China Harbour Engineering Company Limited

Contract No. DC/2007/20

Harbour Area Treatment Scheme Stage 2A – Construction of Advance Disinfection Facilities at Stonecutters Island Sewage Treatment Works

Environmental Monitoring and Audit Monthly Report (Version 1.0)

September 2008

Approved By

Or. Priscilla Choy

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388

Email: info@cinotech.com.hk

TABLE OF CONTENTS

		Page
EX	KECUTIVE SUMMARY	1
Env Env Ke	vironmental Monitoring and Audit Works vironmental Licenses and Permits ey Information in the Reporting Month ture Key Issues	1 2
1	INTRODUCTION	3
Pro Co	ckground	4 5
2	AIR QUALITY	6
Mo Mo Mo	onitoring Requirements onitoring Locations onitoring Equipment onitoring Parameters, Frequency and Duration onitoring Methodology and QA/QC Procedure esults and Observations	6 6 7
3	NOISE	9
4	ENVIRONMENTAL AUDIT	10
Rev Sta Sta Imp Imp	te Audits Eview of Environmental Monitoring Procedures Entus of Environmental Licensing and Permitting Entus of Waste Management Intus of Waste Management Intus of Environmental Mitigation Measures Intus of Environmental Mitigation Measures Intus of Event Action Plans Intus of Complaint and Prosecution	
5	FUTURE KEY ISSUES	14
Mo	by Issues for the Coming Month	14
6	CONCLUSIONS AND RECOMMENDATIONS	15
	onclusions	15

LIST OF TABLES

Table I	Summary Table for Events Recorded in the Reporting Month
Table II	Summary Table for Key Information in the Reporting Month
Table 1.1	Key Project Contacts
Table 2.1	Locations for Air Quality Monitoring
Table 2.2	Air Quality Monitoring Equipment
Table 2.3	Impact Air Quality Monitoring Parameters, Frequency and Duration
Table 4.1	Summary of Environmental Licensing and Permit Status
Table 4.2	Observations and Recommendations of Site Audit
Table 4.3	Observations and Recommendations of Site Audit Followed up for Pervious
	Month

LIST OF FIGURE

Figure 1.1	Site Layout Plan

Figure 1.2 Locations of Environmental Monitoring Stations

LIST OF APPENDICES

Appendix A	Action and Limit Levels
Appendix B	Copies of Calibration Certificates
Appendix C	Environmental Monitoring Schedules
Appendix D	1-hour TSP Monitoring Results and Graphical Presentations
Appendix E	24-hours TSP Monitoring Results and Graphical Presentations
Appendix F	Wind Data
Appendix G	Summary of Exceedance
Appendix H	Site Audit Summary
Appendix I	Event/Action Plans
Appendix J	Environmental Mitigation Implementation Schedule
Appendix K	Summary of Waste Generation in the Reporting Month
Appendix L	Construction Programme
Appendix M	Complaint Log

EXECUTIVE SUMMARY

Introduction

- 1. This is the 3rd monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for Contract No. DC/2007/20 "Harbour Area Treatment Scheme Stage 2A Construction of Advance Disinfection Facilities at Stonecutters Island Sewage Treatment Works" (the Project). This report documents the findings of EM&A Works conducted in September 2008.
- 2. The construction works for Portions 1 & 2 and Portions 3 & 4 of the Project were commenced on 18th July 2008 and 18th September 2008 respectively.
- 3. The major site activities undertaken in the reporting month included:
 - Diversion of DN250 Watermain at Day Tank Storage Area;
 - Proof drilling works for mini-piles at Day Tank Area;
 - Static load test for mini-piles at Day Tank Area;
 - Excavation for Day Tank Storage Area and Switch Room No. 2;
 - Construction of Barge Unloading Area;
 - Construction of Switch Room No. 1;
 - Driving H-piles for Chlorination Compound;
 - Erection of Project signboard;
 - Excavation & Extension of existing PPC piles for Chlorination Compound; and
 - Excavation for Dechlorination Plant in Portion 4.

Environmental Monitoring and Audit Works

- 4. EM&A works for the Project was performed in accordance with the Final EM&A Manual and the monitoring results were checked and reviewed. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 5. Summary of the events and action taken in the reporting month is tabulated in **Table I**.

Table I Summary Table for Events Recorded in the Reporting Month

Parameter	No. of Ex	ceedance	No. of Events	Action Taken	
1 at afficter	Action Level	Limit Level	Due to this Project	Action Taken	
1-hr TSP	0	0	0	N/A	
24-hr TSP	0	0	0	N/A	

1-hour TSP Monitoring

6. All 1-hour TSP monitoring was conducted at AM1 as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

7. All 24-hour TSP monitoring was conducted at AM1 as scheduled in the reporting month No Action/Limit Level exceedance was recorded

8. The proposal to cancel the environmental monitoring works at designated monitoring stations AM2 and NM1 has been verified by IEC on 19th August 2008 and approved by EPD on 2nd September 2008 as mentioned in Section 2.3 and 3.2 of this report. No air quality and construction noise monitoring will be conducted at AM2 and NM1 respectively for the Project.

Environmental Licenses and Permits

9. Environmental related licenses/permits granted to the Project include the Project Environmental Permit, billing account for Disposal of construction waste, Waste Water Discharge license, Chemical Waste Producer License and Construction Noise Permit.

Key Information in the Reporting Month

10. Summary of key information in this reporting month is tabulated in Table II.

Table II Summary Table for Key Information in the Reporting Month

Event	I	Event Details	Action Taken	Status	Remark	
Event	Number	Nature	Action Taken	Status	Kemark	
Complaint received	Complaint received 0		N/A	N/A		
Changes to the assumptions and key construction / operation activities recorded			N/A	N/A		
Status of submissions under EP	1	Monthly EM&A Report for August 08 (Version 1.0)	Submitted to EPD on 9 th September 2008 (EP condition 4.4).	No comment		
Notifications of any summons & prosecutions	0		N/A	N/A		

Future Key Issues

- 11. Major site activities for the coming month will include:
 - Diversion of DN250 Watermain at Day Tank Storage Area;
 - Static load test for mini-piles at Day Tank Area;
 - Construction of Barge Unloading Area;
 - Construction of Switch Room No. 1;
 - Excavation & Extension of existing PPC piles for Chlorination Compound;
 - Excavation for Dechlorination Plant in Portion 4;
 - Plate loading test for Dechlorination Plant; and
 - Construction of Dechlorination Plant.
- 12. The future environmental concerns will be mainly on ponding water and surface runoff due to rain; dust emission from concrete breaking, excavation works and wind erosion; and management on waste generated from the works above.

1 INTRODUCTION

Background

- "Harbour Area Treatment Scheme Stage 2A Construction of Advance Disinfection 1.1 Facilities at Stonecutters Island Sewage Treatment Works" (hereinafter called the "the Project") under Contract No. DC/2007/20 is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO). Environmental Impact Assessment (EIA) Report has been prepared in July 2007 to consider the key issues of noise, air quality, water quality, ecological, construction waste and human health risk, and identify possible mitigation measures. The Final EIA Report was endorsed by Environmental Protection Department (EPD) on 8 November 2007 and was included in the EIA register under the EIAO as report no. AEIAR-113/2007. Environmental Monitoring and Audit (EM&A) Manual for the Final EIA Report was also included as part of the Final EIA report in the register. An Environmental Permit (EP) No. EP-295/2007 was issued on 3rd December 2007 for the Project "Harbour Area Treatment Scheme - Provision of Disinfection Facilities at Stonecutters Island Sewage Treatment Works" to the Drainage Services Department (DSD) as Permit Holder. This Project comprises the Construction Phase of the Project "Harbour Area Treatment Scheme – Provision of Disinfection Facilities at Stonecutters Island Sewage Treatment Works".
- 1.2 The Project comprises mainly the construction of the advance disinfection facilities (ADF) include:
 - (a) Chlorination system provision of a sodium hypochlorite solution storage farm and associated dosing system; and
 - (b) Dechlorination system provision of a sodium bisulphite storage and associated dosing system.
- 1.3 The Project site layout plan is shown in **Figure 1.1.**
- 1.4 The Project will be constructed within the existing sewage treatment works on Stonecutters Island (SCISTW), which is providing Chemically Enhanced Primary Treatment (CEPT) for 1.4 million cubic metres of sewage collected each day through deep tunnels from the HATS Stage 1 catchments (i.e. the whole of Kowloon peninsula, Tseung Kwan O, Kwai Chung, Tsing Yi, Chai Wan and Shau Kei Wan). The design treatment capacity of the SCISTW is 1.7 million cubic metres per day. At present, the plant has no disinfection facility and the CEPT treated effluent is now discharged to the waters southwest of Stonecutters Island through a 1.7 km long outfall.
- 1.5 The chlorination system of the disinfection facilities would be located within the site boundary of the existing SCISTW (**Figure 1.1** refers). The dechlorination plant would be located adjacent to the existing chamber no. 15 (**Figure 1.1** refers) at the western end of Container Port Road South.

- 1.6 China Harbour Engineering Company Limited (CHEC) was awarded as the main contractor (hereinafter called "the Contractor") of the Project. Cinotech Consultants Limited (Cinotech) was commissioned by CHEC as the Environmental Team (ET). Dr. Priscilla CHOY of Cinotech was appointed as the ET Leader of the Project in accordance with EP Condition 2.1. Hyder Consulting Limited (Hyder) was employed by DSD to undertaken Independent Checker (IEC) services of the Project and Mr. Antony Wong of Hyder was appointed as the IEC under EP Condition 2.2.
- 1.7 The construction works for Portions 1 & 2 and Portions 3 & 4 of the Project were commenced on 18th July 2008 and 18th September 2008 respectively.
- 1.8 This is the 3rd monthly EM&A report summarizing the EM&A works conducted for the Project in September 2008.

Project Organizations

- 1.9 Different parties with different levels of involvement in the project organization include:
 - Project Proponent/ Permit Holder Drainage Services Department (DSD)
 - Engineer's Representative (ER) Ove Arup & Partners Hong Kong Ltd. (ARUP)
 - Contractor China Harbour Engineering Company Limited (CHEC)
 - Environmental Team (ET) Cinotech Consultants Ltd. (Cinotech)
 - Independent Environmental Checker (IEC) Hyder Consulting Limited (Hyder)
- 1.10 The responsibilities of respective parties in construction phase are detailed in Section 1.19 to 1.25 of the Final EM&A Manual.
- 1.11 The key contacts of the Project are shown in **Table 1.1**.

Table 1.1 Key Project Contacts

Party	Role	Name	Position	Phone No.	Fax No.
DSD	Project Proponent/ Permit Holder	Ms. Ada LAI	Engineer	2159 3411	2833 9162
	Engineer's	Mr. Peter WONG	Resident Engineer	2407 8221	
ARUP	Representative	Ms. Gary CHEUNG	Resident Engineer	6201 3158	2407 8772
	representative	Mr. Sunny LO	Inspector of Works	6345 0548	
		Mr. T. K. CHEUNG	Project Manager	2741 0191	
CHEC	Contractor	Mr. Aaron AU	Site Agent	6345 0754	2741 2772
		Mr. M. C. LAM	Environmental Officer	9483 0566	
	F :	Dr. Priscilla CHOY	Environmental Team Leader	2151 2089	
Cinotech	Environmental Team	Mr. Robert TSANG	Project Coordinator and Audit Team Leader	2151 2099	3107 1388
		Mr. Henry LEUNG	EUNG Monitoring Team Leader	2151 2087	
	Hyder Independent Environmental Checker Ms. Karine WONG Ms. Karine WONG Ms. Selina LEUNG	Mr. Antony WONG	Independent Environmental Checker	2911 2744	
Hyder		Ms. Karine WONG	Project Manager	2911 2707	2805 5028
rryder		Ms. Selina LEUNG	Independent Environmental Checker Representative	2911 2733	2003 3020

Construction Programme

- 1.12 The site activities undertaken in the reporting month were:
 - Diversion of DN250 Watermain at Day Tank Storage Area;
 - Proof drilling works for mini-piles at Day Tank Area;
 - Static load test for mini-piles at Day Tank Area;
 - Excavation for Day Tank Storage Area and Switch Room No. 2;
 - Construction of Barge Unloading Area;
 - Construction of Switch Room No. 1;
 - Driving H-piles for Chlorination Compound;
 - Erection of Project signboard;
 - Excavation & Extension of existing PPC piles for Chlorination Compound; and
 - Excavation for Dechlorination Plant in Portion 4.

Summary of EM&A Requirements

- 1.13 The EM&A programme requires construction phase air quality and noise monitoring as well as environmental site audits. The EM&A requirements are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plans;
 - Environmental mitigation measures, as recommended in the Final EIA report; and
 - Environmental requirements in contract documents.
- 1.14 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 5 of this report.

1.15 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise as well as audit works for the Project in the reporting month.

2 AIR QUALITY

Monitoring Requirements

2.1 1-hour and 24-hour Total Suspended Particulates (TSP) monitoring were conducted in accordance with the Final EM&A Manual to monitor the air quality. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 According to the Final EM&A Manual, two designated monitoring stations, AM1 and AM2 were selected for air quality monitoring, as shown in **Figure 1.2**. **Table 2.1** describes the locations of the air quality monitoring stations.

Table 2.1 Locations for Air Quality Monitoring

Monitoring Stations	Location	Status
AM 1	Rooftop, Block A of Government Dockyard	Impact Monitoring
AM 2*	Ngong Shuen Chau Barracks – Group 2	Cancelled

Remarks: *The monitoring works at station AM2 has been cancelled as mentioned in Section 2.3 below.

- 2.3 Due to the sensitive of the military installations within Barracks building, the People's Liberation Army (PLA) had declined ET's request for setting up the air quality monitoring station AM2 (Ngong Shuen Chau Barracks Group 2). Considering there is no other air sensitive receiver within the EIA study area (500m from the Project site boundary of Portions 3 & 4) and no significant environmental impact form the project is anticipated, the ET Leader proposed to cancel all air quality monitoring works at the designated monitoring station AM2. The proposal has been verified by IEC on 19th August 2008 and approved by EPD on 2nd September 2008.
- 2.4 No air quality monitoring will be conducted at AM2 for the Project.

Monitoring Equipment

2.5 **Table 2.2** summarizes the equipment used for the air quality monitoring in the reporting month.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Qty.
HVS Sampler	Graseby GMW 2310 HVS, Model GS-2310105-1	1
Calibrator	Tisch Environmental, Inc.; Model no. TE-5025A	1
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters, Frequency and Duration

2.6 **Table 2.3** summarizes the monitoring parameters and frequencies of impact air quality monitoring for the whole construction period.

Table 2.3 Impact Air Quality Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

2.7 1-hr TSP and 24-hr TSP were only conducted at AM1 in the reporting month.

Monitoring Methodology and QA/QC Procedure

Instrumentation

2.8 High volume Samplers (HVS) completed with appropriate sampling inlets were employed for air quality monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

HVS Installation

- 2.9 The following guidelines were adopted during the installation of HVS:
 - Sufficient support was provided to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the samplers was unrestricted.
 - The samplers were more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.

Filters Preparation

- 2.10 Fiberglass filters (G810) were used [Note: these filters have a collection efficiency of larger than 99% for particles of 0.3 mm diameter]. A HOKLAS accredited laboratory, Wellab Ltd. (HOKLAS 083), was responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for Cinotech's monitoring team.
- 2.11 All filters, which were prepared by Wellab Ltd., were equilibrated in the conditioning

environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ± 3 °C; the relative humidity (RH) was < 50% and not variable by more than $\pm 5\%$. A convenient working RH was 40%.

2.12 Wellab Ltd. has a comprehensive quality assurance and quality control programmes.

Operating/Analytical Procedures

- 2.13 Operating/analytical procedures for the air quality monitoring were highlighted as follows:
 - Prior to the commencement of the dust sampling, the flow rate of the two HVS were properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
 - The power supply was checked to ensure the samplers worked properly.
 - On sampling, the samplers were operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
 - The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
 - The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
 - The shelter lid was closed and secured with the aluminum strip.
 - The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
 - After sampling, the filter was removed and sent to the Wellab Ltd. for weighing. The elapsed time was also recorded.
 - Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results were returned to Cinotech for further analysis of TSP concentrations collected by each filter.

Maintenance/Calibration

- 2.14 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipments and necessary power supply are in good working condition.
 - All HVS were calibrated (five point calibration) using Calibration Kit prior to the commencement of the baseline monitoring.

Results and Observations

- 2.15 All 1-hour TSP monitoring at AM1 were conducted as scheduled in the reporting month. The results of 1-hour TSP ranged between 41 μ g/m³ and 202 μ g/m³. No Action/Limit Level exceedance was recorded.
- 2.16 All 24-hour TSP monitoring at AM1 were conducted as scheduled in the reporting month. The results of 24-hour TSP ranged between 30 μg/m³ and 48 μg/m³. No Action/Limit Level exceedance was recorded
- 2.17 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices D** and **E** respectively.
- 2.18 Wind data monitoring equipment has been installed at AM1 (Rooftop, Block A of Government Dockyard) for logging wind speed and wind direction. These wind data for the reporting month is summarized in **Appendix F**.
- 2.19 The environmental monitoring schedules for the reporting month and the tentative schedule for the next month are shown in **Appendix C**.

3 NOISE

- 3.1 One construction noise monitoring station, NM1 Barrack Buildings, was designated in the Final EM&A Manual.
- 3.2 Due to the sensitive of the military installations within Barracks building, the People's Liberation Army (PLA) had declined ET's request for setting up the construction noise monitoring station NM1 (Barracks Buildings). Considering there is no other noise sensitive receiver within the EIA study area (300m from the Project site boundary of Portions 3 & 4) and no significant environmental impact form the project is anticipated, the ET Leader proposed to cancel all noise monitoring works at the designated monitoring station NM1. The proposal has been verified by IEC on 19th August 2008 and approved by EPD on 2nd September 2008.
- 3.3 No construction noise monitoring will be conducted for the Project.

4 ENVIRONMENTAL AUDIT

Site Audits

- 4.1 Site audits were carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix H**.
- 4.2 Site audits were conducted on 3rd, 10th, 17th and 24th September 2008 by ET. A joint site audit with the representatives of IEC, ER, the Contractor and the ET was carried out on 10th September 2008. No non-compliance was observed during the site audits.

Review of Environmental Monitoring Procedures

4.3 The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- No construction noise monitoring work was conducted in the reporting month.
- According to the observation in weekly site audit sessions, no excessive noise was notified from the Project.

Status of Environmental Licensing and Permitting

4.4 All permits/licenses obtained for the Project are summarized in **Table 4.1**.

Status of Waste Management

4.5 The Construction and Demolition (C&D) materials generated in the reporting month were mainly excavated materials regard as inert C&D materials that disposed of as Public Fill. The quantities of waste generated in this reporting month are summarized in **Appendix K**. No chemical waste was generated in the reporting month.

Implementation Status of Environmental Mitigation Measures

4.6 According to the Final EIA Report and the Final EM&A Manual of the Project, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. A summary of the EMIS is provided in **Appendix J**.

Monthly EM&A Report – September 2008

 Table 4.1
 Summary of Environmental Licensing and Permit Status

Permit /	Valid	Period	Details	Status		
License No.	From	To	Details	Status		
	Environmental Permit (EP)					
EP-295/2007	03/12/07	N/A	The Project involves construction and operation of disinfection facilities (chlorination/dechlorination) within the existing Stonecutters Island Sewage Treatment Works. The disinfection facilities include storage, dosing and associated pipeline systems for sodium hypochlorite sodium bisulphite.	Valid		
	Billin	ig Account f	for Disposal of Construction Waste			
7007138	13/05/08	N/A	Disposal of Construction waste.	Valid		
	•	Chemica	l Waste Producer Number	•		
WPN: 5213-269- C2397-22	04/09/08	N/A	Disposal of Chemical Waste including lubricating oil, spent batteries and etc.	Valid		
		Waste)	Water Discharge License			
EP760/269/0133011	14/07/08	31/07/13	Discharge of industrial trade effluent and all other wastewater after solid removal arising from Construction site at Stonecutters Island Sewage Treatment Works, Kowloon (Contract No. DC/2007/20 HATS 2A- Construction of Advance Disinfection Facilities at SCISTW) to communal storm drain.	Valid		
		Constru	ction Noise Permit (CNP)			
PP-RW0010-08	20/05/08	19/09/08	Location: Construction site in Stonecutters Island Sewage Treatment Works at Stonecutters Island, Kowloon. Day and hours for the use of PMEs: 07:00-19:00 on any day not being a general holiday.	Replaced		
PP-RW0021-08	20/09/08	19/12/08	Location: Construction site in Stonecutters Island Sewage Treatment Works at Stonecutters Island, Kowloon. Day and hours for the use of PMEs: 07:00-19:00 on any day not being a general holiday.	Valid		

4.7 During the weekly environmental site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 4.2**.

Table 4.2 Observations and Recommendations of Site Audit

Parameters	Date	Observations	Remedial Actions
	3 Sep 08	Ponding water was observed inside the piles at Daytank Storage Area after rain. The Contractor was reminded to clear it or provide larvicidal oil to avoid mosquito breeding.	The situation was observed improved/rectified in audit session 80910.
	10 Sep 08	Ponding water was observed near the site offices and inside the drip tray at Works Area B. The Contractor was reminded to dry it out and provide mitigation measures to avoid the formation of ponding water again.	The situation was observed improved/rectified in audit session 80917.
	17 Sep 08	Worn sandbags were observed near the constructing Switch Room No.1. The Contractor was reminded to replace it or provide mitigation measure (e.g. concrete bund) to avoid silty water discharge into the gullies.	The situation was observed improved/rectified in audit session 80924.
Water Quality	17 560 00	Excavated materials were observed accumulated close to the U-channel at Daytank Storage Area. The Contractor was reminded to remove it or provide temporary bund to prevent silty water discharge into public channel.	The situation was observed improved/rectified in audit session 80924.
		Formation of ponding water was observed around the site area after typhoon. The Contractor was reminded to pump out the ponding water and discharge via sedimentation facilities whenever necessary.	This item will be followed up in the coming audit session.
	24 Sep 08	Worn sand bags were observed at the Barge Unloading Area. The Contractor was reminded to replace them.	This item will be followed up in the coming audit session.
		Silty surface runoff was observed at Daytank Storage Area. The Contractor was reminded to clean up the U-channel and provide sufficient sandbags for desilting.	This item will be followed up in the coming audit session.
Air Quality	10 Sep 08	Exposed stockpile of excavated material was observed near Wash-out Chamber No.2. The Contractor was advised to remove it or cover it with tarpaulin.	The situation was observed improved/rectified in audit session 80917.
An Quany	17 Sep 08	Silt and debris were observed outside the site area near Wash-out Chamber No.1 and Daytank Storage Area. The Contractor was reminded to clean it up.	The situation was observed improved/rectified in audit session 80924.
Waste / Chemical	3 Sep 08	General refuse including water bottles and softdrink cans were observed around Daytank Storage Area. The Contractor was reminded to clean it up.	The situation was observed improved/rectified in audit session 80910.
Management	10 Sep 08	Oil leakage from the equipment was observed near Wash-out Chamber No.2. The Contractor was reminded to clean it up.	The situation was observed improved/rectified in audit session 80917.

Table 4.3 Observations and Recommendations of Site Audit Followed up for Pervious Month

Parameters	Date	Observations	Remedial Actions
Water Quality	27 Aug 08	Ponding water was observed at Day Tank Storage Area. The Contractor was reminded to clear it to avoid mosquito breeding.	The situation was observed improved/rectified in audit session 80903.
Waste / Chemical Management	27 Aug 08	Oil stain was observed on the floor at Barge Unloading Area. The Contractor was reminded to clean it up.	The situation was observed improved/rectified in audit session 80903.

Implementation Status of Event Action Plans

4.8 The Event Action Plans for air quality and noise are presented in **Appendix I**.

1-hr TSP

4.9 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP

4.10 No Action/Limit Level exceedance was recorded in the reporting month.

Summary of Complaint and Prosecution

- 4.11 No environmental related complaint, prosecution or notification of summons was received in the reporting month.
- 4.12 There was no environmental complaint, prosecution or notification of summons received since the Project commencement. The Complaint Log is attached in **Appendix M**.

5 FUTURE KEY ISSUES

Key Issues for the Coming Month

- 5.1 Key issues to be considered in the coming months include:
 - Surface runoff from the Site area due to construction works and rain;
 - Dust emission from concrete breaking, excavation and loading and unloading dusty materials;
 - Noise nuisance from operation of equipment and machinery on-site;
 - Maintenance of de-silting facilities and drainage system, such as U-channels;
 - Formation of ponding/ stagnant water in the site areas;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Larviciding against mosquito breeding in stagnant water should be carried out at least on a weekly basis; and
 - Accumulation of C&D waste and general waste on site.

Monitoring Schedule for the Next Month

5.2 The tentative environmental monitoring schedule for the next month is shown in **Appendix C**.

Construction Program for the Next Month

- 5.3 A tentative construction programme is provided in **Appendix L**. The major construction activities in the coming month will include:
 - Diversion of DN250 Watermain at Day Tank Storage Area;
 - Static load test for mini-piles at Day Tank Area;
 - Construction of Barge Unloading Area;
 - Construction of Switch Room No. 1;
 - Excavation & Extension of existing PPC piles for Chlorination Compound;
 - Excavation for Dechlorination Plant in Portion 4;
 - Plate loading test for Dechlorination Plant; and
 - Construction of Dechlorination Plant.

6 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

6.1 Environmental monitoring works were conducted regularly and site inspections were conducted on a weekly basis in the reporting month. The results were reviewed and checked.

1-hour TSP Monitoring

6.2 All 1-hour TSP monitoring was conducted at AM1 as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

6.3 All 24-hour TSP monitoring was conducted at AM1 as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Complaint and Prosecution

6.4 No environmental prosecution and complaint was received in the reporting month.

Recommendations

6.5 According to the environmental audits performed in the reporting month, the following recommendations were made:

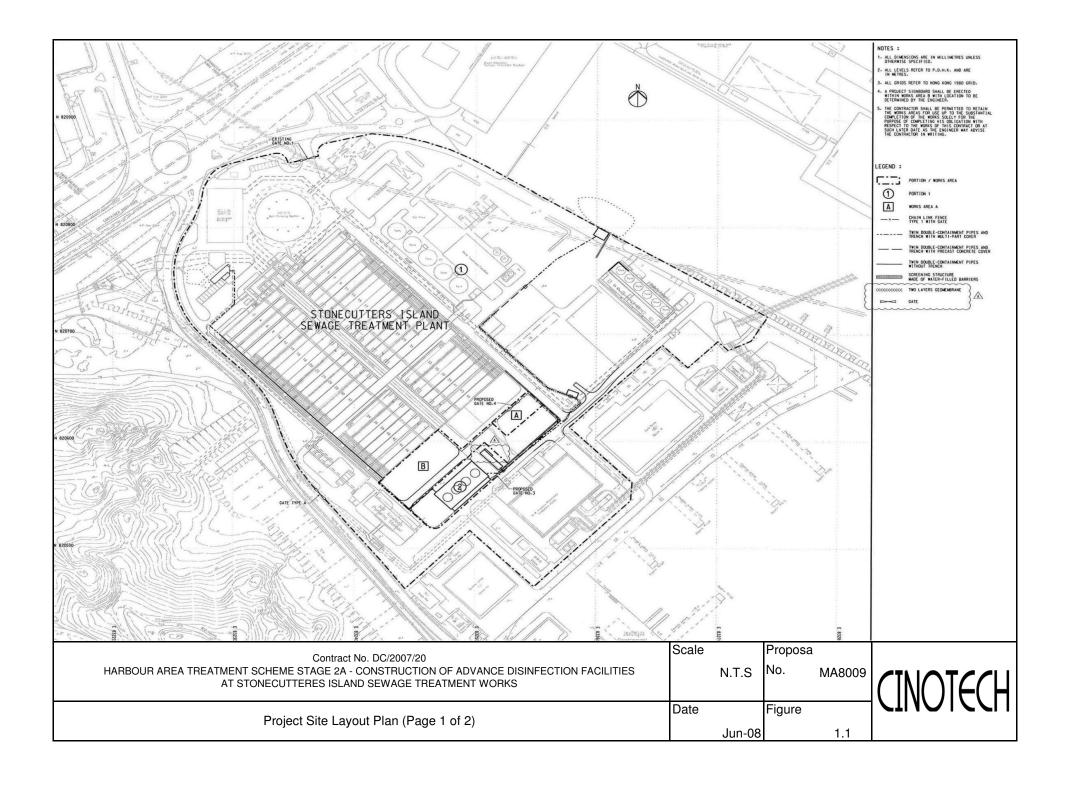
Water Impact

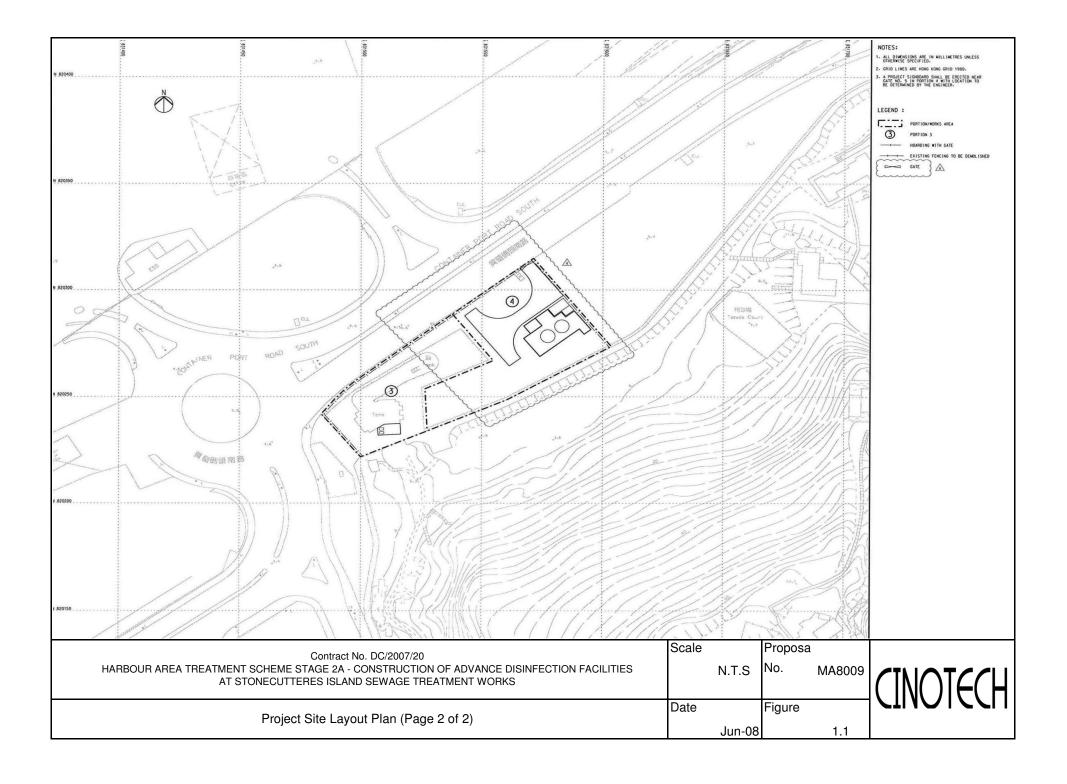
- To ensure proper use and maintenance of the de-silting facilities and drainage system;
- To avoid formation of ponding/ stagnant water on site;
- To carry out larviciding regularly against mosquito breeding;
- To well maintain the drainage system inside and around the Site area; and
- To prevent surface runoff into public area or drainage channel.

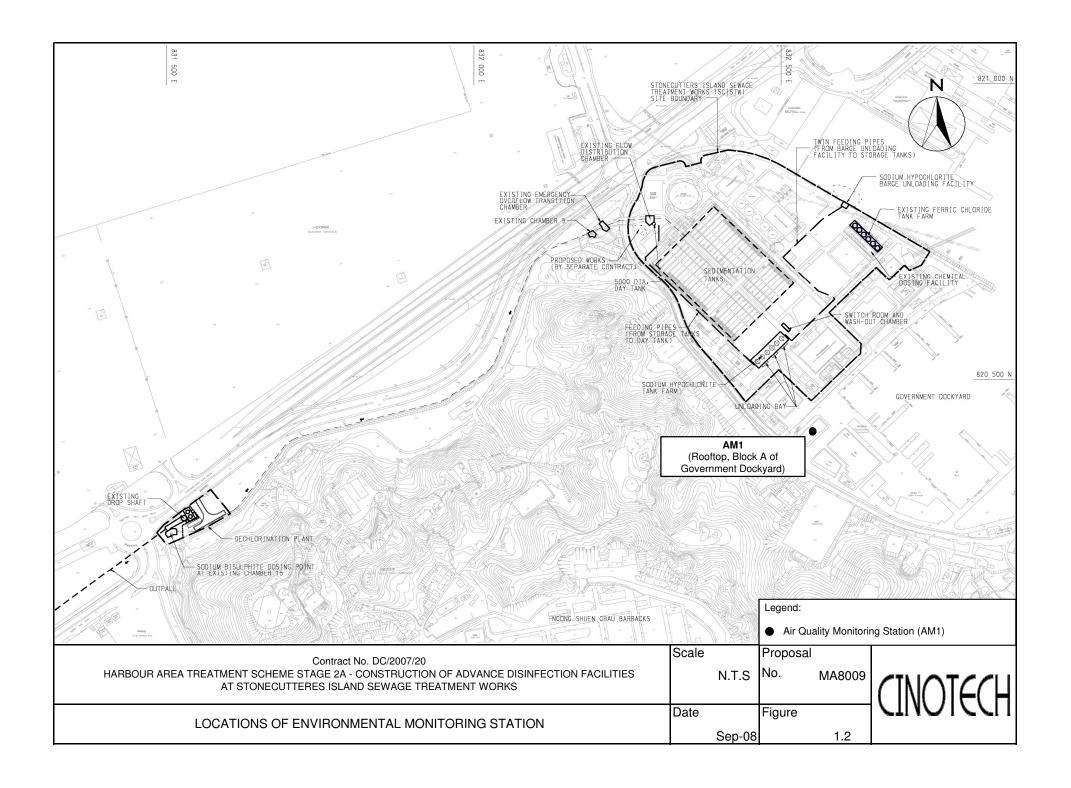
Dust Impact

- To provide water spraying regularly on stockpiles of dusty materials, loading/unloading of dusty materials and dried site areas;
- To remain good site practice on handling excavated or dusty material for dust suppression, e.g. covering by impervious materials;
- To check and maintain the mechanical equipments regularly to avoid black smoke emission; and

• To provide adequate enclosure, i.e. three side and top covers, for the cement mixing works for dust suppression.


Noise Impact


- To space out noisy equipments and position as far away as possible from sensitive receivers;
- To provide adequate lubricant on mechanical equipments to reduce frictional noise; and
- To well maintain the mechanical equipments / machinery to avoid abnormal noise nuisance.


Waste / Chemical Management

- To provide proper rubbish bins / skips for waste collection;
- To provide proper storage area or drip trays for oil containers on site;
- To avoid and check for any accumulation of waste materials or rubbish on site;
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the equipment; and
- To well maintain the equipments and drip trays to avoid oil leakage.

FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

APPENDIX A - Action and Limit Levels

Table A-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AM1	307	500

Table A-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AM1	158	260

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

CINOTECH

						File No. MA8009/17/0002
Station	Rooftop of Bloo	k A, Governmer	t Dockyard	Operator	: W	k.
Date:	5-Aug-08		_	Next Due Date	: 4-Oct	-08
Equipment No.:	quipment No.: A-01-17		-	Serial No	. 3460)
			Karana arang menanggan	<u>*** </u>		
70				Condition		
Temperatur	re, 1a (K)	302.9	Pressure, P	a (mmHg)		753.2
		0	ifice Transfer St	andard Inforn	nation.	Service Control of the Control of th
Equipme	ent No.:	A-04-06	Slope, mc	0.0575	Intercep	
Last Calibration Date:		10-Mar-08			$bc = [\Delta H \times (Pa/76)]$	
Next Calibra	ation Date;	9-Mar-09			x (Pa/760) x (298	
		•				
			Calibration o	f TSP Sampler		
Calibration		Or	fice			HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	$[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ axis
1	9.7	. 3	3.08		6.5	2,52
2	7.1	2	.63	45.07	4.8	2.16
3	5.3	2	.27	38,85	3.5	1,85
4	3.2	1	.77	30.03	2.2	1.46
5]	2.6	1	.59	27.00	1.6	1.25
						•
By Linear Regre						,
Slope, mw = _	0.0483	0.04		Intercept, bw	-0.021	<u>5</u>
Correlation co		0.99		-		
*If Correlation Co	oemcient < 0.990	J, check and reca	librate.		•	
		- 1 (1997年) - 1 (1997年) - 1 (1997年) - 1 (1997年)	Set Point C	Calculation	100 mar (190 mar) 100 mar (190 mar)	
From the TSP Fie					<u> </u>	
From the Regressi		_				
			.		10	
		mw x Q	$std + bw = [\Delta W]$	x (Pa/760) x (29	98/Ta)] ¹¹²	•
Therefore, Set	Point; W = (my	v x Qstd + bw) ²	x (760/Pa)x(7	Ta / 298)=	4.32	
	_			· -		· · · · · · · · · · · · · · · · · · ·
						A Committee Comm
n 1						
Remarks:						
_			1			
Conducted by: 1/2	V V 70 - 9	Signature:	16.		1	Date: 5/8/08
Checked by:		Signature:	riwas			
Chooked by.			-1/-		1	Date: 5 August 2007

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

perator	Tisch	Orifice I.	D	0999	Pa (mm) -	746.76
					METER	ORFICE
LATE	VOLUME	VOLUME	DIFF	DIFF	DIFF	DIFF
OR	START	STOP	VOLUME	TIME	Hg	H20
lun #	(m3)	(m3)	(m3)	(min)	(mm)	(in.)
	NIX	NTN	1 00	1 2000	2.0	
<u>L</u>	NA	NA	1.00	1.3890	3.2	2.00
2	NA	NA	1.00	0.9850	6.3	4.00
3	NA	NA	1.00	0.8810	7.8	5.00
4	NA	NA	1.00	0.8410	8.6	5.50
5	NA	NA	1.00	0.6950	12.5	8.00

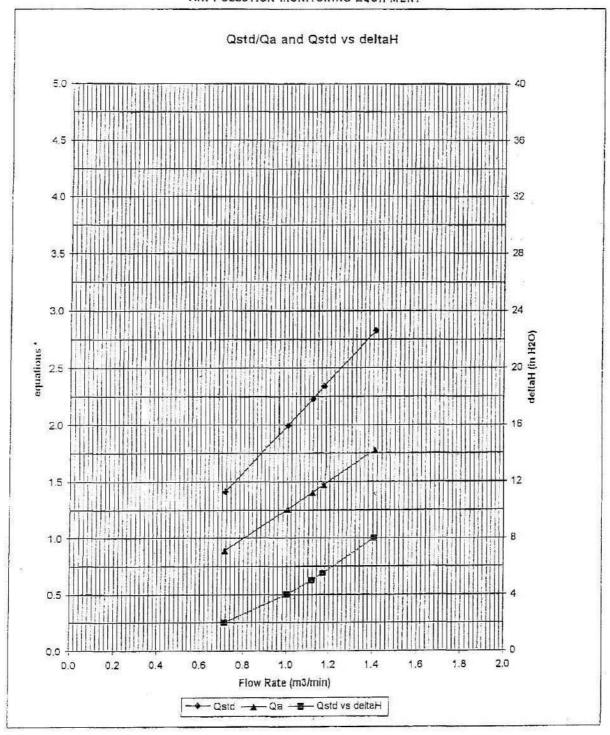
DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9917 0.9876 0.9854 0.9844 0.9792	0.7139 1.0026 1.1185 1.1706 1.4090	1.4113 1.9959 2.2315 2.3405 2.8227		0.9957 0.9916 0.9894 0.9884 0.9832	0.7168 1.0067 1.1231 1.1753 1.4147	0.8874 1.2549 1.4030 1.4715 1.7747
Ostd slo intercep coeffici y axis =	t (b) = ent (r) =	2.03154 -0.03970 0.99999	Ta)]	Qa slop intercep coeffici y axis =	ent (b) = ent (r) =	1.27212 -0.02496 0.99999

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time


For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

* y-axis equations:

Qstd series:

$$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$$

Qa series:

$$\sqrt{(\Delta H (Ta / Pa))}$$

ATTN:

TEST REPORT

Certificate of Calibration

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Mr. Henry Leung

Shatin, NT, Hong Kong

Test Report No.: C/06/80602A

Date of Issue: 2008-06-05

Date Received: 2008-06-02

Date Tested: 2008-06-03

Date Completed: 2008-06-05

Page: 1 of 2

Item for calibration:

Description : Weather Monitor II
Manufacturer : Davis Instruments

Model No. : 7440

Serial No. : MC20813A11

Test conditions:

Room Temperature : 22 degree Celsius

Relative Humidity : 56%

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No.: C/06/80602A

Date of Issue: 2008-06-05

Date Received: 2008-06-02

Date Tested: 2008-06-03

Date Completed: 2008-06-05

Page: 2 of 2

Results:

1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	Reference Value (V1)	D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0.0	0.0	0.0
44.5	45.0	-0.5
90.5	90.5	0.0
136.0	135.0	1.0
180.1	180.0	0.1
225.6	225.0	0.6
270.4	270.0	0.4
314.6	315.0	-0.4
359.5	360.0	-0.5

APPENDIX C ENVIRONMENTAL MONITORING SCHEDULES

Contract No. DC/2007/20

HATS Stage 2A – Construction of Advance Disinfection Facilities at SCISTW Impact Environmental Monitoring Schedule for September 2008

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
31-Aug	1-Sep	2-Sep	3-Sep	4-Sep	5-Sep	6-Sep
	1hr TSP at AM1			1hr TSP at AM1 24hrs TSP at AM1	1hr TSP at AM1	
7-Sep	8-Sep	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep
	1hr TSP at AM1		1hr TSP at AM1 24hrs TSP at AM1	1hr TSP at AM1		
14-Sep	15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep
		24hrs TSP at AM1	1hr TSP at AM1	1hr TSP at AM1	1hr TSP at AM1	
21-Sep	22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep
	24hrs TSP at AM1	1hr TSP at AM1	1hr TSP at AM1	1hr TSP at AM1		24hrs TSP at AM1
28-Sep	29-Sep	30-Sep	1-Oct	2-Oct	3-Oct	4-Oct
	1hr TSP at AM1	1hr TSP at AM1			1hr TSP at AM1 24hrs TSP at AM1	

Contract No. DC/2007/20

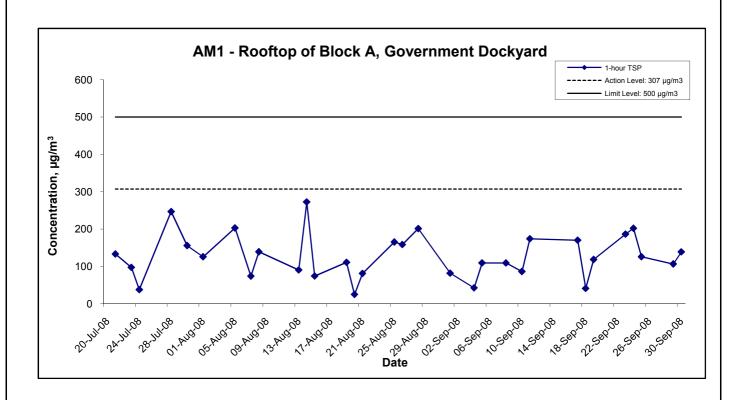
HATS Stage 2A – Construction of Advance Disinfection Facilities at SCISTW Tentative Impact Environmental Monitoring Schedule for October 2008

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
28-Sep	29-Sep	30-Sep	1-Oct	2-Oct	3-Oct	4-Oct
	1hr TSP at AM1	1hr TSP at AM1			1hr TSP at AM1 24hrs TSP at AM1	
5-Oct	6-Oct	7-Oct	8-Oct	9-Oct	10-Oct	11-Oct
	1hr TSP at AM1			1hr TSP at AM1 24hrs TSP at AM1	1hr TSP at AM1	
12-Oct	13-Oct	14-Oct	15-Oct	16-Oct	17-Oct	18-Oct
		1hr TSP at AM1	1hr TSP at AM1 24hrs TSP at AM1	1hr TSP at AM1		
19-Oct	20-Oct	21-Oct	22-Oct	23-Oct	24-Oct	25-Oct
		1hr TSP at AM1 24hrs TSP at AM1	1hr TSP at AM1	1hr TSP at AM1		
26-Oct	27-Oct	28-Oct	29-Oct	30-Oct	31-Oct	1-Nov
	27-Oct 28-Oct 1hr TSP at AM1 24hrs TSP at AM1		1hr TSP at AM1		1hr TSP at AM1	

^{*} The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

AM1 - Air monitoring station at Rooftop of Block A, Government Dockyard

APPENDIX D 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS


Appendix D - 1-hour TSP Monitoring Results

Station AM1 - Rooftop of Block A, Government Dockyard

Date	Sampling	Weather	Air	Atmospheric	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Date	Time	Condition	Temp. (K)	Pressure (Pa)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
1-Sep-08	10:00	Sunny	303.1	759.9	2.8458	2.8517	0.0059	5510.2	5511.2	1.0	1.22	1.22	1.22	72.3	81.6
4-Sep-08	09:00	Cloudy	300.9	760.8	2.8483	2.8514	0.0031	5511.2	5512.2	1.0	1.22	1.22	1.22	73.3	42.3
5-Sep-08	10:30	Cloudy	300.7	760.6	2.8754	2.8834	0.0080	5536.2	5537.2	1.0	1.22	1.22	1.22	73.4	109.1
8-Sep-08	09:00	Cloudy	301.3	762.4	2.8009	2.8089	0.0080	5537.2	5538.2	1.0	1.22	1.22	1.22	73.4	109.0
10-Sep-08	09:00	Sunny	302.6	760.3	2.7802	2.7865	0.0063	5538.2	5539.2	1.0	1.22	1.22	1.22	73.1	86.2
11-Sep-08	11:00	Sunny	302.7	759.0	2.7873	2.8000	0.0127	5563.2	5564.2	1.0	1.22	1.22	1.22	73.0	173.9
17-Sep-08	09:00	Sunny	303.3	758.7	2.8136	2.8260	0.0124	5588.2	5589.2	1.0	1.22	1.22	1.22	73.0	170.0
18-Sep-08	09:00	Cloudy	300.1	760.2	2.8568	2.8598	0.0030	5589.2	5590.2	1.0	1.22	1.22	1.22	73.4	40.9
19-Sep-08	09:00	Cloudy	299.3	761.5	2.8597	2.8684	0.0087	5590.2	5591.2	1.0	1.23	1.23	1.23	73.6	118.3
23-Sep-08	09:30	Cloudy	297.7	756.5	2.8845	2.8982	0.0137	5615.2	5616.2	1.0	1.23	1.23	1.23	73.5	186.3
24-Sep-08	09:00	Cloudy	299.7	756.2	2.8422	2.8570	0.0148	5616.2	5617.2	1.0	1.22	1.22	1.22	73.3	202.0
25-Sep-08	09:00	Cloudy	302.0	760.1	2.8034	2.8126	0.0092	5617.2	5618.2	1.0	1.22	1.22	1.22	73.2	125.7
29-Sep-08	10:00	Sunny	300.0	759.4	2.8653	2.8731	0.0078	5642.2	5643.2	1.0	1.22	1.22	1.22	73.4	106.3
30-Sep-08	09:00	Sunny	299.7	761.8	2.8708	2.8810	0.0102	5643.2	5644.2	1.0	1.23	1.23	1.23	73.5	138.7
	<u> </u>													Min	40.9
														Max	202.0
														Average	120.7

MA8009/App D - 1hr TSP

1-hr TSP Concentration Levels

Title Contract No. DC/2007/20

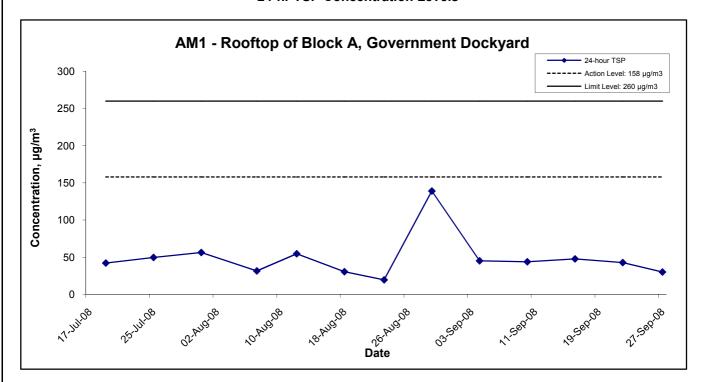
HATS Stage 2A – Construction of Advance Disinfection Facilities at SCISTW

Graphical Presentation of 1-hour TSP Monitoring Results

Scale
N.T.S Project
No. MA8009

Date Sep 08 Appendix
D

APPENDIX E 24-HOURS TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS


Appendix E - 24-hour TSP Monitoring Results

Station AM1 - Rooftop of Block A, Government Dockyard

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure (Pa)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
4-Sep-08	Cloudy	301.1	760.6	2.8532	2.9325	0.0793	5512.2	5536.2	24.0	1.22	1.22	1.22	1759.4	45.1
10-Sep-08	Sunny	302.9	760.1	2.8870	2.9637	0.0767	5539.2	5563.2	24.0	1.22	1.22	1.22	1753.8	43.7
16-Sep-08	Sunny	303.2	757.5	2.8153	2.8989	0.0836	5564.2	5588.2	24.0	1.22	1.21	1.22	1749.7	47.8
22-Sep-08	Sunny	303.9	756.1	2.8669	2.9415	0.0746	5591.2	5615.2	24.0	1.21	1.21	1.21	1746.2	42.7
27-Sep-08	Sunny	302.6	760.7	2.8433	2.8962	0.0529	5618.2	5642.2	24.0	1.22	1.22	1.22	1755.2	30.1
													Min	30.1
													Max	47.8
													Average	41.9

MA8009/App E - 24hr TSP

24-hr TSP Concentration Levels

Title

Contract No. DC/2007/20

HATS Stage 2A – Construction of Advance Disinfection Facilities at SCISTW

Graphical Presentation of 24-hour TSP Monitoring Results

APPENDIX F WIND DATA

Date	Time	Wind Speed m/s	Direction
1-Sep-2008	00:00	1.9	SSE
1-Sep-2008	01:00	2.1	SSE
1-Sep-2008	02:00	1.8	S
1-Sep-2008	03:00	1.3	SW
1-Sep-2008	04:00	1.5	SSW
1-Sep-2008	05:00	1.8	S
1-Sep-2008	06:00	1.3	ENE
1-Sep-2008	07:00	1.8	WNW
1-Sep-2008	08:00	0.6	W
1-Sep-2008	09:00	1.6	W
1-Sep-2008	10:00	1.6	W
<u> </u>		1.0	W
1-Sep-2008	11:00		W
1-Sep-2008	12:00	3.3	
1-Sep-2008	13:00	2.5	W
1-Sep-2008	14:00	2.5	W
1-Sep-2008	15:00	2.1	SSW
1-Sep-2008	16:00	2.2	SSE
1-Sep-2008	17:00	1.3	SW
1-Sep-2008	18:00	1.6	SSW
1-Sep-2008	19:00	1.5	SSW
1-Sep-2008	20:00	1.2	SSW
1-Sep-2008	21:00	1.3	SSW
1-Sep-2008	22:00	1.2	SSW
1-Sep-2008	23:00	1.5	SW
2-Sep-2008	00:00	1.6	SW
2-Sep-2008	01:00	1.9	WNW
2-Sep-2008	02:00	1.9	W
2-Sep-2008	03:00	1.9	W
2-Sep-2008	04:00	1.8	WNW
2-Sep-2008	05:00	1.8	WNW
2-Sep-2008	06:00	1.6	WNW
2-Sep-2008	07:00	1.0	WNW
2-Sep-2008	08:00	1.5	W
2-Sep-2008	09:00	1.2	WSW
2-Sep-2008 2-Sep-2008		1.0	W
2-Sep-2008	10:00	0.9	W
	11:00		
2-Sep-2008	12:00	3.2	W
2-Sep-2008	13:00	2.9	W
2-Sep-2008	14:00	2.9	WNW
2-Sep-2008	15:00	2.4	WNW
2-Sep-2008	16:00	2.7	SSW
2-Sep-2008	17:00	2.9	W
2-Sep-2008	18:00	3.0	SSW
2-Sep-2008	19:00	3.2	W
2-Sep-2008	20:00	3.3	W
2-Sep-2008	21:00	3.3	W
2-Sep-2008	22:00	3.0	W
2-Sep-2008	23:00	0.6	W
3-Sep-2008	00:00	0.7	NE
3-Sep-2008	01:00	1.0	N
3-Sep-2008	02:00	1.2	NE
3-Sep-2008	03:00	1.8	NE
3-Sep-2008	04:00	2.5	NNE
3-Sep-2008	05:00	2.4	ESE
3-Sep-2008	06:00	2.1	NE NE
3-Sep-2008	07:00	2.1	NE NE
		2.4	ESE
3-Sep-2008	08:00		S ESE
3-Sep-2008	09:00	2.2	
3-Sep-2008	10:00	2.2	S
3-Sep-2008	11:00	2.2	S
3-Sep-2008	12:00	2.8	WSW
3-Sep-2008	13:00	2.5	WSW
3-Sep-2008	14:00	2.2	WSW

Date	Time	Wind Speed m/s	Direction
3-Sep-2008	15:00	2.5	SSE
3-Sep-2008	16:00	2.2	SSE
3-Sep-2008	17:00	2.1	W
3-Sep-2008	18:00	1.8	SSW
3-Sep-2008	19:00	1.5	S
3-Sep-2008	20:00	1.2	S
3-Sep-2008	21:00	1.5	WSW
3-Sep-2008	22:00	1.3	W
3-Sep-2008	23:00	1.5	SSW
	00:00	2.1	SW
4-Sep-2008			
4-Sep-2008	01:00	2.1	SW
4-Sep-2008	02:00	2.4	SSW
4-Sep-2008	03:00	1.9	SW
4-Sep-2008	04:00	1.2	SW
4-Sep-2008	05:00	1.2	SSW
4-Sep-2008	06:00	1.6	SSW
4-Sep-2008	07:00	1.8	WNW
4-Sep-2008	08:00	1.9	W
4-Sep-2008	09:00	2.2	W
4-Sep-2008	10:00	2.4	WNW
4-Sep-2008	11:00	2.2	WNW
4-Sep-2008	12:00	2.8	WNW
4-Sep-2008	13:00	2.7	WNW
4-Sep-2008	14:00	2.4	WNW
4-Sep-2008	15:00	2.5	WNW
4-Sep-2008	16:00	2.2	W
4-Sep-2008	17:00	2.1	ESE
4-Sep-2008	18:00	2.2	ESE
4-Sep-2008	19:00	2.2	WSW
4-Sep-2008	20:00	2.4	WSW
			WSW
4-Sep-2008	21:00	2.2	
4-Sep-2008	22:00	2.2	WNW
4-Sep-2008	23:00	1.5	W
5-Sep-2008	00:00	1.2	SW
5-Sep-2008	01:00	1.2	WSW
5-Sep-2008	02:00	1.2	SW
5-Sep-2008	03:00	1.0	SW
5-Sep-2008	04:00	1.3	SW
5-Sep-2008	05:00	1.2	SSW
5-Sep-2008	06:00	1.5	WNW
5-Sep-2008	07:00	1.6	SSW
5-Sep-2008	08:00	2.1	WNW
5-Sep-2008	09:00	3.1	WNW
5-Sep-2008	10:00	3.0	W
5-Sep-2008	11:00	3.9	SSW
5-Sep-2008	12:00	3.6	SW
5-Sep-2008	13:00	3.4	SW
5-Sep-2008	14:00	3.4	SSW
5-Sep-2008	15:00	3.1	SW
5-Sep-2008	16:00	2.5	SW
5-Sep-2008	17:00	2.5	WSW
5-Sep-2008	18:00	2.1	SW
•			SW
5-Sep-2008	19:00	1.2	SSW
5-Sep-2008	20:00	1.0	
5-Sep-2008	21:00	1.0	SSW
5-Sep-2008	22:00	1.3	NE NE
5-Sep-2008	23:00	1.2	NE NE
6-Sep-2008	00:00	1.3	NE
6-Sep-2008	01:00	1.5	ENE
6-Sep-2008	02:00	1.3	ENE
6-Sep-2008	03:00	1.3	ENE
6-Sep-2008	04:00	1.5	ENE
6-Sep-2008	05:00	1.3	W

6-Sep-2008 06:00 1.6 ENE 6-Sep-2008 07:00 1.3 NNE 6-Sep-2008 08:00 1.5 NNE 6-Sep-2008 09:00 1.8 ENE 6-Sep-2008 10:00 2.5 ENE 6-Sep-2008 11:00 2.7 ENE 6-Sep-2008 12:00 2.7 ENE 6-Sep-2008 13:00 3.0 ENE 6-Sep-2008 14:00 3.0 ENE 6-Sep-2008 15:00 3.0 ENE	
6-Sep-2008 08:00 1.5 NNE 6-Sep-2008 09:00 1.8 ENE 6-Sep-2008 10:00 2.5 ENE 6-Sep-2008 11:00 2.7 ENE 6-Sep-2008 12:00 2.7 ENE 6-Sep-2008 13:00 3.0 ENE 6-Sep-2008 14:00 3.0 ENE	
6-Sep-2008 09:00 1.8 ENE 6-Sep-2008 10:00 2.5 ENE 6-Sep-2008 11:00 2.7 ENE 6-Sep-2008 12:00 2.7 ENE 6-Sep-2008 13:00 3.0 ENE 6-Sep-2008 14:00 3.0 ENE	
6-Sep-2008 10:00 2.5 ENE 6-Sep-2008 11:00 2.7 ENE 6-Sep-2008 12:00 2.7 ENE 6-Sep-2008 13:00 3.0 ENE 6-Sep-2008 14:00 3.0 ENE	
6-Sep-2008 11:00 2.7 ENE 6-Sep-2008 12:00 2.7 ENE 6-Sep-2008 13:00 3.0 ENE 6-Sep-2008 14:00 3.0 ENE	
6-Sep-2008 12:00 2.7 ENE 6-Sep-2008 13:00 3.0 ENE 6-Sep-2008 14:00 3.0 ENE	
6-Sep-2008 13:00 3.0 ENE 6-Sep-2008 14:00 3.0 ENE	l
6-Sep-2008 14:00 3.0 ENE	
<u>'</u>	
6-Sep-2008 15:00 3.0 ENE	
6-Sep-2008 16:00 2.7 ENE	
6-Sep-2008 17:00 2.7 ENE	
6-Sep-2008 18:00 2.5 SE	
6-Sep-2008 19:00 1.9 SE	
6-Sep-2008 20:00 1.5 N	
6-Sep-2008 21:00 1.3 NNE	
6-Sep-2008 22:00 1.3 ENE	
6-Sep-2008 23:00 1.5 ENE	
7-Sep-2008 00:00 1.3 ENE	
7-Sep-2008 01:00 1.5 ENE	
7-Sep-2008 02:00 1.3 ENE	
7-Sep-2008 03:00 1.2 ENE	
7-Sep-2008 04:00 1.5 NW	
7-Sep-2008 05:00 2.3 W 7-Sep-2008 06:00 2.1 W	
7-Sep-2008 07:00 2.1 W 7-Sep-2008 08:00 2.4 SSE	
7-Sep-2008 08:00 2.4 SSE 7-Sep-2008 09:00 2.9 WNW	
7-Sep-2008 09:00 2.9 WNW 7-Sep-2008 10:00 3.3 WNW	
7-Sep-2008 11:00 3.0 NW	
7-Sep-2008 12:00 3.0 NNE	
7-Sep-2008 13:00 2.9 NNE	
7-Sep-2008 14:00 2.6 NNE	
7-Sep-2008 15:00 3.0 NNE	
7-Sep-2008 16:00 2.6 NE	
7-Sep-2008 17:00 2.4 NE	
7-Sep-2008 18:00 1.8 E	
7-Sep-2008 19:00 1.5 E	
7-Sep-2008 20:00 1.3 ENE	
7-Sep-2008 21:00 1.2 E	
7-Sep-2008 22:00 1.2 E	
7-Sep-2008 23:00 1.2 ENE	
8-Sep-2008 00:00 1.3 ENE	
8-Sep-2008 01:00 1.6 E	
8-Sep-2008 02:00 1.5 E	
8-Sep-2008 03:00 1.5 E	
8-Sep-2008 04:00 1.8 N	
8-Sep-2008 05:00 1.8 N	
8-Sep-2008 06:00 1.6 NE	
8-Sep-2008 07:00 1.8 NNE	
8-Sep-2008 08:00 1.8 NE	
8-Sep-2008 09:00 1.5 NE	
8-Sep-2008 10:00 1.3 NE	
8-Sep-2008 11:00 1.9 ENE	
8-Sep-2008 12:00 2.5 WNW	
8-Sep-2008 13:00 2.5 SE	
8-Sep-2008 13:00 2.5 SE 8-Sep-2008 14:00 2.7 SE	
8-Sep-2008 13:00 2.5 SE 8-Sep-2008 14:00 2.7 SE 8-Sep-2008 15:00 2.4 ESE	
8-Sep-2008 13:00 2.5 SE 8-Sep-2008 14:00 2.7 SE 8-Sep-2008 15:00 2.4 ESE 8-Sep-2008 16:00 2.7 ESE	
8-Sep-2008 13:00 2.5 SE 8-Sep-2008 14:00 2.7 SE 8-Sep-2008 15:00 2.4 ESE 8-Sep-2008 16:00 2.7 ESE 8-Sep-2008 17:00 2.7 ESE	
8-Sep-2008 13:00 2.5 SE 8-Sep-2008 14:00 2.7 SE 8-Sep-2008 15:00 2.4 ESE 8-Sep-2008 16:00 2.7 ESE 8-Sep-2008 17:00 2.7 ESE 8-Sep-2008 18:00 1.8 W	
8-Sep-2008 13:00 2.5 SE 8-Sep-2008 14:00 2.7 SE 8-Sep-2008 15:00 2.4 ESE 8-Sep-2008 16:00 2.7 ESE 8-Sep-2008 17:00 2.7 ESE	

Date	Time	Wind Speed m/s	Direction
8-Sep-2008	21:00	0.3	S
8-Sep-2008	22:00	0.4	SW
8-Sep-2008	23:00	0.6	NE
9-Sep-2008	00:00	0.4	NNE
9-Sep-2008	01:00	0.4	NE
9-Sep-2008	02:00	0.4	NNE
9-Sep-2008	03:00	1.0	NNE
9-Sep-2008	04:00	1.0	ENE
9-Sep-2008	05:00	1.2	ENE
9-Sep-2008	06:00	0.7	NE
<u> </u>	07:00	0.7	NE NE
9-Sep-2008			
9-Sep-2008	08:00	1.5	NE NE
9-Sep-2008	09:00	1.2	NE
9-Sep-2008	10:00	0.6	NNE
9-Sep-2008	11:00	1.3	NE
9-Sep-2008	12:00	1.5	NNE
9-Sep-2008	13:00	1.3	NE
9-Sep-2008	14:00	1.6	NE
9-Sep-2008	15:00	1.3	NNE
9-Sep-2008	16:00	1.2	ENE
9-Sep-2008	17:00	0.7	NE
9-Sep-2008	18:00	1.3	ENE
9-Sep-2008	19:00	1.3	NE
9-Sep-2008	20:00	1.3	ENE
9-Sep-2008	21:00	1.8	ENE
9-Sep-2008	22:00	1.6	ESE
9-Sep-2008	23:00	1.2	W
10-Sep-2008	00:00	1.2	W
	01:00	1.3	W
10-Sep-2008		1.2	WNW
10-Sep-2008	02:00		
10-Sep-2008	03:00	1.2	WNW
10-Sep-2008	04:00	1.2	WNW
10-Sep-2008	05:00	1.3	WNW
10-Sep-2008	06:00	0.6	WNW
10-Sep-2008	07:00	0.4	W
10-Sep-2008	08:00	0.3	W
10-Sep-2008	09:00	0.1	WNW
10-Sep-2008	10:00	1.0	WNW
10-Sep-2008	11:00	1.2	W
10-Sep-2008	12:00	0.7	W
10-Sep-2008	13:00	1.5	WNW
10-Sep-2008	14:00	1.0	WNW
10-Sep-2008	15:00	0.9	WNW
10-Sep-2008	16:00	0.6	WNW
10-Sep-2008	17:00	0.9	W
10-Sep-2008	18:00	0.6	WNW
10-Sep-2008	19:00	0.4	SSW
10-Sep-2008	20:00	0.4	WSW
			WSW
10-Sep-2008	21:00	0.0	
10-Sep-2008	22:00	0.0	WSW
10-Sep-2008	23:00	0.0	WSW
11-Sep-2008	00:00	0.1	SW
11-Sep-2008	01:00	0.9	WSW
11-Sep-2008	02:00	0.1	WSW
11-Sep-2008	03:00	0.1	WSW
11-Sep-2008	04:00	0.0	W
11-Sep-2008	05:00	0.0	W
11-Sep-2008	06:00	0.3	WSW
11-Sep-2008	07:00	0.0	SW
11-Sep-2008	08:00	0.1	SW
11-Sep-2008	09:00	0.3	SW
11-Sep-2008	10:00	0.4	SW
11-Sep-2008	11:00	0.7	SW
11 OCP-2000	11.00	0.7	OVV

Date	Time	Wind Speed m/s	Direction
11-Sep-2008	12:00	0.7	W
11-Sep-2008	13:00	0.4	W
11-Sep-2008	14:00	1.0	WNW
11-Sep-2008	15:00	0.7	WNW
11-Sep-2008	16:00	0.7	W
11-Sep-2008	17:00	1.0	W
11-Sep-2008	18:00	1.3	N
11-Sep-2008	19:00	1.5	NE
11-Sep-2008	20:00	1.6	NNE
11-Sep-2008	21:00	1.3	NE
11-Sep-2008	22:00	1.8	NNE
11-Sep-2008	23:00	1.6	NNE
12-Sep-2008	00:00	1.3	W
12-Sep-2008	01:00	1.0	W
12-Sep-2008	02:00	0.6	W
12-Sep-2008	03:00	0.1	W
12-Sep-2008	04:00	0.1	WSW
12-Sep-2008	05:00	0.6	SW
12-Sep-2008	06:00	0.9	SW
12-Sep-2008	07:00	1.3	SSW
12-Sep-2008	08:00	1.5	SSVV
	09:00	1.9	SSW
12-Sep-2008	10:00	2.1	W
12-Sep-2008			
12-Sep-2008	11:00	1.6	WSW
12-Sep-2008	12:00	1.6	S
12-Sep-2008	13:00	1.5	SSW
12-Sep-2008	14:00	1.3	W
12-Sep-2008	15:00	1.3	W
12-Sep-2008	16:00	2.1	W
12-Sep-2008	17:00	1.9	W
12-Sep-2008	18:00	1.9	WNW
12-Sep-2008	19:00	1.8	W
12-Sep-2008	20:00	1.2	W
12-Sep-2008	21:00	1.2	WNW
12-Sep-2008	22:00	1.2	W
12-Sep-2008	23:00	1.0	WNW
13-Sep-2008	00:00	1.2	WNW
13-Sep-2008	01:00	1.0	W
13-Sep-2008	02:00	1.2	W
13-Sep-2008	03:00	1.5	WNW
13-Sep-2008	04:00	1.9	WNW
13-Sep-2008	05:00	1.5	WNW
13-Sep-2008	06:00	1.2	W
13-Sep-2008	07:00	1.0	W
13-Sep-2008	08:00	1.2	W
13-Sep-2008	09:00	2.2	W
13-Sep-2008	10:00	2.2	W
13-Sep-2008	11:00	2.2	ENE
13-Sep-2008	11.00	<i></i>	
13-Sep-2008	12:00	22	⊢N⊢
13-Sep-2008	12:00 13:00	2.2	ENE NF
	13:00	2.4	NE
1 3-500-71119	13:00 14:00	2.4 2.2	NE NE
13-Sep-2008	13:00 14:00 15:00	2.4 2.2 2.4	NE NE NNE
13-Sep-2008	13:00 14:00 15:00 16:00	2.4 2.2 2.4 2.2	NE NE NNE WNW
13-Sep-2008 13-Sep-2008	13:00 14:00 15:00 16:00 17:00	2.4 2.2 2.4 2.2 1.9	NE NE NNE WNW NW
13-Sep-2008 13-Sep-2008 13-Sep-2008	13:00 14:00 15:00 16:00 17:00 18:00	2.4 2.2 2.4 2.2 1.9 2.1	NE NE NNE WNW NW
13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008	13:00 14:00 15:00 16:00 17:00 18:00 19:00	2.4 2.2 2.4 2.2 1.9 2.1 1.9	NE NE NNE WNW NW N
13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008	13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00	2.4 2.2 2.4 2.2 1.9 2.1 1.9 1.3	NE NE NNE WNW NW S WSW
13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008	13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00	2.4 2.2 2.4 2.2 1.9 2.1 1.9 1.3 1.2	NE NE NNE WNW NW S WSW SSW
13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008	13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00	2.4 2.2 2.4 2.2 1.9 2.1 1.9 1.3 1.2	NE NE NNE WNW NW N S WSW SSW W
13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008	13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00	2.4 2.2 2.4 2.2 1.9 2.1 1.9 1.3 1.2 1.2 0.9	NE NE NNE WNW NW N S WSW SSW WSW
13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 14-Sep-2008	13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00	2.4 2.2 2.4 2.2 1.9 2.1 1.9 1.3 1.2 1.2 0.9 1.0	NE NE NNE WNW NW N S WSW SSW W WSW WSW
13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008 13-Sep-2008	13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00	2.4 2.2 2.4 2.2 1.9 2.1 1.9 1.3 1.2 1.2 0.9	NE NE NNE WNW NW N S WSW SSW WSW

Date	Time	Wind Speed m/s	Direction
14-Sep-2008	03:00	1.3	WSW
14-Sep-2008	04:00	1.5	SSW
14-Sep-2008	05:00	1.3	S
14-Sep-2008	06:00	1.5	SSW
14-Sep-2008	07:00	1.6	S
14-Sep-2008	08:00	2.1	N
14-Sep-2008	09:00	1.9	NNE
14-Sep-2008	10:00	2.1	NNW
14-Sep-2008	11:00	2.5	NNE
14-Sep-2008	12:00	3.3	<u>E</u>
14-Sep-2008	13:00	3.3	<u> </u>
14-Sep-2008	14:00	3.1	<u>E</u>
14-Sep-2008	15:00	2.5	SE
14-Sep-2008	16:00	2.2	SSE
14-Sep-2008	17:00	2.1	SE
14-Sep-2008	18:00	2.1	ENE
14-Sep-2008	19:00	2.1	NE
14-Sep-2008	20:00	1.3	ENE
14-Sep-2008	21:00	1.3	ENE
14-Sep-2008	22:00	1.2	NE NE
14-Sep-2008	23:00	1.2	NE NE
15-Sep-2008	00:00	1.5	NE NE
15-Sep-2008	01:00	1.6	ENE
15-Sep-2008	02:00	1.9	WNW
15-Sep-2008	03:00	1.6	WNW
15-Sep-2008	04:00	1.9	WNW
15-Sep-2008	05:00	1.9	WNW
15-Sep-2008	06:00	2.1	WNW
15-Sep-2008	07:00	2.1	W
15-Sep-2008	08:00	1.9	WSW
15-Sep-2008	09:00	2.4	WNW
15-Sep-2008	10:00	2.2	WNW
15-Sep-2008	11:00	2.4	W
15-Sep-2008	12:00 13:00	2.4	WNW W
15-Sep-2008			W
15-Sep-2008	14:00 15:00	2.7 2.2	WNW
15-Sep-2008 15-Sep-2008	16:00	2.2	W
15-Sep-2008	17:00	1.8	W
15-Sep-2008	18:00	1.6	W
15-Sep-2008	19:00	1.2	W
15-Sep-2008	20:00	1.8	WNW
15-Sep-2008	21:00	1.6	W
15-Sep-2008	22:00	2.1	SW
15-Sep-2008	23:00	1.9	W
16-Sep-2008	00:00	1.5	WNW
16-Sep-2008	01:00	1.6	WNW
16-Sep-2008	02:00	1.8	WNW
16-Sep-2008	03:00	1.9	W
16-Sep-2008	04:00	2.1	WNW
16-Sep-2008	05:00	2.2	WNW
16-Sep-2008	06:00	2.4	WNW
16-Sep-2008	07:00	2.4	WNW
16-Sep-2008	08:00	2.1	W
16-Sep-2008	09:00	2.5	W
16-Sep-2008	10:00	2.1	SW
16-Sep-2008	11:00	1.8	WSW
16-Sep-2008	12:00	1.9	WSW
16-Sep-2008	13:00	2.1	WNW
16-Sep-2008	14:00	1.5	WNW
16-Sep-2008	15:00	1.6	W
16-Sep-2008	16:00	1.9	W
16-Sep-2008	17:00	1.5	WNW

Date	Time	Wind Speed m/s	Direction
16-Sep-2008	18:00	1.6	N
16-Sep-2008	19:00	0.9	N
16-Sep-2008	20:00	0.6	NE
16-Sep-2008	21:00	0.6	E
16-Sep-2008	22:00	0.1	ESE
16-Sep-2008	23:00	0.4	ESE
17-Sep-2008	00:00	0.4	ESE
17-Sep-2008	01:00	0.7	ESE
17-Sep-2008	02:00	0.9	WNW
<u> </u>			
17-Sep-2008	03:00	0.6	WNW
17-Sep-2008	04:00	0.7	WNW
17-Sep-2008	05:00	0.1	WNW
17-Sep-2008	06:00	0.1	W
17-Sep-2008	07:00	0.6	WNW
17-Sep-2008	08:00	0.6	NE
17-Sep-2008	09:00	0.7	NE
17-Sep-2008	10:00	0.9	NE
17-Sep-2008	11:00	1.5	NE
17-Sep-2008	12:00	1.5	NE
17-Sep-2008	13:00	2.1	NE
17-Sep-2008	14:00	1.8	N
17-Sep-2008	15:00	2.1	N
17-Sep-2008	16:00	1.8	NW
17-Sep-2008	17:00	1.2	E
17-Sep-2008	18:00	1.9	E E
17-Sep-2008	19:00	1.2	ESE
17-Sep-2008	20:00	2.2	ESE
17-Sep-2008	21:00	2.2	SE
17-Sep-2008	22:00	2.1	SE
17-Sep-2008	23:00	2.2	SE
18-Sep-2008	00:00	2.1	ENE
18-Sep-2008	01:00	2.1	NE
18-Sep-2008	02:00	2.4	Е
18-Sep-2008	03:00	2.4	ENE
18-Sep-2008	04:00	2.2	N
18-Sep-2008	05:00	2.4	WNW
18-Sep-2008	06:00	4.2	Е
18-Sep-2008	07:00	3.3	SSE
18-Sep-2008	08:00	2.7	S
18-Sep-2008	09:00	3.0	SSW
18-Sep-2008	10:00	3.6	N
18-Sep-2008	11:00	3.3	WNW
18-Sep-2008	12:00	3.1	W
18-Sep-2008	13:00	3.6	S
18-Sep-2008	14:00	3.9	SSW
18-Sep-2008	15:00	3.6	WSW
18-Sep-2008	16:00	3.3	WNW
18-Sep-2008	17:00	1.3	WNW
18-Sep-2008	18:00	1.9	WNW
18-Sep-2008	19:00	1.9	WNW
18-Sep-2008	20:00	1.6	WNW
18-Sep-2008	21:00	2.1	WNW
18-Sep-2008	22:00	1.8	W
18-Sep-2008	23:00	1.5	WSW
19-Sep-2008	00:00	1.8	WNW
19-Sep-2008	01:00	1.8	W
19-Sep-2008	02:00	1.8	W
19-Sep-2008	03:00	1.3	W
19-Sep-2008	04:00	1.6	ENE
•	05:00	1.5	W
19-Sep-2008			
19-Sep-2008	06:00	0.9	WNW
19-Sep-2008	07:00	1.2	W
19-Sep-2008	08:00	1.5	W

Date	Time	Wind Speed m/s	Direction
19-Sep-2008	09:00	1.5	W
19-Sep-2008	10:00	1.9	WSW
19-Sep-2008	11:00	2.1	WSW
19-Sep-2008	12:00	2.7	SSW
19-Sep-2008	13:00	2.5	W
19-Sep-2008	14:00	2.4	W
19-Sep-2008	15:00	3.6	WSW
19-Sep-2008	16:00	3.0	WNW
19-Sep-2008	17:00	3.0	WNW
19-Sep-2008	18:00	2.2	WNW
19-Sep-2008	19:00	2.1	NE
19-Sep-2008	20:00	0.9	N N
19-Sep-2008	21:00	1.3 1.3	WSW
19-Sep-2008	22:00		SE SE
19-Sep-2008	23:00	0.7	SE SE
20-Sep-2008	00:00	1.4 1.4	NNE
20-Sep-2008 20-Sep-2008	01:00 02:00	1.4	N
	03:00	1.4	N N
20-Sep-2008 20-Sep-2008	03.00	1.4	N N
20-Sep-2008 20-Sep-2008	04:00	1.4	N
20-Sep-2008 20-Sep-2008	06:00	1.5	SSE
20-Sep-2008 20-Sep-2008	07:00	1.4	SSE
20-Sep-2008	08:00	1.7	SSW
20-Sep-2008	09:00	2.1	SSE
20-Sep-2008	10:00	2.9	SSE
20-Sep-2008	11:00	2.7	SE
20-Sep-2008	12:00	2.9	E E
20-Sep-2008	13:00	2.6	ENE
20-Sep-2008	14:00	2.6	ESE
20-Sep-2008	15:00	2.6	E
20-Sep-2008	16:00	2.3	SSE
20-Sep-2008	17:00	2.0	ENE
20-Sep-2008	18:00	1.5	WSW
20-Sep-2008	19:00	1.4	ENE
20-Sep-2008	20:00	0.3	WSW
20-Sep-2008	21:00	0.6	NE
20-Sep-2008	22:00	0.4	WSW
20-Sep-2008	23:00	0.6	SW
21-Sep-2008	00:00	0.1	SW
21-Sep-2008	01:00	0.1	S
21-Sep-2008	02:00	0.1	E
21-Sep-2008	03:00	0.3	ENE
21-Sep-2008	04:00	0.6	SE
21-Sep-2008	05:00	0.7	ESE
21-Sep-2008	06:00	1.2	NE OW
21-Sep-2008	07:00	0.9	SW
21-Sep-2008	08:00	1.3	SW
21-Sep-2008	09:00	1.2	WNW
21-Sep-2008	10:00	2.1 2.5	WNW WNW
21-Sep-2008	11:00 12:00	2.5	W
21-Sep-2008		2.7	WSW
21-Sep-2008 21-Sep-2008	13:00 14:00	2.7	SSE
21-Sep-2008 21-Sep-2008	15:00	2.8	SSE
21-Sep-2008 21-Sep-2008	16:00	2.0	SSE
21-Sep-2008 21-Sep-2008	17:00	1.9	ESE
21-Sep-2008 21-Sep-2008	18:00	1.8	ESE
21-Sep-2008 21-Sep-2008	19:00	1.5	SE
21-Sep-2008 21-Sep-2008	20:00	1.5	SSE
21-Sep-2008	21:00	1.0	SSE
21-Sep-2008	22:00	1.2	ESE
21-Sep-2008	23:00	1.0	ENE
_ : 35p 2000			

Date	Time	Wind Speed m/s	Direction
22-Sep-2008	00:00	1.9	SE
22-Sep-2008	01:00	1.5	SE
22-Sep-2008	02:00	1.3	N
22-Sep-2008	03:00	1.3	ENE
22-Sep-2008	04:00	1.2	ENE
22-Sep-2008	05:00	1.3	NNE
22-Sep-2008	06:00	1.3	NNE
22-Sep-2008	07:00	1.6	WNW
22-Sep-2008	08:00	1.6	WNW
22-Sep-2008	09:00	1.3	W
22-Sep-2008	10:00	1.6	WNW
	11:00	2.2	WNW
22-Sep-2008			
22-Sep-2008	12:00	2.4	N
22-Sep-2008	13:00	2.1	N
22-Sep-2008	14:00	2.1	NNE
22-Sep-2008	15:00	1.9	NNE
22-Sep-2008	16:00	1.6	WNW
22-Sep-2008	17:00	1.9	WNW
22-Sep-2008	18:00	1.9	WNW
22-Sep-2008	19:00	1.5	WNW
22-Sep-2008	20:00	1.5	WNW
22-Sep-2008	21:00	1.3	WNW
22-Sep-2008	22:00	1.2	WNW
22-Sep-2008	23:00	1.2	WNW
23-Sep-2008	00:00	1.1	WNW
23-Sep-2008	01:00	1.2	NW
23-Sep-2008	02:00	1.1	WNW
23-Sep-2008	03:00	1.2	W
23-Sep-2008	04:00	1.2	WNW
23-Sep-2008	05:00	1.2	W
23-Sep-2008	06:00	1.2	W
23-Sep-2008	07:00	1.4	W
23-Sep-2008	08:00	2.0	W
23-Sep-2008	09:00	1.3	ESE
23-Sep-2008 23-Sep-2008	10:00	1.8	ESE
23-Sep-2008 23-Sep-2008		2.5	SE
	11:00		
23-Sep-2008	12:00	2.1	SE
23-Sep-2008	13:00	2.7	SSE
23-Sep-2008	14:00	2.8	SSE
23-Sep-2008	15:00	5.4	SSE
23-Sep-2008	16:00	7.4	WSW
23-Sep-2008	17:00	7.1	W
23-Sep-2008	18:00	7.1	WNW
23-Sep-2008	19:00	6.3	WSW
23-Sep-2008	20:00	6.2	SSE
23-Sep-2008	21:00	5.7	SSE
23-Sep-2008	22:00	6.3	SSE
23-Sep-2008	23:00	6.2	ESE
24-Sep-2008	00:00	7.2	NE
24-Sep-2008	01:00	5.8	NE
24-Sep-2008	02:00	7.0	ESE
24-Sep-2008	03:00	6.5	ESE
24-Sep-2008	04:00	6.3	ESE
24-Sep-2008	05:00	5.7	SSE
24-Sep-2008	06:00	6.0	SSE
24-Sep-2008	07:00	4.7	SSE
24-Sep-2008	08:00	5.3	SSE
24-Sep-2008	09:00	5.5	SSE
24-Sep-2008	10:00	5.9	SSE
24-Sep-2008	11:00	6.1	ESE
	12:00	4.2	NE
24-Sep-2008 24-Sep-2008	13:00	4.2	SW
24-Sep-2008	14:00	3.9	S

Date	Time	Wind Speed m/s	Direction
24-Sep-2008	15:00	3.9	ESE
24-Sep-2008	16:00	3.5	ESE
24-Sep-2008	17:00	3.3	ESE
24-Sep-2008	18:00	2.6	ESE
24-Sep-2008	19:00	2.6	ESE
24-Sep-2008	20:00	3.0	ENE
24-Sep-2008	21:00	2.4	ENE
24-Sep-2008	22:00	2.3	N
24-Sep-2008	23:00	3.8	SW
25-Sep-2008	00:00	1.3	WSW
			SSW
25-Sep-2008	01:00	1.6	
25-Sep-2008	02:00	1.3	NE NE
25-Sep-2008	03:00	0.9	NW
25-Sep-2008	04:00	1.3	N N
25-Sep-2008	05:00	0.9	N
25-Sep-2008	06:00	1.5	WNW
25-Sep-2008	07:00	1.2	WNW
25-Sep-2008	08:00	1.8	W
25-Sep-2008	09:00	1.6	WNW
25-Sep-2008	10:00	1.8	ENE
25-Sep-2008	11:00	2.1	N
25-Sep-2008	12:00	2.4	ENE
25-Sep-2008	13:00	2.5	ENE
25-Sep-2008	14:00	2.2	WNW
25-Sep-2008	15:00	2.2	WNW
25-Sep-2008	16:00	2.4	W
25-Sep-2008	17:00	1.9	WSW
25-Sep-2008	18:00	2.2	S
25-Sep-2008	19:00	1.9	SSE
25-Sep-2008	20:00	1.3	SW
25-Sep-2008	21:00	1.2	WSW
25-Sep-2008	22:00	1.3	SSE
25-Sep-2008	23:00	1.2	NNE
26-Sep-2008	00:00	1.8	NNE
26-Sep-2008	01:00	1.6	NNE
26-Sep-2008	02:00	1.3	W
	03:00	2.0	WNW
26-Sep-2008			
26-Sep-2008	04:00	0.8	WNW
26-Sep-2008	05:00	0.9	WNW
26-Sep-2008	06:00	1.3	SW
26-Sep-2008	07:00	1.6	SSW
26-Sep-2008	08:00	1.6	SSW
26-Sep-2008	09:00	1.3	SW
26-Sep-2008	10:00	2.2	W
26-Sep-2008	11:00	2.7	WNW
26-Sep-2008	12:00	2.5	SW
26-Sep-2008	13:00	3.1	SW
26-Sep-2008	14:00	2.3	SW
26-Sep-2008	15:00	2.4	WNW
26-Sep-2008	16:00	2.6	W
26-Sep-2008	17:00	1.8	WSW
26-Sep-2008	18:00	1.5	SW
26-Sep-2008	19:00	1.5	WNW
26-Sep-2008	20:00	1.6	WNW
26-Sep-2008	21:00	1.8	WNW
26-Sep-2008	22:00	1.6	WNW
26-Sep-2008	23:00	2.5	WNW
27-Sep-2008	00:00	2.1	WNW
_: JUP _UUU	01:00	2.0	WNW
27-Sen-2008		∪	
27-Sep-2008 27-Sep-2008		1.8	WNW
27-Sep-2008	02:00	1.8	WNW WSW
		1.8 1.7 0.9	WNW WSW WNW

Date	Time	Wind Speed m/s	Direction
27-Sep-2008	06:00	1.2	W
27-Sep-2008	07:00	0.9	WSW
27-Sep-2008	08:00	1.2	WNW
27-Sep-2008	09:00	1.5	W
27-Sep-2008	10:00	2.0	WNW
27-Sep-2008	11:00	2.8	W
27-Sep-2008	12:00	3.2	WNW
27-Sep-2008	13:00	3.2	W
27-Sep-2008	14:00	2.3	W
27-Sep-2008	15:00	2.3	W
27-Sep-2008	16:00	2.7	WNW
27-Sep-2008	17:00	2.6	W
27-Sep-2008	18:00	1.8	WNW
27-Sep-2008	19:00	1.0	WNW
27-Sep-2008	20:00	0.9	W
27-Sep-2008	21:00	1.1	WNW
27-Sep-2008			W
•	22:00	0.8	
27-Sep-2008	23:00	1.0	W
28-Sep-2008	00:00	1.3	WNW
28-Sep-2008	01:00	1.1	WNW
28-Sep-2008	02:00	1.4	WNW
28-Sep-2008	03:00	1.3	WNW
28-Sep-2008	04:00	1.4	WNW
28-Sep-2008	05:00	1.0	NE
28-Sep-2008	06:00	0.8	NE
28-Sep-2008	07:00	1.5	WNW
28-Sep-2008	08:00	1.8	WNW
28-Sep-2008	09:00	1.4	WNW
28-Sep-2008	10:00	0.9	W
28-Sep-2008	11:00	1.6	WNW
28-Sep-2008	12:00	1.7	WNW
28-Sep-2008	13:00	1.7	W
28-Sep-2008	14:00	1.7	S
28-Sep-2008	15:00	1.9	WSW
28-Sep-2008	16:00	1.9	WNW
28-Sep-2008	17:00	1.5	WNW
28-Sep-2008	18:00	1.5	WNW
28-Sep-2008	19:00	1.3	WNW
28-Sep-2008	20:00	1.2	WNW
28-Sep-2008	21:00	0.9	WNW
			WNW
28-Sep-2008	22:00	0.8	
28-Sep-2008	23:00	1.2	WNW
29-Sep-2008	00:00	1.1	W
29-Sep-2008	01:00	1.1	WNW
29-Sep-2008	02:00	1.0	WNW
29-Sep-2008	03:00	1.5	W
29-Sep-2008	04:00	0.7	W
29-Sep-2008	05:00	1.2	W
29-Sep-2008	06:00	1.3	NW
29-Sep-2008	07:00	0.5	NW
29-Sep-2008	08:00	0.5	NW
29-Sep-2008	09:00	0.4	NW
29-Sep-2008	10:00	1.9	WNW
29-Sep-2008	11:00	1.8	WNW
29-Sep-2008	12:00	1.7	WNW
29-Sep-2008	13:00	1.9	WNW
29-Sep-2008	14:00	1.9	WNW
29-Sep-2008	15:00	2.0	WNW
29-Sep-2008	16:00	1.2	WNW
29-Sep-2008	17:00	1.9	WNW
		1.3	WNW
29-Sep-2008	18:00		W
29-Sep-2008	19:00	1.4	
29-Sep-2008	20:00	0.9	WNW

Date	Time	Wind Speed m/s	Direction
29-Sep-2008	21:00	1.2	W
29-Sep-2008	22:00	1.7	WNW
29-Sep-2008	23:00	1.7	WNW
30-Sep-2008	00:00	1.8	WNW
30-Sep-2008	01:00	1.8	NNE
30-Sep-2008	02:00	2.3	SSE
30-Sep-2008	03:00	2.4	NNE
30-Sep-2008	04:00	2.2	ESE
30-Sep-2008	05:00	2.2	SSE
30-Sep-2008	06:00	1.9	ESE
30-Sep-2008	07:00	2.1	SSE
30-Sep-2008	08:00	2.2	ESE
30-Sep-2008	09:00	2.2	ESE
30-Sep-2008	10:00	2.0	NE
30-Sep-2008	11:00	2.4	NE
30-Sep-2008	12:00	2.5	NE
30-Sep-2008	13:00	2.9	ESE
30-Sep-2008	14:00	3.4	NE
30-Sep-2008	15:00	3.4	NE
30-Sep-2008	16:00	3.2	NE
30-Sep-2008	17:00	3.0	ESE
30-Sep-2008	18:00	2.7	NE
30-Sep-2008	19:00	2.1	NE
30-Sep-2008	20:00	2.2	NE
30-Sep-2008	21:00	2.0	NE
30-Sep-2008	22:00	2.1	NE
30-Sep-2008	23:00	1.5	ESE

APPENDIX G SUMMARY OF EXCEEDANCE

APPENDIX G – Summary of Exceedance

- (A) Exceedance Report for 1-hr TSP (NIL in the reporting month)
- (B) Exceedance Report for 24-hr TSP (NIL in the reporting month)
- (C) Exceedance Report for Construction Noise (NIL in the reporting month)

APPENDIX H SITE AUDIT SUMMARY

Construction of Advance Disinfection Facilities at Stonecutters Island Sewage Treatment Works

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	80903
Date	3 September 2008
Time	10:00 11:00

Ref. No.	Non-Compliance	Related Item No.
-	None	-

Ref. No.	Remarks/Observations	Related Item No.
80903-02	 Water Quality Ponding water was observed inside the piles at Daytank Storage Area after rain. The Contractor was reminded to clear it or provide larvicidal oil to avoid mosquito breeding. 	В12
	Air Quality No environmental deficiency was identified during site inspection.	;
	Noise No environmental deficiency was identified during site inspection.	
80903-01	 Waste / Chemical Management General refuse including water bottles and softdrink cans were observed around Daytank Storage Area. The Contractor was reminded to clean it up. 	E1iii
	Permit/Licenses • No environmental deficiency was identified during site inspection.	
	Others No environmental deficiency was identified during site inspection.	
	Follow-up on previous audit session (Ref. No. 80827), all the environmental deficiencies identified were improved / rectified by the Contractor as observed during the site inspection.	

	Name	Signature	Date
Recorded by	Robert Tsang	Tin	3 September 2008
Checked by	Dr. Priscilla Choy	WI	3 September 2008

Construction of Advance Disinfection Facilities at Stonecutters Island Sewage Treatment Works

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	80910
Date	10 September 2008
Time	09:30 - 11:00

Ref. No.	Non-Compliance	Related Item No.
-	None	<u> </u>

Ref. No.	Remarks/Observations	Related Item No.
80910-01	 Water Quality Ponding water was observed near the site offices and inside the drip tray at Works Area B. The Contractor was reminded to dry it out and provide mitigation measures to avoid the formation of ponding water again. 	B12
80910-02	 Air Quality Exposed stockpile of excavated material was observed near Wash-out Chamber No.2. The Contractor was advised to remove it or cover it with tarpaulin. 	C7
	Noise No environmental deficiency was identified during site inspection.	
80910-03	 Waste / Chemical Management Oil leakage from the equipment was observed near Wash-out Chamber No.2. The Contractor was reminded to clean it up. 	E7i
	Permit / Licenses No environmental deficiency was identified during site inspection.	
	Others No environmental deficiency was identified during site inspection.	
	Follow-up on previous audit session (Ref. No. 80903), all the environmental deficiencies identified were improved / rectified by the Contractor as observed during the site inspection.	

	Name	Signature	Date
Recorded by	Robert Tsang	Tag	10 September 2008
Checked by	Dr. Priscilla Choy	NT	10 September 2008

Construction of Advance Disinfection Facilities at Stonecutters Island Sewage Treatment Works

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	80917	
Date	17 September 2008	
Time	09:30 – 10:45	-

Ref. No.	Non-Compliance	Related Item No.
•	None	-

Ref. No.	Remarks/Observations	Related Item No.
80917-01	 Water Quality Worn sandbags were observed near the constructing Switch Room No.1. The Contractor was reminded to replace it or provide mitigation measure (e.g. concrete bund) to avoid silty water discharge into the gullies. 	В7
80917-03	Excavated materials were observed accumulated close to the U-channel at Daytank Storage Area. The Contractor was reminded to remove it or provide temporary bund to prevent silty water discharge into public channel.	В7
80917-02	Air Quality Silt and debris were observed outside the site area near Wash-out Chamber No.1 and Daytank Storage Area. The Contractor was reminded to clean it up.	C3
	Noise No environmental deficiency was identified during site inspection.	
	Waste / Chemical Management No environmental deficiency was identified during site inspection.	
	Permit/Licenses • No environmental deficiency was identified during site inspection.	
	Others No environmental deficiency was identified during site inspection.	
	Follow-up on previous audit session (Ref. No. 80910), all the environmental deficiencies identified were improved / rectified by the Contractor as observed during the site inspection.	

	Name	Date	
Recorded by	Robert Tsang	Tain	17 September 2008
Checked by	Dr. Priscilla Choy	Wife	17 September 2008

Construction of Advance Disinfection Facilities at Stonecutters Island Sewage Treatment Works

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	80924
	24 September 2008
Time	14:45 – 15:45

 Ref. No.	Non-Compliance	Related Item No.
-	None	-

Ref. No.	Remarks/Observations	Related Item No.
80924-01	Water Quality Formation of ponding water was observed around the site area after typhoon. The Contractor was reminded to pump out the ponding water and discharge via sedimentation facilities whenever necessary.	B12
80924-02	Worn sand bags were observed at the Barge Unloading Area. The Contractor was reminded to replace them.	N/A
80924-03	Silty surface runoff was observed at Daytank Storage Area. The Contractor was reminded to clean up the U-channel and provide sufficient sandbags for desilting.	B7, B15ii
	Air Quality No environmental deficiency was identified during site inspection.	
	Noise No environmental deficiency was identified during site inspection.	
	Waste / Chemical Management No environmental deficiency was identified during site inspection.	
	Permit / Licenses No environmental deficiency was identified during site inspection.	
	Others No environmental deficiency was identified during site inspection.	
	Follow-up on previous audit session (Ref. No. 80917), all the environmental deficiencies identified were improved / rectified by the Contractor as observed during the site inspection.	

	Name Signature			
Recorded by	Robert Tsang	Taia	24 September 2008	
Checked by	Dr. Priscilla Choy	WF	24 September 2008	

APPENDIX I EVENT/ACTION PLANS

APPENDIX I – Event / Action Plan

Table I-1 Event / Action Plan for Air Quality

EVENT		A	CTION	
EVENT	ET	IEC ER		CONTRACTOR
ACTION LEVEL				
1.Exceedance for one sample	 Identify source and investigate the causes of exceedance; Inform Contractor, IEC and ER; Repeat measurement to confirm finding. 	Check monitoring data submitted by ET; and Check Contractor's working method.	1. Notify Contractor.	 Rectify any unacceptable practice; and Amend working methods if appropriate.
2.Exceedance for two or more consecutive samples	 Identify source and investigate the causes of exceedance; Inform Contractor, IEC and ER; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; Assess the effectiveness of Contractor's remedial actions; If exceedance continues, arrange meeting with IEC and ER; and If exceedance stops, cease additional monitoring. 	 Checking monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; and Advise the ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise implementation of remedial measures; and Conduct meeting with ET and IEC if exceedance continues. 	 Discuss with ET and IEC on proper remedial actions; Submit proposals for remedial actions to ER and IEC within 3 working days of notification; Implement the agreed proposals; and Amend proposal if appropriate.

EVENT	ACTION							
EVENI	ET	IEC	ER	CONTRACTOR				
LIMIT LEVEL								
1.Exceedance for one sample	 Identify source and investigate the causes of exceedance; Inform Contractor, IEC, ER and EPD; Repeat measurement to confirm finding; and Assess effectiveness of Contractor's remedial actions and keep EPD, IEC and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; and Advise the ER on the effectiveness of the proposed remedial measures. 	1. Confirm receipt of notification of exceedance in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise implementation of remedial measures; and 5. Conduct meeting with ET and IEC if exceedance continues.	 Take immediate action to avoid further exceedance; Discuss with ET and IEC on proper remedial actions; Submit proposals for remedial actions to ER and IEC within 3 working days of notification; and Implement the agreed proposals. 				
2.Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Repeat measurement to confirm findings; Carry out analysis of Contractor's working procedures to investigate the causes of exceedance; Increase monitoring frequency to daily; Arrange meeting with IEC, ER and Contractor to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep EPD, IEC and ER informed of the results; and If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ER, ET and Contractor on possible remedial measures; and Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise implementation of remedial measures; and If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Discuss with ET, ER and IEC on proper remedial actions; Submit proposals for remedial actions to ER and IEC within 3 working days of notification; Implement the agreed proposals; Submit further proposals for remedial actions if problem still not under control; and Stop the relevant portion of works as instructed by the ER until the exceedance is abated. 				

Table I-2 Event / Action Plan for Construction Noise

		AC	CTION	
EVENT	ET	IEC	Contractor	
Action Level being exceeded	 Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; and Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; and Advise the ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; and Supervise the implementation of remedial measures. 	 Submit noise mitigation proposal to IEC and ER; and Implement noise mitigation proposals.
Limit Level being exceeded	 Inform IEC, ER, Contractor and EPD; Repeat measurement to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and ER on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; and If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET, and Contractor on the potential remedial actions; and Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly.	 Confirm receipt of notification of exceedance in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; and If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposal for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; and Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

APPENDIX J ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

APPENDIX J - Environmental Mitigation Implementation Schedule (EMIS)

EIA Ref	Environmental Protection Measures/Mitigation Measures	Location/Timing	Implementation	Implementation Stages*				Relevant Legislation and Guidelines
			Agent	Des	С	О	Dec	
S3.29	Dust mitigation measures stipulated in the Air Pollution Control (Construction Dust)	Work sites / During	Contractor		V			EIAO-TM and Air
	Regulation should be incorporated to control dust emission from the site. Control measures	the construction						Pollution Control
	relevant to this Project are listed below:	period						(Construction Dust)
	Skip hoist for material transport should be totally enclosed by impervious sheeting;							Regulation
	Vehicle washing facilities should be provided at every vehicle exit point;							
	The area where vehicle washing takes place and the section of the road between the							
	washing facilities and the exit point should be paved with concrete, bituminous							
	materials or hardcore;							
	Where a site boundary adjoins a road, streets or other areas accessible to the public,							
	hoarding of not less than 2.4 m high from ground level should be provided along the							
	entire length except for a site entrance or exit;							
	Use of regular watering, with complete coverage, to reduce dust emissions from							
	exposed site surfaces and unpaved roads, particularly during dry weather;							
	Side enclosure and covering of any aggregate or dusty material storage piles to							
	reduce emissions. Where this is not practicable owing to frequent usage, watering							
	shall be applied to aggregate fines;							
	Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty							
	material storage piles near ASRs;							
	Tarpaulin covering of all dusty vehicle loads transported to, from and between site							
	locations;							
	Imposition of speed controls for vehicles on unpaved site roads. Ten kilometers per							

EIA Ref	Environmental Protection Measures/Mitigation Measures	Location/Timing	Implementation	Implementation Stages*				Relevant Legislation
			Agent	Des	C	О	Dec	
	 hour is the recommended limit; Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the 3 sides; Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites; and Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise. 							
S4.48 – S4.50	Use of quiet PME	Work sites / During the construction period	Contractor		V			EIAO-TM and Noise Control Ordinance
S4.51	 Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program; Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program; Mobile plant, if any, should be sited as far from NSRs as possible; Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities. 	Work sites / During the construction period	Contractor		V			EIAO-TM and Noise Control Ordinance

EIA Ref	Environmental Protection Measures/Mitigation Measures	Location/Timing	Implementation	Implementation Stages*				Relevant Legislation
			Agent	Des	C	О	Dec	
\$4.56 & \$13	Noise monitoring should be carried out to ensure that noise mitigation measures would be properly implemented. Details of the monitoring requirements are specified in the EM&A Manual.	Barrack / During the construction period	Contractor		√			EIAO-TM and Noise Control Ordinance
S5.212	The practices outlined in ProPECC PN 1/94 Construction Site Drainage should be adopted. It is recommended to install perimeter channels in the works areas to intercept runoff at site boundary prior to the commencement of any earthwork. To prevent storm runoff from washing across exposed soil surfaces, intercepting channels should be provided. Drainage channels are also required to convey site runoff to sand/silt traps and oil interceptors. Provision of regular cleaning and maintenance can ensure the normal operation of these facilities throughout the construction period. Any practical options for the diversion and realignment of drainage should comply with both engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains.	Work sites / During the construction period	Contractor		٧			EIAO-TM and Water Pollution Control Ordinance
S5.213	There is a need to apply to EPD for a discharge licence under the WPCO for discharging effluent from the construction site. The discharge quality is required to meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. Reuse and recycling of the treated effluent can minimise water consumption and reduce the effluent discharge volume. The beneficial uses of the treated effluent may include dust suppression, wheel washing and general cleaning. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the WPCO license which is under the ambit of regional office (RO) of EPD.	Work sites / During the construction period	Contractor		7			EIAO-TM and Water Pollution Control Ordinance

EIA Ref	Environmental Protection Measures/Mitigation Measures	Location/Timing	Implementation	Implementation Stages*				Relevant Legislation
			Agent	Des	С	О	Dec	
	The construction programme should be properly planned to minimise soil excavation, if	Work sites / During	Contractor		V			EIAO-TM and Water
	any, in rainy seasons. This prevents soil erosion from exposed soil surfaces. Any exposed	the construction						Pollution Control
	soil surfaces should also be properly protected to minimise dust emission. In areas where a	period						Ordinance
	large amount of exposed soils exist, earth bunds or sand bags should be provided. Exposed							
	stockpiles should be covered with tarpaulin or impervious sheets at all times. The stockpiles							
S5.214	of materials should be placed at locations away from any stream courses so as to avoid							
	releasing materials into the water bodies. Final surfaces of earthworks should be compacted							
	and protected by permanent work. It is suggested that haul roads should be paved with							
	concrete and the temporary access roads protected using crushed stone or gravel, wherever							
	practicable. Wheel washing facilities should be provided at all site exits to ensure that earth,							
	mud and debris would not be carried out of the works areas by vehicles.							
	Good site practices should be adopted to clean the rubbish and litter on the construction	Work sites / During	Contractor		√			EIAO-TM and Water
S5.215	sites so as to prevent the rubbish and litter from spreading from the site area. It is	the construction						Pollution Control
	recommended to clean the construction sites on a regular basis.	period						Ordinance
	The presence of construction workers generates sewage. It is recommended to provide	Work sites / During	Contractor		√			EIAO-TM and Water
	sufficient chemical toilets in the works areas. The toilet facilities should be more than 30 m	the construction						Pollution Control
S5.216	from any watercourse. A licensed waste collector should be deployed to clean the chemical	period						Ordinance
	toilets on a regular basis. The construction workers can also make use of the existing toilet							
	facilities within the SCISTW as necessary.							

EIA Ref	Environmental Protection Measures/Mitigation Measures	Location/Timing	Implementation Agent	Im	plementa	tion Sta	Relevant Legislation and Guidelines	
			Agent	Des	C	О	Dec	
	Notices should be posted at conspicuous locations to remind the workers not to discharge	Work sites / During	Contractor		\checkmark			EIAO-TM and Water
	any sewage or wastewater into the nearby environment during the construction phase of the	the construction						Pollution Control
	project. Regular environmental audit on the construction site can provide an effective	period						Ordinance
S5.217	control of any malpractices and can achieve continual improvement of environmental							
	performance on site. It is anticipated that sewage generation during the construction phase							
	of the project would not cause water pollution problem after undertaking all required							
	measures.							
	Contractor must register as a chemical waste producer if chemical wastes would be	Work sites / During	Contractor		\checkmark			EIAO-TM and Waste
C5 219	produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its	the construction						Disposal Ordinance
S5.218	subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General)	period						
	Regulation should be observed and complied with for control of chemical wastes.							
	Any service shop and maintenance facilities should be located on hard standings within a	Work sites / During	Contractor		\checkmark			EIAO-TM, Waste
S5.219	bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles	the construction						Disposal Ordinance and
33.219	and equipment involving activities with potential for leakage and spillage should only be	period						Water Pollution Control
	undertaken within the areas appropriately equipped to control these discharges.							Ordinance
	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal	Work sites / During	Contractor		$\sqrt{}$			EIAO-TM and Waste
	Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical	the construction						Disposal Ordinance
	Wastes published under the Waste Disposal Ordinance details the requirements to deal with	period						
S5 220	chemical wastes. General requirements are given as follows:							
S5.220	Suitable containers should be used to hold the chemical wastes to avoid leakage or							
	spillage during storage, handling and transport.							
	Chemical waste containers should be suitably labeled, to notify and warn the							
	personnel who are handling the wastes, to avoid accidents.							

EIA Ref	Environmental Protection Measures/Mitigation Measures	Location/Timing	Implementation Agent	Im	plementa	tion Sta _s	Relevant Legislation	
			Agent	Des	С	0	Dec	
	Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.							
	Good Site Practices	Work sites / During	Contractor		\checkmark			Waste Disposal
	Recommendations for good site practices during the							Ordinance (Cap.54)
	construction activities include:	period						ETWB TCW No.
	Nomination of an approved person, such as a site manager, to be responsible for							19/2005
	good site practices, arrangements for collection and effective disposal to an							
	appropriate facility, of all wastes generated at the site							
	Training of site personnel in proper waste management and chemical handling							
S10.21	procedures							
	Provision of sufficient waste disposal points and regular collection of waste							
	Appropriate measures to minimise windblown litter and dust during transportation							
	of waste by either covering trucks or by transporting wastes in enclosed containers							
	Regular cleaning and maintenance programme for drainage systems, sumps and oil							
	interceptors.							
	Separation of chemical wastes for special handling and appropriate treatment at the							
	Chemical Waste Treatment Facility.							

EIA Ref	Environmental Protection Measures/Mitigation Measures	Location/Timing	Implementation Agent	Im	plementa	tion Sta	Relevant Legislation	
			Agent	Des	C	0	Dec	
S10.22	 Waste Reduction Measures Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: Segregation and storage of different types of waste indifferent containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the workforce Proper storage and site practices to minimise the potential for damage or contamination of construction materials Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. A recording system for the amount of wastes generated, recycled and disposed (including disposal sites) should be proposed. 	Work sites / During planning & design stage, and construction stage	Contractor	<i>√</i>	√			
	 Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycle. 							
S10.24	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material.	Work sites / During the construction period	Contractor		√			Public Health and Municipal Services Ordinance (Cap. 132)

EIA Ref	Environmental Protection Measures/Mitigation Measures	Location/Timing	Implementation	Im	plementa	tion Sta	Relevant Legislation and Guidelines	
			Agent	Des	С	О	Dec	
	Construction and Demolition Material	Work sites / During	Contractor	√	\checkmark			ETWB TCW No.
	In order to minimise impacts resulting from collection and transportation of C&D material	design stage and						33/2002
	for off-site disposal, the excavated material generated from excavation works for the	construction period						ETWB TCW No.
	proposed chlorination plant, dechlorination plant, day tank and pipe trenches should be							19/2005
	reused on-site as backfilling material as far as practicable. The surplus excavated material							
S10.25	should be disposed of at the designated public fill reception facility, as agreed with the							
	Secretary of the Public Fill Committee, for other beneficial uses. C&D waste generated							
	from site clearance and dismantling of formwork would require disposal to the designated							
	landfill site. In order to monitor the disposal of C&D material at the public fill reception							
	facility and landfill and to control fly-tipping, a trip-ticket system should be included. One							
	may make reference to ETWB TCW No. 31/2004 for details.							
	Chemical Waste	Work sites / During	Contractor		√			Waste Disposal
	If chemical wastes are produced at the construction site, the Contractor would be required	the construction						(Chemical Waste)
	to register with the EPD as a chemical waste producer and to follow the guidelines stated in	period						(General) Regulation
	the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good							
	quality containers compatible with the chemical wastes should be used, and incompatible							
S10.26	chemicals should be stored separately. Appropriate labels should be securely attached on							
	each chemical waste container indicating the corresponding chemical characteristics of the							
	chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive,							
	etc. The Contractor shall use a licensed collector to transport and dispose of the chemical							
	wastes, to either the approved Chemical Waste Treatment Centre, or another licensed							
	facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.							

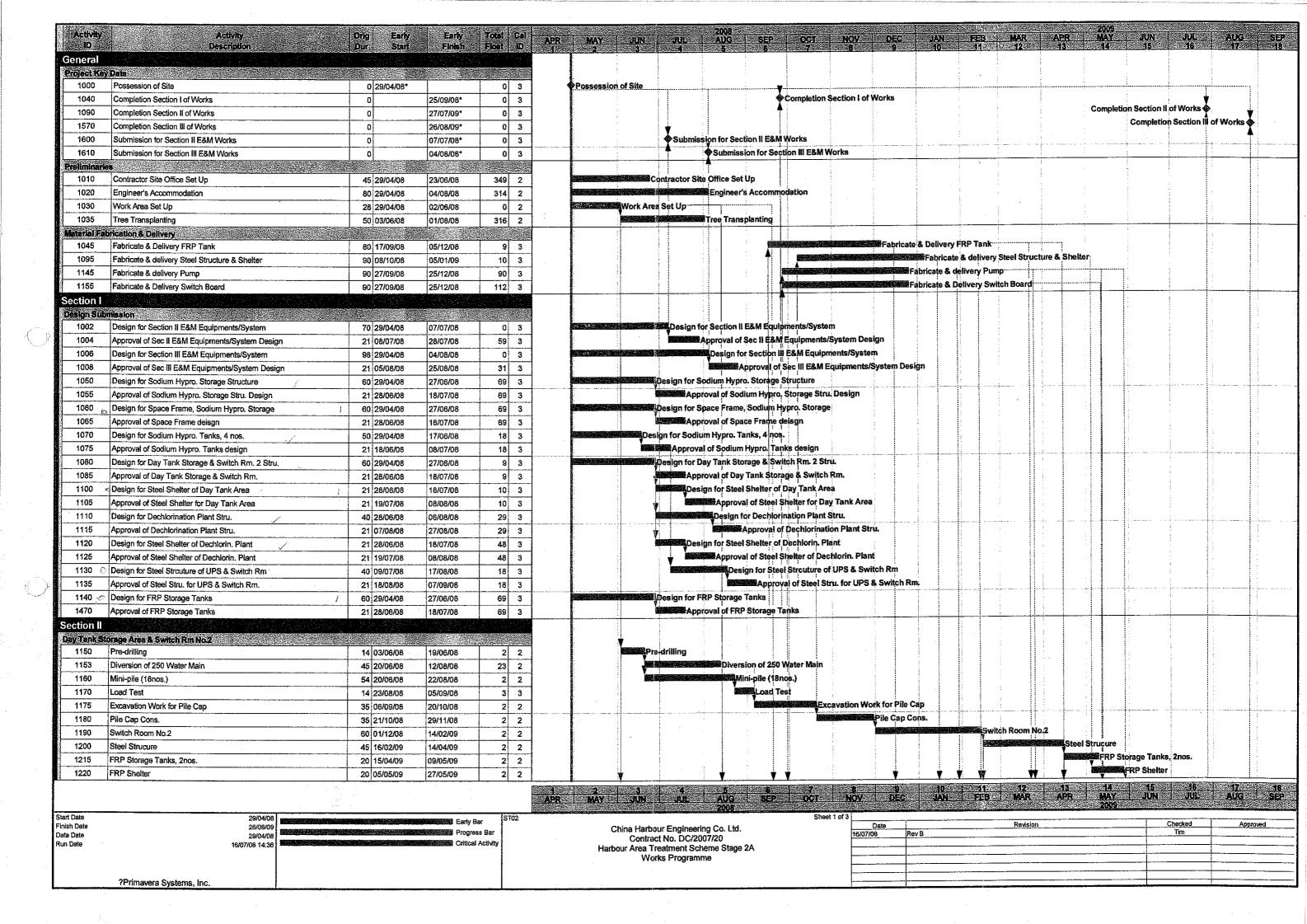
[#] All recommendations and requirements resulted during the course of EIA/EA Process, including ACE and / or accepted public comment to the proposed project.

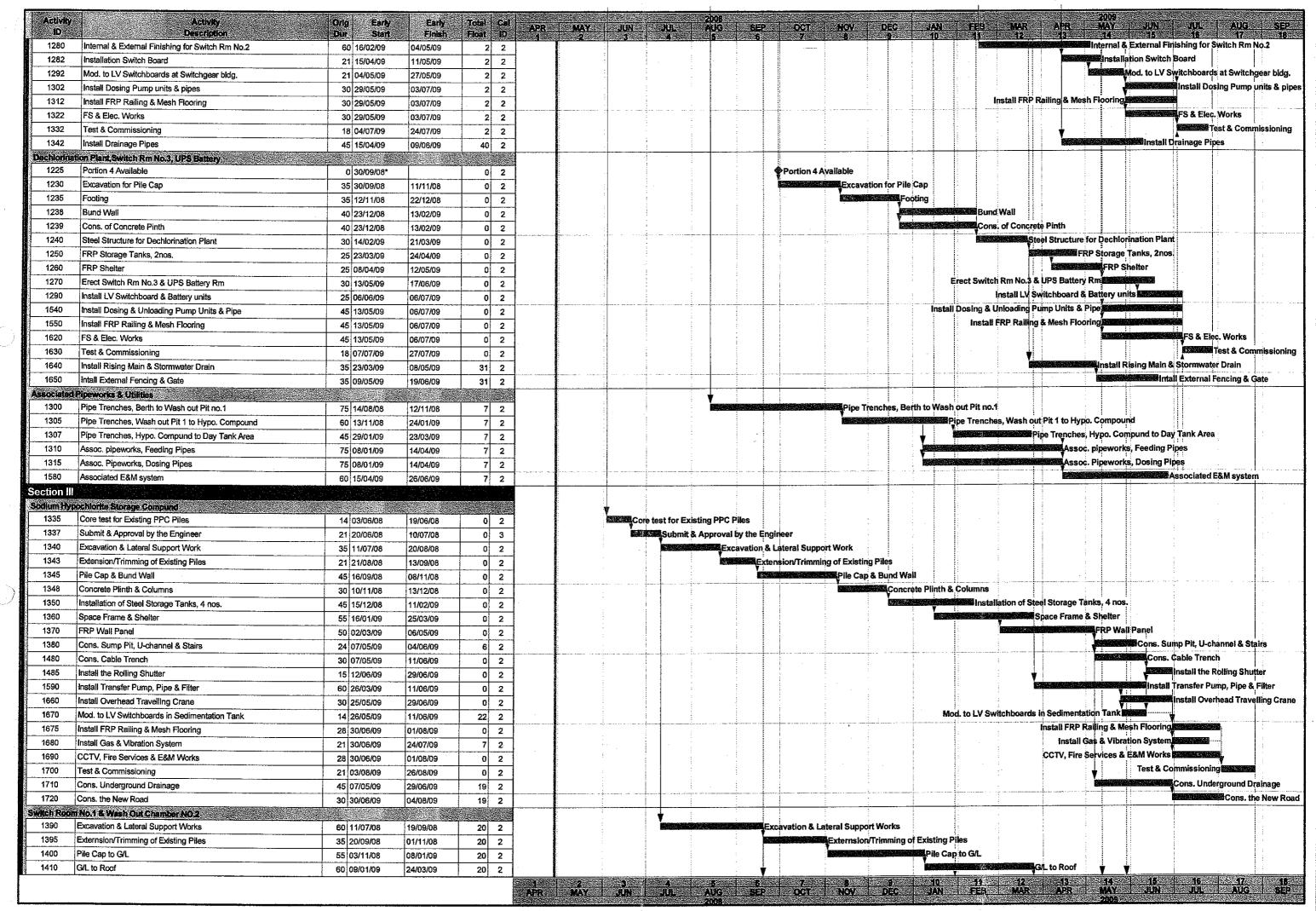
^{*} Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

APPENDIX K SUMMARY OF WASTE GENERATION IN THE REPORTING MONTH

Appendix K

Contract No.: DC/2007/20


Monthly Summary Waste Flow Table For <u>2008</u> (year)


		Actual Quantit	ties of Inert C&I	Materials Gene	erated Monthly		Actual Quantities of C&D Waste Generated Monthly						
Month	Total Quantity Generated	Broken Concrete (see Note 2)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 1)	Chemical Waste	Others, e.g. general refuse		
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)		
Jan													
Feb													
Mar													
Apr													
May	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Jun	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.060		
Sub-total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.060		
July	0.400	0.000	0.000	0.000	0.400	0.000	0.000	0.000	0.000	0.000	0.000		
Aug	0.654	0.000	0.000	0.000	0.654	0.000	0.000	0.000	0.000	0.000	0.000		
Sep	1.250	0.000	0.000	0.000	1.250	0.000	0.000	0.000	0.000	0.000	0.000		
Oct													
Nov													
Dec													
Total	2.304	0.000	0.000	0.000	2.304	0.000	0.000	0.000	0.000	0.000	0.060		

Notes: (1) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(2) Broken concrete for recycling into aggregates.

APPENDIX L CONSTRUCTION PROGRAMME

Sheet 2 of 3

Activity Ei	Activity Description	Orig Early Dur Start	Early Finish	Total Cal Float ID	2008	AUG S
1420	Internal & External Finishing	45 25/03/09	22/05/09	20 2	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Charles of the Control of City
1430	Install Elec. Travelling Hoist	14 12/05/09	27/05/09	20 2	install Elec. Travelling Hole	ist
1530	Install the Switch Board	28 12/05/09	13/06/09	20 2	install the Switch Bo	oard
1730	Install Washout Pump and Pipes	35 29/05/09	09/07/09	20 2	Install Washout Pump and Pipes	
1740	Fire Services & E&M Works	21 15/06/09	09/07/09	20 2	Fire Servi	ices & E&M W
1750	Test & Commissioning	21 10/07/09	03/08/09	20 2	Test & Commissioning	-
ashout Ch	iamber No.1					
1435	Excavation & Lateral Support Works	45 20/09/08	13/11/08	20 2	Excavation & Lateral Support Works	
	Construction of Wash Out Pit No.1	60 14/11/08	29/01/09	93 2	Construction of Wash Out Pit No.1	
	Install Washout Pump & Pipe	28 30/01/09	03/03/09	93 2	Install Washout Pump & Pipe	
	Fire Service & E&M Works	28 04/03/09	07/04/09	93 2	Fire Service & E&M Works	:
1775	Test & Commissioning	21 08/04/09	07/05/09	93 2	Test & Commissioning	
and the same and	ding Area					
	Excavation & Lateral Support Works	30 14/11/08	18/12/08	20 2	Excavation & Lateral Support Works	
	Construction of Structure	45 19/12/08	16/02/09	20 2	Construction of Structure	
	E&M Works	28 17/02/09	21/03/09	107 2	E&M Works	
	Mod. LV Switchboards at Ferric Chloride Storage	14 12/03/09	28/03/09	107 2	Mod. LV Switchboards at Ferric Chloride Storage	
	Test & Commissioning	14 30/03/09	18/04/09	107 2	Test & Commissioning	
NAMES OF THE PERSON NAMES OF T	Cons. Extension Bundwall & 200 UC	28 17/02/09	21/03/09	127 2	Cons. Extension Bundwall & 200 UC	
hers						
	Gas & Vib. Delection for Ferric Chloride Storage	14 12/03/09	28/03/09	121 2	Gas & Vib. Delection for Ferric Chloride Storage	
	CCTV System for Ferric Chloride Storage	14 12/03/09	28/03/09	121 2	CCTV System for Ferric Chloride Storage	
	Truck Unloading Sys for Ferric Chloride Storage	14 12/03/09	28/03/09	121 2	Truck Unloading Sys for Ferric Chloride Storage	
	Demolition of storage struc.	45 17/02/09	15/04/09	20 2	Demolition of storage struc.	. i
	Provision of storage struc.	90 16/04/09	03/08/09	20 2	Provision of storage struc.	<u> </u>
	Road Work	60 23/05/09	03/08/09	20 2		1 1
1810	Cons. Gate Type A	30 29/06/09	03/08/09	20 2		Cons. Gate T

APPENDIX M COMPLAINT LOG

APPENDIX M – Complaint Log

Reporting Month: September 2008

Log Ref.	Location	Received Date	Details of Complaint Investigation/Mitigation Action			
N/A	N/A	N/A	N/A	N/A	N/A	

Remarks: No environmental complaint was received from July 2008 to September 2008.