

PROJECT No.: TCS/00408/08

DSD CONTRACT NO. DC/2007/17
DRAINAGE IMPROVEMENT WORKS IN
CHEUNG PO, MA ON KONG, YUEN KONG SAN TSUEN
AND TIN SAM TSUEN OF YUEN LONG DISTRICT AND
SEWERAGE AT TSENG TAU CHUNG TSUEN, TUEN MUN

MONTHLY EM&A REPORT FOR KT13 (OCTOBER 2010)

PREPARED FOR CHINA ROAD & BRIDGE CORPORATION

Quality Index

Date Reference No. Prepared By Certified by

12 November 2010 TCS00408/08/600/R1516v2

Nicola Hon T.W. Tam
Environmental Consultant Environmental Team Leader

Version	Date	Prepared by:	Certified by:	Description
1	10 November 2010	Nicola Hon	T.W. Tam	First submission
2	12 November 2010	Nicola Hon	T.W. Tam	Amended against IEC's comments on 12 November 2010

This report has been prepared by Action-United Environmental Services & Consulting with all reasonable skill, care and diligence within the terms of the Agreement with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

By Fax (2478 9396) & Post

Black & Veatch Hong Kong Limited 25/F, Millennium City 6 392 Kwun Tong Road Kowloon Hong Kong

Attention: Ms. Jenny Lui

12 November 2010

Dear Ms. Lui,

Level 5 Festival Walk 80 Tat Chee Avenue Kowloon Tong Kowloon Hong Kong PRC t +852 2528 3031 d +852 2268 3097

coleman.ng@arup.com www.arup.com

f+852 2268 3950

Contract No. DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen King San and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Monthly EM&A Report for KT13 (October 2010) – Version 2

We refer to the captioned report (ref.: TCS00408/08/600/R1516v2) and advise that we have no further comments on the captioned submission.

We hereby endorse the captioned report for your onward submission.

If you require any further information, please do not hesitate to contact the undersigned.

Yours sincerely

Coleman Ng

Senior Consultant

China Road and Bridge Corporation (Mr. Raymond Mau) (Fax: 2478 9612) AUES (Mr. TW Tam / Ms. Nicola Hon) (Fax: 2959 6079)

Executive Summary

ES01 This is the **25**th monthly EM&A report for the Channel KT13, covering the construction period from **26** August to **25** September **2010** (the Reporting Period).

Breaches of Action and Limit Levels

- ES02 Monitoring results of the Reporting Period demonstrated no exceedances of environmental quality criteria for air quality, construction noise and ecology monitoring.
- ES03 For stream water quality monitoring, a total of 4 Action/ Limit level exceedances were recorded at Impact Station W2 and W6 in this reporting period. Investigation report concluded that the exceedances were not project related.
- ES04 Four (4) events of weekly settlement monitoring for the historic grave were undertaken in this reporting month and the monitoring results demonstrated no exceedance was recorded.
- ES06 Landscape inspections were conducted on **12 and 25 October 2010**. No significant changes were observed for the identified landscape resources and visual sensitive receivers, except for minor changes due to channel excavation, site clearance and preparation work at the identified landscape resources including LR1, LR2.1, LR2.2, LCA1, LCA3 and LCA4.

Environmental Complaint, Notification of Summons and Prosecution

ES07 No documented complaint, notification of summons or successful prosecution was received during the Reporting Period. Environmental audit of the Reporting Period indicated that the implemented mitigation measures for air quality, construction noise and ecology were effective. Minor deficiencies found in the weekly site inspection were in general rectified within the specified deadlines. The environmental performance of the Project was therefore considered satisfactory.

Reporting Changes

ES08 There is no reporting change in this reporting month.

Future Key Issues

- ES09 During dry season, special attention should be paid to the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Nevertheless, mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.
- ES10 Special attention should be paid on construction noise and other environmental issues identified in the EM&A Manual as recommended in the EIA and summarized in Mitigation Measure Implementation Schedule. CRBC was reminded to implement the required mitigation measures during construction as far as possible.

DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun.

Monthly EM&A Report for KT13 (October 2010)

Table of Contents

1	ENVIRONMENTAL STATUS	1 ·
1.1	PROJECT AREA AND CONSTRUCTION PROGRAMME	1 ·
1.2	Works Undertaken During the Reporting Period	1 -
1.3	ENVIRONMENTAL MANAGEMENT ORGANIZATION	1 -
1.4	LICENSING STATUS	1 ·
1.5	ENVIRONMENTAL PROTECTION AND POLLUTION CONTROL MITIGATION MEASURES	2
2	MONITORING METHODOLOGY	3 -
2.1	MONITORING PARAMETERS	3 -
2.2	MONITORING LOCATIONS	
2.3	MONITORING FREQUENCY, DURATION AND SCHEDULE	4 -
2.4	MONITORING EQUIPMENT AND PROCEDURE	6 -
2.5	QUALITY ASSURANCE PROCEDURES AND DATA MANAGEMENT	10 ·
2.6	Reporting	11 -
3	MONITORING RESULTS	12 -
3.1	AIR QUALITY	
3.2	CONSTRUCTION NOISE	
3.3	Water Quality	
3.4	ECOLOGY	_
3.5	Waste Management, Cultural Heritage and Landscape & Visual	15
4	NON-COMPLIANCE, COMPLAINT, NOTIFICATION OF SUMMONS, SU	
	PROSECUTION AND OTHERS	_
4.1	Non-compliance	
4.2	ENVIRONMENTAL COMPLAINT	
4.3	NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTION	
4.4	OTHERS	19 ·
5	CONCLUSIONS AND RECOMMENDATIONS	- 20 -

LIST OF TABLES

Table 2-1	Summary of Monitoring Parameters
Table 2-2	Summary of Monitoring Locations
Table 2-4-2	Air Quality Monitoring Equipment
Table 2-4-3	Construction Noise Monitoring Equipment
Table 2-4-4	Water Quality Monitoring Equipment
Table 2-6	Requirements for Report Submission
Table 3-1-1	Air Quality Action and Limit Levels
Table 3-1-2-1	Summary of Air Quality Monitoring Results at KT13-A1(a)
Table 3-1-2-2	Summary of Air Quality Monitoring Results at KT13-A2
Table 3-2-1	Construction Noise Action and Limit Levels
Table 3-2-2-1	Summary of Construction Noise Monitoring Results – N1(a)
Table 3-2-2-2	Summary of Construction Noise Monitoring Results – N2(a)
Table 3-2-2-3	Summary of Construction Noise Monitoring Results – N3
Table 3-3-1	Action and Limit Levels for Water Quality Monitoring
Table 3-3-2	Summary of Water Quality Exceedances
Table 3-4-1	Ecological Action and Limit Levels
Table 3-4-2	Summary of KT13 Ecology Impact Monitoring Bird Survey
Table 3-5-2	Cultural Heritage Resources Action and Limit Levels
Table 3-5-3	Record of Five Settlement Marker Points of the Qing Dynasty Grave
Table 4-4-1	Summary of Findings of Site Inspection and Environmental Audit

LIST OF APPENDICES

Appendix A	Location Plan of the Project and Environmental Monitoring Locations under the Project
Appendix B	Construction Program
Appendix C	Environmental Management Organization and Contacts of Key Personnel
Appendix D	Monitoring Schedules and Meteorological Data
Appendix E	Calibration Certificates and HOKLAS-Accreditation Certificate
Appendix F	Event Action Plan
Appendix G	Environmental Monitoring Results and Graphical Plots
Appendix H	Photographic Records of Ecological Monitoring of Vegetation (Not Used)
Appendix I	Condition Survey of the Grave during Construction Phase (Not Used)
Appendix J	Physical, Human and Cultural Landscape Resources at KT13
Appendix K	Monthly Summary Waste Flow Table

1 ENVIRONMENTAL STATUS

This is the **25**th monthly EM&A report for KT13, covering the construction period from **26 September to 25 October 2010** (the Reporting Period).

1.1 PROJECT AREA AND CONSTRUCTION PROGRAMME

Drawings showing the project area, any environmental sensitive receivers and the locations of the monitoring and control stations are presented in *Appendix A*, and the construction program in *Appendix B*.

1.2 Works Undertaken During the Reporting Period

Apart from general works of tree survey, structural survey and environmental monitoring & audit, works undertaken during the Reporting Period with fine tuning of construction activities showing the inter-relationship with environmental protection/mitigation measures for the month are summarized as follows:

- Excavation of channel formation
- Construction of channel structure
- Backfilling
- Laying of underground drain pipe
- Laying of Gabion Block/Granite Block

1.3 Environmental Management Organization

Management structure and key personnel contact names and telephone numbers of the environmental management organization are presented in Appendix C, where DSD is the Project Proponent; CRBC is the main Contractor; EPD and AFCD are the supervisory departments for environmental protection of the Project; BVHKL is the Engineer's Representative of DSD (the ER); ARUP is the Independent Environmental Checker (the IEC) and Action-United Environmental Services and Consulting (AUES) is the environmental team (the ET).

1.4 LICENSING STATUS

1.4.1 Air Pollution Control (Construction Dust) Regulation

Pursuant to the *Air Pollution Control (Construction Dust) Regulation*, CRBC has notified EPD, via submission of Form NA dated 14 February 2008, of the scope and nature of the works to be carried out under the Project, including construction activities such as stockpiling, loading and unloading, transfer of dusty material, use of vehicles and debris handling, etc. CRBC will continuously review the status of the environmental licenses and apply the required licenses/permits prior to the commencement of construction work.

1.4.2 Noise Control Ordinance

No *Construction Noise Permit* (CNP) is required for the Project pursuant to the Noise Control Ordinance (NCO) and the associated applicable subsidiary regulations of *Noise Control (General) Regulation, Noise Control (Hand-held Percussive Breaker) Regulation and Noise Control (Air Compressor) Regulation, as the use of powered mechanical equipment, or conducting construction work in during restricted hours, i.e. 1900 to 0700 hours on normal weekdays and any time on general holidays including Sundays is not anticipated during the whole construction period. CRBC will continuously review the status of the environmental licenses under the NCO and apply the required licenses/permits prior to the commencement of construction work.*

1.4.3 Waste Disposal (Charges for Disposal of Construction Waste) Regulation

CRBC has applied for a Billing Account (Construction Work Contract with Value of \$1million or above), under the *Waste Disposal (Charges for Disposal of Construction Waste) Regulation.* The account number 7006524 has been assigned on 9 Jan 2008.

1.4.4 Water Pollution Control Ordinance

CRBC has applied for a discharge license under Section 20 of the *Water Pollution Control Ordinance*, and the license No. 1U461/1 has been issued.

1.4.5 Waste Disposal (Chemical Waste) (General) Regulation

CRBC has registered as a Chemical Waste Producer with EPD under the Waste Disposal (Chemical Waste) (General) Regulation and the Waste Producer Number assigned is WPN: 5611-531-C3124-28 dated 2 May 08.

1.4.6 Dumping at Sea Permit

CRBC has been granted by the Environmental Protection Department a Permit Issued under the *Dumping at Sea Ordinance* (Permit no. EP/I4D/08-095, dated 18 September 2008, permit validity period of six months from 18 September 2008 to 17 March 2009) for disposal of 18,469 m³ sediment, requiring Type 1 – open sea disposal at East Sha Chau Contaminated Mud Disposal Site – Pit IV b, to be capped as directed by the Management Team of the Civil Engineering and Development Department. Note that this permit has expired. As there is no need for further sea disposal, no further permits will be required in the future.

1.5 Environmental Protection and Pollution Control Mitigation Measures

CRBC has committed to implement environmental protection and pollution control and mitigation measures, as recommended in the EIA, EP, EM&A Manuals, and summarized in the Mitigation Measures Implementation Schedules. The implemented mitigation measures include

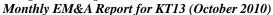
- (a) Watering of stockpiles of rip-rap at KT13;
- (b) Covering of the loose soil at KT13 to minimize water quality impacts;
- (c) Hard pavement of haul road leading to public roads at KT13;
- (d) Classification and disposal of illegally dumped construction and demolishment materials at KT13:
- (e) Construction of noise barriers; and
- (f) Erection of dams with sand bags downstream the excavation site within the water course of KT13 to enhance sedimentation of turbidity and suspended solids (SS).

2 MONITORING METHODOLOGY

2.1 MONITORING PARAMETERS

According to the EM&A requirements set out in the EIA, Environmental Permit No. EP-263/2007/A (the EP) and the associated EM&A Manual, the required monitoring parameters are summarized as follows.

Table 2-1 Summary of Monitoring Parameters


Environmental Issue	Monitoring Parameters		
Air Quality	(a) 1-hour Total Suspended Particulate (1-hour TSP); and (b) 24-hour Total Suspended Particulate (24-hour TSP).		
Construction Noise	 (a) A-weighted equivalent continuous sound pressure level (30min) (Leq(30min) during the normal working hours; and (b) A-weighted equivalent continuous sound pressure level (5min) (Leq(5min) for construction work during the Restricted Hours. 		
Water Quality	(a) In Situ Measurement	temperature, dissolved oxygen (DO), pH & turbidity	
Water Quality	(b) Laboratory Analysis	suspended solids (SS), Ammonia Nitrogen (NH ₃ -N) and Zinc (Zn)	
Ecology	Vegetation, all bird species of wetland, Ho Pui Egret, Ma On Hong Egret and Flight Lir Survey		
Waste Management	Inspection and the document audit		
Cultural Heritage Condition survey for a historical grave		a historical grave	
Landscape & Visual	To audit the implementation of the proposed construction phase mitigation measure stipulated in EIA.		

2.2 MONITORING LOCATIONS

Details of the monitoring locations are summarized in *Table 2-2* and shown in *Appendix A*. For ease of reference, monitoring locations denoted with "(a)" are relocated locations to differentiate them from the original 'EM&A Manual' locations.

Table 2-2Summary of Monitoring Locations

Environmental	Monitoring	Identified Address /	Status of Monitoring Locations / Rationale		
Air	A1(a)	Co-ordinates No.68 Ho Pui Village	for Recommended Replacement The original location of EM&A Manuals A1 has permanently been abandoned. No access can be acquired in the vicinity of A1. Taken into consideration that Ho Pui Village is one of the most important sensitive receivers near KT-13 without monitoring, the most fronting house, No. 68 Ho Pui Village, is therefore recommended as the replacement location A1(a).		
	A2	No.1 Ma On Kong Village	Original location of the EM&A Manual; access granted.		
Noise	N1(a)	168-169 Kam Ho Road, Ma On Kong Village,	Original location of N1 identified in the EM&A Manual was relocated to proposed area as recommended by IEC.		
	N2(a)	No. 68 Ho Pui Village, The original location of EM&A has permanently been about access can be acquired in the Taken into consideration that I is one of the most import receivers near KT-13 without most fronting house, No. 68 How therefore recommended replacement location N2(a).			
	N3	No.1 Ma On Kong Village	Original locations of the EM&A Manual; access granted.		
Water	W1	E824539 / N830283	Original locations of the EM&A Manual; access resolved.		

Environmental	Monitoring	Identified Address / Status of Monitoring Locations / Rationale			
Issues	Location	Co-ordinates	Co-ordinates for Recommended Replacement		
	W2	E824693 / N830258	Original locations of the EM&A Manual;		
			access resolved.		
	W3(a)	E824833 / N830374	The W3 is proposed to be relocated about 55		
			m down stream to W3(a) for safety reason as		
			there is no any discharge point observed		
		between W3 and the proposed W3			
	W4	E824936 / N830618 Original locations of the EM&A M access resolved.			
	W5	E825008 / N830812	Original locations of the EM&A Manual;		
		access resolved.			
W6 E825100 / N830987 Origina		Original locations of the EM&A Manual;			
		access resolved.			
Ecology		nitoring along the boundary of the works area to confirm that there are no			
		acts on habitats outside the site in particular the Conservation Area (CA)			
	zone and Ho				
		c records at six-month intervals;			
		nly monitoring of all bird numbers including wetland species and species identified			
	as being of conservation importance;				
			ch to August. The Ma On Kong egretry is also		
		surveyed to provide reference information on the breeding egrets nearby; and			
		urveys twice per month during April to June.			
Waste	Whole constri	nole constriction site and document			
Management					
Cultural	Ma On	Refer to EM&A Manual (K	Г13) Figure 7.1.		
Heritage	Kong				
Landscape &	Refer to EIA S	r to EIA Section 10			
Visual					

2.3 MONITORING FREQUENCY, DURATION AND SCHEDULE

2.3.1 **Monitoring Frequency and Duration**

Environmental monitoring is conducted upon commencement of the construction activities and throughout the whole construction period to detect and minimize any adverse environmental impacts generated from the construction activities of the Project. The monitoring frequency and duration for air quality, construction noise, water quality, ecology and other parameters are summarized below.

Air Quality

Frequency: Once every 6 days for 24-hour TSP and three times every 6 days for 1-hour

TSP, when the highest construction dust impacts are anticipated.

Throughout the construction period Duration:

Construction Noise

Frequency: Measurement of Leg(30min): Once a week during 0700-1900 hours on normal weekdays. If the construction work is undertake at restricted hours, the frequency of noise monitoring will be conducted in accordance with the requirements under the related Construction Noise Permit issued by EPD as follows:

- 3 consecutive Leg(5min) at restrict hour from 1700 2300 hours:
- 3 consecutive Leq(5min) for restrict hour from 2300 0700 hours next
- 3 consecutive Leq(5min) for Sunday or public holiday from 0700 1900

Duration: Throughout the construction period

Water Quality

Frequency: Three times a week with at least 36 hour intervals between any two

consecutive monitoring events

As the water columns in the stream water within KT13 is generally less than 3m, measurement is performed at the mid-depths of the monitoring locations. In case the water columns are deeper than 6m, measurement shall be carried out at three water depths, namely, 1m below water surface, mid-depth, and 1m above river bed. If the water depths are between 3 to

6m, the mid-depth measurement is omitted.

<u>Depths</u>: As the water columns in the stream water within KT13 is generally less than

3m, measurement is performed at the mid-depths of the monitoring locations. In case the water columns are deeper than 6m, measurement shall be carried out at three water depths, namely, 1m below water surface, mid-depth, and 1m above river bed. If the water depths are between 3 to

6m, the mid-depth measurement is omitted.

<u>Duration</u>: Throughout the construction period.

Ecology

The Ecology Monitoring is required in accordance with the EM&A Manual.

Parameters: Vegetation, All bird species including wetland birds, Ho Pui and Ma On

Hong Egretries and Flight line survey

<u>Frequency</u>: Vegetation – Impact monitoring – monthly;

Photographic records/checks against baseline records- six monthly

Wetland Bird survey – Monthly of half-day survey;

Ma On Kong egretry – Monthly between March to August; and

Ho Pui egretry – Bi-weekly between March and August;

Flight line Survey – twice per Month during the period from April to June

<u>Duration</u>: Throughout the whole construction period

Waste Management Audit

Frequency: Once per month

<u>Duration</u>: Throughout the construction period.

Cultural Heritage

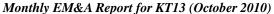
Scope: Condition survey and settlement monitoring of a Qing Dynasty Grave.

Frequency: Condition survey - Bi-monthly

Settlement monitoring - Bi-weekly

Duration: Throughout the construction phase period. (When construction work

entered the 100m of the cultural heritage site)


Landscape & Visual

Frequency: Bi-weekly

<u>Duration</u>: Throughout the construction phase period.

2.3.2 Environmental Monitoring Schedule

The monitoring schedules for the Reporting Period and next month are presented in *Appendix D.*

2.4 MONITORING EQUIPMENT AND PROCEDURE

The monitoring equipment and procedures are summarized below. Calibration certificates of the equipment and the related laboratories are presented in *Appendix E*.

2.4.1 Weather Conditions during the Reporting Period

All meteorological information is extracted from the Hong Kong Observatory (Lau Fau Shan Station). The meteorological data include wind direction, wind speed, humidity, rainfall, air pressure and temperature etc., that are generally required for evaluating the environmental impact arising from the construction activities. The meteorological data are presented in *Appendix D*.

2.4.2 Air Quality

Monitoring Equipment

A list of air quality monitoring equipment is shown below.

Table 2-4-2 Air Quality Monitoring Equipment

Equipment	Model	Serial Number		
24-hour TSP				
High Volume Air Sampler	Grasby Anderson GMWS 2310 HVS	-		
Calibration Kit	TISCH Model TE-5025A	1483		
1-hour TSP				
Portable Dust Meter	TSI DustTrak Model 8520	21060 / 23080 / 23079		

Monitoring Procedure

1-hour TSP

The 1-hour TSP measurement follows manufacturer's Operation and Service Manual, using a 1-hour TSP monitor brand named TSI Dust Track Aerosol Monitor Model 8520 or Sibata LD-3 Laser Dust Meter, which is a portable, battery-operated laser photometer to record the real time 1-hour TSP based on 90° light scattering. The 1-hour TSP monitor consists of the following:

- (a) A pump to draw sample aerosol through the optic chamber where TSP is measured;
- (b) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
- (c) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.

The 1-hour TSP meter to be used will be within the valid period, calibrated by the manufacturer prior to purchasing. Zero response of the instrument will be checked before and after each monitoring event.

24-hour TSP

The equipment used for 24-hour TSP measurement is the high volume air sampling system (hereinafter 'HVS') brand named Thermo Andersen, Model GS2310 TSP. The HVS complies with US EPA Code of Federal Regulation, Appendix B to Part 50. The HVS consists of the following:

- (a) An anodized aluminum shelter;
- (b) A 8"x10" stainless steel filter holder;
- (c) A blower motor assembly;
- (d) A continuous flow/pressure recorder;
- (e) A motor speed-voltage control/elapsed time indicator;
- (f) A 6-day mechanical timer, and
- (g) A power supply of 220v/50 Hz

The HVS is operated and calibrated on a regular basis following the manufacturer's instruction using the NIST-certified standard calibrator brand named TISCH Calibration Kit Model TE-5025A. Regular HVS operation and maintenance as well as filter paper installation and collection is performed by the ET's competent technicians, whereas

laboratory analyses are conducted in a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (herein after 'ALS'). The 24-hour TSP filters of the 24-hour TSP will be kept in ALS for six months prior to disposal.

All relevant data including temperature, pressure, weather conditions, elapsed-time meter reading for the start and stop of the sampler, identification and weight of the filter paper are recorded in details.

2.4.3 Construction Noise

Monitoring Equipment

A list of construction noise monitoring equipment is shown below.

Table 2-4-3 Construction Noise Monitoring Equipment

Equipment	Model	Serial Number	
Integrating Sound Level Meter	Bruel & Kjaer 2238	2285721	
Calibrator	Bruel & Kjaer 4231	2326408	
Portable Wind Speed Indicator	Testo Anemometer	-	

Monitoring Procedure

Sound level meters listed above comply with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications, as recommended in Technical Memorandum (TM) issued under the Noise Control Ordinance (NCO).

All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq(30 min) in six consecutive Leq(5 min) measurements will be used as the monitoring parameter for the time period between 0700-1900 hours on weekdays throughout the construction period. Leq(15min) in three consecutive Leq(5 min) measurements for other time periods (e.g. during restricted hours) will only be conducted for monitoring the construction noise during restricted hours as necessary.

The sound level meter is mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield is fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point is normally at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point is at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.

Immediately prior to and following each noise measurement the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0dB. No noise measurement will be made in the present of significant fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s. The wind speed is checked with a portable wind speed meter capable of measuring the wind speed in m/s.

2.4.4 Water Quality

Monitoring Equipment

Monitoring Equipment for water quality is listed below.

Table 2-4-4 Water Quality Monitoring Equipment

Equipment	Model	Serial Number	
Water Depth Detector	Eagle Sonar	-	
Water Sampler	Teflon bailer / bucket	-	
Thermometer & DO meter	YSI 550A	05F2063AZ	
pH meter	Extech pH Meter EC500	CE133298	
Turbidimeter	Hach 2100p	950900008735	
Hand Refractometer	ATAGO	289468	
Sample Container	High density polythene bottles (provided by laboratory)	-	
Storage Container	'Willow' 33-litter plastic cool box	-	

Monitoring Procedure

Water Depth

As the water columns in the stream water within KT13 is generally less than 3 m, measurement is performed at the mid-depths of the monitoring locations. In case the water columns are deeper than 6 m, measurement shall be carried out at three water depths, namely, 1 m below water surface, mid-depth, and 1 m above river bed. If the water depths are between 3 to 6 m, the mid-depth measurement is omitted.

Water depths are determined prior to measurement and sampling, using a portable battery operated depth detector, brand named 'Eagle Sonar', if the depths exceed 1.5 meter. For the depths well below 1 meter, the depths of water columns are measured with a steel ruler with appropriate weight.

Dissolved Oxygen (DO)

A portable YSI 550A DO Meter will be used for in-situ DO measurement. The DO meter is capable of measuring DO in the range of 0 - 20 mg/L and 0 - 200 % saturation and checked against water saturated ambient air on each monitoring day prior to monitoring. Although the DO Meter automatically compensates ambient water temperature to a standard temperature of 20°C for ease of comparison of the data under the changing reality, the temperature readings of the DO Meter will be recorded in the field data sheets. Calibration of the equipment will be performed by ALS on quarterly basis.

рΗ

A portable Extech pH Meter will be used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 – 14 and readable to 0.1. Standard buffer solutions of pH 7 and pH 10 are used for calibration of the instrument before and after measurement. Quarterly calibration of the equipment will be performed by ALS.

Turbidity

A portable Hach 2100p turbidity Meter will be used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0-1000 NTU. Calibration of the equipment will be performed by ALS on quarterly basis.

Salinity

A portable hand Refractometer AGATO will be used for in-situ salinity measurement. The refractometer is capable of measuring salinity in the range of 0-70ppt with accuracy $\pm 1\%$ reading. Calibration of the equipment will be performed by ALS on quarterly basis.

Suspended Solids (SS)

SS will be determined by ALS upon receipt of the water samples using the HOKLAS accredited analytical method - ALS Method EA-025.

Ammonia Nitrogen(NH3-N)

 $\underline{\it NH_3-N}$ will be examined by ALS upon receipt of the water samples using the HOKLAS accredited analytical methods - ALS Method EK-055A.

Zinc(Zn)

Zn will be analyzed by ALS upon receipt of the water samples using the HOKLAS accredited analytical methods - ALS Method EG-020.

Water Sampler

Water samples will be collected using a plastic sampler to prevent metal contamination. As the water depths in the stream water within KT13 are generally less than 0.5 m, a plastic bucket with a rope of appropriate length is used for water sampling. The sampler is rinsed before collection with the sample to be taken. For water depths deeper than 0.5 meter, a cleaned plastic bailer bucket will be used for sample collection.

1000 mL water sample is collected from each depth for SS determination. The samples collected are stored in a cool box maintained at 4°C and delivered to ALS upon completion of the sampling by end of each sampling day.

Sample Container

Water samples are contained in screw-cap PE (Poly-Ethylene) bottles, which are provided and pretreated according to corresponding HOKLAS and ALS analytical requirements. Where appropriate, the sampling bottles are rinsed with the water to be contained. Water samples are then transferred from the water sampler to the sampling bottles to 95% bottle capacity to allow possible volume expansion during delivery and storage.

Sample Storage

A 'Willow' 33-litter plastic cool box packed with ice will be used to preserve the collected water samples prior to arrival at ALS. The water temperature of the cool box will be maintained at a temperature as close to 4°C as possible without being frozen. Samples collected will be delivered to the laboratory upon collection within the maximum storage time required under the HOKLAS and ALS analytical requirements

2.4.5 **Ecology**

Monthly walk through survey will be conducted along the boundary of work area for KT13. Bird monitoring will be conducted in the study areas monthly for KT13. Monitoring on the Ho Pui egretry and Ma On Kong egretry will be conducted between March to August. Flight line surveys to record the feeding areas and the habitat use of breeding egrets will be conducted between April to June. Photographic record should be made at six month intervals.

Monitoring Equipment

The following equipment will be used for monitoring:-

Standard portable field survey equipment was used for ecological monitoring, including

- (a) Binoculars of 10 x 40 magnifications;
- (b) Digital camera; and
- (c) Notebook.

Study Area

The areas for the ecological monitoring programme would cover 60 m on either side of the existing channel as well as the proposed bypass culvert, as shown in Figure 6.1 of the EM&A Manual. Within these, emphasis will be given to the area around the Ho Pui and Ma On Kong egretries and habitats of at least moderate ecological value. In addition, monitoring would also be undertaken at the Ho Pui egretry and Ma On Kong egretry (The Ma On Kong egretry is outside the demarcated monitoring area but is also monitored to identify any adverse effects on the breeding egrets).

Monthly monitoring will be conducted by means of walk through survey, along the

boundary of work area for KT13. Any adverse impacts to the habitats outside the site, in particular the Conservation Area (CA) zone and Ho Pui Egretry, will be checked and reported.

Photographic records will be made every six months on the fixed photo record points selected during the baseline survey. The photos from the construction phase ecological monitoring will be compared with those taken during the baseline, which are used as the baseline conditions.

Bird monitoring will be conducted in the study areas monthly for KT13. Attention should be paid on wetland species and species identified as being of conservation importance, and the habitats utilized should also be recorded. Bird surveys should commence no later than 2 hours after dawn.

Monitoring on the Ho Pui egretry and Ma On Kong egretry will be conducted between March to August. The frequency would be twice per month during March to May. Depending upon the nesting conditions at Ho Pui egretry, the frequency could be reduced to monthly between June and August if no egret nest found by the end of May, or maintained at twice per month till the end of August if there are egret nests. Number of active nests, species and number of birds present and breeding stage should be recorded.

Flight line surveys to record the feeding areas and the habitat use of breeding egrets will be conducted twice per month between April to June. The number and species of flying egrets, and their landing habitats and locations should be recorded.

2.4.6 Waste Management, Cultural Heritage and Landscape & Visual

Waste Management, Cultural Heritage and Landscape & Visual monitoring is required for KT13 as stipulated in the EM&A manual [382047/E/EMA/Issue 5] **Section 5**, **Section 7** and **Section 8** accordingly.

Waste Management

During the monthly audit, ETL will pay attention to the issues relating to waste management, and check whether the Contractor has followed the relevant contract Specifications and the procedures specified under the law of HKSAR.

Cultural Heritage

Condition survey by a qualified archaeologist is required for the historical grave near Ma On Kong before and during the construction phase. The method statement of condition survey of Ma On Kong Historic Grave (KT13-02-02) was issued to EPD and endorsed on 27 July 2008, the frequency of the condition survey during the construction phase and given the open cut method would be adopted for the construction of the proposed bypass box culvert under KT13 project, subject to the result of the condition survey carried out before the construction stage, it is recommended that bi-monthly condition survey be undertaken during the construction work within 100m area from the grave.

Landscape and Visual

In accordance with the EM&A manual [382047/E/EMA/Issue5] **Section 8** landscape and visual mitigation measures are required during construction and operation phase. Site inspection will be undertaken at least once every two weeks throughout the construction period to ensure compliance with the intended aims of the proposed mitigation measures.

2.5 QUALITY ASSURANCE PROCEDURES AND DATA MANAGEMENT

2.5.1 Documentation of the Environmental Monitoring

Field data including in-situ monitoring results, weather conditions and water sampling information and observation will be recorded in corresponding Field Data Sheets, which will be signed and dated by the respective environmental technician prior to submission to the ETL for validation and endorsement at the end of the monitoring day.

2.5.2 Data Management and Analysis

Monthly EM&A Report for KT13 (October 2010)

All impact monitoring data will be processed by the AUES data recording and management system, which complies with in-house Quality (*ISO 9001:2000*) Management System. Monitoring results recorded in the monitoring equipment e.g. 1-hour TSP Meters and Noise Meters will be downloaded directly from the equipment at the end of the monitoring period and input into a computerized database maintained by the ET. Laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.

2.5.3 Quality Assurance Procedures

Appropriate and standard QA/QC measures will be adopted for the environmental monitoring to ensure the scientific integrity of the data produced. Sources of error in the impact monitoring will be properly controlled with the following QA/QC procedures:

- (a) Appropriate field monitoring and sampling techniques, including monitoring equipment, storage and delivery of samples;
- (b) Well organized systematic field-data system e.g. all baseline monitoring information, field observation, results, weather conditions and water sampling information, etc. will be recorded in the field monitoring record sheets. The laboratory analysis records will be maintained by the HOKLAS following HOKLAS requirements;
- (c) HOKLAS requirements for QA/QC of all laboratory testing to ensure acceptable accuracy and reproducibility of the laboratory analysis indicated by consistent agreement between duplicate samples, validity of the analytical results by compliance with the required blanks and recovery of standard addition.

2.5.4 Records

All impact monitoring data will be clearly and systematically documented in both hardware and software format and the software copy will be available for inspection upon request. All the document and data will be kept for at lest one year after completion of the Project. Field Data Sheets used to record the impact monitoring information, field observation, results, weather conditions and water sampling information, etc., will be properly maintained and kept by the ET. The copies of laboratory analysis records from ALS will be keep by the ET throughout the at least one year after completion of the EM&A program of the Project.

2.6 REPORTING

2.6.1 General Requirements for Report Submission

General requirements for Monthly EM&A report submission as stipulated in the EIA, EP and EM&A Manual are summarized below.

Table 2-6 Requirements for Report Submission

Report	Submission	
Monthly EM&A Report	Within 10 working days of the end of each reporting month.	
Quarterly EM&A Summary Report	 No specific requirement, proposed three weeks after endorsement of the 3rd monthly EM&A report within a particular quarter. 	
Final EM&A Summary Report	No specific requirement, proposed one month upon completion of entire EM&A program	

2.6.2 Cut-Off Day of the Reporting Month

It was agreed among the ER, IEC, CRBC, ET and EPD that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end day, the 25th of that month.

3 MONITORING RESULTS

The environmental monitoring results will be compared against the Action and Limit Levels established based on the baseline monitoring results and statutory criteria. In case the measured data exceed the environmental quality criteria, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*. The environmental monitoring results are tabulated below and the details of 24-hour TSP data and graphical plots of trends of monitored parameters at key stations over the past four Reporting Periods are presented in *Appendices G* and *H*.

3.1 AIR QUALITY

3.1.1 Action and Limit Levels

According to the Baseline Monitoring Report for KT13, the Action and Limit Levels for 24-hour and 1-hour TSP are established as follows:

Table 3-1-1 Air Quality Action and Limit Levels

Monitoring Station	Action Level (μg /m³)		Limit Level (μg/m³)	
Worldoning Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP
KT13(A1(a))	309	144	500	260
KT13(A2)	307	141	500	260

3.1.2 Results

Results of air quality monitoring at the identified locations during the Reporting Period are summarized in *Tables 3-1-3-1* and *3-1-3-2* below.

Table 3-1-2-1 Summary of Air Quality Monitoring Results at KT13-A1(a)

	1	l-hour TSP	(μg/m ³)			24-hour TSP (μg/m³)		
Date	Start Time	1 st hour	2 nd hour	3 rd hour	Average	Date	Results	
28-Sep-10	9:46	83	86	80	83	27-Sep-10	15	
4-Oct-10	9:36	92	95	101	96	2-Oct-10	23	
9-Oct-10	9:27	79	83	77	80	8-Oct-10	64	
15-Oct-10	9:19	82	85	79 82		14-Oct-10	54	
21-Oct-10	13:37	106	112	95	104	20-Oct-10	94	
Average			8		Average	50		
(rai	nge)		(77-	-112)		(range)	(15-94)	

Table 3-1-2-2 Summary of Air Quality Monitoring Results at KT13-A2

	1	l-hour TSP		24-hour TSP (μg/m³)			
Date	Start Time	1 st hour	2 nd hour	3 rd hour	Average	Date	Results
28-Sep-10	9:21	79	82	77	79	27-Sep-10	44
4-Oct-10	9:12	76	79	74	76	2-Oct-10	18
9-Oct-10	9:14	82	86	79	82	8-Oct-10	37
15-Oct-10	9:07	79	83	76	79	13-Oct-10	29
21-Oct-10	13:17	86	89	94	90	20-Oct-10	61
Average		81				Average	38
(rai	nge)		(74-	-94)		(range)	(18-61)

3.1.3 Discussion

As shown in *Tables 3-1-2-1* and *3-1-2-2*, 1-hour TSP and 24-hour TSP results fluctuated well below the Action Level. No exceedance of Action or Limit Levels was recorded during the Reporting Period. Neither Notification of Exceedance (hereinafter 'NOE') of air quality criteria or corrective action was required.

3.2 CONSTRUCTION NOISE

3.2.1 Action and Limit Levels

Monthly EM&A Report for KT13 (October 2010)

The Action and Limit Levels for construction noise are illustrated in Table 3-2-1.

Table 3-2-1 Construction Noise Action and Limit Levels

Time Period	Action Level in dB(A)	Limit Level in dB(A)
0700-1900 hours on normal	When one documented	> 75* dB(A)
weekdays	complaint is received	> 15 db(A)

Note: *Reduces to 70dB(A) for schools and 65dB(A) during the school examination periods.

3.2.2 Results

Results of construction noise monitoring at the identified locations N1(a), N2(a) and N3 during the Reporting Period are summarized in *Tables 3-2-2-1* to *3-2-2-3*.

The baseline monitoring for N1(a) and N2(a) was performed on the 1st floor of the bedroom of 168-169 Kam Ho Road, Ma On Kong Village and No. 68 Ho Pui Village respectively. The impact noise monitoring, however, was performed on the ground floor of the same house due to denial of access to the 1st floor. The change of noise monitoring from 1st floor to ground floor will negate the need for a 3dB(A) façade correction but will not introduce any significant difference in detection and minimization of the of construction noise impacts, or alteration of the established A/L Levels. The ET has obtained the approval from EPD with consultation with the ER and IEC.

Table 3-2-2-1 Summary of Construction Noise Monitoring Results – N1(a)

Date	Start Time	1 st set Leq5	2 nd set Leq5	3 rd set Leq5	4 th set Leq5	5 th set Leq5	6 th set Leq5	Leq30
28-Sep-10	10:57	63.7	62.9	63.2	63.4	63.9	63.7	63.5
4-Oct-10	11:02	62.4	62.9	62.1	63.4	62.1	63.1	62.7
9-Oct-10	10:58	63.2	62.9	63.3	63.6	62.7	63.8	63.3
15-Oct-10	11:09	63.4	64.7	64.1	64.0	63.9	63.7	64.0
21-Oct-10	14:39	63.6	64.1	62.7	62.6	63.1	63.3	63.3
Limit Level								75

Table 3-2-2-2 Summary of Construction Noise Monitoring Results – N2(a)

Date	Start Time	1 st set Leq5	2 nd set Leq5	3 rd set Leq5	4 th set Leq5	5 th set Leq5	6 th set Leq5	Leq30
28-Sep-10	9:36	63.7	62.9	63.4	62.4	63.1	63.9	63.3
4-Oct-10	9:26	63.7	62.8	63.1	63.4	63.7	63.4	63.4
9-Oct-10	9:37	62.7	63.4	62.9	63.1	62.8	62.7	62.9
15-Oct-10	9:21	62.7	61.9	62.0	62.2	61.8	62.3	62.2
21-Oct-10	13:14	64.1	63.4	63.6	63.2	63.7	63.6	63.6
Limit Level					-			75

Table 3-2-2-3 Summary of Construction Noise Monitoring Results – N3

Date	Start Time	1 st set Leq5	2 nd set Leq5	3 rd set Leq5	4 th set Leq5	5 th set Leq5	6 th set Leq5	Leq30
28-Sep-10	10:19	61.7	60.9	62.4	62.6	62.1	62.3	62.0
4-Oct-10	10:17	66.7	65.9	66.2	66.4	67.0	66.8	66.5
9-Oct-10	10:17	67.8	68.4	67.6	67.5	68.0	67.9	67.9
15-Oct-10	10:19	63.7	62.6	63.1	63.4	63.2	62.9	63.2
21-Oct-10	13:59	63.7	64.9	64.1	64.7	65.1	63.9	64.4
Limit Level -						75		

3.2.3 Discussion

It is confirmed that no raining during the course of noise monitoring as fulfill EM&A manual requirements. As shown in *Tables 3-2-2-1*, *Table 3-2-2-2* and *Table 3-2-2-3*, all the construction noise results fluctuated well below the Limit Level. No exceedance of Limit Level or documented construction complaint was recorded during the Reporting Period. No NOE or corrective action was therefore required.

3.3 WATER QUALITY

3.3.1 Action and Limit Levels

The Action and Limit Levels for water quality are illustrated in *Table 3-3-1*.

Table 3-3-1 Action and Limit Levels for Water Quality Monitoring

_	•						•					
Monitoring	DO (mg/L)		Turbidity (NTU)		рН		SS (mg/L)		Ammonia (μg/L)		Zinc (μg/L)	
Location	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level
W1 (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W2 (Downstream) Impact Station	1.04	1.00	36.81	37.16	8.65	8.69	79.0	86.2	16.85	16.89	234.95	266.19
W3(a) (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W4 (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W5 (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W6 (Downstream) Impact Station	0.93	0.91	27.88	30.02	8.7	8.7	73.40	78.68	51.62	54.56	191.90	201.58

3.3.2 Results

Water quality monitoring results measured at W1, W2, W3(a), W4, W5 and W6 during the Reporting Period are presented in tabulation and graphical plots in *Appendix G*.

3.3.2 Discussion

In this Reporting Period, the exceedances registered at impact station W2 and W6 as shown in *Table 3-3-2*.

Table 3-3-2 Summary of Water Quality Exceedances

Location	Exceedance	DO	Turbidity	рН	SS	NH ₄ ⁺⁻ N	Zn	Total
W2	Action Level	0	0	0	0	0	0	0
	Limit Level	0	0	0	1	1	0	2
W6	Action Level	0	0	0	0	0	1	1
	Limit Level	0	0	0	1	0	0	1
Total	Action Level	0	0	0	0	0	1	1
	Limit Level	0	0	0	2	1	0	3

DO, Turbidity

No exceedances of Action and Limit Levels were recorded during the Reporting Period. No Notifications of Environmental Quality Limit Exceedances (NOE) or corrective actions were therefore required for these parameters.

Suspended solids, Zinc and NH₄⁺-N

A total of four (4) Action/ Limit Level exceedances were recorded in the stream water

quality monitoring as summarized in *Table 3-3-2*. According to the information provided by the Contractor, no site activities were conducted on 9 and 13 October at channel upstream but pigsty discharge was observed near monitoring location W2. Since high levels of suspended solids and Zinc were also recorded at upstream and control station, it is believed that the exceedances were likely due to the discharge from the vicinity agriculture farm and livestock at the vicinity as water quality throughout the channel was affected. Therefore, it is concluded that the exceedances were not related to the works under the Project.

3.4 ECOLOGY

3.4.1 Action and Limit Levels

The Action and Limit Levels for Construction Ecology Monitoring are shown in *Table 3-4-1* to according with the EM&A manual.

Table 3-4-1 Ecological Action and Limit Levels

Parameters	Action Level	Limit Level	
Decrease in number of breeding egrets since previous	>20%	> 40%	
year	>20%	> 40%	

3.4.2 Results

Fifty-seven (57) individuals of birds from **twenty (20)** species were recorded during the survey on **16 October 2010**. Among the birds recorded, **six (6)** individuals of wetland dependent birds (from **4 species**) were recorded. The summary of KT13 ecology bird survey can be referred to **Table 3-4-2**.

It is stated in the EP for KT13 that the monitoring of the Ho Pui egretry shall be carried out during the period from 1st March to 31st August as specified in the EM&A Manual. If no egret nest is found at the egretry during the period from 1st March to 31st May, the Permit Holder can start the construction works within 100m of the ecological buffer area upon obtaining the Director's approval until February in the next year. If egret nests are found during the period from 1st March to 31st August, no construction shall take place within 100m of the ecological buffer area before 1st October.

Previously the monitoring during March 2010 to May 2010 did not record any nest in Ho Pui Egretry, and thus the construction works could be conducted within 100m of the ecological buffer area until February 2011. And the egretry monitoring frequency from June to August this year can be downgraded to Monthly. No nest was found at the Ho Pui egretry during these surveys. Even though, as there had been no nest recorded at Ho Pui egretry in 2009, the action/limit level for ecology is complied.

Ma On Kong egretry was also surveyed between March to August 2010 to provide reference information on the breeding. No nest was found at Ma On Kong egretry neither. Flight line surveys are required between April to June which is not required in this reporting month.

During the walk through survey on 16 October 2010, other than the bamboo trees which are within Ho Pui Egretry boundary as shown in the EM&A manual and had been found to be cleared by villagers during site inspection on 11 July 2009, no further adverse impacts on habitats outside the boundary of the works area including the Conservation Area and the remaining Ho Pui Egretry was found. Ecological impact monitoring results are presented in the *Table 3-4-2*.

Photo records of trees are required in six-month interval and it is not required in this reporting month.

Table 3-4-2 Summary of KT13 Ecology Impact Monitoring Bird Survey

Scientific Name	Common Name	Reported in the project profile	Abundance recorded in the present survey (16 October 2010)	Habitat utilized
Birds				
Little Egret	Egretta garzetta	✓	2	Stream
Cattle Egret	Bubulcus ibis	✓		
Chinese Pond Heron	Ardeola bacchus	✓	2	Stream
Crested Serpent Eagle	Spilornis cheela	✓		
Bonelli's Eagle	Hieraaetus fasciatus	√		
Eurasian Hobby	Falco subbuteo	✓		
White-breasted	Amaunornis phoenicurus	,	1	Stream
Waterhen	F	✓	_	212 011111
Spotted Dove	Streptopelia chinensis	✓	6	Woodland, bare ground
Common Koel	Eudynamys scolopacea	✓		
Greater Coucal	Centropus sinensis	✓		
Little Swift	Apus affinis	✓		
White-Throated Kingfisher	Halcyon smyrnensis	✓	1	Stream
Barn Swallow	Hirundo rustica	✓		
Red-Whiskered Bulbul	Pycnonotus jocosus	✓	4	Woodland
Chinese Bulbul	Pycnonotus sinensis	✓		
Long-Tailed Shrike	Lanius schach	✓	4	Bare ground
Oriental Magpie Robin	Copsychus saularis	✓	5	Stream, agricultural land
Masked Laughingthrush	Garrulax perspicillatus	✓	5	Bare ground, woodland
Yellow-Bellied Prinia	Prinia flaviventris	✓	3	Grassland
Common Tailorbird	Orthotomus sutorius	√	-	
Great Tit	Parus major	√	5	Woodland
Japanese White-Eye	Zosterops japonicus	√	5	Woodland
White-Rumped Munia	Lonchura striata	√	-	
Eurasian Tree Sparrow	Passer montanus	✓	2	Agricultural land, bare ground
Black-Collared Starling	Sturnus nigricollis	✓	3	bare ground, agricultural land
Common Myna	Acridotheres tristis	✓		
Crested Myna	Acridotheres cristatellus	✓	1	Agricultural land, bare ground
White Wagtail	Motacilla alba	\	2	Stream
Blue Magpie	Urocissa eythrorhyncha	\	4	Woodland
Common Sandpipper	Actitis hypoleucos	1	2	Stream
Large Hawk Cuckoo	Cuculus sparverioides	1	1	Woodland
Common Kingfisher	Alcedo atthis	j	1	Stream
Species Number		27	20	
Individual Number		NA	57	

^{*}Wetland dependent species recorded with abundance during the baseline study with the names bolded

- 3.5 WASTE MANAGEMENT, CULTURAL HERITAGE AND LANDSCAPE & VISUAL
- 3.5.1 Waste Management

In order to comply with the waste management requirements, CRBC has been:

- (a) Assigned, since 9 Jan 2008, a Billing Account (account number 7006524) under the *Waste Disposal (Charges for Disposal of Construction Waste) Regulation;*
- (b) Issued a Discharge License No. 1U461/1 under Section 20 of the *Water Pollution Control Ordinance*;
- (c) Registered as a Chemical Waste Producer under the *Waste Disposal (Chemical Waste)* (*General) Regulation* (the Waste Producer Number assigned is WPN:

5611-531-C3124-28 dated 2 May 08); and

(d) Granted by the Environmental Protection Department a Permit Issued under the *Dumping at Sea Ordinance* (Permit no. EP/I4D/08-095, dated 18 September 2008, permit validity period of six months from 18 September 2008 to 17 march 2009) for 18, 469 m³ sediment requiring Type 1 – open sea disposal at East Sha Chau Contaminated Mud Disposal Site – Pit IV b to be capped as directed by the management Team of the CEDD.

3.5.2 Cultural Heritage

The Action and Limit Levels for Cultural Heritage are shown in *Table 3-5-2* according to the EM&A Manual.

Table 3-5-2 Cultural Heritage Resources Action and Limit Levels

Action Level	Limit Level
When damage or structural instability is first detected	Signs of deterioration and structural instability continues on subsequent visits after Action Level is triggered

The historical grave KT13-02-02 was identified during the EIA stage of the project. A pre-construction condition survey report was issued in **July 2008** and already agreed by AMO. The details of the grave could be referred to in a report entitled "*Pre-construction condition survey on July 2008*".

During the Reporting Period, construction work at Channel KT13 had entered the area within 100m of the cultural heritage site (the grave) since 21 October 2009. To update the condition of the grave, supplementary information of condition survey was undertaken on 31 August 2009 (when no construction activities were carried out within 100m areas from the grave). The monitoring result of the supplementary survey would be adopted as the updated initial reading of the settlement level as agreed by ET and IEC.

Under the current EM&A programme and approved monitoring methodology, the condition survey would be conducted by ERM Limited on a bi-monthly basis and the settlement monitoring will be conducted by CRBC, again bi-weekly. Should any exceedance was recorded, the frequency of the settlement monitoring shall be increased to weekly and the condition survey shall be increased to bi-weekly. In the settlement monitoring, five settlement marker points (13GS01 to 13GS05) were established to record the coordinates and elevation of the grave in order to monitor any ground movement or settlement during the construction works.

In this reporting period, weekly settlement monitoring was taken on 29 September, 5, 12 and 23 October 2010 to compare with the initial readings to determine if there is any significant tilting or settlement of the grave. Monitoring result demonstrated no exceedance was triggered and the settlement monitoring results are shown in *Table 3-5-3*. Besides, a condition survey of the grave was carried out by ERM Limited on 23 October 2010. As the report of the condition survey has not yet finalized, it will be presented in next reporting month.

Table 3-5-3 Record of Five Settlement Marker Points of the Qing Dynasty Grave

Monitoring Point	Level (mpd)	Diff. (mm)	Level (mpd)	Diff. (mm)	Level (mpd)	Diff. (mm)	Level (mpd)	Diff. (mm)	Level (mpd)	Diff. (mm)	
Date	13GS01		130	GS02	130	13GS03		13GS04		13GS05	
31/08/09 (Initial reading)	19.222	0	19.985	0	20.644	0	19.943	0	19.211	0	
29/09/10	19.223	+1	19.985	0	20.643	-1	19.943	0	19.211	0	
5/10/10	19.222	0	19.985	0	20.643	-1	19.943	0	19.211	0	
12/10/10	19.223	+1	19.986	+1	20.644	0	19.944	+1	19.211	0	
23/10/10	19.222	0	19.985	0	20.643	-1	19.943	0	19.211	0	
Breach of A/L Level		-		-		-		-		-	

Note: Action level exceedance would be triggered when the settlement difference is \pm 2mm. Limit level exceedance would be triggered when the settlement difference is \pm 5mm.

3.5.3 Landscape and Visual

Landscape and visual inspections were conducted on 12 and 25 October 2010. Current situation of the identified landscape resources remained the same as those of the baseline, except minor changes of river/stream/fish pond landscape character area at LR1, LR2.1, LR2.2, LCA1, LCA3 and LCA4 due to site clearance, soil stockpiling and preparation work within KT13. Updated landscape and visual status is presented in *Appendix J.*

4 NON-COMPLIANCE, COMPLAINT, NOTIFICATION OF SUMMONS, SUCCESSFUL PROSECUTION AND OTHERS

4.1 Non-compliance

Exceedances in water quality monitoring were recorded but it concluded that all the exceedances were not project related in this reporting month as discussed in **Section 3.1** to **3.5.** No other non-compliance or deficiency was identified during regular site inspection and environmental audit. No associated remedial action was necessary.

4.2 ENVIRONMENTAL COMPLAINT

No written or verbal complaint was received for each environmental issue during the Reporting Period. No associated remedial action was necessary.

4.3 NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTION

No notifications of summons and successful prosecutions were recorded during the Reporting Period. No associated remedial action was necessary.

4.4 OTHERS

4.4.1 Waste Management Status

All types of waste arising from the construction work are classified into the following:

- Construction & Demolition (C&D) Material;
- Chemical Waste:
- General Refuse; and
- Excavated Soil and sediment

Waste generated, re-used, recycled and disposed of during the Reporting Period is shown in *Appendix K: Monthly Summary Waste Flow Table.* No Type I or Type II excavated soil were recorded in this Reporting Period.

4.4.2 Site Inspection and Environmental Audit

In this Reporting Period, **four** occasions of weekly environmental site inspection and audit were conducted during the Reporting Period jointly by the ER, EO and ET. No adverse environmental impacts were registered, indicating that the mitigation measures implemented were effective and sufficient for the construction activities undertaken. Minor deficiencies found in the site inspection and audit were in general rectified within the specified deadlines. Findings of the site inspection and environmental audit are summarized below.

Table 4-4-1 Summary of Findings of Site Inspection and Environmental Audit

Date	Findings / Deficiencies	Follow-Up Status
28 September 2010	The Contractor is reminded to clear the stagnant water and waste found inside the drip tray of 'G01' Generator.	Recommendation based on the observation on 5 October 2010 was followed.
5 October 2010	The Contractor is reminded to maintain the outlet of the box culvert free of construction waste and general garbage. The Contractor is reminded to dampen the access road.	Recommendations based on the observations on 5 October 2010 were followed.
15 October 2010	The Contractor is reminded to clear the loose soil under the type 2 railing. The Contractor is reminded to repair the soil bund after draining the stagnant water.	Recommendations based on the observations on 5 October 2010 were followed.

DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun.

Monthly EM&A Report for KT13 (October 2010)

19 October	Generally in order. No adverse environmental	N.A
2010	impact is observed.	
	The Contractor is encouraged to keep up the good	
	site management practice.	

4.4.3 Works to be Undertaken Next Month

Works to be undertaken next month are shown in the construction program enclosed in **Appendix B**. The construction activities undertaken in the Reporting Period including:

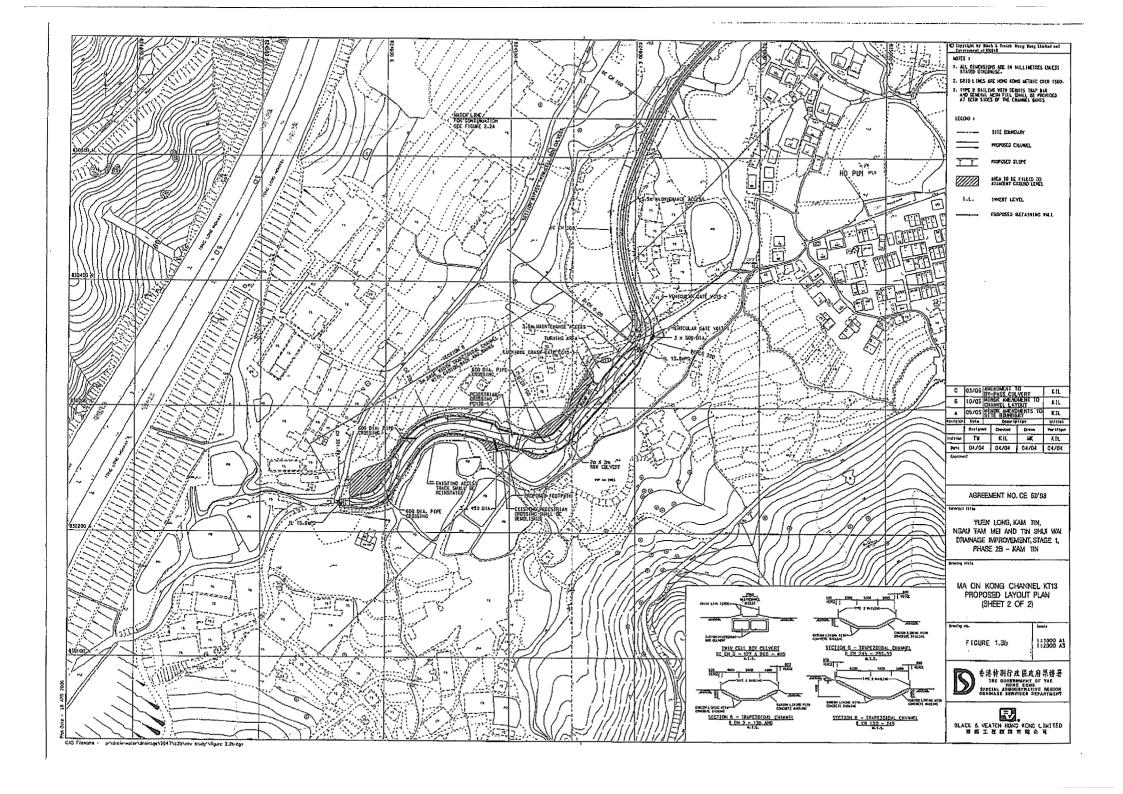
- Excavation of channel formation
- · Construction of channel structure
- Backfilling
- Laying underground drain pipe
- Laying of Gabion Block/Granite Block

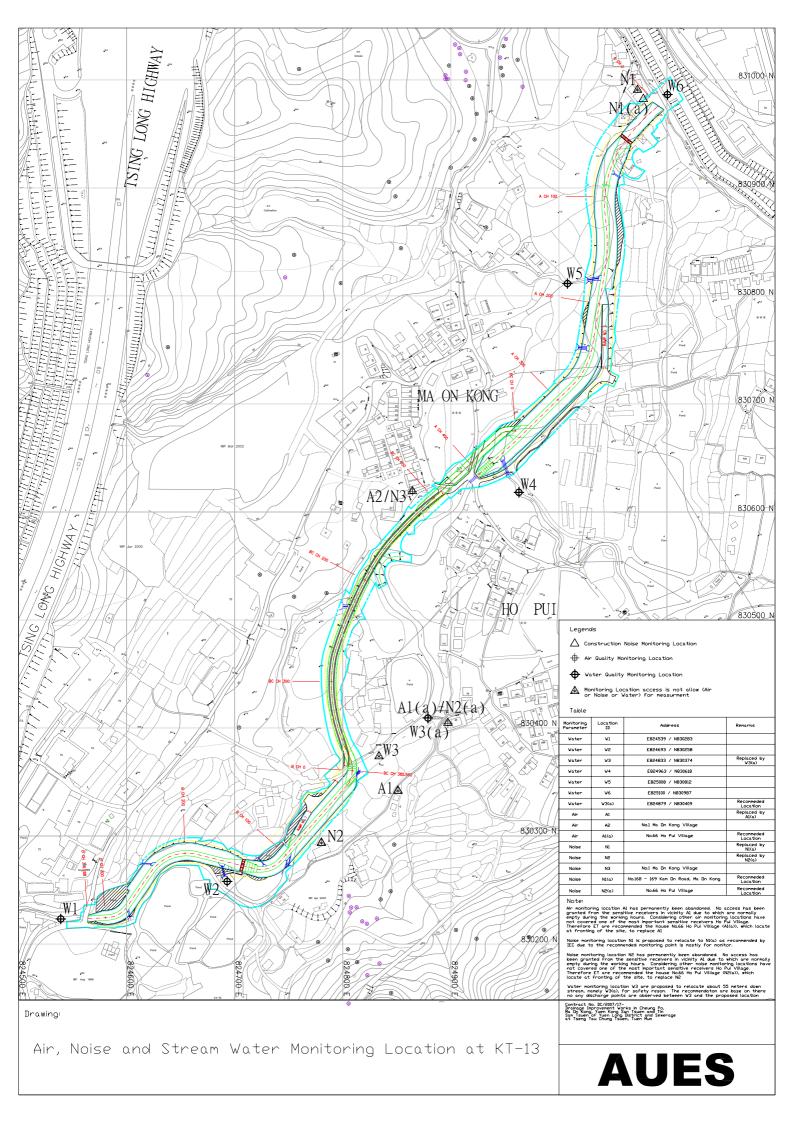
4.4.4 Future Key Issues and Mitigation Measures for the Forth-Coming Month

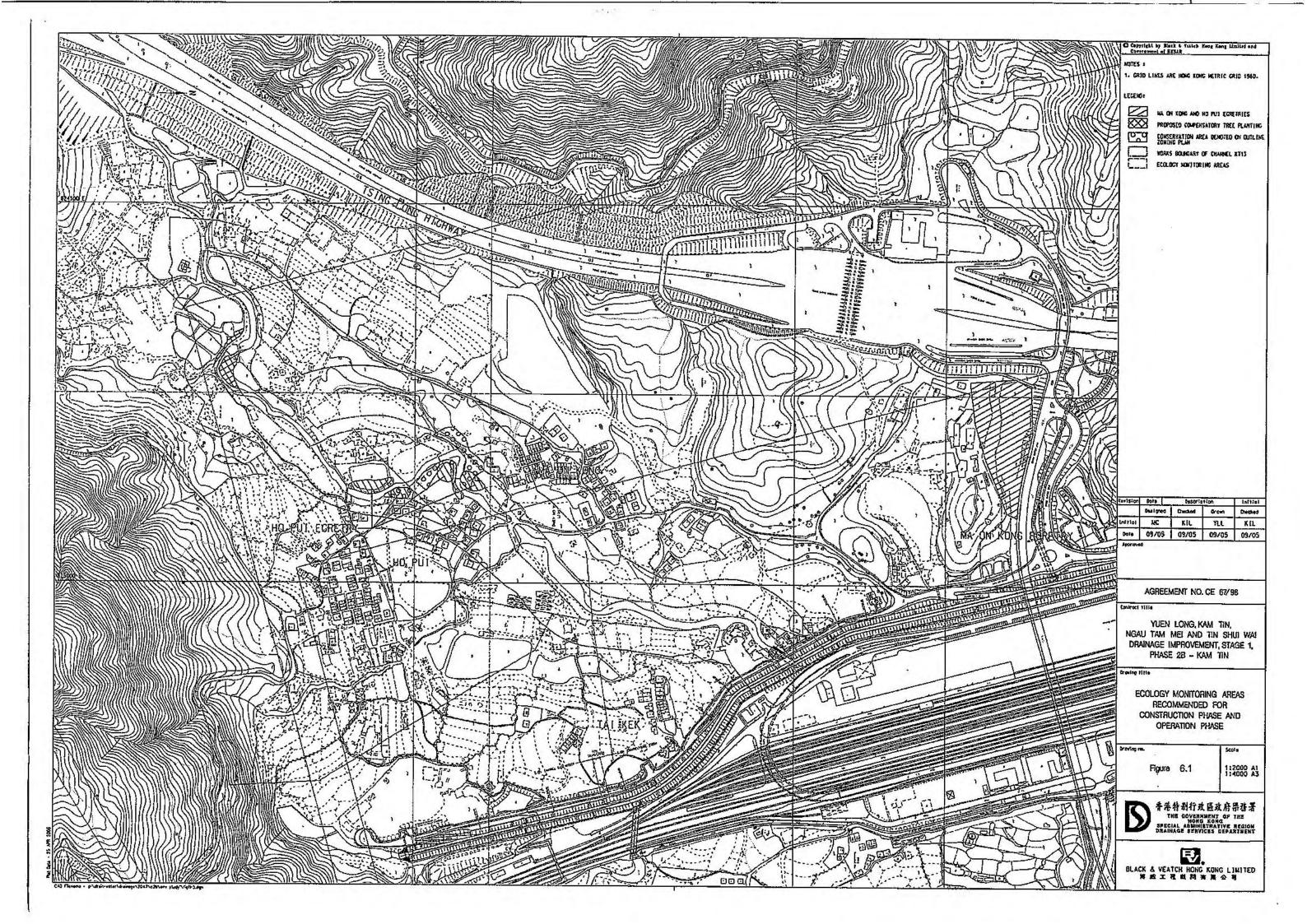
As site clearance works near the historical grave by an unknown third party was recorded, CRBE was reminded to report any further adverse impact to the grave and it will be followed up in the ET's weekly site inspection.

In viewing that dry season is approaching, special attention should be paid to the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Nevertheless, mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

Special attention should be paid on construction noise and other environmental issues identified in the EM&A Manual as recommended in the EIA and summarized in Mitigation Measure Implementation Schedule. CRBC was reminded to implement the required mitigation measures during construction as far as possible.


5 CONCLUSIONS AND RECOMMENDATIONS


- i) This is the 25th monthly EM&A report for Channel KT13, covering the construction period from 26 September to 25 October 2010 (the Reporting Period).
- ii) Monitoring results of the Reporting Period demonstrated no exceedances of environmental quality criteria for air quality, construction noise and ecology monitoring.
- iii) For stream water quality monitoring, a total of 4 Action/ Limit level exceedances were recorded at impact station W2 and W6 in this reporting period. Investigation concluded that the exceedances were not project related.
- iv) Four (4) events of weekly settlement monitoring for the historic grave were undertaken in this reporting month and the monitoring results demonstrated no exceedance was recorded.
- v) Landscape inspections were conducted on 12 and 25 October 2010. No significant changes were observed for identified landscape resources and visual sensitive receivers, except for minor changes due to channel excavation, site clearance and preparation work at the identified landscape resources including LR1, LR2.1, LR2.2, LCA1, LCA3 and LCA4.
- vi) No documented complaints, notifications of summons or successful prosecutions were received during the Reporting Period. No adverse environmental impacts were observed during the weekly site inspection and environmental audit of the Reporting Period, which suggested that the implemented mitigation measures for air quality, construction noise and ecology were effective. Minor deficiencies found in the weekly site inspection were in general rectified within the specified deadlines. The environmental performance of the Project was therefore considered satisfactory.
- vii) During dry season, special attention should be paid to the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Nevertheless, mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.


END OF TEXT

Appendix A Location Plan and Environmental Monitoring Locations Under the Project

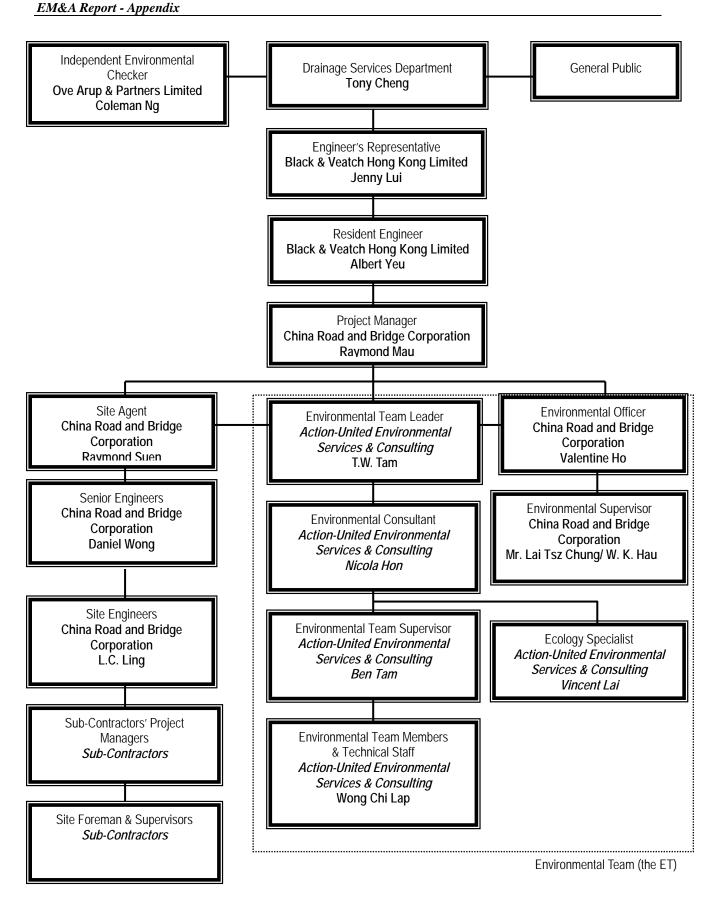
Appendix B Construction Program

Contract No.: DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Monthly Rolling Programme - October 2010 Item Task Name Duration Start Finish 10/2010 26/9 3/10 10/10 17/10 24/10 31/10 EOT was granted up to 31 July 2010 2010/10/2 2010/10/2 1 day 2 Section II (Channel KT13) 24 days 2010/10/2 2010/10/30 2010/10/2 2010/10/30 Regular Environmental Impact Monitoring 24 days 2010/10/2 Regular Tree Survey & Protection 2010/10/30 24 days Regular Structural Condition Survey 2010/10/2 2010/10/30 24 days Section A 24 days 2010/10/2 2010/10/30 2010/10/2 Construction of catchpit / manhole / drain pipe along the channel sides 24 days 2010/10/30 Bay A1 (A CH00.00 - A CH11.16) - RC2 (EB) 2010/10/2 2010/10/4 9 2 days 2010/10/5 Bay A2 (A CH11.16 - A CH17.28) - RC2 (EB) 2010/10/6 10 2 days 2010/10/7 11 Bay A3 (A CH17.28 - A CH26.04) - RC2 (EB) 2010/10/8 2 days 12 Bay A4 (A CH26.04 - A CH33.57) - Transition (EB) 2 days 2010/10/9 2010/10/11 13 Bay A5 (A CH33.57 - A CH41.09) - Transition (EB) 2 days 2010/10/12 2010/10/13 2010/10/14 2010/10/15 14 Bay A6 (A CH41.09 - A CH43.72) & Pedestrian Crossing (EB) 2 days 2010/10/18 2010/10/19 15 Bay A7 (A CH43.72 - A CH51.19) - Transition (EB) 2 days 2010/10/20 2010/10/21 Bay A8 (A CH51.19 - A CH58.74) - Transition (EB) 2 days 16 17 Bay A9 (A CH58.74 - A CH70.69) - TG2 (EB) 2 days 2010/10/22 2010/10/23 Bay A10 (A CH70.69 - A CH84.25) - TG2 (EB) 2010/10/25 2010/10/26 18 2 days 2010/10/27 2010/10/28 19 Bay A11 (A CH84.25 - A CH96.57) - TG2 (EB) 2 days 20 Bay A12 (A CH96.57 - A CH107.46) - TG2 (EB) 2010/10/29 2010/10/30 2 days 21 2010/10/15 2010/10/29 Laying gabion block / granite block inside the channel 12 days 22 Bay A32 (A CH331.09 - A CH343.21) - Transition 2010/10/15 2010/10/22 6 days 23 Bay A33 (A CH343.21 - A CH359.26) - Transition 2010/10/23 2010/10/29 6 days Section of Box Culvert BC13-1 2010/10/2 2010/10/30 24 24 days Construct box culvert (BC CH0.00 - BC CH386.00) 2010/10/2 2010/10/30 25 24 days 26 Excavation for box culvert formation & laying of rock fill material (BC CH0.00 - BC CH384.00) 2010/10/18 2010/10/22 5 days 27 Bay BC5 (BC CH58.95 - BC CH46.95) 2010/10/18 2010/10/19 2 days Trapezoidal channel Type TG7 (Bay BC13 ~ BC15) 2010/10/20 28 2010/10/22 3 days Task Split Milestone ◆ Progress Summary -Page 1 of 2

Contract No.: DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Monthly Rolling Programme - October 2010 Item Task Name Duration Start Finish 10/2010 26/9 3/10 10/10 17/10 24/10 31/10 29 Construction of box culvert 10 days 2010/10/20 2010/10/30 30 Bay BC5 (BC CH58.95 - BC CH46.95) 2010/10/20 2010/10/30 10 days 31 Trapezoidal channel Type TG7 (Bay BC13) 2010/10/23 2010/10/30 7 days Implementation of Stage 1 TTA (BC CH58.00 & BC CH73.00) 2010/10/2 2010/10/30 32 24 days 2010/10/2 33 Laying of new watermains across Bay A35 & Bay BC4 2010/10/15 12 days Section B 2010/10/2 2010/10/30 34 24 days 35 Construction of Transition (Bay B1 & Bay B2) 12 days 2010/10/18 2010/10/30 2010/10/18 36 Excavation for channel formation & laying of rock fill material 10 days 2010/10/28 37 Bay B2 (B CH07.00 - B CH14.00) - Transition 2010/10/18 2010/10/22 5 days Bay B1 (B CH00.00 - B CH07.00) - Transition 2010/10/23 38 2010/10/28 5 days 2010/10/29 39 Construction of channel structure (Transition, TG3, TG4, TG5, and TG8) 2010/10/30 2 days 40 Bay B2 (B CH07.00 - B CH14.00) - Transition 2 days 2010/10/29 2010/10/30 41 Construction of catchpit / manhole / drain pipe along the channel sides 24 days 2010/10/2 2010/10/30 Bay B3 - Bay B30 2010/10/2 2010/10/30 42 24 days 43 Section V 24 days 2010/10/2 2010/10/30 44 45 Preservation and protection of tree for Section I, II, III and IV 24 days 2010/10/2 2010/10/30 46 2010/10/2 47 Section VI - Portion 9A & 9B (Tuen Mun Sewerage Work) 24 days 2010/10/30 48 Structural Survey and Monitoring 2010/10/2 2010/10/30 24 days 49 Construction of Manhole, Timber Box and Trench Excavation 2010/10/2 2010/10/30 24 days 50 Section VII - Portion 10A, 10B & 10C (Tuen Mun Sewerage Work) 24 days 2010/10/2 2010/10/30 51 52 Structural Survey and Monitoring 2010/10/2 2010/10/30 24 days Construction of Manhole, Timber Box and Trench Excavation 2010/10/2 2010/10/30 53 24 days Laying of Watermains along MacLehose Trail 24 days 2010/10/2 2010/10/30 Task Split Milestone ◆ Progress = Summary ∇ Page 2 of 2

Contract No.: DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Three Months Rolling Programme - November 2010 to January 2011 ID Task Name Duration Start finish Nov 2010 Dec 2010 Jan 2011 7/11 | 14/11 | 21/11 | 28/11 | 5/12 | 12/12 | 19/12 | 26/12 2/1 9/1 16/1 23/1 30/1 EOT was granted up to 31 July 2010 2010/11/1 2010/11/1 1 day 2 Section II (Channel KT13) 2010/11/1 2011/1/31 3 76 days Regular Environmental Impact Monitoring 2010/11/1 2011/1/25 71 days 4 5 Regular Tree Survey & Protection 71 days 2010/11/1 2011/1/25 Regular Structural Condition Survey 71 days 2010/11/1 2011/1/25 6 2010/11/1 Section A 76 days 2011/1/31 8 Laying gabion block / granite block inside the channel 45 days 2010/11/1 2010/12/22 9 2010/11/1 Bay A18 (A CH167.00 - A CH179.97) - TG2 (EB) 3 days 2010/11/3 10 Bay A19 (A CH179.97 - A CH190.69) - TG2 (EB) 3 days 2010/11/4 2010/11/6 2010/11/10 11 Bay A20 (A CH190.69 - A CH201.41) - TG2 (EB) 3 days 2010/11/8 12 Bay A21 (A CH201.41 - A CH213.44) - TG2 (EB) 3 days 2010/11/11 2010/11/13 13 2010/11/15 Bay A22 (A CH213.44 - A CH225.47) - TG2 (EB) 3 days 2010/11/17 14 3 days Bay A23 (A CH225.47 - A CH237.50) - TG2 (EB) 2010/11/18 2010/11/20 15 Bay A24 (A CH237.50 - A CH244.23) - TG2 (EB) 3 days 2010/11/22 2010/11/24 16 3 days 2010/11/25 Bay A25 (A CH244.23 - A CH257.09) - TG2 (EB) 2010/11/27 17 2010/11/29 Bay A26 (A CH257.09 - A CH269.95) - TG2 (EB) 3 days 2010/12/1 18 3 days 2010/12/2 2010/12/4 Bay A27 (A CH269.95 - A CH282.43) - TG6 (EB) 19 2010/12/6 3 days 2010/12/8 Bay A28 (A CH282.43 - A CH294.59) - TG6 (EB) 20 2010/12/9 Bay A29 (A CH294.59 - A CH306.75) - TG6 (EB) 3 days 2010/12/11 21 3 days 2010/12/13 2010/12/15 Bay A30 (A CH306.75 - A CH318.91) - TG6 (EB) 22 Bay A31 (A CH318.91 - A CH331.09) - TG6 (EB) 2 days 2010/12/16 2010/12/17 23 Bay A34 (A CH359.26 - A CH374.28) (EB) 2 days 2010/12/18 2010/12/20 24 2010/12/21 Bay A35 (A CH374.28 - A CH389.29) (EB) 2 days 2010/12/22 25 Construction of catchpit / manhole / drain pipe along the channel sides 48 days 2010/11/1 2010/12/28 26 Bay A13 (A CH107.46 - A CH119.62) - TG2 (EB) 2 days 2010/11/1 2010/11/2 27 Bay A14 (A CH119.62 - A CH131.78) - TG2 (EB) 2 days 2010/11/3 2010/11/4 28 Bay A15 (A CH131.78 - A CH143.92) - TG2 (EB) 2 days 2010/11/5 2010/11/6 29 Bay A16 (A CH143.92 - A CH156.08) - TG2 (EB) 2 days 2010/11/8 2010/11/9 30 2010/11/10 Bay A17 (A CH156.08 - A CH167.00) - TG2 (EB) 2 days 2010/11/11 31 2 days Bay A18 (A CH167.00 - A CH179.97) - TG2 (EB) 2010/11/12 2010/11/13 32 Bay A19 (A CH179.97 - A CH190.69) - TG2 (EB) 2 days 2010/11/15 2010/11/16 33 2010/11/17 Bay A20 (A CH190.69 - A CH201.41) - TG2 (EB) 2 days 2010/11/18 34 2010/11/19 Bay A21 (A CH201.41 - A CH213.44) - TG2 (EB) 2 days 2010/11/20 35 Bay A22 (A CH213.44 - A CH225.47) - TG2 (EB) 2 days 2010/11/22 2010/11/23 36 2010/11/24 Bay A23 (A CH225.47 - A CH237.50) - TG2 (EB) 2 days 2010/11/25 37 2010/11/26 Bay A24 (A CH237.50 - A CH244.23) - TG2 (EB) 2 days 2010/11/27 38 Bay A25 (A CH244.23 - A CH257.09) - TG2 (EB) 2 days 2010/11/29 2010/11/30 39 2 days 2010/12/1 2010/12/2 Bay A26 (A CH257.09 - A CH269.95) - TG2 (EB) 40 Bay A27 (A CH269.95 - A CH282.43) - TG6 (EB) 2 days 2010/12/3 2010/12/4 41 Bay A28 (A CH282.43 - A CH294.59) - TG6 (EB) 2 days 2010/12/6 2010/12/7 42 2 days 2010/12/8 2010/12/9 Bay A29 (A CH294.59 - A CH306.75) - TG6 (EB) 43 Bay A30 (A CH306.75 - A CH318.91) - TG6 (EB) 2010/12/10 2010/12/11 2 days 44 Bay A31 (A CH318.91 - A CH331.09) - TG6 (EB) 2 days 2010/12/13 2010/12/14 Task Split Milestone ◆ Summary -Progress Page 1 of 4

Contract No.: DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Three Months Rolling Programme - November 2010 to January 2011 Task Name Duration Start finish Nov 2010 Dec 2010 Jan 2011 31/10 7/11 | 14/11 | 21/11 | 28/11 | 5/12 12/12 | 19/12 | 26/12 2/1 9/1 16/1 23/1 30/1 45 Bay A32 (A CH331.09 - A CH343.21) - Transition (EB) 2010/12/15 2010/12/16 2 days 46 Bay A33 (A CH343.21 - A CH359.26) - Transition (EB) 2 days 2010/12/17 2010/12/18 47 2010/12/20 Bay A34 (A CH359.26 - A CH374.28) (EB) 2 days 2010/12/21 48 2010/12/22 2010/12/23 Bay A35 (A CH374.28 - A CH389.29) (EB) 2 days 49 Bay A36 (A CH389.29 - A CH400.18) (EB) 2 days 2010/12/24 2010/12/28 50 Construction of Dry Weather Flow Channel 64 days 2010/11/15 2011/1/31 51 2010/11/15 Construction of Dry Flow Channel along Gabion Lining 60 days 2011/1/26 52 Breaking the Existing Structure (Transition & Crossing) 46 days 2010/12/1 2011/1/26 53 Construction of Dry Flow Channel (Transition & Crossing) 2011/1/3 19 days 2011/1/24 54 Re-installation of Gabion Lining 25 days 2011/1/3 2011/1/31 55 Construction of Ramp No.2 20 days 2010/12/1 2010/12/23 56 Construction of vehicular access (A CH200.00 - A CH400.00) - East Bank 25 days 2010/12/24 2011/1/25 57 2011/1/10 Installation of traffic sign plate / railing / street furniture 14 days 2011/1/25 58 Section of Box Culvert BC13-1 71 days 2010/11/1 2011/1/25 59 Construct box culvert (BC CH0.00 - BC CH386.00) 2 days 2010/11/1 2010/11/2 60 Backfilling the sides of channel structure & Laying of underground drain pipe 2010/11/1 2010/11/2 2 days 2010/11/1 61 Bay BC5 (BC CH61.97 - BC CH46.95) 2 days 2010/11/2 62 2010/11/15 2011/1/21 Construction of catchpit / manhole / drain pipe along channel sides 56 days 2010/11/15 63 Bay BC29 (BC CH383.63 - BC CH371.47) 2 days 2010/11/16 64 2 days 2010/11/17 Bay BC28 (BC CH371.47 - BC CH362.70) 2010/11/18 65 2010/11/19 2010/11/20 Bay BC27 (BC CH362.70 - BC CH348.11) 2 days 66 Bay BC26 (BC CH348.11 - BC CH333.53) 2 days 2010/11/22 2010/11/23 67 Bay BC25 (BC CH333.53 - BC CH318.82) 2 days 2010/11/24 2010/11/25 68 2010/11/26 Bay BC24 (BC CH318.82 - BC CH304.34) 2 days 2010/11/27 69 Bay BC23 (BC CH304.34 - BC CH289.87) 2 days 2010/11/29 2010/11/30 70 Bay BC22 (BC CH289.87 - BC CH275.39) 2 days 2010/12/1 2010/12/2 71 Bay BC21 (BC CH275.39 - BC CH260.81) 2 days 2010/12/3 2010/12/4 72 Bay BC20 (BC CH260.81 - BC CH245.97) 2 days 2010/12/6 2010/12/7 73 Bay BC19 (BC CH245.97 - BC CH231.13) 2 days 2010/12/8 2010/12/9 74 2010/12/10 Bay BC18 (BC CH231.13 - BC CH216.21) 2 days 2010/12/11 75 Bay BC17 (BC CH216.21 - BC CH201.97) 2 days 2010/12/13 2010/12/14 76 Bay BC16 (BC CH201.97 - BC CH196.48) 2 days 2010/12/15 2010/12/16 77 2010/12/17 Bay BC15 (BC CH196.48 - BC CH184.94) 2 days 2010/12/18 78 2010/12/20 2010/12/21 Bay BC14 (BC CH184.94 - BC CH170.20) 2 days 79 Bay BC13 (BC CH170.20 - BC CH155.56) 2 days 2010/12/22 2010/12/23 80 2010/12/24 2 days 2010/12/28 Bay BC12 (BC CH155.56 - BC CH140.65) 81 2010/12/29 Bay BC11 (BC CH140.65 - BC CH125.76) 2 days 2010/12/30 82 Bay BC10 (BC CH125.76 - BC CH118.71) 2 days 2010/12/31 2011/1/3 83 2 days 2011/1/4 2011/1/5 Bay BC9 (BC CH118.71 - BC CH103.69) 84 Bay BC8 (BC CH103.69 - BC CH88.68) 2 days 2011/1/6 2011/1/7 85 Bay BC7 (BC CH88.68 - BC CH73.68) 2 days 2011/1/8 2011/1/10 86 2011/1/11 2011/1/12 Bay BC6 (BC CH73.68 - BC CH58.95) 2 days 87 Bay BC5 (BC CH58.95 - BC CH46.95) 2011/1/13 2011/1/14 2 days 88 Bay BC4 (BC CH46.95 - BC CH32.25) 2 days 2011/1/15 2011/1/17 Task Split Milestone ◆ Summary -Progress Page 2 of 4


Contract No.: DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Three Months Rolling Programme - November 2010 to January 2011 ID Task Name Duration Start finish Nov 2010 Dec 2010 Jan 2011 31/10 7/11 | 14/11 | 21/11 | 28/11 | 5/12 | 12/12 | 19/12 | 26/12 2/1 9/1 16/1 23/1 30/1 89 Bay BC3 (BC CH32.25 - BC CH17.23) 2011/1/18 2011/1/19 2 days 90 Bay BC2 (BC CH17.23 - BC CH00.00) 2 days 2011/1/20 2011/1/21 91 2010/11/3 Laying of new watermains from Bay BC4 to Bay BC7 14 days 2010/11/18 92 Reprovision of playground (BC CH60.00 - BC CH80.00) 2010/12/1 2011/1/7 30 days 93 Construction of Maintenance Access on the top of Box Culvert 71 days 2010/11/1 2011/1/25 94 Provision of cellular concrete paving at BC CH110.00 - BC CH250.00 54 days 2010/11/20 2011/1/25 95 2011/1/10 Installation of traffic sign plate / railing street / furniture 14 days 2011/1/25 96 Section B 76 days 2010/11/1 2011/1/31 97 Construction of Transition (Bay B1 & Bay B2) 2010/11/1 2010/11/10 9 days 98 Construction of channel structure (Transition, TG3, TG4, TG5, and TG8) 2010/11/1 2010/11/8 7 days 99 Bay B1 (B CH00.00 - B CH07.00) - Transition 7 days 2010/11/1 2010/11/8 100 Backfilling the sides of channel structure & Laying of underground drain pipe 2 days 2010/11/9 2010/11/10 101 2010/11/9 Bay B2 (B CH07.00 - B CH14.00) - Transition 1 day 2010/11/9 102 1 day 2010/11/10 Bay B1 (B CH00.00 - B CH07.00) - Transition 2010/11/10 103 Construction of catchpit / manhole / drain pipe along channel sides 76 days 2010/11/1 2011/1/31 104 2010/11/1 Bay B29 (B CH294.00 - B CH302.00) - Transition 3 days 2010/11/3 105 2010/11/4 Bay B28 (B CH282.00 - B CH294.00) - TG4 3 days 2010/11/6 106 Bay B27 (B CH270.00 - B CH282.00) - TG4 3 days 2010/11/8 2010/11/10 107 2010/11/11 Bay B26 (B CH260.00 - B CH270.00) - TG4 3 days 2010/11/13 3 days 108 Bay B25 (B CH248.00 - B CH260.00) - TG5 2010/11/15 2010/11/17 109 Bay B24 (B CH236.00 - B CH248.00) - TG5 3 days 2010/11/18 2010/11/20 110 Bay B23 (B CH224.00 - B CH236.00) - TG5 3 days 2010/11/22 2010/11/24 111 Bay B22 (B CH212.00 - B CH224.00) - TG5 3 days 2010/11/25 2010/11/27 112 2010/11/29 Bay B21 (B CH200.00 - B CH212.00) - TG8 3 days 2010/12/1 113 Bay B20 (B CH188.00 - B CH200.00) - TG8 3 days 2010/12/2 2010/12/4 114 Bay B19 (B CH174.00 - B CH188.00) - TG8 3 days 2010/12/6 2010/12/8 115 Bay B18 (B CH162.00 - B CH174.00) - TG8 3 days 2010/12/9 2010/12/11 116 Bay B17 (B CH154.00 - B CH162.00) - Transition 3 days 2010/12/13 2010/12/15 117 Bay B16 (B CH147.00 - B CH154.00) - Transition 3 days 2010/12/16 2010/12/18 118 2010/12/20 Bay B15 (B CH144.00 - B CH147.00) - Transition & Pedestrian Crossing 3 days 2010/12/22 119 3 days 2010/12/23 Bay B14 (B CH137.00 - B CH144.00) - Transition 2010/12/28 120 Bay B13 (B CH129.00 - B CH137.00) - Transition 3 days 2010/12/29 2010/12/31 121 2011/1/3 Bay B12 (B CH119.00 - B CH129.00) - TG3 3 days 2011/1/5 122 2 days 2011/1/6 2011/1/7 Bay B11 (B CH107.00 - B CH119.00) - TG3 123 Bay B10 (B CH94.00 - B CH107.00) - TG3 2 days 2011/1/8 2011/1/10 124 Bay B9 (B CH80.00 - B CH94.00) - TG3 2 days 2011/1/11 2011/1/12 125 2011/1/13 2011/1/14 Bay B8 (B CH68.00 - B CH80.00) - TG3 2 days 126 Bay B7 (B CH57.00 - B CH68.00) - TG3 2 days 2011/1/15 2011/1/17 127 Bay B6 (B CH46.00 - B CH57.00) - TG3 2 days 2011/1/18 2011/1/19 128 Bay B5 (B CH34.00 - B CH46.00) - TG3 2 days 2011/1/20 2011/1/21 129 Bay B4 (B CH24.00 - B CH34.00) - TG3 2 days 2011/1/22 2011/1/24 130 2 days 2011/1/25 2011/1/26 Bay B3 (B CH14.00 - B CH24.00) - TG3 131 Bay B2 (B CH07.00 - B CH14.00) - Transition 2011/1/27 2011/1/28 2 days 132 Bay B1 (B CH00.00 - B CH07.00) - Transition 2 days 2011/1/29 2011/1/31 Task Split Progress Milestone ◆ Summary -Page 3 of 4

Contract No.: DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Three Months Rolling Programme - November 2010 to January 2011 ID Task Name Duration Start finish Nov 2010 Dec 2010 Jan 2011 31/10 7/11 | 14/11 | 21/11 | 28/11 | 5/12 | 12/12 | 19/12 | 26/12 2/1 9/1 16/1 23/1 30/1 133 Construction of new box culvert and modification of transition 2010/11/1 2010/12/30 50 days 134 2010/11/1 2010/12/4 Bay B31 - New Box Culvert 30 days 135 Bay B30 (B CH302.00 - B CH312.00) - Transition 2010/12/6 2010/12/30 20 days 136 Construction of Dry Weather Flow Channel 2010/11/1 2011/1/31 76 days 137 Removal of gabion block for construction of dry weather flow channel 60 days 2010/11/1 2011/1/12 138 2010/11/15 Construction of Dry Flow Channel along Gabion Lining 60 days 2011/1/26 139 Breaking the Existing Structure (Transition & Crossing) 46 days 2010/12/1 2011/1/26 140 Construction of Dry Flow Channel (Transition & Crossing) 19 days 2011/1/3 2011/1/24 141 Re-installation of Gabion Lining 25 days 2011/1/3 2011/1/31 142 Construction of Ramp No.1 20 days 2010/12/1 2010/12/23 143 Construct 3.5m access road at B CH14.00 - B CH94.00 (North Bank) 25 days 2010/12/24 2011/1/25 Installation of traffic sign plate / Street furniture 2011/1/10 2011/1/25 144 14 days 145 2010/12/1 146 Section V 27 days 2010/11/1 147 Preservation and protection of tree for Section I, II, III and IV 27 days 2010/11/1 2010/12/1 148 149 Section VI - Portion 9A & 9B (Tuen Mun Sewerage Work) 2010/11/1 2011/1/14 62 days 150 Structural Survey and Monitoring 62 days 2010/11/1 2011/1/14 151 Construction of Manhole, Timber Box and Trench Excavation 2010/11/1 2011/1/14 62 days 152 Section VII - Portion 10A, 10B & 10C (Tuen Mun Sewerage Work) 10 days 2010/11/1 2010/11/11 154 2010/11/1 2010/11/11 Structural Survey and Monitoring 10 days 155 Construction of Manhole, Timber Box and Trench Excavation 2010/11/1 2010/11/11 10 days Task Split ■ Milestone ◆ Progress Summary -

Appendix C Environmental Management Organization and Contacts of Key Personnel

Environmental Management Organization

Contact Details of Key Personnel

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr. Tony Cheng	2594-7264	2827-8526
B&V	Engineer's Representative	Ms. Jenny Lui	2478-9161	2478-9369
B&V	Resident Engineer	Mr. Albert Yeu	2478-9161	2478-9369
OAP	Independent Environmental Checker	Mr. Coleman Ng	2268-3097	2268-3950
CRBC	Project Director	Mr. Wang Yanhua	2283-1688	2283-1689
CRBC	Project Manager	Mr. Raymond Mau	9048-3669	2283-1689
CRBC	Site Agent	Mr. Raymond Suen	9779-8871	2283-1689
CRBC	Senior Engineer (Tuen Mun Site)	Mr. Daniel Wong	9858-3176	2283-1689
CRBC	Site Engineer (Tuen Mun Site)	Mr. L.C. Ling	6770-4010	2283-1689
CRBC	Environmental Officer	Mr. Valentine Ho	6474-6975	2283-1689
CRBC	Environmental / Construction Supervisor (Tuen Mun and Yuen Long site)	Mr. Lai Tsz Chung	6283-9696	2283-1689
CRBC	Environmental / Construction Supervisor (Yuen Long site)	Mr. W. K. Hau	9401-6296	2283-1689
CRBC	Safety Officer	Mr. Alexis Wong	9374-8954	2283-1689
AUES	Environmental Team Leader	Mr. T.W. Tam	2959-6059	2959-6079
AUES	Environmental Consultant	Miss Nicola Hon	2959-6059	2959-6079
AUES	Environmental Site Inspector	Mr. Ben Tam	2959-6059	2959-6079
AUES	Ecologist	Mr. Vincent Lai	2959-6059	2959-6079

<u>Legend:</u>

DSD(Employer) – Drainage Services Department B&V (Engineer) – Black & Veatch Hong Kong Limited CRBC (Main Contractor) – China Road and Bridge Corporation OAP(IEC) – Ove Arup & Partners Ltd AUES (ET) – Action-United Environmental Services & Consulting

Appendix D

- (a) Monitoring Schedules
- (b) Meteorological Data

Monitoring Schedule for KT 13 for Reporting Period – October 2010

Date		Air (Quality	Noise Leq 30min	Water Quality	Ecology Surveys
		1-hour TSP	24-hour TSP	John		
Sun Mon	26-Sep-10 27-Sep-10		A1() A2			
	1 1	11() 10	A1(a), A2	N1(a), N2(a) &	W1,W2, W3(a), W4, W5 &	
Tue Wed	28-Sep-10	A1(a), A2		N3	W6	
	29-Sep-10				W1,W2, W3(a), W4, W5 &	
Thu	30-Sep-10				W6	
Fri	1-Oct-10				W1,W2, W3(a), W4, W5 &	
Sat	2-Oct-10		A1(a), A2		W6	
Sun	3-Oct-10			N1(a), N2(a) &	W1,W2, W3(a), W4, W5 &	
Mon	4-Oct-10	A1(a), A2		N3	W1, W2, W3(a), W4, W3 & W6	
Tue	5-Oct-10					
Wed	6-Oct-10				W1,W2, W3(a), W4, W5 & W6	
Thu	7-Oct-10					
Fri	8-Oct-10		A1(a), A2			
Sat	9-Oct-10	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Sun	10-Oct-10					
Mon	11-Oct-10				W1,W2, W3(a), W4, W5 & W6	
Tue	12-Oct-10					
Wed	13-Oct-10				W1,W2, W3(a), W4, W5 & W6	
Thu	14-Oct-10		A1(a), A2			
Fri	15-Oct-10	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Sat	16-Oct-10					
Sun	17-Oct-10					
Mon	18-Oct-10					
Tue	19-Oct-10				W1,W2, W3(a), W4, W5 & W6	
Wed	20-Oct-10		A1(a), A2			
Thu	21-Oct-10	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Fri	22-Oct-10					
Sat	23-Oct-10				W1,W2, W3(a), W4, W5 & W6	
Sun	24-Oct-10					
Mon	25-Oct-10				W1,W2, W3(a), W4, W5 & W6	

Cultural Heritage

<u>Frequency</u>: Condition survey - Bi-monthly

Settlement monitoring - Bi-weekly

Landscape & Visual

<u>Frequency</u>: Bi-weekly

Monitoring Day
Sunday or Public Holiday

Monitoring Schedule of KT 13 for next reporting month – November 2010

I	Date	Air Q	Quality	Noise Leq 30min	Water Quality	Ecology Surveys
		1-hour TSP	24-hour TSP	3011111		
Tue	26-Oct-10		A1(a), A2			
Wed	27-Oct-10	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Thu	28-Oct-10					
Fri	29-Oct-10					
Sat	30-Oct-10				W1,W2, W3(a), W4, W5 & W6	
Sun	31-Oct-10					
Mon	1-Nov-10		A1(a), A2			
Tue	2-Nov-10	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Wed	3-Nov-10					
Thu	4-Nov-10				W1,W2, W3(a), W4, W5 & W6	
Fri	5-Nov-10					
Sat	6-Nov-10		A1(a), A2		W1,W2, W3(a), W4, W5 & W6	
Sun	7-Nov-10					
Mon	8-Nov-10	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Tue	9-Nov-10					
Wed	10-Nov-10				W1,W2, W3(a), W4, W5 & W6	
Thu	11-Nov-10					
Fri	12-Nov-10		A1(a), A2			
Sat	13-Nov-10	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Sun	14-Nov-10					
Mon	15-Nov-10				W1,W2, W3(a), W4, W5 & W6	
Tue	16-Nov-10					
Wed	17-Nov-10				W1,W2, W3(a), W4, W5 & W6	
Thu	18-Nov-10		A1(a), A2			
Fri	19-Nov-10	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Sat	20-Nov-10					
Sun	21-Nov-10					
Mon	22-Nov-10				WII WO WOO WILL WE	
Tue	23-Nov-10				W1,W2, W3(a), W4, W5 & W6	
Wed	24-Nov-10		A1(a), A2			
Thu	25-Nov-10	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	

Cultural Heritage

<u>Frequency</u>: Condition survey - Bi-monthly

Settlement monitoring - Bi-weekly

Landscape & Visual

Frequency: Bi-weekly

Monitoring Day
Sunday or Public Holiday

Meteorological Data Extracted from HKO during the Reporting Period

				Lau l	Fau Sha	n Weather	Station
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction
26-Sep-10	Sun	Light to moderate easterly winds.	0	28.3	6.5	89	E/NE
27-Sep-10	Mon	Light to moderate easterly winds, freshening tomorrow.	0	26.7	7.5	83.7	E/SE
28-Sep-10	Tue	Sunny periods.	0	28.5	11.7	79	E/SE
29-Sep-10	Wed	Moderate to fresh east to northeasterly winds.	Trace	29	16.5	76	E
30-Sep-10	Thu	Sunny periods this afternoon. Cloudy tonight.	4.4	26.3	15.5	87.2	E/NE
1-Oct-10	Fri	HOLIDAY					
2-Oct-10	Sat	Moderate to fresh northeasterly winds.	0	27.9	12.7	76.5	Е
3-Oct-10	Sun	Mainly cloudy. It will be dry in the afternoon.	Trace	27.5	17.5	73.2	NE
4-Oct-10	Mon	There will be swells over the sea.	Trace	23.8	18	63	NE
5-Oct-10	Tue	Cloudy with a few rain patches	2.2	23.9	11	66	E/NE
6-Oct-10	Wed	Moderate easterly winds	0.9	24.8	11.5	79	E/SE
7-Oct-10	Thu	Moderate east to northeasterly winds	Trace	25	12	76.2	E/NE
8-Oct-10	Fri	Cloudy with a few light rain patches.	Trace	26.8	7.9	72	E/NE
9-Oct-10	Sat	he maximum temperature will be around 28 degrees.	1.4	25.2	13.5	83.7	E/NE
10-Oct-10	Sun	Moderate to fresh easterly winds	10.2	25.2	17	85.7	E/SE
11-Oct-10	Mon	Mainly cloudy with a few rain patches.	3.7	28.2	14	79.7	Е
12-Oct-10	Tue	Mainly fine. Moderate east to northeasterly winds.	Trace	28.2	8.5	80.5	Е
13-Oct-10	Wed	Mainly fine, becoming cloudy tomorrow night.	0	28.4	8.5	78	E/SE
14-Oct-10	Thu	Fine and dry with some haze.	0	29.4	9.5	73.5	Е
15-Oct-10	Fri	Moderate east to northeasterly winds.	3.9	25.2	12	85.5	E/NE
16-Oct-10	Sat	Fine and dry.	0.2	25	13.3	75	E/NE
17-Oct-10	Sun	Moderate north to northeasterly winds	Trace	27.1	10.5	72.5	E/NE
18-Oct-10	Mon	Becoming cloudy. It will be dry.	Trace	26.6	14.9	70.5	Е
19-Oct-10	Tue	Fresh north to northeasterly winds	0	25.6	18	65.5	N/NE
20-Oct-10	Wed	The Standby Signal, No. 1 is in force.	0	25.9	22	62.5	N/NE
21-Oct-10	Thu	The Strong Wind Signal, No. 3 is in force.	Trace	25	30.4	65.5	N
22-Oct-10	Fri	Cloudy and cooler with a few squally showers.	0.2	22.3	26	72	N
23-Oct-10	Sat	Dry with sunny periods.	0	24.1	21	64	N/NW
24-Oct-10	Sun	Mainly cloudy. A few light rain patches overnight.	0	24.8	10.2	68.5	W
25-Oct-10	Mon	Moderate northerly winds.	0	24.3	15.7	69.5	N/NE

Appendix E Calibration Certificates and

HOKLAS-Accreditation Certificate

Equipment Calibration List for Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Item	Issue	Description of Equipment	Date of Calibration	Date of Next Calibration
1 (4)		Tisch Calibration Kit Model TE-5025A (Serial No. 1483)	2 Jun 10	2 Jun 11
2(*)		TSP Sampler Calibration Spreadsheet for KT13-A1a	2 Aug 10 4 Oct 10	2 Oct 10 4 Dec 10
3 ^(*)	Air	TSP Sampler Calibration Spreadsheet for KT13-A2	2 Aug 10 4 Oct 10	2 Oct 10 4 Dec 10
4 (2)		TSI DustTrak Model 8520 (Serial No. 21060)	12 Dec 09	12 Dec 10
5 (2)		TSI DustTrak Model 8520 (Serial No. 23080)	12 Dec 09	12 Dec 10
6 (2)		TSI DustTrak Model 8520 (Serial No. 23079)	5 May 10	5 May 11
7 (3)	Noise	Bruel & Kjaer Integrating Sound Level Meter 2238 (Serial No. 2285721)	19 Apr 10	19 Apr 11
8 (3)		Bruel & Kjaer Acoustical Calibrator 4231 (Serial No. 2326408)	27 Apr 10	27 Apr 11
9 (*)		YSI 550A (Serial No. 05F2063AZ)	19 July 10 19 Oct 10	19 Oct 10 19 Jan 11
10 (*)	Water	Extech pH Meter EC500 (Serial No. CE133298)	19 July 10 19 Oct 10	19 Oct 10 19 Jan 11
11 (*)		Turbidimeter HACH 2100p (Serial No. 950900008735)	23 July 10 19 Oct 10	23 Oct 10 19 Jan 11
12 ^(*)		Hand Refractometer ATAGO EQ114 (Serial No. 289468)	19 July 10 19 Oct 10	19 Oct 10 19 Jan 11

Note: * Calibration certificates will only provide when monitoring equipment is re-calibrate or new.

- ⁽²⁾ The calibration certificates could be referred to the previous EM&A monthly report June 2010
- The calibration certificates could be referred to the previous EM&A monthly report May 2010
- The calibration certificates could be referred to the previous EM&A monthly report August 2010

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: No.1 Ma On Kong Village Date of Calibration: 4-Oct-10
Location ID: ASR15 (A2) Next Calibration Date: 4-Dec-10

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1013.7 25.5 Corrected Pressure (mm Hg)
Temperature (K)

760.275 299

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1483

Qstd Slope -> Qstd Intercept ->

2.00279 -0.00494

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.2	5.2	10.4	1.612	51	50.92	Slope = 39.8607
13	4.3	4.3	8.6	1.466	44	43.93	Intercept = -14.4045
10	3.4	3.4	6.8	1.304	36	35.95	Corr. coeff. = 0.9959
7	2.5	2.5	5.0	1.118	30	29.96	
5	1.5	1.5	3.0	0.867	21	20.97	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

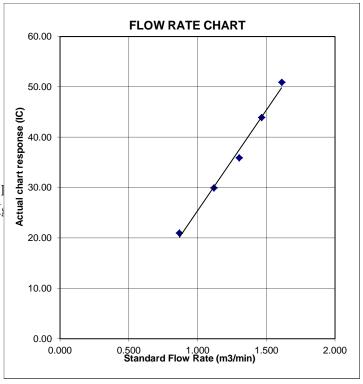
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg]

Pstd = actual pressure during calibration (mm H

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: No.68 Ho Pui Village Date of Calibration: 4-Oct-10
Location ID: ASR14 (A1(a)) Next Calibration Date: 4-Dec-10

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1013.7 25.5

Corrected Pressure (mm Hg)
Temperature (K)

760.275 299

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1483

Qstd Slope -> Qstd Intercept ->

2.00279 -0.00494

CALIBRATION

ı								
I	Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
l	No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
	18	5.2	5.2	10.4	1.612	49	48.93	Slope = 40.3298
	13	4.2	4.2	8.4	1.449	42	41.94	Intercept = -16.6610
	10	3.4	3.4	6.8	1.304	35	34.95	Corr. coeff. = 0.9982
	7	2.5	2.5	5	1.118	28	27.96	
	5	1.5	1.5	3	0.867	19	18.97	

Calculations :

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

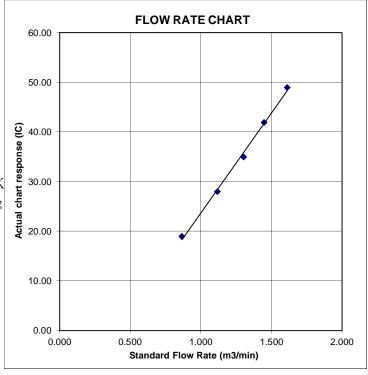
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K

Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

ALS Technichem (HK) Ptv Ltd

Environmental Division

CERTIFICATE OF ANALYSIS

CONTACT:

MR BEN TAM

CLIENT: ADDRESS: RM A 20/F., GOLDEN KING IND BLDG,

ACTION UNITED ENVIRO SERVICES

NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG.

N.T., HONG KONG.

PROJECT:

Batch:

LABORATORY:

HK1024698 DATE RECEIVED:

HONG KONG 19/10/2010

DATE OF ISSUE: SAMPLE TYPE:

22/10/2010 **EQUIPMENT**

No. of SAMPLES:

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsenviro.com

Mr Chan Kwok Fail Godfrey Laboratory Manager - Hong Kong

Other ALS Environmental Laboratories

AMERICAS AUSTRALIA

Brisbane Hong Kong Melbourne Singapore Sydney

Newcastle

Kuala Lumpur Bogor

Vancouver Santiago Amtofagasta 1 ima

Abbreviations: % SPK REC denotes percentage spike recovery

CHK denotes duplicate check sample LOR denotes limit of reporting

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

LCS % REC denotes Laboratory Control Sample percentage recovery

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., H.K. Phone: 852-2610 1044 Fax: 852-2610 2021 www.alsenviro.com

A Campbell Brothers Limited Company

Page 1 of 2

CERTIFICATE OF ANALYSIS

Batch: HK1024698 Date of Issue: 22/10/2010

Client: ACTION UNITED ENVIRO SERVICES

Client Reference:

Calibration of Multimeter

Item:Hand Refractometer (Salinity)Model No.: ATAGOALS Lab ID:HK1024698-001Equipment No.: EQ114Date of Calibration:19 October, 2010Serial No.: 289468

Testing Results:

Salinity

Expected Reading	Recording Reading
0 g/L	0 g/L
10.0 g/L	10.0 g/L
20.0 g/L	19.9 g/L
30.0 g/L	28.0 g/L
Allowing Deviation	± 10%

Testing Method:

APHA (20th edition), 2520 A and B

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

ALS Technichem (HK) Pty Ltd

Environmental Division

CERTIFICATE OF ANALYSIS

CONTACT:

CLIENT:

ADDRESS:

MR BEN TAM

ACTION UNITED ENVIRO SERVICES RM A 20/F., GOLDEN KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG,

N.T., HONG KONG.

PROJECT:

Batch:

HK1024697

LABORATORY: DATE RECEIVED: HONG KONG 19/10/2010

DATE OF ISSUE: SAMPLE TYPE:

22/10/2010

No. of SAMPLES:

EQUIPMENT

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F

Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044 852-2610 2021

Fax: Email:

hongkong@alsenviro.com

Mr. Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

Other ALS Environmental Laboratories

Bogor

AUSTRALIA

AMERICAS Vancouver

Hong Kong Brisbane Melbourne Singapore Sydney Kuala Lumpur

Newcastle

Santiago Amtofagasta Lima

Abbreviations: % SPK REC denotes percentage spike recovery

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

CHK denotes duplicate check sample LOR denotes limit of reporting

LCS % REC denotes Laboratory Control Sample percentage recovery

ALS Technichem (HK) Pty Ltd

Part of the ALS Laboratory Group

11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., H.K. Phone: 852-2610 1044 Fax: 852-2610 2021 www.alsenviro.com A Campbell Brothers Limited Company

Page 1 of 2

CERTIFICATE OF ANALYSIS

Batch: HK1024697 Date of Issue: 22/10/2010

Client: ACTION UNITED ENVIRO SERVICES

Client Reference:

Calibration of Multimeter

Item: pH Meter Model No.: EXTECH EC500

ALS Lab ID: HK1024697-001 Equipment No.: --

Date of Calibration: 19 October, 2010 Serial No.: CE133298

Testing Results:

рН

Expected Reading	Recording Reading
4.00	3.92
7.00	7.00
10.0	9.92
Allowing Deviation	± 0.2 unit

Testing Method:

APHA (20th edition), 4500-H+B

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

ALS TECHNICHEM (HK) Pty Ltd

Environmental Division

CERTIFICATE OF ANALYSIS

CONTACT:

MR BEN TAM

CLIENT: ADDRESS: **ACTION UNITED ENVIRO SERVICES** RM A, 20/F, GOLDEN KING IND BLDG,

NO 35-41 TAI LIN PAI ROAD,

KWAI CHUNG, N.T.

Batch:

LABORATORY:

HK1007844 HONG KONG

DATE RECEIVED:

16/04/2010 22/04/2010

DATE OF ISSUE: SAMPLE TYPE:

EQUIPMENT

No. of SAMPLES:

1

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F

Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsenviro.com

Mr Chan Kwok Fai, Godfrey Laboratory Manager -Hong Kong

Other ALS Environmental Laboratories

AUSTRALIA

AMERICAS Vancouver

Hong Kong Brisbane Melbourne Singapore

Santiago Kuala Lumpur

Sydney Newcastle Bogor Amtofagasta Lima

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Abbreviations: % SPK REC denotes percentage spike recovery

CHK denotes duplicate check sample LOR denotes limit of reporting

LCS % REC denotes Laboratory Control Sample percentage recovery

Page 1 of 2

CERTIFICATE OF ANALYSIS

Batch:

HK1024699

Date of Issue: 22/10/2010

ent: ACTION UNITED ENVIRO SERVICES

Client Reference:

Calibration of Multimeter

Item:

Turbidimeter

Date of Calibration:

ALS Lab ID: HK1024699-001

19 October, 2010

Model No.: HACH 2100P

Equipment No.: EQ091

Serial No.: 950900008735

Testing Results:

Turbidity

Expected Reading	Recording Reading
0.00 NTU	0.10 NTU
4.00 NTU	3.81 NTU
40.0 NTU	36.4 NTU
80.0 NTU	77.1 NTU
400 NTU	382 NTU
Allowing Deviation	± 10%

Testing Method:

APHA (19th edition), 2130B

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

ALS Technichem (HK) Ptv Ltd

Environmental Division

CERTIFICATE OF ANALYSIS

CONTACT:

MR BEN TAM

CLIENT:

ACTION UNITED ENVIRO SERVICES RM A 20/F., GOLDEN KING IND BLDG,

ADDRESS:

NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG,

N.T., HONG KONG.

PROJECT:

Batch:

LABORATORY:

HONG KONG 19/10/2010

DATE RECEIVED: DATE OF ISSUE:

22/10/2010

HK1024695

SAMPLE TYPE:

EQUIPMENT

No. of SAMPLES: 1

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG

Brisbane

Sydney Newcastle

Melbourne

Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsenviro.com

Godfrey Laboratory Manager Hong Kong

Other ALS Environmental Laboratories

AUSTRALIA

AMERICAS

Lima

Hong Kong Singapore Kuala Lumpur

Bogor

Vancouver Santiago Amtofagasta

Abbreviations: % SPK REC denotes percentage spike recovery

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

CHK denotes duplicate check sample LOR denotes limit of reporting

LCS % REC denotes Laboratory Control Sample percentage recovery

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., H.K. Phone: 852-2610 1044 Fax: 852-2610 2021 www.alsenviro.com A Campbell Brothers Limited Company

Page 1 of 2

CERTIFICATE OF ANALYSIS

Batch: HK1024695 **Date of Issue:** 22/10/2010

Client: ACTION UNITED ENVIRO SERVICES

Client Reference:

Calibration of Multimeter

Item: Multimeter Model No.: YSI 550A

ALS Lab ID: HK1024695-001 Equipment No.: --

Date of Calibration: 19 October, 2010 Serial No.: 05F2063AZ

Testing Results:

DO

Expected Reading	Recording Reading
3.57 mg/L	3.52 mg/L
6.15 mg/L	6.14 mg/L
8.18 mg/L	8.15 mg/L
Allowing Deviation	± 0.2 mg/L

Testing Method:

APHA (20th edition), 4500-OC & G

Temperature

2	Expected Reading	Recording Reading
	14.5 °C	14.9 °C
1	23.5 °C	23.6 °C
1	34.0 °C	33.9 °C
	Allowing Deviation	±2.0°C

Testing Method:

In-House Method

Mr Chan Kwok Fai, Godfrey Laboratory Manager Hong Kong

Appendix F

Event and Action Plan

Event/Action Plan for Air Quality

EVENT		ACTION		
ACTION LEVEL	Contractor's ET leader	IEC	ER	Contractor
	Identify source Inform IEC. ER and Contractor	Check monitoring data submitted by Contractor's ET leader	1. Notify Contractor	Rectify any unacceptable practice
		2. Check Contractor's working method		Amend working methods if appropriate
2. Exceedance for two		 Checking monitoring data submitted 	notification	1. Submit proposals for remedial
or more consecutive	2. Inform IEC, ER and Contractor	by Contractor's ET leader.	of failure in writing	actions to IEC and ER within 3
samples		2. Check Contractor's working method		
	4. Increase monitoring frequency to daily		Ensure remedial measures	2. Implement the agreed
	remedial actions required	measures	properly implemented	 Amend proposal if appropriate
	6. If exceedance continue, arrange meeting	4. Advise the ER on the effectiveness of		
	7. If exceedance stops, cease additional	5. Supervise implementation of remedial		
	-			
LIMIT LEVEL				
1. Exceedance for one		Check monitoring data submitted by	Confirm receipt of notification	Take immediate action to avoid
sampie	 Reneat measurement to confirm findings 	Check Contractor's working method	Notify Contractor	2 Submit proposals for remedial
		3. Discuss with Contractor's ET leader	al measures	
	Assess effectiveness of Contractor's remedial actions and kent IFC FPD and FR informed	and Contractor on possible remedial	properly implemented	working days of notification 3 Implement the agreed
	of the results	4. Advise the ER on the effectiveness of		
		the proposed remedial measures 5. Audit implementation of remedial		4. Amend proposal if appropriate
		measures		
2. Exceedance for two		 Discuss amongst ER, Contractor's ET 	notification	1. Take immediate action to avoid
or more consecutive	2. Identify source	leader and Contractor on the potential	of failure in writing	
samples	Repeat fileasurefilerit to confirm findings A Increase monitoring frequency to daily	2 Review Contractor's remedial actions	3. In consultation with IEC agree	actions to IEC and ER within 3
	5. Carry out analysis of Contractor's working			working days of notification
	procedures to determine possible mitigation	effectiveness and advise the ER	remedial measures to be	3. Implement the agreed
			implemented	
	6. Arrange meeting with IEC, Contractor and	3. Audit the implementation of remedial	ures	4. Resubmit proposals if problem
	ER to discuss the remedial actions to be	measures	properly implemented	
				works as determined by the ED
	actions and keen IEC EDD and ED informed		work is responsible and instruct	until the exceedance is abate
	of the results		the Contractor to stop that	uilli lile exceedalice is abate.
	8. If exceedance stops, cease additional			
	monitoring		nce is abated.	

Event/Action Plan for Construction Noise Monitoring

EVENT		ACTIO	N					
EVENI	CONTRACTOR'S ET LEADER	IEC	ER	Contractor				
Action Level	 Notify IEC, Contractor and ER Carry out investigation Report the results of investigation to the IEC, Contractor and ER Discuss with the Contractor and formulate remedial measures Double monitoring frequency Check compliance to Action/Limit Levels after application of mitigation measures 	Review the analysed results submitted by the Contract's ET leader Review the proposed remedial measures by the Contractor and advise the ER accordingly Review the implementation of remedial measures	Confirm receipt of notification of complaint in writing Notify Contractor Require Contractor to propose remedial measures for the analysed noise problem Ensure remedial measures are properly implemented	Submit noise mitigation proposals to ER and IEC Implement noise mitigation proposals				
Limit Level	Notify IEC, ER, EPD and Contractor Identify Source Repeat measurement to confirm findings Increase monitoring frequency Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Inform IEC, ER and EPD the causes & actions taken for the exceedances Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring	1. Discuss amongst ER, Contractor's ET leader and Contractor on the potential remedial actions 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly 3. Audit the implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analysed noise problem Ensure remedial measures are properly implemented If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	1. Take immediate action to avoid further exceedance 2. Submit proposals for remedial actions to within 3 working days of notification 3. Implement the agreed proposals 4. Resubmit proposals if problem still not under control 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated				

Event and Action Plan for Water Quality

Event	ET Leader	IEC	ER	Contractor
Action level	Repeat in-site measurement to confirm findings;	Discuss with ET and Contractor	Discuss with IEC on the proposed mitigation	Inform the ER and confirm notification of the
being	Identify Source(s) of impact;	on the mitigation measures	measures;	non-compliance in writing;
exceeded by	Inform IEC an Contractor;	Review proposals on mitigation	Make agreement on the mitigation measures to	Rectify unacceptable practice;
one sampling	Check monitoring data, all plant, equipment and	measures submitted by	be implemented;	Check al plant and equipment;
day	Contractor's working methods; Discuss mitigation measures with IFC and	Contractor and advise the ER		Consider changes of working methods; Discuss with FT and IFC and propose mitigation
	Contractor;	Assess the effectiveness of the		measures to IEC and ER;
	Repeat measurement on next day of exceedance	implemented mitigation measures.		Implement the agreed mitigation measures.
Action level	Repeat in-situ measurement to confirm findings;	Discuss with ET and Contractor	Discuss with IEC on the proposed mitigation	Inform the Engineer and confirm notification of
being	Identify source(s) of impact;	on the mitigation measures	measures;	the non-compliance in writing;
exceeded by	Inform IEC and Contractor;	Review proposals on mitigation	Made agreement on the mitigation measures to	Rectify unacceptable practice;
more than	Check monitoring data, all plant, equipment and	measures submitted by	be implemented;	Check all plant and equipment;
one	Contractor's working methods;	Contractor and advise the ER	Assess the effectiveness of the implemented	Consider changes of working methods;
consecutive	Discuss mitigation measures with IEC and	accordingly	mitigation measures.	Discuss with ET and IEC and propose mitigation
sampling days	Contractor;	Assess the effectiveness of the		measures to IEC and ER within 3 working days;
	Prepare to increase the monitoring frequency to	measures.		imponent the agreed minganon measures.
	daily:			
Limit level	Repeat in-situ measurement to confirm findings:	Discuss with ET and Contractor	Discuss with IEC, ET and Contractor on the	Inform the Engineer and confirm notification of
being	Identify source(s) of impact;	on the mitigation measures	proposed mitigation measures;	the non-compliance in writing;
exceeded by	Inform IEC, contractor and EPD;	Review proposals on mitigation	Request Contract to critically review the working	Rectify unacceptable practice;
one sampling	Check monitoring data, all plant, equipment and	measures submitted by	methods;	Check all plant and equipment;
day	Contractor's working methods; Discuss mitigation measures with IEC_ER and	Contractor and advise the R	Made agreement on the mitigation measures to be implemented:	Consider changes of working methods; Discuss with FT_IFC and FR and propose
	Contractor;	Assess the effectiveness of the	Assess the effectiveness of the implemented	mitigation measures to IEC and ER within 3
	Ensure mitigation measures are implemented;	implemented mitigation	mitigation measures.	working days;
	Increase the monitoring frequency to daily until no exceedance of Limit level.	measures.		Implement the agreed mitigation measures/
Limit level	Repeat in-situ measurement to confirm fundings;	Discuss with ET and Contractor	Discuss with IEC, ET and Contractor on the	Inform the ER and confirm notification of the
being	Identify source(s) of impact;	on the mitigation measures	proposed mitigation measures;	non-compliance in writing;
exceeded by	Inform IEC, contractor and EPD;	Review proposals on mitigation	Request Contractor to critically review the	Rectify unacceptable practice;
more than	Check monitoring data, all plant, equipment and	measures submitted by	Working methods;	Check all plant and equipment;
consecutive	Contractor's working meanoas; Discuss mitigation measures with IFC FR and	contractor and advise the Ek	wake agreement on the miligation measures to be implemented:	Discuss with FT IFC and FR and propose
sampling days	Contractor;	Assess the effectiveness of the	Assess the effectiveness of the implemented	mitigation measures to IEC and ER within 3
	Ensure mitigation measures are implemented;	implemented mitigation	mitigation measures;	working days;
	Increase the Monitoring frequency to daily until no	measures.	Consider and instruct, if necessary, the	Implement the agreed mitigation measures;
	exceedance of Limit level for two consecutive days.		Contractor to slow down or to stop all or part of the marine work until no exceedance of I imit	As directed by the Engineer, to slow down or to stop all or part of the marine work or construction
			level.	activities.

Event/Action Plan for Ecology

EVENT	ACTION			
EVENI	ET Leader	IEC	Engineer	Contractor
ACTION LEVEL REACHED	1. Carry out investigation 2. Review results and assess whether amendment to action level is appropriate 3. Report the results of investigation to the IEC 4. Notify Contractor and Engineer 5. Discuss with the Contractor and formulate remedial measures 6. Repeat survey to confirm results	1. Review the analysed results submitted by ET 2. Review the proposed remedial measures by the Contractor and advice the Engineer accordingly 3. Supervise implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analysed problem Ensure remedial measures properly implemented	1. Take immediate action to avoid further problem 2. Submit proposals for remedial actions to IEC within 3 working days of notification 3. Implement the agreed proposals 4. Resubmit proposals if problem still not under control
LIMIT LEVEL REACHED	1. Carry out investigation 2. Review results and assess whether amendment to limit level is appropriate 3. Report the results of investigation to the IEC 4. Notify Contractor and Engineer 5. Discuss with the Contractor and formulate remedial measures 6. Repeat survey to confirm results	Review the analysed results submitted by ET Review the proposed remedial measures by the Contractor and advice the Engineer accordingly Supervise implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analysed problem Ensure remedial measures properly implemented Issue instruction to stop the relevant portion of the works until the problem is abated (construction period only).	1. Take immediate action to avoid further problem 2. Submit proposals for remedial actions to IEC within 3 working days of notification 3. Implement the agreed proposals 4. Resubmit proposals if problem still not under control 5. Stop the relevant portion of works as determined by the Engineer until the problem is abated (construction period only)

Event and Action Plan for Cultural Heritage

EVENT		AC1	TION					
EVEIVI	ET Leader	IEC	ER	Contractor				
Action Level	Notify IEC and Contractor to carry out investigation Report reasons of structural damage or instability to the IEC and Contractor Discuss with the Contractor and formulate remedial measures	Review report of structural damage or instability by the ET. Review proposed remedial measures by the Contractor and advise the ER and Antiquities and Monuments Office (AMO) accordingly	Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures and to notify and seek approval from AMO.	Notify AMO concerning the damage or structural instability of the cultural heritage resources Submit proposals for repair of damage to cultural heritage resources to AMO for approval and to implement approved				
	Increase monitoring frequency to once per week to check mitigation effectiveness	Supervise the implementation of remedial measures, with approval from AMO.	Ensure remedial measures are properly implemented.	measures.				
Limit Level	Notify IEC and Contractor to carry out investigation and to stop construction work within 100m of cultural heritage resource to avoid further impact until AMO are satisfied that the relevant structure has been repaired or stabilized to an acceptable level. Report reasons of continued structural damage or instability to the IEC and Contractor Discuss with the Contractor and formulate remedial measures Increase monitoring frequency to daily to check mitigation effectiveness	Review report of structural damage or instability by the ET. Review proposed remedial measures by the Contractor and advise the ER and Antiquities and Monuments Office (AMO) accordingly. Supervise the implementation of remedial measures, with approval from AMO.	Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures and to notify and seek approval from AMO. Ensure remedial measures are properly implemented.	To carry out investigation and to stop construction work within 100m of cultural heritage resource to avoid further impact until AMO are satisfied that the relevant structure has been repaired or stabilized to an acceptable level. Propose remedial measures for the repair and stabilization of cultural heritage resources, up to liaison of moving and rebuilding the relevant structure with the approval of owner (usually the clan members) and AMO.				

Event and Action Plan for Landscape and Visual Impact - Construction Phase

Action Level	Environmental Team Leader (ETL)	Independent Evnironmental Checker (IEC)	Engineer's Representative (ER)	Contractor
Non-conformity on one occasion	 Identify source Inform the IEC and the ER Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed 	Check report Check the Contractor's working method Discuss with the ER and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures	Notify the Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake remedial measures or any necessary replacement
Repeated Non-conformity	Identify source Inform the IEC and the ER Increase monitoring (site audit) frequency Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed If exceedance stops, cease additional monitoring (site audit)	Check report Check the Contractor's working method Discuss with the ER and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures Supervise implementation of remedial measures	Notify the Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake remedial measures or any necessary replacement

Appendix G

- (a) Impact Environmental Monitoring Data
- (b) Graphic Plot of Monitoring
 - 1. Construction Noise
 - 2. Air Quality
 - 3. Water Quality

DSD CONTRACT NO. DC/2007/17

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

24-Hour TSP Monitoring Results

						STANDA	RD							BLANK		S	AMPLE OF FILTER P.	APER		Action	
DATE	SAMPLE		ELAPSED TIM	1E	CHART F	READING		AVERAGE		FLOW	AIR	SAMPLE		WEIGHT (g)			WEIGHT (g)		Dust 24-Hr TSP	Level	Limit Level
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	CHART READING	TEMP (°C)	PRESS (hPa)	RATE (m³/min)	VOLUME (std m³)	NUMBER	INTIAL	FINAL	DIFF	INITIAL	FINAL	DUST COLLECTION	in Air (μg/m³)	(μg/m³)	(μg/m³)
KT13(A1(a)))																				
				Da	te of Ca	libratio	n: 2-Auş	g-2010 No	ext Calibr	ation D	ate: 2-0	ct-2010	Cal Grap	h Slope = 4	0.7078 Inte	ercept = -17.	4435				
				Da	te of Ca	libratio	n: 4-Oc	t-2010 No	ext Calibr	ation D	ate: 4-De	ec-2010	Cal Grap	h Slope = 4	0.3298 Inte	rcept = -16.0	6610				
27-Sep-10	22654	3030.15	3054.22	1444.20	30	32	31.0	28.3	1012.9	1.33	1924	NA	2.8570	2.8565	-0.0005	2.8146	2.8428	0.0282	15	144	260
2-Oct-10	22652	3054.22	3078.31	1445.40	36	38	37.0	28.4	1011.7	1.33	1925	NA	2.8565	2.8568	0.0003	2.8483	2.8921	0.0438	23	144	260
8-Oct-10	22686	3078.31	3102.33	1441.20	30	32	31.0	26.4	1010.7	1.18	1699	NA	2.8572	2.857	-0.0002	2.8779	2.9868	0.1089	64	144	260
14-Oct-10	22732	3102.33	3126.39	1443.60	30	32	31.0	27.9	1010.9	1.18	1699	NA	2.8567	2.8568	0.0001	2.7889	2.8808	0.0919	54	144	260
20-Oct-10	22755	3126.39	3150.46	1444.20	32	34	33.0	26.4	1006.4	1.23	1772	NA	2.855	2.8546	-0.0004	2.8067	2.9729	0.1662	94	144	260
KT13(A2)																					
				Da	te of Ca	libratio	n: 2-Au	g-2010 No	ext Calibr	ation D	ate: 2-O	ct-2010	Cal Grap	h Slope = 3	8.6663 Inte	ercept = -13.	4929				
				Da	te of Ca	libratio	n: 4-Oc	t-2010 No	ext Calibr	ation D	ate: 4-De	ec-2010	Cal Grap	h Slope = 3	9.8607 Inte	rcept = -14.4					
27-Sep-10	22653	3053.35	3077.38	1441.80	36	38	37.0	28.3	1012.9	1.30	1875	NA	2.8570	2.8565	-0.0005	2.8007	2.8835	0.0828	44	141	260
2-Oct-10	22655	3077.38	3101.43	1443.00	36	38	37.0	28.4	1011.7	1.30	1875	NA	2.8565	2.8568	0.0003	2.7796	2.8145	0.0349	18	141	260
8-Oct-10	22685	3101.43	3125.55	1447.20	36	38	37.0	26.4	1010.7	1.29	1861	NA	2.8572	2.857	-0.0002	2.862	2.9309	0.0689	37	141	260
13-Oct-10	22731	3125.55	3149.81	1455.60	36	38	37.0	27.9	1010.9	1.28	1869	NA	2.8567	2.8568	0.0001	2.7787	2.8337	0.0550	29	141	260
20-Oct-10	22754	3149.81	3172.88	1384.20	36	38	37.0	26.4	1006.4	1.28	1778	NA	2.855	2.8546	-0.0004	2.8019	2.9104	0.1085	61	141	260

DSD Contract No. DC/2007/17 -

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Summary of Water Quality Monitoring Results - KT13

Date	28-S	ep-10																
Location	Time	Depth (m)	Temp	(oC)	n) OD	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	Н	S	S	Amme	onia N	Zi	nc
W1	9:12	0.20	30.4	30.3	3.67	3.6	47.9	47.5	7.4	7.3	8.1	8.0	7	7.0	7.55	7.55	29	29.0
VV 1	7.12	0.20	30.2	30.3	3.54	3.0	47.1	47.5	7.2	7.3	7.9	0.0	7	7.0	7.55	7.33	29	27.0
W2	9:27	0.20	30.2	30.2	5.09	4.7	61.3	57.4	6.6	6.4	7.9	7.9	6	6.0	3.94	3.94	16	16.0
VVZ	7.21	0.20	30.1	30.2	4.21	4.7	53.4	57.4	6.2	0.4	7.9	7.7	6	0.0	3.94	3.74	16	10.0
W3	9:41	0.10	30.5	30.5	3.51	3.2	46.2	43.3	7.9	7.9	8.2	8.2	<2	2.0	3.7	3.70	12	12.0
WS	7.41	0.10	30.5	30.5	2.94	3.2	40.3	75.5	7.8	7.7	8.1	0.2	<2	2.0	3.7	3.70	12	12.0
W4	10:07	0.20	30.4	30.4	3.61	3.5	47.1	46.8	6.3	6.3	8.1	8.1	10	10.0	3.56	3.56	< 10	10.0
VV-4	10.07	0.20	30.3	30.4	3.45	5.5	46.4	40.0	6.2	0.3	8.1	0.1	10	10.0	3.56	3.30	<10	10.0
W5	10:23	0.20	30.3	30.3	3.09	3.0	42.3	41.7	7.9	7.8	7.8	7.8	3	3.0	4.86	4.86	13	13.0
***3	10.23	0.20	30.3	30.3	2.99	3.0	41.1	41.7	7.7	7.0	7.8	7.0	3	3.0	4.86	4.00	13	13.0
W6	10:41	0.20	30.2	30.2	2.41	2.2	36.4	34.3	8.8	8.8	7.9	8.0	5	5.0	3.88	3.88	12	12.0
VVO	10:41	0.20	30.2	30.2	1.92	2.2	32.1	34.3	8.7	0.0	8.1	0.0	5	5.0	3.88	3.00	12	12.0

Date	30-S	ep-10																
Location	Time	Depth (m)	Temp	(oC)	D0 (r	D0 (mg/L)		(%)	Turbidit	y (NTU)	р	Н	S	iS	Ammo	onia N	Zi	nc
W1	10:27	0.10	29.4	29.5	2.48	2.6	36.9	37.9	7.7	7.4	8.1	0.2	5	5.0	9.04	9.04	22	22.0
VVI	10:27	0.10	29.6	29.5	2.67	2.0	38.9	37.9	7.4	7.6	8.3	8.2	5	5.0	9.04	9.04	22	22.0
W2	10:31	0.10	29.7	29.7	2.33	2.7	355	42.7	7.5	7.2	8.2	8.3	5	5.0	9.14	9.14	15	15.0
VV2	10:31	0.10	29.6	29.1	3.08	2.7	42.7	42.7	7.1	7.3	8.3	0.3	5	5.0	9.14	9.14	15	15.0
W3	10:42	0.10	29.6	29.7	2.16	2.2	33.8	34.7	8.6	9.0	8.2	8.4	12	12.0	9.26	9.26	16	16.0
WS	10.42	0.10	29.7	27.1	2.38	2.3	35.6	34.7	9.3	7.0	8.6	0.4	12	12.0	9.26	7.20	16	10.0
W4	10:44	0.10	29.5	29.5	3.42	3.3	46.2	44.6	7.2	6.9	8.2	8.3	7	7.0	9.07	9.07	15	15.0
VV4	10:44	0.10	29.4	29.5	3.16	3.3	42.9	44.0	6.5	0.9	8.4	0.3	7	7.0	9.07	9.07	15	15.0
W5	10:51	0.20	29.6	29.7	2.51	2.5	37.6	36.9	8.7	8.7	8.2	8.2	13	13.0	7.42	7.42	<10	10.0
VVO	10:51	0.20	29.8	29.1	2.44	2.5	36.2	30.9	8.7	0.7	8.1	0.2	13	13.0	7.42	7.42	<10	10.0
W6	10:55	0.20	29.6	29.7	1.98	1.4	31.7	28.5	10.3	10.0	8.2	0.2	11	11.0	7.59	7.59	<10	10.0
VVO	10:55	0.20	20.7	29.1	1 26	1.6	25.2	28.5	0.6	10.0	0.1	8.2	11	11.0	7.50	7.59	-10	10.0

Date	2-0	ct-10																
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	Н	S	S	Ammo	onia N	Zi	nc
W1	11:17	0.10	31.2	31.3	4.71	4.6	61.3	60.4	3.5	2.5	8.6	8.6	55	55.0	9.12	9.12	17	17.0
VV I	11:17	0.10	31.4	31.3	4.52	4.0	59.4	60.4	3.6	3.5	8.5	0.0	55	55.0	9.12	9.12	17	17.0
W2	11:20	0.10	31.4	31.5	4.06	4.1	54.6	54.8	3.6	3.4	8.6	8.6	8	8.0	7.9	7.90	18	18.0
VVZ	11.20	0.10	31.5	31.3	4.08	4.1	54.9	34.0	3.2	3.4	8.6	6.0	8	6.0	7.9	7.90	18	10.0
W3	11:32	0.10	31.4	31.3	2.39	2.4	38.2	38.6	5.3	6.6	8.5	8.6	8	8.0	6.6	6.60	12	12.0
WS	11.32	0.10	31.2	31.3	2.46	2.4	38.9	30.0	5.6	5.5	8.6	0.0	8	6.0	6.6	0.00	12	12.0
W4	11:33	0.10	31.6	31.6	3.69	3.7	50.9	51.3	4.1	4.1	8.5	8.6	6	6.0	7.79	7.79	16	16.0
VV-4	11.55	0.10	31.5	31.0	3.73	3.7	51.7	31.3	4.1	4.1	8.6	6.0	6	0.0	7.79	7.77	16	10.0
W5	11:45	0.20	31.7	31.7	2.04	2.3	34.6	37.5	7.0	6.7	8.5	8.7	12	12.0	2.94	2.94	15	15.0
WJ	11.43	0.20	31.6	31.7	2.62	2.3	40.3	37.3	6.4	0.7	8.8	6.7	12	12.0	2.94	2.74	15	13.0
W6	11:51	0.20	31.4	31.5	2.91	2.6	43.7	40.5	8.2	8.3	8.7	8.6	12	12.0	3.51	3.51	13	13.0
VVO	11:51	0.20	31.6	31.3	2.3	2.0	37.2	40.5	8.4	0.3	8.5	0.0	12	12.0	3.51	3.31	13	13.0

Date	4-0	ct-10																
Location	Time	Depth (m)	Temp	(OC)	D0 (r	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	Н	s	S	Ammo	onia N	Zi	inc
W1	9:07	0.20	25.1	25.2	4.77	4.6	61.2	60.3	3.6	3.5	8.4	0.4	10	10.0	10.3	10.30	11	11.0
VV I	9:07	0.20	25.2	23.2	4.51	4.0	59.3	00.3	3.4	3.5	8.3	8.4	10	10.0	10.3	10.30	11	11.0
W2	9:21	0.20	25.3	25.3	4.02	4.0	54.7	54.0	3.7	3.6	8.6	8.6	10	10.0	9.92	9.92	13	13.0
VV2	9.21	0.20	25.2	23.3	4.01	4.0	53.2	54.0	3.5	3.0	8.5	0.0	10	10.0	9.92	9.92	13	13.0
W3	9:39	0.20	25.2	25.2	2.34	2.2	38.1	37.3	5.4	5.3	8.3	0.2	10	10.0	9.69	9.69	16	16.0
WS	7.37	0.20	25.2	23.2	2.17	2.3	36.4	37.3	5.2	5.5	8.1	0.2	10	10.0	9.69	7.07	16	10.0
W4	9:54	0.10	25.6	25.6	3.67	3.6	50.2	50.0	4.3	4.2	8.2	8.2	9	9.0	9.5	9.50	14	14.0
VV4	9:54	0.10	25.6	23.0	3.48	3.0	49.7	50.0	4.1	4.2	8.2	0.2	9	9.0	9.5	9.50	14	14.0
W5	10:17	0.20	25.4	25.4	2.09	2.1	34.5	33.7	7.1	6.9	8.4	0.4	9	9.0	9.58	9.58	15	15.0
VVS	10.17	0.20	25.4	23.4	2.04	2.1	32.9	33.7	6.6	0.9	8.4	0.4	9	9.0	9.58	9.30	15	15.0
W6	10:29	0.30	25.7	25.7	2.92	2.0	43.6	41.8	8.5	8.3	8.5	0.5	11	11.0	9.51	9.51	13	13.0
VVO	10:29	0.30	25.6	25.7	2.84	2.9	39.9	41.8	8.1	8.3	8.4	8.5	11	11.0	9.51	9.51	13	13.0

Date	6-0	ct-10																
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	H	S	iS	Ammo	onia N	Zi	inc
W1	9:27	0.20	25.7	25.7	3.61	3.8	46.1	48.2	4.6	4.6	7.5	7.6	16	16.0	11	11.00	19	19.0
VV I	9:27	0.20	25.6	25.7	3.98	3.8	50.2	48.2	4.5	4.6	7.7	7.6	16	16.0	11	11.00	19	19.0
W2	9:57	0.10	25.4	25.4	4.07	3.8	50.5	48.2	5.5	5.6	7.7	7.6	15	15.0	9.12	9.12	<10	10.0
VVZ	7.37	0.10	25.4	25.4	3.58	5.0	45.9	40.2	5.6	5.0	7.5	7.0	15	15.0	9.12	7.12	<10	10.0
W3	10:05	0.10	25.6	25.6	3.42	3.5	44.3	45.5	4.8	4.9	7.7	77	16	16.0	9.6	9.60	16	16.0
WS	10.03	0.10	25.6	23.0	3.65	3.5	46.7	45.5	4.9	4.7	7.6	1.7	16	10.0	9.6	7.00	16	10.0
W4	10:19	0.20	25.7	25.7	3.83	3.8	48.3	47.6	6.5	6.5	7.9	7.9	15	15.0	9.61	9.61	21	21.0
VV4	10:19	0.20	25.6	23.7	3.67	3.0	46.8	47.0	6.4	6.5	7.8	7.9	15	15.0	9.61	9.01	21	21.0
W5	10:30	0.20	25.9	25.9	3.42	3.7	44.3	47.0	7.2	7.4	7.8	7.0	17	17.0	10.6	10.60	17	17.0
VVO	10:30	0.20	25.8	23.9	3.92	3.7	49.6	47.0	7.5	7.4	7.8	7.8	17	17.0	10.6	10.60	17	17.0
W6	10:42	0.20	25.6	25.7	3.04	3.1	40.8	40.9	8.5	8.6	7.4	7.5	15	15.0	10.9	10.90	19	19.0
VVO	10:42	0.20	25.7	23.7	2.17	ა. I	41.0	40.9	0.7	0.0	7.5	7.5	1.5	15.0	10.0	10.90	10	19.0

Date	9-0	ct-10																
Location	Time	Depth (m)	Temp	(OC)	DO (n	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	Н	S	S	Ammo	onia N	Zi	nc
W1	9:07	0.20	25.7	25.7	5.11	5.1	64.1	63.9	3.7	3.6	8.6	0.6	131	131.0	0.02	0.02	20	20.0
VV I	9.07	0.20	25.6	23.7	5.02	5.1	63.7	03.9	3.5	3.0	8.5	8.6	131	131.0	0.02	0.02	20	20.0
W2	9:19	0.20	25.9	25.9	5.49	5.4	63.7	63.6	3.6	3.6	8.4	8.4	220	220.0	0.02	0.02	16	16.0
VV2	9.19	0.20	25.8	23.9	5.37	3.4	63.4	03.0	3.5	3.0	8.4	0.4	220	220.0	0.02	0.02	16	16.0
W3	9:31	0.20	25.6	25.7	4.61	4.6	63.2	63.2	5.4	5.3	8.2	0.2	140	140.0	0.05	0.05	<10	10.0
VVS	9.31	0.20	25.7	23.7	4.53	4.0	63.1	03.2	5.1	5.5	8.2	0.2	140	140.0	0.05	0.05	<10	10.0
W4	9:52	0.10	25.6	25.6	3.67	3.6	50.4	50.1	4.7	4.5	8.3	0.2	383	383.0	< 0.01	0.01	39	39.0
W4	9:52	0.10	25.6	25.6	3.44	3.6	49.7	50.1	4.2	4.5	8.2	8.3	383	383.0	< 0.01	0.01	39	39.0
W5	10:17	0.20	25.5	25.6	2.09	2.1	34.2	33.7	7.3	7.1	7.9	7.9	86	86.0	< 0.01	0.01	13	13.0
CVV	10:17	0.20	25.7	25.6	2.01	2.1	33.1	33.7	6.8	7.1	7.8	7.9	86	00.0	< 0.01	0.01	13	13.0
14//	10.00	0.00	25.4	25.4	2.99	2.0	43.7	41.7	8.4	0.0	7.8	7.0	31	21.0	< 0.01	0.01	<10	10.0
W6	10:29	0.20	25.4	25.4	2.82	2.9	39.6	41.7	8.2	8.3	7.8	7.8	31	31.0	< 0.01	0.01	< 10	10.0

Date	11-0	ct-10											·					
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	Н	S	S	Ammo	onia N	Zi	nc
W1	10:22	0.20	32.3	32.2	1.67	2.0	29.6	33.1	8.7	8.8	7.5	7.6	27	27.0	9.28	9.28	207	207.0
			32.0		2.34		36.5		8.9		7.7		27		9.28		207	
W2	10:31	0.20	31.9	32.0	2.12	2.4	34.7	37.3	8.6	8.7	7.7	7.6	31	31.0	12	12.00	233	233.0
VVZ	10.31	0.20	32.0	32.0	2.66	2.4	39.8	37.3	8.7	6.7	7.5	7.0	31	31.0	12	12.00	233	233.0
W3	10:34	0.10	31.9	32.0	2.38	2.3	37.1	36.2	6.4	6.6	7.7	7.7	38	38.0	17.7	17.70	86	86.0
WS	10:34	0.10	32.0	32.0	2.17	2.3	35.2	30.2	6.7	0.0	7.6	7.7	38	36.0	17.7	17.70	86	00.0
W4	10:50	0.10	31.8	31.9	3.04	3.0	43.2	42.9	9.3	8.4	7.7	7.6	34	34.0	16.2	16.20	61	61.0
VV4	10.50	0.10	32.0	31.9	2.92	3.0	42.6	42.9	7.4	0.4	7.5	7.0	34	34.0	16.2	16.20	61	61.0
W5	10:56	0.10	32.0	32.1	2.17	2.2	34.5	35.3	7.9	7.8	7.6	7.7	44	44.0	20	20.00	90	90.0
CVV	10.50	0.10	32.1	32.1	2.22	2.2	36.1	33.3	7.6	7.0	7.7	7.7	44	44.0	20	20.00	90	70.0
W6	11:07	0.20	32.1	32.1	1.68	1.4	29.9	28.8	6.3	6.9	7.4	7.5	41	41.0	17.9	17.90	74	74.0
vvo	11:07	0.20	32.1	3∠.1	1.42	1.6	27.6	∠6.8	7.4	0.9	7.5	7.5	41	41.0	17.9	17.90	74	74.0

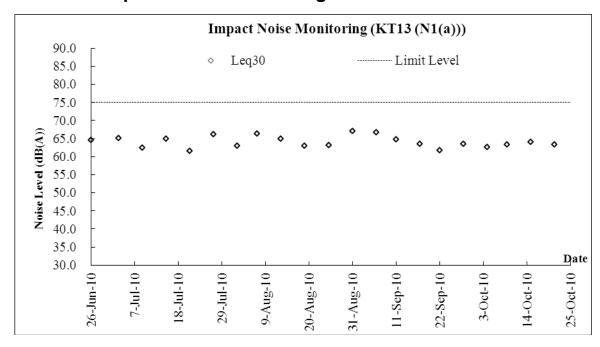
DSD Contract No. DC/2007/17 -

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Summary of Water Quality Monitoring Results - KT13

Date	13-0	ct-10																
Location	Time	Depth (m)	Temp	o (oC)	n) OD	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	Н	S	S	Amme	onia N	Zi	nc
W1	10:02	0.20	30.1	30.0	1.34	1.7	28.4	32.3	9.1	9.4	7.7	7.8	58	58.0	22.8	22.80	120	120.0
VV 1	10.02	0.20	29.9	30.0	2.08	1.7	36.1	32.3	9.7	7.4	7.8	7.0	58	36.0	22.8	22.00	120	120.0
W2	10:15	0.20	30.0	30.1	1.26	1.6	27.8	29.2	8.9	9.3	7.9	7.8	42	42.0	20.4	20.40	88	88.0
VV2	10.15	0.20	30.2	30.1	1.98	1.0	30.6	27.2	9.6	7.3	7.7	7.0	42	42.0	20.4	20.40	88	00.0 I
W3	10:21	0.10	29.8	29.9	3.19	3.3	46.7	48.2	6.5	5.6	7.7	7.8	94	94.0	27.5	27.50	173	173.0
WVS	10.21	0.10	29.9	27.7	3.42	3.3	49.6	40.2	4.7	3.0	7.9	7.0	94	74.0	27.5	27.30	173	173.0
W4	10:36	0.10	30.2	30.2	1.68	1.6	32.7	32.0	7.4	7.4	7.7	7.8	45	45.0	21.4	21.40	91	91.0
VV-+	10.30	0.10	30.1	30.2	1.59	1.0	31.2	32.0	7.3	7.4	7.8	7.0	45	45.0	21.4	21.40	91	91.0 I
W5	10:49	0.10	30.3	30.2	3.01	3.0	45.2	44.9	6.1	6.0	7.7	7.7	91	91.0	25.6	25.60	152	152.0
WJ	10.49	0.10	30.1	30.2	2.98	3.0	44.6	44.7	5.9	0.0	7.7	7.7	91	71.0	25.6	25.00	152	132.0
W6	10:55	0.25	30.2	30.3	2.69	2.6	42.1	41.5	6.3	6.9	7.9	7.8	107	107.0	29.2	29.20	198	198.0
VVO	10:55	0.25	30.3	30.3	2.55	2.0	40.8	41.5	7.4	0.9	7.7	7.0	107	107.0	29.2	27.20	198	170.0

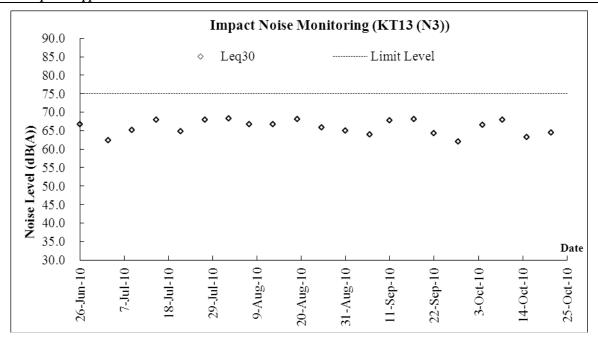
Date	15-C	Oct-10																
Location	Time	Depth (m)	Temp	(OC)	D0 (r	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	Н	S	S	Ammo	onia N	Zi	nc
W1	9:23	0.20	27.2	27.3	2.47	2.5	36.4	37.2	7.6	7.7	7.6	7.7	89	89.0	17.6	17.60	219	219.0
VV I	9.23	0.20	27.4	21.3	2.61	2.5	37.9	31.2	7.8	7.7	7.7	7.7	89	69.0	17.6	17.00	219	219.0
W2	9:47	0.10	27.9	27.9	2.39	2.7	35.4	39.2	7.4	7.4	7.4	7.4	74	74.0	15.4	15.40	186	186.0
VV2	9.47	0.10	27.8	21.9	3.09	2.7	42.9	39.2	7.3	7.4	7.3	7.4	74	74.0	15.4	15.40	186	100.0
W3	10:01	0.10	27.6	27.7	2.11	2.2	33.7	34.6	8.8	9.0	7.6	7.5	29	29.0	6.63	6.63	80	80.0
WVS	10.01	0.10	27.7	21.1	2.36	2.2	35.4	34.0	9.2	9.0	7.3	7.5	29	29.0	6.63	0.03	80	80.0
W4	10:19	0.20	27.4	27.4	3.47	3.3	46.1	44.2	7.1	7.0	7.3	7.4	56	56.0	12.8	12.80	148	148.0
VV 4	10:19	0.20	27.3	27.4	3.13	3.3	42.3	44.2	6.9	7.0	7.4	7.4	56	36.0	12.8	12.00	148	146.0
W5	10:30	0.20	27.6	27.6	2.54	2.5	37.4	36.8	8.4	8.5	7.6	7.5	46	46.0	9.16	9.16	81	81.0
VVO	10.30	0.20	27.5	27.0	2.43	2.5	36.1	30.0	8.6	6.5	7.3	7.5	46	46.0	9.16	9.10	81	61.0
W6	10.20	0.20	27.4	27.4	1.96	1./	31.9	28.3	10.2	10.1	7.2	7.0	32	32.0	6.85	6.85	72	72.0
VVO	10:39	0.20	27.4	27.4	1.24	1.6	24.7	28.3	9.9	10.1	7.1	1.2	32	32.0	6.85	6.85	72	72.0

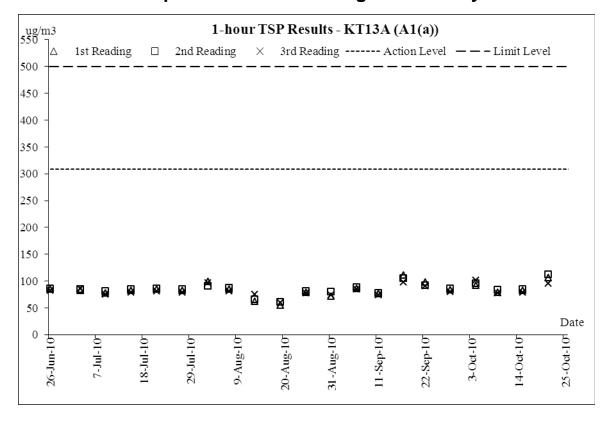
Date	19-0	ct-10																
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	Н	S	S	Ammo	onia N	Zi	nc
W1	14:09	0.10	26.9	26.9	4.77	4.8	61.3	61.4	3.6	3.7	8.6	0.5	24	24.0	0.02	0.02	18	18.0
** 1	14.07	0.10	26.8	20.7	4.79	4.0	61.5	01.4	3.7	3.7	8.4	0.0	24	24.0	0.02	0.02	18	16.0
W2	14:21	0.20	26.9	26.9	4.07	4.1	54.9	54.9	3.7	3.6	8.4	8.4	77	77.0	< 0.01	0.01	32	32.0
VV Z	14:21	0.20	26.9	20.9	4.06	4.1	54.8	54.9	3.5	3.0	8.4	0.4	77	77.0	< 0.01	0.01	32	32.0
W3	14:39	0.10	26.7	26.7	2.14	2.2	38.9	37.8	5.6	5.6	8.7	8.7	153	153.0	0.2	0.20	71	71.0
WS	14:39	0.10	26.7	20.7	2.17	2.2	36.7	37.0	5.5	5.0	8.6	0.7	153	155.0	0.2	0.20	71	71.0
W4	14:56	0.20	26.7	26.8	3.66	3.6	50.4	50.2	4.7	4.6	8.5	0.5	151	151.0	< 0.01	0.01	70	70.0
VV-+	14.50	0.20	26.8	20.0	3.59	3.0	49.9	30.2	4.5	4.0	8.4	8.5	151	131.0	< 0.01	0.01	70	70.0
W5	15:07	0.20	26.6	26.7	2.07	2.1	34.7	33.8	7.2	7.2	8.4	8.4	12	12.0	0.01	0.01	13	13.0
CVV	15.07	0.20	26.8	20.7	2.04	2.1	32.8	33.0	7.1	1.2	8.4	0.4	12	12.0	0.01	0.01	13	13.0
W6	15:14	0.20	26.7	26.8	2.93	2.9	43.7	41.3	8.9	8.8	8.2	8.2	59	59.0	0.04	0.04	50	50.0
VVO	15:14	0.20	26.8	20.8	2.87	2.9	38.9	41.3	8.7	0.8	8.2	0.2	59	59.0	0.04	0.04	50	50.0

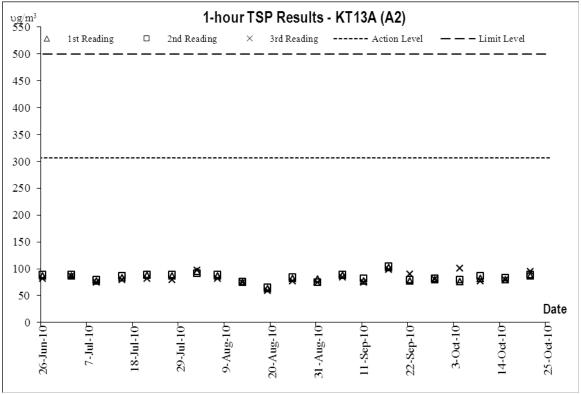

Date	21-0	ct-10																
Location	Time	Depth (m)	Temp	p (oC)	D0 (r	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	Н	S	iS	Ammo	onia N	Zi	nc
W1	14:07	0.20	25.4	25.5	4.82	4.8	62.4	61.8	3.9	3.9	8.6	8.6	13	13.0	15.8	15.80	30	30.0
VV I	14.07	0.20	25.6	25.5	4.76	4.0	61.1	01.0	3.8	3.7	8.5	0.0	13	13.0	15.8	13.00	30	30.0
W2	14:21	0.20	25.5	25.4	4.11	4.1	55.2	54.8	3.7	3.7	8.6	8.6	12	12.0	15.8	15.85	35	35.0
VV2	14.21	0.20	25.3	23.4	4.06	4.1	54.3	34.0	3.6	3.7	8.6	0.0	12	12.0	15.9	13.63	35	33.0
W3	14:33	0.20	25.4	25.5	2.19	2.2	38.9	38.3	5.7	5.7	8.6	8.7	14	14.0	16.5	16.50	32	32.0
WS	14.33	0.20	25.6	25.5	2.14	2.2	37.6	30.3	5.6	3.7	8.7	0.7	14	14.0	16.5	10.30	32	32.0
W4	14:49	0.30	25.7	25.7	3.69	3.6	50.9	50.3	4.9	4.9	8.4	8.4	12	12.0	15.6	15.60	33	33.0
VV4	14:49	0.30	25.6	25.7	3.57	3.0	49.6	50.5	4.8	4.9	8.3	0.4	12	12.0	15.6	15.00	33	33.0
W5	15:02	0.20	25.2	25.2	2.09	2.1	34.5	33.7	7.3	7.3	8.2	8.3	10	10.0	17	17.00	29	29.0
VVO	15:02	0.20	25.1	25.2	2.01	2.1	32.9	33.7	7.2	7.3	8.3	0.3	10	10.0	17	17.00	29	29.0
14//	15:17	0.20	25.7	25.7	2.97	2.0	43.6	41.0	8.8	0.0	8.4	8.5	12	12.0	15.8	15.80	22	22.0
W6	15:17	0.20	25.6	25.7	2.82	2.9	38.7	41.2	8.7	8.8	8.5	8.5	12	12.0	15.8	15.80	22	22.0

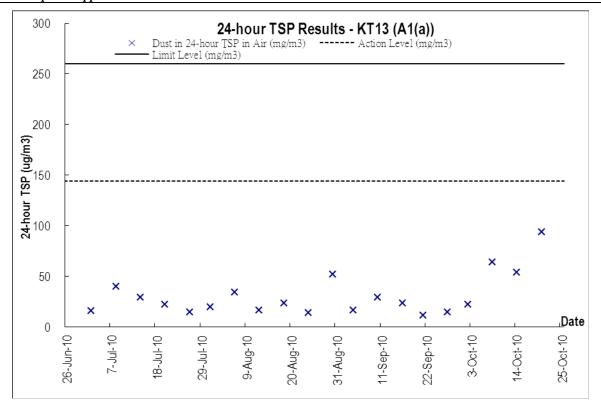
Date	23-0	ct-10																
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	Н	S	iS	Ammo	onia N	Zi	inc
W1	14:53	0.15	24.7	24.6	4.08	4.1	54.9	55.3	9.6	9.2	8	8.0	12	12.0	17.9	17.90	37	37.0
VVI	14:55	0.15	24.5	24.0	4.15	4.1	55.6	33.3	8.7	9.2	7.9	0.0	12	12.0	17.9	17.90	37	37.0
W2	15:05	0.20	24.6	24.7	3.83	3.9	52.7	52.9	9.2	9.8	7.9	7.9	8	8.0	16.8	16.80	21	21.0
VV2	15:05	0.20	24.7	24.7	3.92	3.9	53.1	52.9	10.4	9.0	7.9	7.9	8	6.0	16.8	10.00	21	21.0
W3	15:11	0.10	24.6	24.7	4.08	4.1	54.8	55.2	7.9	8.1	8	0.1	10	10.0	17.9	17.90	18	18.0
VVS	15:11	0.10	24.8	24.7	4.13	4.1	55.6	33.2	8.2	0.1	8.1	0.1	10	10.0	17.9	17.90	18	16.0
W4	15:13	0.20	24.7	24.7	3.28	3.5	46.9	48.7	9.3	9.6	8	8.0	10	10.0	17.9	17.90	12	12.0
VV-+	13.13	0.20	24.6	24.7	3.67	3.3	50.5	40.7	9.8	7.0	7.9	0.0	10	10.0	17.9	17.70	12	12.0
W5	15:22	0.20	24.5	24.6	3.42	3.3	48.3	47.5	11.2	10.2	7.8	7.9	9	9.0	18.6	18.60	14	14.0
WS	13.22	0.20	24.6	24.0	3.25	3.3	46.7	47.5	9.1	10.2	7.9	7.7	9	7.0	18.6	16.00	14	14.0
W6	15:29	0.20	24.5	24.6	3.86	4.0	52.3	53.6	9.5	9.6	8	8.1	9	9.0	17.9	17.90	15	15.0
VVO	15:29	0.20	24.6	24.0	4.07	4.0	5/10	JJ.6	0.7	9.0	8.1	0.1	0	9.0	17.0	17.90	15	15.0

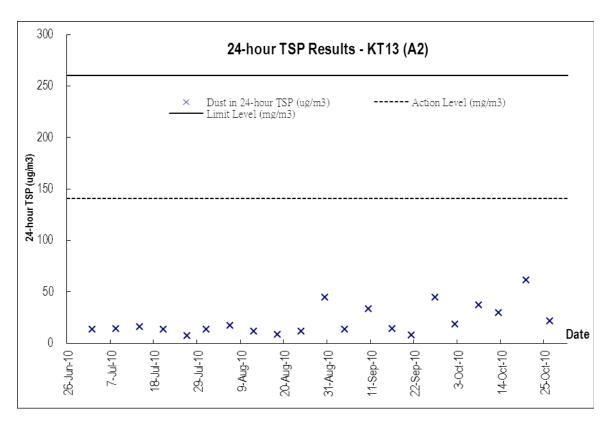
Date	25-0	ct-10																
Location	Time	Depth (m)	Temp	(OC)	n) OD	ng/L)	DOS	(%)	Turbidit	y (NTU)	р	Н	S	iS	Ammo	onia N	Zi	nc
W1	14:03	0.20	25.2	25.1	3.12	3.1	43.3	42.9	7.4	7.1	8.1	8.2	6	6.0	6.95	6.95	13	13.0
VV I	14:03	0.20	25.0	23.1	3.04	3.1	42.5	42.9	6.8	7.1	8.3	0.2	6	6.0	6.95	0.95	13	13.0
W2	14:10	0.20	25.1	25.0	2.89	2.8	42.1	40.4	7.9	7.0	8.1	8.1	5	5.0	7.03	7.03	13	13.0
VV2	14:10	0.20	24.9	25.0	2.66	2.0	38.7	40.4	6.0	7.0	8.1	0.1	5	5.0	7.03	7.03	13	13.0
W3	14:18	0.10	24.9	25.0	2.97	2.7	41.9	39.2	8.2	8.6	8	8.1	8	8.0	7.1	7.10	13	13.0
WS	14.10	0.10	25.0	23.0	2.42	2.7	36.4	37.2	8.9	0.0	8.1	0.1	8	0.0	7.1	7.10	13	13.0
W4	14:20	0.20	25.1	25.2	2.68	2.7	39.1	39.3	6.7	6.9	8.2	8.3	7	7.0	6.94	6.94	14	14.0
VV4	14:20	0.20	25.2	23.2	2.73	2.1	39.5	39.3	7.1	0.9	8.3	0.3	7	7.0	6.94	0.94	14	14.0
W5	14:27	0.20	25.3	25.3	3.49	3.6	47.3	48.0	10.2	9.9	8.1	8.1	7	7.0	7.02	7.02	13	13.0
CAA	14:27	0.20	25.2	23.3	3.66	3.0	48.7	40.0	9.5	7.9	8	0.1	7	7.0	7.02	7.02	13	13.0
W6	14.42	0.20	25.1	25.2	3.28	3.2	45.0	43.7	9.7	9.6	8.1	8.0	8	8.0	7.33	7.33	14	14.0
VVO	V6 14:43 0.20	0.20	25.3	25.2	3.07	3.2	42.4	43.7	9.4	9.6	7.9	0.0	8	0.0	7.33	1.33	14	14.0

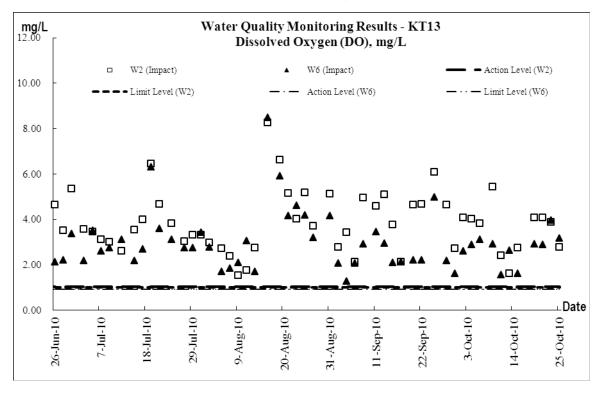

Graphic Plot of Monitoring - Construction Noise

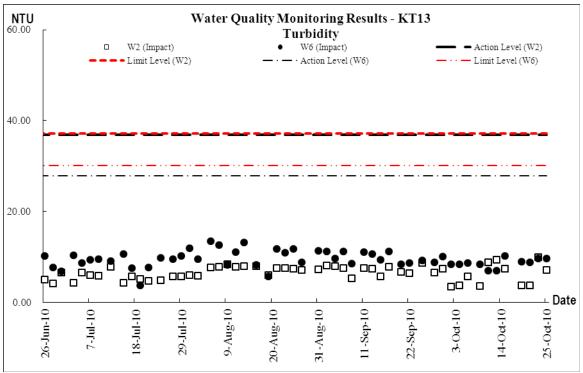


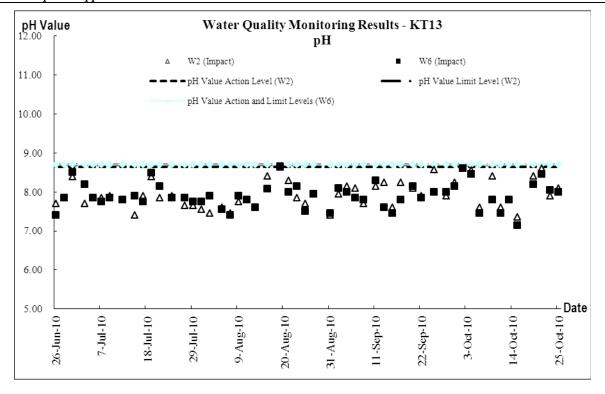

EM&A Report - Appendix

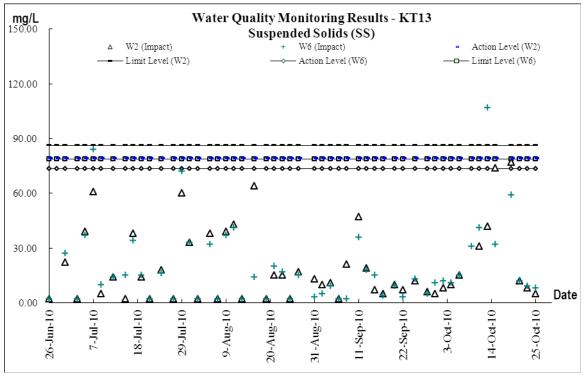

Graphic Plot of Monitoring – Air Quality

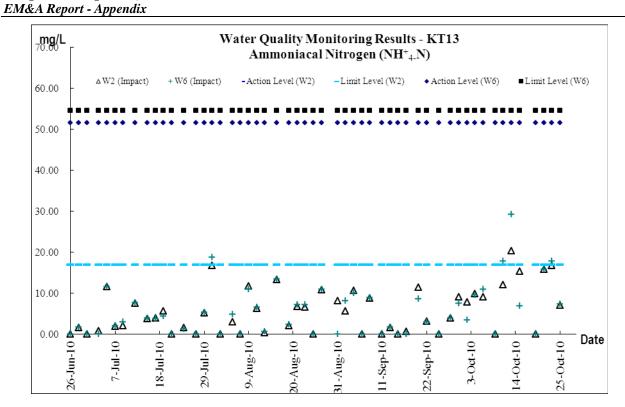


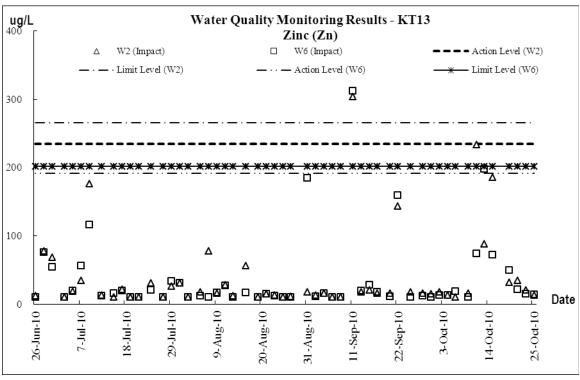

EM&A Report - Appendix




Graphic Plot of Monitoring –Water Quality






EM&A Report - Appendix

Appendix H Photographic Records of Ecological Monitoring of Vegetation (Not Used)

Appendix I Condition Survey of the Grave during Construction Phase (Not Used)

DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun.
EM&A Report - Appendix

Appendix J

Physical, Human and Cultural Landscape Resources at KT13

Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and

Current Situation of Physical, Human and Cultural Landscape Resources at KT13, inspected on 12 and 25 October 2010

conflict with the Project are mapped together with their extent outside study boundary for integrity of information. Photo views illustrating the described below. The locations of the baseline landscape resources are mapped in Drawing no. LR-001. The Landscape Resources in direct landscape resources of the study area are illustrated in Drawing Nos. PR-001 to 002 inclusive. For ease of reference and co-ordination between The physical resources that will be affected during the Construction Phase and Operational Phase, together with their sensitivity to change, are ext, tables and figures each landscape resources is given an identity number.

Table compares the baseline study and the current situation for KT13: (Landscape Resources)

Section	Identify number –	Photo	Baseline Study, Environmental Impact Assessment Final Report	Current Situation
in EIA	Landscape Resources	ž	[382047/E/EIA/Issue 9]	
Report				
Drainage	a			
10.7.3	LR1 River/ Stream	A1 -	There is a semi-natural drainage features (the Ma On Kong Channel) in the study area with	Minor change due to
		A5	unfrained natural upstream and partial trained downstream with a total length of 800m. The	construction work
			Channel originates from the South-West of the valley and discharge to the existing Primary	within the site
			Channel by Kam Ho Road running through and along the site area spanning across majority of the	boundary.
			river valley, together with the existing vegetations forming the central part of riparian landscape	
			network. They have medium landscape value and sensitive to change.	
Fish Pond	pı			
10.7.4	LR2.1 (Fish Pond) within	A6	There are 4 numbers of fallowed fish ponds at the upstream of the Ma On Kong Channel. A chain Minor change due to	Minor change due to
	site boundary		of fish ponds near downstream but distant from the Channel is noted. The fish ponds cover area of	construction of
	LR2.2 (Fish Pond) outside	A7	in total 23,000 m2. Most of them are heavily colonized by aquatic plants, which attribute to their	structures within site
	site boundary		low visual quality as a water landscape element. They have low landscape value and sensitive to	boundary.
			change.	A soil platform was

DC/2007/17

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and
Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

			0	created outside site
			q	boundary due to other
			<u>a</u>	project was noted.
Marsh				
10.7.5	LR3 (Marsh)	A8	It comprises 2 marshes at the upstream channel of the Channel. They are inundated lowland	Remain the same as
			heavily colonized with wetland aquatic plants. They have low landscape value and sensitive to	the baseline
			change.	
Vegetation	uc			
10.7.7	LR4 (Woodland/ Wooded	A9	It comprises two major communities of woodland/ wooded area. One is dense natural woodland R	Remain the same as
	Area)	A10	stretching across the Conservation Area and area behind Ma On Kong and consists approximate the	the baseline
			450 numbers of trees based on visual estimation. The trees are mainly native species and mature	
			in size. It is dominated by Schefflera octophylla, Pinus massoniana, Aporusa chinensis, Celtis	
			sinensis, Bridelia tomentosa, Cinnamomum cmaphora, Rhus chinensis and Phus succedanes.	
			Another one is a natural more sparse riparian wooded area at upstream of the Channel and	
			consists approximate 60 numbers of trees based on visual estimation. The trees are mainly	
			pioneer species and poorer in form and maturity. It is dominated by Ficus hispide and Macaranga	
			tanarius. They have high landscape value and sensitivity to change.	
10.7.8	LR5 (Orchard/ Horticultural	A11	It comprises two groups of trees at downstream below Ma On Kong and north of Ho Pui Amongst R	Remain the same as
	Trees)		there are approximate 400 numbers of trees based on visual estimation. They are fruit trees and the	the baseline
			landscape plants of horticultural practices. It is dominated by Dimocarpus longan, Delonix regian,	
			Roystonea regia and Pachira macrocarpa. For their anthropogenic and not permanent in nature,	
			they have medium landscape value and sensitivity to change.	
10.7.9	LR6 (Low-Lying Agricultural	A12	It comprises fallowed land and agricultural land in low rate of uses. The vegetation is mainly grass R	Remain the same as
	Land/ Fallowed Land)		and sedge with mosaics of shrubs approaching the Channel. It fills up the about half of the existing the	the baseline.

DC/2007/17

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and
Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

			Innehonon within the study organ They have lead and an annual and a study organish the study of	
			iariuscape within the study area, They have low lattuscape value and sensitivity to change.	
Sitting-C	Sitting-Out Area			
10.7.10	LR7 (Sitting-Out Area at Ma	A13	It is located at the Ma On Kong next to the access road. It is a small sitting-out area primarily	Remain the same as
	On Kong)		hard-paved with only 3 amenity trees and on pavilion. It has low landscape value and sensitivity to	the baseline
			change.	
Landsca	Landscape Character Areas			
10.7.12	LCA1 (Agricultural	B1 &	This comprises fallowed land & agricultural land not in active uses. This character area is flat and	Minor change due to
	Landscape Character Area)	B2	gentle sloping in landform and vegetated with grass of various heights. It forms the majority of the	invasion of cows.
			landscape character of the entire river valley and the connecting landscape element between	Some of the grass on
			other landscape character areas. The sensitivity to change of this area is low.	the land were
				consumed.
10.7.13	LCA2 (Woodland	B3	This is natural woodland between southem Ma On Kong and the Channel extending up to the	Remain the same as
	Landscape Character Area)		access road behind Ma On Kong. The trees are mature in size forming a close woodland	the baseline
			landscape. It is the location of egretry of conservation importance. The sensitivity to change of this	
			area is high.	
10.7.14	LCA3 (River/ Stream	B4 –	This is the main stream of the Channel in associate with its riparian vegetation. It meanders	Minor change due to
	Landscape Character Area)	B7	through the river valley landscape. It is used as a receptor of agricultural effluent from poultry farm	construction work
			around upstream, which contribute to the polluted appearance of the character area around	within site boundary
			upstream. The sensitivity to change of this area is medium.	
10.7.15	LCA4 (Fish Pond	B8	This comprises a number of fish ponds of various sizes distributed about the Channel. Most of	Minor change due to
	Landscape Area)		them are abandoned or with limited uses and colonized with aquatic plants. The sensitivity to	construction of
			change of this area is medium.	structures within site
				boundary.

Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and

40.746	Constitution of the second	0		
10.7.10	LCA5 (Village Landscape	٥ ٢	Inis compnses the four major village types rural settlement encompassing tal Kek, Ma On Kong, Kemain the same as	Remain the same as
	Character Area)	B10	Ho Pui and north of Ho Pui. Except Tai Kek which is less revitalized and actively resided, all other the baseline	the baseline
			three are actively resided. This area is lightly urbanized with low rise village house. The sensitivity	
			to change of this area is low.	
10.7.17	10.7.17 LCA6 (Industrial Landscape	B11 &	This comprise collection of slummy-built temporary structure and open storage uses land, which	Reconstruction of
	Character Area)	B12	are characterized with metallic hoarding and used for poultry, recycling, vehicle repaining etc. The	hoarding was
			sensitivity to change of this area is low.	conducted by the land
			0	owner
10.7.18	10.7.18 LCA7 (Nullah Landscape	B13	This is the trained nullah next to Kam Ho Road. It is the primary tributary connecting and receiving	Remain the same as
	Character Area)		outflow from the Ma On Kong Channel. The area is man-made and with poor and monotonous the baseline	he baseline
			niverside vegetation. The sensitivity to change of this area is low.	

10.7.19 Visual Character

The visual quality of the river valley of Ma On Kong Channel is semi-natural based on combination of rural landscape elements including agricultural land, village houses, woodland and pond and stream and industrial landscape elements including open storage and temporary structures. Interspersed landscape elements on general flat landform with minor undulation render numerous small enclosed views. No major vista and high quality open view identified.

10.7.20 Visual Sensitive Receiver (VSR)

Within the ZVI, a number of key Visual Sensitive Receivers (VSRs) have been identified. These VSRs are mapped in Drawing V-001. They are isted, together with their sensitivity, in Table 10/5. Photo views illustrating the VSRs are illustrated in Drawing nos. PV-001 to 002 inclusive. For the ease of reference, each VSR is given an identity number, which is used in the text, tables and figures. DC/2007/17

Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and

Remain the same Remain the same Reconstruction of Remain the same conducted by the as the baseline stockpiling was as the baseline as the baseline hoarding was Situation and owner Temporary observed Current The VSRs is workers of the plant nursery. The number of individual is very few and their sensitivity to visual The VSRs is workers of the temporary structure. The number of individual is very few and their sensitivity to \mid The VSRs is workers of the open storage. The number of individual is very few and their sensitivity to visual The VSRs is workers of the plant nursery. The number of individual is very few and their sensitivity to visual The VSRs is workers of the temporary structure and open storage. The number of individual is very few and The VSRs is workers of the open storage. The number of individual is very few and their sensitivity to visual Baseline Study, Environmental Impact Assessment Final Report [382047/E/EIA/Issue 9] Temporary Structure for poultry and Open Storage at upstream of Ma On Kong Channel Open storage near junction between Kam Ho Road and Village access Table compares the baseline study and the current situation for KT13: (Visual Sensitive Receiver) Plant Nursery at the west of Ma On Kong Channel Plant Nursery at the east of Ma On Kong Channel Open Storage at the end of village access road Temporary Structure for poultry east to Ho Pui their sensitivity to visual impacts is low. visual impacts is low. Photo ģ ပ္ပ ည ဗ္ပ ဗ 2 \overline{c} Identify number – Industrial VSRs VSR 2 <u>ന</u> 4 $\overline{\sigma}$ Section 10.7.23 10.7.22 Report 10.7.26 10.7.24 10.7.25 10.7.21 in EIA

DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Open Sp	Open Space / Sitting – Out Area VSRs	ea VSRs		
10.7.27	0	C7	Users of Sitting-out Area at Ma On Kong The VSRs is future users of the re-provided sitting-out area during operation phase. The number of individual is few and their sensitivity to visual impacts is medium.	Remain the same as the baseline
Residen	Residential VSRs			
10.7.28	<u>r</u>	83	Tai Kek The VSRs is residents of the village. The number of individual is very few and their sensitivity to visual impacts in high.	Remain the same as the baseline
10.7.29	22	හි	North of Ma On Kong The VSRs is residents of the village. The number of individual is very few and their sensitivity to visual impacts is high.	Remain the same as the baseline
10.7.30	82	C10	Ma On Kong The VSRs is residents of the village. The number of individual is very few and their sensitivity to visual impacts is high.	Remain the same as the baseline
10.7.31	R4	C11	North of Ho Pui The VSRs is residents of the village. The number of individual is few and their sensitivity to visual impacts is high.	Remain the same as the baseline

DC/2007/17
Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and
Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Transpo	Transport-related VSRs			
10.7.32	11	C12	Motorists and Pedestrians along village access road (lower section)	Remain the same
, .			The VSRs is the road users of the road section. The number of individual is few and their sensitivity to as the baseline	as the baseline
			visual impacts is low.	
10.7.33	Т2	C13	Motorists and Pedestrians along village access road (high section)	Remain the same
_			The VSRs is the road users of the road section. The number of individual is very few and their sensitivity to as the baseline	as the baseline
			visual impacts is low.	
10.7.34	Т3	C14	Motorists, Pedestrians and Tourists along access road toward Ho Pui Reservoir	Remain the same
			The VSRs is the road users of the road section, part of which are tourist to Ho Pui Reservoir. The number of as the baseline	as the baseline
			individual is very few and their sensitivity to change is low.	

DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Physical, Human and Cultural Landscape Resources Photo record

12 October 2010

Photo No. A1 - LR1

River/Stream

River/Stream

Photo No. A3 - LR1

River/Stream

Photo No. A5 - LR1

River/Stream

Photo No. A4 - LR1

River/Stream

Photo No. A8 - LR3

River/Stream

Photo No. A7 - LR2.2

River/Stream

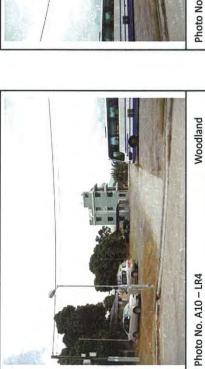


Photo No. A9 - LR4

Woodland/Wooded Area

Photo No. A12 - LR6

Sitting-Out Area at Ma On Kong Photo No. A13 -LR7

Photo No. A11 - LR5

Orchard/ Horticultural Trees

Low-Lying Agricultural Land/ Fallowed Land

Woodland Landscape Character Area Photo No. B3-LCA2

Agricultural Landscape Character Area Photo No. B2 - LCA1

Agricultural Landscape Character Area

Photo No. B1 - LCA1

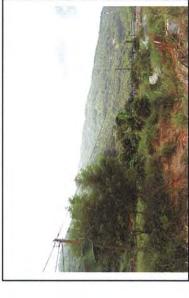


Photo No. B6 - LCA3.1 River/ Stream Landscape Character Area

River/ Stream Landscape Character Area Photo No. B5 - LCA3

River/ Stream Landscape Character Area

Photo No. B4 - LCA3

Photo No. B8 - LCA4

River/ Stream Landscape Character Area

Photo No. B7 - LCA3

Fish Pond Landscape Area

Photo No. 89-LCA5

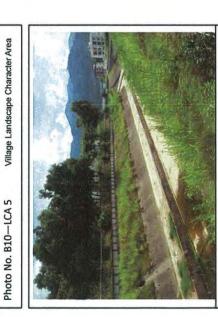

Village Landscape Character Area

Photo No. B11—LCA 6 Industrial Landscape Character Area

Photo No. B12—LCA 6 Industrial Landscape Character Area

Nullah Landscape Character Area Photo No. B13-LCA 7

Photo No. C1 - I1

Temporary Structure for poultry east to Ho Pui Photo No. C4-14

Sitting-out Area at Ma On Kong Photo No. C7-01

Plant Nursery at the east of Ma On Kong Channel Photo No. C2-I2

Plant Nursery at the east of Ma On Kong Channel

Photo No. C3—I3

Open Storage at the end of village access road Photo No. C5-I5

Photo No. C8-R1

Tei Kek

Temporary Structure for poultry and Open Storage at upstream of Ma On Kong Channel Photo No. C6—16

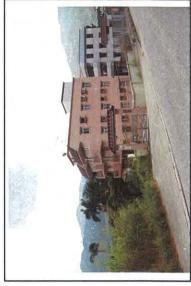


Photo No. C9-R2

North of Ma On Kong

Photo No. C12-T1 Motorists and Pedestrians along village access road

(lower section)

Photo No. C11-R4

Ma On Kong

Photo No. C10-R3

North of Ho Pui

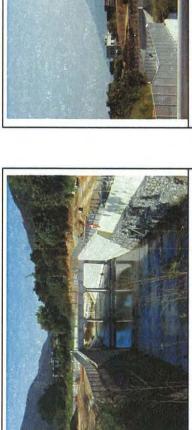


Photo No. C14-T3

Motorists and Pedestrians along village

Photo No. C13-T2

access road (high section)

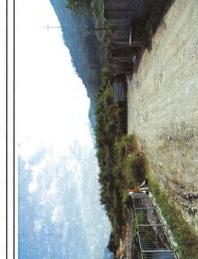

Motorists, Pedestrians and Tourists along access road toward Ho Pui Reservoir

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen, Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Physical, Human and Cultural Landscape Resources Photo record

25 October 2010

River/Stream


Photo No. A3 - LR1

River/Stream

Photo No. A2 - LR1

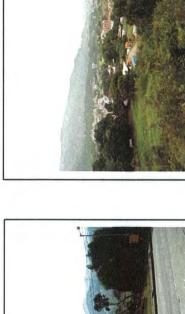
River/Stream

Photo No. A1 - LR1

River/Stream

Photo No. A4 - LR1

Fish Pond within site boundary



River/Stream

Photo No. A7 - LR2.2

Woodland/Wooded Area Photo No. A9 - LR4

Woodland

Photo No. A10 - LR4

Low-Lying Agricultural Land/ Fallowed Land

Photo No. A12 - LR6

Photo No. A13-LR7

Sitting-Out Area at Ma On Kong

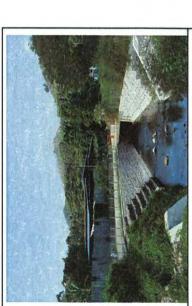
Woodland Landscape Character Area Photo No. B3-LCA2

Agricultural Landscape Character Area

Photo No. B2 - LCA1

Agricultural Landscape Character Area

Photo No. B1 - LCA1



River/ Stream Landscape Character Area Photo No. B5 - LCA3

River/ Stream Landscape Character Area

Photo No. 84 - LCA3

Photo No. B6 - LCA3.1 River/ Stream Landscape Character Area

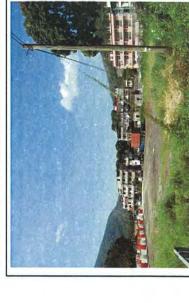


Photo No. B9-LCA5

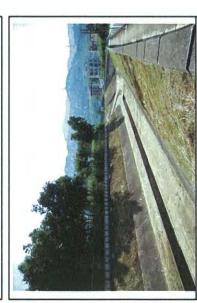
Village Landscape Character Area

Photo No. B8 - LCA4

River/ Stream Landscape Character Area

Photo No. B7 - LCA3

Fish Pond Landscape Area


Photo No. B11—LCA 6 Industrial Landscape Character Area

Village Landscape Character Area

Photo No. B10-LCA 5

Photo No. B12—LCA 6 Industrial Landscape Character Area

Nullah Landscape Character Area Photo No. B13-LCA 7

Photo No. C3-I3 Plant Nursery at the east of Ma On Kong Channel

Plant Nursery at the east of Ma On Kong Channel Photo No. C2-12

Open storage near junction between Kam Ho Road and Village access road

Photo No. C1-I1

Open Storage at the end of village access road Photo No. C5-I5

Temporary Structure for poultry east to Ho Pui

Photo No. C4-14

Temporary Structure for poultry and Open Storage at

Photo No. C6—16

upstream of Ma On Kong Channel

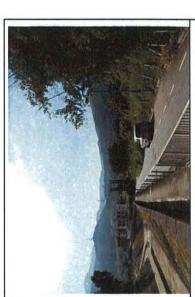


Photo No. C8-R1

Sitting-out Area at Ma On Kong

Photo No. C7-01

North of Ma On Kong

Photo No. C9-R2

Photo No. C12-T1 Motorists and Pedestrians along village access road

(lower section)

Photo No. C11-R4

Ma On Kong

Photo No. C10-R3

North of Ho Pui

Photo No. C14-T3

Motorists and Pedestrians along village

Photo No. C13-T2

access road (high section)

Motorists, Pedestrians and Tourists along access road toward Ho Pui Reservoir

Appendix K Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table

Date: 31-Oct-10 Oct-10 Year/Month:

	Monthly Summary Waste Flow Table for October 2010											
	Actual	Quantities of Ine	ert C & D Mater	ials Generated N	Monthly	Estimated Annual Quantities of C & D Wastes Generated Monthly						
Year	Total Quantitiy Generated	Broken Concrete (see note 4)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Metals	Paper/ Cardboard packaging	Plastics (see note 3)	Chemical Waste	Others, e.g. General refuse		
	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000KG)	(in '000KG)	(in '000KG)	(in '000KG)	(in '000M ³)		
Jan	10.556	0.004	10.002	0.55	0	0	0	0	0	0		
Feb	4.2195	0.001	4.323	-0.105	0	0	0	0	0	0		
Mar	8.654	0.003	7.469	1.182	0	0	0	0	0	0		
Apr	8.115	0.002	6.221	1.892	0	0	0	0	0	0		
May	5.111	0.001	3.718	1.392	0	0	0	0	0	0		
Jun	6.123	0.001	6.562	-0.44	0	0	0	0	0	0		
Sub-Total	42.78	0.012	38.295	4.4715	0	0	0	0	0	0		
Jul	7.449	0.002	8.652	-1.2045	0	0	0	0	0	0		
Aug	7.658	0.002	7.953	-0.297	0	0	0	0	0	0		
Sep	5.365	0.002	5.363	0	0	0	0	0	0	0		
Oct	5.177	0.001	5.176	0	0	0	0	0	0	0		
Nov	0.000					_						
Dec	0.000					_						
Total	68.426	0.019	65.437	2.970	0.000	0.000	0.000	0.000	0.000	0.000		

- Notes: (1) The performance targets are given in PS Clause 28.10(14)
 - (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
 - (3) Plastics refer to plastic bottles/ containers, plastic sheets/ foam form packaging material
 - (4) Broken concrete for recycling into aggregates
 - (5) Negative numbers in "Reused in other Projects" indicate import of materials from other projects.