Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Monthly EM&A Report October 2022

Client : Drainage Services Department

Project : Contract No. CM 14/2016

Environmental Team for Operational

Environmental Monitoring and Audit for Siu

Ho Wan Sewage Treatment Works

Report No.: : 0041/17/ED/0688

Prepared by: Andy K. H. Choi

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung

Environmental Team Leader

Fugro Technical Services Limited

Drainage Services Department
Projects and Development Branch
Consultants Management Division

42/F, Revenue Tower, 5 Gloucester Road Wan Chai, Hong Kong 27/F, Overseas Trust Bank Building 160 Gloucester Road Wan Chai Hong Kong

T: +852 2815 7028 F: +852 2815 5399

www.asecg.com

Attn: Mr. LAU Ka Kin, Marcus (E/CM16)

11 November 2022 By E-mail & Post

Dear Sir,

RE: CONTRACT No. CM 13/2016

INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW)

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (OCTOBER 2022)

Reference is made to the submission of the Monthly Environmental Monitoring and Audit (EM&A) Report for October 2022 (Report No.: 0041/17/ED/0688) from the Environmental Team (ET), Fugro Technical Services Ltd., received on 9 November 2022 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Should you have any queries, please feel free to contact the undersigned, or our Mr. Timmy WONG at 2815 7028.

Yours faithfully,

For and on behalf of

Allied Environmental Consultants Ltd.

Grace M. H. KWOK

Independent Environmental Checker

GK/jn/tw

c.c. Fugro Technical Service (ET Leader)

AECOM

Attn: Mr. Colin YUNG

Attn: Ms. Joanne TSOI

(By E-mail)

(By E-mail)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	21
5.	CHINESE WHITE DOLPHIN MONITORING	28
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	29
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	30
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	31
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	32
10.	FUTURE KEY ISSUES	33
11.	CONCLUSION	34

FIGURE

Figure 4

Figure 1	Monitoring Stations of Air Sensitive Receivers
Figure 2	Odour Patrol Points of Modified Odour Patrol
Figure 3	Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

APPENDICES

Appendix A	Project Organization Chart
Appendix B	Monitoring Schedule for Present and Next Reporting Period
Appendix C	Event and Action Plan for Air Quality Monitoring
Appendix D	Results and Graphical Presentation of Air Quality Monitoring
Appendix E	Copy of the Calibration Certificates for Water Quality Monitoring Equipment
Appendix F	Results and Graphical Presentation of Water Quality Monitoring
Appendix G	Tidal Data obtained from Ma Wan Marine Traffic Station
Appendix H	Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey
Appendix I	Benthic Survey Report
Appendix J	Photos of Grab Samplers
Appendix K	Environmental Complaints Log and Incident Report
Appendix L	Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 1

EXECUTIVE SUMMARY

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the Sixty-third Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 October 2022 to 31 October 2022 (the "reporting period").

Breaches of Action and Limit Levels

Odour patrol monitoring was resumed from January 2020 and carried out on 7, 13, 19, 25 and 31 October 2022. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and modified odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at ASR were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 10 October 2022. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Complaint Log

There were no complaints received in relation to environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 2

Summary of the Environmental Mitigations Measures

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Future Key Issues

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 3

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 Project Description

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Engineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

1.3 Project Organization

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Table 1.1 Contact Persons and Telephone Numbers of Key Personnel

Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Marcus Lau	2594 7218	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 4

1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 5

2. AIR QUALITY MONITORING

2.1 Methodology of H₂S Concentration Monitoring

2.1.1 15-min H₂S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H₂S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H₂S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H₂S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

Equipment	Manufacturer	Serial	Sensor	
	/ Model	Number	Number	
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D	

2.2 Methodology of Modified Odour Patrol Monitoring

- 2.2.1 Due to the complaint case received on 28 November 2019, a modified version of odour patrol monitoring is proposed and approved on 13 March 2020. According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), a modified version of odour patrol monitoring was commenced on 20 March 2020 to ensure the mitigation measures are effectively implemented. The modified odour patrol conducted once per week by two independent trained personnel/competent persons (the "patrollists") patrolling and sniffing along the SHWSTW boundary and the air sensitive receivers (ASRs).
- 2.2.2 The odour monitoring should not be undertaken on rainy days. Subject to the prevailing weather forecast condition, odour patrol shall be conducted by two patrollists at the downwind locations. During the patrol, the sequence should start from less odourous locations to stronger odourous locations.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 6

- 2.2.3 The two patrollists shall be satisfied the below requirements during odour patrol:
 - Have their individual odour threshold of n-butanol in nitrogen gas in the range of 20 to 80 ppb/V required by the European Standard menthod: BS EN13725.
 - Be free from any respiratory illnesses.
 - Not be allowed to smoke, eat, drink (except water) or use chewing gum or sweets 30min before and during odour patrol.
 - Take great care not to cause any interference with their own perception or that of others by lack of personal hygiene or the use of perfumes, deodorants, body lotions or cosmetics.
 - Not communicate with each other about the results of their choices.
- 2.2.4 During the odour patrol monitoring, the meteorological and surrounding information are recorded as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed:
 - iv. Location where Odour is detected;
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected;
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected
- 2.2.5 The perceived intensity is to be divided into 5 levels which are ranked in a descending order as follows:

Table 2.2 Categories of Odour Intensity for Modified Odour Patrol Monitoring

Odour Level	Odour Intensity	Classification Criteria
0	Not detected	No odour perceived or an odour so weak that it cannot be easily characterised or described.
1	Slight	Slight identifiable odour, and slight chance to have odour nuisance.
2	Moderate	Moderate identifiable odour, and moderate chance to have odour nuisance.
3	Strong	Strong identifiable, likely to have odour nuisance.
4	Extreme	Extreme severe odour, and unacceptable odour level.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 7

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 Monitoring Location

- 2.4.1 H₂S concentration monitoring and odour sampling at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant, were temporarily suspended from 14 May 2018. The location of ASR is shown in **Figure 1**.
- 2.4.2 9 odour patrol points is chosen to conduct the modified odour patrol for collecting more representative data and identify the particular source of odour in the site. The nine odour patrol points is as below:

Table 2.3 Odour Patrol Point

Odour Patrol Point	Description		
OD1	Eastern Site Boundary		
OD2	Southern Site Boundary		
OD3	Western Site Boundary		
OD4	Northern Site Boundary		
OD5	Spur Road near Discovery Bay Tunnel Outlet		
OD6	Cheung Tung Road near the Bus Depot		
OD7	Cheung Tung Road near O-PARK1		
OD8	Sham Shui Kok Dr near MTR Depot		
OD9	Discovery Bay Tunnel Toll Plaza		

2.4.3 The odour patrol points of modified odour patrol is shown in **Figure 2**.

2.5 Monitoring Frequency and Duration

2.5.1 The durations and frequencies of H₂S concentration measurement, odour patrolling and odour sampling are summarized in **Table 2.4** below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 8

Table 2.4 Durations and Frequencies of Air Quality Monitoring Programme

	Duration	Frequency
H ₂ S concentration		¹ Weekly basis for 6 months during the initial operation
monitoring	15 minutes	stage
Odour patrol		^{4,5} Weekly basis
Odour sampling for		
olfactometry	³ 15 minutes	² First week of the odour patrol monitoring
analysis		

Remark:

- 1) In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.
- 2) In case the relationship between H₂S concentration (ppb) with the odour unit (OU/m³) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.
- 3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.
- 4) As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis from 15 January 2020.
- 5) As instruction from the company of Discovery Bay Tunnel, odour patrol monitoring at OD5 (Spur Road near Discovery Bay Tunnel Outlet) was conducted on monthly basis.
- 2.5.2 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

2.6 Event and Action Plan

2.6.1 According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), updated Action and limit levels for air quality monitoring are presented in **Table 2.5**.

Table 2.5 Action and Limit Levels for Air Quality Monitoring

Parameter	Action	Limit
Odour Nuisance	One complaint received for specific	
	or above is measured from odour patrol	complaints received for specific odour event in 3 months / Odour intensity of 3 or above is measured from odour patrol

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 9

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis. The odour patrol monitoring was carried out on 7, 13, 19, 25 and 31 October 2022. As instruction from the company of Discovery Bay Tunnel, odour patrol monitoring at OD5 (Spur Road near Discovery Bay Tunnel Outlet) was conducted on monthly basis.
- 2.8.2 The meteorological data including temperature, wind speed and direction of the reporting period at ASR is summarised in **Table 2.6**.

Table 2.6 Summary of Meteorological Data in Reporting Period

Date	Location	Temperature (°C)	Relative Humidity (%)	Wind Direction	Wind Speed (m/s)
7 October 2022	OD1	30.0	69	Е	1.9
7 0010001 2022	OD2	00.0	00	-	0.0
	OD3			NE	1.7
	OD4			NE	0.7
	OD6			Е	0.8
	OD7			Е	1.4
	OD8			NE	0.4
	OD9			Е	0.3
13 October 2022	OD1	25.9	35	-	0.0
	OD2			-	0.0
	OD3			Е	0.4
	OD4			NE	0.1
	OD6			NE	0.1
	OD7			-	0.0
	OD8			-	0.0
	OD9			-	0.0
19 October 2022	OD1	24.0	36	-	0.0
	OD2			-	0.0
	OD3			Е	0.6
	OD4			Е	0.3
	OD6			NE	0.4
	OD7			-	0.0
	OD8			NE	0.3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Page 10

	OD9			NE	0.7
25 October 2022	OD1	25.9	51	NE	1.6
	OD2			NE	1.1
	OD3			-	0.0
	OD4			N	0.9
	OD5			-	0.0
	OD6			NE	1.0
	OD7			NE	2.5
	OD8			NE	1.8
	OD9			Ν	0.9
31 October 2022	OD1	25.1	53	NE	0.5
	OD2			Ν	0.4
	OD3			1	0.0
	OD4			N	1.3
	OD6			-	0.0
	OD7			NE	0.7
	OD8			NE	0.4
	OD9			N	0.9

2.8.3 The monitoring results in the reporting period are summarised in **Table 2.7**. Graphical pots of results and details of monitoring data are shown in **Appendix D**.

Table 2.7 Summary of Air Quality Monitoring Result in Reporting Period

	Monitoring Parameter
Monitoring Location	Odour Patrol [^] (Odour Level)
	Range
OD1	0 - 0
OD2	0 - 1
OD3	0 - 1
OD4	0 - 0
OD5	0 - 0
OD6	0 - 0
OD7	0 - 0
OD8	0 - 0
OD9	0 - 0

Remark:

^Odour Level: 0 - Not detected, 1 - Slight, 2 - Moderate, 3 - Strong, 4 - Extreme

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Page 11

- 2.8.4 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 2.8.5 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.6 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 12

3. WATER QUALITY MONITORING

3.1 Monitoring Station

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 3**.

Table 3.1 Location of Water Quality Monitoring

	Sampling Location	Easting	Northing
Α	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2 Parameters for Water Quality Monitoring

Monito	Monitoring Parameters										
In-situ Measurement	Laboratory Analysis										
Dissolved oxygen (mg/L)	E. coli (cfu/100ml)										
Temperature (degree Celsius)	5-day BOD (mg/l)										
pH value	Suspended Solids (mg/l)										
Water depth (m)	Ammonia as N (mg/l)										
Salinity (ppt)	Nitrate as N (mg/l)										
Turbidity (NTU)	Nitrite as N (mg/l)										
Current Speed (m/s)	Total inorganic nitrogen (mg/l)										
Current Direction (degree magnetic)	Total phosphorus (soluble and particulate) (mg/l)										

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 13

3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.

3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in Table 3.3. Table 3.4 summarizes the equipment used in water quality monitoring. Copy of the calibration certificates for water quality monitoring equipment are presented in Appendix E.

Table 3.3 Water Quality Monitoring and Sampling Equipment

Parameter	Equipment	Model	Range	Equipment Accuracy
Temperature, Dissolved Oxygen, salinity, pH, Turbidity, Sampling Depth	Water Quality Monitoring Device	1) YSI 6920V2-2-M Sonde 2) Aqua TROLL 600 Multiparameter Sonde	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning	DGPS	Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 14

Table 3.4 Equipment used for Water Quality Monitoring

Equipment	Manufacturer / Model	Serial Number
Water Quality Monitoring Device	Aqua TROLL 600 Multiparameter Sonde	525120
Acoustic Doppler Current Profiler	RiverSurveyor M9	5906

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 With reference to EPD's letter (Ref: Ax(7) to EP 2/No/F/50 Pt.7) dated 8 February 2022, Change of Laboratory on Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey (0041_17_ED_0632A) is approved. Fugro Technical Services Limited (HOKLAS Reg. No. 015), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

	mena, many ene mena ene ana resperant y anno						
Analysis Description	Method	Reporting limits					
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL					
5-day Biochemical Oxygen Demand	APHA 23rd edition 5210B	1 mg/L					
Total Suspended Solid	APHA 23rd edition 2540D	0.5 mg/L					
Ammonia as N	APHA 23rd edition 4500 - NH ₃ H	0.005 mg/L					
Nitrate as N	APHA 23rd edition 4500 - NO ₃ - I	0.005 mg/L					
Nitrite as N	APHA 23rd edition 4500 - NO ₂ - A & NO ₃ - I	0.005 mg/L					
Total Inorganic Nitrogen	By Calculation	0.01 mg/L					

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 15

Analysis Description	Method	Reporting limits
Total phosphorus (soluble and particulate)	APHA 17th edition 4500-PB5 (digestion) and In-house method E- T-056 (determination)	0.01 mg/L

3.5 Monitoring Frequency and Duration

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water quality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- 3.5.3 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

3.6 Quality Assurance / Quality Control

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- 3.6.3 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 16

3.7 Event and Action Plan

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

3.8 Monitoring Results and Observations

3.8.1 Water quality monitoring is carried out was 10 October 2022. A summary of the in-situ water quality monitoring results are presented in **Table 3.6** (Mid-ebb) and **Table 3.7** (Mid-flood) respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in **Appendix F.**

Table 3.6 Summary of In-situ Monitoring Results (Mid-ebb)

Monitoring	Water	Sar	nplin	Dissolved	Temperature	рН	Salinity	Turbidity	Current	Current
Station	Depth		epth	oxygen	(degree	'	(ppt)	(NTU)	speed	velocity
	(m)	(m)	•	(mg/L)	Čelsius)		(11)	,	(m/s)	(degree
	(***)	(,		(***9, =)	0 01010.0)				(****)	magnetic)
		S	1	5.19	28.52	8.41	30.23	5.7	0.18	92.6
		S	1	5.17	28.54	8.42	30.26	5.6	0.14	91.1
	47	М	8.5	4.99	28.26	8.31	30.46	5.5	0.23	74.2
Α	17	М	8.5	4.97	28.22	8.32	30.49	5.1	0.24	74.1
		В	16	4.91	28.11	8.34	30.99	5.3	0.14	80.8
		В	16	4.89	28.14	8.37	30.97	5.1	0.16	81.2
		S	1	4.49	27.42	8.24	32.04	4.2	0.17	203.4
		S	1	4.51	27.44	8.22	32.06	4.6	0.13	206.1
В	14	М	7	4.32	27.29	8.19	31.73	4.4	0.14	184.3
Р	14	М	7	4.29	27.22	8.29	31.74	4.7	0.13	184.7
		В	13	4.28	27.14	8.11	31.99	4.6	0.12	199.1
		В	13	4.27	27.15	8.19	31.96	4.2	0.13	194.6
		S	1	5.28	28.46	8.62	30.83	3.5	0.26	74.2
		S	1	5.24	28.49	8.66	30.91	3.2	0.21	77.1
С	12	М	6	5.09	28.24	8.69	30.84	3.9	0.29	90.6
	12	М	6	5.08	28.22	8.68	30.81	3.5	0.28	90.8
		В	11	4.99	28.04	8.69	31.07	3.9	0.14	82.4
		В	11	4.97	28.06	8.64	31.06	3.6	0.19	82.5
		S	1	4.83	28.71	8.71	33.44	2.3	0.17	43.1
		S	1	4.84	28.72	8.72	33.26	2.4	0.13	43.2
D	13	М	6.5	4.71	28.46	8.73	33.97	3.1	0.14	52.6
	13	М	6.5	4.74	28.48	8.74	33.96	3.3	0.16	52.8
		В	12	4.52	28.39	8.69	31.43	3.4	0.18	49.7
		В	12	4.51	28.33	8.68	31.29	3.6	0.20	49.9
		S	1	5.01	28.14	8.77	32.44	4.7	0.32	90.4
		S	1	5.06	28.17	8.79	32.39	4.8	0.34	91.2
E	16	М	8	5.12	28.84	8.64	32.86	4.1	0.29	93.4
_	10	М	8	5.11	28.81	8.61	32.88	4.2	0.29	93.3
		В	15	5.01	28.77	8.54	32.94	4.7	0.34	79.4
		В	15	5.02	28.71	8.51	32.99	4.6	0.39	79.9
		S	1	5.77	31.15	8.51	31.17	4.5	0.24	74.1
		S	1	5.69	31.14	8.52	31.14	4.9	0.26	72.6
F	23	М	11.5	5.12	31.26	8.59	31.46	4.1	0.28	64.2
'	23	М	11.5	5.14	31.28	8.57	31.49	4.2	0.29	69.1
		В	22	5.05	31.13	8.84	31.15	4.9	0.24	68.2
		В	22	5.06	31.49	8.81	31.17	5.1	0.21	68.1

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 17

Monitoring Station	Water Depth (m)		nplin epth	Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
		S	1	5.34	28.41	8.11	32.88	4.4	0.17	264.1
		S	1	5.33	28.42	8.13	32.89	4.6	0.17	266.2
G	22	М	11	5.17	28.94	8.46	32.64	4.5	0.11	281.5
G	22	М	11	5.16	28.99	8.41	32.66	4.8	0.12	284.9
		В	21	4.92	28.65	8.24	31.06	4.7	0.14	311.4
		В	21	4.91	28.61	8.23	31.04	4.9	0.12	312.6
		S	1	5.81	27.93	8.14	31.26	3.9	0.24	137.2
		S	1	5.82	27.94	8.16	31.24	3.8	0.27	133.4
ы	10	М	9.5	5.43	27.41	8.23	31.39	3.7	0.24	129.9
Н	19	М	9.5	5.42	27.42	8.24	31.38	3.6	0.27	129.8
l		В	18	5.31	27.33	8.20	31.56	3.2	0.27	109.1
		В	18	5.32	27.34	8.19	31.54	3.3	0.29	109.2

Table 3.7 Summary of In-situ Monitoring Results (Mid-flood)

Monitoring	Water		pling	Dissolved	Temperature	pH	Salinity	Turbidity	Current	Current
Station	Depth	Dep		oxygen	(degree	-	(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Celsius)		(1.1.7)	(- /	(m/s)	(degree
	()	()		(g, =)	<i></i>				(1140)	magnetic)
		S	1	5.38	28.57	8.56	31.12	3.9	0.10	77.1
		S	1	5.34	28.64	8.57	31.14	3.8	0.14	72.4
		M	7.5	5.13	28.59	8.69	31.11	4.1	0.12	73.9
Α	15	М	7.5	5.14	28.58	8.67	31.11	4.2	0.16	73.8
		В	14	5.09	28.44	8.81	31.10	4.9	0.16	82.6
		В	14	5.08	28.49	8.82	31.12	4.8	0.19	82.4
		S	1	5.27	28.77	8.61	31.77	4.3	0.06	241.2
		S	1	5.26	28.74	8.62	31.74	4.0	0.04	244.3
	4.4	М	7	5.10	28.33	8.52	31.57	4.9	0.17	226.1
В	14	М	7	5.06	28.34	8.53	31.56	4.8	0.19	229.2
		В	13	4.92	28.11	8.44	31.44	4.1	0.18	257.3
		В	13	4.91	28.14	8.41	31.41	4.2	0.16	256.4
		S	1	4.83	28.53	8.44	31.30	4.1	0.24	24.5
		S	1	4.87	28.54	8.39	31.40	4.2	0.29	22.6
	12	М	6	4.71	28.49	8.57	31.07	4.4	0.17	47.1
С	12	М	6	4.73	28.44	8.56	31.06	4.6	0.19	48.2
		В	11	4.67	28.31	8.48	31.02	5.1	0.14	44.9
		В	11	4.69	28.30	8.47	31.03	5.2	0.16	44.1
		S	1	5.11	29.12	8.44	32.46	2.9	0.09	208.8
		S	1	5.06	29.11	8.41	32.51	2.5	0.11	211.4
D	14	М	7	4.87	29.06	8.32	32.94	3.4	0.14	234.5
	14	М	7	4.86	29.04	8.37	32.99	3.7	0.15	236.1
		В	13	4.84	28.71	8.58	33.17	3.1	0.11	234.1
		В	13	4.83	28.76	8.56	33.16	3.2	0.12	239.2
		S	1	5.08	28.49	8.23	30.79	3.6	0.14	264.1
		S	1	5.10	28.46	8.24	30.77	3.4	0.17	266.2
Е	14	М	7	4.81	28.23	8.17	31.22	3.8	0.12	250.1
	14	М	7	4.79	28.22	8.16	31.26	3.9	0.13	250.3
		В	13	4.64	28.07	8.03	31.40	3.9	0.15	243.4
		В	13	4.66	28.04	8.04	31.41	4.1	0.19	233.1
F	18	S	1	6.02	28.22	8.14	30.24	2.7	0.12	140.3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 18

Monitoring	Water	Sam	pling	Dissolved	Temperature	рН	Salinity	Turbidity	Current	Current
Station	Depth	Dep		oxygen	(degree	•	(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Čelsius)		(1)	,	(m/s)	(degree
	, ,			, ,	,				, ,	magnetic)
		S	1	6.04	28.21	8.19	30.26	2.8	0.13	139.2
		М	9	5.97	28.14	8.24	30.74	2.2	0.14	102.3
		М	9	5.96	28.13	8.23	30.77	2.3	0.16	103.4
		В	17	5.84	28.04	8.18	30.91	3.1	0.14	128.1
		В	17	5.83	28.01	8.17	30.94	3.4	0.15	127.7
		S	1	5.51	28.43	8.46	30.44	4.2	0.22	90.6
		S	1	5.49	28.44	8.49	30.41	4.1	0.24	90.4
G	13	М	6.5	5.20	28.21	8.65	30.91	4.4	0.21	87.1
l G	13	М	6.5	5.19	28.20	8.66	30.92	4.1	0.22	87.2
		В	12	5.08	28.11	8.84	31.11	4.2	0.24	92.6
		В	12	5.09	28.14	8.81	31.12	4.1	0.27	92.4
		S	1	4.92	28.51	8.41	30.41	4.3	0.17	206.1
		S	1	4.94	28.54	8.42	30.46	4.1	0.18	206.4
н	19	М	9.5	4.71	28.84	8.26	30.60	4.7	0.19	204.1
	19	М	9.5	4.74	28.86	8.29	30.62	4.8	0.21	201.1
		В	18	4.61	28.94	8.18	30.94	4.4	0.12	223.4
		В	18	4.62	28.99	8.17	30.99	4.3	0.13	226.1

3.8.2 Results of laboratory analysis of water quality are presented in **Table 3.8** (Mid-ebb) and **Table 3.9** (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in **Appendix F**.

Table 3.8 Summary of Laboratory Analysis Results (Mid-ebb)

Monitoring	Water		npling	TSS	NH ₃	NO ₂	NO ₃ -	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)		,	, ,	, ,
		S	1	6	0.13	0.071	0.10	0.30	200	0.03	<1
		S	1	6	0.12	0.072	0.13	0.32	180	0.03	<1
Α	17	М	8.5	6	0.13	0.071	0.17	0.37	190	0.03	<1
A	17	М	8.5	6	0.13	0.071	0.19	0.40	210	0.04	<1
		В	16	7	0.16	0.071	0.26	0.49	200	0.03	<1
		В	16	7	0.15	0.070	0.27	0.49	190	0.04	<1
		S	1	7	0.18	0.071	0.41	0.66	140	0.04	<1
		S	1	7	0.17	0.071	0.34	0.58	170	0.04	<1
В	14	М	7	7	0.20	0.071	0.17	0.44	170	0.04	<1
Ь	14	М	7	7	0.20	0.071	0.15	0.42	160	0.04	<1
		В	13	5	0.25	0.070	0.17	0.49	160	0.03	<1
		В	13	5	0.25	0.070	0.11	0.43	200	0.03	<1
		S	1	6	0.20	0.065	0.31	0.58	290	0.03	<1
		S	1	5	0.20	0.065	0.30	0.57	200	0.04	<1
С	12	М	6	6	0.20	0.065	0.37	0.54	190	0.04	<1
	12	М	6	5	0.19	0.065	0.28	0.53	240	0.04	<1
		В	11	6	0.19	0.067	0.31	0.56	230	0.03	<1
		В	11	5	0.19	0.065	0.23	0.49	200	0.03	<1
		S	1	5	0.10	0.063	0.17	0.34	350	0.04	<1
		S	1	5	0.11	0.062	0.18	0.34	240	0.03	<1
D	13	М	6.5	5	0.19	0.064	0.27	0.52	130	0.03	<1
		М	6.5	5	0.19	0.065	0.27	0.53	200	0.03	<1
		В	12	6	0.17	0.065	0.25	0.49	190	0.04	<1

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 19

Monitoring	Water	San	npling	TSS	NH ₃	NO ₂ -	NO ₃ -	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep		(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)		(g, _)	(mg/L)	(mg/L)	(mg/L)	(g, _)	(0.0, .00)	(g, _)	(g, –)
	()	В	12	6	0.18	0.065	0.30	0.55	180	0.04	<1
		S	1	3	0.24	0.057	0.28	0.57	1200	0.03	<1
		S	1	3	0.23	0.058	0.23	0.51	1100	0.03	<1
_	4.0	М	8	3	0.20	0.058	0.25	0.50	1200	0.04	<1
Е	16	М	8	3	0.21	0.058	0.27	0.54	1100	0.04	<1
		В	15	7	0.22	0.058	0.26	0.54	1200	0.02	<1
		В	15	7	0.22	0.057	0.22	0.49	1100	0.01	<1
		S	1	7	0.21	0.062	0.25	0.52	1000	0.03	<1
	23	S	1	6	0.22	0.057	0.15	0.42	1100	0.03	<1
F		М	11.5	6	0.23	0.058	0.18	0.47	1100	0.04	<1
Г Г		М	11.5	6	0.22	0.057	0.18	0.46	1100	0.04	<1
		В	22	5	0.22	0.057	0.22	0.50	1000	0.03	<1
		В	22	5	0.22	0.058	0.17	0.45	1100	0.03	<1
		S	1	5	0.22	0.053	0.27	0.52	730	0.04	<1
		S	1	4	0.22	0.058	0.20	0.48	790	0.04	<1
G	22	М	11	4	0.21	0.058	0.13	0.39	690	0.05	<1
G	22	М	11	4	0.20	0.058	0.14	0.40	760	0.04	<1
		В	21	6	0.24	0.058	0.17	0.47	700	0.03	<1
		В	21	6	0.23	0.057	0.18	0.47	750	0.03	<1
		S	1	6	0.16	0.057	0.12	0.33	1200	0.03	<1
		S	1	6	0.16	0.057	0.18	0.40	1200	0.03	<1
Н	19	М	9.5	5	0.14	0.057	0.19	0.38	1100	0.03	<1
	19	М	9.5	6	0.14	0.057	0.15	0.35	1300	0.04	<1
		В	18	6	0.14	0.057	0.16	0.36	1200	0.04	<1
		В	18	6	0.15	0.057	0.15	0.35	1100	0.04	<1

Table 3.9 Summary of Laboratory Analysis Results (Mid-flood)

Table 3.9 Suffillary of Laboratory Arialysis Results (Mid-100d)											
Monitoring	Water	Sam	npling	TSS	NH₃	NO_2^-	NO ₃ -	TIN	E.coli	Total P	BOD ₅
Station	Depth	Depth (m)		(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)				(mg/L)	(mg/L)	(mg/L)				
		S	1	5	0.18	0.071	0.22	0.47	240	0.04	<1
		S	1	6	0.18	0.071	0.24	0.49	200	0.03	<1
Α	15	М	7.5	5	0.16	0.071	0.25	0.48	180	0.04	<1
A	15	М	7.5	6	0.20	0.071	0.21	0.48	220	0.05	<1
		В	14	5	0.12	0.071	0.24	0.43	240	0.05	<1
		В	14	5	0.12	0.071	0.24	0.42	180	0.06	<1
		S	1	6	0.16	0.071	0.26	0.49	220	0.04	<1
		S	1	6	0.16	0.072	0.30	0.53	190	0.03	<1
В	14	М	7	5	0.13	0.071	0.22	0.42	210	0.05	<1
Ь	14	М	7	6	0.13	0.071	0.28	0.48	180	0.05	<1
		В	13	5	0.16	0.069	0.17	0.40	220	0.09	<1
		В	13	6	0.16	0.072	0.15	0.38	200	0.09	<1
		S	1	5	0.18	0.067	0.28	0.53	200	0.03	<1
		S	1	5	0.18	0.067	0.31	0.56	180	0.04	<1
С	12	М	6	5	0.13	0.065	0.16	0.36	250	0.04	1.1
	12	М	6	5	0.14	0.065	0.21	0.40	200	0.04	1.2
		В	11	4	0.19	0.065	0.22	0.47	230	0.03	1.4
		В	11	4	0.19	0.065	0.19	0.45	180	0.03	<1
D	14	S	1	5	0.17	0.25	0.18	0.48	300	0.02	<1
D	14	S	1	5	0.17	0.19	0.18	0.42	340	0.03	<1

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 20

Monitoring	Water	San	pling	TSS	NH ₃	NO ₂ -	NO ₃ -	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		М	7	5	0.17	0.20	0.19	0.43	390	0.04	<1
		М	7	5	0.17	0.25	0.19	0.49	320	0.04	<1
		В	13	5	0.16	0.25	0.18	0.48	340	0.03	<1
		В	13	5	0.16	0.28	0.18	0.51	300	0.03	<1
		S	1	5	0.18	0.053	0.24	0.47	1100	0.03	<1
		S	1	5	0.18	0.053	0.24	0.47	1000	0.04	<1
Е	14	М	7	5	0.18	0.057	0.23	0.47	1100	0.03	<1
_	14	М	7	6	0.18	0.058	0.22	0.60	1000	0.02	<1
		В	13	6	0.17	0.058	0.28	0.52	1100	0.04	<1
		В	13	6	0.17	0.057	0.23	0.46	1000	0.04	<1
		S	1	5	0.20	0.057	0.13	0.37	1600	0.03	<1
		S	1	5	0.20	0.057	0.14	0.37	1600	0.04	<1
F	18	М	9	6	0.17	0.057	0.33	0.57	1500	0.04	1.8
'	10	М	9	6	0.16	0.057	0.28	0.52	1500	0.04	1.7
		В	17	8	0.15	0.057	0.21	0.44	1500	0.04	2.0
		В	17	7	0.14	0.057	0.23	0.46	1600	0.04	1.9
		S	1	7	0.20	0.057	0.22	0.48	920	0.03	1.9
		S	1	7	0.13	0.058	0.25	0.51	960	0.02	2.0
G	13	М	6.5	8	0.20	0.057	0.21	0.43	900	0.03	1.8
G	13	М	6.5	8	0.11	0.057	0.21	0.43	950	0.03	2.1
		В	12	8	0.12	0.057	0.23	0.43	850	0.03	2.6
		В	12	8	0.12	0.058	0.23	0.44	900	0.03	1.8
		S	1	7	0.12	0.056	0.39	0.57	1200	0.03	1.9
		S	1	7	0.13	0.056	0.35	0.54	1200	0.03	1.9
Н	19	М	9.5	7	0.12	0.056	0.35	0.52	1100	0.04	1.9
	19	М	9.5	8	0.11	0.056	0.35	0.52	1100	0.04	1.8
		В	18	5	0.12	0.057	0.24	0.42	1200	0.03	1.6
		В	18	5	0.12	0.057	0.20	0.38	1100	0.04	1.7

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Tidal data obtained from Ma Wan Marine Traffic Station is present in **Appendix G**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and may affect the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

Table 3.10 Weather condition of water quality monitoring

Date	Air Temperature			Mean	Total
	Maximum	Maximum Mean Minimum			Rainfall
	(deg. C)) (deg. C) (deg. C)		Humidity	(mm)
				(%)	
10 October 2022	26.6	24.0	21.6	51	0.0

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 21

4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

4.1 Monitoring Station

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 3**.

Table 4.1 Location of Sediment Quality Monitoring and Benthic Survey

	Sampling Location	Easting	Northing
Α	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
Е	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey

Monitoring Parameters							
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey						
Grain size profile* (i.e. Particle Size Distribution) (%)	Cadmium (µg/L)						
Total organic carbon* (%)	Chromium (µg/L)						
pH value	Copper (µg/L)						
Ammonia as N (mg-N/kg)	Lead (µg/L)						
Total nitrogen (mg-N/kg)	Mercury ((µg/L)						
Total phosphorus (mg-N/kg)	Nickel (µg/L)						
Cadmium (mg/kg)	Zinc (µg/L)						
Chromium (mg/kg)	Arsenic (µg/L)						
Copper (mg/kg)	Silver (µg/L)						
Lead (mg/kg)							
Mercury (mg/kg)							
Nickel (mg/kg)							
Zinc (mg/kg)							
Arsenic (mg/kg)							
Silver (mg/kg)							

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 22

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix J**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix J**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 23

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 With reference to EPD's letter (Ref: Ax(7) to EP 2/No/F/50 Pt.7) dated 8 February 2022, Change of Laboratory on Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey (0041_17_ED_0632A) is approved. Fugro Technical Services Limited (HOKLAS Reg. No. 015), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Table 4.3 Laboratory Measurement/Analysis Methods and Reporting Limits

Analysis Description	Method	Reporting limits
Particle Size Distribution	Geospec 3: 2001 Test 8.1, 8.5 and 8.7	1%
Total Organic Carbon	APHA 23rd edition 5310B	0.05%
pH value	APHA 23rd edition 4500-H+B	0.1 pH unit
Ammonia as N	APHA 23rd edition 4500 NH3: B & C / In house method E-T-039	0.5 mg/kg
Total Nitrogen	APHA 23rd edition 4500 N_{org} : D (digestion), In-house method E-T-036, E-T-037 & APHA 23rd edition 4500 - NO_3 - I	10 mg/kg
Total Phosphorus	APHA 17th edition 4500 – PB.5 (digestion) & In house method E-T-056 (determination)	10 mg/kg
Cadmium	USEPA method 3050B (digestion) and	0.1 mg/kg
Chromium	6020A (determination)	0.5 mg/kg
Copper		0.2 mg/kg
Lead		0.2 mg/kg
Mercury		0.05 mg/kg
Nickel		0.2 mg/kg
Zinc		0.5 mg/kg
Arsenic		0.5 mg/kg
Silver		0.1 mg/kg

4.6 Taxonomic Identification of Benthic Organism

4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Page 24

and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.

4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 10 October 2022. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix H.**

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 25

Table 4.4 Summary of laboratory analysis results for sediment monitoring

Monitoring Station	pH value	NH ₃ as N (mg/L)	Total N (mg-	Total P (mg-	Cd (mg/ kg)	Cr (mg/ kg)	Cu (mg /kg)	Pb (mg /kg)	Hg (mg/k g)	Ni (mg /kg)	Zn (mg /kg)	As (mg /kg)	Ag (mg/k g)
			N/kg)	P/kg)									
A	8.2	13	1100	380	<0.1	25	24	31	0.14	15	78	12	0.2
В	8.2	10	1200	340	<0.1	27	29	32	0.11	16	84	11	0.3
С	8.0	16	1500	400	<0.1	32	33	37	0.13	19	95	11	0.3
D	8.0	11	1500	410	<0.1	29	29	35	0.13	17	88	11	0.3
Е	7.9	20	1500	450	<0.1	30	33	34	0.12	18	94	10	0.3
F	8.0	32	1500	500	<0.1	33	34	37	0.14	19	98	11	0.3
G	8.1	6.2	850	340	<0.1	18	31	25	0.06	11	63	8.3	0.2
Н	8.1	10	1100	400	<0.1	22	30	27	0.08	13	76	7.4	0.3

Table 4.5 Summary of laboratory analysis results for benthic survey

Monitoring Station	Total organic		n size pr			Description	
Station	carbon (%)	Gravel	Gravel Sand Silt Clay		Clay		
А	1.0	0	27	27	46	Moist, grey, slightly gravelly, slightly sandy SILT/CLAY	
В	0.8	2	21	33	44	Moist, grey, slightly gravelly, slightly sandy SILT/CLAY	
С	1.2	1	5	40	54	Moist, grey, slightly gravelly, slightly sandy SILT/CLAY	
D	0.9	1	8	39	52	Moist, grey, slightly gravelly, slightly sandy SILT/CLAY	
Е	1.6	0	4	39	57	Moist, grey, slightly gravelly, slightly sandy SILT/CLAY	
F	1.2	0	2	36	62	Moist, grey, slightly gravelly, slightly sandy SILT/CLAY	
G	1.7	4	10	37	49	Moist, grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	
Н	1.3	1	7	39	53	Moist, grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments	

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in **Appendix H**.
- 4.10.3 Construction works from expansion of Hong Kong International Airport was observed nearby the Project site and its vicinity and may affect the sediment quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 4.6**.

Table 4.6 Weather condition of water quality monitoring

Date	Ai	r Temperat	Mean	Total	
	Maximum	Maximum Mean Minimum			Rainfall
	(deg. C)	(deg. C)	(deg. C)	Humidity	(mm)
				(%)	
10 October 2022	26.6	24.0	21.6	51	0.0

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 26

4.10.4 The benthic survey data are summarized and presented in **Table 4.7**.

Table 4.7 Summary of benthic survey data on 10 October 2022

Monitoring Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
Α	57	0.84	10	1.90	15.57
В	43	0.49	11	1.90	17.13
С	20	0.68	7	1.47	18.19
D	68	0.49	12	1.59	25.98
E	55	1.59	12	2.09	16.26
F	32	0.19	7	1.62	14.58
G	38	3.13	11	2.18	14.08
Н	34	0.43	10	2.10	13.46

4.10.5 The benthic survey results are analyzed and presented as below:

i) Abundance

A total of 347 benthic organisms were recorded from the eight monitoring stations during the October 2022 monitoring period. Current monitoring results showed lower total monthly abundance compared to both dry (March 2004) and wet (August 2004) seasons baseline data results. The current decrease in overall abundance may be attributed to the decrease in *Trypauchen* and *Styela* abundance which could have been due to the concurrent increase in ammonia of the sediments relative to August 2022 data. As shown in several studies, higher levels of ammonia may cause lower macrobenthic density (Lai et al., 2020). Similar with previous monitoring periods, total monthly abundance of benthic organisms exhibits significant seasonal variation (F-value = 4.52; F-crit = 1.54; p-value = 2.05E-10; $\alpha = 0.05$).

In terms of spatial distribution, the lowest abundance of 20 ind. was recorded in the impact station, Station C, while the highest (68 ind.) was also noted in other impact station, Station D. Total macro-benthic abundances, similar with the previous monitoring periods, showed statistically significant spatial distribution (F-value = 3.62; F-crit = 2.05; P-value = 0.001; α = 0.05).

ii) Biomass

The total wet biomass recorded in the eight monitoring stations was 7.84 g with the highest biomass recorded in the reference station, Station G (3.13 g) while the lowest biomass (0.19 g) was observed in the reference station, Station F. Relative to the August 2022 period, a decrease in biomass was observed during the current monitoring period. Most of the current decrease was attributed to the biomass decrease of *Trypauchen* and *Styela* in the benthic community.

iii) Taxonomic Composition

A total of six phyla comprising of 20 families and 24 genera were identified. During the current monitoring period, the annelids (76.66%) dominated the macro-benthic assemblage, followed by the molluscs (10.95%). Relative to the August 2022 community assemblage, current results showed that the annelids still maintained their dominance of the community.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Page 27

The dominance of annelids in the community assemblage was still noted as it is still wet season during the current survey.

iv) Diversity

Benthic diversity index (H') in the impact stations ranged from 1.47 to 1.59. In the reference stations, H' values ranged from 1.62 to 2.18. Currently, reference station, Station G had the highest diversity value among the different monitoring stations, while the lowest was the reference station, Station F. In terms of evenness index (J) values, impact Station D was noted with relatively high value as compared to other monitoring stations. Moreover, current monitoring results indicated an overall increase in both diversity and evenness values from the baseline survey condition.

The detailed benthic survey results are provided in **Appendix I**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 28

5. CHINESE WHITE DOLPHIN MONITORING

5.1 Data Interpretation

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report dated 7 July 2022, "Monitoring of Marine Mammals in Hong Kong Waters (2021-22)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in August 2022. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2022-23) is uploaded to AFCD's webpage.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 29

6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

6.1 Implementation Status

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in **Appendix L**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 30

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in **Appendix L**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 31

8. SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS

- 8.1.1 Odour patrol monitoring was resumed and carried out on 7, 13, 19, 25 and 31 October 2022. No exceedances of Action/Limit levels at ASRs were recorded.
- 8.1.2 Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 10 October 2022. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 32

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Table 9.1 Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	0	0	1
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Table 9.2 Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

9.1.2 The cumulative complaint log and summaries of complaints are presented in **Appendix K**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 33

10. FUTURE KEY ISSUES

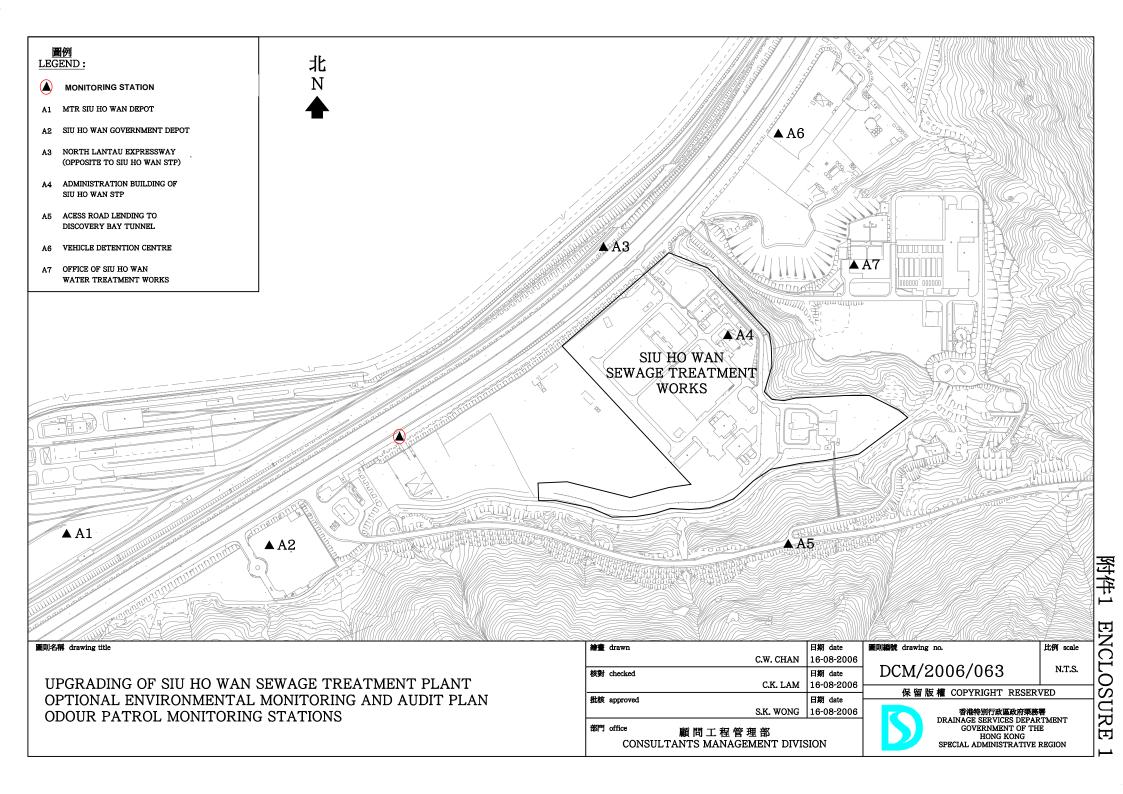
- 10.1.1 The key issues to be considered in the coming reporting month include:
 - i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
 - ii. According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688 Page 34

11. CONCLUSION

- 11.1.1 Odour patrol monitoring was resumed from January 2020 and carried out on 7, 13, 19, 25 and 31 October 2022. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at odour patrol points were recorded in the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 10 October 2022 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic and construction works from expansion of Hong Kong International Airport were observed nearby the Project site and its vicinity and may affect the water and sediment quality The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 7 July 2022, "Monitoring of Marine Mammals in Hong Kong Waters (2021-22)" in terms of the distribution and abundance of CWDs was reviewed. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2022-23) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions*. *All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.

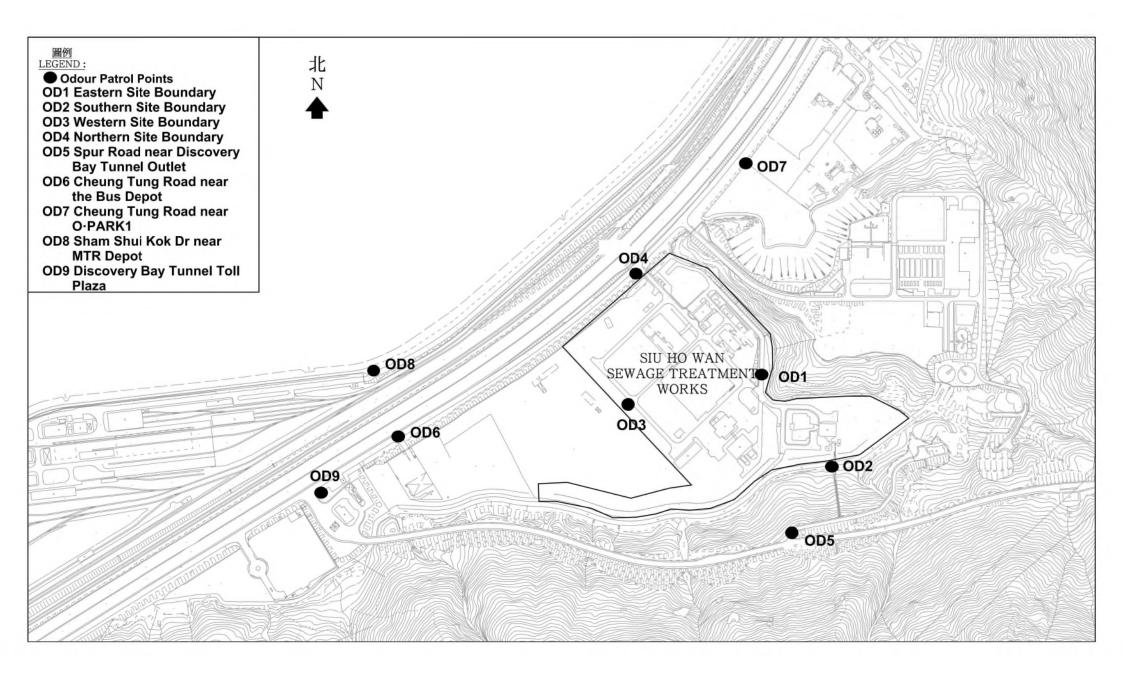

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Figure 1

Monitoring Stations of Air Sensitive Receivers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

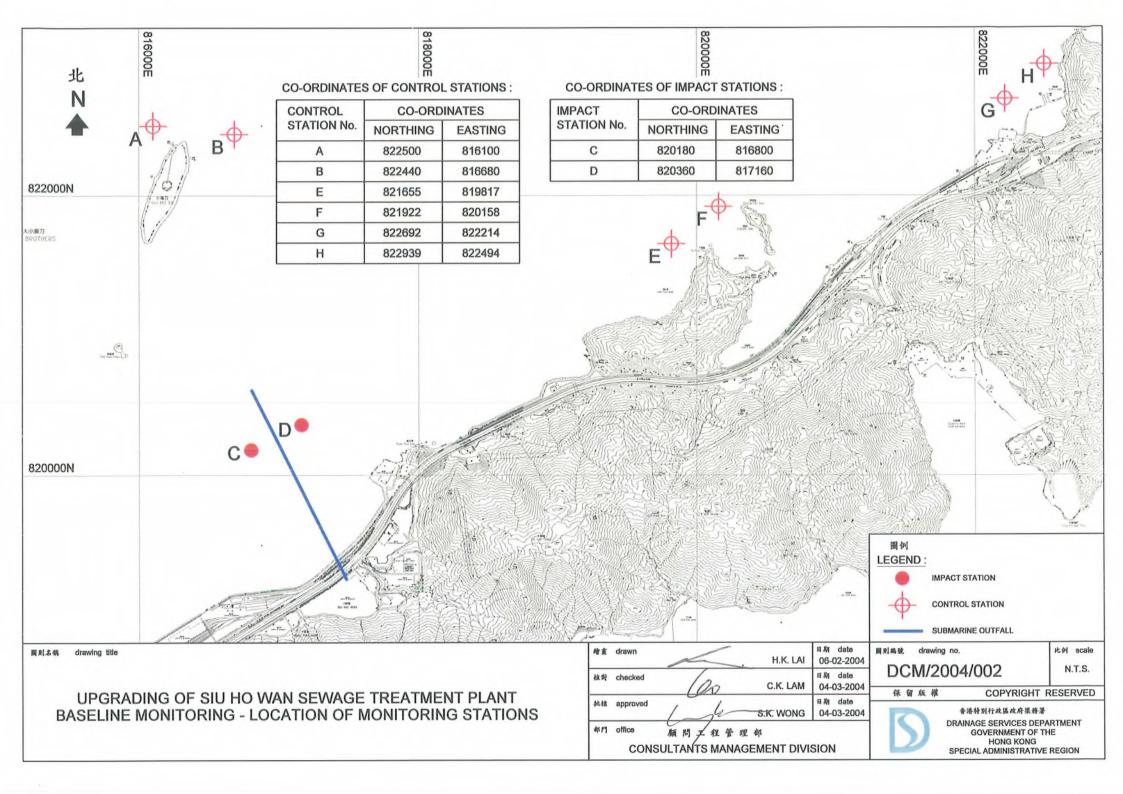

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Figure 2

Odour Patrol Points of Modified Odour Patrol

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.


Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Figure 3

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Figure 4

Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Location of the Tide Gauge

Source: Google Maps

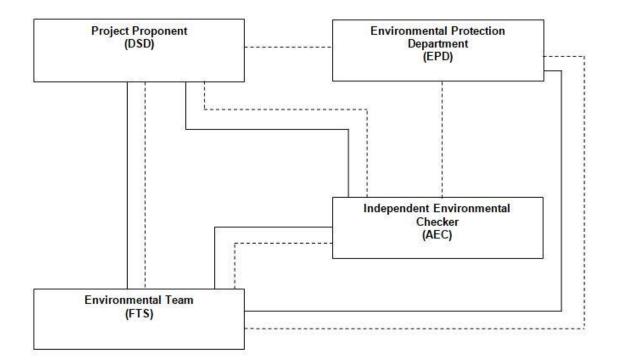
The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Tel

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 : +852 2450 6138 Fax E-mail: matlab@fugro.com
Website: www.fugro.com

Report No.: 0041/17/ED/0688


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Legend:

Line of Reporting
Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Monitoring Schedule for the Present Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat
						1
2	3	4	5	6	7 Odour Patrol	8
9	10 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Flood (06:28) Mid-Ebb (12:40)	11	12	13 Odour Patrol	14	15
16	17	18	19 Odour Patrol	20	21	22
23	24	25 Odour Patrol	26	27	28	29
30	31 Odour Patrol					

Remarks

1. Due to raining on 25 August 2022, the odour patrol monitoring was rescheduled to 26 August 2022.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Monitoring Schedule for the Next Reporting Period

Sun	Mon	Tue	Wed	Thur	Fri	Sat	
		1 November	2	3	4	5	
6	7	8	9	10	11 Odour Patrol	12	
13	14	15	16	17 Odour Patrol	18	19	
20	21	22	23 Odour Patrol	24	25	26	
27	28	29 Odour Patrol	30				

Remarks

2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

=>/=>		ACTION	
EVENT	ET	IEC	*Operator
Action Level			
One complaint received for specific odour event / Odour intensity of 2 or above is measured from odour patrol	1. Identify source/reason of exceedance or odour complaints; 2. Notify the IEC and Operator of exceedance; 3. Repeat odour patrol to confirm finding; 4. If exceedance continues, notify the IEC and Operator; 5. Carry out investigation to identify the source/reason of exceedance or complaints; 6. Check Operator's working methods; and 7. Discuss with Operator on required remedial actions.	1. Check odour patrol results submitted by ET; 2. Discuss with ET and Operator on the possible remedial actions; 3. Advise the Operator on the effectiveness of the proposed remedial measures; 4. Supervise implementation of remedial measures.	1. Notify the ET and IEC when receipt of odour complaint; 2. Confirm receipt of notification of exceedance in writing; 3. Identify/ confirm source with ET; 4. Discuss with ET for remedial actions required; 5. Ensure remedial actions required implemented 6. Rectify any unacceptable practice; and 7. Amend operation methods if appropriate.
Limit Level			
More than one complaint in 3 months / Odour intensity of 3 or above is measured from odour patrol	1. Identify source/reason of exceedance or odour complaints; 2. Notify the IEC and Operator of exceedance; 3. Repeat odour patrol to confirm finding; 4. If exceedance continues, notify the IEC and Operator; 5. Carry out investigation to identify the source/reason of exceedance or complaints; 6. Check Operator's working methods; 7. Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; 8. Arrange meeting with ET and EPD to discuss the remedial actions to be taken; 9. Discuss with EPD and the	1. Check odour patrol results submitted by ET; 2. Discuss amongst ET and the Operator on the potential remedial actions; 3. Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; 4. Supervise implementation of remedial measures.	1. Notify the ET and IEC when receipt of odour complaint; 2. Confirm receipt of notification of exceedance in writing; 3. Indentify/ confirm source with ET; 4. Inform ET, IEC and EPD; 5. Discuss with EPD and ET on the required remedial actions; 6. Ensure remedial actions properly implemented; 7. Take immediate action to avoid further exceedance; 8. Implement the agreed proposals.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Operator on the required	
remedial actions;	
10. Submit proposals for	
remedial actions within 3	
working days of notification;	
11. Assess effectiveness of	
Operator's remedial actions	
and keep EPD informed of	
the results;	
12. Amend proposal if	
appropriate; and	
13. Resubmit proposal if	
problem still not under	
control.	
* The amount and he is the amount and amount and it for the	

^{*} The operator who is the constructor responsible for the operation during the maintenance period.

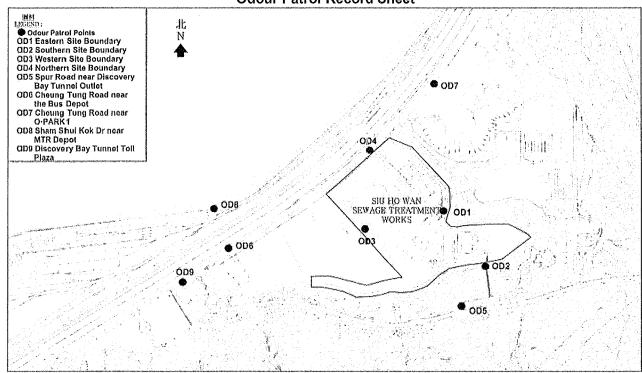
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Appendix D

Results and Graphical Presentation of Air Quality Monitoring


Room 723 - 726, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

(852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date		2022/10/7	Weather	Fine	e	Temperatur	e 30	°C Hu	midity	69%
ID	D Location		Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics			
OD1	Eastern Site Boundary				11:18	Ē	1.9	0		/
OD2	Southern Site Boundary			11:13	/	·0.0	0			
OD3	Western Site Boundary			11:14	NE	1.7	1	E	ffluent	
OD4	Northe	ern Site Boundar	У		11:11	NE	0.7	D		
OD5	Spur F	Road near Disco	very Bay Tunnel	l Outlet		/				/
OD6	Cheun	ng Tung Road ne	ear the Bus Depo	ot	10:11	E	0.8	0		/
OD7	Cheung Tung Road near O·PARK1				11:03	E	1.4	0		
OD8	Sham Shui Kok Dr near MTR Depot			10:50	NE	0.4	0		/	
OD9	Discovery Bay Tunnel Toll Plaza			(0:57	E	0.3	0		/	

*Classification Criteria:

Not detected

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight Moderate

: Slight identifiable odour, and slight chance to have odour nuisance : Moderate identifiable odour, and moderate chance to have odour nuisance

Strong

: Strong Identifiable, likely to have odour nuisance

Extreme

: Extreme severe odour, and unacceptable odour level

Recorded by:

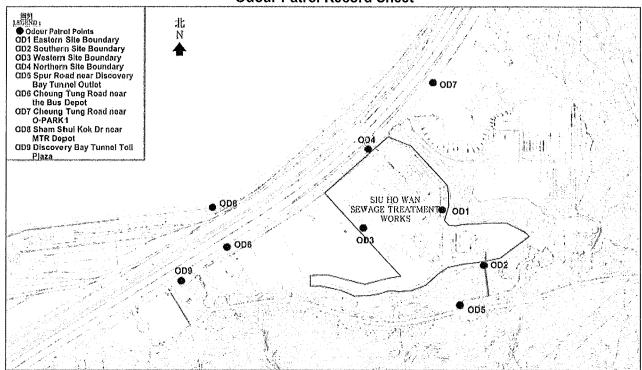
Name: Yeung

Date:

Checked by:

Name:

Date:


Ofo. October シャンこ

Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwal Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 : (852)-24508032 Tel Fax : mcl@fugro.com.hk

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	7/10/2021 Weather Fin	e	Temperatur	e 30,0	C/ Hum	nidity 69%.
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	11:16	E	1.9	0	
OD2	Southern Site Boundary	11:18		0.	0	
OD3	Western Site Boundary	11:14	NE	1.7	0	/
OD4	Northern Site Boundary	11:11	NE	0.7	0	
OD5	Spur Road near Discovery Bay Tunnel Outlet			/		
OD6	Cheung Tung Road near the Bus Depot	11:01	E	Ů.S	0	
OD7	Cheung Tung Road near O·PARK1	11:03	Ē	1.4	0	
OD8	Sham Shui Kok Dr near MTR Depot	10:50	NE	0.4	0	
OD9	Discovery Bay Tunnel Toll Plaza	10:57		о.3	0	

*Classification Criteria:

Not detected

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight

Slight identifiable odour, and slight chance to have odour nuisance

Moderate

: Moderate identifiable odour, and moderate chance to have odour nuisance

Strong Extreme

Strong identifiable, likely to have odour nuisance : Extreme severe odour, and unacceptable odour level

Recorded by:

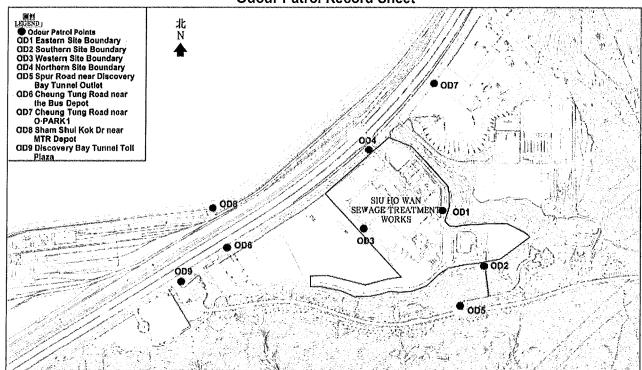
Name: Date:

110/2022

Checked by:

Name:

Date:


1-lə 2022

Room 723 - 726, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date	202/10/13 Weather 12.1mg	3	Temperatu	re 25.°	7°C Hum	nidity 35%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	10:48			0	
OD2	Southern Site Boundary	10:51			D	
OD3	Western Site Boundary	10:46	E	0.4	0	
OD4	Northern Site Boundary	10:44	NF	0.1	0 /	
OD5	Spur Road near Discovery Bay Tunnel Outlet					
OD6	Cheung Tung Road near the Bus Depot	10:34	NE	0.1	\circ	
OD7	Cheung Tung Road near O PARK1	10:37			8	
OD8	Sham Shui Kok Dr near MTR Depot	10,22			Ö	
OD9	Discovery Bay Tunnel Toll Plaza	10:50			O	

*Classification Criteria:

Not detected

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight Moderate : Slight identifiable odour, and slight chance to have odour nuisance

Strong

: Moderate identifiable odour, and moderate chance to have odour nuisance

Extreme

: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by:

Name:

Date:

2022/10/13

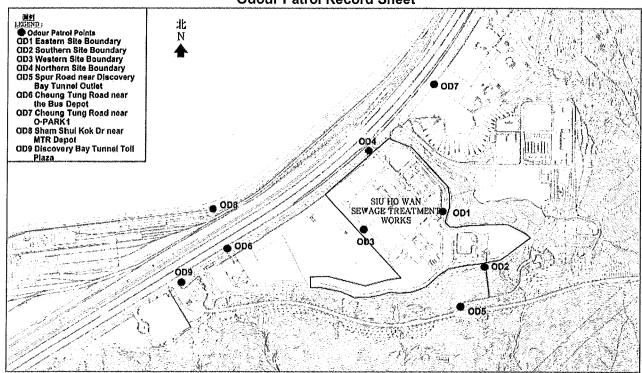
Checked by:

Name:

Date:

CHOI KAN H

Room 723 - 726, 7/F, Block B,


Profit Industrial Building, 1-15 Kwal Fung Crescent, Kwal Fong, Hong Kong.

Fax Email

(852)-24508238 (852)-24508032 Tel : mcl@fugro.com.hk

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	13/10/2024 Weather Flux	2	Temperatur	e 25,9	C Hun	nidity 35%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	1048		.0	6	
OD2	Southern Site Boundary	1051		0	0	
OD3	Western Site Boundary	1046	E.	0.4	0,	
OD4	Northern Site Boundary	1044	NE	0.1	0	
OD5	Spur Road near Discovery Bay Tunnel Outlet		1	/		
OD6	Cheung Tung Road near the Bus Depot	1034	NE	0.1	0.	
OD7	Cheung Tung Road near O·PARK1	1037	/	٥	0.	
OD8	Sham Shui Kok Dr near MTR Depot	1022		O´	0.	
OD9	Discovery Bay Tunnel Toll Plaza	1030	/	.0	C) .	

*Classification Criteria:

Not detected

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight Moderate : Slight identifiable odour, and slight chance to have odour nuisance

Strong

: Moderate identifiable odour, and moderate chance to have odour nuisance

Extreme

: Strong identifiable, likely to have odour nuisance : Extreme severe odour, and unacceptable odour level

Recorded by: Name:

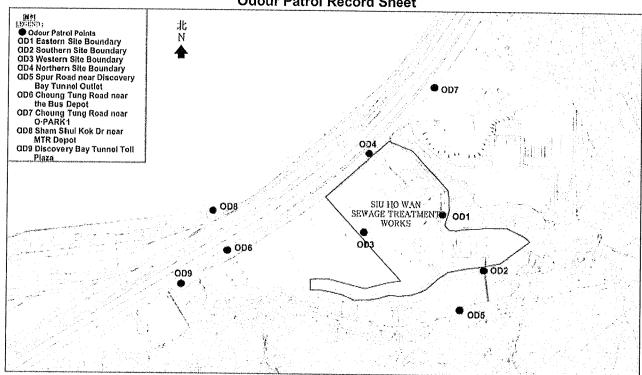
Checked by:

Name: (Hol

Date: 13

2022

Room 723 - 726, 7/F, Block B, Profit Industrial Building,


1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel

: (852)-24508238 : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	190c7 Low Weather Fin	e	Temperatu	re Zue o	Hur	nidity	36 %
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characte	
OD1	Eastern Site Boundary	11:05			(2		
OD2	Southern Site Boundary	11:10			0		
OD3	Western Site Boundary	11203	7	0-6	<i>-</i> 2		
OD4	Northern Site Boundary	11/67	6	03	\mathcal{O}	-/	
OD5	Spur Road near Discovery Bay Tunnel Outlet	11/2		<u> </u>			
OD6	Cheung Tung Road near the Bus Depot	(0:54	NB	6.4			
OD7	Cheung Tung Road near O PARK1	10:57		0.	(2		· · · · · · · · · · · · · · · · · · ·
OD8	Sham Shui Kok Dr near MTR Depot		NZ	υ.ζ	$\frac{\partial}{\partial}$		
OD9	Discovery Bay Tunnel Toll Plaza	(015-5	117	(2.7			
*Classi	fication Critorias	1000 L	1 5	<u> </u>	(1)		-

*Classification Criteria:

Not detected

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight Moderate

: Slight identifiable odour, and slight chance to have odour nuisance

Strong

: Moderate identifiable odour, and moderate chance to have odour nuisance

: Strong identifiable, likely to have odour nuisance

Extreme

: Extreme severe odour, and unacceptable odour level

Recorded by:

Name:

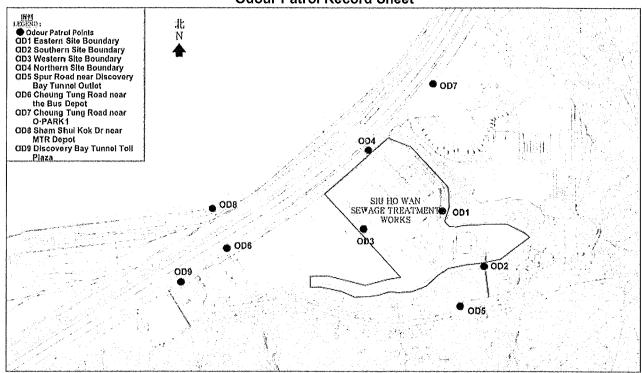
Date:

Checked by:

Name:

Date: ۱৭

7022


The copyright of this document is owned by Fugro Technical Services Ltd. It may not be reproduced except with prior written approval from the Company.

Room 723 - 726, 7/F, Block B, Profit Industrial Bullding,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date	/9//p/2012 Weather	Fae.	Temperatur	e 24	*C Hum	nidity 31 /o.
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	11:07		0	υ	
OD2	Southern Site Boundary	11:10		0	O	
OD3	Western Site Boundary	11:05	E	0,6	ð	
OD4	Northern Site Boundary	11:03		0.3	0	
OD5	Spur Road near Discovery Bay Tunnel Ou	utlet	/	/		
OD6	Cheung Tung Road near the Bus Depot	10:54	NE	0.4	0	
OD7	Cheung Tung Road near O·PARK1	10:57		0	D D	
OD8	Sham Shui Kok Dr near MTR Depot	10:50	NE	0.3	0	
OD9	Discovery Bay Tunnel Toll Plaza	10:52	NE	0.7	0	

*Classification Criteria:

Not detected

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight Moderate : Slight identifiable odour, and slight chance to have odour nuisance : Moderate identifiable odour, and moderate chance to have odour nuisance

Strong

: Strong identifiable, likely to have odour nuisance

Extreme

: Strong identifiable, likely to have odour nuisance : Extreme severe odour, and unacceptable odour level

Recorded by:

Name:

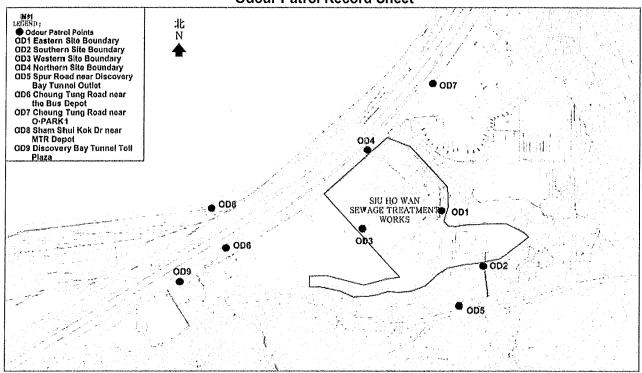
Date:

Checked by:

Name: <u>Ci-</u>ใงไ

Date: 17

CHOI KAM FLO


Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

Hong Kong.

: (852)-24508238 Tel : (852)-24508032 Fax : mcl@fugro.com.hk

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date		25/10/2022	Weather	Pine	2	Temperatur	e 25.9	oc Hur	nidity 5/%
ID	Locati	Location			Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	1 Eastern Site Boundary				1514	NE	1.6	0	
OD2	Southern Site Boundary			1516	NE	1.1	1	Effluert	
OD3	Western Site Boundary				1512			0	
OD4	Northe	ern Site Boundar	у		1510	V	0.9	0	
OD5	Spur F	Road near Disco	very Bay Tunnel	Outlet	1532			0	
OD6	Cheur	ng Tung Road ne	ear the Bus Depo	ot	1457	NE	1.0	0	/
OD7	Cheung Tung Road near O·PARK1				1459	NE	215	0	/
OD8	Sham Shui Kok Dr near MTR Depot			1449	NE	1,8	0		
OD9	Discovery Bay Tunnel Toll Plaza				1454	N	0.9	0	

*Classification Criteria:

Not detected

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight Moderate Slight identifiable odour, and slight chance to have odour nulsance

Strong

: Moderate identifiable odour, and moderate chance to have odour nuisance

: Strong identifiable, likely to have odour nuisance

Extreme

: Extreme severe odour, and unacceptable odour level

Recorded by:

Name: Date:

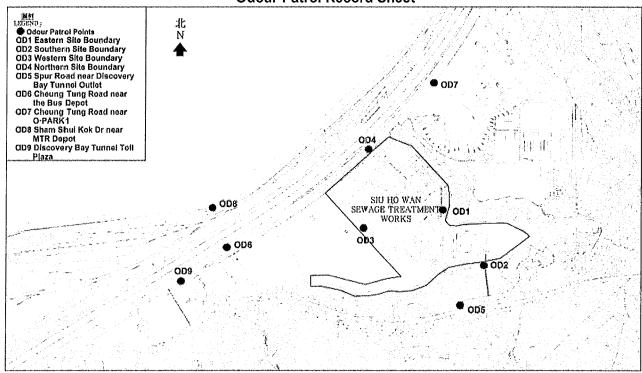
Uso Katto

Checked by:

Name:

Date:

CHUI 25 October 2022


Room 723 - 726, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : (852)-24508238 : (852)-24508032 Fax : mcl@fugro.com.hk Email

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date		ング/co/Liu Weather	Fi	e.	Temperatur	e 25,9	U Hun	nidity	510/1
ID	Location			Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Cl	naracteristics
OD1	Eastern Site Boundary			1514	NE	1.6	0		
OD2	Southe	ern Site Boundary		1576	NE	1.1	i i	Eff	uent
OD3	Western Site Boundary			1512			6.		
OD4	Northe	rn Site Boundary		1410	7	0.9.	0 -		
OD5	Spur F	Road near Discovery Bay Tunnel (Outlet	1532			0		
OD6	Cheun	g Tung Road near the Bus Depot		1447	NE.	1,0	0.	_	
OD7	Cheun	g Tung Road near O·PARK1		1459	NE	2.5	0.		
OD8	Sham	Shui Kok Dr near MTR Depot		1449	NE	1.8	0.		
OD9	Discov	ery Bay Tunnel Toll Plaza		1454	7	0.9	0.		/

*Classification Criteria:

Not detected

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight Moderate Slight identifiable odour, and slight chance to have odour nuisance

Strong

: Moderate identifiable odour, and moderate chance to have odour nuisance

: Strong identifiable, likely to have odour nuisance

Extreme

: Extreme severe odour, and unacceptable odour level

Recorded by:

Name:

Date:

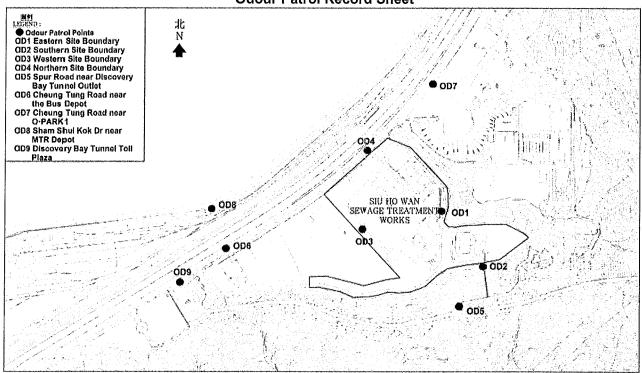
Checked by:

Name:

Date:

CHOIL

october 25


Room 723 - 726, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel Fax Email

: (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date	3//10/2012 Weather	Fine	Temperatur	e 25,1	°C Hun	nidity 53%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	1053	N	0.5	0	
OD2	Southern Site Boundary	1056	N	0.4	0	
OD3	Western Site Boundary	1051		0	0	
OD4	Northern Site Boundary	1049	N	1.3	0	
OD5	Spur Road near Discovery Bay Tunnel Outl	et		/		
OD6	Cheung Tung Road near the Bus Depot	1136	/	0	0	
OD7	Cheung Tung Road near O·PARK1	1039	NE	0.7	Ô	
OD8	Sham Shui Kok Dr near MTR Depot	1032	NE	0.4	0	
OD9	Discovery Bay Tunnel Toll Plaza	1034	N	0.9	0	

*Classification Criteria:

Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight : Slight identifiable odour, and slight chance to have odour nuisance

Moderate : Moderate identifiable odour, and moderate chance to have odour nuisance

Strong : Strong identifiable, likely to have odour nuisance
Extreme : Extreme severe odour, and unacceptable odour level

Recorded by:

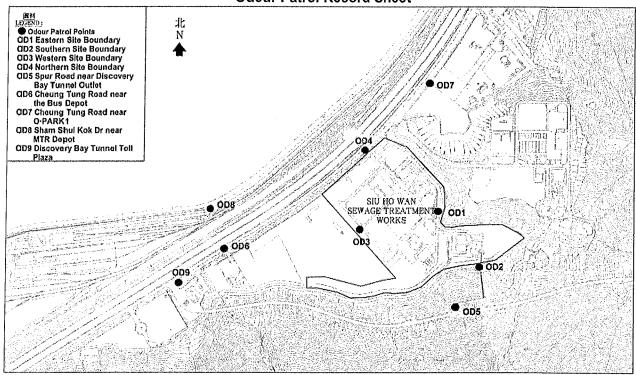
Name: Date: Fong Ka Lun

Checked by:

Name: Date:

31 October 2

Room 723 - 726, 7/F, Block B, Profit Industrial Building,


1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Fax Email

: (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk

Contract No. CM 14/2016 **Environmental Team for Operational Environmental Monitoring and Audit for** Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

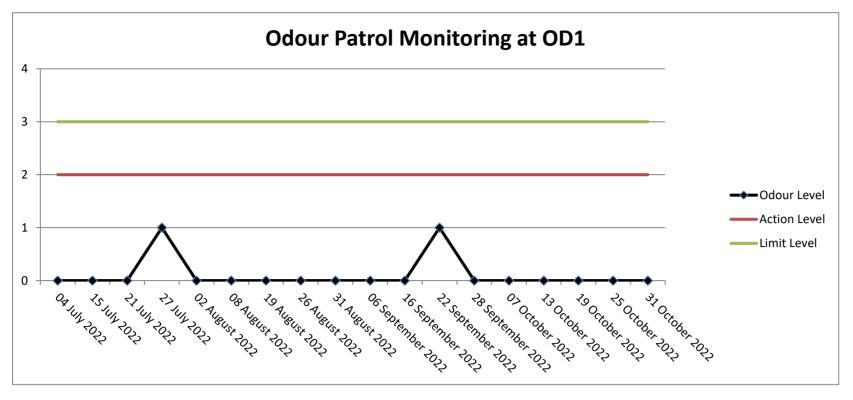
Date		31/10/2022	Weather	Fin	e	Temperatu	re 75.1	PC F	lumidity	53%
ÎD	Location			Time	Wind Direction	Wind Speed (m/s)	Odour intensity Odour Characteris		Characteristics	
OD1	Easter	n Site Boundary			10:53	N	0.5	0		
OD2	Southe	ern Site Boundary		-	10.56	N	0.4	. 0		/
OD3	Weste	rn Site Boundary			10:51	/	0	0		/
OD4	Northe	ern Site Boundary			10.49	N	1.3	0		
OD5	Spur R	Road near Discove	ery Bay Tunnel	Outlet				/		/
OD6	Cheun	g Tung Road nea	r the Bus Depo	t	10:36	/	O	0		
OD7	Cheun	g Tung Road nea	r O·PARK1		10:39	NE	0.7	0		/
OD8	Sham Shui Kok Dr near MTR Depot		10:32	NE	0.4	0		/		
OD9	Discovery Bay Tunnel Toli Plaza			(0:34	2	0.9	0		/	

*Classification Criteria:

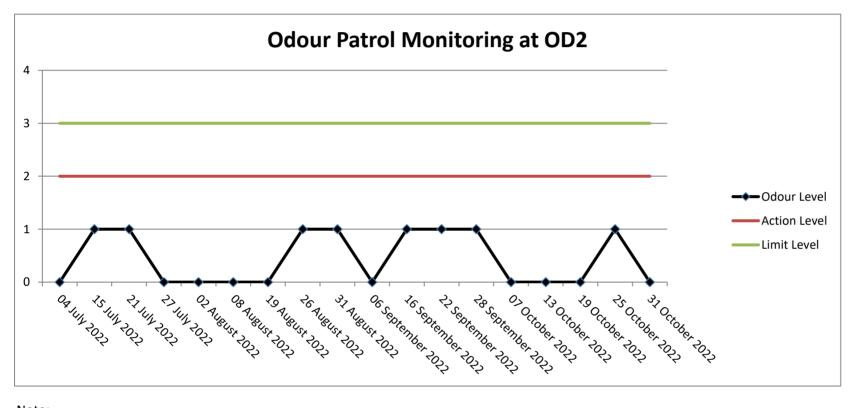
Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance Slight

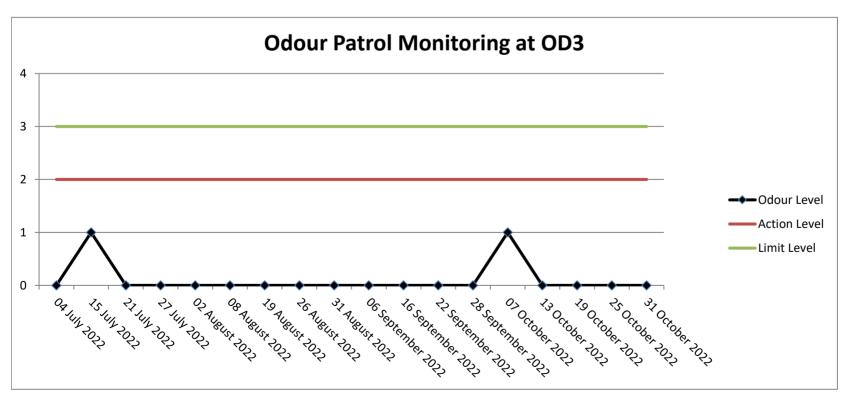
Moderate : Moderate identifiable odour, and moderate chance to have odour nuisance


Strong : Strong identifiable, likely to have odour nuisance

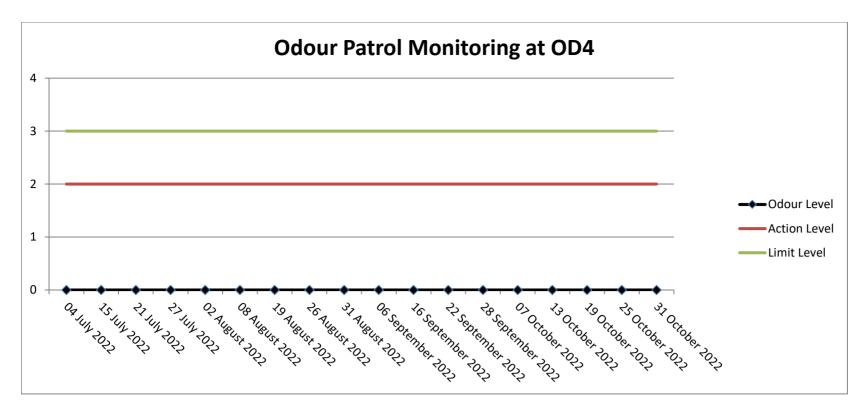
: Extreme severe odour, and unacceptable odour level Extreme


Recorded by: Name:

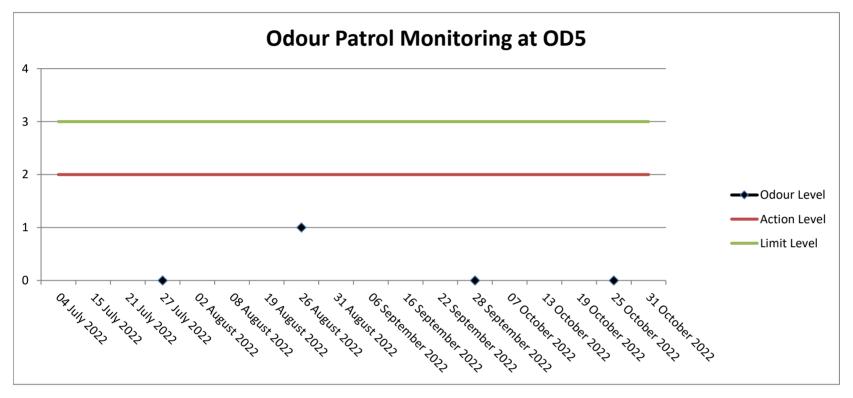
Checked by:


Name: Date:

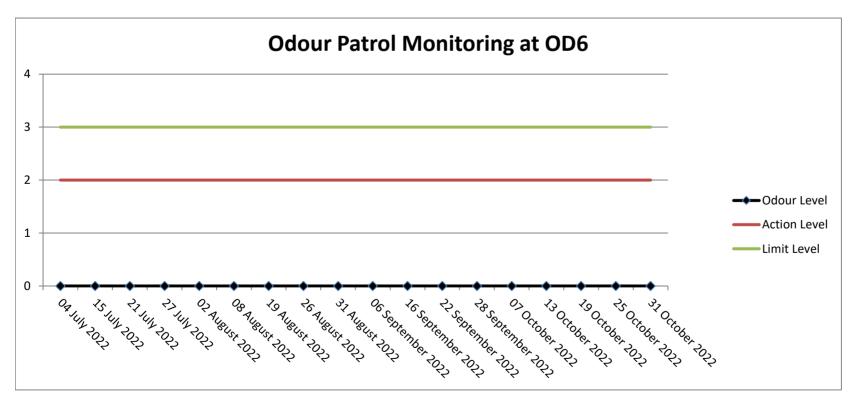
Note: Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme



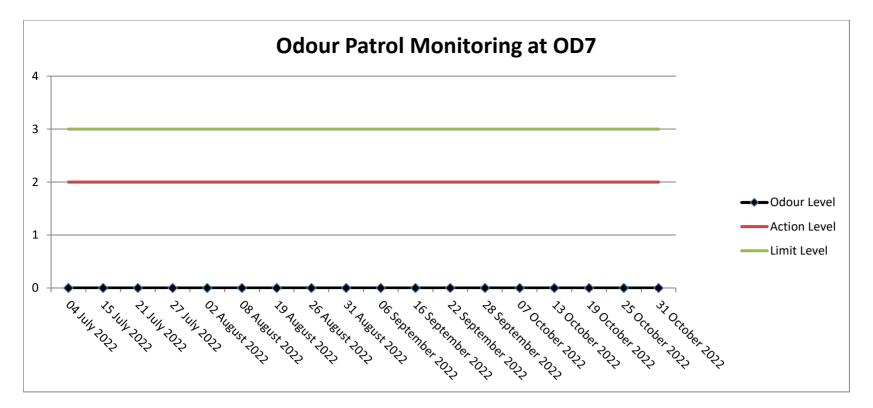
Note: Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Note:

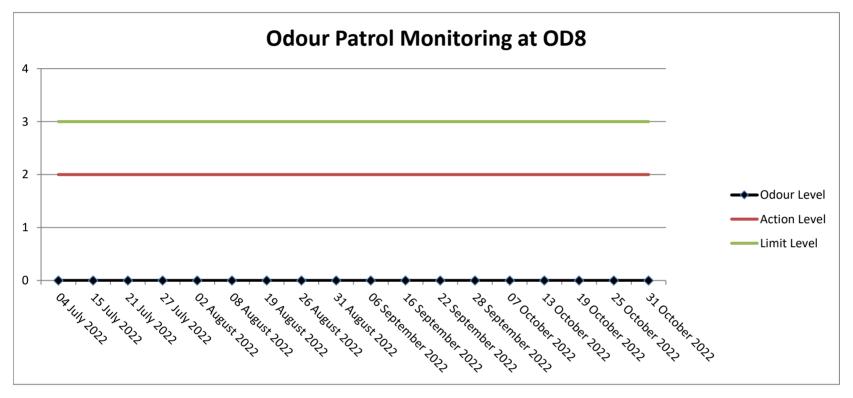
Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Note:

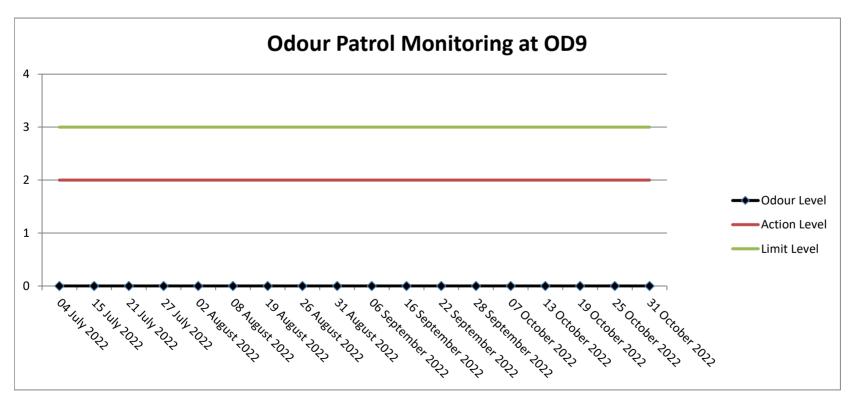
Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Note

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Appendix E

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 142626WA222316

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client

Fugro Technical Services Limited (MCL)

Client's address

13/F. Fugro House - KCC2, No. 1 Kwai On Road, Kwai Chung,

N.T., H.K.

Sample description

One Aqua Troll 600 Multi-parameter Water Quality Meter

Client sample ID

Serial No. 525120

Test required

Calibration of the Aqua Troll 600 Multi-parameter Water Quality

Meter

Laboratory Information

Lab. sample ID

WA222316/1

Date of calibration

05/10/2022

Next calibration date

04/01/2023

Test method used

In-house comparison method

Note: This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 142626WA222316

Page 2 of 3

Results:

A. pH calibration

pH reading at 25°C for Q.C. solution(9.16) and at 25°C for Q.C. solution(6.88)				
Theoretical	Measured	Deviation		
9.16	9.15	-0.01		
6.88	6.89	+0.01		

B. Salinity calibration

Salinity, ppt					
Theoretical	Measured	Deviation	Maximum acceptable Deviation		
10	10.04	+0.04	± 0.5		
20	20.12	+0.12	± 1.0		
30	30.47	+0.47	± 1.5		
40	40.61	+0.61	± 2.0		

C. Dissolved Oxygen calibration

Trial NIa	Dissolved oxygen content, mg/L			
Trial No.	By calibrated D.O. meter	By D.O. meter		
1	7.53	7.55		
2	7.54	7.55		
3	7.54	7.54		
Average	7.54	7.55		

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L.

Certified by

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories

Date

4/11/2002

Note: This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 142626WA222316

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C		
25.07	25.05		

E. Turbidity calibration

Turbidity, N.T.U.						
Theoretical	Theoretical Measured Deviation					
4	4.11	+0.11	± 0.6			
8	8.11	+0.11	± 0.8			
40	40.62	+0.62	± 3.0			
80	80.91	+0.91	± 4.0			

Certified by

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories

Date

** End of Report **

Note: This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

C 1131 1		
Serial Number	5906	
System Type	M9	
System Orientation	Down	
Compass Type	Sontek	
Compass Offset (degrees)	N/A	
Communications Output	RS232	
Recorder Size (GB)	14.9	
Firmware Version	4.02	
Date Tested	05/23/2017	

POWER TEST

Command Mode (W):	0.17	Range: 0.00 - 0.30
Sleep Mode (W):	N/A	Range: N/A
Ping Mode - 18V (W):	2.67	Range: 1.50 – 3.50
Power Check		PASS

NOISE TEST

95
96
95
101
93
95
91
100
88
PASS

VERIFICATION

Velocity Check	PASS
Transmit Output	PASS
Sensitivity	PASS
Temperature Sensor	PASS
Compass Heading Check	PASS
Compass Level Check	PASS
Burn-in (24 hrs)	PASS
Load Default Parameters	DONE

OPTIONS

OT TIOTIS	and the second s	
Bottom Track	Installed	
SmartPulse HD TM	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Appendix F

Results and Graphical Presentation of Water Quality Monitoring

												lı	n-situ Meas	sureme	nt						Laborato	ry Analysis	S		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	рН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD ₅ (mg/L)
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
Α	10/10/2022	Mid-Ebb	Fine	Moderate	11:18	17	S	1	1	8.41	30.23	28.52	79.4	5.19	5.7	0.18	92.6	6	0.13	0.071	0.10	0.30	200	0.03	<1
Α	10/10/2022	Mid-Ebb	Fine	Moderate	11:18	17	S	1	2	8.42	30.26	28.54	79.2	5.17	5.6	0.14	91.1	6	0.12	0.072	0.13	0.32	180	0.03	<1
Α	10/10/2022	Mid-Ebb	Fine	Moderate	11:18		M	8.5	1	8.31	30.46	28.26	77.1	4.99	5.5	0.23	74.2	6	0.13	0.071	0.17	0.37	190	0.03	<1
A	10/10/2022	Mid-Ebb	Fine		11:18		M	8.5	2	8.32	30.49	28.22	77.2	4.97	5.1	0.24	74.1	6	0.13	0.071	0.19	0.40	210	0.04	<1
A	10/10/2022	Mid-Ebb	Fine	Moderate	11:18		В	16	1	8.34	30.99	28.11	76.4	4.91	5.3	0.14	80.8	7	0.16	0.071	0.26	0.49	200	0.03	<1
A	10/10/2022	Mid-Ebb	Fine	Moderate	11:18		В	16	2	8.37	30.97	28.14	76.2	4.89	5.1	0.16	81.2	7	0.15	0.070	0.27	0.49	190	0.04	<1
В	10/10/2022 10/10/2022	Mid-Ebb	Fine	Moderate	11:34 11:34		S	1	1	8.24	32.04	27.42 27.44	70.2	4.49	4.2 4.6	0.17	203.4	7	0.18	0.071	0.41	0.66	140 170	0.04	<1
B B	10/10/2022	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	11:34		M	7	2	8.22	32.06	27.44	70.4 68.7	4.51 4.32	4.6	0.13	206.1 184.3	7	0.17 0.20	0.071	0.34	0.58 0.44	170	0.04	<1 <1
B	10/10/2022	Mid-Ebb	Fine	Moderate	11:34		M	7	2	8 29	31.74	27.29	68.4	4.32	4.4	0.14	184.7	7	0.20	0.071	0.17	0.44	160	0.04	<1
В	10/10/2022	Mid-Ebb	Fine	Moderate	11:34		B	13	1	8.11		27.14	67.7	4.28	4.6	0.13	199.1	5	0.25	0.071	0.13	0.42	160	0.04	<1
В	10/10/2022	Mid-Ebb	Fine		11:34		В	13	2	8.19	31.96	27.15	67.1	4.27	4.2	0.12	194.6	5	0.25	0.070	0.17	0.43	200	0.03	<1
Č	10/10/2022	Mid-Ebb	Fine	Moderate	11:54		Š	1	1	8.62	30.83	28.46	80.9	5.28	3.5	0.26	74.2	6	0.20	0.065	0.31	0.58	290	0.03	<1
Č	10/10/2022	Mid-Ebb	Fine	Moderate	11:54		Š	1	2	8.66	30.91	28.49	80.7	5.24	3.2	0.21	77.1	5	0.20	0.065	0.30	0.57	200	0.04	<1
Č	10/10/2022	Mid-Ebb	Fine	Moderate	11:54		M	6	1	8.69	30.84	28.24	79.2	5.09	3.9	0.29	90.6	6	0.20	0.065	0.37	0.54	190	0.04	<1
Č	10/10/2022	Mid-Ebb	Fine	Moderate	11:54		M	6	2	8.68	30.81	28.22	79.1	5.08	3.5	0.28	90.8	5	0.19	0.065	0.28	0.53	240	0.04	<1
Č	10/10/2022	Mid-Ebb	Fine	Moderate	11:54	12	В	11	1	8.69	31.07	28.04	78.4	4.99	3.9	0.14	82.4	6	0.19	0.067	0.31	0.56	230	0.03	<1
С	10/10/2022	Mid-Ebb	Fine	Moderate	11:54	12	В	11	2	8.64	31.06	28.06	78.2	4.97	3.6	0.19	82.5	5	0.19	0.065	0.23	0.49	200	0.03	<1
D	10/10/2022	Mid-Ebb	Fine	Moderate	12:11	13	S	1	1	8.71	33.44	28.71	77.4	4.83	2.3	0.17	43.1	5	0.10	0.063	0.17	0.34	350	0.04	<1
D	10/10/2022	Mid-Ebb	Fine	Moderate	12:11		S	1	2	8.72	33.26	28.72	77.2	4.84	2.4	0.13	43.2	5	0.11	0.062	0.18	0.34	240	0.03	<1
D	10/10/2022	Mid-Ebb	Fine	Moderate	12:11		M	6.5	1	8.73	33.97	28.46	75.8	4.71	3.1	0.14	52.6	5	0.19	0.064	0.27	0.52	130	0.03	<1
D	10/10/2022	Mid-Ebb	Fine	Moderate	12:11		M	6.5	2	8.74	33.96	28.48	75.4	4.74	3.3	0.16	52.8	5	0.19	0.065	0.27	0.53	200	0.03	<1
D	10/10/2022	Mid-Ebb	Fine		12:11		В	12	1	8.69	31.43	28.39	70.9	4.52	3.4	0.18	49.7	6	0.17	0.065	0.25	0.49	190	0.04	<1
D	10/10/2022	Mid-Ebb	Fine	Moderate	12:11		В	12	2	8.68	31.29	28.33	70.8	4.51	3.6	0.20	49.9	6	0.18	0.065	0.30	0.55	180	0.04	<1
E	10/10/2022	Mid-Ebb	Fine	Moderate	12:32		S	1	1	8.77	32.44	28.14	76.4	5.01	4.7	0.32	90.4	3	0.24	0.057	0.28	0.57	1200	0.03	<1
<u> </u>	10/10/2022	Mid-Ebb	Fine	Moderate	12:32		S	1	2	8.79	32.39	28.17	76.9	5.06	4.8	0.34	91.2	3	0.23	0.058	0.23	0.51	1100	0.03	<1
E	10/10/2022	Mid-Ebb	Fine	Moderate	12:32		M	8	1	8.64	32.86	28.84	77.1	5.12	4.1 4.2	0.29	93.4	3	0.20	0.058	0.25	0.50	1200	0.04	<1
E F	10/10/2022 10/10/2022	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	12:32 12:32		M B	8 15	2	8.61 8.54	32.88 32.94	28.81 28.77	77.4 74.1	5.11	4.2	0.29	93.3 79.4	7	0.21 0.22	0.058 0.058	0.27 0.26	0.54 0.54	1100 1200	0.04 0.02	<1 <1
F	10/10/2022	Mid-Ebb	Fine	Moderate	12:32		В	15	2	8.51	32.99	28.71	74.1	5.02	4.6	0.34	79.4	7	0.22	0.057	0.20	0.34	1100	0.02	<1
F	10/10/2022	Mid-Ebb	Fine	Moderate	12:47		S	10	1	8.51	31.17	31.15	82.2	5.77	4.5	0.33	74.1	7	0.22	0.062	0.25	0.52	1000	0.01	<1
F	10/10/2022	Mid-Ebb	Fine	Moderate	12:47		Š	1	2	8.52	31.14	31.14	81.6	5.69	4.9	0.26	72.6	6	0.22	0.057	0.15	0.42	1100	0.03	<1
F	10/10/2022	Mid-Ebb	Fine	Moderate	12:47		M	11.5	1	8.59	31.46	31.26	78.6	5.12	4.1	0.28	64.2	6	0.23	0.058	0.18	0.47	1100	0.04	<1
F	10/10/2022	Mid-Ebb	Fine	Moderate	12:47		M	11.5	2	8.57	31.49	31.28	78.4	5.14	4.2	0.29	69.1	6	0.22	0.057	0.18	0.46	1100	0.04	<1
F	10/10/2022	Mid-Ebb	Fine	Moderate	12:47		В	22	1	8.84	31.15	31.13	77.5	5.05	4.9	0.24	68.2	5	0.22	0.057	0.22	0.50	1000	0.03	<1
F	10/10/2022	Mid-Ebb	Fine		12:47		В	22	2	8.81	31.17	31.49	77.6	5.06	5.1	0.21	68.1	5	0.22	0.058	0.17	0.45	1100	0.03	<1
G	10/10/2022	Mid-Ebb	Fine	Moderate			S	1	1	8.11	32.88	28.41	82.4	5.34	4.4	0.17	264.1	5	0.22	0.053	0.27	0.52	730	0.04	<1
G	10/10/2022	Mid-Ebb	Fine	Moderate	13:06		S	1	2	8.13	32.89	28.42	72.6	5.33	4.6	0.17	266.2	4	0.22	0.058	0.20	0.48	790	0.04	<1
G	10/10/2022	Mid-Ebb	Fine	Moderate	13:06		M	11	1	8.46	32.64	28.94	79.1	5.17	4.5	0.11	281.5	4	0.21	0.058	0.13	0.39	690	0.05	<1
G	10/10/2022	Mid-Ebb	Fine	Moderate	13:06		M	11	2	8.41	32.66	28.99	79.2	5.16	4.8	0.12	284.9	4	0.20	0.058	0.14	0.40	760	0.04	<1
G	10/10/2022	Mid-Ebb	Fine	Moderate	13:06		В	21	7	8.24	31.06	28.65	76.4	4.92	4.7	0.14	311.4	6	0.24	0.058	0.17	0.47	700	0.03	<1
G H	10/10/2022	Mid-Ebb	Fine	Moderate	13:06 13:23		В	21	2	8.23	31.04	28.61	76.1	4.91	4.9 3.9	0.12	312.6	<u>6</u>	0.23	0.057	0.18 0.12	0.47	750	0.03	<1
H	10/10/2022	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	13:23		S	1	2	8.14	31.26 31.24	27.93 27.94	90.3 90.4	5.81 5.82	3.9	0.24	137.2 133.4	6	0.16 0.16	0.057 0.057	0.12	0.33	1200 1200	0.03	<1 <1
Н	10/10/2022	Mid-Ebb	Fine	Moderate	13:23		M	9.5	1	8.23	31.24	27.94	86.5	5.82	3.8	0.24	129.9	5	0.16	0.057	0.18	0.40	1100	0.03	<1
H	10/10/2022	Mid-Ebb	Fine	Moderate	13:23		M	9.5	2	8.24	31.38	27.42	86.4	5.42	3.6	0.27	129.8	6	0.14	0.057	0.19	0.35	1300	0.03	<1
H	10/10/2022	Mid-Ebb	Fine	Moderate	13:23		B	18	1	8.20	31.56	27.33	81.7	5.31	3.2	0.27	109.1	6	0.14	0.057	0.16	0.36	1200	0.04	<1
H	10/10/2022	Mid-Ebb	Fine	Moderate	13:23		В	18	2	8.19		27.34	81.7	5.32	3.3	0.29	109.2	6	0.15	0.057	0.15	0.35	1100	0.04	<1
	10/10/2022	IVIIU LUU	TITIC	Moderate	10.20	10		10		0.13	01.04	21.07	01.7	0.02	0.0	0.23	100.2		0.10	0.007	0.10	0.00	1100	U.U T	

Note: 1. ND: Not Detected

												I	n-situ Meas	sureme	nt						Laborato	ry Analysi	s		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	рН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD ₅ (mg/L)
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
А	10/10/2022	Mid-Flood	Fine	Moderate	07:49	15	S	1	1	8.56	31.12	28.57	80.9	5.38	3.9	0.10	77.1	5	0.18	0.071	0.22	0.47	240	0.04	<1
Α	10/10/2022	Mid-Flood	Fine	Moderate	07:49		S	1	2	8.57	31.14	28.64	80.7	5.34	3.8	0.14	72.4	6	0.18	0.071	0.24	0.49	200	0.03	<1
Α	10/10/2022	Mid-Flood	Fine	Moderate	07:49		M	7.5	1	8.69	31.11	28.59	78.8	5.13	4.1	0.12	73.9	5	0.16	0.071	0.25	0.48	180	0.04	<1
A	10/10/2022	Mid-Flood	Fine	Moderate	07:49		M	7.5	2	8.67	31.11	28.58	78.9	5.14	4.2	0.16	73.8	6	0.20	0.071	0.21	0.48	220	0.05	<1
A	10/10/2022	Mid-Flood	Fine	Moderate	07:49		В	14	1	8.81	31.10	28.44	78.1	5.09	4.9	0.16	82.6	5	0.12	0.071	0.24	0.43	240	0.05	<1
A B	10/10/2022 10/10/2022	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	07:49 07:32		B S	14	1	8.82 8.61	31.12	28.49 28.77	77.9 80.2	5.08 5.27	4.8 4.3	0.19 0.06	82.4 241.2	5 6	0.12 0.16	0.071 0.071	0.24 0.26	0.42	180 220	0.06 0.04	<1 <1
B	10/10/2022		Fine	Moderate	07:32		S	1	2	8.62	31.74	28.77	80.2	5.26	4.3	0.06	241.2	6	0.16	0.071	0.26	0.49	190	0.04	<1
В	10/10/2022	Mid-Flood	Fine	Moderate	07:32		M	7	1	8.52	31.57	28.33	77.9	5.10	4.9	0.04	226.1	5	0.10	0.072	0.30	0.33	210	0.05	<1
B	10/10/2022	Mid-Flood	Fine	Moderate	07:32	14	M	7	2	8.53	31.56	28.34	77.6	5.06	4.8	0.19	229.2	6	0.13	0.071	0.28	0.48	180	0.05	<1
В	10/10/2022	Mid-Flood	Fine	Moderate	07:32		В	13	1	8.44	31.44	28.11	76.4	4.92	4.1	0.18	257.3	5	0.16	0.069	0.17	0.40	220	0.09	<1
В	10/10/2022	Mid-Flood	Fine	Moderate	07:32	14	В	13	2	8.41	31.41	28.14	76.3	4.91	4.2	0.16	256.4	6	0.16	0.072	0.15	0.38	200	0.09	<1
С	10/10/2022	Mid-Flood	Fine	Moderate	07:13	12	S	1	1	8.44	31.30	28.53	74.1	4.83	4.1	0.24	24.5	5	0.18	0.067	0.28	0.53	200	0.03	<1
С	10/10/2022	Mid-Flood	Fine	Moderate	07:13		S	1	2	8.39	31.40	28.54	74.9	4.87	4.2	0.29	22.6	5	0.18	0.067	0.31	0.56	180	0.04	<1
С		Mid-Flood	Fine	Moderate			M	6	1	8.57	31.07	28.49	72.3	4.71	4.4	0.17	47.1	5	0.13	0.065	0.16	0.36	250	0.04	1.1
C	10/10/2022	Mid-Flood	Fine	Moderate	07:13		M	6	2	8.56	31.06	28.44	72.1	4.73	4.6	0.19	48.2	5	0.14	0.065	0.21	0.40	200	0.04	1.2
С	10/10/2022	Mid-Flood	Fine	Moderate	07:13		В	11	1	8.48	31.02	28.31	71.4	4.67	5.1	0.14	44.9	4	0.19	0.065	0.22	0.47	230	0.03	1.4
C	10/10/2022	Mid-Flood	Fine	Moderate	07:13	12	В	11	2	8.47	31.03	28.30	71.8	4.69	5.2	0.16	44.1	4	0.19	0.065	0.19	0.45	180	0.03	<1
D	10/10/2022	Mid-Flood	Fine	Moderate	06:57		S	1	1	8.44	32.46	29.12	79.4	5.11	2.9	0.09	208.8	5	0.17	0.25	0.18	0.48	300	0.02	<1
D D	10/10/2022	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	06:57 06:57	14	S M	7	2	8.41	32.51 32.94	29.11 29.06	79.2 78.3	5.06 4.87	3.4	0.11	211.4 234.5	<u>5</u>	0.17 0.17	0.19 0.20	0.18 0.19	0.42	340 390	0.03 0.04	<1 <1
D	10/10/2022	Mid-Flood	Fine	Moderate	06:57		M	7	2	8.37	32.99	29.06	78.1	4.86	3.4	0.14	234.5	5	0.17	0.25	0.19	0.43	320	0.04	<1
D	10/10/2022	Mid-Flood	Fine	Moderate	06:57	14	B	13	1	8.58	33.17	28.71	77.2	4.84	3.1	0.13	234.1	5	0.17	0.25	0.19	0.48	340	0.04	<1
D		Mid-Flood	Fine	Moderate	06:57		В	13	2	8.56	33.16	28.76	77.1	4.83	3.2	0.11	239.2	5	0.16	0.28	0.18	0.40	300	0.03	<1
Ē	10/10/2022	Mid-Flood	Fine	Moderate	06:40		Š	1	1	8.23	30.79	28.49	77.4	5.08	3.6	0.12	264.1	5	0.18	0.053	0.10	0.47	1100	0.03	<1
F		Mid-Flood	Fine	Moderate	06:40		Š	1	2	8.24		28.46	77.9	5.10	3.4	0.17	266.2	5	0.18	0.053	0.24	0.47	1000	0.04	<1
Ē	10/10/2022	Mid-Flood	Fine	Moderate	06:40		M	7	1	8.17	31.22	28.23	72.8	4.81	3.8	0.12	250.1	5	0.18	0.057	0.23	0.47	1100	0.03	<1
Е	10/10/2022	Mid-Flood	Fine	Moderate	06:40	14	M	7	2	8.16	31.26	28.22	72.4	4.79	3.9	0.13	250.3	6	0.18	0.058	0.22	0.60	1000	0.02	<1
E	10/10/2022	Mid-Flood	Fine	Moderate	06:40	14	В	13	1	8.03	31.40	28.07	70.7	4.64	3.9	0.15	243.4	6	0.17	0.058	0.28	0.52	1100	0.04	<1
E	10/10/2022	Mid-Flood	Fine	Moderate	06:40		В	13	2	8.04	31.41	28.04	70.6	4.66	4.1	0.19	233.1	6	0.17	0.057	0.23	0.46	1000	0.04	<1
F	10/10/2022	Mid-Flood	Fine	Moderate	06:18		S	1	1	8.14	30.24	28.22	91.3	6.02	2.7	0.12	140.3	5	0.20	0.057	0.13	0.37	1600	0.03	<1
Ę	10/10/2022	Mid-Flood	Fine	Moderate	06:18		S	1	2	8.19	30.26	28.21	91.4	6.04	2.8	0.13	139.2	5	0.20	0.057	0.14	0.37	1600	0.04	<1
F	10/10/2022	Mid-Flood	Fine	Moderate	06:18		M	9	1	8.24	30.74	28.14	89.1	5.97	2.2	0.14	102.3	6	0.17	0.057	0.33	0.57	1500	0.04	1.8
F	10/10/2022	Mid-Flood	Fine	Moderate	06:18 06:18		M B	9 17	1	8.23	30.77	28.13	89.2 88.1	5.96 5.84	2.3 3.1	0.16	103.4	<u>6</u> 8	0.16 0.15	0.057	0.28 0.21	0.52 0.44	1500	0.04 0.04	1.7
F	10/10/2022 10/10/2022	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	06:18		В	17	2	8.18	30.91	28.04 28.01	88.1 87.9	5.83	3.1	0.14 0.15	128.1 127.7	<u>δ</u>	0.15	0.057 0.057	0.21	0.44	1500 1600	0.04	2.0 1.9
G	10/10/2022	Mid-Flood	Fine	Moderate	05:58		S	1/	1	8.46	30.44	28.43	84.5	5.51	4.2	0.13	90.6	7	0.14	0.057	0.23	0.48	920	0.04	1.9
G	10/10/2022	Mid-Flood	Fine	Moderate	05:58		S	1	2	8.49	30.44	28.44	84.4	5.49	4.1	0.24	90.4	7	0.20	0.057	0.25	0.46	960	0.03	2.0
Ğ	10/10/2022	Mid-Flood	Fine	Moderate	05:58		M	6.5	1	8.65	30.91	28.21	82.7	5.20	4.4	0.21	87.1	8	0.10	0.057	0.21	0.43	900	0.02	1.8
Ğ	10/10/2022	Mid-Flood	Fine	Moderate	05:58		M	6.5	2	8.66	30.92	28.20	82.6	5.19	4.1	0.22	87.2	8	0.11	0.057	0.21	0.43	950	0.03	2.1
Ğ	10/10/2022	Mid-Flood	Fine	Moderate	05:58		В	12	1	8.84	31.11	28.11	82.1	5.08	4.2	0.24	92.6	8	0.12	0.057	0.23	0.43	850	0.03	2.6
G	10/10/2022	Mid-Flood	Fine	Moderate	05:58	13	В	12	2	8.81	31.12	28.14	82.2	5.09	4.1	0.27	92.4	8	0.12	0.058	0.23	0.44	900	0.03	1.8
Н	10/10/2022	Mid-Flood	Fine	Moderate	05:41	19	S	1	1	8.41	30.41	28.51	791	4.92	4.3	0.17	206.1	7	0.12	0.056	0.39	0.57	1200	0.03	1.9
Н	10/10/2022	Mid-Flood	Fine	Moderate	05:41	19	S	1	2	8.42	30.46	28.54	79.3	4.94	4.1	0.18	206.4	7	0.13	0.056	0.35	0.54	1200	0.03	1.9
H	10/10/2022	Mid-Flood	Fine	Moderate	05:41	19	M	9.5	1	8.26	30.60	28.84	77.4	4.71	4.7	0.19	204.1	7	0.12	0.056	0.35	0.52	1100	0.04	1.9
H	10/10/2022	Mid-Flood	Fine	Moderate	05:41	19	M	9.5	2	8.29	30.62	28.86	77.6	4.74	4.8	0.21	201.1	8	0.11	0.056	0.35	0.52	1100	0.04	1.8
H		Mid-Flood	Fine	Moderate	05:41		В	18	1	8.18	30.94	28.94	75.2	4.61	4.4	0.12	223.4	5	0.12	0.057	0.24	0.42	1200	0.03	1.6
Н	10/10/2022	iviia-riood	Fine	Moderate	JU5:41	19	В	18	2	8.17	30.99	28.99	75.3	4.62	4.3	0.13	226.1	5	0.12	0.057	0.20	0.38	1100	0.04	1.7

Note: 1. ND: Not Detected

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 181172WA222096

Page 1 of 18

Test Report on Analysis of Water

Information Supplied by Client

Client : Fugro Technical Services Limited

Client's address : 13/F, Fugro House – KCC2, No. 1 Kwai On Road, Kwai Chung,

N.T., H.K

Project : Contract No. CM 14/2016 Environmental Team for Operational

Environmental Monitoring and Audit for Siu Ho Wan Sewage

Treatment Works

Sample description : Ninety-six samples of water taken by the staff of FTS on

10/10/2022

Client sample ID : Refer to pages 3 to 18

Tests required : 1. Biochemical oxygen demand

Total suspended solids dried at 103°C – 105°C

Ammoniacal Nitrogen content
 Nitrate-Nitrogen content

5. Nitrite-Nitrogen content

6. Total Inorganic Nitrogen content

7. Total phosphorus content

8. Total phosphorus content (Filtered)

9. E. coli count

Laboratory Information

Lab. sample ID

Chemical tests	Microbiological tests
WA222096/1-96	WA222096/1B-96B

	Chemical tests	Microbiological tests
Container	Ninety-six 250 mL and 3 L plastic bottles	Ninety-six sterilized 250 mL plastic bottles with thiosulphate added
Appearance	C	olourless
Temperature		Cooled

Date of receipt of sample: 10/10/2022

Date test commenced: 10/10/2022

Date test completed: 19/10/2022

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 181172WA222096

Page 2 of 18

Test methods used

Biochemical oxygen demand

APHA 23ed, 5210B

Total suspended solids dried at 103°C - 105°C

APHA 23ed. 2540D

Ammoniacal Nitrogen content APHA 23ed. 4500-NH₃ H

Nitrate-Nitrogen content APHA 23ed. 4500-NO₃ I

Nitrite-Nitrogen content

APHA 23ed. 4500-NO₂ A & NO₃ I

Total Inorganic Nitrogen content

In-house method E-T-112 (By Calculation)

Total phosphorus content

APHA 17ed. 4500-PB.5 (Digestion) & In-house method E-T-056 (Determination)

Total phosphorus content (Filtered)

APHA 17ed. 4500-PB.5 (Digestion) &
In-house method E-T-056 (Determination)

E. coli count

The Bacteriological Examination of Drinking Water Supplies 1982, DoE (1983) Membrane Filtration Procedure: Sections 7.8, 7.9.4.2 Bacterial Confirmation: Section 7.9.4.4 & in-situ urease test

GEN02/0819

FUGRO TECHNICAL SERVICES LIMITED

Hong Kong Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Page 3 of 18

Results:

Report No.: 181172WA222096

Test parameters			Sample id	Sample identification		
	A/S/E	A/S/E/Dup	A/M/E	A/M/E/Dup	A/B/E	A/B/E/Dup
1. Biochemical oxygen demand, mg/L	₹	₹	₹	₹	₹	▽
2. Total suspended solids dried at 103°C - 105°C, mg/L	9	9	9	9		7
3. Ammoniacal nitrogen content, mg/L	0.13	0.12	0.13	0.13	0.16	0.15
4. Nitrate-Nitrogen content, mg/L	0.10	0.13	0.17	0.19	0.26	0.27
5. Nitrite-Nitrogen content, mg/L	0.071	0.072	0.071	0.071	0.071	0.070
6. Total Inorganic Nitrogen content, mg/L	0.30	0.32	0.37	0.40	0.49	0.49
7. Total phosphorus content, mg/L	0.03	0.03	0.03	0.04	0.03	0.04
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	0.01	0.01	0.02	0.02
9. E. coli count, cfu/100ml	2.0×10^{2}	1.8 x 10 ²	1.9 x 10 ²	2.1 × 10 ²	2.0×10^{2}	1.9 × 10 ²

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L) 2. Temperature of ice-box when samples being received were 5.3°C.

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories

الد (حمد)

Date

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT

Page 4 of 18

Report No.: 181172WA222096

Results:

Test parameters			Sample ic	Sample identification		
	B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup	B/B/E	B/B/E/Dup
1. Biochemical oxygen demand, mg/L	₹	₹	₹	₹	₹	⊽
2. Total suspended solids dried at 103°C - 105°C, mg/L	7	7	7	7	5	2
3. Ammoniacal nitrogen content, mg/L	0.18	0.17	0.20	0.20	0.25	0.25
4. Nitrate-Nitrogen content, mg/L	0.41	0.34	0.17	0.15	0.17	0.11
5. Nitrite-Nitrogen content, mg/L	0.071	0.071	0.071	0.071	0.070	0.070
6. Total Inorganic Nitrogen content, mg/L	99.0	0.58	0.44	0.42	0.49	0.43
7. Total phosphorus content, mg/L	0.04	0.04	0.04	0.04	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	0.02	0.02	0.02	0.02
9. E. coli count, cfu/100ml	1.4×10^2	1.7 × 10 ²	1.7×10^2	1.6 × 10 ²	1.6 x 10 ²	2.0 × 10 ²

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L) 2. Temperature of ice-box when samples being received were 5.3°C.

Certified by

Assistant General Manager - Laboratories 100 100 m

Approved Signatory: HO Kin Man, John

Date

Note: This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT

Page 5 of 18

Results:

Report No.: 181172WA222096

Test parameters			Sample id	Sample identification		
	C/S/E	C/S/E/Dup	C/M/E	C/M/E/Dup	C/B/E	C/B/E/Dup
1. Biochemical oxygen demand, mg/L	₹	₹	▽	₹	₹	⊽
2. Total suspended solids dried at 103°C - 105°C, mg/L	9	5	9	5	9	2
3. Ammoniacal nitrogen content, mg/L	0.20	0.20	0.20	0.19	0.19	0.19
4. Nitrate-Nitrogen content, mg/L	0.31	0:30	0.37	0.28	0.31	0.23
5. Nitrite-Nitrogen content, mg/L	0.065	0.065	0.065	0.065	0.067	0.065
6. Total Inorganic Nitrogen content, mg/L	0.58	0.57	0.54	0.53	0.56	0.49
7. Total phosphorus content, mg/L	0.03	0.04	0.04	0.04	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	0.02	0.02	0.02	0.02	0.02	0.01
9. E. coli count, cfu/100ml	2.9×10^{2}	2.0×10^{2}	1.9×10^2	2.4×10^{2}	2.3×10^{2}	2.0×10^{2}

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L)

2. Temperature of ice-box when samples being received were 5.3°C.

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager - Laboratories 102/11/20

Date

5 Lok Yi Street, Tai Lam Fugro Development Centre Hong Kong Tuen Mun, NT

Page 6 of 18

Report No.: 181172WA222096

Results:

D/B/E/Dup 0.065 0.18 0.55 0.02 0.30 0.04 V 9 D/B/E 0.065 0.25 0.17 0.49 0.04 0.02 V 9 D/M/E/Dup 0.065 0.19 0.03 0.02 Sample identification 0.27 0.53 V 2 D/M/E 0.064 0.19 0.52 0.03 0.02 0.27 7 2 D/S/E/Dup 0.062 0.11 0.34 0.03 0.01 V 2 D/S/E 0.063 0.10 0.17 0.34 0.04 0.01 V 2 2. Total suspended solids dried at 103°C - 105°C, mg/L 8. Total phosphorus content (Filtered), mg/L 6. Total Inorganic Nitrogen content, mg/L 3. Ammoniacal nitrogen content, mg/L 1. Biochemical oxygen demand, mg/L Test parameters 7. Total phosphorus content, mg/L 4. Nitrate-Nitrogen content, mg/L 5. Nitrite-Nitrogen content, mg/L

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L) 2. Temperature of ice-box when samples being received were 5.3°C.

 1.8×10^{2}

 1.9×10^{2}

 2.0×10^{2}

 1.3×10^{2}

 2.4×10^{2}

 3.5×10^{2}

9. E. coli count, cfu/100ml

Certified by

Assistant General Manager - Laboratories Approved Signatory: HO Kin Man, John D(11 /2021

Date

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT

Page 7 of 18

Report No.: 181172WA222096

Results:

Test parameters			Sample id	Sample identification		
	E/S/E	E/S/E/Dup	E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
1. Biochemical oxygen demand, mg/L	₹	₹	₹	₹	₹	₹
2. Total suspended solids dried at 103°C - 105°C, mg/L	ю	က	က	က	7	7
3. Ammoniacal nitrogen content, mg/L	0.24	0.23	0.20	0.21	0.22	0.22
4. Nitrate-Nitrogen content, mg/L	0.28	0.23	0.25	0.27	0.26	0.22
5. Nitrite-Nitrogen content, mg/L	0.057	0.058	0.058	0.058	0.058	0.057
6. Total Inorganic Nitrogen content, mg/L	0.57	0.51	0.50	0.54	0.54	0.49
7. Total phosphorus content, mg/L	0.03	0.03	0.04	0.04	0.02	0.03
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	0.01	0.01	0.02	0.01
9. E. coli count, cfu/100ml	1.2 x 10 ³ *	1.1 × 10 ³ *	1.2 × 10 ³ *	1.1 x 10 ³ *	$1.2 \times 10^{3} *$	1.1 x 10 ³ *

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L)

2. Temperature of ice-box when samples being received were 5.3°C.

3.* Estimated for E. coli count means the colonies counted was not in the range of 10 to 100 cfu/100ml

Approved Signatory: HO Kin Man, John Assistant General Manager - Laboratories F(11 (202)

Certified by

Date

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page 8 of 18

Report No.: 181172WA222096

Results:

Test narameters			Sample id	Sample identification		
	F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E	F/B/E/Dup
1. Biochemical oxygen demand, mg/L	⊽	₹	₹	₹	₹	₹
2. Total suspended solids dried at 103°C - 105°C, mg/L	7	9	9	9	5	5
3. Ammoniacal nitrogen content, mg/L	0.21	0.22	0.23	0.22	0.22	0.22
4. Nitrate-Nitrogen content, mg/L	0.25	0.15	0.18	0.18	0.22	0.17
5. Nitrite-Nitrogen content, mg/L	0.062	0.057	0.058	0.057	0.057	0.058
6. Total Inorganic Nitrogen content, mg/L	0.52	0.42	0.47	0.46	0.50	0.45
7. Total phosphorus content, mg/L	0.03	0.03	0.04	0.04	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	0.02	0.02	0.01	0.01
9. E. coli count, cfu/100ml	$1.0 \times 10^3 *$	1.1 x 10 ³ *	1.1 × 10 ³ *	1.1 x 10 ³ *	1.0 × 10 ³ *	1.1 x 10 ³ *

1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L) Remarks:

2. Temperature of ice-box when samples being received were 5.3°C.

3.* Estimated for E. coli count means the colonies counted was not in the range of 10 to 100 cfu/109m

Assistant General Manager - Laboratories Approved Signatory: HO Kin Man, John P(11/201)

Date

Certified by

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT

Page 9 of 18

Results:

Report No.: 181172WA222096

Test parameters			Sample id	Sample identification		
	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup	G/B/E	G/B/E/Dup
1. Biochemical oxygen demand, mg/L	⊽	⊽	₹	₹	⊽	₹
2. Total suspended solids dried at 103°C - 105°C, mg/L	2	4	4	4	9	9
3. Ammoniacal nitrogen content, mg/L	0.22	0.22	0.21	0.20	0.24	0.23
4. Nitrate-Nitrogen content, mg/L	0.27	0.20	0.13	0.14	0.17	0.18
5. Nitrite-Nitrogen content, mg/L	0.053	0.058	0.058	0.058	0.058	0.057
6. Total Inorganic Nitrogen content, mg/L	0.52	0.48	0.39	0.40	0.47	0.47
7. Total phosphorus content, mg/L	0.04	0.04	0.05	0.04	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	0.01	0.02	0.02	0.02	0.02	0.02
9. E. coli count, cfu/100ml	7.3×10^{2}	7.9 x 10 ²	6.9×10^{2}	7.6×10^{2}	7.0×10^{2}	7.5×10^{2}

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L) 2. Temperature of ice-box when samples being received were 5.3°C.

Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories Certified by

Date

Note: This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

Fugro Development Centre Hong Kong 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Page 10 of 18

Report No.: 181172WA222096

Results:

Tast naramatars			Sample id	Sample identification		
	H/S/E	H/S/E/Dup	H/M/E	H/M/E/Dup	H/B/E	H/B/E/Dup
1. Biochemical oxygen demand, mg/L	⊽	₹	₹	₹	₹	₹
2. Total suspended solids dried at 103°C - 105°C, mg/L	9	9	2	9	9	9
3. Ammoniacal nitrogen content, mg/L	0.16	0.16	0.14	0.14	0.14	0.15
4. Nitrate-Nitrogen content, mg/L	0.12	0.18	0.19	0.15	0.16	0.15
5. Nitrite-Nitrogen content, mg/L	0.057	0.057	0.057	0.057	0.057	0.057
6. Total Inorganic Nitrogen content, mg/L	0.33	0.40	0.38	0.35	0.36	0.35
7. Total phosphorus content, mg/L	0.03	0.03	0.03	0.04	0.04	0.04
8. Total phosphorus content (Filtered), mg/L	0.02	0.02	0.02	0.02	0.02	0.02
9. E. coli count, cfu/100ml	$1.2 \times 10^{3} *$	1.2 × 10 ³ *	1.1 × 10 ³ *	1.3 × 10 ³ *	1.2 × 10 ³ *	1.1 × 10 ³ *

1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L) Remarks:

2. Temperature of ice-box when samples being received were 5.3°C.

3.* Estimated for E. coli count means the colonies counted was not in the range of 10 to 100 cfu/100ml

Approved Signatory: HO Kin Man, John Assistant General Manager - Laboratories Certified by

Date

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page 11 of 18

Report No.: 181172WA222096

Results:

Test parameters			Sample ic	Sample identification		
	A/S/F	A/S/F/Dup	A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup
1. Biochemical oxygen demand, mg/L	₹	⊽	⊽	∇	₹	⊽
2. Total suspended solids dried at 103°C - 105°C, mg/L	ı,	9	5	9	5	2
3. Ammoniacal nitrogen content, mg/L	0.18	0.18	0.16	0.20	0.12	0.12
4. Nitrate-Nitrogen content, mg/L	0.22	0.24	0.25	0.21	0.24	0.24
5. Nitrite-Nitrogen content, mg/L	0.071	0.071	0.071	0.071	0.071	0.071
6. Total Inorganic Nitrogen content, mg/L	0.47	0.49	0.48	0.48	0.43	0.42
7. Total phosphorus content, mg/L	0.04	0.03	0.04	0.05	0.05	90.0
8. Total phosphorus content (Filtered), mg/L	0.02	0.02	0.02	0.02	0.02	0.01
9. E. coli count, cfu/100ml	2.4×10^{2}	2.0×10^{2}	1.8×10^{2}	2.2×10^{2}	2.4×10^{2}	1.8×10^{2}

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L) 2. Temperature of ice-box when samples being received were 5.3°C.

Certified by

Assistant General Manager - Laboratories 1000) 11/2

Approved Signatory: HO Kin Man, John

Date

5 Lok Yi Street, Tai Lam Fugro Development Centre Tuen Mun, NT Hong Kong

Page 12 of 18

Report No.: 181172WA222096

Results:

Test parameters			Sample id	Sample identification		
	B/S/F	B/S/F/Dup	B/M/F	B/M/F/Dup	B/B/F	B/B/F/Dup
1. Biochemical oxygen demand, mg/L	₹	⊽	⊽	₹	₹	₹
2. Total suspended solids dried at 103°C - 105°C, mg/L	9	9	5	9		9
3. Ammoniacal nitrogen content, mg/L	0.16	0.16	0.13	0.13	0.16	0 16
4. Nitrate-Nitrogen content, mg/L	0.26	0:30	0.22	0.28	0.17	2 0
5. Nitrite-Nitrogen content, mg/L	0.071	0.072	0.071	0.071	0.069	0.07
6. Total Inorganic Nitrogen content, mg/L	0.49	0.53	0.42	0.48	0.40	0.38
7. Total phosphorus content, mg/L	0.04	0.03	0.05	0.05	60.0	00.0
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	0.01	0.01	0.02	0.02
9. E. coli count, cfu/100ml	2.2×10^{2}	1.9 x 10 ²	2.1 × 10 ²	1.8 x 10 ²	2.2 × 10 ²	20 x 10 ²

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L) 2. Temperature of ice-box when samples being received were 5.3°C.

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager - Laboratories Vill (2001

Date

Note: This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

5 Lok Yi Street, Tai Lam Fugro Development Centre Hong Kong Tuen Mun, NT

Page 13 of 18

Report No.: 181172WA222096

Results:

Test parameters			Sample ic	Sample identification		
	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F	C/B/F/Dup
1. Biochemical oxygen demand, mg/L	₹	⊽	1.1	1.2	1.4	₹
2. Total suspended solids dried at 103°C - 105°C, mg/L	5	5	2	5	4	4
3. Ammoniacal nitrogen content, mg/L	0.18	0.18	0.13	0.14	0.19	0.19
4. Nitrate-Nitrogen content, mg/L	0.28	0.31	0.16	0.21	0.22	0.19
5. Nitrite-Nitrogen content, mg/L	0.067	0.067	0.065	0.065	0.065	0.065
6. Total Inorganic Nitrogen content, mg/L	0.53	0.56	0.36	0.40	0.47	0.45
7. Total phosphorus content, mg/L	0.03	0.04	0.04	0.04	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	0.02	0.02	0.02	0.02	0.02	0.01
9. E. coli count, cfu/100ml	2.0×10^{2}	1.8 x 10 ²	2.5×10^{2}	2.0 × 10 ²	2.3×10^{2}	1.8 x 10 ²

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L) 2. Temperature of ice-box when samples being received were 5.3°C.

Certified by : 1

Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories 16/11/202

Date

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT

Page 14 of 18

Report No.: 181172WA222096

Results:

Test parameters			Sample ic	Sample identification		
	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup	D/B/F	D/B/F/Dup
1. Biochemical oxygen demand, mg/L	₹	₹	₹	₹	▽	₹
2. Total suspended solids dried at 103°C - 105°C, mg/L	5	5	22	2	5	5
3. Ammoniacal nitrogen content, mg/L	0.17	0.17	0.17	0.17	0.16	0.16
4. Nitrate-Nitrogen content, mg/L	0.18	0.18	0.19	0.19	0.18	0.18
5. Nitrite-Nitrogen content, mg/L	0.25	0.19	0.20	0.25	0.25	0.28
6. Total Inorganic Nitrogen content, mg/L	0.48	0.42	0.43	0.49	0.48	0.51
7. Total phosphorus content, mg/L	0.02	0.03	0.04	0.04	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	0.02	0.02	0.02	0.02
9. E. coli count, cfu/100ml	3.0×10^{2}	3.4 x 10 ²	3.9 x 10 ²	3.2×10^{2}	3.4 × 10 ²	3.0 × 10 ²

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L) 2. Temperature of ice-box when samples being received were 5.3°C.

Assistant General Manager - Laboratories Approved Signatory: HO Kin Man, John Certified by

Date

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT

Page 15 of 18

Report No.: 181172WA222096

Results:

Test parameters			Sample id	Sample identification		
	E/S/F	E/S/F/Dup	E/M/F	E/M/F/Dup	E/B/F	E/B/F/Dup
1. Biochemical oxygen demand, mg/L	₹	₹	⊽	₹	₹	₹
2. Total suspended solids dried at 103°C - 105°C, mg/L	5	5	c)	9	9	9
3. Ammoniacal nitrogen content, mg/L	0.18	0.18	0.18	0.18	0.17	0.17
4. Nitrate-Nitrogen content, mg/L	0.24	0.24	0.23	0.22	0.28	0.23
5. Nitrite-Nitrogen content, mg/L	0.053	0.053	0.057	0.058	0.058	0.057
6. Total Inorganic Nitrogen content, mg/L	0.47	0.47	0.47	0.46	0.52	0.46
7. Total phosphorus content, mg/L	0.03	0.04	0.03	0.02	0.04	0.04
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	0.01	0.01	0.02	0.02
9. E. coli count, cfu/100ml	1.1 x 10 ³ *	1.0 × 10 ³ *	1.1 x 10 ³ *	1.0 x 10 ³ *	1.1 × 10 ³ *	1.0 × 10 ³ *

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L)

2. Temperature of ice-box when samples being received were 5.3°C.

3.* Estimated for E. coli count means the colonies counted was not in the range of 10 to 100 cfu/100ml

Assistant General Manager - Laboratories Approved Signatory: HO Kin Man, John E[11(22) Certified by

Date

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT

Page 16 of 18

Results:

Report No.: 181172WA222096

Test parameters			Sample id	Sample identification		
	F/S/F	F/S/F/Dup	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup
1. Biochemical oxygen demand, mg/L		₹	1.8	1.7	2.0	10
2. Total suspended solids dried at 103°C - 105°C, mg/L	5	2	9	9	8	7
3. Ammoniacal nitrogen content, mg/L	0.20	0.20	0.17	0.16	0.15	0.14
4. Nitrate-Nitrogen content, mg/L	0.13	0.14	0.33	0.28	0.21	0.23
5. Nitrite-Nitrogen content, mg/L	0.057	0.057	0.057	0.057	0.057	0.057
6. Total Inorganic Nitrogen content, mg/L	0.37	0.37	0.57	0.52	0.44	0.46
7. Total phosphorus content, mg/L	0.03	0.04	0.04	0.04	0.04	0.04
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	0.02	0.02	0.01	0.01
9. E. coli count, cfu/100ml	1.6 x 10 ³ *	1.6 x 10 ³ *	1.5 x 10 ³ *	1.5 x 10 ³ *	1.5 × 10 ³ *	16 x 10 ³ *

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L)

2. Temperature of ice-box when samples being received were 5.3°C.

3.* Estimated for E. coli count means the colonies counted was not in the range of 10 to 100 cfu/10gm

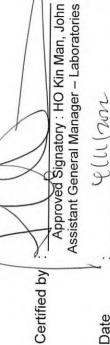
Certified by

Assistant General Manager - Laboratories

Approved Signatory: HO Kin Man, John

Date

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT


Page 17 of 18

Report No.: 181172WA222096

Results:

Test parameters			Sample ic	Sample identification		
	G/S/F	G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup
1. Biochemical oxygen demand, mg/L	6.1	2.0	1.8	2.1	2.6	8,
2. Total suspended solids dried at 103°C - 105°C, mg/L	7	7	∞	80	ω	2 ∞
3. Ammoniacal nitrogen content, mg/L	0.20	0.13	0.20	0.11	0.12	0.12
4. Nitrate-Nitrogen content, mg/L	0.22	0.25	0.21	0.21	0.23	0.23
5. Nitrite-Nitrogen content, mg/L	0.057	0.058	0.057	0.057	0.057	0.058
6. Total Inorganic Nitrogen content, mg/L	0.48	0.51	0.43	0.43	0.43	0.44
7. Total phosphorus content, mg/L	0.03	0.02	0.03	0.03	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	0.01	0.02	0.02	0.02	0.02	0.02
9. E. coli count, cfu/100ml	9.2×10^{2}	9.6 x 10 ²	9.0 x 10 ²	9.5 x 10 ²	8.5 × 10 ²	9.0 × 10 ²

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L) 2. Temperature of ice-box when samples being received were 5.3°C.

Date

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT

Page 18 of 18

Report No.: 181172WA222096

Results:

Test parameters			Sample id	Sample identification		
	H/S/F	H/S/F/Dup	H/M/F	H/M/F/Dup	H/B/F	H/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.9	1.9	1.9	1.8	1.6	1.7
2. Total suspended solids dried at 103°C - 105°C, mg/L	7	7	7	80	2	2
3. Ammoniacal nitrogen content, mg/L	0.12	0.13	0.12	0.11	0.12	0.12
4. Nitrate-Nitrogen content, mg/L	0.39	0.35	0.35	0.35	0.24	0.20
5. Nitrite-Nitrogen content, mg/L	0.056	0.056	0.056	0.056	0.057	0.057
6. Total Inorganic Nitrogen content, mg/L	0.57	0.54	0.52	0.52	0.42	0.38
7. Total phosphorus content, mg/L	0.03	0.03	0.04	0.04	0.03	0.04
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	0.01	0.01	0.02	0.01
9. E. coli count, cfu/100ml	1.2 × 10 ³ *	1.2 x 10 ³ *	1.1 x 10 ³ *	1.1 × 10 ³ *	1.2 x 10 ³ *	1.1 × 10 ³ *

Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) + Ammoniacal Nitrogen Content (in mg/L)

2. Temperature of ice-box when samples being received were 5.3°C.

3.* Estimated for E. coli count means the colonies counted was not in the range of 10 to 100 cfu/100/ml.

8

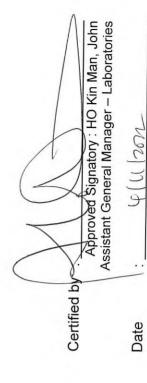
Certified by

Assistant General Manager - Laboratories Approved Signatory: HO Kin Man, John

Date

** End of Report **

Note: This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.


Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

FUGRO TECHNICAL SERVICES LIMITED

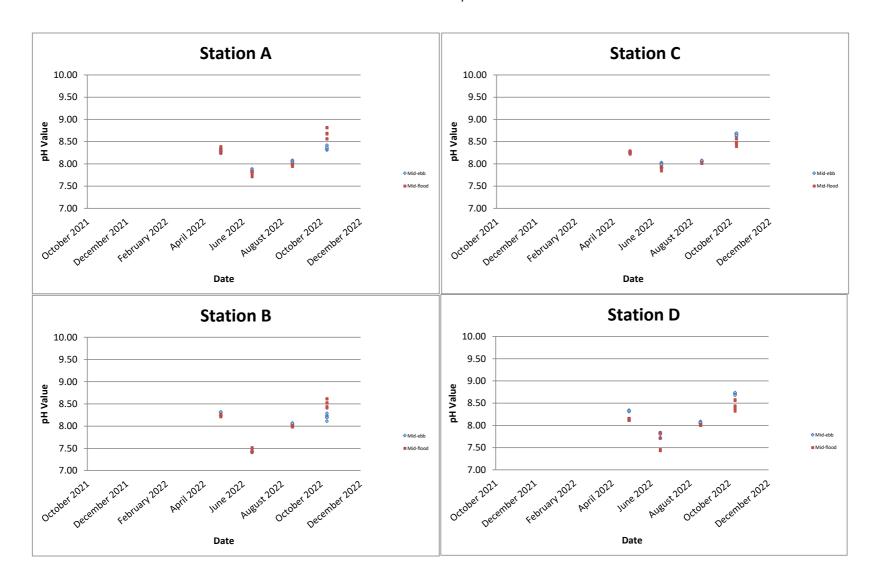
Note

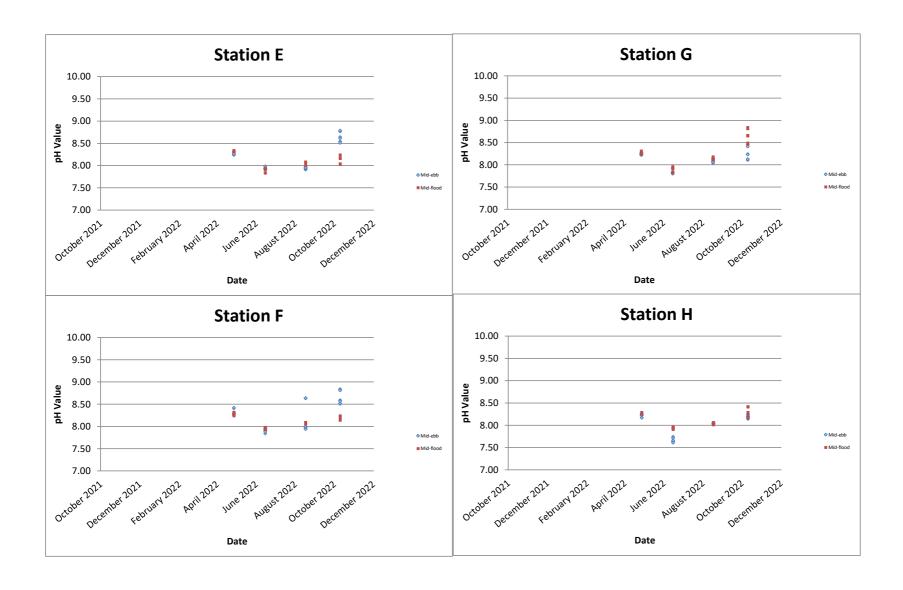
Laboratory Duplicate, Quality Assurance/Quality Control Report

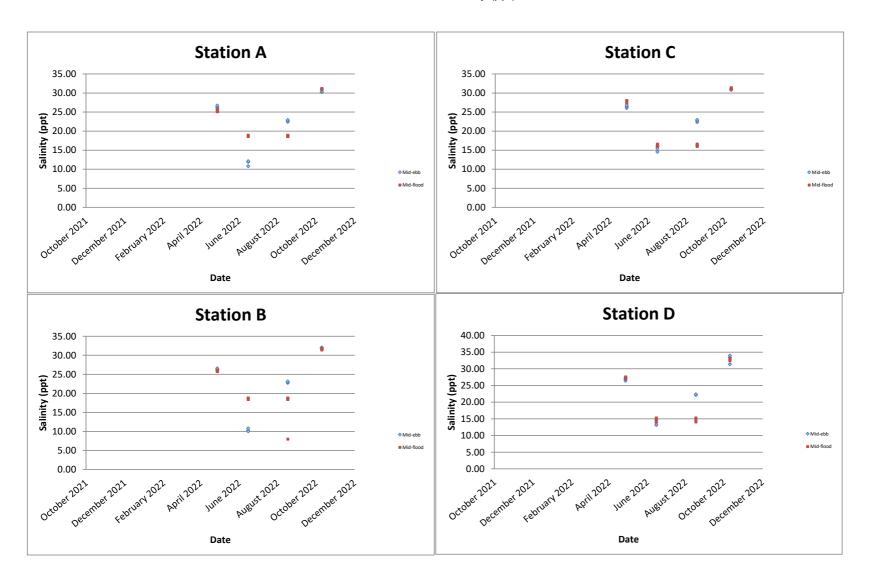
Diochocia		,									
DIOCHELLIC	al oxyge	Diocilernical oxygen demand, mg/L				Nitrate-Nitrogen content mg/l	oden cor	itent ma/l			
Reporting		Chiko	ode I	Catonia. O. motor		1		1 6 1			
5 11 11 1	Blank	Spinds	Labol	Laboratory Duplicate		Reporting	Dionic	Spike	Labo	Laboratory Duplicate	
CIMIT		recovery (%)	Original result	Duplicate result	RPD%	Limit	DIALIK	recovery (%)	Original result	Duplicate result	RPD%
			0.76	0.71	6.80				3500	מונים	2
			99.0	9.0	9.52						
_	√	1	0.37	0.35	5.56	0.005	ī	1	1		
			0.86	0.85	1.17						
			1.65	1.68	1.80						
Total suspe	s papua	olids dried at 10	Total suspended solids dried at 103°C - 105°C, mg/L	/F		Nitrite-Nitrogen content. mg/L	gen cont	ent. ma/L			
Reporting	Blank	Spike	Labor	Laboratory Duplicate		Reporting	i	Snike	l about	l ahoratory Dunlicata	
Limit		recovery (%)	Original recult	Publicato rocult DDD9/	יייטעמם	i.m.i	Blank	Charles of the control of the contro	- Labor	aroly publicate	
		(2) (2)	Original Icour		SUAN SUAN			recovery (%)	Original result	Original result Duplicate result RPD%	RPD%
		93.38	5.25	5.6	6.45		<0.005	107.50	0.063	0.062	1 60
		101.00	4.7	4.15	12.43		<0.005	108.75	0.057	0.058	177
	V	100.27	5.85	5.7	2.60	0.005	<0.005	110.25	0.074	0.000	1 7 7
		96.05	5.1	4.85	5.03		<0.005	108.25	0.07	0.074	4.4
		101.25	5.05	5.55	9.43		<0.005	110.25	0.037	0.030	4/.
							2000	01:01	0.007	0.007	0.00

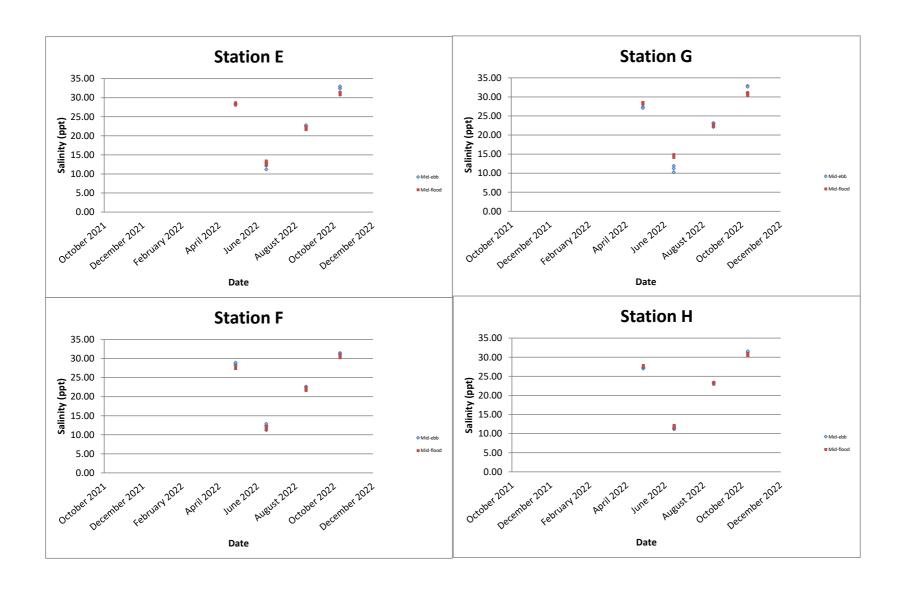
Note: This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

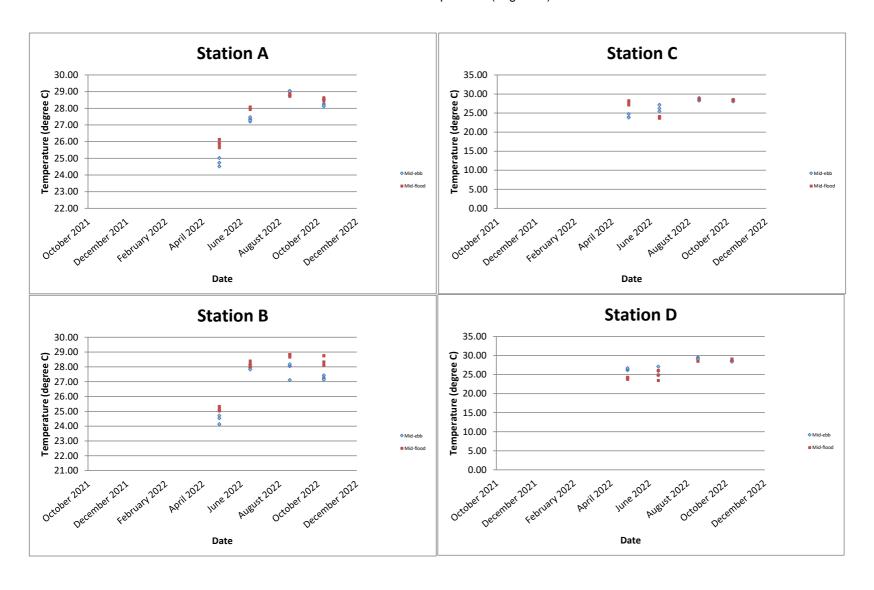
Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

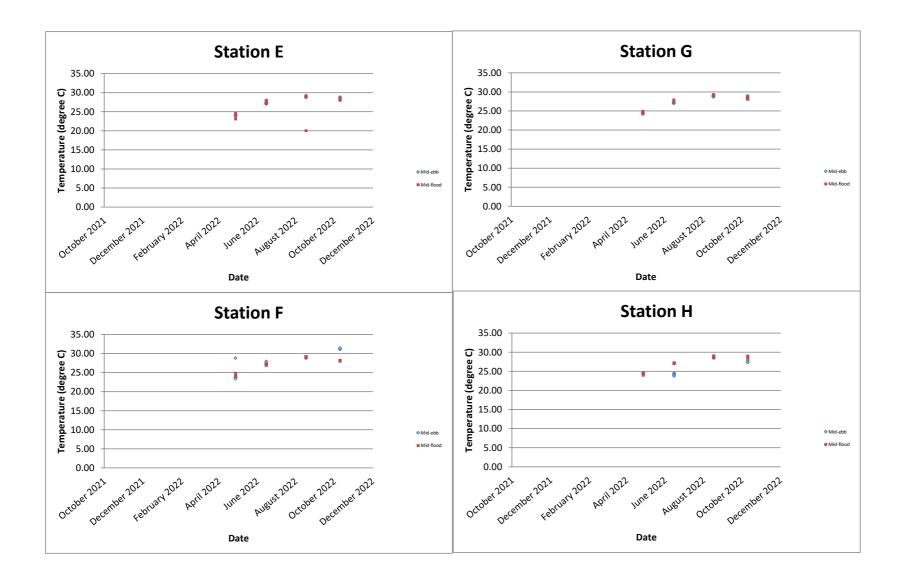

Note

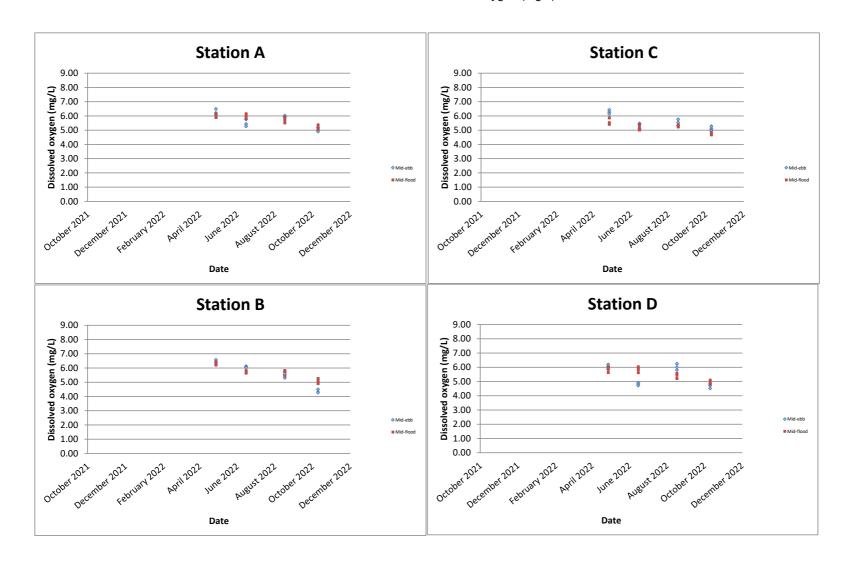

Laboratory Duplicate, Quality Assurance/Quality Control Report

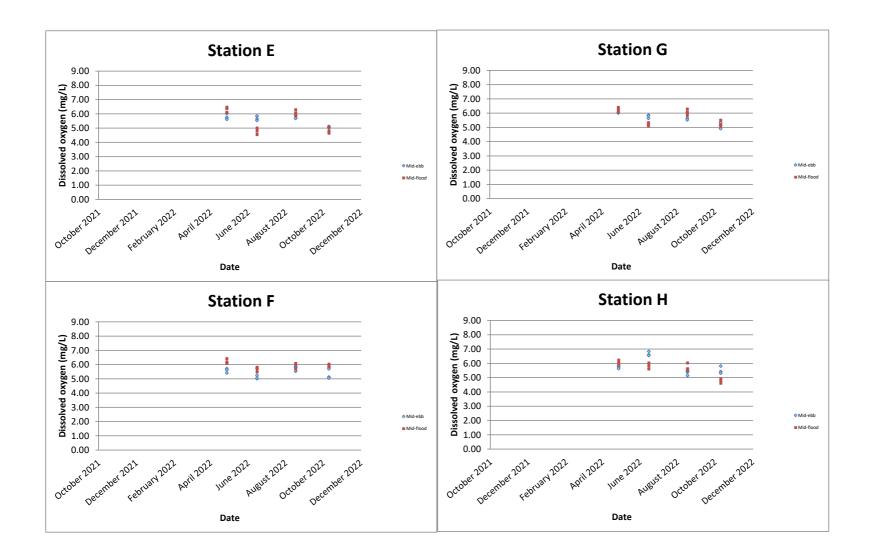

Ammoniac	al Nitrog	Ammoniacal Nitrogen content, mg/L	,/L			Total Inord	anic Nitro	Total Inordanic Nitrogen content ma/l	1/20		
Reporting	Blank	Spike		Laboratory Duplicate		Reporting		Spike		Laboratory Duplicate	
Limit		recovery (%)	Original result	Duplicate result	RPD%	Limit	Blank	recovery (%)	Original regult	Dunlicate recult	W0000
	<0.005	111.17	0.111	0.106	4.61				original codult	Duplicate Lesqui	8012
	<0.005	112.33	0.203	0.205	0.98						
0.005	<0.005	107.33	0.16	0.161	0.62	0.005		1	Ü		
	<0.005	110.92	0.18	0.172	4.55						
	<0.005	101.42	0.124	0.12	3.28						
Total phos	phorus c	Total phosphorus content, mg/L				Total phosp	horus co	Total phosphorus content (Filtered)) ma/L		
Reporting	Blank		Labo	Laboratory Duplicate		Reporting	ī	Spike		Laboratory Dunlicate	
Limit		reco	Original result	Duplicate result	RPD%	Limit	Blank	recovery (%)	Original result	Duplicate result	RPD%
	<0.01	9.66	0.027	0.025	7.69		<0.01	99.5	0.013	0.014	7 41
	<0.01	98.2	0.043	0.045	4.55		<0.01	9.66	0.017	0.017	000
0.01	<0.01	2.66	0.089	0.092	3.31	0.01	<0.01	99.1	0.017	0.017	00.00
Ĭ	<0.01	100.1	0.037	0.034	8.45		<0.01	99.5	0.015	0.014	00.0
	<0.01	98.8	0.034	0.036	5.71		<0.01	1003	0.000	0.01	00.0
E. coli count, cfu/100ml	1t, cfu/10	0ml						200	4.0.0	0.013	0.30
Reporting	Blank	Spike	Labo	Laboratory Duplicate							
Limit		recovery (%)	Original result	Duplicate result	Precision						
			2.2×10^2	2.6×10^{2}	16.67						
			7.2×10^{2}	7.9×10^{2}	9.27				(
-	0	1	2.1×10^{2}	1.8×10^{2}	15.38					(
			1.6×10^3	1.5×10^3	6.45) 1 /	/	
			1.1×10^3	1.2×10^3	8.70				7	1	
								Certified by	X V		
										Approved Signatory: HO Kin Man, John	lan, John
									Assistant Gene	Assistant General Manager - Laboratories	oratories

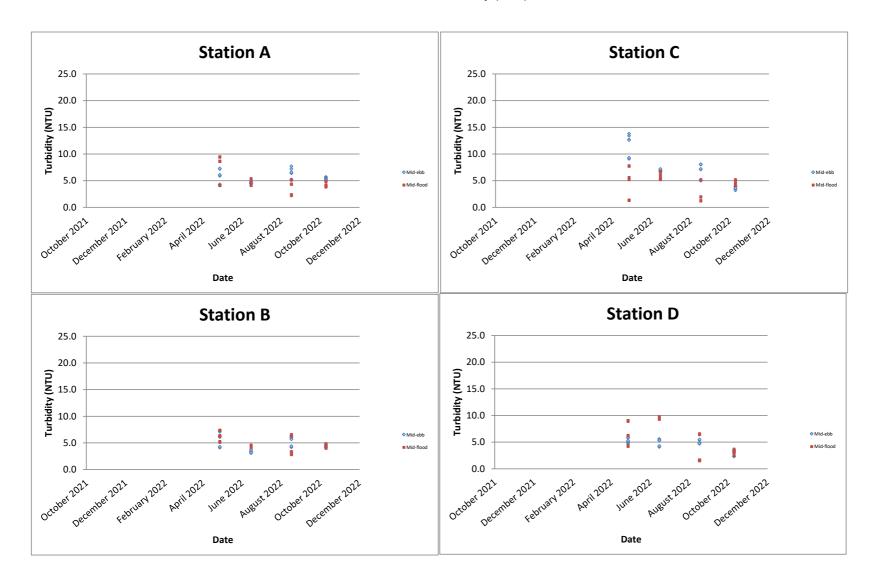

Note: This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

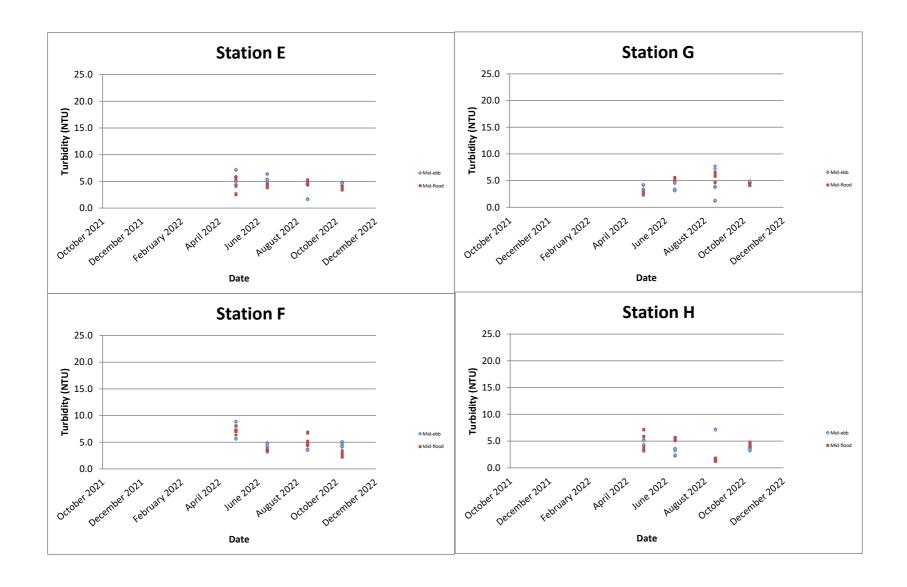

Date

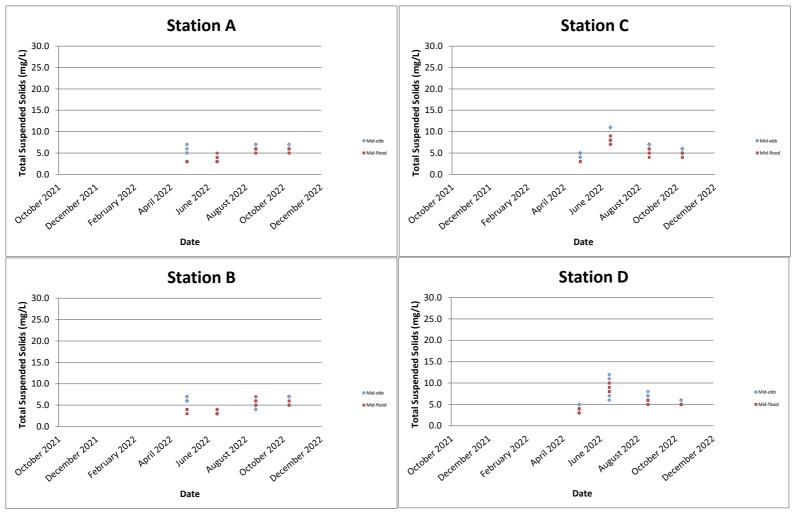


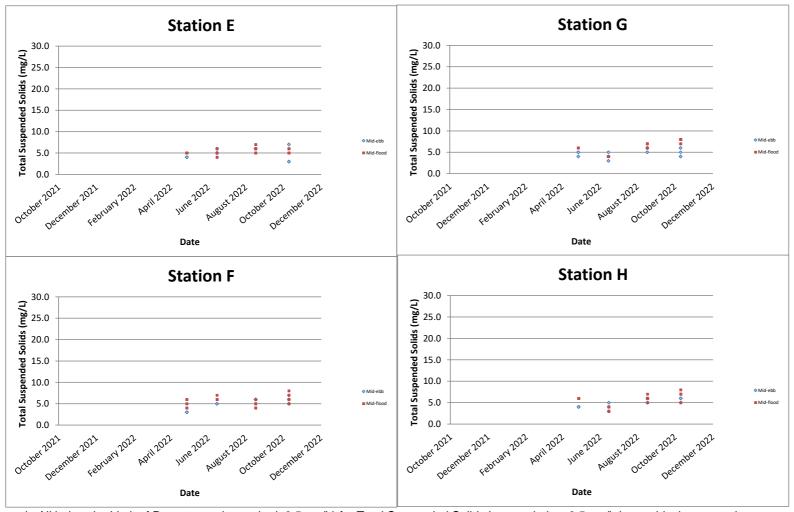


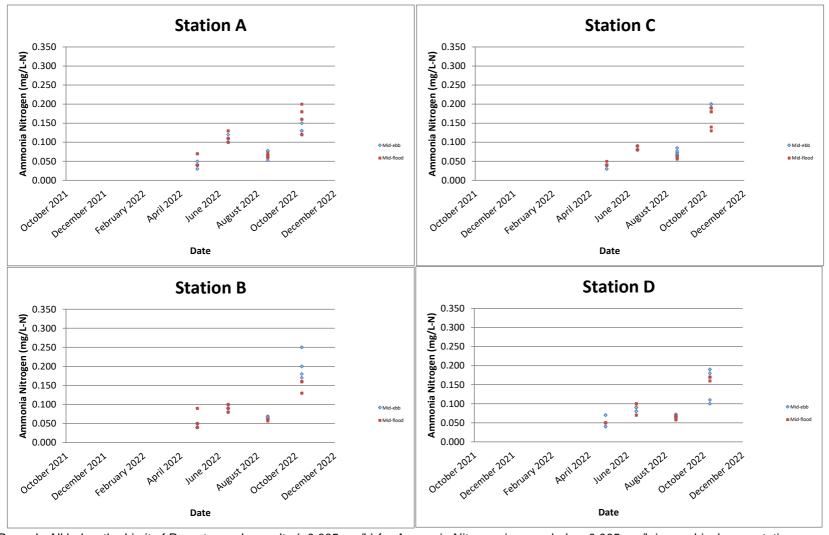


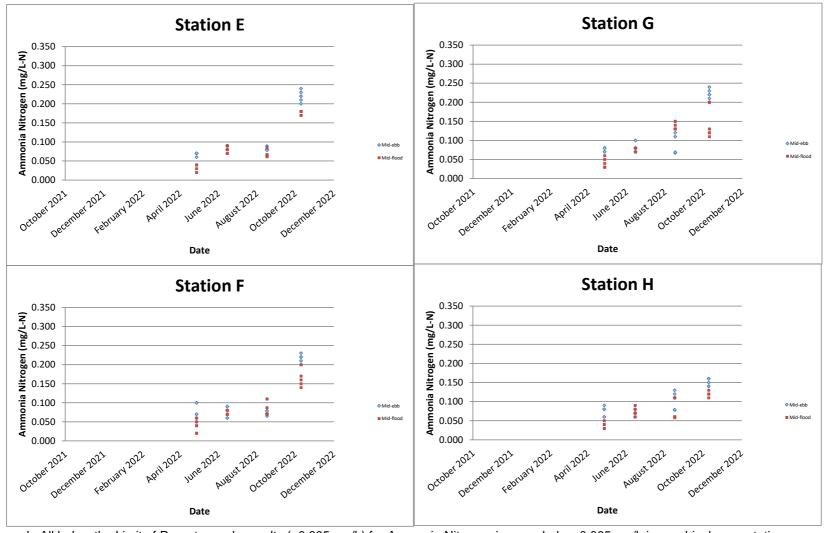


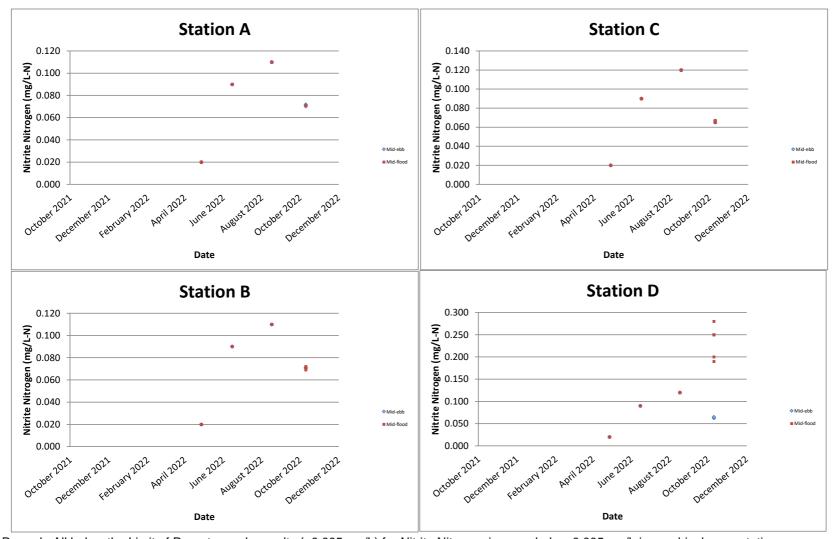


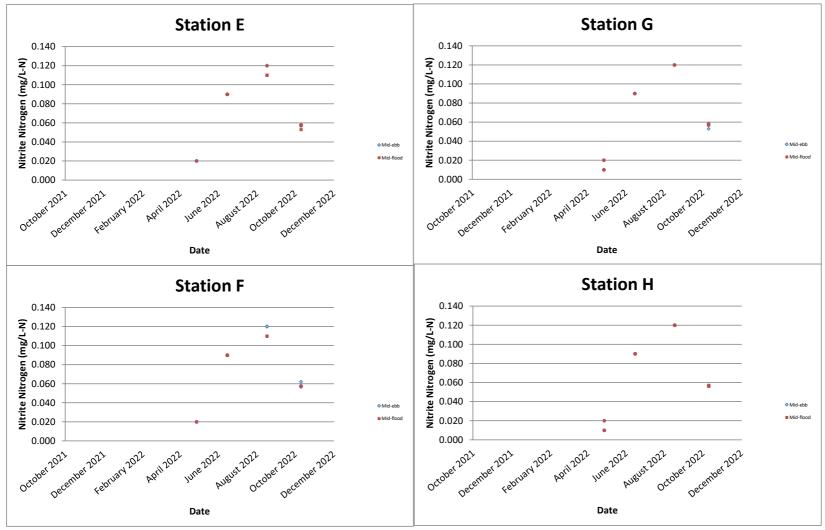


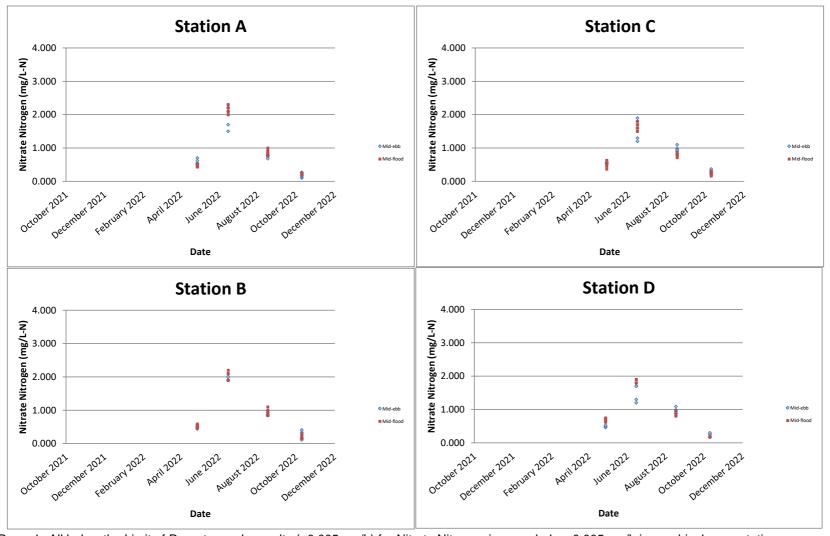


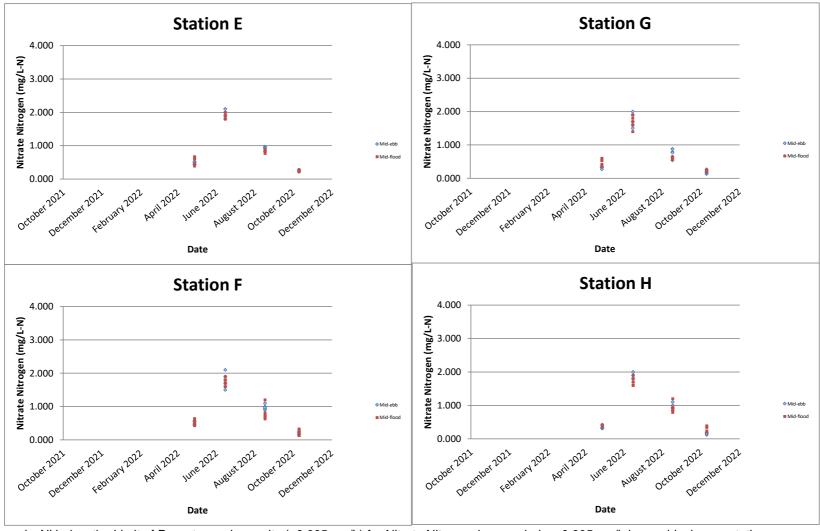


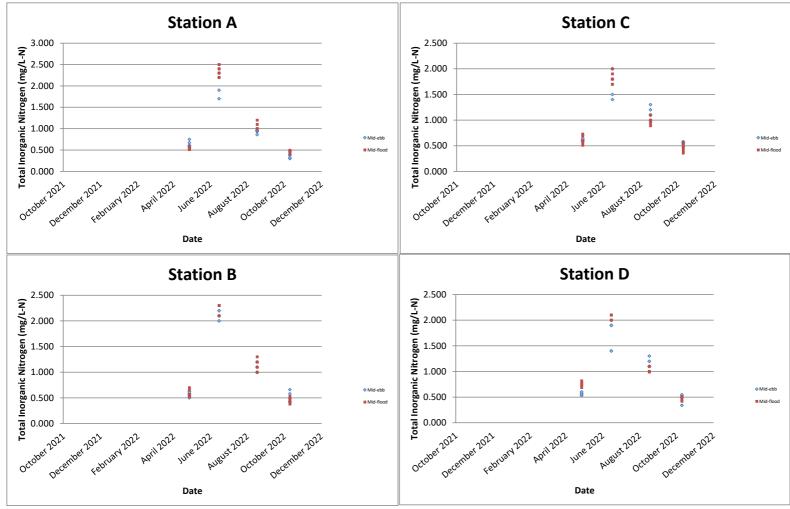

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

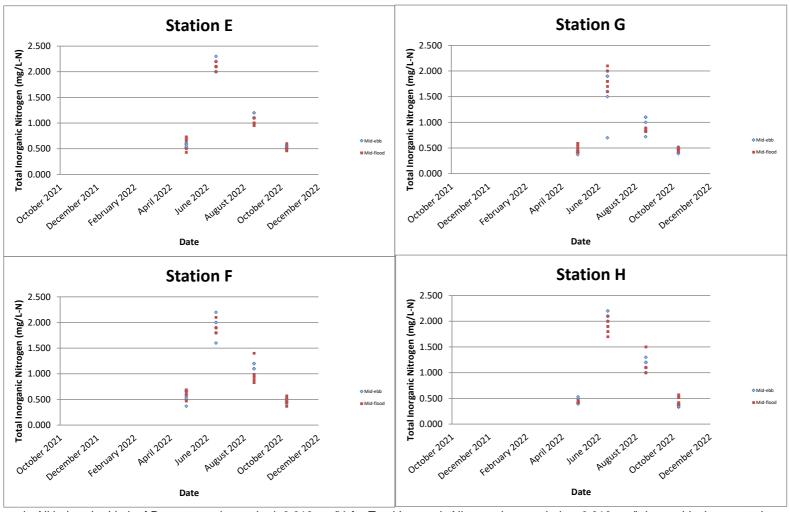

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

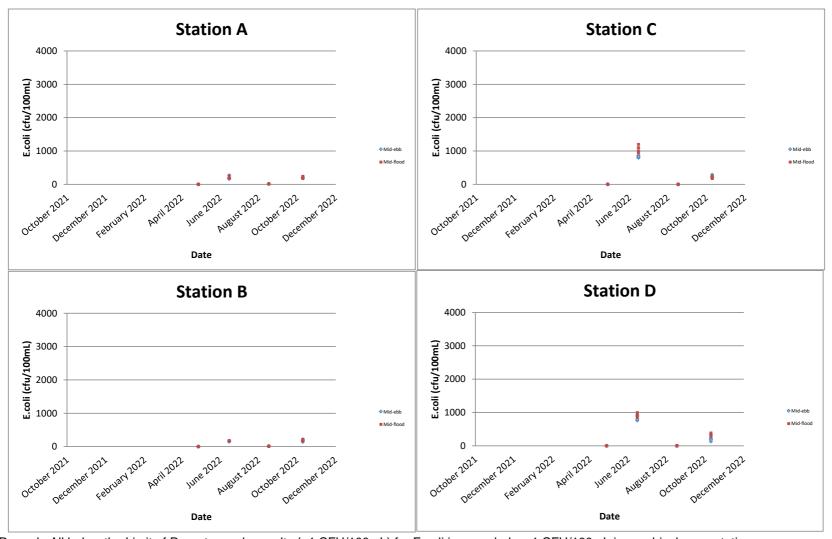

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

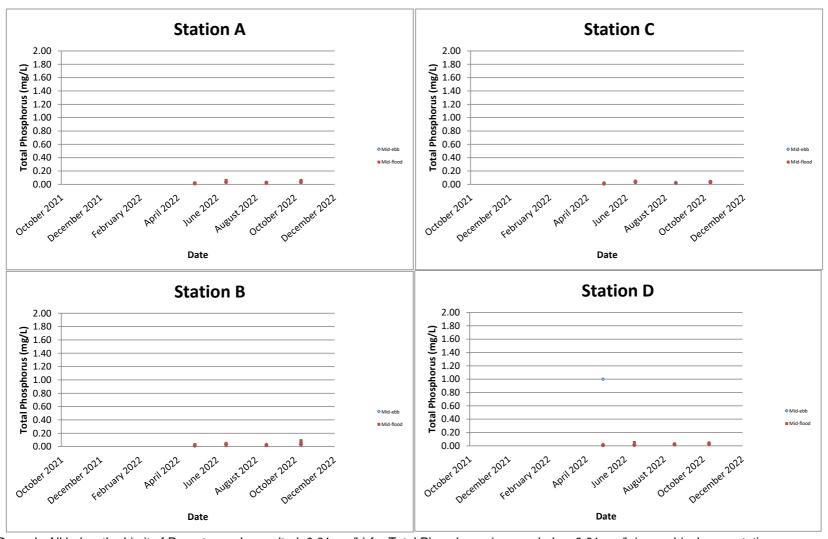

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

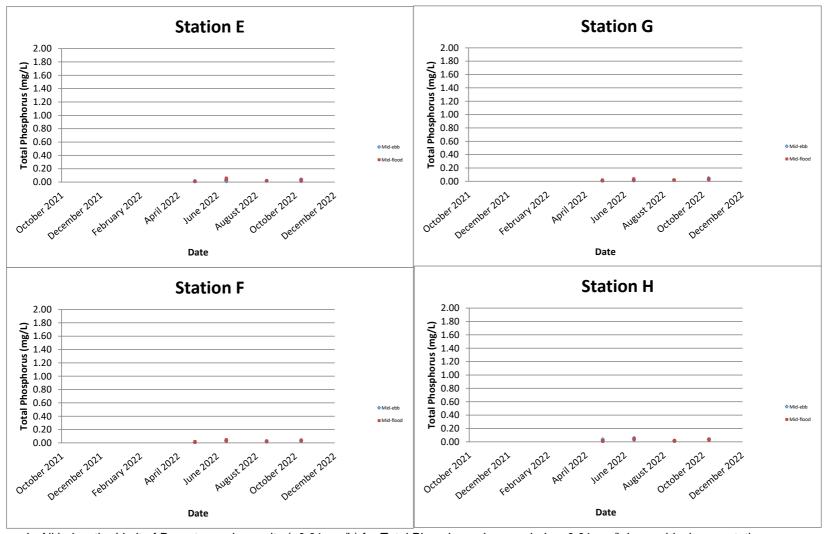

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

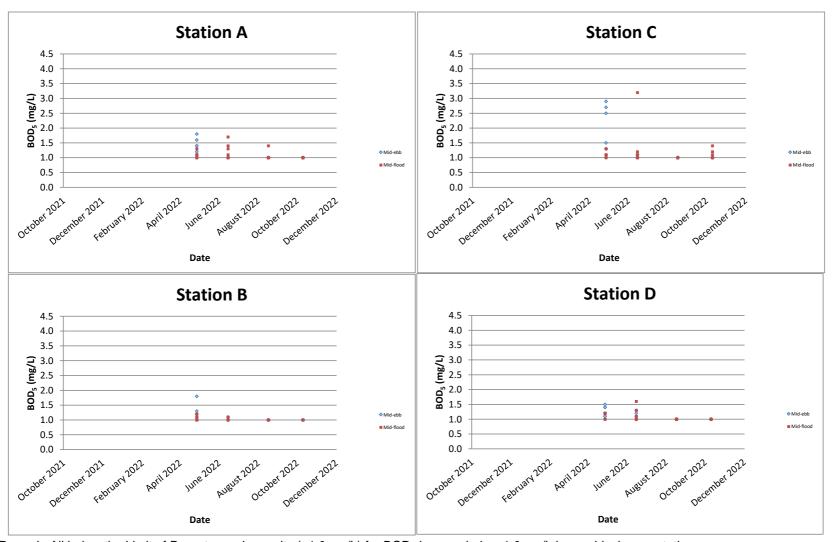

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.

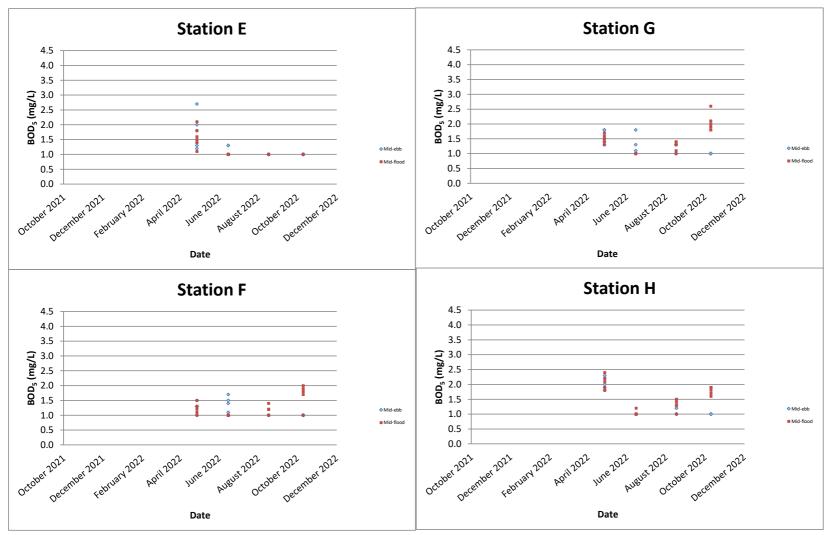

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.

Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.


Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.


Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.

Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

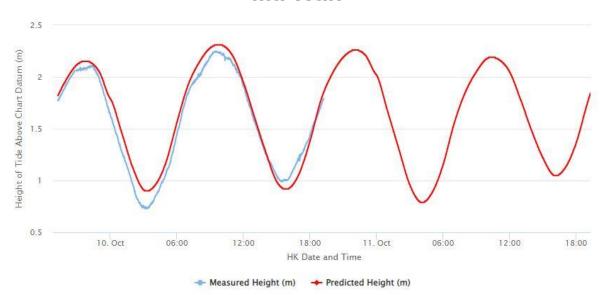
Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Appendix G


Tidal Data obtained from Ma Wan Marine Traffic Station

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Ma Wan

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Appendix H

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

											Sediment Monitoring	ı					
Monitoring Location	Date	Weather	Sea Condition	Time	рН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
А	10/10/2022	Fine	Moderate	10:53	8.2	13	1100	380	<0.1	25	24	31	0.14	15	78	12	0.2
В	10/10/2022	Fine	Moderate	10:37	8.2	10	1200	340	<0.1	27	29	32	0.11	16	84	11	0.3
С	10/10/2022	Fine	Moderate	10:18	8.0	16	1500	400	<0.1	32	33	37	0.13	19	95	11	0.3
D	10/10/2022	Fine	Moderate	10:01	8.0	11	1500	410	<0.1	29	29	35	0.13	17	88	11	0.3
E	10/10/2022	Fine	Moderate	09:42	7.9	20	1500	450	<0.1	30	33	34	0.12	18	94	10	0.3
F	10/10/2022	Fine	Moderate	09:26	8.0	32	1500	500	<0.1	33	34	37	0.14	19	98	11	0.3
G	10/10/2022	Fine	Moderate	09:05	8.1	6.2	850	340	<0.1	18	31	25	0.06	11	63	8.3	0.2
Н	10/10/2022	Fine	Moderate	08:49	8.1	10	1100	400	<0.1	22	30	27	0.08	13	76	7.4	0.3

			_				Benthic Survey		
Monitoring Location	Date	Weather	Sea Condition	Time	Total Organic Carbon		Particle Size	Distrbution	
Location			Condition		(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
A	10/10/2022	Fine	Moderate	10:53	1.0	0	27	27	46
В	10/10/2022	Fine	Moderate	10:37	0.8	2	21	33	44
С	10/10/2022	Fine	Moderate	10:18	1.2	1	5	40	54
D	10/10/2022	Fine	Moderate	10:01	0.9	1	8	39	52
E	10/10/2022	Fine	Moderate	09:42	1.6	0	4	39	57
F	10/10/2022	Fine	Moderate	09:26	1.2	0	2	36	62
G	10/10/2022	Fine	Moderate	09:05	1.7	4	10	37	49
Н	10/10/2022	Fine	Moderate	08:49	1.3	1	7	39	53

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 181172WA222096(1)

Page 1 of 3

Test Report on Analysis of Sediment

Information Supplied by Client

Client

Fugro Technical Services Limited

Client's address

13/F, Fugro House - KCC2, No. 1 Kwai On Road, Kwai Chung.

N.T., H.K

Project

Contract No. CM 14/2016 Environmental Team for Operational

Environmental Monitoring and Audit for Siu Ho Wan Sewage

Treatment Works

Sample description

Eight samples of sediment taken by the staff of FTS on

10/10/2022

Client sample ID

Refer to page 3

Tests required

1. pH value

2. Moisture content

3. Ammoniacal nitrogen content

4. Total nitrogen content5. Total phosphorus content

6. Cadmium content

7. Chromium content

8. Copper content

9. Lead content

10. Mercury content

11. Nickel content

12. Zinc content

13. Arsenic content

14. Silver content

Laboratory Information

Lab. sample ID

WA222096(1)/1-8

Date of receipt of sample:

10/10/2022

Date test commenced

10/10/2022

Date test completed

24/10/2022

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 181172WA222096(1)

Page 2 of 3

Test methods used

pH value

APHA 23ed. 4500-H⁺B

Moisture content

In house method E-T-186

Ammoniacal Nitrogen content In house method E-T-095

Total nitrogen

In house method E-T-114 (By Calculation),

In house method E-T-036 & APHA 23ed.4500-NO₃ -I

Total phosphorus content

APHA 17ed. 4500-PB.5 (Digestion) & In house method E-T-056 (Determination)

Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc,

Arsenic, Silver content

USEPA method 3050B (Digestion) & 6020A (Determination)

FUGRO

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 181172WA222096(1)

Results:

Page 3 of 3

Test parameters				Sample ide	Sample identification			
	A/Sediment	B/Sediment	C/Sediment	D/Sediment	E/Sediment	F/Sediment	G/Sediment	H/Sediment
1. pH value at 25°C	8.2	8.2	8.0	8.0	7.9	8.0	8.1	8.1
2. Moisture content, %	55.5	54.9	61.7	56.9	63.4	64.5	43.1	59.7
3. Ammoniacal nitrogen content, mg/kg	13	10	16	1	20	32	62	10
4. Total nitrogen, mg/kg	1100	1200	1500	1500	1500	1500	850	1100
5. Total phosphorus content, mg/kg	380	340	400	410	450	500	340	400
6. Cadmium content, mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
7. Chromium content, mg/kg	25	27	32	29	30	33	18	22
8. Copper content, mg/kg	24	29	33	29	33	34	3. 5	1 %
9. Lead content, mg/kg	31	32	37	35	34	37	25	7.0
10. Mercury content, mg/kg	0.14	0.11	0.13	0.13	0.12	0.14	0.06	0.08
11. Nickel content, mg/kg	15	16	19	17	18	19	11	73
12. Zinc content, mg/kg	78	84	95	88	94	86	63	26
13. Arsenic content, mg/kg	12	1	11	11	10	1	. 80	7.4
14. Silver content, mg/kg	0.2	0.3	0.3	0.3	0.3	0.3	0.0	6.0

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories

Date

4(11/2m

Date

** End of Report **

Note: This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Fugeo


FUGRO TECHNICAL SERVICES LIMITED

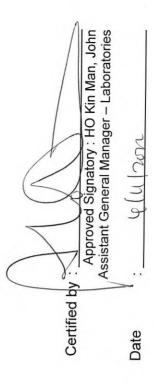
Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Note

Laboratory Duplicate, Quality Assurance/Quality Control Report

PH Value						N.A	, ,				
200						Moisture content, %	ntent, %				
Reporting	Blank	Spike	Labo	Laboratory Duplicate		Reporting	2	Spike	Labor	Laboratory Duplicate	
Limit		recovery (%)		Original result Duplicate result RPD%	RPD%		Blank	(%	Original recult	Original result Dublicate result	20Udd
0.1	ī	t	8.08	8.07	0.12	0.1	1		55.7A	EE ES	900
Ammoniaca	al nitroge	Ammoniacal nitrogen content. mg/kg	/ka			Total nitrogen ma/log	1/5m no		1	20.00	0.40
	0		0			I otal IIII og	11. III.	מ			
g	Blank	Spike	Labo	Laboratory Duplicate		Reporting	ā	Spike	Labor	Laboratory Duplicate	
Limit			Original result	recovery (%) Original result Duplicate result RPD%	RPD%	Limit	Blank	(%)	Original rocult	Publicato rocult	70000
1	1)		2				Original result	Original result Duplicate result RPD%	8012
0.5	<0.5	1	1	1	1	20		1	1119 01	1098 75	1 83
Total phosp	shorus c	Total phosphorus content, mg/kg			A STATE OF THE STA					2.000	20.
Reporting	Rlank	Spike	Labo	Laboratory Duplicate							
Limit			Original result	recovery (%) Original result Duplicate result RPD%	RPD%						
10	<10	1	398.68	396.2	0.62						

Tugro


FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Note

Method Blank (MB), Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

	ייכתה) יווכנתום כסוונכוווי, ווופלעם								
	Method Blan	Method Blank (MB) Report		Σ	latrix Spike (N	AS) and Matrix §	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	SD) Report	
Item	LOR	Result	Spike	Spike rec	Spike recovery (%)	Recovery	Recovery limits (%)	1	RPD%
			Concentration	MS	MSD	WO	Hich	ouley	Lestini lester
Arsenic	0.5	< 0.5	10	106.43		75	175	value	COUNTY OF LITTING
Cadmin		101		2		2	671	1	1
Cadillall		\ O.I	7	96.77	ı	75	125	,	ì
Chromium	0.5	< 0.5	50	94.48	,	75	125		
Copper	0.2	< 0.2	50	02.18		2.5	407	ı	
			8	24.10		6/	125	r	1
Lead	0.2	< 0.2	20	99.00	1	75	125	,	
Mercury	0.05	< 0.05	-	88.35	1	75	125		
Nickel	0.2	< 0.2	20	91 48	1	75	125		1
Silver	0.1	< 0.1	2	102 83	1	75	125		1
Zinc	0.5	< 0.5	200	92.05	1	2.5	175		
				00:10		2	140	1	ì

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 181172WA222096(2)

Page 1 of 2

Test Report on Analysis of Sediment

Information Supplied by Client

Client : Fugro Technical Services Limited

Client's address : 13/F, Fugro House – KCC2, No. 1 Kwai On Road, Kwai Chung,

N.T., H.K

Project : Contract No. CM 14/2016 Environmental Team for Operational

Environmental Monitoring and Audit for Siu Ho Wan Sewage

Treatment Works

Sample description : Eight samples of benthic survey sediment taken by the staff of

FTS on 10/10/2022

Client sample ID : Refer to page 2

Tests required : 1. Moisture content

2. Total organic carbon content

Laboratory Information

Lab. sample ID : WA222096(1)/9-16

Date of receipt of sample: 10/10/2022

Date test commenced : 10/10/2022

Date test completed : 27/10/2022

Test methods used : 1. In-house method E-T-186

2. APHA 23ed. 5310B

5 Lok Yi Street, Tai Lam Hong Kong **Fugro Development Centre** Tuen Mun, NT

Page 2 of 2

Results:

Report No.: 181172WA222096(2)

, , , , , , , , , , , , , , , , , , ,				Sample identification	entification			
l est parameters	A/Benthic Survey	B/Benthic Survey	C/Benthic Survey	D/Benthic Survey	E/Benthic Survey	F/Benthic Survey	G/Benthic	H/Benthic
1. Moisture content, %	56.7	55.1	59.5	58.4	60.8	66.1	55.8	58.8
2. Total organic carbon content, %	1.0	0.8	1.2	6.0	1.6	1.2	1.7	1.3

** End of Report **

Toro

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Note

Laboratory Duplicate, Quality Assurance/Quality Control Report

			U	7000	יחוו ארט%	15.0
		I aboratory Dunlicate	latory publicat	Dunlingto zon	Duplicate les	1 41
		Inde	Labo	recovery (%) Original recult Duralicate recovery	Original result	164
Total organic carbon content %	II COLLICITY, 70	Snike	2000	recovery (%)	(at) finence	1
ic carbo	2000		Bank			ï
Total organ	י פנמו פו שמו	Reporting		LIMIT		0.05
			1	RPD%		0.00
•		 aboratory Duplicate 		Duplicate result RPD%		41.6
		Labor	Original security	Onginal result	0 77	41.6
	: (Spike	recovery (%)	1000001		
intent, %		Blank			,	
Moisture content	11.7	Reporting	mit		<u></u>	5

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 181172EN222238

Page 1 of 2

Test Report on Analysis of Water and Wastewater

Information Supplied by Client

Client

Fugro Technical Services Limited

Client's address

Rm 723-726, 7/F, Profit Industrial Building, No.1-15, Kwai Fung

Crescent, Kwai Chung, N.T.

Project

Contract No. CM 14/2016 Environmental Team for Operational

Environmental Monitoring and Audit for Siu Ho Wan Sewage

Treatment Works

Sampling date

10/10/2022

Sampling location

.

Sample description

Eight sample(s) of Rinsate Blank

Sample identification

1. A/Rinsate Blank

2. B/Rinsate Blank

3. C/Rinsate Blank

4. D/Rinsate Blank

5. E/Rinsate Blank

6. F/Rinsate Blank

7. G/Rinsate Blank

8. H/Rinsate Blank

Test required

Total recoverable metals:

1. Arsenic content

2. Cadmium content

Chromium content

4. Copper content

5. Lead content

6. Mercury content

7. Nickel content

8. Silver content

9. Zinc content

Laboratory Information

Lab sample ID

EN222238/1-8

Date of receipt of sample

10/10/2022

Date test completed

20/10/2022

Test method used

In-house method E-T-189 & E-T-190 (ICP-MS)

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 181172EN222238

Page 2 of 2

Results:

would .						
		Client sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank
Item	LOR	Unit				
In-house metho	d E-T-189 8	& E-T-190 (ICP-	MS)			
Arsenic	1	μg/L	<1	<1	1	<1
Cadmium	0.2	μg/L	<0.2	<0.2	<0.2	<0.2
Chromium	1	μg/L	7	1	<1	10
Copper	1	μg/L	2	3	3	2
Lead	1	μg/L	2	<1	<1	<1
Mercury	0.5	μg/L	<0.5	<0.5	<0.5	<0.5
Nickel	1	μg/L	2	2	<1	2
Silver	1	μg/L	<1	<1	<1	<1
Zinc	10	μg/L	<10	13	<10	11

		Client sample ID	E/Rinsate Blank	F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank
Item	LOR	Unit				
In-house metho	d E-T-189 8	& E-T-190 (ICP-	MS)			
Arsenic	1	μg/L	<1	<1	<1	<1
Cadmium	0.2	μg/L	<0.2	<0.2	<0.2	<0.2
Chromium	1	μg/L	2	2	7	2
Copper	1	μg/L	2	2	3	3
Lead	1	μg/L	<1	<1	<1	<1
Mercury	0.5	μg/L	<0.5	<0.5	<0.5	<0.5
Nickel	1	μg/L	2	2	2	2
Silver	1	μg/L	<1	<1	<1	<1
Zinc	10	μg/L	10	11	<10	17

Remark: 1. The sampling procedure for the sample received in this report is outside the scope of accreditation.

2. µg/L - microgram per litre

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories

Date

** End of Report **

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No.: 181172EN222238

Note

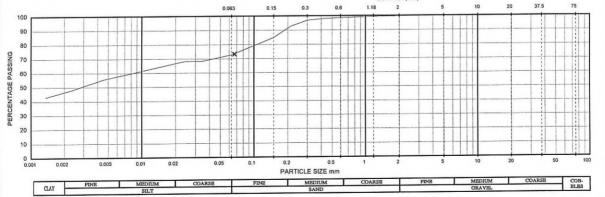
Method Blank (MB), Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Heavy metals	s content	, μg/L			45				
	4 10 F 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	od Blank Report	Mat	rix Spike (N	(IS) and Ma	atrix Spike	Duplicate (N	/ISD) Repo	rt
Item			Spike	Spike reco	overy (%)	Recover	ry limits (%)	RF	PD%
	LOR	Result	Concentration	MS	MSD	Low	High	Value	Control Limited
Arsenic	1	< 0.5	10	101.2%		75.0%	125.0%	-	-
Cadmium	0.2	< 0.1	10	100.6%	-	75.0%	125.0%	-	-
Chromium	1	< 0.5	10	101.9%	-	75.0%	125.0%	-	-
Copper	1	< 0.5	10	96.0%	-	75.0%	125.0%	-	-
Lead	1	< 0.5	10	97.2%	-	75.0%	125.0%	-	-
Mercury	0.5	< 0.25	0.5	84.0%	-	75.0%	125.0%	-	_
Nickel	1	< 0.5	10	101.0%	-	75.0%	125.0%	-	_
Silver	1	< 0.5	10	97.3%	-	75.0%	125.0%		_
Zinc	10	< 5	100	97.5%	-	75.0%	125.0%	_	-

Certified by

Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories

Date


4111/2000

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page M160554SL220361 Test Report No. TEST REPORT ON PARTICLE SIZE DISTRIBUTION OF SOIL Information supplied by Client Fugro Technical Services Limited Client's Address Client sample No. : Contract No. CM 14/2016 Environmental Team for Borehole No. Project Operational Environmental Monitoring and Audit for Siu Ho Depth (m) From Wan Sewage Treatment Works To Sample origin Description Benthic Survey Service/Works Order No. Laboratory Information Laboratory sample I.D. Specimen reference SL220361/1 11-10-2022 Date sample received Date test commenced 11-10-2022 D Sample type Date test completed 14-10-2022 Geospec 3 (November 2001) Test Method 8.1 & 8.5 & 8.7 Method B Location and Orientation Test method used within original sample (m) Method of preparation C. II NAG

Test Result (Si	eve Analysis)				Test Result	Sedime	ntation A	(nalysis					
Initial dry mass		131.114 Sieve size mm 100 75 63	Mass retained (g) 0.000 0.000 0.000	Percent passing (%) 100 100	Hydrometer S Particle dens Initial dry mas Mass retaine	ity ss*		(Assume	g d)	: : : :	8295797 2.65 23.076 5.431		
		50	0.000	100	Date	Time	Period	Temp.	Hydro.	Hydro.	Particle dia.	K	K*
		37.5	0.000	100		Started	min	°C	Rdg	Rdg#	mm	%	%
		28	0.000	100	13-10-2022	9:30	0.5	25.00	15.0	0.5	0.067	101	73
-		20	0.000	100			1	25.00	14.5	0.5	0.048	97	71
Passing	(m ₂)	20	131.114				2	25.00	14.0	0.5	0.034	94	68
Riffled passing	(m ₃)	20	131.114				4	25.00	14.0	0.5	0.024	94	68
Wash passing	(m ₄)	20	36.170				8	25.00	13.5	0.5	0.017	90	66
ruon puoding	(4)	14	0.000	100			30	25.00	12.5	0.5	0.0090	84	61
		10	0.000	100			120	25.00	11.5	0.5	0.0045	77	56
		6.3	0.000	100			480	25.00	10.0	0.5	0.0023	66	48
Passing	(m ₅)	6.3	36,170				1440	25.00	9.0	0.5	0.0014	59	43
Riffled passing	(m ₆)	6.3	36,170										
		5.0	0.050	100					ng in soluti				
		3.35	0.162	100		K*	modified	accordin	g to Geosp	ec 3 (No	vember 2001) Test Meth	nod 8.7
		2.00	0.300	100									
		1.18	0.452	99									
		0.600	0.920	99									
		0.425	0.700	98		SU	MMAT	ION:	GRAVEL		% :	0	
		0.300	1.440	97					SAND		% :	27	
		0.212	5.492	93					SILT		% :	27	
		0.150	10.450	85					CLAY		% :	46	
		0.063	15.884	73									
Pan	(m _f)		0.320										
						0.3	0.6	Sieve Si	ze (mm)	5	10 20	37.5	75
				0.063	0.15	0.3	0.0	1.10	1 1	-	1		1 1 1
100				1-1-1-1								1	
90				1 1 1 1									
						++-	++++	-		-			
90													
90													
90													
90 80 V 70													

Abbreviations used :

Sample type : U = undisturbed, P = piston, M = mazier, BLK = block, D = disturbed (bulk)

Remarks:

Point x(s) on graph indicate(s) initial modified hydrometer reading(s) being ignored.

Coefficient of Uniformity is undefined.

Initial dry mass*: The initial dry mass of the test specimen in the Sedimentation Analysis was not enough according to the requirement of GEOSPEC 3 (2001)

- The results apply to the sample as received.

Approved Signatory :

Au Yeung Wai Kit - Laboratory Manager

Date:

27 OCT 2022

lioved Signatory.

End of Report

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

В

AD

SL220361/2

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Hong Kong

Page Test Report No. : M160554SL220361(1) TEST REPORT ON PARTICLE SIZE DISTRIBUTION OF SOIL

Information supplied by Client

Client

Fugro Technical Services Limited

Client's Address

Project

: Contract No. CM 14/2016 Environmental Team for

Operational Environmental Monitoring and Audit for Siu Ho

Wan Sewage Treatment Works

Test Result (Sedimentation Analysis)

Hydrometer Serial No.

Mass retained on 63µm

Particle density

Initial dry mass*

Borehole No. Depth (m)

Client sample No.

From To

Sample origin Benthic Survey Description

Service/Works Order No. Laboratory Information

11-10-2022 Date sample received Date test commenced 11-10-2022 Date test completed 14-10-2022

Test method used Method of preparation

Geospec 3 (November 2001) Test Method 8.1 & 8.5 & 8.7 Method B Moist, grey, slightly gravelly, slightly sandy SILT/CLAY.

Laboratory sample I.D. Specimen reference Sample type

Location and Orientation within original sample (m)

From To

Full Mix

8295797 2 65

23,546

4.697

Method of pre	paration		Method	D	
Visual descrip	tion	:	Moist, gre	y, slightly	gravelly,
Test Result (Sie	eve Analys	sis)			
Initial dry mass	(m ₁) g	:	140.636	Mass	Percent
			Sieve size	retained	passing
			mm	(g)	(%)
			100	0.000	100
			75	0.000	100
			63	0.000	100
			50	0.000	100
			37.5	0.000	100
			28	0.000	100
			20	0.000	100
Passing	(m ₂)		20	140.636	
Riffled passing	(m ₃)		20	140.636	
Wash passing	(m ₄)		20	33,049	
			14	0.000	100
			10	0.000	100
			6.3	0.000	100
Passing	(m ₅)		6.3	33.049	
Riffled passing	(m ₆)		6.3	33.049	
,	(0)		5.0	0.410	100
			3.35	0.612	99
			2.00	1.580	98
			1.18	1.540	97
			0.600	1.975	96
			0.425	0.980	95
			0.300	1.220	94
			0.212	2.260	92
			0.150	5.230	89

0.063

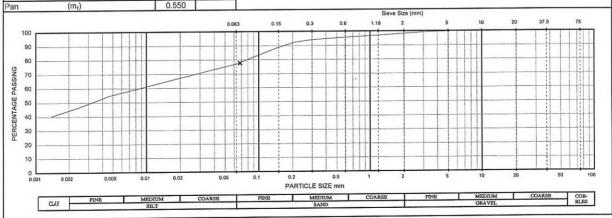
16.692

Date	Time	Period	Temp.	Hydro.	Hydro.	Particle dia.	K	K*
	Started	min	°C	Rdg	Rdg#	mm	%	%
13-10-2022	9:25	0.5	25.00	14.0	0.5	0.068	92	78
		1	25.00	13.5	0.5	0.049	89	75
		2	25.00	13.0	0.5	0.035	85	72
		4	25.00	12.5	0.5	0.025	82	69
		8	25.00	12.0	0.5	0.017	78	66
		30	25.00	11.0	0.5	0.0092	72	60
		120	25.00	10.0	0.5	0.0046	65	55
		480	25.00	8.5	0.5	0.0024	55	46
		1440	25.00	7.5	0.5	0.0014	48	40

Hydrometer reading in solution only (R₀')

(Assumed)

K* modified according to Geospec 3 (November 2001) Test Method 8.7


SUMMATION:

GRAVEL % SAND % SILT

33 % CLAY 44

2

21

Abbreviations used

Sample type : U = undisturbed, P = piston, M = mazier, BLK = block, D = disturbed (bulk)

Remarks

Point x(s) on graph indicate(s) initial modified hydrometer reading(s) being ignored

Coefficient of Uniformity is undefined.

Initial dry mass*: The initial dry mass of the test specimen in the Sedimentation Analysis was not enough according to the requirement of GEOSPEC 3 (2001)

- The results apply to the sample as received

Approved Signatory:

Au Yeung Wai Kit - Laboratory Manager

Date:

27 OCT 2022

End of Report

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Service/Works Order No. Laboratory Information

Date sample received

Date test commenced

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page : M160554SL220361(2) of Test Report No. TEST REPORT ON PARTICLE SIZE DISTRIBUTION OF SOIL Information supplied by Client Fugro Technical Services Limited Client's Address Client sample No.

: Contract No. CM 14/2016 Environmental Team for Project Operational Environmental Monitoring and Audit for Siu Ho Depth (m) Wan Sewage Treatment Works Sample origin

11-10-2022

11-10-2022

Description Laboratory sample I.D.

Borehole No.

SL220361/3 D

Benthic Survey

Specimen reference

From

To

Test me Method	st comp ethod u of prep descript	sed paration	:	Method	3 (Novem B			it Method 8.1 tly sandy SIL		8.7		type and Orie		:) ;	D Full Mix	
Took Do	cult (Cia	eve Analy	cic\	_		_		Test Result	(Sedime	ntation A	(nalvsis)		10	•		
nitial dry		(m ₁) g	;	126.073 Sieve size mm 100 75	Mass retained (g) 0.000 0.000	Percent passing (%) 100		Hydrometer S Particle dens Initial dry ma Mass retaine	Serial No ity ss*		(Assume	d) g	: :	8295797 2.65 22.016 0.721		
				63	0.000	100		Data	Time	Period	Tomp	Hydro.	Hydro.	Particle dia.	K	K*
				50	0.000	100		Date	Time		Temp.		Rdg #	mm	%	%
				37.5	0.000	100		10.10.0000	Started	min	°C 25.00	Rdg 14.5	0.5	0.068	102	94
				28	0.000	100		13-10-2022	9:20	0.5		14.5	0.5	0.008	102	94
				20	0.000	100				1	25.00		0.5	0.048	98	90
assing		(m ₂)		20	126.073					2	25.00	14.0	0.5	0.034	95	87
iffled pa		(m_3)		20	126.073					4	25.00	13.5			95	83
ash pa	assing	(m_4)		20	8.559					8	25.00	13.0	0.5	0.017		77
				. 14	0.000	100				30	25.00	12.0	0.5	0.0090	84 77	70
				10	0.000	100				120	25.00	11.0	0.5	0.0046		
				6.3	0.000	100				480	25.00	9.0	0.5	0.0023	62	57 50
assing		(m ₅)		6.3	8.559					1440	25.00	8.0	0.5	0.0014	55	50
iffled pa	assing	(m_6)		6.3	8.559									- "		
		1		5.0	0.000	100						ng in soluti				
				3.35	0.630	100			K*	modified	according	g to Geosp	ec 3 (No	vember 2001) Test Met	10d 8.7
				2.00	0.962	99										
				1.18	0.513	98										
				0.600	0.560	98										
			-1-	0.425	0.290	98			SU	MMAT	ION:	GRAVEL		% :	1	
				0.300	0.283	97						SAND		% :	5	
				0.212	0.300	97						SILT		% :	40	
				0.150	0.430	97						CLAY		% :	54	
				0.063	4.221	94										
an		(m _f)			0.370											
						0.06		0.15	0.3	0.6	Sieve Si		5	10 20	37.5	75
100			1 1			0,00	1	0.13	1		-	-	111	11 1	1	THE
90							×				1			1		1 1
						7					1					
80	_	1														
₩ 70		-					1		+-	+++	1		+++	+		1111
8 60 8 80		1	1												- 1	
D 00															1	
50	_	-	-													
E 40							+++				1		-	+		111
SCE.											Li			-		1 1
PERCENTAGE PASSING											1					
20		-	+													
10										+++	+		+++	+		+ + + + + + + + + + + + + + + + + + + +
0.0	001 0	0.002	0.00	5 0.01	0,02	0.05	(0.1 0.2 DARTI	CLE SIZE r		1 2		5	10 20		50 1
								PARTI	MEDIUM		COARSE	PINE		MEDIUM	COARSE	COB-

Abbreviations used

CLAY

Sample type : U = undisturbed, P = piston, M = mazier, BLK = block, D = disturbed (bulk)

Remarks

Point x(s) on graph indicate(s) initial modified hydrometer reading(s) being ignored.

Coefficient of Uniformity is undefined.

Initial dry mass*: The initial dry mass of the test specimen in the Sedimentation Analysis was not enough according to the requirement of GEOSPEC 3 (2001)

- The results apply to the sample as received.

Approved Signatory:

Au Yeung Wai Kit - Laboratory Manager

Date:

27 OCT 2022

End of Report

The Hong Kong Accreditation Service (HKAS) has accredited Jugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Method of preparation

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

of Page : M160554SL220361(3) Test Report No. TEST REPORT ON PARTICLE SIZE DISTRIBUTION OF SOIL Information supplied by Client Fugro Technical Services Limited Client's Address Client sample No. D Borehole No Contract No. CM 14/2016 Environmental Team for Project From Operational Environmental Monitoring and Audit for Siu Ho Depth (m) To Wan Sewage Treatment Works Sample origin Benthic Survey Description Service/Works Order No. Laboratory Information SL220361/4 Laboratory sample I.D. 11-10-2022 Date sample received Specimen reference AD 11-10-2022 Date test commenced 14-10-2022 Sample type Date test completed Location and Orientation Geospec 3 (November 2001) Test Method 8.1 & 8.5 & 8.7 Test method used

within original sample (m)

Visual descrip		on :	Moist, gre		gravelly, sli	ightly sandy SII	T/CLAY	' .	WILLIIII	nginai sai	From To	; :	Full Mix	
Test Result (Si	alysis)				Test Result (Sedimentation Analysis)									
Initial dry mass	(m ₁)	g :	136.022 Sieve size mm 100 75 63	Mass retained (g) 0.000 0.000 0.000	Percent passing (%) 100 100 100	Hydrometer Particle dens Initial dry ma Mass retaine	sity ss*		(Assume	d) g		8295797 2.65 22.122 1.492		
			50	0.000	100	Date	Time	Period	Temp.	Hydro.	Hydro.	Particle dia	. K	K*
			37.5	0.000	100		Started	min	°C	Rdg	Rdg#	mm	%	%
			28	0.000	100	13-10-2022	9:15	0.5	25.00	14.5	0.5	0.068	102	92
			20	0.000	100			1	25.00	14.0	0.5	0.048	98	88
Passing	(m ₂)		20	136,022				2	25.00	13.5	0.5	0.034	94	85
Riffled passing	(m ₃)		20	136.022				4	25.00	13.0	0.5	0.024	91	82
Wash passing	(m ₄)		20	12.964				8	25.00	12.5	0.5	0.017	87	79
, radii, passaiig	1 4/		14	0.000	100			30	25.00	11.5	0.5	0.0091	80	72
			10	0.000	100			120	25.00	10.0	0.5	0.0046	69	62
			6.3	0.000	100			480	25.00	9.0	0.5	0.0023	62	56
Passing	(m ₅)		6.3	12.964				1440	25.00	7.5	0.5	0.0014	51	46
Riffled passing	(m ₆)		6.3	12.964										
			5.0	0.540	100					ng in soluti				
			3.35	0.254	99		K*	modified	accordin	g to Geosp	oec 3 (No	vember 2001	 Test Meth 	nod 8.7
			2.00	0.590	99									
			1.18	0.454	99									
			0.600	0.683	98									
			0.425	0.230	98		SU	MMAT	ION:	GRAVEL		% :	1	
			0.300	0.395	98					SAND		% :	8	
			0.212	0.800	97					SILT		% :	39	
			0.150	0.540	97					CLAY		% :	52	
			0.063	7 938	91									

Pan (m_t) 37.5 0.063 0.15 90 80 PERCENTAGE PASSING 70 60 50 40 30 20 10 0.5 PARTICLE SIZE mm COARSE FINE COB-BLES CLAY

Abbreviations used

Sample type : U = undisturbed, P = piston, M = mazier, BLK = block, D = disturbed (bulk)

Remarks:

Point x(s) on graph indicate(s) initial modified hydrometer reading(s) being ignored

Coefficient of Uniformity is undefined.

Method B

Initial dry mass*: The initial dry mass of the test specimen in the Sedimentation Analysis was not enough according to the requirement of GEOSPEC 3 (2001)

- The results apply to the sample as received

Approved Signatory:

Au Yeung Wai Kit - Laboratory Manager

Date:

27 OCT 2022

End of Report

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not

Method of preparation

FUGRO TECHNICAL SERVICES LIMITED

Full Mix

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page 1 of : M160554SL220361(4) Test Report No. TEST REPORT ON PARTICLE SIZE DISTRIBUTION OF SOIL Information supplied by Client Fugro Technical Services Limited Client Client's Address E Client sample No. Contract No. CM 14/2016 Environmental Team for Borehole No. Project Operational Environmental Monitoring and Audit for Siu Ho Depth (m) From Wan Sewage Treatment Works To Sample origin Benthic Survey Description Service/Works Order No. Laboratory Information SI 220361/5 Laboratory sample I.D. 11-10-2022 Date sample received Date test commenced 11-10-2022 Specimen reference AD 14-10-2022 Sample type Date test completed Location and Orientation Geospec 3 (November 2001) Test Method 8.1 & 8.5 & 8.7 Test method used

Test Result (Sedimentation Analysis)

Moist, grey, slightly gravelly, slightly sandy SILT/CLAY. Visual description Test Result (Sieve Analysis) 122.214 Mass Percent Initial dry mass (m₁) g retained passing Sieve size mm (g) (%) 100 0.000 100 100 75 0.000 63 0.000 100 100 50 0.000 37.5 0.000 100 28 0.000 100 0.000 100 20 122.214 20 Passing (m2) 20 Riffled passing (m₃) 122.214 (m₄) 20 4 675 Wash passing 14 0.000 100 100 10 0.000 100 6.3 0.000 Passing (m₅)6,3 4.675 Riffled passing (m_6) 4.675 5.0 0.000 100 3.35 0.050 100 0.072 100 2.00 1.18 0.134 100 100 0.600 0.223 0.425 0.120 100 0.300 0.152 99

0.212

0.150

0.063

0.183

0.330

99

99

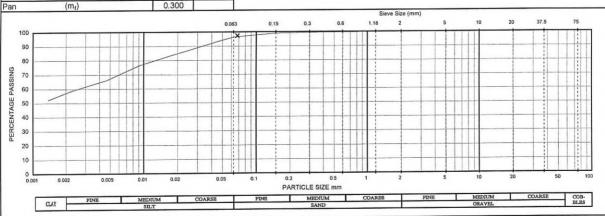
96

Method B

8295797 Hydrometer Serial No. 2.65 (Assumed) Particle density Initial dry mass* 20.434 0.595 Mass retained on 63µm

Date	Time	Period	Temp.	Hydro.	Hydro.	Particle dia.	K	K*
	Started	min	°C	Rdg	Rdg#	mm	%	%
13-10-2022	9:10	0.5	25.00	14.5	0.5	0.068	110 106 102	97
		1	25.00	14.0	0.5	0.048	106	94
		2	25.00	13.5	0.5	0.034	102	90
		4	25.00	13.0	0.5	0.024	98	87
		8	25.00	12.5	0.5	0.017	94	83
		30	25.00	11.5	0.5	0.0091	86	76
		120	25.00	10.0	0.5	0.0046	75	66
		480	25.00	9.0	0.5	0.0023	67	59
		1440	25.00	8.0	0.5	0.0014	59	52

within original sample (m)


From

To

Hydrometer reading in solution only (Ro')

K* modified according to Geospec 3 (November 2001) Test Method 8.7

SUMMATION : GRAVEL 0 % 4 SAND SILT % 39 57 CLAY %

Abbreviations used

Sample type : U = undisturbed, P = piston, M = mazier, BLK = block, D = disturbed (bulk)

Remarks :

Point x(s) on graph indicate(s) initial modified hydrometer reading(s) being ignored

Coefficient of Uniformity is undefined.

Initial dry mass*: The initial dry mass of the test specimen in the Sedimentation Analysis was not enough according to the requirement of GEOSPEC 3 (2001)

- The results apply to the sample as received

Approved Signatory:

Au Yeung Wai Kit - Laboratory Manager

Date:

27 OCT 2022

*End of Report**

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun. NT Hong Kong

: M160554SL220361(5) Page of Test Report No. TEST REPORT ON PARTICLE SIZE DISTRIBUTION OF SOIL Information supplied by Client Fugro Technical Services Limited Client's Address Client sample No. Borehole No. : Contract No. CM 14/2016 Environmental Team for Project Operational Environmental Monitoring and Audit for Siu Ho Depth (m) From Wan Sewage Treatment Works To Sample origin Benthic Survey Description Service/Works Order No.

Laboratory Information

11-10-2022 Date sample received Date test commenced 11-10-2022 Date test completed 14-10-2022

Test method used Method of preparation Visual description

Geospec 3 (November 2001) Test Method 8.1 & 8.5 & 8.7 Method B

Moist, grey, slightly gravelly, slightly sandy SILT/CLAY.

SL220361/6 Laboratory sample I.D. Specimen reference AD

Sample type Location and Orientation within original sample (m)

Full Mix From

nitial dry m	It (Sieve Analysis)				Test Result	(Sedime	ntation A	(nalysis					
		105.531	Mass	Percent							and the second second		
		Sieve size	retained	passing	Hydrometer :	Serial No.				:	8295797		
		mm	(g)	(%)	Particle dens	ity		(Assume	d)	:	2.65		
		100	0.000	100	Initial dry ma	ss*			g	:	18.123		
		75	0.000	100	Mass retaine	d on 63µ	m		g	:	0.141		
		63	0.000	100									
		50	0.000	100	Date	Time	Period	Temp.	Hydro.	Hydro.	Particle dia.	K	K*
		37.5	0.000	100		Started	min	°C	Rdg	Rdg#	mm	%	%
		28	0.000	100	13-10-2022	9:00	0.5	25.00	13.5	0.5	0.069	115	99
		20	0.000	100			1	25.00	13.0	0.5	0.049	111	95
assing	(m ₂)	20	105.531				2	25.00	13.0	0.5	0.035	111	95
Riffled pass		20	105.531				4	25,00	12.5	0.5	0.025	106	91
Wash pass		20	2.567				8	25.00	12.0	0.5	0.017	102	87
	,	14	0.000	100			30	25.00	11.0	0.5	0.0092	93	80
		10	0.000	100			120	25.00	10.0	0.5	0.0046	84	72
		6.3	0.000	100			480	25.00	9.0	0.5	0.0023	75	65
Passing	(m ₅)	6.3	2.567				1440	25.00	8.0	0.5	0.0014	66	57
Riffled pass		6.3	2,567										
	5 1 0/	5.0	0.000	100					ng in soluti				
		3.35	0.070	100		K*	modified	according	to Geosp	ec 3 (No	vember 2001)	Test Meth	hod 8.7
		2.00	0.130	100									
		1.18	0.220	100									
		0.600	0.240	99									
		0.425	0.120	99		SU	MMAT	ION :	GRAVEL		% :	0	
		0.300	0.100	99		-			SAND		% :	2	
		0.212	0.142	99					SILT		% :	36	
		0.150 I	0.130	99					CLAY		% :	62	
		0.150	0.130 1.265	99					CLAY		% :		
Pan	(m _t)	0.150 0.063							CLAY		% :		
Pan	(m _f)		1.265					Sieve Siz	ze (mm)			62	
	(m _f)		1.265		0.15	0.3	0.6	Sieve Siz	ze (mm)	5	%:		75
Pan 100	(m _f)		1.265	98	0.15	0.3	0.6		ze (mm)	5		62	75
	(m _f)		1.265	98	0.15	0.3	0.6		ze (mm)	5		62	75
90	(m _f)		1.265	98	0.15	0.3	0.5		ze (mm)	5		62	75
90 -	(m _f)		1.265	98	0.15	0.3	0.6		ze (mm)	5		62	75
90 -	(m ₁)		1.265	98	0.15	0.3	0.5		ze (mm)	5		62	75
90 -	(m _t)		1.265	98	0.15	0.3	0.6		ze (mm)	5		62	75
90 -	(m _t)		1.265	98	0.15	0.3	0.6		ze (mm)	5		62	75
100 90 80	(m _t)		1.265	98	0.15	0.3	0.6		ze (mm)	5		62	75
100 90 80	(m _t)		1.265	98	0.15	0.3	0.5		ze (mm)	5		62	75
100 90 80	(m _t)		1.265	98	0.15	0.3	0.6		ze (mm)	5		62	75
DERCENTAGE PASSING 00 00 00 00 00 00 00 00 00 00 00 00 00	(m _t)		1.265	98	0.15	0.3	0.6		ze (mm)	5		62	75
100 90 80	(m _t)		1.265	98	0.15	0.3	0.6		ze (mm)	5		62	75
DERCENTAGE PASSING 06 07 08 08 09 009 009 009	(m _t)		1.265	98	0.15	0.3	0.6		ze (mm)	5		62	75
90 — 00		0.063	1.265 0.150	98				1.16 2	ze (mm)		10 20	37.5	
DERCENTAGE PASSING 00 00 00 00 00 00 00 00 00 00 00 00 00	(m _t)	0.063	1.265	98	0.1 0.2	0.3	s s		ze (mm)	5		37.5	75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Abbreviations used :

Sample type : U = undisturbed, P = piston, M = mazier, BLK = block, D = disturbed (bulk)

Remarks

Point x(s) on graph indicate(s) initial modified hydrometer reading(s) being ignored.

Coefficient of Uniformity is undefined.

Initial dry mass*: The initial dry mass of the test specimen in the Sedimentation Analysis was not enough according to the requirement of GEOSPEC 3 (2001)

Énd of Report**

- The results apply to the sample as received

Approved Signatory:

Yeung Wai Kit - Laboratory Manager

Date:

27 OCT 2022

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall be a controlled on the HOKLAS Directory of Accredited Laboratories.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page : M160554SL220361(6) Test Report No. TEST REPORT ON PARTICLE SIZE DISTRIBUTION OF SOIL Information supplied by Client Fugro Technical Services Limited Client Client's Address Client sample No. G : Contract No. CM 14/2016 Environmental Team for Borehole No Project Operational Environmental Monitoring and Audit for Siu Ho Depth (m) From

> Hydrometer Serial No. Particle density

Initial dry mass*

Service/Works Order No.

Laboratory Information

Date sample received : 11-10-2022
Date test commenced : 11-10-2022
Date test completed : 14-10-2022

Test method used Method of preparation Visual description Geospec 3 (November 2001) Test Method 8.1 & 8.5 & 8.7 Method B

Wan Sewage Treatment Works

Moist, grey, slightly gravelly, slightly sandy SILT/CLAY
with shell fragments.

Test Result (Sedimentation Analysis)

Sample type

Cocation and Orientation within original sample (m)

(Assumed)

Laboratory sample I.D. Specimen reference

Sample origin Description

From :

8295797

2.65 22.218

To

Full Mix

D

Benthic Survey

SL220361/7

Visual descrip	tion		:	Moist, gre with shell		gravelly, s	sligh
Test Result (Si	eve Ana	alys	sis)		- 0		
Initial dry mass	(m ₁)	g	:	134.887	Mass	Percent	
				Sieve size	retained	passing	
				mm	(g)	(%)	
				100	0.000	100	
				75	0.000	100	
				63	0.000	100	
				50	0.000	100	
				37.5	0.000	100	
				28	0.000	100	
				20	0.000	100	
Passing	(m ₂)			20	134.887		
Riffled passing	(m_3)			20	134.887		
Wash passing	(m_4)			20	19.256		
				14	0.000	100	
				10	2.870	98	
				6.3	0.712	97	
Passing	(m ₅)			6.3	15.674		
Riffled passing	(m ₆)			6.3	15.674		
				5.0	0.170	97	
				3.35	0.580	97	
				2.00	0.832	96	
				1.18	1.220	95	
				0.600	1.690	94	
				0.425	0.712	93	
				0.300	0.980	93	
				0.212	1.432	92	
				0.150	1.790	90	
				0.063	6.038	86	
Pan	(m_f)				0.230		
100						0.06	3

Date	Time	Period	Temp.	Hydro.	Hydro.	Particle dia.	K	K*
	Started	min	°C	Rdg	Rdg#	mm	%	%
13-10-2022	8:55	0.5	25.00	14.5	0.5	0.068	101	87
		1	25.00	14.0	0.5	0.048	98	84
		2	25.00	13.5	0.5	0.034	94	80
		4	25.00	13.5	0.5	0.024	94	80
		8	25.00	13.0	0.5	0.017	90	77
		30	25.00	12.0	0.5	0.0090	83	71
		120	25.00	11.0	0.5	0.0046	76	65
		480	25.00	9.0	0.5	0.0023	61	53
		1440	25.00	7.5	0.5	0.0014	51	43

g

Hydrometer reading in solution only (Ro')

K* modified according to Geospec 3 (November 2001) Test Method 8.7

SUMMATION: GRAVEL % : 4 SAND % : 10 SILT % : 37 CLAY % : 49

													Sieve :	Size (mm)						
							0.063		0.15	0.3	0.6		1.18	2	5	10	20	37.5		75
00 F			TIT	11		TI	11	ПП	1	T				-						Til
90		-	-	-	-	-		-		+ 1		+++	-		+	-		- 11	1	1
80 -				-		-	1		-	++		+	-	-	+++	+++	-		+	#
70				-		++				-	++1	+++	 	+-+	-H	+++-	-		+	1
60			1	-	-				-	++	-	+	-	+-+	+		-	+		#
50 -			-	-	-	-				-	-	+++	+	-	+				+	1
40		-		-	-	-	++			+		+++	+	-	+		-		+	#
30	_	-	1	+	-	-	++	+++	+	+-+	+	+	1		-	+++-			T	#
20				+	-	+	+	+++-	-	-	+	+++	-	1	+	+++-			#	
10		-		+	-	++	+		-	++	+	+++		1		+++-			#	tit
0.001	0.002	0.0	05	0.01	0.02		0.05	0.1		0.2 PARTICLE	0.5 SIZE mm		1	2	5	10	20		50	
Г		FINE		MEDIUM		COARSE	3	PI	NE		DIUM		OARSE	1	INE	MEDIUM		COARSE		COB-
- 1	CLAY			SILT						S.	AND					GRAVE	L			DLES

Abbreviations used :

Sample type : U = undisturbed, P = piston, M = mazier, BLK = block, D = disturbed (bulk)

Remarks:

Point x(s) on graph indicate(s) initial modified hydrometer reading(s) being ignored.

Coefficient of Uniformity is undefined.

Initial dry mass*: The initial dry mass of the test specimen in the Sedimentation Analysis was not enough according to the requirement of GEOSPEC 3 (2001)

- The results apply to the sample as received.

Approved Signatory

Au Yeung Wai Kit - Laboratory Manager

Date:

27 OCT 2022

000

End of Report

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Method of preparation

Visual description

FUGRO TECHNICAL SERVICES LIMITED

Full Mix

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun. NT Hong Kong

Page of : M160554SL220361(7) Test Report No. TEST REPORT ON PARTICLE SIZE DISTRIBUTION OF SOIL Information supplied by Client Fugro Technical Services Limited Client Client's Address Client sample No. Borehole No. : Contract No. CM 14/2016 Environmental Team for Project Operational Environmental Monitoring and Audit for Siu Ho Depth (m) From Wan Sewage Treatment Works To Sample origin Description Benthic Survey Service/Works Order No. Laboratory Information SL220361/8 Laboratory sample I.D. Specimen reference 11-10-2022 Date sample received Date test commenced 11-10-2022 D Sample type Date test completed 14-10-2022 Geospec 3 (November 2001) Test Method 8.1 & 8.5 & 8.7 Method B Location and Orientation Test method used within original sample (m)

Test Result (Sedimentation Analysis)

Moist, grey, slightly gravelly, slightly sandy SILT/CLAY

,				with shell	fragment	S.	
Test Result (Si	eve An	alys	sis)				
Initial dry mass	(m_1)	g	:	129.142	Mass	Percent	
				Sieve size	retained	passing	
				mm	(g)	(%)	
				100	0.000	100	
				75	0.000	100	
				63	0.000	100	
				50	0.000	100	
				37.5	0.000	100	
				28	0.000	100	
				20	0.000	100	
Passing	(m_2)			20	129.142		
Riffled passing	(m ₃)			20	129.142		
Wash passing	(m_4)			20	11,225		
				14	0.000	100	
				10	0.000	100	
				6.3	0.510	100	
Passing	(m ₅)			6.3	10.715		
Riffled passing	(m ₆)			6.3	10.715		ĺ
				5.0	0.000	100	i
				3.35	0.470	99	i
				2.00	0.832	99	
				1.18	0.890	98	
				0.600	1.250	97	
				0.425	0.700	96	
				0.300	0.954	96	
				0.212	1.240	95	
				0.150	1.110	94	i

Hydrometer	Serial No).			:	8295797
Particle den	sity		(Assume	d)	:	2.65
Initial dry m	ass*			g	:	21.092
Mass retain		ım		g	:	1.457
Data	Time	Doriod	Temn	Hydro	Hydro	Particle

Date	Time	Period	Temp.	Hydro.	Hydro.	Particle dia.	K	K*
	Started	min	°C	Rdg	Rdg#	mm	%	%
13-10-2022	8:50	0.5	25.00	14.5	0.5	0.068	107	92
		1	25.00	14.0	0.5	0.048	103	89
		2	25.00	13.5	0.5	0.034	99	86
		4	25.00	13.0	0.5	0.024	95	82
		8	25.00	12.5	0.5	0.017	91	79
		30	25.00	12.0	0.5	0.0090	88	76
		120	25.00	11.0	0.5	0.0046	80	69
		480	25.00	9.0	0.5	0.0023	65	56
		1440	25.00	7.5	0.5	0.0014	53	46

Hydrometer reading in solution only (Ro')

K* modified according to Geospec 3 (November 2001) Test Method 8.7

From

To

GRAVEL SUMMATION: SAND % 7 % 39 SILT : CLAY

	(.,									Sieve	Size (mm)					
						0.063		0.15	0.3	0.6	1.18	2	5	10	20	37.5	75
00	-	111	TIII			1		!		H							
90						×	-			++	H	-	++	-	-	- :	
80			1-1-1-	 					-		H-i	-	++		-	+	
70								++			HH		++		-	+ +	Hill
60							-					-		-	-	$+ \parallel$	
50				-			-	+					+		-	++	
40	-		+	-			-	++				-	-+-		-	$\pm i$	$+\pm$
30				-		1		++	-	+	H + -	1		1111	-		
20 —			+++										1			\pm i \pm	
10			+++										+	+++		11	Hill
0.001	- 0.002	0.0	105	0.01 0.0)2	0.05	0.1	0.2 PAR	TICLE SIZE r		1	2	5	10	20		50 1
		FINE		MEDIUM	COAR	SE	FINE	3	MEDIUM		COARSE	FINE		MEDIUM		COARSE	COB- BLES
	CLAY			SILT					SAND					GRAVEL			DIAM

Abbreviations used

(m.)

Sample type : U = undisturbed, P = piston, M = mazier, BLK = block, D = disturbed (bulk)

Remarks :

Point x(s) on graph indicate(s) initial modified hydrometer reading(s) being ignored.

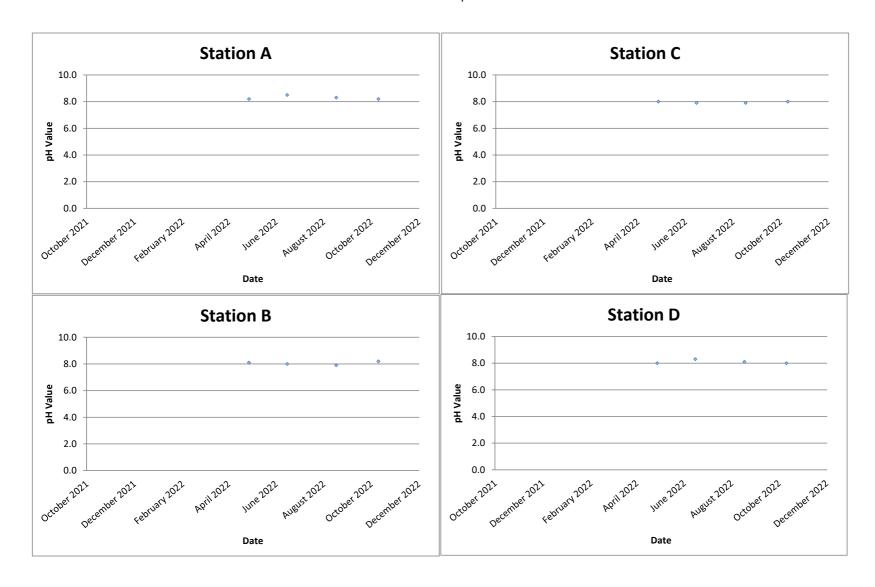
Coefficient of Uniformity is undefined.

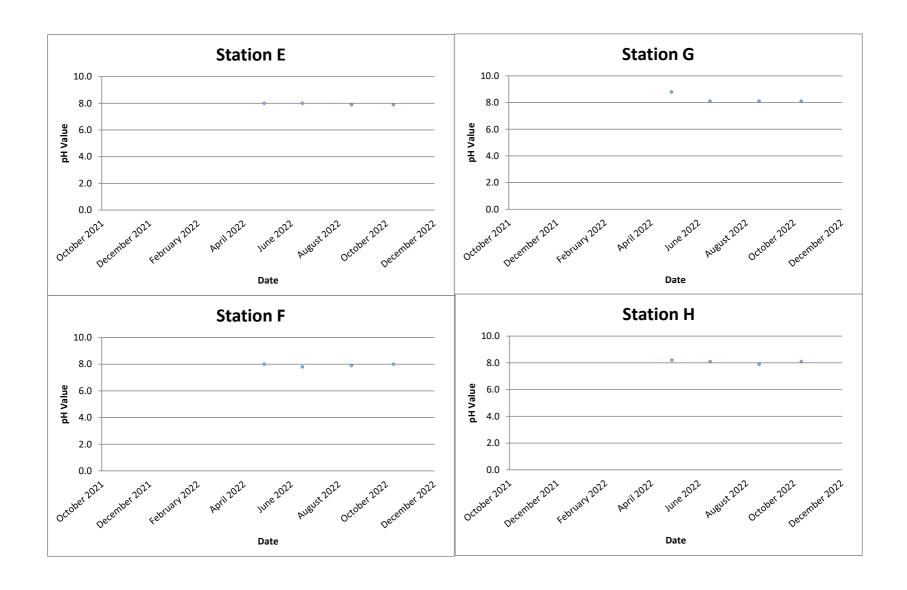
Initial dry mass*: The initial dry mass of the test specimen in the Sedimentation Analysis was not enough according to the requirement of GEOSPEC 3 (2001)

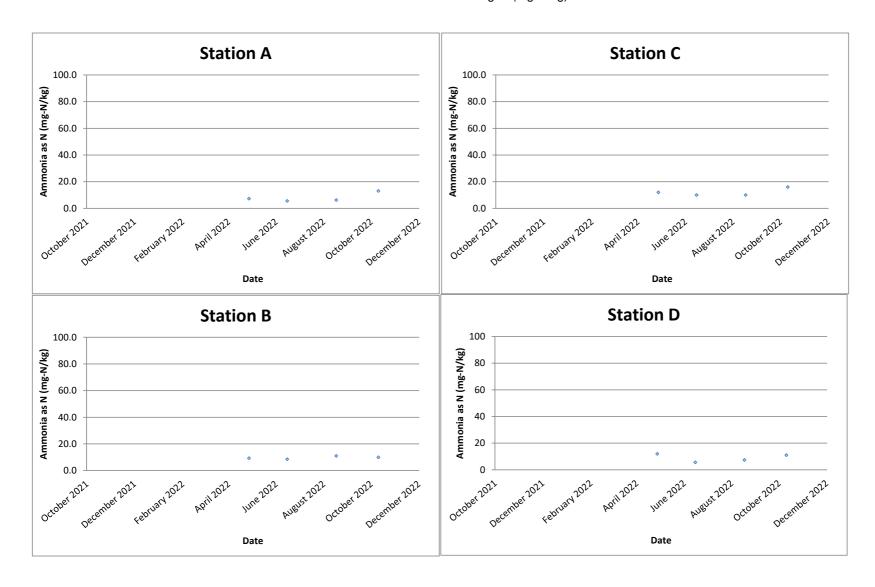
- The results apply to the sample as received.

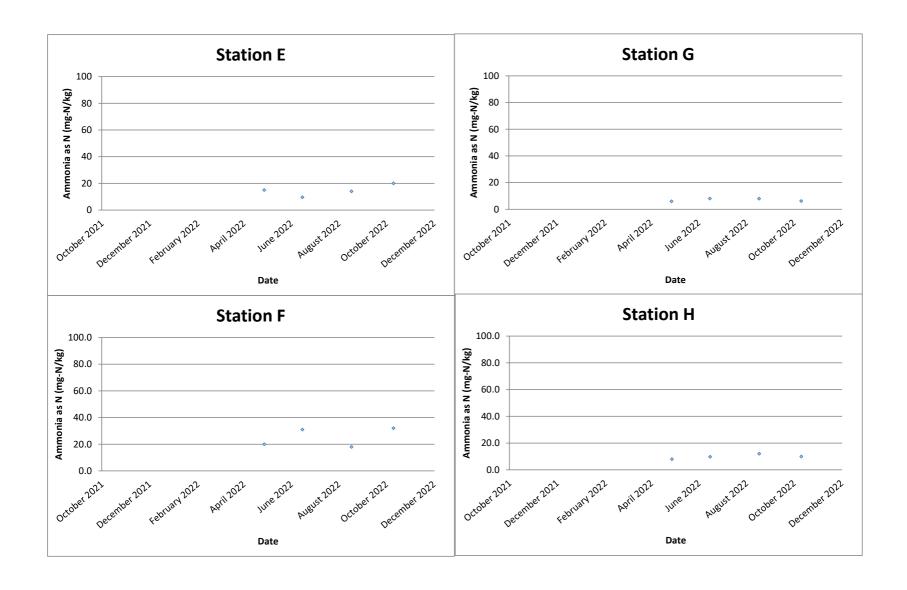
0.260

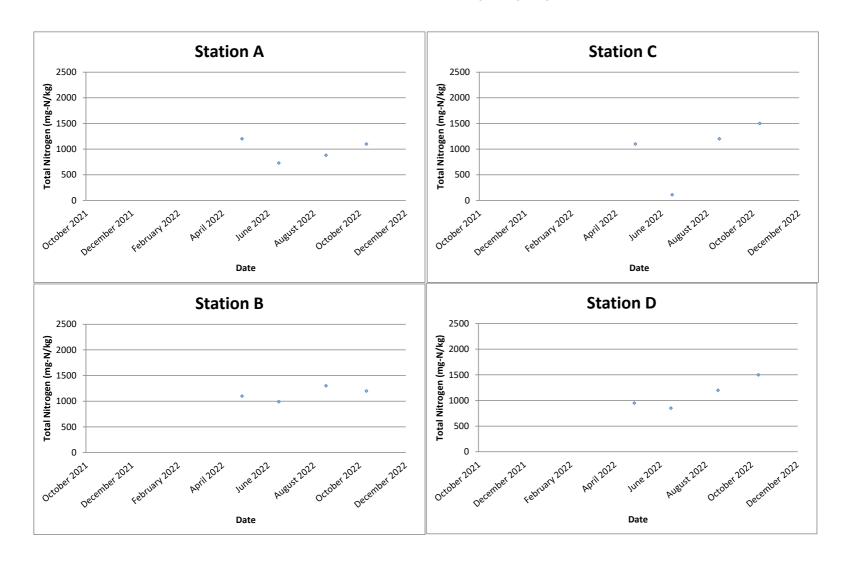
Approved Signatory:

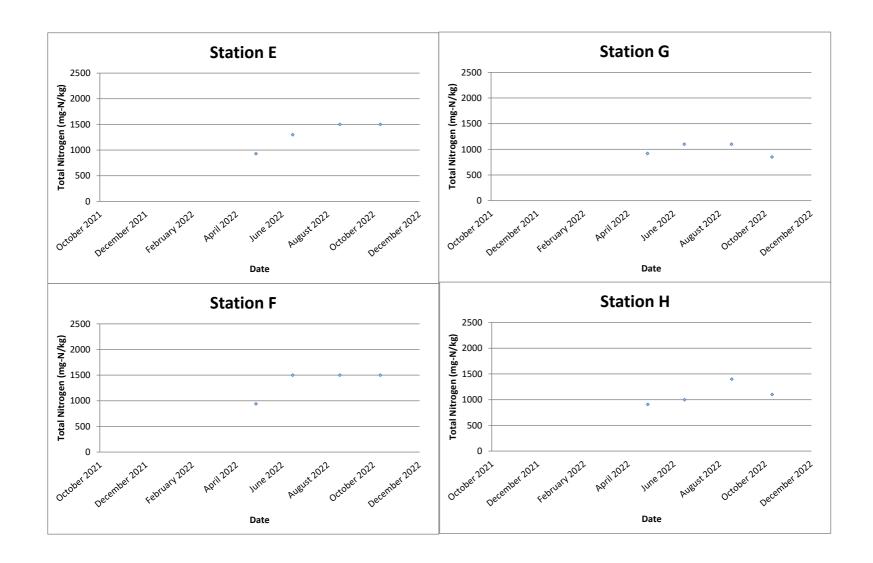

Au Yeung Wai Kit - Laboratory Manager

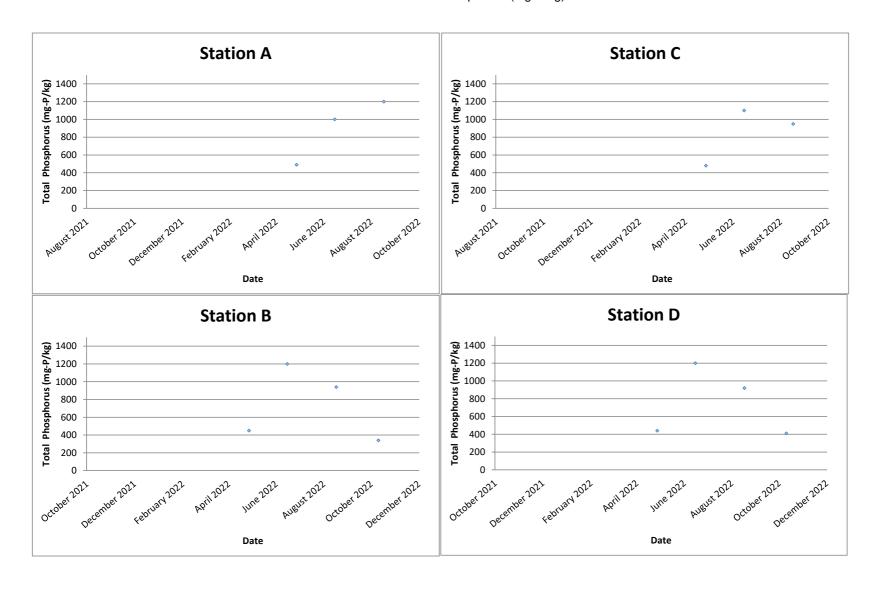

Date:

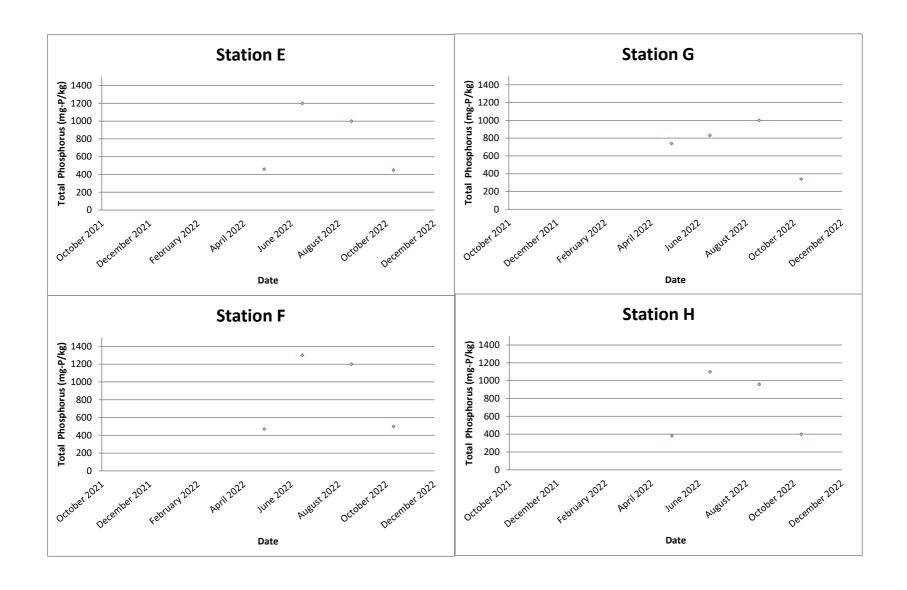

27 OCT 2022

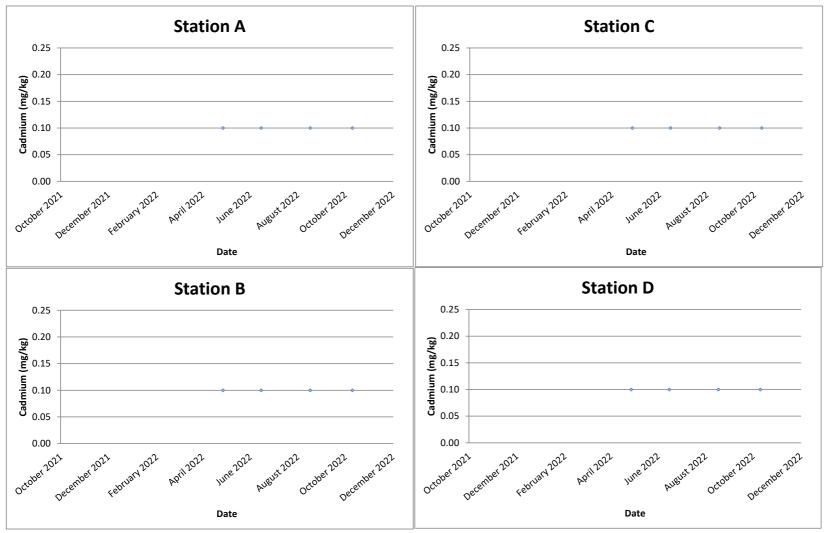

End of Report

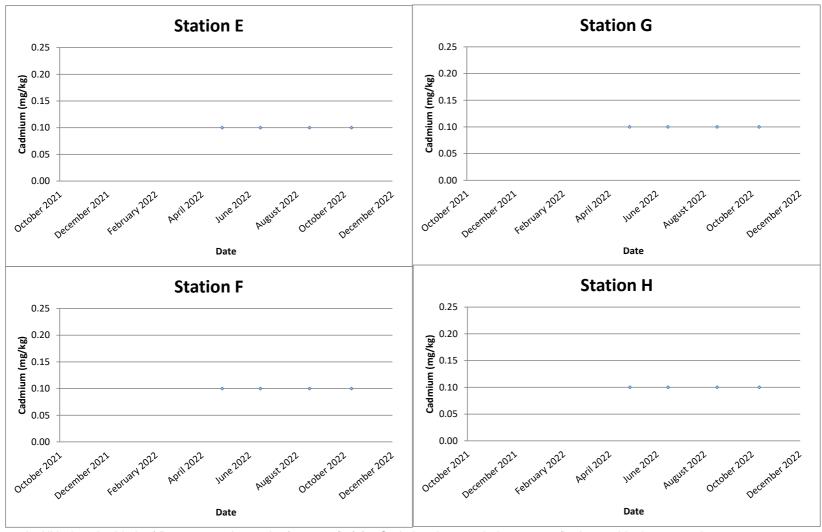

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

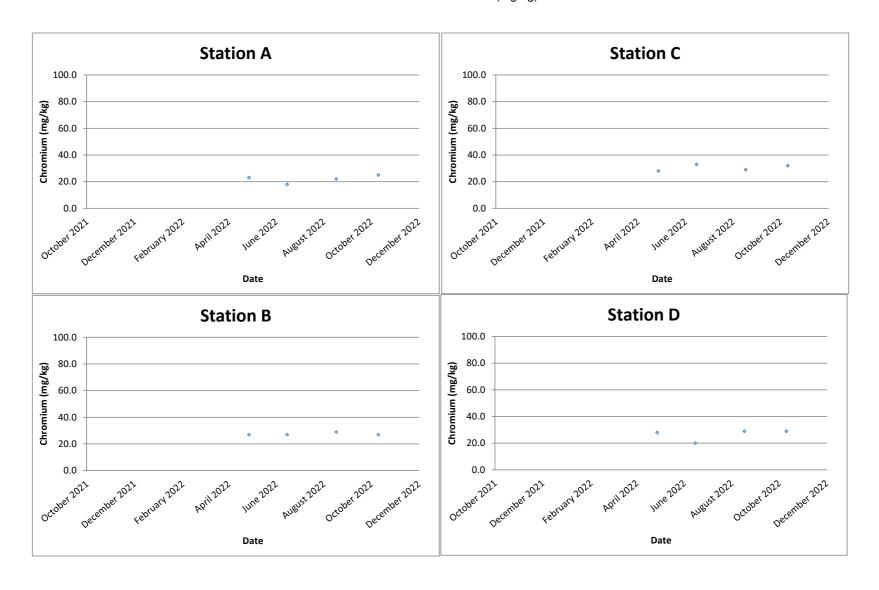


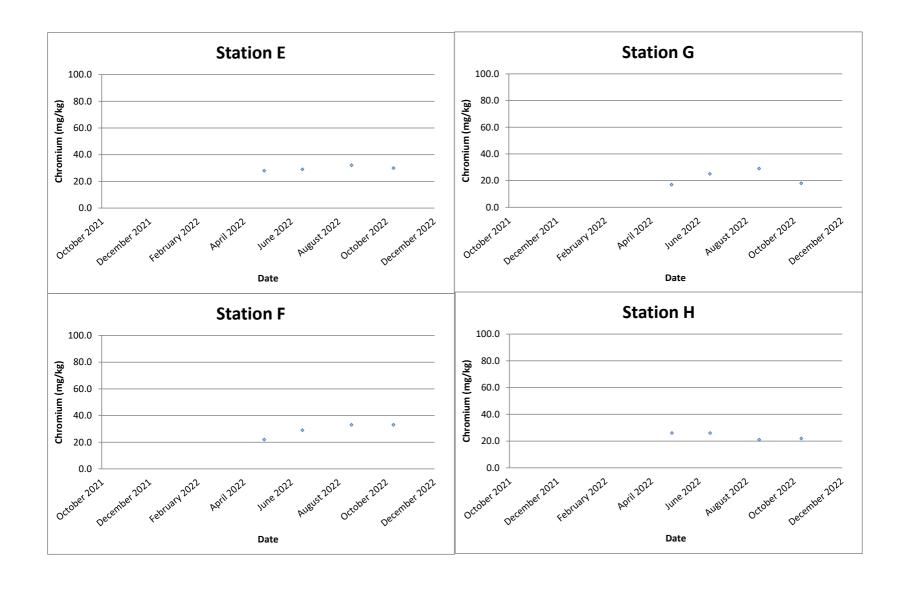


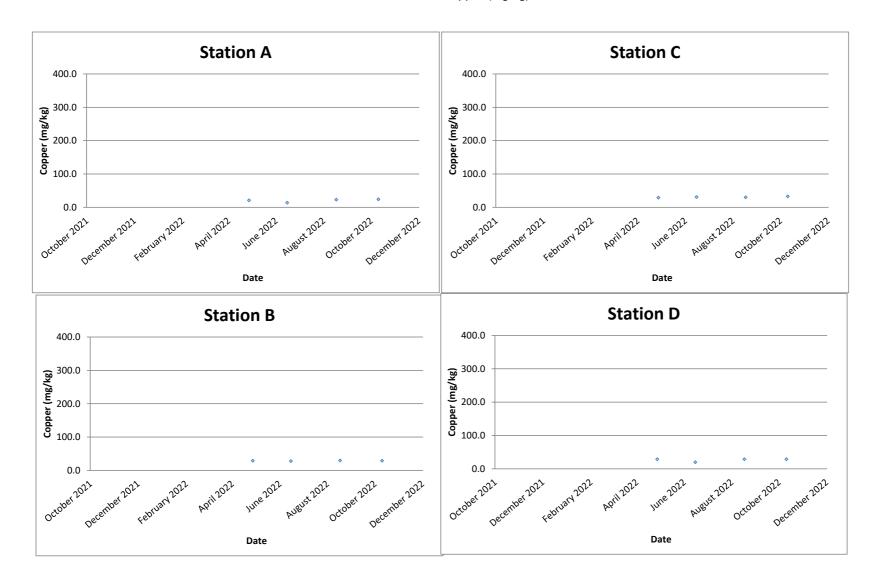


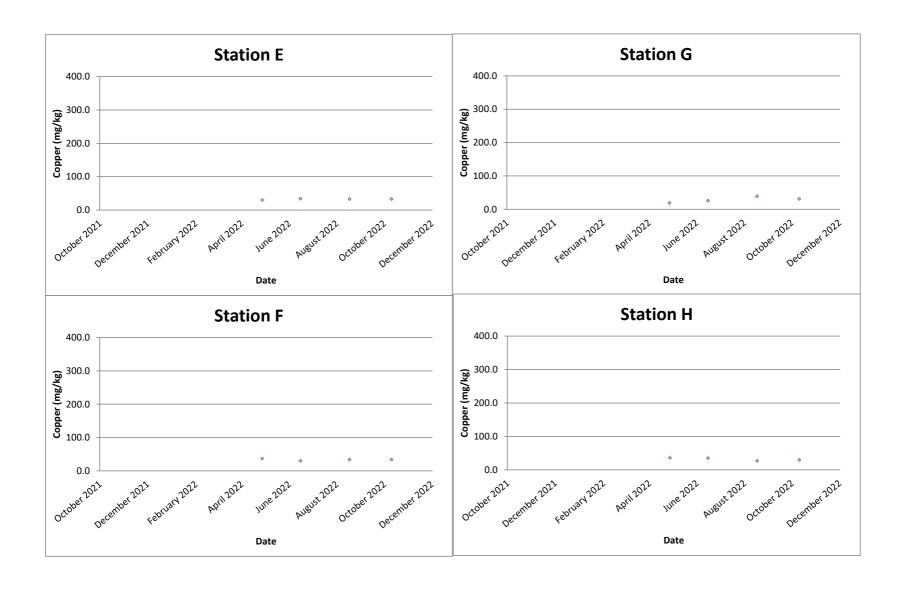


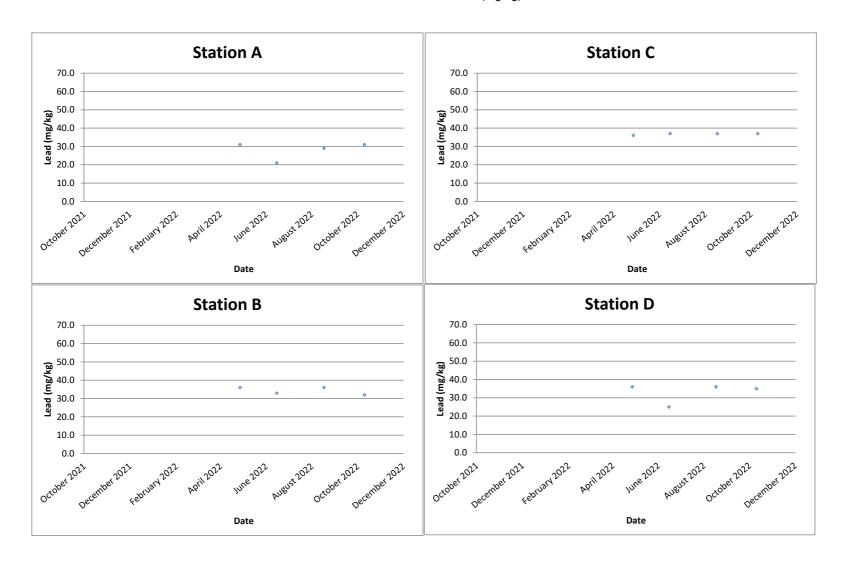


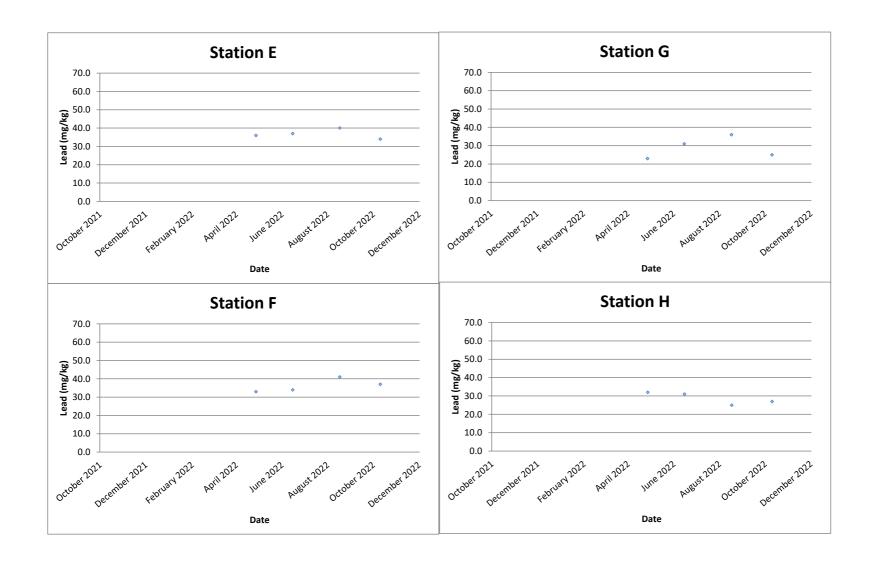


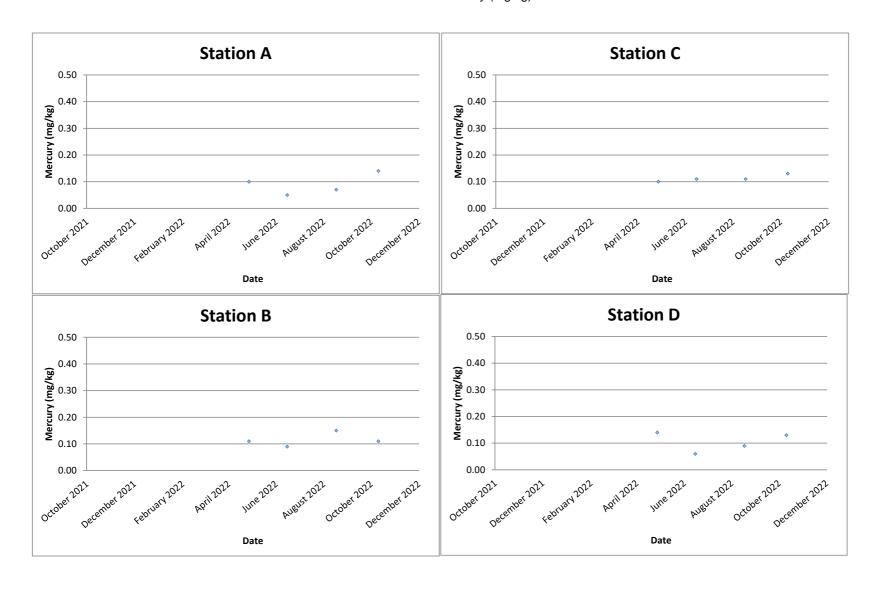


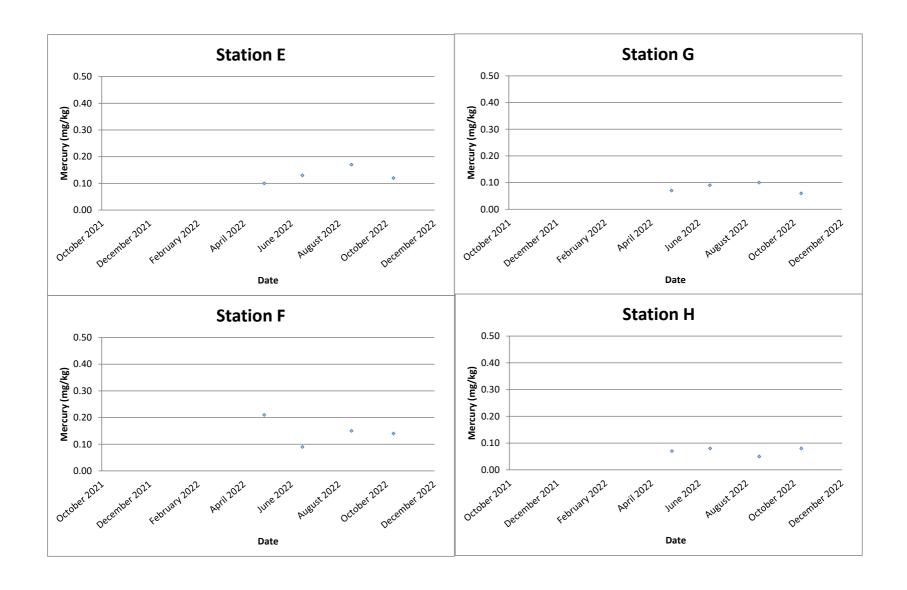

Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

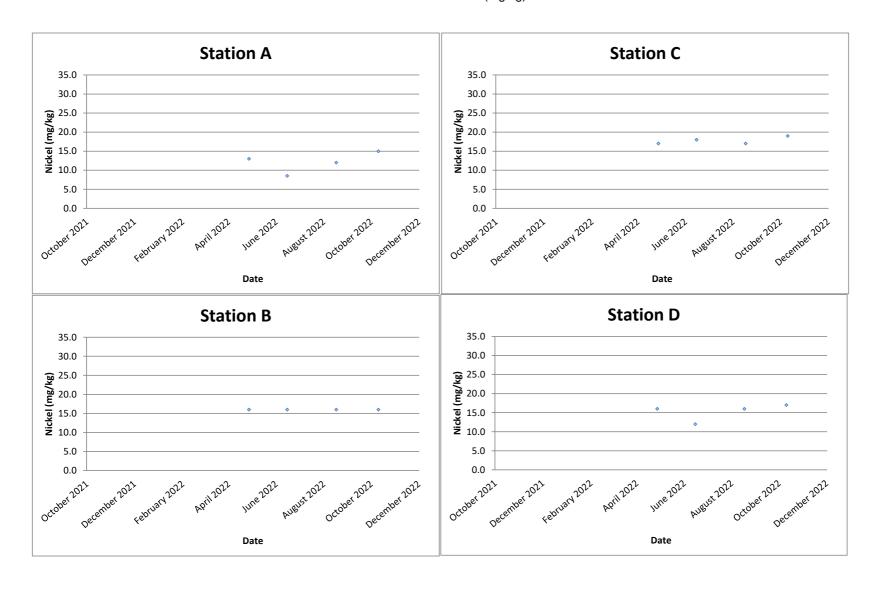


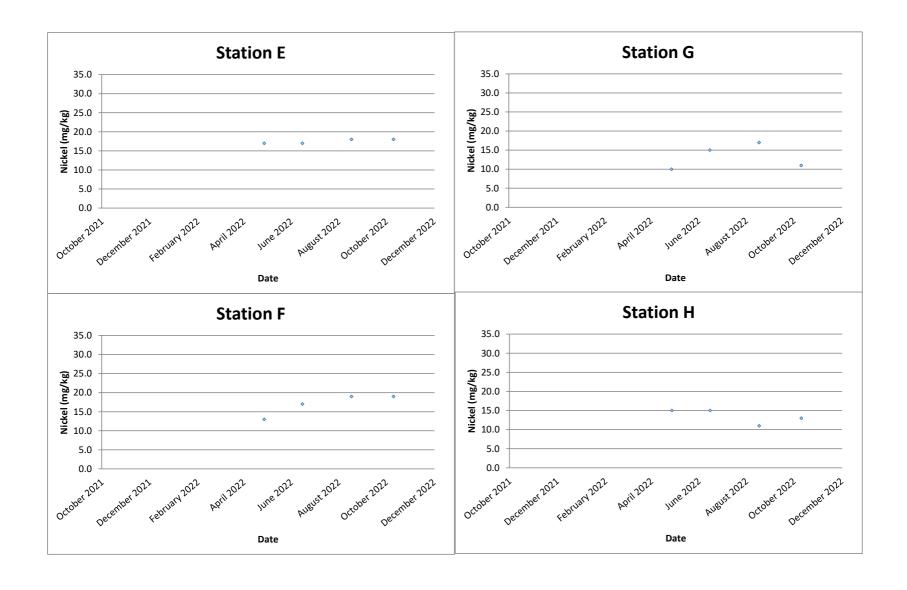

Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

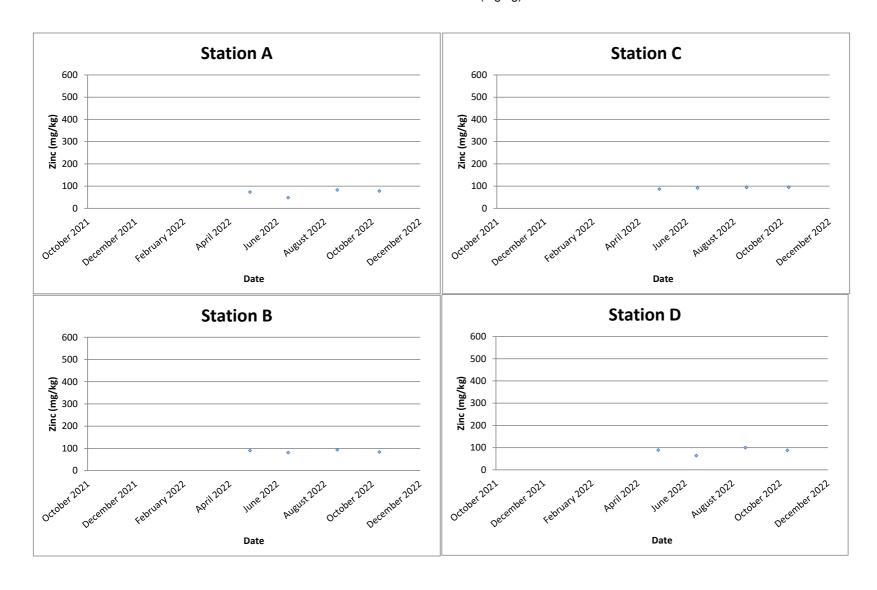


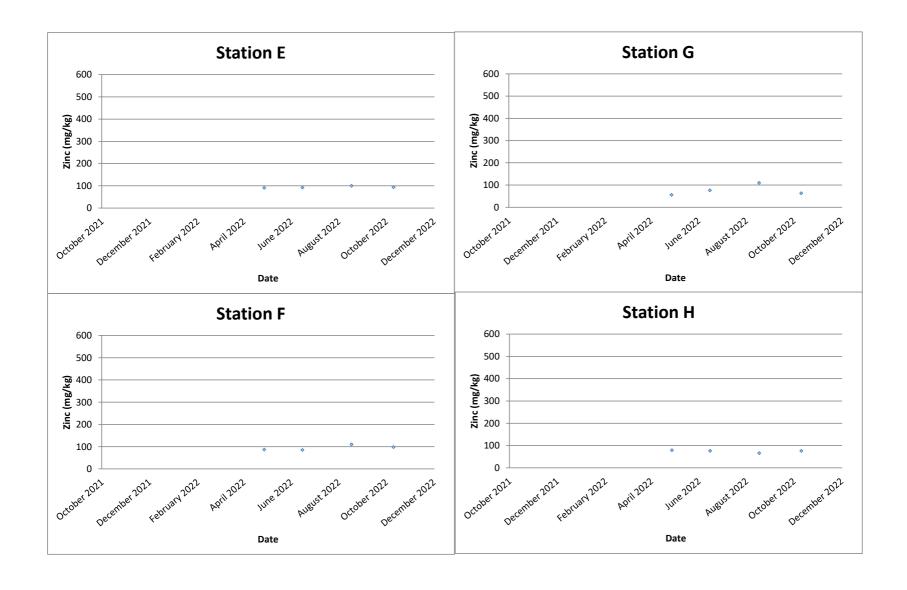


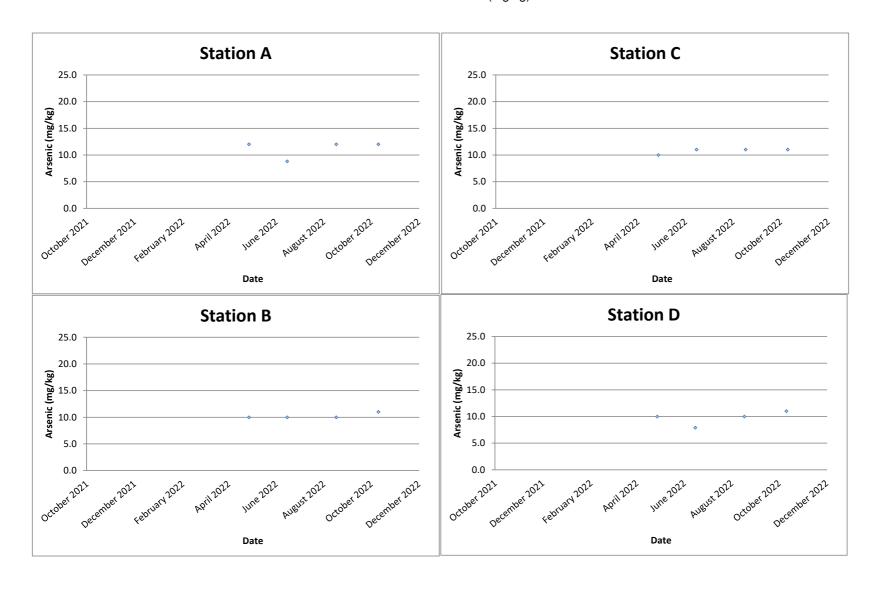


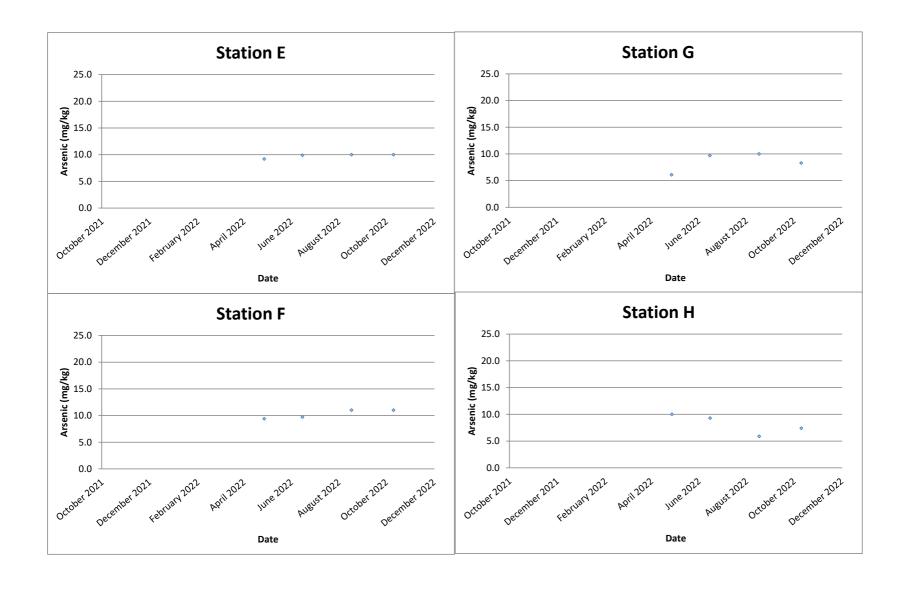


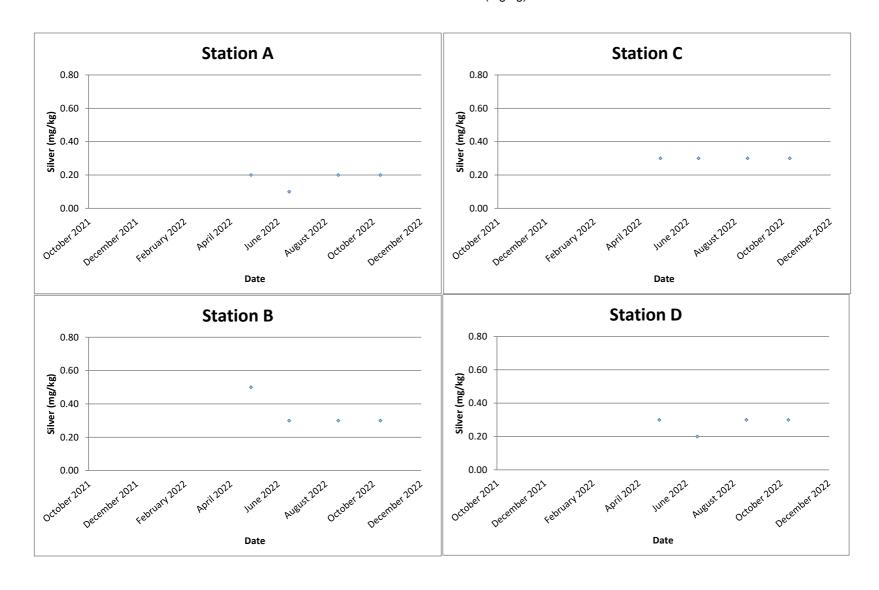


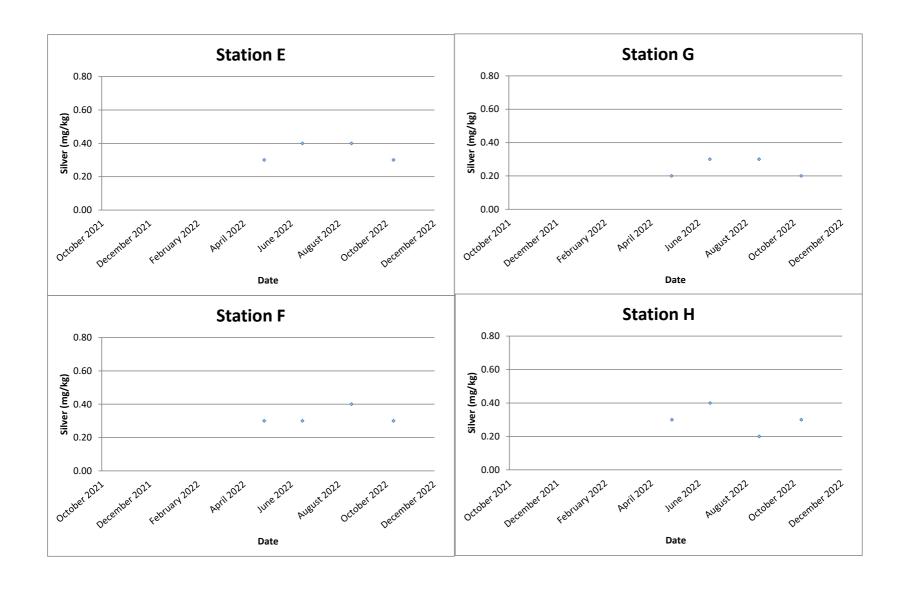












FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Appendix I

Benthic Survey Report

Benthic Survey Report (10 October 2022)

Abundance

A total of 347 benthic organisms were recorded from the eight monitoring stations during the October 2022 monitoring period. Current monitoring results showed lower total monthly abundance compared to both dry (March 2004) and wet (August 2004) seasons baseline data results (**Figure 1**). The current decrease in overall abundance may be attributed to the decrease in *Trypauchen* and *Styela* abundance which could have been due to the concurrent increase in ammonia of the sediments relative to August 2022 data. As shown in several studies, higher levels of ammonia may cause lower macrobenthic density (Lai et al., 2020). Similar with previous monitoring periods, total monthly abundance of benthic organisms exhibits significant seasonal variation (F-value = 4.52; F-crit =1.54; p-value = 2.05E-10; α = 0.05).

In terms of spatial distribution, the lowest abundance of 20 ind. was recorded in the impact station, Station C, while the highest (68 ind.) was also noted in other impact station, Station D (**Figure 2**). Total macro-benthic abundances, similar with the previous monitoring periods, showed statistically significant spatial distribution (F-value = 3.62; F-crit = 2.05; P-value = 0.001; α = 0.05).

Biomass

The total wet biomass recorded in the eight monitoring stations was 7.84 g with the highest biomass recorded in the reference station, Station G (3.13 g) while the lowest biomass (0.19 g) was observed in the reference station, Station F. Relative to the August 2022 period, a decrease in biomass was observed during the current monitoring period (**Figure 3**). Most of the current decrease was attributed to the biomass decrease of *Trypauchen* and *Styela* in the benthic community.

Taxonomic Composition

A total of six phyla comprising of 20 families and 24 genera were identified. During the current monitoring period, the annelids (76.66%) dominated the macro-benthic assemblage, followed by the molluscs (10.95%) (**Figure 4**). Relative to the August 2022 community assemblage, current results showed that the annelids still maintained their dominance of the community.

The dominance of annelids in the community assemblage was still noted as it is still the wet season during the current survey.

Diversity

Benthic diversity index (H') in the impact stations ranged from 1.47 to 1.59. In the reference stations, H' values ranged from 1.62 to 2.18. Currently, reference station, Station G had the highest diversity value among the different monitoring stations, while the lowest was the reference station, Station F. In terms of evenness index (J) values, impact Station D was noted with relatively high value as compared to other monitoring stations. Moreover, current monitoring results indicated an overall increase in both diversity and evenness values from the baseline survey condition.

Summary Tables

Abundance and biomass of macro-benthic organisms are shown in **Tables 1** and **2**, respectively. Data summary for different monitoring periods are presented in **Tables 3** to **7**. Representative photos of specimen are shown in the last pages of this benthic survey report.

Figures

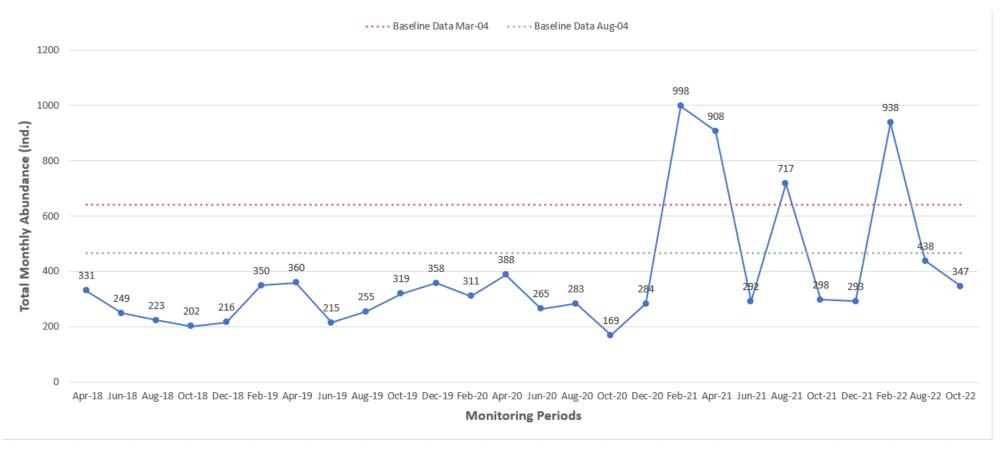


Figure 1: Monthly total abundance (ind.) of benthic organisms across monitoring periods

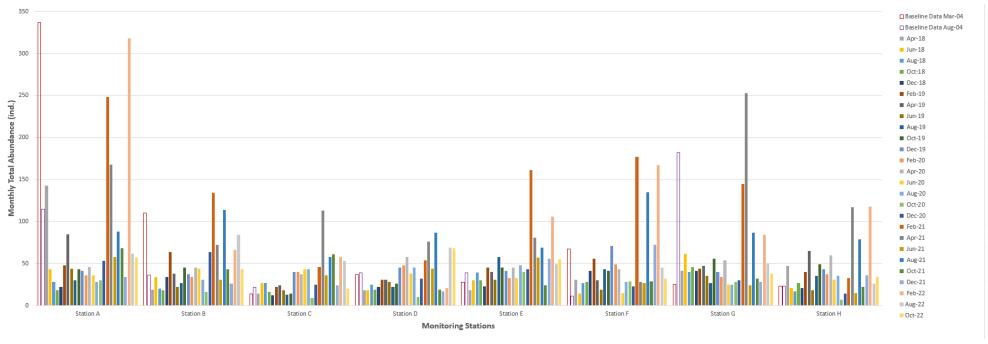


Figure 2: Monthly total abundance (ind.) of benthic organisms across monitoring stations

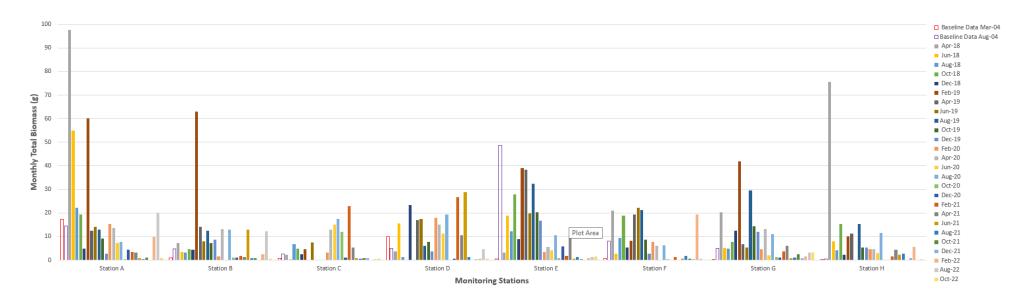


Figure 3: Monthly total biomass (g) of benthic organisms across monitoring stations

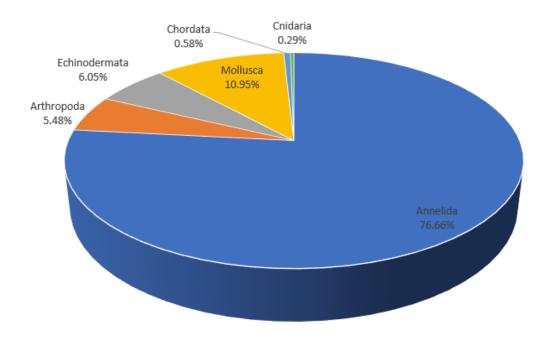


Figure 4: Percent composition of benthic organisms

Data Summaries

Table 1: Abundance (ind.) of macrobenthic communities in the eight monitoring stations, 10 October 2022

Dlavdovas	Class	Ouden	Familia	Comme	Monitoring Stations								
Phylum	Class	Order	Family	Genus	Α	В	С	D	Е	F	G	Н	
Annelida	Clitellata	Lumbriculida	Lumbriculidae	Lumbriculus	3	5	1	1	1	2	0	2	
Annelida	Polychaeta	Amphinomida	Amphinomidae	Chloeia	0	0	0	0	2	0	0	0	
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	18	15	9	38	21	12	4	4	
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	0	0	0	0	0	0	1	0	
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	0	0	0	0	0	0	3	5	
Annelida	Polychaeta	Eunicida	Lumbrineridae	Scoletoma	0	2	0	0	0	0	0	0	
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone	1	0	0	8	4	0	7	6	
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra	14	10	6	5	3	8	7	8	
Annelida	Polychaeta	Sedentaria	Opheliidae	Ophelia	0	0	1	1	3	0	7	0	
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	6	1	0	5	4	0	0	0	
Annelida	Polychaeta	Terebellida	Sternaspidae	Sternaspis	0	1	1	0	0	0	0	0	
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	2	0	0	0	
Arthropoda	Malacostraca	Decapoda	Penaeidae	Shrimp juvenile	2	0	1	0	2	0	2	1	
Arthropoda	Malacostraca	Decapoda	Pilumnidae	Typhlocarcinus	0	0	0	0	0	1	1	2	
Arthropoda	Malacostraca	Decapoda	Scalopidiidae	Scalopidia	4	0	0	1	0	0	0	0	
Chordata	Actinopteri	Gobiiformes	Gobiidae	Trypauchen	1	0	0	1	0	0	0	0	
Cnidaria	Anthozoa	Alcyonacea	Melithaeidae	Acabaria	0	1	0	0	0	0	0	0	
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	6	4	0	5	3	3	0	0	
Mollusca	Bivalvia	Adapedonta	Pharidae	Sinonovacula	0	0	0	0	0	0	0	1	
Mollusca	Bivalvia	Cardiida	Cardiidae	Cardium	0	1	0	0	0	5	0	0	
Mollusca	Bivalvia	Cardiida	Tellinidae	c.f. Phylloda foliacea	2	0	1	1	6	0	2	3	
Mollusca	Bivalvia	Cardiida	Tellinidae	c.f. Angulus	0	2	0	1	4	1	2	2	
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	0	1	0	0	0	0	0	0	
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes (R. philippinarum)	0	0	0	1	0	0	2	0	

Table 2: Biomass (g) of macrobenthic communities in the eight monitoring stations, 10 October 2022

Dhylum	Class	Order	Family	Conuc				Monitorin	g Station:	s		
Phylum	Class	Order	Family	Genus	Α	В	С	D	Е	F	G	Н
Annelida	Clitellata	Lumbriculida	Lumbriculidae	Lumbriculus	0.0301	0.0328	0.0250	0.0001	0.0047	0.0037	0	0.0076
Annelida	Polychaeta	Amphinomida	Amphinomidae	Chloeia	0	0	0	0	0.1325	0	0	0
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0.0719	0.0572	0.0205	0.0469	0.0519	0.0118	0.0043	0.0101
Annelida	Polychaeta	Capitellida	Capitellidae	Notomastus	0	0	0	0	0	0	0.0334	0
Annelida	Polychaeta	Capitellida	Capitellidae	Mediomastus	0	0	0	0	0	0	0.010	0.026
Annelida	Polychaeta	Eunicida	Lumbrineridae	Scoletoma	0	0.0039	0	0	0	0	0	0
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone	0.0144	0	0	0.0125	0.0085	0	0.0121	0.0103
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra	0.1878	0.0518	0.0204	0.0169	0.0239	0.0392	0.0352	0.0395
Annelida	Polychaeta	Sedentaria	Opheliidae	Ophelia	0	0	0.1125	0.0138	0.1223	0	0.7499	0
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana	0.0613	0.0068	0	0.0082	0.0205	0	0	0
Annelida	Polychaeta	Terebellida	Sternaspidae	Sternaspis	0	0.0160	0.0283	0	0	0	0	0
Arthropoda	Malacostraca	Decapoda	Scalopidiidae	Scalopidia	0.1629	0	0	0.0234	0	0	0	0
Arthropoda	Malacostraca	Decapoda	Penaeidae	Shrimp juvenile	0.0318	0	0.1774	0	0.0488	0	0.0227	0.017
Arthropoda	Malacostraca	Decapoda	Pilumnidae	Typhlocarcinus	0	0	0	0	0	0.0364	0.3444	0.0696
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus	0	0	0	0	0.0024	0	0	0
Chordata	Actinopteri	Gobiiformes	Gobiidae	Trypauchen	0.0219	0	0	0.0424	0	0	0	0
Cnidaria	Anthozoa	Alcyonacea	Melithaeidae	Acabaria		0.0135	0	0	0	0	0	0
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	0.1201	0.1182	0	0.0279	0.0391	0.0514	0	0
Mollusca	Bivalvia	Cardiida	Tellinidae	c.f. Phylloda foliacea	0.1351	0	0.2951	0.0837	1.014	0	0.0154	0.172
Mollusca	Bivalvia	Cardiida	Tellinidae	c.f. Angulus	0	0.0387	0	0.0122	0.1255	0.0232	0.0922	0.0461
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)	0	0.1519	0	0	0	0	0	0
Mollusca	Bivalvia	Veneroida	Veneridae	Ruditapes (R. philippinarum)	0	0	0	0.1992	0	0	1.8151	0
Mollusca	Bivalvia	Cardiida	Cardiidae	Cardium	0	0.0032	0	0	0	0.0212	0	0
Mollusca	Bivalvia	Adapedonta	Pharidae	Sinonovacula	0	0	0	0	0	0	0	0.0335

Table 3: Summary of Benthic Survey Data, October 2022

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
Α	57	0.84	10	1.90	15.57
В	43	0.49	11	1.90	17.13
C*	20	0.68	7	1.47	18.19
D*	68	0.49	12	1.59	25.98
E	55	1.59	12	2.09	16.26
F	32	0.19	7	1.62	14.58
G	38	3.13	11	2.18	14.08
Н	34	0.43	10	2.10	13.46

^{*}impact sites

Table 4: Summary of Benthic Survey Baseline Data, August 2004

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
Α	115	14.56	24	0.93	0.29
В	36	4.76	14	0.89	0.34
C*	22	2.66	13	0.80	0.31
D*	39	5.07	11	0.62	0.26
E	39	48.69	16	0.89	0.32
F	11	8.07	9	0.68	0.31
G	182	4.91	31	1.10	0.32
Н	23	0.49	11	0.81	0.34

^{*}impact sites

Table 5: Summary of Benthic Survey Baseline Data, March 2004

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
Α	337	17.39	38	0.78	0.21
В	110	0.9	21	0.82	0.27
C*	14	0.7	10	0.69	0.3
D*	37	10.07	20	1.01	0.34
Е	28	0.44	11	0.76	0.32
F	67	0.78	16	0.85	0.31
G	25	0.09	9	0.64	0.29
Н	23	0.15	11	0.44	0.18

^{*}impact sites

Table 6: Taxonomic Composition (%) of Benthic Survey

Taxa	Mar-04	Aug-04	Apr-19	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20	Jun-20	Aug-20	Oct-20	Dec-20
Annelida	80.19	73.29	70.28	0.47	64.31	66.14	59.78	60.77	56.44	69.06	63.25	51.48	50.35
Sipuncula	0.78	0.21	0.00	0.00	1.57	1.25	0.00	1.29	0.52	1.13	0.35	1.78	1.06
Arthropoda	11.23	18.80	10.83	4.65	9.80	19.75	14.53	13.83	28.87	8.30	13.43	18.93	20.77
Echinodermata	0.62	3.63	4.72	0.47	5.10	3.13	1.68	1.61	0.77	2.26	3.53	2.96	2.82
Cnidaria	1.72	0.43	0.00	1.86	0.39	0.00	0.84	0.32	0.26	0.75	0.00	1.18	0.00
Mollusca	5.46	3.42	13.33	0.47	17.25	8.15	22.35	19.94	11.60	15.85	15.90	18.93	24.65
Chordata	0.00	0.21	0.56	0.47	1.18	0.94	0.00	0.32	0.52	1.13	1.41	0.00	0.35
Nemertea	0.00	0.00	0.28	98.60	0.39	0.63	0.84	1.93	1.03	1.51	2.12	4.73	0.00

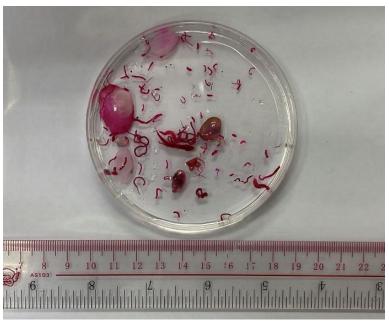
Таха	Feb-21	Apr-21	Jun-21	Aug-21	Oct-21	Dec-21	Feb-22	Apr-22	Jun-22	Aug-22	Oct-22
Annelida	22.75	31.72	73.63	78.52	64.43	45.05	15.57	33.78	57.32	88.56	76.66
Sipuncula	0.70	0.00	0.34	0.00	8.05	0.00	0.00	1.34	6.28	0.00	0.00
Arthropoda	70.14	55.95	10.27	9.90	11.41	36.86	78.25	26.54	5.86	1.60	5.48
Echinodermata	0.30	1.43	4.11	1.39	4.03	4.10	0.43	0.80	1.26	0.46	6.05
Cnidaria	0.00	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.29
Mollusca	5.81	10.90	11.64	10.04	11.74	9.22	5.22	37.27	28.87	8.47	10.95
Chordata	0.10	0.00	0.00	0.14	0.34	0.00	0.11	0.00	0.42	0.92	0.58
Nemertea	0.00	0.00	0.00	0.00	0.00	4.10	0.43	0.27	0.00	0.00	0.00

Table 7: Taxonomic Composition (Abundance) of Benthic Survey

Таха	Mar-04	Aug-04	Apr-19	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20	Jun-20	Aug-20	Oct-20	Dec-20
Annelida	514	343	253	124	164	211	214	189	219	183	179	87	143
Sipuncula	5	1	0	0	4	4	0	4	2	3	1	3	3
Arthropoda	72	88	39	17	25	63	52	43	112	22	38	32	59
Echinodermata	4	17	17	10	13	10	6	5	3	6	10	5	8
Cnidaria	11	2	0	2	1	0	3	1	1	2	0	2	0
Mollusca	35	16	48	59	44	26	80	62	45	42	45	32	70
Chordata	0	1	2	2	3	3	0	1	2	3	4	0	1
Nemertea	0	0	1	1	1	2	3	6	4	4	6	8	0

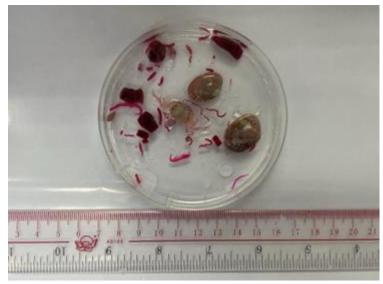
Taxa	Feb-21	Apr-21	Jun-21	Aug-21	Oct-21	Dec-21	Feb-22	Apr-22	Jun-22	Aug-22	Oct-22
Annelida	227	288	215	563	192	132	146	126	137	387	266
Sipuncula	7	0	1	0	24	0	0	5	15	0	0
Arthropoda	700	508	30	71	34	108	734	99	14	7	19
Echinodermata	3	13	12	10	12	12	4	3	3	2	21
Cnidaria	0	0	0	0	0	2	0	0	0	0	1
Mollusca	58	99	34	72	35	27	49	139	69	37	38
Chordata	1	0	0	1	1	0	1	0	1	4	2
Nemertea	2	0	0	0	0	12	4	1	0	0	0

Photos of Macrobenthic Assemblages


Station A

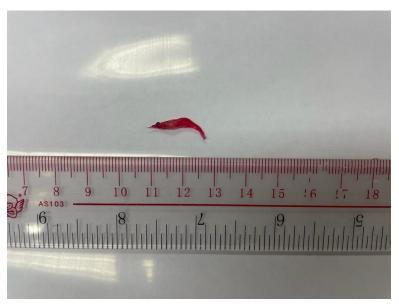
Station B

Station C


Station D

Station E

Station F



Station G

Station H

Photos of Representative Taxa Identified

Juvenile Shrimp

Ophelia

Capitella

Chloeia

Phylloda foliacea

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Appendix J

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Photo 1. A ponar grab sampler

Photo3. Grab dimension 2

Photo 2. Grab dimension 1

Photo4. Grab dimension 3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 3 5 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

Photo 1. A modified Van Veen grab sampler

Photo 2. Grab dimension 1

Photo3. Grab dimension 2

Photo4. Grab dimension 3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Appendix K

Environmental Complaints Log

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0041/17/ED/0688

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Nature of Complaint	Investigation
1	28 November 2019	EPD	smelled as far as the	activity on 28 th November 2019. Due to the possibility

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

Appendix L

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Qu	uality				
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	Quality	•		•	
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
Waste	Manager	nent	-	•	
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.	SHWSTW	Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general	SHWSTW	Implemented

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			refuse to facilitate collection		
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficieny should be rectified promptly.	SHWSTW	Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist and submitted to the Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0688

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the	SHWSTW	Implemented
			protocols set out in the WMP Section 5.14.		