Agreement No. CE 20/2004(EP) North East New Territories (NENT) Landfill Extension

Monthly Environmental Monitoring and Audit Report (No. 5) – April 2023

Our Ref.:

CL/91823/0409-VES

Date:

12 May 2023

By Email

Veolia Environmental Services Hong Kong Limited 40/F, One Taikoo Place 979 King's Road Quarry Bay Hong Kong

Attn.: Mr. Alvin Kam

Meinhardt Infrastructure and Environment Ltd

邁進基建環保工程顧問有限公司

10/F Genesis 33-35 Wong Chuk Hang Road Hong Kong 香港黃竹坑道33-35號 創協坊10樓

Tel 電話: +852 2858 0738 Fax 傳真: +852 2540 1580

mail@meinhardt.com.hk www.meinhardt-china.com www.meinhardtgroup.com

Dear Sir

Re:

Contract No. EP/SP/77/15

North-East New Territories Landfill Extension (NENTX)

Monthly Environmental Monitoring and Audit Report (No.5) - April 2023

I refer to Conditions 3.3 under Environmental Permit No. EP-292/2007 and Further Environmental Permit No. FEP-01/292/2007, regarding the submission of a monthly Environmental Monitoring and Audit report. I hereby verify the captioned "Monthly Environmental Monitoring and Audit Report (No.5) – April 2023" dated 10 May 2023.

Should you have any queries, please do not hesitate to contact the undersigned at 2859 5409.

Yours faithfully

MEINHARDT INFRASTRUCTURE AND ENVIRONMENT LTD

Claudine Lee

Independent Environmental Checker

Aurecon Hong Kong Limited Unit 1608, 16/F, Tower B, Manulife Financial Centre, 223 – 231 Wai Yip Street, Kwun Tong Hong Kong T +852 3664 6888 F +852 3664 6999 E hongkong@aurecongroup.com w aurecongroup.com

Ref: P521530-0000-REP-NN-0053

By Email

12 May 2023

Meinhardt Infrastructure & Environment Ltd. 10/F Genesis 33-35 Wong Chuk Hand Road Hong Kong

Attn: Ms. Claudine Lee,

Dear Claudine,

Re: Contract No. EP/SP/77/15

Northeast New Territories Landfill Extension

Submission of Monthly Environmental Monitoring and Audit Report (No.5) - April 2023

In accordance with the requirement specified in Condition 3.3 of Environmental Permit No. EP-292/2007 and Further Environmental Permit No. FEP-01/292/2007, we are pleased to submit the certified "Monthly Environmental Monitoring and Audit Report (No.5) – April 2023" dated 10 May 2023 for your verification.

Should you require any further information or clarification, please do not hesitate to contact the undersigned or our Mr. Keith Chau on 3664 6788.

Yours faithfully, For and on behalf of Aurecon Hong Kong Limited

Fredrick Leong

Environmental Team Leader

Encl

CC.

1. Monthly Environmental Monitoring and Audit Report (No.5) – April 2023

1. IEC - Ms. Claudine Lee (By email: claudinelee@meinhardt.com.hk)

2. IEC Representative - Ms. Echo Hung (By email: echohung@meinhardt.com.hk)

Document Control Record

Document prepared by:

Aurecon Hong Kong Limited

Unit 1608, 16/F, Tower B, Manulife Financial Centre,

223 – 231 Wai Yip Street, Kwun Tong, Kowloon

Hong Kong S. A. R.

T +852 3664 6888

F +852 3664 6999

E hongkong@aurecongroup.com

W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- b) Using the documents or data for any purpose not agreed to in writing by Aurecon.

Doc	Document control aurecon						
Repo	ort title	Monthly Environmental Monitoring and Audit Report (No. 5) – April 2023					
Docu	ıment ID		Project number				
File p	oath						
Clien	t	Veolia Environmental Services Hong Kong Limited					
Clien	t contact		Client reference				
Rev	Date	Revision details/status	Author	Reviewer	Verifier (if required)	Approver	
0	9 May 2023	Submit to IEC	J Man	K.Chau		FL	
1	10 May 2023	Submit to IEC	J Man	K.Chau		FL	
Curre	ent revision	1					

Approval			
Reviewer's signature	- 300	Approver's signature	Tul
Name	Keith Chau	Name	Fredrick Leong
Title	Associate, Environmental	Title	Environmental Team Leader

Contents

Ex	ecutive Summary	1
1.	ecutive SummaryIntroduction	3
2.	Project Information	5
	Air Quality Monitoring	
4	Noise Monitoring	19
	Water Quality Monitoring	
6	Waste Management	32
7	Landfill Gas Monitoring	33
8	Landscape and Visual	37
9	Cultural Heritage	38
10	Ecological Monitoring	39
11	Site Inspection and Audit	40
12	Environmental Non-conformance	41
	Implementation Status on Environmental Mitigation Measures	
	Future Key Issues	
	Conclusion	

Figure

Figure 1 Location of the Project Site Figure 2 Impact Monitoring Locations

Appendix

Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix H Appendix I Appendix J Appendix K Appendix L Appendix M	Construction Programme Project Organization Chart & Management Structure Monitoring Schedule for Reporting Month & Next Month Calibration Certificates Monitoring Results Graphical Presentations Notification of Environmental Quality Limits Exceedance Wind Data Waste Flow Table Joint Environmental Site Inspection Records Environmental Mitigation Implementation Schedule (EMIS) Construction Site Activities Mitigation Measures of Cultural Landscape Features Ecological monitoring record
Appendix N	Ecological monitoring record
Appendix O	Detail Status of FEP & EP Submission

All rights reserved | The information/data furnished in our document is confidential and competitive information proprietary to Aurecon or its sub-contractors, the release of which would harm the competitive position of Aurecon or its sub-contractors/consultants. This information/data shall not be reproduced, stored in a retrieval system, transmitted in any form or by any means, used or disclosed in whole or in part, for any purpose other than to evaluate and adjudicate this document. If Aurecon is shortlisted or a contract is awarded to Aurecon as a result of this solicitation, or in connection with the submission of such information/data, the right (and the extent thereof) to reproduce, store, transmit, use or disclose this information/data must, by agreement, be included in such contract.

Executive Summary

Aurecon Hong Kong Limited (Aurecon) was appointed to undertake the role of Environmental Team (ET) and carry out Environmental Monitoring and Audit for the North East New Territories (NENT) Landfill Extension.

The construction phase and EM&A programme of the Project commenced on 1 December 2022.

This 5th Monthly EM&A Report presents the EM&A works conducted from 1 to 30 April 2023 in accordance with the EM&A Manual.

Summary of Construction Works undertaken during Report Period

The major construction works undertaken during the reporting period include:

-	Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
-	Permanent site office foundation works with pouring of concrete at Portion D
-	Site clearance at Portion A, E3-1, B1 & E4
-	Installation of permanent fencing at Portion A, B1 & E4
-	Site formation at Portion A & E3-1
-	Tree felling at Portion E3-1 & E4

Environmental Monitoring and Audit Progress

A summary of the monitoring activities in this reporting period is listed below:

	Items	Times	Date
-	Air Quality Monitoring during normal weekdays at each monitoring station	5 times	6, 12, 18, 24 & 29 April 2023
-	Construction Noise Monitoring during normal weekdays at each monitoring station	4 times	6, 12, 18 & 24 April 2023
-	Surface Water Quality Monitoring during normal weekdays at each monitoring station	1 time	6 April 2023
-	Landfill Gas Monitoring during normal weekdays for Construction Works	22 times	1, 3, 4, 6, 11 to 15, 17 to 29 April 2023
-	Post-translocation Monitoring during normal weekdays at recipient site	1 time	19 April 2023
-	Post-transplantation monitoring and audit during normal weekdays for transplanted plants and receptor sites	1 time	21 April 2023
_	Joint Environmental Site Inspection	4 times	3, 11, 17 & 24 April 2023

Environmental Exceedance

Air Quality, Noise, Surface Water Quality & Landfill Gas Monitoring

No exceedance of the Action and Limit Levels for was recorded at designated monitoring stations during the reporting period.

Environmental Non-conformance/Compliant/Summons and Prosecution

No non-compliance event and complaint were recorded during the reporting period.

No summons/prosecutions were received in this reporting period.

Reporting Change

There was no reporting change in the reporting period.

Future Key Issues

Works to be undertaken in the next month include:

- Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
- Permanent site office foundation works with pouring of concrete at Portion D
- Site clearance at Portion A, E3-1, B1 & E4
- Installation of permanent fencing at Portion A, B1 & E4
- Site formation at Portion A & E3-1
- Tree felling at Portion E3-1 & E4

Potential environmental impacts arising from the above construction activities are mainly associated with air quality, construction noise, water quality, waste management, landfill gas monitoring, landscape and visual, cultural heritage and ecology.

1. Introduction

1.1. Background

- 1.1.1. The North East New Territories Landfill Extension (the NENTX Project) is located adjacent to the existing North East New Territories (NENT) Landfill at Ta Kwu Ling. The extension site is located in a valley covering mainly the existing NENT Landfill Stockpile and Borrow Area that was formed to the east of the existing landfill as part of the original site development of the landfill, and layout plan shown in **Figure 1**.
- 1.1.2. The NENTX is a designated project. The Environmental Impact Assessment (EIA) Report (AEIAR-111/2007) and an Environmental Monitoring and Audit Manual were approved on 20 September 2007. The project is governed by an Environmental Permit (EP) (EP-292/2007) which was granted on 26 November 2007. A further of EP (FEP) was applied and the FEP (FEP-01/292/2007) was subsequently granted on 28 April 2022.
- 1.1.3. In accordance with the requirements specified in Section 2.6 to 2.10 and Section 12.3 of the approved Environmental Monitoring and Audit (EM&A) Manual and Environmental Permit (EP and FEP) condition 3.3, Monthly EM&A report should be submitted to the Director of Environmental Protection (DEP), within 2 weeks after the end of the reporting month. The submissions shall be certified by the Environmental Team (ET) Leader and verified by the Independent Environmental Checker (IEC).
- 1.1.4. The construction phase and EM&A programme of the Project commenced on 1 December 2022.

1.2. Nature, Scale and Scope of the captioned Designated Project

1.2.1 The Nature, Scale and Scope of the captioned Designated Project is presented in **Table 1-1**.

Table 1-1 Nature, Scale and Scope of the captioned Designated Project

Item(s)	Content	
Nature of Designated Project	Construction and operation of a landfill for waste as defined in the "Waste Disposal Ordinance" (Cap. 354)	
Scale and Scope of Designated Project	The Project mainly consists of the followings: - Construction and operation of a landfill extension of about 70 nectares with a target void space of at least 19 million cubic metres on the eastern side of the existing NENT Landfill, including the followings: -	
	 i. Site formation and preparation; ii. Installation of liner system; iii. Installation of leachate collection, treatment and disposal facilities; iv. Installation of gas collection, utilization and management facilities; v. Utilities provisions and drainage diversion; vi. Landfilling operation; vii. Restoration and aftercare in subsequent stages; and viii. Measures to mitigate environmental impacts as well as environmental monitoring and auditing to be implemented. 	

1.3. Purpose of this Report

1.3.1. This is the 5th Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 01 to 30 April 2023.

1.4. Structure of the Report

1.4.1. The structure of the report is as follows:

Section 1 – Introduction

- details the background, purpose and structure of the report.

Section 2 – Project Information

 summarises background and scope of the Project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permit(s)/License(s) during the reporting period.

Section 3 - Air Quality Monitoring

- Construction Dust

Section 4 – Noise Monitoring

Section 5 - Water Quality Monitoring

- Groundwater Monitoring
- Surface Water Monitoring

Section 6 - Waste Management

Section 7 - Landfill Gas Monitoring

Section 8 - Landscape and Visual

Section 9 - Cultural Heritage

Section 10 - Ecological Monitoring

Section 11 - Site Inspection and Audit

Section 12 - Environmental Non-Conformance

Section 13 – Implementation Status on Environmental Mitigation Measures

Section 14 - Future Key Issues

2. Project Information

2.1. Construction Activities

2.1.1. A summary of the major construction activities undertaken in this reporting period is shown in **Appendix L**. Construction programme is illustrated in **Appendix A**.

2.2. Project Organization & Management Structure

2.2.1. The Project Organization Chart & Management Structure are shown in **Appendix B**. The key personnel contact information is summarized in **Table 2-1**.

Table 2-1 Contact Information of Key Personnel

Party	Name	Contact Number
Contractor	Mr. William Wan	2902 5296
(Veolia Environmental Service Hong Kong Ltd.)		
Independent Environmental Checker (IEC)	Ms. Claudine Lee	2859 5409
(Meinhardt Infrastructure and Environment Ltd.)		
Environmental Team Leader (ETL) (Aurecon Hong Kong Limited)	Mr. Fredrick Leong	3664 6888

2.3. Status of Submission required under the FEP & EP during reporting period

2.3.1. The status of statutory environmental compliance with the EP conditions under the EIAO, submission status under the FEP & EP during reporting period are presented in **Table 2-2**. The detail status of statutory environmental compliance with the EP conditions under the EIAO, submission status under the FEP & EP for NENTX project are shown in **Appendix O**.

Table 2-2 Status of Submissions required under the FEP & EP during reporting period

FEP Condition	EP Condition	Submission / Measures	Status
2.1	2.3	Management Organization of Main Construction Companies	Submitted
2.2	2.4	Setting up of Community Liaison Group (CLG)	Community Liaison Group was set up.
2.3	2.5	Submission of EM&A Manual	Submitted
2.5	2.7	Submission of Vegetation Survey (Transplantation Proposal)	Submitted
2.6	2.8	Submission of translocation proposal	Submitted
2.7	2.9	Submission of Transplantation	Submitted
		Report and Post-Transplantation Monitoring	9 th post-transplantation monitoring
			(21 Apr 2023)
2.8	2.10	Submission of Translocation Report and Post-Translocation Monitoring	Translocation was carried out and the report submitted.
			9 th post-translocation monitoring
			(19 Apr 2023)
2.9	2.11	Submission of Detailed Landfill Gas Hazard Assessment Report	Submitted
2.10	2.12	Submission of Waste Management Plan	Submitted
3.2	3.2	Submission of Baseline Monitoring Report	Submitted

2.4. Status of Environmental Approval Document

2.4.1. A summary of the relevant valid permits, licences, and/or notifications on environmental protection for this Project since the granting of the FEP & EP is presented in **Table 2-4**.

Table 2-4 Summary of the relevant valid permits, licences, and/or notifications on environmental protection

Permit / Licenses / Notification	Reference	Expiry Date	Remark
Environmental Permit (EP)	EP-292/2007	Throughout the Contract	Permit granted on 26 November 2007
Further Environmental Permit (FEP)	FEP-210/2022	Throughout the Contract	Permit granted on 28 April 2022
Notification of Construction Works as required under Air Pollution Control (Construction Dust) Regulation	479809	Throughout the Construction Phase	Notified on 13 May 2022
Registration of Waste Producer under Waste Disposal Ordinance	7043692	Throughout the Contract	Registered on 13 April 2022
Registration as Chemical Waste Producer	5213-642-P1034-18	Throughout the Contract	Registered on 11 July 2022
Construction Noise Permit	GW-RN0299-23	22 June 2023	Permit granted on 21 March 2023
Effluent Discharge License under Water	WT00042301-2022	31 October 2027	Permit granted on 18 October 2022
Pollution Control Ordinance			Variation of Licence (Permit granted on 7 February 2023)

2.5. Environmental Monitoring and Audit Progress

2.5.1. A summary of the monitoring activities in this reporting period is presented in **Table2-5**.

Table 2-5 Summary of the Monitoring Activities in this reporting period

	Items	Times	Date
-	Air Quality Monitoring during normal weekdays at each monitoring station	5 times	6, 12, 18, 24 & 29 April 2023
-	Construction Noise Monitoring during normal weekdays at each monitoring station	4 times	6, 12, 18 & 24 April 2023
-	Surface Water Quality Monitoring during normal weekdays at each monitoring station	1 time	6 April 2023
-	Landfill Gas Monitoring during normal weekdays for Construction Works	22 times	1, 3, 4, 6, 11 to 15, 17 to 29 April 2023
-	Post-translocation Monitoring during normal weekdays at recipient site	1 time	19 April 2023
-	Post-transplantation monitoring and audit during normal weekdays for transplanted plants and receptor sites	1 time	21 April 2023
-	Joint Environmental Site Inspection	4 times	3, 11, 17 & 24 April 2023

Air Quality

5 sets of 1-hr & 24-hr TSP construction dust measurement were carried out at each monitoring stations during normal weekdays of the reporting period.

No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring at AM1, AM2 & AM3 was recorded during the period.

Noise

4 sets of 30-minute construction noise measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of construction noise was recorded during the reporting period.

Groundwater

Site clearance of future landfilling area is in progress. The installation of groundwater monitoring boreholes will be installed after the site formation work of the landfilling area. The target commencement period of groundwater monitoring will be in 2026. No groundwater monitoring is required before the completion of site formation work of the landfilling area.

Surface Water Quality

1 set of surface water quality measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of surface water quality was recorded during the reporting period

Landfill Gas

22 sets of landfill gas measurement were carried out at a designated monitoring location during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of landfill gas was recorded during the reporting period.

Landscape and Visual

All the specified and affected LCAs, LRs and VSRs have been monitored during the reporting period. No exceedance of Action and Limit Levels of landscape and visual was recorded during the reporting period.

Cultural Heritage

Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

Ecology

1 set of post-translocation monitoring at recipient site and 1 set of post-transplantation monitoring and audit for transplanted plants and receptor sites during normal weekdays of the reporting period were carried out. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

Environmental Site Inspection

4 weekly environmental site inspections were carried out during the reporting period. A joint environmental site inspection was carried out by the representatives of the Employer's Representative (ER), the Contractor, IEC and the ET on 17 April 2023. The Contractor has generally implemented the mitigation measures as recommended.

3. Air Quality Monitoring

3.1 Construction Dust

3.1.1 Monitoring Requirement

3.1.1.1 In accordance with the EM&A Manual, 1-hr & 24-hr Total Suspended Particulates (TSP) levels should be measured at the designated air quality monitoring stations in every 6 days to ensure that any deteriorating air quality could be readily detected, and timely action shall be undertaken to rectify such situation. For 1-hr TSP monitoring, the sampling frequency of at least three times in every six-days should be undertaken when the highest dust impact occurs. The specific time to start and stop the 24- hr TSP monitoring shall be clearly defined for each location.

3.1.2 Monitoring Parameters, Frequency and Location

- 3.1.2.1 According to the EM&A Manual, three monitoring stations namely AM(D)1, AM(D)2 and AM(D)3 are selected for the impact monitoring.
- 3.1.2.2 A baseline monitoring plan has been submitted to IEC and EPD on 31 May 2022 including the proposal with justification of change of monitoring locations. Due to limited access to the original monitoring locations at AM(D)1, AM(D)2 and AM(D)3, the adjusted stations at AM1, AM2 and AM3 were agreed with IEC prior to the baseline and impact monitoring. The locations of adjusted dust monitoring locations are shown in **Figure 2**.
- 3.1.2.3 The detailed monitoring schedule is shown in **Appendix C**. The locations of dust monitoring stations are shown in **Table 3-1**. The monitoring parameters, frequency and duration are shown in **Table 3-2**.

Table 3-1 Locations of Dust Monitoring Stations

Monitoring Station	Representative for	Monitoring Parameters
AM1	Tung Lo Hang	1-hr and 24-hr TSP
AM2	Heung Yuen Wai	1-hr and 24-hr TSP
AM3	Wo Keng Shan Tsuen	1-hr and 24-hr TSP

Remarks:

The contractor passed correspondence including original monitoring locations specified on the Approved EM&A Manual to the village representatives on 26 April 2022. After a meeting with Ta Kwu Ling District Rural Committee (RC) Chairman, representative from the RC and a few villagers on 1 May 2022, all the Village Heads of Wo Keng Shan Tsuen, Heung Yuen Wai and Lin Ma Hang verbally refused to accept our proposal for installation of dust and / or noise monitoring equipment within or next to their villages, for the baseline & impact monitoring.

AM(D)1 Tung Lo Hang, AM(D)2 Heung Yuen Wai, AM(D)3 Wo Keng Shan Tsuen are the air monitoring stations for the construction phase EM&A programme as identified in the approved EM&A Manual for the Project. The access to Tung Lo Hang, Heung Yuen

Wai and Wo Keng Shan Tsuen were denied. A search for alternative air monitoring locations (AM1, AM2 & AM3) was carried out during the site visit.

The Baseline Monitoring Plan has been submitted to IEC and EPD including the proposal of change of monitoring locations on 31 May 2022. This arrangement was conducted between baseline and impact monitoring and has been agreed by the Independent Environmental Checker (IEC) and no comment received from EPD.

Due to the adjustment of the location of AM(D)1, AM(D)2 & AM(D)3 to AM1, AM2 & AM3, the measured air quality levels at AM1, AM2 & AM3 would represent the air quality levels at AM(D)1, AM(D)2 & AM(D)3.

Table 3-2 Dust Impact Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration	
AM1, AM2, AM3	1-hr TSP	At least 3 times per 6 days	
	24-hr TSP	1 time per 6 days	

3.1.3 Monitoring Equipment

- 3.1.3.1 High volume samplers (HVSs) were used for carrying out 24-hr TSP monitoring. For 1-hr TSP monitoring, direct reading dust meters were used to measure 1-hr TSP levels.
- 3.1.3.2 **Table 3-3** summarises the equipment that were used in the dust monitoring programme. The calibration certificates are shown in **Appendix D**.

Table 3-3 Dust Monitoring Equipment

Equipment	Model	Expiry Date	Monitoring Station
	TE-5170X (S/N: 1105)	6 May 2023	AM1
High Volume Sampler (HVS)	TE-5170X (S/N: 1106)		AM2
	TE-5170X (S/N: 1856)		AM3
	Sibata LD- 5R (S/N: 0Z4545)	2 Dec 2023	AM1 to AM3
S: 15 !: 5 !M!	Sibata LD- 5R (S/N: 882106)		
Direct Reading Dust Meter	Sibata LD- 5R (S/N: 882110)		
	Sibata LD- 5R (S/N: 942532)		
Calibration Kit (for HVS)	TE-5025A (S/N: 3465)	28 Jun 2023	AM1 to AM3

3.1.4 Monitoring Methodology

1-hr TSP Monitoring

3.1.4.1 The 1-hr TSP impact monitoring was conducted using a portable direct reading dust meter.

Measuring Procedures

3.1.4.2 The measuring procedures of the 1-hr dust meter has been undertaken in accordance with the Manufacturer's Instruction Manual as follows:

Procedure of starting monitoring

- Place the 1-hr dust meter at least 1.3m above ground;
- Turn on the "On/Off" button at the side of instrument. Program will be changed to "BG" mode and leave it for 1 minute.
- Pull out the Suction adaptor and turn the button at the side. Cover with hand at the suction adaptor measure the background for 10 seconds.
- Press "UP" and "DOWN" for choosing "SPAM Mode" for SPAM Measurement.
- Press "Up" and "Down" to select "Measurement Mode" with 60 minutes interval and unit in ug/m3.
- Press "Start/Stop" to start monitoring.

Procedure of setting measurement timer

- Press "Up" or "Down" to find "Setting LOG".
- Select "Record Cycle" and change the record time subject to different project requirement. For example, setting the record cycle as 60 minutes for normal operation.
- Press "ESCAPS" back to the main page.
- Press "Up" or "Down" to access "Measurement Timer" and select "Measurement time" to change the time to 3 hours.
- Information such as sampling date, time, count value and site condition will be recorded during the monitoring period.

Calibration & Maintenance

- 3.1.4.3 The direct reading dust meters will be verified against calibrated high volume samples (HVSs) annually. A 2-day, three 3-hour measurement results per day from direct reading dust meter will be taken to compare with the sampling results from the HVS. The correlation between the direct reading dust meter and the HVS will then be concluded. By accounting for the correlation factor, the direct reading dust meter will be considered to achieve comparable results as that of the HVS.
- 3.1.4.4 All digital dust indicator will be calibrated with on-site HVS annually. Calibration certificate will be provided after calibration. The Calibration process shall eyewitness with the representative of ET & IEC.

Quality Audit

- 3.1.4.5 Checklist of regular checking for digital dust meter will be conducted bi-weekly by environmental technician to ensure the all-digital dust meter are in good condition and submitted to supervisors. All checklists will be kept by supervisors.
- 3.1.4.6 Logbook is provided to environmental technician record the transferal of equipment to other colleagues, reporting to supervisors is required.

24-hr TSP Monitoring

3.1.4.7 The 24-hr TSP monitoring has been conducted using a High-Volume Sampler (HVS).

Measuring Procedures

- 3.1.4.8 The HVS has been set-up at the monitoring location with a fixed power supply for operation. The measuring procedures of the 24-hr TSP measurements has been undertaken in accordance with the specifications listed in the EM&A Manual. Each HVS includes a motor, a filter holder, a flow controller and a sampling inlet in accordance with the performance specification of the USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50), Appendix B. The measuring procedures of the 24-hr dust meter was undertaken in accordance with the Manufacturer's Instruction Manual as follows:
 - The power supply will be checked to ensure the HVS works properly;
 - The filter holder and the area surrounding the filter will be cleaned;
 - The filter holder will be removed by loosening the four bolts and a new filter on a supporting screen will be aligned carefully;
 - The filter will be properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
 - The swing bolts will be fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges;
 - The shelter lid will be closed and secured with the aluminium strip;
 - The HVS will be warmed-up to establish run-temperature conditions;
 - A new flowrate record sheet will be set into the flow recorder;
 - The programmable timer will be set for a sampling period of 24 hour, and the starting time, weather condition and the filter number will be recorded;
 - · The initial elapsed time will be recorded;
 - At the end of sampling, the sampled filter will be removed carefully and folded in halflength so that only surfaces with collected particulate matter will be in contact;
 - The sample will be placed in a clean plastic envelope and sealed;
 - · All monitoring information will be recorded on a standard data sheet; and
 - The filters will be taken back to HOKLAS accredited laboratory for analysis.
- 3.1.4.9 In addition, site conditions and dust sources were recorded in a standard form for direct input into a database.

Calibration & Maintenance

- 3.1.4.10 The high volume motors and their accessories should be properly maintained, including routine motor brushes replacement and electrical wiring checking, to ensure that the equipment and a continuous power supply were in good working condition.
- 3.1.4.11 Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at bi-monthly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually.

The detail procedure of calibration of HVS is listed below:

- 1. Make sure the electrical circuit is connected properly. The motor should be directly connected to the power source.
- 2. Open the top cover and unlock the screws at the four corners.
- 3. Install the orifice and adapter plate to high volume air sample. Tighten the nut securely. Turn the knob of orifice clock-wise to close the four holes on the bottom open.
- 4. Hold the water manometer on the cover of mass flow controller vertically. Connect one side of a water manometer to the pressure tap on the side of the orifice with a rubber vacuum tube. Leave opposite side of the manometer open to the atmosphere.
- 5. Turn on the sampler
- 6. Five flow rates are achieved by changing the different plates to change the resistance. Record the manometer reading and the reading from continuous flow recorder. At least 5 sets of data should be recorded.
- 3.1.4.12 The Calibration process shall eyewitness with the representative of ET & IEC.

3.1.5 Monitoring Results

3.1.5.1 The impact dust monitoring results are summarized in **Table 3-4** and **Table 3-5**. The monitoring data together with graphical presentations are presented in **Appendix E** and **Appendix F**.

Table 3-4 Summary of Impact 1-hr TSP Monitoring Results

Dust Monitoring Station	Average 1-hr TSP Concentration, μg/m³ (Range)	Action Level, µg/m³	Limit Level, µg/m³
AM1	35 (19 – 55)	>285	>500
AM2	42 (31 – 76)	>279	>500
АМ3	40 (23 – 54)	>285	>500

Table 3-5 Summary of Impact 24-hr TSP Monitoring Results

Dust Monitoring Station	Average 24-hr TSP Concentration, μg/m³ (Range)	Action Level, μg/m³	Limit Level, µg/m³
AM1	60 (34 – 112)	>164	>260
AM2	63 (37 – 111)	>152	>260
AM3	70 (40 – 151)	>163	>260

3.1.5.2 The Summary of Impact 1-hr & 24-hr TSP Exceedance are shown in **Table 3-6**. The Notification of Environmental Quality Limits Exceedances are presented in **Appendix G**.

Table 3-6 Summary of Impact 1-hr & 24-hr TSP Exceedance during the reporting period

Dust	Parameter	4 hr TCD	24 hr TCD	Exceedance
Monitoring Station	Level Exceedance	1-hr TSP	24-hr TSP	Count
AM1	Action	0	0	0
	Limit	0	0	0
AM2	Action	0	0	0
	Limit	0	0	0
AM3	Action	0	0	0
	Limit	0	0	0

Remarks: * equal to non-project related

3.1.5.3 No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring at AM1, AM2 & AM3 was recorded during the period.

3.1.6 Wind Data Monitoring

3.1.6.1 During the monitoring period. wind data from existing weather station in the vicinity of the designated monitoring location, i.e Ta Kwu Ling station operated by Hong Kong Observatory was adopted. It is considered that the wind data obtained from Ta Kwu Ling station are representative of the Project area and could be used for the construction dust monitoring programme for the Project. The results for wind data monitoring are presented in **Appendix H**.

3.1.7 Recommended Mitigation Measures

- 3.1.7.1 The recommended dust mitigation measures from EIA report are listed as followed:
 - The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation.
 - Dust emission from construction vehicle movement is confined within the worksites area.

- Watering facilities will be provided at every designated vehicular exit point.
- Good site practice is recommended during construction phase.

3.1.8 Event and Action Plan

3.1.8.1 Should non-compliance of the criteria occur, action in accordance with the action plan in **Table 3-7** shall be carried out.

Table 3-7 Event and Action Plan for dust impact

Event	ET	IEC	Contractor
Exceedance of Action Level			
Exceedance for one sample	 Identify source Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below action level 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor on proposed remedial measures 	Rectify any unacceptable practice Amend working methods if appropriate
Exceedance for two or more consecutive samples	 Identify source Prepare Notification of Exceedance Inform Contractor and IEC Repeat measurements to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below action level Discuss with IEC for remedial action required Ensure remedial measures are properly implemented Continue monitoring at daily intervals if exceedance is due to the Project If no exceedance for 3 consecutive days, cease additional monitoring 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor on proposed remedial measures Review with analysed results submitted by ET Review the proposed remedial measures by Contractor Supervise the implementation of remedial measures 	 Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate

Event	ET	IEC	Contractor
Exceedance of Li	mit Level		
Exceedance for one sample	 Identify source Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below limit level Assess effectiveness of Contractor's remedial actions and keep EPD and IEC informed of the results 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor potential remedial actions Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate
Exceedance for two or more consecutive samples	,	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss amongst ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant activity of works until the exceedance is abated

4 Noise Monitoring

4.1 Monitoring Requirement

4.1.1 In accordance with the EM&A manual, noise impact monitoring shall be carried out at 2 monitoring stations NM1 and NM2 once a week during normal construction working hour (0700-1900 Monday to Saturday). The minimum logging interval shall be 30 minutes with average of 6 consecutive Leq 5 mins. L10 and L90 shall also be measured at 5 mins intervals.

4.2 Monitoring Locations, Parameters and Frequency

- **4.2.1** According to the EM&A Manual, two monitoring stations namely NM1 and NM2 are selected for the impact monitoring.
- 4.2.2 A baseline monitoring plan has been submitted to IEC and EPD on 31 May 2022 including the proposal with justification of change of monitoring locations. Due to limited access to the original monitoring locations at NM1 and NM2, the adjusted stations at NM1a and NM2a were agreed with IEC prior to the baseline and impact monitoring. The noise monitoring locations are summarized in Table 4-1 and shown in Figure 2.
- **4.2.3** The detailed monitoring schedule is shown in **Appendix C**. The frequency and duration are shown in **Table 4-2**.

Table 4-1	Noise Monitoring Locations
-----------	----------------------------

Monitoring Station	Representative for	Type of Measurement
NM1a	Wo Keng Shan Tsuen	Free field
NM2a	Lin Ma Hang	Free field

Remarks:

The contractor passed correspondence including original monitoring locations specified on the Approved EM&A Manual to the village representatives on 26 April 2022. After a meeting with Ta Kwu Ling District Rural Committee (RC) Chairman, representative from the RC and a few villagers on 1 May 2022, all the Village Heads of Wo Keng Shan Tsuen, Heung Yuen Wai and Lin Ma Hang verbally refused to accept our proposal for installation of dust and / or noise monitoring equipment within or next to their villages, for the baseline & impact monitoring.

NM1 Wo Keng Shan Tsuen & NM2 Lin Ma Hang are the noise monitoring stations for the construction phase EM&A programme as identified in the approved EM&A Manual for the Project. The access to Tung Lo Hang, Heung Yuen Wai and Wo Keng Shan Tsuen were denied. A search for alternative noise monitoring locations (NM1a & NM2a) was carried out during the site visit.

The Baseline Monitoring Plan has been submitted to IEC and EPD including the proposal of change of monitoring locations on 31 May 2022. This arrangement was conducted between baseline and impact monitoring and has been agreed by the Independent Environmental Checker (IEC) and no comments received from EPD. Noise measurement at NM1a & NM2a will be considered as free-field and a correction of +3dB(A) would be made to the noise monitoring results.

Due to the adjustment of the location of NM1 & NM2 to NM1a & NM2a, the measured noise levels at NM1 & NM2 would represent the noise levels at NM1 & NM2.

Table 4-2 Noise Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
NM1a and NM2a	L _{Aeq} (30mins) average of 6 consecutive L _{eq} (5min); L10 (5min) & L90 (5min)	once a week during normal construction working hour (0700- 1900 Monday to Saturday)

4.3 Monitoring Equipment

- 4.3.1 Integrating Sound Level Meters (SLMs) was used for noise impact monitoring. The SLM complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out noise monitoring. The accuracy of the SLM was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements shall be accepted as valid only if the calibration level from prior to and after the noise measurement agrees to within 1.0dB.
- **4.3.2** A portable wind speed meter was used for measuring wind speeds in m/s.
- **4.3.3 Table 4-3** summarises the equipment that have been used in the impact noise monitoring programme. The calibration certificates are shown in **Appendix D**.

Table 4-3 Noise Monitoring Equipment

Equipment	Model	Expiry Date
Sound Level Meter	NTi XL2 (S/N: A2A-13661-E0)	21 Aug 2023
Acoustic Calibrator	Rion NC-75 (S/N: 34724243)	10 Jul 2023
Anemometer	RS PRO RS-90 (S/N: 210722208)	12 Feb 2025

4.4 Monitoring Methodology

- **4.4.1** The details of noise measurement procedures are described as follows:
 - Free-field measurements were made at the monitoring locations.
 - For free field, the Sound Level Meter was set at a height of 1.2 m above the ground. The battery condition was checked to ensure the proper functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - · Frequency weighting: A
 - Time weighting: Fast
 - Measurement time: 5 minutes (Leq (30-min) would be determined for daytime noise by calculating the logarithmic average of six Leq (5min) data.)
 - Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid

- and repeat of noise measurement would be required after recalibration or repair of the equipment.
- Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
- At the end of the monitoring period, the Leq, L10 and L90 shall be recorded. In addition, site conditions and noise sources should be recorded on a standard record sheet.
- All noise monitoring will be conducted with the wind speed not exceeding 5m/s and no gusts exceeding 10m/s.

Calibration & Maintenance

- 4.4.2 The sound level meter, sound calibrator, and anemometer should be properly maintained to ensure that the equipment and a continuous power supply were in good working condition. The sound level meter and sound calibrator will be calibrated annually. The anemometer will be calibrated two years interval in accordance with the HOKLAS Supplementary Criteria No.2. Calibration certificate will be provided after calibration.
- **4.4.3** The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.

4.5 Monitoring Results

4.5.1 The impact noise monitoring results are summarized in **Table 4-4**. The monitoring data together with graphical presentations are presented in **Appendix E** and **Appendix F**.

Table 4-4 Summary of Noise Monitoring Results during normal working hours (07:00-19:00, Monday to Saturday)

Noise Monitoring Station	Average Leq, 30min, dB(A) (Range)	Action Level	Limit Level
NM1a	56.8	When one	
	(53.7 - 58.4)	documented	. 75 ID(A)
NM2a	60.1	complaint is	>75dB(A)
	(52.8 - 65.4)	received	

Remark:

- (2) If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.
- **4.5.2** No exceedance of Action and Limit Levels of construction noise was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix G**.
- **4.5.3** No particular observations are identified near the monitoring stations during the monitoring period.

^{(1) *} A correction of +3 dB(A) was made to the free field measurements

4.6 Recommended Mitigation Measures

- **4.6.1** The recommended noise mitigation measures from EIA report are listed as followed:
 - 1. Use of good site practices to limit noise emissions by considering the following:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;
 - Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;
 - Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs;
 - Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works;
 - Mobile plant should be sited as far away from NSRs as possible and practicable;
 - Material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from onsite construction activities.
 - 2. Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.

4.7 Event and Action Plan

4.7.1 Should non-compliance of the criteria occurs, action in accordance with the action plan in **Table 4.5** shall be carried out.

Table 4-5 Event and action plan for construction noise monitoring

Event	ET	IEC	Contractor
Exceedance of Action Level	 Identify source, investigate the causes of exceedance Prepare Notification of Exceedance Inform IEC and Contractor Report the results of investigation to IEC, and Contractor Discuss with Contractor and IEC for formulate remedial measures Ensure remedial measures are properly implemented Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Review the analysed results submitted by ET Discuss with ET, and Contractor on the potential remedial actions Review the proposed remedial measures Supervise the implementation of remedial measures 	Submit noise mitigation proposals to IEC Implement the agreed noise mitigation proposals
Exceedance of Limit Level	 Identify source, investigate the causes of exceedance Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurements to confirm findings Discuss with Contractor and IEC for remedial measures Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial actions and keep IEC and EPD informed of the results Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Review the analysed results submitted by ET Discuss with ET, and Contractor on the potential remedial actions Review the proposed remedial measures Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by project proponent until the exceedance is abated.

5 Water Quality Monitoring

5.1 Groundwater Monitoring

5.1.1 Monitoring Requirement

5.1.1.1 In accordance with the EM&A manual, groundwater quality monitoring shall be carried out at least once per month at the 35 designated groundwater monitoring locations (i.e ED1 to ED35). Based on the existing construction programme, site clearance and site formation works for future landfilling area are in progress. The groundwater monitoring locations ED1 to ED35 will be installed after the site formation work of the landfilling area. No groundwater monitoring is required before the completion of site formation work of the landfilling area.

5.2 Surface Water Monitoring

5.2.1 Monitoring Requirement

5.2.1.1 In accordance with the EM&A manual, impact surface water quality monitoring was carried out at the two designated surface water discharge points (i.e WM1 and WM2) for once per month from commencement of construction works of the Project.

5.2.2 Monitoring Locations, Parameters and Frequency

- 5.2.2.1 Impact surface water monitoring was carried out on 6 April 2023 at WM1 and WM2. The monitoring locations are indicated in **Table 5-1** and **Figure 2**.
- 5.2.2.2 The monitoring parameters, frequency and duration of surface water quality monitoring are summarized in **Table 5-2**. Detailed monitoring schedule is presented in **Appendix C**.

Table 5-1 Surface water quality monitoring locations

Manitaring Station	Location	Coordinates (HK Grid)		
Monitoring Station	Location	Easting	Northing	
WM1	Upstream of Lin Ma Hang River	836665	845020	
WM2	Ping Yuen River	835592	844186	

Table 5-2 Surface water quality monitoring Parameters, Frequency and Duration

Parameter	Frequency
pH, Electrical conductivity, DO, Turbidity, SS, Alkalinity, COD, BOD ₅ , TOC, Ammonia-nitrogen, TKN, Nitrate, Sulphate, Sulphite, Phosphate, Chloride, Sodium, Mg, Ca, K, Fe, Ni, Zn, Mn, Cu, Pb, Cd, Coliform Count, Oil and Grease	once per month

5.2.3 Monitoring Equipment

5.2.3.1 The measurements of pH, electrical conductivity (EC), DO, turbidity, water temperature and air temperature were undertaken in situ. In situ monitoring instruments in compliance with the specifications listed under Section 5.5 of the EM&A Manual were used to undertake the surface water quality monitoring for the Project. Table 5-3 summarises the equipment used in the impact surface water quality monitoring works. Copies of the calibration certificates are attached in Appendix D.

Table 5-3 Surface Water Quality Monitoring Equipment

Equipment	Model	Expiry Date	
Water Quality Meter	Horiba U-53 (S/N: PORBNFNT)	16 Apr 2023	
Water Flow Meter	FP111 (S/N: 22K100859)	6 Nov 2023	

5.2.4 Summary of Surface Water Quality Monitoring Procedure

Operational/ Analytical Procedures

- 5.2.4.1 In general, water samples were collected from within 500 mm of the water surface. Water was collected by a small clean open-mouthed bucket with the lip pointing upstream. Usually, water was then transferred to the sample bottles until they were filled to the top with no remaining air space before the lid was securely screwed on. For samples that were preserved with acid or alkalis prior to transport to the laboratory, the samples bottles were filled to the level specified by the analytical laboratory.
- 5.2.4.2 Analyses shall be carried out in accordance with methods described in ASTM or APHA AWWA-WEF Standard.

Laboratory Analytical Methods

5.2.4.3 The testing of parameters presented in **Table 5-4** for all stations was conducted by ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066). Comprehensive quality assurance and control procedures were in place in order to ensure quality and consistency in results. The detection limits are provided in **Table 5-4**.

Table 5-4 Surface Water Monitoring Detection Limits and Limit of Reporting

Table 5-4 Surface Wat	Detection Limit		
Parameters	(in EM&A Manual)	Limit of Reporting	Method Reference
рН	0.1	0.1	APHA 4500 H+ B
Electrical conductivity	1 μS/cm	1 μS/cm	APHA 2510 B
Alkalinity	1 mg/L	1 mg/L	APHA 2320 B
COD	10 mg/L	5 mg/L	APHA 5220 C
BOD ₅	3 mg/L	2 mg/L	APHA 5210 B
TOC	1 mg/L	1 mg/L	APHA 5310 B
SS	0.1 mg/L	0.1 mg/L	APHA 2540 D
Ammonia-nitrogen	0.2 mg/L	0.01 mg/L	APHA 4500 NH3 G
TKN	0.4 mg/L	0.1 mg/L	APHA 4500Norg: D
Nitrate	0.5 mg/L	0.01 mg/L	APHA 4500 NO3 I
Sulphate	5 mg/L	1 mg/L	USEPA 375.4
Sulphite	2 mg/L	2 mg/L	APHA 4500 SO3 B
Phosphate	0.01 mg/L	0.01 mg/L	APHA 4500-P B & F
Chloride	0.5 mg/L	0.5 mg/L	USEPA 325.1
Sodium	50 μg/L	50 μg/L	USEPA 6010C
Mg	50 μg/L	50 μg/L	USEPA 6010C
Ca	50 μg/L	50 μg/L	USEPA 6010C
K	50 μg/L	50 μg/L	USEPA 6010C
Fe	50 μg/L	10 μg/L	USEPA 6010C
Ni	1 μg/L	1 μg/L	USEPA 6020A
Zn	10 μg/L	10 μg/L	USEPA 6020A
Mn	1 μg/L	1 μg/L	USEPA 6020A
Cu	1 μg/L	1 μg/L	USEPA 6020A
Pb	1 μg/L	1 μg/L	USEPA 6020A
Cd	0.2 μg/L	0.2 μg/L	USEPA 6020A
Coliform Count	1 cfu/ 100mL	1 cfu/ 100mL	DoE section 7.8, 7.9.4.1 & 3
Oil and Grease	5 mg/L	5 mg/L	APHA 5520 B

QA/ QC Requirements

5.2.4.4 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at the intervals according to manufacturer's requirement throughout all stages of the surface water quality monitoring programme. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three-month interval. Calibration of water flow is conducted annually. Responses of sensors and electrodes were checked with certified standard solutions before each use. Calibration for a DO meter was carried out before measurement according to the instruction manual of the equipment model. For the on-site calibration of field equipment, the requirements of the BS 1427:2018, "Guide to on-site test methods for the analysis of waters" was observed.

Decontamination Procedures

5.2.4.5 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed with clean distilled water after each sampling location.

Sampling Management and Supervision

5.2.4.6 All sampling bottles were labelled with the sample ID (including the indication of sampling station), laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory. The laboratory determination works started within 24 hours after collection of water samples.

Quality Control Measures for Sample Testing

- 5.2.4.7 The samples testing was performed by ALS Technichem (HK) Pty Ltd. The following quality control programme was performed by the laboratory:
 - · One method blank; and
 - One sample duplicate.

5.2.5 Monitoring Results

- 5.2.5.1 Impact surface water quality monitoring was conducted at WM1 and WM2 on 6 April 2023. No adverse weather was observed during reporting period. The detailed monitoring schedule is shown in Appendix C.
- 5.2.5.2 The summary of monitoring results is presented in **Table 5-5**. Detailed monitoring results at each monitoring station and graphical presentations of surface water quality (DO, SS and Turbidity) at the monitoring stations are given in **Appendix E** and **Appendix F**.
- 5.2.5.3 No particular observations are identified near the monitoring stations during the monitoring period.
- 5.2.5.4 No exceedance of Action and Limit Levels of surface water monitoring was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix G**.

Table 5-5 Summary of Impact Surface Water Monitoring Results

	Monitoring Station					
Monitoring	WM1			WM2		
Parameter(s)	Monitoring Results	Action Level	Limit Level	Monitoring Results	Action Level	Limit Level
pН	7.1	>7.7	>7.8	7.3	>7.6	>7.7
Electrical Conductivity in µS/cm	64			147		
DO in mg/L	7.8	<7.4	<4	6.7	<5	<4
Turbidity in NTU	0.4	>9.2	>9.5	64.3	>108.3	>108.9
SS in mg/L	3.2	>9.7	>11.4	48.1	>94.5	>94.7
Alkalinity	13			48		
COD	17			15		
BOD ₅	<2			2.0		
TOC	2			2		
Ammonia- nitrogen	0.22			<0.01		
TKN	0.4			0.7		
Nitrate	0.03			0.14		
Sulphate	7					
Sulphite	<2			<2		
Phosphate	0.0			<0.01		
Chloride	8			7		
Sodium	9170	_		7890		
Mg	500			1370		
Ca	3720			15400		
K	720			3410		
Fe	480			9240		
Ni	<1			2		
Zn	19			35		
Mn	70			2220		
Cu	2.0			4		
Pb	<1			4		
Cd	<0.2			<0.2		
Coliform Count	420			330		
Oil and Grease	<5			<5		

5.2.6 Recommended Mitigation Measure

- 5.2.6.1 The recommended surface water mitigation measures from EIA report are listed as followed:
 - Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.
 - The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows.
 - The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silts and sediment traps should be 5 minutes under maximum flow conditions.
 - All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads.
 - Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts.
 - Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.

5.2.7 Implementation of the temporary surface water drainage system

- 5.2.7.1 The site inspection and audits were carried out by ER, IC, ET & Contractor on weekly basis (IEC on monthly basis) to monitor the construction progress, maintenance performance and effectiveness of temporary surface water drainage system in the Project Site to fulfil the FEP Condition 2.13, EP Condition 2.15 and the section 5.2.1.1 of the EM&A Manual. The joint environmental site inspection records are shown in **Appendix J**.
- 5.2.7.2 All construction site runoff would be treated by silt removal facilities to fulfil the requirement of WPCO licenses from the project. Construction site runoff from the project after treatment was discharged to Ping Yuen River. The surface water monitoring results at WM2 (after the discharge point of silt removal facilities) can reflect the water quality at Ping Yuen River during the reporting period.

5.2.8 Event and Action Plan

5.2.8.1 Should non-compliance of the criteria occurs, action in accordance with the action plan in **Table 5-6** shall be carried out.

Table 5-6 Event and Action Plan for Water Quality

Event	ET	IEC	Contractor
Action level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor Check monitoring data, all plant, equipment and Contractor's working methods Repeat measurement on next day of exceedance 	Verify Notification of Exceedance Check monitoring data and Contractor's working methods	Rectify unacceptable practice Amend working methods if appropriate
Action level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor Check monitoring data, all plant, equipment and Contractor's working methods Discuss with Contractor and IEC for remedial measures Ensure mitigation measures are implemented Increase the monitoring frequency to daily until no exceedance of Action level Repeat measurement on next day of exceedance 	 Verify Notification of Exceedance Check monitoring data and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Submit proposal of additional mitigation measures to IEC of notification Implement the agreed mitigation measures Amend proposal if appropriate

Event	ET	IEC	Contractor
Limit Level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods Discuss mitigation measures with IEC and Contractor Ensure mitigation measure are implemented 	 Verify Notification of Exceedance Check monitoring data submitted By ET and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Critically review the working method Rectify unacceptable practice Take immediate corrective actions to avoid further exceedance Submit proposal of mitigation measures to IEC Implement the agreed mitigation measures
Limit level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC, contractor and EPD Check monitoring data, all plant, equipment and Contractor's working methods Discuss mitigation measures with IEC and Contractor Ensure mitigation measure are implemented 	 Verify Notification of Exceedance Check monitoring data submitted by ET and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Critically review the working method Rectify unacceptable practice Take immediate corrective actions to avoid further exceedance Submit proposal of mitigation measures to IEC Implement the agreed mitigation measures Resubmit proposals if problem still not under control Slow down or to stop relevant activity until exceedance is abated

6 Waste Management

- 6.1.1 Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. Non-inert C&D materials were made up of general refuse, steels and paper/cardboard packaging materials. Steel materials generated from the Project were also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in Appendix I.
- **6.1.2** A total of 18,466 tonnes of C&D materials was reused at alternative disposal ground (NENT Landfill) during the reporting period. A total of 1.97 tonnes of yard waste was generated during the reporting period. A total of 5.81 tonnes of general refuse and A total of 58.29 tonnes of non-recyclable yard waste was generated during the reporting period. The general refuse generated from the Project were disposed of at the NENT Landfill.
- **6.1.3** The recommended waste management mitigation measures from EIA report are listed as followed:
 - Implement a trip-ticket system to ensure that the movement of C&D materials are properly documented and verified in accordance with DEVB TC(W) No. 6/2010.
 - Concrete and masonry should be used as general fill and steel reinforcement bars can be used by scrap steel mills.
 - Proper areas should be designated for waste segregation and storage wherever site conditions permit.
 - Maximise the use of reusable steel formwork to reduce the amount of C&D material.
 - Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement.
 - On-site sorting and segregation facility of all type of wastes is considered as one
 of the best practice in waste management and hence, should be implemented in
 all projects generating construction waste.
 - The sorted public fill and C&D waste should be properly reused.
 - Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather.

7 Landfill Gas Monitoring

7.1 Monitoring Requirement during Construction

Monitoring for Construction Works

- 7.1.1 Intrinsically safe portable gas detectors should be used during excavation or when working in any confined spaces, which have the potential for presence of LFG and risk of explosion or asphyxiation. The monitoring equipment should alarm, both audibly and visually, when the concentrations of the following gases were exceeded:
 - CH₄: >10% Lower Explosion Limit (LEL);
 - CO₂: >0.5%; and
 - O₂: <18% by volume.

7.2 Monitoring Location

Monitoring Locations

- 7.2.1 During the construction works within the NENT Landfill Extension site with excavation of 1m deep or more, LFG concentrations should be monitored before entry and periodically during the progress of works. If drilling is required, the procedures for safety management and working procedures as stipulated in EPD's Landfill Gas Hazard Assessment Guidance Note should be strictly adopted.
- **7.2.2** The monitoring frequency and areas to be monitored should be set down prior to commencement of groundworks by the Safety Officer. All measurements in excavations should be made with the monitoring tube located not more than 10mm from the exposed ground surface. Monitoring of excavations should be undertaken as follows:
- **7.2.3** For excavation works deeper than 1m, measurements should be made:
 - at ground surface prior to excavation;
 - immediately before any worker enters the excavation;
 - at the beginning of each working day for the entire period the excavation remains open; and
 - periodically through the working day whilst workers are in the excavation.

For excavation between 300mm and 1m deep, measurements should be made:

- · directly after the excavation has been completed; and
- periodically whilst the excavation remains open.
- **7.2.4** For excavations less than 300mm deep, monitoring may be omitted, at the discretion of the Safety Officer.
- **7.2.5** The locations of LFG monitoring locations during reporting period are shown in **Table 7-1**. The Site formation layout plan is shown in **Figure 2**.

Table 7-1 Locations of LFG Monitoring during reporting period

Monitoring Location	Type of works
Portion A +55 mpD to 70 mpD Platform	Excavation Works

7.3 Monitoring Equipment

7.3.1 Gas Detector was used for carrying out LFG monitoring for Construction Works. **Table 7-2** summarises the equipment that were used in the LFG monitoring programme. The calibration certificates are shown in **Appendix D**.

Table 7-2 LFG Monitoring Equipment

Equipment	Model	Expiry Date
Gas Detector	PS200 (S/N: 373075)	16 Nov 2023

7.4 Event and Action Plan (EAP)

7.4.1 Should non-compliance of the criteria occur, action in accordance with the action plan in **Table 7-3** shall be carried out.

Table 7-3 Action Plan for the monitoring during construction phase

Parameter Monitoring Result		Action
	Action Level <19% O ₂	Ventilate trench/void to restore O ₂ to >19%
Oxygen (O ₂)	Limit Level <18% O ₂	Stop works Evacuate personnel/prohibit entry Increase ventilation to restore O ₂ to >19%
	Action Level >10% LEL*	Prohibit hot works Increase ventilation to restore CH ₄ to <10% LEL
Methane (CH ₄)	Limit Level >20% LEL*	Stop works Evacuate personnel/prohibit entry Increase ventilation to restore CH ₄ to <10% LEL
	Action Level** >0.5%** CO ₂	Ventilate to restore CO ₂ to <0.5%
Carbon dioxide (CO ₂)	Limit Level >1.5% CO ₂	Stop works Evacuate personnel / prohibit entry Increase ventilation to restore CO ₂ to <0.5%

^{*} LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion.

Depending on the baseline CO₂ levels, the Action Level at a particular location will be changed.

7.5 Monitoring Results

7.5.1 The LFG monitoring was conducted at Portion A +55 mpD to 70 mpD Platform in April 2023 (Conducted on working days). The LFG monitoring results are summarized in **Table 7-4**.

^{**} This Action Level of CO₂ at 0.5% is set for reference only, assuming no CO₂ emission from a particular location.

Table 7-4 Summary of LFG Monitoring Results

Table 7-4	Summary o	of LFG Monitoring Results			
LFG	Monitoring		Monitorin	g Parameter(s)	
Monitoring	Date	CH ₄ in %	LEL in %/v	CO₂ in %	O ₂ in %
Station			Monito	ring Results	
	1 Apr 2023	0	0	0	20.4
	3 Apr 2023	0	0	0	20.3
	4 Apr 2023	0	0	0	20.2
	6 Apr 2023	0	0	0	20.3
	11 Apr 2023	0	0	0	20.4
	12 Apr 2023	0	0	0	20.2
	13 Apr 2023	0	0	0	20.1
	14 Apr 2023	0	0	0	20.2
	15 Apr 2023	0	0	0	20.1
	17 Apr 2023	0	0	0	20.3
Portion A +55	18 Apr 2023	0	0	0	20.2
mpD to 70 mpD Platform	19 Apr 2023	0	0	0	20.2
	20 Apr 2023	0	0	0	20.1
	21 Apr 2023	0	0	0	20.3
	22 Apr 2023	0	0	0	20.2
	23 Apr 2023	0	0	0	20.2
	24 Apr 2023	0	0	0	20.2
	25 Apr 2023	0	0	0	20.3
	26 Apr 2023	0	0	0	20.1
	27 Apr 2023	0	0	0	20.1
	28 Apr 2023	0	0	0	20.2
	29 Apr 2023	0	0	0	20.3
Action	Level	>10% LEL		>0.5%** CO ₂	<19%

^{*} LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion.

- 7.5.2 No exceedance of Limit Levels of LFG was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the Appendix G.
- **7.5.3** No effect that arose from the other special phenomena and work progress of the concerned site was noted during the current monitoring month.

7.6 Recommended Mitigation Measures

- **7.6.1** The recommended landfill gas mitigation measures from EIA report are listed as followed:
 - Special LFG precautions should be taken due to close proximity of NENT landfill
 extension site to existing landfill to avoid potential hazards of LFG exposure (ignition,
 explosion, asphyxiation, toxicity).
 - Prominent safety warning signs should be erected on-site to alert all personnel and visitors of LFG hazards during excavation works.
 - No smoking or burning should be permitted on-site.

^{**} This Limit Level of CO₂ at 0.5% is set for reference only, assuming no CO₂ emission from a particular location.

- Prominent 'No smoking' and 'No Naked Flames' signs should be erected on-site.
- No worker should be allowed to work alone at any time in excavated trenches or confined areas on-site.
- Adequate fire fighting equipment should be provided on-site.
- Construction equipment should be equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors.
- Electrical motors and extension cords should be explosion-proof and intrinsically safe for use on-site.
- 'Permit to Work' system should be implemented.
- Welding, flame-cutting or other hot works should be conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works.

8 Landscape and Visual

8.1 Monitoring Requirement

- 8.1.1 In order to monitor the landscape and visual impact after providing mitigation measures effectively, all the specified and affected LCAs, LRs and VSRs should be monitored. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.
- **8.1.2** All relevant environmental mitigation measures listed in the approved EIA Report and the EM&A Manual and their implementation status are summarised in **Appendix K**.

8.2 Result and Observation

- **8.2.1** Measures to mitigate the landscape and visual impacts during the construction phase has been checked to ensure compliance with the intended aims of the measures within the reporting period. The progress of the engineering works are regularly reviewed on site to identify the earliest practical opportunities for the landscape works to be undertaken.
- 8.2.2 In order to monitor the landscape and visual impact after providing mitigation measures effectively, all the specified and affected LCAs, LRs and VSRs should be monitored. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

9 Cultural Heritage

- **9.1.1** The Mitigation measures for preservation of the cultural landscape feature located within the project area was conducted before commencement of construction of the project based on the requirement of Survey Report and Mapping Records for Boulder Paths BP1 & 2 & Conditions of G2, G4, G5 G6, G7, G8, G14, G15, G25, G26 and G27 within NENTX.
- **9.1.2** The survey and mapping works carried out on 23 August 2022 and the verification works carried out on 23 August 22 confirmed that both 2 boulder paths BP1 and BP2 are fall outside the site boundary and the Project area.
- 9.1.3 All the affected graves within the waste boundary have been removed in accordance with section 119(1) of the Public Health and Municipal Services Ordinance (Cap 132). Removal of the graves as shown on Figure 2 attached to the FEP was proven by the visit of graves on 8 July 2022. All the graves as shown on Figure 2 attached to the FEP were abandoned and removed and no mitigation or preservation measures is necessary.
- 9.1.4 The Survey Report and Mapping Records for Boulder Paths BP1 & 2 was certified by ET on 10 Oct 2022, was verified by IEC and submitted to EPD on 12 Oct 2022. The Conditions of G2, G4, G5 G6, G7, G8, G14, G15, G25, G26 and G27 within NENTX was certified by ET, was verified by IEC and submitted to EPD on 15 Oct 2022. No later than four weeks before commencement of construction of the project in accordance with Condition 2.4 of the FEP-01/292/2007.
- 9.1.5 Implementation of the mitigation measures such as permanent fencing to protect the boulder path and setting up warning notices during construction phase of the Project has been monitored through the regular site inspection/audit. The permanent fencing locations are shown in Appendix M. In case of any presence of undiscovered grave during construction phase, AMO will be informed as soon as possible.

10 Ecological Monitoring

- 10.1.1 In the reporting period, the post-translocation monitoring for the Endemic Freshwater Crab Somanniathelphusa zanklon was conducted on 19 April 2023 based on the requirement of the approved Revised Translocation Proposal for the Endemic Freshwater Crab Somanniathelphusa zanklon. The 9th Post-Translocation Monitoring Report (April 2023) presents the details of requirements, monitoring results and site inspection with photos. The site inspection photos are also summarized in Appendix N. During the reporting period, no S. zanklon individual is identified.
- 10.1.2 The post-transplantation monitoring was conducted on 21 April 2023 based on the requirement of the approved Transplantation Proposal for Plant Species of Conservation Importance (Rev.1). The 9th Post-transplantation Monitoring and Audit Report (21st April 2023) presents the details of requirements, monitoring results and site inspection with photos. The site inspection photos are also summarized in Appendix N. During the reporting period, the numbers, measurements, and health conditions of the transplanted plant species are recorded.
- **10.1.3** The details of requirements, monitoring results and site inspection with photos for the post-translocation monitoring and post-transplantation monitoring would be reported separately.
- **10.1.4** The milestone of the ecological monitoring is presented in **Table 10-1.** The softcopies of the submissions are provided in https://www.nentx-ema.com/ep-submissions/.

Table 10-1 Milestone of the Ecological Monitoring

Type of Monitoring	Monitoring Event No.	Monitoring Date		
Post-	1 st (Aug 2022)	29 Aug 2022		
translocation	2 nd (Sep 2022)	28 Sep 2022		
Monitoring	3 rd (Oct 2022)	28 Oct 2022		
	4 th (Nov 2022)	22 Nov 2022		
	5 th (Dec 2022)	29 Dec 2022		
	6 th (Jan 2023)	30 Jan 2023		
	7 th (Feb 2023)	24 Feb 2023		
	8 th (Mar 2023)	20 Mar 2023		
	9 th (Apr 2023)	19 Apr 2023		
Post-	1 st	24 Nov 2022		
transplantation	2 nd	9 Dec 2022		
Monitoring	3 rd	21 Dec 2022		
	4 th	13 Jan 2023		
	5 th	26 Jan 2023		
	6 th	8 Feb 2023		
	7 th	24 Feb 2023		
	8 th	20 Mar 2023		
	9 th	21 Apr 2023		

11 Site Inspection and Audit

- **11.1.1** Site Inspection and audits were carried out by ET on weekly basis to monitor the implementation of proper environmental management practices and mitigation measures in the Project Site.
- 11.1.2 Weekly ET environmental site inspections were conducted in the reporting period on 3, 11,17 & 24 April 2023. A joint environmental site inspection was carried out by the representatives of the ER, the Contractor, IEC and the ET on 17 April 2023. The joint environmental site inspection records are shown in Appendix J. There was no noncompliance recorded during the site inspections.
- **11.1.3** Major findings and recommendations are summarized as follows:

03 April 2023

- The exposed surface in Portion E3-1 shall be covered with impervious sheets to minimize surface runoff into the stream. The contractor was recommended that surface protection shall be implemented on the exposed slope to minimize surface runoff.
- The Contractor was reminded to maintain surface protection work in Portion A.
 The contractor was reminded that surface protection shall be implemented on the exposed slope to minimize surface runoff.
- The contractor was reminded to ensure the silt removal facilities functioning properly before the holidays. The contractor was reminded silt removal facilities shall be maintained regularly.

11 April 2023

- The entrance of Portion A was observed muddy. The entrance shall be kept clear of dusty and muddy material. The Contractor was recommended to repave the surface of entrance to prevent accumulation of sand and silt.
- The drip tray was filled with water. The Contractor was reminded to clear the drip tray and to minimize the number of chemical containers in the outdoor environment.
- Surface protection shall be applied on the exposed slope behind the WetSep
 to minimize the surface runoff into the channel. The contractor was
 recommended that the exposed slope shall be covered with impervious sheets
 to prevent any surface runoff into the channel.

17 April 2023

- The drip tray in SBA was filled with water. The Contractor was recommended to clear the drip tray.
- The Contractor was reminded to spray water on the surface of dusty material in SBA to prevent dust dispersion. Dusty material shall be sprayed with water to prevent generation of dust.
- The Contractor was reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall.

24 April 2023

- The channels at the entrance of SBA are accumulated with rotten leaves, sand and silt. The contractor was recommended that regular cleaning of channel shall be conducted to prevent any clogging.
- Surface protection works in Portion A shall be maintained properly. The contractor was recommended that earth bunds and exposed slopes shall be paved to control the surface runoff.
- The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall in this week. Silt removal facilities shall be maintained properly and checked if they can function properly.
- **11.1.4** No Environmental Protection Department-Regional Office (North) conducted general site inspection in April 2023.

12 Environmental Non-conformance

12.1 Summary of Monitoring Exceedance

Air Quality, Noise, Surface Water Quality & Landfill Gas Monitoring

- **12.1.1** No exceedance of the Action and Limit Levels for was recorded at designated monitoring stations during the reporting period.
- 12.2 Summary of Environmental Non-compliance
- **12.2.1** No non-compliance event was recorded during the reporting period.
- 12.3 Summary of Environmental Complaint
- **12.3.1** No environmental complaint was recorded during the reporting period.
- 12.4 Summary of Environmental Summons and Successful Prosecution
- **12.4.1** No summons was received during the reporting period

13 Implementation Status on Environmental Mitigation Measures

13.1.1 The Contractor has generally implemented environmental mitigation measures and requirements as stated in the EIA Report, the EP and EM&A Manual and the contract documents. The implementation status during the reporting period is summarized in **Appendix K**.

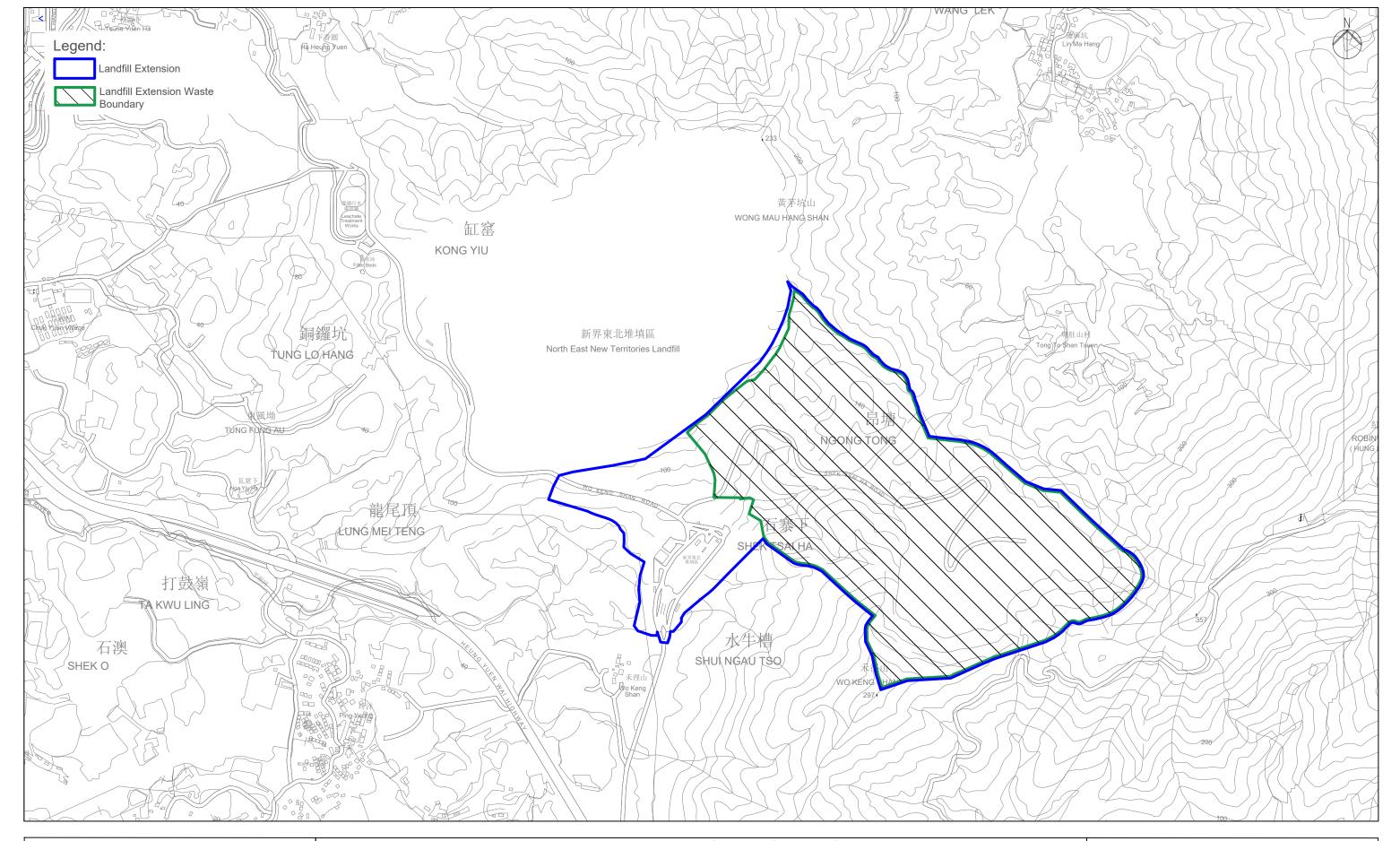
14 Future Key Issues

14.1 Key Issues for the Coming Month

- **14.1.1** Works to be undertaken for the coming monitoring periods are summarized below. Detailed construction activities and locations are summarized in **Appendix L**.
 - Material loading and unloading, site traffic at Portion A, SBA to alternative disposal ground
 - Permanent site office foundation works with pouring of concrete at Portion D
 - Site clearance at Portion A, E3-1, B1 & E4
 - Installation of permanent fencing at Portion A, B1 & E4
 - Site formation at Portion A & E3-1
 - Tree felling at Portion E3-1 & E4
- **14.1.2** Potential environmental impacts arising from the above construction activities are mainly associated with air quality, construction noise, water quality, waste management, landfill gas monitoring, landscape and visual, cultural heritage and ecology

14.2 Monitoring Schedule for the Next Month

14.2.1 The tentative schedule of environmental monitoring for the next reporting period is presented in **Appendix C**.

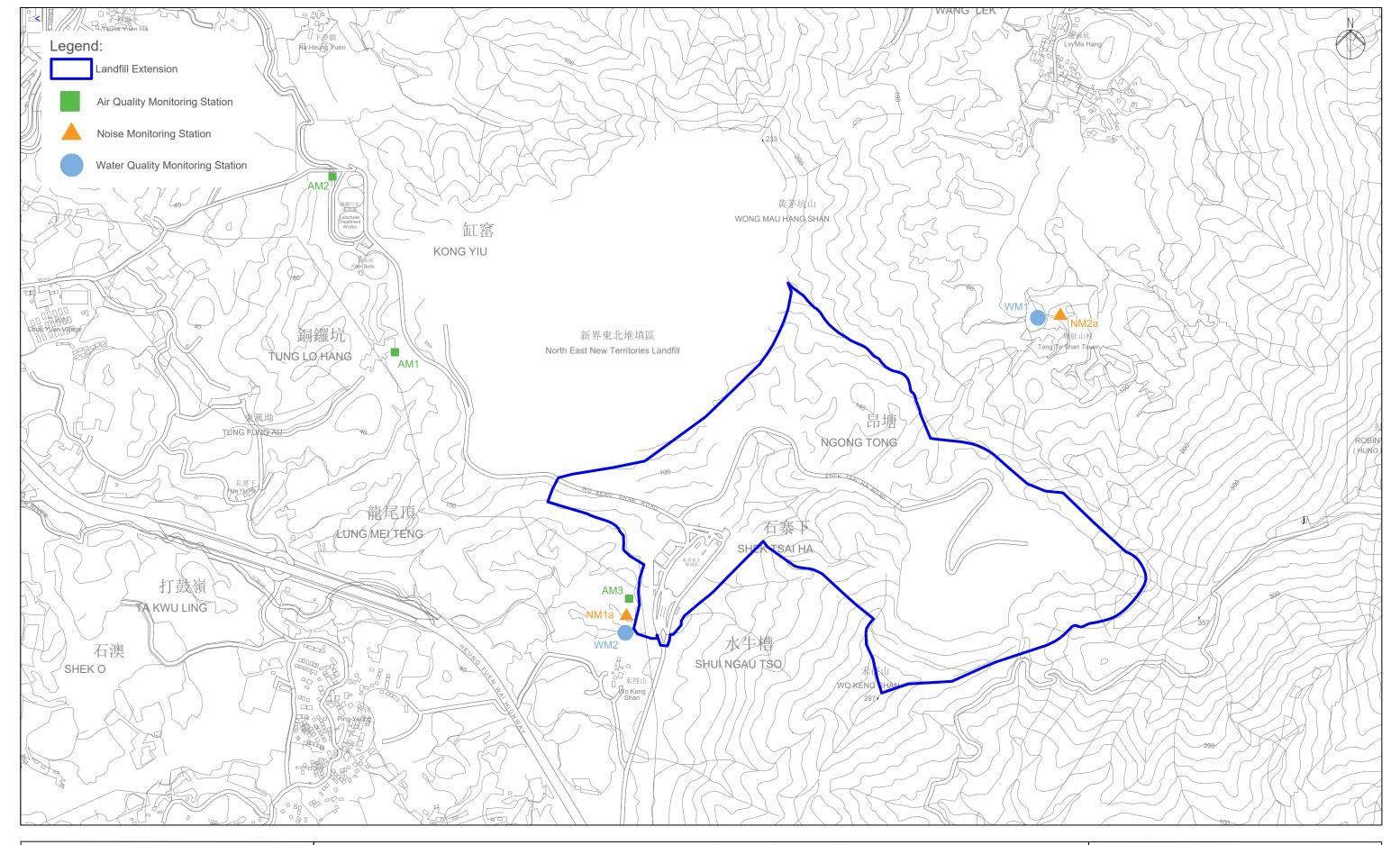

14.3 Construction Programme for the Next Month

14.3.1 The most updated construction programme for the Project is presented in **Appendix A**.

15 Conclusion

- **15.1.1** 1-hr & 24-hr TSP impact monitoring was carried out in the reporting month. No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring at AM1, AM2 & AM3 was recorded during the period.
- **15.1.2** Construction noise monitoring was carried out in the reporting month. No Action / Limit Level exceedance at NM1a & NM2a was recorded during the period.
- **15.1.3** Site clearance of future landfilling area is in progress. The installation of groundwater monitoring boreholes will be installed after the site formation work of the landfilling area. The target commencement period of groundwater monitoring will be in 2026. No groundwater monitoring is required before the completion of site formation work of the landfilling area.
- **15.1.4** Surface water monitoring was carried out in the reporting month. No Action / Limit Level exceedance at WM1 & WM2 was recorded during the period.
- **15.1.5** Landfill Gas Monitoring was carried out in the reporting month. No exceedance of Limit Levels of LFG was recorded during the reporting period.
- **15.1.6** In terms of cultural heritage, implementation of the mitigation measures such as permanent fencing to protect the boulder path and setting up warning notices during construction phase of the Project has been monitored through the regular site inspection/audit in the reporting period. All the mitigation measures are in order.
- **15.1.7** Post-translocation Monitoring was carried out in the reporting period. No *S. zanklon individual* was found. Post-transplantation monitoring was carried out in the reporting month. The numbers, measurements and health conditions of the transplanted species are recorded.
- **15.1.8** Four environmental site inspections were carried out in the reporting month. Recommendations on mitigation measures for Permit/ Licenses were given to the Contractor for remediating the deficiencies identified during the site inspections.
- **15.1.9** No environmental complaint was recorded during the reporting period.
- **15.1.10** No non-compliance event was recorded during the reporting period.
- **15.1.11** No notification of summons and prosecution was received during the reporting period.
- **15.1.12** The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Figure 1 Location of the Project Site

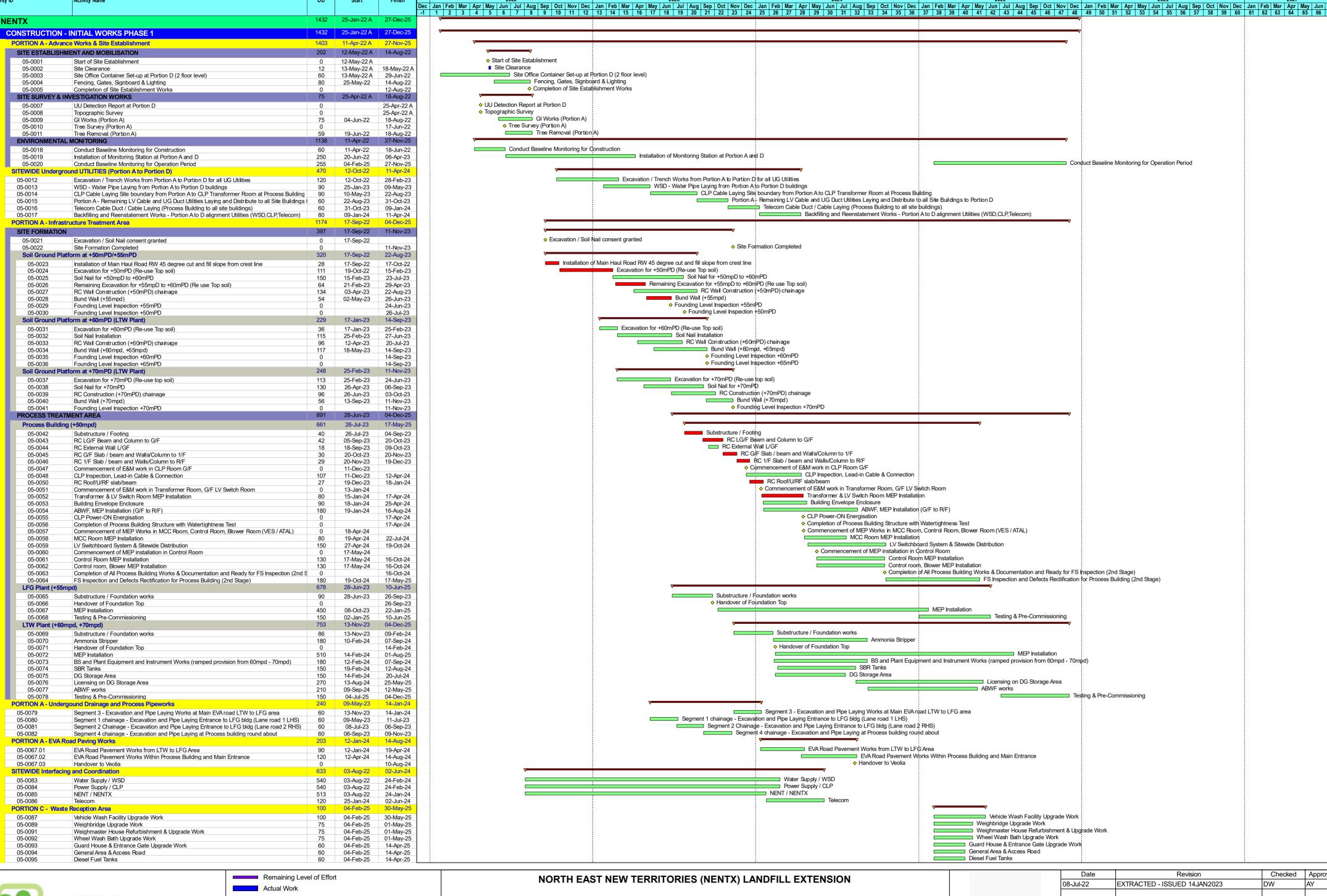


North-East New Territories (NENT) Landfill Extension Location Plan of the Project Site

Figure 1.1

Scale: 1:10000

Figure 2 Impact Air, Noise & Surface Water Quality Monitoring Locations



North-East New Territories (NENT) Landfill Extension Impact Monitoring Locations

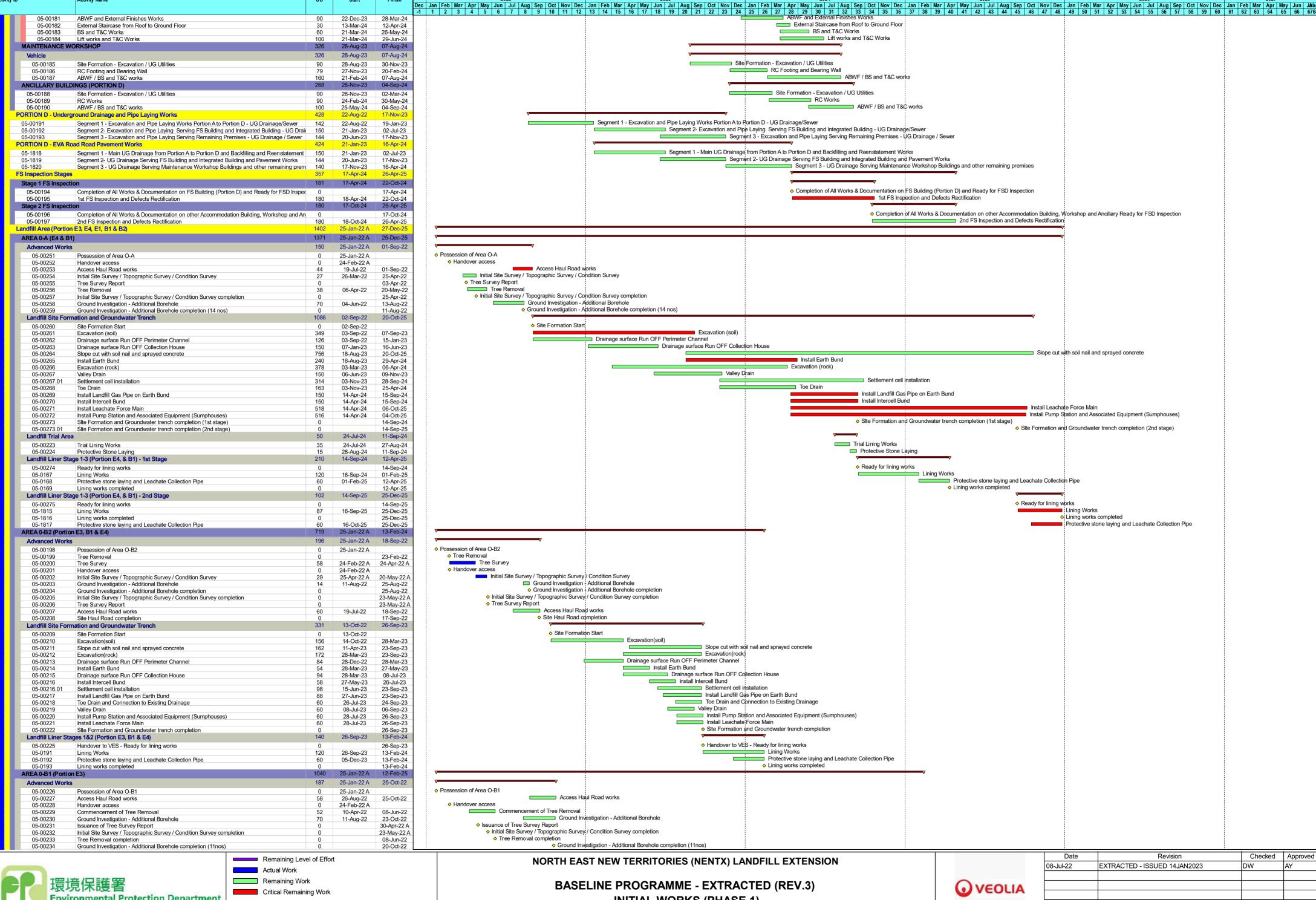
Figure 2

Scale: 1:10000

Appendix A Construction Programme

BASELINE PROGRAMME - EXTRACTED (REV.3)
INITIAL WORKS (PHASE 1)
Page 1 of 4

Date	Revision	Checked	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY
			-

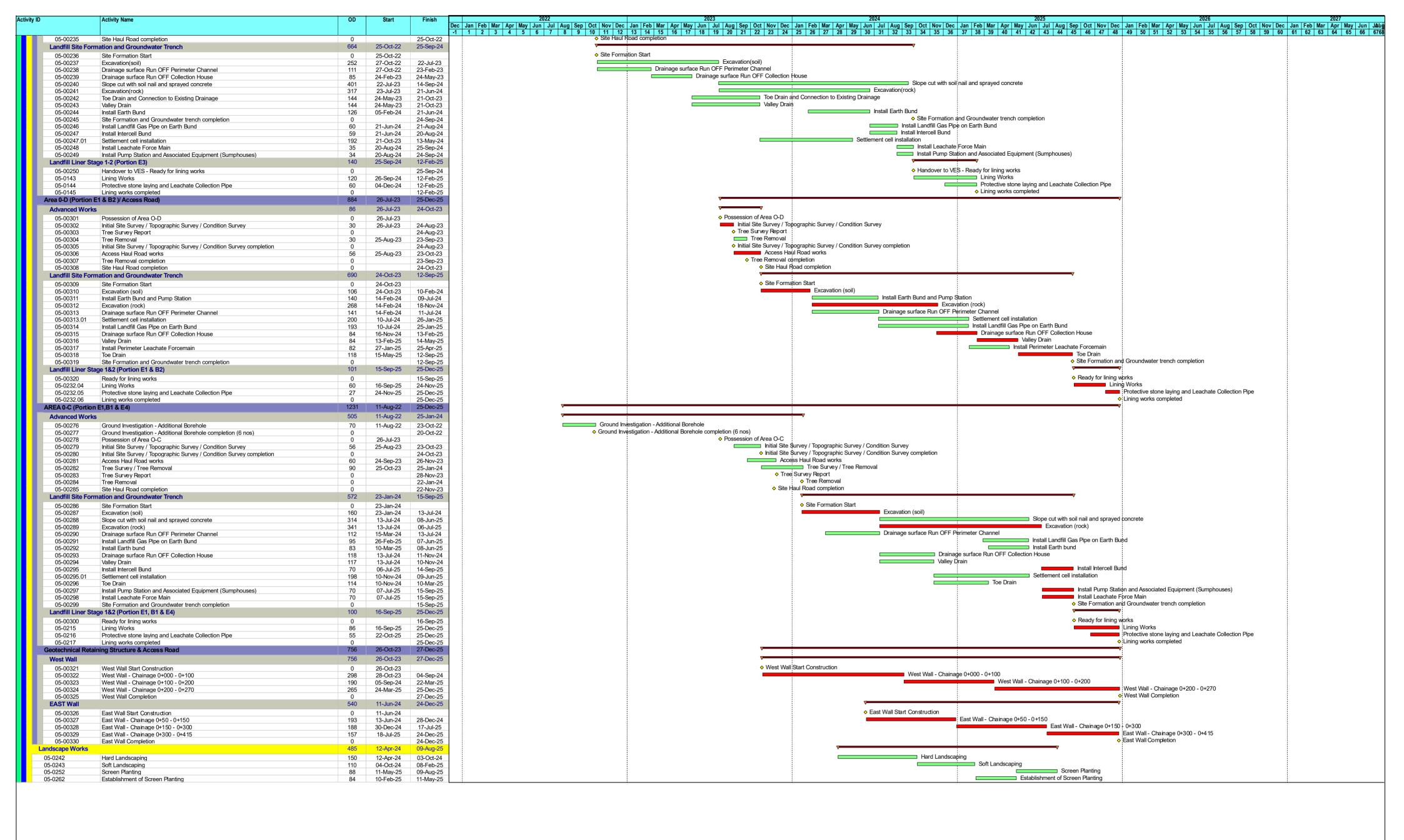

Critical Remaining Work Milestone ──▼ Summary

BASELINE PROGRAMME - EXTRACTED (REV.3) INITIAL WORKS (PHASE 1)

Page 2 of 4

0	VE	οι	.1/

Date	Revision	Спескеа	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY
			·

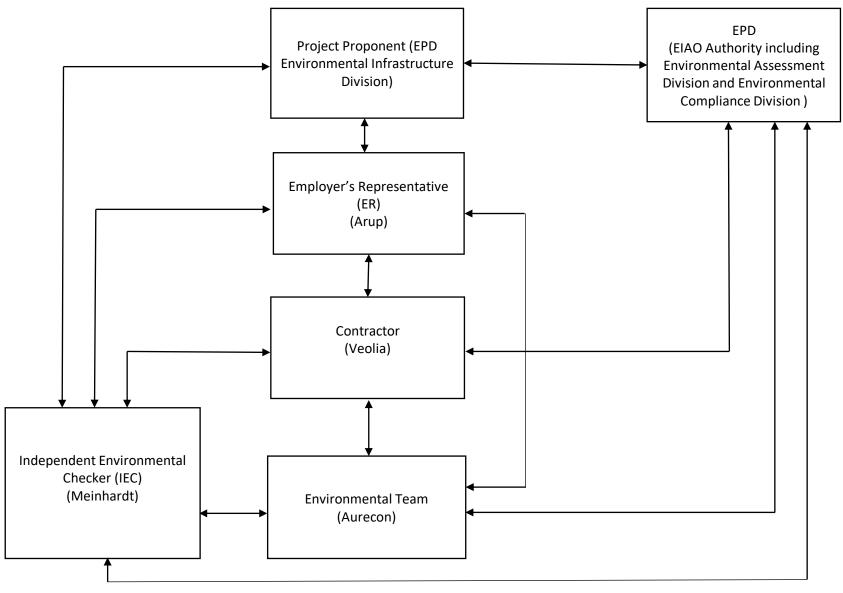

Milestone Summary


INITIAL WORKS (PHASE 1)

Page 3 of 4

			$oldsymbol{\Theta}$	V	E	O	LI	1
--	--	--	---------------------	---	---	---	----	---

Date	Revision	Checked	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY



BASELINE PROGRAMME - EXTRACTED (REV.3)
INITIAL WORKS (PHASE 1)
Page 4 of 4

Date	Revision	Checked	Approved
08-Jul-22	EXTRACTED - ISSUED 14JAN2023	DW	AY

Appendix B Project Organization Chart & Management Structure

Notes:

EPD - Environmental Protection Department

Arup – Ove Arup & Partners Limited

Veolia - Veolia Environmental Services Hong Kong Limited

Meinhardt - Meinhardt Infrastructure And Environment Limited

Aurecon - Aurecon Hong Kong Limited

Appendix C Monitoring Schedule for Reporting Month & Next Month

Impact Monitoring Schedule for NENT Landfill Extension (April 2023) (version 2.0)

	4-2023							
Sun	Mon	Tue		Thur	Fri	Sat		
						1		
2	3	4	5	6 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a Surface water quality monitoring at WM1 and WM2	7	8		
9	10	11	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	13	14	15		
16	17	18 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	19	20	21	22		
23	24 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	25	26	27	28	29 Air quality monitoring at AM1, AM2 and AM3		
30								

Remark:

- 1. Air quality monitoring includes 1-hour TSP and 24-hour TSP monitoring at AM1, AM2 and AM3 (Ref.: Table 3.1 of the approved EM&A Manual).
- 2. Noise monitoring includes 30-minute construction noise monitoring at NM1a and NM2a (Ref.: Table 4.1 of the approved EM&A Manual).
- 3. Surface water quality monitoring includes in-situ measurement and water sampling for laboratory analysis at WM1 and WM2 (Ref.: Table 5.5 and Section 5.5.6 of the approved EM&A Manual).

Impact Monitoring Schedule for NENT Landfill Extension (May 2023) (version 1.0)

			5-2023			
Sun	Mon	Tue	Wed	Thur	Fri	Sat
	1	2	3	4	5 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a Surface water quality monitoring at WM1 and WM2	6
7	8		10	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a		13
14	15	16	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	18	19	20
21	22	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a		25	26	27
28	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	30	31	1	2	Air quality monitoring at AM1, AM2 and AM3

Remark:

- 1. The schedule is tentative only and would be subject to changes due to unforeseen circumstances.
- 2. Air quality monitoring includes 1-hour TSP and 24-hour TSP monitoring at AM1, AM2 and AM3 (Ref.: Table 3.1 of the approved EM&A Manual).
- 3. Noise monitoring includes 30-minute construction noise monitoring at NM1a and NM2a (Ref.: Table 4.1 of the approved EM&A Manual).
- 4. Surface water quality monitoring includes in-situ measurement and water sampling for laboratory analysis at WM1 and WM2 (Ref.: Table 5.5 and Section 5.5.6 of the approved EM&A Manual).

Appendix D Calibration Certificates

Air Quality

Website www acuityth co

Unit E, 12/F, Ford Glory Plaza
Not. 37-39 Wing Hong Street,
Cheung Sha Wan, Kowloon

Tel.: (852) 2698 6833

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

to 4-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

0Z4545

Our Report Refrence No.

RPT-22-HVS-0026

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information							
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator				
Standard Equipment Model No.		TE-5170X	TE-5025A				
Equipment serial no.	MFC	1106	3465				
Last Calibration Date		1-Dec-22	28-Jun-22				
Next Calibration Date		31-Jan-23	27-Jun-23				

Verification Test No. Date	Date		Time		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00120	51	10251	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00102	34	6444	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00111	44	8193	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00122	55	9927	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00112	63	11340	R222044/3	70
		_	1 5/10		0.00114				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

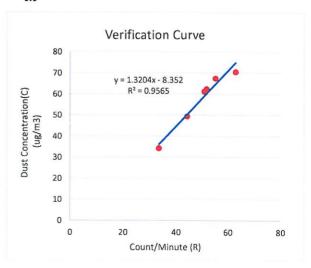
1.1

By Linear Regression of y on x:

slope, mh= 1.3204

intercept,ch= -8.3520

*Correlation Coefficient,R= 0.9780


Verification Test Result: Strong Correlation, Results were accepted.

 $\mbox{*}$ If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Technical Manager

Date: 05-12-2022

Tel : (852) 2698 6833

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

to 4-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.:

Sibata LD-5R

Unit-under-Test Serial No.:

882106

Our Report Refrence No.:

RPT-22-HVS-0027

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information							
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator				
Standard Equipment Model No.		TE-5170X	TE-5025A				
Equipment serial no.	MFC	1106	3465				
Last Calibration Date		1-Dec-22	28-Jun-22				
Next Calibration Date		31-Jan-23	27-Jun-23				

Verification Test No. Date	Date		Time		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00123	50	9983	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00092	37	7146	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00103	48	8870	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00108	62	11183	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00110	57	10260	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00108	65	11760	R222044/3	70
					0.00107				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.1

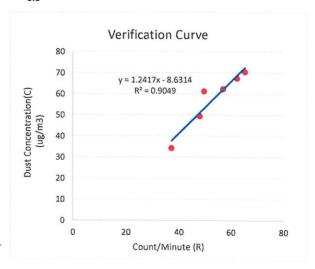
By Linear Regression of y on x:

slope, mh= 1.2417

intercept,ch= -8.6314

*Correlation Coefficient,R=

0.9513


Verification Test Result: Strong Correlation, Results were accepted.

 \ast If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

T 1 1 1 1 1 1 1

Date: 05-12-2022

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Verification Test Date:

3-Dec-22

4-Dec-22 to

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

882110

Our Report Refrence No.

RPT-22-HVS-0025

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information						
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator			
Standard Equipment Model No.	ŀ	TE-5170X	TE-5025A			
Equipment serial no.	MFC	1106	3465			
Last Calibration Date		1-Dec-22	28-Jun-22			
Next Calibration Date		31-Jan-23	27-Jun-23			

Verification ITest No.	Date		Time		K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00101	61	12194	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00089	38	7337	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00108	46	8439	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00110	61	11003	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00112	56	10080	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00104				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.0

By Linear Regression of y on x:

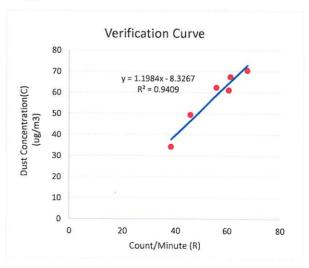
slope, mh=

1.1984

intercept,ch=

-8.3267

*Correlation Coefficient,R=


0.9700

Verification Test Result: Strong Correlation, Results were accepted.

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Verified By:

Date: _ 05-12-2022

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

4-Dec-22

Verification Test Date:

3-Dec-22

Next Verification Test Date:

2-Dec-23

Unit-under-Test- Model No.

Sibata LD-5R

Unit-under-Test Serial No.

942532

Our Report Refrence No.

RPT-22-HVS-0024

Calibration Location:

AM2, Located near the Leachate Treatment Works within the NENT Landfill

Standard Equipment Information							
Verification Equipment Type		Tisch TSP HVS	Tisch HVS Calibrator				
Standard Equipment Model No.		TE-5170X	TE-5025A				
Equipment serial no.	MFC	1106	3465				
Last Calibration Date		1-Dec-22	28-Jun-22				
Next Calibration Date		31-Jan-23	27-Jun-23				

Verification Date	Date	Time Date			K-Factor	Counts/ Minute (R)	Total Counts	TSP Sample	Dust Concentration (ug/m3), (C)
		Start-time	End-time	Elapsed Time (in min)	K-Factor (K=C/R)	x-axis	(TC)	ID No.	y axis
1	3/12/2022	194.73	198.08	201.00	0.00111	55	11122	R222043/1	61
2	3/12/2022	198.08	201.27	191.40	0.00093	37	7082	R222043/2	34
3	3/12/2022	201.27	204.35	184.80	0.00110	45	8316	R222043/3	49
4	4/12/2022	252.37	255.36	179.40	0.00113	60	10704	R222044/1	67
5	4/12/2022	255.38	258.38	180.00	0.00120	52	9360	R222044/2	62
6	4/12/2022	258.38	261.38	180.00	0.00104	68	12180	R222044/3	70
					0.00108				

K-Factor to be inputted in LD-5R (corrected 1 decimal point):

1.1

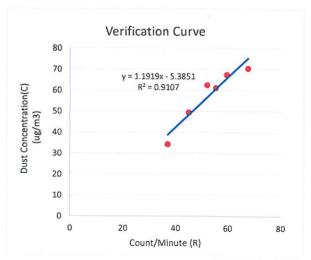
By Linear Regression of y on x:

slope, mh=

1.1919

intercept,ch=

-5.3851


*Correlation Coefficient,R=

0.9543

Verification Test Result: Strong Correlation, Results were accepted.

* If the Correlation Coefficient, R is <0.5. Checking and Re-verification are required.

Date: 05-12-2022

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site	Info	ma	tion
Oile		IIIa	uon

Location:	NENTX	Site ID:	AM1	Date:	07-Mar-2023
Serial No:	1105	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	759.0	Actual Temperature during Calibration (T _a) (deg K):	296.4	
---	-------	--	-------	--

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.05924	
Serial No.:	3465	Intercept (b _c):	-0.01929	
Calibration Due Date:	28-Jun-23	Corr. Coeff:	0.99998	

Calibration Data

Plate or ∆H₂O		Qa, X-Axis	I, CFM	IC, Y-Axis
Test#	(in)	(m³/min)	(chart)	(corrected)
18	11.30	11.30 1.645	55.0	55.11
13	9.20	1.485	50.0	50.10
10	6.90	1.288	44.0	44.09
7	4.50	1.042 37.0		37.08
5	2.80	0.824	30.0	30.06

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	30.2340	b=	5.2945	Corr. Coeff=	0.9998	
g						

Calculations

 $Qa = 1/m_c * [Sqrt (\Delta H_2 O * (P_a/P_{Std}) * (T_{Std}/T_a)) - b_c]$ $IC = I * (Sqrt (P_a/P_{Std}) * (T_{Std}/T_a))$

Qa = actual flow rate

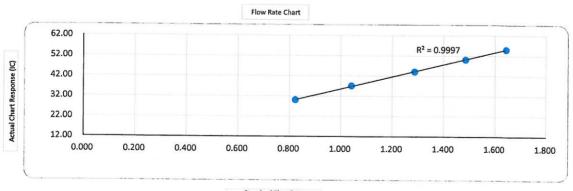
IC = corrected chart response

I = actual chart response

 m_c = calibrator slope

 b_c = calibrator intercept

m = sampler slope


b = sampler intercept

T_{Std} = 298 deg K

 $P_{Std} = 760 \text{ mm Hg}$

T_a = actual temperature during calibration (deg K)

P_a = actual pressure during calibration (mm Hg)

Standard Flow Rate (m3/min)

Checked by:	/Ax	
	/ 0	

Date:

07-Mar-2023

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	NENTX	Site ID:	AM2	Date:	07-Mar-2023
Serial No:	1106	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (Pa) (mm Hg):	759.0	Actual Temperature during Calibration (T _a) (deg K):	296.4
--	-------	--	-------

Calibration Orifice

	- Gambiation On	1100	
Model:	TE-5025A	Slope (m _c):	2.05924
Serial No.:	3465	Intercept (b _c):	-0.01929
Calibration Due Date:	28-Jun-23	Corr. Coeff:	0.99998

Calibration Data

Plate or	ΔH ₂ O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test#	(in)	(m³/min)	(chart)	(corrected)
18	12.10	1.702	62.0	62.13
13	9.40	1.501	57.0	57.12
10	7.20	1.315	50.0	50.10
7	4.50	1.042	42.0	42.09
5	2.90	0.838	36.0	36.07

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	30.6717	

10.2530

Corr. Coeff=

0.9989

Calculations

Qa = $1/m_c*[Sqrt(\Delta H_2O*(P_a/P_{Std})*(T_{Std}/T_a))-b_c]$

IC = I*(Sqrt (P_a/P_{Std})*(T_{Std}/T_a))

Qa = actual flow rate

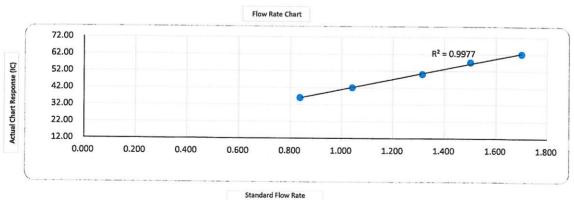
IC = corrected chart response

I = actual chart response

m_c = calibrator slope

 b_c = calibrator intercept

m = sampler slope


b = sampler intercept

 $T_{Std} = 298 \text{ deg K}$

 $P_{Std} = 760 \text{ mm Hg}$

T_a = actual temperature during calibration (deg K)

P_a = actual pressure during calibration (mm Hg)

(m3/min)

Checked by:	1/2/

Date:

07-Mar-2023

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

011		
Site	Intor	mation

Location:	NENTX	Site ID:	AM3	Date:	07-Mar-2023
Serial No:	1856	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg): 759.0		Actual Temperature during	296.4
(mm ng).		Calibration (T _a) (deg K):	

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.05924
Serial No.:	3465	Intercept (b _c):	-0.01929
Calibration Due Date:	28-Jun-23	Corr. Coeff:	0.99998

Calibration Data

Plate or ΔH ₂ O		Qa, X-Axis	I, CFM	IC, Y-Axis	
Test#	(in)	(m³/min)	(chart)	(corrected)	
18	12.70	1.743	58.0	58.12	
13	10.00	1.548	52.0	52.11	
10	7.80	1.368	45.0	45.09	
7	4.90	1.087	37.0	37.08	
5	3.10	0.866	29.0	29.06	

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	32.9317	
***	22.222.7	

0.7369

Corr. Coeff=

0.9991

Calculations

 $Qa = 1/m_c^* [Sqrt (\Delta H_2 O^* (P_a/P_{Std})^* (T_{Std}/T_a)) - b_c]$ $IC = I*(Sqrt(P_a/P_{Std})*(T_{Std}/T_a))$

Qa = actual flow rate

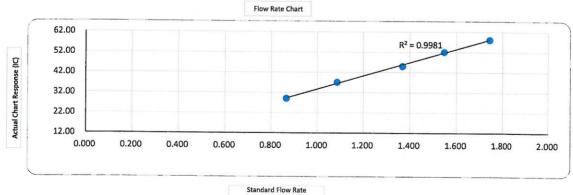
IC = corrected chart response

I = actual chart response

m_c = calibrator slope

b_c = calibrator intercept

m = sampler slope


b = sampler intercept

T_{Std} = 298 deg K

 $P_{Std} = 760 \text{ mm Hg}$

T_a = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

(m3/min)

Checked by:	1A	
Спескеа ву:		

Date:

07-Mar-2023

RECALIBRATION DUE DATE:

June 28, 2023

Certificate of Calibration

Calibration Certification Information

Cal. Date: June 28, 2022

Rootsmeter S/N: 438320

Ta: 296

°K

Operator: Jim Tisch

Pa: 755.1

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 3465

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4290	3.2	2.00
2	3	4	1	1.0130	6.4	4.00
3	5	6	1	0.9050	7.9	5.00
4	7	8	1	0.8590	8.8	5.50
5	9	10	1	0.7110	12.8	8.00

	Data Tabulation							
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)			
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)			
0.9961	0.6970	1.4144	0.9958	0.6968	0.8854			
0.9918	0.9791	2.0003	0.9915	0.9788	1.2522			
0.9899	1.0938	2.2364	0.9895	1.0934	1.4000			
0.9887	1.1509	2.3456	0.9883	1.1506	1.4683			
0.9834	1.3831	2.8289	0.9830	1.3826	1.7708			
	m=	2.05924		m=	1.28946			
QSTD	b=	-0.01929	QA	b=	-0.01207			
	r=	0.99998		r=	0.99998			

	Calculation	ıs	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime
	For subsequent flow rat	e calculatio	ns:
Qstd=	$1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b $	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
	olute temperature (°K)
	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

Noise

Certificate of Calibration

for

Description:

Sound Level Meter

Manufacturer:

NTi Audio

Type No.:

XL2 (Serial No.: A2A-13661-E0)

Microphone:

ACO 7052 (Serial No.:68914)

Preamplifier:

NTi Audio MA220 (M2211) (Serial No.:6282)

Submitted by:

Customer:

Acuity Sustainability Consulting Limited

Address:

Unit E, 12/F., Ford Glory Plaza,

Nos. 37-39 Wing Hong Street,

Cheung Sha Wan, Kowloon, Hong Kong

Upon receipt for calibration, the instrument was found to be:

Within (31.5Hz – 8kHz)

☐ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 20 August 2022

Date of calibration: 22 August 2022

Date of NEXT calibration: 21 August 2023

Calibrated by:

Calibration Technician

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 22 August 2022

Certificate No.: APJ22-071-CC001

MR TESTING LABORATION (A+A) *L

Page 1 of 4

Homepage: http://www.aa-lab.com

E-mail: inquiry@aa-lab.com

Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

Calibration Precaution: 1.

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:

23.4 °C

Air Pressure:

1005 hPa

Relative Humidity:

68.5 %

3. Calibration Equipment:

Type

Serial No.

Calibration Report Number

Traceable to

Multifunction Calibrator

B&K 4226

2288467

AV220061

HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)		Applied value		UUT Reading,	IEC 61672 Class 1		
Range, dB	Freq. V	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	93.8	±0.4

Linearity

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		93.8	Ref
30-130	dBA	SPL	Fast	104	1000	103.8	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Appl	ied value	UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	0.4	1000	93.8	Ref
30 130	uDA	O1 L	Slow	94	1000	93.8	±0.3

Certificate No.: APJ22-071-CC001

Page 2 of 4

Homepage: http://www.aa-lab.com

Frequency Response

Linear Response

Sett	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. Wo	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	93.9	±2.0
					63	94.0	±1.5
×					125	93.9	±1.5
					250	93.8	±1.4
30-130	dB	SPL	Fast	94	500	93.8	±1.4
					1000	93.8	Ref
					2000	93.4	±1.6
					4000	93.0	±1.6
					8000	92.2	+2.1; -3.1

A-weighting

Sett	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	54.6	-39.4 ±2.0
					63	67.7	-26.2 ±1.5
					125	77.8	-16.1 ±1.5
					250	85.2	-8.6 ±1.4
30-130	dBA	SPL	Fast	94	500	90.6	-3.2 ±1.4
					1000	93.8	Ref
					2000	94.6	+1.2 ±1.6
					4000	94.0	$+1.0\pm1.6$
					8000	91.2	-1.1 +2.1; -3.1

C-weighting

Setting of Unit-under-test (UUT)			Appl	ied value	UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	90.9	-3.0 ±2.0
					63	93.1	-0.8 ± 1.5
					125	93.7	-0.2 ±1.5
					250	93.8	-0.0 ± 1.4
30-130	dBC	SPL	Fast	94	500	93.8	-0.0 ± 1.4
					1000	93.8	Ref
					2000	93.3	-0.2 ±1.6
					4000	92.2	-0.8 ±1.6
					8000	89.3	-3.0 +2.1; -3.1

Certificate No.: APJ22-071-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.10
	125 Hz	± 0.05
	250 Hz	± 0.05
	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

MAR TESTING LABORED AND LABORED AND MAR TESTING LABORED AND LABORE

Page 4 of 4

Homepage: http://www.aa-lab.com

E-mail: inquiry@aa-lab.com

Certificate No. D224349E

CALIBRATION CERTIFICATE

Product : SOUND CALIBRATOR

Type : NC-75

Serial number : 34724243

Manufacturer : RION CO., LTD.

Calibration quantities : Sound pressure level (with reference standard microphone)

Calibration method : Measured by specified secondary standard microphone

according to JCSS calibration procedure specified by RION.

Ambient conditions : Temperature 23.9 °C, Relative humidity 49 %,

Static pressure 99.9 kPa

Calibration date : 05/07/2022 (DD/MM/YYYY)

Calibration location : 3-20-41 Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan

RION CO., LTD. Calibration Room

We hereby certify that the results of this calibration were as follows.

Issue date: 11/07/2022 (DD/MM/YYYY)

Junichi Kawamura
Manager
Quality Assurance Section,
Quality Assurance Department,
Environmental Instrument Division,
RION CO., LTD.

3-20-41 Higashimotomachi, Kokubunji,

Tokyo 185-8533, Japan

This certificate is based on article 144 of the Measurement Law and indicates the result of calibration in accordance with measurement standards traceable to Primary Measurement Standards (National Standards) which realizes the physical units of measurement according to the International System of Units (SI).

The accreditation symbol is attestation of which the result of calibration is traceable to Primary Measurement Standards (National Standards).

The certificate shall not be reproduced except in full, without the written approval of the issuing laboratory.

The calibration laboratory who issued this calibration certificate conforms to ISO/IEC 17025:2017.

This calibration certificate was issued by the calibration laboratory accredited by IAJapan who is a signatory to the Mutual Recognition Arrangement (MRA) of International Laboratory Accreditation Cooperation (ILAC) and Asia Pacific Accreditation Cooperation (APAC). This (These) calibration result(s) may be accepted internationally through ILAC/APAC MRA.

Certificate No. D224349E

CALIBRATION RESULT

1. Sound pressure level (with reference standard microphone)

Measured	Expanded
value	uncertainty *1
93.99 dB	0.09 dB

Specified secondary standard microphone:

Type

: 4160

Serial number : 2973341

Reference Sound pressure: 2×10.5 Pa

*1 Defines an interval estimated to have a level of confidence of approximately 95 %.

Coverage factor k=2

Calibration result is the calibration value in ambient conditions during calibration.

BE OUT OF JCSS CALIBRATION

1. Frequency

M	Measurement
Measured value	uncertainty (k=2)
1000.0 Hz	$3.9 \times 10^{-4} \mathrm{Hz}$

Working measurement standard universal counter:

: 53132A

Serial number : MY40005574

(JCSS Calibration Certificate No. 21081499079575510)

2. Total distortion

Measured	
value	181770
0.2 %	

Working measurement standard distortion meter:

: VA-2230A

Serial number : 11076061

(A2LA Calibration Certificate No. 1501-03080)

- closing -

Calibration Certificate

Certificate No. 300737

Page

2 Pages

Customer: Acuity Sustainability Consulting Limited

Address: Unit E, 12/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, H.K.

Order No.: Q30320

Date of receipt

2-Feb-23

Item Tested

Description: Hot Wire Anemometer

Manufacturer: RS PRO

I.D.

ASCL-EQ-111

Model

: RS-90

Serial No.

: 210722208

Test Conditions

Date of Test: 13-Feb-23

Supply Voltage

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: T03, Z04.

Test Results

All results were within the manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S155

Std. Anemometer

206240

NIM-PRC

S223C

Std. Thermometer

205617

NIM-PRC

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

13-Feb-23

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

E

Calibration Certificate

Certificate No. 300737

Page 2 of 2 Pages

Results:

1. Velocity

Applied Value (m/s)	UUT Reading (m/s)	Mfr's Spec.	
0.00	0.00		
2.50	2.43		
5.00	5.04	1 (2 0/ - 5 1: + 0 2/)	
10.00	10.07	\pm (3 % of reading + 0.3 m/s)	
15.00	15.65	1	
19.00	19.87		

2. Temperature

Applied Value (°C)	Applied Value (°C) UUT Reading (°C)	
23.12	23.0	±2°C

Remark: 1. UUT: Unit-Under-Test

2. Uncertainty: \pm (0.9 % + 0.16 m/s) for Velocity, \pm 0.1 °C for Temperature, for a confidence probability of not less than 95 %.

3. Atmospheric Pressure: 1 002 hPa

----- END -----

Water Quality

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BC010056

Date of Issue

: 18 January 2023

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited

Unit E, 12/F, Ford Glory Plaza 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment:

HORIBA U-53

Manufacturer:

HORIBA

Serial Number:

PORBNFNT

Date of Received:

12 January 2023

Date of Calibration:

17 January 2023

Date of Next Calibration:

16 April 2023

Request No.:

D-BC010056

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter

Reference Method

pH value

APHA 21e 4500 H+

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March

2008: Working Thermometer Calibration Procedure

Salinity

APHA 21e 2520 B

Dissolved oxygen

APHA 21e 4500 O

Turbidity

APHA 21e 2130 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	3.94	-0.06	Satisfactory
7.42	7.54	0.12	Satisfactory
10.01	9.92	-0.09	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
10	11.03	1.03	Satisfactory
23	24.48	1.48	Satisfactory
33	34.19	1.19	Satisfactory

Tolerance of Temperature should be less than $\pm\,2.0$ (°C)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.51	-4.90	Satisfactory
20	19.04	-4.80	Satisfactory
30	29.62	-1.27	Satisfactory

Tolerance of Salinity should be less than $\pm~10.0$ (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning
Assistant Manager (Chemical Testing)

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BC010056

Date of Issue

: 18 January 2023

Page No.

: 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
9.00	8.78	-0.22	Satisfactory
5.88	5.44	-0.44	Satisfactory
2.65	2.25	-0.40	Satisfactory
1.14	0.80	-0.34	Satisfactory

Tolerance of Dissolved oxygen should be less than \pm 0.5 (mg/L)

(5) Turbidity

Expec	ted Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
	0	0.11		Satisfactory
	10	10.0	0.0	Satisfactory
,	20	21.5	7.3	Satisfactory
×	100	108	8.0	Satisfactory
	800	812	1.5	Satisfactory

Tolerance of Turbidity should be less than ± 10.0 (%)

Remark(s)

- 'The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.
- ·The results relate only to the calibrated equipment as received
- •The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.
- "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.
- 'The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

Calibration Certificate

Certificate No. 210252

Page 2 Pages

Customer: Acuity Sustainability Consulting Limited

Address: Unit E, 12/F, Ford Glory Plaza, No. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, H.K.

Order No.: Q24081

Date of receipt

31-Oct-22

Item Tested

Description : Flow Probe

Manufacturer: Global Water

I.D.

Model

: FP111

Serial No.

: 22K100859

Test Conditions

Date of Test:

7-Nov-22

Supply Voltage : --

Ambient Temperature :

23°C

Relative Humidity: 78%

Test Specifications

Calibration check.

Ref. Document/Procedure: V12

Test Results

All results were within the manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S179

Std. Tape

201868

NIM-PRC

S136A

Stop Watch

201878

SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

Kin Wong

Approved by:

This Certificate is issued by

Hong Kong Calibration Ltd.

7-Nov-22

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 210252

Page 2 of 2 Pages

Results:

Applied Value (m/s)	UUT Reading (m/s)	Mfr's Spec.
0.96	1.0	± 0.1 m/s

Remarks: 1. UUT: Unit-Under-Test

2. Uncertainty: ± 1 %, for a confidence probability of not less than 95%.

----- END -----

Landfill Gas

PROMAT (HK) LTD

寶時(香港)有限公司

901 New Trend Centre, 704 Prince Edward Road East, San Po Kong, Kowloon, Hong Kong Tel: (852)2661-2392 Fax: (852)2661-2086 Email:info@promat.hk. http://www.premat.hk

Calibration Certificate

Customer Name

Paul Y Construction Co. Ltd

Model

PS200

Serial

373075

Tested On

16 November, 2022

Cal Expires

16 November, 2023.

Audible Alarm

PASS

Visual Alarm

PASS

Calibrated For

METHANE

100% LEL Equivalent

4.4% by VOL

Overall Results

PASS

Calibration Result

Gas Applied	Range	Reading	Calibrated	Result
Zero Air	% LEL	0	0	PASS
Zero Air	% O2	20.9	20.9	PASS
Zero Air	РРМ СО	0	0	PASS
Zero Air	PPM H2S	0	0	PASS

Gas Applied	Range	Reading	Calibrated	Result
50% LEL Methane	% LEL	61	50	PASS
18% VOL Oxygen	% O2	17.8	N/A	PASS
100 PPM Carbon Monoxide	РРМ СО	71	100	PASS
25 PPM Hydrogen Sulphide	PPM H2S	22	25	PASS

Calibrated By Ivan Lo:

Appendix E Monitoring Results

Air Quality

1-hour TSP Concentration (µg/m³) at Location AM1

Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
Date	Brand & Model	Serial No.	K-Iactoi	vveatilei	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
6/4/2023	Sibata LD-5R	942532	0.00108	Cloudy	10:01	11:01	12:01	50	53	55	53		
12/4/2023	Sibata LD-5R	942532	0.00108	Fine	10:50	11:50	12:50	21	19	20	20		
18/4/2023	Sibata LD-5R	942532	0.00108	Cloudy	15:12	16:12	17:12	24	22	22	23	285	500
24/4/2023	Sibata LD-5R	942532	0.00108	Cloudy	13:48	14:48	15:48	48	50	45	48		
29/4/2023	Sibata LD-5R	942532	0.00108	Fine	13:09	14:09	15:09	29	34	31	31		
							Average		35				
											1		

Min.

1-hour TSP Concentration (µg/m³) at Location AM2

Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
Duto	Brand & Model	Serial No.	it idoto.	Wouthor	Camping Time (1)	Camping Time (2)	Camping Time (0)	μg/m ³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
6/4/2023	Sibata LD-5R	882106	0.00107	Cloudy	9:40	10:40	11:40	33	37	31	34		
12/4/2023	Sibata LD-5R	882106	0.00107	Fine	11:00	12:00	13:00	32	39	33	35		
18/4/2023	Sibata LD-5R	882106	0.00107	Cloudy	15:02	16:02	17:02	44	76	46	55	279	500
24/4/2023	Sibata LD-5R	882106	0.00107	Cloudy	13:59	14:59	15:59	31	41	36	36		
29/4/2023	Sibata LD-5R	882106	0.00107	Fine	13:16	14:16	15:16	52	43	50	48		
							Average		42				
							Max.		76				
							Min.		31				

1-hour TSP Concentration (µg/m³) at Location AM3

	Ooncentration (p	·9/··· / at =00t											
Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
	Brand & Model	Serial No.	it idotoi	· · · · · · · · · · · · · · · · · · ·	oumping time (1)	Camping Time (2)	oumping rime (o)	μg/m ³	μg/m³	μg/m³	μg/m³	μg/m ³	μg/m ³
6/4/2023	Sibata LD-5R	0Z4545	0.00114	Cloudy	10:13	11:13	12:13	45	46	43	45		
12/4/2023	Sibata LD-5R	0Z4545	0.00114	Fine	10:40	11:40	12:40	41	50	40	44		
18/4/2023	Sibata LD-5R	0Z4545	0.00114	Cloudy	15:29	16:29	17:29	35	23	24	27	285	500
24/4/2023	Sibata LD-5R	0Z4545	0.00114	Cloudy	13:40	14:40	15:40	48	54	49	50		
29/4/2023	Sibata LD-5R	0Z4545	0.00114	Fine	13:29	14:29	15:29	32	39	34	35		
							Average		40				
							Max.		54				
							Min.		23				

The Summary of TSP 24-hour Concentration (ug/m³) at Location AM1

Start Date	Weather Condition	Avg Air Temp	Avg Atmospheric Pressure	Elapse	e Time	Sampling Time	Averaged Flow Rate	Averaged Flow Rate	Total Flow Volume	Filter W	eight (g)	Particulate weight	Concentration	Action Level	Limit Level
		(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
6/4/2023	Cloudy	22.7	1012.1	951.31	975.31	1440	39.5	1.13	1634	2.7346	2.7898	0.0552	34		
12/4/2023	Fine	22.8	1012.9	975.31	999.31	1440	40	1.15	1659	2.6675	2.8527	0.1852	112		
18/4/2023	Cloudy	25.2	1011.3	999.31	1023.31	1440	40	1.15	1649	2.6750	2.7463	0.0713	43	164	260
24/4/2023	Cloudy	23.4	1014.1	1023.31	1047.31	1440	40	1.15	1660	2.6742	2.7655	0.0913	55		
29/4/2023	Fine	25.0	1011.9	1047.31	1071.31	1440	40	1.15	1650	2.6702	2.7651	0.0949	58		
				-		-	-					Average	60		•
												Min	34		

Max

Max

Min

Max

112

111

40

151

The Summary of 24-hour TSP Concentration (ug/m³) at Location AM2

The Summary C	01 24-110ui 1	or conce	entration (µg/m)	at Localic	/II AIVIZ										
Start Date	Weather Condition	Avg Air Temp	Avg Atmospheric Pressure	Elapse	Time	Sampling Time	Averaged Flow Rate	Flow Rate	Total Flow Volume	Filter W	eight (g)	Particulate weight	Concentration	Action Level	Limit Level
		(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
6/4/2023	Cloudy	22.7	1012.1	724.40	748.40	1440	41	1.01	1449	2.7457	2.7987	0.0530	37		
12/4/2023	Fine	22.8	1012.9	748.40	772.40	1440	41	1.01	1450	2.6845	2.8456	0.1611	111		
18/4/2023	Cloudy	25.2	1011.3	772.40	796.40	1440	40.5	0.98	1416	2.6776	2.7722	0.0946	67	152	260
24/4/2023	Cloudy	23.4	1014.1	796.40	820.41	1441	40.5	0.99	1427	2.6754	2.7482	0.0728	51		
29/4/2023	Fine	25.0	1011.9	820.41	844.41	1440	40.5	0.98	1417	2.6670	2.7388	0.0718	51		
	-		-	-		-			-			Average	63		•
												Min	37		

The Summary of 24-hour TSP Concentration (µg/m³) at Location AM3

ine Summary	01 2 4-11001 1	01 001100	Filliation (µg/iii)	ut Locuit	711 AIVIO										
Start Date	Weather Condition	Avg Air Temp	Avg Atmospheric Pressure	Elapse	e Time	Sampling Time	Averaged Flow Rate	Flow Rate	Total Flow Volume	Filter W	eight (g)	Particulate weight	Concentration	Action Level	Limit Level
		(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
6/4/2023	Cloudy	22.7	1012.1	1729.97	1754.00	1442	40	1.20	1724	2.7311	2.7998	0.0687	40		
12/4/2023	Fine	22.8	1012.9	1754.00	1778.00	1440	43	1.29	1854	2.6673	2.9472	0.2799	151		
18/4/2023	Cloudy	25.2	1011.3	1778.00	1802.00	1440	39	1.16	1669	2.6855	2.7925	0.1070	64	163	260
24/4/2023	Cloudy	23.4	1014.1	1802.00	1826.00	1440	40	1.20	1723	2.6695	2.7474	0.0779	45		
29/4/2023	Fine	25.0	1011.9	1826.00	1850.00	1440	40	1.19	1714	2.6885	2.7738	0.0853	50		
	•						•	-			-	Average	70		•

Remarks: 1. Orange Text equal to exceed Action Level 2. Red Text equal to exceed Limit Level

Noise

Impact Phase Construction Noise Monitoring Data at Location NM1a

Date	Weather	Wind speed	Start Time	End Time				L ec	, (dB(<i>i</i>	4))				L 10 (C	IB(A))					L 90 (C	IB(A))		
Date	vveatilei	m/s	Start Time	End Time	1st	2nd	3rd	4th	5th	6th	Overall (30min)	1st	2nd	3rd	4th	5th	6th	1st	2nd	3rd	4th	5th	6th
6/4/2023	Cloudy	0	10:32	11:02	52.0	53.7	55.7	57.8	56.8	55.9	55.7	53.6	56.4	57.6	60.4	59	58.1	48.6	48.1	49.9	51.3	50.5	48.4
12/4/2023	Fine	1.7	11:12	11:42	58.1	57.4	58	59.1	57.1	58.2	58.0	73.1	72.6	72.9	74.6	72.4	73.6	44.9	43.1	43.2	44.6	41.6	42.2
18/4/2023	Hazy	1.5	14:12	14:42	54.8	53.4	53.9	53.2	54.1	52.4	53.7	69.6	68.6	68.1	67.6	68.2	69.8	46.9	47	46.1	47.9	46.1	45.2
24/4/2023	Cloudy	2.6	13:00	13:30	57.1	58.2	57.4	59.1	60.1	57.8	58.4	60.1	61.2	62.4	63.4	62.1	61.9	50.1	51.1	50.6	52.2	53.2	51.9
									verag	e	56.8												

Average 56.8

Baseline Level 55.4

Action Level When one valid documented complaint is received

Limit Level 75

Impact Phase Construction Noise Monitoring Data at Location NM2a

																					/		
Date	Weather	Wind speed	Start Time	End Time				L _{ec}	, (dB(<i>i</i>	A))				L_{10} (c	IB(A))					L_{90} (c	iB(A))		
Date	vveatilei	m/s	Start Time	End Time	1st	2nd	3rd	4th	5th	6th	Overall (30min)	1st	2nd	3rd	4th	5th	6th	1st	2nd	3rd	4th	5th	6th
6/4/2023	Cloudy	1.5	14:32	15:02	65.7	66.2	64.3	66.4	65.4	63.4	65.4	68.5	69.3	67.9	70.2	69.1	67.8	60.1	61.2	59.9	62.4	60.2	61.1
12/4/2023	Fine	2.3	16:00	16:30	53.1	54.3	52.1	55.1	53.2	54.1	53.8	55.2	56.3	54.2	57.2	55.3	56.4	50.1	49.1	51.1	52.6	51.9	49.4
18/4/2023	Hazy	2.1	17:20	17:50	52.3	52.2	54	52.1	55	54	53.4	53.6	53.6	55.7	53.6	57.7	55.8	50.7	50.2	50.6	50.4	51.8	50.8
24/4/2023	Cloudy	2.6	15:01	15:31	52.2	54.1	51.9	52.6	52.6	53.1	52.8	57.1	56.4	57.3	56.2	57.6	56.2	49.1	48.6	50.1	49.2	48.2	47.3
									verag	е	60.1												

Baseline Level 54.5

Action Level When one valid documented complaint is received
Limit Level 75

Water Quality

Monitoring Location: WM1

Date	Time	Weather	Water Depth (m)	Water Flow (L/s)	Water Temperature (°C)		DO (mg/L)			рН			Turbidity (NTU)			SS (mg/L)	
					()	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level
6-Apr-23	14:34	Cloudy	0.1	0	24.3	7.8	<7.4	<4	7.1	>7.7	>7.8	0.4	>9.2	>9.5	3.2	>9.7	>11.4

Monitoring Location: WM2

Date	Time	Weather	Water Depth (m)	Water Flow (L/s)	Water Temperature		DO (mg/L)			рН			Turbidity (NTU)			SS (mg/L)	
					(0)	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level
6-Apr-23	8:13	Cloudy	0.30	0	25.3	6.7	<5	<4	7.3	>7.6	>7.7	64.3	>108.3	>108.9	48.1	>94.5	>94.7

Remark:

^{1.} Sample will be grabbed on surface when the water depth is less than 1m.

^{2. &}quot;TBC" equal to "To be confirm"

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: ACUMEN LABORATORY AND TESTING LIMITED Client

: MR HUNTINGTON HUI

: UNIT D, 12/F, FORD GLORY PLAZA, NOS.37-39 WING HONG Address

STREET, CHEUNG SHA WAN, KOWLOON, HONG KONG

: htthui@acumen-env.com E-mail

: +852 2333 6823 Telephone : +852 2333 1316 Facsimile

: NENTX Project

Order number : ----

C-O-C number : ----

Site

Contact

Laboratory

Contact

Address

Quote

number

: ALS Technichem (HK) Pty Ltd

Page

Work Order

: HK2313159

: 1 of 9

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

Yip Street, Kwai Chung, N.T., Hong Kong

: richard.fung@alsglobal.com E-mail

: Richard Fung

: +852 2610 1044 Telephone : +852 2610 2021 Facsimile

Date Samples Received

: 06-Apr-2023

: 24-Apr-2023 Issue Date

: 2 No. of samples received

: 2 No. of samples analysed

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories

Position

: HKE/2751/2022_V2

Authorised results for

Fung Lim Chee, Richard

Managing Director

Inorganics

Fung Lim Chee, Richard

Managing Director

Metals ENV

Aa

Ng Sin Kou, May

Laboratory Manager

Microbiology_ENV

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group Page Number : 2 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2313159

General Comments

This report supersedes any previous report(s) with the same work order number. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Testing period is from 06-Apr-2023 to 21-Apr-2023.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2313159

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition. The result(s) related only to the item(s) tested.

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified.

Microbiological sample(s) was/ were collected in 250mL sterile plastic bottles containing sodium thiosulfate. Sample(s) arrived at the laboratory at 18:20.

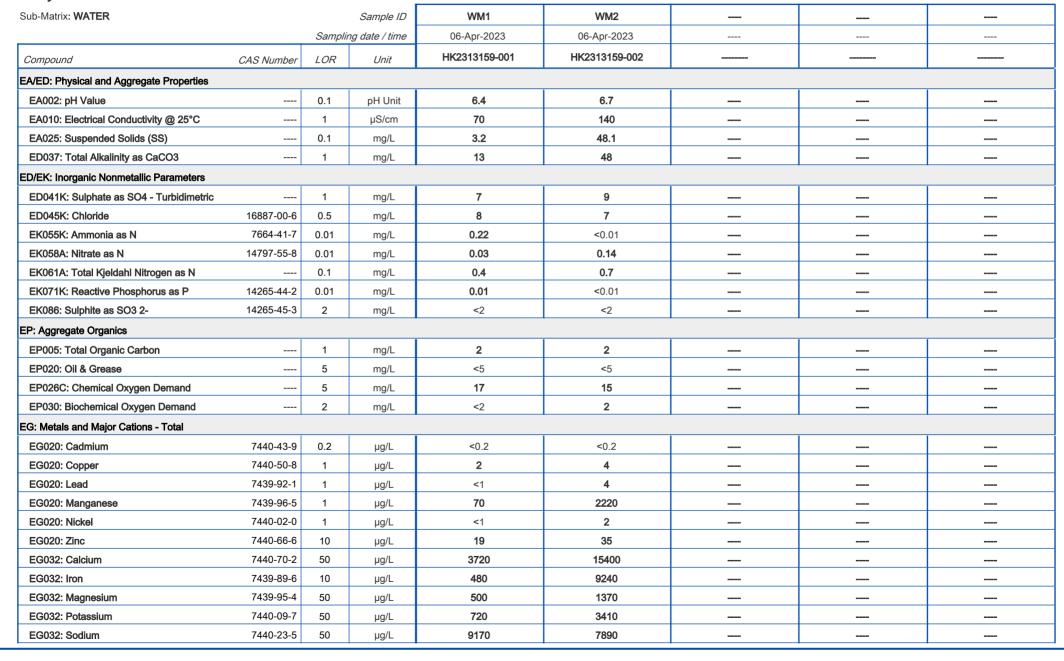
NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

ED037 - Titration end point for Total Alkalinity is pH 4.5 while end point for Total Alkalinity <20mg/L is pH 4.2.

Water sample(s) digested by in-house method E-3005 prior to the determination of total metals. The in-house method is developed based on USEPA method 3005.

EA002 - pH value is reported as at 25°C. Calibration range of pH value is 4.0 - 10.0. Results exceeding this range is for reference only.

EA025 - The accredited LOR of Total Suspended Solids is 0.5mg/L. Results below this LOR are for reference only.


3 of 9

Client

: ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2313159

Analytical Results

. 4 of 9

Client

ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2313159

Sub-Matrix: WATER			Sample ID	WM1	WM2	 	
		Samplir	ng date / time	06-Apr-2023	06-Apr-2023	 	
Compound	CAS Number	LOR	Unit	HK2313159-001	HK2313159-002	 	
EM: Microbiological Testing							
EM002: E. coli		1	CFU/100mL	400	260	 	
EM003: Total Coliforms		1	CFU/100mL	420	330	 	

∴ 5 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2313159

ALS

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labo	ratory Duplicate (DUP)	Report	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	<i>RPD</i> (%)
EA/ED: Physical and A	ggregate Properties (QC Lot:	: 4986151)						
HK2313376-001	Anonymous	EA010: Electrical Conductivity @ 25°C		1	μS/cm	2100	2120	0.8
EA/ED: Physical and A	ggregate Properties (QC Lot:	: 4986152)						
HK2313376-001	Anonymous	EA002: pH Value		0.1	pH Unit	7.4	7.4	0.0
HK2313394-001	Anonymous	EA002: pH Value		0.1	pH Unit	7.5	7.4	0.0
EA/ED: Physical and A	ggregate Properties (QC Lot:	: 4987647)						
HK2312959-001	Anonymous	EA025: Suspended Solids (SS)		0.5	mg/L	40.0	41.3	3.2
HK2313105-008	Anonymous	EA025: Suspended Solids (SS)		0.5	mg/L	2.6	2.7	0.0
EA/ED: Physical and A	gregate Properties (QC Lot:	: 4987794)						
HK2313376-001	Anonymous	ED037: Total Alkalinity as CaCO3		1	mg/L	34	34	0.0
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	4982167)						
HK2312859-003	Anonymous	EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	1.80	1.80	0.0
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	4982496)						
HK2313159-002	WM2	ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	9	9	0.0
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	4982497)						
HK2313159-002	WM2	ED045K: Chloride	16887-00-6	1	mg/L	7	7	0.0
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	4985940)						
HK2313441-001	Anonymous	EK055K: Ammonia as N	7664-41-7	0.01	mg/L	20.5	16.9	19.5
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	4988300)						
HK2313159-001	WM1	EK086: Sulphite as SO3 2-	14265-45-3	2	mg/L	<2	<2	0.0
ED/EK: Inorganic Nonn	netallic Parameters (QC Lot:	4995152)						
HK2312989-001	Anonymous	EK061A: Total Kjeldahl Nitrogen as N		0.1	mg/L	3140	3070	2.3
EP: Aggregate Organic	s (QC Lot: 4995509)							
HK2314189-005	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	<1	0.0
EP: Aggregate Organic	s (QC Lot: 5005161)							
HK2311191-003	Anonymous	EP026C: Chemical Oxygen Demand		5	mg/L	13	13	0.0
G: Metals and Major C	Cations - Total (QC Lot: 4982	2013)						
HK2313159-001	WM1	EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	0.0
		EG020: Copper	7440-50-8	1	μg/L	2	2	0.0
		EG020: Lead	7439-92-1	1	μg/L	<1	<1	0.0
		EG020: Manganese	7439-96-5	1	μg/L	70	68	3.0

∴ 6 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2313159

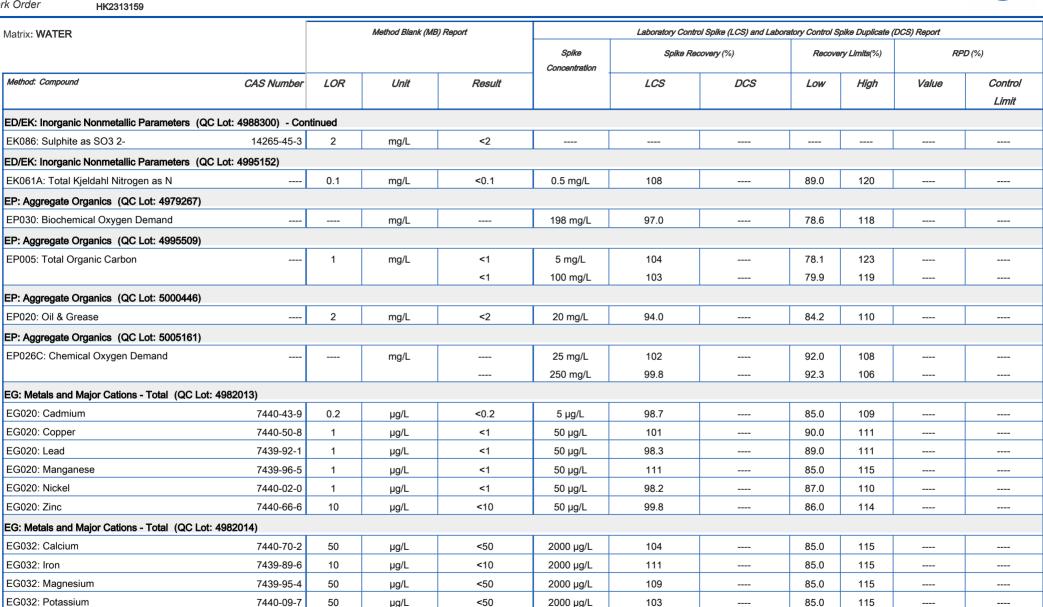
Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	<i>RPD</i> (%)		
sample ID							Result			
EG: Metals and Major Cat	ons - Total (QC Lot: 4982013) -	Continued								
HK2313159-001 WM1	WM1	EG020: Nickel	7440-02-0	1	μg/L	<1	<1	0.0		
		EG020: Zinc	7440-66-6	10	μg/L	19	19	0.0		
EG: Metals and Major Cat	EG: Metals and Major Cations - Total (QC Lot: 4982014)									
HK2313159-002	WM2	EG032: Iron	7439-89-6	10	μg/L	9240	9360	1.4		
	EG032: Calcium	7440-70-2	50	μg/L	15400	15600	0.9			
		EG032: Magnesium	7439-95-4	50	μg/L	1370	1380	0.0		
		EG032: Potassium	7440-09-7	50	μg/L	3410	3430	0.8		
		EG032: Sodium	7440-23-5	50	μg/L	7890	7950	0.7		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER Method: Compound CAS Number		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike Concentration	Spike Recovery (%)		Recovery Limits(%)		RPD (%)		
		LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties (QC	Lot: 4986151)											
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	146.9 µS/cm	99.6		93.5	106			
				<1	1412 μS/cm	96.7		94.3	105			
EA/ED: Physical and Aggregate Properties (QC	Lot: 4987647)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	10 mg/L	91.5		82.4	118			
EA/ED: Physical and Aggregate Properties (QC	Lot: 4987794)											
ED037: Total Alkalinity as CaCO3		1	mg/L	<1	50 mg/L	100		95.0	105			
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 4982167)											
EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	101		92.4	106			
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 4982496)											
ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	<1	5 mg/L	108		89.8	108			
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 4982497)											
ED045K: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	101		88.2	108			
ED/EK: Inorganic Nonmetallic Parameters (QC I	_ot: 4985940)											
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	96.9		89.3	109			

. 7 of 9

Client ACUMEN LABORATORY AND TESTING LIMITED


Work Order

EG032: Sodium

7440-23-5

50

μg/L

<50

2000 µg/L

103

85.0

115

: 8 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2313159

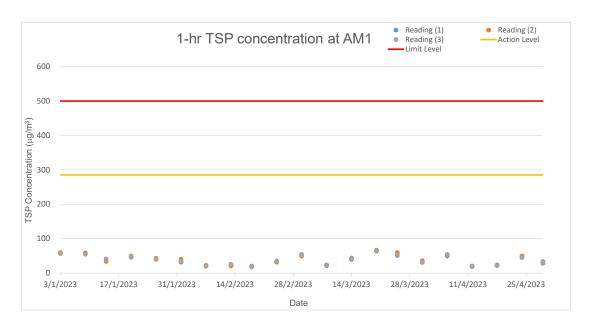
Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: WATER					Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike Concentration	Spike Recovery (%)		Recovery Limits (%)		RPD (%)			
Laboratory sample ID			CAS Number		MS	MSD	Low	High	Value	Control Limit		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 4982	2167)										
HK2312859-003	Anonymous	EK071K: Reactive Phosphorus as P	14265-44- 2	5 mg/L	99.6		75.0	125				
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 4982	2496)										
HK2313159-002	WM2	ED041K: Sulphate as SO4 - Turbidimetric		5 mg/L	84.9		75.0	125				
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 4982	2497)										
HK2313159-002	WM2	ED045K: Chloride	16887-00- 6	5 mg/L	91.5		75.0	125				
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 498	5940)										
HK2313441-001	Anonymous	EK055K: Ammonia as N	7664-41-7	50 mg/L	98.3		75.0	125				
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 499	5152)										
HK2312989-001	Anonymous	EK061A: Total Kjeldahl Nitrogen as N		500 mg/L	# Not Determined		75.0	125				
EP: Aggregate C	Organics (QC Lot: 4995509)											
HK2314189-005	Anonymous	EP005: Total Organic Carbon		5 mg/L	90.0		75.0	125				
EP: Aggregate C	Organics (QC Lot: 5005161)											
HK2313159-001	WM1	EP026C: Chemical Oxygen Demand		10 mg/L	102		75.0	125				
EG: Metals and	Major Cations - Total (QC Lot: 4982013)											
HK2312932-001	Anonymous	EG020: Cadmium	7440-43-9	5 μg/L	101		75.0	125				
		EG020: Copper	7440-50-8	50 μg/L	97.3		75.0	125				
		EG020: Lead	7439-92-1	50 μg/L	97.4		75.0	125				
		EG020: Manganese	7439-96-5	50 μg/L	114		75.0	125				
		EG020: Nickel	7440-02-0	50 μg/L	93.6		75.0	125				
		EG020: Zinc	7440-66-6	50 μg/L	96.0		75.0	125				
EG: Metals and	Major Cations - Total (QC Lot: 4982014)				<u> </u>							
HK2313159-001	WM1	EG032: Calcium	7440-70-2	2000 μg/L	101		75.0	125				
		EG032: Iron	7439-89-6	2000 μg/L	106		75.0	125				
		EG032: Magnesium	7439-95-4	2000 μg/L	103		75.0	125				

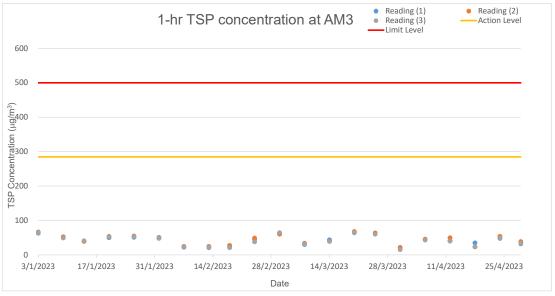
: 9 of 9

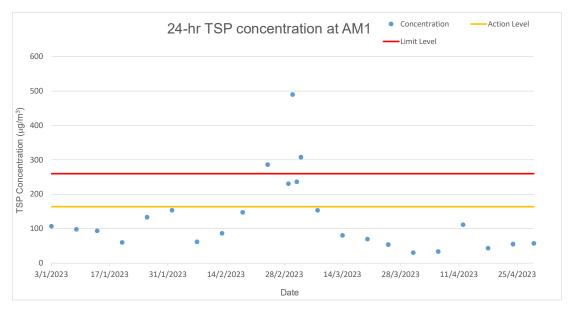
Client : ACUMEN LABORATORY AND TESTING LIMITED

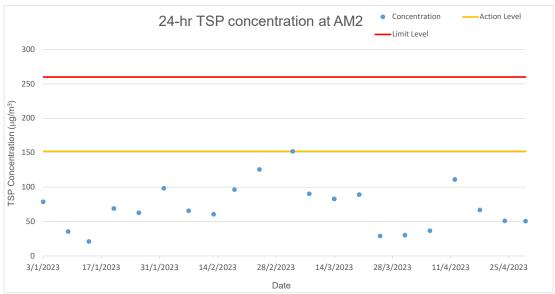
Work Order

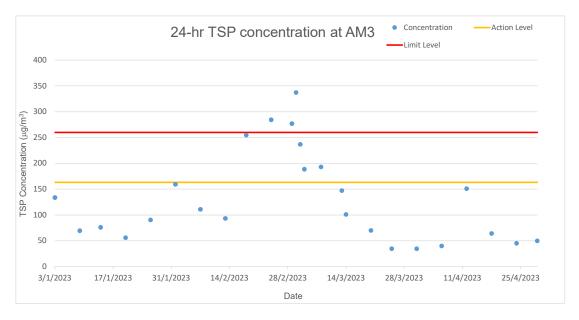

HK2313159

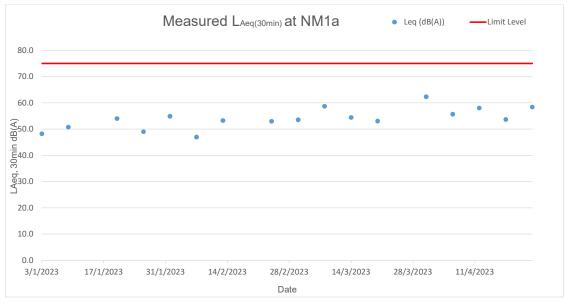


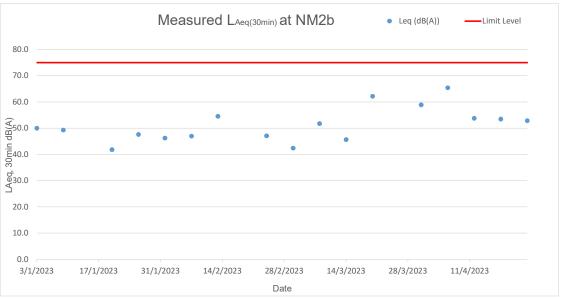

Matrix: WATER			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
			Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)		
Laboratory	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control
sample ID										Limit
EG: Metals and Major Cations - Total (QC Lot: 4982014) - Continued										
HK2313159-001	WM1	EG032: Potassium	7440-09-7	2000 μg/L	103		75.0	125		
		EG032: Sodium	7440-23-5	2000 μg/L	# Not		75.0	125		
					Determined					

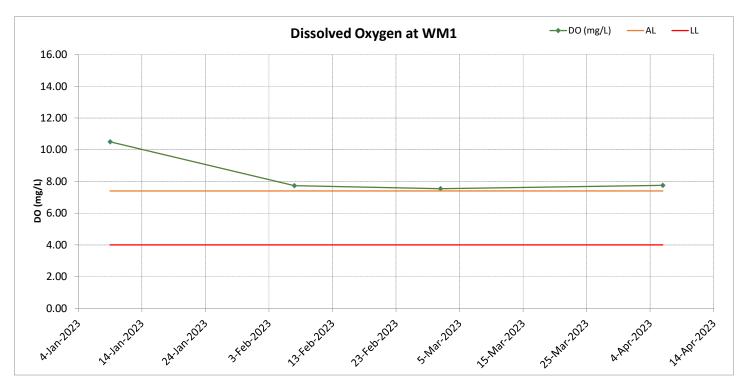

Appendix F Graphical Presentations

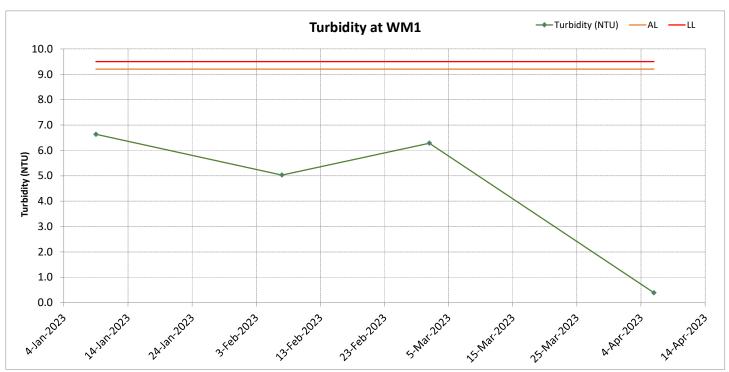

Air Quality

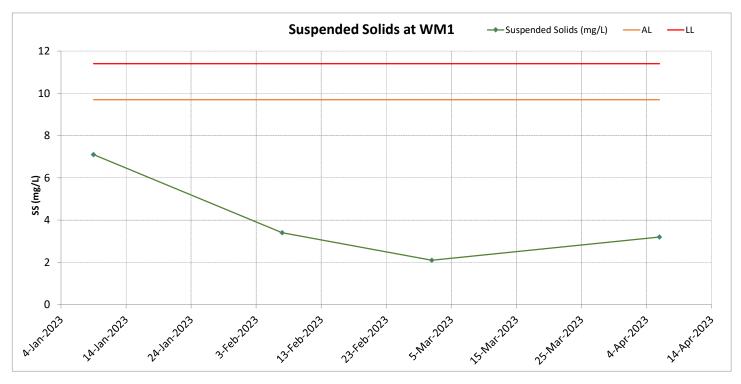


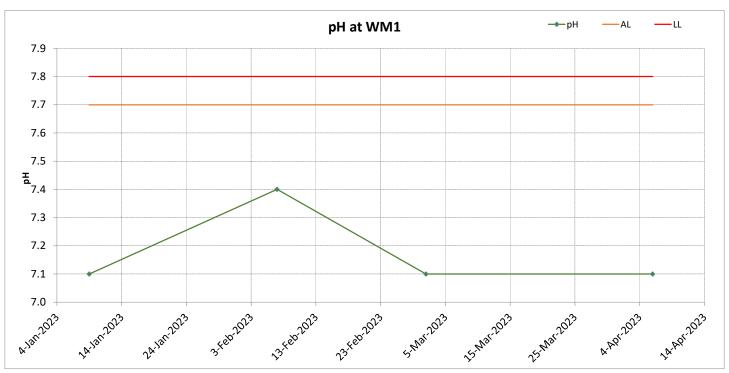


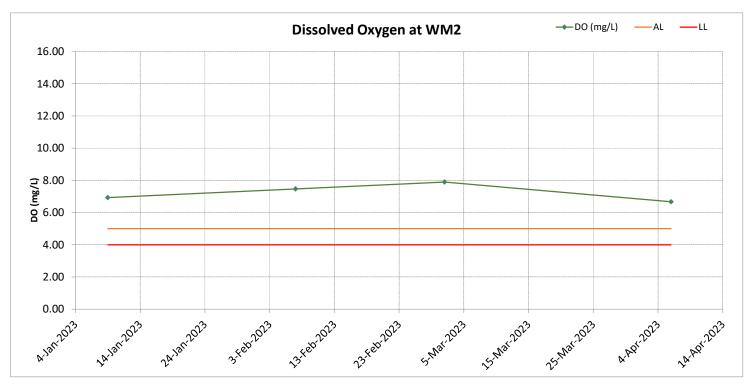


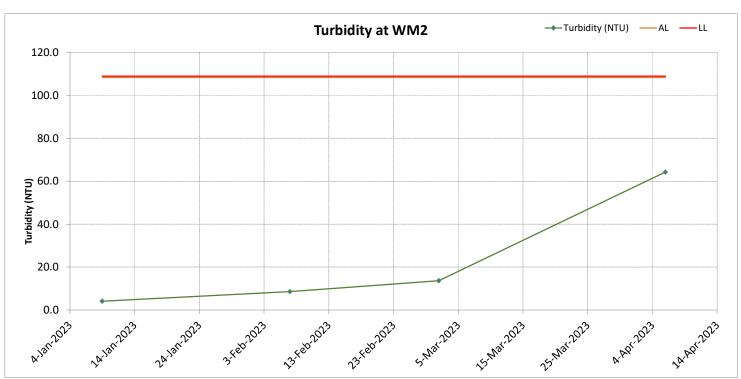


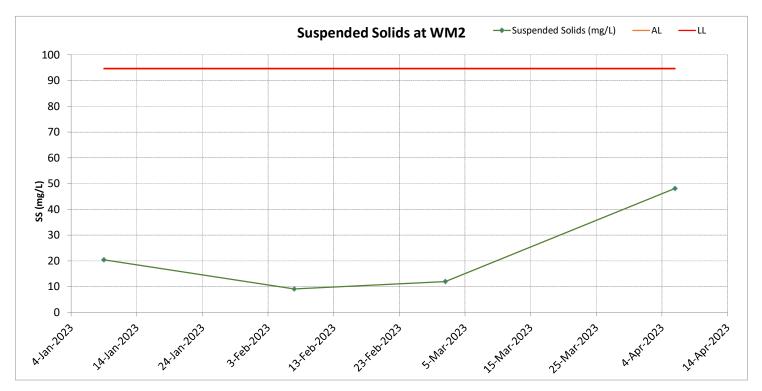

Noise

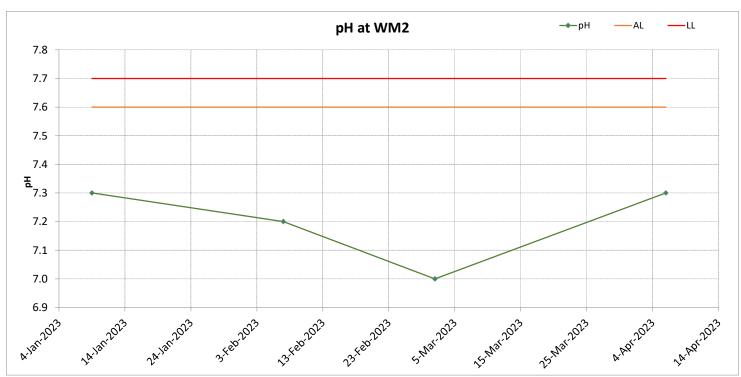





Water Quality







Appendix G Notification of Environmental Quality Limits Exceedance

Notification of Environmental Quality Limits Exceedance

Construction Dust

					Exceedar	nce Count	
Dust Monitoring	Parameter	4 hr TCD 24 hr TCD	Reporting period		Accumulate project to date		
Station	Level Exceedance	- 1-hr TSP 24-hr TSP		Project related	Non- project replated	Project related	Non- project replated
AM1	Action	0	0	0	0	0	2
	Limit	0	0	0	0	0	3
AM2	Action	0	0	0	0	0	0
	Limit	0	0	0	0	0	0
AM3	Action	0	0	0	0	0	4
	Limit	0	0	0	0	0	3

Remarks: * equal to non-project related

Noise Monitoring

Manifesian Otation	Monitoring	No. of Exceedance		
Monitoring Station	Parameter(s)	Action Level	Limit Level	
NM1a		0	0	
NM2a	LAeq (30mins)	0	0	

Notification of Environmental Quality Limits Exceedance

Surface Water Monitoring

Manitarina Ctation	Monitoring	No. of Exceedance		
Monitoring Station	Parameter(s)	Action Level	Limit Level	
	Dissolved Oxygen	0	0	
10/044	рН	0	0	
WM1	Turbidity	0	0	
	Suspended Solids	0	0	
	Dissolved Oxygen	0	0	
14/140	рН	0	0	
WM2	Turbidity	0	0	
	Suspended Solids	0	0	

Landfill Gas (LFG) Monitoring

LFG Monitoring Station	Monitoring Parameter(s)	No. of Exceedance Limit Level
	CH₄	0
Portion A +58 mpD,+55 mpD Platform	CO ₂	0
	O ₂	0

Appendix H Wind Data

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230401_0000 20230401_0010	3.9 3.9	ESE ESE
20230401 0020	3.9	ESE
20230401_0030	2.8	ESE
20230401_0040	4.4	ESE
20230401_0050 20230401_0100	4.2 4.4	SE SE
20230401_0100	3.3	SE
20230401 0120	3.6	SE
20230401_0130	3.9	SE
20230401_0140 20230401_0150	2.8	SE
20230401_0150 20230401_0200	2.8 3.3 1.7	SE SSE
20230401_0210	2.2	SE
20230401_0220	2.5	ESE
20230401 0230 20230401 0240	3.9	ESE
20230401_0240	3.3	ESE ESE
20230401_0230	3.9	ESE
20230401 0300 20230401_0310	3.3	ESE ESE
20230401_0320	3.3	ESE
20230401 0330 20230401 0340	4.2 4.7	ESE ESE
20230401_0350	4.7	ESE
20230401 0400	4.4	ESE
20230401_0410	3.3	ESE
20230401_0420 20230401_0430	3.3 3.3	ESE ESE
20230401_0430 20230401_0440	3.3	ESE
20230401_0450	2.8	ESE
20230401 0500	2.8	ESE
20230401 0510	2.5	ESE
20230401_0520 20230401_0530	3.1 3.3	ESE SE
20230401_0540	3.3	SE
20230401_0550	2.5	ESE
20230401_0600	2.5	ESE
20230401 0610 20230401 0620	2.5 2.2	E ESE
20230401_0620	1.7	ESE
20230401 0640	2.2	ESE
20230401_0650	1.7	Е
20230401_0700	1.7	E
20230401_0710 20230401_0720	1.7 1.1	ESE SE
20230401_0730	1.7	ESE
20230401_0740	1.7	SE
20230401_0750	1.9	ESE
20230401_0800 20230401_0810	2.2 1.7	E E
20230401_0810	2.5	<u>е</u> Е
20230401_0830	2.8	Е
20230401_0840	3.1	E
20230401_0850 20230401_0900	2.8 2.5	<u>Е</u> Е
20230401_0900	2.5	E E
20230401 0920	2.8	Е
20230401_0930	2.8 2.5	Е
20230401_0940	2.8	E
20230401 0950 20230401 1000	2.2	ESE E
20230401 1010	2.5	Е
20230401_1020	2.8 2.5 3.1 2.8	ESE
20230401_1030	2.8	E
20230401_1040 20230401_1050	2.2 2.8	E E
20230401_1030	3.1	<u>е</u> Е
20230401_1110	3.1	Е
20230401_1120	2.5	Е
20230401 1130 20230401 1140	2.8 2.8	E
20230401_1140 20230401_1150	3.1	E ESE
20230101_1130	2.1	LUL

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230401 1200	3.1	E
20230401_1210 20230401_1210 20230401_1220 20230401_1230	3.1	ESE
20230401_1220	2.8	ESE
20230401_1230	2.8	E
20230401_1240	3.3	E
20230401 1250 20230401 1300	3.3 4.2	ESE E
20230401_1310	3.9	E E
20230401_1310	3.3	E
20230401 1330	3,3	Ē
20230401 1340	3.1	E
20230401_1350	3.3	ESE
20230401_1400	3.9	E
20230401_1410	3.3	E
20230401_1420	3.1	E
20230401 1430	3.1	E
20230401_1440 20230401_1450	3.3	E E
20230401_1450	3.1	<u>Е</u> Е
20230401_1510	3.1	ESE
20230401_1510	3.3	ESE
20230401_1520	3.3	ESE
20230401_1540	2.8	ESE ESE
20230401 1550	3.1	ESE
20230401 1600	2.5	ESE
20230401_1610	3.3	ESE
20230401_1620	3.1	ESE
20230401_1630	3.1	ESE
20230401_1640	2.2	E
20230401_1650	2.2	ESE
20230401_1700	1.7	ESE
20230401 1710 20230401 1720	2.2	ESE ESE
20230401_1720	2.5	ESE
20230401_1730	3.3	SE
20230401 1750	1.9	SE
20230401 1800	1.7	SE
20230401 1810	2.5	SE
20230401_1820	2.8	E
20230401_1830	2.2	Е
20230401 1840	2.8	E
20230401_1850	2.5	ESE
20230401_1900 20230401_1910	1.7 2.2	E E
20230401 1910	2.5	ESE
20230401_1920	2.2	ESE
20230401 1940	1.7	SE
20230401 1950	1.7	ESE
20230401_2000	2.5	ESE
20230401_2010	1.9	ESE
20230401 2020	1.7	SE
20230401_2030	1.7	ESE
20230401_2040 20230401_2050	1.4	SE
20230401 2050 20230401 2100	1.4 1.7	ESE ESE
20230401_2100	1.7	ESE
20230401_2110	1.1	SE SE
20230401_2130	2.2	SE SE
20230401_2140	1.7	SSE
20230401 2150	2.8	SSE
20230401_2200	1.7	SSE
20230401_2210	2.2	SSE
20230401_2220	2.2	SE
20230401_2230	3.1	SE
20230401_2240	2.2	SE
20230401_2250 20230401_2300	2.5	ESE
20230401 2300 20230401_2310	2.8 2.8	ESE ESE
20230401_2310	2.8	ESE
20230401_2320	1.7	ESE
20230401 2340	2.5	ESE
20230401_2350	2.5	ESE

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230402_0000	2.8	ESE
20230402_0010	2.8	ESE
20230402_0020	3.3	ESE ESE
20230402_0030	3.1	ESE
20230402_0040	3.3	Е
20230402_0050	3.1	ESE
20230402_0100	2.8	ESE
20230402_0110	3.9	ESE
20230402_0120 20230402_0130	3.3	ESE
20230402_0130 20230402_0140	2.8	ESE ESE
20230402_0140	3.9	ESE
20230402_0130	3.3	ESE ESE
20230402_0200	3.3	ESE
20230402_0210	3.1	ESE
20230402 0220	3.9	ESE
20230402 0230	4.2	ESE
20230402 0250	3.9	SE
20230402 0300	3.3	SE
20230402 0300	3.3	ESE
20230402_0320	3,3	ESE
20230402 0330	2.8	E
20230402 0340	2.8	ESE
20230402 0350	2.8	ESE
20230402 0400	2.5	SE
20230402_0410	3.3	SE
20230402 0420	3.1	ESE
20230402 0430	2.2	SE
20230402 0440	2.8	ESE
20230402_0450	3.1	ESE ESE
20230402_0500	3.3	ESE
20230402 0510	3.9	E
20230402_0520	4.2	ESE
20230402_0530	4.7	ESE
20230402_0540	4.4	ESE ESE
20230402_0550	3.9	ESE
20230402_0600	3.3	ESE
20230402_0610	2.8	E
20230402_0620	2.8	Е
20230402_0630	2.5	E
20230402_0640	2.8	E
20230402_0650	2.2	ENE
20230402_0700 20230402_0710		ENE
20230402_0710 20230402_0720	0.6 1.4	E E
20230402_0720	1.4	ESE
20230402_0730	1.1	SE SE
20230402_0740	2.2	SE SE
20230402_0730	2.5	ESE
20230402_0800	1.7	E
20230402_0810	2.8	E
20230402 0820	2.5	E
20230402 0840	3.3	ESE
20230402 0850	3.3	ESE
20230402 0900	2.8	ESE
20230402 0910	3.1	E
20230402 0920	2.8	ESE
20230402_0930	2.8	E
20230402_0940	3.3	E
20230402 0950	2.8	E
20230402_1000	3.9	E
20230402_1010	3.3	E
20230402_1020	3.3	E
20230402_1030	2.5	E
20230402_1040	2.8	E
20230402_1050	3.3	E
20230402_1100	3.1	ESE
20230402_1110	2.8	ESE
20230402_1120	2.2	E
20230402_1130	2.5	E
20230402_1140	3.1	ESE
20230402 1150	3.3	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230402_1200	3.9	ESE
20230402_1210 20230402_1210 20230402_1220 20230402_1230	2.8 2.5	ESE
20230402 1220	2.5	E E
20230402_1230	2.8	Е
20230402 1240	2.5	Е
20230402 1250	2.2	E
20230402 1300	2.2	E
20230402 1310	2.8	E
20230402 1320	2,2	ESE
20230402 1330	2.8	ESE
20230402_1330	2.5	ESE
20230402_1340	3.9	ESE
20230402_1400	3.3	ESE
20230402_1410		ESE
20230402_1420	3.9	ESE
20230402_1430	3.3	ESE
20230402_1440	2.8	SE
20230402_1450	2.8	SE
20230402 1500	3.3	ESE
20230402_1510	2.5	SE
20230402 1520	2.5	SE
20230402 1530	2.2	ESE
20230402 1540	2.2	ESE ESE
20230402_1540	3.3	ESE
20230402_1330	2.5	ESE
20230402 1610	3.3	ESE
20230402_1610	2.5	ESE ESE
20230402_1020	2.2	
20230402 1630		SE
20230402_1640	2.2	SE
20230402_1650	2.5	SE
20230402_1700	2.8	SE
20230402 1710	2.8	SE
20230402_1720	3.1	ESE
20230402 1730	1.7	ESE
20230402 1740	2.2	SE
20230402 1750	1.7	SE
20230402 1800	1.7	SE
20230402 1810	1.7	ESE
20230402 1820	1.4	ESE
20230402_1820	2.8	ESE
20230402_1830	3.1	ESE
20230402 1840	3,3	ESE
20230402_1830	3,3	ESE
20230402_1910	1.7	SE
20230402_1920	1.4	SSE
20230402_1930	2.2	SE
20230402_1940	1.7	ESE
20230402_1950	1.7	ESE
20230402_2000	1.9	ESE
20230402_2010	1.7	ESE
20230402_2020	2.8	SE
20230402_2030	3.1	ESE
20230402_2040	3.1	ESE
20230402 2050	3.3	ESE
20230402 2100	3,9	ESE
20230402 2110	3.9	ESE
20230402 2120	4.2	ESE
20230402 2130	3.9	SE
20230402 2140	3.9	ESE
20230402 2150	3,3	ESE
20230402 2200	3.9	ESE
20230402_2200	3.3	ESE ESE
20230402_2220	3.6	ESE
20230402_2230	3.9	ESE
20230402_2240 20230402_2250	3.3	ESE
20230402_2250	2.5	ESE
20230402 2300	2.5	E
20230402_2310	2.2	E
20230402 2320	2.2	Е
20230402 2330	2.2	ESE
20230402_2340	3.1	ESE
20230402_2350	2.2	SE

CYYYYMBB HIMM Company Compa	Date & Time	Wind Speed (m/s)	Wind Direction (From)
20230403 0010	(YYYYMMBB HHMM)		
20230403 0020			
20230403 0040	20230403 0020	3.1	
20230403 0050		3.1	
20230403 0100			
20230403 0110			SE SE
20230403 0120			
20230403 0140		3.3	ESE
20230403 0210 2.5 ESE 20230403 0220 3.3 ESE 20230403 0230 3.3 ESE 20230403 0240 2.8 ESE 20230403 0250 2.5 ESE 20230403 0300 1.7 ESE 20230403 0400 3.1 ESE 20230403 0400 3.1 ESE 20230403 0400 3.1 ESE 20230403 0400 2.8 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0510 1.7 ESE 20230403 0500 2.5 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 2.5 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 2.5 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.7 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE	20230403_0130		ESE
20230403 0210 2.5 ESE 20230403 0220 3.3 ESE 20230403 0230 3.3 ESE 20230403 0240 2.8 ESE 20230403 0250 2.5 ESE 20230403 0300 1.7 ESE 20230403 0400 3.1 ESE 20230403 0400 3.1 ESE 20230403 0400 3.1 ESE 20230403 0400 2.8 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0510 1.7 ESE 20230403 0500 2.5 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 2.5 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 2.5 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.7 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE	20230403_0140	3.1	ESE
20230403 0210 2.5 ESE 20230403 0220 3.3 ESE 20230403 0230 3.3 ESE 20230403 0240 2.8 ESE 20230403 0250 2.5 ESE 20230403 0300 1.7 ESE 20230403 0400 3.1 ESE 20230403 0400 3.1 ESE 20230403 0400 3.1 ESE 20230403 0400 2.8 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0510 1.7 ESE 20230403 0500 2.5 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 2.5 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 2.5 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.7 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE 20230403 0500 1.7 ESE 20230403 0500 1.9 ESE 20230403 0500 1.9 ESE	20230403 0200	3.1	ESE
20230403 0230	20230403_0210	2.5	ESE
20230403 0240			
20230403 0250		3.3	ESE FSF
20230403 0300	20230403 0250	2.5	
20230403 0320	20230403 0300	1.7	ESE
20230403 0330	20230403_0310		
20230403 0340	20230403_0320		
20230403 0350 3.1 E	20230403 0340		
20230403 0400 3.1 E	20230403 0350	3.1	Е
20230403 0420 3.1 ESE	20230403 0400	3.1	Е
20230403 0430	20230403_0410	2.8	
20230403 0440 2.8 E 20230403 0500 1.9 E 20230403 0500 1.9 E 20230403 0500 1.9 E 20230403 0500 1.7 ESE 20230403 0520 2.5 ESE 20230403 0530 1.9 ESE 20230403 0550 1.9 ESE 20230403 0600 1.7 ESE 20230403 0600 1.7 ESE 20230403 0600 2.2 ESE 20230403 0600 2.2 ESE 20230403 0600 2.5 ESE 20230403 0700 2.8 ESE 20230403 0700 2.8 ESE 20230403 0710 2.2 ESE 20230403 0730 2.8 SE 20230403		2.1	
20230403 0450	20230403 0440	2.8	Е
20230403 0510	20230403_0450	2.8	ENE
20230403 0520			
20230403 0530	20230403 0510		ESE
20230403 0540	20230403_0520		ESE
20230403 0600	20230403 0540	2.5	ESE
20230403 0610 3.3 ESE			
20230403 0620			
20230403 0630 2.5 ESE 20230403 0640 2.5 ESE 20230403 0650 2.5 ESE 20230403 0700 2.8 ESE 20230403 0710 2.2 ESE 20230403 0720 2.8 SE 20230403 0730 2.8 SE 20230403 0740 4.2 SE 20230403 0750 4.7 SE 20230403 0800 5 SE 20230403 0810 3.9 SE 20230403 0820 4.7 SE 20230403 0830 4.2 ESE 20230403 0840 3.9 ESE 20230403 0940 4.2 ESE 20230403 0900 4.2 ESE 20230403 0900 4.2 ESE 20230403 0920 4.4 SE 20230403			
20230403 0650 2.5 ESE 20230403 0700 2.8 ESE 20230403 0710 2.2 ESE 20230403 0720 2.8 SE 20230403 0730 2.8 SE 20230403 0740 4.2 SE 20230403 0800 5 SE 20230403 0810 3.9 SE 20230403 0820 4.7 SE 20230403 0830 4.2 ESE 20230403 0830 4.2 ESE 20230403 0830 4.2 ESE 20230403 0850 4.4 ESE 20230403 0850 4.4 ESE 20230403 0900 4.2 ESE 20230403 0910 4.2 ESE 20230403 0910 4.2 ESE 20230403 0930 4.2 SE 20230403 093			ESE
20230403 0700 2.8			
20230403 0710 2.2 ESE			
20230403 0720			
20230403 0740			SE
20230403 0750 4.7 SE 20230403 0800 5 SE 20230405 0810 3.9 SE 20230403 0820 4.7 SE 20230403 0830 4.2 ESE 20230403 0840 3.9 ESE 20230403 0850 4.4 ESE 20230403 0900 4.2 ESE 20230403 0910 4.2 ESE 20230403 0920 4.4 SE 20230403 0930 4.2 SE 20230403 0940 4.4 ESE 20230403 0950 5 ESE 20230403 0950 5 ESE 20230403 1000 5.3 ESE 20230403 1010 2.5 SE 20230403 1020 2.2 SE 20230403 1030 3.1 SE 20230403 1040 3.3 ESE 20230403 1000 3.3 SE 20230403 1100 3.3 SE 20230403 1100 3.3 SE 20230403 1100 <td></td> <td></td> <td></td>			
20230403 0800 5			
20230403 0810 3.9 SE			
20230403 0820 4.7 SE 20230403 0830 4.2 ESE 20230403 0840 3.9 ESE 20230403 0850 4.4 ESE 20230403 0900 4.2 ESE 20230403 0910 4.2 ESE 20230403 0920 4.4 SE 20230403 0930 4.2 SE 20230403 0940 4.4 ESE 20230403 0950 5 ESE 20230403 1000 5.3 ESE 20230403 1000 2.5 SE 20230403 1000 3.1 SE 20230403 1000 3.3 ESE 20230403 1000 3.3 ESE 20230403 1000 3.3 ESE 20230403 100 3.3 ESE 20230403 100 3.3 SE 20230403 1100	20230403 0810	3.9	
20230403 0840 3.9	20230403 0820	4.7	SE
20230403 0850 4.4 ESE 20230403 0900 4.2 ESE 20230403 0910 4.2 ESE 20230403 0920 4.4 SE 20230403 0930 4.2 SE 20230403 0940 4.4 ESE 20230403 0950 5 ESE 20230403 1000 5.3 ESE 20230403 1010 2.5 SE 20230403 1020 2.2 SE 20230403 1030 3.1 SE 20230403 1040 3.3 ESE 20230403 1050 3.9 ESE 20230403 1100 3.3 SE 20230403 1110 3.3 SE 20230403 1110 3.3 SE 20230403 1120 3.1 SE 20230403 1140 3.1 SE 20230403 1140 1.4 ESE			ESE
20230403 0900 4.2 ESE 20230403 0910 4.2 ESE 20230403 0920 4.4 SE 20230403 0930 4.2 SE 20230403 0940 4.4 ESE 20230403 0950 5 ESE 20230403 1000 5.3 ESE 20230403 1010 2.5 SE 20230403 1020 2.2 SE 20230403 1030 3.1 SE 20230403 1050 3.3 ESE 20230403 1050 3.9 ESE 20230403 100 3.3 SE 20230403 1100 3.3 SE 20230403 1100 3.3 SE 20230403 1110 3.3 SE 20230403 1120 3.1 SE 20230403 1140 3.1 SE 20230403 1140 4.4 SE 20230403 1140 1.4 ESE			ESE.
20230403 0920	20230403_0900	4.2	ESE
20230403 0930 4.2 SE 20230403 0940 4.4 ESE 20230403 0950 5 ESE 20230403 1000 5.3 ESE 20230403 1010 2.5 SE 20230403 1020 2.2 SE 20230403 1030 3.1 SE 20230403 1040 3.3 ESE 20230403 1050 3.9 ESE 20230403 1100 3.3 SE 20230403 1100 3.3 SE 20230403 1120 3.1 SE 20230403 1120 3.1 SE 20230403 1140 4 SSE 20230403 1140 4 ESE		4.2	ESE
20230403 0940 4.4 ESE 20230403 0950 5 ESE 20230403 1000 5.3 ESE 20230403 1000 2.5 SE 20230403 1020 2.2 SE 20230403 1030 3.1 SE 20230403 1040 3.3 ESE 20230403 1050 3.9 ESE 20230403 1100 3.3 SE 20230403 1110 3.3 SE 20230403 1120 3.1 SE 20230403 1120 3.1 SE 20230403 1140 4.8 SSE 20230403 1140 1.4 ESE		4.4	SE
20230403 0950 5		4.2 4.4	
20230403 1000 5.3 ESE 20230403 1010 2.5 SE 20230403 1020 2.2 SE 20230403 1020 3.1 SE 20230403 1040 3.3 ESE 20230403 1050 3.9 ESE 20230403 1100 3.3 SE 20230403 1110 3.3 SE 20230403 1120 3.1 SE 20230403 1130 2.8 SSE 20230403 1140 1.4 ESE		5	ESE
20230403 1040 3.3 ESE 20230403 1050 3.9 ESE 20230403 1100 3.3 SE 20230403 1110 3.3 SE 20230403 1120 3.1 SE 20230403 1130 2.8 SSE 20230403 1140 1.4 ESE	20230403 1000	53	ESE
20230403 1040 3.3 ESE 20230403 1050 3.9 ESE 20230403 1100 3.3 SE 20230403 1110 3.3 SE 20230403 1120 3.1 SE 20230403 1130 2.8 SSE 20230403 1140 1.4 ESE	20230403_1010	2.5	SE
20230403 1040 3.3 ESE 20230403 1050 3.9 ESE 20230403 1100 3.3 SE 20230403 1110 3.3 SE 20230403 1120 3.1 SE 20230403 1130 2.8 SSE 20230403 1140 1.4 ESE	20230403_1020	2.2	SE SE
20230403 1050 3.9 ESE 20230403 1100 3.3 SE 20230403 1110 3.3 SE 20230403 1120 3.1 SE 20230403 1130 2.8 SSE 20230403 1140 1.4 ESE		3.3	ESE
20230403 1110 3.3 SE 20230403 1120 3.1 SE 20230403 1130 2.8 SSE 20230403 1140 1.4 ESE	20230403_1050	3.9	ESE
20230403 1120 3.1 SE 20230403 1130 2.8 SSE 20230403 1140 1.4 ESE			
20230403 1130 2.8 SSE 20230403 1140 1.4 ESE			
20230403_1140 1.4 ESE			
20230403_1150 3.3 SE	20230403_1140	1.4	ESE
	20230403_1150	3.3	SE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230403_1200	3.9	ESE
20230403_1210 20230403_1220 20230403_1220 20230403_1230	3.3	ESE
20230403_1220	3.3	SE
20230403_1230	3.3	ESE
20230403_1240	2.8	SE
20230403 1250	3.1	ESE
20230403_1300	2.5	E
20230403 1310	2.2	ESE
20230403 1320	3.1	ESE
20230403 1330	4.2	ESE
20230403 1340	5.3	ESE
20230403 1350	5,3	ESE
20230403 1400	6.1	SE
20230403 1410	4.4	ESE
20230403 1420	5.8	ESE
20230403 1430	6.4	ESE
20230403_1440	5	ESE
20230403_1450	4.2	E
20230403 1500	3.9	E
20230403 1500	3.3	ESE
20230403_1510	4.2	E
20230403_1320	3.6	ESE
20230403_1530	3.9	ESE
	4.2	ESE
20230403_1550		E
20230403_1600	3.9 4.2	E
20230403_1610		ESE
20230403_1620	4.2	E
20230403_1630	4.4	E
20230403_1640	3.9	E
20230403_1650	3.1	E
20230403_1700	3.9	E
20230403 1710	2.8	ESE
20230403 1720	1.7	ENE
20230403 1730	3.1	E
20230403 1740	3,3	ESE
20230403 1750	4.4	ESE
20230403 1800	3.9	E
20230403 1810	3.3	E
20230403 1820	3,3	Ē
20230403_1830	3,3	ESE
20230403_1840	3.9	ESE
20230403 1850	5,3	ESE
20230403_1830	4.4	ESE
20230403_1900	5,3	SE SE
20230403 1910	4.2	ESE ESE
20230403_1920	6.1	SE SE
20230403_1940	5.3	SE
20230403_1950	5.8	ESE
20230403_2000	6.1	SE
20230403_2010	5.8	SE
20230403 2020	5.8	SE
20230403_2030	5.3	ESE
20230403_2040	4.7	SE
20230403_2050	3.1	SE
20230403_2100	3.3	SE
20230403_2110	3.9	ESE
20230403 2120	5.3	ESE
20230403 2130	5.3	ESE
20230403_2140	4.2	E
20230403 2150	4.7	ESE
20230403 2200	5	ESE
20230403 2210	3.3	ESE
20230403 2220	4.2	ESE
20230403_2230	3.3	ESE
20230403 2240	3,3	ESE
20230403_2240	4.7	E
	4.4	
	4.4 5.2	E
20230403_2310 20230403_2320	5.3 4.2	ESE
		ESE
20230403 2330	4.2	ESE
20230403_2340	5	ESE
20230403_2350	5	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	wind Speed (m/s)	ESE
20230404_0000 20230404_0010	4.7	ESE ESE
20230404 0020	5	ESE
20230404_0030	4.2	Е
20230404_0040	4.4	ESE
20230404_0050 20230404_0100	4.2 3.6	ESE ESE
20230404_0100	3.3	ESE
20230404 0120	3.9	ESE
20230404_0130	3.1	ESE
20230404_0140 20230404_0150	4.7 3.9	ESE ESE ESE
20230404 0150 20230404 0200	3.6	ESE ESE
20230404_0210	4.2	ESE
20230404_0220	3.9	ESE
20230404 0230 20230404 0240	3.3	ESE
20230404_0240	2.8	ESE ESE
20230404_0200	3.3	E
20230404 0300 20230404_0310	3.1	E ESE
20230404_0320	2.5	ESE
20230404 0330 20230404 0340	2.8 1.7	ESE ESE
20230404 0350	2.2	ESE
20230404 0400	2.2 2.8	Е
20230404_0410	3.3	E
20230404_0420 20230404_0430	3.3 3.1	E
20230404_0430 20230404_0440	2.8	E E
20230404_0450	3.1	E
20230404 0500	2.5	Е
20230404 0510	2.5	E
20230404_0520 20230404_0530	2.8 2.8	ESE ESE
20230404 0540	2.2	ESE
20230404_0550	1.7	ESE
20230404_0600	2.5	ESE
20230404 0610 20230404 0620	2.5 3.1	E E
20230404_0620	2.2	ESE
20230404 0640	1.7	SE
20230404_0650	1.4	SSE
20230404_0700	1.4	SE
20230404_0710 20230404_0720	1.1 2.2	ESE ESE
20230404_0730	1.9	ESE
20230404_0740	1.4	SE
20230404_0750	2.2	ESE
20230404_0800 20230404_0810	1.9 2.8	SSE SE
20230404_0810	2.8	SSE
20230404_0830	2.8	SE
20230404_0840	3.3	SSE
20230404 0850 20230404 0900	3.1 3.3	SSE SSE
20230404_0900	3.1	SE SE
20230404 0920	3.3	SSE
20230404_0930	3.9	SSE
20230404_0940	3.9	SE
20230404_0950 20230404_1000	3.6 3.3	SSE SSE
20220404 1010	3.3	SSE
20230404 1020	5	SSE
20230404_1030	4.7	SSE
20230404_1040 20230404_1050	4.7 3.3	SSE SSE
20230404_1030	3.3	SSE
20230404_1110	4.4	SSE
20230404_1120	4.7	SSE
20230404 1130	5	SSE
20230404_1140 20230404_1150	4.4 3.3	SSE SSE
20230-107_1130	لاءد	UJE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230404_1200	3.9	SSE
20230404_1210	3.3	SSE
20230404_1220	2.8	SSE
20230404_1230 20230404_1240	3.1 3.9	SSE SSE
20230404_1240	3.9	SSE SSE
20230404_1300	3.9	SSE
20230404_1310	3.3	SSE
20230404 1320 20230404 1330	3.9 3.3	SSE SSE
20230404 1340		SSE
20230404_1350	3.3 3.3 3.3	SSE
		SSE
20230404_1410 20230404_1420	3.9 3.3	SSE SSE
20230404 1430	3.3	SSE
20230404 1440	3.3	SSE
20230404_1450	3.9	SSE
20230404 1500 20230404_1510	3.3 3.3	SSE SSE
20230404 1520	4.4	SSE
20230404 1530	3.3	SSE
20230404_1540 20230404_1550	3.9	SSE
20230404 1600	3.6 2.8	SSE SSE
20230404_1610	3.9	SSE
20230404 1620	2.5	SSE
20230404_1630 20230404_1640	2.8	SE SSE
20230404_1640 20230404_1650	2.2	SSE
20230404 1700	2.2	SSE
20230404 1710	2.5	SSE
20230404_1720 20230404_1730	2.5 2.8	SSE SE
20230404_1740	1.4	SE SE
20230404 1750	1.7	ESE
20230404_1800	1.1	SE
20230404_1810 20230404_1820	1.4	SE SE
20230404_1830	1.7	SE SE
20230404 1840	1.4	SE
20230404_1850 20230404_1900	0.8	<u>-</u>
20230404_1900 20230404_1910	0.3	ESE
20230404_1920	1.4	ESE
20230404_1930	1.7	Е
20230404_1940 20230404_1950	2.2 2.2	ESE SE
20230404_1930	2.2	SE SE
20230404 2010	1.7	SE
20230404 2020	1.7	Е
20230404_2030 20230404_2040	1.4 1.7	E ESE
20230404_2040	1.7	SE SE
20230404_2100	1.7	ESE
20230404_2110	1.7	ESE
20230404 2120 20230404_2130	2.2	ESE SE
20230404_2140	1.7 2.5	SE SE
20230404 2150	2.8	SE
20230404_2200	2.8	ESE
20230404_2210 20230404_2220 20230404_2220	2.5	ESE
20230404 2200 20230404 2210 20230404 2220 20230404 2220 20230404 2230	2.8 2.5 2.5 2.8	ESE ESE SE
20230404 2240	3.1	SE
20230404 2250	2.8	SE
20230404 2300 20230404_2310	2.2 2.2	SE SE
20230404 2320	1.7	ESE ESE
20230404 2330 20230404 2340	1.7	ESE SE
20230404_2340 20230404_2350	1.7	
20230404_2350	2.5	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	1.9	ESE
20230405_0000 20230405_0010	2.2	ESE ESE
20230405 0020	1.7	ESE
20230405_0030	1.7	ESE
20230405_0040	2.2	ESE
20230405_0050 20230405_0100	1.7 2.2	SE ESE
20230405_0100	1.7	ESE
20230405 0120	1.1	ESE
20230405_0130	1.7	ESE
20230405_0140 20230405_0150	2.5	ESE
20230405_0150 20230405_0200	2.5 2.5 2.5	ESE ESE ESE
20230405 0210	2.2	ESE
20230405_0220	1.7	ESE
20230405 0230	1.9	ESE
20230405_0240 20230405_0250	1.7 2.2	ESE E
20230405 0230	2.2	
20230405 0310	2.2 1.7	ESE ESE
20230405 0320	2.2	SE
20230405_0330 20230405_0340	2.5 2.2	ESE ESE
20230405_0350	2.5	ESE E
20230405_0400	1.9	ESE
20230405_0410	1.4	ESE
20230405_0420	1.7	E
20230405_0430 20230405_0440	1.4 1.7	E ESE
20230405_0450	1.7	ESE
20230405_0500	0.8	SE
20230405 0510	1.4	SE
20230405_0520 20230405_0530	1.4 1.7	ESE ESE
20230405_0530	1.7	SE SE
20230405_0550	1.7	SE
20230405_0600	1.1	SE
20230405_0610 20230405_0620	0.8	SE ESE
20230405_0620	1.7	SE SE
20230405 0640	1.7	ESE
20230405_0650	1.4	ESE
20230405_0700	1.4	ESE
20230405_0710 20230405_0720	1.7 2.2	ESE ESE
20230405_0720	2.2	ESE
20230405 0740	2.5	SE
20230405_0750	2.2	SE
20230405_0800	1.7	SE
20230405_0810 20230405_0820	1.4 1.9	ESE ESE
20230405_0830	1.1	ESE
20230405_0840	1.4	ESE
20230405_0850	1.7	ESE
20230405_0900 20230405_0910	1.7 1.1	ESE E
20230405_0920	1.1	ESE
20230405_0930	1.7	Е
20230405_0940	1.4	E
20230405_0950 20230405_1000	1.1 1.9	E ESE
20230405_1010	2.5	ESE
20230405_1020	2.5 2.2 1.4	ESE SE
20230405_1030	1.4	SE
20230405_1040	2.5	ESE
20230405_1050 20230405_1100	2.2 1.7	SE SE
20230405_1100	1.7	ESE
20230405 1120	0.6	SSW
20230405 1130	0.8	S SSE
20230405_1140 20230405_1150	1.4 1.4	SSE SSE
20230403_1130	1.7	DDL

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	1.4	SSE
20230405_1200 20230405_1210	1.4	SE SE
20230405 1220	1.4	SSE
20230405_1230	0.8	S
20230405_1240	0.3	SW
20230405_1250 20230405_1300	1.4 1.7	SSW SSE
20230405_1310	2.2	SSE
20230405 1320	1.4	S
20230405_1330	1.4	SSE
20230405_1340	1.4	SSE
20230405_1350 20230405_1400	1.4 2.5	SSE S
20230405 1410	1.4	S
20230405_1410 20230405_1420	1.7	S S
20230405_1430	1.7	S
20230405_1440 20230405_1450	1.7 1.4	SSE SSE
20230405 1500	1.7	SSE
20230405 1510	1.7	S
20230405_1520	1.1	SSE
20230405 1530 20230405_1540	1.7	S S
20230405_1540 20230405_1550	2.2 2.2	<u>S</u>
20230405 1600	1.1	S
20230405 1610	1.1	S
20230405_1620	1.4	S
20230405_1630 20230405_1640	1.1 1.1	S SSW
20230405_1640	1.1	SSW
20230405 1700	1.1	SSW
20230405 1710	1.1	SSW
20230405_1720	2.2	SW
20230405_1730 20230405_1740	2.5 2.8	SW SW
20230405_1740	2.8	SW
20230405_1800	1.7	SSW
20230405 1810	1.4	SSW
20230405_1820 20230405_1830	1.4	SSW S
20230405_1830	0.6	N N
20230405 1850	0.3	NNE
20230405_1900	0.8	ENE
20230405_1910 20230405_1920	0.8	N N
20230405_1920	0.3	SSW
20230405 1940	0.8	SSW
20230405_1950	1.1	SW
20230405_2000	1.4	SW
20230405_2010 20230405_2020	1.4 0.3	ESE SSE
20230405 2020	0.3	-
20230405_2040	0.6	S
20230405_2050	0.3	S
20230405_2100 20230405_2110	0 0.3	N E
20230405_2110	0.3	SE
20230405_2130	0.3	- -
20230405_2140	0.3	-
20230405_2150	0.3	S
20230405_2200 20230405_2210	0.3 0.6	SSW SSW
20230405 2220	0.3	SW
20230405_2230	0.3	S
20230405_2240	0.6	SSW
20230405_2250 20230405_2300	0.8	SSE
20230405 2300 20230405 2310	0.3	ENE N
20230405 2320	0.3	WNW
20230405 2330	0.3	W
20230405_2340 20230405_2350	0.3	- N
20230405_2350	0	IN .

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230406_0000	0.8	WNW
20230406_0010	0	N
20230406_0020	0	N
20230406_0030	0	N
20230406_0040 20230406_0050	0.3	- N
20230406_0100	0.3	SE N
20230406_0110	0.3	NW
20230406 0120	0.3	ESE
20230406 0130	0.8	SE
20230406 0140	0	N
20230406_0150 20230406_0200	0	N
20230406_0200	0.3	SW
20230406_0210	0	N
20230406_0220	0.3	W
20230406 0230 20230406 0240	0	N N
20230406_0250	0,3	NNE
20230406_0250	0.3	E
20230406_0300 20230406_0310	0.3	-
20230406_0320	0	N
20230406_0330	0.3	SE
20230406_0340	0.3	SE
20230406_0350	0.8	
20230406_0400	0.3	SSW
20230406_0410	0.3	NW
20230406_0420 20230406_0430	0.3	NW
20230406_0440	0.3 0.3	SSW
20230406 0450	0.5	N N
20230406 0500	0.6	ENE
20230406 0510	0.8	E
20230406 0520	0.3	N
20230406_0530	0.3	NNE
20230406 0540	0.8	ESE
20230406_0550	0.3	ESE
20230406_0600	0.3	E
20230406_0610	0.3	ESE
20230406_0620 20230406_0630	0.8	ESE ESE
20230406_0640	1.1	ESE
20230406 0650	0.8	LOL -
20230406 0700	0.8	-
20230406 0710	1.1	Е
20230406_0720	1.7	SE
20230406_0730	1.1	SE
20230406_0740	0.3	SSW
20230406_0750	0.3	WNW
20230406_0800	0.3	WSW SW
20230406_0810 20230406_0820	0.3 0.8	S
20230406 0830	0.8	<u> </u>
20230406 0840	0.3	SSW
20230406 0850	0.8	ESE
20230406_0900	0.3	WSW
20230406_0910	0.3	SW
20230406_0920	0.3	NE
20230406_0930	0	N
20230406_0940	0.3	SSW
20230406 0950 20230406 1000	0.3	E SE
20230406_1010	0.8	SSE
20230406 1020	0.8	SSE
20230406 1020	0.3	SSE S
20230406 1040	0.3	SSW
20230406_1050	0.6	S
20230406 1100	0.8	SSE
20230406_1110	0.8	SW
20230406_1120	1.4	WSW
20230406 1130	1.7	SW
20230406_1140	2.2	SW
20230406 1150	2.5	SW

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230406_1200	1.7	SSW
20230406_1210 20230406_1220 20230406_1230	1.7	SSW
20230406_1220	2.2 2.8	SW SW
20230406_1230	2.8	SW
20230406_1240	3.3	SSW
20230406_1250	3.3	SSW
20230406_1300	3.3	SSW
20230406_1310	3.6	SSW
20230406_1320	3.3	SSW
20230406_1330	3.1	SSW
20230406_1340	2.8	SSW
20230406_1350	2.5	SSW
20230406_1400	3.1	SSW
20230406_1410	3.1	SW
20230406_1420	3.3	SW
20230406 1430	3.3	S
20230406_1440	3.3	S
20230406_1450	3.3	S
20230406_1500	3.3	SSW
20230406_1510	3.3	SSW
20230406_1520	3.1	SSW
20230406 1530	2.5	SW
20230406_1540	3.3	WSW
20230406_1550	3.1	WSW
20230406_1600	2.5	WSW
20230406_1610	1.7	WSW
20230406_1620	2.5	WSW
20230406_1630	2.8	WSW
20230406_1640	2.8	WSW
20230406_1650	3.3	WSW
20230406_1700	2.5	SW
20230406_1710	3.3	SW
20230406_1720	3.3	SW
20230406_1730	2.8	SW
20230406 1740	3.1	SW
20230406_1750	3.1	SW
20230406_1800	2.8	SW
20230406_1810	2.5	SW
20230406_1820	2.5	SW
20230406_1830	2.2	SW
20230406_1840	1.7	SW
20230406_1850	1.4	SSW
20230406_1900	1.9	SSW
20230406_1910	1.7	SSW
20230406_1920	1.7	SSW
20230406_1930	1.1	SSW
20230406_1940	0.8	S
20230406_1950	0.3	SW
20230406_2000	0	N
20230406_2010	0.3	NE NE
20230406 2020	0.3	NE
20230406_2030	0.3	- N
20230406_2040	0	N
20230406 2050	0.3	WSW
20230406_2100	1.4	WSW
20230406_2110	2.5	WSW
20230406_2120	1.4	NW W
20230406_2130	1.4	
20230406_2140	0.8	SSW
20230406_2150	0.3	
20230406_2200	0.3	WSW
20230406_2210	0.3	W
20230406_2220	1.7	NNW
20230406_2230	2.5	N NNE
20230406_2240	2.8	NNE
20230406_2250	2.2	N
20230406 2300	1.9	NNW
20230406_2310	1.1	NNW
20230406_2320	1.7	NNW
20230406 2330	1.4	N NNW
20230406_2340	1.7	
20230406_2350	2.2	NNW

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230407 0000	2.8	N
20230407 0010	2.2	NNW
20230407_0020	2.2	NNW
20230407_0030	2.2	NNW
20230407_0040	2.8	N
20230407_0050 20230407_0100	3.1	N N
20230407_0100 20230407_0110	2.8 2.8	N N
20230407 0120	2.5	NNW
20230407 0130	2.5	N
20230407_0140	2.5	N
20230407_0150	1.7	NNE
20230407_0200	1.7	N
20230407_0210	2.8	N
20230407_0220 20230407_0230	3.3 3.6	N N
20230407_0230 20230407_0240	3.9	N N
20230407_0250	3.6	N
20230407_0300	3.9	NNE
20230407_0310	3.9	N
20230407 0320	3.6	N
20230407 0330	4.2	N
20230407_0340	5	N N
20230407_0350	4.4 4.4	N N
20230407_0400 20230407_0410	3.6	N N
20230407_0410	4.4	N N
20230407 0430	5	N
20230407 0440	5	Ň
20230407_0450	4.7	N
20230407_0500	5	N
20230407 0510	5.3	N
20230407_0520	5	N
20230407_0530	5.3	N
20230407_0540 20230407_0550	4.4 4.7	NNE N
20230407_0530	5	N N
20230407 0610	5,3	N
20230407_0620	5.3	Ň
20230407 0630	4.7	N
20230407_0640	5.8	NNE
20230407_0650	5.6	NNE
20230407_0700	5.8	N
20230407 0710 20230407_0720	4.7 4.7	N N
20230407_0720	4.7	N
20230407_0730	5,3	NNE
20230407 0750	4.7	N
20230407_0800	4.2	N
20230407 0810	3.9	N
20230407 0820	4.4	N
20230407_0830	3.3	NNW
20230407_0840 20230407_0850	3.3 4.4	N N
20230407 0850	3.6	N N
20230407_0910	3.9	N N
20230407 0920	3.3	N N
20230407_0930	4.4	Ň
20230407_0940	4.7	N
20230407_0950	5	N
20230407_1000	4.2	N N
20230407_1010	4.2	N N
20230407_1020 20230407_1030	4.4 5.3	N N
20230407_1030	4.2	N N
20230407_1040	3.6	N N
20230407_1030	4.7	N N
20230407_1110	4.7	N
20230407_1120	4.2	NNE
20230407 1130	4.2	NNE
20230407_1140	3.3	N
20230407_1150	3.9	NNE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	2,5	N
20230407_1200	3.9	NNE NNE
20230407_1200 20230407_1210 20230407_1220 20230407_1230	4.2	NNE N
20230407_1220	3.9	N N
20230407_1230	3.9	N N
20230407 1250	2.8	N N
20230407 1230	3.3	N
20230407 1310	2.8	N
20230407 1320	2.8	N
20230407_1330	3.1	N
20230407 1340	3.3	N
20230407 1350	3.3	NNE
20230407_1400	2.8	N
20230407_1410	3.3	N
20230407_1420	3.1	N
20230407_1430	3.1	NNE
20230407_1440	2.5	N
20230407_1450	3.3	NNE
20230407_1500	2.5	NNE
20230407_1510	1.7	-
20230407_1520	1.1	WNW
20230407 1530	0.8	NNW
20230407_1540	0.3	- NT
20230407_1550	0.8	NE 2
20230407 1600 20230407 1610	0.3 0.8	S ESE
20230407_1610 20230407_1620	1.4	ESE ESE
	1.4	ESE E
20230407_1630 20230407_1640	1.7	ESE
20230407_1040	1.7	E
20230407_1030	1.7	E
20230407_1710	1.7	E
20230407 1710	1.7	ESE
20230407 1720	1.1	ESE
20230407_1730	0.8	ESE
20230407 1750	0.8	SE
20230407 1800	1.1	ESE
20230407 1810	1.1	ESE
20230407 1820	1.1	ESE
20230407 1830	1.7	E
20230407 1840	2.2	ESE
20230407_1850	1.9	E
20230407_1900	2.2	E
20230407_1910	2.2	ESE
20230407_1920	2.2	ESE
20230407_1930	2.2	ESE
20230407_1940	2.5	ESE
20230407_1950	2.8	E
20230407_2000	2.2	E
20230407_2010	2.8	E
20230407 2020	2.8	E
20230407_2030 20230407_2040	3.1 2.5	ESE E
20230407 2050 20230407 2100	3.1 2.8	ESE E
20230407_2100	2.8	E
20230407_2110	2.8	E E
20230407 2120	2.5	E
20230407_2130	1.7	E
20230407_2140	1.7	E
20230407_2130	1.7	E
20230407_2210	1.4	E
20230407_2210	1.4	E
20230407_2230	1.4	ESE
20230407 2240	1.4	ESE
20230407 2250	1.4	E
20230407 2300	1.4	ESE
20230407_2310	0.8	ESE
20230407_2320	0.8	E
20230407 2330	1.4	Е
20230407_2340	1.1	ESE
20230407_2350	1.4	ESE

Date & Time	Wind Coard (m/s)	Wind Direction (France)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230408_0000	1.4	E
20230408_0010 20230408_0020	1.7 1.1	ESE E
20230408 0030	1.1	E
20230408 0030	0.8	ENE
20230408 0040	1.4	ENE
20230408_0050	1.1	NE
20230408_0100	1.4	NNE
20230408_0110 20230408_0120	3.3 3.1	NNE NNE
20230408_0120	2.5	N N
20230408 0140	2.8	N
20230408_0150	3.3	NNE
20230408_0200	2.5	NNE
20230408_0210	2.8	NNE
20230408 0220 20230408 0230	3.1	NNE NNE
20230408_0230	3.1	NNE
20230408 0250	2.8	NNE
20230408 0300	2.2	NNE
20230408_0310	2.5	N
20230408 0320	2.5	NNE
20230408_0330	1.1	NE NE
20230408_0340 20230408_0350	1.1 0.8	NNE N
20230408 0330	0.8	N N
20230408 0410	0.8	N
20230408_0420	0.3	NE
20230408_0430	0.8	SSE
20230408_0440	0	N
20230408_0450	0.3	ESE
20230408 0500 20230408_0510	1.1 0.3	NNE NNE
20230408 0520	1.1	E
20230408 0530	2.2	E
20230408_0540	1.7	E
20230408_0550	1.7	ESE
20230408 0600	0.8	SE
20230408_0610 20230408_0620	0	N N
20230408 0630	0.3	SE
20230408 0640	0.6	E
20230408_0650	1.1	SE
20230408 0700	1.4	SE
20230408_0710	0.8	NE
20230408_0720	0.6 0.6	ESE
20230408_0730 20230408_0740	0.3	SSE
20230408_0750	1.1	SE
20230408_0800	1.1	ESE
20230408 0810	1.1	SE
20230408_0820 20230408_0830	1.1	SSE N
20230408_0830 20230408_0840	0.3	N NNE
20230408_0850	1.7	NNE N
20230408_0900	1.4	NNE
20230408_0910	1.1	NNE
20230408_0920	1.7	N
20230408_0930	1.9	NNE
20230408_0940 20230408_0950	1.4 1.1	NE NE
20230408_0950	1.1	NE NNE
20230408 1010	1.7	NNE
20230408_1020	2.2	NNE
20230408_1030	2.2	NNE
20230408_1040	1.7	N
20230408 1050	1.1	NNE
20230408_1100	1.7	NE N
20230408_1110 20230408_1120	1.1 1.4	N NE
20230408 1120	1.4	ENE
20230408 1140	1.7	ESE
20230408 1150	1.1	E

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	1.7	
20230408_1200 20230408_1210		ESE ESE
20230408_1210	1.9	ESE ESE
20230406 1220	1.7 1.7	ESE
20230408_1230 20230408_1240	1.4	ESE
20230408 1250	2.2	SE
20230408 1300	1.7	E
20230408 1310	1.1	E
20230408 1320	1.4	ESE
20230408_1330	1.7	ESE
20230408 1340	1.4	ESE
20230408 1350	1.7	ESE
20230408_1400	1.4	ESE
20230408_1410	1.7	Е
20230408_1420	1.7	Е
20230408_1430	0.8	
20230408_1440	1.4	ESE
20230408_1450	1.4	ESE
20230408 1500	1.1	ESE
20230408_1510 20230408_1520	1.4	ESE
20230408_1520	2.2	ESE E
20230408 1330	1.7	ESE
20230408 1550	1.7	ESE
20230408 1600	1.9	E
20230408 1610	1.7	ESE
20230408 1620	1.4	SE
20230408 1630	1.7	ESE
20230408 1640	1.7	ESE
20230408_1650	1.9	ESE
20230408_1700	2.5	ESE
20230408 1710	2.2	ESE
20230408_1720	1.7	ESE
20230408_1730	2.2	ESE
20230408 1740	2.2	ESE
20230408_1750	1.7	E
20230408_1800	1.7	E
20230408 1810 20230408 1820	2.2 2.2	ESE ESE
20230408_1830	1.0	ESE
20230408 1830	1.9	ESE ESE ESE
20230408 1840 20230408_1850	2.2 2.5	FSF
20230408 1900	2.5	ESE
20230408 1910	1.1	ESE
20230408 1920	1.4	E
20230408 1930	1.7	E
20230408 1940	1.7	Е
20230408_1950	1.1	ESE
20230408_2000 20230408_2010 20230408_2020	0.8	ESE
20230408_2010	1.4	E
20230408 2020	1.4	ESE
20230408_2030	0.8	E
20230408_2040 20230408_2050	0.8	E E
20230408 2050 20230408_2100	1.1 1.4	<u>Е</u> Е
20230408_2100	1.7	E
20230408_2110	1.4	<u></u> Е
20230408 2120	1.1	ESE
20230408 2140	1.1	ESE
20230408 2150	1.1	E
20230408 2200	1.1	Е
20230408_2210	0.8	Е
20230408 2220	0.8	ESE
20230408_2230	0.3	SE
20230408_2240	0	N
20230408_2250	0	N
20230408_2300	0.3	W
20230408_2310	0	N
20230408_2320	0	N
20230408 2330	0	N
20230408_2340	0.3	E
20230408_2350	0.6	Е

Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230409_0000	0.3	SE
20230409 0010	1.1	ESE
20230409 0020	1.4	ESE
20230409 0030	1.4	ESE
20230409 0030	0.8	E
20230409 0040	0.8	W
20230409_0050	1.1	WNW
20230409_0100	0	N
20230409_0110	0.3	NNE
20230409_0120	0.3	NNE
20230409_0130	0.3	NE
20230409_0140	0.3	NW
20230409_0150	0.3	ESE
20230409_0200	0.3	NE
20230409_0210	1.1	ENE
20230409 0220	1.4	E
20230409_0230	1.4	ENE
20230409_0240	1.4	ESE
20230409_0250	1.7 1.9	E
20230409_0300		ENE
20230409_0310 20230409_0320	1.7 1.9	E
20230409_0320 20230409_0330	1.9	ENE ENE
20230409_0330	2.2	ENE ENE
20230409_0340	1.7	ENE E
20230409_0350	2.2	E E
20230409_0400	1.4	ESE
20230409_0410	1.4	E
20230409_0420	1.4	E E
20230409 0440	1.7	E
20230409_0450	1.1	ESE
20230409_0500	1.4	E
20230409_0510	0.8	Ë
20230409_0520	0,3	ENE
20230409 0530	1.1	ENE
20230409 0540	1.1	ESE
20230409_0550	1.1	ESE
20230409 0600	1.1	ESE ENE
20230409 0610	0.8	ENE
20230409 0620	0.3	ESE
20230409_0630	1.1	SE
20230409_0640	0.6	ESE
20230409_0650	0.8	ESE
20230409_0700	1.7	E
20230409_0710	1.7	E
20230409_0720	1.4	ESE
20230409_0730	0.3	E
20230409_0740	0.6	NE
20230409_0750	0.8	ESE
20230409_0800	1.4	ESE
20230409_0810	0.8	ESE
20230409_0820	0.3	NE NE
20230409_0830	0.3	E
20230409_0840 20230409_0850	0	N ESE
20230409_0900	0.8	SE SE
20230409_0900	0.3	SE SE
20230409_0920	0.3	N SE
20230409_0920	0	N N
20230409_0930	0.3	S
20230409 0950	0.8	SSW
20230409 1000	0.3	SSW
20230409 1010	0.3	SSW
20230409 1020	0.3	SSW
20230409 1030	0.3	SSW
20230409 1040	0.3	SW
20230409 1050	0.3	NW
20230409_1100	0.3	WNW
20230409 1110	0	N
20230409_1120	0.3	WNW
20230409_1130	0.3	W
20230409_1140	0.3	SSW
20230409 1150	0,3	W

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		SSW
20230409_1200	0.8	WNW
20230409_1210	0.8	WINW
20230409 1210 20230409 1220 20230409 1220 20230409_1230	0.6	NNE
20230409 1240	0.8	-
20230409 1250	0.3	SE
20230409_1300	0.8	N
20230409_1310	0.6	S
20230409 1320	0.8	NE
20230409_1330	1.4	ESE
20230409_1340 20230409_1350	1.1 1.4	ENE E
20230409_1330	1.4	ESE
20230409 1410	1.7	ESE
20230409 1420	1.4	ESE
20230409 1430	1.4	ESE
20230409_1440	1.7	ESE
20230409_1450	1.7	E
20230409 1500	1.7	ENE
20230409_1510	2.2	E
20230409_1520	2.8 2.5	E
20230409 1530 20230409 1540	2.5	E ESE
20230409_1340	2.3	ESE
20230409 1600	3.1	ESE
20230409 1610	2.5	E
20230409_1620	3.1	ESE
20230409_1630	2.5	Е
20230409_1640	2.8	E
20230409_1650	3.3	E
20230409_1700	3.1	ESE
20230409 1710 20230409 1720	2.5 2.8	E
20230409_1720	2.8	E E
20230409 1740	2.5	E
20230409 1750	2,5	ESE
20230409 1800	2.2	ESE
20230409 1810	2.8	ESE
20230409_1820	2.2	ESE
20230409_1830	1.9	ESE
20230409_1840	2.2	ESE
20230409_1850 20230409_1900	2.2	ESE ESE
20230409_1900	1.7	SE SE
20230409 1920	1.1	SE SE
20230409 1930	1.7	SE
20230409_1940	1.4	SE
20230409_1950	1.7	SE
20230409_2000	0.8	SSE
20230409_2010	0.3	SSE
20230409 2020	0.8	WSW
20230409_2030	1.1	SSW
20230409_2040 20230409_2050	0.8	SSE SSE
20230409 2100	1.1	SSE
20230409_2100	0.6	SSE
20230409 2120	0.8	SSE
20230409 2130	1.7	SSE
20230409_2140	1.1	SSE
20230409_2150	1.4	S
20230409_2200	1.4	SE
20230409_2210	1.1	SE
20230409_2220	1.1	SE
20230409_2230 20230409_2240	1.4	ESE
20230409_2240	1.4	ESE SE
20230409_2230	1.7	SE SE
20230409_2310	1.7	SE SE
20230409_2320	1.4	ESE
20230409 2330	1.4	SE
20230409_2340	1.7	SE
20230409_2350	1.7	SE

Date & Time (YYYYMMBB HHMM) 20230410 0000 20230410 0010 20230410 0020 20230410 0030 20230410 0030 20230410 0040 20230410 0050	Wind Speed (m/s) 1.7 1.7 1.7 1.7 2.2	Wind Direction (From) ESE ESE ESE ESE ESE
20230410 0000 20230410 0010 20230410 0020 20230410 0030 20230410 0030 20230410 0040 20230410 0050	1.7 1.7 1.7 2.2	ESE ESE
20230410 0010 20230410 0020 20230410 0030 20230410 0030 20230410 0040 20230410 0050	1.7 1.7 1.7 2.2	ESE ESE
20230410 0020 20230410 0030 20230410 0030 20230410 0040 20230410 0050	1.7 1.7 2.2	ESE
20230410_0030 20230410_0030 20230410_0040 20230410_0050	2.2	Ecc
20230410 0040 20230410_0050		LOE
20230410_0050		ESE
	2.2	ESE
	1.7	ESE
20230410_0100	1.4	ESE
20230410 0110	1.9	ESE
20230410_0120	2.2	ESE
20230410_0130 20230410_0140	2.2 1.4	ESE ESE
20230410_0140		ESE
20230410_0130	2.5 2.2 2.2	ESE
20230410 0210	2.2	ESE ESE
20230410 0220	2.2	SE
20230410 0230	2.8	ESE
20230410 0240	2.8	ESE
20230410 0250	3.1	ESE
20230410_0300	3.1	ESE
20230410_0300	2.8	ESE
20230410_0320	3.3	ESE
20230410_0330	2.8	ESE
20230410_0340	3.3	ESE
20230410_0350	3.3	SE
20230410_0400	4.2	SE
20230410_0410	4.4	SE
20230410 0420 20230410 0430	4.2 3.3	SE
20230410_0430 20230410_0440	3.1	ESE ESE
20230410_0440	2.8	ESE
20230410_0430	2.8	ESE
20230410 0500	2.8	SE
20230410_0520	3.1	ESE
20230410_0520	2.5	ESE
20230410_0540	2.5 2.8	ESE ESE
20220410_0550	2.8 2.8	ESE
20230410_0600	2.8	ESE ESE
20230410_0610	2.5	ESE
20230410_0620	3.1	E
20230410_0630	1.1	ENE
20230410_0640	1.1	ENE
20230410_0650	1.7	E
20230410_0700	1.7	E
20230410_0710	1.4	ESE
20230410_0720 20230410_0730	1.1 1.4	ESE ESE
20230410_0730	0.8	ESE E
20230410_0740	1.4	ESE
20230410_0730	2.2	SE
20230410 0810	1.7	SE
20230410 0820	2.5	ESE
20230410 0830	2.2	ESE
20220410 0940		ESE
20230410 0850	2.8 3.3	E
20230410 0900	2.8	E
20230410_0910	2.5	ESE
20230410_0920	3.3	E
20230410_0930	3.3	ESE
20230410 0940	2.5	ESE
20230410_0950	2.5	E
20230410_1000	2.8	ESE
20230410_1010	2.2	ESE
20230410_1020 20230410_1030	2.2 3.1	ESE E
20230410_1030	3.3	ESE ESE
20230410_1040	2.5	ESE ESE
20230410 1030	3.6	ESE
20230410 1110	2.8	E
20230410_1110	2.5	ESE
20230410 1120	2.5 3.1	E
20230410 1140	3.3	Ē
20230410 1150	3.9	E

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230410_1200	3.9	E
20230410 1210 20230410 1220 20230410 1220 20230410 1230	3.3 3.6	E ESE
20230410 1220	3.3	ESE E
20230410_1230	3.6	E
20230410_1240	3.3	ESE
20230410 1300	3.6	E
20230410 1310	2.8	E
20230410_1320	2.8	Е
20230410_1330	3.6	Е
20230410_1340	3.9	E
20230410_1350 20230410_1400	3.9 4.2	E E
20230410_1400	4.2	E E
20230410_1410	3.3	E
20230410 1430	3.3	Ë
20230410 1440	3.1	Ē
20230410_1450	3.3	ENE
20230410_1500	3.1	Е
20230410_1510	2.8	E
20230410_1520	2.8	E
20230410_1530	2.5 2.8	E ESE
20230410_1540 20230410_1550	2.8	ESE ESE
20230410_1550	2.8	ESE
20230410 1610	2.8	ESE E
20230410_1620	2.8	ESE
20230410_1630	2.2	ESE
20230410 1640	2.5	ESE
20230410_1650	2.8	ESE
20230410_1700	2.8	ESE
20230410 1710	3.1	ESE
20230410_1720 20230410_1730	2.8	ESE
20230410_1730	3.1	ESE ESE
20230410 1740	2.5	ESE
20230410_1750	1.7	ESE
20230410 1810	1.7	ESE
20230410_1820	1.7	ESE
20230410_1830	2.5	ESE
20230410_1840	2.8	ESE
20230410_1850	2.8	ESE
20230410_1900	2.2	ESE
20230410_1910 20230410_1920	2.5 3.1	ESE ESE
20230410_1920	2.2	ESE
20230410_1940	2.8	ESE
20230410 1950	2.5	ESE
20230410_2000	2.2	SE
20230410_2010	2.5	ESE
20230410 2020	1.7	ESE
20230410_2030	1.7	ESE
20230410_2040	2.2	ESE
20230410_2050	2.5 2.2	ESE ESE
20230410_2100 20230410_2110	2.2	ESE ESE
20230410_2110	1.9	ESE
20230410 2120	1.9	ESE
20230410 2140	2.2	ESE
20230410 2150	2.8	ESE
20230410_2200	3.3	ESE
20230410_2210	3.3	ESE
20230410_2220	3.6	ESE
20230410_2230	3.6	ESE
20230410_2240 20230410_2250	3.3 2.5	ESE
20230410_2250 20230410_2300	3.1	ESE ESE
20230410_2310	3.3	SE SE
20230410_2310	3.3	SE
20230410 2330	3.3	ESE
20230410_2340	3.1	ESE
20230410 2350	3.3	ESE

Date & Time	Wr - 1 0 1 (t)	W. 1 D (F)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230411_0000	3.3	ESE
20230411_0010 20230411_0020	3.1	ESE
20230411 0020	3.3 3.3	ESE ESE
20230411 0030	3.1	ESE
20230411_0040	2.8	ESE ESE
20230411_0050	3.3	ESE
20230411_0100 20230411_0110	3.3	ESE ESE
20230411_0110 20230411_0120	3.3	ESE ESE
20230411_0120	2.8	ESE
20230411 0140	3.1	ESE
20230411_0150	3.3	ESE
20230411_0200	3.3	ESE
20230411_0210 20230411_0220	2.5 2.8	ESE ESE
20230411 0220	3.9	ESE
20230411 0240	2.8	ESE
20230411_0250	3.1	ESE
20230411_0300	3.1	ESE
20230411_0310 20230411_0320	2.8	ESE ESE
20230411_0320 20230411_0330	3.3	ESE ESE
20230411_0330	3.3	ESE
20230411 0350	2.8	ESE
20230411_0400	3.1	ESE
20230411_0410	3.1	E
20230411_0420 20230411_0430	2.8 3.1	<u>Е</u> Е
20230411 0440	3,3	E
20230411_0450	2.5	ESE
20230411_0500	2.8	ESE
20230411_0510	2.8	<u>Е</u> Е
20230411_0520 20230411_0530	2.2	<u> </u>
20230411 0530	2.8	ESE
20230411_0550	2.5	ESE
20230411_0600	2.2	ESE
20230411_0610	2.8	E
20230411_0620 20230411_0630	2.8 2.2	ESE ESE
20230411 0030	3.1	E
20230411 0650	2.5	Е
20230411_0700 20230411_0710	2.8 2.5	E ESE
		ESE
20230411_0720 20230411_0730	3.1 2.8	ESE ESE
20230411_0730	2.8	ESE
20230411_0750	2.8	ESE
20230411_0800	2.5	E
20230411 0810	2.8	E
20230411_0820 20230411_0830	2.2	E ENE
20230411_0830	2.2	ENE E
20230411_0850	2.8	ESE
20230411_0900	2.8	ESE
20230411 0910	2.2	ESE
20230411_0920 20230411_0930	1.7 1.7	ESE SE
20230411_0930	1.7	SE SE
20230411 0950	2.8	Е
20230411_1000	2.5	SE
20230411_1010	2.5	ESE
20230411_1020 20230411_1030	2.2 2.8	SE SE
20230411_1030	1.7	E E
20230411 1050	3,3	ESE
20230411_1100	3.1	E
20230411_1110	2.8 3.3	ESE
20230411 1120 20230411_1130	3.3	<u>Е</u> Е
20230411_1130	2.5	ESE
20230411_1150	2.5	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		SE
20230411_1200 20230411_1210	2.5 2.8	ESE ESE
20230411_1210	3.3	ESE
20230411_1230	3.1	ESE
20230411_1240	2.8	ESE
20230411_1250	2.2 2.2	SE
20230411_1300 20230411_1310	2.2	ESE ESE
20230411_1310	2.2	ESE
20230411_1330	2.5	ESE
20230411_1340	2.5	ESE
20230411_1350 20230411_1400	2.5 2.5 2.5	ESE ESE ESE
20230411_1400	1.7	E E
20230411 1420	1.9	E
20230411 1430	1.7	E
20230411_1440	2.2	E
20230411_1450 20230411_1500	2.2 1.7	E
20230411_1500	1.7 2.5	ESE E
20230411 1520	2.5	E
20230411 1530	2.5	Е
20230411_1540	2.8	Е
20230411_1550 20230411_1600	3.3 3.3	E
20230411_1600 20230411_1610	3.3	E E
20230411_1010	3,3	E
20230411 1630	3.1	E
20230411 1640	2.8	E
20230411_1650	2.8	E
20230411_1700 20230411_1710	3.3	E E
20230411_1710	2.8	E
20230411_1730	2.8	E
20230411_1740	3.1	E
20230411_1750	3.1	ESE
20230411_1800 20230411_1810		ESE ESE
20230411 1810	2.2 2.5	ESE
20230411 1830	2.8	ESE
20230411_1840	2.8	ESE
20230411_1850	2.5	ESE
20230411_1900 20230411_1910	1.4 2.8	ESE ESE
20230411_1910	1.1	ESE
20230411 1930	0.3	
20230411_1940	1.1	ESE
20230411_1950	1.4	ESE
20230411_2000 20230411_2010	1.4	ESE
20230411_2010 20230411_2020	1.4 0.8	E E
20230411_2030	0.3	
20230411_2040	1.1	ENE
20230411_2050	0.3	
20230411_2100 20230411_2110	0.3	S
20230411_2110 20230411_2120	0.8	SE SE
20230411_2130	0.6	SE SE
20230411_2140	0.3	NW
20230411_2150	0.3	WSW
20230411 2200 20230411 2210 20230411 2220 20230411 2220 20230411 2240 20230411 2240	0.8	WNW SSW
20230411_2210	0.3 0.8	SSF
20230411_2220 20230411_2230	1.4	SSE ESE
20230411_2240	1.1	SE
20230411_2230	1.4	SSE
20230411 2300	1.1	SE
20230411_2310 20230411_2320	0.3	SE ESE
20230411_2320	0.8	SE SE
20230411_2340	0.6	S
20230411_2350	1.4	SE
	· · · · · · · · · · · · · · · · · · ·	

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230412_0000	0.3	
20230412_0010	0.3	SW
20230412_0020	1.1	SW
20230412_0030	1.1	SW
20230412_0030 20230412_0040	0.8 1.1	ESE E
20230412_0040	1.1	E E
20230412 0100	1.4	SE
20230412_0110	1.4	SSE
20230412_0120	1.4	SE
20230412_0130 20230412_0140	1.1 1.4	SE SE
20230412_0140	1.1	SE SE
20230412_0200	0.3	ESE
20230412_0210	0.3	SSE
20230412 0220 20230412_0230	1.1	SSE SE
20230412_0230 20230412_0240	0.6	SE SE
20230412 0250	0.8	SSE
20230412_0300 20230412_0310	0.3	SSE
20230412_0310	0.8	SSW
20230412 0320	0.8	SSE
20230412_0330 20230412_0340	0.3	SE SSE
20230412_0340	1.1	S
20230412 0400	0.3	SSW
20230412_0410	0	N
20230412 0420	0	N
20230412_0430 20230412_0440	0 0.3	N
20230412_0440	0.3	SSE SSE
20230412 0430	0.8	SSE
20230412_0510	0.3	502
20230412_0520	0.3	SSW
20230412 0530	1.4	S
20230412_0540 20230412_0550	0.3	SSW S
20230412_0330	0.8	SSE
20230412 0610	0.8	S
20230412_0620	0.3	S
20230412 0630	0.3	SSW
20230412_0640 20230412_0650	0,6	N NNE
20230412_0650 20230412_0700	0.3	NNE NNE
20230412 0700	0.3	NNE
20230412_0720	0	N
20230412_0730	0	N
20230412_0740	0	N
20230412_0750 20230412_0800	0.3 0.3	SSW S
20230412_0800	0.3	SSW
20230412_0820	0.3	SE
20230412 0830	0.3	WNW
20230412 0840 20230412_0850	0.3	ENE
20230412_0850 20230412_0900	0.3	NE NE
20230412_0900	0.8	SE
20230412_0920	0.3	NNE
20230412 0930	0.3	N
20230412_0940	1.1	ESE S
20230412_0950	0.3	S
20230412_1000 20230412_1010	0.6	NNE SW
20230412_1010	1.4	SW
20230412 1030	1.1	SSW
20230412 1040	1.4	SE
20230412 1050	1.4	ENE
20230412_1100 20230412_1110	1.4	NY .
20230412_1110 20230412_1120	1.1 1.1	N SE
20230412_1130	1.4	SE SE
20230412_1140	1.7	ENE
20230412 1150	2.8	Е

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		E
20230412_1200	2.3	ESE
20230412 1200 20230412 1210 20230412 1220 20230412 1220 20230412 1230	2.5 2.2 2.5 2.5	
20230412 1220	2.5	E E
20230412_1240	2.2	E
20230412_1240	2.8	E
20230412 1250 20230412 1300	2.5	Ē
20230412 1310	2.8	Ē
20230412 1320	2.8	E
20230412 1330	2.2	ESE
20230412_1340	2.2	Е
20230412_1350	2.2	Е
20230412_1400	2.5	E
20230412_1410	1.7	E
20230412_1420	1.9	
20230412 1430	2.5	E
20230412_1440	2.5 2.5	E
20230412 1450 20230412 1500		E
20230412 1510	2.8 2.2	E E
20230412_1510	2.2	ESE
20230412_1520	3.3	E E
20230412_1540	3.1	E E
20230412_1540	3.3	ESE
20230412_1550	3,3	E
20230412 1610	3.1	E
20230412 1620	3.1	E
20230412_1630	3.1	E
20230412 1640	3.3	Е
20230412_1650	3.3	E
20230412_1700	3.3	ESE
20230412_1710	2.5	ESE
20230412_1720	2.8	ESE
20230412_1730	2.5	ESE
20230412 1740 20230412_1750	2.8	ESE
	2.5	E ESE
20230412_1800 20230412_1810	2.3	SE SE
20230412 1810	1.1	SE SE
20230412_1820	1.1	ENE
20230412_1830	1.1	LIVE
20230412 1850	1.9	SE
20230412 1900	2.2	ESE
20230412 1910	2.2	SE
20230412 1920	2.8	ESE
20230412_1930	3.3	ESE
20230412_1940	3.3	Е
20230412_1950	3.3	ESE
20230412_2000	2.8	E
20230412_2010	2.5	E
20230412 2020	1.7	E
20230412_2030	1.7	E
20230412_2040 20230412_2050	2.2	E
20230412_2050	2.2	E ESE
20230412_2100	1.7	ESE ESE
20230412_2110	1.7	ESE
20230412 2120	1.7	SE
20230412_2130	0.8	SE
20230412 2150	1.4	ESE
20230412_2200	1.7	Е
20230412_2210	2.5	ESE
20230412_2220	2.5	ESE
20230412_2230	3.1	ESE
20230412_2240 20230412_2250	3.3	ESE
20230412_2250	3.3	ESE
20230412 2300	3.3	ESE
20230412_2310 20230412_2320	3.9	ESE
20230412_2320	3.6	ESE
20230412 2330 20230412 2340	3.9	ESE
20230412_2340 20230412_2350	3.6 4.2	ESE ESE
20230412_2330	4.2	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230413 0000	4.7	ESE
20230413_0000	4.7	ESE ESE
20230413_0020	4.2	ESE
20230413 0030	3.6	ESE
20230413 0040	4.4	ESE
20230413 0050	5	ESE
20230413_0100	5.3	ESE
20230413_0110	5.3	ESE
20230413_0120	4.2	_E
20230413_0130	4.4	ESE
20230413_0140	3.9	E
20230413_0150 20230413_0200	3.3 3.3	E E
20230413_0210	3.3	<u>Е</u> Е
20230413_0210	3.6	E E
20230413 0230	3.3	ENE
20230413 0240	3.3	ENE
20230413 0250	2.8	E
20230413 0300	3.1	E
20230413 0310	2.5	E
20230413_0320	2.8	Е
20230413_0330	2.8	ESE
20230413_0340	2.8	ESE
20230413_0350	3.1	ESE
20230413_0400	2.5	ESE
20230413_0410	2.5	ESE
20230413_0420		ESE
20230413_0430 20230413_0440	2.8 2.2	ESE ESE
20230413_0440	1.9	ESE
20230413_0430	1.7	ESE
20230413 0510	1.4	ESE
20230413_0520	1.7	ESE
20230413_0530	1.9	ESE
20230413 0540	1.4	E
20230413_0550	1.9	ESE
20230413_0600	1.1	SE
20230413_0610	1.1	ESE
20230413_0620	1.7	E
20230413_0630	2.2	E
20230413_0640	2.2	ESE
20230413_0650 20230413_0700	2.5	SE ESE
20230413_0700	3.6 3.3	SE SE
20230413_0710	4.2	SE SE
20230413_0720	3.6	ESE
20230413 0740	2.5	ESE
20230413 0750	3.3	SE
20230413_0800	3.9	ESE
20230413_0810	4.2	SE
20230413 0820	4.2	SE
20230413_0830	4.2	ESE
20230413_0840	4.2	ESE
20230413 0850	3.9	ESE
20230413_0900	3.9	ESE ESE
20230413_0910 20230413_0920	4.2 4.2	ESE ESE
20230413 0930	4.4	ESE
20230413_0940	4.4	ESE
20230413_0950	4.2	ESE
20230413 1000	4.4	ESE
20230413_1010	4.4	ESE
20230413_1020	3.3	ESE
20230413_1030	4.7	ESE
20230413_1040	4.4	Е
20230413_1050	4.2	Е
20230413_1100	4.2	ESE
20230413_1110	3.9	ESE
20230413_1120 20230413_1130	3.9	SE
	4.2	E
20230413 1140	3.9	ESE

D . 0 m		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230413 1200	3.3	Е
20230413 1210 20230413 1220 20230413 1220 20230413 1230	3.3	E
20230413 1220	3.9	E E
20230413_1230	3.3	
20230413 1240	3.9	E
20230413 1250	3.3	E
20230413_1300	3.1	E
20230413_1310 20230413_1320	3.3 3.3	ENE E
20230413_1320	3.3	E E
20230413_1340	3.3	E
20230413 1350	3,9	E
20230413_1400	3.3	Е
20230413_1410	2.5	SE
20230413_1420	2.2	SE
20230413 1430	2.8	SSE
20230413_1440 20230413_1450	3.1	SSE
20230413_1450	3.6 2.5	SSE ESE
20230413 1510	3.3	ESE
20230413_1510	3.6	E
20230413 1530	3.9	E
20230413_1540	3.3	Е
20230413_1550	3.3	ESE
20230413_1600	3.3	E
20230413_1610	3.1	E
20230413_1620	3.9	E
20230413_1630 20230413_1640	3.3	ESE E
20230413_1650	3.9	ESE
20230413_1030	3.3	ESE
20230413 1710	3.1	ESE
20230413 1720	3.1	ESE
20230413_1730	3.1	ESE
20230413_1740	2.8	ESE
20230413_1750	2.5	ESE
20230413_1800	2.2	ESE
20230413_1810	2.5	SE
20230413_1820 20230413_1830	2.8 2.5	E ESE
20230413_1830	2.5	SE SE
20230413 1850	2.2	ESE
20230413 1900	1.7	ESE
20230413 1910	1.7	SE
20230413_1920	2.2	SE
20230413_1930	3.3	SE
20230413_1940	2.5	SE
20230413_1950	2.5	SE
20230413_2000 20230413_2010	2.8 2.2	SE
20230413_2010 20230413_2020	2.2	SE ESE
20230413 2020	2.5	ESE ESE
20230413 2040	1.7	ESE
20230413 2050	2.5	ESE
20230413_2100	2.8	ESE
20230413_2110	3.3	ESE
20230413_2120	3.1	ESE
20230413_2130	1.9	ESE
20230413_2140	2.2	ESE
20230413 2150 20230413 2200	2.8 2.8	ESE ESE
20230413_2200	3.1	SE SE
20230413 2220	2.5	SE
20230413 2230	2.2	SE
20230413_2240	1.7	SE
20230413_2240 20230413_2250	2.2	SE
20230413_2300	2.2	SE
20230413_2310	2.5	SE
20230413_2320	2.2	ESE
20230413 2330 20230413_2340	1.4 1.7	SSE SE
20230413_2350	1.7	ESE ESE
20230413_2330	1./	ESE

Date & Time	W. 10 1/ ()	****
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230414_0000	2.5	ESE
20230414_0010	2.8	ESE
20230414 0020	2.5 2.2	SE
20230414_0020 20230414_0030	2.2	ESE ESE
20230414_0030	2.2	ESE
20230414_0050	2.2 1.7	ESE ESE
20230414_0100	1.9	ESE
20230414 0110	1.4	ESE
20230414_0120	1.4	ESE
20230414_0130	1.4	E
20230414_0140	1.4	Е
20230414_0150	1.7	ESE
20230414_0200	1.4	ESE
20230414_0210 20230414_0220	1.1	ESE
20230414 0220	1.1 1.1	SE SE
20230414_0230	1.4	SE SE
20230414 0240	1.4	SE SE
20230414 0230	1.4	SSE
20230414 0310	0.8	SE
20230414 0320	0.3	ESE
20230414_0330	0.3	ESE
20230414_0340	0.3	SE
20230414 0350	0.3	SE
20230414_0400	1.1	ESE
20230414_0410	0.8	ESE
20230414_0420 20230414_0430	0.3	ESE ESE
20230414_0430	0.3	ESE
20230414_0450	0.8	SE
20230414 0500	1.4	SE SE
20230414_0510	1.4	SE
20230414 0520	1.1	ESE
20230414 0530	1.1	ESE
20230414_0540	2.2	ESE
20230414_0550	1.7	ESE
20230414_0600	2.2	ESE
20230414_0610	1.7	ESE
20230414_0620	2.5	SE
20230414 0630 20230414 0640	2.2 1.9	SSE SSE
20230414_0040	1.7	SSE
20230414_0030	2.2	SE
20230414 0710	2.5	SE
20230414_0720	1.7	ESE
20230414 0730 20230414 0740	2.8 2.2	SE SE
	2.2	SE
20230414_0750	2.8	SE
20230414_0800	2.5	SE
20230414 0810	2.5 2.8	ESE ESE
20230414_0820 20230414_0830	2.8	ESE ESE
20230414_0830	2.8	ESE ESE
20230414_0850	1.9	ESE
20230414_0900	2.5	E
20230414_0900	2.5	L L
20230414_0920	2.5	E
20230414_0930	2.5	ESE
20230414_0940	1.7	Е
20230414_0950	2.2	ESE
20230414_1000	1.7	ESE
20230414_1010	2.5	E
20230414_1020	2.2	E
20230414_1030 20230414_1040	2.8	ESE E
20230414_1040	2.5	<u>Е</u> Е
20230414_1000	2.5 2.5	E E
20230414_1110	2.8	E
20230414_1110 20230414_1120	2.8 2.5 2.2	E
20230414 1130	2.2	Ē
20230414_1140	2.5	SE
20230414_1150	1.7	SSE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230414_1200	1.7	SSE
20230414 1210 20230414 1220 20230414 1220 20230414_1230	1.7	ENE
20230414 1220	1.7	
20230414_1230	2.8	ENE
20230414_1240	2.5	ENE
20230414_1250	2.8	E
20230414_1300	2.8	E
20230414_1310	2.8	E
20230414_1320	2.8	E
20230414_1330	2.5	E
20230414_1340	1.7	E
20230414_1350	2.2	ESE
20230414_1400	2.2	E
20230414_1410	2.5	ESE
20230414_1420	1.7	E
20230414 1430	1.9	E
20230414_1440	2.5	E
20230414_1450	2.8	E
20230414 1500	2.8	ESE
20230414_1510	2.2	E
20230414_1520	2.8	ESE
20230414 1530	2.5	ESE
20230414_1540	2.5	E
20230414_1550	1.7	E
20230414 1600	2.2	E
20230414_1610		ESE
20230414_1620	2.2	E
20230414 1630	1.7	ESE
20230414_1640	1.7	E
20230414_1650	1.7	ESE
20230414_1700	1.9	SE
20230414 1710	1.1	SSE
20230414_1720	1.4	S
20230414_1730	1.4	S
20230414 1740	1.1	WSW
20230414_1750	0.8	SSW
20230414_1800 20230414_1810	1.1	SW
	0.8	SSW
20230414_1820	0.8	S
20230414_1830 20230414_1840	0.6	SSE E
20230414_1840	1.1 0.6	E ESE
20230414_1830	0.0	N ESE
20230414_1900	0,3	E E
20230414_1910	0.5	E ESE
20230414_1920	0.8	SE SE
20230414_1930	0.3	SE SSE
20230414_1940	0.6	SSW
20230414_1930	0.8	S
20230414_2000	0.8	SSE
20230414_2010	1.1	SSE
20230414 2020	0.8	S
20230414_2030	0.3	SSW
20230414_2040	0.8	SW
20230414 2030	0.3	SW
20230414_2100	0.3	511
20230414_2110	0.3	SE
20230414 2130	0.3	E
20230414 2140	0	N
20230414 2150	0	N
20230414 2200	0	N
20230414 2210	0	N
20230414 2220	0	N
20230414_2230	0	N
20230414_2240	0	N
20230414 2250	0.3	SSE
20230414 2300	0	N
20230414_2310	0.3	S
20230414 2320	0.3	SE
20230414 2330	0.3	ESE
20230414 2340	0	N
20230414_2350	0.3	SSE

Dote & Time		
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230415_0000	0.8	SE
20230415_0000	0.8	N N
20230415_0010	0	N N
	0	N N
20230415_0020		
20230415_0030	0	N
20230415_0040	0	N
20230415_0050	0	N
20230415_0100	0	N
20230415 0110	0.3	NNE
20230415_0120	0	N
20230415_0130	0.3	SE
20230415_0140	0.3	E
20230415_0150	0	N
20230415_0200	0	N
20230415_0210	0	N
20230415 0220 20230415_0230	0	N
20230415_0230	0	N
20230415_0240	0	N
20230415_0250	0	N
20230415_0300	0	N
20230415_0310	0	N
20230415 0320	0	N
20230415 0330	0	N
20230415 0340	0.3	ESE
20230415 0350	0	N
20230415 0400	0	N
20230415 0410	0	N
20230415 0420	0	N
20230415 0430	0	N N
20230415_0440	0	N N
20230415_0440	0	N N
20230415 0430	0	N N
20230413 0300	0	N N
20230415_0510		N N
	0	*1
20230415 0530	0	N
20230415_0540	0	N
20230415_0550	0	N
20230415 0600	0	N
20230415_0610	0	N
20230415_0620	0	N
20230415 0630	0	N
20230415_0640	0	N
20230415_0650	0	N
20230415_0700	0	N
20230415_0710	0	N
20230415_0720	0.3	SW
20230415_0730	0	N
20230415_0740	0	N
20230415_0750	0	N
20230415_0800	0	N
20230415_0810	0	N
20230415_0820	0	N
20230415_0830	0.3	ENE
20230415_0840	0.6	NNE
20230415_0850	1.4	N
20230415_0900	0.8	NW
20230415 0910	1.1	NNE
20230415 0920	1.1	NNE
20230415_0030	1.7	NNE
20230415 0940	2.5	NNE
20230415 0950	2.5 3.9	NNE
20230415 1000	3.1	N
20230415 1010	3.3	N
20230415_1010	3.9	N N
20230415_1030	4.2	N N
20230415_1030	4.7	NNE NNE
20230415_1040	4.7	NNE NNE
20230415 1100	4.4	NNE N
20230415_1100	4.2	
20230415_1110	4.2 3.3	NNE
20230415_1120		NNE
20230415_1130	2.8	NNE
20230415_1140	2.8	N
20230415_1150	2.5	NNE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230415 1200	2.2	N
20230415_1200	1.7	N N
20230415_1210 20230415_1210 20230415_1220 20230415_1230	1.4	N N
20230415 1220	2.5	NNW
20230415_1230	2.2	N
20230415 1250	1.7	N N
20230415 1300	3.1	NNE
20230415 1310	2.8	N
20230415 1320	2,5	N
20230415 1330	2.2	N
20230415 1340	3.1	N
20230415 1350	3.9	N
20230415_1400	2.2	NNW
20230415_1410	1.9	NNW
20230415_1420	4.2	N
20230415_1430	3.1	N
20230415_1440	4.2	N
20230415_1450	3.9	NNE
20230415_1500	2.5	N
20230415_1510	1.9	NNE
20230415_1520	1.7	NNE
20230415 1530	1.7	NNE
20230415_1540	2.8	NNE
20230415_1550	1.7	NNE
20230415 1600 20230415 1610	2.5 2.8	N N
20230415_1620	2.8	NNE NNE
20230415_1630	2.5	NNE NNE
20230415 1640	2.3	NE.
20230415_1640	2.0	NE NE
20230415_1030	1.7	NE NE
20230415_1700	2.2	NE NE
20230415 1710	1.7	NE NE
20230415_1720	1.4	NNE
20230415_1730	1.7	NNE
20230415 1740	1.7	ENE
20230415_1750	1.4	ENE
20230415 1810	1.4	ENE
20230415 1820	1.4	E
20230415 1830	1.4	ENE
20230415 1840	1.7	NE
20230415_1850	2.8	NE
20230415_1900	3.3	NE
20230415_1910	2.5	NE
20230415_1920	2.8	NE
20230415_1930	1.4	NE
20230415_1940	0.3	ENE
20230415_1950	0	N
20230415_2000	0.3	ESE
20230415_2010	0	N
20230415 2020	0	N
20230415_2030	0	N c
20230415_2040 20230415_2050	0.3	S
	0	N NNW
20230415_2100 20230415_2110	0.8	NNW N
20230415_2110	0,3	SSW
20230413 2120	0.6	S
20230415_2130	1.4	SSE
20230415_2140	0.8	S
20230415 2130	1.1	S
20230415 2210	0.3	SSW
20230415_2220	0.3	55
20230415_2230	0.3	S
20230415 2240	0.3	
20230415_2250	0.3	
20230415 2300	0.3	ESE
20230415_2310	0.3	
20230415_2320	0	N
20230415 2330	0	N
20230415_2340	0	N
20230415_2350	0	N

T		
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230416_0000	0.6	SSE
20230416_0010	0	N
20230416 0020	0	N
	0	N
20230416_0020		
20230416_0030	0	N
20230416_0040	0	N
20230416_0050	0	N
20230416_0100	0	N
20230416_0110	0	N
20230416_0110	0	N N
20230416_0120		
20230416_0130	0	N
20230416_0140	0.3	
20230416_0150	0	N
20230416_0200	0	N
20230416 0210	0	N
20230416_0210	0	N N
20230416 0220 20230416_0230		
20230416_0230	0	N
20230416_0240	0.6	SSW
20230416 0250	0	N
20230416_0300	0	N
20230416_0310	0	N N
20230416_0320		N N
20230410_0320	0	
20230416_0330	0	N
20230416_0340	0	N
20230416_0350	0	N
20230416_0400	0	Ň
20230416_0410	0	N
20230410_0410		
20230416_0420	0	N
20230416_0430	0	N
20230416_0440	0	N
20230416 0450	0	N
20230416 0500	0	N
20230416 0510	0	N N
20230416_0520	0	N
20230416 0530	0	N
20230416_0540	0	N
20230416 0550	0	N
20230416 0600	0	N
20230416 0610	0	N N
20230416_0620	0	N
20230416_0630	0	N
20230416_0640	0	N
20230416_0650	0	N
20230416 0700	0	N
20230416 0710	0	N
20230416_0720	0.3	SSW
20230416_0730	0	N
20230416_0740	0	N
20230416_0750	0	N
20230416_0800	0	N
20230416 0810	0.3	N
20220410 0010		N N
20230416_0820	0.3	IN.
20230416_0830	0.3	
20230416 0840	0.3	NNE
20230416 0850	0.3	Е
20230416_0900	0.3	NE
20230416 0910	0.3	
		NINTE
20230416_0920	1.1	NNE
20230416_0930	0.8	S
20230416_0940	1.1	NW
20230416_0950	1.1	NNW
20230416_1000	0.3	
20230416_1010	1.1	NNW
20230416_1020	1.7	NNE
20230416_1020		
20230416_1030	1.4	NNW
20230416_1040	1.4	SE
20230416 1050	1.7	Е
20230416_1100	1.1	SSE
20230416_1110	1.1	S
20220416_1110	1.1	
20230416 1120	1.7	SE
20230416_1130	1.7	ESE
20230416_1140	1.7	SSE
20230416 1150	3.1	ESE

D . 0 W		
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	2.5	E
20230416_1200	2.5	<u>е</u> Е
20230416_1210 20230416_1220 20230416_1230	2.5 2.5 2.8 3.3	<u></u> Е
20230410_1220	3 3	E
20230416_1240	3,3	E
20230416 1250	3.3	E
20230416 1300	3,3	E
20230416 1310	3.9	ENE
20230416 1320	3,3	E
20230416 1330	3.9	Ē
20230416_1340	3,9	ENE
20230416 1350	4.4	Е
20230416 1400	4.4	Е
20230416_1410	4.2	Е
20230416_1420	4.2	Е
20230416 1430	3.9	Е
20230416_1440	3.9	Е
20230416_1450	3.9	Е
20230416_1500	3.9	Е
20230416_1510	3.9	E
20230416_1520	4.4	E
20230416_1530	3.3	Е
20230416_1540	5	E
20230416_1550	5	Е
20230416_1600	4.2	ESE
20230416_1610	3.9	ESE
20230416_1620	4.2	E
20230416_1630	4.2	ESE
20230416_1640	4.2	E
20230416_1650	4.2	E
20230416_1700	4.2	E
20230416 1710 20230416 1720	3.6 3.9	<u>Е</u> Е
20230416_1720	3.6	E E
20230416_1740	3.9	
20230416 1740	3.9	E E
20230416_1730	3.3	E
20230416 1810	2.8	ESE
20230416 1820	2.8	ESE
20230416 1830	3,3	E
20230416 1840	3.3	ESE
20230416 1850	3.1	E
20230416 1900	2.8	ESE
20230416 1910	2.2	ESE
20230416_1920	2.2	ESE
20230416_1930	2.5	ESE
20230416 1940	2.5	ESE
20230416_1950	2.5	ESE
20230416_2000	2.2	SE
20230416_2010	1.7	SE
20230416_2020	1.7	SSE
20230416_2030	1.1	SE
20230416_2040	1.7	SE
20230416 2050	2.2	ESE
20230416_2100	0.8	NW
20230416_2110	0.8	W
20230416 2120	0.3	
20230416_2130	0.8	TO T
20230416_2140	1.1	ESE
20230416_2150	1.1	ESE
20230416_2200	1.4	ESE
20230416_2210	1.7	SE
20230416_2220	1.7	SE
20230416_2230 20230416_2240	2.2	SE
20230416_2240	1.7	ESE
	1.7	SE SE
20230416 2300 20230416_2310	1.1	SE SE
20230416_2320	1.7	SE SE
20230416_2320	2.2	SE SE
20230416_2340	1.7	SE SE
20230416_2340	1.7	SE
Z0ZJ0T10_ZJJ0	1.7	- LID

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230417 0000	2.2	ESE
20230417_0000	2.2	ESE
20230417 0020	2.2	ESE
20230417_0030	1.7	SSE
20230417_0040	1.4	ESE
20230417_0050 20230417_0100	1.4 1.1	SE
20230417_0100	2.2	SE
20230417 0120	2.2	SE
20230417_0130	1.7	ESE
20230417_0140 20230417_0150	1.7	SE
20230417_0150 20230417_0200	1.7 1.4	SE SE
20230417 0210	1.4	SSE
20230417_0220	1.4	SE
20230417 0230	1.1	SSE
20230417_0240 20230417_0250	1.1 1.7	SSE SSE
20230417 0230	1.7	SE SE
20230417 0300 20230417_0310	1.4	SE SE
20230417_0320	1.4	ESE
20230417_0330	2.2 1.9	ESE
20230417_0340 20230417_0350	1.9	E ESE
20230417 0330	1.4	ESE
20230417_0410	1.1	SE
20230417_0420	1.1	S
20230417_0430	1.1	S
20230417_0440 20230417_0450	0.8 1.1	S SSE
20230417 0430	0.8	SE
20230417 0510	0.3	E
20230417_0520	1.1	E
20230417_0530	0.8	SE
20230417 0540 20230417 0550	1.4 0.8	SE SE
20230417_0530	1.1	SE
20230417 0610	1.1	ESE
20230417_0620	1.1	ESE
20230417_0630 20230417_0640	0.8 0.3	ESE S
20230417_0640 20230417_0650	0.3	ESE
20230417_0030	0.8	SE
20230417_0710	0.3	
20230417_0720	1.4	E
20230417_0730 20230417_0740	1.9 1.7	E E
20230417_0740	2.2	E
20230417_0800	2.2	E
20230417_0810	1.7	ESE
20230417 0820	2.2	E
20230417_0830 20230417_0840	1.7 1.4	ESE ESE
20230417 0840	1.7	ESE
20230417_0900	1.7	ESE
20230417_0910	1.9	E
20230417_0920 20230417_0930	1.9 1.7	E ESE
20230417_0940	1.7	E E E
20230417 0950	1.7	ESE
20230417_1000	2.2	Е
20230417_1010	2.2 2.8 2.2 2.5	E
20230417_1020 20230417_1030	2.2	E E
20230417_1030	3.1	E E
20230417_1050	2.8	E
20230417 1100	2.8 2.5	Е
20230417_1110	2.5	E
20230417_1120 20230417_1130	3.1 3.3	E E
20230417 1130 20230417 1140	3.3	E E
20230417_1150	3.9	E
	-	

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230417_1200	3.9	E
20230417_1210 20230417_1210 20230417_1220 20230417_1230	4.4	E
20230417_1220	4.2	E
20230417_1230	3.9	E
20230417 1240	3.3	E
20230417 1250	2.5	E
20230417 1300	3.3	E
20230417 1310	3,3	E
20230417 1320	3,9	E
20230417 1330	3,3	E
20230417 1340	3,3	ESE
20230417 1350	3.1	SE
20230417 1400	3.1	E
20230417 1410	2.5	ESE
20230417_1410	3.1	E
20230417_1420	2.5	ESE
	3.9	
20230417_1440	3.9	E
20230417_1450		E
20230417 1500	3.9	E
20230417_1510	3.3	E
20230417_1520	3.3	ESE
20230417_1530	3.3	E
20230417_1540	4.2	E
20230417 1550	3.3	ESE
20230417 1600	3,3	ESE
20230417 1610	3.3	ESE
20230417_1010	4.4	E
20230417_1620	3.9	ESE
20230417_1630	3.3	ESE E
20230417_1650	3.6	ESE
20230417_1700	3.3	ESE
20230417_1710	4.2	ESE
20230417_1720	3.3	ESE
20230417_1730	3.3	ESE
20230417 1740	3.3	ESE
20230417 1750	4.2	ESE
20230417 1800	4.7	ESE
20230417 1810	3.9	ESE
20230417 1820	4.2	ESE
20230417_1820	3.9	ESE
20230417_1830	4.2	ESE
20230417 1840	5	ESE ESE
20230417_1900	5	ESE
20230417_1910	4.2	ESE
20230417_1920	4.4	ESE
20230417_1930	4.7	ESE
20230417_1940	4.2	ESE
20230417_1950	3.9	ESE
20230417_2000	3.9	Е
20230417 2010	3,3	ESE
20230417 2020	2.8	E
20230417 2020	3.3	E
20230417_2030	3.6	E
20230417_2040	3.3	<u>Е</u> Е
20230417_2100	3.1	E
20230417_2110	3.1	E
20230417 2120	2.8	ESE
20230417_2130	1.9	E
20230417_2140	2.5	E
20230417_2150	2.2	E
20230417_2200	2.2	E
20230417 2210	1.4	ESE
20230417 2220	1.7	SE
20230417_2230	1.4	SSE
20230417_2240	1.4	SE
20230417_2240	1.1	ESE
20230417 2300	2.8	ESE
20230417_2310	2.2	SE
20230417_2320	2.8	SE
20230417_2330	3.1	ESE
20230417_2340	3.1	ESE
20230417_2350	2.8	ESE

20230418 0000	Date & Time	Wind Speed (m/s)	Wind Direction (From)
20230418 0010	(YYYYMMBB HHMM) 20230418 0000		ESE
20230418 0020			
20230418 0040	20230418 0020		
20230418 0050			
20230418 0100			
20230418 0110			
20230418 0120			
20230418 0140			
20230418 0150			
20230418 0200			
20230418 0210		1.1	
20230418 0220			
20230418 0230	20230418_0210		
20230418 0240	20230418 0230		ESE
20230418 0300	20230418_0240		E
20230418 0310			
20230418 0320			
20230418 0330			
20230418 0340			
20230418 0350	20230418_0340		ESE
20230418 0410	20230418 0350	1.1	SE
20230418 0420	20230418 0400		SSE
20230418 0430			SE
20230418 0404	20230418_0420		
20230418 0450	20230418_0430		
20230418 0500	20230418_0450		
20230418 0510	20230418 0500		SSW
20230418 0530	20230418 0510	0.8	
20230418 0540 0.8			
20230418 0550	20230418_0530		
20230418 0600	20230418 0540		
20230418 0610			
20230418 0630	20230418 0610	0	N
20230418 0640	20230418_0620		ESE
20230418 0050			ESE
20230418 0700	20230418 0640		N
20230418 0710	20230418_0000		
20230418 0720	20230418 0710		
20230418 0740	20230418_0720	1.4	
20230418 0750 1.7 SE			
20230418 0800			
20230418 0810			
20230418 0820			
20230418 0830			
20230418 0850	20230418_0830	1.7	ESE
20230418 0900 2.2 ESE			
20230418 0910 2.5 E			
20230418 0920			
20230418 0930 2.8 SE			
20230418 0940 2.8 SE			
20230418 1000 3.3 SSE	20230418_0940	2.8	SE
20230418 1010 3.3 SE			
20230418 1020 3.3 SSE			
20230418 1030 3.3 SSE			
20230418 1040 3.3 SE			
20230418 1050 3.3 SE 20230418 1100 3.9 SE 20230418 1110 3.3 SE 20230418 1120 3.9 SE 20230418 1130 3.9 SE 20230418 1140 3.3 SE			
20230418 1100 3.9 SE 20230418 1110 3.3 SE 20230418 1120 3.9 SE 20230418 1130 3.9 SE 20230418 1140 3.3 SE	20230418_1050	3.3	SE
20230418 1120 3.9 SE 20230418 1130 3.9 SE 20230418 1140 3.3 SE			
20230418 1130 3.9 SE 20230418_1140 3.3 SE		3.3	
20230418_1140 3.3 SE			
20230418 1150 2.8 SSE	20230416 1130		
	20230418_1150	2.8	SSE

D . 0 W		
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230418_1200	3,3	SSE
20230416_1200	3.1	SSE
20230418 1210 20230418 1220 20230418 1220 20230418 1230	3.3	SE SE
20230418 1220	3.1	SSE
20230418 1240	2.8	SSE
20230418 1250	2.8	SSE
20230418 1230	2.5	ESE
20230418_1310	2.2	SE
20230418 1320	3.1	ESE
20230418 1330	3.1	ESE
20230418 1340	3,3	E
20230418 1350	2,5	ESE
20230418 1400	2.8	ESE
20230418 1410	2.8	ESE
20230418 1420	2,5	SE
20230418 1430	2.8	SSE
20230418 1440	1.7	SSE
20230418 1450	2.2	SSE
20230418 1500	2.2	SSE
20230418_1510	2.2	SSE
20230418 1520	2.2	SE
20230418 1530	1.7	SE
20230418_1540	1.7	SE
20230418_1550	1.7	SE
20230418 1600	1.4	ESE
20230418_1610	1.7	SE
20230418 1620	1.7	ESE
20230418 1630	1.7	ESE
20230418 1640	1.4	SSE
20230418_1650	1.7	SSE
20230418_1700	1.4	SE
20230418 1710	1.4	SE
20230418 1720	1.7	ESE
20230418 1730	1.4	SE
20230418 1740	1.7	ESE
20230418_1750	1.7	SE
20230418 1800	2.5	SE
20230418 1810	1.1	SE
20230418_1820	1.7	SSE
20230418_1830	1.4	SE
20230418_1840	1.4	ESE
20230418_1850	1.7	SE
20230418_1900	0.8	SE
20230418_1910	1.1	SE
20230418_1920	1.4	SE
20230418_1930	1.4	SE
20230418_1940	0.8	SE
20230418_1950	0.3	
20230418_2000	0.3	SW
20230418_2010	0.3	SSE
20230418 2020	1.1	ESE
20230418_2030	0.3	N
20230418_2040	0	N
20230418 2050	0.3	SSW
20230418_2100	0.8	ESE
20230418_2110	0.3	S
20230418_2120 20230418_2130	0.8	S SSW
	0.8	SSW
20230418_2140	0.8	SSW
20230418_2150 20230418_2200	1.7 1.4	SSW
20230418_2210	1.4	SSW
20230418_2220	1.4	S
20230418_2220	1.4	SSW
20230418_2230	0.8	SW
20230418_2240	0.8	SW
20230418_2230	0.3	N N
20230418_2310	0	N N
20230418_2320	0,3	SSW
20230418 2320	1.1	SSW
20230418_2340	2.2	SSW
20230418 2350	1.9	SW
Z0ZJ0T10_ZJJ0	1.7	J 11

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230419 0000	2.2	SSW
20230419_0000	2.5	S
20230419 0020	2.2	S
20230419_0030	1.1	S
20230419_0040 20230419_0050	0.3 0.8	S
20230419_0030	1.4	SSW
20230419_0110	0.8	SSW
20230419 0120	0.3	SW
20230419_0130 20230419_0140	0.8	SW SW
20230419_0140	1.7	SW
20230419 0150 20230419 0200	2.8 2.5	SW SW
20230419_0210	2.2	SW
20230419_0220 20230419_0230	1.7	SW
20230419 0230	2.2	SSW SW
20230419 0250	2.5 2.2 1.7	SSW
20230419 0300 20230419_0310	2.2	SSW SW
20230419_0310	1.7	SW SW
20230419_0320 20230419_0330	2.5 2.2	SW
20230419_0340	1.9	SW
20230419_0350	2.5	SSW
20230419_0400	2.2 1.4	SW SSW
20230419_0410 20230419_0420	1.4	SSW
20230419 0430	0.8	SSW
20230419 0440	0.8	SSW
20230419_0450	0.6	SW
20230419_0500 20230419_0510	0.6	SW SW
20230419_0520	1.1	SW
20230419 0530	1.7	SW
20230419 0540	1.4	SSW
20230419_0550 20230419_0600	1.4	SSW SW
20230419_0000	0.8	SSW
20230419_0620	0.8	SW
20230419_0630	1.7	SSW
20230419_0640 20230419_0650	1.4	SW WSW
20230419_0030	1.1	WSW
20230419 0710	1.9	WSW
20230419_0720	2.2	SW
20230419_0730	2.5	SW
20230419_0740 20230419_0750	1.1 2.5	SW SW
20230419_0800	3,3	SW
20230419 0810	3,3	SW
20230419 0820	3.1	SW SW
20230419_0830 20230419_0840	3.3 2.8	SW
20230419 0850	3.9	SSW
20230419_0900	3.3	SW
20230419_0910	3.1	SW
20230419 0920 20230419 0930	2.2 3.1	SW SW
20230419 0940	3.1	SW
20230419 0950	2.2	SW
20230419_1000	3.3	SW
20230419_1010 20230419_1020	4.4	WSW SW
20230419 1020 20230419 1030	3.3 3.6	SSW
20230419_1040	2.8	SSW
20230419_1050	3.9	SSW
20230419 1100 20230419 1110	3.3 5.3	SW WSW
20230419 1120	3.6	WSW
20230419 1130	3.3	W
20230419_1140	3.3	WSW
20230419_1150	1.7	

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	1.1	SE
20230419_1200 20230419_1210	2.2	SE SE
20230419_1220	3.1	ESE
20230419_1230	1.1	N
20230419_1240 20230419_1250	0 0.3	N E
20230419_1300	2.2	ESE
20230419_1310	1.7	ESE
20230419_1320	0.6	
20230419_1330 20230419_1340	0.3	SE
20230419 1340 20230419 1350 20230419 1400	0.3 0.8	ENE
20230419 1400	1.1	SE
20230419_1410	0.8	SSE
20230419_1420	1.4	SE
20230419 1430 20230419 1440	0.8 0.8	NE SW
20230419 1450	0.0	N
20230419 1500 20230419_1510	0.3	
20230419_1510	0.3	WNW
20230419_1520 20230419_1530	1.4 1.1	WNW W
20230419 1540	1.1	WSW
20230419 1550	1.1	SW
20230419_1600	0.6	W
20230419_1610 20230419_1620	0.3	WSW SW
20230419 1630	0.8	S
20230419_1640	1.1	S
20230419_1650	0.8	S
20230419_1700	0.8	S
20230419 1710 20230419_1720	0.3	WSW NNW
20230419 1730	0.3	WSW
20230419 1740	1.4	NNE
20230419_1750 20230419_1800	1.1	NNE N
20230419_1800	0.8 1.1	ENE
20230419 1810	0.8	SE
20230419_1830	1.1	ESE
20230419_1840 20230419_1850	1.7 0.8	ENE ENE
20230419_1830	0.6	NNE NNE
20230419 1910	1.1	SE
20230419_1920	2.2	Е
20230419_1930	2.8	ESE
20230419_1940 20230419_1950	2.5 2.2	E ESE
20230419 2000	1.7	ESE
20230419_2010	2.2	SE
20230419 2020	1.7	ESE
20230419_2030 20230419_2040	1.9 1.4	E NE
20230419 2050	0.3	S
20230419_2100	0.8	NNE
20230419_2110	0.8	NNE
20230419_2120 20230419_2130	0	N SSE
20230419 2140	0.8	ESE
20230419 2150	0.3	E
20230419_2200	0.3	ENE
20230419 2200 20230419 2210 20230419 2220 20230419 2220 20230419 2230	1.1	ESE SE
20230419 2220 20230419_2230	1.9 1.7	E
20230419_2240	1.4	E
20230419_2250	1.1	ESE
20230419 2300 20230419_2310	0.8 0.8	ESE E
20230419 2320	0.8	ESE
20230419 2330	0.8	SSE
20230419_2340	0.6	S
20230419_2350	1.1	Е

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230420_0000	1.7	ENE
20230420_0010	1.1	ESE
20230420 0020 20230420 0030	1.4 0.8	SE SE
20230420_0030	0.8	SSE
20230420_0040	1.1	SE SE
20230420_0100	1.1	E E
20230420_0100	1.1	ENE
20230420_0110	0.3	SSE
20230420_0130	0.3	WSW
20230420_0140	0.3	SE
20230420 0150	1.1	E
20230420_0200	1.1	E
20230420 0210	0.8	ENE
20230420 0220	0	N
20230420 0230	0	N
20230420_0240	0.3	NE
20230420_0250	0	N
20230420 0300	0.3	S
20230420_0310	0.3	SE
20230420_0320	0.3	Е
20230420_0330	0.6	SE
20230420_0340	0.3	ESE
20230420_0350	0	N
20230420 0400	0	N
20230420_0410	0.3	NE
20230420_0420	0.3	ENE
20230420_0430	0.8	E
20230420_0440	0.8	ENE
20230420_0450	1.1	E
20230420_0500	0.6	E
20230420 0510 20230420 0520	0.8 0.6	E ESE
20230420_0320	0.3	ESE
20230420_0330	1.1	SE
20230420 0540	0.8	ENE
20230420_0530	0.6	NE NE
20230420_0610	0.6	S
20230420 0610	0.3	ENE
20230420 0630	0.6	NE NE
20230420 0640	0.3	SE
20230420 0650	0.3	SW
20230420 0700	0.3	SSW
20230420_0710	0.3	NE
20230420 0720	0.3	NE
20230420 0730	0.3	NNE
20230420 0740	0.3	
20230420_0750	0.6	SSE
20230420_0800	0.3	SE
20230420_0810	1.1	SE
20230420 0820	1.1	SSE
20230420_0830	1.1	SSE
20230420_0840	1.1	SE
20230420_0850	1.7	SSE
20230420_0900	1.4	SE
20230420_0910	1.4	Е
20230420 0920	1.7	E
20230420_0930	1.4	ESE
20230420_0940	1.7	E
20230420_0950	2.2 1.7	E
20230420_1000		ESE
20230420_1010	2.5	E
20230420_1020	1.7	ESE
20230420_1030	1.7	ESE
20230420_1040	2.2	SE
20230420_1050	1.9	ESE
20230420 1100 20230420 1110	1.7 2.2	ESE
20230420_1110 20230420_1120	2.2	E SE
20230420_1120	2.2	SE ESE ESE
	//.	ESE
20230420 1130	1.7	ESE

D. t. 0 T		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230420 1200	1.7	ESE
20230420_1210 20230420_1210 20230420_1220 20230420_1230	1.7	SE
20230420 1220	3.1	ESE
20230420_1230	2.8	SE
20230420 1240	2.5	SE
20230420 1250	2.8	ESE
20230420_1300	2.2	ESE
20230420_1310 20230420_1320	2.2 3.1	SE SE
20230420 1320	3.1	ESE ESE
20230420_1330	2.8	ESE
20230420 1350	3.1	ESE
20230420 1400	2.8	ESE
20230420_1410	2.8	ESE
20230420_1420	2.2	ESE
20230420_1430	3.1	ESE
20230420_1440	2.8	ESE
20230420_1450	2.8	ESE
20230420 1500 20230420 1510	2.2	SE SE
20230420_1510	3.3	SE SE
20230420_1320	2.8	SE
20230420 1530	2.8	SE
20230420 1550	3.1	SE
20230420 1600	3.3	SE
20230420_1610	2.8	SE
20230420_1620	3.1	ESE
20230420_1630	3.3	ESE
20230420_1640	3.3	ESE
20230420_1650	2.5	SE
20230420_1700	1.9	ESE
20230420 1710	2.5	ESE
20230420_1720	2.8	ESE
20230420_1730 20230420_1740	2.2	ESE
20230420 1740	2.5 2.8	SE SE
20230420_1730	3.1	ESE
20230420_1800	3.1	ESE
20230420 1820	2.8	ESE
20230420 1830	3,3	ESE
20230420 1840	2.8	ESE
20230420_1850	3.3	ESE
20230420_1900	3.6	ESE
20230420_1910	3.3	SE
20230420_1920	3.1	SE
20230420_1930	3.9	SE
20230420_1940	4.2	ESE
20230420_1950 20230420_2000	4.4 4.2	ESE ESE
20230420_2000	4.2 5	ESE ESE
20230420_2010	4.7	ESE
20230420 2020	3.9	ESE
20230420 2040	3,9	ESE
20230420 2050	4.4	ESE
20230420_2100	4.7	ESE
20230420_2110	4.2	ESE
20230420_2120	3.3	ESE
20230420_2130	3.1	ESE
20230420_2140	3.3	ESE
20230420_2150	4.7	E
20230420_2200	4.4	ESE ESE
20230420_2210	3.6 3.9	ESE ESE
20230420_2220 20230420_2230	3.9	ESE
20230420_2230	3.9	ESE
20230420_2240	3.3	ESE
20230420 2230	3.9	E
20230420_2310	3.3	E
20230420 2320	3.3	Ē
20230420 2330	4.2	ESE
20230420 2340	3.3	ESE
20230420_2350	3.1	E

Date & Time	Wind Spood (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230421_0000 20230421_0010	3.3 1.4	ESE
20230421 0020	3.3	ESE
20230421_0030	2.2	ESE
20230421_0040	1.7	ESE
20230421_0050 20230421_0100	2.5 2.5	ESE
20230421_0100	2.2	E E
20230421_0110	2.5	ESE
20230421 0130	3.1	ESE
20230421_0140 20230421_0150 20230421_0200	2.5 2.5 2.5	E
20230421_0150 20230421_0200	2.5 2.5	ESE E
20230421_0200	2.5	ESE
20230421 0220	1.9	ESE
20230421 0230	1.4	SE
20230421_0240	1.7	ENE
20230421_0250 20230421_0300	0.8 0.8	E W
20230421 0300 20230421_0310	3.9	S S
20230421 0320	3.1	NNW
20230421 0330	1.7	N
20230421_0340 20230421_0350	0.8	SE SE
20230421_0330	1.7 1.7	SE SSE
20230421 0530 20230421 0400 20230421_0410	2.2	SE
20230421_0420	2.5	ESE
20230421_0430	2.5	E
20230421_0440 20230421_0450	3.1	<u>Е</u> Е
20230421_0450 20230421_0500	3.1	E ESE
20230421 0500	2.8	E
20230421_0520	2.8	ESE
20230421_0530	3.3	ESE
20230421_0540 20230421_0550	1.4	ESE ESE
20230421_0550	1.7	ESE ESE
20230421 0000	2.5	E
20230421_0620	2.2	ESE
20230421_0630	2.2	SE
20230421_0640 20230421_0650	2.2 2.5	ESE ESE
20230421_0030	2.5	ESE
20230421 0710	2.5	ESE
20230421_0720	2.2	SE
20230421_0730	2.2	SE
20230421_0740 20230421_0750	2.5 3.1	ESE SE
20230421_0730	2.8	ESE
20230421_0810	2.5	ESE
20230421 0820	2.5 3.3	ESE
20230421_0830	3.3	ESE
20230421_0840 20230421_0850	3.9 3.3	ESE ESE
20230421 0830	3.3	ESE
20230421 0910	4.2	ESE
20230421 0920	3.3	SE
20230421_0930 20230421_0940	2.8	SE
20230421_0940	3.3 3.1	ESE ESE
20230421_000	3.3	SE
20230421 1010	3.9	ESE
20230421_1020	3.9 3.6	ESE ESE
20230421_1030	3.6 3.3	
20230421_1040 20230421_1050	3.9	ESE ESE
20230421_1030	4.2	ESE
20230421_1110	4.2	ESE
20230421_1120	4.2	ESE
20230421_1130	4.7	ESE
20230421_1140 20230421_1150	4.4 4.2	<u>Е</u> Е
20230721_1130	7.2	Ľ

D. t. 0 T'		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230421 1200	4.2	ESE
20230421_1210 20230421_1220 20230421_1220 20230421_1230	4.2	E
20230421 1220	3.9	ESE
20230421_1230	3.3	ESE
20230421 1240	4.2	E
20230421 1250	3.9	Е
20230421_1300	4.7	Е
20230421_1310	3.9	E
20230421_1320	3.9	ESE
20230421_1330	4.4 5	E
20230421_1340 20230421_1350	4,2	E E
20230421_1330	4.2	<u>Е</u> Е
20230421_1400	4.7	ESE
20230421 1420	3,3	ESE
20230421 1430	4.4	ESE
20230421 1440	3,3	SE
20230421 1450	2.5	ESE
20230421 1500	2.8	ESE
20230421 1510	2.2	ESE
20230421_1520	2.8	ESE
20230421 1530	3.1	ESE
20230421_1540	3.1	ESE
20230421_1550	2.5	ESE
20230421_1600 20230421_1610	2.2	ESE SE
20230421_1610	2.5	
20230421_1630	3,3	E E
20230421 1630	3.9	<u>E</u>
20230421_1040	3.9	ESE
20230421_1700	3.3	ESE
20230421 1710	4.7	E
20230421 1720	5,3	Ē
20230421 1730	5.8	E
20230421 1740	5.3	ESE
20230421_1750	5.8	ESE
20230421_1800	4.7	Е
20230421_1810	4.4	E
20230421_1820	3.1	E
20230421_1830	3.9	E
20230421_1840 20230421_1850	4.2 2.8	ESE E
20230421_1830	2.5	<u>Е</u> Е
20230421_1900	2.8	E E
20230421 1910	2.5	ENE
20230421 1930	2.2	ENE
20230421 1940	2,5	ENE
20230421 1950	2.2	ENE
20230421_2000	2.2	NE
20230421_2010	2.2	ESE
20230421 2020	3.3	ESE
20230421_2030	5	SE
20230421_2040	3.9	ESE
20230421_2050	3.3	ESE
20230421_2100 20230421_2110	4.7	SE SE
20230421_2110	4.4 3.3	SE SE
20230421_2120	4.4	ESE ESE
20230421_2130	4.2	E
20230421 2150	3.9	Ē
20230421 2200	4.2	ESE
20230421_2210	6.1	ESE
20230421 2220	6.1	ESE
20230421_2230	0.3	SE
20230421_2240	0.3	SE
20230421_2250	8.1	ESE
20230421 2300	6.7	ESE
20230421_2310	5.3	E
20230421_2320	4.2	E
20230421 2330 20230421 2340	3.9	E ESE
20230421_2340	4.4 4.2	ESE ESE
20230+21_2330	4.2	ĿðE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230422_0000	3.3	ESE
20230422_0010	2.2	ESE
20230422_0020	3.3	ESE
20230422_0030	3.3	E
20230422_0040 20230422_0050	3.9 3.9	E ESE
20230422_0030	4.2	ESE
20230422_0110	3.9	E
20230422_0120	3.9	Е
20230422_0130	4.4	E
20230422_0140 20230422_0150 20230422_0200	4.2 3.3 4.2	E
20230422 0130	3.3	E E
20230422_0210	4.2	E
20230422 0220	4.2	Е
20230422 0230 20230422_0240	3.6	E
20230422_0240	3.9	E
20230422_0250 20230422_0300	3.9 3.6	<u>Е</u> Е
20230422 0300 20230422_0310	3.6	E E
20230422 0320	4.2	E
20230422 0330	3.9	E
20230422_0340	4.7	ESE
20230422 0350 20230422 0400	3.6	ESE
20230422_0400 20230422_0410	4.4	<u>Е</u> Е
20230422_0410	3.3	E
20230422 0430	3.9	Ē
20230422_0440	3.9	Е
20230422_0450	3.6	E
20230422_0500 20230422_0510	2.8	ESE E
20230422 0510	3.3	E
20230422 0530	3.6	Ë
20230422 0540	4.2	Е
20230422_0550	3.9	E
20230422_0600 20230422_0610	3.9	E E
20230422 0610	4.2	E E
20230422 0630	3,9	Ē
20230422 0640	3.1	Е
20230422_0650	3.1	E
20230422_0700 20230422_0710	3.9 3.3	<u>Е</u> Е
20230422 0710	4.2	E E
20230422 0730	3,9	Ē
20230422_0740	3.9	Е
20230422_0750	3.9	E
20230422_0800	3.3 3.3	E
20230422_0810 20230422_0820	3.1	E ESE
20230422 0830	3.1	ESE
20230422_0840	2.5	E
20230422 0850	3.3	E
20230422_0900	3.3	E
20230422_0910 20230422_0920	4.2 4.4	E ESE
20230422_0930	4.7	ESE
20230422_0940	4.4	ESE
20230422_0950	4.2	ESE
20230422_1000	4.2	ESE
20230422_1010	4.2 5.3	ESE
20230422 1020 20230422 1030	5.3 4.7	ESE ESE
20230422_1030	5.3	ESE
20230422_1050	4.2	ESE
20230422 1100	4.4	ESE
20230422_1110	4.4	ESE
20230422_1120 20230422_1130	4.4 3.9	ESE
20230422 1130	5.3	SE SE
20230422 1150	3.3	SW

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	Willia Dipeca (III/3)	
20230422 1200 20230422 1210 20230422 1220 20230422 1220 20230422 1230	55	SE
20230422_1210	4.7	SE
20230422_1220	4.7	SE
20230422_1230	5	SE
20230422 1240	5.3	SE
20230422 1250 20230422_1300	5	SE
20230422_1300	4.7	SE
20230422_1310	5.3	SE
20230422_1320	5.3	SE
20230422_1330	5.6	SE
20230422_1340	5.3	SE
20230422_1350	5	SE
20230422_1400	5.8	SE
20230422_1410	4.7	SE
20230422_1420	4.2	SE
20230422 1430	4.2	ESE
20230422_1440	3.9	SE
20230422_1450	4.2	SE
20230422 1500	5.3	SE
20230422_1510	5	SE
20230422_1520	4.4	SE
20230422 1530	5.3	SE
20230422_1540	5	SE
20230422_1550	4.4	ESE
20230422 1600	5	ESE
20230422_1610	5	ESE
20230422 1620	4.7	ESE
20230422 1630	5,3	ESE
20230422 1640	4.2	ESE
20230422 1650	3,9	ESE
20230422 1700	3.6	ESE
20230422 1710	3.3	ESE
20230422 1720	4.2	ESE
20230422 1730	4.7	SE
20230422 1740	5	ESE
20230422 1750	4,2	ESE
20230422_1800	4.2	ESE
20230422_1810	3.3	ESE
20230422 1820	4.2	ESE
20230422 1830	3,6	ESE
20230422_1840	3.3	ESE
20230422 1850	4.7	ESE
20230422 1900	4.4	ESE
20230422 1910	4.2	ESE
20230422 1910	3,3	ESE
20230422 1930	4.2	ESE
20230422 1940	5,3	ESE
20230422 1940	5.3	SE
20230422 2000	5,3	ESE
20230422_2000	4.4	ESE
20230422_2010	4.4	ESE
20230422 2020	5	ESE
20230422_2030	4.7	ESE
20230422 2050	3.9	ESE
20230422 2030	4.7	ESE ESE
20230422_2100	4.7	ESE
20230422_2110	4.7	ESE
20230422 2120	4.7	ESE
20230422_2130	4.7	ESE
20230422_2140	4.7	ESE ESE
20230422_2150	3.6	ESE ESE
20230422_2200	3.9	ESE
20230422_2210	4.2	ESE ESE
20230422_2220	4.2 5	ESE
20230422_2230	4.7	
20230422_2240 20230422_2250	5.3	ESE
20220422_2200		ESE
20230422 2300 20230422 2310	5.6 5.8	ESE
20230422_2310		ESE
20230422_2320	5	ESE
20230422_2330	6.4	ESE
20230422_2340	5	ESE
20230422_2350	5.3	ESE

5	ESE
4.7	ESE
4.7	ESE
5	ESE
	ESE
	ESE ESE
	ESE
	ESE ESE
	ESE
	ESE
3,9	E
4.2	ESE
4.2	E
	<u>E</u>
	E
	E
	E ESE
	ESE
	ESE
3,3	ESE
3.9	ESE
3.1	ESE
3.3	ESE
4.2	ESE
	ESE
4.7	ESE
	ESE ESE
	ESE
	ESE
4.7	ESE
3.9	ESE
3.9	ESE ESE
4.4	
4.2	ESE
	ESE
	ESE
	SE SE
	SE SE
	SE
	SE
4.7	SE
3.3	ESE
4.7	SE
	ESE
	SE
	SSE ESE
	ESE
	ESE
4.7	ESE
5	ESE
4.4	ESE
5.8	ESE
	ESE
	ESE
	ESE
	ESE ESE
47	ESE
5	ESE
	ESE
5	SE
5.3	ESE
5.3	ESE
5.3	ESE
	ESE
	ESE ESE
	6.1 5 4.7 4.4 4.4 4.2 3.9 3.9 3.1 3.9 4.2 4.2 3.9 3.9 3.3 3.9 3.1 3.9 3.1 3.3 3.9 3.1 3.3 3.9 3.1 4.2 4.7 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.7 4.7

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230423_1200	4.7	ESE
20230423_1200	4.2	E E E
20230423 1210 20230423 1220 20230423 1220 20230423 1230	4.7	ESE
20230423 1220	4.7	ESE
20230423_1240	5	ESE
20230423 1250	4,2	ESE
20230423 1300	5	ESE
20230423 1310	4,2	E
20230423 1320	4.4	ESE
20230423 1330	3.6	ESE
20230423_1340	4.7	ESE
20230423 1350	4.2	ESE
20230423_1400	4.7	E
20230423_1410	4.7	E
20230423_1420	4.4	ESE
20230423_1430	4.7	ESE
20230423_1440	4.2	ESE
20230423 1450	4.7	ESE
20230423 1500	4.7	ESE
20230423_1510	5.3	ESE
20230423_1520	5	ESE
20230423 1530 20230423 1540	4.2 5.3	ESE ESE
20230423_1540	5.5 4.7	ESE ESE
20230423_1500	4.7	ESE
20230423_1610	4.7	ESE ESE
20230423_1610	5	ESE
20230423 1630	4.7	ESE
20230423 1640	5	ESE
20230423_1650	4.7	ESE
20230423 1700	4.7	ESE
20230423 1710	5	ESE
20230423 1720	4.2	ESE
20230423 1730	4.7	ESE
20230423 1740	3,9	ESE
20230423 1750	3.3	ESE
20230423 1800	4.2	ESE
20230423 1810	4.2	ESE
20230423_1820	3.3	ESE
20230423_1830	3.3	ESE
20230423_1840	4.2	ESE
20230423_1850	4.2	ESE
20230423_1900	3.9	ESE
20230423_1910	4.2	ESE
20230423_1920	3.6	E
20230423_1930	3.1	ESE
20230423_1940	3.9	ESE
20230423_1950 20230423_2000	4.7 3.3	ESE ESE
20230423_2000	3.3	ESE ESE
20230423 2010	2.2	ESE ESE
20230423 2020	2.8	ESE
20230423 2040	2.8	ESE
20230423 2050	1.4	SE
20230423 2100	1.7	SE
20230423 2110	1.7	ESE
20230423 2120	2.2	SE
20230423 2130	1.9	ESE
20230423 2140	3.9	ESE
20230423 2150	3.9	ESE
20230423_2200	3.6	ESE
20230423_2210	4.2	ESE
20230423_2220	4.7	ESE
20230423_2230	5	ESE
20230423_2240	5.6	ESE
20230423_2250	4.7	ESE
20230423_2300	4.2	ESE
20230423_2310	4.4	ESE
20230423_2320	4.7	ESE
20230423_2330	4.2	ESE
20230423_2340	3.1	ESE
20230423_2350	3.3	ESE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230424 0000	3.9	ESE
20230424_0010	3.9	SE
20230424 0020	4.4	ESE
20230424_0030 20230424_0040	3.9 4.4	ESE ESE
20230424_0040	3.9	ESE
20230424_0100	3.6	SE
20230424_0110	2.8	SE
20230424_0120 20230424_0130	2.8	ESE ESE
20230424_0130	2.8 3.3	ESE
20230424 0140 20230424 0150 20230424 0200	2.8 3.3	ESE ESE ESE
20230424_0200		ESE
20230424_0210 20230424_0220	2.8 2.2	ESE ESE
20230424 0230	2.8	ESE
20230424 0240	2.2	ESE
20230424_0250	2.8	ESE
20230424_0300 20230424_0310	3.3 3.1	ESE E
20230424_0320	2.8	Ē
20230424 0330	2.8	ESE
20230424_0340 20230424_0350	2.5 1.7	ESE E
20230424_0330	2.8	ESE
20230424_0410	3.3	ESE
20230424_0420	3.3	E
20230424_0430 20230424_0440	3.9 3.9	ESE ESE
20230424_0440	2.8	ESE
20230424_0500	2.8	ESE
20230424 0510	2.5	ESE
20230424_0520 20230424_0530	2.2 3.1	ESE ESE
20230424 0540	2.5	ESE
20230424_0550	2.5	ESE
20230424_0600	2.2	ESE
20230424_0610 20230424_0620	2.2	SE SE
20230424_0630	1.7	SE
20230424_0640	2.2	SE
20230424_0650 20230424_0700	1.7	ESE ESE
20230424_0700	2.2	SE SE
20230424_0720	2.5	SE
20230424_0730	3.3	SE
20230424_0740 20230424_0750	2.8 2.2	SE SE
20230424_0730	2.8	ESE
20230424_0810	3.3	ESE
20230424 0820	2.5	ESE
20230424_0830 20230424_0840	2.5 2.2	ESE ESE
20230424 0850	2.5	SE
20230424_0900	2.8	ESE
20230424_0910	3.3	ESE
20230424_0920 20230424_0930	3.1 3.9	ESE ESE
20230424 0940	3.9	ESE
20230424_0950	3.3	ESE
20230424_1000	4.2	ESE
20230424_1010 20230424_1020	4.4	ESE ESE
20230424_1030	4.2 3.3	ESE ESE
20230424_1040	3.3	ESE
20230424_1050	2.8	E
20230424 1100 20230424 1110	3.1 2.8	<u>Е</u> Е
20230424_1110	3,3	ENE
20230424_1130	2.2 2.5	ENE
20230424_1140	2.5	E
20230424_1150	2.8	E

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)	2.5	E
20230424_1200 20230424_1210	2.5	E E
20230424 1220	2.5	Е
20230424_1230	2.5	E
20230424_1240 20230424_1250	2.5 1.9	E E
20230424_1230	2.2	E E
20230424_1310	2.8	E
20230424_1320	2.8	E
20230424_1330 20230424_1340	2.8 3.3	<u>Е</u> Е
20230424_1340 20230424_1350 20230424_1400		E
20230424_1400		Е
20230424_1410 20230424_1420	2.5	E E
20230424_1420 20230424_1430	2.5 1.7	E E
20230424 1440	2.2	Ē
20230424_1450	1.7	ENE
20230424 1500 20230424_1510	2.2 1.7	E E
20230424_1520	1.7	E
20230424 1530	1.4	E
20230424_1540	1.9	ESE
20230424 1550 20230424 1600	2.2 1.4	ESE ESE
20230424_1610	1.4	ESE
20230424_1620	1.1	ESE
20230424_1630	1.4	ESE
20230424_1640 20230424_1650	1.1 0.8	ESE ESE
20230424_1700	0.8	ESE
20230424 1710	0.6	SE
20230424_1720	0.8	SE
20230424_1730 20230424_1740	0.8 0.8	SE ESE
20230424 1740	0.8	E
20230424_1800	1.7	Е
20230424_1810	1.9	ESE
20230424_1820 20230424_1830	2.5	ESE ESE
20230424_1840	3,3	ESE
20230424_1850	3.3	ESE
20230424_1900 20230424_1910	3.9 4.2	ESE ESE
20230424_1910	3.3	ESE
20230424 1930	4.4	ESE
20230424_1940	3.6	E
20230424_1950 20230424_2000	2.5 2.2	ESE ESE
20230424_2000	1.1	ESE E
20230424 2020	1.7	ESE
20230424_2030	1.4	ESE
20230424_2040 20230424_2050	1.4	ESE ESE
20230424_2030	1.1 0.8	ESE
20230424_2110	0.3	Е
20230424 2120	0.6	ESE
20230424_2130 20230424_2140	0.8 0.3	SE SE
20230424 2150	0.8	SE SE
20230424_2200	0.8	SSE
20230424 2200 20230424 2210 20230424 2220 20230424 2220 20230424 2230	0.8	SSE
20230424_2220 20230424_2230	0.8	SSE
20230424_2230	0.6	SSW N
20230424 2250	0.3	SSE
20230424 2300	0.3	-
20230424_2310	1.1	E
20230424 2320 20230424 2330	0.6 0.8	S SSE
20230424 2340	0.8	SSE
20230424_2350	0.3	S

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230425_0000 20230425_0010	0.8 1.1	SSW S
20230425_0010	0.3	S
20230425 0030	0.3	S
20230425_0040	0.3	SE
20230425 0050	1.1	SE
20230425_0100	0.8	SE
20230425_0110	0.3	SSE
20230425_0120	0.3	-
20230425_0130	0.0	ESE
20230425_0140	0.3	SE
20230425_0150 20230425_0200	0.3	SE N
20230425_0200	0.0	W
20230425_0210	0.0	- "
20230425 0230	0.0	SSW
20230425 0240	0.0	-
20230425_0250	0.0	-
20230425_0300	0.0	NNE
20230425_0310	0.3	NE
20230425_0320	1.1	NNE
20230425_0330	1.7	N
20230425_0340 20230425_0350	1.7 2.2	NNE N
20230425_0350 20230425_0400	1.4	N NNE
20230425 0400	0.8	NNE NNE
20230425_0410	0.3	NNW
20230425 0430	0.0	-
20230425 0440	0.0	N
20230425_0450	0.3	NNW
20230425_0500	0.3	NW
20230425_0510	0.0	NNW
20230425_0520	0.3	N
20230425_0530	1.1	N
20230425 0540 20230425 0550	1.1	N N
20230425_0330	1.7	N N
20230425_0000	1.4	NNW
20230425 0620	0.8	NNW
20230425 0630	0.8	NNW
20230425 0640	1.4	NNW
20230425_0650	0.8	NNW
20230425_0700	0.8	NNW
20230425_0710	0.3	NNW
20230425_0720	0.3	W
20230425_0730 20230425_0740	1.1	NW NW
20230425_0740	0.8 0.3	WNW
20230425_0730	0.8	WNW
20230425_0000	1.1	NW
20230425_0810	0.8	N
20230425_0830	1.1	N
20230425_0840	2.2	NNE
20230425_0850	2.2	N
20230425_0900	1.4	N
20230425_0910	1.4	NNW
20230425_0920	1.1	N N
20230425_0930 20230425_0940	1.4	N NNW
20230425_0940	1.7	NNW N
20230425 1000	1.4	NW
20230425_1000	1.1	NW
20230425 1020	1.1	NW
20230425_1030	1.1	NW
20230425_1040	1.1	NNW
20230425_1050	1.1	N
20230425 1100	1.4	NW
20230425_1110	1.7	NW
20230425_1120	1.7	NNW
20230425_1130	1.4	NNW
20230425_1140 20230425_1150	1.7	NNW N
	1./	IN IN

Date & Time		
(VVVVAAADD IIIDAA)	Wind Speed (m/s)	Wind Direction (From)
20230425 1200 20230425 1210 20230425 1210 20230425 1220 20230425 1230	2.5	N
20230425_1210	1.7	N
20230425_1220	1.7	NNE
20230425_1230	1.7	N
20230425 1240	1.1	N
20230425 1250 20230425 1300	1.4	NNW N
20230425_1300	0.8 1.7	NNE NNE
20230425_1310	1.4	NNE
20230425 1330	1.1	NNE
20230425 1340	1.1	N
20230425 1350	2.2	N
20230425_1400	2.8	NNE
20230425_1410	1.7	NNE
20230425_1420	1.7	N
20230425 1430 20230425 1440	2.2	N
20230425_1440	1.7	N NNW
20230425_1430	2.2	NINW N
20230425 1510	1.9	N N
20230425 1520	1.7	N N
20230425 1530	1.7	NNE
20230425_1540	1.7	N
20230425_1550	2.2	N
20230425_1600	1.7	Ŋ
20230425_1610	2.8	N
20230425_1620	2.2	N
20230425_1630 20230425_1640	2.5 2.5	NNE N
20230425 1650	2.5	N N
20230425_1700	2.2	N N
20230425 1710	1.7	N
20230425 1720	1.7	NNW
20230425_1730	1.7	N
20230425_1740	2.2	N
20230425_1750	2.2	N
20230425_1800	1.9	N
20230425 1810 20230425 1820	2.5 1.7	N N
20230425_1820	1.7	N N
20230425_1830	1.4	N N
20230425 1850	1.7	N N
20230425 1900	2.8	N
20230425_1910	2.5	NNE
20230425_1920	1.4	NNE
20230425_1930	1.9	N
20230425_1940	1.7	N
20230425_1950 20230425_2000	2.2 1.9	N N
20230425_2000 20230425_2010	1.7	N N
20230425_2010	1.7	N N
20230425_2020	1.7	N N
20230425 2040	1.4	N
20230425 2050	0.8	N
20230425_2100	1.4	NNW
20230425_2110	1.7	N
20230425_2120	1.4	N.
20230425_2130	1.4	N
20230425_2140	1.7	N
20230425 2150 20230425 2200	1.4 1.7	NNW N
20230425_2200	1.4	N N
20230425 2220	1.1	N N
20230425_2230	0.8	NNW
20230425_2240	1.4	NNW
20230425_2250	1.1	NNW
20230425_2300	1.7	NW
20230425_2310	1.7	NW
20230425_2320	1.4	N N
20230425 2330	1.7	N N
20230425_2340	2.5	N N
20230425_2350	2.8	N

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230426_0000	2.2	N
20230426_0010 20230426_0020	1.7	N NNW
20230426 0030	1.4	NNW
20230426 0040	1.7	N
20230426 0050	1.9	N
20230426 0100	2.5	N
20230426_0110	3.1	N
20230426 0120	2.8	N
20230426_0130	2.5	N
20230426_0140	2.5	N
20230426_0150	2.8	N
20230426_0200	2.5	NNE
20230426_0210	2.8	NNE
20230426_0220	1.7	NNE
20230426 0230 20230426 0240	1.7 2.5	N N
20230426_0250	2.5	N N
20230426_0250	2.2	N N
20230426 0300	2.5	N N
20230426 0320	2.3	N N
20230426 0330	2.8	N N
20230426 0340	3.1	N N
20230426 0350	2.8	N
20230426 0400	3.9	N
20230426 0410	3.3	N
20230426_0420	3.9	N
20230426_0430	3.3	N
20230426_0440	3.6	N
20230426_0450	3.3	N
20230426_0500	3.9	N
20230426_0510	3.9	N
20230426_0520	3.9	N
20230426_0530	3.3	N
20230426_0540	4.2	N N
20230426_0550	3.1	N N
20230426_0600	3.3	N
20230426_0610 20230426_0620	3.3 3.3	N N
20230426_0630	4.2	N N
20230426_0640	3.6	N N
20230426 0650	3.3	N
20230426_0700	3.9	N
20230426_0710	4.7	N
20230426 0720	4.4	Ň
20230426 0730	4.7	NNE
20230426_0740	4.7	N
20230426_0750	4.7	NNE
20230426_0800	5	NNE
20230426_0810	5.3	N
20230426_0820	5	N
20230426_0830	5.8	N
20230426_0840	5.8	NNE
20230426 0850	4.7	NNE
20230426_0900	5.3	NNE
20230426_0910	4.7	NNE
20230426 0920	5.3 5.3	NNE
20230426_0930 20230426_0940	5.3	NNE
20230426_0950	5.3	N N
20230426 1000	4.2	NNE NNE
20230426 1010	4.2	N N
20230426_1020	4.2	N N
20230426 1030	3.9	N N
20230426 1040	3,3	N
20230426 1050	3,3	N
20230426 1100	3.1	N
20230426 1110	3.1	N
20230426 1120	3.3	N
20230426 1130	3.1	N
20230426_1140	2.8	N
20230426 1150	2,5	NNW

D . 0 T		
Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230426_1200	3.6	NNE
20230426_1200	1.9	ININE
20230426_1210 20230426_1220 20230426_1230	1.9	N
20230420_1220	2.2 1.7	NW
20230426 1240	2.2	N
20230426 1250	2.8	N
20230426 1300	2.2	WNW
20230426 1310	2.5	NW
20230426 1320	2,5	NNW
20230426 1330	1.7	-
20230426 1340	1.9	NNE
20230426 1350	2.8	NNW
20230426 1400	2.2	N
20230426 1410	1.7	N
20230426 1420	2.2	N
20230426 1430	2,5	NE
20230426 1440	1.9	ENE
20230426 1450	2.2	Е
20230426 1500	2.2	ESE
20230426 1510	1.7	Е
20230426_1520	2.5	ESE
20230426 1530	2.2	E
20230426_1540	2.2	E
20230426_1550	1.7	E
20230426 1600	1.9	E
20230426_1610	2.5	E
20230426_1620	2.2	ESE
20230426_1630	2.5	ESE
20230426 1640	2.2	E
20230426_1650	2.2	E
20230426_1700	2.5	E
20230426 1710	2.8	E
20230426 1720	2.8	Е
20230426_1730	2.5	E
20230426_1740	2.5	ESE
20230426_1750	1.7	E
20230426_1800	2.2	ESE
20230426 1810	3.1	ESE
20230426_1820	3.3	ESE
20230426_1830	2.8	ESE
20230426_1840	3.1	ESE
20230426_1850	2.5	E
20230426_1900	2.5	E
20230426_1910	2.2	E
20230426_1920	2.8	E
20230426_1930	2.2	E
20230426_1940	1.7	E
20230426_1950	1.1	E
20230426_2000	1.1	ESE
20230426_2010	0.8	ESE
20230426 2020	0.8	ESE
20230426_2030	1.4	SE
20230426_2040	1.7	ESE
20230426 2050	1.7	ESE
20230426_2100	1.4	ESE
20230426_2110	1.4	ESE
20230426_2120	1.4	ESE
20230426_2130	1.1	ESE
20230426_2140	1.4	ESE
20230426_2150	1.7	ESE
20230426_2200	1.1	SE
20230426_2210	1.1	ESE
20230426_2220	1.7	ESE
20230426_2230	2.2	SE
20230426_2240	1.4	SE
20230426_2250	0.8	SE
20230426 2300	2.5 2.2	ESE
20230426_2310	2.2	SE
20230426_2320	2.2	SE
20230426_2330	1.9	SE
20230426_2340	1.9	ESE
20230426_2350	2.2	SE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230427 0000	2.2	ESE
20230427_0000	2.5	SE
20230427_0010	2.5	SE
20230427_0030	2.5	SE
20230427_0040	2.8	SE
20230427 0050	1.7	SE
20230427_0100	1.1	ESE
20230427_0110 20230427_0120	1.1 3.3	ESE SE
20230427 0120	3.1	ESE
20230427 0140	3.1	SE
20230427 0150	2.8	ESE
20230427_0200	2.5	ESE
20230427_0210	2.8	ESE
20230427_0220 20230427_0230	2.2	ESE
20230427_0240	1.4 2.8	ESE ESE
20230427_0250	2.5	ESE
20230427 0300	1.7	ESE
20230427_0310	1.9	ESE
20230427 0320	1.7	SE
20230427 0330 20230427_0340	1.1 1.7	SE ESE
20230427_0350	1.7	ESE
20230427_0400	1.9	ESE
20230427_0410	1.9	ESE
20230427_0420	1.4	ESE
20230427_0430 20230427_0440	1.7	SE
20230427_0440	1.4 2.5	ESE
20230427_0450 20230427_0500	2.5	ESE ESE
20230427 0500	2.5	ESE
20230427 0510 20230427_0520	2.5 1.7	ESE ESE
20230427_0530	1.7	ESE
20230427_0540	1.7	ESE
20230427 0550 20230427 0600 20230427 0610 20230427 0620	1.7	ESE
20230427_0600 20230427_0610	1.7 2.2	SE SE
20230427 0610	2.2	ESE
20230427 0630	3.3	ESE
20230427_0640	2.5	ESE
20230427_0650	2.8	ESE
20230427_0700 20230427_0710	3.3	ESE
20230427_0710 20230427_0720	1.7	ESE E
20230427_0730	2.5	E
20230427 0740	2.5	E
20230427_0750	2.2	E
20230427_0800	2.5	E
20230427_0810 20230427_0820	1.9 3.1	E E
20230427 0820	3.1	ESE ESE
20230427 0840	3.3	ESE
20230427 0850	2.8	ESE
20230427_0900	3.6	ESE
20230427_0910	2.8	ESE
20230427_0920 20230427_0930	3.3	ESE E
20230427_0930	2.5	E ESE
20230427_0940	3.1	ESE
20230427_1000	3.3	E
20230427_1010	3.1	E
20230427_1020	2.8	E
20230427_1030 20230427_1040	2.5 2.8	E ESE
20230427_1040	2.8	ESE E
20230427 1100	2.8	E
20230427_1110	2.8	Ē
20230427_1120	2.5	E
20230427_1130	3.3	ESE
20230427_1140	3.3	ESE
20230427_1150	2.8	ESE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230427 1200	3.9	ESE
20230427_1210	3.3	ESE
20230427_1220	4.2	ESE
20230427_1230	3.9	ESE
20230427 1240	5	E
20230427 1250	5	ESE
20230427_1300	5	Е
20230427_1310	4.2	Е
20230427_1320	4.7	Е
20230427_1330	5.3	E
20230427_1340	4.2	Е
20230427_1350	4.7	Е
20230427_1400	4.4	E
20230427_1410	4.2	E
20230427_1420	4.2	ESE
20230427 1430 20230427_1440	4.2 3.3	ESE ESE
20230427_1440	3.3	ESE
20230427_1450	3.9	ESE
20230427_1500	4.2	ESE
20230427_1510	3.9	ESE
20230427_1520	4.4	ESE
20230427_1530	4.7	ESE
20230427_1540	4.7	ESE
20230427_1550	3.9	ESE
20230427_1600	3.3	ESE
20230427_1610	3.9	SE
20230427_1620	3.9	ESE
20230427_1630	5	E
20230427_1640	3.3	ESE
20230427_1650	4.2	E
20230427_1700	3.9	E
20230427_1710	4.2	E
20230427_1720	3.9	ESE
20230427_1730	3.3	E
20230427 1740 20230427_1750	3.3 3.1	ESE E
		E
20230427_1800	3.3	ESE
20230427_1810 20230427_1820	3.1 2.8	E E
20230427_1820	2.2	ESE
20230427_1840	1.9	ESE
20230427 1840	2.5	ESE
20230427_1630	3.1	ESE
20230427_1910	2.5	ESE
20230427_1920	1.9	ESE
20230427 1930	2.8	ESE
20230427_1940	1.9	SE
20230427_1950	2.2	ESE
20230427 2000	3.1	ESE
20230427 2010	2.5	ESE
20230427 2020	1.7	SE
20230427_2030	1.7	ESE
20230427_2040	2.2	SE
20230427_2050	2.2	SE
20230427_2100	1.7	SE
20230427_2110	2.5	SE
20230427_2120	1.7	SE
20230427_2130	2.2	ESE
20230427_2140	2.5	ESE
20230427_2150	4.4	ESE
20230427_2200	4.2	ESE
20230427_2210	3.3	E
20230427_2220	3.3	ESE
20230427_2230	3.1	E
20230427_2240	3.9	E
20230427_2250	3.1	E
20230427 2300 20230427_2310	2.2 2.5	ESE
20230427_2310	2.5	ESE
20230427_2320	3.3	ESE
20230427 2330 20230427 2340	3.3 2.8	ESE E
20230427 2350	2.5	Ē

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM)		
20230428_0000 20230428_0010	2.8 3.3	ESE ESE
20230428_0010	3.3	ESE
20230428 0030	2.8	E
20230428_0040	3.1	E
20230428_0050	3.3	E
20230428_0100 20230428_0110	2.8 2.8	<u>Е</u> Е
20230428_0110	2.8	<u>Е</u> Е
20230428_0130	3.1	ESE
20230428_0140	2.5	E
20230428_0150	2.2	ESE
20230428_0200	2.2	E
20230428_0210 20230428_0220	1.7	ESE ENE
20230428 0220	1.7 1.7	ENE
20230428 0240	1.7	E
20230428_0250	1.1	ENE
20230428_0300	0.8	S
20230428_0310	0.8	SSE
20230428_0320 20230428_0330	1.4 1.1	ESE SE
20230428 0340	1.1	SE ESE
20230428 0350	1.9	E
20230428 0400	0.8	E
20230428_0410	1.1	E
20230428_0420	0.8	SE
20230428_0430	1.1	ESE
20230428_0440 20230428_0450	1.7	<u>Е</u> Е
20230428_0430	1.1	ENE
20230428 0510	1.1	
20230428_0520	0.6	ESE SE
20230428_0530	1.1	SE
20230428 0540	1.1	ESE
20230428_0550 20230428_0600	1.4 1.7	SE SE
20230428_0000	2.2	SE
20230428 0620	1.4	ESE
20230428 0630	1.7	E
20230428 0640	1.4	ESE
20230428_0650 20230428_0700	1.7	E
20230428_0700 20230428_0710	1.1 0.8	E ESE
20230428 0720	1.1	ESE
20230428 0730	1.7	SE
20230428_0740	1.7	SE
20230428_0750	2.2	SE
20230428_0800	1.9	SE
20230428_0810 20230428_0820	2.2 2.5	SE ESE
20230428 0820	3,3	ESE
20230428_0840	4.2	ESE
20230428 0850	3.3	ESE
20230428_0900	4.4	ESE
20230428_0910 20230428_0920	4.4 4.2	ESE ESE
20230428 0920	4.2	ESE ESE
20230428_0930	3.6	ESE
20230428 0950	4.2	ESE
20230428_1000	3.3	ESE
20230428_1010	4.4	E
20230428 1020	3.9	E
20230428_1030 20230428_1040	3.9 4.2	<u>Е</u> Е
20230428_1040	4.4	ESE
20230428 1100	4.4	E
20230428_1110	3.9	E
20230428_1120	3.3	Е
20230428 1130	2.8	ESE
20230428_1140 20230428_1150	3.3 3.6	ENE ENE
20230426_1130	3,0	ENE

Date & Time	Wind Speed (m/s)	Wind Direction (From)
(YYYYMMBB HHMM) 20230428_1200	3,3	E
20230426_1200	3.3	E E
20230428_1210 20230428_1220 20230428_1230	2.8 3.3	E
20230428 1220	2.5	E
20230428 1240	3,3	Ē
20230428 1250	2.8	ESE
20230428 1300	3,3	E
20230428 1310	3,3	ESE
20230428 1320	3,3	E
20230428 1330	3.3	E
20230428_1340	3.9	Е
20230428_1350	3.3	E
20230428_1400	4.4	ENE
20230428_1410	3.3	Е
20230428_1420	3.9	Е
20230428_1430	2.5	E
20230428_1440	3.6	E
20230428_1450	2.5	E
20230428 1500	3.9	E
20230428_1510	3.3	E
20230428_1520	4.2	E
20230428 1530 20230428 1540	3.9 3.3	E
20230428_1540	3.1	E
	3.3	E
20230428_1600 20230428_1610	3.5	E E
20230428_1620	3.3	E E
20230428_1630	3.3	E
20230428 1640	3.9	E
20230428_1040	4.2	ESE
20230428_1700	3.9	E
20230428 1710	3.3	ESE
20230428 1720	3.3	E
20230428 1730	3.6	ESE
20230428 1740	3,3	ESE
20230428 1750	3.9	ESE
20230428 1800	4.2	ESE
20230428 1810	3.9	ESE
20230428_1820	3.6	ESE
20230428_1830	3.3	ESE
20230428_1840	3.6	ESE
20230428_1850	2.8	ESE
20230428_1900	3.1	ESE
20230428_1910	2.8	ESE
20230428_1920	2.2	ESE
20230428_1930	2.8	SE
20230428_1940	2.5	SE
20230428_1950	3.1	ESE
20230428_2000 20230428_2010	2.8 2.2	ESE SE
20230428_2010	2.2	SE SE
20230428_2020	2.5	SE SE
20230428_2030	2.8	SE SE
20230428 2040	2.2	SE SE
20230428 2030	1.7	SE SE
20230428 2110	1.9	SE
20230428 2110	2.2	SE SE
20230428_2130	2.2	ESE
20230428 2140	2.2	SE
20230428 2150	2.5	SE
20230428_2200	2.2	SE
20230428_2210	2.8	SE
20230428 2220	2.5	SE
20230428_2230	1.7	SE
20230428_2240	1.4	ESE
20230428_2250	1.7	ESE
20230428_2300	2.2 2.2	ESE
20230428_2310		ESE
20230428_2320	1.7	ESE
20230428 2330	2.2	ESE
20230428_2340	2.5	E
20230428_2350	1.7	ESE

Date & Time		
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230429 0000	1.1	ESE
20230429_0010	1.7	ESE
20230429_0020	1.9	ESE
20230429_0030	1.1	SSE
20230429 0040	1.7	SE
20230429 0050	1.7	SE
20230429 0100	1.7	SE
20230429_0100		OE OE
20230429_0110	1.7	SE
20230429_0120	1.7	SE
20230429_0130	1.9	ESE
20230429 0140	1.4	SE
20230429 0150	1.1	ESE
20230429 0200	0.8	ESE
20230429_0210	0.8	SE
20230429_0220	0.8	SE
20230429 0230	1.1	SE
20230429 0240	0.3	Е
20230429 0250	0,3	SE
20230429 0300	0.6	SE
	0.0	DOD
20230429_0310	0.8	ESE
20230429_0320	0.8	Е
20230429_0330	0.8	ESE
20230429 0340	1.1	ESE
20230429 0350	1.4	ESE
20230429 0400	1.1	ESE
20230429_0410	0.8	SE
20230429_0420	1.1	SSE
20230429_0430	0.8	SE
20230429 0440	0.3	ENE
20230429 0450	0.8	Е
20230429 0500	0.8	SE
20230429 0510	0.8	ESE
20230429_0520	1.4	ESE
20230429_0530	1.4	ESE
20230429 0540	1.1	ESE
20230429 0550	1.1	ESE
20230429 0600	1.4	E
20230429_0610	1.4	E
20230429_0620	1.1	E
20230429_0630	1.4	ESE
20230429 0640	1.4	E
20230429 0650	1.4	ESE
20230429 0700	1.1	ESE
20230429 0710	1.7	E
		E E
20230429_0720	1.4	Е
20230429_0730	1.4	E
20230429_0740	1.4	E
20230429_0750	1.7	E
20230429 0800	1.1	E
20230429 0810	1.4	ESE
20230429 0820		E
20220429 0020	1.1	E F
20230429_0830	1.4	E
20230429_0840	1.4	Е
20230429_0850	1.4	E
20230429 0900	0.8	Е
20230429_0910	1.4	NE
20230429_0920	1.1	ENE
20230429 0920	0.2	
20230429_0930	0.3	ESE
20230429_0940	0.8	E
20230429_0950 20230429_1000	1.1	SE
20230429_1000	1.4	NE
20230429 1010	1.1	NE
20230429_1020	0.8	ESE
20230429 1030	1.1	E
20230429_1040	0.8	NE
20230429_1050	0.8	-
20230429 1100	0.8	E
20230429 1110	0.8	SW
20230429 1120	1.1	SSW
20230429_1120		S
	1.1 0.3	ა
		-
20230429_1150	0.6	-

(YYYYMMBB HHMM) 20230429_1200 20230429_1210 20230429_1220	Wind Speed (m/s) 1.1 0.8 0.8	Wind Direction (From) SSW W
20230429_1210	0.8 0.8	
	0.8	
		-
20230429_1230 20230429_1240	1.1	NW
20230429_1240	0.3 1.1	ENE WNW
20230429_1300	2.5	WSW
20230429_1310	2.5 2.8	NW
20230429_1320 20230429_1330	2.2	NW
20230429_1330 20230429_1340	1.1 0.6	N N
20230429 1350	1.1	NE
20230429_1400	0.6	NE
20230429_1410 20230429_1420	1.1	NNE NE
20230429 1430	0.8	NE NE
20230429 1440	1.4	NNE
20230429_1450	1.7	NNE
20230429 1500 20230429_1510	2.5 2.2	N NNE
20230429 1520	1.7	N
20230429 1530	1.7	N
20230429_1540 20230429_1550	2.2 1.7	N
20230429_1550 20230429_1600	1.7	N NNW
20230429_1610	1.1	N
20230429_1620	1.1	NNE
20230429_1630	1.7	NNE
20230429_1640 20230429_1650	3.6 2.5	N N
20230429 1700	1.7	NNW
20230429 1710	1.7	NNW
20230429_1720	1.1	NNW
20230429_1730 20230429_1740	1.1 0.8	NNW NNW
20230429 1740	0.3	NNW
20230429_1800	0.8	NNW
20230429_1810 20230429_1820	0.6 0.8	NW NNW
20230429_1820	1.1	NNW N
20230429 1840	1.4	N
20230429_1850	1.4	N
20230429_1900 20230429_1910	2.2 2.5	N N
20230429 1910	1.7	NNW
20230429_1930	1.9	NNW
20230429_1940	1.4	NNW
20230429_1950 20230429_2000	0.8	NNW NNW
20230429 2010	0.8	NNW
20230429 2020	0.3	NW
20230429_2030	0.8	NNW
20230429_2040 20230429_2050	0.3 0.3	NNW NNW
20230429_2100	0.3	NNW
20230429_2110	0.8	N
20230429_2120	0.3	NNW
20230429_2130 20230429_2140	1.4 1.1	NNE N
20230429 2150	1.4	ENE
20230429_2200	0.8	NNW
20230429 2200 20230429 2210 20230429 2220 20230429 2220 20230429 2230	0.3	W NE
20230429 2220 20230429_2230	0.8 1.1	NE WNW
20230429_2240	0.3	NW
20230429 2250	0.3	NE
20230429 2300 20230429_2310	0.8	NNW N
20230429 2320	1.1 2.2	N N
20230429 2330	1.7	NNW
20230429 2330 20230429_2340	1.1	N
20230429_2350	1.1	NE

Date & Time	Wind Connel (m/s)	Wind Discotion (From)
(YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230430_0000	0.3	Е
20230430_0010	1.4	WNW
20230430_0020	2.8	NNE
20230430_0030	3.3	N
20230430_0040	2.8	N
20230430_0050	2.8	N
20230430_0100	2.5	N
20230430_0110	2.5	N
20230430 0120	2.2	NNE
20230430_0130	2.5	NNE
20230430_0140	3.1	NNE
20230430 0150	2.2	Ŋ
20230430_0200	3.3	N
20230430_0210	3.9	NNE
20230430_0220	3.3	N
20230430 0230 20230430 0240	2.8	NNE N
20230430_0240	1.7	N N
20230430_0250	1.7	
20230430 0300	0.8	NNE
20230430_0310	1.4	- N
20230430_0320	2.8	N N
20230430 0330	2.8	N N
20230430_0340	2.2	NNW
20230430_0330	2.2	NNE
20230430 0410	1.4	NE NE
20230430 0420	0.8	-
20230430 0430	1.4	NE
20230430 0440	2.2	N
20230430 0450	2.8	N
20230430 0500	3.1	NNE
20230430 0510	2.2	N
20230430 0520	2.5	NNW
20230430 0530	2.8	N
20230430 0540	1.7	N
20230430_0550	1.4	SE
20230430_0600	0.3	-
20230430_0610	1.1	ESE
20230430_0620	0.8	N
20230430_0630	2.8	N
20230430_0640	3.3	N
20230430_0650	3.3	N
20230430_0700	2.8	N
20230430 0710	2.5	N.
20230430_0720	3.3	N.
20230430_0730	3.1	N
20230430_0740	2.2	NNW
20230430_0750 20230430_0800	2.8	NNW
20230430_0800	3.3 3.3	N N
20230430_0810	2.2	NNW
20230430 0820	2.5 2.5	NNW N
20230430_0840	3.1	N N
20230430_0850	3.1	N N
20230430 0830	3.1	N N
20230430_0910	3.3	N N
20230430_0920	3 3	N N
20230430_0930	3.3 3.3	N N
20230430 0940	2.8	N
20230430 0950	2.8 3.3 3.6	N
20230430 0950 20230430_1000	3.6	N
20230430_1010	3.3	N
20230430 1020	2.8	N
20230430_1030	3.1	N
20230430_1040	2.8	N
20230430_1050	3.9	N
20230430 1100	2.8 3.9	N
20230430_1110	3.9	N
20230430_1120	2.5	N
20230430 1130 20230430_1140	2.5 2.2	NNW
20230430_1140	2.2	NW
20230430_1150	2.5	NNW

D. t. 0 T		
Date & Time (YYYYMMBB HHMM)	Wind Speed (m/s)	Wind Direction (From)
20230430 1200	1.9	NNW
20230430_1210 20230430_1220 20230430_1220 20230430_1230	1.9	NNW
20230430 1220	1.9	NNW
20230430_1230	1.9	N
20230430 1240	1.9	N
20230430_1250	2.2	NNW
20230430_1300	2.2	N
20230430_1310 20230430_1320	1.9 1.9	N
20230430 1320	2.8	N NNE
20230430_1330	3.1	NNE
20230430 1350	3,3	NNE
20230430 1400	2.8	NNE
20230430_1410	2.2	ENE
20230430_1420	2.5	E
20230430_1430	3.3	E
20230430_1440	3.1	E
20230430_1450	2.8	E
20230430 1500	3.1 2.5	ESE
20230430_1510 20230430_1520	2.8	E ESE
20230430_1520	2.8	ESE
20230430 1530	2.8	E E
20230430_1540	2.8	E
20230430 1600	2.5	E
20230430 1610	2.8	ESE
20230430 1620	3.1	ESE
20230430 1630	2.5	E
20230430_1640	2.8	E
20230430_1650	2.8	E
20230430_1700	3.1	ESE
20230430 1710	2.5	E
20230430_1720	2.2	ESE
20230430 1730 20230430 1740	1.7	ESE
20230430 1740	1.7 1.7	E ESE
20230430_1730	2.2	ESE
20230430_1810	2.2	ESE
20230430 1820	1.9	ESE
20230430 1830	1.7	SE
20230430 1840	1.9	ESE
20230430_1850	1.7	ESE
20230430_1900	1.7	ESE
20230430_1910	2.2	ESE
20230430_1920	1.7	ESE
20230430_1930	1.7	E
20230430_1940	1.7 2.2	ESE
20230430_1950 20230430_2000	2.2	E ESE
20230430_2000	1.9	ESE ESE
20230430 2010	1.7	ESE
20230430 2020	2.5	ESE
20230430 2040	2.5	ESE
20230430 2050	3.1	ESE
20230430_2100	2.8	ESE
20230430_2110	2.5	ESE
20230430_2120	3.1	ESE
20230430_2130	2.2	ESE
20230430_2140	1.9	ESE
20230430_2150	2.2	SE
20230430_2200	2.5	SE
20230430_2210 20230430_2220	2.5 1.7	SE SE
20230430_2220	1.7	SE SE
20230430_2230	1.7	SE SE
20230430_2240	1.1	ESE
20230430 2300	1.4	ESE
20230430_2310	1.9	SE
20230430 2320	2.2	SE
20230430 2330	1.7	SE
20230430_2340	2.2	SE
20230430_2350	2.5	SE

Appendix I Waste Flow Table

Waste Flow Table

Total		Total Quantities of Inert C&D Materials to be Generated from the Contract			Total Quantities of Recyclables Generation				Total Quantities of C&D Materials to be Generated from the Contract				
Month	Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics	Yard Waste (to Y-Park)	Chemical Waste	General Refuse	Others, e.g. non- recyclable yard waste
	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in '000L)	(in tonne)	(in tonne)
Dec-22	84.77	0	0	0	0	0	0	0	0	11.49	0	7.53	65.75
Jan-23	24.51	0	0	0	0	0	0	0	0	0	0	24.51	0
Feb-23	506.45	0	0	0	0	0	0	0	0	3.16	0	5.85	497.44
Mar-23	9,581	0	0	9,187	0	0	0	0	0	3.69	0	6.96	383.5
Apr-23	18,532	0	0	18,466	0	0	0	0	0	1.97	0	5.81	58.29
Total	28,729	0	0	27,653	0	0	0	0	0	20.31	0	50.66	1004.98

Note:

- 1. The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- 2. Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Appendix J Joint Environmental Site Inspection Records

(Construction Phase) Environmental Site Inspection Checklist (Rev. 2)

Inspection Date:	3 April 2023	Inspected By:	Andy Ng, Jason Man					
Time:	14:00	Weather Condition:	Overcast					
Participants:	Sylvia Ho (ER), Kristy Wong (Contractor), Andy Ng (ET), Jason Man (ET)							

_		N/A or Not			
Α	Permits/Licenses	Observed	Yes	No	Remarks / Photo
A1	Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access?		\boxtimes		EP No.: EP-292/2007 FEP No.: FEP-01/292/2007
A2	Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance.		\boxtimes		CNP No: GW-RN0131-23
A3	Is wastewater discharge licence available for inspection?		\boxtimes		
A4	Are trip tickets for chemical waste and construction waste disposal available for inspection?		\boxtimes		
A5	Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?		\boxtimes		
В	Air Quality	N/A or Not Observed	Yes	No	Remarks / Photo
B1	Is open burning avoided?		\boxtimes		
B2	Are completed earthworks sealed as soon as practicable?	\boxtimes			N/A
В3	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?		\boxtimes		
B4	Any remedial action undertaken?	\boxtimes			N/A
B5	Observed dust source(s)				
		☐ Wind eros	sion		
		Vehicle/ E	Equipment	Moveme	nts
		Loading/	unloading	of materia	als
		Others:	Not C	bserved	
B6	Are unpaved areas/ designated roads watered regularly to avoid dust generation?		\boxtimes		
В7	Are dusty materials covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading?				
B8	After removal of stockpile, are the remained dusty materials wetted with water and cleared from surface of roads?	\boxtimes			N/A
B9	Is the stockpile of dusty materials avoid to be		\boxtimes		

extend beyond the pedestrian barriers, fencing or

traffic cones?

B10	Are loaded dump trucks covered by impervious sheeting appropriately before leaving the site?		\boxtimes		
D44					
B11	Are wheel washing facilities with high pressure water jet provided at all site exits if practicable?		\boxtimes		
B12	Are all vehicles and plant cleaned before they leave the construction site?		\boxtimes		
B13	Are hoarding ≥ 2.4m tall provided beside roads or area with public access?	\boxtimes			N/A
B14	Is the portion of any road leading only to				
וים	construction site (within 30m of a vehicle entrance		\boxtimes		
D45	or exit) kept clear of dusty materials?				
B15	Are surfaces where any pneumatic or power-driven		\boxtimes		
	drilling, cutting, polishing or other mechanical				
	breaking operations takes place sprayed with water				
	or a dust suppression chemical continuously?				
B16	Is the area involved demolition activities sprayed	\boxtimes			
	with water or a dust suppression chemical		_	_	
	immediately prior to, during and immediately after				N/A
	the activities so as to maintain the entire surface				
	wet?				
B17	Is scaffolding erected around the perimeter of a	\square			
	building under construction?	\boxtimes			N/A
B18	Are effective dust screens, sheeting or netting				
D 10	provided to enclose the scaffolding from the ground	\boxtimes			
	floor level of the building, or a canopy provided from				N/A
	- · · · · · · · · · · · · · · · · · · ·				IN/A
	the first floor level up to the highest level of the				
D.10	scaffolding?				
B19	Is the skip for materials transport enclosed by	\boxtimes			N/A
	impervious sheeting?				
B20	Is every stock of more than 20 bags of cement or		\boxtimes		
	dry pulverized fuel ash (PFA) covered entirely by				
	impervious sheeting or placed in an area sheltered				
	on the top and 3 sides?				
B21	Are the areas of washing facilities and the road		\boxtimes		
	section between the washing facilities and the exit				
	point paved with concrete, bituminous materials or				
	hardcores?				
B22	Are the activities of loading, unloading, transfer,	\boxtimes			
	handing or storage of bulk cement or dry PFA				N/A
	carried out in a totally enclosed system or facility?				
B23	Is any vent or exhaust fitted with an effective fabric	\square			
	filter or equipment air pollution control system?			Ш	N/A
B24	Is the exposed earth properly treated by		\boxtimes		
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,				
	shotcrete or other suitable surface stabilizer within				
	six months after last construction activity on the				
	construction site or part of the construction site				
	where the exposed earth lies?				
B25	Are the worksites wetted with water regularly?		\boxtimes		
B26	Is generation of dust avoided during loading or				
	unloading?	\boxtimes			Not Observed
B27	Are all trucks loaded to a level within the side and				
	tail boards?		\boxtimes		
B28	Are appropriate speed limit sign displayed?		\square		
-		ı ⊔	\boxtimes		

North East New Territories (NENT) Landfill Extension

Report No. <u>0044-20230403</u>

(Construction Phase) Environmental Site Inspection Checklist (Rev. 2)

B29	Are designated roads paved?		\boxtimes				
B30	Are site vehicle movements confined to designated roads?		\boxtimes				
B31	Are NRMM labels properly affixed on the PMEs?		\boxtimes				
С	Noise	N/A or Not Observed	Yes	No	Remarks / Photo		
C1	Is well-maintained plant operated on-site and plant served regularly?		\boxtimes				
C2	Are vehicles and equipment switched off or throttled down while not in use?		\boxtimes				
C3	Is the noise directed away from nearby NSRs?		\boxtimes				
C4	Are the silencers or mufflers properly fitted on construction equipment and maintained regularly?	\boxtimes			N/A		
C5	Are mobile and/or noisy plant sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes				
C6	Are material stockpiles, mobile container officer and other structures utilised to screen noisy activates?	\boxtimes			N/A		
C7	Is temporary hoarding installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/A		
C8	Are noise barriers (typically density @14kg/m²) acoustic mat or full enclosure close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/A		
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes				
C10	Is the hoarding maintained properly?	\boxtimes			N/A		
C11	Air compressors (500 kPa or above) and hand held percussive breaker (mass of above 10 kg) with valid noise labels?	\boxtimes			N/A		
C12	Are compressor operated with doors closed?	\boxtimes			N/A		
C13	QPME used with valid noise labels?	\boxtimes			Not Observed		
C14	Major noise source(s)						
		Traffic					
		Construct	ion activiti	es inside	of site		
		Construct	ion activiti	es outsid	e of site		
		Others:					

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo					
Const	onstruction Activities									
D1	At the start of site establishment, are perimeter cut-off drains constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		×							
D2	Are channels, earth bunds or sandbag barriers provided on site to properly direct stormwater to such silt removal facilities?		\boxtimes							
D3	Have dikes or embankments for flood protection implemented around the boundaries of earthwork areas?		\boxtimes							
D4	Have temporary ditches provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes							
D5	Are the sediment/ silt traps incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes							
D6	Are the retention time for silt/s and traps of the silt removal facilities be 5 minutes under maximum flow conditions?		\boxtimes							
D7	Is surface excavation works minimised during rainy seasons (April to September), as possible?	\boxtimes			To be implemented during wet season					
D8	Are all exposed earth areas completed or vegetated as soon as possible after earthworks completed, or alternatively, within 14 days of the cessation of earthworks where practicable.	\boxtimes			N/A					
D9	Are exposed slope surfaces covered by tarpaulin sheets?			\boxtimes	Refer to Observation 1					
D10	Have the overall slope of the site should be kept a minimum?		\boxtimes							
D11	Are all trafficked areas and access roads protected by coarse stone ballast		\boxtimes							
D12	Is wastewater from temporary site facilities controlled to prevent direct discharge to surface		\boxtimes							
D13	Are the silt removal facilities, channels and manholes maintained regularly?			\boxtimes	Refer to Reminder 2					
D14	Is the deposite silt and grit removed regularly?		\boxtimes							
D15	Have the excavation of trenches in wet periods be dug and backfilled in short sections?	\boxtimes			N/A					
D16	Is rainwater pumped out from trenches discharged into storm drains via silt system?	\boxtimes			N/A					
D17	Are open stockpiles of construction materials e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes			N/A					
D18	Are manholes adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes							
D19	Are the discharges of surface run-off into foul sewer always prevented?		\boxtimes							

E6

D20	Is a wheel washing bay provided at every site exit?		\boxtimes		
D21	Is the wheel wash overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes		
D22	Is the section of construction road between the wheel washing bay and the public road surfaced with crushed stone or coarse gravel?		\boxtimes		
D23	Are the vehicle wash-water have sand and silt settled out and removed at least on a weekly basis?	\boxtimes			Not Observed
D24	Are site drainage systems provided over the entire project site with sediment control facilities?		\boxtimes		
D25	Are sedimentation tanks provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D26	Is the treated wastewater reused for vehicle washing, dust suppression and general cleaning?		\boxtimes		
D27	Are portable chemical toilets and sewage holding tanks provided?		\boxtimes		
D28	Is the sewage generated from toilets collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D29	Is there any sediment plume observed in nearby watercourses?	\boxtimes			N/A
D30	Are oil interceptors provided in the site drainage system downstream of any oil/ fuel pollution sources? And the oil interceptors are emptied and cleaned regularly? Has a bypass provided to prevent flushing during heavy rain?	\boxtimes			Not Observed
D31	Is chemical leakage or spillages contained and cleaned up immediately?	\boxtimes			N/A
D32	Service workshop and maintenance facilities located within a bunded area, and sumps and oil interceptors be provided?	\boxtimes			N/A
E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
Genera	al Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes		
E2	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes		
E3	Does accumulation of waste avoid?		\boxtimes		
E4	Is waste disposed regularly?				
E5	Regular waste collection by approved waste collector in purpose-built vehicles?		\boxtimes		
E6	Burning of refuse on construction site prohibited?		\boxtimes		

Constr	ruction Waste				
E7	Are the temporary stockpiles maintained regularly?		\boxtimes		
E8	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E9	Are the C&D materials sorted and recycled onsite?		\boxtimes		
E10	Is there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?	\boxtimes			Not Observed
E11	Is the disposal of C&D materials avoided onto any sensitive locations e.g. agricultural lands etc.?		\boxtimes		
E12	Are the public fill and C&D waste segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal?				
E13	Is the durable formwork or plastic facing for construction works used?	\boxtimes			N/A
E14	Do the wooden hoardings avoid to be used?	\boxtimes			N/A
E15	Is metal hoarding used to enhance the possibility of recycling?	\boxtimes			N/A
E16	Is the segregation and storage of C&D wastes undertaken in designated area?		\boxtimes		
E17	Are waste storage area properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E18	Do the excavated materials appear contaminated?			\boxtimes	
E19	If suspected contaminated, appropriate procedures followed?	\boxtimes			N/A
E20	Is hydroseeding of the topsoil on the stockpile implemented to improve visual appearance and prevent soil erosion?	\boxtimes			N/A
Chemi	cal / Fuel Storage Area				
E21	Are the fuel tanks and chemical storage areas provided with locks and sited on sealed areas?	\boxtimes			Not Observed
E22	Are the storage area enclosed 3 sides by walls/ fence of ≥2m tall and bounded with adequate bund capacity (>110% of largest container) or do the storage area allow storage of 20% of total volume of waste?				Not Observed
E23	Are the storage areas labelled and separated (if needed)?	\boxtimes			Not Observed
E24	Do the storage areas have adequate ventilation and be covered to prevent rainfall entering?	\boxtimes			Not Observed
E25	Are the containers used for the storage of chemical wastes suitable for the substance that are holding, resist to corrosion, maintained in a good condition, and securely closed?	\boxtimes			Not Observed
E26	If no specification has been approved by EPD, are container with <450L capacity provided for storage of chemicals waste?	\boxtimes			Not Observed
Chemi	cal Waste / Waste Oil				

E27	Is chemical waste or waste oil stored and labelled in English and Chinese properly in designated area?		\boxtimes		
E28	Are chemicals and waste oil recycled or disposed properly?	\boxtimes			Not Observed
E29	Is chemical waste collected by licensed waste collectors and disposed of at licensed facility eg. Chemical Waste Treatment Centre?		\boxtimes		
Record	<u>1s</u>				
E30	Is a licensed waste hauler used for waste collection?		\boxtimes		
E31	Are the records of quantities of wastes generated, recycled and disposed properly kept?		\boxtimes		
E32	For the demolition material/ waste, is the number of loads for each day recorded as appropriate?	\boxtimes			N/A
F	LFG	N/A or Not Observed	Yes	No	Remarks / Photo
F1	Are special LFG precautions taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			Not Observed
F2	Are prominent safety warning signs erected on-site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes		
F3	Is no smoking or burning permitted on-site?		\boxtimes		
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?		\boxtimes		
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?	\boxtimes			N/A
F6	Is adequate fire fighting equipment provided on- site?		\boxtimes		
F7	Are construction equipment equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?	\boxtimes			Not Observed
F8	Are electrical motors and extension cords explosion-proof and intrinsically safe for use onsite?	\boxtimes			Not Observed
F9	Is 'Permit to Work' system implemented?		\boxtimes		
F10	Are welding, flame-cutting or other hot works conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes		
F11a	For piping assembly or conduit construction, are all valves and seals closed immediately after installation?	\boxtimes			Not Observed
F11b	Are the pipe ends sealed on one side during installation if installation of large diameter pipes (diameter >600mm) is required?	\boxtimes			Not Observed
F11c	Is forced ventilation implemented prior to operation of installed pipeline?	\boxtimes			Not Observed
F11d	Is forced ventilation implemented for works inside trenches deeper than 1m?	\boxtimes			Not Observed

F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works?			
	*LFG monitoring in excavations should be conducted at no more than 10mm from exposed ground surface.			
F13	For excavation works, Is LFG monitoring conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?		\boxtimes	
F14	Are LFG monitoring conducted periodically when any cracks on ground level encountered on-site? *Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.			Not Observed
F15a	Are LFG precautionary measures involved in excavation and piping works provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?			Not Observed
F15b	Are temporary offices or buildings located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?	\boxtimes		Not Observed
F16	Is a Safety Officer trained in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%			Not Observed
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.			Not Observed
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?			
F17c	Are all measurements in excavations made with monitoring tube located not more than 10mm from exposed ground surface?		\boxtimes	
F18	For excavations deeper than 1m, are measurements conducted? • At ground surface before excavation commences;			

Environmental Site Inspection Checklist (Rev. 2)

F19	 Immediately before any worker enters the excavation; At the beginning of each working day for entire period the excavation remains open; and Periodically throughout the working day whilst workers are in excavation. For excavations between 300mm and 1m, are]	5 2		
	 measurements conducted? Directly after excavation has been completed; and Periodic all whilst excavation remains open. 				
F20	For excavations less than 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately qualified person?				
G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is damage to surrounding areas avoided?		\boxtimes		
G3	Are the protective fencing erected along or beyond the perimeter of the tree protection zone of each individual tree?		\boxtimes		
G4	Is early planting using fast growing plants at strategic locations within site implemented?	\boxtimes			N/A
G5	Is boundary green belt planting implemented around the site perimeter and the construction of temporary soil bunds?				N/A
G6	Is temporary landscape treatment as green surface cover implemented?	\boxtimes			N/A
G7	Are existing and affected tree which identified as ecological significant preserved whenever possible?	\boxtimes			Not Observed
Н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?				Not Observed
-	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	
		N/A or Not			
J	General Housekeeping / Others	Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?				

Follow up action for previous Site Inspection:

- 1. The chemical containers were removed.
- 2. Sand and silt were removed at the entrance of SBA.
- 3. The Contractor scheduled watering in the construction site.

Observation(s):

1. The exposed surface in Portion E3-1 shall be covered with impervious sheets to minimize surface runoff into the stream.

Reminder(s):

- 1. The Contractor has been reminded to maintain surface protection work in Portion A.
- 2. The Contractor has been reminded to ensure the silt removal facilities functioning properly before the holidays.

<u>Corrective Actions – Mitigation Measures Implemented or Proposed (if any):</u>

- 1. Surface protection shall be implemented on the exposed slope to minimize surface runoff.
- 2. Silt removal facilities shall be maintained regularly.

Environmental Site Inspection Checklist (Rev. 2)

	Environmental Team Representative:	IEC's Representative:	Contractor's Representative:	Engineer's Representative
Signature:	Min	1	Commen	to.
Name:	Andy Ng	1	William Wan	Sylvia Ho
Date:	3 April 2023	1	3 April 2023	3 April 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

 Stockpiles of dusty material in SBA are not covered with impervious sheets.

Follow-up status

The dusty stockpiles were covered with impervious sheets.

Sand and silt are observed at the vehicle entrance in SBA.

Sand and silt were removed at the entrance of SBA.

3. Chemical containers are observed in the open area and some of them are not placed inside the drip tray.

The chemical containers were placed in the drip and covered with impervious sheets.

Follow-up status

Observation and Recommendation

PART II Observation and recommendation identified during the environmental site inspection

W46

 The exposed surface in Portion E3-1 shall be covered with impervious sheets to minimize surface runoff into the stream.

2. The Contractor has been reminded to maintain surface protection work in Portion A.

Portion E3

Portion A

Portion D

3. The Contractor has been reminded to ensure the silt removal facilities functioning properly before the holidays.

Inspection Date:	11 April 2023	Inspected By:	Andy Ng				
Time:	14:00	Weather Condition:	Overcast				
Participants:	Sylvia Ho (FR), William Wan (Contractor), Andy Ng (FT)						

Partic	sipants: Sylvia Ho (ER), vviillam vvan (Contracto	r), Andy Ng (E i)		
Α	Permits/Licenses	N/A or Not Observed	Yes	No	Remarks / Photo
A1	Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access?		\boxtimes		EP No.: EP-292/2007 FEP No.: FEP-01/292/2007
A2	Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance.		\boxtimes		CNP No: GW-RN0131-23
А3	Is wastewater discharge licence available for inspection?		\boxtimes		
A4	Are trip tickets for chemical waste and construction waste disposal available for inspection?		\boxtimes		
A5	Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?		\boxtimes		
В	Air Quality	N/A or Not Observed	Yes	No	Remarks / Photo
B1	Is open burning avoided?		\boxtimes		
B2	Are completed earthworks sealed as soon as practicable?	\boxtimes			N/A
В3	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?		\boxtimes		
B4	Any remedial action undertaken?				NI/A

Ь	All Quality	Observed	163	NO	Nemarks / Filoto	
B1	Is open burning avoided?		\boxtimes			
B2	Are completed earthworks sealed as soon as practicable?	\boxtimes			N/A	
В3	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?		\boxtimes			
B4	Any remedial action undertaken?	\boxtimes			N/A	
B5	Observed dust source(s)					
		☐ Wind eros	sion			
		Vehicle/ E	quipment	Moveme	nts	
		Loading/ unloading of materials				
		Others:	No	t Observe	ed	
B6	Are unpaved areas/ designated roads watered regularly to avoid dust generation?		\boxtimes			
B7	Are dusty materials covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading?		\boxtimes			
B8	After removal of stockpile, are the remained dusty materials wetted with water and cleared from surface of roads?	\boxtimes			N/A	
B9	Is the stockpile of dusty materials avoid to be extend beyond the pedestrian barriers, fencing or traffic cones?		\boxtimes			

B10	Are loaded dump trucks covered by impervious		\boxtimes		
	sheeting appropriately before leaving the site?				
B11	Are wheel washing facilities with high pressure water jet provided at all site exits if practicable?		\boxtimes		
B12	Are all vehicles and plant cleaned before they leave				
DIZ	the construction site?		\boxtimes	Ш	
B13	Are hoarding ≥ 2.4m tall provided beside roads or	\square			
	area with public access?			Ш	N/A
B14	Is the portion of any road leading only to		П	\boxtimes	Defeate
	construction site (within 30m of a vehicle entrance				Refer to
	or exit) kept clear of dusty materials?				Observation 1
B15	Are surfaces where any pneumatic or power-driven		\boxtimes		
	drilling, cutting, polishing or other mechanical				
	breaking operations takes place sprayed with water				
	or a dust suppression chemical continuously?				
B16	Is the area involved demolition activities sprayed	\boxtimes			
	with water or a dust suppression chemical	_			
	immediately prior to, during and immediately after				N/A
	the activities so as to maintain the entire surface				
	wet?				
B17	Is scaffolding erected around the perimeter of a building under construction?	\boxtimes			N/A
B18	Are effective dust screens, sheeting or netting	\boxtimes			
	provided to enclose the scaffolding from the ground	<u> </u>		_	
	floor level of the building, or a canopy provided from				N/A
	the first floor level up to the highest level of the				
	scaffolding?				
B19	Is the skip for materials transport enclosed by impervious sheeting?	\boxtimes			N/A
B20	Is every stock of more than 20 bags of cement or				
D20	dry pulverized fuel ash (PFA) covered entirely by		\boxtimes	Ш	
	impervious sheeting or placed in an area sheltered				
	on the top and 3 sides?				
B21	Are the areas of washing facilities and the road		\boxtimes		
	section between the washing facilities and the exit			ш	
	point paved with concrete, bituminous materials or				
	hardcores?				
B22	Are the activities of loading, unloading, transfer,	\boxtimes			
	handing or storage of bulk cement or dry PFA				N/A
	carried out in a totally enclosed system or facility?				
B23	Is any vent or exhaust fitted with an effective fabric	\boxtimes			N/A
D0.4	filter or equipment air pollution control system?				14/71
B24	Is the exposed earth properly treated by		\boxtimes		
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabilizer within				
	six months after last construction activity on the				
	construction site or part of the construction site				
	where the exposed earth lies?				
B25	Are the worksites wetted with water regularly?				
B26	Is generation of dust avoided during loading or				
	unloading?				Not Observed
B27	Are all trucks loaded to a level within the side and tail boards?		\boxtimes		
B28	Are appropriate speed limit sign displayed?		\boxtimes		
		l .	i		

North East New Territories (NENT) Landfill Extension

(Construction Phase)

Environmental Site Inspection Checklist (Rev. 2)

Report No. <u>0045-20230411</u>

B29	Are designated roads paved?		\boxtimes			
B30	Are site vehicle movements confined to designated roads?		\boxtimes			
B31	Are NRMM labels properly affixed on the PMEs?		\boxtimes			
С	Noise	N/A or Not Observed	Yes	No	Remarks / Photo	
C1	Is well-maintained plant operated on-site and plant served regularly?		\boxtimes			
C2	Are vehicles and equipment switched off or throttled down while not in use?		\boxtimes			
C3	Is the noise directed away from nearby NSRs?		\boxtimes			
C4	Are the silencers or mufflers properly fitted on construction equipment and maintained regularly?	\boxtimes			N/A	
C5	Are mobile and/or noisy plant sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes			
C6	Are material stockpiles, mobile container officer and other structures utilised to screen noisy activates?	\boxtimes			N/A	
C7	Is temporary hoarding installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/A	
C8	Are noise barriers (typically density @14kg/m²) acoustic mat or full enclosure close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/A	
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes			
C10	Is the hoarding maintained properly?	\boxtimes			N/A	
C11	Air compressors (500 kPa or above) and hand held percussive breaker (mass of above 10 kg) with valid noise labels?	\boxtimes			N/A	
C12	Are compressor operated with doors closed?	\boxtimes			N/A	
C13	QPME used with valid noise labels?	\boxtimes			Not Observed	
C14	Major noise source(s)					
		☐ Traffic				
		Construction activities inside of site				
		Construction activities outside of site				

Others: _

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Constr	uction Activities				
D1	At the start of site establishment, are perimeter cut-off drains constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes		
D2	Are channels, earth bunds or sandbag barriers provided on site to properly direct stormwater to such silt removal facilities?		\boxtimes		
D3	Have dikes or embankments for flood protection implemented around the boundaries of earthwork areas?		\boxtimes		
D4	Have temporary ditches provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes		
D5	Are the sediment/ silt traps incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D6	Are the retention time for silt/s and traps of the silt removal facilities be 5 minutes under maximum flow conditions?		\boxtimes		
D7	Is surface excavation works minimised during rainy seasons (April to September), as possible?	\boxtimes			To be implemented during wet season
D8	Are all exposed earth areas completed or vegetated as soon as possible after earthworks completed, or alternatively, within 14 days of the cessation of earthworks where practicable.	\boxtimes			N/A
D9	Are exposed slope surfaces covered by tarpaulin sheets?			\boxtimes	Refer to Observation 2 Will be treated with shotcrete in Portion E3-1
D10	Have the overall slope of the site should be kept a minimum?		\boxtimes		
D11	Are all trafficked areas and access roads protected by coarse stone ballast		\boxtimes		
D12	Is wastewater from temporary site facilities controlled to prevent direct discharge to surface		\boxtimes		
D13	Are the silt removal facilities, channels and manholes maintained regularly?		\boxtimes		
D14	Is the deposite silt and grit removed regularly?		\boxtimes		
D15	Have the excavation of trenches in wet periods be dug and backfilled in short sections?	\boxtimes			N/A
D16	Is rainwater pumped out from trenches discharged into storm drains via silt system?	\boxtimes			N/A
D17	Are open stockpiles of construction materials e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes			N/A
D18	Are manholes adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes		_

E4

E5

Regular waste collection by approved waste

collector in purpose-built vehicles?

D19	Are the discharges of surface run-off into foul sewer always prevented?		\boxtimes		
D20	Is a wheel washing bay provided at every site exit?		\boxtimes		
D21	Is the wheel wash overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes		
D22	Is the section of construction road between the wheel washing bay and the public road surfaced with crushed stone or coarse gravel?		\boxtimes		
D23	Are the vehicle wash-water have sand and silt settled out and removed at least on a weekly basis?	\boxtimes			Not Observed
D24	Are site drainage systems provided over the entire project site with sediment control facilities?		\boxtimes		
D25	Are sedimentation tanks provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D26	Is the treated wastewater reused for vehicle washing, dust suppression and general cleaning?		\boxtimes		
D27	Are portable chemical toilets and sewage holding tanks provided?		\boxtimes		
D28	Is the sewage generated from toilets collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D29	Is there any sediment plume observed in nearby watercourses?	\boxtimes			N/A
D30	Are oil interceptors provided in the site drainage system downstream of any oil/ fuel pollution sources? And the oil interceptors are emptied and cleaned regularly? Has a bypass provided to prevent flushing during heavy rain?	\boxtimes			Not Observed
D31	Is chemical leakage or spillages contained and cleaned up immediately?	\boxtimes			N/A
D32	Service workshop and maintenance facilities located within a bunded area, and sumps and oil interceptors be provided?	\boxtimes			N/A
			ı		
E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
Genera	al Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes		
E2	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes		
E3	Does accumulation of waste avoid?		\boxtimes		
ΕΛ	Is waste disposed regularly?		\boxtimes		

 \times

E6	Burning of refuse on construction site prohibited?		\boxtimes		
Constr	ruction Waste				
E7	Are the temporary stockpiles maintained regularly?		\boxtimes		
E8	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E9	Are the C&D materials sorted and recycled onsite?		\boxtimes		
E10	Is there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?	\boxtimes			Not Observed
E11	Is the disposal of C&D materials avoided onto any sensitive locations e.g. agricultural lands etc.?		\boxtimes		
E12	Are the public fill and C&D waste segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal?				
E13	Is the durable formwork or plastic facing for construction works used?	\boxtimes			N/A
E14	Do the wooden hoardings avoid to be used?	\boxtimes			N/A
E15	Is metal hoarding used to enhance the possibility of recycling?	\boxtimes			N/A
E16	Is the segregation and storage of C&D wastes undertaken in designated area?		\boxtimes		
E17	Are waste storage area properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E18	Do the excavated materials appear contaminated?			\boxtimes	
E19	If suspected contaminated, appropriate procedures followed?	\boxtimes			N/A
E20	Is hydroseeding of the topsoil on the stockpile implemented to improve visual appearance and prevent soil erosion?	\boxtimes			N/A
<u>Chemi</u>	cal / Fuel Storage Area				
E21	Are the fuel tanks and chemical storage areas provided with locks and sited on sealed areas?			\boxtimes	Refer to Observation 3
E22	Are the storage area enclosed 3 sides by walls/ fence of ≥2m tall and bounded with adequate bund capacity (>110% of largest container) or do the storage area allow storage of 20% of total volume of waste?				Refer to Observation 3
E23	Are the storage areas labelled and separated (if needed)?	\boxtimes			Not Observed
E24	Do the storage areas have adequate ventilation and be covered to prevent rainfall entering?			\boxtimes	Refer to Observation 3
E25	Are the containers used for the storage of chemical wastes suitable for the substance that are holding, resist to corrosion, maintained in a good condition, and securely closed?				Refer to Observation 3
E26	If no specification has been approved by EPD, are container with <450L capacity provided for storage of chemicals waste?	\boxtimes			Not Observed
Chemi	cal Waste / Waste Oil				

E27	in English and Chinese properly in designated area?		\boxtimes		
E28	Are chemicals and waste oil recycled or disposed properly?	\boxtimes			Not Observed
E29	Is chemical waste collected by licensed waste collectors and disposed of at licensed facility eg. Chemical Waste Treatment Centre?		\boxtimes		
Record	<u>ds</u>				
E30	Is a licensed waste hauler used for waste collection?		\boxtimes		
E31	Are the records of quantities of wastes generated, recycled and disposed properly kept?		\boxtimes		
E32	For the demolition material/ waste, is the number of loads for each day recorded as appropriate?	\boxtimes			N/A
		_	_		
F	LFG	N/A or Not Observed	Yes	No	Remarks / Photo
F1	Are special LFG precautions taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			Not Observed
F2	Are prominent safety warning signs erected on-site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes		
F3	Is no smoking or burning permitted on-site?		\boxtimes		
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?		\boxtimes		
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?	\boxtimes			N/A
F6	Is adequate fire fighting equipment provided onsite?		\boxtimes		
F7	Are construction equipment equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?	\boxtimes			Not Observed
F8	Are electrical motors and extension cords explosion-proof and intrinsically safe for use onsite?	\boxtimes			Not Observed
F9	Is 'Permit to Work' system implemented?		\boxtimes		
F10	Are welding, flame-cutting or other hot works conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?		\boxtimes		
F11a	For piping assembly or conduit construction, are all valves and seals closed immediately after installation?	\boxtimes			Not Observed
F11b	Are the pipe ends sealed on one side during installation if installation of large diameter pipes (diameter >600mm) is required?	\boxtimes			Not Observed
F11c	Is forced ventilation implemented prior to operation of installed pipeline?	\boxtimes			Not Observed
F11d	Is forced ventilation implemented for works inside trenches deeper than 1m?	\boxtimes			Not Observed

F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works?			
	*LFG monitoring in excavations should be conducted at no more than 10mm from exposed ground surface.			
F13	For excavation works, Is LFG monitoring conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?			
F14	Are LFG monitoring conducted periodically when any cracks on ground level encountered on-site? *Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.			Not Observed
F15a	Are LFG precautionary measures involved in excavation and piping works provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?			Not Observed
F15b	Are temporary offices or buildings located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?	\boxtimes		Not Observed
F16	Is a Safety Officer trained in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%			Not Observed
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.			Not Observed
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?			
F17c	Are all measurements in excavations made with monitoring tube located not more than 10mm from exposed ground surface?		\boxtimes	
F18	For excavations deeper than 1m, are measurements conducted? • At ground surface before excavation commences;			

Report No. <u>0045-20230411</u>

	Immediately before any worker enters the excavation;				
	At the beginning of each working day for				
	entire period the excavation remains open;				
	andPeriodically throughout the working day whilst				
	workers are in excavation.				
F19	For excavations between 300mm and 1m, are measurements conducted?		\boxtimes		
	Directly after excavation has been completed;				
	andPeriodic all whilst excavation remains open.				
F20	For excavations less than 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately qualified person?		\boxtimes		
			•		
G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is damage to surrounding areas avoided?		\boxtimes		
G3	Are the protective fencing erected along or beyond		\boxtimes		
	the perimeter of the tree protection zone of each individual tree?				
G4	Is early planting using fast growing plants at	\boxtimes			N/A
G5	strategic locations within site implemented? Is boundary green belt planting implemented				
	around the site perimeter and the construction of temporary soil bunds?				N/A
G6	Is temporary landscape treatment as green surface cover implemented?	\boxtimes			N/A
G7	Are existing and affected tree which identified as ecological significant preserved whenever possible?	\boxtimes			Not Observed
Н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?	\boxtimes			Not Observed
1	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	
J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		
·	•	<u> </u>			

Report No. <u>0045-20230411</u>

Follow up action for previous Site Inspection:

The exposed slope was treated with shotcrete in Portion A.

Observation(s):

- 1. The entrance of Portion A is observed muddy.
- 2. The drip tray is filled with water.
- 3. Surface protection shall be applied on the exposed slope behind the wetsep to minimize the surface runoff into the channel.

Corrective Actions – Mitigation Measures Implemented or Proposed (if any):

- 1. The entrance shall be kept clear of dusty and muddy material. The Contractor has been reminded repave the surface of entrance to prevent accumulation of sand and silt.
- 2. The Contractor has been reminded to clear the drip tray and to minimize the number of chemical containers in the outdoor environment.
- 3. The exposed slope shall be covered with impervious sheets to prevent any surface runoff into the channel.

	Environmental Team Representative:	IEC's Representative:	Contractor's Representative:	Engineer's Representative
Signature:	Mi	1	Wan Mars	₩°
Name:	Andy Ng	1	William Wan	Sylvia Ho
Date:	11 April 2023	1	11 April 2023	11 April 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

Waiting for Contractor's Input

 The exposed surface in Portion E3-1 shall be covered with impervious sheets to minimize surface runoff into the stream.

2. Sand and silt are observed at the vehicle entrance in SBA.

The exposed slope was treated with shotcrete in Portion A.

Portion A

Portion D

The Contractor has been reminded to ensure the silt removal facilities functioning properly before the holidays. Waiting for Contractor's Input

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation Follow-up status 1. The entrance of Portion A is observed muddy. 2. The drip tray is filled with water.

Observation and Recommendation Follow-up status 3. Surface protection shall be applied on the exposed slope behind the wetsep to minimize the surface runoff into the channel.

(Con	stru	ıctic	n F	hase
---	-----	------	-------	-----	------

traffic cones?

Inspection Date:	17 April 2023	Inspected By:	Andy Ng, Jason Man			
Time:	14:00	Weather Condition:	Cloudy			
Participants:	Sylvia Ho (ER), William Wan (Contractor), Kristy Wong (Contractor), Andy Ng (ET), Jason Man (ET), Echo Hung (IEC)					

Α	Permits/Licenses	N/A or Not Observed	Yes	No	Remarks / Photo
A1	Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access?		\boxtimes		EP No.: EP-292/2007 FEP No.: FEP-01/292/2007
A2	Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance.		\boxtimes		CNP No: GW-RN0131-23
A3	Is wastewater discharge licence available for inspection?		\boxtimes		
A4	Are trip tickets for chemical waste and construction waste disposal available for inspection?		\boxtimes		
A5	Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?		\boxtimes		
В	Air Quality	N/A or Not Observed	Yes	No	Remarks / Photo
B1	Is open burning avoided?		\boxtimes		
B2	Are completed earthworks sealed as soon as practicable?	\boxtimes			N/A
B3	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?		\boxtimes		
B4	Any remedial action undertaken?	\boxtimes			N/A
B5	Observed dust source(s)	1			
		☐ Wind eros	sion		
		Vehicle/ E	Equipment	Moveme	nts
		Loading/	unloading	of materia	als
		Others:			
B6	Are unpaved areas/ designated roads watered regularly to avoid dust generation?		\boxtimes		
В7	Are dusty materials covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading?			\boxtimes	Refer to Reminder 1
B8	After removal of stockpile, are the remained dusty materials wetted with water and cleared from surface of roads?	\boxtimes			N/A
B9	Is the stockpile of dusty materials avoid to be		\boxtimes		

(Construction Phase)

B10	Are loaded dump trucks covered by impervious		\boxtimes		
	sheeting appropriately before leaving the site?				
B11	Are wheel washing facilities with high pressure water jet provided at all site exits if practicable?		\boxtimes		
B12	Are all vehicles and plant cleaned before they leave the construction site?		\boxtimes		
B13	Are hoarding ≥ 2.4m tall provided beside roads or area with public access?	\boxtimes			N/A
B14	Is the portion of any road leading only to				
	construction site (within 30m of a vehicle entrance or exit) kept clear of dusty materials?				
B15	Are surfaces where any pneumatic or power-driven		\boxtimes		
	drilling, cutting, polishing or other mechanical				
	breaking operations takes place sprayed with water				
	or a dust suppression chemical continuously?				
B16	Is the area involved demolition activities sprayed	\boxtimes			
	with water or a dust suppression chemical				
	immediately prior to, during and immediately after				N/A
	the activities so as to maintain the entire surface				
	wet?				
B17	Is scaffolding erected around the perimeter of a	\boxtimes			N/A
	building under construction?				14/74
B18	Are effective dust screens, sheeting or netting	\boxtimes			
	provided to enclose the scaffolding from the ground	<u> </u>			
	floor level of the building, or a canopy provided from				N/A
	the first floor level up to the highest level of the				
	scaffolding?				
B19	Is the skip for materials transport enclosed by	\boxtimes			N/A
	impervious sheeting?				,, .
B20	Is every stock of more than 20 bags of cement or		\boxtimes		
	dry pulverized fuel ash (PFA) covered entirely by				
	impervious sheeting or placed in an area sheltered				
D 04	on the top and 3 sides?				
B21	Are the areas of washing facilities and the road		\boxtimes		
	section between the washing facilities and the exit				
	point paved with concrete, bituminous materials or hardcores?				
Daa	Are the activities of loading, unloading, transfer,				
B22	handing or storage of bulk cement or dry PFA	\boxtimes	Ш	Ш	N/A
	carried out in a totally enclosed system or facility?				IN/A
B23	Is any vent or exhaust fitted with an effective fabric				
DZS	filter or equipment air pollution control system?				N/A
B24	Is the exposed earth properly treated by		\boxtimes		
	compaction, turfing, hydroseeding, vegetation				
	planting or sealing with latex, vinyl, bitumen,				
	shotcrete or other suitable surface stabilizer within				
	six months after last construction activity on the				
	construction site or part of the construction site				
	where the exposed earth lies?				
B25	Are the worksites wetted with water regularly?		\boxtimes		
B26	Is generation of dust avoided during loading or unloading?	\boxtimes			Not Observed
B27	Are all trucks loaded to a level within the side and		N		
	tail boards?				
B28	Are appropriate speed limit sign displayed?		\boxtimes		

North East New Territories (NENT) Landfill Extension

(Construction Phase)

Environmental Site Inspection Checklist (Rev. 2)

Report No. <u>0046-20230417</u>

(001131	idottott i ildəcj		VII OTTITICITIC	ii Oito iiio	pootion oncomist (rev. 2)
B29	Are designated roads paved?		\boxtimes		
B30	Are site vehicle movements confined to designated roads?		\boxtimes		
B31	Are NRMM labels properly affixed on the PMEs?		\boxtimes		
C	Noise	N/A or Not Observed	Yes	No	Remarks / Photo
C1	Is well-maintained plant operated on-site and plant served regularly?		\boxtimes		
C2	Are vehicles and equipment switched off or throttled down while not in use?		\boxtimes		
C3	Is the noise directed away from nearby NSRs?		\boxtimes		
C4	Are the silencers or mufflers properly fitted on construction equipment and maintained regularly?	\boxtimes			N/A
C5	Are mobile and/or noisy plant sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes		
C6	Are material stockpiles, mobile container officer and other structures utilised to screen noisy activates?	\boxtimes			N/A
C7	Is temporary hoarding installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/A
C8	Are noise barriers (typically density @14kg/m²) acoustic mat or full enclosure close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	×			N/A
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes		
C10	Is the hoarding maintained properly?	\boxtimes			N/A
C11	Air compressors (500 kPa or above) and hand held percussive breaker (mass of above 10 kg) with valid noise labels?	\boxtimes			N/A
C12	Are compressor operated with doors closed?	\boxtimes			N/A
C13	QPME used with valid noise labels?	\boxtimes			Not Observed
C14	Major noise source(s)				
		☐ Traffic			
			ion activiti	es inside	of site

Construction activities outside of site

Others: _

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Const	ruction Activities				
D1	At the start of site establishment, are perimeter cut-off drains constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes		
D2	Are channels, earth bunds or sandbag barriers provided on site to properly direct stormwater to such silt removal facilities?		\boxtimes		
D3	Have dikes or embankments for flood protection implemented around the boundaries of earthwork areas?		\boxtimes		
D4	Have temporary ditches provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes		
D5	Are the sediment/ silt traps incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D6	Are the retention time for silt/s and traps of the silt removal facilities be 5 minutes under maximum flow conditions?		\boxtimes		
D7	Is surface excavation works minimised during rainy seasons (April to September), as possible?		\boxtimes		
D8	Are all exposed earth areas completed or vegetated as soon as possible after earthworks completed, or alternatively, within 14 days of the cessation of earthworks where practicable.	\boxtimes			N/A
D9	Are exposed slope surfaces covered by tarpaulin sheets?			\boxtimes	Will be treated with shotcrete in Portion E3-1
D10	Have the overall slope of the site should be kept a minimum?		\boxtimes		
D11	Are all trafficked areas and access roads protected by coarse stone ballast		\boxtimes		
D12	Is wastewater from temporary site facilities controlled to prevent direct discharge to surface		\boxtimes		
D13	Are the silt removal facilities, channels and manholes maintained regularly?			\boxtimes	Refer to Reminder 2
D14	Is the deposite silt and grit removed regularly?		\boxtimes		
D15	Have the excavation of trenches in wet periods be dug and backfilled in short sections?	\boxtimes			N/A
D16	Is rainwater pumped out from trenches discharged into storm drains via silt system?	\boxtimes			N/A
D17	Are open stockpiles of construction materials e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes			N/A
D18	Are manholes adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes		
D19	Are the discharges of surface run-off into foul sewer always prevented?		\boxtimes		

D20	Is a wheel washing bay provided at every site exit?		\boxtimes		
D21	Is the wheel wash overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes		
D22	Is the section of construction road between the wheel washing bay and the public road surfaced with crushed stone or coarse gravel?		\boxtimes		
D23	Are the vehicle wash-water have sand and silt settled out and removed at least on a weekly basis?	\boxtimes			Not Observed
D24	Are site drainage systems provided over the entire project site with sediment control facilities?		\boxtimes		
D25	Are sedimentation tanks provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D26	Is the treated wastewater reused for vehicle washing, dust suppression and general cleaning?		\boxtimes		
D27	Are portable chemical toilets and sewage holding tanks provided?		\boxtimes		
D28	Is the sewage generated from toilets collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D29	Is there any sediment plume observed in nearby watercourses?	\boxtimes			N/A
D30	Are oil interceptors provided in the site drainage system downstream of any oil/ fuel pollution sources? And the oil interceptors are emptied and cleaned regularly? Has a bypass provided to prevent flushing during heavy rain?	\boxtimes			Not Observed
D31	Is chemical leakage or spillages contained and cleaned up immediately?	\boxtimes			N/A
D32	Service workshop and maintenance facilities located within a bunded area, and sumps and oil interceptors be provided?	\boxtimes			N/A
E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
Genera	al Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes		
E2	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes		
E3	Does accumulation of waste avoid?				
E4	Is waste disposed regularly?		\boxtimes		
E5	Regular waste collection by approved waste collector in purpose-built vehicles?		\boxtimes		
E6	Burning of refuse on construction site prohibited?		\boxtimes		

Constr	uction Waste				
E7	Are the temporary stockpiles maintained regularly?		\boxtimes		
E8	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E9	Are the C&D materials sorted and recycled onsite?		\boxtimes		
E10	Is there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?	×			Not Observed
E11	Is the disposal of C&D materials avoided onto any sensitive locations e.g. agricultural lands etc.?		\boxtimes		
E12	Are the public fill and C&D waste segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal?				
E13	Is the durable formwork or plastic facing for construction works used?	\boxtimes			N/A
E14	Do the wooden hoardings avoid to be used?	\boxtimes			N/A
E15	Is metal hoarding used to enhance the possibility of recycling?	\boxtimes			N/A
E16	Is the segregation and storage of C&D wastes undertaken in designated area?		\boxtimes		
E17	Are waste storage area properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E18	Do the excavated materials appear contaminated?			\boxtimes	
E19	If suspected contaminated, appropriate procedures followed?	\boxtimes			N/A
E20	Is hydroseeding of the topsoil on the stockpile implemented to improve visual appearance and prevent soil erosion?	\boxtimes			N/A
Chemi	cal / Fuel Storage Area				
E21	Are the fuel tanks and chemical storage areas provided with locks and sited on sealed areas?	\boxtimes			Not Observed
E22	Are the storage area enclosed 3 sides by walls/ fence of ≥2m tall and bounded with adequate bund capacity (>110% of largest container) or do the storage area allow storage of 20% of total volume of waste?	\boxtimes			Not Observed
E23	Are the storage areas labelled and separated (if needed)?	\boxtimes			Not Observed
E24	Do the storage areas have adequate ventilation and be covered to prevent rainfall entering?	\boxtimes			Not Observed
E25	Are the containers used for the storage of chemical wastes suitable for the substance that are holding, resist to corrosion, maintained in a good condition, and securely closed?	\boxtimes			Not Observed
E26	If no specification has been approved by EPD, are container with <450L capacity provided for storage of chemicals waste?	\boxtimes			Not Observed
Chemi	cal Waste / Waste Oil				

(Construction Phase)

E27	Is chemical waste or waste oil stored and labelled in English and Chinese properly in designated area?		\boxtimes		
E28	Are chemicals and waste oil recycled or disposed properly?	\boxtimes			Not Observed
E29	Is chemical waste collected by licensed waste collectors and disposed of at licensed facility eg. Chemical Waste Treatment Centre?		\boxtimes		
Record	<u>ls</u>				
E30	Is a licensed waste hauler used for waste collection?		\boxtimes		
E31	Are the records of quantities of wastes generated, recycled and disposed properly kept?		\boxtimes		
E32	For the demolition material/ waste, is the number of loads for each day recorded as appropriate?	\boxtimes			N/A
F	LFG	N/A or Not Observed	Yes	No	Remarks / Photo
F1	Are special LFG precautions taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?				Not Observed
F2	Are prominent safety warning signs erected on-site to alert all personnel and visitors of LFG hazards during excavation works.?		\boxtimes		
F3	Is no smoking or burning permitted on-site?		\boxtimes		
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?				
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?	\boxtimes			N/A
F6	Is adequate fire fighting equipment provided onsite?		\boxtimes		
F7	Are construction equipment equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?	\boxtimes			Not Observed
F8	Are electrical motors and extension cords explosion-proof and intrinsically safe for use onsite?	\boxtimes			Not Observed
F9	Is 'Permit to Work' system implemented?		\boxtimes		
F10	Are welding, flame-cutting or other hot works conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?				
F11a	For piping assembly or conduit construction, are all valves and seals closed immediately after installation?	\boxtimes			Not Observed
F11b	Are the pipe ends sealed on one side during installation if installation of large diameter pipes (diameter >600mm) is required?	\boxtimes			Not Observed
F11c	Is forced ventilation implemented prior to operation of installed pipeline?	\boxtimes			Not Observed
F11d	Is forced ventilation implemented for works inside trenches deeper than 1m?	\boxtimes			Not Observed

F12	Is frequency and location of LFG monitoring within excavation area determined prior to commencement of works? *LFG monitoring in excavations should be		
	conducted at no more than 10mm from exposed ground surface.		
F13	For excavation works, Is LFG monitoring conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation?		
F14	Are LFG monitoring conducted periodically when any cracks on ground level encountered on-site? *Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.		Not Observed
F15a	Are LFG precautionary measures involved in excavation and piping works provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase?		Not Observed
F15b	Are temporary offices or buildings located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm?		Not Observed
F16	Is a Safety Officer trained in the use of gas detection equipment and LFG- related hazards present on-site throughout the groundwork phase? *The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%		Not Observed
F17a	Periodically during groundwork construction, Is the works area monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment? *The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person.		Not Observed
F17b	Is routine monitoring carried out in all excavations, manholes, created by temporary storage of building materials on-site?		
F17c	Are all measurements in excavations made with monitoring tube located not more than 10mm from exposed ground surface?	\boxtimes	
F18	For excavations deeper than 1m, are measurements conducted? • At ground surface before excavation commences;	\boxtimes	

(Construction Phase) Environmental Site Inspection Checklist (Rev. 2)

	 Immediately before any worker enters the excavation; 				
	 At the beginning of each working day for entire period the excavation remains open; 				
	and				
	 Periodically throughout the working day whilst workers are in excavation. 				
F19	For excavations between 300mm and 1m, are		\boxtimes		
	measurements conducted?Directly after excavation has been completed;				
	and				
	Periodic all whilst excavation remains open.				
F20	For excavations less than 300mm, are monitoring omitted at the discretion of Safety Officer or		\boxtimes		
	appropriately qualified person?				
G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?		\boxtimes		
G2	Is damage to surrounding areas avoided?		\boxtimes		
G3	Are the protective fencing erected along or beyond		\boxtimes		
	the perimeter of the tree protection zone of each individual tree?				
G4	Is early planting using fast growing plants at	\boxtimes		П	N/A
	strategic locations within site implemented?				IN/A
G5	Is boundary green belt planting implemented around the site perimeter and the construction of	\boxtimes			N/A
	temporary soil bunds?				14/71
G6	Is temporary landscape treatment as green surface cover implemented?	\boxtimes			N/A
G7	Are existing and affected tree which identified as	\boxtimes			Nat Observed
	ecological significant preserved whenever possible?				Not Observed
	peccione.				
		N/A or Not	.,		
Н	Ecology	Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species	\boxtimes			Not Observed
	implemented? Is post-transplantation maintained and monitored regularly?				Not Observed
	· ·				
1	Environmental Complaint	N/A or Not	Yes	No	Remarks / Photo
	Environmental Complaint	Observed	162	NO	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	
J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation		\boxtimes		
J2	Are the portable toilets maintained in a state, which		\boxtimes		
	will not deter the workers from utilizing these portable toilets?				
	F			1	

Follow up action for previous Site Inspection:

Waiting for Contractor's Input

Observation(s):

1. The drip tray in SBA is filled with water.

Reminder(s):

- 1. The Contractor has been reminded to spray water on the surface of dusty material in SBA to prevent dust dispersion.
- 2. The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall.

<u>Corrective Actions – Mitigation Measures Implemented or Proposed (if any):</u>

- 1. The Contractor has been reminded to clear the drip tray.
- 2. Dusty material shall be sprayed with water to prevent generation of dust.
- 3. Silt removal facilities shall be maintained properly.

	Environmental Team Representative:	IEC's Representative:	Contractor's Representative:	Engineer's Representative
Signature:	4	ruho.	Da Mas	#V.
Name:	Andy Ng	Echo Hung	William Wan	Sylvia Ho
Date:	17 April 2023	17 April 2023	17 April 2023	17 April 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation Follow-up status Waiting for Contractor's Input The exposed surface in Portion E3-1 shall be covered with impervious sheets to minimize surface runoff into the stream. Portion E3

Portion D

The Contractor has been reminded to ensure the silt removal facilities functioning properly before the holidays. Waiting for Contractor's Input

Waiting for Contractor's Input

3. The entrance of Portion A is observed muddy.

Waiting for Contractor's Input

4. The drip tray is filled with water.

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation Follow-up status The drip tray in SBA is filled with water. The Contractor has been reminded to spray water on the surface of dusty material in SBA to prevent dust dispersion. Portion E3-1 The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall.

Inspection Date:	24 April 2023	Inspected By:	Andy Ng				
Time:	14:00	Weather Condition:	Overcast				
Participants:	nnts: Sylvia Ho (ER), William Wan (Contractor), Kristy Wong (Contractor), Andy Ng (ET)						

Α	Permits/Licenses	N/A or Not Observed	Yes	No	Remarks / Photo
A1	Are Environmental Permit, license/ other permit displayed at major site exit and vehicle access?		\boxtimes		EP No.: EP-292/2007 FEP No.: FEP-01/292/2007
A2	Are Construction Noise Permits/ Environmental license/ other permit available for inspection/posted at site entrance.		\boxtimes		CNP No: GW-RN0131-23
A3	Is wastewater discharge licence available for inspection?		\boxtimes		
A4	Are trip tickets for chemical waste and construction waste disposal available for inspection?		\boxtimes		
A5	Are relevant licence/permit for disposal of construction waste or excavated materials available for inspection?		\boxtimes		
В	Air Quality	N/A or Not	Vas	No	Remarks / Photo

В	Air Quality	N/A or Not Observed	Yes	No	Remarks / Photo
B1	Is open burning avoided?		\boxtimes		
B2	Are completed earthworks sealed as soon as practicable?	\boxtimes			N/A
В3	Are plant and equipment well maintained (i.e. without black smoke from powered plant)?		\boxtimes		
B4	Any remedial action undertaken?	\boxtimes			N/A
B5	Observed dust source(s)				
		☐ Wind eros	sion		
		Vehicle/ E	Equipment	Moveme	nts
		Loading/	unloading	of materia	als
		Others:	Not	Observe	d
B6	Are unpaved areas/ designated roads watered regularly to avoid dust generation?		\boxtimes		
B7	Are dusty materials covered entirely by impervious sheeting or sprayed with water to maintain the	\boxtimes			
	entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading?				Not Observed
B8	After removal of stockpile, are the remained dusty materials wetted with water and cleared from surface of roads?	\boxtimes			N/A
В9	Is the stockpile of dusty materials avoid to be extend beyond the pedestrian barriers, fencing or traffic cones?		\boxtimes		

(Construction Phase)

B10	Are loaded dump trucks covered by impervious sheeting appropriately before leaving the site?		\boxtimes	
B11	Are wheel washing facilities with high pressure water jet provided at all site exits if practicable?		\boxtimes	
B12	Are all vehicles and plant cleaned before they leave the construction site?		\boxtimes	
B13	Are hoarding ≥ 2.4m tall provided beside roads or	\boxtimes		N/A
D44	area with public access?			·
B14	Is the portion of any road leading only to construction site (within 30m of a vehicle entrance or exit) kept clear of dusty materials?			
B15	Are surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operations takes place sprayed with water or a dust suppression chemical continuously?		\boxtimes	
B16	Is the area involved demolition activities sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet?			N/A
B17	Is scaffolding erected around the perimeter of a building under construction?	\boxtimes		N/A
B18	Are effective dust screens, sheeting or netting provided to enclose the scaffolding from the ground floor level of the building, or a canopy provided from the first floor level up to the highest level of the scaffolding?	\boxtimes		N/A
B19	Is the skip for materials transport enclosed by impervious sheeting?	\boxtimes		N/A
B20	Is every stock of more than 20 bags of cement or dry pulverized fuel ash (PFA) covered entirely by impervious sheeting or placed in an area sheltered on the top and 3 sides?	\boxtimes		Not Observed
B21	Are the areas of washing facilities and the road section between the washing facilities and the exit point paved with concrete, bituminous materials or hardcores?			
B22	Are the activities of loading, unloading, transfer, handing or storage of bulk cement or dry PFA carried out in a totally enclosed system or facility?	\boxtimes		N/A
B23	Is any vent or exhaust fitted with an effective fabric filter or equipment air pollution control system?	\boxtimes		N/A
B24	Is the exposed earth properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabilizer within six months after last construction activity on the construction site or part of the construction site where the exposed earth lies?		\boxtimes	
B25	Are the worksites wetted with water regularly?		\boxtimes	
B26	Is generation of dust avoided during loading or unloading?	\boxtimes		Not Observed
B27	Are all trucks loaded to a level within the side and tail boards?		\boxtimes	
B28	Are appropriate speed limit sign displayed?		\boxtimes	

North East New Territories (NENT) Landfill Extension

(Construction Phase)

Environmental Site Inspection Checklist (Rev. 2)

B29	Are designated roads paved?		\boxtimes		
B30	Are site vehicle movements confined to designated roads?		\boxtimes		
B31	Are NRMM labels properly affixed on the PMEs?		\boxtimes		
С	Noise	N/A or Not Observed	Yes	No	Remarks / Photo
C1	Is well-maintained plant operated on-site and plant served regularly?		\boxtimes		
C2	Are vehicles and equipment switched off or throttled down while not in use?		\boxtimes		
С3	Is the noise directed away from nearby NSRs?		\boxtimes		
C4	Are the silencers or mufflers properly fitted on construction equipment and maintained regularly?	\boxtimes			N/A
C5	Are mobile and/or noisy plant sited as far away from NSRs as possible and practicable and orientated so that the noise is directed away from nearby NSRs?		\boxtimes		
C6	Are material stockpiles, mobile container officer and other structures utilised to screen noisy activates?	\boxtimes			N/A
C7	Is temporary hoarding installed located on the site boundaries between noisy construction activities and NSRs?	\boxtimes			N/A
C8	Are noise barriers (typically density @14kg/m²) acoustic mat or full enclosure close to noise plants including air compressor, generators and saw etc. provided to protect NSRs?	\boxtimes			N/A
C9	Is the sequencing operation of construction plants where practicable?		\boxtimes		
C10	Is the hoarding maintained properly?	\boxtimes			N/A
C11	Air compressors (500 kPa or above) and hand held percussive breaker (mass of above 10 kg) with valid noise labels?	\boxtimes			N/A
C12	Are compressor operated with doors closed?	\boxtimes			N/A
C13	QPME used with valid noise labels?	\boxtimes			Not Observed
C14	Major noise source(s)				
		☐ Traffic			
		⊠ Construct	ion activiti	es inside	of site
		Construct	ion activiti	es outsid	e of site
		Others:			-

D	Water Quality	N/A or Not Observed	Yes	No	Remarks / Photo
Consti	ruction Activities				
D1	At the start of site establishment, are perimeter cut-off drains constructed to direct off-site water around the site with internal drainage works and erosion and sedimentation control facilities implemented?		\boxtimes		
D2	Are channels, earth bunds or sandbag barriers provided on site to properly direct stormwater to such silt removal facilities?		\boxtimes		
D3	Have dikes or embankments for flood protection implemented around the boundaries of earthwork areas?		\boxtimes		
D4	Have temporary ditches provided to facilitate the runoff discharge into an appropriate watercourse, through a site/ sediment trap?		\boxtimes		
D5	Are the sediment/ silt traps incorporated in the permanent drainage channels to enhance deposition rate?		\boxtimes		
D6	Are the retention time for silt/s and traps of the silt removal facilities be 5 minutes under maximum flow conditions?		\boxtimes		
D7	Is surface excavation works minimised during rainy seasons (April to September), as possible?		\boxtimes		
D8	Are all exposed earth areas completed or vegetated as soon as possible after earthworks completed, or alternatively, within 14 days of the cessation of earthworks where practicable.	\boxtimes			N/A
D9	Are exposed slope surfaces covered by tarpaulin sheets?			\boxtimes	Will be treated with shotcrete in Portion E3-1.
D10	Have the overall slope of the site should be kept a minimum?		\boxtimes		
D11	Are all trafficked areas and access roads protected by coarse stone ballast		\boxtimes		
D12	Is wastewater from temporary site facilities controlled to prevent direct discharge to surface		\boxtimes		
D13	Are the silt removal facilities, channels and manholes maintained regularly?			\boxtimes	Refer to Observation 1 and Reminder 2
D14	Is the deposite silt and grit removed regularly?		\boxtimes		
D15	Have the excavation of trenches in wet periods be dug and backfilled in short sections?	\boxtimes			N/A
D16	Is rainwater pumped out from trenches discharged into storm drains via silt system?	\boxtimes			N/A
D17	Are open stockpiles of construction materials e.g. aggregates and sand of more than 50m³ on site covered with tarpaulin or similar fabric during rainstorms?	\boxtimes			N/A
D18	Are manholes adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage?		\boxtimes		
D19	Are the discharges of surface run-off into foul sewer always prevented?		\boxtimes		

			.	/	
Environmental	Site	Inspection	Checklist	(Rev.	2

D20	Is a wheel washing bay provided at every site exit?		\boxtimes		
D21	Is the wheel wash overflow directed to silt removal facilities before being discharged to the storm drain?		\boxtimes		
D22	Is the section of construction road between the wheel washing bay and the public road surfaced with crushed stone or coarse gravel?		\boxtimes		
D23	Are the vehicle wash-water have sand and silt settled out and removed at least on a weekly basis?	\boxtimes			Not Observed
D24	Are site drainage systems provided over the entire project site with sediment control facilities?		\boxtimes		
D25	Are sedimentation tanks provided to treat the large amount of sediment-laden wastewater generated from wheel washing, site runoff and construction works?		\boxtimes		
D26	Is the treated wastewater reused for vehicle washing, dust suppression and general cleaning?		\boxtimes		
D27	Are portable chemical toilets and sewage holding tanks provided?		\boxtimes		
D28	Is the sewage generated from toilets collected by licensed contractor and responsible for disposal and maintenance?		\boxtimes		
D29	Is there any sediment plume observed in nearby watercourses?	\boxtimes			N/A
D30	Are oil interceptors provided in the site drainage system downstream of any oil/ fuel pollution sources? And the oil interceptors are emptied and cleaned regularly? Has a bypass provided to prevent flushing during heavy rain?	\boxtimes			Not Observed
D31	Is chemical leakage or spillages contained and cleaned up immediately?	\boxtimes			N/A
D32	Service workshop and maintenance facilities located within a bunded area, and sumps and oil interceptors be provided?	\boxtimes			N/A
E	Waste / Chemical Management	N/A or Not Observed	Yes	No	Remarks / Photo
<u>Genera</u>	al Waste				
E1	Is the general waste generated on-site stored in enclosed bins or compaction units separately from the construction and chemical wastes?		\boxtimes		
E2	Is the general waste collected properly by using the waste separation facilities for paper, aluminium cans, plastic bottles etc.?		\boxtimes		
E3	Does accumulation of waste avoid?		\boxtimes		
E4	Is waste disposed regularly?		\boxtimes		
E5	Regular waste collection by approved waste collector in purpose-built vehicles?		\boxtimes		
	Burning of refuse on construction site prohibited?		\square		

(Construction Phase)

Constr	ruction Waste				
E7	Are the temporary stockpiles maintained regularly?		\boxtimes		
E8	Is the excavated fill material reused for backfilling and reinstatement?		\boxtimes		
E9	Are the C&D materials sorted and recycled onsite?		\boxtimes		
E10	Is there any contract documents provided to allow and promote the use of recycled aggregates where appropriate?	\boxtimes			Not Observed
E11	Is the disposal of C&D materials avoided onto any sensitive locations e.g. agricultural lands etc.?		\boxtimes		
E12	Are the public fill and C&D waste segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal?				
E13	Is the durable formwork or plastic facing for construction works used?	\boxtimes			N/A
E14	Do the wooden hoardings avoid to be used?	\boxtimes			N/A
E15	Is metal hoarding used to enhance the possibility of recycling?	\boxtimes			N/A
E16	Is the segregation and storage of C&D wastes undertaken in designated area?		\boxtimes		
E17	Are waste storage area properly cleaned and do not cause windblown litter and dust nuisance?		\boxtimes		
E18	Do the excavated materials appear contaminated?			\boxtimes	
E19	If suspected contaminated, appropriate procedures followed?	\boxtimes			N/A
E20	Is hydroseeding of the topsoil on the stockpile implemented to improve visual appearance and prevent soil erosion?	\boxtimes			N/A
Chemi	cal / Fuel Storage Area				
E21	Are the fuel tanks and chemical storage areas provided with locks and sited on sealed areas?	\boxtimes			Not Observed
E22	Are the storage area enclosed 3 sides by walls/ fence of ≥2m tall and bounded with adequate bund capacity (>110% of largest container) or do the storage area allow storage of 20% of total volume of waste?	\boxtimes			Not Observed
E23	Are the storage areas labelled and separated (if needed)?	\boxtimes			Not Observed
E24	Do the storage areas have adequate ventilation and be covered to prevent rainfall entering?	\boxtimes			Not Observed
E25	Are the containers used for the storage of chemical wastes suitable for the substance that are holding, resist to corrosion, maintained in a good condition, and securely closed?	\boxtimes			Not Observed
E26	If no specification has been approved by EPD, are container with <450L capacity provided for storage of chemicals waste?	\boxtimes			Not Observed
<u>Chemi</u>	cal Waste / Waste Oil				

E27	Is chemical waste or waste oil stored and labelled in English and Chinese properly in designated area?		\boxtimes				
E28	Are chemicals and waste oil recycled or disposed properly?	\boxtimes			Not Observed		
E29	Is chemical waste collected by licensed waste collectors and disposed of at licensed facility eg. Chemical Waste Treatment Centre?		\boxtimes				
Records							
E30	Is a licensed waste hauler used for waste collection?		\boxtimes				
E31	Are the records of quantities of wastes generated, recycled and disposed properly kept?		\boxtimes				
E32	For the demolition material/ waste, is the number of loads for each day recorded as appropriate?				N/A		

F	LFG	N/A or Not Observed	Yes	No	Remarks / Photo
F1	Are special LFG precautions taken to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity)?	\boxtimes			Not Observed
F2	Are prominent safety warning signs erected on-site to alert all personnel and visitors of LFG hazards during excavation works.?				
F3	Is no smoking or burning permitted on-site?		\boxtimes		
F4	Are prominent 'No smoking' and 'No Naked Flames' signs erected on-site?		\boxtimes		
F5	Is no worker allowed to work alone at any time in excavated trenches or confined areas on-site?	\boxtimes			N/A
F6	Is adequate fire fighting equipment provided onsite?		\boxtimes		
F7	Are construction equipment equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors?	\boxtimes			Not Observed
F8	Are electrical motors and extension cords explosion-proof and intrinsically safe for use onsite?	\boxtimes			Not Observed
F9	Is 'Permit to Work' system implemented?		\boxtimes		
F10	Are welding, flame-cutting or other hot works conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works?				
F11a	For piping assembly or conduit construction, are all valves and seals closed immediately after installation?	\boxtimes			Not Observed
F11b	Are the pipe ends sealed on one side during installation if installation of large diameter pipes (diameter >600mm) is required?	\boxtimes			Not Observed
F11c	Is forced ventilation implemented prior to operation of installed pipeline?	\boxtimes			Not Observed
F11d	Is forced ventilation implemented for works inside trenches deeper than 1m?	\boxtimes			Not Observed

(Construction Phase)

F12	Is frequency and location of LFG monitoring within		\boxtimes		
	excavation area determined prior to	_			
	commencement of works?				
	*LFG monitoring in excavations should be				
	conducted at no more than 10mm from exposed				
	ground surface.				
F13	For excavation works, Is LFG monitoring		\boxtimes		
	conducted (1) at ground surface prior to				
	excavation, (2) immediately before workers				
	entering excavations, (3) at the beginning of each				
	half-day work, and (4) periodically throughout the				
	working day when workers are in the excavation?				
F14	Are LFG monitoring conducted periodically when				
	any cracks on ground level encountered on-site?				
	any ordene on ground level encountered on site:				Not Observed
	*Appropriate action should be taken in accordance				Not Obscived
	with the action plan in Table 7.6 of EIA Report.				
F15a	Are LFG precautionary measures involved in				
гтэа					
	excavation and piping works provided in				Not Observed
	accordance with LFG Guidance Note and included				
E451	in Safety Plan of construction phase?				
F15b	Are temporary offices or buildings located where	\boxtimes			
	free LFG has been proven or raised clear of				Not Observed
	ground at a separation distance of at least				-
	500mm?				
F16	Is a Safety Officer trained in the use of gas				
	detection equipment and LFG- related hazards				
	present on-site throughout the groundwork phase?				
	*The Safety Officer should be provided with an				
	intrinsically safe portable instrument appropriately				Not Observed
	calibrated and capable of measuring the following				
	gases:				
	•CH ₄ : 0-100% and LEL: 0-100%/v				
	•CO ₂ : 0-100%				
	•O ₂ : 0-21%				
F17a	Periodically during groundwork construction, Is the	\boxtimes			
	works area monitored for CH ₄ CO ₂ and O ₂ using				
	appropriately calibrated portable gas detection				
	equipment?				
					Not Observed
	*The monitoring frequency and areas should be				
	established prior to commencement of groundwork				
	either by Safety Officer or appropriately qualified				
	person.				
F17b	Is routine monitoring carried out in all excavations,				
	manholes, created by temporary storage of				
	building materials on-site?				
F17c	Are all measurements in excavations made with				
, 6	monitoring tube located not more than 10mm from				
	exposed ground surface?				
F18	For excavations deeper than 1m, are		<u> </u>		
F 10	measurements conducted?				
	At ground surface before excavation				
	commences;				

	 Immediately before any worker enters the excavation; At the beginning of each working day for entire period the excavation remains open; and 				
	 Periodically throughout the working day whilst workers are in excavation. 				
F19	For excavations between 300mm and 1m, are measurements conducted? • Directly after excavation has been completed; and • Periodic all whilst excavation remains open.		\boxtimes		
F20	For excavations less than 300mm, are monitoring omitted at the discretion of Safety Officer or appropriately qualified person?		\boxtimes		
		N/A N	I		
G	Landscape and Visual Impacts	N/A or Not Observed	Yes	No	Remarks / Photo
G1	Is the work site confined within site boundaries?				
G2	Is damage to surrounding areas avoided?				
G3	Are the protective fencing erected along or beyond the perimeter of the tree protection zone of each individual tree?		\boxtimes		
G4	Is early planting using fast growing plants at strategic locations within site implemented?	\boxtimes			N/A
G5	Is boundary green belt planting implemented around the site perimeter and the construction of temporary soil bunds?	×			N/A
G6	Is temporary landscape treatment as green surface cover implemented?	\boxtimes			N/A
G7	Are existing and affected tree which identified as ecological significant preserved whenever possible?	\boxtimes			Not Observed
Н	Ecology	N/A or Not Observed	Yes	No	Remarks / Photo
H1	Is transplantation of the important plant species implemented? Is post-transplantation maintained and monitored regularly?				Not Observed
ı	Environmental Complaint	N/A or Not Observed	Yes	No	Remarks / Photo
I1	Environmental Complaint received during this week?			\boxtimes	
J	General Housekeeping / Others	N/A or Not Observed	Yes	No	Remarks / Photo
J1	Are the defined boundaries of working areas identified to prevent loss of vegetation				
J2	Are the portable toilets maintained in a state, which will not deter the workers from utilizing these portable toilets?		\boxtimes		

Report No. 0047-20230424

Follow up action for previous Site Inspection:

- The exposed slope surface near the stream has been covered with impervious sheets as a temporary
 mitigation measure. Shotcrete will be applied on the exposed surface by the end of April to prevent
 surface runoff into stream in long term.
- 2. The chemical containers were removed in Portion E3. The Contractor has been reminded to store chemical containers properly.
- 3. The Contractor drained off the water in the drip tray in SBA. The sand and silt in the drip tray shall be cleared off.
- 4. The silt removal facilities were functioned properly.

Observation(s):

1. The channels at the entrance of SBA are accumulated with rotten leaves, sand and silt.

Reminder(s):

- 1. Surface protection works in Portion A shall be maintained properly.
- 2. The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall in this week.

Corrective Actions - Mitigation Measures Implemented or Proposed (if any):

- 1. Regular cleaning of channel shall be conducted to prevent any clogging.
- 2. Earth bunds and exposed slopes shall be paved to control the surface runoff.
- 3. Silt removal facilities shall be maintained properly and checked if they can function properly.

Environmental Site Inspection Checklist (Rev. 2)

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:	Yng	1	Wan Mors	Ho
Name:	Andy Ng	1	William Wan	Sylvia Ho
Date:	24 April 2023	1	24 April 2023	24 April 2023

PART I Follow-up status of the previous site inspection

Observation and Recommendation

 The exposed surface in Portion E3-1 shall be covered with impervious sheets to minimize surface runoff into the stream.

Follow-up status

The exposed slope surface near the stream has been covered with impervious sheets as a temporary mitigation measure. Shotcrete will be applied by the end of April to prevent surface runoff into stream in long term.

Portion E3

Portion E3

Portion A

Portion D

- 2. The Contractor has been reminded to ensure the silt removal facilities functioning properly before the holidays.
- 3. The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall.

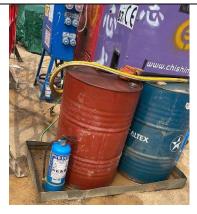
Portion A

Portion D

The silt removal facilities were functioned properly.

4. The entrance of Portion A was observed muddy.

The Contractor scheduled watering at the entrance of Portion A.


5. The drip tray was filled with water.

The chemical containers were removed. The Contractor has been reminded to store chemical containers properly.

6. The drip tray in SBA was filled with water.

The Contractor drained off the water in the drip tray. Sand and silt in drip tray should be cleared off.

7. The Contractor has been reminded to spray water on the surface of dusty material in SBA to prevent dust dispersion.

The contractor was increased the frequency of watering on the surface of dusty material in SBA to prevent dust dispersion.

PART II Observation and recommendation identified during the environmental site inspection

Observation and Recommendation

. The channels at the entrance of SBA are accumulated with rotten leaves, sand and silt.

Follow-up status

Rotten leaves were removed from the channels.

Observation and Recommendation

2. The surface protection works in Portion A shall be maintained properly.

Follow-up status

The surface protection works at Portion A was conducted by contractor.

Portion E3

Portion A

Portion E3

Portion A

Report No. <u>0047-20230424</u>

Observation and Recommendation

Follow-up status

Portion D

The Contractor has been reminded to ensure all silt removal facilities functioning properly for the upcoming rainfall.

Portion D

The Silt Removal Facilities were functioned properly and the Contractor conducted cleaning work on the them.

Appendix K Environmental Mitigation Implementation Schedule (EMIS)

Environm	ental Mitigati	on Implementation Schedule (EMIS) Construction Phase					
EIA Ref.	EM&A Log Ref.	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
Air Qua	lity					1	
\$3.8. 1	S3.1.8	 The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation. Dust emission from construction vehicle movement is confined within the worksites area. Watering facilities will be provided at every designated vehicular exit point. Good site practice is recommended during construction phase. 	Good construction site practices to control the dust impact at the nearby sensitive receivers to within the relevant criteria.	Contractor	Entire NENT Landfill Extension site	To control the dust impact to within the HKAQO and TM - EIA criteria (Ref. 1-hr and 24hr TSP levels are 500 μg/m ⁻³ and 260 μg/m ⁻³ , respectively)	✓
Constru	ction Noise						
S4	S4.9	 Use of good site practices to limit noise emissions by considering the following: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; Mobile plant should be sited as far away from NSRs as possible and practicable; Material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 	Control construction airborne noise by means of good site practices	Contractor	Entire construction site	Noise Control Ordinance	*
S4	S4.9	2) Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	Reduce the noise levels of plant items	Contractor	Entire construction site	Noise Control Ordinance & its TM Annex 5, TM-EIA	✓

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where	Recommended	implement	the	standards for the	
	Ref	necessary)	Measures & Main	the	measures	measures to achieve?	
			Concerns to address	measures?			
Constru	ction Runo	ff			1		
35.8.1	S5.2.1	Construction on Site Runoff	Control construction	Contractor	Entire	ProPECC PN 1/94	✓
		At the start of site establishment, perimeter cut-off drains to direct	runoff and erosion		construction		
		off-site water around the site should be constructed with internal	from site surface,		site	Water Pollution Control	
		drainage works and erosion and sedimentation control facilities	drainage channel,			Ordinance	
		implemented. Channels (both temporary and permanent drainage	stockpiles, wheel				
		pipes and culverts), earth bunds or sand bag barriers should be	washing facilities, etc				
		provided on site to direct stormwater to silt removal facilities.	to minimize water				
		The dikes or embankments for flood protection should be	quality during				
		implemented around the boundaries of earthwork areas. Temporary	construction stage				
		ditches should be provided to facilitate the runoff discharge into an					
		appropriate watercourse, through a silt/sediment trap. The					
		sediment/silt traps should be incorporated in the permanent					
		drainage channels to enhance deposition rates.					
		The design of efficient silt removal facilities should be based on the					
		guidelines in Appendix A1 of ProPECC PN 1/94, which states that					
		the retention time for silts and sediment traps should be 5 minutes					
		under maximum flow conditions.					
		Construction works should be programmed to minimize surface					
		excavation works during the rainy seasons (April to September). All					
		exposed earth areas should be completed and vegetated as soon					
		as possible after earthworks have been completed, or alternatively,					
		within 14 days of the cessation of earthworks where practicable. If					
		excavation of soil cannot be avoided during the rainy season, or at					
		any time of year when rainstorms are likely, exposed slope surfaces					
		should be covered by tarpaulin or other means.					
		The overall slope of the site should be kept to a minimum to reduce					
		the erosive potential of surface water flows, and all traffic areas and					
		access roads protected by coarse stone ballast. An additional					
		advantage accruing from the use of crushed stone is the positive					
		traction gained during prolonged periods of inclement weather and					
		the reduction of surface sheet flows.					
		All drainage facilities and erosion and sediment control structures					
		should be regularly inspected and maintained to ensure proper and					
		efficient operation at all times and particularly following rainstorms.					
		Deposited silt and grit should be removed regularly and disposed of					
		by spreading evenly over stable, vegetated areas.					
		by spreading evenly over stable, vegetated areas.					

Ref. Log		Objectives of the	Who to	Location of	What requirement or	Status
Ref. Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main	implement the	the measures	standards for the measures to achieve?	
Construction Duns	# (Cont)4)	Concerns to address	measures?			
		0	0		D DECC DN 4/04	
Construction Runo S5.8.1 S5.2.1	 Measures should be taken to minimise the ingress of site drainage into excavations. If the excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities. Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50 m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system. Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers. Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silly surface runoff during storm events, especially for areas located near steep slopes. All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing bay should be provided at every construction site exit. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silly water to public roads and drains. Oil interceptors should be provided in the site draina	Control construction runoff and erosion from site surface, drainage channel, stockpiles, wheel washing facilities, etc to minimize water quality during construction stage	Contractor	Entire Construction site	ProPECC PN 1/94 Water Pollution Control Ordinance	

EIA Ref.	EM&A Log Ref	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
Constru	ction Runo	ff					
S5.8.1	S5.2.1	 Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts. Requirements for solid waste management are detailed in Section 6 of this Report. All fuel tanks and storage areas should be provided with docks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby. To prevent pollution risks arising from works area (waste reception area) and haul roads, intercepting bund or barrier along the roadside should be constructed. 	Control construction runoff and erosion from site surface, drainage channel, stockpiles, wheel washing facilities, etc to minimize water quality during construction stage	Contractor	Entire construction site	ProPECC PN 1/94 Water Pollution Control Ordinance	√
S5.8.1	S5.2.1	Sewage Effluent from Workforce Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance. Notices will be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the Project. Regular environmental audit on the construction site can provide an effective control of any malpractices and can achieve continual improvement of environmental performance on site.	Control sewage effluent arising from the sanitary facilities provided for the on- site construction workforce	Contractor	On-site sanitary facilities	ProPECC PN 1/94 Water Pollution Control Ordinance Waste Disposal Ordinance	√
S5.8.1	S5.2.1	Accidental Spillage of Chemical Any service workshop and maintenance facilities shall be located within a bunded area, and sumps and oil interceptors shall be provided. Maintenance of equipment involving activities with potential for leakage and spillage will only be undertaken within the areas.	Control of chemical leakage	Contractor	Service workshop and maintenance facilities	ProPECC PN 1/94 Water Pollution Control Ordinance Waste Disposal Ordinance	√

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	the	standards for the	
	Ref		Measures & Main	the	measures	measures to achieve?	
			Concerns to	measures?			
			address				
Erosion	Control Me	easures		•	1		
35.8.2	S5.2.2	Erosion Control /Measures	Erosion control	Contractor	Drainage	ProPECC PN 1/94	✓
		a. Preserve Natural Vegetation			system		
		This Best Management Practices will involve preserving natural				Water Pollution Control	
		vegetation to the greatest extent possible during the construction				Ordinance	
		process. and after construction where appropriate. Maintaining natural					
		vegetation is the most effective and inexpensive form of erosion					
		prevention control.					
		b. Provision of Buffer Zone					
		A buffer zone consists of an undisturbed area or strip of natural vegetation					
		or an established suitable planting adjacent to a disturbed area that					
		reduces erosion and runoff. The rooted vegetation holds soils acts as a					
		wind break and filters runoff that may leave the site.					
		c. Seeding (Temporary/Permanent)					
		A well-established vegetative cover is one of the most effective methods					
		of reducing erosion. Vegetation should be established on construction					
		sites as the slopes are finished, rather than waiting until all the grading is					
		complete. Besides, Hydroseeding will be applied on the surface of					
		stockpiled soil and on temporary soil covers for inactive tipping areas to					
		prevent soil erosion during rainy season.					
		d. Ground Cover					
		Ground Cover is a protective layer of straw or other suitable material					
		applied to the soil surface. Straw mulch and/or hydromulch are also used					
		in conjunction with seeding of critical areas for the establishment of					
		temporary or permanent vegetation. Ground cover provides immediate					
		temporary protection from erosion. Mulch also enhances plant					
		establishment by conserving moisture, holding fertilizer, seed, and topsoil					
		in place, and moderating soil temperatures.					

EIA Ref.	EM&A Log Ref	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
S5.8.2	\$5.2.2	e. Hydraulic Application Hydraulic application is a mechanical method of applying erosion control materials to bare soil in order to establish erosion-resistant vegetation on disturbed areas and critical slopes. By using hydraulic equipment, soil amendments, mulch, tackifying agents, Bonded Fiber Matrix (BFM) and liquid co-polymers can be uniformly broadcast, as homogenous slurry, onto the soil. These erosion and dust control materials can often be applied in one operation. f. Sod Establishes permanent turf for immediate erosion protection and stabilizes rainageways. g. Matting There are numerous erosion control products available that can be described in various ways, such as matting, blankets, fabric and nets. These products are referred as matting. A wide range of materials and combination of materials are used to produce matting including, but not limited to: straw, jute, wood fiber, coir (coconut fiber), plastic netting, and Bonded Fiber Matrix. The selection of matting materials for a site can make a significant difference in the effectiveness of the Best Management Practices. h. Plastic Sheeting Plastic Sheeting will provide immediate protection to slopes and stockpiles. However, it has been known to transfer erosion problems because water will sheet flow off the plastic at high velocity. This is usually attributable to poor application, installation and maintenance. i. Dust Control Dust Control is one preventative measure to minimize the wind transport of soil, prevent traffic hazards and reduce sediment transported by wind and deposited in water resources.	Erosion control	Contractor	Drainage system	ProPECC PN 1/94 Water Pollution Control Ordinance	

EIA Ref.	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to implement	Location of the	What requirement	Status
	Log Ref	(to be implemented when the trigger level is exceeded, where	Recommended	the measures?	measures	or standards for the	
		necessary)	Measures & Main			measures to	
			Concerns to			achieve?	
			address				
Surface W	ater Drainag	ge System					
S5.8.2	S5.2.2	Temporary surface water drainage system will be provided to	Surface Water	Contractor	Surface water	Water Pollution	✓
		manage runoff during construction and operation. This system will	Management/		system	Control Ordinance	
		consist of channels as constructed around the perimeter of the site	Control run off		Construction		
		area. This system will collect surface water from the areas of higher				TM-water	
		elevations to those of lower elevations and ultimately to the point					
		of discharge. Erosion will therefore be minimised.					
		The temporary surface water drainage system will include the use					
		of a silt fence around the soil stockpile areas to prevent sediment					
		from entering the system. Regular cleaning will be carried out to					
		prevent blockage of the passage of water flow in silt fence.					
		Intermediate drainage system will be installed for filled cell/phase.					
		The major purpose of the intermediate drainage system is to					
		prevent the clean surface water run-off from the filled phases					
		coming into contact with the waste mass in active cell and to					
		prevent excessive surface water infiltration through the					
		intermediate cover, thus contribute to increasing volume of					
		leachate. The intermediate drainage system will collect the clean					
		surface water run-off and divert it to the permanent discharge					
		channels connected to the public drainage system.					
		In addition, surface flow from the haul road (especially near the					
		wheel washing facility) will be collected to a dry weather flow					
		interceptor and conveyed to the on-site leachate treatment plant					
		for further treatment.					

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What	Status
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	requirement or standards for the measures to achieve?	
Waste I	Manageme	ent					
S6	WM1	C&D Materials Implement proper waste management measures during construction phase as stipulated in the Environmental Management Plan (EMP) in accordance with the ETWB TC(W) No. 19/2005 Environmental Management in Construction Sites. Implement a trip-ticket system to ensure that the movement of C&D materials are properly documented and verified in accordance with DEVB TC(W) No. 6/2010. Copies/counterfoils from trip-tickets (with quantities of C&D Materials off-site) should be kept for record purposes. Appropriate waste management should be implemented in accordance with the ETWB TC(W) No. 19/2005. Make provisions in Contract documents to allow and promote the use of recycled aggregates where appropriate. Ensure material balance in terms of excavated C&D materials in the design of NENT landfill extension project. The contract specifications should specify no excavated materials should be removed from the landfill extension site, but should be fully reused. Careful design, planning and good site management to minimise over-ordering and waste materials such as concrete, mortars and cement grouts. The design of formwork should maximise the use of standard wooden panels so that high reuse levels can be achieved. Alternatives such as steel formwork or plastic fencing should be considered to increase the potential for reuse. The Contractor should recycle as much as possible the C&D waste on-site through proper waste segregation on-site. Concrete and masonry should be used as general fill and steel reinforcement bars can be used by scrap steel mills. Proper areas should be designated for waste segregation and storage wherever site conditions permit. Maximise the use of reusable steel formwork to reduce the amount of C&D material. Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement. On-site sorting and segregation facility of all type of wastes is considered as one of the best practice in waste management and hence, should be implemented in all projects generating cons	Good site practice to minimise C&D waste generation and reuse/recycle all C&D on-site as far as possible	Contractor	Entire construction site	Waste Disposal Ordinance ETWB TC(W) No. 19/2005 DEVB TC(W) No. 6/2010	√

EIA Log Ref Ref. Ref. Log Ref	or the oo osal
S6 WM1 C&D Materials (Cont'd) Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather. Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	o osal
S6 WM1 C&D Materials (Cont'd) Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather. Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	osal ✓ N) 5 V)
Cab Materials (Cont'd) Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather. Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	V) 5 V)
Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather. Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	V) 5 V)
used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather. Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	5 V)
during wet weather. Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	5 V)
transportation of waste by either covering trucks or by transporting wastes in enclosed containers. If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	5 V)
containers. If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	V)
If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	·
If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	·
should be given to hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
appearance and prevent soil erosion. Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
Nomination of approved personnel to be responsible for good site practices and making arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
arrangements for collection of all wastes generated on-site and effective disposal. Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
Training of site personnel for cleanliness, proper waste management procedures including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
including chemical waste handling, and waste reduction, reuse and recycling concepts. Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
Regular cleaning and maintenance programme systems, sumps and oil interceptors. Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
Prior to disposal of C&D waste, wood, steel and other metals should be separated for re- use and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
use and/or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
storage and site practices should be implemented to minimise the potential for damage or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
or contamination of construction materials. Plan and stock construction materials carefully to minimise amount of waste generated	
Plan and stock construction materials carefully to minimise amount of waste generated	
I I AND SYCIAL INDECESSITY DEPOSITION OF WASTE WINDINGS BYCESTIVE OFFICIAL I	
mortars and cement grout by doing careful check before ordering.	
S6 WM2 Chemical Waste Chemical Waste that is produced, as defined by Schedule 1 of the Waste Disposal disposal of Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal disposal of Chemical Waste Disposal disposa	osal 🗸
(Chemical Waste that is produced, as defined by schedule 1 of the Waste Disposal disposal of Constitution (Chemical Waste) (General) Regulation, should be handled in accordance with the Code chemical waste site Waste) General (Chemical Wast	neral
of Practice on the Packaging, Labelling and Storage of Chemical Wastes. generated on-site Regulation	leiai
to minimise the	
Plant/equipment maintenance schedule should be designed to optimise maintenance associated Code of P	
effectiveness and to minimise the generation of chemical wastes. Where possible, hazards on on the	actice I
chemical wastes (e.g. waste lube oil) should be recycled by licensed treatment facilities human health Packaging	actice
and environment Labelling	actice
Storage o'	
Chemical	
	nd

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What	
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	requirement or standards for the measures to achieve?	
S6	WM2	Chemical Waste (Cont'd) Containers used for storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD. Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Regulation. The storage area for chemical wastes should be clearly labelled and used solely for storage of chemical waste, enclosed with at least 3 sides, having an impermeable floor and bund of sufficient capacity to accommodate 110% of volume of the largest container or 20 % of total volume of waste stored in that area, whichever is the greatest, having adequate ventilation, being covered to prevent rainfall entering, and being arranged so that incompatible materials are adequately separated. Chemical waste should be collected by licensed waste collectors and disposed of at licensed facility, e.g. Chemical Waste Treatment Centre.	Ensure proper disposal of chemical waste generated on-site to minimise the associated hazards on human health and environment.	Contractor	Entire construction site	Waste Disposal (Chemical Waste) General Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Waste	√
S6	WM3	General Refuse General refuse generated on-site should be properly stored in enclosed bins or compaction units separately from construction and chemical wastes. All recyclable materials (separated from the general waste) should be stored on-site in appropriate containers with cover prior to collection by a local recycler for subsequent reuse and recycling. Residual, non-recyclable, general waste should be stored in appropriate containers to avoid odour. Regular collection should be arranged by an approved waste collector in purpose-built vehicles that minimise environmental impacts during transportation Reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimise odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans should be separated from general waste stream and collected by recyclers. Proper collection bins should be provided on-site to facilitate the waste sorting.	Minimise generation of general refuse to avoid odour, pest and visual nuisance	Contractor	Entire construction site	Waste Disposal Ordinance	*

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What	
Ref.	Log	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	the measures	requirement or	
	Ref		Measures & Main	the		standards for the	
			Concerns to	measures?		measures to	
			address			achieve?	
S6	WM3	General Refuse (Cont'd)	Minimise	Contractor	Entire	Waste Disposal	✓
		Office waste paper should recycled if the volume warrant collection by recyclers.	generation of		construction	Ordinance	
		Participation in community waste paper recycling programme should be considered by	general refuse to		site		
		the Contractor, including waste paper, aluminium cans, plastic bottles, waste batteries,	avoid odour, pest				
		etc.	and visual				
			nuisance				

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	standards for the measures to achieve?	
LFG							
		dfill Extension		T =	T = -		
S7	LFG1	Special LFG precautions should be taken due to close proximity of NENT landfill extension site to existing landfill to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity).	To minimise the risk of LFG hazards to personnel in construction site	Contractor	Entire construction site	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97)	√
S7	LFG2	Prominent safety warning signs should be erected on-site to alert all personnel and visitors of LFG hazards during excavation works.				F&IU (Confined Spaces) Regulations	√
S7	LFG3	No smoking or burning should be permitted on-site.				Code of Practice on Safety	✓
S7	LFG4	Prominent 'No smoking' and 'No Naked Flames' signs should be erected on-site.				and Health at Work in Confined Spaces	✓
S7	LFG5	No worker should be allowed to work alone at any time in excavated trenches or confined areas on-site.					✓
S7	LFG6	Adequate fire fighting equipment should be provided on-site.					✓
S7	LFG7	Construction equipment should be equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors.					√
S7	LFG8	Electrical motors and extension cords should be explosion-proof and intrinsically safe for use on-site.					✓
S7	LFG9	'Permit to Work' system should be implemented.					✓
S7	LFG10	Welding, flame-cutting or other hot works should be conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works.					√
S7	LFG11	For piping assembly or conduit construction, all valves and seals should be closed immediately after installation to avoid accumulation and migration of LFG. If installation of large diameter pipes (diameter >600mm) is required, the pipe ends should be sealed on one side during installation. Forced ventilation is required prior to operation of installed pipeline. Forced ventilation should also be required for works inside trenches deeper than 1m.	To minimise the risk of LFG hazards to personnel in construction site	Contractor	Entire construction site	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97) F&IU (Confined Spaces) Regulations Code of Practice on Safety	√
S7	LFG12	Frequency and location of LFG monitoring within excavation area should be determined prior to commencement of works. LFG monitoring in excavations should be conducted at no more than 10mm from exposed ground surface.				and Health at Work in Confined Spaces	✓

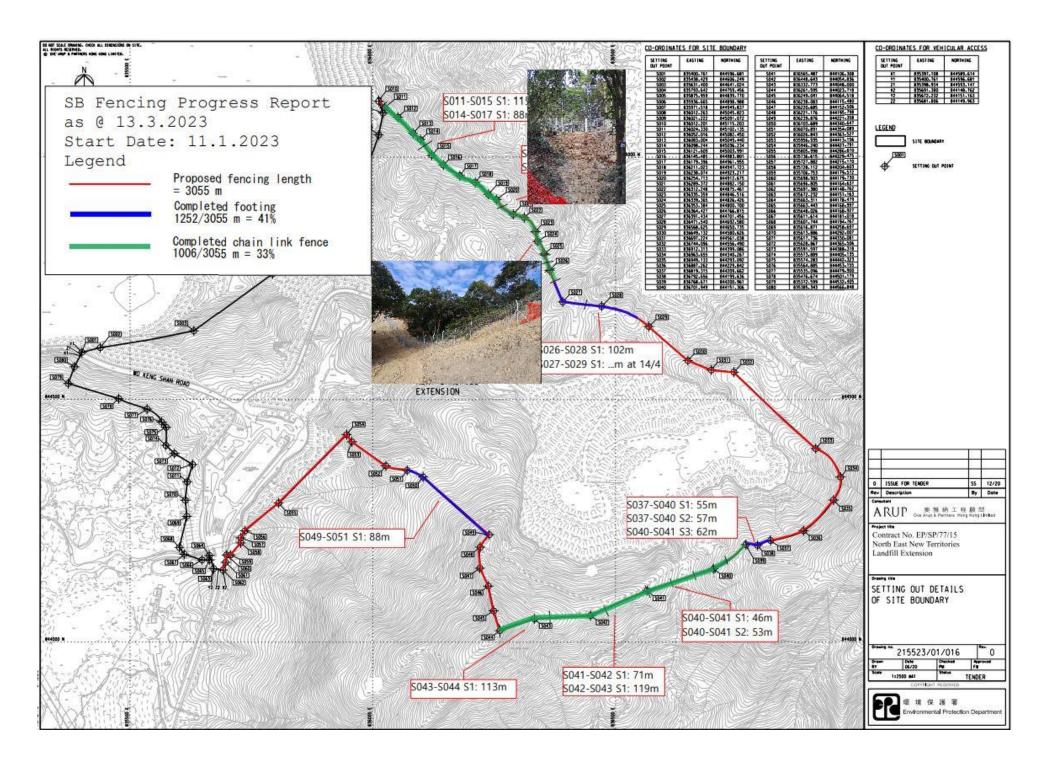
EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log Ref	(to be implemented when the trigger level is exceeded, where necessary)	Recommended Measures & Main Concerns to address	implement the measures?	the measures	standards for the measures to achieve?	
LFG	NENT	ISU E. A.					
		dfill Extension	· · · · · · · · · · · · · · · · · · ·		T =		
S7	LFG13	For excavation works, LFG monitoring should be conducted (1) at ground surface prior to excavation, (2) immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically throughout the working day when workers are in the excavation.	To minimise the risk of LFG hazards to personnel in construction site	Contractor	Entire construction site	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97) F&IU (Confined Spaces)	√
S7	LFG14	Any cracks on ground level encountered on-site should be monitored for LFG periodically. Appropriate action should be taken in accordance with the action plan in Table 7.6 of EIA Report.				Regulations Code of Practice on Safety and Health at Work in	✓
S7	LFG15	LFG precautionary measures involved in excavation and piping works should be provided in accordance with LFG Guidance Note and included in Safety Plan of construction phase. Temporary offices or buildings should be located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm.				Confined Spaces	✓
S7	LFG16	For large development such as NENT landfill extension, a Safety Officer trained in the use of gas detection equipment and LFG-related hazards should be present on-site throughout the groundwork phase. The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%					√
S7	LFG17	Periodically during groundwork construction, the works area should be monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment. The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person. Routine monitoring should be carried out in all excavations, manholes, created by temporary storage of building materials on-site. All measurements in excavations should be made with monitoring tube located not more than 10mm from exposed ground surface.					✓

EIA Ref.	EM&A Log Ref	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
		dfill Extension (Cont'd)			1	T	
S7	LFG18	For excavations deeper than 1m, measurements should be conducted: • At ground surface before excavation commences; • Immediately before any worker enters the excavation; • At the beginning of each working day for entire period the excavation remains open; and • Periodically throughout the working day whilst workers are in excavation.	To minimise the risk of LFG hazards to personnel in construction site	Contractor	Entire construction site	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97) F&IU (Confined Spaces) Regulations	√
S7	LFG19	For excavations between 300mm and 1m, measurements should be conducted: Directly after excavation has been completed; and Periodic all whilst excavation remains open.				Code of Practice on Safety and Health at Work in Confined Spaces	✓
S7	LFG20	For excavations less than 300mm, monitoring may be omitted at the discretion of Safety Officer or appropriately qualified person.					✓

	nvironmental Mitigation Implementation Schedule (EMIS) Construction Phase									
EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status			
Ref.	Log	(to be implemented when the trigger level is exceeded, where	Recommended	implement	the measures	standards for the measures				
	Ref	necessary)	Measures & Main	the		to achieve?				
			Concerns to	measures?						
			address							
Lands	cape and \	Visual Phases		•						
S8	LV1	Advanced screening tree planting	To minimise the	Contractor	Entire	DEVB TC(W) No. 4/2020 -	Advanced screen tree			
		Early planting using fast growing trees and tall shrubs at	impact on existing		construction	Tree Preservation	planting is under planning.			
		strategic locations within site to block major view corridors	vegetation retained		site					
		to the site from the VSRs, and to locally screen haul roads,	by personnel in			DEVB TC(W)) No. 6/2015 -				
		excavation works and site preparation works.	construction			Maintenance of Vegetation				
		Roadside planter and shrub planting design in front of	To provide initiation			and Hard Landscape				
		Cheung Shan Temple.	on permanent			Features				
S8	LV2	Boundary Green Belt planting	landscape and				To be implemented during			
		Considerable planting belts proposed around the site	visual mitigation			DEVB TC(W) No. 6/2011 -	operation phase			
		perimeter and the construction of temporary soil bunds will	measures			Maintenance of Man-made				
		screen the landfill operations to a certain degree. Fast				Slopes and Emergency				
		growing and fire resistant plant species will be used.				Repair on Stability of Land				
S8	LV3	Temporary landscape treatment as green surface cover					Grass hydroseeding will be			
		For certain areas where landfilling operations would have					applied at Portion E3-2.			
		to be suspended temporarily for periods of years, simple								
		temporary landscape treatment such as hydroseeding								
		should be considered. During construction and operational								
		phases, grass hydroseeding or synthetic covering material								
		of green colour should also be used as a temporary slope								
		cover if applicable.								
S8	LV4	Existing tree preservation					√			
	- ۷ -	Transplant existing trees and vegetation, which are					'			
		identified as ecologically significant in Ecological Impact								
		Assessment and as rare tree species recorded in the tree								
		survey, under circumstances where technically feasible.								
		For all affected trees, the principle of avoidance of tree								
		felling and tree transplanting of tree before felling should								
		apply whenever possible. A tree felling application should								
		be submitted to DEVB-GLTMS and be approved before								
		any trees are felled or transplanted.								

EIA	EM&A	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of	What requirement or	Status
Ref.	Log	(to be implemented when the trigger level is exceeded, where	Recommended	implement	the measures	standards for the measures to	
	Ref	necessary)	Measures & Main	the		achieve?	
			Concerns to	measures?			
			address				
Ecolog	ЭУ						
Gener	al Protection	on Measures:					
S10	E1	Restriction of construction activities to the work areas that	To minimise	Contractor	Entire	Practice Note for Professional	✓
		would be clearly demarcated.	environmental		construction	Persons (ProPECC),	
S10	E2	Reinstatement of the work areas immediately after completion	impacts and		site	Construction Site Drainage	✓
		of the works.	therefore potential			(PN1/94)	
S10	E3	Only well-maintained plant should be operated on-site and plant	ecological impacts				✓
		should be serviced regularly during the construction	within and near the			Code of Practice on the	
		programme.	construction site			Packaging, Labelling and	
S10	E4	Machines and plant (such as trucks, cranes) that may be in				Storage of Chemical Wastes,	✓
		intermittent use should be shut down between work periods or				EPD (1992)	·
		should be throttled down to a minimum.					
S10	E5	Plant known to emit noise strongly in one direction, where				ETWB TC(W)) No. 33/2002	√
		possible, be orientated so that the noise is directed away from				Management of Construction	, The state of the
		nearby NSRs.				and Demolition Material	
S10	E6	Silencers or mufflers on construction equipment should be				Including Rock	To be implemented
		properly fitted and maintained during the construction works.					
S10	E7	Mobile plant should be sited as far away from NSRs as possible				DEVB TC(W) No. 6/2010 Trip	✓
0.0		and practicable.				Ticket System for Disposal of	*
S10	E8	Material stockpiles, site office and other structures should be				Construction and Demolition	√
5.0		effectively utilised, where practicable, to screen noise from on-				Materials	T
		site construction activities.					
		Site Seriou dell'alla dell				ETWB TC(W)No.19/2005	
S10	E9	Use of "quiet" plant and working methods.				Environmental Management	✓
S10	E10	Construction phase mitigation measures in the Practice Note				on Construction Sites	√
		for Professional Persons on Construction Site Drainage.					

EIA Ref.	••	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary) tion Measures:	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
S10	E11	Design and set up of the temporary on-site drainage system will be undertaken by the contractor prior to the commencement of construction.	To minimise environmental impacts and	Contractor	Entire construction	WBTC No. 12/2002, Specifications Facilitating the Use of Recycled Aggregates	✓
S10	E12	Design and incorporation of silt/sediment traps in the permanent drainage channels to enhance deposition rates and regular removal of reposited silt and grit.	therefore potential ecological impacts within and near the			WBTC Nos. 25/99,25/99A and 25/99C. Incorporation of Information on Construction	√
S10	E13	Minimization of surface excavation works during the rainy seasons (April to September), and in particular, control of silty surface runoff during storm events, especially for areas located near steep slopes.	construction site			and Demolition Material Management in Public Works Subcommittee Papers	✓
S10	E14	Regular inspection and maintenance of all drainage facilities and erosion and sediment control structures to ensure proper and efficient operation at all times and particularly following rainstorms.					✓
S10	E15	Provision of oil interceptors in the drainage system downstream of any oil/fuel pollution sources					✓


Appendix L Construction Site Activities

Construction Activities	Photos	When	Where	Who	What - ENV Impacts	Mitigation Measures
Material loading and unloading, site traffic	13 OC	Dec 22 to Dec 23	Portion A, SBA to Alternative Disposal Ground	PYE	Dust, bringing mud to the common haul road	Speed limit, covering of materials and water spraying, lorry washing at the exit of the site
Permanent site office foundation works with pouring of concrete		Dec 22 to June 23	Portion D	PYE	Washout flowing to site water discharge point, dust emissions	Avoid the spillage of concrete, lorry washing at designated area, operation and maintenance of water treatment facility at discharge point
Site clearance		Dec 22 to June 23	Portion A, Portion E3-1	PYE	Wash out going to surface water channel and site water discharge point, generation of yard waste	Cover exposed slope by tarpaulin, diversion of surface water, operation and maintenance of water treatment facility at discharge point, implementation of trip ticket system
Installation of permanent fencing		Dec 22 to June 23	Portion A, Portion B1, Portion E4	PYE	Dust	Covering of cement storage area, enclosure of mixing area
Site formation		Dec 22 to Dec 23	Portion A, Portion E3-1	PYE	Generation of C&D waste	Implementation of trip ticket system, waste recycling, internal waste transfer
Tree Felling		Dec 22 to June 23	Portion E3-1, E4	PYE	Generation of yard waste	Implementation of trip ticket system, waste recycling, internal waste transfer

Remark:

PYE is the Sub-contractor for this project.

Appendix M Mitigation Measures of Cultural Landscape Features

Appendix N Ecological Monitoring Record

Post-translocation monitoring photo record extracted from post-translocation report (April 2023)

Hand netting to search for S. zanklon

Kick-netting to search for S. zanklon

Direct Observation to search for *S. zanklon*

B.1 Incense Tree Aquilaria sinensis

Photo B.1.1.: General view of the transplanted individual AS-03.

Photo B.1.3.: General view of the transplanted individual AS-02.

Photo B.1.2.: Stem condition of the transplanted individual AS-03.

Photo B.1.4.: Branch condition of the transplanted individual AS-02.

B.2 Lamb of Tartary Cibotium barometz

Photo B.2.1.: General view of the transplanted individual CB-01.

Photo B.2.3.: Leaf condition of the new foliage.

Photo B.2.2.: New foliage of the transplanted individual CB-01.

Photo B.2.4.: General view of the transplanted individual CB-01.

B.3 Bottlebrush Orchid Goodyera procera

Photo B.3.1: Individual GP-01. Flowering.

Photo B.3.3: Individual GP-03.

Photo B.3.2: Individual GP-02.

Photo B.3.4: Individual GP-03. Flowering.

Photo B.3.5: Individual GP-04.

Photo B.3.7: Individual GP-05.

Photo B.3.6: Individual GP-04. Flowering.

Photo B.3.8: Individual GP-05. Flowering.

Photo B.3.9: Individual GP-06.

Photo B.3.11: Individual GP-07.

Photo B.3.10: Individual GP-06. Flowering.

Photo B.3.12: Individual GP-07. Partially wilted leaf.

Photo B.3.13: Individual GP-08.

Photo B.3.15: Individual GP-09. Flowering.

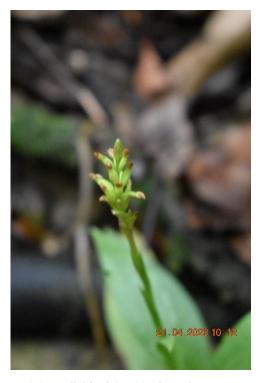


Photo B.3.14: Individual GP-08. Flowering.

Photo B.3.16: Individual GP-10. Flowering.

Photo B.3.17: Individual GP-11. Flowering.

Photo B.3.19: Individual GP-12. Flowering.

Photo B.3.18: Individual GP-11. Flowering.

Photo B.3.20: Individual GP-13. Flowering.

Photo B.3.21: Individual GP-14.

Photo B.3.23: Individual GP-15.

Photo B.3.22: Individual GP-14. Flowering.

Photo B.3.24: Individual GP-15. Flowering.

Photo B.3.25: Individual GP-16.

Photo B.3.27: Individual GP-17.

Photo B.3.26: Individual GP-16. Flowering.

Photo B.3.28: Individual GP-18. Flowering.

Photo B.3.29: Individual GP-18. Flowering.

Photo B.3.31: Individual GP-19. Flowering

Photo B.3.30: Individual GP-19. Flowering.

Appendix O Detail Status of EP Submission

Detail Status of Submissions required under the FEP & EP

FEP Condition	EP Condition	Submission / Measures	Status
2.1	2.3	Management Organization of Main Construction Companies	Submission Date (12 Oct 2022)
2.2	2.4	Setting up of Community Liaison Group (CLG)	Submission Date (12 Oct 2022)
			1 st CLG meeting (12 Jan 2023)
2.3	2.5	Submission of EM&A Manual	Submission Date (12 Oct 2022)
2.4	2.6	Submission of Preservation of Cultural Landscape Features	Survey and Preservation of Grave Records: Submission Date (15 Oct 2022)
			Survey and Preservation of Boulder Paths: Submission Date (12 Oct 2022)
2.5	2.7	Submission of Vegetation Survey (Transplantation Proposal)	Submission Date (2 September 2022)
2.6	2.8	Submission of translocation proposal	Submission Date (8 July 2022)
2.7	2.9	Submission of Transplantation Report and Post-Transplantation	Submission Date (19 Jan 2023)
		Monitoring	1 st monitoring (24 Nov 2022)
			2 nd monitoring (9 Dec 2022)
			3 rd monitoring (21 Dec 2022)
			4 th monitoring (13 Jan 2023)
			5 th monitoring (26 Jan 2023)
			6 th monitoring (8 Feb 2023)
			7 th monitoring (24 Feb 2023)
			8 th monitoring (20 Mar 2023)
			9 th monitoring (21 Apr 2023)

FEP Condition	EP Condition	Submission / Measures	Status
2.8	2.10	Submission of Translocation Report and Post-Translocation Monitoring	Translocation was carried out in July 2022
			Submission Date (27 December 2022)
			1 st monitoring (29 Aug 2022)
			2 nd monitoring (28 Sep 2022)
			3 rd monitoring (28 Oct 2022)
			4 th monitoring (28 Oct 2022)
			5 th monitoring (29 Dec 2022)
			6 th monitoring (30 Jan 2023)
			7 th monitoring (24 Feb 2023)
			8 th monitoring (20 Mar 2023)
			9 th monitoring (19 Apr 2023)
2.9	2.11	Submission of Detailed Landfill Gas Hazard Assessment Report	Submission Date (6 Oct 2022)
2.10	2.12	Submission of Waste Management Plan	Submission Date (30 December 2022)
3.2	3.2	Submission of Baseline Monitoring Report	Submission Date (30 Nov 2022)

Prepared by:

Aurecon Hong Kong Limited
Unit 1608, 16/F, Tower B, Manulife Financial Centre,
223 – 231 Wai Yip Street, Kwun Tong,
Kowloon Hong Kong S. A. R.

T: +852 3664 6888 F: +852 3664 6999

E: hongkong@aurecongroup.com

