

PROJECT NO.: TCS/00408/08

DSD CONTRACT NO. DC/2007/17
DRAINAGE IMPROVEMENT WORKS IN CHEUNG PO,
MA ON KONG, YUEN KONG SAN TSUEN AND TIN SAM
TSUEN OF YUEN LONG DISTRICT AND SEWERAGE AT
TSENG TAU CHUNG TSUEN, TUEN MUN

MONTHLY EM&A REPORT FOR KT13 (NOVEMBER 2008)
PREPARED FOR
CHINA ROAD & BRIDGE CORPORATION

Quality Index

Date	Reference No.	Prepared By	Certified by
		(Environmental Consultant)	(Environmental Team Leader)
12 December 2008	TCS00408/08/600/R0489		J973
		Ben Tam	FN Wong

Rev.	Date	Prepared by:	Certified by:	Description
1	4 December 2008	Ben Tam	FN Wong	First submission
2	10 December 2008	Ben Tam	FN Wong	Amended against IEC's comments
3	12 December 2008	Ben Tam	FN Wong	Amended against IEC's comments

This report has been prepared by Action-United Environmental Services & Consulting with all reasonable skill, care and diligence within the terms of the Agreement with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

EXECUTIVE SUMMARY

ES01 This is the second monthly EM&A report for KT13, covering the construction period from 26 October to 25 November 2008.

Breaches of AL levels

ES02 Monitoring results of the Reporting Period demonstrated no exceedances of environmental quality criteria of air quality, construction noise and ecology were recorded.

ES03 However, a total of twenty-four (24) exceedances of Limit levels were recorded during the Reporting Period. They are summarized below:

Location	Exceedance	DO	Turbidity	рН	SS	NH ₄ +-N	Zc	Total
W2	Action Level	0	0	0	0	0	0	0
VVZ	Limit Level	0	2	0	2	0	1	5
W6	Action Level	0	0	0	0	0	0	0
VVO	Limit Level	0	10	0	8	0	1	19
Total	Action Level	0	0	0	0	0	0	0
TOTAL	Limit Level	0	12	0	10	0	2	24

NOEs were issued upon confirmation of the monitoring results, while investigation of the NOE was conducted upon receipt of the information of construction activities and the implemented mitigation measures provided by CRBC. Illegal discharge of the agricultural farm wastewater was significantly attributed to the water quality exceedances of Turbidity, SS and Zn recorded at W2 and W6 during the Reporting Period. Nevertheless, attribution of water quality impacts due to excavation up-stream W6 to the Turbidity and SS Limit level exceedances at W6 can not be over ruled. It is therefore recommended that water quality mitigation measures stipulated in the EIA and summarized in mitigation measures implementation schedule in the EM&A Manual, including containment structure such as temporary earth bunds, sand bags, sheet pile barriers or other similar techniques, is fully implemented. In addition, implemented mitigation measures in particular the erected dams with sand bags downstream the excavation site within the water course of KT13 may also be improved to enhance sedimentation of Turbidity and SS, e.g. by using silt curtain, as appropriate.

ES05 During the Reporting Period, there was no construction work conducted within 100m area from the cultural heritage site within KT13, so no cultural heritage monitoring was required in accordance with the approved methodology.

ES06 Landscape inspection was conducted on 7 and 21 November 2008. Minor change due to site clearance and preparation work within KT13 was observed at identified landscape resources, including LR1, LR2.1, LR2.2, LCA3 and LCA4. No significant changes were observed for residual identified landscape resources and visual sensitive receivers.

Environmental Complaint, Notifications of Summons and Prosecutions

No documented complaints, notifications of summons and successful prosecutions were received during the Reporting Period. No adverse environmental impacts were observed during the weekly site inspection and environmental audit of the Reporting Period, indicating the implemented mitigation measures for air quality, construction noise and ecology were effective. Minor deficiencies found in the weekly site inspection were in general rectified within the specified deadlines. The environmental performance of the Project was therefore considered satisfactory, although further implementation or improvement, where appropriate, of the mitigation measures need to be made for water quality.

Reporting Changes

ES08 No reporting changes were made during the Reporting Period.

DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun.

Monthly EM&A Report for KT13 (November 2008)

Future key issues

- ES09 As dry season has approached, construction dust will become a key environmental issue. Construction dust suppression measures should be fully implemented. The implemented construction dust mitigation measures should also be maintained and improved, as necessary, during dusty works including vehicle movement on dry and windy days.
- On the other hand, water quality mitigation measures to avoid ingression of turbidity and other water quality pollutants via site surface water runoff into the river within KT13 should be properly maintained or improved, as appropriate.
- ES11 In addition, special attention should also be paid to construction noise and other environmental issues identified in the EM&A Manual. Mitigation measures recommended in the EIA and summarized in Mitigation Measure Implementation Schedule should be fully implemented.

DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun.

Monthly EM&A Report for KT13 (November 2008)

	Table of Contents	
1	ENVIRONMENTAL STATUS	
1.1	PROJECT AREA AND CONSTRUCTION PROGRAMME	
1.2	Works Undertaken During the Reporting Period	
1.3	Environmental Management Organization	
1.4	LICENSING STATUS	
1.5	Environmental Protection and Pollution Control Mitigation Measures	
2	MONITORING METHODOLOGY	
2.1	Monitoring Parameters	
2.2	MONITORING LOCATIONS	
2.3	MONITORING FREQUENCY, DURATION AND SCHEDULE	
2.4	MONITORING EQUIPMENT AND PROCEDURE	
2.5	QUALITY ASSURANCE PROCEDURES AND DATA MANAGEMENT	
2.6	REPORTING	
3	MONITORING RESULTS	
3.1	AIR QUALITY	
3.2	CONSTRUCTION NOISE	
3.3	Water Quality	
3.4	Ecology	
3.5	WASTE MANAGEMENT, CULTURAL HERITAGE AND LANDSCAPE & VISUA	13 ·
4	NON-COMPLIANCE, COMPLAINTS, NOTIFICATIONS OF SUMMONS, SUCCESSFUL PROSECU	
4 1	NON-COMPLIANCE	
4.1 4.2	NON-COMPLIANCE ENVIRONMENTAL COMPLAINTS	
4.2 4.3	NOTIFICATIONS OF SUMMONS AND SUCCESSFUL PROSECUTIONS	
4.3 4.4	OTHERS	
4.4 5	CONCLUSIONS AND RECOMMENDATIONS	
J	CONCECTIONS AND RECOMMENDATIONS	10

DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun.

Monthly EM&A Report for KT13 (November 2008)

LIST OF TABLES

Table 2-1	Summary of Monitoring Parameters
Table 2-2	Summary of Monitoring Locations
Table 2-4-2	Air Quality Monitoring Equipment
Table 2-4-3	Construction Noise Monitoring Equipment
Table 2-4-4	Water Quality Monitoring Equipment
Table 2-6	Requirements for Report Submission
Table 3-1-1	Air Quality Action and Limit Levels
Table 3-1-2-1	Summary of Air Quality Monitoring Results at KT13-A1(a)
Table 3-1-2-2	Summary of Air Quality Monitoring Results at KT13-A2
Table 3-2-1	Construction Noise Action and Limit Levels
Table 3-2-2-1	Summary of Construction Noise Monitoring Results – N1(a)
Table 3-2-2-2	Summary of Construction Noise Monitoring Results – N2(a)
Table 3-2-2-3	Summary of Construction Noise Monitoring Results – N3
Table 3-3-1	Action and Limit Levels for Water Quality Monitoring
Table 3-3-2	Summary of Water Quality Exceedances
Table 3-4-1	Ecological Action and Limit Levels
Table 3-4-2	Summary of Ecology Monitoring results - Bird Survey
Table 3-5-2	Cultural Heritage Resources Action and Limit Levels
Table 4-4-1-1	Summary of Quantities of Type I Contaminated Material disposal off site
Table 4-4-1-2	Summary of Quantities of Type II Contaminated Material disposal off site
Table 4-4-2	Summary of Findings of Site Inspection and Environmental Audit

LIST OF APPENDICES

Appendix A	Location Plan of the Project and Environmental Monitoring Locations under the Project
Appendix B	Construction Program
Appendix C	Environmental Management Organization and Contacts of Key Personnel
Appendix D	Monitoring Schedules and Meteorological Data
Appendix E	Calibration Certificates and HOKLAS-Accreditation Certificate of ALS
Appendix F	Event Action Plan
Appendix G	Graphical Plots of Environmental Monitoring Results
Appendix H	Photographic Records of Ecological Monitoring of Vegetation
Appendix I	Physical, Human and Cultural landscape resources at KT13, Nov 2008
Appendix J	Monthly Summary Waste Flow Table for 2008

1 ENVIRONMENTAL STATUS

This is the second monthly EM&A report for KT13, covering the construction period from 26 October to 25 November 2008 (Hereinafter 'the Reporting Period').

1.1 PROJECT AREA AND CONSTRUCTION PROGRAMME

Drawing showing the project area, any environmental sensitive receivers and the locations of the monitoring and control stations is enclosed in *Appendix A*, while CRBC's construction program is enclosed in *Appendix B*.

1.2 Works Undertaken During the Reporting Period

Works undertaken during the Reporting Period with fine tuning of construction activities showing the inter-relationship with environmental protection/mitigation measures for the month are summarized as follows:

- (a) Site clearance
- (b) Preparation Works
- (c) Environmental Monitoring
- (d) Tree Survey / Tree protection
- (e) Structural Survey
- (f) Channel excavation at Section A CH 250-225 on 17 Nov 2008
- (g) Channel excavation at Section A CH 225-198 on 18 Nov 2008
- (h) Channel excavation at Section A CH 198-175 on 19 Nov 2008
- (i) Channel excavation at Section A CH 175-148 on 20 Nov 2008
- (j) Channel excavation at Section A CH 148- 120 on 21 Nov 2008
- (k) Channel excavation at Section A CH 120-96 on 22 Nov 2008
- (I) Channel excavation at Section A CH 96-66 on 24 Nov 2008
- (m) Channel excavation at Section A CH 66-30 on 25 Nov 2008

1.3 ENVIRONMENTAL MANAGEMENT ORGANIZATION

Management structure and key personnel contact names and telephone numbers of the environmental management organization are presented in *Appendix C*, where DSD is the Project Proponent; CRBC is the main Contractor of the Project; EPD and AFCD are the supervisory departments for environmental protection of the Project; BVHKL is the Engineer's Representative of DSD (hereinafter 'the ER'); ARUP is the Independent Environmental Checker (hereinafter 'the IEC') and Action-United Environmental Services and Consulting (hereinafter 'AUES') is the environmental team (hereinafter 'the ET').

1.4 LICENSING STATUS

1.4.1 Air Pollution Control (Construction Dust) Regulation

Pursuant to the *Air Pollution Control (Construction Dust) Regulation*, CRBC has notified EPD, via submission of Form NA dated 14 February 2008, of the scope and nature of the works to be carried out under the Project, including construction activities such as stockpiling, loading and unloading, transfer of dusty material, use of vehicles and debris handling, etc. CRBC will continuously review the status of the environmental licenses and apply the required licenses/permits prior to the commencement of construction work.

1.4.2 Noise Control Ordinance

No *Construction Noise Permit* (hereinafter 'CNP') is required for the Project pursuant to the *Noise Control Ordinance* (hereinafter 'NCO') and the associated applicable subsidiary regulations of *Noise Control (General) Regulation*, *Noise Control (Hand-held Percussive Breaker) Regulation* and *Noise Control (Air Compressor) Regulation*, as the use of powered mechanical equipment, or conducting construction work in during restricted hours, i.e. 1900 to 0700 hours on normal weekdays and any time on general holidays including Sundays is not anticipated during the whole construction period. CRBC will continuously review the status of the environmental licenses under the NCO and apply the required licenses/permits prior to the commencement of construction work.

1.4.3 Waste Disposal (Charges for Disposal of Construction Waste) Regulation

CRBC has applied for a Billing Account (Construction Work Contract with Value of \$1million or Above), under the *Waste Disposal (Charges for Disposal of Construction Waste) Regulation*. The account number 7006524 has been assigned on 9 Jan 2008.

1.4.4 Water Pollution Control Ordinance

CRBC has applied for a discharge license under Section 20 of the *Water Pollution Control Ordinance*, and the license No. 1U461/1 has been issued.

1.4.5 Waste Disposal (Chemical Waste) (General) Regulation

CRBC has registered as a Chemical Waste Producer with EPD under the Waste Disposal (Chemical Waste) (General) Regulation and the Waste Producer Number assigned is WPN: 5611-531-C3124-28 dated 2 May 08.

1.4.6 Dumping at Sea Permit

CRBC has been granted the Environmental Protection Department Permit Issued under the Dumping at Sea Ordinance (Permit no. EP/I4D/08-095, dated 18 September 2008, permit validity period of six months from 18 September 2008 to 17 March 2009) for 18,469 m³ sediment requiring Type 1 – open sea disposal at East Sha Chau Contaminated Mud Disposal Site – Pit IV b to be capped as directed by the management Team of the Civil Engineering and Development Department.

1.5 Environmental Protection and Pollution Control Mitigation Measures

CRBC has committed to implement environmental protection and pollution control and mitigation measures, as recommended in the EIA, EP and the EM&A Manuals, summarized in the Mitigation Measures Implementation Schedules in the EM&A Manual. The implemented mitigation measures include

- (a) Watering of stockpiles of rip-rap at KT13;
- (b) Covering of the loose soil at KT13 to minimize water quality impacts;
- (c) Hard pavement of haul road leading to public roads at KT13;
- (d) Classification and disposal of illegally dumped construction and demolishment materials at KT13;
- (e) Construction of noise barriers; and
- (f) Erection of dams with sand bags downstream the excavation site within the water course of KT13 to enhance sedimentation of Turbidity and SS,

2 MONITORING METHODOLOGY

2.1 MONITORING PARAMETERS

According to the EM&A requirements set out in the EIA, Environmental Permits No.EP263/2007 (hereinafter 'the EP') and the associated EM&A Manual, monitoring parameters are summarized as follows.

Table 2-1 Summary of Monitoring Parameters

Environmental Aspect	Monitoring Parameters			
Air Quality	(a) 1-Hour Total Suspended Particulate (hereinafter '1-Hr TSP'); and			
O and a local transition of the local	(a) A-weighted equivalent co	 (b) 24-Hour Total Suspended Particulate (hereinafter '24-Hr TSP'). (a) A-weighted equivalent continuous sound pressure level (30min) (hereinafter 'Leq(30min)' during the normal working hours; and 		
Construction Noise		intinuous sound pressure level (5min) (hereinafter 'Leq(5min)' for		
Water Quality	(a) In Situ temp Measurement	erature, Dissolved Oxygen (hereinafter 'DO'), pH & Turbidity		
Water Quality		ended Solids (hereinafter 'SS'), Ammonia Nitrogen inafter 'NH ₃ -N') and Zinc (hereinafter 'Zn')		
Ecology	Vegetation, All bird species of wetland, Ho Pui Egret, Ma On Hong Egret and Flight Line Survey			
Waste Management	Inspection and the document audit			
Cultural Heritage	Condition survey for a historical grave			
Landscape & Visual	To audit the implementation of the proposed construction phase mitigation measure stipulated in EIA.			

2.2 MONITORING LOCATIONS

Details of the monitoring locations are summarized in *Table 2-2* and shown in *Appendix A*. For ease of reference, '(a)' is denoted for the relocated location IDs to differentiate from the original 'EM&A Manual' locations.

Table 2-2 Summary of Monitoring Locations

Env. Acnost	Monitoring	Identified Address /	Status of Monitoring Locations / Rationale for
Env. Aspect	Location ID	Co-ordinates	Recommended Replacement
Air	A1(a)	No.68 Ho Pui Village	The original location of EM&A Manuals A1 has permanently been abandoned. No access can be acquired in the vicinity of A1. Taken into consideration that Ho Pui Village is one of the most important sensitive receivers near KT-13 without monitoring, the most fronting house, No. 68 Ho Pui Village, is therefore recommended as the replacement location A1(a).
	A2	No.1 Ma On Kong Village	Original location of the EM&A Manual; access granted.
Noise	N1(a)	168-169 Kam Ho Road, Ma On Kong Village,	Original location of N1 identified in the EM&A Manual was relocated to proposed area as recommended by IEC.
	N2(a)	No. 68 Ho Pui Village,	The original location of EM&A Manuals N2 has permanently been abandoned. No access can be acquired in the vicinity of N2. Taken into consideration that Ho Pui Village is one of the most important sensitive receivers near KT-13 without monitoring, the most fronting house, No. 68 Ho Pui Village, is therefore recommended as the replacement location N2(a).
•	N3	No.1 Ma On Kong Village	Original locations of the EM&A Manual; access granted.
Water	W1	E824539 / N830283	Original locations of the EM&A Manual; access resolved.
	W2	E824693 / N830258	Original locations of the EM&A Manual; access resolved.
	W3(a)	E824833 / N830374	The W3 is proposed to be relocated about 55 m down stream to W3(a) for safety reason as there is no any discharge point observed between W3 and the proposed W3(a).
	W4	E824936 / N830618	Original locations of the EM&A Manual; access resolved.
	W5	E825008 / N830812	Original locations of the EM&A Manual; access resolved.
	W6	E825100 / N830987	Original locations of the EM&A Manual; access resolved.
Ecology	Ma On Kong	Refer to EM&A Manual (KT13) Fig	jure 6.1.
Waste Management		on site and document	
Cultural Heritage	Ma On Kong	Refer to EM&A Manual (KT13) Fig	jure 7.1.
Landscape & Visual	Refer to EIA Sec	tion 10	

2.3 MONITORING FREQUENCY, DURATION AND SCHEDULE

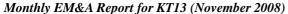
2.3.1 Monitoring Frequency and Duration

Impact environmental monitoring is conducted upon commencement of the construction activities and throughout the whole construction period to detect and minimize any adverse environmental impacts generated from the construction activities of the Project. The monitoring frequency and duration for air quality, construction noise, water quality, ecology and other parameters are summarized below.

Air Quality

Frequency: Once every 6 days for 24-Hr TSP and three times every 6 days for 1-Hr TSP, when

the highest construction dust impacts are anticipated.


<u>Duration</u>: Throughout the construction period

Construction Noise

Frequency: Measurement of Leq 30min: Once a week during 0700-1900 on normal weekdays for

Leq30min. If the construction work is undertake at restrict hour, the frequency of noise monitoring will be conducted in accordance with the requirements under the related Construction Noise Parmit issued by ERD as follows:

related Construction Noise Permit issued by EPD as follows:

- 3 consecutive Leq5min at restrict hour from 1700 2300;
- 3 consecutive Leq5min for restrict hour from 2300 0700 next day;
- 3 consecutive Leq5min for Sunday or public holiday from 0700 1900;

<u>Duration</u>: Throughout the construction period

Water Quality

Frequency: Three times a week with at least 36 hour intervals between any two consecutive

monitoring events

Depths: As the water columns in the stream water within KT13 is generally less than 3 m,

measurement is performed at the mid-depths of the monitoring locations. In case the water columns are deeper than 6 m, measurement shall be carried out at three water depths, namely, 1 m below water surface, mid-depth, and 1 m above river bed. If the water depths are between 3 to 6 m, the mid-depth measurement is omitted.

<u>Duration</u>: Throughout the construction period.

Ecology

The Ecology Monitoring is required in accordance with the EM&A Manual.

Parameters: Vegetation, All bird species including wetland birds, Ho Pui and Ma On Hong

Egretries and Flight line survey

<u>Frequency</u>: Vegetation – Impact monitoring – monthly;

Photographic records/checks against baseline records- six monthly

Wetland Bird survey – Monthly of half-day survey;

Ma On Kong egretry - Monthly between March to August; and

Ho Pui egretry – Bi-weekly between March and August;

Flight line Survey – Month during the period from April to June

<u>Duration</u>: Throughout the whole construction period

Waste Management Audit

<u>Frequency</u>: Once per month

<u>Duration</u>: Throughout the construction period.

Cultural Heritage

Frequency: Bi-monthly

<u>Requirement</u>: Condition survey of a Qing Dynasty Grave. <u>Duration</u>: Throughout the construction phase period.

Landscape & Visual

Frequency: Bi-weekly

<u>Duration</u>: Throughout the construction phase period.

2.3.2 Environmental Monitoring Schedule

The monitoring schedules for the Reporting Period and forthcoming month are presented in *Appendix D*.

2.4 MONITORING EQUIPMENT AND PROCEDURE

The monitoring equipment and procedures for air quality, construction noise, stream water quality and ecology are summarized below. Calibration certificates of the equipment and the related laboratories are presented in *Appendix E*.

2.4.1 Weather Conditions during the Reporting Period

All meteorological information is sourced from the Hong Kong Observatory (Lau Fau Shan Station). The meteorological data include wind direction, wind speed, humidity, rainfall, air pressure and temperature etc., that in general are required for evaluating the environmental impact arising from the construction activities. The meteorological data are presented in *Appendix D*.

2.4.2 Air Quality

Monitoring Equipment

A list of air quality monitoring equipment is shown below.

Table 2-4-2 Air Quality Monitoring Equipment

Equipment	Model
24-Hr TSP	
High Volume Air Sampler	Grasby Anderson GMWS 2310 HVS
Calibration Kit	TISCH Model TE-5028A
1-Hr TSP	
Portable Dust Meter	TSI DustTrak Model 8520 / Sibata LD-3 Laser Dust Meter

Monitoring Procedure

<u>1-Hr TSP</u>

The 1-Hr TSP measurement follows manufacturer's Operation and Service Manual, using a 1-Hr TSP monitor brand named TSI Dust Track Aerosol Monitor Model 8520 or Sibata LD-3 Laser Dust Meter, which is a portable, battery-operated laser photometer to record the real time 1-hr TSP based on 90° light scattering. The 1-hr TSP monitor consists of the following:

- (a) A pump to draw sample aerosol through the optic chamber where TSP is measured;
- (b) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
- (c) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.

The 1-Hr TSP meter to be used will be within the valid period, calibrated by the manufacturer prior to purchasing. Zero response of the instrument will be checked before and after each monitoring event.

24-hr TSP

The equipment used for 24-Hr TSP measurement is the high volume air sampling system (hereinafter 'HVS') brand named Thermo Andersen, Model GS2310 TSP. The HVS complies with US EPA Code of Federal Regulation, Appendix B to Part 50. The HVS consists of the following:

- (a) An anodized aluminum shelter;
- (b) A 8"x10" stainless steel filter holder;
- (c) A blower motor assembly;
- (d) A continuous flow/pressure recorder;
- (e) A motor speed-voltage control/elapsed time indicator;
- (f) A 6-day mechanical timer, and
- (g) A power supply of 220v/50 Hz

The HVS is operated and calibrated on a regular basis following the manufacturer's instruction using the NIST-certified standard calibrator brand named TISCH Calibration Kit Model TE-5025A. Regular HVS operation and maintenance as well as filter paper installation and collection is performed by the ET's competent technicians, whereas laboratory analyses are conducted in a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (herein after 'ALS'). The 24-hr TSP filters of the 24-Hour TSP will be kept in ALS for six months prior to disposal.

All relevant data including temperature, pressure, weather conditions, elapsed-time meter reading for the start and stop of the sampler, identification and weight of the filter paper are recorded in details.

2.4.3 Construction Noise

Monitoring Equipment

A list of construction noise monitoring equipment is shown below.

Table 2-4-3 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	B&K Type 2236 & 2238
Calibrator	B&K Type 4231
Portable Wind Speed Indicator	Testo Anemometer

Monitoring Procedure

Sound level meters listed above comply with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications, as recommended in Technical Memorandum (TM) issued under the Noise Control Ordinance (NCO).

All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq(30 min) in six consecutive Leq(5 min) measurements will be used as the monitoring parameter for the time period between 0700-1900 hours on weekdays throughout the construction period. Leq(15min) in three consecutive Leq(5 min) measurements for other time periods (e.g. during restricted hours) will only be conducted for monitoring the construction noise during restricted hours as necessary.

The sound level meter ise mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield is fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point is normally at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point is at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.

Immediately prior to and following each noise measurement the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0dB. No noise measurement will be made in the present of significant fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s. The wind speed is checked with a portable wind speed meter capable of measuring the wind speed in m/s.

2.4.4 Water Quality

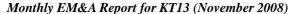
Monitoring Equipment

Monitoring Equipment for water quality is listed below.

Table 2-4-4 Water Quality Monitoring Equipment

Equipment	Model / Description
Water Depth Detector	Eagle Sonar
Water Sampler	Teflon bailer / bucket
Thermometer & DO meter	YSI 550A DO Meter
pH meter	Hanna HI 98128
Turbidimeter	Hach 2100p
Sample Container	High density polythene bottles (provided by laboratory)
Storage Container	'Willow' 33-litter plastic cool box

Monitoring Procedure


Water Depth

As the water columns in the stream water within KT13 is generally less than 3 m, measurement is performed at the mid-depths of the monitoring locations. In case the water columns are deeper than 6 m, measurement shall be carried out at three water depths, namely, 1 m below water surface, mid-depth, and 1 m above river bed. If the water depths are between 3 to 6 m, the mid-depth measurement is omitted.

Water depths are determined prior to measurement and sampling, using a portable battery operated depth detector, brand named 'Eagle Sonar', if the depths exceed 1.5 meter. For the depths well below 1 meter, the depths of water columns are measured with a steel ruler with appropriate weight.

Dissolved Oxygen (DO)

A portable YSI 550A DO Meter will be used for in-situ DO measurement. The DO meter is capable of measuring DO in the range of 0 - 20 mg/L and 0 - 200 % saturation and checked against water saturated ambient air on each monitoring day prior to monitoring. Although the DO Meter automatically compensates ambient water temperature to a standard temperature of 20° C for ease of comparison of the data under the changing reality, the temperature readings of the DO Meter

will be recorded in the field data sheets. Calibration of the equipment will be performed by ALS on quarterly basis.

рΗ

A portable Hanna pH Meter will be used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0-14 and readable to 0.1. Standard buffer solutions of pH 7 and pH 10 are used for calibration of the instrument before and after measurement. Quarterly calibration of the equipment will be performed by ALS.

Turbidity

A portable Hach 2100p turbidity Meter will be used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 – 1000 NTU. Calibration of the equipment will be performed by ALS on quarterly basis.

Suspended Solids (SS)

SS will be determined by ALS upon receipt of the water samples using the HOKLAS accredited analytical method - ALS Method EA-025.

Ammonia Nitrogen(NH3-N)

<u>NH₃-N</u> will be examined by ALS upon receipt of the water samples using the HOKLAS accredited analytical methods - ALS Method EK-055A.

Zinc(Zn)

Zn will be analyzed by ALS upon receipt of the water samples using the HOKLAS accredited analytical methods - ALS Method EG-020.

Water Sampler

Water samples will be collected using a plastic sampler to prevent metal contamination. As the water depths in the stream water within KT13 are generally less than 0.5 m, a plastic bucket with a rope of appropriate length is used for water sampling. The sampler is rinsed before collection with the sample to be taken. For water depths deeper than 0.5 meter, a cleaned plastic bailer bucket will be used for sample collection.

1000 mL water sample is collected from each depth for SS determination. The samples collected are stored in a cool box maintained at 4°C and delivered to ALS upon completion of the sampling by end of each sampling day.

Sample Container

Water samples are contained in screw-cap PE (Poly-Ethylene) bottles, which are provided and pretreated according to corresponding HOKLAS and ALS analytical requirements. Where appropriate, the sampling bottles are rinsed with the water to be contained. Water samples are then transferred from the water sampler to the sampling bottles to 95% bottle capacity to allow possible volume expansion during delivery and storage.

Sample Storage

A 'Willow' 33-litter plastic cool box packed with ice will be used to preserve the collected water samples prior to arrival at ALS. The water temperature of the cool box will be maintained at a temperature as close to 4°C as possible without being frozen. Samples collected will be delivered to the laboratory upon collection within the maximum storage time required under the HOKLAS and ALS analytical requirements

2.4.5 Ecology

Monthly walk through survey will be conducted along the boundary of work area for KT13. Bird monitoring will be conducted in the study areas monthly for KT13. Monitoring on the Ho Pui egretry and Ma On Kong egretry will be conducted between March to August. Flight line surveys to record the feeding areas and the habitat use of breeding egrets will be conducted between April to June. Monthly vegetation monitoring will be conducted by means of walk through survey along the boundary of works area. Photographic record should be made at six month intervals.

Monitoring Equipment

The following equipment will be used for monitoring:-

Standard portable field survey equipment was used for ecological monitoring, including

- (a) Binoculars of 10 x 40 magnifications;
- (b) Digital camera; and
- (c) Notebook.

Study Area

The areas for the ecological monitoring programme would cover 60m on either side of the existing channel as well as the proposed bypass culvert, as shown in Figure 6.1 of the EM&A Manual. Within these, emphasis will be given to the area around the Ho Pui and Ma On Kong egretries and habitats of at least moderate ecological value. In addition, monitoring would also be undertaken at the Ho Pui egretry and Ma On Kong egretry (The Ma On Kong egretry is outside the demarcated monitoring area but is also monitored to identify any adverse effects on the breeding egrets).

Survey Method

Monthly monitoring will be conducted by means of walk through survey, along the boundary of work area for KT13. Any adverse impacts to the habitats outside the site, in particular the Conservation Area (CA) zone and Ho Pui Egretry, will be checked and reported.

Photographic records will be made every six months on the fixed photo record points selected during the baseline survey. The photos from the construction phase ecological monitoring will be compared with those taken during the baseline, which are used as the baseline conditions.

Bird monitoring will be conducted in the study areas monthly for KT13. Attention should be paid on wetland species and species identified as being of conservation importance, and the habitats utilized should also be recorded. Bird surveys should commence no later than 2 hours after dawn.

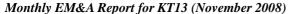
Monitoring on the Ho Pui egretry and Ma On Kong egretry will be conducted between March to August. The frequency would be twice per month during March to May. Depending upon the nesting conditions at Ho Pui egretry, the frequency could be reduced to monthly between June and August if no egret nest found by the end of May, or maintained at twice per month till the end of August if there are egret nests. Number of active nests, species and number of birds present and breeding stage should be recorded.

Flight line surveys to record the feeding areas and the habitat use of breeding egrets will be conducted twice per month between April to June. The number and species of flying egrets, and their landing habitats and locations should be recorded.

2.4.6 Waste Management, Cultural Heritage and Landscape & Visual

Waste Management, Cultural Heritage and Landscape & Visual monitoring is required for KT13 as stipulated in the EM&A manual [382047/E/EMA/Issue 5] **Section 5**, **Section 7** and **Section 8** accordingly.

Waste Management


During the monthly audit, ETL will pay attention to the issues relating to waste management, and check whether the Contractor has followed the relevant contract Specifications and the procedures specified under the law of HKSAR.

Cultural Heritage

Condition survey by a qualified archaeologist is required for the historical grave near Ma On Kong before and during the construction phase. The method statement of condition survey of Ma On Kong Historic Grave (KT13-02-02) was issued to EPD and endorsed on 27 July 2008, the frequency of the condition survey during the construction phase and given the open cut method would be adopted for the construction of the proposed bypass box culvert under KT13 project, subject to the result of the condition survey carried out before the construction stage, it is recommended that bi-monthly condition survey be undertaken during the construction work within 100m area from the grave.

Landscape and Visual

In accordance with the EM&A manual [382047/E/EMA/Issue5] **Section 8** landscape and visual mitigation measures are required during construction and operation phase. Site inspection will be undertaken at least once every two weeks throughout the construction period to ensure compliance with the intended aims of the proposed mitigation measures.

2.5 QUALITY ASSURANCE PROCEDURES AND DATA MANAGEMENT

2.5.1 Documentation of the Environmental Monitoring

Field data including in-situ monitoring results, weather conditions and water sampling information and observation will be recorded in corresponding Field Data Sheets, which will be signed and dated by the respective environmental technician prior to submission to the ETL for validation and endorsement at the end of the monitoring day.

2.5.2 Data Management and Analysis

All impact monitoring data will be processed by the AUES data recording and management system, which complies with in-house Quality (*ISO 9001:2000*) Management System. Monitoring results recorded in the monitoring equipment e.g. 1-Hr TSP Meters and Noise Meters will be downloaded directly from the equipment at the end of the monitoring period and input into a computerized database maintained by the ET. Laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.

2.5.3 Quality Assurance Procedures

Appropriate and standard QA/QC measures will be adopted for the environmental monitoring to ensure the scientific integrity of the data produced. Sources of error in the impact monitoring will be properly controlled with the following QA/QC procedures:

- (a) Appropriate field monitoring and sampling techniques, including monitoring equipment, storage and delivery of samples;
- (b) Well organized systematic field-data system e.g. all baseline monitoring information, field observation, results, weather conditions and water sampling information, etc. will be recorded in the field monitoring record sheets. The laboratory analysis records will be maintained by the HOKLAS following HOKLAS requirements;
- (c) HOKLAS requirements for QA/QC of all laboratory testing to ensure acceptable accuracy and reproducibility of the laboratory analysis indicated by consistent agreement between duplicate samples, validity of the analytical results by compliance with the required blanks and recovery of standard addition.

2.5.4 Records

All impact monitoring data will be clearly and systematically documented in both hardware and software format and the software copy will be available for inspection upon request. All the document and data will be kept for at lest one year after completion of the Project. Field Data Sheets used to record the impact monitoring information, field observation, results, weather conditions and water sampling information, etc., will be properly maintained and kept by the ET. The copies of laboratory analysis records from ALS will be keep by the ET throughout the at least one year after completion of the EM&A program of the Project.

2.6 REPORTING

2.6.1 General Requirements for Report Submission

General requirements for Monthly EM&A report submission as stipulated in the EIA, EP and EM&A Manual are summarized below.

Table 2-6 Requirements for Report Submission

Report	Submission
Monthly EM&A Report	Within 10 working days of the end of each reporting month.
Quarterly EM&A Summary Report	 No specific requirement, proposed three weeks after endorsement of the 3rd monthly EM&A report within a particular quarter.
Final EM&A Summary Report	No specific requirement, proposed one month upon completion of entire EM&A program

2.6.2 Cut-Off Day of the Reporting Month

It is also agreed among the ER, IEC, CRBC, ET and EPD that, in order to avoid unnecessary delay of the EM&A report submission due to the time required for laboratory analyses for those environmental monitoring samples collected at the ends or near the ends of the reporting months, in particular on eve of public holidays, the cutoff day is 25th of each month. That is to say, the reporting month is counted from 26th of the previous month to 25th of the reporting month.

3 MONITORING RESULTS

Monthly EM&A Report for KT13 (November 2008)

The environmental monitoring results will be compared against the Action and Limit Levels established based on the baseline monitoring results. Should non-compliance with the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*. The environmental monitoring results are presented in tabulation below and graphical plots in *Appendix G*.

3.1 AIR QUALITY

3.1.1 Action and Limit Levels

According to the Baseline Monitoring Report for KT13, the Action and Limit Levels for 24-Hr and 1-Hr TSP are established as follows:

Table 3-1-1 Air Quality Action and Limit Levels

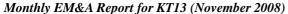
Monitoring Station	Action Lev	rel (μg /m³)	Limit Level (µg/m³)		
Worldoning Station	1-Hr TSP	24-Hr TSP	1-Hr TSP	24-Hr TSP	
KT13(A1(a))	309	144	500	260	
KT13(A2)	307	141	500	260	

3.1.2 Results

Results of air quality monitoring at the identified locations during the Reporting Period are summarized in Tables 3-1-3-1 and3-1-3-2 below. Details of 24-hr TSP data and graphical plots of trends of monitored parameters at key stations over the past four reporting periods are presented in Appendix G.

Table 3-1-2-1 Summary of Air Quality Monitoring Results at KT13-A1(a)

	1	24-Hour TSP (μg/m³)					
Date	Start Time	1st Hr	2nd Hr	3rd Hr	Average	Date	Results
30-Oct-08	9:15	136	124	133	131	31-Oct-08	12
5-Nov-08	9:25	126	115	104	115	4-Nov-08	16
11-Nov-08	9:30	120	132	112	121	10-Nov-08	40
17-Nov-08	13:10	154	166	151	157	15-Nov-08	22
22-Nov-08	13:50	147	150	143	147	21-Nov-08	38
Action Level 309					144		
Limit Le	Limit Level 500 260			0			


Table 3-1-2-2 Summary of Air Quality Monitoring Results at KT13-A2

	1	24-Hour TSP (μg/m³)						
Date	Start Time	1st Hr	2nd Hr	3rd Hr	Average	Date	Results	
30-Oct-08	9:40	143	130	145	139	31-Oct-08	17	
5-Nov-08	9:50	107	105	106	106	4-Nov-08	16	
11-Nov-08	10:45	130	125	114	123	10-Nov-08	38	
17-Nov-08	12:00	143	159	150	151	15-Nov-08	18	
22-Nov-08	12:40	175	181	168	175	21-Nov-08	24	
Action L	Action Level 307					141		
Limit Le	evel	500			260			

3.1.3 Discussion

Meteorological data in the *Appendix D* indicates that the air quality monitoring of the Reporting Period was in general conducted under normal weather conditions of Hong Kong dry season.

As shown in *Tables 3-1-2-1 and 3-1-2-2*, the 1-HR TSP and 24-Hr TSP results fluctuated well below the Action level. No exceedance of Action and Limit levels was recorded during the Reporting Period. Neither Notification of Exceedance (hereinafter 'NOE') of air quality criteria nor corrective action was required.

3.2 CONSTRUCTION NOISE

3.2.1 Action and Limit Levels

The Action and Limit levels for construction noise are illustrated in *Table 3-2-1*.

Table 3-2-1 Construction Noise Action and Limit Levels

Time Period	Action Level in dB(A)			Limit Level in dB(A)	
0700-1900 hrs on normal weekdays	When	one	documented	> 75* dB(A)	
0700-1700 His off Hoffilal Weekdays	complair	nt is receiv	/ed	> 15 UD(A)	

Note: * Reduces to 70dB(A) for schools and 65dB(A) during the school examination periods.

3.2.2 Results

Results of construction noise monitoring at the identified locations N1(a), N2(a) and N3 during the Reporting Period are summarized in Tables 3-2-2-1 to 3-2-2-3.

The baseline monitoring for N1(a) and N2(a) was performed on the 1st floor of the bedroom of 168-169 Kam Ho Road, Ma On Kong Village and No. 68 Ho Pui Village respectively. The impact noise monitoring, however, is performed on the ground floor of the same house due to denial of the access to the 1st floor. The change of noise monitoring from 1st floor to ground floor will omit 3dB(A) façade correction as it did for the baseline monitoring, but will neither introduce any difference in detection and minimization of the of construction noise impacts, nor alter the existing construction noise A/L levels. Nevertheless, the ET will write to formally inform and get approval from the IEC and EPD before issuance of the next monthly EM&A report (Decmber 2008).

Table 3-2-2-1 Summary of Construction Noise Monitoring Results – N1(a)

Date	Start Time	1st Leq5	2nd Leq5	3rd Leq5	4th Leq5	5th Leq5	6 th Leq5	Leq30
30-Oct-08	11:30	54.2	58.2	56.6	48.4	62.3	56.7	57.8
5-Nov-08	11:40	67.5	66.4	68.3	67.4	68.9	67.5	67.7
11-Nov-08	11:25	57.2	54.0	59.4	60.1	61.0	58.5	58.9
17-Nov-08	14:20	62.0	55.1	54.3	57.7	56.5	60.7	58.6
22-Nov-08	12:00	54.1	48.3	51.9	53.0	51.4	50.8	51.9
Limit Le	Limit Level						75 dB(A)	

Table 3-2-2-2 Summary of Construction Noise Monitoring Results – N2(a)

Date	Start Time	1st Leq5	2nd Leq5	3rd Leq5	4th Leq5	5th Leq5	6 th Leq5	Leq30	
30-Oct-08	10:30	54.0	51.1	56.8	53.7	51.7	51.0	53.6	
5-Nov-08	9:50	66.8	67.3	67.2	68.4	67.3	67.4	67.4	
11-Nov-08	9:30	67.6	67.6	67.7	67.3	67.6	67.9	67.6	
17-Nov-08	12:00	54.4	55.0	54.3	53.7	55.5	56.8	55.1	
22-Nov-08	13:50	46.8	48.4	49.3	47.6	50.1	48.3	48.5	
Limit Le	evel								

Table 3-2-2-3 Summary of Construction Noise Monitoring Results – N3

Date	Start Time	1st Leq5	2nd Leq5	3rd Leq5	4th Leq5	5th Leq5	6 th Leq5	Leq30
30-Oct-08	9:40	58.3	63.0	45.6	45.5	46.3	46.5	56.7
5-Nov-08	11:00	67.2	67.3	66.4	69.3	70.5	66.5	68.1
11-Nov-08	10:45	65.0	67.4	66.1	67.6	65.0	54.1	65.6
17-Nov-08	13:10	55.5	53.1	56.0	55.7	54.3	54.9	55.0
22-Nov-08	12:40	48.6	48.7	49.0	49.1	51.4	48.7	49.4
Limit Level -							75 dB(A)	

3.2.3 Discussion

As shown in *Tables 3-2-2-1*, *3-2-2-2* and *3-2-2-3*, all the construction noise results fluctuated well below the Limit level. Neither exceedance of Limit levels nor documented construction complaint was recorded during the Reporting Period. Neither NOE of construction noise nor corrective action was therefore required.

3.3 WATER QUALITY

3.3.1 Action and Limit Levels

The Action and Limit levels for water quality are illustrated in *Table 3-3-1*.

Table 3-3-1 Action and Limit Levels for Water Quality Monitoring

Monitoring	DO (mg/L)		Turbidity (NTU)		рН		SS (mg/L)		Ammonia (µg/L)		Zinc (μg/L)	
Location	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level
W1 (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W2 (Downstream) Impact Station	1.04	1.00	36.81	37.16	8.65	8.69	79.0	86.2	16.85	16.89	234.95	266.19
W3(a) (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W4 (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W5 (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W6 (Downstream) Impact Station	0.93	0.91	27.88	30.02	8.7	8.7	73.40	78.68	51.62	54.56	191.90	201.58

Notes: # Act as Control Station for the Impact Water Quality Monitoring.

- * Alternative Action Level of the Turbidity, pH, Suspended Solid, Ammonia Nitrogen and Zinc are 120% of upstream control station of same day.
- ** Alternative Action Level of the Turbidity, pH, Suspended Solid, Ammonia Nitrogen and Zinc are 130% of upstream control station of same day.

3.3.2 Results

Water quality monitoring results measured at W1, W2, W3(a), W4, W5 and W6 during the Reporting Period are presented in tabulation and graphical plots in *Appendix G*.

No excedances of Action and Limit levels of DO, pH and NH_4^+ -N were recorded during the Reporting Period.

However, a total of twenty four (24) Limit level exceedances, namely twelve (12) Limit level exceedances of Turbidity, ten (10) Limit level exceedances of Suspended Solids (SS) and two (2) Limit level exceedances of Zinc (Zn), were registered during the Reporting Period as shown in the *Table 3-3-3*.

Table 3-3-2 Summary of Water Quality Exceedances

Station	Exceedance	DO	Turbidity	рН	SS	NH_4 +- N	Zc	Total
W2	Action Level	0	0	0	0	0	0	0
VVZ	Limit Level	0	2	0	2	0	1	5
W6	Action Level	0	0	0	0	0	0	0
VVO	Limit Level	0	10	0	8	0	1	19
Total	Action Level	0	0	0	0	0	0	0
iotai	Limit Level	0	12	0	10	0	2	24

3.3.3 Discussion

NOEs were issued upon confirmation of the monitoring results, while investigation of the NOE was conducted upon receipt of the information of construction activities and the implemented mitigation measures provided by CRBC. Awaiting the IEC's endorsement, the NOE and the associated investigation have not closed to date.

It is noted that untreated or under-treated agricultural wastewater, which contains significant amount of pig manure, is illegally discharged from surrounding pig farms to the stream water under KT13.

The pig manure comprises very high concentration of Turbidity, SS, Biochemical Oxygen Demand (BOD), Ammoniacal Nitrgen (NH_4^+ -N) as well as heavy metal e.g. Copper (Cu) and Zn. The illegal discharge of the agricultural farm wastewater has been well known to be the main pollution sources of the receiving water bodies of the yuen Long area, including KT13 stream water. They are significantly attributed to the Turbidity, SS and Zn exceedances recorded at W2 and W6 during the Reporting Period.

Nevertheless, as stated in section 1.2 Works Undertaken During the Reporting Period, excavation was undertaken upstream W6 during the Reporting Period. The excavation activities may have potential water quality impacts to elevate concentrations of certain water quality parameters, in particular Turbidity and SS. Attribution of the impacts of the construction activities under the Project to the Turbidity and SS Limit level exceedances at W6 can not be over ruled. In order to minimize the construction impacts on the water quality environment within KT13, it is recommended that water quality mitigation measures stipulated in the EIA and summarized in mitigation measures implementation schedule in the EM&A Manual, including containment structure such as temporary earth bunds, sand bags, sheet pile barriers or other similar techniques, is fully implemented. In addition, implemented mitigation measures in particular the erected dams with sand bags downstream the excavation site within the water course of KT13 may also be improved to enhance sedimentation of Turbidity and SS, e.g. by using silt curtain, as appropriate.

3.4 ECOLOGY

3.4.1 Action and Limit Levels

The Action and Limit levels for Construction Ecology Monitoring are shown in *Table 3-4-1* to according with the EM&A manual.

Table 3-4-1 Ecological Action and Limit Levels

Parameters	Action Level	Limit Level
Decrease in number of breeding egrets since previous year	>20%	> 40%

3.4.2 Results

37 individuals of birds from 40 species were recorded during the survey for the present monthly monitoring on 20 November 2008. Among the birds recorded, 12 individuals of wetland dependent birds (from 4 species) were recorded.


It is stated in the EP for KT13 that the monitoring of the Ho Pui egretry shall be carried out during the period from 1st March to 31st August as specified in the EM&A Manual. If no egret nest is found at the egretry during the period from 1st March to 31st May, the Permit Holder can start the construction works within 100m of the ecological buffer area upon obtaining the Director's approval until February in the next year. If egret nests are found during the period from 1st March to 31st August, no construction shall take place within 100m of the ecological buffer area before 1st October.

In addition, it is required in the EM&A manual that biweekly monitoring of the Ho Pui egretry for the period from 1st March to end of May. Should no egret nest be found at the Ho Pui egretry by the end of May, monitoring frequency from June to August can be downgraded to Monthly. No egret nests were found in Ho Pui egretry during the special survey, but two nests were observed in the Ma On Kong egretry previously. Therefore the egretry monitoring was conducted monthly between June to August 2008.

Egretry survey was NOT required in the present monitoring.

During the walk through survey, no adverse impacts on habitats outside the boundary of the works area including the Conservation Area and the location of Ho Pui Egretry was found.

No adverse impacts on vegetation were observed during the ecological monitoring. Photographic records of trees are taken during the updated tree survey for the project and are presented in the attached *Appendix H*.



Ecology Impact Monitoring Results are presented in the Table 3.4.2.

Table 3-4-2 Summary of Ecology Impact Monitoring Bird Survey

Common Name	Scientific Name	Reported in the EIA	Abundance recorded in the present survey (20 Nov 08)	Habitat utilized					
Birds									
Little Earet	Egretta garzetta	✓	6	River/stream					
Cattle Egret	Bubulcus ibis	✓	3	River/stream					
Chinese Pond Heron	Ardeola bacchus	✓	1	River/stream					
Crested Serpent Eagle	Spilornis cheela	✓							
Bonelli's Eagle	Hieraaetus fasciatus	✓							
Furasian Hobby	Falco subbuteo	✓							
White-breasted Waterhen	Amaunornis	✓	2	River/stream					
Spotted Dove	Streptopelia chinensis	✓	8	Bare ground /woodland					
Common Koel	Fudvnamvs scolopacea	✓							
Greater Coucal	Centropus sinensis	✓							
Little Swift	Apus affinis	✓							
White-Throated Kingfisher	Halcvon smyrnensis	✓							
Barn Swallow	Hirundo rustica	✓							
Red-Whiskered Bulbul	Pycnonotus iocosus	✓	10	Woodland					
Chinese Bulbul	Pvcnonotus sinensis	✓	13	Woodland					
Long-Tailed Shrike	Lanius schach	✓							
Oriental Magpie Robin	Copsychus saularis	✓	4	Woodland and					
Masked Laughingthrush	Garrulax perspicillatus	✓	7	Bare gound /low-lying					
Yellow-Bellied Prinia	Prinia flaviventris	✓	3	Low-lying grassland					
Common Tailorbird	Orthotomus sutorius	✓	2	Woodland					
Great Tit	Parus maior	✓	4	Woodland					
Japanese White-Eve	Zosterops japonicus	✓	5	Woodland					
White-Rumped Munia	Lonchura striata	✓		Low-lying grassland					
Furasian Tree Sparrow	Passer montanus	✓	15	Bare ground					
Black-Collared Starling	Sturnus niaricollis	✓	4	Bare ground					
Common Myna	Acridotheres tristis	✓							
Crested Myna	Acridotheres cristatellus	✓	6	Bare ground					
Black Kite	Milvus migrans								
White Wagtail	Motacilla alba		4	Agricultural land.					
Plain Prinia	Prinia inornata		1	Low-lying grassland					
Blue Magnie	Urocissa evthrorhyncha								
Fork-tailed Sunbird	Aethopyga christinae		1	woodland					
Indian Cuckoo	Cuculus micropterus								
Common Mapie	Pica pica		1	Bare ground					
Species Number		27	13						
Individual Number		NA	37						

^{*}Wetland dependent species recorded with abundance during the baseline study with the names bolded

3.5 Waste Management, Cultural Heritage and Landscape & Visual

3.5.1 Waste Management

In order to comply with the waste management requirements, CRBC has been

- (a) assigned since 9 Jan 2008 a Billing Account (account number 7006524) under the **Waste Disposal (Charges for Disposal of Construction Waste) Regulation**;
- (b) issued Discharge License No. 1U461/1 under Section 20 of the *Water Pollution Control Ordinance* has been issued;
- (c) register as a Chemical Waste Producer under the Waste Disposal (Chemical Waste) (General) Regulation (the Waste Producer Number assigned is WPN: 5611-531-C3124-28 dated 2 May 08); and
- (d) granted the Environmental Protection Department Permit Issued under the Dumping at Sea Ordinance (Permit no. EP/I4D/08-095, dated 18 September 2008, permit validity period of six months from 18 September 2008 to 17 march 2009) for 18, 469 M³ sediment requiring type 1 – open sea disposal at East Sha Chau Contaminated Mud Disposal Site – Pit IV b to be capped as directed by the management Team of the CEDD.

3.5.2 Cultural Heritage

Action and Limit Levels

The Action and Limit levels for Cultural Heritage are shown in *Table 3-5-2* according to the EM&A Manual.

Table 3-5-2 Cultural Heritage Resources Action and Limit Levels

Action Level	Limit Level		
When damage or structural instability is first detected	Signs of deterioration and structural instability continues on subsequent visits after action level is triggered		

During the Reporting Period, there was no construction work conducted within 100 m area from the cultural heritage site within KT13, no cultural heritage monitoring was required in accordance with the approved methodology.

3.5.3 Landscape and Visual

Landscape inspection was conducted on 7 and 21 November 2008. Minor change due to site clearance and preparation work within KT13 was observed at identified landscape resources, including LR1, LR2.1, LR2.2, LCA3 and LCA4. No significant changes were observed for residual identified landscape resources and visual sensitive receivers. Updated landscape and visual status is presented in *Appendix I*.

NON-COMPLIANCE, COMPLAINTS, NOTIFICATIONS OF SUMMONS, SUCCESSFUL PROSECUTIONS AND OTHERS

4.1 Non-compliance

Exceedance of environmental quality criteria has been discussed in Section 3.1 to 3.5. No other non-compliance or deficiency was identified during regular site inspection and environmental audit. No associated remedial actions were recommended.

4.2 **ENVIRONMENTAL COMPLAINTS**

No written or verbal complaints were received for each environmental issue during the Reporting Period. No associated remedial actions were recommended.

NOTIFICATIONS OF SUMMONS AND SUCCESSFUL PROSECUTIONS 4.3

No notifications of summons and successful prosecutions were recorded during the Reporting Period. No associated remedial actions were recommended.

4.4 **OTHERS**

4.4.1 Waste Management Status

All types of waste arising from the construction work are classified into the following:

- Construction & Demolition (C&D) Material;
- Chemical Waste;
- General Refuse; and
- **Excavated Soil and sediment**

Waste generated, re-used, recycled and disposed of during the Reporting Period is shown in Appendix J: Monthly Summary Waste Flow Table for 2008. The quantities of Type I and Type Il contaminated material for disposal in this reporting period are summarized in *Tables 4-4-1-1* and 4-4-1-2.:

Table 4-4-1-1 Summary of Quantities of Type I Contaminated Material disposal off site

Date	No of Truck	Quantity (m3)	Location of disposal
20-Oct-2008	120	720	East Sha Chau
17-Nov-2008	115	690	East Sha Chau
18-Nov-2008	115	690	East Sha Chau
19-Nov-2008	110	660	East Sha Chau
20-Nov-2008	110	660	East Sha Chau
21-Nov-2008	100	600	East Sha Chau
22-Nov-2008	100	600	East Sha Chau
24-Nov-2008	100	600	East Sha Chau
25-Nov-2008	100	600	East Sha Chau

Table 4-4-1-2 Summary of Quantities of Type II Contaminated Material disposal off site

Date	No of Truck	Quantity (m3)	Location of disposal
23/10/2008	110	660	East Sha Chau facility
24/10/2008	120	720	East Sha Chau facility
25/10/2008	120	720	East Sha Chau facility

4.4.2 Site Inspection and Environmental Audit

In this reporting period, four (4) occasions of weekly environmental site inspection and audit were conducted during the Reporting Period jointly by the ER, EO and ET during the Reporting Period. No adverse environmental impacts were registered, indicating the mitigation measures implemented were effective and sufficient for the construction activities or preparation work and site clearance undertaken. Minor deficiencies found in the site inspection and audit was in general rectified within the specified deadlines. Findings of the site inspection and environmental audit are summarized below.

Table 4-4-2 Summary of Findings of Site Inspection and Environmental Audit

Date	Findings / Deficiencies	Follow-Up Status
31 Oct 2008	No adverse environmental impacts were observed during the site inspection. However, as dry season has approached, construction dust suppression measures, in particular construction dust suppression measures including watering of dry and dusty haul roads within the Site during dusty construction activities on dry and windy days, are reminded to be fully implemented.	Reminded measures based on the observation were observed on 6 Nov 2008.
6 Nov 2008	Haul road within the site were observed dry on excavation site. Watering is reminded.	Reminded measures based on the observation were observed on 13 Nov 2008.
13 Nov 2008	Vehicle movement was observed on excavation site. Thorough wheel washing of the vehicles leaving the site is reminded.	Reminded measures based on the observation were observed on 20 Nov 2008.
20 Nov2008	Stock piles of dusty materials were observed. Construction dust suppression measures e.g. covering with tarpaulin sheeting or watering or preferably removal from site or appropriate disposal is reminded	Reminded measures based on the observation to be followed-up on the forth coming site inspection.

4.4.3 Works to be Undertaken in the Forth-Coming Month

Works to be undertaken in the forth-coming month are shown in the construction program enclosed in *Appendix C*. With the exception of excavation works, the activities undertaken in the Reporting Period including construction, preparation and site clearance activities will also be continued in the forth-coming month.

4.4.4 Future Key Issues and Mitigation Measures for the Forth-Coming Month

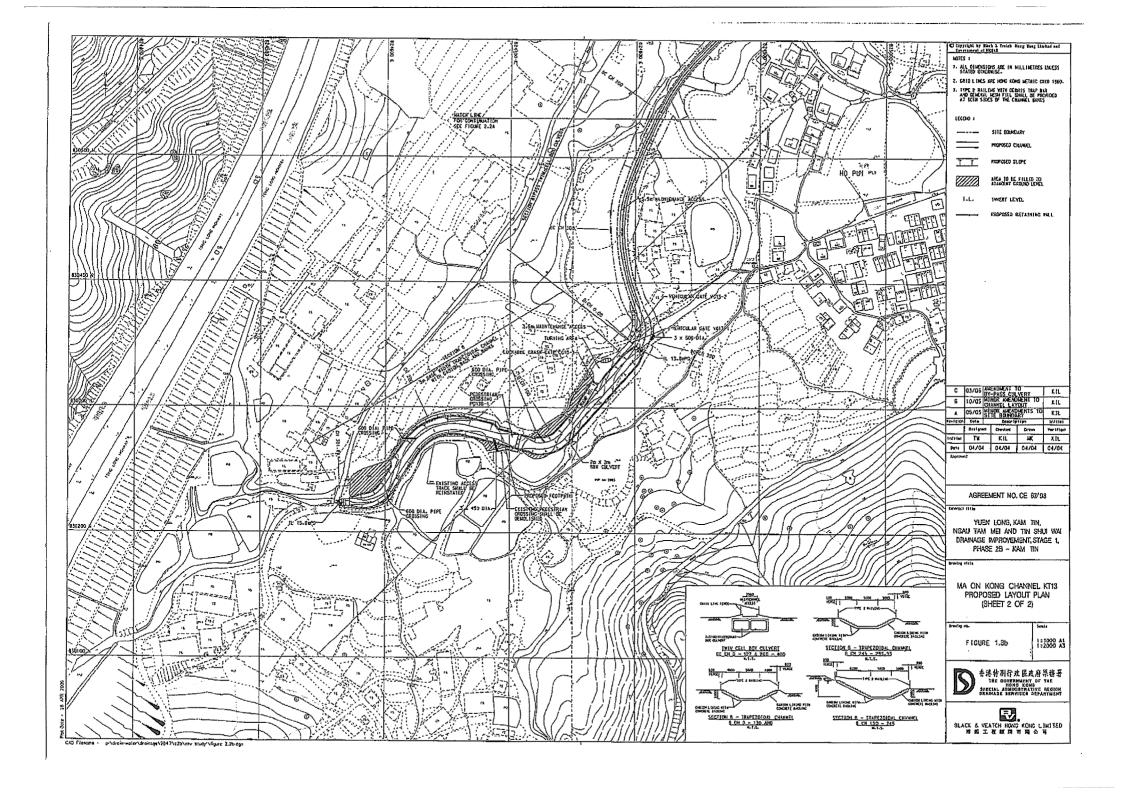
As dry season has approached, construction dust will become a key environmental issue during dusty construction activities including vehicle movement in dry and windy days. The implemented air quality mitigation measures should be properly maintained and improved as appropriate.

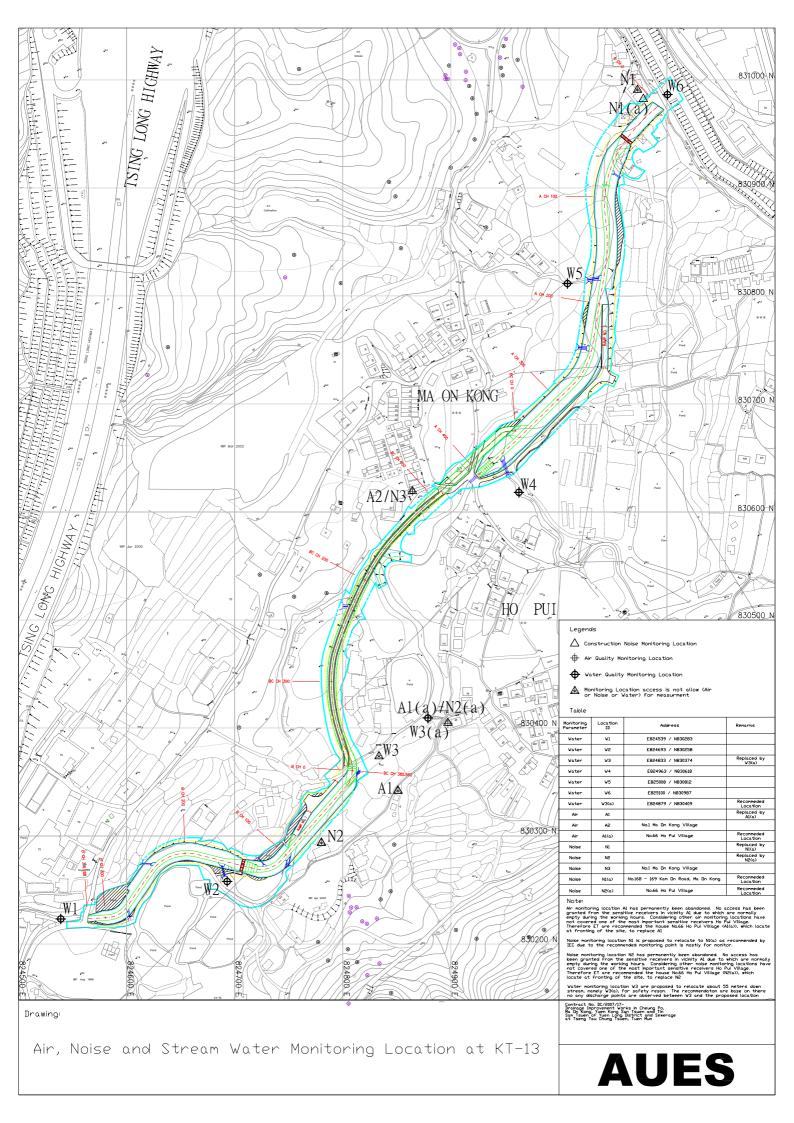
In addition, special attention should also be paid to construction noise, water quality, ecology and other environmental issues identified in the EM&A Manual. Mitigation measures recommended in the EIA and summarized in Mitigation Measure Implementation Schedule (EMIS) should be fully implemented.

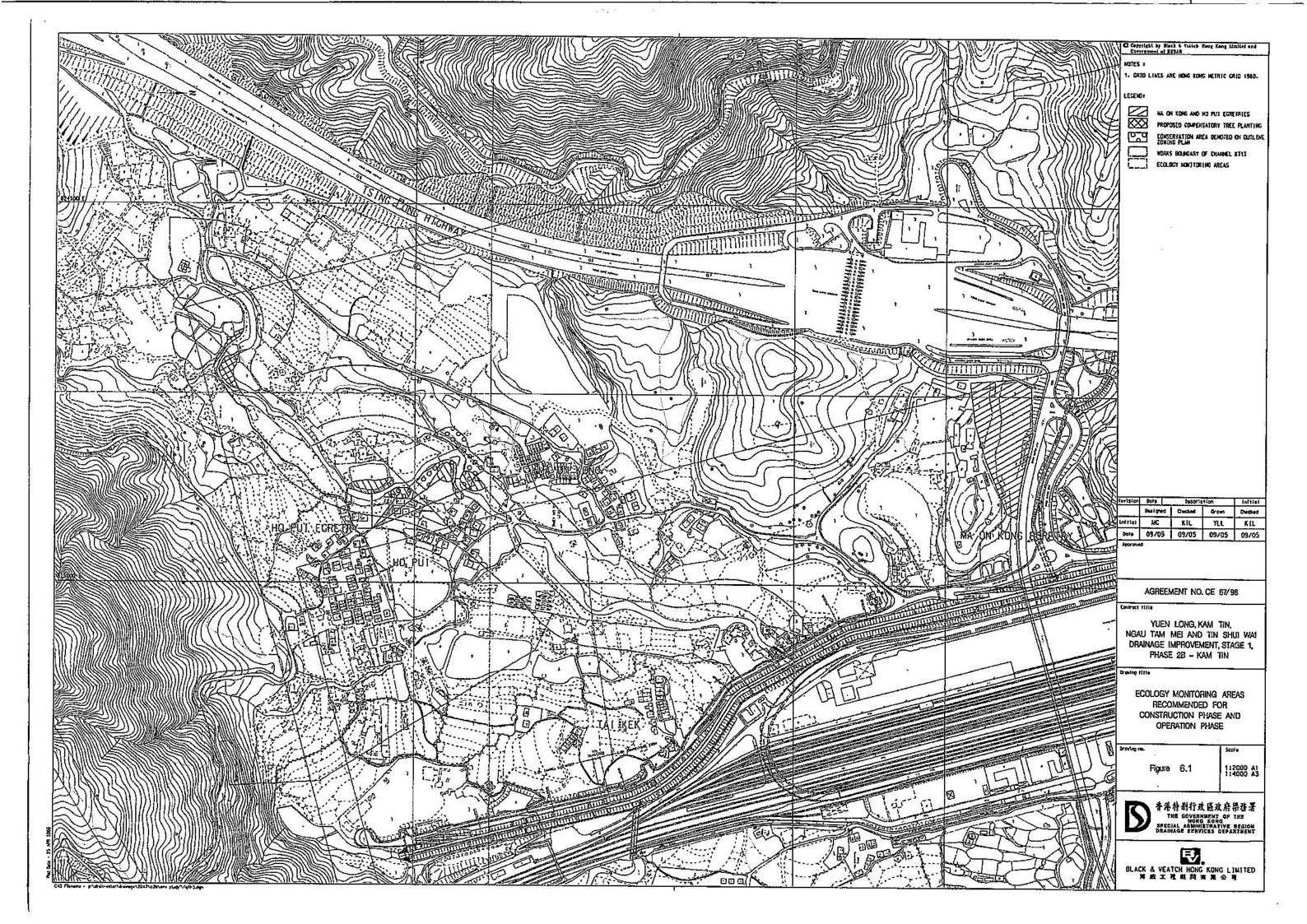
5 CONCLUSIONS AND RECOMMENDATIONS

- This is the second monthly EM&A report for KT13, covering the construction period from 26 October to 25 November 2008.
- ii) Monitoring results of the Reporting Period demonstrated no exceedances of environmental quality criteria of air quality and construction noise.
- iii) However, a total of twenty-four (24) water quality Limit level exceedances were recorded during the Reporting Period. They are summarized below:

location	Exceedance	DO	Turbidity	pН	SS	NH ₄ +-N	Zn	Total
W2	Action Level	0	0	0	0	0	0	0
	Limit Level	0	2	0	2	0	1	5
W6	Action Level	0	0	0	0	0	0	0
	Limit Level	0	10	0	8	0	1	19
Total -	Action Level	0	0	0	0	0	0	0
	Limit Level	0	12	0	10	0	2	24

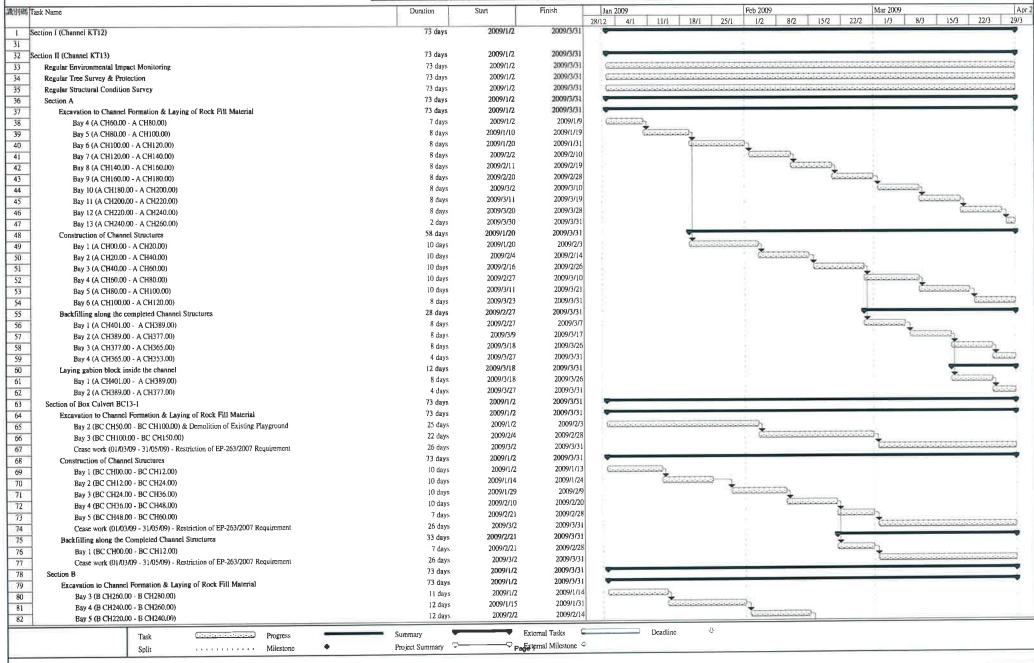

- NOEs were issued upon confirmation of the monitoring results, while investigation of the NOE was conducted upon receipt of the information of construction activities and the implemented mitigation measures provided by CRBC. Illegal discharge of the agricultural farm wastewater was significantly attributed to the water quality exceedances of Turbidity, SS and Zn recorded at W2 and W6 during the Reporting Period. Nevertheless, attribution of water quality impacts due to excavation up-stream W6 to the Turbidity and SS Limit level exceedances at W6 can not be over ruled. It is therefore recommended that water quality mitigation measures stipulated in the EIA and summarized in mitigation measures implementation schedule in the EM&A Manual, including containment structure such as temporary earth bunds, sand bags, sheet pile barriers or other similar techniques, is fully implemented. In addition, implemented mitigation measures in particular the erected dams with sand bags downstream the excavation site within the water course of KT13 may also be improved to enhance sedimentation of Turbidity and SS, e.g. by using silt curtain, as appropriate.
- v) No documented complaints, notifications of summons and successful prosecutions were received during the Reporting Period. No adverse environmental impacts were observed during the weekly site inspection and environmental audit of the Reporting Period, indicating the implemented mitigation measures for air quality, construction noise and ecology were effective. Minor deficiencies found in the weekly site inspection were in general rectified within the specified deadlines. The environmental performance of the Project was therefore considered satisfactory, although further implementation or improvement, where appropriate, of the mitigation measures need to be made for water quality.
- vi) As dry season has approached, construction dust will become a key environmental issue. Construction dust suppression measures should be fully implemented. The implemented construction dust mitigation measures should also be maintained and improved, as necessary, during dusty works including vehicle movement on dry and windy days.
- vii) On the other hand, water quality mitigation measures to avoid ingression of turbidity and other water quality pollutants via site surface water runoff into the river within KT13 should be properly maintained or improved, as appropriate.
- viii) In addition, special attention should also be paid to construction noise and other environmental issues identified in the EM&A Manual. Mitigation measures recommended in the EIA and summarized in Mitigation Measure Implementation Schedule should be fully implemented.


END OF TEXT

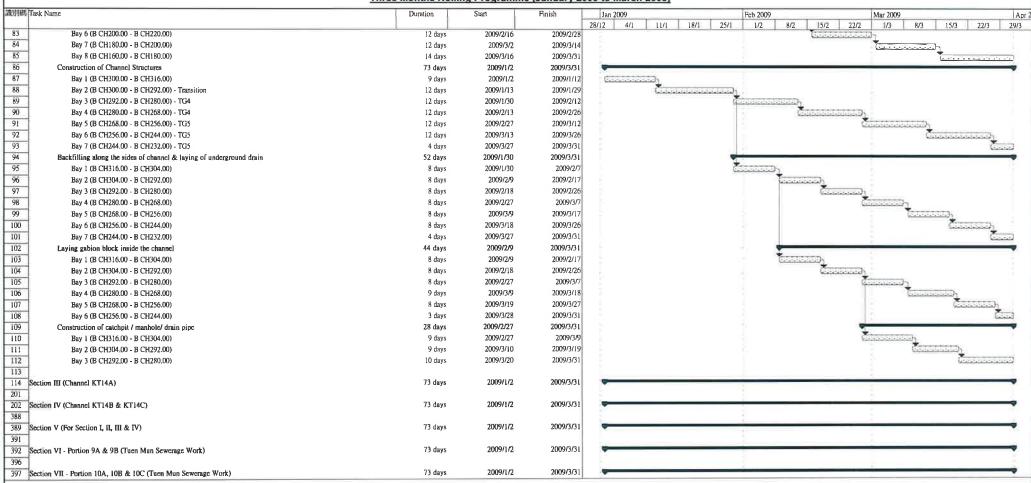


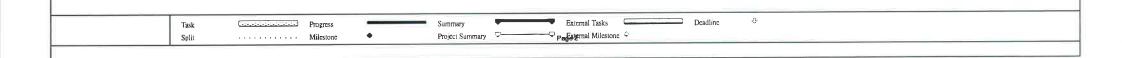
Appendix A

Location Plan and Environmental Monitoring Locations Under the Project



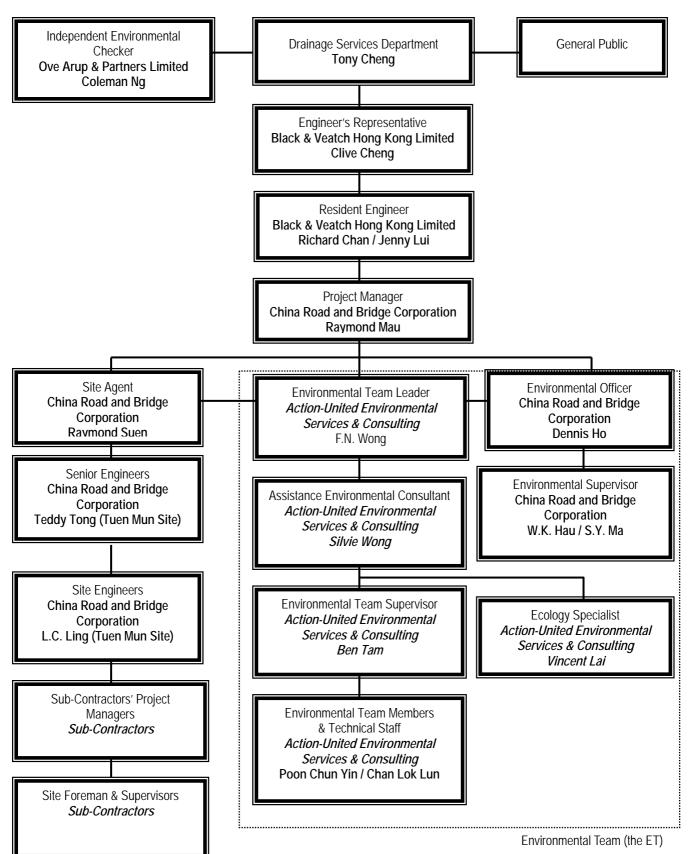
Appendix B


Construction Program


Contract No.: DC/2007/17

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun
Three Months Rolling Programme (January 2009 to March 2009)

Contract No.: DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Three Months Rolling Programme (January 2009 to March 2009)



Appendix C

Environmental Management Organization and Contacts of Key Personnel

EM&A Report - Appendix

Environmental Management Organization

Contact Details of Key Personnel

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr. Tony Cheng	2594 7264	2827-8526
B&V	Engineer's Representative	Mr. Clive Cheng	2478-9161	2478-9369
B&V	Resident Engineer	Mr. Richard Chan	2478-9161	2478-9369
B&V	Resident Engineer	Mr. Jenny Lui	2478-9161	2478-9369
OAP	Independent Environmental Checker	Mr. Coleman Ng	2268 3097	2268 3950
CRBC	Project Director	Mr. Wang Yanhua	22831688	2283-1689
CRBC	Project Manager	Mr. Raymond Mau	9048-3669	2283-1689
CRBC	Site Agent	Mr. Raymond Suen	9779-8871	2283-1689
CRBC	Senior Engineer (Tuen Mun Site)	Mr. Teddy Tong	6283 9684	2283-1689
CRBC	Site Engineer (Tuen Mun Site)	Mr. L.C. Ling	6770 4010	2283-1689
CRBC	Environmental Officer	Mr. Dennis Ho	6474-6975	2283-1689
CRBC	Environmental / Construction Supervisor (Tuen Mun and Yuen Long site)	Mr. W.K. Hau	6283 9696	2283-1689
CRBC	Environmental / Construction Supervisor (Yuen Long site)	Mr. S.Y. Ma	9401 6296-	2283-1689
CRBC	Safety Officer	Kenny Sze	9374-8954	2283-1689
AUES	Environmental Team Leader	Mr. FN Wong	2959-6059	2959-6079
AUES	Assistance Environmental Consultant	Miss Sylvie Wong	2959-6059	2959-6079
AUES	Environmental Site Inspector	Mr. Ben Tam	2959-6059	2959-6079
AUES	Ecologist	Mr. Vincent Lai	2959-6059	2959-6079

Legend:

DSD (Employer) – Drainage Services Department

B&V (Engineer) – Black & Veatch Hong Kong Limited

CRBC (Main Contractor) – China Road and Bridge Corporation

OAP (IEC) – Ove Arup & Partners Ltd

AUES (ET) – Action-United Environmental Services & Consulting

Appendix D

(a) Monitoring Schedules
Meteorological Data

AUES

October 2008 Monitoring Schedule for KT 13

Date		Air Quality		Noise Leq 30min	Water Quality	Ecology Surveys	
		1-Hour TSP	24-Hour TSP	3011111			
1-Oct-08	Wed				NI NI NI NI		
2-Oct-08	Thu				W1,W2, W3(a), W4, W5 & W6		
3-Oct-08	Fri						
4-Oct-08	Sat				W1,W2, W3(a), W4, W5 & W6		
5-Oct-08	Sun						
6-Oct-08	Mon	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6		
7-Oct-08	Tue						
8-Oct-08	Wed		A1(a), A2		WI WA WA() WI		
9-Oct-08	Thu				W1,W2, W3(a), W4, W5 & W6		
10-Oct-08	Fri					I/mia	
11-Oct-08	Sat				W1,W2, W3(a), W4, W5 & W6	KT13	
12-Oct-08	Sun						
13-Oct-08	Mon	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6		
14-Oct-08	Tue		A1(a), A2				
15-Oct-08	Wed				W1,W2, W3(a), W4, W5 & W6		
16-Oct-08	Thu						
17-Oct-08	Fri				W1,W2, W3(a), W4, W5 & W6		
18-Oct-08	Sat	A1(a), A2		N1(a), N2(a) & N3			
19-Oct-08	Sun						
20-Oct-08	Mon		A1(a), A2		W1,W2, W3(a), W4, W5 & W6		
21-Oct-08	Tue						
22-Oct-08	Wed				W1,W2, W3(a), W4, W5 & W6		
23-Oct-08	Thu						
24-Oct-08	Fri	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6		
25-Oct-08	Sat		A1(a), A2				
26-Oct-08	Sun				WI WO WO(1) WA		
27-Oct-08	Mon				W1,W2, W3(a), W4, W5 & W6		
28-Oct-08	Tue				WI WA WA		
29-Oct-08	Wed				W1,W2, W3(a), W4, W5 & W6		
30-Oct-08	Thu	A1(a), A2		N1(a), N2(a) & N3			
31-Oct-08	Fri		A1(a), A2		W1,W2, W3(a), W4, W5 & W6		

Monitoring Day
Sunday or Public Holiday

 $\underline{\textit{Ecology}}$ The Ecology Monitoring is requested throughout the whole construction period for KT12, KT13 and KT14B & C in accordance with the EM&A Manuals.

Parameters:	KT12-	Vegetation, Fauna and birds
		Vegetation, All bird species including wetland birds, Ho Pui and Ma On Hong Egretries and Flight line survey

DSD Contract DC/2007/17 Drainage Improvement in Cheung Po,Ma On Kong, Yuen Kong San Tsuen & Tin Sam Tsuen of Yuen Long District and Sewerage at Tsang Tan Chung Tsuen, Tuen Mun

Impact EM&A Program for October 2008 –KT13

KT14B&C -	Vegetation & fauna
Frequency: Vegetation -	Impact monitoring – monthly;
	Photographic records/checks against baseline records– six monthly
Fauna-	Twice-monthly of half-day survey in wet season (April - September)
Bird survey –	Twice-monthly of half-day survey;
Ma On Hong egretry –	Monthly between March to August; and
Ho Pui egretry –	Bi-weekly between March and August;
Flight line Survey –	Twice per month during the period from April to June

November 2008 Monitoring Schedule for KT 13 9 (Revision 1)

Doto					1 13 9 (Revision 1)	
Date			uality	Noise Leq 30min	Water Quality	Ecology Surveys
4 No. 22	0 /	1-Hour TSP	24-Hour TSP			
1-Nov-08 2-Nov-08	Sat					
3-Nov-08	Sun Mon				W1,W2, W3(a), W4,	
			A1(a) A2		W5 & W6	
4-Nov-08	Tue	A1(a), A2	A1(a), A2	N1(a), N2(a)	W1,W2, W3(a), W4,	
5-Nov-08	Wed	711(u), 712		& N3	W5 & W6	
6-Nov-08	Thu				W1 W2 W2(-) W4	
7-Nov-08	Fri				W1,W2, W3(a), W4, W5 & W6	
8-Nov-08	Sat					
9-Nov-08	Sun		A1() A3		WI WA WA() WH	
10-Nov-08	Mon		A1(a), A2		W1,W2, W3(a), W4, W5 & W6	
11-Nov-08	Tue	A1(a), A2		N1(a), N2(a) & N3		
12-Nov-08	Wed				W1,W2, W3(a), W4, W5 & W6	
13-Nov-08	Thu	_	-			_
14-Nov-08	Fri				W1,W2, W3(a), W4, W5 & W6	
15-Nov-08	Sat		A1(a), A2			
16-Nov-08	Sun					
17-Nov-08	Mon	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
18-Nov-08	Tue					
19-Nov-08	Wed				W1,W2, W3(a), W4, W5 & W6	
20-Nov-08	Thu					KT13
21-Nov-08	Fri		A1(a), A2		W1,W2, W3(a), W4, W5 & W6	
22-Nov-08	Sat	A1(a), A2		N1(a), N2(a) & N3		
23-Nov-08	Sun					
24-Nov-08	Mon				W1,W2, W3(a), W4, W5 & W6	
25-Nov-08	Tue					
26-Nov-08	Wed				W1,W2, W3(a), W4, W5 & W6	
27-Nov-08	Thu		A1(a), A2			
28-Nov-08	Fri	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
29-Nov-08	Sat					
30-Nov-08	Sun					

Monitoring Day
Sunday or Public Holiday

 $\underline{\textit{Ecology}}$ The Ecology Monitoring is requested throughout the whole construction period for KT12, KT13 and KT14B & C in accordance with the EM&A Manuals.

Parameters:	KT12-	Vegetation, Fauna and birds
		Vegetation, All bird species including wetland birds, Ho Pui and Ma On Hong Egretries and Flight line survey
	KT14B&C -	Vegetation & fauna
Frequency: Ve	getation –	Impact monitoring – monthly;

December 2008 Monitoring Schedule for KT 13

Date		Air Q	uality	Noise Leq 30min	Noise Leq 30min Water Quality	
		1-Hour TSP	24-Hour TSP			
1-Dec-08	Mon				W1,W2, W3(a), W4, W5 & W6	
2-Dec-08	Tue					
3-Dec-08	Wed		A1(a), A2		W1,W2, W3(a), W4, W5 & W6	
4-Dec-08	Thu	A1(a), A2		N1(a), N2(a) & N3		
5-Dec-08	Fri				W1,W2, W3(a), W4, W5 & W6	
6-Dec-08	Sat					
7-Dec-08	Sun					
8-Dec-08	Mon				W1,W2, W3(a), W4, W5 & W6	
9-Dec-08	Tue		A1(a), A2			
10-Dec-08	Wed	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
11-Dec-08	Thu					
12-Dec-08	Fri				W1,W2, W3(a), W4, W5 & W6	
13-Dec-08	Sat					
14-Dec-08	Sun					
15-Dec-08	Mon		A1(a), A2		W1,W2, W3(a), W4, W5 & W6	
16-Dec-08	Tue	A1(a), A2		N1(a), N2(a) & N3		
17-Dec-08	Wed				W1,W2, W3(a), W4, W5 & W6	
18-Dec-08	Thu					
19-Dec-08	Fri				W1,W2, W3(a), W4, W5 & W6	
20-Dec-08	Sat		A1(a), A2			
21-Dec-08	Sun					
22-Dec-08	Mon	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
23-Dec-08	Tue					
24-Dec-08			A1(a), A2		W1,W2, W3(a), W4, W5 & W6	
25-Dec-08	Thu					
26-Dec-08	Fri					
27-Dec-08	Sat	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
28-Dec-08	Sun					
29-Dec-08	Mon				W1,W2, W3(a), W4, W5 & W6	
30-Dec-08	Tue					
31-Dec-08	Wed		A1(a), A2		W1,W2, W3(a), W4, W5 & W6	

Monitoring Day
Sunday or Public Holiday

Remarks: Impact Monitoring Frequency

Air Quality :Once every 6 days for 24-Hr TSP and three times every 6 days for 1-Hr TSP, when the highest

construction dust impacts are anticipated.

Noise :Once a week during 0700-1900 on normal weekdays for Leg30min

Water Quality :Three times a week with intervals of at least 36 hours between two consecutive monitoring events

Ecology Vegetation (Veg.): Monthly survey and each six months take photographic to

checks against baseline records

Wetland Bird survey (B. Survey): Monthly of half-day survey;

Ma On Kong egretry: Monthly between March to August; and
Ho Pui egretry: Bi-weekly between March and August;
Flight line Survey: Monthly during the period from April to June

Meteorological Data Extracted from HKO during the Reporting Period

		Lau Fau Shan Weather Stati					ion
Date		Weather	Total Rainfall (mm)	Mean Air Temperature (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction
26-Oct-08	Sun	cloudy/sunny intervals/moderate/fresh	0	27.4	11.7	70.5	E/SE
27-Oct-08	Mon	fine/haze/moderate	Trace	27.3	10.5	74.3	E/NE
28-Oct-08	Tue	fine/cloudy/rain/moderate/fresh	0.1	26	9.7	73.5	Е
29-Oct-08	Wed	sunny intervals/cloudy/moderate	0	27.5	10.2	6.9	E/SE
30-Oct-08	Thu	fine/moderate/fresh/rain	0	28	9	71.5	E/SE
31-Oct-08	Fri	sunny intervals/cloudy/moderate/fresh	0	28.5	12.5	71.7	Е
1-Nov-08	Sat	cloudy/sunny intervals/rain/moderate/fresh	0.2	27.1	15.5	70.7	Е
2-Nov-08	Sun	cloudy/rain/moderate/fresh	2.6	27.7	13.5	77	E/SE
3-Nov-08	Mon	cloudy/rain/thunderstorm/moderate/fresh	51.2	23.7	12	91	E/NE
4-Nov-08	Tue	cloudy/rain/moderate/fresh	Trace	25.1	17	81	E/NE
5-Nov-08	Wed	cloudy/sunny intervals/rain/moderate/fresh	0.3	26.6	15	76	E/NE
6-Nov-08	Thu	sunny periods/cloudy/moderate	0	27.6	11	75.5	Е
7-Nov-08	Fri	fine/cloudy/rain/moderate	Trace	27.9	9	76.5	E/SE
8-Nov-08	Sat	cloudy/rain/fresh/strong	Trace	27.5	16.5	78	N/NW
9-Nov-08	Sun	fine/very dry/fresh/strong	Trace	Maintenance	27.5	Maintenance	N/NE
10-Nov-08	Mon	fine/very dry/fresh/strong	0	19.5	26	Maintenance	N/NE
11-Nov-08	Tue	fine/very dry/moderate/fresh	0	18.9	20.5	45	NE
12-Nov-08	Wed	fine/very dry/moderate	0	19.6	15	42	E/NE
13-Nov-08	Thu	fine/dry/moderate	Trace	21.5	11	45	Е
14-Nov-08	Fri	fine/dry/moderate	Trace	23.7	9.2	61.5	E/NE
15-Nov-08	Sat	fine/moderate	0	24.1	7.2	66	E/NE
16-Nov-08	Sun	fine/moderate	0	25.8	13.2	54	E/SE
17-Nov-08	Mon	fine/moderate	0	24.8	12	68.5	E/SE
18-Nov-08	Tue	fine/dry/haze/cloudy/fresh/strong	0	21.2	14.5	64	E/NE
19-Nov-08	Wed	fine/dry/cool/moderate/fresh	0	18.7	21.5	47	NE
20-Nov-08	Thu	fine/dry/cool/moderate/fresh	0	16.9	12.7	42.5	E/NE
21-Nov-08	Fri	fine/dry/moderate/fresh	0	18.7	8.2	52.5	E/NE
22-Nov-08	Sat	sunny periods/dry/cloudy/moderate	0	20.6	8.5	59	E/NE
23-Nov-08	Sun	fine/moderate/fresh	Trace	22.9	10	96.5	W/SW
24-Nov-08	Mon	fine/dry/moderate/fresh	0	22.6	15	95.5	N/NE
25-Nov-08	Tue	fine/dry/moderate	0	21.7	15	50	E/NE

Appendix E

Calibration Certificates and HOKLAS-Accreditation Certificate

Batch:

HK0817539

Date of Issue:

17/10/2008

Client:

ACTION UNITED ENVIRO SERVICES

Client Reference:

Calibration of Thermometer

Item:

YSI Multimeter

Model No.:

YSI 550A

Serial No.:

05F2063AZ

Equipment No.:

- -

Calibration Method:

In-house Method

Date of Calibration:

17 October, 2008

Testing Results:

Reference Temperature (°C)	Recorded Temperature (°C)
23.2 °C 31.5 °C	23.3°C 31.4 °C
Allowing Deviation	±0.2 mg/L

Ms Wong Wai Man, Alice

Laboratory Manager - Hong Kong

Batch:

HK0817539

Date of Issue:

17/10/2008

Client:

ACTION UNITED ENVIRO SERVICES

Client Reference:

Calibration of DO System

Item:

YSI Multimeter

Model No.:

YSI 550A

Serial No.:

05F2063AZ

Equipment No.:

Calibration Method:

This meter was calibrated in accordance with standard method APHA (18th Ed.) 4500-0C & G

Date of Calibration:

17 October, 2008

Testing Results:

Expected Reading	Recording Reading		
4.88 mg/L	4.76 mg/L		
6.52 mg/L	6.38 mg/L		
7.89 mg/L	7.86 mg/L		
Allowing Deviation	±0.2 mg/L		

Ms Wong Wai Man, Alice Laboratory Manager - Hong Kong

Batch:

HK0815012

Date of Issue: Client:

19/09/2008

Client Reference:

ACTION UNITED ENVIRO SERVICES

Calibration of Turbidity System

Item:

HACH Turbidimeter

Model No.:

HACH 2100P

Serial No.:

950900008735

Equipment No.:

EQ091

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2130B

Date of Calibration:

01 September, 2008

Testing Results:

Expected Reading	Recording Reading		
0.00 1.00 2.00 4.00 16.0 40.0 80.0	0.23 1.08 2.17 3.78 15.1 37.5 74.9 149		
Allowing Deviation	± 0.2		

Ms Wong Wat Man, Alige Laboratory Manager - Hong Kong

Batch:

HK0817540

Date of Issue:

17/10/2008

Client:

ACTION UNITED ENVIRO SERVICES

Client Reference:

Calibration of Salinity System

Item:

HAND REFRACTOMETER

Model No.:

ATAGO

Serial No.:

289468

Equipment No.:

EQ114

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 2520 A and B

Date of Calibration:

17 October, 2008

Testing Results:

Expected Reading	Recording Reading		
10 g/L 20 g/L 30 g/L 40 g/L	10 g/L 19 g/L 28 g/L 38 g/L		
Allowing Deviation	±10%		

Ms Wong Wai Man, Alice

Laboratory Manager - Hong Kong

Batch:

HK0810119

Date of Issue:

09/07/2008

Client:

ACTION UNITED ENVIRO SERVICES

Client Reference:

Calibration of pH System

Item:

HANNA pH Meter

Model No.:

HI98107

Serial No.:

S388220

Equipment No.:

0800542

Calibration Method:

This meter was calibrated in accordance with standard method APHA (19th Ed.) 4500-H⁺B

Date of Calibration:

27 June, 2008

Testing Results:

Expected Reading	Recording Reading
4.00	3.8
7.00	6.9
10.0	10.0
Allowing Deviation	± 0.2

Ms Wong Wai Man, Alice

Laboratory Manager - Hong Kong

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate No.: C082016

Certificate of Calibration

This is to certify that the equipment

Description: Integrating Sound Level Meter (EQ006)

Manufacturer: Bruel & Kjaer

Model No.: 2238

Serial No.: 2285762

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C082016.

The equipment is supplied by

Co. Name: Action-United Environmental Services and Consulting

Address: Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

Date of Issue: 22 April 2008

Certified by:

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C082016

Calibration Report

ITEM TESTED

DESCRIPTION

: Integrating Sound Level Meter (EQ006)

MANUFACTURER:

Bruel & Kjaer

MODEL NO.

: 2238

SERIAL NO.

: 2285762

TEST CONDITIONS

AMBIENT TEMPERATURE : $(23 \pm 2)^{\circ}$ C

RELATIVE HUMIDITY: $(55 \pm 20)\%$

LINE VOLTAGE

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 21 April 2008

JOB NO. : IC08-0992

TEST RESULTS

The results apply to the particular unit-under-test only. All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Tested by: Chan the C H C Chan

Date: 22 April 2008

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C082016

Calibration Report

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to 1. warm up for over 10 minutes before the commencement of the test.
- Self-calibration using the B&K acoustic calibrator 4231, S/N 2326408 was performed before the test. 2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID CL280 CL281

Description

40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

Certificate No. C080037

DC080007

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

UUT Setting				Applied Value		UUT	IEC 651 Type 1
Range (dB)			Time Weight	Level (dB)	redam		Spec.
20 - 100	L _{AFP}	A	F	94.00	1	93.9	± 0.7

6.1.2 Linearity

	UUT	Setting		Applied Value		UUT
Range (dB)	Parameter	Freq.	Time	Level	Freq.	Reading
		Weight	Weight	(dB)	(kHz)	(dB)
40 - 120	L_{AFP}	A	F	94.00	1 [94.0 (Ref.)
				104.00		104.0
				114.00		113.9

IEC 651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT Se	tting		Applied	l Value	UUT	IEC 651 Type 1	
Range	Parameter	Freq.	Freq. Time		Freq.	Reading	Spec.	
(dB)		Weight	Weight	(dB)	(kHz)	(dB)	(dB)	
20 - 100	20 - 100 L _{AFP} A F		94.00	1	94.0	Ref.		
	L_{ASP}		S			94.0	± 0.1	
	L_{AIP}		I			94.0	± 0.1	

The test equipment used for testing are traceable to the National Standards as specified in this report. This report shall not be reproduced except in full and with prior written approval from this laboratory.

Calibration and Testing Laboratory of Sun Creation Engineering Limited

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong Tel: 2927 2606 Fax: 2744 8986 E-mail: callab@suncreation.com Website: www.suncreation.com

Page 2

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C081990

Calibration Report

ITEM TESTED

DESCRIPTION

Sound Level Meter (EQ067)

MANUFACTURER:

Rion

MODEL NO.

NL-31

SERIAL NO.

00410221

TEST CONDITIONS

AMBIENT TEMPERATURE : $(23 \pm 2)^{\circ}$ C

RELATIVE HUMIDITY: $(55 \pm 20)\%$

LINE VOLTAGE

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 18 April 2008

JOB NO. : 1C08-0992

TEST RESULTS

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Tested by: Shyn Mr. C HC Chan

Date: 22 April 2008

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C081990

Calibration Report

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

C080037 DC080007

5. Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

	UU	Γ Setting		Applied Value		UUT	IEC 651 Type 1
Range	Mode	Weight	Response	Level	Freq.	Reading	Spec.
(dB)				(dB)	(kHz)	(dB)	(dB)
20 - 100	L_{A}	A	Fast	94.00	1	93.7	± 0.7

6.1.2 Linearity

	UUT	Setting		Applied	d Value	UUT
Range (dB)	Mode	Weight	Response	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 120	L_A	A	Fast	94.00	1	93.6 (Ref.)
				104.00		103.6
				114.00		113.6

IEC 651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT S	Setting		Applied	d Value	UUT	IEC 651 Type 1
Range	Mode	Weight	Weight Response		Freq.	Reading	Spec.
(dB)				(dB)	(kHz)	(dB)	(dB)
20 - 100	L_{A}	A	Fast	94.00	1	93.7	Ref.
			Slow			93.7	± 0.1

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C081990

Calibration Report

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		Appl	ied Value	UUT	IEC 651 Type 1	
Range (dB)	Mode	Weight	Response	Level (dB)	Burst Duration	Reading (dB)	Spec. (dB)	
20 - 110	L_A	А	Fast	106.00	Continuous	106.0	Ref.	
	L_{Amax}				200 ms	105.1	-1.0 ± 1.0	
	L_A		Slow		Continuous	106.0	Ref.	
	L_{Amax}				500 ms	102.0	-4.1 ± 1.0	

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT S	Setting		Appli	ed Value	UUT	IEC 651 Type 1
Range (dB)	Mode	Weight	Response	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
20 - 100	L_A	A	Fast	94.00	31.5 Hz	54.6	-39.4 ± 1.5
					63 Hz	67.7	-26.2 ± 1.5
					125 Hz	77.7	-16.1 ± 1.0
					500 Hz	90.5	-3.2 ± 1.0
					1 kHz	93.7	Ref.
-					2 kHz	94.9	$+1.2 \pm 1.0$
					4 kHz	94.4	$+1.0 \pm 1.0$
					8 kHz	89.9	-1.1 (+1.5; -3.0)

6.3.2 C-Weighting

	UUT S	Setting		Applie	ed Value	UUT	IEC 651 Type 1
Range	Mode	Weight	Response	Level	Freq.	Reading	Spec.
(dB)				(dB)		(dB)	(dB)
20 - 100	L_{C}	С	Fast	94.00	31.5 Hz	90.9	-3.0 ± 1.5
		:			63 Hz	93.1	-0.8 ± 1.5
			PROGRAMMA		125 Hz	93.6	-0.2 ± 1.0
					500 Hz	93.8	0.0 ± 1.0
					l kHz	93.7	Ref.
					2 kHz	93.5	-0.2 ± 1.0
					4 kHz	92.6	-0.8 ± 1.0
					8 kHz	88.0	-3.0 (+1.5; -3.0)

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C081990

Calibration Report

6.4 Time Averaging

	UUT Setting				Applied Value					IEC 60804
Range (dB)	Mode	Weight	Integrating Time	Freq. (kHz)	Burst Duration	Burst Duty	Burst Level	Equivalent Level	Reading (dB)	Type I Spec.
					(ms)	Factor	(dB)	(dB)		(dB)
20 - 110	L _{Aeq}	A	10 sec.	4	ı	1/10	110.0	100	100.0	± 0.5
						1/10 ²		90	90.0	± 0.5
			60 sec.			1/10 ³		80	80.0	± 1.0
			5 min.			1/104		70	70.0	± 1.0

Remarks: - Mfr's Spec.: IEC 651 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : 31.5Hz - 125 Hz : ± 0.35 dB

500 Hz : ± 0.30 dB 1 kHz : ± 0.20 dB 2 kHz - 4 kHz : ± 0.35 dB 8 kHz : ± 0.45 dB

104 dB: 1 kHz : \pm 0.30 dB (Ref. 94 dB) 114 dB: 1 kHz : \pm 0.10 dB (Ref. 94 dB)

Burst equivalent level : $\pm 0.2 \text{ dB}$ (Ref. 110 dB continuous

sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate No.: C082026

Certificate of Calibration

This is to certify that the equipment

Description: Acoustical Calibrator (EQ016)

Manufacturer: Bruel & Kjaer

Model No.: 4231

Serial No.: 2292167

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C082026.

The equipment is supplied by

Co. Name: Action-United Environmental Services and Consulting

Address: Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

Date of Issue: 22 April 2008

Certified by:

K/C Lee

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C082026

Calibration Report

ITEM TESTED

DESCRIPTION : Acoustical Calibrator (EQ016)

MANUFACTURER: Bruel & Kjaer

MODEL NO. : 4231 SERIAL NO. : 2292167

TEST CONDITIONS

AMBIENT TEMPERATURE : $(23 \pm 2)^{\circ}$ RELATIVE HUMIDITY : $(55 \pm 20)^{\circ}$

LINE VOLTAGE : ---

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 21 April 2008 **JOB NO.**: 1C08-0992

TEST RESULTS

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification & user's specified acceptance criteria.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested by: Chan Um Cha

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C082026

Calibration Report

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment:

Equipment ID TST150A CL129 CL281

<u>Description</u>
Measuring Amplifier
Universal Counter
Multifunction Acoustic Calibrator

Certificate No. C080751 C072995 DC080007

- 4. Test procedure: MA100N.
- 5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	User's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.3	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remarks: - The user's specified acceptance criteria (user's spec.) is a customer pre-defined operating tolerance of the UUT, suitable for one's own intended use.

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: No.68 Ho Pui Village Date of Calibration: 29-Aug-08
Location ID: ASR14 (A1(a)) Next Calibration Date: 29-Nov-08

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa)1008.6Corrected Pressure (mm Hg)756.45Temperature (°C)29.1Temperature (K)302

CALIBRATION ORIFICE

 Make-> TISCH
 Qstd Slope ->
 1.54431

 Model-> 515N
 Qstd Intercept ->
 -0.01988

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4.8	4.8	9.6	2.001	53	52.16	Slope = 42.5208
13	4.0	4.0	8.0	1.828	47	46.25	Intercept = -32.2624
10	3.3	3.3	6.6	1.661	39	38.38	Corr. coeff. = 0.9994
7	2.6	2.6	5.2	1.476	31	30.51	
5	1.4	1.4	2.8	1.087	14	13.78	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

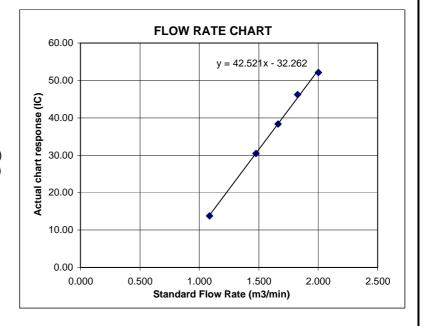
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)
Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: No.1 Ma On Kong Village Date of Calibration: 29-Aug-08
Location ID: ASR15 (A2) Next Calibration Date: 29-Nov-08

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) 1008.6 Corrected Pressure (mm Hg) 756.45
Temperature (°C) 29.1 Temperature (K) 302

CALIBRATION ORIFICE

 Make->
 TISCH
 Qstd Slope ->
 1.54431

 Model->
 515N
 Qstd Intercept ->
 -0.01988

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.0	5.0	10.0	2.042	51	50.19	Slope = 38.4505
13	3.7	3.7	7.4	1.758	41	40.35	Intercept = -27.3792
10	2.8	2.8	5.6	1.531	34	33.46	Corr. coeff. = 0.9961
7	2.1	2.1	4.2	1.328	24	23.62	
5	1.5	1.5	3.0	1.124	15	14.76	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

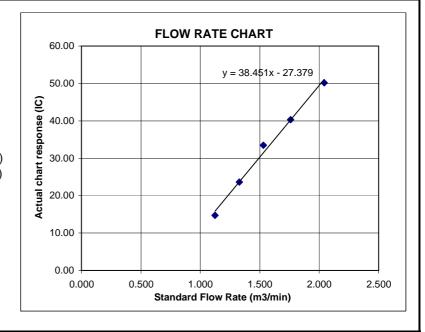
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)
Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata

Serial No. 362337

Equipment Ref: EQ094

Sensitivity 722 CPM

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: Village House in Tin Sam San Tsuen

Equipment Ref: A10

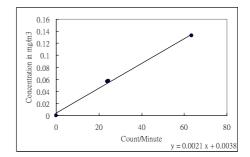
Last Calibration Date: 07 May 2008

Equipment Calibration Results:

Calibration Date: 20 June 2008

Hour	Time	Temp °C	RH %	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
1	11:30 ~ 12:30	31.2	82	0.133	3818	63.6
1	14:30 ~ 15:30	32.1	77	0.056	1430	23.8
1	16:30 ~ 17:30	29.2	81	0.058	1468	24.5

Sensitivity Adjustment Scale Setting (Before Calibration) 722 (CPM)
Sensitivity Adjustment Scale Setting (After Calibration) 722 (CPM)


24 June 2008

Linear Regression of Y or X

Validity of Calibration Record

Slope (K-factor): 0.0021

Correlation Coefficient 0.9977

Operator : Ben Tam Signature : Date : 24 June 2008

QC Reviewer: Ken Wong Signature: Date: 24 June 2008

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata

Serial No. 362359

Equipment Ref: EQ096

Sensitivity 769 CPM

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: Village House in Cheung Chun San Tsuen

Equipment Ref: A1

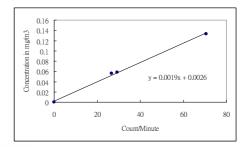
Last Calibration Date: 07 May 2008

Equipment Calibration Results:

Calibration Date: 20 June 2008

Hour	Time	Temp °C	RH %	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
1	11:30 ~ 12:30	31.2	82	0.133	4240	70.7
1	14:30 ~ 15:30	32.1	77	0.056	1602	26.7
1	16:30 ~ 17:30	29.2	81	0.058	1764	29.4

Sensitivity Adjustment Scale Setting (Before Calibration) 769 (CPM)
Sensitivity Adjustment Scale Setting (After Calibration) 769 (CPM)


24 June 2008

Linear Regression of Y or X

Validity of Calibration Record

Slope (K-factor): 0.0019

Correlation Coefficient 0.9988

Operator : Ben Tam Signature : Date : 24 June 2008

QC Reviewer : Ken Wong Signature : Date : 24 June 2008

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 - General requirements for the competence 此實驗所符合ISO / IEC 17025:2005 - 《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃(認可實驗所名冊)內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing

環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO/IEC 17025: 2005 獲得認可。

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (refer joint ISO-ILAC-IAF Communiqué dated 18 June 2005). (見國際標準化組織、國際實驗所認可合作組織及國際認可論壇於二零零五年六月十八日的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator

執行幹事 陳成城 Issue Date: 3 May 2006

簽發日期:二零零六年五月三日

註冊號碼:

Registration Number: HCKLAS 066

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

Appendix F

Event and Action Plan

Event/Action Plan for Air Quality

EVENT	ACTION													
	Contractor's ET leader	IEC	ER	Contractor										
ACTION LEVEL														
Exceedance for one sample	 Identify source Inform IEC, ER and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily 	Check monitoring data submitted by Contractor's ET leader Check Contractor's working method	Notify Contractor	Rectify any unacceptable practice Amend working methods if appropriate										
Exceedance for two or more consecutive samples	 Identify source Inform IEC, ER and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily Discuss with IEC, Contractor and ER on remedial actions required If exceedance continue, arrange meeting with IEC, ER and Contractor If exceedance stops, cease additional monitoring 	 Checking monitoring data submitted by Contractor's ET leader. Check Contractor's working method Discuss with Contractor's ET leader and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures Supervise implementation of remedial measures 	Confirm receipt of notification of failure in writing Notify Contractor Ensure remedial measures properly implemented	 Submit proposals for remedial actions to IEC and ER within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate 										
LIMIT LEVEL														
Exceedance for one sample	 Identify source Inform IEC, ER, EPD and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily Assess effectiveness of Contractor's remedial actions and kept IEC, EPD and ER informed of the results 	 Check monitoring data submitted by Contractor's ET leader Check Contractor's working method Discuss with Contractor's ET leader and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures Audit implementation of remedial measures 	Confirm receipt of notification of failure in writing Notify Contractor Ensure remedial measures properly implemented	 Take immediate action to avoid for the exceedance Submit proposals for remedial actions to IEC and ER within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate 										
Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD Identify source Repeat measurement to confirm findings Increase monitoring frequency to daily Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Arrange meeting with IEC, Contractor and ER to discuss the remedial actions to be taken Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring 	Discuss amongst ER, Contractor's ET leader and Contractor on the potential remedial actions Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly Audit the implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor In consultation with IEC, agree with the Contractor on the remedial measures to be implemented Ensure remedial measures properly implemented If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	 Take immediate action to avoid for the exceedance Submit proposals for remedial actions to IEC and ER within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abate. 										

Event/Action Plan for Construction Noise Monitoring

EVENT		N	· •						
EVENI	CONTRACTOR'S ET LEADER	IEC	ER	Contractor					
Action Level	 Notify IEC, Contractor and ER Carry out investigation Report the results of investigation to the IEC, Contractor and ER Discuss with the Contractor and formulate remedial measures Double monitoring frequency Check compliance to Action/Limit Levels after application of mitigation measures 	Review the analysed results submitted by the Contract's ET leader Review the proposed remedial measures by the Contractor and advise the ER accordingly Review the implementation of remedial measures	Confirm receipt of notification of complaint in writing Notify Contractor Require Contractor to propose remedial measures for the analysed noise problem Ensure remedial measures are properly implemented	Submit noise mitigation proposals to ER and IEC Implement noise mitigation proposals					
Limit Level	 Notify IEC, ER, EPD and Contractor Identify Source Repeat measurement to confirm findings Increase monitoring frequency Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Inform IEC, ER and EPD the causes & actions taken for the exceedances Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring 	1. Discuss amongst ER, Contractor's ET leader and Contractor on the potential remedial actions 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly 3. Audit the implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analysed noise problem Ensure remedial measures are properly implemented If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	1. Take immediate action to avoid further exceedance 2. Submit proposals for remedial actions to within 3 working days of notification 3. Implement the agreed proposals 4. Resubmit proposals if problem still not under control 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated					

Event and Action Plan for Water Quality

Event	ET Leader	IEC	ER	Contractor
Action level being exceeded by one sampling day	Repeat in-site measurement to confirm findings; Identify Source(s) of impact; Inform IEC an Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance	Discuss with ET and Contractor on the mitigation measures Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented;	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check al plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures.
Action level being exceeded by more than one consecutive sampling days	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC on the proposed mitigation measures; Made agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures.	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level.	Discuss with ET and Contractor on the mitigation measures Review proposals on mitigation measures submitted by Contractor and advise the R accordingly Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contract to critically review the working methods; Made agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures.	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures/
Limit level being exceeded by more than one consecutive sampling days	Repeat in-situ measurement to confirm fundings; Identify source(s) of impact; Inform IEC, contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the Monitoring frequency to daily until no exceedance of Limit level for two consecutive days.	Discuss with ET and Contractor on the mitigation measures Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level.	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities.

Event/Action Plan for Ecology

EVENT	ACTION			
EVENI	ET Leader	IEC	Engineer	Contractor
ACTION LEVEL REACHED	1. Carry out investigation 2. Review results and assess whether amendment to action level is appropriate 3. Report the results of investigation to the IEC 4. Notify Contractor and Engineer 5. Discuss with the Contractor and formulate remedial measures 6. Repeat survey to confirm results	1. Review the analysed results submitted by ET 2. Review the proposed remedial measures by the Contractor and advice the Engineer accordingly 3. Supervise implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analysed problem Ensure remedial measures properly implemented	1. Take immediate action to avoid further problem 2. Submit proposals for remedial actions to IEC within 3 working days of notification 3. Implement the agreed proposals 4. Resubmit proposals if problem still not under control
LIMIT LEVEL REACHED	1. Carry out investigation 2. Review results and assess whether amendment to limit level is appropriate 3. Report the results of investigation to the IEC 4. Notify Contractor and Engineer 5. Discuss with the Contractor and formulate remedial measures 6. Repeat survey to confirm results	Review the analysed results submitted by ET Review the proposed remedial measures by the Contractor and advice the Engineer accordingly Supervise implementation of remedial measures	1. Confirm receipt of notification of failure in writing 2. Notify Contractor 3. Require Contractor to propose remedial measures for the analysed problem 4. Ensure remedial measures properly implemented 5. Issue instruction to stop the relevant portion of the works until the problem is abated (construction period only).	1. Take immediate action to avoid further problem 2. Submit proposals for remedial actions to IEC within 3 working days of notification 3. Implement the agreed proposals 4. Resubmit proposals if problem still not under control 5. Stop the relevant portion of works as determined by the Engineer until the problem is abated (construction period only)

Event and Action Plan for Cultural Heritage

ACTION												
ET Leader	IEC	ER	Contractor									
Notify IEC and Contractor to carry out investigation	Review report of structural damage or instability by the ET.	Confirm receipt of notification of failure in writing	Notify AMO concerning the damage or structural instability of the cultural									
Report reasons of structural damage or instability to the IEC and Contractor Discuss with the Contractor and formulate remedial measures Increase monitoring frequency to once per week to check mitigation effectiveness	Review proposed remedial measures by the Contractor and advise the ER and Antiquities and Monuments Office (AMO) accordingly Supervise the implementation of remedial measures, with approval from AMO.	Notify Contractor Require Contractor to propose remedial measures and to notify and seek approval from AMO. Ensure remedial measures are properly implemented.	heritage resources Submit proposals for repair of damage to cultural heritage resources to AMO for approval and to implement approved measures.									
Notify IEC and Contractor to carry out investigation and to stop construction work within 100m of cultural heritage resource to avoid further impact until AMO are satisfied that the relevant structure has been repaired or stabilized to an acceptable level. Report reasons of continued structural damage or instability to the IEC and Contractor Discuss with the Contractor and formulate remedial measures Increase monitoring frequency to daily to check	Review report of structural damage or instability by the ET. Review proposed remedial measures by the Contractor and advise the ER and Antiquities and Monuments Office (AMO) accordingly. Supervise the implementation of remedial measures, with approval from AMO.	Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures and to notify and seek approval from AMO. Ensure remedial measures are properly implemented.	To carry out investigation and to stop construction work within 100m of cultural heritage resource to avoid further impact until AMO are satisfied that the relevant structure has been repaired or stabilized to an acceptable level. Propose remedial measures for the repair and stabilization of cultural heritage resources, up to liaison of moving and rebuilding the relevant structure with the approval of owner (usually the clan members) and AMO.									
	Notify IEC and Contractor to carry out investigation Report reasons of structural damage or instability to the IEC and Contractor Discuss with the Contractor and formulate remedial measures Increase monitoring frequency to once per week to check mitigation effectiveness Notify IEC and Contractor to carry out investigation and to stop construction work within 100m of cultural heritage resource to avoid further impact until AMO are satisfied that the relevant structure has been repaired or stabilized to an acceptable level. Report reasons of continued structural damage or instability to the IEC and Contractor Discuss with the Contractor and formulate remedial measures	Report reasons of structural damage or instability by the ET. Report reasons of structural damage or instability by the IEC and Contractor and formulate remedial measures Increase monitoring frequency to once per week to check mitigation effectiveness Notify IEC and Contractor and dovise the ER and Antiquities and Monuments Office (AMO) accordingly Supervise the implementation of remedial measures, with approval from AMO. Notify IEC and Contractor to carry out investigation and to stop construction work within 100m of cultural heritage resource to avoid further impact until AMO are satisfied that the relevant structure has been repaired or stabilized to an acceptable level. Report reasons of continued structural damage or instability to the IEC and Contractor and formulate remedial measures Increase monitoring frequency to daily to check	Report reasons of structural damage or instability to the IEC and Contractor and formulate remedial measures with approval from AMO. Review report of structural damage or instability by the ET.									

Event and Action Plan for Landscape and Visual Impact - Construction Phase

Action Level	Environmental Team Leader (ETL)	Independent Evnironmental Checker (IEC)	Engineer's Representative (ER)	Contractor
Non-conformity on one occasion	 Identify source Inform the IEC and the ER Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed 	Check report Check the Contractor's working method Discuss with the ER and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures	Notify the Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake remedial measures or any necessary replacement
Repeated Non-conformity	 Identify source Inform the IEC and the ER Increase monitoring (site audit) frequency Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed If exceedance stops, cease additional monitoring (site audit) 	Check report Check the Contractor's working method Discuss with the ER and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures Supervise implementation of remedial measures	Notify the Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake remedial measures or any necessary replacement

Appendix G

- (A) Environmental Monitoring Data
 - (A)(1) Air Quality
 - (A)(2) Water Quality
- (B) Graphical Plots
 - (B)(1) Air Quality
 - (B)(2) Construction Noise
 - (B)(3) Water Quality

(A)	Environmental Monitoring Data	

IMPACT 24-Hour TSP Monitoring Results - KT13(A1(a))

DSD CONTRACT NO. DC/2007/17

Cal Graph Slope

42.5208

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Cal Graph Intercept

-32.2624

			STANDARD										BLAN	٧K		SAM	Dust 24-Hr		
1)A1F	SAMPLE	LLAI JLD HIVIL			CHART READING		A'	AVERAGE		FLOW	AIR	SAMPLE	WEIGHT (g)			WEIGHT (g)			TSP in Air
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	CHART READING	TEMP (°C)	PRESS (hPa)		VOLUME (std m ³)	NUMBER	INTIAL	FINAL	DIFF	INITIAL	FINAL	DUST COLLECTION	(μg/m³)
31-Oct-08	SZ24	1071.73	1095.02	1397.40	31	32	31.5	25.2	1016.0	1.50	2096	NA	3.6459	3.6419	-0.0040	3.6170	3.6372	0.0202	12
4-Nov-08	SZ43	1095.02	1119.80	1486.80	31	32	31.5	26.3	1013.6	1.50	2227	NA	3.6459	3.6419	-0.0040	3.5993	3.6304	0.0311	16
10-Nov-08	SZ76	1119.80	1143.08	1396.80	32	33	32.5	19.6	1018.3	1.53	2140	NA	3.6459	3.6419	-0.0040	3.6077	3.6902	0.0825	40
15-Nov-08	SZ84	1143.08	1166.31	1393.80	31	32	31.5	23.9	1014.8	1.50	2093	NA	3.6459	3.6419	-0.0040	3.6021	3.6445	0.0424	22
21-Nov-08	SA16	1166.31	1189.54	1393.80	31	32	31.5	19.7	1021.2	1.51	2103	NA	3.6459	3.6419	-0.0040	3.6241	3.7001	0.0760	38

IMPACT 24-Hour TSP Monitoring Results - KT13(A2)

DSD CONTRACT NO. DC/2007/17 Cal Graph Slop 38.4505

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

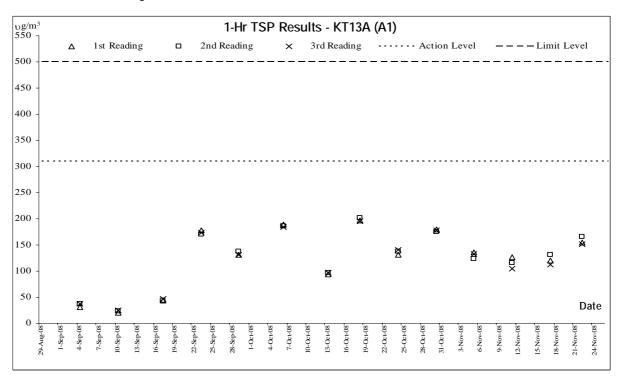
Cal Graph Inter -27.3792

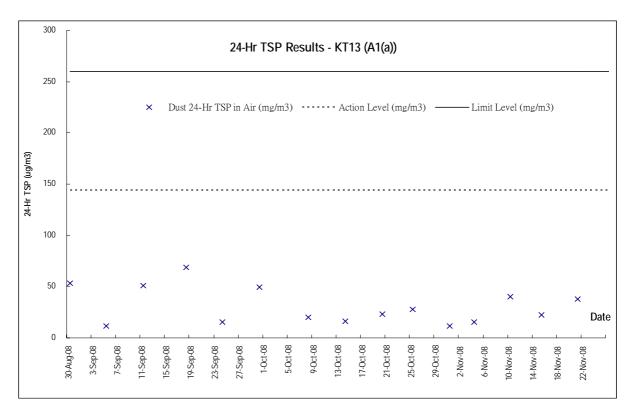
			STANDARD											LANK		SAMF	ER PAPER	Dust 24-Hr	
DATE	SAMPLE	ED II SED TIME			CHART READING		A	AVERAGE		FLOW	AIR	SAMPLE	WEIGHT (g)			WEIGHT (g)			TSP in Air
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	CHART READING	TEMP (°C)	PRESS (hPa)	RATE (m³/min)	VOLUME (std m³)	NUMBER	INTIAL	FINAL	DIFF	INITIAL	FINAL	DUST COLLECTION	(μg/m³)
31-Oct-08	SZ23	1047.25	1071.07	1429.20	33	34	33.5	25.2	1016.0	1.58	2264	NA	3.6459	3.6419	-0.0040	3.6184	3.6531	0.0347	17
4-Nov-08	SZ45	1071.07	1095.49	1465.20	33	34	33.5	26.3	1013.6	1.58	2317	NA	3.6459	3.6419	-0.0040	3.5976	3.6307	0.0331	16
10-Nov-08	SZ74	1095.49	1119.22	1423.80	34	35	34.5	19.6	1018.3	1.62	2306	NA	3.6459	3.6419	-0.0040	3.6083	3.6922	0.0839	38
15-Nov-08	SZ85	1119.22	1142.98	1425.60	33	34	33.5	23.9	1014.8	1.59	2260	NA	3.6459	3.6419	-0.0040	3.6014	3.6388	0.0374	18
21-Nov-08	SA15	1142.98	1166.80	1429.20	32	33	32.5	19.7	1021.2	1.57	2241	NA	3.6459	3.6419	-0.0040	3.6161	3.6664	0.0503	24

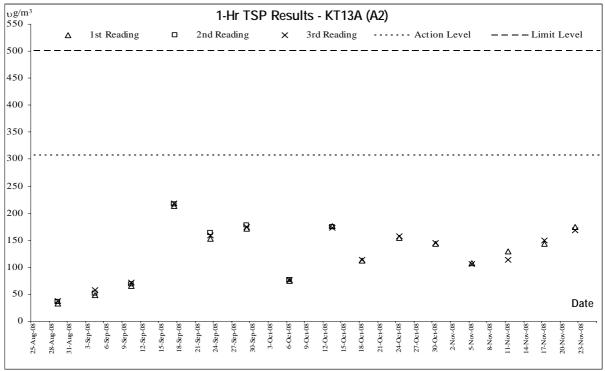
DC/2007/17 - Drainage Improvement in Cheung Po,Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tsang Tan Chung Tsuen, Tuen Mun Water Quality Data - KT13

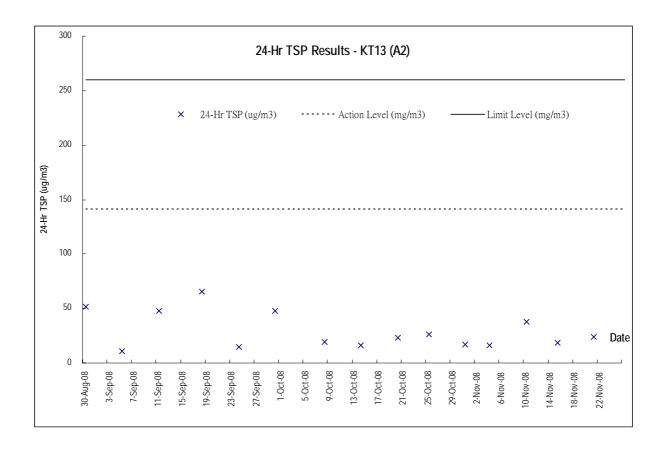
Column Table St. Column Table St.																			
Wilson 1,100																			
No. 1700 1	Location	Time	Deptn (m)		(00)			(%)		(NIU)			оH				nia N		nc
No. 1/20	W1	13:10	0.17		26.7			51.0		16.6			6.7		2.0		0.18		10.0
No. 11.00 10.00 17.8 27.0 17.2 27.2	-					2.76	35.0	-			0								
No. 1930	W2	13:20	0.08		27.8			34.9		149.5	0.0		6.7		187.0		2.14		198.0
No. 1.00						2.34	29.6		16.7		0	6.5							
No. 17:00 101 27:00 77:00 12:00	W3	13:00	0.16	28.4	28.4	2.35	29.8	29.7	16.2	16.5	0.0	6.5	6.5	21	21.0	3.72	3.72	34	34.0
Windows 1246 Out 277 272 138 328 444 445 445 455 456 477 477 478	WA	12:50	0.14		27.0			43.0		5.2			6.5		8.0		5.15	12	12.0
W						3.48	43.3				0								
No. 12-00 O.S. 281 284 225 215 312 215 312 225 226 O.S. O.	W5	12:45	0.09		27.7			46.5		8.7			6.7		5.0		1.29		10.0
Color						2 F1	22.7				0								
Date 3P-OLIGIE 1.00	W6	12:40	0.26		28.8			33.0		42.8			6.9		60.0		9.79		10.0
The Depth (ring Depth (r			1		1			1			-								
WIT 1148	Date	29-Oct-08																	
W1	Location	Time	Depth (m)	Temp ((oC)	DO (mg/L)	DOS	(%)	Turbidity	(NTU)	Salinity		оН	SS		Ammo	nia N	Zir	nc
	W1	11:40	0.14	27.0	27.0	4.21	52.7	53.0	3.4	3.7	0 0.0	6.9	6.9	4	4.0	0.14	0.14	<10	10.0
W2		11.40	0.14		27.0	4.26	53.3	55.0		5.7	0		0.7		4.0		0.14		10.0
Windows 1130 Color 1130 Co	W2	11:45	0.08		28.8			45.2		13.2			6.7		21.0		0.96		25.0
W1																			
With 11/20	W3	11:30	0.17		29.9			17.6		14.3			6.9		12.0		2.84		18.0
We						2.07	20.2				0								
W5	W4	11:20	0.13		27.5			38.5		7.0			6.9		5.0		5.86		10.0
We	1405	44.45	0.40		00.7	4.45	57.6	57.0		00.6	0	6.9		26	0/ 0		4.00		40.0
No. 105 0.4 289 289 3.47 3.48 44.7 4.9 25.0 5.2 0 0.0 7.3 7.3 22 22.0 7.41 7.41 22.0 22.0	W5	11:15	0.10	28.7	28.7	4.48	58.1	57.9	22.4	22.6	0.0	6.9	6.9	26	26.0	1.2	1.20	18	18.0
Delta 31-Oct-108 31-Oct-1	W6	11:05	0.24		28.9			44.9		25.2			7.3		22.0		7.41		26.0
Contain Time Depth (n) Temp (sc) D0 (mg/L) D0 (c) Turbidity (NTU) Salinity pH SS Ammonia N Zinc		11.05	0.24	28.9	20.7	3.47	44.7	44.7	25.0	20.2	0 0.0	7.3	7.5	22	22.0	7.41	7.41	26	20.0
Contain Time Depth (n) Temp (sc) D0 (mg/L) D0 (c) Turbidity (NTU) Salinity pH SS Ammonia N Zinc																			
W1	Date																		
W1 12:45 0.14 26.3 26.3 4.12 4.13 48.6 48.4 3.5 3.7 0 0.0 6.8 6.8 4 4 4.0 0.014 0.14 11 11.0 11.0 11.0 11	Location		Donth (m)	Tomp ((aC)	DO (mg/L)	DOS	(94)	Turbidity	(NITH)	Salinity	1	-11				min N	7:-	
W2		Time			1	4.12	40.2	1			0								
W3 12.35 0.18 27.1 27.1 2.71 2.71 2.03 2.00 22.4 22.8 14.5 14.6 0 0.0 6.9 6.9 23 23.0 24.1 24.1 35 35.0 W4 12.25 0.11 26.8 26.8 2.37 23.6 26.6 25.9 25.8 5.7 5.8 0 0.0 6.8 6.8 5 5.0 4.44 4.44 4.10 10.0 W5 12.15 0.10 26.6 26.6 26.6 4.01 4.03 46.6 46.7 18.6 18.8 0 0.0 6.7 6.7 17.7 17.0 1.45 1.45 115 W6 12.10 0.29 27.2 27.2 2.66 2.64 2.65 28.7 28.9 27.7 27.7 0 0.0 6.8 6.8 5 5.0 4.44 4.44 4.10 4.01 4.		Time		26.3	1	4.13 4.1	48.2	1	3.8		0 0.0	6.8		4		0.14		11	
W3	W1	Time 12:45	0.14	26.3 26.3	26.3	4.13 4.12 3.41	48.2 48.6	48.4	3.8 3.5	3.7	0 0.0	6.8 6.8	6.8	4 4	4.0	0.14 0.14	0.14	11 11	11.0
Math	W1	Time 12:45	0.14	26.3 26.3 26.4 26.4	26.3	4.13 4.12 3.41 3.43 3.43	48.2 48.6 41.7 41.9	48.4	3.8 3.5 36.1	3.7	0 0.0	6.8 6.8 6.8	6.8	4 4 86 86	4.0	0.14 0.14 3.47	0.14	11 11 105	11.0
W4 12.25 0.11 28.8 28.8 2.37 2.36 26.5 26.3 5.7 5.8 0 0.0 6.8 6.8 5 5.0 4.44 4.44 <10 10.0	W1 W2	Time 12:45 12:55	0.14	26.3 26.3 26.4 26.4 27.1	26.3	4.13 4.12 3.41 3.43 1.97	48.2 48.6 41.7 41.9 22.4	48.4	3.8 3.5 36.1 35.4 14.5	3.7	0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.8	6.8	4 4 86 86 23	4.0	0.14 0.14 3.47 3.47 2.41	0.14	11 11 105 105 35	11.0
W5 12:15 0.10 26.6 26.6 4.01 4.03 46.4 46.7 18.9 18.8 0 0.0 6.7 6.7 17 17.0 1.45 1.45 15 15.0	W1 W2	Time 12:45 12:55	0.14	26.3 26.3 26.4 26.4 27.1 27.1	26.3	4.13 4.12 4.1 3.41 3.43 3.4 1.97 2.03 2.0	48.2 48.6 41.7 41.9 22.4 23.1	48.4	3.8 3.5 36.1 35.4 14.5 14.7	3.7	0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9	6.8	4 4 86 86 23 23	4.0	0.14 0.14 3.47 3.47 2.41 2.41	0.14	11 11 105 105 35 35	11.0
W5 12:15 0.10 26.6 26.6 4.04 4.03 46.7 18.6 18.8 0 0.0 6.7 6.7 17 17.0 14.5 1.45 15 15	W1 W2 W3	Time 12:45 12:55 12:35	0.14 0.09 0.18	26.3 26.3 26.4 26.4 27.1 27.1 26.8	26.3 26.4 27.1	4.13 4.12 3.41 3.43 1.97 2.03 2.34 2.34	48.2 48.6 41.7 41.9 22.4 23.1 25.9	48.4 41.8 22.8	3.8 3.5 36.1 35.4 14.5 14.7 5.8	3.7 35.8 14.6	0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9	6.8	4 4 86 86 23 23 5	4.0 86.0 23.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44	0.14 3.47 2.41	11 11 105 105 35 35 35 <10	11.0 105.0 35.0
We 12:10 0.29 27.2 27.2 2.66 2.65 29.1 28.9 27.6 27.7 0 0.0 6.8 6.8 70 70.0 3.54 3.54 83 83.0	W1 W2 W3	Time 12:45 12:55 12:35	0.14 0.09 0.18	26.3 26.3 26.4 26.4 27.1 27.1 26.8 26.8	26.3 26.4 27.1	4.13 4.12 3.41 3.43 1.97 2.03 2.03 2.34 2.37 4.01	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6	48.4 41.8 22.8 26.3	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7	3.7 35.8 14.6 5.8	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 6.9 6.8	6.8 - 6.8 - 6.9 - 6.8	4 4 86 86 23 23 5 5	4.0 86.0 23.0 5.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44	0.14 3.47 2.41 4.44	11 11 105 105 35 35 <10 <10	11.0 105.0 35.0
Date 3-Nov-08 State St	W1 W2 W3	Time 12:45 12:55 12:35 12:25	0.14 0.09 0.18 0.11	26.3 26.3 26.4 26.4 27.1 27.1 26.8 26.8 26.6	26.3 26.4 27.1 26.8	4.13 4.12 3.41 3.43 3.43 1.97 2.03 2.34 2.37 4.01 4.01	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4	48.4 41.8 22.8 26.3	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7	3.7 35.8 14.6 5.8	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 6.9 6.8 6.8	6.8 - 6.8 - 6.9 - 6.8	4 4 86 86 23 23 5 5	4.0 86.0 23.0 5.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44 4.44 1.45	0.14 3.47 2.41 4.44	11 11 105 105 35 35 <10 <10	11.0 105.0 35.0
Coation Time Depth (m) Temp (oC) DOS (%) Turbidity (NTU) Salinity pH SS Ammonta N Zinc	W1 W2 W3 W4	12:45 12:55 12:35 12:25 12:25	0.14 0.09 0.18 0.11	26.3 26.4 26.4 27.1 27.1 26.8 26.8 26.6	26.3 26.4 27.1 26.8 26.6	4.13 4.12 3.41 3.43 1.97 2.03 2.03 2.34 2.37 4.01 4.04 4.04 4.04	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9	48.4 41.8 22.8 26.3 46.7	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7 18.9	3.7 35.8 14.6 5.8	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 6.9 6.8 6.8 6.7	6.8 6.8 6.9 6.8 6.7	4 4 86 86 23 23 5 5 17	4.0 86.0 23.0 5.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44 4.44 1.45 1.45	0.14 3.47 2.41 4.44 1.45	11 11 105 105 35 35 <10 <10 15	11.0 105.0 35.0 10.0
Location Time Depth (m) Temp (es) DOS (mg/L) DOS (%) Turbidity (NTU) Salinity pH SS Ammonia N Zinc	W1 W2 W3 W4	12:45 12:55 12:35 12:25 12:25	0.14 0.09 0.18 0.11	26.3 26.4 26.4 27.1 27.1 26.8 26.8 26.6 26.6 27.2	26.3 26.4 27.1 26.8 26.6	4.13 4.1 4.12 4.1 3.41 3.4 3.43 3.4 1.97 2.03 2.0 2.34 2.37 2.3 4.01 4.04 4.04 4.04	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1	48.4 41.8 22.8 26.3 46.7	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6	3.7 35.8 14.6 5.8	0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	6.8 6.8 6.8 6.9 6.9 6.8 6.8 6.7 6.7	6.8 6.8 6.9 6.8 6.7	4 4 86 86 23 23 5 5 17 17	4.0 86.0 23.0 5.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44 4.44 1.45 1.45 3.54	0.14 3.47 2.41 4.44 1.45	11 105 105 105 35 35 <10 <10 115 83	11.0 105.0 35.0 10.0
W1 11:55 0.14 24.6 24.6 4.47 4.45 53.4 53.1 5.6 5.5 0 0.0 6.9 6.9 4 4.0 0.04 0.04 13 13.0 13.0 13.0 13.0 13.0 13.0 13.0 1	W1 W2 W3 W4 W5	12:45 12:55 12:35 12:25 12:25 12:15 12:10	0.14 0.09 0.18 0.11	26.3 26.4 26.4 27.1 27.1 26.8 26.8 26.6 26.6 27.2	26.3 26.4 27.1 26.8 26.6	4.13 4.1 4.12 4.1 3.41 3.4 3.43 3.4 1.97 2.03 2.0 2.34 2.37 2.3 4.01 4.04 4.04 4.04	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1	48.4 41.8 22.8 26.3 46.7	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6	3.7 35.8 14.6 5.8	0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	6.8 6.8 6.8 6.9 6.9 6.8 6.8 6.7 6.7	6.8 6.8 6.9 6.8 6.7	4 4 86 86 23 23 5 5 17 17	4.0 86.0 23.0 5.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44 4.44 1.45 1.45 3.54	0.14 3.47 2.41 4.44 1.45	11 105 105 105 35 35 <10 <10 115 83	11.0 105.0 35.0 10.0
W1	W1 W2 W3 W4 W5 W6	12:45 12:55 12:35 12:25 12:15 12:10 3-Nov-08	0.14 0.09 0.18 0.11 0.10	26.3 26.4 26.4 27.1 27.1 26.8 26.8 26.6 27.2 27.2	26.3 26.4 27.1 26.8 26.6 27.2	4.13 4.1 4.17 4.1 3.41 3.43 3.4 1.97 203 20 2.34 2.37 2.3 4.01 4.04 4.0 2.66 2.64 2.6	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1 28.7	48.4 41.8 22.8 26.3 46.7 28.9	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6 27.6	3.7 35.8 14.6 5.8 18.8 27.7	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 6.9 6.8 6.8 6.7 6.7 6.7	6.8 6.8 6.9 6.8 6.7 6.8	4 4 86 86 23 23 5 5 17 17 70	4.0 86.0 23.0 5.0 17.0	0.14 0.14 3.47 3.47 2.41 4.44 4.44 1.45 3.54 3.54	0.14 3.47 2.41 4.44 1.45	11 11 105 105 35 35 <10 <10 115 15 15 83 83 83	11.0 105.0 35.0 10.0 15.0
W2 12:00 0.09 24.4 24.4 3.78 3.79 45.3 45.4 12.8 12.6 0 0.0 6.9 6.9 30 30.0 1.34 1.34 47 47.0 W3 11:45 0.16 24.7 24.7 1.26 1.27 15.3 15.5 22.7 22.5 0 0.0 6.8 6.8 38 38.0 8.11 8.11 8.11 65 65.00 W4 11:35 0.12 25.1 25.1 1.86 1.88 23.1 23.4 5.5 5.7 0 0.0 6.8 6.8 3 3.0 5.75 5.75 16.0 W5 11:30 0.11 24.8 4.38 4.36 53.0 52.6 12.3 12.2 0 0.0 6.8 6.8 14 14.0 3.5 3.50 11 11.0 W5 11:30 0.2 24.8 4.38 4.36 53.0 52.6	W1 W2 W3 W4 W5 W6	12:45 12:55 12:35 12:25 12:15 12:10 3-Nov-08	0.14 0.09 0.18 0.11 0.10	26.3 26.3 26.4 26.4 27.1 27.1 26.8 26.8 26.6 26.6 27.2 27.2	26.3 26.4 27.1 26.8 26.6 27.2	4.13 4.12 4.1 3.41 3.43 3.43 3.4 1.97 2.03 2.03 2.37 4.01 4.01 4.04 2.66 2.64 2.6	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1 28.7	48.4 41.8 22.8 26.3 46.7 28.9	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7 18.9 27.6 27.7	3.7 35.8 14.6 5.8 18.8 27.7	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 6.9 6.8 6.8 6.7 6.7 6.7	6.8 6.8 6.9 6.8 6.7 6.8	4 4 4 86 86 23 23 5 5 5 17 17 70	4.0 86.0 23.0 5.0 17.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44 4.44 1.45 1.45 3.54 3.54	0.14 3.47 2.41 4.44 1.45	11 11 105 105 35 35 <10 <10 15 15 83 83	11.0 105.0 35.0 10.0 15.0
W2 12:00 0.09 24.4 24.4 3.79 3.79 45.5 45.4 12.4 12.6 0 0.0 6.9 6.9 30 30.0 1.34 1.34 47 47.0 1.34 1.34 47 47.0 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34	W1 W2 W3 W4 W5 W6 Date Location	12:45 12:45 12:55 12:35 12:25 12:15 12:10 3-Nov-08 Time	0.14 0.09 0.18 0.11 0.10 0.29	26.3 26.3 26.4 26.4 27.1 27.1 26.8 26.8 26.6 27.2 27.2 27.2	26.3 26.4 27.1 26.8 26.6 27.2	4.13 4.1 4.12 4.1 3.41 3.4 3.42 2.03 2.0 2.03 2.03 2.0 2.34 2.37 2.3 4.01 4.01 4.0 2.66 2.64 2.66	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1 28.7	48.4 41.8 22.8 26.3 46.7 28.9	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6 27.6 27.7	3.7 35.8 14.6 5.8 18.8 27.7	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 6.8 6.8 6.7 6.7 6.7 6.8	6.8 6.8 6.9 6.8 6.7 6.8	4 86 86 23 23 5 5 17 17 70 70	4.0 86.0 23.0 5.0 17.0 70.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44 1.45 1.45 3.54 3.54	0.14 3.47 2.41 4.44 1.45 3.54	11 11 105 105 105 35 35 410 410 115 15 83 83	11.0 105.0 35.0 10.0 15.0 83.0
W3 11:45 0.16 24.7 24.7 1.26 1.27 15.3 15.5 22.7 22.5 0 0.0 6.8 6.8 38 38.0 8.11 8.11 65 65.00 W4 11:35 0.12 25.1 25.1 1.89 1.89 23.6 23.4 5.5 5.7 0 0.0 6.8 6.8 3 3.0 5.75 5.75 16 W5 11:30 0.11 24.8 24.8 4.38 4.36 53.0 52.6 12.3 12.2 0 0.0 6.8 6.8 14 14.0 3.5 3.5 3.50 11 11.0 W6 11:50 0.22 24.8 24.8 24.8 4.38 23.4 25.5 52.1 22.4 8.84 23.8 0 0.0 7.3 7.2 90 30.0 38.8 38.9 115 115.0	W1 W2 W3 W4 W5 W6 Date Location W1	12:45 12:55 12:35 12:25 12:25 12:10 3-Nov-08 Time 11:55	0.14 0.09 0.18 0.11 0.10 0.29 Depth (m) 0.14	26.3 26.4 26.4 27.1 27.1 26.8 26.6 26.6 27.2 27.2 27.2 27.4 27.4 27.4 27.4 27.4	26.3 26.4 27.1 26.8 26.6 27.2 (oc) 24.6	4.13 4.12 4.1 3.41 3.43 3.43 3.49 3.49 2.03 2.03 2.34 2.37 2.37 2.30 4.01 4.04 4.04 2.666 2.66 2.66 DO (mg/L) 4.47 4.43 4.43 3.78	48.2 48.6 41.7 41.9 22.2 4 23.1 25.9 26.6 46.4 46.9 20.1 28.7	48.4 41.8 22.8 26.3 46.7 28.9 (%)	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6 27.6 27.7	3.7 35.8 14.6 5.8 18.8 27.7 (NTU)	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	68 68 68 68 69 69 68 67 67 68 68 68	6.8 6.9 6.8 6.7 6.8	4 4 86 86 82 23 5 5 5 17 17 70 70 4	4.0 86.0 23.0 5.0 17.0 70.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44 4.44 1.45 1.45 3.54 3.54 3.54	0.14 3.47 2.41 4.44 1.45 3.54	111 115 105 105 35 35 35 410 410 115 15 83 83 83 22tr 13	11.0 105.0 35.0 10.0 15.0 83.0
W3	W1 W2 W3 W4 W5 W6 Date Location W1	12:45 12:55 12:35 12:25 12:25 12:10 3-Nov-08 Time 11:55	0.14 0.09 0.18 0.11 0.10 0.29 Depth (m) 0.14	26.3 26.4 26.4 26.4 27.1 27.1 26.8 26.6 26.6 27.2 27.2 27.2 27.2 24.6 24.6 24.6 24.4	26.3 26.4 27.1 26.8 26.6 27.2 (oc) 24.6	4.13 4.1 4.12 4.1 3.41 3.4 3.43 3.4 1.97 2.03 2.0 2.34 2.37 2.3 4.01 4.0 4.0 2.66 2.66 2.66 2.64 2.6	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1 28.7 DOS 53.4 53.8	48.4 41.8 22.8 26.3 46.7 28.9 (%)	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6 27.6 27.7	3.7 35.8 14.6 5.8 18.8 27.7 (NTU)	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 6.9 6.8 6.7 6.7 6.8 6.8	6.8 6.9 6.8 6.7 6.8	4 4 86 86 86 23 23 5 5 17 70 70 70 \$\$\$\$\$\$ \$	4.0 86.0 23.0 5.0 17.0 70.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44 4.44 1.45 3.54 3.54 3.54 3.54	0.14 3.47 2.41 4.44 1.45 3.54	111 1105 105 105 35 35 35 410 410 115 15 83 83 83 Zir 13 13	11.0 105.0 35.0 10.0 15.0 83.0
W4 11:35 0.12 25.1 25.1 1.89 1.88 23.6 23.4 5.8 5.7 0 0.0 6.8 6.8 3 3.0 5.75 5.75 16 16.0 W5 11:30 0.11 24.8 24.8 4.33 4.36 53.0 52.6 12.3 12.2 0 0.0 6.8 6.8 14 14.0 3.5 3.5 3.50 11 11.0 W6 11:35 0.22 24.8 24.8 24.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23	W1 W2 W3 W4 W5 W6 Date Location W1 W2	12:45 12:55 12:35 12:25 12:15 12:10 3-Nov-08 Time 11:55 12:00	0.14 0.09 0.18 0.11 0.10 0.29 Depth (m) 0.14 0.09	26.3 26.4 26.4 26.4 27.1 27.1 27.1 28.8 26.8 26.6 26.6 27.2 27.2 27.2 27.4 4.6 24.4	26.3 26.4 27.1 26.8 26.6 27.2 (oc) 24.6	4.13 4.1 4.12 4.1 3.41 3.4 3.43 3.4 1.97 2.03 2.0 2.34 2.37 2.3 4.01 4.01 4.0 2.66 2.64 2.66 2.64 2.64 4.43 4.43 4.43 3.78 3.79 3.79	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1 28.7 DOS 53.4 53.4 53.8 45.5	48.4 41.8 22.8 26.3 46.7 28.9 (%) 53.1 45.4	3.8 3.5 36.1 35.4 14.7 5.8 5.7 18.9 12.6 27.7 Turbidity 5.4 5.6 12.8	3.7 35.8 14.6 5.8 18.8 27.7 (NTU) 5.5	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 6.8 6.8 6.7 6.7 6.7 6.8 6.8	6.8 6.8 6.9 6.8 6.7 6.8	4 4 86 86 86 23 23 5 5 17 70 70 \$\$S\$\$	4.0 86.0 23.0 5.0 17.0 70.0	0.14 3.47 3.47 3.47 2.41 4.44 4.44 4.145 1.45 3.54 3.54 Ammo 0.04 0.04 1.34	0.14 3.47 2.41 4.44 1.45 3.54 nia N 0.04 1.34	111 115 105 105 35 35 35 410 410 415 15 15 83 83 83 83 47 47	11.0 105.0 35.0 10.0 15.0 83.0
W5 11:30 0.11 24.8 24.8 4.38 4.36 53.0 52.6 12.3 12.2 0 0.0 6.8 14 14 3.5 3.5 11 11.0 11.0 11.0 11.0 11.0 11.0 11.0	W1 W2 W3 W4 W5 W6 Date Location W1 W2	12:45 12:55 12:35 12:25 12:15 12:10 3-Nov-08 Time 11:55 12:00	0.14 0.09 0.18 0.11 0.10 0.29 Depth (m) 0.14 0.09	26.3 26.4 26.4 26.4 27.1 27.1 27.1 27.1 27.2 27.2 27.2 27.2	26.3 26.4 27.1 26.8 26.6 27.2 (oc) 24.6	4.13 4.1 4.12 4.1 3.44 3.43 3.4 1.97 2.03 2.0 2.03 2.0 2.37 4.01 4.0 2.66 2.66 2.64 2.6 DO (mg/L) 4.47 4.43 4.4 3.78 3.78 3.79 3.79 1.26 12	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1 28.7 DOS 53.4 45.3 45.3 45.3	48.4 41.8 22.8 26.3 46.7 28.9 (%) 53.1 45.4	3.8 3.5 3.5 3.6.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6 27.6 27.7 Turbidity 5.4 5.6 12.8 12.8 12.4 22.7	3.7 35.8 14.6 5.8 18.8 27.7 (NTU) 5.5	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 6.9 6.8 6.7 6.7 6.8 6.8 6.9 6.9 6.9	6.8 6.8 6.9 6.8 6.7 6.8	4 4 86 86 86 23 23 5 5 17 17 70 70 5 4 4 30 30 30 38	4.0 86.0 23.0 5.0 17.0 70.0	0.14 0.14 0.14 3.47 3.47 2.41 2.41 4.44 4.44 1.45 3.54 3.54 3.54 Annual O.04 0.04 1.34 1.34 1.34 1.34	0.14 3.47 2.41 4.44 1.45 3.54 nia N 0.04 1.34	111 1105 105 105 35 35 35 410 410 115 15 83 83 83 83 47 47 47 665	11.0 105.0 35.0 10.0 15.0 83.0
W5 11:30 0.11 24.8 24.8 4.33 4.36 52.1 52.6 12.1 12.2 0 0.0 6.8 6.8 14 14.0 3.5 3.50 11 11.0 W6 11:35 0.39 24.8 34.9 2.34 2.35 28.1 39.4 88.4 33.9 0 0.0 7.3 7.2 90 90.0 38.8 39.90 115 115.0	W1 W2 W3 W4 W5 W6 Date Location W1 W2 W3	12:45 12:55 12:35 12:35 12:25 12:10 3-Nov-08 Time 11:55 12:00 11:45	0.14 0.09 0.18 0.11 0.10 0.29 Depth (m) 0.14 0.09 0.16	26.3 26.4 26.4 26.4 27.1 27.1 27.1 28.8 26.8 26.6 26.6 27.2 27.2 27.2 27.2 27.4 24.4 24.4 24.7	26.3 26.4 27.1 26.8 26.6 27.2 (oC) 24.6 24.4 24.7	4.13 4.1 4.12 4.1 3.41 3.43 3.4 1.97 2.03 2.0 2.34 2.37 4.01 4.04 4.0 2.66 2.64 2.6 DO (mg/L) 4.47 4.43 4.4 3.78 3.79 3.77 1.26 1.28 1.28	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1 28.7 DOS 53.4 52.8 45.5 53.4 55.3 45.5 53.4 53.5 53.4 54.5 55.8 56.5 57.5 5	48.4 41.8 22.8 26.3 46.7 28.9 (%) 53.1 45.4 15.5	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6 27.6 27.7 Turbidity 5.4 5.6 12.8 12.4 22.7 22.3	3.7 35.8 14.6 5.8 18.8 27.7 (NTU) 5.5 12.6	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 6.9 6.8 6.8 6.7 6.7 6.7 6.8 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	6.8 6.8 6.9 6.8 6.7 6.8 6.7 6.8	4 4 86 86 86 86 87 87 87 87 87 87 87 87 87 87 87 87 87	4.0 86.0 23.0 5.0 17.0 70.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44 4.44 1.45 1.45 3.54 3.54 3.54 Anmo 0.04 0.04 1.34 8.11	0.14 3.47 2.41 4.44 1.45 3.54 nia N 0.04 1.34	111 115 105 105 35 35 <10 <10 <15 15 15 83 83 83 Zir 47 47 65 65	11.0 105.0 35.0 10.0 15.0 83.0 13.0 47.0 65.00
24.8 4.33 52.1 12.1 0 6.8 14 3.5 11 11 11.0 11.0 11.0 11.0 11.0 11.0 1	W1 W2 W3 W4 W5 W6 Date Location W1 W2 W3	12:45 12:55 12:35 12:35 12:25 12:10 3-Nov-08 Time 11:55 12:00 11:45	0.14 0.09 0.18 0.11 0.10 0.29 Depth (m) 0.14 0.09 0.16	26.3 26.4 26.4 26.4 27.1 27.1 26.8 26.6 26.6 27.2 27.2 27.2 27.2 24.6 24.6 24.4 24.4 24.7 24.7 25.1	26.3 26.4 27.1 26.8 26.6 27.2 (oC) 24.6 24.4 24.7	4.13 4.1 4.12 4.1 3.41 3.4 3.43 3.4 1.97 2.03 2.0 2.34 2.37 2.3 4.01 4.0 4.0 2.66 2.64 2.66 2.64 2.6 DO (mg/L) 4.47 4.43 3.78 3.79 3.7 3.79 3.7 1.28 1.28 1.2 1.88 1.89	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1 28.7 DOS 53.4 53.8 45.5 15.7 23.1 23.1 25.9 26.5 26.5 27.7	48.4 41.8 22.8 26.3 46.7 28.9 (%) 53.1 45.4 15.5	3.8 3.5 3.5 3.6.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6 27.6 27.7 Turbidity 5.4 5.6 12.8 12.4 22.7 22.3 5.5	3.7 35.8 14.6 5.8 18.8 27.7 (NTU) 5.5 12.6	0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 6.8 6.7 6.7 6.8 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	6.8 6.8 6.9 6.8 6.7 6.8 6.7 6.8	4 4 86 86 86 86 23 23 5 5 17 7 70 70 70 70 5SS 4 4 4 30 30 38 38 3 3 3 3 3 3 3	4.0 86.0 23.0 5.0 17.0 70.0	0.14 0.14 0.14 3.47 3.47 2.41 2.41 4.44 4.44 1.45 3.54 3.54 0.04 0.04 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.3	0.14 3.47 2.41 4.44 1.45 3.54 nia N 0.04 1.34	111 1105 1005 1005 335 35 35 410 410 115 15 83 83 83 Zir 47 47 47 47 47 655 655 16	11.0 105.0 35.0 10.0 15.0 83.0 13.0 47.0 65.00
	W1 W2 W3 W4 W5 W6 Date Location W1 W2 W3 W4	12:45 12:55 12:35 12:35 12:25 12:10 3-Nov-08 Time 11:55 12:00 11:45	0.14 0.09 0.18 0.11 0.10 0.29 Depth (m) 0.14 0.09 0.16 0.12	26.3 26.4 26.4 26.4 27.1 27.1 27.1 26.8 26.8 26.6 27.2 27.2 27.2 27.2 24.6 24.6 24.4 24.7 25.1 25.1 25.1	26.3 26.4 27.1 26.8 26.6 27.2 (oC) 24.6 24.4 24.7 25.1	4.13 4.12 4.1 3.41 3.43 3.43 3.43 3.43 3.43 3.43	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 20.1 28.7 DOS 53.4 45.3 45.5 15.2 23.1 25.9 26.6 20.1 2	48.4 41.8 22.8 26.3 46.7 28.9 (%) 53.1 45.4 15.5 23.4	3.8 3.5 36.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6 27.6 27.7 Turbidity 5.4 5.6 12.8 12.4 22.7 5.5 5.8 12.3	3.7 35.8 14.6 5.8 18.8 27.7 (NTU) 5.5 12.6 22.5 5.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 6.8 6.8 6.9 6.9 6.8 6.8 6.7 6.7 6.7 6.8 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	6.8 6.8 6.9 6.8 6.7 6.8 904 6.9 6.9 6.8	4 4 86 86 86 23 23 5 5 17 77 70 70 \$\$S\$ 4 4 30 30 38 38 3 3 14	4.0 86.0 23.0 5.0 17.0 70.0 4.0 30.0 38.0	0.14 0.14 3.47 3.47 3.47 2.41 2.41 4.44 4.44 1.45 3.54 3.54 3.54 0.04 1.34 8.11 5.75 5.75	0.14 3.47 2.41 4.44 1.45 3.54 mis N 0.04 1.34 8.11 5.75	111 115 105 105 105 35 35 35 410 <10 15 15 83 83 83 22ir 13 47 47 47 65 65 16 16	11.0 105.0 35.0 10.0 15.0 83.0 10.0 47.0 47.0 465.00
24.8 24.8 23.6 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7	W1 W2 W3 W4 W5 W6 Date Location W1 W2 W3 W4	12:45 12:55 12:35 12:35 12:25 12:10 3-Nov-08 Time 11:55 12:00 11:45	0.14 0.09 0.18 0.11 0.10 0.29 Depth (m) 0.14 0.09 0.16 0.12	26.3 26.4 26.4 26.4 27.1 27.1 27.1 26.6 26.6 27.2 27.2 27.2 27.2 27.2 27.2	26.3 26.4 27.1 26.8 26.6 27.2 (oC) 24.6 24.4 24.7 25.1	4.13 4.1 4.12 4.1 3.44 3.43 3.4 1.97 2.03 2.0 2.34 2.37 4.01 4.0 2.66 2.66 2.66 2.66 DO (mg/L) 4.47 4.43 4.4 3.78 3.79 3.79 1.26 1.28 1.28 1.89 1.8 1.89 4.33 4.33 4.33	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1 28.7 28.7 28.7 29.1 20.1	48.4 41.8 22.8 26.3 46.7 28.9 (%) 53.1 45.4 15.5 23.4	3.8 3.5 3.5 3.6.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6 27.6 27.7 Turbidity 5.4 5.6 12.8 12.4 22.7 22.3 5.5 5.8 12.3	3.7 35.8 14.6 5.8 18.8 27.7 (NTU) 5.5 12.6 22.5 5.7	0 0,0 0 0 0,0 0 0,	6.8 6.8 6.8 6.9 6.9 6.8 6.8 6.7 6.7 6.8 6.8 6.8 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.8 6.8 6.8 6.8	6.8 6.8 6.9 6.8 6.7 6.8 904 6.9 6.9 6.8	4 4 86 86 86 23 23 5 5 17 77 70 70 70 \$\$\$ 4 4 30 30 30 30 38 38 38 38 3 14 14	4.0 86.0 23.0 5.0 17.0 70.0 4.0 30.0 38.0	0.14 0.14 0.14 0.14 3.47 3.47 2.41 2.41 4.44 1.45 3.54 3.54 Anmo 0.04 1.34 1.34 1.34 1.34 1.34 1.34 1.34 3.57 5.75 5.75 3.5	0.14 3.47 2.41 4.44 1.45 3.54 mis N 0.04 1.34 8.11 5.75	111 1105 105 105 35 35 35 410 410 115 15 83 83 83 83 83 83 83 83 83 83 83 83 83	11.0 105.0 35.0 10.0 15.0 83.0 10.0 47.0 47.0 465.00
24.0 2.36 28.7 87.1 U 1.3 YU 38.8 115	W1 W2 W3 W4 W5 W6 Date Location W1 W2 W3 W4 W5	12:45 12:45 12:55 12:35 12:25 12:10 12:10 3-Nov-08 Time 11:55 12:00 11:45 11:35 11:30	0.14 0.09 0.18 0.11 0.10 0.29 Depth (m) 0.14 0.09 0.16 0.12	26.3 26.4 26.4 26.4 27.1 27.1 27.1 26.6 26.6 27.2 27.2 27.2 27.2 27.2 27.2	26.3 26.4 27.1 26.8 26.6 27.2 (oC) 24.6 24.4 24.7 25.1 24.8	413 4.1 4.12 4.1 3.43 3.43 3.43 3.43 1.97 2.03 2.03 2.03 2.37 4.01 4.04 4.04 2.66 2.64 2.66 2.64 2.66 2.64 2.66 1.86 1.86 1.86 1.89 1.88 4.33 4.33 4.33	48.2 48.6 41.7 41.9 22.4 23.1 25.9 26.6 46.4 46.9 29.1 28.7 28.7 53.4 45.3 45.5 15.3 15.7 23.1 23.6 26.6 27.7 28.7	48.4 41.8 22.8 26.3 46.7 28.9 53.1 45.4 15.5 23.4 52.6	3.8 3.5 3.5 3.6.1 35.4 14.5 14.7 5.8 5.7 18.9 18.6 27.6 27.7 Turbidity 5.4 5.6 12.8 12.4 22.7 22.3 5.5 5.8 12.3	3.7 35.8 14.6 5.8 18.8 27.7 (NTU) 5.5 12.6 22.5 5.7	0	6.8 6.8 6.8 6.9 6.9 6.9 6.8 6.8 6.8 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	6.8 6.9 6.8 6.7 6.8 6.9 6.8 6.9 6.8 6.9 6.8	4 4 86 86 86 23 23 5 5 17 77 70 70 70 \$\$\$ 4 4 30 30 30 30 38 38 38 38 3 14 14	4.0 86.0 23.0 5.0 17.0 70.0 4.0 30.0 38.0	0.14 0.14 3.47 3.47 2.41 2.41 4.44 4.44 4.44 1.45 1.45 3.54 3.54 3.54 Ammo 0.04 1.34 8.11 8.11 5.75 3.5 3.8	0.14 3.47 2.41 4.44 1.45 3.54 mis N 0.04 1.34 8.11 5.75	111 115 105 105 35 35 35 315 410 410 411 115 15 83 83 83 83 83 83 83 83 83 83 83 83 83	11.0 105.0 35.0 10.0 15.0 83.0 10.0 47.0 47.0 465.00

DC/2007/17 - Drainage Improvement in Cheung Po,Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tsang Tan Chung Tsuen, Tuen Mun Water Quality Data - KT13

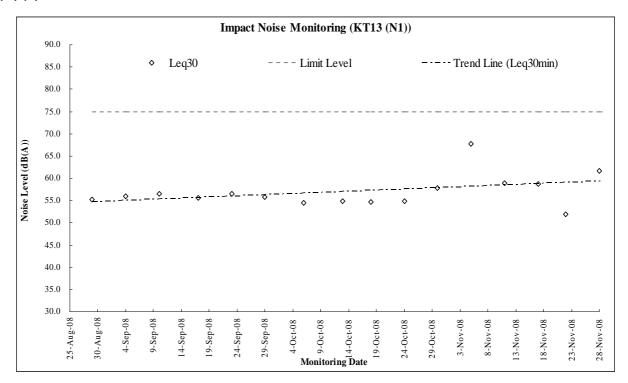

Date	5-Nov-08																	
Location	Time	Depth (m)	Temp ((oC)	DO (mg/L)	DOS	(%)	Turbidity	(NTU)	Salinity		ρΗ	SS		Ammo	nia N	Zin	nc.
			26.0	1	4.01	49.4	1	3.6		0	7		2.		0.15		<10	
W1	11:30	0.16	26.0	26.0	4.04 4.03	49.9	49.7	3.2	3.4	0.0	7	7.0	2	2.0	0.15	0.15	<10	10.0
W2	11:35	0.09	26.7	26.7	3.55	43.8	43.5	18.0	18.2	0 0.0	6.9	6.9	28	28.0	1.46	1.46	59	59.0
WZ	11:35	0.09	26.7	26.7	3.51	43.1	43.5	18.3	10.2	0.0	6.9	6.9	28	26.0	1.46	1.40	59	59.0
W3	11:20	0.15	26.9	26.9	1.12	13.8	14.1	23.5	23.5	0.0	6.9	6.9	32	32.0	6.57	6.57	64	64.0
			26.9		1.14	14.4		23.4		0	6.9		32		6.57		64	
W4	11:10	0.12	26.3	26.3	1.83	16.3	16.3	6.4	6.3	0.0	7	7.0	5	5.0	10.2	10.20	18	18.0
			26.3 27.3		1.83 3.74	16.2 49.0		6.1 13.1		0	7 6.8		5 19		10.2 3.53		18 15	
W5	11:05	0.11	27.3	27.3	3.74 3.73	48.6	48.8	13.0	13.1	0.0	6.8	6.8	19	19.0	3.53	3.53	15	15.0
			27.6		2.73	34.4		35.2		0	7.1	1	28		16.6		40	
W6	11:00	0.29	27.6	27.6	2.72	33.8	34.1	35.4	35.3	0.0	7.1	7.1	28	28.0	16.6	16.60	40	40.0
Date	7-Nov-08																	
Location	Time	Depth (m)	Temp ((oC)	D0 (mg/L)	DOS	(%)	Turbidity	(NTU)	Salinity		οH	SS		Ammo	nia N	Zin	IC .
W1	9:40	0.14	26.2	26.2	4.17 4.16	51.2	51.0	3.5	3.6	0.0	7.1	7.1	<2	#DIV/0!	0.12	0.12	<10	10.0
			26.2		4.14	50.8		3.7		0	7.1		<2		0.12		<10	
W2	9:45	0.10	26.6 26.6	26.6	3.33 3.33	41.6	41.5	28.1	28.3	0 0.0	7.1	7.1	54 54	54.0	3.7	3.70	73	73.0
			26.6		1.15	14.7		28.4		0	7.1		42		3.7 5.9		73 84	
W3	9:30	0.17	27.8	27.8	1.15	15.1	14.9	28.9	28.9	0.0	7	7.0	42	42.0	5.9	5.90	84	84.0
			26.7		1.09	13.5		7.7		0	7.1		4		6.6		17	
W4	9:20	0.13	26.7	26.7	1.10	13.7	13.6	7.7	7.7	0.0	7.1	7.1	4	4.0	6.6	6.60	17	17.0
W5	9:15	0.10	27.0	27.0	2.82	35.4	35.7	16.0	16.2	0 0.0	7	7.0	36	36.0	1.9	1.90	24	24.0
WS	9:15	0.10	27.0	27.0	2.86	35.9	35.7	16.3	10.2	0.0	7	7.0	36	36.0	1.9	1.90	24	24.0
W6	9:10	0.29	27.2	27.2	2.85	35.9	38.1	100.0	99.6	0.0	7.1	7.1	121	121.0	26.5	26.50	175	175.0
			27.2		2.89	40.3		99.1		0	7.1	1	121		26.5		175	
2.1.	10 Nov. 00																	
Date	10-Nov-08	Donth (m)	Temp ((oC)	DO (mg/L)	nos	(%)	Turbidity	(NITH)	Salinity		-u	99		Ammo	nia N	Zin	
Location	Time	Depth (m)	Temp (DO (mg/L)	DOS 54.7	` `	Turbidity		Salinity		рН	SS		Ammo 0.15		Zin	
		Depth (m) 0.18	Temp (22.0 22.0	(oC)	DO (mg/L) 4.79 4.80 4.80	54.7 54.8	(%) 54.8	Turbidity 4.1 3.9	(NTU) 4.0	Salinity 0 0.0	6.8	о Н - 6.8	6 6	6.0	0.15	nia N 0.15	14	14.0
Location W1	12:20	0.18	22.0	22.0	4.79 4.8 4.12	54.7	54.8	4.1	4.0	0 0.0	6.8	6.8	6	6.0		0.15		14.0
Location	Time		22.0 22.0		4.79 4.80	54.7 54.8	` `	4.1 3.9		0 0.0	6.8 6.8		6		0.15 0.15		14 14	
W1 W2	12:20 12:25	0.18	22.0 22.0 22.3 22.3 21.6	22.0	4.79 4.8 4.13 4.07 4.10 2.17 2.16	54.7 54.8 50.2 49.5 25.2	54.8	4.1 3.9 6.9 7.6 16.7	4.0 7.3	0 0.0 0 0.0 0 0.0	6.8 6.8 6.8	6.8	6 6 15 15 40	6.0	0.15 0.15 1 1 5.53	0.15	14 14 24 24 65	14.0
Location W1	12:20	0.18	22.0 22.0 22.3 22.3 21.6 21.6	22.0	4.79 4.8 4.13 4.07 2.17 2.14 4.80 4.10 2.16	54.7 54.8 50.2 49.5 25.2 24.7	54.8	4.1 3.9 6.9 7.6 16.7 16.2	4.0	0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9	6.8	6 6 15 15 40 40	6.0	0.15 0.15 1 1 5.53 5.53	0.15	14 14 24 24 65 65	14.0
W1 W2	12:20 12:25	0.18	22.0 22.0 22.3 22.3 21.6 21.6 21.3	22.0	4.79 4.8 4.13 4.07 2.17 2.14 1.75 4.80 4.10 4.10 4.10	54.7 54.8 50.2 49.5 25.2 24.7 19.8	54.8	4.1 3.9 6.9 7.6 16.7 16.2 4.9	4.0 7.3	0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9	6.8	6 6 15 15 40 40	6.0	0.15 0.15 1 1 5.53 5.53 2.26	0.15	14 14 24 24 65 65 13	14.0
W1 W2 W3	12:20 12:25 12:10	0.18 0.08 0.16	22.0 22.0 22.3 22.3 21.6 21.6 21.3 21.3	22.0 22.3 21.6	4.79 4.8 4.13 4.07 2.17 2.14 2.16 1.75 1.79	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3	54.8 49.9 25.0	4.1 3.9 6.9 7.6 16.7 16.2 4.9	4.0 7.3 16.5	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 7	6.8	6 6 15 15 40 40 4 4	6.0 15.0 40.0	0.15 0.15 1 1 5.53 5.53 2.26	0.15 1.00 5.53	14 14 24 24 65 65 13	14.0 24.0 65.0
W1 W2 W3	Time 12:20 12:25 12:10	0.18 0.08 0.16	22.0 22.0 22.3 22.3 21.6 21.6 21.3 21.3 21.4	22.0 22.3 21.6	4.79 4.80 4.13 4.07 2.17 2.14 1.75 1.79 3.17 2.16	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8	54.8 49.9 25.0	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2	4.0 7.3 16.5	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 7 7 6.9	6.8	6 6 15 15 40 40 4 4 4 24	6.0 15.0 40.0	0.15 0.15 1 1 5.53 5.53 2.26 2.26 10.8	0.15 1.00 5.53	14 14 24 24 65 65 13 13	14.0 24.0 65.0
Location W1 W2 W3 W4 W5	12:20 12:25 12:10 12:00 11:50	0.18 0.08 0.16 0.14 0.13	22.0 22.0 22.3 22.3 21.6 21.6 21.3 21.3	22.0 22.3 21.6 21.3 21.4	4.79 4.8 4.13 4.07 2.17 2.14 1.75 1.79 3.17 3.14 4.03	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3	54.8 49.9 25.0 20.1 38.5	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 15.2	4.0 7.3 16.5 5.1	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 7	6.8 6.8 6.9 7.0	6 6 15 15 40 40 4 4	6.0 15.0 40.0 4.0 24.0	0.15 0.15 1 1 5.53 5.53 2.26	0.15 1.00 5.53 2.26	14 14 24 24 65 65 13	24.0 65.0 13.0
Location W1 W2 W3 W4	Time 12:20 12:25 12:10 12:00	0.18 0.08 0.16 0.14	22.0 22.0 22.3 22.3 21.6 21.6 21.3 21.3 21.4 21.4	22.0 22.3 21.6 21.3	4.79 4.8 4.13 4.07 2.17 2.14 1.75 1.79 1.77 3.17 3.14 3.16	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2	54.8 49.9 25.0 20.1	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2	4.0 7.3 16.5 5.1	0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	6.8 6.8 6.8 6.9 6.9 7 7 6.9 6.9	6.8 - 6.8 - 6.9 - 7.0	6 6 15 15 40 40 4 4 24 24	6.0 15.0 40.0 4.0	0.15 0.15 1 1 5.53 5.53 2.26 2.26 10.8 10.8	0.15 - 1.00 - 5.53 - 2.26	14 14 24 24 65 65 65 13 13 12 12 12	24.0 65.0
Location W1 W2 W3 W4 W5	12:20 12:25 12:10 12:00 11:50	0.18 0.08 0.16 0.14 0.13	22.0 22.0 22.3 22.3 21.6 21.6 21.3 21.3 21.4 21.4	22.0 22.3 21.6 21.3 21.4	4.79 4.8 4.13 4.07 2.17 2.14 1.75 1.79 3.17 3.14 4.03 4.03	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2	54.8 49.9 25.0 20.1 38.5	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 15.2 14.7 60.2	4.0 7.3 16.5 5.1	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 7 7 6.9 6.9	6.8 6.8 6.9 7.0	6 6 15 15 40 40 4 4 24 24 24 83	6.0 15.0 40.0 4.0 24.0	0.15 0.15 1 1 5.53 5.53 2.26 2.26 10.8 10.8	0.15 1.00 5.53 2.26	14 14 24 24 24 65 65 65 13 13 12 12 117	14.0 24.0 65.0 13.0
Location W1 W2 W3 W4 W5	12:20 12:25 12:10 12:00 11:50	0.18 0.08 0.16 0.14 0.13	22.0 22.0 22.3 22.3 21.6 21.6 21.3 21.3 21.4 21.4 21.7	22.0 22.3 21.6 21.3 21.4 21.7	4.79 4.8 4.13 4.07 2.17 2.14 1.75 1.79 3.17 3.14 4.03 4.03 4.02	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2	54.8 49.9 25.0 20.1 38.5 49.0	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 15.2 14.7 60.2 58.3	4.0 7.3 16.5 5.1 15.0 59.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 6.8 6.8 6.9 6.9 7 7 6.9 6.9	6.8 6.8 6.9 7.0	6 6 15 15 40 40 4 4 24 24 24 83 83	6.0 15.0 40.0 4.0 24.0	0.15 0.15 1 1 5.53 5.53 2.26 2.26 10.8 10.8	0.15 1.00 5.53 2.26	14 14 24 24 24 65 65 65 13 13 12 12 117	24.0 65.0 13.0
Location W1 W2 W3 W4 W5 W6	12:20 12:25 12:10 12:00 11:50	0.18 0.08 0.16 0.14 0.13	22.0 22.0 22.0 22.3 22.3 21.6 21.6 21.3 21.3 21.4 21.4 21.7 21.7	22.0 22.3 21.6 21.3 21.4 21.7	4.79 4.8 4.80 4.13 4.07 2.17 2.14 2.16 1.79 1.79 3.17 3.14 3.16 4.03 4.02 Do (mg/L)	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8	54.8 49.9 25.0 20.1 38.5 49.0	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 15.2 15.2 60.2 58.3	4.0 7.3 16.5 5.1 15.0 59.3	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 7 7 6.9 6.9 7	6.8 6.8 6.9 7.0	6 6 15 15 40 40 4 4 24 24 22 83 83	6.0 15.0 40.0 4.0 24.0	0.15 0.15 1 1 5.53 5.53 2.26 2.26 10.8 10.8 16.6	0.15 1.00 5.53 2.26 10.80	14 14 24 24 65 65 13 12 12 17 17 22 17 22 21 22 21 23 24 24 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	14.0 24.0 - 65.0 - 13.0 - 12.0
W1 W2 W3 W4 W5 W6	12:20 12:25 12:10 12:00 11:50 11:45	0.18 0.08 0.16 0.14 0.13	22.0 22.0 22.3 22.3 21.6 21.6 21.3 21.3 21.4 21.4 21.7 21.7	22.0 22.3 21.6 21.3 21.4 21.7	4.79 4.80 4.13 4.10 4.07 2.17 2.14 2.16 1.75 1.77 3.17 3.16 4.03 4.02 DO (mg/L) 4.88 4.87	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8 DOS 55.8	54.8 49.9 25.0 20.1 38.5 49.0	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 14.7 60.2 58.3	4.0 7.3 16.5 5.1 15.0 59.3	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	6.8 6.8 6.8 6.9 6.9 7 7 7 6.9 6.9 7	6.8 6.8 6.9 7.0 6.9 7.0	6 6 6 15 15 15 140 40 40 4 4 4 24 24 28 83 83 83	6.0 15.0 40.0 4.0 24.0	0.15 0.15 1 1 1 5.53 5.53 2.26 10.8 10.8 16.6 16.6	0.15 1.00 5.53 2.26 10.80	14 14 14 24 24 24 65 5 65 13 13 12 12 12 117 117 117 2In <	14.0 24.0 - 65.0 - 13.0 - 12.0
W1 W2 W3 W4 W5 W6 Date Location	12:20 12:25 12:10 12:00 11:50 11:45 12-Nov-08 Time	0.18 0.08 0.16 0.14 0.13 0.29 Depth (m)	22.0 22.0 22.3 22.3 21.6 21.6 21.3 21.3 21.4 21.4 21.7 21.7 21.7	22.0 22.3 21.6 21.3 21.4 21.7	4.79 4.8 4.13 4.07 2.17 2.14 2.14 1.75 1.79 3.17 3.14 4.03 4.02 DO (mg/L) 4.88 4.86 4.87	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8 DOS	54.8 49.9 25.0 20.1 38.5 49.0	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 15.2 14.7 60.2 58.3	4.0 7.3 16.5 5.1 15.0 59.3 (NTU)	0 0,0 0 0,0	6.8 6.8 6.8 6.9 6.9 7 7 6.9 6.9 7 7	6.8 6.8 6.9 7.0 6.9 7.0	6 6 6 15 15 40 40 4 4 24 24 22 83 83 83	6.0 15.0 40.0 4.0 24.0	0.15 0.15 1 1 1 5.53 5.53 2.26 10.8 10.8 16.6 16.6 16.6 0.13	0.15 1.00 5.53 2.26 10.80 16.60	14 24 24 24 65 65 13 13 11 12 12 117 117 Zin <10 <10	14.0 24.0 65.0 13.0 12.0 117.0
W1 W2 W3 W4 W5 W6 Date Location	12:20 12:25 12:10 12:00 11:50 11:45 12-Nov-08 Time	0.18 0.08 0.16 0.14 0.13 0.29 Depth (m)	22.0 22.0 22.3 22.3 22.3 21.6 21.6 21.3 21.3 21.4 21.7 21.7 21.7 22.7 23.1 23.1 23.1 23.3	22.0 22.3 21.6 21.3 21.4 21.7	4.79 4.8 4.80 4.13 4.10 2.17 2.14 1.75 1.79 3.17 3.14 4.03 4.02 DO (mg/L) 4.88 4.86 4.87 4.86 4.86 4.87	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8 DOS 55.8 55.2 48.9	54.8 49.9 25.0 20.1 38.5 49.0	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 15.2 14.7 60.2 58.3 Turbidity 2.4 2.4	4.0 7.3 16.5 5.1 15.0 59.3 (NTU)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 6.8 6.8 6.9 6.9 7 7 6.9 6.9 7 7	6.8 6.8 6.9 7.0 6.9 7.0	6 6 6 15 15 15 140 40 40 4 4 24 83 83 83 83 83	6.0 15.0 40.0 4.0 24.0	0.15 0.15 1 1 1 5.53 5.53 2.26 10.8 10.8 16.6 16.6 Ammo 0.13 0.13 0.13	0.15 1.00 5.53 2.26 10.80 16.60	14 14 14 24 24 25 26 55 65 13 13 12 12 117 117 117 2In Zin Zin Zin Zin Zin < 10 < 10 < 10 < 22 22 23 10 10 10 10 10 11 <a h<="" td=""><td>14.0 24.0 65.0 13.0 12.0 117.0</td>	14.0 24.0 65.0 13.0 12.0 117.0
W1 W2 W3 W4 W5 W6 Date Location W1 W2	12:20 12:25 12:10 12:00 11:50 11:45 12-Nov-08 Time 10:55 11:00	0.18 0.08 0.16 0.14 0.13 0.29 Depth (m) 0.15 0.10	22 0 22 0 22 3 22 3 22 3 22 3 22 16 21 6 21 6 21 3 21 4 21 7 21 7 21 7 21 7 23 1 23 1 23 3 23 3	22.0 22.3 21.6 21.3 21.4 21.7 (oc) 23.1 23.3	4.79 4.8 4.80 4.13 4.07 2.17 2.14 1.75 1.79 3.17 3.14 3.16 4.03 4.03 4.02 DO (mg/L) 4.88 4.86 4.86 4.86 4.01 4.04 4.04	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8 DOS 55.8 55.2 48.9	54.8 49.9 25.0 20.1 38.5 49.0 (%) 49.0	4.1 3.9 6.9 7.6 16.2 4.9 5.2 15.2 15.2 58.3 Turbidity 2.4 2.4 12.3 13.1	4.0 7.3 16.5 5.1 15.0 59.3 (NTU) 2.4 12.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 6.8 6.8 6.9 6.9 7 7 6.9 6.9 7 7	- 6.8 - 6.8 - 6.9 - 7.0 - 6.9 - 7.0	6 6 15 15 15 140 40 40 4 4 4 24 83 83 83 83 83	6.0 15.0 40.0 4.0 24.0 83.0 #DIV/0!	0.15 0.15 0.15 1 1 1 5.53 5.53 5.53 2.26 2.26 10.8 10.8 16.6 16.6 Ammo 0.13 0.13 0.98	0.15 1.00 5.53 2.26 10.80 16.60	14 24 24 24 65 65 13 13 12 12 17 17 17 Zin 410 410 22 22	14.0 24.0 65.0 13.0 12.0 117.0 #DIV/01 22.0
W1 W2 W3 W4 W5 W6 Date Location W1	12:20 12:25 12:10 12:00 11:50 11:45 12-Nov-08 Time 10:55	0.18 0.08 0.16 0.14 0.13 0.29 Depth (m) 0.15	22.0 22.0 22.3 22.3 22.3 21.6 21.6 21.3 21.3 21.4 21.7 21.7 21.7 22.7 23.1 23.1 23.1 23.3	22.0 22.3 21.6 21.3 21.4 21.7 (oc) 23.1	4.79 4.8 4.80 4.13 4.10 2.17 2.14 1.75 1.79 3.17 3.14 4.03 4.02 DO (mg/L) 4.88 4.86 4.87 4.86 4.86 4.87	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8 DOS 55.8 55.2 48.9	54.8 49.9 25.0 20.1 38.5 49.0 (%)	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 15.2 14.7 60.2 58.3 Turbidity 2.4 2.4	4.0 7.3 16.5 5.1 15.0 59.3 (NTU) 2.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 6.8 6.8 6.9 6.9 7 7 7 7 6.9 7 7	6.8 6.8 6.9 7.0 6.9 7.0	6 6 6 15 15 15 140 40 40 4 4 24 83 83 83 83 83	- 6.0 - 15.0 - 40.0 - 4.0 - 24.0 - 33.0	0.15 0.15 1 1 1 5.53 5.53 2.26 10.8 10.8 16.6 16.6 Ammo 0.13 0.13 0.98 0.98 0.98	0.15 1.00 5.53 2.26 10.80 16.60	14 14 24 24 25 65 65 65 13 13 12 12 117 117 2In 117 2In 210 210 22 21 61	14.0 24.0 65.0 13.0 12.0 117.0
Ucation W1 W2 W3 W4 W5 W6 Date Location W1 W2 W3	12:20 12:25 12:10 12:00 11:50 11:45 12-Nov-08 Time 10:55 11:00 10:45	0.18 0.08 0.16 0.14 0.13 0.29 Depth (m) 0.15 0.10 0.21	22.0 22.0 22.3 22.3 22.3 22.1 21.6 21.6 21.3 21.4 21.7 21.7 21.7 22.1 23.1 23.1 23.3 22.3 22.3 22.3	22.0 22.3 21.6 21.3 21.4 21.7 (oc) 23.1 23.3 23.5	4.79 4.8 4.80 4.13 4.10 4.07 2.17 2.14 1.75 1.79 3.17 3.14 4.03 4.03 4.02 DO (mg/L) 4.88 4.86 4.87 4.86 4.06 4.01 2.13 2.17 2.15	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8 DOS 55.8 48.9 48.1 24.5	54.8 49.9 25.0 20.1 38.5 49.0 (%) 55.5 48.5 24.9	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 15.2 14.7 60.2 58.3 Turbidity 2.4 2.4 12.3 13.1 13.8	4.0 7.3 16.5 5.1 15.0 59.3 (NTU) 2.4 12.7 13.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 6.8 6.8 6.9 6.9 7 7 6.9 7 7 7 6.9 7 7	- 6.8 - 6.9 - 7.0 - 6.9 - 7.0 - 6.9 - 7.0	6 6 15 15 15 140 40 40 44 4 24 83 83 83 83 83	#DIV/0!	0.15 0.15 0.15 1 1 1 5.53 5.53 5.53 2.26 2.26 10.8 10.8 16.6 16.6 Ammo 0.13 0.13 0.98	0.15 1.00 5.53 2.26 10.80 16.60 10.80 0.13 0.98	14 24 24 24 65 65 13 13 12 12 17 17 17 Zin 410 410 22 22	14.0 24.0 65.0 13.0 12.0 117.0 117.0 #DIV/0! 22.0 61.0
W1 W2 W3 W4 W5 W6 Date Location W1 W2	12:20 12:25 12:10 12:00 11:50 11:45 12-Nov-08 Time 10:55 11:00	0.18 0.08 0.16 0.14 0.13 0.29 Depth (m) 0.15 0.10	22 0 22 0 22 3 22 3 22 3 22 3 21 6 21 6 21 6 21 3 21 14 21 4 21 7 21 7 21 7 21 7 22 3 1 23 1 23 3 23 3 23 3 23 5 23 5	22.0 22.3 21.6 21.3 21.4 21.7 (oc) 23.1 23.3	4.79 4.8 4.8 4.13 4.07 2.17 2.14 1.75 1.79 3.17 3.14 4.03 4.04 4.04 DO (mg/L) 4.88 4.86 4.87 4.06 4.01 2.17 2.17 2.15	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8 DOS 55.8 55.2 48.9 48.1 24.5	54.8 49.9 25.0 20.1 38.5 49.0 (%) 49.0	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 15.2 14.7 60.2 58.3 Turbidity 2.4 2.4 2.2 13.1 13.1 13.8	4.0 7.3 16.5 5.1 15.0 59.3 (NTU) 2.4 12.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 6.8 6.8 6.9 6.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- 6.8 - 6.8 - 6.9 - 7.0 - 6.9 - 7.0	6 6 6 15 15 15 15 140 40 40 4 4 4 24 83 83 83 83 83 85 \$\$<\text{\$<2}\$ 20 20 20 29 29 29	6.0 15.0 40.0 4.0 24.0 83.0 #DIV/0!	0.15 0.15 1 1 1 1 5.553 5.53 2.26 10.8 10.8 16.6 16.6 Ammo 0.13 0.13 0.13 0.98 0.98 3.5	0.15 1.00 5.53 2.26 10.80 16.60	14 14 24 24 24 24 65 65 65 65 13 13 12 12 117 117 2 2in 2 10 117 2 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	14.0 24.0 65.0 13.0 12.0 117.0 #DIV/0!
Location W1 W2 W3 W4 W5 W6 Location W1 W2 W3 W4 W4 W4 W4 W4 W4 W4	12:20 12:25 12:10 12:00 11:50 11:45 12-Nov-08 11:00 10:45 10:30	0.18 0.08 0.16 0.14 0.13 0.29 Depth (m) 0.15 0.10 0.21 0.13	22.0 22.3 22.3 22.3 22.3 22.3 21.6 21.6 21.6 21.3 21.3 21.4 21.7 21.7 21.7 21.7 23.1 23.1 23.3 23.3 23.5 22.6 22.6 22.8	22.0 22.3 21.6 21.3 21.4 21.7 (oC) 23.1 23.3 23.5 22.6	4.79 4.8 4.80 4.13 4.07 2.17 2.14 2.14 1.75 1.79 1.77 3.17 3.14 4.03 4.02 DO (mg/L) 4.88 4.86 4.87 4.06 4.01 2.17 2.17 2.18 1.89 1.89 1.89	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8 DOS 55.8 55.2 48.9 48.1 24.5 25.3 21.1	54.8 49.9 25.0 20.1 38.5 49.0 (96) 55.5 48.5 24.9 21.1	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 15.2 15.2 14.7 60.2 58.3 Turbidity 2.4 2.4 2.4 12.3 13.8 13.8 13.4 6.5	4.0 7.3 16.5 5.1 15.0 59.3 (NTU) 2.4 12.7 13.6 6.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 6.8 6.8 6.9 7 7 7 6.9 6.9 7 7 7 7	- 6.8 - 6.9 - 7.0 - 6.9 - 7.0 - 6.9 - 7.0 - 6.8 - 6.8 - 7.0 - 6.9	6 6 15 15 15 140 40 40 4 4 4 4 83 83 83 83 83 83 83 83 85 \$55 \$6 2 2 20 20 20 29 5 5 5 12	#DIV/01 20.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	0.15 0.15 0.15 1 1 1 1 5.53 5.53 5.53 5.53 2.26 2.26 10.8 10.8 16.6 16.6 Ammo 0.13 0.98 0.98 3.5 2.73 2.73 2.73	0.15 1.00 5.53 2.26 10.80 16.60 10.80 10.80 10.80 2.73	14 24 24 24 65 65 13 13 12 12 117 117 2In <10 22 22 61 61 13 13 13 13 13 13 10 10 10 1	14.0 24.0 65.0 13.0 12.0 117.0 117.0 12.0 40 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0
Ucation W1 W2 W3 W4 W5 W6 Date Location W1 W2 W3	12:20 12:25 12:10 12:00 11:50 11:45 12-Nov-08 Time 10:55 11:00 10:45	0.18 0.08 0.16 0.14 0.13 0.29 Depth (m) 0.15 0.10 0.21	22.0 22.3 22.3 22.3 21.6 21.6 21.6 21.3 21.4 21.7 21.7 21.7 21.7 22.7 22.3 23.1 23.1 23.3 23.3 23.3 23.5 22.5 22.6 22.6 22.8	22.0 22.3 21.6 21.3 21.4 21.7 (oc) 23.1 23.3 23.5	4.79 4.8 4.80 4.13 4.10 4.07 2.17 2.14 1.75 1.79 3.17 3.14 4.03 4.02 DO (mg/L) 4.88 4.86 4.87 4.06 4.01 2.13 2.17 2.15 1.89 1.89 1.89 4.01 3.97	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8 DOS 55.8 48.1 24.5 25.3 21.1 21.0 49.8	54.8 49.9 25.0 20.1 38.5 49.0 (%) 55.5 48.5 24.9	4.1 3.9 7.6 16.7 16.2 4.9 5.2 15.2 15.2 14.7 60.2 58.3 Turbidity 2.4 2.4 12.3 13.1 13.8 13.4 6.9 8.8 8.7	4.0 7.3 16.5 5.1 15.0 59.3 (NTU) 2.4 12.7 13.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 6.8 6.8 6.9 6.9 7 7 7 6.9 6.9 7 7 7 7	- 6.8 - 6.9 - 7.0 - 6.9 - 7.0 - 6.9 - 7.0	6 6 6 15 15 15 140 140 140 140 140 140 140 140 140 140	#DIV/0!	0.15 0.15 1 1 1 1 5.53 5.53 2.26 10.8 10.8 16.6 16.6 Anmo 0.13 0.13 0.98 0.98 3.5 3.5 2.73 2.73 2.14	0.15 1.00 5.53 2.26 10.80 16.60 10.80 0.13 0.98	14 14 14 24 24 24 65 65 65 65 13 13 12 12 117 117 117 2Im < 10 <10 <10 <10 <10 <10 <10 <10 <10 <1	14.0 24.0 65.0 13.0 12.0 117.0 117.0 #DIV/0! 22.0 61.0
Location W1 W2 W3 W4 W5 W6 Location W1 W2 W3 W4 W4 W4 W4 W4 W4 W4	12:20 12:25 12:10 12:00 11:50 11:45 12-Nov-08 11:00 10:45 10:30	0.18 0.08 0.16 0.14 0.13 0.29 Depth (m) 0.15 0.10 0.21 0.13	22 0 22 0 22 3 22 3 22 3 22 3 22 3 21 6 21 6 21 6 21 6 21 7 21 7 21 7 21 7 21 7 21 7 22 3 23 3 23 3 23 5 22 6 22 8 22 8 22 8 22 8	22.0 22.3 21.6 21.3 21.4 21.7 (oC) 23.1 23.3 23.5 22.6	4.79 4.8 4.8 4.13 4.07 2.17 2.14 1.75 1.79 3.17 3.14 4.03 4.02 DO (mg/L) 4.88 4.86 4.87 4.06 4.01 2.17 2.18 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8 DOS 55.8 55.2 48.9 24.5 20.3 38.2 49.2 49.2 48.8	54.8 49.9 25.0 20.1 38.5 49.0 (96) 55.5 48.5 24.9 21.1	4.1 3.9 6.9 7.6 16.7 16.2 4.9 5.2 15.2 14.7 60.2 58.3 58.3 14.7 12.3 12.3 12.3 12.3 13.8 12.4 6.5 6.9 8.8 8.7 20.4	4.0 7.3 16.5 5.1 15.0 59.3 (NTU) 2.4 12.7 13.6 6.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 6.8 6.8 6.8 6.9 7 7 7 6.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6.9 7 7 7 7 7 7 6.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- 6.8 - 6.9 - 7.0 - 6.9 - 7.0 - 6.9 - 7.0 - 6.8 - 6.8 - 7.0 - 6.9	6 6 15 15 15 140 40 40 4 4 4 4 4 83 83 83 83 83 83 83 83 83 83 83 83 83	#DIV/01 20.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	0.15 0.15 0.15 1 1 1 5.53 5.53 5.53 2.26 2.26 10.8 10.8 16.6 16.6 Ammo 0.13 0.98 0.98 3.5 2.73 2.73 2.14 2.14 2.14	0.15 1.00 5.53 2.26 10.80 16.60 10.80 10.80 10.80 2.73	14 24 24 24 65 65 65 13 13 12 12 17 17 17 17 2in 410 410 410 410 410 410 410 410 410 410	14.0 24.0 65.0 13.0 12.0 117.0 117.0 12.0 40 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0
Location W1 W2 W3 W4 W5 W6 Date Location W1 W2 W3 W4 W5 W5 W6 W5 W6 W7 W7 W7 W7 W7 W7 W7	12:20 12:25 12:10 12:00 11:50 11:45 12-Nov-08 Time 10:55 11:00 10:45 10:30 10:20	0.18 0.08 0.16 0.14 0.13 0.29 Depth (m) 0.15 0.10 0.21 0.13	22.0 22.3 22.3 22.3 21.6 21.6 21.6 21.3 21.4 21.7 21.7 21.7 21.7 22.7 22.3 23.1 23.1 23.3 23.3 23.3 23.5 22.5 22.6 22.6 22.8	(oC) 22.6 (2.8)	4.79 4.8 4.80 4.13 4.07 2.17 2.14 2.14 1.75 1.79 3.17 3.14 4.03 4.02 DO (mg/L) 4.88 4.86 4.87 4.06 4.01 2.13 2.17 2.18 9.188 1.89 1.89 1.89 1.89 1.89 1.89	54.7 54.8 50.2 49.5 25.2 24.7 19.8 20.3 38.8 38.2 49.2 48.8 DOS 55.8 48.1 24.5 25.3 21.1 21.0 49.8	96) 54.8 49.9 25.0 20.1 38.5 49.0 (96) 55.5 48.5 24.9 21.1 49.5	4.1 3.9 7.6 16.7 16.2 4.9 5.2 15.2 15.2 14.7 60.2 58.3 Turbidity 2.4 2.4 12.3 13.1 13.8 13.4 6.9 8.8 8.7	4.0 7.3 16.5 5.1 15.0 59.3 (NTU) 2.4 12.7 13.6 6.7 8.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.8 6.8 6.8 6.9 6.9 7 7 7 6.9 6.9 7 7 7 7	6.8 6.9 7.0 6.9 7.0 6.9 7.0 6.8 6.8 6.8 6.8	6 6 6 15 15 15 140 140 140 140 140 140 140 140 140 140	#DIV/0! 29.0 12.0	0.15 0.15 1 1 1 1 5.53 5.53 2.26 10.8 10.8 16.6 16.6 Anmo 0.13 0.13 0.98 0.98 3.5 3.5 2.73 2.73 2.14	- 0.15 - 1.00 - 5.53 - 2.26 - 10.80 - 16.60 - 10.81 - 0.13 - 0.98 - 3.50 - 2.73 - 2.14	14 14 14 24 24 24 65 65 65 65 13 13 12 12 117 117 117 2Im < 10 <10 <10 <10 <10 <10 <10 <10 <10 <1	14.0 24.0 65.0 13.0 12.0 117.0 12.0 4DIV/0! 22.0 61.0 13.0 10.0

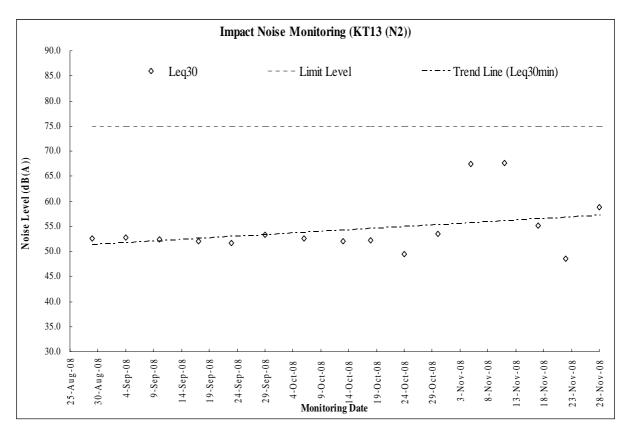

DC2007/17 - Drainage Improvement in Cheung Po,Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tsang Tan Chung Tsuen, Tuen Mun Water Quality Data - KT13

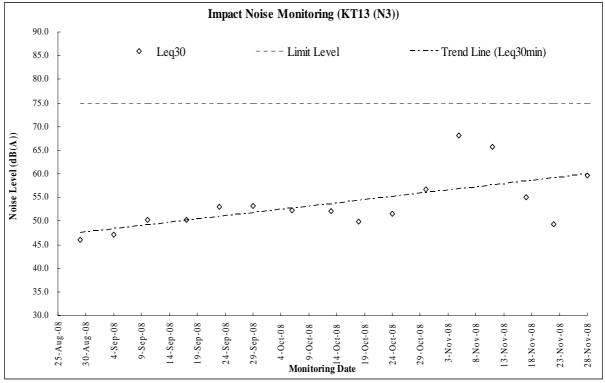

Date	14-Nov-08																	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)		DOS (%)	Turbidity	(NTU)	Salinity		рH		SS		Ammon	ia N	Zin	ıc
W1	40.40	0.45	23.6	4.65	4.64	54.9 54.7	4.6	4.8	0	0.0	6.9	6.9	3	3.0	0.1	0.10	<10	10.0
WI	10:40	0.15	23.6	4.63	4.64	54.7	4.9	4.8	0	0.0	6.9	6.9	3	3.0	0.1	0.10	<10	10.0
W2	10:50	0.10	24.8	2.53	2.55	30.3	713.0	710.0	0 0	0.0	6.9	6.9	1160	1160.0	2.5	2.50	1140	1140.0
***	10.50	0.10	24.8	2.57	2.00	30.8	707.0	7.10.0	0	0.0	6.9	0.7	1160	1100.0	2.5	2.50	1140	1140.0
W3	10:30	0.16	24.8	1.52	1.53	18.3	17.4	18.4	0 0	0.0	6.8	6.8	13	13.0	7.4	7.40	40	40.0
			24.8	1.54		18.7	19.3 9.5		0		6.8 7		13		7.4		40	
W4	10:20	0.12	23.1 23.1	1.36 1.39	1.38	16.0 16.7	9.7	9.6	0 0	0.0	7	7.0	9	9.0	6.1	6.10	13 13	13.0
			23.0	4.16		49.1	19.0		0		7.1		43		2.5		35	
W5	10:10	0.11	23.9	4.22	4.19	49.8	18.5	18.8	0 0	0.0	7.1	7.1	43	43.0	2.5	2.50	35	35.0
1417	40.00	0.00	24.7	3.63	2.11	42.7	187.0	404.0	0		6.9		163	163.0	20.4	20.40	93	22.0
W6	10:00	0.29	24.7	3.69	3.66	44.3 44.0	181.0	184.0	0	0.0	6.9	6.9	163	163.0	20.4	20.40	93	93.0
Date	17-Nov-08										1				1			
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)		DOS (%)	Turbidity	(NTU)	Salinity		pH		SS		Ammon	ia N	Zin	C
W1	12:50	0.14	24.4 24.4	4.69 4.71	4.70	56.3 56.9	4.3	4.3	0 0	0.0	6.9	6.9	<2	2.0	0.14	0.14	<10 <10	10.0
			24.0	4.71		50.7	11.7		0		6.9		21		1.68		30	
W2	0:00	0.10	24.9	4.3	4.27	51.3	11.4	11.6	0 0	0.0	6.9	6.9	21	21.0	1.68	1.68	30	30.0
			24.4	0.96		13.0	50.5		0		7		188		7		237	
W3	12:40	0.23	26.4	1.02	0.99	12.8	52.3	51.4	0	0.0	7	7.0	188	188.0	7	7.00	237	237.0
W4	12:30	0.11	24.0	1.29	1.26	15.3	6.7	6.6	0 0	0.0	6.9	6.9	5	5.0	5.94	5.94	20	20.0
***	12.30	0.11	24.0	1.23	1.20	14.5	6.4	0.0	0	0.0	6.9	0.7	5	5.0	5.94	J.74	20	20.0
W5	12:25	0.13	24.7	3.59	3.62	43.1	10.3	10.6	0 0	0.0	7.1	7.1	44	44.0	2.57	2.57	17	17.0
-			24.7	3.64		43.9	10.8 318.0		0		7.1 6.8		44 368		2.57 26.8		17 270	
W6	12:15	0.28	26.0 26.0	2.48	2.57	30.7	318.0	310.0	0 0	0.0	6.8	6.8	368	368.0	26.8	26.80	270	270.0
	1	1	20.0	2.00		J2.2	302.0		o l		0.0		300		20.0	1	270	
Date	19-Nov-08																	
Location	Time	Depth (m)	Temp (oC)	D0 (mg/L)		DOS (%)	Turbidity	(NTU)	Salinity		pH		SS		Ammon	ia N	Zin	C
W1	13:35	0.17	21.2	4.97	4.94	56.0 55.6	2.9	2.8	0 0	0.0	7	7.0	9	9.0	0.24	0.24	109	109.0
w.	13.33	0.17	21.2	4.91	4.74	55.2	2.7	2.0	0	0.0	7	7.0	9	7.0	0.24	0.24	109	107.0
W2	13:40	0.08	21.3	4.92	4.93	55.3 55.4	6.3	6.6	0 0	0.0	7	7.0	2	2.0	0.11	0.11	218	218.0
			21.3	4.93 1.81		55.5	6.9 15.5		0		7		30		0.11		218 59	
W3	13:25	0.21	22.0 22.0	1.81	1.84	20.8 21.2	15.5	15.7	0 0	0.0	6.9	6.9	30	30.0	3.5	3.50	59	59.0
			30.0	2		22.2	6.5		0		7.1		7		6.1		17	
W4	13:10	0.12	20.9	2.09	2.05	23.7 23.0	6.3	6.4	0 0	0.0	7.1	7.1	7	7.0	6.1	6.10	17	17.0
we	40.00	0.00	21.0	2.79	2.77	31.6	13.1	13.4	0		6.7		18	18.0	3	2.00	11	44.0
W5	13:00	0.09	21.8 21.8	2.74	2.77	31.0	13.7	13.4	0	0.0	6.7	6.7	18	18.0	3	3.00	11	11.0
W6	12:55	0.28	23.2	3.17	3.19	37.2	97.7	97.0	0 0	0.0	7	7.0	91	91.0	5.3	5.30	65	65.0
			23.2	3.21		37.7	96.2	****	0		7		91		5.3		65	
Date	21-Nov-08																	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)		DOS (%)	Turbidity	(NTU)	Salinity		pН		SS		Ammon	ia N	7in	
			21.0	4.9		EE 1	5.2		0		7		<2		0.17		<10	
W1	11:15	0.16	21.0 21.0	4.87	4.89	54.5	5.1	5.2	0	0.0	7	7.0	<2	2.0	0.17	0.17	<10	10.0
W2	11:20	0.10	21.5	4.48	4.45	50.5	16.7	16.8	0 0	0.0	6.9	6.9	48	48.0	1.57	1.57	46	46.0
WZ	11.20	0.10	21.5	4.42	4.45	49.4	16.9	10.0	0	0.0	6.9	0.7	48	40.0	1.57	1.57	46	40.0
W3	11:05	0.13	21.4 21.4	2.12	2.15	23.9 24.3	31.9	31.6	0 0	0.0	6.9	6.9	51	51.0	7.03	7.03	110	110.0
	1		21.4	2.17		24.6	31.2		0		6.9		51		7.03		110	
W4	10:50	0.12	20.1 20.1	2.03 2.08	2.06	22.4 22.7	9.0 8.4	8.7	0 0	0.0	6.9	6.9	9	9.0	8.99	8.99	17	17.0
l			21.4	3.92		44.1	8.4		0		6.7		11		8.99 3.92		17 12	
W5	10:40	0.11	21.4 21.4	3.92	3.95	44.9 44.5	8.2	8.2	0 0	0.0	6.7	6.7	11	11.0	3.92	3.92	12	12.0
1000	4	0.31	21.5	4.08	4.00	46.4	238.0	004-5	0		6.9		171	43	28.3	00	152	455.
W6	10:30				4.09	46.7	224.0	231.0	0	0.0	6.9	6.9	171	171.0	28.3	28.30	152	152.0
		0.31	21.5	4.1		40.7												
		0.31	21.5	4.1		40.7												1
Date	24-Nov-08		21.5												1			
Date Location	24-Nov-08 Time	Depth (m)	21.5 Temp (oC)	DO (mg/L)		DOS (%)	Turbidity	(NTU)	Salinity		pH		SS	ı	Ammon	ia N	Zin	c
			Temp (oC)	DO (mg/L) 5.04	5.08	DOS (%)	Turbidity 7.5	(NTU) 7.7	0 0	0.0	7	7.0	2	2.0	0.14	ia N 0.14	Zin <10	c 10.0
Location W1	Time 11:05	Depth (m) 0.15	71.5 Temp (oC) 22.5 22.5 22.5	DO (mg/L) 5.04 5.12	5.08	DOS (%) 57.9 58.4 52.4	7.5 7.8	7.7	0 0		7	7.0	2	2.0	0.14 0.14	0.14	<10 <10	10.0
Location	Time	Depth (m)	Temp (oC) 22.5 22.5 23.0 23.0	DO (mg/L) 5.04 5.12 4.5		DOS (%) 57.9 58.4 52.6 52.9	7.5 7.8 12.1		0 0	0.0	7		2 2 24		0.14 0.14 1.76		<10 <10 <10 24	
Location W1 W2	11:05 11:10	Depth (m) 0.15 0.11	Temp (oC) 22.5 22.5 22.5 23.0 23.0 23.0 23.0 23.0	DO (mg/L) 5.04 5.12	5.08 4.52	DOS (%) 57.9 58.4 52.6 53.2 53.2 15.6	7.5 7.8	7.7	0 0	0.0	7 7 7	7.0	2	2.0	0.14 0.14	0.14 1.76	<10 <10	10.0
Location W1	Time 11:05	Depth (m) 0.15	21.5 Temp (oC) 22.5 22.5 23.0 23.0 23.0	DO (mg/L) 5.04 5.12 4.5 4.54	5.08	DOS (%) 57.9 58.4 52.6 53.2 52.9	Turbidity 7.5 7.8 12.1 12.6	7.7	0 0		7 7 7 7	7.0	2 2 24 24	2.0	0.14 0.14 1.76 1.76	0.14	<10 <10 <10 24 24	10.0
Location W1 W2	11:05 11:10	Depth (m) 0.15 0.11	Temp (oC) 22.5 22.5 22.5 23.0 23.0 23.9 23.9 23.9 21.9 21.9	DO (mg/L) 5.04 5.12 4.5 4.54 1.32 1.39 1.37	5.08 4.52	DOS (%) 57.9 58.4 52.6 53.2 15.6 16.0 15.4 15.8	Turbidity 7.5 7.8 12.1 12.6 42.5 43.8 5.6	7.7 12.4 43.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0	7 7 7 7 6.8 6.8	7.0 7.0 6.8	2 2 24 24 24 98 98	2.0	0.14 0.14 1.76 1.76 8.57 8.57 8.24	0.14 1.76	2in <10 <10 24 24 158 11	10.0 24.0 158.0
United States Control of the Control	11:05 11:10 10:55	Depth (m) 0.15 0.11 0.17	Temp (cc) 22.5 22.5 22.5 23.0 23.0 23.0 23.9 23.9 21.9 21.9 21.9 21.9	DO (mg/L) 5.04 5.12 4.5 4.54 1.32 1.39 1.37	5.08 4.52 1.36	DOS (%) 57.9 58.4 58.4 52.6 53.2 15.6 16.0 15.4 16.2 15.8	Turbidity 7.5 7.8 12.1 12.6 42.5 43.8 5.6 5.9	7.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0	7 7 7 7 6.8 6.8 6.8	7.0	2 2 24 24 98 98 4	2.0 24.0 98.0	0.14 0.14 1.76 1.76 8.57 8.57 8.24	0.14 1.76 8.57	2in <10 <10 24 24 158 158 111 111	10.0
United States Control of the Control	11:05 11:10 10:55	Depth (m) 0.15 0.11 0.17	Temp (oC) 22.5 22.5 22.5 23.0 23.0 23.9 23.9 21.9 21.9 21.9 22.6 22.6	DO (mg/L) 5.04 5.12 4.5 4.5 1.32 1.39 1.37 1.444 3.22	5.08 4.52 1.36	DOS (%) 57.9 58.4 52.6 53.2 53.2 15.6 15.4 16.2 37.2 37.7	Turbidity 7.5 7.8 12.1 12.6 42.5 43.8 5.6 5.9 7.8	7.7 12.4 43.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0	7 7 7 7 6.8 6.8 6.8 7 7	7.0 7.0 6.8	2 2 24 24 98 98 4 4 4	2.0 24.0 98.0	0.14 0.14 1.76 1.76 8.57 8.57 8.24 8.24 2.1	0.14 1.76 8.57	2in <10 <10 <10 <24 24 158 158 111 111 10	10.0 24.0 158.0
W1 W2 W3 W4 W5	Time 11:05 11:10 10:55 10:45 10:40	Depth (m) 0.15 0.11 0.17 0.12 0.09	Temp (cc) 22.5 22.5 22.5 23.0 23.0 23.9 23.9 21.9 21.9 22.6 22.6 22.6 22.6	DO (mg/L) 5.04 5.12 4.5 4.5 4.54 1.32 1.39 1.37 1.44 3.22 3.31	5.08 4.52 1.36 1.41 3.27	DOS (%) 57.9 58.4 58.4 52.6 53.2 15.6 16.0 15.4 16.2 37.2 38.1 22.1	Turbidity 7.5 7.8 12.1 12.6 42.5 43.8 5.6 5.9 7.8 7.7	7.7 12.4 43.2 5.8 7.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0	7 7 7 7 6.8 6.8 7 7 7.2 7.2	7.0 7.0 6.8 7.0	2 2 24 24 98 98 4 4 21	2.0 24.0 98.0 4.0 21.0	0.14 0.14 1.76 1.76 8.57 8.57 8.24 8.24 2.1 2.1	0.14 1.76 8.57 8.24 2.10	2in <10 <10 <10 <24 <24 <24 <158 <158 <111 <11 <10 <10 <10 <10 <10 <10 <10 <1	10.0 24.0 158.0 11.0
Use the second s	11:05 11:10 10:55 10:45	Depth (m) 0.15 0.11 0.17 0.12	Temp (oC) 22.5 22.5 22.5 23.0 23.0 23.9 23.9 21.9 21.9 21.9 22.6 22.6	DO (mg/L) 5.04 5.12 4.5 4.5 1.32 1.39 1.37 1.444 3.22	5.08 4.52 1.36 1.41	DOS (%) 57.9 58.4 52.6 53.2 53.2 15.6 15.4 16.2 37.2 37.7	Turbidity 7.5 7.8 12.1 12.6 42.5 43.8 5.6 5.9 7.8	7.7 12.4 43.2 5.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0	7 7 7 7 6.8 6.8 6.8 7 7	7.0 7.0 6.8 7.0	2 2 24 24 98 98 4 4 4	2.0 24.0 98.0 4.0	0.14 0.14 1.76 1.76 8.57 8.57 8.24 8.24 2.1	0.14 1.76 8.57 8.24	2in <10 <10 <10 <24 24 158 158 111 111 10	10.0 24.0 158.0

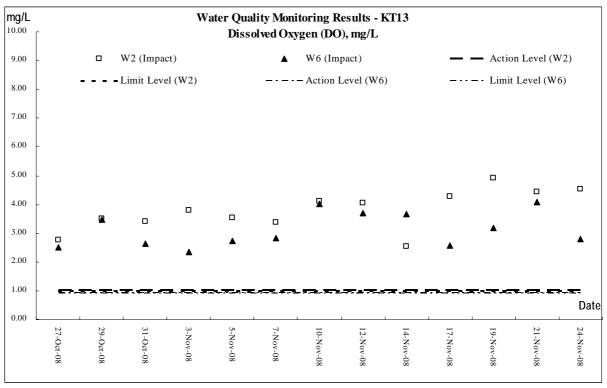

(B) Graphical Plots

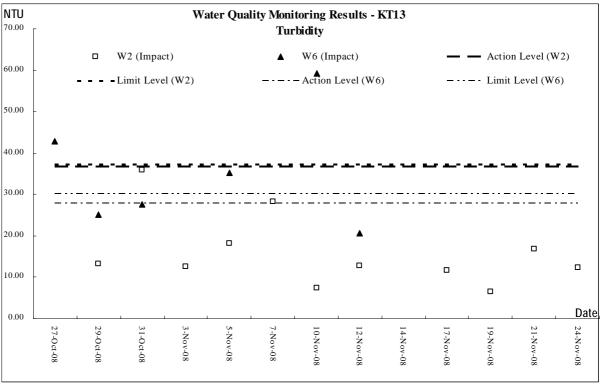
(B)(1) Air Quality

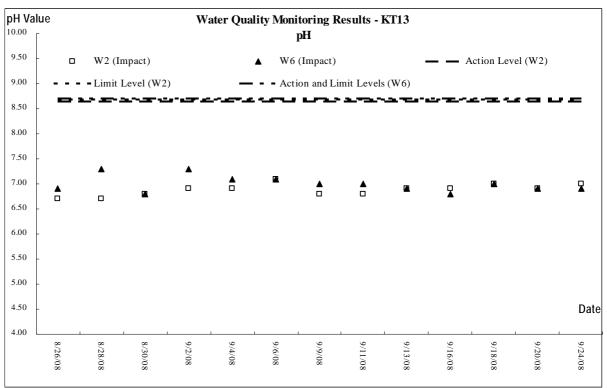


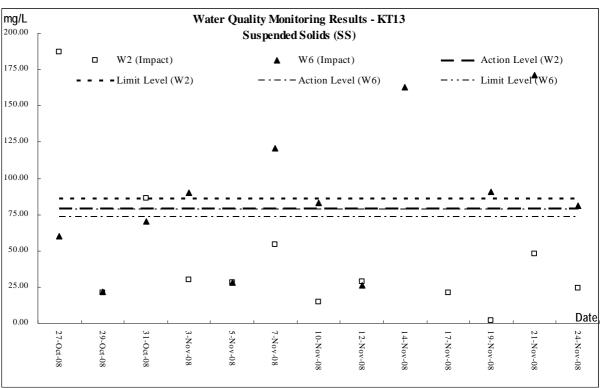


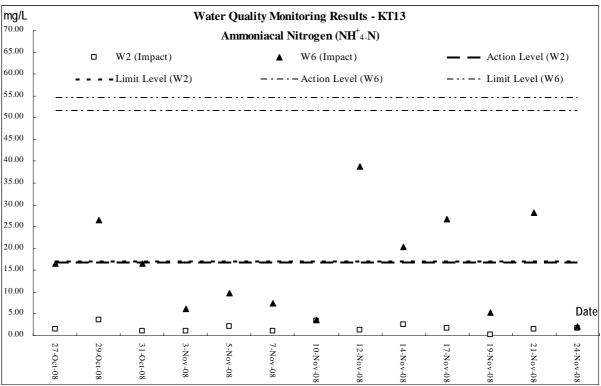


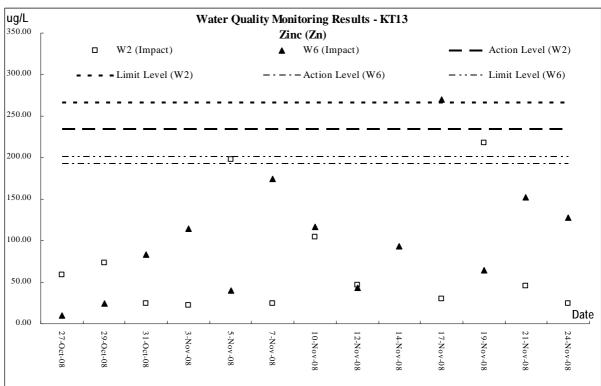

(B)(2) Construction Noise

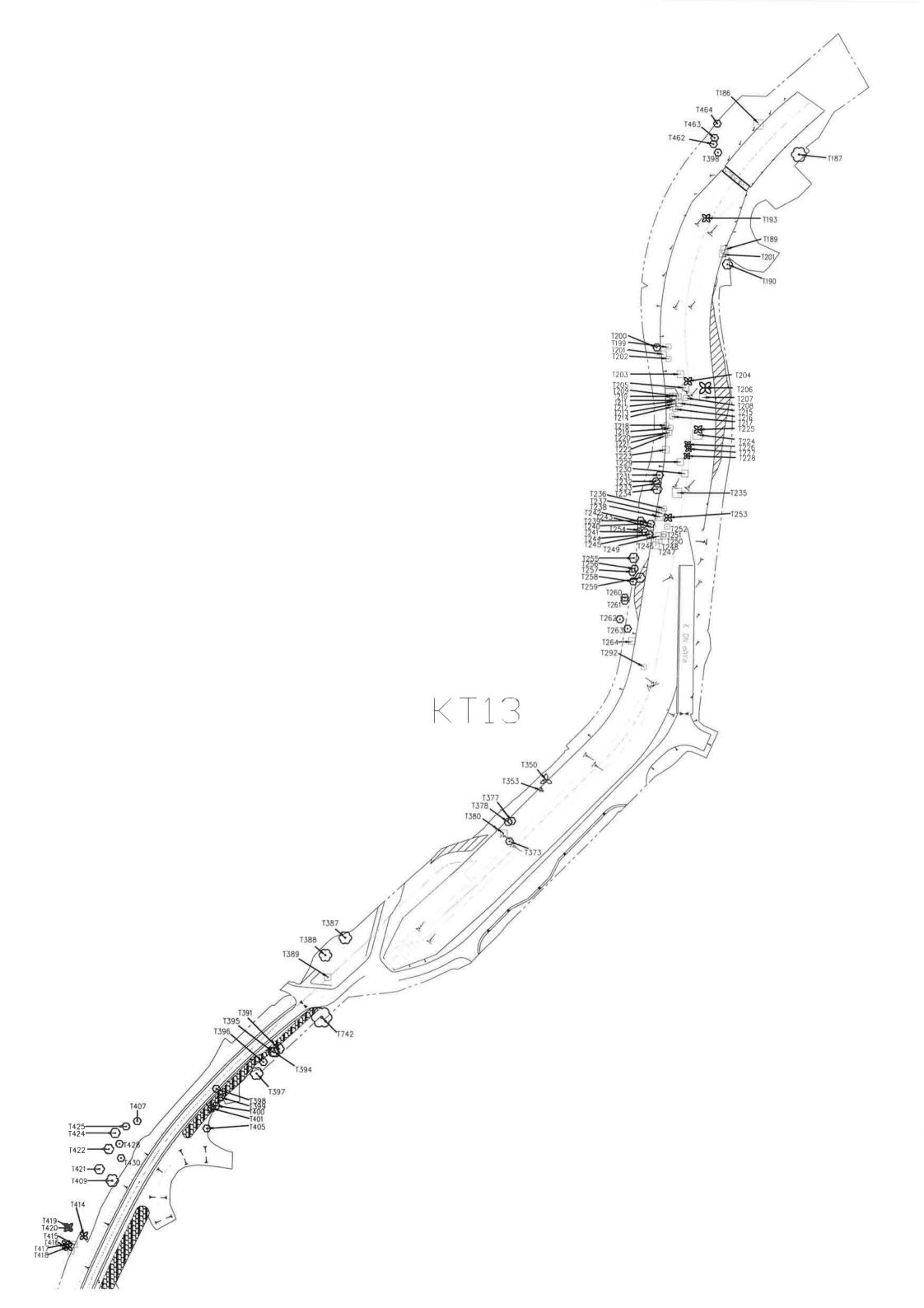







(B)(3) Water Quality





Appendix H

Photographic Records of Vegetation Monitoring

Drainage Improvement Works (KT-13)

Contract No. DC/2007/17

Tree Assessment Schedule

Project Name:

Remarks Oct-08 × * * * * * * Transplant Transplant Transplant Transplant Transplant Transplant Retain Retain Retain Retain Retain Retain Retain Fell Fell Fell Fell Fell Approved urvival Rate after Medium Medium High / Medium / Medium Medium Medium Medium Medium Medium Medium Medium Low Low Low Low Low Low Low Low Amenity value igh / Medium / Medium Medium Medium Medium Medium Medium Medium Low ood / Fair/ Fair Fair Health Poor Fair Poor Poor Fair 300d / Fair / Fair Fair Fair Fair Fair Fair Fair Fair Poor Poor Fair Fair Fair Fair Fair Fair Fair Fair Form Frunk Diamete 0.14 0.18 0.32 0.13 0.13 0.22 0.32 0.14 0.14 0.14 0.14 0.14 0.16 0.15 0.42 0.14 0.23 0.14 Choung Po, Mu On Kong, Yuen Long and San Tsuen (M) Tree Size 3.5 3.5 4.5 6.5 4.5 4.5 4.5 2.5 2.5 3.5 7.5 5.5 4.5 4.5 5 9 TOWN 5.5 8.5 5.5 4.5 5.5 3.5 8.5 4.5 2.5 5.5 4.5 4.5 4.5 6.5 Overall Thinese Name 鐵冬青 對葉榕 血桐 血桐 部内 踔 量及 荔枝 血禍 温温 はおり 強放 血桐 血柿 極 Масагалда тапатия Масагалда тапатия Macaranga tanarius Suranga tananus Dimocarpus logan Dimocarpus logan Dimocarpus logan Паиsспа Jansium Tauscna lansium Tauscna lansium Tauscha lansium Scientific Name itchi chinensis Missing Tree Missing Tree Missing Tree Missing Tree Missing Tree Ficus hispida Missing Tree Aissing Tree carpus 1 lex rotunda ree No. Location: T 183 T 189 T 184 T 185 T 193 T 195 T 198 T 86 T 187 190 T 192 194 T 196 T 197 199 203 204 205 T 181 T 182 00 T 191 202

Page 1

Notes:" 粗體"*" - "Missing Trees" recorded under the Tree assessment schedule were felled with unknown reasons before the site was handed over to DSD's contractor. Notes: " # " - Revise due to wrong identification

HK Landscaping Ltd.

Project Name:

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

Oct-08 Cheung Po, Ma On Kong, Yuen Long and San Tsuen Location: Survival Rate after Amenity value Health Form Tree Size Species High / Medium / Approved Frunk Diameter Good / Fair / High / Medium / Good / Fair / Overall Crown Remarks Chinese Name Tree No. | Scientific Name eight (M) Spread (M) Fell Fair Fair Low Low 楊桃 7.5 6.5 0.24 Т 206 Aventhoa carambola Transplant Medium Medium 5.5 0.2 Fair 柚 4.4 Fair Γ 207 Citrus maxima Transplant 0.13 Fair Medium Medium 龍眼 5.5 3.5 Fair Т 208 Dimocarpus logan Medium Medium Transplant 龍眼 3.5 0.14 Fair Fair 6.5 T 209 Dimocarpus logan 4.5 0.13 Fair Fair Medium Medium Transplant 龍眼 6.5 T 210 Diniocarpus logan Medium Transplant Fair Medium T 211 龍眼 6.5 4.5 0.15 Fair Dimocurpus logan Medium Medium Transplant 龍眼 3.5 0.13 Fair Fair 6.5 T 212 Dimocarpus logan Medium Transplant 龍眼 3.5 Medium 6.5 0.15 Fair Fair T 213 Dimocarpus logan Medium Transplant 龍眼 6.5 0.13 Fair Fair Medium T 214 Dimocarpus logan Medium Transplant 龍眼 6.5 4.5 0.14 Fair Fair Medium T 215 Dimocarpus logan Transplant Medium Medium 龍眼 3.5 0.13 Fair Fair 6.5 T 216 Dimocarpus logan 龍眼 5.5 3.5 0.13 Fair Fair Medium Medium Transplant T 217 Dimocarous logan Medium Transplant Fair Medium 龍眼 5.5 4 0.13 Fair T 218 Dimocarpus logan 龍眼 3.5 Fair Fair Medium Medium Transplant 6.5 0.14 T 219 Dimocarpus logan Medium Transplant 3.5 0.15 Fair Fair Medium 220 Dimocarpus logan 龍眼 6.5 Medium Medium Transplant 龍眼 4.5 0.13 Fair 4.5 Fair Γ221 Dimocarpus logan Medium Transplant Fair Medium Γ 222 Dimocarpus logan 龍眼 5.5 4.5 0.14 Fair Medium Transplant 4.5 Fair Medium 龍眼 6.5 0.21 Fair 223 Dimocarpus logan Medium Transplant 龍眼 7.5 6.5 0.27Fair Fair High Γ224 Dimocarpus logan 黄皮 5.5 4.5 0.13 Fair Fair Low Low Fell Т 225 Clausena lansium Fell 隨婆 6.5 3.5 0.13 Fair Fair Low Low T 226 Sterculia nobilis Fell Low Γ 227 Sterculia nobilis 隨婆 5.5 3.5 0.14 Fair Fair Low 頻婆 5.5 3.5 Fair Fair Low Low Fell 0.14 Γ 228 Sterculia nobilis 5.5 4.5 0.2 Fair Medium Medium Transplant T 229 Dimocarous logan 龍眼 Fair 荔枝 Medium Transplant T 230 Litchi chinensis 5.5 5.5 0.2 Fair Fair Medium

Page 2

Notes: " 粗體"* " - "Missing Trees" recorded under the Tree assessment schedule were felled with unknown reasons before the site was handed over to DSD's contractor.

Notes: " # " - Revise due to wrong identification

HK Landscaping Ltd.

Project Name:

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

Location:		Cheung Po, Ma	On Kong, Yuen	Long and Sa	n Tsuen			Date:			Oct-08
	Species			Tree Size		Form	Health	Amenity value	Survival Rate after		
Tree No.	Scientific Name	Chinese Name	Overall Height (M)	Crown Spread (M)	Trunk Diameter	Good / Fair / Poor	Good / Fair /	High / Medium /	High / Medium /	Approved Treatment	Remarks
Т 231	Dimocarpus logan	龍眼	5.5	4	0.13	Fair	Fair	Low	Medium	Retain	
Т 232	Dimocarpus logan	龍眼	5.5	3.5	0.14	Fair	Fair	Low	Medium	Retain	
Т 233	Dimocarpus logan	龍眼	5.5	3.5	0.13	Fair	Fair	Low	Medium	Retain	
Т 234	Dimocarpus logan	龍眼	6.5	4.5	0.21	Fair	Fair	Low	Medium	Retain	
Т 235	Dimocarpus logan	龍眼	8.5	6.5	0.34	Fair	Fair	Medium	Medium	Transplant	
T 236	Dimocarpus logan	問題見	5.5	3.5	0.13	Poor	Poor	Medium	Medium	Transplant	
Γ 237	Dimocarpus logan	龍眼	5.5	4.5	0.14	Fair	Fair	Medium	Medium	Transplant	
Γ 238	Dimocarpus logan	造眼	6.5	4.5	0.15	Fair	Fair	Medium	Medium	Transplant	
Γ 239	Dimocarpus logan	隨眼	4.5	4	0.14	Fair	Fair	Low	Medium	Retain	
Γ 240	Dimocarpus logan	龍眼	5.5	4	0.14	Fair	Fair	Low	Medium	Retain	
Γ 241	Dimocarpus logan	龍眼	5.5	3.5	0.13	Fair	Fair	Low	Low	Retain	
Т 242	Dimocarpus logan	龍眼	5.5	3.5	0.13	Fair	Fair	Low	Medium	Retain	
Γ 243	Dimocarpus logan	龍眼	5.5	3.5	0.13	Fair	Fair	Medium	Medium	Transplant	
Г 244	Dimocarpus logan	龍眼	5.5	4	0.14	Fair	Fair	Medium	Medium	Transplant	
Γ 245	Dimocarpus logan	龍眼	5.5	3.5	0.13	Fair	Fair	Low	Low	Retain	
Т 246	Dimocarpus logan	龍眼	6.5	4.5	0.13	Fair	Fair	Medium	Medium	Transplant	
Γ 247	Dimocarpus logan	造眼	6.5	4.5	0.16	Fair	Fair	Medium	Medium	Transplant	
Γ248	Dimocarpus logan	隨眼	6.5	4.5	0.13	Fair	Fair	Medium	Medium	Transplant	
Γ 249	Dimocarous logan	龍眼	6.5	4.5	0.32	Fair	Fair	Medium	Medium	Transplant	
Г 250	Dimocarpus logan	造眼	6.5	3.5	0.14	Fair	Fair	Medium	Medium	Transplant	
Г 251	Dimocarpus logan	龍眼	5.5	3.5	0.13	Fair	Fair	Medium	Medium	Transplant	
Γ 252	Dimocarpus logan	龍眼	5.5	3.5	0.13	Fair	Fair	Medium	Medium	Transplant	
Т 253	Sterculia nobilis	蘋婆	4.5	4.5	0.14	Fair	Fair	Low	Low	Fell	
Γ 254	Dimocarpus logan	龍眼	5.5	2.5	0.13	Fair	Fair	Low	Medium	Retain	
Т 255	Sterculia nobilis	蘋婆	6.5	4.5	0.18	Fair	Fair	Low	Low	Retain	

Page 3

Notes: " 粗體"* " - "Missing Trees" recorded under the Tree assessment schedule were felled with unknown reasons before the site was handed over to DSD's contractor.

Notes: "#" - Revise due to wrong identification

HK Landscaping Ltd.

Project Name:

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

Oct-08 Location: Cheung Po, Ma On Kong, Yuen Long and San Tsuen Date: Survival Rate after Health Amenity value Species Tree Size Form Overall Trunk Diameter Good / Fair / High / Medium / ligh / Medium / Crown Good / Fair / Approved Remarks ree No. Scientific Name Chinese Name Inread (M) T 256 5.5 3.5 0.13 Prunus persica Fair Fair Low Low Retain 龍眼 5.5 Medium T 257 Dimocarpus logan 3.5 0.15 Fair Fair Low Retain T 258 Dimocarpus logan 龍眼 Medium 5.5 3.5 0.14 Fair Fair Low Retain T 259 楊桃 5.5 4.5 0.16 Medium Retain Fair Fair Low A verrhoa carambola T 260 5.5 0.13 Artocarpus marocarpus 波羅蜜 3.5 Fair Medium Retain Fair Low Т 261 Artocarpus marocarpus 波羅密 6.5 4 0.15 Fair Fair Low Medium Retain T 262 Dimocarpus logan 3.5 龍眼 5.5 0.13 Fair Fair Low Medium Retain T 263 6.5 0.15 Prunus persica 4 Fair Fair Low Medium Retain T 264 Prunus persica 5.5 4.5 0.13 Fair Fair Medium Medium Transplant Γ 265 Dimocarpus logan 龍眼 0.34 Fair Good Low Fell Low T 266 Sapium sebiferum 鳥桕 3 3 0.13 Fair Poor Low Low Retain Г 267 Sapium sebiferum 鳥桕 4 3 0.15 Fair Poor Low Low Retain 鳥桕 3 Γ 268 Sapium sebiferum 0.15 4 Fair Poor-Low Low Retain T 269 Celtis sinensis 3 5 0.13 Fell Fair Poor Low Low T 270 Sapium sebiferum 烏桕 6 4 0.23 Fair Poor Low Low Fell Γ 271 Celtis sinensis 0.24 Fell Fair Poor Low Low 5 土密樹 5 T 272 Bridelia tomentosa 0.15 Poor Poor Low Low Fell T 273 Celtis sinensis 4 0.2 Fair Fair Fell Low Low T 274 Celtis sinensis 0.21 Fair Poor Low Low Fell Т 275 Ficus hispida 7 對葉榕 6 0.38 Fair Poor Low Low Transplant T 276 Celtis sinensis 6 3 0.14 Fair Fair Fell Low Low T 277 朴 Celtis sinensis 7 5 0.22 Fair Fair Low Medium Transplant T 278 Dimocarpus longan 龍眼 8 6 0.27 Good Fair Medium Medium Transplant T 279 Macaranga tanarius 血桐 5 4 0.14 Fair Poor Low Fell Low T 280 Dead Tree 死樹

Page 4

HK Landscaping Ltd.

Project Name:

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

Location:	R	Cheung Po, Ma	On Kong, Yuer	Long and Sa	n Tsuen			Date:			Oct-08
	Species			Tree Size		Form	Health	Amenity value	Survival Rate after Transplanting		
Tree No.	Scientific Name	Chinese Name	Overall Height (M)	Crown Smead (M)	Trunk Diamete	Good / Fair / Poor	Good / Fair / Poor	High / Medium /	High / Medium /	Approved Treatment	Remarks
T 281	Ficus hispida	對葉榕	5	5	0.15	Poor	Poor	Low	Low	Fell	
T 282	Ficus hispida	對葉榕	4	6	0.15	Poor	Poor	Low	Low	Fell	
T 283	Ficus hispida	對葉榕	5	5	0.2	Poor	Poor	Low	Low	Fell	
T 284	Dead Tree	死樹	- 2		-	(#)	:	88	25.		
T 285	Dimocarpus longan	雅眼	7	8	0.4	Good	Good	Medium	Medium	Transplant	
T 286	Ficus hispida	對葉榕	3	1	0.16	Poor	Poor	Low	Low	Fell	
T 287	Celtis sinensis	朴	4	4	0.14	Fair	Poor	Low	Low	Fell	
T 288	Celtis sinensis	朴	7	6	0.39	Fair	Poor	Medium	Low	Transplant	
T 289	Missing Tree				-	(4)	54	28			*
T 290	Missing Tree		-	_ =		583	- 3	88		*	*
T 291	Ficus hispida	對葉榕	5	-5	0.32	Fair	Poor	Low	Low	Fell	
T 292	Dimocarpus logan	離眼	3.5	2	0.15	Fair	Fair	Medium	Medium	Transplant	
T 293	Missing Tree		1		-	42	12	500	140	-	*
T 294	Missing Tree			Je		120		/ (75)			*
T 295	Missing Tree		-	le le		5#3);		DR.		-	*
T 296	Missing Tree			-	-	17/2	9	120		-	*
T 297	Missing Tree		*			360		*		*	*
T 298	Missing Tree		Ę					- 4	*		*
T 299	Missing Tree		-	-	*	49		*	36	* _	*
T 300	Missing Tree					-					*
T 301	Missing Tree		*	E	-	1811			*		*
T 302	Missing Tree		-	į,					-	-	*
T 303	Missing Tree		*		-	æ	œ.			-	*
T 304	Missing Tree		3	72	-	720					*
T 305	Missing Tree			199				-		-	*

Page 5

Tree Assessment Schedule

Surveyed by:

HK Landscaping Ltd.

Project Name:

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

Oct-08 Location: Cheung Po, Ma On Kong, Yuen Long and San Tsuen Survival Rate after Health Amenity value Form Species Tree Size Trunk Diameter Good / Fair / High / Medium / Overall Crown Good / Fair / High / Medium / Approved Remarks Tree No. Scientific Name Chinese Name * T 306 Missing Tree * Т 307 Missing Tree Т 308 Missing Tree * Т 309 Missing Tree * T 310 Missing Tree * Т 311 Missing Tree T 312 Missing Tree * * T 313 Missing Tree * Т 314 Missing Tree * T 315 Missing Tree * T 316 Missing Tree T 317 Missing Tree * * T 318 Missing Tree * T 319 Missing Tree * T 320 Missing Tree T 321 * Missing Tree * Missing Tree T 322 Т 323 Missing Tree * * T 324 Missing Tree * T 325 Missing Tree T 326 Missing Tree * T 327 Missing Tree * T 328 Missing Tree * * Missing Tree Т 329 Missing Tree * T 330 T 331 Missing Tree

Notes: " 粗體"* " - "Missing Trees" recorded under the Tree assessment schedule were felled with unknown reasons before the site was handed over to DSD's contractor.

Page 6

Notes: "#" - Revise due to wrong identification

HK Landscaping Ltd.

Project Name:

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

Location:		Cheung Po. Ma	On Kong, Yuer	Long and Sa	n Tsuen			Date:			Oct-08
	Species			Tree Size		Form	Hea th	Amenity value	Survival Rate after		
Tree No.	Scientific Name	Chinese Name	Overall Height (M)	Crown	Trunk Diameter	Good / Fair /	Good / Fair /	High / Medium /	High / Medium /	Approved Treatment	Remarks
T 332	Missing Tree		- 2/3	-		-	28	12	12		*
T 333	Missing Tree		@)		~	•			550	-	*
Г 334	Missing Tree		720	-		325	18	i i	88	2	*
T 335	Missing Tree		12/	a	-	===	U.S.	10	(5)	3	*
Г 336	Missing Tree		941	2	-	_ =		E.	1825	2	*
Γ 337	Missing Tree							Je	853	5	*
Г 338	Missing Tree		-	2			142		182	- 1	*
339	Missing Tree		(2)		-		050	10.	0.5		*
Γ340	Missing Tree		127	-		-	(E)				*
341	Missing Tree		97/	-	=		0=	10.	959	-	*
Γ 342	Missing Tree		(4.0	×	-		283	E.	3%:	8	*
Γ 343	Missing Tree		570	-				100		3	*
Γ 344	Missing Tree		(*)	*			7,81	ь	(8)	*	*
345	Missing Tree		-								*
7 346	Missing Tree		30)	Ε.	-		5-3	F			*
C 347	Missing Tree		20	9			7.5	14	G.		*
348	Missing Tree		:=:	*			14.	E	:#:	-	*
Γ349	Missing Tree		2/	2	- G		· · · ·	2	121		*
350	Delonix regia	鳳凰木	10.5	5.5	0.32	Fair	Fair	Medium	Medium	Transplant	Conflict with proposed channel
351	Dead Tree	死樹	U.		-		1 19				
352	Missing Tree			-		-	700			-	*
353	Delonix regia	鳳凰木	5.5	2.5	0.15	Fair	Fair	Medium	Medium	Transplant	Conflict with proposed channel
354	Missing Tree		-	-	-	-	2.5	-	-	-	*
355	Missing Tree		2		2	- 825	- 1		// <u>#</u> :		*
Γ 356	Missing Tree		-	-			7=	-			*

Page 7

Tree Assessment Schedule

Surveyed by:

HK Landscaping Ltd.

Project Name:

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

Location: Cheung Po, Ma On Kong, Yuen Long and San Tsuen Date: Oct-08

Location:		Cheung Po, Ma	on Kong, Yuer	Long and Sar	n I suen			Date	8		Oct-08
	Species			Tree Size		Form	Health	Amenity value	Survival Rate after		
Tree No.	Scientific Name	Chinese Name	Overall Height (M)	Crown Spread (M)	Trunk Diamete	Good / Fair /	Good / Fair /	High / Medium /	High / Medium /	Approved Treatment	Remarks
Τ 357	Missing Tree		-		-	2	-		_=	-	*
Τ 358	Missing Tree				853				-		*
Т 359	Missing Tree		7-	2	222	2				-	*
Т 360	Missing Tree		<u>@</u>	3.		15.	-	-	-		*
Т 361	Missing Tree		22	- 2	36	5	3			ia .	*
Т 362	Missing Tree		323	13	853	I.S.	*	-	*	8	*
Т 363	Missing Tree		7E	14		-	2	=	2	2	*
Т 364	Missing Tree			15	92		5			-	*
Т 365	Missing Tree		292	2		-	2		2	2	*
Т 366	Missing Tree		(a)	- 3		- 5		-		- 5	*
T 367	Missing Tree		:-:	-		-	×		*		*
T 368	Missing Tree			i i			¥	3	¥		*
Т 369	Missing Tree			-	:•:				*	-	*
Т 370	Missing Tree		~ ~	_ 2	-		-				*
Т 371	Missing Tree				·	-	R	-		- 2	*
Т 372	Missing Tree		123	2	121	2	- 4		3	- š	*
T 373	Dimocarpus logan	龍眼	3.5	2	0.18	Fair	Fair	Medium	Low	Transplant	Conflict with proposed channel
Τ 374	Missing Tree			-	St	12	-				*
T 375	Missing Tree		200			E	Е	Э.	-	-	*
Т 376	Missing Tree		722	2		-					*
T 377	Spathodea campanulata	火焰木	3.5	2	0.17	Fair	Fair	Medium	Medium	Transplant	Conflict with proposed channel
Т 378	Spathodea campanulata	火焰木	4	2.5	0.18	Fair	Fair	Medium	Medium	Transplant	Conflict with proposed channel
T 379	Missing Tree		(5):	-		3.5		-	-		*
T 380	Ficus Benjamin	垂榕	5.5	4	0.23	Fair	Fair	Low	Low	Fell	
T 381	Missing Tree		5.	-		7-6			-	-	*

Page 8

HK Landscaping Ltd.

Project Name:

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

Location:	<u>; </u>	Cheung Po, Ma	On Kong, Yuen	Long and Sa	n Tsuen			Date:			Oct-08
	Species			Tree Size		Form	Health	Amenity value	Survival Rate after		
Tree No	Scientific Name	Chinese Name	Overall Height (M)	Crown Spread (M)	Trunk Diameter	Good / Fair /	Good / Fair /	High / Medium /	High / Medium /	Approved Treatment	Remarks
Т 382	Missing Tree			=		- Ga()		1/45	-	le:	*
Т 383	Missing Tree			-		153	25		200	, Its	*
Γ 384	Missing Tree		- 2	2	_					12	*
Т 385	Missing Tree		5	<u> </u>	8	Ē.		(5)	· ·		*1
Т 386	Missing Tree		2	2	2	2			_&		*
Т 387	Alcurites molucanna	石栗	7.5	5.5	0.28	Fair	Fair	Medium	Medium	Retain	
Т 388	Alcurites molucanna	石栗	7.5	6	0.29	Fair	Fair	Medium	Medium	Retain	
Т 389	Aleurites molucanna	石栗	5	4.5	0.26	Fair	Fair	Medium	Medium	Transplant	
Т 390	Missing Tree		2	_ =	÷.	540		18	2.5		*
#T 391	Missing Tree		8	-	-	N74	-	(6)	*	75	*
Т 392	Missing Tree			×	*	(40)		-		18	*
T 393	Missing Tree		- 4		2	÷.	139	353	220	100	*
#T 394	Missing Tree		-				-83			36	*
#T 395	Missing Tree		-	- 4		- Sp					*
#T 396	Albizia lebbeck	大葉合歡	6.5	3	0.15	Fair	Fair	Low	High	Transplant	
Т 397	Ficus microcarpa	細葉榕	6.5	5.5	0.35	Fair	Fair	Low	Low	Retain	
T 398	Clausena lansium	黃皮	4	2	0.15	Fair	Fair	Medium	Medium	Transplant	
Т 399	Dimocarpus logan	龍眼	3.5	2	0.17	Fair	Fai:	Low	Low	Retain	
Τ 400	Macaranga tanarius	血桐	5.5	5.5	0.17	Fair	Fair	Low	Medium	Transplant	
T 401	Macaranga tanarius	血桐	4.5	4.5	0.13	Fair	Fair	Low	Medium	Transplant	
Τ 402	Macarunga tanarius	血桐	5	5	0.15	Poor	Fair	Low	Low	Retain	
Γ 403	Dead Tree	死樹		923	-						
T 404	Missing Tree			75	=	-	128	240	(4)	(%)	*
Γ 405	Homalium cochinchinensis	天料木	4.5	4.5	0.14	Fair	Fair	Low	Low	Retain	
Γ 406	Missing Tree		-	1.50		35		-		050	*

Page 9

HK Landscaping Ltd.

Project Name:

T 430

Т 431

Missing Tree

Celtis sinensis

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

.

4

Oct-08 Location: Cheung Po, Ma On Kong, Yuen Long and San Tsuen Date: Survival Rate after Species Tree Size Form Health Amenity value High / Medium / Overall Trunk Diameter Good / Fair / Good / Fair / Crown High / Medium / Approved Tree No. Scientific Name Chinese Name Remarks Height (M) (M) best Γ 407 Homalium cochinchinensis 天料木 4 0.12 Poor Poor Low Low Retain * Τ 408 Missing Tree T 409 Dead Tree 死樹 * T410 Missing Tree * T 411 Missing Tree T 412 Dimocarous Iongan 龍眼 5 0.36 Fair Fair Medium Low Retain 死樹 T 413 Dead Tree T 414 Artocarpus marocarpus 波羅密 8.5 5 0.33 Poor Fair Retain Low Low T 415 龍眼 Dimocarpus logan 8.5 5.5 0.33 Fair Fair Retain Medium Low T 416 Sterculia lanceolata 假蘋果 4 0.12 Fair Fair Medium Retain Low 假蘋果 Γ417 Sterculia lanceolata 5 4 0.12 Poor Fair Low Low Retain T 418 Sterculia lanceolata 假豬果 0.12 Fair Fair Low Low Retain T 419 Ficus hispida 對葉榕 5 4 0.13 Poor Poor Low Low Retain Γ 420 布渣葉 5.5 Microcos paniculata 6.5 0.14 Poor Retain Poor Low Low T 421 Sterculia lanccolata 假蘋果 5 0.17 Poor Poor Low Low Retain T 422 Ficus hispida 對葉榕 5 0.14 Retain Poor Poor Low Low T 423 Dead Tree 死樹 Ficus hispida 對葉榕 4 0.19 Poor Low Retain Poor Low T 425 Sterculia lanceolata 假蘋果 3 4 0.14 Fair Retain Poor Low Low T 426 Missing Tree T 427 Sterculia lanceolata 假蘋果 5.5 2.5 0.12 Fair Poor Low Low Retain T 428 Sterculia lanceolata 假類果 5.5 3.5 0.12 Poor Fair Low Low Retain T 429 Missing Tree *

Page 10

*

4

Retain

Low

Notes: " 粗體"* " - "Missing Trees" recorded under the Tree assessment schedule were felled with unknown reasons before the site was handed over to DSD's contractor. Notes: " # " - Revise due to wrong identification

Poor

Fair

Low

0.14

HK Landscaping Ltd.

Project Name:

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

Location:	<u> </u>	_ Cheung Po, Ma	On Kong, Yuer	Long and Sa	п Тѕцеп			Date:			Oct-08
	Species			Tree Size		Form	Health	Amenity value	Survival Rate after		
Tree No.	Scientific Name	Chinese Name	Overall Height (M)	Crown	Trunk Diameter	Good / Fair /	Good / Fair /	High / Medium /	High / Medium /	Approved Freatment	Remarks
Τ 432	Missing Tree		-	72:	2	2	2	(2)	2	927	*
T 433	Саліса рарауа	番木瓜	3	4	0.13	Fair	Fair	Low	Low	Retain	
Τ 434	Mangifera indica	芒果	4	3	0.13	Fair	Fair	Low	Low	Retain	
Γ 435	Salix babylonica	† 90	5	3	0.15	Fair	Fair	Medium	Low	Retain	
T 436	Salix babylonica	构印	5	3	0.14	Fair	Fair	Medium	Low	Retain	
Γ 437	Missing Tree		-	196			*	**	(9)	5æ5	*
T 438	Missing Tree		· ·	_12	2	2	- 2	120	121		*
T 439	Missing Tree			576				- 20	55.5	8.58	*
Γ 440	Dead Tree	死樹	2	(2)	25	_ 2	- 12	825	27		
Τ 441	Ficus hispida	對葉榕	4	5	0.15	Fair	Fair	Low	High	Fell	
Γ 442	Ficus hispida	對葉榕	5	7	0.14	Fair	Fair	Low	High	Fell	
Γ 443	Ficus hispida	對葉榕	4	5	0.14	Poor	Poor	Low	Low	Retain	
T 444	Ficus hispida	對葉榕	4	7	0.14	Poor	Poor	Low	Low	Retain	
T 445	Missing Tree		<u> </u>			- 9	ě			- 3	*
Γ 446	Ficus hispida	對葉榕	6	5	0.2	Fair	Fair	Low	High	Fell	
T 447	Ficus hispida	對葉榕	6	6	0.21	Fair	Poor	Low	Low	Fell	
Γ 448	Sterculia lanceolata	假蘋果	6	4	0.14	Fair	Fair	Low	Low	Fell	
T 449	Missing Tree							55.0			*
T 450	Missing Tree		-		- 8	<u> </u>		140	2	243	*
Т 451	Missing Tree								:5		*
Τ 452	Missing Tree			580	-			(*)		181	*
T 453	Missing Tree		2								*
Т 454	Missing Tree			522		-		8	8	*	*
T 455	Missing Tree			(20)		8	===	8/	- 2		*
T 456	Missing Tree			3.20			-	-	2	- 1	*

Page 11

HK Landscaping Ltd.

Project Name:

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

Location: Cheung Po, Ma On Kong, Yuen Long and San Tsuen Date: Oct-08

Location:		Cheung Po, Ma	on Kong, Yuer	i Long and Sa	n Isuen			Date:			Oct-08
	Species			Tree Size		Form	Health	Amenity value	Survival Rate after		
Tree No.	Scientific Name	Chinese Name	Overall Height (M)	Crown Spread (M)	Trunk Diamele	Good / Fair /	Good / Fair / Poor	High / Medium /	High / Medium /	Approved Treatment	Remarks
T 457	Ligustrum sinense	對葉榕	6	5	0.13	Fair	Fair	Low	Low	Fell	
T 458	Ficus hispida	對葉榕	6	5	0.15	Fair	Poor	Low	Low	Fell	
T 459	Macaranga tanarius	血桐	6	6	0.16	Fair	Poor	Low	Low	Fell	
Т 460	Ficus hispida	對葉榕	6	6	0.17	Fair	Fair	Low	High	Fell	
Γ 461	Ligustrum sinense	山指甲	5	6	0.16	Poor	Poor	Low	Low	Fell	
Т 462	Litchi chinensis	荔枝	3.5	3.5	0.13	Fair	Fair	Low	Medium	Retain	
Τ 463	Clausena lansium	黃皮	3.5	3.5	0.13	Fair	Fair	Low	Low	Retain	
Т 464	Clausena lansium	黄皮	3.5	3.5	0.13	Fair	Fair	Low	Medium	Retain	
Γ 742	Dimocarpus logan	龍眼	8.5	8.5	0.38	Fair	Fair	Medium	Low	Retain	
Т 920	Macaranga tanarius	血桐	4.5	2.5	0.18	Fair	Fair	Low	Low	Retain	
Т 921	Macaranga tanarius	血桐	4.5	2	0.2	Fair	Fair	Low	Low	Retain	
Т 922	Alcurites molucanna	石栗	6	3.5	0.25	Fair	Fair	Low	Low	Retain	
Т 923	Ficus microcarpa	细葉榕	6.5	3.5	0.27	Fair	Fair	Low	Low	Retain	
Т 924	Macaranga tanarius	血桐	4	1.5	0.15	Fair	Fair	Low	Low	Retain	
Т 925	Aleurites molucanna	石栗	5	2.5	0.2	Fair	Fair	Low	Low	Retain	
Т 926	Macaranga tanarius	血桐	3	1	0,15	Fair	Fair	Low	Low	Retain	
T 927	Ficus microcarpa	細葉榕	4.5	2	0.23	Fair	Fair	Low	Low	Retain	
Т 928	Koelreuteria formosana	台灣樂	5.5	3.5	0.2	Fair	Fair	Low	Low	Retain	
Т 929	Spathodea campanulata	火焰木	4.5	4.5	0.16	Fair	Fair	Low	Low	Retain	
T 930	Ficus microcarpa	細葉榕	5.5	5.5	0.23	Fair	Fair	Low	Low	Retain	
Т 931	Missing Tree		(1)	*	*		080		·		*
Т 932	Missing Tree			<u> </u>							*
T 933	Missing Tree		21	*	*	5+5	196		(6)	*	*
Т 934	Missing Tree		- 2	2			// <u>₽</u>	2	.78		*
T 935	Osmanthus matsumuranus	牛矢栗	4.5	4.5	0.13	Fair	Fair	Low	Low	Retain	

Page 12

HK Landscaping Ltd.

Project Name:

Contract No. DC/2007/17

Drainage Improvement Works (KT-13)

Location:	:	Cheung Po, Ma	On Kong, Yuer	Long and Sa	n Tsuen			Date:			Oct-08
	Species			Tree Size),	Form	Health	Amenity value	Survival Rate after		
Tree No.	Scientific Name	Chinese Name	Overall Height (M)	Crown Spread (M)	Trunk Diameter	Good / Fair /	Good / Fair /	High / Medium /	High / Medium /	Approved Treatment	Remarks
T 936	Missing Tree		-	2	:41	120		1 4	:		*
T 937	Missing Tree		320	-	= 2	\ .	589	1 100	ze:	*	*
T 938	Alstonia scholaris	里板木	3	3	0.12	Fair	Fair	Low	Low	Retain	
Т 939	Dimocarpus logan	龍眼	5,5	5.5	0.2	Fair	Fair	Low	Low	Retain	
Γ 940	Missing Tree		- 1		(2)		72 <u>=</u>		Van	8	*
Т 941	Missing Tree		:=:	-	(#)	550	3.61	196	3.85		*
T 942	Missing Tree			_	al	- 20	19	- 4	-		*
Т 943	Missing Tree		(a)	<u> </u>	5,	1.51	(.7)	1.5	35		*
Т 944	Missing Tree		- 4	-	-	920	22	100	82	2	*
T 951	Sapium sebiferum	烏桕	5	3	0.23	Fair	Fair	Low	Low	Retain	
T 952	Sapium sebiferum	烏桕	4	2	0.16	Poor	Poor	Fair	Fair	Retain	
Т 953	Sapium sebiferum	烏桕	5	0	0.3	Fair	Fair	Low	Low	Retain	
Т 954	Missing Tree			*				18		-	*
Τ 955	Missing Tree			2	12		-	· · · ·		¥	*
T 956	Sapium sebiferum	烏桕	3.5	0	0.21	Fair	Fair	Low	Low	Fell	
Т 957	Sapium sebiferum	烏桕	4.5	0	0.23	Fair	Fair	Low	Low	Fell	
T 958	Missing Tree		~	-		:=:	39-	96	186		*
Т 959	Missing Tree			2	- 3		-			5	*
Т 960	Missing Tree			*			-			-	*
Γ 961	Missing Tree			2	==		-	-		3	*
T 962	Missing Tree			5.		153	989	(2)		-	*
T 963	Missing Tree		- 9	- 2	-	120			78	3	*

Page 13

Notes: " 粗體"* " - "Missing Trees" recorded under the Tree assessment schedule were felled with unknown reasons before the site was handed over to DSD's contractor.

Notes: "#" - Revise due to wrong identification

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co., Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Ma On Kong, Yuen Long San Tsuen Contract No:DC/2007/17 Drainage Improvement Works in Cheung Po,

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

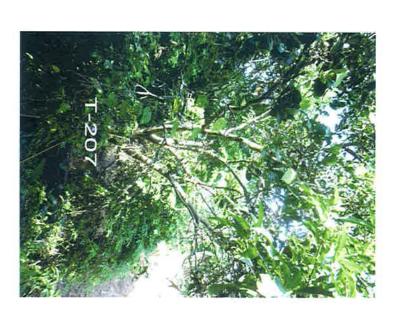
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co., Ltd.

Hong Kong Landscaping Co., Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

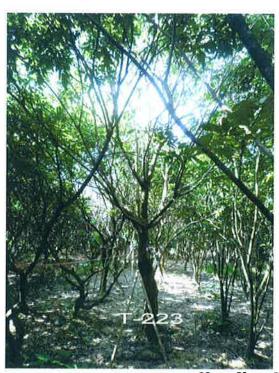
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

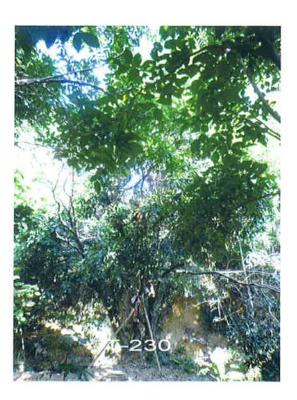
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co., Ltd.

Hong Kong Landscaping Co.,Ltd.

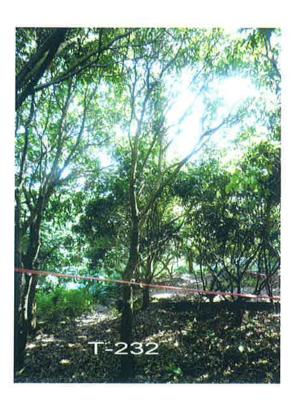
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.



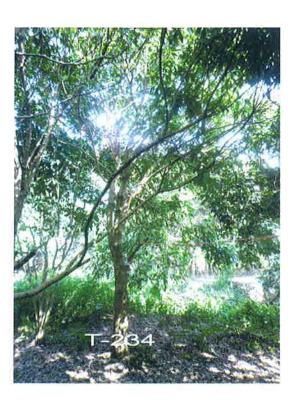
Hong Kong Landscaping Co., Ltd.

Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

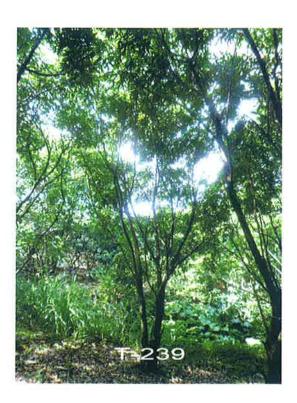


Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.


Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

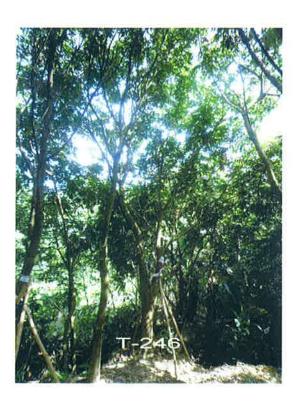
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

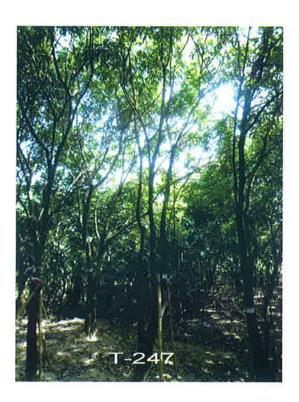
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co.,Ltd.

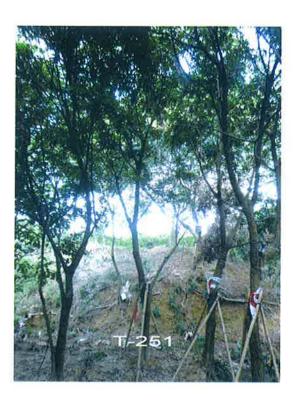


Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

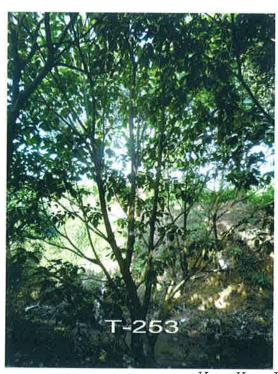
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co., Ltd.

Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co.,Ltd.

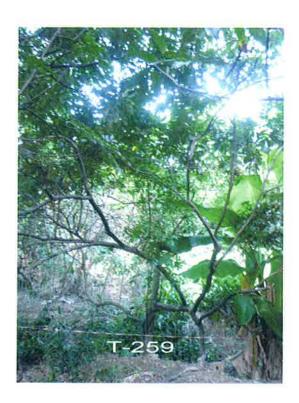
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co., Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.



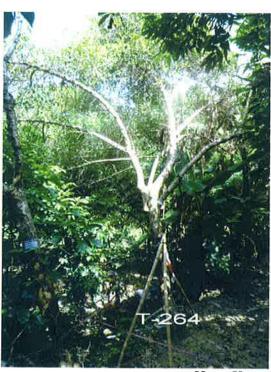
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

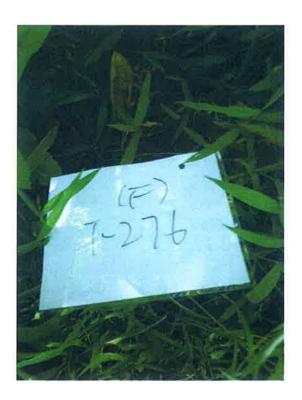
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.





Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

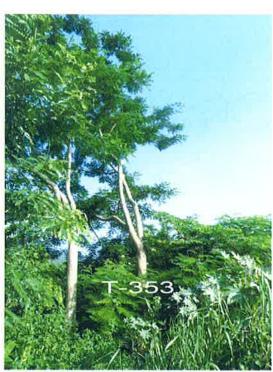
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

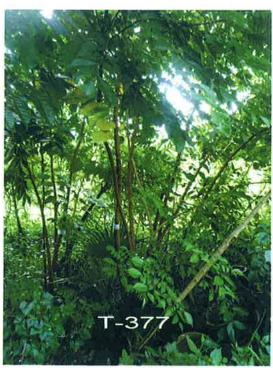


Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co.,Ltd.


Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

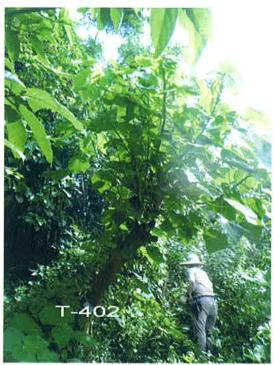
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.


Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co., Ltd.

Hong Kong Landscaping Co.,Ltd.

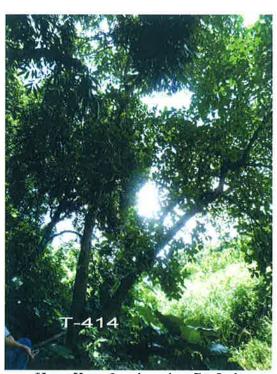
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.


Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

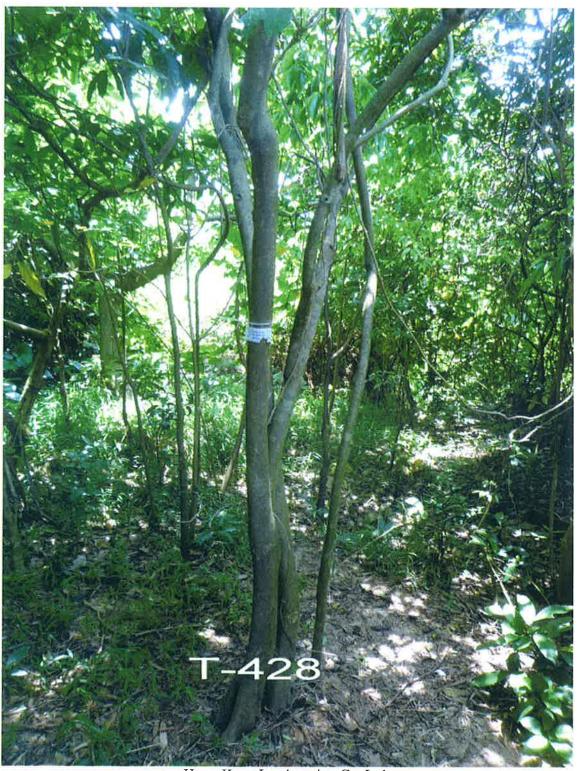
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

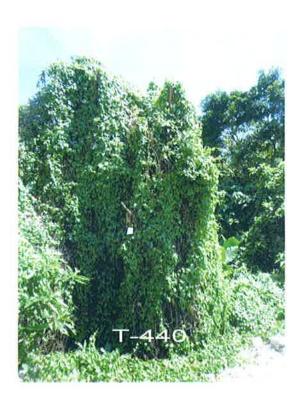
Hong Kong Landscaping Co.,Ltd.

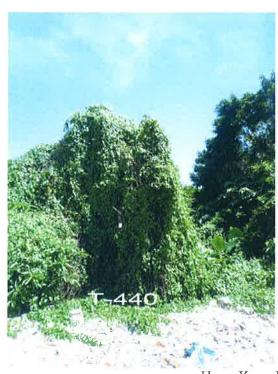
Hong Kong Landscaping Co., Ltd.



Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

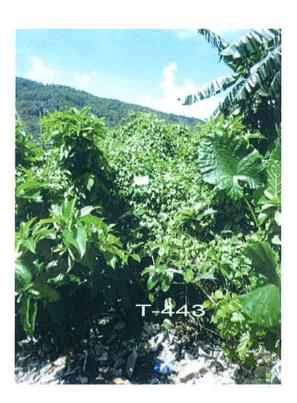




Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.



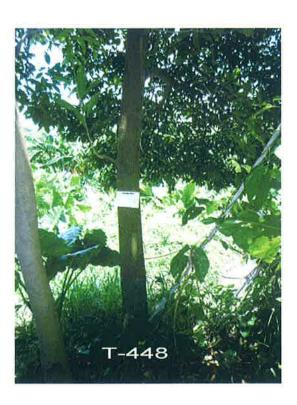
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co., Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

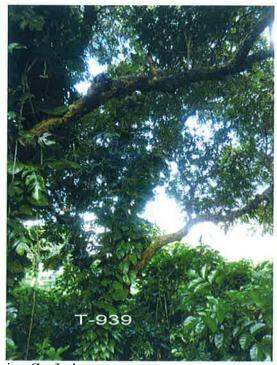
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

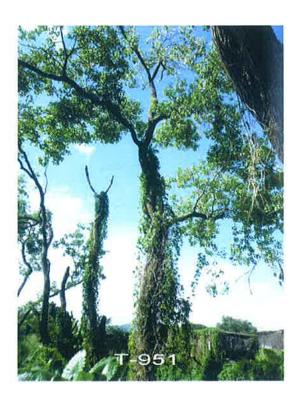
Hong Kong Landscaping Co.,Ltd.

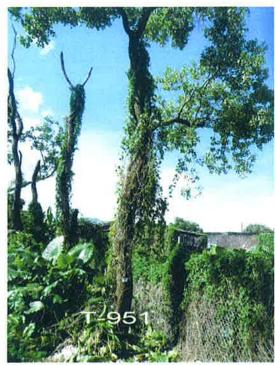
Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

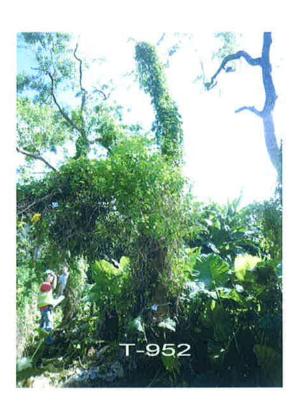


Hong Kong Landscaping Co.,Ltd.

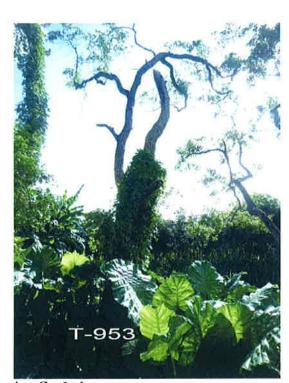




Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co.,Ltd.



Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Hong Kong Landscaping Co.,Ltd.

Appendix I

Physical, Human and Cultural Landscape Resources at KT13 (November 2008)

Current Situation of Physical, Human and Cultural Landscape Resources at KT13, inspected on 7 and 21 November 2008

The physical resources that will be affected during the Construction Phase and Operational Phase, together with their sensitivity to change, are described below. The locations of the baseline landscape resources are mapped in Drawing no. LR-001. The Landscape Resources in direct conflict with the Project are mapped together with their extent outside study boundary for integrity of information. Photo views illustrating the landscape resources of the study area are illustrated in Drawing Nos. PR-001 to 002 inclusive. For ease of reference and co-ordination between text, tables and figures each landscape resources is given an identity number.

Table compares the baseline study and the current situation for KT13: (Landscape Resources)

Section	Identify number –	Photo	Baseline Study, Environmental Impact Assessment Final Report	Current Situation
in EIA	Landscape Resources	No	[382047/E/EIA/Issue 9]	
Report				
Drainage	9			
10.7.3	LR1 – River/ Stream	A1 -	There is a semi-natural drainage features (the Ma On Kong Channel) in the study area with	Minor change due to
		A5	untrained natural upstream and partial trained downstream with a total length of 800m. The	site clearance and
			Channel originates from the South-West of the valley and discharge to the existing Primary	preparation work
			Channel by Kam Ho Road running through and along the site area spanning across majority of the	within site boundary
			river valley, together with the existing vegetations forming the central part of riparian landscape	
			network. They have medium landscape value and sensitive to change.	
Fish Pon	nd			
10.7.4	LR2.1 (Fish Pond) within	A6	There are 4 numbers of fallowed fish ponds at the upstream of the Ma On Kong Channel. A chain	Minor change due to
	site boundary		of fish ponds near downstream but distant from the Channel is noted. The fish ponds cover area of	site clearance and
	LR2.2 (Fish Pond) outside	A7	in total 23,000 m2. Most of them are heavily colonized by aquatic plants, which attribute to their	preparation work
	site boundary		low visual quality as a water landscape element. They have low landscape value and sensitive to	within site boundary
			change.	

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Marsh	Marsh					
10.7.5	LR3 (Marsh)	A8	It comprises 2 marshes at the upstream channel of the Channel. They are inundated lowland	Remain the same as		
			heavily colonized with wetland aquatic plants. They have low landscape value and sensitive to	the baseline		
			change.			
Vegetati	on					
10.7.7	LR4 (Woodland/ Wooded	A9	It comprises two major communities of woodland/ wooded area. One is dense natural woodland	Remain the same as		
	Area)	A10	stretching across the Conservation Area and area behind Ma On Kong and consists approximate	the baseline		
			450 numbers of trees based on visual estimation. The trees are mainly native species and mature			
			in size. It is dominated by Schefflera octophylla, Pinus massoniana, Aporusa chinensis, Celtis			
			sinensis, Bridelia tomentosa, Cinnamomum cmaphora, Rhus chinensis and Phus succedanes.			
			Another one is a natural more sparse riparian wooded area at upstream of the Channel and			
			consists approximate 60 numbers of trees based on visual estimation. The trees are mainly			
			pioneer species and poorer in form and maturity. It is dominated by Ficus hispide and Macaranga			
			tanarius. They have high landscape value and sensitivity to change.			
10.7.8	LR5 (Orchard/ Horticultural	A11	It comprises two groups of trees at downstream below Ma On Kong and north of Ho Pui Amongst	Remain the same as		
	Trees)		there are approximate 400 numbers of trees based on visual estimation. They are fruit trees and	the baseline		
			landscape plants of horticultural practices. It is dominated by Dimocarpus longan, Delonix regian,			
			Roystonea regia and Pachira macrocarpa. For their anthropogenic and not permanent in nature,			
			they have medium landscape value and sensitivity to change.			
10.7.9	LR6 (Low-Lying Agricultural	A12	It comprises fallowed land and agricultural land in low rate of uses. The vegetation is mainly grass	Remain the same as		
	Land/ Fallowed Land)		and sedge with mosaics of shrubs approaching the Channel. It fills up the about half of the existing	the baseline.		
			landscape within the study area. They have low landscape value and sensitivity to change.			

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and
Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Sitting-C	Sitting-Out Area					
10.7.10	LR7 (Sitting-Out Area at Ma On Kong)	A13	It is located at the Ma On Kong next to the access road. It is a small sitting-out area primarily hard-paved with only 3 amenity trees and on pavilion. It has low landscape value and sensitivity to change.	Remain the same as the baseline		
Landsca	pe Character Areas					
10.7.12	LCA1 (Agricultural Landscape Character Area)	B1 & B2	This comprises fallowed land & agricultural land not in active uses. This character area is flat and gentle sloping in landform and vegetated with grass of various heights. It forms the majority of the landscape character of the entire river valley and the connecting landscape element between other landscape character areas. The sensitivity to change of this area is low.	Remain the same as the baseline		
10.7.13	LCA2 (Woodland Landscape Character Area)	В3	This is natural woodland between southern Ma On Kong and the Channel extending up to the access road behind Ma On Kong. The trees are mature in size forming a close woodland landscape. It is the location of egretry of conservation importance. The sensitivity to change of this area is high.	Remain the same as the baseline		
10.7.14	LCA3 (River/ Stream Landscape Character Area)	B4 – B7	This is the main stream of the Channel in associate with its riparian vegetation. It meanders through the river valley landscape. It is used as a receptor of agricultural effluent from poultry farm around upstream, which contribute to the polluted appearance of the character area around upstream. The sensitivity to change of this area is medium.	Minor change due to site clearance and preparation work within site boundary		
10.7.15	LCA4 (Fish Pond Landscape Area)	B8	This comprises a number of fish ponds of various sizes distributed about the Channel. Most of them are abandoned or with limited uses and colonized with aquatic plants. The sensitivity to change of this area is medium.	Minor change due to site clearance and preparation work within site boundary		

DC/2007/17

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

10.7.16	LCA5 (Village Landscape	B9 &	This comprises the four major village types rural settlement encompassing tai Kek, Ma On Kong,	Remain the same as
	Character Area)	B10	Ho Pui and north of Ho Pui. Except Tai Kek which is less revitalized and actively resided, all other	the baseline
			three are actively resided. This area is lightly urbanized with low rise village house. The sensitivity	
			to change of this area is low.	
10.7.17	LCA6 (Industrial Landscape	B11 &	This comprise collection of slummy-built temporary structure and open storage uses land, which	Remain the same as
	Character Area)	B12	are characterized with metallic hoarding and used for poultry, recycling, vehicle repairing etc. The	the baseline
			sensitivity to change of this area is low.	
10.7.18	LCA7 (Nullah Landscape	B13	This is the trained nullah next to Kam Ho Road. It is the primary tributary connecting and receiving	Remain the same as
	Character Area)		outflow from the Ma On Kong Channel. The area is man-made and with poor and monotonous	the baseline
			riverside vegetation. The sensitivity to change of this area is low.	

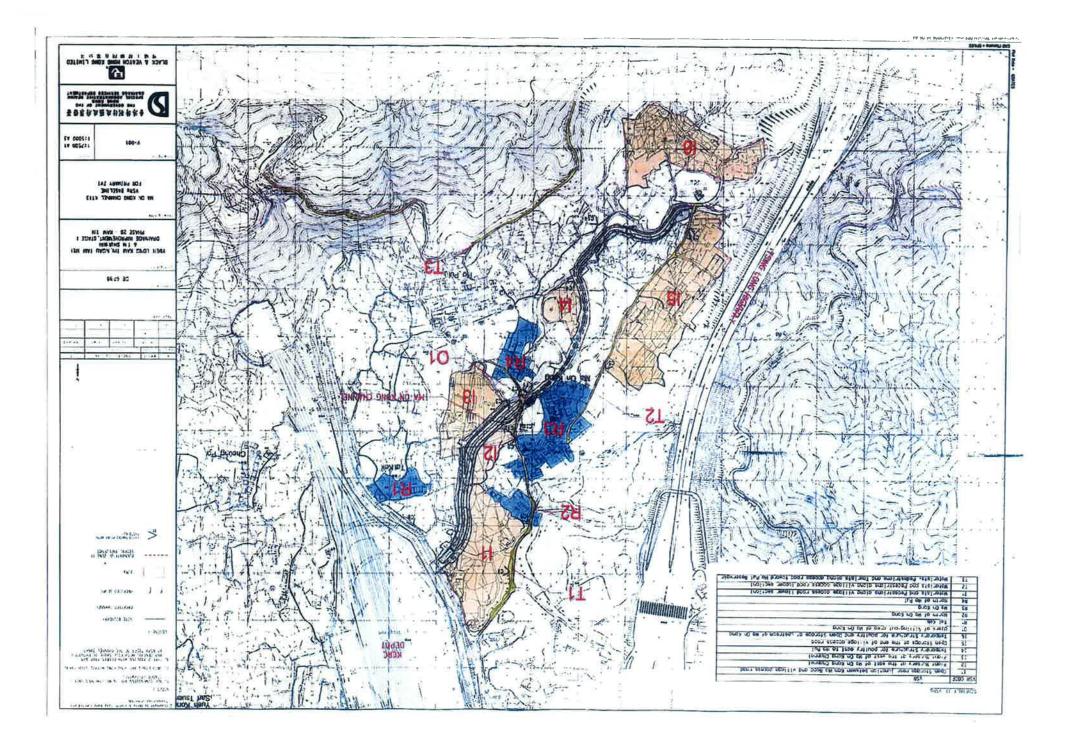
10.7.19 Visual Character

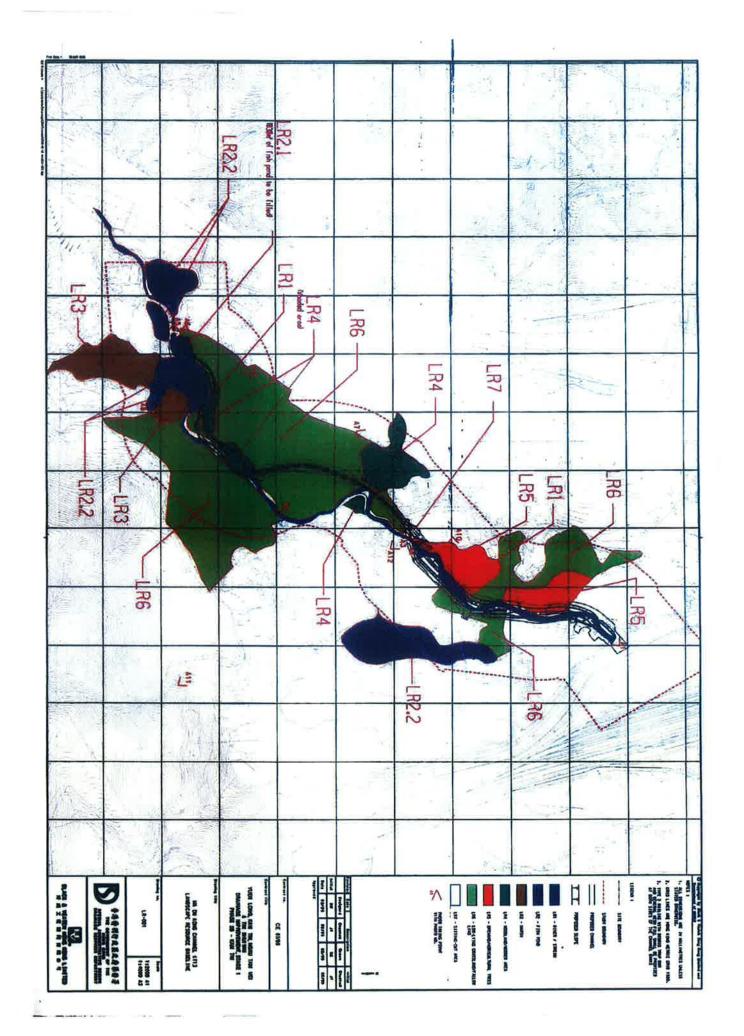
The visual quality of the river valley of Ma On Kong Channel is semi-natural based on combination of rural landscape elements including agricultural land, village houses, woodland and pond and stream and industrial landscape elements including open storage and temporary structures. Interspersed landscape elements on general flat landform with minor undulation render numerous small enclosed views. No major vista and high quality open view identified.

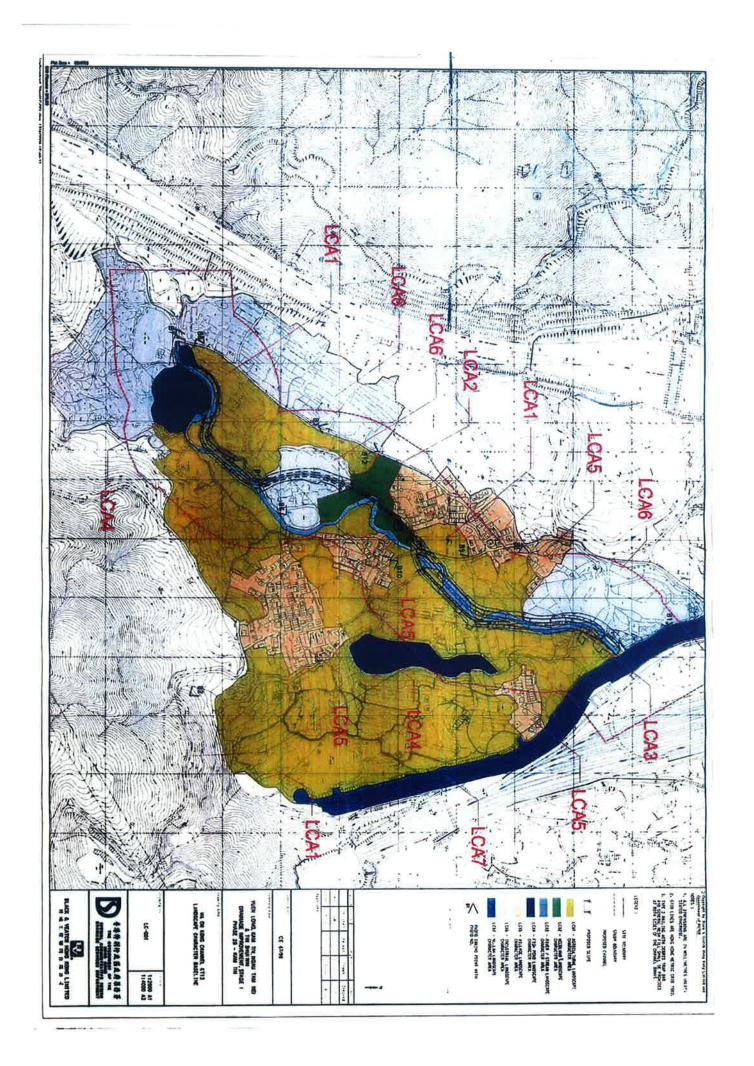
10.7.20 Visual Sensitive Receiver (VSR)

Within the ZVI, a number of key Visual Sensitive Receivers (VSRs) have been identified. These VSRs are mapped in Drawing V-001. They are listed, together with their sensitivity, in Table 10/5. Photo views illustrating the VSRs are illustrated in Drawing nos. PV-001 to 002 inclusive. For the ease of reference, each VSR is given an identity number, which is used in the text, tables and figures.

Table compares the baseline study and the current situation for KT13: (Visual Sensitive Receiver)


Section	Identify number –	Photo	Baseline Study, Environmental Impact Assessment Final Report [382047/E/EIA/Issue 9]	Current			
in EIA	VSR	No.		Situation			
Report							
Industria	Industrial VSRs						
10.7.21	I1	C1	Open storage near junction between Kam Ho Road and Village access	Remain the same			
			The VSRs is workers of the open storage. The number of individual is very few and their sensitivity to visual	as the baseline			
			impacts is low.				
10.7.22	12	C2	Plant Nursery at the east of Ma On Kong Channel	Remain the same			
			The VSRs is workers of the plant nursery. The number of individual is very few and their sensitivity to visual	as the baseline			
			impacts is low.				
10.7.23	13	С3	Plant Nursery at the west of Ma On Kong Channel	Remain the same			
			The VSRs is workers of the plant nursery. The number of individual is very few and their sensitivity to visual	as the baseline			
			impacts is low.				
10.7.24	14	C4	Temporary Structure for poultry east to Ho Pui	Remain the same			
			The VSRs is workers of the temporary structure. The number of individual is very few and their sensitivity to	as the baseline			
			visual impacts is low.				
10.7.25	I 5	C5	Open Storage at the end of village access road	Remain the same			
			The VSRs is workers of the open storage. The number of individual is very few and their sensitivity to visual	as the baseline			
			impacts is low.				
10.7.26	16	C6	Temporary Structure for poultry and Open Storage at upstream of Ma On Kong Channel	Remain the same			
			The VSRs is workers of the temporary structure and open storage. The number of individual is very few and	as the baseline			
			their sensitivity to visual impacts is low.				


Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun


Open Sp	Open Space / Sitting – Out Area VSRs				
10.7.27	01	C7	Users of Sitting-out Area at Ma On Kong The VSRs is future users of the re-provided sitting-out area during operation phase. The number of individual is few and their sensitivity to visual impacts is medium.	Remain the same as the baseline	
Resident	ial VSRs				
10.7.28	R1	C8	Tai Kek The VSRs is residents of the village. The number of individual is very few and their sensitivity to visual impacts in high.	Remain the same as the baseline	
10.7.29	R2	C9	North of Ma On Kong The VSRs is residents of the village. The number of individual is very few and their sensitivity to visual impacts is high.	Remain the same as the baseline	
10.7.30	R3	C10	Ma On Kong The VSRs is residents of the village. The number of individual is very few and their sensitivity to visual impacts is high.	Remain the same as the baseline	
10.7.31	R4	C11	North of Ho Pui The VSRs is residents of the village. The number of individual is few and their sensitivity to visual impacts is high.	Remain the same as the baseline	

DC/2007/17
Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and
Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Transport-related VSRs				
10.7.32	T1	C12	Motorists and Pedestrians along village access road (lower section)	Remain the same
			The VSRs is the road users of the road section. The number of individual is few and their sensitivity to	as the baseline
			visual impacts is low.	
10.7.33	T2	C13	Motorists and Pedestrians along village access road (high section)	Remain the same
			The VSRs is the road users of the road section. The number of individual is very few and their sensitivity to	as the baseline
			visual impacts is low.	
10.7.34	Т3	C14	Motorists, Pedestrians and Tourists along access road toward Ho Pui Reservoir	Remain the same
			The VSRs is the road users of the road section, part of which are tourist to Ho Pui Reservoir. The number of	as the baseline
			individual is very few and their sensitivity to change is low.	

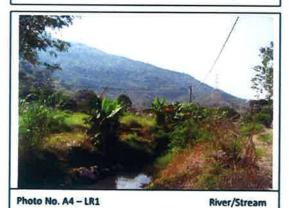
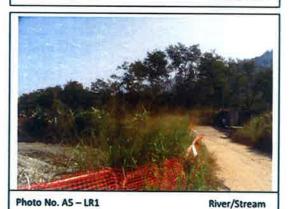
Physical, Human and Cultural Landscape Resources Photo record 7 November 2008

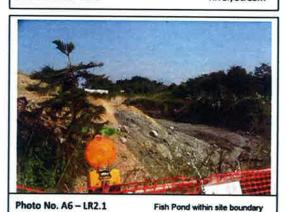
Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sain Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Physical, Human and Cultural Landscape Resources Record

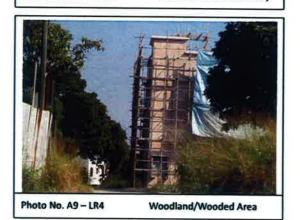
Photo No. A1 - LR1 River/Stream

Photo No. A2 - LR1 River/Stream

Photo No. A3 - LR1 River/Stream




Photo No. A7 - LR2.2 River/Stream

DC/2007/17

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and
Sewerage at Tseng Tau Chung Tsuen, Yuen Mun
Physical, Human and Cultural Landscape Resources Record

Photo No. A10 - LR4 Woodland

Photo No. A11 - LR5 Orchard/ Horticultural Trees

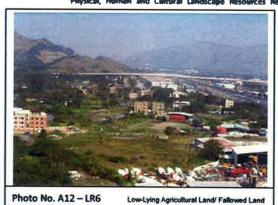


Photo No. A13 -LR7

Sitting-Out Area at Ma On Kong

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Physical, Human and Cultural Landscape Resources Record

Photo No. B1 - LCA1 Agricultural Landscape Character Area

Photo No. B2 - LCA1 Agricultural Landscape Character Area

Photo No. B3-LCA2 Woodland Landscape Character Area

Photo No. 84 - LCA3 River/ Stream Landscape Character Area

Photo No. B5 - LCA3 River/ Stream Landscape Character Area

Photo No. B6 - LCA3.1 River/ Stream Landscape Character Area

Photo No. B7 - LCA3 River/ Stream Landscape Character Area

Fish Pond Landscape Area

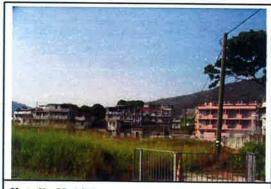


Photo No. B9-LCA5 Village Landscape Character Area

DC/2007/17

Drainage Improvement Works in Cheung Po, Ma On Kong, Ween Kong San Tsuen, 'Fin Sam Tsuen of Ween Long Bistrict and Sewerage at Tseng Tau Ohung Tsuen, Then Mun Physical, Human and Cultural Landscape Resources Record

Photo No. B10—LCA 5 Village Landscape Character Area

Photo No. B11-LCA 6 Industrial Landscape Character Area

Photo No. B12-LCA 6 Industrial Landscape Character Area

Photo No. B13-LCA 7 Nu

Nullah Landscape Character Area

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and
Sewerage at Tseng Tau Chung Tsuen, Tuen Mun
Physical, Human and Cultural Landscape Resources Record

Photo No. C1 – I1 Open storage near junction between Kam
Ho Road and Village access road

Photo No. C3-13 Plant Nursery at the east of Ma On Kong Channel

Photo No. C4-I4 Temporary Structure for poultry east to Ho Pui

Photo No. C5-I5 Open Storage at the end of village access road

Photo No. C6—16 Temporary Structure for positry and Open Storage at upotream of Me On Keng Channel

Photo No. C7-O1 Sitting-out Area at Ma On Kong

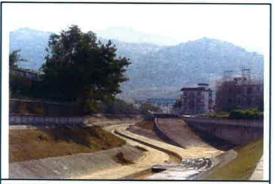


Photo No. C8—R1 Tei Kek

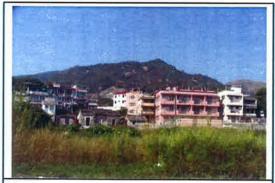


Photo No. C9—R2

North of Ma On Kong

DC/2007/17

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Physical, Human and Cultural Landscape Resources Record

Motorists and Pedestrians along village

access road (high section)

Photo No. C13-T2

Photo No. C11-R4 North of Ho Pui

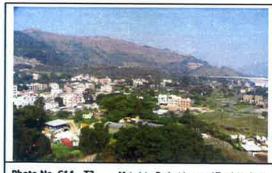


Photo No. C14-T3 Motorists, Pedestrians and Tourists along access road toward Ho Pui Reservoir

Photo No. C12—T1 Motorists and Pedestrians along village access road (lower section)

Physical, Human and Cultural Landscape Resources Photo record 21 November 2008 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and Sewerage at Toeng Tau Chung Touen, Tuen Mun

Physical, Human and Cultural Landscape Resources Record

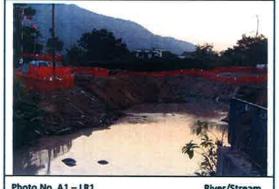


Photo No. A1 - LR1 River/Stream

Photo No. A2 - LR1 River/Stream

Photo No. A3 - LR1 River/Stream

Photo No. A4 - LR1 River/Stream

Photo No. A5 - LR1 River/Stream

Photo No. A6 - LR2.1 Fish Pond within site boundary

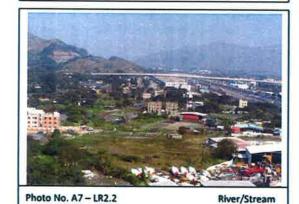


Photo No. A9 - LR4 Woodland/Wooded Area

DC/2007/17

Brainage Improvement Works in Cheung Po, Ma On Kong, Ween Kong San Tsuen, Tin Sam Tsuen of Yeen Long Bistrict and
Sewerage at Tseng Tau Chung Tsuen, Then Iden
Physical, Human and Cultural Landscape Resources Record

Photo No. A10 - LR4

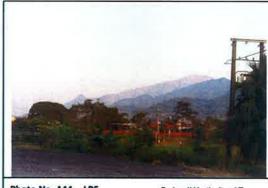


Photo No. A11 - LR5 Orchard/ Horticultural Trees

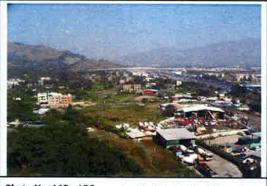


Photo No. A12 - LR6 Low-Lying Agricultural Land/ Fallowed Land

Photo No. A13 -LR7

Sitting-Out Area at Ma On Kong

Woodland

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Physical, Human and Cultural Landscape Resources Record

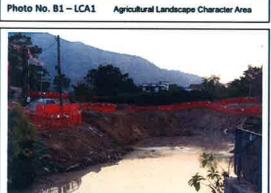


Photo No. B4 - LCA3 River/ Stream Landscape Character Area

Photo No. B7 - LCA3 River/ Stream Landscape Character Area

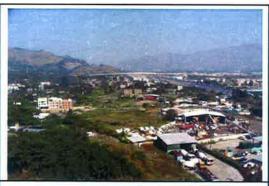


Photo No. B2 - LCA1 Agricultural Landscape Character Area

Photo No. B5 - LCA3 River/ Stream Landscape Character Area

Photo No. B8 - LCA4 Fish Pond Landscape Area

Photo No. B3-LCA2 Woodland Landscape Character Area

Photo No. B6 - LCA3.1 River/ Stream Landscape Character Area

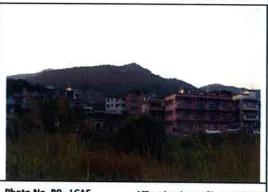


Photo No. B9-LCA5 Village Landscape Character Area

BC/2007/17

Brainage Improvement Works in Cheung Po, Ma On Mang, Yuen Rong San Tsuen, Tin Sam Tsuen of Yuen Long Biotrict and Severage at Tseng Tau Chung Tsuen, Tuen Mun Physical, Human and Cultural Landscape Resources Record

Photo No. B11-LCA 6 Industrial Landscape Character Area

Photo No. B12—LCA 6 Industrial Landscape Character Area

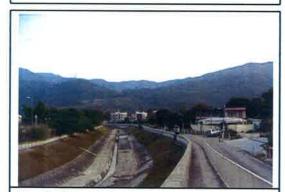


Photo No. B13-LCA 7

Nullah Landscape Character Area

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and
Sewerage at Tseng Tsu Chung Tsuen, Tren Mun
Physical, Human and Cultural Landscape Resources Record

Photo No. C1 – I1 Open storage near junction between Kam
Ho Road and Village access road

Photo No. C3—I3 Plant Nersery at the cest of No On Keng Channel

Photo No. C4-14 Temporary Structure for poultry east to Ho Pui

Photo No. C5-15 Open Storage at the end of village access road

Photo No. C6—I6 Temporary Structure for poultry and Open Storage at upstream of Ma On Kong Channel

Photo No. C7-O1 Sitting-out Area at Ma On Kong

Photo No. C8—R1 Tei Kek

Photo No. C9—R2 North of Ma On Kong

DC/2007/17

Brainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long Bishrict and
Sewerage at Tseng Tau Chung Tsuen, Tuen Mun
Physical, Human and Cultural Landscape Resources Record

Photo No. C10-R3

Ma On Kong

Photo No. C13—T2 Motorists and Pedestrians along village access road (high section)

Photo No. C11—R4 North of Ho Pui

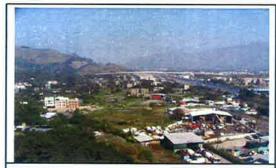


Photo No. C14—T3 Motorists, Pedestrians and Tourists along access road toward Ho Pui Reservoir

Photo No. C12—T1 Illuterists and Pedestrians stong village access read (larver section)

Appendix J

Monthly Summary Waste Flow Table for 2008

Monthly Summary Waste Flow Table

Date: 30-Nov-08

Year/Month: Nov-08

Monthly Summary Waste Flow Table for November 2008										
	Actual Quantities of Inert C & D Materials Generated Monthly					Estimated Annual Quantities of C & D Wastes Generated Monthly				
Year	Total Quantitiy Generated	Broken Concrete (see note 4)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Metals	Paper/ Cardboard packaging	Plastics (see note 3)	Chemical Waste	Others, e.g. General refuse
	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000KG)	(in '000KG)	(in '000KG)	(in '000KG)	(in '000M ³)
Jan	0	0	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0	0	0
Apr	0	0	0	0	0	0	0	0	0	0
May	0.08	0.04	0.04	0	0	0	0	0	0	0
Jun	0.00	0.001	0.001	0	0	0	0	0	0	0
Sub-Total	0.08	0.041	0.041	0	0	0	0	0	0	0
Jul	0.021	0.003	0.018	0	0	0	0	0	0	0
Aug	0.899	0.005	0.894	0	0	0	0	0	0	0.01
Sep	5.055	0.003	3.480	0	1.572	0	0	0	0	0.06
Oct	4.044	0.002	2.526	0	1.516	0	0	0	0	0
Nov	6.647	0.011	5.262	0	1.374	0	0	0	0	0.012
Dec										
Total	16.749	0.065	12.221	0.000	4.462	0.000	0.000	0.000	0.000	0.082

Notes: (1) The performance targets are given in PS Clause 28.10(14)

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/ containers, plastic sheets/ foam form packaging material

(4) Broken concrete for recycling into aggregates