pH value at 25°C	8.5	8.0	7.9	8.3	8.0	7.8	8.1	8.1
2	Moisture content, %	38.1	55.2	59.1	47.9	63.9	63.1	54.8	55.3
ы.	Ammoniacal nitrogen content, mg/kg	5.6	8.6	10	5.6	9.6	31	8.1	9.8
4.	Total nitrogen, mg/kg	730	066	110	850	1300	1500	1100	1000
5.	Total phosphorus content, mg/kg	1000	1200	1100	1200	1200	1300	830	1100
0	Cadmium content, mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
7.	Chromium content, mg/kg	18	27	33	20	29	29	25	26
œ.	Copper content, mg/kg	14	28	31	20	34	30	26	35
б.	Lead content, mg/kg	21	33	37	25	37	34	31	31
10.	10. Mercury content, mg/kg	0.05	0.09	0.11	0.06	0.13	0.09	0.09	0.08
11.	11. Nickel content, mg/kg	8.5	16	18	12	17	17	15	15
12.	12. Zinc content, mg/kg	48	81	92	64	92	85	76	76
13.	13. Arsenic content, mg/kg	8.8	10	11	7.9	9.9	9.7	9.7	9.3
14.	14. Silver content, mg/kg	0.1	0.3	0.3	0.2	0.4	0.3	0.3	0.4

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories mall 4 Certified by : Date

** End of Report **

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

GEN02/0819

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Note

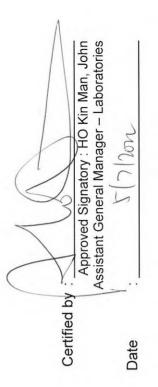
Laboratory Duplicate, Quality Assurance/Quality Control Report

pH value						Moisture content, %	intent, %				
Reporting	Alank	Spike	Laboi	Laboratory Duplicate		Reporting		Spike	Labor	Laboratory Duplicate	
Limit	חומוש	recovery (%)		Original result Duplicate result RPD%	RPD%	Limit	DIAIIN	recovery (%)	Original result	recovery (%) Original result Duplicate result RPD%	RPD%
0.1	1	1	8.07	8.08	0.12	0.1	ı	1	57.51	57.51	0.00
Ammoniaca	Il nitrog€	Ammoniacal nitrogen content, mg/kg	kg			Total nitrogen, mg/kg	en, mg/k	D			
Reporting	Jucia	Spike	Laboi	Laboratory Duplicate		Reporting	Diant	Spike	Labor	Laboratory Duplicate	
Limit		recovery (%)	Original result	recovery (%) Original result Duplicate result RPD%	RPD%	Limit	DIAIIK	recovery (%)	Original result	recovery (%) Original result Duplicate result	RPD%
0.5	<0.5	1	1	1	I	50	ı	1	1	1	1
Total phosp	horus c	Total phosphorus content, mg/kg									
Reporting	Juela	Spike	Labo	Laboratory Duplicate							
Limit		recovery (%)		Original result Duplicate result RPD%	RPD%						
10	<10	1	1122.59	1071.63	4.64						

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. **T** +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com

Tuen Mun, NT Hong Kong Fugro Development Centre 5 Lok Yi Street, Tai Lam


Note

LGRO

Method Blank (MB), Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Heavy metals content ma/kg

	Method Blan	Method Blank (MB) Report		Σ	latrix Spike (N	AS) and Matrix :	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	SD) Report	
ltem	IOR	Result	Spike	Spike rec	Spike recovery (%)	Recover	Recovery limits (%)	L.	RPD%
			Concentration	MS	MSD	Low	High	Value	Control Limited
Arsenic	0.5	< 0.5	10	80.1	ı	75	125	1	1
Cadmium	0.1	< 0.1	2	88.5	1	75	125	1	1
Chromium	0.5	< 0.5	50	92.1	1	75	125	1	1
Copper	0.2	< 0.2	50	113.6	1	75	125	1	1
Lead	0.2	< 0.2	50	93.5	1	75	125	1	1
Mercury	0.05	< 0.05	-	86.2	1	75	125	ı	1
Nickel	0.2	< 0.2	20	95.0	1	75	125	1	•
Silver	0.1	< 0.1	2	96.8	1	75	125	1	
Zinc	0.5	< 0.5	200	89.6	,	75	125		

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

Report No. : 181172WA221155(2)

Page 1 of 2

Test Report on Analysis of Sediment

Information Supplied by Cli	e	nt
Client :		Fugro Technical Services Limited
Client's address :		13/F, Fugro House – KCC2, No. 1 Kwai On Road, Kwai Chung, N.T., H.K
Project :		Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works
Sample description :		Eight samples of benthic survey sediment taken by the staff of FTS on 15/06/2022
Client sample ID :		Refer to page 2
Tests required :		 Moisture content Total organic carbon content
Laboratory Information		
Lab. sample ID :		WA221155(1)/9-16
Date of receipt of sample :		15/06/2022
Date test commenced :		20/06/2022
Date test completed :		04/07/2022
Test methods used :		 In-house method E-T-186 APHA 23ed. 5310B

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong


Report No. : 181172WA221155(2)

fucko

Results :

Page 2 of 2

· · ·				Sample ide	Sample identification			
l est parameters	A/Benthic	B/Benthic	C/Benthic	D/Benthic	E/Benthic	F/Benthic	G/Benthic	H/Benthic
	Survey	Survey	Survey	Survey	Survey	Survey	Survey	Survey
1. Moisture content, %	46.5	56.2	60.5	45.0	56.7	62.6	57.2	58.6
2. Total organic carbon content, %	0.32	0.77	0.86	0.57	0.89	0.98	0.73	0.52

** End of Report **

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. **T** +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Note

fuero

Laboratory Duplicate, Quality Assurance/Quality Control Report

Moisture content, %	ontent, %					Total organ	ic carbo	Total organic carbon content, %			
Reporting	Blank	Spike	Labo	aboratory Duplicate		Reporting	Dical	Spike	Labor	Laboratory Duplicate	
Limit		recovery (%)	Original resul	t Duplicate result RPD%	RPD%	Limit	DIALIK	recovery (%)	Original result	recovery (%) Original result Duplicate result RPD%	RPD%
0.1	I	1	57.51	57.51	0.00	0.05		1	0.75	0.72	4.64

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. **T** +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com

Report No. : 181172EN221337

Page 1 of 2

Information Supplied by C	lient	
Client	:	Fugro Technical Services Limited
Client's address	:	Rm 723-726, 7/F, Profit Industrial Building, No.1-15, Kwai Fung Crescent, Kwai Chung, N.T.
Project	•	Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works
Sampling date	:	15/06/2022
Sampling location	:	
Sample description	:	Eight sample(s) of Rinsate Blank
Sample identification	:	 A/Rinsate Blank B/Rinsate Blank C/Rinsate Blank D/Rinsate Blank E/Rinsate Blank F/Rinsate Blank F/Rinsate Blank H/Rinsate Blank
Test required	:	 Total recoverable metals: Arsenic content Cadmium content Chromium content Copper content Lead content Mercury content Nickel content Silver content Silver content
Laboratory Information		
Lab sample ID	:	EN221337/1-8
Date of receipt of sample	:	15/06/2022
Date test completed	;	30/06/2022
Test method used	:	In-house method E-T-189 & E-T-190 (ICP-MS)

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172EN221337

Page 2 of 2

Results :

		Client sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank
Item	LOR	Unit				
In-house metho	d E-T-189 8	& E-T-190 (ICP-	MS)			
Arsenic	1	µg/L	<1	<1	<1	<1
Cadmium	0.2	µg/L	<0.2	<0.2	<0.2	<0.2
Chromium	1	µg/L	2	<1	1	<1
Copper	1	µg/L	<1	2	2	<1
Lead	1	µg/L	<1	<1	<1	<1
Mercury	0.5	µg/L	<0.5	<0.5	<0.5	<0.5
Nickel	1	µg/L	2	2	2	2
Silver	1	µg/L	<1	<1	<1	<1
Zinc	10	µg/L	20	20	40	20

		Client sample ID	E/Rinsate Blank	F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank
Item	LOR	Unit				
In-house metho	d E-T-189 8	& E-T-190 (ICP-	MS)			
Arsenic	1	µg/L	<1	<1	<1	<1
Cadmium	0.2	µg/L	<0.2	<0.2	<0.2	<0.2
Chromium	1	µg/L	1	1	2	<1
Copper	1	µg/L	1	1	1	<1
Lead	1	µg/L	<1	<1	<1	<1
Mercury	0.5	µg/L	<0.5	<0.5	<0.5	<0.5
Nickel	1	µg/L	2	2	2	2
Silver	1	µg/L	<1	<1	<1	<1
Zinc	10	µg/L	20	20	30	30

Remark: 1. The sampling procedure for the sample received in this report is outside the scope of accreditation.

2. µg/L - microgram per litre

Certified by Approved Signatory: HO Kin Man, John Assistant General Manager - Laboratories Date

** End of Report **

gro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172EN221337

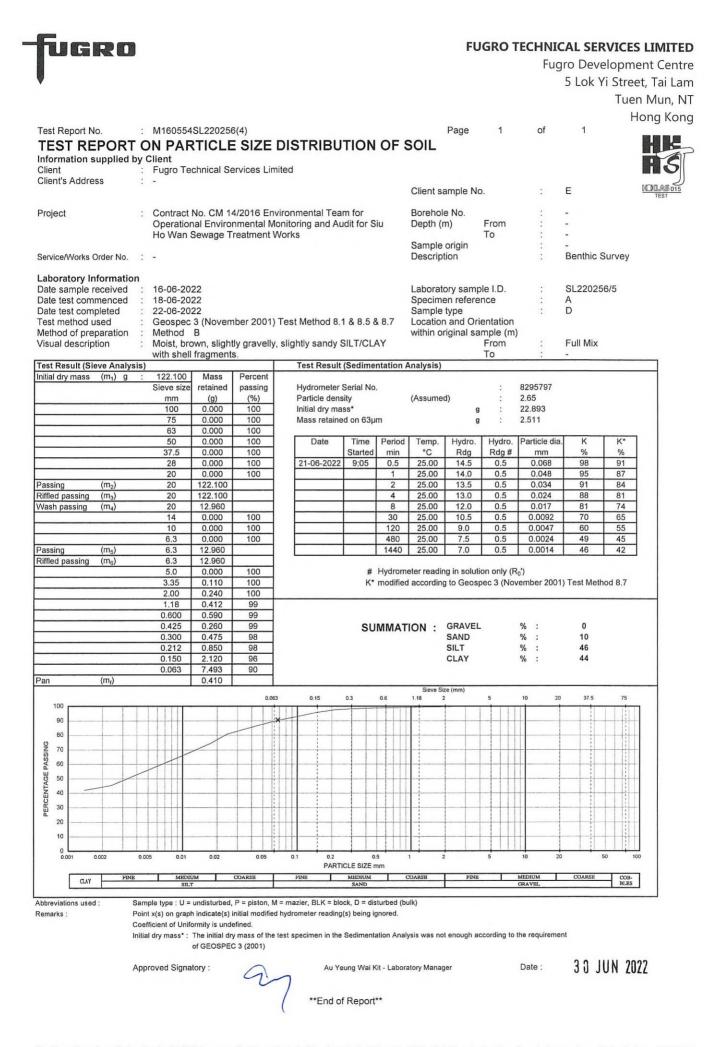
Note

Method Blank (MB), Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

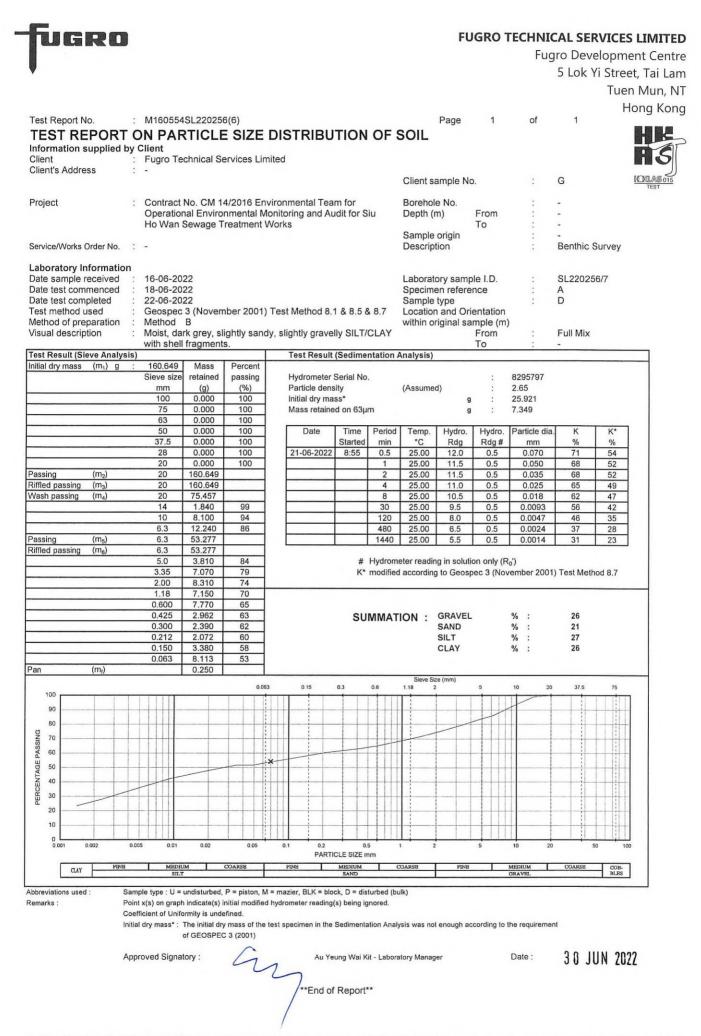
		od Blank Report	Mat	rix Spike (N	1S) and Ma	atrix Spike	Duplicate (M	ISD) Repo	rt
Item				Spike reco	overy (%)	Recover	y limits (%)	RF	°D%
	LOR	Result	Spike Concentration	MS	MSD	Low	High	Value	Control Limited
Arsenic	1	< 0.5	10	98.9%	-	75.0%	125.0%	<u>.</u>	-
Cadmium	0.2	< 0.1	10	97.2%	-	75.0%	125.0%	-	-
Chromium	1	< 0.5	10	97.8%	-	75.0%	125.0%	· · · ·	-
Copper	1	< 0.5	10	95.8%	-	75.0%	125.0%	-	-
Lead	1	< 0.5	10	89.9%	-	75.0%	125.0%	2-1	-
Mercury	0.5	< 0.25	0.5	92.5%	-	75.0%	125.0%	-	-
Nickel	1	< 0.5	10	94.9%	-	75.0%	125.0%	· • .	-
Silver	1	< 0.5	10	95.2%	-	75.0%	125.0%		-
Zinc	10	< 5	100	94.5%	-	75.0%	125.0%	-	-

Certified by Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories YI hon Date

														Fug		lopment (i Street, Ta Tuen Mı Hong	ai L un,
ES			ГС	N PA	S4SL22028 RTICL	E SIZE		STRIBU	ITION	I OF S	SOIL	Page	1	of	1	H	K
lient's	Addre	SS	:	-							Client s	ample No	D.	:	A	MOKIL	AS 01
roject			:	Operati		onmental I	Monit	nmental Tea oring and A ks		Siu	Borehol Depth (From To		÷		
rvice/	Works (Order No.	:	-	U						Sample Descrip			:	- Benthic S	urvey	
ate sa ate te ate te est me ethod	ample r st com st com ethod u	paration		Method	022 022 c 3 (Nove B			st Method 8. y gravelly S		& 8.7	Specim Sample Location	ory samp en refere type n and Ori riginal sa	nce entation	: : :	SL220250 A D Full Mix	6/1	
		eve Analy			ell fragmer					ntation	Apolycic		То	:	-		
	sult (Si mass		SIS) :	Sieve siz mm 100 75	e retained (g) 0.000 0.000	(%) 100 100		Hydrometer Particle den Initial dry ma Mass retaine	Serial No sity ass*).	Analysis) (Assume	d) g		8295797 2.65 34.199 21.019			
				63 50 37.5 28 20	0.000 0.000 0.000 0.000 0.000	100 100 100 100 100	-	Date 21-06-2022	Time Started 9:25	0.5 1	Temp. °C 25.00 25.00	Hydro. Rdg 9.5 9.0	Hydro. Rdg # 0.5 0.5	Particle dia mm 0.072 0.051	% 42 40	K* % 27 25	
	assing assing	(m ₂) (m ₃) (m ₄)		20 20 20 14 10	199.173 199.173 147.291 3.210 6.332		-			2 4 8 30 120	25.00 25.00 25.00 25.00 25.00	9.0 8.5 8.0 7.0 6.0	0.5 0.5 0.5 0.5 0.5	0.036 0.026 0.018 0.0096 0.0049	40 38 35 31 26	25 24 22 19 16	
ssing fled p	assing	(m ₅) (m ₆)		6.3 6.3 6.3 5.0	7.290 130.459 130.459 4.620	92			#	480 1440	25.00 25.00	5.0 4.5	0.5 0.5	0.0025	21 19	13 12	
				3.35 2.00 1.18 0.600	12.970 21.640 17.082 17.450	83 72 63 55			K*	modified	d accordin	g to Geosp	bec 3 (No	vember 200	1) Test Meth	od 8.7	
				0.425 0.300 0.212 0.150 0.063	7.240 7.400 9.982 15.270 16.635	51 47 42 34 26	-		SL	ЛММАТ	ION :	GRAVEL SAND SILT CLAY		% : % : % : % :	28 46 13 13		
1		(m _f)			0.170		063	0.15	0.3	0.6		ize (mm)	5	10 2	0 37.5	75	
100			T			0.	063	0,15	0.3	0.6	1.18	2	5	10 2	0 37.5		
90 80 70 60																	
70 60 50 40 30							×										
20 10 0,0		0.002	0.00	0.0	0.02	0.05		0.1 0.2		0.5	1	2	5	10 2	0 5	0 100	
	CLAY	FIN	E			COARSE	-	PART	ICLE SIZE		COARSE	FINE	1	MEDIUM	COARSE	COB- BLES	
neviati narks	ions used	d:	Poin Coef	ple type : L t x(s) on gr fficient of U	= undisturbe aph indicate(s hiformity is un : The initial o) initial modifi defined.	ed hyd	azier, BLK = bl rometer reading specimen in the	g(s) being	ignored.		bt enough ad	ccording to		ent	0.453	
			Арр	roved Sig		(2001)	n	Auy	eung Wai	Kit - Labor	atory Mana	ger		Date :	30 JI	UN 2022	

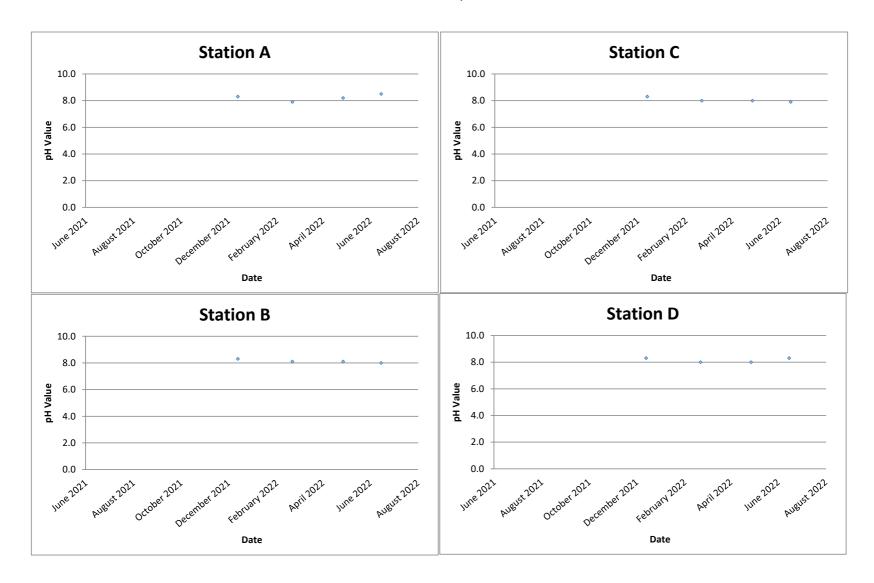

-

																								Fu			Yi S	Stree	ent Ce et, Tai n Mun
es	t R	eport N	lo.		:	M1	60554	4SL22025	6(1))											Page	1		of		1			long K
fo		T RE			y Cl	ier	ıt	RTICL						rrie	3U'	TIO	Ν	OF	S	OIL									
		Addre	ess		: .		JIO TE	echnical S	ervi	Ces L		leo	1						į	Client sa	ample N	D .		:	B	3			HOKLAS
oj	ect					Op	eratio	No. CM	onm	ental	Mo	nite	orir				Siu	J		Borehol Depth (r		From	(:	:				1251
erv	ice/	Works	Order N	lo.			vvan	Sewage	rea	tmen	t vv	ori	KS							Sample Descrip		То		:	- - B	Benthic	Sur	vev	
ate	e sa e te e te	atory Ir ample r st com st com ethod u	receive mence pletec	ed ed	: :	18-	06-20 06-20 06-20	22		- 200	41.7	Fee		Anthon			- 0	0.7		Specime Sample		nce		::		SL2202			
et	hoc	of predescrip	parati	on	: 1	Me	thod												,		n and Or riginal sa		(m)	:	F	ull Mix			
st	Re	sult (Si	eve Ar	alys		with	n shel	l fragmen	ts.		Т	-	Te	est Res	sult	(Sedir	nen	tatio		nalysis)		То		:	-				
tia	l dry	/ mass	(m ₁)	g	:	Siev	9.869 /e size mm 100 75 63	Mass retained (g) 0.000 0.000 0.000	pa	ercen assing (%) 100 100			Pa	ydrome article c itial dry ass reta	dens mas	ity ss*		1		Assume	d) S			8295797 2.65 20.746 3.132					
						3	50 7.5 28	0.000 0.000 0.000		100 100 100			2	Date 1-06-20		Time Starte 9:20	ed	Perio min 0.5		Temp. °C 25.00	Hydro. Rdg 12.0	Hydr Rdg 0.5	#	Particle dia mm 0.070	a.	K % 89	F	K* % 86	
ffle		assing	(m ₂) (m ₃)				20 20 20	0.000 129.869 129.869		100								1 2 4		25.00 25.00 25.00	11.5 11.0 10.5	0.5 0.5 0.5	i i	0.050 0.035 0.025		85 81 77		83 79 75	
as	n pa	assing	(m ₄)			-	20 14 10 3.3	19.960 0.000 0.000 0.000		100 100 100			_				+	8 30 120 480	_	25.00 25.00 25.00 25.00	10.0 9.0 7.5 6.0	0.5 0.5 0.5		0.018 0.0094 0.0048 0.0024	+	74 66 54 43	+	71 64 53 41	
	ing ed p	assing	(m ₅) (m ₆)			1	5.3 5.3 5.0	19.960 19.960 0.000		100							# H	1440		25.00	5.5 ng in solut	0.5		0.0014		39		38	
						2	.35 .00 .18	0.100 0.090 0.173		100 100 100	-	_			_	1	<* n	nodifi	ed	according	g to Geos	pec 3 (1	Vov	ember 200	01) T	est Met	hod	8.7	_
						0. 0. 0.	600 425 300 212 150 063	0.332 0.240 0.400 0.794 2.970 14.411		99 99 99 98 96 85						s	UN	ЛМА	TI	ON :	GRAVEI SAND SILT CLAY			% : % : % :		0 15 45 40			
n			(m _t)					0.450		c	.063		-	0.15	-	0.3		0.6		Sieve Siz	ze (mm)	5		10 2	20	37.5		75	
1	90										1			-	1				_	1					1				
2	80 70				-				-	-															-		-		
500	60						1		-				_		-		_								-		-		
DAILOOK LOOK INDOULD	50 40								-														t		-				
	30								_								_											1	
	20			-	-	-			+	++		+			-	-	+		+				-	-	-		+		
	10								-										+						-				
	0.0	01 (0.002		0.005		0.01	0.02		0.05		C	0.1		2 ARTIC	CLE SIZ	0.5 E mr	n	1	2		5		10 :	20		50	10	00
		CLAY	-	FINE		Г	MEDI SIL		COAL	RSE	T	_	FIN	В		SAND			CO	ARSB	FINE			GRAVEL		COARSE	-	COB- BLES]
	viati Irks	ons used	d ;	P	oint x oeffic	(s) o	on grap of Unif		initia lefine ry ma	l modi d. iss of t	ied I	hydr	rome	eter rea	ding(s) bein	g ign	ored.			l enough a	ccording	to t	he requirem	ent]
				А	ppro	ved	Signa	of GEOSPE		2001)	ī	1	2	A	u Yeı	ung Wa	i Kit	- Lab	orale	ory Manag	er			Date :		30 J	UN	1 202	22

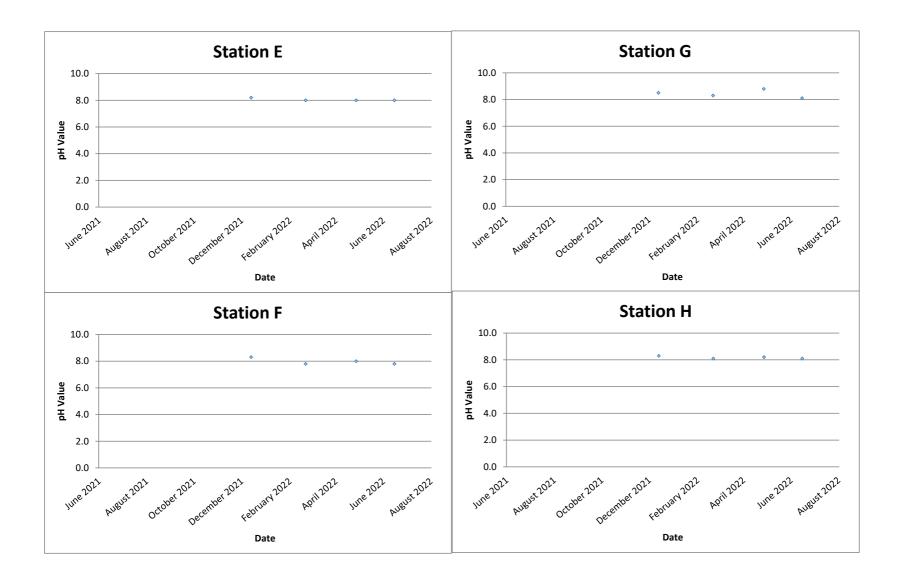

-

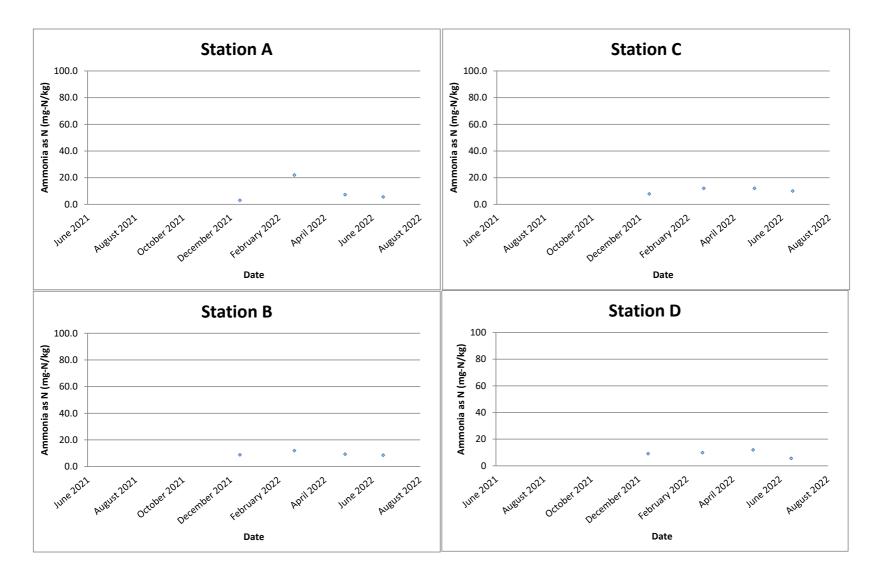
10 0 0.0	CLAY		FINE		SILT					SAND					GRAVEL		BL	ES
0		5.002			EDIUM	COARSE	-	U.1 FINE		ICLE SIZE	Emm	COARSE	2 FINE		MEDIUM	COARSE	00	B-
	01	0.002		005 0.0	0.02	0.05		0.1	0.2		0.5		2	5	10	20	50	100
20																		
30		-						-				1			-			
50 40	/	1																
70 60 50 40 30	5		1			111												
70			-	H				-	-	++		1		++++				
80											+++							
90							×	-	1									
100						0.	063	0.1	15	0.3	0.6	Sieve 1 1.18	Size (mm) 2	5	10 3	0 37.5	75	
an		(m _t)		0.063	3.972 0.090	90												
				0.150	1.630	93	1						CLAY		% :	45		
_				0.300		96 95							SAND SILT		%:	9 45		
_				0.425	1.094	97	-			S	UMMA	TION :	GRAVEL	L	%:	1 9		
				0.600	1.462	99	1											
	_		-	2.00 1.18	0.552	99 99	-			_								
				3.35	0.050	100	1								ovember 200	1) Test Me	ethod 8.7	
ffled p	assing	(m ₆)	<u> </u>	6.3 5.0	12.301	100	-				# Hydror	neter read	ding in solut	tion only (R _o ')			
assing		(m ₅)	-	6.3	12.301		1				1440			0.5	0.0014	42	41	
_		_	_	6.3	0.000	100	1	1			480	25.00	7.5	0.5	0.0024	49	47	
	-		_	14 10	0.000	100	-	-		-	30 120	25.00		0.5	0.0091	78 63	74 61	-
	assing	(m ₄)		20	12.591	10.000	1				8	25.00	13.0	0.5	0.017	88	85	
fled p	assing	(m ₂) (m ₃)	-	20	130.580 130.580		1	-	-		2	25.00		0.5	0.034	92	88	-
				20	0.000	100	1				1	25.00		0.5	0.049	92	88	
				28	0.000	100		21-0	6-2022		_	25.00	14.0	0.5	0.068	95	91	
_			-	50 37.5	0.000	100	1		ate	Time Starte	1 M	1 Temp. °C	. Hydro. Rdg	Hydro. Rdg #		a. K %	K* %	
_				63	0.000	100	-		ate	Time	Deric	Tome	Hudro	Hudeo	Particlo di	a. K	1 14	7
		_		75	0.000	100	1			ed on 63	μm		g		1.568			
				100	0.000	100	1	Initial	dry ma	ISS*		(, issuin	g		22.795			
				Sieve si mm	ze retained (g)	passing (%)			ometer cle dens		ю,	(Assum	ed)	-	2.65			
itial dry	/ mass	(m ₁)	g :	130.58 Sieve si		Percent		Hydro	ometer	Serial N	lo.			:	8295797			
	sult (Si				0	Derrer		Test	Result	(Sedim	entation	Analysis	1)					
and here				with sh	ell fragmen									То	:	-		
	descrip			Moist,	dark grey, s		velly	, slight	ly san	dy SIL	CLAY			From	•	Full Mix	×	
	of pre			Method		nuel 200	, 19	sciviet	100 0.	1 04 0.0	0.0.1		original sa					
	st com			22-06-	2022 ec 3 (Nover	nber 200) Te	st Met	hod 8	1 & 8 5	& 87	Sample	e type on and Ori	ientation	e de la	D		
ate te	st com	mence	ed :	18-06-	2022							Specim	men refere		:	A		
ate sa	ample r	receive	ed :	16-06-									atory samp		:	SL2202	256/3	
abora	tory Ir	nform	ation															
ervice/	Works (Order N	No.	-								Descri	ption		÷	Benthic	Survey	1
10181					- - 11								e origin		:	-	0	
					n Sewage									То	:	-		
roject			3		ct No. CM 1 ional Enviro						Siu	Depth		From		2		
roinet			S	Contra	ot No. CM	1/2016 5	nuire	nmort	al Tac	mfor		Boreho						
												Client s	sample No	0.	1	C		HOK
	Addre	ess		- Pugro	rechnical S	ervices L	mille	u										
lient	ation s	suppli	ed by	Client	Technical S	envices	mite	d										9
					RTICL	E SIZE	DI	STR	IBU	101	VOF	SOIL						
	eport N				54SL22025		-					0.011	Page	1	of	1		
		2.5				0/0							Dee	5				Hon
																	Tu	ien M
																5 Lok	Yi Str	eet, 1
															Fug	gro Dev		
														10.00	TECHNI Fur	aro De	velop	

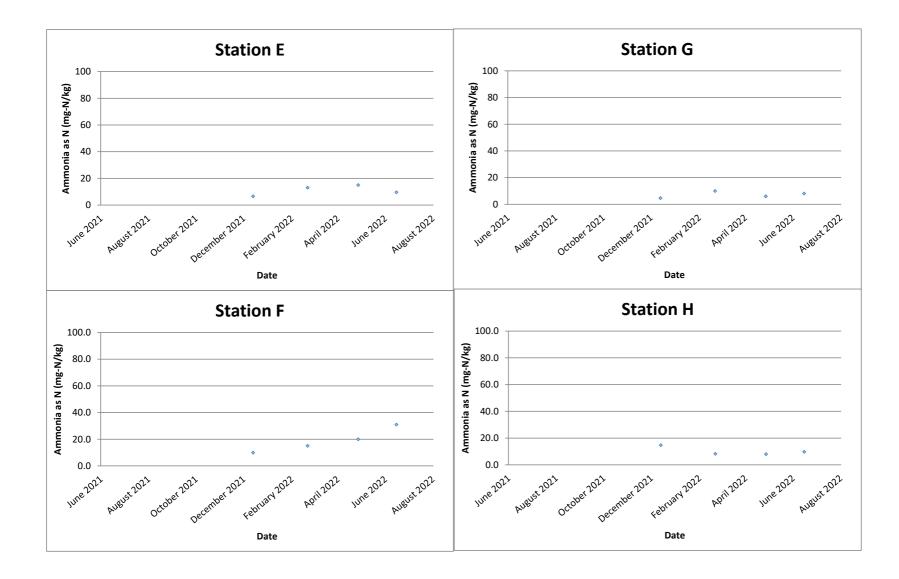
														5 Lok `	Tue	et, Tai n Mun Iong K
	RE		M160554			DI	STRIBU	TION	OF S	SOIL	Page	1	of	1		H
lient's			Fugro Te	chnical Se	ervices Li	mited										H
											ample No) .	:	D		TEST
roject				nal Enviro	nmental M	Aonito	nmental Tea oring and Au ks		iu	Borehol Depth (r	n)	From To		-		
erviceA	Norks (Order No.	i ita							Sample Descript			:	Benthic	Survey	
ate sa ate tes ate tes est me	mple r st com st com ethod u of pre	paration	Method	22 22 3 (Noven B			t Method 8.		8 8.7	Specime Sample Location	ory samp en refere type n and Ori riginal sa	nce entation		SL22025 A D Full Mix	56/4	
		eve Analysis	with shell			T	Test Result		ntation	Analysis)		То	:	-		-
itial dry			: 158.595 Sieve size mm 100 75 63	Mass retained (g) 0.000 0.000 0.000	Percent passing (%) 100 100 100		Hydrometer Particle dens Initial dry ma Mass retaine	Serial No sity ss*		(Assume	d) 9 9		8295797 2.65 27.323 10.217			
			50 37.5	0.000	100 100		Date	Time Started	Period min	Temp. °C	Hydro. Rdg	Hydro. Rdg #	Particle dia mm	a. K %	K* %	
		_	28 20	0.000	100		21-06-2022	9:10	0.5	25.00 25.00	11.5 11.0	0.5	0.070	65 62	56 54	
assing		(m ₂)	20 20	158.595				-	2	25.00 25.00	11.0 10.5	0.5	0.035	62 59	54 51	
iffled pa /ash pa		(m ₃) (m ₄)	20	158.595 71.127			1		8	25.00	10.0	0.5	0.018	56	49	
			14	0.000	100		<u> </u>		30	25.00	9.0	0.5	0.0094	50 41	44	
-			10 6.3	0.000 2.930	100 98				120 480	25.00	7.5	0.5	0.0048	32	28	
assing		(m ₅)	6.3	68.197					1440	25.00	5.5	0.5	0.0014	29	26	1
iffled pa	assing	(m ₆)	6.3 5.0	68.197 0.800	98					eter readir						
			3.35	1.720 2.590	97 95			K*	modified	according	g to Geosp	bec 3 (No	vember 200	1) Test Met	hod 8.7	-
			1.18	2.753	93											
	_		0.600	5.590 3.993	90 87			SII	ММАТ		GRAVEL		% :	5		
			0.300	5.950	83			50		1014 .	SAND		% :	40		
_	_		0.212	9.330 16.950	78 67						SILT		% :	28 27		
			0.063	18.061	55											
an		(m _t)		0.460			100			Sieve Si	ze (mm)					-
100		111	TITI	-	0.0	63	0.15	0.3	0.6	1.18 3		5	10 2	0 37.5	75	
90					+ + + +											
08 ප															1111	-
DASSING 00 00							1			1						
60 BO 50						×										
90 PERCENTAGE																
30	-												1			
20	-					11								1 1		
10								-								
0.00	01	0.002 0	.005 0.01	0.02	0.05		0.1 0.2	0	5		2	5	10 3	20	50 1	00
0.01				- terret	a second		PART	CLE SIZE r	nm				MEDIUM	COARSE		
	CLAY	PINE	MEDI		COARSE		MNR	MEDIUM	_	COARSE	PINE		GRAVEL	COARSE	COB- BLES	
obreviatio emarks :		Po	mple type : U = int x(s) on graph efficient of Unifi tial dry mass* :	h indicate(s) ormity is und	initial modifie efined. y mass of th	ed hydi	rometer reading	(s) being ig	gnored.		t enough ad	ccording to	the requireme	ent		
														30 .		6.5



UGRO									FU	IGRO 1	ECHNI			
											Fug	gro Deve		
												5 Lok Y	i Stre	et, Tai
													Tue	n Mun
														long k
est Report No.	M160554	SL22025	6(5)						Page	1	of	1	1	iong N
EST REPORT C				DI	STRIBU	TION	OF 9	SOIL	5-					
formation supplied by	Client													
ient :	Fugro Te	chnical S	ervices Lir	nited										
ient's Address :	-							Client sa	ample No	2		F		HIKLAS
								onorit oc	inplo n					TEST
oject :					nmental Tea			Borehole		Francis	:	-		
			reatment		oring and Au	Jait for S	lu	Depth (n	n)	From To		2		
		sensige .						Sample			:			
rvice/Works Order No. :	-							Descript	ion		:	Benthic S	Survey	
boratory Information														
ite sample received :	16-06-20							Laborate			:	SL22025	6/6	
te test commenced :	18-06-20							Specime Sample		nce	:	A D		
st method used :			nber 2001) Tes	t Method 8.	1 & 8.5 8	8.8.7	Location		entation		D		
ethod of preparation :	Method	В								mple (m)		E		
sual description :	Moist, da with shell			elly,	slightly san	ay SILT/	CLAY			From To	:	Full Mix		
st Result (Sieve Analysis)		nagment			Test Result	(Sedime	ntation	Analysis)						
ial dry mass (m ₁) g :	118.859	Mass	Percent		11	0					0005303			
	Sieve size mm	retained (g)	passing (%)		Hydrometer Particle dens		•	(Assumed	d)	:	8295797 2.65			
	100	0.000	100		Initial dry ma	SS*		(r issumed	a)		19.758			
	75	0.000	100		Mass retaine	ed on 63µ	m		g	:	0.545			
	63 50	0.000	100 100		Date	Time	Period	Temp.	Hydro.	Hydro.	Particle dia	. к	K*	1
	37.5	0.000	100			Started	min	°C	Rdg	Rdg #	mm	%	%	
	28	0.000	100 100		21-06-2022	9:00	0.5	25.00	13.0	0.5	0.069	102	99 99	
ssing (m ₂)	20 20	0.000	100				2	25.00 25.00	13.0 12.5	0.5	0.049	98	99	
fled passing (m3)	20	118.859					4	25.00	12.0	0.5	0.025	93	91	
ash passing (m ₄)	20	1.879	100				8 30	25.00 25.00	11.5 10.0	0.5	0.018	89 77	87 75	
	14 10	0.000	100				120	25.00	10.0 8.5	0.5	0.0093	65	63	
	6.3	0.000	100				480	25.00	7.5	0.5	0.0024	57	55	
ssing (m ₅)	6.3	1.879 1.879					1440	25.00	6.5	0.5	0.0014	49	47	
fled passing (m ₆)	6.3 5.0	0.000	100			#	Hydrom	eter readin	g in soluti	ion only (R	o')			
	3.35	0.000	100								ember 2001	1) Test Meth	nod 8.7	
	2.00	0.040	100											
	0.600	0.040	100											
	0.425	0.071	100			SU	ММАТ	ION :	GRAVEL		% :	0		
	0.300	0.070	100						SAND		%:	1 47		
	0.212	0.113	100						CLAY		% :	52		
- />	0.063	1.213	99											
n (m _t)		0.110						Sieve Siz	e (mm)					
100			0.0	53 1 x	0.15	0.3	0.6	1.18 2		5	10 20	37.5	75	
90				1										-
80														
60														
70 60 50 40 30														
40														
30														
20														
10														-
0														
0.001 0.002 0.00	0.01	0.02	0.05	(0.1 0.2 PARTI	D. CLE SIZE n		1 2		5	10 20	0 1	50 1	00
CLAY FINE	MEDIU		COARSE		FINE	MEDIUM		COARSE	FINE		MEDIUM	COARSE	COB- BLES	ן ר
breviations used : Sam marks : Poin Coel	sit.r ple type : U = it x(s) on graph fficient of Unifo al dry mass* :	undisturbed indicate(s) prmity is und	P = piston, I initial modifie efined. y mass of the	d hyd	azier, BLK = blo rometer reading specimen in the	(s) being ig	gnored.		enough a		GRAVEL	ent	BLES	
Арр	proved Signa	tory :	à	~	7			atory Manag	er		Date :	30 J	UN 20	022
				/	**End of	f Report	**							

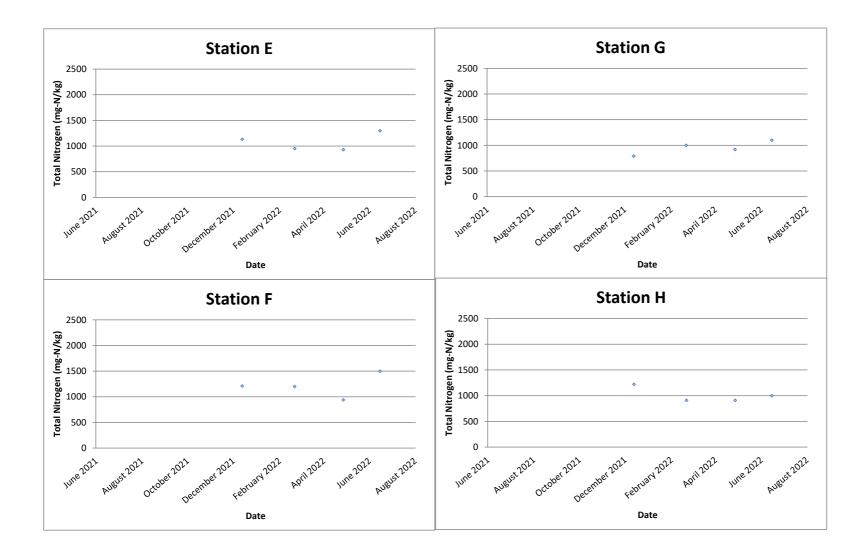


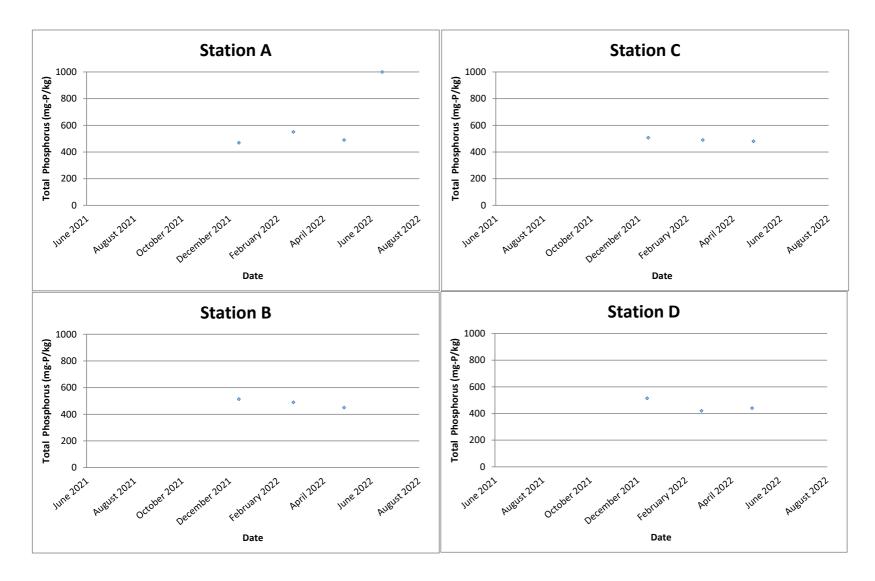

eat Report No. :: Mitodos 48.120236/() Page 1 of 1 Page 2 Page 2 of 1 Page 2 of 1 Page 2 Page 2 of 1 Page 2 Page 2 of 1 Page 2 of 1 Page 2 Page 2 of 1 Page 2 of 1 Page 2 Page 2 of 1 Page 2 of 1 Page 2																		n Mui Iong I
lient St Address Figure Technical Services Limited Client sample No. H Etg riget Contract No. CM 14/2018 Environmental Team for Doperational Environmental Monitoring and Audit for Su Ho Wan Sewage Treatment Works Doperational Environmental Monitoring and Audit for Su Bergh (m) From ::::::::::::::::::::::::::::::::::::	E	ST RE	POR	τо	N PAF			DI	STRIBU	TION	OF	SOIL	Page	1	of	1		H
<pre>giet: ::: Contract No. CM 14/2018 Environmental Team for Depretional Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works sample origin</pre>	ien	t		:	Fugro Te	chnical Se	ervices Lir	nited	í -									R
Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Depth (m) From :: Sample origin :: :: Sample origin :: bioratory sample 1.D. :: SL20256/8 is ample origin :: :: bioratory sample 1.D. :: SL20256/8 is ample origin :: :: bioratory sample 1.D. :: SL20256/8 is ample origin :: :: bioratory sample 1.D. :: SL20256/8 is ample origin :: :: bioratory sample 1.D. :: SL20256/8 is ample origin :: :: bioratory sample 1.D. :: SL20256/8 is ample origin :: :: bioratory sample (m) :: :: bioratory sample (m) :: :: bioratory sample (m) :: :: sample origin :: :: bioratory sample (m) :: :: bioratory sample (m) :: :: sample origin :: :: sample origin :: :: bioratory sample (m) :: : bioratory sample (m)														D.	:	н		HOKLAG TEST
<pre>nice.Work Order No. :: - ' Description :: Benthic Survey boratory information is esample received :: 16-06-2022; bit est commenced :: 16-06-202; bit est commenced</pre>	oje	ct			Operatio	nal Enviro	nmental M	Ionit	oring and Au		liu	Depth (m)		:	-		
the last completed ::: 16-06-2022 Laboratory sample I.D. ::: SL2202668 bit est completed ::: 22-06-2022 Location and Orientation :: stimutod uses of the set of the	rvio	e/Works	Order No.	:	-										:	Benthic	Survey	
all est occumence di :: 16-06-2022 Specimen reference :: A . st methol used :: 22-06-2023 Sample type di :: D. uto di orpanzi di est occupito :: Method B . Sumple type di :: D. sual descriptio :: Method parative di est occupito :: Method figuranti di est occupito :: Method parative di est oc					16-06-20	22						Laborat	ory same	le I D		SI 2202	56/8	
st method used :: Geospee 3 (November 2001) Test Method 8.1 & 8.6 S. 8.7 Location and Orientation test de of preparation is Method 0 in the stand of the stand	ate	test con	menced	:	18-06-20	22						Specim	en refere		:	А	00/0	
Sublicit Chain Carl Adrix gray, slightly gravelly, slightly sandy SLITCLAY For Full Mix test To	st	method	used	:	Geospec	3 (Novem	nber 2001) Tes	t Method 8.	1 & 8.5	\$ 8.7	Locatio	n and Ori	entation		0		
Test Result (Sedimentation Analysis) initial dry mass (mi) g : 118.822 initial dry mass (mi) 263 0.000 100				:	Moist, da	rk grey, sl		velly,	slightly san	dy SILT/	CLAY	within C	nginar sa	From	,			
Sieve size related masking (0) masking (0) Hydrometer Serial No. :: 2825787 100 0.000 100 <	_			/sis)					Test Result	(Sedime	ntation	Analysis)		10	· ·			
100 0.000 100 75 0.000 100 50 0.000 100 275 0.000 100 28 0.000 100 28 0.000 100 20 0.000 100 20 0.000 100 20 0.000 100 1164 0.000 100 20 0.000 100 20 0.000 100 20 0.000 100 20 0.000 100 20 0.000 100 300 118.822 110 0.5 0.025 0.018 84 20 0.000 100 30 25.00 1.5 0.004 84 100 0.000 100 3.05 0.004 8.0 2.00 5.5 0.0014 4.2 0.0014 4.2 0.0014 4.2 0.0014 4.2 0.000 1.00 5.00024	lal	ary mass	(m ₁) g		Sieve size	retained	passing				ı.							
G3 0.000 100 37.5 0.000 100 28 0.000 100 28 0.000 100 100 28 0.000 100 100 18.822 8.50 12.5 0.5 0.004 96 92 101 0.000 118.822 118.822 118.822 118.822 118.822 118.822 118.822 12.5 0.5 0.044 96 92 101 0.000 100 12.5 0.5 0.045 16.8 80 101 0.000 100 12.0 25.00 1.5 0.5 0.004 56 56 118.823 0.000 100 12.0 25.00 1.5 0.5 0.0044 56 66 118.83 0.000 100 12.0 25.00 1.5 0.5 0.0014 42 40 118 0.425 0.425 0.60 1.6 5 0.5	_				100	0.000	100					(Assume						
S0 0.000 100 37.5 0.000 100 28 0.000 100 20 0.000 100 sing (m) 20 118.822 left passing (m) 20 118.822 isth passing (m) 20 118.822 isth passing (m) 20 118.822 isth passing (m) 20 112.0 0.5 0.004 96 92 0 0.000 100 112.0 0.5 0.004 98 92 10 0.000 100 120 25.00 15.5 0.0024 98 90 110 0.200 100 1100 50 0.0024 140 25.00 15.5 0.0014 42 40 1140 0.200 100 1140 25.00 5.5 0.5 0.0024 40 1140 0.240 98 94 1440 25.00 15.5									Mass retaine	ed on 63µ	m				1.193			
28 0.000 100 sing (m_2) 20 118.822 ited passing (m_3) 20 100 100 ited passing (m_3) 20 100 100 ited passing (m_3) 6.3 6.009 100 120 25.00 7.5 0.0048 58 56 ited passing (m_3) 6.3 6.009 1440 25.00 5.5 0.0014 42 40 ited passing (m_3) 0.425 0.160 1400 25.00 5.5 0.0014 42 ited passing (m_3) 0.210 Ited passing ited passing ited passing ited passing ited passing ited passing									Date									
sing (m_2) 20 118.822 ash passing (m_4) 20 18.802 ash passing 14 0.000 100 110 0.000 100 111 0.5 0.035 91 84 111 0.5 0.035 01 83 90 111 0.000 100 0.5 0.5 0.018 83 90 110 0.000 100 120 25.00 9.5 0.5 0.0048 56 56 110 2.500 110 0.5 0.0024 50 48 110 2.500 0.5 0.5 0.0048 56 56 111 0.340 99 0.030 0.220 99 0.030 0.220 99 0.030 0.220 99 0.030 0.220 99 0.155 0.440 98 SLIMMATION GRAVEL % : 0 0.030 0.220 99 <td>_</td> <td></td> <td></td> <td></td> <td>28</td> <td>0.000</td> <td>100</td> <td></td> <td>21-06-2022</td> <td></td> <td>0.5</td> <td>25.00</td> <td>12.5</td> <td>0.5</td> <td>0.070</td> <td>100</td> <td>96</td> <td></td>	_				28	0.000	100		21-06-2022		0.5	25.00	12.5	0.5	0.070	100	96	
The first passing (ma) 20 118.822 sash passing (ma) 20 68.09 14 0.000 100 10 0.000 100 11 0.4 25.00 0.5 0.5 0.0083 75 72 10 0.000 100 120 25.00 0.5 0.0048 56 65 sing (ma) 6.3 6.809 11.0 0.5 0.5 0.0048 56 65 11.18 0.340 100 120 25.00 6.5 0.5 0.0048 56 65 11.18 0.340 118 0.340 99	ssir	0	(m ₂)				100											
Image: state of the s	_																	
10 0.000 100 ssing (m_6) 6.3 0.000 100 10 480 25.00 7.5 0.5 0.0048 58 56 11 0.3 6.809 - 1440 25.00 5.5 0.5 0.0044 42 40 11 1440 25.00 5.5 0.5 0.0044 42 40 3.35 0.160 100 - 7.5 0.5 0.0044 42 40 1.18 0.340 99 0.600 0.400 98 - 0.425 0.160 99 0.425 0.160 99 0.300 0.200 98 - 5.1 1.8 2 0 SAND % : 45 1 0.150 0.440 98 - 0.150 0.304 439 1.8 2 5 10 0.275 75 0 0.150 0.160 0.16 0.1	ash	passing	(m ₄)															
Bing Bing <th< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td>2.02.22</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	-						2.02.22											
field passing (m_0) 6.3 6.809																		
1 5.0 0.000 100 3.35 0.160 100 3.35 0.160 100 1.18 0.340 99 0.600 0.400 99 0.300 0.220 99 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.425 94 0.16 0.15 0.3 0.6 100 0.16 0.16 0.16 1.16 2 100 0.16 0.3 0.6 1.16 2 1.0 0.15 100 0.16 0.3 0.6 1.16 2											1440	25.00	5.5	0.5	0.0014	42	40	
3.35 0.160 100 2.00 0.280 100 0.000 0.400 99 0.425 0.160 99 0.425 0.160 99 0.000 0.420 98 0.150 0.440 98 0.0150 0.440 98 0.063 4.359 94 n (mi) 0.210 SUMMATION : GRAVEL % : 0 SLIT % : 49 CLAY % : 45	flec	passing	(m ₆)				100			#	Hydrom	otor roadi	na in soluti	on only (F	2-')			
1.18 0.340 99 0.600 0.400 99 0.425 0.160 99 0.212 0.230 98 0.150 0.440 98 0.150 0.440 98 0.063 4.359 94 n (m) 0.210				-												1) Test Met	hod 8.7	
0.600 0.400 99 0.425 0.160 99 0.300 0.220 99 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.150 0.40 98 0.150 0.210 99 0.000 0.210 99 0.000 0.210 90 0.000 0.210 90 0.000 0.20 90 0.000 0.20 90 0.000 0.20 90 0.000 0.000 90																		
0.425 0.160 99 0.2010 0.220 99 0.210 0.230 98 0.150 0.440 98 0.150 0.440 98 0.150 0.440 98 0.0063 4.359 94 m (m) 0.210	_																	
0.300 0.220 99 0.150 0.440 98 0.063 4.359 94 n (m) 0.210	_									SU	ммат	ION ·	GRAVEL		% :	0		
0.150 0.440 98 0.063 4.359 94 n (m) 0.210													SAND					
0.063 4.359 94 n (m) 0.210 Sleve Size (mm) 00 0.063 0.15 0.3 0.5 118 2 5 10 20 37.5 75 00 0.07 0.003 0.15 0.3 0.5 118 2 5 10 20 37.5 75 00 0.07 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 0.0 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																		
n (m _i) 0.210 100 0.063 0.15 0.3 0.6 1.18 2 5 10 20 37.5 75 90 0.067 0.15 0.3 0.6 1.18 2 5 10 20 37.5 75 90 0.067 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 00 0.01 0.02 0.05 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.0	-			-									GLAY		70 :	45		
0083 0.15 0.3 0.6 1.18 2 5 10 20 37.5 75 00 000 0.01 0.02 0.05 0.1 0.00	n		(m _f)															
90 90 <td< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>63</td><td>0.15</td><td>0.3</td><td>0.6</td><td></td><td></td><td>5</td><td>10 3</td><td>20 37,5</td><td>75</td><td></td></td<>	1						0.0	63	0.15	0.3	0.6			5	10 3	20 37,5	75	
gg 70 60 60 60 60 60 60 60 60 60 60 60 60 60								×										
20 10 10 10 10 10 10 10 10 10 1		во	_			/												
20 10 10 10 10 10 10 10 10 10 1	SING	70		++	HA													
20 10 10 10 10 10 10 10 10 10 1	NAC I	50	_													1-1-		
20 10 10 10 10 10 10 10 10 10 1	Li Li	50		-										_				
20 10 10 10 10 10 10 10 10 10 1	L N	40	+	++							++++							
20 10 10 10 10 10 10 10 10 10 1	EXC	30		+														
0 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 PARTICLE SIZE mm CLAY MEDIUM COARSE PINE MEDIUM PINE PINE MEDIUM PINE		20			+++++						+++							
0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 PARTICLE SIZE mm PARTICLE SIZE mm COARSE PINE MEDIUM MEDIUM PINE MEDIUM PINE PINE MEDIUM PINE		10						+++									+ +	
PARTICLE SIZE mm CARY MEDIUM COARSE PINE MEDIUM COARSE COB- BLES reviations used : Sample type : U = undisturbed, P = piston, M = mazier, BLK = block, D = disturbed (bulk) reviations used : Sample type : U = undisturbed, P = piston, M = mazier, BLK = block, D = disturbed (bulk) narks : Point x(s) on graph indicate(s) initial modified hydrometer reading(s) being ignored. Figure 4.11			0.002	0.005	0.01	0.02	0.05	11	0.1 0.2		5	1	2	5	10	20	50 10	100
UAT SILT SAND ORAVEL BLES oreviations used : Sample type : U = undisturbed, P = piston, M = mazier, BLK = block, D = disturbed (bulk) narks : Point x(s) on graph indicate(s) initial modified hydrometer reading(s) being ignored.		- 10-10							PART	ICLE SIZE	nm							
marks : Point x(s) on graph indicate(s) initial modified hydrometer reading(s) being ignored.		CLAY	PD	Æ			COARSE		FINE			COARSE	FINE			COARSE	COB- BLES]
			d :									ulk)						
Initial dry mass* : The initial dry mass of the test specimen in the Sedimentation Analysis was not enough according to the requirement				Coeffic	cient of Unif	ormity is unde	efined.					ysis was no	ot enouch ac	cordina to	the requirem	ent		
of GEOSPEC 3 (2001)					,				,			,						
Approved Signatory : Au Yeung Wai Kit - Laboratory Manager Date : 3 C JUN 2022				Appro	ved Signa	itory :	7		Au Ye	eung Wai H	(it - Labor	atory Mana	ger		Date :	3 C J	UN 20	22

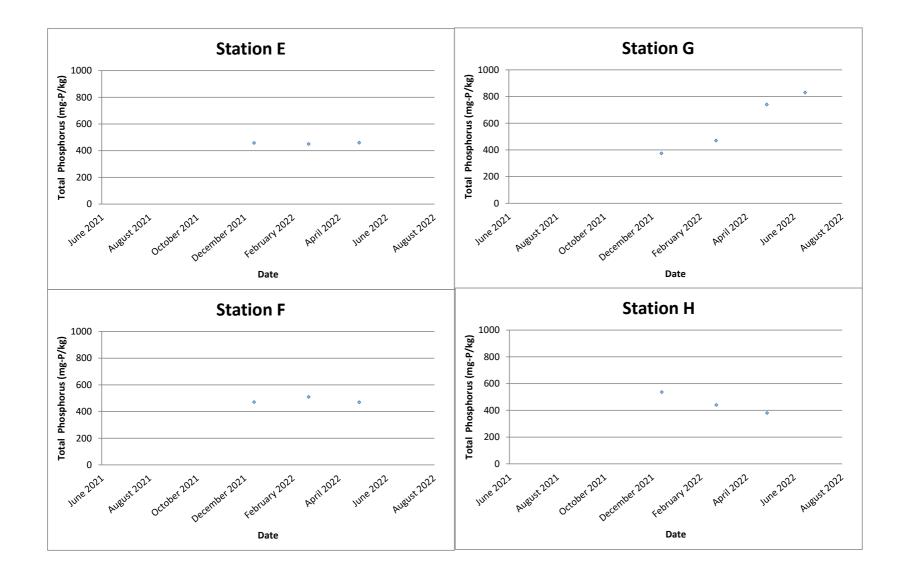

pH value

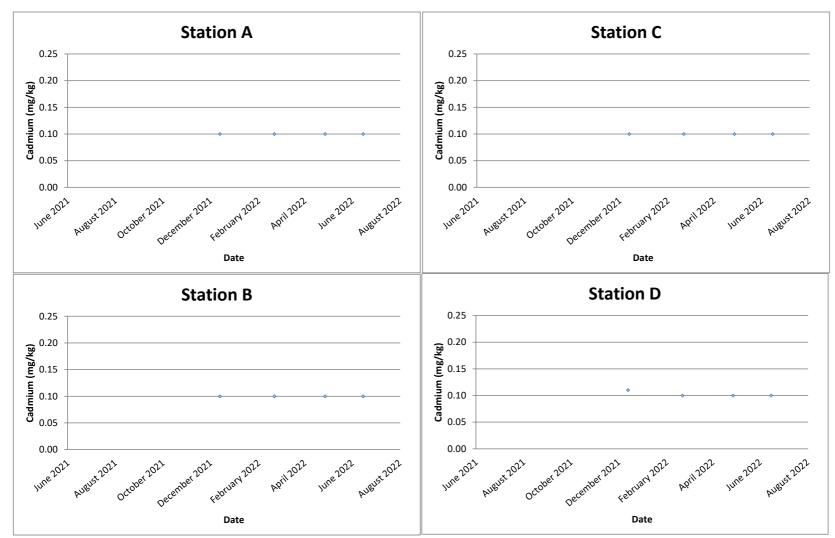


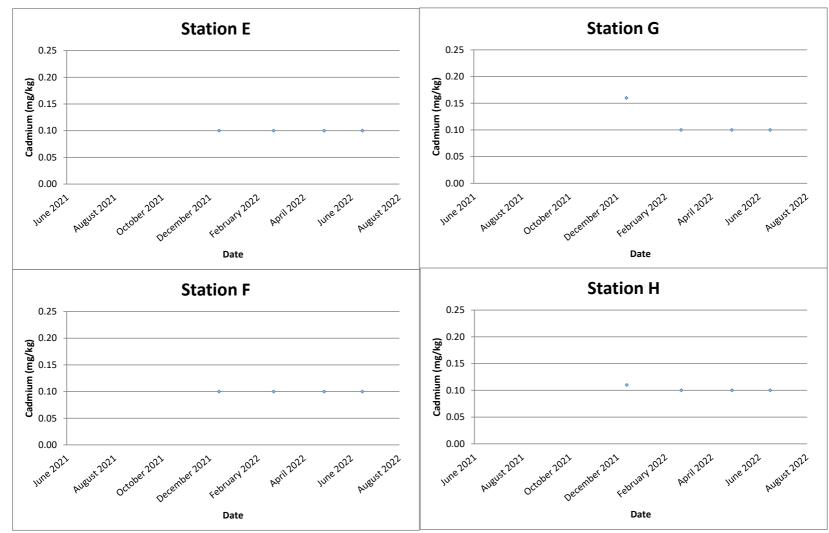
pH value



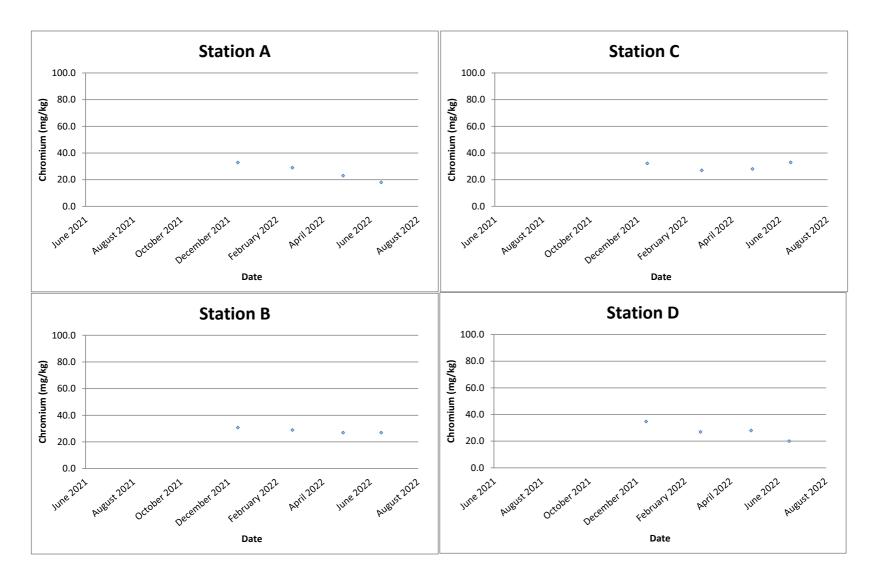




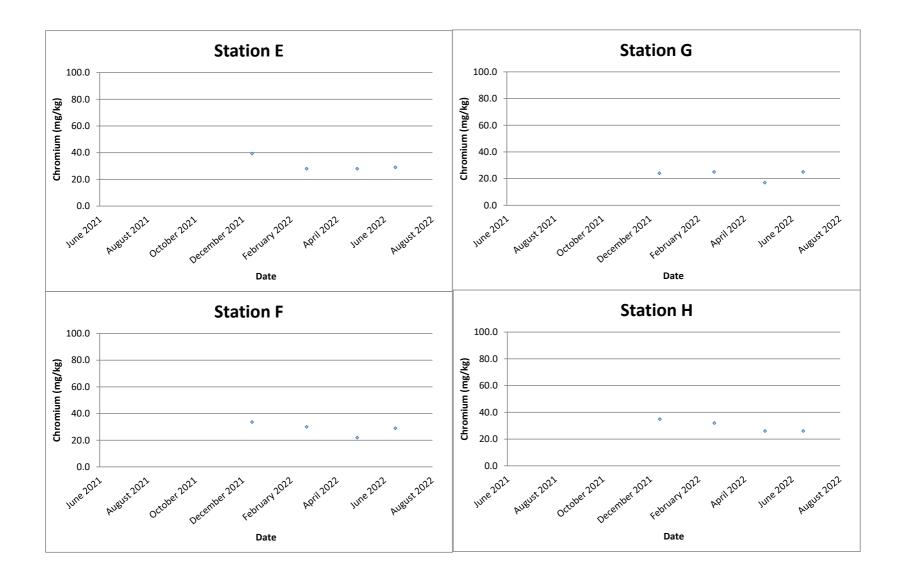

Total Nitrogen (mg-N/kg)



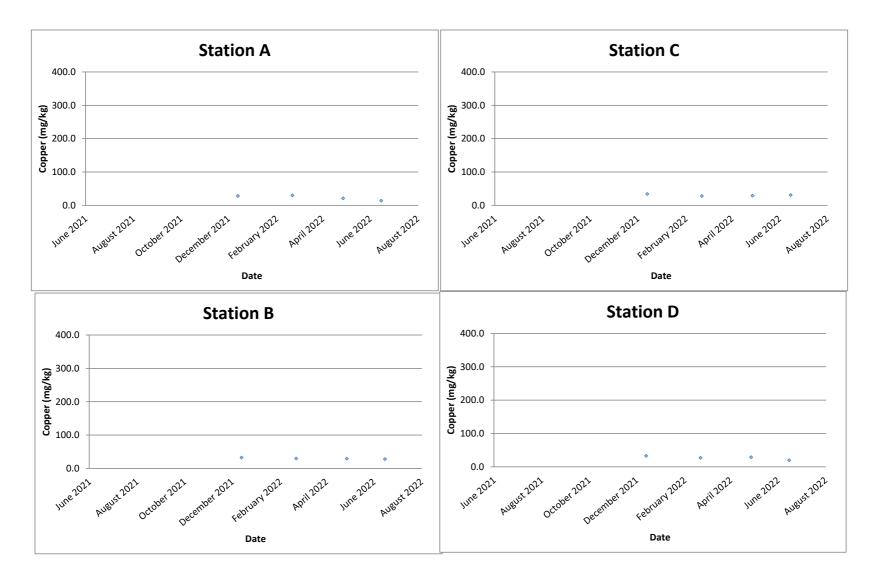
Cadmium (mg/kg)

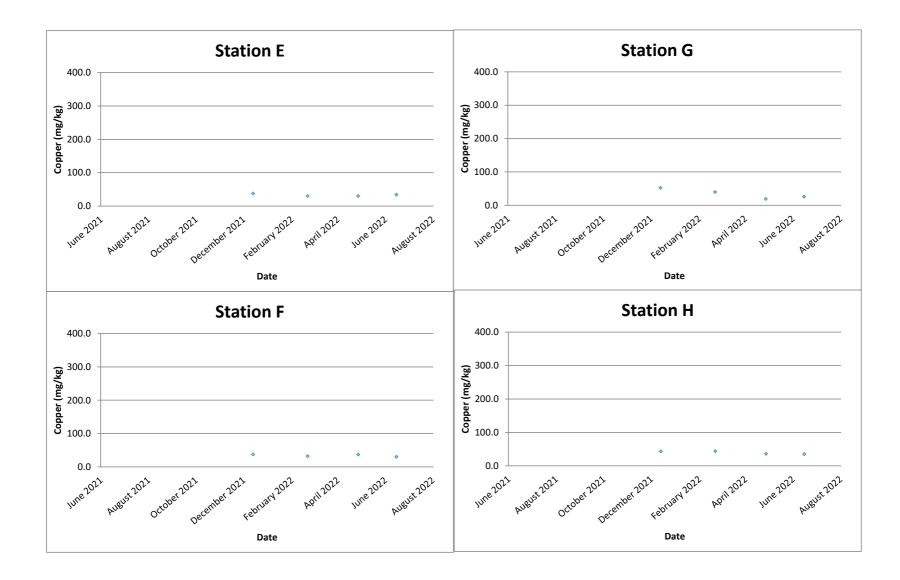

Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

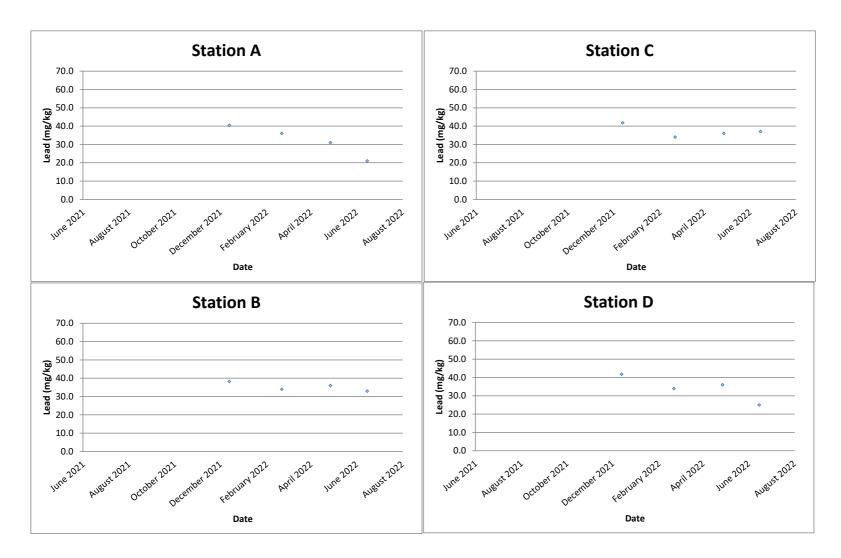
Cadmium (mg/kg)

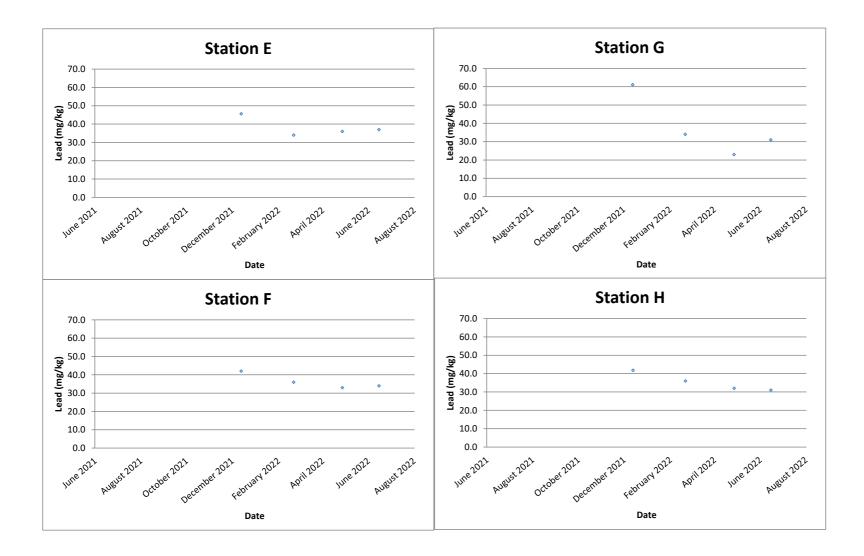


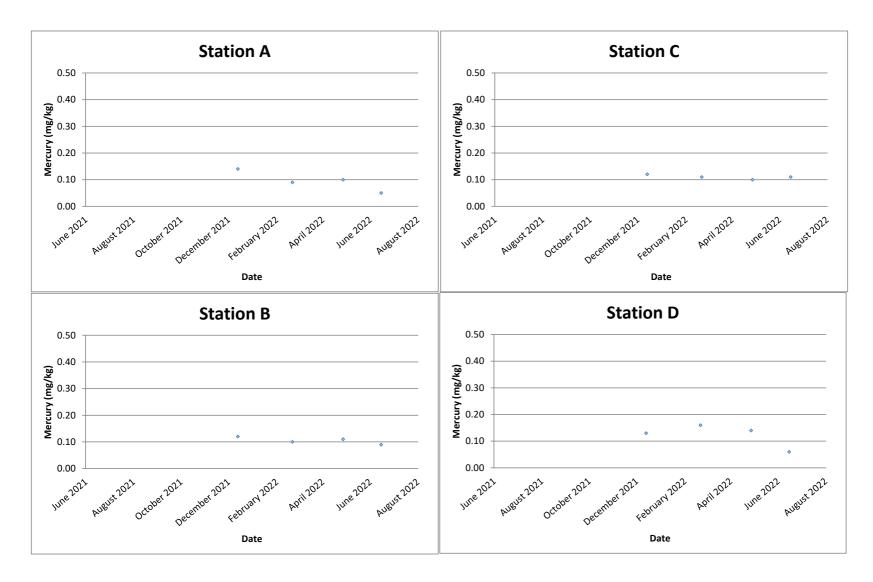
Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

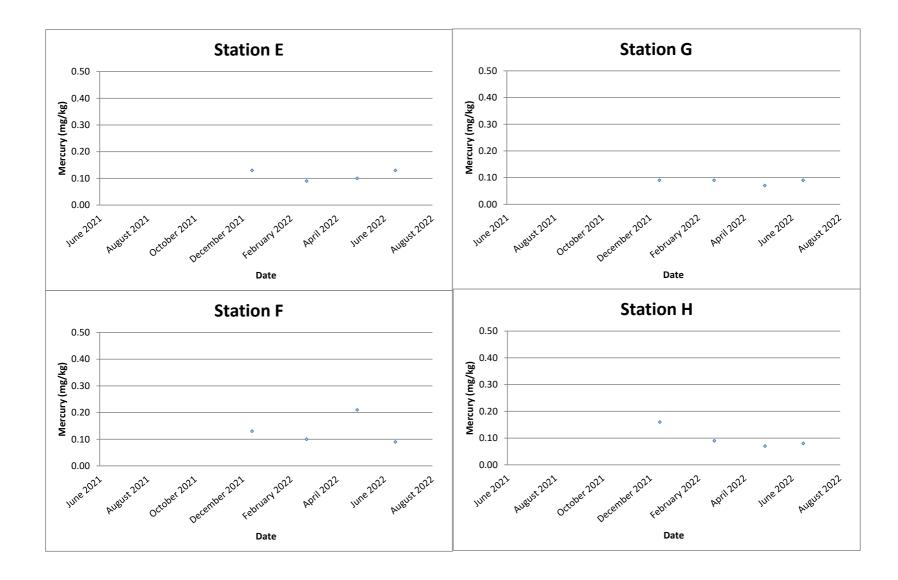

Chromium (mg/kg)

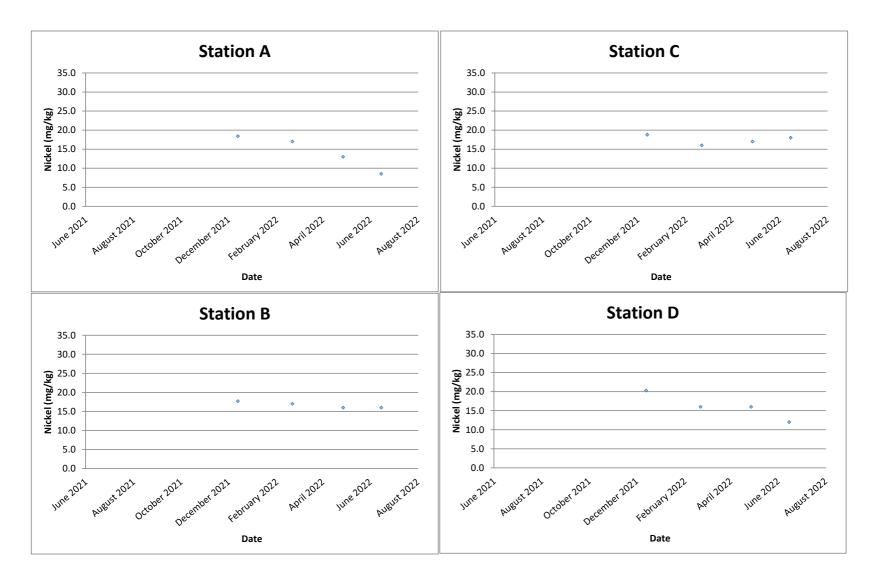

Chromium (mg/kg)

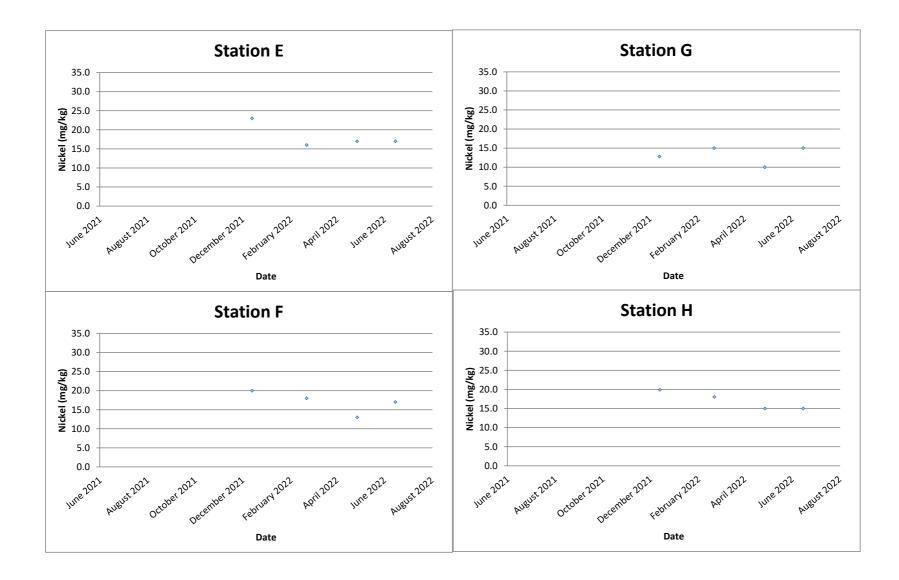

Copper (mg/kg)

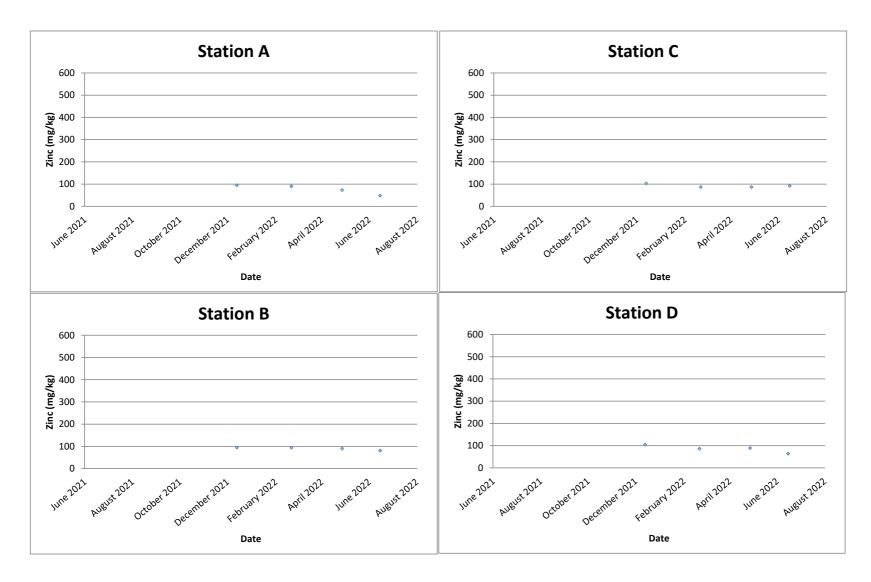

Copper (mg/kg)

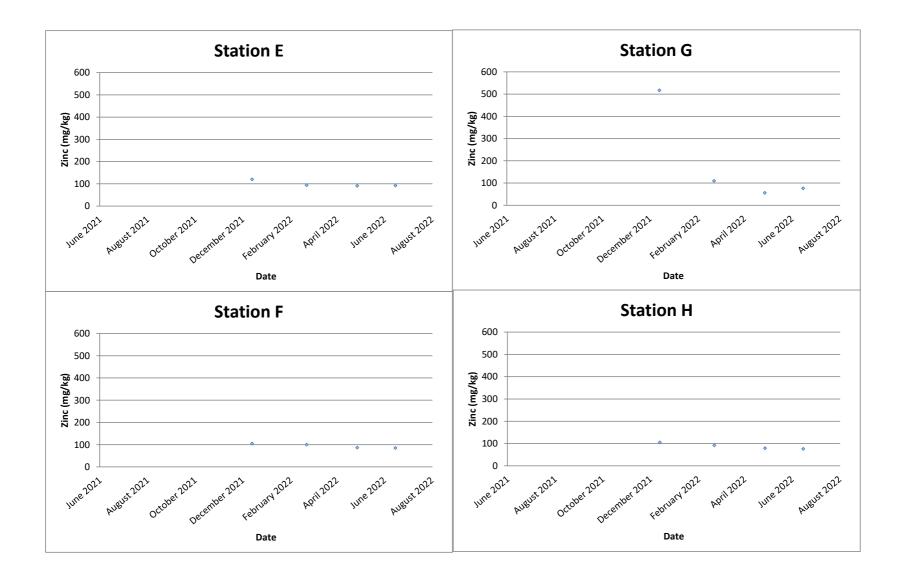

Lead (mg/kg)

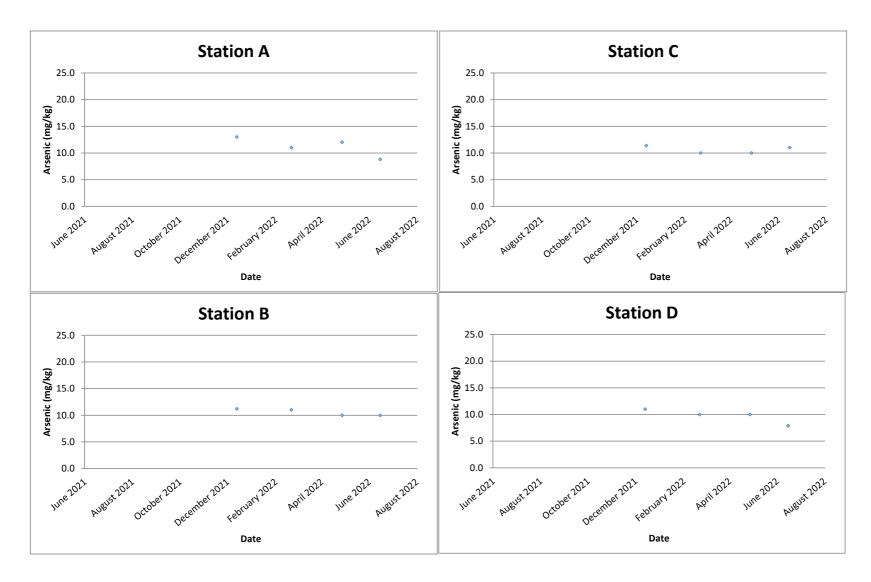

Lead (mg/kg)

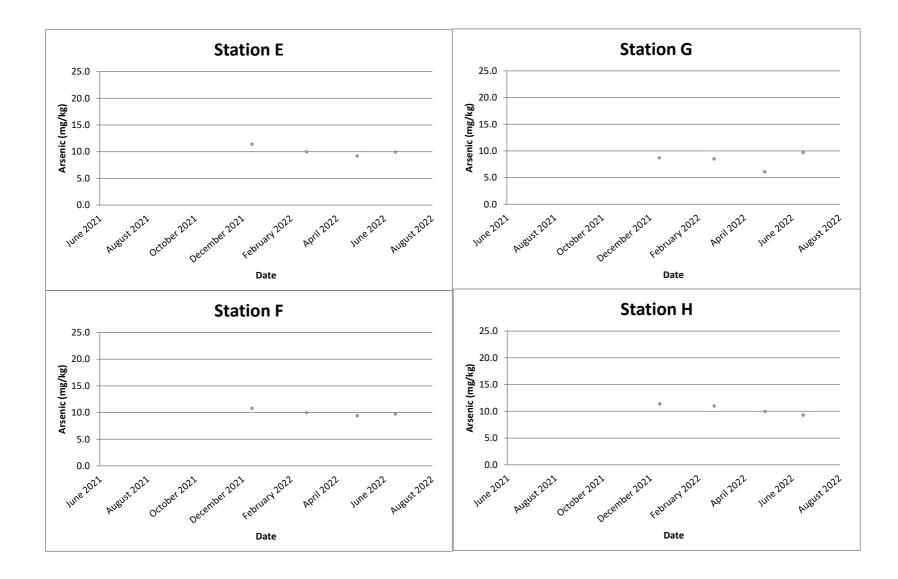

Mercury (mg/kg)

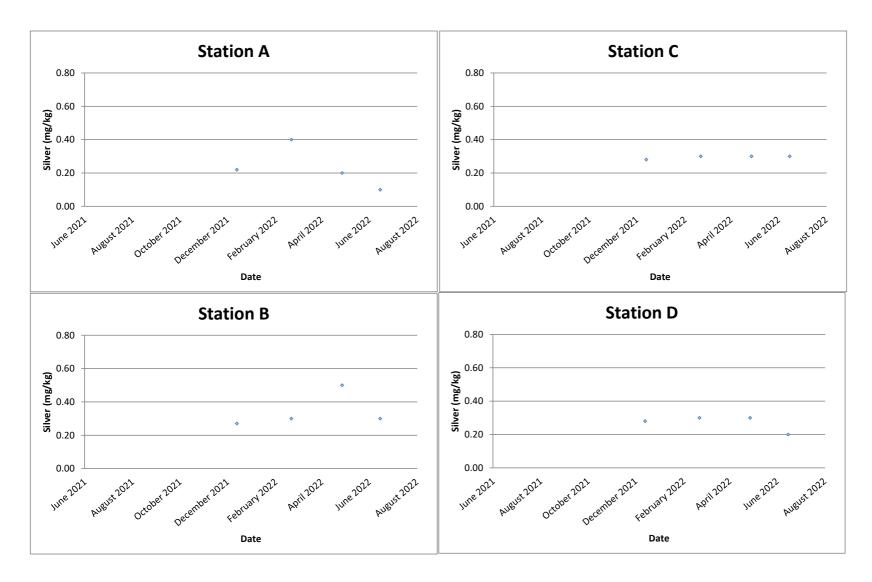

Mercury (mg/kg)

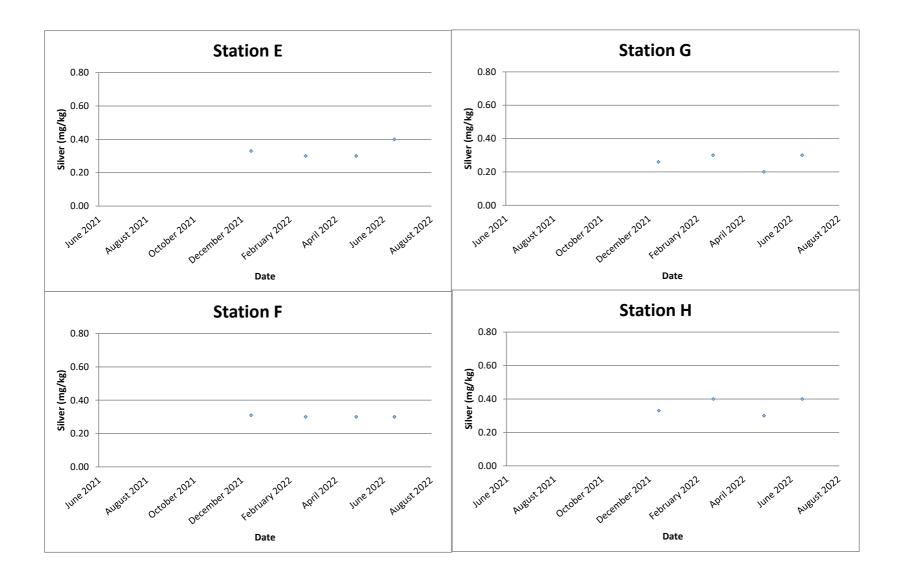

Nickel (mg/kg)


Nickel (mg/kg)


Zinc (mg/kg)


Zinc (mg/kg)


Arsenic (mg/kg)


Arsenic (mg/kg)

Silver (mg/kg)

Silver (mg/kg)

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Appendix I

Benthic Survey Report

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Benthic Survey Report (15 June 2022)

Abundance

A total of 239 benthic organisms was recorded from the eight monitoring stations during June 2022 monitoring period. Current monitoring results showed lower total monthly abundance compared to both dry (March 2004) and wet (August 2004) seasons baseline data results (**Figure 1**). Similar with previous monitoring periods, total monthly abundance of benthic organisms exhibits significant seasonal variation (F-value = 4.59; F-crit = 1.54; p-value = 1.28E-10; α = 0.05).

In terms of spatial distribution, the lowest abundance of 11 ind. was recorded in the reference station, Station F, while the highest (51 ind.) was also noted in other reference station, Station A (**Figure 2**). Total macrobenthic abundances, similar with the previous monitoring periods, showed statistically significant spatial distribution (F-value = 3.53; F-crit = 2.05; P-value = 0.001; α = 0.05).

Biomass

The total wet biomass recorded in the eight monitoring stations was 16.04 g with the highest biomass recorded in the reference station, Station G (4.31 g) while the lowest biomass (0.62 g) was observed in both reference stations, Station E and Station F. Relative to the April 2022 period, a general decrease in biomass was observed during the current monitoring period (**Figure 3**). Most of the current decrease was attributed to the biomass decrease of *Potamocorbula* in the benthic community.

Taxonomic Composition

A total of six phyla comprising of 29 families and about 33 genera were identified. During the current monitoring period, the annelids (57.32%) dominated the macrobenthic assemblage, and followed by the molluscs (28.87%) (**Figure 4**). Relative to April 2022 community assemblage, current results showed a shift to annelid-dominated community.

Currently, a shift in the community assemblage was noted as shift in season started (from dry season to wet season).

Diversity

Benthic diversity index (H') in the impact stations ranged from 2.01 to 2.13. In the reference stations, H' values ranged from 1.82 to 2.69. Currently, reference station, Station A had the highest diversity value among the different monitoring stations, while the lowest was the reference station, Station E. In terms of evenness index (J) values, impact Station C was noted with relatively high values as compared to impact station D and reference station B. Moreover, current monitoring results indicated an overall increase in both diversity and evenness values from the baseline survey condition.

Summary Tables

Abundance and biomass of macrobenthic organisms are shown in **Tables 1** and **2**, respectively. Data summary for different monitoring periods are presented in **Tables 3** to **7**. Representative photos of assemblages and specimen are shown in the last pages of this benthic survey report.



Figure 1: Monthly total abundance (ind.) of benthic organisms across monitoring periods

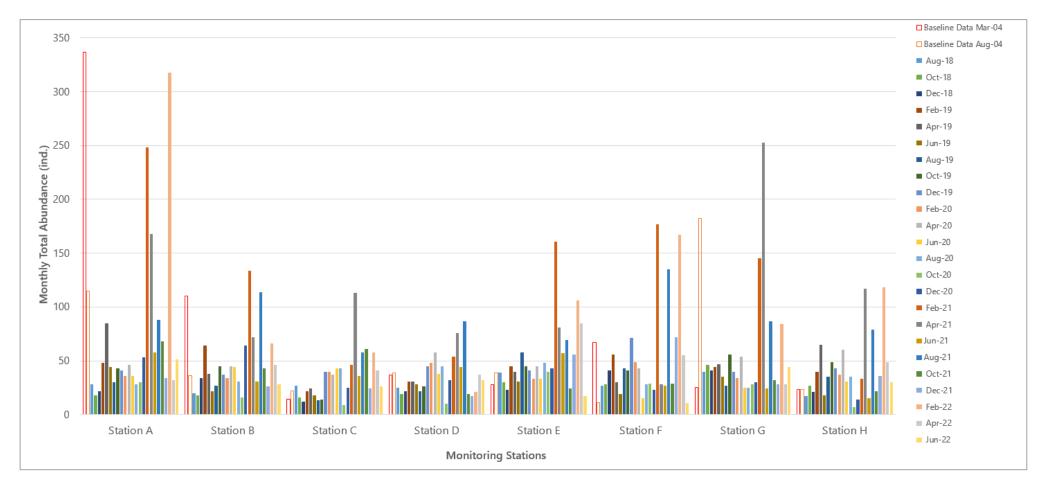


Figure 2: Monthly total abundance (ind.) of benthic organisms across monitoring stations

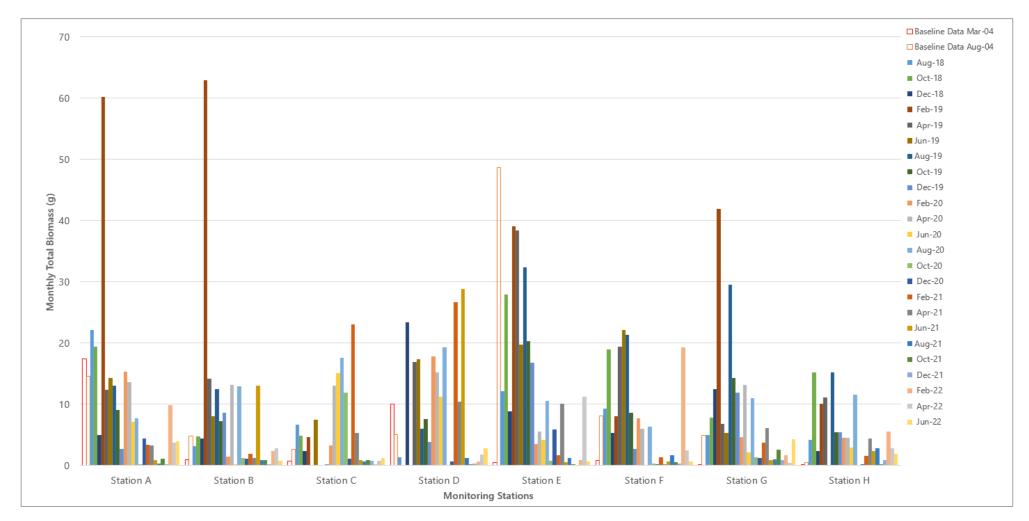


Figure 3: Monthly total biomass (g) of benthic organisms across monitoring stations

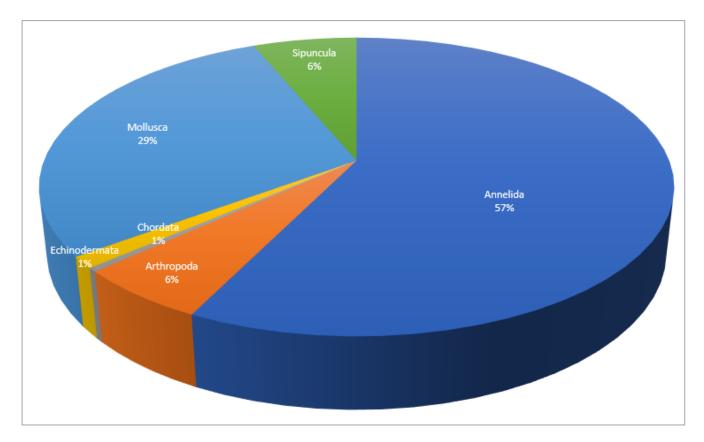


Figure 4: Percent composition of benthic organisms

Data Summaries

Phylum Class	Class	Orden	Family	Genus			Ν	/Ionitorin	g Stations	5		
	Class	Order Fa			Α	В	С	D	E	F	G	Н
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	3						2	
Annelida	Polychaeta	Scolecida	Scalibregmidae	c.f. Scalibregma	2						2	
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	6	2	4	3	2	2	3	2
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella capitata	4	2	5				7	3
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone	4							
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	1							
Annelida	Polychaeta	Phyllodocida	Goniadidae	Glycinde	4							
Annelida	Polychaeta	Terebellida	Ampharetidae	Isolda							2	
Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrinereis	3	2	3				5	
Annelida	Polychaeta	-	Maldanidae	Maldanella								1
Annelida	Polychaeta	Aciculata	Nereidae	Nereis	1							
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	7	7	6	3	1	2	6	2
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus								3
Annelida	Polychaeta	Sabellida	Oweniidae	Owenia	2	5		4	1		2	
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus		1					3	
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides(T. stroemii)				2				
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus								1
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus					4	2		3
Arthropoda	Crustacea	Decapoda	Dotillidae	Ilyoplax	1			2				
Arthropoda	Malacostraca	Decapoda	Penaeidae	Shrimp juvenile								1
Chordata	Actinopterygii	Gobiiformes	Gobiidae	Goby juvenile		1						
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	1		1			1		
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Angulus	3	3	2	10	4	2	7	5
Mollusca	Bivalvia	Cardiida	Cardiidae	Cardium			3	1	2	1	2	
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Meretrix (M. lusoria)	1							
Mollusca	Bivalvia	Myida	Dreissenidae	Mytilopsis		3		1				
Mollusca	Gastropoda	Neogastropoda	Nassariidae	Nassarius		1						

Table 1: Abundance (ind.) of macrobenthic communities in the eight monitoring stations, 15 June 2022

Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)							1	1
Mollusca	Bivalvia	Myoida	Corbulidae	Potamocorbula	2	1	1	2			2	4
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes (R. philippinarum)	1							
Mollusca	Bivalvia	Adapedonta	Pharidae	Sinonovacula			1					
Mollusca	Bivalvia	Adapedonta	Solenidae	Solen				1				1
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	5			3	3	1		3

Table 2: Biomass (g) of macrobenthic communities in the eight monitoring stations, 15 June 2022

Phylum	Class	Orden	E	Comus	Monitoring Stations							
	Class	Order	Family	Genus	Α	В	C	D	E	F	G	Н
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0.024						0.014	
Annelida	Polychaeta	Scolecida	Scalibregmidae	c.f. Scalibregma	0.002						0.002	
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0.019	0.005	0.014	0.01	0.006	0.006	0.011	0.005
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella capitata	0.015	0.006	0.017				0.023	0.01
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone	0.003							
Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	0.001							
Annelida	Polychaeta	Phyllodocida	Goniadidae	Glycinde	0.003							
Annelida	Polychaeta	Terebellida	Ampharetidae	Isolda							0.014	
Annelida	Polychaeta	Eunicida	Lumbrineridae	Lumbrinereis	0.019	0.01	0.015				0.028	
Annelida	Polychaeta	-	Maldanidae	Maldanella								0.007
Annelida	Polychaeta	Aciculata	Nereidae	Nereis	2.175							
Annelida	Polychaeta	Nereidida	Nephtyidae	Nephtys	0.049	0.051	0.043	0.02	0.005	0.015	0.042	0.014
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus								0.011
Annelida	Polychaeta	Sabellida	Oweniidae	Owenia	0.029	0.073		0.061	0.013		0.028	
Annelida	Polychaeta	Spionida	Poecilochaetidae	Poecilochaetus		0.001					0.003	
Annelida	Polychaeta	Terebellida	Trichobranchidae	Terebellides(T. stroemii)				0.014				
Arthropoda	Crustacea	Decapoda	Alpheidae	Alpheus								0.003
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus					0.006	0.002		0.005
Arthropoda	Crustacea	Decapoda	Dotillidae	Ilyoplax	0.08			0.937				
Arthropoda	Malacostraca	Decapoda	Penaeidae	Shrimp juvenile								0.180
Chordata	Actinopterygii	Gobiiformes	Gobiidae	Goby juvenile		0.061						

Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	0.709		0.367			0.299		
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Angulus	0.164	0.159	0.109	0.55	0.233	0.11	0.381	0.289
Mollusca	Bivalvia	Cardiida	Cardiidae	Cardium			0.489	0.159	0.322	0.171	0.339	
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Meretrix (M. lusoria)	0.25							
Mollusca	Bivalvia	Myida	Dreissenidae	Mytilopsis		0.301		0.063				
Mollusca	Gastropoda	Neogastropoda	Nassariidae	Nassarius		0.003						
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)							3.249	0.737
Mollusca	Bivalvia	Myoida	Corbulidae	Potamocorbula	0.174	0.053	0.150	0.561			0.174	0.270
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes (R. philippinarum)	0.124							
Mollusca	Bivalvia	Adapedonta	Pharidae	Sinonovacula			0.002					
Mollusca	Bivalvia	Adapedonta	Solenidae	Solen				0.374				0.300
Sipuncula	Sipunculiformes	Sipunculidea	Sipunculidae	Sipunculus	0.064			0.04	0.039	0.012		0.039

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
А	51	3.90	18	2.69	0.93
В	28	0.72	11	2.17	0.91
C*	26	1.21	9	2.01	0.92
D*	32	2.79	11	2.13	0.89
E	17	0.62	7	1.82	0.94
F	11	0.62	7	1.89	0.97
G	44	4.31	13	2.40	0.94
Н	30	1.87	13	2.42	0.94

Table 3: Summary of Benthic Survey Data, June 2022

*impact sites

Table 4: Summary of Benthic Survey Baseline Data, August 2004

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
А	115	14.56	24	0.93	0.29
В	36	4.76	14	0.89	0.34
C*	22	2.66	13	0.80	0.31
D*	39	5.07	11	0.62	0.26
E	39	48.69	16	0.89	0.32
F	11	8.07	9	0.68	0.31
G	182	4.91	31	1.10	0.32
Н	23	0.49	11	0.81	0.34

*impact sites

Table 5: Summary of Benthic Survey Baseline Data, March 2004

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
А	337	17.39	38	0.78	0.21
В	110	0.9	21	0.82	0.27
C*	14	0.7	10	0.69	0.3
D*	37	10.07	20	1.01	0.34
E	28	0.44	11	0.76	0.32
F	67	0.78	16	0.85	0.31
G	25	0.09	9	0.64	0.29
Н	23	0.15	11	0.44	0.18

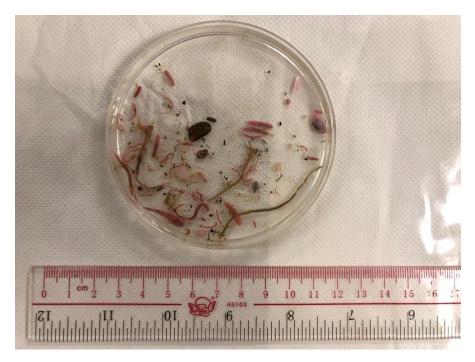
*impact sites

Таха	Mar-04	Aug-04	Apr-19	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20	Jun-20	Aug-20	Oct-20	Dec-20
Annelida	80.19	73.29	70.28	0.47	64.31	66.14	59.78	60.77	56.44	69.06	63.25	51.48	50.35
Sipuncula	0.78	0.21	0.00	0.00	1.57	1.25	0.00	1.29	0.52	1.13	0.35	1.78	1.06
Arthropoda	11.23	18.80	10.83	4.65	9.80	19.75	14.53	13.83	28.87	8.30	13.43	18.93	20.77
Echinodermata	0.62	3.63	4.72	0.47	5.10	3.13	1.68	1.61	0.77	2.26	3.53	2.96	2.82
Cnidaria	1.72	0.43	0.00	1.86	0.39	0.00	0.84	0.32	0.26	0.75	0.00	1.18	0.00
Mollusca	5.46	3.42	13.33	0.47	17.25	8.15	22.35	19.94	11.60	15.85	15.90	18.93	24.65
Chordata	0.00	0.21	0.56	0.47	1.18	0.94	0.00	0.32	0.52	1.13	1.41	0.00	0.35
Nemertea	0.00	0.00	0.28	98.60	0.39	0.63	0.84	1.93	1.03	1.51	2.12	4.73	0.00

Table 6: Taxonomic Composition (%) of Benthic Survey

Таха	Feb-21	Apr-21	Jun-21	Aug-21	Oct-21	Dec-21	Feb-22	Apr-22	Jun-22
Annelida	22.75	31.72	73.63	78.52	64.43	45.05	15.57	33.78	57.32
Sipuncula	0.70	0.00	0.34	0.00	8.05	0.00	0.00	1.34	6.28
Arthropoda	70.14	55.95	10.27	9.90	11.41	36.86	78.25	26.54	5.86
Echinodermata	0.30	1.43	4.11	1.39	4.03	4.10	0.43	0.80	1.26
Cnidaria	0.00	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00
Mollusca	5.81	10.90	11.64	10.04	11.74	9.22	5.22	37.27	28.87
Chordata	0.10	0.00	0.00	0.14	0.34	0.00	0.11	0.00	0.42
Nemertea	0.00	0.00	0.00	0.00	0.00	4.10	0.43	0.27	0.00

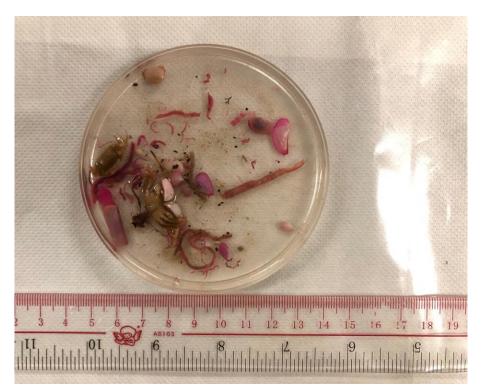
	Aug-04	Apr-19	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20	Jun-20	Aug-20	Oct-20	Dec-20
514	343	253	124	164	211	214	189	219	183	179	87	143
5	1	0	0	4	4	0	4	2	3	1	3	3
72	88	39	17	25	63	52	43	112	22	38	32	59
4	17	17	10	13	10	6	5	3	6	10	5	8
11	2	0	2	1	0	3	1	1	2	0	2	0
35	16	48	59	44	26	80	62	45	42	45	32	70
0	1	2	2	3	3	0	1	2	3	4	0	1
0	0	1	1	1	2	3	6	4	4	6	8	0
_ 	5 72 4 11 35	5 1 72 88 4 17 11 2 35 16 0 1	5 1 0 72 88 39 4 17 17 11 2 0 35 16 48 0 1 2	5 1 0 0 72 88 39 17 4 17 17 10 11 2 0 2 35 16 48 59 0 1 2 2	510047288391725417171013112021351648594401223	510044728839172563417171013101120210351648594426012233	51004407288391725635241717101310611202103351648594426800122330	5100440472883917256352434171710131065112021031351648594426806201223301	5 1 0 0 4 4 0 4 2 72 88 39 17 25 63 52 43 112 4 17 17 10 13 10 6 5 3 11 2 0 2 1 0 3 1 1 35 16 48 59 44 26 80 62 45 0 1 2 2 3 3 0 1 2	5 1 0 0 4 4 0 4 2 3 72 88 39 17 25 63 52 43 112 22 4 17 17 10 13 10 6 5 3 6 11 2 0 2 1 0 3 1 1 2 35 16 48 59 44 26 80 62 45 42 0 1 2 3 3 0 1 2 3	51004404231728839172563524311222384171710131065361011202103112035164859442680624542450123301234	5 1 0 0 4 4 0 4 2 3 1 3 72 88 39 17 25 63 52 43 112 22 38 32 4 17 17 10 13 10 6 5 3 6 10 5 11 2 0 2 1 0 3 1 1 2 0 2 35 16 48 59 44 26 80 62 45 42 45 32 0 1 2 2 3 3 0 1 2 3 4 0


Table 7: Taxonomic Composition (Abundance) of Benthic Survey

Таха	Feb-21	Apr-21	Jun-21	Aug-21	Oct-21	Dec-21	Feb-22	Apr-22	Jun-22
Annelida	227	288	215	563	192	132	146	126	137
Sipuncula	7	0	1	0	24	0	0	5	15
Arthropoda	700	508	30	71	34	108	734	99	14
Echinodermata	3	13	12	10	12	12	4	3	3
Cnidaria	0	0	0	0	0	2	0	0	0
Mollusca	58	99	34	72	35	27	49	139	69
Chordata	1	0	0	1	1	0	1	0	1
Nemertea	2	0	0	0	0	12	4	1	0

Photos of Macrobenthic Assemblages

Station A



Station B

Station C

Station D

Station E

Station F

Station G

Station H

Photos of Representative Taxa Identified

Cardium

Ilyoplax

Paphia (P. undulata)

Solen

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Appendix J

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Appendix K

Environmental Complaints Log

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Nature of Complaint	Investigation
1	28 November 2019	EPD	cause a malodour and was smelled as far as the	activity on 28 th November 2019. Due to the possibility of having unpleasant gases

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

Appendix L

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Q	uality				
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	r Quality	•		·	
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
Waste	e Managei	nent			
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.	SHWSTW	Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			refuse to facilitate collection		
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0677A

EP	EIA	WMP	Environmental Protection Measures	Location of the	Implementation
Ref.	Ref.	Ref.		measures	Status
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the protocols set out in the WMP Section 5.14.	SHWSTW	Implemented