Airport Management Services Limited

SkyCity Golf Course EM&A Monthly Impact Report

May 2006

8 June 2006

Report no: 01332R0041

Airport Management Services Limited

SkyCity Golf Course EM&A Monthly Impact Report

May 2006

Author:

Adi LEE

Checker:

Coleman Ng

Approver:

Coleman NG

Report no:

01332R0041

5 - (- -

8 June 2006

This report has been prepared for Airport Management Services Limited in accordance with the terms and conditions of appointment for Monthly Impact Report dated 10 March 2006. Hyder Consulting Ltd (COI Number 126012) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

Hyder Consulting Ltd COI Number 126012

47th Floor, Hopewell Centre, 183 Queens Road East, Wanchai, Hong Kong Tel: +852 2911 2233 Fax: +852 2805 5028 www.hyderconsulting.com

Consulting

Contents

1	Exe	cutive Su	mmary	1	
2	Site	Audit		3	
	2.1	Water 0	Quality	3	
	2.2		lity		
	2.3	Noise		3	
	2.4	Waste/0	Chemical Management	4	
	2.5	Landsca	ape and Visual	4	
	2.6	Genera	l	4	
3	Mari	ne Water	Quality EM&A	5	
	3.1	Monitor	ing Results	5	
		3.1.1	Summary	5	
		3.1.2	Equipment and Methodology	6	
		3.1.3	Maintenance and Calibration	6	
		3.1.4	Parameters Monitored	7	
		3.1.5	Monitoring Locations	7	
		3.1.6	Monitoring Date, Time, Frequency and Duration		
	3.2	Action/L	Limit Levels	7	
	3.3	Summa	ry of Exceedances	9	
		3.3.1	Review of Exceedances and Implications	9	
		3.3.2	Action Taken and Follow-up	9	
	3.4	Compla	ints and Notifications of Summons	9	
		3.4.1	Complaints	9	
		3.4.2	Notifications of Summons	9	
	3.5	Works F	Programme and Future Monitoring Schedule	9	
4	Com	ments, Recommendations and Conclusions11			

Appendices

- 1 Site Audit Checklist
- 2 Marine Water Quality Monitoring Data
- 3 Equipment Calibration Details
- 4 Works Programme
- 5 Marine Water Monitoring Schedule for Next Month

Figures

- 1-1 Location of SkyCity Golf Course on the Airport Island
- 3-2 Location of Impact Monitoring Stations

Tables

- 3-1 Summary of Impact Monitoring Data
- 3-2 *In-situ* Monitoring Equipment Details
- 3-3 Monitoring Date, Time, Frequency and Duration
- 3-4 Action and Limit Levels
- 3-5 Event Action Plan for Marine Water Quality Monitoring

1 Executive Summary

The purpose of this Project is to construct and operate a 9-hole Golf Course at the east side of the North Commercial District (NCD) on the Airport Island as an interim arrangement prior to the area's future development as a business park (see Figure 1-1). The proposed interim golf facility, known as "SkyCity Golf Course" is intended to serve airport passengers, overseas visitors and airport workers until August 2013.

The Project will be managed by Airport Management Services Limited (AMS) who have employed a Works Contractor, Wing Fat Construction Co. Ltd., to carry out the construction works. Hyder Consulting have been employed as the Environmental Team (ET) for the Construction Period and have engaged ALS Technichem Pty Ltd as the HOKLAS accredited testing laboratory to carry out marine water analysis.

The construction work commenced on 7 March 2006 and it anticipated to last for a period of six to seven months. According to the approved EM&A Manual, impact monitoring during the Construction Period is required for suspended solids, dissolved oxygen and turbidity.

The monthly site audit revealed that there were no significant non-compliances in terms of water, air, noise, waste or landscape and visual, although the Environmental Team made a number of recommendations to the Works Contractor to improve environmental conditions.

Impact monitoring was carried out during May 2006 in accordance with the approved EM&A Manual. Monitoring was carried out on 1, 5, 9, 12, 15, 19, 22, 26 and 29 May. The monitoring results are detailed in this report, which complies with the reporting requirements stated in the approved EM&A Manual.

There were no exceedances of A/L Levels for the water quality monitoring.

There were no complaints received and no notifications of summons.

Overall, there are no adverse environmental impacts caused by the Works during the reporting month, although there is room for improvement in overall site environmental management – recommendations have been made and will be followed up in due course.

Consulting

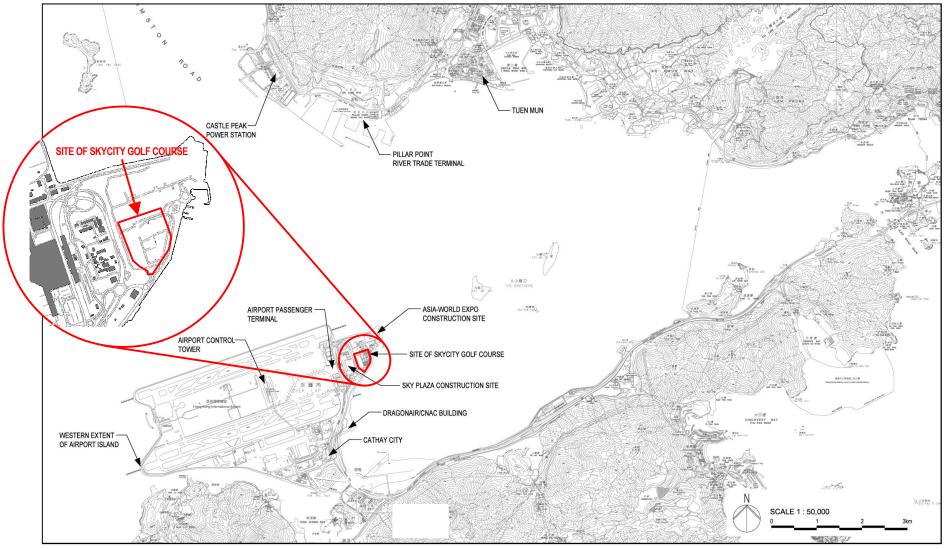


Figure 1-1 Location of SkyCity Golf Course on the Airport Island

2 Site Audit

The monthly site audit examines the implementation status of environmental protection, mitigation and pollution control measures.

Appendix 1 contains the site audit checklist for May 2006. From this the following observations on the implementation status of environmental, mitigation and pollution control measures can be made. Areas for improvement and follow-up are indicated on the checklist and have been highlighted below. The Works Contractor is aware of any shortcomings and has been advised by the ET of any improvements that are required.

2.1 Water Quality

A vehicle wheelwash has been provided at the site egress point. However, the Contractor was reminded to replace the muddy water in the wheel washing bay by clean water frequently. Perimeter U-channels have been completed around most of the site, however, some 20m along the southern part of the site remains to be completed. The Contractor was urged to complete the perimeter drainage.

As indicated by the Contractor, no water has been discharged from the site during the reporting month and it is intended that during forthcoming wet weather, water will be collected in the excavated lake bowls and from there percolate down to replenish the groundwater below the site. Because of this, it is not anticipated that there will be any surface runoff from the site.

It is noted that a Discharge Licence under the Water Pollution Control Ordinance has been issued by EPD to the Contractor. The Contractor is reminded to keep the license on site for inspection. The Contractor has also been reminded to make silt traps/settlement tanks available on site in case these are needed for discharge off-site.

2.2 Air Quality

It was observed that the unpaved areas and haul roads were watered except for a small part of the site. The Contractor was reminded to provide watering to all dry unpaved areas and haul roads. The Contractor provided water spraying to such areas immediately during the site inspection.

Dust was emitted during rock breaking. The Contractor has been reminded to provide water spraying during breaking activities.

2.3 Noise

No significant noise problems were noted. The most apparent noise source is overhead aircraft.

2.4 Waste/Chemical Management

Three-colour recycling bins have been placed near to the Contractor's site office. The Contractor has registered as a Waste Producer under the Waste Disposal Ordinance. It was observed that chemical waste storage has been provided.

All diesel storage tanks and oil/lubricant drums have been provided with a drip tray. However, some empty oil drums on bare ground were observed during the site inspection. The Contractor has been reminded to put the oil drums at proper place such as chemical waste storage.

2.5 Landscape and Visual

The site is completely surrounded by a hoarding and there are no landscape or visual issues at this time.

2.6 General

The Environmental Permit is displayed at the entrance to the site as required. Although the Contractor has applied and/or received other permits and licences relating to environmental protection, these are not filed in an accessible manner. The Contractor was recommended to ensure that all relevant permits and licences are easily available for inspection, by both the ET and also by EPD.

Overall, the site operation is acceptable from an environmental point of view, but there is room for improvement. The Contractor has been advised of those areas which require immediate attention and this will be followed-up during the next site audit.

3 Marine Water Quality EM&A

Monitoring of Dissolved Oxygen (DO) concentration in mg/ℓ , Suspended Solids (SS) in mg/ℓ and turbidity in NTU, was carried out by the ET to ensure that any deterioration in marine water quality could be readily detected and timely action could be taken to rectify the situation if this was due to site activities. DO and turbidity were measured *in-situ* whilst SS was determined in laboratory.

Other parameters, such as water depth, sea temperature, salinity and DO saturation are recorded for reference, and weather conditions, sea conditions, tidal stage and any particular site activities are recorded for information.

3.1 Monitoring Results

3.1.1 Summary

A summary of monitoring results for the reporting month is provided in Table 3-1, below. Detailed results are provided in Appendix 2, in which exceedances of Action/Limit (A/L) Levels are highlighted.

Station		Temperature (°C)	Salinity (mg/ℓ)	DO Saturation (%age)	DO Concentration (mg/ℓ)	Turbidity (NTU)	SS (mg/ℓ)
	Mean	26.1	23.2	94.3	6.7	5	5
C1	Maximum	27.6	27.9	102.8	7.2	12	11
	Minimum	25.3	13.6	84.3	6.0	1	2
					T		
	Mean	25.9	24.5	97.2	6.9	4	6
C2	Maximum	26.8	28.0	119.2	8.4	10	14
	Minimum	25.1	19.5	85.1	5.9	2	3
	Mean	26.0	24.5	95.7	6.8	5	5
M1	Maximum	27.6	27.8	103.7	7.4	9	13
	Minimum	25.2	16.8	84.9	5.9	2	3
	Mean	26.0	24.2	96.6	6.8	5	5
M2	Maximum	27.8	27.8	112.4	8.1	9	8
	Minimum	25.1	16.7	84.7	5.9	2	3

Table 3-1 Summary of Impact Monitoring Data

3.1.2 Equipment and Methodology

Because of the relatively shallow water, *in-situ* measurements and water sampling were conducted at only one water depth – the mid-depth. Water samples for all monitoring parameters were collected, stored, preserved and analysed according to *APHA Standard Methods for the Examination of Water and Wastewater*, 19th Edition, #17.

In-situ DO concentration, turbidity (and temperature, salinity and DO saturation) were carried out using a YSI Model 6820 CE-C-M-Y multi-parameter meter:

Davamatar	YSI Model 6820 CE-C-M-Y				
Parameter	Range	Resolution	Accuracy		
DO Concentration	0 to 50 mg/ <i>l</i>	0.01 mg/ ℓ	0 to 20 mg/ ℓ : \pm 2% of reading or 0.2 mg/ ℓ , whichever is greater; 20 to 50 mg/ ℓ : \pm 6% of reading		
DO Saturation	0 to 500%	0.1%	0 to 200%: ±2% of reading or 2% air saturation, whichever is greater; 200 to 500%: ±6% of reading		
Turbidity	0 to 1,000 NTU	0.1 NTU	$\pm2\%$ of reading or 0.3 NTU, whichever is greater		
Temperature	-5 to +70°C	0.01°C	±0.15°C		
Salinity	0 to 70 ppt	0.01 ppt	±1% of reading or 0.1 ppt, whichever is greater		

Table 3-2 In-situ Monitoring Equipment Details

A Kahlisco water sampler was used to obtain the water sample for subsequent SS analysis. Water samples were collected in high density polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to ALS' laboratory (HOKLAS accredited) immediately after completion of monitoring. The analysis follows APHA *Standard Methods #2540D*.

A Global Positioning System (GPS) was used to determine the exact monitoring location and water depth was determined using an echo-sounder.

3.1.3 Maintenance and Calibration

All *in-situ* monitoring instruments are calibrated and certified by ALS at 3-monthly intervals throughout the marine water quality monitoring programme.

For DO, the probe (YSI 6820) is calibrated once per monitoring day by the wet bulb method. Calibration at ALS is carried out once every three months in a water sample of known dissolved oxygen concentration. The sensor is immersed in the water and after thermal equilibration, the known mg/l value is keyed in and the calibration is carried out automatically.

For turbidity, the probe (YSI 6820) is calibrated with a solution of known NTU at ALS once every three months. Calibration as per dissolved oxygen, above.

Calibration details are provided in Appendix 3.

314 Parameters Monitored

The following parameters are monitored and compared to A/L Levels:

- Dissolved Oxygen (DO)
- Suspended Solids (SS)
- **Turbidity**

Other parameters, such as water depth, sea temperature, salinity and dissolved oxygen saturation ware recorded for reference, and weather conditions, sea conditions, tidal stage and any particular site activities were recorded for information.

3.1.5 **Monitoring Locations**

Monitoring locations together with grid references are shown in Figure 3-2. Control Stations are designated C1 and C2 and Monitoring Stations are designated M1 and M2.

3.1.6 Monitoring Date, Time, Frequency and Duration

Monitoring of marine water quality is carried out twice-weekly during mid-ebb and mid-flood tides. Table 3-3, below, provides details of the monitoring dates, times and duration:

Date	Duration of Ebb Tide	Monitoring at Mid- Ebb	Duration of Flood Time	Monitoring at Mid- Flood
1/5/06	13:23 to 17:23	15:23	06:10 to 10:10	08:10
5/5/06	16:48 to 20:48	18:48	04:15 to 08:15	06:15
8/5/06	08:36 to 12:36	10:36	14:00 to 18:00	16:00
12/5/06	10:30 to 14:30	12:30	17:10 to 21:10	19:10
15/5/06	12:15 to 16:15	07:15	05:15 to 09:15	07:15
19/5/06	15:33 to 19:33	17:33	03:03 to 07:03	05:03
22/5/06	07:29 to 11:29	09:29	12:43 to 16:43	14:43
26/5/06	10:19 to 14:19	12:19	17:07 to 21:07	19:07
29/5/06	12:26 to 16:26	14:26	05:08 to 09:08	07:08

Table 3-3 Monitoring Date, Time, Frequency and Duration

3.2 **Action/Limit Levels**

The A/L Levels for the impact monitoring stations (M1 and M2) were determined in the approved Interim Baseline Monitoring Report and are shown in Table 3-4:

Parameter	Action Level	Limit Level
DO Concentration	5th percentile of baseline data = 7.0 mg/\$\ell\$, or 80% of the upstream control station	4.0 mg/ ℓ , or 70% of the upstream control station
Turbidity	95 th percentile of baseline data = 9.6 NTU, or 120% of the upstream control station	99th percentile of baseline data = 10.5 NTU, or 130% of the upstream control station
SS	95 th percentile of baseline data = 9.4 mg/ ℓ , or 120% of the upstream control station	99th percentile of baseline data = 9.9 mg/ ℓ , or 130% of the upstream control station

Table 3-4 Action and Limit Levels for Water Monitoring Stations

In case of exceedance of A/L Levels at M1 or M2, the Event/ Action Plan (shown in Table 3-5, below) shall be followed.

Event	Action				
	ET	Works Contractor			
Exceedance of Action Level	 Identify the source(s) of impact. If not from the Project then provide justification and document this If exceedance is caused by the Project then inform Contractor Check monitoring data and Contractor's working methods Discuss possible mitigation measures with Contractor Repeat measurement on next day of exceedance 	 Confirm notification of the exceedance in writing Rectify any unacceptable practice Check all plant and equipment Amend working methods if appropriate Discuss possible mitigation measures with ET Implement the agreed mitigation measures 			
Exceedance of Limit Level	Identify the source(s) of impact. If not from the Project then provide justification and document this in the EM&A Report If exceedance is caused by the Project then inform Contractor Check monitoring data and Contractor's working methods Agree mitigation measures with Contractor Ensure mitigation measures are implemented immediately Increase the monitoring frequency to daily until no further exceedance of Limit Level	Confirm notification of the exceedance in writing Rectify any unacceptable practice Check all plant and equipment Amend working methods if appropriate Agree possible mitigation measures with ET Implement the agreed mitigation measures immediately			

Table 3-5 Event Action Plan for Marine Water Quality Monitoring

3.3 Summary of Exceedances

3.3.1 Review of Exceedances and Implications

There were no exceedances of A/L Levels for the water quality monitoring during May 2006.

3.3.2 Action Taken and Follow-up

As no exceedance of A/L Levels were recorded during the reporting month, no action or follow-up is deemed to be necessary.

3.4 Complaints and Notifications of Summons

3.4.1 Complaints

No complaints were received during the reporting month and there are no outstanding follow-up issues to be addressed.

3.4.2 Notifications of Summons

No notifications of summons were received during the reporting month and there are no outstanding follow-up issues to be addressed.

3.5 Works Programme and Future Monitoring Schedule

Appendix 4 shows the current work programme for the works and Appendix 5 provides the future schedule for marine water quality monitoring.

Based on the work to be carried out in future months, no significant impacts to marine water quality are anticipated.

Consulting

38ha Catchment Area for Outfall No. 8 11.56ha Project Site Boundary Marine Water Quality Monitoring Location (Impact Monitoring) Marine Water Quality Control Stations (Impact Monitoring)

<u>Co-ordinates of Monitoring Locations and Control Stations</u>

	Northing	Easting
M1	22°18'77"	113°56'65"
M2	22°18'94"	113°56'78"
C1	22°18'45"	113°56'50"
C2	22°19'21"	113°56'95"

Note: Co-ordinates based on WGS 1984 datum

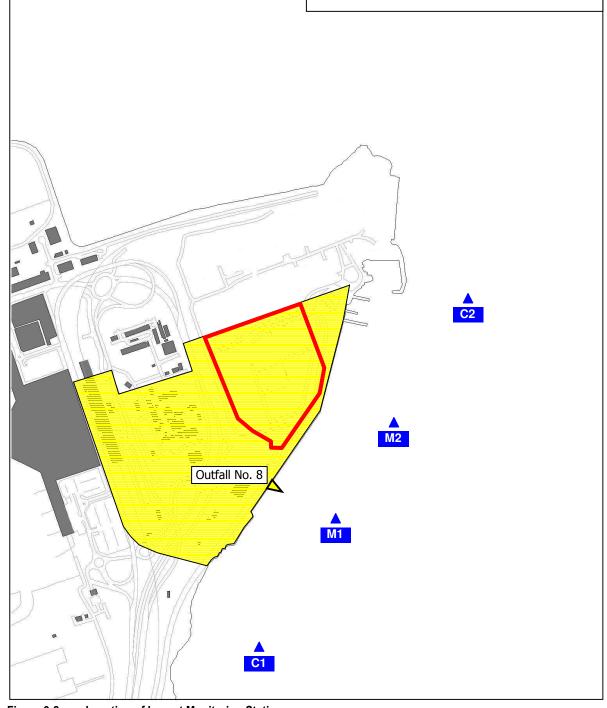


Figure 3-2 Location of Impact Monitoring Stations

4 Comments, Recommendations and Conclusions

The monthly site audit revealed that there were no significant non-compliances in terms of water, air, noise, waste or landscape and visual, although the Environmental Team made a number of recommendations to the Works Contractor to improve environmental conditions.

In terms of marine water quality monitoring, there were no exceedances of A/L Levels during May 2006.

There were no complaints received and no notifications of summons.

Overall, there are no adverse environmental impacts caused by the Works during the reporting month, although there is room for improvement in overall site environmental management – recommendations have been made and will be followed up in due course.

Appendix 1

Site Audit Checklist

Inspection No. 12-5-06 Inspection Date Time 10:00-11:00 A Client: Inspected By Contractor: Thomas Site Contractor Wing Fort Weather Condition Sunny Fine Overcast Drizzle Rain Storm Temperature Humidity High Moderate Low Wind Calm Light Breeze Strong Direction N/A or not observed Yes No Photo/Remarks **Water Quality** Perimeter cut off drains direct off-site water around the site? Is all surface runoff directed to silt removal facilities prior to discharge? 1.2 Channels, earth bunds or sandbags direct surface runoff to silt removal 1.3 facilities? Is groundwater pumped out from tunnelling and excavations discharged 1.4 via silt removal facilities? Are there silt removal facilities for settling surface runoff prior to 1.5 discharge? 1.5.1 Constructed from pre-formed individual cells or silt traps / basins? Adequate capacity? Free from silt and sand? Inspected and maintained after rain storm? Is drainage system well maintained to prevent flooding and overflow? 1.6 1.7 Is exposed earth stabilized after earthworks have been completed? 1.8 Are exposed slope surfaces covered (by tarpaulin or other means)? 1.9 Are open stockpiles of excavated and construction materials covered during rainstorms? 1.10 Any measures to prevent the washing away of excavated and construction materials e.g. sand/silt to drains? 1.11 Are manholes covered and sealed? 1.12 Are vehicles and plant cleaned of earth, mud and debris before leaving the site? 1.13 Are vehicle washing facilities provided at every site exit?

Consulting

					N/A or not ol	bserved	Yes	No	Photo/Remarks
		1.13.1	Wastewater treated facility emptied of sil	in silt removal facility? t regularly?	Silt removal				-
•		1.13.2	Washing area and ro	oad exiting from washi	ng facility paved?				•
		1.13.3	Access road has suf bunded to prevent of	ficient backfall toward untreated wastewater	washing facility or ?	r . ·			e e
	1.14	Equipme maintena	nt oil and lubrication rence area?	eplacements performe	d only in bunded				
	1.15	Drainage	from maintenance are	ea discharged via an o	oil interceptor?				
		1.15.1	Oil and grease remov	ed regularly?					
	1.16	Toilets that	at connect to foul sew	er or chemical toilets p	provided?				
	1.17	ls debris a	and rubbish prevented	from entering drains?	,				
	1.18	Is Effluent	Discharge Licence a	vailable for inspection?	?				<u> </u>
2	Alf	R QUALITY	,						
2	2.1	Are hoard public acc	ing not less than 2.4m ess?	tall provided beside r	oads or areas with	ı			
2	2.2	Are the ro generation	ads and unpaved area	is watered regularly to	avoid dust				3
. 2	.3	Are stockr	iles of excavated mat	erial covered or regula	arly watered?				
2	.4	ls stockpil barriers, fe	e of dusty materials ke encing or traffic cones	ept to not extend beyon?	nd the pedestrian				
2	.5	Is the publ dust?	ic road around the site	entrance kept clean a	and free from				·
2	.6	Do the site	vehicles use the vehi	cle wash facility at the	site exits?				
2	.7	Are materi	als transported on truc	ks covered?					
2.	8	Are dusty r	materials sprayed prio	r to loading?					
2.	9 .	Are all truc	k loads to a level withi	n the side and tail boa	ards?				
2.	10 .	Are areas v watered?	where demolition/site o	clearance/breaking tak	e place regularly				(12)
2.	1	ls every sto by impervic the three si	us sneeting or placed	gs of cement or day o in an area sheltered o	covered entirely on the top and				
2.	12 <i>f</i>	Are potentia hree sided	ally dusty demolished shelter?	items/debris covered o	or placed in a				
		K	eep wet before it is du	ith water/dust suppres mped onto a debris ch	nute?				
r	5	are?		overed and promptly re					
2.1	4 A	are there er	iclosures around the n	nain dust-generating a	activities?				·.

Consulting

	N/A or not	t observed	Yes	No	Photo/Remarks
2.	15 is open burning prohibited?	;			
2.	16 Are completed earthworks sealed and hydroseeded and planted as soon as practicable?				
2.1	Are vehicles and equipment switched off while not in use?				
2.1	8 Do vehicles and equipment maintained that no excessive smoke or visible vapour emitted?				
Observ	vable dust sources Wind erosion	Vehicle	e/equipment	movements	i
	Loading/unloading of materials	Others			
2 1				_	
3 N	Noise				
3.1	Are the construction works scheduled to minimise noise nuisance?				
3.2	Are the works or equipment sited to minimize noise nuisance? Mobil plant sited away from NSRs? Noisy plant oriented away from NSRs?	e			
3.3	Are all plant and equipment well maintained and in good operating condition?				
3.4	Is idle equipment turned off or throttled down?				· .
3.5	Are powered mechanical equipment covered or shielded by appropria acoustic materials?	ate			
3.6	Are quiet plant used as required?				
3.7	Are silencers/mufflers fitted and maintained?				
3.8	Are mobile/temporary noise barriers used where specified?				<u> </u>
3.9	Do air compressors (≥500kPa of supplying compressed air) and hand held percussive breakers (>10kg in weight) have valid noise labels?				
3.10	Do compressors and generators operate with doors closed?				
3.11	Are Construction Noise Permits available for inspection?				
Major no	oise source(s) Traffic	Constru	uction activit	ies inside of	site
	Construction activities outside of site	Others_	Sen	ylane	<u></u>
4 W	aste/Chemical Management	<u>.</u>			
4.1	General refuse				
	4.1.1 Accumulation on-site avoided?				
	4.1.2 Receptacles (e.g. rubbish bins) available?				
	4.1.3 Disposed of regularly and properly?				(13)
	4.1.4 Records of quantities generated/recycled/disposed maintained	? 🖊			

4.2		not observed	Yes	No	Photo/Remarks
	4.2.1 Stored properly in designated area?		· 		
	4.2.2 Storage in accordance with Code of Practice?				_(6)
	4.2.3 Disposed of property?				
	4.2.4 Trip tickets available for inspection?				
4.3	Chemical/fuel storage				
	4.3.1 Is storage area bunded?				<u></u>
	4.3.2 Adequate bund capacity? (>110% of the largest tank)				٠.
	4.3.3 Area storage area provided with locks and located on sea areas?	led			
	4.3.4 Are oil/fuel drums and plant/equipment provided with drip to prevent soil contamination?	trays			
4.4	C&D Material		•		
	4.4.1 Reused/recycled where practicable?				
	4.4.2 Inert/non inert materials segregated?				
	4.4.3 Disposed of properly?				
	4.4.4 Records of quantities generated/recycled/disposed mainta	ined?			
4.5	Excavated Material				
	4.5.1 Reused where practicable?				
	4.5.2 Records of quantities generated/reused/disposed maintain	ed?			
4.6	Are spent bentonite slurries or grouts collected, reconditioned and reused?				
4.7	Is foam, oil, grease, litter or other objectionable matters in water to nearby drain/sewer avoided?				70.4 Yes
La	ndscape and Visual				•
5.1	Are retained trees protected by fencing?				
5.2	Is the work site confined within site boundaries?				
5.3	Is damage to surrounding areas avoided?				

	OHE MORECHON	MAUDIT CHECKLIST		Comming
Remarks Sollow - My ?	-			
Remoter cut off drains not July constructed. Or Exposed slove surface.	slong the ser	them launday	of the site (i)	10 m) were
Parts of the site have	been watered.	Idonever, a ema	Il part of the	ito mo
Pats of the site have still dusty. The Ront was reminded to Sneep.	ractor has wat	tered that part	immediately.	The Nentra
,		=	· ·	
No dusty material was	released from	n The Markyniles	(closed),	
Chemical waste storage.	arece has been d	any or	t (closed)	1
Chemical waste storage, to open the door of stored inside Colored	the area to Su	exp artilation is	when chemical	reminoled l'warte
No oil drum (filled).	was observed wi	theil down tra	(Alam 1)	
No oil drum (filled). All licenses, permits (eg. copy of APRO for Silty water in the in	and relevant	documents should	le best at t	he rite of
Silty water in the in	heel washing of	ge livence). Sacility should	be removed	
The entrance was not.	found to be	silty (closed)	in on white	
Observation:			•	
Duity material was vel reminded to water the Leonysty oil elrums and	eased during n	och breaking oper	ration. The Con	tractor wa
Empty oil drum on	re observed.	These drums show	ald be callected	d and pl
properly.				

		•
Signatures:	AMS-Site Rop	
ET Inspector	Client's Site Agent	Contractor's Representative
	authon	h
Name: Mony Nigr	Name:	Name:
Date: 12-5-06	Date: W/5/06	Date: 12-5-06

Appendix 2

Marine Water Quality Monitoring Data

Consulting

Date	Time	Station	Sample Depth (m)	Water Depth (m)	Sea Temp (°C)	Salinity (ppt)	DO Sat (%age)	DO Conc (mg/ℓ)	Turbidity (NTU)	SS (mg/ℓ)
01-May-06	(mid-ebb)	M1	3.0	5.9	25.2	25.4	93.5	6.7	8	7
01-May-06	(mid-ebb)	M2	3.2	6.4	25.7	23.0	93.7	6.7	7	8
01-May-06	(mid-ebb)	C1	1.5	3.0	25.5	24.9	93.1	6.6	10	10
01-May-06	(mid-ebb)	C2	3.0	6.0	25.3	25.8	94.2	6.7	8	7
01-May-06	(mid-flood)	M1	3.1	6.1	25.2	25.4	92.2	6.6	9	13
01-May-06	(mid-flood)	M2	3.2	6.3	25.1	26.2	91.6	6.5	9	8
01-May-06	(mid-flood)	C1	1.7	3.4	25.3	25.2	90.5	6.4	12	11
01-May-06	(mid-flood)	C2	3.1	6.2	25.2	25.6	91.8	6.6	10	14
05-May-06	(mid-ebb)	M1	3.0	6.0	25.5	25.6	95.6	6.8	6	6
05-May-06	(mid-ebb)	M2	3.0	6.0	25.5	25.5	96.4	6.8	6	7
05-May-06	(mid-ebb)	C1	1.5	3.0	25.6	25.6	97.0	6.9	6	8
05-May-06	(mid-ebb)	C2	3.0	6.0	25.5	25.0	96.0	6.8	4	6
05-May-06	(mid-flood)	M1	3.0	6.0	25.3	25.6	96.5	6.8	6	6
05-May-06	(mid-flood)	M2	3.0	6.0	25.2	25.7	96.1	6.8	4	7
05-May-06	(mid-flood)	C1	1.5	3.0	25.3	25.4	98.3	7.0	6	6
05-May-06	(mid-flood)	C2	3.0	6.0	25.1	25.4	96.4	6.8	3	5
09-May-06	(mid-ebb)	M1	2.9	5.8	27.6	17.6	103.7	7.4	3	3
09-May-06	(mid-ebb)	M2	2.8	5.5	27.8	16.7	112.4	8.1	2	5
09-May-06	(mid-ebb)	C1	1.4	2.8	27.6	17.7	95.0	6.8	2	3
09-May-06	(mid-ebb)	C2	3.0	6.0	26.7	22.3	119.2	8.4	2	4
09-May-06	(mid-flood)	M1	2.8	5.6	27.6	17.7	101.6	7.3	2	3

Consulting

Date	Time	Station	Sample Depth (m)	Water Depth (m)	Sea Temp (°C)	Salinity (ppt)	DO Sat (%age)	DO Conc (mg/ℓ)	Turbidity (NTU)	SS (mg/ℓ)
09-May-06	(mid-flood)	M2	2.9	5.8	27.7	17.0	112.2	8.0	2	5
09-May-06	(mid-flood)	C1	1.6	3.1	27.5	17.8	94.7	6.8	2	3
09-May-06	(mid-flood)	C2	2.9	5.8	26.7	22.2	118.2	8.4	2	4
12-May-06	(mid-ebb)	M1	2.9	5.8	26.7	24.8	94.3	6.6	5	5
12-May-06	(mid-ebb)	M2	3.0	6.0	26.1	26.7	94.5	6.6	7	4
12-May-06	(mid-ebb)	C1	1.4	2.8	27.1	22.0	93.9	6.6	5	4
12-May-06	(mid-ebb)	C2	3.1	6.2	26.3	25.1	93.1	6.5	5	7
12-May-06	(mid-flood)	M1	3.0	6.0	26.4	25.4	95.7	6.7	4	4
12-May-06	(mid-flood)	M2	3.1	6.1	26.4	24.4	94.8	6.6	3	7
12-May-06	(mid-flood)	C1	1.6	3.1	26.9	22.4	94.5	6.6	4	6
12-May-06	(mid-flood)	C2	3.1	6.2	26.5	24.4	95.4	6.7	4	5
15-May-06	(mid-ebb)	M1	3.1	6.2	25.8	26.6	86.1	6.0	3	3
15-May-06	(mid-ebb)	M2	2.9	5.8	25.8	26.4	86.5	6.1	4	3
15-May-06	(mid-ebb)	C1	1.6	3.1	25.8	26.3	85.5	6.0	3	4
15-May-06	(mid-ebb)	C2	3.0	6.0	25.7	27.0	86.5	6.1	4	4
15-May-06	(mid-flood)	M1	3.0	5.9	25.6	27.2	84.9	5.9	6	6
15-May-06	(mid-flood)	M2	3.1	6.2	25.6	26.2	84.7	5.9	4	4
15-May-06	(mid-flood)	C1	1.7	3.4	25.6	25.6	84.3	6.0	1	4
15-May-06	(mid-flood)	C2	3.2	6.4	25.6	28.0	85.1	5.9	5	3
19-May-06	(mid-ebb)	M1	2.9	5.8	25.8	27.6	101.9	7.1	3	3
19-May-06	(mid-ebb)	M2	3.1	6.1	25.5	27.6	101.3	7.1	3	5

Consu	ltina
Consu	iting

Date	Time	Station	Sample Depth (m)	Water Depth (m)	Sea Temp (°C)	Salinity (ppt)	DO Sat (%age)	DO Conc (mg/ℓ)	Turbidity (NTU)	SS (mg/ℓ)
19-May-06	(mid-ebb)	C1	1.4	2.8	25.8	27.3	102.8	7.1	4	3
19-May-06	(mid-ebb)	C2	3.0	6.0	25.7	27.6	102.2	7.1	3	4
19-May-06	(mid-flood)	M1	3.0	5.9	25.5	27.8	99.8	7.0	4	3
19-May-06	(mid-flood)	M2	3.1	6.1	25.2	27.8	99.1	6.9	3	3
19-May-06	(mid-flood)	C1	1.5	3.0	25.4	27.2	99.7	7.0	5	2
19-May-06	(mid-flood)	C2	3.2	6.3	25.4	27.8	99.2	6.9	4	3
22-May-06	(mid-ebb)	M1	3.0	6.0	25.2	27.5	94.4	6.7	5	5
22-May-06	(mid-ebb)	M2	3.0	6.0	25.3	27.3	93.3	6.6	3	5
22-May-06	(mid-ebb)	C1	1.5	3.0	25.3	27.9	92.8	6.5	6	4
22-May-06	(mid-ebb)	C2	3.0	6.0	25.3	26.0	93.1	6.6	2	5
22-May-06	(mid-flood)	M1	3.0	6.0	25.3	27.7	91.9	6.5	4	5
22-May-06	(mid-flood)	M2	3.0	6.0	25.3	27.4	92.2	6.5	4	3
22-May-06	(mid-flood)	C1	1.5	3.0	25.4	27.2	91.5	6.4	4	4
22-May-06	(mid-flood)	C2	3.0	6.0	25.3	25.8	90.4	6.4	3	6
26-May-06	(mid-ebb)	M1	3.0	6.0	26.6	26.5	96.6	6.8	8	7
26-May-06	(mid-ebb)	M2	3.0	6.0	26.6	23.6	97.1	6.8	7	7
26-May-06	(mid-ebb)	C1	1.5	3.0	26.5	24.2	96.1	6.8	6	6
26-May-06	(mid-ebb)	C2	3.0	6.0	26.5	21.7	97.6	6.8	5	6
26-May-06	(mid-flood)	M1	3.0	6.0	26.7	25.1	100.0	7.0	6	7
26-May-06	(mid-flood)	M2	3.0	6.0	26.7	23.9	97.9	6.9	5	7
26-May-06	(mid-flood)	C1	1.5	3.0	26.7	23.6	99.2	7.0	8	7

Consul	ı	
Consu	ш	112

Date	Time	Station	Sample Depth (m)	Water Depth (m)	Sea Temp (°C)	Salinity (ppt)	DO Sat (%age)	DO Conc (mg/ℓ)	Turbidity (NTU)	SS (mg/ℓ)
26-May-06	(mid-flood)	C2	3.0	6.0	26.8	22.2	98.5	6.9	6	7
29-May-06	(mid-ebb)	M1	3.0	6.0	26.2	21.4	99.9	7.2	4	5
29-May-06	(mid-ebb)	M2	3.0	6.0	26.0	17.9	99.4	7.3	4	4
29-May-06	(mid-ebb)	C1	1.5	3.0	26.1	14.1	96.7	7.2	7	5
29-May-06	(mid-ebb)	C2	3.0	6.0	26.2	19.5	98.6	7.2	5	5
29-May-06	(mid-flood)	M1	3.0	6.0	25.9	16.8	93.6	6.9	8	7
29-May-06	(mid-flood)	M2	3.0	6.0	25.9	22.2	95.4	6.8	5	5
29-May-06	(mid-flood)	C1	1.5	3.0	25.7	13.6	91.1	6.9	5	6
29-May-06	(mid-flood)	C2	3.0	6.0	26.0	20.2	94.4	6.8	4	5

Notes: "-" indicates no data is available

Bold indicates Action Level exceedance

Bold indicates Limit Level exceedance

Mean	26.0	24.1	95.9	6.8	4.8	5.4
Maximum	27.8	28.0	119.2	8.4	12.0	14.0
Minimum	25.1	13.6	84.3	5.9	1.3	2.0

Appendix 3

Equipment Calibration Details

Batch:

HK49674

Sub Batch:

- 0

Date of Issue:

24/02/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Tubidimeter

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

0001093A

Equipment No.:

W-026-23

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2130B

Date of Calibration:

23 February,2006

Testing Results:

Expected Reading	Recording Reading			
0.00 NTU	0.00 NTU			
4.00 NTU	4.30 NTU			
16.0 NTU	16.7 NTU			
80.0 NTU	84.6 NTU			
160 NTU	167 NTU			
Allowing Deviation	±10%			

Alice W M Wong

Batch:

HK49674

Sub Batch :

Ò

Date of Issue:

24/02/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Conductivity System

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

0001093A

Equipment No.:

W-026-23

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2510B

Date of Calibration:

23 February,2006

Testing Results:

Expected Reading	Recording Reading			
1412 uS/cm 6667 uS/cm 58670 uS/cm	1488 uS/cm 6720 uS/cm 59330 uS/cm			
Allowing Deviation	±10%			

पॉटिंe W)M Wong

Batch:

HK49674

Sub Batch :

0

Date of Issue:

24/02/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Salinity System

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

0001093A

Equipment No.:

W-026-23

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2520 A and B

Date of Calibration:

23 February,2006

Testing Results:

Expected Reading	Recording Reading		
10.0 g/L 20.0 g/L 30.0 g/L	10.1 g/L 20.3 g/L 30.6 g/L		
Allowing Deviation	±10%		

Alice W M)W¢ng

Batch:

HK49674

Sub Batch:

0

Date of Issue:

24/02/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Thermometer

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

0001093A

Equipment No.:

W-026-23

Calibration Method:

In-house Method

Date of Calibration:

23 February,2006

Testing Results:

Reference Temperature (⁰ C)	Recorded Temperature (°C)				
18.0 °C 40.0 °C	18.2 °C 40.1 °C				
Allowing Deviation	±2.0°C				

Alīc∳ W/M/Wong Laboratory Manager - Hong Kong

Batch:

HK49674

Sub Batch:

0

Date of Issue:

24/02/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of DO System

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

0001093A

Equipment No.:

W-026-23

Calibration Method:

This meter was calibrated in accordance with standard method APHA (18th Ed.) 4500-0C & G

Date of Calibration:

23 February,2006

Testing Results:

Expected Reading	Recording Reading				
0.00 mg/L 2.88 mg/L 4.88 mg/L 8.52 mg/L	0.00 mg/L 3.00 mg/L 4.96 mg/L 8.46 mg/L				
Allowing Deviation	±0.2 mg/L				

Alice W/M Wong

Batch:

Client:

HK51718

Sub Batch:

0

Date of Issue:

17/05/2006

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Tubidimeter

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

00010867

Equipment No.:

W-026-27

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2130B

Date of Calibration:

04 May,2006

Testing Results:

Expected Reading	Recording Reading
0.00 NTU	UTN 00.0
4.00 NTU	4.30 NTU
16.0 NTU	17.4 NTU
80.0 NTU	83.5 NTU
160 NTU	160 NTU
Allowing Deviation	±10%

Ms Wong Wai Man, Alice

Batch:

HK51718

Sub Batch:

Date of Issue: Client:

17/05/2006

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Conductivity System

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

00010867

Equipment No.:

W-026-27

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2510B

Date of Calibration:

04 May,2006

Testing Results:

Expected Reading	Recording Reading
1412 uS/cm 6667 uS/cm 58670 uS/cm	1387 uS/cm 6781 uS/cm 58910 uS/cm
Allowing Deviation	±10%

Ms Wong Wai Man, Alice

HK51718

Sub Batch :

0

Date of Issue:

17/05/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Salinity System

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

00010867

Equipment No.:

W-026-27

Calibration Method:

This meter was calibrated in accordance with standard method. APHA (19th Ed.) 2520 A and B

Date of Calibration:

04 May,2006

Testing Results:

Expected Reading	37.7	Recording Reading
10.0 g/L 20.0 g/L 30.0 g/L	la:	10.5 g/L 20.9 g/L 30.5 g/L
Allowing Deviation		±10%

Ms World Wai Man, Alice

Laboratory Manager - Hong Kong

ALS Environmental

ALS Technichem (HK) Pty Ltd

ALS TECHNICHE

225 7819 7851

10,007

Page 4 of 6

Batch:

HK51718

Sub Batch : Date of Issue:

17/05/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Thermometer

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

00010867

Equipment No.:

W-026-27

Calibration Method:

In-house Method

Date of Calibration:

04 May,2006

Testing Results:

Reference Temperature (⁰ C)	Recorded Temperature (°C)
20.5 °C 24.5 °C	20.7 °C 24.7 °C
Allowing Deviation	±2.0°C

Ms World Wai Man, Alice

Batch:

HK49674

Sub Batch:

- 0

Date of Issue:

24/02/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Tubidimeter

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

0001093A

Equipment No.:

W-026-23

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2130B

Date of Calibration:

23 February,2006

Testing Results:

Expected Reading	Recording Reading		
0.00 NTU	0.00 NTU		
4.00 NTU	4.30 NTU		
16.0 NTU	16.7 NTU		
80.0 NTU	84.6 NTU		
160 NTU	167 NTU		
Allowing Deviation	±10%		

Alice W M Wong

Batch:

HK49674

Sub Batch :

0

Date of Issue:

24/02/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Conductivity System

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

0001093A

Equipment No.:

W-026-23

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2510B

Date of Calibration:

23 February,2006

Testing Results:

Expected Reading	Recording Reading		
1412 uS/cm 6667 uS/cm 58670 uS/cm	1488 uS/cm 6720 uS/cm 59330 uS/cm		
Allowing Deviation	±10%		

पॉटिंe W)M Wong

Batch:

HK49674

Sub Batch :

0

Date of Issue:

24/02/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Salinity System

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

0001093A

Equipment No.:

W-026-23

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2520 A and B

Date of Calibration:

23 February,2006

Testing Results:

Expected Reading	Recording Reading		
10.0 g/L 20.0 g/L 30.0 g/L	10.1 g/L 20.3 g/L 30.6 g/L		
Allowing Deviation	±10%		

Alice ₩ M)W¢ng

Batch:

HK49674

Sub Batch:

0

Date of Issue:

24/02/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Thermometer

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

0001093A

Equipment No.:

W-026-23

Calibration Method:

In-house Method

Date of Calibration:

23 February,2006

Testing Results:

Reference Temperature (°C)	Recorded Temperature (°C)		
18.0 °C 40.0 °C	18.2 °C 40.1 °C		
Allowing Deviation	±2.0°C		

Alīc∳ W/M/Wong Laboratory Manager - Hong Kong

Batch:

HK49674

Sub Batch:

0

Date of Issue:

24/02/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of DO System

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

0001093A

Equipment No.:

W-026-23

Calibration Method:

This meter was calibrated in accordance with standard method APHA (18th Ed.) 4500-0C & G

Date of Calibration:

23 February,2006

Testing Results:

Expected Reading	Recording Reading			
0.00 mg/L 2.88 mg/L 4.88 mg/L 8.52 mg/L	0.00 mg/L 3.00 mg/L 4.96 mg/L 8.46 mg/L			
Allowing Deviation	±0.2 mg/L.			

Alice W/M Wong

Batch:

HK51718

Sub Batch:

0

Date of Issue:

17/05/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Tubidimeter

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

00010867

Equipment No.:

W-026-27

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2130B

Date of Calibration:

04 May,2006

Testing Results:

Expected Reading	Recording Reading				
0.00 NTU	0.00 NTU				
4.00 NTU	4.30 NTU				
16.0 NTU	17.4 NTU				
80.0 NTU	83.5 NTU				
160 NTU	160 NTU				
Allowing Deviation	±10%				

Ms Wong Wai Man, Alice

Batch:

HK51718

Sub Batch:

0

Date of Issue: Client: 17/05/2006

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Conductivity System

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

00010867

Equipment No.:

W-026-27

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2510B

Date of Calibration:

04 May,2006

Testing Results:

Expected Reading	Recording Reading		
1412 uS/cm 6667 uS/cm 58670 uS/cm	1387 uS/cm 6781 uS/cm 58910 uS/cm		
Allowing Deviation	±10%		

Ms Wong Wai Man, Alice

HK51718

Sub Batch :

Date of Issue:

17/05/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Salinity System

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

00010867

Equipment No.:

W-026-27

Calibration Method:

This meter was calibrated in accordance with standard method. APHA (19th Ed.) 2520 A and B

Date of Calibration:

04 May,2006

Testing Results:

Expected Reading	7.7	Recording Reading
10.0 g/L 20.0 g/L 30.0 g/L	-	10.5 g/L 20.9 g/L 30.5 g/L
Allowing Deviation		±10%

Laboratory Manager - Hong Kong

Ms World Wai Man, Alice

Page 4 of 6

Batch:

HK51718

Sub Batch : Date of Issue:

17/05/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of Thermometer

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

00010867

Equipment No.:

W-026-27

Calibration Method:

In-house Method

Date of Calibration:

04 May,2006

Testing Results:

Reference Temperature (⁰ C)	Recorded Temperature (°C)
20.5 °C 24.5 °C	20.7 °C 24.7 °C
Allowing Deviation	±2.0°C

Ms World Wai Man, Alice

Batch:

HK51718

Sub Batch:

0

Date of Issue:

17/05/2006

Client:

MAUNSELL ENV MGT CNLT LTD

Client Reference:

Calibration of DO System

Item:

YSI SONDE Environmental Monitoring System

Model No.:

6820-C-M

Serial No.:

00010867

Equipment No.:

W-026-27

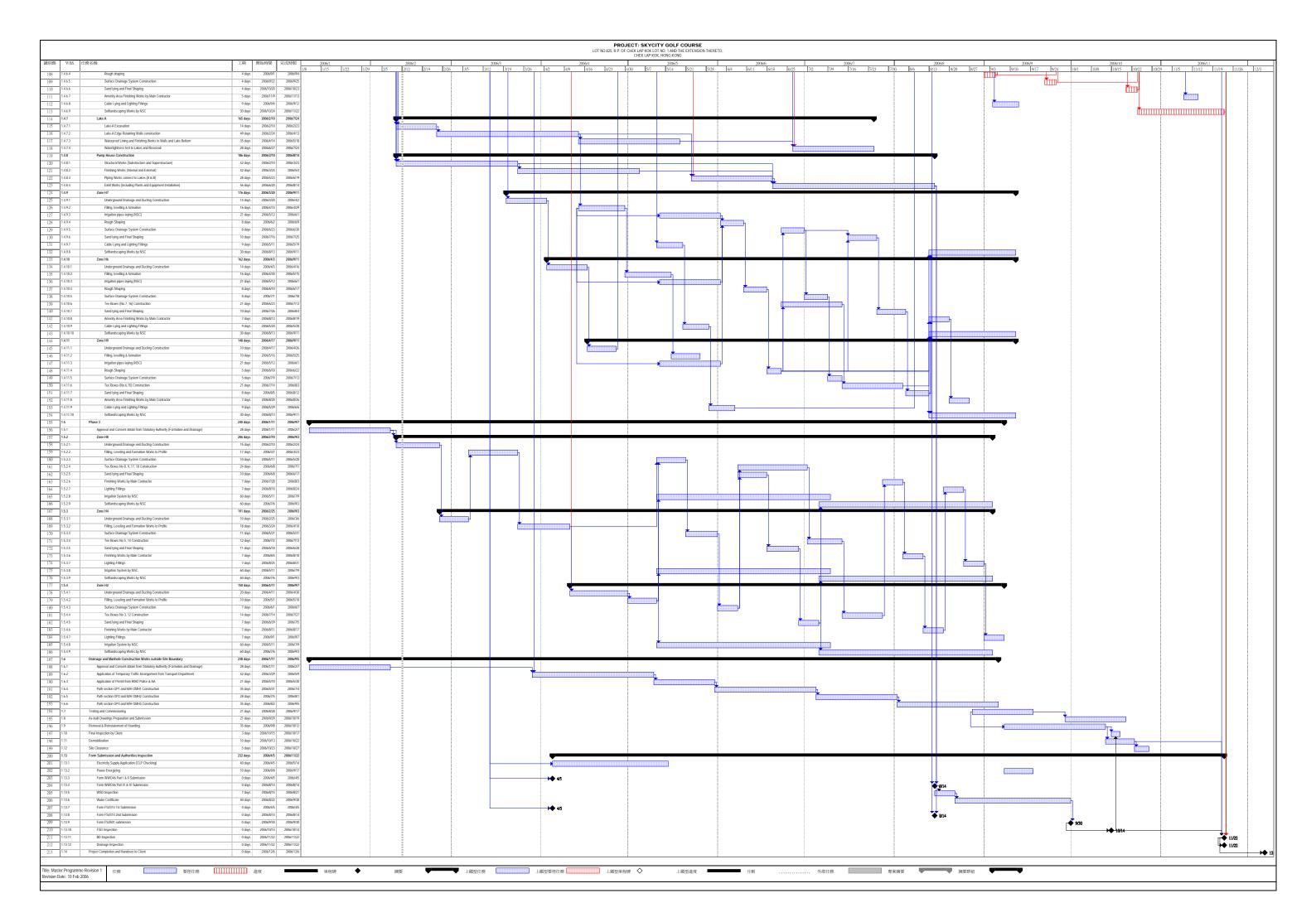
Calibration Method:

This meter was calibrated in accordance with standard method APHA (18th Ed.) 4500-0C & G

Date of Calibration:

04 May,2006

Testing Results:


Expected Reading	Recording Reading
0.00 mg/L	0.00 mg/L
4.32 mg/L	4.47 mg/L
6.79 mg/L	6.59 mg/L
8.98 mg/L	8.83 mg/L
A control of the cont	(A)
Allowing Deviation	±0.2 mg/L

Ms World Wai Man, Alice

Appendix 4

Works Programme

Appendix 5

Marine Water Monitoring Schedule for Next Month

Sky City Golf Course EM&A Tentative Water Quality Monitoring Schedule for June 2006

Sunday	Monda	ıy	Tuesday	Wednesday	Thursday	Friday	Saturday
28-May		29-May	30-May	31-May	01-Jun	02-Jun	03-Jun
	Mid-Flood 03:52 Mid-Ebb 10:24	07:08 <i>10:24</i> 14:26 <i>18:28</i>				Mid-Flood 04:50 20:44 12:56 Mid-Ebb 17:12 12:56 21:29	
04-Jun		05-Jun	06-Jur	07-Jun	08-Jun	09-Jun	10-Jun
	Mid-Ebb 06:27 Mid-Flood 10:59	08:43 <i>10:59</i> 13:40 <i>16:21</i>				Mid-Ebb 11:29 07:46 15:13 Mid-Flood 18:23 15:13 21:34	
11-Jun		12-Jun	13-Jur	14-Jun	15-Jun	16-Jun	17-Jun
	Mid-Flood 02:59 Mid-Ebb 09:23	06:11 <i>09:23</i> 13:24 <i>17:26</i>				Mid-Flood 09:12 05:57 12:28 Mid-Ebb 16:30 12:28 20:32	
18-Jun		19-Jun	20-Jur	21-Jun	22-Jun	23-Jun	24-Jun
	Mid-Ebb 05:14 Mid-Flood 10:11	07:42 10:11 13:05 15:59				Mid-Ebb 11:21 07:35 15:08 Mid-Flood 18:27 15:08 21:46	
25-Jun		26-Jun	27-Jur	28-Jun	29-Jun	30-Jun	01-Jul
			Mid-Flood 06:47 03:27 10:08 Mid-Ebb 14:12 10:08 18:16			Mid-Flood 08:47 05:31 12:03 Mid-Ebb 16:03 12:03 20:04	