

PROJECT NO.: TCS/00512/09

0

DSD CONTRACT NO. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

YUNG SHUE WAN PORTION AREA QUARTERLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT FOR POST COMMISSIONING – AUGUST TO OCTOBER 2015

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Quality Index			
Date	Reference No.	Prepared By	Approved By
21 January 2016	TCS00512/09/600/R0919v2	Anh	m
		Nicola Hon Environmental Consultant	T.W. Tam Environmental Team Leader

Version	Date	Description	
1	28 December 2015	First Submission	
2	15 January 2016	Amended against the IEC's comment on 5 January 2016	
3	21 January 2016	Amended against the IEC's comment on 18 January 2016	

AECOM CDM Joint Venture

Chief Engineer/Harbour Area Treatment Scheme Drainage Services Department 5/F, Western Magistracy 2A, Pok Fu Lam Road Hong Kong Your reference:

Our reference: 05117/6/16/449225

22 January 2016

Date:

BY FAX

Attention: Mr P.F. Ma

Dear Sir,

Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Yung Shue Wan Portion Area <u>Quarterly EM&A Report for Post Commissioning – August 2015 to October 2015</u>

We refer to the Environmental Permit (EP-282/2007) and the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), with the revised report for the captioned project, dated 21 December 2015. We have no comment and have verified the captioned report.

Yours faithfully AECOM CDM JOINT VENTURE

Rodney Ip Independent Environmental Checker

ICWR/DCYO/wwsc

cc Leader Civil Engineering AUES ER/LAMMA CDM (Attn: Mr Ron Hung) (Attn: Mr T.W. Tam) (Attn: Mr Kenneth Kwong) (Attn: Mr Sylvester Hsu)

EXECUTIVE SUMMARY

- ES.01. The Leader Civil Engineering Corporation Limited (Leader) has been awarded the *Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan* (the Project) by the Drainage Services Department (DSD) on 4 May 2010. This Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (No. EP-281/2007/A and EP-282/2007) for the Project have been obtained by the DSD on 29 June 2007 for the relevant works.
- ES.02. For ease of reporting, the EM&A report under the Project is separated two stand-alone parts:
 - (a) Sok Kwu Wan (under EP No. 281/2007/A);
 - (b) Yung Shue Wan (under EP No. 282/2007).
- ES.03. According to the EM&A Manual Section 4.9 of Yung Shue Wan, Operation Phase Monitoring shall be conducted during Sewage Treatment Work (STW) commissioning for a year period. Upon completion of the construction phase of the project, commissioning of the STW of Yung Shue Wan was commenced on 1 February 2015.
- ES.04. The main objective of the post-commissioning monitoring work is to ensure that the water quality in Yung Shue Wan due to outfall discharge is more or less in line with the EIA prediction (i.e. no deterioration in local water quality.
- ES.05. According to the EM&A Manual Section 12.5.1, a total of four quarterly summary reports for the post-commissioning monitoring should be prepared with appropriate statistical analyses to show the water quality changes before and after the commissioning the outfall.
- ES.06. This is the 3rd Quarterly Post- Commissioning Monitoring Report prepared for Operation Phase of Yung Shue Wan Sewage Treatment Plant for the period of 1 August to 31 October 2015 (Reporting Period).
- ES.07. In the Reporting Period, marine water quality monitoring was conducted on 4 and 18 August 2015, 1 and 18 September 2015, 8 and 23 October 2015 at the designated monitoring locations. Statistical analysis for the monitoring result was made to compare to the baseline monitoring data. Overall, all the monitoring result obtained during operation phase is similar to the baseline data.
- ES.08. In order to minimize the odour nuisance, all proposed MBR feed pump station and sludge dewatering room would be enclosed and the outlet air from these facilities would be properly treated by deodorization facility. The performance test for the deodorization facility was conducted upon installation and the test report shown that the deodorization facility at YSWSTP could achieve 99.5% odour removal which in line with the EIA prediction.
- ES.09. In the Reporting Period, a total of three (3) Action/ Limit Level exceedances of parameters of Ammonia-N and E.coli were recorded at WY2 and WY3 in the Reporting Period. In view of the measurement result, high value of Ammonia-N and E.coli were also at control station on the same day. It is considered that exceedances were due to natural variation. No deterioration in local water quality related to the project was found which in line with the prediction to the EIA prediction.

Z:\Jobs\2010\TCS00512(DC-2009-13)-Lama\600\EM&A Post Commissioning Report\YSW\No.3 (Aug to Oct 2015)\R0919v3.doc

TABLE OF CONTENTS

1	INTRODUCTION Project Background Report Structure	1 1 1
2	POST- COMMISSIONING MONITORING REQUIREMENTS	2
	ENVIRONMENTAL ASPECT	2
	MONITORING LOCATIONS	2
	MONITORING FREQUENCY AND PERIOD	2
	MONITORING EQUIPMENT	3
	MONITORING PROCEDURES	4
	EQUIPMENT CALIBRATION	5
	DATA MANAGEMENT AND DATA QA/QC CONTROL	5
	DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	5
3	POST-COMMISSIONING WATER QUALITY MONITORING RESULTS	6
4	ODOUR MONITORING RESULTS	9
5	CONCLUSIONS	10

LIST OF TABLES

Table 3-1	Summary of Water Quality Results - Mid-ebb Tides (Dissolved Oxygen)
Table 3-2	Summary of Water Quality Results - Mid-ebb Tides (Turbidity & Suspended Solids)
Table 3-3	Summary of Water Quality Results - Mid-ebb Tides (Ammonia - N and TIN)
Table 3-4	Summary of Water Quality Results – Mid-ebb Tides (E.coli)
Table 3-5	Summary of Water Quality Results - Mid-flood Tides (Dissolved Oxygen)
Table 3-6	Summary of Water Quality Results – Mid- flood Tides (Turbidity & Suspended Solids)
Table 3-7	Summary of Water Quality Results - Mid- flood Tides (Ammonia - N and TIN)
Table 3-8	Summary of Water Quality Results - Mid- flood Tides (E.coli)
Table3-9	Fluctuation Ranges for the Monitored Operation Phase Water Quality Parameters
Table 3-10	Summary of Exceedances of Marine Water Quality

LIST OF APPENDICES

- Appendix A Site Layout Plan Yung Shue Wan Portion Area
- Appendix B Location of Monitoring Stations
- Appendix C Monitoring Equipments Calibration Certificate
- Appendix D Monitoring Data Sheet
- Appendix E Graphical Plots of Monitoring Results
- Appendix F Test Reports for Performance of Deodorization Facility at YSWSTW

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan (the Project) is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007A and EP-282/2007 for the Project have been obtained by the DSD for the relevant works. The site layout plan for the captioned work under the Project is showing in Appendix A.
- 1.02 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme including Construction (Impact and Post- Construction Monitoring) and Operation (Post- Commissioning Monitoring) Phases.
- 1.03 For ease of reporting, the EM&A report under the Project is separated two stand-alone parts:
 - (a) Sok Kwu Wan (under EP No. 281/2007/A);
 - (b) Yung Shue Wan (under EP No. 282/2007).
- 1.04 The construction of Sok Kwu Wan and Yung Shue Wan were respectively commenced on 27 July 2010 and 14 September 2010. Moreover, all the construction works at Yung Shue Wan and Sok Kwu Wan were completed on 31 December 2014 and 31 May 2015 respectively.
- 1.05 According to the EM&A Manual Section 4.9 of Yung Shue Wan, Operation Phase Monitoring shall be conducted during Sewage Treatment Work (STW) commissioning for a year period. Upon completion of the construction phase of the project, commissioning of the STW of Yung Shue Wan was commenced on 1 February 2015.
- 1.06 The main objective of the post-commissioning monitoring work is to ensure that the water quality in Yung Shue Wan due to outfall discharge is more or less in line with the EIA prediction (i.e. no deterioration in local water quality)
- 1.07 This is the 3rd Quarterly Post- Commissioning Monitoring Report prepared for Operation Phase of Yung Shue Wan Sewage Treatment Plant for the period of 1 August to 31 October 2015 (Reporting Period).

REPORT STRUCTURE

1.08 The Post- Commissioning Environmental Monitoring and Audit (EM&A) Report – Yung Shue Wan structures into the following sections:-

SECTION 1 INTRODUCTION

- SECTION 2 POST- COMMISSIONING MONITORING REQUIREMENTS
- SECTION 3 WATER QUALITY MONITORING RESULTS
- SECTION 4 ODOUR MONITORING RESULTS

SECTION 5 CONCLUSIONS

2 POST- COMMISSIONING MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 2.01 The post-commissioning EM&A programme only included the marine water quality monitoring. The detailed monitoring requirement is presented in the following sub-sections.
- 2.02 A summary of the Marine Water monitoring parameters is listed in *Table 2-1*:

Table 2-1	Summary	of	the	Marine	Water	monitoring	parameters	of	EM&A
	Requireme	nts							

Measurement	Parameters
In-situ	 Dissolved Oxygen Concentration (mg/L); Dissolved Oxygen Saturation (%); Turbidity (NTU); pH unit; Salinity (ppt); Water depth (m); and Temperature (°C).
Laboratory Analysis	 Suspended Solids (mg/L) Ammonia-Nitrogen (mg/L) Total Inorganic Nitrogen as N (mg/L) E Coli (cfu/100mL)

MONITORING LOCATIONS

2.03 The marine water quality monitoring stations were adopted as recommended in the *EM&A Manual Section 4.5.1*. Two control stations (CY1 and CY2) were identified at locations representative of the project site in its undisturbed condition. Three impact stations (WY1, WY2 and WY3) were identified in the vicinity of sensitive receivers (the coral colonies in the vicinity of Yung Shue Wan, and secondary contact recreation subzone). Details of the marine water monitoring stations are described in *Table 2-2*. The graphical of marine water quality monitoring stations is shown in *Appendix B*.

Table 2-2Location of the Marine Water Quality Monitoring Station

Monitoring	Description	Coordinates			
Station	Description	Easting	Northing		
WY1	Coral Station on seawall at STW Site	829 170	809 550		
WY2	Coral colonies at Shek Kok Tsui	829 000	810 400		
WY3	Coral colonies at O Tsai (headland N of YSW ferry pier)	829 200	809 850		
CY1 (flood)	Control Station	828 400	810 800		
CY2 (ebb)	Control Station	828 000	808 800		

MONITORING FREQUENCY AND PERIOD

2.04 The post-commissioning monitoring was basically carried out in accordance with the requirements in the EM&A Manual Sections 4.9. The marine water quality monitoring requirements are listed as follows:

<u>Parameters</u>: Duplicate in-situ measurements: water depth, temperature, Dissolved Oxygen, pH, turbidity and salinity;

HOKLAS-accredited laboratory analysis: Suspended Solids, Ammonia as N (NH₃-N), Total Inorganic Nitrogen (TIN) and *E-coli*.

- <u>Frequency</u>: 2 occasions per month (mid-ebb and mid-flood tides)
- Sampling Depth Two depths: 1m below water surface and 1m above sea bottom
- <u>Duration</u>: One year monitoring upon the STW commissioning

MONITORING EQUIPMENT

2.05 The monitoring equipments adopted for the EM&A program was proposed by ET. The equipments used for monitoring is listed in *Table 2-3* as below.

Table 2-3	Monitoring Equipments Used in EM&A Program
-----------	--

Marine Water quality			
A Digital Global Positioning System	GPS12 Garmin		
Water Depth Detector	Eagle Sonar		
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends		
Thermometer & DO meter	YSI Model 6820 Multifunctional Meter or YSI Professional		
	DSS Multifunctional Meter		
pH meter	YSI Model 6820 Multifunctional Meter or YSI Professional		
	DSS Multifunctional Meter		
Turbidimeter	YSI Model 6820 Multifunctional Meter or YSI Professional		
	DSS Multifunctional Meter		
Salinometer	YSI Model 6820 Multifunctional Meter or YSI Professional		
Samoneter	DSS Multifunctional Meter		
Sample Container	High density polythene bottles (provided by laboratory)		
Storage Container	'Willow' 33-litter plastic cool box with Ice pad		
Suspended Solids; Ammonia as N			
(NH ₃ -N), Total Inorganic Nitrogen	HOKLAS-accredited laboratory (ALS Technichem (HK) Pty		
(TIN) and <i>E-co</i> li	Ltd)		

- i. **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable, sensor and a DC power source. The equipment should be capable of measuring as a DO level in the range of 0 20mg L-1 and 0 200% saturation; and a temperature of 0 45 degree Celsius.
- ii. **pH Meter** The instrument should consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It should be readable to 0.1 pH in arrange of 0 to 14.
- iii. **Turbidity (NTU) Measuring Equipment** The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- iv. Water Sampling Equipment A water sampler should comprise a transparent PVC cylinder with a capacity not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- v. **Water Depth Detector** A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat.
- vi. **Salinity Measuring Equipment** A portable salinometer capable of measuring salinity in the range of 0 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.
- vii. **Sample Containers and Storage** Water samples for Suspended Solids should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- viii. **Monitoring Position Equipment** A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

ix. Suspended Solids, Ammonia-Nitrogen, Total Inorganic Nitrogen and *E.Coli* Analysis – Analysis of those parameters shall be carried out in a HOKLAS or other international accredited laboratory following the analytical methods listed in *Table 2-4*.

Table 2-4	Analytical Methods to be applied to Marine Water Quality Samples.
	mary fical methods to be applied to marine watch Quanty bamples.

Determinant Standard		Detection Limit
SS (mg/L)	APHA 2540D	0.5mg/L
NH3-N (mg/L)	ASTM D3590-89 B(FIA)	0.005mg/L
E-Coli	In-house method, membrane filtration with CHRIMagar Liquid E.coli-coliform culture	1cfu/100mL

MONITORING PROCEDURES

- 2.06 The marine water quality monitoring was conducted at the five designated locations at Yung Shue Wan. The sampling procedure including the in-situ monitoring are presented as below:
- 2.07 A Digital Global Positioning System (GPS) was used to identify the designated monitoring stations prior water sampling. A portable, battery-operated echo sounder was used for the determination of water depth at each station. At each station, marine water samples were collected at two depths: 1m below water surface and 1m above sea bottom.
- 2.08 The marine water sampler was lowered into the water body at the predetermined depth. The trigger system of the sampler was activated with a messenger. The opening ends of the sampler then were closed accordingly and water samples were collected.
- 2.09 The sample container was rinsed with a portion of the water sample. The water sample then was transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.
- 2.10 Before commencement of the sampling, general information such as the date and time of sampling, weather condition and tidal condition as well as the personnel responsible for the monitoring were be recorded on the monitoring field data sheet.
- 2.11 A 'Willow' 33-liter plastic cool box packed with ice was used to preserve the collected water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box was maintained at a temperature as close to 40C as possible without being frozen. Samples collected were delivered to the laboratory upon collection.

In-situ Measurement

Positioning of Monitoring Locations

2.12 A digital Global Positioning System (GPS) was used during marine water monitoring to ensure the monitoring vessel is at the correct location when taking measurement and samples.

Depth, Dissolved Oxygen (DO), Temperature, Turbidity, Salinity and pH value

- 2.13 The YSI Model 6820 Multifunctional Meter or YSI Professional DSS Multifunctional Meter was used for marine water in-situ measurement, which automates the measurements and data logging of depth, temperature, dissolved oxygen, dissolved oxygen saturation, turbidity, pH and salinity simultaneously. Before each round of monitoring, the dissolved oxygen probe was calibrated by the wet bulb method and the turbidity and salinity probes checked with distilled water.
- 2.14 The laboratory has be comprehensive quality assurance and quality control programme. For QA/QC procedures, one duplicate samples of every batch of 20 samples is analyzed as followed the HOKLAS accredited requirement.

EQUIPMENT CALIBRATION

- 2.15 The Multi-parameter Water Quality Monitoring System will be calibrated by HOKLAS accredited laboratory of three month intervals. The available calibration certificate will be issued to ensure the performance of Multi-parameter Water Quality Monitoring System to use for in-situ measurement.
- 2.16 Valid calibration certificates of the monitoring equipment used for EM&A program in the Reporting Period would be attached in *Appendix C*.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 2.17 The monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the monitoring programme.
- 2.18 The monitoring data recorded in Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

2.19 The baseline marine water quality monitoring was carried out from 29 July 2010 to 28 December 2010 for consecutive six months. Based on the baseline monitoring data, the proposed Action and Limit Levels for water quality was determined and they are shown in *Table 2-5*.

Demonstern	Performance	Impact Station			
Parameter	Criteria	WY1	WY2	WY3	
DO Concentration (Surface and Middle)	Action Level	3.63	3.53	3.61	
(mg/L)	Limit Level	3.32	3.47	3.42	
DO Concentration (Bottom)	Action Level	3.33	2.92	3.36	
(mg/L)	Limit Level	3.23	2.63	3.14	
Turbidity (Depth-Average)	Action Level	10.94	14.16	14.99	
(NTU)	Limit Level	17.35	15.20	16.21	
Suspended Solids (Depth-Average)	Action Level	17.52	14.23	14.52	
(mg/L)	Limit Level	25.62	16.51	16.88	
Ammonia as N (Depth – Average)	Action Level	0.098	0.090	0.095	
(mg/L)	Limit Level	0.104	0.095	0.099	
Total Inorganic Nitrogen as N (Depth-Average)	Action Level	0.603	0.578	0.605	
(mg/L)	Limit Level	0.673	0.659	0.683	
E. coli Depth-Average	Action Level	28	31	44	
(1cfu/100ml)	Limit Level	610	610	610	

 Table 2-5
 Action and Limit Levels of Water Quality Monitoring during Operation Stage of the STP

Notes:

• The proposed Action/Limit Levels of DO are adopted to be used 5%-ile/1%-ile of baseline data;

- The proposed Action/Limit Levels of Turbidity, SS, Ammonia and TIN are adopted to be used 95%-ile/99%-ile of baseline data;
- E-coli performance criteria of Action and Limit Levels are respectively proposed to use 95%-ile baseline data and 610 cfu/100mL geometric mean; and
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered necessary.

3 POST-COMMISSIONING WATER QUALITY MONITORING RESULTS

3.01 The Operation Phase EM&A Programme was commenced on 1 February 2015. In this reporting period, 6 monitoring events have been carried out at the designated locations. The monitoring results including in-situ measurements and laboratory testing results are provided in *Appendix D* and the graphical plots of monitoring results are shown in *Appendix E*.

Monitoring Result

3.02 In the Reporting Period, water Monitoring was carried out on 4 and 18 August 2015, 1 and 18 September 2015, 8 and 23 October 2015. Monitoring results of key parameters: dissolved oxygen (DO), turbidity, suspended solids, Ammonia-N, TIN and E.coli are summarized in *Tables 3-1* to *3-8*.

Sampling date		onc. of D Mid)epth Av Layer (n		f. and	DO conc. of Depth Ave. of Bottom Layer (mg/L)				
	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2
4-Aug-15	7.23	7.14	7.52	7.11	9.30	6.21	5.30	7.47	5.20	6.05
18-Aug-15	6.80	6.70	6.79	8.87	7.04	6.66	6.56	6.73	7.58	6.65
1-Sep-15	5.39	5.02	5.20	4.56	4.72	4.97	4.49	4.93	4.10	3.97
18-Sep-15	5.94	5.89	5.58	6.01	5.89	5.54	5.76	5.52	5.78	5.99
8-Oct-15	5.76	5.91	5.85	5.65	5.80	5.68	5.66	5.76	5.61	5.57
23-Oct-15	7.02	7.07	7.14	7.00	7.37	6.98	6.38	7.04	6.55	5.81

 Table 3-1
 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

Table 3-2	Summary of Water	Quality Results -	Mid-ebb Tid	les (Turbidity	& Suspended
	Solids)				

Sampling date	Turbidity Depth Ave. (NTU)						SS Depth Ave. (mg/L)			
	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2
4-Aug-15	1.25	0.65	1.23	0.23	0.75	7.00	4.50	6.00	3.00	4.50
18-Aug-15	0.60	0.63	1.33	1.20	1.78	5.50	6.00	6.00	4.00	3.50
1-Sep-15	2.18	4.65	2.25	2.55	1.93	2.50	3.50	3.00	3.50	3.00
18-Sep-15	9.70	8.05	10.50	5.95	6.03	11.00	9.00	11.00	4.50	6.00
8-Oct-15	3.30	2.10	2.08	1.55	1.83	7.50	5.00	5.00	5.00	3.50
23-Oct-15	1.47	2.73	2.18	1.81	1.65	6.50	7.50	9.50	7.00	5.50

Sampling date	Ammonia-N(mg/L)					TIN (mg/L)				
	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2
4-Aug-15	< 0.01	< 0.01	< 0.01	< 0.01	0.20	0.20	0.30	0.26	0.50	0.23
18-Aug-15	0.03	0.03	0.05	0.03	0.03	0.47	0.40	0.49	0.50	0.33
1-Sep-15	0.08	0.07	0.07	0.11	0.06	0.27	0.25	0.24	0.38	0.23
18-Sep-15	0.06	0.04	0.05	0.07	0.03	0.13	0.11	0.15	0.22	0.08
8-Oct-15	0.02	0.02	0.01	0.03	0.03	0.45	0.35	0.46	0.39	0.46
23-Oct-15	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.19	0.15	0.17	0.23	0.20

Sampling date			E.coli (CFU/10)ml)	
Samping date	WY1	WY2	WY3	CY1	CY2
4-Aug-15	not detected	1.00	not detected	1.00	not detected
18-Aug-15	not detected	not detected	6.50	5.00	not detected
1-Sep-15	2.50	1.00	10.00	6.00	1.50
18-Sep-15	2.00	not detected	21.50	not detected	
8-Oct-15	6.00	19.00	9.50	335.00	102.50
23-Oct-15	9.00	241.50	42.00	20.50	160.50

Note: (1) *Bolded and italic indicated Action Level exceedance.*

Table 3-5	Summary of Water Quanty Results – Mid-nood Thies (Dissolved Oxyger									xygen)
Sampling date		onc. of D Mid)epth Av Layer (n		f. and	DO conc. of Depth Ave. of Bottom Layer (mg/L)				
	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2
4-Aug-15	7.97	7.80	7.32	9.16	8.43	5.77	5.59	6.03	5.11	5.81
18-Aug-15	6.70	7.08	7.13	7.02	6.75	6.56	6.89	6.77	6.65	6.50
1-Sep-15	4.86	5.73	4.73	5.08	6.83	4.62	4.43	4.21	4.50	4.37
18-Sep-15	6.26	5.86	5.78	6.28	6.03	6.02	5.60	5.49	6.00	5.93
8-Oct-15	6.33	5.97	6.01	5.70	6.15	6.23	5.80	5.94	5.51	5.85
23-Oct-15	7.84	7.84	8.00	7.88	7.28	7.66	7.40	7.67	7.24	5.81

Table 3-5	Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)
-----------	---

Table 3-6	Summary of Water Quality Results – Mid- flood Tides (Turbidity & Suspended
	Solids)

Sampling date	Turbidity Depth Ave. (NTU)						SS Depth Ave. (mg/L)			
	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2
4-Aug-15	1.70	2.08	1.55	1.60	1.28	5.00	6.50	3.50	4.50	4.00
18-Aug-15	0.60	2.25	0.70	1.55	1.55	4.00	4.00	3.00	4.00	2.00
1-Sep-15	2.20	4.33	4.93	3.08	2.63	2.50	2.50	2.50	3.00	2.00
18-Sep-15	8.50	13.70	8.80	7.70	5.65	9.00	8.00	9.50	8.00	6.50
8-Oct-15	4.70	4.85	3.28	4.08	3.68	7.50	5.50	4.50	6.00	6.50
23-Oct-15	2.51	3.06	1.74	1.13	1.94	10.00	7.00	7.00	6.00	5.50

Table 3-7	Summary of Water	Quality Results – Mid	l- flood Tides (Ammonia –N and TIN	N)
-----------	------------------	-----------------------	------------------------------------	----

Sompling data		Amn	nonia-N(1	ng/L)		TIN (mg/L)					
Sampling date	WY1	WY2	WY3	CY1	CY2	WY1	WY2	WY3	CY1	CY2	
4-Aug-15	0.01	0.02	0.02	0.01	0.02	0.43	0.29	0.43	0.26	0.22	
18-Aug-15	0.04	0.07	0.05	0.03	0.02	0.50	0.49	0.52	0.38	13.72	
1-Sep-15	0.07	0.06	0.10	0.07	0.05	0.24	0.19	0.28	0.23	0.20	
18-Sep-15	0.06	0.07	0.07	0.04	0.04	0.15	0.16	0.20	0.13	0.10	
8-Oct-15	0.04	0.03	0.05	0.02	0.02	0.54	0.54	0.53	0.57	0.40	
23-Oct-15	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.17	0.16	0.17	0.19	0.20	

Note: Bolded and underlined indicated Limit Level exceedance.

Table 3-8	Summary of Water	Quality Results -	- Mid- fl	ood Tides (E.coli)
-----------	------------------	-------------------	-----------	--------------------

Sompling data	E.coli (CFU/100ml)									
Sampling date	WY1	WY2	WY3	CY1	CY2					
4-Aug-15	1.00	not detected	2.00	not detected	not detected					
18-Aug-15	1.00	not detected	not detected	not detected	1.00					
1-Sep-15	4.00	1.00	13.50	5.00	1.00					
18-Sep-15	5.50	not detected	28.50	not detected	not detected					
8-Oct-15	16.00	4.00	5.00	12.00	1.00					
23-Oct-15	20.50	34.00	21.00	14.00	45.00					

Note: (1) *Bolded and italic indicated Action Level exceedance.*

3.03 Statistical analysis for the monitoring result was made to compare to the baseline monitoring data. Overall, all the monitoring result obtained during operation phase is fall within and similar to the baseline data. The comparison of operation phase and baseline monitoring result is presented in *Tables 3-9*. Moreover, a summary of exceedances for the key parameters are shown in *Table 3-10*.

Table3-9	e3-9 Fluctuation Ranges for the		Monitored	Operation	Phase	Water	Quality		
	Parameters								

	1 al alletel S				
imeter	WY1	WY2	WY3	CY1	CY2
Surface +	4.86 - 7.97	5.02 - 7.84	4.73 – 8.00	4.56 - 9.16	4.72 – 9.30
Middle	(2.65 - 6.99)	(3.02 - 7.41)	(3.27 – 7.77)	(3.46 - 9.87)	(3.40 – 9.36)
Bottom	4.62 - 7.66	4.43 - 7.40	4.21 – 7.67	4.10 - 7.58	3.97 – 6.65
	(1.58 - 7.65)	(1.79 - 6.71)	(3.21 – 7.65)	(2.55 - 7.47)	(3.09 – 7.50)
ty (NTU)	0.60 - 9.70	0.63 - 13.70	0.70 - 10.50	0.23 - 7.70	0.75 - 6.03
	(2.00 - 10.83)	(2.27 - 10.57)	(2.28 - 19.18)	(2.03 - 15.32)	(2.38 - 16.30)
mg/L)	2.50 - 11.00	2.50 – 9.00	2.50 - 11.00	3.00 - 8.00	2.00 - 6.50
	(1.77 - 15.50)	(2.13 – 10.77)	(3.05 - 27.95)	(2.13 - 17.17)	(2.40 - 17.50)
ionia-N	0.01 - 0.08	0.02 - 0.07	0.01 - 0.10	0.01 - 0.11	0.02 - 0.20
g/L)	(0.005 - 0.100)	($0.005 - 0.090$)	(0.005 - 0.105)	(0.005 - 0.095)	(0.005 - 0.099)
(mg/L)	0.13 - 0.54	0.11 - 0.54	0.15 - 0.53	0.13 - 0.57	0.08 - 13.72
	(0.047 - 0.643)	($0.018 - 0.653$)	($0.060 - 0.690$)	(0.060 - 0.680)	(0.065 - 0.705)
coli	1.00 - 20.50	1.00 - 241.50	2.00 - 42.00	1.00 - 335.0	1.00 - 160.50
/100ml)	(1 - 30)	(1 - 42)	(1 - 44)	(1 - 43)	(1 - 47)
	Surface + Middle Bottom ty (NTU) mg/L) onia-N g/L) (mg/L) coli	meter WY1 Surface + Middle $4.86 - 7.97$ ($2.65 - 6.99$) Bottom $4.62 - 7.66$ ($1.58 - 7.65$) ty (NTU) $0.60 - 9.70$ ($2.00 - 10.83$) mg/L) $2.50 - 11.00$ ($1.77 - 15.50$) tonia-N g/L) $0.01 - 0.08$ ($0.005 - 0.100$) (mg/L) $0.13 - 0.54$ ($0.047 - 0.643$) coli $1.00 - 20.50$	meter WY1 WY2 Surface + Middle $4.86 - 7.97$ ($2.65 - 6.99$) $5.02 - 7.84$ ($3.02 - 7.41$) Bottom $4.62 - 7.66$ ($1.58 - 7.65$) $4.43 - 7.40$ ($1.79 - 6.71$) ty (NTU) $0.60 - 9.70$ ($2.00 - 10.83$) $0.63 - 13.70$ ($2.27 - 10.57$) mg/L) $2.50 - 11.00$ ($1.77 - 15.50$) $2.50 - 9.00$ ($2.13 - 10.77$) tonia-N g/L) $0.01 - 0.08$ ($0.005 - 0.100$) $0.02 - 0.07$ ($0.005 - 0.090$) (mg/L) $0.13 - 0.54$ ($0.047 - 0.643$) $0.11 - 0.54$ ($0.018 - 0.653$) coli $1.00 - 20.50$ $1.00 - 241.50$	meter WY1 WY2 WY3 Surface + Middle $4.86 - 7.97$ ($2.65 - 6.99$) $5.02 - 7.84$ ($3.02 - 7.41$) $4.73 - 8.00$ ($3.27 - 7.77$) Bottom $4.62 - 7.66$ ($1.58 - 7.65$) $4.43 - 7.40$ ($1.79 - 6.71$) $4.21 - 7.67$ ($3.21 - 7.65$) ty (NTU) $0.60 - 9.70$ ($2.00 - 10.83$) $0.63 - 13.70$ ($2.27 - 10.57$) $0.70 - 10.50$ ($2.28 - 19.18$) mg/L) $2.50 - 11.00$ ($1.77 - 15.50$) $2.50 - 9.00$ ($2.13 - 10.77$) $2.50 - 11.00$ ($3.05 - 27.95$) onia-N g/L) $0.01 - 0.08$ ($0.005 - 0.100$) $0.02 - 0.07$ ($0.005 - 0.105$) $0.01 - 0.10$ ($0.005 - 0.105$) (mg/L) $0.13 - 0.54$ ($0.047 - 0.643$) $0.11 - 0.54$ ($0.018 - 0.653$) $0.060 - 0.690$) coli $1.00 - 20.50$ $1.00 - 241.50$ $2.00 - 42.00$	meterWY1WY2WY3CY1Surface + Middle $4.86 - 7.97$ $(2.65 - 6.99)$ $5.02 - 7.84$ $(3.02 - 7.41)$ $4.73 - 8.00$ $(3.27 - 7.77)$ $4.56 - 9.16$ $(3.46 - 9.87)$ Bottom $4.62 - 7.66$ $(1.58 - 7.65)$ $4.43 - 7.40$ $(1.79 - 6.71)$ $4.21 - 7.67$ $(3.21 - 7.65)$ $4.10 - 7.58$ $(2.55 - 7.47)$ ty (NTU) $0.60 - 9.70$ $(2.00 - 10.83)$ $0.63 - 13.70$ $(2.27 - 10.57)$ $0.70 - 10.50$ $(2.28 - 19.18)$ $0.23 - 7.70$ $(2.03 - 15.32)$ mg/L) $2.50 - 11.00$ $(1.77 - 15.50)$ $2.50 - 9.00$ $(2.13 - 10.77)$ $2.50 - 11.00$ $(3.05 - 27.95)$ $3.00 - 8.00$ $(2.13 - 17.17)$ onia-N g/L) $0.01 - 0.08$ $(0.005 - 0.100)$ $0.02 - 0.07$ $(0.005 - 0.105)$ $0.01 - 0.11$ $(0.005 - 0.090)$ (mg/L) $0.13 - 0.54$ $(0.047 - 0.643)$ $0.11 - 0.54$ $(0.018 - 0.653)$ $0.15 - 0.53$ $(0.060 - 0.690)$ $0.13 - 0.57$ $(0.060 - 0.690)$ coli $1.00 - 20.50$ $1.00 - 241.50$ $2.00 - 42.00$ $1.00 - 335.0$

Note:

1. The numbers in brackets denote the range of baseline monitoring result.

 Table 3-10
 Summary of Exceedances of Marine Water Quality

Station	· ·	O f surf. depth)		(Ave. ottom yer)	(De	oidity epth ve)		S pth ye)	Amm N (Dept		TI (Dep Av	pth	E.c (De Av	pth
	Α	L	Α	L	Α	L	Α	L	Α	L	Α	L	Α	L
	Mid-Ebb													
WY1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WY2	0	0	0	0	0	0	0	0	0	0	0	0	1	0
WY3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
]	Mid-Fl	ood							
WY1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WY2	0	0	0	0	0	0	0	0	0	0	0	0	1	0
WY3	0	0	0	0	0	0	0	0	0	1	0	0	0	0
No. of exceed.	0	0	0	0	0	0	0	0	0	1	0	0	2	0

3.04 According to the monitoring result, a total of three (3) Action/ Limit Level exceedances of parameters of Ammonia-N and E.coli were recorded at WY2 and WY3 in the Reporting Period. In view of the measurement result, high value of Ammonia-N and E.coli were also at control station on the same day. It is considered that exceedances were due to natural variation. No deterioration in local water quality related to the project was found which in line with the prediction to the EIA prediction.

4 **ODOUR MONITORING RESULTS**

- 4.01 As presented in the EIA Report and subsequent Review Report on EIA Study, it was predicted that air quality at the ASRs would satisfy the odour criteria with the proposed mitigation measures. Nevertheless, monitoring would be carried out during the operation phase to monitor the performance of the deodorization facilities.
- 4.02 In order to minimize the odour nuisance, all proposed MBR feed pump station and sludge dewatering room would be enclosed and the outlet air from these facilities would be properly treated by deodorization facility. The performance test for the deodorization facility was conducted upon installation and it aims to achieve 99.5% odour removal.

Methodology

- 4.03 The odour samples of air were collected at the inlet and outlet in accordance with ISC 3rd edition, Method 701 "Determination of Hydrogen Sulphide Content of the Atmosphere".
- 4.04 Hydrogen sulfide (H₂S), as an odourous indicator gas in this odour removal efficiency test for the deodorizer, was generated by mixing sodium sulfide hydrates and concentrated sulfuric acid at the inlet of the deodorizer. The generation rate of gaseous of H₂S was kept constant by controlling the delivery rate of concentrated sulfuric acid from the dropping funnel. Gaseous sample containing H₂S was withdrawn from each sampling port (inlet and outlet) at a flow rate of 2 L/min., using a sampling pump. H₂S present in the gas stream was collected in the impinger which contained 10 15 mL absorbing solution. Sampling time was about 10 minutes to avoid overloading of the absorbing solution while ensuring a large enough sample was collected.
- 4.05 Colorimetric analytical method (ISC 3^{rd} edition, Method 701 "Determination of Hydrogen Sulphide Content of the Atmosphere") was used to determine the concentration of H₂S in the deodorizer odour removal test.
- 4.06 H_2S will be injected in the inlet as per following table, one sample of inlet H_2S concentration and one sample of outlet H_2S concentration will be measured and the removal efficiency of the deodorizer will be calculated as :-

4.07 Efficiency = (1-outlet concentration/inlet concentration) x 100%.

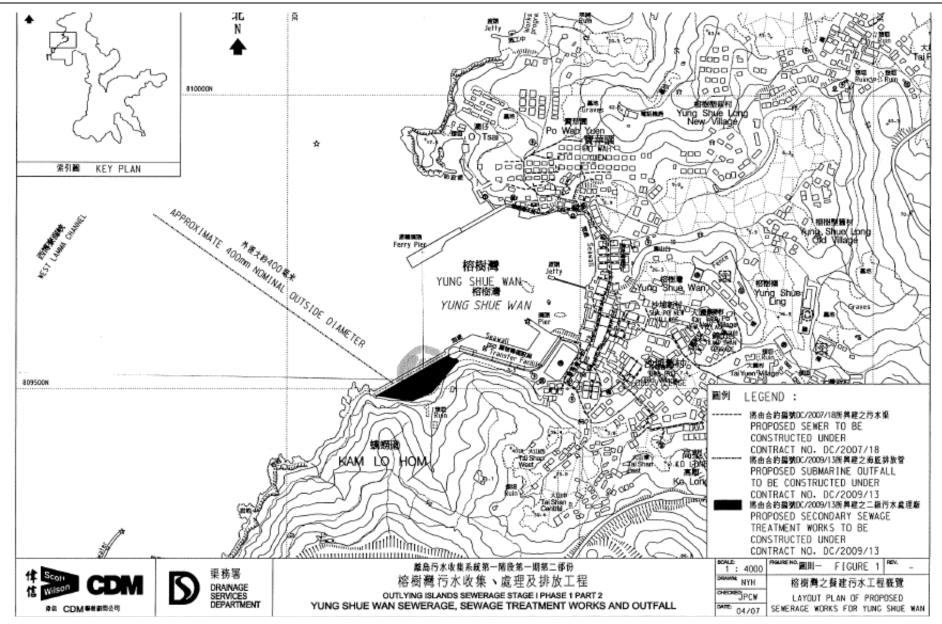
Injection H2S concentration	Location
At least 7 ppm	YSWSTW

Test Report

4.08 According to the test report provided by the laboratory, it shows that the deodorization facility at two DO tanks could achieve over 99.5% odour removal which in line with the EIA prediction. The test reports for performance of deodorization facility at YSWSTW are presented in *Appendix F*.

5 CONCLUSIONS

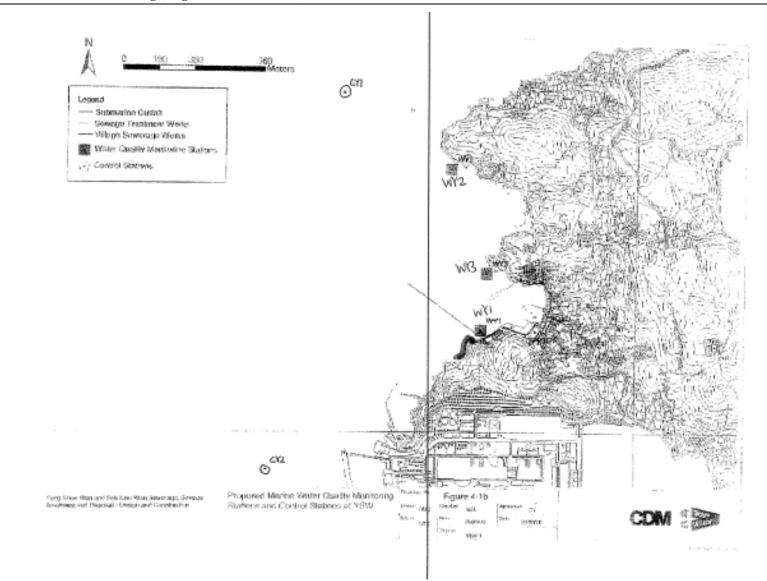
- 5.01 This is the 3rd Quarterly Post- Commissioning Monitoring Report prepared for Operation Phase of Yung Shue Wan Sewage Treatment Plant for the period of 1 August to 31 October 2015 (Reporting Period).
- 5.02 In the Reporting Period, marine water quality monitoring was conducted on 4 and 18 August 2015, 1 and 18 September 2015, 8 and 23 October 2015 at the designated monitoring locations. Statistical analysis for the monitoring result was made to compare to the baseline monitoring data. Overall, all the monitoring result obtained during operation phase is similar to the baseline data.
- 5.03 In the Reporting Period, a total of three (3) Action/ Limit Level exceedances of parameters of Ammonia-N and E.coli were recorded at WY2 and WY3 in the Reporting Period. In view of the measurement result, high value of Ammonia-N and E.coli were also at control station on the same day. It is considered that exceedances were due to natural variation. No deterioration in local water quality related to the project was found which in line with the prediction to the EIA prediction.
- 5.04 In order to minimize the odour nuisance, all proposed MBR feed pump station and sludge dewatering room would be enclosed and the outlet air from these facilities would be properly treated by deodorization facility. The performance test for the deodorization facility was conducted upon installation and the test report shown that the deodorization facility at YSWSTP could achieve 99.5% odour removal which in line with the EIA prediction.



Appendix A

Site Layout Plan – Yung Shue Wan Portion Area

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Quarterly EM&A Report for Post Commissioning (August to October 2015)



Appendix B

Location of Monitoring Stations (Water Quality)

Appendix C

Monitoring Equipments Calibration Certificate

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR BEN TAM
CLIENT:	ACTION UNITED ENVIRO SERVICES
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,
	NO. 35-41 TAI LIN PAI ROAD,
	KWAI CHUNG,
	N.T., HONG KONG.

WORK ORDER:	HK1521789
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	25/06/2015
DATE OF ISSUE:	02/07/2015

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Conductivity, Dissolved Oxygen, pH, Salinity, Temperature and Turbidity
Equipment Type:	Multifunctional Meter
Brand Name:	YSI
Model No.:	YSI 6820 / 650MDS
Serial No.:	02J0912/02K0788 AA
Equipment No.:	
Date of Calibration:	02 July, 2015

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Sub-Batch: Date of Issue: Client:	HK1521789 0 02/07/2015 ACTION UNITED ENVIRG	O SERVICES		(ALS)
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Multifunctional Meter YSI YSI 6820 / 650MDS 02J0912/02K0788 AA 02 July, 2015	Date of next Calibration:	02 October, 2015	
Parameters:			02 October, 2013	
Conductivity	Method Ref: APHA (21st	edition), 2510B		

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	150.1	+2.2
6667	6552	-1.7
12890	13060	+1.3
58670	58070	-1.0
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G Expected Reading (mg/L) Displayed Reading (mg/L) Tolerance (mg/L) 2.98 2.99 +0.015.00 5.07 +0.077.80 7.88 +0.08Tolerance Limit (mg/L) ±0.20

Method Ref: APHA 21st Ed. 4500H:BExpected Reading (pH Unit)Displayed Reading (pH Unit)Tolerance (pH unit)4.04.08+0.087.07.09+0.0910.09.97-0.03Tolerance Limit (pH unit)±0.20

Method Ref: APHA (21st edition), 2520B Expected Reading (ppt) Displayed Reading (ppt) Tolerance (%) 0 0.00 ---10 9.69 -3.1 20 19.71 -1.5 30 30.03 +0.1 Tolerance Limit (%) ±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

pH Value

Salinity

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Sub-Batch: Date of Issue: Client:	
Equipment Type: Brand Name:	
Model No.:	
Serial No.:	
Equipment No.:	
Date of Calibration:	

HK1521789

02 July, 2015

0 02/07/2015 ACTION UNITED ENVIRO SERVICES

Multifunctional Meter YSI YSI 6820 / 650MDS 02J0912/02K0788 AA

Date of next Calibration:

02 October, 2015

Parameters:

Work Order:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	11.4	+0.4
20.0	19.8	-0.2
31.0	30.2	-0.8
	Tolerance Limit (°C)	±2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.2	
4	4.0	+0.0
40	39.4	-1.5
80	81.3	+1.6
400	414.8	+3.7
800	833.6	+4.2
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee/Richard General Manager Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM CLIENT: ACTION UNIT ADDRESS: RM A 20/F., C NO. 35-41 TA

ACTION UNITED ENVIRO SERVICES RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG.

WORK ORDER:	HK1535681
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	18/09/2015
DATE OF ISSUE:	24/09/2015

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Conductivity, Dissolved Oxygen, pH, Salinity, Temperature and	Turbidity
Equipment Type:	Multifunctional Meter	
Brand Name:	YSI	
Model No.:	Professional DSS	œ
Serial No.:	15H102620	
Equipment No.:	EQW018	
Date of Calibration:	23 September, 2015	

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Chee, Richard General Manager -Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Sub-Batch:	HK1535681 0		
Date of Issue:	24/09/2015		
Client:	ACTION UNITED ENVIRO SI	ERVICES	
Equipment Type:	Multifunctional Meter		
Brand Name:	YSI		
Model No.:	Professional DSS		
Serial No.:	15H102620		
Equipment No.:	EQW018		
Date of Calibration:	23 September, 2015	Date of next Calibration:	23 December, 2015
Parameters:			

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	155.1	+5.6
6667	6999	+5.0
12890	13472	+4.5
58670	62654	+6.8
	Tolerance Limit (%)	±10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.24	3.32	+0.08
5.41	5.49	+0.08
7.91	7.96	+0.05
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.10	+0.10
7.0	7.09	+0.09
10.0	9.95	-0.05
	Tolerance Limit (pH unit)	±0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	10.62	+6.2
20	21.13	+5.7
30	32.87	+9.6
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1535681
Sub-Batch:	0
Date of Issue:	24/09/2015
Client:	ACTION UNI
Equipment Type:	Multifunctio
Brand Name:	YSI
E Read Book E Read of	

4/09/2015 CTION UNITED ENVIRO SERVICES

Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:

Multifunctional Meter YSI Professional DSS 15H102620 EQW018 23 September, 2015 D

Date of next Calibration:

23 December, 2015

Parameters:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.			
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)	
10	10.1	+0.1	
20	20.0	+0.0	
40	40.2	+0.2	
	Tolerance Limit (°C)	±2.0	

Turbidity

Method Ref: APHA (21st edition), 2130B

Methou Kel. AFHA (21st eutito		
Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.6	57.1
4	4.1	+2.5
40	39.4	-1.5
80	82.2	+2.8
400	404.6	+1.2
800	800.2	0.0
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chée, Richard General Manager Greater China & Hong Kong

Appendix D

Monitoring Data Sheet

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan

Post-commissioning Martine Water Monitoring Programme 4-Aug-15

Date / Time	Location	Tide	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS	Ammonia N	TIN	E.coli
			East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l	mg/l	mg/l	1CFU/100ml
						1.00	28.58	7.18	103.4	1.7	28.16	8.69	8	< 0.01	0.2	not detected
2015/8/4 15:11:00	WY1	ME	829173	809558	4.6	1.00	28.58	7.27	104.7	1.5	28.18	8.68	0	<0.01	0.2	not detected
2015/07 15.11.00		IVIL	027115	007550	1.0	3.60	28.63	6.22	90.1	0.9	28.48	8.6	6	< 0.01	0.2	not detected
						3.60	28.64	6.19	89.9	0.9	28.49	8.6	0	(0101	012	nor detected
						1.00	28.75	7.18	105.6	0.7	28.19	8.61	6	< 0.01	0.26	not detected
2015/8/4 15:34:00	WY2	ME	829005	810419	7.3	1.00	28.7	7.09	103.9	0.8	28.22	8.62				
						6.30	25.25 25.25	5.33 5.27	78.1 77.3	0.6	32.97 32.97	8.16 8.16	3	< 0.01	0.33	1
						6.30 1.00	29.1	7.5	111.5	0.3	28	8.69				ł
						1.00	29.1	7.53	111.5	0.8	27.98	8.7	7	< 0.01	0.22	not detected
2015/8/4 15:21:00	WY3	ME	829208	809845	5.2	4.20	27.34	7.48	111.2	1.6	29.16	8.3				
						4.20	27.34	7.48	110.6	1.7	29.10	8.3	5	< 0.01	0.3	not detected
						1.00	26.73	7.11	104.2	0	28.44	8.23				
						1.00	26.69	7.11	104.1	0.1	28.48	8.23	3	< 0.01	0.53	1
2015/8/4 15:49:00	CY1	ME	828409	810822	9.5	8.50	25.84	5.19	76.3	0.5	31.61	8.19				
						8.50	25.69	5.2	76.4	0.3	32.04	8.19	<2	< 0.01	0.46	not detected
						1.00	28.26	9.27	139.3	0.8	28.42	8.48				
						1.00	28.45	9.32	140.5	0.5	28.33	8.49	6	< 0.01	0.3	not detected
2015/8/4 14:49:00	CY2	ME	828002	808813	15.7	14.70	24.05	6.13	89.8	0.8	34.37	8.14				
						14.70	24.03	5.97	87.5	0.9	34.42	8.13	3	0.2	0.16	not detected
						1.00	27.71	7.96	118.3	0.6	28.02	8.35	~	0.01	0.45	
0015/0/4 00 40 00	11/1/1	N.C.	020172	000576	4.3	1.00	27.55	7.97	118.2	0.5	28.05	8.34	5	0.01	0.45	1
2015/8/4 08:48:00	WY1	MF	829162	809576	4.5	3.30	26.27	5.85	85.4	2.8	29.03	8.13	5	0.01	0.4	1
						3.30	26.28	5.69	83	2.9	29.1	8.13	2	0.01	0.4	1
						1.00	27.06	7.91	116.3	0.2	28.11	8.3	6	<0.01	0.32	not detected
2015/8/4 08:24:00	WY2	MF	829005	810407	6.3	1.00	27.07	7.69	113.1	0.3	28.07	8.33	0	<0.01	0.52	not detected
2013/6/4 06.24.00	VV I Z	IVIF	829005	810407	0.5	5.30	24.26	5.7	82.7	3.4	34.09	8.11	7	0.02	0.26	not detected
						5.30	24.06	5.48	79.3	4.4	34.43	8.1	/	0.02	0.20	not detected
						1.00	27.87	7.28	108.5	0.7	28.14	8.33	3	<0.01	0.4	not detected
2015/8/4 08:38:00	WY3	MF	829207	809850	4.6	1.00	27.9	7.36	109.7	0.8	28.12	8.34	5	0.01	0.4	not detected
2015/0/4 00.50.00	W 15	IVII	027207	007050	4.0	3.60	26.53	6.02	88.1	2.2	28.83	8.15	4	0.02	0.46	2
						3.60	26.44	6.03	88.2	2.5	28.95	8.14		0.02	0.10	2
						1.00	27.73	9.05	134.9	0.6	28.45	8.48	3	0.01	0.29	not detected
2015/8/4 08:11:00	CY1	MF	828417	810813	8.3	1.00	27.91	9.26	138.4	0.6	28.4	8.51	5	0.01	0.27	not dotootou
			2011		0.0	7.30	24.15	5.1	73.9	2.4	34.34	8.11	6	0.01	0.23	not detected
						7.30	24.04	5.11	74	2.8	34.45	8.11	-			
						1.00	27.52	8.42	125.7	0.5	29.36	8.41	4	0.01	0.28	not detected
2015/8/4 09:06:00	CY2	MF	828006	808815	15.9	1.00	27.56	8.44	126	0.5	29.28	8.41				
						14.90	23.83	5.84	85.5	1.9	34.63	8.1	<2	0.02	0.16	not detected
D						14.90	23.82	5.77	84.5	2.2	34.68	8.1	-			

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan

Post-commissioning Martine Water Monitoring Programme 18-Aug-15

Date / Time	Location	Tide	Co-ord	inates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS	Ammonia N	TIN	E.coli
			East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l	mg/l	mg/l	1CFU/100ml
						1.00	28.45	6.8	96.5	0.3	29.79	8.06	5	0.02	0.54	not detected
2015/8/18 15:20:00	WY1	ME	829178	809556	4.5	1.00	28.45	6.79	96.4	0.3	29.77	8.09	5	0.02	0.54	not detected
2015/0/10 15:20:00	W 11	IVIL	027170	007550	ч.5	3.50	26.69	6.65	92.1	0.8	30.92	8.15	6	0.03	0.39	not detected
		-				3.50	26.66	6.66	92.3	1	30.95	8.16	0	0.05	0157	not detected
						1.00	28.83	6.71	94.5	1.2	29.63	8.14	5	0.03	0.39	not detected
2015/8/18 15:37:00	WY2	ME	829008	810422	7.5	1.00	28.83	6.69	94.3	0.9	29.63	8.14				
						6.50 6.50	26.3 26.08	6.56 6.55	90.2 90.1	0.1	32.51 32.82	8.2 8.2	7	0.02	0.4	not detected
						1.00	26.08	6.55	90.1	0.3	32.82 29.65	8.09				
						1.00	28.39	6.79	96.5	0.7	29.65	8.09	7	0.05	0.5	3
2015/8/18 15:29:00	WY3	ME	829208	809840	4.1	3.10	27.26	6.73	94.2	1.8	30.36	8.05				
						3.10	27.20	6.73	94.2	2.1	30.30	8.1	5	0.04	0.48	10
						1.00	27.48	8.87	102.6	1	29.05	8.16				
						1.00	27.39	8.87	102.9	1	28.98	8.15	3	0.03	0.55	not detected
2015/8/18 15:48:00	CY1	ME	828413	810815	10.4	9.40	25.58	7.58	99.6	1.4	31.61	8.11	-	0.00	0.45	-
						9.40	25.57	7.58	98.5	1.4	31.63	8.1	5	0.03	0.45	5
						1.00	27.32	7.05	103.5	0.2	29.77	8.25	3	0.03	0.51	not detected
2015/8/18 14:54:00	CY2	ME	828006	808815	16.3	1.00	27.17	7.02	102.6	0.2	29.89	8.23	c	0.05	0.51	not detected
2013/0/10 14.34.00	CIZ	IVIE	828000	000015	10.5	15.30	24.18	6.68	92.8	3.1	34.69	8.16	4	< 0.01	0.15	not detected
						15.30	24.17	6.62	92.5	3.6	34.7	8.15	4	0.01	0.15	not detected
								1								
						1.00	27.29	6.69	92.6	0.5	29.98	8.1	5	0.03	0.49	not detected
2015/8/18 08:58:00	WY1	MF	829165	809571	4.3	1.00	27.3	6.71	93.6	0.6	29.98	8.1	5	0.05	0115	nor detected
						3.30	27.25	6.56	89.2	0.6	30.2	8.1	3	0.05	0.5	1
						3.30	27.23	6.56	89.3	0.7	30.29	8.1				
						1.00	27.35	7.09	102.3	1 0.9	29.83	8.11	<2	0.07	0.54	not detected
2015/8/18 08:37:00	WY2	MF	829008	810405	7.1	1.00	27.31 25.22	7.07	102.1		29.88	8.11				
						6.10	25.22	6.89 6.88	98.7 98.6	3.2 3.9	33.58 33.8	8.12	4	0.06	0.44	not detected
						1.00	23.03	7.12	98.6	0.4	29.72	8.08				
						1.00	28.08	7.12	104.2	0.4	29.72	8.08	<2	0.05	0.54	not detected
2015/8/18 08:48:00	WY3	MF	829211	809856	4.2	3.20	27.43	6.78	95.6	0.9	30.14	8.08				
						3.20	27.43	6.75	95.1	1.2	30.46	8.08	3	0.05	0.49	not detected
						1.00	26.5	7.03	100.7	0.4	30.25	8.11				
2015/0/10 00 12 02	CIVI	ME	000.400	010000	0.5	1.00	26.47	7.01	100.4	0.3	30.3	8.11	4	0.04	0.51	not detected
2015/8/18 08:13:00	CY1	MF	828420	810808	9.5	8.50	24.66	6.67	92.9	2.4	34.46	8.16	4	0.01	0.25	and determined a
						8.50	24.31	6.62	91.5	3.1	34.67	8.14	4	0.01	0.25	not detected
						1.00	27.02	6.74	94.5	0.2	29.95	8.13	2	0.03	0.44	not dotoot-1
2015/8/18 09:14:00	CY2	MF	828005	808818	16.5	1.00	27.08	6.76	94.6	0.2	30.08	8.13	2	0.05	0.44	not detected
2013/0/10 09.14:00	C12	IVIF	020000	610000	10.5	15.50	23.7	6.49	88.9	2.4	34.94	8.12	2	0.01	27	1
						15.50	23.56	6.5	89	3.4	35.01	8.12	Z	0.01	21	1

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan

Post-commissioning Martine Water Monitoring Programme 1-Sep-15

Date / Time	Location	Tide	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS	Ammonia N	TIN	E.coli	
			East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l	mg/l	mg/l	1CFU/100ml	
						1.00	25.95	5.5	81.6	2.1	33.04	8.23	3	0.08	0.3	3	
2015/9/1 14:00:00	WY1	ME	829161	809531	4.6	1.00	25.99	5.27	78.2	2	33.02	8.22	5	0.08	0.5	J	
2013/9/1 14.00.00	VV 1 1	IVILS	029101	809551	4.0	3.60	25.88	4.99	74	2.1	33.03	8.21	2	0.08	0.23	2	
						3.60	25.87	4.94	73.2	2.5	33.03	8.2	2	0.00	0.25	2	
						1.00	25.72	5.19	76.6	2	32.92	8.18	3	0.07	0.26	1	
2015/9/1 14:49:00	WY2	ME	829001	810401	7.3	1.00	25.7	4.84	71.4	1.9	32.93	8.18	-			-	
						6.30	25.44	4.49	66.1	6.6	33.19	8.17	4	0.07	0.24	1	
						6.30	25.42	4.49	66.2	8.1	33.22	8.16					
						1.00	26.04	5.25	78	1.9	33.02	8.17	3	0.06	0.23	9	
2015/9/1 14:38:00	WY3	ME	829204	809844	4.4	1.00	26.04	5.14	76.3	2	33.02	8.17					
						3.40	25.95	4.92	73	2.4	33.08	8.17	3	0.07	0.24	11	
						3.40	25.87	4.93	73.1	2.7	33.13	8.17					
						1.00	25.9	4.58	67.4	2.5	31.53	8.15	3	0.11	0.38	5	
2015/9/1 15:02:00	CY1	ME	828404	810806	10.4	1.00 9.40	25.9	4.53	66.5	2.5	31.53	8.15					
						9.40 9.40	25.2 25.16	4.12	60.2 59.5	2.6 2.6	32.62 32.69	8.15 8.15	4	0.11	0.38	7	
									1								
						1.00	25.91 25.93	4.74 4.69	70 69.4	2.2 2.1	32.38 32.38	8.18 8.17	<2	0.06	0.23	1	
2015/9/1 14:16:00	CY2	ME	828006	808813	16.3	15.30	25.93	3.99	58.3	1.7	32.38						
							15.30	24.59	3.99	58.3	1.7	34.23	8.18 8.18	3	0.06	0.23	2
						15.50	24.54	3.94	57.4	1.7	34.28	8.18					
						1.00	26	4.92	73.1	2	33.07	8.16					
						1.00	26	4.92	73.1	2.1	33.07	8.16	2	0.08	0.26	5	
2015/9/1 09:18:00	WY1	MF	829168	829551	4.3	3.30	25.75	4.62	68.4	2.4	33.28	8.16					
						3.30	25.75	4.61	68.2	2.4	33.3	8.16	3	0.06	0.22	3	
						1.00	25.78	5.86	86.9	4.1	33.41	8.18					
						1.00	25.71	5.59	82.8	3.6	33.45	8.17	2	0.06	0.22	1	
2015/9/1 08:31:00	WY2	MF	828996	810403	7.2	6.20	24.46	4.48	65.4	5	34.32	8.17					
						6.20	24.4	4.37	63.6	4.6	34.37	8.17	3	0.06	0.15	1	
						1.00	25.06	4.87	71.5	4.7	33.63	8.16					
						1.00	25.09	4.59	67.4	4.6	33.59	8.15	2	0.09	0.28	12	
2015/9/1 08:41:00	WY3	MF	829203	809861	4.1	3.10	24.81	4.2	61.5	5.2	33.88	8.14					
						3.10	24.69	4.22	61.6	5.2	33.98	8.14	3	0.1	0.28	15	
						1.00	26.29	5.18	77.3	1.5	32.91	8.15		0.07	0.05		
2015/0/1 00 14 00	<i>a</i> 111		00011	010000	10.1	1.00	26.29	4.98	74.3	1.6	32.89	8.15	2	0.07	0.25	6	
2015/9/1 08:14:00	CY1	MF	828414	810803	10.1	9.10	24.15	4.6	66.8	4.3	34.55	8.16	4	0.07	0.0		
						9.10	24.09	4.4	63.8	4.9	34.6	8.16	4	0.06	0.2	4	
						1.00	26.31	6.84	101.6	1.2	32.23	8.24		0.05	0.24	,	
2015/0/1 00 50 00	CTV0		007000	000010	16.0	1.00	26.2	6.81	101	1.2	32.28	8.25	<2	0.05	0.24	1	
2015/9/1 08:59:00	CY2	MF	827992	808810	16.2	15.20	23.86	4.41	63.7	3.9	34.73	8.17	2	0.05	0.16	,	
						15.20	23.86	4.33	62.6	4.2	34.73	8.17	2	0.05	0.16	1	

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan

Post-commissioning Martine Water Monitoring Programme 18-Sep-15

Date / Time L	ocation	Tide	Co-ord	inates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS	Ammonia N	TIN	E.coli
			East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l	mg/l	mg/l	1CFU/100ml
						1.00	28.07	5.95	91.9	8.6	33.77	8.41	10	0.06	0.13	2
2015/9/18 14:29:00	WY1	ME	829172	809547	4.3	1.00	28.07	5.93	91.6	8.3	33.77	8.4	10	0.00	0.15	2
2012///10 11/2/100		10125	027112	007511		3.30	27.81	5.56	85.5	10.7	33.94	8.37	12	0.05	0.12	not detected
						3.30	27.81	5.51	84.7	11.2	33.94	8.37				
						1.00	28.53 28.51	5.89 5.88	91.6	6.2 6.1	33.59 33.61	8.31	7	0.04	0.12	not detected
2015/9/18 15:10:00	WY2	ME	829006	810407	7.2	6.20	28.51	5.88	91.3 88.9	6.1 10.1	33.98	8.31 8.33				
						6.20	27.78	5.74	88.3	9.8	33.98	8.33	11	0.04	0.09	not detected
						1.00	28.16	5.6	86.5	6.8	33.55	8.33				
						1.00	28.15	5.55	85.6	7.1	33.56	8.32	11	0.05	0.14	25
2015/9/18 15:01:00	WY3	ME	829206	809847	4.4	3.40	27.87	5.55	85.4	13.9	33.8	8.31		0.05	0.15	10
						3.40	27.85	5.48	84.4	14.2	33.82	8.31	11	0.05	0.15	18
						1.00	28.3	6.01	92.5	2.6	32.51	8.28	4	0.09	0.27	not detected
2015/9/18 15:22:00	CY1	ME	828409	810807	10.3	1.00	28.3	6	92.2	2.6	32.49	8.28	4	0.09	0.27	not detected
2015/9/18 15.22.00	CII	NIE	020409	810607	10.5	9.30	27.77	5.8	89.1	9	33.97	8.32	5	0.05	0.17	not detected
						9.30	27.77	5.75	88.5	9.6	33.97	8.32	5	0.05	0.17	not detected
						1.00	29.09	5.89	92.4	4	33.9	8.33	5	0.03	0.09	not detected
2015/9/18 14:44:00	CY2	ME	827996	808813	16.2	1.00	29.02	5.88	92.3	4.1	33.87	8.33	5	0.05	0.09	not detected
						15.20	27.83	5.99	92.3	7.3	34.05	8.35	7	0.02	0.06	not detected
						15.20	27.82	5.98	92.1	8.7	34.04	8.35		0.02		
						1.00	27.91	6.3	96.9	7.6	33.62	8.3				
						1.00	27.91	6.22	95.6	7.9	33.57	8.3	8	0.05	0.16	4
2015/9/18 09:09:00	WY1	MF	829157	809538	4	3.00	27.86	6.02	92.7	9	33.8	8.31				
						3.00	27.86	6.02	92.6	9.5	33.75	8.31	10	0.06	0.14	7
						1.00	27.99	5.88	90.5	6.7	33.6	8.31		0.05	0.10	
2015/0/10 00 51 00	11/1/0	ME	000000	810403	6.0	1.00	28.13	5.84	90.1	6.1	33.47	8.31	6	0.05	0.18	not detected
2015/9/18 08:51:00	WY2	MF	829002	810403	6.9	5.90	27.75	5.6	85.9	21	33.62	8.31	10	0.08	0.14	
						5.90	27.75	5.6	85.8	21	33.49	8.31	10	0.08	0.14	not detected
						1.00	28.18	5.81	89.4	4.8	32.82	8.27	7	0.09	0.28	54
2015/9/18 09:00:00	WY3	MF	829203	809846	4.1	1.00	28.16	5.74	88.3	5.1	32.92	8.27	'	0.07	0.20	54
2013//10 0/100100			02/205	007010		3.10	27.79	5.49	84.3	12.2	33.72	8.3	12	0.05	0.11	3
						3.10	27.78	5.48	84.1	13.1	33.67	8.31	15	0105	0.111	-
						1.00	28.56	6.28	97.2	3.2	32.95	8.23	6	0.04	0.17	not detected
2015/9/18 08:35:00	CY1	MF	828402	810806	9.8	1.00	28.55	6.27	97.1	3.3	32.95	8.23				
						8.80 8.80	27.8	5.99 6.01	92.2	12.1	33.95	8.32 8.32	10	0.03	0.08	not detected
						8.80	27.8 28.98		92.1	12.2	33.31 33.29					ł
						1.00	28.98	6.05	93.7 93.9	4.1	33.29 33.51	8.31 8.32	5	0.03	0.1	not detected
2015/9/18 09:23:00	CY2	MF	827007	808809	15.8	14.80	28.5	5.94	93.9	4.1	33.92	8.32				
						17.00	41.12	J.74	71.4	1.4	33.74	0.34	8	0.04	0.1	not detected

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Yung Shue Wan

Post-commissioning Martine Water Monitoring Programme 8-Oct-15

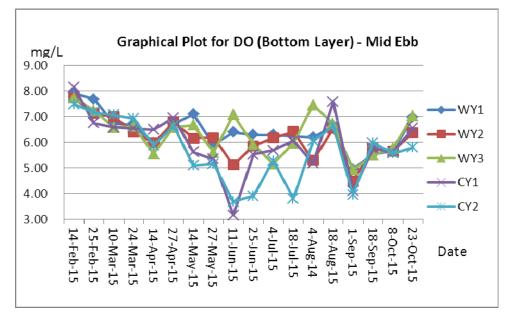
Date / Time	Location	Tide	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS	Ammonia N	TIN	E.coli
			East	North	m	m	ĉ	mg/L	%	NTU	ppt	unit	mg/l	mg/l	mg/l	1CFU/100ml
						1.00	28.23	5.76	87.7	2.8	30.76	8.24	7	0.02	0.47	7
2015/10/8 09:32:00	WY1	ME	829161	809539	4.2	1.00	28.31	5.75	87.5	2.7	30.73	8.24	,	0.02	0.17	,
2012/10/0 07/22/00			027101	007007		3.20	28.18	5.74	87.3	3.4	31	8.24	8	0.01	0.42	5
						3.20	28.16	5.61	85.4	4.3	31.17	8.24				
						1.00	28.24 28.25	5.91 5.9	90 89.8	1.5	30.74 30.74	8.23 8.23	4	0.02	0.45	23
2015/10/8 09:15:00	WY2	ME	828996	810404	6.6	5.60	28.25	5.64	89.8	2.7	33.3	8.23				
						5.60	28.26	5.67	87.1	2.7	33.57	8.29	6	< 0.01	0.25	15
						1.00	28.3	5.86	89.2	1.6	30.69	8.24				
						1.00	28.29	5.83	88.8	1.7	30.7	8.24	4	0.01	0.48	6
2015/10/8 09:25:00	WY3	ME	829219	809869	3.9	2.90	28.18	5.77	87.7	2.4	30.79	8.24		0.01		10
						2.90	28.18	5.75	87.4	2.6	30.79	8.24	6	<0.01	0.44	13
						1.00	28.38	5.68	85.9	1	29.07	8.08	4	0.03	0.6	230
2015/10/8 09:04:00	CY1	ME	828403	810812	9.3	1.00	28.36	5.62	84.9	1	29.21	8.13	4	0.05	0.0	230
2013/10/0 07:04:00	CII	IVIL	020405	010012	7.5	8.30	28.28	5.62	86.6	2.2	32.92	8.23	6	< 0.01	0.17	440
		-				8.30	28.28	5.62	86.7	2	32.87	8.25	0	(0.01	0.17	110
						1.00	28.56	5.81	88.5	0.6	29.73	8.22	3	0.03	0.55	200
2015/10/8 09:47:00	CY2	ME	828006	808795	14.2	1.00	28.58	5.78	88	0.6	29.68	8.22	-			
						13.20	28.16	5.57	86.2	2.9	33.92	8.32	4	< 0.01	0.36	5
						13.20	28.16	5.56	86	3.2	33.88	8.33				
						1.00	28.66	6.33	96.4	3.3	29.45	8.31				
						1.00	28.67	6.33	96.3	3.4	29.43	8.31	8	0.06	0.56	8
2015/10/8 15:36:00	WY1	MF	829158	809538	4	3.00	28.59	6.23	95	6	29.96	8.28	_			
						3.00	28.6	6.23	94.9	6.1	29.99	8.28	7	0.02	0.52	24
						1.00	28.7	5.97	91.3	3.3	30.04	8.26	6	0.03	0.51	3
2015/10/8 16:18:00	WY2	MF	829006	810407	6.1	1.00	28.69	5.97	91.2	3.3	30.06	8.26	0	0.05	0.51	3
2013/10/8 10.18.00	W IZ	IVIF	829000	810407	0.1	5.10	28.59	5.8	88.7	6.3	30.59	8.25	5	0.02	0.56	5
						5.10	28.57	5.8	88.7	6.5	30.65	8.25	5	0.02	0.50	5
						1.00	28.62	6.03	92	2.9	29.9	8.31	4	0.04	0.52	8
2015/10/8 16:10:00	WY3	MF	829204	809871	3.9	1.00	28.63	5.98	91.1	3.2	29.91	8.3		0.01	0.02	0
						2.90	28.64	5.93	90.5	3.5	29.92	8.28	5	0.05	0.53	2
						2.90	28.64	5.94	90.4	3.5	29.75	8.28				
						1.00	28.48 28.48	5.74 5.66	86.3 85.1	1.9	27.75 27.74	8.26 8.25	5	0.02	0.66	10
2015/10/8 16:29:00	CY1	MF	828407	810808	10	9.00	28.48	5.66	85.1	5.9	33.79	8.25				
						9.00	28.32	5.55	85.9	6.7	33.61	8.22	7	0.02	0.47	14
						1.00	28.68	6.15	93.2	1.6	28.61	8.24				
2015/10/0 15 56 55				000010		1.00	28.67	6.15	93.1	1.6	28.59	8.24	5	0.02	0.58	1
2015/10/8 15:50:00	CY2	MF	828004	808819	14.3	13.30	28.17	5.85	90.6	5.7	34.07	8.33	0	0.01	0.00	
						13.30	28.17	5.85	90.7	5.8	34.08	8.33	8	<0.01	0.22	not detected

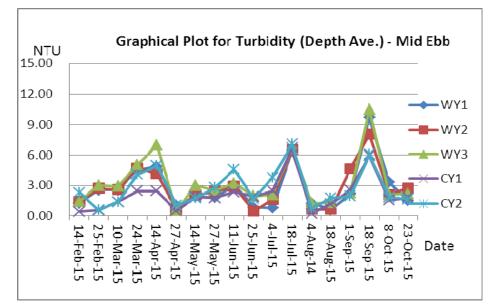
Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

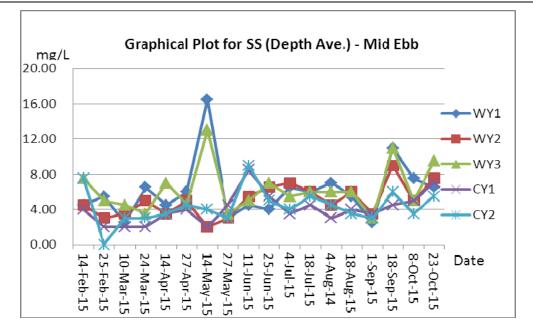
Yung Shue Wan

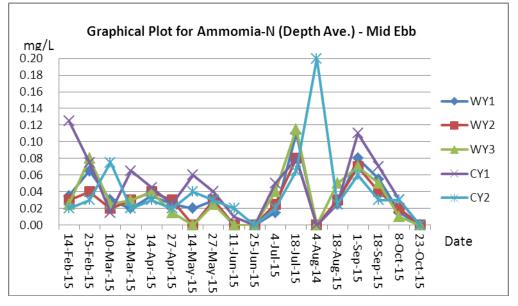

Post-commissioning Martine Water Monitoring Programme

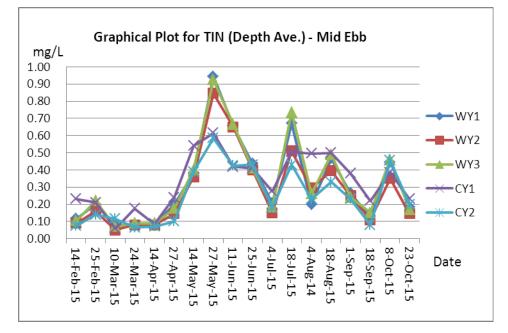
23-Oct-15

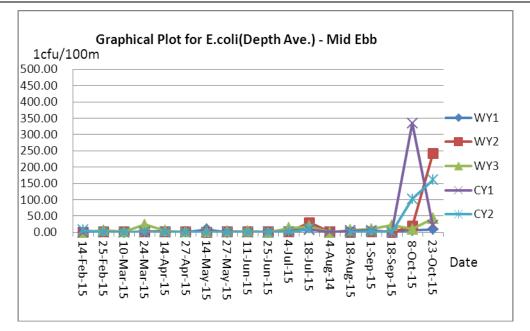

Date / Time	Location	Tide	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pH	SS	Ammonia N	TIN	E.coli
			East	North	m	m	ç	mg/L	%	NTU	ppt	unit	mg/l	mg/l	mg/l	1CFU/100ml
						1.00	27.1	7.02	107.3	1.15	34.73	8.29	7	<0.01	0.19	10
2015/10/23 09:13:00	WY1	ME	829172	809539	4.6	1.00	27.1	7.02	107.3	1.3	34.72	8.29	/	<0.01	0.19	10
2013/10/23 09:13:00	VV 1 1	IVILS	029172	009339	4.0	3.60	27.1	6.98	106.6	1.69	34.71	8.29	6	< 0.01	0.18	8
						3.60	27.1	6.98	106.6	1.73	34.71	8.29	0	<0.01	0.10	0
						1.00	27.2	7.08	108.6	0.96	34.98	8.3	7	< 0.01	0.16	23
2015/10/23 08:57:00	WY2	ME	828996	810408	7.4	1.00	27.3	7.05	108.2	1.15	35.02	8.3	'	<0.01	0.10	23
2010/10/20 00:0/100			020770	010100		6.40	27.2	6.38	98.1	3.9	35.47	8.27	8	< 0.01	0.13	460
						6.40	27.2	6.38	98	4.92	35.49	8.27	0	0.01	0.15	100
						1.00	27.2	7.15	109.3	1.09	34.77	8.31	8	< 0.01	0.17	9
2015/10/23 09:06:00	WY3	ME	829207	809861	4.1	1.00	27.1	7.13	109	1.13	34.78	8.31				-
						3.10	27.2	7.04	107.8	3.31	34.87	8.3	11	< 0.01	0.17	75
						3.10	27.2	7.03	107.6	3.18	34.87	8.3				
						1.00	27	7	106.6	0.46	34.35	8.23	8	< 0.01	0.23	18
2015/10/23 08:45:00	CY1	ME	828414	810806	10.4	1.00	27	6.99	106.5	0.36	34.36	8.23				
						9.40	27.1	6.55	99.9	2.87	34.61	8.24	6	< 0.01	0.23	23
						9.40	27.1	6.54	99.7	3.53	34.62	8.24	-			
						1.00	27.2	7.37	112.4	0.64	34.32	8.31	4	< 0.01	0.22	41
2015/10/23 09:26:00	CY2	ME	828008	808803	15.3	1.00	27.2	7.37	112.5	0.53	34.32	8.31				
						14.30	27	5.82	89.3	2.59	35.77	8.27	7	< 0.01	0.18	280
						14.30	27	5.79	88.8	2.82	35.81	8.26				
i i i i i i i i i i i i i i i i i i i						1.00										
						1.00	27.9	7.84	121.3	1.47	34.69	8.33	6	< 0.01	0.18	18
2015/10/23 15:03:00	WY1	MF	829177	809553	4	1.00	27.9	7.84	121.4	1.51	34.69	8.33				
						3.00	27.7	7.66	118.1 118	3.57	34.79 34.79	8.32 8.32	14	< 0.01	0.16	23
						3.00 1.00				3.5	34.79					
						1.00	28.2 28.2	7.81	121.6	1.13	34.8 34.79	8.32 8.32	6	< 0.01	0.16	5
2015/10/23 15:23:00	WY2	MF	829006	810407	7						34.79					
						6.00 6.00	27.3 27.4	7.42 7.38	113.8 113.2	4.74 5.16	34.94 34.98	8.3 8.3	8	< 0.01	0.15	63
						1.00	27.4	7.98	113.2	0.97	34.98	8.33				
						1.00	28.1	7.98 8.01	123.8	0.97	34.69	8.33	6	< 0.01	0.16	35
2015/10/23 15:13:00	WY3	MF	829207	809861	3.9	2.90	28.2	7.66	124.3	2.54	34.66	8.32				
						2.90	27.5	7.66	117.8	2.54	34.66	8.32	8	< 0.01	0.17	7
						1.00	27.4	7.86	120.4	0.06	34.18	8.33				
						1.00	27.4	7.9	120.4	0.06	34.18	8.33	5	<0.01	0.24	23
2015/10/23 15:36:00	CY1	MF	828407	810807	10.4	9.40	27.4	7.27	111.5	2.1	34.86	8.33				
						9.40	27.3	7.21	110.6	2.32	34.89	8.31	7	<0.01	0.14	5
						1.00	27.2	7.21	111.2	0.56	34.39	8.3				
						1.00	27.2	7.27	111.2	0.53	34.39	8.29	5	< 0.01	0.21	11
2015/10/23 14:45:00	CY2	MF	828007	808811	15.9	14.90	27.2	5.83	89.3	3.05	35.59	8.29				
						14.90	27	5.78	88.5	3.62	35.73	8.20	6	< 0.01	0.18	79

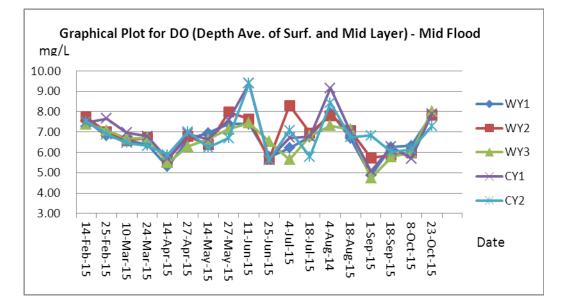

Appendix E

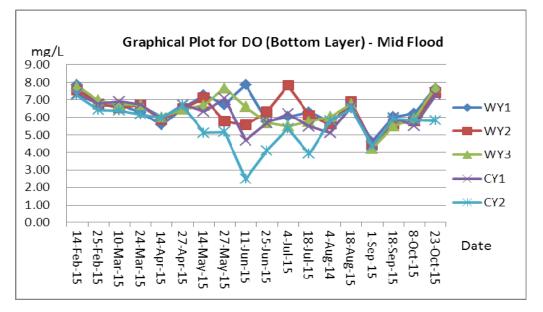

Graphical Plots of Monitoring Results

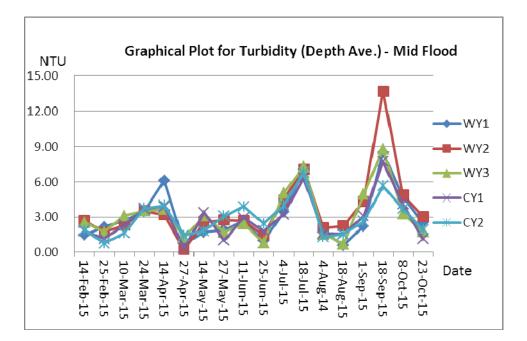


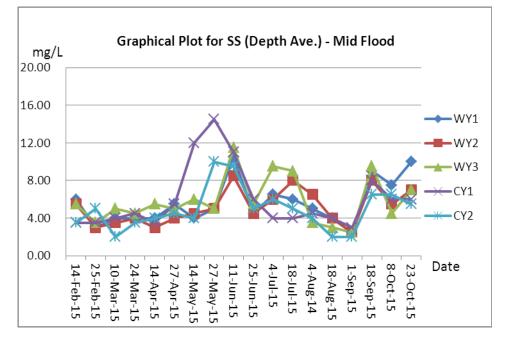


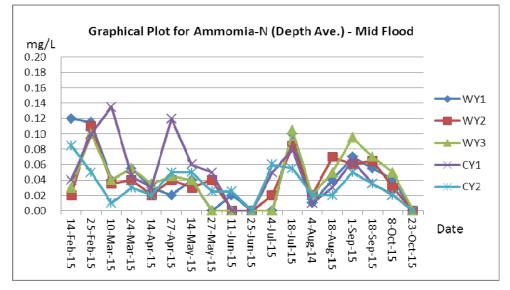


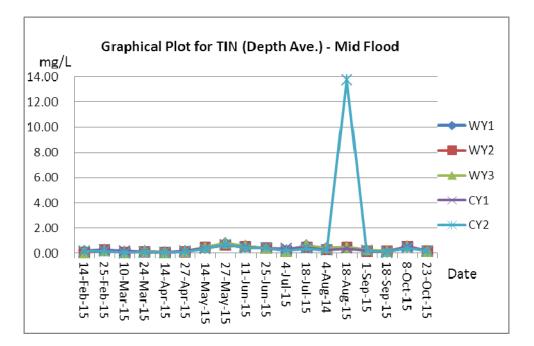


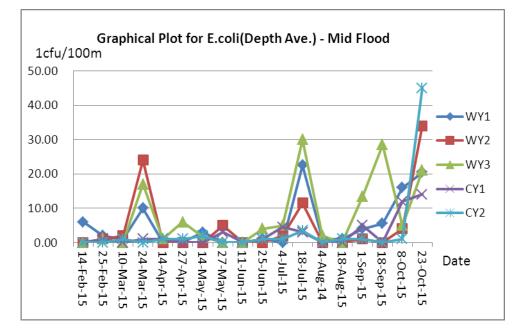







Water Quality Monitoring Result – Mid Flood





Appendix F

Test Reports for Performance of Deodorization Facility at YSWSTW

PHARMTECH (HONG KONG) LIMITED Unit 1C, 6/F., Cheung Fung Industrial Building,

Unit 1C, 6/F., Cheung Fung Industrial Building, 23-39 Pak Tin Par Street, Tsuen Wan, Hong Kong. Tel: (852) 2499 8886 Fax: (852) 2405 7005 Website: www.pharmtechhk.com E-mail: lab@pharmtech.com.hk

TEST REPORT

Name of Client :	Kai Mei Environmental Co. Ltd.	Report No.		LR14/00352
	No.18-20, 9/F Block A	Date of Issue	:	14-07-2014
	Hi-Tech Ind. Ctr.	Date Received	:	11-07-2014
	5-21 Pak Tin Par St., Tsuen Wan	Date Commenced		12-07-2014
	Hong Kong	Date Completed	:	12-07-2014
Contact Person :	Mr. Johnson Wong	Page No.	:	1 of 1

Information of Sample(s):

Sample Description	2 liquid absorbent samples as received
Sampling Date	11-07-2014
Sampling Location	Yung Shue Wan STW
Equipment Model	U13000
Serial Number	101205

Test Parameter(s) & Method Reference(s):

Parameter(s)	Method Reference(s)	Limit of Reporting
Uudrogon Sulphido	Refer to ISC 3 rd edition, Method 701	
Hydrogen Sulphide	"Determination of Hydrogen Sulphide	0.02 ppm
Content	Content of the Atmosphere"	

Test Result(s):

	Inlet (sample 1)	Outlet (sample 2)
Sample Code	LR14/00352/001	LR14/00352/002
Hydrogen Sulphide	8 2	< 0.02
Content, ppm (v/v)	0.3	~0.02

PREPARED AND APPROVED BY:

T.C. Lee, Jeffrey Date: 14-07-2014

PHARMTECH (HONG KONG) LIMITED Unit 1C, 6/F., Cheung Fung Industrial Building, 23-39 Pak Tin Par Street, Tsuen Wan, Hong Kong. Tel: (852) 2499 8886 Fax: (852) 2405 7005 Website: www.pharmtechhk.com E-mail: lab@pharmtech.com.hk

TEST REPORT

Name of Client :	Kai Mei Environmental Co. Ltd.	Report No.	:	LR14/00351
	No.18-20, 9/F Block A	Date of Issue	:	14-07-2014
	Hi-Tech Ind. Ctr.	Date Received	:	11-07-2014
	5-21 Pak Tin Par St., Tsuen Wan	Date Commenced	:	12-07-2014
	Hong Kong	Date Completed	:	12-07-2014
Contact Person :	Mr. Johnson Wong	Page No.	:	1 of 1

Information of Sample(s):

2 liquid absorbent samples as received	
11-07-2014	
Yung Shue Wan STW	
U13000	
101206	

Test Parameter(s) & Method Reference(s):

Parameter(s)	Method Reference(s)	Limit of Reporting
Hydrogen Sulphide Content	Refer to ISC 3 rd edition, Method 701	
	"Determination of Hydrogen Sulphide	0.02 ppm
	Content of the Atmosphere"	

Test Result(s):

	Inlet (sample 1)	Outlet (sample 2)
Sample Code	LR14/00351/001	LR14/00351/002
Hydrogen Sulphide	7.9	< 0.02
Content, ppm (v/v)		

PREPARED AND APPROVED BY:

Date: 14-07-2014