

PROJECT NO.: TCS/00408/08

DSD CONTRACT NO. DC/2007/17 DRAINAGE IMPROVEMENT WORKS IN CHEUNG PO, MA ON KONG, YUEN KONG SAN TSUEN AND TIN SAM TSUEN OF YUEN LONG DISTRICT AND SEWERAGE AT TSENG TAU CHUNG TSUEN, TUEN MUN

MONTHLY EM&A REPORT FOR KT13 (OCTOBER 2011)

PREPARED FOR CHINA ROAD & BRIDGE CORPORATION

Quality Index			
Date	Reference No.	Prepared By	Certified by
10 November 2011	TCS00408/08/600/R1678v1	Anh	ann
		Nicola Hon Environmental Consultant	T.W. Tam Environmental Team Leader

Version	Date	Prepared by:	Certified by:	Description
1	10 Nov 2011	Nicola Hon	T.W. Tam	First submission

This report has been prepared by Action-United Environmental Services & Consulting with all reasonable skill, care and diligence within the terms of the Agreement with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

ARUP

By Fax & Post

Black & Veatch Hong Kong Limited 25/F, Millennium City 6 392 Kwun Tong Road Kowloon Hong Kong

Attention: Ms. Jenny Lui

14 November 2011

Dear Ms. Lui,

Level 5 Festival Walk 80 Tat Chee Avenue Kowloon Tong Hong Kong PRC t+852 2528 3031

d +852 2268 3097 f +852 2268 3950

coleman.ng@arup.com www.arup.com

Contract No. DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen King San and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Monthly EM&A Report for KT13 (October 2011) – Version 1

We refer to the captioned report (ref.: TCS00408/08/600/R1678v1) and advise that we have no comments on the captioned submission.

We hereby endorse the captioned report for your onward submission.

If you require any further information, please do not hesitate to contact the undersigned.

Yours sincerely

Coleman Ng Independent Environmental Checker

^{cc} China Road and Bridge Corporation (Mr. Raymond Mau) (Fax: 2478 9612)
 AUES (Mr. TW Tam / Ms. Nicola Hon) (Fax: 2959 6079)

Executive Summary

- ES01 Substantial completion of works for Channel KT13 had been certified by the Engineer's Representative on 30 May 2011. In view of the progress of the remaining works and the associated environmental monitoring and audit results, in particular sustainable non-existence of documented environmental complaints and works related exceedances of environmental quality criteria, letter of termination of EM&A programme has been submitted to EPD on 18 October 2011 and the monitoring work was ceased at the same day.
- ES02 This report serves as the last (37th) Monthly EM&A Report for the Channel KT13, covering the construction period from 26 September to 18 October 2011 (the Reporting Period).

Breaches of Action and Limit Levels

- ES03 Monitoring results of the Reporting Period demonstrated no exceedances of environmental quality criteria for air quality, construction noise and water quality.
- ES04 During the Reporting Period, there was no construction work conducted within 100m of the cultural heritage site at KT13. Therefore, no cultural heritage monitoring was required in accordance with the approved methodology.
- ES05 No Landscape and visual inspection and ecology monitoring were conducted in this Reporting Period since the monitoring work ceased on 18 October 2011.

Environmental Complaint, Notification of Summons and Prosecution

ES06 No documented complaint, notification of summons or successful prosecution was received during the Reporting Period. Environmental audit of the Reporting Period indicated that the implemented mitigation measures for air quality, construction noise and ecology were effective. Minor deficiencies found in the weekly site inspection were in general rectified within the specified deadlines. The environmental performance of the Project was therefore considered satisfactory.

Reporting Changes

ES07 There is no reporting change in this reporting month.

Future Key Issues

ES08 This is the last monthly EM&A report for Channel KT13 following substantial completion of construction work. However, the Contractor should aware of environmental issues identified in the EM&A Manual and the mitigation measures recommended in the EIA and summarized in Mitigation Measure Implementation Schedule should be properly implemented during the maintenance period.

Table of Contents

1	ENVIRONMENTAL STATUS	
1.1	PROJECT AREA AND CONSTRUCTION PROGRAMME	1 -
1.2	Works Undertaken During the Reporting Period	1 -
1.3	Environmental Management Organization	1 -
1.4	LICENSING STATUS	
1.5	Environmental Protection and Pollution Control Mitigation Measures	2 -
2	MONITORING METHODOLOGY	3 -
2.1	Monitoring Parameters	3 -
2.2	MONITORING LOCATIONS	3 -
2.3	MONITORING FREQUENCY, DURATION AND SCHEDULE	
2.4	MONITORING EQUIPMENT AND PROCEDURE	
2.5	QUALITY ASSURANCE PROCEDURES AND DATA MANAGEMENT 1	10 -
2.6	Reporting	11 -
3	MONITORING RESULTS 1	2 -
3.1	Air Quality 1	12 -
3.2	Construction Noise 1	12 -
3.3	- 1	4 -
3.4	ECOLOGY1	
3.5	Waste Management, Cultural Heritage and Landscape & Visual	15 -
4	NON-COMPLIANCE, COMPLAINT, NOTIFICATION OF SUMMONS, SUCCESSFUL PROSECUTION	
	AND OTHERS 1	6 -
4.1	Non-compliance1	
4.2	ENVIRONMENTAL COMPLAINT1	
4.3	NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTION 1	16 -
4.4	OTHERS	
5	CONCLUSIONS AND RECOMMENDATIONS 1	7 -

LIST OF TABLES

Table 2-1	Summary of Monitoring Parameters
Table 2-2	Summary of Monitoring Locations
Table 2-4-2	Air Quality Monitoring Equipment
Table 2-4-3	Construction Noise Monitoring Equipment
Table 2-4-4	Water Quality Monitoring Equipment
Table 2-6	Requirements for Report Submission
Table 3-1-1	Air Quality Action and Limit Levels
Table 3-1-2-1	Summary of Air Quality Monitoring Results at KT13-A1(a)
Table 3-1-2-2	Summary of Air Quality Monitoring Results at KT13-A2
Table 3-2-1	Construction Noise Action and Limit Levels
Table 3-2-2-1	Summary of Construction Noise Monitoring Results – N1(a)
Table 3-2-2-2	Summary of Construction Noise Monitoring Results – N2(a)
Table 3-2-2-3	Summary of Construction Noise Monitoring Results – N3
Table 3-3-1	Action and Limit Levels for Water Quality Monitoring
Table 3-4-1	Ecological Action and Limit Levels
Table 3-5-2	Cultural Heritage Resources Action and Limit Levels
Table 4-4-1	Summary of Findings of Site Inspection and Environmental Audit

LIST OF APPENDICES

Appendix A	Location Plan of the Project and Environmental Monitoring Locations under the Project
Appendix B	Construction Program
Appendix C	Environmental Management Organization and Contacts of Key Personnel
Appendix D	Monitoring Schedules and Meteorological Data
Appendix E	Calibration Certificates and HOKLAS-Accreditation Certificate
Appendix F	Event Action Plan
Appendix G	Environmental Monitoring Results and Graphical Plots
Appendix H	Monthly Summary Waste Flow Table

1 ENVIRONMENTAL STATUS

This is the 37th Monthly EM&A Report for the Channel KT13, covering the construction period from 26 September to 18 October 2011.

1.1 PROJECT AREA AND CONSTRUCTION PROGRAMME

Drawings showing the project area, any environmental sensitive receivers and the locations of the monitoring and control stations are presented in *Appendix A*, and the construction program in *Appendix B*.

1.2 WORKS UNDERTAKEN DURING THE REPORTING PERIOD

Apart from general works of tree survey, structural survey and environmental monitoring & audit, works undertaken during the Reporting Period with fine tuning of construction activities showing the inter-relationship with environmental protection/mitigation measures for the month are summarized as follows:

- Remedial works
- 1.3 Environmental Management Organization

Management structure and key personnel contact names and telephone numbers of the environmental management organization are presented in Appendix C, where DSD is the Project Proponent; CRBC is the main Contractor; EPD and AFCD are the supervisory departments for environmental protection of the Project; BVHKL is the Engineer's Representative of DSD (the ER); ARUP is the Independent Environmental Checker (the IEC) and Action-United Environmental Services and Consulting (AUES) is the environmental team (the ET).

- 1.4 LICENSING STATUS
- 1.4.1 Air Pollution Control (Construction Dust) Regulation

Pursuant to the *Air Pollution Control (Construction Dust) Regulation,* CRBC has notified EPD, via submission of Form NA dated 14 February 2008, of the scope and nature of the works to be carried out under the Project, including construction activities such as stockpiling, loading and unloading, transfer of dusty material, use of vehicles and debris handling, etc. CRBC will continuously review the status of the environmental licenses and apply the required licenses/permits prior to the commencement of construction work.

1.4.2 Noise Control Ordinance

No *Construction Noise Permit* (CNP) is required for the Project pursuant to the Noise Control Ordinance (NCO) and the associated applicable subsidiary regulations of *Noise Control (General) Regulation, Noise Control (Hand-held Percussive Breaker) Regulation and Noise Control (Air Compressor) Regulation,* as the use of powered mechanical equipment, or conducting construction work in during restricted hours, i.e. 1900 to 0700 hours on normal weekdays and any time on general holidays including Sundays is not anticipated during the whole construction period. CRBC will continuously review the status of the environmental licenses under the NCO and apply the required licenses/permits prior to the commencement of construction work.

- 1.4.3 Waste Disposal (Charges for Disposal of Construction Waste) Regulation
 CRBC has applied for a Billing Account (Construction Work Contract with Value of \$1million or above), under the Waste Disposal (Charges for Disposal of Construction Waste) Regulation. The account number 7006524 has been assigned on 9 Jan 2008.
- 1.4.4 Water Pollution Control Ordinance CRBC has applied for a discharge license under Section 20 of the *Water Pollution Control Ordinance,* and the license No. 1U461/1 has been issued.
- 1.4.5 Waste Disposal (Chemical Waste) (General) Regulation CRBC has registered as a Chemical Waste Producer with EPD under the Waste Disposal (Chemical Waste) (General) Regulation and the Waste Producer Number assigned is WPN: 5611-531-C3124-28 dated 2 May 08.
- 1.4.6 Dumping at Sea Permit

CRBC has been granted by the Environmental Protection Department a Permit Issued under the *Dumping at Sea Ordinance* (Permit no. EP/I4D/08-095, dated 18 September 2008, permit validity period of six months from 18 September 2008 to 17 March 2009) for disposal of 18,469 m³ sediment, requiring Type 1 – open sea disposal at East Sha Chau Contaminated Mud Disposal Site – Pit IV b, to be capped as directed by the Management Team of the Civil Engineering and Development Department. Note that this permit has expired. As there is no need for further sea disposal, no further permits will be required in the future.

1.5 Environmental Protection and Pollution Control Mitigation Measures

CRBC has committed to implement environmental protection and pollution control and mitigation measures, as recommended in the EIA, EP, EM&A Manuals, and summarized in the Mitigation Measures Implementation Schedules. The implemented mitigation measures include

- (a) Watering of stockpiles of rip-rap at KT13;
- (b) Covering of the loose soil at KT13 to minimize water quality impacts;
- (c) Hard pavement of haul road leading to public roads at KT13;
- (d) Classification and disposal of illegally dumped construction and demolishment materials at KT13;
- (e) Construction of noise barriers; and
- (f) Erection of dams with sand bags downstream the excavation site within the water course of KT13 to enhance sedimentation of turbidity and suspended solids (SS).

2 MONITORING METHODOLOGY

2.1 MONITORING PARAMETERS

According to the EM&A requirements set out in the EIA, Environmental Permit No. EP-263/2007/A (the EP) and the associated EM&A Manual, the required monitoring parameters are summarized as follows.

Table 2-1 Summary of Monitoring Parameters

Environmental Issue	Monitoring Parameters	
Air Quality	 (a) 1-hour Total Suspended Particulate (1-hour TSP); and (b) 24-hour Total Suspended Particulate (24-hour TSP). 	
Construction Noise	 (a) A-weighted equivalent continuous sound pressure level (30min) (Leq(30min) during the normal working hours; and (b) A-weighted equivalent continuous sound pressure level (5min) (Leq(5min) for construction work during the Restricted Hours. 	
Water Quality	(a) In Situ temperature, dissolved oxygen (DO), pH & turbidity Measurement	
Ecology	Vegetation, all bird species of wetland, Ho Pui Egret, Ma On Hong Egret and Flight Line Survey	
Waste Management	Inspection and the document audit	
Cultural Heritage	Condition survey for a historical grave	
Landscape & Visual	To audit the implementation of the proposed construction phase mitigation measure stipulated in EIA.	

2.2 MONITORING LOCATIONS

Details of the monitoring locations are summarized in *Table 2-2* and shown in *Appendix A*. For ease of reference, monitoring locations denoted with "(a)" are relocated locations to differentiate them from the original 'EM&A Manual' locations.

Environmental Issues	Monitoring Location	Identified Address / Co-ordinates	Status of Monitoring Locations / Rationale for Recommended Replacement	
Air	A1(a)	No.68 Ho Pui Village	The original location of EM&A Manuals A1 has permanently been abandoned. No access can be acquired in the vicinity of A1. Taken into consideration that Ho Pui Village is one of the most important sensitive receivers near KT-13 without monitoring, the most fronting house, No. 68 Ho Pui Village, is therefore recommended as the replacement location A1(a).	
	A2	No.1 Ma On Kong Village	Original location of the EM&A Manual; access granted.	
Noise	N1(a)	168-169 Kam Ho Road, Ma On Kong Village,	d, Original location of N1 identified in the EM&A Manual was relocated to proposed area as recommended by IEC.	
	N2(a)	No. 68 Ho Pui Village,	The original location of EM&A Manuals N2 has permanently been abandoned. No access can be acquired in the vicinity of N2. Taken into consideration that Ho Pui Village is one of the most important sensitive receivers near KT-13 without monitoring, the most fronting house, No. 68 Ho Pui Village, is therefore recommended as the replacement location N2(a).	
	N3	No.1 Ma On Kong Village Original locations of the EM&A Maccess granted.		
Water	W1	E824539 / N830283	Original locations of the EM&A Manual; access resolved.	

Table 2-2Summary of Monitoring Locations

Z:\Jobs\2008\TCS00408 (DC-2007-17)\600\EM&A\Impact\KT13\Monthly\37th Monthly Report - October 2011\R1678v1.doc Action-United Environmental Services and Consulting

Environmental	Monitoring	Identified Address /	Status of Monitoring Locations / Rationale
Issues	Location	Co-ordinates	for Recommended Replacement
	W2	E824693 / N830258	Original locations of the EM&A Manual;
			access resolved.
	W3(a)	E824833 / N830374	The W3 is proposed to be relocated about 55
			m down stream to W3(a) for safety reason as
			there is no any discharge point observed
			between W3 and the proposed W3(a).
	W4	E824936 / N830618	Original locations of the EM&A Manual;
			access resolved.
	W5	E825008 / N830812	Original locations of the EM&A Manual;
	14/0	E005400 / N000007	access resolved.
	W6	E825100 / N830987	Original locations of the EM&A Manual; access resolved.
Ecology	Monthly monitoring along the boundary of the works area to confirm that there are no		
LCOlogy	adverse impacts on habitats outside the site in particular the Conservation Area (CA)		
	zone and Ho Pui Egretry.		
	Photographic records at six-month intervals;		
	Monthly monitoring of all bird numbers including wetland species and species identified		
	as being of conservation importance;		
	Monitoring of Ho Pui egretry during March to August. The Ma On Kong egretry is also		
	surveyed to provide reference information on the breeding egrets nearby; and		
	Flight line surveys twice per month during April to June.		
Waste	Whole construction site and document		
Management			
Cultural	Ma On	Refer to EM&A Manual (K	T13) Figure 7.1.
Heritage	Kong		
Landscape &	Refer to EIA S	Section 10	
Visual			

2.3 MONITORING FREQUENCY, DURATION AND SCHEDULE

2.3.1 Monitoring Frequency and Duration

Environmental monitoring is conducted upon commencement of the construction activities and throughout the whole construction period to detect and minimize any adverse environmental impacts generated from the construction activities of the Project. The monitoring frequency and duration for air quality, construction noise, water quality, ecology and other parameters are summarized below.

Air Quality

<u>Frequency</u>: Once every 6 days for 24-hour TSP and three times every 6 days for 1-hour TSP, when the highest construction dust impacts are anticipated.

Duration: Throughout the construction period

Construction Noise

- <u>Frequency</u>: Measurement of Leq(30min): Once a week during 0700-1900 hours on normal weekdays. If the construction work is undertake at restricted hours, the frequency of noise monitoring will be conducted in accordance with the requirements under the related Construction Noise Permit issued by EPD as follows:
 - 3 consecutive Leq(5min) at restrict hour from 1700 2300 hours;
 - 3 consecutive Leq(5min) for restrict hour from 2300 0700 hours next day;
 - 3 consecutive Leq(5min) for Sunday or public holiday from 0700 1900 hours;

<u>Duration</u>: Throughout the construction period

Water Quality

- <u>Frequency</u>: Three times a week with at least 36 hour intervals between any two consecutive monitoring events
- <u>Depths</u>: As the water columns in the stream water within KT13 is generally less than 3m, measurement is performed at the mid-depths of the monitoring locations. In case the water columns are deeper than 6m, measurement shall be carried out at three water depths, namely, 1m below water surface, mid-depth, and 1m above river bed. If the water depths are between 3 to 6m, the mid-depth measurement is omitted.
- <u>Duration</u>: Throughout the construction period.

<u>Ecology</u>

The Ecology Monitoring is required in accordance with the EM&A Manual.

- Parameters: Vegetation, All bird species including wetland birds, Ho Pui and Ma On Hong Egretries and Flight line survey
- Frequency:Vegetation Impact monitoring monthly;
Photographic records/checks against baseline records– six monthly
Wetland Bird survey Monthly of half-day survey;
Ma On Kong egretry Monthly between March to August; and
Ho Pui egretry Bi-weekly between March and August;
Flight line Survey twice per Month during the period from April to June
Throughout the whole construction pariod
- Duration: Throughout the whole construction period

Waste Management Audit

Frequency: Once per month

<u>Duration</u>: Throughout the construction period.

Cultural Heritage

- Scope: Condition survey and settlement monitoring of a Qing Dynasty Grave.
- Frequency: Condition survey Bi-monthly
 - Settlement monitoring Bi-weekly
- <u>Duration</u>: Throughout the construction phase period. (When construction work entered the 100m of the cultural heritage site)

Landscape & Visual

Frequency: Bi-weekly

<u>Duration</u>: Throughout the construction phase period.

2.3.2 Environmental Monitoring Schedule

The monitoring schedules for the Reporting Period and next month are presented in *Appendix D.*

2.4 MONITORING EQUIPMENT AND PROCEDURE

The monitoring equipment and procedures are summarized below. Calibration certificates of the equipment and the related laboratories are presented in *Appendix E.*

2.4.1 Weather Conditions during the Reporting Period

All meteorological information is extracted from the Hong Kong Observatory (Lau Fau Shan Station). The meteorological data include wind direction, wind speed, humidity, rainfall, air pressure and temperature etc., that are generally required for evaluating the environmental impact arising from the construction activities. The meteorological data are presented in *Appendix D*.

2.4.2 Air Quality

Monitoring Equipment

A list of air quality monitoring equipment is shown below.

Table 2-4-2Air Quality Monitoring Equipment

Equipment	Model	Serial Number	
24-hour TSP			
High Volume Air Sampler	Grasby Anderson GMWS 2310 HVS	-	
Calibration Kit	TISCH Model TE-5025A	1941	
1-hour TSP			
Portable Dust Meter	TSI DustTrak Model 8520	21060	

Monitoring Procedure

<u>1-hour TSP</u>

The 1-hour TSP measurement follows manufacturer's Operation and Service Manual, using a 1-hour TSP monitor brand named TSI Dust Track Aerosol Monitor Model 8520 or Sibata LD-3 Laser Dust Meter, which is a portable, battery-operated laser photometer to record the real time 1-hour TSP based on 90⁰ light scattering. The 1-hour TSP monitor consists of the following:

- (a) A pump to draw sample aerosol through the optic chamber where TSP is measured;
- (b) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
- (c) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.

The 1-hour TSP meter to be used will be within the valid period, calibrated by the manufacturer prior to purchasing. Zero response of the instrument will be checked before and after each monitoring event.

<u>24-hour TSP</u>

The equipment used for 24-hour TSP measurement is the high volume air sampling system (hereinafter 'HVS') brand named Thermo Andersen, Model GS2310 TSP. The HVS complies with US EPA Code of Federal Regulation, Appendix B to Part 50. The HVS consists of the following:

- (a) An anodized aluminum shelter;
- (b) A 8"x10" stainless steel filter holder;
- (c) A blower motor assembly;
- (d) A continuous flow/pressure recorder;
- (e) A motor speed-voltage control/elapsed time indicator;
- (f) A 6-day mechanical timer, and
- (g) A power supply of 220v/50 Hz

The HVS is operated and calibrated on a regular basis following the manufacturer's instruction using the NIST-certified standard calibrator brand named TISCH Calibration Kit Model TE-5025A. Regular HVS operation and maintenance as well as filter paper

installation and collection is performed by the ET's competent technicians, whereas laboratory analyses are conducted in a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (herein after 'ALS'). The 24-hour TSP filters of the 24-hour TSP will be kept in ALS for six months prior to disposal.

All relevant data including temperature, pressure, weather conditions, elapsed-time meter reading for the start and stop of the sampler, identification and weight of the filter paper are recorded in details.

2.4.3 Construction Noise

Monitoring Equipment

A list of construction noise monitoring equipment is shown below.

Table 2-4-3 Construction Noise Monitoring Equipment

Equipment	Model	Serial Number
Integrating Sound Level Meter	Bruel & Kjaer 2238	2285721
Calibrator	Bruel & Kjaer 4231	2713428
Portable Wind Speed Indicator	Testo Anemometer	-

Monitoring Procedure

Sound level meters listed above comply with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications, as recommended in Technical Memorandum (TM) issued under the Noise Control Ordinance (NCO).

All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq(30 min) in six consecutive Leq(5 min) measurements will be used as the monitoring parameter for the time period between 0700-1900 hours on weekdays throughout the construction period. Leq(15min) in three consecutive Leq(5 min) measurements for other time periods (e.g. during restricted hours) will only be conducted for monitoring the construction noise during restricted hours as necessary.

The sound level meter is mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield is fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point is normally at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point is at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.

Immediately prior to and following each noise measurement the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0dB. No noise measurement will be made in the present of significant fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s. The wind speed is checked with a portable wind speed meter capable of measuring the wind speed in m/s.

2.4.4 Water Quality

<u>Monitoring Equipment</u>

Monitoring Equipment for water quality is listed below.

Table 2-4-4

4 Water Quality Monitoring Equipment

Equipment	Model	Serial Number
Water Depth Detector	Eagle Sonar	-
Water Sampler	Teflon bailer / bucket	-
Thermometer & DO meter	YSI 550A	05F2063AZ
pH meter	Extech pH Meter EC500	Work Order: HK1109433
Turbidimeter	Hach 2100p	950900008735
Hand Refractometer	ATAGO	289468
Sample Container	High density polythene bottles (provided by laboratory)	-
Storage Container	'Willow' 33-litter plastic cool box	-

Monitoring Procedure

Water Depth

As the water columns in the stream water within KT13 is generally less than 3 m, measurement is performed at the mid-depths of the monitoring locations. In case the water columns are deeper than 6 m, measurement shall be carried out at three water depths, namely, 1 m below water surface, mid-depth, and 1 m above river bed. If the water depths are between 3 to 6 m, the mid-depth measurement is omitted.

Water depths are determined prior to measurement and sampling, using a portable battery operated depth detector, brand named 'Eagle Sonar', if the depths exceed 1.5 meter. For the depths well below 1 meter, the depths of water columns are measured with a steel ruler with appropriate weight.

Dissolved Oxygen (DO)

A portable YSI 550A DO Meter will be used for in-situ DO measurement. The DO meter is capable of measuring DO in the range of 0 - 20 mg/L and 0 - 200 % saturation and checked against water saturated ambient air on each monitoring day prior to monitoring. Although the DO Meter automatically compensates ambient water temperature to a standard temperature of 20^oC for ease of comparison of the data under the changing reality, the temperature readings of the DO Meter will be recorded in the field data sheets. Calibration of the equipment will be performed by ALS on quarterly basis.

<u>рН</u>

A portable Extech pH Meter will be used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 - 14 and readable to 0.1. Standard buffer solutions of pH 7 and pH 10 are used for calibration of the instrument before and after measurement. Quarterly calibration of the equipment will be performed by ALS.

Turbidity

A portable Hach 2100p turbidity Meter will be used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 - 1000 NTU. Calibration of the equipment will be performed by ALS on quarterly basis.

Salinity

A portable hand Refractometer AGATO will be used for in-situ salinity measurement. The refractometer is capable of measuring salinity in the range of 0-70ppt with accuracy $\pm 1\%$ reading. Calibration of the equipment will be performed by ALS on quarterly basis.

Suspended Solids (SS)

SS will be determined by ALS upon receipt of the water samples using the HOKLAS accredited analytical method - ALS Method EA-025.

Ammonia Nitrogen(NH₃-N)

<u>*NH*</u>₃-*N* will be examined by ALS upon receipt of the water samples using the HOKLAS accredited analytical methods - ALS Method EK-055A.

<u>Zinc(Zn)</u>

Zn will be analyzed by ALS upon receipt of the water samples using the HOKLAS accredited analytical methods - ALS Method EG-020.

Water Sampler

Water samples will be collected using a plastic sampler to prevent metal contamination. As the water depths in the stream water within KT13 are generally less than 0.5 m, a plastic bucket with a rope of appropriate length is used for water sampling. The sampler is rinsed before collection with the sample to be taken. For water depths deeper than 0.5 meter, a cleaned plastic bailer bucket will be used for sample collection.

1000 mL water sample is collected from each depth for SS determination. The samples collected are stored in a cool box maintained at 4^oC and delivered to ALS upon completion of the sampling by end of each sampling day.

Sample Container

Water samples are contained in screw-cap PE (Poly-Ethylene) bottles, which are provided and pretreated according to corresponding HOKLAS and ALS analytical requirements. Where appropriate, the sampling bottles are rinsed with the water to be contained. Water samples are then transferred from the water sampler to the sampling bottles to 95% bottle capacity to allow possible volume expansion during delivery and storage.

Sample Storage

A 'Willow' 33-litter plastic cool box packed with ice will be used to preserve the collected water samples prior to arrival at ALS. The water temperature of the cool box will be maintained at a temperature as close to 4^oC as possible without being frozen. Samples collected will be delivered to the laboratory upon collection within the maximum storage time required under the HOKLAS and ALS analytical requirements

2.4.5 Ecology

Monthly walk through survey will be conducted along the boundary of work area for KT13. Bird monitoring will be conducted in the study areas monthly for KT13. Monitoring on the Ho Pui egretry and Ma On Kong egretry will be conducted between March to August. Flight line surveys to record the feeding areas and the habitat use of breeding egrets will be conducted between April to June. Photographic record should be made at six month intervals.

Monitoring Equipment

The following equipment will be used for monitoring:-

Standard portable field survey equipment was used for ecological monitoring, including

- (a) Binoculars of 10 x 40 magnifications;
- (b) Digital camera; and
- (c) Notebook.

Study Area

The areas for the ecological monitoring programme would cover 60 m on either side of the existing channel as well as the proposed bypass culvert, as shown in Figure 6.1 of the EM&A Manual. Within these, emphasis will be given to the area around the Ho Pui and Ma On Kong egretries and habitats of at least moderate ecological value. In addition, monitoring would also be undertaken at the Ho Pui egretry and Ma On Kong egretry is outside the demarcated monitoring area but is also monitored to identify any adverse effects on the breeding egrets).

Survey Method

Monthly monitoring will be conducted by means of walk through survey, along the boundary of work area for KT13. Any adverse impacts to the habitats outside the site,

in particular the Conservation Area (CA) zone and Ho Pui Egretry, will be checked and reported.

Photographic records will be made every six months on the fixed photo record points selected during the baseline survey. The photos from the construction phase ecological monitoring will be compared with those taken during the baseline, which are used as the baseline conditions.

Bird monitoring will be conducted in the study areas monthly for KT13. Attention should be paid on wetland species and species identified as being of conservation importance, and the habitats utilized should also be recorded. Bird surveys should commence no later than 2 hours after dawn.

Monitoring on the Ho Pui egretry and Ma On Kong egretry will be conducted between March to August. The frequency would be twice per month during March to May. Depending upon the nesting conditions at Ho Pui egretry, the frequency could be reduced to monthly between June and August if no egret nest found by the end of May, or maintained at twice per month till the end of August if there are egret nests. Number of active nests, species and number of birds present and breeding stage should be recorded.

Flight line surveys to record the feeding areas and the habitat use of breeding egrets will be conducted twice per month between April to June. The number and species of flying egrets, and their landing habitats and locations should be recorded.

2.4.6 Waste Management, Cultural Heritage and Landscape & Visual

Waste Management, Cultural Heritage and Landscape & Visual monitoring is required for KT13 as stipulated in the EM&A manual [382047/E/EMA/Issue 5] **Section 5**, **Section 7** and **Section 8** accordingly.

Waste Management

During the monthly audit, ETL will pay attention to the issues relating to waste management, and check whether the Contractor has followed the relevant contract Specifications and the procedures specified under the law of HKSAR.

Cultural Heritage

Condition survey by a qualified archaeologist is required for the historical grave near Ma On Kong before and during the construction phase. The method statement of condition survey of Ma On Kong Historic Grave (KT13-02-02) was issued to EPD and endorsed on 27 July 2008, the frequency of the condition survey during the construction phase and given the open cut method would be adopted for the construction of the proposed bypass box culvert under KT13 project, subject to the result of the condition survey carried out before the construction stage, it is recommended that bi-monthly condition survey be undertaken during the construction work within 100m area from the grave.

Landscape and Visual

In accordance with the EM&A manual [382047/E/EMA/Issue5] **Section 8** landscape and visual mitigation measures are required during construction and operation phase. Site inspection will be undertaken at least once every two weeks throughout the construction period to ensure compliance with the intended aims of the proposed mitigation measures.

2.5 QUALITY ASSURANCE PROCEDURES AND DATA MANAGEMENT

2.5.1 Documentation of the Environmental Monitoring

Field data including in-situ monitoring results, weather conditions and water sampling information and observation will be recorded in corresponding Field Data Sheets, which will be signed and dated by the respective environmental technician prior to submission to the ETL for validation and endorsement at the end of the monitoring day.

2.5.2 Data Management and Analysis

All impact monitoring data will be processed by the AUES data recording and management system, which complies with in-house Quality (*ISO 9001:2000*) Management System. Monitoring results recorded in the monitoring equipment e.g. 1-hour TSP Meters and Noise Meters will be downloaded directly from the equipment at the end of the monitoring period and input into a computerized database maintained by the ET. Laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.

2.5.3 Quality Assurance Procedures

Appropriate and standard QA/QC measures will be adopted for the environmental monitoring to ensure the scientific integrity of the data produced. Sources of error in the impact monitoring will be properly controlled with the following QA/QC procedures:

- (a) Appropriate field monitoring and sampling techniques, including monitoring equipment, storage and delivery of samples;
- (b) Well organized systematic field-data system e.g. all baseline monitoring information, field observation, results, weather conditions and water sampling information, etc. will be recorded in the field monitoring record sheets. The laboratory analysis records will be maintained by the HOKLAS following HOKLAS requirements;
- (c) HOKLAS requirements for QA/QC of all laboratory testing to ensure acceptable accuracy and reproducibility of the laboratory analysis indicated by consistent agreement between duplicate samples, validity of the analytical results by compliance with the required blanks and recovery of standard addition.

2.5.4 Records

All impact monitoring data will be clearly and systematically documented in both hardware and software format and the software copy will be available for inspection upon request. All the document and data will be kept for at lest one year after completion of the Project. Field Data Sheets used to record the impact monitoring information, field observation, results, weather conditions and water sampling information, etc., will be properly maintained and kept by the ET. The copies of laboratory analysis records from ALS will be keep by the ET throughout the at least one year after completion of the EM&A program of the Project.

2.6 REPORTING

2.6.1 General Requirements for Report Submission

General requirements for Monthly EM&A report submission as stipulated in the EIA, EP and EM&A Manual are summarized below.

Report	Submission
Monthly EM&A Report	• Within 10 working days of the end of each reporting month.
Quarterly EM&A Summary	 No specific requirement, proposed three weeks after endorsement of
Report	the 3 rd monthly EM&A report within a particular quarter.
Final EM&A Summary	 No specific requirement, proposed one month upon completion of
Report	entire EM&A program

Table 2-6 Requirements for Report Submission

2.6.2 Cut-Off Day of the Reporting Month

It was agreed among the ER, IEC, CRBC, ET and EPD that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end day, the 25th of that month.

3 MONITORING RESULTS

The environmental monitoring results will be compared against the Action and Limit Levels established based on the baseline monitoring results and statutory criteria. In case the measured data exceed the environmental quality criteria, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*. The environmental monitoring results are tabulated below and the details of 24-hour TSP data and graphical plots of trends of monitored parameters at key stations over the past four Reporting Periods are presented in *Appendices G* and *H*.

- 3.1 AIR QUALITY
- 3.1.1 Action and Limit Levels

According to the Baseline Monitoring Report for KT13, the Action and Limit Levels for 24-hour and 1-hour TSP are established as follows:

Table 3-1-1	Air Quality Action and Limit Levels
-------------	-------------------------------------

Monitoring Station	Action Lev	/el (µg /m³)	Limit Level (μg/m ³)			
Womtoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP		
KT13(A1(a))	309	144	500	260		
KT13(A2)	307	141	500	260		

3.1.2 Results

Results of air quality monitoring at the identified locations during the Reporting Period are summarized in *Tables 3-1-2-1* and *3-1-2-2* below.

Table 3-1-2-1	Summary of Air	Quality Monitoring	g Results at KT13-A1(a)
---------------	----------------	---------------------------	-------------------------

	1-		24-hour TSP (μg/m³)				
Date	Start Time	1 st hour	st hour 2 nd hour 3 rd hour Average			Date	Results
26-Sep-11	14:15	74	81	78	78	29-Sep-11	14
3-Oct-11	15:00	51	57	52	53	4-Oct-11	49
8-Oct-11	13:00	206	224	218	216	10-Oct-11	57
14-Oct-11	13:30	61	66	67	65	15-Oct-11	60
Average 103 (range) (51 - 224)					Average (range)	45 (14-60)	

Table 3-1-2-2	Summary of Air	Quality Monitoring	Results at KT13-A2
---------------	----------------	---------------------------	--------------------

	1-	24-hour TSP (μg/m³)					
Date	Start Time	1 st hour	st hour 2 nd hour 3 rd hour Average				Results
26-Sep-11	14:28	68	72	76	72	29-Sep-11	20
3-Oct-11	15:15	41	41	45	42	4-Oct-11	59
8-Oct-11	13:21	230	249	270	250	10-Oct-11	37
14-Oct-11	13:48	57	57	52	55	15-Oct-11	48
Average 105						Average	41
(range) (41 - 270)						(range)	(20-59)

3.1.3 Discussion

As shown in **Tables 3-1-2-1** and **3-1-2-2**, 1-hour TSP and 24-hour TSP results fluctuated well below the Action Level. No exceedance of Action or Limit Levels was recorded during the Reporting Period. Neither Notification of Exceedance (hereinafter 'NOE') of air quality criteria or corrective action was required.

3.2 CONSTRUCTION NOISE

3.2.1 Action and Limit Levels

The Action and Limit Levels for construction noise are illustrated in Table 3-2-1.

Table 3-2-1 Construction Noise Action and Limit Levels

Time Period	Action Level in dB(A)	Limit Level in dB(A)
0700-1900 hours on normal weekdays	When one documented complaint is received	> 75* dB(A)

Note: *Reduces to 70dB(A) for schools and 65dB(A) during the school examination periods.

3.2.2 Results

Results of construction noise monitoring at the identified locations N1(a), N2(a) and N3 during the Reporting Period are summarized in *Tables 3-2-2-1* to *3-2-2-3*.

The baseline monitoring for N1(a) and N2(a) was performed on the 1st floor of the bedroom of 168-169 Kam Ho Road, Ma On Kong Village and No. 68 Ho Pui Village respectively. The impact noise monitoring, however, was performed on the ground floor of the same house due to denial of access to the 1st floor. The change of noise monitoring from 1st floor to ground floor will negate the need for a 3dB(A) façade correction but will not introduce any significant difference in detection and minimization of the of construction noise impacts, or alteration of the established A/L Levels. The ET has obtained the approval from EPD with consultation with the ER and IEC.

Table 3-2-2-1 Summary of Construction Noise Monitoring Results – N1(a)

Date	Start Time	1 st set Leq5	2 nd set Leq5	3 rd set Leq5	4 th set Leq5	5 th set Leq5	6 th set Leq5	Leq30
26-Sep-11	16:01	52.4	56.7	56.2	54.8	56.2	56.7	55.7
3-Oct-11	14:30	51.2	53.4	59.3	57.3	55.9	58.9	56.8
8-Oct-11	13:07	53.9	53.8	54.8	58.8	59.0	56.3	56.6
14-Oct-11	15:00	52.9	52.8	53.8	53.8	52.3	50.1	52.8
Limit Level								75

Table 3-2-2-2 Summary of Construction Noise Monitoring Results – N2(a)

Date	Start Time	1 st set Leq5	2 nd set Leq5	3 rd set Leq5	4 th set Leq5	5 th set Leq5	6 th set Leq5	Leq30
26-Sep-11	17:15	60.7	62.4	61.2	60.5	59.8	61.3	61.1
3-Oct-11	16:10	50.4	52.7	51.4	52.7	56.7	57.9	54.5
8-Oct-11	14:34	56.3	58.3	71.3	60.2	61.0	60.9	64.8
14-Oct-11	16:24	54.3	57.2	54.9	50.2	51.0	50.9	53.9
Limit Le	vel	-					75	

Table 3-2-2-3 Summary of Construction Noise Monitoring Results – N3

Date	Start Time	1 st set Leq5	2 nd set Leq5	3 rd set Leq5	4 th set Leq5	5 th set Leq5	6 th set Leq5	Leq30
26-Sep-11	16:40	59.7	61.2	60.3	58.7	59.4	60.7	60.1
3-Oct-11	15:17	53.5	52.4	55.2	52.6	57	58.4	55.4
8-Oct-11	13:53	53.8	53.6	61.4	55.3	59.7	58.7	58.1
14-Oct-11	15:46	54.8	54.6	57.3	58.7	58.7	53.8	56.8
Limit Le	vel	-						75

3.2.3 Discussion

It is confirmed that no raining during the course of noise monitoring as fulfill EM&A manual requirements. As shown in *Tables 3-2-2-1*, *Table 3-2-2-2* and *Table 3-2-2-3*, all the construction noise results fluctuated well below the Limit Level. No exceedance of Limit Level or documented construction complaint was recorded during the Reporting Period. No NOE or corrective action was therefore required.

3.3 WATER QUALITY

3.3.1 Action and Limit Levels

The Action and Limit Levels for water quality are illustrated in Table 3-3-1.

Table 3-3-1	Action and Limit Levels for Water Quality Monitoring
-------------	--

Monitoring	D (mg	-	Turbidity (NTU)		рН		SS (mg/L)		Ammonia (μg/L)		Zinc (μg/L)	
Location	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level
W1 (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W2 (Downstream) Impact Station	1.04	1.00	36.81	37.16	8.65	8.69	79.0	86.2	16.85	16.89	234.95	266.19
W3(a) (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W4 (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W5 (Upstream) Control Station	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
W6 (Downstream) Impact Station	0.93	0.91	27.88	30.02	8.7	8.7	73.40	78.68	51.62	54.56	191.90	201.58

3.3.2 Results

Water quality monitoring results measured at W1, W2, W3(a), W4, W5 and W6 during the Reporting Period are presented in tabulation and graphical plots in *Appendix G*.

3.3.2 Discussion

No exceedances of Action and Limit Levels were recorded during the Reporting Period. No Notifications of Environmental Quality Limit Exceedances (NOE) or corrective actions were therefore required for all parameters.

3.4 ECOLOGY

3.4.1 Action and Limit Levels

The Action and Limit Levels for Construction Ecology Monitoring are shown in *Table 3-4-1* to according with the EM&A manual.

Table 3-4-1 Ecological Action and Limit Levels

Parameters	Action Level	Limit Level
Decrease in number of breeding egrets since previous year	>20%	> 40%

3.4.2 Results

It is stated in the EP for Channel KT13 that the monitoring of the Ho Pui egretry shall be carried out during the period from 1st March to 31st August as specified in the EM&A Manual. If no egret nest is found at the egretry during the period from 1st March to 31st May, the Permit Holder can start the construction works within 100m of the ecological buffer area upon obtaining the Director's approval until February in the next year. If egret nests are found during the period from 1st March to 31st August, no construction shall take place within 100m of the ecological buffer area before 1st October.

Previously the monitoring during March to May 2011 did not record any nest in Ho Pui Egretry, and thus the construction works could be conducted within 100m of the ecological buffer area until February 2012. And the egretry monitoring frequency from

June to August this year can be downgraded to monthly. No nest was found at the Ho Pui egretry during these surveys. Even though, as there had been no nest recorded at Ho Pui egretry in 2009, 2010 and 2011, the action/limit level for ecology is complied. Egretry survey and flight line survey are not required in the monitoring survey.

No walk through survey was carried in the Reporting Period since the EM&A Programme ceased on 18 October 2011.

- 3.5 WASTE MANAGEMENT, CULTURAL HERITAGE AND LANDSCAPE & VISUAL
- 3.5.1 Waste Management

In order to comply with the waste management requirements, CRBC has been:

- (a) Assigned, since 9 Jan 2008, a Billing Account (account number 7006524) under the *Waste Disposal (Charges for Disposal of Construction Waste) Regulation;*
- (b) Issued a Discharge License No. 1U461/1 under Section 20 of the *Water Pollution Control Ordinance*;
- (c) Registered as a Chemical Waste Producer under the Waste Disposal (Chemical Waste) (General) Regulation (the Waste Producer Number assigned is WPN: 5611-531-C3124-28 dated 2 May 08); and
- (d) Granted by the Environmental Protection Department a Permit Issued under the *Dumping at Sea Ordinance* (Permit no. EP/I4D/08-095, dated 18 September 2008, permit validity period of six months from 18 September 2008 to 17 march 2009) for 18, 469 m³ sediment requiring Type 1 open sea disposal at East Sha Chau Contaminated Mud Disposal Site Pit IV b to be capped as directed by the management Team of the CEDD.
- 3.5.2 Cultural Heritage

The Action and Limit Levels for Cultural Heritage are shown in *Table 3-5-2* according to the EM&A Manual.

Table 3-5-2	Cultural Heritage Resources Action and Limit Levels
-------------	---

Action Level	Limit Level
When damage or structural instability is	Signs of deterioration and structural instability continues on
first detected	subsequent visits after Action Level is triggered

During the Reporting Period, there was no construction work conducted within 100m area from the cultural heritage site within KT13, and therefore no cultural heritage monitoring was required in accordance with the approved methodology.

3.5.3 Landscape and Visual

No Landscape and visual inspections were conducted in this Reporting Period.

- 4 NON-COMPLIANCE, COMPLAINT, NOTIFICATION OF SUMMONS, SUCCESSFUL PROSECUTION AND OTHERS
- 4.1 NON-COMPLIANCE

No non-compliance or deficiency was identified during regular site inspection and environmental audit. No associated remedial action was necessary.

- 4.2 ENVIRONMENTAL COMPLAINT No written or verbal complaint was received for each environmental issue during the Reporting Period. No associated remedial action was necessary.
- 4.3 NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTION No notifications of summons and successful prosecutions were recorded during the Reporting Period. No associated remedial action was necessary.
- 4.4 OTHERS
- 4.4.1 Waste Management Status

All types of waste arising from the construction work are classified into the following:

- Construction & Demolition (C&D) Material;
- Chemical Waste;
- General Refuse; and
- Excavated Soil and sediment

Waste generated, re-used, recycled and disposed of during the Reporting Period is shown in *Appendix H: Monthly Summary Waste Flow Table.* No Type I or Type II excavated soil were recorded in this Reporting Period.

4.4.2 Site Inspection and Environmental Audit

In this Reporting Period, **three** occasions of weekly environmental site inspection and audit were conducted during the Reporting Period jointly by the ER, EO and ET. No adverse environmental impacts were registered, indicating that the mitigation measures implemented were effective and sufficient for the construction activities undertaken. Minor deficiencies found in the site inspection and audit were in general rectified within the specified deadlines. Findings of the site inspection and environmental audit are summarized below.

Date	Findings / Deficiencies	Follow-Up Status
28 September 2011	No adverse environmental impact was observed during site inspection.	N.A.
6 October 2011	No adverse environmental impact was observed during site inspection.	N.A.
13 October 2011	No adverse environmental impact was observed during site inspection.	N.A.

Table 4-4-1 Summary of Findings of Site Inspection and Environmental Audit

4.4.3 Works to be Undertaken Next Month

Substantial completion of works for Channel KT13 had been certified by the Engineer's Representative on 30 May 2011 and the remaining work is completed.

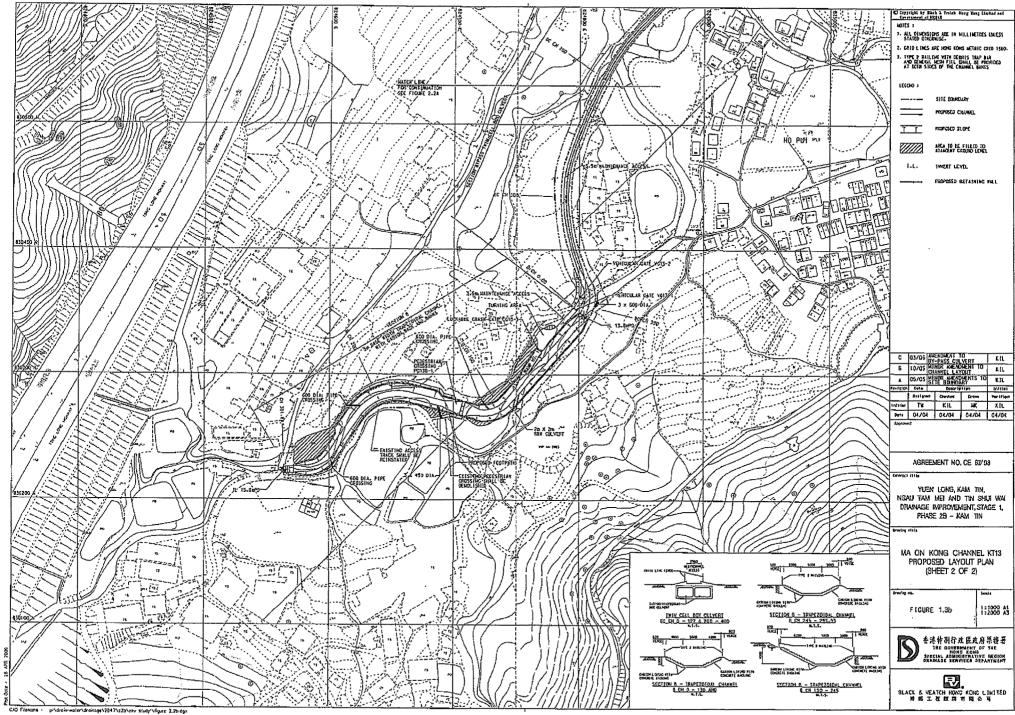
4.4.4 Future Key Issues and Mitigation Measures for the Forth-Coming Month

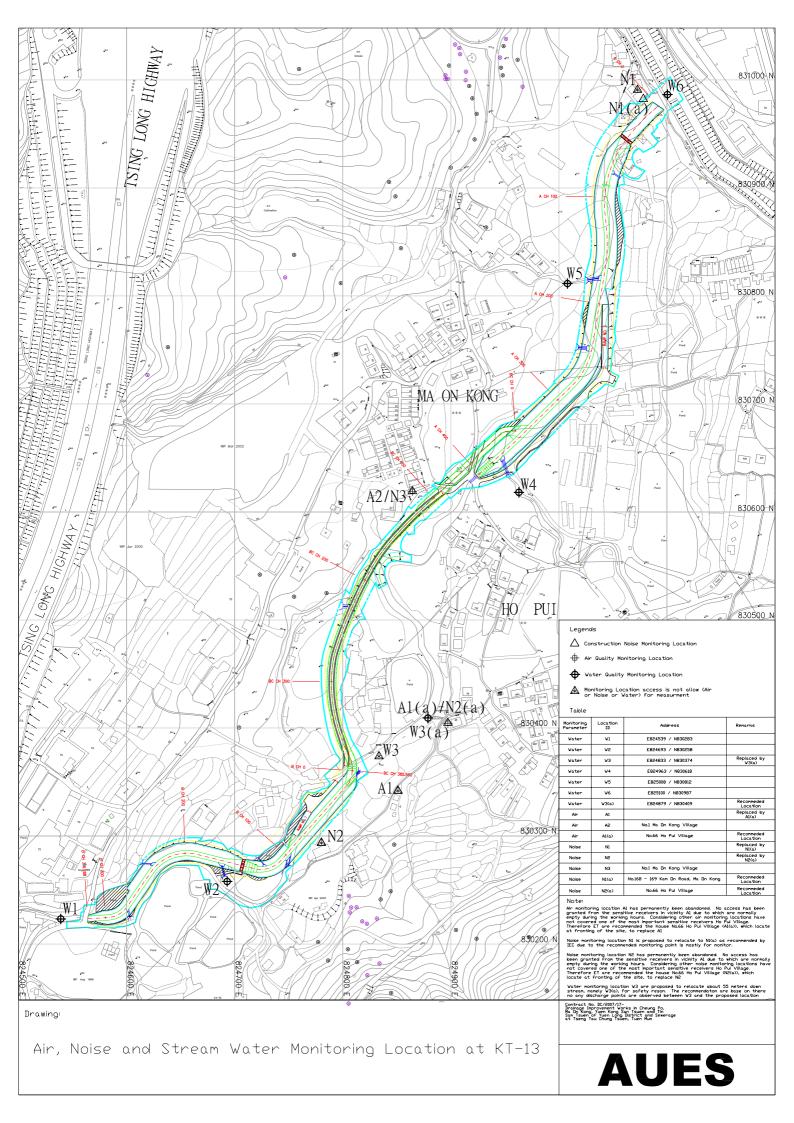
The Contractor should aware of environmental issues identified in the EM&A Manual and the mitigation measures recommended in the EIA and summarized in Mitigation Measure Implementation Schedule should be properly implemented during the maintenance period.

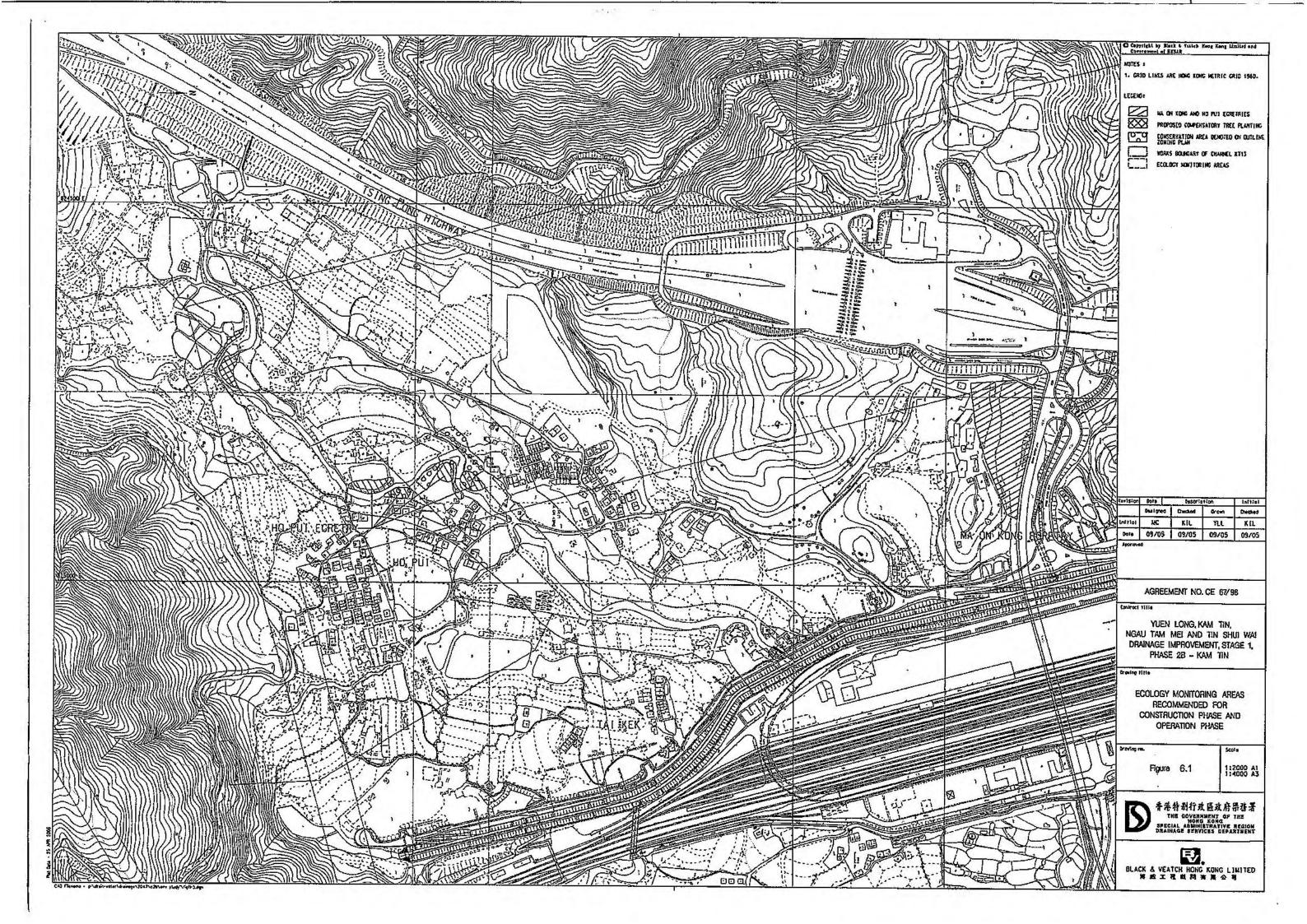
5 CONCLUSIONS AND RECOMMENDATIONS

- i) Substantial completion of works for Channel KT13 had been certified by the Engineer's Representative on 30 May 2011. In view of the progress of the remaining works and the associated environmental monitoring and audit results, in particular sustainable non-existence of documented environmental complaints and works related exceedances of environmental quality criteria, letter of termination of EM&A programme has been submitted to EPD on 18 October 2011 and the monitoring work was ceased at the same day.
- ii) This is the 37th Monthly EM&A Report for the Channel KT13, covering the construction period from 26 September to 18 October 2011.
- iii) Monitoring results of the Reporting Period demonstrated no exceedances of environmental quality criteria for air quality, construction noise and water quality.
- iv) During the Reporting Period, there was no construction work conducted within 100m of the cultural heritage site at KT13. Therefore, no cultural heritage monitoring was required in accordance with the approved methodology.
- v) No Landscape inspections and ecology monitoring were conducted on in this Reporting Period
- vi) To control the site performance on waste management, the Contractor shall ensure that all solid and liquid waste management works are fully in compliance with the relevant license/permit requirements, such as the effluent discharge licence and the chemical waste producer registration. CRBC is also reminded to implement the recommended environmental mitigation measures according to the Project Environmental Monitoring and Audit Manual.
- vii) No documented complaints, notifications of summons or successful prosecutions were received during the Reporting Period. No adverse environmental impacts were observed during the weekly site inspection and environmental audit of the Reporting Period, which suggested that the implemented mitigation measures for air quality, construction noise and ecology were effective. Minor deficiencies found in the weekly site inspection were in general rectified within the specified deadlines. The environmental performance of the Project was therefore considered satisfactory.
- viii) The Contractor should aware of environmental issues identified in the EM&A Manual and the mitigation measures recommended in the EIA and summarized in Mitigation Measure Implementation Schedule should be properly implemented during the maintenance period.

END OF TEXT



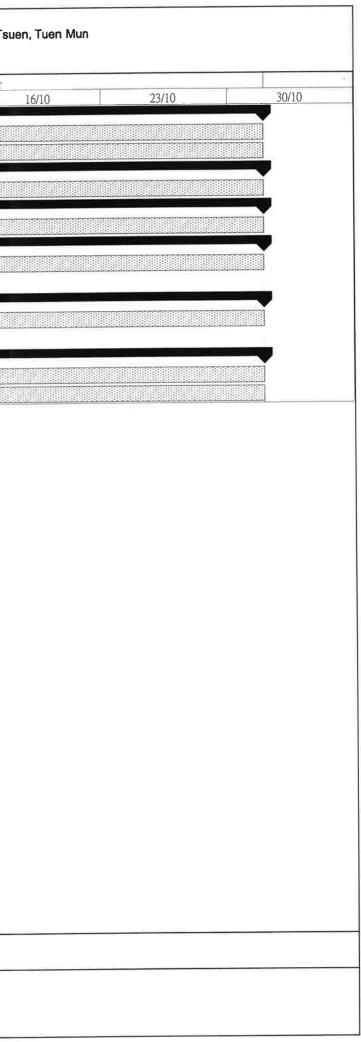

Appendix A


Location Plan and

Environmental Monitoring Locations

Under the Project

Appendix B

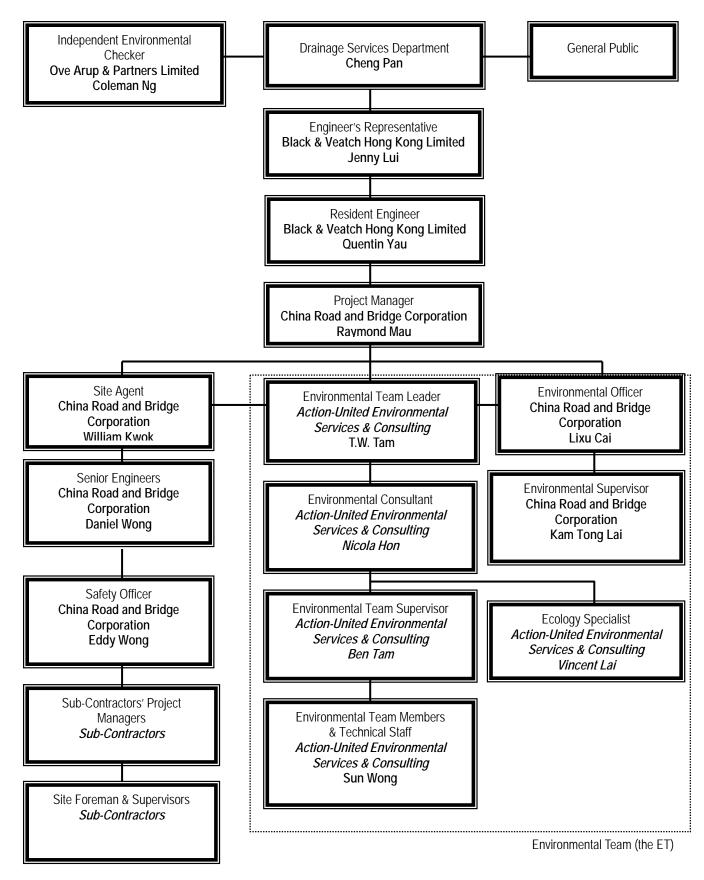

Construction Program

Contract No. : DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Monthly Roll	ing Programme	- October 2011
Monthly Roll	ing Programme	- October 2011

ID	Task Name	Duration	Start	Finish					October
					25/9		2/10	9/10	[
1	Section II (Channel KT13)	26 days	Sat 1/10/11	Mon 31/10/11					
2	Regular Environmental Impact Monitoring	26 days	Sat 1/10/11	Mon 31/10/11					
3	Regular Tree Survey & Protection	26 days	Sat 1/10/11	Mon 31/10/11					
4	Section A	26 days	Sat 1/10/11	Mon 31/10/11					
5	Remedial Works	26 days	Sat 1/10/11	Mon 31/10/11					
6	Section of Box Culvert	26 days	Sat 1/10/11	Mon 31/10/11					
7	Remedial Works	26 days	Sat 1/10/11	Mon 31/10/11					
8	Section B	26 days	Sat 1/10/11	Mon 31/10/11		-			
9	Remedial Works	26 days	Sat 1/10/11	Mon 31/10/11					
10						4			
11	Section V	26 days	Sat 1/10/11	Mon 31/10/11					
12	Preservation and Protection of Tree for Section II	26 days	Sat 1/10/11	Mon 31/10/11					
13									
14	Section VI	26 days	Sat 1/10/11	Mon 31/10/11			•		
15	Replacement & Rehabilitation Works for Existing Sewerage at Leung Tin Tsuen	26 days	Sat 1/10/11	Mon 31/10/11					
16	Installation of uPVC Caps at Tapping Sewers at Tseng Tau Chung Tsuen	26 days	Sat 1/10/11	Mon 31/10/11					

Task	Split	 Progress		Milestone •	Summary	
		_	Page 1	of 1		


Appendix C

Environmental Management Organization and

Contacts of Key Personnel

DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun. EM&A Report - Appendix

AUES

Environmental Management Organization

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.	
DSD	Employer	Mr. Cheng Pan	2594-7264	2827-8526	
B&V	Engineer's Representative	Ms. Jenny Lui	2478-9161	2478-9369	
B&V	Resident Engineer	Mr. Quentin Yau	2478-9161	2478-9369	
OAP	Independent Environmental Checker	Mr. Coleman Ng	2268-3097	2268-3950	
CRBC	Project Director	Mr. Wang Yanhua	2283-1688	2283-1689	
CRBC	C Project Manager Mr. Raymond Mau		9048-3669	2283-1689	
CRBC	Site Agent	Mr. William Kwok	2478-9618	2478-9612	
CRBC	Senior Engineer (Tuen Mun Site)	Mr. Daniel Wong	9858-3176	2478-9612	
CRBC	Environmental Officer	Mr. Lixu Cai	6474-6975	2478-9612	
CRBC	Environmental / Construction Supervisor	Mr. Kam Tong Lai	2478-9618	2478-9612	
CRBC	Safety Officer	Mr. Eddy Wong	2478-9618	2478-9612	
AUES	Environmental Team Leader	Mr. T.W. Tam	2959-6059	2959-6079	
AUES	Environmental Consultant	Miss Nicola Hon	2959-6059	2959-6079	
AUES	Environmental Site Inspector	Mr. Ben Tam	2959-6059	2959-6079	
AUES	Ecologist	Mr. Vincent Lai	2959-6059	2959-6079	

Contact Details of Key Personnel

Legend: DSD(Employer) – Drainage Services Department B&V (Engineer) – Black & Veatch Hong Kong Limited CRBC (Main Contractor) – China Road and Bridge Corporation OAP(IEC) – Ove Arup & Partners Ltd AUES (ET) – Action-United Environmental Services & Consulting

Appendix D

- (a) Monitoring Schedules
 - (b) Meteorological Data

Date		Air (Juality	Noise Leq 30min	Water Quality	Ecology Surveys
		1-hour TSP	24-hour TSP			
Mon	26-Sep-11	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Tue	27-Sep-11					
Wed	28-Sep-11				W1,W2, W3(a), W4, W5 & W6	
Thu	29-Sep-11		A1(a), A2			
Fri	30-Sep-11				W1,W2, W3(a), W4, W5 & W6	
Sat	1-Oct-11					
Sun	2-Oct-11					
Mon	3-Oct-11	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Tue	4-Oct-11		A1(a), A2			
Wed	5-Oct-11					
Thu	6-Oct-11				W1,W2, W3(a), W4, W5 & W6	
Fri	7-Oct-11					
Sat	8-Oct-11	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Sun	9-Oct-11					
Mon	10-Oct-11		A1(a), A2		W1,W2, W3(a), W4, W5 & W6	
Tue	11-Oct-11					
Wed	12-Oct-11				W1,W2, W3(a), W4, W5 & W6	
Thu	13-Oct-11					
Fri	14-Oct-11	A1(a), A2		N1(a), N2(a) & N3	W1,W2, W3(a), W4, W5 & W6	
Sat	15-Oct-11		A1(a), A2			
Sun	16-Oct-11					
Mon	17-Oct-11					
Tue	18-Oct-11				W1,W2, W3(a), W4, W5 & W6	

Monitoring Schedule for KT 13 for Reporting Period – October 2011

Cultural Heritage

<u>Frequency</u>: Condition survey – Bi-monthly Settlement monitoring – Bi-weekly

Landscape & Visual

Frequency:	Bi-weekly
	Monitoring Day

	Monitoring Day
	Sunday or Public Holiday

				Lau	Fau Sha	n Weather	Station
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction
26-Sep-11	Mon	Mainly cloudy with occasional showers.	0.2	27.7	11	71	Е
27-Sep-11	Tue	Moderate to fresh east to northeasterly winds	Trace	28.9	10.6	72.5	E/NE
28-Sep-11	Wed	A few squally showers	2.5	28.7	14.6	71	NE
29-Sep-11	Thu	NO. 8 SOUTHWEST GALE OR STORM SIGNAL	30.8	26.3	26	85	SE
30-Sep-11	Fri	Mainly cloudy with occasional showers.	2.7	28.6	14.2	77	E/SE
1-Oct-11	Sat	holiday					
2-Oct-11	Sun	STANDBY SIGNAL NO. 1	3.3	25.7	21.5	80.5	NE
3-Oct-11	Mon	The Strong Wind Signal, No. 3	1.6	22.2	28.2	77.5	NE
4-Oct-11	Tue	Fresh northeasterly winds	Trace	22.3	15.7	79.5	NE
5-Oct-11	Wed	Moderate northeasterly winds	0.1	23.5	12.1	75	NE
6-Oct-11	Thu	Mainly cloudy with one or two light rain patches.	0.1	24.5	11.3	75.5	E/NE
7-Oct-11	Fri	Mainly cloudy.	Trace	26	8	76.5	E/NE
8-Oct-11	Sat	Mainly cloudy	Trace	26.3	7.1	74	E/NE
9-Oct-11	Sun	Mainly cloudy	0	27.4	10.5	67.5	N/NE
10-Oct-11	Mon	Moderate to fresh east to northeasterly winds.	5.3	27.3	11.4	78.5	Е
11-Oct-11	Tue	Mainly fine and dry.	6.9	24.8	15.7	92	Е
12-Oct-11	Wed	Light to moderate easterly winds.	105.8	24.5	12.5	94	Е
13-Oct-11	Thu	rainy	30.7	27.2	11.2	82.2	Е
14-Oct-11	Fri	Moderate east to northeasterly winds	3.8	25.9	10	84	Е
15-Oct-11	Sat	mainly fine	0	25.2	11.5	63	E/NE
16-Oct-11	Sun	Mainly fine and dry.	0	24.6	8	71	Е
17-Oct-11	Mon	mainly fine	0	25.2	10.1	61.2	E/NE
18-Oct-11	Tue	Mainly fine and dry.	0	24.3	9	65.5	E/NE

Meteorological Data Extracted from HKO during the Reporting Period

Appendix E

Calibration Certificates and

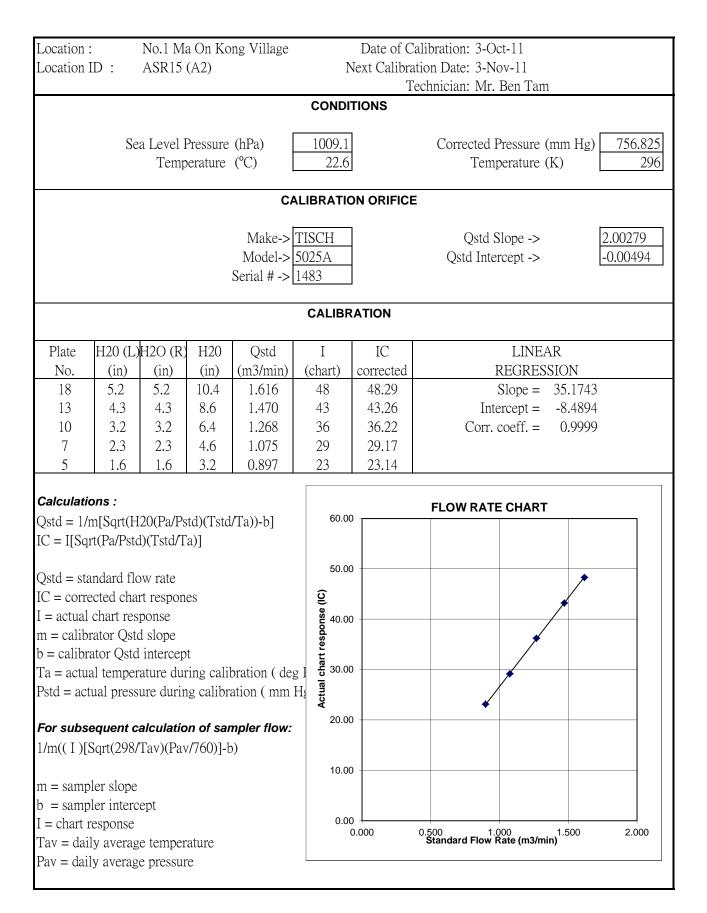
HOKLAS-Accreditation Certificate

Equipment Calibration List for Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Item	Issue	Description of Equipment	Date of Calibration	Date of Next Calibration
1 (3)		Tisch Calibration Kit Model TE-5025A (Serial No. 1941)	2 Jun 11	2 Jun 12
2 ⁽⁴⁾		TSP Sampler Calibration Spreadsheet for KT13-A1a	1 Aug 11	1 Oct 11
2a ^(*)	Air	TSP Sampler Calibration Spreadsheet for KT13-A1a	3 Oct 11	3 Dec 11
3(4)		TSP Sampler Calibration Spreadsheet for KT13-A2	1 Aug 11	1 Oct 11
3a ^(*)		TSP Sampler Calibration Spreadsheet for KT13-A2	3 Oct 11	3 Dec 11
4 ⁽²⁾		TSI DustTrak Model 8520 (Serial No. 21060)	27 Jan 11	27 Jan 12
5 (2)	Noise	Bruel & Kjaer Integrating Sound Level Meter 2238 (Serial No. 2285721)	19 Apr 11	19 Apr 12
6 ⁽²⁾		Bruel & Kjaer Acoustical Calibrator 4231 (Serial No. 2713428)	19 Apr 11	19 Apr 12
7 (1)		YSI 550A (Serial No. 97F0837AM)	18 Jul 11	18 Oct 11
8 (1)		Extech pH Meter EC500 (Work Order: HK1116556)	18 Jul 11	18 Oct 11
9 ⁽⁵⁾		Turbidimeter HACH 2100q (Serial No.950900008735)	6 Sep 11	6 Dec 11
10 ⁽¹⁾		Hand Refractometer ATAGO EQ114 (Serial No. 289468)	18 Jul 11	18 Oct 11

Note: * Calibration certificates will only provide when monitoring equipment is re-calibrate or new.

⁽¹⁾ The calibration certificates could be referred to the previous EM&A monthly report – July 2011


⁽²⁾ The calibration certificates could be referred to the previous EM&A monthly report – May 2011

⁽³⁾ The calibration certificates could be referred to the previous EM&A monthly report – June 2011

⁽⁴⁾ The calibration certificates could be referred to the previous EM&A monthly report – August 2011

⁽⁵⁾ The calibration certificates could be referred to the previous EM&A monthly report – September 2011

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Location I		No.68 H ASR14 (illage	Date of Calibration: 3-Oct-11 Next Calibration Date: 3-Dec-11 Technician: Mr. Ben Tam CONDITIONS							
					CO)NDI	TIONS					
	Se	ea Level I Temp	Pressure perature		100)9.1 22.6		Corrected Press Tempera		756.825		
				C	ALIBR	ATIC						
				Make-> Model-> Serial # ->	5025A			Qstd Slop Qstd Intercep		2.00279 -0.00494		
					CA	LIBR	ATION					
Plate No.	(in)	H2O (R) (in)	(in)	Qstd (m3/min)	I (char	-	IC corrected	REG	LINEAR GRESSION			
18 13 10 7 5	5.3 4.5 3.3 2.4 1.5	5.3 4.5 3.3 2.4 1.5	10.6 9.0 6.6 4.8 3	1.631 1.503 1.288 1.099 0.869	48 43 35 28 20		48.29 43.26 35.21 28.17 20.12	Slor Interce Corr. coef	-	56		
	n[Sqrt(H2 t(Pa/Pstd ndard flo cted char chart resp ator Qstd tor Qstd l tempera ial pressu)(Tstd/Ta w rate t respone oonse slope intercept ature during alculation	n)] es g calibra n of sam	ration (deg tion (mm H apler flow:	al chart response	60.00 50.00 40.00 30.00)	FLOW RATE C	CHART	▶		
m = sampl b = sampl I = chart m Tav = dail Pav = dail	er interce esponse y average	e tempera				0.00		0.500 1.000 Standard Flow Rate	1.500 e (m3/min)	2.000		

Appendix F

Event and Action Plan

Action-United Environmental Services and Consulting

DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun. EM&A Report - Appendix

H
F
ē
/ent/
1
-
ctior
ē
n
P
la
b
f
0r
Į.
-
Q
ñ
E
ij.
Y

٦	EVENT		ACTION		
		Contractor's ET leader	IEC	ER	Contractor
Ą	ACTION LEVEL				
<u></u>	Exceedance for one	1. Identify source	1. Check monitoring data submitted by	1. Notify Contractor	1. Rectify any unacceptable
	sample		Contractor's ET leader		practice
		 Repeat measurement to confirm findings Increase monitoring frequency to daily 	2. Check Contractor's working method		2. Amend working methods if appropriate
2.	Exceedance for two	1. Identify source	1. Checking monitoring data submitted	1. Confirm receipt of notification	1. Submit proposals for remedial
	or more consec				
	samples				working days of notification
			3. Discuss with Contractor's ET leader	3. Ensure remedial measures	2. Implement the agreed
			and Contractor on possible remedial	properly implemented	
		remedial actions required	measures		3. Amend proposal if appropriate
		6. If exceedance continue, arrange meeting	4. Advise the ER on the effectiveness of		
		with IEC, ER and Contractor	the proposed remedial measures		
		7. If exceedance stops, cease additional	5. Supervise implementation of remedial		
-					
· [-		-
-			L. Check monitoring data submitted by	i. Confirm receipt of notification	
	sampie				
		Kepeat measurement to confirm findings Increase monitoring frequency to daily	Check Contractor's Working method Discuss with Contractor's FT leader	2. Notify Contractor 3. Ensure remedial measures	 Submit proposals for remediat actions to IFC and FR within 3
				properly implemented	working days of notification
		actions and kept IEC, EPD and ER informed	measures		3. Implement the agreed
		of the results	4. Advise the ER on the effectiveness of		proposals
					4. Amend proposal if appropriate
			5. Audit implementation of remedial		
,	,				
2.	Exceedance for two	1. Notify IEC, ER, Contractor and EPD	1. Discuss amongst ER, Contractor's ET	1. Confirm receipt of notification	1. Take immediate action to avoid
	or more consecutive		leader and Contractor on the potential		
	samples	3. Repeat measurement to confirm findings		2. Notify Contractor	2. Submit proposals for remedial
		Increase monitoring frequency to daily	2. Review Contractor's remedial actions		actions to IEC and ER within 3
		5. Carry out analysis of Contractor's working	whenever necessary to assure their	with the Contractor on the	working days of notification
		procedures to determine possible mitigation	effectiveness and advise the ER	remedial measures to be	3. Implement the agreed
		to be implemented	accordingly	implemented	proposals
		6. Arrange meeting with IEC, Contractor and	3. Audit the implementation of remedial	Ensure remedial measures	Resubmit proposals if problem
		ER to discuss the remedial actions to be	measures	properly implemented	still not under control
		taken		5. If exceedance continues,	5. Stop the relevant portion of
		7. Assess effectiveness of Contractor's remedial		cons	
				work is responsible and instruct	until the exceedance is abate.
		of the results		the Contractor to stop that	
		8. If exceedance stops, cease additional		portion of work until the	
				exceedance is abated.	

Action-United Environmental Services and Consulting

DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun. EM&A Report - Appendix

		Event and Action Plan for Water	n for Water Quality	
Event	ET Leader	IEC	ER	Contractor
Action level	Repeat in-site measurement to confirm findings;	Discuss with ET and Contractor	Discuss with IEC on the proposed mitigation	Inform the ER and confirm notification of the
being	Identify Source(s) of impact;	on the mitigation measures	measures;	non-compliance in writing;
exceeded by	Inform IEC an Contractor;	Review proposals on mitigation	eme	Rectify unacceptable practice;
one sampling	Check monitoring data, all plant, equipment and	measures submitted by	be implemented;	Check al plant and equipment;
uay	Discuss mitigation measures with IEC and	contractor and advise the ER		Discuss with ET and IEC and propose mitigation
	Contractor;	Assess the effectiveness of the		measures to IEC and ER;
	Repeat measurement on next day of exceedance	implemented mitigation measures.		Implement the agreed mitigation measures.
Action level	Repeat in-situ measurement to confirm findings;	Discuss with ET and Contractor	Discuss with IEC on the proposed mitigation	Inform the Engineer and confirm notification of
being	Identify source(s) of impact;	on the mitigation measures	measures;	the non-compliance in writing;
exceeded by	Inform IEC and Contractor;	Review proposals on mitigation	Made agreement on the mitigation measures to	Rectify unacceptable practice;
more than	Check monitoring data, all plant, equipment and Contractor's working methods:	measures submitted by Contractor and advise the FR	be implemented; Assess the effectiveness of the implemented	Check all plant and equipment; Consider changes of working methods:
consecutive	Discuss mitigation measures with IEC and	accordingly	mitigation measures.	Discuss with ET and IEC and propose mitigation
sampling days	Contractor;	Assess the effectiveness of the		measures to IEC and ER within 3 working days;
	Ensure mitigation measures are implemented;	implemented mitigation		Implement the agreed mitigation measures.
	daily;			
	Repeat measurement on next day of exceedance.			
Limit level	Repeat in-situ measurement to confirm findings;	Discuss with ET and Contractor	Discuss with IEC, ET and Contractor on the	Inform the Engineer and confirm notification of
being	Identify source(s) of impact;	on the mitigation measures	proposed mitigation measures;	Bootify imageopaticle prosting;
one sampling	Check monitoring data, all plant, equipment and	measures submitted by	methods:	Check all plant and equipment:
day	Contractor's working methods;	Contractor and advise the R	Made agreement on the mitigation measures to	consider changes of working methods;
	Discuss mitigation measures with IEC, ER and	accordingly	be implemented;	Discuss with ET, IEC and ER and propose
	Contractor;	Assess the effectiveness of the	Assess the effectiveness of the implemented	mitigation measures to IEC and ER within 3
	Ensure mitigation measures are implemented;	implemented mitigation	mitigation measures.	working days;
	Increase the monitoring frequency to daily until no exceedance of Limit level.	measures.		Implement the agreed mitigation measures/
Limit level	Repeat in-situ measurement to confirm fundings;	Discuss with ET and Contractor	Discuss with IEC, ET and Contractor on the	Inform the ER and confirm notification of the
being	Identify source(s) of impact;	on the mitigation measures	proposed mitigation measures;	non-compliance in writing;
exceeded by	Inform IEC, contractor and EPU;	Review proposals on mitigation	Request Contractor to critically review the	Rectify unacceptable practice;
more than	Contractor's working methods:	Contractor and advise the FR	Make agreement on the mitigation measures to	Consider changes of working methods:
consecutive	Discuss mitigation measures with IEC, ER and	accordingly	be implemented;	Discuss with ET, IEC and ER and propose
sampling days	Contractor;	Assess the effectiveness of the	Assess the effectiveness of the implemented	mitigation measures to IEC and ER within 3
	Ensure mitigation measures are implemented;	implemented mitigation	mitigation measures;	working days;
	Increase the Monitoring frequency to daily until no	measures.	Consider and instruct, if necessary, the	Implement the agreed mitigation measures;
	exceedance of Limit level for two consecutive days.		Contractor to slow down or to stop all or part of	As directed by the Engineer, to slow down or to
			level.	activities.

EVENT		ACTIC	N	
EVENT	CONTRACTOR'S ET LEADER	IEC	ER	Contractor
Action Level	 Notify IEC, Contractor and ER Carry out investigation Report the results of investigation to the IEC, Contractor and ER Discuss with the Contractor and formulate remedial measures Double monitoring frequency Check compliance to Action/Limit Levels after application of mitigation measures 	 Review the analysed results submitted by the Contract's ET leader Review the proposed remedial measures by the Contractor and advise the ER accordingly Review the implementation of remedial measures 	 Confirm receipt of notification of complaint in writing Notify Contractor Require Contractor to propose remedial measures for the analysed noise problem Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to ER and IEC Implement noise mitigation proposals
Limit Level	 Notify IEC, ER, EPD and Contractor Identify Source Repeat measurement to confirm findings Increase monitoring frequency Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Inform IEC, ER and EPD the causes & actions taken for the exceedances Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring 	 Discuss amongst ER, Contractor's ET leader and Contractor on the potential remedial actions Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly Audit the implementation of remedial measures 	 Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analysed noise problem Ensure remedial measures are properly implemented If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated

Event/Action Plan for Construction Noise Monitoring

	ACTION			
EVENT	ET Leader	IEC	Engineer	Contractor
ACTION LEVEL REACHED	 Carry out investigation Review results and assess whether amendment to action level is appropriate Report the results of investigation to the IEC Notify Contractor and Engineer Discuss with the Contractor and formulate remedial measures Repeat survey to confirm results 	 Review the analysed results submitted by ET Review the proposed remedial measures by the Contractor and advice the Engineer accordingly Supervise implementation of remedial measures 	 Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analysed problem Ensure remedial measures properly implemented 	 Take immediate action to avoid further problem Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control
LIMIT LEVEL REACHED	 Carry out investigation Review results and assess whether amendment to limit level is appropriate Report the results of investigation to the IEC Notify Contractor and Engineer Discuss with the Contractor and formulate remedial measures Repeat survey to confirm results 	 Review the analysed results submitted by ET Review the proposed remedial measures by the Contractor and advice the Engineer accordingly Supervise implementation of remedial measures 	 Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analysed problem Ensure remedial measures properly implemented Issue instruction to stop the relevant portion of the works until the problem is abated (construction period only). 	 Take immediate action to avoid further problem Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the Engineer until the problem is abated (construction period only)

Event/Action Plan for Ecology

EVENT		ACT	FION				
EVENI	ET Leader	IEC	ER	Contractor			
Action Level	Notify IEC and Contractor to carry out investigation Report reasons of structural damage or instability to the IEC and Contractor Discuss with the Contractor and formulate remedial measures Increase monitoring frequency to once per week to check mitigation	Review report of structural damage or instability by the ET. Review proposed remedial measures by the Contractor and advise the ER and Antiquities and Monuments Office (AMO) accordingly Supervise the implementation of remedial measures, with approval	Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures and to notify and seek approval from AMO. Ensure remedial measures are properly implemented.	Notify AMO concerning the damage or structural instability of the cultural heritage resources Submit proposals for repair of damage to cultural heritage resources to AMO for approval and to implement approved measures.			
Limit Level	Notify IEC and Contractor to carry out investigation and to stop construction work within 100m of cultural heritage resource to avoid further impact until AMO are satisfied that the relevant structure has been repaired or stabilized to an acceptable level. Report reasons of continued structural damage or instability to the IEC and Contractor Discuss with the Contractor and formulate remedial measures Increase monitoring frequency to daily to check mitigation effectiveness	from AMO. Review report of structural damage or instability by the ET. Review proposed remedial measures by the Contractor and advise the ER and Antiquities and Monuments Office (AMO) accordingly. Supervise the implementation of remedial measures, with approval from AMO.	Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures and to notify and seek approval from AMO. Ensure remedial measures are properly implemented.	To carry out investigation and to stop construction work within 100m of cultural heritage resource to avoid further impact until AMO are satisfied that the relevant structure has been repaired or stabilized to an acceptable level. Propose remedial measures for the repair and stabilization of cultural heritage resources, up to liaison of moving and rebuilding the relevant structure with the approval of owner (usually the clan members) and AMO.			

Event and Action Plan for Cultural Heritage

Action Level	Environmental Team Leader (ETL)	Independent Evnironmental Checker (IEC)	Engineer's Representative (ER)	Contractor
Non-conformity on one occasion	 Identify source Inform the IEC and the ER Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed 	 Check report Check the Contractor's working method Discuss with the ER and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures 	 Notify the Contractor Ensure remedial measures are properly implemented 	 Amend working methods Rectify damage and undertake remedial measures or any necessary replacement
Repeated Non-conformity	 Identify source Inform the IEC and the ER Increase monitoring (site audit) frequency Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed If exceedance stops, cease additional 	 Check report Check the Contractor's working method Discuss with the ER and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures Supervise implementation of remedial measures 	 Notify the Contractor Ensure remedial measures are properly implemented 	 Amend working methods Rectify damage and undertake remedial measures or any necessary replacement

Event and Action Plan for Landscape and Visual Impact - Construction Phase

monitoring (site audit)

Appendix G

- (a) Impact Environmental Monitoring Data
- (b) Graphic Plot of Monitoring
 - 1. Construction Noise
 - 2. Air Quality
 - 3. Water Quality

DSD Contract No. DC/2007/17 -

	ainage Impr	ovement wo	rks in Cheu	ng Po, Ma O	n Kong, Yuei Su				en of Yuen Lo g Results - Ki		and Sewerag	je at Tseng '	Tau Chung T	suen, Tuen I	Mun	ŀ	AUE	3
Date	26-S	ep-11																
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DOS	(%)	Turbidit	y (NTU)	p	н	S	s	Ammo	onia N	Z	inc
W1	14:13	0.10	27.1 26.7	26.9	3.27 4.16	3.7	45.9 55.1	50.5	4.6 4.5	4.6	7.8 7.7	7.8	3	3.0	1.05 1.05	1.05	11 11	11.0
W2	14:21	0.10	26.8	26.8	3.84	4.3	51.7	56.5	3.2	3.3	7.8	7.8	5	5.0	0.1	0.10	12	12.0
W3	14:27	0.10	26.8 26.9	27.1	4.81 4.03	4.1	61.2 53.5	54.5	3.4 3.3	2.9	7.7 7.8	7.8	5 14	14.0	0.1	1.22	12 11	- 11.0
W4			27.2 26.7		4.22 5.41	5.0	55.4 67.2		2.6 3.5		7.7	7.6	14 5	5.0	1.22 0.94	0.94	11 12	
	14:43	0.10	26.9 27.4	26.8	4.63 5.81		59.1 61.3	63.2	5.0 7.0	4.3	7.5		5 44		0.94 20.1		12 133	12.0
W5	15:02	0.10	27.1 27.2	27.3	4.07	4.9	53.8 56.1	57.6	10.3	8.6	7.8	7.9	44	44.0	20.1 23.9	20.10	133 160	133.0
W6	15:17	0.10	27.2	27.3	4.18	4.3	55.2	55.7	8.1	8.8	7.5	7.6	58	58.0	23.9	23.90	160	160.0
Date	20 5	ep-11																
Location	Time	Depth (m)	Temr	o (oC)	DO (r	ng/L)	DOS	(%)	Turbidit	y (NTU)	n	н	S	s	Ammo	nnia N	7	inc
			26.5		3.06		49.8	1 · ·	26.4		7.45		4		2.19		74	
W1	13:09	0.15	26.5	26.5	3.11 3.16	3.1	5.6	27.7	25.3	25.9	7.36	7.4	4 3	4.0	2.19	2.19	74	74.0
W2	13:16	0.20	26.2 26.2	26.2	3.28	3.2	51.6	51.3	21.2 20.8	21.0	7.38	7.4	3	3.0	1.82 1.82	1.82	66 66	66.0
W3	13:28	0.15	26.3 26.3	26.3	5.12 5.08	5.1	61.2 60.9	61.1	39.4 38.2	38.8	7.42	7.4	13 13	13.0	4.61 4.61	4.61	78 78	78.0
W4	13:36	0.20	26.3 26.3	26.3	2.98	2.9	47.9 47.3	47.6	19.8 19.4	19.6	7.35	7.3	3	3.0	1.74	1.74	71	71.0
W5	13:43	0.20	26.3 26.3	26.3	5.3 5.36	5.3	62.0 62.9	62.5	27.6 27.4	27.5	7.28 7.19	7.2	19 19	19.0	4.83 4.83	4.83	76 76	76.0
W6	13:58	0.15	26.3 26.3	26.3	4.69	4.6	55.9 56.8	56.4	24.9	24.8	7.32	7.3	28	28.0	9.63	9.63	139 139	139.0
		1	20.3		4.50		50.0		24.0		1.27		20		7.03		137	
Date	30-S	ep-11																
Location	Time	Depth (m)		o (oC)	D0 (r	ng/L)		(%)	Turbidit	y (NTU)		Н	S	S	Ammo	onia N		inc
W1	10.54		26.4		3.08						7.42	7.4	<2		0.69		60	60.0
	10:54	0.15	26.4	26.4	3.01	3.0	49.2 48.4	48.8	19.7 18.6	19.2	7.38	7.4	<2	2.0	0.69	0.69	60	00.0
W2	10:54	0.15		26.4 26.4		3.0 3.4		48.8 50.8		19.2 18.8		7.2	<2 3 3	2.0 3.0	0.69 1.61	0.69	60 85	85.0
W2 W3			26.4 26.4 26.4 26.4		3.01 3.44 3.3 4.17		48.4 51.3 50.2 53.2		18.6 19.3 18.2 21.4		7.38 7.26 7.19 7.17		3 3 19		0.69 1.61 1.61 7.04		60 85 85 83	
	10:59	0.20	26.4 26.4 26.4 26.4 26.4 26.4 26.4	26.4	3.01 3.44 3.3 4.17 4.29 4.69	3.4	48.4 51.3 50.2 53.2 53.9 53.2	50.8	18.6 19.3 18.2 21.4 21.1 19.3	18.8	7.38 7.26 7.19 7.17 7.04 7.49	7.2	3 3 19 19 6	3.0	0.69 1.61 1.61 7.04 7.04 2.53	1.61	60 85 85 83 83 72	- 85.0
W3	10:59 11:09	0.20	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	26.4	3.01 3.44 3.3 4.17 4.29 4.69 4.58 5.31	3.4 4.2	48.4 51.3 50.2 53.2 53.9 53.2 53.2 56.8 62.1	50.8 53.6	18.6 19.3 18.2 21.4 21.1 19.3 17.6 28.8	18.8 21.3	7.38 7.26 7.19 7.17 7.04 7.49 7.38 7.52	7.2	3 3 19 19 6 6 6 22	3.0 19.0	0.69 1.61 1.61 7.04 7.04 2.53 2.53 8.18	1.61 7.04	60 85 83 83 72 72 72 116	- 85.0 - 83.0
W3 W4 W5	10:59 11:09 11:12 11:23	0.20 0.15 0.20 0.15	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	- 26.4 - 26.4 - 26.4 - 26.4	3.01 3.44 3.3 4.17 4.29 4.69 4.58 5.31 5.37 5.16	3.4 4.2 4.6 5.3	48.4 51.3 50.2 53.2 53.9 53.2 56.8 62.1 62.9 61.7	- 50.8 - 53.6 - 55.0 - 62.5	18.6 19.3 18.2 21.4 21.1 19.3 17.6 28.8 27.2 25.6	18.8 21.3 18.5 28.0	7.38 7.26 7.19 7.17 7.04 7.49 7.38 7.52 7.38 7.19	7.2 7.1 7.4 7.5	3 3 19 6 6 22 22 19	3.0 19.0 6.0 22.0	0.69 1.61 1.61 7.04 7.04 2.53 2.53 8.18 8.18 6.34	1.61 7.04 2.53 8.18	60 85 83 83 72 72 72 116 116 98	- 85.0 - 83.0 - 72.0 - 116.0
W3 W4	10:59 11:09 11:12	0.20	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	26.4 26.4 26.4	3.01 3.44 3.3 4.17 4.29 4.69 4.58 5.31 5.37	3.4 4.2 4.6	48.4 51.3 50.2 53.2 53.9 53.2 56.8 62.1 62.9	50.8 53.6 55.0	18.6 19.3 18.2 21.4 21.1 19.3 17.6 28.8 27.2	18.8 21.3 18.5	7.38 7.26 7.19 7.17 7.04 7.49 7.38 7.52 7.38	7.2 7.1 7.4	3 3 19 19 6 6 22 22 22	3.0 19.0 6.0	0.69 1.61 1.61 7.04 2.53 2.53 8.18 8.18	1.61 7.04 2.53	60 85 83 83 72 72 72 116 116	85.0 83.0 72.0
W3 W4 W5 W6 Date	10:59 11:09 11:12 11:23 11:31 3-0	0.20 0.15 0.20 0.15 0.20 0.15 0.20	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	 26.4 26.4 26.4 26.4 26.4 	3.01 3.44 3.3 4.17 4.29 4.69 4.58 5.31 5.37 5.16 5.11	3.4 4.2 4.6 5.3 5.1	48.4 51.3 50.2 53.2 53.9 53.2 56.8 62.1 62.9 61.7 61.3	- 50.8 - 53.6 - 55.0 - 62.5 - 61.5	18.6 19.3 18.2 21.4 21.1 19.3 17.6 28.8 27.2 25.6 26.8	18.8 21.3 18.5 28.0 26.2	7.38 7.26 7.19 7.17 7.04 7.38 7.52 7.38 7.19 7.06	7.2 7.1 7.4 7.5 7.1	3 3 19 6 6 22 22 19 19	3.0 19.0 6.0 22.0 19.0	0.69 1.61 1.61 7.04 7.04 2.53 2.53 8.18 8.18 6.34 6.34	1.61 7.04 2.53 8.18 6.34	60 85 83 83 72 72 72 116 116 98 98	- 85.0 - 83.0 - 72.0 - 116.0 - 98.0
W3 W4 W5 W6	10:59 11:09 11:12 11:23 11:31	0.20 0.15 0.20 0.15 0.20	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	- 26.4 - 26.4 - 26.4 - 26.4	3.01 3.44 3.3 4.17 4.29 4.69 4.58 5.31 5.37 5.16 5.11 DO (r	3.4 4.2 4.6 5.3 5.1	48.4 51.3 50.2 53.2 53.9 53.2 56.8 62.1 62.9 61.7 61.3 DOS	- 50.8 - 53.6 - 55.0 - 62.5	18.6 19.3 18.2 21.4 21.1 19.3 17.6 28.8 27.2 25.6 26.8 Turbidit	18.8 21.3 18.5 28.0 26.2	7.38 7.26 7.19 7.17 7.04 7.49 7.38 7.52 7.38 7.19 7.06	7.2 7.1 7.4 7.5	3 3 19 19 6 6 22 22 19 19 19 S	3.0 19.0 6.0 22.0 19.0	0.69 1.61 1.61 7.04 2.53 2.53 8.18 8.18 6.34 6.34 6.34	1.61 7.04 2.53 8.18 6.34	60 85 83 83 72 72 72 72 116 116 98 98 98	- 85.0 - 83.0 - 72.0 - 116.0
W3 W4 W5 W6 Date	10:59 11:09 11:12 11:23 11:31 3-0	0.20 0.15 0.20 0.15 0.20 0.15 0.20	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	 26.4 26.4 26.4 26.4 26.4 	3.01 3.44 3.3 4.17 4.29 4.69 4.58 5.31 5.37 5.16 5.11 DO (r 3.03	3.4 4.2 4.6 5.3 5.1	48.4 51.3 50.2 53.2 53.9 53.2 56.8 62.1 62.9 61.7 61.3 DOS 47.8	- 50.8 - 53.6 - 55.0 - 62.5 - 61.5	18.6 19.3 18.2 21.4 21.1 19.3 17.6 28.8 27.2 25.6 26.8 Turbidit 10.8	18.8 21.3 18.5 28.0 26.2	7.38 7.26 7.19 7.17 7.04 7.49 7.38 7.52 7.38 7.19 7.06 P 7.4	7.2 7.1 7.4 7.5 7.1	3 19 19 6 6 22 22 19 19 19 5 36	3.0 19.0 6.0 22.0 19.0	0.69 1.61 1.61 7.04 7.04 2.53 2.53 8.18 8.18 6.34 6.34 6.34 Ammo 1.4	1.61 7.04 2.53 8.18 6.34	60 85 83 72 72 116 116 98 98 21 37	- 85.0 - 83.0 - 72.0 - 116.0 - 98.0
W3 W4 W5 W6 Date Location	10:59 11:09 11:12 11:23 11:31 3-0 Time	0.20 0.15 0.20 0.15 0.20 0.20 ct-11 Depth (m)	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	26.4 26.4 26.4 26.4 26.4 26.4	3.01 3.44 3.3 4.17 4.29 4.69 4.58 5.31 5.37 5.16 5.11 DO (r 3.03 3.09 2.98	3.4 4.2 4.6 5.3 5.1	48.4 51.3 50.2 53.2 53.2 56.8 62.1 62.9 61.7 61.3 DOS 47.8 50.7 47.9	50.8 53.6 55.0 62.5 61.5	18.6 19.3 18.2 21.4 21.1 19.3 17.6 28.8 27.2 25.6 26.8 Turbidit 10.8 9.2 12.3	18.8 21.3 18.5 28.0 26.2 y (NTU)	7.38 7.26 7.19 7.17 7.04 7.49 7.38 7.52 7.38 7.19 7.06 P 7.4 7.5 7.4	7.2 7.1 7.4 7.5 7.1	3 3 19 19 6 6 22 22 19 19 19 19 5 36 36 13	3.0 19.0 6.0 22.0 19.0 S	0.69 1.61 1.61 7.04 2.53 2.53 8.18 8.18 6.34 6.34 Ammo 1.4 1.4 1.74	1.61 7.04 2.53 8.18 6.34	60 85 85 72 72 116 116 98 98 98 21 37 37 19	85.0 83.0 72.0 116.0 98.0
W3 W4 W5 W6 Date Location W1	10:59 11:09 11:12 11:23 11:31 3-0 Time 16:09	0.20 0.15 0.20 0.15 0.20 ct-11 Depth (m) 0.10	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	26.4 26.4 26.4 26.4 26.4 26.4 26.4	3.01 3.44 3.3 4.17 4.29 4.58 5.31 5.16 5.11 DO (r 3.03 3.09 2.98 2.84 5.3	3.4 4.2 4.6 5.3 5.1 mg/L) 3.1	48.4 51.3 50.2 53.2 53.2 56.8 62.1 62.9 61.7 61.3 DOS 47.8 50.7 47.9 47.9 47.9	50.8 53.6 55.0 62.5 61.5 (%) 49.3	18.6 19.3 18.2 21.4 21.1 17.6 28.8 27.2 25.6 26.8 Turbidit 10.8 9.2 12.3 11.6 13.6	18.8 21.3 18.5 28.0 26.2 y (NTU) 10.0	7.38 7.26 7.19 7.17 7.49 7.38 7.59 7.38 7.19 7.06 P 7.4 7.5 7.4 7.5 7.4 7.5 7.3	7.2 7.1 7.4 7.5 7.1 H H	3 3 19 6 6 22 22 19 19 19 5 36 13 25	3.0 19.0 6.0 22.0 19.0 S 36.0	0.69 1.61 1.61 7.04 7.04 2.53 2.53 8.18 8.18 6.34 6.34 6.34 1.4 1.4 1.74 1.74 1.5	1.61 7.04 2.53 8.18 6.34 0nia N 1.40	60 85 85 83 72 72 72 116 98 98 98 22 37 37 19 19 19 25	 85.0 83.0 72.0 116.0 98.0
W3 W4 W5 W6 Date Location W1 W2 W3	10:59 11:09 11:12 11:23 11:31 3-0 Time 16:09 16:18 16:26	0.20 0.15 0.20 0.15 0.20 ct-11 Depth (m) 0.10 0.15 0.20 0.15	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.3 26.5 26.5	3.01 3.44 3.3 4.17 4.29 4.69 4.58 5.37 5.37 5.37 5.11 DO (r 3.03 3.09 2.98 2.84 5.3 5.3 5.3 5.3 4.19	3.4 4.2 4.6 5.3 5.1 mg/L) 3.1 2.9 5.3	48.4 51.3 50.2 53.9 53.2	50.8 53.6 55.0 62.5 61.5 (%) 49.3 47.6 62.5	18.6 19.3 18.2 21.4 21.1 19.3 17.6 28.8 20.8 Turbidit 10.8 9.2 11.6 13.6 12.5 10.7	18.8 21.3 18.5 28.0 26.2 y (NTU) 10.0 12.0 13.1	7.38 7.26 7.19 7.17 7.07 7.38 7.38 7.38 7.19 7.06 P 7.4 7.5 7.4 7.5 7.4 7.5 7.3 7.3 7.3 7.3	H 7.2 7.1 7.4 7.5 7.1 7.5 7.5 7.5 7.3	3 3 19 19 6 6 22 22 19 19 19 19 19 19 19 19 19 19	3.0 19.0 6.0 22.0 19.0 s 36.0 13.0 25.0	0.69 1.61 1.61 7.04 2.53 2.53 8.18 8.18 6.34 Ammo 1.4 1.4 1.74 1.74 1.5 1.5 1.91	1.61 7.04 2.53 8.18 6.34 0nia N 1.40 1.74 1.50	60 85 83 83 72 72 72 72 72 72 72 72 72 72 72 72 72	 85.0 83.0 72.0 116.0 98.0 37.0 19.0 25.0
W3 W4 W5 W6 Location W1 W2 W3 W3 W4	10:59 11:09 11:12 11:23 11:31 3-0 Time 16:09 16:18 16:26 16:33	0.20 0.15 0.20 0.15 0.20 ct-11 Depth (m) 0.10 0.15 0.20 0.20 0.20	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.5 26.5 26.5 26.5	3.01 3.41 3.3 4.17 4.29 4.69 4.58 5.31 5.37 5.16 5.31 5.17 5.10 5.11 5.11 5.11 5.12 5.12 5.12 5.14 5.13 5.14 5.15 5.15 5.15 5.15 5.15 5.15 5.15	3.4 4.2 4.6 5.3 5.1 3.1 2.9 5.3 4.5	48.4 51.3 50.2 53.2 54.3	50.8 53.6 55.0 62.5 61.5 (%) 49.3 47.6 62.5 57.1	18.6 19.3 18.2 21.4 21.1 19.3 17.6 28.8 27.2 25.6 26.8 Turbidit 10.8 9.2 12.3 11.6 13.6 12.5	18.8 21.3 18.5 28.0 26.2 y (NTU) 10.0 12.0 13.1 10.2	7.38 7.26 7.19 7.17 7.04 7.49 7.52 7.38 7.19 7.06 7.06 7.4 7.5 7.3 7.4 7.5 7.3	7.2 7.1 7.4 7.5 7.1 H 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.3 7.3	3 3 19 19 6 6 6 22 22 22 22 19 19 19 19 19 19 19 19 19 25 25	3.0 19.0 6.0 22.0 19.0 s 36.0 13.0 25.0 7.0	0.69 1.61 1.61 7.04 2.53 2.53 2.53 8.18 8.18 6.34 6.34 6.34 1.4 1.4 1.74 1.74 1.74 1.5 1.5	1.61 7.04 2.53 8.18 6.34 0.140 1.40 1.74 1.50 1.91	60 85 85 83 72 72 72 116 116 98 98 98 98 98 97 97 97 97 97 97 97 97 97 97 97 97 97	85.0 83.0 72.0 116.0 98.0 Inc 37.0 19.0 25.0 13.0
W3 W4 W5 W6 Location W1 W2 W3	10:59 11:09 11:12 11:23 11:31 3-0 Time 16:09 16:18 16:26	0.20 0.15 0.20 0.15 0.20 ct-11 Depth (m) 0.10 0.15 0.20 0.15	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.3 26.5 26.5	3.01 3.41 3.3 4.17 4.29 4.69 4.58 5.31 5.37 5.16 5.16 5.16 5.16 5.16 5.16 5.16 5.37 5.16 5.37 5.16 5.37 5.16 5.37 5.16 5.31 4.69 4.76	3.4 4.2 4.6 5.3 5.1 mg/L) 3.1 2.9 5.3	48.4 51.3 50.2 53.2 53.2 53.2 53.2 56.8 62.1 62.9 61.7 61.7 61.3 61.3 61.3 62.9 62.1 47.8 50.2 62.9 62.7 62.9 62.7 62.9 6	50.8 53.6 55.0 62.5 61.5 (%) 49.3 47.6 62.5	18.6 19.3 18.2 21.4 21.1 19.3 17.6 28.8 27.2 25.6 26.8 10.8 9.2 11.6 13.6 12.5 10.7 9.6	18.8 21.3 18.5 28.0 26.2 y (NTU) 10.0 12.0 13.1	7.38 7.26 7.19 7.17 7.47 7.49 7.52 7.38 7.52 7.38 7.19 7.52 7.38 7.19 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.3 7.3 7.3 7.3 7.3 7.3 7.2	H 7.2 7.1 7.4 7.5 7.1 7.5 7.5 7.5 7.3	3 3 19 19 6 6 22 22 19 19 19 19 19 5 36 36 36 13 13 13 25 25 7 7 7	3.0 19.0 6.0 22.0 19.0 s 36.0 13.0 25.0	0.69 1.61 1.61 7.04 7.04 2.53 2.53 2.53 8.18 8.18 6.34 6.34 6.34 6.34 1.4 1.4 1.74 1.74 1.74 1.74 1.5 1.5 1.91 1.91	1.61 7.04 2.53 8.18 6.34 0nia N 1.40 1.74 1.50	60 85 85 83 72 72 72 116 116 98 98 98 98 98 98 98 98 98 98 92 525 25 13 37	 85.0 83.0 72.0 116.0 98.0 37.0 19.0 25.0

Date	6-0	ct-11																
Location	Time	Depth (m)	Temp	o (oC)	D0 (r	ng/L)	DOS	(%)	Turbidit	y (NTU)	F	н	S	S	Ammo	onia N	Zi	nc
W1	15:11	0.25	27.0	26.8	3.91	3.8	46.1	45.5	16.8	16.5	7.7	7.7	10	10.0	1.56	1.56	16	16.0
VV I	15.11	0.25	26.5	20.8	3.77	3.0	44.8	43.5	16.2	10.5	7.6	1.1	10	10.0	1.56	1.50	16	10.0
W2	15:07	0.20	27.1	27.1	3.79	3.7	45.3	45.1	14.6	14.4	7.3	73	6	6.0	1.73	1.73	13	13.0
112	15.07	0.20	27.1	27.1	3.68	3.7	44.9	45.1	14.1	14.4	7.2	7.5	6	0.0	1.73	1.75	13	13.0
W3	15:00	0.15	27.4	27.2	3.71	3.7	44.6	44.2	32.6	32.0	7.3	7.2	72	72.0	0.03	0.03	58	58.0
WV 5	15.00	0.15	27.0	21.2	3.68	3.7	43.8	44.2	31.4	32.0	7.3	7.5	72	72.0	0.03	0.03	58	50.0
W4	14:55	0.15	27.5	27.0	4.3	4.3	49.8	49.3	30.9	30.3	8.9	8.9	123	123.0	< 0.01	0.01	95	95.0
VV-4	14.55	0.15	26.5	27.0	4.24	4.3	48.7	47.3	29.7	30.3	8.8	0.7	123	123.0	< 0.01	0.01	95	93.0
W5	14:45	0.10	27.3	27.3	4.33	4.3	50.9	50.5	8.6	9.0	7.2	7.2	32	32.0	2.24	2.24	22	22.0
WJ	14.45	0.10	27.3	27.3	4.25	4.3	50.1	50.5	9.3	9.0	7.2	1.2	32	32.0	2.24	2.24	22	22.0
W6	14:30	0.30	27.5	27.3	4.06	4.0	48.3	47.9	11.7	12.1	7.4	7.4	21	21.0	1.88	1.88	14	14.0
vV0	14:30	0.30	27.0	21.3	4.01	4.0	47.5	47.9	12.4	12.1	7.3	7.4	21	21.0	1.88	1.00	14	14.0

Date	8-0	ct-11																
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DOS	(%)	Turbidi	y (NTU)	р	н	S	s	Ammo	onia N	Zi	inc
W1	10:46	0.15	26.4	26.4	3.13	3.1	54.8	53.2	12.8	12.6	7.2	7.2	8	8.0	< 0.01	0.01	10	10.0
VV I	10.40	0.15	26.4	20.4	3.12	3.1	51.6	55.2	12.4	12.0	7.1	1.2	8	0.0	< 0.01	0.01	10	10.0
W2	10:58	0.20	26.3	26.3	3.16	3.2	55.9	54.2	11.9	11.3	7.4	7.5	78	78.0	< 0.01	0.01	52	52.0
WZ.	10.58	0.20	26.3	20.3	3.28	3.2	52.4	J4.2	10.6	11.3	7.5	7.5	78	78.0	< 0.01	0.01	52	52.0
W3	11:09	0.10	26.3	26.3	5.12	5.1	61.2	61.0	21.7	21.2	7.5	7.5	15	15.0	< 0.01	0.01	14	14.0
W3	11.09	0.10	26.3	20.3	5.08	5.1	60.8	01.0	20.6	21.2	7.5	7.5	15	15.0	< 0.01	0.01	14	14.0
W4	11:18	0.15	26.3	26.3	2.88	2.8	46.2	46.9	10.9	10.6	7.7	7.6	41	41.0	< 0.01	0.01	36	36.0
VV-4	11.18	0.15	26.3	20.3	2.81	2.0	47.6	40.7	10.3	10.0	7.4	7.0	41	41.0	< 0.01	0.01	36	30.0
W5	11:31	0.20	26.3	26.3	3.44	3.4	51.3	50.8	25.6	25.5	7.3	7.3	6	6.0	< 0.01	0.01	<10	10.0
WV5	11,31	0.20	26.3	20.5	3.31	3.4	50.2	50.0	25.4	23.5	7.3	7.5	6	0.0	< 0.01	0.01	<10	10.0
W6	11:49	0.15	26.3	26.3	3.86	3.8	68.6	66.4	24.1	24.2	7.2	7.0	17	17.0	2.47	2.47	47	47.0
VVO	11:49	0.15	26.3	20.3	3.72	3.8	64.2	00.4	24.2	24.2	7.1	1.2	17	17.0	2.47	2.47	47	47.0

Date	10-0	ct-11																
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DOS	(%)	Turbidi	ty (NTU)	р	Н	S	S	Ammo	onia N	Z	inc
W1	16:52	0.15	25.4	25.4	3.48	3.4	53.3	52.1	13.7	13.5	7.5	7.5	6	6.0	1.22	1.22	15	15.0
W.	10.52	0.15	25.4	23.4	3.41	3.4	50.8	52.1	13.2	13.5	7.5	1.5	6	0.0	1.22	1.22	15	13.0
W2	16:59	0.20	25.4	25.4	4.69	4.6	55.9	56.4	16.7	16.4	7.5	7.5	4	4.0	1.1	1.10	15	15.0
112	10.57	0.20	25.4	23.4	4.58	4.0	56.8	50.4	16.1	10.4	7.4	1.5	4	4.0	1.1	1.10	15	13.0
W3	17:08	0.15	25.4	25.4	4.17	4.4	55.9	56.4	19.8	19.8	7.3	7.3	5	5.0	1.18	1.18	15	15.0
¥¥3	17.00	0.15	25.4	23.4	4.58	4.4	56.8	50.4	19.7	17.0	7.3	7.5	5	5.0	1.18	1.10	15	13.0
W4	17:16	0.10	25.3	25.3	3.46	3.4	51.8	51.2	11.4	11.1	7.2	7.2	4	4.0	1.24	1.24	18	18.0
VV-4	17.10	0.10	25.3	20.0	3.32	3.4	50.6	51.2	10.8	11.1	7.2	1.2	4	4.0	1.24	1.24	18	10.0
W5	17:28	0.15	25.3	25.3	4.69	4.6	55.9	56.6	16.5	16.5	7.5	7.5	6	6.0	1.18	1.18	15	15.0
WJ	17.20	0.15	25.3	25.5	4.52	4.0	57.2	50.0	16.4	10.5	7.4	7.5	6	0.0	1.18	1.10	15	13.0
W6	17:40	0.20	25.3	25.3	4.18	4.2	55.9	55.1	19.6	18.9	7.4	7.4	7	7.0	1.15	1.15	14	14.0
**0	17:40	0.20	25.3	20.0	4.26	4.2	54.2	55.1	18.2	10.9	7.4	7.4	7	7.0	1.15	1.15	14	14.0

DSD Contract No. DC/2007/17 -

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun Summary of Water Quality Monitoring Results - KT13

Date	12-0	ct-11																
Location	Time Depth (m) Temp (oC)		DO (mg/L)		DOS (%)		Turbidity (NTU)		pH		SS		Ammonia N		Zi	nc		
W1	17:01	0.15	26.3	26.3	3.57	3.6	43.2	43.7	11.6	11.7	7.5	7.5	8	8.0	0.84	0.84	18	18.0
VV 1	17.01	0.15	26.3	20.3	3.6	3.0	44.1	43.7	11.7	11.7	7.5	7.5	8	8.0	0.84	0.84	18	18.0
W2	17:09	0.20	26.2	26.2	3.38	3.3	42.6	2.6 42.2	11.1	11.0	7.4	7.4	9	9.0	0.88	0.88	20	20.0
VV2	17.09	0.20	26.2	20.2	3.26	3.3	41.7	42.2	10.9	11.0	7.3	7.4	9	9.0	0.88	0.88	20	20.0
W3	3 17:18 0.15	0.15	26.2	26.2	3.91	3.9	56.5	56.8	25.4	24.8	7.5	7.5	8	8.0	0.86	0.86	22	22.0
vv3	17.10	0.15	26.2	20.2	3.98	3.7	57.1		24.2	24.0	7.4	7.5	8	0.0	0.86	0.00	22	22.0
W4	17:26	0.20	26.2	26.2	2.98	2.9	39.3 39.2 39.3	18.6	18.1	7.3	7.2	9	9.0	0.88	0.88	21	21.0	
VV4	17.20	0.20	26.2	20.2	2.87	2.7		17.6	10.1	7.2	1.5	9	7.0	0.88	0.00	21	21.0	
W5	17:35	0.15	26.1	26.1	4.68	4.7	81.8	79.4	25.3	25.1	7.1	7.2	10	10.0	0.89	0.89	20	20.0
WV5	17.55	0.15	26.1	20.1	4.63	4.7	76.9	77.4	24.8	23.1	7.2	1.2	10	10.0	0.89	0.89	20	20.0
W6	17:51	0.20	26.1	26.1	5.01	5.0	86.6	83.6	25.8	26.0	7.6	7.4	9	9.0	0.89	0.89	18	18.0
VVO	17.51	0.20	26.1	20.1	4.98	5.0	80.5	03.0	26.1	20.0	7.5	7.0	9	9.0	0.89	0.69	18	16.0

Date	14-0	ct-11																		
Location	cation Time Depth (m)		Temp (oC)		D0 (mg/L)		DOS	DOS (%)		Turbidity (NTU)		pH		SS		Ammonia N		nc		
W1	10:48	0.15	29.8	29.8	3.6	3.6	44.1	43.7	13.6	13.9	7.8	7.8	2	2.0	0.77	0.77	16	16.0		
VV I	10.48	0.15	29.8	27.0	3.57	3.0	43.2	43.7	14.1	13.7	7.7	7.0	2	2.0	0.77	0.77	16	10.0		
W2	W2 10:56	0.20	28.3	28.3	3.69	3.7	45.6	45.2	12.8	12.6	7.5	7.5	2	2.0	0.64	0.64	12	12.0		
VV2	10.56	0.20	28.3	20.3	3.61	3.7	44.8	45.2	12.4	12.0	7.5	7.5	2	2.0	0.64	0.64	12	12.0		
W3	11:08	0.15	28.3	28.3	4.65	4.6	77.1	77.0	19.6	19.5	7.4	7.4	7	7.0	0.48	0.48	44	44.0		
VV 5	11:06	0.15	28.3	20.3	4.61	4.0	76.8	77.0	19.4	19.5	7.4	7.4	7	7.0	0.48	0.46	44	44.0		
W4	11:19	0.20	28.3	28.3	3.45	3.4	42.2 42.0	11.9	11.3	7.4	7.4	2	2.0	0.77	0.77	12	12.0			
VV-+	11.17	0.20	28.3	20.3	3.38	3.4	41.7	42.0	10.6	11.5	7.3	7.4	2	2.0	0.77	0.77	12	12.0		
W5	11:31	0.15	28.3	28.3	4.18	4.1	75.2	75.0	26.2	26.2	7.6	7.6	8	8.0	0.72	0.72	16	16.0		
CVV	11:51	0.15	28.3	20.3	4.06	4.1	74.8	75.0	26.1	20.2	7.5	7.0	8	0.0	0.72	0.72	16	10.0		
W6	11:45	0.00	0.00	0.20	28.3	28.3	4.09	4.1	73.6	73.2	25.3	25.1	7.6	7 (5	5.0	0.4	0.40	15	15.0
vvo	11:45	0.20	28.3	20.3	4.01	4.1	72.7	13.2	24.8	23.1	7.6	7.0	5	5.0	0.4	0.40	15	15.0		

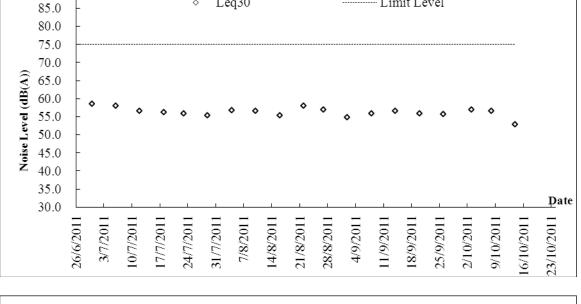
Date	18-0	Oct-11																
Location	Time Depth (m)		Temp (oC)		DO (mg/L)		DOS (%)		Turbidity (NTU)		рН		SS		Ammonia N		Zinc	
W1	9:30	0.20	29.4	29.5	3.96	4.0	49.8	50.1	7.1	7.2	7.5	7.5	10	10.0	3.79	3.79	36	36.0
VV I	9:30	0.20	29.6	29.0	3.98	4.0	50.4	50.1	7.2	1.2	7.4	7.5	10	10.0	3.79	3.79	36	30.0
W2	9:38 0.20	0.20	29.5	29.6	4.07	4.1	52.7	53.3	7.2	7.2	7.5	7.5	20	20.0	8.68	8.68	47	47.0
VVZ	7.30	0.20	29.6	29.0	4.14	4.1	53.8	55.5	7.2	1.2	7.5	7.5	20	20.0	8.68	0.00	47	47.0
W3	9:50	0.15	29.3	29.3	4.12	4.1	53.4	53.2	7.5	7.6	7.3	7.3	41	41.0	14.6	14.60	102	102.0
VV 3	7.50	0.15	29.3	27.3	4.08	4.1	52.9	33.2	7.7	7.0	7.2	7.5	41	41.0	14.6	14.00	102	102.0
W4	10:01	0.20	29.1	29.2	4.41	4.3	56.1	55.4	7.4	7.4	7.2	7.2	30	30.0	12	12.00	71	71.0
VV4	10.01	0.20	29.2	27.2	4.27	4.3	54.7	55.4	7.4	7.4	7.1	1.2	30	30.0	12	12.00	71	/1.0
W5	10:22	0.10	28.1	28.2	3.06	3.1	42.1	42.5	5.3	5.2	7.9	7.9	10	10.0	2.17	2.17	44	44.0
VV.5	10.22	0.10	28.2	20.2	3.08	3.1	42.9	42.0	5.2	J.2	7.9	7.7	10	10.0	2.17	2.17	44	44.0
W6	10:30	0.30	30.1	30.1	5.7	5.6	69.2	69.2	7.6	7.6	7.1	7.1	68	68.0	22	22.00	135	135.0
VVO	10:30	0.30	30.0	30.1	5.41	5.0	69.1	09.2	7.6	7.0	7	7.1	68	00.0	22	22.00	135	135.0

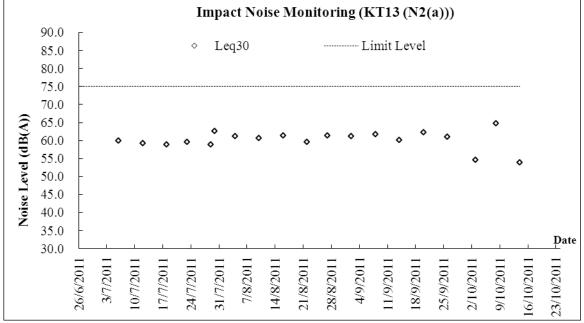
AUES

DSD CONTRACT NO. DC/2007/17 Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

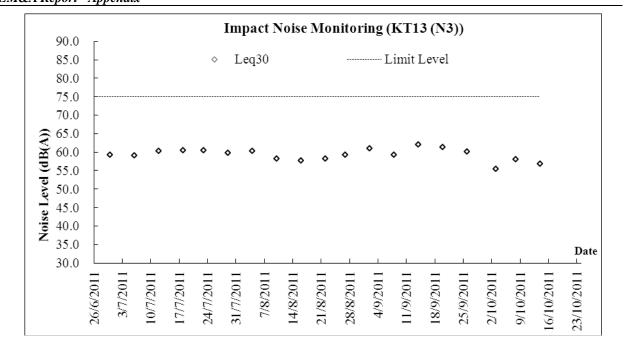
24-Hour TSP Monitoring Results

DATE						STANDA	RD					1		BLANK		Sł	MPLE OF FILTER PA			Action	
	SAMPLE		ELAPSED TIME			READING		AVERAGE		FLOW	AIR	SAMPLE		WEIGHT (g)			WEIGHT (g)		Dust 24-Hr TSP	Level	Limit Level
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	CHART READING	TEMP (°C)	PRESS (hPa)	RATE (m ³ /min)	VOLUME (std m ³)	NUMBER	INTIAL	FINAL	DIFF	INITIAL	FINAL	DUST COLLECTION	in Air (µg/m³)	(µg/m³)	(µg/m³)
KT13(A1(a)))																				
29-Sep-11	24265	4511.21	4535.32	1446.60	32	38	35.0	27.2	1002.9	1.26	1817	NA	3.5632	3.5635	0.0003	2.7441	2.7700	0.0259	14	144	260
4-Oct-11	24210	4535.32	4560.18	1491.60	36	38	37.0	26.4	1012.9	1.33	1983	NA	3.5615	3.5609	-0.0006	2.7597	2.8567	0.0970	49	144	260
10-Oct-11	24231	4560.18	4585.14	1497.60	35	37	36.0	26.4	1011.8	1.30	1949	NA	3.5604	3.5602	-0.0002	2.7802	2.8906	0.1104	57	144	260
15-Oct-11	24296	4585.04	4609.40	1461.60	37	38	37.5	25.6	1013.4	1.34	1965	NA	3.5624	3.5615	-0.0009	2.7376	2.8544	0.1168	60	144	260
KT13(A2)																					
29-Sep-11	24266	4427.25	4451.43	1450.80	32	38	35.0	27.2	1002.9	1.23	1781	NA	3.5632	3.5635	0.0003	2.7509	2.7861	0.0352	20	141	260
4-Oct-11	24261	4451.43	4475.58	1449.00	36	38	37.0	26.4	1012.9	1.29	1870	NA	3.5615	3.5609	-0.0006	2.7367	2.8460	0.1093	59	141	260
10-Oct-11	24158	4475.58	4499.73	1449.00	35	37	36.0	26.4	1011.8	1.26	1828	NA	3.5604	3.5602	-0.0002	2.914	2.9813	0.0673	37	141	260
15-Oct-11	24297	4499.73	4523.88	1449.00	37	39	38.0	25.6	1013.4	1.32	1914	NA	3.5624	3.5615	-0.0009	2.7257	2.8166	0.0909	48	141	260

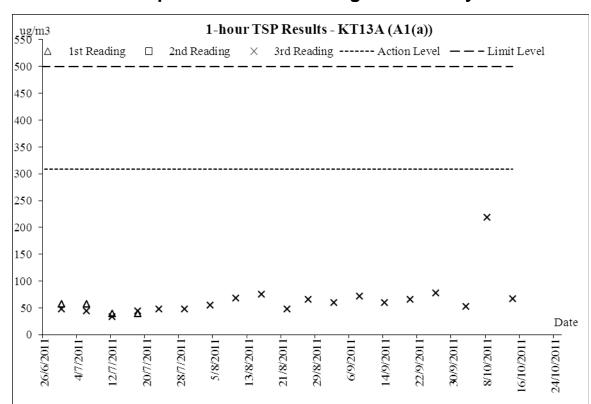

Action-United Environmental Services and Consulting

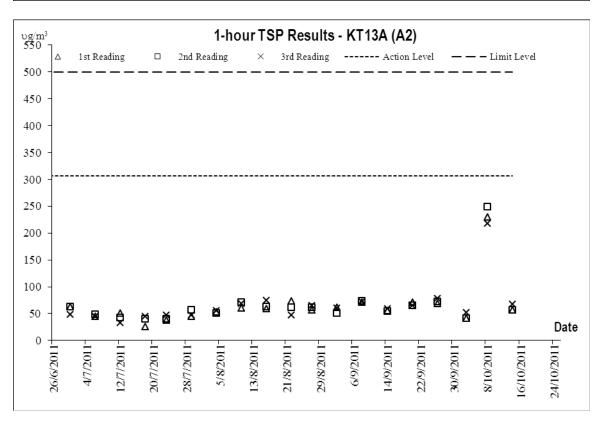

Leq30

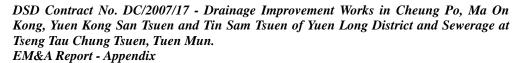
 \diamond

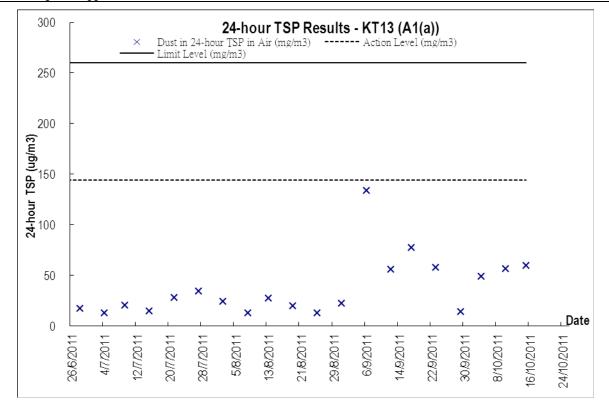


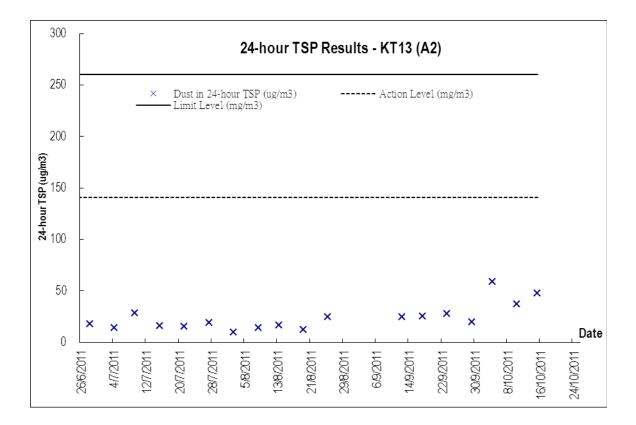
----- Limit Level

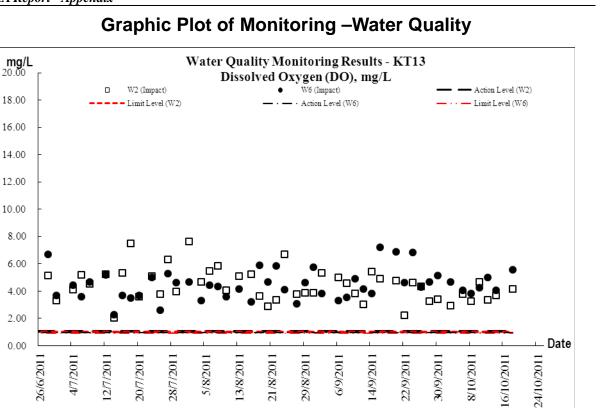


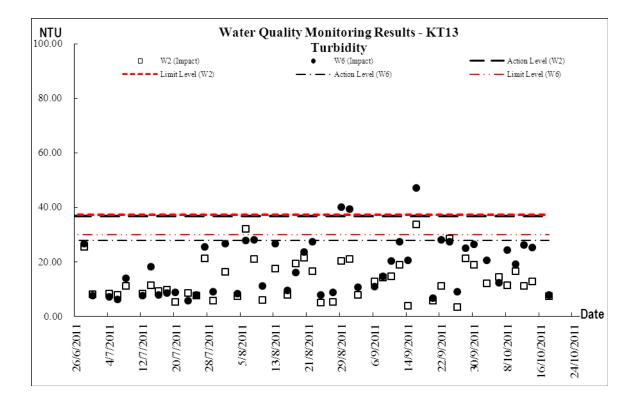




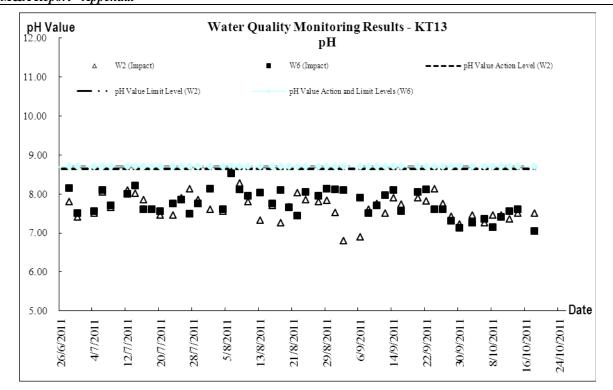


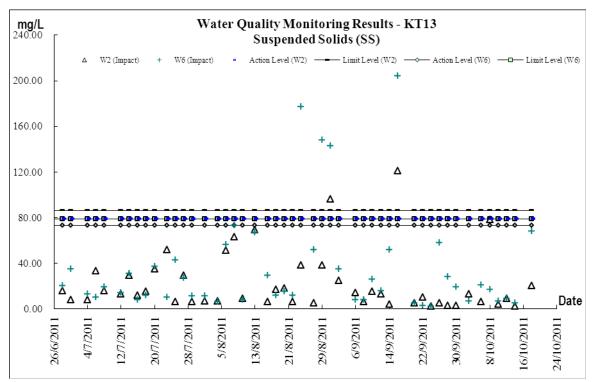

Graphic Plot of Monitoring – Air Quality



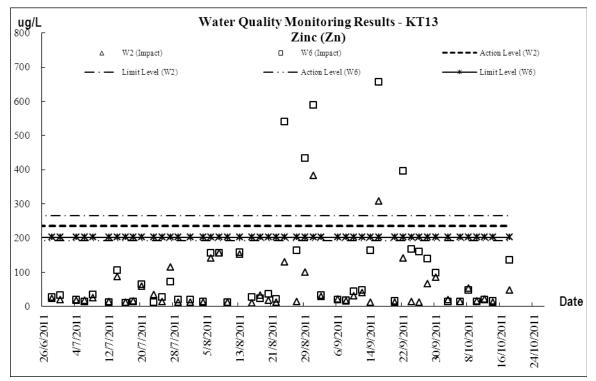


DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun. EM&A Report - Appendix





DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun. EM&A Report - Appendix



DSD Contract No. DC/2007/17 - Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun. EM&A Report - Appendix

Appendix H

Monthly Summary Waste Flow Table

Drainage Improvement Works in Cheung Po, Ma On Kong, Yuen Kong San Tsuen and Tin Sam Tsuen of Yuen Long District and Sewerage at Tseng Tau Chung Tsuen, Tuen Mun

Monthly Summary Waste Flow Table

Date: 18-Oct-11

Year/Month: Oct-11

			Мо	onthly Summary	y Waste Flow 1	able for Octob	oer 2011						
	Actual	Quantities of Ine	ert C & D Mater	ials Generated N	Vonthly	Estimated Annual Quantities of C & D Wastes Generated Monthly							
Year	Total Quantitiy Generated	Broken Concrete (see note 4)	Reused in the Contract	Reused in other Projects Public Fill		Metals	Paper/ Cardboard packaging	Plastics (see note 3)	Chemical Waste	Others, e.g. General refuse			
	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000KG)	(in '000KG)	(in '000KG)	(in '000KG)	(in '000M ³)			
Jan	2.452	0.001	2.5355	-0.085	0	0	0	0	0	0			
Feb	4.167	0.001	1.7215	2.444	0	0	0	0	0	0			
Mar	1.894	0.002	2.332	-0.44	0	0	0	0	0	0			
Apr	1.123	0.001	1.551	-0.429	0	0	0	0	0	0			
May	0.567	0.000	0.5665	0.000	0	0	0	0	0	0			
Jun	0.115	0.000	0.297	-0.182	0	0	0	0	0	0			
Sub-Total	10.32	0.005	9.004	1.308	0	0	0	0	0	0			
Jul	-0.138	0.000	0.2145	-0.352	0	0	0	0	0	0			
Aug	0.099	0.000	0.099	0.000	0	0	0	0	0	0			
Sep	0.000	0.000	0.000	0.000	0	0	0	0	0	0			
Oct	0.000	0.000	0.000	0.000	0	0	0	0	0	0			
Nov	0.000				0	0	0	0	0	0			
Dec	0.000				0	0	0	0	0	0			
Total	10.278	0.005	9.317	0.956	0.000	0.000	0.000	0.000	0.000	0.000			

Notes: (1) The performance targets are given in PS Clause 28.10(14)

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/ containers, plastic sheets/ foam form packaging material

(4) Broken concrete for recycling into aggregates

(5) Negative numbers in "Reused in other Projects" indicate import of materials from other projects.