

PROJECT No.: TCS/00512/09

DSD CONTRACT No. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

YUNG SHUE WAN PORTION AREA MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (NO.9) – MAY 2011

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Quality Index

Date Reference No. Prepared By Approved By

28 June 2011 TCS00512/09/600/R0257v2

Nicola Hon T.W. Tam
Environmental Consultant Environmental Team Leader

Version	Date	Description
1	22 June 2011	First Submission
2	28 June 2011	Amended against IEC's comments on 24 June 2011

Scott Wilson CDM Joint Venture

Chief Engineer/Harbour Area Treatment

Scheme

Drainage Services Department

5/F Western Magistracy 2A Pok Fu Lam Road

Hong Kong

Attention: Mr. C K Au

Your reference:

Our reference:

05117/6/16/377758

Date:

30 June 2011

BY FAX ONLY

Dear Sirs.

Contract No. DC/2009/13
Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Yung Shue Wan Portion Area
Monthly Environmental Monitoring and Audit (EM&A) Report No. 9 (May 2011)

We refer to the Monthly EM&A Monitoring Report No. 9 for May 2011 received under cover of the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), dated on 30 June 2011. We do not have further comment and have verified the captioned report.

Yours faithfully

SCOTT WILSON CDM JOINT VENTURE

Rodney Ip

ICWR/STKW/ecwc

CC

Leader Civil Engineering

AUEŞ

ER/LAMMA

CDM

(Attn: Mr Vincent Chan)

(Attn: Mr T.W. Tam)

(Attn: Mr Neil Wong)

(Attn: Mr Mark Sin)

EXECUTIVE SUMMARY

ES.01. This is the 9th monthly EM&A Report for Yung Shue Wan (hereinafter 'this Report') for the designated works under Environmental Permit No.EP-282/2007, covering a period from 1 to 31 May 2011 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A program in this Reporting Month are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air Quality	1-hour TSP	36
Air Quality	24-hour TSP	12
Construction Noise	Leq (30min) Daytime	6
Water Quality	Marine Water Sampling	7
Ecology	Coral Monitoring	2
Inspection / Audit	ET Regular Environmental Site Inspection	5

ES.03. As informed by the Contractor, the marine work of outfall construction has been commenced on 9 May 2011, therefore, water quality and coral monitoring was undertaken in this Reporting Month.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance in construction noise, air quality and water quality monitoring were recorded in this Reporting Month. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action Level	Limit Level	Event & Action		
Issues	Parameters Parameters			NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
All Quality	24-hour TSP	0	0	0		
Construction Noise	Leq _{30min} Daytime	0	0	0		
	DO	NA	NA	NA	NA	NA
Water Quality	Turbidity	NA	NA	NA	NA	NA
	SS	NA	NA	NA	NA	NA

Note: NOE – Notification of Exceedance

ENVIRONMENTAL COMPLAINT

ES.05. No written or verbal complaint was recorded in this Reporting Month. The statistics of environmental complaint are summarized in the following table.

Denouting Davied	Environmental Complaint Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
14 September 2010 – 30 April 2011	0	0	NA	
1 – 31 May 2011	0	0	NA	

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.06. No environmental summons or successful prosecutions were recorded in this Reporting Month. The statistics of environmental complaint are summarized in the following tables.

Donauting Davied	Environmental Summons Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
14 September 2010 – 30 April 2011	0	0	NA	
1 – 31 May 2011	0	0	NA	

Donouting Davied	Environmental Prosecution Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
14 September 2010 – 30 April 2011	0	0	NA	
1 – 31 May 2011	0	0	NA	

REPORTING CHANGE

ES.07. There are no reporting changes in this reporting month.

SITE INSPECTION BY EXTERNAL PARTIES

ES.08. No site inspection was undertaken by external parties i.e. EPD or AFCD within the Reporting Period.

FUTURE KEY ISSUES

- ES.09. During wet season, the Contractor shall pay attention on the potential water impact as the construction site is adjacent to the coastline. Muddy water and other water quality pollutants via site surface water runoff into the coral zones of Yung Shue Wan seawall, Shek Kok Tsui and O Tsai should be avoided. Therefore, mitigation measures for water quality should be fully implemented also.
- ES.10. Moreover, the construction dust mitigation measures identified at the EM&A Manuel such as watering at haul road and covering of dusty material should also be implemented and properly maintained during wet season.

TABLE OF CONTENTS

1	INTRODUCTION PROJECT BACKGROUND	1 1
	REPORT STRUCTURE	1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE	3 3
	CONSTRUCTION PROGRESS	3
	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	3
3	SUMMARY OF BASELINE MONITORING REQUIREMENTS	4
4	IMPACT MONITORING RESULTS - AIR QUALITY	9
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	10
6	IMPACT MONITORING RESULTS – WATER QULAITY	11
7	IMPACT MONITORING RESULTS – ECOLOGY MONITORING	13
8	WASTE MANAGEMENT	14
9	SITE INSPECTION	15
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	16
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	17
12	IMPACT FORECAST	23
13	CONCLUSIONS AND RECOMMENDATIONS	24

LIST OF TABLES

Status of Environmental Licenses and Permits
Summary of the Air and Noise monitoring parameters of EM&A Requirements
Location of Air Quality Monitoring Station
Location of Construction Noise Monitoring Station
Location of Marine Water Quality Monitoring Station
Action and Limit Levels for Air Quality Monitoring
Action and Limit Levels for Construction Noise
Action and Limit Levels for Marine Water Quality Monitoring
Summary of 24-hour and 1-hour TSP Monitoring Results at AC02b
Summary of 24-hour and 1-hour TSP Monitoring Results at AC04c
Summarized of Construction Noise Monitoring Results at NC05
Summary of Water Quality Results - Mid-ebb Tides (Dissolved Oxygen)
Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)
Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)
Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)
Summarized Exceedances of Marine Water Quality
Summary of Quantities of Inert C&D Materials
Summary of Quantities of C&D Wastes
Site Observations
Statistical Summary of Environmental Complaints
Statistical Summary of Environmental Summons
Statistical Summary of Environmental Prosecution
Environmental Mitigation Measures

LIST OF APPENDICES

Appendix A	Site Layout Plan – Yung Shue Wan Portion Area
Appendix B	Organization Structure and Contact Details of Relevant Parties
Appendix C	A Master and Three Months Rolling Construction Programs
Appendix D	Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality/ Dive Surveys of Coral)
Appendix E	Monitoring Equipments Calibration Certificate
Appendix F	Event and Action Plan
Appendix G	Monitoring Data Sheet
Appendix H	Graphical Plots of Monitoring Results
Appendix I	Meteorological Information
Appendix J	Monthly Summary Waste Flow Table
Appendix K	Weekly Site Inspection Checklist
Appendix L	Implementation Schedule of Mitigation Measures
Appendix M	Impact Coral Monitoring Report

INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the *Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwn Wan* (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant Works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung Shue Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the EM&A Manual. This EM&A Manual is referred to the Appendix D of the Review Report on EIA Study Yung Shue Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A program. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 According to the EM&A Manuals of Sok Kwu Wan and Yung Shue Wan, baseline water quality monitoring should be carried out for consecutive six months before the marine work commencement. Therefore, the baseline reports of Sok Kwu Wan and Yung Shue Wan are divided to two volumes i.e. the Volume 1 for air quality and noise monitoring; and the Volume II for water quality monitoring for separate submission.
- 1.06 This is the 9th monthly EM&A report for Yung Shue Portion Area which presenting the monitoring results and inspection findings in the reporting period from 1 to 31 May 2011.

REPORT STRUCTURE

1.07 The Monthly Environmental Monitoring and Audit (EM&A) Report – Yung Shue Wan is structured into the following sections:-

SECTION 1	INTRODUCTION
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS
SECTION 3	SUMMARY OF MONITORING REQUIREMENTS
SECTION 4	AIR QUALITY MONITORING RESULTS
SECTION 5	CONSTRUCTION NOISE MONITORING RESULTS
SECTION 6	WATER QUALITY MONITORING RESULTS

SECTION 7 ECOLOGY MONITORING RESULTS

SECTION 8 WASTE MANAGEMENT
SECTION 9 SITE INSPECTIONS

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Yung Shue Wan – EM&A Monthly Report - May 2011

SECTION 13

SECTION 10	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
SECTION 11	IMPLEMENTATION STATUES OF MITIGATION MEASURES
SECTION 12	IMPACT FORECAST

CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The master and three month rolling construction programs are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Month are listed below:-
 - Excavation;
 - Rebar bending & fixing;
 - Erection of formwork and falsework;
 - Concreting;
 - Backfilling; and
 - Horizontal directional drilling

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Month is presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air pollution Control (Construction Dust)	Notified 19/5/2010
		Case No: 317486
2	Chemical waste Producer Registration	Issued on 8/6/2010
		WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Issued on 22/9/2010
		WT00007566-2010
4	Billing Account for Disposal of Construction Waste	Issued on 26 May 2010
		A/C No: 7010815
5	Construction Noise Permit (no. GW-RS1141-10)	Issued on 29 December 2010
		Valid to 28 May 2011
6	Construction Noise Permit (no. GW-RS0084-11)	Issued on 1 Feb 2011
		Valid from 21 Feb 2011 until 20 Aug
		2011

- 2.04 The "Baseline/Impact Monitoring Methodology (TCS00512/10/600/R0011Ver.5)" was set out in accordance with the Yung Shue Wan Environmental Monitoring and Audit Manual. It was approved by the ER and agreed with the Independent Environmental Checker (IEC) and submitted to the EPD for endorsement.
- 2.05 Baseline Monitoring Report Volume 1 (TCS00512/10/600/R0061Ver.3) for Yung Shue Wan for the Project was issued by the ETL and verified by the IEC on 31 August 2010. The report was also submitted to the EPD for endorsement.
- 2.06 Baseline Water Quality Monitoring Report Volume 2 (TCS00512/10/600/R0158Ver.2) for Yung Shue Wan for the Project was issued by the ETL and verified by IEC on 7 March 2011. The report was also submitted to EPD for endorsement.

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring program cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Marine Water quality;
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise and water quality of the EM&A program are presented in the following sub-sections.
- 3.03 A summary of the Air, Noise and Marine Water monitoring parameters is presented in *Table 3-1*:

Table 3-1 Summary of the Air and Noise monitoring parameters of EM&A Requirements

Environmental Issue	Parameters
Air Quality	1-hour TSP Monitoring by Real-Time Portable Dust Meter; and
All Quality	• 24-hour TSP Monitoring by High Volume Air Sampler.
Noise	Leq (30min) during normal working hours; and
Noise	Leq (15min) during Restricted Hours.
	In-situ Measurements
	Dissolved Oxygen Concentration (mg/L);
	Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Marina Water Quality	pH unit;
Marine Water Quality	Salinity (ppt);
	Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	Suspended Solids (mg/L)

MONITORING LOCATIONS

Air Quality

- 3.04 Two designated monitoring stations, AC02a located at Yung Shue Wan Refuse Transfer Station and AC04 located at residential area nearby Yung Shue Wan football pitch, were recommended in the *EM&A Manual Section* 2.5. In order to identify and seek for the access of the air monitoring locations designated in the EM&A Manual, site visit was conducted by Leader and ET.
- 3.05 At the site visit, all designated monitoring locations were identified however the premises for high volume sampler installation were objected by the owner or the residents of nearby. So, an alternative air monitoring locations were proposed in accordance with the criteria set out in *EM&A* manual Section 2.5.2 and 2.5.3. The proposed alternative air monitoring stations was accepted by the ER and IEC, and EPD endorsed. Details of renewed air monitoring stations are described in *Table 3-2*. The graphical of air monitoring stations is shown in *Appendix D*.

Table 3-2 Location of Air Quality Monitoring Station

Sensitive Receiver	Location
AC02b	The entrance of RE's site office
AC04c	Next to a power transformer station TP208 Yung Shue Wan and adjacent to the road direct to the construction site

Construction Noise

3.06 According to *EM&A Manual Section 3.4*, one noise sensitive receivers (NC05) designated for the construction noise monitoring was recommended at Yung Shue Wan Portion Area of the Project. The designated monitoring station is identified and successfully granted the premises. The detailed construction noise monitoring station is described in *Table 3-3* and graphical is shown in *Appendix D*.

Table 3-3 Location of Construction Noise Monitoring Station

Sensitive Receiver	Location
NC05	Roof of North Lamma Clinic

Marine Water Quality

Two control stations (CY1 and CY2) and three impact stations (WY1-WY3) were recommended in the *EM&A Manual Section 4.5*. Impact stations WY1-WY3 were identified close to the sensitive receivers (the coral colonies in the vicinity of Yung Shue Wan, and secondary contact recreation subzone). It is proposed to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Two control stations: CY1 and CY2 were recommended at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. The marine water quality monitoring stations to be performed under the Project is described in *Table 3-4* and shown in *Appendix D*.

Table 3-4 Location of Marine Water Quality Monitoring Station

Station	Description	Coordinates			
Station	Description	Easting	Northing		
WY1	Coral colonies on seawall at STW site	829 170	809 550		
WY2	Coral colonies at Shek kok Tsui	829 000	810 400		
WY3	Coral colonies at O Tsai (headland N at SW ferry pier)	829 200	809 850		
CY1 (flood)	Control Station	828 400	810 800		
CY2 (ebb)	Control Station	828 000	808 800		

MONITORING FREQUENCY AND PERIOD

3.07 The Impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections* 2.7, 3.6, 4.7 and 4.8. The monitoring requirements are listed as follows:

Air Quality Monitoring

<u>Parameters</u>: 1-hour TSP and 24-hour TSP.

Frequency: Once in every six days for 24-hour TSP and three times in every six days for

1-hour TSP.

<u>Duration</u>: Throughout the construction period.

Noise Monitoring

Parameters: Leq (30min) & Leq (5min), L10 and L90.

Leq (15min) & Leq (5min), L10 and L90 during the construction undertaken during Restricted Hours (19:00 to 07:00 hours next of normal working day and full

day of public holiday and Sunday)

Frequency: Once per week during 0700-1900 hours on normal weekdays. Restricted Hour

monitoring should depend on conditions stipulated in Construction Noise Permit.

Duration: Throughout the construction period.

Marine Water Quality Monitoring

<u>Parameters</u>: Duplicate in-situ measurements: water depth, temperature, Dissolved Oxygen,

pH, turbidity and salinity;

HOKLAS-accredited laboratory analysis: Suspended Solids

<u>Frequency</u>: Three days a week, at mid ebb and mid flood tides. The interval between 2 sets

of monitoring will be more than 36 hours.

Sampling Depth

(i.) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m.

(ii.) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom.

(iii.) If the water depth is less than 3m, 1 sample at mid-depth is taken

<u>Duration</u>: During the course of marine works

Post-Construction Monitoring – Marine Water

3.08 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the *Section 4.8 of EM&A Manual*. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

MONITORING EQUIPMENT

Air Quality Monitoring

3.09 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

Noise Monitoring

3.10 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s-1.

Water Quality Monitoring

- 3.11 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring as included a DO level in the range of 0 20 mg L-1 and 0 200% saturation; and a temperature of 0 45 degree Celsius.
- 3.12 *pH Meter* The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in arrange of 0 to 14.
- 3.13 *Turbidity (NTU) Measuring Equipment* The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.14 **Water Sampling Equipment** A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.15 Water Depth Detector A portable, battery-operated echo sounder should be used for the

determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat.

- 3.16 *Salinity Measuring Equipment* A portable salinometer capable of measuring salinity in the range of 0 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.
- 3.17 **Sample Containers and Storage** Water samples for SS should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.18 *Monitoring Position Equipment* A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- 3.19 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

EQUIPMENT CALIBRATION

- 3.20 Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.21 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.
- 3.22 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.23 The Water Quality Monitoring equipments such as Dissolved Oxygen meter, pH Meter, Turbidity Measuring Instrument and Salinometer, are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.24 All updated calibration certificates of the monitoring equipment used for the impact monitoring program in the Reporting Month would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.25 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.26 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring program.
- 3.27 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, noise meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.28 According to the Sok Kwu Wan Environmental Monitoring and Audit Manual, the air quality, construction noise and marine water quality monitoring were established, namely Action and Limit levels are listed in *Tables 3-5* to *3-7* as below.

Table 3-5 Action and Limit Levels for Air Quality Monitoring

Monitoring Station	Action Lev	vel (μg /m³)	Limit Level (µg/m³)		
Withintoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP	
AC02b	288	161	500	260	
AC04c	290	176	500	260	

Table 3-6 Action and Limit Levels for Construction Noise

	Recommended Action & Limit Levels of Construction Noise							
Monitoring	Action Level Limit Level							
Location	0700-190	0 hours on normal weekdays						
NC05	When one or more documented complaints are received	75 dB(A) *						

Note: * Reduces to 70dB(A) for schools and 65dB(A) during the school examination periods.

Table 3-7 Action and Limit Levels for Marine Water Quality Monitoring

Donomoton	Performance	Impact Station			
Parameter	Criteria	WY1	WY2	WY3	
DO Concentration (Surface and Middle)	Action Level	3.63	3.53	3.61	
(mg/L)	Limit Level	3.32	3.47	3.42	
DO Concentration (Bottom)	Action Level	3.33	2.92	3.36	
(mg/L)	Limit Level	3.23	2.63	3.14	
Turbidity (Depth-Average)	Action Level	10.94	14.16	14.99	
(NTU)	Limit Level	17.35	15.20	16.21	
Suspended Solids (Depth-Average)	Action Level	17.52	14.04	14.52	
(mg/L)	Limit Level	25.62	16.51	16.88	

3.29 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in Appendix F.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 As informed by Leader, the construction of relevant land works at Yung Shue Wan was commenced on 14 September 2010, therefore, the impact EM&A program was begun as compliance with the contract Particular Specification, Yung Shue Wan EM&A Manual and the EP.

Result

4.02 In this reporting period, the results for 24-hour and 1-hour TSP monitoring are tabulated in *Tables* 4-1 and 4-2. The 24-hour TSP monitoring data are shown in *Appendix G* and the graphical plots are shown in *Appendix H*.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results at AC02b

	24-hour TSP	1-hour TSP (μg/m³)							
Date	$(\mu g/m^3)$	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured			
3-May-11	39	3-May-11	15:00	85	92	89			
9-May-11	29	9-May-11	14:08	89	69	72			
14-May-11	64	14-May-11	15:10	84	78	73			
19-May-11	56	17-May-11	13:35	92	95	82			
25-May-11	24	23-May-11	9:38	91	87	101			
31-May-11	68	27-May-11	13:30	92 95		95			
Average	47	Avera	ige	87					
(Range)	(24 - 68)	(Rang	ge)	(69 - 101)					

Table 4-2 Summary of 24-hour and 1-hour TSP Monitoring Results at AC04c

	24-hour TSP	1-hour TSP (μg/m³)						
Date	$(\mu g/m^3)$	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured		
3-May-11	73	3-May-11	15:05	97	92	102		
9-May-11	44	9-May-11	14:00	77	85	72		
14-May-11	72	14-May-11	15:00	87	82	72		
19-May-11	72	17-May-11	13:30	88	91	90		
25-May-11	110	23-May-11	9:30	85	78	89		
31-May-11	96	27-May-11	13:36	87 85		91		
Average	93	Avera	ige	86				
(Range)	(44 - 110)	(Rang	ge)	(72 - 102)				

- 4.03 As shown in *Tables 4-1 and 4-2*, the 1-hour TSP monitoring and 24-hour TSP monitoring values fluctuated well below the Action Level during the Reporting Period. No Notification of Exceedance (NOE) of air quality criteria or corrective action was therefore required.
- 4.04 The meteorological information during the impact monitoring days are summarized in *Appendix I*.

5 IMPACT MONITORING RESULTS – CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Result

5.02 In this report period, 6 construction noise monitoring events were undertaken at designated location NC05. The results for Leq_{30min} are tabulated in *Tables 5-1* and the graphical plots are shown in *Appendix H*.

Table 5-1 Summarized of Construction Noise Monitoring Results at NC05

Date	Start Time	End Time	1 st set Leq5	2 nd set Leq5	3 rd set Leq5	4 th set Leq5	5 th set Leq5	6 th set Leq5	Leq30	Corrected Leq30*
3-May-11	16:17	16:47	63.3	60.4	61.4	58.8	61.6	61.6	61.4	64.4
9-May-11	15:17	15:47	57.5	55.8	56.7	59.0	56.5	56.8	57.2	60.2
14-May-11	15:26	15:56	60.8	60.4	58.4	58.8	62.3	63.4	61.0	64.0
17-May-11	13:30	14:00	54.8	58.0	57.5	57.4	56.5	56.7	56.9	59.9
23-May-11	13:36	14:06	57.0	58.5	56.3	57.2	56.8	58.0	57.4	60.4
27-May-11	11:24	11:54	56.7	57.2	56.9	56.1	57.8	58.2	57.2	60.2
Lim	it Level					-				75 dB(A)

 $^{^*}$ A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. In view of the results shown in *Tables 5-1*, all the values are well below 75dB(A), therefore, no Action or Limit Level exceedance was triggered during this reporting month.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- 6.01 The construction of marine outfall works was commenced on 9 May 2011, therefore, the marine water quality monitoring has been carried out in this reporting period. In this reporting period, 7 monitoring events have been carried out at the designated locations. The monitoring results including in-situ measurements and laboratory testing results are provided in *Appendix G*. The graphical plots are shown in *Appendix H*.
- 6.02 During the Reporting Period, field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 30.01 to 34.42 ppt, and pH value was within 7.62 to 8.28.
- 6.03 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids in this Reporting Period, are summarized in *Tables 6-1*, 6-2, 6-3 and 6-4. A summary of exceedances for the three parameters: dissolved oxygen (DO), turbidity and suspended solids are shown in *Table 6-5*.

Table 6-1 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

Sampling date			pth Ave. o ayer (mg/		nd Mid	DO conc. of Depth Ave. of Bottom Layer (mg/L)				Layer
	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2
17-May-11	6.32	5.93	5.71	5.35	5.62	6.22	5.66	5.55	5.24	5.66
19-May-11	5.94	5.13	5.39	8.71	6.50	5.86	5.17	5.30	6.86	6.12
21-May-11	5.12	5.59	4.97	5.54	7.09	5.08	5.34	5.15	5.51	6.32
23-May-11	4.82	4.76	5.01	7.72	5.12	4.74	4.33	4.81	6.07	4.78
25-May-11	8.83	6.73	7.71	9.42	8.39	7.72	6.01	6.79	9.29	6.36
27-May-11	7.09	7.30	7.19	8.44	7.69	7.26	6.94	7.20	7.77	7.36
31-May-11	8.42	12.26	8.72	13.42	8.63	7.82	11.82	8.08	10.38	8.15

Table 6-2 Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)

Compling data	7	Turbidity	Depth A	ve. (NTU	T)	SS Depth Ave. (mg/L)				
Sampling date	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2
17-May-11	4.55	4.63	5.03	5.38	5.92	5.25	5.87	3.75	5.70	5.57
19-May-11	5.40	6.84	5.49	4.61	4.06	6.75	6.57	5.65	6.27	3.17
21-May-11	4.99	6.98	7.35	6.33	6.89	5.70	3.97	5.20	2.93	4.23
23-May-11	4.99	7.08	6.43	8.25	8.14	3.35	4.27	5.80	3.17	3.20
25-May-11	4.00	5.27	5.26	5.95	6.95	3.95	3.63	4.45	2.57	7.03
27-May-11	2.75	4.92	6.10	6.20	6.15	6.20	4.33	5.10	3.20	3.20
31-May-11	10.60	9.70	11.38	9.65	9.88	6.50	5.67	7.50	4.43	5.37

Table 6-3 Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)

Sampling date	DO conc. of Depth Ave. of Surf. and Mid Layer (mg/L)				DO conc. of Depth Ave. of Bottom Layer (mg/L)					
	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2
17-May-11	5.74	5.93	6.56	5.30	4.99	5.37	5.66	5.04	4.82	5.35
19-May-11	5.26	4.27	3.92	5.33	4.40	4.81	4.00	3.75	4.80	4.08
21-May-11	7.62	5.58	6.06	7.71	6.55	7.22	5.63	5.89	7.02	6.43
23-May-11	5.70	5.80	5.87	7.16	6.15	5.09	5.46	5.27	6.21	5.66
25-May-11	5.52	5.57	6.83	8.68	7.60	5.84	5.41	7.88	7.93	5.31
27-May-11	6.44	10.05	6.63	9.47	6.64	6.92	8.86	6.87	8.34	5.49
31-May-11	9.33	8.17	9.40	5.17	5.96	10.02	6.65	9.19	4.90	5.34

Table 6-4 Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)

Compling data	П	Turbidity Depth Ave. (N			SS Depth Ave. (mg/L)					
Sampling date	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2
17-May-11	4.49	4.44	4.32	6.94	7.00	8.70	11.63	10.50	10.03	14.93
19-May-11	5.39	6.87	7.01	5.98	6.85	6.35	6.23	7.10	4.40	6.13
21-May-11	4.98	6.73	6.46	6.55	8.40	5.75	7.17	4.25	3.37	4.33
23-May-11	5.35	7.38	6.90	8.12	7.23	4.85	6.90	5.90	3.37	4.13
25-May-11	4.02	4.95	5.54	5.61	7.45	5.10	3.87	5.40	2.53	1.80
27-May-11	4.28	9.55	9.67	10.01	11.49	13.75	7.07	6.25	6.77	5.87
31-May-11	10.40	14.10	14.03	13.23	12.32	5.90	6.23	5.25	5.37	6.83

Table 6-5 Summarized Exceedances of Marine Water Quality

Station	DO (Ave of Surf. & mid-depth)		DO (Ave. of Bottom Layer)		Turbidity (Depth Ave.)		SS (Depth Ave)		Total Exceedance	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit
	Mid-Ebb									
WY1	0	0	0	0	0	0	0	0	0	0
WY2	0	0	0	0	0	0	0	0	0	0
WY3	0	0	0	0	0	0	0	0	0	0
				Mid	-Flood					
WY1	0	0	0	0	0	0	0	0	0	0
WY2	0	0	0	0	0	0	0	0	0	0
WY3	0	0	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	0	0	0	0	0	0	0

6.04 For marine water monitoring, no exceedance of Action/Limit level was recorded in this reporting month. Therefore, no associated corrective actions were then required.

7 IMPACT MONITORING RESULTS – ECOLOGY MONITORING

- 7.01 Impact monitoring for coral shall be conducted initially at a frequency of once per week for the first three months of the marine works (HDD and dredging). If no exceedances are reported during this period, then the frequency may be reduced to twice every month for the reminder of the marine works.
- 7.02 Since the construction of marine outfall works was commenced on 9 May 2011, impact coral monitoring should be carried out accordingly. In this reporting period, impact coral monitoring have been conducted on 20 and 31 May 2011 and the impact coral monitoring report is presented in *Appendix M*.
- 7.03 According the EM&A Manuel, the impact coral monitoring shall be conducted at once per week in this stage. However, due to illness of the coral specialist of the project, the coral impact monitoring after the week of 20 May 2011 was postponed to 31 May 2011 with notifying to AFCD. The next monitoring was then done on 3 June 2011 to make up the missing monitoring which will be presented in the next reporting month.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix J*. Whenever possible, materials were reused on-site as far as practicable

Table 8-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ('000m³)	0.03	Tuen Mun Area 38
Reused in this Contract (Inert) ('000m ³)	0.014	-
Reused in other Projects (Inert) ('000m ³)	0	-
Disposal as Public Fill (Inert) ('000m ³)	0.6	Tuen Mun Area 38

Table 8-2 Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Recycled Metal (kg)	0	-
Recycled Paper / Cardboard Packing (kg)	0	-
Recycled Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	3.150	Yung Shue Wan RTS

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than 50m^3 in this monthly period

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulation by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this reporting period, site inspection was carried out on 3, 12, 17, 24 and 31 May 2011 and routine joint-site visit by IEC, RE, Leader and ET was carried out on 12 May 2011.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in **Appendix K**.

Table 9-1 Site Observations

Date	Findings / Deficiencies	Follow-Up Status
3 May 2011	The Contractor should place the oil container to proper storage area after use.	The container was taken to proper storage area on 3 May 2011.
12 May 2011	No environmental issue was observed during the site inspection.	N.A
17 May 2011	No environmental issue was observed during the site inspection.	N.A
24 May 2011	The setting of sedimentation tank need to be improved such as installing proper filters inside to improve the de-silting effectiveness.	The de-silting effectiveness of the tank is still under review.
31 May 2011	 The sedimentation facilities need to be further modified to improve the de-silting effectiveness. Turbid water was observed at the outfall of the site. The Contractor should carry out immediate action to avoid turbid water discharging. 	The water quality in the sed-tank was improved on 4 June 2011. More silt curtains were observed setting up along the sea bank and no turbid water was observed on 4 June 2011.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this reporting period. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

Donouting Dowled	Environmental Complaint Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature			
14 Sep – 28 Feb 2011	0	0	NA			
1 – 31 March 2011	0	0	NA			
1 – 30 April 2011	0	0	NA			
1 – 31 May 2011	0	0	NA			

Table 10-2 Statistical Summary of Environmental Summons

Donauting David	Environmental Summons Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature			
14 Sep – 28 Feb 2011	0	0	NA			
1 – 31 March 2011	0	0	NA			
1 – 30 April 2011	0	0	NA			
1 – 31 May 2011	0	0	NA			

Table 10-3 Statistical Summary of Environmental Prosecution

Domontino Dominal	Environmental Prosecution Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature			
14 Sep – 28 Feb 2011	0	0	NA			
1 – 31 March 2011	0	0	NA			
1 – 30 April 2011	0	0	NA			
1 – 31 May 2011	0	0	NA			

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Yung Shue Wan Environmental Monitoring and Audit Manual covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material to the surrounding water, and barges and hoppers should not be filled to a level which would cause the overflow of materials or sediment laden water during loading or transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force:
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill:
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

- 11.20 The following general good practice measures should be adopted to mitigate ecological impacts during marine works (including dredging and HOD);
 - Excess material from vessel loading should be cleaned from the decks and exposed fittings before vessels are moved to the backfilling location;
 - Dredging should cause no foam, oil, grease, scum, litter or other objectionable matter to be present on the water;
 - Adequate freeboard should be maintained to ensure that decks are not washed by wave action;
 - All pie leakages should be repaired promptly and plant Should not be operated with leaking pipes; and

- All banges and other vessels should maintain adequate clearance between vessels and the seabed at all stats of the tide and reduce operational speeds to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.
- 11.21 In the event of exceedances of ecological action or limit level, the Contractor will be required to revise his operations as a further mitigation measure. Revisions to the operation method may include (but not be limited to):
 - Reduction in dredging rate'
 - Restriction of dredging in particular areas to specific periods in the tidal cycle
- 11.22 Should repeated non-compliances with limit level(s) occur the Contractor shall modify his working method until he is able to achieve the required compliances with the limit levels to the satisfaction of the IC(E)

Fisheries Mitigation Measure

11.23 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.24 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree protective measures should be implemented to ensure trees identified as to be retained are satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area:
 - Conservation of top-soil for reuse.
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.25 The implementation schedule of mitigation measures is presented in *Appendix L*.
- 11.26 Leader had been implementing the required environmental mitigation measures according to the Yung Shue Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Month are summarized in *Table 11-1*.

Table 11-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures				
Water	 Drainage channels were provided to convey run-off into the treatment facilities; 				
Quality	and				
Quanty	 Drainage systems were regularly and adequately maintained. 				
Air Quality	• Cover all excavated or stockpile of dusty material by impervious sheeting or				
	sprayed with water to maintain the entire surface wet;				
	• Public roads around the site entrance/exit had been kept clean and free from dust;				
	and				
	 Tarpaulin covering of any dusty materials on a vehicle leaving the site. 				

Issues	Environmental Mitigation Measures
Noise	 Good site practices to limit noise emissions at the sources;
	• Use of quite plant and working methods;
	• Use of site hoarding or other mass materials as noise barrier to screen noise at
	ground level of NSRs; and
	To minimize plant number use at the worksite.
Waste and	• Excavated material should be reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if possible;
Management	• Waste arising should be kept to a minimum and be handled, transported and
	disposed of in a suitable manner;
	• The Contractor should adopt a trip ticket system for the disposal of C&D
	materials to any designed public filling facility and/or landfill; and
	• Chemical waste shall be handled in accordance with the Code of Practice on the
	Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12 IMPACT FORECAST

12.01 Key issues to be considered in the coming month include:

Water Quality

- Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and
- The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded;
 and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

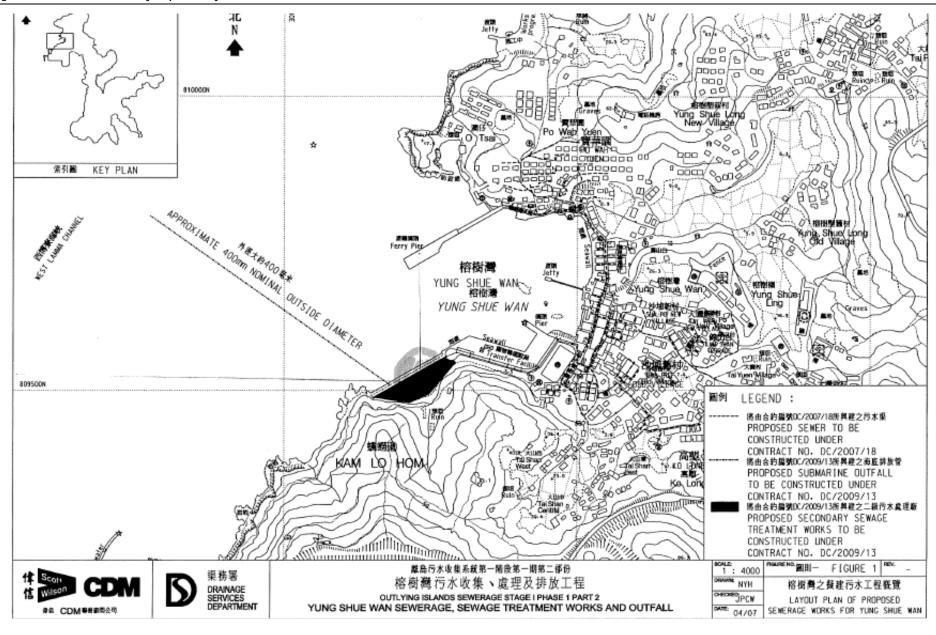
- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the 9th Monthly EM&A Report covering the construction period from 1 to 31 May 2011 (the Reporting Period).
- 13.02 No 1-hour TSP and 24-TSP monitoring result was found to be triggered the Action or Limit Level in this Reporting Period.
- 13.03 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this reporting month.
- 13.04 No exceedance of Action/Limit level was recorded in marine water monitoring in this reporting month.
- 13.05 No documented complaint, notification of summons or successful prosecution was received.
- 13.06 In this reporting period, site inspection was carried out on 3, 12, 17, 24 and 31 May 2011 after the relevant land work commencement at Yung Shue Wan Portion Area on 14 September 2010. Besides, routine joint-site visit by IEC, RE, Leader and ET was carried out on 12 May 2011. All the observation has been rectified during the next week site inspection. The environmental performance of the Project was therefore considered as satisfactory.

RECOMMENDATIONS


- 13.07 During wet season, the Contractor shall pay attention on the potential water impact as the construction site is adjacent to the coastline. Muddy water and other water quality pollutants via site surface water runoff into the coral zones of Yung Shue Wan seawall, Shek Kok Tsui and O Tsai should be avoided. Therefore, mitigation measures for water quality should be fully implemented.
- 13.08 Moreover, the construction dust mitigation measures identified at the EM&A Manuel such as watering at haul road and covering of dusty material should also be implemented and properly maintained in wet season.

Appendix A

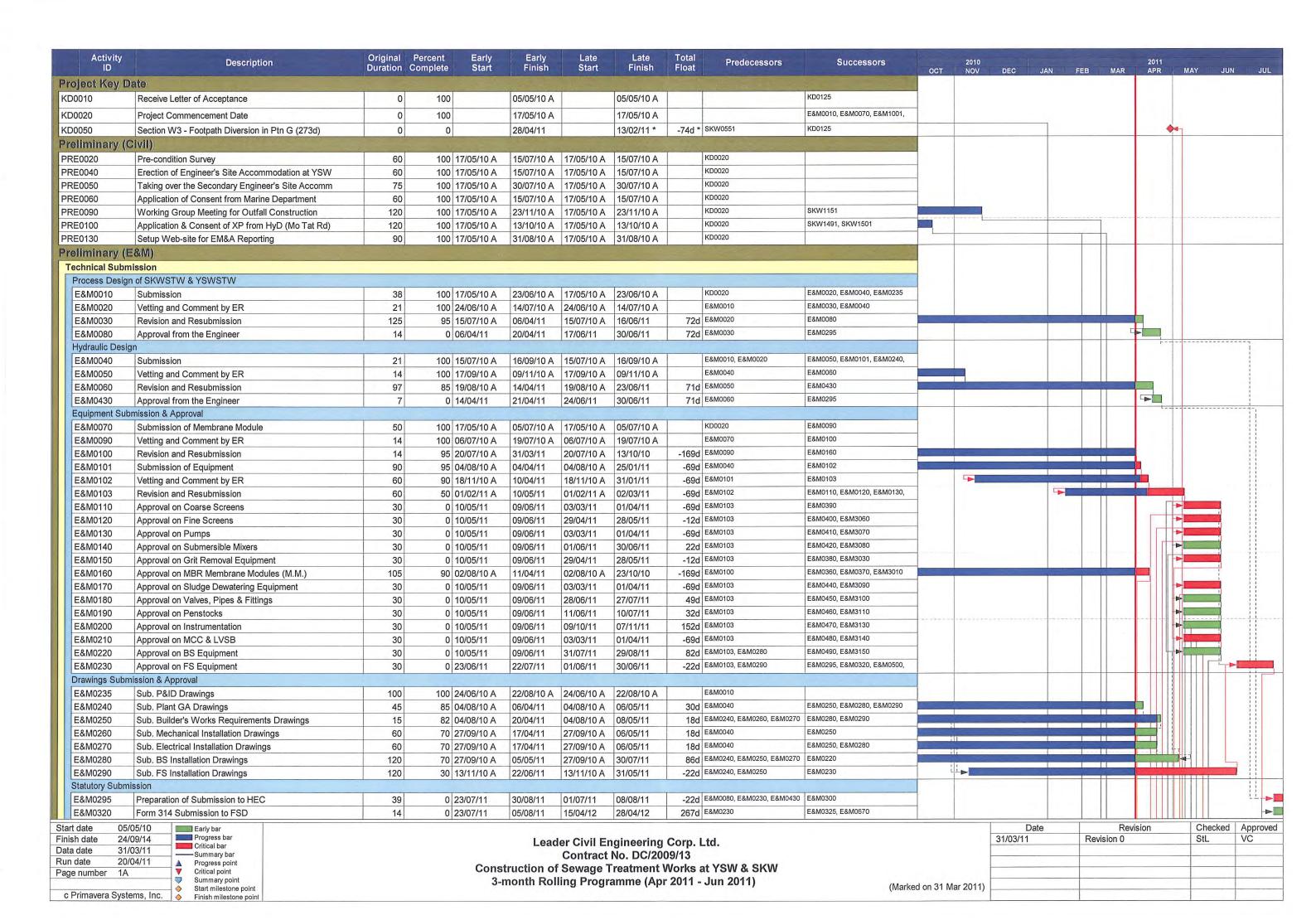
Site Layout Plan – Yung Shue Wan Portion Area

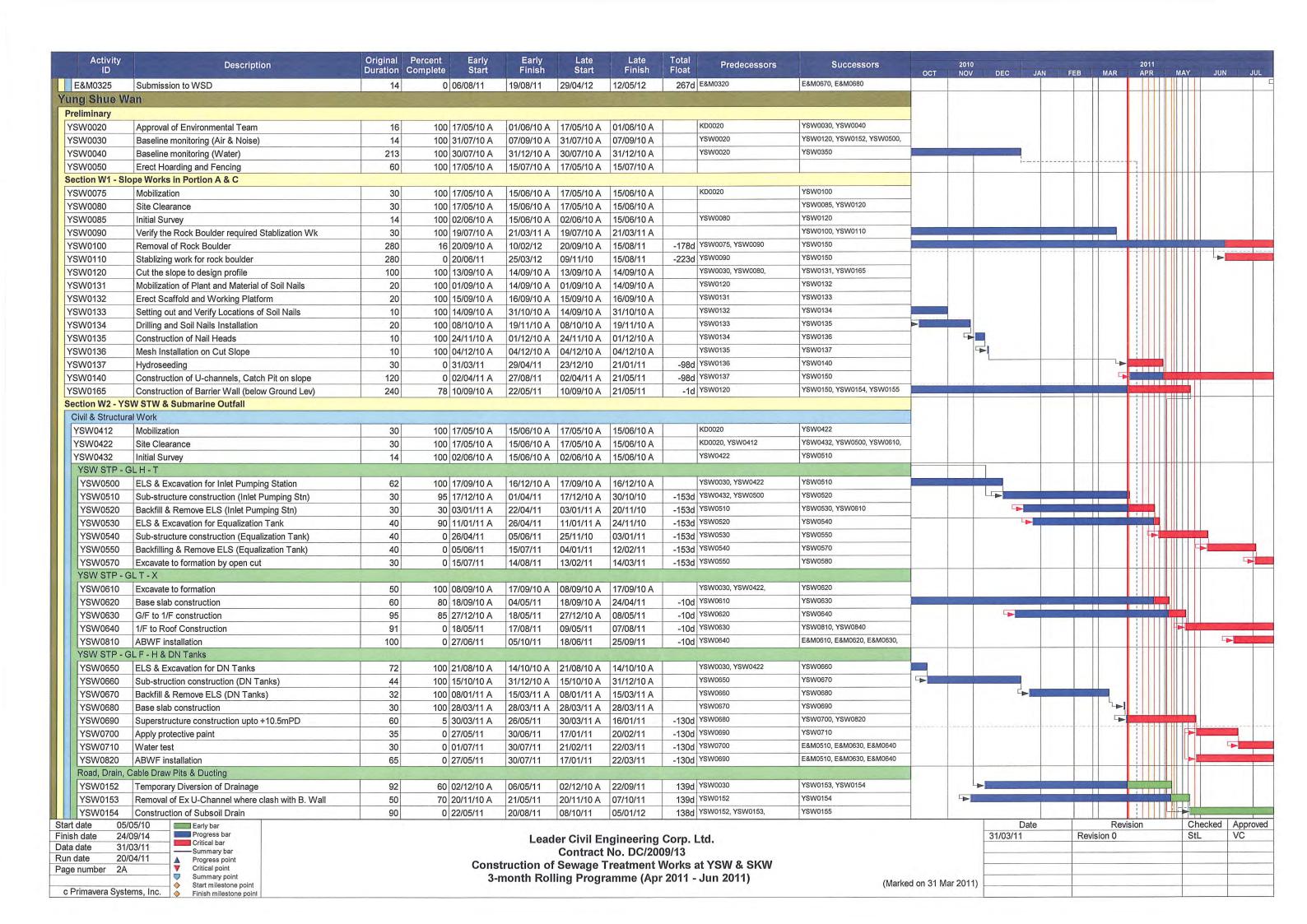
Appendix B

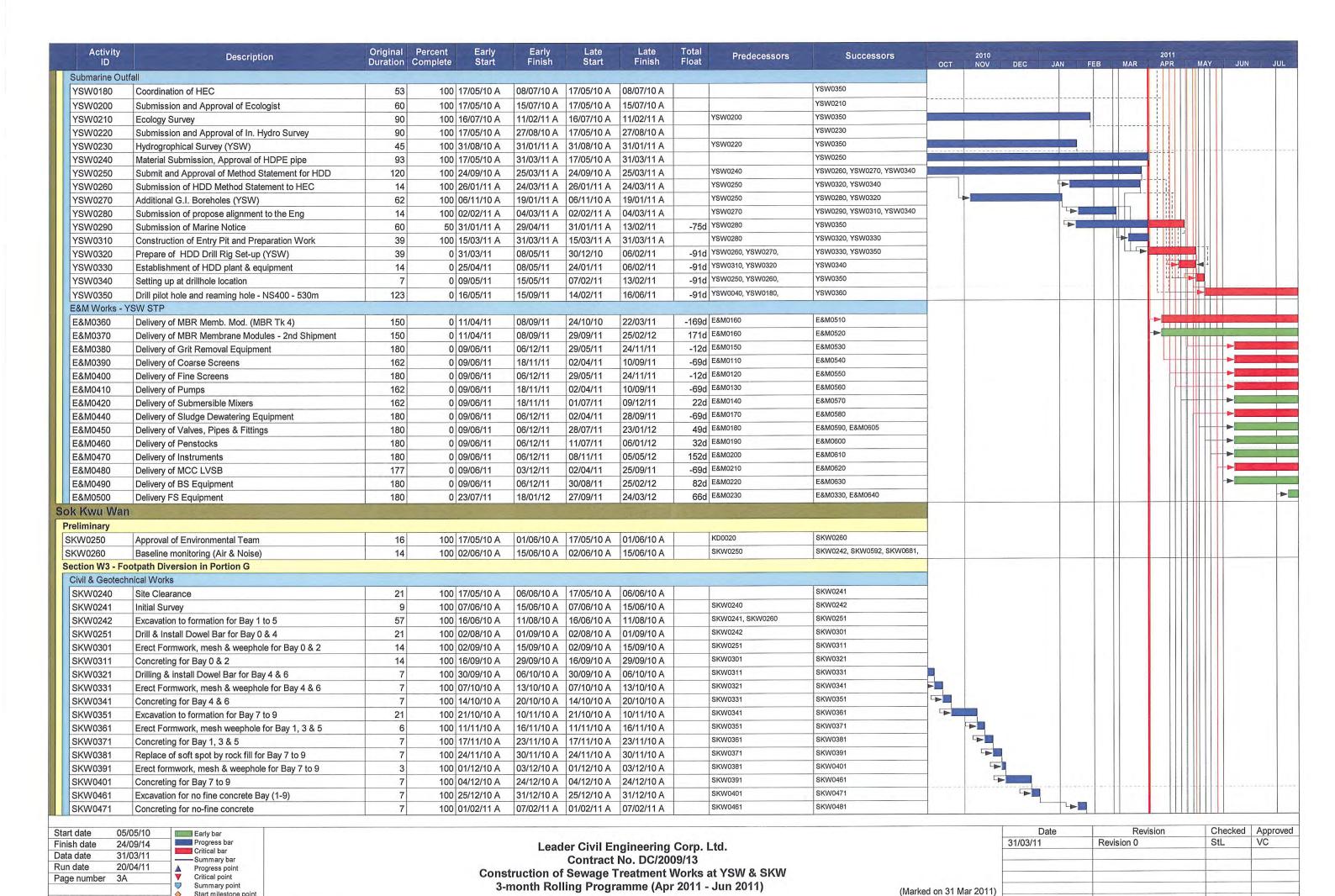
Organization Structure and Contact Details of Relevant Parties

Contact Details of Key Personnel

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr. AU Chi Kwong	-	-
SCJV	Engineer's Representative	Mr. Neil Wong	2982 0240	2982 4129
SCJV	Resident Engineer (Yung Shue Wan Portion Area)	Mr. Alfred Cheung	2982 0240	2982 4129
Scott Wilson	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922
Leader	Project Manager	Mr. Wilfred So	2982 1750	2982 1163
Leader	Site Agent/ Environmental Officer	Mr. Vincent Chan	2982 1750	2982 1163
Leader	Section Engineer (Yung Shue Wan)	Mr. Burgess Yip	2982 1750	2982 1163
Leader	Site Engineer (Yung Shue Wan)	Mr. Justin Cheng	2982 1750	2982 1163
Leader	Safety Officer	Mr. Edwin Leung	2982 1750	2982 1163
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Assistance Environmental Consultant	Mr. Ray Cheung	2959 6059	2959 6079
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079

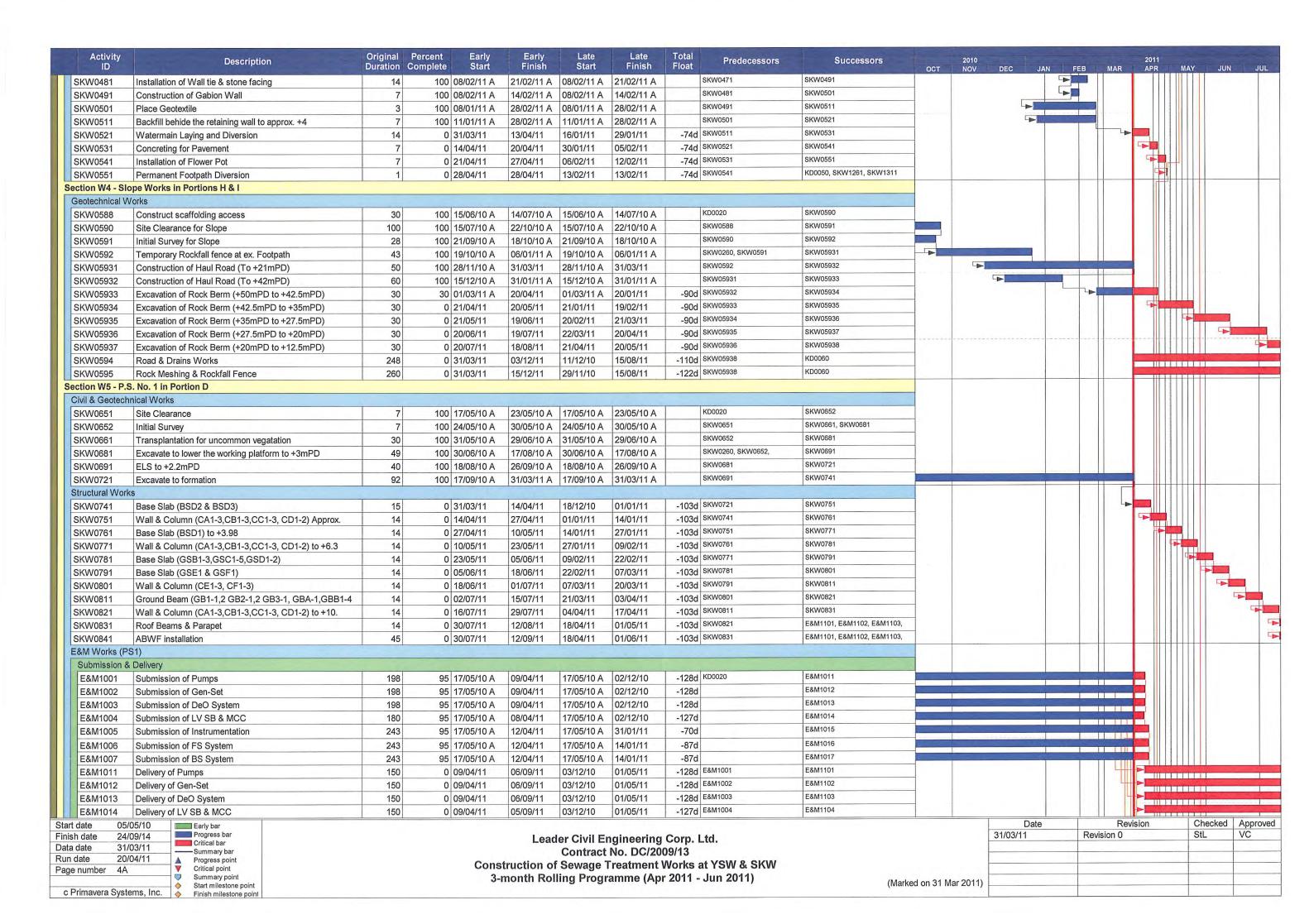

Legend:

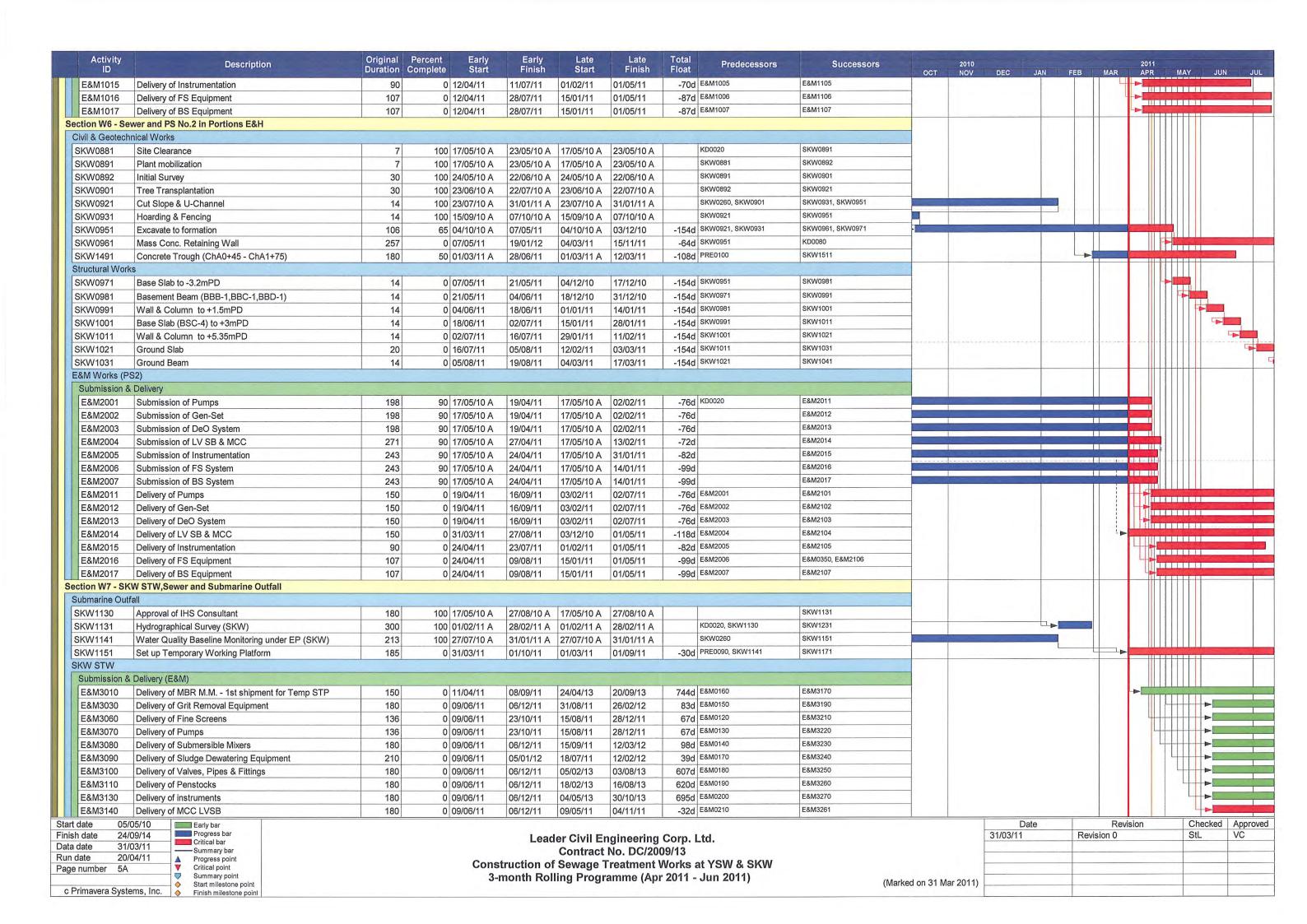

DSD (Employer) – Drainage Services Department
CDM (Engineer) – Scott Wilson CDM Joint Venture
Leader (Main Contractor) – Leader Civil Engineering Corporation Limited
Scott Wilson (IEC) – Scott Wilson Limited
AUES (ET) – Action-United Environmental Services & Consulting



Appendix C

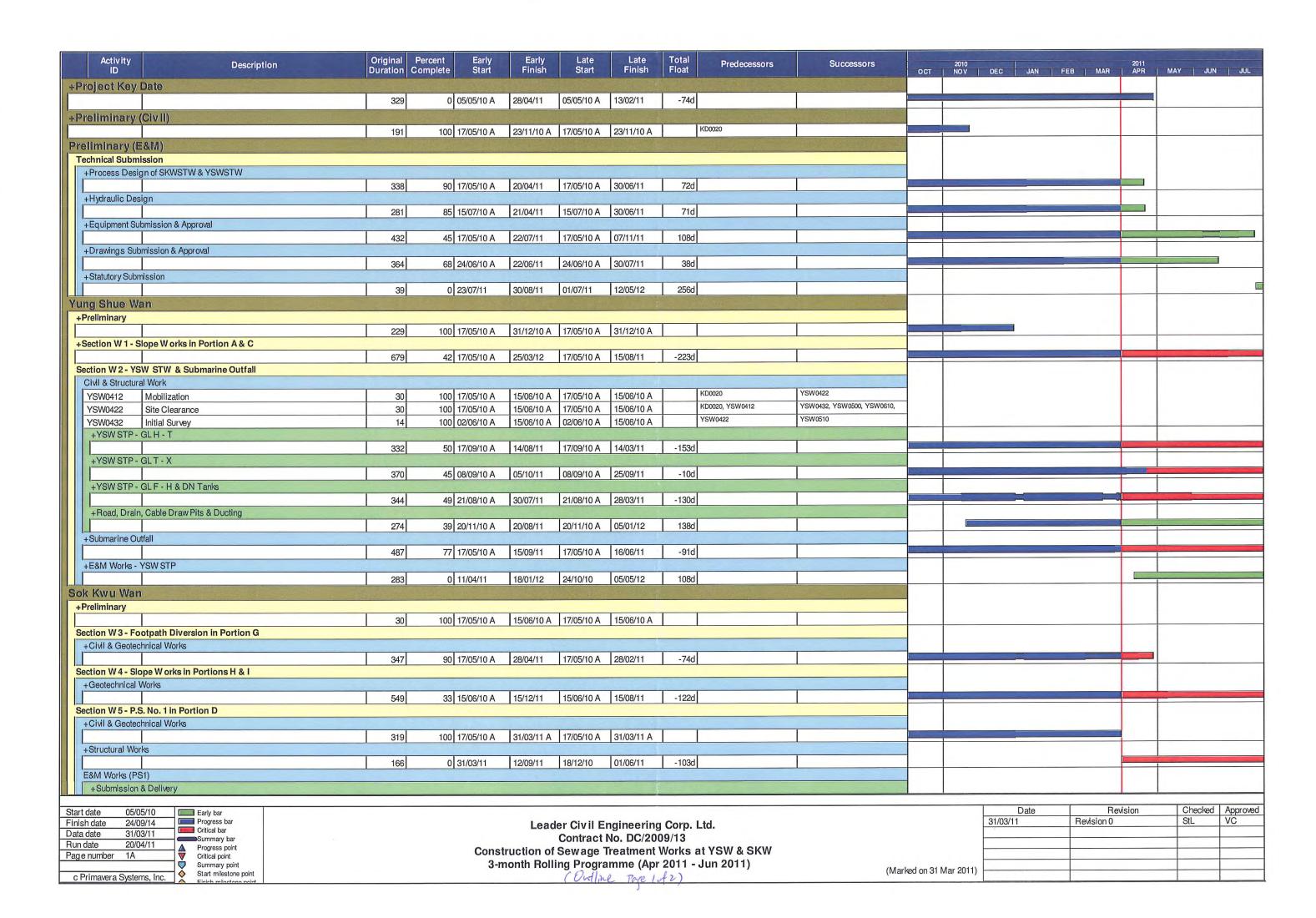
A Master and Three Months Rolling Construction Programs





c Primavera Systems, Inc.

Finish milestone poin


Activity	Description		Percent Ea		Late	Late	Total Predecessors	Successors		2010 2011								
ID	Description	Duration	Complete St	rt Finish	Start	Finish	Float		ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL
E&M3150	Delivery of BS Equipment	180	0 09/06/1	1 06/12/11	20/02/13	18/08/13	622d E&M0220	E&M3291										
E&M3160	Delivery of FS Equipment	180	0 23/07/	1 18/01/12	14/01/12	11/07/12	175d E&M0230	E&M0340, E&M3300										
Construction	n of Grid A-G																	
SKW1261	Excavate for SKW STW Structure (Grid A -G)	164	0 29/04/	1 09/10/11	14/02/11	27/07/11	-74d SKW0551	SKW1271, SKW1371							L			
Rising Main																		
SKW1481	Subm, Approval & Delivery of DI pipes	120	100 17/05/1	0 A 28/02/11 A	17/05/10 A	28/02/11 A	KD0020	SKW1501										
SKW1501	Concrete Trough (ChB0+00 - ChB1+20)	300	0 31/03/1	1 24/01/12	14/09/10	10/07/11	-198d PRE0100, SKW1481	SKW1521					L	—		_		
Section W8 - L	andscape Softworks in All Portions																	
SKW1591	Tree Survey	21	100 17/05/1	06/06/10 A	17/05/10 A	06/06/10 A	KD0020	SKW1621										
SKW1611	Preservation & Protection of Trees	822	40 17/05/	0 A 05/08/12	17/05/10 A	05/08/12	0 KD0020	KD0100, SKW1631	L									
SKW1621	Transplantation at SKW	60	100 07/06/1	0 A 05/10/10 A	07/06/10 A	05/10/10 A	SKW1591											

Start date	05/05/10	Early bar
Finish date	24/09/14	Progress bar
Data date	31/03/11	Critical bar ——Summary bar
Run date	20/04/11	▲ Progress point
Page number	6A	▼ Critical point
		Summary point Start milestone point
c Primavera	Systems, Inc.	Finish milestone point

Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW
3-month Rolling Programme (Apr 2011 - Jun 2011)

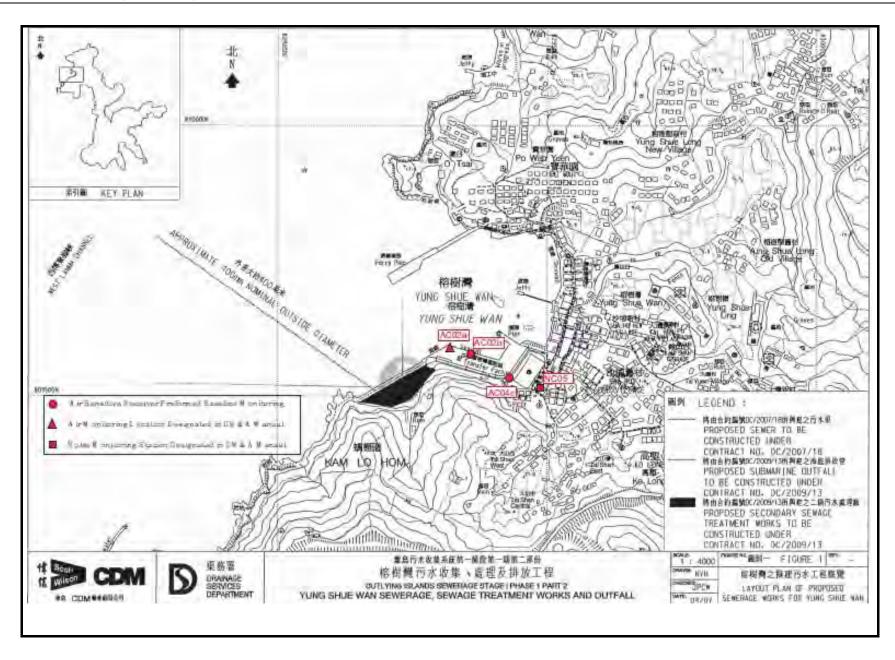
Date	Revision	Checked	Approved	
31/03/11	Revision 0	StL	VC	

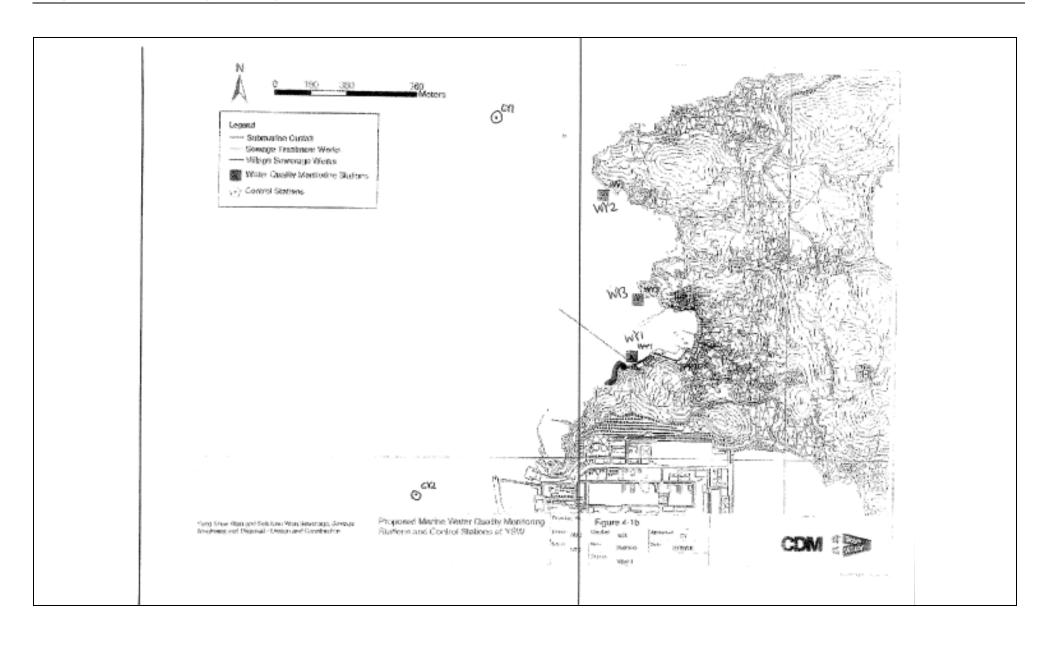
(Marked on 31 Mar 2011)

Activity ID	Description	Original Duration	Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	ОСТ	2010 NOV DEC	JAN	FEB MAR	2011 APR	MAY JUN	I JUL
		478	59 17/05/10 /	06/09/11	17/05/10 A	01/05/11	-128d					ne ne le nelle nelle				
Section W 6 - Sev	wer and PS No.2 in Portions E&H															
+Civil & Geotech	hnical Works															
		612	40 17/05/10 /	19/01/12	17/05/10 A	15/11/11	-64d									
+Structural Worl	ks															
		104	0 07/05/11	19/08/11	04/12/10	17/03/11	-154d									
E&M Works (PS	S2)															
+Submission 8	& Delivery	Juliani, la la														
		488	57 17/05/10 /	16/09/11	17/05/10 A	02/07/11	-76d			(a),						
Section W7 - SK	W STW ,Sewer and Submarine Outfall															
+Submarine Out	tfall															
		503	79 17/05/10 /	01/10/11	17/05/10 A	01/09/11	-30d						100			
SKWSTW	New York Control of the Control of t															
+Submission 8	& Delivery (E&M)															
		283	0 11/04/11	18/01/12	09/05/11	30/10/13	651d									
+Construction	n of Grid A-G					- Allendar										
		164	0 29/04/11	09/10/11	14/02/11	27/07/11	-74d									
+Rising Main																
		618	29 17/05/10 /	24/01/12	17/05/10 A	10/07/11	-198d									
+Section W8 - La	andscape Softworks in All Portions															
		811	45 17/05/10 /	05/08/12	17/05/10 A	05/08/12	0			M						

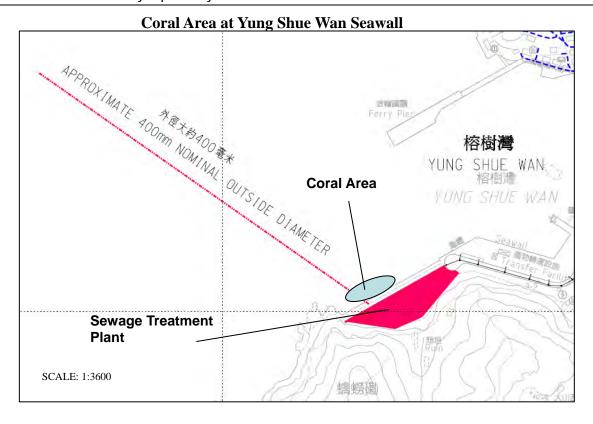
Start date	05/05/10		Early bar
Finish date	24/09/14		Progress bar
Data date	31/03/11		Critical bar Summary bar
Run date	20/04/11		Progress point
Page number	2A	7	Critical point
			Summary point
c Primavera	Systems, Inc.	\Diamond	Start milestone point

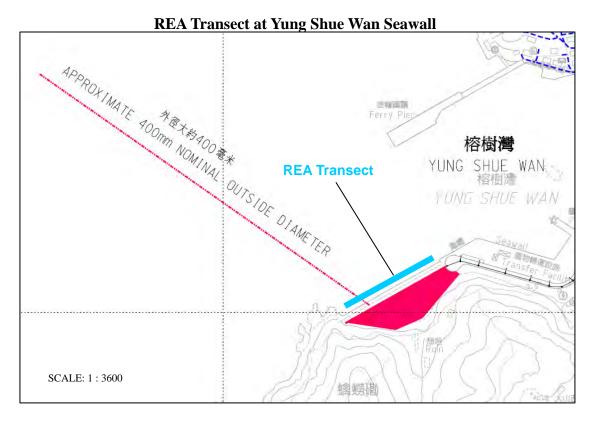
Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW
3-month Rolling Programme (Apr 2011 - Jun 2011)


	Date	Revision	Checked	Approved
	31/03/11	Revision 0	StL	VC
(Marked on 31 Mar 2011)				


Appendix D

Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality / Dive Surveys of Coral)





Coral Area at Sham Wan

Appendix E

Monitoring Equipments Calibration Certificate

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: YSW RE Offices

Date of Calibration: 1-Apr-11

Location ID: AC02b

Next Calibration Date: 1-Jun-11

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1016.5
20.5

Corrected Pressure (mm Hg)
Temperature (K)

762.375

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1483

Qstd Slope -> Qstd Intercept ->

2.00279

CALIBRATION

L								
	Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
l	No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
	18	5.2	5.2	10.4	1.628	59	60.00	Slope = 30.9168
	13	4.2	4.2	8.4	1.463	53	53.90	Intercept = 9.0895
	10	3.3	3.3	6.6	1.297	48	48.81	Corr. coeff. = 0.9989
	7	2.2	2.2	4.4	1.059	41	41.69	
	5	1.4	1.4	2.8	0.846	35	35.59	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

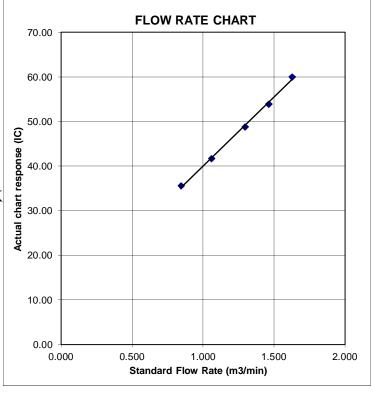
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: YSW Playground

Date of Calibration: 1-Apr-11

Location ID: AC04c

Next Calibration Date: 1-Jun-11

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1016.5
20.5

Corrected Pressure (mm Hg)
Temperature (K)

762.375 294

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1483

Qstd Slope -> Qstd Intercept ->

2.00279 -0.00494

CALIBRATION

- D1	TT20 (T.)	TT00 (D)	7720		-	7.0	T T T T T T
Plate	H20(L)	H2O (R)	H20	Qstd	1	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.1	5.1	10.2	1.612	59	60.00	Slope = 32.1600
13	4.1	4.1	8.2	1.445	54	54.91	Intercept = 8.1629
10	3.3	3.3	6.6	1.297	49	49.83	Corr. coeff. = 0.9995
7	2.6	2.6	5.2	1.152	44	44.74	
5	1.4	1.4	2.8	0.846	35	35.59	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

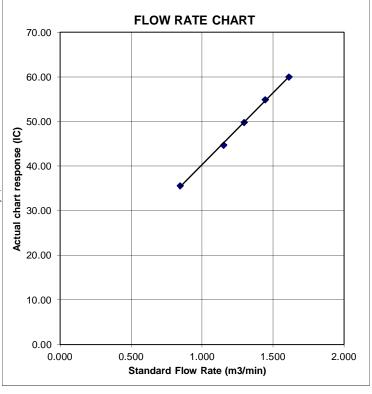
I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

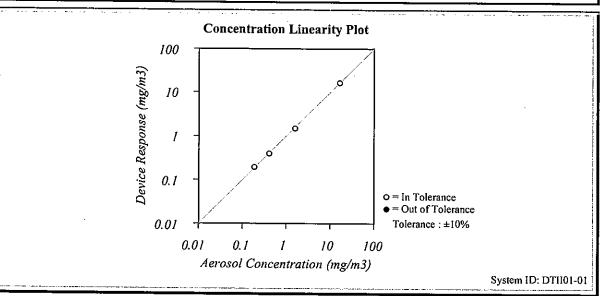

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure



CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

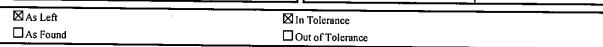
Environment Condition		· · ·	Madal	AM510	
Temperature	73.2 (22.9)	°F (°C)	Model		
Relative Humidity	38	%RH	C. C.IN.	44000000	
Barometric Pressure	29.08 (984.8)	inHg (hPa)	Serial Number	11008060	

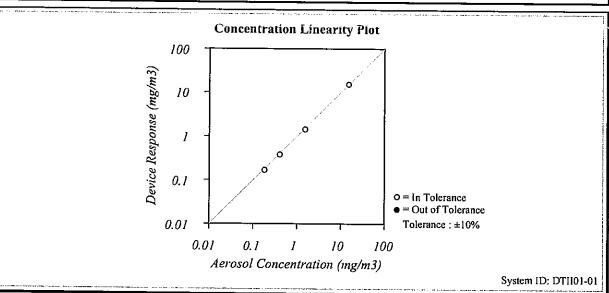
TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adusted to respirable mass of standard ISO 12103-1, Al test dust (Arizona dust). Our calibration ratio is greater than 1.2:1

Measurement Variable Photometer DC Voltage(Keithley) Barometric Pressure Humidity	System ID E003433 E002859 E003733 E002873	<u>Last Cal.</u> 05-17-10 01-05-10 12-26-09 02-23-10	Cal. Due 11-17-10 01-05-11 12-26-10 02-23-11	Measurement Variable Flow and temperature Microbalance Temperature Pressure	System ID E003434 E003403 E002873 E003440	Last Cal. 04-21-10 01-07-10 02-23-10 08-26-09	Cal. Due 04-21-11 01-07-11 02-23-11 08-26-10
---	---	--	--	---	---	---	--

Tao Vans
Calibrated

Final Function
Check
Date




CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition	Madal		
Temperature	- Model		
Relative Humidity	38	%RH	
Barometric Pressure	28.96 (980.7)	inHg (hPa)	Serial Number

Model AM510
Serial Number 11008017

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adusted to respirable mass of standard ISO 12103-1, Al test dust (Arizona dust). Our calibration ratio is greater than 1.2:1

Photometer E002 DC Voltage(Keithley) E002 Barometric Pressure E003	tem ID Last Cal. 03433 05-17-10 02859 01-05-10 03733 12-26-09 02-23-10	Cal. Due 11-17-10 01-05-11 12-26-10 02-23-11	Measurement Variable Flow and temperature Microbalance Temperature Pressure	System ID E003434 E003403 E002873 E003440	Last Cal. 04-21-10 01-07-10 02-23-10 08-26-09	Cal. Due 04-21-11 01-07-11 02-23-11 08-26-10
--	--	--	---	---	---	--

Sona H.

Final Function Check

August 6, 2010

Date

Calibrated

© GOES 346

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate No.: C112202

Certificate of Calibration

This is to certify that the equipment

Description: Integrating Sound Level Meter (EQ010)

Manufacturer: Bruel & Kjaer

Model No.: 2238

Serial No.: 2285721

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C112202.

The equipment is supplied by

Co. Name: Action-United Environmental Services and Consulting

Address: Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

Date of Issue: 19 April 2011

Certified by:

輝 創 工 程 有 限 公 司

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112202

Calibration Report

ITEM TESTED

DESCRIPTION : Integrating Sound Level Meter (EQ010)

MANUFACTURER:

Bruel & Kjaer

MODEL NO.

2238

SERIAL NO.

2285721

TEST CONDITIONS

AMBIENT TEMPERATURE : $(23 \pm 2)^{\circ}$ C

RELATIVE HUMIDITY : $(55 \pm 20)\%$

LINE VOLTAGE

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 18 April 2011

JOB NO. : IC11-0947

TEST RESULTS

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested by:

Date: 19 April 2011

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112202

Calibration Report

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the B & K Acoustic Calibrator 4231, S/N: 2713428 was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID CL280

Description

Certificate No.

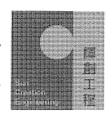
CL280 CL281 40 MHz Arbitrary Waveform Generator

C110018

Multifunction Acoustic Calibrator

C1006860

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level


6.1.1 Reference Sound Pressure Level

	UUT Setting				Applied Value		IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

	UUT Setting			Applied	d Value	UUT
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112202

Calibration Report

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT Setting			Applied	d Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.0	Ref.
	L_{ASP}		S			94.0	± 0.1
	L_{AIP}		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	UUT Setting			Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Burst	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	L_{AFP}	A	F	106.0	Continuous	106.0	Ref.
	L_{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L_{ASP}		S		Continuous	106.0	Ref.
	L_{ASMax}				500 ms	101.9	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

		Setting		Appli	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L_{AFP}	A	F	94.00	31.5 Hz	54.6	-39.4 ± 1.5
					63 Hz	67.7	-26.2 ± 1.5
					125 Hz	77.7	-16.1 ± 1.0
					250 Hz	85.2	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.8	-1.1 (+1.5; -3.0)
					12.5 kHz	89.7	-4.3 (+3.0 ; -6.0)

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112202

Calibration Report

6.3.2 C-Weighting

C Troisiting)						
	UUT	Setting		Appli	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	_	(dB)	(dB)
50 - 130	L_{CFP}	С	F	94.00	31.5 Hz	91.1	-3.0 ± 1.5
					63 Hz	93.2	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	94.0	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	90.9	-3.0 (+1.5 ; -3.0)
					12.5 kHz	87.8	-6.2 (+3.0 ; -6.0)

6.4 Time Averaging

	UUT	Setting		Applied Value			UUT	IEC 60804		
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
30 - 110	L _{Acq}	A	10 sec.	4	1	1/10 1/10 ²	110.0	100	99.9	± 0.5
			60 sec.		_	1/10		90 80	89.6 79.3	± 0.5 ± 1.0
			5 min.			1/104		70	69.9	± 1.0

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : $31.5 \, \text{Hz} - 125 \, \text{Hz}$: $\pm 0.40 \, \text{dB}$

250 Hz - 500 Hz : ± 0.30 dB 1 kHz : ± 0.20 dB 2 kHz : ± 0.40 dB 4 kHz : ± 0.50 dB 8 kHz : ± 0.70 dB

12.5 kHz : \pm 1.20 dB

104 dB: 1 kHz : \pm 0.10 dB (Ref. 94 dB) 114 dB: 1 kHz : \pm 0.10 dB (Ref. 94 dB)

Burst equivalent level : ± 0.2 dB (Ref. 110 dB continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate No.: C112201

Certificate of Calibration

This is to certify that the equipment

Description: Acoustical Calibrator (EQ082)

Manufacturer: Bruel & Kjaer

Model No.: 4231

Serial No.: 2713428

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C112201.

The equipment is supplied by

Co. Name: Action-United Environmental Services and Consulting

Address: Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

Date of Issue: 19 April 2011

Certified by:

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112201

Calibration Report

ITEM TESTED

DESCRIPTION : Acoustical Calibrator (EQ082)

MANUFACTURER: Bruel & Kjaer

MODEL NO. : 4231

SERIAL NO. : 2713428

TEST CONDITIONS

AMBIENT TEMPERATURE : $(23 \pm 2)^{\circ}$ C RELATIVE HUMIDITY : $(55 \pm 20)^{\circ}$

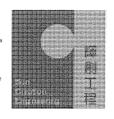
LINE VOLTAGE : ---

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 18 April 2011 JOB NO.: IC11-0947

TEST RESULTS


The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested by:

Date: 19 April 2011

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112201

Calibration Report

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment:

Equipment ID CL130 CL281 TST150A

<u>Description</u>
Universal Counter
Multifunction Acoustic Calibrator
Measuring Amplifier

Certificate No. C103289 C1006860 C101008

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark: - The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM

CLIENT: ADDRESS:

ACTION UNITED ENVIRO SERVICES RM A 20/F., GOLDEN KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD.

KWAI CHUNG,

N.T., HONG KONG.

PROJECT:

WORK ORDER: HK1110511 LABORATORY: HONG KONG 09/05/2011 DATE RECEIVED: DATE OF ISSUE: 13/05/2011

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity, Temperature and Turbidity

Description:

YSI Sonde

Brand Name:

Model No.: Serial No.:

YSI 6820 / 650MDS 02J0912 / 02K0788AA

Equipment No.:

Date of Calibration: 11 May, 2011

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone: 852-2610 1044 Fax: 852-2610 2021

Fmail: hongkong@alsglobal.com

> Mr Chan Kwok Fai, Godfrey Laboratory Manager Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: HK1110511 Date of Issue: 13/05/2011

Client: ACTION UNITED ENVIRO SERVICES

Description: YSI Sonde

Brand Name: YSI

Model No.: YSI 6820 / 650MDS Serial No.: 02J0912 / 02K0788AA

Equipment No.: --

Date of Calibration: 11 May, 2011

Date of next Calibration:

11 August, 2011

Parameters:

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
4.18	4.13	-0.05
5.70	5.74	0.04
8.36	8.43	0.07
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.00	4.09	0.09
7.00	6.85	-0.15
10.00	10.11	0.11
	Tolerance Limit (±unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0.0	0.00	1 22
10.0	10.19	1.9
20.0	20.81	4.0
30.0	31.09	3.6
	Tolerance Limit (±%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
10.5	12.0	1.5
25.5	25.3	-0.2
46.0	44.2	-1.8
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey

Laboratory Manager - Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: HK1110511 Date of Issue: 13/05/2011

Client: ACTION UNITED ENVIRO SERVICES

Description: YSI Sonde

Brand Name: YSI

Model No.: YSI 6820 / 650MDS Serial No.: 02J0912 / 02K0788AA

Equipment No.: --

Date of Calibration: 11 May, 2011 Date of next Calibration: 11 August, 2011

Parameters:

Turbidity Method Ref: APHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	3.8	-5.0
10	10.5	5.0
20	21.4	7.0
50	47.7	-4.6
100	96.4	-3.6
	Tolerance Limit (±%)	10.0

Mr Chan Kwok Fai, Godfrey Laboratoly Manager - Hong Kong

Appendix F

Event and Action Plan

Air Quality

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	Check monitoring data submitted by ET; Check Contractor's working method.	Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
	•	LIMIT LEVEL		
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Exceedance for two or more consecutive samples	1. Notify IC(E), ER, Contractor and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	1. Review the analysed results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the ER accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures are properly implemented.	Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IC(E) within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

EVENT		ACTIO	ON .	
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	submitted by ET and Contractor's working methods	 Confirm receipt of notification of non-compliance in writing; and Notify Contractor 	 Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and Amend working methods if appropriate
Exceedance for two or more consecutive sampling days	 Same as the above; Inform ICE, Contractor, ER, EPD and AFCD; Discuss mitigation measures with IC(E), RE and Contractor; Ensure well implementation of mitigation measures; and Increase the monitoring frequency to daily until no exceedance of Action Level 	 Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and Supervise the implementation of mitigation measures. 	 Discuss with IC(E) on the proposed mitigation measures; Ensure well implementation of mitigation measures; and Assess the effectiveness of the implemented mitigation measures 	 Same as the above; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IC(E), and ER; and Implement the agreed mitigation measures
		LIMIT LEVEL		
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss mitigation measures with IC(E), RE and Contractor 	Check monitoring data submitted by ET and Contractor's working method Discuss with ER and Contractor on possible remedial actions; and Review the proposed	 Confirm receipt of notification failure in writing; and Discuss with IC(E), ET and Contractor on the proposed mitigation measures; and Request Contractor to review the working methods 	Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER
Exceedance for two or more consecutive sampling days	 Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	Same as the above; and Supervise the Implementation of mitigation measures	 Same as the above; Ensure well implementation of mitigation measures Make agreement on the mitigation measures to be implemented; and Consider and instruct, if necessary, the Contractor to stow down or to stop all or part of the construction activities until no exceedance of limit level 	measures; 4. Resubmit proposals of mitigation measures if problem still not under control; and

Coral Monitoring

EVENT	ACTION		
	ET	CONTRACTOR	ER/ IC(E)
Action Level being exceeded	Inform contractor, AFCD and EPD immediately; Discuss mitigation measure with ER/IC(E) and Contractor; Ensure mitigation measures are implemented.	Inform the Engineer and confirm notification of the non-compliance in writing; Propose mitigation measure to ER/IC€ within 1 working day and discuss with Et and ER/IC(E); Ensure mitigation measures are implemented.	Inform contractor, Review water quality monitoring data; Determine whether water quality monitoring data shows effects attributable to the backfilling works; If water quality monitoring data indicates effects attributable to backfilling works, then make agreement on mitigation measures to be implemented; If water quality monitoring data indicates no effects attributable to backfilling works then Action Level is not triggered; Assess the effectiveness of the implemented mitigation measures.
Limit Level	Inform contractor, AFCD and EPD immediately; Discuss mitigation measure with ER/IC(E) and Contractor; Ensure mitigation measures are implemented.	Inform the Engineer and confirm notification of the non-compliance in writing; Suspend backfilling operations; Propose mitigation measure to ER/IC(E) within 3 working days and discuss with Et and ER/IC(E); Implement the agreed mitigation measures.	Inform contractor to suspend backfilling operations; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures.

Appendix G

Monitoring Data Sheet

24-hour TSP Monitoring Results - AC02b

Date of Calibration: 1-Apr-11

Slope =

30.9168

Next Calibration Date: 1-Jun-11

Intercept = 9.0895

		EI	LAPSED TI	ME	CHA	ART READ	DING			STANDARD		INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
3-May-11	23627	3779.07	3803.25	1450.80	35	37	36.0	27.3	1009.3	0.86	1253	2.8931	2.9421	0.0490	39
9-May-11	23680	3803.25	3828.02	1486.20	36	38	37.0	27.3	1007.5	0.89	1330	2.9157	2.9536	0.0379	29
14-May-11	23718	3828.02	3852.86	1490.40	34	36	35.0	25	1012.4	0.84	1248	2.7461	2.8259	0.0798	64
19-May-11	23679	3852.86	3876.13	1396.20	29	30	29.5	25.8	1010	0.66	918	2.9133	2.965	0.0517	56
25-May-11	23776	3876.13	3901.31	1510.80	30	33	31.5	23	1010	0.73	1098	2.7793	2.8061	0.0268	24
31-May-11	23772	3901.31	3925.64	1459.80	28	30	29.0	26.7	1007.4	0.64	932	2.7903	2.8534	0.0631	68

24-hour TSP Monitoring Results - AC04c

Date of Calibration: 1-Apr-11

32.1600 Next Calibration Date: 1-Jun-11 8.1629 Intercept =

Slope =

		EI	LAPSED TI	ME	CHA	ART READ	ING			STANDARD		INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
3-May-11	23628	6345.99	6370.21	1453.20	36	38	37.0	27.3	1009.3	0.89	1293	2.8881	2.9819	0.0938	73
9-May-11	23674	6370.21	6394.79	1474.80	35	37	36.0	27.3	1007.5	0.86	1265	2.9101	2.9652	0.0551	44
14-May-11	23716	6394.79	6419.13	1460.40	31	33	32.0	25	1012.4	0.74	1082	2.7357	2.8137	0.0780	72
19-May-11	23721	6419.13	6443.98	1491.00	30	32	31.0	25.8	1010	0.71	1054	2.7394	2.8153	0.0759	72
25-May-11	23777	6443.98	6468.61	1477.80	30	32	31.0	23	1010	0.71	1052	2.784	2.8993	0.1153	110
31-May-11	23774	6468.61	6492.5	1433.40	29	34	31.5	26.7	1007.4	0.72	1032	2.7954	2.894	0.0986	96

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan

Date 17-May-11

Date / Time	Location	Tide	Co-oro	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiuc	East	North	m	m	ဗ	mg/L	%	NTU	ppt	unit	mg/l
2011/5/17 12:36:25						1.095	24.97	6.34	91.5	4.1	31.18	8.06	5.8
2011/5/17 12:36:35	WY1	ME	839188	809539	3.9	1.017	24.96	6.30	90.9	4.5	31.18	8.06	5.0
2011/5/17 12:37:06	VV 1 1	ME	039100	609339	3.9	2.907	24.97	6.25	90.2	4.8	31.20	8.07	4.7
2011/5/17 12:37:14						2.908	24.97	6.19	89.3	4.9	31.20	8.07	7./
2011/5/17 13:45:42						1.072	24.99	6.14	88.9	3.5	31.64	8.20	6.2
2011/5/17 13:45:47	_					1.158	25.01	6.04	87.5	3.5	31.66	8.20	
2011/5/17 13:46:06	WY2	ME	829017	810409	7.3	3.620	25.07	5.77	83.8	4.0	31.86	8.20	3.9
2011/5/17 13:46:10	_					3.663	25.08	5.75	83.6	4.2	31.88	8.20	
2011/5/17 13:46:34	4					6.248	25.09	5.67	82.5	6.3	32.08	8.20	7.5
2011/5/17 13:46:38 2011/5/17 13:48:30						6.298	25.09	5.65 5.76	82.2 83.2	6.3 4.0	32.10 31.38	8.20 8.19	
2011/5/17 13:48:35	1					1.041	24.94	5.66	81.8	4.0	31.38	8.19	2.3
2011/5/17 13:49:04	WY3	ME	829219	809844	4.6	3.514	24.95	5.54	80.0	6.0	31.41	8.19	
2011/5/17 13:49:08	-					3.559	24.96	5.56	80.3	6.0	31.41	8.19	5.2
2011/5/17 13:32:26						1.047	24.92	5.58	80.0	4.0	30.07	8.12	
2011/5/17 13:32:32	1					1.147	24.93	5.44	78.0	3.9	30.09	8.11	5.2
2011/5/17 13:32:58						5.120	24.86	5.18	74.6	5.1	31.08	8.14	
2011/5/17 13:33:02	CY1	ME	828405	810806	10.2	5.167	24.85	5.18	74.6	5.3	31.10	8.14	2.7
2011/5/17 13:33:26						9.121	24.87	5.22	75.4	6.9	31.53	8.17	
2011/5/17 13:33:30	1					9.161	24.87	5.25	75.8	7.1	31.51	8.17	9.2
2011/5/17 13:03:22						1.013	24.86	6.33	90.7	5.3	30.03	8.10	
2011/5/17 13:03:32	1					1.007	24.86	5.89	84.3	5.3	30.03	8.09	5.2
2011/5/17 13:04:48	CY2) (T)	020011	000010	15.4	7.580	25.07	5.13	74.8	6.0	32.49	8.16	
2011/5/17 13:05:21		ME	828011	808812	15.4	7.663	25.09	5.11	74.6	6.0	32.56	8.17	6.5
2011/5/17 13:08:10						14.431	24.95	5.67	82.9	6.6	33.56	8.23	- 5
2011/5/17 13:08:48						14.351	24.94	5.65	82.7	6.3	33.58	8.23	3
2011/5/17 17:06:23						1.029	24.95	5.80	84.0	4.3	31.80	8.20	
2011/5/17 17:06:27						1.100	24.95	5.68	82.3	4.2	31.80	8.20	9.4
2011/5/17 17:06:51	WY1	MF	829181	809541	4.3	3.275	24.99	5.39	78.1	4.9	31.87	8.18	
2011/5/17 17:06:59	1					3.295	24.98	5.35	77.6	4.6	31.86	8.18	8
2011/5/17 17:45:42						1.072	24.99	6.14	88.9	4.0	31.64	8.20	10
2011/5/17 17:45:47						1.158	25.01	6.04	87.5	3.9	31.66	8.20	10
2011/5/17 17:46:06	11/1/2	ME	020200	010411	7.3	3.620	25.07	5.77	83.8	4.0	31.86	8.20	13
2011/5/17 17:46:10	WY2	MF	829209	810411	7.3	3.663	25.08	5.75	83.6	4.2	31.88	8.20	13
2011/5/17 17:46:34						6.248	25.09	5.67	82.5	5.3	32.08	8.20	11.9
2011/5/17 17:46:38						6.298	25.09	5.65	82.2	5.3	32.10	8.20	11.9
2011/5/17 17:34:52						1.033	25.33	6.59	95.8	4.2	31.39	8.16	11.9
2011/5/17 17:35:04	WY3	MF	829015	809844	4	1.095	25.32	6.53	94.9	4.4	31.38	8.16	11.7
2011/5/17 17:35:21	** 13	1411	027013	007044	7	3.063	25.33	5.01	72.9	4.2	31.42	8.16	9.1
2011/5/17 17:35:27						3.046	25.34	5.06	73.6	4.5	31.43	8.16	/
2011/5/17 17:58:27	1					1.086	24.90	5.85	83.5	6.3	29.49	8.12	11.1
2011/5/17 17:58:38	4					1.014	24.91	5.39	77.0	6.3	29.49	8.12	
2011/5/17 17:59:02	CY1	MF	828416	810779	11.8	5.235	24.89	4.97	71.1	6.7	29.94	8.12	9.6
2011/5/17 17:59:09	CY1	_				5.552	24.89	4.97	71.2	6.7	29.93	8.12	-
2011/5/17 17:59:36						10.803	24.90	4.76	68.6	7.8	31.11	8.15	9.4
2011/5/17 17:59:44						10.804	24.91	4.88	70.4	7.9	31.10	8.16	1
2011/5/17 17:20:01	4					1.013	24.82	5.02	72.4	6.4	31.44	8.15	10
2011/5/17 17:20:04	CY2					1.058	24.82	5.01	72.3	6.5	31.45	8.15	1
2011/5/17 17:21:44		MF	828021	808792	15.2	7.687	24.85	5.00	72.3	7.0 7.2	32.00	8.17	19.2
2011/5/17 17:21:54						7 560							
2011/5/17 17:21:54 2011/5/17 17:23:05	-					7.562 14.230	24.86 25.02	4.91 5.28	71.1 77.4	7.4	32.21 33.84	8.17 8.27	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan

Date 19-May-11

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Hue.	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/l
2011/5/19 14:15:06						1.088	25.55	5.86	85.5	5.1	31.19	7.98	7.4
2011/5/19 14:15:14	WY1	ME	920172	200545	4.9	1.020	25.55	6.02	87.7	5.0	31.18	7.98	7.4
2011/5/19 14:16:03	VV I I	ME	829173	809545	4.9	3.844	25.45	5.87	85.7	5.8	31.46	7.97	6.1
2011/5/19 14:16:10						3.863	25.45	5.84	85.2	5.8	31.49	7.97	0.1
2011/5/19 14:44:31						1.071	25.83	5.08	74.5	6.6	31.15	8.06	7.2
2011/5/19 14:44:38						1.039	25.86	5.14	75.3	6.7	31.11	8.05	1.2
2011/5/19 14:45:18	WY2	ME	829008	810429	7.2	3.653	25.82	5.14	75.5	6.7	31.77	8.04	6.4
2011/5/19 14:45:25	***12	IVIL	027000	010427	7.2	3.600	25.82	5.15	75.7	6.7	31.74	8.04	0.1
2011/5/19 14:46:07						6.219	25.72	5.13	75.7	7.3	32.73	8.05	6.1
2011/5/19 14:46:24						6.239	25.77	5.21	76.9	7.2	32.65	8.05	0.1
2011/5/19 14:26:49						1.056	25.84	5.36	78.7	5.3	31.57	8.00	8
2011/5/19 14:26:56	WY3	ME	829214	809837	4.4	1.046	25.80	5.41	79.4	5.2	31.56	8.00	_
2011/5/19 14:27:22			02321			3.424	25.71	5.30	77.7	5.9	31.79	7.99	3.3
2011/5/19 14:27:29						3.414	25.71	5.30	77.7	5.6	31.79	7.99	
2011/5/19 13:20:59						1.065	25.39	10.43	151.1	3.6	30.53	7.73	4
2011/5/19 13:21:09						1.046	25.41	9.76	141.4	3.5	30.49	7.72	
2011/5/19 13:22:45	CY1	ME	828410	810822	11.8	5.826	25.01	7.56	110.2	4.3	32.83	7.73	5.9
2011/5/19 13:23:33						5.772	25.08	7.07	102.6	3.7	31.75	7.71	
2011/5/19 13:24:18						10.846	24.95	6.79	99.5	6.4	33.68	7.78	8.9
2011/5/19 13:24:47						10.487	24.95	6.93	101.5	6.3	33.74	7.79	
2011/5/19 13:42:13						1.060	25.72	7.00	101.9	4.0	30.36	7.88	2.9
2011/5/19 13:42:21						1.018	25.71	7.03	102.4	3.8	30.37	7.88	
2011/5/19 13:42:55	CY2	ME	828022	808818	15.6	7.957	25.06	5.97	87.2	4.0	32.71	7.93	3.6
2011/5/19 13:43:02	-					7.922	25.06	6.01	87.5	4.1	32.49	7.91	1
2011/5/19 13:44:24						14.484	25.02	6.23	91.4	4.3	33.74	7.94	3
2011/5/19 13:44:35						14.614	25.03	6.01	88.1	4.3	33.70	7.94	
2011/5/19 09:49:06						1.076	25.30	5.29	77.2	5.1	32.10	8.13	
2011/5/19 09:49:09	1					1.076	25.30	5.23	76.3	5.3	32.10	8.13	6
2011/5/19 09:49:42	WY1	MF	829172	809560	4.1	3.036	25.17	4.88	71.5	5.7	33.26	8.13	
2011/5/19 09:49:54						3.181	25.17	4.73	69.4	5.6	33.32	8.12	6.7
2011/5/19 09:18:38						1.104	25.73	4.41	65.2	5.3	32.84	8.19	
2011/5/19 09:18:45						1.020	25.71	4.41	65.1	5.1	32.82	8.17	5.5
2011/5/19 09:20:10	*****		020010	040440	0.2	4.126	25.19	4.12	60.5	6.2	33.32	8.15	
2011/5/19 09:20:18	WY2	MF	829018	810410	8.2	4.146	25.17	4.15	60.9	6.3	33.33	8.15	4.1
2011/5/19 09:20:43						7.242	24.98	3.99	58.4	9.6	33.55	8.16	0.1
2011/5/19 09:20:51						7.261	24.96	4.00	58.5	8.8	33.56	8.16	9.1
2011/5/19 10:01:26						1.011	25.37	3.79	55.4	6.8	32.16	8.05	7
2011/5/19 10:01:33	WW	ME	929205	910912	5.0	0.995	25.38	4.05	59.2	6.4	32.16	8.05	7
2011/5/19 10:02:32	WY3	MF	828395	810812	5.9	4.876	25.04	3.80	55.7	7.6	33.55	8.09	7.0
2011/5/19 10:02:42						4.871	25.03	3.70	54.3	7.4	33.56	8.09	7.2
2011/5/19 08:20:25						1.060	25.15	5.75	83.5	4.9	31.58	8.03	4.0
2011/5/19 08:20:44						1.069	25.14	5.63	81.7	4.6	31.59	8.02	4.9
2011/5/19 08:23:58	CV1	ME	020100	000556	11.4	6.301	24.95	4.96	72.6	5.4	33.64	8.07	- 5
2011/5/19 08:24:11	CY1	MF	829180	809556	11.4	6.242	24.95	4.99	73.1	5.3	33.63	8.07)
2011/5/19 08:24:55]					11.441	24.94	4.76	69.7	7.9	33.70	8.07	2.2
2011/5/19 08:25:02						11.359	24.94	4.83	70.8	7.9	33.69	8.07	3.3
2011/5/19 08:53:20						1.085	25.32	4.63	67.4	6.3	31.53	8.01	£ 0
2011/5/19 08:53:35]					1.082	25.33	4.70	68.4	6.4	31.53	8.02	5.8
2011/5/19 08:59:51	CIVO) ATT	000000	010202	10.4	6.868	24.92	3.97	58.1	6.5	33.66	8.12	66
2011/5/19 09:00:19	CY2	MF	829020	810392	12.4	6.825	24.91	4.28	62.6	6.9	33.66	8.12	6.6
2011/3/17 07.00.17													
2011/5/19 09:00:56						12.439	24.93	4.14	60.6	7.6	33.64	8.12	6

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan

Date 21-May-11

Data / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100**	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/l
2011/5/21 14:37:34						1.053	26.42	5.12	76.4	4.3	32.76	8.17	6.4
2011/5/21 14:37:42	WY1	ME	829166	809555	5.5	1.078	26.39	5.12	76.5	4.1	32.78	8.17	0.4
2011/5/21 14:38:07	WII	ME	829100	809333	3.3	4.556	25.93	5.11	75.8	5.7	33.18	8.16	- 5
2011/5/21 14:38:20						4.535	25.95	5.05	74.9	5.9	33.16	8.16	3
2011/5/21 15:07:15						1.067	26.07	6.37	93.9	6.2	31.40	8.12	3.3
2011/5/21 15:07:22						1.008	26.10	5.32	78.3	6.1	31.31	8.16	3.3
2011/5/21 15:07:46	WY2	ME	829011	810421	7.3	3.670	26.10	5.26	78.0	7.0	32.56	8.22	3.2
2011/5/21 15:08:06	.,,,,	WIL	027011	010121	7.5	3.591	26.04	5.40	80.1	7.1	32.64	8.22	3.2
2011/5/21 15:08:20						6.338	25.81	5.32	78.6	7.9	32.88	8.22	5.4
2011/5/21 15:08:31						6.253	25.60	5.36	79.1	7.7	33.03	8.23	5
2011/5/21 14:54:26						1.068	26.38	4.85	72.0	6.8	31.87	8.20	6
2011/5/21 14:54:40	WY3	ME	829221	809838	4.8	1.095	26.40	5.09	75.6	6.9	31.83	8.20	·
2011/5/21 14:55:11			02,221			3.878	26.37	5.14	76.6	7.8	32.37	8.20	4.4
2011/5/21 14:55:29						3.796	26.39	5.15	76.7	8.0	32.46	8.20	
2011/5/21 14:15:54						1.029	26.21	5.52	80.6	6.5	29.40	8.15	3.3
2011/5/21 14:16:00						1.064	26.16	5.54	80.9	6.4	29.42	8.14	
2011/5/21 14:16:46	CY1	ME	828422	810812	11.8	5.985	25.58	5.56	81.5	5.2	31.94	8.15	2.1
2011/5/21 14:16:52						5.947	25.65	5.52	81.0	5.1	31.88	8.15	
2011/5/21 14:17:20	_					10.809	25.10	5.50	80.9	7.2	33.99	8.17	3.4
2011/5/21 14:17:32						10.886	25.09	5.51	81.1	7.7	34.01	8.17	
2011/5/21 13:45:51	_					1.065	28.26	7.17	110.6	6.1	33.19	8.19	4.8
2011/5/21 13:46:00						1.069	28.20	7.19	110.9	6.2	33.23	8.19	
2011/5/21 13:46:41	CY2	ME	828011	808822	17.2	8.602	25.17	7.08	104.4	6.9	34.22	8.15	3.9
2011/5/21 13:47:01			020011			8.635	25.16	6.91	101.8	6.9	34.21	8.13	
2011/5/21 13:50:28	_					16.185	25.06	6.35	93.6	7.8	34.34	8.11	4
2011/5/21 13:50:42						16.226	25.06	6.28	92.4	7.6	34.34	8.11	
2011/5/21 09:04:44						1.047	25.56	7.69	111.6	4.9	30.30	8.12	
2011/5/21 09:04:51	-					1.040	25.55	7.55	109.6	4.6	30.37	8.11	6.5
2011/5/21 09:07:09	WY1	MF	829173	809542	5.8	4.847	25.25	7.49	110.1	5.1	33.38	8.16	
2011/5/21 09:08:22						4.838	25.31	6.95	102.2	5.4	33.19	8.15	5
2011/5/21 09:43:54						1.033	25.70	5.54	81.2	4.4	31.66	8.12	
2011/5/21 09:44:03						1.083	25.73	5.52	80.6	4.3	30.92	8.12	4.4
2011/5/21 09:45:57						4.613	25.36	5.51	81.1	5.9	33.25	8.16	
2011/5/21 09:46:24	WY2	MF	828994	810413	9.2	4.612	25.25	5.76	84.6	6.2	33.35	8.16	8.1
2011/5/21 09:46:51						8.252	25.22	5.61	82.4	9.8	33.43	8.16	
2011/5/21 09:46:59						8.218	25.23	5.65	83.0	9.8	33.42	8.16	9
2011/5/21 09:31:03						1.053	25.58	6.12	88.9	6.1	30.45	8.09	
2011/5/21 09:31:10						1.092	25.58	6.00	87.2	6.4	30.40	8.09	2.4
2011/5/21 09:31:47	WY3	MF	829216	809836	4.9	3.887	25.38	5.82	85.6	6.9	33.15	8.15	
2011/5/21 09:31:54						3.854	25.43	5.95	87.5	6.6	33.03	8.15	6.1
2011/5/21 07:24:12						1.056	25.32	8.33	120.5	5.9	30.46	7.95	1 _
2011/5/21 07:24:30	1					0.994	25.33	7.92	114.7	6.1	30.46	7.97	3
2011/5/21 07:25:38	g		025	046=0	4.5	6.252	25.20	7.63	111.0	6.8	31.77	8.02	
2011/5/21 07:27:12	CY1	MF	828408	810784	12.4	6.265	25.20	6.94	101.1	6.9	31.99	8.04	4.3
2011/5/21 07:27:51	1					11.442	24.99	7.04	102.8	6.8	33.06	8.07	
2011/5/21 07:27:58						11.432	24.99	6.99	102.1	6.9	33.06	8.07	2.8
2011/5/21 08:04:35						1.051	25.37	6.58	95.2	8.1	30.17	8.02	
2011/5/21 08:04:47	1					1.088	25.37	6.53	94.4	8.4	30.22	8.02	3.4
2011/5/21 08:05:29	1 _					7.396	25.10	6.54	95.4	8.4	32.47	8.08	
2011/5/21 08:05:42	CY2	MF	827995	808813	14.8	7.427	25.10	6.53	95.2	8.4	32.47	8.08	3.6
	1					13.803	24.95	6.36	92.8	8.6	33.24	8.10	6
2011/5/21 08:06:12						12.002							

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan

Date 23-May-11

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide	East	North	m	m	್	mg/L	%	NTU	ppt	unit	mg/l
2011/5/23 16:54:44						1.098	25.77	4.77	69.3	4.6	29.69	8.22	2.2
2011/5/23 16:54:53	337371	ME	020150	000556	<i>5</i> 2	1.045	25.82	4.86	70.6	4.8	29.63	8.22	3.3
2011/5/23 16:55:23	WY1	ME	829158	809556	5.3	4.324	25.68	4.72	68.6	5.3	30.47	8.23	2.4
2011/5/23 16:55:58						4.318	25.63	4.75	69.2	5.4	30.75	8.24	3.4
2011/5/23 17:16:54						1.027	25.71	4.83	70.2	6.3	30.10	8.22	5.5
2011/5/23 17:18:02						1.028	25.72	4.82	70.1	6.5	30.09	8.24	5.5
2011/5/23 17:18:25	WY2	ME	829021	810407	7.5	3.744	25.70	4.71	68.5	7.1	30.42	8.24	3.9
2011/5/23 17:18:31	W 12	IVIL	027021	010407	7.5	3.711	25.70	4.69	68.4	7.4	30.45	8.24	3.7
2011/5/23 17:19:08						6.480	25.32	4.36	64.1	7.6	33.22	8.26	3.4
2011/5/23 17:19:26						6.442	25.24	4.29	63.0	7.7	33.39	8.27	J.,
2011/5/23 17:03:47	4					1.093	25.77	5.03	73.1	6.2	29.83	8.21	6.9
2011/5/23 17:03:55	WY3	ME	829222	809876	4.8	1.036	25.78	4.99	72.5	6.1	29.82	8.21	
2011/5/23 17:04:47						3.849	25.72	4.80	69.9	6.6	30.20	8.22	4.7
2011/5/23 17:04:55						3.870	25.72	4.81	70.0	6.9	30.19	8.22	
2011/5/23 15:54:36						0.998	25.70	8.08	117.1	7.6	29.62	8.20	2.5
2011/5/23 15:54:43	4					1.059	25.70	8.08	117.1	7.6	29.62	8.20	
2011/5/23 15:55:36	CY1	ME	828416	810806	12.9	6.444	25.63	7.37	107.3	8.5	30.77	8.19	3.5
2011/5/23 15:55:44	-					6.397	25.63	7.36	107.2	8.3 8.9	30.77	8.19	
2011/5/23 15:58:50 2011/5/23 15:59:00						11.921	25.12	6.09	89.7 89.2		34.27	8.24	3.5
2011/5/23 15:39:00						11.905 1.038	25.12 25.66	6.05 5.20	75.6	8.7 6.6	34.26 30.19	8.24 8.21	
2011/5/23 16:23:34	-					1.038	25.68	5.26	76.4	6.6	30.19	8.22	3.5
2011/5/23 16:27:07	1					8.131	25.35	5.06	74.5	7.6	33.38	8.27	
2011/5/23 16:27:15	CY2	ME	828002	808823	16.2	8.087	25.37	4.97	73.1	7.6	33.29	8.27	2.7
2011/5/23 16:28:02						15.285	25.11	4.78	70.3	10.4	34.18	8.27	
2011/5/23 16:28:28						15.207	25.11	4.77	70.2	10.2	34.17	8.27	3.4
2011/5/22 11.50.49						1 101	25.60	5.70	82.2	5.0	20.62	0.00	
2011/5/23 11:50:48	-					1.101	25.69	5.70	82.2	5.2	28.63	8.02	4.2
2011/5/23 11:50:56 2011/5/23 11:51:53	WY1	MF	829166	809555	5.8	0.952 4.832	25.70	5.69	82.0	5.5 5.5	28.55	8.02	
2011/5/23 11:51:59	-					4.832	25.16 25.16	5.08	74.6 74.8	5.3	33.55 33.56	8.12 8.12	5.5
2011/5/23 11:23:30						1.022	25.10	6.45	93.8	6.1	30.46	8.16	
2011/5/23 11:23:42	-					1.022	25.60	6.07	88.0	6.2	29.91	8.15	6.3
2011/5/23 11:24:27	1					4.121	25.23	5.35	78.5	6.9	33.26	8.17	
2011/5/23 11:24:41	WY2	MF	829018	810413	8.1	4.115	25.23	5.32	78.1	6.7	33.25	8.17	4.2
2011/5/23 11:25:34						7.136	25.15	5.45	80.0	9.1	33.58	8.18	
2011/5/23 11:25:42						7.143	25.15	5.46	80.2	9.3	33.58	8.18	10.2
2011/5/23 11:39:40						1.070	25.67	5.90	85.0	6.6	28.74	8.03	60
2011/5/23 11:40:00	111110	1.00	000000	000044	F. C	1.063	25.66	5.83	84.1	6.6	28.75	8.03	6.8
2011/5/23 11:42:34	WY3	MF	829222	809844	5.6	4.684	25.25	5.19	76.2	7.3	33.43	8.11	-
2011/5/23 11:42:41		<u></u>				4.641	25.24	5.34	78.5	7.2	33.44	8.11	5
2011/5/23 09:42:32						1.001	25.37	7.95	114.6	7.7	29.75	8.05	2
2011/5/23 09:42:43]					1.046	25.37	7.76	112.0	7.8	29.81	8.06	2
2011/5/23 09:45:02	CY1	MF	828422	810010	13.6	6.855	25.20	6.47	94.4	7.5	32.27	8.13	2.6
2011/5/23 09:45:24	CII	IVIF	020422	8422 810810	15.0	6.848	25.20	6.45	94.1	7.7	32.38	8.13	2.0
2011/5/23 09:46:49]					12.571	25.09	6.23	91.3	9.1	33.35	8.15	5.5
2011/5/23 09:47:07						12.630	25.09	6.18	90.5	9.1	33.35	8.15	ر.ر
2011/5/23 10:39:16	1					1.046	25.37	6.35	91.8	8.2	30.08	8.10	4
2011/5/23 10:39:23	1					1.120	25.37	6.51	94.1	7.5	30.09	8.10	7
2011/5/23 10:40:32	CY2	MF	828001	808822	18.8	9.430	25.12	5.87	86.0	6.6	33.21	8.16	4.4
2011/5/23 10:40:38	1 012	1,11	020001	000022	10.0	9.474	25.12	5.87	85.9	6.9	33.21	8.16	1.1
2011/5/23 10:43:07	4					17.802	25.05	5.68	83.2	7.2	33.67	8.17	4
2011/5/23 10:43:19						17.868	25.05	5.63	82.6	7.1	33.67	8.17	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan

Date 25-May-11

Part	D-4- /Ti	Tanting	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
DOINGS 18:19:04 WY1	Date / Time	Location	1100*	East	North	m	m	r	mg/L	%	NTU	ppt	unit	mg/l
DOINGS 18:19:04 WY1	2011/5/25 18:19:21						1.054	25.22	8.85	130.4	3.8	33.93	8.26	4
2011/5/25 1909-04	2011/5/25 18:19:30	37771	ME	020102	000570	4.0	1.027	25.22	8.81		3.8	31.40	8.26	4
2011/5/25 1909-733 2011/5/25 1909-734 2011/5/	2011/5/25 18:19:54	WYI	ME	829183	809570	4.9	3.878	25.20	7.81	113.5	4.0	31.68	8.25	2.0
2011/5/25 1908-04	2011/5/25 18:20:04						3.845	25.20	7.63	112.4	4.3	34.10	8.25	3.9
Dilizo 1908-04 Cyr	2011/5/25 19:07:33						1.003	25.22	7.13	105.1	5.3	33.87	8.26	3.7
Math	2011/5/25 19:07:41						1.041	25.23	7.13	105.0	5.2	33.88	8.26	5.7
4,484 25,20 6,30 92,9 5,2 34,06 8,25 7,005 25,21 6,00 88,5 5,3 34,23 8,24 3,5 2011/5/25 1908,46 WY3 ME 829214 809860 4,5 1,037 25,22 7,80 112,0 5,0 33,89 8,26 3,3 2011/5/25 1843,43 0 0 0 0 0 0 0 2011/5/25 1843,43 0 0 0 0 0 0 0 2011/5/25 1843,43 0 0 0 0 0 0 0 0 2011/5/25 1843,43 0 0 0 0 0 0 0 0 2011/5/25 1843,43 0 0 0 0 0 0 0 0 2011/5/25 1843,43 0 0 0 0 0 0 0 0 0	2011/5/25 19:08:04	WV2	ME	820008	810/13	Q.	3.994			93.7		34.06		3.7
TOUS 1908:46		W 12	IVIL	027000	010413	O	4.084	25.20		92.9		34.06	8.25	5.7
1,095 25,21 0,00									-					3.5
Me														0.0
Math Supplementary Suppl														3.3
3.512 25.20 6.83 100.6 5.4 34.05 8.26 5.5 2011/5/25 17/36/25 7.383 2011/5/25 17/36/25 7.383 2011/5/25 17/36/25 7.383 2011/5/25 17/36/25 7.383 2011/5/25 17/36/25 7.383 2.2011/5/25 17/36/25 7.383 2.2011/5/25 17/36/25 7.383 7		WY3	ME	829214	809860	4.5			_					
2011/5/25 17:08:35 CY1														5.6
DOILIS/ES 17:08-35 CY1 ME														
CY1 ME 828414 810817 12.4 6.268 25.20 10.11 149.5 5.8 34.71 8.29 1.8														2.2
2011 2														
11.445 25.18 9.39 138.9 6.0 34.84 8.26 3.7		CY1	ME	828414	810817	12.4			-					1.8
11.655 25.18 9.18 135.7 5.9 34.81 8.26 3.7														
2011/5/25 17:50:19 CY2 ME 828016 808819 16.5 2.521 9.22 135.8 6.5 34.03 8.27 7														3.7
1.041 25.22 8.83 130.2 6.3 34.05 8.27														
CY2 ME														7
2011/5/25 17:53:19														
15.478 25.18 6.40 94.7 7.8 34.67 8.24 8.5		CY2	CY2 ME	828016	808819	16.5								5.6
15.503 25.18 6.32 93.5 7.7 34.66 8.24 8.5														
2011/5/25 13:48:25 2011/5/25 13:49:03 2011/5/25 13:49:11 2011/5/25 13:49:11 2011/5/25 13:49:11 2011/5/25 13:49:11 2011/5/25 13:49:11 2011/5/25 13:49:11 2011/5/25 13:49:11 2011/5/25 13:49:11 2011/5/25 13:49:11 2011/5/25 13:49:11 2011/5/25 13:13:59 2011/5/25 13:														8.5
Mage														
Mage	2011/5/25 13:48:25						1.028	26.01	5.21	77.3	3.2	32.93	8.20	
2011/5/25 13:49:03 WY1				020162	000540									5.7
2011/5/25 13:49:11 2011/5/25 13:13:59 2011/5/25 13:14:20 2011/5/25 13:14:20 2011/5/25 13:14:20 2011/5/25 13:13:51 2011/5/25 13:13:52 2011/5/25 13:13:52 2011/5/25 13:14:20 2011/5/25 13:14:20 2011/5/25 13:14:20 2011/5/25 13:14:20 2011/5/25 13:14:20 2011/5/25 13:14:20 2011/5/25 13:14:20 2011/5/25 13:14:20 2011/5/25 13:14:20 2011/5/25 13:35:21 2011/5/25 13:35:21 2011/5/25 13:35:21 2011/5/25 13:35:22 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:23 2011/5/25 13:35:33 2011/5/25 13:35:33 2011/5/25 13:35:33 2011/5/25 13:35:33 2011/5/25 13:35:33 2011/5/25 13:35:33 2011/5/	2011/5/25 13:49:03	WYI	MF	829162	809543	4.8		25.53	5.89	86.8		33.12	8.18	4.5
2011/5/25 13:13:19 2011/5/25 13:13:59 2011/5/25 13:13:59 2011/5/25 13:13:59 2011/5/25 13:13:59 2011/5/25 13:13:59 2011/5/25 13:13:59 2011/5/25 13:13:59 2011/5/25 13:13:59 2011/5/25 13:13:59 2011/5/25 13:13:59 2011/5/25 13:35:21 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:52 2011/5/25 13:	2011/5/25 13:49:11						3.895	25.47	5.78	85.1	4.8	33.16	8.18	4.5
2011/5/25 13:13:51	2011/5/25 13:12:55						1.059	25.35	4.99	72.3	4.6	30.64	8.20	2.1
2011/5/25 13:13:59 2011/5/25 13:14:20 2011/5/25 13:14:31 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 11:39:33 2011/5/25 11:40:45 2011/5/25 11:40:45 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 12:16:10 2011/5/25 12:16:10 2011/5/25 12:16:10 2011/5/25 12:16:10 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:27:56	2011/5/25 13:13:19						1.046	25.31	5.64	81.6	4.5	30.51	8.19	3.1
2011/5/25 13:14:20 2011/5/25 13:14:20 2011/5/25 13:14:30 2011/5/25 13:35:21 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 11:39:24 2011/5/25 11:39:33 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 11:41:30 2011/5/25 12:16:10 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:	2011/5/25 13:13:51	WVO	ME	820002	810408	00	4.520	25.51	5.85	85.1	4.9	30.95	8.16	3.2
The first color of the first c	2011/5/25 13:13:59	WIZ	IVII	029002	010400	0.0			5.78		5.0		8.17	3.2
2011/5/25 13:35:21 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 13:35:29 2011/5/25 11:39:33 2011/5/25 11:39:33 2011/5/25 11:41:43 2011/5/25 11:41:43 2011/5/25 11:41:43 2011/5/25 11:41:43 2011/5/25 11:41:50 2011/5/25 11:41:50 2011/5/25 12:16:10 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:27:56 MF 829206 809859 4 1.042 26.93 7.69 116.1 5.4 33.07 8.18 5.4 1.062 27.05 5.96 90.0 5.3 33.02 8.18 5.4 1.062 27.05 5.96 90.0 5.3 33.02 8.18 5.4 117.5 5.8 33.31 8.17 5.4 1.023 25.16 7.98 116.6 4.9 32.79 8.10 4.2 1.048 25.13 9.04 132.4 5.6 33.07 8.18 2.1 2011/5/25 12:16:10 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:27:56														5.3
2011/5/25 13:35:29 2011/5/25 13:35:52 2011/5/25 13:35:52 2011/5/25 13:35:52 2011/5/25 13:35:52 2011/5/25 13:36:35 2011/5/25 11:39:24 2011/5/25 11:39:33 2011/5/25 11:41:00 2011/5/25 11:41:50 2011/5/25 12:16:10 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:27:56							7.844	25.34		78.8	5.2	31.58	8.17	5.5
2011/5/25 13:35:29 WY3 MF 829206 809859 4 1.062 27.05 5.96 90.0 5.3 33.02 8.18 2011/5/25 13:35:52														5.4
2011/5/25 13:35:52 2011/5/25 13:36:35 2011/5/25 11:39:24 2011/5/25 11:39:24 2011/5/25 11:41:00 2011/5/25 11:41:50 2011/5/25 11:41:50 2011/5/25 12:16:17 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:27:56 3.034 26:52 7.84 117.2 5.7 32:69 8.18 3.031 8.17 5.4 3.065 25.88 7.91 117.5 5.8 33.31 8.17 1.023 25.16 7.98 116.6 4.9 32:73 8.05 4.2 1.045 25.18 8.10 118.4 4.9 32:79 8.10 1.045 25.18 8.10 118.4 4.9 32:79 8.10 1.045 25.18 8.10 118.4 5.6 33.07 8.18 1.3 1.3 2011/5/25 11:41:50 2011/5/25 11:41:50 2011/5/25 12:16:10 2011/5/25 12:16:17 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:27:56		WY3	MF	829206	809859	4								5.1
2011/5/25 11:39:24 2011/5/25 11:39:24 2011/5/25 11:40:45 2011/5/25 11:41:00 2011/5/25 11:41:50 2011/5/25 11:41:50 2011/5/25 12:16:10 2011/5/25 12:16:17 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:27:56 3.065 25.88 7.91 11.5 5.8 33.31 8.17 1.023 25.16 7.98 116.6 4.9 32.73 8.05 4.2 1.045 25.18 8.10 118.4 4.9 32.79 8.10 1.045 5.748 25.13 9.04 132.4 5.6 33.07 8.18 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3		" •		02,200	22,000									5.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														4.2
2011/5/25 11:41:00 2011/5/25 11:41:43 2011/5/25 11:41:50 2011/5/25 12:16:10 2011/5/25 12:16:17 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:27:56 MF 828416 810808 11.4 5.748 25.13 9.04 132.4 5.6 33.07 8.18 1.3 5.748 25.13 9.04 132.4 5.6 33.07 8.18 8.17 2.1 1.048 25.19 7.86 115.5 6.2 33.48 8.17 2.1 1.048 25.13 8.44 123.5 6.2 33.07 8.18 2 1.050 25.15 8.53 124.8 5.8 33.07 8.18 2 2 2011/5/25 12:18:33 2011/5/25 12:18:33 2011/5/25 12:27:56		-							_					<u> </u>
2011/5/25 11:41:50 2011/5/25 11:41:50 2011/5/25 12:16:10 2011/5/25 12:16:17 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:27:56 2018/5/25 12:27:56		CY1	MF	828416	810808	11.4			-					1.3
2011/5/25 12:16:10 2011/5/25 12:16:17 2011/5/25 12:18:19 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:27:56 10.483 25.19 7.86 115.5 6.2 33.48 8.17 1.048 25.13 8.44 123.5 6.2 33.07 8.18 1.050 25.15 8.53 124.8 5.8 33.07 8.18 2.11/5/25 12:18:33 2.11/5/25 12:18:33 2011/5/25 12:27:56 827995 808794 17.8 10.483 25.19 7.86 115.5 6.2 33.49 8.19 1.050 25.15 8.53 124.8 5.8 33.07 8.18 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 1.048 25.13 8.44 123.5 6.2 33.49 8.18 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 1.048 25.13 8.44 123.5 6.2 33.07 8.18 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 1.048 25.13 8.44 123.5 6.2 33.07 8.18 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 2.11/5/25 12:18:19 7.86 115.5 6.2 33.48 8.17 2.11/5/25 12:18:19 7.86 115.5 6.2 33.07 8.18 2.11/5/25 12:18:19 7.86 125.5 125.5 2.11/5/25 12:18:19 7.86 125.5 125.5 2.11/5/25 12:18:19 7.86 125.5 125.5 2.11/5/25 12:18:19 7.86 125.5 125.5 2.11/5/25 12:18:19 7.86 125.5 125.5 2.11/5/25 12:18:19 7.86 125.5 125.5 2.11/5/25 12:18:19 7.86 125.5 125.5 2.11/5/25 12:18:19 7.86 125.5 125.5 2.11/5/25 12:18:18:19 7.86 125.5 125.5 2.11/5/25 12:18:19 7.86 125.5 125.5 2.11/5/25 12:18:19 7.86 125.5 125.5 2.11/5/25 12:18:19 7.86 125.5 125.5 2.11/5/25 12:18:19 7		CY1 M							_					<u> </u>
2011/5/25 12:16:10 2011/5/25 12:16:17 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:27:56 MF 827995 808794 17.8 1.048 25.13 8.44 123.5 6.2 33.07 8.18 2 1.050 25.15 8.53 124.8 5.8 33.07 8.18 2 1.050 25.15 8.53 124.8 5.8 33.07 8.18 2 1.050 25.15 8.53 124.8 5.8 33.07 8.18 1.4		1							_					2.1
2011/5/25 12:16:17 2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:27:56 MF 827995 808794 17.8 1.050 25.15 8.53 124.8 5.8 33.07 8.18 2														
2011/5/25 12:18:19 2011/5/25 12:18:33 2011/5/25 12:27:56 CY2 MF 827995 808794 17.8 9.030 25.16 6.73 98.8 7.2 33.49 8.19 9.087 25.18 6.71 98.6 7.3 33.58 8.18 1.4		-												2
2011/5/25 12:18:33 2011/5/25 12:27:56		1												
2011/5/25 12:27:56 16.857 25.23 5.33 78.6 9.2 34.12 8.18 2		CY2	MF	827995	808794	17.8								1.4
		1							-					1
	2011/5/25 12:27:56	1					16.857	25.23	5.33	77.9	9.2	34.12	8.18	2

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan

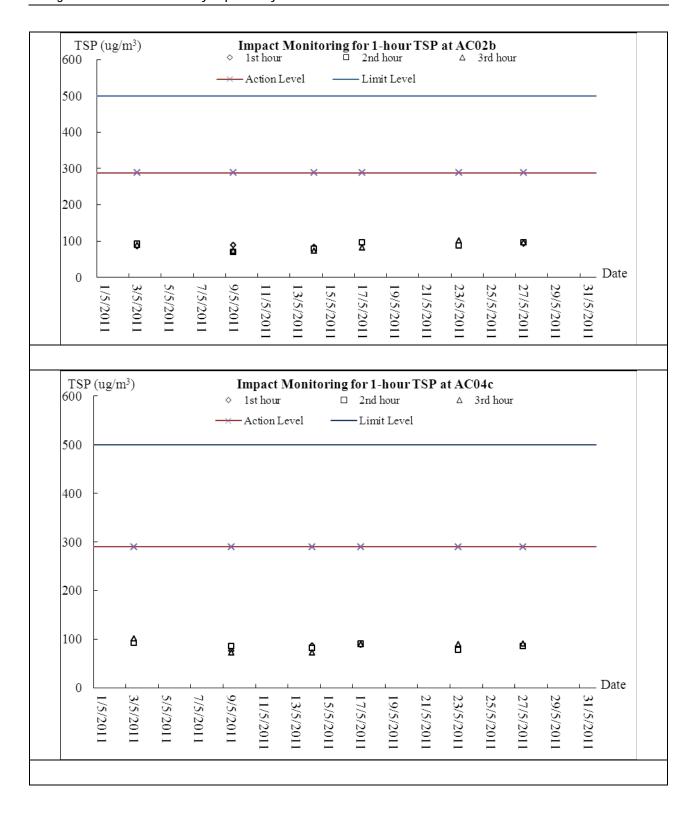
Date 27-May-11

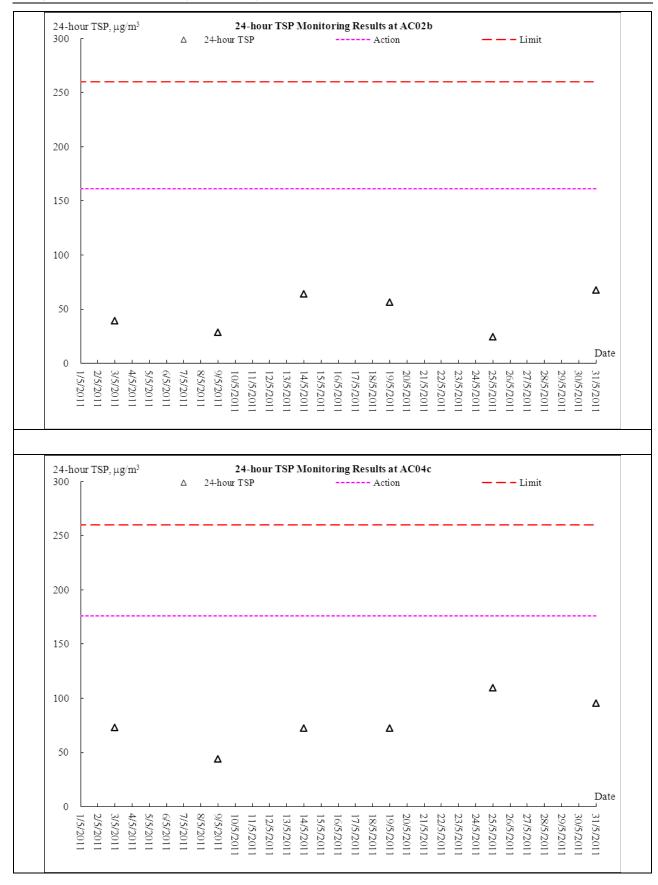
Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	ొ	mg/L	%	NTU	ppt	unit	mg/l
2011/5/27 11:22:27						0.985	26.09	7.05	104.9	3.1	32.98	8.11	0.0
2011/5/27 11:22:35	337371	ME	020106	000560	4.0	1.061	26.15	7.13	106.1	3.1	32.90	8.11	8.9
2011/5/27 11:23:07	WY1	ME	829186	809563	4.8	3.884	26.04	7.25	107.7	2.4	32.99	8.09	2.5
2011/5/27 11:23:18						3.828	26.04	7.27	108.0	2.4	32.99	8.08	3.5
2011/5/27 11:03:36						1.074	26.26	7.28	108.6	4.4	33.14	8.19	3.5
2011/5/27 11:03:53						1.065	26.28	7.32	109.3	4.5	33.16	8.17	3.3
2011/5/27 11:04:27	WY2	ME	829015	810411	6.6	3.319	26.25	7.29	109.0	5.1	33.29	8.16	5.9
2011/5/27 11:04:34	WIZ	ME	829013	810411	0.0	3.294	26.25	7.29	108.8	5.0	33.25	8.16	3.9
2011/5/27 11:04:57						5.662	25.74	7.14	105.9	5.3	33.71	8.11	3.6
2011/5/27 11:05:05						5.658	25.76	6.73	99.9	5.3	33.69	8.10	5.0
2011/5/27 11:14:26						1.052	26.09	7.12	105.9	6.7	33.02	8.13	7
2011/5/27 11:14:34	WY3	ME	829213	829869	5	1.026	26.09	7.25	107.8	6.6	32.94	8.13	,
2011/5/27 11:15:06	WIJ	IVIL	029213	029009	3	4.004	26.10	7.21	107.3	5.7	33.14	8.10	3.2
2011/5/27 11:15:14						4.045	26.11	7.18	106.9	5.4	33.14	8.10	5.2
2011/5/27 09:22:17]]					1.016	25.73	8.78	129.5	5.6	32.71	8.14	3.4
2011/5/27 09:22:25						1.023	25.72	8.71	128.6	5.5	32.73	8.14	5.4
2011/5/27 09:23:02	CY1	ME	828419	810813	11.5	5.742	25.52	8.16	120.3	6.6	33.19	8.14	3.3
2011/5/27 09:23:10	CII	IVIL	020419	010013	11.5	5.724	25.52	8.10	119.4	6.7	33.20	8.15	5.5
2011/5/27 09:23:36						10.517	25.42	7.79	114.8	6.4	33.35	8.15	2.9
2011/5/27 09:23:51						10.437	25.41	7.74	114.0	6.4	33.36	8.15	2.7
2011/5/27 10:12:57						1.067	25.72	7.73	114.2	6.2	32.90	8.17	<0.5
2011/5/27 10:13:04						1.035	25.74	7.82	115.6	6.1	32.89	8.17	\0. 5
2011/5/27 10:13:42	CY2	ME	828016	828812	17	8.529	25.49	7.59	111.9	6.3	33.31	8.16	2.4
2011/5/27 10:13:51		IVIL	020010	020012	17	8.583	25.49	7.63	109.9	6.2	29.06	8.16	2.4
2011/5/27 10:14:51						16.036	25.35	7.47	107.4	6.0	29.25	8.17	4
2011/5/27 10:15:07						16.030	25.36	7.24	106.7	6.0	33.49	8.17	
2011/5/27 14:37:56						1.026	26.30	6.29	93.8	3.7	32.93	8.12	44.5
2011/5/27 14:38:04			020455	000556	-	1.073	26.27	6.59	98.3	3.3	32.95	8.11	11.7
2011/5/27 14:38:31	WY1	MF	829175	809556	5	4.075	26.18	6.99	102.2	4.9	29.62	8.07	15.0
2011/5/27 14:38:37						4.036	26.19	6.85	102.1	5.3	33.02	8.07	15.8
2011/5/27 14:56:50						1.037	26.43	9.95	148.7	7.8	32.88	8.11	0.4
2011/5/27 14:56:56						1.078	26.38	9.98	149.0	7.8	32.87	8.11	8.4
2011/5/27 14:57:56	WY2	MF	829009	810423	7	3.531	26.34	10.06	150.2	7.6	32.92	8.12	7.6
2011/5/27 14:58:10	WIZ	IVII	029009	010423	/	3.495	26.37	10.21	149.9	7.6	29.97	8.12	7.0
2011/5/27 14:59:32						6.050	25.84	8.89	131.9	13.1	33.39	8.07	5.2
2011/5/27 14:59:44						6.050	25.81	8.82	130.8	13.4	33.42	8.07	5.2
2011/5/27 14:50:25						1.061	26.30	6.52	97.2	6.3	32.84	8.13	3.9
2011/5/27 14:50:31	WY3	MF	829207	809844	5.3	1.038	26.31	6.73	100.4	6.8	32.83	8.12	5.7
2011/5/27 14:51:00	WIJ	1411	027201	007044	5.5	4.253	25.89	6.88	101.9	12.7	32.92	8.08	8.6
2011/5/27 14:51:09						4.281	25.83	6.85	101.4	12.8	33.03	8.07	0.0
2011/5/27 13:51:27						1.098	26.04	9.30	138.2	9.7	33.14	7.72	6.3
2011/5/27 13:51:33]					1.117	26.03	9.49	141.1	9.8	33.11	7.69	0.5
2011/5/27 13:52:02	CY1	MF	828415	810809	11.4	5.746	25.82	9.68	140.6	8.9	29.60	7.63	6.9
2011/5/27 13:52:10		1,11	020413	010007	11.7	5.779	25.80	9.42	139.5	8.7	33.10	7.62	10.7
2011/5/27 13:52:31						10.401	25.42	9.02	133.3	10.8	33.96	7.54	7.1
2011/5/27 13:52:47						10.389	25.34	7.66	113.1	12.1	34.01	7.52	,
2011/5/27 14:16:17	1					1.085	27.39	6.39	97.1	7.6	32.99	7.95	5.8
2011/5/27 14:16:24	4					1.048	27.34	6.54	99.4	7.6	33.02	7.95	1.0
2011/5/27 14:16:55	CY2	MF	828022	808812	16.4	8.339	25.48	7.00	103.7	11.3	34.11	7.86	4.2
2011/5/27 14:17:04	012	1411	020022	000012	10.4	8.350	25.37	6.61	97.7	11.8	34.19	7.84	F. Z
2011/5/27 14:17:56	1					15.390	25.23	5.50	81.3	15.4	34.52	7.78	7.6
2011/5/27 14:18:16	ı					15.383	25.22	5.47	80.8	15.3	34.56	7.78	7.0

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

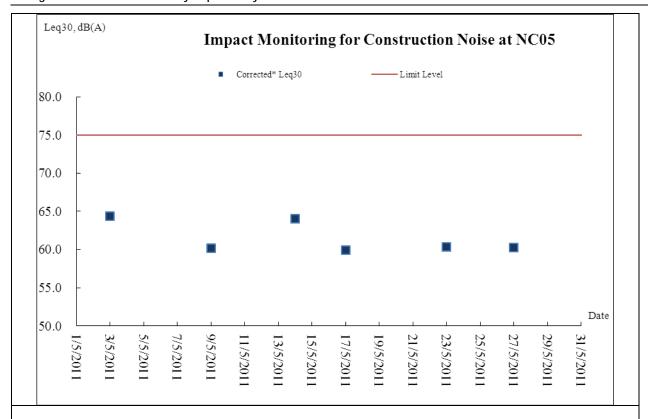
Yung Shue Wan

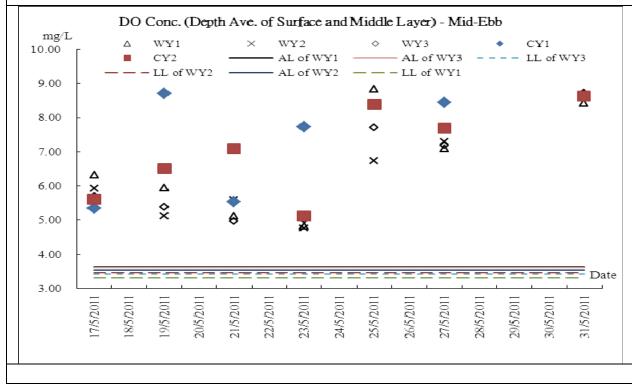
Date 31-May-11

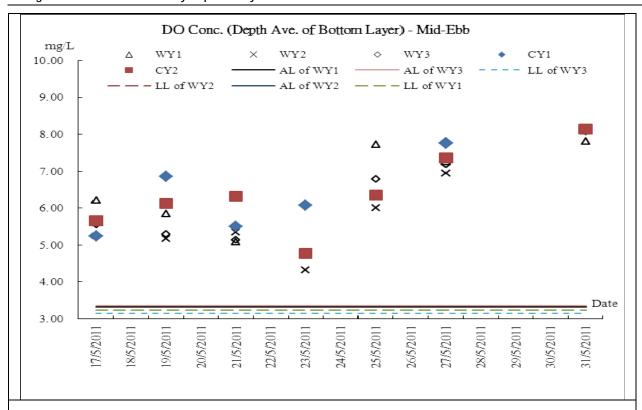

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	್ತ	mg/L	%	NTU	ppt	unit	mg/l
2011/5/31 12:53:58						1.055	26.98	8.42	127.3	10.2	33.26	8.21	<i></i> 1
2011/5/31 12:54:07	337371	ME	000177	000545	4.4	1.064	26.95	8.42	127.2	10.8	33.27	8.21	5.4
2011/5/31 12:55:31	WY1	ME	829177	809545	4.4	3.432	26.69	7.80	117.3	10.8	33.27	8.21	7.6
2011/5/31 12:55:39						3.460	26.69	7.84	117.9	10.6	33.27	8.21	7.6
2011/5/31 12:09:42						1.059	27.00	12.63	191.4	11.1	33.63	8.13	5.3
2011/5/31 12:09:59						1.101	26.96	12.43	188.2	11.8	33.64	8.13	5.5
2011/5/31 12:10:33	WY2	ME	829018	810414	6.2	3.110	26.67	12.11	182.6	11.1	33.73	8.13	6.1
2011/5/31 12:10:45	W 1 Z	ME	029010	010414	0.2	3.169	26.97	11.88	180.0	11.3	33.68	8.12	0.1
2011/5/31 12:11:07						5.225	26.37	11.86	178.0	11.3	33.69	8.11	5.6
2011/5/31 12:11:16						5.210	26.27	11.77	176.3	1.6	33.73	8.10	5.0
2011/5/31 12:36:56						1.069	27.51	8.91	136.2	10.2	33.71	8.16	8.6
2011/5/31 12:37:15	WY3	ME	829217	809855	5.4	1.005	27.32	8.52	129.8	10.9	33.56	8.17	0.0
2011/5/31 12:42:26	.,,13	IVIL	02)217	007033	5.4	4.465	26.93	8.29	125.4	12.8	33.68	8.13	6.4
2011/5/31 12:42:51						4.342	26.90	7.87	119.0	11.6	33.69	8.11	0.4
2011/5/31 10:59:48						1.056	26.21	13.35	199.0	9.8	33.04	8.01	- 5
2011/5/31 10:59:59						1.055	26.17	15.24	227.0	9.7	33.13	8.04	,
2011/5/31 11:01:36	CY1	ME	828412	810819	11.2	5.599	26.08	13.15	196.0	9.2	33.51	8.09	3.7
2011/5/31 11:03:06	CII	IVIL	020412	010017	11.2	5.590	26.09	11.93	177.9	9.1	33.44	8.09	5.7
2011/5/31 11:04:00						10.227	25.83	11.37	168.9	8.7	33.59	8.11	4.6
2011/5/31 11:14:52						10.204	25.71	9.39	139.2	11.4	33.64	8.13	7.0
2011/5/31 11:32:25						1.004	26.27	8.58	128.1	9.5	33.14	8.16	6.1
2011/5/31 11:32:34						1.027	26.30	8.70	129.9	9.4	33.14	8.16	0.1
2011/5/31 11:33:14	CY2	ME	828001	808789	16.8	8.491	25.75	8.67	128.5	9.7	33.40	8.14	5.3
2011/5/31 11:33:23		IVIL	020001	000707	10.0	8.422	25.76	8.57	127.1	9.5	33.40	8.14	3.3
2011/5/31 11:33:52						15.829	25.72	8.23	122.1	10.5	33.71	8.15	4.7
2011/5/31 11:34:09						15.867	25.72	8.07	119.7	10.7	33.72	8.15	,
2011/5/31 17:16:17						1.062	27.05	8.85	134.1	9.6	33.45	8.09	5.0
2011/5/31 17:16:28			020450	000566		1.075	27.03	9.80	148.4	8.0	33.52	8.06	5.8
2011/5/31 17:17:32	WY1	MF	829179	809566	4.8	3.849	26.87	10.11	152.7	11.8	33.43	8.01	_
2011/5/31 17:17:39						3.828	26.85	9.93	150.0	12.2	33.42	8.01	6
2011/5/31 17:42:16						1.067	27.01	8.43	127.6	15.0	33.36	8.05	7.0
2011/5/31 17:42:23						1.054	26.99	8.37	126.6	14.8	33.34	8.05	7.3
2011/5/31 17:43:07	77770	ME	920012	010414	6.1	3.274	26.80	7.95	119.9	12.9	33.36	8.05	5.0
2011/5/31 17:43:15	WY2	MF	829012	810414	6.4	3.213	26.78	7.92	119.4	12.5	33.41	8.06	5.6
2011/5/31 17:45:27						5.485	26.72	6.71	101.1	14.9	33.37	8.10	5.8
2011/5/31 17:45:58						5.451	26.73	6.58	99.1	14.5	33.42	8.11	5.8
2011/5/31 17:31:32						1.054	26.95	9.45	142.9	14.6	33.34	8.02	5.5
2011/5/31 17:31:40	WY3	MF	829220	809847	5.7	1.069	26.99	9.34	141.3	14.2	33.34	8.02	5.5
2011/5/31 17:32:08	WIJ	IVII	029220	009047	5.7	4.668	26.81	9.21	139.0	13.6	33.47	8.02	- 5
2011/5/31 17:32:16						4.656	26.81	9.16	138.3	13.7	33.47	8.02	3
2011/5/31 18:51:51						1.044	26.21	5.10	76.0	15.4	33.15	8.08	6.2
2011/5/31 18:51:59]					1.089	26.22	5.21	77.7	15.4	33.14	8.08	6.2
2011/5/31 18:52:49	CY1	MF	828419	810811	11.8	5.946	26.18	5.18	77.3	12.1	33.22	8.08	4.6
2011/5/31 18:52:57	CII	IVII	020419	010011	11.0	5.919	26.17	5.18	77.3	11.9	33.22	8.08	+.0
2011/5/31 18:54:08						10.833	25.98	4.91	73.1	12.1	33.34	8.07	5.3
2011/5/31 18:54:19						10.883	25.96	4.89	72.6	12.5	33.34	8.07	ر.ر
2011/5/31 18:08:29						1.084	26.25	6.14	91.6	8.0	33.12	8.04	5.7
2011/5/31 18:08:42						1.109	26.24	6.03	89.9	9.6	33.12	8.04	5.1
2011/5/31 18:09:12	CY2	ME	828013	808803	17	8.559	26.11	5.95	88.7	9.6	33.27	8.03	5.2
2011/5/31 18:09:39	CIZ	MF	828013	808803	17	8.548	26.08	5.73	85.0	15.2	32.50	8.03	٥.۷
2011/5/31 18:10:17]					16.007	25.86	5.38	79.8	14.7	33.47	8.01	9.6
	1					16.057	25.86	5.29	78.6	16.8	33.46	8.01	9.0

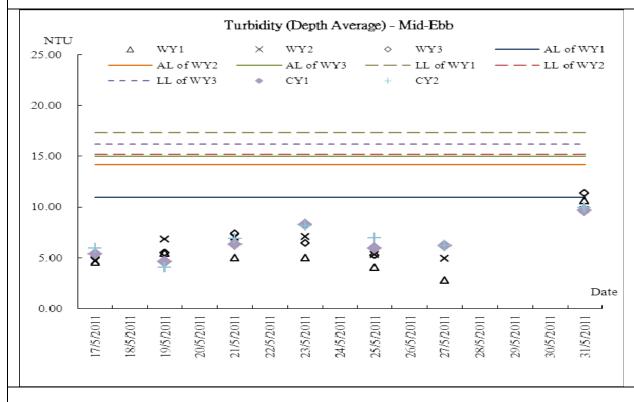

Appendix H

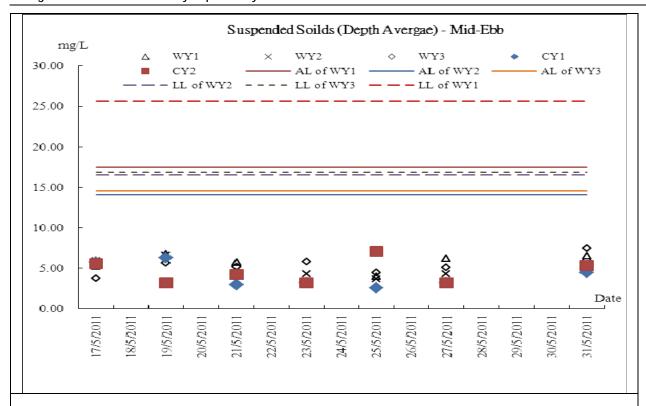
Graphical Plots of Monitoring Results

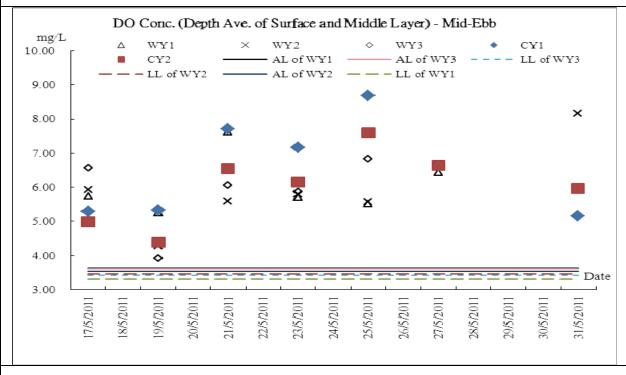


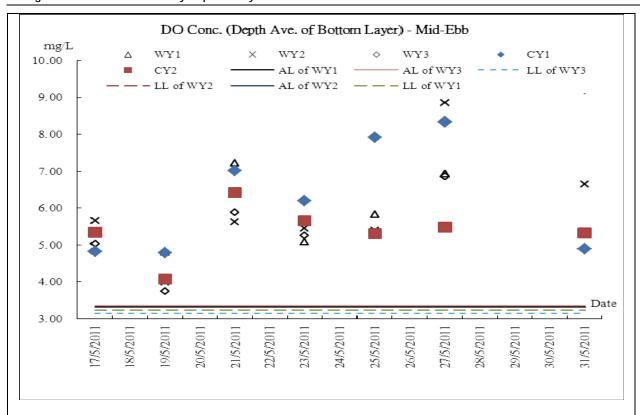


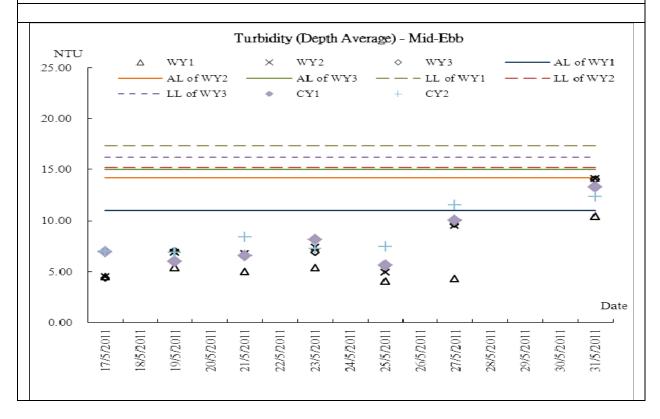


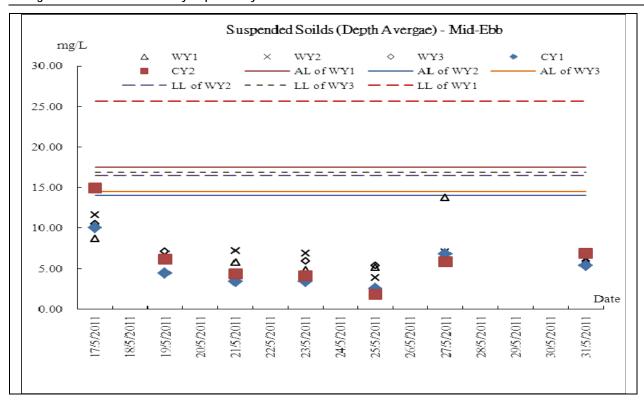












Appendix I

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
1-May-11	Sun	Holiday
2-May-11	Mon	Holiday
3-May-11	Tue	Moderate southerly winds
4-May-11	Wed	Mainly fine and dry.
5-May-11	Thu	Light winds
6-May-11	Fri	Fine and dry.
7-May-11	Sat	Fine and hot. Light winds
8-May-11	Sun	Moderate southerly winds
9-May-11	Mon	Sunny periods
10-May-11	Tue	Holiday
11-May-11	Wed	Light winds
12-May-11	Thu	Misty with occasional rain
13-May-11	Fri	Mainly cloudy with occasional rain.
14-May-11	Sat	a few squally thunderstorms.
15-May-11	Sun	Moderate easterly winds
16-May-11	Mon	Cloudy with one or two rain patches at first.
17-May-11	Tue	Moderate northeasterly winds.
18-May-11	Wed	Cloudy with a few rain patches
19-May-11	Thu	Moderate northerly winds
20-May-11	Fri	Cloudy with a few rain patches.
21-May-11	Sat	Light to moderate northerly winds.
22-May-11	Sun	Mainly fine and dry.
23-May-11	Mon	Isolated showers
24-May-11	Tue	Moderate east to northeasterly winds.
25-May-11	Wed	Mainly fine and hot.
26-May-11	Thu	Fine but with some haze.
27-May-11	Fri	Light to moderate westerly winds.
28-May-11	Sat	Hot with sunny periods.
29-May-11	Sun	Moderate south to southwesterly winds.
30-May-11	Mon	Mainly fine and dry.
31-May-11	Tue	Light to moderate northerly winds.

Appendix J

Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table for May 2011

			Actu	ıal Quant	ities of In	nert C&D	Material	s Genera	ted Mont	hly				Α	ctual Qu	ıantities	of C&D	Wastes	Generate	ed Month	nly	
Month	Total Q Gene (a) = (c)		Hard Re Large I Cone (t	Broken crete	Reused Con	tract	Reused Proj	ects	Dispo Publi (6	c Fill		ted Fill f)	Me	tals	Pap cardt packa		Plas	etics	Cher Wa			ers, ıbbish
	(in '00	00m ³)	(in '00	00m ³)	(in '00	00m ³)	(in '00	00m ³)	(in '00	00m ³)	(in '00	00m ³)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '00	00kg)	(in to	onne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2010	4.522	0.030	0.068	0.104	0.488	0.000	0.000	0.000	4.033	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	18.460
Jan	0.985	3.110	0.003	0.013	0.120	0.484	0.000	2.626	0.865	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.240
Feb	0.377	0.000	0.000	0.043	0.000	0.000	0.000	0.000	0.377	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.350
Mar	0.758	1.430	0.002	0.106	0.006	0.255	0.000	1.175	0.752	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.360
Apr	1.135	1.249	0.017	0.025	0.112	0.090	0.000	1.159	1.023	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.830	5.160
May	0.614	1.862	0.030	0.036	0.014	0.900	0.000	0.962	0.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.150	0.860
Jun																						
Sub-total	8.3901	7.6813	0.1184	0.3273	0.7397	1.7290	0.0000	5.9220	7.6505	0.0303	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	5.9800	27.4300
Jul																						
Aug																						
Sep																						
Oct																						
Nov																						
Dec																						
Total	8.3901	7.6813	0.1184	0.3273	0.740	1.729	0.000	5.922	7.6505	0.0303	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.98	27.43
Total	16.0)71	0.4	46	2.4	69	5.9	22	7.6	81	0.0	00	0.0	000	0.0	00	0.0	00	0.0	00	33.	41

Remark: Assume 1.0 m 3 vehicle dump load = 1.6 tonnes C&D materials

YSW: Yung Shue Wan

SKW: Sok Kwu Wan

Appendix K

Weekly Site Inspection Checklist

Project Date: PAR' Weat Temp Humi Wind Area I 1	T A: her: erature dity: :	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan O3 May 2011 GENERAL INFORMATION Sunny Fine Cloudy 7.3 0C High Woderate Low Strong Breeze Light	Inspected ETL/ ET's RE's Rep Contractd IEC's Rep Time:	Represe resentati or's Repr	ve: esentativ	Ra	y Cheung C. Cheung win Leung	J
PART		bs.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not			Follow		Photo/
Note:	Follov	v Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks
		attract discharge licenses obtained for the Drainet?						
1.01		effluent discharge license obtained for the Project?		<u> </u>				
1.02		effluent discharged in accordance with the discharge licence?					□ <u>-</u>	_
1.03		discharge of turbid water avoided? here proper desilting facilities in the drainage systems to						
1.04	reduc	e SS levels in effluent?		✓				
1.05	sedin	nere channels, sandbags or bunds to direct surface run-off to pentation tanks?		\checkmark				
1.06		nere any perimeter channels provided at site boundaries to ept storm runoff from crossing the site?		\checkmark				
1.07	Is dra	inage system well maintained?		\checkmark				
1.08		cavation proceeds, are temporary access roads protected by ed stone or gravel?		\checkmark				
1.09	Are te	emporary exposed slopes properly covered?		\checkmark				
1.10	Are e	arthworks final surfaces well compacted or protected?		\checkmark				
1.11	Are m	nanholes adequately covered or temporarily sealed?		\checkmark				
1.12	Are th	nere any procedures and equipment for rainstorm protection?	П	\checkmark	П	П		_
1.13	Are w	heel washing facilities well maintained?	$\overline{\checkmark}$				\Box	
1.14		off from wheel washing facilities avoided?	<u> </u>				\Box	
1.15		nere toilets provided on site?		$\overline{\checkmark}$				
				<u>√</u>				
1.16		oilets properly maintained? The vehicle and plant servicing areas paved and located within						
1.17	roofe	d areas?					□ □	
1.18		oil/grease leakage or spillage avoided?						
1.19	draina	nere any measures to prevent leaked oil from entering the age system?		$\overline{\mathbf{V}}$				
1.20	wash	here any measures to collect spilt cement and concrete ngs during concreting works?					$\overline{\checkmark}$	
1.21		here any oil interceptors/grease traps in the drainage systems hicle and plant servicing areas, canteen kitchen, etc?	\checkmark					
1.22	Are th	ne oil interceptors/grease traps maintained properly?	\checkmark					

	Not Obe : Not Observed: Voc: Compliance: No: No. Compliance:	Not			Follow		Photo/
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks
1.23	Is used bentonite recycled where appropriate?	\checkmark					
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.	\checkmark					
1.25	No excavation is undertaken in the settlement area.		\checkmark				
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.	\checkmark					
1.27	Mobile toilets should provide on site and located away the stream course.	\checkmark					
1.28	License collector should be employed for handling the sewage of mobile toilet.	\checkmark					
1.29	Is ponding /stand water avoided?		\checkmark				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		\checkmark				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?		\checkmark				
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		\checkmark				
2.05	Is the exposed earth properly treated within six months after the last construction activities?	\checkmark					
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		\checkmark				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?		\checkmark				
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?		\checkmark				
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?		\checkmark				
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		\checkmark				
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?		\checkmark				
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?		\checkmark				
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		\checkmark				
Section	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?		\checkmark				
3.02	Is silenced equipment adopted?		\checkmark				
3.03	Is idle equipment turned off or throttled down?		\checkmark				
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?		\checkmark				
3.06	Are hand held breakers fitted with valid noise emission labels during operation?		\checkmark				
3.07	Are air compressors fitted with valid noise emission labels during operation?		\checkmark				
3.08	Are flaps and panels of mechanical equipment closed during operation?		\checkmark				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?	$\overline{\checkmark}$					
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?	\checkmark					
3.11	Are valid Construction Noise Permit(s) posted at site entrances?	\checkmark					
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).	\checkmark					
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)	\checkmark					
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).	\checkmark					
Section	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?	\checkmark					
4.06	Are the chemical waste containers properly labelled?		$\overline{\checkmark}$				
4.07	Are the chemical wastes/containers stored in proper storage areas?				\checkmark		Remark 1
4.08	Is the chemical waste storage area provided with drip tray?		\checkmark				
4.09	Is the chemical waste storage area used for storage of chemical waste only?		\checkmark				
4.10	Are incompatible chemical wastes stored in different areas?	\checkmark					
4.11	Are the chemical wastes disposed of by licensed collectors?	\checkmark					
4.12	Are trip tickets for chemical wastes disposal available for inspection?	\checkmark					
4.13	Are chemical/fuel storage areas bounded?		\checkmark				
4.14	Are designated areas identified for storage and sorting of construction wastes?		\checkmark				
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?		\checkmark				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		\checkmark				
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		$\overline{\checkmark}$				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.	\checkmark					
Section	on 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?	\checkmark					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?	\checkmark					
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?	\checkmark					
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?	\checkmark					
Section	on 7: Others						
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		\checkmark				
7.02	Are the warning sign or larvicidal oil record shown clearly at the construction site?		\checkmark				

Remarks

Findings of Site Inspection (3 May 2011):

The Contractor should place the oil container to proper storage area after use.

Follow up:

The container was taken to proper storage area. (Rectified immediately on same day)

Prepared by *ET's representative*

Ray Cheung

Hum	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 12 May 2011 RT A: GENERAL INFORMATIO ather: Sunny Fine Cloudy perature: 29.5 ochidity: High Moderate Low	IEC's Rep	Represores resentation's Repr	ive: esentativ	Ra	y Cheung C. Cheung win Leung anika Chu	
PART	B: SITE AUDIT						
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	on 1: Water Quality	•				_	
1.01	Is an effluent discharge license obtained for the Project?		\checkmark				
1.02	Is the effluent discharged in accordance with the discharge licence	ce?	\checkmark				
1.03	Is the discharge of turbid water avoided?		\checkmark				
1.04	Are there proper desilting facilities in the drainage systems reduce SS levels in effluent?	to	\checkmark				
1.05	Are there channels, sandbags or bunds to direct surface run-off sedimentation tanks?	f to	\checkmark				
1.06	Are there any perimeter channels provided at site boundaries intercept storm runoff from crossing the site?	to	\checkmark				
1.07	Is drainage system well maintained?		\checkmark				
1.08	As excavation proceeds, are temporary access roads protected crushed stone or gravel?	by	\checkmark				
1.09	Are temporary exposed slopes properly covered?		\checkmark				
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark				
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark				
1.12	Are there any procedures and equipment for rainstorm protection	n? 🗌	\checkmark				
1.13	Are wheel washing facilities well maintained?	\checkmark					
1.14	Is runoff from wheel washing facilities avoided?	\checkmark					
1.15	Are there toilets provided on site?		\checkmark				
1.16	Are toilets properly maintained?		\checkmark				
1.17	Are the vehicle and plant servicing areas paved and located wit roofed areas?	hin 🔽					
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark				
1.19	Are there any measures to prevent leaked oil from entering drainage system?	the	\checkmark				
1.20	Are there any measures to collect spilt cement and concrewashings during concreting works?	ete 🔲				$\overline{\checkmark}$	
1.21	Are there any oil interceptors/grease traps in the drainage syste for vehicle and plant servicing areas, canteen kitchen, etc?	ms 🗹					
1.22	Are the oil interceptors/grease traps maintained properly?	\checkmark					

	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not			Follow		Photo/
Note:	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks
1.23	Is used bentonite recycled where appropriate?	$\overline{\checkmark}$					
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.	\checkmark					
1.25	No excavation is undertaken in the settlement area.		\checkmark				
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.	\checkmark					
1.27	Mobile toilets should provide on site and located away the stream course.	$\overline{\checkmark}$					
1.28	License collector should be employed for handling the sewage of mobile toilet.	$\overline{\checkmark}$					
1.29	Is ponding /stand water avoided?		\checkmark				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		$\overline{\checkmark}$				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		$\overline{\checkmark}$				
2.03	Are the excavated materials sprayed with water during handling?		\checkmark				
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		\checkmark				
2.05	Is the exposed earth properly treated within six months after the last construction activities?	\checkmark					
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		\checkmark				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?		\checkmark				
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?		\checkmark				
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?		\checkmark				
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		\checkmark				
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?		\checkmark				
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?		$\overline{\checkmark}$				
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		$\overline{\checkmark}$				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		\checkmark				
Section	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?		$\overline{\checkmark}$				
3.02	Is silenced equipment adopted?		\checkmark				
3.03	Is idle equipment turned off or throttled down?		\checkmark				
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?		$\overline{\checkmark}$				
3.06	Are hand held breakers fitted with valid noise emission labels during operation?		$\overline{\checkmark}$				
3.07	Are air compressors fitted with valid noise emission labels during operation?		\checkmark				
3.08	Are flaps and panels of mechanical equipment closed during operation?		\checkmark				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?	<u>V</u>					
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?	\checkmark					
3.11	Are valid Construction Noise Permit(s) posted at site entrances?	\checkmark					
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).	\checkmark					
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)	\checkmark					
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).	\checkmark					
Section	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?	\checkmark					
4.06	Are the chemical waste containers properly labelled?		\checkmark				
4.07	Are the chemical wastes/containers stored in proper storage areas?		\checkmark				
4.08	Is the chemical waste storage area provided with drip tray?		\checkmark				
4.09	Is the chemical waste storage area used for storage of chemical waste only?		\checkmark				
4.10	Are incompatible chemical wastes stored in different areas?	\checkmark					
4.11	Are the chemical wastes disposed of by licensed collectors?	\checkmark					
4.12	Are trip tickets for chemical wastes disposal available for inspection?	\checkmark					
4.13	Are chemical/fuel storage areas bounded?		\checkmark				
4.14	Are designated areas identified for storage and sorting of construction wastes?		\checkmark				
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?		\checkmark				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		\checkmark				
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.	\checkmark					
Section	on 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?	\checkmark					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?	\checkmark					
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?	\checkmark					
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?	\checkmark					
Section	on 7: Others						
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		\checkmark				
7.02	Are the warning sign or larvicidal oil record shown clearly at the construction site?		\checkmark				

Remarks

Findings of Site Inspection (12 May 2011):

Follow up:

No environmental issue was observed during the site inspection.

Prepared by *ET's representative*

Ray Cheung

Humi Wind	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 17 May 2011 RT A: GENERAL INFORMA ather: Sunny Fine Cloudy perature: 23.4 idity: High Moderate Low	RE's R Contra IEC's F	T's Repre epresenta	presentati	Nic C.(ve: Ed 	cola Hon C. Cheung win Leung	
PART	B: SITE AUDIT						
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applic	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	on 1: Water Quality	1					
1.01	Is an effluent discharge license obtained for the Project?		\checkmark				
1.02	Is the effluent discharged in accordance with the discharge lic	cence?	\checkmark				
1.03	Is the discharge of turbid water avoided?		\checkmark				
1.04	Are there proper desilting facilities in the drainage syste reduce SS levels in effluent?	ems to	\checkmark				
1.05	Are there channels, sandbags or bunds to direct surface run sedimentation tanks?	n-off to	\checkmark				
1.06	Are there any perimeter channels provided at site boundar intercept storm runoff from crossing the site?	ries to	\checkmark				
1.07	Is drainage system well maintained?		\checkmark				
1.08	As excavation proceeds, are temporary access roads protect crushed stone or gravel?	eted by	\checkmark				
1.09	Are temporary exposed slopes properly covered?		\checkmark				
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark				
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark				
1.12	Are there any procedures and equipment for rainstorm protect	ction?	\checkmark				
1.13	Are wheel washing facilities well maintained?	\checkmark					
1.14	Is runoff from wheel washing facilities avoided?	\checkmark					
1.15	Are there toilets provided on site?		\checkmark				
1.16	Are toilets properly maintained?		\checkmark				
1.17	Are the vehicle and plant servicing areas paved and located roofed areas?	within					
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark				
1.19	Are there any measures to prevent leaked oil from entering drainage system?	ng the	\checkmark				
1.20	Are there any measures to collect spilt cement and co washings during concreting works?	ncrete				\checkmark	
1.21	Are there any oil interceptors/grease traps in the drainage sy for vehicle and plant servicing areas, canteen kitchen, etc?	/stems					
1.22	Are the oil interceptors/grease traps maintained properly?	\checkmark					

	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not			Follow		Photo/
Note:	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks
1.23	Is used bentonite recycled where appropriate?	$\overline{\checkmark}$					
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.	\checkmark					
1.25	No excavation is undertaken in the settlement area.		\checkmark				
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.	\checkmark					
1.27	Mobile toilets should provide on site and located away the stream course.	$\overline{\checkmark}$					
1.28	License collector should be employed for handling the sewage of mobile toilet.	$\overline{\checkmark}$					
1.29	Is ponding /stand water avoided?		\checkmark				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		$\overline{\checkmark}$				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		$\overline{\checkmark}$				
2.03	Are the excavated materials sprayed with water during handling?		\checkmark				
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		\checkmark				
2.05	Is the exposed earth properly treated within six months after the last construction activities?	\checkmark					
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		$\overline{\checkmark}$				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?		$\overline{\checkmark}$				
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?		\checkmark				
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?		\checkmark				
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		\checkmark				
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?		\checkmark				
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?		$\overline{\checkmark}$				
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		$\overline{\checkmark}$				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		\checkmark				
Section	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?		$\overline{\checkmark}$				
3.02	Is silenced equipment adopted?		\checkmark				
3.03	Is idle equipment turned off or throttled down?		\checkmark				
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?		$\overline{\checkmark}$				
3.06	Are hand held breakers fitted with valid noise emission labels during operation?		$\overline{\checkmark}$				
3.07	Are air compressors fitted with valid noise emission labels during operation?		\checkmark				
3.08	Are flaps and panels of mechanical equipment closed during operation?		\checkmark				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?	V					
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?	\checkmark					
3.11	Are valid Construction Noise Permit(s) posted at site entrances?	\checkmark					
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).	\checkmark					
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)	\checkmark					
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).	\checkmark					
Section	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?	\checkmark					
4.06	Are the chemical waste containers properly labelled?		\checkmark				
4.07	Are the chemical wastes stored in proper storage areas?		$\overline{\checkmark}$				
4.08	Is the chemical waste storage area properly labelled?		\checkmark				
4.09	Is the chemical waste storage area used for storage of chemical waste only?		\checkmark				
4.10	Are incompatible chemical wastes stored in different areas?	\checkmark					
4.11	Are the chemical wastes disposed of by licensed collectors?	\checkmark					
4.12	Are trip tickets for chemical wastes disposal available for inspection?	\checkmark					
4.13	Are chemical/fuel storage areas bounded?		\checkmark				
4.14	Are designated areas identified for storage and sorting of construction wastes?		\checkmark				
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?		\checkmark				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		\checkmark				
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.	\checkmark					
Section	on 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?	\checkmark					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?	V					
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?	\checkmark					
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?	\checkmark					
Section	on 7: Others						
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		\checkmark				
7.02	Are the warning sign or larvicidal oil record shown clearly at the construction site?		\checkmark				
Rem	arke						
Keiii	ai v2						
Find	ings of Site Inspection (17 May 2011):	Fo	ollow up	•			
	nvironmental issue was observed during the site ection.						
	ared by epresentative						
Λ	uli						
(Nicola Hon)						
IEC's	representative RE's representative ET's representa	tive	EO's re	oresentat	ive	Contracto	r's representative
	Aus	2					
(N/A) (Nicola Ho	n)	()	(

Humi	T A: ther: erature: idity: I: Inspec	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 24 May 2011 GENERAL INFORMATION Sunny Fine Cloudy 22.5 High Moderate Low Strong Breeze Light	Inspected ETL/ ET's RE's Rep Contracto IEC's Rep Time:	Represe resentati or's Repr	ve: esentativ	Ra	y Cheung C. Cheung win Leung	
PART	B:	SITE AUDIT						
		bs.: Not Observed; Yes: Compliance; No: Non-Compliance; VD: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	on 1: W	ater Quality					_	
1.01	ls an	effluent discharge license obtained for the Project?		\checkmark				
1.02	Is the	effluent discharged in accordance with the discharge licence?		\checkmark				
1.03	Is the	discharge of turbid water avoided?		\checkmark				
1.04		here proper desilting facilities in the drainage systems to e SS levels in effluent?				\checkmark		Remark 1
1.05		nere channels, sandbags or bunds to direct surface run-off to nentation tanks?		$\overline{\checkmark}$				
1.06		nere any perimeter channels provided at site boundaries to ept storm runoff from crossing the site?		$\overline{\checkmark}$				
1.07	ls dra	inage system well maintained?		\checkmark				
1.08		cavation proceeds, are temporary access roads protected by ed stone or gravel?		\checkmark				
1.09	Are te	emporary exposed slopes properly covered?		\checkmark				
1.10	Are e	arthworks final surfaces well compacted or protected?		$\overline{\checkmark}$				
1.11	Are m	nanholes adequately covered or temporarily sealed?		\checkmark				
1.12	Are th	nere any procedures and equipment for rainstorm protection?		\checkmark				
1.13	Are w	heel washing facilities well maintained?	\checkmark					
1.14	ls run	off from wheel washing facilities avoided?	\checkmark					
1.15	Are th	nere toilets provided on site?		\checkmark				
1.16	Are to	ilets properly maintained?		\checkmark				
1.17		ne vehicle and plant servicing areas paved and located within d areas?	\checkmark					
1.18	Is the	oil/grease leakage or spillage avoided?		\checkmark				
1.19		nere any measures to prevent leaked oil from entering the age system?		\checkmark				
1.20		here any measures to collect spilt cement and concrete ngs during concreting works?					\checkmark	
1.21		here any oil interceptors/grease traps in the drainage systems hicle and plant servicing areas, canteen kitchen, etc?	\checkmark					
1.22	Are th	ne oil interceptors/grease traps maintained properly?	\checkmark					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?	<u>√</u>					
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.	$\overline{\checkmark}$					
1.25	No excavation is undertaken in the settlement area.		\checkmark				
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.	\checkmark					
1.27	Mobile toilets should provide on site and located away the stream course.	\checkmark					
1.28	License collector should be employed for handling the sewage of mobile toilet.	\checkmark					
1.29	Is ponding /stand water avoided?		\checkmark				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		\checkmark				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?		\checkmark				
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		\checkmark				
2.05	Is the exposed earth properly treated within six months after the last construction activities?	\checkmark					
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		\checkmark				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?		\checkmark				
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?		\checkmark				
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?		\checkmark				
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		\checkmark				
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?		\checkmark				
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?		\checkmark				
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		\checkmark				
Section	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?		\checkmark				
3.02	Is silenced equipment adopted?		\checkmark				
3.03	Is idle equipment turned off or throttled down?		\checkmark				
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?		\checkmark				
3.06	Are hand held breakers fitted with valid noise emission labels during operation?		\checkmark				
3.07	Are air compressors fitted with valid noise emission labels during operation?		\checkmark				
3.08	Are flaps and panels of mechanical equipment closed during operation?		\checkmark				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?	<u> </u>					
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?	\checkmark					
3.11	Are valid Construction Noise Permit(s) posted at site entrances?	\checkmark					
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).	\checkmark					
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)	\checkmark					
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).	\checkmark					
Section	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?	\checkmark					
4.06	Are the chemical waste containers properly labelled?		\checkmark				
4.07	Are the chemical wastes stored in proper storage areas?		\checkmark				
4.08	Is the chemical waste storage area properly labelled?		\checkmark				
4.09	Is the chemical waste storage area used for storage of chemical waste only?		\checkmark				
4.10	Are incompatible chemical wastes stored in different areas?	\checkmark					
4.11	Are the chemical wastes disposed of by licensed collectors?	\checkmark					
4.12	Are trip tickets for chemical wastes disposal available for inspection?	\checkmark					
4.13	Are chemical/fuel storage areas bounded?		\checkmark				
4.14	Are designated areas identified for storage and sorting of construction wastes?		\checkmark				
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?		\checkmark				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		\checkmark				
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.	\checkmark					
Section	on 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?	\checkmark					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?	\checkmark					
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?	\checkmark					
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?	\checkmark					
Section	on 7: Others						
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		\checkmark				
7.02	Are the warning sign or larvicidal oil record shown clearly at the construction site?		\checkmark				

Remarks

Findings of Site Inspection (24 May 2011):

The setting of sedimentation tank need to be improved such as installing proper filters inside to improve the de-silting effectiveness.

Follow up:

The de-silting effectiveness of the tank is still under review.

Prepared by *ET's representative*

Ray Cheung

Hum	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 31 May 2011 RT A: GENERAL INFORMATIO ather: Sunny Fine Cloudy perature: 26.7 oddity: High Moderate Low	IEC's Rep	Represores resentator's Repr	ive: resentativ	Ra	y Cheung C. Cheung win Leung	
PART	B: SITE AUDIT						
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	on 1: Water Quality	l .			<u> </u>	_	
1.01	Is an effluent discharge license obtained for the Project?		\checkmark				
1.02	Is the effluent discharged in accordance with the discharge licence	ee?	\checkmark				
1.03	Is the discharge of turbid water avoided?				\checkmark		Remark 2
1.04	Are there proper desilting facilities in the drainage systems reduce SS levels in effluent?	to			\checkmark		Remark 1
1.05	Are there channels, sandbags or bunds to direct surface run-off sedimentation tanks?	to	\checkmark				
1.06	Are there any perimeter channels provided at site boundaries intercept storm runoff from crossing the site?	to	\checkmark				
1.07	Is drainage system well maintained?		\checkmark				
1.08	As excavation proceeds, are temporary access roads protected crushed stone or gravel?	by 🔲	\checkmark				
1.09	Are temporary exposed slopes properly covered?		\checkmark				
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark				
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark				
1.12	Are there any procedures and equipment for rainstorm protection	n?	\checkmark				
1.13	Are wheel washing facilities well maintained?	\checkmark					
1.14	Is runoff from wheel washing facilities avoided?	\checkmark					
1.15	Are there toilets provided on site?		\checkmark				
1.16	Are toilets properly maintained?		\checkmark				
1.17	Are the vehicle and plant servicing areas paved and located with roofed areas?	hin 🗹					
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark				
1.19	Are there any measures to prevent leaked oil from entering t drainage system?	the	\checkmark				
1.20	Are there any measures to collect spilt cement and concrewashings during concreting works?	ete 🔲				\checkmark	
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	ms 🔽					
1.22	Are the oil interceptors/grease traps maintained properly?	\checkmark					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?	<u>√</u>					
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.	$\overline{\checkmark}$					
1.25	No excavation is undertaken in the settlement area.		\checkmark				
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.	\checkmark					
1.27	Mobile toilets should provide on site and located away the stream course.	\checkmark					
1.28	License collector should be employed for handling the sewage of mobile toilet.	\checkmark					
1.29	Is ponding /stand water avoided?		\checkmark				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		\checkmark				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?		\checkmark				
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		\checkmark				
2.05	Is the exposed earth properly treated within six months after the last construction activities?	\checkmark					
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		\checkmark				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?		\checkmark				
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?		\checkmark				
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?		\checkmark				
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		\checkmark				
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?		\checkmark				
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?		\checkmark				
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		\checkmark				
Section	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?		\checkmark				
3.02	Is silenced equipment adopted?		\checkmark				
3.03	Is idle equipment turned off or throttled down?		\checkmark				
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?		\checkmark				
3.06	Are hand held breakers fitted with valid noise emission labels during operation?		\checkmark				
3.07	Are air compressors fitted with valid noise emission labels during operation?		\checkmark				
3.08	Are flaps and panels of mechanical equipment closed during operation?		\checkmark				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?	<u> </u>					
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?	\checkmark					
3.11	Are valid Construction Noise Permit(s) posted at site entrances?	\checkmark					
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).	\checkmark					
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)	\checkmark					
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).	\checkmark					
Section	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?	\checkmark					
4.06	Are the chemical waste containers properly labelled?		\checkmark				
4.07	Are the chemical wastes stored in proper storage areas?		\checkmark				
4.08	Is the chemical waste storage area properly labelled?		\checkmark				
4.09	Is the chemical waste storage area used for storage of chemical waste only?		\checkmark				
4.10	Are incompatible chemical wastes stored in different areas?	\checkmark					
4.11	Are the chemical wastes disposed of by licensed collectors?	\checkmark					
4.12	Are trip tickets for chemical wastes disposal available for inspection?	\checkmark					
4.13	Are chemical/fuel storage areas bounded?		\checkmark				
4.14	Are designated areas identified for storage and sorting of construction wastes?		\checkmark				
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?		\checkmark				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		\checkmark				
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.	\checkmark					
Section	on 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?	\checkmark					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?	\checkmark					
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?	\checkmark					
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?	\checkmark					
Section	on 7: Others						
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		\checkmark				
7.02	Are the warning sign or larvicidal oil record shown clearly at the construction site?		\checkmark				

Remarks

Findings of Site Inspection (31 May 2011):

The sedimentation facilities need to be further modified to improve the de-silting effectiveness.

Turbid water was observed at the outfall of the site. The Contractor should carry out immediate action to avoid turbid water discharging.

Prepared by ET's representative

Follow up:

The water quality in the sed-tank was improved. (Rectified on 4-6-2011)

More silt curtains were observed setting up along the sea bank and no turbid water was observed. (Rectified on 4-6-2011)

Appendix L

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA	EM&A	Environmental Protection Measures*	Location /	Implementation		lementa Stages**		Relevant Legislation
Ref	Ref		Timing	Agent	D	C	0	& Guidelines
Constr	uction Phase							
2.3.18	2.10.2	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors		√ 		TM- EIAO, APCO, Air Pollution Control (Construction Dust) Regulation
2.10.3	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Noise Measures

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation	_	olementa Stages *		Relevant Legislation &
Ref	Ref	21,11,011111111111111111111111111111111	200000000000000000000000000000000000000	Agent	D	C	O	Guidelines
Construc	tion Phase							
\2.4.16	3.8.2	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor		1		EIAO-TM, NCO
2.10.5 to 2.10.9	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		1		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA	EM&A	Environmental Protection Measures*	Location (duration	Implementation		lement Stages*		Relevant Legislation			
Ref	Ref	Environmental Protection Measures*	/completion of measures)	Agent	D	C	O	and Guidelines			
	tion Phase	No dia mashad mina Harimantal Dinastianal Drillina (HDD) mould be	Marine works site /	Controlton	1	1 .1	l	T			
2.5.23	4.12.1	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of main portion of outfall pipes	During construction of submarine outfall	Contractor		V					
4.5.38	4.12.3	Dredging Works	and at the identified water sensitive receivers/ During construction	Contractor							
		Implementation of following measures during the dredging works:									
		• dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m ³ /hr;		receivers/ During construction	ceivers/						
		• deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress;									
		• dredging operation should be undertaken during ebb tide only;									
		• all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;									
		• all pipe leakages should be repaired promptly and plant should not be operated with leaking pipes;									
		• excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;									
		adequate freeboard (i.e. minimum of 200mm) should be maintained on barges to ensure that decks are not washed by wave action;									
		• all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material;									
		• loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and									

EIA	EM&A	Environmental Protection Magazirace	Location (duration /completion of	Implementation	Implemer Stages			Relevant Legislation
Ref	Ref	Environmental Protection Measures	measures)	Agent	D	C	O	and Guidelines
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.						
2.5.39	4.12.4	Construction Run-off and Drainage	Construction works	Contractor				ProPECC
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.						
		• Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.						
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.						
		• Careful programming of the works to minimise soil excavation works during rainy seasons.						
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.						
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.						
		Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric						
2.5.39	4.12.5	General Construction Activities	Construction works	Contractor		V		
		Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby	sites					

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation	Implementation Stages**			Relevant Legislation
Ref	Ref	Environmental Protection Weasures	measures)	Agent	D	C	0	and Guidelines
		coastal waters and stormwater drains.						
		• All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank.						
		• Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
2.5.39	4.12.6	Wastewater Arising from Workforce	Construction works	Contractor		V		
		Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	sites					
2.10.10	Section	Water quality monitoring	Designated water	Contractor		\checkmark		EM&A
	4		monitoring locations/					Manual
			throughout					
			construction period					

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A	Environmental Protection Measures*	Lasation / Timina	Implementation	Implemen	tation Sta	iges**	Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Location / Timing	Agent	D	C	O	Guidelines
2.9.24	5.2.1	Carrying out Sediment Quality Investigation	Marine works site / prior to construction	DSD	V			WBTC No. 34/2002
2.9.23	5.2.1	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor		\checkmark		WBTC No. 34/2002
2.9.23	5.2.2	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor		V		
2.9.23	5.2.3	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor		~		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	EM&A	A	Location /	Implementation		plementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	О	Guidelines
Construc	tion Phase		I	1		I	I	-
2.9.14	6.6.2	 Good site practices Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor		1		Waste Disposal Ordinance (Cap.54)
2.9.15	6.2.3	The Contractor will be required to open a billing account under the Construction Waste Disposal Charging Scheme, and to pay for disposal of all construction waste. The construction waste will be sent to a designated reception facility, which in this case will be YSW RTS, where drivers must present a valid chit for disposal of each load.	Work sites/During construction	Contractor		V		Waste disposal (Amendment) Ordinance 2004
2.9.16	6.2.4	Recommendations to achieve waste reduction include: • segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; • to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to	Work sites/During construction	Contractor		V		WBTC No. 4/98, 5/98

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	O	Guidelines
		segregate this waste from other general refuse generated by the work force;						
		 any unused chemicals or those with remaining functional capacity should be recycled; 						
		• use of reusable non-timber formwork to reduce the amount of C&D material;						
		 prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; 						
		 proper storage and site practices to minimise the potential for damage or contamination of construction materials; and 						
		 plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. 						
2.9.18	6.2.5	General Site Wastes	Work	Contractor		√		Public Health and
		A collection area for construction site waste should be provided where waste can be stored prior to removal from site	sites/During construction					Municipal Services Ordinance (Cap. 132)
		An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material						
2.9.19	6.2.6 and 6.2.7	 Chemical Wastes After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Wester Disposal (Chemical) 	Work sites/During construction	Contractor		7		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical Wastes
		facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance.						

EIA	EM&A		Location /	Implementation		lementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	Guidelines
		• Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided.						
		• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges						
2.9.21 and 2.9.22	6.2.8 and 6.2.9	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: 	During all construction phases	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000
		public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area;						
		C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic);						
		 C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) Where possible, inert material should be re-used on-site 						
		• Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material						

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location / Timing	Implementation	Imp	lementa Stages		Relevant Legislation & Guidelines
	KCI		Tilling	Agent	D	C	O	Guidennes
Construc	tion Phase							
2.10.11	7.2 and	Carry out monitoring of corals before, during and after	Work sites /	Contractor				
and	7.3	marine works.	during					
2.10.12			construction					
			phase					
2.6.45	7.6.1	Use horizontal directional drilling to avoid direct	Marine works	Contractor		V		
to		disturbance to corals	site / during					
2.6.48			dredging works					
2.6.57	4.12.3	Deploying of 2-layer silt curtains with the first layer	All work sites /	Contractor				
to		enclosing the grab an the second layer at around 50m from	during					
2.6.58		the dredging area while dredging works are in progress	construction					
			phase					
2.6.51	7.6.1	Fence off the slope stabilisation works area from	STW/ During	Contractor		V		
		surrounding shrubland and/ woodland, to prevent access to	construction					
		or disturbance of adjacent habitats. The works area						
		should be as small as is possible, consistent with the						
		requirements of the works.						

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA	EM&A	Environmental Protection Measures*		Environmental Protection Measures*		Implementation Stages**			Relevant Legislation
Ref	Ref		Timing Agent	Agent	D	C	0	& Guidelines	
2.5.37	4.12.4	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report		Contractor		√		TM on EIA Process	

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

N/A Not applicable

Implementation Schedule of Landscape and Visual Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location / Timing	Implementation Agent	Implementation Stages **			Relevant Legislation &	
			Immig	Agent	D	C	O	Guidelines	
Constru	iction Pha	se							
2.8.37	9.2.2	Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		V		WBTC No. 14/2002	
2.8.37	9.2.2	Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor		V			
2.8.37	9.2.2	Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		V		WBTC No. 19/2001	
2.8.37	9.2.2	Conservation of topsoil for reuse.	All sites	Contractor		1			
2.8.30	9.2.2	Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		V			

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Appendix M

Impact Coral Monitoring Report

1. BACKGROUND

- 1.1 Further to the Sewerage Master Plan (SMP) study of the Outlying Islands in 1994, Drainage Services Department (DSD) was commissioned by Environmental Protection Department (EPD) to carry out a Preliminary Project Feasibility Study (PPFS) for the Outlying Islands Sewerage Stage I Phase II in 1996. The project is part of an Outlaying Islands Sewerage Project, which involves construction of a sewage treatment works (STW) and submarine outfalls of approximately 500m in length and 325mm in diameter at Yung Shue Wan (YSW) on Lamma Island. Coral colonies were recorded at YSW site during the Environmental Impact Assessment (EIA) under the Preliminary Investigations Study (PIS).
- 1.2 As construction works of marine outfall was commenced on 9 May 2011, this is the 1st coral monitoring report which covers the reporting period from 9 to 31 May 2011 to present the result coral monitoring exercise of corals at YSW and SW following the tagging for 20 corals on both sites for the Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan.

2. MONITORING EQUIPMENT

2.1 The monitoring equipment used for the coral monitoring are listed in **Table 2-1**.

Table 2-1 Monitoring Equipment for the Coral Monitoring

Equipment	Model					
A4 size underwater slates	Handmade A4 size underwater slates					
Coral Photos	Laminated Tagged Coral Photos					
Quadrat	50 cm x 50 cm plastic quadrat (with 10 cm x 10					
Quadrat	cm grid)					
Underwater Camera	Canon G10 digital camera					
Scuba Diving Equipment	Scubapro regulator, BCD and fins					
Diving Post	33 feet long diving boat with two 200hp					
Diving Boat	outboard engines, registration #128328					

3. MONITORING LOCATION

3.1 One control station at Sham Wan, Lamma Island and one impact stations at boulder seawall at Yung Shue Wan, Lamma Island were recommended in the *Method Statement Section 3.3*. These sites represent the coral site where uncommon coral species were recorded from the coral surveys carried out as part of the Review Report on the EIA Study. The coordinates of the monitoring location is listed in **Table 3-1**.

Table 3-1 Locations of Coral Monitoring Station

Divis Sits	Coordinates				
Dive Site	Easting	Northing			
Yung Shue Wan, Lamma Island	829180.06E	809555.76N			
Sham Wan, Lamma Island	832160.86E	805738.31N			

4. METHODOLOGY

- 4.1 20 tagged hard coral colonies were monitored at the impact (Yung Shue Wan) and control station (Sham Wan). Laminated photos of the tagged corals were used underwater to relocate and identify the tagged corals.
- 4.2 Three parameters were recorded for each tagged coral and these are:
 - Percentage sediment cover
 - Increase % sediment cover caused by marine work will affect the health of coral as it will block the sunlight that reaches the corals, this may result in bleaching or death of the coral colonies.
 - Percentage bleached tissue two bleaching categories will be recorded;
 - Unhealthy corals will show bleached tissue especially when sediment and turbidity increased, prolonged bleaching may result in total or partial death of the coral colonies.
 - Blanched or pale a loss of zooxanthellae or photosynthetic pigments
 - Bleached a total loss zooxanthellae and coral tissue still present
 - Percentage dead total or partial mortality.
 - Increased in total or partial mortality rate may be caused by the marine work.
- 4.3 Each parameter was assessed as a percentage of total colony area. To aid percentage cover estimates a 50 x 50 cm² quadrat (Photo 2) with a 10x10 cm² lined grid was used.
- 4.4 During each survey, diversity, abundance and health status of the corals in the general area will be recorded.
- 4.5 Photos of each tagged corals were also taken during the monitoring survey.

5. RESULTS

5.1 Coral monitoring was carried out on 20nd and 31st May 2011. The weather conditions were summarised in **Table 5-1.**

Table 5-1 Weather Conditions on 20nd and 31st May 2011

Date	20 nd M	ay 2011	31 st Ma	y 2011	
Site	Yung Shue Wan	Sham Wan	Yung Shue Wan	Sham Wan	
Survey Time	9:00 am	8:00 am	9:00 am	8:00 am	
Tidal Height	2.2m 2.0m)m	
Air Temperature	30°	C	32° C		
Water Temperature	22°	° C	24°	С	
Water Depth	2m	2.5m	2m	2.5m	
Wind Speed	Southea	st force 3	Southeas	t force 3	
Weather	Sunny		Sunny		
Water Visibility	0	5m	1r	n	

Yung Shue Wan

- 5.2 This site is mainly composed of artificial sloping boulders down to 2.5 meters depth along coral area. Areas deeper than 3 meters are mainly muddy and sandy bottoms. The coral coverage was about 5% in which most of them were located on the artificial sloping boulders. 20 hard coral colonies were monitored on 20nd and 31st May 2011 and their species name, size and health condition were shown in **Table 5-2** and **Table 5-3**.
- 5.3 No bleaching or mortality was recorded during the monitoring survey on both dates. Photos of each tagged corals were shown in **Appendix I.**
- 5.4 In general the diversity and abundance of corals in this area is relatively low and common respectively when compared with other coral area in Hong Kong such as Hoi Ha Wan and Sharp Island.

Table 5-2 Species Name, Size and Heath Condition for Tagged Corals in YSW on 20^{th} May 2011

Site: Yung	Shue Wan				Bleaching	g (%)		
Coral No.	Species Name	Specific Location	Size (cm) (Max. Length)	Sediment Cover (%)	Blanched/Pale	Bleached	Total/Partial Mortality (%)	Remarks
1	Favites chinensis	Boulder	32	0	0	0	0	N/A
2	Favia speciosa	Boulder	30	0	0	0	0	N/A
3	Favites pentagona	Boulder	38	0	0	0	0	N/A
4	Favia favus	Boulder	17	0	0	0	0	N/A
5	Porites lutea	Boulder	43	0	0	0	0	N/A
6	Porites lobata	Boulder	18	0	0	0	0	N/A
7	Cyphastrea serailia	Boulder	26	0	0	0	0	N/A
8	Favites chinensis	Boulder	22	0	0	0	0	N/A
9	Favites pentagona	Boulder	106	0	0	0	0	N/A
10	Coscinaraea n sp.	Boulder	16	0	0	0	0	N/A
11	Porites lutea	Boulder	36	0	0	0	0	N/A
12	Favites pentagona	Boulder	20	0	0	0	0	N/A
13	Goniopora stutchburyi	Boulder	28	0	0	0	0	N/A
14	Porites lobata	Boulder	42	0	0	0	0	N/A
15	Goniastrea aspera	Boulder	19	0	0	0	0	N/A
16	Cyphastrea serailia	Boulder	16	0	0	0	0	N/A
17	Plesiastrea versipora	Boulder	27	0	0	0	0	N/A
18	Goniopora stutchburyi	Boulder	23	0	0	0	0	N/A
19	Cyphastrea serailia	Boulder	21	0	0	0	0	N/A
20	Porites lutea	Boulder	52	0	0	0	0	N/A

Table 5-3 Species Name, Size and Heath Condition for Tagged Corals in YSW on 31st May 2011

Site: Yung Shue Wan				Bleaching (%)				
Coral No.	Species Name	Specific Location	Size (cm) (Max. Length)	Sediment Cover (%)	Blanched/Pale	Bleached	Total/Partial Mortality (%)	Remarks
1	Favites chinensis	Boulder	32	0	0	0	0	N/A
2	Favia speciosa	Boulder	30	0	0	0	0	N/A
3	Favites pentagona	Boulder	38	0	0	0	0	N/A
4	Favia favus	Boulder	17	0	0	0	0	N/A
5	Porites lutea	Boulder	43	0	0	0	0	N/A
6	Porites lobata	Boulder	18	0	0	0	0	N/A
7	Cyphastrea serailia	Boulder	26	0	0	0	0	N/A
8	Favites chinensis	Boulder	22	0	0	0	0	N/A
9	Favites pentagona	Boulder	106	0	0	0	0	N/A
10	Coscinaraea n sp.	Boulder	16	0	0	0	0	N/A
11	Porites lutea	Boulder	36	0	0	0	0	N/A
12	Favites pentagona	Boulder	20	0	0	0	0	N/A
13	Goniopora stutchburyi	Boulder	28	0	0	0	0	N/A
14	Porites lobata	Boulder	42	0	0	0	0	N/A
15	Goniastrea aspera	Boulder	19	0	0	0	0	N/A
16	Cyphastrea serailia	Boulder	16	0	0	0	0	N/A
17	Plesiastrea versipora	Boulder	27	0	0	0	0	N/A
18	Goniopora stutchburyi	Boulder	23	0	0	0	0	N/A
19	Cyphastrea serailia	Boulder	21	0	0	0	0	N/A
20	Porites lutea	Boulder	52	0	0	0	0	N/A

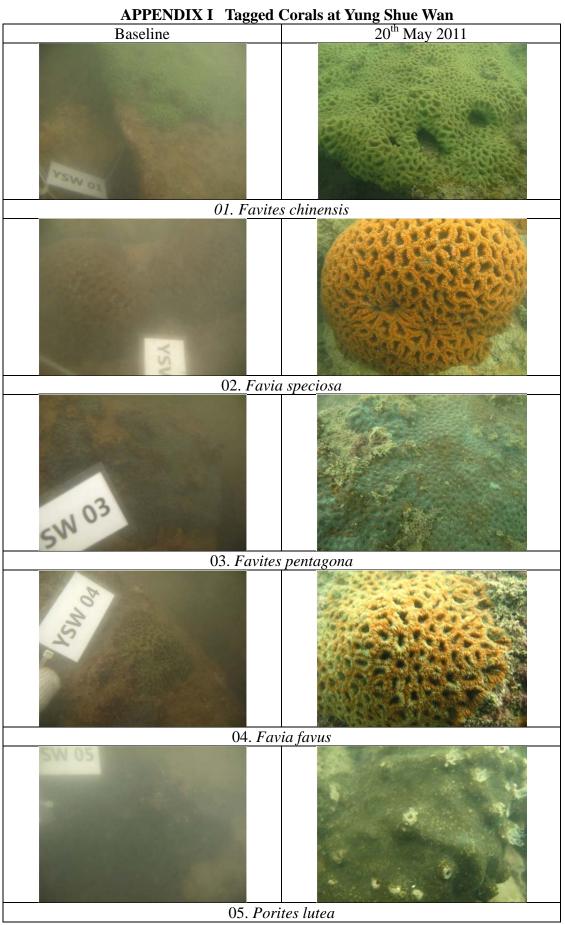
Sham Wan

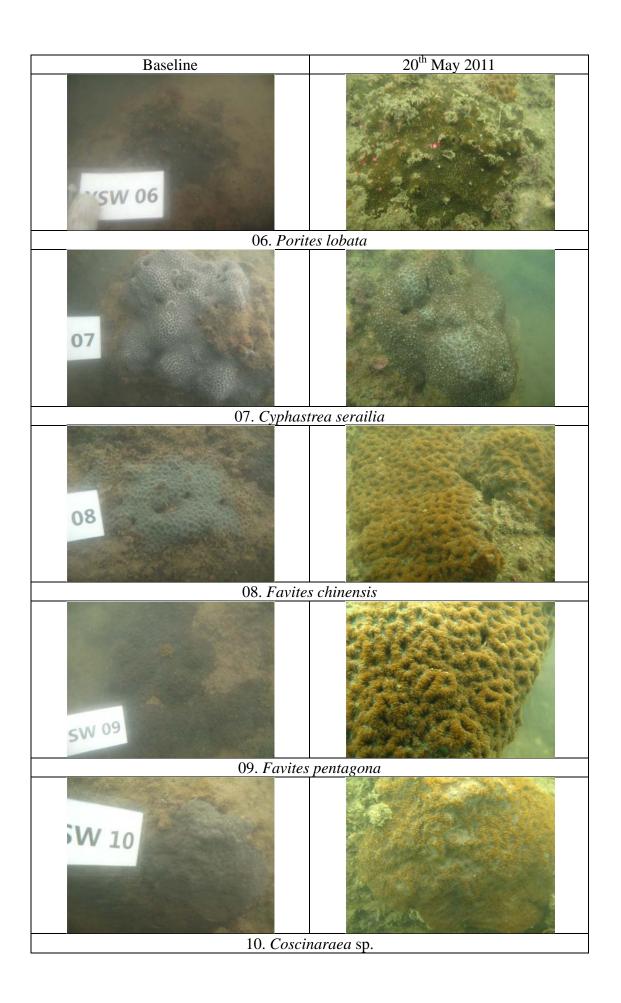
- 5.5 This site is mainly composed of bedrocks and big boulders down to 3.5 meters depth along the surveyed route. Areas deeper than 4 meters are mainly sandy bottoms. The coral coverage was about 10% in which most of corals were located on boulders or rock surfaces. 20 hard coral colonies were monitored on 20nd and 31st May 2011 and their species name, size and health condition were shown in **Table 5-4** and **Table 5-5**.
- Corals in this site showed fair to healthy condition. One coral colony (#4) was recorded to be died of the whole colony on 31st May 2011's monitoring. It was suspect the whole colony was killed by coral feeding snail *Drupella* sp. (**Appendix II**). A new coral colony were re-tagged on 3rd June 2011 to replace

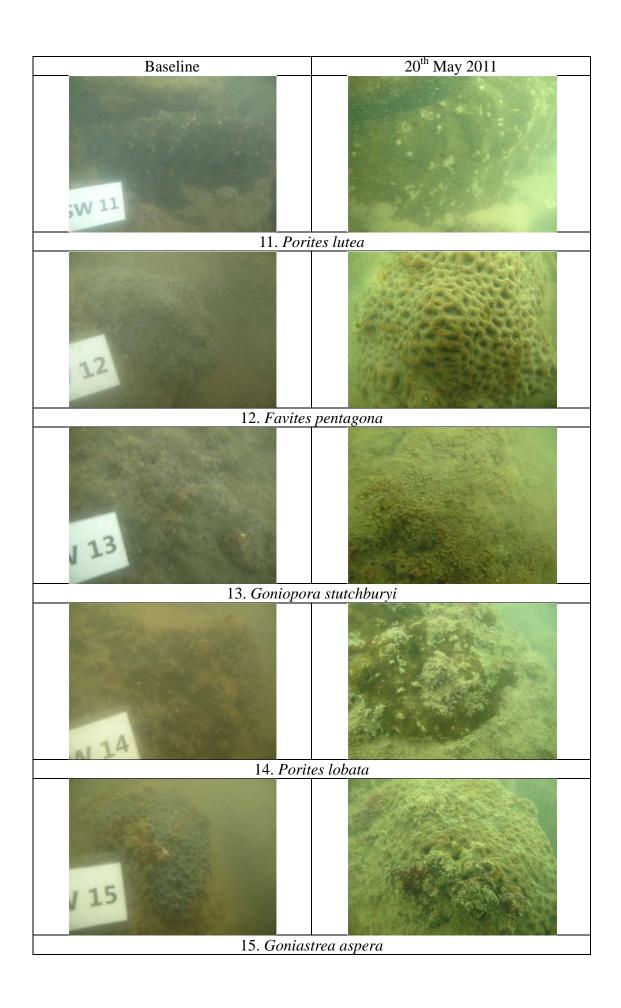
- the lost of coral #4. No bleaching or mortality was recorded for other corals during the survey. Photos of each tagged corals were shown in **Appendix II**.
- 5.7 In general the diversity and abundance of corals in this area is relatively low and common respectively when compared with other coral area in Hong Kong such as Hoi Ha Wan and Sharp Island.

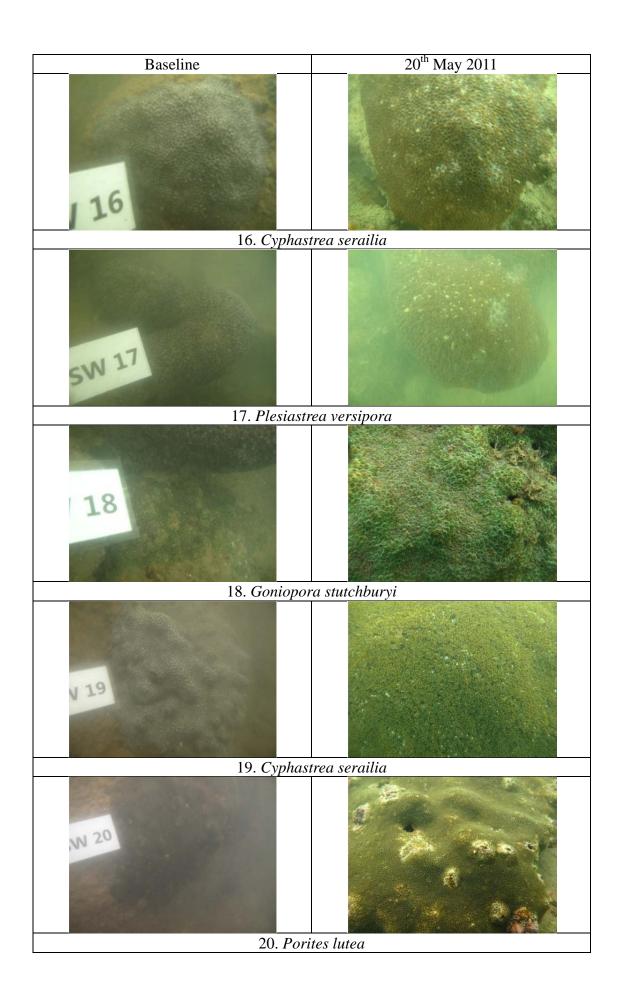
Table 5-4 Species Name, Size and Heath Condition for Tagged Corals in SW on $20^{th}\ May\ 2011$

Site: Sham Wan				Bleaching (%)				
Coral No.	Species Name	Specific Location	Size (cm) (Max. Length)	Sediment Cover (%)	Blanched/Pale	Bleached	Total/Partial Mortality (%)	Remark
1	Favia favus	Boulder	14	0	0	0	0	N/A
2	Favia rotumana	Boulder	21	0	0	0	0	N/A
3	Favia rotumana	Boulder	27	0	0	0	0	N/A
4	Cyphastrea serailia	Rock	14	0	0	0	0	N/A
5	Goniopora stutchburyi	Bedrock	32	0	0	0	0	N/A
6	Porites lobata	Bedrock	43	0	0	0	0	N/A
7	Porites lobata	Boulder	23	0	0	0	0	N/A
8	Goniopora stutchburyi	Bedrock	29	0	0	0	0	N/A
9	Favites pentagona	Bedrock	31	0	0	0	0	N/A
10	Porites lobata	Bedrock	34	0	0	0	0	N/A
11	Porites lobata	Boulder	33	0	0	0	0	N/A
12	Favia favus	Rock	13	0	0	0	0	N/A
13	Cyphastrea serailia	Bedrock	13	0	0	0	0	N/A
14	Cyphastrea serailia	Bedrock	12	0	0	0	0	N/A
15	Favia favus	Boulder	14	0	0	0	0	N/A
16	Favia rutomana	Boulder	30	0	0	0	0	N/A
17	Favia favus	Bedrock	26	0	0	0	0	N/A
18	Favia rotumana	Bedrock	28	0	0	0	0	N/A
19	Cyphastrea serailia	Bedrock	39	0	0	0	0	N/A
20	Cyphastrea serailia	Bedrock	27	0	0	0	0	N/A


Table 5-5 Species Name, Size and Heath Condition for Tagged Corals in SW on $31^{\rm st}$ May 2011


Site: Sham Wan				Bleaching	g (%)					
Coral No.	Species Name	Specific Location	Size (cm) (Max. Length)	Sediment Cover (%)	Blanched/Pale	Bleached	Total/Partial Mortality (%)	Remarks		
1	Favia favus	Boulder	14	0	0	0	0	N/A		
2	Favia rotumana	Boulder	21	0	0	0	0	N/A		
3	Favia rotumana	Boulder	27	0	0	0	0	N/A		
4#	Cyphastrea serailia	Rock	20	0	0	0	100	N/A		
5	Goniopora stutchburyi	Bedrock	32	0	0	0	0	N/A		
6	Porites lobata	Bedrock	43	0	0	0	0	N/A		
7	Porites lobata	Boulder	23	0	0	0	0	N/A		
8	Goniopora stutchburyi	Bedrock	29	0	0	0	0	N/A		
9	Favites pentagona	Bedrock	31	0	0	0	0	N/A		
10	Porites lobata	Bedrock	34	0	0	0	0	N/A		
11	Porites lobata	Boulder	33	0	0	0	0	N/A		
12	Favia favus	Rock	13	0	0	0	0	N/A		
13	Cyphastrea serailia	Bedrock	13	0	0	0	0	N/A		
14	Cyphastrea serailia	Bedrock	12	0	0	0	0	N/A		
15	Favia favus	Boulder	14	0	0	0	0	N/A		
16	Favia rotumana	Boulder	30	0	0	0	0	N/A		
17	Favia favus	Bedrock	26	0	0	0	0	N/A		
18	Favia rotumana	Bedrock	28	0	0	0	0	N/A		
19	Cyphastrea serailia	Bedrock	39	0	0	0	0	N/A		
20	Cyphastrea serailia	Bedrock	27	0	0	0	0	N/A		


coral was killed by coral feeding snail Drupella sp.(refer to Section 5.6)


6. COMMENTS AND CONCLUSION

- 6.1 Coral monitoring were performed on 20th and 31st May 2011 at Yung Shue Wan and Sham Wan and 20 hard coral colonies were monitored at each sites.
- 6.2 No beaching or mortality were recorded on both sites during the monitoring period except one colony (#4) at Sham Wan was killed by coral feeding snail *Drupella* sp.. New coral was tagged on 3rd June 2011 at Sham Wan to replace the dead coral colony. The coral coverage in both impact site (YSW) and control site (SW) are relatively low when compared with other coral communities in Hong Kong (such as Sharp Island and Hoi Ha Wan). Most of the coral colonies recorded in both site are common species in Hong Kong water.
- 6.3 No deterioration in the general condition of the coral fauna was observed. No adverse deterioration of the coral community was observed in the ecological monitoring results when compared with the baseline ecological monitoring results.

