Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

FUGRO TECHNICAL SERVICES LIMITED : +852 2450 8233 Tel : +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Monthly EM&A Report February 2023

Client	:	Drainage Services Department
Project	:	Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works
Report No.:	:	0041/17/ED/0704A

Prepared by: Andy K. H. Choi

Reviewed by: Cyrus C. Y. Lai

Certified by:

Colin K. L. Yung Environmental Team Leader Fugro Technical Services Limited

Our Ref. 1458/23-0005

42/F, Revenue Tower,

Wan Chai, Hong Kong

5 Gloucester Road

27/F, Overseas Trust Bank Building 160 Gloucester Road Wan Chai Hong Kong T: +852 2815 7028 F: +852 2815 5399

www.asecg.com

Attn: Mr. LAU Ka Kin, Marcus (E/CM16)

Drainage Services Department

Projects and Development Branch

Consultants Management Division

17 March 2023

By E-mail & Post

Dear Sir,

RE: CONTRACT NO. CM 13/2016

INDEPENDENT ENVIRONMENTAL CHECKER FOR OPERATIONAL ENVIRONMENTAL MONITORING AND AUDIT FOR SIU HO WAN SEWAGE TREATMENT WORKS (SHWSTW) MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (FEBRUARY 2023)

Reference is made to the submission of the Monthly Environmental Monitoring and Audit (EM&A) Report for February 2023 (Report No.: 0041/17/ED/0704A) from the Environmental Team (ET), Fugro Technical Services Ltd., received on 17 March 2023 via email.

We would like to inform you that we have no adverse comment on the captioned submission and hereby verify the same in accordance with Condition 4.3 of the Environmental Permit (EP) for the captioned Project (Permit No.: EP-076/2000).

Should you have any queries, please feel free to contact the undersigned, or our Mr. Timmy WONG at 2815 7028.

Yours faithfully,

For and on behalf of **Allied Environmental Consultants Ltd.**

Grace M. H. KWOK Independent Environmental Checker

GK/jn/tw

c.c. Fugro Technical Service (ET Leader) AECOM Attn: Mr. Colin YUNG Attn: Ms. Joanne TSOI (By E-mail) (By E-mail)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

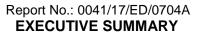
TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1.	INTRODUCTION	3
2.	AIR QUALITY MONITORING	5
3.	WATER QUALITY MONITORING	. 10
4.	SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY	. 20
5.	CHINESE WHITE DOLPHIN MONITORING	. 27
6.	ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	. 28
7.	ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS	. 29
8.	SUMMARY OF EXCEEDANCE OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMITS	. 30
9.	SUMMARY OF ENVIRONMENTAL COMPLAINTS	. 31
10.	FUTURE KEY ISSUES	. 32
11.	CONCLUSION	. 33

FIGURE

- Figure 1 Monitoring Stations of Air Sensitive Receivers
- Figure 2 Odour Patrol Points of Modified Odour Patrol
- Figure 3 Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey
- Figure 4 Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel :+852 2450 8233 Fax :+852 2450 6138 E-mail :matlab@fugro.com Website :www.fugro.com



Report No.: 0041/17/ED/0704A

APPENDICES

Appendix A	Project Organization Chart
Appendix B	Monitoring Schedule for Present and Next Reporting Period
Appendix C	Event and Action Plan for Air Quality Monitoring
Appendix D	Results and Graphical Presentation of Air Quality Monitoring
Appendix E	Copy of the Calibration Certificates for Water Quality Monitoring Equipment
Appendix F	Results and Graphical Presentation of Water Quality Monitoring
Appendix G	Tidal Data obtained from Ma Wan Marine Traffic Station
Appendix H	Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey
Appendix I	Benthic Survey Report
Appendix J	Photos of Grab Samplers
Appendix K	Environmental Complaints Log and Incident Report
Appendix L	Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1

This Monthly Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. CM 14/2016 – "Environmental Monitoring and Audit for Operation of Siu Ho Wan Sewage Treatment Works" (hereafter referred to as "the Contract") for the Drainage Services Department (DSD) of Hong Kong Special Administrative Region. Fugro Technical Services Limited (hereafter referred to as "FTS") was appointed as the Environmental Team (ET) by DSD, to implement the Environmental Monitoring & Audit (EM&A) programme in accordance with the Operational EM&A Plan of the Contract.

The Contract is part of the "Upgrading of Siu Ho Wan Sewage Treatment Works" (hereinafter referred as "the Project)" which was classified as "Designated Project" under Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO) (Cap 499) and Environmental Impact Assessment (EIA) Report (Register No. EIAR-124BC) was completed in September 1997. The current Environmental Permit (EP) No. EP-076/2000 was issued in August 2000 to DSD.

In accordance with the EP, an approved operational EM&A Plan was submitted. According to the approved EM&A plan, air quality monitoring (i.e. H_2S concentration monitoring, odour patrol monitoring and olfactometry analysis of H_2S), in addition, water quality monitoring, sediment quality monitoring, benthic survey, Chinese White Dolphin (CWD) monitoring and waste management are the key environmental concern of the Project.

This is the Sixty-seventh Monthly EM&A Report for the Project which summarizes findings of the EM&A works during the reporting period from 1 February 2023 to 28 February 2023 (the "reporting period").

Breaches of Action and Limit Levels

Odour patrol monitoring was resumed from January 2020 and carried out on 1, 7, 13 and 24 February 2023. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and modified odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at ASR were recorded in the reporting period.

Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 8 February 2023. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Complaint Log

There were no complaints received in relation to environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Summary of the Environmental Mitigations Measures

Report No.: 0041/17/ED/0704A

Page 2

Mitigation measures specified in the EP and EIA Report such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Future Key Issues

The key issues to be considered in the succeeding reporting month include:

Potential environmental impacts arising from the operations of Siu Ho Wan Sewage Treatment Works (SHWSTW) are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of Chinese White Dolphins (CWDs).

According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring was approved by EPD's memo dated 14 May 2018. In order to recommence the monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

Report No.: 0041/17/ED/0704A **1. INTRODUCTION**

1.1 Background

- 1.1.1 The Project "Upgrading of Siu Ho Wan Sewage Treatment Works" is to upgrade SHWSTW from the preliminary treatment level to Chemically Enhanced Primary Treatment (CEPT) level with Ultraviolet (UV) disinfection facilities. The Project is required to comply with the Environmental Permit (EP) in respect of the construction and operation phases of the Plant.
- 1.1.2 Under the EIAO, the Project was classified as "Designated Project". The Environmental Impact Assessment (EIA) study was completed in September 1997 with the EIA Report of Register No. EIAR-124BC, Operational Environmental Monitoring and Audit (EM&A) Plan and the EP of No. EP-076/2000 was issued in August 2000 to Drainage Services Department (DSD).
- 1.1.3 The CEPT part has been completed and was put into operation in March 2005. The UV disinfection works were substantially completed in December 2006. It is considered that the operation of the Project shall be deemed to start when the UV disinfection facilities have been completely installed and tested.

1.2 **Project Description**

1.2.1 The project proponent was DSD. AECOM was commissioned by DSD as the Engineer for the Project. Allied Environmental Consultants Limited (AEC) was commissioned by DSD as the Independent Environmental Checker (IEC) in the operation phase of the Project. FTS was appointed as the ET by DSD to implement the EM&A programme for the operation phase of the Project including air quality monitoring, water quality monitoring, sediment quality and benthic survey and CWDs monitoring.

1.3 **Project Organization**

1.3.1 The project organization for environmental works is shown in **Appendix A**. The contact person and telephone numbers of key personnel for the captioned project are shown in **Table 1.1**.

Organization	Role	Contact Person	Telephone No.	Fax No.
DSD	Project Proponent Representative	Mr. Marcus Lau	2594 7218	3104 6426
AECOM	Engineer Representative (ER)	Ms. Joanne Tsoi	3922 9423	3922 9797
AEC	Independent Environmental Checker (IEC)	Ms. Grace Kwok	2815 7028	2815 5399
FTS	ET Leader (ETL)	Mr. Colin Yung	3565 4114	2450 8032

 Table 1.1
 Contact Persons and Telephone Numbers of Key Personnel

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

1.4 Works Undertaken during the Reporting Period

- 1.4.1 During this reporting period, the principal work activities included:
 - Perform comprehensive operation and maintenance services for the electrical, mechanical and electronic systems/equipment at SHWSTW.
 - Alleviate as far as practicable the impact that the facilities and sewage systems imposed on the environment of Hong Kong.

Report No.: 0041/17/ED/0704A 2. AIR QUALITY MONITORING

Hong Kong.

2.1 Methodology of H₂S Concentration Monitoring

Website : www.fugro.com

2.1.1 15-min H₂S concentration was measured using a Jerome 631-X analyzer. This analyzer is capable of measuring H₂S concentration in the range of 1 ppb to 50 ppm with a resolution of 1 ppb and operates within a temperature range of 0°C to 40°C at an air flow rate of 0.15 L/min. Odour gas samples were drawn by built-in a suction pump of the analyzer and passed through a gold film sensor. The trace level of H₂S of the samples were determined electrochemically on the gold film sensor. Meteorological conditions including temperature, wind speed, wind direction and relative humidity were also measured at the time of the monitoring. Table 2.1 summarizes the equipment used in H₂S monitoring.

Table 2.1 Equipment used for H₂S Concentration Monitoring

Equipment Manufacturer		Serial	Sensor	
/ Model		Number	Number	
Gold Film Hydrogen Sulphide Analyzer	JEROME X631 0003	2966	14-11-23- R2D	

2.2 Methodology of Modified Odour Patrol Monitoring

- 2.2.1 Due to the complaint case received on 28 November 2019, a modified version of odour patrol monitoring is proposed and approved on 13 March 2020. According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), a modified version of odour patrol monitoring was commenced on 20 March 2020 to ensure the mitigation measures are effectively implemented. The modified odour patrol conducted once per week by two independent trained personnel/competent persons (the "patrollists") patrolling and sniffing along the SHWSTW boundary and the air sensitive receivers (ASRs).
- 2.2.2 The odour monitoring should not be undertaken on rainy days. Subject to the prevailing weather forecast condition, odour patrol shall be conducted by two patrollists at the downwind locations. During the patrol, the sequence should start from less odourous locations to stronger odourous locations.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0704A

Page 6

- 2.2.3 The two patrollists shall be satisfied the below requirements during odour patrol:
 - Have their individual odour threshold of n-butanol in nitrogen gas in the range of 20 to 80 ppb/V required by the European Standard menthod: BS EN13725.
 - Be free from any respiratory illnesses.
 - Not be allowed to smoke, eat, drink (except water) or use chewing gum or sweets 30min before and during odour patrol.
 - Take great care not to cause any interference with their own perception or that of others by lack of personal hygiene or the use of perfumes, deodorants, body lotions or cosmetics.
 - Not communicate with each other about the results of their choices.
- 2.2.4 During the odour patrol monitoring, the meteorological and surrounding information are recorded as follows:
 - i. Prevailing Weather Condition;
 - ii. Wind Direction;
 - iii. Wind Speed;
 - iv. Location where Odour is detected;
 - v. Source of Odour detected;
 - vi. Perceived intensity of Odour detected;
 - viii. Duration of Odour detected; and
 - ix. Characteristics of Odour detected
- 2.2.5 The perceived intensity is to be divided into 5 levels which are ranked in a descending order as follows:

Table 2.2 Categories of Odour Intensity for Modified Odour Patrol Monitoring
--

Odour	Odour	Classification Criteria
Level	Intensity	
0	Not detected	No odour perceived or an odour so weak that it cannot be easily
		characterised or described.
1	Slight	Slight identifiable odour, and slight chance to have odour nuisance.
2	Moderate	Moderate identifiable odour, and moderate chance to have odour
		nuisance.
3	Strong	Strong identifiable, likely to have odour nuisance.
4	Extreme	Extreme severe odour, and unacceptable odour level.

2.3 Methodology of Odour Sampling and Olfactometry Analysis

- 2.3.1 Odour gas samples were collected in a Nalophan sampling bag placed inside a vacuum airtight sampler using passive sampling technique. Approximately 60 liter of gas sample was collected at each sampling. All samples collected on the sampling day were returned to laboratory for olfactometry analysis within 24 hours and analyzed within 2 hours upon receiving.
- 2.3.2 ALS Technichem (HK) Pty Ltd. (HOKLAS Reg. No. 066), was the appointed laboratory for olfactometry analysis of the gas sample.
- 2.3.3 The odour concentration of the samples were determined by Forced-choice Dynamic Olfactometer in accordance with the European Standard Method: BS EN13725. Testing were also performed by a panel of six members who have been trained to comply with the

5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Page 7 requirement of European Standard Method: BS EN13725. All testing were completed within 24 hours upon sampling.

2.4 **Monitoring Location**

- 2.4.1 H₂S concentration monitoring and odour sampling at ASR, Cheung Tung Road near the Bus Depot at the west of the Siu Ho Wan Treatment Plant, were temporarily suspended from 14 May 2018. The location of ASR is shown in Figure 1.
- 9 odour patrol points is chosen to conduct the modified odour patrol for collecting more 2.4.2 representative data and identify the particular source of odour in the site. The nine odour patrol points is as below:

Odour	Description
Patrol Point	
OD1	Eastern Site Boundary
OD2	Southern Site Boundary
OD3	Western Site Boundary
OD4	Northern Site Boundary
OD5	Spur Road near Discovery Bay Tunnel Outlet
OD6	Cheung Tung Road near the Bus Depot
OD7	Cheung Tung Road near O·PARK1
OD8	Sham Shui Kok Dr near MTR Depot
OD9	Discovery Bay Tunnel Toll Plaza

Table 2.3 **Odour Patrol Point**

The odour patrol points of modified odour patrol is shown in Figure 2. 2.4.3

2.5 **Monitoring Frequency and Duration**

2.5.1 The durations and frequencies of H₂S concentration measurement, odour patrolling and odour sampling are summarized in Table 2.4 below.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Page 8

Table 2.4 Durations and Frequencies of Air Quality Monitoring Programme

	Duration	Frequency
H ₂ S concentration		¹ Weekly basis for 6 months during the initial operation
monitoring	15 minutes	stage
Odour patrol		^{4,5} Weekly basis
Odour sampling for olfactometry analysis	³ 15 minutes	² First week of the odour patrol monitoring

Remark:

1) In case excessive odour nuisance was detected during the odour patrol monitoring or the standard of the 5 odour units cannot be complied with during the odour panel monitoring, the odour patrol monitoring and H_2S concentration monitoring shall be extended for a period of three months to cater for the warm-up period of the functioning of the additional mitigation measures.

2) In case the relationship between H_2S concentration (ppb) with the odour unit (OU/m³) cannot conclude from the correlation study carried out at the first week of the odour patrol monitoring due to invalid data, additional odour sampling for olfactometry analysis shall be carried out for the correlation study.

3) Sufficient air samples (approximate 60L) may be collected in less than 15 minutes during odour sampling.

4) As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis from 15 January 2020.

5) As instruction from the company of Discovery Bay Tunnel, odour patrol monitoring at OD5 (Spur Road near Discovery Bay Tunnel Outlet) was conducted on monthly basis.

2.5.2 The monitoring schedule for the present and next reporting period is provided in **Appendix B**.

2.6 Event and Action Plan

2.6.1 According to the approved proposal for odour patrol monitoring plan (0041/17/ED/0524G), updated Action and limit levels for air quality monitoring are presented in **Table 2.5**.

Table 2.5 Action and Limit Levels for All Quality Monitoring							
Parameter	Action	Limit					
Odour Nuisance	One complaint received for specific odour event / Odour intensity of 2 or above is measured from odour patrol	complaints received for specific					

Table 2.5 Action and Limit Levels for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No.: 0041/17/ED/0704A

Page 9

2.6.2 The event and action plan for air quality monitoring is provided in **Appendix C**.

2.7 Quality Assurance and Quality Control

- 2.7.1 A control sample was collected by purging odour-free nitrogen gas from a certified gas cylinder on site at each sampling.
- 2.7.2 Calibration of the analyzer is conducted every year at the laboratory of the manufacturer.
- 2.7.3 In order to ensure the analyzer is functioning properly, manual sensor regeneration and zero adjustment were performed before each set of odour monitoring.

2.8 Monitoring Results and Observations

- 2.8.1 As advice by EPD on the odour complaint received in November 2019, odour patrol monitoring was resumed on weekly basis. The odour patrol monitoring was carried out on 1, 7, 13 and 24 February 2023. As instruction from the company of Discovery Bay Tunnel, odour patrol monitoring at OD5 (Spur Road near Discovery Bay Tunnel Outlet) was conducted on monthly basis.
- 2.8.2 The meteorological data including temperature, wind speed and direction of the reporting period at ASR is summarised in **Table 2.6**.

Date	Location	Temperature (°C)	Relative Humidity (%)	Wind Direction	Wind Speed (m/s)
1 February 2023	OD1	20.9	77	N	3.4
	OD2			E	0.8
	OD3			NE	1.1
	OD4			E	1.6
	OD6			E	1.6
	OD7			E	0.8
	OD8			NE	0.7
	OD9			E	1.5
7 February 2023	OD1	21.3	81	N	1.3
	OD2			NE	1.1
	OD3			-	0.0
	OD4			NE	0.4
	OD6			NE	2.0
	OD7			NE	2.1
	OD8			E	1.3
	OD9			NE	1.3
13 February	OD1	22.7	89	E	3.7
2023	OD2			E	0.2
	OD3			E	0.8
	OD4			N	1.6
	OD6			NE	2.3
	OD7			N	2.6
	OD8			NE	1.4

Table 2.6 Summary of Meteorological Data in Reporting Period

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No	o.: 0041/17/ED/0704	A				Page 10
		OD9			NE	0.4
	24 February	OD1	21.6	49	N	0.7
	2023	OD2			-	0.0
		OD3			NE	1.4
		OD4			N	0.3
		OD5			N	0.9
		OD6			NE	1.2
		OD7			N	0.9
		OD8			NE	1.6
		OD9			N	1.5

2.8.3 The monitoring results in the reporting period are summarised in **Table 2.7**. Graphical pots of results and details of monitoring data are shown in **Appendix D**.

	Monitoring Parameter
Monitoring Location	Odour Patrol [^] (Odour Level)
	Range
OD1	0 – 1
OD2	0 – 1
OD3	0 – 0
OD4	0 – 0
OD5	0 – 0
OD6	0-0
OD7	0-0
OD8	0 – 0
OD9	0 – 0

Remark:

^Odour Level: 0 – Not detected, 1 – Slight, 2 – Moderate, 3 – Strong, 4 – Extreme

- 2.8.4 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 2.8.5 No exceedances of Action/Limit levels at ASR were recorded as no complaint was received during the reporting period.
- 2.8.6 Odour mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment unit prior to stack exhaust were implemented during the reporting period.

Report No.: 0041/17/ED/0704A 3. WATER QUALITY MONITORING

3.1 Monitoring Station

Hong Kong.

3.1.1 In accordance with Section 5 of the EM&A Plan, water quality monitoring should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 3.1** and their locations are shown in **Figure 3**.

Table 3.1 Location of Water Qual	lity Monitoring
----------------------------------	-----------------

Website : www.fugro.com

	Sampling Location	Easting	Northing	
А	The Brothers, Control Station	816 100	822 500	
В	The Brothers, Control Station	816 680	822 440 820 180	
С	Siu Ho Wan Outfall, Impact Station	816 800		
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360	
E	Cheung Sok, Control Station	819 817	821 655	
F	Cheung Sok, Control Station	820 158	821 922	
G	Tai Ching Chau, Control Station	822 214	822 692	
Н	Tai Ching Chau, Control Station	822 494	822 939	

3.2 Monitoring Parameter

3.2.1 The monitoring parameters for water quality monitoring are summarized in **Table 3.2**.

Table 3.2Parameters for Water Quality Monitoring

Monitoring Parameters						
In-situ Measurement	Laboratory Analysis					
Dissolved oxygen (mg/L)	<i>E. coli</i> (cfu/100ml)					
Temperature (degree Celsius)	5-day BOD (mg/l)					
pH value	Suspended Solids (mg/l)					
Water depth (m)	Ammonia as N (mg/l)					
Salinity (ppt)	Nitrate as N (mg/l)					
Turbidity (NTU)	Nitrite as N (mg/l)					
Current Speed (m/s)	Total inorganic nitrogen (mg/l)					
Current Direction (degree magnetic)	Total phosphorus (soluble and particulate) (mg/l)					

Page 11

Report No.: 0041/17/ED/0704A

Page 12

- 3.2.2 Apart from the parameters listed in the **Table 3.2**, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 3.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

3.3 Monitoring Equipment

3.3.1 A multifunctional meter (YSI 6920 V2/ Aqua TROLL 600) will be used to measure dissolved oxygen (DO), concentration, DO saturation, temperature, salinity, pH and turbidity, simultaneously at the same location and water depth. An Acoustic Doppler Current Profiler (ADCP) integrated with echo sounder function will be used to measure water depth, current velocity (speed and direction). The data measured by ADCP will then be downloaded on site to computer on-board. The water depth data measured by the ADCP shall be electronically logged and available for output. All measurement data from the multiparameter monitoring device and ADCP will be integrated with the GPS data from the DGPS logging device, so that data collected at a specific time and location can be shown. The water sampler will be equipped with a multiparameter monitoring device (with water depth probe to determine the exact sampling depth at which a sample is collected). The equipment employed for the monitoring and sampling and their specifications are presented in **Table 3.3**. **Table 3.4** summarizes the equipment used in water quality monitoring. Copy of the calibration certificates for water quality monitoring equipment are presented in **Appendix E**.

Parameter	Equipment	Model	Range	Equipment Accuracy
Temperature, Dissolved Oxygen, salinity, pH, Turbidity, Sampling Depth	Monitoring Device	 YSI 6920V2-2-M Sonde Aqua TROLL 600 Multiparameter Sonde 	Turb: 0-1000NTU Depth: 0-61 meters	Temp: ±0.15°C DO: ±0.1mg/L or 1% (whichever greater) for 0- 20mg/L; ±15% for 20- 50mg/L (with correction for salinity and temperature) Sal: ±1% or 0.1ppt (whichever greater) pH: ±0.2 units Turb: ±2% or 0.3NTU (whichever greater) Depth: ±0.12m
Water Depth, Current Speed, Current Direction	Acoustic Doppler Current Profiler	RiverSurveyor M9	Water Depth: 0-80m	Water Depth: 1% Current speed: ±0.25% of measured velocity or ±0.2cm/s Current direction: ±2degree magnetic
Positioning DGPS		Simrad MX521B Smart Antenna with Simrad MX610 CDU	NA	GPS: ±1m
Water Sampling	Water Sampler	Aquatic Research Transparent PC Vertical Water Sampler 2.2L / 3L / 5L	NA	NA

Table 3.3	Water Quality	/ Monitoring an	nd Sampling	Equipment

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A **Table 3.4** Equipment used for Water Quality Monitoring

Page 13

Equipment	Manufacturer / Model	Serial Number
Water Quality Monitoring Device	Aqua TROLL 600 Multiparameter Sonde	525120
Acoustic Doppler Current Profiler	RiverSurveyor M9	5906

- 3.3.2 Apart from the equipment mentioned in Section 3.3.1, a Class III commercially licensed vessel will be used as survey vessel. DGPS logging device with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the Survey Vessel to assist the monitoring. Experienced supervisor will be present all throughout the monitoring activities on-board the survey vessel.
- 3.3.3 Water samples will be collected by water sampler and stored in high density polythene bottles and sterilized glass bottles (for bacterial analysis), packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis. All sampling bottles will be pre-rinsed with the same water samples. The sampling bottles will then be taken to a HOKLAS accredited laboratory for analysis of *E. coli*, BOD₅, Suspended Solids, NH₃-N, NO₃-N, NO₂-N, Total inorganic nitrogen, Total phosphorus (soluble and particulate).

3.4 Laboratory Measurement and Analysis

3.4.1 With reference to EPD's letter (Ref: Ax(7) to EP 2/No/F/50 Pt.7) dated 8 February 2022, Change of Laboratory on Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey (0041_17_ED_0632A) is approved. Fugro Technical Services Limited (HOKLAS Reg. No. 015), is the appointed laboratory for analysis of water samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 3.5**.

Analysis Description	Method	Reporting limits
E. coli	DoE Section 7.8, 7.9.4.2& 7.9.4.4 plus in situ urease test	1 cfu/100mL
5-day Biochemical Oxygen Demand	APHA 23rd edition 5210B	1 mg/L
Total Suspended Solid	APHA 23rd edition 2540D	0.5 mg/L
Ammonia as N	APHA 23rd edition 4500 - NH ₃ H	0.005 mg/L
Nitrate as N	APHA 23rd edition 4500 - NO3 ⁻ I	0.005 mg/L
Nitrite as N	APHA 23rd edition 4500 - NO2 ⁻ A & NO3 ⁻ I	0.005 mg/L
Total Inorganic Nitrogen	By Calculation	0.01 mg/L

Table 3.5 Laboratory Measurement/Analysis Methods and Reporting Limits

Fuaro Development Centre. 5 Lok Yi Street. Tai Lam. Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel : +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

b.: 0041/17/ED/0704A Page 14							
Analysis Description	Method	Reporting limits					
Total phosphorus (soluble and particulate)	APHA 17th edition 4500-PB5 (digestion) and In-house method E- T-056 (determination)	0.01 mg/L					

3.5 **Monitoring Frequency and Duration**

- 3.5.1 The water quality monitoring programme will be carried out once per two months for a period of five years of the operational phase of the Project.
- 3.5.2 Water guality monitoring for two tides at eight designated stations will be carried out for each monitoring event. For each station at each tide, duplicate samples for in-situ parameter and laboratory analysis at three designated water depths (1 m below water surface, mid-depth and 1 m above the seabed) will be taken and analyzed.
- The monitoring schedule for the present and next reporting period is provided in **Appendix B**. 3.5.3

3.6 **Quality Assurance / Quality Control**

- 3.6.1 The equipment is in compliance with the requirements set out in the EM&A Plan. All in-situ monitoring instruments were calibrated by a HOKLAS-accredited laboratory or by standard solutions. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three month interval.
- 3.6.2 During the measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature, duplicate readings will be taken. If the difference between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings will be taken.
- The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. 3.6.3 Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

Event and Action Plan 3.7

3.7.1 Since the purpose of the water quality monitoring is to collect data for future propose, no specific event and action has to be followed.

3.8 **Monitoring Results and Observations**

3.8.1 Water quality monitoring is carried out was 8 February 2023. A summary of the in-situ water quality monitoring results are presented in Table 3.6 (Mid-ebb) and Table 3.7 (Mid-flood)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel : +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Page 15 respectively. The complete record and graphical presentation of the in-situ water quality monitoring results is given in Appendix F.

Table 3.6 Summary of In-situ Monitoring Results (Mid-ebb)										
Monitoring	Water	Sar	nplin	Dissolved	Temperature	pН	Salinity	Turbidity	Current	Current
Station	Depth		epth	oxygen	(degree	•	(ppt)	(NTU)	speed	velocity
	(m)	(m)	•	(mg/L)	Čelsius)			× ,	(m/s)	(degree
	()	(,		(001010.07				(magnetic)
		S	1	6.89	19.76	7.32	30.26	2.4	0.23	264.1
		S	1	6.84	19.77	7.31	30.22	2.6	0.21	266.2
_		M	8.5	6.62	18.24	6.94	30.54	2.4	0.14	204.5
A	17	M	8.5	6.61	18.26	6.99	30.56	2.7	0.16	205.1
		B	16	6.54	19.11	6.98	30.97	2.4	0.13	209.1
		B	16	6.57	19.17	6.97	30.96	2.5	0.14	209.9
		S	1	6.84	18.94	7.74	31.24	1.4	0.14	74.1
		S	1	6.82	18.92	7.73	31.29	1.5	0.12	72.6
		M	7	6.70	18.73	7.54	31.57	1.3	0.12	74.9
В	14	M	7	6.71	18.71	7.53	31.56	1.4	0.14	74.4
		B	13	6.74	18.54	7.41	31.84	2.3	0.23	81.2
		B	13	6.75	18.53	7.42	31.86	2.4	0.24	81.3
		S	1	7.14	18.43	7.83	30.43	1.4	0.36	264.5
		S	1	7.13	18.47	7.82	30.43	1.6	0.32	266.1
		M	6	7.04	18.21	7.44	30.57	1.4	0.32	259.2
С	12	M	6	7.04	18.23	7.46	30.56	1.6	0.27	259.4
		B	11	6.84	18.04	7.48	30.72	1.0	0.20	267.3
		B	11	6.83	18.06	7.49	30.72	1.8	0.24	266.1
		S	1	6.74	18.42	7.54	31.46	1.0	0.20	146.2
	13	S	1	6.72	18.46	7.54	31.40	1.2	0.37	140.2
		M	6.5	6.69	18.72	7.52	31.87	1.8	0.37	123.5
D		M	6.5	6.68	18.73	7.58	31.86	1.0	0.24	123.5
		B	12	6.54	18.94	7.59	31.34	2.4	0.39	154.6
		B	12	6.53	18.96	7.59	31.34	2.4	0.25	154.0
		S	1	6.94	19.04	8.51	32.46	1.6	0.20	257.1
		S	1	6.94	19.04	8.52	32.40	1.8	0.17	255.2
	16	M	8	6.83	18.43	8.56	32.44	1.7	0.10	255.2
E		M	8	6.82	18.41	8.57	32.91	1.7	0.14	277.3
		B	0 15	6.74	18.32	8.54	32.94	1.0	0.16	261.4
		B	15	6.73	18.33	8.53	32.83	1.2	0.16	261.4
		S S	1	6.64	19.32	8.73	32.46	1.4	0.12	312.7
				6.63	19.31	8.74	32.41	1.3	0.14	311.6
F	23	M	11.5	6.73	19.46	8.69	32.58	1.4	0.16	326.1
		M	11.5	6.78	19.47	8.68	32.55	1.6	0.13	324.5
		B	22	6.51	19.31	8.64	32.74	1.9	0.16	322.3
		В	22	6.52	19.34	8.62	32.71	1.8	0.14	321.4
		<u></u> о с	1	8.61	18.41	8.41	31.34	1.3	0.14	97.1
		S	1	8.64	18.42	8.42	31.33	1.4	0.16	97.4
G	22	M	11	8.52	18.26	8.39	31.45	1.3	0.19	103.2
_		M	11	8.51	18.22	8.38	31.49	1.2	0.13	104.1
		B	21	8.43	18.19	8.30	31.78	1.8	0.17	99.5
		B	21	8.42	18.18	8.36	31.77	1.9	0.18	99.2
	10	S	1	8.94	18.03	8.64	31.01	1.4	0.24	245.1
Н	19	S	1	8.96	18.04	8.66	31.04	1.6	0.23	244.2
		Μ	9.5	8.90	17.94	8.68	31.34	1.1	0.18	237.3

Table 3.6 Summary of In-situ Monitoring Results (Mid-obb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

R	eport No.: 0041/17/ED/0704A Page 16 Page 16										
	MonitoringWaterSamplinStationDepthg Depth(m)(m)				Dissolved oxygen (mg/L)	Temperature (degree Celsius)	рН	Salinity (ppt)	Turbidity (NTU)	Current speed (m/s)	Current velocity (degree magnetic)
Γ			М	9.5	8.91	17.92	8.67	31.33	2.2	0.19	236.4
			В	18	8.84	17.45	8.64	31.56	1.3	0.14	229.6
			В	18	8.82	17.46	8.63	31.59	1.4	0.16	229.1

Table	3.7	Sumr	nary o	f In-situ Mor	itoring Results	(Mid-fl	ood)			
Monitoring	Water	Sam	pling	Dissolved	Temperature	pН	Salinity	Turbidity	Current	Current
Station	Depth	Dep	th	oxygen	(degree	-	(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Čelsius)			, , , , , , , , , , , , , , , , , , ,	(m/s)	(degree
	· · /	. ,			,				· · /	magnetic)
		S	1	8.91	19.23	8.67	31.09	1.4	0.13	54.1
		S	1	8.94	19.24	8.64	31.04	1.5	0.17	53.2
^	45	М	7.5	8.67	19.03	8.66	31.17	1.6	0.14	46.4
А	15	М	7.5	8.64	19.04	8.64	31.19	1.4	0.14	46.5
		В	14	8.34	19.27	8.69	31.34	1.2	0.17	59.2
		В	14	8.35	19.26	8.67	31.33	1.3	0.16	59.4
		S	1	8.13	19.46	8.78	31.46	1.6	0.15	64.1
		S	1	8.14	19.42	8.76	31.48	1.8	0.12	64.2
В	14	М	7	8.46	19.57	8.61	31.82	1.3	0.19	71.3
D	14	М	7	8.42	19.55	8.62	31.84	1.4	0.18	71.4
		В	13	8.61	19.56	8.79	31.87	1.5	0.16	71.2
		В	13	8.62	19.54	8.74	31.92	1.6	0.17	70.6
		S	1	8.44	19.14	8.42	33.94	1.2	0.24	94.2
		S	1	8.41	19.26	8.43	33.92	1.3	0.27	99.1
С	12	М	6	8.29	19.44	8.47	33.64	1.9	0.21	424.5
C	12	М	6	8.26	19.48	8.46	33.68	1.6	0.26	122.3
		В	11	8.27	19.17	8.41	33.17	1.7	0.34	98.4
		В	11	8.24	19.16	8.43	33.18	1.8	0.31	99.1
		S	1	8.16	19.02	8.34	34.56	1.9	0.14	314.5
		S	1	8.14	19.01	8.33	34.54	2.0	0.12	312.6
D	14	М	7	8.02	19.34	8.71	35.27	2.4	0.24	274.1
	14	М	7	8.01	19.36	8.72	35.36	2.6	0.26	277.3
		В	13	7.94	18.47	8.73	36.14	2.1	0.14	264.5
		В	13	7.93	18.46	8.74	36.17	2.4	0.12	261.1
		S	1	9.24	18.17	8.58	30.82	1.2	0.19	321.4
		S	1	9.22	18.14	8.54	30.81	1.3	0.18	322.5
E	14	М	7	9.02	18.09	8.62	30.99	1.4	0.14	317.8
L L	17	М	7	9.06	18.04	8.61	30.97	1.3	0.16	316.4
		В	13	9.16	18.11	8.63	30.91	1.3	0.09	329.3
		В	13	9.14	18.12	8.62	30.92	1.3	0.08	329.9
		S	1	9.04	18.55	8.23	30.44	1.5	0.26	241.3
		S	1	9.02	18.51	8.27	30.41	1.6	0.24	242.5
F	18	М	9	8.47	18.32	8.19	31.14	1.8	0.20	267.7
'		М	9	8.46	18.31	8.17	31.15	1.7	0.21	267.8
		В	17	8.57	18.44	8.19	31.24	1.6	0.24	245.9
		В	17	8.56	18.42	8.16	31.28	1.6	0.29	245.2
		S	1	9.03	18.97	8.53	31.01	1.4	0.14	99.5
G	13	S	1	9.02	18.94	8.54	31.02	1.6	0.17	94.4
		М	6.5	8.73	18.10	8.59	31.44	1.9	0.16	87.1
		М	6.5	8.74	18.11	8.56	31.45	1.8	0.14	87.2

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 00	41/17/ED	/0704/	4						Page 17	
Monitoring	Water	Sam	pling	Dissolved	Temperature	pН	Salinity	Turbidity	Current	Current
Station	Depth	Dept	th	oxygen	(degree	•	(ppt)	(NTU)	speed	velocity
	(m)	(m)		(mg/L)	Čelsius)			. ,	(m/s)	(degree
										magnetic)
		В	12	8.54	18.01	8.62	30.99	1.4	0.27	103.1
		В	12	8.53	18.02	8.64	30.94	1.3	0.24	104.2
		S	1	8.44	17.94	8.61	30.44	1.8	0.14	209.7
		S	1	8.41	17.92	8.62	30.41	1.6	0.12	209.1
н	19	Μ	9.5	8.26	17.46	8.54	30.92	1.3	0.24	234.5
11	19	М	9.5	8.25	17.44	8.53	30.94	1.4	0.26	233.1
		В	18	8.19	17.29	8.49	31.14	1.6	0.24	217.2
		В	18	8.18	17.28	8.48	31.16	1.7	0.21	216.4

3.8.2 Results of laboratory analysis of water quality are presented in Table 3.8 (Mid-ebb) and Table
 3.9 (Mid-flood) respectively. The complete record and graphical presentation of laboratory analysis results are given in Appendix F.

la	ble 3.8	S	ummar				sults (Mic	l-ebb)			
Monitoring	Water		npling	TSS	NH₃	NO ₂ ⁻	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	3	0.23	0.008	0.15	0.39	420	0.03	1.6
		S	1	3	0.22	0.009	0.15	0.38	530	0.03	1.3
۸	17	М	8.5	3	0.23	0.008	0.18	0.42	500	0.03	1.6
A	17	М	8.5	3	0.22	0.009	0.16	0.39	450	0.03	1.4
		В	16	3	0.22	0.009	0.18	0.41	400	0.03	1.5
		В	16	3	0.20	0.009	0.22	0.42	480	0.03	1.3
		S	1	3	0.33	0.009	0.21	0.56	460	0.02	1.2
		S	1	3	0.33	0.009	0.17	0.51	400	0.02	1.3
В	14	М	7	3	0.57	0.017	0.70	1.3	500	0.03	1.3
D	14	М	7	3	0.57	0.017	0.58	1.2	430	0.03	1.4
		В	13	3	0.25	0.009	0.23	0.49	530	0.02	1.3
		В	13	4	0.24	0.008	0.24	0.49	580	0.02	1.4
		S	1	3	0.21	0.010	0.23	0.45	400	0.03	2.0
		S	1	4	0.21	0.009	0.23	0.45	460	0.03	1.4
С	12	М	6	3	0.19	0.009	0.22	0.42	390	0.03	1.4
U	12	М	6	3	0.20	0.008	0.24	0.44	360	0.03	1.3
		В	11	4	0.21	0.008	0.24	0.46	450	0.04	1.3
		В	11	4	0.20	0.008	0.23	0.44	490	0.04	1.7
		S	1	4	0.17	0.009	0.24	0.42	420	0.04	1.4
		S	1	4	0.18	0.008	0.23	0.41	450	0.04	1.4
D	13	М	6.5	4	0.19	0.008	0.19	0.38	510	0.03	1.2
D	15	М	6.5	4	0.20	0.009	0.12	0.32	520	0.04	1.1
		В	12	4	0.19	0.011	0.11	0.31	600	0.03	1.3
		В	12	4	0.19	0.008	0.11	0.31	530	0.03	1.4
		S	1	3	0.18	0.008	0.14	0.32	110	0.02	1.5
		S	1	3	0.18	0.009	0.14	0.32	120	0.03	1.5
Е	16	М	8	3	0.18	0.011	0.11	0.30	98	0.03	1.5
L	10	М	8	3	0.18	0.009	0.12	0.31	110	0.03	1.5
		В	15	4	0.20	0.009	0.12	0.33	130	0.02	1.5
		В	15	4	0.19	0.008	0.13	0.33	120	0.02	1.3
F	23	S	1	4	0.16	0.029	0.32	0.51	100	0.04	1.4
I	20	S	1	4	0.16	0.029	0.31	0.50	160	0.03	1.6

 Table 3.8
 Summary of Laboratory Analysis Results (Mid-ebb)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.:	0041/17	/ED/0	704A						Pa	age 18	
Monitoring	Water	San	npling	TSS	NH ₃	NO ₂ ⁻	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		Μ	11.5	3	0.17	0.008	0.12	0.30	120	0.03	1.3
		Μ	11.5	3	0.15	0.010	0.12	0.29	110	0.02	1.5
		В	22	4	0.18	0.010	0.20	0.39	140	0.03	1.3
		В	22	4	0.19	0.009	0.19	0.39	120	0.03	1.4
		S	1	3	0.14	0.009	0.20	0.35	97	0.03	1.6
		S	1	3	0.16	0.009	0.13	0.30	110	0.03	1.4
G	22	Μ	11	3	0.20	0.009	0.14	0.35	81	0.03	1.4
0	22	Μ	11	3	0.19	0.009	0.15	0.35	78	0.03	1.4
		В	21	4	0.15	0.008	0.18	0.33	120	0.02	1.5
		В	21	4	0.15	0.009	0.12	0.28	110	0.02	1.4
		S	1	4	0.15	0.009	0.12	0.28	99	0.02	1.7
		S	1	3	0.13	0.009	0.12	0.26	98	0.02	1.5
н	19	Μ	9.5	4	0.17	0.008	0.12	0.30	82	0.02	1.8
	19	Μ	9.5	4	0.17	0.009	0.12	0.29	78	0.03	1.5
		В	18	4	0.16	0.009	0.12	0.29	69	0.04	1.4
		В	18	4	0.16	0.010	0.11	0.28	88	0.03	1.6

Table 3.9Summary of Laboratory Analysis Results (Mid-flood)

	ole 3.9			1				/	·		
Monitoring	Water		npling	TSS	NH₃	NO_2^-	NO ₃ -	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		S	1	4	0.22	0.010	0.12	0.35	320	0.03	1.5
		S	1	4	0.19	0.009	0.13	0.33	390	0.03	1.4
А	15	М	7.5	3	0.19	0.011	0.12	0.31	420	0.03	1.5
~	15	М	7.5	3	0.19	0.010	0.12	0.32	370	0.03	1.3
		В	14	3	0.17	0.008	0.12	0.30	500	0.02	1.4
		В	14	3	0.17	0.008	0.11	0.29	450	0.02	1.5
		S	1	3	0.19	0.009	0.12	0.32	320	0.02	1.4
		S	1	3	0.18	0.010	0.12	0.31	480	0.03	1.3
В	14	М	7	3	0.19	0.008	0.11	0.31	280	0.03	1.5
D	14	М	7	3	0.18	0.008	0.13	0.32	320	0.03	1.4
		В	13	3	0.15	0.009	0.13	0.29	400	0.03	1.4
		В	13	3	0.16	0.009	0.13	0.30	350	0.03	1.4
		S	1	3	0.15	0.009	0.13	0.29	550	0.02	1.1
		S	1	3	0.15	0.008	0.13	0.29	450	0.03	1.4
С	12	М	6	3	0.16	0.009	0.11	0.28	490	0.02	1.5
C	12	М	6	3	0.16	0.009	0.12	0.28	420	0.02	1.6
		В	11	3	0.18	0.009	0.13	0.32	590	0.02	1.7
		В	11	3	0.18	0.008	0.13	0.32	500	0.02	1.7
		S	1	3	0.19	0.008	0.19	0.31	300	0.02	1.6
		S	1	3	0.19	0.009	0.19	0.31	240	0.02	1.6
D	14	М	7	3	0.19	0.009	0.19	0.30	280	0.05	1.6
D	14	М	7	3	0.18	0.008	0.18	0.30	230	0.05	1.5
		В	13	3	0.18	0.008	0.18	0.30	360	0.02	1.3
		В	13	3	0.19	0.009	0.19	0.31	300	0.02	1.7
		S	1	4	0.18	0.008	0.18	0.30	82	0.02	1.7
		S	1	4	0.16	0.009	0.16	0.28	110	0.03	1.5
E	14	М	7	3	0.15	0.008	0.15	0.28	100	0.02	1.1
		М	7	3	0.15	0.009	0.15	0.28	120	0.02	1.2
		В	13	3	0.19	0.009	0.19	0.32	69	0.02	1.6

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.:	: 0041/17	/ED/0	704A						F	Page 19	
Monitoring	Water	Sam	npling	TSS	NH₃	NO_2^-	NO ₃ ⁻	TIN	E.coli	Total P	BOD ₅
Station	Depth	Dep	th	(mg/L)	as N	as N	as N	(mg/L)	(cfu/100mL)	(mg/L)	(mg/L)
	(m)	(m)			(mg/L)	(mg/L)	(mg/L)				
		В	13	3	0.16	0.009	0.16	0.28	76	0.02	1.4
		S	1	3	0.19	0.008	0.12	0.31	100	0.02	1.5
		S	1	4	0.17	0.008	0.13	0.30	74	0.02	1.3
F	18	Μ	9	3	0.22	0.009	0.19	0.42	100	0.03	1.3
Г	10	Μ	9	3	0.22	0.009	0.14	0.37	69	0.02	1.6
		В	17	3	0.22	0.009	0.12	0.35	80	0.03	1.6
		В	17	3	0.22	0.008	0.11	0.34	89	0.03	1.4
		S	1	3	0.12	0.009	0.11	0.24	100	0.02	1.4
		S	1	3	0.12	0.008	0.11	0.24	84	0.02	1.6
G	13	Μ	6.5	3	0.15	0.009	0.11	0.27	96	0.02	1.5
0	15	Μ	6.5	3	0.15	0.008	0.12	0.27	110	0.02	1.5
		В	12	3	0.16	0.009	0.12	0.28	79	0.02	1.3
		В	12	3	0.16	0.009	0.11	0.28	67	0.02	1.3
		S	1	3	0.14	0.009	0.13	0.28	52	0.02	1.4
		S	1	3	0.13	0.009	0.11	0.25	62	0.02	1.6
н	19	Μ	9.5	3	0.18	0.008	0.12	0.31	86	0.02	1.5
	19	Μ	9.5	3	0.18	0.008	0.12	0.30	69	0.02	1.4
		В	18	3	0.15	0.009	0.12	0.28	54	0.02	1.7
		В	18	3	0.16	0.009	0.13	0.29	46	0.02	1.7

- 3.8.3 The tidal data is obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by Hydrographic Office of Marine Department. Tidal data obtained from Ma Wan Marine Traffic Station is present in **Appendix G**.
- 3.8.4 Heavy marine traffic was observed nearby the Project site and its vicinity and may affect the water quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in **Table 3.10**.

Table 2.10	Moother condition of water quality monitoring
Table 3.10	Weather condition of water quality monitoring

Date	Ai	r Temperat	ure	Mean	Total
	Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	Relative Humidity (%)	Rainfall (mm)
8 February 2023	20.1	18.5	17.2	84	Trace

Source: Hong Kong Observatory

Report No.: 0041/17/ED/0704A 4. SEDIMENT QUALITY MONITORING AND BENTHIC SURVEY

E-mail : matlab@fugro.com

Website : www.fugro.com

Page 20

4.1 Monitoring Station

Tuen Mun, N.T., Hong Kong.

4.1.1 In accordance with Section 6 of the EM&A Plan, sediment quality monitoring and benthic survey should be carried out at eight designated monitoring stations (two impact stations and six control stations) during the first five years of the operational phase of the Project. The proposed monitoring stations shall be the same monitoring stations that were used for the baseline monitoring programme and have been approved by EPD. The coordinates of the monitoring stations are shown in **Table 4.1** and their locations are shown in **Figure 3**.

Table 4.1 Location of Sediment Quality Wonitoring and Dentific Surve	Table 4.1	Location of Sediment Quality Monitoring and Benthic Survey
--	-----------	--

	Sampling Location	Easting	Northing
A	The Brothers, Control Station	816 100	822 500
В	The Brothers, Control Station	816 680	822 440
С	Siu Ho Wan Outfall, Impact Station	816 800	820 180
D	Siu Ho Wan Outfall, Impact Station	817 160	820 360
E	Cheung Sok, Control Station	819 817	821 655
F	Cheung Sok, Control Station	820 158	821 922
G	Tai Ching Chau, Control Station	822 214	822 692
Н	Tai Ching Chau, Control Station	822 494	822 939

4.2 Monitoring Parameter

4.2.1 The monitoring parameters for sediment quality monitoring and benthic survey are summarized in **Table 4.2**.

Table 4.2 Parameters for Sediment Quality Monitoring and Benthic Survey	able 4.2 Para	ameters for Sediment Q	uality Monitoring an	d Benthic Survey
---	---------------	------------------------	----------------------	------------------

Monitoring Parame	ters
Sediment Quality Monitoring	Rinsate Blank for Benthic Survey
Grain size profile* (i.e. Particle Size Distribution) (%)	Cadmium (µg/L)
Total organic carbon* (%)	Chromium (µg/L)
pH value	Copper (µg/L)
Ammonia as N (mg-N/kg)	Lead (µg/L)
Total nitrogen (mg-N/kg)	Mercury ((µg/L)
Total phosphorus (mg-N/kg)	Nickel (µg/L)
Cadmium (mg/kg)	Zinc (µg/L)
Chromium (mg/kg)	Arsenic (µg/L)
Copper (mg/kg)	Silver (µg/L)
Lead (mg/kg)	
Mercury (mg/kg)	
Nickel (mg/kg)	
Zinc (mg/kg)	
Arsenic (mg/kg)	
Silver (mg/kg)	

Report No.: 0041/17/ED/0704A

Page 21

*Grain size profile and total organic carbon is determined from the sediment sampled collected for benthic survey.

- 4.2.2 Apart from the parameters listed in the Table 4.2, other relevant supplementary information such as monitoring location, time, weather conditions and any special phenomena will be also recorded.
- 4.2.3 The tidal data will be obtained from the tide gauge installed in Ma Wan Marine Traffic Station, managed by the Hydrographic Office of Marine Department. Location of the tide gauge is shown in **Figure 4**.

4.3 Sampling Equipment

- 4.3.1 Ponar grab sampler (capacity of ~ 1 litre) will be used for collection of samples for sediment analysis. The grab will be capable of collecting sufficient amount of surficial (top 5 cm) sediment for the required analysis in a single deployment at each sampling location. The grab will be constructed with non-contaminating material to prevent sample contamination. Photos of ponar grab sampler are shown in **Appendix J**.
- 4.3.2 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be used for collecting sediment samples for benthic survey. The top of the grab will have openings to allow the easy flow of water through the grab as it descends. The openings will be covered with 0.5 mm mesh to prevent the loss of any benthic fauna once sediment samples are taken. In addition the top openings will be sealable by movable flaps which will close when the grab is hauled to surface. Photos of modified Van Veen grab sampler are shown in **Appendix J**.
- 4.3.3 Class III commercially licensed vessel will be used as survey vessel. DGPS logging device in the ADCP with accuracy of ±1m at 95% confidence level will be installed on the survey vessel to ascertain that measurement can be made accurately on the specific transects. All GPS data collected during the whole survey will be automatically and electronically logged. Powered winch will be used on-board the survey vessel to assist the monitoring. 4 fixed sieve stations will be equipped on survey vessel. Experienced supervisor will be present all throughout the monitoring activity on-board the survey vessel.

4.4 Sampling Procedure

Benthic Survey, Particle Size Distribution and TOC Analysis

4.4.1 A modified Van Veen grab sampler (capacity of ~ 11.3 litres) will be deployed using a winch at each of the benthic survey stations to collect single grab sample at each station. The grab sampler will be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment shall be rejected. Samples will be placed in a plastic box with an identification card. Sub-samples (approximately 1 kg) will be splitted up for analysis of particle size distribution and TOC. The remaining sediment samples will be washed gently to separate the benthic organisms and the sediment using a watering hose with marine seawater supply, by a sieve stack (comprising 1 mm and 0.5 mm meshes). Benthic organisms remaining on the sieve will be removed into pre-labeled ziplock plastic bags. A 10% solution of buffered formalin containing Rose Bengal in seawater will be added to the bag to ensure tissue

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 22

Report No.: 0041/17/ED/0704A

preservation. Samples will be sealed in plastic containers for transport to the laboratory for sorting and identification of benthic organisms.

Sediment Quality Monitoring (Except Particle Size Distribution and TOC Analysis)

- 4.4.2 Ponar grab sampler (capacity of ~ 1 litres) will be deployed at each of the benthic survey stations to collect single grab sample at each station. The grab sampler should be lowered through the water column slowly at a constant rate (approximately 30 cm/s) to prevent the formation of a pressure wave that may disturb surficial deposits. The grab will then be retrieved and evaluated on board of the survey vessel. Any sample showing uneven penetration or only partially filled with sediment will be rejected. Samples will be placed in a plastic box with an identification card. Sediment samples will be then transferred into brand new soil jars with QA/QC monitoring for laboratory analysis. Samples will be preserved and stored in accordance with approved SOP of HOKLAS accredited laboratory and the recommendations stipulated in ETWB TC (W) No. 34/2002.
- 4.4.3 Sediment samples shall be collected and packed in ice (cooled to 4°C without being frozen), and delivered to the laboratory on the same day of collection for analysis.

4.5 Laboratory Measurement and Analysis

4.5.1 With reference to EPD's letter (Ref: Ax(7) to EP 2/No/F/50 Pt.7) dated 8 February 2022, Change of Laboratory on Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey (0041_17_ED_0632A) is approved. Fugro Technical Services Limited (HOKLAS Reg. No. 015), is the appointed laboratory for analysis of sediment samples. The methods adopted by the laboratory and the reporting limits are detailed in **Table 4.3**.

Analysis Description	Method	Reporting limits
Particle Size Distribution	Geospec 3 : 2001 Test 8.1, 8.5 and 8.7	1%
Total Organic Carbon	APHA 23rd edition 5310B	0.05%
pH value	APHA 23rd edition 4500-H ⁺ B	0.1 pH unit
Ammonia as N	APHA 23rd edition 4500 NH3: B & C / In house method E-T-039	0.5 mg/kg
Total Nitrogen	APHA 23rd edition 4500 N _{org} : D (digestion), In-house method E-T-036, E-T-037 & APHA 23rd edition 4500 - NO_3 ⁻ I	10 mg/kg
Total Phosphorus	APHA 17th edition 4500 – PB.5 (digestion) & In house method E-T-056 (determination)	10 mg/kg
Cadmium	USEPA method 3050B (digestion) and	0.1 mg/kg
Chromium	6020A (determination)	0.5 mg/kg
Copper		0.2 mg/kg
Lead		0.2 mg/kg
Mercury		0.05 mg/kg
Nickel		0.2 mg/kg
Zinc		0.5 mg/kg
Arsenic		0.5 mg/kg
Silver		0.1 mg/kg

 Table 4.3
 Laboratory Measurement/Analysis Methods and Reporting Limits

FUGRO

Report No.: 0041/17/ED/0704A

Tuen Mun, N.T.,

Hong Kong.

4.6 Taxonomic Identification of Benthic Organism

E-mail : matlab@fugro.com

Website : www.fugro.com

- 4.6.1 Taxonomic identification of benthic organisms will be performed using stereo dissecting and high-power compound microscopes where it is necessary. Benthic organisms will be counted and identified to lower taxonomic levels as far as practicable with biomass (wet weight, to 0.01gram) of each individual recorded. If breakage of soft-bodied organism occurs, only anterior portions of fragments will be counted, although all fragments will be retained and weighted for biomass determinations (wet weight, to 0.01gram). Data of species abundance and biomass will be recorded.
- 4.6.2 Data collected during surveys will be presented and summarized in tables and graphics. Species/taxon richness and abundance of marine benthic fauna communities will be analyzed by Shannon-Weiner diversity and Pielou's Evenness.

4.7 Monitoring Frequency and Duration

4.7.1 The sediment quality monitoring and benthic survey programmed shall be carried out once per two months for a period of five years of the operational phase of the Project. Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future reference, only a single round of sediment quality monitoring and benthic survey at 8 designated locations will be carried out for each monitoring event. For each location, only a single sample will be taken and analyzed.

4.8 Quality Assurance / Quality Control

- 4.8.1 A rinsate blank will be collected in each monitoring location before each sediment sampling for benthic survey, so as to monitor the effectiveness of field decontamination procedure.
- 4.8.2 The laboratory incorporates a variety of QA/QC monitoring programme into their testing system. Where applicable or available, the quality of the analysis will be monitored by conducting the following QC analysis:

For each batch of 20 samples:

- A minimal of 1 laboratory method blank will be analyzed;
- A minimal of 1 sample duplicate will be analyzed;
- A minimal of 1 sample matrix spike will be analyzed.

4.9 Event and Action Plan

4.9.1 Since the purpose of the sediment quality monitoring and benthic survey is to collect data for future purpose, no specific event and action has to be followed.

4.10 Monitoring Results and Observations

4.10.1 Sediment quality monitoring and benthic survey is carried out on 8 February 2023. A summary of laboratory analysis results for the sediment quality monitoring and benthic survey are presented in **Table 4.4** and **Table 4.5** respectively. The complete record and graphical presentation of the sediment quality monitoring results is given in **Appendix H**.

Page 23

Fugro Development Centre. 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel : +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Report No.: 0041/17/ED/0704A Page 24													
Table 4.4 Summary of laboratory analysis results for sediment monitoring													
Monitoring	pН	NH₃	Total	Total	Cd	Cr	Cu	Pb	Hg	Ni	Zn	As	Ag
Station	value	as N	Ν	Р	(mg/	(mg/	(mg	(mg	(mg/k	(mg	(mg	(mg	(mg/k
		(mg/L)	(mg-	(mg-	kg)	kg)	/kg)	/kg)	g)	/kg)	/kg)	/kg)	g)
			N/kg)	P/kg)				•				•••	
A	8.3	9.6	680	460	<0.1	27	23	34	0.11	14	79	14	0.2
В	8.2	16	950	70	<0.1	28	26	34	0.10	15	85	10	0.3
С	8.1	18	1200	54	<0.1	30	28	36	0.11	17	92	10	0.3
D	8.1	14	1400	300	<0.1	29	29	35	0.10	16	88	10	0.3
E	8.2	20	1100	290	<0.1	25	30	30	0.08	14	76	8	0.3
F	8.1	19	1400	43	<0.1	39	35	46	0.15	23	130	13	0.3
G	8.3	7.4	750	260	<0.1	37	43	47	0.14	19	210	13	0.4
Н	8.2	7.0	900	360	<0.1	33	31	38	0.11	18	89	11	0.4

Summary of laboratory analysis results for benthic survey Table 4.5

Monitoring Station	Total organic	Grain size profile (%)			%)	Description
Station	carbon (%)	Gravel	Sand	Silt	Clay	
А	1.1	1	2	42	55	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
В	1.1	0	17	37	46	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
С	1.1	2	5	43	50	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
D	1.1	0	6	42	52	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
Е	1.3	6	17	36	41	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
F	1.2	0	10	42	48	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
G	0.56	3	28	29	40	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments
Н	1.1	3	13	37	47	Moist, dark grey, slightly gravelly, slightly sandy SILT/CLAY with shell fragments

- 4.10.2 Rinsate blank was collected for chemical analysis. The laboratory data results are provided in Appendix H.
- 4.10.3 Construction works from expansion of Hong Kong International Airport was observed nearby the Project site and its vicinity and may affect the sediment quality. The above conditions may affect monitoring results. The weather condition is summarized and presented in Table 4.6.

able 4.0 Weather condition of water quality monitoring						
Date	Air Temperature			Mean	Total	
	Maximum Mean Minimum		Relative	Rainfall		
	(deg. C) (deg. C) (deg. C)		Humidity	(mm)		
				(%)		
8 February 2023	20.1	18.5	17.2	84	Trace	

Table 4.6 Weather condition of water quality monitoring

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

4.10.4 The benthic survey data are summarized and presented in **Table 4.7**.

Report No.: 0041/17/ED/0704A

Page 25

 Table 4.7 Summary of bentific survey data on 8 February 2023							
Monitoring Station	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)		
А	65	1.29	12	1.91	0.77		
В	45	0.44	9	1.95	0.89		
С	28	0.34	8	1.70	0.82		
D	29	0.71	10	2.00	0.87		
Ш	52	0.38	8	1.63	0.78		
F	67	0.54	8	1.08	0.52		
G	39	2.68	8	1.46	0.70		
Н	29	0.14	7	0.86	0.44		

Table 4.7Summary of benthic survey data on 8 February 2023

4.10.5 The benthic survey results are analyzed and presented as below:

i) Abundance

A total of 354 benthic organisms was recorded from the eight monitoring stations during the February 2023 monitoring period. Current monitoring results showed lower total monthly abundance compared to both dry (March 2004) and wet (August 2004) seasons baseline data results. Similar with previous monitoring periods, total monthly abundance of benthic organisms exhibits significant seasonal variation (F-value = 4.63; F-crit = 1.5; p-value = 4.82E-12; $\alpha = 0.05$).

In terms of spatial distribution, the lowest abundance of 28 ind. was recorded in the impact station, Station C, while the highest (67 ind.) was noted in reference station, Station F. The total macrobenthic abundance as similar with the previous monitoring periods, showed statistically significant different spatial distribution (F-value = 3.81; F-crit = 2.05; P-value = 0.001; α = 0.05).

ii) Biomass

The total wet biomass recorded in the eight monitoring stations was 6.52 g with the highest biomass recorded in the reference station, Station G (2.68 g) while the lowest biomass (0.14 g) was observed in reference station, Station H. Relative to the December 2022 period, a general decrease in biomass was observed during the current monitoring period (Figure 3). Most of the current decrease was attributed to the low biomass of *Mytilopsis* in the benthic community.

iii) Taxonomic Composition

A total of four phyla comprising of 22 families and about 27 genera were identified. During the current monitoring period, the annelids (47.18%) dominated the macrobenthic assemblage, and followed by the arthropods (38.98%). Relative to the December 2022 community assemblage, current results showed that the annelids still maintained their dominance within the benthic community.

The dominance of annelids could be due to the high percentage of silt on all the monitoring areas as shown by the results of sediment particle size distribution analyses for the current monitoring month.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 26

Report No.: 0041/17/ED/0704A

iv) Diversity

Benthic diversity index (H') in the impact stations ranged from 1.70 to 2.00. Among the reference stations, H' values ranged from 0.86 to 1.95. Currently, impact station, Station D had the highest diversity value among the different monitoring stations, while the lowest was the reference station, Station H. In terms of evenness index (J) values, reference Station B was noted with the highest value among the monitoring stations. Moreover, current monitoring results indicated an overall increase in both diversity and evenness values from the baseline survey condition.

The detailed benthic survey results are provided in Appendix I.

Report No.: 0041/17/ED/0704A5. CHINESE WHITE DOLPHIN MONITORING

Website : www.fugro.com

5.1 Data Interpretation

Hong Kong.

- 5.1.1 In accordance with Section 4.1 of the EM&A Plan, relevant information on the distribution and abundance of CWDs in Hong Kong should be obtained from the Agriculture, Fisheries and Conservation Department (AFCD), and be reviewed on a bimonthly basis during the operational phase of the Project for a period of 5 years.
- 5.1.2 The latest AFCD's report dated 7 July 2022, "Monitoring of Marine Mammals in Hong Kong Waters (2021-22)", in terms of the distribution and abundance of CWDs, was reviewed in the Monthly EM&A report in August 2022. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2022-23) is uploaded to AFCD's webpage.

Report No.: 0041/17/ED/0704A

Page 28 6. ADVICE ON IMPLEMENTATION STATUS OF ENVIRONMENTAL **MITIGATION MEASURES**

6.1 **Implementation Status**

6.1.1 Although no site inspection is prescribed during the operation of the Plant in accordance with the approved EM&A Plan, SHWSTW is reminded to fully and properly implement the mitigation measures specified in the EP and EIA Report. Mitigation measures such as aeration, chemical dosing system, covering or enclosing the pressing and sludge thickening facilities and ventilating air to a biological treatment prior to stack exhaust was implemented in the reporting period. A summary of mitigation measures implementation schedule is provided in Appendix L.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Page 29

7. ADVICE ON THE SOLID AND LIQUID WASTE MANAGEMENT STATUS

- 7.1.1 SHWSTW is reminded to fully comply with EP conditions. All measures and recommendations in the EP, EIA Report and approved Waste Management Plan (WMP) shall be fully and properly implemented. During the reporting period, following measures in related to solid and liquid waste management were implemented:
 - The influent of waste water shall be treated by CEPT with UV disinfection;
 - Trip-ticket system shall be implemented for sludge and sediment;
 - The acceptance criteria for Landfill disposal should be followed;
 - Chemical waste should be properly handled and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.
- 7.1.2 A summary of mitigation measures implementation schedule is provided in Appendix L.

Report No.: 0041/17/ED/0704A

Page 30 SUMMARY OF EXCEEDANCE OF THE **ENVIRONMENTAL** QUALITY 8. PERFORMANCE LIMITS

- 8.1.1 Odour patrol monitoring was resumed and carried out on 1, 7, 13 and 24 February 2023. No exceedances of Action/Limit levels at ASRs were recorded.
- Water quality monitoring, sediment quality monitoring and benthic survey were carried out on 8.1.2 8 February 2023. No specific Action/Limit level has to be followed since the purpose of the monitoring is to collect data for future purpose.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 31

Report No.: 0041/17/ED/0704A

9. SUMMARY OF ENVIRONMENTAL COMPLAINTS

9.1.1 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period. Summaries of complaints, notification of summons and successful prosecutions are presented in **Table 9.1** and **Table 9.2**.

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	0	0	1
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

Table 9.1 Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Others	0	0	0
Total	0	0	0

9.1.2 The cumulative complaint log and summaries of complaints are presented in **Appendix K**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A 10. FUTURE KEY ISSUES

Page 32

10.1.1 The key issues to be considered in the coming reporting month include:

- i. Potential environmental impacts arising from the operation of SHWSTW are mainly associated with air quality, water quality, sediment quality, benthic ecology, waste management and distribution and abundance of CWDs.
- ii. According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.

FUGRO TECHNICAL SERVICES LIMITEDFugro Development Centre,Tel: +852 2450 82335 Lok Yi Street, Tai Lam.Fax: +852 2450 6138

5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

11.

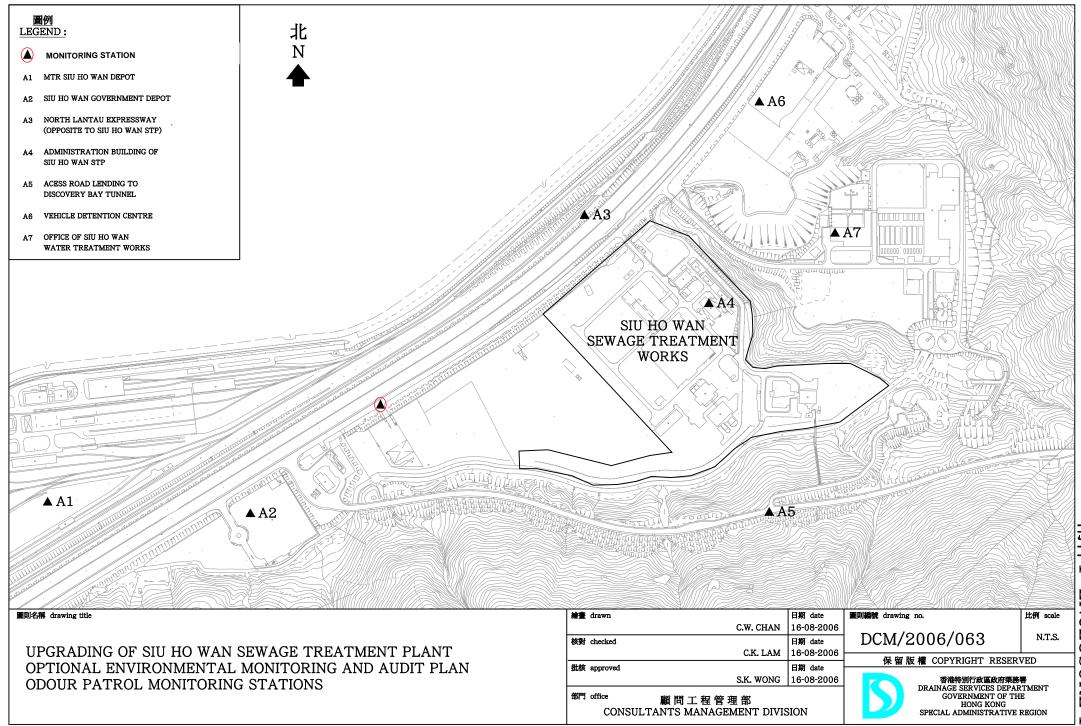
Report No.: 0041/17/ED/0704A

CONCLUSION

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 33

- 11.1.1 Odour patrol monitoring was resumed from January 2020 and carried out on 1, 7, 13 and 24 February 2023. The modified odour patrol monitoring plan including updated Event and Action Plan was approved on March 2020, and odour patrol monitoring was commenced from 20 March 2020. No exceedances of Action/Limit levels at Air Sensitive Receivers (ASR) and odour patrol points were recorded and no non-compliance of odour monitoring at odour patrol points were recorded in the reporting period.
- 11.1.2 According to the approved EM&A plan, a correlation study has to be carried out to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). H₂S measurement and olfactometry analysis conducted between August 2017 and May 2018 was considered as unlikely way to establish the relationship of H₂S concentration (ppb) with the odour unit (OU/m³). Since six months air quality monitoring and additional three months air quality monitoring had been conducted according to Section 2.2 of OEM&A Plan without any complaint or non-compliance recorded, air quality monitoring was temporarily suspension on air quality monitoring, a review on air quality monitoring had been carried out to determine reasonable odour-related criteria and was submitted to EPD for approval on 24 March 2020. Comments from EPD was received on 1 April 2020 and the review is currently under revision for further submission to the EPD.
- 11.1.3 Water quality monitoring, sediment quality monitoring and benthic survey were conducted on 8 February 2023 to collect data for future reference in accordance with Section 5.5 and 6.5 of the Operational EM&A Plan. The details of methodology and results collected of the monitoring were presented in Section 3 and Section 4. Heavy marine traffic and construction works from expansion of Hong Kong International Airport were observed nearby the Project site and its vicinity and may affect the water and sediment quality The above conditions may affect monitoring results.
- 11.1.4 The latest AFCD's report dated 7 July 2022, "Monitoring of Marine Mammals in Hong Kong Waters (2021-22)" in terms of the distribution and abundance of CWDs was reviewed. According to the advice from AFCD, the data of distribution and abundance of CWDs would only be available in the annual reports for Monitoring of Marine Mammals In Hong Kong Waters which cover monitoring data from 1 April to 31 March (next year). The updated status of the distribution and abundance of CWDs will be provided once the annual report (2022-23) is uploaded to AFCD"s webpage.
- 11.1.5 SHWSTW is reminded to fully *comply with EP conditions. All environmental mitigation measures* and recommendations in the EP, EIA Report and approved waste management plan shall be fully and properly implemented.
- 11.1.6 No complaint (written or verbal), inspection notice, notification of summons or prosecution was received in relation to environmental impact during the report period.

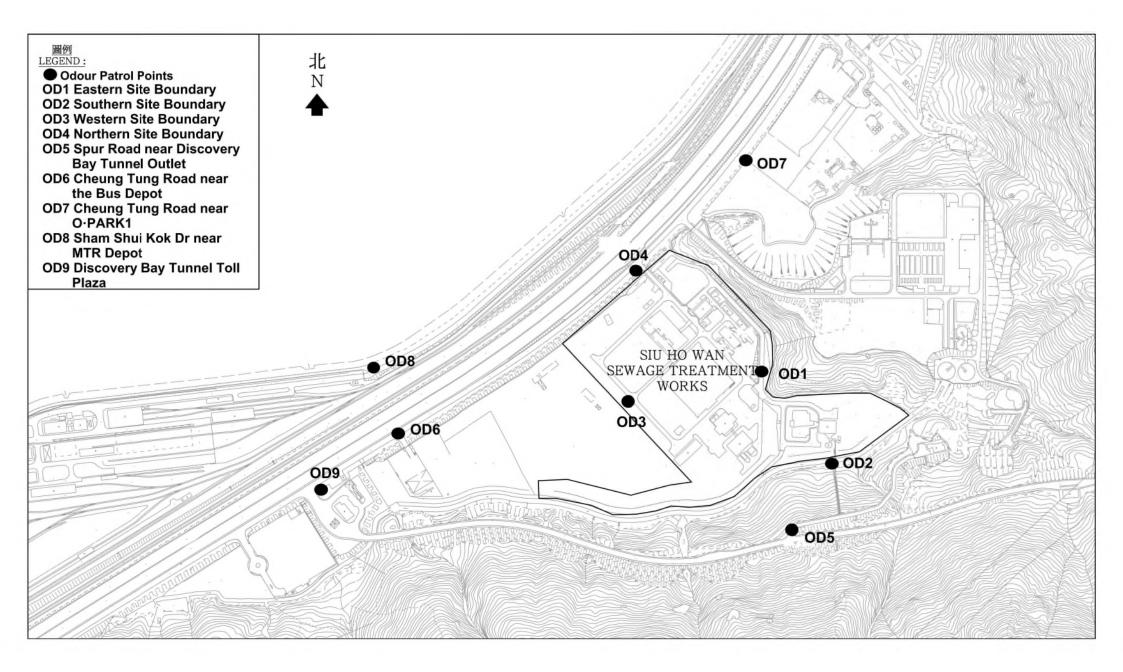

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Figure 1

Monitoring Stations of Air Sensitive Receivers

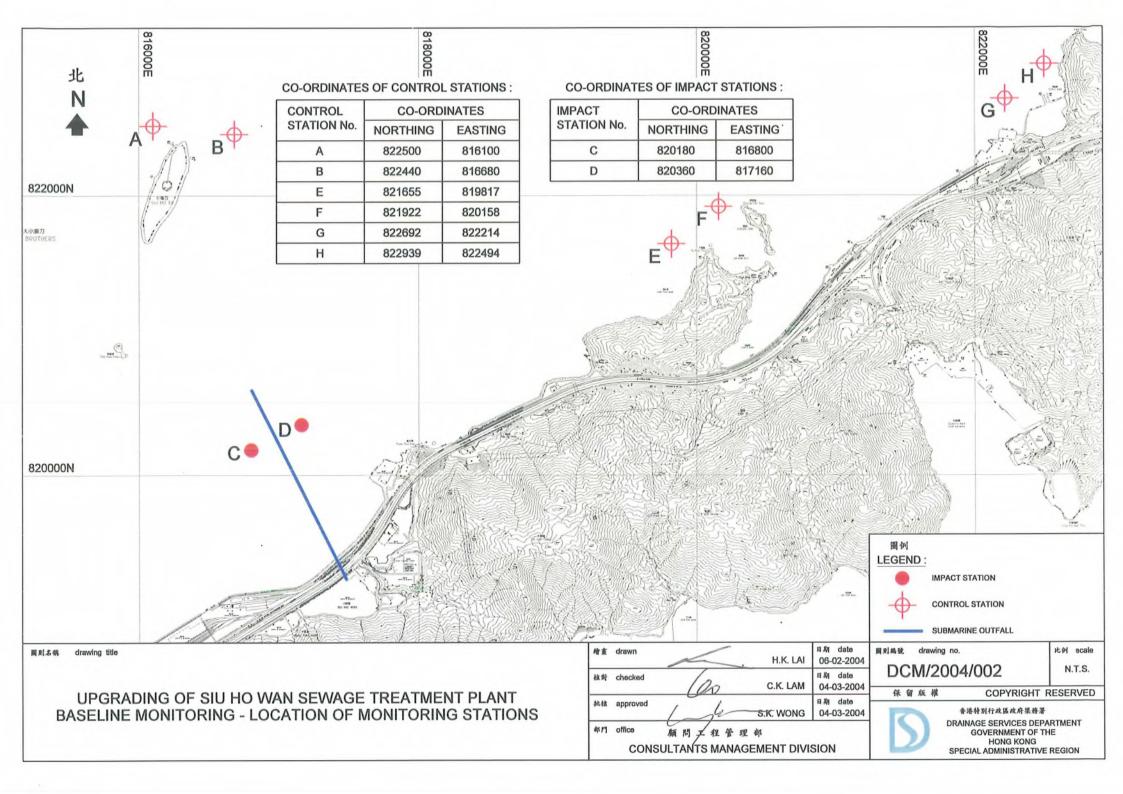
.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Figure 2

Odour Patrol Points of Modified Odour Patrol


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Figure 3

Monitoring Stations of Water Quality Monitoring, Sediment Quality Monitoring and Benthic Survey

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Figure 4

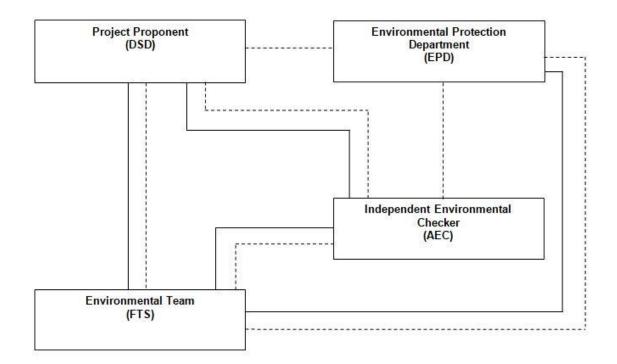
Location of the Tide Gauge

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A


Appendix A

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Legend: — Line of Reporting --- Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Appendix B

Monitoring Schedule for Present and Next Reporting Period

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Monitoring Schedule for the	ne Present Reporting Period
-----------------------------	-----------------------------

Sun	Mon	Tue	Wed	Thur	Fri	Sat
			1 February Odour Patrol	2	3	4
5	6	7 Odour Patrol	8 Water Quality Monitoring and Sediment Quality Monitoring and Benthic Survey Mid-Flood (08:45) Mid-Ebb (14:09)	9	10	11
12	13 Odour Patrol	14	15	16	17	18
19	20	21	22	23	24 Odour Patrol	25
26	27	28				

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Appendix C

Event and Action Plan for Air Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

		ACTION								
EVENT	ET	IEC	*Operator							
Action Level										
One complaint received for specific odour event / Odour intensity of 2 or above is measured from odour patrol	 Identify source/reason of exceedance or odour complaints; Notify the IEC and Operator of exceedance; Repeat odour patrol to confirm finding; If exceedance continues, notify the IEC and Operator; Carry out investigation to identify the source/reason of exceedance or complaints; Check Operator's working methods; and Discuss with Operator on required remedial actions. 	 Check odour patrol results submitted by ET; Discuss with ET and Operator on the possible remedial actions; Advise the Operator on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Notify the ET and IEC when receipt of odour complaint; Confirm receipt of notification of exceedance in writing; Identify/ confirm source with ET; Discuss with ET for remedial actions required; Ensure remedial actions properly implemented Rectify any unacceptable practice; and Amend operation methods if appropriate. 							
Limit Level			•							
More than one complaint in 3 months / Odour intensity of 3 or above is measured from odour patrol	 Identify source/reason of exceedance or odour complaints; Notify the IEC and Operator of exceedance; Repeat odour patrol to confirm finding; If exceedance continues, notify the IEC and Operator; Carry out investigation to identify the source/reason of exceedance or complaints; Check Operator's working methods; Carry out analysis of Operator's working procedures to determine possible mitigation to be implemented; Arrange meeting with ET and EPD to discuss the remedial actions to be taken; 	 Check odour patrol results submitted by ET; Discuss amongst ET and the Operator on the potential remedial actions; Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the Operator accordingly; Supervise implementation of remedial measures. 	 Notify the ET and IEC when receipt of odour complaint; Confirm receipt of notification of exceedance in writing; Indentify/ confirm source with ET; Inform ET, IEC and EPD; Discuss with EPD and ET on the required remedial actions; Ensure remedial actions properly implemented; Take immediate action to avoid further exceedance; 							

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

9. Discuss with EPD and the	8. Implement the
Operator on the required	agreed proposals.
remedial actions;	
10. Submit proposals for	
remedial actions within 3	
working days of notification;	
11. Assess effectiveness of	
Operator's remedial actions	
and keep EPD informed of	
the results;	
12. Amend proposal if	
appropriate; and	
13. Resubmit proposal if	
problem still not under	
control.	

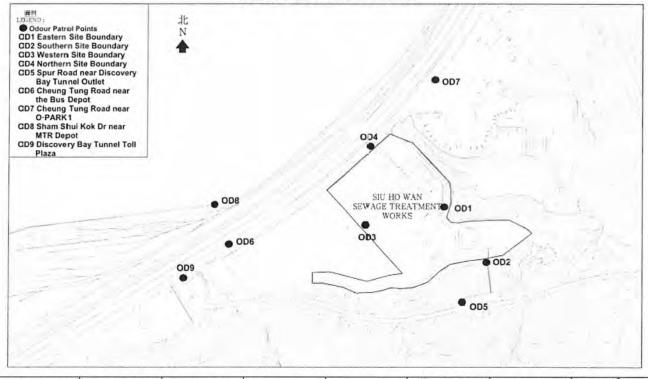
* The operator who is the constructor responsible for the operation during the maintenance period.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Appendix D

Results and Graphical Presentation of Air Quality Monitoring


Tel

Room 723 - 726, 7/F, Block B,
Profit Industrial Building,
1-15 Kwai Fung Crescent, Kwai Fong,
Hona Kona.

: (852)-24508238 (852)-24508032 Fax : mcl@fugro.com.hk Email

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	2023/2/1	Weather	FIND	Temperatur	e 20.9	C Hu	midity 77%	
ID	Location		Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics	
OD1	Eastern Site Boundary		1044	N	3.4	0	/	
OD2	Southern Site Boundar	у	1046	E	0.8	D	/	
OD3	Western Site Boundary		1042	NE	1.1	0	/	
OD4	Northern Site Boundary	/	1048	E	1.6	0	/	
OD5	Spur Road near Discov	very Bay Tunnel Ou	itlet /	/	/	/	/	
OD6	Cheung Tung Road near the Bus Depot		1038	E	1.6	0	/	
OD7	7 Cheung Tung Road near O·PARK1		1040	E	0.9	0	/	
OD8	Sham Shui Kok Dr near MTR Depot		1032	NE	0.7	D	/	
OD9	Discovery Bay Tunnel Toll Plaza		1037	E	1.5	õ	/	
*Classi	fication Critoria:						. /	

*Classification Criteria:

Slight

Strong

Extreme

Moderate

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Not detected Slight identifiable odour, and slight chance to have odour nuisance

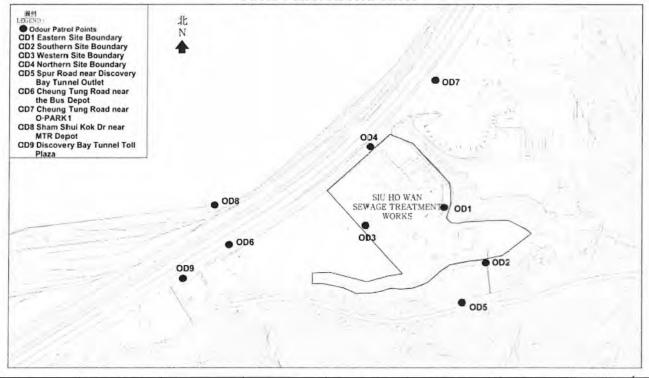
: Moderate identifiable odour, and moderate chance to have odour nuisance

: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by: Name: Yeuna

Sana 19 Date: 2022


Checked by: Name: (Ho. HO Date: 2023 Februar

Room 723 - 726, 7/F, Block B,	
Profit Industrial Building,	
1-15 Kwai Fung Crescent, Kwai Fong,	
Hong Kong.	

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

1/2/2023 Weather F	ine	Temperatur	e 20.	9ºC H	umidity 77%
Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
Eastern Site Boundary	10:44	N	3.4	J	/
Southern Site Boundary	10:46	E	0.8	0	/
Western Site Boundary	10:42	NE	1.1	0	/
Northern Site Boundary	10:48	E	1.6	0	/
Spur Road near Discovery Bay Tunnel Outlet	1	/	/	/	/
Cheung Tung Road near the Bus Depot	10:38	E	1.6	0	/
Cheung Tung Road near O·PARK1	10:40	E	8.0	0	/
Sham Shui Kok Dr near MTR Depot	10:32	NE	0.7	0	/
Discovery Bay Tunnel Toll Plaza	10:37	E	1.5	O	/
	Location Eastern Site Boundary Southern Site Boundary Western Site Boundary Northern Site Boundary Spur Road near Discovery Bay Tunnel Outlet Cheung Tung Road near the Bus Depot Cheung Tung Road near O·PARK1 Sham Shui Kok Dr near MTR Depot	LocationTimeEastern Site Boundary10:44Southern Site Boundary10:44Western Site Boundary10:47Northern Site Boundary10:47Spur Road near Discovery Bay Tunnel Outlet10:47Cheung Tung Road near the Bus Depot10:36Cheung Tung Road near O·PARK110:470Sham Shui Kok Dr near MTR Depot10:372	LocationTimeWind DirectionEastern Site Boundary10:44NSouthern Site Boundary10:44EWestern Site Boundary10:44EWestern Site Boundary10:44ESpur Road near Discovery Bay Tunnel OutletImage: Cheung Tung Road near the Bus Depot10:34Cheung Tung Road near O'PARK110:40ESham Shui Kok Dr near MTR Depot10:32NE	LocationTimeWind DirectionWind Speed (m/s)Eastern Site Boundary10:44N3.4Southern Site Boundary10:44E0.9Western Site Boundary10:44E0.9Western Site Boundary10:44E1.6Spur Road near Discovery Bay Tunnel OutletIICheung Tung Road near the Bus Depot10:39E1.6Cheung Tung Road near O·PARK110:40E0.9Sham Shui Kok Dr near MTR Depot10:32NE0.7	LocationTimeWind DirectionWind Speed (m/s)Odour intensityEastern Site Boundary10:44N3.4OSouthern Site Boundary10:44E0.9OWestern Site Boundary10:44E0.9OWestern Site Boundary10:44E1.1ONorthern Site Boundary10:44E1.6OSpur Road near Discovery Bay Tunnel OutletIIICheung Tung Road near the Bus Depot10:34E1.6OCheung Tung Road near O·PARK110:40E0.8OSham Shui Kok Dr near MTR Depot10:32NE0.7O

*Classification Criteria:

Slight

Moderate Strong

Extreme

Not detected : No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance

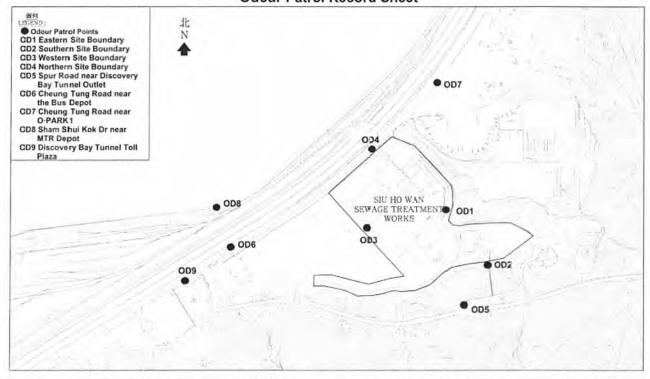
: Moderate identifiable odour, and moderate chance to have odour nuisance

: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by: Name: Date:

Checked by: KAM Ho Name: (HOZ Date: February 2023


Tel

Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 Fax (852)-24508032 Email mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date		2023/2/7	Weather	Clou	dy	Temperatur	re 21.	3.0	Humidity	81%	
ID	Locat	ion			Time	Wind Direction	Wind Speed (m/s)	Odou intens		our Characteristics	
OD1	Eastern Site Boundary				11:25	N	1.3	0		1	
OD2	Southern Site Boundary			11:23	NE	1-1	C	,	1		
OD3	Western Site Boundary			11:20	/	D	0)	/		
OD4	Northern Site Boundary			11=16	NE	0.4	Č)	/		
OD5	Spur Road near Discovery Bay Tunnel Outlet		el Outlet	/	/	/	/	/	/		
OD6	Cheung Tung Road near the Bus Depot		pot	11:12	NE	2.0	0		/		
OD7	Cheung Tung Road near O.PARK1			11:14	NE	2.1	0	-	/		
OD8	Sham Shui Kok Dr near MTR Depot			11:06	E	1.3	0		/		
OD9	Discovery Bay Tunnel Toll Plaza			11:40	NE	1.3	0		/		

Classification Criteria:

Not detected Slight

Moderate

Strong

Extreme

: No odour perceived or an odour so weak that it cannot be easily characterised or described

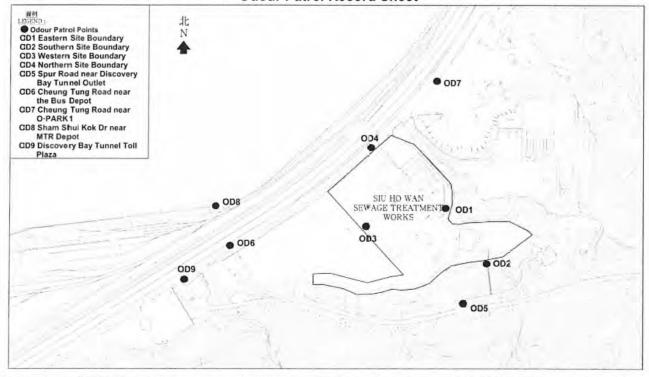
Slight identifiable odour, and slight chance to have odour nuisance

Moderate identifiable odour, and moderate chance to have odour nuisance

Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by: Name: enno Date: 2 2022


Checked by: CHOI Name: KAM Ho Date: 7 February 2023

Room 723 - 726, 7/F, Block B,
Profit Industrial Building,
1-15 Kwai Fung Crescent, Kwai Fong,
Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date		7/2/2023 Weather [[0	udy	Temperatur	e 21.	3°(1	lumidity	A1%				
ID	ID Location		Location		Location		Time	Wind Direction	Wind Speed (m/s)	Odour intensit	y Odour Cł	naracteristics
OD1	Easte	rn Site Boundary	11-25	N	1.3	0	/	-				
OD2	Southern Site Boundary		11-23	NE	1.1	0						
OD3	Western Site Boundary		1120	1	0	0	/	/				
OD4	Northe	ern Site Boundary	1116	NE	0.4	D	1					
OD5	Spur Road near Discovery Bay Tunnel Outlet		1	/	/	1	/	-				
OD6	Cheung Tung Road near the Bus Depot		1112	NE	2.0	0	/	-				
OD7	Cheung Tung Road near O·PARK1		1114	NE	21	0	1					
OD8	Sham Shui Kok Dr near MTR Depot		1106	E	1.3	0	/					
OD9	Discovery Bay Tunnel Toll Plaza		1110	NE	1.3	D		/				

*Classification Criteria: Not detected : No

Slight

Moderate Strong

Extreme

: No odour perceived or an odour so weak that it cannot be easily characterised or described

: Slight identifiable odour, and slight chance to have odour nuisance

: Moderate identifiable odour, and moderate chance to have odour nuisance

: Strong identifiable, likely to have odour nuisance

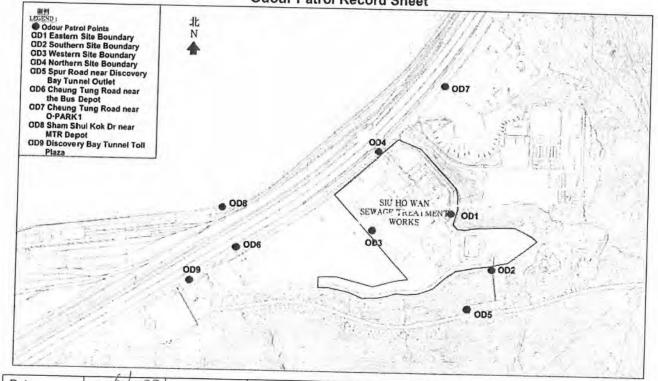
: Extreme severe odour, and unacceptable odour level

Recorded by: Name:

157 Hin Hin TSZ Date:

17 Checked by: Name: KAM Ho CHOI Date: 7 February 2023

Tel


Fax

Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 : (852)-24508032 Email mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	3/2/2023 Weather Fin	l.	Temperatu	re 12.	7ª/ Hu	midity gg 0/
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	1022	F	22	1	1
OD2	Southern Site Boundary	1024	E	2.7	<u> </u>	1 025
OD3	Western Site Boundary	1020	1	0		Tiflorent
OD4	Northern Site Boundary	1 1	12.	6.8	0	1
OD5	Spur Road near Discovery Bay Tunnel Outlet	1026	N	1.6	G	
OD6	Cheung Tung Road near the Bus Depot	11.13	NE	2.1	/	/
OD7	Cheung Tung Road near O PARK1	1617	NE.	2.3	0.	/
OD8	Sham Shui Kok Dr near MTR Depot	102	NE	2.6	0.	/
OD9	Discovery Bay Tunnel Toll Plaza	1010	NC	_14_	0.	/
Classi	fication Criteria:	1013	NE	0.4	0.	/

Classification Criteria:

Not detected Slight Moderate Strong Extreme

: No odour perceived or an odour so weak that it cannot be easily characterised or described

Slight identifiable odour, and slight chance to have odour nuisance

Moderate identifiable odour, and moderate chance to have odour nuisance

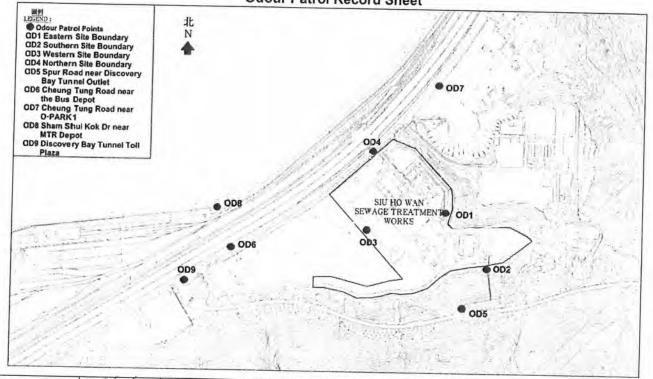
Strong identifiable, likely to have odour nuisance : Extreme severe odour, and unacceptable odour level

Recorded by: Name:

Date: 13 202

Checked by: Name: CHOI KAM Ho Date: 13 February 2023

Tel


Fax

Room 723 - 726, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 : (852)-24508032 Email mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works **Odour Patrol Record Sheet**

Date	2023/2/13 Weather F	ine	Temperatu	ire 12,	TOC Hu	midity 89%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	10:22	F	3.7	0	1
OD2	Southern Site Boundary	10:24	E	0.7		+ 1125
OD3	Western Site Boundary	10:20	F	0,2	1	Effluent
OD4	Northern Site Boundary	10:26		0.8	0	/
OD5	Spur Road near Discovery Bay Tunnel Outle		IV	116	U	/
OD6	Cheung Tung Road near the Bus Depot	10:13	A/E	1. 2	/	/
OD7	Cheung Tung Road near O PARK1	10:15	NE	2.0	0	/
OD8	Sham Shui Kok Dr near MTR Depot	10:10	NE	2.6	0	(
OD9	Discovery Bay Tunnel Toll Plaza	10.15	NE	0.4	0	/
Classi	fication Criteria:	10.121	VE	0.4	0	/

Classification Criteria:

Not detected Slight Moderate Strong Extreme

: No odour perceived or an odour so weak that it cannot be easily characterised or described

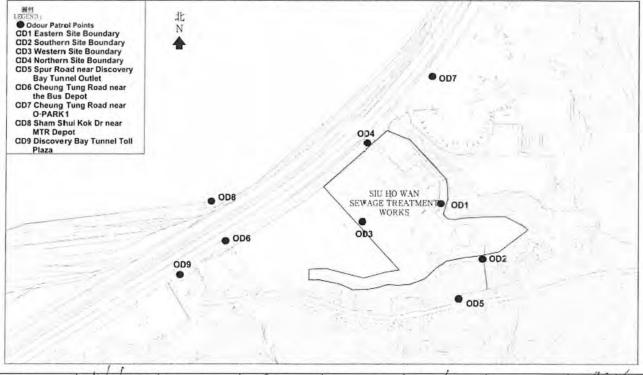
Slight identifiable odour, and slight chance to have odour nuisance

Moderate identifiable odour, and moderate chance to have odour nuisance

Strong identifiable, likely to have odour nuisance

Extreme severe odour, and unacceptable odour level

Recorded by: Name: leuro Sano Date: 201


Checked by: Name: CHS 1-10 Date: 13 2022 Februir

Room 723 - 726, 7/F, Block B,
Profit Industrial Building,
1-15 Kwai Fung Crescent, Kwai Fong,
Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date	24/2/16/3 Weather Fi	ile.	Temperatu	re 21.6	C Hur	nidity 49%
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensity	Odour Characteristics
OD1	Eastern Site Boundary	1457	N	07	1	Effluent
OD2	Southern Site Boundary	1501	1	0	0	/
OD3	Western Site Boundary	1457	NE	1.4	0	/
OD4	Northern Site Boundary	1456	N	0.3	0	/
OD5	Spur Road near Discovery Bay Tunnel Outlet	1573	N	09	0.	/
OD6	Cheung Tung Road near the Bus Depot	1588	NE	1.2	0	1
OD7	Cheung Tung Road near O·PARK1	1448	N	0.9	Ø	1
OD8	Sham Shui Kok Dr near MTR Depot	1441	NE	1.6	0 -	/
OD9	Discovery Bay Tunnel Toll Plaza	1509	N	1.5	0.	1
Classi	fination Critoria:					

*Classification Criteria:

Not detected

Slight Moderate

Strong

Extreme

: No odour perceived or an odour so weak that it cannot be easily characterised or described

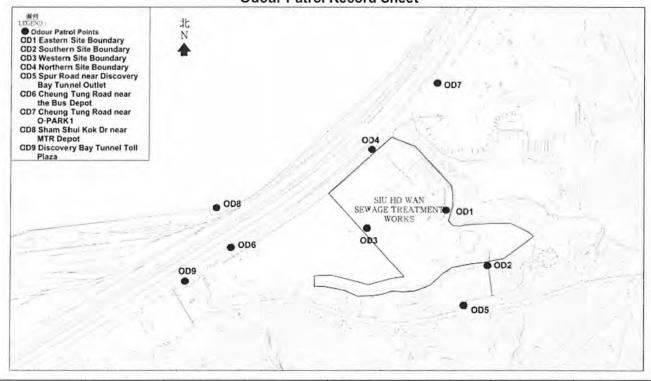
: Slight identifiable odour, and slight chance to have odour nuisance

: Moderate identifiable odour, and moderate chance to have odour nuisance

: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by: Name: Date:


ð Checked by: Name: CHOI Ho KAM Date: 24 Februa 2023

Room 723 - 726, 7/F, Block B,
Profit Industrial Building,
1-15 Kwai Fung Crescent, Kwai Fong,
Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works Odour Patrol Record Sheet

Date	24/2/2023 Weather Fin	e	Temperatur	re 21.	b°C I	Humidity	49%	
ID	Location	Time	Wind Direction	Wind Speed (m/s)	Odour intensit	y Odour C	Odour Characteristics	
OD1	Eastern Site Boundary	14:59	N	0.7	1	Effluent		
OD2	Southern Site Boundary		1	0	0	/		
OD3	Western Site Boundary	14:57	NE	1.4	0			
OD4	Northern Site Boundary	14:56	N	0.3	0	1		
OD5	Spur Road near Discovery Bay Tunnel Outlet	15:23	N	0.9	0	1	/	
OD6	Cheung Tung Road near the Bus Depot	15:00	NE	12	0		/	
OD7	Cheung Tung Road near O·PARK1	14:42	N	0.9	0	1	/	
OD8	Sham Shui Kok Dr near MTR Depot	14:41	NE	1.6	0		/	
OD9	Discovery Bay Tunnel Toll Plaza	15:09	2	1.5	0		/	
01	Beetles Odtesles							

*Classification Criteria:

Not detected

Slight

Strong

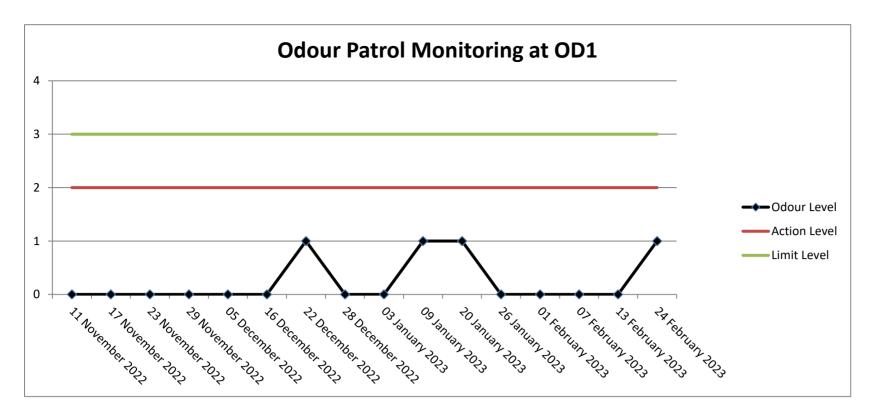
Extreme

Moderate

: No odour perceived or an odour so weak that it cannot be easily characterised or described

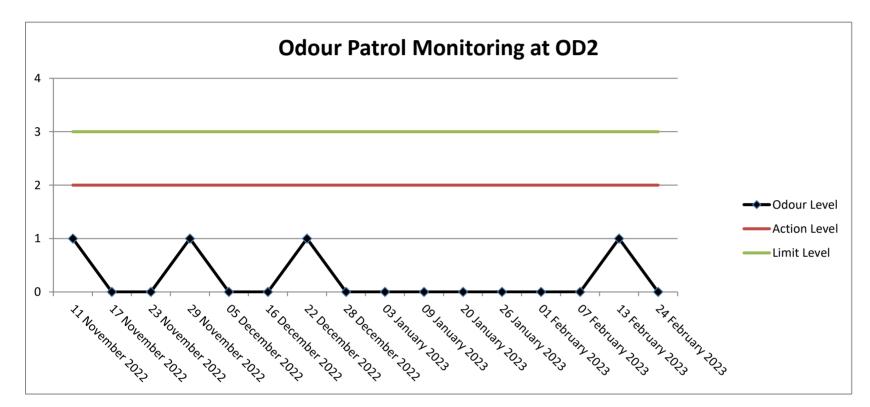
: Slight identifiable odour, and slight chance to have odour nuisance

: Moderate identifiable odour, and moderate chance to have odour nuisance

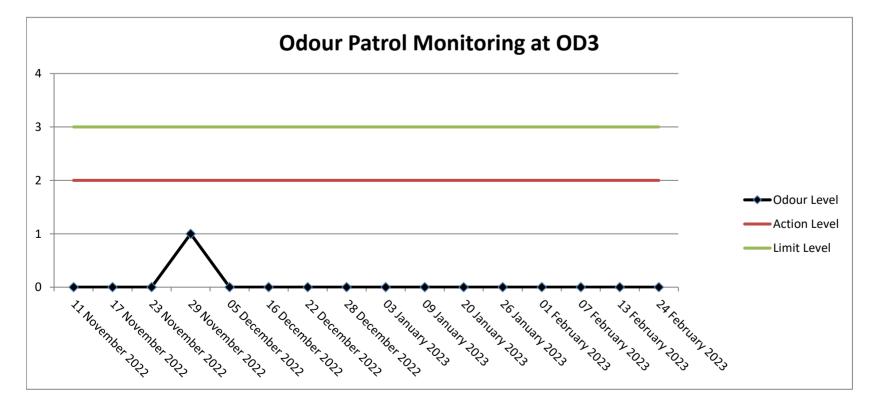

: Strong identifiable, likely to have odour nuisance

: Extreme severe odour, and unacceptable odour level

Recorded by: Name:


CAN KINI TONIN Date: 24/2/2022

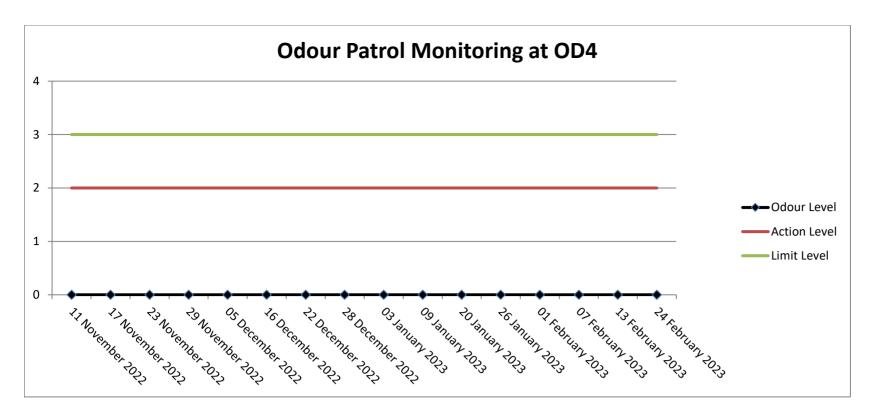
Checked by: Name: (Ho KAM HO Date: 24 2023 1-ebruary


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

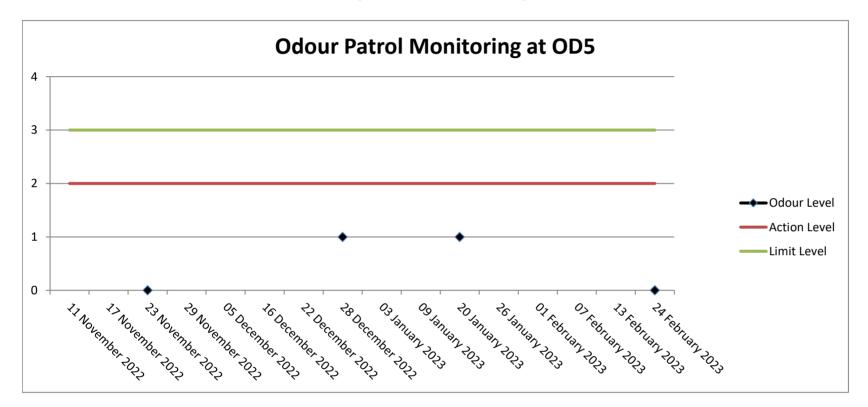
Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

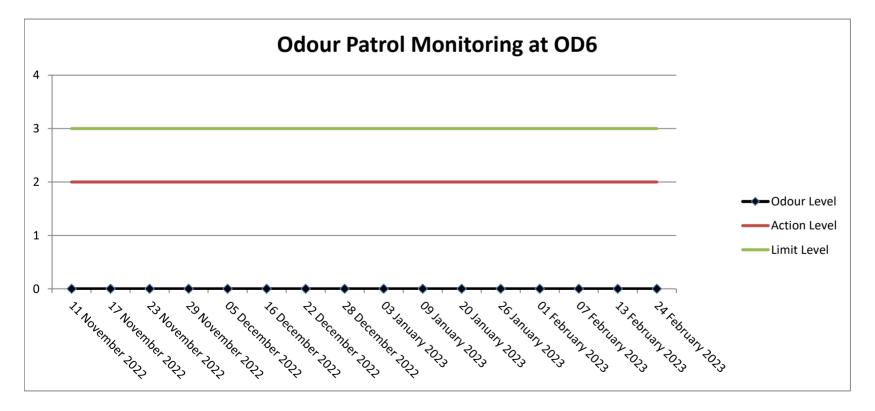


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Contract No. CM 14/2016

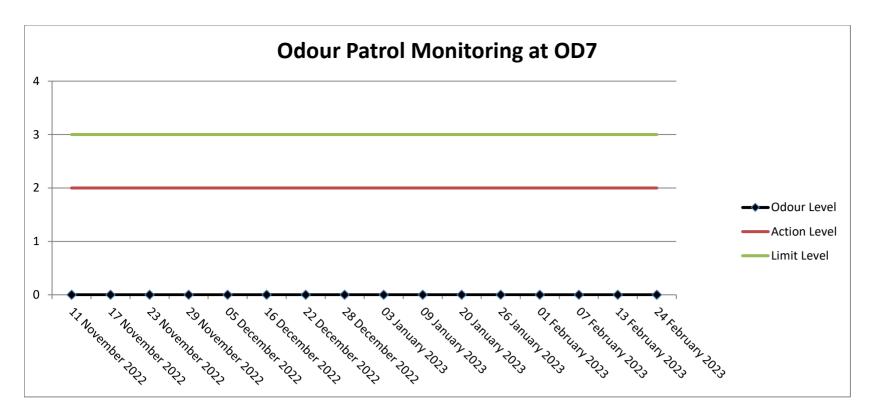
Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

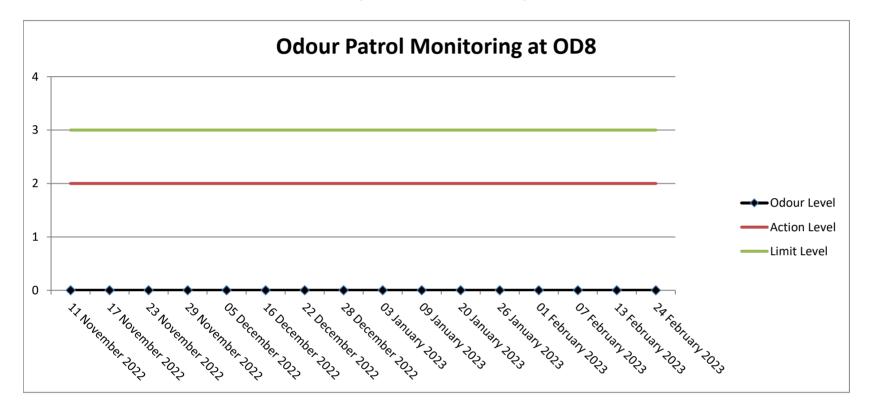
Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

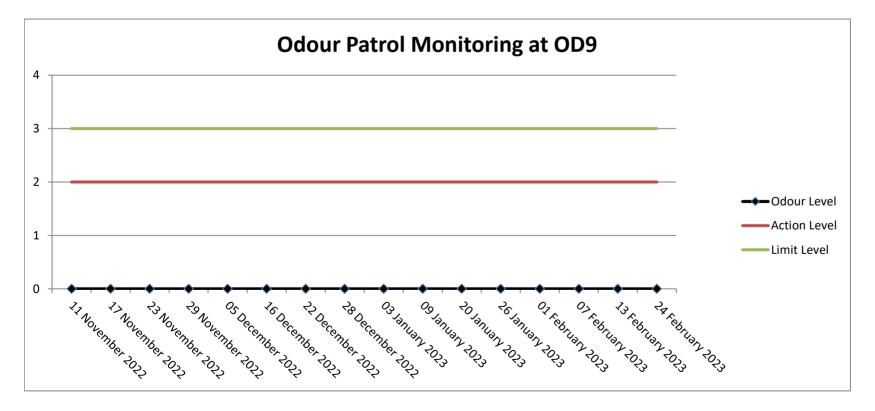


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme


Contract No. CM 14/2016

Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works


Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Note:

Y-axis refers to the Odour Level: 0 - Not Detected; 1- Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

Contract No. CM 14/2016

Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Appendix E

Copy of the Calibration Certificates for Water Quality Monitoring Equipment

Report No.: 142626WA230589

Page 1 of 3

Report on Calibration of Aqua Troll 600 Multi-parameter Water Quality Meter

Information Supplied by Client

Client		Fugro Technical Services Limited (MCL)
Client's address		13/F, Fugro House – KCC2, No. 1 Kwai On Road, Kwai Chung, N.T., H.K.
Sample description	:	One Aqua Troll 600 Multi-parameter Water Quality Meter
Client sample ID		Serial No. 525120
Test required		Calibration of the Aqua Troll 600 Multi-parameter Water Quality Meter
Laboratory Information		
Lab. sample ID	•	WA230589/1
Date of calibration	:	03/02/2023
Next calibration date		02/05/2023

Test method used : In-house comparison method

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Tuen Mun, NT Hong Kong

Report No.: 142626WA230589

Page 2 of 3

Results :

A. pH calibration

pH reading at 25°C for	pH reading at 25°C for Q.C. solution(9.16) and at 25°C for Q.C. solution(6.88)							
Theoretical	Measured	Deviation						
9.16	9.19	+0.03						
6.88	6.87	-0.01						

B. Salinity calibration

	Salinity, ppt							
Theoretical	Measured	Deviation	Maximum acceptable Deviation					
10	10.07	+0.07	± 0.5					
20	20.19	+0.19	± 1.0					
30	30.62	+0.62	± 1.5					
40	40.85	+0.85	± 2.0					

C. Dissolved Oxygen calibration

Trial No.	Dissolved oxygen content, mg/L				
	By calibrated D.O. meter	By D.O. meter			
1	7.52	7.53			
2	7.53	7.54			
3	7.53	7.53			
Average	7.53	7.53			

Differences of D.O. Content between calibrated D.O. meter and D.O. meter should be less than 0.4mg/L.

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Report No.: 142626WA230589

Page 3 of 3

Results:

D. Temperature calibration

Thermometer reading, °C	Meter reading, °C
25.03	25.05

E. Turbidity calibration

Turbidity, N.T.U.							
Theoretical	Maximum acceptable Deviation						
4	4.16	+0.16	± 0.6				
8	8.24	+0.24	± 0.8				
40	40.73	+0.73	± 3.0				
80	81.01	+1.01	± 4.0				

Certified by Approved Signatory : HO Kin Man, John Assistant General Manager - Laboratories

20VS

3

Date ** End of Report **

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

a xylem brand

9940 Summers Ridge Road San Diego, CA 92121 Tel: (858) 546-8327 support@sontek.com

Certificate of Calibration

TEST REPORT

Serial Number	5906						
System Type	M9						
System Orientation	Down						
Compass Type	Sontek						
Compass Offset (degrees)	N/A						
Communications Output	RS232						
Recorder Size (GB)	14.9						
Firmware Version	4.02						
Date Tested	05/23/2017						

POWER TEST

Command Mode (W):	0.17	Range : 0.00 – 0.30
Sleep Mode (W):	N/A	Range : N/A
Ping Mode - 18V (W):	2.67	Range : 1.50 – 3.50
Power Check		PASS

NOISE TEST

Beam 1 – 3.0 MHz (counts)	95
Beam 2 – 1.0 MHz (counts)	96
Beam 3 – 3.0 MHz (counts)	95
Beam 4 – 1.0 MHz (counts)	101
Beam 5 – 3.0 MHz (counts)	93
Beam 6 – 1.0 MHz (counts)	95
Beam 7 – 3.0 MHz (counts)	91
Beam 8 – 1.0 MHz (counts)	100
Beam Vertical – 500KHz (counts)	88
Noise Test	PASS

VERIFICATION

Velocity Check	PASS
Transmit Output	PASS
Sensitivity	PASS
Temperature Sensor	PASS
Compass Heading Check	PASS
Compass Level Check	PASS
Burn-in (24 hrs)	PASS
Load Default Parameters	DONE

OPTIONS

Bottom Track	Installed	
SmartPulse HD TM	Enabled	
Stationary	Disabled	
GPS Compass Integration	Disabled	
RiverSurveyor	Enabled	
HydroSurveyor	Disabled	

Verified by: ainthasane

This report was generated on 5/24/2017.

ATTENTION: New Warranty Terms as of March 4, 2013:

This system is covered under a two year limited warranty that extends to all parts and labor for any malfunction due to workmanship or errors in the manufacturing process. The warranty is valid only if you properly maintain and operate this system under normal use as outlined in the User's Manual. The warranty does not cover shortcomings that are due to the design, or any incidental damages as a result of errors in the measurements.

SonTek will repair and/or replace, at its sole option, any product established to be defective with a product of like type. CLAIMS FOR LABOR COSTS AND/OR OTHER CHARGES RESULTING FROM THE USE OF SonTek GOODS AND/OR PRODUCTS ARE NOT COVERED BY THIS LIMITED WARRANTY.

SonTek DISCLAIMS ALL EXPRESS WARRANTIES OTHER THAN THOSE CONTAINED ABOVE AND ALL IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. SonTek DISCLAIMS AND WILL NOT BE LIABLE, UNDER ANY CIRCUMSTANCE, IN CONTRACT, TORT OR WARRANTY, FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO LOST PROFITS, BUSINESS INTERRUPTION LOSSES, LOSS OF GOODWILL, OR LOSS OF BUSINESS OR CUSTOMER RELATIONSHIPS.

If your system is not functioning properly, first try to identify the source of the problem. If additional support is required, we encourage you to contact us immediately. We will work to resolve the problem as quickly as possible.

If the system needs to be returned to the factory, please contact SonTek to obtain a Service Request (SR) number. We reserve the right to refuse receipt of shipments without SRs. We require the system to be shipped back in the original shipping container using the original packing material with all delivery costs covered by the customer (including all taxes and duties). If the system is returned without appropriate packing, the customer will be required to cover the cost of a new packaging crate and material.

The warranty for repairs performed at an authorized SonTek Service Center is one year.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Appendix F

Results and Graphical Presentation of Water Quality Monitoring

										In-situ Measurement Laboratory Analysis											s				
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	pН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
А	8/2/2023	Mid-Ebb	Fine	Moderate	13:23	17	S	1	1	7.32	30.26	19.76	104.2	6.89	2.4	0.23	264.1	3	0.23	0.008	0.15	0.39	420	0.03	1.6
Α	8/2/2023	Mid-Ebb	Fine	Moderate	13:23	17	S	1	2	7.31	30.22	19.77	102.1	6.84	2.6	0.21	266.2	3	0.22	0.009	0.15	0.38	530	0.03	1.3
A	8/2/2023	Mid-Ebb	Fine	Moderate	13:23	17	М	8.5	1	6.94	30.54	18.24	93.2	6.62	2.4	0.14	204.5	3	0.23	0.008	0.18	0.42	500	0.03	1.6
A	8/2/2023	Mid-Ebb	Fine		13:23	17	M	8.5		6.99	30.56	18.26	93.4	6.61	2.7	0.16	205.1	3	0.22	0.009	0.16	0.39	450	0.03	1.4
A	8/2/2023	Mid-Ebb	Fine			17	В	16	1	6.98	30.97	19.11	91.2	6.54	2.4	0.13	209.1	3	0.22	0.009	0.18	0.41	400	0.03	1.5
<u>A</u>	8/2/2023	Mid-Ebb	Fine	Moderate	13:23	17	B	16	2	6.97	30.96	19.17	91.1	6.57	2.5	0.14	209.9	3	0.20	0.009	0.22	0.42	480	0.03	1.3
B	8/2/2023	Mid-Ebb	Fine	Moderate			S S	1		7.74	31.24	18.94	99.4	6.84	1.4	0.14	74.1	3	0.33	0.009	0.21	0.56	460	0.02	1.2
B	8/2/2023 8/2/2023	Mid-Ebb Mid-Ebb	Fine Fine		13:40 13:40	14 14	M	7		7.73	31.29 31.57	18.92 18.73	99.1 98.3	6.82 6.70	1.5 1.3	0.12	72.6 74.9	3	0.33	0.009	0.17 0.70	0.51	400 500	0.02	1.3 1.3
B	8/2/2023	Mid-Ebb	Fine		13:40	14	M	7	2	7.53	31.57	18.73	98.3	6.70	1.3	0.13	74.9	3	0.57	0.017	0.70	1.3	430	0.03	1.3
B	8/2/2023	Mid-Ebb	Fine		13:40		B	13	2	7.55	31.84	18.54	96.2 97.4	6.74	2.3	0.14	81.2	3	0.37	0.009	0.58	0.49	530	0.03	1.4
B	8/2/2023	Mid-Ebb	Fine				B	13	2	7.42	31.86	18.53	97.3	6.75	2.4	0.23	81.3	4	0.23	0.003	0.24	0.49	580	0.02	1.4
C	8/2/2023	Mid-Ebb	Fine	Moderate		12	S	1		7.83	30.43	18.43	95.8	7.14	1.4	0.36	264.5	3	0.21	0.010	0.23	0.45	400	0.03	2.0
Č	8/2/2023	Mid-Ebb	Fine	Moderate		12	Š	1		7.82	30.42	18.47	95.7	7.13	1.6	0.32	266.1	4	0.21	0.009	0.23	0.45	460	0.03	1.4
Č	8/2/2023	Mid-Ebb	Fine	Moderate		12	M	6	1	7.44	30.57	18.21	94.3	7.04	1.4	0.27	259.2	3	0.19	0.009	0.22	0.42	390	0.03	1.4
C	8/2/2023	Mid-Ebb	Fine	Moderate	13:59	12	М	6	2	7.46	30.56	18.23	94.7	7.03	1.6	0.28	259.4	3	0.20	0.008	0.24	0.44	360	0.03	1.3
С	8/2/2023	Mid-Ebb	Fine	Moderate	13:59	12	В	11	1	7.48	30.72	18.04	93.2	6.84	1.9	0.24	267.3	4	0.21	0.008	0.24	0.46	450	0.04	1.3
С	8/2/2023	Mid-Ebb	Fine	Moderate	13:59	12	В	11	2	7.49	30.70	18.06	93.1	6.83	1.8	0.26	266.1	4	0.20	0.008	0.23	0.44	490	0.04	1.7
D	8/2/2023	Mid-Ebb	Fine	Moderate	14:14	13	S	1	1	7.54	31.46	18.42	92.4	6.74	1.2	0.38	146.2	4	0.17	0.009	0.24	0.42	420	0.04	1.4
D	8/2/2023	Mid-Ebb	Fine	Moderate		13	S	1		7.51	31.42	18.46	92.6	6.72	1.3	0.37	144.1	4	0.18	0.008	0.23	0.41	450	0.04	1.4
D	8/2/2023	Mid-Ebb	Fine		14:14	13	M	6.5		7.52	31.87	18.72	91.4	6.69	1.8	0.24	123.5	4	0.19	0.008	0.19	0.38	510	0.03	1.2
D	8/2/2023	Mid-Ebb	Fine		14:14	13	M	6.5		7.58	31.86	18.73	91.3	6.68	1.9	0.39	122.4	4	0.20	0.009	0.12	0.32	520	0.04	1.1
D	8/2/2023	Mid-Ebb	Fine			13	B	12		7.59	31.34	18.94	90.7	6.54	2.4	0.23	154.6	4	0.19	0.011	0.11	0.31	600	0.03	1.3
F	8/2/2023 8/2/2023	Mid-Ebb Mid-Ebb	Fine Fine	Moderate Moderate	14:14	13 16	B	12	2	7.56	31.39 32.46	18.96 19.04	90.8 87.9	6.53 6.94	2.6	0.26	157.0 257.1	4	0.19	0.008	0.11	0.31	530 110	0.03	1.4
F	8/2/2023	Mid-Ebb	Fine			16	S	1	2	8.52	32.40	19.04	87.4	6.91	1.8	0.17	255.2	3	0.18	0.008	0.14	0.32	120	0.02	1.5
F	8/2/2023	Mid-Ebb	Fine	Moderate			M	8	-	8.56	32.91	18.43	86.2	6.83	1.0	0.10	271.2	3	0.18	0.009	0.14	0.32	98	0.03	1.5
F	8/2/2023	Mid-Ebb	Fine				M	8		8.57	32.94	18.41	86.1	6.82	1.8	0.14	277.3	3	0.18	0.009	0.12	0.31	110	0.03	1.5
Ē	8/2/2023	Mid-Ebb	Fine			16	B	15	1	8.54	32.83	18.32	85.4	6.74	1.2	0.16	261.4	4	0.20	0.009	0.12	0.33	130	0.02	1.5
E	8/2/2023	Mid-Ebb	Fine	Moderate		16	В	15	2	8.53	32.84	18.33	85.3	6.73	1.3	0.14	261.1	4	0.19	0.008	0.13	0.33	120	0.02	1.3
F	8/2/2023	Mid-Ebb	Fine	Moderate		23	S	1		8.73	32.46	19.32	83.1	6.64	1.4	0.12	312.7	4	0.16	0.029	0.32	0.51	100	0.04	1.4
F	8/2/2023	Mid-Ebb	Fine	Moderate			S	1		8.74	32.41	19.31	83.2	6.63	1.3	0.14	311.6	4	0.16	0.029	0.31	0.50	160	0.03	1.6
F	8/2/2023	Mid-Ebb	Fine				M	11.5		8.69	32.58	19.46	84.5	6.73	1.4	0.16	326.1	3	0.17	0.008	0.12	0.30	120	0.03	1.3
F	8/2/2023	Mid-Ebb	Fine		14:49		M	11.5		8.68	32.55	19.47	84.6	6.78	1.6	0.13	324.5	3	0.15	0.010	0.12	0.29	110	0.02	1.5
F	8/2/2023	Mid-Ebb	Fine		14:49	23	B	22	1	8.64	32.74	19.31	82.5	6.51	1.9	0.16	322.3	4	0.18	0.010	0.20	0.39	140	0.03	1.3
F G	8/2/2023 8/2/2023	Mid-Ebb Mid-Ebb	Fine Fine			23 22	B	22	2	8.62	32.71 31.34	19.34 18.41	82.4 104.5	6.52 8.61	1.8 1.3	0.14	<u>321.4</u> 97.1	4	0.19	0.009	0.19	0.39	120 97	0.03	1.4 1.6
G	8/2/2023	Mid-Ebb	Fine	Moderate		22	S	1		8.41	31.34	18.41	104.5	8.64	1.3	0.14	97.1	3	0.14	0.009	0.20	0.35	97 110	0.03	1.6
G	8/2/2023	Mid-Ebb	Fine			22	M	11	 1	8.39	31.45	18.26	103.4	8.52	1.4	0.10	103.2	3	0.16	0.009	0.13	0.30	81	0.03	1.4
G	8/2/2023	Mid-Ebb	Fine			22	M	11	•	8.38	31.49	18.22	103.4	8.51	1.2	0.19	103.2	3	0.20	0.009	0.14	0.35	78	0.03	1.4
Ğ	8/2/2023	Mid-Ebb	Fine		15:08	22	B	21		8.30	31.78	18.19	98.4	8.43	1.2	0.13	99.5	4	0.15	0.003	0.13	0.33	120	0.03	1.4
Ğ	8/2/2023	Mid-Ebb	Fine		15:08	22	B	21		8.36	31.77	18.18	98.7	8.42	1.9	0.18	99.2	4	0.15	0.009	0.12	0.28	110	0.02	1.4
Ĥ	8/2/2023	Mid-Ebb	Fine	Moderate			S	1		8.64	31.01	18.03	115.2	8.94	1.4	0.24	245.1	4	0.15	0.009	0.12	0.28	99	0.02	1.7
H	8/2/2023	Mid-Ebb	Fine	Moderate		19	Š	1	2	8.66	31.04	18.04	115.4	8.96	1.6	0.23	244.2	3	0.13	0.009	0.12	0.26	98	0.02	1.5
Н	8/2/2023	Mid-Ebb	Fine	Moderate			М	9.5		8.68	31.34	17.94	112.3	8.90	1.1	0.18	237.3	4	0.17	0.008	0.12	0.30	82	0.02	1.8
Н	8/2/2023	Mid-Ebb	Fine		15:24	19	M	9.5	2	8.67	31.33	17.92	112.4	8.91	2.2	0.19	236.4	4	0.17	0.009	0.12	0.29	78	0.03	1.5
Н	8/2/2023	Mid-Ebb	Fine	Moderate	15:24	19	В	18	1	8.64	31.56	17.45	108.4	8.84	1.3	0.14	229.6	4	0.16	0.009	0.12	0.29	69	0.04	1.4
Н	8/2/2023	Mid-Ebb	Fine	Moderate	15:24	19	В	18	2	8.63	31.59	17.46	108.6	8.82	1.4	0.16	229.1	4	0.16	0.010	0.11	0.28	88	0.03	1.6

Note: 1. ND: Not Detected

												I	n-situ Meas	sureme	nt						Laborato	ry Analysi	s		
Monitoring Location	Date	Tide Mode	Weather	Sea Condition	Time	Water Depth (m)	Monitoring Level	Monitoring Level (m)	Replicate	рН	Salinity (ppt)	Temperature (degree C)	DO Saturation (%)	DO (mg/L)	Turbidit y (NTU)	Current Speed (m/s)	Current Direction (degree magnetic)	Total Suspended Solids (mg/L)	Ammonia Nitrogen (mg/L-N)	Nitrite Nitrogen (mg/L- N)	Nitrate Nitrogen (mg/L-N)	Total Inorganic Nitrogen (mg/L-N)	E.coli (cfu/100mL)	Total phosphorus (solube and particulate) (mg/L)	BOD_5
										Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
A	8/2/2023	Mid-Flood	Fine	Moderate	09:22	15	S	1	1	8.67	31.09	19.23	113.5	8.91	1.4	0.13	54.1	4	0.22	0.010	0.12	0.35	320	0.03	1.5
A	8/2/2023	Mid-Flood	Fine	Moderate	09:22		S	1	2	0.0.	31.04	19.24	113.4	8.94	1.5	0.17	53.2	4	0.19	0.009	0.13	0.33	390	0.03	1.4
A	8/2/2023	Mid-Flood	Fine	Moderate	09:22		M	7.5		8.66	31.17	19.03	106.4	8.67	1.6	0.14	46.4	3	0.19	0.011	0.12	0.31	420	0.03	1.5
A	8/2/2023	Mid-Flood	Fine	Moderate	09:22	15	M	7.5	2	8.64	31.19	19.04	106.2	8.64	1.4	0.14	46.5	3	0.19	0.010	0.12	0.32	370	0.03	1.3
A	8/2/2023	Mid-Flood	Fine	Moderate	09:22	15 15	B	14 14	1	8.69	31.34	19.27	102.3	8.34	1.2	0.17	59.2	3	0.17	0.008	0.12	0.30	500	0.02	1.4
B	8/2/2023 8/2/2023	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	09:22		B S	14	2	8.67 8.78	31.33 31.46	19.26 19.46	102.4 94.5	8.35 8.13	1.3 1.6	0.16	59.4 64.1	3	0.17	0.008	0.11	0.29	450 320	0.02	1.5 1.4
B	8/2/2023	Mid-Flood	Fine	Moderate	09:06	14	S	1	2	8.76	31.40	19.46	94.5	8.14	1.8	0.15	64.1	3	0.19	0.009	0.12	0.32	480	0.02	1.4
В	8/2/2023	Mid-Flood	Fine	Moderate	09:06	14	M	7	1	8.61	31.82	19.57	98.1	8.46	1.3	0.12	71.3	3	0.10	0.008	0.12	0.31	280	0.03	1.5
В	8/2/2023	Mid-Flood	Fine	Moderate	09:06	14	M	7	2	8.62	31.84	19.55	98.4	8.42	1.4	0.18	71.4	3	0.18	0.008	0.13	0.32	320	0.03	1.4
В	8/2/2023	Mid-Flood	Fine	Moderate	09:06	14	В	13	1	8.79	31.87	19.56	97.2	8.61	1.5	0.16	71.2	3	0.15	0.009	0.13	0.29	400	0.03	1.4
В	8/2/2023	Mid-Flood	Fine	Moderate	09:06	14	В	13	2	8.74	31.92	19.54	97.3	8.62	1.6	0.17	70.6	3	0.16	0.009	0.13	0.30	350	0.03	1.4
С	8/2/2023	Mid-Flood	Fine	Moderate	08:46	12	S	1	1	8.42	33.94	19.14	98.7	8.44	1.2	0.24	94.2	3	0.15	0.009	0.13	0.29	550	0.02	1.1
С	8/2/2023	Mid-Flood	Fine		08:46	12	S	1	2	8.43	33.92	19.26	98.4	8.41	1.3	0.27	99.1	3	0.15	0.008	0.13	0.29	450	0.03	1.4
С	8/2/2023	Mid-Flood	Fine	Moderate	08:46		M	6	1	8.47	33.64	19.44	97.1	8.29	1.9	0.21	424.5	3	0.16	0.009	0.11	0.28	490	0.02	1.5
C C	8/2/2023	Mid-Flood	Fine	Moderate	08:46		MB	6	2	8.46	33.68	19.48	97.3	8.26	1.6	0.26	122.3	3	0.16	0.009	0.12	0.28	420 590	0.02	1.6
C	8/2/2023 8/2/2023	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	08:46	12 12	B	11	1	8.41	33.17 33.18	<u>19.17</u> 19.16	96.4 96.2	8.27 8.24	1.7 1.8	0.34	98.4 99.1	3	0.18	0.009	0.13	0.32	590	0.02	1.7
D	8/2/2023	Mid-Flood	Fine	Moderate	08:29	14	S	1	1	8.34	34.56	19.02	96.2	8.16	1.0	0.31	314.5	3	0.10	0.008	0.13	0.32	300	0.02	1.7
D	8/2/2023	Mid-Flood	Fine	Moderate	08:29		S	1		8.33	34.50	19.02	94.5	8.14	2.0	0.14	314.5	3	0.19	0.008	0.19	0.31	240	0.02	1.6
D	8/2/2023	Mid-Flood	Fine	Moderate	08:29	14	M	7	1	871	35.27	19.34	93.2	8.02	2.4	0.12	274.1	3	0.19	0.009	0.19	0.30	280	0.02	1.6
D	8/2/2023	Mid-Flood	Fine	Moderate	08:29	14	M	7	2	8.72	35.36	19.36	93.1	8.01	2.6	0.26	277.3	3	0.18	0.008	0.18	0.30	230	0.05	1.5
D	8/2/2023	Mid-Flood	Fine	Moderate	08:29	14	В	13	1	8.73	36.14	18.47	92.7	7.94	2.1	0.14	264.5	3	0.18	0.008	0.18	0.30	360	0.02	1.3
D	8/2/2023	Mid-Flood	Fine	Moderate	08:29	14	В	13	2	8.74	36.17	18.46	92.6	7.93	2.4	0.12	261.1	3	0.19	0.009	0.19	0.31	300	0.02	1.7
E	8/2/2023	Mid-Flood	Fine	Moderate	08:10	14	S	1	1	8.58	30.82	18.17	117.4	9.24	1.2	0.19	321.4	4	0.18	0.008	0.18	0.30	82	0.02	1.7
E	8/2/2023	Mid-Flood	Fine	Moderate	08:10		S	1	2	8.54	30.81	18.14	119.1	9.22	1.3	0.18	322.5	4	0.16	0.009	0.16	0.28	110	0.03	1.5
E	8/2/2023	Mid-Flood	Fine	Moderate	08:10		M	7			30.99	18.09	116.2	9.02	1.4	0.14	317.8	3	0.15	0.008	0.15	0.28	100	0.02	1.1
E	8/2/2023	Mid-Flood	Fine	Moderate	08:10		M	7	2	8.61	30.97	18.04	116.4	9.06	1.3	0.16	316.4	3	0.15	0.009	0.15	0.28	120	0.02	1.2
E	8/2/2023 8/2/2023	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	08:10		B	13 13	1	8.63	30.91 30.92	18.11 18.12	117.0 117.1	9.16 9.14	1.3 1.3	0.09	329.3 329.9	3	0.19	0.009	0.19	0.32	69 76	0.02	1.6 1.4
E F	8/2/2023	Mid-Flood	Fine	Moderate	07:54	14	S B	13	<u> </u>	8.23	30.92	18.12	109.4	9.14	1.5	0.08	241.3	3	0.16	0.009	0.16	0.28	100	0.02	1.4
F	8/2/2023	Mid-Flood	Fine	Moderate	07:54	18	S	1	2	8.27	30.44	18.51	109.9	9.04	1.6	0.24	242.5	4	0.13	0.008	0.12	0.30	74	0.02	1.3
F	8/2/2023	Mid-Flood	Fine	Moderate	07:54		M	9	1	8.19	31.14	18.32	100.0	8.47		0.20	267.7	3	0.22	0.009	0.19	0.42	100	0.02	1.3
F	8/2/2023	Mid-Flood	Fine	Moderate	07:54		M	9	2	8.17	31.15	18.31	104.9	8.46	1.7	0.21	267.8	3	0.22	0.009	0.14	0.37	69	0.02	1.6
F	8/2/2023	Mid-Flood	Fine	Moderate	07:54	18	В	17	1	8.19	31.24	18.44	106.2	8.57	1.6	0.24	245.9	3	0.22	0.009	0.12	0.35	80	0.03	1.6
F	8/2/2023	Mid-Flood	Fine	Moderate	07:54	18	В	17		8.16	31.28	18.42	106.4	8.56	1.6	0.29	245.2	3	0.22	0.008	0.11	0.34	89	0.03	1.4
G	8/2/2023	Mid-Flood	Fine	Moderate	07:35	13	S	1	1		31.01	18.97	115.0	9.03	1.4	0.14	99.5	3	0.12	0.009	0.11	0.24	100	0.02	1.4
G	8/2/2023	Mid-Flood	Fine	Moderate	07:35	13	S	1		8.54	31.02	18.94	114.1	9.02	1.6	0.17	94.4	3	0.12	0.008	0.11	0.24	84	0.02	1.6
G	8/2/2023	Mid-Flood	Fine	Moderate	07:35	13	M	6.5	1	8.59	31.44	18.10	104.2	8.73	1.9	0.16	87.1	3	0.15	0.009	0.11	0.27	96	0.02	1.5
G	8/2/2023 8/2/2023	Mid-Flood Mid-Flood	Fine Fine	Moderate Moderate	07:35	13 13	M B	6.5 12	2	8.56	31.45 30.99	18.11 18.01	104.4 99.7	8.74 8.54	1.8 1.4	0.14	87.2 103.1	3	0.15	0.008	0.12	0.27	110 79	0.02	1.5
G	8/2/2023	Mid-Flood	Fine	Moderate	07:35	13	B	12	2		30.99	18.02	99.7 99.6	8.53	1.4	0.27	103.1	3	0.16	0.009	0.12	0.28	67	0.02	1.3
Н	8/2/2023	Mid-Flood	Fine		07:33		S	1	1	8.61	30.94	17.94	97.7	8.44		0.24	209.7	3	0.10	0.009	0.13	0.28	52	0.02	1.3
Н	8/2/2023	Mid-Flood	Fine	Moderate	07:17		S	1		8.62	30.41	17.92	97.2	8.41	1.6	0.14	209.1	3	0.13	0.009	0.10	0.25	62	0.02	1.6
H	8/2/2023	Mid-Flood	Fine				M	9.5		8.54	30.92	17.46	95.4	8.26	1.3	0.24	234.5	3	0.18	0.008	0.12	0.31	86	0.02	1.5
Ĥ	8/2/2023	Mid-Flood	Fine	Moderate	07:17	19	М	9.5	2	8.53	30.94	17.44	95.3	8.25	1.4	0.26	233.1	3	0.18	0.008	0.12	0.30	69	0.02	1.4
Н	8/2/2023	Mid-Flood	Fine	Moderate	07:17	19	В	18	1	8.49	31.14	17.29	94.6	8.19	1.6	0.24	217.2	3	0.15	0.009	0.12	0.28	54	0.02	1.7
Н	8/2/2023	Mid-Flood	Fine	Moderate	07:17	19	В	18	2	8.48	31.16	17.28	94.5	8.18	1.7	0.21	216.4	3	0.16	0.009	0.13	0.29	46	0.02	1.7

Note: 1. ND: Not Detected

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172WA230220

Page 1 of 18

Test Report on Analysis of Water

Information Supplied by Client

Client	:	Fugro Technical Services Limite	d
Client's address	:	13/F, Fugro House – KCC2, No. N.T., H.K	1 Kwai On Road, Kwai Chung,
Project	:	Contract No. CM 14/2016 Enviro Environmental Monitoring and A Treatment Works	
Sample description	:	Ninety-six samples of water take 08/02/2023	en by the staff of FTS on
Client sample ID	:	Refer to pages 3 to 18	
Tests required		 Biochemical oxygen demand Total suspended solids dried Ammoniacal Nitrogen content Nitrate-Nitrogen content Nitrite-Nitrogen content Total Inorganic Nitrogen cont Total phosphorus content Total phosphorus content (Fig. E. coli count 	l at 103°C – 105°C ht tent
Laboratory Information			
Lab. sample ID	:	Chemical tests	Microbiological tests

WA230220/1-96 WA230220/1B-96B

	Chemical tests	Microbiological tests
Container	Ninety-six 250 mL and 3 L plastic bottles	Ninety-six sterilized 250 mL plastic bottles with thiosulphate added
Appearance	С	olourless
Temperature		Cooled

Date of receipt of sample : 08/02/2023

Date test commenced : 08/02/2023

Date test completed : 16/02/2023

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Report No. : 181172WA230220

Page 2 of 18

Test methods used	:	Biochemical oxygen demand
		APHA 23ed. 5210B

Total suspended solids dried at 103°C – 105°C APHA 23ed. 2540D

Ammoniacal Nitrogen content APHA 23ed. 4500-NH₃ H

Nitrate-Nitrogen content APHA 23ed. 4500-NO₃⁻ I

Nitrite-Nitrogen content APHA 23ed. 4500-NO₂⁻ A & NO₃⁻ I

Total Inorganic Nitrogen content In-house method E-T-112 (By Calculation)

Total phosphorus content APHA 17ed. 4500-PB.5 (Digestion) & In-house method E-T-056 (Determination)

Total phosphorus content (Filtered) APHA 17ed. 4500-PB.5 (Digestion) & In-house method E-T-056 (Determination)

E. coli count The Bacteriological Examination of Drinking Water Supplies 1982, DoE (1983) Membrane Filtration Procedure: Sections 7.8, 7.9.4.2 Bacterial Confirmation: Section 7.9.4.4 & in-situ urease test

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

	2	
	Б	
	Ē	
1	F	

Fugro Development Centre FUGRO TECHNICAL SERVICES LIMITED

5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT

Page 3 of 18

Results :

Report No. : 181172WA230220

Toot poromotors			Sample ide	Sample identification		
	A/S/E	A/S/E/Dup	A/M/E	A/M/E/Dup	A/B/E	A/B/E/Dup
1. Biochemical oxygen demand, mg/L	1.6	1.3	1.6	1.4	1.5	1.3
2. Total suspended solids dried at 103°C - 105°C, mg/L	3	3	з	З	3	ß
3. Ammoniacal nitrogen content, mg/L	0.23	0.22	0.23	0.22	0.22	0.20
4. Nitrate-Nitrogen content, mg/L	0.15	0.15	0.18	0.16	0.18	0.22
5. Nitrite-Nitrogen content, mg/L	0.008	0.009	0.008	0.009	0.009	0.009
6. Total Inorganic Nitrogen content, mg/L	0.39	0.38	0.42	0.39	0.41	0.42
7. Total phosphorus content, mg/L	0.03	0.03	0.03	0.03	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	0.02	0.02	<0.01	<0.01
9. E. coli count, cfu/100ml	4.2 x 10 ²	5.3 x 10 ²	5.0 x 10 ²	4.5×10^2	4.0×10^{2}	4.8 × 10 ²
Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	dised Nitrogen C	Content (in mg/L)	x 10 Ammonia	cal Nitrogen Con	tent (in mg/L)	

2. Temperature of ice-box when samples being received were 3.9°C.

Assistant General Manager – Laboratories Approved Signatory : HO Kin Man, John 9 [3 [2023 Certified by . Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

•

fuero

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre

ugro Development Centre 5 Lok Vi Street, Tai Lam Tuen Mun, NT Hong Kong

Page 4 of 18

Results :

Report No. : 181172WA230220

Toot accomptor			Sample ide	Sample identification		
	B/S/E	B/S/E/Dup	B/M/E	B/M/E/Dup	B/B/E	B/B/E/Dup
1. Biochemical oxygen demand, mg/L	1.2	1.3	1.3	1.4	1.3	1.4
2. Total suspended solids dried at 103°C - 105°C, mg/L	3	3	3	3	3	4
3. Ammoniacal nitrogen content, mg/L	0.33	0.33	0.57	0.57	0.25	0.24
4. Nitrate-Nitrogen content, mg/L	0.21	0.17	0.70	0.58	0.23	0.24
5. Nitrite-Nitrogen content, mg/L	0.009	0.009	0.017	0.017	0.009	0.008
6. Total Inorganic Nitrogen content, mg/L	0.56	0.51	1.3	1.2	0.49	0.49
7. Total phosphorus content, mg/L	0.02	0.02	0.03	0.03	0.02	0.02
8. Total phosphorus content (Filtered), mg/L	<0.01	0.01	0.01	0.01	0.01	0.01
9. E. coli count, cfu/100ml	4.6 x 10 ²	4.0 x 10 ²	5.0 x 10 ²	4.3 x 10 ²	5.3 x 10 ²	5.8 × 10 ²
Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	dised Nitrogen C	Content (in mg/L)	x 10 Ammonia	cal Nitrogen Con	tent (in mg/L)	

2. Temperature of ice-box when samples being received were 3.9°C.

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 402/2/2 Certified by Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Fugro

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong FUGRO TECHNICAL SERVICES LIMITED Tuen Mun, NT

Page 5 of 18

Results :

Report No. : 181172WA230220

Toot normators			Sample id	Sample identification		
I car balances	C/S/E	C/S/E/Dup	C/M/E	C/M/E/Dup	C/B/E	C/B/E/Dup
1. Biochemical oxygen demand, mg/L	2.0	1.4	1.4	1.3	1.3	1.7
2. Total suspended solids dried at 103°C - 105°C, mg/L	3	4	3	3	4	4
3. Ammoniacal nitrogen content, mg/L	0.21	0.21	0.19	0.20	0.21	0.20
4. Nitrate-Nitrogen content, mg/L	0.23	0.23	0.22	0.24	0.24	0.23
5. Nitrite-Nitrogen content, mg/L	0.010	0.009	0.009	0.008	0.008	0.008
6. Total Inorganic Nitrogen content, mg/L	0.45	0.45	0.42	0.44	0.46	0.44
7. Total phosphorus content, mg/L	0.03	0.03	0.03	0.03	0.04	0.04
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	<0.01	<0.01	0.01	0.01
9. E. coli count, cfu/100ml	4.0 x 10 ²	4.6 x 10 ²	3.9 x 10 ²	3.6 x 10 ²	4.5 x 10 ²	4.9 x 10 ²
Remarks: 1. Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	dised Nitrogen Conte	content (in mg/L)	x 10 Ammoniac	al Nitrogen Cont	ent (in mg/L)	

Temperature of ice-box when samples being received were 3.9°C.

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 913/2003 Certified by

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Date

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

2	
L	
.5	
ų.	

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong FUGRO TECHNICAL SERVICES LIMITED Tuen Mun, NT

Page 6 of 18

Results :

Report No. : 181172WA230220

Toot normation			Sample id	Sample identification		
I ESI paralletes	D/S/E	D/S/E/Dup	D/M/E	D/M/E/Dup	D/B/E	D/B/E/Dup
1. Biochemical oxygen demand, mg/L	1.4	1.4	1.2	1.1	1.3	1.4
2. Total suspended solids dried at 103°C - 105°C, mg/L	4	4	4	4	4	4
3. Ammoniacal nitrogen content, mg/L	0.17	0.18	0.19	0.20	0.19	0.19
4. Nitrate-Nitrogen content, mg/L	0.24	0.23	0.19	0.12	0.11	0.11
5. Nitrite-Nitrogen content, mg/L	0.009	0.008	0.008	0.009	0.011	0.008
6. Total Inorganic Nitrogen content, mg/L	0.42	0.41	0.38	0.32	0.31	0.31
7. Total phosphorus content, mg/L	0.04	0.04	0.03	0.04	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	<0.01	<0.01	<0.01	0.01
9. E. coli count, cfu/100ml	4.2 x 10 ²	4.5 x 10 ²	5.1 x 10 ²	5.2 x 10 ²	6.0 x 10 ²	5.3×10^2
Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxic	dised Nitrogen C	idised Nitrogen Content (in mg/L) × 10 Ammoniacal Nitrogen Content (in mg/L)	x 10 Ammoniac	al Nitrogen Cont	ent (in mg/L)	

Temperature of ice-box when samples being received were 3.9°C.

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories (vor/2) Certified by Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong FUGRO TECHNICAL SERVICES LIMITED Tuen Mun, NT

Report No. : 181172WA230220

fucro

Results :

Page 7 of 18

Tact montons			Sample io	Sample identification		
	E/S/E	E/S/E/Dup	E/M/E	E/M/E/Dup	E/B/E	E/B/E/Dup
1. Biochemical oxygen demand, mg/L	1.5	1.5	1.5	1.5	1.5	1.3
2. Total suspended solids dried at 103°C - 105°C, mg/L	e	с	ო	S	4	4
3. Ammoniacal nitrogen content, mg/L	0.18	0.18	0.18	0.18	0.20	0.19
4. Nitrate-Nitrogen content, mg/L	0.14	0.14	0.11	0.12	0.12	0.13
5. Nitrite-Nitrogen content, mg/L	0.008	0.009	0.011	0.009	0.009	0.008
6. Total Inorganic Nitrogen content, mg/L	0.32	0.32	0.30	0.31	0.33	0.33
7. Total phosphorus content, mg/L	0.02	0.03	0.03	0.03	0.02	0.02
8. Total phosphorus content (Filtered), mg/L	<0.01	<0.01	0.01	0.01	0.01	0.01
9. E. coli count, cfu/100ml	1.1 × 10 ²	1.2 x 10 ²	9.8 x 10	1.1 × 10 ²	1.3 x 10 ²	1.2 x 10 ²
Remarks: 1 Total Inormanic Nitronen (in mo/I) = Total Ovidised Nitronen Content (in mo/I) x 10 Ammoniacal Nitronen Content (in mo/I)	idised Nitronen	Content (in ma/l)	x 10 Ammonis	acal Nitronen Con	tent (in ma/l)	

I-I/A ת רחוינבוור לווו ווואל רל 2. Temperature of ice-box when samples being received were 3.9°C. אווו האביי I ULAI OXIA 1. I otal inorganic Nitrogen (in mg/L) = Lelliars.

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 9[3/2023 Certified by

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Date

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

GEN02/0819

-	
R	
L	
B	
1	

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT FUGRO TECHNICAL SERVICES LIMITED

Hong Kong

Page 8 of 18

Results :

Report No. : 181172WA230220

Toot accompany			Sample id	Sample identification		
I ESI paralletes	F/S/E	F/S/E/Dup	F/M/E	F/M/E/Dup	F/B/E	F/B/E/Dup
1. Biochemical oxygen demand, mg/L	1.4	1.6	1.3	1.5	1.3	1.4
2. Total suspended solids dried at 103°C - 105°C, mg/L	4	4	ę	3	4	4
3. Ammoniacal nitrogen content, mg/L	0.16	0.16	0.17	0.15	0.18	0.19
4. Nitrate-Nitrogen content, mg/L	0.32	0.31	0.12	0.12	0.20	0.19
5. Nitrite-Nitrogen content, mg/L	0.029	0.029	0.008	0.010	0.010	0.009
6. Total Inorganic Nitrogen content, mg/L	0.51	0.50	0.30	0.29	0.39	0.39
7. Total phosphorus content, mg/L	0.04	0.03	0.03	0.02	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01
9. E. coli count, cfu/100ml	1.0 × 10 ² *	1.6 x 10 ²	1.2 x 10 ²	1.1 x 10 ²	1.4 x 10 ²	1.2 x 10 ²
Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	dised Nitrogen C	content (in mg/L)	x 10 Ammoniad	cal Nitrogen Cont	tent (in mg/L)	

Temperature of ice-box when samples being received were 3.9°C.

3.* Estimated for E. coli count means the colonies counted was not in the range of 10 to 100 cfu/100ml

Assistant General Manager – Laboratories Approved Signatory : HO Kin Man, John crost 2 10 Certified by

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Date

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

FUGRO

Fugro Development Centre FUGRO TECHNICAL SERVICES LIMITED

5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT

Page 9 of 18

Results :

Report No. : 181172WA230220

Toot normation			Sample id	Sample identification		
Lest barameters	G/S/E	G/S/E/Dup	G/M/E	G/M/E/Dup	G/B/E	G/B/E/Dup
1. Biochemical oxygen demand, mg/L	1.6	1.4	1.4	1.4	1.5	1.4
2. Total suspended solids dried at 103°C - 105°C, mg/L	e	e	e	S	4	4
3. Ammoniacal nitrogen content, mg/L	0.14	0.16	0.20	0.19	0.15	0.15
4. Nitrate-Nitrogen content, mg/L	0.20	0.13	0.14	0.15	0.18	0.12
5. Nitrite-Nitrogen content, mg/L	0.009	0.009	0.009	0.009	0.008	0.009
6. Total Inorganic Nitrogen content, mg/L	0.35	0.30	0.35	0.35	0.33	0.28
7. Total phosphorus content, mg/L	0.03	0.03	0.03	0.03	0.02	0.02
8. Total phosphorus content (Filtered), mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
9. E. coli count, cfu/100ml	9.7 x 10	1.1 × 10 ²	8.1 x 10	7.8 x 10	1.2 x 10 ²	1.1 × 10 ²
Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxic	dised Nitrogen C	idised Nitrogen Content (in mg/L) × 10 Ammoniacal Nitrogen Content (in mg/L)	x 10 Ammonia	cal Nitrogen Cont	ent (in mg/L)	

Temperature of ice-box when samples being received were 3.9°C.

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 9(2/202) Certified by

Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

GEN02/0819

_	
-	
2	
Б	
E	
F	1

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT FUGRO TECHNICAL SERVICES LIMITED

Hong Kong

Page 10 of 18

Results :

Report No. : 181172WA230220

Toot meanwater			Sample id	Sample identification		
I est paraliteters	H/S/E	H/S/E/Dup	H/M/E	H/M/E/Dup	H/B/E	H/B/E/Dup
1. Biochemical oxygen demand, mg/L	1.7	1.5	1.8	1.5	1.4	1.6
2. Total suspended solids dried at 103°C - 105°C, mg/L	4	S	4	4	4	4
3. Ammoniacal nitrogen content, mg/L	0.15	0.13	0.17	0.17	0.16	0.16
4. Nitrate-Nitrogen content, mg/L	0.12	0.12	0.12	0.12	0.12	0.11
5. Nitrite-Nitrogen content, mg/L	0.009	0.009	0.008	0.009	0.009	0.010
6. Total Inorganic Nitrogen content, mg/L	0.28	0.26	0.30	0.29	0.29	0.28
7. Total phosphorus content, mg/L	0.02	0.02	0.02	0.03	0.04	0.03
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	<0.01	<0.01	0.01	0.01
9. E. coli count, cfu/100ml	9.9 x 10	9.8 x 10	8.2 x 10	7.8 x 10	6.9 x 10	8.8 x 10
Remarks: 1.Total Inorganic Nitrogen (in mg/L) = Total Oxid	lised Nitrogen C	idised Nitrogen Content (in mg/L) × 10 Ammoniacal Nitrogen Content (in mg/L)	x 10 Ammoniad	al Nitrogen Cont	ent (in mg/L)	

Temperature of ice-box when samples being received were 3.9°C.

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 9 [2 /2003 Certified by Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

fucero

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page 11 of 18

Results :

Report No. : 181172WA230220

Toot meeting			Sample id	Sample identification		
I ESI paraliferers	A/S/F	A/S/F/Dup	A/M/F	A/M/F/Dup	A/B/F	A/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.5	1.4	1.5	1.3	1.4	1.5
2. Total suspended solids dried at 103°C - 105°C, mg/L	4	4	с	3	S	ю
3. Ammoniacal nitrogen content, mg/L	0.22	0.19	0.19	0.19	0.17	0.17
4. Nitrate-Nitrogen content, mg/L	0.12	0.13	0.12	0.12	0.12	0.11
5. Nitrite-Nitrogen content, mg/L	0.010	0.009	0.011	0.010	0.008	0.008
6. Total Inorganic Nitrogen content, mg/L	0.35	0.33	0.31	0.32	0.30	0.29
7. Total phosphorus content, mg/L	0.03	0.03	0.03	0.03	0.02	0.02
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	0.02	0.02	<0.01	<0.01
9. E. coli count, cfu/100ml	3.2 x 10 ²	3.9 x 10 ²	4.2 x 10 ²	3.7 x 10 ²	5.0 x 10 ²	4.5 x 10 ²
Remarks: 1. Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	dised Nitrogen (Content (in mg/L)	x 10 Ammonia	acal Nitrogen Con	itent (in mg/L)	

2. Temperature of ice-box when samples being received were 3.9°C.

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 9 [2 /2023 Ι. . Certified by

Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

GEN02/0819

fuero

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Page 12 of 18

Hong Kong

Results :

Report No. : 181172WA230220

Toot nonmoton			Sample id	Sample identification		
I ESI parallerers	B/S/F	B/S/F/Dup	B/M/F	B/M/F/Dup	B/B/F	B/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.4	1.3	1.5	1.4	1.4	1.4
2. Total suspended solids dried at 103°C - 105°C, mg/L	S	3	с	3	3	3
3. Ammoniacal nitrogen content, mg/L	0.19	0.18	0.19	0.18	0.15	0.16
4. Nitrate-Nitrogen content, mg/L	0.12	0.12	0.11	0.13	0.13	0.13
5. Nitrite-Nitrogen content, mg/L	0.009	0.010	0.008	0.008	0.009	0.009
6. Total Inorganic Nitrogen content, mg/L	0.32	0.31	0.31	0.32	0.29	0.30
7. Total phosphorus content, mg/L	0.02	0.03	0.03	0.03	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	<0.01	0.01	0.01	0.01	<0.01	0.13
9. E. coli count, cfu/100ml	3.2 x 10 ²	4.8 x 10 ²	2.8 x 10 ²	3.2 x 10 ²	4.0 x 10 ²	3.5 x 10 ²
Remarks: 1. Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	dised Nitrogen	Content (in mg/L	x 10 Ammonia	ical Nitrogen Con	tent (in mg/L)	

ñ ñ 2. Temperature of ice-box when samples being received were 3.9°C.

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 2007 5 12023 0 Certified by Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Hong Kong FUGRO TECHNICAL SERVICES LIMITED Tuen Mun, NT

Page 13 of 18

Results :

Report No. : 181172WA230220

LGRO

Toot normatice			Sample ide	Sample identification		
	C/S/F	C/S/F/Dup	C/M/F	C/M/F/Dup	C/B/F	C/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.1	1.4	1.5	1.6	1.7	1.7
2. Total suspended solids dried at 103°C - 105°C, mg/L	3	ß	3	З	3	3
3. Ammoniacal nitrogen content, mg/L	0.15	0.15	0.16	0.16	0.18	0.18
4. Nitrate-Nitrogen content, mg/L	0.13	0.13	0.11	0.12	0.13	0.13
5. Nitrite-Nitrogen content, mg/L	0.009	0.008	0.009	0.009	0.009	0.008
6. Total Inorganic Nitrogen content, mg/L	0.29	0.29	0.28	0.28	0.32	0.32
7. Total phosphorus content, mg/L	0.02	0.03	0.02	0.02	0.02	0.02
8. Total phosphorus content (Filtered), mg/L	0.02	0.02	<0.01	0.01	0.01	0.01
9. E. coli count, cfu/100ml	5.5 x 10 ²	4.5 x 10 ²	4.9 x 10 ²	4.2 x 10 ²	5.9 x 10 ²	5.0 x 10 ²
Remarks: 1. Total Inorganic Nitrogen (in mg/L) = Total Oxic	dised Nitrogen C	Content (in mg/L)	x 10 Ammonia	idised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	tent (in mg/L)	

2. Temperature of ice-box when samples being received were 3.9°C.

Assistant General Manager – Laboratories Approved Signatory : HO Kin Man, John 9 13 12003 Certified by

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Date

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

FUGRO

Fugro Development Centre FUGRO TECHNICAL SERVICES LIMITED

Hong Kong 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Page 14 of 18

Results :

Report No. : 181172WA230220

Toot monotone	-		Sample id	Sample identification		
	D/S/F	D/S/F/Dup	D/M/F	D/M/F/Dup	D/B/F	D/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.6	1.6	1.6	1.5	1.3	1.7
2. Total suspended solids dried at 103°C - 105°C, mg/L	S	S	ę	ß	S	ß
3. Ammoniacal nitrogen content, mg/L	0.19	0.19	0.19	0.18	0.18	0.19
4. Nitrate-Nitrogen content, mg/L	0.11	0.11	0.11	0.11	0.11	0.12
5. Nitrite-Nitrogen content, mg/L	0.008	600.0	0.009	0.008	0.008	0.009
6. Total Inorganic Nitrogen content, mg/L	0.31	0.31	0.30	0.30	0.30	0.31
7. Total phosphorus content, mg/L	0.02	0.02	0.05	0.05	0.02	0.02
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	<0.01	<0.01	0.01	0.01
9. E. coli count, cfu/100ml	3.0 x 10 ²	2.4 x 10 ²	2.8 x 10 ²	2.3 x 10 ²	3.6 x 10 ²	3.0 x 10 ²
Remarks: 1. Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	dised Nitrogen (Content (in mg/L)	x 10 Ammonia	cal Nitrogen Con	tent (in mg/L)	

2. Temperature of ice-box when samples being received were 3.9°C.

Assistant General Manager – Laboratories Approved Signatory : HO Kin Man, John 9[3/2023 Certified by

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

Date

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

fucero

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page 15 of 18

Results:

Report No. : 181172WA230220

Toot accomptor			Sample ide	Sample identification		
I can baranterera	E/S/F	E/S/F/Dup	E/M/F	E/M/F/Dup	E/B/F	E/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.7	1.5	1.1	1.2	1.6	1.4
2. Total suspended solids dried at 103°C - 105°C, mg/L	4	4	3	3	3	3
3. Ammoniacal nitrogen content, mg/L	0.18	0.16	0.15	0.15	0.19	0.16
4. Nitrate-Nitrogen content, mg/L	0.11	0.11	0.12	0.12	0.12	0.11
5. Nitrite-Nitrogen content, mg/L	0.008	600.0	0.008	0.009	0.009	0.009
6. Total Inorganic Nitrogen content, mg/L	0.30	0.28	0.28	0.28	0.32	0.28
7. Total phosphorus content, mg/L	0.02	0.03	0.02	0.02	0.02	0.02
8. Total phosphorus content (Filtered), mg/L	<0.01	<0.01	0.02	0.02	0.01	0.02
9. E. coli count, cfu/100ml	8.2 x 10	1.1 × 10 ^{2 *}	1.0×10^2	1.2 x 10 ²	6.9 x 10	7.6 × 10
Remarks: 1. Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	lised Nitrogen C	Content (in mg/L)	x 10 Ammoniac	al Nitrogen Cont	ent (in mg/L)	

2. Temperature of ice-box when samples being received were 3.9°C.

3.* Estimated for E. coli count means the colonies counted was not in the range of 10 to 100 cfu/100ml.

Certified by Certified by Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. **T** +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com

GEN02/0819

_	
2	
Г	
5	
P	
T	

Fugro Development Centre 5 Lok Yi Street, Tai Lam FUGRO TECHNICAL SERVICES LIMITED Tuen Mun, NT

Hong Kong

Page 16 of 18

Results :

Report No. : 181172WA230220

Toot normation			Sample id	Sample identification		
	F/S/F	F/S/F/Dup	F/M/F	F/M/F/Dup	F/B/F	F/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.5	1.3	1.3	1.6	1.6	1.4
2. Total suspended solids dried at 103°C - 105°C, mg/L	S	4	S	3	ю	ю
3. Ammoniacal nitrogen content, mg/L	0.19	0.17	0.22	0.22	0.22	0.22
4. Nitrate-Nitrogen content, mg/L	0.12	0.13	0.19	0.14	0.12	0.11
5. Nitrite-Nitrogen content, mg/L	0.008	0.008	0.009	0.009	0.009	0.008
6. Total Inorganic Nitrogen content, mg/L	0.31	0.30	0.42	0.37	0.35	0.34
7. Total phosphorus content, mg/L	0.02	0.02	0.03	0.02	0.03	0.03
8. Total phosphorus content (Filtered), mg/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01
9. E. coli count, cfu/100ml	1.0 x 10 ²	7.4 x 10	1.0 × 10 ²	6.9 x 10	8.0 x 10	8.9 x 10
Remarks: 1. Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	dised Nitrogen Conte	content (in mg/L)	x 10 Ammoniad	al Nitrogen Cont	ent (in mg/L)	

Temperature of ice-box when samples being received were 3.9°C.

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 2002/21 PD J. . . . Certified by

Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

fucko

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT FUGRO TECHNICAL SERVICES LIMITED

Page 17 of 18

Hong Kong

Results :

Report No. : 181172WA230220

Toot monotone			Sample id	Sample identification		
I EST DAIAIIEES	G/S/F	G/S/F/Dup	G/M/F	G/M/F/Dup	G/B/F	G/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.4	1.6	1.5	1.5	1.3	1.3
2. Total suspended solids dried at 103°C - 105°C, mg/L	3	3	3	3	3	3
3. Ammoniacal nitrogen content, mg/L	0.12	0.12	0.15	0.15	0.16	0.16
4. Nitrate-Nitrogen content, mg/L	0.11	0.11	0.11	0.12	0.12	0.11
5. Nitrite-Nitrogen content, mg/L	0.009	0.008	0.009	0.008	0.009	0.009
6. Total Inorganic Nitrogen content, mg/L	0.24	0.24	0.27	0.27	0.28	0.28
7. Total phosphorus content, mg/L	0.02	0.02	0.02	0.02	0.02	0.02
8. Total phosphorus content (Filtered), mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
9. E. coli count, cfu/100ml	1.0 × 10 ²	8.4 x 10	9.6 x 10	1.1 × 10 ²	7.9 x 10	6.7 x 10
Remarks: 1. Total Inorganic Nitrogen (in mg/L) = Total Oxid	lised Nitrogen C	Content (in mg/L)	x 10 Ammoniae	idised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	ent (in mg/L)	

Temperature of ice-box when samples being received were 3.9°C.

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 9 (3 (202) Certified by Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

0	
62	
L	
12	
4	

Fugro Development Centre FUGRO TECHNICAL SERVICES LIMITED

Hong Kong 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Page 18 of 18

Results :

Report No. : 181172WA230220

Toot normation			Sample id	Sample identification		
	H/S/F	H/S/F/Dup	H/M/F	H/M/F/Dup	H/B/F	H/B/F/Dup
1. Biochemical oxygen demand, mg/L	1.4	1.6	1.5	1.4	1.7	1.7
2. Total suspended solids dried at 103°C - 105°C, mg/L	S	с	S	З	с	e
3. Ammoniacal nitrogen content, mg/L	0.14	0.13	0.18	0.18	0.15	0.16
4. Nitrate-Nitrogen content, mg/L	0.13	0.11	0.12	0.12	0.12	0.13
5. Nitrite-Nitrogen content, mg/L	0.009	0.009	0.008	0.008	0.009	0.009
6. Total Inorganic Nitrogen content, mg/L	0.28	0.25	0.31	0.30	0.28	0.29
7. Total phosphorus content, mg/L	0.02	0.02	0.02	0.02	0.02	0.02
8. Total phosphorus content (Filtered), mg/L	0.01	<0.01	<0.01	<0.01	0.01	0.01
9. E. coli count, cfu/100ml	5.2 × 10	6.2 x 10	8.6 x 10	6.9 x 10	5.4 x 10	4.6 x 10
Remarks: 1. Total Inorganic Nitrogen (in mg/L) = Total Oxidised Nitrogen Content (in mg/L) x 10 Ammoniacal Nitrogen Content (in mg/L)	lised Nitrogen C	Content (in mg/L)	x 10 Ammoniae	cal Nitrogen Cont	ent (in mg/L)	

2. Temperature of ice-box when samples being received were 3.9°C.

Assistant General Manager – Laboratories Approved Signatory : HO Kin Man, John 9 13/2002 Certified by K

Date ** End of Report **

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

GEN02/0819

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Note

Laboratory Duplicate, Quality Assurance/Quality Control Report

- and a contract		and farmants for	and a second a second assessing the second and the second as the second assessed as the second as the s								
Biochemica	al oxyge	Biochemical oxygen demand, mg/L				Nitrate-Nitrogen content, mg/L	ogen con	tent, mg/L			
Reporting	Jacid	Spike	Labo	Laboratory Duplicate		Reporting	Jucid	Spike	Labor	Laboratory Duplicate	
Limit	DIAIIR	recovery (%)	Original result	Original result Duplicate result	RPD%	Limit	DIGILIA	recovery (%)	Original result	Duplicate result	RPD%
			1.2	1.7	34						
			1.4	1.5	6.9						
+	V	1	1.4	1.4	0	0.005	ī	1	1		ī
			1.3	1.3	0						
			1.7	1.7	0						
Total suspe	ended so	olids dried at 10	Total suspended solids dried at 103°C – 105°C, mg/L	/L		Nitrite-Nitrogen content, mg/L	gen cont	ent, mg/L			
Reporting	Jacid	Spike	Labo	Laboratory Duplicate		Reporting	Jucid	Spike	Labor	Laboratory Duplicate	
Limit	DIAIIK	recovery (%)	Original result	Original result Duplicate result	RPD%	Limit	DIGILIA	recovery (%)	Original result	Duplicate result	RPD%
		93.38	4.1	3.9	5.0		<0.005	101.00	0.008	0.009	12
		101.00	2.6	2.6	0		<0.005	100.00	0.009	0.009	0
-	v	100.27	2.8	2.7	3.6	0.005	<0.005	103.00	0.009	0.009	0
		96.05	3.9	4.2	7.4		<0.005	97.00	0.009	0.008	12
		101.25	3.2	3.3	3.1		<0.005	99.00	0.009	0.010	11

Assistant General Manager – Laboratories Approved Signatory : HO Kin Man, John 9 (3 (2023 Certified by Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

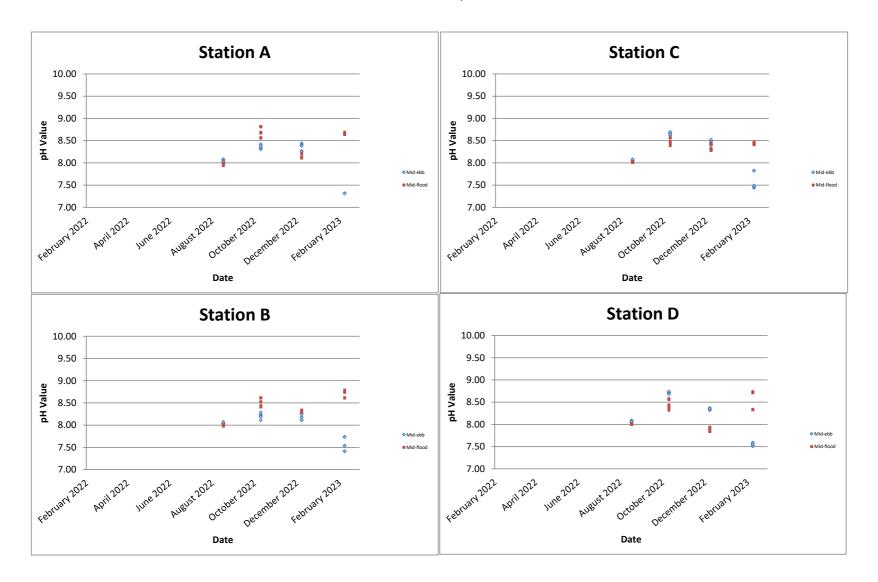
5 Lok Yi Street, Tai Lam Hong Kong Tuen Mun, NT Assistant General Manager – Laboratories Approved Signatory : HO Kin Man, John RPD% RPD% 8.0 9.5 8.7 33 0 Original result | Duplicate result Original result Duplicate result Laboratory Duplicate Laboratory Duplicate 0.013 0.005 0.012 0.013 0.01 0.011 0.012 0.011 0.013 0.007 Total phosphorus content (Filtered), mg/L Total Inorganic Nitrogen content, mg/L Certified by recovery (%) recovery (%) Spike 100.3 Spike 99.5 99.5 9.66 99.1 Blank Blank <0.01 <0.01 <0.01 <0.01 <0.01 Reporting Reporting Limit 0.005 Limit 0.01 Original result | Duplicate result Precision RPD% RPD% 0.097 0.067 0.12 0.11 0.11 5.6 3.6 4.9 4.3 3.1 5.7 0 0 0 0 Original result Duplicate result Original result | Duplicate result Laboratory Duplicate, Quality Assurance/Quality Control Report Laboratory Duplicate Laboratory Duplicate Laboratory Duplicate 3.9×10^{2} 5.0×10^{2} 1.4×10^{2} 7.5 × 10 5.2 x 10 0.035 0.033 0.024 0.16 0.027 0.17 0.19 0.16 0.17 0.02 4.0×10^{2} 1.2×10^{2} 3.0×10^{2} 7.2 × 10 4.0 × 10 0.028 0.032 0.023 0.021 0.16 0.037 0.18 0.19 0.16 0.17 Ammoniacal Nitrogen content, mg/L recovery (%) recovery (%) recovery (%) Total phosphorus content, mg/L 104.92 100.83 101.17 100.00 Spike 96.92 Spike 100.2 Spike 99.2 99.1 100 99.7 E. coli count, cfu/100ml <0.005 <0.005 Blank <0.005 <0.005 Blank Blank <0.005 <0.01 <0.01 <0.01 <0.01 <0.01 0 Reporting Reporting Reporting 0.005 Limit Limit Limit 0.01 Note

Fugro Development Centre

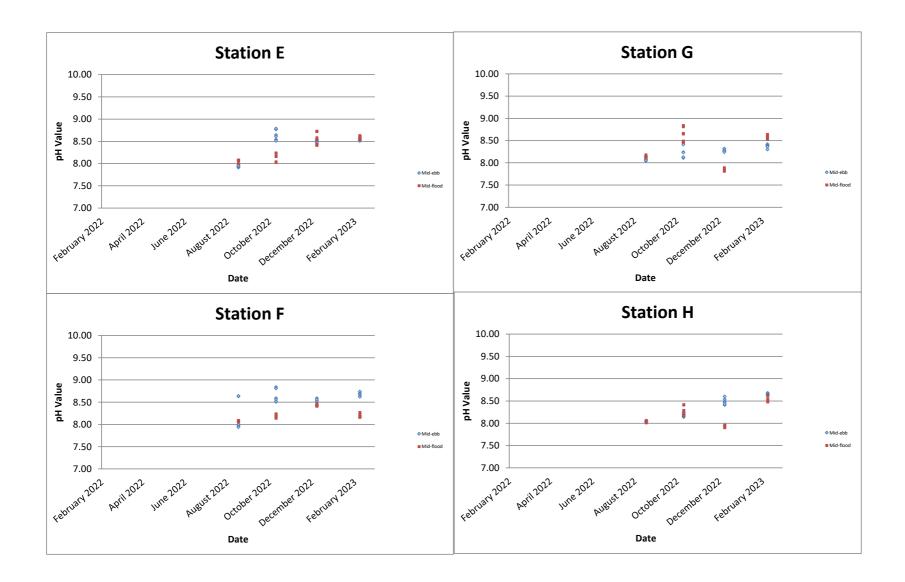
FUGRO TECHNICAL SERVICES LIMITED

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

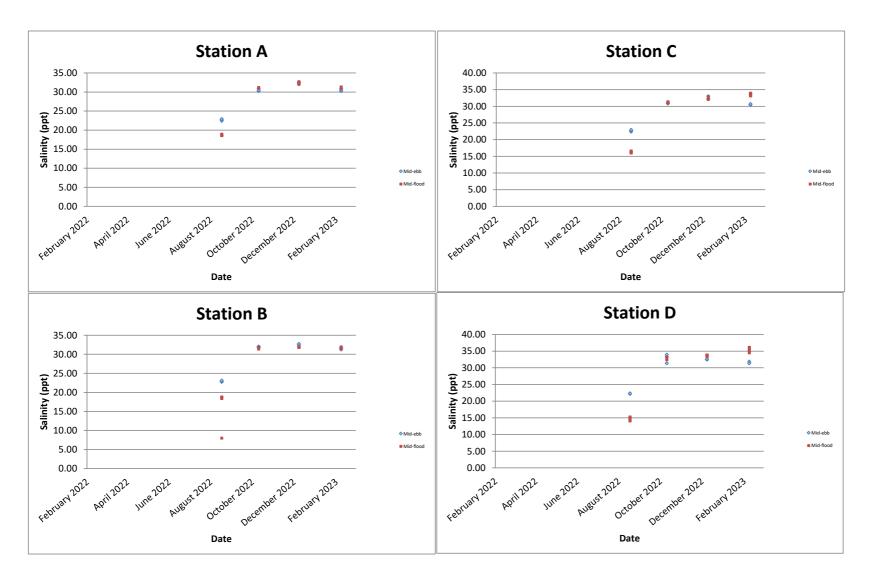
The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

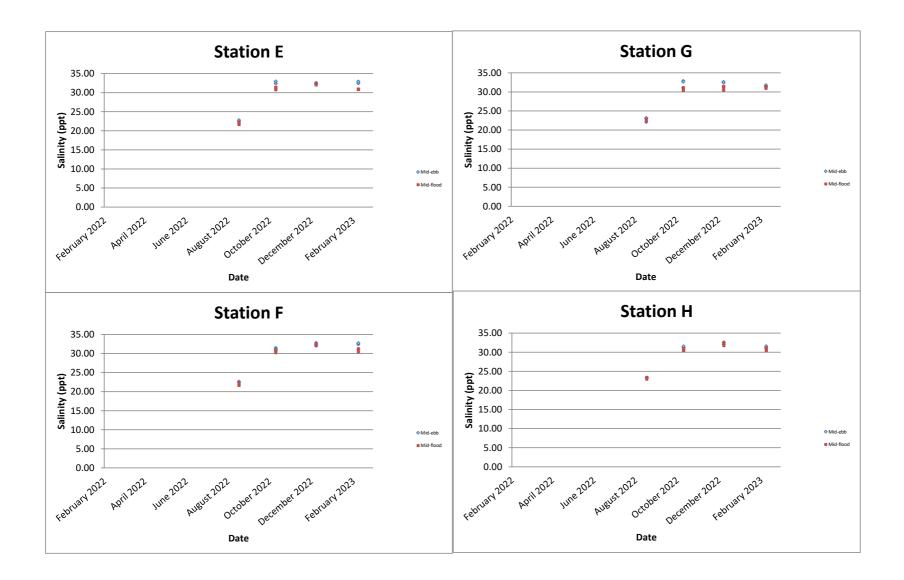

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

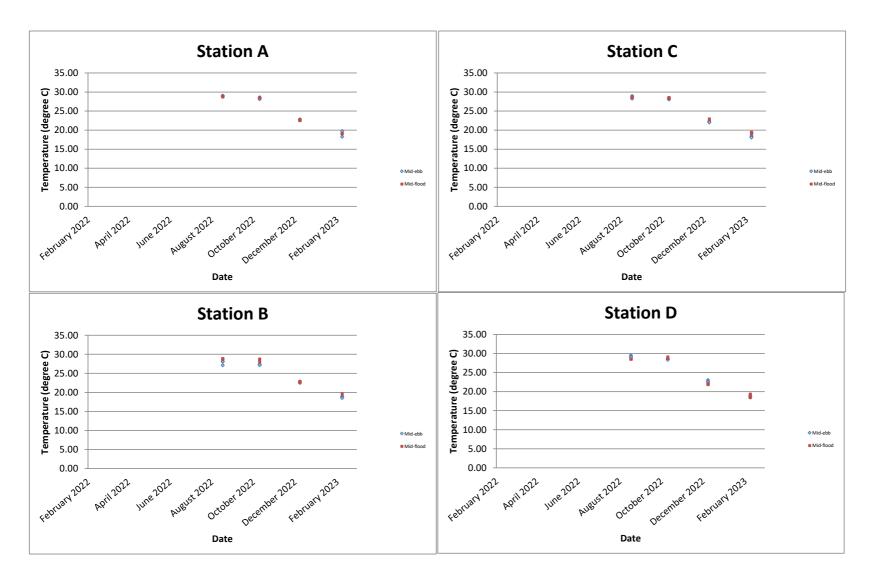
GEN02/0819

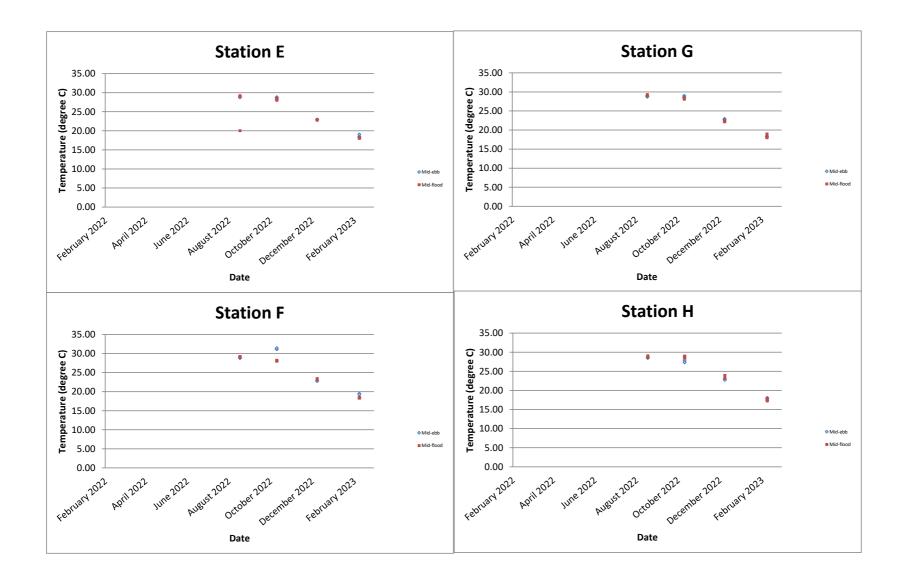

9 3 2023

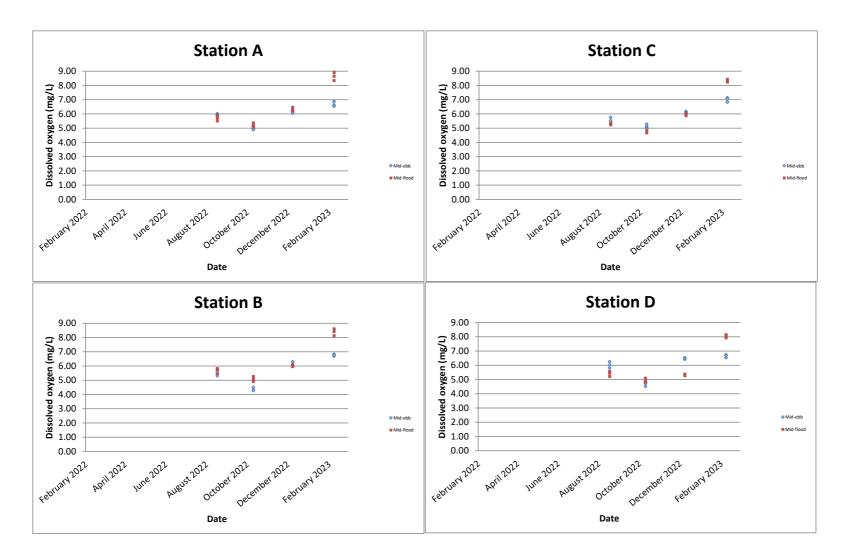
Date

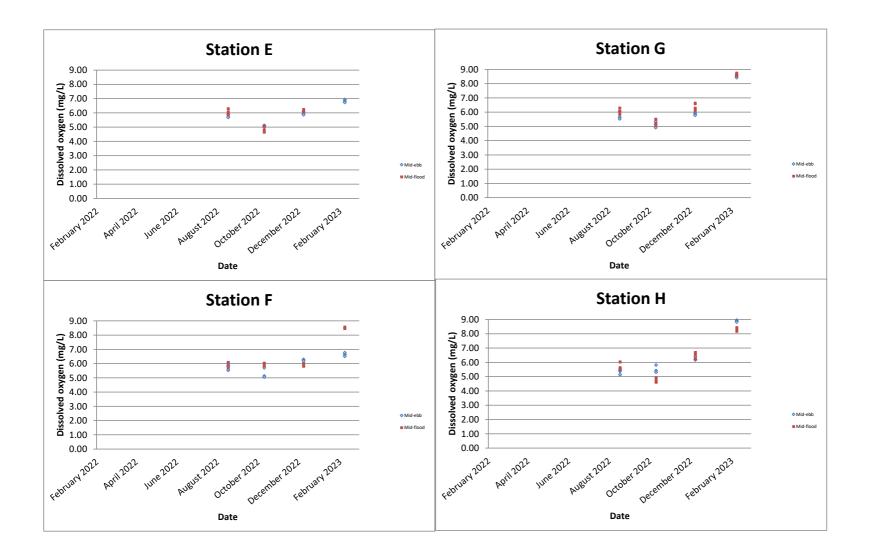

pH value

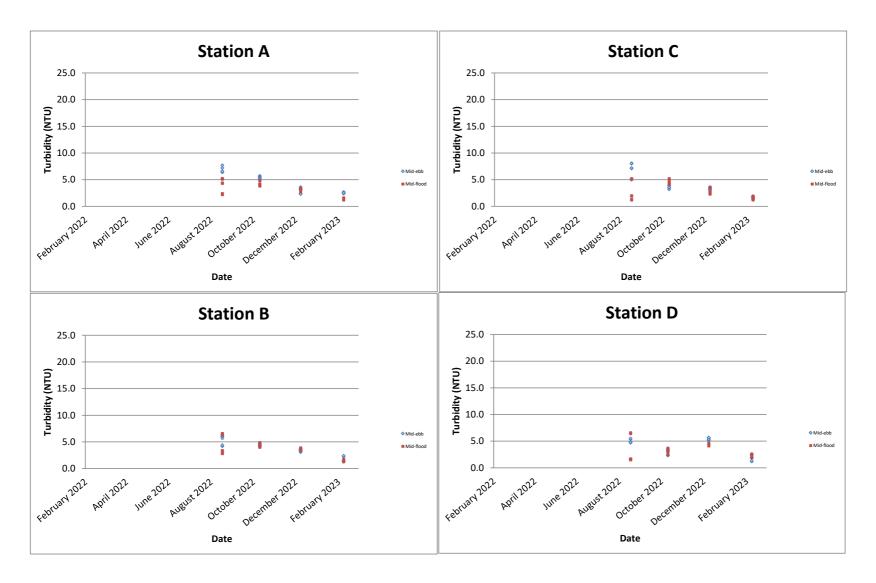

pH value

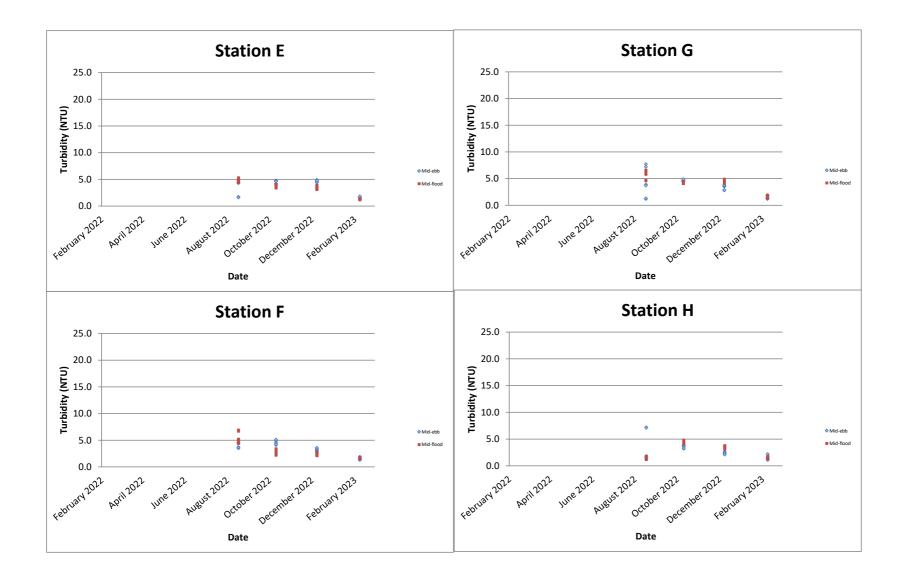

Salinity (ppt)

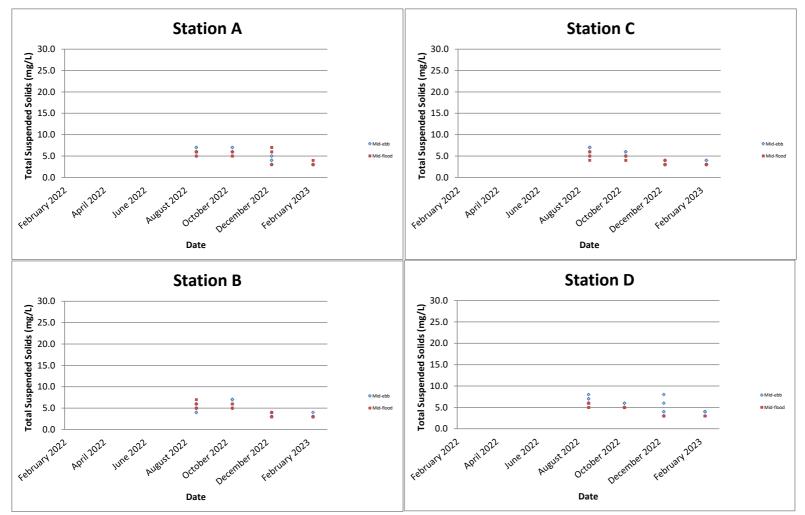

Salinity (ppt)


Temperature (degree C)

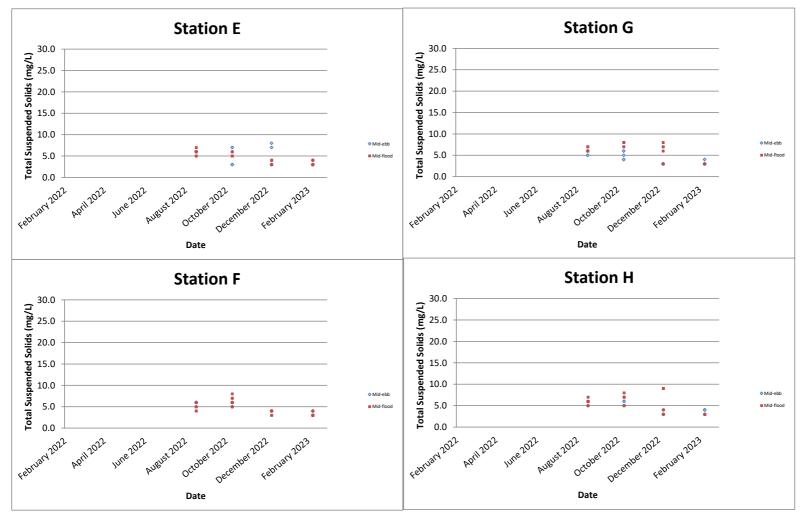

Temperature (degree C)


Dissolved oxygen (mg/L)

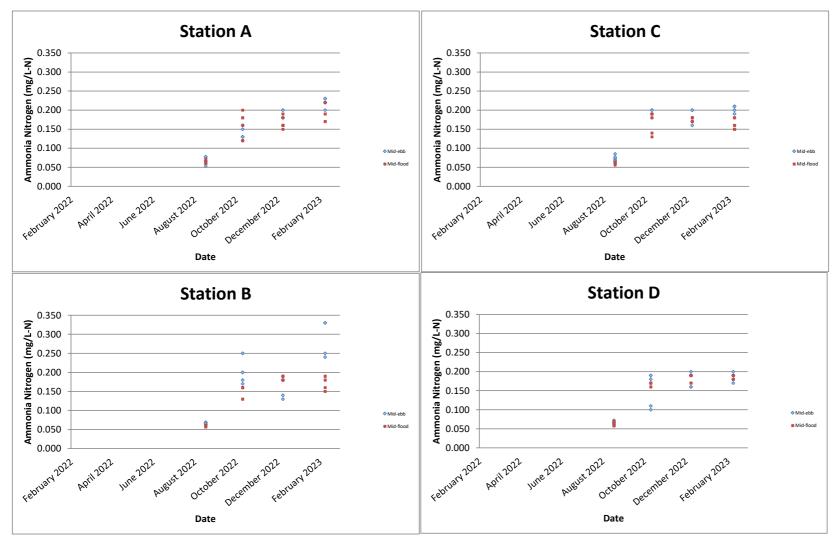

Dissolved oxygen (mg/L)

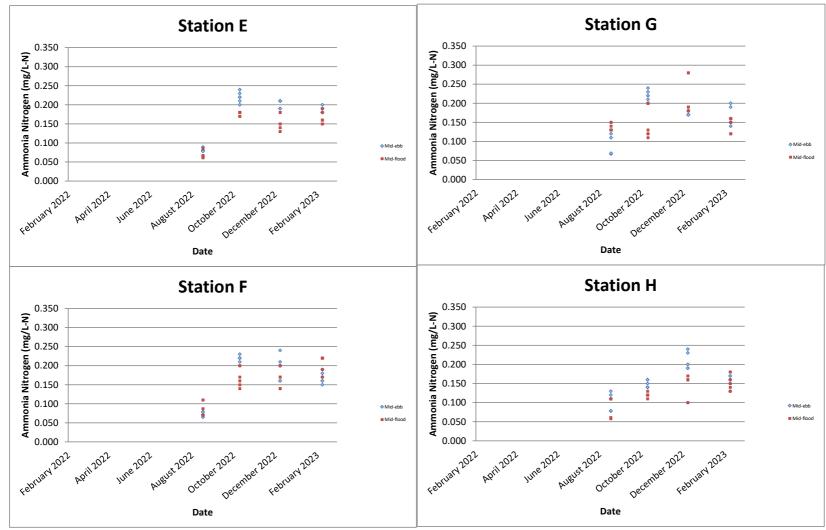


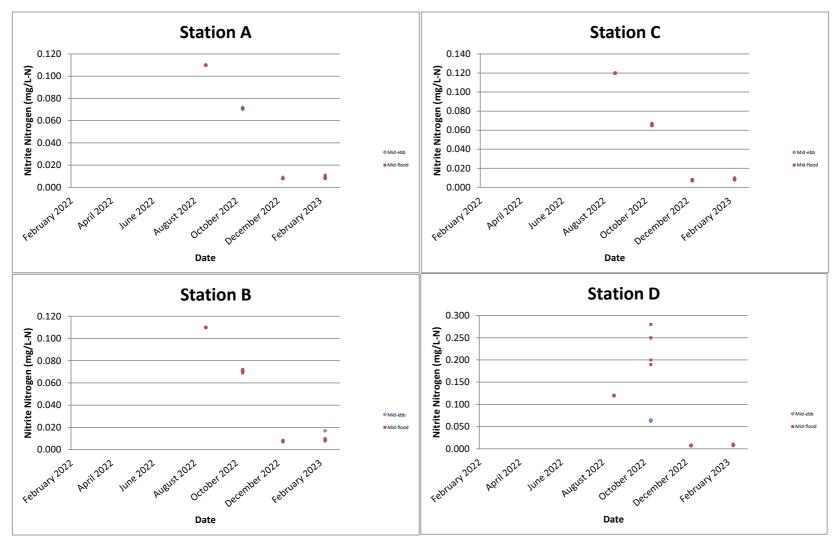
Turbidity (NTU)

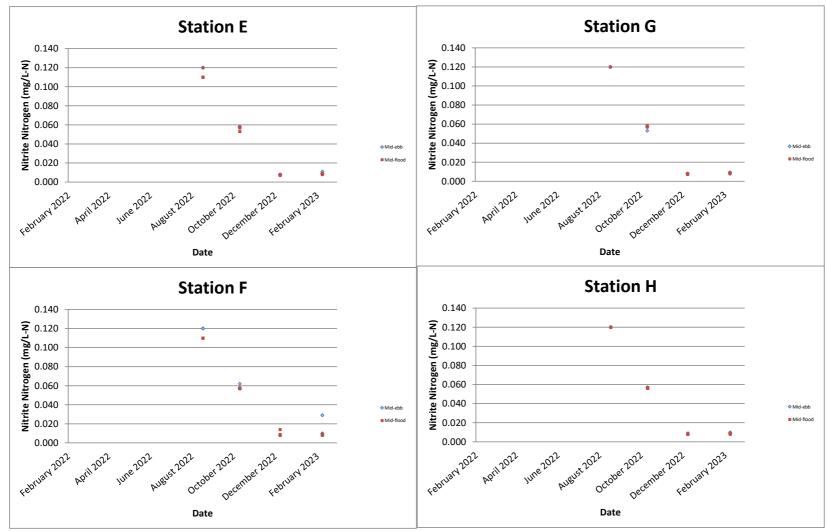


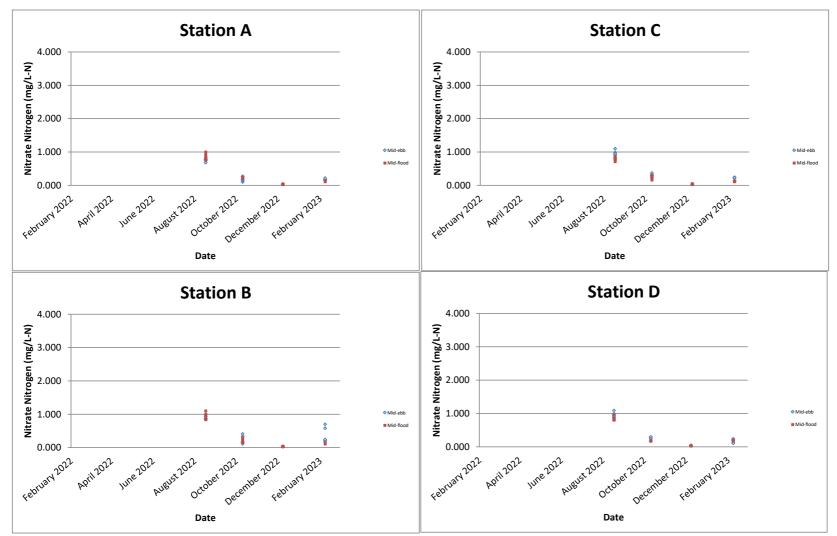
Turbidity (NTU)

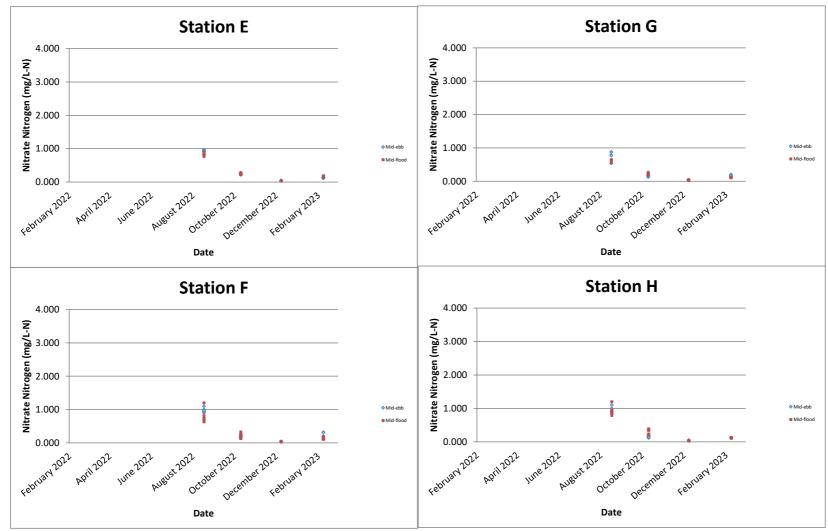


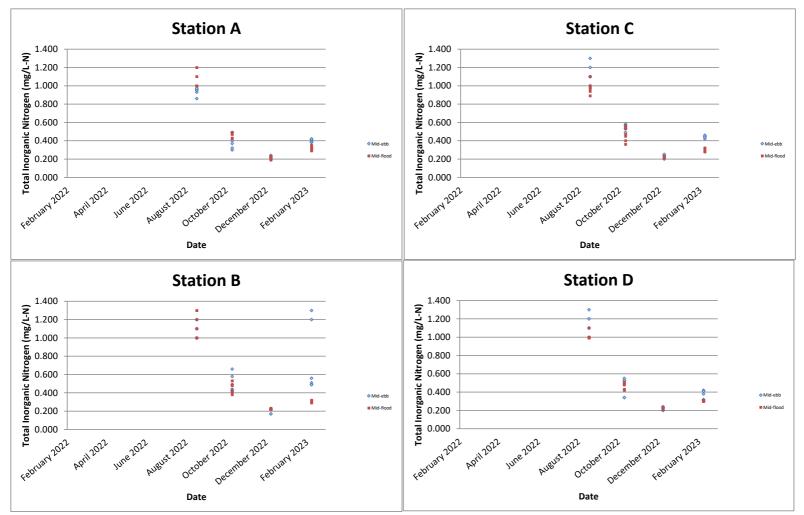

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

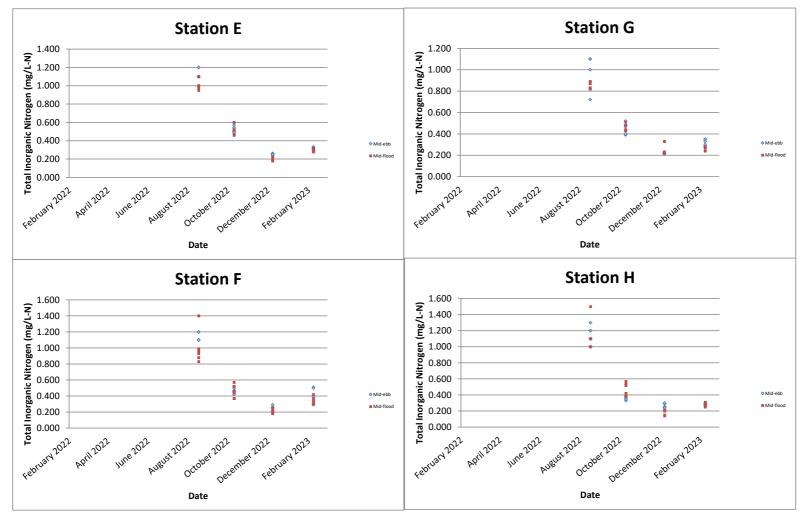

Remark: All below the Limit of Report sample results (<0.5 mg/L) for Total Suspended Solids is regarded as 0.5 mg/L in graphical presentation.

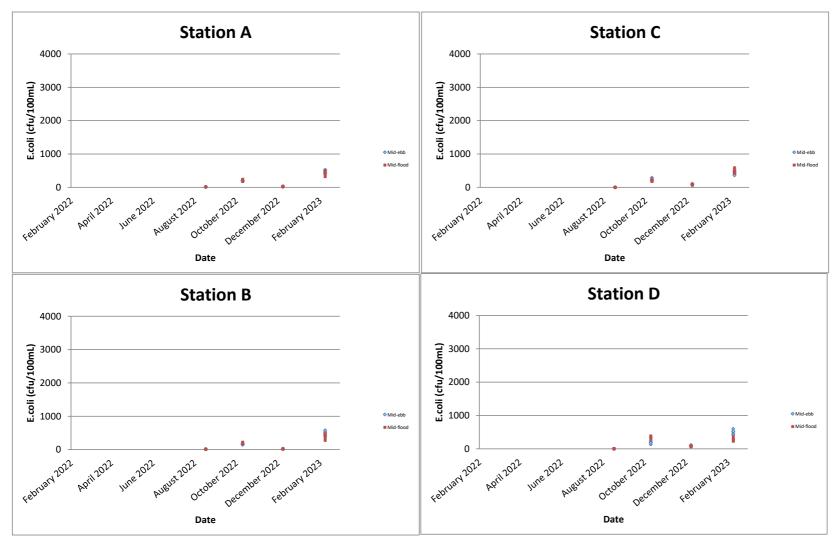

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Ammonia Nitrogen is regarded as 0.005 mg/L in graphical presentation.

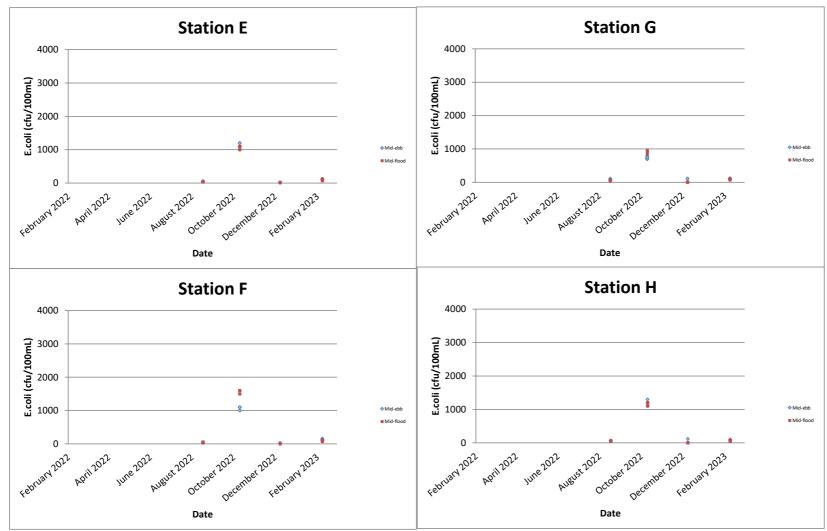

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrite Nitrogen is regarded as 0.005 mg/L in graphical presentation.

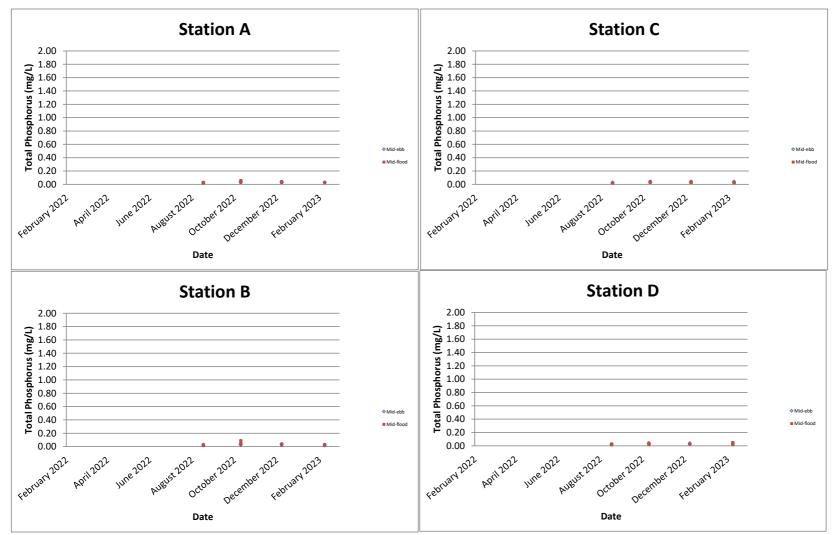

Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.005 mg/L) for Nitrate Nitrogen is regarded as 0.005 mg/L in graphical presentation.

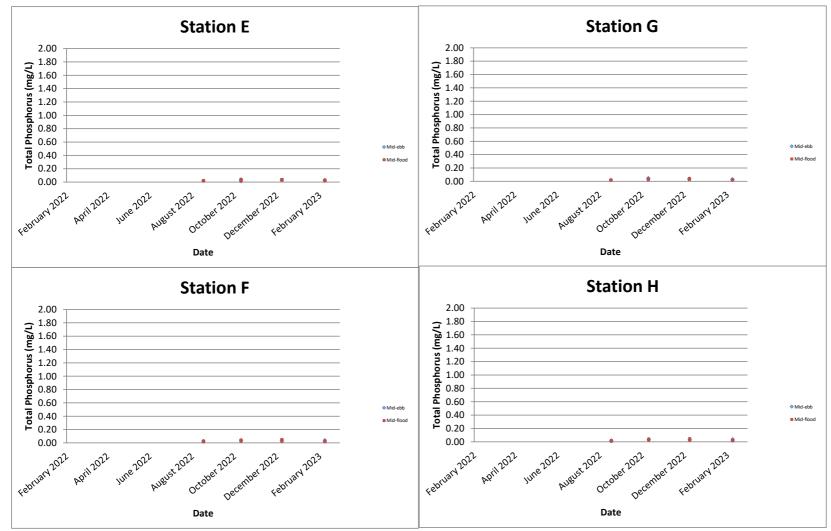
Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.



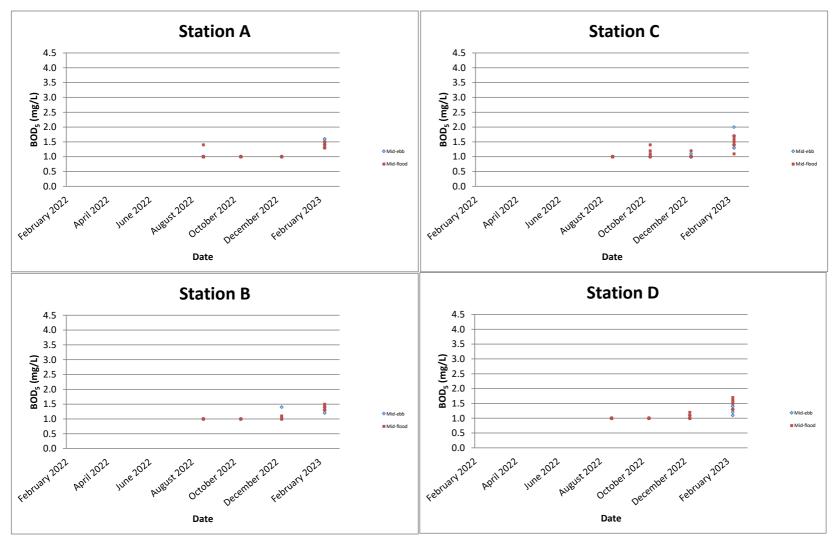
Remark: All below the Limit of Report sample results (<0.010 mg/L) for Total Inorganic Nitrogen is regarded as 0.010 mg/L in graphical presentation.



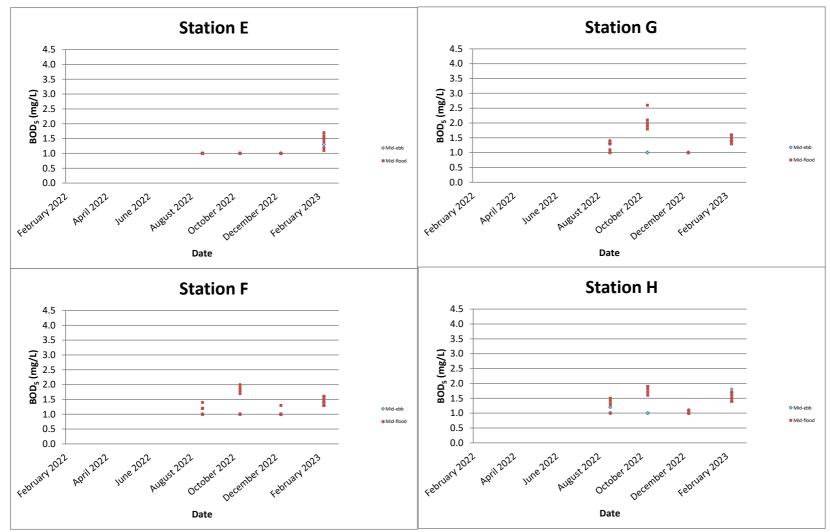
Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.


E.coli (cfu/100mL)

Remark: All below the Limit of Report sample results (<1 CFU/100mL) for E.coli is regarded as 1 CFU/100mL in graphical presentation.



Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.


Remark: All below the Limit of Report sample results (<0.01 mg/L) for Total Phosphorus is regarded as 0.01 mg/L in graphical presentation.

BOD₅ (mg/L)

Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

BOD₅ (mg/L)

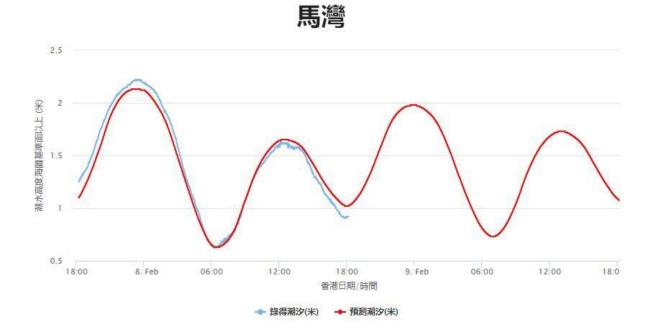
Remark: All below the Limit of Report sample results (<1.0 mg/L) for BOD₅ is regarded as 1.0 mg/L in graphical presentation.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Appendix G

Tidal Data obtained from Ma Wan Marine Traffic Station


The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Appendix H

Results and Graphical Presentation of Laboratory Analysis for Sediment Quality Monitoring and Benthic Survey

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

											Sediment Monitoring						
Monitoring Location	Date	Weather	Sea Condition	Time	рН	Ammonia as N (mg- N/kg)	Total Nitrogen (mg-N/kg)	Total Phosphorus (mg-P/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	Arsenic (mg/kg)	Silver (mg/kg)
A	8/2/2023	Fine	Moderate	12:47	8.3	9.6	680	460	<0.1	27	23	34	0.11	14	79	14	0.2
В	8/2/2023	Fine	Moderate	12:28	8.2	16	950	70	<0.1	28	26	34	0.10	15	85	10	0.3
С	8/2/2023	Fine	Moderate	12:07	8.1	18	1200	54	<0.1	30	28	36	0.11	17	92	10	0.3
D	8/2/2023	Fine	Moderate	11:50	8.1	14	1400	300	<0.1	29	29	35	0.10	16	88	10	0.3
E	8/2/2023	Fine	Moderate	11:31	8.2	20	1100	290	<0.1	25	30	30	0.08	14	76	8	0.3
F	8/2/2023	Fine	Moderate	11:15	8.1	19	1400	43	<0.1	39	35	46	0.15	23	130	13	0.3
G	8/2/2023	Fine	Moderate	11:00	8.3	7.4	750	260	<0.1	37	43	47	0.14	19	210	13	0.4
Н	8/2/2023	Fine	Moderate	10:38	8.2	7.0	900	360	<0.1	33	31	38	0.11	18	89	11	0.4

							Benthic Survey		
Monitoring Location	Date	Weather	Sea Condition	Time	Total Organic Carbon		Particle Size	Distrbution	
Location			Condition		(%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
А	8/2/2023	Fine	Moderate	12:47	1.1	1	2	42	55
В	8/2/2023	Fine	Moderate	12:28	1.1	0	17	37	46
С	8/2/2023	Fine	Moderate	12:07	1.1	2	5	43	50
D	8/2/2023	Fine	Moderate	11:50	1.1	0	6	42	52
E	8/2/2023	Fine	Moderate	11:31	1.3	6	17	36	41
F	8/2/2023	Fine	Moderate	11:15	1.2	0	10	42	48
G	8/2/2023	Fine	Moderate	11:00	0.56	3	28	29	40
Н	8/2/2023	Fine	Moderate	10:38	1.1	3	13	37	47

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172WA230220(1)

Page 1 of 3

Test Report on Analysis of Sediment

Information Supplied by	Clie	nt
Client	:	Fugro Technical Services Limited
Client's address	:	13/F, Fugro House – KCC2, No. 1 Kwai On Road, Kwai Chung, N.T., H.K
Project	:	Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works
Sample description	:	Eight samples of sediment taken by the staff of FTS on 08/02/2023
Client sample ID	:	Refer to page 3
Tests required	:	 pH value Moisture content Ammoniacal nitrogen content Total nitrogen content Total phosphorus content Cadmium content Cadmium content Copper content Lead content Mercury content Nickel content Zinc content Arsenic content Silver content
Laboratory Information		
Lab. sample ID	:	WA230220(1)/1-8
Date of receipt of sample	e:	08/02/2023
Date test commenced	:	08/02/2023
Date test completed	:	27/02/2023

Report No. : 181172WA230220(1)

Page 2 of 3

Test methods used : pH value $APHA 23ed. 4500-H^{+}B$

Moisture content In house method E-T-186

Ammoniacal Nitrogen content In house method E-T-095

Total nitrogen In house method E-T-114 (By Calculation), In house method E-T-036 & APHA 23ed.4500-NO₃⁻-I

Total phosphorus content APHA 17ed. 4500-PB.5 (Digestion) & In house method E-T-056 (Determination)

Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc, Arsenic, Silver content USEPA method 3050B (Digestion) & 6020A (Determination)

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Report No. : 181172WA230220(1)

fucero

Results:

Page 3 of 3

Hong Kong

Toot compton				Sample ide	Sample identification			
lest parameters	A/Sediment	B/Sediment	C/Sediment	D/Sediment	E/Sediment	F/Sediment	G/Sediment	H/Sediment
. pH value at 25°C	8.3	8.2	8.1	8.1	8.2	8.1	8.3	8.2
2. Moisture content, %	51	58	61	58	61	64	56	60
3. Ammoniacal nitrogen content, mg/kg	9.6	16	18	14	20	19	7.4	7.0
4. Total nitrogen, mg/kg	680	950	1200	1400	1100	1400	750	006
5. Total phosphorus content, mg/kg	460	70	54	300	290	43	260	360
6. Cadmium content, mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
. Chromium content, mg/kg	27	28	30	29	25	39	37	33
8. Copper content, mg/kg	24	30	31	30	27	130	160	49
9. Lead content, mg/kg	34	34	36	35	30	46	47	38
10. Mercury content, mg/kg	0.11	0.10	0.11	0.10	0.08	0.15	0.14	0.11
11. Nickel content, mg/kg	14	15	17	16	14	23	19	18
12. Zinc content, mg/kg	79	85	92	88	76	130	210	89
13. Arsenic content, mg/kg	14	10	10	10	8	13	13	11
14. Silver content, mg/kg	0.2	0.3	0.3	0.3	0.3	0.3	0.4	0.4

Certified by

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 9/2/2023 . .

Date ** End of Report **

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

GEN02/0819

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre 5 Lok Yi Street. Tai Lam

5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Note

-Tuero

Laboratory Duplicate, Quality Assurance/Quality Control Report

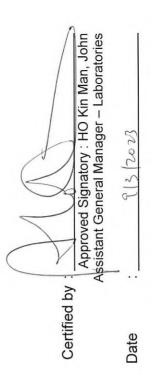
pH value						Moisture content, %	intent, %				
Reporting		Spike	Labo	Laboratory Duplicate		Reporting	Jucid	Spike	Labor	Laboratory Duplicate	
Limit	DIAIIK		Original result	recovery (%) Original result Duplicate result RPD%	RPD%	Limit	DIGILIA		Original result	recovery (%) Original result Duplicate result RPD%	RPD%
0.1	1	1	8.18	8.18	0	0.1	1	I	40	40	0
Ammoniac	al nitroge	Ammoniacal nitrogen content, mg/kg	kg			Total nitrogen, mg/kg	en, mg/k	6			
Reporting	ylacid	Spike	Labo	Laboratory Duplicate		Reporting	Jucid	Spike	Labor	Laboratory Duplicate	
Limit	DIAIIK		Original result	recovery (%) Original result Duplicate result RPD%	RPD%	Limit			Original result	recovery (%) Original result Duplicate result RPD%	RPD%
0.5	<0.5	ı	1.8	1.6	12	50	1	1	52	54	3.8
Total phosp	phorus c	Total phosphorus content, mg/kg									
Reporting	Jucid	Spike	Labo	Laboratory Duplicate							
Limit	DIGILIA	recovery (%)		Original result Duplicate result RPD%	RPD%						
10	<10	ı	360	370	2.7						

Approved Signatory : HO Kin Man, John Assistant General Manager – Laboratories 913/2013 Certified by Date

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com


FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Note

-fugro

Method Blank (MB), Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Heavy metals	Heavy metals content, mg/kg								
	Method Blank	Method Blank (MB) Report		M	latrix Spike (I	MS) and Matrix §	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report	SD) Report	
Item	LOR	Result	Spike	Spike rec	Spike recovery (%)	Recoven	Recovery limits (%)	Ľ	RPD%
			Concentration	MS	MSD	Low	High	Value	Control Limited
Arsenic	0.5	< 0.5	10	103.1	1	75	125	1	1
Cadmium	0.1	< 0.1	10	99.66	,	75	125	I	I.
Chromium	0.5	< 0.5	10	100.4	1	75	125	1	1
Copper	0.2	< 0.2	10	100.3	1	75	125	1	1
Lead	0.2	< 0.2	10	91.3	1	75	125	Т	1
Mercury	0.05	< 0.05	0.5	97.4	1	75	125	1	1
Nickel	0.2	< 0.2	10	97.7	1	75	125	Ĩ	1
Silver	0.1	< 0.1	10	97.9	1	75	125	ī	1
Zinc	0.5	< 0.5	100	98.1	1	75	125	I	•

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172WA230220(2)

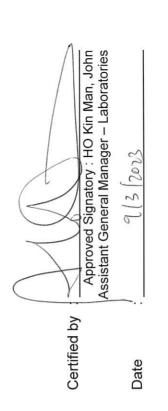
Page 1 of 2

Test Report on Analysis of Sediment

Information Supplied by	Clie	nt
Client	:	Fugro Technical Services Limited
Client's address	:	13/F, Fugro House – KCC2, No. 1 Kwai On Road, Kwai Chung, N.T., H.K
Project	:	Contract No. CM 14/2016 Environmental Team for Operational Environmental Monitoring and Audit for Siu Ho Wan Sewage Treatment Works
Sample description	:	Eight samples of benthic survey sediment taken by the staff of FTS on 08/02/2023
Client sample ID	:	Refer to page 2
Tests required	:	 Moisture content Total organic carbon content
Laboratory Information		
Lab. sample ID	:	WA230220(1)/9-16
Date of receipt of sample	e :	08/02/2023
Date test commenced	:	08/02/2023
Date test completed	•	27/02/2023
Test methods used	:	 In-house method E-T-186 APHA 23ed. 5310B

fuero

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT


Page 2 of 2

Hong Kong

Results :

Report No. : 181172WA230220(2)

				Sample identification	entification			
Test parameters	A/Benthic Survey	B/Benthic Survey	C/Benthic Survey	D/Benthic Survey	E/Benthic Survey	F/Benthic Survey	G/Benthic Survey	H/Benthic Survey
1. Moisture content, %	54	58	60	58	61	63	52	60
2. Total organic carbon content, %	1.1	1.1	1.1	1.1	1.3	1.2	0.56	1.1

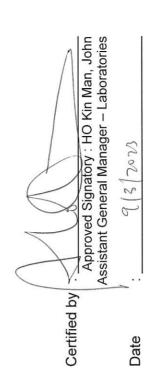
** End of Report **

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. **T** +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com

GEN02/0819

fuce


FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre

5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Note

Laboratory Duplicate, Quality Assurance/Quality Control Report

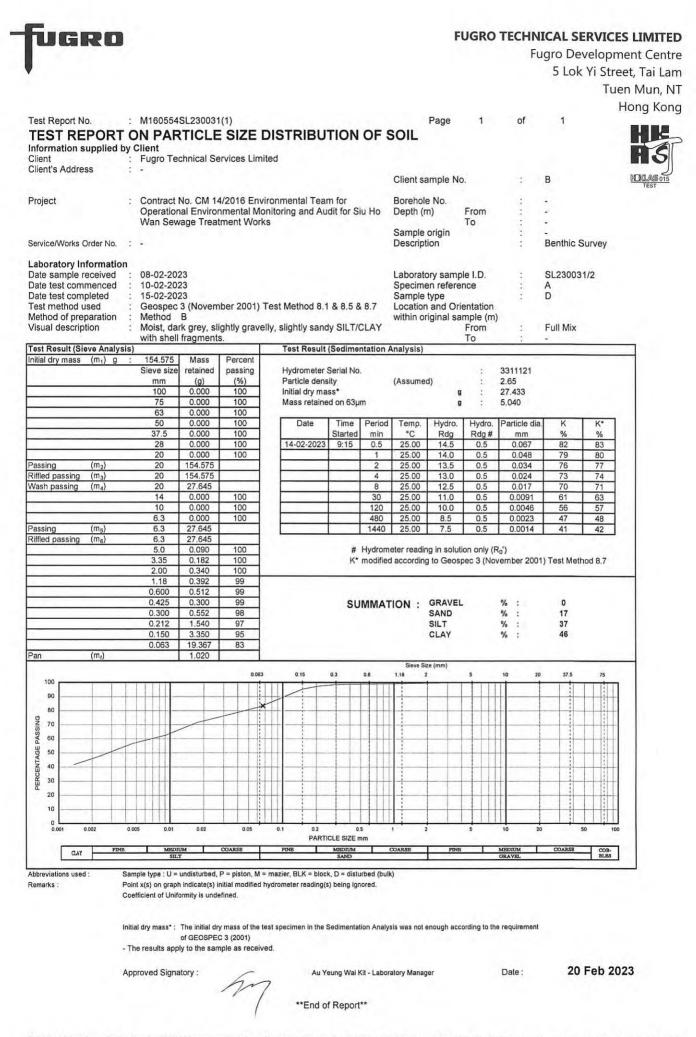
Moisture content, %	intent, %	9				Total organ	ic carboi	Total organic carbon content, %			
Reporting	Jucid	Spike	Labo	Laboratory Duplicate		Reporting	Jucid	Spike	Labor	Laboratory Duplicate	
Limit	DIGIN	recovery (%)	recovery (%) Original result D	Duplicate result RPD%	RPD%	Limit	DIGIN		Original result	recovery (%) Original result Duplicate result RPD%	RPD%
0.1	ı	1	40	40	00.0	0.05	ī	ī	1.0	1.1	9.52

Note : This report refers only to the sample(s) tested and the result(s) applied to the sample(s) as received.

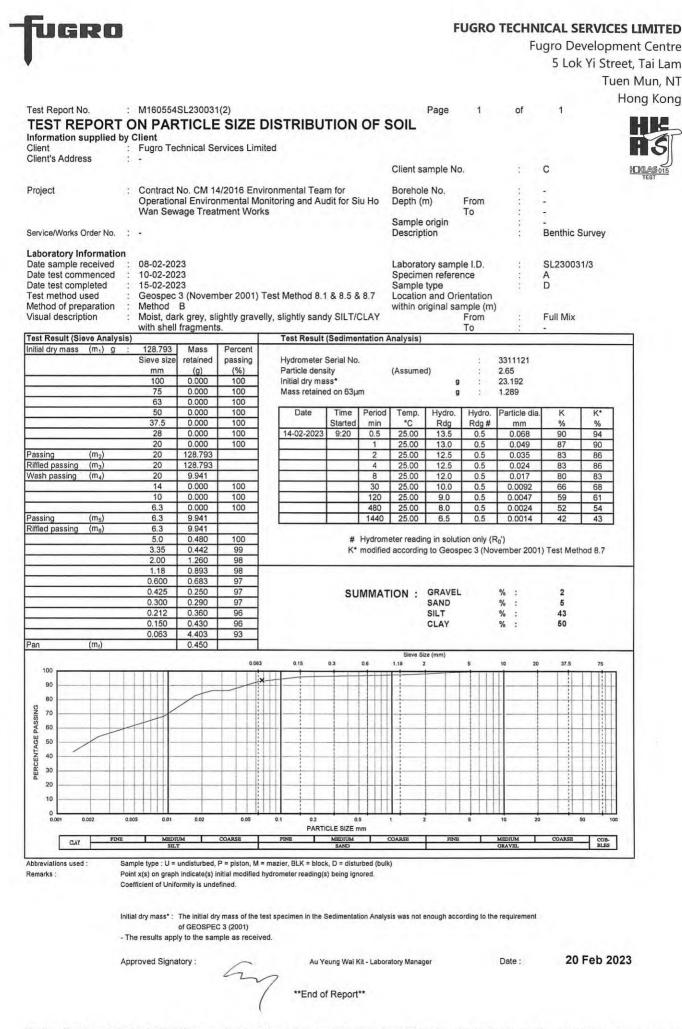
The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

GEN02/0819


Fugro Development Centre 5 Lok Yi Street, Tai Lam

Tuen Mun, NT


A160554SL23003 J PARTICL ent Fugro Technical S Contract No. CM 7 Operational Enviro Van Sewage Trea 18-02-2023 0-02-2023 5-02-2023 Seospec 3 (Nover Bethod B	E SIZE Services Lin 14/2016 En conmental N	nited viror lonito	nmental Tear	n for			n) origin	1 From To	of : : : : : :	1 - - - - -	<u>ACM</u>
ent Fugro Technical S Contract No. CM ⁴ Operational Enviro Van Sewage Trea 18-02-2023 0-02-2023 5-02-2023 Seospec 3 (Novel	ervices Lir 14/2016 En onmental N	nited viror lonito	nmental Tear	n for		Client sa Borehole Depth (n Sample	e No. n) origin	From		:	HOM T
Contract No. CM 7 Decrational Enviro Van Sewage Trea 08-02-2023 0-02-2023 5-02-2023 Seospec 3 (Novel	14/2016 En onmental N	iviror Ionito	nmental Tear		iu Ho	Borehole Depth (n Sample	e No. n) origin	From		:	<u>BOM</u> TE
Derational Enviro Van Sewage Trea 18-02-2023 0-02-2023 5-02-2023 Seospec 3 (Novel	onmental M	Ionito			iu Ho	Borehole Depth (n Sample	e No. n) origin	From		:	HOKIL Te
Derational Enviro Van Sewage Trea 18-02-2023 0-02-2023 5-02-2023 Seospec 3 (Novel	onmental M	Ionito			iu Ho	Borehole Depth (n Sample	e No. n) origin	From	:	:	TE
Derational Enviro Van Sewage Trea 18-02-2023 0-02-2023 5-02-2023 Seospec 3 (Novel	onmental M	Ionito			iu Ho	Depth (n Sample	n) origin			-	
Van Sewage Trea 18-02-2023 0-02-2023 5-02-2023 5-02-2023 Geospec 3 (Novel			onng and Au		iu no	Sample	origin		:	-	
8-02-2023 0-02-2023 5-02-2023 Seospec 3 (Novel							origin		:	- Ronthia S	
0-02-2023 5-02-2023 Geospec 3 (Nover						Descript	ion			Ponthia C	
0-02-2023 5-02-2023 Geospec 3 (Nover										Denunic 3	Survey
0-02-2023 5-02-2023 Geospec 3 (Nover											
5-02-2023 Geospec 3 (Nover							ory sampl		:	SL23003	1/1
Seospec 3 (Nover							en referer	nce	:	A D	
	mber 2001) Tes	t Method 8.1	& 8.5 8	8.7	Sample Location	and Orie	entation		D	
							riginal sar	mple (m)			
Noist, dark grey, s		/elly,	slightly sand	y SILT/0	CLAY			From	:	Full Mix	
vith shell fragmen	IS.	1	Test Result	Sedime	ntation	Analysis)		То		•	
117.557 Mass	Percent										
					e	10.000	-12	:	3311121		
		1				(Assumed					
75 0.000	100	1			m		9	:	0.705		
63 0.000	100	-	Data	Time	Dealers	Tam	1	المرب ال	Destistant		
37.5 0.000	100	1	Date	Started	min	°C			A CONTRACTOR OF A	. K %	K* %
28 0.000	100	1	14-02-2023	9:00	0.5	25.00	14.0	0.5	0.068	99	98
	100										<u>94</u> 91
					4		12.5	0.5	0.034	88	87
20 3.872		1			8	25.00	12.5	0.5	0.017	88	87
		-									80
											69 58
6.3 3.872		1			1440	25.00	7.5	0.5	0.0014	52	51
	100				Lludeom	ator modic	a ia aaluti	an anlu /F			
										1) Test Meth	nod 8.7
2.00 0.450	99				medine	a decorrains	9 10 0000p			.,	iod on
		-									
	99	1		SU	MMAT		GRAVEL		% :	1	
0.300 0.130	99	1		00		non .	SAND		% :	2	
		4									
0.063 1.428	97	1					OLAT		/0 .	00	
0.370		1									
	0.0	63	0.15	0.3	0.6			5	10 20	37.5	75
		X		1		1		1111	1		
									+		
	_	1				1					
0.01 0.02	0.05	ų LL	0.1 0.2	0.	5	1 2	2	5	10 2	0 5	50 100
			1919 19 1919								
MEDIUM	COARSE		FINE	MEDIUM		COARSE	FINB		MEDIUM GRAVEL	COARSE	COB- BLES
	mm (g) 100 0.000 75 0.000 63 0.000 20 0.000 28 0.000 20 0.000 20 117.557 20 117.557 20 1.17.557 20 3.872 5.0 0.000 6.3 3.872 5.0 0.100 3.35 0.130 2.00 0.450 0.600 0.340 0.425 0.130 0.300 0.130 0.118 0.382 0.500 0.220 0.063 1.428 0.370 0.1425	mm (g) (%) 100 0.000 100 75 0.000 100 63 0.000 100 50 0.000 100 26 0.000 100 20 0.000 100 20 117.557 20 20 3.872 14 14 0.000 100 6.3 3.872 5.0 5.0 0.100 100 6.3 3.872 5.0 5.0 0.100 100 2.00 0.450 99 1.18 0.382 99 0.600 0.340 99 0.425 0.130 99 0.212 0.192 98 0.150 0.220 98 0.063 1.428 97 0.370 0.370 0.370	mm (g) (%) 100 0.000 100 75 0.000 100 63 0.000 100 37.5 0.000 100 28 0.000 100 20 0.000 100 20 117.557 20 20 3.872 14 14 0.000 100 6.3 3.872 6.3 6.3 3.872 5.0 5.0 0.100 100 2.0 0.450 99 1.18 0.382 99 0.600 0.340 99 0.425 0.130 99 0.150 0.220 98 0.063 1.428 97 0.370 0.370 0.003	mm (g) (%) Particle dens Initial dry main Mass retaine 75 0.000 100 Initial dry main Mass retaine 63 0.000 100 37.5 0.000 100 20 0.000 100 20 117.557 1 20 117.557 1 20 3.872 1 14 0.000 100 6.3 3.872 1 5.0 0.100 100 6.3 3.872 1 5.0 0.100 100 2.00 0.450 99 0.425 0.130 100 2.0112 0.130 99 0.150 0.220 98 0.160 0.220 98 0.160 0.220 98 0.160 0.220 98 0.160 0.220 98 0.160 0.21 1 0.160 0.21 1	mm (g) (%) Particle density 100 0.000 100 Initial dry mass* 75 0.000 100 50 0.000 100 37.5 0.000 100 20 117.557 20 20 117.557 20 20 117.557 20 20 3.872 - 14 0.000 100 6.3 3.872 - 6.3 3.872 - 6.3 3.872 - 5.0 0.100 100 7.5 0.130 99 0.425 0.130 99 0.425 0.130 99 0.150 0.220 98 0.0603 1.428 97 0.370 - - 0.010 0.05 0.3 0.010 0.05 0.15 0.15 0.3 - 0.010 0.05	mm (g) (%) 100 0.000 100 75 0.000 100 50 0.000 100 50 0.000 100 28 0.000 100 20 0.000 100 20 117.557 20 20 117.557 2 20 117.557 2 20 1.17.557 2 20 1.17.557 2 20 3.872 3 5.0 0.100 100 6.3 3.872 3 5.0 0.100 100 2.00 0.450 99 0.425 0.130 99 0.300 0.300 99 0.150 0.220 98 0.0603 1.428 97 0.370 0 0 0.015 0.3 0.6 0.150 0.3 0.6 0.15 <	mm (g) (%) Particle density Initial dry mass* Mass retained on 63µm (Assume) 50 0.000 11440 25.00 1440 25.00 0.000 0.000 1000 100 100 100 100 100 100 100 100 100 100 100	mm (g) (%) 100 0.000 100 75 0.000 100 50 0.000 100 50 0.000 100 28 0.000 100 20 117.557 2 20 117.557 2 20 117.557 2 20 117.557 2 20 117.557 2 20 117.557 2 20 117.557 2 20 117.557 2 20 117.557 2 20 1100 100 6.3 3.872 5.0 0.100 3.35 0.130 118 0.382 99 0.425 0.130 99 0.425 0.130 99 0.150 0.210 114.40 25.00 1.25 0.300 0.30 0.603 1.428	mm (g) (%) 100 0.000 100 75 0.000 100 50 0.000 100 50 0.000 100 50 0.000 100 50 0.000 100 20 0.000 100 20 117.557 2 20 117.557 2 2.5.00 14.0 20 117.557 2 2.5.00 13.0 0.5 20 117.557 2 2.5.00 13.0 0.5 14 0.000 100 30 25.00 13.0 0.5 13 3.872 4 25.00 13.0 0.5 6.3 3.872 1440 25.00 10.0 0.5 6.3 0.130 100 0.5 0.5 0.5 0.5 1.18 0.382 99 K* modified according to Geospec 3 (Notoppec) SAND	mm (g) (%) 100 0.000 100 75 0.000 100 50 0.000 100 50 0.000 100 50 0.000 100 50 0.000 100 20 0.000 100 20 0.000 100 20 0.000 100 20 117.557 2 2 5 0.5 0.004 20 117.557 2 2 25.00 13.0 0.5 0.044 20 3.872 - 8 25.00 12.5 0.5 0.004 6.3 3.872 - 8 25.00 10.0 0.5 0.0063 1.18 0.382 99 0.600 0.30 95 0.5 0.0014 0.370 - - 1440 25.00 7.5 0.5 0.0024 0.600 0.30 99 0.5 <td>mm (g) (%b) 100 0.000 100 75 0.000 100 37.5 0.000 100 37.5 0.000 100 37.5 0.000 100 20 0.000 100 20 0.000 100 20 0.000 100 20 0.000 100 20 0.000 100 20 117.557 14.0 0.5 0.048 99 20 117.557 2 25.00 13.5 0.5 0.024 88 20 3.872 1 2.5.00 12.5 0.5 0.003 81 10 0.000 100 30 25.00 1.5 0.5 0.0046 70 3.35 0.130 100 102 25.00 1.6 0.5 0.0014 52 1.8 3.38/2 9 0.010 1440 25.00 7.5</td>	mm (g) (%b) 100 0.000 100 75 0.000 100 37.5 0.000 100 37.5 0.000 100 37.5 0.000 100 20 0.000 100 20 0.000 100 20 0.000 100 20 0.000 100 20 0.000 100 20 117.557 14.0 0.5 0.048 99 20 117.557 2 25.00 13.5 0.5 0.024 88 20 3.872 1 2.5.00 12.5 0.5 0.003 81 10 0.000 100 30 25.00 1.5 0.5 0.0046 70 3.35 0.130 100 102 25.00 1.6 0.5 0.0014 52 1.8 3.38/2 9 0.010 1440 25.00 7.5

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

UGRO

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

fugro	1								F	UGRO		ugro De	evelopn	ES LIMITED nent Centre
•												5 Lol		eet, Tai Lam
														en Mun, NT Hong Kong
Test Report No. TEST REPORT Information supplied	ON P	ARTICLE		DIS	STRIBU	TION	OF	SOIL	Page	1	of	1		
Client	: Fugro	Technical S	ervices Lir	nited										HS
Client's Address	: -							Client sa	ample No		:	D		HERLAS 015 TEST
Project	Oper	act No. CM 1 ational Enviro Sewage Trea	nmental M	lonito			Siu Ho	Borehol Depth (r	m)	From To		-		
Service/Works Order No.	: -							Sample Descript			:	- Benthic	Survey	
Laboratory Informatio	n													
Date sample received Date test commenced Date test completed Test method used	: 08-02 : 10-02 : 15-02 : Geos : Meth	2-2023 2-2023 2-2023 pec 3 (Nover od B , dark grey, s						Specime Sample Location	n and Orie	nce entation		SL23003 A D Full Mix	31/4	
Test Result (Sieve Analy	with s	shell fragmen	is.	0,	Test Result			Analysis		То	ż	-		
Initial dry mass (m ₁) g	: 129. Sieve	size retained n (g)	Percent passing (%)		Hydrometer Particle den	Serial No sity		(Assume		:	3311121 2.65			
	10 75	5 0.000	100 100		Initial dry ma Mass retaine		m	,	g	:	22.155 1.066			
	63 50	0.000	100 100		Date	Time	Period		Hydro.	Hydro.	Particle dia		К*	
	37.	0.000	100 100		14-02-2023	Started 9:10	0.5	°C 25.00	Rdg 14.0	Rdg # 0.5	mm 0.068	% 98	% 94	
Passing (m ₂)	20		100				1 2	25.00 25.00	13.5 13.5	0.5	0.048	94 94	91 91	
Riffled passing (m ₃) Wash passing (m ₄)	20						4	25.00 25.00	13.0 12.5	0.5	0.024	91 87	87 84	
	14	0.000	100				30	25.00	11.0	0.5	0.0091	76	73	
	10 6.1	3 0.000	100 100				120 480	25.00 25.00	9.5 8.5	0.5	0.0046	65 58	63 56	
Passing (m ₅) Riffled passing (m ₆)	6. 6. 5. 3.3 2.0	3 8.719 0 0.000 15 0.120	100 100 100						7.0 ng in soluti g to Geosp		0.0014 Ro') vember 2001	47 1) Test Met	45 thod 8.7	
Pan (m _t)	1.1 0.6 0.4 0.3 0.2 0.1	8 0.834 00 0.750 25 0.230 00 0.292 12 0.380 50 0.550	99 98 98 98 98 98 98 97 97 94			SU	JMMAT	TION :	GRAVEL SAND SILT CLAY		% : % : % :	0 6 42 52		
		0.410	0.0	3	0.15	0.3	0.6	Sieve Si 1.18	ze (mm) 2	5	10 20	37.5	75	-
100 90 80				x										
VI 70 VISS 80														
00 00 00 00 00 00 00 00 00 00 00 00 00								-						
40								-						
10														
0.001 0.002	0.005	0.01 0.02	0.05		0.1 0.2		0.5			5	10 2		50 100	
		MEDIUM	COARSE	-		ICLE SIZE	mm	COARSE	FINE	-	MEDIUM	COARSE		E I
Abbreviations used : Remarks :	Sample type Point x(s) on	SILT : U = undisturbed graph indicate(s) f Uniformity is und	, P = piston, N initial modifie		zier, BLK = bloc	SAND ck, D = dist	urbed (bul				GRAVEL		COB- BLES	
		ss* : The initial d of GEOSPE s apply to the sa	C 3 (2001)		pecimen in the	Sedimenta	ation Analy	sis was not	enough acco	ording to th	e requirement			
	Approved	Signatory :	h	2	/			ralory Manag	ger		Date :	20) Feb 20)23
				1	**End c	of Repor	t**							

1

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

nformation supplied			TICLE	SIZE	DI	STRIBU	TION	OF S		Page	1	of	1		H
Client's Address		Fugro Teo	chnical Se	ervices Lin	nited										i.
lient's Address									Client sa	ample No).	:	Е		HOKL
Project		Contract I	No. CM 14	4/2016 En	viror	mental Tear	m for		Borehole	e No.					
i ojoči	,	Operation	al Enviror	nmental M	onito	oring and Au		iu Ho	Depth (n		From	;	÷		
		Wan Sew	age Treat	tment Wor	ks				Sample	oriain	То	1	2		
ervice/Works Order No.	. :	()							Descript			:	Benthic	Survey	
aboratory Informati	on														
Date sample received Date test commenced Date test completed Test method used Method of preparation Visual description		Method	23 23 3 (Novem B rk grey, sli	ightly grav		t Method 8.1 slightly sand			Specime Sample Location	ory samp en referen type a and Orio riginal sa	nce entation	: : :	SL23003 A D Full Mix	31/5	
est Result (Sieve Anal					0	Test Result	(Sedime	ntation A	Analysis)						
nitial dry mass (m1) g	1	163.830 Sieve size	Mass retained	Percent passing		Hydrometer	Serial No					3311121			
		mm	(g)	(%)		Particle dens	ity		(Assume	d)	:	2.65			
		100 75	0.000	100		Initial dry ma Mass retaine		m		g	:	27.350 5.265			
		63	0.000	100		Wass retaine	u on oop			9		5.205			1.1
		50	0.000	100		Date	Time	Period	Temp.	Hydro.	Hydro.	Particle dia		K*	
		37.5 28	0.000	100		14-02-2023	Started 9:05	min 0.5	°C 25.00	Rdg 14.0	Rdg # 0.5	mm 0.068	% 79	% 77	1 1
		20	0.000	100				1	25.00	13.5	0.5	0.048	76	75	
assing (m ₂) iffled passing (m ₃)		20 20	163.830 163.830	-				2	25.00 25.00	13.0 12.5	0.5	0.034	73	72	
ash passing (m ₃)		20	38.830					4	25.00	12.5	0.5	0.024	70	69 69	
		14	0.000	100				30	25.00	11.0	0.5	0.0091	62	60	
		10 6.3	0.000	100 98				120 480	25.00 25.00	9.5 8.0	0.5	0.0046	53 44	52 43	4 1
ssing (m ₅)		6.3	34.786	20				1440	25.00	7.0	0.5	0.0024	38	37	
fled passing (m ₆)		6.3	34.786					223		111111					
		5.0 3.35	0.600	97 96					eter readin			₹₀') vember 200'	1) Test Met	hod 87	
	-	2.00	2.594	94			K	modified	according	y to Geos	bec 5 (NO	vember 200	r/ reativier	100 0.7	
		1.18	4.240	92											
		0.600	5.730 1.534	88 87					TION :	GRAVEL		% :	6		
		0.300	1.680	86			30	IVIIVIAI	ION .	SAND		% :	17		
		0.212	2.450	85						SILT		% :	36		
		0.150 0.063	2.710 10.348	83 77						CLAY		% :	41		
an (m _f)		0.000	0.580												
				0.06	13	0.15	0.3	0.6	Sieve Siz		5	10 20	37.5	75	
100	1		1	TIT	TT		1	IIII	T		++++	11	1 !	111	
90	1														-
80	+				×							-		++++	-
20 70 60 50 40 40 30	-		/											++++	-
60			-				1-1-		-						
50	/				++				1			-			+
40	-				++-										+
30	-		-						1			+			-
20	+											1			
10	-														+
0.001 0.002	0.0	05 0.01	0.02	0.05		0.1 0.2	0.	5	1 2	2	5	10 2		50	100
					_		CLE SIZE n	23.11							_
CLAY P	INE	MEDI		COARSE	-	FINE	MEDIUM SAND		COARSE	FINE		MEDIUM GRAVEL	COARSE	COB- BLES	
breviations used : marks :	Poir		indicate(s) in	nitial modified		zier, BLK = bloc ometer reading(s			k)						
			of GEOSPEC	C 3 (2001)		pecimen in the	Sedimental	lion Analy	sis was not e	enough acco	ording to th	e requirement			
	App	proved Signa	itory :	6	-	Au Y	eung Wai H	Kit - Labor	atory Manag	jer		Date :	20	Feb 2	2023

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Hong Kong

ent		Client	abainal Ca		aited								
lient's Addres	SS	Fugro Te	crinical Se	ervices Lin	iiteu								
								Client sa	ample No).	:	F	
roject		Contract	No CM 14	4/2016 En	vironmental Tea	m for		Borehole	e No			1	
lojoot		Operation	nal Enviror	nmental M	onitoring and Au		iu Ho	Depth (n	n)	From	÷	-	
		Wan Sew	vage Treat	tment Wor	ks			Comple		То	:	÷9	
ervice/Works C	Order No.							Sample Descript			1	- Benthic S	Survey
aboratory In ate sample re		08-02-202	23					Laborato	ory sampl			SL23003	1/6
ate test com		10-02-202							en referer		:	A	110
ate test comp		15-02-20				100.00	a	Sample	type		;	D	
est method u ethod of prep		Geospec Method		1ber 2001)	Test Method 8.	1 & 8.5 8	× 8.7		and Orie				
sual descript				ightly grav	elly, slightly san	dy SILT/	CLAY	within Or		From	:	Full Mix	
		with shell	fragment							То	3	14	
st Result (Sie ial dry mass	(m ₁) g		Mass	Percent	Test Result	(Sedime	ntation	Analysis)					
uar dry mass	(111) 9	Sieve size		passing	Hydrometer	Serial No				:	3311121		
	_	mm	(g)	(%)	Particle den	sity		(Assumed		+	2.65		
_		100	0.000	100	Initial dry ma				9	1	24.197		
		75 63	0.000	100 100	Mass retain	ad on 63h	(II)		a		2.043		
		50	0.000	100	Date	Time	Period	Temp.	Hydro.	Hydro.	Particle dia	K	K*
		37.5	0.000	100		Started	min	°C	Rdg	Rdg #	mm	%	%
		28 20	0.000	100 100	14-02-2023	8:55	0.5	25.00	14.5 14.0	0.5	0.067	93 90	91 88
assing	(m ₂)	20	132.899	100			2	25.00	13.5	0.5	0.048	86	88
filed passing	(m ₃)	20	132.899				4	25.00	13.0	0.5	0.024	83	81
ash passing	(m₄)	20	13.939	100			8	25.00	12.5	0.5	0.017	80	78
	-	14 10	0.000	100 100		-	30 120	25.00 25.00	11.5 9.5	0.5	0.0090	73 60	71 58
		6.3	0.000	100			480	25.00	8.5	0.5	0.0023	53	52
issing	(m ₅)	6.3	13.939				1440	25.00	7.0	0.5	0.0014	43	42
ffled passing	(m ₆)	6.3 5.0	13.939 0.160	100	· · · · · · · · · · · · · · · · · · ·	#	Hydrom	neter readin	na in soluti	on only (R ₀ ')		
		3.35	0.160	100							vember 200	1) Test Met	hod 8.7
		2.00	0.320	100	N°			0.000.000					
		1.18	0.563	99 99									
		0.425	0.412	98	<u>.</u>	SL	MMA	TION :	GRAVEL		% :	0	
		0.300	0.510	98					SAND		% :	10	
		0.212	0.810	97 96					SILT		% :	42	
		0.212 0.150 0.063	0.980 8.244	97 96 90					SILT CLAY		% : % :		
in	(m _f)	0.150	0.980	96					CLAY			42	
2.1	(m _r)	0.150	0.980 8.244	96	53 0.15	0.3	0.6		CLAY	5		42 48	75
100	(m _f)	0.150	0.980 8.244	96 90	13 0.15	0.3	0.6	Sieve Siz	CLAY	5	% :	42 48	75
90	(m _f)	0.150	0.980 8.244	96 90	73 0.15 X	0.3	0.5	Sieve Siz	CLAY	5	% :	42 48	75
100 90 80	(m _r)	0.150	0.980 8.244	96 90	3 0.15	0.3	0.6	Sieve Siz	CLAY	5	% :	42 48	75
100 90 80	(m _t)	0.150	0.980 8.244	96 90	0.15	0.3	0.5	Sieve Siz	CLAY	5	% :	42 48	75
100 90 80	(m,)	0.150	0.980 8.244	96 90	0.15	0.3	0.6	Sieve Siz	CLAY	5	% :	42 48	75
100 90 80	(m _f)	0.150	0.980 8.244	96 90	3 0.15	0.3	0.6	Sieve Siz	CLAY	5	% :	42 48	75
100 90 80	(m _f)	0.150	0.980 8.244	96 90	3 0.15	0.3	9.5	Sieve Siz	CLAY	5	% :	42 48	75
100 90 80 70 70 60 90 80 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90	(m _f)	0.150	0.980 8.244	96 90	a 0.15	0.3	0.6	Sieve Siz	CLAY	5	% :	42 48	75
100 90 90 80 90 90 80 90 90	(m _f)	0.150	0.980 8.244	96 90	a 0.15	0.3	0.6	Sieve Siz	CLAY	5	% :	42 48	75
100 90 80 70 50 60 30 20 10 10	(m _f)	0.150	0.980 8.244	96 90	a 0.15	0.3	0.6	Sieve Siz	CLAY	5	% :	42 48	75
100 90 80 00 00 00 00 00 00 00 00 0		0.150	0.980 8.244	96 90	0.1 0.2		5	Sieve Siz	CLAY	5	% :	42 48	75
	.002 0	0,150 0,063	0.980 8.244 1.030 0.02	96 90 0.00	0.1 0.2 PART	o ICLE SIZE f	5	Sieve Siz		5	% : 10 20 10 20 10 20 10 2	42 48	50 100
100 90 90 80 80 70 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90		0.150 0.063	0.980 8.244 1.030	96 90 0.000	0.1 0.2		5	Sieve Siz	CLAY	5		42 48	
100 90 80 90 90 80 90 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90	0.002 C	0,150 0.063	0.980 8.244 1.030	96 90 0.00 0.05 0.05	0.1 0.2 PART	0 ICLE SIZE I MEDUM SAND	5 nm	Sieve Siz		5	% :	42 48	50 100
100 90 80 70 60 20 10 0 0,001 60 20 10 0,001 60 0 20 10 0,001 70 60 70 60 60 70 70 60 70 70 60 70 70 60 70 70 60 70 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70		0,150 0.063	0.980 8.244 1.030 0.02 0.02 0.02 0.02 0.02 0.02 0.02	96 90 0.00 0.05 COARSE P = piston, M	0.1 0.2 PART	0 ICLE SIZE F MEDIUM SAND	s nm l	Sieve Siz		5	% :	42 48	50 100
100 90 80 70 60 20 10 0 0001 CAY brevialions used	0.002 C	0,150 0.063	0.980 8.244 1.030 .030 .002 .002 .004 .002 .004 .002 .004 .002 .004 .002	96 90 0.00 0.00 0.05 COARSE	0.1 0.2 PART PINE = mazier, BLK = bloc	0 ICLE SIZE F MEDIUM SAND	s nm l	Sieve Siz	CLAY	5	% :	42 48	50 100
100 90 80 90 70 60 90 60 90 90 90 90 90 90 90 90 90 9	0.002 C	0.150 0.063	0.980 8.244 1.030 .030 .002 .002 .004 .002 .004 .002 .004 .002 .004 .002	96 90 0.00 0.00 0.05 COARSE	0.1 0.2 PART PINE = mazier, BLK = bloc	0 ICLE SIZE F MEDIUM SAND	s nm l	Sieve Siz	CLAY	5	% :	42 48	50 100
100 90 80 70 50 40 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	DODZ CO PDNE I: SE PC CC	0,150 0,063	0.980 8.244 1.030 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.03 0.04 0.04 0.05 0.04 0.05 0.0	96 90 0.06 0.05 COARSE P = piston, M initial modified efined.	0.1 0.2 PART PINE = mazier, BLK = bloc	o ICLE SIZE r MEDTUM SAND X.K. D = distr s) being igr	s. nm urbed (bul	Sieve Siz	CLAY ze (mm)	5	% :	42 48	50 100
100 90 80 90 70 60 90 60 90 90 90 90 90 90 90 90 90 9	0.002 C FINE 1: SE CC Ini	0,150 0,063 0,063 0,065 0,065 0,07 0,005 0,07 0,005 0,07 0,005 0,07 0,005 0,07 0,005 0,07 0,063 0,063	0.980 8.244 1.030 0.02 0.02 0.02 0.02 0.02 0.02 0.02	96 90 0.00 0.05 COARSE P = piston, M initial modified efined.	0.1 0.2 PART PRRT PRRT PRRT test specimen in the	o ICLE SIZE r MEDTUM SAND X.K. D = distr s) being igr	s. nm urbed (bul	Sieve Siz	CLAY ze (mm)	5	% :	42 48	50 100
100 90 80 70 50 40 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.002 C FINE 1: SE CC Ini	0,150 0,063	0.980 8.244 1.030 0.02 0.02 0.02 0.02 0.02 0.02 0.02	96 90 0.00 0.05 COARSE P = piston, M initial modified efined.	0.1 0.2 PART PRRT PRRT PRRT test specimen in the	o ICLE SIZE r MEDTUM SAND X.K. D = distr s) being igr	s. nm urbed (bul	Sieve Siz	CLAY ze (mm)	5	% :	42 48	50 100
Debugge Passing Debugge Passing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.002 0 PTVE 1: Se Cc Ini -1	0,150 0,063 0,063	0.980 8.244 1.030 1.030 0.02 0.	96 90 0.00 0.05 COARSE P = piston, M initial modified efined.	0.1 0.2 PART PRB = mazier, BLK = bloc d hydrometer reading test specimen in the ved.	o ICLE SIZE I MEDIUM SAND SAND Sbeing Ign Sedimenta	s nm Lurbed (bul hored.	Sieve Siz	CLAY	5	% : 10 20 10 20 10 2 0 2 MEDIUM 0 0RAVEL 0	42 48	
100 90 80 70 50 50 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	0.002 0 PTVE 1: Se Cc Ini -1	0,150 0,063 0,063 0,065 0,065 0,07 0,005 0,07 0,005 0,07 0,005 0,07 0,005 0,07 0,005 0,07 0,063 0,063	0.980 8.244 1.030 1.030 0.02 0.	96 90 0.00 0.05 COARSE P = piston, M initial modified efined.	0.1 0.2 PART PRB = mazier, BLK = bloc d hydrometer reading test specimen in the ved.	o ICLE SIZE I MEDIUM SAND SAND Sbeing Ign Sedimenta	s nm Lurbed (bul hored.	Sieve Siz	CLAY	5	% :	42 48	50 100
100 90 80 80 80 90 80 90 80 90 80 90 80 90 80 90 80 90 80 90 80 90 80 90 80 90 80 90 80 90 80 90 80 90 80 90 90 90 90 90 90 90 90 90 9	0.002 0 PTVE 1: Se Cc Ini -1	0,150 0,063 0,063	0.980 8.244 1.030 1.030 0.02 0.	96 90 0.00 0.05 COARSE P = piston, M initial modified efined.	0.1 0.2 PART PRNE = mazier, BLK = bloc d hydrometer reading(test specimen in the ved.	o ICLE SIZE I MEDIUM SAND SAND Sbeing Ign Sedimenta	5 nm Lurbed (bull hored.	Sieve Siz	CLAY	5	% : 10 20 10 20 10 2 0 2 MEDIUM 0 0RAVEL 0	42 48	

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

TEST REPO	RTC				DIS	STRIBU	TION	OF S		Page	1	of	1		Hong
Information suppl Client	lied by	Client Fugro Ter	chnical Se	ervices Lir	nited										1
Client's Address	:	-	on noor or		intou				Clienter	male N	6		G		HTKILA
									Client sa	ample No	J.		G		TES
Project	:	Operation	al Enviro		Ionito	mental Tea ring and Au		iu Ho	Borehole Depth (n	n)	From To		•		
Service/Works Order	No. :								Sample Descript			-	- Benthic	Survey	
Laboratory Inform	nation														
Date sample receive Date test comment Date test complete Test method used Method of preparat Visual description	ved : ced : d : tion :	Method Moist, dar with shell	23 23 3 (Noverr B rk grey, sl	ightly grav		Method 8.1	ly SILT/	CLAY	Laborato Specime Sample Location within or	en refere type and Ori	nce entation)	SL23003 A D Full Mix	1/7	
Test Result (Sieve A Initial dry mass (m ₁		147.584	Mass	Percent	-	Test Result	(Sedime	ntation	Analysis)	_			-		
initial dry mass (m)	<u>/y</u> .	Sieve size	retained	passing		Hydrometer		6. C			:	3311121			
	_	mm 100	(g) 0.000	(%) 100		Particle dens Initial dry ma			(Assumed			2.65 27.882			
		75	0.000	100		Mass retaine		im		9		7.146			
		63	0.000	100					1 -	11.1	Luca	In-real section	1 12	1 121	-
		50 37.5	0.000	100		Date	Time Started	Period min	Temp. °C	Hydro. Rdg	Hydro. Rdg #	Particle dia mm	K %	K* %	
		28	0.000	100	1	14-02-2023	9:25	0.5	25.00	13.5	0.5	0.068	75	70	
		20	0.000	100				1	25.00	13.0	0.5	0.049	72	67	
Passing (m ₂		20	147.584					2	25.00	12.5	0.5	0.035	69	65	
Riffled passing (m ₃ Wash passing (m ₄		20 20	147.584 45.982				-	4	25.00 25.00	12.5	0.5	0.024	69 66	65 62	
wash passing (ma	/	14	0.000	100				30	25.00	10.5	0.5	0.0092	58	54	
		10	0.000	100	1		-	120	25.00	9.5	0.5	0.0046	52	48	
and the second second		6.3	1.950	99				480	25.00	8.5	0.5	0.0023	46	43	
Passing (m ₅		6.3	44.032					1440	25.00	7.0	0.5	0.0014	37	35	
Riffled passing (m ₆)	6.3 5.0	44.032 0.130	99	-		#	Hydrom	neter readir	na in solut	ion only (F	2-1)			
		3.35	0.800	98	1							vember 200°) Test Met	hod 8.7	1
		2.00	1.210	97	1			mound	a aboorani	3 10 0000	pee e (i te	10111501 200	1710011101	100 0.1	
		1.18	1.693	96											
		0.600	2.390	94						Sec. Sec.		-	1.6		
		0.425	1.360	94			SU	MMA	TION :	GRAVEL		% :	3		
		0.300	2.310 7.100	92 87						SAND		% :	28 29		
		0.150	11.600	79						CLAY		% :	40		
		0.063	14.869	69											
Pan (m _f))		0.570		-					_					
				0.0	63	0.15	0.3	0.6	Sieve Siz		5	10 20	37.5	75	
100		TIT			111			HH						TH	П
90						1/							1	1 1 1	
80						1			1						+
2 70		+ + + + + + -			×	1	-		1					+ + +++	-
SP 60	-		1			1						-			
00 70 00 00 00 00 00 00 00 00 00 00 00 0															-
40												-			4
30		14.344	-									4			
20															
10														1	-
0.001 0.002	0.0	005 0.01	0.02	0.05	0	.1 0.2	• •	0.5	1 2		5	10 20	, ,,	50	100
							ICLE SIZE								_
CLAY	FINE	MEDI		COARSE		FINE	MEDIUM		COARSE	FINE		MEDIUM GRAVEL	COARSE	COB	
Abbreviations used : Remarks :	Poi		n indicate(s) i	initial modifie		rier, BLK = bloc meter reading(lk)						
			of GEOSPE	C 3 (2001)		pecimen in the	Sedimenta	tion Analy	ysis was not e	enough acc	ording to th	e requirement			
	- TI	he results app	ly to the sar	nple as rece	ived.										
	Ap	proved Signa	atory :	2	2	Au Y	eung Wai	Kit - Labor	ratory Manag	ler		Date :	20	Feb 2	2023
					/	**End o	f Report	t**							

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

1

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT

Hong Kong

Report No. ST REPORT			CI 000004	1/71						Dama	4	of	4		
		M160554			DIC	TDIDU	TION	00		Page	1	of	1		
			TICLE	SIZE	DIS	IKIBU	HON	OF 3	SOIL						
mation supplied	by C		abairal Ca	undere Line	allad										
t Va Addasas		Fugro Te	chnical Se	ervices Lim	nited										
t's Address	÷	-							Client sa	mole Ne			ū.		0.0
									Gilent Se	ample NC).		н		-
ct		Contract	No CM 14	4/2016 Env	vironm	ental Tea	m for		Borehole	e No					
oject				nmental M				iu Ho	Depth (n		From		2		
				tment Wor		ng ana na	un non o		Dobar (То		<u>.</u>		
									Sample	origin			2		
e/Works Order No.	:	4							Descript	ion		1	Benthic S	Survey	
									and a						
ratory Informatio	n														
sample received	1	08-02-202								ory samp		:	SL23003	1/8	
test commenced	:	10-02-202								en refere	nce	÷	A		
test completed	÷	15-02-202			T				Sample				D		
method used				ber 2001)	lest	vietnoa 8.1	8.8.5 8	× 8.7	Location						
od of preparation		Method		abtly arou		iahtlu aana	L CILT	VAIO	within or	iginal sa	mple (m)	,	Cull Mise		
I description	÷			ightly grave	elly, si	igntly sand	IY SIL I	GLAY			From		Full Mix		
Peoult (Cieve Analy	Inla	with shell	fragment	s.	-	Test Desult	/Cadimaa	ntation	Analuaia		То		-		
Result (Sieve Analy	SIS)	107 044	Mana	Desert	-	est Result	(Sedime	ntation /	Analysis)						
dry mass (m ₁) g		137.211	Mass	Percent		hidromotor	Coriol Ma					0011101			
		Sieve size mm	retained (g)	passing (%)		lydrometer Particle dens			(Assume	d)	-	3311121 2.65			
		100	0.000	100		nitial dry ma			(nasume	a) g		24.307			
		75	0.000	100		Aass retaine		m		g		3.403			
	-	63	0.000	100						9					
	-	50	0.000	100	Г	Date	Time	Period	Temp.	Hydro.	Hydro.	Particle dia.	K	K*	1
		37.5	0.000	100		1.11.11.1	Started	min	°C	Rdg	Rdg #	mm	%	%	
	_	28	0.000	100		14-02-2023	8:50	0.5	25.00	14.0	0.5	0.068	89	85	1
		20	0.000	100				1	25.00	13.5	0.5	0.048	86	82	
g (m ₂)		20	137.211					2	25.00	13.0	0.5	0.034	83	79	
passing (m ₃)		20	137.211					4	25.00	12.5	0.5	0.024	79	76	
passing (m ₄)	_	20	22.190					8	25.00	12.5	0.5	0.017	79	76	
		14	0.000	100	4 1-		-	30	25.00	12.0	0.5	0.0090	76	72	4 1
	-	10 6.3	0.000	100 99	1 F			120 480	25.00 25.00	9.5 8.5	0.5	0.0046	59 53	57 50	4 1
g (m ₅)		6.3	21.130	99	1 -			1440	25.00	7.0	0.5	0.0023	43	41	1 1
passing (m ₆)		6.3	21.130		-			1440	20.00	1.0	0.5	1 0.0014	40	41	1
personal (mor		5.0	0.200	99	9		#	Hydrom	eter readin	ng in soluti	ion only (F	Ro')			
		3.35	1.090	98								vember 2001) Test Met	hod 8.7	
		2.00	1.600	97											
				00											
		1.18	1.680	96											
		0.600	2.400	94									1.51		
		0.600 0.425	2.400 1.662	94 93			SU	ммат	ION :	GRAVEL		%:	3		
		0.600 0.425 0.300	2.400 1.662 2.370	94 93 91			SU	ММАТ	TION :	SAND		% :	13		
		0.600 0.425 0.300 0.212	2.400 1.662 2.370 3.200	94 93 91 89			SU	ИМАТ	TON :	SAND SILT		%:	13 37		
		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330	94 93 91 89 87			SU	ММАТ	'ION :	SAND		% :	13		
(m _t)		0.600 0.425 0.300 0.212	2.400 1.662 2.370 3.200	94 93 91 89			SU	ІММАТ	TION :	SAND SILT		%:	13 37		
(m _r)		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84					Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47		
		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87	53	0.15	SU			SAND SILT CLAY	5	%:	13 37	75	
00		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84	53	0.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	
00		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06	53	0.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	
00		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06		0.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	
00		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06		0.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	
00 00 00		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06		0.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	-
		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06		0.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	-
		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06		0.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	
		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06		0.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	
		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06		0.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	
		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06		0.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	
		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06		0.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	
		0.600 0.425 0.300 0.212 0.150	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06		9.15			Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47	75	
	0.00	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 2.330 4.138	94 93 91 89 87 84 0.06		0.15		0.6	Sieve Siz	SAND SILT CLAY		% : % : % :	13 37 47		
	0.00	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 2.330 4.138 0.460 0.460	94 93 91 89 87 84 	.0.1	02 PARTI	0.3	0.6	Sieve Si 1.16 2	SAND SILT CLAY		% : % : % :	13 37 47		
		0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 2.330 4.138 0.460 0.460 0.460	94 93 91 89 87 84 	.0.1	0.2	0.3	0.6	Sieve Si 1.16 2	SAND SILT CLAY		% : % : 10 20	13 37 47		
	в	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 4.138 0.460 0.460 0.460	94 93 91 89 87 84 	0.1	02 PARTI	0.3	0.6	Sieve Si 1.16 2 	SAND SILT CLAY		% : % : % : 10 20 10 10 10 20	13 37 47	50 1	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sam	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 4.138 0.460 0.	94 93 91 89 87 84 0.00 0.05 0.05	0.1		0.3	0.6	Sieve Si 1.16 2 	SAND SILT CLAY		% : % : 10 20	13 37 47	50 1	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B Sam Poin	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 2.330 4.138 0.460 0.	94 93 91 89 87 84 0.05 0.05 COARSE	0.1		0.3	0.6	Sieve Si 1.16 2 	SAND SILT CLAY		% : % : 10 20	13 37 47	50 1	
20 20 20 20 20 20 20 20 20 20	B Sam Poin	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 2.330 4.138 0.460 0.	94 93 91 89 87 84 0.05 0.05 COARSE	0.1		0.3	0.6	Sieve Si 1.16 2 	SAND SILT CLAY		% : % : 10 20	13 37 47	50 1	
20 20 20 20 20 20 20 20 20 20	B Sam Poin	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 2.330 4.138 0.460 0.	94 93 91 89 87 84 0.05 0.05 COARSE	0.1		0.3	0.6	Sieve Si 1.16 2 	SAND SILT CLAY		% : % : 10 20	13 37 47	50 1	
00 00 00 00 00 00 00 00 00 00 00 00 00	Sam Poin Coel	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 2.330 4.138 0.460 0.	94 93 91 89 87 84 0.05 0.05 0.05 COARSE P = piston, M nitial modified efined.	0.1	0.2 PARTI INE L	0.3	0.6	Sieve Si 1.16 2 1.16 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAND SILT CLAY	5	% : % : % : 10 20	13 37 47	50 1	
00 00 00 00 00 00 00 00 00 00 00 00 00	Sam Poin Coel	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 2.330 4.138 0.460 0.	94 93 91 89 87 84 0.05 0.05 0.05 0.05 COARSE P = piston, M nitial modified efined.	0.1	0.2 PARTI INE L	0.3	0.6	Sieve Si 1.16 2 1.16 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAND SILT CLAY	5	% : % : 10 20	13 37 47	50 1	
00 00 00 00 00 00 00 00 00 00	Sam Poin Coel	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 2.330 4.138 0.460 0.	94 93 91 89 87 84 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0.1 0.1 1 = mazici d hydrom	0.2 PARTI INE L	0.3	0.6	Sieve Si 1.16 2 1.16 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAND SILT CLAY	5	% : % : % : 10 20	13 37 47	50 1	
00 00 00 00 00 00 00 00 00 00	Sam Poin Coel	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 2.330 4.138 0.460 0.	94 93 91 89 87 84 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0.1 0.1 1 = mazici d hydrom	0.2 PARTI INE L	0.3	0.6	Sieve Si 1.16 2 1.16 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAND SILT CLAY	5	% : % : % : 10 20	13 37 47	50 1	
20 20 20 20 20 20 20 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0	Sam Poin Coel Initia - Th	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 2.330 4.138 0.460 0.460 0.460 0.460 0.02 0.02 0.02 0.02 0.02 0.02 T T T T T T T T T T T T T	94 93 91 89 87 84 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0.1 0.1 1 = mazici d hydrom	0.2 PARTI Sr, BLK = bloc veter reading(s	0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.6	Sieve Si 1.16 2 1.16 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAND SILT CLAY	5	% : % : % : 10 20	13 37 47	50 1]
20 20 20 20 20 20 20 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0	Sam Poin Coel Initia - Th	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 2.330 4.138 0.460 0.460 0.460 0.460 0.02 0.02 0.02 0.02 0.02 0.02 T T T T T T T T T T T T T	94 93 91 89 87 84 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0.1 0.1 1 = mazici d hydrom	0.2 PARTI Sr, BLK = bloc veter reading(s	0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.6	Sieve Sis 1.18 2 1.18 2 1.18 2 2.19 2 COARSE COARSE Sis was not e	SAND SILT CLAY	5	% : % : % : 10 20	13 37 47	50 1]
20 20 20 20 20 20 20 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0	Sam Poin Coel Initia - Th	0.600 0.425 0.300 0.212 0.150 0.063	2.400 1.662 2.370 3.200 2.330 4.138 0.460 0.460 0.460 0.460 0.02 0.02 0.02 0.02 0.02 0.02 T T T T T T T T T T T T T	94 93 91 89 87 84 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0.1 0.1 1 = mazici d hydrom	0.2 PARTI Sr, BLK = bloc veter reading(s	0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.6	Sieve Sis 1.18 2 1.18 2 1.18 2 2.19 2 COARSE COARSE Sis was not e	SAND SILT CLAY	5	% : % : % : 10 20	13 37 47	50 1]

The Hong Kong Accreditation Service (HKAS) has accredited Fugro Technical Services Limited (Reg. No. HOKLAS 015) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report No. : 181172EN230440

Page 1 of 2

Test Report on Analysis of Water and Wastewater

Information Supplied by Client Client **Fugro Technical Services Limited** : Client's address Rm 723-726, 7/F, Profit Industrial Building, No.1-15, Kwai Fung : Crescent, Kwai Chung, N.T. Contract No. CM 14/2016 Environmental Team for Operational Project • Environmental Monitoring and Audit for Siu Ho Wan Sewage **Treatment Works** Sampling date : 08/02/2023 Sampling location : Sample description Eight sample(s) of Rinsate Blank : Sample identification 1. A/Rinsate Blank • 2. B/Rinsate Blank 3. C/Rinsate Blank 4. D/Rinsate Blank 5. E/Rinsate Blank 6. F/Rinsate Blank 7. G/Rinsate Blank 8. H/Rinsate Blank Test required Total recoverable metals: 1. Arsenic content 2. Cadmium content 3. Chromium content 4. Copper content 5. Lead content 6. Mercury content 7. Nickel content 8. Silver content 9. Zinc content Laboratory Information Lab sample ID EN230440/17-24 : Date of receipt of sample 08/02/2023 : 09/02/2023 Date test completed :

Test method used : In-house method E-T-189 & E-T-190 (ICP-MS)

Hong Kong

Report No. : 181172EN230440

Page 2 of 2

Results :

		Client sample ID	A/Rinsate Blank	B/Rinsate Blank	C/Rinsate Blank	D/Rinsate Blank
Item	LOR	Unit				
In-house metho	d E-T-189 8	& E-T-190 (ICP-	MS)			
Arsenic	1	µg/L	<1	<1	<1	<1
Cadmium	0.2	µg/L	<0.2	<0.2	<0.2	<0.2
Chromium	1	µg/L	2	2	2	2
Copper	1	µg/L	3	12	3	3
Lead	1	µg/L	<1	<1	<1	<1
Mercury	0.5	µg/L	<0.5	<0.5	<0.5	<0.5
Nickel	1	µg/L	2	2	2	2
Silver	1	µg/L	<1	<1	<1	<1
Zinc	10	µg/L	20	20	20	20

		Client sample ID	E/Rinsate Blank	F/Rinsate Blank	G/Rinsate Blank	H/Rinsate Blank
Item	LOR	Unit				
In-house metho	d E-T-189 &	E-T-190 (ICP-	MS)			
Arsenic	1	µg/L	<1	<1	<1	<1
Cadmium	0.2	µg/L	<0.2	<0.2	<0.2	<0.2
Chromium	1	µg/L	2	2	7	2
Copper	1	µg/L	2	3	5	2
Lead	1	µg/L	<1	<1	<1	<1
Mercury	0.5	µg/L	<0.5	<0.5	<0.5	<0.5
Nickel	1	µg/L	2	2	2	2
Silver	1	µg/L	<1	<1	<1	<1
Zinc	10	µg/L	20	20	20	20

Remark: 1. The sampling procedure for the sample received in this report is outside the scope of accreditation.

> µg/L - microgram per litre 2.

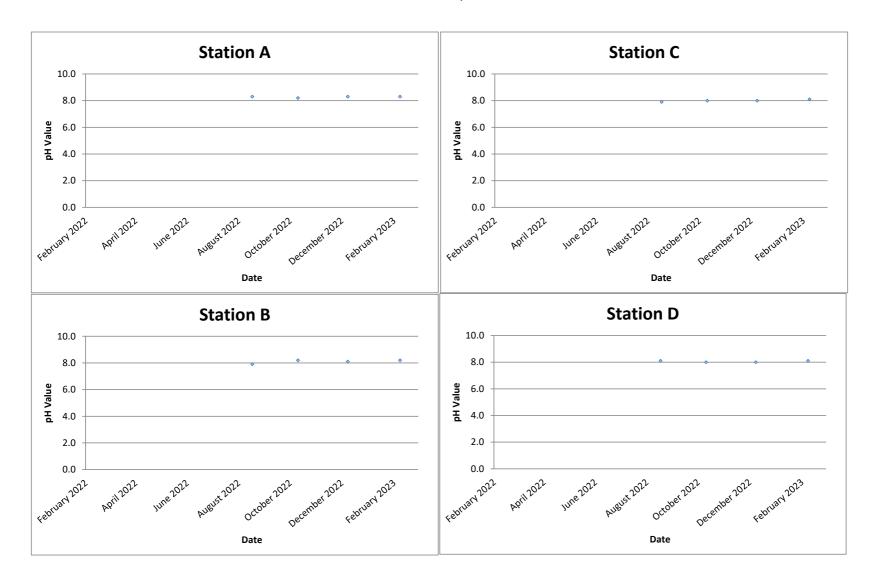
Certified by Approved Signatory: HO Kin Man, John Assistant General Manager – Laboratories 3/2021

** End of Report **

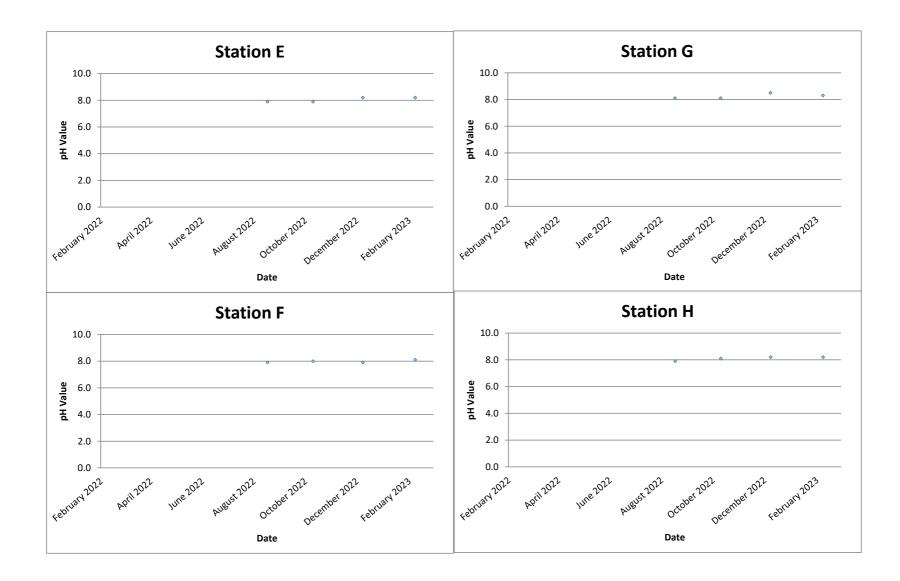
Date

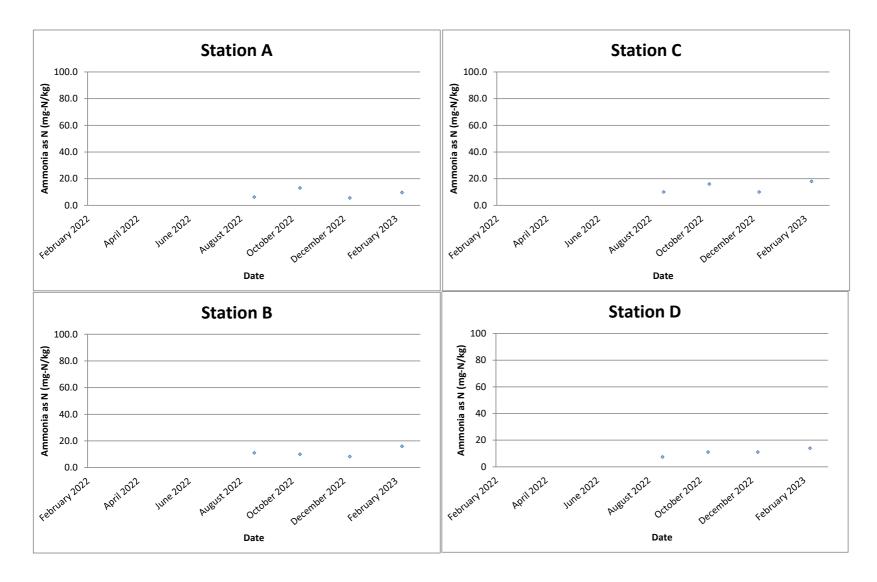
Report No. : 181172EN230440

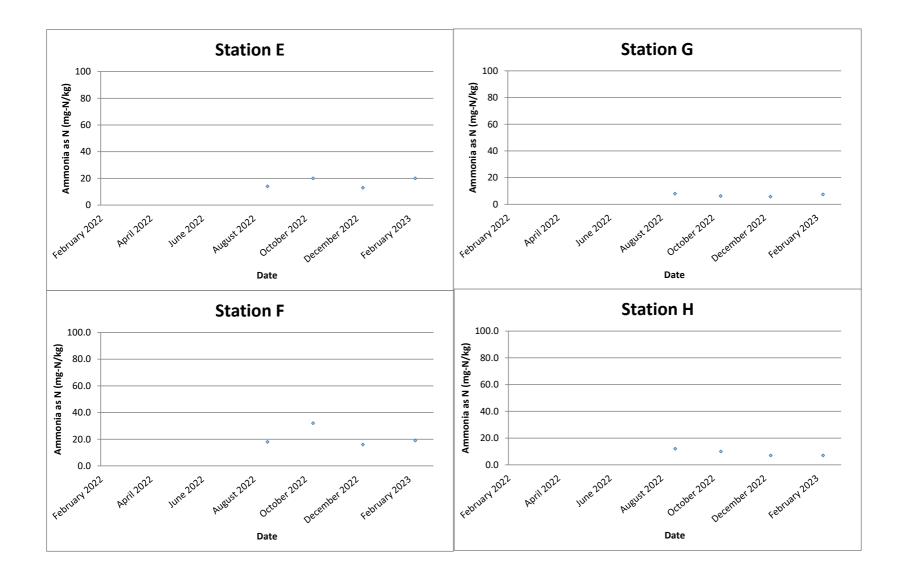
Note

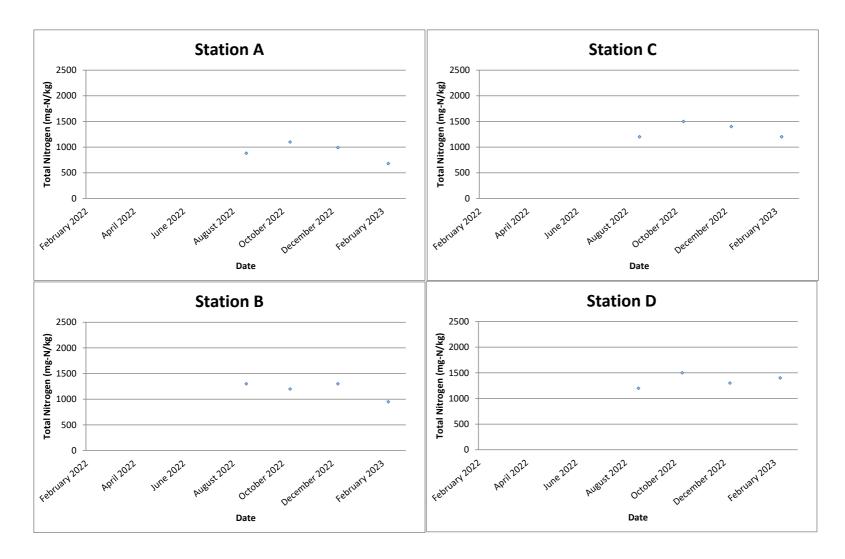

Method Blank (MB), Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

		d Blank Report	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report									
Item				Spike reco	overy (%)	Recover	y limits (%)	RP	PD%			
	LOR	Result	Spike Concentration	MS	MSD	Low	High	Value	Control Limited			
Arsenic	1	< 0.5	10	103.1	-	75.0%	125.0%	-	-			
Cadmium	0.2	< 0.1	10	99.6	-	75.0%	125.0%	-	-			
Chromium	1	< 0.5	10	100.4	-	75.0%	125.0%	-	-			
Copper	1	< 0.5	10	100.3	-	75.0%	125.0%	-	-			
Lead	1	< 0.5	10	91.3	-	75.0%	125.0%		-			
Mercury	0.5	< 0.25	0.5	97.4	-	75.0%	125.0%	-	-			
Nickel	1	< 0.5	10	97.7	-	75.0%	125.0%	-	-			
Silver	1	< 0.5	10	97.9	-	75.0%	125.0%	i i i i i i i i i i i i i i i i i i i	-			
Zinc	10	< 5	100	98.1	-	75.0%	125.0%	-	-			

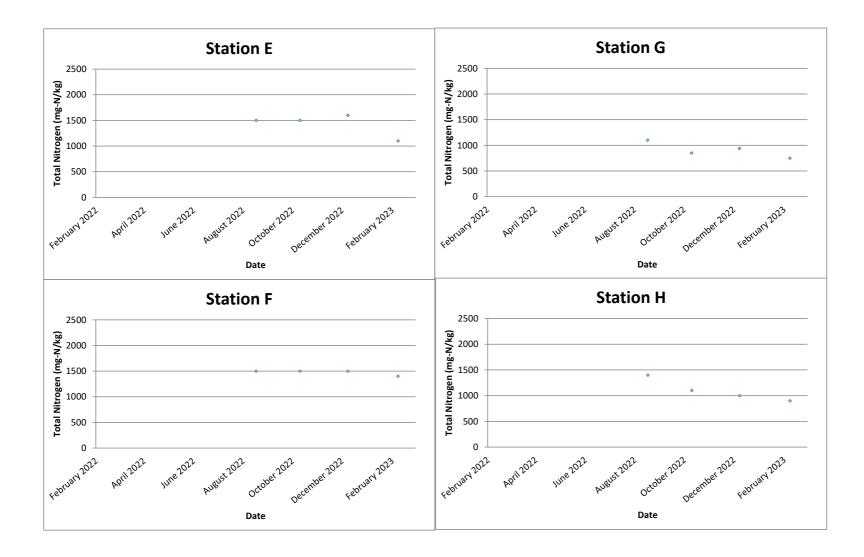

Certified by Approved Signatory: HO Kin Man, John Assistant General Manager - Laboratories 913/2023

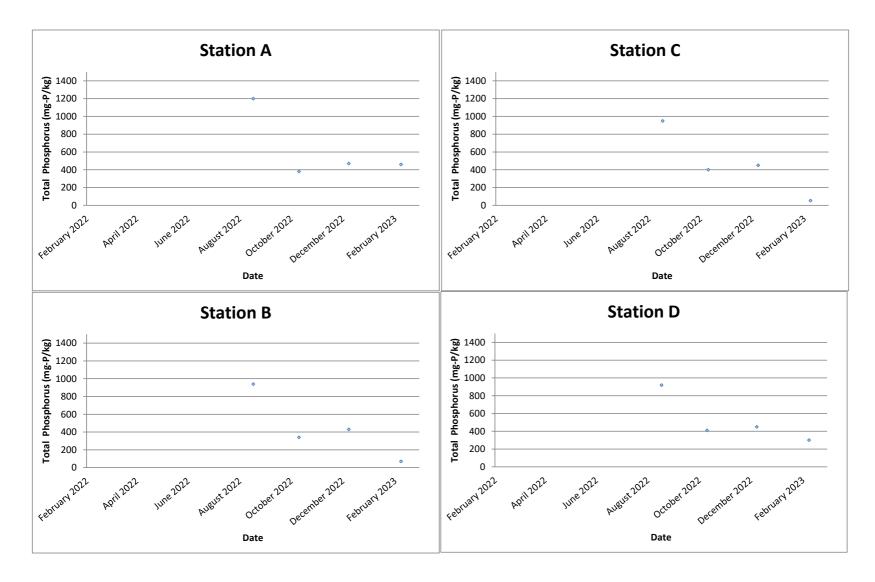

Date

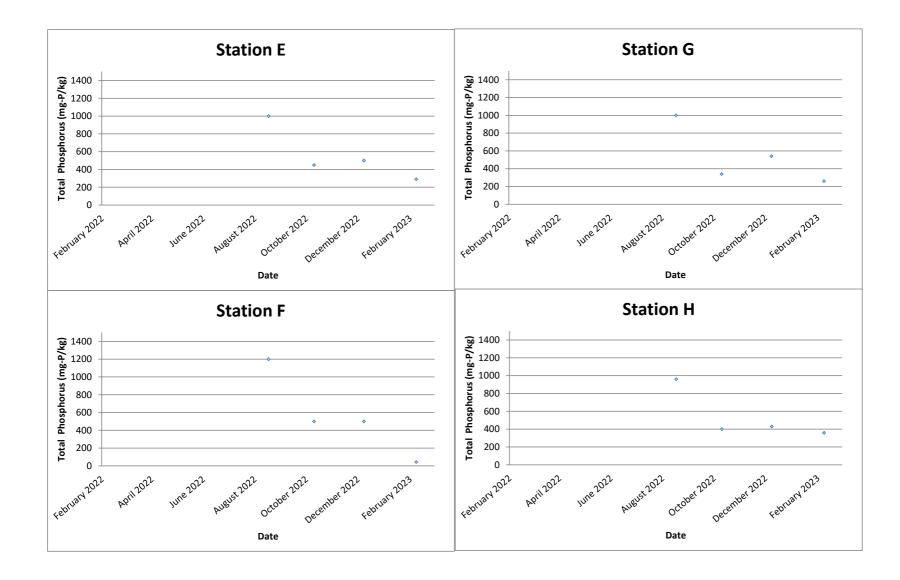

pH value

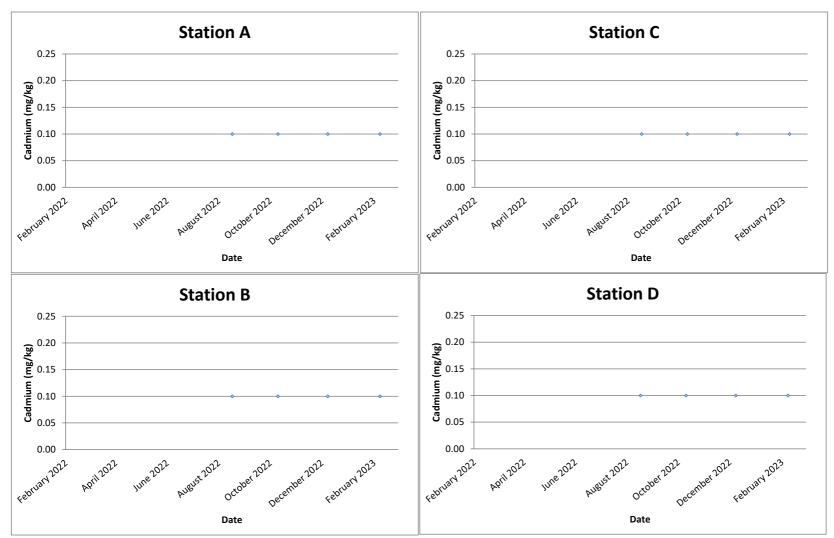


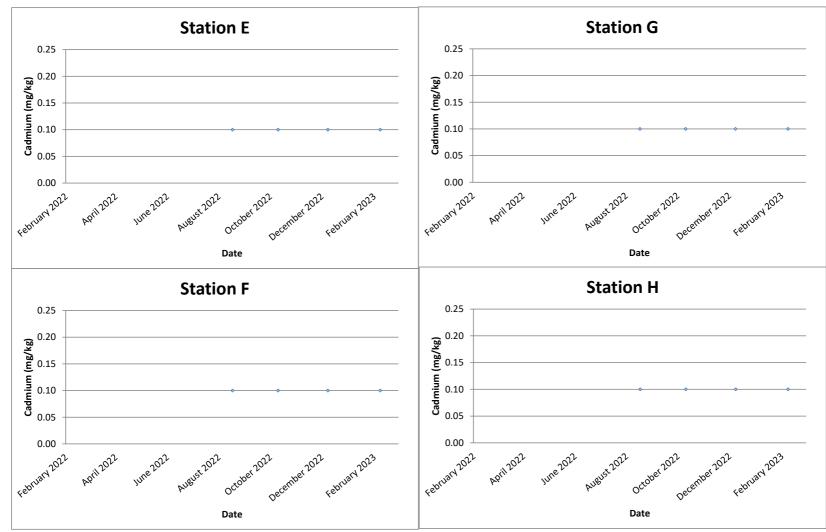
pH value



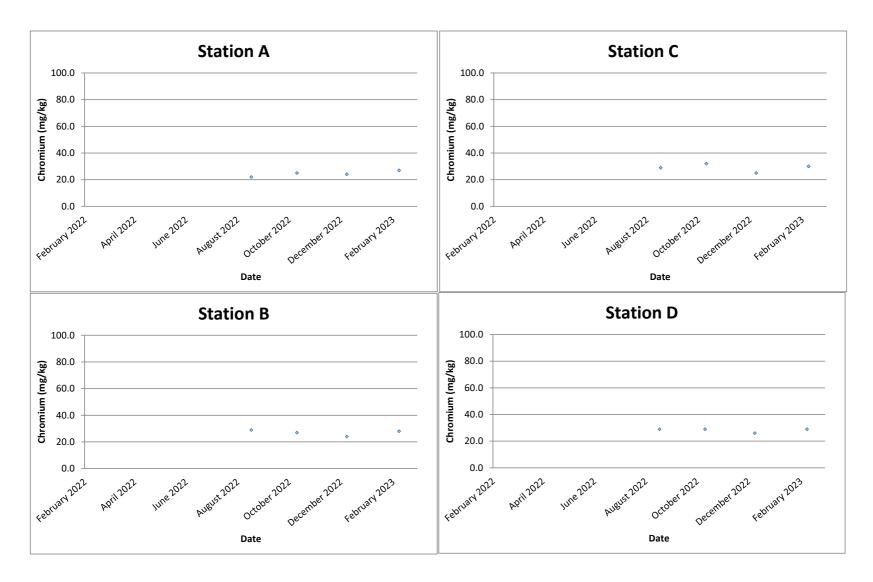




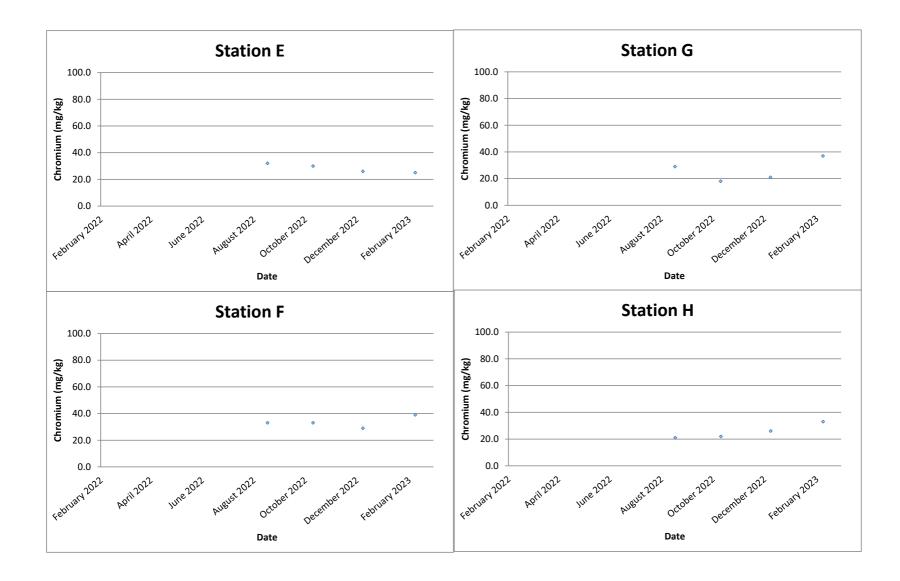

Total Nitrogen (mg-N/kg)



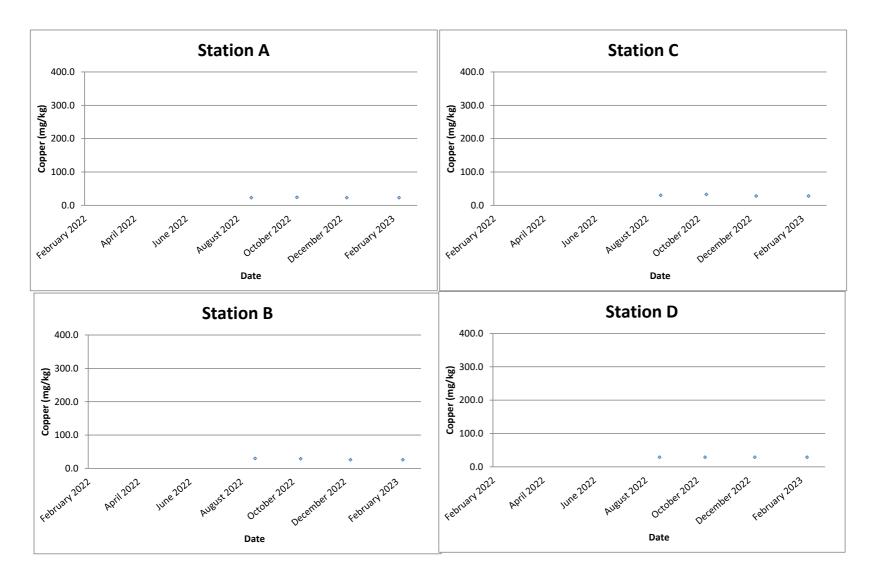
Cadmium (mg/kg)

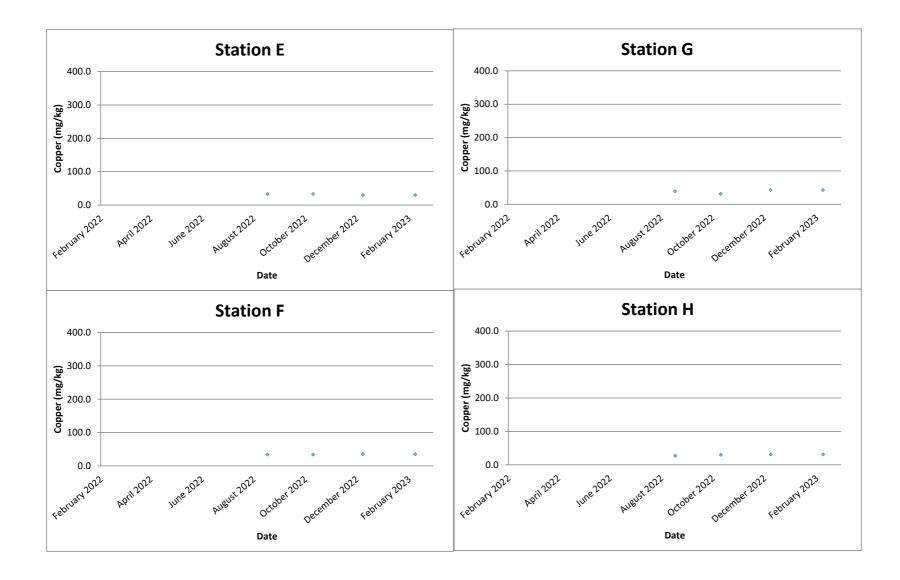

Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

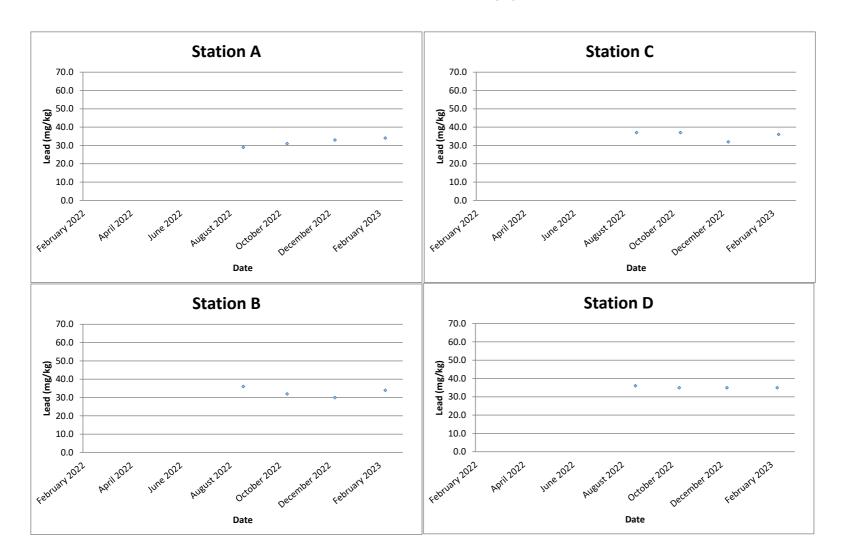
Cadmium (mg/kg)

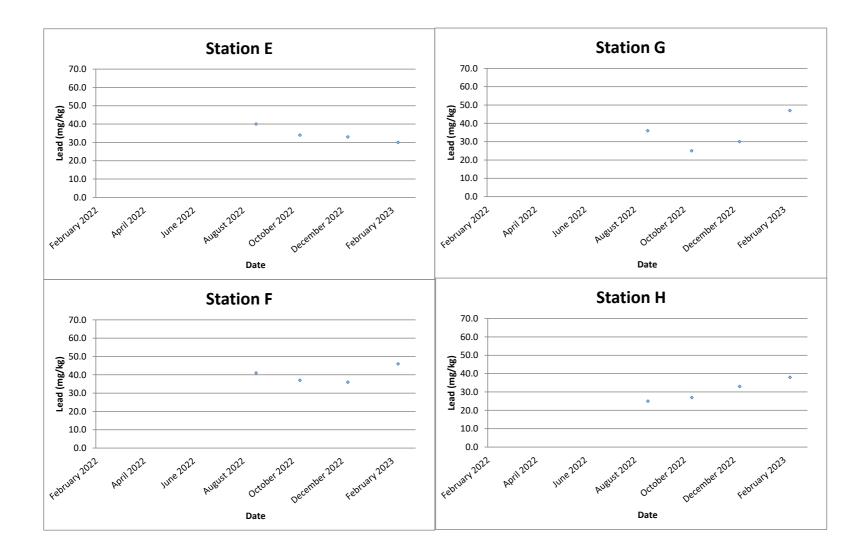


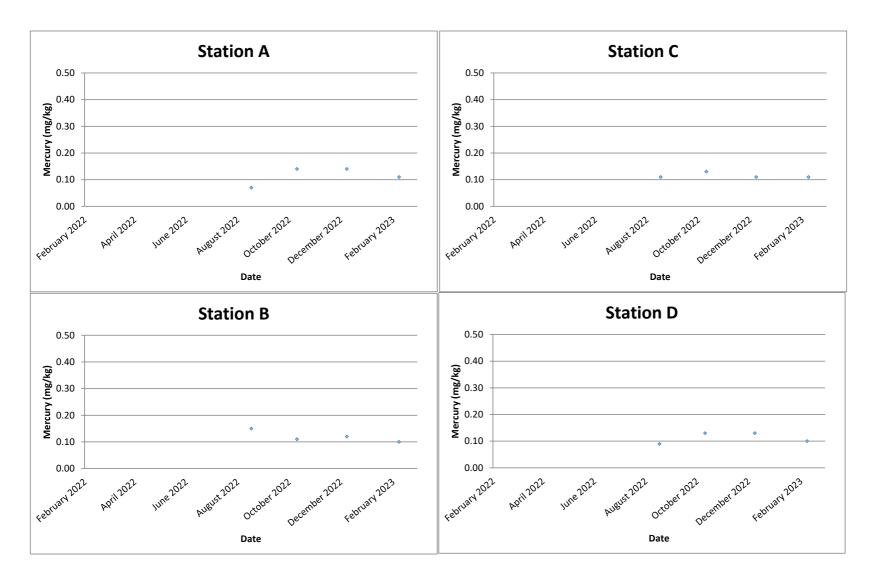
Remark: All below the Limit of Report sample results (<0.1 mg/kg) for Cadmium is regarded as 0.1 mg/kg in graphical presentation.

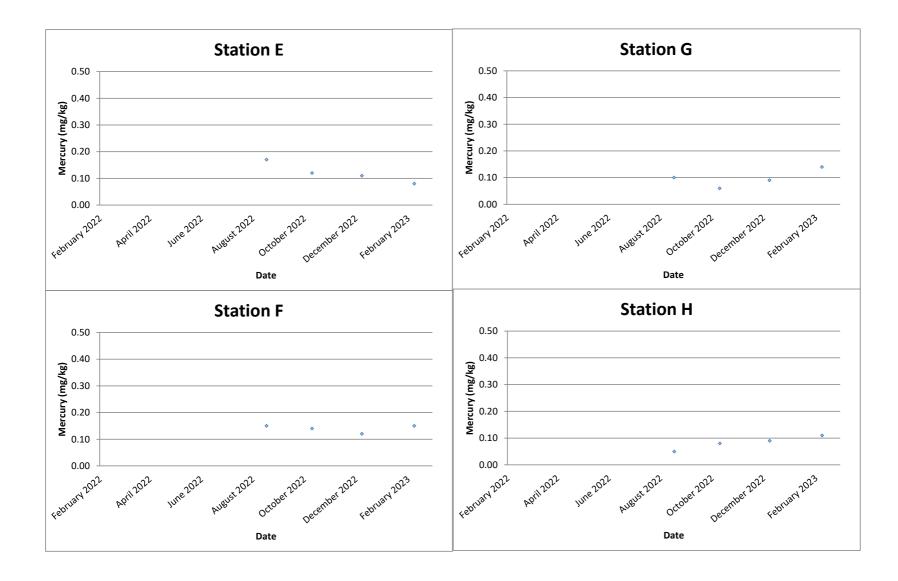

Chromium (mg/kg)

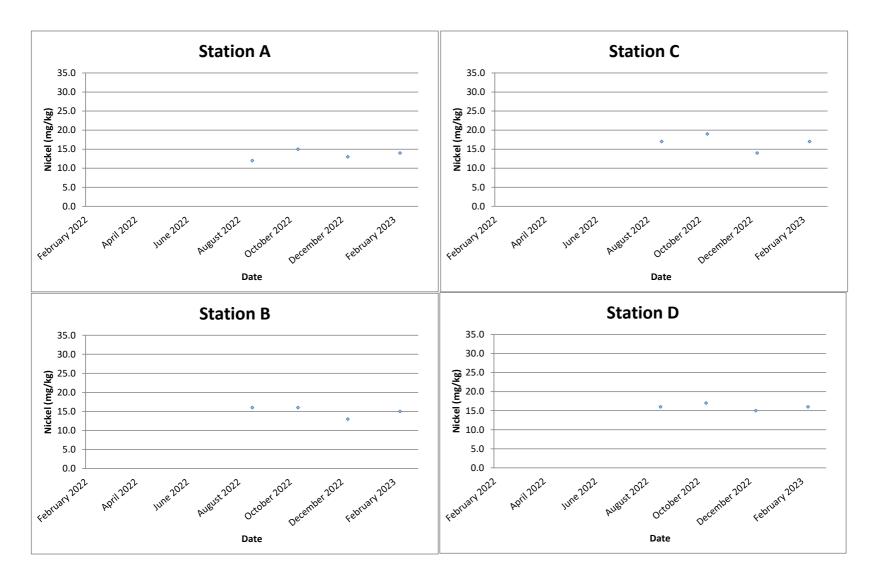

Chromium (mg/kg)

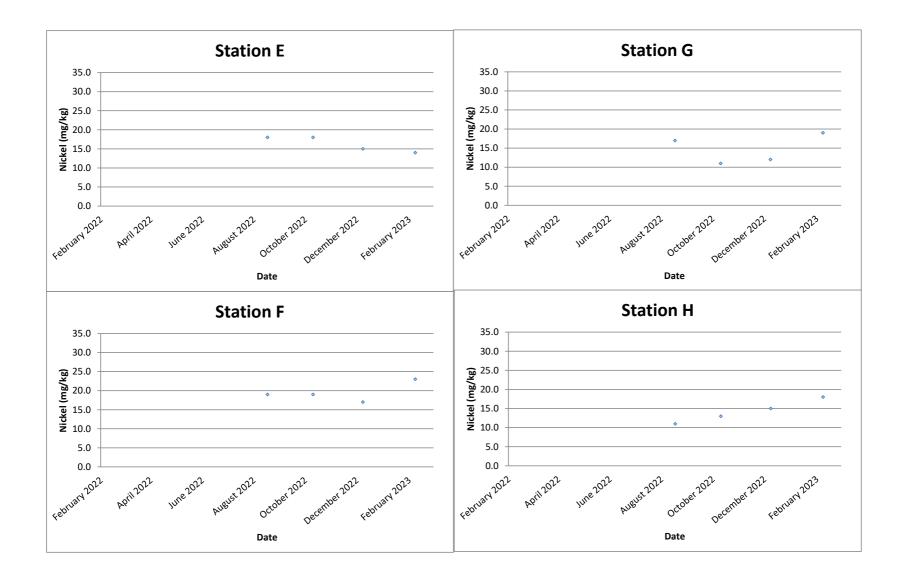

Copper (mg/kg)

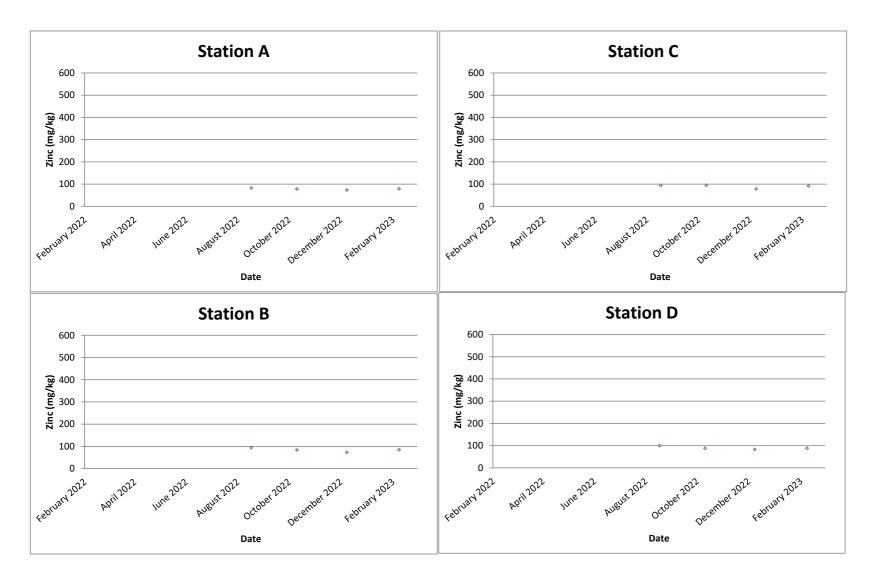

Copper (mg/kg)

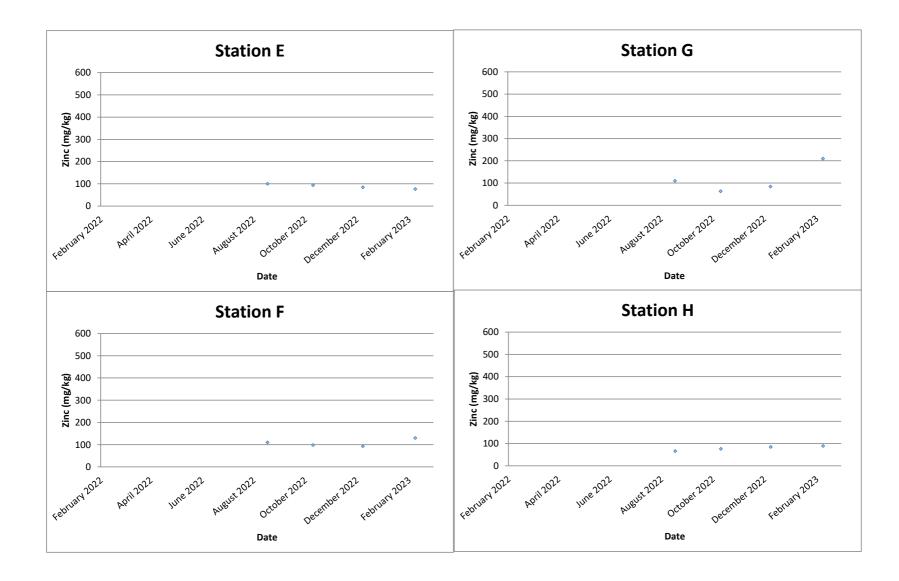

Lead (mg/kg)

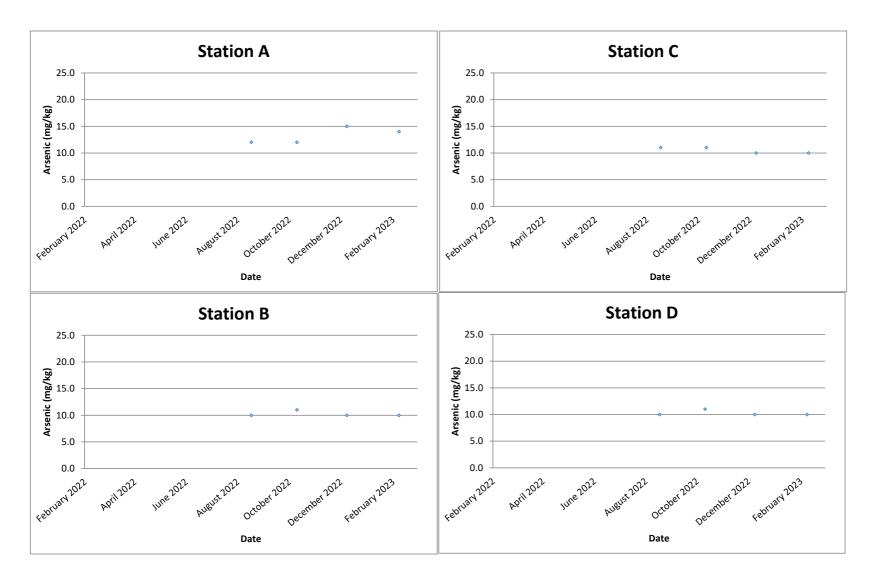

Lead (mg/kg)

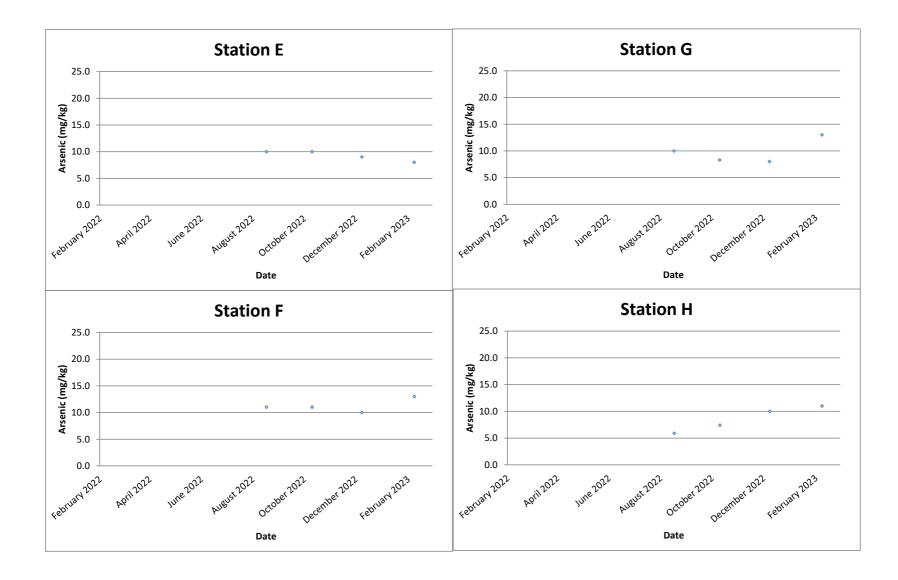

Mercury (mg/kg)

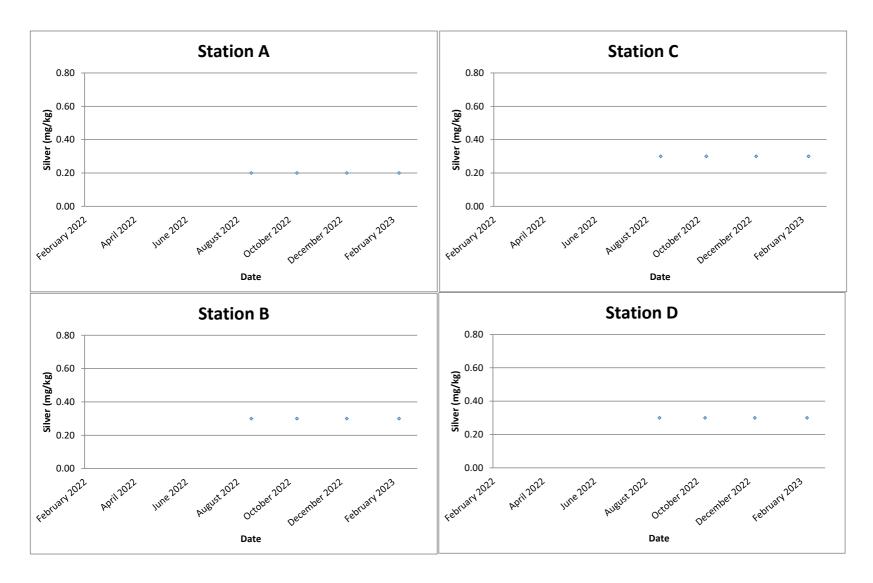

Mercury (mg/kg)

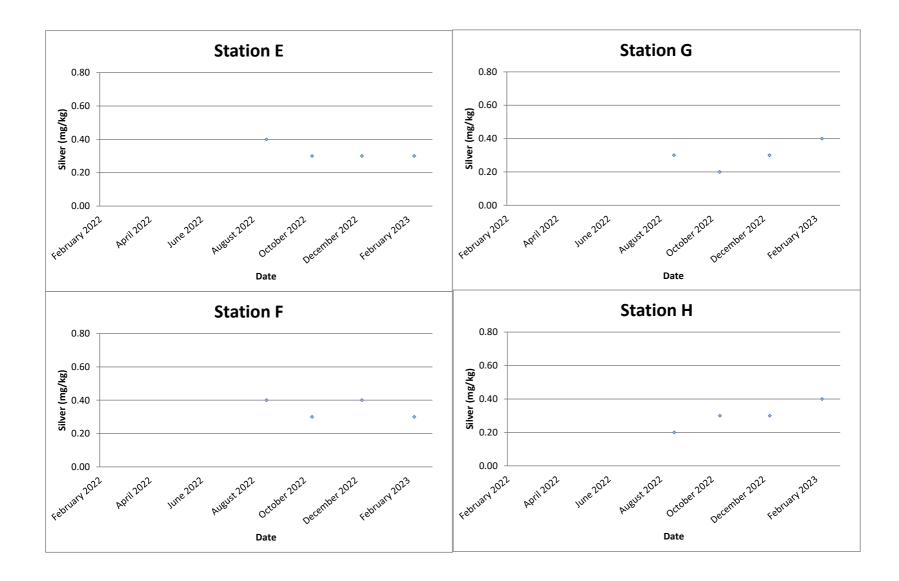

Nickel (mg/kg)


Nickel (mg/kg)


Zinc (mg/kg)


Zinc (mg/kg)


Arsenic (mg/kg)


Arsenic (mg/kg)

Silver (mg/kg)

Silver (mg/kg)

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Appendix I

Benthic Survey Report

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Benthic Survey Report (08 February 2023)

Abundance

A total of 354 benthic organisms was recorded from the eight monitoring stations during the February 2023 monitoring period. Current monitoring results showed lower total monthly abundance compared to both dry (March 2004) and wet (August 2004) seasons baseline data results (**Figure 1**). Similar with previous monitoring periods, total monthly abundance of benthic organisms exhibits significant seasonal variation (F-value = 4.63; F-crit = 1.5; p-value = 4.82E-12; α = 0.05).

In terms of spatial distribution, the lowest abundance of 28 ind. was recorded in the impact station, Station C, while the highest (67 ind.) was noted in reference station, Station F (**Figure 2**). The total macrobenthic abundance as similar with the previous monitoring periods, showed statistically significant different spatial distribution (F-value = 3.81; F-crit = 2.05; P-value = 0.001; α = 0.05).

Biomass

The total wet biomass recorded in the eight monitoring stations was 6.52 g with the highest biomass recorded in the reference station, Station G (2.68 g) while the lowest biomass (0.14 g) was observed in reference station, Station H. Relative to the December 2022 period, a general decrease in biomass was observed during the current monitoring period (**Figure 3**). Most of the current decrease was attributed to the low biomass of *Mytilopsis* in the benthic community.

Taxonomic Composition

A total of four phyla comprising of 22 families and about 27 genera were identified. During the current monitoring period, the annelids (47.18%) dominated the macrobenthic assemblage, and followed by the arthropods (38.98%) (**Figure 4**). Relative to the December 2022 community assemblage, current results showed that the annelids still maintained their dominance within the benthic community.

The dominance of annelids could be due to the high percentage of silt on all the monitoring areas as shown by the results of sediment particle size distribution analyses for the current monitoring month.

Diversity

Benthic diversity index (H') in the impact stations ranged from 1.70 to 2.00. Among the reference stations, H' values ranged from 0.86 to 1.95. Currently, impact station, Station D had the highest diversity value among the different monitoring stations, while the lowest was the reference station, Station H. In terms of evenness index (J) values, reference Station B was noted with the highest value among the monitoring stations. Moreover, current monitoring results indicated an overall increase in both diversity and evenness values from the baseline survey condition.

Summary Tables

Abundance and biomass of macrobenthic organisms are shown in **Tables 1** and **2**, respectively. Data summary for different monitoring periods are presented in **Tables 3** to **7**. Representative photos of assemblages and specimen are shown in the last pages of this benthic survey report.

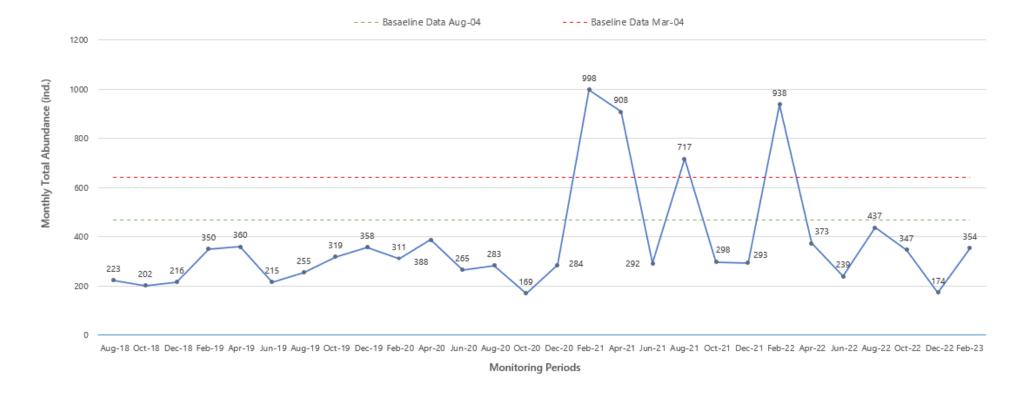


Figure 1: Monthly total abundance (ind.) of benthic organisms across monitoring periods

fugro

Figure 2: Monthly total abundance (ind.) of benthic organisms across monitoring stations

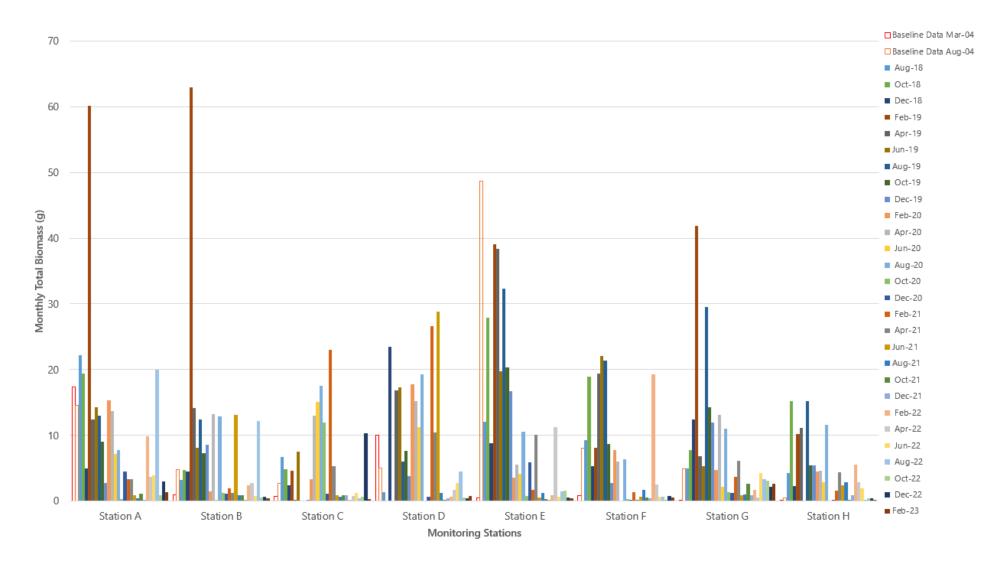


Figure 3: Monthly total biomass (g) of benthic organisms across monitoring stations

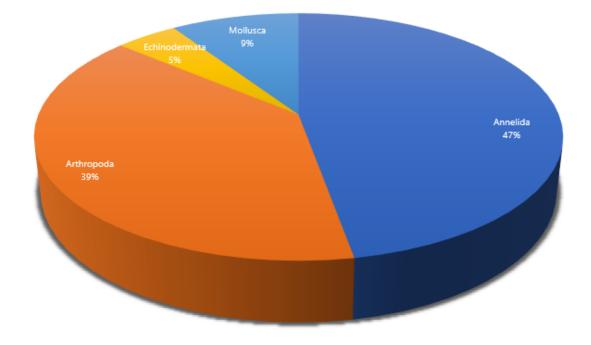


Figure 4: Percent composition of benthic organisms

Data Summaries

Table 1: Abundance (ind.) of macrobenthic communities in the eight monitoring stations, 08 February 2023

Dhuduura	Class	Onden	Family.	Genus		Monitoring Stations						
Phylum	Class	Order	Family	Genus	Α	В	С	D	Ε	F	G	Н
Annelida	Polychaeta	Phyllodocida	Nereididae	Nereis		4						
Annelida	Polychaeta	Sedentaria	Maldanidae	Maldanella			3					
Annelida	Clitellata	Lumbriculida	Lumbriculidae	Lumbriculus	8	3					4	
Annelida	Polychaeta	Phyllodocida	Glyceridae	Glycera							1	
Annelida	Polychaeta	Phyllodocida	Polynoidae	Lepidonotus								1
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	5	7	6	4	12	6	21	8
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone			7	3	5			
Annelida	Polychaeta	Phyllodocida	Goniadidae	Glycinde	2							
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra	10		8	3	8	5	7	1
Annelida	Polychaeta	Phyllodocida	Nereididae	Ceratonereis	2							
Annelida	Polychaeta	Sedentaria	Opheliidae	Ophelia		2				1		
Annelida	Polychaeta	Eunicida	Lumbrineridae	Scoletoma		7	1					
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana							2	
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus	27	12	1	8	17	48	2	19
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	1							
Arthropoda	Malacostraca	Decapoda	Pilumnidae	Typhlocarcinus	2							
Arthropoda	Malacostraca	Cumacea	Diastylidae	Diastylis				1				
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	3	6		5	2			
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Angulus	1	4		2		1		
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea			2	2	8	1		
Mollusca	Bivalvia	Cardiida	Cardiidae	Cardium						3		
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)							1	
Mollusca	Bivalvia	Veneroida	Pharellidae	Sinonovacula	1							
Mollusca	Bivalvia	Galeommatida	Lasaeidae	Pseudopythina	3							
Mollusca	Bivalvia	Venerida	Veneridae	Timoclea				1				
Mollusca	Bivalvia	Cardiida	Tellinidae	Масота						2		
Mollusca	Bivalvia	Venerida	Veneridae	Ruditapes							1	

Dividuos	Class	Quality	E	6			М	onitoring	Stations			
Phylum	Class	Order	Family	Genus	Α	В	C	D	E	F	G	Н
Annelida	Polychaeta	Phyllodocida	Nereididae	Nereis		0.040						
Annelida	Polychaeta	Sedentaria	Maldanidae	Maldanella			0.040					
Annelida	Clitellata	Lumbriculida	Lumbriculidae	Lumbriculus	0.069	0.035					0.034	
Annelida	Polychaeta	Phyllodocida	Glyceridae	Glycera							0.035	
Annelida	Polychaeta	Phyllodocida	Polynoidae	Lepidonotus								0.023
Annelida	Polychaeta	Capitellida	Capitellidae	Capitella	0.038	0.042	0.013	0.027	0.0484	0.051	0.109	0.054
Annelida	Polychaeta	Phyllodocida	Phyllodocidae	Eteone			0.015	0.017	0.0329			
Annelida	Polychaeta	Phyllodocida	Goniadidae	Glycinde	0.020							
Annelida	Polychaeta	Phyllodocida	Pilargidae	Sigambra	0.090		0.072	0.049	0.1016	0.061	0.239	0.024
Annelida	Polychaeta	Phyllodocida	Nereididae	Ceratonereis	0.031							
Annelida	Polychaeta	Sedentaria	Opheliidae	Ophelia		0.084				0.067		
Annelida	Polychaeta	Eunicida	Lumbrineridae	Scoletoma		0.032	0.017					
Annelida	Polychaeta	Terebellida	Terebellidae	Amaeana							0.067	
Arthropoda	Malacostraca	Amphipoda	Gammaridae	Gammarus	0.057	0.033	0.001	0.010	0.0368	0.096	0.013	0.042
Arthropoda	Crustacea	Decapoda	Penaeidae	Shrimp juvenile	0.288							
Arthropoda	Malacostraca	Decapoda	Pilumnidae	Typhlocarcinus	0.501							
Arthropoda	Malacostraca	Cumacea	Diastylidae	Diastylis				0.001				
Echinodermata	Ophiuroidea	Ophiurida	Amphiuridae	Amphioplus	0.043	0.070		0.065	0.0401			
Mollusca	Bivalvia	Veneroida	Tellinidae	c.f. Angulus	0.033	0.109		0.136		0.069		1
Mollusca	Bivalvia	Veneroida	Veneridae	c.f. Phylloda foliacea			0.178	0.088	0.1201	0.093		1
Mollusca	Bivalvia	Cardiida	Cardiidae	Cardium						0.067		
Mollusca	Bivalvia	Veneroida	Veneridae	Paphia (P. undulata)							1.862	
Mollusca	Bivalvia	Veneroida	Pharellidae	Sinonovacula	0.020							
Mollusca	Bivalvia	Galeommatida	Lasaeidae	Pseudopythina	0.104							
Mollusca	Bivalvia	Venerida	Veneridae	Timoclea				0.317				
Mollusca	Bivalvia	Cardiida	Tellinidae	Масота						0.034		
Mollusca	Bivalvia	Venerida	Veneridae	Ruditapes							0.321	

Table 2: Biomass (g) of macrobenthic communities in the eight monitoring stations, 08 February 2023

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
А	65	1.29	12	1.91	0.77
В	45	0.44	9	1.95	0.89
C*	28	0.34	8	1.70	0.82
D*	29	0.71	10	2.00	0.87
E	52	0.38	8	1.63	0.78
F	67	0.54	8	1.08	0.52
G	39	2.68	8	1.46	0.70
Н	29	0.14	7	0.86	0.44

Table 3: Summary of Benthic Survey Data, February 2023

*impact sites

Table 4: Summary of Benthic Survey Baseline Data, August 2004

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
А	115	14.56	24	0.93	0.29
В	36	4.76	14	0.89	0.34
C*	22	2.66	13	0.80	0.31
D*	39	5.07	11	0.62	0.26
E	39	48.69	16	0.89	0.32
F	11	8.07	9	0.68	0.31
G	182	4.91	31	1.10	0.32
Н	23	0.49	11	0.81	0.34

*impact sites

Table 5: Summary of Benthic Survey Baseline Data, March 2004

Stations	Abundance (ind.)	Total Biomass (g)	Number of Taxa	Diversity (H')	Evenness (J)
А	337	17.39	38	0.78	0.21
В	110	0.9	21	0.82	0.27
C*	14	0.7	10	0.69	0.3
D*	37	10.07	20	1.01	0.34
E	28	0.44	11	0.76	0.32
F	67	0.78	16	0.85	0.31
G	25	0.09	9	0.64	0.29
Н	23	0.15	11	0.44	0.18

*impact sites

Таха	Mar-04	Aug-04	Apr-19	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20	Jun-20	Aug-20	Oct-20	Dec-20
Annelida	80.19	73.29	70.28	0.47	64.31	66.14	59.78	60.77	56.44	69.06	63.25	51.48	50.35
Sipuncula	0.78	0.21	0.00	0.00	1.57	1.25	0.00	1.29	0.52	1.13	0.35	1.78	1.06
Arthropoda	11.23	18.80	10.83	4.65	9.80	19.75	14.53	13.83	28.87	8.30	13.43	18.93	20.77
Echinodermata	0.62	3.63	4.72	0.47	5.10	3.13	1.68	1.61	0.77	2.26	3.53	2.96	2.82
Cnidaria	1.72	0.43	0.00	1.86	0.39	0.00	0.84	0.32	0.26	0.75	0.00	1.18	0.00
Mollusca	5.46	3.42	13.33	0.47	17.25	8.15	22.35	19.94	11.60	15.85	15.90	18.93	24.65
Chordata	0.00	0.21	0.56	0.47	1.18	0.94	0.00	0.32	0.52	1.13	1.41	0.00	0.35
Nemertea	0.00	0.00	0.28	98.60	0.39	0.63	0.84	1.93	1.03	1.51	2.12	4.73	0.00
Таха	Feb-21	Apr-21	Jun-21	Aug-21	Oct-21	Dec-21	Feb-22	Apr-22	Jun-22	Aug-22	Oct-22	Dec-22	Feb-23
		•				-		-					
Annelida	22.75	31.72	73.63	78.52	64.43	45.05	15.57	33.78	57.32	88.36	76.66	52.30	47.18
Sipuncula	0.70	0.00	0.34	0.00	8.05	0.00	0.00	1.34	6.28	0.00	0.00	3.45	0.00
Arthropoda	70.14	55.95	10.27	9.90	11.41	36.86	78.25	26.54	5.86	1.60	5.48	17.82	38.98
Echinodermata	0.30	1.43	4.11	1.39	4.03	4.10	0.43	0.80	1.26	0.46	6.05	2.87	4.52
Cnidaria	0.00	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.29	0.00	0.00
Mollusca	5.81	10.90	11.64	10.04	11.74	9.22	5.22	37.27	28.87	8.68	10.95	18.39	9.32
Chordata	0.10	0.00	0.00	0.14	0.34	0.00	0.11	0.00	0.42	0.91	0.58	0.57	0.00
Nemertea	0.00	0.00	0.00	0.00	0.00	4.10	0.43	0.27	0.00	0.00	0.00	4.60	0.00

Table 6: Taxonomic Composition (%) of Benthic Survey

Таха	Mar-04	Aug-04	Apr-19	Jun-19	Aug-19	Oct-19	Dec-19	Feb-20	Apr-20	Jun-20	Aug-20	Oct-20	Dec-20
Annelida	514	343	253	124	164	211	214	189	219	183	179	87	143
Sipuncula	5	1	0	0	4	4	0	4	2	3	1	3	3
Arthropoda	72	88	39	17	25	63	52	43	112	22	38	32	59
Echinodermata	4	17	17	10	13	10	6	5	3	6	10	5	8
Cnidaria	11	2	0	2	1	0	3	1	1	2	0	2	0
Mollusca	35	16	48	59	44	26	80	62	45	42	45	32	70
Chordata	0	1	2	2	3	3	0	1	2	3	4	0	1
Nemertea	0	0	1	1	1	2	3	6	4	4	6	8	0
	1 1			1					1				
Таха	Feb-21	Apr-21	Jun-21	Aug-21	Oct-21	Dec-21	Feb-22	Apr-22	1	Aug-22		Dec-22	Feb-23
Annelida	227	288	Jun-21 215	563	192	132	146	126	137	Aug-22 387	Oct-22 266	Dec-22 91	Feb-23 167
	+ +	-							1				
Annelida	227	288	215	563	192	132	146	126	137	387	266	91	167
Annelida Sipuncula	227 7	288 0	215 1	563 0	192 24	132 0	146 0	126 5	137 15	387 0	266 0	91 6	167 0
Annelida Sipuncula Arthropoda	227 7 700	288 0 508	215 1 30	563 0 71	192 24 34	132 0 108	146 0 734	126 5 99	137 15 14	387 0 7	266 0 19	91 6 31	167 0 138
Annelida Sipuncula Arthropoda Echinodermata	227 7 700 3	288 0 508 13	215 1 30 12	563 0 71 10	192 24 34 12	132 0 108 12	146 0 734 4	126 5 99 3	137 15 14 3	387 0 7 2	266 0 19 21	91 6 31 5	167 0 138 16
Annelida Sipuncula Arthropoda Echinodermata Cnidaria	227 7 700 3 0	288 0 508 13 0	215 1 30 12 0	563 0 71 10 0	192 24 34 12 0	132 0 108 12 2	146 0 734 4 0	126 5 99 3 0	137 15 14 3 0	387 0 7 2 0	266 0 19 21 1	91 6 31 5 0	167 0 138 16 0

Table 7: Taxonomic Composition (Abundance) of Benthic Survey

Photos of Macrobenthic Assemblages

Station A

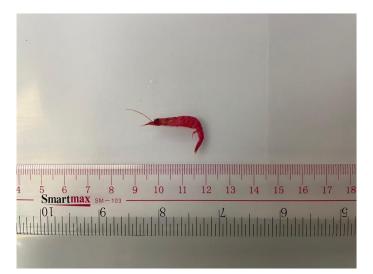
Station B

Station C

Station D

Station E

Station F


Station G

Station H

Photos of Representative Taxa Identified

Juvanile Shrimp

Typhlocarcinus

Timoclea

Paphia (P. undulata)

Ruditapes

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Appendix J

Photos of Grab Samplers

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Appendix K

Environmental Complaints Log

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Nature of Complaint	Investigation
1	28 November 2019	EPD	According to EPD, a member of public complained that SHWSTW cause a malodour and was smelled as far as the Discovery Bay tunnel portal.	As advised by DSD, the operation of Siu Ho Wan Sewage Treatment Works was properly functioned and there was no special activity on 28 th November 2019. Due to the possibility of having unpleasant gases or odours emitted from these non-DSD premises cannot be precluded, the complaint is considered as non-project related.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

Appendix L

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
Air Qu	ality				
NA	4.5	NA	Odour reduction measures like aeration, chemical dosing system shall be implemented to reduce any odour impacts to an acceptable level.	SHWSTW	Implemented
3.4	4.5	NA	Sewage treatment works including sludge thickening tanks, the sludge pump house and sludge press house shall be completely enclosed.	SHWSTW	Implemented
3.4	4.5	NA	Exhaust air shall be ventilated to an odour scrubber prior to discharge. Ventilating air to a biological treatment unit with 95% odour removal efficiency prior to stack exhaust shall be implemented	SHWSTW	Implemented
Water	Quality			·	
3.3	NA	4.01	To avoid impacts on the marine ecology due to effluent discharge, the disinfection facility as in Part B of the EP shall be equipped with an UV disinfection system capable of removing at least 99.9% of E.coli from the sewage	SHWSTW	Implemented
Waste	e Managei	ment			
3.6	NA	NA	Transportation of sludge shall be carried out in fully enclosed containers, or be placed in sludge skips with tarpaulin covers	SHWSTW	Implemented
NA	NA	5.02	Trip-ticket system mentioned shall be implemented. Trip-ticket is required for each truckload delivered to the landfills facilities according to WBTC No. 31/2004.	SHWSTW	Implemented
NA	NA	5.02	The acceptance criteria for Landfill disposal shoula be followed, i.e. solid content of sludge waste should be more than 30%.	SHWSTW	Implemented
NA	NA	5.02	The disposal of grit & debris (if any) generated during primary screening works should follow the requirement set in the WMP Section 4.05.	SHWSTW	Implemented
NA	NA	5.03	The wet sludge should be temporarily stored at the sludge buffer tank. It should then be transported to the centrifuge building for dewatering and discharged to the container for disposal. The whole process should be managed by the automatic electronic electronic system and monitored by the operators during operation.	SHWSTW	Implemented
NA	NA	5.04	The other solid waste material such as sediment and grit, refuse containers or collection bags should be temporarily stored in slips at designated area. Operators should ensure sufficient space is identified and provided for temporary storage of waste materials to facilitate collection. Storage of waste material on site will be kept to a minimum to avoid nuisance to local residents.	SHWSTW	Implemented
NA	NA	5.05	Chemical wastes which likely to be generated by activities arise from the maintenance, shall followed the Waste Disposal (Chemical Waste) (General) Regulation, includes Schedule 1 of the Regulation.	SHWSTW	Implemented
NA	NA	5.06	In case of unlikely occurred chemical spillage, procedures should be followed as according to the WMP Section 5.06.	SHWSTW	Implemented

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
NA	NA	5.07	Temporary storage aareas should be identify and provided for the temporary storage of general refuse to facilitate collection	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes refuse generated on-site will be stored in enclosed bins or compaction units separately	SHWSTW	Implemented
NA	NA	5.07	Sufficient dustbins should be provided for domestic waste if required.	SHWSTW	Implemented
NA	NA	5.07	Domestics wastes should be cleared daily and will be disposed off to the nearest licensed landfill or refuse transfer station.	SHWSTW	Implemented
NA	NA	5.07	Spearate labeled bins should be provided to segregate the waste generated by workforce. Waste recycle collector should be employed to collect the segregated waste	SHWSTW	Implemented
NA	NA	5.07	Cardboard and paper packaging (for plant, equipment and materials) should be recovered on site, properly stockpiled in dry condition and covered to prevent cross contamination by other materials.	SHWSTW	Implemented
NA	NA	5.07	Office waste should be minimized through using papers on both sides. Communication by electronic means should be used as far as possible.	SHWSTW	Implemented
NA	NA	5.07	The burning of refuse on-site is prohibited by law and shall not be undertaken	SHWSTW	Implemented
NA	NA	5.07	Toilet wastewater shall be transported to the STW for treatment	SHWSTW	Implemented
NA	NA	5.07	Arrangement for collection of recyclable materials by recycling contractors should be followed as according to the WMP Section 5.07.	SHWSTW	Implemented
NA	NA	5.08	All recycling materials removed by the recycling contractors should be properly recorded before the removal. The natures and quantities of the recycling materials, the date of removal and the name of the recycling contractor should be recorded.	SHWSTW	Implemented
NA	NA	5.09	To maintain the site in a clean and tidy condition during the operation, general measures specified in the WMP should be implemented on site at all times. Regular site inspections shall be undertaken by the management team to ensure the measures are implemented.	SHWSTW	Implemented
NA	NA	5.10	Daily cleaning should be performed daily after work within the plant and the public areas immediately next to the site.	SHWSTW	Implemented
NA	NA	5.11	The work officer in charge of the corresponding area should perform daily inspection on the items mentioned in the WMP Section 5.10. If observations were discovered, the work officer should record the result of the inspection on an inspection checklist with photos taken and submitted to the inspectors or Chief Technical Officer for review on the following day. Any deficient should be rectified promptly.	SHWSTW	Implemented
NA	NA	5.12	Weekly tidying should be performed weekly within the site.	SHWSTW	Implemented
NA	NA	5.13	The inspector should perform Weekly Inspection on the items mentioned in the WMP Section 5.12. If observations were discovered, the work officer should record the result on an inspection checklist	SHWSTW	Implemented

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0041/17/ED/0704A

EP Ref.	EIA Ref.	WMP Ref.	Environmental Protection Measures	Location of the measures	Implementation Status
			and submitted to the Chief Technical Officer for review on the following day. Any deficieny should be rectified promptly.		
NA	NA	5.14	All wastes generated through the operational phase will be manages in accordance with the protocols set out in the WMP Section 5.14.	SHWSTW	Implemented