

PROJECT NO.: TCS/00512/09

DSD CONTRACT NO. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

SOK KWU WAN PORTION AREA MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT (NO.40) – NOVEMBER 2013

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Quality Index Reference No. Prepared By Approved By 17 December 2013 TCS00512/09/600/R0720v2 AAA Ammediate Nicola Hon T.W. Tam Environmental Consultant Environmental Team Leader

Version	Date	Description
1	11 December 2013	First Submission
2	17 December 2013	Amended against IEC's comments on 15 November 2013

URS CDM Joint Venture

Chief Engineer/Harbour Area Treatment Scheme Drainage Services Department 5/F, Western Magistracy 2A, Pok Fu Lam Road Hong Kong Your reference:

Date:

Our reference: 05117/6/16/424061

20 Dec 2013

Attention: Ms Jacky C M Wong

BY FAX

Dear Madam

Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan Portion Area Monthly Environmental <u>Monitoring and Audit (EM&A) Report No. 40 (November 2013)</u>

We refer to the Monthly EM&A Monitoring Report No. 40 for November 2013 received under cover of the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), dated on 17 December 2013. We have no comment and have verified the captioned report.

Yours faithfully URS CDM JOINT VENTURE

Rodney lp Independent Environmental Checker

ICWR/KKK/lykl

Encl

СС

Leader Civil Engineering AUES ER/LAMMA CDM (Attn: Mr Vincent Chan) (Attn: Mr T.W. Tam) (Attn: Mr Ian Jones) (Attn: Mr Sylvester Hsu)

EXECUTIVE SUMMARY

ES.01. This is the **40th** monthly Environmental Monitoring and Audit (EM&A) Report for Sok Kwu Wan (hereinafter 'this Report') for the designated works under the Environmental Permit [EP-281/2007/A], covering a period from **26 October to 25 November 2013** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air Quality	1-hour TSP	45
All Quality	24-hour TSP	15
Construction Noise	L _{eq(30min)} Daytime	20
Water Quality	Marine Water Sampling	14
Inspection / Audit	ET Regular Environmental Site Inspection	4

ES.03. As informed by the Contractor, the marine work of outfall construction has been commenced on 19 July 2011, therefore, water quality was undertaken in this Reporting Period.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance of air quality and construction noise monitoring were recorded in this Reporting Period. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action	Limit Level	Event & Action		
Issues	Parameters			NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
	24-hour TSP	0	0	0		
Construction Noise	L _{eq(30min)} Daytime	0	0	0		
	DO	0	0	0		
Water Quality	Turbidity	0	0	0		
	SS	0	0	0		

Note: NOE – *Notification of Exceedance*

SITE INSPECTION BY EXTERNAL PARTIES

ES.05. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 29 October and 5, 13 and 20 November 2013. All the observation has been rectified in the set time frame.

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.06. No written or verbal environmental complaint, summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.07. No reporting change was made in this Reporting Period.

FUTURE KEY ISSUES

ES.08. During dry and windy season, the Contractor shall pay attention on the construction dust that may cause environmental issues in the upcoming months. Mitigation measures on construction dust

identified at the EM&A manual such as watering at haul road and covering of dusty material should be fully implemented.

ES.09. Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

TABLE OF CONTENTS

1	INTRODUCTION Project Background Report Structure	1 1 1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS Project Organization and Management Structure Construction Progress Summary of Environmental Submissions	3 3 3 3
3	SUMMARY OF BASELINE MONITORING REQUIREMENTSENVIRONMENTAL ASPECTMONITORING LOCATIONSMONITORING FREQUENCY AND PERIODMONITORING EQUIPMENTEQUIPMENT CALIBRATIONMETEOROLOGICAL INFORMATIONDATA MANAGEMENT AND DATA QA/QC CONTROLREPORTINGDETERMINATION OF ACTION/LIMIT (A/L) LEVELS	4 4 5 6 9 9 9 9 9
4	IMPACT MONITORING RESULTS - AIR QUALITY	11
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	12
6	IMPACT MONITORING RESULTS – WATER QULAITY	13
7	ECOLOGY	15
8	WASTE MANAGEMENT	16
9	SITE INSPECTION	17
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	18
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	19
12	IMPACT FORECAST	25
13	CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendations	26 26 26

LIST OF TABLES

Table 2-1	Status of Environmental Licenses and Permits
Table 3-1	Summary of EM&A Requirements
Table 3-2	Location of Air Quality Monitoring Station
Table 3-3	Location of Construction Noise Monitoring Station
Table 3-4	Location of Marine Water Quality Monitoring Station
Table 3-5	Action and Limit Levels for Air Quality
Table 3-6	Action and Limit Levels for Construction Noise
Table 3-7	Action and Limit Levels for Marine Water Quality
Table 4-1	Summary of 24-hour and 1-hour TSP Monitoring Results – AM1
Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
Table 5-1	Summarized of Construction Noise Monitoring Results at NM1
Table 5-2	Summarized of Construction Noise Monitoring Results at NM2
Table 5-3	Summarized of Construction Noise Monitoring Results at RNM3
Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
Table 6-1	Summary of Water Quality Results - Mid-ebb Tides (Dissolved Oxygen)
Table 6-2	Summary of Water Quality Results - Mid-ebb Tides (Turbidity & Suspended Solids)
Table 6-3	Summary of Water Quality Results - Mid-flood Tides (Dissolved Oxygen)
Table 6-4	Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)
Table 6-5	Summarized Exceedances of Marine Water Quality
Table 8-1	Summary of Quantities of Inert C&D Materials
Table 8-2	Summary of Quantities of C&D Wastes
Table 8-1	Site Observations
Table 10-1	Statistical Summary of Environmental Complaints
Table 10-2	Statistical Summary of Environmental Summons

Table 10-3 Statistical Summary of Environmental Prosecution

 Table 11-1
 Environmental Mitigation Measures

LIST OF APPENDICES

- Appendix A Site Layout Plan Sok Kwu Wan Portion Area
- Appendix B Organization Structure and Contact Details of Relevant Parties
- Appendix C Three Months Rolling Construction Programme
- Appendix D Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)
- Appendix E Monitoring Equipments Calibration Certificate
- Appendix F Event and Action Plan
- Appendix G Impact Monitoring Schedule
- Appendix H Monitoring Data Sheet
- Appendix I Graphical Plots of Monitoring Results
- Appendix J Meteorological Information
- Appendix K Monthly Summary Waste Flow Table
- Appendix L Weekly Site Inspection Checklist
- Appendix M Implementation Schedule of Mitigation Measures
- Appendix N Tree Inspection Report

Action-United Environmental Services and Consulting

Z:\Jobs\2010\TCS00512(DC-2009-13)-Lama\600\EM&A Monthly Report\Sok Kwu Wan\40th - Nov 13\R0720v2.docx Content

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung She Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*.
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team (ET) to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the Environmental Monitoring and Audit (EM&A) Manual. This EM&A Manual is referred to the Appendix B of the Review Report on EIA Study Sok Kwu Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 According to the EM&A Manual of Sok Kwu Wan and Yung Shue Wan, baseline water quality monitoring should be carried out for consecutive six months before the marine work commencement. Therefore, the baseline reports of Sok Kwu Wan and Yung Shue Wan are divided to two volumes i.e. the Volume 1 for air quality and noise monitoring; and the Volume II for water quality monitoring for separate submission.
- 1.06 There is a concurrent DSD contract "*DC/2007/18 Yung Shue Wan and Sok Kwu Wan Village Sewerage, Stage 1 Works*" undertaking at Sok Kwu Wan since April 2008.
- 1.07 Consider that the construction works of DC/2007/18 and DC/2009/13 at Sok Kwu Wan is under the same Environmental Permit and EM&A Manual, the performance criteria of air quality and construction noise at Sok Kwu Wan under the Project is recommended to adopt the Action/Limit Levels established by contract DC/2007/18. The Baseline Monitoring Report Volume 1 under the Project for air quality and noise at Sok Kwu Wan was submitted on 9 July 2010 and verified by IEC and for EPD endorsement before the relevant land works commencement on 27 July 2010.
- 1.08 This is the **40th** monthly EM&A Report Sok Kwu Wan Portion Area presenting the monitoring results and inspection findings for the Reporting Period from **26 October to 25 November 2013**.

REPORT STRUCTURE

1.09 The Monthly Environmental Monitoring and Audit (EM&A) Report – Sok Kwu Wan is structured into the following sections:-

SECTION 1	INTRODUCTION
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS
SECTION 3	SUMMARY OF MONITORING REQUIREMENTS
SECTION 4	AIR QUALITY MONITORING RESULTS
SECTION 5	CONSTRUCTION NOISE MONITORING RESULTS
SECTION 6	WATER QUALITY MONITORING RESULTS
SECTION 7	WASTE MANAGEMENT
SECTION 8	SITE INSPECTIONS
SECTION 9	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
SECTION 10	IMPLEMENTATION STATUES OF MITIGATION MEASURES
SECTION 11	IMPACT FORECAST
SECTION 12	CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The three month rolling construction programme are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-
 - Construction of drainage and manholes next to PS1 & PS2
 - Excavation for utilities construction under EVA in SKWSTW
 - Soil nailing in SKWSTW
 - Finishing works in SKWSTW
 - E&M installation in SKWSTW

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notified EPD on 19 May 2010
	Regulation	Ref.: 317486
2	Chemical Waste Producer Registration	Issued on 8/6/2010
		WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Approved on 29/9/2010
		Valid to: 30/09/2015
		Licence no.: WT00007567-2010
4	Billing Account for Disposal of Construction	Issued on 26 May 2010
	Waste	A/C No: 7010815

- 2.04 The "Baseline/Impact Monitoring Methodology (TCS00512/09/600/R0010Ver.4)" was set out in accordance with the Sok Kwu Wan EM&A Manual' requirements. It was approved by the Engineer Representative (ER) and agreed with the Independent Environmental Checker (IEC) and then submitted to the EPD on 8 July 2010.
- 2.05 Baseline Monitoring Report Volume 1 for Sok Kwu Wan (TCS00512/09/600/R0020Ver.3) was verified by the IEC on 12 July 2010 and submitted to EPD on 12 July 2010.
- 2.06 Baseline Water Quality Monitoring Report Volume 2 for Sok Kwu Wan (TCS00512/09/600/R0182v7) was revised against EPD comments and re-submitted on 11 October 2011.

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring programme cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Marine water quality
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise and water quality of the EM&A programme are presented in the following sub-sections.
- 3.03 A summary monitoring parameters for the air quality, noise and marine water monitoring is presented in *Table 3-1*:

Environmental Issue	Parameters
	1-hour TSP Monitoring by Real-Time Portable Dust Meter; and
Air Quality	 24-hour TSP Monitoring by High Volume Air Sampler.
Noise	• Leq (30min) during normal working hours; and
Noise	• Leq (15min) during Restricted Hours.
	In-situ Measurements
	• Dissolved Oxygen Concentration (DO) (mg/L);
	• Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Marina Watan Ovality	• pH unit;
Marine Water Quality	• Salinity (ppt);
	• Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	• Suspended Solids (SS) (mg/L)

Table 3-1Summary of EM&A Requirements

MONITORING LOCATIONS

Air Quality

3.04 Three air monitoring stations: AM1, AM2 and AM3 were designated in the *EM&A Manual Section* 2.5. The detailed air monitoring stations is described in *Table 3-2* and graphical is shown in *Appendix D*.

Table 3-2Location of Air Quality Monitoring Station

Sensitive Receiver	Location
AM1	Squatter house in Chung Mei Village
AM2	Squatter house in Chung Mei Village
AM3	Football court

Construction Noise

3.05 According to *EM&A Manual Section 3.4*, there were four noise sensitive receivers (NM1-NM4) designated for the construction noise monitoring. NM1, NM2 and NM4 of the three designated monitoring stations were identified and are monitored by the current DSD contract DC/2007/18. However, the premises monitoring station NM3 was rejected by the owner of 1B Sok Kwu Wan and an alternative noise monitoring station RNM3 replacement was proposed by the contract DC/2007/18 ET and accepted by the IEC and EPD before the baseline monitoring commencement in April 2008. The location RNM3 is located at Sok Kwu Wan Sitting-out area which just 3m width footpath away from the original location house 1B. The detailed construction noise monitoring stations to also under the Project is described in *Table 3-3* and graphical is shown in *Appendix D*.

Sensitive Receiver	Location
NM1	1, Chung Mei Village
NM2	20, Sok Kwu Wan
RNM3	Sok Kwu Wan Sitting-out Area
NM4	2-storey village house at Ta Shui Wan

Table 3-3Location of Construction Noise Monitoring Station

Water Quality

3.06 Three control stations (C1-C3) and three impact stations (W1-W3) were recommended in the *EM&A Manual Section 4.5*. Impact stations W1-W3 identified at the sensitive receivers (FCZ and secondary contact recreation subzone) to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Three control stations: C1, C2 & C3 were specified at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. Detailed and co-ordnance of marine water quality monitoring stations is described in *Table 3-4* and the graphical is shown in *Appendix D* and would be performed for EM&A programme.

Station	Description	Co-ordnance	
Station	Description	Easting	Northing
W1	Secondary recreation contact subzone at Mo Tat Wan	832 968	807 732
W2	Fish culture zone at Picnic Bay	832 670	807 985
W3	Fish culture zone at Picnic Bay	832 045	807 893
C1 (flood)	Control Station	833 703	808 172
C2	Control Station	831 467	807 747
C3 (ebb)	Control Station	832 220	808 862

Table 3-4Location of Marine Water Quality Monitoring Station

MONITORING FREQUENCY AND PERIOD

3.07 The impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections* 2.7, 3.6, 4.7 and 4.8. The monitoring requirements are listed as follows.

Air Quality Monitoring

Parameters:	1-hour TSP and 24-hour TSP.
Frequency:	Once in every six days for 24-hour TSP and three times in every six days for 1-hour TSP.
Duration:	Throughout the construction period.

Noise Monitoring

Parameters:	$L_{eq 30min}$ & $L_{eq(5min)}$, L_{10} and L_{90} . $L_{eq(15min)}$ & $L_{eq(5min)}$, L_{10} and L_{90} during the construction undertaken during Restricted hours (19:00 to 07:00 hours next of normal working day and full day of public holiday and Sunday)
<u>Frequency</u> : Duration:	Once per week during 0700-1900 hours on normal weekdays. Restricted hour monitoring should depend on conditions stipulated in Construction Noise Permit. Throughout the construction period.

Marine Water Quality Monitoring

<u>Parameters</u>: Duplicate in-situ measurements: water depth, temperature, dissolved oxygen, pH, turbidity and salinity;

HOKLAS-accredited laboratory analysis: suspended solids

Frequency:	Three days a week, at mid ebb and mid flood tides. The interval between 2 sets of monitoring will be more than 36 hours.
<u>Sampling</u> Depth	(i.) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m.
	(ii.) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom.
	(iii.) If the water depth is less than 3m, 1 sample at mid-depth is taken
Duration:	During the course of marine works

Post-Construction Monitoring – Marine Water

3.08 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the *Section 4.8 of EM&A Manual*. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

MONITORING EQUIPMENT

Air Quality Monitoring

3.09 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

1-hour TSP

- 3.10 The 1-hour TSP monitor, a TSI Dust Track Aerosol Monitor Model 8520 or Sibata LD-3 Laser Dust Meter is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90⁰ light scattering. The 1-hour TSP monitor consisted of the following:
 - a. A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - b. A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - c. A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.

24-hour TSP

- 3.11 The equipment used for 24-hour TSP measurement will be a TISCH High Volume Air Sampler, HVS Model TE-5170, which complied with EPA Code of Federal Regulation, Appendix B to Part 50. The HVS consists of the following:
 - a. An anodized aluminum shelter;
 - b. A 8"x10" stainless steel filter holder;
 - c. A blower motor assembly;
 - d. A continuous flow/pressure recorder;
 - e. A motor speed-voltage control/elapsed time indicator;
 - f. A 7-day mechanical timer, and
 - g. A power supply of 220v/50 hz
- 3.12 For HVS for 24-hour TSP monitoring, the HVS is mounted in a metallic cage with a top for protection and also it is sat on the existing ground. The flow rate of the HVS between 0.63m3/min and 1.7m3/min will be properly set in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50. Glass Fiber Filter 8" x 10" of TE-653 will be used for 24-hour TSP monitoring and would be supplied by laboratory. The general procedures of sampling are described as below:-
 - A horizontal platform with appropriate support to secure the samples against gusty wind should be provided;

- No two samplers should be placed less than 2 meters apart;
- The distance between the sampler and an obstacle, such as building, must be at least twice the height that the obstacle protrudes above the sample;
- A minimum of 2 meters of separation from any supporting structure, measured horizontally is required;
- Before placing any filter media at the HVS, the power supply will be checked to ensure the sampler work properly;
- The filter paper will be set to align on the screen of HVS to ensure that the gasket formed an air tight seal on the outer edges of the filter. Then filter holder frame will be tightened to the filter hold with swing bolts. The holding pressure should be sufficient to avoid air leakage at the edge.
- The mechanical timer will be set for a sampling period of 24 hours (00:00 mid-night to 00:00 mid-night next day). Information will be recorded on the field data sheet, which would be included the sampling data, starting time, the weather condition at current and the filter paper ID with the initial weight;
- After sampling, the filter paper will be collected to transfer from the filter holder of the HVS to a sealed in the envelope and sent to a local HOKLAS accredited laboratory for quantifying.
- 3.13 All the sampled 24-hour TSP filters will be kept in normal air conditioned room conditions, i.e. 70% HR (Relative Humidity) and 25°C, for six months prior to disposal.
- 3.14 The HVS used for 24-hour TSP monitoring will be calibrated before the commencement for sampling, and after in two months interval for 1 point checking of maintenance and six months interval for five points calibrate in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5028A) to establish a relationship between the follow recorder meter reading in cfm (cubic feet per minute) and the standard flow rate, Qstd, in m³/min.

Noise Monitoring

- 3.15 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (*Type 1*) and 804: 1985 (*Type 1*) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s⁻¹.
- 3.16 All noise measurements will be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (Leq). Leq(30 min) in six consecutive Leq(5 min) measurements will be used as the monitoring parameter for the time period between 0700-1900 hours on weekdays throughout the construction period. Leq(15 min) in three consecutive Leq(5 min) measurements for other time periods (e.g. during restricted hours) will only be conducted for monitoring the construction noise during restricted hours as necessary.
- 3.17 The sound level meter will be mounted on a tripod at a height of 1.2 m and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield will be fitted for all measurements. Where a measurement is to be carried out at a building, the assessment point would normally be at a position 1 m from the exterior of the building façade. Where a measurement is to be made for noise being received at a place other than a building, the assessment point would be at a position 1.2 m above the ground in a free-field situation, i.e. at least 3.5 m away from reflective surfaces such as adjacent buildings or walls.
- 3.18 Immediately prior to and following each noise measurement the accuracy of the sound level meter will be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration level from before and after the noise measurement agrees to within 1.0dB.
- 3.19 Noise measurements will not be made in fog, rain, wind with a steady speed exceeding 5m/s or

wind with gusts exceeding 10m/s. The wind speed will be checked with a portable wind speed meter capable of measuring the wind speed in m/s. An acoustic calibrator and sound level meter will be calibrated yearly. A valid of Calibration certificates will be shown in the Environmental Monitoring Report accordingly.

Water Quality Monitoring

- 3.20 Marine water quality monitoring will be conducted at the designated locations in accordance with EM&A Manual. The operating and analytical of sampling procedures are described as below:
 - A Global Positioning System (GPS) will be used to ensure that the correct location was selected prior to sample collection. A portable, battery-operated echo sounder will be used for the determination of water depth at each designated monitoring station.
 - The marine water sampler will be lowered into the water body at a predetermined depth. The trigger system of the sampler is activated with a messenger and opening ends of the sampler are closed accordingly then the sample of water is collected.
 - During the sampling, the sampling container will be rinsed to use a portion of the marine water sample before the water sample is transferred to the container. Upon sampling completion, the container is sealed with a screw cap.
 - Before the sampling process, general information such as the date and time of sampling, weather condition and tidal condition as well as the personnel responsible for the monitoring will be recorded on the monitoring field data sheet.
 - In-situ measurement including water temperature, turbidity, dissolved oxygen, salinity, pH and water depth undertake at the identified monitoring point. At each station, marine water samples are collected at three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m. Samples at 1m below water surface and 1m above sea bottom are collected when the water depth is between 3m and 6m. Only 1 sample at mid-depth is taken when the water depth is below 3m.
 - For the in-situ measurement, two consecutive measurements of sampling depth, temperature, dissolved oxygen, salinity, turbidity and pH concentration will be measured at the sea. The YSI Model 6820 Multi-parameter Water Quality Sonde is retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set is more than 25% of the value of the first reading, the reading is discarded and further readings is taken.
 - Water sample collection would be used the water sampler. During the water sample collected from the sea, it is fill in high-density polythene bottles. Before the water sample storage, the sampling bottles will be pre-rinsed with the same water sample. The sample bottles then is packed in cool-boxes (cooled at 4°C without being frozen), and delivered to HOKLAS accredited laboratory for the chemical analysis as followed APHA *Standard Methods for the Examination of Water and Wastewater* 19ed 2540D, unless otherwise specified.
 - The laboratory has be comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples is analyzed as followed the HOKLAS accredited requirement.
- 3.21 For the marine water sampling period, the Multi-parameter Water Quality Monitoring System will be calibrated by three month interval accordingly. The available calibration certificate will be issued to ensure the performance of Multi-parameter Water Quality Monitoring System to use for in-situ measurement.
- 3.22 All water samples will be analyzed with various chemical tests as specified in the EM&A Manual by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). Duplicate samples from each independent sampling event are required for all parameters and the samples will be mixed and analyzed in one set of laboratory analysis. The mixed process would be carried by the laboratory. The determination works should start within 24 hours after collection of the water samples or within the holding time as advised by the laboratory. The laboratory analysis result will be input in our computer database upon received from the laboratory.

EQUIPMENT CALIBRATION

- 3.23 Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.24 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.
- 3.25 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.26 The Multi-parameter Water Quality Monitoring System will be calibrated by HOKLAS accredited laboratory of three month intervals. The available calibration certificate will be issued to ensure the performance of Multi-parameter Water Quality Monitoring System to use for in-situ measurement.
- 3.27 All updated calibration certificates of the monitoring equipment used for the impact monitoring programme in the Reporting Period would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.28 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.29 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring programme.
- 3.30 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, sound level meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

REPORTING

3.31 It was agreed among the ER, IEC, Contractor and ET that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end day, the 25th of that month.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.32 According to the Sok Kwu Wan Environmental Monitoring and Audit Manual, the air quality, construction noise and marine water quality were set up, namely Action and Limit levels are listed in *Tables 3-5*, *3-6 and 3-7* as below.

Monitoring Station	Action Lev	vel (µg/m ³)	Limit Level (µg/m ³)		
Monitoring Station	1-hour	24-hour	1-hour	24-hour	
AM1	343	173	500	260	
AM2	331	175	500	260	
AM3	353	191	500	260	

Table 3-5Action and Limit Levels for Air Quality

Table 3-6Action and Limit Levels for Const	truction Noise
--	----------------

Monitoring	Action Level	Limit Level
Location	0700-190	00 hours on normal weekdays
NM1 NM2	When one or more documented complaints are	75 dB(A) of $L_{eq(30min)}$ during normal hours from 0700 to 1900 hours on normal weekdays, reduced
RNM3 NM4	received	to 70 dB(A) of $L_{eq(30min)}$ for schools and 65 dB(A) during school examination periods

Table 3-7 Action and Limit Levels for Marine Water Quality

Parameter	Performance	In	Impact Station		
rarameter	Criteria	W1	W2	W3	
DO Concentration (Surface and Middle)	Action Level	5.39	4.64	4.71	
(mg/L)	Limit Level	5.29	4.56	4.54	
DO Concentration (Bottom)	Action Level	N/A	3.60	3.37	
(mg/L)	Limit Level	N/A	3.06	3.18	
Turbidity (Depth-Average)	Action Level	4.39	4.84	6.48	
(NTU)	Limit Level	6.06	5.99	6.71	
Suspended Solids (Depth-Average)	Action Level	12.41	9.24	10.79	
(mg/L)	Limit Level	12.68	11.28	12.25	

3.33 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 The impact EM&A programme was carried out as compliance with the contract Particular Specification, Sok Kwu Wan EM&A Manual and the EP. The impact monitoring schedule for the Reporting Period and next Reporting Period is presented in *Appendix G*.

Results of Air Quality Monitoring

Ta

4.02 In this Reporting Period, **45** and **15** monitoring events were performed for 1-hour TSP and 24-hour TSP monitoring respectively at the designated locations AM1, AM2 and AM3. The monitoring results for 24-hour and 1-hour TSP are summarized in *Tables 4-1, 4-2* and *4-3*. The detail 24-hour TSP data are shown in *Appendix H* and the graphical plots of are shown in *Appendix I*.

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1

	24-hour	1-hour TSP (μg/m³)					
Date	TSP (μg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
29-Oct-13	32	30-Oct-13	13:42	70	78	68	
4-Nov-13	28	5-Nov-13	13:11	61	55	64	
9-Nov-13	49	11-Nov-13	9:49	64	79	73	
14-Nov-13	17	16-Nov-13	12:25	179	218	270	
20-Nov-13	22	21-Nov-13	9:51	112	128	126	
Average (Pange)	30 (17 49)	Average		110 (55 270)			
(Range)	(17 – 49)	(Rang	e)	(55 – 270)			

Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
29-Oct-13	50	30-Oct-13	13:36	77	84	80	
4-Nov-13	34	5-Nov-13	13:06	70	75	68	
9-Nov-13	44	11-Nov-13	9:52	69	87	94	
14-Nov-13	46	16-Nov-13	12:29	194	221	243	
20-Nov-13	49	21-Nov-13	9:54	105	124	142	
Average	45	Averag	ge	116			
(Range)	(34 – 50)	(Rang	e)	(68 - 243)			

ble 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
---------	--

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
29-Oct-13	71	30-Oct-13	10:08	93	90	87	
4-Nov-13	56	5-Nov-13	9:53	92	103	84	
9-Nov-13	65	11-Nov-13	13:27	75	85	113	
14-Nov-13	22	16-Nov-13	12:48	177	216	267	
20-Nov-13	57	21-Nov-13	13:06	105	148	180	
Average	54	Average		128			
(Range)	(22 – 71)	(Rang	e)	(75–267)			

- 4.03 As shown in *Tables 4-1, 4-2* and *4-3*, 1-hour and 24-hour TSP results fluctuated well below the Action Level during the Reporting Period.
- 4.04 The meteorological information during the impact monitoring days are summarized in *Appendix J*.

5 IMPACT MONITORING RESULTS – CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Results of Construction Noise Monitoring

5.02 In this Reporting Period, a total of **20** construction noise monitoring events were undertaken at designated locations. The results for L_{eq30min} at NM1, NM2, RNM3 and NM4 are summarized in *Tables 5-1, 5-2, 5-3* and *5-4* and graphical plots are shown in *Appendix I*.

 Table 5-1
 Summarized of Construction Noise Monitoring Results at NM1

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
30-Oct-13	13:51	14:21	48.6	49.6	45.6	49.8	47.7	46.6	48.2
5-Nov-13	13:17	13:47	47.6	48.3	46.7	46.9	44.5	47.8	47.1
11-Nov-13	14:38	15:08	54.5	53.6	52.5	51.3	58.7	64.1	58.4
16-Nov-13	13:42	14:12	64.7	53.9	55.4	53.8	56.3	54.7	58.8
21-Nov-13	11:01	11:31	52.5	53.5	49.1	60.5	50.5	46.3	54.7
Limit Le	vel in dE	B(A)	-			75			

Table 5-2Summarized of Construction Noise Monitoring Results at NM2

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
30-Oct-13	13:14	13:44	61.2	64.8	61.4	60.2	59.5	62.9	62.0
5-Nov-13	11:14	11:44	61.4	62.0	59.4	62.1	59.2	59.7	60.8
11-Nov-13	14:14	14:44	64.4	59.6	59.1	63.8	63.7	58.6	62.2
16-Nov-13	14:21	14:51	68.5	70.8	71.3	73.5	73.8	72.5	72.1
21-Nov-13	13:41	14:11	68.8	60.2	58.2	58.9	64.0	64.0	64.0
Limit Le	vel in dE	B(A)			-	-			75

Table 5-3	Summarized of Construction Noise Monitoring Results at RNM3
-----------	---

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	Corrected* Leq30
30-Oct-13	10:49	11:19	62.2	62.5	62.5	61.4	62.3	60.7	62.0	65.0
5-Nov-13	10:36	11:06	60.9	62.3	61.7	69.9	69.5	61.9	66.1	69.1
11-Nov-13	13:39	14:09	75.2	73.6	68.4	68.9	68.1	68.5	71.5	74.5
16-Nov-13	15:01	15:31	62.1	61.4	62.2	61.9	62.1	61.9	61.9	64.9
21-Nov-13	14:15	14:45	62.0	62.4	59.8	60.6	71.7	70.6	67.2	70.2
Limit Le	vel in dE	B(A)	-						75	

* A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
-----------	--

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30			
30-Oct-13	10:14	10:44	65.9	64.5	67.5	61.4	63.1	63.9	64.8			
5-Nov-13	9:58	10:28	61.8	63.1	63.9	62.9	64.1	64.5	63.5			
11-Nov-13	13:12	13:42	68.3	69.0	67.6	74.0	73.4	71.8	71.4			
16-Nov-13	15:39	16:09	57.6	52.0	47.7	51.6	60.8	52.4	55.9			
21-Nov-13	10:24	10:54	48.8	51.4	58.3	55.8	61.0	48.7	56.4			
Limit Le	vel in dE	B(A)			-	-			75			

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. In view of the results shown in *Tables 5-1, 5-2, 5-3 and 5-4* which were all below 75dB(A), no Action or Limit Level exceedance was triggered during this month.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- 6.01 The construction of marine outfall works was commenced on 19 July 2011 and therefore marine water quality monitoring is required in this Reporting Period. In this Reporting Period, 14 events of water quality monitoring were carried out at the designated locations.
- 6.02 The monitoring results including in-situ measurements and laboratory testing results are presented in *Appendix H*. The graphical plots are shown in *Appendix I*.
- 6.03 During the Reporting Period, field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 33.39 to 33.48 ppt, and pH value was within 7.95 to 8.00.
- 6.04 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) in this Reporting Period, are summarized in *Tables 6-1*, *6-2*, *6-3 and 6-4*. A summary of exceedances for the 3 parameters are shown in *Table 6-5*.

 Table 6-1
 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

Sampling date	Dissolved Oxygen conc. of Depth Ave. of Surf. and Mid Layer (mg/L)							olved Ox Bot		onc. of I yer (mg		ve. of
uate	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Oct-13	8.31	8.27	8.00	8.25	7.76	8.50	NA	7.96	7.57	7.98	7.47	8.28
28-Oct-13	6.97	6.50	6.61	6.82	6.46	6.79	NA	6.08	6.16	6.37	6.16	6.43
30-Oct-13	6.17	6.25	5.75	6.08	5.80	6.15	NA	5.22	5.72	5.06	5.38	5.17
1-Nov-13	7.06	6.84	6.22	7.54	5.34	7.49	NA	6.40	5.28	5.77	4.58	6.11
5-Nov-13	6.82	6.93	7.63	6.36	7.97	6.27	NA	6.84	7.84	6.29	7.31	6.44
7-Nov-13	6.97	6.95	7.02	7.28	7.03	7.25	NA	6.84	6.80	6.94	7.18	6.87
9-Nov-13	6.02	6.18	6.29	6.10	6.10	6.09	NA	5.92	5.93	6.13	5.93	6.15
11-Nov-13	6.39	6.41	6.51	6.60	6.48	6.54	NA	6.49	6.44	6.59	6.39	6.59
13-Nov-13	6.59	6.68	6.43	6.55	6.23	6.49	NA	6.59	6.26	6.48	6.31	6.46
16-Nov-13	7.07	7.31	6.56	6.98	6.61	7.02	NA	6.89	6.52	6.80	6.56	6.79
19-Nov-13	5.75	5.23	5.06	5.56	4.98	5.90	NA	5.34	5.13	5.48	5.08	5.79
21-Nov-13	5.71	4.82	4.96	5.26	6.56	4.81	NA	4.94	4.96	4.78	6.13	4.93
23-Nov-13	7.92	6.27	7.36	6.66	7.31	5.54	NA	5.71	6.37	5.85	6.31	5.44
25-Nov-13	5.92	6.75	5.97	6.98	7.94	5.75	NA	6.29	5.95	6.19	7.31	5.49

Table 6-2Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended
Solids)

Sampling		Turbi	dity Dep	th Ave. (NTU)		Sus	spended	Solids	Depth A	ve. (mg	g/L)
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Oct-13	2.50	3.18	3.05	2.70	2.28	2.53	2.20	1.50	4.53	4.43	3.97	2.93
28-Oct-13	1.40	1.73	2.05	1.98	1.57	2.15	1.00	1.53	1.43	2.93	1.77	1.63
30-Oct-13	3.25	2.68	3.02	2.37	3.22	3.22	2.80	2.87	1.43	0.80	1.87	1.63
1-Nov-13	1.75	2.87	2.65	2.72	1.32	1.50	2.00	5.73	4.23	3.97	1.40	1.63
5-Nov-13	2.85	2.23	2.73	3.23	1.80	2.53	3.90	2.63	3.43	4.17	1.83	3.40
7-Nov-13	3.20	3.55	3.22	3.48	3.92	4.35	4.40	5.37	4.60	5.27	5.07	6.30
9-Nov-13	3.50	3.87	4.12	3.75	4.60	4.25	6.50	4.70	6.60	5.77	5.83	6.30
11-Nov-13	3.75	3.80	3.40	5.68	4.67	3.50	5.00	7.27	4.43	6.33	5.43	4.57
13-Nov-13	2.25	3.35	3.10	3.82	2.68	2.77	2.10	4.23	3.17	4.07	2.27	2.50
16-Nov-13	3.35	3.77	3.90	4.60	4.02	4.32	4.20	5.17	5.17	7.73	1.83	2.80
19-Nov-13	4.15	4.43	4.35	6.40	4.30	6.00	6.30	5.47	6.13	7.27	5.40	6.33
21-Nov-13	3.35	3.92	4.97	3.88	3.60	3.85	3.30	2.57	4.07	2.90	4.93	3.73
23-Nov-13	2.95	3.67	3.33	3.38	3.43	3.27	3.50	7.57	3.60	7.97	9.13	6.47
25-Nov-13	2.95	4.35	3.28	4.87	4.37	4.47	5.20	4.80	5.10	4.73	3.73	5.43

Table	6-3
-------	-----

Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)

Sampling	Dissolved Oxygen conc. of Depth Ave. of Surf. and Mid Layer (mg/L)								• •	onc. of I yer (mg	-	ve. of
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Oct-13	7.35	6.52	6.93	7.32	6.99	6.89	NA	6.26	6.36	6.91	6.63	6.67
28-Oct-13	6.17	6.16	6.48	6.19	6.58	6.79	NA	5.88	6.04	5.86	6.14	5.84
30-Oct-13	6.16	6.53	5.73	5.71	6.11	5.74	NA	6.03	6.73	5.52	6.12	5.75
1-Nov-13	7.51	6.56	6.12	6.46	6.77	7.20	NA	6.87	6.33	5.25	5.65	5.01
5-Nov-13	6.68	6.49	6.20	6.66	6.40	6.07	NA	6.15	6.16	6.37	6.22	6.08
7-Nov-13	6.69	6.66	6.41	6.67	6.40	6.29	NA	5.88	5.75	5.82	6.27	6.23
9-Nov-13	6.39	6.24	6.08	6.16	6.09	6.12	NA	6.02	6.01	6.09	5.95	6.10
11-Nov-13	6.74	6.57	6.61	6.36	6.35	6.48	NA	6.38	6.37	6.35	6.39	6.38
13-Nov-13	6.54	6.53	6.43	6.54	6.26	6.53	NA	6.49	6.30	6.49	6.06	6.53
16-Nov-13	6.77	6.92	6.62	6.90	6.87	6.75	NA	6.77	6.52	6.78	6.55	6.73
19-Nov-13	6.03	6.10	5.77	6.26	5.76	6.60	NA	5.87	5.72	6.15	5.61	6.40
21-Nov-13	5.80	5.45	5.44	5.58	5.10	6.16	NA	5.49	5.34	5.50	4.96	5.78
23-Nov-13	7.72	6.67	6.88	5.95	8.09	7.56	NA	6.12	6.01	5.83	7.67	6.27
25-Nov-13	6.18	6.34	6.75	6.34	7.37	6.84	NA	6.43	6.65	6.29	7.06	6.59

Table 6-4	Summary of Wate	C Quality	Results –	Mid-flood	Tides	(Turbidity	&
	Suspended Solids)						

Sampling		Turbi	dity Dep	th Ave. ((NTU)		Su	spende	d Solids	Depth A	Ave. (mg/	'L)
date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Oct-13	2.15	3.37	3.93	2.13	2.93	2.20	2.00	4.30	3.30	2.37	1.33	1.00
28-Oct-13	1.75	2.37	1.95	1.95	2.12	2.48	2.20	1.23	0.90	2.77	2.60	1.23
30-Oct-13	3.15	3.90	3.68	2.85	3.28	3.83	1.00	1.60	2.43	3.00	2.40	3.43
1-Nov-13	2.20	2.07	2.58	1.92	2.43	1.87	2.50	2.27	2.53	2.17	3.57	2.30
5-Nov-13	2.65	3.02	2.72	3.68	2.95	3.17	3.20	4.07	3.33	4.93	3.10	4.47
7-Nov-13	4.20	3.53	3.88	3.90	4.05	3.63	10.80	5.33	6.67	5.57	5.40	3.93
9-Nov-13	4.10	3.87	4.60	4.20	4.23	3.65	6.60	5.30	4.77	4.20	4.17	5.00
11-Nov-13	4.25	4.80	4.55	3.70	5.20	3.92	9.10	6.70	7.67	7.00	7.13	5.33
13-Nov-13	2.10	2.70	2.95	3.68	3.37	4.63	2.40	4.30	4.30	4.13	3.80	3.60
16-Nov-13	4.25	4.20	3.95	6.53	4.55	5.68	0.80	3.25	3.57	3.40	2.67	3.73
19-Nov-13	3.75	4.65	4.87	5.13	6.03	5.52	4.80	5.70	6.63	8.20	6.93	5.87
21-Nov-13	2.75	3.63	4.17	4.32	3.87	4.25	2.90	4.30	2.97	2.37	2.87	3.80
23-Nov-13	3.40	3.57	4.52	3.77	3.67	3.78	9.10	6.40	9.03	8.00	7.13	5.93
25-Nov-13	2.45	3.50	3.08	4.10	4.35	4.33	7.50	5.53	3.87	4.73	8.60	5.53

 Table 6-5
 Summarized Exceedances of Marine Water Quality

Station	DO (Ave of Surf. & mid-depth)		DO (A Bottom	ve. of Layer)	Turb (Depth	•	SS (Depth	-		Total Exceedance	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit	
				Mi	d-Ebb						
W1	0	0	0	0	0	0	0	0	0	0	
W2	0	0	0	0	0	0	0	0	0	0	
W3	0	0	0	0	0	0	0	0	0	0	
				Mid	-Flood						
W1	0	0	0	0	0	0	0	0	0	0	
W2	0	0	0	0	0	0	0	0	0	0	
W3	0	0	0	0	0	0	0	0	0	0	
No of Exceedance	0	0	0	0	0	0	0	0	0	0	

6.05 For marine water monitoring, no exceedance of Action/Limit levels was recorded in this Reporting Period. Therefore, no associated corrective actions were then required.

7 ECOLOGY

- 7.01 According to Clause 3.7 and Figure 4 in the Environmental Permit No. EP-281/2007/A, a total of 12 numbers *Celtis Timorensis* (uncommon species) in Chung Mei at Sok Kwu Wan, are identified to require labeling, fencing and protection. Out of these, four numbers located in the Pumping Station No.1 area are required to be transplanted in advance of pumping station construction and the transplantation proposal has been submitted to EPD previously.
- 7.02 Regular inspection of the transplanted tree was carried out by the landscaping sub-Contractor (Melofield Nursery and Landscape Contractor Limited) on **31 October and 15 November 2013**. As a contingency measure in case that CT7 to CT10 can no longer be recovered, additional 7 no. of *Celtis Timorensis* (No. CT_1A to CT7A) were planted adjacent to the under-monitoring Celtis Timorensis CT7 to CT10 on 30 April 2011.
- 7.03 In April 2012, CT_1A and CT_7A were damaged by the fell broken tree trunk due to tree decayed by white ants. Therefore, only 5 no. of additional *Celtis Timorensis*, namely CT_2A, CT_3A, CT4A, CT_5A and CT_6A were inspected since May 2012. Furthermore, during tree inspection on 30 July, CT4A was disappeared after typhoon No.10 on 24 July 2012 and it was certified as dead. Eventually, 4 no. of additional *Celtis Timorensis*, namely CT_2A, CT_3A, CT_6A were inspected in the remaining period.
- 7.04 During the tree inspection on 15 August 2013, CT2A and CT3A were lost due to typhoon on 14 August 2013. Compensatory of additional *Celtis Timorensis* is recommended to carry out by the Landscape Contractor.
- 7.05 The tree inspection report for this Reporting Period is presented in *Appendix N*.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix K*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ('000m ³)	0	-
Reused in the Contract (Inert) ('000m ³)	0	-
Reused in other Projects (Inert) ('000m ³)	0	-
Disposal as Public Fill (Inert) ('000m ³)	0	-

Table 8-2Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Metal (kg)	0	-
Paper / Cardboard Packing (kg)	0	-
Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	7.910	Outlying Islands Transfer Facilities (Sok Kwu Wan)

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than $50m^3$ in this monthly period.

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulated by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 29 October and 5, 13 and 20 November 2013.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in *Appendix L*.

Table 7-1 Site Obset values				
Date	Findings / Deficiencies	Follow-Up Status		
29 October 2013	• No adverse environmental impacts were observed.	N.A.		
5 November 2013	• Fugitive dust emission was observed, the Contractor was reminded to practice water spaying regularly.	Water was sprayed at the exposed slope on 13 November 2013.		
13 November 2013	• No adverse environmental impacts were observed.	N.A.		
20 November 2013	• Power generator without drip tray was observed at sewage treatment plant, the Contractor was reminded to provide appropriate drip tray to eliminate any leakage.	Drip tray was provided for the power generator on 27 November 2013		

Table 9-1Site Observations

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1	Statistical Summary of Environmental Complaints

Departing Devied	Environmental Complaint Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
27 July 2010 – 31 December 2011	1 (Nov 2011)	1 (Nov 2011)	water quality	
January - December 2012	0	1 (Nov 2011)	NA	
January - October 2013	0	1 (Nov 2011)	NA	
November 2013	0	1 (Nov 2011)	NA	

Table 10-2 Statistical Summary of Environmental Summons

Departing Devied	Environmental Summons Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
27 July 2010 – 31 December 2011	0	0	NA	
January - December 2012	0	0	NA	
January - October 2013	0	0	NA	
November 2013	0	0	NA	

Table 10-3 Statistical Summary of Environmental Prosecution

Departing Davied	Environmental Prosecution Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
27 July 2010 – 31 December 2011	0	0	NA	
January - December 2012	0	0	NA	
January - October 2013	0	0	NA	
November 2013	0	0	NA	

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Sok Kwu Wan Environmental Monitoring and Audit covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - (a) Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - (b) Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - (c) Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - (d) Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material to the surrounding water, and barges and hoppers should not be filled to a level which would cause the overflow of materials or sediment laden water during loading or transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- 11.11 During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force;
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill;
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

Terrestrial Ecology

- 11.20 The uncommon tree species should be labelled and probably fenced to avoid direct or indirect disturbance during construction. Works areas should avoid woodland habitats, in particular where these trees are located.
- 11.21 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.

11.22 Special attention should be paid during the breeding season of Romer's Tree Frog (March to September) to ensure their habitat landward to Pumping Station P2 site is well protected from site runoff. Barriers should be deployed completely along the landward side of the pumping station site boundary to prevent any site runoff from entering the tree frog habitat. Intactness of the barriers should be frequently inspected.

Intertidal and Subtidal Ecology

- 11.23 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); use of silt curtains along coastline; minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.
- 11.24 To reduce impacts of sediment resuspension upon nearby habitats and organisms during dredging, all dredging should be done using a closed-grab dredger, and silt curtains should be deployed around the dredger during all dredging activity

Fisheries Mitigation Measure

11.25 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.26 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree protective measures should be implemented to ensure trees identified as to be retained are satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area;
 - Conservation of top-soil for reuse.
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.27 The implementation schedule of mitigation measures is presented in *Appendix M*.
- 11.28 Leader had been implementing the required environmental mitigation measures according to the Sok Kwu Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Period are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures		
Water	 Drainage channels were provided to convey run-off into the treatment facilities; 		
Quality	and		
Quinty	Drainage systems were regularly and adequately maintained.		
Air Quality	• Cover all excavated or stockpile of dusty material by impervious sheeting or		
	sprayed with water to maintain the entire surface wet;		
	• Public roads around the site entrance/exit had been kept clean and free from dust;		
	and		
	• Tarpaulin covering of any dusty materials on a vehicle leaving the site.		

 Table 11-1
 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Noise Waste and	 Good site practices to limit noise emissions at the sources; Use of quite plant and working methods; Use of site hoarding or other mass materials as noise barrier to screen noise at ground level of NSRs; and To minimize plant number use at the worksite. Excavated material should be reused on site as far as possible to minimize off-site disposal. Scrap metals or abandoned equipment should be recycled if possible:
Management	 Waste arising should be kept to a minimum and be handled, transported and disposed of in a suitable manner; The Contractor should adopt a trip ticket system for the disposal of C&D materials to any designed public filling facility and/or landfill; and Chemical waste shall be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12 IMPACT FORECAST

12.01 Key issues to be considered in the coming month include:

Water Quality

- Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and
- The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded; and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

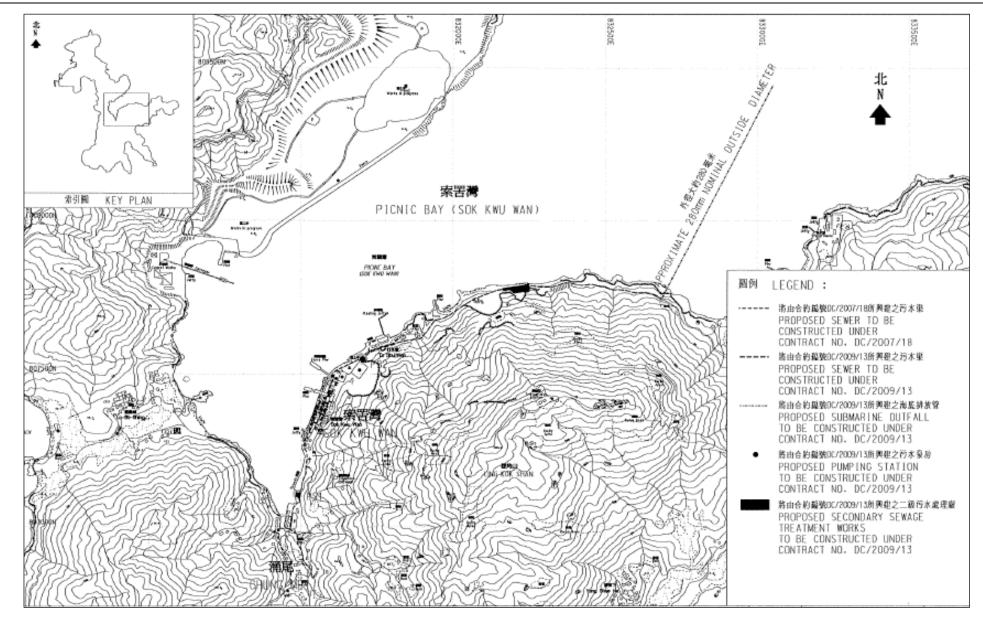
- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the 40th monthly EM&A Report covering the construction period from 26 October to 25 November 2013.
- 13.02 In this Reporting Period, no 1-hour and 24-hour TSP results were found to be triggered the Action or Limit Level
- 13.03 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period.
- 13.04 The monitoring result demonstrated no exceedance of Action or Limit Level of marine water quality monitoring in this Reporting Period.
- 13.05 No documented complaint, notification of summons or successful prosecution was received.
- 13.06 In this Reporting Period, weekly joint site inspection by RE, the Contractor and ET was carried out on 29 October and 5, 13 and 20 November 2013. All the observation has been rectified in the set time frame. The environmental performance of the Project was therefore considered as satisfactory.

RECOMMENDATIONS


- 13.07 During dry and windy season, the Contractor shall pay attention on the construction dust that may cause environmental issues in the upcoming months. Mitigation measures on construction dust identified at the EM&A manual such as watering at haul road and covering of dusty material should be fully implemented.
- 13.08 Muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish Culture Zone (FCZ) at Picnic Bay and the secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

Appendix A

Site Layout Plan – Sok Kwu Wan Portion Area

Appendix B

Organization Structure and Contact Details of Relevant Parties

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Ms. Jacky C.M. Wong	2159-3413	2833-9162
SCJV	Engineer's Representative	Mr. Ian Jones	2982 0240	2982 4129
URS	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922
Leader	Director	Mr. Wilfred So	2982 1750	2982 1163
Leader	Project Manager	Mr. Vincent Chan	2982 1750	2982 1163
Leader	Construction Manager	Mr. Ron Hung	2982 1750	2982 1163
Leader	Environmental Officer	Mr. Leung Man Kin	2982 8652	2982 8650
Leader	Environmental Supervisor	Mr. Chan Chi Kau	2982 8652	2982 8650
Leader	Sub-Agent	Mr. Leung Man Kin	2982 1750	2982 1163
Leader	Senior Safety Officer	Mr. Andy Lau	2982 1750	2982 1163
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel

Legend:

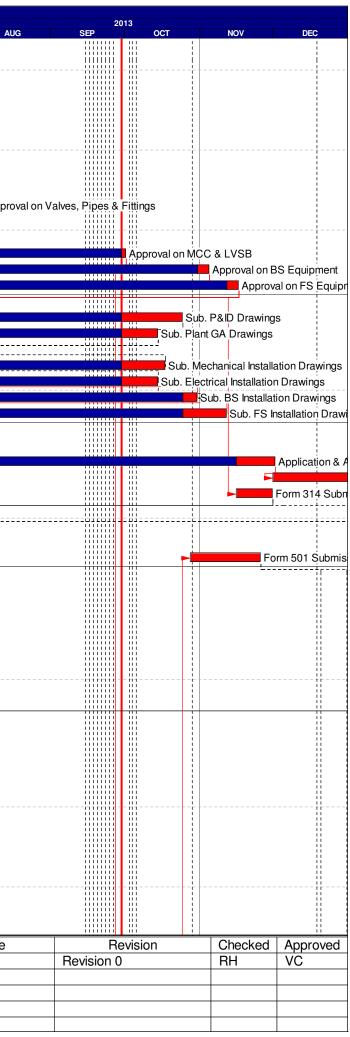
DSD (Employer) – Drainage Services Department

CDM (Engineer) – URS Hong Kong Limited CDM Joint Venture

Leader (Main Contractor) – Leader Civil Engineering Corporation Limited

URS (IEC) – URS Hong Kong Limited

AUES (ET) – Action-United Environmental Services & Consulting

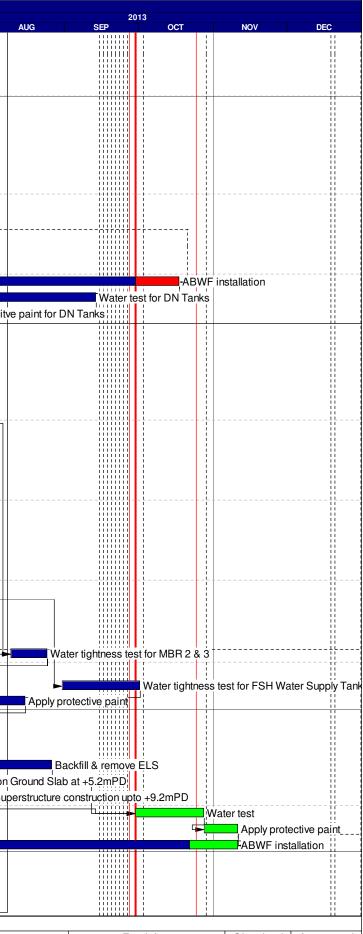


Appendix C

Three Months Rolling Construction Programme

Activity ID	Description		Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Predecessors	Successors		i SEP	2013	OCT	NOV	DEC
Project Key	Date									JUL AUG	SEP		OCT	NOV	DEC
KD0010	Receive Letter of Acceptance	0	100		05/05/10 A		05/05/10 A		KD0125						
KD0020	Project Commencement Date	0	0 100		17/05/10 A		17/05/10 A		 E&M0010, E&M0070, E&M1001, E&M2001, KD0125, PRE0020, PRE0040, PRE0050, PRE0060, PRE0090, PRE0100, PRE0130, SKW0250, SKW0588, SKW0651, SKW0881, SKW1131, SKW1481, SKW1591, SKW1611, YSW0020, YSW0050, YSW0075, YSW0180, YSW0200, YSW0220, YSW0240, YSW02401,			··			
KD0030	Section W1 - Slope Works in Portion A & C	0	100		14/10/11 A		14/10/11 A	YSW0100, YSW0110, YSW0140,	KD0125, KD0130, YSW01755						
KD0040	Section W2 - YSW STW & Submarine Outfall (1370d)	0	0 0		16/06/14 *		16/06/14 *	0 * E&M0700, YSW0400, YSW0800, YSW0925, YSW16704, YSW1700	KD0125, KD0132			T			
KDOOFO	Ocation MO. Ecotorth Diversion in Dr. O				00/00/10 *		04/00/11 *		KD0125				tion W2 For	ata ath Diversion	in Dtn C
KD0050 KD0060	Section W3 - Footpath Diversion in Ptn G Section W4 - Slope Works in Portios H & I	0			29/09/13 * 29/09/13 *		24/03/11 * 27/03/12 *	-920d * SKW0481 -551d * SKW05938, SKW059416					+-		
		`									·	╶┽┍╍╋╴╺┽╴╸╵	+-		
KD0070	Section W5 - P.S. No. 1 in Portion D	0	0		29/09/13 *		10/02/12 *	-597d * SKW0741	KD0125				1	S. No. 1 in Portio	
KD0080 KD0090	Section W6 - Sewer & PS No2 in Ptn. E & F Section W7 - SKW STW, RM & Sm. Outfall	0			29/09/13 * 07/10/14 *		10/02/12 * 07/10/14 *	-597d * SKW0971 0 * E&M3360, SKW1221, SKW1291,					+-		
KD0090			0		07/10/14		07/10/14	SKW1431, SKW1441, SKW1521,	KD0125, KD0165, SKW0491						
KD0100	Section W8 - Landscape Softworks	0	0 0		29/09/13 *		05/04/13 *	-177d * SKW1611, SKW1621				Sect	tion W8 - Lar	ndscape Softwor	rks
KD0110	Section W9 - Establishment Works	0	0 0		03/04/14 *		03/04/14 *	0 * SKW1631	KD0125						
KD0125	Project Completion	0	0		12/09/15 *		12/09/15 *	0 * KD0010, KD0020, KD0030, KD0040, KD0050, KD0060, KD0070, KD0080, KD0090, KD0110, SKW0541							
KD0130	Completion of Maintenance Period of W1	1	0	30/09/13	30/09/13 *	13/10/12	13/10/12 *	-352d KD0030, YSW01755, YSW01805,				Com	pletion of Ma	aintenance Perio	od of W1
KD0132	Completion of Maintenance Period of W2	1	0	15/06/15	15/06/15 *	15/06/15	15/06/15 *	YSW01810 0 E&M0730, KD0040							
KD0135	Completion of Maintenance Period of W4	1	-	30/09/13	30/09/13 *	27/03/13	27/03/13 *	-187d KD0060, SKW05947, SKW1581				— → Com	pletion of Ma	aintenance Perio	od of W4
													·		
KD0145 KD0155	Completion of Maintenance Period of W5	1	-	30/09/13	30/09/13 *	10/02/13	10/02/13 *	-232d					-	aintenance Perio aintenance Perio	
KD0155	Completion of Maintenance Period of W6 Completion of Maintenance period of W7	1	-	30/09/13 06/10/15	30/09/13 * 06/10/15 *	10/02/13 06/10/15	10/02/13 * 06/10/15 *	-232d E&M2130, E&M2180, SKW0961, 0 * KD0090, SKW0595, SKW05972,				99 Hill 1	·		
			0	00/10/10	00/10/10	00/10/10	00/10/10	SKW0861							
Preliminary (Civil)		1		- 1	1	1								
PRE0020	Pre-condition Survey	60	-	17/05/10 A			15/07/10 A	KD0020							
PRE0040 PRE0050	Erection of Engineer's Site Accommodation at YSW Taking over the Secondary Engineer's Site Accomm	60		17/05/10 A 17/05/10 A			15/07/10 A 30/07/10 A	KD0020 KD0020							
PRE0050	Application of Consent from Marine Department	60		17/05/10 A			15/07/10 A	KD0020							
PRE0090	Working Group Meeting for Outfall Construction	120			13/09/10 A				SKW1151						
PRE0100	Application & Consent of XP from HyD (Mo Tat Rd)	120			13/09/10 A				SKW1491, SKW1501			1 1 1 1 1 1 1			
PRE0130	Setup Web-site for EM&A Reporting	90	100	17/05/10 A	14/08/10 A	17/05/10 A	14/08/10 A	KD0020							
Preliminary (E&M)											111 111			
Technical Sub					1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
E&M1120	Hydraulic Test of Pipeworks	7	7 70	09/05/13 A	07/11/13	09/05/13 A	29/04/14	172d E&M1110	E&M11800				1	Hydraulic Tes	st of Pipeworks
E&M0010	gn of SKWSTW & YSWSTW Submission	38	100	17/05/10 A	22/06/10 4	17/05/10 4	23/06/10 A	KD0020	E&M0020, E&M0040, E&M0235						
E&M0020	Vetting and Comment by ER	21		24/06/10 A			14/07/10 A	E&M0010	E&M0030, E&M0040						
E&M0030	Revision and Resubmission	125		15/07/10 A		15/07/10 A	16/11/10 A	E&M0020	E&M0080						
E&M0080	Approval from the Engineer	14	100	17/11/10 A	30/11/10 A	17/11/10 A	30/11/10 A	E&M0030	E&M0295						
Hydraulic Des			1												
E&M0040	Submission	21		15/07/10 A					E&M0050, E&M0101, E&M0240, E&M0260,						
E&M0050 E&M0060	Vetting and Comment by ER Revision and Resubmission	14		05/08/10 A 19/08/10 A			18/08/10 A 10/10/10 A	E&M0040 E&M0050	E&M0060 E&M0430						
E&M0430	Approval from the Engineer	7			30/11/10 A				E&M0295						
YSW1536	Water tightness test	40			26/08/13 A				YSW1538	-	Water tightnes	ss test			
Equipment Su	bmission & Approval										Water tightness				
E&M0070	Submission of Membrane Module	50			05/07/10 A				E&M0090			iii I iii			
E&M0090 E&M0100	Vetting and Comment by ER Revision and Resubmission	14			19/07/10 A 24/02/11 A			E&M0070 E&M0090	E&M0100 E&M0160						
Start date Finish date Data date Run date Page number	05/05/10 Early bar 27/07/17 Progress bar 30/09/13 Summary bar 25/11/13 Progress point TA Summary point			Cor	Le	eader Ci Cont of Sewa	vil Engine ract No. I age Treatr	ering Corp. Ltd. DC/2009/13 ment Works at YSW & SKW e (Nov 2013 - Jan 2014)		Date 31/10/13		Revisio	on	Checked RH	Approved VC
c Primavera	Systems, Inc. Start milestone point Finish milestone poin					······	- 3								

	Activity ID	Description	Original Duration	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors		
	E&M0101	Submission of Equipment	90		05/08/10 A	30/11/11 A		30/11/11 A		E&M0040	E&M0102	JUL	AUG
	E&M0102	Vetting and Comment by ER	60		03/11/10 A		03/11/10 A			E&M0101	E&M0103		
	E&M0103	Revision and Resubmission	60		01/02/11 A	-	01/02/11 A			E&M0102	E&M0110, E&M0120, E&M0130, E&M0140,		
	E&M0110	Approval on Coarse Screens	30		25/05/11 A	-	25/05/11 A			E&M0103	E&M0390		
	E&M0120	Approval on Fine Screens	30		12/09/11 A	12/09/11 A	12/09/11 A			E&M0103	E&M0400, E&M3060		
	E&M0130	Approval on Pumps	30		23/06/11 A		23/06/11 A			E&M0103	E&M0410, E&M3070		
	E&M0140	Approval on Submersible Mixers	30		23/03/11 A		23/03/11 A			E&M0103	E&M0420, E&M3080		
	E&M0150	Approval on Grit Removal Equipment	30		10/10/11 A	10/10/11 A				E&M0103	E&M0380, E&M3030		
	E&M0160	Approval on MBR Membrane Modules (M.M.)	105		03/08/10 A					E&M0100	E&M0360, E&M0370, E&M3010		
	E&M0170	Approval on Sludge Dewatering Equipment	30		01/09/11 A		01/09/11 A			E&M0103	E&M0440, E&M3090		
	E&M0180	Approval on Valves, Pipes & Fittings	30		19/11/11 A	04/08/13 A		04/08/13 A		E&M0103	E&M0450, E&M3100	A	∣ Approv
	E&M0190	Approval on Penstocks	30		15/11/11 A	15/11/11 A	15/11/11 A			E&M0103	E&M0460, E&M3110	·	
	E&M0200	Approval on Instrumentation	30		21/06/11 A	08/03/12 A	21/06/11 A			E&M0103	E&M0470, E&M3130		
	E&M0210	Approval on MCC & LVSB	30		19/11/11 A	01/10/13	19/11/11 A		-751d	E&M0103	E&M0480, E&M3140		
	E&M0220	Approval on BS Equipment	30		30/11/11 A	04/11/13	30/11/11 A		-543d	E&M0103, E&M0280	E&M0490, E&M3150		
	E&M0230	Approval on FS Equipment	30		30/11/11 A	16/11/13	30/11/11 A		-727d	E&M0103, E&M0290	E&M0295, E&M0320, E&M0500, E&M3160		
		nission & Approval							-				<u> </u>
	E&M0235	Sub. P&ID Drawings	100	75	24/06/10 A	24/10/13	24/06/10 A	28/10/11	-727d	E&M0010	E&M0250		
	E&M0240	Sub. Plant GA Drawings	45	-	04/08/10 A	14/10/13	04/08/10 A		-716d	E&M0040	E&M0250, E&M0280, E&M0290		
	E&M0250	Sub. Builder's Works Requirements Drawings	15		04/08/10 A	31/01/13 A	04/08/10 A			E&M0235, E&M0240, E&M0260,	E&M0280, E&M0290		
	E&M0260	Sub. Mechanical Installation Drawings	60		27/09/10 A	17/10/13	27/09/10 A		-720d	E&M0040	E&M0250		
	E&M0270	Sub. Electrical Installation Drawings	60	-	27/09/10 A	14/10/13	27/09/10 A			E&M0040	E&M0250, E&M0280		
	E&M0280	Sub. BS Installation Drawings	120		27/09/10 A	30/10/13	27/09/10 A			E&M0240, E&M0250, E&M0270	E&M0220		
	E&M0290	Sub. FS Installation Drawings	120		13/11/11 A	11/11/13	13/11/11 A			E&M0240, E&M0250	E&M0230		
	Statutory Submi			00		1			1				<u> </u>
	E&M0295	Preparation of Submission to HEC	39	100	01/11/11 A	30/11/11 A	01/11/11 A	30/11/11 A		E&M0080, E&M0230, E&M0430	E&M0300		
	E&M0300	Application & Approval from HEC	150		01/11/11 A	01/12/13	01/11/11 A		-374d	E&M0295	E&M0305		
	E&M0305	Provision of Cables to the STWs	180		01/12/13	30/05/14	22/11/12	21/05/13	-374d		E&M0680		
	E&M0320	Form 314 Submission to FSD	14	-	16/11/13	30/11/13	07/05/13	21/05/13		E&M0230	E&M0325, E&M0670		
	E&M0325	Submission to WSD	14	-	01/11/11 A	29/02/12 A	01/11/11 A	29/02/12 A		E&M0320	E&M0670, E&M0680		<u> </u>
	E&M0330	Form 501 Submission to FSD (YSW)	28		11/08/15	08/09/15	14/11/13	11/12/13	-636d		E&M0700		
	E&M0340	Form 501 Submission to FSD (SKW)	28	-	06/05/14	03/06/14	11/06/14	08/07/14	36d		E&M3360		
	E&M0350	Form 501 Submission to FSD (PS1 & PS2)	28	-	28/10/13	25/11/13	14/11/12	11/12/12		E&M2016	E&M11800, E&M2180		
Y	ung Shue Wa	an		-									
	Preliminary												
	YSW0020	Approval of Environmental Team	16	100	17/05/10 A	01/06/10 A	17/05/10 A	01/06/10 A		KD0020	YSW00201, YSW0030, YSW00351,		
	YSW00201	Change Baseline Monitoring Location (Air&Noise)	59		02/06/10 A		02/06/10 A			YSW0020	YSW0030		
1	YSW0030	Baseline monitoring (Air & Noise)	23		31/07/10 A					YSW0020, YSW00201	YSW0035		
	YSW0035	Baseline Monitoring Report Submission (A & N)	16		23/08/10 A		23/08/10 A			YSW0030	YSW0120, YSW01545, YSW0500,		
	YSW00351	Submission & Approval for Monitoring Method (W)	58		02/06/10 A		02/06/10 A			YSW0020	YSW0040		
	YSW0040	Baseline monitoring (Water)	155	100	30/07/10 A	31/12/10 A	30/07/10 A	31/12/10 A		YSW0020, YSW00351	YSW0350		
	YSW0050	Erect Hoarding and Fencing	60	100	19/05/10 A	17/07/10 A	19/05/10 A	17/07/10 A		KD0020	YSW0155		
	Section W1 - Slo	ope Works in Portion A & C									•		
	YSW0075	Mobilization	30	100	17/05/10 A	15/06/10 A	17/05/10 A	15/06/10 A		KD0020	YSW0080, YSW0100		
	YSW0080	Site Clearance	30	100	16/06/10 A	15/07/10 A	16/06/10 A	15/07/10 A		YSW0075	YSW0085, YSW0090, YSW0120		
	YSW0085	Initial Survey	14	100	02/07/10 A	15/07/10 A	02/07/10 A	15/07/10 A		YSW0080	YSW0120		
	YSW0090	Verify the Rock Boulder required Stablization Wk	249	100	16/07/10 A	21/03/11 A	16/07/10 A	21/03/11 A		YSW0080	YSW0100, YSW0110		
	YSW0100	Removal of Rock Boulder	257	100	20/09/10 A	03/06/11 A	20/09/10 A	03/06/11 A		YSW0075, YSW0090	KD0030		
	YSW0110	Stablizing work for rock boulder	35	100	16/07/11 A	19/08/11 A	16/07/11 A	19/08/11 A		YSW0090	KD0030		
	YSW0120	Cut the slope to design profile	2	100	24/09/10 A	25/09/10 A	24/09/10 A	25/09/10 A		YSW0035, YSW0080, YSW0085	YSW0131, YSW0155, YSW0170		
	YSW0131	Mobilization of Plant and Material of Soil Nails	14	100	12/09/10 A	25/09/10 A	12/09/10 A	25/09/10 A		YSW0120	YSW0132		
	YSW0132	Erect Scaffold and Working Platform	2	100	26/09/10 A	27/09/10 A	26/09/10 A	27/09/10 A		YSW0131	YSW0133		
	YSW0133	Setting out and Verify Locations of Soil Nails	45	100	28/09/10 A	11/11/10 A	28/09/10 A	11/11/10 A		YSW0132	YSW0134		
	YSW0134	Drilling and Soil Nails Installation	43	100	19/10/10 A	30/11/10 A	19/10/10 A	30/11/10 A		YSW0133	YSW0135		
	YSW0135	Construction of Nail Heads	12	100	01/12/10 A	12/12/10 A	01/12/10 A	12/12/10 A		YSW0134	YSW0136		
	YSW0136	Mesh Installation on Cut Slope	3	100	13/12/10 A	15/12/10 A	13/12/10 A	15/12/10 A		YSW0135	YSW01361		
S		05/05/10 Early bar										Da	ate
		27/07/17 Progress bar Critical bar				L	eader Civ	il Engine	ering	Corp. Ltd.		31/10/13	-
		30/09/13 ——Summary bar						act No. D	•	•			-
		25/11/13			Con	struction	of Sewa	ge Treatn	nent V	Vorks at YSW & SKW			-
	0	2A Summary point			3	B-month F	Rolling Pr	ogramme	e (Nov	2013 - Jan 2014)			
	c Primavera S	Start fillestone point Start fillestone point Finish milestone point											



Activity ID	Description	Original Duration C	Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			20			
YSW01361	Verify alignment of access & channels on slope	118	100 16/12/10 A		16/12/10 A	12/04/11 A	- Totat	YSW0136	YSW0140	JUL	AUG	SEP	OCT	NOV	DEC
YSW0140	Construct U-channels & Step Channel on Cut Slope	182	100 13/04/11 A			11/10/11 A		YSW01361	KD0030						
YSW0153	Removal of Ex U-Channel where clash with B. Wall	151	100 10/05/11 A			07/10/11 A		YSW01545	YSW01750				- 11		
YSW01545	Temporary Diversion of Drainage	244	100 08/09/10 A		08/09/10 A	09/05/11 A		YSW0035	YSW0153						
		244						YSW0050, YSW0120	KD0030, YSW0170, YSW0175, YSW01750						
YSW0155	RC Barrier Wall Bay 1-13 (below Ground Level)		100 26/09/10 A		26/09/10 A	08/06/11 A		YSW0120, YSW0120	KD0030						
YSW0170	RC Barrier Wall Bay 1-13 (above Ground Level)	125	100 09/06/11 A		09/06/11 A	11/10/11 A		YSW0155	KD0030						
YSW0175	Construct U-channels and Catchpits (Phase 1)	76	100 09/06/11 A			23/08/11 A		YSW0153, YSW0155	KD0030				-#1		
YSW01750	Construction of subsoil drain (phase 1)	/	100 12/10/11 A			08/02/12 A		KD0030, YSW01800	KD0030						
YSW01755	Construct subsoil drain (phase 2)	14	100 06/12/12 A			31/12/12 A		YSW0760	YSW01755, YSW01810						
YSW01800	RC Barrier Wall Bay 14 (below & above Ground)	87	100 03/09/12 A			28/11/12 A		YSW01810	,						
YSW01805	Hydroseeding	14	100 02/03/13 A			02/03/13 A			KD0130				-#1		
YSW01810	Construct U-channels and Catchpits (Phase 2)	30	100 29/11/12 A	22/12/12 A	29/11/12 A	22/12/12 A		YSW01800	KD0130, YSW01805						
	YSW STW & Submarine Outfall														
Civil & Struc							1								
YSW0412	Mobilization	30	100 17/05/10 A		17/05/10 A			KD0020	YSW0422						
YSW0422	Site Clearance	30	100 17/05/10 A	15/06/10 A	17/05/10 A	15/06/10 A		KD0020, YSW0412	YSW0432, YSW0500, YSW0610, YSW0650						
YSW0432	Initial Survey	14	100 02/06/10 A	15/06/10 A	02/06/10 A	15/06/10 A		YSW0422	YSW0510						
YSW STW	-GLH-T														
YSW0500	ELS & Excavation for Inlet Pumping Station	105	100 08/09/10 A	21/12/10 A	08/09/10 A	21/12/10 A		YSW0035, YSW0422	YSW0510						
YSW0510	Sub-structure construction (Inlet Pumping Stn)	129	100 22/12/10 A	29/04/11 A	22/12/10 A	29/04/11 A		YSW0432, YSW0500	YSW0520						
YSW0520	Backfill & Remove ELS (Inlet Pumping Stn)	40	100 30/04/11 A	08/06/11 A	30/04/11 A	08/06/11 A		YSW0510	YSW05701						
YSW0530	ELS & Excavation for Equalization Tank	159	100 01/01/11 A	08/06/11 A	01/01/11 A	08/06/11 A		YSW0660	YSW0540, YSW05701						
YSW0540	Sub-structure construction (Equalization Tank)	112	100 09/06/11 A	28/09/11 A	09/06/11 A	28/09/11 A		YSW0530	YSW0550, YSW05901						
YSW0550	Backfilling & Remove ELS (Equalization Tank)	20	100 29/09/11 A	18/10/11 A	29/09/11 A	18/10/11 A		YSW0540	YSW05901			- + + + + + + + + +	-++ 		+
YSW05701	ELS & Excavation for Grit Chambers	28	100 09/06/11 A	06/07/11 A	09/06/11 A	06/07/11 A		YSW0520, YSW0530	YSW05711, YSW05731						
YSW05711	Construct sub-structure for Grit Chambers	106	100 07/07/11 A	20/10/11 A	07/07/11 A	20/10/11 A		YSW05701	YSW05721, YSW05911						
YSW05721	Backfill & Remove ELS for Grit Chambers	12	100 21/10/11 A	01/11/11 A	21/10/11 A	01/11/11 A		YSW05711	YSW05911						
YSW05731	ELS & Excavation for Grease Separators (GS)	34	100 07/07/11 A	09/08/11 A	07/07/11 A	09/08/11 A		YSW05701	YSW05741						
YSW05741		52	100 10/08/11 A		10/08/11 A			YSW05731	YSW05751			- + + + + + + + +	-++		
YSW05751	Install Dia.400 Puddles in Grease Separators	27	100 01/10/11 A			27/10/11 A		YSW05741	YSW05752						
YSW05752	· · ·	48	100 28/10/11 A			14/12/11 A		YSW05751	YSW05761						
YSW05761		10	100 15/12/11 A		15/12/11 A			YSW05752	YSW0580, YSW05921						
YSW0580	Excavate to Formation for Deodorizer Room	10	100 25/12/11 A			03/01/12 A		YSW05761	YSW05801, YSW05922						
YSW05801		40	100 04/01/12 A		04/01/12 A			YSW0580	YSW05802, YSW05923				-++		
YSW05802		10			13/02/12 A			YSW05801	YSW05924						
YSW05901		90	100 29/09/11 A		29/09/11 A			YSW0540, YSW0550	YSW06001						
YSW05911	G/F to 1/F Construction Grid N-S/1-5	80	100 21/10/11 A		21/10/11 A			YSW05711, YSW05721	YSW06011, YSW06035						
YSW05921		45	100 25/12/11 A			07/02/12 A		YSW05761	YSW06021						
YSW05922		80	100 04/01/12 A			23/03/12 A		YSW0580	YSW06022			++++++++-	-++		
								YSW05801	E&M0530, E&M0540, E&M0550, E&M0560,						
YSW05923		60	100 13/02/12 A			12/04/12 A									
YSW05924		50	100 28/05/12 A			16/07/12 A		YSW05802, YSW06023	YSW06034						
YSW06001		87	100 28/12/11 A			23/03/12 A		YSW05901	YSW0800						
YSW06011	1 /F to Roof Constuction for Grid N-S/1-5	75	100 09/01/12 A			23/03/12 A		YSW05911	YSW0800				-++		
YSW06021		44	100 08/02/12 A			22/03/12 A		YSW05921	YSW07201						
YSW06022		60	100 24/03/12 A			22/05/12 A		YSW05922	YSW0800						
YSW06023		45	100 13/04/12 A			27/05/12 A		YSW05923	E&M0580, YSW05924						
YSW06034		28	100 27/07/12 A			13/08/12 A		YSW05924	YSW0800						
YSW06035	Construct buffle walls in Grease Separators	90	100 18/04/12 A	16/07/12 A	18/04/12 A	16/07/12 A		YSW05911	YSW07204			11111111 11111111 - + + + + + + +	 		
YSW07201	Water tightness test for Inlet Pumping Station	60	100 23/03/12 A			21/05/12 A		YSW06021	YSW07202, YSW0800						
YSW07202	2 Water tightness test for Equalization Tanks	42	100 22/05/12 A			02/07/12 A		YSW07201	E&M0600, YSW07203, YSW0800						
YSW07203	-	42	100 17/09/12 A		-	29/09/12 A		YSW07202	YSW07204, YSW0800						
YSW07204	Water tightness test for Grease Separators	32	100 03/10/12 A	31/10/12 A	03/10/12 A	31/10/12 A		YSW06035, YSW07203	E&M0570, YSW07205, YSW0800						
YSW07205	5 Water tightness test for water channels	21	100 31/08/13 A	23/09/13 A	31/08/13 A	23/09/13 A		YSW07204	YSW0800		-	Wa	ater tightness	test for water chann	nels
YSW0800	ABWF installation	271	98 03/07/12 A	05/10/13	03/07/12 A	16/06/14	255d	YSW06001, YSW06011, YSW06022,	KD0040				-ABWF ins	stallation	
YSW STW	- GL T - X														
YSW0610	Excavate to formation	10	100 08/09/10 A	17/09/10 A	08/09/10 A	17/09/10 A		YSW0035, YSW0422	YSW0620						
Start date	05/05/10 Early bar	· · · · ·	1		•				· · ·	Date		Re	vision	Checked	Approved
Finish date	27/07/17 Progress bar Critical bar			L	eader Civ	il Engine	erina (Corp. Ltd.		31/10/13		Revision 0		RH	VC
Data date	30/09/13 Critical bar Summary bar			_		act No. D						2			
Run date	25/11/13 Progress point		Con	struction				Vorks at YSW & SKW							
Page number	- 3A							2013 - Jan 2014)							
c Primavera	a Systems, Inc.		J			- .									
L										1	1			1	1

Activity ID	Description	Original Duration	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	JUL		AU
YSW0620	Base slab construction	248	100 1	8/09/10 A	23/05/11 A	18/09/10 A	23/05/11 A		YSW0610	YSW0630			
YSW0630	G/F to 1/F construction	205	100 24	4/05/11 A	14/12/11 A	24/05/11 A	14/12/11 A		YSW0620	YSW0640	1		
YSW0640	1/F to Roof Construction	64	100 1	5/12/11 A	16/02/12 A	15/12/11 A	16/02/12 A		YSW0630	YSW0810			
YSW0810	ABWF installation	80	100 2	8/12/11 A	16/03/12 A	28/12/11 A	16/03/12 A		YSW0640	E&M0610, E&M0620, E&M0630, E&M0640			
YSW STW -	GL F - H & DN Tanks		· · · ·										
YSW0650	ELS & Excavation for DN Tanks	37	100 0	8/09/10 A	14/10/10 A	08/09/10 A	14/10/10 A		YSW0035, YSW0422	YSW0660	1		
YSW0660	Sub-struction construction (DN Tanks)	78	100 1	5/10/10 A	31/12/10 A	15/10/10 A	31/12/10 A		YSW0650	YSW0530, YSW0670			
YSW0670	Backfill & Remove ELS (DN Tanks)	70	100 0	1/01/11 A	11/03/11 A	01/01/11 A	11/03/11 A		YSW0660	YSW0680	-		
YSW0680	Base slab construction (SD1, SD2 & MBR4)	17	100 1	2/03/11 A	28/03/11 A	12/03/11 A	28/03/11 A		YSW0670	YSW0690	-		
YSW0690	Construct Superstructure SD1, SD2 & MBR4	82	100 2	9/03/11 A	18/06/11 A	29/03/11 A	18/06/11 A		YSW0680	YSW0710, YSW0820	-		
YSW06901	Construct Superstructure of DN Tanks	28	100 1	5/05/12 A	11/06/12 A	15/05/12 A	11/06/12 A		YSW0735	YSW0830			
YSW0705	Water test for MBR 4	47	100 0	1/10/12 A	16/11/12 A	01/10/12 A	16/11/12 A		YSW0710	E&M0510, E&M0640, YSW07055,	1		
YSW07055	Water test for SD1 & SD2	54	100 1	7/11/12 A	10/01/13 A	17/11/12 A	10/01/13 A		YSW0705, YSW07105	E&M0610	++		
YSW0710	Apply protective paint for MBR 4	7		4/09/12 A	30/09/12 A		30/09/12 A		YSW0690	YSW0705, YSW07105	1		
YSW07105	Apply protective paint for SD1 & SD2	7		1/10/12 A			07/10/12 A		YSW0710	YSW07055	-		
YSW0820	ABWF installation	90		5/01/13 A	17/10/13	15/01/13 A	15/04/13	-185d	YSW0690, YSW0705	E&M0630, E&M0640			Ē
YSW0830	Water test for DN Tanks	28		4/07/13 A		14/07/13 A	13/09/13 A		YSW06901	YSW0850			
YSW0850	Apply protective paint for DN Tanks	6		7/04/13 A			11/07/13 A		YSW0830	E&M0610	Apply pro	otecitve	na
YSW STW -		0	100 2	7/04/10/1	11/07/10/	21/04/10/1	11/07/10 /						<u>–</u>
YSW0730	Completion of HDD	0	100 2	1/01/12 A	1	21/01/12 A			YSW03601, YSW03605	YSW0732	_		
YSW0730	Excavate for MBR 2 & 3	20			00/02/12 4		09/02/12 A		YSW0730	YSW0733	-		
YSW0732 YSW0733		20		1/01/12 A 0/02/12 A			29/02/12 A		YSW0732	YSW0735, YSW0740	-		
	Construct basement of MBR 2 & 3								YSW0732	,	-		
YSW0735	Construct superstructure of MBR 2	75		1/03/12 A		01/03/12 A	14/05/12 A			YSW06901, YSW0736, YSW08302,			
YSW0736	Construct superstructure of MBR 3	100		5/05/12 A			14/05/12 A		YSW0735	YSW08302, YSW08305		<u></u>	
YSW0740	ELS & excavate for Outfall Shaft	75		1/03/12 A		01/03/12 A	14/05/12 A		YSW0733	YSW0750	_		
YSW0750	Construct basement of Outfall Shaft	19		5/05/12 A		15/05/12 A			YSW0740	YSW07501	_		
YSW07501	Connect additional flange to HDPE pipe (VO 042)	5		3/06/12 A			07/06/12 A		YSW0750	YSW07502	_		
YSW07502	Construct sub-structure of Outfall Shaft	16		8/06/12 A		08/06/12 A			YSW07501	YSW0760	_		
YSW0760	Backfill & remove ELS (outfall shaft)	8		4/06/12 A			01/07/12 A		YSW07502	YSW01800, YSW07601, YSW07603,			
YSW07601	Construct superstructure for Outfall Shaft	30		3/07/12 A		03/07/12 A			YSW0760	YSW08301, YSW08305	_		
YSW07603	ELS & excavate for FSH Water Supply Tank	25		1/06/12 A	25/06/12 A	01/06/12 A	25/06/12 A		YSW0760	YSW07604			
YSW07604	Construct substructure for FSH Water Supply Tank	24		6/06/12 A	19/07/12 A	26/06/12 A	19/07/12 A		YSW07603	YSW07605			
YSW07605	Backfill & remove ELS for FSH Water Supply Tank	12	100 2	0/07/12 A			31/07/12 A		YSW07604	YSW07607			
YSW07607	Construct basement of MBR 1 & Workshop	24		1/08/12 A	24/08/12 A				YSW07605	YSW07608, YSW07609			
YSW07608	Construct superstructure for FSH Water Supply Tk	37	100 2	5/08/12 A	30/09/12 A	25/08/12 A	30/09/12 A		YSW07607	YSW08304, YSW08305			
YSW07609	Construct superstructure for MBR 1	37	100 2	5/08/12 A	30/09/12 A	25/08/12 A	30/09/12 A		YSW07607	YSW07610, YSW08303, YSW1470			
YSW07610	Construct Workshop, FSSH Pump Rm, PW Pump Rm	31	100 0	3/10/12 A	31/10/12 A	03/10/12 A	31/10/12 A		YSW07609	YSW0840, YSW16606, YSW16607,			
YSW08301	Water tightness test for Outfall Shaft	42	100 0	3/04/13 A	18/04/13 A	03/04/13 A	18/04/13 A		YSW0380, YSW07601	E&M0690]		
YSW08302	Water tightness test for MBR 2 & 3	95	100 1	0/08/13 A	24/08/13 A	10/08/13 A	24/08/13 A		YSW0735, YSW0736	E&M0520, E&M0590, E&M0605, E&M0650			
YSW08303	Water tightness test for MBR 1	19	100 3	0/11/12 A	18/12/12 A	30/11/12 A	18/12/12 A		YSW07609	E&M0520			
YSW08304	Water tightness test for FSH Water Supply Tank	32	100 3	1/08/13 A	01/10/13 A	31/08/13 A	01/10/13 A		YSW07608	E&M0610			
YSW08305	Apply protective paint	120	100 02	2/10/12 A	15/08/13 A	02/10/12 A	15/08/13 A		YSW0735, YSW0736, YSW07601,	E&M0610		<u>م</u>	
Fire Hose Re	eel / Sprinkler Pump Rm	1	11					1					-
YSW0840	ELS & excavate to formation (+0 mPD approx.)	40	100 2	5/02/13 A	18/04/13 A	25/02/13 A	18/04/13 A		YSW07610, YSW16606	YSW0860	approx.)		
YSW0860	Sub-structure construction	40	100 1	9/04/13 A			12/06/13 A		YSW0840	YSW0890	ture constructio	on	
YSW0880	Backfill & remove ELS	35	100 2	1/06/13 A	26/08/13 A	21/06/13 A	26/08/13 A		YSW0890	YSW0910			
YSW0890	Construction Ground Slab at +5.2mPD	40		4/06/13 A			14/07/13 A		YSW0860	YSW0880, YSW0900	Constru	uctionG	ro
YSW0900	Superstructure construction upto +9.2mPD	35		4/06/13 A	01/08/13 A		01/08/13 A		YSW0890	YSW0910, YSW0925	- 1 1	Supe	
YSW0910	Water test	28		0/09/13	27/10/13	30/10/13	27/11/13	31d	YSW0880, YSW0900	YSW0915	+		
YSW0915	Apply protective paint	14	Ţ	8/10/13	10/11/13	27/11/13	11/12/13		YSW0910	E&M0640, YSW0925	1 i		
YSW0915	ABWF installation	30	-	6/07/13 A	10/11/13	16/07/13 A			YSW0900, YSW0915	KD0040			
-	Storage Tank		33 1	5/07/10 A	10/11/10	10/07/13 A	10/00/14	2100	1.0.10000, 1011010				-
YSW1470	ELS & excavate to formation (-1.5mPD Approx.)	16	100 1	7/09/12 A	02/10/12 A	17/09/12 A	02/10/12 A		YSW07609	YSW1480	┦ │		
YSW1480	Sub-structure construction	14		3/10/12 A	-				YSW1470	YSW1490	1		
YSW1400	Backfill & extract sheetpile	3			19/10/12 A				YSW1480	YSW1500	1		
		J			1.0,10,12,1								_

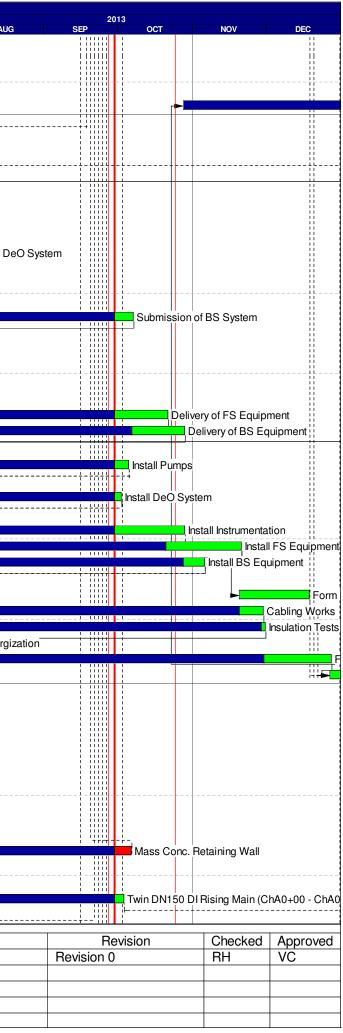
Start date	05/05/10		Early bar
Finish date	27/07/17		Progress bar Critical bar
Data date	30/09/13		Summary bar
Run date	25/11/13] 🔶	Progress point Critical point
Page number	4A] 🖕	Summary point
c Primavera	Systems, Inc.		Start milestone point Finish milestone poin
		7 🗸 -	Finish milestone poin

Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Nov 2013 - Jan 2014) Date 31/10/13

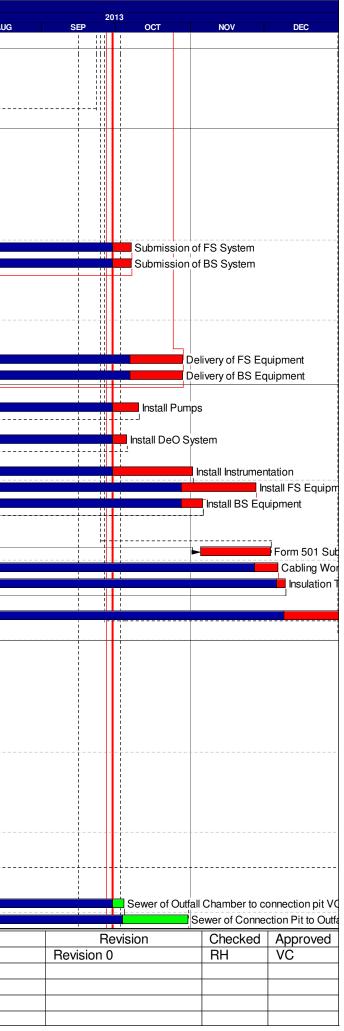
Revision	Checked	Approved
Revision 0	RH	VC

Activity ID	Description	Original Perce Duration Comp		Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors		2013			
YSW1500	Superstructure construction upto +10.5mPD	41	100 20/10/12 A	_	20/10/12 A		liout	YSW1490	YSW1530, YSW1536	JUL AUG	SEP	ОСТ	NOV	DEC
/SW1530	Underground pipeline works	40	100 20/07/13 A	_	20/07/13 A			YSW1500	E&M0690, YSW1680		Ur	nderground	oipeline works	ii.
'SW1538	Apply protective paint	30	100 04/03/13 A	05/03/13 A	04/03/13 A	05/03/13 A		YSW1536	YSW1540		<u></u>			:======================================
SW1540	ABWF installation	40	95 03/04/13 A	01/10/13	03/04/13 A	08/06/13	-115d	YSW1538	E&M0690		A	BWF installa		ii.
oad, Drain,	Cable Draw Pits & Ducting				1	•								IL
SW16601	ELS & excavate 6m deep sewer (FM1 - YFMH13)	90	80 04/08/13 A	11/10/13	04/08/13 A	06/04/13	-189d	YSW0760, YSW16606, YSW16607,	YSW16602			📕 ELS & e	xcavate 6m deep :	sewer (FM
'SW16602	Lay pipe & backfill 6m deep sewer (FM1 - YFMH13)	45	0 12/10/13	25/11/13	06/04/13	21/05/13	-189d	YSW16601	E&M0680, YSW1700				La	y pipe & ba
'SW16603	Construct UU & pipes along sea side (Grid Q-X)	60	0 30/09/13	28/11/13	31/07/13	28/09/13	-61d	YSW16607, YSW16608	YSW16604, YSW16703		·····			Construct U
YSW16604	Construct UU & pipes along sea side (Grid XA-D)	60	85 22/07/13 A	07/12/13	22/07/13 A	07/10/13	-61d	YSW16603	YSW16605, YSW16701					Constru
/SW16605	Construct UU & pipes along sea side (Grid D-Q)	60	60 20/11/13 A	31/12/13	20/11/13 A	31/10/13	-61d	YSW16604	YSW16702, YSW1700					
YSW16606	Construct UU & pipes along hill side (Grid D-Q)	90	100 10/10/12 A	01/09/13 A	10/10/12 A	01/09/13 A		YSW07610	YSW0840, YSW16601		Construct UU & pi	pes along hi	Il side (Grid D-Q)	
YSW16607	Construct UU & pipes along hill side (Grid Q-X)	72	100 20/08/12 A	01/09/13 A	20/08/12 A	01/09/13 A		YSW07610	YSW16601, YSW16603		Construct UU & pi	· – – :	1 , , ,	ii ii
YSW16608	Construct UU & pipes along hill side (Grid XA-D)	72	100 30/11/12 A	01/09/13 A	30/11/12 A	01/09/13 A		YSW07610	YSW16601, YSW16603, YSW1690		Construct UU & pi	pes along hi	Il side (Grid XA-D)
YSW16701	Construct Boundary Wall (Grid XA-D)	80	90 10/01/13 A	15/12/13	10/01/13 A			YSW16604	YSW16702					Co
YSW16702	Construct Boundary Wall (Grid D-Q)	80	15 01/01/14 A	09/03/14	01/01/14 A	07/01/14	-61d	YSW16605, YSW16701	YSW16703					
YSW16703	Construct Boundary Wall (Grid Q-X)	80	0 10/03/14	28/05/14	08/01/14	28/03/14	-61d	YSW16603, YSW16702	YSW16704, YSW1700					
YSW16704	ABWF installation for Boundary Wall	240	0 20/12/13	16/08/14	20/10/13	16/06/14	-61d	YSW16703	KD0040					
YSW1680	Fire Hydrant & pipeline installation	120	60 26/01/13 A	16/11/13	26/01/13 A	09/02/14	85d	YSW1530	YSW1690, YSW1700				Fire Hy	drant & pip
YSW1690	Construction of Road Kerbs, Downpipes, U-channel	180	60 02/01/13 A	27/01/14	02/01/13 A	22/04/14	85d	YSW16608, YSW1680	YSW1700					
YSW1700	Road Paving	110	50 23/05/14 A	22/07/14	23/05/14 A	16/06/14	-36d	YSW16602, YSW16605, YSW16703,	KD0040					ii ii
								YSW1680, YSW1690						
bmarine Out		1 1	1	1	1	1	1	1						ii ii
SW0180	Coordination of HEC	53	100 17/05/10 A	08/07/10 A				KD0020	YSW0350					
SW0200	Submission and Approval of Ecologist	60	100 17/05/10 A	_		15/07/10 A		KD0020	YSW0210					ii ii
SW0210	Ecology Survey	211	100 16/07/10 A	_	16/07/10 A			YSW0200	YSW0350					
SW0220	Submission and Approval of In. Hydro Survey	103	100 17/05/10 A	_	17/05/10 A			KD0020	YSW0230					
SW0230	Hydrogrophical Survey (YSW)	157	100 28/08/10 A	_	28/08/10 A			YSW0220	YSW0350					
SW0240	Material Submission, Approval of HDPE pipe	319	100 17/05/10 A	_	17/05/10 A			KD0020	YSW0360					ij
SW02401	Clarify Coordinate of Point Y (Reply of RFI 010)	83	100 28/06/10 A		28/06/10 A			KD0020	YSW0250					ij
SW0250	Submit and Approval of Method Statement for HDD	188	100 19/09/10 A		19/09/10 A			YSW02401	YSW0260, YSW0270, YSW0340					ii
SW0260	Submission of HDD Method Statement to HEC	14	100 26/03/11 A		26/03/11 A			YSW0250	YSW0340					ij
SW0270	Additional G.I. Boreholes (YSW)	123	100 19/09/10 A		19/09/10 A			YSW0250	YSW0280, YSW0290					
SW0280	Submission of propose alignment	44	100 20/01/11 A		20/01/11 A			YSW0270	YSW0310, YSW0340					
SW0290	Submission of Marine Notice	69	100 20/01/11 A			_		YSW0270	YSW0350					ij
SW0310	Construction of Entry Pit and Preparation Work	27	100 05/03/11 A					YSW0280	YSW0320					ii
SW0320	Prepare of HDD Drill Rig Set-up (YSW)	28	100 01/04/11 A			_		YSW0310	YSW0330, YSW0350					ij
SW0330	Establishment of HDD plant & equipment	6				-		YSW0320	YSW0340					
SW0340	Setting up at drillhole location	14	100 15/04/11 A					YSW0250, YSW0260, YSW0280,	YSW0350					
SW0350	Drill pilot hole and reaming hole - NS400 - 530m	229	100 29/04/11 A					YSW0040, YSW0180, YSW0210,	YSW0360					
SW0360	Installation of NS400 HDPE 530m	17	100 14/12/11 A			-		YSW0240, YSW0350	SKW1181, YSW03601, YSW03620,					
SW03601	Demobilization of HDD plant & equipment	7	100 31/12/11 A					YSW0360	YSW03605, YSW03641, YSW0730					
SW03605	Remove Entry pit of HDD		100 07/01/12 A			-		YSW03601	YSW0730					
SW03620	Removal of Receiving Pit	14	100 31/12/11 A			-		YSW0360	YSW0365					
SW03641	Prepare backfilling material under VO 046A		100 07/01/12 A		1	-		YSW03601	YSW0365					
SW0365	Set up of Silt Curtain as per EP	2	100 23/11/12 A		<u> </u>			SKW1431, YSW03620, YSW03641	YSW0370					
SW0370	Dredging of Marine Deposit for Diffuser (YSW)	5	100 24/11/12 A			-		YSW0360, YSW0365	YSW0380					
SW0380	Diffuser Construction (YSW)	60	100 30/11/12 A		1	-		YSW0370	E&M0690, YSW0400, YSW08301	ser Construction (YSW)				
SW0400	Removal of silt curtain	30	100 30/04/13 A	31/05/13 A	30/04/13 A	31/05/13 A		YSW0380	KD0040	curtain				++
M Works - Y							1							
M0360	Delivery of MBR Memb. Mod. (MBR Tk 4)	118	100 24/02/11 A					E&M0160	E&M0510					
&M0370	Delivery of MBR Membrane Modules - 2nd Shipment		100 24/02/11 A	-	-	-		E&M0160	E&M0520					
kM0380	Delivery of Grit Removal Equipment		100 10/10/11 A		-			E&M0150	E&M0530					
kM0390	Delivery of Coarse Screens				-	-		E&M0110	E&M0540					
&M0400	Delivery of Fine Screens	80	100 12/09/11 A		-	-	ļ	E&M0120	E&M0550					
&M0410	Delivery of Pumps	75	100 23/06/11 A		-	-		E&M0130	E&M0560					
M0420	Delivery of Submersible Mixers	230	100 26/02/11 A	26/02/11 A	26/02/11 A	26/02/11 A		E&M0140	E&M0570					
date	05/05/10 Early bar									Date	Revis	sion	Checked	Approv
	27/07/17 Progress bar			L	eader Civ	/il Engine	erina (Corp. Ltd.		31/10/13	Revision 0		RH	VC
	30/09/13 Critical bar Summary bar			_		ract No. D								
	25/11/13		Cor	nstruction				Vorks at YSW & SKW						
number	5A Summary point					-		2013 - Jan 2014)						
	Systems, Inc. Start milestone point									1				1

Activity ID	Description	Original Perc Duration Comp		Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors		2013		250
E&M0440	Delivery of Sludge Dewatering Equipment	558	70 31/08/11 A	16/03/14		30/10/13		E&M0170	E&M0580	JUL AUG	SEP OCT		DEC
E&M0450	Delivery of Valves, Pipes & Fittings	560	90 30/08/11 A	26/02/14		01/01/14			E&M0590				11
E&M0460	Delivery of Penstocks	135	100 12/08/11 A	24/12/11 A	12/08/11 A	24/12/11 A		E&M0190	E&M0600, E&M0605		·		
E&M0470	Delivery of Instruments	232	100 03/11/11 A	21/06/11 A	03/11/11 A	21/06/11 A		E&M0200	E&M0610				
E&M0480	Delivery of MCC LVSB	90	100 03/12/12 A	04/03/13 A	03/12/12 A	04/03/13 A		E&M0210	E&M0620				
E&M0490	Delivery of BS Equipment	446	65 10/12/11 A	18/12/14	10/12/11 A	23/06/13	-543d	E&M0220	E&M0630				
E&M0500	Delivery FS Equipment	507	25 11/12/11 A	11/08/15	11/12/11 A	14/08/13	-727d	E&M0230	E&M0330, E&M0640				
E&M0510	Install Membrane Modules in MBR Tank no. 4	89	100 03/11/12 A	28/02/13 A	03/11/12 A	28/02/13 A		E&M0360, YSW0705	E&M0690				
E&M0520	Install Membrane Modules in MBR Tank No. 1 to 3	57	100 03/12/12 A	28/02/13 A	03/12/12 A	28/02/13 A		E&M0370, YSW08302, YSW08303	E&M0690				 !! !!
E&M0530	Install Grit Removal Equipment	122	100 01/06/12 A	30/09/12 A	01/06/12 A	30/09/12 A		E&M0380, YSW05923	E&M0590, E&M0660		·		 !! !!
E&M0540	Install Coarse Screens	240	100 23/04/12 A	23/08/13 A	23/04/12 A	23/08/13 A		E&M0390, YSW05923	E&M0660		tall Coarse Screens		·····
E&M0550	Install Fine Screens	122	100 01/06/12 A	12/08/13 A	01/06/12 A	12/08/13 A		E&M0400, YSW05923	E&M0590, E&M0660	Install Fi	ne Screens		·
E&M0560	Install Pumps	355	90 23/04/12 A	04/11/13	23/04/12 A	12/05/13	-176d	E&M0410, YSW05923	E&M0660			Install Pumps	· · · · · · · · · · · · · · · · · · ·
E&M0570	Install Submersible Mixers	163	90 15/01/13 A	16/10/13	15/01/13 A	12/05/13	-157d	E&M0420, YSW07204	E&M0660, E&M0690		li in the second se	nstall Submersible Mixe	ers
E&M0580	Install Sludge Dewatering Equipment	361	60 29/05/12 A	21/02/14	29/05/12 A	09/06/13	-257d	E&M0440, YSW06023	E&M0690				
E&M0590	Install Valves, Pipes & Fittings	232	85 15/01/13 A	03/11/13	15/01/13 A	10/06/13	-146d	E&M0450, E&M0530, E&M0550,	E&M0650, E&M0690				Pipes & Fittings
E&M0600	Install Penstocks (Batch 1, GL H - T)	213	100 23/04/12 A	21/05/13 A	23/04/12 A	21/05/13 A		E&M0460, YSW07202	E&M0690	_tch 1, GL H - T)			 !! !!
E&M0605	Install Penstocks (Batch 2, GL A - F)	131	85 02/01/13 A	19/10/13	02/01/13 A	08/06/13	-133d	E&M0460, YSW08302	E&M0690			Install Penstocks (Bate	ch 2, GL A - F)
E&M0610	Install Instruments	74	5 02/01/13 A	09/12/13	02/01/13 A	10/06/13	-182d	E&M0470, YSW07055, YSW0810,	E&M0690				Install Instru
E&M0620	Install SAT, MCC & LVSB	8	100 02/01/13 A	02/01/15 A		02/01/15 A		E&M0480, YSW0810	E&M0660, E&M0680				
E&M0630	Install BS Equipment	180	55 02/01/13 A	08/01/15	02/01/13 A	14/07/13	-543d	E&M0490, YSW0810, YSW0820	E&M0690				
E&M0640	Install FS Equipment	180	50 02/01/13 A	11/07/15	02/01/13 A	14/07/13	-727d	E&M0500, YSW0705, YSW0810,	E&M0690				11
E&M0650	Hydraulic Tests of Pipeworks	153	60 02/01/13 A	30/11/13	02/01/13 A	15/06/13	-168d	E&M0590, YSW08302	E&M0690				Hydraulic Tests
E&M0660	Cabling Works	15	42 04/02/15 A	11/06/15	04/02/15 A	21/05/13	-751d	E&M0530, E&M0540, E&M0550, E&M0560, E&M0570, E&M0620	E&M0670				
E&M0670	Insulation Tests of Cables and Cable Termination	26	30 11/04/15 A	29/06/15	11/04/15 A	08/06/13	-751d	E&M0320, E&M0325, E&M0660,	E&M0690				
E&M0680	Energization	1	100 02/04/15 A	03/04/15 A	02/04/15 A	03/04/15 A		E&M0305, E&M0325, E&M0620,	E&M0670				
E&M0690	Functional and Performance Tests of Equipment	35	45 25/03/15 A	18/07/15	25/03/15 A	27/06/13 *	-751d	E&M0510, E&M0520, E&M0570, E&M0580, E&M0590, E&M0600, E&M0605, E&M0610, E&M0630, E&M0640, E&M0650, E&M0670, YSW0380, YSW08301, YSW1530,	E&M0700				
E&M0700	T&C Period	137	0 08/09/15	23/01/16	12/12/13	27/04/14	-636d	E&M0330, E&M0690	E&M0730, KD0040				
E&M0730	Trial Operation Period	413	0 23/01/16	27/07/17	28/04/14	14/06/15	-636d	E&M0700	KD0132				ii ii
Sok Kwu Wa	n												
Preliminary													
SKW0250	Approval of Environmental Team	16	100 17/05/10 A	01/06/10 A	17/05/10 A	01/06/10 A		KD0020	SKW0260				
SKW0260	Baseline monitoring (Air & Noise)	14	100 02/06/10 A	15/06/10 A	02/06/10 A	15/06/10 A		SKW0250	SKW0242, SKW0265, SKW0592,				
SKW0265	Baseline Monitoring Submission (A & N)	14	100 16/06/10 A	08/07/10 A	16/06/10 A	08/07/10 A		SKW0260	SKW0242, SKW0592, SKW0681,				
Section W3 - F	ootpath Diversion in Portion G	i							·				
Civil & Geotec	hnical Works												
SKW0240	Site Clearance	21	100 17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A			SKW0241				
SKW0241	Initial Survey	9	100 07/06/10 A	15/06/10 A	07/06/10 A	15/06/10 A		SKW0240	SKW0242				
SKW0242	Retaining Wall Bay 0-10 (Incl. VO. 001A)	177	100 30/06/10 A	23/12/10 A	30/06/10 A	23/12/10 A		SKW0241, SKW0260, SKW0265	SKW0461				
SKW0461	Utilities Laying and Diversion	70	100 24/12/10 A	03/03/11 A	24/12/10 A	03/03/11 A		SKW0242	SKW0471				
SKW0471	Concreting for Pavement	7	100 04/03/11 A	10/03/11 A	04/03/11 A	10/03/11 A		SKW0461	SKW0481				
SKW0481	Footpath Diversion - Stage 1	14	100 11/03/11 A	24/03/11 A	11/03/11 A	24/03/11 A		SKW0471	KD0050, SKW04811, SKW0491				
SKW04811	Excavate for FP transition at CH0-35 &CH130-141	37	100 25/03/11 A	30/04/11 A	25/03/11 A	30/04/11 A		SKW0481	SKW04821				
SKW04821	Construction of Drainage outfall near bay 10	3	100 01/05/11 A	03/05/11 A	01/05/11 A	03/05/11 A		SKW04811	SKW04831				
SKW04831	Cable diversion by HEC	26	100 04/05/11 A	29/05/11 A	04/05/11 A	29/05/11 A		SKW04821	SKW04841				
SKW04841	Diversion of Ducting and Drawpit by PCCW	12	100 20/05/11 A	31/05/11 A	20/05/11 A	31/05/11 A		SKW04831	SKW04851				
SKW04851	Soil backfilling behind FP retaining wall	14	100 01/06/11 A	14/06/11 A	01/06/11 A	14/06/11 A		SKW04841	SKW04861				
SKW04861	Concreting for footpath pavement	7	100 15/06/11 A	21/06/11 A	15/06/11 A	21/06/11 A		SKW04851	SKW04871	7			
SKW04871	Relocation of Temp Safety Fence at SKW STW A-G	57	100 22/06/11 A	17/08/11 A	22/06/11 A	17/08/11 A		SKW04861	SKW04881				
SKW04881	Disposal of excavation material at A-G SKW STW	138	100 18/08/11 A	02/01/12 A	18/08/11 A	02/01/12 A		SKW04871	SKW04885				
SKW04885	Footpath Diversion - Stage 2	7	100 03/01/12 A	09/01/12 A	03/01/12 A	09/01/12 A		SKW04881	SKW1261				
SKW0491	Removal of Haul Road after SKW STW	7	0 08/10/14	14/10/14	29/05/15	04/06/15	233d	KD0090, SKW0481, SKW1401	SKW0501		·		+ +
Finish date Data date				struction	Contr of Sewag	act No. D ge Treatn	DC/200 nent V	Corp. Ltd. 9/13 Vorks at YSW & SKW 2013 - Jan 2014)		Date 31/10/13	Revision Revision 0	Checked RH	Approved VC
	Systems, Inc. Finish milestone point												


Activity ID	Description	Original Percent Duration Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	JUL AUG	201 SEP	13 OCT	NOV	DEC
SKW0501	Concreting for no-fine concrete	14 () 08/10/14	21/10/14	29/05/15	11/06/15	233d	SKW0491	SKW0511		10111111 10111111		NOV	
SKW0511	Wall Tie & Stone Facing	14 () 22/10/14	04/11/14	12/06/15	25/06/15	233d	SKW0501	SKW0521					
SKW0521	Gabion Wall & Geotextile	30 () 05/11/14	04/12/14	26/06/15	25/07/15	233d	SKW0511	SKW0531					
SKW0531	Installation of Flower Pot	7 () 05/12/14	11/12/14	26/07/15	01/08/15	233d	SKW0521	SKW0541					
SKW0541	Completion of Outstanding Works	42 () 12/12/14	22/01/15	02/08/15	12/09/15	233d	SKW0531	KD0125					
Section W4 - S	lope Works in Portions H & I													
Geotechnical	Works													
SKW0588	Construct scaffolding access	30 100) 15/06/10 A	14/07/10 A	15/06/10 A	14/07/10 A		KD0020	SKW0590					
SKW0590	Site Clearance for Slope	100 100) 15/07/10 A	22/10/10 A	15/07/10 A	22/10/10 A		SKW0588	SKW0591					
SKW0591	Initial Survey for Slope	28 100) 21/09/10 A	18/10/10 A	21/09/10 A	18/10/10 A		SKW0590	SKW0592					
SKW0592	Temporary Rockfall fence at ex. Footpath	43 100) 31/08/10 A	12/10/10 A	31/08/10 A	12/10/10 A		SKW0260, SKW0265, SKW0591	SKW05931					
SKW05931	Construction of Haul Road (To +30mPD)	50 100) 03/09/10 A	22/10/10 A	03/09/10 A	22/10/10 A		SKW0592	SKW05932					
SKW05932	Construction of Haul Road (To +42.5mPD)	68 100) 23/10/10 A	29/12/10 A	23/10/10 A	29/12/10 A		SKW05931	SKW059322		тоттотт Ш Ш			
SKW059321	Removal of Boulders (IBG 1 - 119, SI No. 11B)	121 100) 03/11/10 A	03/03/11 A	03/11/10 A	03/03/11 A			SKW059411					
SKW059322	Add. Site Invest. Works (VO. No. 9,12 &16)	174 100) 11/01/11 A	03/07/11 A	11/01/11 A	03/07/11 A		SKW05932	SKW059341					
SKW059323	Revised Profile at West Slope (+56 to +42.5mPD)	1 100) 17/03/11 A	17/03/11 A	17/03/11 A	17/03/11 A			SKW059324					
SKW059324	Construction of Haul Road (+42.5 to +56mPD)	12 100) 18/03/11 A	29/03/11 A	18/03/11 A	29/03/11 A		SKW059323	SKW059325					
SKW059325	Removal of Boulders (IBG 120-139, SI No. 11C)	17 100) 30/03/11 A	15/04/11 A	30/03/11 A	15/04/11 A		SKW059324	SKW05933					
SKW05933	West Slope Cutting (+56mPD to +42.5mPD)	2 100) 16/04/11 A	17/04/11 A	16/04/11 A	17/04/11 A		SKW059325	SKW059331					
SKW059331	Removal of Boulders (IBG 140-189, SI No. 11D)	45 100) 18/04/11 A	01/06/11 A	18/04/11 A	01/06/11 A		SKW05933	SKW05934					
SKW05934	West Slope Cutting (+42.5mPD to +35mPD)	32 100) 02/06/11 A	03/07/11 A	02/06/11 A	03/07/11 A		SKW059331	SKW059341					
SKW059341	Revised Profile at West Slope (+20 to +4.8mPD)	1 100) 04/07/11 A	04/07/11 A	04/07/11 A	04/07/11 A		SKW059322, SKW05934	SKW05935					
SKW05935	West Slope Cutting (+35mPD to +27.5mPD)	83 100) 08/07/11 A	28/09/11 A	08/07/11 A	28/09/11 A		SKW059341	SKW05936			÷		·
SKW05936	West Slope Cutting (+27.5mPD to +20mPD)	61 100) 29/09/11 A	28/11/11 A	29/09/11 A	28/11/11 A		SKW05935	SKW05937					
SKW05937	West Slope Cutting (+20mPD to +12.5mPD)	39 100) 29/11/11 A	06/01/12 A	29/11/11 A	06/01/12 A		SKW05936	SKW05938					
SKW05938	West Slope Cutting (+12.5mPD to +4.8mPD)	90 100) 07/01/12 A	27/03/12 A	07/01/12 A	27/03/12 A		SKW05937	KD0060, SKW1261, SKW1311, SKW1371					
SKW05941	Slope Stormwater Drainage	300 100) 28/03/12 A	25/05/12 A	28/03/12 A	25/05/12 A		KD0060	SKW05942					
SKW059411	East Slope Cutting (+50mPD to +42.5mPD)	72 100) 04/03/11 A	14/05/11 A	04/03/11 A	14/05/11 A		SKW059321	SKW059412			÷		·
SKW059412	East Slope Cutting (+42.5mPD to +35mPD)	82 100) 15/05/11 A	04/08/11 A	15/05/11 A	04/08/11 A		SKW059411	SKW059413					
SKW059413	East Slope Cutting (+35mPD to +27.5mPD)	55 100) 05/08/11 A	28/09/11 A	05/08/11 A	28/09/11 A		SKW059412	SKW059414					
SKW059414	East Slope Cutting (+27.5mPD to +20mPD)	61 100) 29/09/11 A	28/11/11 A	29/09/11 A	28/11/11 A		SKW059413	SKW059415					
SKW059415	East Slope Cutting (+20mPD to +12.5mPD)	39 100) 29/11/11 A	06/01/12 A	29/11/11 A	06/01/12 A		SKW059414	SKW059416					
SKW059416	East Slope Cutting (+12.5mPD to +4.8mPD)	81 100) 07/01/12 A	27/03/12 A	07/01/12 A	27/03/12 A		SKW059415	KD0060, SKW1311, SKW1371			÷		·
SKW05942	Slope Miscellaneous Works	61 100) 26/05/12 A	31/07/12 A	26/05/12 A	31/07/12 A		SKW05941	SKW05943, SKW0595					
SKW05943	Buttress & surface Protection (SI No. 31)	60 100) 03/07/12 A	31/07/12 A	03/07/12 A	31/07/12 A		SKW05942	SKW05944					
SKW05944	Slope Treatment (Sl. No. 36)) 03/07/12 A	1	03/07/12 A	31/07/12 A		SKW05943	SKW05945					
SKW05945	Rock Slope Treatment (Sl. No. 68)	60 100) 01/08/12 A	30/09/12 A	01/08/12 A	30/09/12 A		SKW05944	SKW05946					
SKW05946	Rock Slope Treatment (Sl. No. 98)	60 100) 10/09/12 A	28/02/13 A	10/09/12 A	28/02/13 A		SKW05945	SKW05947			÷		·
SKW05947	Rock Slope Treatment (SI. No. 115)	60 100) 01/11/12 A	28/02/13 A	01/11/12 A	28/02/13 A		SKW05946	KD0135					
SKW05948	Soil Nailing Works (VO. No. 52)	300 100) 10/02/12 A	28/02/13 A	10/02/12 A	28/02/13 A			SKW05963					
SKW0595	Rock Meshing	60 () 30/09/13	28/11/13	07/08/15	05/10/15	676d	SKW05942, SKW05972	KD0165			i i i i i i i i i i i i i i i i i i i	Ro	ck Meshing
SKW05963	Determine Alignment & Foundation Design of RFB	120 100) 10/02/12 A	08/06/12 A	10/02/12 A	08/06/12 A		SKW05948	SKW059631, SKW05964, SKW05965					
SKW059631	GEO Approval of Foundation Design	70 100) 09/06/12 A	31/07/12 A	09/06/12 A	31/07/12 A		SKW05963	SKW05968			+		·
SKW05964	Fabrication & Shipping of RFB Material	180 100) 09/06/12 A	30/11/12 A	09/06/12 A	30/11/12 A		SKW05963	SKW05972					
SKW05965	Site clearance & Formation of access	62 100) 09/06/12 A	31/07/12 A	09/06/12 A	31/07/12 A		SKW05963	SKW05967					
SKW05967	Plant mobilization	14 100) 02/01/13 A	15/01/13 A	02/01/13 A	15/01/13 A		SKW05965	SKW05968					
SKW05968	Construction of anchors & pull out test	180 100) 16/01/13 A	17/08/13 A	16/01/13 A	17/08/13 A		SKW059631, SKW05967	SKW05969		Construction of anchors	& pull out test		
SKW05969	Construction of Foundation	120 100) 11/07/13 A	23/08/13 A	11/07/13 A	23/08/13 A		SKW05968	SKW05970		Construction of Four	Idation		
SKW05970	Proof Load Test) 31/07/13 A	-	31/07/13 A			SKW05969	SKW05971			Proof Load Test		
SKW05971	Transportation of Material (To the slope crest)) 31/07/13 A	-	31/07/13 A			SKW05970	SKW05972		Transportation of	Material (To the	slope crest)	
SKW05972	Installation of Flexible barrier) 31/07/13 A		31/07/13 A			SKW05964, SKW05971	KD0165, SKW0595				nstallation of Flexib	le barrier
					1					· •				
	P.S. No. 1 in Portion D													
Civil & Geotec		7	17/05/10 4	02/05/10 1	17/05/10 4	00/05/10 A		KD0020	SKW0652					
SKW0651	Site Clearance) 17/05/10 A		17/05/10 A			KD0020						
SKW0652	Initial Survey	/ 100) 24/05/10 A	30/05/10 A	24/05/10 A	30/05/10 A		SKW0651	SKW0661, SKW0681			<u>i</u>		
Start date	05/05/10 Early bar									Date	Rey	vision	Checked	Approved
Finish date	27/07/17 Progress bar			I	eader Civ	/il Engine	erina	Corp. Ltd.		31/10/13	Revision 0			VC
D 1 1	Critical bar			-			9				1 10 1101011 0			. 🗸

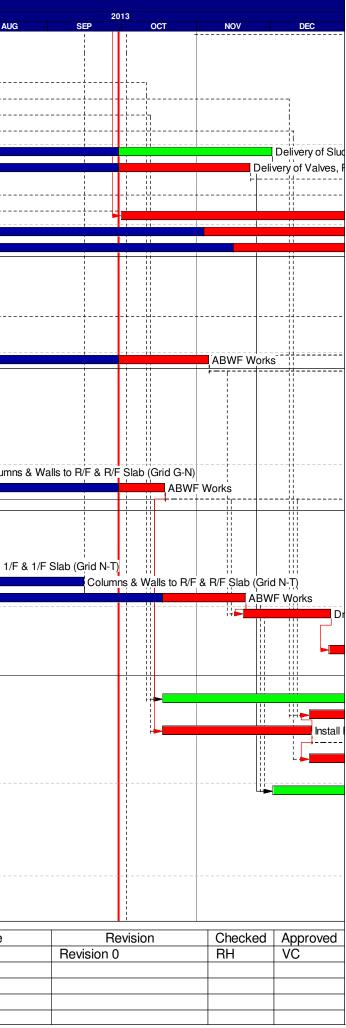
Start date	05/05/10		Early bar
Finish date	27/07/17		Progress bar Critical bar
Data date	30/09/13		Summary bar
Run date	25/11/13] 🕭 🛛	Progress point
Page number	7A] 🖕	Critical point Summary point
c Primavera	Systems, Inc.		Start milestone point
		-	Finish milestone poin


Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Nov 2013 - Jan 2014) Date 31/10/13

Revision	Checked	Approved
Revision 0	RH	VC

Activity ID	Description	Original Duration		Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	
SKW0661	Transplantation for uncommon vegatation	30		31/05/10 A	29/06/10 A	31/05/10 A	29/06/10 A		SKW0652	SKW0681	JUL AUG
SKW0681	Excavate to lower the working platform to +3mPD	49		30/06/10 A	17/08/10 A		17/08/10 A		SKW0260, SKW0265, SKW0652,	SKW0691	
SKW0691	ELS to +2.2mPD	40	100	18/08/10 A	26/09/10 A	18/08/10 A	26/09/10 A		SKW0681	SKW0721	
SKW0721	Excavate to formation	270	100	17/09/10 A	13/06/11 A	17/09/10 A	13/06/11 A		SKW0691	SKW0741	
SKW0722	Construction of Manholes (VO. No. 21A)	107	90	28/10/13 A	08/03/14	28/10/13 A	08/07/14	123d	E&M11800	E&M3360	
Structural Works	S	г – т			1	1					
SKW0741	RC Works for Structure	240	100	14/06/11 A	08/02/12 A	14/06/11 A	08/02/12 A		SKW0721	KD0070, SKW0841	
SKW0841	ABWF works	60	100	09/02/12 A	08/04/12 A	09/02/12 A	08/04/12 A		SKW0741	E&M1101, E&M1102, E&M1103, E&M1104,	
SKW0861	300mm U-channel & 675mm Step Channel	30	20	26/01/14 A	21/03/14	26/01/14 A	05/10/15	563d	E&M11800, SKW0841	KD0165	
E&M Works (PS	S1)				1	1					
Submission &	Delivery										
E&M1001	Submission of Pumps	198	100	17/05/10 A	24/02/11 A	17/05/10 A	24/02/11 A		KD0020	E&M1011	
E&M1002	Submission of Gen-Set	198	100	17/05/10 A	24/02/11 A	17/05/10 A	24/02/11 A			E&M1012	
E&M1003	Submission of DeO System	198	100	17/05/10 A	16/07/13 A	17/05/10 A	16/07/13 A			E&M1013	Submission of De
E&M1004	Submission of LV SB & MCC	180	100	17/05/10 A	09/01/12 A	17/05/10 A	09/01/12 A			E&M1014	
E&M1005	Submission of Instrumentation	243	100	17/05/10 A	12/03/12 A	17/05/10 A	12/03/12 A			E&M1015	
E&M1006	Submission of FS System	243	100	17/05/10 A	30/09/12 A	17/05/10 A	30/09/12 A			E&M1016	
E&M1007	Submission of BS System	243	97	17/05/10 A	07/10/13	17/05/10 A	21/02/14	137d	1	E&M1017	
E&M1011	Delivery of Pumps	150		24/02/11 A	21/07/11 A		21/07/11 A		E&M1001	E&M1101	
E&M1012	Delivery of Gen-Set	150	100	24/02/11 A	23/09/11 A		23/09/11 A		E&M1002	E&M1102	
E&M1013	Delivery of DeO System	150	100	11/07/11 A	28/10/11 A		28/10/11 A		E&M1003	E&M1103	
E&M1014	Delivery of LV SB & MCC	150	100	01/06/12 A	31/07/12 A	01/06/12 A	31/07/12 A		E&M1004	E&M1104	
E&M1015	Delivery of Instrumentation	90		01/11/11 A	03/11/11 A	01/11/11 A	03/11/11 A		E&M1005	E&M1105	
E&M1016	Delivery of FS Equipment	107	80	01/12/11 A	21/10/13	01/12/11 A	20/02/14	123d	E&M1006	E&M1106	
E&M1017	Delivery of BS Equipment	107	80	15/11/11 A	28/10/13	15/11/11 A	14/03/14	137d	E&M1007	E&M1107	
Installation, T&	kC										
E&M1101	Install Pumps	55	90	02/10/12 A	05/10/13	02/10/12 A	23/03/14	169d	E&M1011, SKW0841	E&M1110, E&M1140	
E&M1102	Install Gen Set	55	100	02/10/12 A	05/05/13 A	02/10/12 A	05/05/13 A		E&M1012, SKW0841	E&M1110, E&M1140	
E&M1103	Install DeO System	55	95	03/12/12 A	02/10/13	03/12/12 A	23/03/14	172d	E&M1013, SKW0841	E&M1110, E&M1140	
E&M1104	Install LV SB & MCC	55	100	02/01/13 A	26/03/13 A	02/01/13 A	26/03/13 A		E&M1014, SKW0841	E&M1140	
E&M1105	Install Instrumentation	55		01/11/12 A	28/10/13	01/11/12 A	23/03/14	146d	E&M1015, SKW0841	E&M1140	
E&M1106	Install FS Equipment	55		02/10/12 A	20/11/13	02/10/12 A	23/03/14	123d	E&M1016, SKW0841	E&M1130, E&M1140	
E&M1107	Install BS Equipment	55		02/10/12 A	05/11/13	02/10/12 A	23/03/14	137d	E&M1017, SKW0841	E&M1110, E&M1140	
E&M1110	Install Valves, Pipes & Fittings	46	100	02/01/13 A	27/03/13 A	02/01/13 A	27/03/13 A		E&M1101, E&M1102, E&M1103,	E&M1120	
E&M1130	Form 501 Submission to FSD	28		20/11/13	18/12/13	01/04/14	29/04/14		E&M1106	E&M11800	
E&M1140	Cabling Works	43		21/05/13 A	29/11/13		31/03/14	123d		E&M1150	
E&M1150	Insulation Tests of Cables and Cable Termination	7		25/06/13 A	30/11/13		02/04/14	123d	E&M1140	E&M1160	
E&M1160	Engergization	3		01/07/13 A	02/08/13 A		02/08/13 A		E&M1150	E&M1170	Engergiz
E&M1170	Functional and Performance Tests of Equipment	30		02/01/13 A	27/12/13		29/04/14		E&M1160	E&M11800	
	Commissioning Test	60	0	27/12/13	25/02/14	29/04/14	28/06/14	123d	E&M0350, E&M1120, E&M1130,	SKW0722, SKW0861	
	wer and PS No.2 in Portions E&H										
Civil & Geotech	1		100	17/05/10 4	00/05/10 4	17/05/10 4	00/05/10 4	1	KD0020	SKW0891	
SKW0881	Site Clearance Plant mobilization	7		17/05/10 A 17/05/10 A	-	17/05/10 A 17/05/10 A			SKW0881	SKW0891 SKW0892	
SKW0891 SKW0892					-	24/05/10 A			SKW0881	SKW0892	
SKW0892 SKW0901	Initial Survey Tree Transplantation	30 90		24/05/10 A 23/06/10 A	-	23/06/10 A			SKW0891	SKW0901	
SKW0901 SKW0921	Cut Slope & U-Channel	14		23/06/10 A		23/06/10 A			SKW0260, SKW0265, SKW0901	SKW0921 SKW0931, SKW0951	
SKW0921 SKW0931	Hoarding & Fencing	14		05/10/10 A			18/10/10 A		SKW0200, SKW0203, SKW0901	SKW0950, SKW0951	
SKW0951	Removal of Rock Boulders before ELS	66		19/10/10 A	23/12/10 A		23/12/10 A		SKW0921	SKW0950, SKW0951	
SKW0950	ELS & Excavate to formation	169		24/12/10 A			10/06/11 A		SKW0931, SKW0931, SKW0950	SKW0931	
SKW0951	Mass Conc. Retaining Wall	90		16/01/13 A	06/10/13	16/01/13 A		-238d	SKW1081	KD0155	
SKW1491	LCS (ChA0+45 to 1+75) VO.7	90		24/03/12 A	-	24/03/12 A		2000	PRE0100, SKW1021	SKW15111	
SKW1491	Twin DN150 DI Rising Main (ChA1+75 - ChA5+79)	180		22/06/12 A			30/11/12 A		SKW1491	SKW1531	
SKW15112	Twin DN150 DI Rising Main (ChA0+00 - ChA0+45)	30		01/02/13 A	03/10/13	01/02/13 A		2784	SKW1581	E&M3360	
SKW1531	Extent village sewers S163.1 & S164.1	34		30/11/12 A			10/01/13 A		SKW15111	SKW1581	
			100		1		1	1	1		
	05/05/10 Early bar Progress bar								• • • •		Date
	Critical bar				L		•	•	Corp. Ltd.		31/10/13
	30/09/13 Summary bar 25/11/13 Progress point			-			act No. D				
	Critical point						•		Vorks at YSW & SKW		
c Primavera Sy	vstems, Inc. Start milestone point			;	s-month F	Rolling Pr	ogramme	e (Nov	2013 - Jan 2014)		
	Finish milestone poin										

Activity ID	Description		Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	
SKW1581	Construct Manhole no. S163 & S164	34	-	11/01/13 A		11/01/13 A			SKW1531	KD0135, SKW15112	JUL AUG
Structural Work	\ \{\$				1	1	1		J	1	
SKW0971	Structural Works (Phase 1)	245	100	11/06/11 A	10/02/12 A	11/06/11 A	10/02/12 A		SKW0951	KD0080, SKW1021	
SKW1021	Structural Works (Phase 2)	42	100	11/02/12 A	23/03/12 A	11/02/12 A	23/03/12 A		SKW0971	SKW1061, SKW1081, SKW1491	
SKW1061	ABWF Works	90	100	24/03/12 A	21/06/12 A	24/03/12 A	21/06/12 A		SKW1021	E&M2101, E&M2102, E&M2103, E&M2104,]
SKW1081	375mm U-channel/catchpits/outfall	30	100	22/06/12 A	31/01/13 A	22/06/12 A	31/01/13 A		SKW1021, SKW1061	KD0155, SKW0961	
E&M Works (P	S2)										_
Submission &	& Delivery					1	T		1	1	-
E&M2001	Submission of Pumps	198		17/05/10 A		17/05/10 A			KD0020	E&M2011	-
E&M2002	Submission of Gen-Set	198		17/05/10 A		17/05/10 A				E&M2012	-
E&M2003	Submission of DeO System	198		17/05/10 A		17/05/10 A				E&M2013	-
E&M2004	Submission of LV SB & MCC	271		17/05/10 A		17/05/10 A				E&M2014	-
E&M2005	Submission of Instrumentation	243		17/05/10 A	30/06/12 A		30/06/12 A	000		E&M2015	
E&M2006	Submission of FS System	243		17/05/10 A	07/10/13	17/05/10 A	12/09/12	-389d		E&M2016	-
E&M2007 E&M2011	Submission of BS System Delivery of Pumps	243		17/05/10 A 24/02/11 A	07/10/13	17/05/10 A 24/02/11 A		-367d	E&M2001	E&M2017 E&M2101	-
E&M2012	Delivery of Gen-Set	150		24/02/11 A 24/02/11 A		24/02/11 A			E&M2002	E&M2102	-
E&M2012	Delivery of DeO System	150		11/07/11 A		11/07/11 A			E&M2003	E&M2103	-
E&M2014	Delivery of LV SB & MCC	150		29/02/12 A		29/02/12 A			E&M2004	E&M2104	
E&M2015	Delivery of Instrumentation	90		21/06/11 A		21/06/11 A			E&M2005	E&M2105	-
E&M2016	Delivery of FS Equipment	107		01/12/11 A	28/10/13	01/12/11 A		-389d	E&M2006	E&M0350, E&M2106	
E&M2017	Delivery of BS Equipment	107		15/01/11 A	28/10/13	15/01/11 A			E&M2007	E&M2107	
Installation, T&					1	1			1		
E&M2101	Install Pumps	55	80	02/10/12 A	10/10/13	02/10/12 A	12/01/13	-271d	E&M2011, SKW1061	E&M2110	
E&M2102	Install Gen Set	55	100	01/09/12 A	05/05/13 A	01/09/12 A	05/05/13 A		E&M2012, SKW1061	E&M2110	
E&M2103	Install DeO System	55	90	03/12/12 A	05/10/13	03/12/12 A	12/01/13	-266d	E&M2013, SKW1061	E&M2110	-
E&M2104	Install LV SB & MCC	55	100	02/01/13 A	31/01/13 A	02/01/13 A	31/01/13 A		E&M2014, SKW1061	E&M2140	
E&M2105	Install Instrumentation	55	40	31/05/13 A	01/11/13	31/05/13 A	03/11/12	-363d	E&M2015, SKW1061	E&M2140	
E&M2106	Install FS Equipment	55	45	02/10/12 A	27/11/13	02/10/12 A	03/11/12	-389d	E&M2016, SKW1061	E&M2140	
E&M2107	Install BS Equipment	55	85	01/09/12 A	05/11/13	01/09/12 A	03/11/12	-367d	E&M2017, SKW1061	E&M2110, E&M2140	
E&M2110	Install Valves, Pipes & Fittings	46	100	02/01/13 A	31/01/13 A	02/01/13 A	31/01/13 A		E&M2101, E&M2102, E&M2103,	E&M2120	
E&M2120	Hydraulic Test of Pipeworks	7	100	02/01/13 A	31/01/13 A	02/01/13 A			E&M2110	E&M2130	-
E&M2130	Form 501 Submission to FSD	28	-	05/11/13	03/12/13	13/01/13	09/02/13		E&M2120	KD0155	
E&M2140	Cabling Works	43		01/02/13 A	06/12/13	01/02/13 A	12/11/12		E&M2104, E&M2105, E&M2106,	E&M2150	-
E&M2150	Insulation Tests of Cables and Cable Termination	7		01/02/13 A	09/12/13		14/11/12	-389d	E&M2140	E&M2160	-
E&M2160	Engergization	3		01/02/13 A		01/02/13 A		000	E&M2150	E&M2170	
E&M2170	Functional and Performance Tests of Equipment	30 60		15/01/13 A 05/01/14	05/01/14 06/03/14	15/01/13 A 12/12/12	09/02/13		E&M2160 E&M0350, E&M2170	E&M2180 KD0155	-
E&M2180	Commissioning Test WSTW,Sewer and Submarine Outfall	60	0	05/01/14	06/03/14	12/12/12	09/02/13	-3890	E E E E E E E E E E E E E E E E E E E	KD0155	
Submarine Out											
SKW1130	Approval of IHS Consultant	180	100	17/05/10 A	27/08/10 A	17/05/10 A	27/08/10 A			SKW1131	-
SKW1131	Hydrographical Survey (SKW)	300		01/02/11 A		01/02/11 A			KD0020, SKW1130	SKW1231	-
SKW1141	Baseline Monitoring (Water)	213		27/07/10 A		27/07/10 A	-		SKW0260, SKW0265	SKW1151	-
SKW1151	Set up Temporary Working Platform	90		15/06/11 A	-	15/06/11 A			PRE0090, SKW1141	SKW1171	-
SKW1171	ELS for HDD Set-up (SKW)	90		01/09/11 A	30/09/11 A	01/09/11 A	30/09/11 A		SKW1151	SKW1181	-
SKW1181	Mobilization of HDD plant & equipment to SKW	8		06/01/12 A	07/01/12 A	06/01/12 A	07/01/12 A		SKW1171, YSW0360	SKW1191	
SKW1191	Setting up at drillhole location	7	100	09/01/12 A	14/01/12 A	09/01/12 A	14/01/12 A		SKW1181	SKW1201	
SKW1201	Drill pilot hole and reaming hole - NS280 - 750m	33	100	16/01/12 A	16/02/12 A	16/01/12 A	16/02/12 A		SKW1191	SKW1211	
SKW1211	Receiving Pit for HDD (SKW)	13	100	16/01/12 A	29/02/12 A	16/01/12 A	29/02/12 A		SKW1201	SKW1221	
SKW1221	Installaiton of NS280 HDPE 450mm dia. pipe	61	100	31/03/12 A	30/04/12 A	31/03/12 A	30/04/12 A		SKW1211	KD0090, SKW1231, SKW1441]
SKW1231	Removal of Receiving Platform	50	100	01/05/12 A	19/06/12 A	01/05/12 A	19/06/12 A		SKW1131, SKW1221	SKW1241	
SKW1241	Dredging of MD for Diffuser (PS CL 1.122(3))	16	100	20/06/12 A	05/07/12 A	20/06/12 A	05/07/12 A		SKW1231	E&M3359, SKW1251	
SKW1251	Diffuser Construction	77		01/09/12 A	16/11/12 A	01/09/12 A	16/11/12 A		SKW1241	SKW1431	
SKW1431	Removal of silt curtain	90		17/11/12 A		17/11/12 A			SKW1251	KD0090, SKW1440, YSW0365	
SKW1440	1441 Sewer of Connection Pit to Outfall VO45			31/12/12 A	04/10/13	31/12/12 A			SKW1431	SKW1441	
SKW1441			85	05/06/13 A	30/10/13	05/06/13 A	03/06/14	216d	SKW1221, SKW1440	E&M3359, KD0090	
	05/05/10 Early bar 27/07/17 Progress bar										Date
	Critical bar	Leader Civil Engineering Corp. Ltd.									31/10/13
	25/11/13 A Progress point	Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW									
	9A										
c Primavera S	Systems, Inc. Start milestone point			3		noming Pr	ogramme		2013 - Jan 2014)		
	Finish milestone poin										I


Activity ID	Description	Original Duration	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	JUL AUG
SKW STW											JUL AUG
Submission &	& Delivery (E&M)										
E&M3010	Delivery of MBR M.M 1st shipment for Temp STP	150	100	24/02/11 A	17/10/11 A	24/02/11 A	17/10/11 A		E&M0160	E&M3170	
E&M3030	Delivery of Grit Removal Equipment	180	100	10/10/11 A	29/12/11 A	10/10/11 A	29/12/11 A		E&M0150	E&M3190	+
E&M3060	Delivery of Fine Screens	136	100	12/09/11 A	30/11/11 A	12/09/11 A	30/11/11 A		E&M0120	E&M3210	
E&M3070	Delivery of Pumps	136	100	23/06/11 A	05/09/11 A	23/06/11 A	05/09/11 A		E&M0130	E&M3220	4
E&M3080	Delivery of Submersible Mixers	180	100	26/07/11 A	17/11/11 A	26/07/11 A	17/11/11 A		E&M0140	E&M3230	4
E&M3090	Delivery of Sludge Dewatering Equipment	210	70	01/09/11 A	01/12/13	01/09/11 A	11/01/14	41d	E&M0170	E&M3240	
E&M3100	Delivery of Valves, Pipes & Fittings	180		30/08/11 A	22/11/13	30/08/11 A	19/11/13	-3d	E&M0180	E&M3250	
E&M3110	Delivery of Penstocks	180		12/08/11 A	24/12/11 A		24/12/11 A		E&M0190	E&M3260	-
E&M3130	Delivery of instruments	180		21/06/11 A	_	21/06/11 A			E&M0200	E&M3270	+
E&M3140	Delivery of MCC LVSB	180		01/10/13	30/03/14	07/04/13	03/10/13	-178d	E&M0210	E&M3261	+
E&M3150	Delivery of BS Equipment	180		03/07/12 A	19/04/14	-	04/12/13		E&M0220	E&M3291	
E&M3160	Delivery of FS Equipment	180	-	30/06/12 A	06/05/14	30/06/12 A		-	E&M0230	E&M0340, E&M3300	-
Construction		180	5	30/00/12 A	00/03/14	30/00/12 A	23/12/13	-1340			
SKW1261	Excavate for SKW STW Structure (Grid A -G)	164	100	28/03/12 A	31/08/12 A	28/02/12 4	21/08/12 4		SKW04885, SKW05938	SKW1271, SKW1371	
SKW1201	55 M3 Fire Sprinkle Water Tank (FL +0.9 mPD)	36		03/07/12 A	_	03/07/12 A			SKW1261	SKW1281	-
	Ground Floor Slab (Grid A-G)			03/07/12 A	31/07/12 A				SKW1201	SKW1291	-
SKW1281		46			_						
SKW1291	Columns & Walls to 1/F & 1/F Slab (Grid A-G)	50		03/07/12 A		03/07/12 A			SKW1281	KD0090, SKW1301	-
SKW1301	Columns & Walls to R/F & R/F Slab (Grid A-G)	50		01/09/12 A	_	01/09/12 A			SKW1291	E&M3261, E&M3291, E&M3311, SKW1411	
SKW1411	ABWF Works	105	65	01/02/13 A	05/11/13	01/02/13 A	19/06/13	-139d	SKW1301	E&M3261, E&M3291, E&M3311, SKW1551	
Construction				1		1	1	1	I	1	-
SKW1311	Excavate for SKW STW Structure (Grid G-N)	90		28/03/12 A	_	28/03/12 A			SKW05938, SKW059416	SKW1321, SKW1371	-
SKW1321	Equalization Tank no.1 & 2 with base slabs (-2.1	42		26/06/12 A	_	26/06/12 A			SKW1311	SKW1331	-
SKW1331	Columns & Walls from B/S to G/F Slab (Grid G-N)	35	100	01/09/12 A	30/09/12 A	01/09/12 A	30/09/12 A		SKW1321	SKW1341	
SKW1341	Ground Floor Slab (Grid G-N)	35	100	01/09/12 A	17/12/12 A	01/09/12 A	17/12/12 A		SKW1331	SKW1351	
SKW1351	Columns & Walls to 1/F & 1/F Slab (Grid G-N)	28	100	01/11/12 A	15/01/13 A	01/11/12 A	15/01/13 A		SKW1341	SKW1361	
SKW1361	Columns & Walls to R/F & R/F Slab (Grid G-N)	35	100	01/11/12 A	03/08/13 A	01/11/12 A	03/08/13 A		SKW1351	SKW1451	Column
SKW1451	ABWF Works	54	65	05/06/13 A	18/10/13	05/06/13 A	17/05/13	-154d	SKW1361	E&M3170, E&M3190, E&M3210, E&M3291, E&M3300, SKW1391, SKW1551	
Construction	of Grid N-T										
SKW1371	Excavate for SKW STW Structure (Grid N-T)	97	100	03/07/12 A	25/01/13 A	03/07/12 A	25/01/13 A		SKW05938, SKW059416, SKW1261,	SKW1381	-
SKW1381	Ground Floor Slabs include MBR Tank (Grid N-T)	58		02/10/12 A		02/10/12 A			SKW1371	SKW1391	-
SKW1391	Columns & Walls to 1/F & 1/F Slab (Grid N-T)	35		31/05/13 A		31/05/13 A			SKW1381, SKW1451	SKW1401	Columns & Walls to 1/F
SKW1391		35				03/07/13 A			SKW1391	E&M3240, SKW0491, SKW1421	
SKW1401	Columns & Walls to R/F & R/F Slab (Grid N-T) ABWF Works			03/07/13 A				1544	SKW1401	E&M3240, SKW1551	
		60	-	06/08/13 A	20/11/13	06/08/13 A					
SKW1551	Drainage (SSMH1-SSMH7)	35	0	20/11/13	25/12/13	20/06/13	24/07/13	-1540	SKW1411, SKW1421, SKW1451	SKW1561	
SKW1561	Sewer (SMFH1-SMFH2, SMFH3-SMFH7)	220	0	25/12/13	02/08/14	25/07/13	01/03/14	-154d	SKW1551	SKW1571	-
SKW1571	Roadwork & Drainage Channel (SKW)	220	0	02/08/14	10/03/15	02/03/14	07/10/14	-154d	SKW1561	KD0090	
SKW STW - E	&M Works			1	1	1	1	1			
E&M3170	Install Membrane Modules in MBR Tank No. 1 to 2	100	0	18/10/13	26/01/14	07/01/14	16/04/14	80d	E&M3010, SKW1451	E&M3311	
E&M3190	Install Grit Removal Equipment	60	0	17/12/13	15/02/14	21/09/13	19/11/13	-88d	E&M3030, E&M3210, SKW1451	E&M3250, E&M3320	1
E&M3210	Install Fine Screens	60		18/10/13	17/12/13	24/05/13	22/07/13		E&M3060, SKW1451	E&M3190, E&M3220, E&M3250, E&M3260, E&M3320	
E&M3220	Install Pumps	75	0	17/12/13	02/03/14	23/07/13	05/10/13	-148d	E&M3070, E&M3210	E&M3230, E&M3250, E&M3260, E&M3320	1
E&M3230	Install Submersible Mixers	45	0	02/03/14	16/04/14	06/10/13	19/11/13	-148d	E&M3080, E&M3220	E&M3250, E&M3260, E&M3311, E&M3320	
E&M3240	Install Sludge Dewatering Equipment	74	0	02/12/13	13/02/14	12/01/14	26/03/14	41d	E&M3090, SKW1401, SKW1421	E&M3320	
E&M3250	Install Valves, Pipes & Fittings	75	0	16/04/14	30/06/14	20/11/13	02/02/14	-148d	E&M3100, E&M3190, E&M3210, E&M3220, E&M3230	E&M3270, E&M3291, E&M3300, E&M3310	
E&M3260	Install Penstocks	135	10	05/03/14 A	16/08/14	05/03/14 A	16/04/14	-121d	E&M3110, E&M3210, E&M3220,	E&M3311	-
E&M3261	Install SAT of MCC & LVSB	174		30/03/14	20/09/14	04/10/13	26/03/14		E&M3140, SKW1301, SKW1411	E&M3311, E&M3320	1
E&M3270	Install instruments	60		30/06/14	29/08/14	16/02/14	16/04/14		E&M3130, E&M3250	E&M3311	-
E&M3291	Install BS Equipment	180	-	01/05/14	29/08/14	05/12/13	02/06/14		E&M3150, E&M3250, SKW1301,	E&M3331, E&M3359	
E&M3300	Install ES Equipment	161	^	06/05/14	14/10/14	24/12/13	02/06/14	.1244	SKW1411, SKW1451 E&M3160, E&M3250, SKW1451	E&M3331 E&M2250	-
	05/05/10 Early bar	161	0	06/05/14	14/10/14	24/12/13	02/06/14	-1340	Eaivis 100, Eaivis250, SKW1451	E&M3331, E&M3359	Date
tart date											Dete

Start date 05/05/10 Early bar Progress bar Critical bar Finish date 27/07/17 Data date 30/09/13 Run date 25/11/13 Page number 10A c Primavera Systems, Inc.

Summary bar Progress point Critical point Summary point Start milestone point Finish milestone poin

Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Nov 2013 - Jan 2014)

Date 31/10/13

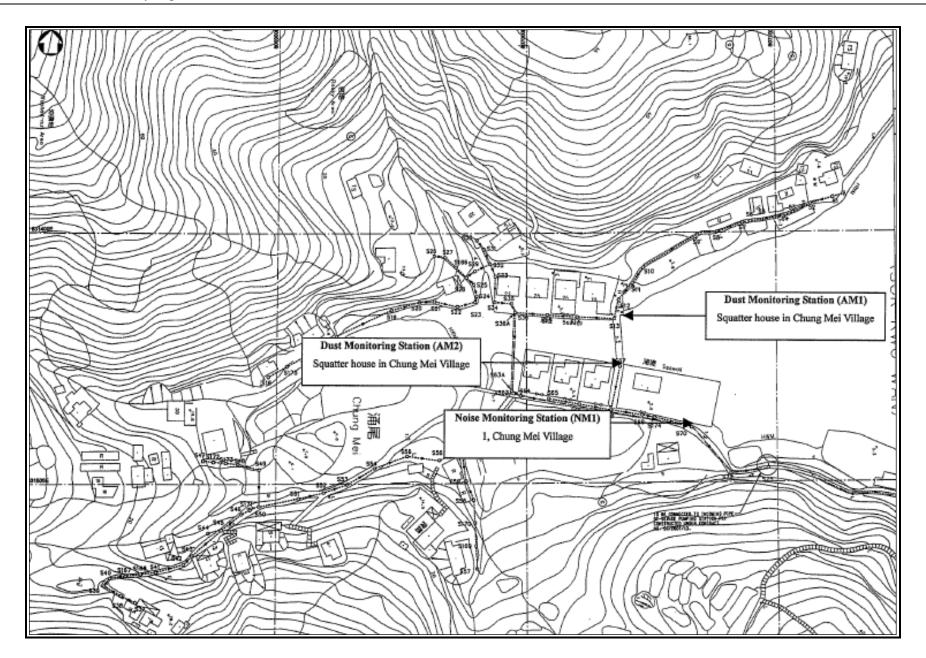
Activity ID	Description	Original Duration	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	JUL	AUG
E&M3310	Hydraulic Tests of Pipeworks	90	0	30/06/14	28/09/14	06/03/14	03/06/14	-117d	E&M3250	E&M3359		Aloca
E&M3311	Cabling Works	47	0	20/09/14	06/11/14	17/04/14	02/06/14	-157d	E&M3170, E&M3230, E&M3260, E&M3261, E&M3270, SKW1301,	E&M3331, E&M3359		
E&M3320	Cabling Works for Dewatering Equipment	47	0	20/09/14	06/11/14	27/03/14	12/05/14	-178d	E&M3190, E&M3210, E&M3220, E&M3230, E&M3240, E&M3261	E&M3321		
E&M3321	Insulation Tests of Cables and Cable Termination	21	0	06/11/14	27/11/14	13/05/14	02/06/14	-178d	E&M3320	E&M3331		
E&M3331	Energization	1	0	27/11/14	28/11/14	03/06/14	03/06/14	-178d	E&M3291, E&M3300, E&M3311,	E&M3359		
E&M3359	Functional and Performance Tests of Equipment	35	0	28/11/14	02/01/15	04/06/14	08/07/14	-178d	E&M3291, E&M3300, E&M3310, E&M3311, E&M3331, SKW1241,	E&M3360		
E&M3360	T&C Period	91	0	02/01/15	03/04/15	09/07/14	07/10/14		E&M0340, E&M3359, SKW0722, SKW15112	E&M3370, KD0090		
E&M3370	Trial Operation Period	456	0	03/04/15	09/08/16	11/12/15	27/07/17	252d	E&M3360		1	
Rising Main												
SKW1481	Subm, Approval & Delivery of DI pipes	120	100	17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1501		
SKW1501	LCS (ChB0+00 - ChB1+20)	300	100	14/09/10 A	10/07/11 A	14/09/10 A	10/07/11 A		PRE0100, SKW1481	SKW1521		
SKW1521	Twin DN150 DI Rising Main (ChB0+00 - ChA4+55)	250	90	11/07/11 A	24/10/13	11/07/11 A	07/10/14	348d	SKW1501	KD0090		
Section W8 - La	andscape Softworks in All Portions											
SKW1591	Tree Survey	21	100	17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A		KD0020	SKW1621		
SKW1611	Preservation & Protection of Trees	1053	99	17/05/10 A	10/10/13	17/05/10 A	03/04/13	-190d	KD0020	KD0100, SKW1631		
SKW1621	Transplantation at SKW	90	100	07/06/10 A	04/09/10 A	07/06/10 A	04/09/10 A		SKW1591	KD0100		
Section W9 - E	stablishment Works in All Portions	·				·	·					
SKW1631	Section W9 - Establishment Works	365	0	10/10/13	10/10/14	04/04/13	03/04/14	-190d	SKW1611	KD0110	1	

Start date	05/05/10		Early bar
Finish date	27/07/17		Progress bar Critical bar
Data date	30/09/13	-	 Summary bar
Run date	25/11/13		Progress point Critical point
Page number	11A] 🖕	Summary point
c Primavera	Systems, Inc.		Start milestone point
		1 🗸 🗌	Finish milestone poin

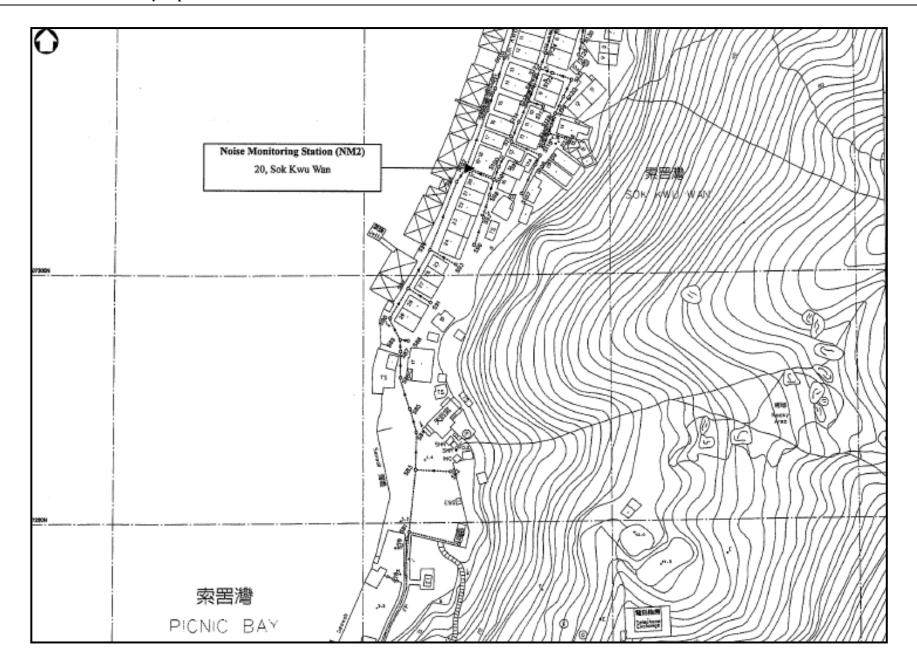
Leader Civil Engineering Corp. Ltd. Contract No. DC/2009/13 Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Nov 2013 - Jan 2014)

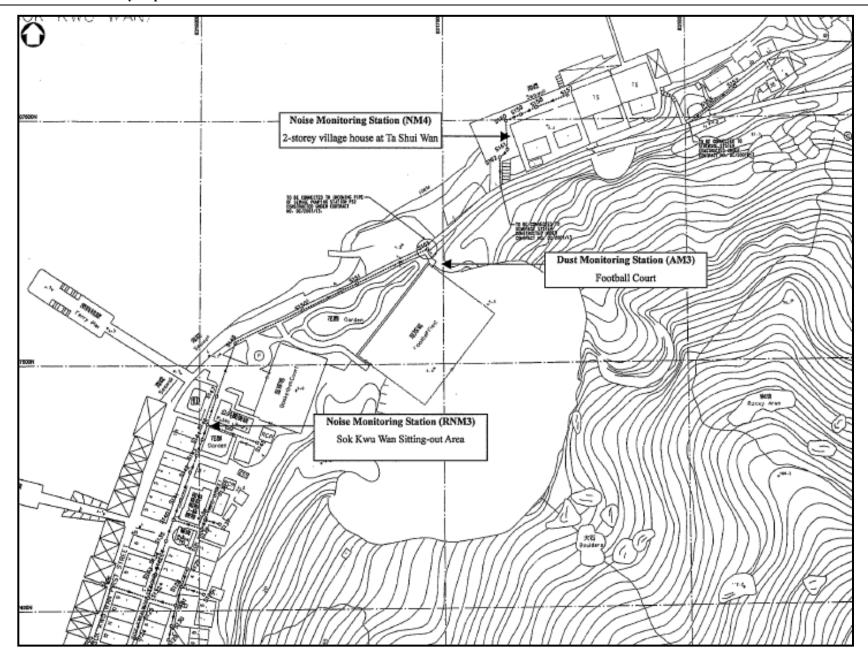
Date
31/10/13

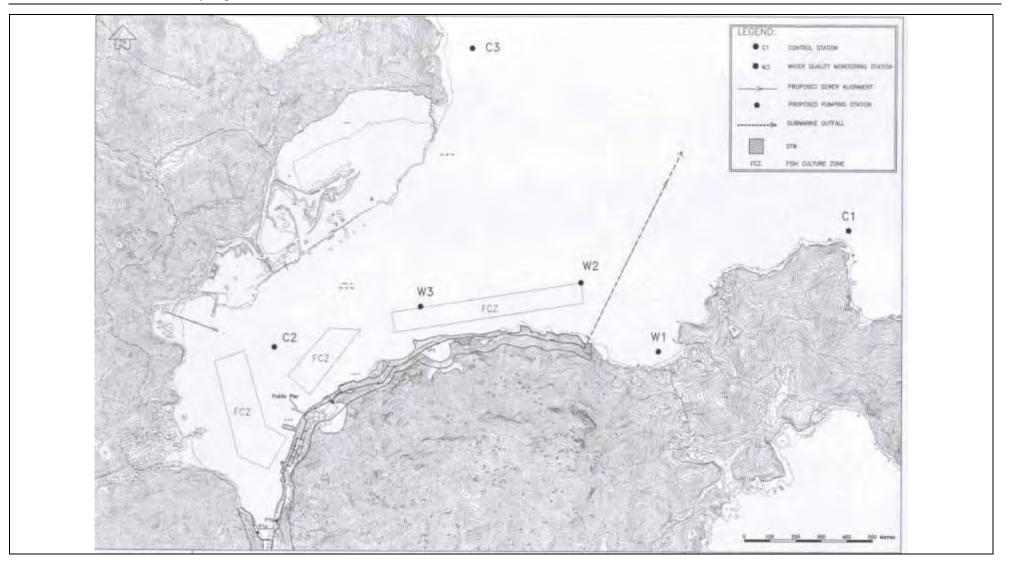
	CED	2013	007	NOV	DEC
UG	SEP	1	ОСТ	NOV	DEC
			 T	in DN150 DI Risi	ing Main (ChB(
					ing Main (Ond
		1	Preservati	on & Protection of	of Trees
		I I			
		P			


Revision	Checked	Approved
Revision 0	RH	VC

Appendix D


Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)

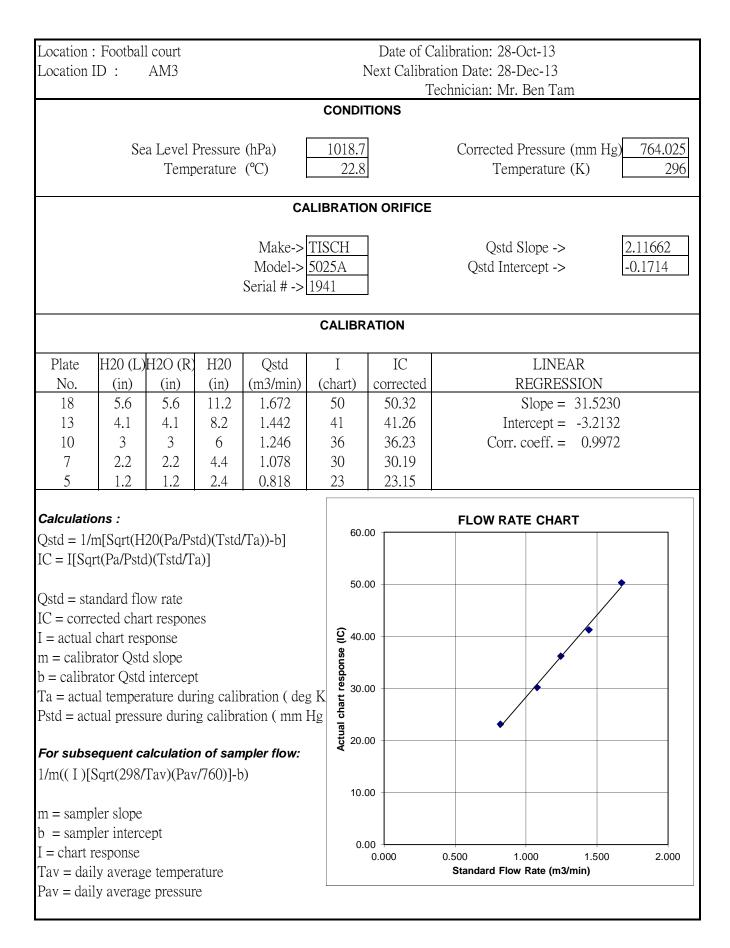

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report –November 2013



Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report –November 2013

Appendix E

Monitoring Equipments Calibration Certificate


TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location	Squatter	r house in	n Chung	Mei Village			Calibration: 28-O		
Location 2	ID:	AM1					ation Date: 28-D		
							echnician: Mr. I	Ben Tam	
					CONDI	TIONS			
	G	T 11	~	(1)	1010 5	,		(II	
	Se	a Level I			1018.7	-		ressure (mm Hg	
		Temp	erature	(°C)	22.8	5	Temp	erature (K)	296
				CA	LIBRATIO	ON ORIFICE			
				Make->	TISCH]	Qstd S	lope ->	2.11662
				Model->	5025A		Qstd Inter	cept ->	-0.1714
				Serial # ->	1941				
					CALIBR	ATION			
Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC		LINEAR	
No.			(chart)	corrected	R	EGRESSION			
18	4.2	4.2	8.4	1.459	52	52.53	Slope = 37.135		8
13	3.3	3.3	6.6	1.302	46	46.46	Inte	rcept = -1.509	8
10	2.6	2.6	5.2	1.165	42	42.42	Corr. c	oeff. = 0.998	9
7	1.7	1.7	3.4	0.958	34	34.34			
5	1.1	1.1	2.2	0.786	27	27.27			
Calculatio	ons:						FLOW RATI	E CHART	
Qstd = 1/1	n[Sart(H	20(Pa/Ps	td)(Tstd	/Ta))-b]	60.0	00			
IC = I[Sq]				// -]					
	,				50.0	00		^	
Qstd = sta	undard flo	ow rate							
IC = corrections	ected cha	rt respon	es					•	
I = actual	chart res	ponse			<u>ତ</u> ି ^{40.0}	00			
m = calib	rator Qsto	d slope			onse		*		
b = calibr	ator Qstd	intercep	t			n			
Ta = actua	al temper	ature dur	ing calib	oration (deg	gK te		▲		
Pstd = act	ual press	ure durin	g calibra	ation (mm I	Hg S				
		_).00 (C)).00 (C)).00 (C) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	00			
	-			pler flow:					
1/m((I)[S	Sqrt(298/	Tav)(Pav	r/760)]-t))	10 (
	1 1				10.0				
m = samp									
b = samp		ept			0.0				
I = chart I	-					0.000	0.500 1.00		2.000
Tav = dai							Standard Flow	rate (m3/min)	
Pav = dai	iy averag	e pressur	C						

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

-										
Location :	Squatter	r house in	n Chung	Mei Village	e			alibration: 28-0		
Location 1	ID:	AM2				N		ation Date: 28-1		
								echnician: Mr.	Ben Tam	
					CO	NDIT	IONS			
			_	[
	Se	ea Level I		. ,		18.7			Pressure (mn	
		Temp	erature	(°C)	4	22.8		Tem	perature (K)	296
				CA	LIBRA	ATIOI				
				Make->	TISCH	H		Ostd	Slope ->	2.11662
				Model->				Qstd Inte	-	-0.1714
				Serial # ->	1941			-	-	
					CAL	.IBR/	ATION			
Plate H20 (L)H2O (R) H20 Qstd							IC		LINEAR	
No.			(cha	rt)	corrected]	REGRESSIO	N		
18			54	r	54.34		Slope = 31.4210			
13	5.2	5.2	10.4	1.614	49)	49.31		ercept = -2.	
10	4.1	4.1	8.2	1.442	43		43.27	Corr.	$\operatorname{coeff.} = 0.$	9973
7	2.5	2.5	5	1.144	34		34.22			
5	1.6	1.6	3.2	0.932	26)	26.17			
Calculatio	ons :							FLOW RA	TE CHART	
Qstd = 1/r	n[Sqrt(H	20(Pa/Ps	td)(Tstd	/Ta))-b]		70.0	0			
IC = I[Squ				·/ -						
						60.0	0			
Qstd = sta	undard flo	ow rate								
IC = corrections	ected cha	rt respon	es			50.0	0			
I = actual	chart res	ponse								
m = calibr	-	-			onse	40.0	0		/	F
b = calibration	-	_			lesp					
	-		_	oration (deg	g K t	30.0	0		/	
Pstd = act	ual press	ure durin	g calibra	ation (mm]	Actual chart response (IC)	30.0	0	4		
For subse	equent c	alculatio	n of san	pler flow:	Acti	20.0	0			
1/m((I)[S	Sqrt(298/	Tav)(Pav	r/760)]-t))						
						10.0	0			
m = samp										
b = samp		ept				0.0	0			
I = chart r	-						0.000			500 2.000
Tav = dai		-						Standard Flow	v Rate (m3/min)	
Pav = dail	ly averag	e pressur	e							
1										

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

ŝ.

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

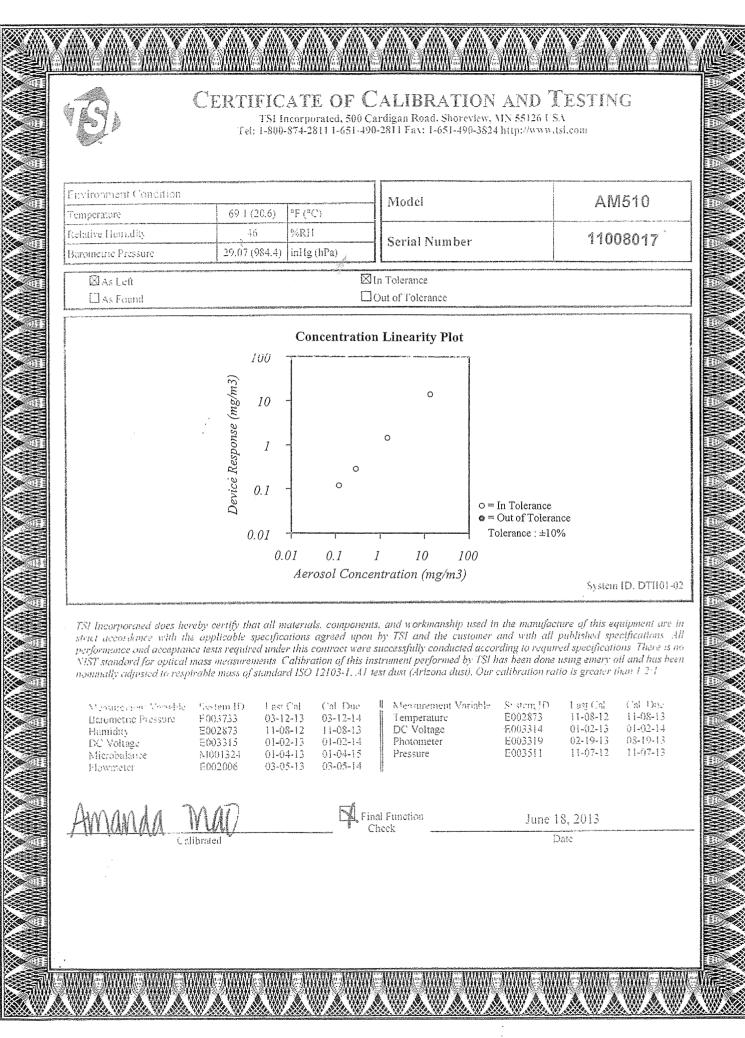
AIR POLLUTION MONITORING EQUIPMENT

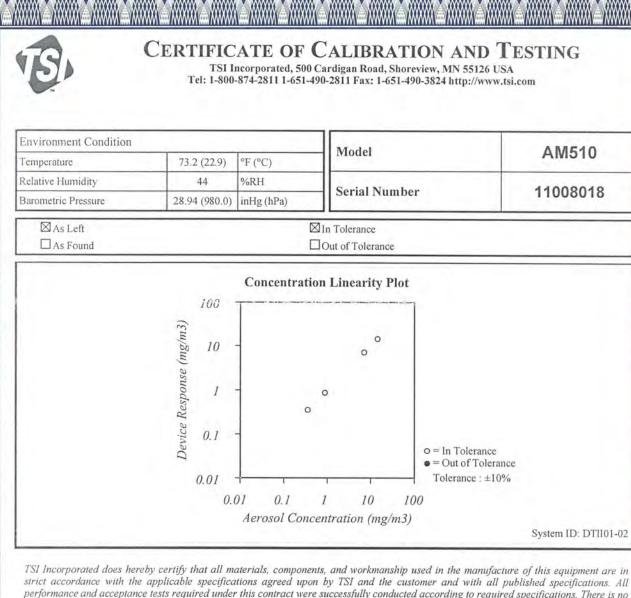
ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ap Operator		Rootsmeter Orifice I.I		438320 1941	Ta (K) - Pa (mm) -	296 751.84	
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)	
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4710 1.0370 0.9270 0.8840 0.7300	3.3 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00	

DATA TABULATION

			Va	Qa	-
0.6741 0.9521 1.0630 1.1134 1.3410	1.4113 1.9959 2.2315 2.3405 2.8227		0.9956 0.9914 0.9894 0.9883 0.9829	0.6768 0.9560 1.0673 1.1180 1.3465	0.8874 1.2549 1.4030 1.4715 1.7747
(m) = (b) = (c)	2.11662 -0.01714 0.99999		intercept coefficie	: (b) = ent (r) =	1.32539 -0.01078 0.99999
•	0.9521 1.0630 1.1134 1.3410 (m) = (b) = t (r) =	$\begin{array}{c ccccc} 0.9521 & 1.9959 \\ 1.0630 & 2.2315 \\ 1.1134 & 2.3405 \\ 1.3410 & 2.8227 \\ \hline \\ (m) &= & 2.11662 \\ (b) &= & -0.01714 \\ t & (r) &= & 0.99999 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


CALCULATIONS


Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$

strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass of standard ISO 12103-1, AI test dust (Arizona dust). Our calibration ratio is greater than 1.2:1

	Measurement Variable Barometric Pressure Humidity DC Voltage Microbalance Flowmeter	System ID E003733 E002873 E003315 M001324 E002006	Last Cal. 03-12-13 11-08-12 01-02-13 01-04-13 03-05-13	Cal. Due 03-12-14 11-08-13 01-02-14 01-04-15 03-05-14	Measurement Variable Temperature DC Voltage Photometer Pressure	System ID E002873 E003314 E003319 E003511	Last Cal. 11-08-12 01-02-13 02-19-13 11-07-12	Cal. Due 11-08-13 01-02-14 08-19-13 11-07-13	
1	tmanda J	nao			al Function heck	July 2	5, 2013		

Calibrated

Date

1-1-62, Nakane, Soka, Saitama, 340-0005 Japan TEL: 048-933-1582 FAX: 048-933-1591

CALIBRATION CERTIFICATE

Date: June 20, 2013

Equipment Name	:	Laser Dust Monitor, Model LD-3B
Code No.	:	080000-42
Quantity	:	1 unit
Serial No.	:	366407
Sensitivity	:	0.001 mg/m3
Sensitivity Adjustment	:	563 CPM
Scale Setting	:	June 17, 2013

We hereby certify that the avobe mentioned instrment has been calibrated satisfactory.

Sincerely

SIBATA SCIENTIFIC TECHNOLOGY LTD.

Kentaro Togo Overseas Sales Division

1-1-62, Nakane, Soka, Saitama, 340-0005 Japan TEL: 048-933-1582 FAX: 048-933-1591

CALIBRATION CERTIFICATE

Date: June 20, 2013

Equipment Name	:	Laser Dust Monitor, Model LD-3B
Code No.	:	080000-42
Quantity	:	1 unit
Serial No.	:	366418
Sensitivity	:	0.001 mg/m3
Sensitivity Adjustment	:	664 CPM
Scale Setting	:	June 17, 2013

We hereby certify that the avobe mentioned instrment has been calibrated satisfactory.

Sincerely

SIBATA SCIENTIFIC TECHNOLOGY LTD.

<

Kentaro Togo Overseas Sales Division

1-1-62, Nakane, Soka, Saitama, 340-0005 Japan

TEL: 048-933-1582 FAX: 048-933-1591

CALIBRATION CERTIFICATE

Date: June 20, 2013

Equipment Name	:	Laser Dust Monitor, Model LD-3B
Code No.	:	080000-42
Quantity	:	1 unit
Serial No.	:	366409
Sensitivity	:	0.001 mg/m3
Sensitivity Adjustment	:	527 CPM
Scale Setting	:	June 17, 2013

We hereby certify that the avobe mentioned instrment has been calibrated satisfactory.

Sincerely

SIBATA SCIENTIFIC TECHNOLOGY LTD.

Kentaro Togo Overseas Sales Division

1-1-62, Nakane, Soka, Saitama, 340-0005 Japan TEL: 048-933-1582 FAX: 048-933-1591

CALIBRATION CERTIFICATE

Date: June 20, 2013

Equipment Name	:	Laser Dust Monitor, Model LD-3B
Code No.	:	080000-42
Quantity	:	1 unit
Serial No.	:	366410
Sensitivity	:	0.001 mg/m3
Sensitivity Adjustment	:	668 CPM
Scale Setting	:	June 17, 2013

We hereby certify that the avobe mentioned instrment has been calibrated satisfactory.

Sincerely

SIBATA SCIENTIFIC TECHNOLOGY LTD.

Kentaro Togo

Overseas Sales Division

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C132567 證書編號

ITEM TESTED / 送檢]	項目	(Job No. / 序引編號:IC13-0878)
Description / 儀器名稱	:	Integrating Sound Level Meter (EQ010)
Manufacturer / 製造商	:	Brüel & Kjær
Model No. / 型號	:	2238
Serial No. / 編號	:	2285721
Supplied By / 委託者	:	Action-United Environmental Services and Consulting
		Unit A, 20/F., Gold King Industrial Building,
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 27 April 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies, USA

核證

- Fluke Everett Service Center, USA
- Rohde & Schwarz Laboratory, Germany

Tested By Chan Uhn 測試 H C Chan Certified By

Date of Issue 簽發日期

:

30 April 2013

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本道片所載校正用之測試器材均可溯源至國際標準。局部複印本讀書需先獲本實驗所書而批准+

Sun Creation Engineering Limited - Calibration & Testing Laboratory via 4元, Tsing Shan Wau Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 新創工程行机公司 - 使正及檢測實驗所 e.o. 音能所是可引更安里一號背口器機構即機 10/元高: 2927 2006 Fax 傳真: 2744 8986 E-mail/電郵: callabi@sumereation.com Website 题址: www.sumereation.com

K C Lee

12

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C132567 證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment IDDescriptionCertificate No.CL28040 MHz Arbitrary Waveform GeneratorC130019CL281Multifunction Acoustic CalibratorDC110233

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Self-calibration

	UUT	Setting	Applied	UUT		
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	LAFP	A	F	94.00	1	94.7

6.1.1.2 After Self-calibration

UUT Setting			Applie	d Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	А	F	94.00	1	94.1	± 0.7

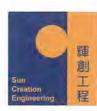
6.1.2 Linearity

	UU	Γ Setting		Applie	UUT	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	LAFP	A	F	94.00	1	94.1 (Ref.)
				104.00		104.1
		· · · · · · · · · · · · · · · · · · ·	1	114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

本震出所載校正用之測試器材均可溯源至國際標準,局部裡印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory


c/ii 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

洞的工程有限公司一校正及檢測實驗所

en 香港新屋也們與安里一號青山灣機樣四樓

Tel 电話: 2927 2606 Fax 保健: 2744 8986 E-mail 电解 callsh@suncreation.com Website 润机: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ŵ

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C132567 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

UUT Setting		Applie	d Value	UUT	IEC 60651		
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{AFP}	Α	F	94.00	1	94.1	Ref.
	LASP		S			94.1	± 0.1
	LAIP		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

UUT Setting			App	lied Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAFP	А	F	106.0	Continuous	106.0	Ref.
	LAFMax				200 ms	105.0	-1.0 ± 1.0
	LASP		S		Continuous	106.0	Ref.
	LASMax				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Appli	ed Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	A	F	94.00	31.5 Hz	54.7	-39.4 ± 1.5
				63 Hz	67.9	-26.2 ± 1.5	
					125 Hz	77.9	-16.1 ± 1.0
					250 Hz	85.4	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					l kHz	94.1	Ref.
					2 kHz	95.3	$+1.2 \pm 1.0$
					4 kHz	95.1	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5 ; -3.0)
					12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Tel/電話: 2927 2606 Fas/傳貨: 2744 8986 E-mail/電動: callab/asuncreation.com Websue/期赴: www.suncreation.com

The lest equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司 Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C132567 證書編號

6.3.2 C-Weighting

	UUT	Setting		Appli	ed Value	UUT Reading (dB)	IEC 60651 Type 1 Spec. (dB)
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.		
50 - 130	L _{CFP}	С	F	94.00	31.5 Hz	91.2	-3.0 ± 1.5
	1.000				63 Hz	93.3	-0.8 ± 1.5
				125 Hz	93.9	-0.2 ± 1.0	
				250 Hz	94.1	0.0 ± 1.0	
					500 Hz	94.1	0.0 ± 1.0
					1 kHz	94.1	Ref.
					2 kHz	93.9	-0.2 ± 1.0
			4 kHz	93.3	-0.8 ± 1.0		
					8 kHz	91.0	-3.0 (+1.5 ; -3.0)
_			· · · · · · · · · · · · · · · · · · ·		12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)

6.4 Time Averaging

UUT Setting		Applied Value				UUT	IEC 60804			
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
30 - 110	L _{Aeq} A	Acq A	10 sec. 4	4	I <u>1/10</u> 110.	1/10	110.0	100	99.9	± 0.5
		· · · · ·					90	90.0	± 0.5	
		60 sec.	1/103		80	79.9	± 1.0			
			5 min.			1/104		70	69.7	± 1.0

Remarks : - Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value :	94 dB : 31.5 Hz - 125 Hz	: ± 0.35 dB
	250 Hz - 500 Hz	: ± 0.30 dB
	1 kHz	: ± 0.20 dB
	2 kHz - 4 kHz	: ± 0.35 dB
	8 kHz	$\pm 0.45 \text{ dB}$
	12.5 kHz	: ± 0.70 dB
	104 dB : 1 kHz	: ± 0.10 dB (Ref. 94 dB)
	114 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	Burst equivalent level	$\pm 0.2 \text{ dB}$ (Ref. 110 dB
		continuous sound level)
		Be a structure of the structure of the structure of the

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本語書所載複正用之測試器材均可測施至國際標準。局部復印本證書需先獲本自物所書面批准。

Certificate of Calibration 校正證書

Certificate No. : C132228 證書編號

ITEM TESTED / 送檢	項目	(Job No. / 序引編號:IC13-0878)
Description / 儀器名稱	1	Acoustical Calibrator (EQ081)
Manufacturer / 製造商	:	Brüel & Kjær
Model No. / 型號	1	4231
Serial No. / 編號	+	2326408
Supplied By / 委託者	1	Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55±20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 15 April 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試	K Q Lee				
Certified By 核證	:	Date of Issue 簽發日期	1	16 April 2013	

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準,局部復印本證書書先獲本實驗所書面批准…

Sun Creation Engineering Limited - Calibration & Testing Laboratory vo 4/F, Tsing Shan Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 em 香港新界屯門興安里一號省山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail:電郵: eallab@suncreation.com Website/網址: www.suncreation.com

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C132228 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment IDDescriptionCertificate No.CL130Universal CounterC123541CL281Multifunction Acoustic CalibratorDC110233TST150AMeasuring AmplifierC120886

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本設書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准,

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLDEN KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG PROJECT: --
 WORK ORDER:
 HK1327382

 LABORATORY:
 HONG KONG

 DATE RECEIVED:
 07/10/2013

 DATE OF ISSUE:
 15/10/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Dissolved Oxygen, pH, Salinity, Temperature and Turbidity
Equipment Type:	Sonde
Brand Name:	YSI
Model No.:	YSI 6820 / 650MDS
Serial No.:	02J0912/02K0788 AA
Equipment No.:	
Date of Calibration:	15 October, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd 11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung HONG KONG

 Phone:
 8

 Fax:
 8

 Email:
 ho

852-2610 1044 852-2610 2021 hongkong@alsglobal.com

Mr. Fung Lim Richard General Manage Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong | PHONE +852 2610 1044 | FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD An ALS Limited Company

Life Sciences

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1327382
Date of Issue:	15/10/2013
Client:	ACTION UNITED ENVIRO SERVICES

Sonde		
YSI		
YSI 6820 / 650MDS		
02J0912/02K0788 AA		
그 귀엽 김 씨는 것 그가 가면 가슴이 다.		
15 October, 2013	Date of next Calibration:	15 January, 2014
	YSI YSI 6820 / 650MDS 02J0912/02K0788 AA 	YSI YSI 6820 / 650MDS 02J0912/02K0788 AA

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
7.95	7.82	-0.13
5.22	5.29	0.07
1.85	2.00	0.15
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.97	-0.03
7.0	6.94	-0.06
10.0	9.80	-0.20
	Tolerance Limit (±pH unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
	0.02	
0	0.02	100
10	9.83	-1.7
20	19.82	-0.9
30	29.89	-0.4
	Tolerance Limit (±ppt)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure

Guide No. 5 Second edition Mai	rch 2008: working Thermometer	Calibration Procedure.
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
11.5	12.11	0.6
25.0	23.75	-1.3
39.0	37.90	-1.1
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee Richard General Manager Greater China & Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1327382
Date of Issue:	15/10/2013
Client:	ACTION UNITED ENVIRO SERVICES

Equipment Type:	Sonde		
Brand Name:	YSI		
Model No.:	YSI 6820 / 650MDS		
Serial No.:	02J0912/02K0788 AA		
Equipment No.:			
Date of Calibration:	15 October, 2013	Date of next Calibration:	15 January, 2014

Parameters:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
0	0.0	
4	3.9	-2.5
40	43.8	9.5
80	82.1	2.6
400	394.2	-1.5
800	756.0	-5.5
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

Appendix F

Event/Action Plan

Air Quality

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
		LIMIT LEVEL		
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2. Exceedance for two or more consecutive samples	 Notify IC(E), ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

EVENT		ACTIO	DN	
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL	· · · · · · · · · · · · · · · · · · ·		·	
1. Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	1. Check monitoring data submitted by ET and Contractor's working methods	 Confirm receipt of notification of non-compliance in writing; and Notify Contractor 	 Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and Amend working methods if appropriate
2. Exceedance for two or more consecutive sampling days	 Same as the above; Inform ICE, Contractor, ER, EPD and AFCD; Discuss mitigation measures with IC(E), RE and Contractor; Ensure well implementation of mitigation measures; and Increase the monitoring frequency to daily until no exceedance of Action Level 	 Same as the above; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and Supervise the implementation of mitigation measures. 	 Discuss with IC(E) on the proposed mitigation measures; Ensure well implementation of mitigation measures; and Assess the effectiveness of the implemented mitigation measures 	 Same as the above; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IC(E), and ER; and Implement the agreed mitigation measures
		LIMIT LEVEL		
1. Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss mitigation measures with IC(E), RE and Contractor 	 Check monitoring data submitted by ET and Contractor's working method Discuss with ER and Contractor on possible 	 Confirm receipt of notification failure in writing; and Discuss with IC(E), ET and Contractor on the proposed mitigation measures; and Request Contractor to review the working methods 	 Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER
2. Exceedance for two or more consecutive sampling days	 Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	 Same as the above; and Supervise the Implementation of mitigation measures 	mitigation measures	 Same as the above; Take immediate action to avoid further exceedance; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; and As directed by the Engineer, to slow down or to stop all or part of the construction activities until to no exceedance of Limit Level.

Appendix G

Impact Monitoring Schedule

Date		Air G	Quality	Noise	Water Quality
		1-hour TSP	24-hour TSP	Leq (30min)	
Sat	26-October-13				✓
Sun	27-October-13				
Mon	28-October-13				✓
Tue	29-October-13		✓		
Wed	30-October-13	~		✓	✓
Thu	31-October-13				
Fri	1-November -13				✓
Sat	2- November -13				
Sun	3- November -13				
Mon	4- November -13		✓		
Tue	5- November -13	✓		√	✓
Wed	6- November -13				
Thu	7- November -13				✓
Fri	8- November -13				
Sat	9- November -13		✓		✓
Sun	10- November -13				
Mon	11- November -13	✓		√	✓
Tue	12- November -13				
Wed	13- November -13				✓
Thu	14- November -13		✓		
Fri	15- November -13				
Sat	16 November -13	✓		✓	✓
Sun	17- November -13				
Mon	18- November -13				
Tue	19- November -13				✓
Wed	20- November -13		✓		
Thu	21- November -13	✓		✓	✓
Fri	22- November -13				
Sat	23- November -13				✓
Sun	24- November -13				
Mon	25- November -13				✓

Impact Monitoring Schedule for the Reporting Period

✓	Monitorin	g Da	у
		or	Public
	Holiday		

	Date	Air C	Quality	Noise	Water Quality
		1-hour TSP	24-hour TSP	Leq (30min)	
Tue	26- November -13		✓		
Wed	27- November -13	✓		✓	✓
Thu	28- November -13				
Fri	29- November -13				
Sat	30 - November -13				✓
Sun	1-December -13				
Mon	2-December -13		✓		
Tue	3-December -13	✓		✓	✓
Wed	4-December -13				
Thu	5-December -13				\checkmark
Fri	6-December -13				
Sat	7-December -13		✓		✓
Sun	8-December -13				
Mon	9-December -13	✓		✓	\checkmark
Tue	10-December -13				
Wed	11-December -13				\checkmark
Thu	12-December -13				
Fri	13-December -13		✓		
Sat	14-December -13	✓		✓	\checkmark
Sun	15-December -13				
Mon	16-December -13				
Tue	17-December -13				\checkmark
Wed	18-December -13				
Thu	19-December -13	√	✓	✓	\checkmark
Fri	20-December -13				
Sat	21-December -13				\checkmark
Sun	22-December -13				
Mon	23-December -13				
Tue	24-December -13	✓	✓	✓	\checkmark
Wed	25-December -13				

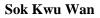
Impact Monitoring Schedule for next Reporting Period

✓	Monitoring Day Sunday or Public				
	Sunday or Pub				
	Holiday				

Appendix H

Monitoring Data Sheet

24-hour TSP Monitoring Data Sheet


Air Qualtiy Monitoring - 24-hour TSP Monitoring data sheet

		EI	LAPSED TI	ME	CHA	ART READ	DING			STANDARD)	INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m ³)
24-hour TSP Monitoring Results - AM1															
29-Oct-13	205574	14157.99	14181.98	1439.40	31	37	34.0	23.7	1018.6	0.96	1383	2.9173	2.9614	0.0441	32
4-Nov-13	42333	14181.98	14205.97	1439.40	28	32	30.0	23.2	1017	0.85	1227	2.7537	2.7885	0.0348	28
9-Nov-13	26105	14205.97	14229.96	1439.40	24	27	25.5	25.5	1014.6	0.73	1047	2.6807	2.7318	0.0511	49
14-Nov-13	26172	14229.96	14253.95	1439.40	23	27	25.0	21	1017.3	0.72	1036	2.7356	2.7528	0.0172	17
20-Nov-13	26134	14253.95	14277.94	1439.40	20	24	22.0	20.1	1019.5	0.64	921	2.6916	2.7118	0.0202	22
24-hour TSP	Monitoring F	Results - AN	12												
29-Oct-13	205556	12661.08	12685.07	1439.40	30	36	33.0	23.7	1018.6	1.13	1625	2.9085	2.9904	0.0819	50
4-Nov-13	42332	12685.07	12709.06	1439.40	29	34	31.5	23.2	1017	1.08	1556	2.7626	2.8154	0.0528	34
9-Nov-13	26106	12709.06	12733.05	1439.40	30	35	32.5	25.5	1014.6	1.11	1595	2.7034	2.7739	0.0705	44
14-Nov-13	26171	12733.05	12757.04	1439.40	31	33	32.0	21	1017.3	1.10	1585	2.7308	2.804	0.0732	46
20-Nov-13	26135	12757.04	12781.03	1439.40	30	34	32.0	20.1	1019.5	1.10	1589	2.6625	2.7406	0.0781	49
24-hour TSP	Monitoring F	Results - AN	13												
29-Oct-13	42329	8131.02	8155.01	1439.4	30	36	33	23.7	1018.6	1.15	1661	2.7407	2.8583	0.1176	71
4-Nov-13	26108	8155.01	8179	1439.4	29	34	31.5	23.2	1017	1.11	1592	2.6561	2.7452	0.0891	56
9-Nov-13	26112	8179	8202.99	1439.4	28	32	30	25.5	1014.6	1.05	1516	2.6888	2.7875	0.0987	65
14-Nov-13	26170	8202.99	8226.98	1439.4	29	34	31.5	21	1017.3	1.11	1598	2.7348	2.7707	0.0359	22
20-Nov-13	26136	8226.98	8250.97	1439.4	30	33	31.5	20.1	1019.5	1.11	1601	2.6778	2.7683	0.0905	57

Marine Water Quality Monitoring Data Sheet

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

26-Oct-13 Date

Date / Time	Location	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS											
Date / Time	Location	TIGE.	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l											
2013/10/26 8:41	W1	ME	832978	807716	2.6	1.300	25.67	8.38	123.5	2.7	32.69	7.99	2.2											
2013/10/20 0.11		iii	032710	00//10	2.0	1.300	25.7	8.23	121.4	2.3	32.68	7.98	515											
						1.000	25.68 25.71	8.53 8.42	125.8	2.4	32.7 32.68	7.98 7.97	1.2											
						6.200	25.66	8.09	119.3	3.4	32.73	8.01												
2013/10/26 8:49	W2	ME	832692	807961	12.4	6.200	25.66	8.05	118.6	3.4	32.74	8	1.7											
						11.400	25.61	7.99	117.7	3.3	32.75	8	1.6											
						11.400	25.61	7.93	116.8	4	32.76	8	110											
						1.000	25.51 25.65	8.31 8.28	122.3	2.5	32.83 32.75	7.97	4.1											
						6.000	25.61	7.72	1122	3.2	32.73	8.01												
2013/10/26 9:03	W3	ME	832035	807903	12	6.000	25.65	7.67	113.1	3.2	32.77	8	4.5											
						11.000	25.63	7.59	111.9	3.5	32.77	7.99	5.0											
						11.000	25.61	7.55	111.3	3.5	32.8	8.01	5.0											
						1.000	25.68 25.66	8.35 8.33	123.1	2.8 2.4	32.62 32.65	7.98 7.99	1.6											
	~					7.600	25.64	8.17	122.7	2.4	32.64	7.99												
2013/10/26 8:28	C1	ME	833709	808190	15.2	7.600	25.62	8.13	119.7	3.7	32.66	8	2.5											
						14.200	25.57	7.99	117.5	2	32.68	7.99	9.2											
						14.200	25.57	7.96	117.1	2.2	32.68	7.99	9.2											
						1.000	24.22	7.97	115.2	1.6	33.75	7.93	4.6											
						1.000 5.100	25.68 25.64	8.04 7.55	118.6 111.3	1.3 2.3	32.73 32.79	7.96												
2013/10/26 9:19	C2	ME	831453	807759	10.2	5.100	25.65	7.48	110.2	2.5	32.79	8	4.3											
						9.200	25.67	7.45	109.9	3.3	32.77	7.99	2.0											
						9.200	25.64	7.48	110.3	2.6	32.81	7.99	3.0											
																	1.000	25.65	8.7	128.1	2.5	32.52	8	2.4
				808871		1.000	25.67	8.6	126.7	2.6	32.52	7.98	2.1											
2013/10/26 8:12	C3	ME	832217		808871	808871	808871	808871	808871	371 15.5	7.750	25.63 25.63	8.34 8.34	122.7	2.5	32.58 32.59	8.01	3.6						
											14.500	25.59	8.29	122.7	2.8	32.59	8							
							14.500	25.58	8.27	121.7	2.5	32.61	8.01	2.8										
2013/10/26 16:39	W1	MF	832974	807743	2.8	1.400	28.1	7.36	112.6	1.9		7.97	2.0											
						1.400	28.1	7.34	112.3	2.4	32.04 31.96	7.97												
						1.000	28.09 28.09	6.54 6.67	100	2.9	31.96	8	3.7											
2012/10/26 16 25			000000	005050	10.0	6.450	27.92	6.49	99.3	3.6	32.46	8	2.0											
2013/10/26 16:25	W2	MF	832692	807973	13.2	6.600	27.89	6.39	97.6	3.7	32.48	7.98	3.0											
						12.200	27.81	6.25	95.6	3.4	32.93	8.01	6.2											
						12.200	27.8	6.26	95.7	3.8	32.93	8.02	012											
						1.000	28.14 28.12	7.17	109.5 109	3.6	31.67	8.01	2.8											
						6.450	27.98	6.77	103.6	3.5	32.36	7.99												
2013/10/26 16:09	W3	MF	832063	807899	12.9	6.450	27.88	6.63	101.2	3.5	32.44	8	3.3											
						11.900	27.78	6.36	97.2	4.7	32.86	8	3.8											
						11.900	27.78	6.36	97.2	4.6	32.93	8.01	5.0											
						1.000	28.09 28.09	7.57	115.8 114.8	2	31.96 31.96	8 02	1.9											
						1.000 7.900	28.09	7.31	114.8	2.9 2.2	32.59	8.03												
2013/10/26 16:45	C1	MF	833708	808193	15.8	7.900	27.89	6.97	106.6	2.6	32.58	7.99	2.2											
						14.800	27.93	6.89	105.8	1.6	33.2	8.04	3.0											
						14.800	27.88	6.92	106.2	1.5	33.24	8.05	5.0											
						1.000	28.02	7.14	108.7	2.7	31.37	7.99	1.8											
						1.000 5.400	27.89 27.86	7.15	108.6 104.9	2.1 2.8	31.49 32.06	8 7.98												
2013/10/26 15:56	0/26 15:56 C2 MF 831483 807758 1	10.8	5.400	27.88	6.77	104.9	2.8	32.06	7.98	0.8														
						9.800	27.8	6.65	101.4	3.6	32.4	7.97	1.4											
						9.800	27.78	6.6	100.6	3.5	32.46													
						1.000	28.06	7.01	107.2	2.8	32.11	8.02	1.2											
						1.000 8.150	28.1 27.85	7.1	108.5	2.6	32.02	8												
2013/10/26 17:09 C3	<i>a</i>	MF	MF	MF	MF	MF	MF	MF	MF	MF	832228	808879	16.3			6.79	103.8	1.7	32.71	7.99	1.2			
2013/10/20 11:07	C3	MF	832228	808879	16.3				101.7	1 8	32.78	8.01	1.2											
2013/10/20 11:07	C3	MF	832228	808879	16.3	8.150 8.150 15.300	27.83	6.65 6.65	101.7 102	1.8	32.78 33.23	8.01 8.02	0.6											

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 28-Oct-13

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide.	East	North	m	m	C	mg/L	%	NTU	ppt	unit	mg/l
2013/10/28 8:41	W1	ME	832984	807749	2.5	1.250	25.4	6.98	102.5	1.6	32.83	8	1.0
						1.250 1.000	25.33 25.34	<u>6.95</u> 6.69	102 98.2	1.2	32.87 32.87	7.98 7.95	
						1.000	25.34	6.69	98.2	1.1	32.87	7.95	1.3
						6.250	25.34	6.34	93	1.1	32.9	7.98	
2013/10/28 8:49	W2	ME	832681	807996	12.5	6.250	25.31	6.26	91.8	1.2	32.92	7.98	2.4
						11.500	25.26	6.04	88.5	2.8	32.92	7.98	0.9
						11.500	25.23	6.12	88.2	2.9	30.09	7.98	0.9
						1.000	25.15 25.34	<u>6.45</u> 7.21	94.4 105.8	1.4 1.1	33.02 32.9	7.97 7.98	0.9
						6.000	25.34	6.33	92.9	2.1	32.9	7.98	
2013/10/28 9:02	W3	ME	832068	807908	12	6.000	25.24	6.46	93	2.1	29.89	7.98	1.6
						11.000	25.25	6.09	89.3	2.7	32.92	7.98	1.8
						11.000	25.22	6.22	89.6	2.9	30.06	7.98	1.0
						1.000	25.19	6.99	102.3	1.4	32.9	7.96 7.96	3.5
						1.000 7.600	25.33 25.34	<u>6.97</u> 6.71	102.2 98.4	1.1	32.83 32.84	7.96	
2013/10/28 8:32	C1	ME	833729	808187	15.2	7.600	25.29	6.6	96.7	2.2	32.87	7.97	2.5
						14.200	25.28	6.36	93.2	2.8	32.85	7.97	2.8
						14.200	25.24	6.37	93.2	2.4	32.88	7.96	2.8
						1.000	25.31	6.59	96.7	1.3	32.9	7.96	1.8
						1.000 5.000	25.31 25.32	6.53	95.7 92.7	1.1	32.91 32.9	7.96	
2013/10/28 9:16	C2	ME	831491	807756	10	5.000	25.32	6.32 6.41	92.7	1.1	32.9	8.01	1.5
						9.000	25.26	6.15	90.2	1.9	32.93	7.97	
						9.000	25.24	6.16	90.2	2.2	32.95	7.97	2.0
						1.000	25.33	6.99	102.5	1.8	32.82	7.96	1.4
						1.000	25.37	6.92	101.5	1.9	32.8	7.98	1.1
2013/10/28 8:14	C3	ME	832224	808881	15.9	7.950 7.950	25.28 25.32	<u>6.66</u> 6.57	97.6 96.4	2.1	32.83 32.82	7.96	1.5
						14.900	25.28	6.42	90.4	2.2	32.82	8.01	
						14.900	25.23	6.43	94.2	2.4	32.87	7.98	2.0
2013/10/28 14:45	W1	MF	832972	807749	2.5	1.250	24.91	6.1	89.1	1.4	33.17	7.98	2.2
2013/10/20 14.45	W 1	IVII	052712	007749	2.5	1.250	25.32	6.24	91.6	2.1	32.96	7.99	2.2
						1.000	25.32	6.33	93 92.5	2.1	32.96 29.84	7.98	1.0
						6.500	25.3 25.25	6.42 5.97	92.3	2.1	29.84	8.01	
2013/10/28 14:31	W2	MF	832671	808009	13	6.500	25.25	5.92	86.8	2.3	32.95	8.02	1.6
						12.000	25.18	5.86	84.4	2.7	30	7.98	1.1
						12.000	25.19	5.9	84.9	2.6	29.96	7.98	1.1
						1.000	25.33	6.6	96.9	1.8	32.94	7.95	1.2
						1.000 6.400	25.32 25.28	6.84 6.23	100.4 91.3	1.3 1.8	32.96 32.93	7.98	
2013/10/28 14:16	W3	MF	832038	807896	12.8	6.400	25.28	6.23	91.3	2.3	32.93	8 7.97	0.6
						11.800	25.22	6.03	88.3	2.3	32.95	7.97	0.5
						11.800	25.24	6.05		2.2	32.94	7.97	<0.5
						1.000	25.33	6.43	94.4	1.8	32.99	7.99	2.2
										1.3	32.98	7.99	2.2
						1.000	25.34	6.43	94.4				
2013/10/28 14:54	C1	MF	833708	807192	15.4	7.700	25.25	5.95	87.3	1.8	33	7.99	0.7
2013/10/28 14:54	C1	MF	833708	807192	15.4	7.700 7.700	25.25 25.28	5.95 5.95	87.3 87.3	1.8 2.3	33 33	7.99 8.01	
2013/10/28 14:54	C1	MF	833708	807192	15.4	7.700	25.25	5.95	87.3	1.8	33	7.99	0.7 5.4
2013/10/28 14:54	C1	MF	833708	807192	15.4	7.700 7.700 14.400 14.400 1.000	25.25 25.28 25.21 25.21 25.33	5.95 5.95 5.85 5.87 6.76	87.3 87.3 84.2 84.6 99.2	1.8 2.3 2.3 2.2 1.4	33 33 29.96 30.24 32.94	7.99 8.01 7.98 7.99 7.97	5.4
2013/10/28 14:54	C1	MF	833708	807192	15.4	7.700 7.700 14.400 14.400 1.000 1.000	25.25 25.28 25.21 25.21 25.33 25.33	5.95 5.95 5.85 5.87 6.76 6.9	87.3 87.3 84.2 84.6 99.2 101.2	1.8 2.3 2.3 2.2 1.4 1.3	33 33 29.96 30.24 32.94 32.95	7.99 8.01 7.98 7.99 7.97 7.96	
2013/10/28 14:54	C1 C2	MF	833708	807192	15.4	7.700 7.700 14.400 14.400 1.000 1.000 5.400	25.25 25.28 25.21 25.21 25.33 25.31 25.31	5.95 5.95 5.85 5.87 6.76 6.9 6.42	87.3 87.3 84.2 84.6 99.2 101.2 94.1	1.8 2.3 2.3 2.2 1.4 1.3 2.4	33 33 29.96 30.24 32.94 32.95 32.93	7.99 8.01 7.98 7.99 7.97 7.96 7.97	5.4
						7.700 7.700 14.400 14.400 1.000 1.000 5.400 5.400	25.25 25.28 25.21 25.21 25.33 25.31 25.27 25.25	5.95 5.95 5.85 5.87 6.76 6.9 6.9 6.42 6.23	87.3 87.3 84.2 84.6 99.2 101.2 94.1 91.2	1.8 2.3 2.3 2.2 1.4 1.3 2.4 2.4	33 33 29.96 30.24 32.94 32.95 32.93 32.93	7.99 8.01 7.98 7.99 7.97 7.96 7.97 7.97 7.97	5.4 <0.5 2.8
						7.700 7.700 14.400 1.000 1.000 5.400 5.400 9.800	25.25 25.28 25.21 25.21 25.31 25.31 25.27 25.25 25.25 25.21	5.95 5.85 5.87 6.76 6.9 6.42 6.23 6.15	87.3 87.3 84.2 84.6 99.2 101.2 94.1 91.2 90.1	1.8 2.3 2.3 2.2 1.4 1.3 2.4 2.4 2.5	33 33 29.96 30.24 32.94 32.95 32.93 32.93 32.93 32.95	7.99 8.01 7.98 7.99 7.97 7.96 7.97	5.4 <0.5
						7.700 7.700 14.400 14.400 1.000 1.000 5.400 5.400	25.25 25.28 25.21 25.21 25.33 25.31 25.27 25.25	5.95 5.95 5.85 5.87 6.76 6.9 6.9 6.42 6.23	87.3 87.3 84.2 84.6 99.2 101.2 94.1 91.2	1.8 2.3 2.3 2.2 1.4 1.3 2.4 2.4	33 33 29.96 30.24 32.94 32.95 32.93 32.93	7.99 8.01 7.98 7.99 7.97 7.96 7.97 7.97 7.97 7.96	5.4 <0.5 2.8 2.4
						7.700 7.700 14.400 14.400 1.000 1.000 5.400 5.400 9.800 9.800	25.25 25.28 25.21 25.21 25.33 25.31 25.27 25.25 25.25 25.21 25.19	5.95 5.85 5.87 6.76 6.9 6.42 6.23 6.15 6.13 7.28 7.98	87.3 87.3 84.2 84.6 99.2 101.2 94.1 91.2 90.1 88.4	1.8 2.3 2.3 2.2 1.4 1.3 2.4 2.5 2.7	33 33 29.96 30.24 32.94 32.95 32.93 32.93 32.95 30.15	7.99 8.01 7.98 7.99 7.97 7.96 7.97 7.97 7.97 7.96 7.97	5.4 <0.5 2.8
2013/10/28 14:03	C2		831451	807768	10.8	7.700 7.700 14.400 1.000 1.000 5.400 5.400 9.800 9.800 1.000 1.000 8.200	25.25 25.28 25.21 25.33 25.31 25.27 25.25 25.25 25.21 25.19 25.33 25.37 25.25	5.95 5.85 5.87 6.76 6.9 6.42 6.23 6.13 7.28 7.98 5.93	87.3 87.3 84.2 99.2 101.2 94.1 91.2 90.1 88.4 106.7 117.1 86.9	1.8 2.3 2.2 1.4 1.3 2.4 2.5 2.7 1.9 2.3 2.3	33 33 29.96 30.24 32.94 32.95 32.93 32.93 32.95 30.15 32.99 32.94 33.02	7.99 8.01 7.98 7.99 7.97 7.96 7.97 7.97 7.97 7.97 7.97	5.4 <0.5 2.8 2.4 0.9
		MF				$\begin{array}{r} 7.700 \\ \hline 7.700 \\ \hline 14.400 \\ \hline 14.400 \\ \hline 1.000 \\ \hline 5.400 \\ \hline 5.400 \\ \hline 9.800 \\ \hline 9.800 \\ \hline 1.000 \\ \hline 1.000 \\ \hline \end{array}$	25.25 25.28 25.21 25.31 25.31 25.37 25.25 25.25 25.21 25.19 25.3 25.37	5.95 5.85 5.87 6.76 6.9 6.42 6.23 6.15 6.13 7.28 7.98	87.3 87.3 84.2 84.6 99.2 101.2 94.1 91.2 90.1 88.4 106.7 117.1	1.8 2.3 2.2 1.4 1.3 2.4 2.5 2.7 1.9 2.3	33 33 29.96 30.24 32.94 32.95 32.93 32.93 32.95 30.15 32.99 32.94	7.99 8.01 7.98 7.99 7.97 7.96 7.97 7.96 7.97 7.96 7.97 7.99	5.4 <0.5 2.8 2.4

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 30-Oct-13

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tiue.	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
2013/10/30 8:41	W1	ME	832945	807724	2.6	1.300	25.39	6.08	89.4	3.2	33.28	7.91	2.8
2010/10/20 0.11			002710	007721	210	1.300	25.32	6.25	90.5	3.3	33.46	7.89	2.0
						1.000	25.34 25.36	6.35 6.27	92.1 92.3	2.1	30.84 33.36	7.93 7.96	2.7
						6.400	25.33	6.12	92.5	2.4	33.39	7.99	
2013/10/30 8:48	W2	ME	832692	807993	12.8	6.400	25.3	6.26	92.1	2.6	33.39	7.96	2.3
						11.800	25.19	5.22	76.6	3.4	33.42	7.96	3.6
						11.800	25.17	5.22	76.7	3.1	33.43	7.95	5.0
						1.000	25.38 25.37	5.85 5.83	86.1 85.9	2.3 2.5	33.36 33.37	7.91 7.9	1.7
						6.300	25.37	5.79	85.1	2.3	33.43	7.92	
2013/10/30 9:06	W3	ME	832063	807911	12.6	6.300	25.26	5.54	81.4	3.4	33.41	7.92	1.6
						11.600	25.19	5.75	84.4	3.4	33.43	7.91	1.0
						11.600	25.22	5.68	83.5	3.5	33.44	7.92	1.0
						1.000	25.38	6.05	89.1 94.7	2.3 2.5	33.3 33.35	7.9 7.91	0.6
						1.000 7.850	25.37 25.2	6.43 6.04	94.7	2.5	33.35	7.91	
2013/10/30 8:26	C1	ME	833718	808192	15.7	7.850	25.19	5.81	85.3	2.1	33.38	7.9	1.0
						14.700	25.15	5.06	74.3	2.4	33.41	7.9	<0.5
						14.700	25.17	5.06	74.2	2.4	33.39	7.9	<0.5
						1.000	25.34	5.96	87.7	3.2	33.37	7.92	1.6
						1.000 5.400	25.35 25.31	5.96 6.12	87.7 90	3.3 3.1	33.36 33.42	7.92 7.94	
2013/10/30 9:18	C2	ME	831450	807713	10.8	5.400	25.31	5.14	75.6	2.9	33.42	7.94	1.7
						9.800	25.28	5.38	79.1	3.5	33.45	7.94	2.0
						9.800	25.28	5.38	79.1	3.3	33.44	7.93	2.3
						1.000	25.34	6.2	91.2	2.7	33.23	7.9	1.4
						1.000	25.34	6.2	91.2	2.6	33.23	7.9	
2013/10/30 8:09	C3	ME	832241	808879	15.9	7.950 7.950	25.26 25.25	6.15	90.3 89	3.1 3.4	33.28 33.28	7.9 7.89	1.8
						14.900	25.23	5.17	75.8	3.4	33.38	7.89	
						14.900	25.2	5.16	75.8	3.8	33.38	7.9	1.7
2013/10/30 15:59	W1	MF	832983	807716	2.6	1.300	25.3	6.16		3.1	33.39	7.9	1.0
2010/10/00 10:07			002/00	007710	210	1.300	25.3	6.16	90.6	3.2	33.39	7.9	110
						1.000	25.22 25.26	6.62	95.7 98.8	3.8 3.6	33.41 33.42	7.92 7.95	1.4
						6.200	25.20	6.38	93.6	3.7	33.43	7.91	
2013/10/30 15:43	W2	MF	832693	807942	12.4	6.200	25.17	6.38	93.6	4	33.45	7.92	1.7
						11.400	25.17	5.84	85.8	4.1	33.47	7.91	1.7
						11.400	25.15	6.22	91.3	4.2	33.47	7.93	1.7
						1.000	25.17	5.86	86 83.2	3.3	33.39	7.93 7.92	2.9
						1.000 5.900	25.17 25.16	5.67 5.69	83.6	3.1 3.7	33.41 33.43	7.92	
2013/10/30 15:21	W3	MF	832069	807906	11.8	5.900	25.18	5.69	83.5	3.8	33.42	7.93	2.2
						10.800	25.13	6.09	89.3	4	33.44	7.96	2.2
						10.800	25.16			4.2	33.43	7.96	2.2
						1.000	25.27	6.27	92.1	2.4	33.38	7.88	2.2
						1.000 7.500	25.28 25.22	5.6 5.49	82.3 80.6	2.6	33.38 33.46	7.89 7.91	
2013/10/30 16:10	C1	MF	833719	808164	15	7.500	25.22	5.47	80.3	3.1	33.47	7.91	4.0
						14.000	25.15	5.37	78.8	3.1	33.52	7.94	2.8
						14.000	25.1	5.66	81.7	2.9	33.68	7.92	2.0
						1.000	25.17	6.52	95.7	3.3	33.4	7.92	2.4
						1.000	25.16	6.55	96.1	3	33.41	7.91	
2013/10/30 15:04	C2	MF	831469	807764	9.9	4.950 4.950	25.16 25.16	5.65 5.73	82.8 84.1	3.1	33.41 33.42	7.91 7.91	2.9
2010/10/00 1010 1						8.900	25.13	6.09	89.3	3.1	33.44	7.91	1.0
2010/10/00 1010 1								6.14	90	4.1	33.47	7.9	1.9
2010/10/20 10:00						8.900	25.09	0.14	20	11.1	00117	1.2	
2010/10/00 10/01						1.000	25.34	5.82	85.6	3.6	33.42	7.92	20
						1.000 1.000	25.34 25.32	5.82 5.81	85.6 85.4	3.6 3.4	33.42 33.43	7.92 7.93	2.9
2013/10/30 16:29	C3	MF	832249	808872	15.7	1.000 1.000 7.850	25.34 25.32 25.15	5.82 5.81 5.75	85.6 85.4 84.4	3.6 3.4 3.7	33.42 33.43 33.51	7.92 7.93 7.94	2.9 2.8
	C3	MF	832249	808872	15.7	1.000 1.000	25.34 25.32	5.82 5.81	85.6 85.4	3.6 3.4	33.42 33.43	7.92 7.93	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

1-Nov-13 Date

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	TILC.	East	North	m	m	C	mg/L	%	NTU	ppt	unit	mg/l
2013/11/1 11:05	W1	ME	832991	807716	2.6	1.300	25.35	7.29	107.4	1.8	33.52	7.93	2.0
2010/11/1 11:00		1012	002///1	00//10	210	1.300	25.33	6.82	100.5	1.7	33.66	7.88	210
						1.000	25.29 25.3	6.95 6.98	100.6 101.2	2.2	33.77 33.01	7.89 7.88	3.6
						6.300	25.21	6.71	97.1	2.2	33.84	7.89	
2013/11/1 11:12	W2	ME	832671	807949	12.6	6.300	25.24	6.7	98.6	2.6	33.73	7.89	4.2
						11.600	25.08	6.4	94	3.9	33.79	7.9	9.4
						11.600	25.07	6.4	94	3.9	33.8	7.9	9.4
						1.000	25.53	6.46	95.5	2.3	33.58	7.88	3.2
						1.000 6.000	25.55 25.16	6.46 5.94	95.5 87.3	2.4 2.6	33.64 33.74	7.85 7.89	
2013/11/1 11:34	W3	ME	832061	807897	12	6.000	25.10	6.02	87	2.6	33.8	7.89	3.6
						11.000	25.17	5.48	79.3	3	33.04	7.79	5.0
						11.000	25.09	5.08	73.8	3	33.71	7.69	5.9
						1.000	25.23	7.87	114	2.5	33.84	7.87	3.8
						1.000	25.33	7.86	115.7	2.5	33.64	7.9	5.0
2013/11/1 10:47	C1	ME	833708	808190	15.2	7.600	25.2 25.21	7.23	106.3 106	2.9 2.8	33.7 33.69	7.87 7.88	4.0
						7.600 14.200	25.21	5.76	84.8	2.8	33.68	7.88	
						14.200	25.2	5.77	84.8	2.8	33.69	7.87	4.1
						1.000	25.39	6.23	91.9	1.2	33.73	7.78	1.4
						1.000	25.43	4.95	73	1.2	33.7	7.83	1.4
2013/11/1 11:51	C2	ME	831479	807754	9.8	4.900	25.2	4.85	71.3	1.1	33.73	7.88	1.2
2013/11/1 11.51	02	MIL	051177	007751	2.0	4.900	25.11	5.31	77.8	1.2	33.38	7.86	112
						8.800 8.800	25.15 25.07	4.63	68 66.4	1.6 1.6	33.71 33.51	7.86 7.82	1.6
						1.000	25.07	4.55	112.6	1.6	33.48	7.82	
						1.000	25.35	7.65	112.0	1.5	33.48	7.87	1.7
2012/11/1 10 26	C 22		000010	000001	15.0	7.900	25.16	7.48	109.9	1.6	33.61	7.85	17
2013/11/1 10:26	C3	ME	832249	808891	15.8	7.900	25.25	7.31	107.5	1.6	33.47	7.84	1.7
						14.800	25.19	5.95	87.5	1.4	33.59	7.84	1.5
						14.800	25.17	6.27	92.1	1.4	33.62	7.85	110
						1.300	25.41	7.53	111.2	2.2	33.76	7.88	
2013/11/1 17:02	W1	MF	832979	807753	2.6	1.300	25.41	7.48	111.2	2.2	33.74	7.88	2.5
						1.000	25.34	6.27	92.4	1.8	33.79	7.83	
						1.000	25.28	6.3	92.5	1.8	33.29	7.86	1.8
2013/11/1 16:27	W2	MF	832682	807998	12.2	6.100	25.27	6.44	94.9	2	33.79	7.89	2.4
2013/11/1 10.27	W 2	IVII	052002	001770	12.2	6.100	25.27	7.22	106.3	2.1	33.8	7.92	2.7
						11.200	25.27	7.55	111.2	2.3	33.81	7.93	2.6
						11.200	25.23	6.19	91.2	2.4 2.2	33.76 33.76	7.94	
							25 55	6.2					
						1.000	25.55 25.55	6.3 5.96	93.2 88.1			7.68 7.68	2.2
			000000	005004	11.0	1.000	25.55	5.96	93.2 88.1 89.7	2.2 2.2 2.6	33.75	7.68 7.68 7.73	
2013/11/1 16:13	W3	MF	832063	807901	11.8	1.000 5.900 5.900			88.1	2.2		7.68	2.2 2.9
2013/11/1 16:13	W3	MF	832063	807901	11.8	1.000 5.900 5.900 10.800	25.55 25.27 25.28 25.09	5.96 6.12 6.09 5.03	88.1 89.7 89.7 73.9	2.2 2.6 2.6 3	33.75 32.78 33.81 33.84	7.68 7.73 7.77 7.76	2.9
2013/11/1 16:13	W3	MF	832063	807901	11.8	1.000 5.900 5.900 10.800 10.800	25.55 25.27 25.28 25.09 25.11	5.96 6.12 6.09 5.03 7.63	88.1 89.7 89.7 73.9 112	2.2 2.6 2.6 3 2.9	33.75 32.78 33.81 33.84 33.6	7.68 7.73 7.77 7.76 7.74	
2013/11/1 16:13	W3	MF	832063	807901	11.8	1.000 5.900 5.900 10.800 10.800 1.000	25.55 25.27 25.28 25.09 25.11 25.45	5.96 6.12 6.09 5.03 7.63 7.51	88.1 89.7 89.7 73.9 112 110.9	2.2 2.6 2.6 3 2.9 1.8	33.75 32.78 33.81 33.84 33.6 33.69	7.68 7.73 7.77 7.76 7.74 7.89	2.9
						1.000 5.900 5.900 10.800 10.800 1.000 1.000	25.55 25.27 25.28 25.09 25.11 25.45 25.43	5.96 6.12 6.09 5.03 7.63 7.51 7.29	88.1 89.7 73.9 112 110.9 107.7	2.2 2.6 2.6 3 2.9 1.8 1.8	33.75 32.78 33.81 33.84 33.6 33.69 33.71	7.68 7.73 7.77 7.76 7.74 7.89 7.9	2.9 2.5 2.2
2013/11/1 16:13	W3 C1	MF MF	832063 833724	807901 808189	11.8	1.000 5.900 5.900 10.800 10.800 1.000	25.55 25.27 25.28 25.09 25.11 25.45	5.96 6.12 6.09 5.03 7.63 7.51	88.1 89.7 89.7 73.9 112 110.9	2.2 2.6 2.6 3 2.9 1.8	33.75 32.78 33.81 33.84 33.6 33.69	7.68 7.73 7.77 7.76 7.74 7.89	2.9 2.5
						1.000 5.900 5.900 10.800 1.000 1.000 7.750 7.750 14.500	25.55 25.27 25.28 25.09 25.11 25.45 25.43 25.21	5.96 6.12 6.09 5.03 7.63 7.51 7.29 5.53	88.1 89.7 89.7 73.9 112 110.9 107.7 81.1 81.1 74.1	2.2 2.6 2.6 3 2.9 1.8 1.8 2.1 2 1.9	33.75 32.78 33.81 33.84 33.6 33.69 33.71 33.17	7.68 7.73 7.77 7.76 7.74 7.89 7.9 7.89 7.93 7.89	2.9 2.5 2.2 2.1
						1.000 5.900 5.900 10.800 10.000 1.000 7.750 7.750 14.500	25.55 25.27 25.28 25.09 25.11 25.45 25.43 25.21 25.28 25.21 25.28 25.17 25.05	5.96 6.12 6.09 5.03 7.63 7.51 7.29 5.53 5.5 5.04 5.45	88.1 89.7 73.9 112 110.9 107.7 81.1 81.1 74.1 74.2	2.2 2.6 2.6 3 2.9 1.8 1.8 2.1 2 1.9 1.9	33.75 32.78 33.81 33.84 33.69 33.71 33.17 33.17 33.79 33.76 33.63	7.68 7.73 7.77 7.76 7.74 7.89 7.9 7.89 7.93 7.89 7.89 7.89 7.89 7.86	2.9 2.5 2.2
						1.000 5.900 5.900 10.800 1.000 1.000 7.750 7.750 14.500 14.500 1.000	25.55 25.27 25.28 25.09 25.11 25.43 25.21 25.28 25.21 25.28 25.17 25.05 25.82	5.96 6.12 6.09 5.03 7.63 7.51 7.29 5.53 5.55 5.04 5.45 6.98	88.1 89.7 73.9 112 110.9 107.7 81.1 81.1 74.1 74.2 103.6	2.2 2.6 2.6 3 2.9 1.8 1.8 2.1 2 1.9 1.9 1.9 1.9	33.75 32.78 33.81 33.84 33.69 33.69 33.71 33.17 33.79 33.76 33.63 33.63	7.68 7.73 7.77 7.76 7.74 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89	2.9 2.5 2.2 2.1
						1.000 5.900 5.900 10.800 10.000 1.000 7.750 7.750 14.500 1.000 1.000	25.55 25.27 25.28 25.09 25.11 25.43 25.21 25.28 25.21 25.28 25.27 25.05 25.82 25.77	5.96 6.12 6.09 5.03 7.63 7.51 7.29 5.53 5.5 5.04 5.45 6.98 7.07	88.1 89.7 73.9 112 110.9 107.7 81.1 81.1 74.1 74.2 103.6 104.9	2.2 2.6 2.6 3 2.9 1.8 1.8 2.1 2 1.9 1.9 1.9 1.9 1.6 1.6	33.75 32.78 33.81 33.84 33.66 33.69 33.71 33.17 33.79 33.76 33.63 33.63 33.6 33.66	7.68 7.73 7.77 7.76 7.74 7.89 7.9 7.89 7.9 7.93 7.89 7.89 7.89 7.86 7.68 7.71	2.9 2.5 2.2 2.1 2.2
						1.000 5.900 5.900 10.800 1.000 7.750 7.750 14.500 14.500 1.000 1.000 4.800	25.55 25.27 25.28 25.09 25.11 25.45 25.43 25.21 25.28 25.21 25.28 25.17 25.82 25.82 25.82 25.77 25.45	5.96 6.12 6.09 5.03 7.63 7.51 7.29 5.53 5.5 5.04 5.45 5.45 5.45 5.49 8 7.07 6.62	88.1 89.7 73.9 112 110.9 107.7 81.1 81.1 74.2 103.6 104.9 97.8	2.2 2.6 3.3 2.9 1.8 1.8 2.1 2 1.9 1.9 1.9 1.6 1.6 2.1	33.75 32.78 33.81 33.84 33.69 33.71 33.17 33.79 33.76 33.66 33.66 33.66 33.66	7.68 7.73 7.77 7.76 7.74 7.89 7.93 7.89 7.89 7.89 7.89 7.89 7.86 7.68 7.71	2.9 2.5 2.2 2.1 2.2
2013/11/1 17:10	C1	MF	833724	808189	15.5	1.000 5.900 5.900 10.800 1.000 7.750 7.750 14.500 14.500 1.000 1.000 4.800 4.800	25.55 25.27 25.28 25.09 25.11 25.45 25.43 25.21 25.28 25.21 25.28 25.17 25.05 25.82 25.77 25.45 25.5	5.96 6.12 6.09 5.03 7.63 7.51 7.29 5.53 5.5 5.04 5.45 6.98 7.07 6.62 6.4	88.1 89.7 73.9 112 110.9 107.7 81.1 74.1 74.2 103.6 104.9 97.8 94.6	2.2 2.6 2.6 3 2.9 1.8 2.1 2 1.9 1.9 1.9 1.9 1.6 2.1 2.2	33.75 32.78 33.81 33.84 33.69 33.71 33.17 33.79 33.76 33.66 33.66 33.66 33.66 33.75 33.7	7.68 7.73 7.77 7.76 7.74 7.89 7.89 7.89 7.89 7.89 7.89 7.86 7.66 7.71 7.7	2.9 2.5 2.2 2.1 2.2 1.3 2.8
2013/11/1 17:10	C1	MF	833724	808189	15.5	1.000 5.900 5.900 10.800 1.000 7.750 7.750 14.500 14.500 1.000 1.000 4.800	25.55 25.27 25.28 25.09 25.11 25.45 25.43 25.21 25.28 25.21 25.28 25.17 25.82 25.82 25.82 25.77 25.45	5.96 6.12 6.09 5.03 7.63 7.51 7.29 5.53 5.5 5.04 5.45 5.45 5.45 5.49 8 7.07 6.62	88.1 89.7 73.9 112 110.9 107.7 81.1 81.1 74.2 103.6 104.9 97.8	2.2 2.6 3.3 2.9 1.8 1.8 2.1 2 1.9 1.9 1.9 1.6 1.6 2.1	33.75 32.78 33.81 33.84 33.69 33.71 33.17 33.79 33.76 33.66 33.66 33.66 33.66	7.68 7.73 7.77 7.76 7.74 7.89 7.93 7.89 7.89 7.89 7.89 7.89 7.86 7.68 7.71	2.9 2.5 2.2 2.1 2.2 1.3
2013/11/1 17:10	C1	MF	833724	808189	15.5	1.000 5.900 5.900 10.800 10.000 1.000 1.000 7.750 7.750 14.500 1.000 4.800 4.800 8.600 1.000	25.55 25.27 25.28 25.09 25.11 25.45 25.43 25.21 25.28 25.21 25.28 25.17 25.05 25.82 25.77 25.45 25.75 25.55 25.19 25.08 25.29	5.96 6.12 6.09 5.03 7.63 7.51 7.29 5.53 5.54 5.54 5.54 5.64 7.07 6.62 6.4 5.68 5.61 6.84	88.1 89.7 73.9 1102 110.9 107.7 81.1 74.1 74.2 103.6 104.9 97.8 94.6 83.5 82.5 82.5 95	$\begin{array}{c} 2.2 \\ 2.6 \\ 2.6 \\ 3 \\ 2.9 \\ 1.8 \\ 2.1 \\ 2 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.6 \\ 1.6 \\ 2.1 \\ 2.2 \\ 3.6 \\ 3.5 \\ 1.5 \\ 1.5 \\ \end{array}$	33.75 32.78 33.81 33.84 33.69 33.71 33.17 33.79 33.76 33.63 33.66 33.66 33.66 33.65 33.75 33.7	7.68 7.73 7.77 7.76 7.74 7.89 7.93 7.89 7.89 7.89 7.89 7.86 7.68 7.71 7.76 7.68 7.71 7.76 7.68 7.66 7.68	2.9 2.5 2.2 2.1 2.2 1.3 2.8 6.6
2013/11/1 17:10	C1	MF	833724	808189	15.5	1.000 5.900 5.900 10.800 10.000 1.000 7.750 7.750 14.500 1.000 1.000 4.800 4.800 8.600 1.000 1.000	25.55 25.27 25.28 25.09 25.11 25.43 25.43 25.21 25.28 25.21 25.28 25.17 25.05 25.82 25.77 25.45 25.59 25.19 25.08 25.29 25.31	5.96 6.12 6.09 5.03 7.61 7.29 5.53 5.5 5.04 5.45 6.98 7.07 6.62 6.4 5.68 5.61 6.84 6.45	88.1 89.7 89.7 73.9 1102 110.9 107.7 81.1 74.1 74.2 103.6 104.9 97.8 94.6 83.5 82.5 95 95	$\begin{array}{r} 2.2 \\ 2.6 \\ 2.6 \\ 3 \\ 2.9 \\ 1.8 \\ 2.1 \\ 2 \\ 1.9 \\ 1.9 \\ 1.6 \\ 1.6 \\ 2.1 \\ 2.2 \\ 3.6 \\ 3.5 \\ 1.5$	33.75 32.78 33.81 33.84 33.69 33.71 33.79 33.76 33.63 33.63 33.65 33.75 33.77 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.84 33.32	7.68 7.73 7.77 7.76 7.74 7.89 7.93 7.89 7.89 7.89 7.89 7.89 7.86 7.68 7.71 7.71 7.76 7.68 7.66 7.68 7.66 7.83 7.83 7.86	2.9 2.5 2.2 2.1 2.2 1.3 2.8 1.3
2013/11/1 17:10	C1	MF	833724	808189	15.5	1.000 5.900 5.900 10.800 1.000 7.750 7.750 14.500 14.500 1.000 4.800 4.800 4.800 8.600 1.000 1.000 1.000 1.000 8.600 1.000	25.55 25.27 25.28 25.09 25.11 25.45 25.43 25.21 25.28 25.17 25.05 25.82 25.77 25.45 25.52 25.59 25.19 25.09 25.09 25.29 25.29	5.96 6.12 6.09 5.03 7.63 7.51 7.29 5.53 5.55 5.04 5.45 6.98 7.07 6.62 6.44 5.68 5.61 6.84 6.84 6.84 6.84	88.1 89.7 73.9 112 110.9 107.7 81.1 74.2 103.6 104.9 97.8 94.6 83.5 82.5 955 955 113.9	$\begin{array}{r} 2.2\\ 2.6\\ 2.6\\ 3\\ 3\\ 2.9\\ 1.8\\ 1.8\\ 2.1\\ 2\\ 1.9\\ 1.9\\ 1.6\\ 1.6\\ 2.1\\ 2.2\\ 3.6\\ 3.5\\ 1.5\\ 1.5\\ 1.5\\ 1.9\\ 1.9\\ 1.9\\ 1.9\\ 1.9\\ 1.9\\ 1.9\\ 1.9$	33.75 32.78 33.81 33.84 33.69 33.71 33.17 33.79 33.76 33.63 33.66 33.65 33.65 33.75 33.75 33.77 33.78 33.78 33.84 33.32 33.71 33.74	7.68 7.73 7.77 7.76 7.74 7.89 7.93 7.89 7.93 7.89 7.89 7.89 7.86 7.68 7.66 7.68 7.66 7.68 7.66 7.68 7.68	2.9 2.5 2.2 2.1 2.2 1.3 2.8 6.6
2013/11/1 17:10 2013/11/1 15:59	C1 C2	MF	833724 831492	808189	9.6	1.000 5.900 5.900 10.800 10.000 1.000 7.750 7.750 14.500 1.000 1.000 4.800 4.800 8.600 1.000 1.000	25.55 25.27 25.28 25.09 25.11 25.43 25.43 25.21 25.28 25.21 25.28 25.17 25.05 25.82 25.77 25.45 25.59 25.19 25.08 25.29 25.31	5.96 6.12 6.09 5.03 7.61 7.29 5.53 5.5 5.04 5.45 6.98 7.07 6.62 6.4 5.68 5.61 6.84 6.45	88.1 89.7 89.7 73.9 1102 110.9 107.7 81.1 74.1 74.2 103.6 104.9 97.8 94.6 83.5 82.5 95 95	$\begin{array}{r} 2.2 \\ 2.6 \\ 2.6 \\ 3 \\ 2.9 \\ 1.8 \\ 2.1 \\ 2 \\ 1.9 \\ 1.9 \\ 1.6 \\ 1.6 \\ 2.1 \\ 2.2 \\ 3.6 \\ 3.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array}$	33.75 32.78 33.81 33.84 33.69 33.71 33.79 33.76 33.63 33.63 33.65 33.75 33.77 33.78 33.78 33.78 33.78 33.78 33.78 33.84 33.32	7.68 7.73 7.77 7.76 7.74 7.89 7.93 7.89 7.89 7.89 7.89 7.89 7.89 7.86 7.68 7.71 7.7 7.68 7.66 7.68 7.66 7.68 7.66	2.9 2.5 2.2 2.1 2.2 1.3 2.8 6.6 1.4

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

5-Nov-13 Date

Data / Time	Teertien	Tide*	Co-or	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	1100*	East	North	m	m	ů	mg/L	%	NTU	ppt	unit	mg/l
2013/11/5 14:02	W1	ME	832982	807716	2.8	1.400	25.1	6.83	99.2	2.8	32	7.99	3.9
						1.400	25.1 25	6.81 6.98	99 101.4	2.9	32 31.98	7.99 7.97	
						1.000	25	7.11	101.4	2.2	31.98	7.98	2.8
2013/11/5 13:50	W2	ME	832682	807993	12.8	6.400	25	6.71	97.4	2.1	31.98	7.99	2.8
2013/11/3 13.30	VV Z	ME	632062	607995	12.0	6.400	25	6.9	100.2	2.1	31.99	7.99	2.0
						11.800 11.800	25 25	6.68 6.99	96.9 101.5	2.4	31.93 31.98	7.98 7.98	2.3
						1.000	25	7.23	101.5	2.4	31.98	7.98	
						1.000	25	7.27	105.6	2.6	31.99	7.99	3.2
2013/11/5 13:39	W3	ME	832029	807914	11.8	5.900	25	7.96	115.5	2.5	31.99	7.98	3.0
2013/11/3 13:37		IVIL	052027	007714	11.0	5.900	25	8.04	116.7	2.5	31.99	7.98	5.0
						10.800	25 25	7.68 7.99	111.5 116	3.1	31.99 31.99	7.98 7.98	4.1
						1.000	25	6.47	94.1	3.5	32.07	8.02	
						1.000	25	6.54	95	3.5	32.07	8.02	4.8
2013/11/5 14:09	C1	ME	833708	808181	14.8	7.400	25	6.15	89.4	2.8	32.07	8.02	2.8
2013/11/3 11:09	01	IVIE	055700	000101	11.0	7.400	25	6.29	91.5	2.8	32.07	8.03	2.0
						13.800 13.800	25 25	6.37 6.21	92.6 90.3	3.4 3.4	32.07 32.06	8.03 8.03	4.9
						1.000	25	8.28	120.2	1.8	31.89	7.9	
						1.000	25	8.28	120.2	1.8	31.9	7.9	1.8
2013/11/5 13:24	C2	ME	831483	807761	10.6	5.300	24.9	7.68	111.3	1.6	31.94	7.94	1.4
2013/11/3 13.24	C2	IVIL	051405	007701	10.0	5.300	24.9	7.62	110.5	1.6	31.94	7.95	1.4
						9.600 9.600	24.9 24.9	7.17	104 107.8	2	31.99 31.98	7.98 7.98	2.3
						9.000	24.9	6.34	92.2	1.9	32.03	7.98	
						1.000	25.1	6.38	92.7	1.9	32.03	8	2.7
2013/11/5 14:33	C3	ME	832224	808878	15.4	7.700	25	6.06	88.1	2.2	32.06	8.02	3.2
2013/11/3 14.33	C	IVIL	032224	000070	15.4	7.700	25	6.31	91.7	2.2	32.06	8.02	5.2
						14.400	25 25	6.51 6.37	93.9 92.5	3.6	30.97 32.05	8.03 8.03	4.3
						14.400	23	0.57	92.0	5.4	52.05	8.05	
2012/11/5 0 55	11/1) (E	000000	007750	2.0	1.400	25	6.65	96.5	2.6	32.04	7.98	
2013/11/5 8:57	W1	MF	832982	807753	2.8	1.400	25	6.71	97.4	2.7	32.05	7.98	3.2
						1.000	25	6.67	96.8	3.1	32.04	7.97	4.8
						1.000	25 25	6.52	94.6	3.1	32.06	7.98 7.96	
2013/11/5 9:03	W2	MF	832682	807992	12.8	6.400 6.400	25	6.28 6.47	91.1 93.9	2.0	32 32.05	7.96	3.1
						11.800	25	6.15	89.2	3.2	32.14	8	1.2
						11.800	25	6.15	89.3	3.3	32.14	8	4.3
						1.000	25	6.27	90.8	2.7	31.58	7.95	3.4
						1.000 6.100	25 25	6.29	90.8 88.5	2.7	31.11 32.12	7.98	
2013/11/5 9:20	W3	MF	832061	807904	12.2	6.100	25	6.12	88.8	2.2	32.12	8 7.99	2.4
						11.200	25	6.16	89.5	3.3	32.14	8	4.2
						11.200	25	6.15		3.2	32.14	8	4.2
						1.000	25	6.27	91	3.6	32.14	7.99	4.8
						1.000 7.700	25 25	6.37 7.02	92.5 102	3.6	32.13 32.07	7.99 7.98	
2013/11/5 8:42	C1	MF	833738	808190	15.4	7.700	25	6.99	101.5	3.2	32.07	7.98	4.1
						14.400	25	6.36	92.3	4.2	32.14	8	5.9
						14.400	25	6.38	92.6	4.3	32.14	8	5.9
						1.000	25	6.48	94	3.2	32.09	7.98	4.2
						1.000 5.400	25 25	6.5	94.4 90	3.2 2.9	32.09 32.11	7.98 7.99	
2013/11/5 9:37	C2	MF	831469	807761	10.8	5.400	25	6.4	93	2.9	32.11	7.99	2.6
						9.800	25	6.2	90	2.8	32.06	8	2.5
						9.800	25	6.24	90.5	2.8	32.12	8	2.3
						1.000	25	5.73	83.2	2.9	32.14	7.98	4.2
	1					1.000 7.900	25 25	5.75	83.4 93	2.9	32.14 32.14	7.98 7.99	
2013/11/5 8:22	C3	MF	832247	808881	15.8	7.900	25	6.39	93	3.2	32.14	7.99	4.6
						14.800	25	5.98	86.8	3.4	32.14	7.99	4.6
						14.800	25	6.18	89.7	3.4	32.14	7.99	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

7-Nov-13 Date

Data (Thing	Terretien	m: 1. +	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/11/7 15:04	W1	ME	832990	807716	2.6	1.300	25.1	6.9	100.3	3.2	31.89	7.97	4.4
						1.300 1.000	25.1 25	7.03 6.96	102.1	3.2 3.2	31.89 32	7.98 7.99	
					1	1.000	25	7.16	101.1	3.3	32	8.01	4.9
2013/11/7 14:51	W2	ME	832671	807969	12.6	6.300	25	6.94	100.8	3.6	32.1	8.02	5.0
2013/11/7 14.31	vv Z	IVIL	652071	007909	12.0	6.300	24.9	6.73	97.7	3.6	32.12	8.03	5.0
					1	11.600	24.9 24.9	6.84 6.83	99.3 99.1	3.8 3.8	32.11 32.11	8.02 8.03	6.2
						11.600 1.000	24.9	7.05	102.5	2.9	32.01	8.05	
					1	1.000	25.1	7.07	102.7	2.8	32.02	8	3.5
2013/11/7 14:34	W3	ME	832063	807884	12.2	6.100	25.1	6.89	100.1	3.3	31.89	8.01	6.0
2013/11/ 11.31		MIL	052005	007001	12.2	6.100	25.1	7.05	102.5	3.3	31.98	8.01	0.0
					1	11.200 11.200	25 25	6.83 6.77	99.1 98.3	3.5 3.5	32.09 32.09	8.02 8.02	4.3
						1.000	25.2	7.38	107.3	3.6	31.91	7.98	
					1	1.000	25.1	7.51	104.4	3.4	24.21	7.99	5.2
2013/11/7 15:12	C1	ME	833694	808191	14.8	7.400	25	7.31	105.9	2.9	31.73	8.01	4.0
						7.400 13.800	25 25	6.9 6.97	100.1	3.1 3.9	31.85 31.85	8.01 8.01	
					1	13.800	25.1	6.97	101.2	5.9	31.83	8.01	6.6
						1.000	25.1	7.08	100.2	4	32.01	7.99	5.3
					1	1.000	25.1	7.12	103.6	4	32.01	7.99	5.3
2013/11/7 14:18	C2	ME	831478	807769	10.4	5.200	25	6.97	101.3	3.6	32.03	8	4.6
						5.200 9.400	25 25.1	6.95 7.02	100.9	3.6 4.1	32.03 31.89	8 7.99	
					1	9.400	25.1	7.02	102	4.1	31.89	7.99	5.3
						1.000	25.1	7.44	108.1	3.9	31.87	8	4.0
					1	1.000	25.1	7.55	109.6	3.8	31.88	8	4.9
2013/11/7 15:36	C3	ME	832228	808873	15.6	7.800	25	7	101.7	4.5	32.06	8.02	6.4
						7.800 14.600	25 25	6.86	101.6 99.6	4.6 4.5	32.04 32.04	8.02 8.01	
					1	14.600	25	6.87	99.0	4.5	32.04	8.02	7.6
									6 6 ¹ -				
2013/11/7 9:38	W1	MF	832982	807748	2.8	1.400	25.2	6.7	97.6	4.2	31.89	7.97	10.8
2013/11/1 7.50	** 1	IVII	052702	007740	2.0	1.400	25.2	6.68	97.3	4.2	31.89	7.96	10.0
					1	1.000	25.3 25.3	6.78 6.78	98.8 98.8	3.1 3.1	31.83 31.85	7.95 7.96	5.0
						6.500	25.2	6.53	95.1	3.5	31.97		
2013/11/7 9:45	W2	MF	832681	807996	13							7.98	5.2
						6.500	25.2	6.56	95.6	3.5	31.97	7.98 7.98	5.2
						12.000	25.2 24.9	6.56 5.85	95.6 84.9	3.5 3.9	31.97 32.24	7.98 8.01	
						12.000 12.000	25.2 24.9 24.9	6.56 5.85 5.9	95.6 84.9 85.7	3.5 3.9 4.1	31.97 32.24 32.26	7.98 8.01 8.02	5.8
						12.000 12.000 1.000	25.2 24.9 24.9 25.3	6.56 5.85 5.9 6.61	95.6 84.9 85.7 96.3	3.5 3.9 4.1 3.5	31.97 32.24 32.26 31.84	7.98 8.01 8.02 7.94	
2012/11/7 10.04			000000	005000	10 (12.000 12.000	25.2 24.9 24.9	6.56 5.85 5.9	95.6 84.9 85.7	3.5 3.9 4.1	31.97 32.24 32.26	7.98 8.01 8.02	5.8 6.2
2013/11/7 10:04	W3	MF	832069	807909	12.6	12.000 12.000 1.000 1.000	25.2 24.9 24.9 25.3 25.3 25.1 25.1	6.56 5.85 5.9 6.61 6.67	95.6 84.9 85.7 96.3 97.1 89.2 90.5	3.5 3.9 4.1 3.5 3.6 3.9 3.9	31.97 32.24 32.26 31.84 31.83 32.04 32.03	7.98 8.01 8.02 7.94 7.95	5.8
2013/11/7 10:04	W3	MF	832069	807909	12.6	12.000 12.000 1.000 6.300 6.300 11.600	25.2 24.9 25.3 25.3 25.1 25.1 25.1 25.1	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84	3.5 3.9 4.1 3.5 3.6 3.9 3.9 4.2	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22	7.98 8.01 8.02 7.94 7.95 7.99 7.99 8.01	5.8 6.2 6.5
2013/11/7 10:04	W3	MF	832069	807909	12.6	12.000 12.000 1.000 6.300 6.300 11.600 11.600	25.2 24.9 25.3 25.3 25.1 25.1 25.1 25 24.9	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 84	3.5 3.9 4.1 3.5 3.6 3.9 3.9 4.2 4.2	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26	7.98 8.01 8.02 7.94 7.95 7.99 7.99 8.01 8.02	5.8 6.2
2013/11/7 10:04	W3	MF	832069	807909	12.6	12.000 1.000 1.000 6.300 6.300 11.600 11.600 1.000	25.2 24.9 25.3 25.3 25.1 25.1 25.1 25.1 25.2 24.9 25.3	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1	3.5 3.9 4.1 3.5 3.6 3.9 3.9 4.2 4.2 4.2 3.6	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81	7.98 8.01 8.02 7.94 7.95 7.99 7.99 8.01 8.02 7.95	5.8 6.2 6.5
						12.000 12.000 1.000 6.300 6.300 11.600 11.600	25.2 24.9 25.3 25.3 25.1 25.1 25.1 25 24.9	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 84	3.5 3.9 4.1 3.5 3.6 3.9 3.9 4.2 4.2	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26	7.98 8.01 8.02 7.94 7.95 7.99 7.99 8.01 8.02	5.8 6.2 6.5 7.3 5.3
2013/11/7 10:04 2013/11/7 9:22	W3 C1	MF MF	832069 833719	807909	12.6	12.000 12.000 1.000 6.300 6.300 11.600 11.600 1.000 7.700 7.700	25.2 24.9 24.9 25.3 25.1 25.1 25.1 25.1 25.1 25.2 24.9 25.3 25.3 25.2 25.2	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71 6.87 7 6.37 6.42	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1 102 92.7 93.5	3.5 3.9 4.1 3.5 3.6 3.9 3.9 4.2 4.2 4.2 3.6 3.5 4.2 4.2 4.2 4.2	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81 31.84 31.84 31.92 31.95	7.98 8.01 8.02 7.94 7.95 7.99 7.99 8.01 8.02 7.95 7.95 7.95 7.96 7.98	5.8 6.2 6.5 7.3
						12.000 12.000 1.000 6.300 6.300 11.600 11.600 1.000 7.700 7.700 14.400	25.2 24.9 24.9 25.3 25.3 25.1 25.1 25.1 25.2 24.9 25.3 25.3 25.3 25.2 24.9 25.2 24.9	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71 6.87 7 7 6.37 6.37 6.42 5.77	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1 102 92.7 93.5 83.8	3.5 3.9 4.1 3.5 3.6 3.9 4.2 4.2 3.6 3.5 4.2 4.2 3.6 3.5 4.2 4.2 3.9	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81 31.84 31.92 31.95 32.24	7.98 8.01 8.02 7.94 7.95 7.99 7.99 8.01 8.02 7.95 7.95 7.95 7.95 7.96 7.98 8.01	5.8 6.2 6.5 7.3 5.3
						12.000 12.000 1.000 6.300 6.300 11.600 11.600 1.000 1.000 7.700 7.700 14.400 14.400	25.2 24.9 24.9 25.3 25.3 25.1 25.1 25.2 24.9 25.3 25.3 25.2 25.2 24.9 24.9 24.9 24.9 24.9	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71 6.87 7 7 6.37 6.37 6.42 5.77 5.86	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1 102 92.7 93.5 83.8 85	$ \begin{array}{r} 3.5 \\ 3.9 \\ 4.1 \\ 3.5 \\ 3.6 \\ 3.9 \\ 3.9 \\ 4.2 \\ 4.2 \\ 4.2 \\ 3.6 \\ 3.5 \\ 4.2 \\ 4.2 \\ 3.6 \\ 3.5 \\ 4.2 \\ 4.2 \\ 3.9 \\ 4.2 \\ 4.2 \\ 3.9 \\ 4.2 \\ $	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81 31.84 31.92 31.95 32.24 32.24	7.98 8.01 8.02 7.94 7.95 7.99 7.99 8.01 8.02 7.95 7.95 7.95 7.95 7.96 8.01 8.01 8.01	5.8 6.2 6.5 7.3 5.3 6.4 5.0
						12.000 12.000 1.000 6.300 6.300 11.600 11.600 1.000 7.700 7.700 14.400	25.2 24.9 24.9 25.3 25.3 25.1 25.1 25.1 25.2 24.9 25.3 25.3 25.3 25.2 24.9 25.2 24.9	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71 6.87 7 7 6.37 6.37 6.42 5.77	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1 102 92.7 93.5 83.8	3.5 3.9 4.1 3.5 3.6 3.9 4.2 4.2 3.6 3.5 4.2 4.2 3.6 3.5 4.2 4.2 3.9	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81 31.84 31.92 31.95 32.24	7.98 8.01 8.02 7.94 7.95 7.99 7.99 8.01 8.02 7.95 7.95 7.95 7.95 7.96 7.98 8.01	5.8 6.2 6.5 7.3 5.3 6.4
2013/11/7 9:22	C1	MF	833719	808197	15.4	12.000 12.000 1.000 6.300 6.300 11.600 1.000 1.000 7.700 7.700 7.700 14.400 14.400 1.000 1.000 5.600	25.2 24.9 25.3 25.3 25.1 25.1 25.1 25.3 25.3 25.3 25.2 25.2 24.9 24.9 24.9 24.9 24.9 24.9 24.9 24	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71 6.87 7 6.37 6.42 5.77 5.86 6.88 6.8 6.88 6.7	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1 102 92.7 93.5 83.8 83.8 85 99.1 97.7 88.6	$\begin{array}{r} 3.5\\ 3.9\\ 4.1\\ 3.5\\ 3.6\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2$	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81 31.84 31.92 31.95 32.24 32.24 32.24 31.87 31.88 32.01	7.98 8.01 8.02 7.94 7.95 7.99 8.01 8.02 7.95 7.95 7.95 7.96 7.98 8.01 8.01 8.01 7.95 7.96 7.98	5.8 6.2 6.5 7.3 5.3 6.4 5.0 4.8
						12.000 12.000 1.000 6.300 6.300 11.600 11.600 1.000 7.700 7.700 7.700 14.400 14.400 14.400 1.000 5.600 5.600	25.2 24.9 24.9 25.3 25.3 25.1 25.1 25.1 25.3 25.3 25.3 25.2 25.2 24.9 24.9 24.9 24.9 24.9 24.9 25.3 25.3 25.3 25.3 25.3 25.3	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71 6.87 7 6.37 6.42 5.77 5.86 6.7 5.88 6.7 6.08 6.02	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1 102 92.7 93.5 83.8 85 85 99.1 97.7 88.6 87.8	$\begin{array}{r} 3.5\\ 3.9\\ 4.1\\ 3.5\\ 3.6\\ 3.9\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 3.6\\ 3.5\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 3.6\\ 3.5\\ 4.2\\ 4.2\\ 3.9\\ 3.6\\ 3.4\\ 4.1\\ 4.1\\ 4.1\end{array}$	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81 31.84 31.92 31.95 32.24 32.24 32.24 31.87 31.88 32.01 32.02	7.98 8.01 8.02 7.94 7.95 7.99 7.99 8.01 8.02 7.95 7.95 7.96 7.98 8.01 8.01 8.01 8.01 7.95 7.96 7.99 7.99	5.8 6.2 6.5 7.3 5.3 6.4 5.0
2013/11/7 9:22	C1	MF	833719	808197	15.4	12.000 12.000 1.000 6.300 6.300 11.600 11.600 1.000 7.700 7.700 7.700 14.400 14.400 14.400 1.000 5.600 5.600 10.200	25.2 24.9 24.9 25.3 25.3 25.1 25.1 25.2 24.9 25.3 25.2 24.9 24.9 24.9 24.9 24.9 25.3 3 25.3 25.3 25.2 24.9 24.9 24.9 25.3 25.3 25.2 24.9	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71 6.87 7 7 6.37 6.42 5.77 5.86 6.8 6.77 6.08 6.02 6.77	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1 102 92.7 93.5 83.8 85 99.1 97.7 88.6 87.8 89.9	$\begin{array}{r} 3.5\\ 3.9\\ 4.1\\ 3.5\\ 3.6\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 3.6\\ 3.5\\ 4.2\\ 4.2\\ 3.6\\ 3.5\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2$	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81 31.84 31.92 31.95 32.24 32.24 32.24 31.87 31.88 32.01 32.02 29.69	7.98 8.01 8.02 7.94 7.95 7.99 7.99 8.01 8.02 7.95 7.95 7.96 7.98 8.01 8.01 8.01 7.95 7.96 7.99 7.99 7.99	5.8 6.2 6.5 7.3 5.3 6.4 5.0 4.8
2013/11/7 9:22	C1	MF	833719	808197	15.4	12.000 12.000 1.000 6.300 6.300 11.600 11.600 1.000 1.000 1.000 1.000 14.400 14.400 14.400 1.000 5.600 5.600 10.200	25.2 24.9 24.9 25.3 25.3 25.1 25.1 25.2 24.9 25.3 25.2 24.9 24.9 24.9 24.9 25.3 25.3 25.2 24.9 24.9 24.9 24.9 25.3 25.3 25.2 24.9 24.9 24.9 24.9 25.3 25.3 25.2 24.9 24.9 24.9 25.3 25.3 25.3 25.3 25.3 25.3 25.3 25.3	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71 6.87 7 7 6.37 6.37 6.42 5.77 5.86 6.88 6.77 5.86 6.02 6.02	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1 102 92.7 93.5 83.8 85 99.1 97.7 88.6 87.8 96.9 83.8	$\begin{array}{r} 3.5\\ 3.9\\ 4.1\\ 3.5\\ 3.6\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 3.6\\ 3.5\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2$	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81 31.84 31.92 31.95 32.24 32.24 32.24 31.87 31.88 32.01 32.02 29.69 32.24	7.98 8.01 8.02 7.94 7.95 7.99 8.01 8.02 7.95 7.95 7.95 7.95 7.96 7.98 8.01 8.01 7.95 7.96 7.99 7.99 7.99 7.99	5.8 6.2 6.5 7.3 5.3 6.4 5.0 4.8 5.2 6.2
2013/11/7 9:22	C1	MF	833719	808197	15.4	12.000 12.000 1.000 6.300 6.300 11.600 11.600 1.000 7.700 7.700 7.700 14.400 14.400 14.400 1.000 5.600 5.600 10.200	25.2 24.9 24.9 25.3 25.3 25.1 25.1 25.2 24.9 25.3 25.2 24.9 24.9 24.9 24.9 24.9 25.3 3 25.3 25.3 25.2 24.9 24.9 24.9 25.3 25.3 25.2 24.9	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71 6.87 7 7 6.37 6.42 5.77 5.86 6.8 6.77 6.08 6.02 6.77	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1 102 92.7 93.5 83.8 85 99.1 97.7 88.6 87.8 89.9	$\begin{array}{r} 3.5\\ 3.9\\ 4.1\\ 3.5\\ 3.6\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 3.6\\ 3.5\\ 4.2\\ 4.2\\ 3.6\\ 3.5\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2\\ 4.2$	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81 31.84 31.92 31.95 32.24 32.24 32.24 31.87 31.88 32.01 32.02 29.69	7.98 8.01 8.02 7.94 7.95 7.99 7.99 8.01 8.02 7.95 7.95 7.96 7.98 8.01 8.01 8.01 7.95 7.96 7.99 7.99 7.99	5.8 6.2 6.5 7.3 5.3 6.4 5.0 4.8 5.2
2013/11/7 9:22 2013/11/7 10:18	C1 C2	MF	833719 831468	808197 807764	15.4	12.000 12.000 1.000 1.000 6.300 6.300 11.600 11.600 1.000 1.000 7.700 7.700 14.400 14.400 14.400 1.000 5.600 5.600 10.200 1.000	25.2 24.9 24.9 25.3 25.3 25.1 25.1 25.1 25.3 25.2 25.2 24.9 24.9 24.9 25.3 25.2 25.2 24.9 24.9 25.3 25.2 25.2 25.2 24.9 24.9 25.3 25.2 25.2 25.2 25.2 25.2 25.2 25.3 25.3	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71 6.87 7 7 6.37 6.42 5.77 5.86 6.88 6.7 5.86 6.88 6.7 5.86 6.02 5.77 5.86 6.02 5.77 5.86 6.02 5.77 5.86 6.03 5.77 5.86 6.03 5.77 5.86 6.03 5.77 5.86 6.03 5.77 5.77 5.86 6.03 5.77 5.77 6.03 5.77 5.86 6.03 5.77 5.77 5.86 6.03 5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.7	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1 102 92.7 93.5 83.8 85 99.1 97.7 88.6 87.8 87.8 96.9 83.8 95	$\begin{array}{r} 3.5\\ 3.9\\ 4.1\\ 3.5\\ 3.6\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 3.6\\ 3.5\\ 4.2\\ 4.2\\ 3.6\\ 3.5\\ 4.2\\ 4.2\\ 3.9\\ 4\\ 3.6\\ 3.4\\ 4.1\\ 4.1\\ 4.5\\ 4.6\\ 3.2\end{array}$	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81 31.84 31.95 32.24 31.95 32.24 31.87 31.88 32.01 32.02 31.88 32.01 32.02 32.24 31.88	7.98 8.01 8.02 7.94 7.95 7.99 8.01 8.02 7.95 7.95 7.95 7.96 7.98 8.01 8.01 8.01 7.95 7.96 7.99 7.99 7.99 7.99 7.99 7.99 7.99	5.8 6.2 6.5 7.3 5.3 6.4 5.0 4.8 5.2 6.2 3.4
2013/11/7 9:22	C1	MF	833719	808197	15.4	12.000 12.000 1.000 6.300 6.300 11.600 11.600 1.000 1.000 7.700 7.700 7.700 14.400 1.400 1.000 5.600 5.600 10.200 1.000 1.000	25.2 24.9 24.9 25.3 25.3 25.1 25.1 25.1 25.2 24.9 24.9 24.9 25.2 25.2 24.9 24.9 25.3 25.3 25.2 25.2 24.9 24.9 24.9 25.3 25.3 25.3 25.3 25.3 25.3	6.56 5.85 5.9 6.61 6.67 6.13 6.22 5.78 5.71 6.87 7 6.37 5.76 6.42 5.77 5.86 6.8 6.7 5.86 6.82 6.77 5.77 5.77 5.77 6.52 6.52 6.52	95.6 84.9 85.7 96.3 97.1 89.2 90.5 84 83 100.1 102 92.7 93.5 83.8 85 99.1 97.7 88.6 87.8 96.9 96.9 83.88 96.9 83.88 97.1	$\begin{array}{r} 3.5\\ 3.9\\ 4.1\\ 3.5\\ 3.6\\ 3.9\\ 4.2\\ 4.2\\ 4.2\\ 3.6\\ 3.5\\ 4.2\\ 4.2\\ 3.6\\ 3.5\\ 4.2\\ 4.2\\ 3.9\\ 4.2\\ 3.6\\ 3.4\\ 4.1\\ 4.1\\ 4.1\\ 4.5\\ 4.6\\ 3.2\\ 3.2\\ 3.2\\ 3.2\end{array}$	31.97 32.24 32.26 31.84 31.83 32.04 32.03 32.22 32.26 31.81 31.84 31.95 32.24 31.95 32.24 31.95 32.24 31.87 31.88 32.01 32.02 32.24 31.88 32.01 32.02 31.85	7.98 8.01 8.02 7.94 7.95 7.99 8.01 8.02 7.95 7.95 7.95 7.96 7.98 8.01 8.01 8.01 7.95 7.96 7.99 7.99 7.99 7.99 7.99 7.89 7.99	5.8 6.2 6.5 7.3 5.3 6.4 5.0 4.8 5.2 6.2

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

9-Nov-13 Date

Data (Time	Territor	m: 1. *	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2013/11/9 16:54	W1	ME	832964	807719	2.6	1.300	24.68	6.04	87.8	3.5	33.33	7.93	6.5
						1.300	24.68	6	87.3	3.5	33.34	7.93	0.0
						1.000	24.65 24.67	6.45 6.37	93.8 92.6	3.8 3.7	33.32 33.31	7.91 7.92	4.4
2012/11/2016 202			000 (71	007004	10	6.500	24.68	5.96	86.7	3.9	33.41	7.92	
2013/11/9 16:39	W2	ME	832671	807984	13	6.500	24.68	5.94	86.4	4	33.42	7.93	4.2
						12.000	24.65	5.92	86.1	3.9	33.51	7.93	5.5
						12.000	24.65	5.92	86.1	3.9	33.51	7.93	5.5
						1.000	24.22	6.64	95.9	3	33.51	7.85	6.1
						1.000	24.63	6.55	95.2	3.2	33.24	7.9	
2013/11/9 16:24	W3	ME	832036	807894	12.4	6.200 6.200	24.67 24.66	5.99 5.98	87.1 87	4.1	33.36 33.38	7.92 7.92	6.3
						11.400	24.00	5.98	86.1	5.3	33.46	7.92	
						11.400	24.64	5.93	86.2	4.9	33.46	7.92	7.4
						1.000	24.65	6.28	91.3	3	33.3	7.95	5.0
						1.000	24.66	6.18	89.8	3.2	33.3	7.95	5.9
2013/11/9 17:06	C1	ME	833711	808192	15	7.500	24.65	5.97	86.9	4	33.45	7.96	6.7
2013/11/7 17.00	CI	IVIE	055711	000192	1.5	7.500	24.65	5.96	86.7	4.2	33.46	7.95	0.7
						14.000	24.6	6.13	89.2	4	33.64	7.97	4.7
						14.000	24.59	6.13	89.2	4.1	33.65	7.97	,
						1.000	24.64	6.36	92.3	4.9	33.05	7.94 7.93	5.0
						1.000 5.050	24.66 24.71	6.14 5.94	89.2 86.4	3.9	33.1 33.29	7.93	
2013/11/9 16:09	C2	ME	831468	807759	10.1	5.050	24.71	5.94	86.4	3.7	33.32	7.91	4.5
						9.100	24.62	5.93	86.2	5	33.43	7.92	
						9.100	24.62	5.93	86.2	5	33.43	7.92	8.0
						1.000	24.66	6.17	89.7	4.5	33.39	7.95	6.0
						1.000	24.67	6.16	89.7	4.5	33.39	7.95	0.0
2013/11/9 17:20	C3	ME	832214	808890	15.4	7.700	24.65	6.02	87.6	3.7	33.54	7.96	6.0
2013/11/9 17:20	0.5	IVIL	052211	000070	15.1	7.700	24.65	6.01	87.5	3.7	33.54	7.96	0.0
						14.400	24.59	6.14	89.3	4.6	33.7	7.97	6.9
						14.400	24.59	6.15	89.5	4.5	33.7	7.97	
						1.300	24.61	6.46	93.5	4.1	32.79	7.81	
2013/11/9 12:05	W1	MF	832961	807764	2.6	1.300	24.01	6.32	93.3	4.1	32.19	7.81	6.6
						1.000	24.55	6.66	96.5	4.7	32.88	7.82	
						1.000	24.62	6.25	90.5	4.5	32.82	7.83	4.2
2012/11/0 12:17	11/2	ME	822602	807080	12.0	6.600	24.65	6.03	87.5	3.8	33.02	7.84	6.0
2013/11/9 12:17	W2	MF	832692	807989	13.2	6.600	24.66	6.03	87.5	3.6	33.03	7.84	6.0
						12.200	24.6	6	87.2	3.2	33.23	7.85	5.7
						12.200	24.58	6.04	87.7	3.4	33.3	7.85	5.1
						1.000	24.6		90.6	5.6	32.96	7.85	3.7
						1.000	24.61	6.1	88.4	5.6	32.95	7.86	
2013/11/9 12:33	W3	MF	832036	807881	12.6	6.300 6.300	24.63 24.63	5.99 5.99	86.9 87	4.5	33.19 33.2	7.86 7.86	3.6
						11.600	24.03			3.8	33.39	7.80	
						11.600	24.6					7.87	7.0
						1.000	24.63	6.32	91.5	4.1	32.74	7.78	5.0
						1.000	24.63	6.23	90.2	3.9		7.78	5.2
2013/11/9 11:53	C1	MF	833709	808190	15.4	7.700	24.63	6.04	87.5	3.9	32.87	7.8	3.6
2013/11/9 11.33	CI	IVII	855709	000190	13.4	7.700	24.61	6.04	87.6	5.2	32.82	7.8	5.0
						14.400	24.59	6.09	88.3	3.8	33.01	7.81	3.8
						14.400	24.59		88.1	4.3	33	7.82	
						1.000	24.56 24.59		92.6 88	5.9 5.6	33.09 33.08	7.86 7.87	3.8
						5.400	24.59		88	4.1	33.23	7.87	
2013/11/9 12:46	C2	MF	831468	807756	10.8	5.400	24.00		86.4	3.1	33.29	7.88	4.1
						9.800	24.62	5.94	86.3	3.3	33.36	7.88	
						9.800	24.59	5.95	86.5	3.4	33.41	7.89	4.6
						1.000	24.63	6.19	89.2	3.7	31.89	7.75	10
						1.000	24.64	6.13	88.5	3.9	32.05	7.75	4.8
2013/11/9 11:33	C3	MF	832229	808878	15.8	7.900	24.65	6.07	87.9	3.1	32.51	7.75	5.1
2015/11/2 11.55	0	.,11	05222)	000070	10.0	7.900	24.65	6.07	87.9	3		7.75	2.1
						14.800	24.59		87.8	4.3	32.8	7.77	5.1
	1					14.800	24.59	6.13	88.8	3.9	32.81	7.77	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

11-Nov-13 Date

Date / Time	Terretor	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide.	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/11/11 9:02	W1	ME	832962	807751	2.6	1.300	24.24	6.46	93.5	3.7	33.85	8	5.0
						1.300 1.000	24.26	6.32 6.53	91.5 94.6	3.8 3.5	33.85 33.84	8 7.99	
						1.000	24.27	6.47	94.0	3.6	33.84	7.99	5.6
2013/11/11 9:10	W2	ME	832682	807981	12.8	6.400	24.26	6.29	91.2	3.5	33.89	8	5.3
2015/11/11 9.10	VV Z	IVIL	832082	007901	12.0	6.400	24.24	6.33	91.7	3.5	33.92	8.01	5.5
						11.800 11.800	24.19 24.2	6.49 6.49	93.9 93.9	4.2	33.96 33.96	8.02 8.02	10.9
						1.000	24.2	6.79	93.9	4.5	33.93	7.96	
						1.000	24.27	6.53	94.5	3.2	33.87	7.99	4.4
2013/11/11 9:24	W3	ME	832026	807899	12.6	6.300	24.23	6.35	92	3.5	33.96	8.01	5.2
						6.300 11.600	24.23 24.23	6.37 6.4	92.3 92.8	3.5 3.6	33.96 33.97	8.01 8.01	
						11.600	24.23	6.47	92.8	3.5	33.97	8.01	3.7
						1.000	24.19	6.75	97.6	4.8	33.7	7.98	7.1
						1.000	24.22	6.65	96.2	5.2	33.69	7.99	7.1
2013/11/11 8:45	C1	ME	833709	808179	15.6	7.800	24.2 24.22	6.46 6.53	93.4 94.4	5.7 5.9	33.81 33.81	8.01 8.01	5.1
						14.600	24.22	6.59	94.4	6.2	33.87	8.01	
						14.600	24.18	6.59	95.3	6.3	33.87	8.01	6.8
						1.000	24.17	6.51	94.2	4.7	33.91	8	5.7
						1.000	24.24	6.65	96.3	4.2	33.88	8.01	5.7
2013/11/11 9:38	C2	ME	831483	807761	10.8	5.400 5.400	24.3 24.29	6.38 6.39	92.5 92.6	4.6	33.95 33.96	8.03 8.04	5.1
						9.800	24.29	6.39	92.0	4.0	33.98	8.04	
						9.800	24.27	6.39	92.6	4.7	33.98	8.04	5.5
						1.000	24.24	6.63	95.4	3.5	32.83	7.98	4.6
						1.000	24.24	6.57	94.6	3.4	32.88	7.99	1.0
2013/11/11 8:21	C3	ME	832249	808871	16	8.000 8.000	24.21 24.2	6.47 6.49	93.4 93.6	3.7 3.8	33.32 33.32	8.01 8.01	4.8
						15.000	24.2	6.59	95.0	3.5	33.4	8.01	
						15.000	24.18	6.58	95	3.1	33.42	8.01	4.3
												<u> </u>	
2013/11/11 13:53	W1	MF	832967	807716	2.6	1.300	24.27	<u>6.77</u> 6.7	98.1 97.2	4.2	33.93 33.94	8.01 8.02	9.1
						1.300 1.000	24.5	6.98	97.2	4.5	33.29	8.02 7.98	
						1.000	24.24	6.67	96.7	3.7	34.04	8.01	6.5
2013/11/11 13:40	W2	MF	832683	807986	12.8	6.400	24.31	6.31	91.5	4.8	34.05	8.04	6.6
2015/11/11 15.40	VV 2	IVII	052005	007900	12.0	6.400	24.31	6.31	91.6	4.9	34.04	8.04	0.0
						11.800 11.800	24.28 24.28	6.38 6.38	92.5 92.5	5.8	34.08 34.08	8.04 8.05	7.0
						1.000	24.26	6.83	92.3	4.3	33.99	8.05	
						1.000	24.29	6.82	99	4.1	33.97	8	6.7
2013/11/11 13:25	W3	MF	832032	807891	12.4	6.200	24.3	6.38	92.6	4.2	34.03	8.02	7.2
2013/11/11 13:23		.011	052052	007071	12.1	6.200	24.29	6.39	92.6 92.3	4.3	34.04	8.02 8.02	,12
						11.400 11.400	24.29 24.29	6.36 6.38		5.3	34.05 34.06	8.02	9.1
						1.000	24.29	6.46	93.8	3.8	34.05	8.01	
						1.000	24.29	6.32	91.7	3.5	34.06	8.02	8.0
2013/11/11 14:07	C1	MF	833718	808180	15.1	7.550	24.29	6.32	91.7	3.6	34.1	8.03	6.8
						7.550 14.100	24.29 24.29	6.33 6.34	91.8 92.1	3.7	34.1 34.11	8.03 8.03	
						14.100	24.29	6.36	92.1	3.8	34.11	8.03	6.2
						1.000	24.31	6.26	90.8	4.5	33.93	8.04	7.4
						1.000	24.31	6.26	90.8	4.8	33.93	8.04	1.4
2013/11/11 13:10	C2	MF	831453	807762	10.1	5.050	24.3	6.45	93.5	5.3	34.03	8.02	5.9
						5.050 9.100	24.31 24.31	6.42 6.39	93.1 92.7	5.3 5.8	34.02 34.02	8.02 8.02	
						9.100	24.31	6.38	92.7	5.5	34.02	8.02	8.1
						1.000	24.23	6.66	96.5	3.1	34.1	8.01	3.4
						1.000							J.4
						1.000	24.28	6.57	95.2	3.2	34.07	8.02	ļ
2013/11/11 14:26	C3	MF	832227	808887	15.6	1.000 7.800	24.28 24.29	6.57 6.34	92	4	34.12	8.03	5.0
2013/11/11 14:26	C3	MF	832227	808887	15.6	1.000	24.28	6.57					5.0 7.6

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

13-Nov-13 Date

Date / Time	Loostin	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	11de≁	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2013/11/13 9:23	W1	ME	832967	807716	2.8	1.400	23.91	6.62	95.6	2.2	34.45	8.1	2.1
						1.400	23.92 23.85	6.55 6.72	94.6 97	2.3	34.42 34.49	8.1 8.08	
						1.000	23.83	6.7	96.8	2.7	34.49	8.08	4.0
2013/11/13 9:31	W2	ME	832682	807001	12.6	6.300	23.93	6.65	96.1	3.6	34.45	8.1	3.8
2013/11/13 9:31	VV Z	ME	832082	807991	12.6	6.300	23.93	6.63	95.8	3.3	34.48	8.1	5.0
						11.600	23.93	6.61	95.5	3.8	34.49	8.11	4.9
						11.600 1.000	23.92 23.55	6.57 6.63	95 95.2	3.9 2.7	34.49 34.33	8.1 8.04	
						1.000	23.55	6.56	93.2	2.7	34.33	8.04	2.6
2012/11/12 0 /2	11/2	ME	822025	007000	10	6.000	23.66	6.26	90	3.4	34.41	8.06	4.0
2013/11/13 9:43	W3	ME	832035	807890	12	6.000	23.66	6.25	89.9	3.3	34.43	8.06	4.0
						11.000	23.75	6.24	89.9	3.4	34.52	8.08	2.9
						11.000	23.79	6.27	90.5	3.2	34.53	8.09	
						1.000	23.94 23.95	6.64 6.6	95.8 95.3	3.1 3.4	34.28 34.26	8.1 8.11	5.3
						7.600	23.95	6.48	93.6		34.32	8.11	
2013/11/13 9:14	C1	ME	833706	808176	15.2	7.600	23.95	6.48	93.6	4	34.33	8.11	3.0
						14.200	23.86	6.47	93.3	4.2	34.35	8.1	3.9
						14.200	23.86	6.48	93.4	4.2	34.34	8.1	5.9
						1.000	23.51	6.42	91.9	2.6	34.24 34.24	8.02 8.02	2.2
						1.000 5.000	23.51 23.59	6.33 6.1	90.7 87.6	2.7	34.24	8.02	
2013/11/13 9:56	C2	ME	831458	807753	10	5.000	23.66	6.06	87.1	2.5	34.43	8.04	2.0
						9.000	23.81	6.29	90.7	2.9	34.56	8.09	2.6
						9.000	23.81	6.33	91.3	2.9	34.57	8.1	2.0
						1.000	23.96	6.52	94	3.1	34.07	8.1	2.8
						1.000	23.95	6.51	93.9	2.9	34.08	8.1	
2013/11/13 8:54	C3	ME	832243	808882	15.6	7.800 7.800	23.92 23.94	6.47 6.47	93.4 93.4	2.3	34.21 34.22	8.1 8.11	2.2
						14.600	23.89	6.44	92.9	3.1	34.23	8.1	
						14.600	23.88	6.47	93.3	3.1	34.23	8.1	2.5
2013/11/13 15:53	W1	MF	832980	807738	2.8	1.400	23.92	6.55		2.1	34.65	8.12	2.4
						1.400 1.000	23.92 23.89	6.53 6.62	94.4 95.6	2.1	34.62 34.54	8.12 8.11	
						1.000	23.89	6.58	95.0	2.2	34.54	8.12	3.3
2012/11/12 15 20	11/2		0000001	007065	12.4	6.700	23.92	6.46	93.4	2.6	34.63	8.13	2.0
2013/11/13 15:38	W2	MF	832681	807965	13.4	6.700	23.92	6.47	93.6	2.6	34.64	8.13	3.8
						12.400	23.92	6.49	93.9	3.3	34.66	8.13	5.8
	_					12.400	23.92	6.48	93.7	3.3	34.66	8.13	5.6
						1.000	23.56 23.56	6.55 6.45	93.4 92.7	2.9 2.6	33.39 34.48	8.04 8.05	3.2
						6.500	23.50	6.35	92.7	2.0	34.5	8.05	
2013/11/13 15:21	W3	MF	832061	807908	13	6.500	23.57	6.35	91.2	2.9	34.46	8.05	5.6
						12.000	23.68	6.3	90.8	3.5	34.56	8.06	4.1
						12.000	23.68			3.6	34.52	8.07	7.1
						1.000	23.89	6.62	95.6 94.9	3.3	34.58	8.09 8.09	4.2
						7.900	23.91 23.89	6.57 6.47	94.9	3.2 3.2	34.59 34.62	8.09	
2013/11/13 16:02	C1	MF	833701	808194	15.8	7.900	23.88	6.48	93.7	3.4	34.64	8.1	3.0
						14.800	23.87	6.5	94	4.6	34.66	8.11	5.2
						14.800	23.87	6.47	93.6	4.4	34.67	8.11	J.2
						1.000	23.5	6.86	98.4	3.7	34.39	8 01	3.6
	1					1.000 5.600	23.58 23.69	6.13 6.03	88.1 86.8	3.3 3.1	34.4 34.51	8.01 8.05	
2013/11/13 15:03	C2	MF	831490	807728	11.2	5.600	23.69	6.03	86.8	3.1	34.31	8.05	3.0
						10.200	23.8	6.06	87.5	3.5	34.62	8.08	4.0
						10.200	23.81	6.06	87.5	3.5	34.6	8.09	4.8
						1.000	23.92	6.6		4	34.57	8.11	4.3
		1				1.000	23.92	6.55	94.8	4	34.61	8.11	
							22.07	×	00 1			0.11	
2013/11/13 16:26	C3	MF	832218	808879	16.4	8.200	23.87	6.47	93.6	4.5	34.67	8.11	3.8
2013/11/13 16:26	C3	MF	832218	808879	16.4		23.87 23.85 23.85	6.47 6.51 6.53	94	4.5 4.8 5.3	34.67 34.68 34.69	8.11 8.11 8.11	3.8

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

16-Nov-13 Date

		TT1 t	Co-or	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2013/11/16 11:46	W1	ME	832979	807746	2.4	1.200	23.74	6.96	99.7	3.4	33.41	8.07	4.2
						1.200	23.83 23.82	7.18	103.7 108.5	3.3 3.4	34.59 34.52	8.08 8.06	
						1.000	23.82	7.32	108.3	3.3	34.52	8.00	6.4
2013/11/16 11:28	W2	ME	832686	807964	13.3	6.650	23.74	7.2	103.8	3.6	34.54	8.04	5.1
2015/11/10 11.28	VV Z	IVIE	832080	607904	15.5	6.650	23.62	7.13	102.6	4	34.62	8.03	3.1
						12.300	23.56 23.54	6.91 6.86	99.3 98.6	4.1	34.65 34.65	8.02 8.01	4.0
						12.300 1.000	23.96	6.78	98.0	4.2	34.03	7.85	
						1.000	23.99	6.53	94.3	3	34.16	7.85	4.3
2013/11/16 11:10	W3	ME	832063	807915	12.1	6.050	23.63	6.47	93	3.5	34.37	7.87	6.4
2013/11/10 11.10	W 5	IVIL	052005	007915	12.1	6.050	23.56	6.44	92.4	3.6	34.41	7.88	0.4
						11.100 11.100	23.51 23.51	6.52 6.52	93.5 93.6	4.2	34.46 34.46	7.89 7.9	4.8
						1.000	23.74	7.09	102.2	4.1	34.62	8.06	
						1.000	23.75	7.04	101.5	3.8	34.58	8.06	6.3
2013/11/16 12:03	C1	ME	833719	808200	14.7	7.350	23.65	6.93	99.8	4.2	34.71	8.06	6.1
2013/11/10 12:03	01	IVIL	055717	000200	11.7	7.350	23.64	6.85	98.6	4.5	34.73	8.06	0.1
						13.700 13.700	23.54 23.53	6.81 6.79	97.9 97.6	<u>5.3</u> 5.7	34.78 34.78	8.06 8.06	10.8
						13.700	23.85	6.78	97.0	2.8	32.64	7.59	
						1.000	23.88	6.51	93.3	2.6	33.08	7.62	1.2
2013/11/16 10:49	C2	ME	831489	807734	10.2	5.100	23.6	6.53	93.4	4.8	33.56	7.66	1.7
2013/11/10 10.49	C2	IVIL	051409	007754	10.2	5.100	23.62	6.6	94.4	5	33.64	7.66	1.7
						9.200 9.200	23.55 23.54	6.52 6.59	93.3 94.3	4.8	33.79 33.83	7.65 7.67	2.6
						9.200	23.34	7.17	102.8	3.7	33.8	8.11	
						1.000	23.73	7.06	101.9	3.6	34.8	8.11	<0.5
2013/11/16 12:22	C3	ME	832239	808844	14.9	7.450	23.69	6.94	100.1	3.8	34.86	8.1	1.9
2015/11/10 12.22	CJ	IVIL	052259	000044	14.9	7.450	23.67	6.91	99.6	3.9	34.88	8.1	1.7
						13.900 13.900	23.54 23.53	6.8 6.78	97.9 97.5	5.4	34.92 34.92	8.1 8.1	3.7
						13.900	25.55	0.76	91.J	5.5	J4.7Z	0.1	
2012/11/16/17 51	11/1) (F	000075	007746	2.7	1.350	23.67	6.77	97.5	4.3	34.78	8.14	0.0
2013/11/16 17:51	W1	MF	832975	807746	2.7	1.350	23.67	6.77	97.6	4.2	34.77	8.13	0.8
						1.000	23.66	7.11	102.3	4	34.58	8.14	< 0.5
						1.000	23.66	6.97	100.3	4.1	34.61	8.14	
2013/11/16 17:34	W2	MF	832699	807971	13.5	6.750 6.750	23.69 23.69	6.81 6.79	98.3 98	4.2	34.89 34.91	8.13 8.13	2.9
						12.500	23.68	6.77	97.7	4.3	35.01	8.13	2.6
						12.500	23.68	6.77	97.8	4.3	35.02	8.13	3.6
						1.000	23.74	6.77	97.6	3.7	34.58	8.01	3.0
						1.000 6.350	23.76 23.66	6.62 6.57	95.5 94.7	3.3	34.62 34.89	8.04 8.07	
2013/11/16 17:20	W3	MF	832037	807876	12.7	6.350	23.66	6.52	94.1	4.1	34.95	8.08	3.8
						11.700	23.52	6.52	93.8	4.6	35.09	8.1	3.9
						11.700	23.51	6.52	93.9		35.1	8.1	3.9
						1.000	23.55	6.95	99.9	7.6	34.64	8.12	2.2
						1.000 7.550	23.59 23.59	6.98 6.85	100.4 98.7	6.5 5.7	34.65 34.89	8.13 8.14	
2013/11/16 18:08	C1	MF	833718	808185	15.1	7.550	23.55		97.9	5.8	34.99	8.14	3.4
						14.100	23.47	6.78	97.6	6.5	35.12	8.15	4.6
	_					14.100	23.45	6.78	97.6	7.1	35.13	8.15	4.0
						1.000	23.73 23.76	7.14 6.99	102.8	3.7	34.42 34.5	8.16 8.13	1.2
2012	1			0.0		5.550	23.76	6.66	95.8	5.5 4.5	34.81	8.13	
2013/11/16 17:08	C2	MF	831490	807752	11.1	5.550	23.54	6.67	95.9	4.5	34.85	8.11	1.8
						10.100	23.52	6.57	94.5	5.5	35.05	8.1	5.0
						10.100	23.51	6.53	94	5.6	35.09	8.1	5.0
						1.000	23.61 23.58	6.74 6.76	97.1 97.3	5.7 5.5	34.81 34.83	8.15 8.15	2.7
2010/11/12/17	~		00000	00000		8.100	23.38		97.3	5.7	34.83	8.15	
2013/11/16 18:27	C3	MF	832243	808889	16.2	8.100	23.51	6.75	97.2	5.5	35.01	8.15	4.5
	1					15.200	23.44		96.7	5.9	35.12	8.15	4.0
						15.200	23.44	6.73	96.7	5.8	35.12	8.15	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

19-Nov-13 Date

Date / Time	Teertien	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	1100*	East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l
2013/11/19 13:29	W1	ME	833000	807756	2.5	1.250	23.12	5.69	81.5	4.1	35.43	8.05	6.3
						1.250 1.000	23.15 23.1	5.81 5.16	83.4 74	4.2	35.49 35.52	8.06 8.06	
						1.000	23.11	5.28	74.9	3.8 3.9	33.68	8.00	5.0
2013/11/19 13:38	W2	ME	832685	807981	14.6	7.300	23.13	5.16	74	4.1	35.57	8.08	6.1
2013/11/19 15.58	VV Z	ME	832083	007901	14.0	7.300	23.13	5.32	76.3	4.1	35.57	8.09	0.1
						13.600	23.15	5.41	76.7	5.2	33.49	8.08	5.3
						13.600 1.000	23.15 23.1	5.26 4.99	75.5 71.4	5.5 3.9	35.59 35.27	8.1 8.06	
						1.000	23.11	5.01	71.4	3.7	35.35	8.06	5.6
2013/11/19 13:56	W3	ME	832045	807897	13.5	6.750	23.13	5.08	72.8	4.4	35.47	8.07	5.0
2013/11/19 15.30	W 5	ME	832043	007097	15.5	6.750	23.13	5.16	74	4.5	35.5	8.08	5.0
						12.500	23.11	5.18	73.5	4.6	33.61	8.08 8.08	7.8
						12.500 1.000	23.11 23.15	5.07 5.47	72.7 78.3	6.1	35.56 35.15	8.08	
						1.000	23.15	5.67	81.3	6.1	35.29	8.07	7.2
2013/11/19 13:11	C1	ME	833712	808185	15.6	7.800	23.16	5.54	79.4	6.2	35.42	8.08	7.9
2013/11/19 13.11	CI	IVIL	055712	000105	15.0	7.800	23.17	5.54	79.5	6.4	35.48	8.08	1.9
						14.600 14.600	23.17 23.17	5.56 5.39	79.8 77.4	6.6 7	35.52 35.53	8.09 8.09	6.7
						14.000	23.17 hg	4.88	69.9	4	35.55	8.05	
						1.000	23.04	5.02	72	3.5	35.6	8.06	6.0
2013/11/19 14:11	C2	ME	831472	807722	11.8	5.900	23.03	5.04	72.2	3.5	35.61	8.07	6.4
2013/11/19 14.11	C2	IVIL	001472	001122	11.0	5.900	23.06	4.98	71.3	3.4	35.62	8.08	0.4
						10.800 10.800	22.99 22.99	5.12	73.2	5 6.4	35.62 33.61	8.07 8.07	3.8
						1.000	23.14	5.04		5.2	35.31	7.99	
						1.000	23.12	5.89	84.4	5.6	35.37	8	6.7
2013/11/19 12:49	C3	ME	832240	808871	17.1	8.550	23.17	5.85	83.9	5.7	35.44	8.01	5.2
2013/11/19 12.49	CJ	IVIL	032240	000071	17.1	8.550	23.17	5.84	83.7	5.7	35.45	8.02	5.2
						16.100 16.100	23.18 23.18	5.89 5.69	84.5 81.7	6.9 6.9	35.48 35.49	8.03 8.03	7.1
						10.100	25.10	5.07	01.7	0.9	55.47	0.05	
2013/11/19 8:46	W1	MF	832971	807753	2.8	1.400	23.15	6.04	86.4	3.8	35.25	8.06	4.8
2013/11/19 8:40	WI	IVIF	832971	807755	2.8	1.400	23.15	6.02	86.2	3.7	35.24	8.06	4.8
						1.000	23	6.04	86.3	3.8 3.8	35.34	7.94 8.01	4.9
						1.000 7.100	23.11 23.16	6.41	91.7 85.9	3.8 4.9	35.23 35.27	8.01	
2013/11/19 8:57	W2	MF	832656	807994	14.2	7.100	23.16	5.95	85.3	4.9	35.27	8.05	7.2
						13.200	23.17	5.88	84.3	5.3	35.28	8.05	5.0
						13.200	23.17	5.86	83.9	5.3	35.27	8.05	5.0
						1.000	23.14	5.8	83 82.7	4.4	35.25 35.25	8.05 8.05	6.0
						1.000 6.650	23.14 23.16	5.77 5.75	82.7	4.6	35.25	8.05	
2013/11/19 9:16	W3	MF	832058	807872	13.3	6.650	23.16	5.75	82.4	5	35.26	8.05	7.1
						12.300	23.16	5.72	82	5.4	35.28	8.05	6.8
	_					12.300	23.16			5.2	35.28	8.05	0.0
						1.000	23.16 23.17	6.33 6.3	90.7 90.2	5.1 5.1	35.27 35.26	8.07 8.07	3.4
						7.700	23.17	6.21	89	5.1	35.27	8.07	10.5
2013/11/19 8:27	C1	MF	833716	808157	15.4	7.700	23.17	6.2	88.9	5	35.27	8.07	10.7
						14.400	23.17	6.15	88.2	5.3	35.27	8.07	10.5
						14.400	23.17	6.15 5.84	88.1	5.2	35.27	8.07 8.04	
						1.000	22.96 23.11	5.84	83.5 83.9	7.1	35.4 35.27	8.04	6.5
2012/11/10 0 22	~	ME	921/75	207755	11.0	5.900	23.15	5.68	81.3	5.1	35.26	8.04	7.6
2013/11/19 9:33	C2	MF	831475	807755	11.8	5.900	23.15	5.65	81	5	35.25	8.04	7.0
						10.800	23.17	5.61	80.4	5		8.04	6.7
						10.800	23.17 23.13	5.6 6.83	80.2 97.8	5.3	35.27 35.21	8.04 8.06	
						1.000	23.13	6.65	97.8	5.2	35.21	8.06	4.5
2012/11/10 0.04	C3	ME	822107	200074	167	8.350	23.17	6.47	92.7	5.2	35.28	8.07	6 1
2013/11/19 8:06	0.5	MF	832197	808874	16.7	8.350	23.16	6.45	92.4	5.2	35.29	8.07	6.1
						15.700	23.17	6.4	91.7	5.9		8.07	7.0
ATE MULTEL- LATUL	1					15.700	23.17	6.39	91.5	6.3	35.28	8.07	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 21-Nov-13

Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	The.	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
2013/11/21 14:47	W1	ME	832977	807738	2.6	1.300	22.7	5.82	81.96	3.3	33.68	7.97	3.3
						1.300 1.000	22.79 22.79	5.59 4.79	78.8 67.6	3.4 3.3	33.69 33.64	7.99 8.01	0.0
						1.000	22.79	4.79	68.1	3.3	33.64	8.01	3.0
2012/11/21 14:20	W2	ME	832671	807986	13	6.500	22.84	4.87	68.8	3.5	33.89	8.03	2.3
2013/11/21 14:29	W Z	ME	832071	807980	15	6.500	22.86	4.77	67.4	3.9	33.87	8.03	2.5
						12.000	22.83	4.92	69.5	4	33.99	8.03	2.4
						12.000 1.000	22.75 22.79	4.95	69.9 69	5.5 3.4	34.08 33.53	8.04 8.03	
						1.000	22.79	4.98	70.2	3.3	33.51	8.02	2.9
2012/11/01 14 12	11/2	ME	822028	0070045	10.0	6.300	22.85	4.98	70.4	3.8	33.8	8.04	17
2013/11/21 14:13	W3	ME	832038	8078945	12.6	6.300	22.85	4.96	70.1	3.8	33.81	8.04	1.7
						11.600	22.51	4.89	68.7	8	33.87	8.01	7.6
						11.600 1.000	22.51 22.8	5.02 5.43	70.3 76.5	7.5 3.6	33.13 33.4	8.01 7.99	
						1.000	22.8	5.25	70.5	3.6	33.42	7.99	2.5
2012/11/01 14 50	C1	N/F	000717	000100	15.1	7.550	22.84	5.14	72.6	3.9	33.83	8.02	2.7
2013/11/21 14:59	C1	ME	833717	808183	15.1	7.550	22.83	5.23	73.7	4.1	33.21	8.03	3.7
						14.100	22.85	4.76	67.4	4	34.14	8.05	2.5
						14.100	22.85	4.8	67.9	4.1	34.15	8.05	2.5
						1.000	22.76 22.76	6.98 6.71	97.8 94.1	2.9	32.67 32.81	7.82 7.88	4.0
						5.050	22.70	6.27	94.1 87.9	3.3	32.01	7.00	
2013/11/21 13:52	C2	ME	831491	807759	10.1	5.050	22.7	6.26	87.8	3.4	32.98	7.94	3.9
						9.100	22.44	6.23	87	4.1	33.07	7.93	6.9
						9.100	22.37	6.02	84	4.9	33.1	7.92	0.9
						1.000	22.85	4.78	67.5	3.7	33.76	8.05	3.5
						1.000 7.900	22.85 22.84	4.78 4.83	67.5 68.3	3.6 3.6	33.77 34.02	8.05 8.06	
2013/11/21 15:22	C3	ME	832229	808871	15.8	7.900	22.84	4.83	68.3	3.6	33.94	8.06	1.9
						14.800	22.85	4.91	69.5	4.2	34.16	8.08	5.0
						14.800	22.85	4.95	70.1	4.4	34.16	8.08	5.8
2013/11/21 9:06	W1	MF	832967	807753	2.7	1.350	22.74	6.21	87.4	2.8	33.39	8.02	2.9
						1.350 1.000	22.76 22.75	5.38 5.46	75.7 76.8	2.7	33.51 33.49	8.02 8.02	
						1.000	22.75	5.4	76.8	3.2	33.5	8.02	5.4
2012/11/01 0 10	11/0	ME	022600	000000	10.7	6.350	22.81	5.46	77	3.6	33.66	8.05	2.6
2013/11/21 9:18	W2	MF	832689	808006	12.7	6.350	22.8	5.46	77	3.4	33.66	8.05	3.6
						11.700	22.6	5.52	77.6	4.1	33.74	8.05	3.9
						11.700	22.59 22.71	5.46 5.69	76.7	4	33.67 33.54	8.06 8.03	
						1.000	22.71	5.57	78.4	3.6	33.54	8.03	3.2
						6.200	22.71	5.18	73	4.3	33.66	8.05	2.0
2013/11/21 9:30	W3	MF	832038	807914	12.4	6.200	22.71	5.33	75	4.2	33.66	8.05	2.9
						11.400	22.66	5.36	75.5	4.3	33.71	8.06	2.8
						11.400	22.47		74.6		33.85	8.04	2.0
						1.000	22.75 22.76	5.7 5.67	80.1 79.7	4.1	33.2	8.01 8.01	2.5
						7.700	22.70	5.47	76.9	4.1	33.16 33.17	8.02	
2013/11/21 8:50	C1	MF	833706	808192	15.4	7.700	22.75	5.48	77	4.4	33.24	8.02	2.4
						14.400	22.75	5.5	77.3	4.5	33.28	8.02	2.2
						14.400	22.75	5.5	77.3	4.6	33.27	8.02	2.2
						1.000	22.66	5.16	72.7	3.4	33.74	8.02	2.0
						1.000 5.400	22.66 22.57	5.1 5.14	71.8	3.5 3.7	33.77 33.9	8.02 8.03	
		MF	831490	807759	10.8	5.400	22.57	4.99	69.7	3.7	33.9	8.03	2.2
2013/11/21 9:45	C2							4.97	69.3	4.5	32.93	8.02	
2013/11/21 9:45	C2					9.800	22.35	1.27					4.4
2013/11/21 9:45	C2					9.800 9.800	22.33	4.94	69.3	4.4	33.99	8.02	
2013/11/21 9:45	C2					9.800 1.000	22.36 22.74	4.94 6.26	69.3 87.7	4.1	32.67	7.94	3.0
2013/11/21 9:45	C2					9.800 1.000 1.000	22.36 22.74 22.75	4.94 6.26 6.34	69.3 87.7 88.8	4.1 4	32.67 32.66	7.94 7.96	3.0
2013/11/21 9:45 2013/11/21 8:23	C2 C3	MF	832224	808869	15.9	9.800 1.000 1.000 7.950	22.36 22.74 22.75 22.73	4.94 6.26 6.34 6.02	69.3 87.7 88.8 84.5	4.1 4 4.4	32.67 32.66 32.91	7.94 7.96 7.98	3.0 4.1
		MF	832224	808869	15.9	9.800 1.000 1.000	22.36 22.74 22.75	4.94 6.26 6.34	69.3 87.7 88.8	4.1 4	32.67 32.66	7.94 7.96	

MF- Mid Flood Tide

ME- Mid Ebb tide

Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 23-Nov-13

	.	m:1 +	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
Date / Time	Location	Tide*	East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l
2013/11/23 15:40	W1	ME	832974	807718	2.6	1.300	22.69	7.97	112.3	3	33.89	8.11	3.5
						1.300	22.68 22.63	7.87	93,3	2.9	33.96 33.87	8.11 8.06	
						1.000	22.03	6.5	93.5	3.3	33.87	8.06	5.9
2013/11/23 15:27	W2	ME	832682	807994	12.6	6.300	22.62	6.11	86.1	3.2	33.93	8.06	6.5
2013/11/25 15.27	VV Z	NIE	652062	607994	12.0	6.300	22.62	5.85	82.4	3.3	33.92	8.06	0.5
						11.600	22.51	5.72	80.4	4.4	33.91	8.04	10.3
						11.600 1.000	22.5 22.58	5.7	80.1	4.3	33.91 33.71	8.04 8.02	
						1.000	22.38	7.59	112.4	3.1	33.73	8.02	2.6
						5.950	22.53	6.89	96.8	3.5	33.75	8.01	
2013/11/23 15:11	W3	ME	832036	807894	11.9	5.950	22.53	6.94	97.4	3.4	33.76	8.01	4.3
						10.900	22.49	6.37	89.4	3.4	33.77	8	3.9
						10.900	22.49	6.37	89.5	3.6	33.77	8	5.9
						1.000	22.63	7.3	102.9	3.5	34	8.09	6.5
						1.000 7.600	22.64 22.63	7.15	100.8	3.4	34 34.07	8.09 8.08	
2013/11/23 15:51	C1	ME	833706	808184	15.2	7.600	22.03	6.08	85.7	3.3	34.07	8.08	5.5
						14.200	22.67	5.84	82.3	3.3	34.1	8.08	
						14.200	22.69	5.86	82.8	3.2	34.12	8.09	11.9
						1.000	22.53	7.77	108.3	3.2	32.55	7.82	4.9
						1.000	22.53	7.64	106.7	3.1	32.7	7.85	4.9
2013/11/23 14:58	C2	ME	831468	807749	9.6	4.800	22.51	6.98	97.6	3.3	33.09	7.93	10.4
						4.800 8.600	22.51 22.51	6.85 6.31	95.9 88.4	3.2	33.11 33.27	7.92 7.94	
						8.600	22.51	6.31	88.4	3.8	33.27	7.94	12.1
						1.000	22.61	5.46	76.9	3.3	34.07	8.07	
						1.000	22.64	5.83	82.2	3.3	34.09	8.08	3.6
2013/11/23 16:14	C3	ME	832229	808871	15.6	7.800	22.65	5.37	75.8	3.3	34.1	8.09	7.3
2015/11/25 10.14	CS	IVIL	632229	000071	15.0	7.800	22.65	5.48	77.3	3.3	34.11	8.08	1.5
						14.600	22.65	5.22	73.6	3.2	34.18	8.09	8.5
						14.600	22.63	5.66	79.9	3.2	34.29	8.1	
						1.300	22.58	7.76	108.9	3.4	33.62	8.07	
2013/11/23 11:03	W1	MF	832981	807718	2.6	1.300	22.58	7.67	108.9	3.4	33.64	8.06	9.1
						1.000	22.56	7	98.3	3.4	33.66	8.03	2.0
						1.000	22.58	6.88	96.7	3.5	33.67	8.03	3.0
2013/11/23 11:11	W2	MF	832692	807991	12.8	6.400	22.55	6.35	89.2	3.5	33.75	8.04	8.3
2013/11/23 11.11	112	1011	052072	007771	12.0	6.400	22.55	6.46	90.8	3.4	33.74	8.04	0.5
						11.800 11.800	22.57 22.57	6.21	87.3 84.7	3.8 3.8	33.83 33.82	8.05 8.05	7.9
						1.000	22.37	7.52	105.2	4.5	33.73	8.03	
						1.000	22.31	7.17	100.2	3.8	33.81	8.02	8.2
2012/11/22 11:20	W3	MF	832038	807001	10.4	6.200	22.31	6.41	89.8	3.6	33.91	8	10.0
2013/11/23 11:30	W 5	NIF	852058	807901	12.4	6.200	22.3	6.41	89.7	3.6	33.92	8	10.0
						11.400	22.32	6.07	85	5.5	33.97	7.99	8.9
	_					11.400	22.33	5.94	83.2	6.1	33.93	7.97	
						1.000	22.53 22.55	5.89 5.98	82.6 83.8	3.9 3.7	33.4 33.4	7.94 7.96	8.4
		. –				7.700	22.55	5.98	83.5	3.7	33.44	7.90	
2013/11/23 10:48	C1	MF	833696	808169	15.4	7.700	22.55	5.99	84.1	3.8	33.45	7.98	6.8
						14.400	22.55	6	84.2	3.8	33.46	7.98	8.8
						14.400	22.55	5.65	79.3	3.7	33.47	7.98	0.0
						1.000	22.33	8.2	114.8	3.7	33.8	8.09	6.9
						1.000	22.35	8.54	119.6	3.6	33.79	8.08	
2013/11/23 11:44	C2	MF	831469	807754	10.1	5.050 5.050	22.36 22.35	7.88 7.75	110.4	3.6	33.96 33.98	8.03	6.5
						9.100	22.35	7.68	108.7	3.8	34.03	8.03	
						9.100	22.36	7.66	107.5	3.8	34.04	8.02	8.0
						1.000	22.56	8.09	112.7	3.7	32.35	7.9	27
						1.000	22.56	7.78	108.7	3.6	32.59	7.93	3.7
2013/11/23 10:23	C3	MF	832241	808881	16	8.000	22.56	7.59	106.1	3.7	32.81	7.94	6.8
2010,11,20 10.20	25		002211	000001	.0	8.000	22.55	6.79	95	3.8	33.03	7.95	5.0
						15.000	22.55	6.31	88.4	4 3.9	33.26	7.96 7.97	7.3
	1					15.000	22.55	6.22	87.2	5.9	33.28	1.97	

MF- Mid Flood Tide

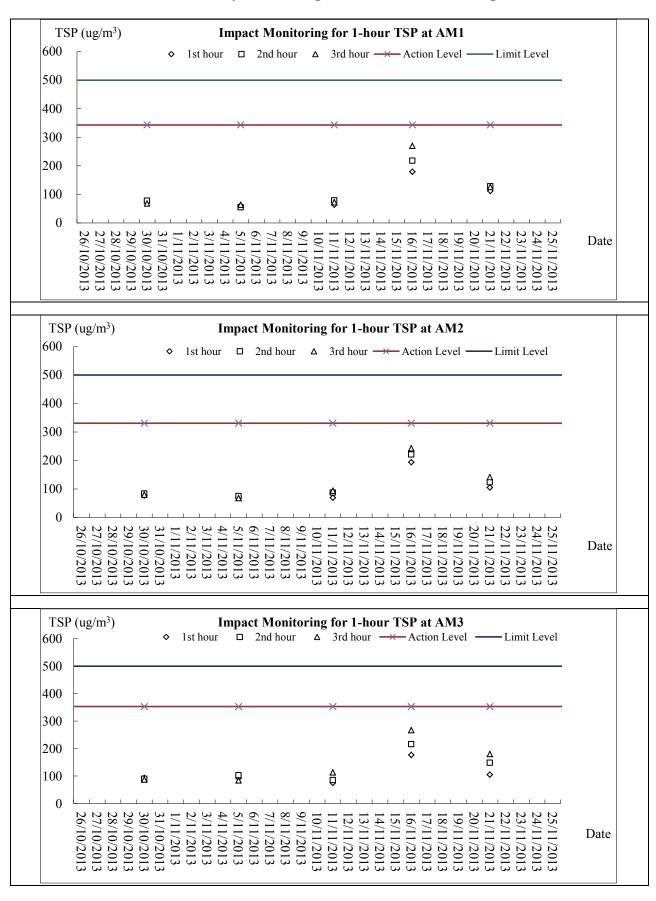
ME- Mid Ebb tide

Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

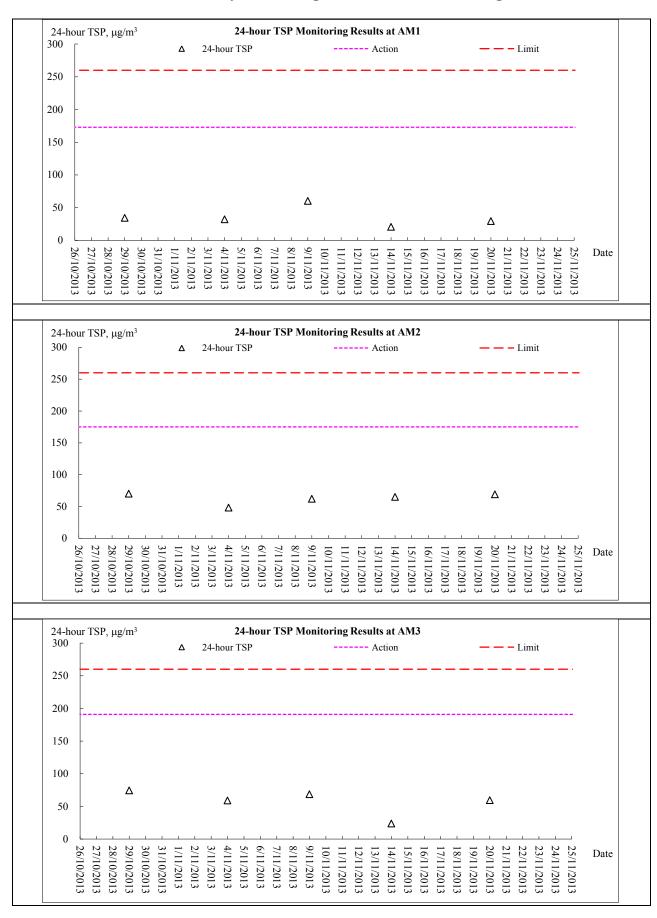
Sok Kwu Wan

Date 25-Nov-13

Date / Time	Location	Tide*	Co-ordinates		Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS
			East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg/l
2013/11/25 17:51	W1	ME	832961	807716	2.6	1.300	22.65	5.96		2.9	33.96	7.89	5.2
2013/11/23 17:51		IVIE	052701	007710	2.0	1.300	22.65	5.88	82.9	3	33.96	7.9	
2013/11/25 17:36		ME	832671	807988	13	1.000	22.67	6.98 6.84		2.7	33.91 33.89	7.94 7.93	4.9
	W2					6.500	22.49	6.58	90.4	4.1	34.09	7.95	
						6.500	22.15	6.58		5.1	34.09	7.94	4.0
						12.000	22.45	6.28		5.7	34.1	7.94	
						12.000	22.45	6.29	88.3	5.7	34.1	7.94	5.5
2013/11/25 17:17	W3	ME	832038	807891	12.4	1.000	22.84	6.07	85.7	1.8	33.54	7.83	6.1
						1.000	22.84	5.87	82.8	1.8	33.55	7.83	0.1
						6.200	22.49	5.89		3.3	33.85	7.89	4.9
						6.200	22.49	6.03	84.7	3.2	33.85	7.89	
						11.400	22.44	5.97 5.93	83.9	4.4 5.2	33.92	7.89 7.9	4.3
						11.400 1.000	22.44 22.57	5.93	83.2 105.2	3.2	33.93 34	8.02	
2013/11/25 18:05	C1	ME	833694	808182	15.4	1.000	22.57	7.47		3.1	34.01	8.02	5.3
						7.700	22.37	6.72		5.7	34.2	8.02	
						7.700	22.44	6.37		5.8	34.21	8.03	3.9 5.0
						14.400	22.44	6.15		5.8	34.23	8.04	
						14.400	22.44	6.23	87.6	5.5	34.22	8.04	
						1.000	22.61	8.23	115.3	2.1	33.1	7.79	3.1
2013/11/25 17:04	C2	ME	831453	807749	10.6	1.000	22.61	8.22	115.3	2.1	33.13	7.79	2.4
						5.300	22.55	7.68		4	33.47	7.81	
						5.300	22.55	7.63	107.1	4.6	33.49	7.81	5.7
						9.600	22.44	7.31	102.6	6.5	33.74	7.85	
						9.600	22.44	7.31	102.6	6.9	33.74	7.85	5.7
2013/11/25 18:28	C3	ME	832228	808871	16.1	1.000	22.59	5.89		2.7	34.1	8.03	4.9
						1.000	22.6	5.89	83	2.7	34.1	8.03	
						8.050 8.050	22.46 22.46	<u>5.46</u> 5.74		5.2 5.1	34.22 34.22	8.04 8.04	6.7
						15.100	22.40	5.51	77.4	5.5	34.22	8.04	
						15.100	22.43	5.46		5.6	34.26	8.04	4.7
						15.100	22.15	5.10	70.0	5.0	51.20	0.01	
2013/11/25 12:22	W1	MF	832969	807713	2.6	1.300	22.72	6.18	87.1	2.5	33.79	7.92	
						1.300	22.72	6.17		2.4	33.8	7.92	7.5
2013/11/25 12:33						1.000	22.67	6.31	88.8	2.9	33.86	7.89	4.9
						1.000	22.68	6.33	89.2	2.8	33.86	7.9	4.9
	W2	MF	832684	807971	12.8	6.400	22.61	6.36	89.5	2.6	33.9	7.9	6.8
	112	IVII	052004	007771	12.0	6.400	22.58	6.35		2.7	33.92	7.9	0.0
						11.800	22.45	6.53		4.7	33.97	7.9	4.9
						11.800	22.44	6.33	88.9	5.3	33.97	7.9	
2013/11/25 12:56	W3	MF	832031	807890	12.2	1.000	22.72	6.84	96.4	2.2	33.74	7.92	3.0
						1.000 6.100	22.71 22.48	6.84 6.7	96.4 94.1	2.1	33.74 33.95	7.92 7.92	
						6.100	22.48	6.6		3	33.95	7.92	3.3
						11.200	22.43	6.62		4	34.06	7.92	
						11.200	22.42			4.2	34.07	7.92	5.3
						1.000	22.53	6.35		2.8	33.74	7.81	4.0
2013/11/25 12:12		MF	833717	808182	15.2	1.000	22.55			2.8	33.73	7.81	4.6
	C1					7.600	22.48	6.32		4	33.83	7.83	4.8
	CI	1411.				7.600	22.48			4.1	33.83	7.83	4.8
						14.200	22.43	6.3		5.3	33.89	7.83	
						14.200	22.43	6.28		5.6	33.89	7.83	
2013/11/25 13:15		MF	831469	807741	10.8	1.000	22.69	7.53		2	33.75	7.91	7.1
	C2					1.000	22.67 22.54	7.5		2	33.75 33.97	7.91 7.93	
						5.400 5.400	22.54	7.22		3.3	33.97	7.93	9.5
						9.800	22.55	7.23		5.5 7.7	33.98	7.95	
						9.800	22.47	6.99		8.1	34.15	7.95	9.2
2012/11/25 11:52	C3	MF	832228	808871	15.9	1.000	22.54	6.92		2.9	33.48	7.78	
						1.000	22.54	6.88		2.8	33.48	7.78	5.3
						7.950	22.49	6.79		3.5	33.58	7.79	5.8
2012/11/25 11:52													. J.ŏ
2013/11/25 11:52	CS	IVII	032220	808871	15.9	7.950	22.45	6.76	94.8	4.7	33.64	7.8	
2013/11/25 11:52	CS	IVII	032220	808871	15.9		22.45 22.43 22.43	6.76 6.63 6.54	93	4.7 5.9 6.2	33.64 33.69 33.72	7.8 7.8 7.8	5.5

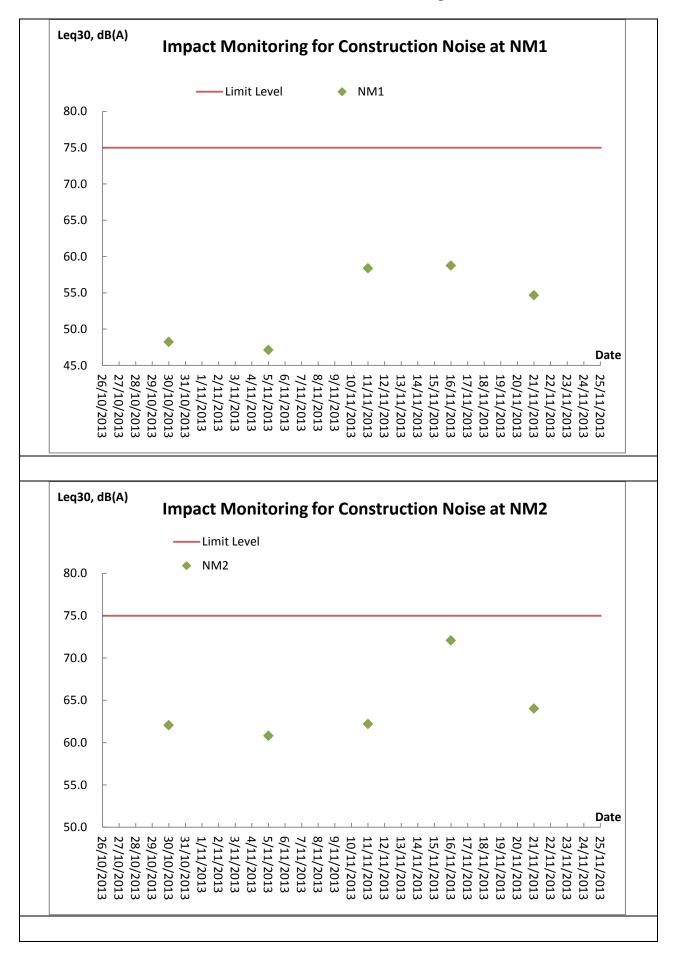

MF- Mid Flood Tide

ME- Mid Ebb tide

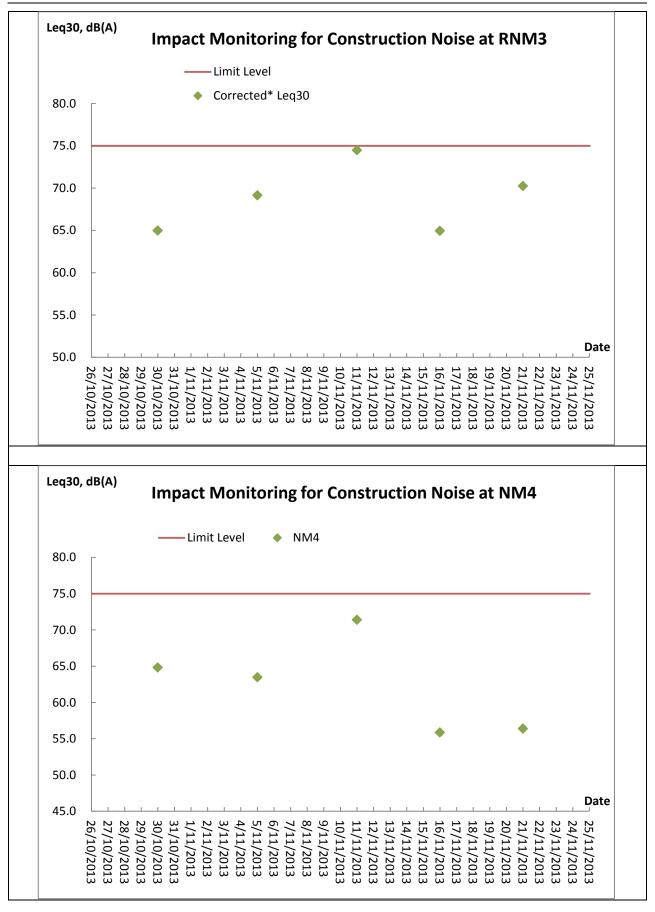

Appendix I

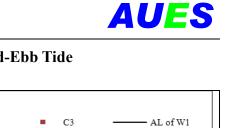
Graphical Plots of Monitoring Results

Air Quality Monitoring – 1 hour TSP Monitoring

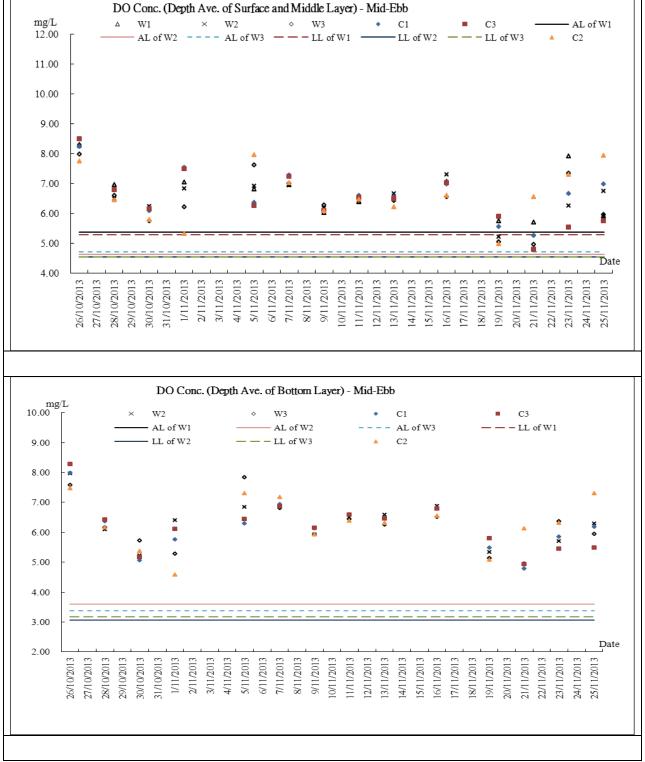


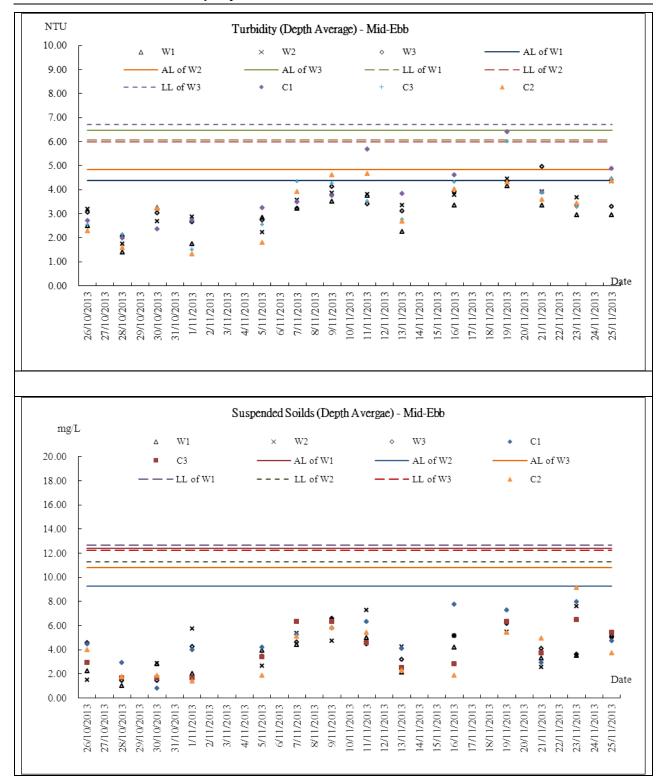
Air Quality Monitoring - 24 hour TSP Monitoring

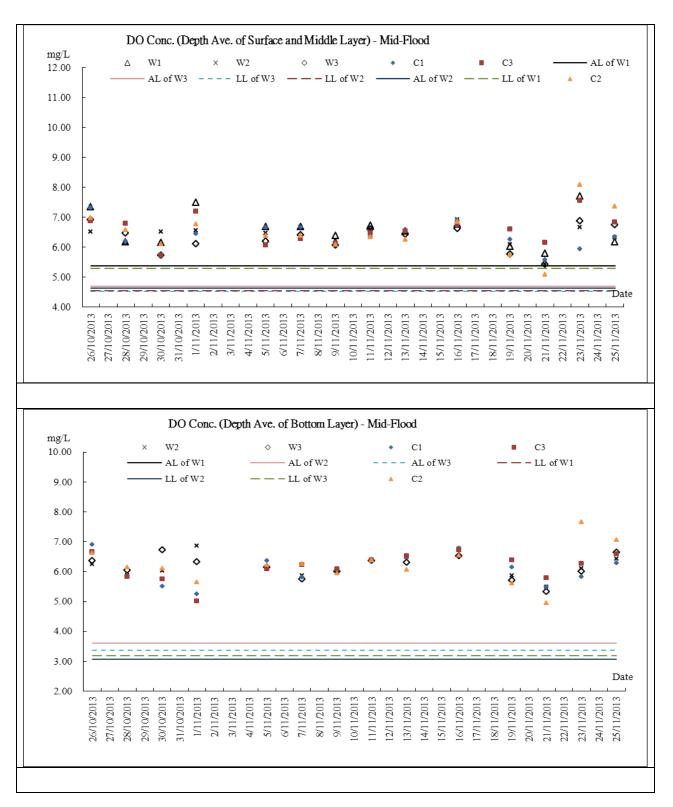




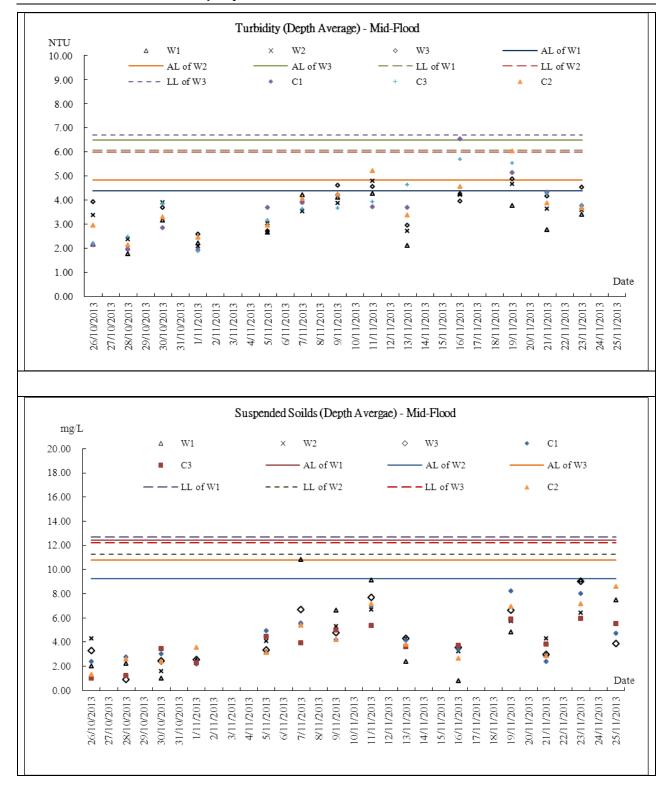
Construction Noise Monitoring







Marine Water Quality Monitoring - Mid-Ebb Tide



AUES

Marine Water Quality Monitoring - Mid-Flood Tide

AUES

Appendix J

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
26-Oct-13	Sat	Fine and very dry. Moderate to fresh north to northeasterly winds.
27-Oct-13	Sun	Fine, cloudy. Moderate easterly winds.
28-Oct-13	Mon	Fine, cloudy. Moderate easterly winds.
29-Oct-13	Tue	Cloudy, fine.Moderate easterly winds, fresh at times offshore.
30-Oct-13	Wed	Mainly fine. Moderate easterly winds, occasionally fresh offshore.
31-Oct-13	Thu	Fine. Moderate easterly winds.
1-Nov-13	Fri	Fine, dry, cloudy. Moderate northeasterly winds, freshening later.
2-Nov-13	Sat	Cloudy, a few showers later, Moderate to fresh east to northeasterly winds.
3-Nov-13	Sun	Cloudy, few showers. Fresh northeasterly winds, strong offshore and on high ground.
4-Nov-13	Mon	Cloudy, rain, moderate. Moderate to fresh east to northeasterly winds.
5-Nov-13	Tue	Cloudy, rain, moderate. Moderate to fresh east to northeasterly winds.
6-Nov-13	Wed	Mainly fine. Moderate to fresh easterly winds.
7-Nov-13	Thu	Mainly fine. Moderate to fresh easterly winds.
8-Nov-13	Fri	Mainly fine. Moderate to fresh easterly winds.
9-Nov-13	Sat	Mainly fine. Moderate to fresh easterly winds.
10-Nov-13	Sun	Cloudy, rain. Fresh to strong easterly winds.
11-Nov-13	Mon	Cloudy, rain. Fresh to strong easterly winds.
12-Nov-13	Tue	Cloudy, rain, moderate. Fresh to strong easterly winds.
13-Nov-13	Wed	Fine, dry. Moderate north to northeasterly winds.
14-Nov-13	Thu	Fine, dry. Moderate north to northeasterly winds.
15-Nov-13	Fri	Fine, dry. Moderate north to northeasterly winds.
16-Nov-13	Sat	Fine, dry, cloudy. Moderate northeasterly winds.
17-Nov-13	Sun	Fine, dry, cloudy. Moderate northeasterly winds.
18-Nov-13	Mon	Fine, very dry. Moderate northeasterly winds.
19-Nov-13	Tue	Cloudy, dry. Moderate to fresh east to northeasterly winds.
20-Nov-13	Wed	Cloudy, dry. Moderate to fresh east to northeasterly winds.
21-Nov-13	Thu	Cloudy, dry. Moderate to fresh east to northeasterly winds.
22-Nov-13	Fri	Cloudy, dry. Moderate to fresh east to northeasterly winds.
23-Nov-13	Sat	Fine, dry. Moderate to fresh north to northeasterly winds.
24-Nov-13	Sun	Fine, dry. Moderate to fresh north to northeasterly winds.
25-Nov-13	Mon	Fine and very dry. Moderate to fresh north to northeasterly winds.

Appendix K

Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table for November 2013

			Actu	ıal Quant	ities of In	nert C&D	Material	s Genera	ted Mont	hly				A	Actual Qu	uantities	of C&D	Wastes	Generate	ed Montl	hly	
Month	Total Q Gene (a) = (c)	-	Hard Ro Large I Cono (t	Broken crete	Reused Cont (c	tract	Reused Proj (c	ects	1	sed as c Fill e)	Import (:		Ме	tals	Pap cardt packa		Plas	stics	Cher Wa	nical iste		iers, ibbish
	(in '00	$00m^{3})$	(in '00	$00m^{3})$	(in '00	$(00m^3)$	(in '00	$00m^{3})$	(in '00	00m ³)	(in '00	$(00m^3)$	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in to	onne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2013	13.341	50.328	0.160	0.410	0.740	2.802	0.000	0.000	12.601	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	400.410	103.440
Jan	0.332	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.332	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.040	9.840
Feb	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	7.530	6.530
Mar	0.056	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.056	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.430	4.920
Apr	0.425	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.425	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.800	32.200
May	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.790	4.650
Jun	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.430	48.240
Sub-total	14.236	50.328	0.160	0.417	0.740	2.802	0.000	0.000	13.497	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	443.430	209.820
Jul	0.871	0.000	0.000	0.012	0.000	0.000	0.000	0.000	0.871	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	8.550	33.520
Aug	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.930	23.050
Sep	0.531	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.531	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.330	5.090
Oct	0.000	0.434	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.434	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	7.880	6.740
Nov	0.294	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.294	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5.700	7.910
Dec																						
Total	15.933	50.762	0.160	0.432	0.740	2.802	0.000	0.000	15.194	47.960	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	481.820	286.130
10141	66.6	595	0.5	91	3.5	42	0.0	00	63.1	154	0.0	00	0.0	00	0.0	00	0.0	00	0.0	00	767.	.950

Remark: Assume 1.0 m^3 vehicle dump load = 1.6 tonnes C&D materials

YSW: Yung Shue Wan SKW: Sok Kwu Wan

Appendix L

Weekly Site Inspection Checklist

Project Date: PART Weat Temp Humi Wind Area I	Γ Α: her: erature dity: : nspec	High Image: Moderate Low Strong Image: Breeze Light	_ RE's Representative _ Contractor's Representative _ IEC's Representative _ Time:			Mr. Marti Mr. Jose Mr. M. K 09:20 Envir	n Li ph Ng . Leung	512B-29 Oct 2013
PART	B:	SITE AUDIT						
Note:		 bs.: Not Observed; Yes: Compliance; No: Non-Compliance; v Up: Observations requiring follow-Up actions N/A: Not Applicable 	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 1: V	/ater Quality					-	
1.01	ls an	effluent discharge license obtained for the Project?		\checkmark				
1.02	ls the	effluent discharged in accordance with the discharge licence?		\checkmark				
1.03	ls the	discharge of turbid water avoided?		\checkmark				
1.04		here proper desilting facilities in the drainage systems to e SS levels in effluent?		\checkmark				
1.05		nere channels, sandbags or bunds to direct surface run-off to nentation tanks?	°	\checkmark				
1.06		here any perimeter channels provided at site boundaries to ept storm runoff from crossing the site?	°	\checkmark				
1.07	ls dra	inage system well maintained?		\checkmark				
1.08		cavation proceeds, are temporary access roads protected by red stone or gravel?	′ 🔲				\checkmark	
1.09	Are t	emporary exposed slopes properly covered?					\checkmark	
1.10	Are e	earthworks final surfaces well compacted or protected?		\checkmark				
1.11	Are r	nanholes adequately covered or temporarily sealed?		\checkmark				
1.12	Are t	here any procedures and equipment for rainstorm protection?		\checkmark				
1.13	Are	vheel washing facilities well maintained?					\checkmark	
1.14	ls ru	noff from wheel washing facilities avoided?					\checkmark	
1.15	Are t	here toilets provided on site?		\checkmark				
1.16	Are t	oilets properly maintained?		\checkmark				
1.17		he vehicle and plant servicing areas paved and located withir d areas?	י <u>ר</u>				\checkmark	
1.18	Is the	e oil/grease leakage or spillage avoided?		\checkmark				
1.19		there any measures to prevent leaked oil from entering the age system?	•	\checkmark				
1.20	Are	there any measures to collect spilt cement and concrete nings during concreting works?	•	\checkmark				
1.21	Aret	here any oil interceptors/grease traps in the drainage systems chicle and plant servicing areas, canteen kitchen, etc?	s				\checkmark	

AUES

4	E (S

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					\checkmark	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2 02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		\checkmark				
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sectio	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	5 ₇
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

En

vironmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan	AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Sectio	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				(****
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?		??			\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

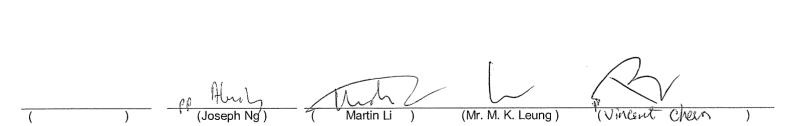
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?		\checkmark				
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	

(Sok Kwu Wan)

IEC's representative

marks:

Findings of Site Inspection: (29 October 2013)


No environmental issue was observed during the site inspection

RE's representative

Follow up (29 October 2013)

EO's representative

Nil.

ET's representative

Contractor's representative

						-	
Projec		Inspected I	by		Checklist	No. <u>TC</u>	S512B-05 Nov 2013
	DC-2009-13: Construction of Sewage Treatment Works at Yung Shue Wan and Sok	ETL/ ET's F	Representati	ve	Mr. Marti	n Li	
	Kwu Wan	RE's Repre	esentative		Mr. YE Z	HICHAO	
			's Represen	tative	Mr. Andy	Lau /	M.K. Leng
	······································	IEC's Repr	esentative				0
Date:		Time:	<u></u>		09:20		
PAR		Deinu				onmenta 1/2007A	al Permit No.
Weat Temp	her: Sunny Fine✓ Cloudy erature: 22.6 °C	Rainy			V EF-20	1/2007A	
Humi							
Wind	: Strong I Breeze Light	Calm					
Area I	nspected						
1	Sok Kwu Wan						
PART	B: SITE AUDIT	an a					
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 1: Water Quality						
1.01	Is an effluent discharge license obtained for the Project?		\checkmark				
1.02	Is the effluent discharged in accordance with the discharge licence?		\checkmark				
1.03	Is the discharge of turbid water avoided?		\checkmark				
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?		\checkmark				
1.05	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?		\checkmark				
1.06	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?		\checkmark				
1.07	Is drainage system well maintained?		\checkmark				
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?					\checkmark	
1.09	Are temporary exposed slopes properly covered?					\checkmark	
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark				
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark				
1.12	Are there any procedures and equipment for rainstorm protection?		\checkmark				
1.13	Are wheel washing facilities well maintained?					\checkmark	
1.14	Is runoff from wheel washing facilities avoided?					\checkmark	
1.15	Are there toilets provided on site?		\checkmark				

 $\overline{\mathbf{A}}$

 $\overline{\mathbf{A}}$

 \square

 \checkmark

 \square

 \square

 \square

 \checkmark

 $\overline{\mathbf{A}}$

Are toilets properly maintained? 1.16

Are the vehicle and plant servicing areas paved and located within 1.17 roofed areas?

Is the oil/grease leakage or spillage avoided? 1.18

- Are there any measures to prevent leaked oil from entering the 1.19 drainage system?
- Are there any measures to collect spilt cement and concrete 1.20 washings during concreting works?
- Are there any oil interceptors/grease traps in the drainage systems 1.21 for vehicle and plant servicing areas, canteen kitchen, etc?

AIIFS

A	U	E	S

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					\checkmark	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?				\checkmark		Photo 1
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sectio	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

AU	ES
----	----

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					\checkmark	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

10000	1034 1084	-	4500
100	33 (24)	100	<u> </u>
超数	S 21	10000	40a.
6 de 18 d	11 II II II	100	BB 103
26 D 16	9.5	0,1000	6.0

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?		\checkmark				
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: (5 November 2013)

1. Fugitive dust emission was observed, the Contractor was reminded to practice water spaying regularly.

IEC's representative RE's representative ET's representative EO's representative Contractor's representative
() (Mr. YE ZHICHAO) (Martin Li) (Mr. Andy-Law) (Mr. Andy-Mr. An

Follow up (5 November 2013)

Water was sprayed at the exposed slope.

DC-2009-13: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Date: 13 November 2013 PART A: GENERAL INFORMATION Weather: Sunny Fine ✓ Cloudy Temperature: 20.7 U Moderate Humidity: High		RE's Rep Contracto	I by Representative or's Represe presentative	entative	Checklist No. TCS512B-13 Nov 201 Mr. Martin Li Mr. YE ZHICHAO Mr. Andy Lau 09:20 09:20 Environmental Permit No. ✓ EP- 281/2007A				
PART		Not			Fellow		Photo/		
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks		
Sectio 1.01	n 1: Water Quality Is an effluent discharge license obtained for the Project?		$\overline{\mathbf{A}}$						
1.02	Is the effluent discharged in accordance with the discharge licence	· · ·	<u> </u>						
1.03	Is the discharge of turbid water avoided?		<u> </u>						
1.04	Are there proper desilting facilities in the drainage systems to	° 🗌	$\overline{\mathbf{N}}$						
1.05	reduce SS levels in effluent? Are there channels, sandbags or bunds to direct surface run-off t sedimentation tanks?	°	$\overline{\checkmark}$						
1.06	Are there any perimeter channels provided at site boundaries t intercept storm runoff from crossing the site?	°	\checkmark						
1.07	Is drainage system well maintained?		\checkmark						
1.08	As excavation proceeds, are temporary access roads protected b crushed stone or gravel?	у				\checkmark			
1.09	Are temporary exposed slopes properly covered?					\checkmark			
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark						
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark						
1.12	Are there any procedures and equipment for rainstorm protection?		\checkmark						
1.13	Are wheel washing facilities well maintained?					\checkmark			
1.14	Is runoff from wheel washing facilities avoided?					\checkmark			
1.15	Are there toilets provided on site?		\checkmark						
1.16	Are toilets properly maintained?		\checkmark						
1.17	Are the vehicle and plant servicing areas paved and located withi roofed areas?	n				\checkmark			
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark						
1.19	Are there any measures to prevent leaked oil from entering th drainage system?	e 🗌	\checkmark						
1.20	Are there any measures to collect spilt cement and concret washings during concreting works?	e 🗌	\checkmark						
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	s				\checkmark			

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					\checkmark	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		\checkmark				
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sectio	n 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

Д	U	E	S	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					\checkmark	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\checkmark				
4.23	Contaminated sediments will be managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					\checkmark	

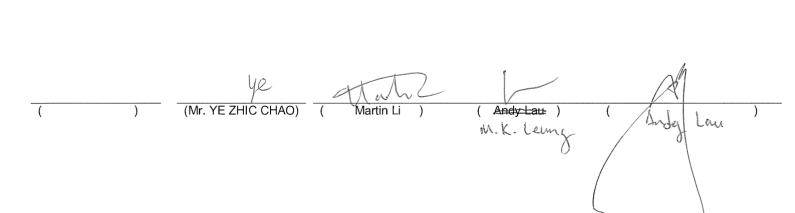
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?		\checkmark				
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	

(Sok Kwu Wan)

Remarks:

IEC's representative

Findings of Site Inspection: (13 November 2013)


No environmental issue was observed during the site inspection

RE's representative

Follow up (13 November 2013)

EO's representative

Nil.

ET's representative

Contractor's representative

AILS

Humic Wind:	DC-2009-13: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan 20 November 2013 T A: GENERAL INFORMATION her: Sunny ✓ Fine Cloudy erature: 20.1 °C dity: High ✓ Moderate Low	at Yung Shue Wan and Sok RE's Representative General INFORMATION Time: General INFORMATION Rainy I Cloudy Rainy I Oc Low			DC-2009-13: Construction of Sewage Treatment Works at Yung Shue Wan and Sok ETL/ ET's Representative Kwu Wan RE's Representative Contractor's Representative IEC's Representative 20 November 2013 Time: GENERAL INFORMATION Sunny Sunny Fine Cloudy High Moderate Low Strong Breeze Light Calm cted Column Calm					
PARTI	B: SITE AUDIT Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not			Follow		Photo/			
L	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks			
1.01	n 1: Water Quality Is an effluent discharge license obtained for the Project?		\checkmark			-				
1.02	Is the effluent discharged in accordance with the discharge licence	?	$\overline{\mathbf{N}}$		\Box					
1.03	Is the discharge of turbid water avoided?		$\overline{\mathbf{N}}$							
	Are there proper desilting facilities in the drainage systems to	• []	$\overline{\mathbf{A}}$							
1.05	reduce SS levels in effluent? Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?	° 🗌	$\overline{\mathbf{V}}$							
	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?	° 🗌	\checkmark							
1.07	Is drainage system well maintained?		\checkmark							
1.08	As excavation proceeds, are temporary access roads protected b crushed stone or gravel?	у 🗌				\checkmark				
1.09	Are temporary exposed slopes properly covered?					\checkmark				
1.10	Are earthworks final surfaces well compacted or protected?		\checkmark							
1.11	Are manholes adequately covered or temporarily sealed?		\checkmark							
1.12	Are there any procedures and equipment for rainstorm protection?		\checkmark							
1.13	Are wheel washing facilities well maintained?					\checkmark				
1.14	Is runoff from wheel washing facilities avoided?					\checkmark				
1.15	Are there toilets provided on site?		\checkmark							
1.16	Are toilets properly maintained?		\checkmark							
1.17	Are the vehicle and plant servicing areas paved and located withi roofed areas?	n 🗌				\checkmark				
1.18	Is the oil/grease leakage or spillage avoided?		\checkmark							
1.19	Are there any measures to prevent leaked oil from entering th drainage system?	e 🗌			\checkmark		Photo 1			
1.20	Are there any measures to collect spilt cement and concret washings during concreting works?	e	\checkmark							
1.21	Are there any oil interceptors/grease traps in the drainage system for vehicle and plant servicing areas, canteen kitchen, etc?	s				\checkmark				

AUES

|--|

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.22	Are the oil interceptors/grease traps maintained properly?					\checkmark	
1.23	Is used bentonite recycled where appropriate?					\checkmark	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.					\checkmark	
1.25	No excavation is undertaken in the settlement area.					\checkmark	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.					\checkmark	
1.27	Mobile toilets should provide on site and located away the stream course.		\checkmark				
1.28	License collector should be employed for handling the sewage of mobile toilet.		\checkmark				
1.29	Is ponding /stand water avoided?		\checkmark				
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?					\checkmark	
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		\checkmark				
2.03	Are the excavated materials sprayed with water during handling?					\checkmark	
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		\checkmark				
2.05	Is the exposed earth properly treated within six months after the last construction activities?					\checkmark	
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?					\checkmark	
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?					\checkmark	
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?					\checkmark	
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?					\checkmark	
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?					\checkmark	
2.11	Is dark smoke emission from plant/equipment avoided?		\checkmark				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?					\checkmark	
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?					\checkmark	
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		\checkmark				
2.15	Is open burning avoided?		\checkmark				
2.16	Excavated materials from the stream must be removed from the site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					\checkmark	
Sectio	n 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?					\checkmark	
3.02	Is silenced equipment adopted?					\checkmark	
3.03	Is idle equipment turned off or throttled down?	\checkmark					
3.04	Are all plant and equipment well maintained and in good condition?		\checkmark				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?					\checkmark	
3.06	Are hand held breakers fitted with valid noise emission labels during operation?					\checkmark	
3.07	Are air compressors fitted with valid noise emission labels during operation?					\checkmark	

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?					\checkmark	
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					\checkmark	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?					\checkmark	
3.11	Are valid Construction Noise Permit(s) posted at site entrances?					\checkmark	
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).					\checkmark	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					\checkmark	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					\checkmark	
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		\checkmark				
4.02	Are receptacles available for general refuse collection?		\checkmark				
4.03	Is general refuse sorting or recycling implemented?		\checkmark				
4.04	Is general refuse disposed of properly and regularly?		\checkmark				
4.05	Is the Contractor registered as a chemical waste producer?					\checkmark	
4.06	Are the chemical waste containers and storage area properly labelled?					\checkmark	
4.07	Are the chemical wastes stored in proper storage areas?					\checkmark	
4.08	Is the chemical container or equipment provided with drip tray?					\checkmark	
4.09	Is the chemical waste storage area used for storage of chemical waste only?					\checkmark	
4.10	Are incompatible chemical wastes stored in different areas?					\checkmark	
4.11	Are the chemical wastes disposed of by licensed collectors?					\checkmark	
4.12	Are trip tickets for chemical wastes disposal available for inspection?					\checkmark	
4.13	Are chemical/fuel storage areas bounded?					\checkmark	
4.14	Are designated areas identified for storage and sorting of construction wastes?					\checkmark	
4.15	Are construction wastes sorted (inert and non-inert) on site?		\checkmark				
4.16	Are construction wastes reused?		\checkmark				
4.17	Are construction wastes disposed of properly?		\checkmark				
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\checkmark				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\checkmark				
4.20	Are appropriate procedures followed if contaminated material exists?					\checkmark	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?					\checkmark	
4.22	Site cleanliness and appropriate waste management training had provided for the site workers		\checkmark				

- Site cleanliness and appropriate waste management training had 4.22 provided for the site workers.
- Contaminated sediments will be managed according to WBTC 4.23 No.12/2000 and EWTB TC(W) No. 34/2002.

 \square

 \square

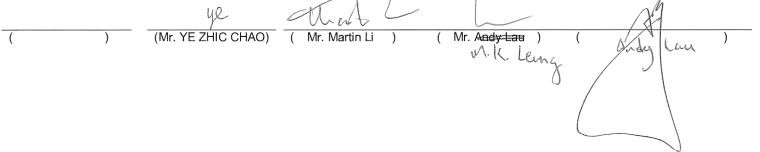
 \checkmark

 \square

AU	ES
----	----

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?					\checkmark	
5.02	Are retained and transplanted trees properly protected?		\checkmark				
5.03	Are surgery works carried out for the damaged trees?	\checkmark					
5.04	Is damage to trees outside site boundary due to construction activities avoided?		\checkmark				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?					\checkmark	
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?					\checkmark	

(Sok Kwu Wan)


Remarks:

Findings of Site Inspection: (20 November 2013)

1. Power generator without drip tray was observed at sewage treatment plant, the Contractor was reminded to provide appropriate drip tray to eliminate any leakage.

IEC's representative RE's representative ET's representative EO's representative Contractor's representative

<u>Follow up (</u> 20 November 2013 <u>)</u>

Drip tray was provided for the power generator.

Appendix M

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA	EM&A		Location /	Implementation		lementa Stages**		Relevant Legislation
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	& Guidelines
Constr	ruction Phase							
3.32	2.34	Installation of 2m high solid fences around the construction site of Pumping Station P2.	Work site / during construction	Contractor		\checkmark		
3.34	2.34	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors		\checkmark		EIAO-TM, APCO, Air Pollution Control (Construction Dust) Regulation
3.36	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team		\checkmark		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Noise Measures

EIA	EM&A	M&A Environmental Protection Measures* L	Location/Timing	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref		20000000 20000g	Agent	D	С	0	Guidelines
Construct	tion Phase							
4.41-4.43	3.19	 Use of quiet PME for the construction of the pumping stations Use of temporary noise barrier during the construction of Pumping Station P1a 	Work site /during the construction of Pumping Stations	Contractor		V		EIAO-TM, NCO
4.44 – 4.49	3.19	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor				

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref		Location, Thing	Agent	D	С	0	Guidelines
4.50 – 4.53	3.19	 Use of noise screening structures such as acoustic shed and barrier wherever practicable and feasible in areas with sufficient clearance and headroom. Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20 m from the residential NSRs and less than 30 m from the temple (THT) and the public library. Use of PME for the construction of the section of sewer between the NSR and the Pumping Station P1a should not be allowed during the excavation work of Pumping Station P1a. 	Work site /during the construction of Sewer.	Contractor		V		
4.60	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		lement Stages*		Relevant Legislation	
Ref	Ref		measures)	Agent	D	С	0	and Guidelines	
	uction Phas			1					
5.77	4.35	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. Silt curtains will be installed around the exit area of the pilot drill.	Marine works site / During construction of submarine outfall	Contractor		V			
5.73	4.36	Dredging Works	Marine works site	Contractor					
5.78		 Implementation of following measures during the dredging works: dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m³/hr; deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress; dredging operation should be undertaken during ebb tide only; all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all pipe leakages should be repaired promptly and plant should not be operated with leaking pipes; 	and at the identified water sensitive receivers/ During construction						
		 excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved; adequate freeboard (i.e. minimum of 200mm) should be maintained 							
		on barges to ensure that decks are not washed by wave action;							
		• all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material;							
		• loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and							

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		lement Stages*		Relevant Legislation
Ref	Ref	Ref Environmental Protection Measures	measures)	Agent	D	C	0	and Guidelines
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.						
5.79	4.37	Construction Run-off and Drainage	Construction works	Contractor		\checkmark		ProPECC
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.						
		• Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.						
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.						
		• Careful programming of the works to minimise soil excavation works during rainy seasons.						
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.						
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.						
		• Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric						
5.80	4.38	General Construction Activities	Construction works	Contractor				
		Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided	sites					

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation	nplementation Stages** Legis			Relevant Legislation
Ref	Ref	Environmental i rotection wicasures	measures)	Agent	D	С	0	and Guidelines
		with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
5.81	4.39	<u>Wastewater Arising from Workforce</u> Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	Construction works sites	Contractor		V		
5.96	Section 4	Water quality monitoring	Designated water monitoring locations/ throughout construction period	Contractor		V		EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A	Environmental Protection Measures*	Location / Timing	Implementation	Im	plementa Stages**		Relevant Legislation &
Ref	Ref		Location / Thing	Agent	D C O		0	Guidelines
6.17	5.3	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor		V		WBTC No. 34/2002
6.18	5.4	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor		\checkmark		
6.19	5.5	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor		V		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	EM&A		Location /	Implementation		plementa Stages *		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	Guidelines
Construc	tion Phase							
7.14	6.4	 <u>Good site practices</u> Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor				Waste Disposal Ordinance (Cap.54)
7.15	6.5	To monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Work sites/During construction	Contractor		N		WBTC No. 21/2002
7.16	6.6	 Recommendations to achieve waste reduction include: segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated 	Work sites/During construction	Contractor		V		WBTC No. 4/98, 5/98

EIA	EM&A		Location /			lementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Implementation Agent	D	С	0	Guidelines
		 by the work force; any unused chemicals or those with remaining functional capacity should be recycled; use of reusable non-timber formwork to reduce the amount of C&D material; prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; proper storage and site practices to minimise the potential for damage or contamination of construction materials; and 						
7.18	6.7	plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. <u>General Site Wastes</u>	Work	Contractor		√		Public Health and
		 A collection area for construction site waste should be provided where waste can be stored prior to removal from site An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material 	sites/During construction					Municipal Services Ordinance (Cap. 132)
7.19-7.20	6.8 - 6.9	 <u>Chemical Wastes</u> After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance. 	Work sites/During construction	Contractor		\checkmark		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical Wastes

EIA	EM&A	EM&A	Location /	Implementation	Implementation Stages **			Relevant Legislation &	
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	С	0	Guidelines	
		 Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving 							
		activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges							
7.21-7.22	6.10 – 6.11	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: > public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; > C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic); > C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) • Where possible, inert material should be re-used on-site • Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material 	During all construction phases	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000	

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location / Timing	Implementation Agent	Implementation Stages			Relevant Legislation & Guidelines
			Thing	Agent	D	С	0	Guidelines
0 0 0 - 0 - 0	tion Phase				1	1	1	1
8.157	7.2	 <u>Terrestrial Ecology</u> Labeling and fencing of the uncommon tree species Avoidance of use of woodland habitats as Works Area, in particular where trees are located 	Work sites / during construction phase	Contractor		N		
8.159 – 8.160	7.3	Subtidal Ecology Use of HDD technique Dredging • Use of closed-grab dredger • Deploy silt curtains during dredging.	Marine works site / during dredging works	Contractor		V		
8.161	7.4	 Site runoff Construction and maintenance of sand / silt removal facilities Silt curtains Timing of earthworks Coverage of sand / fill piles during storms. Barriers along the landward side of Pumping Station P2 site boundary (to prevent site runoff from entering area with Romer's Tree Frog) 	All work sites / during construction phase	Contractor		V		

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA EM&A		Environmental Protection Measures*	Location / Implementation	Implementation Stages**			Relevant Legislation	
Ref	Ref		Timing	Agent	D	С	0	& Guidelines
9.29	8.3	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report	Marine works site, during dredging works	Contractor		\checkmark		TM on EIA Process
9.32	Section 8	Water quality monitoring (see Implementation Schedule for Water Quality Control Measures)	Designated monitoring locations / throughout construction period and 1 year following operation of the STW	Contractor and Environmental Team		\checkmark	1	EM&A Manual

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Implementation Schedule of Landscape and Visual Impact Measures

EIA EM&A Ref Ref		Environmental Protection Measures*	Location /	Implementation	Implementation Stages **			Relevant Legislation &	
Rei	Kei		Timing	Agent	D	С	0	Guidelines	
Constr	uction Pha								
10.74	9.10	Retaining existing trees and minimizing damage to vegetation by close coordination and on site alignment adjusted of rising main and gravity sewer pipelines.	All sites	Contractor		\checkmark		WBTC No. 14/2002	
		Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		V		WBTC No. 14/2002	
		Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor					
		Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		\checkmark		WBTC No. 19/2001	
		Conservation of topsoil for reuse.	All sites	Contractor		\checkmark			
		Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		\checkmark			

* All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

** D=Design, C=Construction, O=Operation

Appendix N

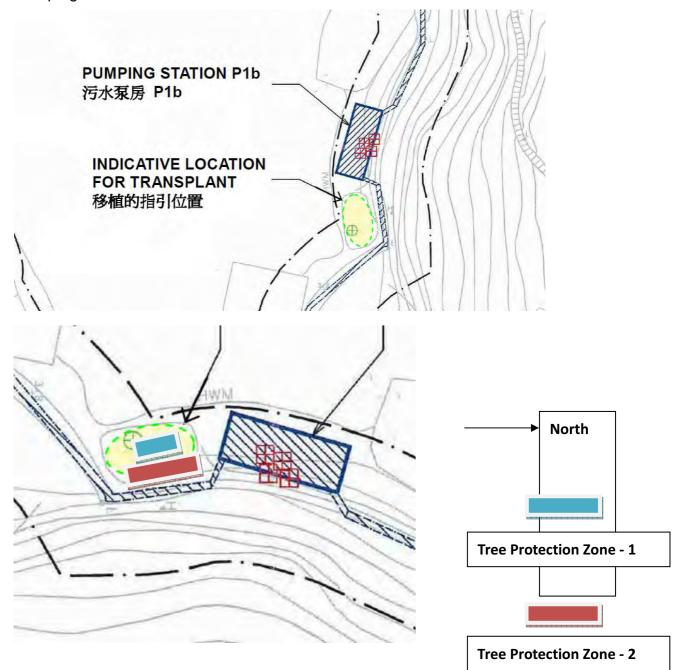
Tree Inspection Report

經緯園藝有限公司 Melofield Nursery & Landscape Contractor Ltd ^{元朗下攸田村 125號} 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13 Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date : 31-10-2013

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 31 October 2013

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2.	Summary	of Inspection	
----	---------	---------------	--

Date of Inspection	15 October 2013, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012
September 2012	15 and 29 September 2012
October 2012	15 and 31 October 2012
November 2012	15 and 30 November 2012
December 2012	15 and 30 December 2012
January 2013	15 and 30 January 2013
February 2013	15 and 28 February 2013
March 2013	15 and 30 March 2013
April 2013	15 and 30 April 2013
May 2013	15 and 30 May 2013
June 2013	15 and 29 June 2013

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 31 October 2013

July 2013	15 and 31 July 2013
August 2013	15 and 31 August 2013
September 2013	14 and 30 September 2013
October 2013	15 and 31 October 2013

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

Inspection parameters or criteria

- Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection
- Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.
- Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.
- Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 31 October 2013

5. Description of Inspection Results: Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Overall Condition

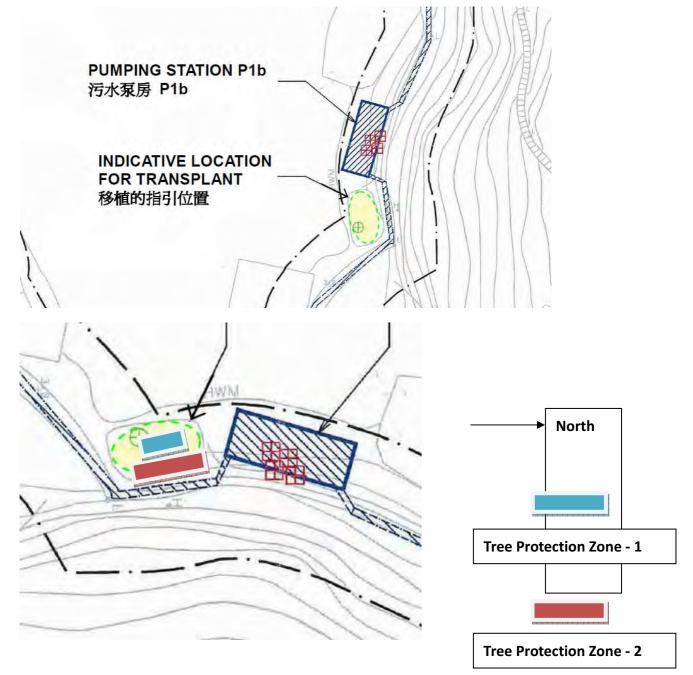
In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering CT2A, CT3A were lost due to typhoon, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing. 經緯園藝有限公司 Melofield Nursery & Landscape Contractor Ltd ^{元朗下攸田村 125號} 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13 Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date : 15-11-2013

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 15 November 2013

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2.	Summary of Inspection	
----	-----------------------	--

Date of Inspection	15 November 2013, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Sunny, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012	16 and 30 July 2012
August 2012	15 and 31 August 2012
September 2012	15 and 29 September 2012
October 2012	15 and 31 October 2012
November 2012	15 and 30 November 2012
December 2012	15 and 30 December 2012
January 2013	15 and 30 January 2013
February 2013	15 and 28 February 2013
March 2013	15 and 30 March 2013
April 2013	15 and 30 April 2013
May 2013	15 and 30 May 2013
June 2013	15 and 29 June 2013

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 15 November 2013

July 2013	15 and 31 July 2013	
August 2013	15 and 31 August 2013	
September 2013	14 and 30 September 2013	
October 2013	15 and 31 October 2013	
November 2013	15 November 2013	

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

Inspection parameters or criteria

- Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection
- Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.
- Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.
- Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

Bi Weekly Tree Inspection Report for *Celtis timorensis* at Sok Kwu Wan Inspection Date: 15 November 2013

5. Description of Inspection Results: Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Overall Condition

In the Tree Protection Zone 2, The health of CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering CT2A, CT3A were lost due to typhoon, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.