

ENVIRONMENTAL MONITORING AND AUDIT REPORT

<u>FOR</u>

CONTRACT No. CV/2002/13

FILL BANK AT TUEN MUN AREA 38

JULY 2004

(Revision No. 0)

Report No.: ET12232

Certified by:	Mr. Chris Shenfield	Date:	11/08	3/04
100	Environmental Team Leader	\$ 0	*	
	for Stanger Asia Limited	E		
	40 COSCO 40	10 TO	8	25
	1-	£ ,	16/1	/•¥
Verified by:		Date;		200
	Mr. Joseph T. L. Poon	10 20	180 VINO 11	
88	Independent Environmental Ch	antrian .	1 82 . .	

for MateriaLab Consultants Ltd.

CONTENTS

		Page
EXE	CUTIVE SUMMARY	1
1.	INTRODUCTION	
1.1	Background	4
1.2	Report Structure	4
2.	PROJECT INFORMATION	
2.1	Site Description	5
2.2	Project Organization	5
2.3	Construction Programme	5
3.	ENVIRONMENTAL PERMITS AND LICENSES	6
4.	SUMMARY OF EM&A REQUIREMENTS	
4.1	Air Quality	6
4.2	Water Quality	8
4.3	Event and Action Plan	10
5.	IMPLEMENTATION STATUS OF ENVIRONMENTAL	
	MITIGATION MEASURES	10
6.	MONITORING RESULTS	
6.1	Completed Monitoring Works	11
6.2	Air Quality Monitoring	12
6.3	Water Quality Monitoring	13
7.	AUDIT REPORT	
7.1	Air Quality Monitoring	13
7.2	Water Quality Monitoring	13
7.3	Site Inspections	14
7.4	Landscape and Visual	15
8.	WASTE MANAGEMENT	15
9.	COMPLAINTS, NOTIFICATIONS OF SUMMONS AND SUCCESSFUL PROSECUTIONS	15
		13
10.	FUTURE KEY ISSUES	15
11.	CONCLUSION	16
LIST	T OF FIGURES	
2.1	The Site Layout Plan	
4.1	Air Quality Monitoring Stations	
4.2	Water Quality Monitoring Stations	

LIST OF FIGURES (Continued)

- 6.1 Graphical Plot for 24-hour TSP Levels
- 6.2 Graphical Plot for 1-hour TSP Levels
- 6.3 Graphical Plot for Surface and Middle Averaged Dissolved Oxygen Mid Flood Tide
- 6.4 Graphical Plot for Surface and Middle Averaged Dissolved Oxygen Mid Ebb Tide
- 6.5 Graphical Plot for Bottom Dissolved Oxygen Mid Flood Tide
- 6.6 Graphical Plot for Bottom Dissolved Oxygen Mid Ebb Tide
- 6.7 Graphical Plot for Turbidity Mid Flood Tide
- 6.8 Graphical Plot for Turbidity Mid Ebb Tide
- 6.9 Graphical Plot for Suspended Solids Mid Flood Tide
- 6.10 Graphical Plot for Suspended Solids Mid Ebb Tide

TABLES

Гable 3.1	Summary of the Environmental Permits and Licenses
Γable 4.1	Co-ordinates of Air Quality Monitoring Stations
Γable 4.2	Air Quality Monitoring Frequency
Γable 4.3	Action and Limit Levels for the project
Гable 4.4	Water Quality Monitoring Frequency
Γable 4.5	Action and Limit Level for Water Quality
Гable 6.1	Completed Monitoring Works for July 2004
Гable 6.2	Results of 24-hour TSP Monitoring
Гable 6.3	Results of 1-hour TSP Monitoring
Гable 6.4	Summary of Water Quality Monitoring Data
Гable 7.1	Summary of Findings, Actions and Outcomes of Site Inspection by ET
Γable 7.2	Summary of Findings, Actions and Outcomes of Site Inspection by IEC
Гable 10.1	Works Programme for August 2004

APPENDICES

- I Organization Chart
- II Calibration Certificates of the Monitoring Equipment
- III Event and Action Plans
- IV Implementation Status of Mitigation Measures
- V Air Quality Monitoring Results
- VI Water Quality Monitoring Results
- VII Complaint Log
- VIII Cumulative Statistics on Complaints, Notifications of Summonses and Successful Prosecutions
- IX Master Construction Programme
- X Monitoring Schedule for the following month
- XI Wind Speed and Direction Data

EXECUTIVE SUMMARY.

This is the 13th monthly Environmental Monitoring and Audit (EM&A) report for Contract No. CV/2002/13 – Fill Bank at Tuen Mun Area 38. The site has been in operation as a public filling area as part of the reclamation. The site is 24 hours operated except during the Chinese New Year holidays to provide a stable outlet for public fill to serve the construction industry. This report covers the monitoring works conducted during the month of July 2004.

Construction Activities for the Reported Period.

- Public fill operation.
- Operation of tipping hall.
- Hydroseeding to slope surface.

Air Quality Monitoring.

Two stations (A1 and A2) have been identified as the locations for the monitoring of 24-hour and 1-hour Total Suspended Particulates (TSP). In this reporting period, the monitoring of 24-hour TSP was carried out on six occasions at A1 and A2. Monitoring of 1-hour TSP was carried out on eighteen occasions at A1 and A2. There was no exceedance to the set action or limit levels for both parameters at both stations.

Water Quality Monitoring.

Water quality in terms of turbidity, dissolved oxygen, suspended solids, temperature, and salinity, was carried out on twelve occasions during flood tide and ebb tide at FM1, FM2, FC1 and FC2 in this reporting period. There was no exceedance to the set action or limit level for all parameters at all stations. Monitoring on 16.07.2004 was cancelled due to adverse weather condition.

Landscape Audit.

Hydroseeding was applied to most completed slopes. There was no specific site observation regarding the landscape aspect during the reporting period.

Waste Management.

189,000m³ public fill was collected to the Fill Bank. 39.91t C&D waste and general refuse were disposed of at WENT Landfill. 0.472t chemical waste was collected by licensed collector on 21.07.2004.

Complaints and Notifications of Summonses and Successful Prosecutions.

One complaint was received on 29.06.2004 about dust generation in the Fill Bank. The situation was rectified by the Contractor.

No complaints or notification of summonses was received this reported period.

Site Inspections.

Four weekly site inspections were conducted on 9th, 14th, 24th and 31st July 2004. Major observations are summarised in the following table.

Observations	Actions by Contractor	Outcome
Drainage system was	Cleaned up the deposit regularly.	Deposit in the drainage was
blocked by deposit.		cleaned up.
(14.07.2004)		(31.07.2004)
Debris was observed in the	To clean up the debris in the	To be observed in next
sediment tanks.	sedimentation system regularly.	reporting period.
(31.07.2004)		
The engine cover of	To ensure all cover of excavators	To be observed in next
excavator was opened during	are closed.	reporting period.
operation		
(31.07.2004)		
Haul roads were dusty.	Sprayed more water on dusty area.	Situation improved.
(14.07.2004)		(24.07.2004)

An Independent Environmental Checker (IEC) audit was conducted on 14th July 2004 with the Environmental Team. Major observations are summarized in the following table.

Observations	Actions by Contractor	Outcome	
Splashing generated from wet	Raised nets to retain material and	To be observed in next	
soils during transfer to the	instructed barges to berth as close	reporting period.	
barge at the tipping hall has	to the seawall as possible.		
caused splashing into the sea.			
Pondings were observed at	Drain away the stagnant water.	Some pondings were filled.	
various locations.		(31.07.2004)	
The wheel washing bay near	Maintained the drainage system	Situation rectified.	
the main entrance was	to avoid flooding.	(24.07.2004)	
flooded.			
Water sprinkling was weak.	Sprayed more water on dusty area	Situation improved.	
Dust emission from traffic on		(24.07.2004)	
haul roads along the western			
side and seafront, and haul			
roads to the tipping hall and			
sorting facility on RTT side.			
The western side of the fill	To arrange hydroseeding on that	To be observed in next	
bank was only partially	portion upon slope trimming	reporting period.	
hydroseeded.	works completed.		
Vegetation, as well as	Removed the debris and	Deposit in the drainage was	
stagnant water, was observed	vegetation to drain away stagnant	cleaned up.	
in the u-channel and sand/silt	water regularly.	(31.07.2004)	
traps.			
Trucks were travelling at	Reminded all truck drivers to	No speeding vehicles was	
speed greater than 10 km/hr	adhere to speed limit.	noted.	
which enhanced dust		(24.07.2004)	
emission.			

Future Key Issues.

The tentative works activities, predicted impacts and areas of environmental concern for the following month are summarised in the following table.

Works Activities	Predicted Impacts	Proposed Mitigation Measures
Public filling	- Dust	- Dampening of fill materials and exposed area.
operation.	- Water	 Avoid stockpiling fill materials near seafront. Avoid spillage of fill materials into the marine water.
Operation of tipping hall for unloading	- Dust - Water	- The tipping halls shall be top and 3-sides enclosed.
public fill into barges.		- Avoid spillage of fill materials into the marine water.
Construction of drainage system.	- Dust - Noise	- Apply water spray during excavation and earth moving.
	- Water	- Comply with the conditions of construction noise permit.
		- Treat all wastewater to acceptable prior to discharge.
Construction of new	- Dust	- Apply water spray during excavation and earth
tipping hall.	- Noise	moving.
	- Water	- All wastewater should be collected and treated to acceptable prior to discharge.

1. INTRODUCTION.

1.1 Background.

Stanger Asia Ltd. has been commissioned by the Penta-Ocean Construction Co. Ltd. to provide an Environmental Team (ET) to monitor air and water quality and audit landscape works for Contract No.CV/2002/13. The team is to take a pro-active role in all issues, which may be of environmental concern during the establishment, operation and decommissioning phases of the Fill Bank at Tuen Mun Area 38.

The Independent Environmental Checker (IEC) appointed for this project is Materialab Consultants Ltd.

In this report, the air and water quality monitoring works and landscape audit conducted for the July 2004 will be detailed and reviewed. All monitoring works were carried out in accordance to "Agreement No, PW 01/2002 Project Profile for Fill Bank at Tuen Mun Area 38, Environmental Monitoring and Audit Manual".

1.2 Report Structure.

The purpose of this report is to detail and review the air and water quality monitoring works and landscape audit undertaken during July 2004. The impact forecast for the next reporting month and the schedules of monitoring works for the following month is also given.

The report follows the format given below:

Section 1	Introduction and background information to the content of this report.
Section 2	This section gives the information of the project.
Section 3	This section summarises all the environmental permits and
	licenses.
Section 4	Summary of the EM&A requirements is presented.
Section 5	This section details the implemented mitigation measures.
Section 6	Details monitoring results.
Section 7	Audit the monitoring results.
Section 8	The status for solid and liquid waste management for the site is overviewed.
Section 9	Complaints, notifications of summons and successful prosecutions are summarized.
Section 10	This section gives the predicted impacts of the construction activities.
Section 11	This section gives a conclusion in relation to all monitoring activities.

2. PROJECT INFORMATION.

2.1 Site Description.

The works mainly comprise the construction of temporary storm water system, setting up of C&D material loading/unloading facilities, setting up/ refurnishing site facilities, stockpiling of 4.9 million m³ of public fill, and decommissioning of the temporary fill bank.

The site layout plan is shown in Figure 2.1.

2.2 Project Organization.

Mr. L.M. Chan is the Engineer's Representative for the Civil Engineering Department, Government of the HKSAR. (Tel: 2762 5602, Fax: 2714 0113).

The Independent Environmental Checker (IEC) for this project is headed by Mr. Joseph Poon - Manager of Materialab Consultants Ltd. (Tel: 2450 8238, Fax: 2450 6138).

Mr. Lok Wah Fung is the Site Agent for Penta-Ocean Construction Co., Ltd. (Tel: 2491 1584, Fax: 2496 0433).

The Environmental Team (ET) for the project is Stanger Asia Ltd. The team is headed by Mr Chris Shenfield – Senior Environmental Scientist. (Tel: 2682 1203, Fax: 2682 0046).

The Organization Chart with the key personnel contacts names and telephone numbers is given in Appendix I.

2.3 Construction Programme.

The overall construction programme is given in Appendix IX. Details of the construction activities are listed below.

- Site clearance;
- Construction of storm water drainage system;
- Stockpiling of 4.9 million m³ of public fill;
- Construction of landscape works; and
- Removal of stockpiled public fill.

3. ENVIRONMENTAL PERMITS AND LICENSES.

The summary of the status of all environmental permits, licenses and notification for this project as at July 2004 is summarized in the following table.

Table 3.1 Summary of the Environmental Permits and Licenses

Description	Licence/Permit	Date of	Date of	Status
Bescription	No.	Issue	Expiry	Status
			Expiry	~
Environmental Permit	EP-153/2003	13-Feb-03		Superseded
Registration of Chemical	WPN5296-421-	05-Aug-03		Issued
Waste Producer	P2800-03			
Amended	EP-153/2003/A	30-Oct-03		Issued
Environmental Permit				
Construction Noise	GW-TW0143-04	15-May-04	14-Nov-04	Issued
Permit				

4. SUMMARY OF EM&A REQUIREMENTS.

4.1 Air Quality.

Monitoring Location.

The project has two designated locations (A1 & A2) for the monitoring of air quality. A1 is a fixed location in the vicinity of the site office to monitor the TSP levels at River Trade Terminal and A2 is a movable location to the western boundary of the site that is designed to move as works progress. The air monitoring locations are shown in Figure 4.1.

Table 4.1 Coordinates of Air Quality Monitoring Stations

Station	HK Metric Grid – Easting	HK Metric Grid - Northing
A1	811368	825593
A2	810812*	825096*

^{* -} Coordinates of present location.

Methodology

Measurement of 24-hour and 1-hour TSP levels were carried out in accordance to the high volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50). When positioning the high volume samplers, the following requirements have been observed:

- a horizontal platform with appropriate support to secure the high volume sampler against gusty wind, should be provided;
- horizontal distance between the high volume samplers and an obstacle, such as buildings, must be at least twice the height of the obstacle protruding above the high volume samplers;
- a minimum separation of 2 m should be provided from walls, parapets, and penthouses for rooftop high volume samplers;
- a minimum separation of 2 m should be provided from any supporting structure measured horizontally;
- there should not be any furnace or incinerator flues nearby;

- there should be unrestricted airflow around the high volume samplers;
- a minimum separation of 20 m should be provided from the dripline;
- any wire fence and gate employed to protect the high volume samplers should not cause any obstruction during monitoring.

All relevant data including temperature, pressure, weather conditions, elapsedtimer meter reading for the start and finish of the sampling period, identification and weight of the filter paper, and other special phenomena were recorded.

Monitoring Equipment and Calibration Details.

Andersen GMW Model GS2310 high volume samplers were used to carry out the monitoring of 24-hour and 1-hour TSP. The high volume sampler is in compliance with the specifications as listed in the Environmental Schedule, given below:

- $0.6 1.7 \text{ m}^3/\text{min}$ (20-60 SCFM) adjustable flow range;
- equipped with a timing / control device with 5 minutes accuracy over 24 hours operations;
- installed with elapsed-time meter with 2 minutes accuracy over 24 hours operations;
- capable of providing a minimum exposed area of 406 cm² (63 in²);
- flow control accuracy: 2.5% deviation over 24-hr sampling period;
- equipped with shelter to protect the filter and sampler;
- incorporated with an electronic mass flow rate controller or other equivalent devices;
- equipped with a flow recorder for continuous monitoring;
- provided with peaked roof inlet, incorporated with manometer;
- able to hold and seal the filter paper to the sampler housing at horizontal position;
- easy to change filter; and
- capable of operating continuously for 24-hr period.

The high volume sampler is calibrated at bi-monthly intervals. The calibration kit (Andersen Model G2535) comprising pressure plates and a transfer standard is traceable to the internationally recognized standard. Calibration records for the high volume sampler is given in Appendix II of this report.

Laboratory Measurement.

Laboratory measurements were carried out in Stanger Asia Ltd. own HOKLAS accredited laboratory with constant temperature and humidity control, and equipped with necessary measuring and conditioning instruments.

Clean filter papers of size 8"x10" with no pinholes were labelled before sampling. They were conditioned in a dessicator with less than 50% relative humidity for over 24 hours and pre-weighed before use for sampling.

After sampling, the filter papers loaded with dust were kept in a clean and tightly sealed plastic bag. The filter papers were then returned to the laboratory for reconditioning in the dessicator with less than 50% relative humidity

followed by accurate weighing on an electronic balance regularly calibrated against a traceable standard and readable to 0.1 mg.

Stanger Asia Ltd. operates comprehensive quality assurance and quality control programmes. For QA/AC procedures, all filters were equilibrated and weighed repeatedly until the difference of two consecutive results was less than 0.5 mg.

Monitoring Parameters Frequency.

Table 4.2 Air Quality Monitoring Frequency

Monitoring Locations	Parameter	Frequency	
A1 & A2	24-hr TSP	Once in every six days	
	1-hr TSP	Three times in every six days	

Action and Limit Levels.

The Action levels for air quality monitoring were established from the impact monitoring data of Contract No. CV/2000/01 prior to the commencement of the fill bank utilising the criteria laid out in *section 4.7* of the EM&A Manual for the project. The Limit levels for air quality monitoring has been set in line with statutory guidelines for air quality in Hong Kong. Action and Limit levels for both 24-hour and 1-hour TSP are given in the following table.

Table 4.3 Action and Limit Levels for the Project

Parameter Monitored	Action Level, μg/m ³	Limit Level, µg/m ³
1-hour TSP	344	500
24-hour TSP	192	260

4.2 Water Quality.

Monitoring Locations.

The EM&A Manual produced for this project has proposed two monitoring stations (FM1 & FM2) and two control stations (FC1 & FC2) for the carrying out of water quality monitoring. Control Station FC1 will act as upstream control station for the mid-ebb tide with control station FC2 acting as upstream control stations for the mid-flood tide.

The designated monitoring stations are shown in Figure 4.2.

Methodology.

Measurements are taken at three water depths, namely 1m below water surface, mid-water and 1m above seabed at both mid-flood and mid-ebb tides, except where the water depth less than 6m, when the mid-depth station may be omitted. Should the water depth have been less than 3m, only the mid-depth was monitored.

Two measurements of turbidity, dissolved oxygen (mg/L), dissolved oxygen (% saturation) and temperature at each depth of each station is taken. The probes

are removed from the water after the first measurement and then redeployed for the second measurement. If the difference in value between the first and second reading of each set is more than 25% of the value of the first reading, the readings are discarded and further readings taken. Replicate samples of suspended solids measurements are taken at each depth and at each water quality monitoring and control station. The samples are kept in a chilled condition during delivery to the laboratory ad before commencement of analysis. For the purpose of evaluating the water quality, all values for suspended solids and turbidity shall be depth-averaged.

During monitoring works the following shall also be recorded:

- monitoring location;
- depth of water;
- time;
- weather conditions including ambient temperature;
- water temperature;

Monitoring Equipment.

The following equipment was employed for routine water quality monitoring.

- Dissolved Oxygen meter: YSI model 58 with stirrer

- Turbidity meter: Hach 2100P

Echo sounder: Hummingbird 100SX
 Water sampler: Kahlisco 135WB203
 GPS receiver: Trimble NT2002D
 Thermometer: YSI model 58

Monitoring Equipment Calibration Details.

All on-site monitoring equipment was calibrated three-monthly at Stanger Asia's HOKLAS accredited laboratory. An on-site calibration check was carried out prior to the taking of measurements in accordance with standard water quality monitoring procedures.

Equipment calibration details were given in Appendix II.

Laboratory Analysis.

The laboratory measurements of suspended solids were carried out at Stanger Asia Limited, a HOKLAS accredited laboratory in accordance with Method No. 2540D 17th Edition of APHA.

Stanger Asia operates a comprehensive quality assurance and quality control programmes for QA/AC procedures in accordance with the requirements of HOKLAS accreditation, all filters were equilibrated and weighted repeatedly until the difference of two consecutive results is less than 0.5 mg.

Monitoring Parameters and Frequency.

Table 4.4 Water Quality Monitoring Frequency

Monitoring Locations	Monitoring	Frequency	Requirements
8	Parameters	1	1.
Designated Control	Temperature,	Three	At three depths during
Stations: FC1 & FC2.	Salinity,	days per	mid-ebb and mid-
	Dissolved Oxygen,	week.	flood tides.
Designated Monitoring	Turbidity,		
Stations: FM1 & FM2.	Suspended Solids.		

Action and Limit Levels.

The Action and Limit levels for water quality monitoring were established from the impact monitoring data of Contract No. CV/2000/01 prior to the commencement of the fill bank utilising the criteria laid out in *section 6.8* of the EM&A Manual for the project.

Table 4.5 Action and Limit Level for Water Quality

Parameter	Action level	Limit level
Dissolved Oxygen in mg/L.		
Surface & Middle	<4.78mg/L	<4mg/L
Bottom.	<4.16mg/L	<2mg/L
Suspended Solids (SS)	>120% of upstream control	>130% of upstream control
in mg/L	station's SS at the same time of	station's SS at the same tide
(depth-averaged)	the same day.	of the same day.
Turbidity (Tby) in	>120% of upstream control	>130% of upstream control
NTU	station's Tby at the same tide	station's Tby at the same tide
	of the same day.	of the same day.

All the figures given in the table are used for reference only and the EPD may amend the figures whenever necessary.

4.3 Event and Action Plans.

The Event and Action Plans for air and water are attached in Appendix III of this report.

5. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES.

The contractor implemented various environmental mitigation measures as recommended in the Project Profile and Environmental Permit. The implementation status is attached in Appendix IV and summarised as follows:

- Wheel washing facilities were provided at the exit point of the site and the wheel washing bay was cleared regularly.
- Slopes were compacted as far as practicable.
- Site accesses were covered with concrete.

- Waste collection points were maintained and cleaned on a regular basis.
- Hoarding was erected along Lung Mun Road and near River Trade Terminal.
- Some oil drums were placed in drip trays.
- Water trucks and road sweepers were in operation.
- Buffer trees were planted.
- Speed limit warning signs were posted.
- Sea blocks were placed along the seawall and debris was removed regularly.
- Hydroseeding was in progress.

6. MONITORING RESULTS.

6.1 Completed Monitoring Works.

Table 6.1 gives the completed monitoring works for the reported period.

Table 6.1 Completed Monitoring Works for July 2004

	Table 6.1	Completea M	onitoring wo	rks for July 2	004	
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				July 1	2	3
				-	1 - hr TSP	
					24 – hr TSP	
					WQM	
					(Ebb: 12:49)	
					(Flood: 20:15)	
4	5	6	7	8	9	10
				1 - hr TSP		
				24 - hr TSP		
		WQM		WQM		WQM
		(Ebb: 16:05)		(Ebb: 17:38)		(Ebb: 07:56)
		(Flood: 08:58)		(Flood: 10:55)	Site Inspection	(Flood: 13:30)
11	12	13	14	15	16	17
			1- hr TSP			
			24 - hr TSP			
			WQM			
	WQM		(Ebb: 11:23)			
	(Ebb: 09:59)		(Flood: 18:44)			
	(Flood: 16:36)		Site Inspection			
18	19	20	21	22	23	24
		1 – hr TSP				
		24 – hr TSP				WQM
		WQM		WQM		(Ebb: 17:26)
		(Ebb: 14:58)		(Ebb: 16:06)		(Flood: 10:58)
		(Flood: 07:48)		(Flood: 09:13)		Site Inspection
25		27	28	29	30	31
	1 – hr TSP					Site Inspection
	24 – hr TSP					Landscape
	WQM		WQM		WQM	Audit
	(Ebb: 07:37)		(Ebb: 09:55)		(Ebb: 11:47)	1 – hr TSP
	(Flood: 14:05)		(Flood: 17:33)		(Flood: 19:21)	24 – hr TSP

Notes:

- 1. 24 -hr TSP (monitored once every 6 days) at monitoring locations A1 and A2.
- 2. 1 hour TSP (monitored three times every six days when highest level of dust generation expected) at monitoring locations A1 and A2.
- 3. WQM water quality monitoring three times per week, on mid-flood and mid-ebb tides. Days of monitoring to be separated by at least 36 hours. Monitoring locations FC1, FM1, FM2 & FC2.
- 4. Site inspections to be carried out once per week.
- 5. Auditing of landscape works to be carried out once per month.

6.2 Air Quality Monitoring.

Impact monitoring of 24-Hour TSP was conducted on six occasions at A1 and A2, with the monitoring of 1-Hour TSP being conducted on eighteen occasions at A1 and A2 this reported period.

The monitoring records for 24-hour and 1-hour TSP are given in the following table. Details of monitoring results are given in Appendix V. The results are presented graphically in Figures 6.1 and 6.2.

Table 6.2 Results of 24-hour TSP Monitoring

Date	A1, μg/m ³	Exceedance (Y/N)	A2, μg/m ³	Exceedance (Y/N)
02/07/2004	73	N	61	N
08/07/2004	120	N	93	N
14/07/2004	172	N	38	N
20/07/2004	45	N	148	N
26/07/2004	106	N	136	N
31/07/2004	73	N	30	N
Action Level	192 µg/m3			
Limit Level	260 μg/m³			

Table 6.3 Results of 1-hour TSP Monitoring

Date	A1, $\mu g/m^3$	Exceedance	A2, $\mu g/m^3$	Exceedance
	111, µg/111	(Y/N)	112, µg III	(Y/N)
02/07/2004	252	N	187	N
02/07/2004	199	N	43	N
02/07/2004	242	N	58	N
08/07/2004	221	N	90	N
08/07/2004	137	N	223	N
08/07/2004	147	N	209	N
14/07/2004	117	N	112	N
14/07/2004	234	N	106	N
14/07/2004	172	N	170	N
20/07/2004	66	N	97	N
20/07/2004	40	N	90	N
20/07/2004	115	N	138	N
26/07/2004	44	N	164	N
26/07/2004	42	N	179	N
26/07/2004	70	N	209	N
31/07/2004	38	N	108	N
31/07/2004	31	N	65	N
31/07/2004	86	N	35	N
Action Level	344 µg/m ³			
Limit Level	500 μg/m ³			

Wind speed and direction data from the wind station is given in Appendix XI.

6.3 Water Quality Monitoring.

Water quality monitoring was carried out on twelve occasions during flood tide and ebb tide at FM1, FM2, FC1 and FC2.

Results for water quality monitoring are summarised in the following tables. Details of monitoring results are presented in Appendix VI. Graphical presentations of the results are shown in Figure 6.3 – Figure 6.10.

Table 6.4 Summary of Water Quality Monitoring Data

Sample	Surface & Middle	Bottom Averaged	Depth Averaged	Depth Averaged
Location	Averaged	Dissolved	Turbidity	Suspended
	Dissolved Oxygen	Oxygen		Solids
	(Range), mg/L	(Range), mg/L	(Range), NTU	(Range), mg/L
FM1	6.75	6.41	4.65	8.50
	(6.26-7.34)	(5.82-7.18)	(1.17-14.24)	(4.3-16.5)
FM2	6.74	6.40	4.41	8.10
	(6.28-7.29)	(5.62-7.15)	(1.38-16.70)	(4.0-16.3)
FC1	6.71	6.35	4.79	8.80
	(6.26-7.25)	(5.56-7.14)	(1.83-16.31)	(4.5-17.5)
FC2	6.67	6.29	4.41	8.60
	(6.19-7.23)	(5.60-7.08)	(1.64-11.21)	(3.7-15.7)

7. AUDIT REPORT.

7.1 Air Quality Monitoring.

No exceedance to set action or limit levels for either 24 or 1-Hour TSP monitoring was recorded at air monitoring station A1 and A2 in this reported period.

7.2 Water Quality Monitoring.

There was no exceedance to the Action and Limit Level for water quality parameters in this reported period.

7.3 Site Inspections.

Four weekly site inspections were conducted on 9th, 14th, 24th and 31st July 2004. Observations by ET, action by the Contractor and outcome are summarised in the following table.

 Table 7.1
 Summary of Findings, Actions and Outcomes of Site Inspection by ET

Observations	Actions by Contractor	Outcome
Drainage system was	Cleaned up the deposit regularly.	Deposit in the drainage was
blocked by deposit.		cleaned up.
(14.07.2004)		(31.07.2004)
Debris was observed in the	To clean up the debris in the	To be observed in next
sediment tanks.	sedimentation system regularly.	reporting period.
(31.07.2004)		
The engine cover of	To ensure all cover of excavators	To be observed in next
excavator was opened during	are closed.	reporting period.
operation		
(31.07.2004)		
Haul roads were dusty.	Sprayed more water on dusty area.	Situation improved.
(14.07.2004)		(24.07.2004)

The Independent Environmental Checker (IEC) conducted at audit on 14th July 2004. The major observations were summarized in the following table.

Table 7.2 Summary of Findings, Actions and Outcomes of Site Inspection by IEC

Observations	Actions by Contractor	Outcome
Splashing generated from wet	Raised nets to retain material and	To be observed in next
soils during transfer to the	instructed barges to berth as close	reporting period.
barge at the tipping hall has	to the seawall as possible.	
caused splashing into the sea.		
Pondings were observed at	Drain away the stagnant water.	Some pondings were filled.
various locations.		(31.07.2004)
The wheel washing bay near	Maintained the drainage system	Situation rectified.
the main entrance was	to avoid flooding.	(24.07.2004)
flooded.		
Water sprinkling was weak.	Sprayed more water on dusty area	Situation improved.
Dust emission from traffic on		(24.07.2004)
haul roads along the western		
side and seafront, and haul		
roads to the tipping hall and		
sorting facility on RTT side.		
The western side of the fill	To arrange hydroseeding on that	To be observed in next
bank was only partially	portion upon slope trimming	reporting period.
hydroseeded.	works completed.	
Vegetation, as well as	Removed the debris and	Deposit in the drainage was
stagnant water, was observed	vegetation to drain away stagnant	cleaned up.
in the u-channel and sand/silt	water regularly.	(31.07.2004)
traps.		
Trucks were travelling at	Reminded all truck drivers to	No speeding vehicles was
speed greater than 10 km/hr	adhere to speed limit.	noted.
which enhanced dust		(24.07.2004)
emission.		

7.4 Landscape and Visual.

A landscape audit was conducted on 31st July 2004. There was no specific site observation regarding the landscape aspect during the reporting period.

8. WASTE MANAGEMENT.

189,000m³ public fill was collected to the Fill Bank. 39.9t C&D waste and general refuse were disposed of at WENT Landfill. 0.472t chemical waste was collected by licensed collector on 21.07.2004.

9. COMPLAINTS, NOTIFICATIONS OF SUMMONSES AND SUCCESSFUL PROSECUTIONS.

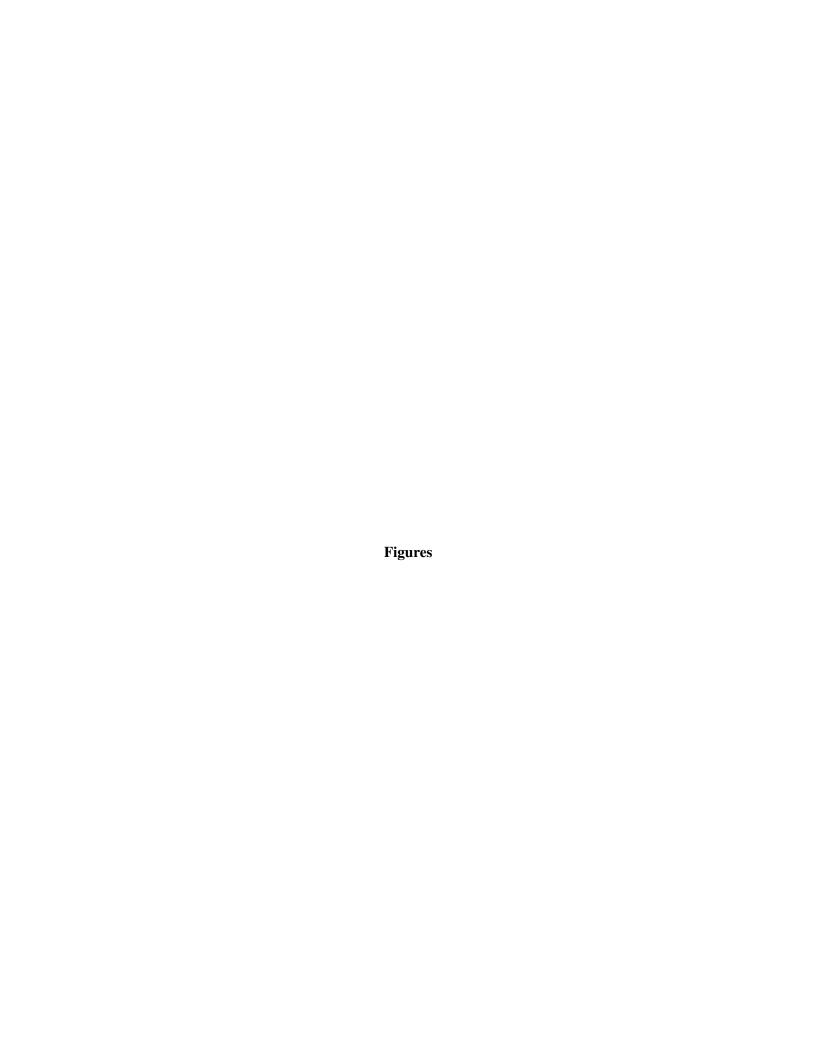
One complaint was received on 29.06.2004 about dust generation in the Fill Bank. The situation was rectified by the Contractor.

No complaint was received this month. Complaint Log is attached in Appendix VII. Cumulative statistics on complaints, notifications of summonses and successful prosecutions are attached in Appendix VIII.

10. FUTURE KEY ISSUES.

The following are the scheduled construction activities for the next reported period. Scheduled monitoring activities for the following month are given in Appendix IX.

Table 10.1 Works Programme for August 2004


Works Activities	Predicted Impacts	Proposed Mitigation Measures
Public filling	- Dust	- Dampening of fill materials and exposed area.
operation.	- Water	- Avoid stockpiling fill materials near seafront.
		- Avoid spillage of fill materials into the marine
		water.
Operation of tipping	- Dust	- The tipping halls shall be top and 3-sides
hall for unloading	- Water	enclosed.
public fill into		- Avoid spillage of fill materials into the marine
barges.		water.
Construction of	- Dust	- Apply water spray during excavation and earth
drainage system.	- Noise	moving.
	- Water	- Comply with the conditions of construction
		noise permit.
		- Treat all wastewater to acceptable prior to
		discharge.
Construction of new	- Dust	- Apply water spray during excavation and earth
tipping hall.	- Noise	moving.
	- Water	- All wastewater should be collected and treated
		to acceptable prior to discharge.

11. CONCLUSION.

All results for the air quality monitoring conducted this month were acceptable with no exceedance to set action or limit levels for either 24 or 1-hour TSP.

In relation to the monitoring of water quality, there was no record of exceedance to the set Action and Limit Level during this reporting period.

No specific observation was reported from landscape audit.

Stanger Asia NVER TRADE ben connected STOCKPLING IRLA THE REAL PROPERTY. The red to sell take over

Figure 2.1 - The Site Layout Plan

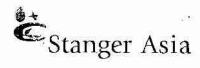
The copyright of this report is owned by Stanger Asia Limited. If may not be reproduced expect with the prior written approval of issuing laboratory.

GP., 16, 8-36-, DR-Wall instituted Building, 13-On Circen Street, Fanting, New Territories, HONG KONG, Lot 867-7687 1703 and 852-2582 0046 E-mail address stanger extanger.com.like

Stanger Asia SETTEN: OUT OFFAR S

POOT 1 NEETBAR CATHO

1 ASSESSED FEETBAR


C BERNAYS STREET

C SECTION STREET

C S STOCKPILING AREA LIME THE PLOT NO NEWS TWOM

Figure 4.1 – Air Quality Monitoring Stations

The copyright of this report is owned by Stanger Asia Limited. It may not be reproduced expect with the prior written approval of issuing laboratory.

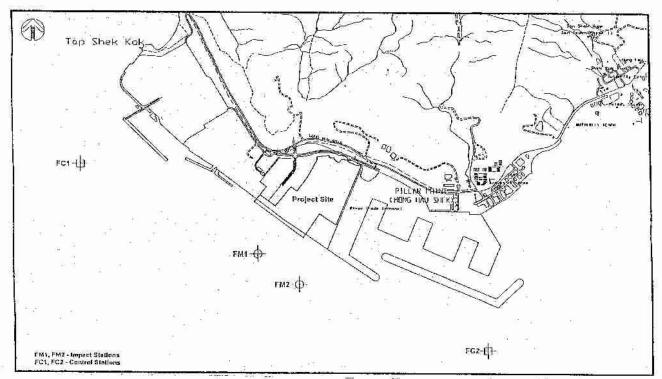


Figure 4.2 - Water Quality Monitoring Stations

The emptyight of this report is owned by Stanger Airs kimited. In may not be reproduced expect with the prior written approval of issuing laboratory.

Get, 196, 8-16, Din Wai Industrial Building, 31 On Chirn Street, Parling, New Territories, IDNG KONG, Tult 857, 7637, 196, 8-26, 2802 0016 E-mail address stangersstanger conship.

Figure 6.1 - Graphical Plot for 24-hr TSP

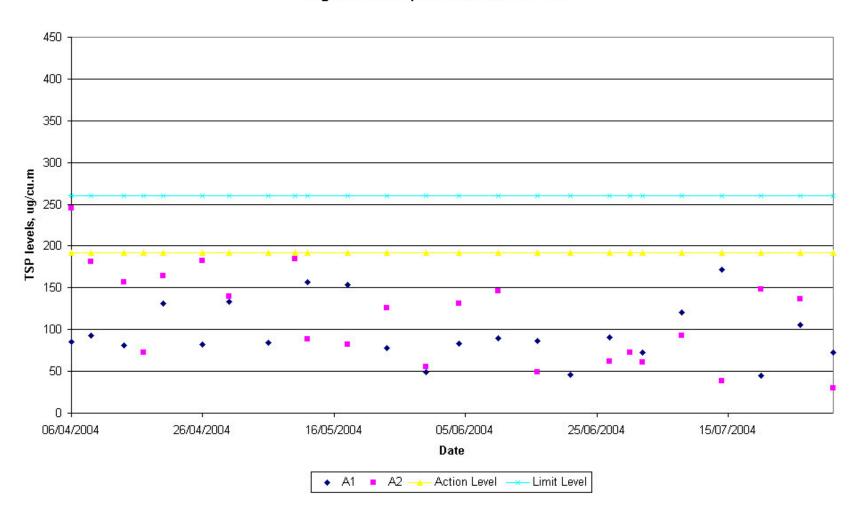


Figure 6.2 - Graphical Plot for 1-hr TSP

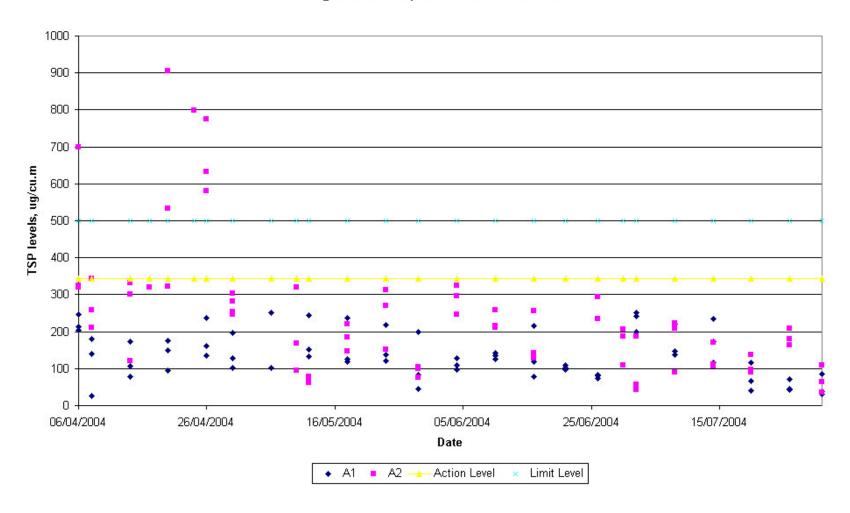


Figure 6.3 - Surface and Middle Averaged Dissolved Oxygen - Mid-Flood

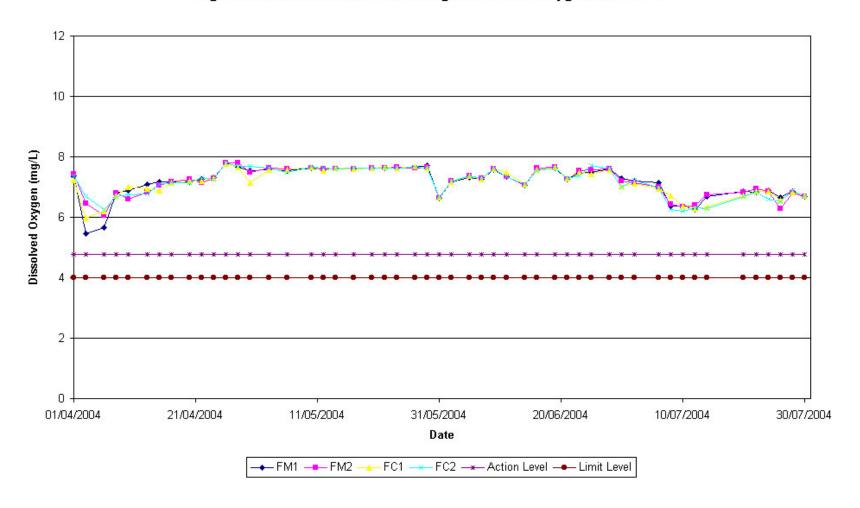


Figure 6.4 - Surface and Middle Averaged Dissolved Oxygen - Mid-Ebb

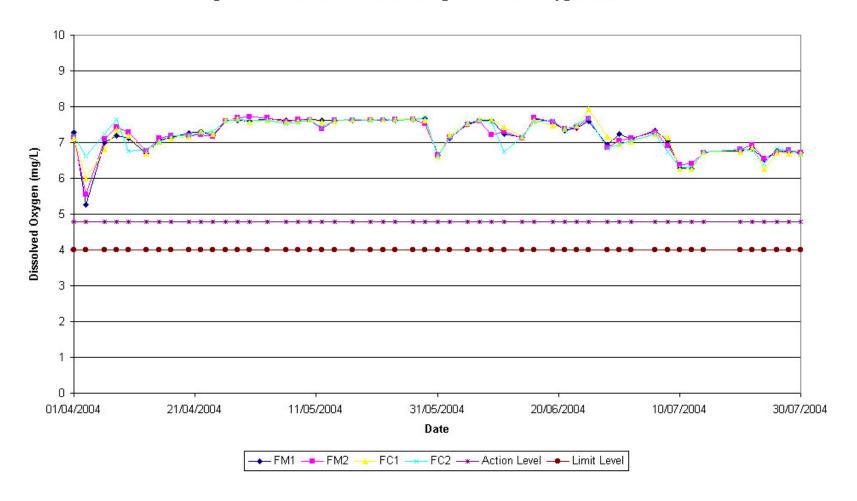


Figure 6.5 - Bottom Averaged Dissolved Oxygen - Mid-Flood

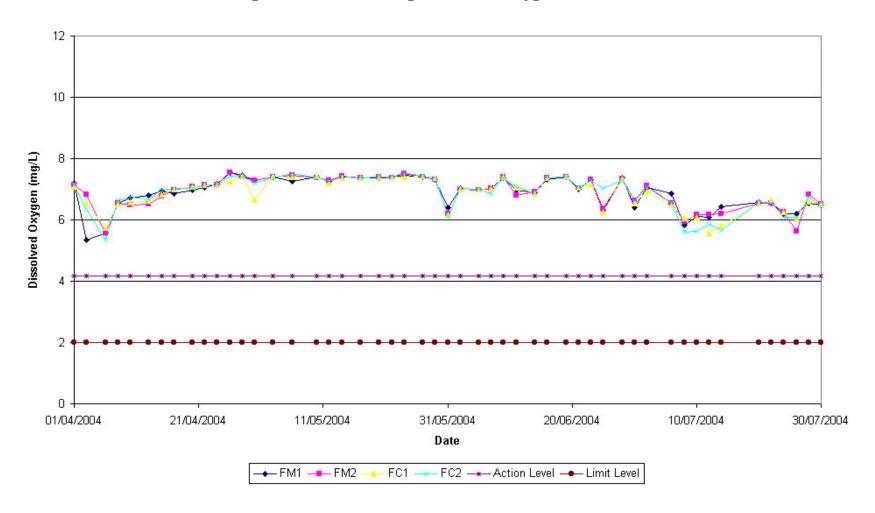


Figure 6.6 - Bottom Averaged Dissolved Oxygen - Mid-Ebb

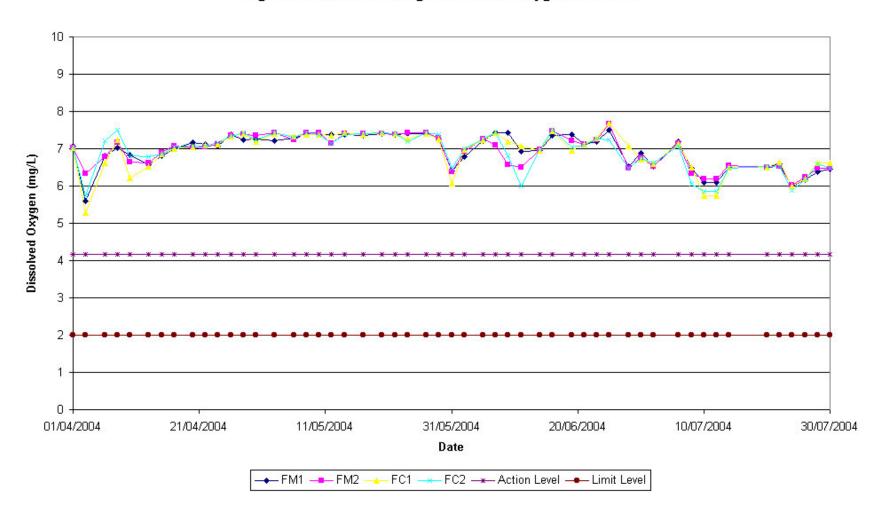


Figure 6.7 - Depth Averaged Turbidity - Mid-Flood



Figure 6.8 - Depth Averaged Turbidity - Mid-Ebb

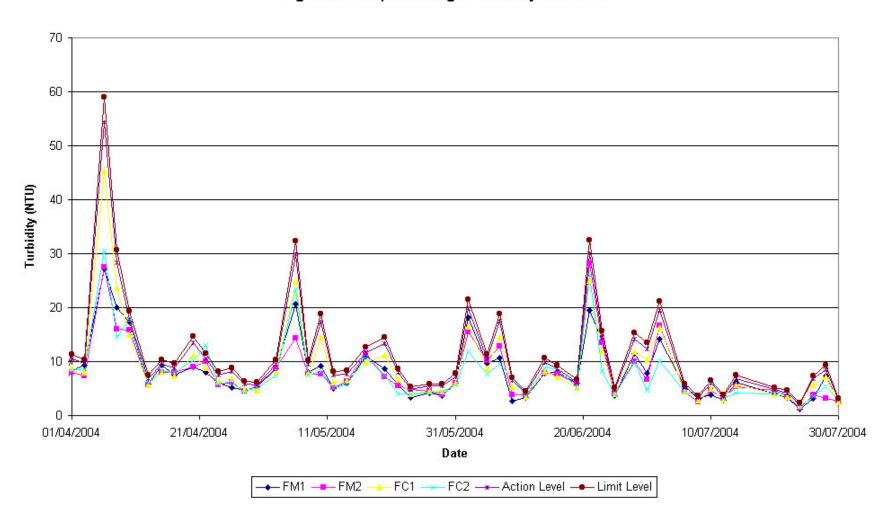
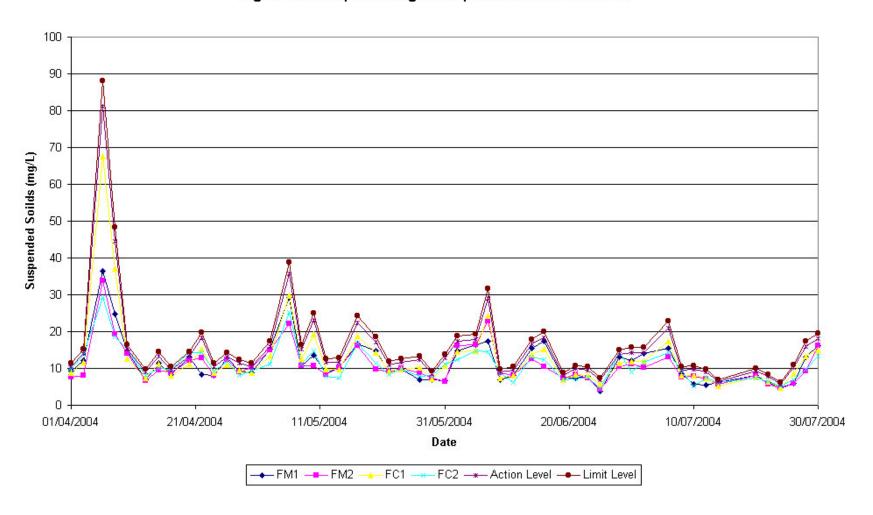
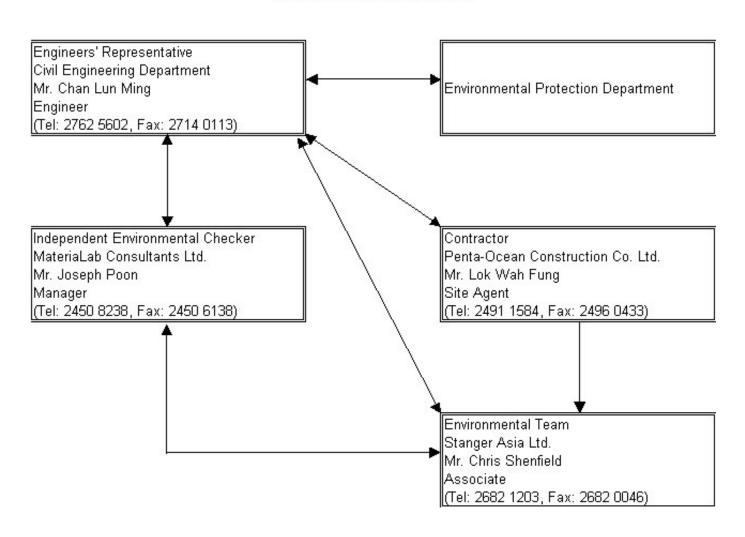


Figure 6.9 - Depth Averaged Suspended Solids - Mid-Flood


Figure 6.10 - Depth Averaged Suspended Solids - Mid-Ebb

Appendix I

Organization Chart

Project Organization (Environmental) Fill Bank at Tuen Mun Area 38 Contract No. CV/2002/13

Appendix II

Calibration Certificates of the Monitoring Equipment

Page 1 of 1

SOMP ENV052 : CALIBRATION RECORD OF HIGH VOLUME AIR SAMPLER (TSP)

16/06/2004

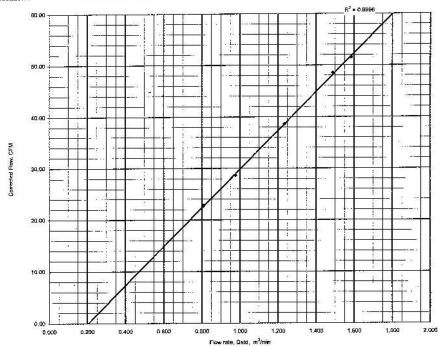
Equipment No.: Serial No.: Calibration No.:

Temp.:

28 °C

755 mm Hg At. Press: C. F. Chang Calibrated by: 16/08/2004 Next Calibration Due Date:

Plate	Flow Rate	True	Corrected
	(m³/min)	In.H2O	Flow (CFM)
18	1.585	10.1	1 51.48
13	1.4BB	8.9	1; 48.51
10	. 1.234	6.1	38.61
7	0.976	3.8	
5	0.809	2.6	22.77


Remarks: The correlation coefficient is larger than 0.99 indicates the calibration

is linear. Slope= Intercept=

37.511859 -7.682409

Location:

Tuen Mun Area 38 - A1

Checked By:

Page 1 of 1

Corrected

Flow (CFM)

53,46 50,49 42,57

SOMP ENV052 : CALIBRATION RECORD OF HIGH VOLUME AIR SAMPLER (TSP)

Equipment No.: Serial No.: Calibration No.:

10

(m³/mln)

1.48D 1.264

1.013 0.761

EM3063

11000/9305

in.H2O

Temp.:

16/06/2004

28 °C

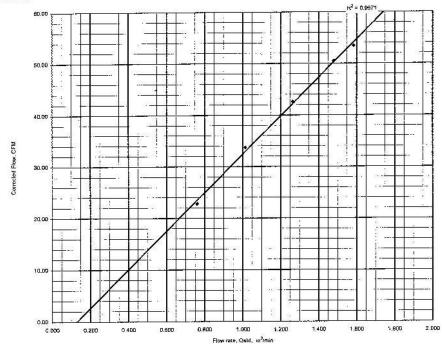
At Press:

755 mm Hg

C. F. Chong

16/08/2004

Next Calibration Due Date:


Remarks: The correlation coefficient is larger than 0.99 indicates the calibration

is linear. Slope= Intercept=

37.**22**2559 -**4**.839942

Location:

Tuen Mun Area 38 - A2

SOMP ENV062: CALIBRATION RECORD OF TURBIDIMETER

Date of Calibration:	24/06/2004		
Due Date of Next Calibr	ration:	24/09/2004	- V
Equipment No.:	EM 2365		
Manufacturer:	HACH		
Model:	2100P		
Serial No.:	970500014289		
Turbidimeter Calibration standard (HACH):		No.1: 20 NTU	
		No.2; 100 NTU	
		No.3: 800 NTU	
Stock Calibration stand	ard No.:	804	
Three-point calibration			
Stock Calibration check		QCS 868	

Actual value	value - Checking standa Measured value	Accepted*: Y/N
0	0	<u>Y</u> _
5	5.3	Y
10	10.4	Y
50	54	Y
100	103	Y
400	410	Υ

^{*}Allowing Deviation: +/- 10%

<u> 90.22 — </u>			100/12
Tested by:	(m-	Checked by:	JR/K

Page 1 of 1

CERTIFIED TRUE COPY

NAME: S.C.F. CAU/Y.Y. PANG For Stanger Asia Limited

SOMP ENV066 : CALIBRATION RECORD OF YSI MODEL 30 HANDHELD SALINITY, CONDUCTIVITY & TEMPERATURE SYSTEM

		(. 7	
Calibration No.	04	2202	

Equipment No. EM 3694

Serial No. 00F0285AA

Date of Calibration: 17/06/2004

Due Date of Next Calibration: 17/09/2004

Stock Calibration Standard Potassium Chloride No. $\underline{316}$

Stock Calibration Check Potassium Chloride No. 648

Volumetric glassware employed: V14, V103, V104, V68, V69, V35

Calibration Check Solutions, ppt	Meter reading, ppt
0.0	0.0
10.0	10.5
20.0	20.4
30.0	31.0
40.0	43.0

'ested by : _	Tim	Checked By	· My	
	1		-	
			-	

APPROVED FOR USE BY

POSITION

21 Con total

SOMP ENVF066: Issue 2001 No.1

19 December 2001

SOMP ENV064: CALIBRATION RECORD OF DISSOLVED OXYGEN METER

Dissolved Oxygen Meter Equipment No.: <u>EM 961</u>

Dissolved Oxygen Serial No.: <u>93M12874</u> Dissolved Oxygen Probe Serial No.: <u>96K0145</u>

Date of Calibration.: 24-06-2004

Due Date of Next Calibration.: 24-09-2004

Molarity of sodium thiosulphate solution: 0.0251M

Potassium Bi-iodate No.: 480

Standardisation of S Standard Solution	Initial burette reading B, mL	Final burette reading C, mL	Vol. of $Na_2S_2O_3$ used A, $mL = (C - B)$
Standard I	0.00	20.10	20.10
Standard 2	0.00	20.05	20.05
Standard 3	0.00	20.10	20.10
Diane -	8	Average Value	20.08

Standard Solutions	Initial burette reading B, mL	Final burette reading C, mL	Vol. of $Na_2S_2O_3$ used Λ , mL = $(C-B)$	D.O. by titration, mg/L	Meter reading, mg/L
Ä	0.00	1.95	1.95	1.94	2.01
A B	0.00	5.35	5.35	5.33	5.45
$\frac{\overline{c}}{c}$	0.00	6.75	6.75	6.72	6.90
D	0.00	7.80	7.80	7.77	7.69

9			$\Delta T \circ$
Tested by:	Ton	Checked By:	then
	7		L.

Appendix III

Event and Actions Plans

Event and Action Plan for Air Quality

		ACTION		
EVENT	ET Leader	IC (E)	ER	CONTRACTOR
Action Level				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform ER, IEC and Contractor. Repeat measurement to confirm findings. Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET. Check Contractor's working methods. 	1. Notify Contractor.	 Rectify unacceptable practice. Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform IEC and Contractor. Repeat measurement to confirm findings. Increase monitoring frequency to daily. Discuss with IEC and Contractor on remedial actions. If exceedance continues, arrange meeting with IEC and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise the ER on the effectiveness of the proposed remedial measures. Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions are properly implemented.	 Submit proposals for remedial actions to ER within 3 working days of notification. Implement the agreed proposals. Amend proposals if appropriate.

Event and Action Plan for Air Quality (cont'd)

		ACTION	,	
EVENT	ET Leader	IC (E)	ER	CONTRCATOR
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform ER, Contractor and EPD. Repeat measurement to confirm findings. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise the ER on the effectiveness of the proposed remedial measures. Supervisor implementation of remedial measures. 	Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented.	 Take immediate action to avoid further exceedances. Submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform IEC, ER and Contractor and EPD. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Carry out analysis of Contractor's working procedures to determine possible mitigation measure(s) to be implemented. Arrange meeting with IEC and ER to discuss the remedial actions to be taken. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Dlan for Wate Onalita

	nter Quality ION			
EVENT	ET	IEC	ER	CONTRACTOR
Action level				<u>'</u>
Action level being exceeded by one sampling day.	 Repeat in-situ measurements to confirm findings; Identify source(s) of impacts; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurements on next day of 	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise ER accordingly; Assess the effectiveness of implemented mitigation measures.	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented.	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed
Action level being exceeded by more than one consecutive sampling day.	exceedance. 1. Repeat in-situ measurements to confirm findings; 2. Identify source(s) of impact; 3. Inform contractor and IEC; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Prepare to increase the monitoring frequency to daily; 8. Repeat measurements on next day of exceedance.	Discuss with ET and Contractor on the proposed mitigation measures; Review proposals on mitigation measures submitted by Contractor advise ER accordingly; Assess the effectiveness of the implemented mitigation measures.	1. Discuss with IEC on the proposed mitigation measures; 2. Make agreement on the mitigation measures to be implemented; 3. Assess the effectiveness of the implemented mitigation measures.	mitigation measures. 1. Inform the Engineer and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with the ET and IEC and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures.

Event and Action Plan for Water Quality (Cont'd)

		d Action Plan for Water (ACT)			
EVENT	ET	IEC	ER	CONTRACTOR	
Limit level Limit level	Repeat in-situ	Discuss with ET	Discuss with IEC,	Inform the Engineer	
being exceeded by one sampling day.	measurements to confirm findings; 2. Identify source(s) of impact; 3. Inform contractor and IEC; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Prepare to increase the monitoring frequency to daily until no exceedance of Limit level.	and Contractor on the mitigation measures; 2. Review proposals on mitigation measures submitted by the Contractor and advise the ER accordingly; 3. Assess the effectiveness of implemented mitigation measures.	ET and Contractor on the proposed mitigation measures; 2. Request Contractor to critically review the working methods; 3. Make agreement on the mitigation measures to be implemented; 3. Assess the effectiveness of the implemented mitigation measures.	and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with the ET and IEC and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures.	
Limit level being exceeded by more than one sampling day.	 Repeat in-situ measurements to confirm findings; Identify source(s) of impact; Inform contractor and IEC; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by the Contractor and advise ER accordingly; Assess the effectiveness of implemented mitigation measures.	Discuss with IEC on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of works identified as the cause of exceedance until no exceedance of Limit level.	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the Engineer, slow down or stop all or part of theworks identified as the cause of exceedance or construction activities.	

Appendix IV

Implementation Status of Mitigation Measures

IMPLEMENTATION STATUS OF MITIGATION MEASURES

Area	Mitigation Measures	Implementation Period	Implementation Status
1. General	Maximum stockpiling height to be limited to a maximum of +35mPD.	Throughout the operation period	Implemented
2. Air Quality	Working areas where excavation or earthmoving operations are taking place shall be sprayed with water or a dusty suppression chemical.	Throughout the operation period	Occasionally implemented
	Any stockpiling of excavated material shall be covered by impervious sheeting or sprayed with water or a dust suppression chemical.	Throughout the operation period	Occasionally implemented
	All roads within the site to be covered with concrete, bituminous materials, hardcore or metal plates.	Throughout the operation period	Implemented
	Erect a hoarding of at least 2.4m high along the northern and eastern boundaries of the site except at the site entrance/exit. Before occupation of the Recovery Park Phase I and II, site hoarding of at least 2.4m high should also be erected along the western boundary of the fill bank.	Throughout the operation period	Implemented
	Install/refurnish vehicle wheel washing facilities including high pressure water jets provided at designated vehicle exit points.	Throughout the operation period	Implemented
	At the barging point, the drop height between the barge and dump trucks shall be minimized.	Throughout the operation period	Implemented
	Tipping halls provided for transfer of public fill from trucks to barges shall be top and 3-sides enclosed.	Throughout the operation period	Implemented
	Water lorries and/or road sweepers shall be provided and used in dust suppression.	Throughout the operation period	Implemented
	The designated main haul roads shall be watered at approximately every 2 hours to ensure that the roads are kept sufficiently dampened.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status		
2. Air Quality	Truck speed to be controlled to within 10 km/hr.	Throughout the operation period	Occasionally Implemented		
	All dusty fill material shall be sprayed with water or a dust suppression chemical prior to loading, unloading or transfer.	Throughout the operation period	Occasionally Implemented		
	Frequent watering (at least three times per day) of the worksites with active dusty operations is recommended. The frequency shall be increased when the weather is dry.	Throughout the operation period	Implemented		
	Loading of public fill delivered to the site shall be sprayed with water at the material landing point to minimize dust emission except when the materials are sufficiently dampened when landing.	Throughout the operation period	Occasionally Implemented		
	Vehicle washing facilities including high pressure water jet at the existing exits shall be maintained and operated by designated staff to ensure that these dust control measures are being used.	Throughout the operation period	Implemented		
	Before leaving the fill bank site, every vehicle shall be washed to remove any dusty materials from its body and wheels.	Throughout the operation period	Implemented		
	Trucks carrying dusty loads entered to the site shall be sprayed with water once the impervious sheeting covering the load is removed.	Throughout the operation period	Occasionally Implemented		
	A minimum buffer distance of 20m shall always be maintained between the edge of public fill stockpiling area and the nearest air sensitive receivers at the River Trade Terminal.	Throughout the operation period	Implemented		
	An area of 100m x 100m in the north-eastern corner of the stockpiling area shall be managed by the Contractor as a "truckload control zone". Number of trucks traveling to the control zone shall be limited to a maximum of 64 vehicles per hour, and a daily maximum of 633 vehicles per day.	Throughout the operation period	Implemented		

Area	Mitigation Measures	Implementation Period	Implementation Status
2. Air Quality	A minimum buffer zone of 20m shall be maintained between the edge of the public fill stockpiling area and the nearest air sensitive land use at Recovery Park Phase I and Phase II along the western boundary of the site.	Throughout the operation period	Implemented
	Temporary slope surfaces shall be covered with tarpaulin sheets or other impermeable sheets, or sprayed with water or a dust suppression chemical, or protected by other methods approved by CED.	Throughout the operation period	Partially implemented
	Final slope surfaces shall be treated by compaction, followed by hydroseeding, vegetation planting or other suitable surface stabiliser approved by CED to prevent the washing away of stockpiled material.	Throughout the operation period	Implemented
	Any belt conveyor systems used for transfer of dusty materials shall be enclosed on top and 2 sides.	Throughout the operation period	N/A
	Every transfer point between two conveyors shall be totally enclosed.	Throughout the operation period	N/A
	An effective belt scraper or equivalent device shall be installed at the head pulley of every belt conveyor to dislodge fine particles that may adhere to the belt surface.	Throughout the operation period	N/A
	The belt conveyor shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.	Throughout the operation period	N/A
	Every stockpiling belt conveyor shall be provided with a mechanism to adjust its level such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m.	Throughout the operation period	N/A
	Dusty materials loaded from a belt conveyor outlet to stockpiles, storage bins, trucks, barges and other open areas shall be sprayed with water or a dust suppression chemical.	Throughout the operation period	N/A

Area	Mitigation Measures	Implementation Period	Implementation Status
2. Air Quality	Frequent mist spraying should be applied on dusty areas. The frequency of spraying required will depend upon local meteorological conditions such as rainfall, temperature, wind speed and humidity. The amount of mist spraying should be just enough to dampen the material without over-watering.	Throughout the operation period	Implemented
3. Noise	No project activities associated with land-based intake of public fill shall be carried out between 20:00 and 08:00 hrs daily.	Throughout the operation period	Implemented
	All construction works should be carried out during the non-restricted hours (i.e. 7:00 a.m. to 7:00 p.m. on weekdays other then General Holidays).	Throughout the operation period	N/A
	Before the commencement of any works that may generate a significant noise impact, the Contractor should submit to the Engineer for approval the method of working, equipment and sound-reducing measures (e.g. use of silenced type equipment).	Throughout the operation period	N/A
	The fill bank should not be in operation from 8:00 p.m. to 8:00 a.m. the next day.	Throughout the operation period	N/A
4. Water Quality	Trapezoidal surface channels should be constructed to intercept polluted surface runoff. These channels shall be equipped with sand/de-silting traps such that the effluent discharged from site during the establishment, operation and decommissioning phases will meet the required discharge limits.	Throughout the operation period	Implemented
	Tipping halls at the waterfront provided for transfer of public fill from trucks to barges shall be enclosed design with the top 3-sides enclosed to prevent spillage of material into the marine water.	Throughout the operation period	Implemented
	Before the completion of the surface drainage channels at the commencement of the project, earth bunds and sand bag barriers shall be use at required locations to effectively divert storm water to available drainage channels constructed under the reclamation works.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	Temporary drainage facilities provided shall allow polluted stormwater to be diverted to existing intercepting channels before stockpiling of public fill should begin.	Throughout the operation period	Implemented
	Intercepting channels shall be equipped with sand/silt removal facilities to allow the stormwater to be treated before discharge at the designated outfalls.	Throughout the operation period	Implemented
	Effluent discharged shall meet the relevant discharge limits.	Throughout the operation period	N/A
	A minimum buffer distance of 50m will be provided between the edge of the stockpiling area of the fill bank and seafront.	Throughout the operation period	Implemented
	Open channels and/or other effective drainage system shall be constructed at the perimeter of the site for intercepting and directing runoff to sand/silt removal facilities prior to discharge.	Throughout the operation period	Implemented
	The unpaved area on the seaward side of the channels shall be covered with gravel and formed with slope so that polluted stormwater will be intercepted by the channels.	Throughout the operation period	Implemented
	Any excavated material generated near the seafront (e.g. from the construction of the barging point) not required to be backfilled immediately should be transported away from the seafront to avoid potential water quality impact especially during the rainy season.	Throughout the operation period	Implemented
	Public fill transported to the stockpiling area for storage should not contain unsuitable material such as peat, vegetation, timber, organic, soluble or perishable material, dangerous or toxic material, floatable materials (such as bottle, plastic bags, foam box), and materials susceptible to combustion.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	Temporary slope surfaces shall be covered as far as practicable and as soon as possible with tarpaulin or other impermeable sheets, or protected by other methods approved by CED when rainstorms are likely, especially when a rainstorm is imminent or forecast.	Throughout the operation period	Partially implemented
	Final slope surfaces shall be treated by compaction, followed by hydroseeding, vegetation planting or other suitable stabilizer approved by CED to prevent the washing away of stockpiled material.	Throughout the operation period	Implemented
	Adequately designed and constructed catchpits, sand and silt removal facilities and intercepting channels should be maintained, and the deposited silt and grit should be removed weekly and on a as need basis especially during the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.	Throughout the operation period	Implemented
	A wheel washing bay should be provided at the site exit and washwater should have sand and silt settled out or removed before the water is being reused or discharged into storm drains.	Throughout the operation period	Implemented
	All vehicles and plant bodies should be cleaned before they leave the fill bank site to ensure that no earth, mud or debris is deposited by them on roads.	Throughout the operation period	Implemented
	The section of construction road between the wheel washing bay and the public road should be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public roads drains.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	Sewage from toilets and similar facilities should be discharged into a foul sewer, or chemical toilets should be provided. Should chemical toilets be employed these must be provided by a licensed contractor, who will be responsible for appropriate disposal and maintenance of these facilities.	Throughout the operation period	Implemented
	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains, should be discharged into foul sewers via grease traps.	Throughout the operation period	N/A
	Drainage systems provided at car parking areas shall be provided with oil interceptors in addition to sand/silt removal facilities.	Throughout the operation period	Implemented
	All barges used in the transportation of fill material during the operation/decommissioning stages should be properly licensed under the Shipping and Port Control Ordinance, and of appropriate size such that adequate clearance is maintained between the vessels and the sea bed at all states of the tide.	Throughout the operation period	Implemented
	All vessels used for transportation of fill material should have tight fitting seals to their bottom openings.	Throughout the operation period	Implemented
	When backhoe fixed on an appropriately designed flat-top pontoon is in use, the reach of the backhoe shall be controlled to within the flat-top pontoon of sufficient length to avoid accidental dropping of public fill into the sea.	Throughout the operation period	N/A
	When hopper barges with mobile crane is in use, guardrails or equivalent shall be fixed alongside the berthing faces to guide the movement of the crane to avoid accidental dropping of fill material.	Throughout the operation period	N/A
	When derrick barges with built-in crane are in use, the reach of the jig shall be controlled to within the length of the barge to avoid accidental dropping of public fill into the sea.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	The design of the specific transfer methods shall be as such that the pathway of material delivery from barge to the waterfront will not be directly on top of the marine water.	Throughout the operation period	Implemented
	Barges should not be filled to a level which may cause overflow of material during loading or transportation.	Throughout the operation period	Implemented
	Barge effluents (e.g. muddy water) should be properly collected and treated prior to disposal.	Throughout the operation period	Implemented
	Work activities should not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging point.	Throughout the operation period	Implemented
	A waste collection vessel shall be deployed to remove floating refuse on the sea near the fill bank for proper disposal.	Throughout the operation period	Implemented
5. Landfill Gas	Main site offices of the fill bank shall be constructed within the site area lying outside the 250m consultation zone of the restored Siu Lang Shui Landfill.	Throughout the operation period	Implemented
	The container office(s) to be set up at the site entrance/exit which is situated within the construction zone of the landfill shall be constructed on a raised hollow platform, or equivalent.	Throughout the operation period	Implemented
	No underground structures such as drainage and sewage systems, underground pipelines and chambers shall be constructed at the site area lying within the consultation zone.	Throughout the operation period	Implemented
	In the unlikely event that any sign of leachate-contaminated groundwater be encountered during the establishment, operation or decommissioning phases of the fill bank, the landfill operator should be informed so that this can be collected for proper treatment and disposal.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
6. Landscape and Visual	Hydroseeding or coloured geo-textile matting (dark green/brown) shall be provided on the slopes of the fill bank along the eastern, northern and western sides of the fill bank as the slopes of each layer of platform are formed.	Throughout the operation period	Implemented
	A buffer tree planting strip should be provided along the northern perimeter of the site where space permits. A row of approximately 3m high native evergreen tree species with a tall habit when fully grown (e.g. Casuarina equisetifolia) shall be planted at the early establishment/ operational phase of the project.	Throughout the operation period	Implemented
	The design, colour and finish of structures at the fill bank should be such that they are visually recessive. Reflectivity should be reduced through selection of material or surface treatment.	Throughout the operation period	Implemented
	The surface colour selected should be of an earthy tone with strong natural qualities (e.g. green/grey/brown). The use of bold colour schemes should be avoided.	Throughout the operation period	Implemented
	The existing 2.4m high site hoarding located along Lung Mun Road should be maintained to help screening of the fill bank.	Throughout the operation period	Implemented

Appendix V

Air Quality Monitoring Results

Repo	rt on 2	24-hour T	otal Susp	ended P	articulate [Monitoring -	- A1						
Sample	Location	Date and Time	Start Counter	Stop Counter	Temperature, °C	Pressure, mmHg	Weather	Wind	Weight of Filter, g	Flow rate Q _{std} ,	Total air volume	Mass Cond	entration
Number	Code	of Sampling	Reading	Reading	Initial/Final	Initial/Final	Conditions	Direction	Initial/Final	std. m³/min	of sample, std. m ³	of TSP,	μg/std. m ³
12638	12638 A1 02/07/20	02/07/2004	1598.54	1623.16	31	749	Sunny	W	2.8117	1.13	1669	73	200
		16:55			29	750			2.9332				
12690	.A1	08/07/2004	1626.16	1650.16	30	757	Sunny	SW	2.8788	1.13	1627	120	
		16:10	10		30	757			3.0738				
12707	A1	14/07/2004	1759.68	1783.68	29	757	Sunny	SW	2.8530	1.13	1627	172	
		15:50			29	757			3.1322				
12711	A1	20/07/2004	1787.39	1811.69	27	756	Sunny	SE	2.8623	1.1	1604	45	
		16:42		1	26	758	- 19		2.9349		V.		
12743	A1	26/07/2004	1814.69	1839.67	30	753	Sunny	E	2.8209	1.12	1679	106	
		16:00			29	752	1		2.9991				
12760	A1	31/07/2004	1842.77	1868.08	30	757	Sunny	Е	2.8039	1.12	1701	73	
		14:30			29	755			2.9283				

Repo	ort on 2	24-hour T	otal Susp	ended P	articulate l	Monitoring •	- A2						
Sample	Location	Date and Time	Start Counter	Stop Counter	Temperature, °	Pressure, mmHg	Weather	Wind	Weight of Filter, g	Flow rate Q _{std}	Total air volume	Mass Con	centration
Number	Code	of Sampling	Reading	Reading	Initial/Final	Initial/Final	Conditions	Direction	Initial/Final	std. m³/min	of sample, std. m³	of TSP,	μg/std. m ³
12637	A2	02/07/2004	9905.46	9929.42	31	749	Sunny	W	2.8159	1.15	1653	61	\$-1078.242
		17:00			29	750			2.9161				
12691	A2	08/07/2004	9932.42	9956.42	30	757	Sunny	SW	2.8692	1.15	1656	93	
		16:20			30	757			3.0240				
12708	A2	14/07/2004	9959.42	9983.42	29	757	Sunny	SW	2.8659	1.15	1656	38	
		16:20			29	757			2.9286				
12720	A2	20/07/2004	9986.42	10010.42	27	756	Sunny	SE	2.8826	1.1	1584	148	
		16:50			26	758			3.1176				
12742	A2	26/07/2004	10013.42	10036.95	30	753	Sunny	Е	2.8242	1.03	1454	136	
		15:18			29	752			3.0225				
12761	A2	31/07/2004	10039.95	10062.85	30	757	Sunny	Е	2.8294	1.15	1580	30	
		14:45			29	755			2.8772				

			10	100						[:			
Sample	Location	Date and Time	Start Counter	Stop Counter	Temperature, °C	Pressure, mmHg	Weather	Wind	Weight of Filter, g	Flow rate Q _{std} ,	Total air volume	Mass Conc	entration
Number	Code	of Sampling	Reading	Reading			Conditions	Direction	Initial/Final	std. m³/min	of sample, std. m ³	of TSP.	μg/std. m
12673	A1	02/07/2004	1595.54	1596.54	31	749	Sunny	W	2.8305	1.13	68	252	
		11:30						1	2.8476				
12646	A1	02/07/2004	1596.54	1597.54	31	749	Sunny	W	2.8369	1.13	68	199	
		14:00							2.8504				
12642	A1	02/07/2004	1597.54	1598.54	31	749	Sunny	W	2.8335	1.13	68	242	
		15:05				50.0.0.1. - 50			2.8499				
12681	A1	08/07/2004	1623.16	1624.16	30	757	Sunny	SW	2.8534	1.13	68	221	
		10:15	-						2.8684				
12684	A1	08/07/2004	1624.16	1625.16	30	757	Sunny	SW	2.8518	1.13	68	137	
		13:35							2.8611				
12687	A1	08/07/2004	1625.16	1626.16	30	757	Sunny	SW	2.8268	1.13	68	147	
		14:35							2.8368				
12698	A1	14/07/2004	1756.68	1757.68	29	757	Sunny	SW	2.8324	1.22	73	117	
		10:15							2.8410				
12703	A1	14/07/2004	1757.68	1758.68	29	757	Sunny	SW	2.8606	1.22	73	234	
		13:10							2.8777				
12704	A1	14/07/2004	1758.68	1759.68	29	757	Sunny	SW	2.8400	1.22	73	172	
		14:45		1					2.8526				
12722	A1	20/07/2004	1784.39	1785.39	27	756	Sunny	SE	2.8766	1.22	73	66	
		13:30							2.8814				
12716	A1	20/07/2004	1785.39	1786.39	27	756	Sunny	SE	2.9043	1.22	73	40	
		14:33				5			2.9072				
12714	A1	20/07/2004	1786.39	1787.39	27	756	Sunny	SE	2.8950	1.22	73	115	
		15:40	3		-		,		2.9034				
12734	A1	26/07/2004	1811.69	1812.69	31	753	Sunny	E	2.8410	1.1	66	44	
		10:11					- 1		2.8439				
12737	A1	26/07/2004	1812.69	1813.69	30	753	Sunny	E	2.8787	1.1	66	42	
		11:15							2.8815				
12731	A1	26/07/2004	1813.69	1814.69	30	753	Sunny	E	2.8676	1.1	66	70	
		14:55							2.8722				
12751	A1	31/07/2004	1839.67	1840.77	30	757	Sunny	E	2.8323	1.12	74	38	
		09:30			,				2.8351				
12754	A1	31/07/2004	1840.77	1841.77	30	757	Sunny	E	2.8342	1.12	67	31	
		11:15						1	2.8363				
12757	A1	31/07/2004	1841.77	1842.77	30	757	Sunny	E	2.8143	1.12	67	86	
		13:15			12.70	100.70			2.8201	100000	1.74		

Repo	rt on 1	l-hour To	tal Suspe	ended Pa	rticulate M	lonitoring - A	A2						
Sample	Location	Date and Time	Start Counter	Stop Counter	Temperature, °C	Pressure, mmHg	Weather	Wind	Weight of Filter, g	Flow rate Q _{std} ,	Total air volume	Mass Cond	centration
Number	Code	of Sampling	Reading	Reading			Conditions	Direction	Initial/Final	std. m ³ /min	of sample, std. m ³	of TSP	μg/std. m ³
12674	A2	02/07/2004	9902.46	9903.46	31	749	Sunny	W	2.8622	1.15	69	187	
		11:40	0002.10	0000.10				1	2.8751			10.	
12644	A2	02/07/2004	9903.46	9904.46	31	749	Sunny	W	2.8501	1.15	69	43	
		14:25							2.8531				
12641	A2	02/07/2004	9904.46	9905.46	31	749	Sunny	W	2.8401	1.15	69	58	
		15:30							2.8441				
12682	A2	08/07/2004	9929.42	9930.42	30	757	Sunny	SW	2.8379	1.15	69	90	
		10:30							2.8441	ii	×.		
12685	A2	08/07/2004	9930.42	9931.42	30	757	Sunny	SW	2.8127	1.15	69	223	
		13:50							2.8281				
12688	.A2	08/07/2004	9931.42	9932.42	30	757	Sunny	SW	2.8621	1.15	69	209	
		14:50							2.8765				
12699	A2	14/07/2004	9956.42	9957.42	29	757	Sunny	SW	2.8587	1.15	69	112	
		10:30							2.8664				
12701	A2	14/07/2004	9957.42	9958.42	29	757	Sunny	SW	2.8750	1.15	69	106	
		12:50					1 AR		2.8823				
12706	A2	14/07/2004	9958.42	9959.42	29	757	Sunny	SW	2.8600	1.15	69	170	
		15:10							2.8717	1	is a second		
12721	A2	20/07/2004	9983.42	9984.42	27	756	Sunny	SE	2.8763	1.15	69	97	
	6	13:15	(A)			3			2.8830		ea .		
12718	A2	20/07/2004	9984.42	9985.42	27	756	Sunny	SE	2.9077	1.15	69	90	
		14:20							2.9139				
12719	A2	20/07/2004	9985.42	9986.42	27	756	Sunny	SE	2.8797	1.15	69	138	
		15:30					_		2.8892				
12733	A2	26/07/2004	10010.42	10011.42	31	753	Sunny	Е	2.8445	1.03	62	164	
10705		09:11	10011 10	10010 10		750		-	2.8547	4.00		470	
12735	A2	26/07/2004	10011.42	10012.42	30	753	Sunny	Е	2.8071	1.03	62	179	
10700		10:30	10010 10	10010 10		750	-		2.8182	4.00		200	
12739	A2	26/07/2004	10012.42	10013.42	30	753	Sunny	E	2.8777	1.03	62	209	
40750	0.0	11:30	10000.05	40007.05	20	757		<u> </u>	2.8906	4.00		400	
12752	A2	31/07/2004	10036.95	10037.95	30	757	Sunny	E	2.8336	1.03	62	108	
10755	0.7	09:47	10027.05	10020.05	30	757	Committee	E	2.8403	1.0		CF	
12755	A2	31/07/2004	10037.95	10038.95	30	757	Sunny		2.8121	1.0	60	65	
12758	A2	11:28 31/07/2004	10038.95	10039.95	30	757	Cummii	E	2.8160 2.7986	1.15	69	35	
12/50	A2	13:35	10038.95	10039.95	30	/5/	Sunny	_ E	2.7986	1.15	69	35	

Appendix VI

Water Quality Monitoring Results

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>		,		Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	4			
Date of Sa	mpling :	02/07/2004	4		Weather	Conditio	n:	Cloudy			Ambier	nt Tempera	ture,°C:	31			Tide Stat	9:	Mid-Flo	od	
Station		Sea	Overall	Sampling				ed Oxyg		Dissolv			Salinity,		Turbidity			Suspen	ded Soli		Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	ь	Average	а	ь	а	b	Average			Depth Average	
FM1 S				1.0	31.0	31.0	7.31	7.27	7.04	99.7	99.5		29.1	29.1	5.12	5.03		5	6		
FM1 M	20:40	Small wave	1 18 11	9.0	30.9	30.9	7.10	7.14	7.21	97.6	96.5	98.3	30.2	30.2	11.60	10.50	13.33	8	9	10.3	
FM1 B				17.0	30.9	30.9	7.06	7.05	7.06	95.7	94.6	95.2	30.4	30.4	24.70	23.00	8	16	18		
FM2 S				1.0	30.8	30.8	7.15	7.26		98.8	97.5		28.9	28.9	4.36	4.54		7	8		
FM2 M	20:30	Small wave	1 1811	9.0	30.8	30.8	7.09	7.08	7.15	96.5	96.4	97.3	29.8	29.8	21.60	20.10	13.18	10	10	8.8	
FM2 B				17.0	30.8	30.8	7.10	7.11	7.11	95.1	94.3	94.7	30.0	30.0	14.20	14.30	8	8	10		
FC1 S				1.0	30.8	30.9	7.16	7.13		97.5	98.1		28.9	28.9	3.95	3.91		10	10		
FC1 M	20:55	Small wave	1 2311	11.5	30.8	30.8	7.08	7.05	7.11	96.5	95.4	96.9	29.0	29.0	10.50	10.90	9.84	10	11	9.7	
FC1 B				22.0	30.8	30.8	6.93	6.92	6.93	93.1	92.5	92.8	29.8	29.8	15.40	14.40		8	9		
FC2 S				1.0	30.8	30.8	7.24	7.25		96.8	96.3		29.4	29.4	4.65	4.53		9	9		
FC2 M	20:15	Small wave	1811	9.0	30.8	30.8	7.19	7.18	7.22	95.6	95.1	96.0	29.6	29.6	14.20	14.50	11.21	15	14	14.3	
FC2 B				17.0	30.8	30.8	7.04	7.05	7.05	92.3	92.0	92.2	30.4	30.4	14.00	15.40		19	20	1	
Bold data	with singl	le underlir	ne indicate	es an exce	edance	to Actio	n Leve	ı													
	with double							_													
Equipment	t used:	Dissolved	□ Oxygen Mi □	eter:	ЕМ	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		ЕМ	2365		Calibrat	ion Check:	4.55,	45.8,	453	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
	<i>(2</i>)	Thermome	eter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>		, ,		Client: I	⊃enta-C	cean Cons	struction	Co., Ltd.	Job No.:		4494.1	-			
Date of Sa	mpling :	02/07/2004	4		Weather	Conditio	n:	Sunny			Ambie	t Tempera	ture,°C:	34			Tide Stat	e:	Mid-Ebl	<u>b</u>	
Station		Sea	Overall	Sampling				ed Oxyg		Dissolv			Salinity,		Turbidity			Suspen	ded Soli		Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	32.5	32.6	7.21	7.19		100.1	99.8		26.8	26.8	4.78	4.54		15	14		
FM1 M	13:05	Small wave	1 1/11	8.5	32.5	32.5	6.98	6.97	7.09	97.2	96.3	98.4	26.7	26.7	19.80	20.10	14.24	14	17	14.0	
FM1 B		50707603000		16.0	32.5	32.5	6.52	6.54	6.53	93.1	93.0	93.1	27.7	27.7	18.90	17.30		12	12		
FM2 S				1.0	32.5	32.5	7.29	7.32		100.6	100.7		27.0	27.0	5.50	5.71		10	10		
FM2 M	13:20	Small wave	1 17 11	8.5	32.5	32.5	6.97	6.95	7.13	96.5	96.1	98.5	26.8	26.8	23.00	21.80	16.70	13	12	10.2	
FM2 B		50707602077		16.0	32.5	32.5	6.54	6.52	6.53	92.2	91.7	92.0	27.5	27.5	22.50	21.70		8	8		
FC1 S				1.0	32.5	32.5	7.18	7.13	1	99.8	99.7		26.5	26.5	9.73	9.65		6	7		
FC1 M	12:45	Small wave	1 2111	10.5	32.5	32.5	6.96	6.86	7.03	96.3	96.5	98.1	26.6	26.6	8.13	8.24	16.31	15	14	12.0	
FC1 B				20.0	32.5	32.5	6.57	6.61	6.59	93.0	93.0	93.0	27.0	27.0	30.00	32.10		16	14		
FC2 S				1.0	32.6	32.6	7.23	7.25	1	100.7	100.3		26.9	26.9	3.08	3.42		11	9		
FC2 M	13:40	Small wave	1 17 11	8.5	32.5	32.5	6.85	6.81	7.04	96.4	95.7	98.3	27.8	27.8	5.34	5.15	10.12	14	14	11.7	
FC2 B				16.0	32.4	32.4	6.59	6.62	6.61	91.5	90.7	91.1	28.0	28.0	21.30	22.40		11	11		
Bold data	with singl	le underlir	ne indicato	es an exc	edance	to Actio	n I eve	ı											6		
	with double																				
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.56,	45.9,	454	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:		-1		
	9	Thermome	eter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	<u>38</u>		2		Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:	3	4494.1		-		
Date of Sa	impling :	06/07/2004	4		Weather	Conditio	n:	Cloudy			Ambier	nt Tempera	ture,°C:	30			Tide State	9;	Mid-Ebb	<u>)</u>	
Station	Time	Sea	Overall	Sampling	Tempera		Dissolv			Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	ь	Average	а	b	a	b	Average			Depth Average	
FM1 S				1.0	30.0	30.1	7.51	7.46		109.7	108.2		25.0	25.0	3.88	3.64		12	13		
M1 M	16:10	Small wave	17.0	8.5	30.0	30.0	7.20	7.19	7.34	97.2	96.9	103.0	26.0	26.1	4.21	3.98	5.28	10	11	15.5	
М1 В	-	wave		16.0	30.0	30.0	7.18	7.17	7.18	95.1	94.5	94.8	26.7	26.7	8.00	7.99		23	24		
M2 S				1.0	30.0	30.0	7.42	7.41		100.7	100.8		25.4	25.5	4.36	4.64		14	15		
FM2 M	16:15	Small wave	17.0	8.5	30.0	30.0	7.16	7.17	7.29	95.6	96.7	98.5	25.9	25.9	3.87	4.14	4.30	10	11	13.0	
M2 B		liaio		16.0	30.0	30.0	7.15	7.14	7.15	94.7	93.4	94.1	27.1	27.1	4.51	4.29		14	14		
C1 S				1.0	30.0	30.0	7.38	7.34		100.6	100.4		24.8	24.8	5.13	4.76		12	11		
FC1 M	16:00	Small wave	21.0	10.5	30.0	30.0	7.15	7.14	7.25	96.7	97.8	98.9	25.9	25.9	5.05	4.67	4.51	23	24	17.5	
C1 B		VIO. 80. 7.		20.0	30.0	30.0	7.16	7.12	7.14	92.5	93.1	92.8	27.2	27.2	3.73	3.70		17	18		
C2 S				1.0	30.0	30.0	7.35	7.36		100.5	100.8		25.2	25.2	4.65	4.93		12	12		
C2 M	16:25	Small wave	17.0	8.5	30.0	30.0	7.10	7.09	7.23	98.7	97.6	99.4	26.0	26.0	4.04	4.40	4.29	16	14	14.3	
C2 B		7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7		16.0	30.0	30.0	7.08	7.07	7.08	92.6	93.5	93.1	27.1	27.1	3.94	3.78		17	15		
Bold data	with sing	le underlir	ne indicat	es an exc	eedance	to Actic	n Leve	ı													
talic data	with double	underline	indicates a	n exceeda	nce to Lii	nit Level												<i>y</i> 8			
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.51,	45.0,	450	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	ter:		ET	961													10		

Project: <u>C</u>	ntract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client: J	⊃enta-O	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	mpling :	08/07/2004	1		Weather	Conditio	n:	Sunny			Ambier	t Tempera	ature,°C:	31			Tide Stat	9:	Mid-Flo	<u>od</u>	
Station		Sea		Sampling	Tempera	ture, °C	Dissolv	ed Oxyg		Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	ь	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	30.5	30.5	6.25	6.31		91.4	92.0		28.4	28.4	1.96	1.92		5	5		
FM1 M	11:25	Big wave	18.0	9.0	30.4	30.4	6.43	6.49	6.37	94.5	94.9	93.2	28.9	28.9	2.09	2.10	2.11	6	5	5.7	
FM1 B				17.0	30.4	30.4	5.86	5.77	5.82	82.6	82.9	82.8	29.3	29.4	2.24	2.35		6	7		
FM2 S				1.0	30.4	30.4	6.44	6.40		94.8	95.7		28.4	28.4	2.17	2.23		6	6		
FM2 M	11:15	Big wave	18.0	9.0	30.4	30.4	6.43	6.40	6.42	94.2	94.4	94.8	29.0	29.0	2.19	2.24	2.23	6	5	5.8	
FM2 B				17.0	30.4	30.4	5.92	5.97	5.95	84.5	84.7	84.6	29.3	29.3	2.22	2.34		6	6		
FC1 S				1.0	30.4	30.4	6.82	6.94		99.5	99.1		28.0	28.0	2.23	2.51		5	5		
FC1 M	11:40	Big wave	23.0	11.5	30.4	30.4	6.53	6.57	6.72	95.3	95.9	97.5	29.0	29.0	2.59	2.84	2.54	6	6	6.0	
FC1 B				22.0	30.4	30.4	6.02	6.10	6.06	87.2	87.5	87.4	29.3	29.3	2.57	2.49		7	7		
FC2 S				1.0	30.4	30.5	6.20	6.11		90.4	90.9		28.7	28.7	2.79	2.68		6	5		
FC2 M	11:00	Big wave	18.0	9.0	30.5	30.5	6.39	6.34	6.26	93.5	92.9	91.9	29.1	29.1	2.08	2.16	2.34	4	4	5.2	
FC2 B				17.0	30.5	30.5	5.53	5.67	5.60	78.6	78.1	78.4	29.3	29.3	2.20	2.12		6	6		
Bold data	with singl	e underlin	ne indicate	es an exce	edance	to Actio	n I eve														
	with double							_										y 9			
Equipment	used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.50,	45.2,	450	NTU				Checked	Ву:			
		Salinity Me	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	ter:		ET	961												2 S			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	impling :	08/07/2004	1		Weather	Conditio	n:	Cloudy			Ambier	nt Tempera	ature,°C:	30			Tide State	9:	Mid-Ebl	<u>)</u>	
Station	Time	Sea		Sampling	Tempera					Dissolv			Salinity,		Turbidity			Suspen		ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	ь	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	30.0	30.0	7.21	7.25		102.3	102.5		29.0	29.0	2.45	2.38		5	4		
FM1 M	17:45	Big wave	16.0	8.0	30.0	30.0	6.83	6.90	7.05	97.1	97.4	99.8	29.2	29.2	2.75	2.95	3.16	5	6	8.5	
FM1 B			8	15.0	30.0	30.0	6.42	6.52	6.47	93.5	94.2	93.9	29.5	29.5	4.06	4.38		16	15		
FM2 S				1.0	30.0	30.0	7.04	7.06		100.0	100.2		29.0	29.0	2.57	2.46		6	6		
FM2 M	17:55	Big wave	16.0	8.0	30.0	30.0	6.71	6.77	6.90	96.2	96.9	98.3	29.2	29.2	2.51	2.50	2.58	8	9	7.7	
FM2 B				15.0	30.0	30.0	6.33	6.35	6.34	92.6	92.1	92.4	29.5	29.5	2.73	2.71		9	8		
FC1 S				1.0	30.0	30.0	7.27	7.38		102.6	102.4		29.0	29.0	2.45	2.44		5	5		
FC1 M	17:30	Big wave	21.0	10.5	30.0	30.0	7.01	6.93	7.15	99.8	99.4	101.1	29.3	29.2	3.09	2.89	2.78	9	10	8.0	
FC1 B				20.0	30.0	30.0	6.54	6.46	6.50	94.1	93.5	93.8	29.4	29.4	2.99	2.81		10	9		
FC2 S				1.0	30.0	30.0	7.01	6.90		99.9	98.7		29.2	29.2	3.14	3.01		7	6		
FC2 M	18:10	Big wave	17.0	8.5	30.0	30.0	6.52	6.55	6.75	93.9	94.2	96.7	29.3	29.3	3.94	4.12	3.81	8	7	9.2	
FC2 B				16.0	30.0	30.0	6.04	6.06	6.05	88.1	88.7	88.4	29.4	29.4	4.23	4.44		13	14		
Bold data	with singl	e underlir	ne indicate	es an exce	eedance	to Actio	n Leve														
	with double																	, v			
Equipmen	t used:	Dissolved	Oxygen Me	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.54,	45.7,	454	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
	7	Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	lun Area	<u>38</u>				Client:	Penta-C	cean Cons	struction	Co., Ltd.	Job No.:		4494.1	4			
Date of Sa	impling :	10/07/2004	4		Weather	Conditio	on:	Sunny			Ambier	nt Tempera	iture,°C:	32			Tide Stat	e:	Mid-Flo	<u>od</u>	
Station	Time	Sea	Overall	Sampling		iture, °C		ed Oxyg		Dissolv			Salinity,	ppt b	Turbidity			Suspen			Remarks
		Condition	Depth, m	Deptn,m	а	D	а	D	Average	а	b	Average	а	р	а	ь	Average			Depth Average	
FM1 S				1.0	28.8	28.8	6.56	6.57		97.8	97.6		27.0	27.0	2.71	2.82		4	5		
FM1 M	13:55	Small wave	18.0	9.0	28.5	28.5	6.21	6.19	6.38	89.4	89.5	93.6	27.2	27.2	3.39	3.22	2.97	6	5	5.8	
FM1 B		75.000.000		17.0	28.2	28.2	6.10	6.11	6.11	88.4	88.3	88.4	27.3	27.3	2.91	2.75		8	7		
FM2 S				1.0	29.1	29.0	6.48	6.45	6.33	96.7	97.1	92.8	27.2	27.1	3.51	3.21		7	7		
FM2 M	13:45	Small wave	18.0	9.0	28.6	28.6	6.20	6.18		88.4	89.1		27.2	27.2	2.18	2.49	3.03	6	6	6.0	
FM2 B				17.0	28.4	28.4	6.17	6.15	6.16	88.1	88.3	88.2	27.3	27.3	3.58	3.19		5	5		
FC1 S				1.0	28.4	28.4	6.57	6.59	6.37	97.4	97.6	93.5	26.8	26.8	2.43	2.55		6	5		
FC1 M	14:10	Small wave	23.0	11.5	27.7	27.7	6.18	6.15		89.4	89.5		27.0	27.0	3.03	2.82	2.57	8	9	7.7	
FC1 B				22.0	27.6	27.6	6.09	6.08	6.09	87.3	87.5	87.4	27.2	27.2	2.38	2.23		9	9		
FC2 S				1.0	27.9	27.9	6.39	6.41	6.19	95.2	95.4	90.5	27.2	27.2	2.41	2.36		9	9		
FC2 M	13:30	Small wave	18.0	9.0	27.4	27.4	5.97	5.98		85.6	85.7		27.4	27.4	3.00	2.95	2.64	- 7	7	7.5	
FC2 B				17.0	27.2	27.2	5.67	5.61	5.64	85.4	85.0	85.2	27.5	27.5	2.56	2.55		7	6		
		le underlir															2				
<u>Italic data</u>	with double	underline .	indicates a	n exceeda	nce to Lir	nit Level													V V		
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity M	1eter:		EM	2365		Calibrat	ion Check:	4.54,	45.2,	455	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
<i>2</i>		Thermome	ter:		ET	961													9 9		

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client:]	Penta-C	cean Cons	struction	Co., Ltd.	Job No.:		4494.1				<u>.</u>
Date of Sa	impling :	10/07/2004	4		Weather	Conditio	n:	Sunny			Ambier	t Tempera	ture,°C:	31			Tide State	B:	Mid-Ebl	<u> </u>	
Station		Sea Condition	Overall Depth, m	Sampling	Tempera a	iture, °C	Dissolve a	ed Oxyg	en, mg/L Average	Dissolv	ed Oxyg	jen, % Average	Salinity, a	ppt b	Turbidity a	, NTU b	Average	Suspen		ds, mg/L Depth	Remarks
		Condition	Deptili, III	Бериі, ііі	а	U	а	U	Average	a	U	Average	а	U	а	U	Average			Average	
FM1 S				1.0	27.1	27.1	6.45	6.47	6.29	97.9	98.1	98.0	27.0	27.0	3.01	2.82		6	6		
FM1 M	08:15	Big wave	17.0	8.5	26.9	26.8	6.12	6.11		98.1	98.0		27.2	27.2	3.66	3.37	3.78	6	6	5.8	
FM1 B				16.0	26.3	26.3	6.10	6.09	6.10	88.4	88.5	88.5	27.5	27.5	4.78	5.01		6	5		
FM2 S				1.0	27.1	27.1	6.51	6.53		96.2	95.7		27.0	27.0	3.24	3.37		7	6		
FM2 M	08:25	Big wave	17.0	8.5	26.7	26.7	6.27	6.26	6.39	96.7	95.7	96.1	27.2	27.2	3.67	3.80	4.75	8	8	7.8	
FM2 B				16.0	26.3	26.3	6.17	6.18	6.18	89.6	90.2	89.9	27.5	27.5	7.08	7.33		9	9		
FC1 S				1.0	27.2	27.2	6.81	6.79		95.7	96.1		27.0	27.0	4.22	4.04		8	9		
FC1 M	08:00	Big wave	22.0	11.0	26.9	26.9	5.74	5.75	6.27	94.2	93.7	94.9	27.2	27.2	3.92	4.15	4.95	7	8	8.2	
FC1 B				21.0	26.4	26.4	5.74	5.71	5.73	89.5	89.6	89.6	27.4	27.4	6.51	6.83		9	8		
FC2 S				1.0	27.2	27.2	6.72	6.74		94.1	93.1		27.1	27.1	3.76	3.75		5	5		
FC2 M	08:40	Big wave	17.0	8.5	27.1	27.1	5.90	5.92	6.32	92.5	92.1	93.0	27.2	27.2	7.37	7.22	6.27	5	5	5.2	
FC2 B				16.0	26.7	26.7	5.87	5.83	5.85	85.1	86.4	85.8	27.6	27.6	7.70	7.81		5	6		
Bold data	with sing	le underlir	ne indicat	es an exc	eedance	to Actio	n Level														
<u>Italic data</u>	with double	underline	indicates a	n exceeda	nce to Lir	nit Level											<i>y</i>		y 10		
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok	[Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.53,	45.7,	456	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
·		Thermome	eter:		ET	961													2 0		

Project: C	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	ampling :	12/07/2004	1		Weather	Conditio	n:	Sunny			Ambier	nt Tempera	ature,°C:	32			Tide State	9:	Mid-Flo	<u>od</u>	
Station	Time	Sea		Sampling	Tempera	ture, °C	Dissolv			Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	ь	а	b	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	27.4	27.4	6.43	6.40		98.1	97.8		28.0	28.0	2.87	3.12		6	6		
FM1 M	16:45	Small wave	1 2011	10.0	26.8	26.8	6.10	6.11	6.26	97.9	98.1	98.0	28.5	28.5	3.35	3.28	3.30	5	7	6.3	
FM1 B		, mare		19.0	26.9	26.9	6.07	6.08	6.08	89.5	88.4	89.0	29.1	29.1	3.48	3.70		7	7		
FM2 S				1.0	27.2	27.3	6.53	6.55		96.1	95.9		28.1	28.1	3.31	3.10		8	8		
FM2 M	17:00	Small wave	1 :20111	10.0	26.4	26.3	6.27	6.28	6.41	96.7	95.6	96.1	28.5	28.5	2.89	3.01	3.03	6	6	7.3	
FM2 B		wave		19.0	26.4	26.3	6.17	6.18	6.18	88.4	88.5	88.5	29.1	29.2	3.09	2.80		8	8		
FC1 S				1.0	27.3	27.5	6.82	6.83		96.7	96.5		28.0	28.0	3.23	3.11		5	6		
FC1 M	16:30	Small wave	1 24 11	12.0	26.2	26.3	5.74	5.75	6.29	94.3	93.7	95.3	28.4	28.4	3.06	2.83	3.16	5	7	6.0	
FC1 B		, mare	8	23.0	26.1	26.1	5.55	5.56	5.56	88.9	89.4	89.2	29.0	29.0	3.22	3.48		6	7		
FC2 S				1.0	27.1	27.1	6.71	6.73		94.3	93.2		28.0	28.0	2.34	2.49		5	5		
FC2 M	17:15	Small wave	1 21 11	10.5	26.1	26.1	5.90	5.91	6.31	92.3	93.5	93.3	28.5	28.5	5.28	4.84	3.98	8	8	6.5	
FC2 B		wave		20.0	25.7	25.7	5.86	5.87	5.87	85.1	86.3	85.7	29.2	29.2	4.47	4.47		7	6		
Bold data	with sing	le underlir	ne indicate	e an ove	pedance	to Actio	n I eve	ı													
	with double																				
Equipmen	t used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		ЕМ	2365		Calibrat	ion Check:	4.51,	45.4,	455	NTU				Checked	Ву:			
		Salinity M	eter:		ЕМ	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	ter:		ET	961												<u> </u>			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	<u>38</u>		2		Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:	3	4494.1				
Date of Sa	ampling :	12/07/2004	4		Weather	Conditio	n:	Sunny			Ambier	t Tempera	ture,°C:	31			Tide State	9:	Mid-Ebl	<u>)</u>	
Station	Time	Sea	Overall	Sampling	Tempera		Dissolv			Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	ь	Average	а	b	a	b	Average			Depth Average	
M1 S				1.0	27.1	27.1	6.41	6.42		97.9	98.1		27.9	27.9	2.70	2.80		7	5	-	
M1 M	10:25	Small wave	1 1811	9.0	26.9	26.9	6.11	6.13	6.27	98.2	98.1	98.1	28.2	28.2	3.06	3.11	2.88	5	5	5.5	
M1 B		wave		17.0	26.3	26.3	6.08	6.09	6.09	88.4	88.5	88.5	28.4	28.4	2.81	2.81		5	6		
M2 S				1.0	27.1	27.1	6.52	6.54		96.2	95.7		28.0	28.0	2.80	2.80		7	6		
M2 M	10:15	Small wave	1 18 П	9.0	26.9	26.9	6.27	6.26	6.40	96.7	95.7	96.1	28.2	28.2	2.99	3.19	3.10	7	7	7.2	
M2 B		wave		17.0	26.4	26.4	6.18	6.19	6.19	89.7	88.4	89.1	28.4	28.4	3.27	3.56		8	8		
C1 S				1.0	27.3	27.3	6.81	6.79		96.6	96.7		27.7	27.7	2.74	2.92		6	7		
FC1 M	10:40	Small wave	1 2211	11.0	27.1	27.1	5.72	5.73	6.26	94.2	93.6	95.3	27.9	27.9	3.22	3.48	2.93	8	9	7.5	
FC1 B		wave		21.0	26.7	26.7	5.74	5.75	5.75	89.4	89.5	89.5	28.1	28.1	2.68	2.52		7	8		
C2 S				1.0	27.1	27.1	6.72	6.74		94.1	93.1		28.3	28.3	3.29	3.46		6	7		
C2 M	10:00	Small wave	1811	9.0	26.7	26.7	5.90	5.91	6.32	92.5	92.3	93.0	28.5	28.5	3.49	3.23	3.25	7	8	7.5	
C2 B		wave		17.0	26.1	26.1	5.86	5.83	5.85	85.1	86.5	85.8	28.8	28.8	2.94	3.09		8	9		
Rold data	with sing	le underlir	ne indicat	es an exc	eedance	to Actic	n Leve														
	with double							_										9			
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.57,	45.1,	451	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.7	mS						Date:				
		Thermome	eter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	1un Area	<u>38</u>				Client:	Penta-C	cean Cons	struction	Co., Ltd.	Job No.:	9 33	4494.1				
Date of Sa	Date of Sampling :		14/07/2004		Weather Conditio			n: Cloudy			Ambient Temperature, °C:		ture,°C:	30		Tide State		e: <u>Mid-Flood</u>		<u>od</u>	
Station	Time	Sea	Overall	Sampling				ed Oxyg		Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	ь	а	b	Average	а	b	Average	а	ь	а	b	Average			Depth Average	
FM1 S			1 18 11	1.0	30.5	30.5	6.84	6.85		97.4	97.3	94.9	31.8	31.8	1.18	1.34		6	6	1	
FM1 M	19:10) Small wave		9.0	27.8	27.6	6.52			92.1	92.9		34.2	34.2	6.86	6.86 7.01		6	7		
FM1 B				17.0	26.7	26.8	6.43		91.5	91.6	91.6	31.9	31.9	7.60	7.34		7	7			
FM2 S				1.0	30.1	30.2	6.96	6.97	96.4	97.1		30.7	30.7	3.99	4.28		6	7			
FM2 M	19:00	Smal wave	1 1811	9.0	27.9	27.7	6.49	6.51	6.73 6.51	91.7	92.1	94.3	31.6	31.6	3.48	3.54	-	6	7	- 0.0	
FM2 B				17.0	25.1	25.2	6.23	6.19	6.21	90.4	90.2	90.3	90.3 31.6	31.7	3.95	3.66		7	8		
FC1 S		Small wave		1.0	29.7	29.8	6.75	6.35	97.5	97.6	93.3	31.7	31.7	5.82	6.10		5	5	6.2		
FC1 M	19:20		1 23.11	11.5	28.1	28.0	5.94		89.5	88.6		31.0	31.1	3.61	3.57		6	5			
FC1 B				22.0	26.5	26.5	5.81	5.80	5.81	87.1	87.6	87.4	34.5	34.5	6.19	6.38		8	8		
FC2 S				1.0	28.8	28.9	6.72	6.74		98.1	98.4	92.5	33.7	33.7	5.74	5.20	4.60	6	5	6.8	
FC2 M	18:45	Small wave	18.0	9.0	26.4	26.5	5.86	5.87	6.30	86.4	87.1		32.6	32.6	4.74	4.85		7	6		
FC2 B				17.0	25.1	25.2	5.64	5.65	5.65	85.4	85.1	85.3	32.6	32.6	3.35	35 3.70		9	8		
Bold data	with sing	le underlir	ne indicate	es an exc	eedance	to Actio	n I evel														
		underline																			
Equipmen	t used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	Turbidity Meter:		EM	2365		Calibrat	ion Check:	4.57,	45.2,	454	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
ja J	Thermometer:			ET	961										2 6. 7 5		9 8				

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	un Area (<u>38</u>		,		Client:	Penta-O	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sampling :		14/07/2004		Weather Cond			on: Sunny				Ambient Temperature,°C		ature,°C:	32		Tide State		e: <u>Mid-Ebb</u>		<u>1</u>	
Station		Sea		Sampling	Tempera	ture, °C	Dissolv			Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	ь	Average	а	b	а	b	Average			Depth Average	
FM1 S		Small wave	1 1/10	1.0	29.5	29.5	6.85		97.3	97.8		30.4	30.4	1.31	1.31		4	3			
FM1 M	11:35			8.5	27.9	27.8	6.64	6.68	6.75	96.3	96.1		32.1	32.1	8.55	8.10	200	6	6		
FM1 B				16.0	26.7	26.5	6.53	6.49	6.51	92.4	91.9		34.5	34.5	8.96	8.40		9	10		
FM2 S		Small	1 17 11	1.0	29.4	29.4	6.84	6.79	6.72	96.9		32.0	32.0	4.16	4.22		6	5			
FM2 M	11:45			8.5	27.2	27.2	6.63	6.63 6.62		1	96.8	96.8	32.2	32.2	3.72	4.28		6	5	4.77.00	
FM2 B				16.0	25.3	25.3	6.58	6.49	6.54	93.1	94.1	93.6	32.2	32.2	7.54	7.93		6	6		
FC1 S		Small		1.0	28.9	29.0	6.83	6.82	6.82 6.75	98.1	97.8	97.3	34.8	34.8	6.73	6.72		5	5	5.3	
FC1 M	11:15		1 2211	11.0	27.4	27.4	6.68	6.67		96.9	96.4		34.8	34.8	4.97	5.30		5	6		
FC1 B				21.0	26.1	26.0	6.49	6.50	6.50	92.9	92.5	92.7	33.7	33.7	4.95	5.68		5	6		
FC2 S		Small wave		1.0	28.8	28.8	6.82	6.81		97.9 95.4	97.1	96.6	32.4	32.4	3.21	3.48	4.11	6	5	6.3	
FC2 M	12:00		1 1711	8.5	27.2	27.2	6.67	6.71	6.75		96.1		34.7	34.8	4.64	4.63		6	6		
FC2 B				16.0	26.3	26.3	6.50	6.45	6.48	93.1	93.2		34.0	34.0	4.62	4.07		8	7		
Bold data	with singl	e underlin	ne indicato	es an exce	edance	to Actin	n Leve	ı													
	with double							_													
Equipmen	used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity Meter:			EM	2365	Calibratio		ion Check:	4.59,	46.0,	455	NTU				Checked	Ву:			
		Salinity Me	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermometer:		ET	961																

Project: <u>C</u>	: Contract No. CV/2002/13 Fill Bank At 1			At Tuen N	1un Area	<u>38</u>				Client:]	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	8			
Date of Sa	impling :	20/07/2004	1		Weathe	r Conditio	on:	Rainy			Ambier	t Tempera	ature,°C:	30			Tide State	9:	Mid-Flo	<u>od</u>	
Station	Time	Sea Condition	Overall Depth, m	Sampling Depth m	Tempera	ature,°C	Dissolv	ed Oxyg h	jen, mg/L Average	Dissolv a	ed Oxyg I b	en, % Average	Salinity,	ppt b	Turbidity a	/, NTU b	Average	Susper		ds, mg/L Depth	Remarks
	9							_										3		Average	
M1 S				1.0	28.1	28.0	6.97	6.95	6.85	98.9	98.2	97.6	25.8	25.9	3.25	3.24		8	9		
M1 M	08:00	Medium wave	18.0	9.0	27.1	27.1	6.71	6.78		98.1	95.3	37.0	28.4	28.5	3.61	3.82	3.56	8	9	8.5	5
M1 B				17.0	26.1	26.1	6.53	6.62	6.58	84.3	85.6	85.0	30.3	30.5	3.89	3.56		9	8		
FM2 S				1.0	29.2	29.1	6.98	6.91		89.1	90.3	-,-	26.4	26.5	3.12	3.10		7	8		
FM2 M	08:15	Medium wave	18.0	9.0	27.1	27.1	6.71	6.73	6.83	79.1	78.2	84.2	29.4	29.4	4.23	4.26	4.07	8	9	8.5	5
FM2 B		31,001.0		17.0	26.3	26.3	6.58	6.51	6.55	74.3	74.8	74.6	30.5	30.4	4.76	4.95		9	10		
FC1 S				1.0	29.1	29.1	6.91	6.83		99.1	98.2		26.7	26.7	2.16	2.18		10	8		
FC1 M	07:45	Medium wave	23.0	11.5	27.1	27.1	6.71	6.42	6.72	98.1	94.5	97.5	29.9	29.5	3.07	3.09	3.02	11	9	9.5	5
FC1 B		V17786 31573		22.0	26.1	26.1	6.51	6.59	6.55	90.8	94.3	92.6	31.0	31.0	3.68	3.92		10	9		
C2 S				1.0	29.1	29.1	6.93	6.71	1	97.1	98.4		29.3	29.4	2.29	3.05		8	7		
FC2 M	08:30	Medium wave	18.0	9.0	27.3	27.3	6.49	6.59	6.68	95.2	96.3	96.8	30.1	30.2	3.69	3.05	3.41	8	9	8.5	5
FC2 B		31.41.5		17.0	25.7	25.8	6.71	6.43	6.57	88.9	89.4	89.2	31.0	31.0	4.18	4.17		10	9		
Bold data	with singl	o undorlir	o indicate	ne an ove	oodance	to Actio	n Lovo														
	with double													10 10							
Equipmen	t used:	Dissolved	l Oxygen Mi	eter:	EM	961		Calibrat	tion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			55
		Turbidity M	leter:		EM	2365		Calibrat	tion Check:	4.61,	45.7,	461	NTU				Checked	Ву:			
		Salinity Me	eter:		EM	3694		Calibrat	tion Check:	58.6	mS						Date:				
		Thermome	ter:		ET	961								6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6							

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	impling :	20/07/2004	1		Weather	Conditio	n:	Sunny			Ambier	nt Tempera	ture,°C:	31			Tide State	9:	Mid-Ebl	<u>)</u>	
Station		Sea		Sampling	Tempera					Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	ь	Average	а	Ь	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	29.1	29.1	6.91	6.89		97.9	98.2		26.3	26.3	2.56	2.62		7	7	-	
FM1 M	15:30	Medium wave	17.0	8.5	27.8	27.8	6.71	6.53	6.76	99.1	98.4	98.4	29.0	29.0	4.49	4.73	4.01	7	7	8.0	
FM1 B		, maro		16.0	26.1	26.1	6.49	6.52	6.51	89.5	88.2	88.9	30.5	30.5	4.87	4.79		11	9		
FM2 S				1.0	28.3	28.3	6.90	6.84		88.5	90.1		27.1	27.2	3.06	3.06		7	6		
FM2 M	15:15	Medium wave	17.0	8.5	27.1	27.1	6.81	6.73	6.82	78.1	79.2	84.0	30.3	30.5	5.01	5.02	4.74	11	9	8.2	
FM2 B		wave		16.0	28.3	28.3	6.42	6.58	6.50	73.3	74.1	73.7	31.0	31.0	6.28	6.02		9	7		
FC1 S				1.0	29.1	29.1	6.79	6.89		98.4	96.3		27.3	27.5	2.16	2.38		9	7		
FC1 M	15:45	Medium wave	22.0	11.0	26.8	26.8	6.70	6.53	6.73	93.2	91.8	94.9	29.1	29.1	4.53	4.52	3.97	9	7	7.7	
FC1 B		, maro		21.0	26.1	26.1	6.45	6.54	6.50	89.1	88.1	88.6	31.5	31.5	5.10	5.13		7	7		
FC2 S				1.0	29.1	29.1	6.93	6.84		99.5	98.7		26.8	26.9	2.10	2.10		7	7		
FC2 M	15:00	Medium wave	17.0	8.5	27.1	27.1	6.71	6.70	6.80	94.3	95.2	96.9	28.8	28.9	3.59	3.88	3.92	6	7	7.3	
FC2 B				16.0	25.8	25.8	6.54	6.50	6.52	88.1	87.5	87.8	31.3	31.2	5.76	6.09		8	9		
Bold data	with singl	e underlin	e indicate	es an exc	edance	to Actio	n Leve														
	with double																				
Equipmen	t used:	Dissolved	Oxygen Me	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.53,	46.2,	458	NTU				Checked	Ву:			
		Salinity Me	eter:		EM	3694		Calibrat	ion Check:	58.7	mS						Date:				
		Thermome	ter:		ET	961												9 6			

⊃roject: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	<u>38</u>				Client:	Penta-O	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	impling :	22/07/200	4		Weather	Conditio	n:	Sunny			Ambier	nt Tempera	ature,°C:	32			Tide State	9:	Mid-Flo	<u>od</u>	
Station	Time	Sea	Overall	Sampling						Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	ь	Average	а	b	Average	а	ь	а	Ь	Average			Depth Average	
FM1 S				1.0	28.1	28.1	6.95	6.98		99.9	99.0		28.4	28.4	3.22	3.00		5	5		
M1 M	09:45	Big wave	18.0	9.0	27.5	27.5	6.71	6.72	6.84	88.3	89.1	94.1	30.4	30.5	2.33	2.45	2.72	6	6	6.2	
M1 B				17.0	26.1	26.1	6.54	6.53	6.54	84.1	85.6	84.9	32.1	32.0	2.59	2.71		7	8		
M2 S				1.0	28.1	28.1	6.98	6.94		98.7	99.5		28.0	28.0	3.76	3.80		6	7		
FM2 M	09:30	Big wave	18.0	9.0	27.1	27.1	6.93	6.89	6.94	97.3	95.2	97.7	30.6	30.8	3.73	3.79	3.50	7	7	6.8	
M2 B				17.0	26.4	26.4	6.52	6.53	6.53	85.3	84.2	84.8	31.9	31.9	2.92	2.99		7	7		
FC1 S				1.0	28.4	28.4	6.91	6.89		99.2	98.3		27.7	27.9	3.29	3.35		7	8		
C1 M	10:00	Big wave	23.0	11.5	28.3	28.3	6.83	6.84	6.87	94.5	96.2	97.1	31.0	31.0	3.30	3.15	3.13	6	6	6.5	
C1 B				22.0	26.4	26.5	6.61	6.69	6.65	86.2	85.3	85.8	31.4	31.4	2.77	2.89		6	6		
C2 S				1.0	28.4	28.4	6.84	6.92	6.82	98.3	97.9	97.0	29.9	29.9	3.34	3.46		6	7		
C2 M	09:15	Big wave	18.0	9.0	27.5	27.5	6.70	6.83		95.3	96.4		30.1	30.2	4.56	4.61	4.15	6	7	6.2	
FC2 B				17.0	25.3	25.3	6.59	6.54	6.57	87.5	88.6	88.1	30.5	30.5	4.42	4.50		6	5		
	with sing																				
talic data	with double	underline	indicates a	n exceeda	nce to Lii	nit Level												<i>y</i> – <i>b</i>			
Equipment	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok	- 2			Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.54,	45.9,	456	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.7	mS						Date:				
	2	Thermome	eter:		ET	961															

Project: C	ontract No.	CV/2002/1:	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client: <u>I</u>	⊃enta-C	cean Cons	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	mpling :	22/07/2004	1		Weather	Conditio	n:	Sunny			Ambier	t Tempera	ture,°C:	32			Tide Stat	e:	Mid-Ebb	<u>)</u>	
Station	Time	Sea	Overall	Sampling	Tempera	ture, °C	Dissolve	ed Oxyg	en, mg/L	Dissolve	ed Oxyg	en, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Soli	ds, mg/L	Remarks
		Condition	Depth, m		а	Ь	а		Average	а	b	Average	а	ь	а	ь	Average			Depth Average	
FM1 S				1.0	28.2	28.2	6.96	6.95		98.9	98.1		29.5	29.5	3.26	3.21		7	6		
FM1 M	16:25	Medium wave	17.0	8.5	26.9	27.0	6.72	6.73	6.84	95.3	96.4	97.2	30.3	30.3	3.59	3.62	3.27	6	6	6.2	
FM1 B				16.0	25.1	25.1	6.64	6.54	6.59	85.3	86.9	86.1	31.0	31.0	2.97	2.99		6	6		
FM2 S				1.0	28.2	28.2	6.97	6.94		94.2	97.3		29.0	29.0	3.12	3.10		5	6		
FM2 M	16:40	Medium wave	17.0	8.5	27.4	27.4	6.96	6.84	6.93	95.3	96.4	95.8	29.5	29.5	3.23	3.26	3.43	6	6	5.8	
FM2 B		31001.5		16.0	25.9	25.9	6.52	6.54	6.53	89.5	88.9	89.2	31.0	31.0	3.93	3.95		6	6		
FC1 S				1.0	28.1	28.1	6.89	6.92		97.9	98.4		30.1	30.2	4.17	4.15		6	7		
FC1 M	16:10	Medium wave	22.0	11.0	27.9	27.9	6.77	6.81	6.85	94.9	95.8	96.8	31.1	31.1	2.07	2.10	3.54	6	7	6.5	
FC1 B		0.7078.8077		21.0	26.2	26.4	6.64	6.65	6.65	88.4	85.9	87.2	31.5	31.5	4.38	4.35		6	7		
FC2 S				1.0	28.2	28.2	6.82	6.89		98.5	96.4		28.8	28.7	4.52	4.47		6	5		
FC2 M	16:55	Medium wave	17.0	8.5	27.9	27.9	6.71	6.70	6.78	96.5	97.8	97.3	30.3	30.5	3.41	3.56	4.30	7	7	6.5	
FC2 B		**********		16.0	26.4	26.4	6.54	6.52	6.53	84.7	88.9	86.8	31.5	31.5	4.90	4.95		7	7		
Bold data	with singl	e underlir	e indicate	es an exce	edance	to Actio	n Level														
<u>Italic data</u>	with double	underline .	indicates a	n exceedai	nce to Lin	nit Level										8 V		, v			
Equipment	used:	Dissolved	Oxygen Mo	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity M	1eter:		EM	2365		Calibrat	ion Check:	4.56,	46.8,	465	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:		- 2		
		Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	ampling :	24/07/2004	1		Weather	Conditio	n:	Sunny			Ambier	nt Temper	ature,°C:	29			Tide State	9:	Mid-Flo	<u>od</u>	
Station	Time	Sea		Sampling	Tempera					Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	ь	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	28.5	28.5	7.00	6.99		97.9	98.1		26.4	26.5	1.54	1.58		4	4		
FM1 M	11:25	Small wave	1811	9.0	27.1	27.1	6.75	6.76	6.88	94.1	94.3	96.1	27.7	27.7	1.14	1.29	1.56	4	4	4.3	
FM1 B		, mare		17.0	26.4	26.5	6.21	6.19	6.20	89.2	89.4	89.3	27.6	27.6	1.86	1.92		5	5		
FM2 S				1.0	28.5	28.5	6.95	6.97		96.5	96.4		26.9	27.0	2.34	2.26		5	5		
FM2 M	11:15	Small wave	1811	9.0	27.2	27.2	6.75	6.76	6.86	93.1	93.4	94.9	27.3	27.3	1.55	1.67	1.92	3	3	4.0	
FM2 B		l liaio		17.0	26.2	26.2	6.26	6.23	6.25	88.1	87.2	87.7	27.2	27.2	1.83	1.87		4	4		
FC1 S				1.0	28.5	28.5	7.01	7.02		96.7	96.4		26.5	26.5	2.05	2.13		4	4		
FC1 M	11:40	Small wave	1 23.11	11.5	27.5	27.5	6.64	6.71	6.85	92.5	92.6	94.6	26.1	26.1	2.41	2.49	1.98	5	5	4.5	
FC1 B				22.0	26.1	26.1	6.30	6.21	6.26	88.2	89.3	88.8	25.2	25.2	1.35	1.44		4	5		
FC2 S				1.0	28.5	28.5	6.86	6.87		95.7	95.8		26.3	26.3	1.40	1.42		3	3		
FC2 M	11:00	Small wave	1811	9.0	27.1	27.1	6.31	6.33	6.59	91.7	91.7	93.7	27.7	27.7	1.72	1.53	1.64	3	3	3.7	
FC2 B		***************************************		17.0	26.4	26.4	6.11	6.09	6.10	88.6	88.1	88.4	28.3	28.3	1.93	1.82		5	5		
Bold data	with singl	le underlir	ne indicati	es an exc	eedance	to Actio	n Leve	ı													
	with double							_													
Equipmen	t used:	Dissolved	Oxygen Mi	eter:	ЕМ	961		Calibrat	tion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		ЕМ	2365		Calibrat	tion Check:	4.59,	46.8,	470	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	tion Check:	58.8	mS						Date:				
3		Thermome	ter:		ET	961								13 S				3 S			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	<u>38</u>				Client:	Penta-C	cean Cons	struction	Co., Ltd.	Job No.:		4494.1	S			
Date of Sa	impling :	24/07/2004	4		Weather	Conditio	n:	Sunny			Ambier	nt Tempera	ture,°C:	29			Tide State	B:	Mid-Eb	<u>b</u>	
Station	Time	Sea	Overall	Sampling	Tempera		Dissolve	ed Oxyg		Dissolv			Salinity,		Turbidity			Susper	ided Soli	ids, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	ь	а	b	Average			Depth Average	
FM1 S				1.0	29.5	29.5	6.78	6.75		97.7	97.8		27.9	27.9	0.78	0.89		3	4		
FM1 M	17:45	Small wave	17.0	8.5	27.7	27.7	6.31	6.29	6.53	94.1	95.0	96.2	28.3	28.2	1.69	1.71	1.17	5	6	4.7	
FM1 B				16.0	26.3	26.3	5.98	5.99	5.99	90.2	90.1	90.2	28.4	28.2	0.94	1.01		5	5		
FM2 S				1.0	29.5	29.5	6.65	6.69		98.6	97.5		27.1	27.0	2.27	2.10		3	4		
FM2 M	17:55	Small wave	17.0	8.5	27.3	27.3	6.45	6.39	6.55	93.1	93.5	95.7	26.8	26.9	0.99	1.01	1.38	4	5	4.5	
FM2 B				16.0	26.4	26.4	6.01	6.03	6.02	89.3	89.5	89.4	29.1	28.9	0.96	0.95		6	5		
FC1 S				1.0	29.5	29.5	6.41	6.43		97.4	97.5		27.7	27.8	2.03	2.13		4	5		
FC1 M	17:30	Small wave	22.0	11.0	26.9	26.8	6.11	6.10	6.26	94.1	94.2	95.8	27.8	27.2	2.13	2.11	1.83	3	4	4.7	
FC1 B				21.0	26.1	26.1	6.00	6.00	6.00	88.1	89.0	88.6	26.9	27.1	1.27	1.29		6	6		
FC2 S				1.0	29.5	29.5	6.61	6.62		98.1	98.2		27.6	27.7	1.59	1.61		4	5		
FC2 M	18:10	Small wave	17.0	8.5	26.7	26.7	6.20	6.21	6.41	92.1	93.0	95.4	29.1	28.9	1.18	1.21	1.75	3	4	5.3	
FC2 B				16.0	26.2	26.2	5.87	5.89	5.88	89.1	88.4	88.8	27.0	27.2	2.43	2.45		8	8		
Bold data	with sing	le underlir	ne indicate	es an exc	eedance	to Actio	n I eve														
		underline																0			
Equipmen	t used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.68,	47.3,	470	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.7	mS						Date:				
	/	Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client: J	⊃enta-O	cean Con	struction	Co., Ltd.	Job No.:		4494.1	5 5			
Date of Sa	mpling :	26/07/2004	1		Weather	Conditio	n:	Sunny			Ambier	t Tempera	ature,°C:	29.5			Tide State	9:	Mid-Flo	<u>od</u>	
Station		Sea		Sampling	Tempera	ture, °C	Dissolv	ed Oxyg		Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	ь	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	29.0	29.1	6.89	6.88		84.5	86.7		26.4	26.4	2.42	2.54		3	3		
FM1 M	14:25	Small wave	1811	9.0	26.7	26.7	6.45	6.46	6.67	82.6	81.7	83.9	27.9	27.9	3.13	2.92	2.73	4	4	4.5	
FM1 B				17.0	24.4	24.5	6.21	6.20	6.21	79.8	79.9	79.9	26.9	26.8	2.73	2.61		6	7		
FM2 S				1.0	29.1	29.1	6.81	6.81	_	88.7	89.8		27.9	27.9	1.66	1.67		6	6		
FM2 M	14:15	Small wave	1811	9.0	26.9	26.9	5.75	5.76	6.28	81.7	81.6	85.5	28.9	29.1	1.94	1.86	2.62	6	6	6.3	
FM2 B				17.0	25.7	25.7	5.61	5.62	5.62	78.7	79.8	79.3	30.7	30.8	4.28	4.33		7	7		
FC1 S				1.0	29.1	29.1	6.92	6.93		92.3	92.4		24.9	24.9	2.91	2.68		4	5		
FC1 M	14:40	Small wave	1 23.11	11.5	27.1	27.1	6.21	6.24	6.58	90.7	90.4	91.5	26.6	26.6	3.91	3.87	2.99	6	6	5.2	
FC1 B				22.0	26.1	26.1	6.01	6.03	6.02	88.4	89.3	88.9	27.8	27.8	2.25	2.33		5	5		
FC2 S				1.0	29.2	29.2	6.73	6.75		90.7	91.7		28.5	28.5	2.57	2.42		4	5		
FC2 M	14:05	Small wave	1811	9.0	27.7	27.3	6.30	6.29	6.52	88.4	89.5	90.1	29.3	29.2	2.21	2.24	2.69	5	5	5.8	
FC2 B				17.0	25.7	25.7	6.11	6.09	6.10	85.2	84.2	84.7	32.1	32.2	3.25	3.42		8	8		
Bold data	with singl	e underlin	ne indicate	es an exce	edance	to Actio	n I eve	ı													
	with double																	y 9			
Equipmen	used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.50,	46.0,	462	NTU				Checked	Ву:			
		Salinity Me	eter:		EM	3694		Calibrat	ion Check:	58.6	mS						Date:				
		Thermome	ter:		ET	961												2 S			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	lun Area	<u>38</u>				Client:	Penta-C	cean Cons	struction	Co., Ltd.	Job No.:	9 33	4494.1	<u> </u>			
Date of Sa	impling :	26/07/2004	1		Weather	Conditio	n:	Sunny			Ambier	nt Tempera	ture,°C:	29.5			Tide State	9:	Mid-Eb	<u> </u>	
Station	Time	Sea	Overall	Sampling	Tempera	nture, °C	Dissolve	ed Oxyg	jen, mg/L	Dissolv	ed Oxyg	gen, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ided Soli	ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	28.5	28.5	6.95	6.96		99.7	99.8		27.4	27.2	2.90	2.89		7	7		
FM1 M	08:15	Small wave	17.0	8.5	27.1	27.2	6.57	6.56	6.76	95.4	96.1	97.8	28.4	28.4	3.49	3.53	3.09	5	5	6.0	
FM1 B		577763577		16.0	26.3	26.4	6.15	6.16	6.16	89.7	88.1	88.9	29.2	29.2	2.93	2.79		6	6		
FM2 S				1.0	28.5	28.5	6.87	6.86		98.7	97.2		24.1	24.2	4.30	4.44		7	6		
FM2 M	08:25	Small wave	17.0	8.5	26.9	26.8	6.47	6.51	6.68	94.1	94.4	96.1	28.1	28.2	2.79	2.85	3.82	4	4	6.0	
FM2 B				16.0	25.9	25.9	6.21	6.29	6.25	86.7	86.5	86.6	28.1	28.2	4.21	4.32		7	8		
FC1 S				1.0	28.5	28.5	6.99	6.96		98.7	98.5		24.3	24.4	4.98	4.86		10	9		
FC1 M	08:00	Small wave	22.0	11.0	26.8	26.8	6.46	6.47	6.72	95.4	96.1	97.2	25.7	25.2	8.08	8.41	5.70	11	10	8.5	
FC1 B				21.0	25.7	25.7	6.20	6.17	6.19	87.1	87.2	87.2	28.1	28.1	3.76	4.13		6	5		
FC2 S				1.0	28.6	28.6	7.02	7.01		97.4	97.6		22.3	22.2	2.87	2.86		5	5		
FC2 M	08:40	Small wave	17.0	8.5	26.4	26.4	6.62	6.63	6.82	96.2	95.9	96.8	27.8	27.8	3.65	3.82	3.43	6	6	6.8	
FC2 B				16.0	25.2	25.2	6.16	6.15	6.16	89.2	89.3	89.3	27.7	27.7	3.73	3.62		9	10		
Bold data	with sing	le underlir	ne indicate	es an exc	eedance	to Actio	n I evel														
		underline .																			
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.60,	46.3,	460	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.6	mS						Date:				
<i>2</i>	/	Thermome	ter:		ET	961										2 (c) 7 (c)		9 0 9 8			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	lun Area	<u>38</u>		,		Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	S S			
Date of Sa	ampling :	28/07/2004	1		Weather	Conditio	n:	Sunny			Ambier	t Tempera	ature,°C:	29			Tide State	9:	Mid-Flo	<u>od</u>	
Station		Sea		Sampling	$\overline{}$					Dissolv			Salinity,		Turbidity			Suspen		ds, mg/L	Remarks
	-5	Condition	Depth, m	Depth,m	а	ь	а	Ь	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	27.9	27.9	6.92	6.93		99.1	97.3		25.4	25.4	8.72	8.43		12	14		
FM1 M	18:00	Small wave	1811	9.0	26.1	26.1	6.81	6.73	6.85	96.1	98.3	97.7	26.3	26.4	7.02	7.33	7.31	10	11	11.7	
FM1 B				17.0	25.9	25.9	6.62	6.45	6.54	94.1	89.3	91.7	26.5	26.5	5.94	6.43		11	12		
FM2 S				1.0	28.9	28.9	6.89	6.78		98.3	95.1		24.5	24.5	4.46	4.12		9	9		
FM2 M	17:45	Small wave	1811	9.0	27.0	27.0	6.73	6.81	6.80	96.9	97.1	96.9	29.9	29.9	3.55	3.51	4.58	10	9	11.5	
FM2 B				17.0	26.1	26.1	6.93	6.71	6.82	94.3	95.1	94.7	30.5	30.5	5.59	6.23		15	17		
FC1 S				1.0	28.3	28.3	6.93	6.73		99.3	98.2		25.0	25.0	7.97	8.42		14	14		
FC1 M	18:15	Small wave	1 2211	11.0	26.3	26.2	6.81	6.82	6.82	97.1	96.4	97.8	27.1	27.1	8.25	7.89	8.42	8	9	10.5	
FC1 B				21.0	25.3	25.3	6.66	6.54	6.60	89.1	88.9	89.0	28.9	28.9	8.50	9.50		9	9		
FC2 S				1.0	28.1	28.1	6.89	6.93		98.1	97.3		25.1	25.2	6.65	6.10		15	13		
FC2 M	17:30	Small wave	1811	9.0	26.1	26.0	6.91	6.81	6.89	97.3	96.5	97.3	25.0	25.0	6.72	7.22	6.52	10	12	12.0	
FC2 B				17.0	25.1	25.1	6.67	6.83	6.75	94.4	93.1	93.8	27.3	27.3	5.99	6.46		12	10		
	with single with double							<u>l</u>													
												10001									
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Umg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.58,	46.8,	468	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
7		Thermome	ter:		ET	961															

Project: <u>C</u>	et: Contract No. CV/2002/13 Fill Bank Af			At Tuen N	1un Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	mpling :	28/07/2004	1		Weathe	r Conditio	on:	Sunny			Ambier	t Tempera	ature,°C:	30			Tide State	e:	Mid-Ebb	2	
Station	Time	Sea Condition	Overall Depth, m	Sampling	Tempera		Dissolv	ed Oxyg h	jen, mg/L Average	Dissolv a	ed Oxyg b	en, % Average	Salinity,	ppt b	Turbidity a		Average	Susper		ds, mg/L Depth	Remarks
2	-5	Condition	Deptin, in	Беріп, п	a	Ь	а	U	Average	а	U	Average	а	U	а	b	Average	3		Average	
FM1 S				1.0	27.3	27.3	6.81	6.83		98.1	99.3		23.5	23.5	8.90	9.10		13	13		
FM1 M	10:15	Small wave	17.0	8.5	26.9	26.8	6.73	6.56	6.73	97.3	96.9	97.9	25.1	25.1	6.31	5.81	7.37	14	16	13.0)
FM1 B		93000000		16.0	26.3	26.3	6.31	6.43	6.37	89.1	88.3	88.7	25.2	25.3	6.91	7.21		11	11		
FM2 S				1.0	27.3	27.3	6.91	6.83		98.3	93.1		24.8	25.0	3.92	3.91		8	8		
FM2 M	10:30	Small wave	17.0	8.5	26.4	26.4	6.66	6.71	6.78	96.3	95.4	95.8	29.4	29.4	1.97	2.11	3.21	11	11	9.2	2
FM2 B		91998301		16.0	25.1	25.1	6.53	6.42	6.48	95.6	97.1	96.4	30.0	29.9	3.55	3.80		8	9		
FC1 S				1.0	28.9	28.9	6.72	6.89		99.1	98.9	07.4	23.5	23.6	5.85	5.83		14	16		
FC1 M	10:00	Small wave	21.0	10.5	28.3	28.3	6.61	6.59	6.70	94.3	96.2	97.1	26.3	26.2	7.47	7.72	7.13	11	12	13.3	3
FC1 B		25.0700.650		20.0	25.3	25.3	6.53	6.69	6.61	85.1	88.3	86.7	26.3	26.1	8.05	7.86		13	14		
FC2 S				1.0	28.3	28.3	6.93	6.81		94.1	95.6	05.0	24.0	24.0	4.27	4.29		8	8		
FC2 M	10:45	Small wave	17.0	8.5	27.1	27.1	6.67	6.73	6.79	97.1	96.3	95.8	29.0	29.0	6.73	6.92	5.36	12	12	9.7	7
FC2 B		25.0100.51		16.0	25.9	25.9	6.59	6.61	6.60	89.1	90.2	89.7	30.7	30.8	4.82	5.13		9	9		
Bold data	with sing	e underlir	ne indicati	es an exc	eedance	to Actio	on Leve	1													
	with double													9		, s					
Equipmen	used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	tion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	tion Check:	4.51,	47.0,	455	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	tion Check:	58.8	mS						Date:				
2 8		Thermome	ter:		ET	961								(a) (a)		<u> </u>		(a) (b)			

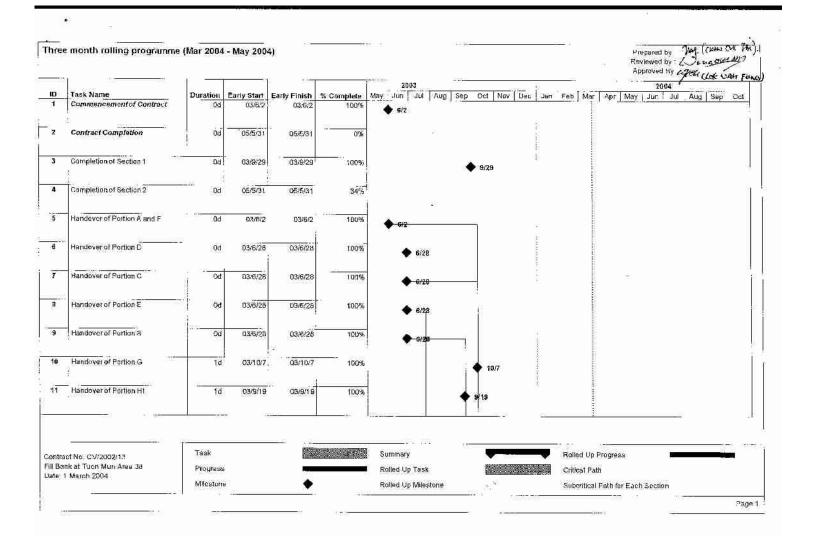
Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	1un Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	4			
Date of Sa	impling :	30/07/2004	4		Weather	Conditio	n:	Cloudy			Ambier	nt Tempera	ture,°C:	29			Tide Stat	e:	Mid-Flo	od	
Station		Sea	Overall	Sampling				ed Oxyg		Dissolv			Salinity,		Turbidity			Suspen	ded Soli		Remarks
		Condition	Depth, m	Deptn,m	а	b	а	D	Average	а	ь	Average	а	b	а	b	Average			Depth Average	
M1 S				1.0	27.5	27.5	6.68	6.70	6.70	99.1	98.2	97.9	22.4	22.4	3.95	3.54		10	12		
M1 M	19:45	Small wave	1 18 11	9.0	25.4	25.4	6.77	6.66		97.7	96.4		23.9	23.9	9.68	8.89	6.09	14	15	16.5	
M1 B		9, 9,000,000		17.0	24.9	24.9	6.54	6.42	6.48	96.1	95.5	95.8	27.6	27.6	5.25	5.25		25	23		
M2 S				1.0	27.8	27.8	6.81	6.73		98.1	97.2		22.5	22.5	2.19	2.39		14	12		
FM2 M	19:30	Small wave	1 1811	9.0	25.5	25.5	6.62	6.54	6.68	97.7	98.5	97.9	23.4	23.4	4.79	5.06	3.74	10	10	13.8	
-M2 B		77.000.007		17.0	25.0	25.0	6.40	6.61	6.51	94.2	93.3	93.8	25.7	25.7	3.97	4.02		18	19		
FC1 S				1.0	27.8	27.7	6.78	6.79		99.1	98.7	1	22.1	22.1	2.47	2.68		8	7		
FC1 M	20:00	Small wave	1 2211	11.0	26.8	26.8	6.62	6.65	6.71	97.1	96.9	98.0	23.4	23.4	8.86	8.77	6.97	18	17	15.5	
C1 B				21.0	26.0	26.0	6.54	6.49	6.52	94.4	93.6	94.0	27.6	27.6	9.72	9.33		22	21		
C2 S				1.0	27.4	27.5	6.80	6.73		98.1	97.9		21.5	21.6	4.42	4.23		6	5		
C2 M	19:15	Small wave	1811	9.0	26.6	26.6	6.58	6.66	6.69	99.4	98.2	98.4	23.2	23.1	3.50	3.11	5.39	18	19	15.7	
C2 B		*********		17.0	25.1	25.1	6.41	6.49	6.45	96.1	95.9	96.0	27.5	27.5	8.53	8.52		24	22		
3old data	with sing	le underlir	ne indicati	es an exc	eedance	to Actio	n Leve														
	with double																				
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.50,	45.2,	457	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.7	mS						Date:				
	9	Thermome	eter:		ET	961															

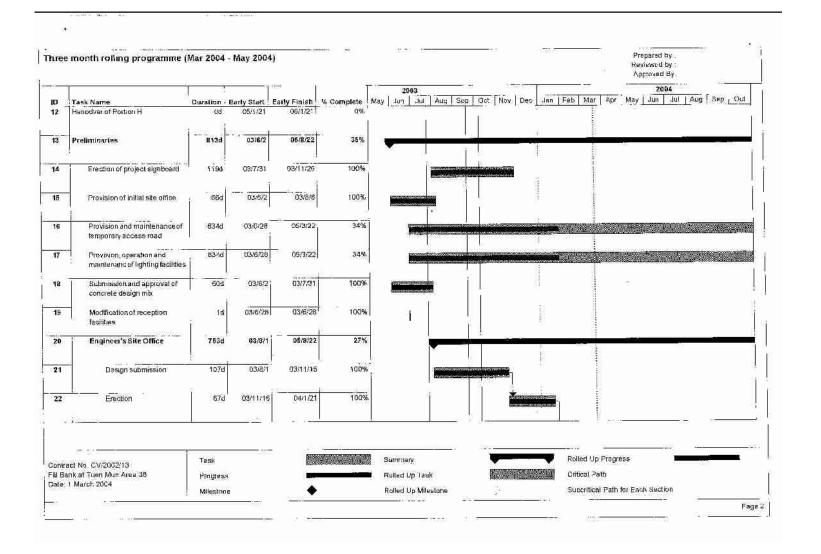
Project: <u>C</u>	ect: Contract No. CV/2002/13 Fill Bar			At Tuen N	/lun Area	<u>38</u>				Client: F	⊃enta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	1			
Date of Sa	mpling :	30/07/2004	4		Weather	r Conditi	on:	Cloudy			Ambier	nt Tempera	ature,°C:	29			Tide State	91	Mid-Ebl	<u>b</u>	
Station	Time	Sea	Overall		Tempera	ature,°C	Dissolv	ed Oxyg		Dissolve			Salinity,	ppt	Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	Ь	а	b	Average	а	Ь	Average	а	b	а	ь	Average			Depth Average	
FM1 S				1.0	27.1	27.2	6.71	6.70		99.1	98.8		21.4	21.4	1.77	1.81		5	6		
FM1 M	12:00	Small wave	17.0	8.5	26.4	26.4	6.68	6.75	6.71	97.4	96.9	98.1	23.1	23.2	1.01	1.18	2.28	15	16	16.3	3
FM1 B				16.0	24.2	24.0	6.43	6.49	6.46	96.8	95.3	96.1	27.7	26.9	3.90	4.01		29	27		
FM2 S				1.0	27.7	27.7	6.80	6.79		98.4	97.4	1	21.2	21.4	2.19	2.27		10	10		
FM2 M	12:15	Small wave	17.0	8.5	27.2	27.2	6.66	6.59	6.71	99.8	98.9	98.6	23.3	23.5	2.41	2.63	2.69	17	17	16.3	3
FM2 B				16.0	25.1	25.1	6.52	6.42	6.47	96.6	94.4	95.5	27.7	27.4	3.56	3.10	8	23	21		
FC1 S				1.0	27.2	27.3	6.77	6.75		98.3	97.4		21.5	21.6	1.79	1.85		7	8		
FC1 M	11:45	Small wave	21.0	10.5	26.4	26.3	6.64	6.59	6.69	96.5	95.4	96.9	22.4	22.7	1.85	1.93	2.44	16	14	15.0)
FC1 B		l mare		20.0	24.8	24.7	6.54	6.68	6.61	89.8	88.9	89.4	24.7	24.7	3.60	3.61		24	21		
FC2 S				1.0	27.9	28.0	6.74	6.68		99.9	98.2		21.4	21.1	1.51	1.67		5	5		
FC2 M	12:30	Small wave	17.0	8.5	26.2	26.2	6.66	6.56	6.66	96.1	94.5	97.2	22.4	22.4	3.80	4.21	3.02	14	15	13.3	3
FC2 B		wave		16.0	25.4	25.4	6.44	6.49	6.47	89.1	88.4	88.8	26.0	26.0	3.30	3.60		21	20		
Dold data	with sing	le underlir	a indicat	oo an ouo	andanaa	to Activ	on Louis											y .			
		underline																			
Equipment	used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	tion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365	i	Calibrat	tion Check:	4.57,	45.8,	452	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	tion Check:	58.7	mS						Date:				
		Thermome	ter:		ET	961															

Appendix VII

Complaint Log

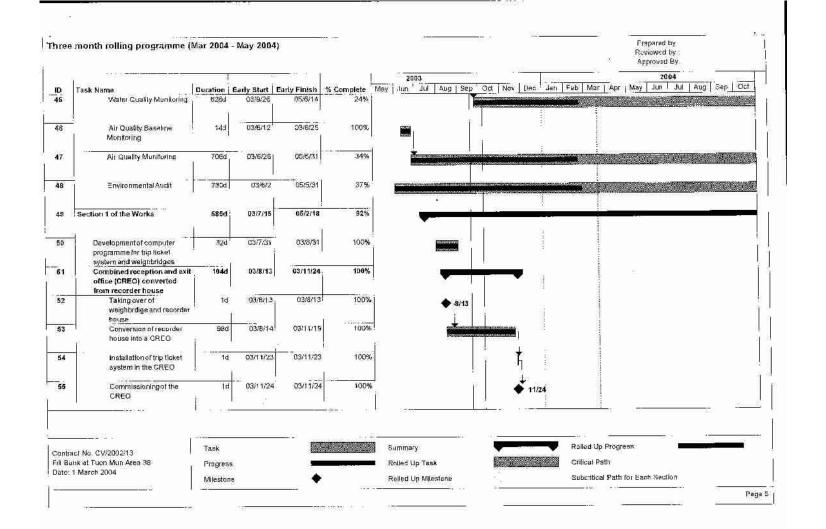
Complaint	Date of	Received From	Nature of Complaint	Date	Outcome	Date of Reply
Log No. 001	Receipt 7.Feb.04	and Received By From: Public By: Home Affairs Department	Cleanliness of public roads.	Investigated N/A	The situation was rectified.	and to Whom N/A
002	29.Jun.04	From: Public By: EPD	Dust generation in Fill Bank	N/A	The situation was rectified	N/A
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

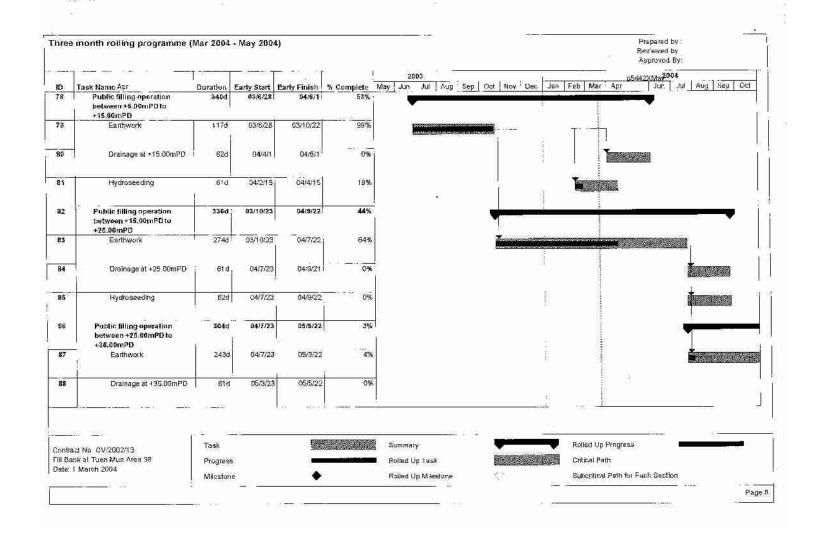

Appendix VIII


Cumulative Statistics on Complaints, Notifications of Summonses and Successful Prosecutions

CONTRACT No. CV/2	2002/13 – FILL B	SANK AT TUEN MUN AREA 38	
Cumulative Statistics	on Complaints	3	
Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Number to Date
Air	0		1
Noise	0		0
Water	0		0
Waste	1		1
Landscape & Visual	0		0
Total	0		2

Appendix IX

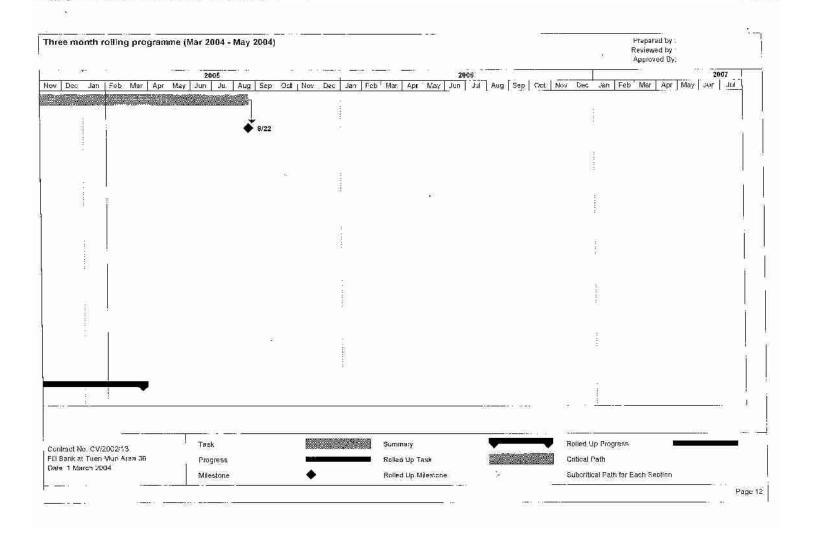

Master Construction Programme



ee	month rolling programme (T (5 11-11		Ţ	2003		Prepared by : Reviewed by : Ардичее Ву: 2004 Feb Mar Apr May Jun Jun Aug Sep Oc
4	Task Name Take over	Duration 1d	Early Start 03/6/28	Early Finish 03/6/28	% Complete 100%	y Jun Jul Aug Sen • 6/28	Oct Nov Dec Lan	Feb Mar Apr May Jur Jui Aug Sep O
5	Mpd:fication of wheel washing facilities	49d	03/6/28	03/8/15	100%	400000000000000000000000000000000000000	i i	
36	Operation and maintenanc∈	834d	03/6/28	05/3/22	34%			
37	Surveillance System	427d	04/4/1	05/6/1	0%	69	Ė	
38	Provision	62d	04/4/1	04/6/1	0%	į.		
39	Operation and maintenance	365d	04/6/2	05/6/1	0%			
40	Tipping Hall	304d	04/2/1	04/11/30	10%			
41	Mddifination	29d	D4/2/1	04/2/29	100%		1	<u> </u>
42	Operation	275d	64/3/1	04/11/30	D%			
43	Environmental Monitoring Works	744d	03/6/2	05/6/14	33%	•	+ +	
44	Water Quality Baseline Report		03/6/2	03/6/23	100%	· · · · · · · · · · · · · · · · · · ·		
						11,000	X22 12	
FIII B	act No. CV/2002/13 ank at Tuen Mun Area 38 1 March 2004	Task Progress	· · · · ·			Summery Rolled Up Task Railed Up M.lostone	-	Rolled Up Progress Critical Path Subcritical Path for Each Section

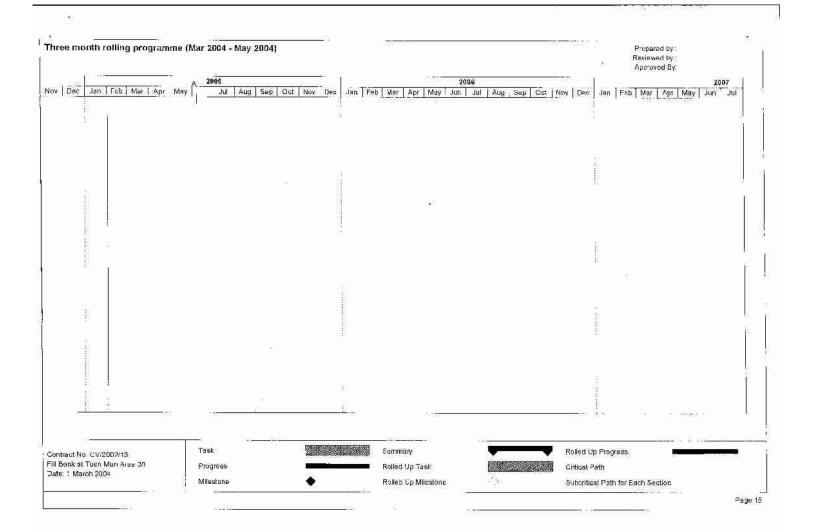
	12 PAGE	T T	(i)		į į	2003	(Albinonia)	- 1 TANKET E	Reviewed by : Approved by: 2004	10
ID 56	Task Name New combined reception and exit office (CREO)	Duration 76d	Early Start 03/9/10	Early Finish 03/11/24	% Complete 188%	May Jun Jul Aug Sep	Oct Nov Dec Jan	Feb Mar Apr N	iay un jul Aug	Sep Oct
67	Demolition of paying blocks	1a	03/9/10	03/9/10	100%	Ą		1		i i
52	Construction of foundation	37d	03/9/11	03/10/17	100%					
59	Erection of structures for CRSO	35d	03/10/18	03/11/22	100%	e F				
60	Installation of trip ticket system in the CREC	1d	08/11/23	B3/41/23	100%		ļ ţ	and the contract of the contra		
61	Commissioning of the new CREO	1d	03/11/24	03/11/24 I	100%	# #	11/24			ľ
62	Weighbridge WP3	2d	03/7/31	03/8/1	100%		b I			
63	Taking over of weighbridge and recorder house	1.0	03/7/31	03/7/31	100%	7/31				-
84	Commissioning of weighbudge	1d	03/8/1	03/8/1	100%	▶ ♠ 8/1		HIC SHOWING		47
65	Weighbridge WP4	133d	03/7/15	03/11/24	100%	-		Video Company		**
66	Submission	17d	03/7/15	03/7/31	100%	econos:		O'MAT THE PERSON		4
	E SOT S	3 00	ls _= -8_		242	- H	4 us (2 2	3 50		_ =
FIII Ba	ani No. CV/2002/13 unk at Tuen Mun Area 38 1 March 2004	Task Progress Mileston			Transfer Market	Summary Rolled Up Task Rolled Up Milestone		Rolled Up Progress Critical Path Subcritical Path for		

ree	month rolling programme (Vlar 2004 -	- May 2004	1)				Prepared by Reviewed by Approved By	
		marcanesso .	Early Otani	Early Finish	% Complete M	2003 y Jun Jul Aug Sep	Ort Nov Dec Jan	Feb Mar Apr May Jun Jul Aug Sep	Dei
ID 67	Task Name Foundational weighbridge	144	03/9/20	03/10/3	100%				- 3, 344
68	Installation of weighbridge	47d	03/10/4	03/11/19	100%			2000	
69	Frection of recorder house	314	03/10/4	03/11/3	100%			400 410 410 410 410 410 410 410 410 410	
70	Installation of computer system in the recorder house	1.0	03/11/23	B3/11/23	(00%	P2	1 1	6	
71	Continissioning of WP2	18	03/11/24	03/11/24	100%		11/24		
72	Tree planting at Portion A	īd	03/10/8	03/10/8	100%			(4.0) (1.0)	
73	Tree planting at Portion C	14	n3/10/8	03/10/8	100%		†	Hostopia	
74	Tree planting at Portion H:	1d	C3/10/8	e3/10/8	100%		1	1000	
75	Tree planting at Portion ਮ	29d	05/1/21	05/2/18	ο%		i de la companya de l		
76	Section 2 of the Works	704d	03/6/21	05/5/31	32%	- 10 m			
77	Commencement of Public Filling Operation	1d	03/6/28	03/6/28	100%	♦ 6/28			
===nio	,k sa		S 1311	H TW	120 day		#3 (M ²⁾		2000
	net No. CV/2002/13	Task	OSSIT.		7.2	Summary.		Rolled Up Progress	
	nk at Tuen Mun Area 36 1 March 2004	Progress Mileston				Rolled Up Task Rolled Up Milestone		Critical Path Subcritical Path for Euch Section	


ree month rolling programme	e (Mar 2004 - May 2004)	1000	Prepared by Reviewed by Approved Sy
Task Name Hydorseeding	Duration Early Start Early Finish % Co	mplete May Jun Jul Aug Scp Gct 1	Nov Dec Jan Feb Mar Apr May Jun Jul Aug Seo Oct
Monitoring of geotechnical instruments	670d 93/6/1 C6/5/31	29%	
	4		
	×		
	E.		
entract No. CV/2002/13	Task Progress	Summary Rolled Up Task	Rolled Up Progress Critical Path
ill Bank at Tuen Mun Arca 38 ata: 1 March 2004	1 regress	117 Apr. 60.000 - 0.00	

ee month rolling progra	тіте (Mar 2004 - May	(2004)		ost to		Prepared by : Reviewed by Approved By:	
Dec Jan Feb Mar Apr	2005 r May Jun Jul Au	g Scp Oct Nov	Dec Jan Feb	Mar Apr May Jun	s Jun Aug Sep Cnt Non	/ Dec Jan Heb Mar Api May	un Jul
9)	• 5/31					#	E E
) 1)				1
8	♦ 5/31	11		e		**	
			110000				,
10)			0.000			1	1
			G			50 50 50	
		20	i			2000	
8			# # # # # #				#X
2616Y		ik Magaza	<u> </u>		4); 12-110;		
74 745 (2003)	Iask			Summary		Rolled Up Progress	(a.:
tran: Nr.: CV/2002/13 Bank at Tuer, Murt Area 38 2: 1 March 2004	Progress Milestone	- +		Rolled Up Task Rolled Up Milestone		Critical Path Subcritical Path for Each Section	
9) (1	V 988	71,75%	(32)	3476	7 4—	Page 1

N THE PARTY IN THE RE


99

e month rolling programme (Mar 20)4 - May 2004)	11 P. 140	15 - N. S.	Prepared by Reviewed by Approved By:
200	5 Jul Aug Sep : Oct Nov Dec Jan 5	2006	File I but I but No. 100 F	2007
Dec Jan Feb Mar Apr May Jun ; 1/21	aug Sap : Oct Nov Dec Jam S	es war Apr way Juli Ju	T AND ARP OUR NOT DEC JOSE I	55 Was Pp Way July 50
	9000 0000 1000 0000 1000 0000		***************************************	ļ
- A	100	ęs		,
	100			l I

0			2000	s
gv e g≀				
(2005 N		XXX .		sagi vew
act Nc. CV/2002/13 Task ank at Tuen Mun Area 38 Progr 1 March 2004 Miles		Summary Rolled Up Task Rolled Up Milestone	Rolled Up Progres Critical Path Subpritical Path for	

hree mo	nth rolling programn	ne (Mar 2004 - May 20	04)			Prepared by : Reviewed by : Approved By	
by Dec	Jan Feb Mar Apr	2005 May I Jun Jul Aug S	ep Dof New Dec Jan F	2004 ab Mar Apr May Jun	6 G4A	Dec Jan Feb Mar Apr May	20 07
Williamse I	1351351	ma∗ I aun Fam mad Inc		the Least of State Least Land		Test feet free free was fewer	1.00
		·-	â				1
	0					5)	
			6 <u>6</u> 8 8			#17 #5	g.
			© 20 20 20	EV.		±1.	8
				•5		*	
	4		Ŷŝ.				v:
						*	
_			‡ 			£	Į.
Y			#			8	
				(d)			Ļ
			41			*	Ī
						41	į.
-							Î
		•					
			9				.0
						1 -110000001-24-0-11	
entrant No	©CV/2002/13	Task		Summary		Rolled Up Progress	
	Tuen Mun Arca 38	Progress	W	l Rolled Up Task		Carrigal Path	
acsi i Midi	OIT COOK	Milestone	•	Rolled Up Milestone	7 x	Subgritical Path for Each Section	

ree month rolling programme (Mar 2004 - May 2004)	ntel simme volume erum	.vr.		Prepared by : Reviewed by : Approved Ry	
/ Ded Jan Feb Mar Apr May	2005 Jun Jul Aug Sep	Oct Nov Dec Jan i	2001 Feb Mar Apr May Jun	6 Jul Aug Sep Oct	Nov Dec Jan Feb Mar Apr May J	2007 un Jul
		**************************************			Î	
	25					8
	3	1				1
		40			ä	2
		- (È			-
						33
5 5 °		:22			77.77	4
		± + + +			×	10
Ì		5.0 5.0 5.4				!
#1 (1) (2)		:e			#1 #1	
	96	V.				
3		100 100 100 100 100 100 100 100 100 100			V.	
₩		*				
2. J				s		
8	5 5 5 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5		11	125 5		
tract No. CV/2002/13	Task		STATE OF THE STATE	V	Rolled Up Progress	
Bank al Tuen Mun Arca 38 e: 1 March 2004	Progress Milastone	(m)	Rolled Up Task Rolled Up Milestone		Cittions Path Subcritical Path for Each Section.	

ree month rolling programme	e (Mar 2004 - May 2004)			Prepared by Roy ewed by : Approved By	
TE TENT OF THE	2005		2006		2007
v Doc Jan Fet Mar Apr Ma	ay Jun Jul Aug Sep Oct N	ov Doc Jan Feb Mor Apr May	Jun Jul Aug Sep Oct Nov	Dec Jan Feb Mar Apr May Jun	1 301
id	8			i	
				#	Y S
a §					
				e 6	
3	4	161		1	
					1
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		#	
ä					1
y - 15					
i					J,
		*			-
					4
		37		1	
*				H	
E CONSTRU	*				- 4
	₹				
				3	
2		#		(4) (6)	62
1	1000		(test	one-land ontend montreals bearing	3
i Sandara i	4 41		<u> </u>	7200/06/	
ntraot No. GV/2002/13	Task	Summary	Makamana and a series of the	olled Up Progress	
Bank et Tuen Mun Area 38 te: 1 March 2004	Progress	Rölled Up task		ilical Path	
16.37 (1101017) 2004	Milestone	Rolled Up Mileston	s S Si	iboritical Path for Each Section	

month rolling programm	e (Mar 2004 - May 2004)			Review	red by : red by ; yed By,
ec Jan Feb Mar Apr M	2005 Tay Jun Jul Aug Sep (Dct Nov Dec Jan Fel	2006 a Mar Apri May Jun Jul	Aug Sep Dot Nov Dec Jan Feb Mar	2097 Apr May Jun Jul
				## 11 12 12 13	ļ
THE PROPERTY OF THE PROPERTY O		4 4		1 (100)	
			e	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	8
*1		5 emach 200		1	
		20000000000000000000000000000000000000			
	₹ .	## BD ## BD ##		0.00	
	<u> </u>	# . 	,		india de
ri No. CV/2002/13 k at Tuch Mun Area 36	Task Progress		Summary Rohad Up Yask	Rolled Up Progress Critical Path	
March 2004	Milestone	♦	Rolled Up Milestone	Suboritical Path for Each 5	ection Pa

month rolling programm	2 (Mar 2004 - May 2	004)	201	.E2	Prepared by : Reviewed by : Approved By:	
Occ Jan Feb Mar Apr M	2005 ay Jun , Jul Aug ;	Sep Oct Nov Doc Jan Fet	2006 Mar Apr May Jun 3	ul Nug Sep Oct N	ov Dec Jan Fcb Mar Apr May	2007 Jun Jul
R						97 28
				ANHAS ST		-18-29-
		40				
			£3			
		<u>\$</u>				
ed No: CV/2002/13	Task		Summary		Rolled Up Progress	
nk at Tuen Mun Area 38	Progress	personal designation of the second	Rulled Up Task		Critical Path	

Appendix X

Monitoring Schedule for the following month

<u>Fill Bank at Tuen Mun Area 38</u> <u>Environmental Monitoring Schedule</u> August 2004

Sunday	Monday	Tuesday	Wednesday	7	Thursday		Friday		Saturday	
August 1		2	3	4			Site Inspection 1 – hr TSP 24 – hr TSP	6		7
	WQM (Ebb: 14:16) (Flood: 07:14)		WQM (Ebb: 15:39) (Flood: 08:54)				WQM (Ebb: 16:47) (Flood: 10:33)			
8		10		11	1 – hr TSP	2		13		14
	WQM (Ebb: 08:02) (Flood: 14:59)				24 – hr TSP WQM (Ebb: 10:55) (Flood: 18:44)		Site Inspection		WQM (Ebb: 12:16) (Flood: 19:30)	
15		5 1'		18		9	Site inspection	20	(1100d. 17.50)	21
			1- hr TSP 24 – hr TSP			,	WQM			
	WQM (Ebb: 13:28) (Flood: 06:24)		WQM (Ebb: 14:34) (Flood: 07:48)				(Ebb: 15:38) (Flood: 09:12) Site Inspection			
22	2.	3 24 1 – hr TSP 24 – hr TSP		25	2	26	· ·	27		28
		WQM (Ebb: 06:54) (Flood: 14:40)			WQM (Ebb: 09:39) (Flood: 17:49)		Landscape Audit Site Inspection		WQM (Ebb: 11:37) (Flood: 19:02)	
29	3 1 – hr TSP 24 – hr TSP WQM (Ebb: 13:14)	3.	i				•			
	(Flood: 06:24)									

- 1. 24 –hr TSP (to be monitored once every 6 days) at monitoring locations A1 & A2.
- 2. I hour TSP (to be monitored three times every six days when highest level of dust generation expected) at monitoring locations A1 & A2.
- 3. WQM water quality monitoring three times per week, on mid-flood and mid-ebb tides. Days of monitoring to be separated by at least 36 hours. Monitoring locations FC1, FM1, FM2 & FC2.
- 4. Site inspections to be carried out once per week.
 5. Auditing of landscape works to be carried out once per month.

Appendix XI

Wind Speed and Direction Data

DATE	DATE	TIME	TIME	WS:AVG	WS:MAX	WD:AVG	WD:SDV
MON	DAY	HR	MIN	M/S	M/S	DEG	DEG
MON 77 77 77 77 77 77 77 77 77 77 77 77 77		HR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 23 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 1 22 33 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 10 11 11 21 11 21 22 23 0 11 22 23 0 11 22 23 0 11 22 23 0 11 22 23 0 11 22 23 0 11 24 15 16 17 18 19 20 21 21 21 21 21 21 21 21 21 21 21 21 21		M/S 2.1 3.1 2 1.1 1.3 2.2 1.6 1 1.7 2 2 2.3 2.4 2.8 2.8 3.8 3 1.9 1.6 1.4 1 2 3 2.4 3 3.7 3.9 3.5 4 3.6 3.5 3.8 1.8 1.8 1.9 1.6 1.4 1 2 2 1.1 1.6 1.4 1.8 1.9 2.4 2.6 2.3 3.1 2.7 0.7 1.3 1.4 1.6 1.7 2 2 1.6 1.7 1.7 1.8 2.9 1.6 1.7 1.7 1.8 2.9	M/S 687445525566555610855447910991091196544355565788107444554666777	DEG 261 287 292 278 276 253 274 283 297 274 279 242 231 218 220 215 240 241 233 289 247 225 220 217 222 226 223 224 228 225 234 251 236 245 248 264 255 238 210 193 193 203 223 274 288 210 193 203 224 288 210 297 208 217 208 217 208 218 210 217 222 226 223 224 228 226 225 234 251 236 245 248 264 255 237 208 217 208 218 210 207 208 217 208 217 209 207 208 217 209 207 208 217 219 217	DEG 23 17 21 44 31 29 25 21 23 24 25 33 21 21 23 24 45 35 47 46 28 36 31 27 28 36 31 27 23 24 24 29 26 27 23 29 26 27 23 29 26 27 23 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
7	8	9	0	1.8	6	202	31
7	8	10	0	2.1	6	207	28
7	8	11	0	2.8	7	219	22

777777777777777777777777777777777777777
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 23 0 1 2 23 0 1 2 23 0 1 2 23 0 1 2 23 0 1 2 23 0 1 2 23 0 1 2 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 0 1 2 23 0 1 2 23 0 1 2 23 14 15 16 17 18 19 20 21 22 23 0 1 2 23 14 15 16 17 18 19 20 21 22 23 0 1 2 23 14 15 16 17 18 19 20 21 22 23 0 1 2 23 14 15 16 17 18 19 20 21 22 23 0 1 2 23 14 15 16 17 18 19 20 21 22 23 0 1 2 23 14 15 16 17 18 19 20 21 22 23 0 1 2 23 14 15 16 17 18 19 20 21 22 23 0 1 2 23 14 15 16 17 18 19 20 21 22 23 0 1 2 23 14 15 16 17 18 19 20 21 22 23 14 15 16 17 18 19 20 21 22 23 14 15 16 17 18 19 20 21 22 23 14 15 16 17 18 19 20 21 22 23 14 15 16 17 18 19 20 21 22 23 16 17 18 19 20 21 22 23 16 17 18 19 20 20 21 22 23 16 17 18 19 20 20 21 22 23 16 17 18 19 20 20 21 22 23 16 17 18 19 20 20 21 22 23 16 17 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20
1.4 1.4 1.8 2.6 3.2 3.1 3.4 2.8 2.8 2.9 2.3 2 1.9 1.7 1.3 0.1 0.6 0.4 0.3 0.1 0.1 0.2 0.4 0.9 1.2 1.9 1.6 2.9 3.6 3 2.1 2.2 1.8 1.8 1.1 0.9 0.7 0.3 0.2 1.9 1.6 2.6 2.7 2.1 1.9 0.7 0.3 0.2 1.9 1.6 2.6 2.7 2.1 1.9 2.6 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.7 2.6 2.7 2.7 2.6 2.7 2.7 2.6 2.7 2.7 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7
44356677666554433411211111223446765544533532113332222455656544665555876667337678113
200 175 195 174 201 219 218 221 217 211 212 216 205 173 146 110 128 103 282 304 5 316 328 305 317 329 315 321 201 211 221 221 221 221 221 2
35 21 22 30 21 22 24 19 27 22 41 19 27 22 40 38 54 56 53 24 21 27 28 24 27 28 24 44 44 44 45 47 48 47 48 48 48 48 48 48 48 48 48 48 48 48 48

7 7 7 7 7 7	20 20 20 20 20 20 20 20	15 16 17 18 19 20 21	0 0 0 0 0	5.1 5.2 3.9 3.5 2.9 3.2 2.8	13 10 8 7 6 6	97 96 105 106 103 99	18 18 19 18 18 16
7 7 7 7 7 7 7	20 20 21 21 21 21 21 21 21 21	22 23 0 1 2 3 4 5	0 0 0 0 0 0	2.6 2.6 1.8 1.4 1.2 0.7 1 0.6	5 5 4 3 3 4 2 4	94 96 87 75 76 53 36 51 68	18 17 22 23 28 34 38 54 42
7 7 7 7 7 7 7	21 21 21 21 21 21 21 21 21	7 8 9 10 11 12 13 14	0 0 0 0 0 0	1.1 1.9 2.7 3.5 3.5 4.2 3.9 3.7	3 4 6 7 7 8 7	58 66 99 101 103 105 108 107 106	33 29 27 26 22 20 18 16 17
7 7 7 7 7 7 7	21 21 21 21 21 21 21 21	16 17 18 19 20 21 22 23	0 0 0 0 0 0	3.2 3 3.1 2.6 1.7 1.7 1.8 2.4	7 6 7 5 4 4 4 5	106 104 103 105 93 97 94	17 17 18 17 21 19 16 15
7 7 7 7 7 7 7	26 26 26 26 26 26 26 26 26	0 1 2 3 4 5 6 7 8	0 0 0 0 0 0	1.1 1.2 1.1 1.3 1.7 1 0.8 0.6 1.3	3 4 4 5 5 3 3 5	55 65 68 74 86 60 62 37 58	28 39 34 34 26 49 45 61 45
7 7 7 7 7 7 7	26 26 26 26 26 26 26 26	9 10 11 12 13 14 15	0 0 0 0 0 0	1.3 2.2 2.7 3.4 4 2.3 3	5 6 7 13 7 7	44 109 107 106 116 82 91	48 37 24 20 24 29 20 20
7 7 7 7 7 7 7	26 26 26 26 26 26 26 27 27	17 18 19 20 21 22 23 0	0 0 0 0 0 0	3 3.1 3.1 2.3 2 1.6 1.8 1.6	8 7 7 6 5 5 5	103 94 98 87 74 73 74	22 17 19 21 24 31 34 27 30
7 7 7 7 7 7	27 27 27 27 27 27 27 27	2 3 4 5 6 7 8	0 0 0 0 0	1.4 0.9 1.2 1.6 1.2 0.9 0.2 1.7	4 4 4 5 3 2 1	57 18 11 356 344 345 312 289	28 45 31 24 16 32 35 38
7 7 7 7 7 7 7	27 27 27 27 27 27 27 27 27	10 11 12 13 14 15 16 17	0 0 0 0 0 0	2.8 3.4 3.2 2.4 3 2 1.6 1.8 1.7	7 8 8 7 8 7 5 6 5	306 302 302 296 294 337 310 334 32	22 23 23 29 27 34 41 34 50
7 7 7 7 7	27 27 27 27 27 27	19 20 21 22 23	0 0 0 0 0	1.9 2.3 2.6 2.4 1.3	4 5 6 5 5	72 66 73 74 129	21 15 18 20 73

7	31	0	0	1.2	3	67	27
7	31	1	0	1.5	3	66	17
7	31	2	0	1.4	3	77	13
7	31	3	0	0.7	2	56	48
7	31	4	0	0.3	1	7	43
7	31	5	0	0	0	294	30
7	31	6	0	0.4	2	336	48
7	31	7	0	0.6	3	4	60
7	31	8	0	1.1	3	75	29
7	31	9	0	1.7	4	116	23
7	31	10	0	2.1	5	107	22
7	31	11	0	2.1	4	111	23
7	31	12	0	1.8	4	106	41
7	31	13	0	2.1	4	156	20
7	31	14	0	2.7	5	228	40
7	31	15	0	3	5	246	19
7	31	16	0	2.2	4	239	24
7	31	17	0	2.2	4	236	21
7	31	18	0	1.4	3	151	79
7	31	19	0	1.9	4	63	18
7	31	20	0	2.7	5	70	14
7	31	21	0	2.9	5	73	13
7	31	22	0	2.1	4	60	16
7	31	23	0	2.2	4	70	14
8	1	0	0	2	4	63	15
8	1	1	0	2.1	4	67	15
8	1	2	0	1.6	3	62	14
8	1	3	0	1.8	4	47	14
8	1	4	0	1.8	3	57	16
8	1	5	0	0.9	3	21	51
8	1	6	0	0.1	1	312	33
8	1	7	0	0.1	1	268	45
8	1	8	0	0.3	2	42	38
8	1	9	0	1.1	4	296	80
8	1	10	0	1.6	4	301	47
8	1	11	0	2.2	5	259	37
8	1	12	0	2.6	5	238	24
8	1	13	0	2.7	5	243	25
8	1	14	0	2.1	5	268	35
8	1	15	0	2.8	5	239	22
8	1	16	0	2.3	5	252	21
8	1	17	0	1.9	4	243	25
8	1	18	0	2.1	5	265	25
8	1	19	0	1.4	4	282	31
8	1	20	0	1.3	3	325	36
8	1	21	0	1.9	4	67	16
8	1	22	0	2	4	75	12
8	1	23	0	1.5	3	73	17