

PROJECT No.: TCS/00512/09

DSD CONTRACT No. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

YUNG SHUE WAN PORTION AREA MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (NO.27) – NOVEMBER 2012

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Quality Index
Date Reference No. Prepared By Approved By

18 December 2012 TCS00512/09/600/R0580v2

Nicola Hon T.W. Tam
Environmental Consultant Environmental Team Leader

Version	Date	Description
1	12 December 2012	First Submission
2	18 December 2012	Amended against IEC's comments on 18 December 2012

Scott Wilson CDM Joint Venture

Chief Engineer/Harbour Area Treatment

Scheme

Drainage Services Department

5/F Western Magistracy 2A Pok Fu Lam Road

Hong Kong

Your reference:

Our reference:

05117/6/16/395043

Date:

19 December 2012

BY FAX AND EMAIL

Attention: Mr. Kenley C K Kwok

Dear Sirs.

Contract No. DC/2009/13
Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan
Yung Shue Wan Portion Area
Monthly Environmental Monitoring and Audit (EM&A) Report No. 27 (November 2012)

We refer to the Monthly EM&A Monitoring Report No. 27 for November 2012 received under cover of the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), dated on 18 December 2012. We have no comment and have verified the captioned report.

Yours faithfully SCOTT WILSON CDM JOINT VENTURE

Rodney Ip

Independent Environmental Checker

ICWR/SYSL/vchn

cc. Leader Civil Engineering

AUES ER/LAMMA

CDM

(Attn: Mr Vincent Chan)

(Attn: Mr T.W. Tam)

(Attn: Mr lan Jones) (Attn: Mr Mark Sin)

EXECUTIVE SUMMARY

ES.01. This is the 27th monthly Environmental Monitoring and Audit (EM&A) for Yung Shue Wan (hereinafter 'this Report') for the designated works under Environmental Permit [EP-282/2007], covering a period from 26 October to 25 November 2012 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air Quality	1-hour TSP	30
All Quality	24-hour TSP	12
Construction Noise	Leq (30min) Daytime	5
Water Quality	Marine Water Sampling	13
Ecology	Coral Monitoring	1
Inspection / Audit	ET Regular Environmental Site Inspection	5

- ES.03. According to the construction information provided by the Contractor, the marine works in Yung Shue Wan has been ceased since 19 January 2012. As agreed by the IEC and RE, the marine water quality and ecology monitoring was suspended from 6 February 2012 until further notice of the commencement of dredging works. The relevant letter ref.: TCS00512/10/300/L0425 has been submitted to EPD on 3 February 2012.
- ES.04. It is noticed that the remaining dredging work in Yung Shuen Wan would be commenced on 23 November 2012. As instructed by the Contractor, the marine water quality monitoring has been resumed since 11 June 2012 while an advance ecology monitoring was conducted on 7 November 2012.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.05. No exceedance in construction noise monitoring was recorded in this Reporting Period. For air quality monitoring, 1 Action Level exceedance of 24-hour TSP result was recorded at Location AC02b on 7 November 2012 which concluded as not project related. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action	Limit	Event & Action		
Issues	Parameters Parameters	Level	Level	NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	1	0	1	Not works related	N.A.
7 in Quanty	24-hour TSP	0	0	0		
Construction Noise	L _{eq(30min)} Daytime	0	0	0		
	DO	0	0	0		
Water Quality	Turbidity	0	0	0		
	SS	0	0	0		
	Sediment Cover (%)	0	0	0		
Ecology (Coral)	Bleaching (%)	0	0	0		
	Mortality (%)	0	0	0		

Note: NOE – Notification of Exceedance

SITE INSPECTION

ES.06. In this Reporting Period, 5 events of weekly joint inspection by the RE, the Contractor and ET were carried out on 26, 30 October and 6, 13 and 21 November 2012.

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.07. No written or verbal complaint, environmental summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.08. No reporting change is made in this Reporting Period.

FUTURE KEY ISSUES

- ES.09. During dry and windy season, construction dust would be the key environmental issue to concern in the upcoming months. The construction dust mitigation measures identified at the EM&A Manual such as watering at haul road and covering of dusty material should be implemented and properly maintained.
- ES.10. Nevertheless, the Contractor shall keep paying attention on the potential water impact as the construction site is adjacent to the coastline. Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish culture zone at Picnic Bay and the Secondary recreation contact subzone at Mo Tat Wan should be avoided. Therefore, mitigation measures for water quality should be fully implemented.

TABLE OF CONTENTS

1	INTRODUCTION PROJECT BACKGROUND REPORT STRUCTURE	1 1 1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE CONSTRUCTION PROGRESS SUMMARY OF ENVIRONMENTAL SUBMISSIONS	2 2 2 2
3	SUMMARY OF BASELINE MONITORING REQUIREMENTS ENVIRONMENTAL ASPECT MONITORING LOCATIONS MONITORING FREQUENCY AND PERIOD MONITORING EQUIPMENT EQUIPMENT CALIBRATION METEOROLOGICAL INFORMATION DATA MANAGEMENT AND DATA QA/QC CONTROL REPORTING DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	3 3 3 4 5 6 7 7 7
4	IMPACT MONITORING RESULTS - AIR QUALITY	9
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	11
6	IMPACT MONITORING RESULTS – WATER QULAITY	12
7	IMPACT MONITORING RESULTS – ECOLOGY MONITORING	14
8	WASTE MANAGEMENT	15
9	SITE INSPECTION	16
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	17
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	18
12	IMPACT FORECAST	24
13	CONCLUSIONS AND RECOMMENDATIONS CONCLUSIONS RECOMMENDATIONS	25 25 25

LIST OF TABLES

Table 2-1	Status of Environmental Licenses and Permits
Table 2-2	Status of EM&A Programme Submission
Table 3-1	Summary of EM&A Requirements
Table 3-2	Location of Air Quality Monitoring Station
Table 3-3	Location of Construction Noise Monitoring Station
Table 3-4	Location of Marine Water Quality Monitoring Station
Table 3-5	Action and Limit Levels for Air Quality
Table 3-6	Action and Limit Levels for Construction Noise
Table 3-7	Action and Limit Levels for Marine Water Quality
Table 3-8	Action and Limit Levels for Coral Monitoring
Table 4-1	Summary of 24-hour and 1-hour TSP Monitoring Results at AC02b
Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results at AC04c
Table 5-1	Summarized of Construction Noise Monitoring Results at NC05
Table 6-1	Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)
Table 6-2	Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)
Table 6-3	Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)
Table 6-4	$Summary\ of\ Water\ Quality\ Results-Mid-flood\ Tides\ (Turbidity\ \&\ Suspended\ Solids)$
Table 6-5	Summarized Exceedances of Marine Water Quality
Table 8-1	Summary of Quantities of Inert C&D Materials
Table 8-2	Summary of Quantities of C&D Wastes
Table 9-1	Site Observations
Table 10-1	Statistical Summary of Environmental Complaints
Table 10-2	Statistical Summary of Environmental Summons
Table 10-3	Statistical Summary of Environmental Prosecution
Table 11-1	Environmental Mitigation Measures

LIST OF APPENDICES

Appendix A	Site Layout Plan – Yung Shue Wan Portion Area
Appendix B	Organization Structure and Contact Details of Relevant Parties
Appendix C	Master and Three Months Rolling Construction Programme
Appendix D	Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality/ Dive Surveys of Coral)
Appendix E	Monitoring Equipments Calibration Certificate
Appendix F	Event and Action Plan
Appendix G	Monitoring Data Sheet
Appendix H	Graphical Plots of Monitoring Results
Appendix I	Meteorological Information
Appendix J	Monthly Summary Waste Flow Table
Appendix K	Weekly Site Inspection Checklist
Appendix L	Implementation Schedule of Mitigation Measures
Appendix M	Coral Monitoring Report
Appendix N	Investigation Report for the Environmental Exceedance

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the *Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan* (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant Works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung Shue Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team (ET) to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the EM&A Manual. This EM&A Manual is referred to the Appendix D of the Review Report on EIA Study Yung Shue Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 This is the 27th monthly EM&A Report for Yung Shue Wan Portion Area which presenting the monitoring results and inspection findings in the Reporting Period from 26 October to 25 November 2012.

REPORT STRUCTURE

SECTION 13

1.06 The Monthly Environmental Monitoring and Audit (EM&A) Report – Yung Shue Wan is structured into the following sections:-

structured into the following sections:-		
SECTION 1	Introduction	
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	
SECTION 3	SUMMARY OF MONITORING REQUIREMENTS	
SECTION 4	AIR QUALITY MONITORING RESULTS	
SECTION 5	CONSTRUCTION NOISE MONITORING RESULTS	
SECTION 6	WATER QUALITY MONITORING RESULTS	
SECTION 7	ECOLOGY MONITORING RESULTS	
SECTION 8	WASTE MANAGEMENT	
SECTION 9	SITE INSPECTIONS	
SECTION 10	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE	
SECTION 11	IMPLEMENTATION STATUES OF MITIGATION MEASURES	
SECTION 12	IMPACT FORECAST	

CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The master and three month rolling construction programme are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-
 - Construction of YSWSTW: Excavation, Soil Compaction, Concreting, Steel Fixing, Formwork Erection, Formwork Removal, Backfilling, Scaffolding Erection, Dismantling Scaffolding, Plastering, Painting and E&M Works Installation.

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust) Regulation	Notified 19/5/2010
		Case No: 317486
2	Chemical Waste Producer Registration	Issued on 8/6/2010
		WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Issued on 22/9/2010
		WT00007566-2010
4	Billing Account for Disposal of Construction Waste	Issued on 26 May 2010
		A/C No: 7010815
5	Construction Noise Permit (no. GW-RS0772-12)	Issued on 30 July 2012
		Valid from 30 July 2012
		until 19 January 2013

2.04 Summary of the report submission for EM&A Programme is presented in *Table 2-2*.

Table 2-2 Status of EM&A Programme Submission

Item	EM&A Programme Submission	Status
1	Proposed EM&A Programme for Baseline / Impact	Verified by IEC and submitted to
	Monitoring – Yung Shue Wan	EPD on 8 July 2010
	(TCS00512/09/600/R0011Ver.5)	
2	Method Statement for Coral Monitoring – Yung Shue	Verified by IEC and submitted to
	Wan (TCS00512/09/600/R0071Ver.3)	EPD on 25 November 2010
3	Baseline Air and Noise Monitoring Report - Volume 1	Verified by IEC and submitted to
	(TCS00512/09/600/R0061Ver.3)	EPD on 31 August 2010
4	Baseline Monitoring Report Volume 2 - Water Quality	Verified by IEC and submitted to
	(TCS00512/09/600/R0158Ver.2)	EPD on 10 March 2011
5	Baseline Survey for Coral Monitoring – Yung Shue	Verified by IEC and submitted to
	Wan (TCS00512/09/600/R0132Ver.3)	EPD on 17 February 2011
6	Methodology of Coral Tagging for Impact Monitoring	Verified by IEC and submitted to
	– Yung Shue Wan	EPD on 28 March 2011
7	Coral Tagging Report	Verified by IEC and submitted to
	(TCS00512/09/600/R0214Ver.4)	EPD on 3 August 2011

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring programme cover the following environmental issues:
 - Air quality;
 - Construction noise;
 - · Marine water quality; and
 - Ecology monitoring
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise, water quality and ecology of the EM&A programme are presented in the following sub-sections.
- 3.03 A summary of the air, noise, marine water and ecology monitoring parameters is presented in *Table 3-1*:

Table 3-1 Summary of the EM&A Requirements

Environmental Issue	Parameters
Air Quality	 1-hour TSP Monitoring by Real-Time Portable Dust Meter; and 24-hour TSP Monitoring by High Volume Air Sampler.
Noise	 Leq (30min) during normal working hours; and Leq (15min) during Restricted Hours.
Marine Water Quality	 In-situ Measurements Dissolved Oxygen Concentration (DO) (mg/L); Dissolved Oxygen Saturation (%); Turbidity (NTU); pH unit; Salinity (ppt); Water depth (m); and Temperature (°C). Laboratory Analysis Suspended Solids (SS) (mg/L)
Ecology	Coral Monitoring

MONITORING LOCATIONS

Air Quality

- 3.04 Two designated monitoring stations, AC02a located at Yung Shue Wan Refuse Transfer Station and AC04 located at residential area nearby Yung Shue Wan football pitch, were recommended in the *EM&A Manual Section 2.5*. In order to identify and seek for the access of the air monitoring locations designated in the EM&A Manual, site visit was conducted by Leader and ET.
- 3.05 At the site visit, all designated monitoring locations were identified however the premises for high volume sampler installation were objected by the owner or the residents of nearby. So, alternative air monitoring locations were proposed in accordance with the criteria set out in *EM&A manual Section 2.5.2 and 2.5.3*. The proposed alternative air monitoring stations were accepted by the Engineer Representative (ER) and Independent Environmental Checker (IEC) and EPD for endorsement. Details of renewed air monitoring stations are described in *Table 3-2*. The graphical of air monitoring stations is shown in *Appendix D*.

Table 3-2 Location of Air Quality Monitoring Station

Sensitive Receiver	Location
AC02b	The entrance of RE's site office
AC04c	Next to a power transformer station TP208 Yung Shue Wan and adjacent to the road direct to the construction site

Construction Noise

3.06 According to *EM&A Manual Section 3.4*, one noise sensitive receivers (NC05) designated for the construction noise monitoring was recommended at Yung Shue Wan Portion Area of the Project. The designated monitoring station is identified and successfully granted the premises. The detailed construction noise monitoring station is described in *Table 3-3* and graphical is shown in *Appendix D*.

Table 3-3 Location of Construction Noise Monitoring Station

Sensitive Receiver	Location
NC05	Roof of North Lamma Clinic

Marine Water Quality

3.07 Two control stations (CY1 and CY2) and three impact stations (WY1-WY3) were recommended in the *EM&A Manual Section 4.5*. Impact stations WY1-WY3 were identified close to the sensitive receivers (the coral colonies in the vicinity of Yung Shue Wan, and secondary contact recreation subzone). It is proposed to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Two control stations: CY1 and CY2 were recommended at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. The marine water quality monitoring stations to be performed under the Project is described in *Table 3-4* and shown in *Appendix D*.

Table 3-4 Location of Marine Water Quality Monitoring Station

Station	Description	Coordinates			
Station	Description	Easting	Northing		
WY1	Coral colonies on seawall at STW site	829 170	809 550		
WY2	Coral colonies at Shek kok Tsui	829 000	810 400		
WY3	Coral colonies at O Tsai (headland N at SW ferry pier)	829 200	809 850		
CY1 (flood)	Control Station	828 400	810 800		
CY2 (ebb)	Control Station	828 000	808 800		

Coral Monitoring

3.08 The coral monitoring stations to be performed under the Project is show in *Appendix D*. The details of the monitoring location could be referred to *Impact Coral Monitoring Report* which enclosed in *Appendix M*.

MONITORING FREQUENCY AND PERIOD

3.09 The Impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections 2.7, 3.6, 4.7, 4.8, 7.3 and 7.4*. The monitoring requirements are listed as follows:

Air Quality Monitoring

Parameters: 1-hour TSP and 24-hour TSP

Frequency: Once in every six days for 24-hour TSP and three times in every six days for

1-hour TSP

Duration: Throughout the construction period

Noise Monitoring

<u>Parameters</u>: $L_{eq 30min}$ & $L_{eq(5min)}$, L_{10} and L_{90} .

 $L_{eq(15min)}$ & $L_{eq(5min)}$, L_{10} and L_{90} during the construction undertaken during Restricted hours (19:00 to 07:00 hours next of normal working day and full day

of public holiday and Sunday)

Frequency: Once per week during 0700-1900 hours on normal weekdays. Restricted hour

monitoring should depend on conditions stipulated in Construction Noise Permit

Duration: Throughout the construction period

Marine Water Quality Monitoring

Parameters: Duplicate in-situ measurements: water depth, temperature, dissolved oxygen,

pH, turbidity and salinity

HOKLAS-accredited laboratory analysis: suspended solids

Frequency: Three days a week, at mid ebb and mid flood tides. The interval between 2 sets

of monitoring will be more than 36 hours

<u>Sampling</u> (i.) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m.

(ii.) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom

(iii.) If the water depth is less than 3m, 1 sample at mid-depth is taken

<u>Duration</u>: During the course of marine works

Coral Monitoring

Parameters: Presence and coverage of hard and soft corals such as diversity,

abundance and health status of the corals in the general area, plus other

physical and biological condition at the underwater environment

<u>Frequency</u>: One per week for the first three months of the marine works. If no

exceedances are reported during the first three months, the frequency may

be reduced to twice every month

<u>Duration</u>: During the course of marine works

Post-Construction Monitoring – Marine Water

3.10 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the *Section 4.8 of EM&A Manual*. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

Post-Construction Monitoring - Ecology Monitoring

3.11 Following completion of the marine works, post project monitoring should be carried out within two weeks of completion of the marine works (HDD and dredging), and should comprise the same two-tier Rapid Assessment Ecological Assessment (REA) method adopted for the baseline survey.

MONITORING EQUIPMENT

Air Quality Monitoring

3.12 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

Noise Monitoring

3.13 Sound level meter in compliance with the *International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1)* specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the

wind speed in m/s.

Water Quality Monitoring

- 3.14 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring as included a DO level in the range of 0 20 mg L-1 and 0 200 % saturation; and a temperature of 0 45 degree Celsius.
- 3.15 **pH Meter** The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in arrange of 0 to 14.
- 3.16 *Turbidity (NTU) Measuring Equipment* The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.17 **Water Sampling Equipment** A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.18 *Water Depth Detector* A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat.
- 3.19 **Salinity Measuring Equipment** A portable salinometer capable of measuring salinity in the range of 0 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.
- 3.20 **Sample Containers and Storage** Water samples for suspended solids should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.21 *Monitoring Position Equipment* A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- 3.22 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

Coral Monitoring

3.23 The monitoring equipments used for the coral monitoring could be referred to *Impact Coral Monitoring report* which enclosed in *Appendix M*.

EQUIPMENT CALIBRATION

- 3.24 Calibration of the High Volume Sampler (HVS) is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.25 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the

High Volume Sampler (HVS) in same condition was undertaken in yearly basis.

- 3.26 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.27 The water quality monitoring equipments such as DO meter, pH Meter, turbidity measuring instrument and salinometer, are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.28 All updated calibration certificates of the monitoring equipment used for the impact monitoring programme in the Reporting Period would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.29 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.30 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring programme.
- 3.31 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, sound level meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

REPORTING

3.32 It was agreed among the ER, IEC, Contractor and ET that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end day, the 25th of that month.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.33 According to the Yung Shue Wan Environmental Monitoring and Audit Manual, the air quality, construction noise, marine water quality and coral monitoring were established, namely Action and Limit levels are listed in *Tables 3-5* to *3-8* as below.

Table 3-5 Action and Limit Levels for Air Quality

Monitoring Station	Action Lev	$vel (\mu g / m^3)$	Limit Level (µg/m³)			
Momtoring Station	1-hour TSP			24-hour TSP		
AC02b	288	161	500	260		
AC04c	290	176	500	260		

Table 3-6 Action and Limit Levels for Construction Noise

	Recommended Action & Limit Levels of Construction Noise									
Monitoring	Action Level	Limit Level								
Location	0700-1900 hours on normal weekdays									
NC05	When one or more documented complaints are received	75 dB(A) *								

Note: * Reduces to 70dB(A) for schools and 65dB(A) during the school examination periods.

Table 3-7 Action and Limit Levels for Marine Water Quality

Donomoton	Performance	Impact Station			
Parameter	Criteria	WY1	WY2	WY3	
DO Concentration (Surface and Middle)	Action Level	3.63	3.53	3.61	
(mg/L)	Limit Level	3.32	3.47	3.42	
DO Concentration (Bottom)	Action Level	3.33	2.92	3.36	
(mg/L)	Limit Level	3.23	2.63	3.14	
Turbidity (Depth-Average)	Action Level	10.94	14.16	14.99	
(NTU)	Limit Level	17.35	15.20	16.21	
Suspended Solids (Depth-Average)	Action Level	17.52	14.04	14.52	
(mg/L)	Limit Level	25.62	16.51	16.88	

Table 3-8 Action and Limit Levels for Coral Monitoring

Step	Action
1	Commence tagged coral monitoring at the impact site. If no increase in sedimentation cover/bleaching/partial mortality is observed on the hard corals or partial mortality no the soft/black corals, no action is required. If an increase in sedimentation cover/bleaching/partial mortality is observed on the hard corals or partial mortality on the soft/black corals at one or more impact monitoring stations Step 3 should be enacted, if not, Step 2.
2	If non actions are triggered a formal report should be issued along with evidentiary photographs following completion of the survey. Meanwhile monitoring work and construction works should continue uninterrupted.
3	If during the impact monitoring a 15% increase in the percentage of sedimentation on the hard corals occurs at more than 20% of the tagged coral colonies at the Impact Monitoring Station that is not reported at the Control Monitoring Station, then the Action Level is exceeded (Step 4).
4	If the Action Level is exceeded the IC(E) should inform all parties. The data from the water quality monitoring should also be reviewed. If the water quality monitoring shows no attributable effects of the installation works, then the Action Level is not triggered. If the water quality data indicate exceedances (for SS and/or turbidity) the IC(E) should discus with the Contractor the most appropriate method of reducing suspended solids during construction (e.g. reduce rate of dredging). The water quality data reviewed should then be enacted on the next working day.
5	Monitoring should proceed the following day as per Step 1. If during the Impact Monitoring a 25% increase in the percentage of sedimentation on the hard corals at more than 20% of the tagged coral colonies at the Impact Monitoring Station that is not reported at the Control Monitoring Station, then the Limit Level is exceeded (Step 6). If the Limit Level is not exceeded Step 2 is enacted and work continues according to the mitigated method.
6	If the Limit Level is exceeded the Inspector Officer should inform all parties immediately. Should the Limit Level be exceeded, the Contractor should stop works immediately and work out a solution to the satisfaction of the IC(E), EPD and AFCD. The IC(E) should inform the Contractor to suspend marine construction works until an effective solution is identified. Once the solution has identified and agreed with all parties, backfilling works may re-commence.

3.34 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 As informed by the Contractor, the construction of relevant land works at Yung Shue Wan was commenced on 14 September 2010. The impact EM&A programme was begun as compliance with the contract Particular Specification, Yung Shue Wan EM&A Manual and the EP.

Result

4.02 In this Reporting Period, the results for 24-hour and 1-hour TSP monitoring are tabulated in *Tables 4-1 and 4-2*. The 24-hour TSP monitoring data are shown in *Appendix G* and the graphical plots are shown in *Appendix H*.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results at AC02b

	24-hour TSP	1-hour TSP (μ g/m ³)							
Date	$(\mu g/m^3)$	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured			
27-Oct-12	153	31-Oct-12	13:40	175	187	177			
1-Nov-12	112	6-Nov-12	14:15	166	178	169			
7-Nov-12	185	12-Nov-12	13:00	159	164	172			
13-Nov-12	152	16-Nov-12	12:00	142	144	157			
19-Nov-12	102	22-Nov-12	10:35	158	172	163			
24-Nov-12	69								
Average	129	Aver	age	166					
(Range)	(69 - 185)	(Ran	ge)		(142 - 187)				

[#] Bold and italic indicated Action Level exceedance.

Table 4-2 Summary of 24-hour and 1-hour TSP Monitoring Results at AC04c

	24-hour TSP		1-hour TSP (μg/m³)								
Date	24-nour TSP (μg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured					
27-Oct-12	169	31-Oct-12	10:00	164	178	169					
1-Nov-12	99	6-Nov-12	9:40	184	203	190					
7-Nov-12	123	12-Nov-12	9:00	163	167	173					
13-Nov-12	156	16-Nov-12	8:00	144	157	162					
19-Nov-12	117	22-Nov-12	7:50	139	154	147					
24-Nov-12	77										
Average	124	Avera	ge	166							
(Range)	(77 - 169)	(Rang	(Range) (139 – 203)								

- 4.03 As shown in *Tables 4-1 and 4-2*, the 1-hour TSP monitoring values fluctuated below the Action Level during the Reporting Period. For 24-hour TSP monitoring, 1 Action Level exceedance was recorded at AC02b on 7 November 2012. Notification of Exceedance (NOE) has been issued to relevant parties upon confirmation of the monitoring result.
- 4.04 According to the construction information provided by the Contractor for the site environmental conditions, investigation of the exceedance of 24-hour TSP Action Levels at AC02b concludes that the exceedance was not related to the works under the Project. As no consecutive exceedances were recorded on the next monitoring date, no remedial actions are required. The investigation result is summarized as follows:
 - The construction activities conducted on 7 November included steel angle installation for revised cable trench; internal and external doors installation; excavate for foul sewer manhole; erect formwork and concreting for foul sewer and storm drain manholes and erect internal formwork for wall of Emergency Tank.
 - The majority of works were carried out inside building except for the minor works for manholes construction. With the implementation of the required construction dust suppression measures such as watering of haul roads and wheel washing prior to exit the site, major construction activities undertaken during the captioned exceedance i.e. indoor works

- etc., were not dusty as shown by the TSP results before 7 November 2012 (i.e., no exceedance recorded in October 2012).
- Other the other hand, it is found that a concurrent construction project, R.C. construction for new police station, was in progress in the Architectural Service Department's (ASD) work site which is about 25m adjacent to monitoring location AC02b. It was considered as one of the source attributable to the 24-hour TSP exceedance.
- Dusty public road which leads to the current construction site was observed. The dusty road is highly possibly brought from the ASD's site during transportation of the material and stockpiles. The dusty road would be another source attributable to the exceedance.
- It is concluded that the exceedance was not related to the works under the Project. As no consecutive e exceedances were recorded on the next monitoring, no remedial actions are required. Nevertheless, full implementation of the recommended environmental mitigation measures, in particular construction dust suppression measures during dusty construction activities including vehicle and construction plant movement, is strongly recommended under dry and windy conditions.
- 4.05 The detailed investigation report for the cause of exceedance and photo record are presented in *Appendix N*.
- 4.06 The meteorological information during the impact monitoring days are summarized in *Appendix I*.

5 IMPACT MONITORING RESULTS – CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Result

5.02 In this report period, 5 construction noise monitoring events were undertaken at designated location NC05. The results for $L_{eq(30min)}$ are tabulated in *Tables 5-1* and the graphical plots are shown in *Appendix H*.

Table 5-1 Summarized of Construction Noise Monitoring Results at NC05

Date	Start Time	End Time	1 st set L _{eq5}	$2^{ m nd}$ set $L_{ m eq5}$	$\begin{matrix} 3^{rd} \ set \\ L_{eq5} \end{matrix}$	4 th set L _{eq5}	5 th set L _{eq5}	6 th set L _{eq5}	$ m L_{eq30}$	Corrected L _{eq30} *
31-Oct-12	10:59	11:29	54.1	51.5	52.7	52.8	56.4	59.4	55.4	58.4
6-Nov-12	13:20	13:50	54.3	53.5	59.5	59.6	52.5	52.3	56.4	59.4
12-Nov-12	13:12	13:42	54.1	56.0	56.8	55.3	53.9	53.3	55.1	58.1
16-Nov-12	10:46	11:16	50.6	50.2	59.5	61.6	61.6	61.4	59.5	62.5
22-Nov-12	10:40	11:10	61.3	62.0	65.6	62.0	61.3	61.5	62.6	65.6
Limit Level				-						

^{*} A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. In view of the results shown in *Table 5-1*, all the values are well below 75dB(A), therefore, no Action or Limit Level exceedance was triggered during this Reporting Period.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- As informed by the Contractor, the marine works in Yung Shue Wan was ceased since 19 January 2012 due to completion of the HDD work. As agreed by the IEC and RE, the marine water quality monitoring was suspended from 6 February 2012 until further notice of the commencement of dredging works.
- 6.02 It is noticed that the remaining mariner work, i.e., dredging work in Yung Shuen Wan would be commenced in 23 November 2012. As advised by the Contractor, the marine water quality monitoring has been resumed on 11 June 2012 in order to collect advance background data for the remaining impact monitoring events.
- 6.03 In this Reporting Period, 13 days of water quality monitoring were carried out at the designated locations. Field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 28.87 to 33.45 ppt, and pH value was within 7.93 to 8.30. The monitoring results including in-situ measurements and laboratory testing results are presented in *Appendix G*. The graphical plots are shown in *Appendix H*.
- 6.04 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids in this Reporting Period, are summarized in *Tables 6-1*, 6-2, 6-3 and 6-4. A summary of exceedances for the three parameters: dissolved oxygen (DO), turbidity and suspended solids are shown in *Table 6-5*.

Table 6-1 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

Sampling date		• •	en conc. of Mid Laye	_		Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)					
date	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2	
27-Oct-12	6.78	6.03	6.95	6.15	7.08	6.83	6.44	6.87	6.07	7.12	
29-Oct-12	6.27	5.97	5.94	7.18	5.80	6.04	6.29	5.90	6.87	5.87	
31-Oct-12	5.94	6.28	6.08	5.93	5.84	6.01	6.01	6.10	6.05	6.11	
2-Nov-12	6.35	6.53	6.33	6.09	5.21	6.39	6.40	6.16	6.09	5.19	
6-Nov-12	5.76	5.39	6.03	5.59	5.42	4.84	4.05	5.00	3.91	4.77	
8-Nov-12	5.79	5.82	5.92	5.59	5.33	4.13	3.99	4.09	3.71	3.71	
10-Nov-12	6.37	5.48	5.72	5.89	6.00	5.23	4.85	3.94	3.75	5.91	
12-Nov-12	6.32	5.98	6.12	5.45	5.77	4.24	4.76	5.48	4.61	4.73	
14-Nov-12	6.60	5.36	6.68	5.74	5.83	5.64	3.66	5.89	5.06	4.83	
16-Nov-12	6.77	7.16	7.12	6.68	6.77	6.56	6.75	6.70	6.43	7.34	
20-Nov-12	6.71	6.78	6.92	6.28	6.43	6.59	6.23	6.16	6.49	5.92	
22-Nov-12	6.15	6.39	6.34	6.13	5.69	5.91	6.21	6.09	6.08	5.72	
24-Nov-12	6.56	6.47	6.20	6.19	6.25	6.18	6.25	6.16	6.03	6.06	

Table 6-2 Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)

Compling data	1	Turbidity	y Depth A	ve. (NTU	J)	Suspended Solids Depth Ave. (mg/L)					
Sampling date	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2	
27-Oct-12	3.44	3.53	3.78	4.19	3.85	10.25	7.43	8.85	7.27	5.50	
29-Oct-12	3.19	3.76	2.99	3.52	3.26	14.25	10.97	13.80	10.87	9.97	
31-Oct-12	2.74	2.79	2.63	3.17	3.42	9.80	5.37	6.55	4.40	5.13	
2-Nov-12	2.97	2.98	2.71	2.71	3.25	10.65	5.43	9.00	4.47	6.63	
6-Nov-12	2.60	3.00	2.96	3.33	3.41	6.30	4.80	9.15	5.23	4.17	
8-Nov-12	2.31	2.38	2.27	2.60	3.17	5.20	3.37	8.30	3.07	3.07	
10-Nov-12	2.33	2.08	2.52	2.41	2.37	5.50	4.13	11.75	3.30	3.17	
12-Nov-12	2.51	2.85	2.62	2.63	2.22	10.75	6.00	10.10	6.10	5.33	
14-Nov-12	2.01	2.58	2.06	2.75	2.46	7.05	6.63	5.85	4.53	10.30	
16-Nov-12	2.70	2.43	2.57	2.70	2.28	9.70	8.97	10.45	9.43	8.60	
20-Nov-12	1.86	2.28	2.03	2.21	2.01	8.80	4.73	7.60	4.30	4.57	
22-Nov-12	2.73	2.38	2.83	1.88	1.76	3.45	5.33	4.85	2.73	4.90	
24-Nov-12	2.04	1.02	1.09	0.81	0.73	10.45	8.70	12.45	5.73	4.80	

Table 6-3 Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)

Campling	Dissolve	ed Oxyge	en conc. of	f Depth A	Ave. of	Dissolved Oxygen conc. of Depth Ave. of				
Sampling date	S	urf. and	Mid Laye	r (mg/L))	Bottom Layer (mg/L)				
date	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2
27-Oct-12	6.40	7.13	7.38	5.94	6.88	7.39	6.62	7.08	6.08	5.91
29-Oct-12	6.03	5.90	6.01	5.66	5.91	6.47	5.90	5.93	5.70	5.74
31-Oct-12	5.78	5.85	5.99	5.37	5.61	5.72	5.87	5.88	5.58	5.55
2-Nov-12	7.19	6.07	6.59	5.37	5.38	6.08	5.41	6.06	5.24	5.24
6-Nov-12	6.53	5.67	6.15	5.30	5.52	5.68	4.06	6.26	4.61	4.52
8-Nov-12	5.53	4.58	5.33	4.88	4.49	3.99	3.18	3.90	3.18	3.47
10-Nov-12	5.94	4.95	5.49	5.45	4.95	5.23	3.39	4.95	5.09	4.82
12-Nov-12	6.10	5.71	5.23	5.14	6.09	5.67	4.47	5.08	3.50	4.57
14-Nov-12	5.81	5.54	5.86	5.98	6.07	5.73	5.36	5.53	6.17	6.08
16-Nov-12	6.34	6.07	6.78	7.00	6.97	6.28	5.72	6.64	6.76	6.88
20-Nov-12	5.97	5.37	5.27	5.85	6.30	5.50	4.99	5.13	5.40	6.16
22-Nov-12	6.12	6.05	5.95	6.30	6.47	6.03	5.79	5.88	6.19	6.20
24-Nov-12	6.68	6.42	6.69	6.38	6.48	6.59	6.40	6.56	6.25	6.41

Table 6-4 Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)

Compling data	7	Turbidity	y Depth A	ve. (NTU	J)	Suspended Solids Depth Ave. (mg/L)				
Sampling date	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2
27-Oct-12	3.70	3.47	4.01	3.53	3.88	7.55	6.80	4.70	7.53	6.30
29-Oct-12	2.88	3.49	2.90	3.66	3.14	6.25	7.57	7.50	8.73	9.10
31-Oct-12	2.64	2.89	3.04	2.78	3.06	7.95	4.87	8.30	2.47	4.20
2-Nov-12	3.10	2.94	2.73	2.93	3.14	8.75	12.37	7.05	9.17	13.93
6-Nov-12	2.55	2.87	2.84	3.07	3.13	3.60	3.20	4.35	4.27	3.50
8-Nov-12	2.18	2.38	2.11	2.71	3.22	3.60	3.63	4.05	2.97	2.40
10-Nov-12	2.21	2.19	2.47	2.09	2.43	4.10	2.67	7.30	3.77	3.40
12-Nov-12	2.35	2.72	2.62	2.63	2.22	6.95	4.00	8.25	6.20	5.40
14-Nov-12	2.26	2.31	2.29	2.60	2.48	8.50	4.90	7.95	6.63	5.30
16-Nov-12	2.79	2.60	2.56	2.22	2.51	13.60	7.23	13.70	11.70	9.00
20-Nov-12	1.68	2.00	1.65	2.05	2.33	8.00	4.57	6.70	6.80	4.47
22-Nov-12	2.76	2.25	2.88	1.86	1.73	3.75	4.47	6.95	3.63	5.47
24-Nov-12	1.99	0.88	1.38	0.83	0.68	11.30	9.93	13.20	5.63	5.37

Table 6-5 Summarized Exceedances of Marine Water Quality

Station	DO (Ave of Surf. & mid-depth)		DO (Ave. of Bottom Layer)		Turbidity (Depth Ave.)		SS (Depth Ave)		Total Exceedance	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit
	Mid-Ebb									
WY1	0	0	0	0	0	0	0	0	0	0
WY2	0	0	0	0	0	0	0	0	0	0
WY3	0	0	0	0	0	0	0	0	0	0
				Mid	l-Flood					
WY1	0	0	0	0	0	0	0	0	0	0
WY2	0	0	0	0	0	0	0	0	0	0
WY3	0	0	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	0	0	0	0	0	0	0

6.05 For marine water monitoring, no exceedance of Action/Limit level was recorded in this Reporting Period. Therefore, no associated corrective actions were then required.

7 IMPACT MONITORING RESULTS – ECOLOGY MONITORING

- 7.01 Impact monitoring for coral shall be conducted initially at a frequency of once per week for the first three months of the marine works (HDD and dredging). If no exceedances are reported during this period, then the frequency may be reduced to twice every month for the reminder of the marine works.
- 7.02 According to the construction information provided by the Contractor, the marine works in Yung Shue Wan has been ceased since 19 January 2012. As agreed by the IEC and RE, the ecology monitoring was suspended from 6 February 2012 until further notice of the commencement of dredging works.
- 7.03 It is noticed that the remaining dredging work in Yung Shuen Wan was commenced in 23 November 2012. As advised by IEC, coral monitoring has been carried out before the resumption of dredging to oversee the background condition of the tagged corals for the upcoming impact monitoring events once every two month.
- 7.04 In this Reporting Period, an advance coral monitoring was conducted on 7 November 2012 whereas the impact monitoring is scheduled on 29 November 2012.
- 7.05 The coral monitoring report presents the result coral monitoring at Yung Shue Wan and Sham Wan on 7 November is enclosed in *Appendix M*. The impact monitoring result will be provided in next monthly EM&A Report.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) material;
 - Chemical waste:
 - General refuse; and
 - Excavated soil.
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and 8-2 and the Monthly Summary Waste Flow Table is shown in *Appendix J*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ('000m ³)	0	-
Reused in this Contract (Inert) ('000m ³)	0	-
Reused in other Projects (Inert) ('000m ³)	0	-
Disposal as Public Fill (Inert) ('000m ³)	0.131	Tuen Mun Area 38

Table 8-2 Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Metals (kg)	0	-
Paper / Cardboard Packing (kg)	0	-
Plastics (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	13.67	Yung Shue Wan RTS

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than 50m³ in this monthly period.

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulation by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this Reporting Period, weekly joint-site visit by RE, the Contractor and ET was carried out on 26, 30 October and 6, 13 and 21 November 2012.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in *Appendix K*.

Table 9-1 Site Observations

Date	Findings / Deficiencies	Follow-Up Status
26 October 2012	• General refuse bins were observed within the site without covers and classification labels. Covers are required and classification labels are recommended for ease of sorting and proper disposal.	Covers of general refuse bins and lables were provided on 6 November 2012.
30 October 2012	 No environmental issue was observed during the site inspection. However, full implementation of the required environmental mitigation measures is reminded in particular water quality mitigation measures to avoid adverse impacts on the receiving water bodies 	Not required for general reminder.
6 November 2012	 No environmental issue was observed during the site inspection. However, full implementation of the required environmental mitigation measures, in particular construction dust suppression measures during dry and windy conditions, is reminded. 	Not required for general reminder.
13 November 2011	 Concreting was carried out within the site. No environmental issue was observed during the site inspection. However, full implementation of the required environmental mitigation measures, in particular construction dust suppression measures during dry and windy conditions, is reminded. 	Not required for general reminder.
21 November 2011	 No environmental issue was observed during the site inspection. However, full implementation of the required environmental mitigation measures, in particular construction dust suppression measures during dry and windy conditions, is reminded. 	Not required for general reminder.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this reporting period. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

Donauting Davied	Environmental Complaint Statistics				
Reporting Period	Frequency Cumulative Co		Complaint Nature		
14 Sep – 30 September 2011	0	0	NA		
October – December 2011	0	0	NA		
January – October 2012	0	0	NA		
November 2012	0	0	NA		

Table 10-2 Statistical Summary of Environmental Summons

Donouting Donied	Environmental Summons Statistics				
Reporting Period	Frequency Cumulative Con		Complaint Nature		
14 Sep – 30 September 2011	0	0	NA		
October – December 2011	0	0	NA		
January – October 2012	0	0	NA		
November 2012	0	0	NA		

Table 10-3 Statistical Summary of Environmental Prosecution

Donouting Donied	Environmental Prosecution Statistics				
Reporting Period	Frequency	Cumulative	Complaint Nature		
14 Sep – 30 September 2011	0	0	NA		
October – December 2011	0	0	NA		
January – October 2012	0	0	NA		
November 2012	0	0	NA		

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Yung Shue Wan Environmental Monitoring and Audit Manual covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material;
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material
 to the surrounding water, and barges and hoppers should not be filled to a level which
 would cause the overflow of materials or sediment laden water during loading or
 transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- 11.11 During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force:
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill;
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

- 11.20 The following general good practice measures should be adopted to mitigate ecological impacts during marine works (including dredging and HOD);
 - Excess material from vessel loading should be cleaned from the decks and exposed fittings before vessels are moved to the backfilling location;
 - Dredging should cause no foam, oil, grease, scum, litter or other objectionable matter to be present on the water;
 - Adequate freeboard should be maintained to ensure that decks are not washed by wave

- All pie leakages should be repaired promptly and plant Should not be operated with leaking pipes; and
- All banges and other vessels should maintain adequate clearance between vessels and the seabed at all stats of the tide and reduce operational speeds to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.
- 11.21 In the event of exceedances of ecological action or limit level, the Contractor will be required to revise his operations as a further mitigation measure. Revisions to the operation method may include (but not be limited to):
 - Reduction in dredging rate'
 - Restriction of dredging in particular areas to specific periods in the tidal cycle
- 11.22 Should repeated non-compliances with limit level(s) occur the Contractor shall modify his working method until he is able to achieve the required compliances with the limit levels to the satisfaction of the IC(E)

Fisheries Mitigation Measure

11.23 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.24 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree protective measures should be implemented to ensure trees identified as to be retained are satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area;
 - Conservation of top-soil for reuse;
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.25 The implementation schedule of mitigation measures is presented in *Appendix L*.
- 11.26 Leader had been implementing the required environmental mitigation measures according to the Yung Shue Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Period are summarized in *Table 11-1*.

Table 11-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Water Quality	 Drainage channels were provided to convey run-off into the treatment facilities; and Drainage systems were regularly and adequately maintained.

Issues	Environmental Mitigation Measures
Air Quality	 Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet; Public roads around the site entrance/exit had been kept clean and free from dust; and Tarpaulin covering of any dusty materials on a vehicle leaving the site.
Noise	 Good site practices to limit noise emissions at the sources; Use of quite plant and working methods; Use of site hoarding or other mass materials as noise barrier to screen noise at ground level of NSRs; and To minimize plant number use at the worksite.
Waste and Chemical Management	 Excavated material should be reused on site as far as possible to minimize off-site disposal. Scrap metals or abandoned equipment should be recycled if possible; Waste arising should be kept to a minimum and be handled, transported and disposed of in a suitable manner; The Contractor should adopt a trip ticket system for the disposal of C&D materials to any designed public filling facility and/or landfill; and Chemical waste shall be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12 IMPACT FORECAST

12.01 Key issues to be considered in the coming month include:

Water Quality

- Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and
- The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded; and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

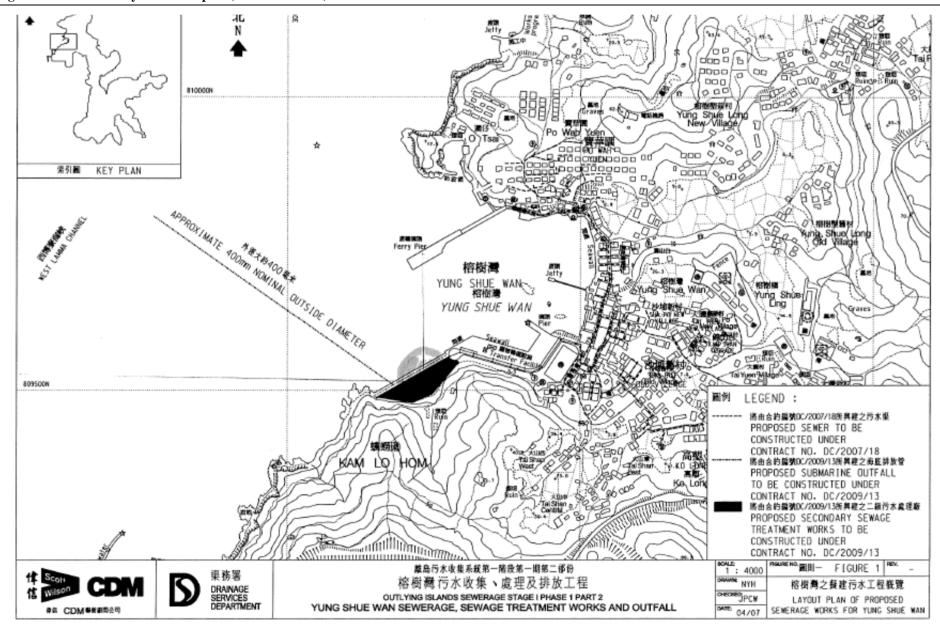
- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the 27th Monthly EM&A Report covering the construction period from 26 October to 25 November 2012.
- 13.02 It is noticed that the remaining dredging work in Yung Shue Wan would be commenced on 23 November 2012. As advised by the Contractor, the marine water quality has been resumed since 11 June 2012 while an advanced ecology monitoring was conducted on 7 November 2012.
- 13.03 No 1-hour TSP result was found to be triggered the Action or Limit Level in this Reporting Period. However, 1Action Level exceedance was recorded at AC02b on 7 November 2012. Investigation report for the cause of exceedances has been completed and it is concluded that the exceedance was not related to the works under the Project.
- 13.04 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period.
- 13.05 No marine water monitoring exceedance was recorded in this Reporting Period.
- 13.06 An advance impact coral monitoring was conducted on 7 November 2012 and no exceedance was recorded.
- 13.07 No documented complaint, notification of summons or successful prosecution was received.
- 13.08 In this Reporting Period, joint-site visit by RE, the Contractor and ET was carried out on 26, 30 October and 6, 13 and 21 November 2012. The environmental performance of the Project was considered as satisfactory.
- 13.09 No site inspection was undertaken by external parties i.e. Environmental Protection Department (EPD) or Agriculture, Fisheries and Conservation Department (AFCD) within the Reporting Period.

RECOMMENDATIONS


- 13.10 During dry and windy season, construction dust would be the key environmental issue to concern. The construction dust mitigation measures identified at the EM&A Manual such as watering at haul road and covering of dusty material should be implemented and properly maintained.
- 13.11 Nevertheless, the Contractor shall keep paying attention on the potential water impact as the construction site is adjacent to the coastline. Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish culture zone at Picnic Bay and the Secondary recreation contact subzone at Mo Tat Wan should be avoided. Therefore, mitigation measures for water quality should be fully implemented.

Appendix A

Site Layout Plan – Yung Shue Wan Portion Area

Appendix B

Organization Structure and Contact Details of Relevant Parties

Contact Details of Key Personnel

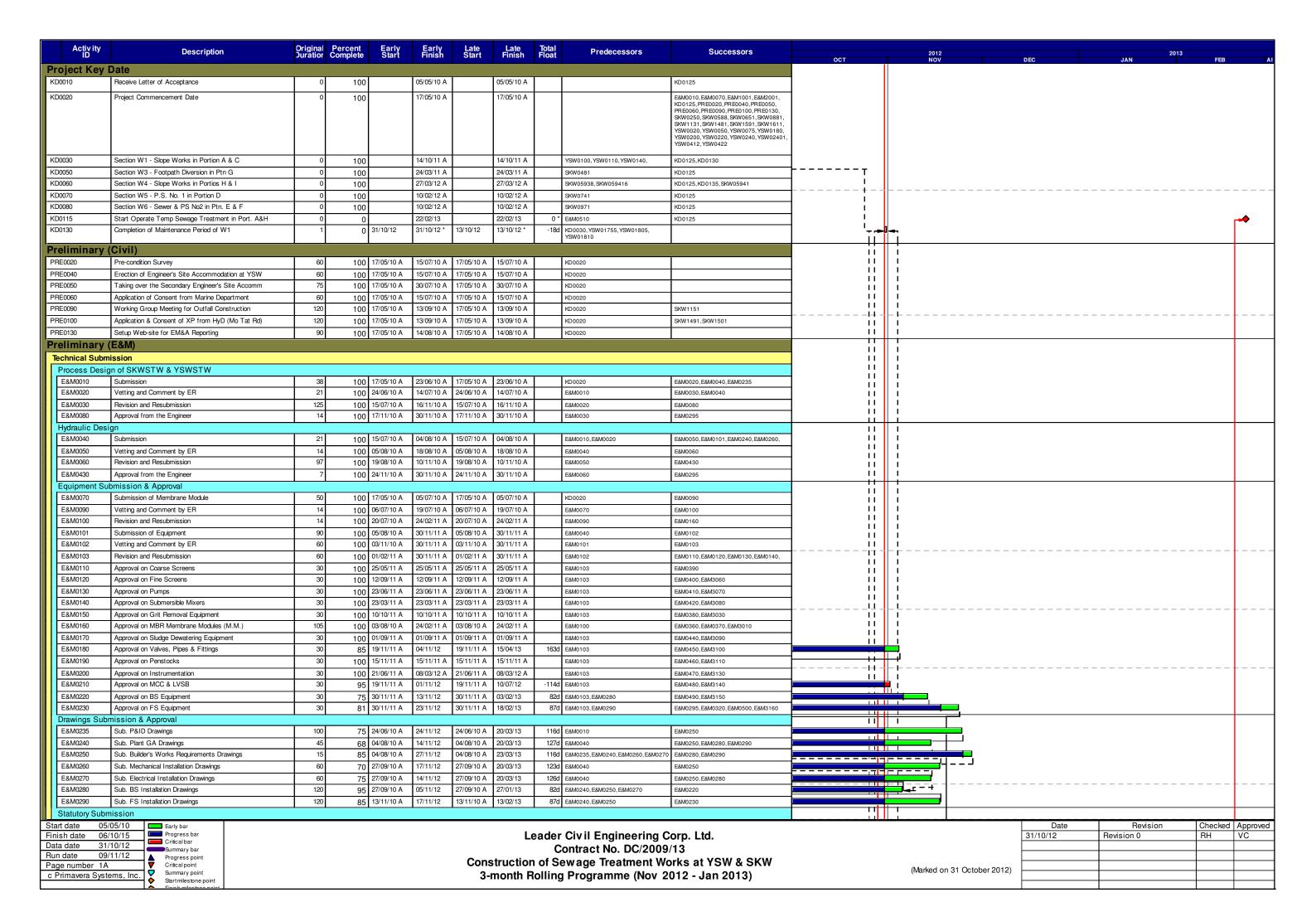
Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr Kenley C K Kwok	-	-
SCJV	Engineer's Representative	Mr. Ian Jones	2982 0240	2982 4129
SCJV	Resident Engineer	Mr. Alfred Cheung	2982 0240	2982 4129
Scott Wilson	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922
Leader	Director	Mr. Wilfred So	2982 1750	2982 1163
Leader	Project Manager	Mr. Vincent Chan	2982 1750	2982 1163
Leader	Construction Manager	Mr. K. Y. So	2982 1750	2982 1163
Leader	Assistant Construction Manager	Mr. Ron Hung	2982 1750	2982 1163
Leader	Environmental Officer	Mr. K. Y. So	2982 8652	2982 8650
Leader	Environmental Supervisor	Mr. Chan Shut Man	2982 8652	2982 8650
Leader	Sub-Agent	Mr. Burgess Yip	2982 1750	2982 1163
Leader	Senior Safety Officer	Mr. Edwin Leung	2982 1750	2982 1163
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079
AUES	Coral Specialist	Mr. Keith Kei	2959 6059	2959 6079

Legend:

DSD (Employer) – Drainage Services Department

CDM (Engineer) – Scott Wilson CDM Joint Venture

Leader (Main Contractor) - Leader Civil Engineering Corporation Limited


Scott Wilson (IEC) – Scott Wilson Limited

 $AUES\left(ET\right)-Action-United\ Environmental\ Services\ \&\ Consulting$

Appendix C

Master and Three Months Rolling Construction Programme

Activ ity ID	Description	Original Duration	Percent Complete	Early Start	Early Late Late Finish Start Finish	Total Predecessors	Successors		2012		2013		
E&M0295	Preparation of Submission to HEC	39		01/11/11 A	30/11/11 A 01/11/11 A 30/11/11 A	E&M0080, E&M0230, E&M0430	E&M0300	OCT I I	NOV	DEC	JAN	FEB	Al
E&M0300	Application & Approval from HEC	150		01/11/11 A	08/12/12 01/11/11 A 15/04/13	128d E&M0295	E&M0305	11	<u> </u>				
E&M0305	Provision of Cables to the STWs	180		08/12/12	06/06/13 16/04/13 12/10/13	128d E&M0300	E&M0680	11					
E&M0320	Form 314 Submission to FSD	14	0	23/11/12	07/12/12 08/08/13 21/08/13	257d E&M0230	E&M0325, E&M0670	- II	║				
E&M0325	Submission to WSD	14		01/11/11 A	29/02/12 A 01/11/11 A 29/02/12 A	E&M0320	E&M0670, E&M0680	11	1				
E&M0350	Form 501 Submission to FSD (PS1 & PS2)	28		28/11/12	26/12/12 14/11/12 11/12/12	-15d E&M2016	E&M11800, E&M2180	+	- <u> - </u>				
Yung Shue V	/an							1.1	!				
Preliminary								- ::					
YSW0020	Approval of Environmental Team	16	100	17/05/10 A	01/06/10 A 17/05/10 A 01/06/10 A	KD0020	YSW00201, YSW0030, YSW00351, YSW0040) !!	i				
YSW00201	Change Baseline Monitoring Location (Air&Noise)	59	100	02/06/10 A	30/07/10 A 02/06/10 A 30/07/10 A	YSW0020	YSW0030		!				
YSW0030	Baseline monitoring (Air & Noise)	23	100	31/07/10 A	22/08/10 A 31/07/10 A 22/08/10 A	YSW0020, YSW00201	YSW0035] ::					
YSW0035	Baseline Monitoring Report Submission (A & N)	16	100	23/08/10 A	07/09/10 A 23/08/10 A 07/09/10 A	YSW0030	YSW0120, YSW01545, YSW0500, YSW0610,	ii	i				
YSW00351	Submission & Approval for Monitoring Method (W)	58	100	02/06/10 A	29/07/10 A 02/06/10 A 29/07/10 A	YSW0020	YSW0040		L.L	1			
YSW0040	Baseline monitoring (Water)	155	100	30/07/10 A	31/12/10 A 30/07/10 A 31/12/10 A	YSW0020, YSW00351	YSW0350			T			
YSW0050	Erect Hoarding and Fencing	60	100	19/05/10 A	17/07/10 A 19/05/10 A 17/07/10 A	KD0020	YSW0155	1.1	ı				
I	ope Works in Portion A & C							- ::					
YSW0075	Mobilization	30	100		15/06/10 A 17/05/10 A 15/06/10 A	KD0020	YSW0080, YSW0100] ;;	;				
YSW0080	Site Clearance	30	100		15/07/10 A 16/06/10 A 15/07/10 A	YSW0075	YSW0085, YSW0090, YSW0120	- 11	ı				
YSW0085	Initial Survey	14		02/07/10 A	15/07/10 A 02/07/10 A 15/07/10 A	YSW0080	YSW0120	4 !!!					
YSW0090	Verify the Rock Boulder required Stablization Wk	249	100	-	21/03/11 A 16/07/10 A 21/03/11 A	YSW0080	YSW0100, YSW0110	4 ;;	i				
YSW0100	Removal of Rock Boulder	257		20/09/10 A	03/06/11 A 20/09/10 A 03/06/11 A	YSW0075, YSW0090	KD0030	+!-	- <u> -</u>	+			
YSW0110	Stablizing work for rock boulder	35	100	1	19/08/11 A 16/07/11 A 19/08/11 A	YSW0090	KD0030	- ::					
YSW0120 YSW0131	Cut the slope to design profile	2		24/09/10 A	25/09/10 A 24/09/10 A 25/09/10 A	YSW0035, YSW0080, YSW0085	YSW0131, YSW0155, YSW0170	4 iil	i				
	Mobilization of Plant and Material of Soil Nails	14	100	<u> </u>	25/09/10 A 12/09/10 A 25/09/10 A	YSW0120	YSW0132	- !!	!				
YSW0132	Erect Scaffold and Working Platform	2		26/09/10 A	27/09/10 A 26/09/10 A 27/09/10 A	YSW0131	YSW0133	- ::					
YSW0133	Setting out and Verify Locations of Soil Nails	45	100	<u> </u>	11/11/10 A 28/09/10 A 11/11/10 A	YSW0132	YSW0134	i i -	-i	 			
YSW0134 YSW0135	Drilling and Soil Nails Installation	43	!	19/10/10 A	30/11/10 A	YSW0133	YSW0135 YSW0136	- !!	!				
YSW0136	Construction of Nail Heads	12		01/12/10 A		YSW0134		-					
	Mesh Installation on Cut Slope	110	100		 	YSW0135	YSW01361	- 11	i				
YSW01361 YSW0140	Verify alignment of access & channels on slope Construct U-channels & Step Channel on Cut Slope	182		16/12/10 A 13/04/11 A	12/04/11 A 16/12/10 A 12/04/11 A 11/10/11 A 13/04/11 A 11/10/11 A	YSW0136 YSW01361	YSW0140 KD0030	- !!	!				
YSW0153	Removal of Ex U-Channel where clash with B. Wall	151		10/05/11 A	07/10/11 A 10/05/11 A 07/10/11 A	YSW01545	YSW01750	+					
YSW01545	Temporary Diversion of Drainage	244		08/09/10 A	09/05/11 A 08/09/10 A 09/05/11 A	YSW0035	YSW0153	- 11	1				
YSW0155	RC Barrier Wall Bay 1-13 (below Ground Level)	256		26/09/10 A	08/06/11 A 26/09/10 A 08/06/11 A	YSW0050, YSW0120	KD0030, YSW0170, YSW0175	-					
YSW0170	RC Barrier Wall Bay 1-13 (above Ground Level)	125		09/06/11 A	11/10/11 A 09/06/11 A 11/10/11 A	YSW0120, YSW0155	KD0030, YSW01750	1 11	;				
YSW0175	Construct U-channels and Catchpits (Phase 1)	76		09/06/11 A	23/08/11 A 09/06/11 A 23/08/11 A	YSW0155	KD0030	- !!	ļ.				
YSW01750	Construction of subsoil drain (phase 1)	120		!	08/02/12 A 12/10/11 A 08/02/12 A	YSW0153, YSW0170	YSW01755	+		†			
YSW01755	Construct subsoil drain (phase 2)	60	0	08/07/12 A	29/12/12 08/07/12 A 12/10/12	-78d YSW01750	KD0130	- "		+			
YSW01800	RC Barrier Wall Bay 14 (below & above Ground)	30	60	03/09/12 A	11/11/12 03/09/12 A 13/09/12	-59d YSW0760	YSW01805, YSW01810						
YSW01805	Hydroseeding	14	0	12/11/12	25/11/12 29/09/12 12/10/12	-44d YSW01800	KD0130	† "		‡			
YSW01810	Construct U-channels and Catchpits (Phase 2)	30	0	12/11/12	11/12/12 14/09/12 13/10/12	-59d YSW01800	KD0130	1					
Section W2 - YS	W STW & Submarine Outfall						,						
Civil & Structu	al Work												
YSW0412	Mobilization	30	100	17/05/10 A	15/06/10 A 17/05/10 A 15/06/10 A	KD0020	YSW0422	1					
YSW0422	Site Clearance	30	100	17/05/10 A	15/06/10 A 17/05/10 A 15/06/10 A	KD0020,YSW0412	YSW0432, YSW0500, YSW0610, YSW0650						
YSW0432	Initial Survey	14	100	02/06/10 A	15/06/10 A 02/06/10 A 15/06/10 A	YSW0422	YSW0510						
YSW STW -	GL H - T												
YSW0500	ELS & Excavation for Inlet Pumping Station	105		08/09/10 A	21/12/10 A 08/09/10 A 21/12/10 A	YSW0035, YSW0422	YSW0510]					
YSW0510	Sub-structure construction (Inlet Pumping Stn)	129		22/12/10 A	29/04/11 A 22/12/10 A 29/04/11 A	YSW0432, YSW0500	YSW0520	_					
YSW0520	Backfill & Remove ELS (Inlet Pumping Stn)	40		30/04/11 A	08/06/11 A 30/04/11 A 08/06/11 A	YSW0510	YSW05701	1					
YSW0530	ELS & Excavation for Equalization Tank	159		01/01/11 A	08/06/11 A 01/01/11 A 08/06/11 A	YSW0660	YSW0540, YSW05701	1					
YSW0540	Sub-structure construction (Equalization Tank)	112		09/06/11 A	28/09/11 A 09/06/11 A 28/09/11 A	YSW0530	YSW0550, YSW05901	<u> </u>		1			
YSW0550	Backfilling & Remove ELS (Equalization Tank)	20		29/09/11 A	18/10/11 A 29/09/11 A 18/10/11 A	YSW0540	YSW05901	4					
YSW05701	ELS & Excavation for Grit Chambers	28		09/06/11 A	06/07/11 A 09/06/11 A 06/07/11 A	 	YSW05711, YSW05731	1					
YSW05711	Construct sub-structure for Grit Chambers	106		07/07/11 A	20/10/11 A 07/07/11 A 20/10/11 A	YSW05701	YSW05721, YSW05911	4					
YSW05721	Backfill & Remove ELS for Grit Chambers	12		21/10/11 A	01/11/11 A 21/10/11 A 01/11/11 A	YSW05711	YSW05911	4					
YSW05731	ELS & Excavation for Grease Separators (GS)	34		07/07/11 A	09/08/11 A 07/07/11 A 09/08/11 A	YSW05701	YSW05741	+		+			
YSW05741	Construct sub-structure for Grease Separators	52		10/08/11 A	30/09/11 A 10/08/11 A 30/09/11 A	YSW05731	YSW05751	4					
YSW05751	Install Dia. 400 Puddles in Grease Separators	27		01/10/11 A	27/10/11 A 01/10/11 A 27/10/11 A	YSW05741	YSW05752	-					
YSW05752	Construct sub-structure for GS (above puddles)	48		28/10/11 A	14/12/11 A 28/10/11 A 14/12/11 A	YSW05751	YSW05761	-					
YSW05761 YSW0580	Backfill & remove ELS for Grease Separators	10		15/12/11 A 25/12/11 A	24/12/11 A 15/12/11 A 24/12/11 A	YSW05752	YSW0580, YSW05921	-					
	Excavate to Formation for Deodorizer Room	10			03/01/12 A 25/12/11 A 03/01/12 A	YSW05761	YSW05801, YSW05922	+		+			
YSW05801 YSW05802	Excavate to formation - Grid J-N/5-7	40		04/01/12 A	12/02/12 A 04/01/12 A 12/02/12 A 22/02/12 A 13/02/12 A 22/02/12 A	YSW0580	YSW05802, YSW05923	4					
130000002	Excavate to formation - Grid GA-H/5-7	10	100	13/02/12 A	22/02/12 A 13/02/12 A 22/02/12 A	YSW05801	YSW05924			<u>l</u>			
Start date 05/	05/10 Early bar									Date	Revision	Checked	Approved
	10/15 Progress bar					eader Civil Engineering				31/10/12	Revision 0	=======================================	1.10

Start date 05/05/10
Finish date 06/10/15
Data date 31/10/12
Run date 09/11/12
Page number 2A
C Primavera Systems, Inc.

Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW
3-month Rolling Programme (Nov 2012 - Jan 2013)

	Date	Revision	Checked	Approved
	31/10/12	Revision 0	RH	VC
(Marked on 31 October 2012)				
(IVIAINEU OIT 51 OCTOBET 2012)				

Activ ity ID	Description	Original Perce	ent Early ete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	ост	2012 NOV	DEC	JAN	2013	
YSW05901	G/F to 1/F Construction Grid GA-K/1-5	90	100 29/09/11	27/12/11 A	29/09/11 A	27/12/11 A		YSW0540, YSW0550	YSW06001		NOV	DEC	JAN	FEB	
YSW05911	G/F to 1/F Construction Grid N-S/1-5	80	100 21/10/11	08/01/12 A	21/10/11 A	08/01/12 A		YSW05711, YSW05721	YSW06011, YSW06035						
YSW05921	G/F to 1/F Construction Grid K-N/1-5	45	100 25/12/11 /	07/02/12 A	25/12/11 A	07/02/12 A		YSW05761	YSW06021						
YSW05922	G/F to 1/F Construction for Deodorizer Room		100 04/01/12			+		YSW0580	YSW06022						
YSW05923	G/F to 1/F Construction for Grid J-N/5-7		100 13/02/12				<u> </u>	YSW05801	YSW06023						
YSW05924	G/F to 1/F Construction for Grid GA-H/5-7	 	100 28/05/12			+	<u> </u>	YSW05802, YSW06023	YSW06034						
YSW06001	1/F to Roof Constuction for Grid GA-K/1-5		100 28/12/11				<u> </u>	YSW05901	YSW0800						
YSW06011	1/F to Roof Constuction for Grid N-S/1-5		100 09/01/12		09/01/12 A		<u> </u>	YSW05911	YSW0800						
YSW06021 YSW06022	1/F to Roof Constuction for Grid K-N/1-5 1/F to Roof Constuction for Deodorizer Room		100 08/02/12			<u>.</u>	1	YSW05921	YSW07201 YSW0800	_					
YSW06023	1/F to Roof Constuction for Grid J-N/5-7	 " 		!			<u> </u>	YSW05922 YSW05923	YSW05924	4					
YSW06034	1/F to Roof Constuction for Grid GA-H/5-7	1 1	100 13/04/12 / 100 27/07/12 /			<u>.</u>	1	YSW05924	YSW0800						
YSW06035	Construct buffle walls in Grease Separators	<u> </u>	100 18/04/12				1	YSW05911	YSW07204	-					
YSW07201	Water tightness test for Inlet Pumping Station	+	100 23/03/12			<u>.</u>	1	YSW06021	YSW07202,YSW0800	+					
YSW07202	Water tightness test for Equalization Tanks	 	100 22/05/12				1	YSW07201	YSW07203,YSW0800	-					
YSW07203	Water tightness test for Grit Chambers	+	100 17/09/12	_		_	1	YSW07202	YSW07204,YSW0800						
YSW07204	Water tightness test for Grease Separators		100 03/10/12	!	+		1	YSW06035, YSW07203	YSW07205,YSW0800	-					
YSW07205	Water tightness test for water channels	21	0 31/10/12	20/11/12	18/01/13	07/02/13	79d	YSW07204	YSW0800	4					
YSW0800	ABWF installation	271	45 03/07/12	28/03/13	03/07/12 A	24/01/13	-63d	YSW06001, YSW06011, YSW06022,	E&M0530, E&M0540, E&M0550, E&M0560,						
YSW STW -	· GL T - X	<u> </u>			<u> </u>										
YSW0610	Excavate to formation	10	100 08/09/10	17/09/10 A	08/09/10 A	17/09/10 A	1	YSW0035, YSW0422	YSW0620						
YSW0620	Base slab construction		100 18/09/10				†	YSW0610	YSW0630	7					
YSW0630	G/F to 1/F construction		100 24/05/11				İ	YSW0620	YSW0640	7					- [
YSW0640	1/F to Roof Construction	64	100 15/12/11	16/02/12 A	15/12/11 A	16/02/12 A	İ	YSW0630	YSW0810						
YSW0810	ABWF installation	80	100 28/12/11	16/03/12 A	28/12/11 A	16/03/12 A	Ì	YSW0640	E&M0610, E&M0620, E&M0630, E&M0640						
YSW STW -	GLF-H&DN Tanks												,		
YSW0650	ELS & Excavation for DN Tanks	37	100 08/09/10 /	14/10/10 A	08/09/10 A	14/10/10 A		YSW0035, YSW0422	YSW0660						
YSW0660	Sub-struction construction (DN Tanks)	78	100 15/10/10	31/12/10 A	15/10/10 A	31/12/10 A		YSW0650	YSW0530, YSW0670						
YSW0670	Backfill & Remove ELS (DN Tanks)	70	100 01/01/11	11/03/11 A	01/01/11 A	11/03/11 A		YSW0660	YSW0680						
YSW0680	Base slab construction (SD1, SD2 & MBR4)	17	100 12/03/11 /	28/03/11 A	12/03/11 A	28/03/11 A		YSW0670	YSW0690						
YSW0690	Construct Superstructure SD1, SD2 & MBR4	82	100 29/03/11 /	18/06/11 A	29/03/11 A	18/06/11 A	<u> </u>	YSW0680	YSW0705, YSW0820						
YSW06901	Construct Superstructure of DN Tanks	28	100 15/05/12	11/06/12 A	15/05/12 A	11/06/12 A		YSW0735	YSW0830						
YSW0705	Water test for MBR 4, SD 1&2	14	66 01/10/12	!	01/10/12 A		29d	YSW0690	E&M0510, E&M0630, E&M0640, YSW0710						
YSW0710	Apply protective paint for MBR 4, SD 1&2	<u> </u>	100 24/09/12			<u> </u>	<u> </u>	YSW0705	YSW0820		T-				
YSW0820	ABWF installation	34	0 31/10/12	03/12/12	31/10/12	03/12/12	+	YSW0690, YSW0710	E&M0510, E&M0630, E&M0640	Մ	1	<u> </u>			
YSW0830	Water test for DN Tanks	28	0 31/10/12	27/11/12	12/07/13	08/08/13	-	YSW06901	YSW0850	<u>_ </u>					
YSW0850	Apply protecitve paint for DN Tanks	6	0 28/11/12	03/12/12	09/08/13	14/08/13	254d	YSW0830	E&M0610	<u> </u>					
YSW STW - YSW0730	_	I ol	400 21/01/12	<u> </u>	21/01/12 A		ı	VCM00C01 VCM00C0E	Lycwozoo	i					
	Completion of HDD Excavate for MBR 2 & 3		100 21/01/12	09/02/12 A			<u> </u>	YSW03601, YSW03605 YSW0730	YSW0732 YSW0733	- !					
YSW0732	Construct basement of MBR 2 & 3	<u> </u>	100 10/02/12				1	YSW0732	YSW0735, YSW0740	- ;					
YSW0735	Construct superstructure of MBR 2		100 01/03/12		01/03/12 A		1	YSW0733	YSW06901, YSW0736, YSW08302	- i					
YSW0736	Construct superstructure of MBR 3		100 15/05/12			14/05/12 A	1	YSW0735	YSW08302	╡ !					
YSW0740	ELS & excavate for Outfall Shaft	<u> </u>	100 01/03/12	!	01/03/12 A		†	YSW0733	YSW0750						
YSW0750	Construct basement of Outfall Shaft		100 15/05/12				1	YSW0740	YSW07501	- !					
YSW07501	Connect additional flange to HDPE pipe (VO 042)	<u> </u>	100 03/06/12	07/06/12 A	03/06/12 A	07/06/12 A	1	YSW0750	YSW07502	╡ !					
YSW07502	Construct sub-structure of Outfall Shaft	<u> </u>	100 08/06/12		08/06/12 A	23/06/12 A	1	YSW07501	YSW0760	- ;					
YSW0760	Backfill & remove ELS (outfall shaft)		100 24/06/12		<u>. </u>		i	YSW07502	YSW01800, YSW07601, YSW07603,	i !					
						1			YSW1470, YSW16601, YSW16606	<u> </u>					
YSW07601	Construct superstructure for Outfall Shaft	80	100 03/07/12	31/07/12 A	03/07/12 A	31/07/12 A	1	YSW0760	YSW08301	- -					-
YSW07603	ELS & excavate for FSH Water Supply Tank		100 01/06/12		<u> </u>		1	YSW0760	YSW07604	 					
YSW07604	Construct substructure for FSH Water Supply Tank	· · · · · · · · · · · · · · · · · · ·	100 26/06/12		26/06/12 A		İ	YSW07603	YSW07605	7					
YSW07605	Backfill & remove ELS for FSH Water Supply Tank		100 20/07/12	31/07/12 A	20/07/12 A	31/07/12 A	i –	YSW07604	YSW07607	7 i					
YSW07607	Construct basement of MBR 1 & Workshop		100 01/08/12		01/08/12 A	24/08/12 A		YSW07605	YSW07608	L ! 					
YSW07608	Construct superstructure for FSH Water Supply Tk	28	100 25/08/12	30/09/12 A	25/08/12 A	30/09/12 A	Ĺ	YSW07607	YSW07609, YSW08304	<u></u>					_
YSW07609	Construct superstructure for MBR 1	28	100 25/08/12	30/09/12 A	25/08/12 A	30/09/12 A		YSW07608	YSW07610, YSW08303	_ 					
YSW07610	Construct Workshop, FSSH Pump Rm, PW Pump Rm	28	100 03/10/12	31/10/12 A	03/10/12 A	31/10/12 A		YSW07609	YSW0840	_	Ħ				
YSW08301	Water tightness test for Outfall Shaft	42	0 31/10/12	11/12/12	20/09/12	31/10/12	-41d	YSW07601	YSW08305	▁▎▕▏ ▕▕▕<mark></mark>	i I				
YSW08302	Water tightness test for MBR 2 & 3	49	100 03/07/12	05/10/12 A	03/07/12 A	05/10/12 A		YSW0735, YSW0736	YSW08305	▂▀▁▎▁▁▁▁▕▕▍┥					_ L
YSW08303	Water tightness test for MBR 1	14	0 31/10/12	13/11/12	28/11/12	11/12/12	28d	YSW07609	YSW08305	<u></u> ╅	,				
YSW08304	Water tightness test for FSH Water Supply Tank	32	0 31/10/12	01/12/12	31/10/12	01/12/12	0	YSW07608	YSW08305	<u> </u>	111				
YSW08305	Apply protective paint	82	0 21/11/12	10/02/13	11/10/12	31/12/12	+	YSW08301, YSW08302, YSW08303,	E&M0520, E&M0590, E&M0605, YSW0870	」 		· '			
YSW0870	ABWF installation	30	0 11/02/13	12/03/13	07/05/13	05/06/13	85d	YSW08305	E&M0630, E&M0640, E&M0650					<u>پ</u>	
Fire Hose Re	eel / Sprinkler Pump Rm														
sh date 06, date 31, date 09, e number 3A	//05/10					structio	C n of S	Civil Engineering (contract No. DC/2009 ewage Treatment Wo g Programme (Nov 2	0/13 orks at YSW & SKW		(Marked on 31	31/10/ October 2012)			ed Appr

Activity ID	Description	Original Ouration	Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors				2012 NOV		NEO.			2013	FED	
YSW0840	ELS & excavate to formation (+0 mPD approx.)	30	0 31/10/12	29/11/12	26/12/12	24/01/13	56d	YSW07610	YSW0860		ОСТ	I L	NOV		DEC	J	IAN	<u> </u>	FEB	
YSW0860	Sub-structure construction	30	0 30/11/12	29/12/12	25/01/13	23/02/13	56d	YSW0840	YSW0880	1		i								
YSW0880	Backfill & remove ELS	30	0 30/12/12	28/01/13	24/02/13	25/03/13	56d	YSW0860	YSW0890			!			-					
Emergency S	torage Tank								•			1 !								
YSW1470	ELS & excavate to formation (+3.5mPD Approx.)	30	100 17/09/12 A	02/10/12 A	17/09/12 A	02/10/12 A		YSW0760	YSW1480	_₽,										
YSW1480	Sub-structure construction	40	100 03/10/12 A	16/10/12 A	<u> </u>	16/10/12 A		YSW1470	YSW1490											
YSW1490	Backfill & extract sheetpile	30	100 17/10/12 A	19/10/12 A		19/10/12 A		YSW1480	YSW1500	4	-	<u>'L'</u>								
YSW1500	Superstructure construction upto +10.5mPD	40	75 20/10/12 A	09/11/12	20/10/12 A	17/02/13	<u> </u>	YSW1490	YSW1530, YSW1536	4	-	1 '								
YSW1530	Underground pipeline works Water tightness test	40	0 10/11/12	19/12/12	18/02/13	29/03/13		YSW1500	E&M0690, YSW1680			- 						+-		
YSW1536		40	0 10/11/12	19/12/12	26/06/13	04/08/13	2280	YSW1500	YSW1538			 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
YSW16601	Cable Draw Pits & Ducting Construct 6m deep sewer YFMH5-YFMH6 (Grid Q-X)	60	0 31/10/12	29/12/12	16/10/12	14/12/12	I 15d	YSW0760	YSW16602											
YSW16602	Connect 6m deep sewer to existing manhole FM1	45	0 30/12/12	12/02/13	15/12/12	28/01/13		YSW16601	YSW16603			- i								
YSW16603	Construct UU & pipes along sea side (Grid Q-X)	60	0 13/02/13	13/04/13	29/01/13	29/03/13	<u> </u>	YSW16602	YSW16604,YSW16703	-		!								
YSW16606	Construct UU & pipes along hill side (Grid D-Q)	60	40 10/10/12 A	05/12/12	10/10/12 A	16/04/13	<u> </u>	YSW0760	YSW16607	-		'								
YSW16607	Construct UU & pipes along hill side (Grid Q-X)	60	30 20/08/12 A	16/01/13	20/08/12 A	28/05/13		YSW16606	YSW16608											
YSW16608	Construct UU & pipes along hill side (Grid XA-D)	60	0 17/01/13	17/03/13	29/05/13	27/07/13		YSW16607	YSW1690			+								
Submarine Out			<u> </u>		<u> </u>		<u> </u>					i								
YSW0180	Coordination of HEC	53	100 17/05/10 A	08/07/10 A	17/05/10 A	08/07/10 A	<u> </u>	KD0020	YSW0350											
YSW0200	Submission and Approval of Ecologist	60	100 17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020	YSW0210	=		- 1								
YSW0210	Ecology Survey	211	100 16/07/10 A	11/02/11 A	16/07/10 A	11/02/11 A		YSW0200	YSW0350	1		i								
YSW0220	Submission and Approval of In. Hydro Survey	103	100 17/05/10 A	27/08/10 A	17/05/10 A	27/08/10 A		KD0020	YSW0230	1		!								
YSW0230	Hydrogrophical Survey (YSW)	157	100 28/08/10 A	31/01/11 A	28/08/10 A	31/01/11 A		YSW0220	YSW0350	1		- ;								
YSW0240	Material Submission, Approval of HDPE pipe	319	100 17/05/10 A	31/03/11 A	17/05/10 A	31/03/11 A		KD0020	YSW0360			i						1 -		
YSW02401	Clarify Coordinate of Point Y (Reply of RFI 010)	83	100 28/06/10 A	18/09/10 A	28/06/10 A	18/09/10 A		KD0020	YSW0250			!								
YSW0250	Submit and Approval of Method Statement for HDD	188	100 19/09/10 A	25/03/11 A	19/09/10 A	25/03/11 A		YSW02401	YSW0260, YSW0270, YSW0340			i								
YSW0260	Submission of HDD Method Statement to HEC	14	100 26/03/11 A	08/04/11 A	26/03/11 A	08/04/11 A		YSW0250	YSW0340			- !								
YSW0270	Additional G.I. Boreholes (YSW)	123	100 19/09/10 A	19/01/11 A	19/09/10 A	19/01/11 A		YSW0250	YSW0280, YSW0290			‡						_		
YSW0280	Submission of propose alignment	44	100 20/01/11 A	04/03/11 A	20/01/11 A	04/03/11 A		YSW0270	YSW0310, YSW0340			i								
YSW0290	Submission of Marine Notice	69	100 20/01/11 A	29/03/11 A	20/01/11 A	29/03/11 A		YSW0270	YSW0350			!								
YSW0310	Construction of Entry Pit and Preparation Work	27	100 05/03/11 A	31/03/11 A		31/03/11 A		YSW0280	YSW0320	_		- 1								
YSW0320	Prepare of HDD Drill Rig Set-up (YSW)	28	100 01/04/11 A	28/04/11 A		28/04/11 A		YSW0310	YSW0330, YSW0350			i								
YSW0330	Establishment of HDD plant & equipment	6	100 09/04/11 A	14/04/11 A	09/04/11 A	14/04/11 A		YSW0320	YSW0340			!								
YSW0340	Setting up at drillhole location	14	100 15/04/11 A	28/04/11 A		28/04/11 A		YSW0250, YSW0260, YSW0280,	YSW0350	4		i								
YSW0350	Drill pilot hole and reaming hole - NS400 - 530m	229	100 29/04/11 A	+	<u> </u>	13/12/11 A		YSW0040, YSW0180, YSW0210,	YSW0360	_										
YSW0360	Installation of NS400 HDPE 530m	17	100 14/12/11 A	30/12/11 A		30/12/11 A		YSW0240, YSW0350	SKW1181,YSW03601,YSW03620,YSW0370	0		+				_				
YSW03601 YSW03605	Demobilization of HDD plant & equipment	14	100 31/12/11 A	06/01/12 A 20/01/12 A	31/12/11 A 07/01/12 A	06/01/12 A		YSW0360	YSW03605, YSW03641, YSW0730 YSW0730	-		i] -					
YSW03620	Remove Entry pit of HDD Removal of Receiving Pit	14	100 07/01/12 A 100 31/12/11 A	13/01/12 A	31/12/11 A	20/01/12 A 13/01/12 A	 	YSW03601	YSW0730 YSW0365			<u>1</u>						+ -	+	
YSW03641	Prepare backfilling material under VO 046A	120	100 37/12/11 A	05/05/12 A				YSW0360 YSW03601	YSW0365	╬-		· +								
YSW0365	Set up of Silt Curtain as per EP	30	0 06/12/12	05/03/12 A	02/07/13	31/07/13	207d		YSW0370	╬ -		+		· - ˈh 						
YSW0370	Dredging of Marine Deposit for Diffuser (YSW)	14	0 05/01/13	19/01/13	01/08/13	14/08/13		YSW0360, YSW0365	YSW0380			!								
YSW0380	Diffuser Construction (YSW)	60	0 19/01/13	20/03/13	15/08/13	13/10/13		YSW0370	E&M0690, YSW0400	-		i				_				
	SW STW		<u> </u>	<u> </u>	L		<u> </u>						 							
E&M0360	Delivery of MBR Memb. Mod. (MBR Tk 4)	137	100 24/02/11 A	21/06/11 A	24/02/11 A	21/06/11 A		E&M0160	E&M0510			- 1								
E&M0370	Delivery of MBR Membrane Modules - 2nd Shipment	150	100 24/02/11 A	17/10/11 A	24/02/11 A	17/10/11 A	İ	E&M0160	E&M0520	┪-		т	-							
E&M0380	Delivery of Grit Removal Equipment	180	100 10/10/11 A	29/12/11 A	10/10/11 A	29/12/11 A		E&M0150	E&M0530	╊-		+	 					ī		
E&M0390	Delivery of Coarse Screens	162	100 06/09/11 A	12/01/12 A	06/09/11 A	12/01/12 A		E&M0110	E&M0540			i	l il					<u> </u>		
E&M0400	Delivery of Fine Screens	180	100 12/09/11 A	30/11/11 A	12/09/11 A	30/11/11 A		E&M0120	E&M0550			1	<u> </u>	l l				<u> </u>	[
E&M0410	Delivery of Pumps	162	100 23/06/11 A	05/09/11 A	23/06/11 A	05/09/11 A		E&M0130	E&M0560			T						;] [
E&M0420	Delivery of Submersible Mixers	162	100 26/02/11 A	17/11/11 A	26/02/11 A	17/11/11 A		E&M0140	E&M0570]		i	[4]					i		
E&M0440	Delivery of Sludge Dewatering Equipment	180	50 01/09/11 A	28/01/13	01/09/11 A	03/03/13		E&M0170	E&M0580									<u> </u>		
E&M0450	Delivery of Valves, Pipes & Fittings	180	90 30/08/11 A	22/11/12	30/08/11 A	03/05/13	163d	E&M0180	E&M0590, E&M0605			1				<i></i>		<u>:</u>		
E&M0460	Delivery of Penstocks	180	100 12/08/11 A	24/12/11 A		24/12/11 A	<u> </u>	E&M0190	E&M0600	-		<u>i</u>						ī - 1¦_		
E&M0470	Delivery of Instruments	180	100 03/11/11 A	21/06/11 A	03/11/11 A	21/06/11 A		E&M0200	E&M0610	_		!						<u> </u>		
E&M0480	Delivery of MCC LVSB	177	0 01/11/12	27/04/13	11/07/12	03/01/13		E&M0210	E&M0620			i	† 						T	
E&M0490	Delivery of BS Equipment	180	32 11/12/11 A	15/03/13	11/12/11 A	05/06/13		E&M0220	E&M0630									ı jı		
E&M0500	Delivery FS Equipment	180	25 11/12/11 A	07/04/13	11/12/11 A	03/07/13	87d	E&M0230	E&M0330, E&M0640			, 1								_
E&M0510	Install Membrane Modules in MBR Tank no. 4	90	10 03/11/12 A	22/02/13	03/11/12 A	22/02/13	l 0	E&M0360, YSW0705, YSW0820	KD0115	+ -		1						+ <u>- </u>		
E&M0520 E&M0530	Install Membrane Modules in MBR Tank No. 1 to 3 Install Grit Removal Equipment	130	0 04/02/13 100 01/06/12 A	13/06/13 30/09/12 A	25/12/12 01/06/12 A	03/05/13 30/09/12 A	-41d	E&M0370, YSW08305 E&M0380, E&M0540, YSW0800	E&M0590, E&M0690 E&M0590, E&M0660	-							'	T:		
E&M0540	Install Coarse Screens	75	90 23/04/12 A	05/04/13	23/04/12 A	19/03/13	-17d	E&M0390, YSW0800	E&M0530, E&M0550, E&M0570, E&M0590, E&M0660	-			 					1'.		=
E&M0550	Install Fine Screens	60	80 01/06/12 A	17/04/13	01/06/12 A	03/05/13	17d	E&M0400, E&M0540, YSW0800	E&M0590, E&M0660									i		
					I .				<u> </u>				11		Doto		Dovision			
ish date 06/ ta date 31/	D5/10					struction	C of S	Civil Engineering ontract No. DC/200 ewage Treatment W programme (Nov	9/13 Vorks at YSW & SKW				(Marked on 31	October 2012)	Date 31/10/12	Revis	Revision ion 0	R	necked A	VC

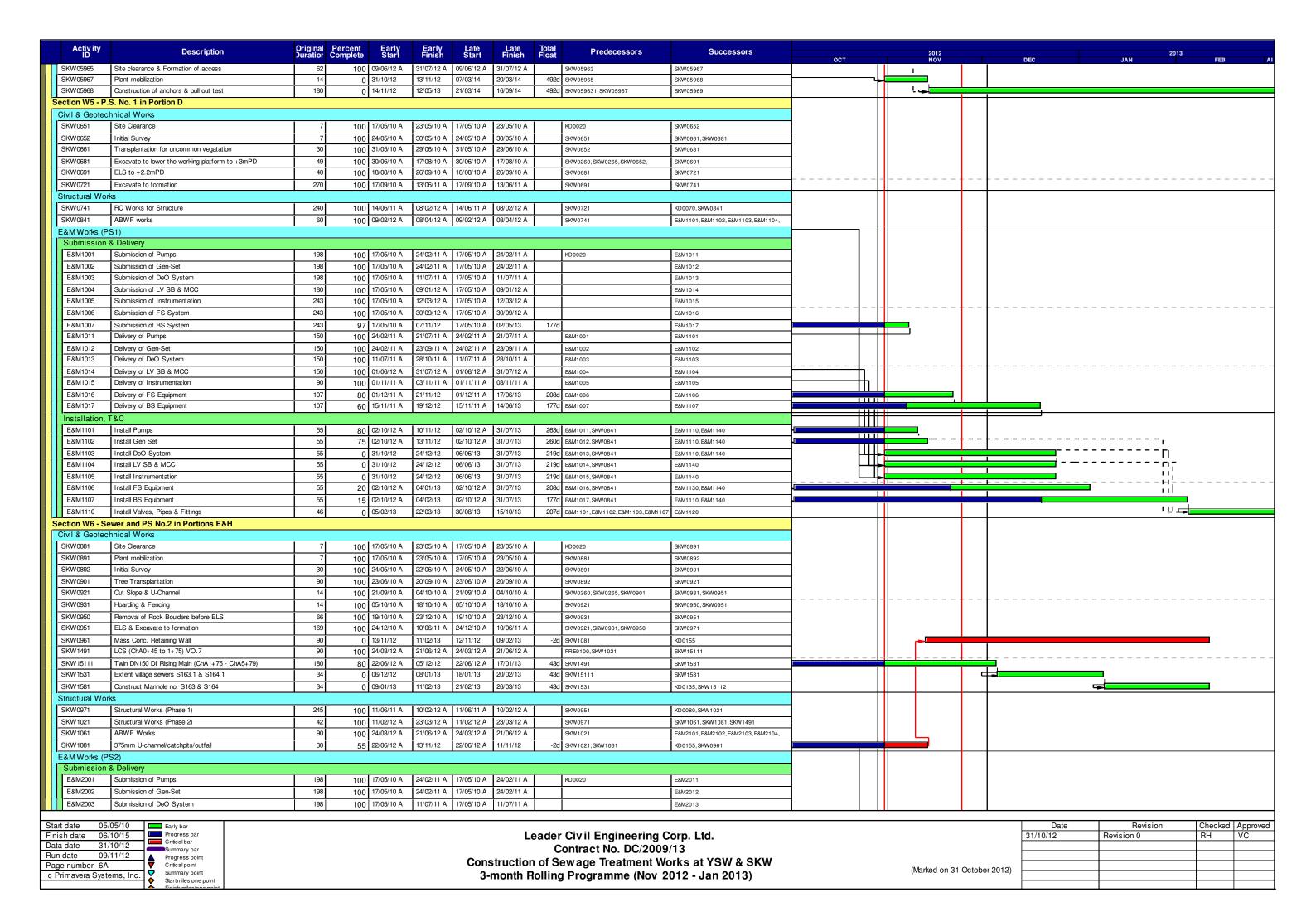
The color Color	Activ ity ID	Description	Original Duration	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	ост	2012 NOV	DEC	JAN	2013 I	FEB AI
March Marc	E&M0560	Install Pumps	90	4	.0 23/04/12 A	21/05/13	23/04/12 A	19/03/13	-63d	E&M0410,YSW0800	E&M0570, E&M0590, E&M0660			·			•
Mark Control (Control)	E&M0580	Install Sludge Dewatering Equipment	280	2	29/05/12 A	07/11/13	29/05/12 A	13/10/13	-25d	E&M0440, YSW0800	E&M0690						
Page Page	E&M0600	Install Penstocks (Batch 1, GL H - T)	180	6	5 23/04/12 A	30/05/13	23/04/12 A	13/10/13	136d	E&M0460, YSW0800	E&M0690		li i				11
	E&M0605	Install Penstocks (Batch 2, GL A - F)	120		0 11/02/13	10/06/13	16/06/13	13/10/13	125d	E&M0450,YSW08305	E&M0690						
	Sok Kwu Wa	ın															
March Control Contro	Preliminary		_			_	_										
Control Foundation Protects 10 10 10 10 10 10 10 1	SKW0250	Approval of Environmental Team	16	10	0 17/05/10 A	01/06/10 A	17/05/10 A	01/06/10 A		KD0020	SKW0260						
Section 12 Recognition of Processing Section	SKW0260	Baseline monitoring (Air & Noise)	14	10	02/06/10 A	15/06/10 A	02/06/10 A	15/06/10 A		SKW0250	SKW0242, SKW0265, SKW0592, SKW0681,						
Part Company Part	SKW0265	Baseline Monitoring Submission (A & N)	14	10	0 16/06/10 A	08/07/10 A	16/06/10 A	08/07/10 A		SKW0260	SKW0242, SKW0592, SKW0681, SKW0921,						
	_	•															
March 1976 Mar					<u>.</u>												
	.		21	!	_	<u> </u>	<u> </u>	<u>. </u>			SKW0241						
		1 ,	9	!		<u>. </u>	<u>. </u>	<u>. </u>		<u> </u>							
	.					<u>. </u>		<u>. </u>		SKW0241, SKW0260, SKW0265	SKW0461						
			70	•	-												
Billion Support for Princes of Co. 2 (Co. 2) (Co.	.	<u> </u>	7	<u> </u>	_!	<u>. </u>		<u>. </u>						 			
SAME Comment of Palagon and Work of 10 10 10 10 10 10 10 10	.	· · · · · · · · · · · · · · · · · · ·		. '		<u> </u>	<u> </u>										
			37			<u> </u>	<u> </u>	<u>. </u>									
	.	· · ·	3	<u> </u>		<u> </u>	<u> </u>										
		·				<u> </u>	<u> </u>	<u>. </u>	<u> </u>								
Second Second Second Personal Programmer 1 10 Second Second Second Personal Programmer 1 10 Second Second Personal Personal Programmer 1 10 Second Second Personal Personal Programmer 1 10 Second Second Personal Persona	.	<u> </u>		<u> </u>		<u> </u>	<u> </u>							 			
\$\frac{\text{Section}{\text{Total Section}{\text{Total Section}{\text{Total Section}{\text{Total Section}{\text{Total Section}{\text{Section}{Sectio		· · · · · · · · · · · · · · · · · · ·	14	10		<u> </u>	<u> </u>	<u>. </u>									
Section Section of Information and AC 500 677 10 10 10 10 10 10 10	.		7	<u> </u>		<u> </u>											
Section W. Section W		<u> </u>				<u>!</u>	<u> </u>	<u>. </u>									
Section Assistance Section	.	<u>'</u>	138	<u> </u>													
Controlled Workshop Controlled Workshop			7	10	03/01/12 A	09/01/12 A	03/01/12 A	09/01/12 A		SKW04881	SKW1261		ļ	 			
Section Common Sect	-	•															
Section Sect			I 00	1 40	a Luciocua A	1,4,07,40.4	L 45/00/40 A	L 4 4 10 7 14 0 A		I							
\$100,000 Filted Survey of size \$2		·				<u> </u>	<u> </u>										
		<u>'</u>				<u> </u>					_						
Section Contraction of an Ambier of Contraction of an Ambier of Contraction of an Ambier of Contraction of an Ambier of Contraction of an Ambier of Contraction of Ambier of Contraction of Ambier of Contraction of Ambier of Contraction of Ambier of Contraction of Ambier of Contraction of Ambier of Contraction of Ambier of Contraction of Ambier of Contraction of Ambier of Contraction of Ambier of Contraction of Ambier of Contraction of Ambier of Contraction of Cont				<u> </u>		<u> </u>	<u> </u>				_ .						
369/00/2002 Cementare of a Marce (16 1 + 42 Mer/10 1	<u> </u>					<u> </u>	<u> </u>	<u>. </u>									
SOME Color Color 11 St 16 10 10 10 10 10 10 10		` '				<u>!</u>	<u> </u>							 			
Servinessiz Ast Serviness Water (Or. No. 5) 2 80 17 1 (0) 1997 A (00071 A 1997 A (00071	<u> </u>	!		:			<u> </u>			SKW05931							
Seminoria Seminoria Perila Marke Call Coll (2-8470) 1 10 100 100 11 10 100 11 10 100 11 10 100 11 10 100 11 10 100 11 10 100 11 10 100 100 11 10 100 100 10 10	.	` ' '				<u>!</u>	<u> </u>			l converses							
Security Security			1/4	!		! 	! 	<u> </u>		SKW05932							
Settings/SEGS Remove of Enables (BIC 120 TAS, SES No. 11C) 17 100 200911 A 2	.		10			<u>. </u>		<u> </u>		Loranos							
ServiceStat West State Cutting (-58 mPC) - 2 100 100 mPC 4		` ` `	12		-!	! 	! 	<u> </u>		<u> </u>				 			
Service(SSS) Remove of Deather (SS 140-108) 1/4 100-114 10		1	17				<u>!</u>	<u> </u>									
Severy Septiment Severy Sept		, , , , , , , , , , , , , , , , , , , ,	45							<u> </u>							
Severage Severage		<u> </u>		<u> </u>													
Services Services	<u> </u>		1			<u> </u>	<u> </u>	<u>!</u>									
Service Service West Stage Cutting (~27 fmPD) 100 3809911 A 391111 A 2909112 A 290912		<u> </u>	83								_ .			 			
SW095827 West Stope Cutting (+25mPD to +125mPD)					!	<u> </u>											
SW095841 Step Stormwister Dratingle SW095841 Step Stormwister Dratingle SW095841 Step Stormwister Dratingle SW095841 Step Stormwister Dratingle SW095841 Step Stormwister Dratingle SW095841 Step Stormwister Dratingle SW095841 Step Stormwister Dratingle SW095841 Sw095842 SW095841 Sw095842 SW095844 Sw09					!	<u> </u>			<u> </u>		_ .						
SKW05641 Skye Stormwater Drainage						<u>!</u>	<u> </u>	<u>!</u>									
SW0595412 East Slope Cutting (+50mPD to +425mPD)											<u> </u>						
SKW059412 East Slope Cutting (+42.5mPD to +27.5mPD) 82 100 15/05/11 A 04/08/11 A 59/05/11 A 39/005/11	<u> </u>		!	_!	<u> </u>	<u> </u>	<u>!</u>	<u> </u>					 				
SKW059416 East Slope Cutting (+35mPD to +275mPD) 55 100 55/921 1A 29/921 1A		<u> </u>									_ .						
SKW059414 East Slope Cutting (+27.5mPD to +20mPD) 61 100 29/91/11 A 29/19/11 A 29/19/11 A 36/09/12									 								
SKW059415 East Slope Cutting (+20mPD to +12.5mPD) 39 100 29/11/11 A 06/01/12 A 29/11/11 A 06/01/12 A 29/11/11 A 06/01/12 A 29/11/11 A 06/01/12 A 29/11/11 A 06/01/12 A 29/03/12 A 07/03/12 A 08/0059415 K00665, SkW059415 K00665, SkW059415 K00665, SkW059415 KW05942 Slope Miscellaneous Works 61 100 28/05/12 A 31/07/12 A 28/05/12 A 31/07/12 A 08/05941 SkW05943 Buttress & surface Protection (Sl No. 31) 60 100 03/07/12 A 31/07/12 A 08/05/12 A 08/05/12 A 31/07/12 A 08/05/12 A 0		<u></u>				<u> </u>	<u> </u>	<u>. </u>	<u> </u>								
SKW059416 East Slope Cutting (+12.5mPD to +4.8mPD) 81 100 07/01/12 A 27/03/12 A 07/01/12 A 27/03/12 A SKW059415 K00060.98W1311,SkW1371 SkW05942 Slope Miscellaneous Works 61 100 26/05/12 A 31/07/12 A 26/05/12 A 31/07/12 A SkW05941 SkW05943 Buttress & surface Protection (SI No. 31) 60 100 03/07/12 A 31/07/12 A 03/07/12 A 10/07/12 A SkW05944 SkW05943 Buttress & surface Protection (SI No. 31) 60 100 03/07/12 A 31/07/12 A 10/07/12 A SkW05944 SkW05945 Rock Slope Treatment (SI. No. 68) 60 100 01/08/12 A 30/07/12 A 10/07/12 A SkW05944 SkW05945 Rock Slope Treatment (SI. No. 68) 60 100 01/08/12 A 30/09/12 A 01/09/12 A 08/02/13 88d SkW05945 Rock Slope Treatment (SI. No. 115) 60 0 31/10/12 29/12/12 28/01/13 28/03/13 88d SkW05945 SkW05945 SkW05945 SkW05945 Bot Naling Works (VO. No. 52) 300 80 10/02/12 A 29/12/12 10/02/12 A 05/05/14 492d SkW05945 Determine Alignment & Foundation Design of RFB 120 100 10/02/13 A 08/06/12 A 10/02/13 A 08/06/12 A SkW05948 SkW05983 SkW05984 SkW05984 SkW05984 GEO Approved of Foundation Design of RFB 120 100 09/06/12 A 10/02/12 i i i			<u> </u>					 		:							
SKW05942 Stope Miscellaneous Works 61 100 26/05/12 A 31/07/12 A 58/05/12 A 31/07/12 A 58/05/14 A 58/05/14 B 58						<u>. </u>			<u> </u>					 			
SKW05943 Buttress & surface Protection (SI No. 31) 60 100 03/07/12 A 31/07/12 A 03/07/12 A 31/07/12 A 03/07/12 A 31/07/12 A 03/07/12	i i i								-		 						
SKW05944 Slope Treatment (SI. No. 36) 60 100 03/07/12 A 31/07/12 A 03/09/12 A 01/08/12 A 03/09/12 A 03/09/12 A 04/09/12 A		<u> </u>				<u> </u>	<u> </u>		-								
SKW05945 Rock Slope Treatment (SI. No. 68) 60 100 01/08/12 A 30/09/12 A	 								 								
SKW05946 Rock Slope Treatment (SI. No. 98) 60 80 10/09/12 A 11/11/12 10/09/12 A 08/02/13 89d skw05945 SkW05947 Rock Slope Treatment (SI. No. 115) 60 0 31/10/12 29/12/12 26/01/13 26/03/13 87d skw05946 kD0135 SKW05948 Soil Nailing Works (VO. No. 52) 300 80 10/02/12 A 29/12/12 10/02/12 A 08/06/12 A 10/02/13 A 10/02/13						<u> </u>	<u> </u>		-								
SKW05947 Rock Slope Treatment (SI. No. 115) 60 0 31/10/12 29/12/12 26/01/13 26/03/13 87d skw05946 KD0135 SKW05948 Soil Nailing Works (VO. No. 52) 300 80 10/02/12 A 29/12/12 10/02/12 A 05/05/14 492d Skw05963 SKW05963 Determine Alignment & Foundation Design of RFB 120 100 10/02/13 A 08/06/12 A 10/02/13 A 08/06/12 A 10/02/13 A 08/06/12 A 10/02/13 A 08/06/12 A Skw05948 Skw059631, Skw059631, Skw05964, Skw05965 SKW05964 Fabrication & Shipping of RFB Material 180 80 09/06/12 A 05/12/12 09/06/12 A 14/04/15 860d skw05963 SKW05964 Total of the start of th					!	<u> </u>	<u> </u>	<u>!</u>	RQ4					 			
SKW05948 Soil Nailing Works (VO. No. 52) 300 80 10/02/12 A 29/12/12 10/02/12 A 05/05/14 492d SKW05963 Determine Alignment & Foundation Design of RFB 120 100 10/02/13 A 08/06/12 A 10/02/13 A 08/06/1				<u> </u>								<u>.</u>					
SKW05963 Determine Alignment & Foundation Design of RFB 120 100 10/02/13 A 08/06/12 A 10				1	-	<u> </u>						']					
SKW059631 GEO Approval of Foundation Design 70 100 09/06/12 A 31/07/12 A 09/06/12 A 31/07/12 A 09/06/12 A 31/07/12 A 09/06/12 A 14/04/15 860d skw05963 skw05963 skw05962 Start date 05/05/10			_						.520								٦⊷
SKW 05964 Fabrication & Shipping of RFB Material 180 80 09/06/12 A 05/12/12 09/06/12 A 14/04/15 860d skw05963 skw05972 Start date 05/05/10					!												
Start date 05/05/10 Early bar Date Revision Checked Approved	l							<u> </u>	860d		-			 			
				<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>			ll l	<u> </u>			
Finish date 06/10/15 Progress bar 31/10/12 Revision 0 RH VC					· · ·								·	 Date 31/10/12			

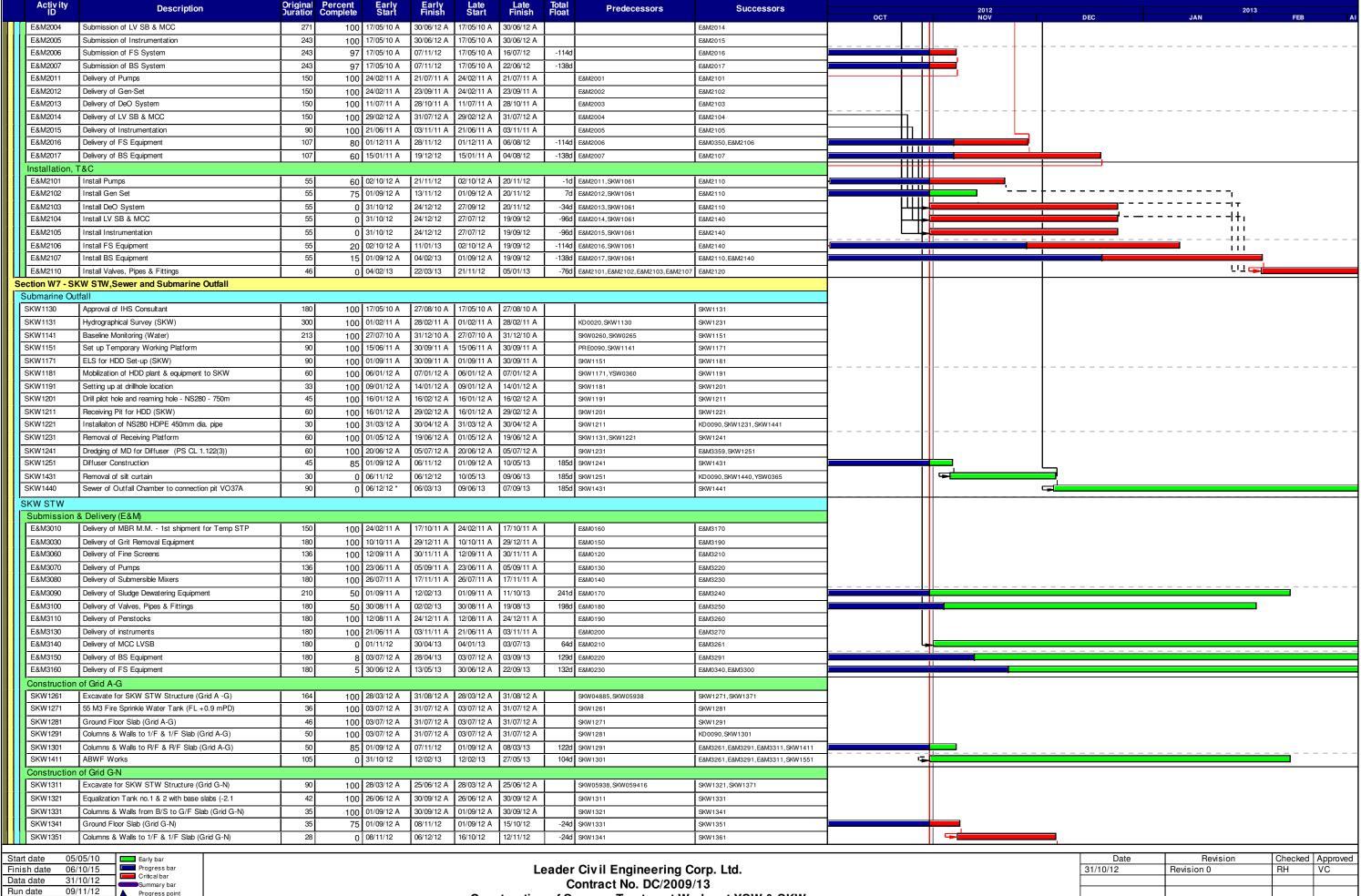
Finish date 05/05/10

Finish date 06/10/15

Data date 31/10/12

Run date 09/11/12


Page number 5A


C Primavera Systems, Inc.

C Primavera Systems, Inc.

Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW
3-month Rolling Programme (Nov 2012 - Jan 2013)

	Date	Revision	Checked	Approved
	31/10/12	Revision 0	RH	VC
(Marked on 31 October 2012)				
(Marked Off 51 October 2012)				

Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Nov 2012 - Jan 2013)

Critical point Summary point

Page number 7A

c Primavera Systems, Inc.

(Marked on 31 October 2012)

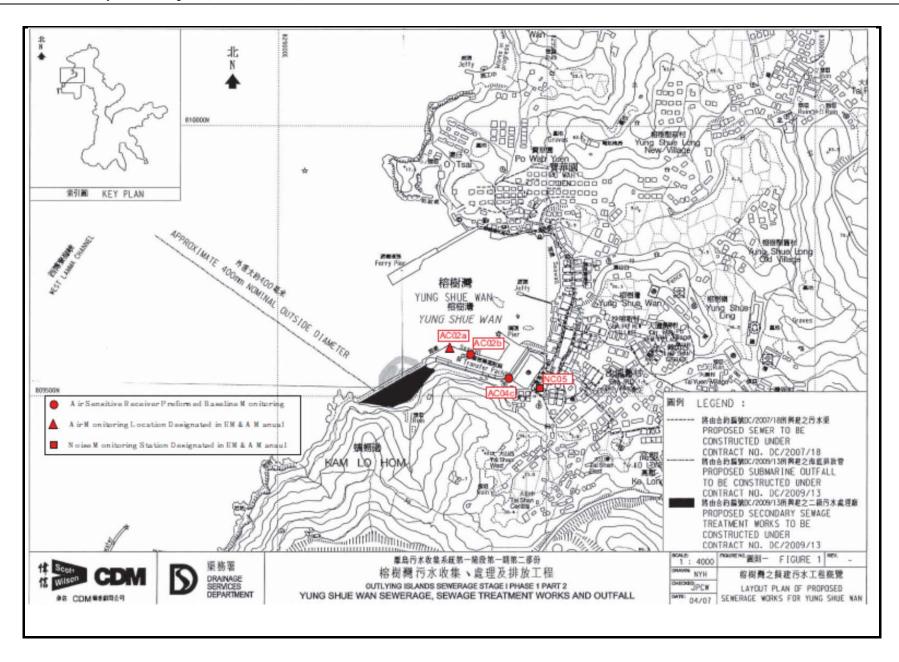
Ac	tiv ity ID	Description	Original Ouration	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	ост	2012 NOV	DEC	JAN	2013 FEB
SKW	1361	Columns & Walls to R/F & R/F Slab (Grid G-N)	26	0	06/12/12	01/01/13	13/11/12	08/12/12	-240	SKW1351	SKW1451	001	NOV	DEC DEC	JAN	PED
Cons	truction	of Grid N-T	•	<u> </u>		<u>'</u>	<u> </u>		<u>'</u>	•						
SKW	1371	Excavate for SKW STW Structure (Grid N-T)	97	90	03/07/12 A	09/11/12	03/07/12 A	25/12/12	460	SKW05938, SKW059416, SKW1261,	SKW1381					
SKW	1381	Ground Floor Slabs include MBR Tank (Grid N-T)	45	25	02/10/12 A	13/12/12	02/10/12 A	27/01/13	460	SKW1371	SKW1391					
Rising	Main								<u> </u>							
SKW14	181	Subm, Approval & Delivery of DI pipes	120	100	17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1501	1				
SKW15	501	LCS (ChB0+00 - ChB1+20)	300	100	14/09/10 A	10/07/11 A	14/09/10 A	10/07/11 A		PRE0100, SKW1481	SKW1521					
SKW15	521	Twin DN150 DI Rising Main (ChB0+00 - ChA4+55)	250	80	11/07/11 A	19/12/12	11/07/11 A	12/09/14	6320	SKW1501	KD0090		1			
Section	W8 - La	ndscape Softworks in All Portions								•						
SKW159	1	Tree Survey	21	100	17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A		KD0020	SKW1621					
SKW161	1	Preservation & Protection of Trees	822	99	17/05/10 A	08/11/12	17/05/10 A	08/03/13	1210	KD0020	KD0100, SKW1631					
SKW162	1	Transplantation at SKW	90	100	07/06/10 A	04/09/10 A	07/06/10 A	04/09/10 A	İ	SKW1591	KD0100	1				
Section	W9 - Es	tablishment Works in All Portions	-			•		-	•		•					
SKW163	1	Section W9 - Establishment Works	365	0	08/11/12	08/11/13	12/03/13	11/03/14	1240	SKW1611	KD0110	1	L _{>}			

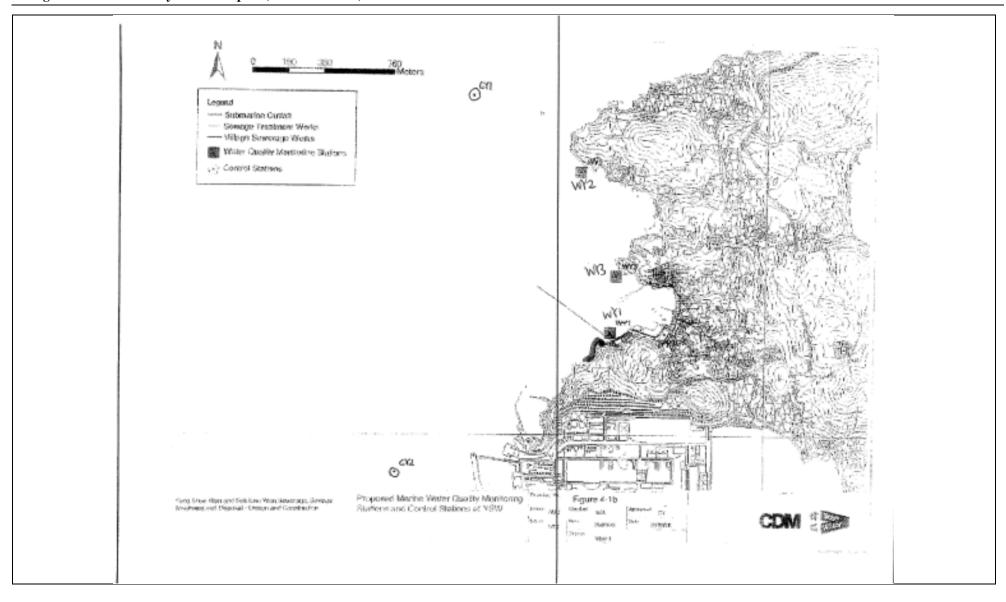
Start date 05/05/10
Finish date 06/10/15
Data date 31/10/12
Run date 09/11/12
Page number 8A
c Primavera Systems, Inc.

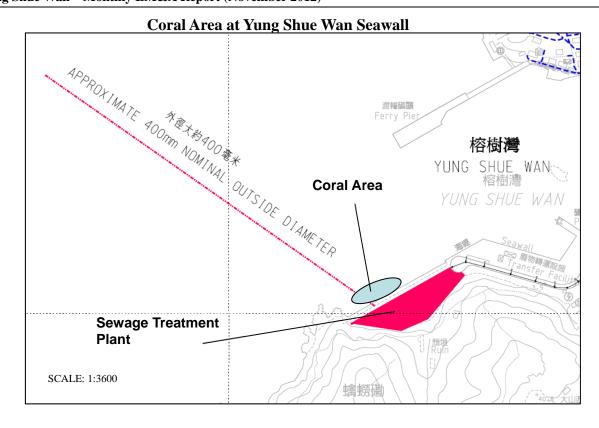
Early bar
Progress bar
Critical bar
Summary bar
Progress point
Critical point
Summary point
Start miles bene point
Finish malantana paint

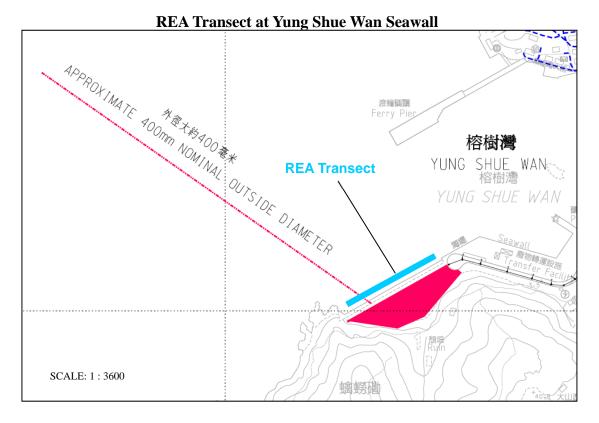
Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Nov 2012 - Jan 2013)

Date	Revision	Checked	Approved
31/10/12	Revision 0	RH	VC


(Marked on 31 October 2012)


Appendix D


Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality / Dive Surveys of Coral)



Coral Area at Sham Wan

Appendix E

Monitoring Equipments Calibration Certificate

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, ÖH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - M Operator		Rootsmeter Orifice I.I		438320 1483	Ta (K) - Pa (mm) -	294 754.38
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4140 0.9960 0.8910 0.8510 0.7020	3.2 6.4 7.9 8.7 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
1.0018 0.9976 0.9955 0.9945 0.9890	0.7085 1.0016 1.1173 1.1686 1.4088	1.4185 2.0061 2.2429 2.3524 2.8371	0.9957 0.9915 0.9894 0.9884 0.9830	0.7042 0.9955 1.1105 1.1615 1.4003	0.8829 1.2486 1.3959 1.4641 1.7657
Qstd slo intercep coeffici y axis =	ot (b) = lent (r) =	2.02742 -0.02027 0.99996 	Qa slor intercer coeffici y axis =	ot (b) =	1.26953 -0.01262 0.99996

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: YSW Playground Date of Calibration: 29-Sep-12 Location ID: AC04c Next Calibration Date: 29-Nov-12

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1011.3

Corrected Pressure (mm Hg) Temperature (K)

301

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

11693 0.02568

CALIBRATION

D1 - 4 -	T100 (T)	TIOO (D)	1100	0.41	т	IC	TINTEAD
Plate	H20 (L)	H2O (R)	H20	Qstd	1	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.2	5.2	10.4	1.528	59	58.45	Slope = 33.1980
13	4.1	4.1	8.2	1.358	53	52.51	Intercept = 7.3958
10	3.1	3.1	6.2	1.182	46	45.57	Corr. coeff. = 0.9972
7	2.1	2.1	4.2	0.975	41	40.62	
5	1.5	1.5	3	0.826	35	34.67	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

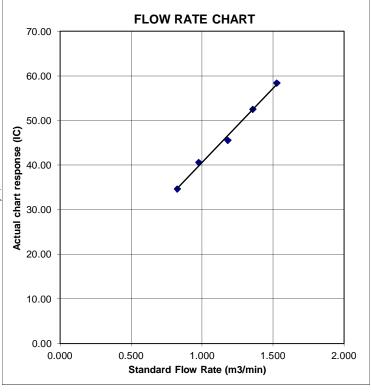
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K

Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: YSW RE Offices

Location ID: AC02b

Date of Calibration: 29-Sep-12

Next Calibration Date: 29-Nov-12

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1011.3 27.5

Corrected Pressure (mm Hg)
Temperature (K)

758.475 301

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11693 -0.02568

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.6	5.6	11.2	1.585	59	58.45	Slope = 30.7277
13	4.3	4.3	8.6	1.390	54	53.50	Intercept = 9.8938
10	3.4	3.4	6.8	1.238	47	46.56	Corr. coeff. = 0.9940
7	2.2	2.2	4.4	0.998	42	41.61	
5	1.6	1.6	3.2	0.853	36	35.66	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

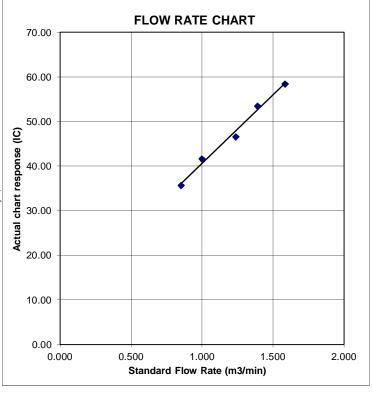
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

CERTIFICATE OF CALIBRATION AND TESTING

Environment Condition	Environment Condition					3 52 0
l'emperature	68.5 (20.3)	°F (°C)	Model			
Relative Humidity	19	%RH	 		1 2	23080
Barometric Pressure	29.11 (985.8)	inHg (hPa)				
🖾 As Left		×	In Tolerance			
☐ As Found			Out of Tolerance			
100, 27 hans the desired professional and the second of th	**************************************	Concentratio	n Linearity Plot			The second section of the section of
	100	Concentratio	ii Linearity 1 lot			
	Device Response (mg/m3) 1°0 1		0			
	(mg		0			
	011.56		:			
	lesp		0			
	ice I	- 0	4			
	Devi			o = In Tolerance		
	0.01			● = Out of Tolerance)	
		01 0.1	1 10 100	0		
	0.		entration (mg/m3)			
					System	ID: DTH01-02
Zero Stability Results						
Average:	Minimum:		Maximum:	Time:	: 50	
0.000 :mg	/m3 0.00	:mg/m ²	n	$:mg/m^3$:hrs

Final Function Check

March 8, 2012

Date

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122427

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-0960)

Description / 儀器名稱

Integrating Sound Level Meter (EQ010)

Manufacturer / 製造商 Model No. / 型號

Bruel & Kjaer

Serial No. / 編號

2238

2285721

Action-United Environmental Services and Consulting Supplied By / 委託者

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

20 April 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Precision Measurement Ltd., UK
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By

測試

L K Yeung

Certified By

核證

K/C Lee

Date of Issue 簽發日期

23 April 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122427

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration using the B & K Acoustic Calibrator 4231, S/N: 2713428 was performed before the test.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator

C120016

Multifunction Acoustic Calibrator

DC110233

5. Test procedure: MA101N.

6. Results:

Sound Pressure Level 6.1

Reference Sound Pressure Level 6.1.1

	UUT	UUT Setting Applied Value UUT				UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type I Spec. (dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

	UU	Γ Setting		Applie	d Value	UUT
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.0 (Ref.)
				104.00) []	104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT Setting			Applie	d Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.0	Ref.
	L _{ASP}	3	S			94.0	± 0.1
	L _{AIP}		I			94.1	± 0.1

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可測源至國際標準。 局部複印本證書需先獲本實驗所書面批准+

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C122427

證書編號

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		App	lied Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)	
30 - 110	L _{AFP}	A	F	106.0	Continuous	106.0	Ref.	
	L _{AFMax}				200 ms	105.0	-1.0 ± 1.0	
	L _{ASP}		S		Continuous	106.0	Ref.	
	L _{ASMax}		Application of the same		500 ms	101.9	-4.1 ± 1.0	

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Appli	ed Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)	
50 - 130	LAFP	A	F	94.00	31.5 Hz	54.6	-39.4 ± 1.5	
	27.24					63 Hz	67.8	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0	
				250 Hz	85.3	-8.6 ± 1.0		
					500 Hz	90.7	-3.2 ± 1.0	
					1 kHz	94.0	Ref.	
					2 kHz	95.2	$+1.2 \pm 1.0$	
					4 kHz	95.0	$+1.0 \pm 1.0$	
					8 kHz	92.9	-1.1 (+1.5; -3.0)	
		11			12.5 kHz	89.7	-4.3 (+3.0; -6.0)	

6.3.2 C-Weighting

	UUT Setting		Appli	ied Value UUT IE		IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{CFP}	C	F	94.00	31.5 Hz	91.1	-3.0 ± 1.5
			100		63 Hz	93.3	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	94.0	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	90.9	-3.0 (+1.5; -3.0)
					12.5 kHz	87.8	-6.2 (+3.0; -6.0)

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書而批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 精動工程有限公司。数定及除到原始的

輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/厄郵: callab@suncreation.com

Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C122427

證書編號

6.4 Time Averaging

	UUI	Setting			Applied Value			UUT	IEC 60804	
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAcq	A	10 sec.	4	1	1/10	110.0	100	99.9	± 0.5
	1.00	TY II				1/102		90	89.6	± 0.5
			60 sec.			1/103		80	79.8	± 1.0
			5 min.		11	1/104		70	69.8	± 1.0

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : 31.5 Hz - 125 Hz : \pm 0.40 dB

 $\begin{array}{lll} 104 \ dB : 1 \ kHz & : \pm 0.10 \ dB \ (Ref. 94 \ dB) \\ 114 \ dB : 1 \ kHz & : \pm 0.10 \ dB \ (Ref. 94 \ dB) \\ Burst equivalent level & : \pm 0.2 \ dB \ (Ref. 110 \ dB) \end{array}$

continuous sound level)

Note

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部被印本證書書先獲本實驗所書面批准。

⁻ The uncertainties are for a confidence probability of not less than 95 %.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-0960)

Description / 儀器名稱

Acoustical Calibrator (EQ082)

Manufacturer / 製造商

Bruel & Kjaer

Model No. / 型號

4231

Serial No. / 編號

2713428

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}C$

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓:

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期

20 April 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

L K Yeung

Certified By 核證

K/C Lee

Date of Issue 簽發日期

23 April 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可測源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement
of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281 TST150A DescriptionCertificate No.Universal CounterC113350Multifunction Acoustic CalibratorDC110233Measuring AmplifierC120886

Test procedure : MA100N.

5. Results:

5.1 Sound Level Accuracy

5.1.1 Before Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.1	± 0.2	± 0.2
114 dB, 1 kHz	114.1	1 11 27 7 . 7	

5.1.2 After Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

5.2.1 Before Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value (Hz)
(kHz)	(kHz)	Spec.	
1	1.000 0	1 kHz ± 0.1 %	± 0.1

5.2.2 After Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書書先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR BEN TAM

CLIENT: ADDRESS: **ACTION UNITED ENVIRO SERVICES** RM A 20/F., GOLDEN KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD.

KWAI CHUNG.

N.T., HONG KONG.

PROJECT:

WORK ORDER: HK1227052 LABORATORY: HONG KONG DATE RECEIVED: 10/10/2012 DATE OF ISSUE: 16/10/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity and Temperature

Description:

YSI Professional Plus

Brand Name:

Model No.:

YSI Professional Plus

Serial No.:

10G101946

Equipment No.:

Date of Calibration: 15 October, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1227052

Amendment:

1

Date of Issue:

16/10/2012

Client:

ACTION UNITED ENVIRO SERVICES

Description:

YSI Professional Plus

Brand Name:

YSI

Model No.:

YSI Professional Plus

Serial No.:

10G101946

Equipment No.:

Date of Calibration:

15 October, 2012

Date of next Calibration:

15 January, 2013

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.12	3.10	-0.02
5.97	5.89	-0.08
7.96	7.95	-0.01
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.97	-0.03
7.0	7.02	0.02
10.0	10.00	0.00
	Tolerance Limit (±unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	10.06	0.6
20	20.30	1.5
30	30.11	0.4
	Tolerance Limit (+%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
9.0	9.3	0.3
24.5	24.6	0.1
41.0	40.8	-0.2
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

aboratory manager mon

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR BEN TAM

CLIENT:

ACTION UNITED ENVIRO SERVICES

ADDRESS:

RM A 20/F., GOLDEN KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD,

KWAI CHUNG, N.T., HONG KONG.

PROJECT:

WORK ORDER:

HK1228210

LABORATORY:

HONG KONG 19/10/2012

DATE RECEIVED: DATE OF ISSUE:

29/10/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Turbidity

Description:

Turbidimeter

Brand Name: Model No.:

HACH 21000

Serial No .:

12060C018266

Equipment No.:

Date of Calibration: 29 October, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr Chan kwok Hai, Godfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Life Sciences

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: HK1228210 29/10/2012

Client:

ACTION UNITED ENVIRO SERVICES

Description:

Turbidimeter

Brand Name: Model No.: HACH 2100Q

Serial No.:

100Q

Serial No..

12060C018266

Equipment No.: Date of Calibration:

29 October, 2012

Date of next Calibration:

29 January, 2013

Parameters:

Turbidity

Method Ref: ALPHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.59	
0	0.58	
4	3.73	-6.75
40	39.0	-2.50
80	79.2	-1.00
400	384	-4.00
800	769	-3.88
	Tolerance Limit (±%)	10.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd
ALS Environmental

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025: 2005 - General requirements for the competence 此實驗所符合ISO / IEC 17025: 2005 -《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing

環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025: 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇‧國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator

執行幹事 陳成城 Issue Date: 5 May 2009

簽發日期:二零零九年五月五日

Registration Number : HOKLAS 066

註冊號碼:

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

Appendix F

Event and Action Plan

Air Quality

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL		,		
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily.	Check monitoring data submitted by ET; Check Contractor's working method.	1. Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
		LIMIT LEVEL		
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results.	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Notify IC(E), ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 3. Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IC(E) within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

EVENT ACTION				
EVENT	700			GOVERN LORON
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL		T	I	
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	Check monitoring data submitted by ET and Contractor's working methods	Confirm receipt of notification of non-compliance in writing; and Notify Contractor	Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and 3. Amend working methods if appropriate
2. Exceedance for two or	1. Same as the above;	1. Same as the above;	1. Discuss with IC(E) on the	1. Same as the above;
more consecutive sampling days	 Inform ICE, Contractor, ER, EPD and AFCD; Discuss mitigation measures with IC(E), RE and Contractor; Ensure well implementation of mitigation measures; and Increase the monitoring frequency to daily until no exceedance of Action Level 	 Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and Supervise the implementation 	proposed mitigation measures; 2. Ensure well implementation of mitigation measures; and 3. Assess the effectiveness of the implemented mitigation measures	 Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IC(E), and ER; and Implement the agreed mitigation
		of mitigation measures.		measures
		LIMIT LEVEL		
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss mitigation measures with IC(E), RE and Contractor 	Check monitoring data submitted by ET and Contractor's working method Discuss with ER and Contractor on possible remedial actions; and Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly	Confirm receipt of notification failure in writing; and Discuss with IC(E), ET and Contractor on the proposed mitigation measures; and Request Contractor to review the working methods	 Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER
Exceedance for two or more consecutive sampling days	 Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	 Same as the above; and Supervise the Implementation of mitigation measures 	Same as the above; Ensure well implementation of mitigation measures Make agreement on the mitigation measures to be implemented; and Consider and instruct, if necessary, the Contractor to stow down or to stop all or part of the construction activities until no exceedance of limit level	measures; 4. Resubmit proposals of mitigation measures if problem still not under control; and

Coral Monitoring

EVENT	ACTION		
	ET	CONTRACTOR	ER/IC(E)
Action Level being exceeded	Inform contractor, AFCD and EPD immediately; Discuss mitigation measure with ER/IC(E) and Contractor; Ensure mitigation measures are implemented.	Inform the Engineer and confirm notification of the non-compliance in writing; Propose mitigation measure to ER/IC€ within 1 working day and discuss with Et and ER/IC(E); Ensure mitigation measures are implemented.	Inform contractor, Review water quality monitoring data; Determine whether water quality monitoring data shows effects attributable to the backfilling works; If water quality monitoring data indicates effects attributable to backfilling works, then make agreement on mitigation measures to be implemented; If water quality monitoring data indicates no effects attributable to backfilling works then Action Level is not triggered; Assess the effectiveness of the implemented mitigation
Limit Level	Inform contractor, AFCD and EPD immediately; Discuss mitigation measure with ER/IC(E) and Contractor; Ensure mitigation measures are implemented.	Inform the Engineer and confirm notification of the non-compliance in writing; Suspend backfilling operations; Propose mitigation measure to ER/IC(E) within 3 working days and discuss with Et and ER/IC(E); Implement the agreed mitigation measures.	Inform contractor to suspend backfilling operations; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures.

Appendix G

Monitoring Data Sheet

24-hour TSP Monitoring Data Sheet

Air Quality Monitoring - 24-hour TSP monitoring data for Yung Shue Wan

24-hour TSP Monitoring Results - AC02b

	EL	APSED TIM	ME	CHA	ART READ	ING			STANDARD	l		INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
27-Oct-12	25076	5886.37	5910.36	1439.40	33	35	34.0	26.1	1014.7	0.78	1127	2.8111	2.9835	0.1724	153
1-Nov-12	25144	5910.36	5934.35	1439.40	33	34	33.5	21.1	1016.9	0.78	1119	2.7953	2.9211	0.1258	112
7-Nov-12	25151	5934.35	5958.34	1439.40	33	36	34.5	22.5	1015.6	0.81	1161	2.7775	2.9924	0.2149	185
13-Nov-12	25155	5958.34	5982.33	1439.40	34	38	36.0	23.1	1016.3	0.86	1231	2.7543	2.9412	0.1869	152
19-Nov-12	25163	5982.33	6006.32	1439.40	34	38	36.0	22	1016.8	0.86	1234	2.7881	2.9134	0.1253	102
24-Nov-12	25165	6006.32	6030.31	1439.40	34	38	36.0	19.5	1017.4	0.86	1242	2.7847	2.87	0.0853	69

Action Level: 161ug/m³ Limit Level: 260ug/m³

24-hour TSP Monitoring Results - AC04c

	EI	LAPSED TIN	MЕ	CHA	ART READ	ING			STANDARD)		INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
27-Oct-12	25139	8504.5	8528.49	1439.40	34	38	36.0	26.1	1014.7	0.86	1238	2.7865	2.9955	0.2090	169
1-Nov-12	25145	8528.49	8552.48	1439.40	33	35	34.0	21.1	1016.9	0.81	1166	2.7772	2.8932	0.1160	99
7-Nov-12	25152	8552.48	8576.47	1439.40	33	35	34.0	22.5	1015.6	0.81	1161	2.7462	2.8889	0.1427	123
13-Nov-12	25156	8576.47	8600.46	1439.40	33	35	34.0	23.1	1016.3	0.81	1160	2.7494	2.9309	0.1815	156
19-Nov-12	25164	8600.46	8624.45	1439.40	33	34	33.5	22	1016.8	0.79	1142	2.7833	2.9166	0.1333	117
24-Nov-12	25181	8624.45	8648.44	1439.40	32	34	33.0	19.5	1017.4	0.78	1126	2.7679	2.8547	0.0868	77

Action Level: 176ug/m³
Limit Level: 260ug/m³

Marine Water Quality Monitoring Data Sheet

Marine Water Quality Monitoring Result at Yung Shue Wan

Date 27-Oct-12

Date / Time	Location	Tide	Co-ord	linates	Water Depth	Sampling Depth	Тетр	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
						1.000	26.50	6.78	84.3	3.70	32.22	8.21	11.3
2012/10/27 11:11	WY1	ME	829176	809561	4.1	1.000	26.50	6.77	84.1	3.64	32.23	8.19	11.3
2012/10/27 11:11	** 1 1	IVIL	629170	809301	7.1	3.100	26.50	6.80	84.6	3.38	32.33	7.95	9.2
						3.100	26.40	6.85	85.1	3.04	32.35	8.01	9.2
						1.000	26.60	6.22	93.3	3.17	32.51	8.29	7.7
						1.000	26.60	6.13	92.0	3.19	32.58	8.22	
2012/10/27 10:47	WY2	ME	829017	810415	7.4	3.700	26.50	5.89	88.0	3.98	32.69	8.09	6.6
						3.700	26.50	5.86	87.7	3.89	32.91	8.08	
						6.400	26.50	6.36	86.7	3.42	32.95	8.06	8
	1					6.400	26.50	6.52	84.7	3.51	32.99 32.32	8.05	
						1.000	26.50	7.01	87.3	3.73		8.26	9.2
2012/10/27 10:31	WY3	ME	829213	809864	4.3	1.000	26.50	6.89	85.7	3.79	32.33	8.21	
						3,300 3,300	26.50 26.50	6.86 6.88	85.2 85.5	3.95 3.63	32.65 32.64	8.11 8.10	8.5
	1					1,000	26.40	6.21	92.7	3,45	32.46	7.95	
						1,000	26.40	6.20	92.7	3,60	32.45		6.6
						6,400	26.40	6,08	92.5	4.26	32.45	7.95 7.96	
2012/10/27 10:31	CY1	ME	828413	810815	12.8	6,400	26.40	6.09	90.7	4.49	32.39	7.95	7.8
						11.800	26.40	6.09	90.9	4.59	32.71	8.01	
						11.800	26.40	6.05	90.3	4.72	32.89	8.01	7.4
						1,000	27.00	7,00	87.9	3.16	32.33	8,20	
						1,000	27.00	7.01	88.0	3.12	32.35	8.17	7
						8,600	26.40	7.19	89.4	4.03	32.41	8.09	
2012/10/27 11:26	CY2	ME	828019	808814	17.2	8,600	26.50	7.10	88.2	4.13	32.44	8.09	4.8
						16,200	26.40	7.22	89.7	4.24	32,56	8.08	
						16.200	26.40	7.01	87.1	4.44	32.66	8.07	4.7
						1.000	26.90	6.39	96.2	3.32	32.79	8.22	8.4
2012/10/27 16:01	WY1	MF	829181	809557	5.3	1.000	26.90	6.40	96.4	3.37	32.84	8.20	8.4
2012/10/27 10:01	W 1 1	IVII.	029101	009337	5.5	4.300	26.70	7.30	94.9	4.13	32.80	8.16	6.7
						4.300	26.60	7.47	95.1	3.98	32.84	8.33	0.7
						1.000	26.60	7.10	88.5	3.16	32.46	8.20	6.7
						1.000	26.60	7.13	88.8	3.25	32.55	8.18	0.7
2012/10/27 16:17	WY2	MF	829011	810408	9.8	4.900	26.60	7.01	90.8	3.77	32.66	8.13	6,9
			023011	010100	3.0	4.900	26.60	7.27	91.0	3.91	32.64	8.12	0.7
						8.800	26.60	6.47	87.7	3.29	32.89	8.12	6.8
						8.800	26.60	6.76	85.9	3.44	32.99	8.10	
						1.000	26.80	7.37	92.1	3.93	32.22	8.16	5
2012/10/27 16:09	WY3	MF	829215	809857	5,6	1.000	26.70	7.39	92.3	4.14	32.31	8.15	
						4.600	26.70	7.07	88.3	4.07	32.66	8.11	4.4
						4.600	26.70	7.08	88.4	3.88	32.64	8.10	
						1.000	26.50	5.95	88.9 89.0	3.59	32.51 32.56	8.06 8.05	3.9
						1.000					1 32.56	1 8.05	1
						1.000	26.50	5.95					
2012/10/27 16:35	CY1	MF	828419	810821	14.1	7.050	26.50	5.93	88.7	3.20	32.56	8.04	7.9
2012/10/27 16:35	CY1	MF	828419	810821	14.1	7.050 7.050	26.50 26.50	5.93 5.92	88.7 88.5	3.20 3.49	32.56 32.56	8.04 8.03	
2012/10/27 16:35	CYI	MF	828419	810821	14.1	7.050 7.050 13.100	26.50 26.50 26.50	5.93 5.92 6.07	88.7 88.5 90.7	3.20 3.49 3.59	32.56 32.56 32.70	8.04 8.03 8.06	7.9 10.8
2012/10/27 16:35	CYI	MF	828419	810821	14.1	7.050 7.050 13.100 13.100	26.50 26.50 26.50 26.50	5.93 5.92 6.07 6.09	88.7 88.5 90.7 91.1	3.20 3.49 3.59 3.72	32.56 32.56 32.70 32.71	8.04 8.03 8.06 8.06	10.8
2012/10/27 16:35	CYI	MF	828419	810821	14.1	7.050 7.050 13.100 13.100 1.000	26.50 26.50 26.50 26.50 26.50	5.93 5.92 6.07 6.09 6.88	88.7 88.5 90.7 91.1 85.6	3.20 3.49 3.59 3.72 4.01	32.56 32.56 32.70 32.71 32.33	8.04 8.03 8.06 8.06 8.16	
						7.050 7.050 13.100 13.100 1.000 1.000	26.50 26.50 26.50 26.50 26.50 26.50	5.93 5.92 6.07 6.09 6.88 6.88	88.7 88.5 90.7 91.1 85.6 85.7	3.20 3.49 3.59 3.72 4.01 3.99	32.56 32.56 32.70 32.71 32.33 32.34	8.04 8.03 8.06 8.06 8.16 8.13	10.8
2012/10/27 16:35	CY1	MF	828419 828021	810821 808817	14.1	7.050 7.050 13.100 13.100 1.000 1.000 9.900	26.50 26.50 26.50 26.50 26.50 26.50 26.50	5.93 5.92 6.07 6.09 6.88 6.88 6.81	88.7 88.5 90.7 91.1 85.6 85.7 88.1	3.20 3.49 3.59 3.72 4.01 3.99 3.91	32.56 32.56 32.70 32.71 32.33 32.34 32.66	8.04 8.03 8.06 8.06 8.16 8.13 8.03	10.8
						7.050 7.050 13.100 13.100 1.000 1.000	26.50 26.50 26.50 26.50 26.50 26.50	5.93 5.92 6.07 6.09 6.88 6.88	88.7 88.5 90.7 91.1 85.6 85.7	3.20 3.49 3.59 3.72 4.01 3.99	32.56 32.56 32.70 32.71 32.33 32.34	8.04 8.03 8.06 8.06 8.16 8.13	10.8

Marine Water Quality Monitoring Result at Yung Shue Wan

Date 29-Oct-12

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiue.	East	North	m	m	ဇ	mg/L	%	NTU	ppt	unit	mg/l
						1.000	26.30	6.38	95.0	3.07	32.78	8.14	16.2
2012/10/29 11:24	WY1	ME	829173	829562	4.1	1.000	26.30	6.16	91.9	2.95	33.01	8.10	16.2
2012/10/29 11.24	WII	ME	829173	829302	4.1	3.100	26.20	6.07	90.5	3.40	33.09	8.06	12.3
						3.100	26.20	6.00	89.5	3.32	33.10	8.06	12.3
						1.000	26.20	5.94	88.5	3.76	33.04	8.18	10.5
						1.000	26.20	5.93	88.3	3.61	33.07	8.16	10.5
2012/10/29 11:40	WY2	ME	829011	810413	7.9	3.950	26.10	6.01	89.3	3.71	32.87	8.11	12
2012/10/20 11:10	"12	IVIL	023011	010415	1.5	3.950	26.10	6.01	89.5	3.79	33.12	8.10	12
						6.900	26.10	6.64	90.0	3.72	33.11	8.15	10.4
						6.900	26.10	5.94	88.3	3.94	33.09	8.08	1011
						1.000	26.20	6.00	89.3	3.14	32.88	8.25	16.7
2012/10/29 11:31	WY3	ME	829208	809842	4.4	1.000	26.20	5.87	87.4	3.16	32.94	8.20	
						3.400	26.10	5.90	87.8	2.79	33.11	8.17	10.9
						3.400	26.10	5.90	87.9	2.87	33.12	8.14	
						1.000	26.30	7.17	88.8	3.59	32.64	8.11	11.3
						1.000	26.30	7.16	88.7	3.69	32.71	8.10	
2012/10/29 11:57	CY1	ME	828418	810821	12.3	6.150	26.30	7.18	89.1	3.24	32.88	8.07	11.2
						6.150 11.300	26.30 26.20	7.19 6.62	89.2 89.7	3.27	32.89 33.11	8.06 8.13	
						11.300	26.20	7.12	89.7 88.3	3.72	33.11	8.13	10.1
						1,000	27.50						
						1.000	27.40	5.75 5.71	87.8 86.9	3.19	33.23 33.22	8.24 8.19	12.3
						8,200	26.40	5.71	86.9 87.7	3.18	33.22	8.19	
2012/10/29 12:10	CY2	ME	828016	808784	16.4	8.200	26.20	5.86	87.7	3.09	33.27	8.13	10
						15,400	26.20	5.91	88.2	3.62	33.22	8.29	
						15.400	26.20	5.83	86.9	3.45	33.22	8.21	7.6
						13.400	20.20	2.03	00.9	3,43	33.22	0.21	
						1.000	26.70	6.04	90.7	2.79	33.01	8.14	6.8
2012/10/29 17:03	WY1	MF	020177	000550	5.1	1.000	26.70	6.02	90.5	2.95	33.03	8.13	0.8
2012/10/29 17.03	WII	MF	829177	809558	5.1	4.100	26.40	6.33	90.3	2.73	33.56	8.10	5.7
						4.100	26.30	6.60	87.9	3.06	33.64	8.12	3.7
						1.000	26.70	5.91	88.7	3.19	32.92	8.16	5,6
						1.000	26.60	5.92	88.8	2.98	32.94	8.14	5.0
2012/10/29 17:19	WY2	MF	829018	810386	8.6	4.300	26.40	5.86	87.6	3.42	32.92	8.09	10.2
2012/10/25 17:15	WIZ	IVII.	029010	010300	0.0	4.300	26.30	5.89	87.9	3.71	32.98	8.10	10.2
						7.600	26.20	5.92	88.2	3.89	32.91	8.10	6.9
						7.600	26.20	5.87	87.5	3.75	32.91	8.08	0.7
		l				1.000	26.70	6.01	90.2	3.09	32.96	8.18	7.1
2012/10/29 17:11	WY3	MF	829212	809847	5,2	1.000	26.70	6.00	90.1	2.95	32.98	8.16	7.1
	"15	1411	-027212	007017	5.2	4.200	26.30	5.96	89.0	2.73	33.04	8.10	7.9
						4.200	26.30	5.90	88.1	2.83	33.05	8.09	
						1.000	26.50	5.67	84.7	3.66	32.80	8.18	8
						1.000	26.50	5.64	84.4	3.67	32.91	8.15	
2012/10/29 17:33	CY1	MF	828397	810778	13.6	6.800	26.30	5.67	84.5	3.77	32.95	8.12	8.1
						6.800	26.30	5.65	84.3	3.69	32.95	8.12	
						12.600	26.20	5.70	84.4	3.71	31.70	8.18	10.1
		ļ				12.600	26.20	5.70	84.4	3.48	31.70	8.18	
						1.000	26.60	5.85	87.6	3.06	32.95	8.07	7.8
						1.000	26.60	5.84	87.6	3.03	32.95	8.07	-
2012/10/29 17:53	CY2	MF	828022	808811	18.6	9.300	26.20	5.97	89.0	3.24	33.01	8.02	9.7
						9.300	26.20	5.96	88.8	3.02	33.01	8.04	
						17.600	26.20	5.82	86.7	3.13	32.95	8.13	9.8
		1				17.600	26.20	5.65	84.2	3.36	32.92	8.09	

Marine Water Quality Monitoring Result at Yung Shue Wan

Date 31-Oct-12

Date / Time	Location	Tide*	Co-or	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	110E	East	North	m	m	ဗ	mg/L	%	NTU	ppt	unit	mg/l
						1.000	25.70	5.92	87.4	2.77	32.68	8.09	9
2012/10/31 11:57	WY1	ME	829177	809543	4.4	1.000	25.70	5.95	87.7	2.79	32.70	8.09	9
2012/10/31 11.3/	WII	IVIL	029177	009343	4.4	3.400	25.80	6.05	89.5	2.89	32.93	8.06	10.6
						3.400	25.80	5.97	88.3	2.51	32.95	8.05	10.0
						1.000	25.70	6.42	94.8	2.71	32.78	8.19	5.6
						1.000	25.70	6.34	93.6	2.77	32.81	8.17	5.0
2012/10/31 12:13	WY2	ME	829010	810397	8.3	4.150	25.70	6.21	91.7	2.69	33.00	8.20	4.8
2012/10/01 12:10	"12	IVIL	023010	010371	0.5	4.150	25.70	6.14	90.8	2.76	33.03	8.17	1.0
						7.300	25.70	6.07	89.8	2.84	32.97	8.11	5.7
						7.300	25.70	5.94	87.8	2.96	32.96	8.09	
						1.000	25.80	6.10	90.1	2.48	32.77	8.18	8
2012/10/31 12:05	WY3	ME	829212	809838	4.7	1.000	25.80	6.06	89.5	2.67	32.78	8.15	
						3.700	25.80	6.11	90.4	2.73	32.90	8.10	5.1
						3.700	25.80	6.08	90.0	2.65	32.90	8.09	
						1.000	27.30	5.89	89.4	2.91	33.16	8.16	2.5
						1.000	26.60	5.90	88.5	2.87	32.82	8.13	
2012/10/31 12:32	CY1	ME	828407	810783	12.9	6.450	25.70	5.98	88.5	3.07	33.18	8.11	4.7
						6.450	25.70	5.94	87.9	3.13	33.19	8.10	
						11.900 11.900	25.60 25.60	6.05	89.4 89.3	3.46	33.23 33.23	8.11	6
											33.23	8.10	
						1.000	26.00	5.75	85.4	3.13	32.87	8.27 8.24	3.2
							26.00	5.70	84.5	3.23			
2012/10/31 12:54	CY2	ME	828006	808787	17.2	8.600 8.600	25.70 25.70	5.94 5.95	87.8 87.9	3.42	33.10 33.10	8.14 8.13	8.7
						16.200	25.60	6.11	90.1	3.75	33.10	8.09	
						16.200	25.60	6.11	90.1	3.83	33.12	8.07	3.5
						10.200	23.00	0.11	90.1	3.63	33.12	6.07	
						1.000	25.70	5.75	85.0	2.64	32.83	8,20	
0040440/04 47:00	*****					1.000	25.70	5,80	85.7	2.75	32,84	8.19	5.5
2012/10/31 17:00	WY1	MF	829165	809555	5.5	4.500	25.80	5.77	85.3	2.62	32.81	8.12	10.4
						4.500	25.80	5.67	83.8	2.56	32.78	8.11	10.4
						1.000	25.70	5.94	87.7	2.91	32.95	8.31	0.6
						1.000	25.70	5.91	87.3	2.92	32.96	8.29	3.6
2012/10/31 17:17	WY2	MF	829011	810389	9.8	4.900	25.70	5.79	85.5	2.83	32.85	8.10	5.1
2012/10/31 17.17	WIZ	MF	829011	810389	9.8	4.900	25.70	5.77	85.3	2.93	33.00	8.10	3.1
						8.800	25.70	5.89	86.9	2.77	32.68	8.08	5,9
						8.800	25.70	5.85	86.4	2.98	33.00	8.09	2.9
						1.000	25.80	6.05	89.4	2.98	32.91	8.28	4.6
2012/10/31 17:08	WY3	MF	829784	809837	5,6	1.000	25.80	5.92	87.5	2.91	32.92	8.25	4.0
2012/10/31 17:00	WID	IVII.	029704	007037	5.0	4.600	25.70	5.89	87.0	3.07	33.03	8.17	12
						4.600	25.70	5.87	86.7	3.18	33.03	8.16	12
						1.000	25.50	5.32	78.2	2.46	32.75	8.24	3.1
						1.000	25.50	5.31	78.1	2.67	32.77	8.21	27.1
2012/10/31 17:26	CY1	MF	828392	810807	14.1	7.050	25.60	5.43	80.1	2.56	32.80	8.13	2.9
			-020572	010007	7	7.050	25.60	5.43	80.0	2.79	32.81	8.13	2.,
		1				13.100	25.70	5.58	82.3	3.10	32.92	8.09	1.4
						13.100	25.70	5.58	82.4	3.12	32.93	8.09	
						1.000	25.50	5.49	80.7	2.69	32.74	8.23	2.7
						1.000	25.50	5.50	80.8	2.75	32.75	8.21	
2012/10/31 18:01	CY2	MF	827984	808793	19.8	9.900	25.60	5.72	84.2	2.94	32.81	8.11	5.5
			027707	-000.75	17.0	9.900	25.60	5.73	84.5	3.16	32.78	8.11	
						18.800	25.70	5.58	82.1	3.36	32.46	8.06	4.4
						18.800	25.70	5.52	81.3	3.48	32.46	8.05	I

Marine Water Quality Monitoring Result at Yung Shue Wan

Date 2-Nov-12

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100	East	North	m	m	ರೆ	mg/L	%	NTU	ppt	unit	mg/l
						1.000	25.50	6.32	92.9	2.76	32.76	8.16	2.1
2012/11/2 12:53	11/1/1	ME	829165	809554	4,5	1.000	25.40	6.37	93.6	2.75	32.76	8.15	7.4
2012/11/2 12.53	WY1	ME	829105	809554	4.5	3.500	25.30	6.39	93.7	3.20	33.05	8.13	13.9
						3.500	25.30	6.39	93.8	3.16	33.02	8.13	15.9
						1.000	25.50	6.64	97.8	2.69	33.07	8.29	5.4
						1.000	25.50	6.58	97.0	2.57	33.07	8.27	2.4
2012/11/2 13:08	WY2	ME	828991	810387	8.6	4.300	25.30	6.45	94.8	2.87	33.11	8.15	6.3
2012/11/2 10:00	"12	IVIL	020771	010507	0.0	4.300	25.30	6.46	94.9	2.93	33.12	8.14	0.5
						7.600	25.20	6.40	93.8	3.38	33.19	8.13	4.6
						7.600	25.20	6.39	93.7	3.46	33.19	8.13	
						1.000	25.40	6.36	93.4	2.69	32.98	8.30	8,9
2012/11/2 13:00	WY3	ME	829191	809839	4.7	1.000	25.40	6.29	92.4	2.66	32.99	8.27	
						3.700	25.30	6.19	90.9	2.71	33.02	8.18	9.1
						3.700	25.30	6.12	89.9	2.78	33.03	8.17	
						1.000	25.60	6.10	89.9	2.71	32.76	8.11	4.3
						1.000	25.60	6.10	89.9	2.77	32.76	8.09	<u> </u>
2012/11/2 13:27	CY1	ME	828428	810813	12.8	6.400	25.30	6.09	89.3	2.67	32.84	8.10	4.4
						6.400	25.30	6.08	89.1	2.56	32.83	8.09	-
						11.800	25.30	6.09	89.3	2.84	32.88	8.07	4.7
						11.800	25.30	6.08	89.3	2.73	32.86	8.07	-
						1.000	25.40	5.31	78.0	2.98	32.78	8.21	3.8
						1.000	25.40	5.27	77.3	3.07	32.76	8.18	-
2012/11/2 13:51	CY2	ME	828012	808823	17.8	8.900	25.30	5.13	75.2	3.17	32.90	8.13	7.4
						8.900	25.30	5.13	75.2	3.12	32.90	8.12	-
						16.800	25.10	5.16	75.5	3.61	32.90	8.11	8.7
						16.800	25.10	5.22	75.5	3.54	31.12	8.10	
						1.000	25.10	7.18	91.1	2.96	32.88	8.07	5.7
2012/11/2 8:24	WY1	MF	829177	809556	5.3	1.000	25.10	7.19	89.1	2.84	32.79	8.06	5.7
2012/11/2 0.24	WII	IVIF	829177	009330	3.3	4.300	25.10	6.08	88.9	3.24	32.79	8.06	11.8
						4.300	25.10	6.07	88.8	3.36	32.89	8.05	11.0
						1.000	25.30	6.12	89.7	2.71	32.91	8.22	8.4
						1.000	25.30	6.01	88.0	2.79	32.91	8.18	0.4
2012/11/2 8:41	WY2	MF	829008	810392	9,3	4.650	25.30	6.07	89.1	2.86	32.91	8.07	13.8
	"12	1411	027000	010572	7.5	4.650	25.30	6.07	89.2	2.89	33.00	8.07	15.0
	1	1				8.300	25.30	5.22	76.5	3.24	32.74	8.01	14.9
						8.300	25.30	5.60	81.2	3.15	30.85	8.03	
	I	İ				1.000	25.40	6.70	98.3	2.73	32.77	8.34	6.4
2012/11/2 8:32	WY3	MF	829207	809855	5.8	1.000	25.40	6.47	95.0	2.85	32.88	8.28	
	1	1				4.800	25.30	6.06	88.8	2.70	32.72	8.07	7.7
		ļ				4.800	25.30	6.06	88.8	2.64	32.85	8.06	—
	1	1				1.000	25.20	5.42	79.4	2.79	33.11	8.13	4.8
	1	1				1.000	25.20	5.49	80.4	2.80	33.05	8.10	
2012/11/2 8:58	CY1	MF	828407	810819	13.9	6.950	25.30	5.28	76.4	2.89	30.78	8.13	10.7
	1	1				6.950 12.900	25.40 25.60	5.29 5.25	77.8 77.4	2.91 3.04	33.05 33.03	8.17 8.29	
	1	1											12
	 	-				12.900	25.60	5.22	76.9	3.17	33.02	8.25	-
	1	1				1.000	25.30 25.30	5.41	79.3 78.9	2.91 3.07	33.05 33.09	8.28 8.24	5.6
		1						5.38		3.13	33.09		
2012/11/2 9:24	CY2	MF	828023	808774	19.3	9.650	25.10		78.6			8.18 8.17	7.7
	1	1				9.650 18.300	25.10 25.10	5.35 5.23	78.4 76.5	3.26 3.32	33.21 32.82	8.17	
	1	1						5.25	75.9	3.16		8.19	28.5
	Ī.	l				18.300	25.10	5.25	/5.9	5.10	31.10	8.19	1

Marine Water Quality Monitoring Result at Yung Shue Wan

6-Nov-12 Date

Date / Time	Location	Tide*	Co-or	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	110e*	East	North	m	m	ဗ	mg/L	%	NTU	ppt	unit	mg/l
						1.000	25.30	5.88	86.4	2.39	33.03	8.35	5.1
2012/11/6 16:21	WY1	ME	829164	809545	4.1	1.000	25.30	5.64	82.2	2.41	33.04	8.29	5.1
			023101	003213		3.100	25.20	4.87	71.9	2.84	33.15	8.22	7.5
						3.100	25.20	4.81	70.8	2.76	33.15	8.21	
						1.000	25.30	5.88	86.1	2.93	33.01	8.12 8.12	4.3
						1.000 3.850	25.30 25.20	5.78 4.96	85.1 60.8	3.12	33.08 33.60	8.12	
2012/11/6 16:38	WY2	ME	828987	810383	7.7	3,850	25.20	4.96	60.0	2.93	33.46	8.27	4.5
						6.700	25.10	4.08	49.6	3.00	33.66	8.22	
						6,700	25,10	4.01	49.0	3.19	33,56	8.21	5.6
						1,000	25.40	6.03	88.2	2.91	31.66	8.13	
0040/44/0 40:00	******) m	020211	000054	4.0	1.000	25.40	6.03	88.2	3.01	32.36	8.12	7.6
2012/11/6 16:29	WY3	ME	829211	809854	4.3	3.300	25.30	5.04	73.6	3.05	32.87	8.27	10.7
						3.300	25.30	4.96	72.8	2.88	33.02	8.24	10.7
						1.000	25.30	6.08	74.1	2.82	32.98	8.32	4
						1.000	25.30	5.99	72.2	2.93	32.88	8.28	**
2012/11/6 16:59	CY1	ME	828409	810782	12.4	6.200	25.40	5.19	62.9	3.21	33.12	8.31	4.8
	011	IVIL	020107	010702	12.4	6.200	25.30	5.10	62.1	3.28	33.22	8.24	110
						11.400	25.10	3.95	57.1	3.81	33.60	8.16	6,9
						11.400	25.10	3.86	57.1	3.93	33.65	8.14	
						1.000	25.30	5.59	81.9	3.34	32.88	8.07	3.6
						1.000	25.30	5.59 5.25	81.9	3.08 3.50	32.95 33.07	8.08 8.08	
2012/11/6 17:22	CY2	ME	828024	808823	17.1	8.550 8.550	25.30 25.30	5.25	77.5 77.5	3.52	33.09	8.08	4.1
						16.100	25.10	4.83	70.2	3,56	32.02	8.03	
						16,100	25.10	4.72	69.0	3.47	32.56	8.05	4.8
						10.100	25.10	4.72	07.0	2.17	32.30	0.03	
						1,000	25,30	6,61	97.4	2.44	32.88	8.16	
004044404450						1,000	25,30	6,44	94.0	2.27	32.88	8.12	2.9
2012/11/6 11:53	WY1	MF	829179	809542	5.5	4.500	25.20	5.74	83.5	2.72	32.83	8.01	4.3
						4.500	25.20	5.63	82.4	2.77	32.77	8.04	4.5
						1.000	25.40	6.56	96.8	2.88	32.88	8.18	2.4
						1.000	25.40	6.48	96.0	2.96	32.89	8.16	2.4
2012/11/6 12:10	WY2	MF	829003	810384	9.8	4.900	25.40	4.87	71.3	2.78	32.88	8.20	3.1
2012/11/012:10	W12	IVII	62,003	010304	2.0	4.900	25.40	4.76	70.2	2.79	32.90	8.17	2/11
						8.800	25.40	4.06	59.7	3.03	32.69	8.10	4.1
						8.800	25.40	4.06	59.2	2.78	32.67	8.10	
						1.000	25.30	6.26	91.6	2.82	32.81	8.32	3.6
2012/11/6 12:01	WY3	MF	829208	809841	5.7	1.000 4.700	25.30 25.30	6.03 6.21	88.7 79.5	2.86 2.74	32.87 32.99	8.27 8.15	
						4.700	25.30	6.32	78.3	2.74	32.99	8.13	5.1
						1,000	25.50	4.99	67.9	2.62	32.56	8.16	
						1,000	25.50	4.99	66.7	2.62	32.56	8.18	2.4
						6.950	25.40	5.52	80.8	3.03	32.43	8.08	
2012/11/6 12:23	CY1	MF	828414	810822	13.9	6.950	25.20	5.76	77.6	3.11	32.46	8.06	3.9
						12.900	25.20	4.65	67.5	3.52	33.08	8.10	
		1				12.900	25.20	4.58	67.5	3.70	33.11	8.11	6.5
						1.000	25.60	6.40	94.4	2.80	33.14	8.26	2.5
		1				1.000	25.60	6.16	91.2	2.91	33.15	8.24	2.3
2012/11/6 12:46	CY2	MF	828016	808819	19.4	9.700	25.10	4.80	70.4	3.11	33.07	8.35	3,5
2012/11/012.40	C12	1011	020010	000019	19.4	9.700	25.10	4.72	68.8	3.19	33.13	8.31	3.3
						18.400	25.00	4.56	66.4	3.34	33.14	8.34	4.5
						18.400	25.00	4.48	65.6	3.42	33.17	8.31	

Marine Water Quality Monitoring Result at Yung Shue Wan

Date 8-Nov-12

Date / Time	Location	Tide*	Co-on	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	TIG.	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
						1.000	24.80	5.85	84.5	2.01	33.10	8.03	4.3
2012/11/8 8:08	WY1	ME	829174	809558	5,3	1.000	24.80	5.72	84.5	1.96	33.11	8.03	4.5
2012/11/0 0.00	WII	NE	829174	809338	3.3	4.300	24.80	4.18	59.9	2.62	32.85	8.04	6.1
						4.300	24.80	4.09	59.9	2.66	33.09	8.02	0.1
						1.000	24.90	5.98	87.1	2.16	33.09	8.28	2.2
						1.000	24.90	5.98	87.1	2.28	33.11	8.22	2.2
2012/11/8 8:25	WY2	ME	829016	810417	8.9	4.450	24.90	5.72	81.9	2.35	33.10	8.11	3.3
2012/11/00:20	"12	IVIL	027010	010417	0.7	4.450	24.90	5.59	81.9	2.40	33.11	8.09	5.5
						7.900	24.90	3.99	58.0	2.51	32.98	8.05	4.6
						7.900	24.90	3.99	58.0	2.56	33.00	8.03	110
						1.000	24.70	5.98	87.1	2.09	33.10	8.22	7.3
2012/11/8 8:15	WY3	ME	829196	809845	5.5	1.000	24.70	5.85	84.5	2.19	33.11	8.14	7.0
		1112	023130	005015	5.5	4.500	24.70	4.09	59.9	2.40	33.10	8.10	9.3
						4.500	24.70	4.09	59.9	2.41	33.11	8.09	
	I	İ				1.000	25.00	6.37	92.3	1.94	32.72	8.11	3.1
	1	1				1.000	25.00	5.59	81.9	2.08	32.72	8.09	
2012/11/8 8:40	CY1	ME	828423	810827	13.8	6.900	25.00	5.20	75.4	2.69	32.75	8.02	3
						6.900	25.00	5.20	75.4	2.76	32.79	8.01	
						12.800	25.10	3.71	54.2	3.09	33.07	8.06	3.1
						12.800	25.10	3.71	54.2	3.04	33.12	8.03	
						1.000	25.00	5.46	80.6	2.65	33.16	8.28	2.4
						1.000	25.10	5.46	79.3	2.74	33.16	8.22	
2012/11/8 9:01	CY2	ME	828025	808829	19.3	9.650	25.00	5.20	75.4	3.01	33.18	8.13	2.6
						9.650	25.00	5.20	75.4	3.09	33.23	8.13	
						18.300	25.00	3.71	53.2	3.76	32.38	8.01	4.2
						18.300	25.00	3.71	53.2	3.78	32.54	8.05	
						1,000	25,30	5,59	81.9	1.89	32.89	8.25	2.1
						1,000	25,30	5.46	80.6	1.87	32.92	8.19	3.4
2012/11/8 13:02	WY1	MF	829176	809542	4.4	3,400	25,10	3,99	58.0	2,35	33.05	8.15	
						3,400	25.10	3,99	58.0	2.59	33.06	8.15	3.8
	1					1,000	25,50	4.94	72.8	2.33	32.93	8.21	
						1,000	25.50	5.07	74.1	2.34	30.15	8.17	2.5
2012/11/8 13:20	*****			040400		3,900	25.10	4.16	61.1	2.32	32.99	8.22	0.7
2012/11/8 13:20	WY2	MF	829007	810423	7.8	3.900	25.10	4.16	61.1	2.25	33.00	8.18	3.7
						6.800	25.10	3.23	46.6	2.42	32.89	8.32	4.7
						6.800	25.10	3.14	46.6	2.59	32.91	8.27	4.7
						1.000	25.40	5.33	79.3	2.24	32.88	8.28	3.7
2012/11/8 13:10	WY3	MF	829207	809841	4.7	1.000	25.40	5.33	78.0	2.29	32.89	8.25	3.7
2012/11/0 13.10	W 13	IVIF	829207	009041	4.7	3.700	25.20	3.90	57.0	2.01	32.95	8.16	4.4
						3.700	25.20	3.90	56.1	1.91	32.94	8.14	4.4
						1.000	25.30	5.20	76.7	2.05	32.85	8.14	2.6
	1	1				1.000	25.30	5.20	76.7	2.28	32.88	8.12	2.0
2012/11/8 13:39	CY1	MF	828412	810815	12.5	6.250	25.10	4.55	66.3	2.79	32.90	8.22	3.1
2012/11/0 10:09	CII	1011.	020412	010013	12.5	6.250	25.10	4.55	66.3	2.86	32.91	8.18	2.1
	1	1				11.500	25.10	3.23	47.5	3.08	32.89	8.05	3.2
						11.500	25.10	3.14	46.6	3.19	32.93	8.08	3.2
						1.000	25.10	4.76	68.6	2.66	32.92	8.25	1.8
		1				1.000	25.10	4.62	68.6	2.72	32.93	8.18	1.0
2012/11/8 14:04	CY2	MF	828017	808812	17.1	8.550	25.10	4.29	63.7	3.04	32.94	8.21	2.4
20.2/11/014.04	C12	1011.	020017	000012	17.1	8.550	25.10	4.29	62.4	3.15	32.96	8.12	2.7
	1	1				16.100	25.10	3.47	50.0	3.86	33.02	8.22	3
		1				16.100	25.10	3.47	49.0	3.89	29.92	8.20	

Marine Water Quality Monitoring Result at Yung Shue Wan

Date 10-Nov-12

Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	TIG.	East	North	m	m	ဗ	mg/L	%	NTU	ppt	unit	mg/l
						1.000	26.60	6.37	96.2	2.21	32.50	8.09	-
2012/11/10 8:17	WY1	ME	829177	809532	4.1	1.000	26.60	6.37	94.9	2.44	32.50	8.08	5
2012/11/10 0.17	WII	NE	829177	809332	4.1	3.100	26.40	5.23	77.9	2.27	32.97	8.02	6
						3.100	26.40	5.23	77.9	2.39	32.97	8.02	0
						1.000	26.30	6.37	95.2	2.10	33.00	8.02	2.9
						1.000	26.30	6.23	93.1	2.05	33.04	8.03	2.7
2012/11/10 8:40	WY2	ME	829018	810408	7.8	3.900	26.30	4.76	70.7	2.19	33.03	8.01	4.4
2012/11/10 0:10	** 12	IVIL	027010	010400	7.0	3.900	26.30	4.55	68.6	2.22	33.02	8.01	1.1
						6.800	26.20	4.85	72.2	1.88	32.88	7.99	5.1
						6.800	26.20	4.85	72.2	2.04	32.89	7.99	5.12
						1.000	26.90	5.72	87.1	2.16	32.93	8.14	5.8
2012/11/10 8:28	WY3	ME	829207	809834	4.4	1.000	26.90	5.72	85.8	2.33	32.94	8.10	5.0
		1112	023207	003031		3.400	26.80	3.94	58.6	2.98	31.27	8.02	17.7
						3.400	26.80	3.94	58.6	2.61	31.31	8.02	
						1.000	26.20	6.11	91.0	2.11	32.99	8.00	2.5
						1.000	26.20	6.11	91.0	2.03	32.98	8.00	2.0
2012/11/10 9:05	CY1	ME	828414	810817	12.1	6.050	26.00	5.85	86.5	2.52	32.96	8.02	3.9
						6.050	26.00	5.50	81.5	2.71	32.97	8.02	
						11.100	26.20	3.78	56.1	2.42	32.83	8.00	3.5
						11.100	26.20	3.72	55.5	2.69	32.83	8.00	
						1.000	26.50	6.62	99.0	2.42	32.83	7.98	3
						1.000	26.50	6.55	97.9	2.47	32.95	7.98	
2012/11/10 9:28	CY2	ME	828019	808821	16.8	8.400	26.50	5.50	80.3	2.28	28.80	7.98	3.3
						8.400	26.50	5.34	79.7	2.21	32.47	7.98	
						15.800	26.50	5.94	89.0	2.34	32.96	7.98	3.2
						15.800	26.50	5.87	88.0	2.50	32.97	7.98	
						1.000	28.20	5.98	92.4	2.15	33.24	8.38	
						1.000	28.20	5.90	90.6	2.19	33.71	8.36	3.1
2012/11/10 14:18	WY1	MF	829183	809557	5.3	4,300	28.00	5,29	81.4	2.28	33.13	8.10	
						4,300	28.00	5.17	79.6	2,21	33.11	8.10	5.1
						1,000	27.00	5.38	81.1	2.04	32.84	8.02	
						1.000	27.00	5.30	80.2	2.19	32,84	8.02	1.1
						4,600	26.80	4,59	68.9	2.47	32,84	8.03	
2012/11/10 14:40	WY2	MF	829012	810416	9.2	4,600	26.80	4,54	68.3	2.67	32.84	8.03	3.3
						8,200	27.10	3,42	51.5	1.93	32,92	8.04	
						8,200	27.10	3,37	51.0	1.81	32.92	8.04	3.6
						1.000	27.30	5.54	83.9	2.34	32.87	8.06	
001011110110	*****					1.000	27.30	5,45	82.7	2.30	32.87	8.06	6.2
2012/11/10 14:27	WY3	MF	829213	809858	5.5	4,500	27.70	5,00	76.4	2.50	32,88	8.02	0.1
						4,500	27.80	4.91	75.0	2.72	32.87	8.02	8.4
						1.000	26.50	5.31	80.1	1.82	32.98	8.04	
						1.000	26.50	5.31	79.2	1.77	33.00	8.04	2.2
0040/44/40 44:50	CVI) m	020.420	010000	10.0	6.900	26.30	5.67	83.7	2.00	32.91	8.04	4.0
2012/11/10 14:59	CY1	MF	828420	810809	13.8	6.900	26.30	5.49	82.8	2.08	32.91	8.04	4.8
						12.800	26.00	5.13	75.6	2.52	32.98	8.05	4.3
						12.800	26.10	5.04	75.6	2.34	32.98	8.05	4.5
						1.000	26.30	4.77	71.1	2.12	32.84	8.02	2.7
		1				1.000	26.30	4.77	71.1	2.38	32.86	8.01	2.1
2012/11/10 15:24	CY2	MF	828013	808816	19.4	9.700	26.30	5.13	76.5	2.45	32.86	8.02	3.9
2312/11/10 13:24	C12	IVIF	828013	000010	19.4	9.700	26.30	5.13	76.5	2.47	32.86	8.02	3.7
						18.400	26.50	4.86	72.0	2.69	32.94	8.04	3.6
		1				18,400	26.50	4,77	72.0	2.47	32.94	8.04	5.0

Marine Water Quality Monitoring Result at Yung Shue Wan

Date 12-Nov-12

Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiue.	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
						1.000	24.50	6.33	91.1	2.32	32.18	7.91	7.9
2012/11/12 10:36	WY1	ME	829162	809561	4.2	1.000	24.50	6.31	91.0	2.37	32.29	7.93	7.9
2012/11/12 10.50	WII	IVIL	029102	009301	4.2	3.200	24.60	4.27	61.7	2.70	32.82	7.94	13.6
						3.200	24.60	4.21	61.1	2.64	33.00	7.94	15.0
						1.000	24.50	6.26	90.5	2.75	32.43	8.18	5.7
						1.000	24.50	6.21	89.9	2.88	32.91	8.14	5.7
2012/11/12 10:54	WY2	ME	829013	810409	8.2	4.100	24.60	5.72	83.2	2.91	32.99	8.04	5
			023013	010105	0.2	4.100	24.60	5.72	83.2	3.13	33.11	8.04	
						7.200	24.60	4.80	69.6	2.72	32.98	8.02	7.3
						7.200	24.60	4.72	68.4	2.69	33.00	8.02	
						1.000	24.60	6.14	88.7	2.14	32.88	8.19	9.6
2012/11/12 10:43	WY3	ME	829211	809861	4.5	1.000	24.50	6.10	88.4	2.32	33.04	8.15	
						3.500	24.60	5.49	79.6	2.98	33.05	8.03	10.6
						3.500	24.60	5.47	79.2	3.04	33.06	8.02	
						1.000	24.60 24.60	5.57 5.54	80.9 80.4	2.59	32.87 32.93	8.15 8.13	5.6
						6.150	24.60	5.35	77.3	2.48	32.93	8.13	-
2012/11/12 11:06	CY1	ME	828420	810806	12.3	6.150	24.60	5.32	77.3	2.49	32.91	8.04	5.9
						11,300	24.50	4.63	66.8	2.72	32.91	8.01	
						11.300	24.50	4.60	66.3	2.72	32.27	8.01	6.8
						1.000	24.70	5.69	82.7	2.00	32.77	8.22	
						1.000	24.70	5.62	81.1	2.16	32.90	8.18	5.2
						8.350	24.70	5.93	85.8	2.16	32.78	8.05	
2012/11/12 11:24	CY2	ME	828012	808827	16.7	8.350	24.70	5.85	85.0	2.13	32.78	8.05	5.5
						15.700	24.60	4.76	68.6	2.46	33.01	8.04	
						15.700	24.60	4.69	67.9	2.42	33.03	8.04	5.3
						151700	21100	1107	0717	2112	33103	0,01	
						1,000	25,60	6.15	91.2	2,26	33.07	8.07	
2012/11/12 15:47	*****			000505		1,000	25,60	6.04	89.0	2.38	33.11	8.06	6.7
2012/11/12 15:47	WY1	MF	829163	809537	5.1	4.100	25.50	5.72	83.7	2.49	33.02	8.17	7.2
						4.100	25.50	5.62	82.7	2.28	33.04	8.15	1.2
						1.000	25.60	5.67	83.3	2.38	32.94	8.29	3
						1.000	25.60	6.16	91.3	2.51	33.02	8.26	3
2012/11/12 16:03	WY2	MF	829017	810416	9,3	4.650	25.20	5.54	81.1	2.91	33.02	8.09	4.6
2012/11/12 10:03	W 1 2	IVIF	829017	810410	9.5	4.650	25.30	5.46	79.6	3.13	33.03	8.09	4.0
						8.300	25.10	4.52	65.5	2.72	32.59	8.06	4.4
						8.300	25.10	4.41	63.8	2.69	32.49	8.06	1.1
						1.000	25.20	5.23	76.0	2.14	32.86	8.13	7.9
2012/11/12 15:54	WY3	MF	829209	809855	5,3	1.000	25.20	5.23	76.0	2.32	33.01	8.12	7.2
						4.300	25.10	5.13	75.1	2.98	33.07	8.09	8.6
						4.300	25.10	5.04	74.1	3.04	33.08	8.08	
						1.000	25.30	6.30	92.2	2.59	32.75	8.09	4.6
						1.000	25.30	6.00	88.0	2.48	32.75	8.08	
2012/11/12 16:18	CY1	MF	828414	810821	13.1	6.550	25.00	4.20	61.2	2.49	32.21	8.06	5.6
						6.550 12.100	25.00 24.70	4.06 3.53	58.8 51.3	2.58	32.05 33.05	8.05 8.05	
						12.100	24.70	3.53	50.8	2.72	33.05	8.05	8.4
	 	 				1.000	24.70	6.57	96.2	2.89	33.06	8.05	1
						1.000	25.20	6.44	96.2	2.00	32.93	8.04	4.8
						9,200	25.20	5.72	94.3 83.2	2.16	32.57	8.04	
2012/11/12 16:37	CY2	MF	828023	808812	18.4	9,200	24.80	5.66	83.2 82.6	2.10	32.57	8.03	5.9
						9.200	24.90	4.57	82.0 66.6	2.15	33.18	8.04	
						17.400	24.70	4.57	66.0	2.40	33.17	8.04	5.5
	MF - Middle Fi	<u> </u>				17.400	ZT./U	т.Л/	U.U	4.44	JJ.17	0.04	

Marine Water Quality Monitoring Result at Yung Shue Wan

Date 14-Nov-12

Date / Time Location 2012/11/14 12:15 WY1 2012/11/14 12:30 WY2 2012/11/14 12:20 WY3 2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M M M M M M M	E 88 E 88	29174 29010 29207	North 809561 810419 809871	m 4.3 8.1 4.6	m 1.000 1.000 3.300 3.300 1.000 4.050 4.050 7.100 7.100 1.000 1.000 3.600	26.00 26.00 25.30 25.30 25.50 25.50 25.10 25.20 24.90 24.90 24.90 25.20 25.20	mg/L 6.65 6.56 5.68 5.60 6.41 5.81 4.72 4.52 3.65 6.83	98.8 96.9 83.2 82.4 94.2 85.4 69.2 66.4 53.3 53.9	NTU 1.86 1.99 2.11 2.06 2.16 2.31 2.79 2.54 2.93 2.72	ppt 32.28 32.30 32.80 32.97 33.01 33.07 33.10 33.08 33.09	unit 8.16 8.13 8.02 8.02 8.02 8.32 8.26 8.07 8.06 8.00	mg/l 6.4 7.7 4.3 6.9
2012/11/14 12:30 WY2 2012/11/14 12:20 WY3 2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M	E 8	29010	810419	8.1	1.000 3.300 3.300 1.000 1.000 4.050 4.050 7.100 7.100 1.000	26.00 25.30 25.30 25.50 25.50 25.10 25.20 24.90 24.90 25.20	6.56 5.68 5.60 6.41 5.81 4.72 4.52 3.65 3.68	96.9 83.2 82.4 94.2 85.4 69.2 66.4 53.3	1.99 2.11 2.06 2.16 2.31 2.79 2.54 2.93	32.30 32.80 32.97 33.01 33.07 33.10 33.08 33.09	8.13 8.02 8.02 8.32 8.26 8.07 8.06	7.7 4.3 6.9
2012/11/14 12:30 WY2 2012/11/14 12:20 WY3 2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M	E 8	29010	810419	8.1	3.300 3.300 1.000 1.000 4.050 4.050 7.100 1.000	25.30 25.30 25.50 25.50 25.10 25.20 24.90 24.90 25.20	5.68 5.60 6.41 5.81 4.72 4.52 3.65 3.68	83.2 82.4 94.2 85.4 69.2 66.4 53.3	2.11 2.06 2.16 2.31 2.79 2.54 2.93	32.80 32.97 33.01 33.07 33.10 33.08 33.09	8.02 8.02 8.32 8.26 8.07 8.06	7.7 4.3 6.9
2012/11/14 12:30 WY2 2012/11/14 12:20 WY3 2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M	E 8	29010	810419	8.1	3.300 1.000 1.000 4.050 4.050 7.100 7.100 1.000	25.30 25.50 25.50 25.10 25.20 24.90 24.90 25.20	5.60 6.41 5.81 4.72 4.52 3.65 3.68	82.4 94.2 85.4 69.2 66.4 53.3	2.06 2.16 2.31 2.79 2.54 2.93	32.97 33.01 33.07 33.10 33.08 33.09	8.02 8.32 8.26 8.07 8.06	4.3 6.9
2012/11/14 12:20 WY3 2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M	E 8	29207			1.000 1.000 4.050 4.050 7.100 7.100 1.000	25.50 25.50 25.10 25.20 24.90 24.90 25.20	6.41 5.81 4.72 4.52 3.65 3.68	94.2 85.4 69.2 66.4 53.3	2.16 2.31 2.79 2.54 2.93	33.01 33.07 33.10 33.08 33.09	8.32 8.26 8.07 8.06	4.3 6.9
2012/11/14 12:20 WY3 2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M	E 8	29207			1.000 4.050 4.050 7.100 7.100 1.000	25.50 25.10 25.20 24.90 24.90 25.20	5.81 4.72 4.52 3.65 3.68	85.4 69.2 66.4 53.3	2.31 2.79 2.54 2.93	33.07 33.10 33.08 33.09	8.26 8.07 8.06	6.9
2012/11/14 12:20 WY3 2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M	E 8	29207			4.050 4.050 7.100 7.100 1.000 1.000	25.10 25.20 24.90 24.90 25.20	4.72 4.52 3.65 3.68	69.2 66.4 53.3	2.79 2.54 2.93	33.10 33.08 33.09	8.07 8.06	6.9
2012/11/14 12:20 WY3 2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M	E 8	29207			4.050 7.100 7.100 1.000 1.000	25.20 24.90 24.90 25.20	4.52 3.65 3.68	66.4 53.3	2.54 2.93	33.08 33.09	8.06	
2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M	E 8	29207			7.100 7.100 1.000 1.000	24.90 24.90 25.20	3.65 3.68	53.3	2.93	33.09		
2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M			809871	4.6	7.100 1.000 1.000	24.90 25.20	3.68				8.02	
2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M			809871	4.6	1.000 1.000	25.20		55.9			0.00	8.7
2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M			809871	4.6	1.000		0.83	00.0		33.09	8.02	
2012/11/14 12:42 CY1 2012/11/14 13:13 CY2 2012/11/14 16:51 WY1	M			809871	4.6		25.20		99.8 95.3	1.93 2.03	32.82 32.94	8.30 8.24	5.6
2012/11/14 13:13 CY2 2012/11/14 16:51 WY1		E 8	28423				25.10	6.53 5.93	95.5 85.5	2.03	30.43	8.24	
2012/11/14 13:13 CY2 2012/11/14 16:51 WY1		Е 8	28423			3,600	25.10	5.85	84.0	2.17	28.62	8.17	6.1
2012/11/14 13:13 CY2 2012/11/14 16:51 WY1		E 8	28423			1,000	25.20	6.30	91,5	2.10	32.81	8.28	
2012/11/14 13:13 CY2 2012/11/14 16:51 WY1		E 8	28423			1.000	25.20	6.08	88.5	2.59	32.81	8.22	3.5
2012/11/14 13:13 CY2 2012/11/14 16:51 WY1		E 8	28423			6,200	24.90	5.33	78.0	2.72	32.80	8.05	
2012/11/14 16:51 WY1	M			810804	12.4	6,200	25.00	5.25	77.3	2.74	32.80	8.04	4.6
2012/11/14 16:51 WY1	M					11.400	24.80	5.10	73.5	3.04	32.73	8.01	
2012/11/14 16:51 WY1	M					11.400	24.90	5.03	72.8	3.19	32.82	8.01	5.5
2012/11/14 16:51 WY1	M					1,000	25,40	6,67	98.0	2.11	32.81	8.40	
2012/11/14 16:51 WY1	M					1,000	25,40	5,68	83.5	2.16	33.05	8,33	4.9
2012/11/14 16:51 WY1	M	_				8.700	25.00	5.55	80.3	2.19	33.05	8.09	
	1	E 8	28013	808817	17.4	8.700	25.00	5.40	79.5	2.33	33.06	8.09	11.7
						16.400	24.80	4.83	70.0	2.90	33.04	8.05	140
						16.400	24.80	4.83	70.0	3.08	33.05	8.05	14.3
						1.000	25.30	5.84	85.4	2.12	32.37	8.27	8
	M	TE 0	29158	809555	5.1	1.000	25.30	5.77	84.4	2.44	32.19	8.25	8
2012/11/14 17:06 WY2	IVI	.г	29138	809333	5.1	4.100	25.00	5.83	85.2	2.27	33.05	8.10	9
2012/11/14 17:06 WY2						4.100	25.10	5.63	82.2	2.21	33.04	8.09	,
2012/11/14 17:06 WY2						1.000	25.00	5.73	83.3	1.94	32.22	8.16	2.7
2012/11/14 17:06 WY2						1.000	25.00	5.56	80.8	2.08	32.25	8.14	2.7
	M	F 8	29017	810412	9,2	4.600	25.00	5.54	80.8	2.03	32.96	8.07	3.8
	147		2,017	010412	7.2	4.600	25.00	5.34	77.9	2.04	32.96	8.06	
						8.200	25.10	5.41	79.1	2.79	33.04	8.05	8.2
						8.200	25.10	5.31	77.7	2.96	33.05	8.05	
						1.000	25.00	5.92	86.5	2.08	32.95	8.20	6.8
2012/11/14 16:57 WY3	M	F 8	29212	809858	5.3	1.000	25.00	5.80	84.6	2.17	32.96	8.18	
						4.300	25.10	5.61	82.0	2.45	32.97	8.08	9.1
					-	4.300	25.10	5.45	79.7	2.47	32.97	8.07	
						1.000	26.00 26.00	6.13	90.9 89.4	2.12	32.78	8.20 8.18	5.4
						6,750	25.00	5.93	89.4 86.5	2.26	32.78 32.84	8.18	—
2012/11/14 17:25 CY1	M	F 8	28427	810824	13.5	6.750	25.00	5.93	84.9	2.70	32.84	8.08	6.6
						12.500	25.00	6.28	91.2	2.70	32.84	8.07	
						12.500	24.70	6.05	87.9	3.11	32.71	8.03	7.9
						1.000	25.80	6.42	94.7	1.96	32.83	8.03	
						1.000	25.90	6.11	90.3	2.01	32.63	8.03	4.2
						9,800	25.00	5.93	90.3 86.4	2.42	32.69	8.02	
2012/11/14 17:51 CY2		F 8	28019	808821	19.6	9,800	25.00	5.81	84.6	2.29	32.68	8.02	5.4
	M					18,600	24.70	6.16	89.2	3.03	32.51	8.02	
	М					18,600	24.70	6.00	86.3	3.19	31.39	8.02	6.3

Marine Water Quality Monitoring Result at Yung Shue Wan

16-Nov-12 Date

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	110e*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/l
						1.000	24.50	6.81	98.2	2.72	32.24	8.28	9
2012/11/16 13:37	WY1	ME	829177	809562	4.2	1.000	24.50	6.73	97.5	2.71	32.98	8.26	9
		.,,,,	023177	003502	2	3.200	24.50	6.59	95.5	2.82	33.37	8.14	10.4
						3.200	24.50	6.52	94.4	2.56	33.37	8.11	10.1
						1.000	24.50	7.47	108.4	2.39	33.31	8.41	8.1
						1.000 4.000	24.50 24.40	7.28 7.00	105.7 101.4	2.34	33.36 33.46	8.34 8.29	
2012/11/16 13:52	WY2	ME	829006	810421	8	4.000	24.40	6.90	100.0	2.14	33.51	8.29	8.8
						7,000	24.40	6.80	98.4	2.59	33.28	8.19	
						7.000	24.40	6,69	96.8	2.69	33.31	8.17	10
						1.000	24.50	7.25	105.0	2.19	33.23	8.41	
	*****					1,000	24,50	6,99	101.3	2.28	33,28	8,33	9.9
2012/11/16 13:44	WY3	ME	829211	809873	4.4	3.400	24.50	6.72	97.4	2.88	33.34	8.22	.,
						3.400	24.40	6.67	96.7	2.93	33.37	8.20	11
						1.000	24.50	6.69	96.7	2.28	32.78	8.14	8.6
						1.000	24.50	6.64	96.2	2.33	33.05	8.13	8.0
2012/11/16 14:05	CY1	ME	828391	810803	12.3	6.150	24.40	6.72	96.9	2.88	32.73	8.10	7.7
2012/11/10 14:00	CII	IVIL	020391	010003	12.3	6.150	24.40	6.68	96.7	2.94	33.30	8.11	7.7
						11.300	24.40	6.51	94.2	2.93	33.29	8.12	12
						11.300	24.40	6.35	91.8	2.82	33.29	8.11	12
						1.000	25.90	6.67	98.5	2.15	32.37	8.17	8.8
						1.000	25.90	6.66	98.9	2.12	33.26	8.15	
2012/11/16 13:20	CY2	ME	828009	808813	17.3	8.650	24.80	6.88	100.2	2.04	33.33	8.11	8.2
						8.650	24.60 24.40	6.86 6.87	99.6 99.5	2.08	33.43 33.48	8.12	
						16,300 16,300	24.40	7.80	99.5	2.77	33.51	8.15 8.12	8.8
						10.300	24.40	7.00	90.7	2,33	33,31	0.12	
						1,000	24.90	6,36	76.8	2,69	32.33	7,97	
0040/44/40 0:00	*****					1,000	24,90	6.32	76.5	2.72	32,64	7.87	10.8
2012/11/16 8:22	WY1	MF	829183	809541	5.1	4.100	24.90	6.47	94.4	2.81	32.99	7.98	16.4
						4.100	24.90	6.08	88.7	2.93	33.04	7.98	16.4
						1.000	25.00	6.26	91.2	2.48	32.63	8.08	7.5
						1.000	25.00	6.24	91.1	2.56	33.01	8.06	7.3
2012/11/16 8:53	WY2	MF	829015	810408	8.6	4.300	24.80	5.84	84.9	2.60	33.13	8.03	7
	1112	1411	023013	010400	0.0	4.300	24.90	5.94	84.4	2.79	28.45	8.02	,
						7.600	24.90	5.68	80.5	2.51	28.04	8.03	7.2
	ļ					7.600	24.90	5.75	79.5	2.65	23.58	8.02	
	ĺ					1.000	24.90 24.90	6.52 7.04	93.5 95.3	2.61	30.15 19.88	7.96 7.96	12.7
2012/11/16 8:36	WY3	MF	829217	809877	5.3	4,300	24.90	6.73	95.3 98.6	2.50	19.88 32.38	7.96 8.06	1
	ĺ					4.300	25.40	6.55	98.0	2.57	33.06	8.05	14.7
						1,000	25.50	6.81	100.5	2.12	33.37	8.13	
	ĺ					1.000	24.80	7.51	99.0	2.08	33.26	8.07	5
004044440	0777	,	000.105	010000	10.0	6.600	24.40	6.86	99.1	2.11	32.91	8.15	
2012/11/16 9:13	CY1	MF	828407	810829	13.2	6.600	24.40	6.83	98.9	2.17	33.43	8.10	14.9
	ĺ					12.200	24.40	6.79	97.6	2.52	32.37	8.11	15.2
						12.200	24.40	6.73	97.3	2.34	33.37	8.10	15.2
						1.000	25.30	7.02	103.2	2.19	33.31	8.26	8.4
	ĺ					1.000	25.30	6.94	102.0	2.22	33.41	8.23	0.4
2012/11/16 9:33	CY2	MF	828014	808808	18.1	9.050	24.40	6.98	101.2	2.31	33.47	8.17	8.1
	C12	1411	020014	000000	10.1	9.050	24.40	6.92	100.3	2.47	33.51	8.16	0.1
	ĺ					17.100	24.40	6.87	99.5	2.90	33.50	8.19	10.5
						17.100	24.30	6.88	99.6	2.98	33.50	8.17	

Marine Water Quality Monitoring Result at Yung Shue Wan

Date 20-Nov-12

Date / Time	Location	Tide*	Co-or	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100	East	North	m	m	ບ	mg/L	%	NTU	ppt	unit	mg/l
						1.000	23.30	6.88	97.4	1.72	33.00	8.22	8.4
2012/11/20 16:53	WY1	ME	829158	809537	4.3	1.000	23.30	6.54	92.7	1.83	33.10	8.19	6.4
2012/11/20 10:00	** 11	IVIL	027130	807557	4.5	3.300	23.30	6.59	91.6	1.91	29.53	8.03	9.2
						3.300	23.30	6.59	91.5	1.98	29.41	8.04	7.2
						1.000	23.60	6.96	98.8	2.16	32.46	8.49	4
						1.000	23.50	6.47	92.0	1.98	32.92	8.41	
2012/11/20 17:12	WY2	ME	829022	810415	7.6	3.800	23.50	6.88	97.9	2.24	33.09	8.08	4.8
						3.800 6.600	23.50 23.50	6.79 6.25	96.6 88.9	2.48	33.11 33.03	8.08 8.06	
						6,600	23.50	6.23	88.4	2.36	33.03	8.05	5.4
						1,000	23.60	7.16	101.9	1.93	32.90	8.40	
						1.000	23.60	6.67	95.1	2.14	32.96	8.33	6.9
2012/11/20 17:01	WY3	ME	829192	809838	4.5	3.500	23.50	6.20	88.3	2.07	33.04	8.07	
						3,500	23,50	6.12	87.1	1.98	33,05	8.08	8.3
						1,000	23,60	6,43	91.5	1.59	32,83	8.25	
						1.000	23.60	6.34	90,3	1.66	32.85	8.23	3.7
2012/11/20 17:29	OV.) m	020404	010000	10.5	6.250	23.50	6.24	88.8	2.20	32.84	8.05	4.1
2012/11/20 17.29	CY1	ME	828404	810828	12.5	6.250	23.50	6.10	86.8	2.42	32.87	8.04	4.1
						11.500	23.40	6.79	84.8	2.59	10.71	8.06	5.1
						11.500	23.30	6.19	87.7	2.77	32.94	8.03	3.1
						1.000	23.30	6.66	94.4	1.61	32.95	8.01	4.3
						1.000	23.30	6.59	93.4	1.52	32.95	8.01	4.5
2012/11/20 17:54	CY2	ME	828015	808783	17.4	8.700	23.50	6.29	89.4	2.03	33.02	8.01	4.6
2012/11/20 17:04	C12	IVIL	020013	606765	17.4	8.700	23.50	6.17	87.7	2.13	33.02	8.01	4.0
						16.400	23.30	6.01	85.0	2.42	32.58	8.03	4.8
						16.400	23.30	5.83	82.7	2.36	32.99	8.03	
						1.000	23.60	6.05	85.7	1.44	31.94	8.29	
						1.000	23.60	5,89	83.5	1.59	32,02	8.24	7.5
2012/11/20 12:00	WY1	MF	829178	809532	4.7	3.700	23.40	5.52	77.8	1.73	31.61	7.97	0.5
						3.700	23,40	5.47	76.9	1.96	31.36	7.96	8.5
						1.000	23.60	5.55	78.5	1.82	31.48	8.00	0.7
						1.000	23.60	5.46	77.7	1.98	32.72	8.00	3.7
2012/11/20 12:17	WY2	MF	828982	810417	8,3	4.150	23.70	5.17	73.2	1.96	31.65	8.26	3.9
2012/11/20 12.17	W 1 2	IVIF	020902	810417	0.3	4.150	23.80	5.28	75.2	2.04	32.14	8.34	3.7
						7.300	23.70	4.95	70.6	2.03	32.70	8.27	6.1
						7.300	23.80	5.03	71.8	2.19	32.62	8.29	0.1
						1.000	23.70	5.38	76.7	1.36	32.61	8.32	6.4
2012/11/20 12:07	WY3	MF	829184	809827	5.1	1.000	23.70	5.16	73.6	1.52	32.75	8.26	
						4.100	23.60	5.20	73.8	1.90	32.30	8.19	7
						4.100	23.60	5.05	71.7	1.80	32.48	8.16	
						1.000	24.00	5.98	85.8 83.7	1.62	32.87	8.04	5.1
						1.000 6.600	23.60 24.00	5.87 5.81	83.7	2.03	33.19 32.87	8.03 8.03	
2012/11/20 12:45	CY1	MF	828412	810795	13.2	6,600	23.60	5.72	83.4	1.97	33.19	8.03	5.4
						12,200	24.10	5.45	78.2	2.52	32.83	8.15	
						12.200	24.10	5.34	76.6	2.34	32.84	8.12	9.9
						1.000	24.10	6.38	91.2	1.89	32.21	8.26	
						1.000	24.00	6.29	89.9	1.88	32.22	8.24	3.5
004044400 40 00	2772		0.00000		40.0	9,650	23,60	6.34	90,4	2.19	32,99	8.09	4.1
2012/11/20 13:08	CY2	MF	827989	808816	19.3	9.650	23.70	6.18	88.2	2.05	33.09	8.09	4.1
						18.300	23.60	6.24	89.1	2.90	33.09	8.06	5.0
						18.300	23,60	6,08	86.8	3.08	33.09	8.05	5.8

Marine Water Quality Monitoring Result at Yung Shue Wan

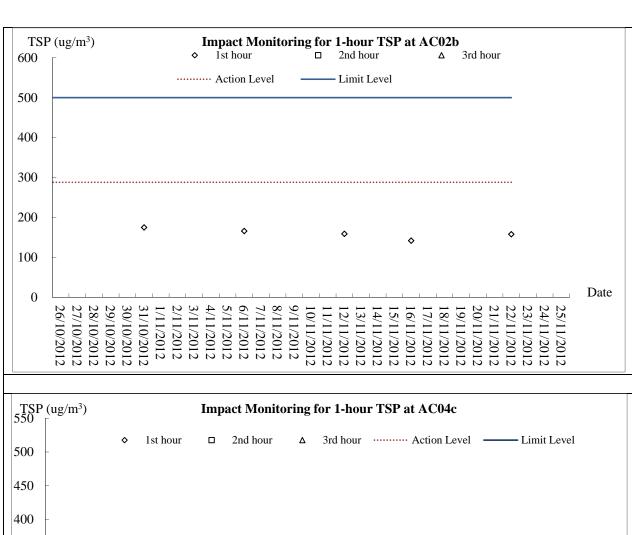
22-Nov-12 Date

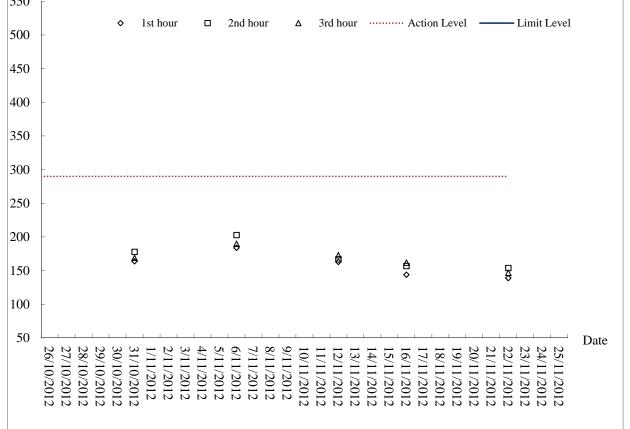
Date / Time	Location	Tide*	Co-on	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Duo / Timo	Location	1100	East	North	m	m	ဇ	mg/L	%	NTU	ppt	unit	mg
						1.000	24.50	6.14	81.1	2.79	32.11	7.93	3.2
2012/11/22 8:23	WY1	ME	829183	809532	4.6	1.000	24.50	6.16	76.9	2.85	32.13	7.92	э.
LO 12/11/22 0.20	** 11	IVIL	027103	807552	4.0	3.600	24.30	6.00	86.5	2.77	32.80	7.93	3.
						3.600	24.30	5.82	84.0	2.50	32.83	7.93	
						1.000	24.80	6.53	94.8	1.98	32.69	8.02	4.
						1.000	24.80	6.32	91.8	2.08	32.69	8.01	
2012/11/22 8:43	WY2	ME	829009	810418	8	4.000	24.40	6.38	92.2 91.5	2.89	33.00 33.02	8.01	5.
						4.000 7.000	24.40 24.30	6.28	91.5	2.69 2.41	33.02	8.01 8.00	
						7.000	24.30	6.14	88.6	2.41	33.14	8.00	6.
						1.000	24.50	6.43	92.8	2.98	32.59	8.25	
						1.000	24.50	6.25	90.4	2.70	32.79	8.23	4.
2012/11/22 8:31	WY3	ME	829206	809861	4.8	3,800	24.30	6.15	88.2	2.65	31.85	8.02	
						3,800	24.30	6.02	86.3	2.97	31.93	8.01	5.
						1.000	24.50	6.19	89.2	2.10	32.37	8.10	
						1.000	24.50	6.03	87.1	1.97	32.61	8.08	2.
2042/44/22 0.02	CVV1		020417	010000	10.7	6.350	24.30	6.23	89.7	1.79	32.38	7.99	^
2012/11/22 9:00	CY1	ME	828417	810823	12.7	6.350	24.30	6.08	87.5	1.82	32.49	7.99	2
						11.700	24.20	6.15	88.6	1.90	32.88	7.99	3
						11.700	24.20	6.01	86.5	1.70	32.91	7.99	3
						1.000	24.80	5.72	83.0	1.85	32.57	8.09	4
						1.000	24.90	5.62	81.6	1.96	32.62	8.08	
2012/11/22 9:23	CY2	ME	828027	808813	17.2	8.600	24.70	5.76	83.6	1.72	32.85	8.01	
2012/11/22 9.23	C12	IVIL	020021	000013	17.2	8.600	24.70	5.65	81.9	1.70	32.85	8.00	
						16.200	24.60	5.78	83.8	1.63	32.98	8.01	5
						16.200	24.60	5.66	82.1	1.68	32.99	8.02	
						1.000	26.20	6.13	91.1	2.91	32.52	8.03	3.
2012/11/22 14:05	WY1	MF	829174	809545	5.3	1.000	26.20	6.11	90.8	2.94	32.65	8.03	٥.
2012/11/22 14.00	WII	IVII.	029174	009545	5.5	4.300	25.20	6.07	88.9	2.69	32.71	8.24	4.
						4.300	25.30	5.99	86.9	2.49	31.24	8.21	٦.
						1.000	25.80	6.26	92.6	2.30	32.69	8.24	3.
						1.000	25.80	6.17	91.2	2.21	32.76	8.23	
	WY2	MF	829012	810407	9.6	4.800	25.50	5.84	86.0	2.44	32.80	8.04	4.
2012/11/22 14:21					- 11	4.800	24.70	5.93	86.1	2.36	33.19	8.04	
2012/11/22 14:21						8.600	24.70	5.81	84.5	2.06	33.26	8.04	5.
2012/11/22 14:21						0.000	24.70			2.15	33.27	8.04	
2012/11/22 14:21						8.600	24.70	5.76	83.7	2.50			
2012/11/22 14:21						1.000	25.30	5.97	87.5	2.58	32.87	8.15	6.
2012/11/22 14:21	WY3	MF	829211	809847	5.5	1.000 1.000	25.30 25.30	5.97 5.93	87.5 87.0	2.74	32.89	8.14	6.
	WY3	MF	829211	809847	5.5	1.000 1.000 4.500	25.30 25.30 24.70	5.97 5.93 5.93	87.5 87.0 86.1	2.74 2.93	32.89 32.99	8.14 8.03	
	WY3	MF	829211	809847	5.5	1.000 1.000 4.500 4.500	25.30 25.30 24.70 24.70	5.97 5.93 5.93 5.82	87.5 87.0 86.1 84.5	2.74 2.93 3.26	32.89 32.99 33.01	8.14 8.03 8.03	7
	WY3	MF	829211	809847	5.5	1.000 1.000 4.500 4.500 1.000	25.30 25.30 24.70 24.70 25.70	5.97 5.93 5.93 5.82 6.42	87.5 87.0 86.1 84.5 94.7	2.74 2.93 3.26 2.05	32.89 32.99 33.01 32.69	8.14 8.03 8.03 8.26	7.
2012/11/22 14:11						1.000 1.000 4.500 4.500 1.000 1.000	25.30 25.30 24.70 24.70 25.70 25.70	5.97 5.93 5.93 5.82 6.42 6.24	87.5 87.0 86.1 84.5 94.7 92.1	2.74 2.93 3.26 2.05 2.08	32.89 32.99 33.01 32.69 32.84	8.14 8.03 8.03 8.26 8.22	7
2012/11/22 14:11	WY3	MF	829211 828414	809847 810815	5.5	1.000 1.000 4.500 4.500 1.000 1.000 6.800	25.30 25.30 24.70 24.70 25.70 25.70 24.80	5.97 5.93 5.93 5.82 6.42 6.24 6.37	87.5 87.0 86.1 84.5 94.7 92.1 92.5	2.74 2.93 3.26 2.05 2.08 1.81	32.89 32.99 33.01 32.69 32.84 32.55	8.14 8.03 8.03 8.26 8.22 8.06	7
2012/11/22 14:11						1.000 1.000 4.500 4.500 1.000 1.000 6.800 6.800	25.30 25.30 24.70 24.70 25.70 25.70 24.80 24.80	5.97 5.93 5.93 5.82 6.42 6.24 6.37 6.16	87.5 87.0 86.1 84.5 94.7 92.1 92.5 89.7	2.74 2.93 3.26 2.05 2.08 1.81 1.75	32.89 32.99 33.01 32.69 32.84 32.55 32.90	8.14 8.03 8.03 8.26 8.22 8.06 8.06	7 2 3
2012/11/22 14:11						1.000 1.000 4.500 4.500 1.000 1.000 6.800 6.800 12.600	25.30 25.30 24.70 24.70 25.70 25.70 24.80 24.80 24.30	5.97 5.93 5.93 5.82 6.42 6.24 6.37 6.16 6.25	87.5 87.0 86.1 84.5 94.7 92.1 92.5 89.7 90.3	2.74 2.93 3.26 2.05 2.08 1.81 1.75 1.79	32.89 32.99 33.01 32.69 32.84 32.55 32.90 33.23	8.14 8.03 8.03 8.26 8.22 8.06 8.06	7 2 3
2012/11/22 14:11						1.000 1.000 4.500 4.500 1.000 1.000 6.800 6.800 12.600 12.600	25.30 25.30 24.70 24.70 25.70 25.70 24.80 24.80 24.30	5.97 5.93 5.93 5.82 6.42 6.24 6.37 6.16 6.25 6.12	87.5 87.0 86.1 84.5 94.7 92.1 92.5 89.7 90.3 88.4	2.74 2.93 3.26 2.05 2.08 1.81 1.75 1.79	32.89 32.99 33.01 32.69 32.84 32.55 32.90 33.23 33.28	8.14 8.03 8.03 8.26 8.22 8.06 8.06 8.06	7 2 3
2012/11/22 14:11						1.000 1.000 4.500 4.500 1.000 1.000 6.800 6.800 12.600 1.000	25.30 25.30 24.70 24.70 25.70 25.70 24.80 24.80 24.30	5.97 5.93 5.93 5.82 6.42 6.24 6.37 6.16 6.25	87.5 87.0 86.1 84.5 94.7 92.1 92.5 89.7 90.3	2.74 2.93 3.26 2.05 2.08 1.81 1.75 1.79 1.66 1.77	32.89 32.99 33.01 32.69 32.84 32.55 32.90 33.23	8.14 8.03 8.03 8.26 8.22 8.06 8.06 8.06 8.06 8.14	7 2 3
2012/11/22 14:11	CY1	MF	828414	810815	13.6	1.000 1.000 4.500 4.500 1.000 1.000 6.800 6.800 12.600 1.000 1.000	25.30 25.30 24.70 24.70 25.70 25.70 24.80 24.80 24.30 25.20 25.20	5.97 5.93 5.93 5.82 6.42 6.24 6.37 6.16 6.25 6.25 6.64 6.40	87.5 87.0 86.1 84.5 94.7 92.1 92.5 89.7 90.3 88.4	2.74 2.93 3.26 2.05 2.08 1.81 1.75 1.79 1.66 1.77	32.89 32.99 33.01 32.69 32.84 32.55 32.90 33.23 33.28 32.52	8.14 8.03 8.03 8.26 8.22 8.06 8.06 8.06 8.06 8.14 8.11	7 2 3 4
						1.000 1.000 4.500 4.500 1.000 1.000 6.800 6.800 12.600 1.000	25.30 25.30 24.70 24.70 25.70 25.70 24.80 24.80 24.30 24.30 25.20	5.97 5.93 5.93 5.82 6.42 6.24 6.37 6.16 6.25 6.12	87.5 87.0 86.1 84.5 94.7 92.1 92.5 89.7 90.3 88.4 96.9	2.74 2.93 3.26 2.05 2.08 1.81 1.75 1.79 1.66 1.77	32.89 32.99 33.01 32.69 32.84 32.55 32.90 33.23 33.23 32.52 32.71	8.14 8.03 8.03 8.26 8.22 8.06 8.06 8.06 8.06 8.14	6. 7. 2. 3. 4. 4.
2012/11/22 14:11	CY1	MF	828414	810815	13.6	1.000 1.000 4.500 4.500 1.000 1.000 6.800 6.800 12.600 12.600 1.000 1.000 9.750	25.30 25.30 24.70 24.70 25.70 25.70 24.80 24.80 24.30 24.30 25.20 25.20 24.80	5.97 5.93 5.93 5.82 6.42 6.24 6.37 6.16 6.25 6.12 6.64 6.40	87.5 87.0 86.1 84.5 94.7 92.1 92.5 89.7 90.3 88.4 96.9 93.6	2.74 2.93 3.26 2.05 2.08 1.81 1.75 1.79 1.66 1.77 1.83	32.89 32.99 33.01 32.69 32.84 32.55 32.90 33.23 33.28 32.52 32.71 32.35	8.14 8.03 8.03 8.26 8.26 8.06 8.06 8.06 8.06 8.14 8.11	7. 2. 3. 4.

Marine Water Quality Monitoring Result at Yung Shue Wan

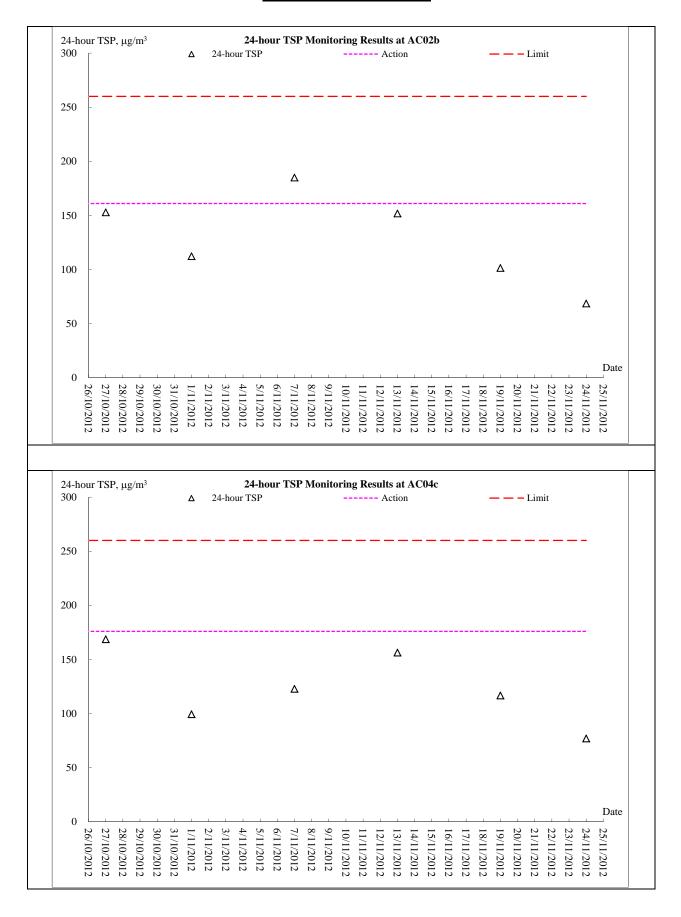
Date 24-Nov-12

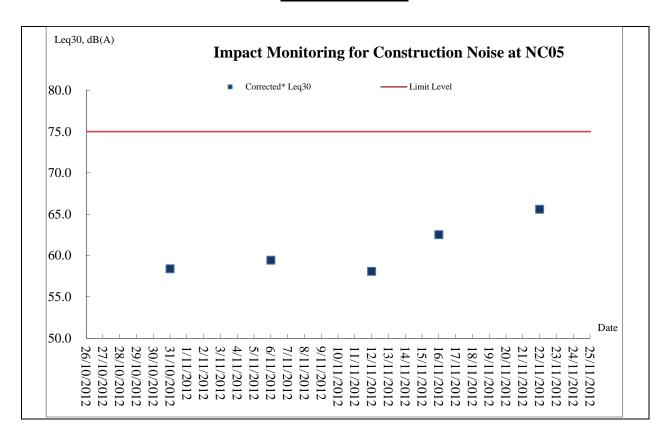
Date / Time	Location	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide.	East	North	m	m	ື	mg/L	%	NTU	ppt	unit	mg/l
						1.000	21.50	6.57	89.6	1.16	31.75	8.31	
2012/11/24 9:38	WY1	N ITE	829184	809561	4,5	1.000	21.50	6.54	89.1	1.21	31.75	8.26	6.7
2012/11/24 9:36	WYI	ME	829184	809561	4.5	3.500	22.20	6.23	86.3	2.78	32.49	10.58	14.2
						3.500	22.20	6.12	85.0	2.99	32.86	10.61	14.2
						1.000	22.70	6.47	90.6	1.11	32.71	10.57	8
						1.000	22.80	6.35	89.1	1.40	32.95	10.57	0
2012/11/24 10:00	WY2	ME	829013	810407	8,6	4.300	22.70	6.58	92.2	0.99	32.97	10.60	9.7
2012/11/24 10:00	W 12	IVIL	829013	010407	0.0	4.300	22.70	6.46	90.7	1.17	33.14	10.60	7.1
						7.600	22.80	6.31	88.7	0.75	33.15	10.59	8.4
						7.600	22.80	6.19	87.1	0.72	33.23	10.59	0.1
						1.000	22.40	6.27	87.4	1.27	32.87	10.28	12.9
2012/11/24 9:47	WY3	ME	829215	809867	4,9	1.000	22.40	6.13	85.6	1.10	33.18	10.31	1217
						3.900	22.60	6.19	86.6	1.10	32.64	10.46	12
						3.900	22.60	6.12	85.7	0.90	32.89	10.44	
						1.000	23.10	6.20	87.4	1.06	32.61	10.38	6.4
						1.000	23.10	5.94	83.9	0.99	33.01	10.39	
2012/11/24 10:15	CY1	ME	828421	810818	12.6	6.300	22.80	6.37	89.6	0.70	33.14	10.40	5.6
						6.300	22.90	6.23	87.7	0.73	33.28	10.40	
						11.600	22.90	6.08	85.6	0.69	33.36	10.21	5.2
						11.600	22.90	5.97	84.1	0.68	33.36	10.26	
						1.000	22.60	6.31	88.2	0.81	32.85	11.78	3,5
						1.000	22.60	6.20	86.8	0.81	32.95	11.76	
2012/11/24 10:33	CY2	ME	828014	808823	17.3	8.650	22.90	6.33	89.1	0.65	33.00	11.32	3.5
						8.650	23.00	6.14	86.5	0.73	33.05	11.35	
						16.300	22.90	6.09	85.7	0.76	33.01	11.43	7.4
						16.300	22.90	6.03	84.9	0.62	33.03	11.44	
						1,000	22,10	6.79	94.4	1.40	33,20	12.24	
0040444044450			020170	000555	5.0	1,000	22,10	6,57	91.3	1,56	33,22	12.25	11.6
2012/11/24 14:56	WY1	MF	829179	809557	5.2	4.200	22.10	6.68	92.7	2.52	33.06	12.21	
						4.200	22.10	6.49	90.2	2.46	33.13	12.20	11
						1,000	22,30	6.40	89.0	1.29	32.90	11.83	
						1,000	22,30	6.26	87.2	1.17	33,06	11.81	10.3
2012/11/24 15:17	WY2	N ATE	829021	010402	9.7	4.850	22.20	6.55	90.8	0.77	32.65	11.76	0.0
2012/11/24 15:17	WYZ	MF	829021	810402	9.7	4.850	22.20	6.48	89.9	0.69	32.65	11.73	8.8
						8.700	22.10	6.47	90.0	0.68	33.19	11.60	10.7
						8.700	22.10	6.33	88.0	0.67	33.19	11.58	10.7
						1.000	22.20	6.74	93.5	1.71	32.68	11.96	10.2
2012/11/24 15:06	WY3	MF	829208	809832	5,4	1.000	22.20	6.64	92.3	1.89	33.04	11.95	10.2
2012/11/24 15.00	W 1 3	IVII	829208	009032	5.4	4.400	22.20	6.57	91.3	0.92	33.04	11.86	16.2
						4.400	22.20	6.55	91.2	0.99	33.09	11.86	10.2
						1.000	22.10	6.54	90.6	1.01	32.65	11.67	4.1
						1.000	22.10	6.43	89.3	1.03	33.02	11.66	4.1
2012/11/24 15:33	CY1	MF	828418	810806	13.9	6.950	22.30	6.31	87.5	0.74	32.04	11.52	4.6
2012/11/24 10.33	CII	IVII.	020410	010000	13.9	6.950	22.30	6.23	86.6	0.74	32.46	11.51	4.0
						12.900	22.30	6.31	88.0	0.71	33.09	11.39	8.2
						12.900	22.30	6.18	86.2	0.76	33.17	11.38	0.2
						1.000	22.20	6.54	90.7	0.76	32.58	11.45	6,3
						1.000	22.20	6.44	89.5	0.71	32.93	11.43	0.3
2012/11/24 15:57	CY2	MF	828023	808821	19.3	9.650	22.30	6.53	91.0	0.60	33.01	11.37	4.8
2012/11/24 10:0/	C12	IVII.	020023	000021	19.5	9.650	22.30	6.42	89.4	0.64	33.06	11.35	4.0
						18.300	22.20	6.46	89.7	0.64	33.05	11.32	5
	1	1				18,300	22,20	6.35	88.3	0.71	33.03	11.31	



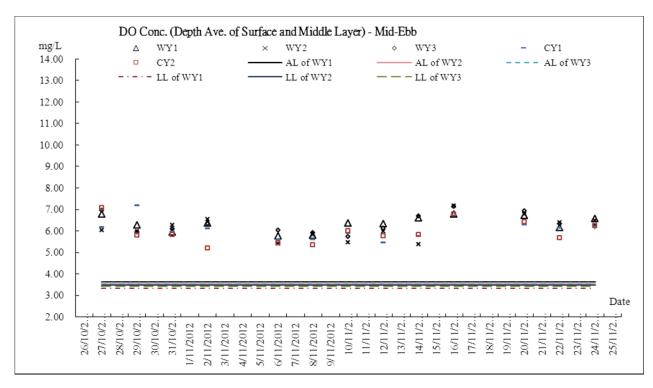

Appendix H

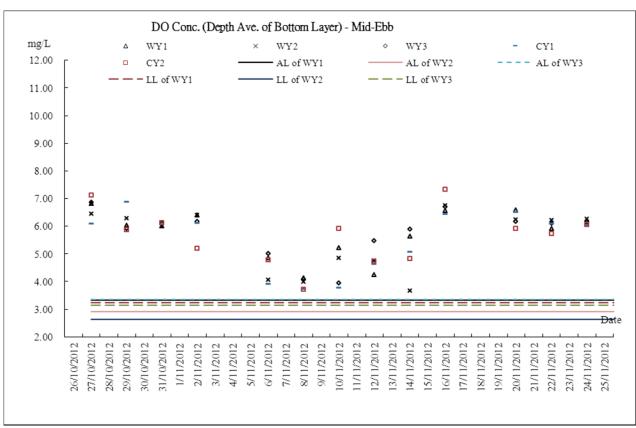
Graphical Plots of Monitoring Results


1-hour TSP Monitoring

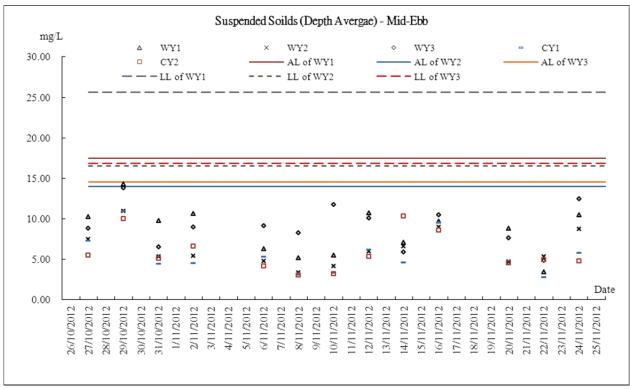


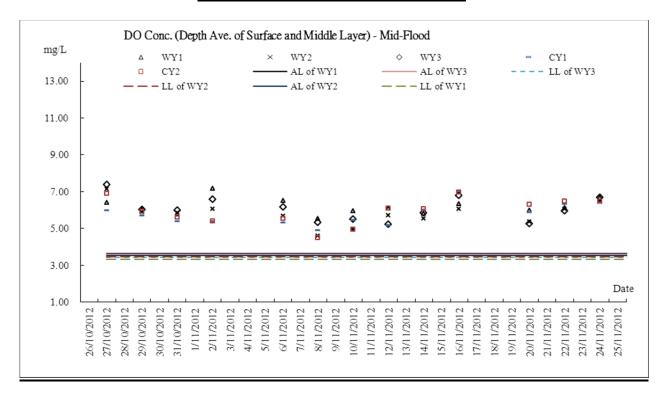
24-hour TSP Monitoring

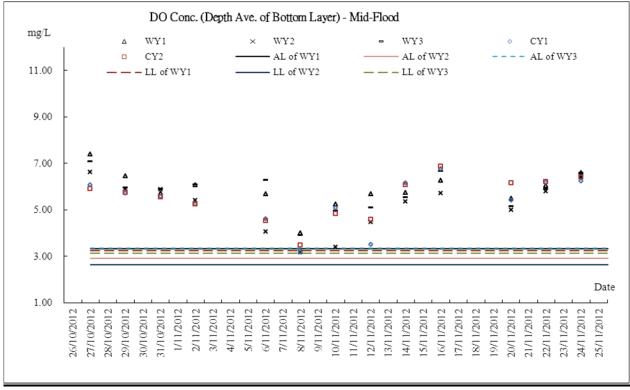


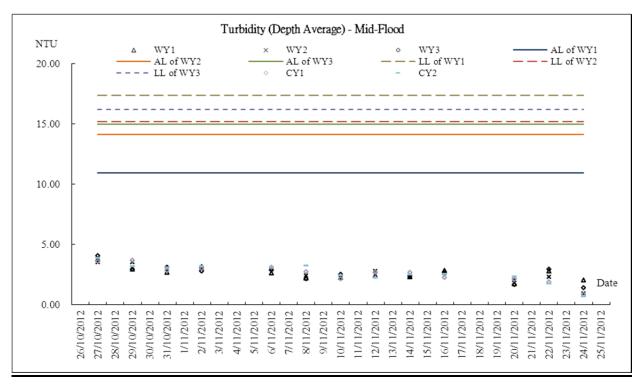

Noise Monitoring

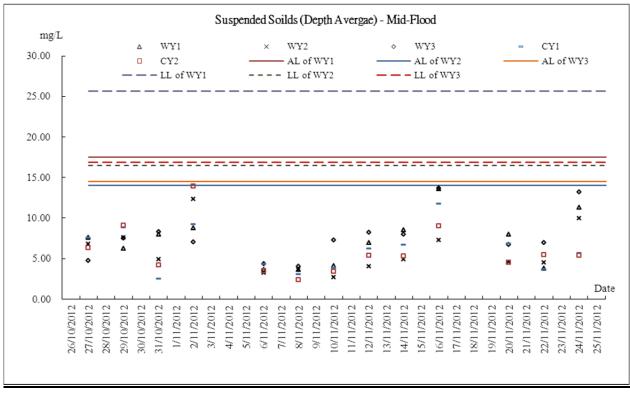



Marine Water Monitoring – Mid Ebb








Marine Water Monitoring – Mid Flood

Appendix I

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
26-Oct-12	Fri	Mainly fine, light to moderate easterly winds.
27-Oct-12	Sat	Fine ,dry, moderate north to northeasterly winds
28-Oct-12	Sun	Fine, moderate easterly winds
29-Oct-12	Mon	Rain, overcast, fresh to strong easterly winds
30-Oct-12	Tue	Fine ,dry, moderate north to northeasterly winds
31-Oct-12	Wed	Cloudy, fine, haze, moderate easterly winds
1-Nov-12	Thu	Cloudy, sunny periods, dry, moderate northeasterly winds.
2-Nov-12	Fri	Sunny periods, cloudy, moderate to fresh easterly winds.
3-Nov-12	Sat	Cloudy, rain, sunny intervals, moderate easterly winds, fresh offshore at first.
4-Nov-12	Sun	Cloudy, sunny intervals, moderate north to northeasterly winds
5-Nov-12	Mon	Cloudy, sunny periods, dry, moderate northeasterly winds.
6-Nov-12	Tue	Fine, dry, cloudy, moderate east to northeasterly winds.
7-Nov-12	Wed	Sunny periods, cloudy, moderate to fresh easterly winds.
8-Nov-12	Thu	Cloudy, rain, sunny intervals, moderate easterly winds, fresh offshore at first.
9-Nov-12	Fri	Fine, dry, cloudy, moderate east to northeasterly winds.
10-Nov-12	Sat	Cloudy, sunny intervals, moderate north to northeasterly winds
11-Nov-12	Sun	Cloudy, sunny intervals, moderate north to northeasterly winds
12-Nov-12	Mon	Fine, cloudy, moderate east to northeasterly winds
13-Nov-12	Tue	Cloudy, sunny periods, dry, moderate northeasterly winds.
14-Nov-12	Wed	Cloudy, sunny periods, dry, moderate northeasterly winds.
15-Nov-12	Thu	Cloudy, sunny intervals, moderate north to northeasterly winds
16-Nov-12	Fri	Sunny periods, cloudy, moderate to fresh easterly winds.
17-Nov-12	Sat	Cloudy, sunny periods, dry, moderate northeasterly winds.
18-Nov-12	Sun	Cloudy, rain, moderate to fresh easterly winds
19-Nov-12	Mon	Cloudy, rain, moderate to fresh easterly winds
20-Nov-12	Tue	Cloudy, rain, moderate to fresh easterly winds
21-Nov-12	Wed	Cloudy, rain, foggy, light to moderate southerly winds
22-Nov-12	Thu	Cloudy, rain, foggy, moderate to fresh northerly winds
23-Nov-12	Fri	Cloudy, rain, moderate east to northeasterly winds, occasionally fresh at first.
24-Nov-12	Sat	Cloudy, rain, moderate to fresh easterly winds
25-Nov-12	Sun	Cloudy, rain, foggy, moderate to fresh northerly winds

Appendix J

Monthly Summary Waste Flow Table

Contract No.:

DC/2009/13

Monthly Summary Waste Flow Table for November 2012

			Actu	ıal Quant	ities of In	nert C&D	Material	s Genera	ted Mont	hly				A	Actual Qu	ıantities	of C&D	Wastes	Generate	ed Montl	nly	
Month	Gene	Quantity erated +(d)+(e)	Hard R Large I Con-	Broken crete	Reusec Con	tract	Reused Proj (c	ects	Dispo Publi (6	c Fill	Import (i	_	Ме	tals	Par cardt packa	oard	Plas	stics	Cher Wa		Oth e.g. ru	,
	(in '00	00m ³)	(in '00	00m ³)	(in '00	00m ³)	(in '00)0m ³)	(in '00	00m ³)	(in '00	00m ³)	(in '0	00kg)	(in '00	00kg)	(in '0	00kg)	(in '00	00kg)	(in to	onne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2012	10.430	33.543	0.160	0.407	0.740	1.059	0.000	0.000	9.690	32.484	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	206.870	46.690
Jan	0.000	3.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	22.530	5.090
Feb	0.170	6.271	0.000	0.000	0.000	0.000	0.000	0.000	0.170	6.271	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.860	5.660
Mar	0.619	4.543	0.000	0.000	0.000	0.000	0.000	0.000	0.619	4.543	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.940	9.500
Apr	0.157	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.157	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.520	1.700
May	0.353	0.916	0.000	0.000	0.000	0.000	0.000	0.000	0.353	0.916	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.750	5.090
Jun	0.091	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.091	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	26.710	6.400
Sub-total	11.820	48.585	0.160	0.410	0.740	1.059	0.000	0.000	11.080	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	294.180	80.130
Jul	0.248	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.248	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	15.610	2.960
Aug	0.144	0.999	0.000	0.000	0.000	0.999	0.000	0.000	0.144	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	19.730	3.750
Sep	0.686	0.744	0.000	0.000	0.000	0.744	0.000	0.000	0.686	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	26.820	3.800
Oct	0.160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	8.970	3.470
Nov	0.131	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.131	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	13.670	4.410
Dec																						
Total	13.188	50.328	0.160	0.410	0.740	2.802	0.000	0.000	12.449	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	378.980	98.520
Total	63.5	516	0.5	69	3.5	42	0.0	00	59.9	974	0.0	00	0.0	00	0.0	00	0.0	000	0.0	00	477.	500

Remark: Assume 1.0 m^3 vehicle dump load = 1.6 tonnes C&D materials

YSW: Yung Shue Wan

SKW: Sok Kwu Wan

Appendix K

Weekly Site Inspection Checklist

MUES

Checklist

Project:	103/00312/03	Inspected by ETL/ ET's Representative:				No. TCS512A- Oct 012 Wong Fu Nam					
	Constituction of Genage Treatment			presentat entative:	uve:			May			
	Yung Shae Wan and Sok Kwa Wan			Represei	ntative:	Edwin L					
	·	IEC's	Repres	entative:				-			
Date:	26 October 2012	Time				11:00					
PART	A: GENERAL INFORMATION	N						al Permit No.			
W eathe	er: Sunny Fine Cloudy	F	Rainy			EP-	282/2007				
Temper	ature: C										
Humidi			O. 1								
Wind:	Strong Breeze Light	'	Calm								
	spected Yung Shue Wan										
	•										
PART E	SITE AUDIT					٠					
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable		Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks			
Section	1: Water Quality			<u> </u>							
1.01	Is an effluent discharge license obtained for the Project?			\overline{V}			Ш.	``~.			
1.02	Is the effluent discharged in accordance with the discharge licence	∍?		$\overline{\square}$							
1.03	Is the discharge of turbid water avoided?			$\overline{\checkmark}$	Ш						
1.04	Are there proper desilting facilities in the drainage systems reduce SS levels in effluent?			$\overline{\mathbf{V}}$							
1.05	Are there channels, sandbags or bunds to direct surface run-off sedimentation tanks?										
1.06	Are there any perimeter channels provided at site boundaries intercept storm runoff from crossing the site?	to									
1.07	Is drainage system well maintained?			\checkmark			□ .				
1.08	As excavation proceeds, are temporary access roads protected crushed stone or gravel?	by									
1.09	Are temporary exposed slopes properly covered?										
1.10	Are earthworks final surfaces well compacted or protected?										
1.11	Are manholes adequately covered or temporarily sealed?										
1.12	Are there any procedures and equipment for rainstorm protection	n?									
1.13	Are wheel washing facilities well maintained?										
1.14	Is runoff from wheel washing facilities avoided?										
1.15	Are there toilets provided on site?										
1.16	Are toilets properly maintained?			\checkmark	Ш	<u> </u>					
1.17	Are the vehicle and plant servicing areas paved and located w roofed areas?	ithin									
1.18	Is the oil/grease leakage or spillage avoided?			\checkmark							
1.19	grainage system:										
1.20	Are there any measures to collect spilt cement and conc washings during concreting works?										
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	tems									
1.22	to the second of										

AUES

					F 11		D14-1
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?					$\overline{\checkmark}$	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		$\overline{\mathbf{V}}$				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		\checkmark				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					$\overline{\checkmark}$	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\square	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					$\overline{\mathbf{A}}$	***************************************
2.11	Is dark smoke emission from plant/equipment avoided?						
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sect	ion 3: Noise	•		,			
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04			\checkmark				
3.05	construction activities cause noise impact on sensitive receivers:	Ш				\checkmark	
3.06	during operation?						
3.07	operation?					\checkmark	
3.08	Are flaps and panels of mechanical equipment closed during operation?	g 🗌				\checkmark	

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					$\overline{\mathbf{V}}$	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					$\overline{\checkmark}$	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					$\overline{\checkmark}$	
Section	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					. 🔽	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					$\overline{\checkmark}$	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					$\overline{\checkmark}$	
4.13	Are chemical/fuel storage areas bounded?					$\sqrt{}$	
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		$\overline{\mathbf{V}}$				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	
Sect	ion 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?		\checkmark				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No.	Follow Up	. N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?		$\overline{\checkmark}$				
5.03	Are surgery works carried out for the damaged trees?						
5.04	is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Section	on 7: Others						
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	
7.02	Are the warning sign or larvicidal oil record shown clearly at the construction site?		\checkmark				

Remarks

Findings of Site Inspection (260ctober 2012):

General refuse times were observed within the site without covers and classification labels, Covers are required and classification labels are recommended for ease of sorting and proper desposal.

Follow up: (30 October 2012)
Provision of corners for
general refuse hims is
on-going.

(6 November 2012)
Covers of general refuse
bins are provided,
labels are also observed

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's	representat	tive
		and a	Ly 40 Elm			-
()	(06-Mon-2012)	(Wong Fu Nam)) (Edwin Leung)	(¢)

Environmental Team – Weekly Site Inspection and Audit Checklist – Yung Shue Wan TCS512A-30 Oct 012 No. Inspected by TCS/00512/09 Project: Wong Fu Nam ETL/ ET's Representative: Construction of Sewage Treatment Works at KwoK Yung Shue Wan and Sok Kwu Wan RE's Representative: Edwin Leung Contractor's Representative: IEC's Representative: 14:00 Time: 30 October 2012 Date: Environmental Permit No. **GENERAL INFORMATION** PART A: ✓ EP- 282/2007 Rainy Cloudy Sunny Fine Weather: υC Temperature: High Moderate Low Humidity: Calm Breeze Light Strong Wind: Area Inspected Yung Shue Wan SITE AUDIT PART B: Photo/ Follow Not Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; N/A Nο Yes Remarks Up Note: Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Obs. Section 1: Water Quality $\sqrt{}$ Is an effluent discharge license obtained for the Project? 1.01 $\sqrt{}$ Is the effluent discharged in accordance with the discharge licence? 1.02 $\sqrt{}$ Is the discharge of turbid water avoided? 1.03 Are there proper desilting facilities in the drainage systems to abla1.04 reduce SS levels in effluent? Are there channels, sandbags or bunds to direct surface run-off to \square 1.05 sedimentation tanks? Are there any perimeter channels provided at site boundaries to $\sqrt{}$ 1.06 intercept storm runoff from crossing the site? ablaIs drainage system well maintained? 1.07 \square As excavation proceeds, are temporary access roads protected by 1.08 crushed stone or gravel? ablaAre temporary exposed slopes properly covered? 1.09 \square Are earthworks final surfaces well compacted or protected? 1.10 $|\mathbf{V}|$ Are manholes adequately covered or temporarily sealed? 1.11 Are there any procedures and equipment for rainstorm protection? 1.12 $\sqrt{}$ Are wheel washing facilities well maintained? 1.13 \square Is runoff from wheel washing facilities avoided? 1.14 \square Are there toilets provided on site? 1.15 ablaAre toilets properly maintained? 1.16 $\sqrt{}$ Are the vehicle and plant servicing areas paved and located within 1.17 roofed areas? ablaIs the oil/grease leakage or spillage avoided? 1.18 Are there any measures to prevent leaked oil from entering the abla1.19 drainage system? Are there any measures to collect spilt cement and concrete \square 1.20 washings during concreting works? $\sqrt{}$ Are there any oil interceptors/grease traps in the drainage systems for vehicle and plant servicing areas, canteen kitchen, etc? \square Are the oil interceptors/grease traps maintained properly? 1.22

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					<u>-</u>	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					$\overline{\checkmark}$	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					$\overline{\checkmark}$	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		\checkmark				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					$\overline{\checkmark}$	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					$\overline{\mathbf{V}}$	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					V	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					$\overline{\checkmark}$	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sect	ion 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?					√	
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					$\overline{\checkmark}$	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					$\overline{\checkmark}$	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					✓	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					$\overline{\checkmark}$	
Section	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					$\overline{\checkmark}$	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					$\overline{\checkmark}$	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	
Secti	on 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?		\checkmark				

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?		\checkmark				
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Section	on 7: Others						
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	
7.02	Are the warning sign or larvicidal oil record shown clearly at the construction site?		\checkmark				

Remarks

Findings of Site Inspection (30 October 2012):

No adverse environmental impacts were observed during site inspection under rain. However, full implementation of the required environmental intigation measures is reminded in particular water quality mitigation heasure to avoid adverse impacts on the receiving water bodies.

Follow up: (30 Oct 2012)

Not required for general reminders,

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
		1mgm)		
	A		<i>A</i> A	
()	(KmoKMH) MMR	(Wong Wu Nam)) (Edwin Leung)	()
	30-10-2012	30 Oct 2012	-	

Hum Wind	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 6 November 2012 T A: GENERAL INFORMATION Her: Sunny Fine Cloudy erature: High Moderate Low Strong Breeze Light	Inspected ETL/ ET's RE's Repri Contractor IEC's Repri Time: ON Rainy Calm	Represen esentativ ds Repres	e: sentative:	Checklist No. TC\$512A-6 Nov012 Wong Fu Nam Kwok Kwai Ming Edwin Leung 11:30 Environmental Permit No. PP- 282/2007				
1	nspected Yung Shue Wan			<u> </u>					
PART		Not			Follow		Photo/		
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable		Yes	No	Up	N/A	Remarks		
	n 1: Water Quality						<u></u>		
1.01	Is an effluent discharge license obtained for the Project?		☑						
1.02	Is the effluent discharged in accordance with the discharge licence	.e	√						
1.03	Is the discharge of turbid water avoided? Are there proper desilting facilities in the drainage systems	to \square	√						
1.04	reduce SS levels in effluent? Are there channels, sandbags or bunds to direct surface run-off								
1.05	sedimentation tanks? Are there any perimeter channels provided at site boundaries								
1.06	intercept storm runoff from crossing the site?	" U							
1.07	Is drainage system well maintained?		<u></u>			□ -			
1.08	As excavation proceeds, are temporary access roads protected crushed stone or gravel?	by							
1.09	Are temporary exposed slopes properly covered?					√			
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark				···		
1.11	Are manholes adequately covered or temporarily sealed?								
1.12	Are there any procedures and equipment for rainstorm protection	n? 🗌	\checkmark						
1.13	Are wheel washing facilities well maintained?								
1.14	Is runoff from wheel washing facilities avoided?								
1.15	Are there toilets provided on site?		\checkmark						
1.16	Are toilets properly maintained?		\checkmark						
1.17	Are the vehicle and plant servicing areas paved and located wit roofed areas?	hin 🔲				\square	4-50-7-		
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark						
1.19	Are there any measures to prevent leaked oil from entering drainage system?	the	\checkmark						
1.20	Are there any measures to collect spilt cement and concr washings during concreting works?	ete	\checkmark						
1.21	Are there any oil interceptors/grease traps in the drainage syste for vehicle and plant servicing areas, canteen kitchen, etc?	ems .							
1.22	Are the oil interceptors/grease traps maintained properly?						and Allinahas		

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?					$\overline{\checkmark}$	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					\checkmark	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		$\overline{\checkmark}$				
1.29	Is ponding /stand water avoided?		\checkmark				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					$ \overline{\checkmark} $	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		\checkmark				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sectio	n 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						•
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?						
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	

	Net Object Net Object A. V. O	Γ		<u> </u>	<u></u>		
No	rollow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.0	. Works?					\checkmark	
3.1	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.1	the state of the s						
3.1	(Level 1 mitigation measures).						
3.1	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height						
Sec	tion 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	in the second of					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	". ". ". ". ". ". ". ". ". ". ". ". ". "
4.08	is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					V	
4.11	Are the chemical wastes disposed of by licensed collectors?					$\overline{\mathbf{V}}$	W
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?						. 10
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?						
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?						
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						
Section	on 5: Landscape & Visual					-	
5.01	Are retained and transplanted trees in health condition?		\checkmark				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?		\checkmark				
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	is damage to trees outside site boundary due to construction activities avoided?		\checkmark				-
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	* OF the state of the
Section	л 7: Others						· · · · · · · · · · · · · · · · · · ·
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	•
7.02	Are the warning sign or larvicidal oil record shown clearly at the construction site?						
			?				1

Remarks

Findings of Site Inspection (6 November 2012):

No adverse environmental impacts were observed during the site inspections. However, full implementation of the required environmental mitigation measures, in particular construction dust suppression measures during dry and windy conditions, is reminded

Follow up:

Not required for general reminders.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative	e
	Joseph.		ley mode		
()	205eph C	(Wong Fil Nam) 06 NN 2012) (Edwin Leung)	()

0/100-2012

Project: TCS/00512/09 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Date: 13 November 2012 PART A: GENERAL INFORMATION Cloudy Temperature: Cloudy		ETL/ RE's Cont IEC's Time	Repr ractor Repr	Represei esentativ	re: sentative:	Checklist No. TCS512A-13 Nov012 Wong Fu Nam Kwok Kwai Ming The Supplied Fedwin Leung 11:00 Environmental Permit No.			
Hum	idity:	High Moderate Low Strong Breeze Light		Calm					
	Inspec			Jaim					
PART	B:	SITE AUDIT				· · · · · · · · · · · · · · · · · · ·			
Note:		os.: Not Observed; Yes: Compliance; No: Non-Compliance; v Up: Observations requiring follow-Up actions N/A: Not Applicable		Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	on 1: W	ater Quality	•						
1.01	is an e	effluent discharge license obtained for the Project?]		\checkmark				
1.02	ls the	effluent discharged in accordance with the discharge licence	9?		\checkmark				
1.03	3 Is the discharge of turbid water avoided?				\checkmark				
1.04	Are there proper desilting facilities in the drainage systems reduce SS levels in effluent?				\checkmark				
1.05	Are there channels, sandhare or hunde to direct surface nun-off				\checkmark				
1.06		ere any perimeter channels provided at site boundaries ept storm runoff from crossing the site?	to		\checkmark				
1.07		nage system well maintained?	[\checkmark				
1.08		cavation proceeds, are temporary access roads protected to atone or gravel?	py [,
1.09		mporary exposed slopes properly covered?	[
1.10	Are ea	rthworks final surfaces well compacted or protected?	[\checkmark				
1.11	Are ma	anholes adequately covered or temporarily sealed?	[\checkmark				
1.12	Are the	ere any procedures and equipment for rainstorm protection	? [
1.13	Are wh	neel washing facilities well maintained?	[*****
1.14	ls runc	ff from wheel washing facilities avoided?	[· · · · · · · · · · · · · · · · · · ·
1.15	Are the	ere toilets provided on site?	[\checkmark				·
1.16	Are toi	lets properly maintained?	[\checkmark				
1.17		e vehicle and plant servicing areas paved and located with	in [$\overline{\square}$,
1.18		oil/grease leakage or spillage avoided?	[
1.19		ere any measures to prevent leaked oil from entering th	e [\checkmark				
1.20	Are th	ere any measures to collect spilt cement and concret gs during concreting works?	e [\checkmark				
1 21	Are the	ere any oil interceptors/grease traps in the drainage system icle and plant servicing areas, canteen kitchen, etc?	s [$\overline{\mathbf{V}}$	
		e oil interceptors/grease traps maintained properly?	Γ	1		П	П	∀	

Note	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?					$\overline{\mathbf{V}}$	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					<u> </u>	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	ls ponding /stand water avoided?						***************************************
Secti	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					V	•
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?					V	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?					\checkmark	•
2.05	Is the exposed earth properly treated within six months after the last construction activities?					V	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		$\overline{\checkmark}$				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	*****
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					$\overline{\checkmark}$	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					$\overline{\checkmark}$	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sectio	n 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?						
3.03	is idle equipment turned off or throttled down?	\checkmark					All and the second
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?						
3.08	Are flaps and panels of mechanical equipment closed during operation?					\square	

Note	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.09	WOFK\$?					V	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					V	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures). Temporary/Moveable noise barrier or site hoarding are provide or					7	
3.13	erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	· · · · · · · · · · · · · · · · · · ·
Secti	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?				П		
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?					$\overline{\mathbf{V}}$	
4.08	Is the chemical container or equipment provided with drip tray?			П			
4.09	Is the chemical waste storage area used for storage of chemical waste only?						<u> </u>
4.10	Are incompatible chemical wastes stored in different areas?					$\overline{\square}$	
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?						<u> </u>
4.14	Are designated areas identified for storage and sorting of construction wastes?						<u>.</u>
4.15	Are construction wastes sorted (inert and non-inert) on site?						u to
1.16	Are construction wastes reused?		\checkmark				
.17	Are construction wastes disposed of properly?		$\overline{\checkmark}$				
.18	Are site hoardings and signboards made of durable materials instead of timber?						
_	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
.20	Are appropriate procedures followed if contaminated material exists?						
.21	s relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					$\overline{\square}$	
ı	Site cleanliness and appropriate waste management training had provided for the site workers.						
.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTBTC(W) No. 34/2002.					$\overline{\checkmark}$	
ection	5: Landscape & Visual					_	·
01 <i>A</i>	Are retained and transplanted trees in health condition?		\checkmark				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?		\checkmark				
5.03	Are surgery works carried out for the damaged trees?	$\overline{\checkmark}$					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Section	on 7: Others						
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	
7.02	Are the warning sign or larvicidal oil record shown clearly at the construction site?		\checkmark				

Remarks

Findings of Site Inspection (13 November 2012):

Concreting was carried out within the site. No adverse environmental impacts asere observed during the site inspectors, however, full implementation of the required environmental miligation measures, in particular construction dust suppression measures during dusty activities under day and amidy Conditions, is reminded.

Follow up:

Not required for general reminders.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
	terseph.	4/1/20	1 N	
()	pp (Kwok Kwai Ming) Joseph Wh	(Wong Fu Nam)) (Edwin Leung)	()

Date: PART Weath Tempe Humic Wind: Area In	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 21 November 2012 A: GENERAL INFORMATION Description: Sunny Fine V Cloudy [Description: J.J. OC Statisty: High Moderate Low	Inspected by ETL/ ET's R RE's Repres Contractor's IEC's Repres Time: N Rainy Calm	epresenta sentative: s Represe	ntative:	Kwok I Edwin 11:00	Fu Nam Kwai Ming Leung	tal Permit No.
PART	B: SITE AUDIT						
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 1: Water Quality					_	
1.01	Is an effluent discharge license obtained for the Project?		\checkmark				
1.02	Is the effluent discharged in accordance with the discharge licence	?	\checkmark				•
1.03	Is the discharge of turbid water avoided?		\checkmark				
1.04	Are there proper desilting facilities in the drainage systems reduce SS levels in effluent?	to	\checkmark				
1.05	Are there channels, sandbags or bunds to direct surface run-off sedimentation tanks?	to 🗌	\checkmark				
1.06	Are there any perimeter channels provided at site boundaries intercept storm runoff from crossing the site?	to 🗌	\checkmark				
1.07	Is drainage system well maintained?		$\overline{\checkmark}$				
1.08	As excavation proceeds, are temporary access roads protected crushed stone or gravel?	by 🔲				<u> </u>	
1.09	Are temporary exposed slopes properly covered?					\checkmark	
1.10	Are earthworks final surfaces well compacted or protected?						
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark				
1.12	Are there any procedures and equipment for rainstorm protection	1?	\checkmark				
1.13	Are wheel washing facilities well maintained?					$\overline{\mathbf{V}}$	
1.14	Is runoff from wheel washing facilities avoided?						
1.15	Are there toilets provided on site?		\checkmark				
1.16	Are toilets properly maintained?		\checkmark				
1.17	Are the vehicle and plant servicing areas paved and located wit roofed areas?	hin 🔲				\checkmark	
1.18	Is the oil/grease leakage or spillage avoided?						
1.19	Are there any measures to prevent leaked oil from entering drainage system?	لــــا	\checkmark				
1.20	Are there any measures to collect spilt cement and concr washings during concreting works?	LI	\checkmark				
1.21	Are there any oil interceptors/grease traps in the drainage syste for vehicle and plant servicing areas, canteen kitchen, etc?	ems				. 🗸	
1.22	Are the oil interceptors/grease traps maintained properly?					$\sqrt{}$	

	,						
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					√	
1.25	No excavation is undertaken in the settlement area.					V	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					<u></u>	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	Is ponding /stand water avoided?		\checkmark			LJ _	
Secti	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					☑ .	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?	Ц					
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\square	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	shellered areas during the use of bagged derivent.						
2.13	15kii/hour :	LI				$\overline{\checkmark}$	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		$\overline{\checkmark}$				
2.15	,		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					V	
Sec	tion 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	2 Is silenced equipment adopted?					$\overline{\checkmark}$	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.0	•		$\overline{\checkmark}$				
3.0	Construction activities cause noise impact on sensitive version						
3.0	during operation:	لــــا					
3.0	operation:	L					
3.0	Are flaps and panels of mechanical equipment closed durin operation?	g				\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling					\checkmark	
3.10	works? Are Construction Noise Permit(s) applied for general construction works during restricted hours?					$\overline{\checkmark}$	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					$ \checkmark $	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					<u></u>	
Section	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?		\checkmark				,
4.04	ls general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					$\overline{\mathbf{V}}$	
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?					V	
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?					$\overline{\mathbf{A}}$	
4.14	Are designated areas identified for storage and sorting or construction wastes?	f \square				$\overline{\checkmark}$	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark			-	
4.16	Are construction wastes reused?		$\overline{\checkmark}$				
4.17			\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?	s 🗌	\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?	I	$\overline{\checkmark}$				
4.20	Are appropriate procedures followed if contaminated materia	al 🔲				\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste c excavated materials available for inspection?	or				\checkmark	
4.22	Site cleanliness and appropriate waste management training ha provided for the site workers.	ll	\checkmark				
4.23	Contaminated sediments will be managed according to WBT	С				\checkmark	
Sec	tion 5: Landscape & Visual						
5.0′	Are retained and transplanted trees in health condition?		\checkmark				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.02	Are retained and transplanted trees properly protected?		\checkmark				
5.03	Are surgery works carried out for the damaged trees?	$\overline{\mathbf{V}}$					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Section	on 7: Others	i,					
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						
7.02	Are the warning sign or larvicidal oil record shown clearly at the construction site?		\checkmark				

Remarks

Findings of Site Inspection (13 November 2012):

No adverse environmental impacts were observed during the Site inspection However, full implementation of the

fequired environmental mitigation bequires, particularly construction

dust suppression measures during dusty constructions activities under

dry and amily conditions, is

reminded.

Follow up:

Not required for general reminders.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
		il Agam;	<i>î</i>	
			Jenny 200 Am	ı
	(Kwok Kwai Ming)	(Wong Fu Nam)) (Edwin Leung)	()
,	20-200 Zev	- 20 Nov 20	1/2	

Appendix L

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA	EM&A	Environmental Protection Measures*	Location /	Implementation		lementa Stages**		Relevant Legislation
Ref	Ref		Timing	Agent	D	C	0	& Guidelines
Constr	uction Phase							
2.3.18	2.10.2	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors		√ 		TM- EIAO, APCO, Air Pollution Control (Construction Dust) Regulation
2.10.3	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Noise Measures

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref	21,110,11111111111111111111111111111111		Agent	D	C	0	Guidelines
Construc	tion Phase							
\2.4.16	3.8.2	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor		1		EIAO-TM, NCO
2.10.5 to 2.10.9	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		√ 		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA	EM&A	Environmental Protection Measures*	Location (duration	Implementation		lement Stages*		Relevant Legislation			
Ref	Ref	Environmental Protection Measures*	/completion of measures)	Agent	D	C	0	and Guidelines			
	ction Phase			1							
2.5.23	4.12.1	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of main portion of outfall pipes	Marine works site / During construction of submarine outfall	Contractor		√					
4.5.38	4.12.3	Dredging Works	Marine works site	Contractor							
		Implementation of following measures during the dredging works:	and at the identified								
		• dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m ³ /hr;	water sensitive receivers/ During construction								
		• deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress;									
		• dredging operation should be undertaken during ebb tide only;									
		• all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;									
		• all pipe leakages should be repaired promptly and plant should not be operated with leaking pipes;									
		• excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;									
		adequate freeboard (i.e. minimum of 200mm) should be maintained on barges to ensure that decks are not washed by wave action;	om of not								
		• all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material;									
		loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and									

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation	Implementation Stages**			Relevant Legislation
Ref	Ref	Environmentar i Totection ivicasures	measures)	Agent	D	C	O	and Guidelines
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.						
2.5.39	4.12.4	Construction Run-off and Drainage	Construction works	Contractor				ProPECC
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.						
		• Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.						
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.						
		• Careful programming of the works to minimise soil excavation works during rainy seasons.						
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.						
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.						
		Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric						
2.5.39	4.12.5	General Construction Activities	Construction works	Contractor		√		
		 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. 	sites					

EIA	EM&A	Environmental Protection Measures* Location (duration /completion of		Implementation		ement tages*	Relevant Legislation	
Ref	Ref	Environmentari rotection vicasures	measures)	Agent	D	C	О	and Guidelines
		• All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank.						
		Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
2.5.39	4.12.6	Wastewater Arising from Workforce Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	Construction works sites	Contractor		√		
2.10.10	Section 4	Water quality monitoring	Designated water monitoring locations/ throughout construction period	Contractor		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A	Environmental Protection Measures*	Lasation / Timina	Implementation	Implemen	Implementation Stages**		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Location / Timing	Agent	D	С	O	Guidelines
2.9.24	5.2.1	Carrying out Sediment Quality Investigation	Marine works site / prior to construction	DSD	V			WBTC No. 34/2002
2.9.23	5.2.1	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor		√		WBTC No. 34/2002
2.9.23	5.2.2	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor		√		
2.9.23	5.2.3	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor		√ 		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	EM&A		Location /	Implementation		plementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	О	Guidelines
Construc	tion Phase						II.	•
2.9.14	6.6.2	 Good site practices Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor		٨		Waste Disposal Ordinance (Cap.54)
2.9.15	6.2.3	The Contractor will be required to open a billing account under the Construction Waste Disposal Charging Scheme, and to pay for disposal of all construction waste. The construction waste will be sent to a designated reception facility, which in this case will be YSW RTS, where drivers must present a valid chit for disposal of each load.	Work sites/During construction	Contractor		V		Waste disposal (Amendment) Ordinance 2004
2.9.16	6.2.4	Recommendations to achieve waste reduction include: segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to	Work sites/During construction	Contractor		V		WBTC No. 4/98, 5/98

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	О	Guidelines
		segregate this waste from other general refuse generated by the work force;						
		 any unused chemicals or those with remaining functional capacity should be recycled; 						
		 use of reusable non-timber formwork to reduce the amount of C&D material; 						
		 prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; 						
		 proper storage and site practices to minimise the potential for damage or contamination of construction materials; and 						
		 plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. 						
2.9.18	6.2.5	General Site Wastes ■ A collection area for construction site waste should be provided where waste can be stored prior to removal from site	Work sites/During construction	Contractor		√		Public Health and Municipal Services Ordinance (Cap. 132)
		 An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material 						
2.9.19	6.2.6 and 6.2.7	 Chemical Wastes After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled 	Work sites/During construction	Contractor		V		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical
		• Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance.						Wastes

EIA EM&		Environmental Protection Measures*	Location /	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	Guidelines
		• Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided.						
		• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges						
2.9.21 and 2.9.22	6.2.8 and 6.2.9	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic); C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) Where possible, inert material should be re-used on-site Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material 	During all construction phases	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref EM&A Ref	EM&A	Environmental Protection Measures*	Location / Timing	Implementation	Implementation Stages			Relevant Legislation & Guidelines
	Kei		Tilling	Agent	D C O		O	Guidennes
Construc	tion Phase							
2.10.11	7.2 and	Carry out monitoring of corals before, during and after	Work sites /	Contractor				
and	7.3	marine works.	during					
2.10.12			construction					
			phase					
2.6.45	7.6.1	Use horizontal directional drilling to avoid direct	Marine works	Contractor				
to		disturbance to corals	site / during					
2.6.48			dredging works					
2.6.57	4.12.3	Deploying of 2-layer silt curtains with the first layer	All work sites /	Contractor				
to		enclosing the grab an the second layer at around 50m from	during					
2.6.58		the dredging area while dredging works are in progress	construction					
			phase					
2.6.51	7.6.1	Fence off the slope stabilisation works area from	STW/ During	Contractor				
		surrounding shrubland and/ woodland, to prevent access to	construction					
		or disturbance of adjacent habitats. The works area						
		should be as small as is possible, consistent with the						
		requirements of the works.						

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA EM&A		Environmental Protection Measures*	Location /	Implementation	Implementation Stages**			Relevant Legislation
Ref	Ref		Timing	Agent	D	C	O	& Guidelines
2.5.37	4.12.4	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report		Contractor		√		TM on EIA Process

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

N/A Not applicable

Implementation Schedule of Landscape and Visual Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location / Timing	Implementation Agent	Implementation Stages **			Relevant Legislation &
Kei	KCI		Timing	Agent	D	C	O	Guidelines
Constru	iction Pha	se						
2.8.37	9.2.2	Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		V		WBTC No. 14/2002
2.8.37	9.2.2	Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor		V		
2.8.37	9.2.2	Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		V		WBTC No. 19/2001
2.8.37	9.2.2	Conservation of topsoil for reuse.	All sites	Contractor		√		
2.8.30	9.2.2	Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		V		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Appendix M

Coral Monitoring Report

1. BACKGROUND

- 1.1 Further to the Sewerage Master Plan (SMP) study of the Outlying Islands in 1994, Drainage Services Department (DSD) was commissioned by Environmental Protection Department (EPD) to carry out a Preliminary Project Feasibility Study (PPFS) for the Outlying Islands Sewerage Stage I Phase II in 1996. The project is part of an Outlaying Islands Sewerage Project, which involves construction of a sewage treatment works (STW) and submarine outfalls of approximately 500m in length and 325mm in diameter at Yung Shue Wan (YSW) on Lamma Island. Coral colonies were recorded at YSW site during the Environmental Impact Assessment (EIA) under the Preliminary Investigations Study (PIS).
- 1.2 According to the construction information provided by the Contractor, the marine works in Yung Shue Wan has been ceased since 19 January 2012. As agreed by the IEC and RE, the ecology monitoring was suspended from 6 February 2012 until further notice of the commencement of dredging works.
- 1.3 It is noticed that the remaining dredging work in Yung Shuen Wan will be commenced in 23 November 2012. As advised by IEC, coral monitoring has been carried out before the resumption of dredging to oversee the background condition of the tagged corals for the upcoming impact monitoring events once every two month.
- 1.4 The coral monitoring report presents the result coral monitoring exercise of corals at YSW and SW in November 2012 following the tagging for 20 corals on both sites for the Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan.

2. MONITORING EQUIPMENT

2.1 The monitoring equipment used for the coral monitoring are listed in **Table 2-1**.

Table 2-1 Monitoring Equipment for the Coral Monitoring

Equipment	Model		
A4 size underwater slates	Handmade A4 size underwater slates		
Coral Photos	Laminated Tagged Coral Photos		
Quadrat	50 cm x 50 cm plastic quadrat (with 10 cm x 10		
Quadrat	cm grid)		
Underwater Camera	Canon G10 digital camera		
Scuba Diving Equipment	Scubapro regulator, BCD and fins		
Diving Boot	33 feet long diving boat with two 200hp		
Diving Boat	outboard engines, registration #128328		

3. MONITORING LOCATION

3.1 One control station at Sham Wan, Lamma Island and one impact stations at boulder seawall at Yung Shue Wan, Lamma Island were recommended in the *Method Statement Section 3.3*. These sites represent the coral site where uncommon coral species were recorded from the coral surveys carried out as part of the Review Report on the EIA Study. The coordinates of the monitoring location is listed in **Table 3-1**.

Table 3-1 Locations of Coral Monitoring Station

Dive Site	Coordinates				
Dive Site	Easting	Northing			
Yung Shue Wan, Lamma Island	829180.06E	809555.76N			
Sham Wan, Lamma Island	832160.86E	805738.31N			

4. METHODOLOGY

- 4.1 20 tagged hard coral colonies were monitored at the impact (Yung Shue Wan) and control station (Sham Wan). Laminated photos of the tagged corals were used underwater to relocate and identify the tagged corals.
- 4.2 Three parameters were recorded for each tagged coral and these are:
 - Percentage sediment cover
 - Increase % sediment cover caused by marine work will affect the health of coral as it will block the sunlight that reaches the corals, this may result in bleaching or death of the coral colonies.
 - Percentage bleached tissue two bleaching categories will be recorded;
 - Unhealthy corals will show bleached tissue especially when sediment and turbidity increased, prolonged bleaching may result in total or partial death of the coral colonies.
 - Blanched or pale a loss of zooxanthellae or photosynthetic pigments
 - Bleached a total loss zooxanthellae and coral tissue still present
 - Percentage dead total or partial mortality.
 - Increased in total or partial mortality rate may be caused by the marine work.
- 4.3 Each parameter was assessed as a percentage of total colony area. To aid percentage cover estimates a 50 x 50 cm² quadrat with a 10x10 cm² lined grid was used.
- 4.4 During each survey, diversity, abundance and health status of the corals in the general area will be recorded.
- 4.5 Photos of each tagged corals were also taken during the monitoring survey.

5. RESULTS

5.1 Coral monitoring was carried out on 7th November 2012. The weather conditions were summarised in **Table 5-1.**

Table 5-1 Weather Conditions on 7th and 29th November 2012

Date	7 th November				
Site	YSW	SW			
Survey Time	9:00	8:00			
Tidal Height	1.1m	1			
Air Temperature	32° C				
Water Temperature	26° (C			
Water Depth	2m	2.5m			
Wind Speed	East force	e 4-5			
Weather	Sunny				
Water Visibility	0.5m	1m			

Yung Shue Wan

- 5.2 This site is mainly composed of artificial sloping boulders down to 2.5 meters depth along coral area. Areas deeper than 3 meters are mainly muddy and sandy bottoms. The coral coverage was about 5% in which most of them were located on the artificial sloping boulders. 20 hard coral colonies were monitored on 7th November 2012 and their species name, size and health condition were shown in **Table 5-2.**
- 5.3 On 7th, coral colonies #14, #15 and #17 were recorded to have 2%, 2% and 1% sediment respectively. No sediment was recorded in other coral colonies during the survey. No bleaching or mortality was recorded during the monitoring survey on the monitoring dates. Photos of each tagged corals were shown in **Appendix II.**

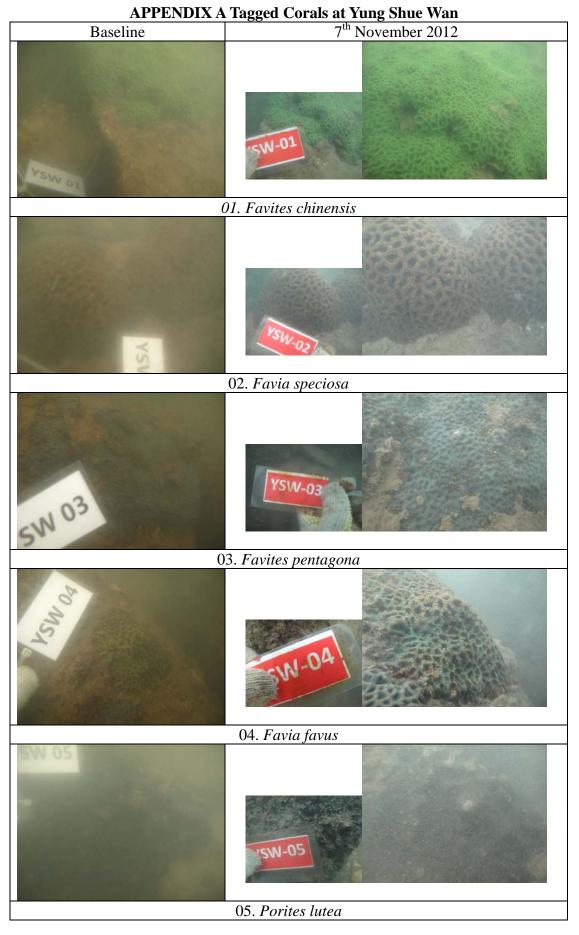
5.4 In general the diversity and abundance of corals in this area is relatively low and common respectively when compared with other coral area in Hong Kong such as Hoi Ha Wan and Sharp Island.

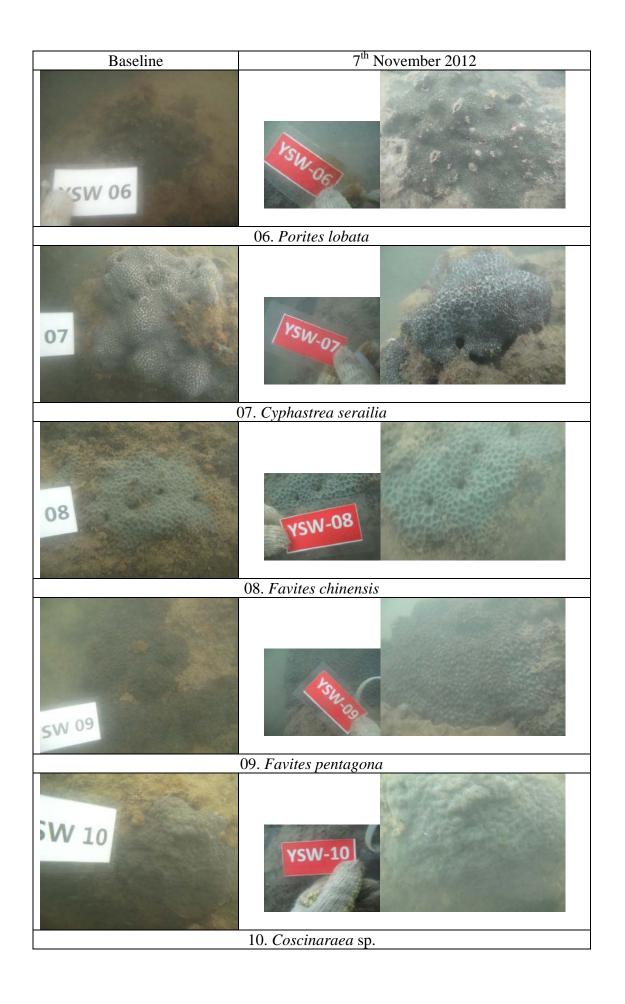
Table 5-2 Species Name, Size and Heath Condition for Tagged Corals in YSW on $7^{\rm th}$ November 2012

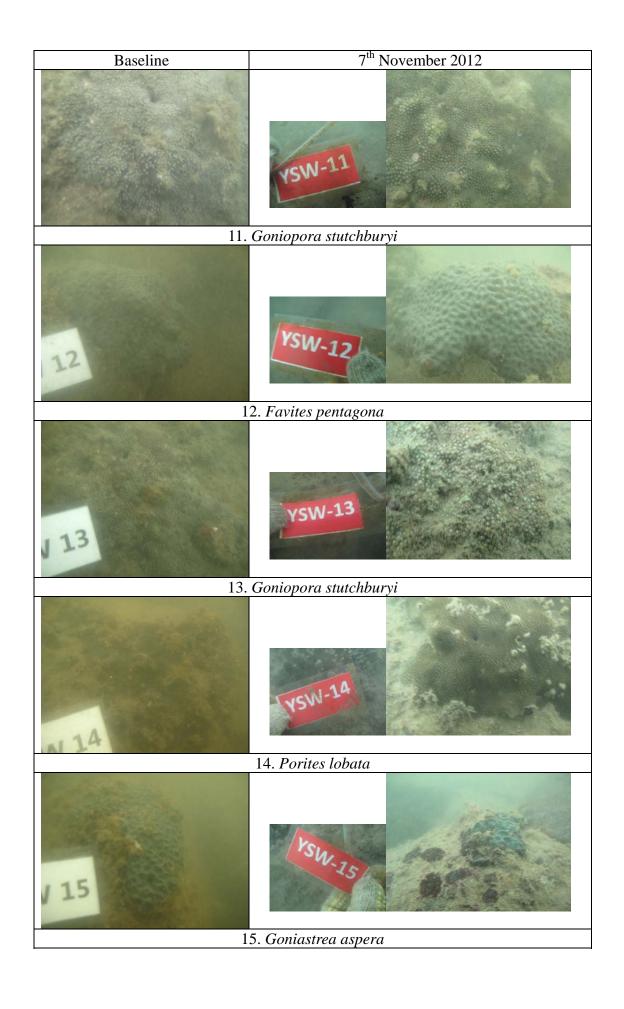
Site: Yung	Shue Wan				Bleaching	g (%)		
Coral No.	Species Name	Specific Location	Size (cm) (Max. Length)	Sediment Cover (%)	Blanched/Pale		Total/Partial Mortality (%)	Remarks
1	Favites chinensis	Boulder	32	0	0	0	0	N/A
2	Favia speciosa	Boulder	30	0	0	0	0	N/A
3	Favites pentagona	Boulder	38	0	0	0	0	N/A
4	Favia favus	Boulder	17	0	0	0	0	N/A
5	Porites lutea	Boulder	43	0	0	0	0	N/A
6	Porites lobata	Boulder	18	0	0	0	0	N/A
7	Cyphastrea serailia	Boulder	26	0	0	0	0	N/A
8	Favites chinensis	Boulder	22	0	0	0	0	N/A
9	Favites pentagona	Boulder	106	0	0	0	0	N/A
10	Coscinaraea n sp.	Boulder	16	0	0	0	0	N/A
11	Goniopora stutchburyi	Boulder	45	0	0	0	0	N/A
12	Favites pentagona	Boulder	20	0	0	0	0	N/A
13	Goniopora stutchburyi	Boulder	28	0	0	0	0	N/A
14	Porites lobata	Boulder	42	2	0	0	0	N/A
15	Goniastrea aspera	Boulder	19	2	0	0	0	N/A
16	Cyphastrea serailia	Boulder	16	0		0		N/A
17	Plesiastrea versipora	Boulder	27	0		0		N/A
18	Goniopora stutchburyi	Boulder	23	1	0	0		N/A
19	Cyphastrea serailia	Boulder	21	0	0	0		N/A
20	Porites lutea	Boulder	52	0		0		N/A

Sham Wan

- 5.5 This site is mainly composed of bedrocks and big boulders down to 3.5 meters depth along the surveyed route. Areas deeper than 4 meters are mainly sandy bottoms. The coral coverage was about 10% in which most of corals were located on boulders or rock surfaces. 20 hard coral colonies were monitored on 7thNovember 2012 and their species name, size and health condition were shown in **Table 5-3.**
- No sediment was recorded during the survey. No bleaching or mortality was recorded in other tagged coral colonies during the monitoring survey on the monitoring dates.

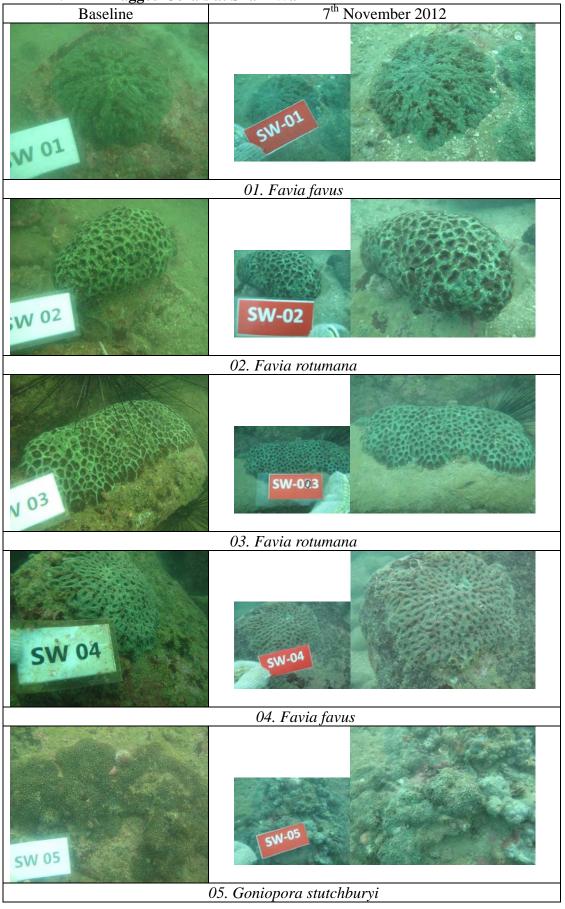

 Appendix II.
- 5.7 In general the diversity and abundance of corals in this area is relatively low and common respectively when compared with other coral area in Hong Kong such as Hoi Ha Wan and Sharp Island.

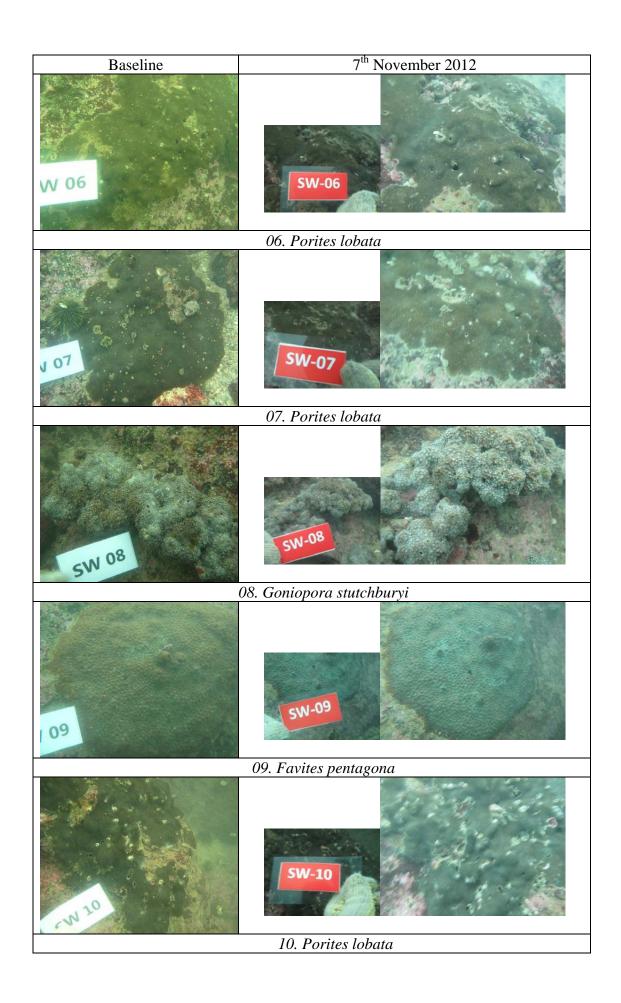

Table 5-3 Species Name, Size and Heath Condition for Tagged Corals in SW on 7th November 2012

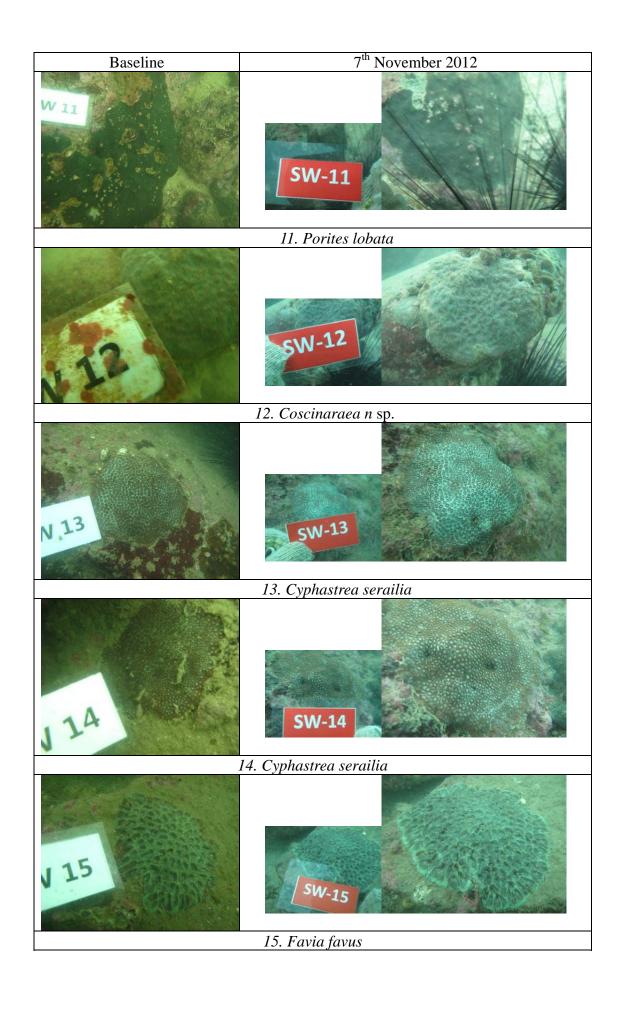

					I		1	
Site: Sham	Wan				Bleaching	g (%)		
Coral No.	Species Name	Specific Location	Size (cm) (Max. Length)	Sediment Cover (%)	Blanched/Pale	Bleached	Total/Partial Mortality (%)	Remarks
1	Favia favus	Boulder	14	0	0	0	0	N/A
2	Favia rotumana	Boulder	21	0	0	0	0	N/A
3	Favia rotumana	Boulder	27	0	0	0	0	N/A
4	Favia favus	Rock	14	0	0	0	0	N/A
5	Goniopora stutchburyi	Bedrock	32	0	0	0	0	N/A
6	Porites lobata	Bedrock	43	0	0	0	0	N/A
7	Porites lobata	Boulder	23	0	0	0	0	N/A
8	Goniopora stutchburyi	Bedrock	29	0	0	0	0	N/A
9	Favites pentagona	Bedrock	31	0	0	0	0	N/A
10	Porites lobata	Bedrock	34	0	0	0	0	N/A
11	Porites lobata	Boulder	33	0	0	0	0	N/A
12	Coscinaraea n sp.	Rock	15	0	0	0	0	N/A
13	Cyphastrea serailia	Bedrock	13	0	0	0	0	N/A
14	Cyphastrea serailia	Bedrock	12	0	0	0	0	N/A
15	Favia favus	Boulder	14	0	0	0	0	N/A
16	Favia rutomana	Boulder	30	0	0	0	0	N/A
17	Favia favus	Bedrock	26	0	0	0	0	N/A
18	Favia rotumana	Bedrock	28	0	0	0	0	N/A
19	Cyphastrea serailia	Bedrock	39	0	0	0	0	N/A
20	Cyphastrea serailia	Bedrock	27	0	0	0	0	N/A

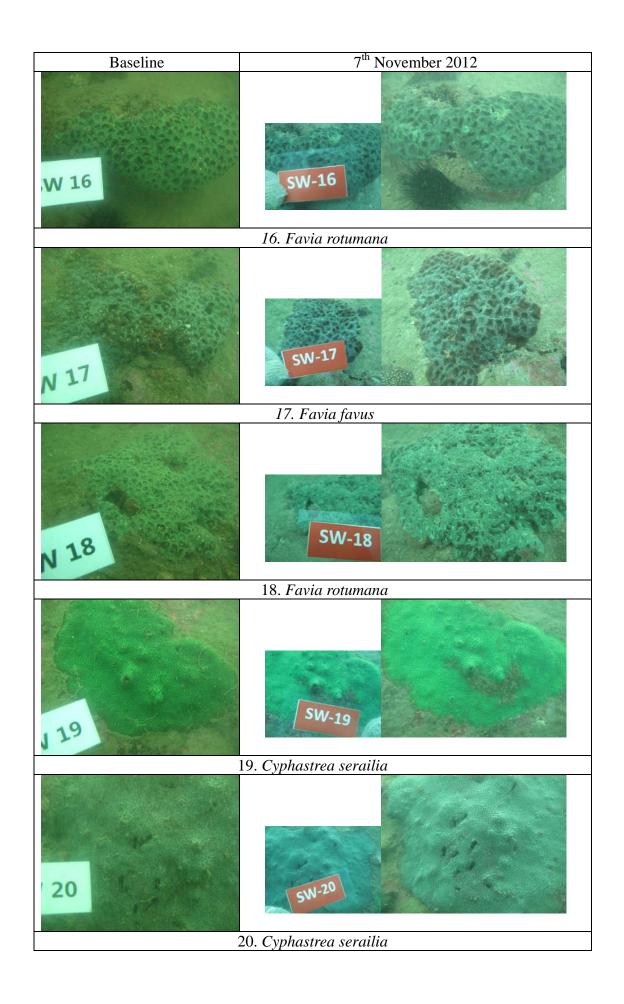
6. COMMENTS AND CONCLUSION

- 6.1 Coral monitoring were performed on 7th November 2012 at Yung Shue Wan and Sham Wan and 20 hard coral colonies were monitored at each sites.
- 6.2 In Yeung Shu Wan, coral colonies #14, #15 and #17 were recorded to have 2%. 2% and 1% sediment respectively. No sediment was recorded in other coral colonies during the survey. No sediment was recorded during the survey in Sham Wan. No beaching or mortality was recorded on both sites during the monitoring period. The coral coverage in both impact site (YSW) and control site (SW) are relatively low when compared with other coral communities in Hong Kong (such as Sharp Island and Hoi Ha Wan). Most of the coral colonies recorded in both site are common species in Hong Kong water.
- 6.3 Partially mortality on the soft/black corals was not recorded at the monitoring site. No bleaching or deterioration in the general condition of the coral fauna was observed. No adverse deterioration of the coral community was observed in the ecological monitoring results when compared with the baseline ecological monitoring results.









APPENDIX B Tagged Corals at Sham Wan

Appendix N

Investigation Report for the Environmental Exceedance

To Mr. Vincent Chan Fax No 2982 1163

Company Leader Civil Engineering Corporation Ltd

From Nicola Hon Date 30 November 2012

Our Ref TCS00512/09/300/F0577 No of Pages 6 (Incl. cover sheet)

RE DSD Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan Portion Area – Investigation Report for Exceedances of 24-hour TSP Action and Limit Levels at AC02b on 7 November 2012 (NOE ref. TCS00512/09/300/F0567)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

With reference to facsimile from the Contractor on 27 November 2012 regards to the site activities and environmental conditions during the exceedance day. The investigation of the captioned exceedance concludes that the exceedance was not related to the works under the Project. Details are as follows:

- 1. The construction activities conducted on 7 November included steel angle installation for revised cable trench; internal and external doors installation; excavate for foul sewer manhole; erect formwork and concreting for foul sewer and storm drain manholes and erect internal formwork for wall of Emergency Tank.
- 2. The majority of works were carried out inside building except for the minor works for manholes construction. With the implementation of the required construction dust suppression measures such as watering of haul roads and wheel washing prior to exit the site, major construction activities undertaken during the captioned exceedance i.e. indoor works etc., were not dusty as shown by the TSP results before 7 November 2012 (i.e., no exceedance recorded in October 2012).
- 3. Other the other hand, it is found that a concurrent construction project, R.C. construction for new police station, was in progress in the Architectural Service Department's (ASD) work site which is about 25m adjacent to monitoring location AC02b. It was considered as one of the source attributable to the 24-hour TSP exceedance.
- 4. Dusty public road which leads to the current construction site was observed. The dusty road is highly possibly brought from the ASD's site during transportation of the material and stockpiles. The dusty road would be another source attributable to the exceedance.
- 5. It is concluded that the exceedance was not related to the works under the Project. As no consecutive e exceedances were recorded on the next monitoring, no remedial actions are required. Nevertheless, full implementation of the recommended environmental mitigation measures, in particular construction dust suppression measures during dusty construction activities including vehicle and construction plant movement, is strongly recommended under dry and windy conditions.

Please also find attached the annexes of below for your reference.

Annex A: Air quality monitoring results in October and November 2012

Annex B: Photo record

Annex C: Map for the Air Monitoring Locations and Active Construction Site in Yung

安順聯合環境服務及顧問 Action-United Environmental Services & Consulting Flat A, 20/F, Gold King Industrial Building, 35-41, Tai Lin Pai Road, Kwai Chung, New Territories. Tel (852) 2959-6059 Fax (852) 2959-6079

Shue Wan

Should you have any queries, please do not hesitate to contact the undersigned at Tel: 2959-6059 or via Fax: 2959-6079.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. SCJV (RE) Attn: Mr. Ian Jones (fax: 2982 4129)

Scott Wilson (IEC) Attn: Mr. Rodney Ip (fax: 2428 9922) EPD (EPO) Attn: Mr. Simon Ho (fax: 2835 1153)

Annex A: Air Quality Monitoring Results in October and November 2012

Table A1 Summary of 24-hour and 1-hour TSP Monitoring Results at AC02b

24-hour TSP 1-hour TSP (µg/m³)										
Date	$(\mu g/m^3)$	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured				
27-Oct-12	153	25-Oct-12	10:30	138	147	135				
1-Nov-12	112	31-Oct-12	13:40	175	187	177				
7-Nov-12	<u>185</u>	6-Nov-12	14:15	166	178	169				
13-Nov-12	152	12-Nov-12	13:00	159	164	172				
19-Nov-12	102	16-Nov-12	12:00	142	144	157				

Remark: bold and underlined indicated Action Level exceedance

Action Level: 161 μg/m³ Limit Level 260 μg/m³

Annex B: Photo Records

Photo B1: Photo record for mitigation measures provided by the Contractor

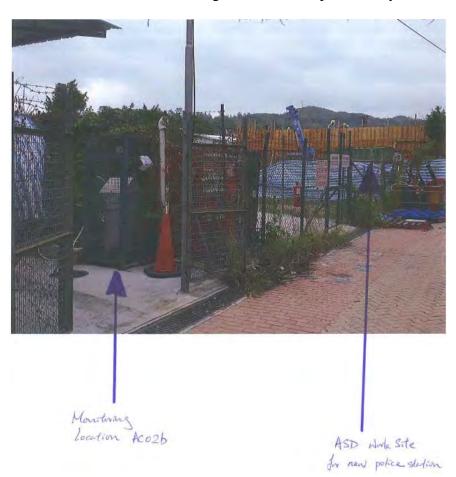


Photo B2: Photo record for the location of ASD's work site and AC02b

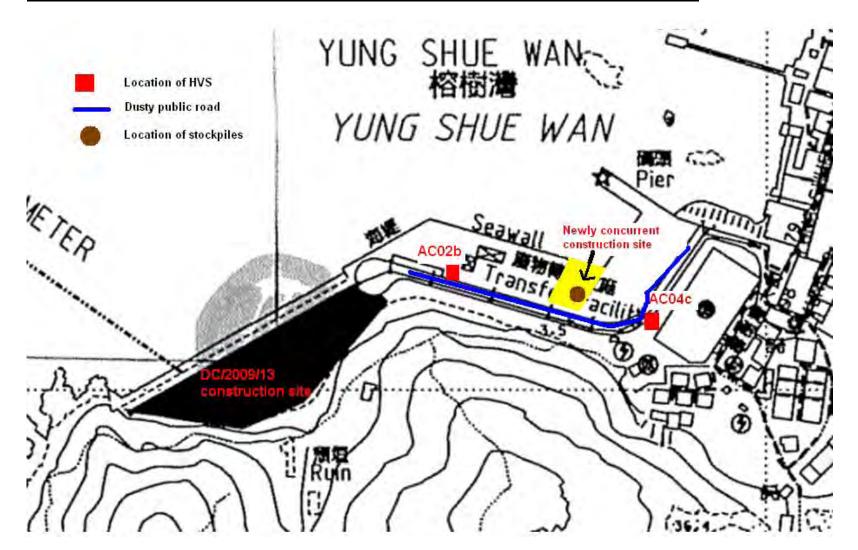


Photo B3: Photo record for dusty road outside ASD's work site

Photo B4: Photo record for mitigation measures provided by the Contractor at the site exit/entrance

Annex C: Map for the Air Monitoring Locations and Active Construction Site in Yung Shue Wan

安順聯合環境服務及顧問 Action-United Environmental Services & Consulting Flat A, 20/F, Gold King Industrial Building, 35-41, Tai Lin Pai Road, Kwai Chung, New Territories. Tel (852) 2959-6059 Fax (852) 2959-6079