

PROJECT NO.: TCS/00553/11

CONTRACT NO. DC/2010/02 – DRAINAGE IMPROVEMENT IN SHUEN WAN AND SHEK WU WAI

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (NO.5) – NOVEMBER 2011

Prepared For Kwan Lee-Kuly Joint Venture

Quality Index

Date	Reference No.	Prepared By	Certified by
		(Environmental Consultant)	(Environmental Team Leader)
13 December 2011	TCS00553/11/600/R0063v2	Aul	Prim

Nicola Hon

T.W. Tam

Ver.	Date	Description
1	8 December 2011	First submission
2	13 December 2011	Amended against IEC's comments on 13 December 2011

This report has been prepared by Action-United Environmental Services & Consulting with all reasonable skill, care and diligence within the terms of the Agreement with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

ENVIRON

Ref.: DSDSHUWNEM00 0 0294L.11

13th Dec 2011

Drainage Services Department Projects and Development Branch **Drainage Projects Division** 40/F, 44/F & 45/F., Revenue Tower 5 Gloucester Road, Wan Chai, Hong Kong

By Post and Fax (2827 8700)

Attention : Mr. H.K. Chan & Mr. Ronald Siu

Dear Sir,

Agreement No. DP 01/2010 Re: Services as Independent Environmental Checker for the Drainage Improvement Works in Sha Tin and Tai Po under Contract No. DC/2010/02 Monthly Environmental Monitoring and Audit Report for Nov 2011

Reference is made to Environment Team's submission of the Monthly Environmental Monitoring and Audit Report for Nov 2011 by Email on 8th Dec 2011 (entitled "DC/2010/22 -Monthly EM&A Report (Contract 2) No.5 - November 2011") and the subsequent revision of the report by Email on 13th Dec 2011.

Please be informed that we have no further comment on the captioned revised report. We write to verify the captioned submission in accordance with Condition 5.4 of EP-303/2008.

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

Tony Cheng Independent Environmental Checker

AUES c.c.

Kwan Lee-Kuly JV

Attn: Mr. T. W. Tam Attn: Mr. W. K. Chan By Fax: 2959 6079 By Fax: 2674 6688

Q:\Projects\DSDSHUWNEM00\Corr\Out\DSDSHUWNEM00 0 0294L.11.doc

EXECUTIVE SUMMARY

ES.01. This is the 5th Monthly Environmental Monitoring and Audit (EM&A) Report for designated works of DSD Contract No. DC/2010/02 - Drainage Improvement in Shuen Wan and Shek Wu Wai (hereafter "Contract 2") under Environmental Permit No.EP-303/2008, covering a period from 1 to 30 November 2011 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions			
Construction Noise	tion Leq (30min) Daytime				
	Local Stream Water Sampling - W1 and W2	13			
Water Quality	Local Stream Water Sampling - W3 and W4	13			
water Quality	Hydrological characteristics measurement – H1 and H2	4			
	Hydrological characteristics measurement – H3 and H4	4			
Inspection /	Monthly Environmental Site Inspection and audit by IEC	1			
Audit	Regular weekly Environmental inspection by the Contractor, ET and Site Representative Engineer	4			
Landscape & Visual	Bi-weekly Inspection by a registered Landscape Architect	2			

ES.03. According to updated EM&A Manual Section 6.17, ecological monitoring is conducted by the IEC. Furthermore, a registered Landscape Architect as member of the ET is employed by the Contractor to undertake landscape and visual inspection.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance in construction noise monitoring is recorded in this Reporting Period. For water quality monitoring, a total of 34 Action/Limit Level exceedances, namely 29 Action/Limit Level exceedances in dissolved oxygen, 4 Action/Limit Level exceedances in turbidity and 1 Limit Level exceedances in suspended solids were recorded in this Reporting Period. NOEs were issued to notify EPD, IEC, the Contractor and RE. According to construction activities records provided by KLKVJ, all the exceedances were considered not related to the works under the Project. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action	Limit	Event & Action			
Issues	Parameters	Level Level		NOE Issued	Investigation	Corrective Actions	
Construction Noise	Leq _{30min} Daytime	0	0	0	0	0	
	DO	15	14	29	Not related Contract 2 No		
Water Quality	Turbidity	2	2	4			Not required
	SS	0	1	1			
Hydrological	Water Flow	0	0	0	0	0	
Characteristics	Water Depth	0	0	0	0	0	

Note: NOE – Notification of Exceedance

ENVIRONMENTAL COMPLAINT

ES.05. No written or verbal complaint was recorded in this Reporting Period. The statistics of environmental complaint are summarized in the following table.

Departing Devied	Environmental Complaint Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
1 – 30 November 2011	0	0	NA	

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.06. No environmental summons or successful prosecutions were recorded in this Reporting Period. The statistics of environmental complaint are summarized in the following tables

Domorting Domind	Environmental Summons Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
1 – 30 November 2011	0	0	NA	

Donortin a Dorio d	Environmental Prosecution Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
1 – 30 November 2011	0	0	NA	

REPORTING CHANGE

ES.07. No report changes were made in this Reporting Period.

SITE INSPECTION BY EXTERNAL PARTIES

ES.08. No site inspection was undertaken by external parties i.e. EPD or AFCD within the Reporting Period.

FUTURE KEY ISSUES

- ES.09. During dry season, dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road would be a key issue in coming months.. Nevertheless, special attention should be paid on the muddy water and other water quality pollutants via site surface water runoff into the local stream Wah Ha River. Mitigation measures for water quality should therefore be fully implemented and maintained.
- ES.10. On the other hand, construction noise would be the other key environmental issue during sheet-piling works. Therefore, noise mitigation measures should be properly implemented accordingly.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	PROJECT BACKGROUND	1
	REPORT STRUCTURE	1
2.0	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION	2
	PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE	2
	CONSTRUCTION PROGRESS	2
	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	2
3.0	EM&A PROGRAM REQUIREMENT FOR THE CONTRACT 2	3
	MONITORING PARAMETERS	3
	MONITORING LOCATIONS	3
	MONITORING FREQUENCY	4
	MONITORING EQUIPMENT	5
	MONITORING METHODOLOGY	6
	DATA MANAGEMENT AND DATA QA/QC CONTROL	8
	OTHERS MONITORING IMPLEMENTATION FOR THE CONTRACT	8
	DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	8
	EQUIPMENT CALIBRATION	9
	METEOROLOGICAL INFORMATION	9
4.0	IMPACT MONITORING RESULTS	10
	MONITORING RESULTS SHARING	10
	RESULTS OF CONSTRUCTION NOISE MONITORING	10
	RESULTS OF LOCAL STREAM WATER QUALITY MONITORING	10
	RESULTS OF HYDROLOGICAL CHARACTERISTICS MONITORING	12
5.0	WASTE MANAGEMENT	14
	RECORDS OF WASTE QUANTITIES	14
6.0	SITE INSPECTION	15
	REGULAR SITE INSPECTION AND MONTHLY AUDIT	15
	LANDSCAPE AND VISUAL INSPECTION	15
7.0	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	17
	ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	17
8.0	IMPLEMENTATION STATUS OF MITIGATION MEASURES	18
9.0	IMPACT FORCAST	22
	CONSTRUCTION ACTIVITIES FOR THE FORTH-COMING MONTH	22
	KEY ISSUES FOR THE COMING MONTH	22
10.0		23
	CONCLUSIONS	23
	RECOMMENDATIONS	23

LIST OF TABLES

- TABLE 2-1
 STATUS OF ENVIRONMENTAL LICENSES AND PERMITS
- TABLE 3-1SUMMARY OF MONITORING PARAMETERS
- TABLE 3-2
 Designated Monitoring Locations of the EM&A Programme
- TABLE 3-3
 MONITORING EQUIPMENT USED IN EM&A PROGRAM
- TABLE 3-4
 TESTING METHOD AND DETECTION LIMIT OF SUSPENDED SOLIDS
- TABLE 3-5
 ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
- TABLE 3-6
 ACTION AND LIMIT LEVELS FOR WATER QUALITY
- TABLE 3-7
 ACTION AND LIMIT LEVELS FOR HYDROLOGICAL CHARACTERISTICS
- TABLE 4-1SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS, dB(A)
- TABLE 4-2
 WATER QUALITY RESULTS SUMMARY IN REPORTING PERIOD
- TABLE 4-3
 STATISTICS WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
- TABLE 4-4DETAILED MONITORING RESULTS OF HYDROLOGICAL CHARACTERISTICS AT H3 AND H4
- TABLE 4-5
 SUMMARIZED HYDROLOGICAL CHARACTERISTICS OF WATER DEPTH, M
- TABLE 4-6 Summarized Hydrological Characteristics of Average Volumetric flow rate (Q), M^3/s
- TABLE 5-1SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
- TABLE 5-2SUMMARY OF QUANTITIES OF C&D WASTES
- TABLE 6-1
 SITE INSPECTION OF OBSERVATIONS FINDINGS AND DEFICIENCIES
- TABLE 6-2
 LANDSCAPE & VISUAL INSPECTION OF OBSERVATIONS
- TABLE 7-1
 STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
- TABLE 7-2
 STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
- TABLE 7-3
 STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
- TABLE 8-1
 ENVIRONMENTAL MITIGATION MEASURES

LIST OF APPENDICES

- APPENDIX A SITE LOCATION PLAN OF DSD CONTRACT 1 AND CONTRACT 2 AT SHUEN WAN
- APPENDIX B ORGANIZATION CHART AND THE KEY CONTACT PERSON
- APPENDIX C MASTER AND THREE MONTH ROLLING CONSTRUCTION PROGRAMS
- APPENDIX D ENVIRONMENTAL MONITORING LOCATIONS
- APPENDIX E CALIBRATION CERTIFICATES OF THE MONITORING EQUIPMENT AND CERTIFICATE OF ALS TECHNICHEM (HK) PTY LTD
- APPENDIX F EVENT AND ACTION PLAN
- APPENDIX G MONITORING SCHEDULE IN REPORTING PERIOD AND COMING MONTH
- APPENDIX H METEOROLOGICAL DATA OF REPORTING PERIOD
- APPENDIX I DATA BASE OF MONITORING RESULT S
- APPENDIX J GRAPHICAL PLOTS OF IMPACT MONITORING –NOISE, WATER QUALITY AND HYDROLOGICAL CHARACTERISTICS
- APPENDIX K MONTHLY SUMMARY WASTE FLOW TABLE
- APPENDIX L INSPECTION AND AUDITING CHECKLIST
- APPENDIX M MONTHLY LANDSCAPE & VISUAL INSPECTION REPORT

1.0 INTRODUCTION

PROJECT BACKGROUND

- 1.01 *Kwan Lee-Kuly Joint Venture* (hereinafter 'KLKJV') has been awarded by Drainage Services Department (hereinafter 'DSD') of the Contract No. DC/2010/02 Drainage Improvement in Shuen Wan and Shek Wu Wai (hereinafter 'the Project'). The Project is scheduled to commence in May 2011 and complete in March 2014 for about 35 months.
- 1.02 The works to be executed under the Project are located in Shuen Wan and Shek Wu Wai. The works mainly comprise construction of about 735 metres long single-cell box culvert along Tung Tsz Road in Shuen Wan, Tai Po and construction of about 15 m long three-cell box culvert in Shek Wu Wai, San Tin .
- 1.03 For the Project, the construction work at Tung Tsz Road Shuen Wan (hereinafter 'the Contract 2') is part of the Drainage Improvement works amongst Shatin and Tai Po and it is defined as a "Designated Project" which controlled under Environmental Permit EP-303/2008. Currently, DSD has another Contract DC/2009/22 (hereinafter 'the Contract 1') ongoing for construction at Shuen Wan working area which under the same Environmental Permit and the updated Environmental Monitoring and Audit Manual (hereinafter 'the Updated EM&A Manual'). Both DSD contract's site boundary at Shuen Wan are shown in *Appendix A*. On the other hand, Shek Wu Wai San Tin is a non-designated project work and no environmental monitoring and audit is request to carry out.
- 1.04 In order to effectively implement the environmental protection measures stipulated in the Project Profile (hereinafter 'the PP'), Environmental Impact Assessment Report (hereinafter "the EIAR'), Environmental Permit EP303/2008, a corresponding EM&A Manual have been prepared to outline the environmental monitoring and auditing (hereinafter 'the EM&A') programme undertake for the Contracts 1 and 2.
- 1.05 KLKJV has commissioned Action-United Environmental Services and Consulting (AUES) as an independent environmental team (hereinafter 'the ET') to implement the EM&A program for the environmental protection of the Project. Due to the construction of Contracts 1 and 2 carry out is just about the time, a Proposal Environmental Monitoring Programme and Methodology (hereinafter the "PEMPM") was prepared and submitted to describe EM&A programme would be undertaken during construction period of the Contract 2.
- 1.06 The baseline monitoring of EM&A program has been performed by the Contract 1 ET. Although Action and Limit levels of environmental performance criteria have established by the Contract 1 ET, the Action/Limit levels re-establishment to use the Contract 2 was conducted by the Contract 2 ET. The re-established environment performance criteria has accepted by the IEC and also submitted to the EPD seek for endorsement.
- 1.07 This is the 5th Monthly EM&A Report for Contract 2 presenting the monitoring results and inspection findings for the reporting period from 1 to 30 November 2011.

REPORT STRUCTURE

1.08 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-.

INTRODUCTION
PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION
EM&A PROGRAM REQUIREMENT FOR THE PROJECT
IMPACT MONITORING RESULTS
WASTE MANAGEMENT
SITE INSPECTIONS
ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
IMPLEMENTATION STATUES OF MITIGATION MEASURES
IMPACT FORECAST
CONCLUSIONS AND RECOMMENDATION

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\5th Month (November 2011)\R0063v2.docx Action-United Environmental Services and Consulting

2.0 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

2.02 The master and three month rolling construction programs are enclosed in *Appendix C* and the major construction activities undertaken at Tung Tsz Road, Shuen Wan in this report period are listed below:.

Location	Construction Activities			
Bay 21	• Fixing of reinforcement of top slab & side walls			
	Erection and removal of formwork			
	• Concrete casting of top slab & side walls			
	• Backfill the soft material between sheetpile and box culvert			
Bay 22	• Fixing of reinforcement of top slab of box culvert			
	• Erection and removal for top slab & side walls			
	Concrete casting of top slab			
	• Install shorting for fill soft material between sheet pile and box culvert			
	Backfill the soft material			
Bays 23 & 24	• Excavation of soft material			
	• Install sheetpile and shoring			

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1Status of Environmental Licenses and Permits

It	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notified EPD on 17 October 2011
2	hemical Waste Producer Registration (WPN5213-727-K2972-02)	Approved on 28 October 2011
	Water Pollution Control Ordinance (Discharge License) WT00009528-2011	Valid to 31 July 2016
4	Billing Account for Disposal of Construction Waste (Account No.: 7012838)	Effective

- 2.04 The "Proposal Environmental Monitoring Programme and Methodology (R0006 Version 2)" was set out in accordance with the Updated Environmental Monitoring and Audit Manual. It was approved by the ER and agreed with the Independent Environmental Checker (IEC) and submitted to the EPD for endorsement.
- 2.05 For Contract 2 of the Project, no Baseline Monitoring Report was issued by the ETL. However, a new set of the Action/ Limit levels as used to Contract 2 were proposed by ET. It had been accepted by the IEC and also submitted to the EPD seek for endorsement.

3.0 EM&A PROGRAM REQUIREMENT FOR THE CONTRACT 2

3.01 The EM&A requirements set out in the PP, EIAR, Environmental Permit EP303/2008 (hereinafter 'the EP'), and the associated updated EM&A Manual, are presented below sub-section.

MONITORING PARAMETERS

3.02 According to the EIAR and the updated EM&A Manual, The monitoring parameters of each environmental aspect summarized in *Table 3-1* will be performed as under the Project.

Suspended Solids (hereinafter 'SS')

Monitor and audit the proper implementation of mitigation measures stipulated

Inspect and audit the implementation and maintenance of landscape and visual

Environmental Aspect	Parameters			
Construction Noise	 A-weighted equivalent continuous sound pressure level (30min) (hereinafter 'Leq(30min)' during the normal working hours; and A-weighted equivalent continuous sound pressure level (5min) (hereinafter 			
	'Leq(5min)' for construction work during the restricted hours.			
Water Quality	In Situ	Temperature, Dissolved Oxygen, Dissolved Oxygen		
	Measurement	Saturation, pH and Turbidity		

The water flow and depth measurement onsite

in EIA report and the updated EM&A Manual

Table 3-1Summary of Monitoring Parameters

(Ibddi	initigation incusates	
Remarks:	* the monitoring is carried out by IEC	

mitigation measures

Laboratory

Analysis

MONITORING LOCATIONS

Hydrological

Landscape & Visual

*Ecology

Characteristics

3.03 Monitoring locations have been proposed in the updated EM&A Manual. Graphic plot to show in *Appendix D* and summarized in *Table 3-2*.

 Table 3-2
 Designated Monitoring Locations of the EM&A Programme

	0	formoring Docutors of the Differral Fogrunnie
Aspect	Location ID	Address
	M1	14, Shuen Wan Chim Uk
Construction	AL1	Joint Village Office for Villages in Shuen Wan, Tai PO
Construction Noise	M2	150, San Tau Kok
INDISE	M3	31, Wai Ha
	M4	Block 15, T rèasure Spot Garden
		Between the Shuen Wan Marsh and ECA
	^(#) W1	• Co-ordinates: E839301, N836386
		• Existing River Bed Level: +1.75mPD).
	W2	Between Tolo Harbour and Proposed Penstock
		• Co-ordinates: E839542, N836184
Water Quality		• Exiting River Bed Level: +1.48mPD)
water Quanty		Upstream of Tung Tze Shan Road
	^(*) W3	• Co-ordinates: E838760, N836714
		• Exiting River Bed Level: +5.08mPD)
		Wai Ha Village 29D
	W4	• Co-ordinates: E838865, N836621
		• Exiting River Bed Level: +4.05mPD)
	H1	Between the Shuen Wan Marsh and ECA
Hydrological	111	• Coordinates: E839306, N836379)
Tryurological	H2	Route 10 Sam Kung Temple
	112	• Coordinates: E839163, N836433

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\5th Month (November 2011)\R0063v2.docx Action-United Environmental Services and Consulting

Aspect	Location ID	Address							
	H3	Upstream of Tung Tze Shan Road							
	115	• Coordinates: E838760, N836714							
	114	Wai Ha Village 29D							
	H4	• Coordinates: E838865, N836621							
Ecology	Areas within 100m of the works boundary under Contract 2								
Landscape &	As within and adjacent to the construction sites and works areas under the Contract								
Visual	2,								

Remarks:

(#) Control Station of Contract 1, however impact station of Contract 2
 (*) Control Station of Contract 2

MONITORING FREQUENCY

3.04 The monitoring frequency and duration as specified in the updated EM&A Manual are summarized below.

Construction Noise

Frequency: Once a week during 0700-1900 on normal weekdays for Leq30min

If the construction work is undertake at restricted hour, the monitoring frequency of construction noise will be conducted in accordance with the related Construction Noise Permit requirement issued by EPD as follow

- 3 consecutive Leq5min at restrict hour from 1700 2300;
- 3 consecutive Leq5min for restrict hour from 2300 0700 next day;
- 3 consecutive Leq5min for Sunday or public holiday from 0700 1900;
- <u>Duration</u>: Throughout the construction period when the major construction activities are undertaken

Water Quality

- <u>Frequency</u>: Three times a week. The interval between 2 sets monitoring are not less than 36 hours
- <u>Duration</u>: During the construction phase of Contract 2 to undertake (in accordance with the Updated EM&A Manual Section 4.27).

Hydrological Characteristics

Frequency: Once per week at mid-flood and mid-ebb tides

<u>Duration</u>: During the construction phase of Contract 2 to undertake; and one year after the construction is complete as operation phase monitoring (in accordance with the Updated EM&A Manual Section 4.32).

<u>Ecology</u>

3.05 In according with Section 6.17 of the Updated EM&A Manual, ecological monitoring should be conducted by the Independent Environmental Checker (hereinafter 'IEC'). Monitoring programme details should be agreed with the Agriculture, Fisheries and Conservation Department (AFCD). Moreover, the IEC should submit reports on the findings of each monitoring trip, and a final report summarizing the monitoring results over the entire monitoring period to AFCD and Environmental Protection Department (EPD). Hence, no monitoring or surveying should be carried out by ET of the Project.

Landscape & Visual

3.06 According to Section 7.4 of the Updated EM&A Manual, site inspection bi-weekly should be performed to check the implementation and maintenance of landscape and visual mitigation measures whether to full realize.

MONITORING EQUIPMENT

<u>Noise Monitoring</u>

3.07 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for noise monitoring. The sound level meter shall be checked with an acoustic calibrator. The wind speed shall be check with a portable wind speed meter, which capable to measure wind speed in m/s.

Water Quality Monitoring

- 3.08 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring DO level in the range of 0 20mg L-1 and 0 200% saturation; and temperature of 0 45 degree Celsius.
- 3.09 **pH Meter** The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in arrange of 0 to 14.
- 3.10 **Turbidity (NTU) Measuring Equipment** The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.11 **Water Sampling Equipment** A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.12 **Water Depth Detector** A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. The unit can either be hand held or affixed to the bottom of the work boat.
- 3.13 **Sample Containers and Storage** Water samples for SS should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.14 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

Hydrological Characteristics

- 3.15 **Water Depth Detector** A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station.
- 3.16 **Stream water flow Equipment** –A portable, battery-operated flow meter should be used for the determination of water flow rate at each designated monitoring location and record in m^3/s .
- 3.17 The monitoring equipment using for the Project's EM&A program were proposed by the ET and verified by the IEC prior commencement of the monitoring. Details of the equipment used for impact monitoring are listed in *Table 3-3*.

Table 3-3Monitoring Equipment Used in EM&A Program

Equipment	Model		
Construction Noise			
Integrating Sound Level Meter	B&K Type 2238		
Calibrator	B&K Type 4231		
Portable Wind Speed Indicator	Testo Anemometer		
Water quality			
Water Depth Detector	Eagle Sonar		
Water Sampler	A transparent PVC cylinder / bucket		

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\5th Month (November 2011)\R0063v2.docx Action-United Environmental Services and Consulting

Equipment	Model		
Thermometer & DO meter	DO Meter YSI 55 or YSI Professional Plus		
pH meter	Extech EC500		
Turbidimeter	Hach 2100Q		
Sample Container	High density polythene bottles (provided by laboratory)		
Storage Container	'Willow' 33-litre plastic cool box		
Suspended Solids	HOKLAS-accredited laboratory (ALS Technichem (HK) Pty		
Suspended Solids	Ltd)		
Hydrological Characteristics			
Water flow meter	GLOBAL WATER model FP211		
Water Depth Detector	Eagle Sonar or an appropriate steel ruler or rope with		
	appropriate weight		

MONITORING METHODOLOGY

Noise Monitoring

- 3.18 Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels (dB). Supplementary statistical results $(L_{10} \text{ and } L_{90})$ were also obtained for reference.
- 3.19 Sound level meter as listed in *Table 3-3* are complied with the *International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1)* specifications, as recommended in Technical Memorandum (TM) issued under the *Noise Control Ordinance (NCO)*.
- 3.20 During the monitoring, all noise measurements were performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). Leq_(30min) in six consecutive Leq_(5min) measurements were used as the monitoring parameter for the time period between 0700-1900 hours on weekdays; and also Leq_(15min) in three consecutive Leq_(5min) measurements is used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.21 During the course of measurement, the sound level meter is mounted on a tripod with a height of 1.2m above ground and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield is fitted for all measurements. The assessment point is normally set as free-field situation for the measurement.
- 3.22 Prior to noise measurement, the accuracy of the sound level meter is checked by an acoustic calibrator which generated a known sound pressure level at a known frequency. The checking was performed before and after the noise measurement.

Water Quality

- 3.23 Water quality monitoring are conducted at the depth below:-
 - Three depths: 1m below water surface, 1m above river bed and at mid-depth when the water depth exceeds 6m, or
 - If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above river bed, and or
 - If the water depth is less than 3m, 1 sample at mid-depth is taken
- 3.24 Water depths are determined prior to measurement and sampling, using a portable battery operated depth detector, brand named 'Eagle Sonar', if the depths exceed 1.5 meter. If the depth between 1.5 meter and 1 meter, plastic tape measurement tied with appropriate weight are used the depth estimation. For the depth well below 1 meter, an appropriate steel ruler or rope with appropriate weight are used for the depth measurement.
- 3.25 A transparent PVC cylinder, with a capacity of not less than 2 litres, is used for water sampling.

The water sampler is lowered into the water body at a predetermined depth. The trigger system of the sampler is activated with a messenger and opening ends of the sampler are closed accordingly then the sample of water is collected. If the water depth is less than 500mm, a water bucket is be used as a water sampler to minimize the possibility of the latching system disturbing sediment during water sampling

- 3.26 A portable YSI 55 DO Meter or YSI Professional Plus is used for in-situ DO measurement. The DO meter is capable of measuring DO in the range of 0 20 mg/L and 0 200 % saturation and checked against water saturated ambient air on each monitoring day prior to monitoring. Although the DO Meter automatically compensates ambient water temperature to a standard temperature of 20° C for ease of comparison of the data under the changing reality, the temperature readings of the DO Meter are be recorded in the field data sheets. The equipment calibration is performed on quarterly basis.
- 3.27 A portable Extech EC500 pH Meter or YSI Professional Plus is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 - 14 and readable to 0.1. Standard buffer solutions of pH 7 and pH 10 are used for calibration of the instrument before and after measurement. The equipment calibration is performed on quarterly basis.
- 3.28 A portable Hach 2100Q Turbidity Meter is be used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU. The equipment calibration is performed on quarterly basis.
- 3.29 Water samples are contained in screw-cap PE (Poly-Ethylene) bottles, which are provided and pretreated and 'PE' (Poly-Ethylene) sampling bottles provided and pre-treated according to corresponding analytical requirements. Where appropriate, the sampling bottles are rinsed with the water to be contained. Water sample is then transferred from the sampler to the sample bottles.
- 3.30 One liter or 500 mL water sample are collected from each depth for SS determination. The collected samples are stored in a cool box maintained at 4^oC and delivered to laboratory upon completion of the sampling by end of each sampling day.
- 3.31 All water samples are analyzed with Suspended Solids (SS) as specified in the updated *EM&A Manual* by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS are determined by the laboratory upon receipt of the water samples using HOKLAS accredited analytical method. The detection limits and testing method are shown below in *Table 3-4*. The certificate of ALS Technichem (HK) Pty Ltd is provided in *Appendix E*.

 Table 3-4
 Testing Method and Detection limit of Suspended Solids

Determinant	Testing Method	Detection Limit
Suspended solid	Determination use HOKLAS accredited analytical methods namely ALS Method EA-025 (based on APHA 2540 D)	2mg/L

Hydrological Characteristics

- 3.32 A portable, water flow meter, brand named "*GLOBAL WATER model FP211*" are used to determine the water current flow at the designated monitoring stations. A water flow velocity is measured at mid depth of current water body or 0.5m below water level.
- 3.33 Water depths are determined prior to measurement, using a portable battery operated depth detector, brand named 'Eagle Sonar', if the depths exceed 1.5 meter. If the depth between 1.5 meter and 1 meter, plastic tape measurement tied with appropriate weight are used the depth estimation. For the depths well below 1 meter, an appropriate steel ruler or rope with appropriate weight are used for the depth measurement.

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\5th Month (November 2011)\R0063v2.docx Action-United Environmental Services and Consulting

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.34 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring program.
- 3.35 The monitoring data recorded in the equipment e.g. noise meter and Multi-parameter Water Quality Monitoring System are downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

OTHERS MONITORING IMPLEMENTATION FOR THE CONTRACT

<u>Ecology</u>

3.36 Ecological monitoring and reporting should be performed by IEC. No equipment and procedure are presented in the EM&A Monthly Report.

Landscape and Visual

3.37 A registered Landscape Architect as member of the ET is employed by the Contractor to undertake site inspection. Site inspection will undertake at least once every two weeks throughout the construction period to ensure compliance with the intended aims of the mitigation measures are proposed in the EIA and the updated EM&A Manual, implemented by the Contractor.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.38 The re-established performance criteria for construction noise, water quality and hydrological, namely Action and Limit levels is used for Contract 2 are listed in *Tables 3-5, 3-6,* and *3-7*.

Location	Time Period	Action Level in dB(A)	Limit Level in dB(A)
	Daytime 0700 – 1900 hrs on normal weekdays	When one	> 75* dB(A)
M1, AL1, M2, M3, M4	1900 – 2300 on all days and 0700 – 2300 on general holidays (including Sundays	documented complaint is	60/65/70 dB(A)**
	2300 – 0700 on all days	received	45/50/55 dB(A)**

 Table 3-5
 Action and Limit Levels for Construction Noise

Note: * Reduces to 70dB(A) for schools and 65dB(A) during the school examination periods. ** To be selected based on the Area Sensitivity Rating of A/B/C, and the conditions of the applicable CNP(s) must be followed

Table 3-6Action and Limit Levels for Water Quality

Banamatan	Performance	Impact Station				
Parameter	Criteria	W1	W2	W4		
DO Concentration (mg/L)	Action Level	7.27	7.26	9.27		
DO Concentration (mg/L)	Limit Level	7.05	6.44	7.98		
all.	Action Level	NA	NA	NA		
pН	Limit Level	6 - 9	6 - 9	6 - 9		
Typhidity (NITLI)	Action Level	4.77	2.46	3.32		
Turbidity (NTU)	Limit Level	5.26	3.42	4.52		
Sugnanded Solids (mg/L)	Action Level	9.73	8.89	6.98		
Suspended Solids (mg/L)	Limit Level	10.77	9.75	7.66		

Notes:

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\5th Month (November 2011)\R0063v2.docx Action-United Environmental Services and Consulting

- The proposed Action/Limit Levels of DO are established to be used 5%-ile/1%-ile of all the baseline data;
- The proposed Action/Limit Levels of Turbidity and SS are established to be used 95%-ile/99%-ile of all the baseline data;
- For DO, non-compliance of the water quality limits occur is when monitoring result lower than the action/limit levels;
- For turbidity and SS, non-compliance of the water quality limits occurs is when monitoring result higher than the limits; and
- For pH, non-compliance of the quality limit occur is when monitoring result lower than 6 and higher than 9; and
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered necessary

 Table 3-7
 Action and Limit Levels for Hydrological Characteristics

Parameter	Acceptance	Monitoring Station					
rarameter	Criteria	H1	H2				
Water Depth	Action Level	0.08 (80% of baseline water depth)	0.40 (80% of baseline water depth)				
(m)	Limit Level	0.06 (60% of baseline water depth)	0.30 (60% of baseline water depth)				
Volumetric	Action Level	120% of control station's water flow rate on the same day of measurement	120% of control station's water flow rate on the same day of measurement				
Flow Rate (Q), m ³ /s	Limit Level	140% of control station's water flow rate on the same day of measurement	140% of control station's water flow rate on the same day of measurement				

- 3.39 The locations H3 and H4 are a reference measurement point in order to monitor any changes in the hydrological characteristics of Wai Ha River arising from the work Contract 2 to affect the Shuen Wan Marsh.
- 3.40 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

EQUIPMENT CALIBRATION

- 3.41 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme in yearly basis.
- 3.42 All the water quality monitoring equipment such as the DO, pH and Turbidity meters are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.43 A portable, water flow meter, brand named "GLOBAL WATER model FP211" is calibrated in yearly basis.
- 3.44 All updated calibration certificates of the monitoring equipment used for the impact monitoring program in this Reporting Period are attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.45 The meteorological information during the construction phase is obtained from Tai Po and Shatin Stations of the Hong Kong Observatory (HKO). The meteorological data during the impact monitoring days are summarized in *Appendix H*

4.0 IMPACT MONITORING RESULTS

4.01 The monitoring schedule had been issued to relevant parties before each Reporting Period which presented in *Appendix G*. The works undertaken during the Reporting Period are illustrated in *Appendix C*. The monitoring results are presented in the following sub-sections.

MONITORING RESULTS SHARING

4.02 Environmental Permit EP-203/2008 was issued on 25 February 2008 by EPD which adopted for both Contracts 1 and 2 of DSD construction at Shuen Wan. Also, the EM&A programme of both contracts are undertaken in accordance with the same updated EM&A Manual which has to be carried out during construction period. According to the updated EM&A manual, designated monitoring Locations M1 and AL1 for noise monitoring stations, Locations W1 and W2 for water quality monitoring stations, and Locations H1 and H2 for hydrological measurement are requested to perform at both Contracts 1 and 2. Since Contract 1 has already commenced in January 2011, those results measured by Contract 1 would be shared for the Contract 2. This recommendation has been accepted by IEC and submitted to EPD.

RESULTS OF CONSTRUCTION NOISE MONITORING

4.03 In this Reporting Period, all noise monitoring results at the designated locations M1, AL1, M2, M3 and M4 are summarized in *Table 4-1*. The detail monitoring data are presented in *Appendix I*.

Table 4-1	Summary of Construction Noise Monitoring Results, dB(A)
_	Lea30min (dB(A)

Data	Leq30min (dB(A)							
Date	M1 ^(#)	AL1 ^(#)	M2 ^(*)	M3 ^(*)	M4 ^(*)			
3-Nov-11	3-Nov-11 48 54.5 5-Nov-11 - - 8-Nov-11 - - 10-Nov-11 47.8 53 17-Nov-11 51.2 56.6		-	-	-			
5-Nov-11			62.4	68.0	64.6			
8-Nov-11			62.4	65.0	51.8			
10-Nov-11			-	-	-			
17-Nov-11			68.9	69.2	48.8			
22-Nov-11	-	-	59.2	52.4	54.9			
24-Nov-11	51	56.9	-	-	-			
Limit Level	>75 dB(A)							

Remarks:

(#) The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.

(*) The monitoring is undertaken under free field situation. A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines

- 4.04 The sound meter was set in a free field situation at the designated monitoring locations M2, M3 and M4, therefore, a façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines. For Location A1 and AN1, the monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.
- 4.05 No noise complaint (which is an Action Level exceedance) was received in this Reporting Period. As shown in *Table 4-1*, all the noise monitoring result are well below 75dB(A) and no Action or Limit Level exceedance was triggered during this Reporting Period. The graphical plot is shown in *Appendix J*.

RESULTS OF LOCAL STREAM WATER QUALITY MONITORING

- 4.06 In this Reporting Period, **13** sampling days were performed at all designated measurement Points W1, W2, W3 and W4 for local stream water quality monitoring by the Contracts 1 and 2. The monitoring results including in-situ measurements and laboratory testing results are provided in *Appendix I*. The graphical plots are shown in *Appendix J*.
- 4.07 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids in

Sampling	DO (mg/L)]	Turbidity (NTU)			SS (mg/L)			
date	W1	W2	W3*	W4	W1	W2	W3*	W4	W1	W2	W3*	W4
1-Nov-11	7.75	7.12	5.66	<u>6.19</u>	1.2	<u>3.5</u>	1.27	1.05	4.80	2.00	24.00	2.00
3-Nov-11	7.7	7.89	6.64	<u>5.65</u>	1.9	1.6	0.94	1.29	1.80	8.00	5.00	2.00
5-Nov-11	7.39	7.21	6.58	<u>5.73</u>	0.3	1.2	1.11	0.99	2.80	2.80	2.00	2.00
8-Nov-11	7.13	6.88	5.47	<u>5.51</u>	1.8	0.1	1.04	1.09	3.40	2.40	11.00	4.00
10-Nov-11	7.78	7.31	6.72	<u>5.71</u>	4.4	0.4	1.10	1.15	9.30	<u>15.80</u>	4.00	2.00
12-Nov-11	7.69	7.13	6.53	<u>5.91</u>	0.7	1.2	1.01	0.92	6.80	6.40	3.00	2.00
15-Nov-11	7.13	7.21	6.51	<u>6.17</u>	2.2	2.3	1.14	1.10	3.20	6.40	2.00	2.00
17-Nov-11	7.46	7.3	4.74	<u>6.44</u>	0.3	1.2	1.31	0.98	1.00	3.20	2.00	2.00
19-Nov-11	7.65	7.17	4.62	<u>6.20</u>	2.9	3.3	0.92	0.94	1.20	3.40	2.00	2.00
22-Nov-11	7.25	7	5.09	<u>5.40</u>	1	1.2	4.40	4.20	2.40	3.80	4.00	2.00
24-Nov-11	7.18	6.87	5.70	<u>6.17</u>	1.5	0.9	1.09	1.00	3.60	3.20	2.00	2.00
26-Nov-11	7.1	7.16	5.69	<u>5.90</u>	0	2.4	1.84	1.72	1.00	2.80	2.00	2.00
29-Nov-11	<u>6.53</u>	6.63	5.38	<u>5.48</u>	7.2	1.6	2.16	2.21	1.00	2.40	5.00	3.00

this Reporting Period,	are summarized in <i>Table 4-2</i> .
------------------------	--------------------------------------

 Table 4-2
 Water Quality Results Summary in Reporting Period

Remarks:

• (*) Control Station

• Bold and Italic is exceeded Action Level

• Bold with underline is exceeded Limit Level

- 4.08 During the Reporting Period, field measurements showed that stream water temperatures were within 21.8°C to 29.4°C and pH values within 6.80 to 8.60. Furthermore, salinity measured at W1 and W2 were detected respectively as 1.4-9.3 ppt and 9.4-20.9 ppt.
- 4.09 A statistics of exceedances for the three parameters: dissolved oxygen (DO), turbidity and suspended solids is shown in *Table 4-3*.

Station	DO		Turbidity		SS		Total Exceedance	
Station	Action	Limit	Action	Limit	Action	Limit	Action	Limit
W1	5	1	0	1	0	0	5	2
W2	10	0	1	1	0	1	11	2
W4	0	13	1	0	0	0	1	13
No of Exceedance	15	14	2	2	0	1	17	17

 Table 4-3
 Statistics Water Quality Exceedance in the Reporting Period

- 4.10 As shown in **Table 4-3**, a total of 34 Action/Limit Level exceedances, namely 29 Action/Limit Level exceedances in dissolved oxygen, 4 Action/Limit Level exceedances in turbidity and 1 Limit Level exceedances in suspended solids were recorded in this Reporting Period. NOEs were issued to notify EPD, IEC, the Contractor and RE upon confirmation of the results.
- 4.11 For the exceedances of turbidity and suspended solids, Contractor reported that the construction activities undertaken during the exceedance days included:-

Bay 21: Fixing of reinforcement of top slab & side walls, erection and removal of formwork, concrete casting of top slab & side walls and backfill the soft material between sheetpile and box culvert

Bay 22: Fixing of reinforcement of top slab of box culvert, erection and removal for top slab & side walls, concrete casting of top slab, install shorting for fill soft material between sheet pile and box culvert and backfilling the soft material

Bays 23 & 24: excavation of soft material and install sheetpile and shoring

- 4.12 Such activities may lead to increase of turbidity or suspended solids levels for the nearby stream by washed out from stockpiles of dusty materials, excavated surface or dusty haul roads, etc. To minimize the impact to the existing stream, precautionary measures such as construction of a sedimentation pit and temporary artificial precipitation stream to remove the suspended solids from wastewater to maintain the water quality of downstream.
- 4.13 Moreover, no direct wastewater discharged or site runoff from the construction site to the Wai Ha River is occurred during the course of monitoring. It is noted the construction work area is located at downstream of Locations W3 and W4, therefore, the water quality at Locations W3 and W4 affected by the Project is unlikely. Furthermore, tidal effect were affecting the monitoring results of Stations W1(+1.75mPD) and W2(+1.48mPD). It is concluded that the exceedances were not due to the Project.
- 4.14 In the regard of the dissolved oxygen exceedances, the construction activities during the DO exceedances as reported by the Contractor comprised none of DO depleting characteristics. It is concluded that all the exceedances were not due to the Project.
- 4.15 KLKJV is reminded to fully implement the required water quality mitigation measures in accordance with the updated EM&A Manual stipulation during construction under the Project. In particular when excavation and the associated box culvert construction works are undertaken near Wai Ha River, all construction wastewater or runoff generated from work area should be treated and drained to the designated discharge point.

RESULTS OF HYDROLOGICAL CHARACTERISTICS MONITORING

4.16 In this Reporting Period, hydrological characteristics measurement at H1, H2, H3 and H4 were carried out on 5, 12, 19 and 26 November 2011. The monitoring data of H1 and H2 provided by DC/2009/22 is showed *Appendix I*. The detailed H3 and H4 measurement results in this Reporting Period are presented in *Tables 4-4*.

Date	Measurement Time	Tide Condition	River Width (m)	Water Depth (m)	Cut Section (m ²)	Velocity Flow Rate (m/s)	Volum	verage etric Flow (Q), m ³ /s
Measurem	ent Point: H3							
5 Nov. 11	14:10	Flood	7.45	0.3	2.2350	0.7	1	.565
5 Nov 11	10:21	Ebb	7.45	0.3	2.2350	0.6	1	.341
12 Nov. 11	10:25	Flood	7.45	0.3	2.2350	0.9	2	2.012
12 Nov 11	14:17	Ebb	7.45	0.3	2.2350	0.8	1	.788
19 Nov 11	11:50	Flood	7.45	0.3	2.2350	0.7	1	.565
19 NOV 11	17:54	Ebb	7.45	0.3	2.2350	0.6	1	.341
26 Nov. 11	14:00	Flood	7.45	0.3	2.2350	0.8	1	.788
26 Nov 11	10:00	Ebb	7.45	0.3	2.2350	0.7	1	.565
Measurem	ent Point: H4							
5 N 11	14:15	Flood	2.74	0.4	1.0960	0.3	().329
5 Nov 11	10:27	Ebb	2.74	0.4	1.0960	0.3	().329
10 N 11	10:35	Flood	2.74	0.4	1.0960	0.3	().329
12 Nov 11	14:23	Ebb	2.74	0.4	1.0960	0.3	().329
10 N 11	12:04	Flood	2.74	0.4	1.0960	0.3	().329
19 Nov 11	18:02	Ebb	2.74	0.4	1.0960	0.2	().219
26 No. 11	14:20	Flood	2.74	0.4	1.0960	0.3	().329
26 Nov 11	10:13	Ebb	2.74	0.4	1.0960	0.3	().329
Remarks: Tid	le information extr	act from Tai	Po Kau Stat	ion				
Date	<u>Time</u> <u>H</u>	leight(m)	<u>Time</u> <u>H</u>	Height(m)	<u>Time</u>	Height(m)	<u>Time</u>	Height(m)
5 Nov 1	1 01:59	1.1	08:38	1.8	13:50	1.2	20:54	2.2
12 Nov 1	1 06:28	0.7	13:10	1.6	16:12	1.4	21:21	2.4

Table 4-4Detailed monitoring results of hydrological characteristics at H3 and H4

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\5th Month (November 2011)\R0063v2.docx Action-United Environmental Services and Consulting

Date	<u>Time</u>	Height(m)	<u>Time</u>	Height(m)	<u>Time</u>	Height(m)	<u>Time</u>	Height(m)
19 Nov 11	00:24	1.2	07:20	1.8	12:28	1.0	19:38	2.3
26 Nov 11	00:16	2.6	06:22	0.5	13:26	1.6	17:06	1.4

4.16 Hydrological characteristics results of the all measurement points are summarized in *Tables 4-5* and *4-6*.

Table 4-5	Summarized Hydrological Characteristics of Water Depth, m
-----------	---

Data	Mid-Flood			Nid-Flood Mid-Ebb			-Ebb	
Date	H1	H2	H3	H4	H1	H2	H3	H4
5-Nov-11	0.49	0.42	0.30	0.40	0.24	0.16	0.30	0.40
12-Nov-11	0.18	0.12	0.30	0.40	0.18	0.12	0.30	0.40
19-Nov-11	0.18	0.37	0.30	0.40	-	-	0.30	0.40
26-Nov-11	-	-	0.30	0.40	0.12	0.17	0.30	0.40

Table 4-6	Summarized Hydrological Characteristics of Average Volumetric flow rate
	$(Q), m^{3}/s$

Date	Mid-Flood			Mid-Ebb				
Date	H1	H2	H3	H4	H1	H2	H3	H4
5-Nov-11	0.075	0.377	1.56	0.33	0.075	0.377	1.34	0.33
12-Nov-11	0.075	0.754	2.01	0.33	0.15	0.7536	1.79	0.33
19-Nov-11	0.15	0.377	1.56	0.33	-	-	1.34	0.22
26-Nov-11	-	-	1.79	0.33	0.1	0.502	1.56	0.33

4.17 To compare the monitoring data between the Reporting Period (rainy season) and baseline monitoring period, the currently water depth and volumetric flow rate has insignificant changed. Furthermore, water depth and water flow rate were found no exceedance in this Reporting Period.

5.0 WASTE MANAGEMENT

5.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

RECORDS OF WASTE QUANTITIES

- 5.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 5.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 5-1* and *5-2* and the Monthly Summary Waste Flow Table is shown in *Appendix K*. Whenever possible, materials were reused on-site as far as practicable.

Table 5-1Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) (m ³)	0	-
Reused in this Contract (Inert) (m ³)	0	-
Reused in other Projects (Inert) (m ³)	0	-
Disposal as Public Fill (Inert) (m ³)	0	-

Table 5-2Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Recycled Metal (kg)	0	-
Recycled Paper / Cardboard Packing (kg)	0	-
Recycled Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (m ³)	45	-

5.04 To control over the site performance on waste management, the Contractor shall ensure that all solid and liquid waste management works are in full compliance with the relevant license/permit requirements, such as the effluent discharge license and the chemical waste producer registration. The Contractor is also reminded to implement the recommended environmental mitigation measures according to the EM&A Manual based on actual site conditions.

6.0 SITE INSPECTION

REGULAR SITE INSPECTION AND MONTHLY AUDIT

- 6.01 According to the Updated Environmental Monitoring and Audit Manual, regular site inspection to evaluate the project environmental performance should be carried out during construction phase. Weekly environmental site inspections had been carried out by the Contractor, ET and RE on 3, 10, 17 and 24 November 2011. Also, joint site inspection with the IEC was carried out on 10 November 2011. No non-compliance was noted.
- 6.02 Observations for the site inspection and monthly audit within this Reporting Period are summarized in *Table 6-1* and weekly inspection checklists are attached in *Appendix L*.

	•	
Date	Findings / Deficiencies	Follow-Up Status
3 Nov 11	• The Contractor is reminded to keep the site entrance/exit clean.	The Observation has been rectified before the site inspection on 10 Nov 2011
10 Nov 11	 No adverse environmental impact was observed during site inspection. General reminder is advised to the Contractor such as: Waste disposal should be in accordance with the Project WMP. Housekeeping should be maintained. Waste bin should be provided on site. 	Not follow up for reminder.
17 Nov 11	• Open stockpile was observed within the site, the Contractor is reminded to cover any dusty material with tarpaulin sheet under dry and windy conditions.	The Observation has been rectified before the site inspection on 24 Nov 2011
24 Nov 11	• No adverse environmental impact was observed during site inspection.	N.A.

Table 6-1Site Inspection of Observations – Findings and Deficiencies

LANDSCAPE AND VISUAL INSPECTION

- 6.03 In this Reporting Period, landscape and visual inspection was carried on 4 and 18 November 2011. The stand-alone of monthly Landscape & Visual Report (November 2011) signed by the registered Landscape Architect attach at *Appendix M*.
- 6.04 According to monthly Landscape & Visual Report (November 2011), mitigation measures implemented in Reporting Period list as below:

Table 6-2Landscape & Visual Inspection of Observations

Parameter	Observation	Recommendation
Visual Screen	• A section of temporary hoardings have been	No specific recommendation is
	erected from west to east parts of Tung Tsz	required
	Road opposite to San Tau Kwok.	
	• No hoardings have been erected along the	
	rest of the proposed works area since neither	
	construction works nor any associated	
	preparation works have been commenced.	
Contaminant /	• No direct discharge of contaminants or any	Regular monitoring should be
Sediment	polluted fluid was observed within the	conducted to ensure no direct
Control	active works area. All used water and	discharge or leakage of contaminants
	underground water was collected and	or any polluted fluid into the adjacent
	drained into filtration beds and a	Wai Ha River
	sedimentation tanks before the discharge.	
	• As observed, a sheet of PVC liner was	
	overlaid along the filtration beds within the	
	active works area. This practice could lower	
	the chance of contaminating the vegetation	

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\5th Month (November 2011)\R0063v2.docx Action-United Environmental Services and Consulting

Parameter	Observation	Recommendation		
	in the adjacent Shuen Wan marsh.			
Pollution Control	 Drained water from underground was observed to be filtered in the sedimentation tank and filtration beds before the discharge. As observed, a sheet of PVC liner was overlaid along the filtration beds within the active works area. This practice could lower the chance of contaminating the vegetation in the adjacent Shuen Wan marsh. No direct discharge of water into the adjacent Wai Ha River was observed. 	No specific recommendation is required		
Existing Trees within Works Area	 Tree felling had been continued within the fenced area from west to east parts along Tung Tsz Road and opposite to San Tau Kwok. Clearance of herbaceous vegetation within the fenced area was also recorded. All trees proposed to be retained within the Project Area were recorded generally in fair health conditions. Significant signs of damage of existing tree crowns, trunks and roots resulting from the construction works were not observed in this monthly monitoring. Protective areas had been established to protect the four specimens (including one dead specimen (Tree No.: PH04) due to natural dieback) of the protected shrub species of conservation interest <i>Pavetta hongkongensis</i>. No significant signs of damage on the health of these specimens due to the Project were observed. Provision of the shade netting for the two specimens (PH01 and PH02) of the protected plants P. <i>hongkongensis</i> was observed. 	 Within the active works area, proper TPZs should be demarcated for the retained trees and the trees to be transplanted that would be directly affected by the construction work. In addition, if necessary, these retained trees or trees to be transplanted shall be watered regularly to maintain their health. Provision of a larger shade net for the protected plants P. <i>hongkongensis</i> is recommended before the actual transplantation. The net should be mounted horizontally on top of the plants. Shade net should be provided for the living seedling of P. <i>hongkongensis</i> (PH03) on the opposite side to House 63, Tung Tsz Road. Disturbance is prohibited in all 		
Construction Light	• No construction light impact to the surrounding villages and to Plover Cove as all construction activities and construction sites are halted at 1800. No construction light at night is provided by the Main Contractor.	from the construction works. No specific recommendation is required		

6.05 The next bi-weekly Landscape & Visual Monitoring in December 2011 is scheduled to be conducted in the week of 1, 12 and 26 December 2011.

7.0 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

7.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 7-1, 7-2* and *7-3*.

Table 7-1 Statistical Summary of Environmental Complaints

Departing Devied	Environmental Complaint Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
July 2011 –October 2011	0	0	NA	
November 2011	0	0	NA	

Table 7-2 Statistical Summary of Environmental Summons

Departing Devied	Environmental Summons Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
July 2011 –October 2011	0	0	NA	
November 2011	0	0	NA	

Table 7-3 Statistical Summary of Environmental Prosecution

Departing Devied	Environmental Prosecution Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
July 2011 –October 2011	0	0	NA	
November 2011	0	0	NA	

8.0 IMPLEMENTATION STATUS OF MITIGATION MEASURES

8.01 The environmental mitigation measures that recommended in the Updated Environmental Monitoring and Audit Manual covered the issues of dust, noise and waste and they are summarized as follows:

Noise Mitigation Measure

- (a) Only well-maintained plant should be operated on-site and plant shall be serviced regularly during the construction program;
- (b) Silencers or mufflers on construction equipment should be utilized and shall be properly maintained during the construction program;
- (c) Mobile plant, if any, should be sited as far from NSRs as possible;
- (d) Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;
- (e) Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs;
- (f) Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities;
- (g) Use of quieter plants to carry out the construction tasks proposed for the Project;
- (h) Use about 3.5m high of temporary noise barriers as screened the noisy PMEs to carry out construction of box culvert and site clearance.
- (i) Low Impact Method, such as using PMEs smaller in size and to be enclosed by noise enclosure, should be adopted for the construction of box culvert and pipe laying in Wai Ha; and
- (j) Use of noise enclosure during the works area for pipe laying in Wai Ha.

Dust Mitigation Measure

- 8.02 Implementation of mitigation measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices including but not limited to the following:
 - (a) Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved road, with complete coverage, particularly during dry weather;
 - (b) Use of frequent watering for particularly dusty static construction areas and areas close to ASRs;
 - (c) Tarpaulin covering of all dusty vehicle loads transported to, from and between site location;
 - (d) Establishment and use of vehicle wheel and body washing facilities at the exit points of the site;
 - (e) Routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs;
 - (f) Stockpiled excavated materials should be covered with tarpaulin and should be removed offsite within 24 hours to avoid any odour nuisance arising.

Local Stream Water Quality Mitigation Measure

- (a) Before commencing any site formation work, all sewer and drainage connections shall be sealed to prevent debris, soil, sand etc. from entering public sewers/drains;
- (b) Temporary ditches shall be provided to facilitate run-off discharge into appropriate watercourses, via a silt retention pond. No site run-off shall enter the fishponds at Shuen Wan;
- (c) Sand/silt removal facilities such as sand traps, silt traps and sediment basins shall be provided to remove sand/silt particles from runoff to meet the requirements of the Technical Memorandum standard under the Water Pollution Control Ordinance. The design of silt removal facilities shall be based on the guidelines provided in ProPECC PN 1/94. All drainage facilities and erosion and sediment control structures shall be inspected monthly and maintained to ensure proper and efficient operation al all times and particularly during rainstorms
- (d) Water pumped out from excavated pits shall be discharged into sill removal facilities;

- (e) During rainstorms, exposed slope/soil surfaces shall be covered by a tarpaulin or other means. Other measures that need to be implemented before, during, and after rainstorms as summarized in ProPECC PN 1/94 shall be followed
- (f) Exposed soil areas shall be minimized to reduce potential for increased siltation and contamination of runoff
- (g) Earthwork final surfaces shall be well compacted and subsequent permanent work or surface protection shall be immediately performed to reduce the potential of soil erosion;
- (h) Open stockpiles of construction materials or construction wastes on-site shall be covered with tarpaulin or similar fabric during rainstorms;
- (i) For the construction of the box culvert next to the existing channel of the Wai Ha River, sand bags should be deployed around the boundary of the works trench to prevent muddy water ingress into the adjacent CA or Wai Ha River. Sand bags should also be used to surround the excavated trench. Generally, the sand bags will be placed up to a height 01 300mm to provide adequate allowance for the built-up water level during rainstorm event. With sand bags in place surface runoff will be intercepted and flow to Wai Ha River or collected by the existing drainage system as usual;
- (j) For the construction of the box culvert in the extreme northeast corner of Shuen Wan Marsh Conservation Area sand bags should be deployed along the limit of the works area to prevent muddy water ingress into the CA. Sand bags should be placed to a height 0.1 at least 300mm from ground level and +2.5 mPD (whichever is greater) to provide adequate allowance for the built-up water level during rainstorm events Unpolluted surface runoff within the works area should then be collected and directed into the existing drainage system;
- (k) Sheet-piles, which would be installed around the works trench near the Conservation Area, would be extended above ground level for about 2m to serve as hoardings to isolate the works site;
- Tarpaulin sheets would be used to cover the excavation areas during heavy rainstorms. This would prevent the ingress of rainwater into the trench minimizing the risk of muddy water getting into Wai Ha River and the adjacent Conservation Area;
- (m) Any concrete washing water would be contained inside the works site surrounded by the extended sheet piles. A pump sump at the bottom 0f the trench would be provided to pump any excess water during concrete washing;
- (n) Stockpiling the excavated materials adjacent to the Conservation Area would not be allowed. The excavated materials would be either removed off site immediately after excavation, or stockpile at location(s) away from the Conservation Area. The stockpile locations shall be approved by the site engineer;
- (o) Debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering the Wai Ha River and fish ponds at Shuen Wan. Stockpiles of cement and other construction materials should be kept covered when not being used.
- (p) Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities to prevent spillage of fuels and solvents to nearby water bodies, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity 01 the largest tank The bund should be drained of rainwater after a rain event
- (q) Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site. A licensed contractor would be responsible for appropriate disposal and maintenance of these facilities;
- (r) The excavation works within the upstream end of the existing river channel of the Wai Ha River for the construction of the proposed box culvert should be carried out in dry condition. Containment measures such as bunds and barriers shall be used within the affected length of the river channel and the excavation works restricted to within an enclosed dry section of the channel. The excavation works within Wai Ha River shall be restricted to the period from October to April

Waste Mitigation Measures

- (a) The Contractor shall observe and comply with the Waste Disposal Ordinance (WDO) and its subsidiary regulations.
- (b) The Contractor shall submit to the Engineer for approval a Waste Management Plan with appropriate mitigation measures including the allocation of an area for waste segregation and shall ensure that the day-to-day site operations comply with the approved waste management plan.
- (c) The Contractor shall minimize the generation of waste from his work. Avoidance and minimization of waste generation can be achieved through changing or improving design and practices, careful planning and good site management.
- (d) The reuse and recycling of waste shall be practised as far as possible. The recycling materials shall include paper/cardboard, timber and metal etc.
- (e) The Contractor shall ensure that Construction and Demolition (C&D) materials are sorted into public fill (inert portion) and C&D waste (non-inert portion). The public fill which comprises soil, rock, concrete, brick, cement plaster/mortar, inert building debris, aggregates and asphalt shall be reused in earth filling, reclamation or site formation works. The C&D waste which comprises metal, timber, paper, glass, junk and general garbage shall be reused or recycled where possible and, as the last resort, disposal of at landfills.
- (f) The Contractor shall record the amount of wastes generated, recycled and disposed of (including the disposal sites). The Contractor shall use a trip ticket system for the disposal of C&D materials to any designated public filling facility and/or landfill.
- (g) In order to avoid dust or odour impacts, any vehicles leaving a works area carrying construction waste or public fill shall have their load covered.
- (h) To avoid the excessive use of wood, reusable steel shutters shall be used as a preferred alternative to formwork and falsework where possible.
- (i) The Contractor shall observe and comply with the Waste Disposal (Chemical Waste) (General) Regulation. The Contractor shall apply for registration as chemical waste producer under the Waste Disposal (Chemical Waste) (General) Regulation when chemical waste is produced. All chemical waste shall be properly stored, labeled, packaged and collected in accordance with the Regulation.
- 8.03 KLKJV had been implementing the required environmental mitigation measures according to the Updated Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by KLKJV in this Reporting Period are summarized in *Table 8-1*.

Table 8-1Environmental Mitigation Measures

Issues	Environmental Mitigation Measures		
Water Quality	 Wastewater were appropriately treated by treatment facilities; Drainage channels were provided to convey run-off into the treatment facilities; and Drainage systems were regularly and adequately maintained. 		
Air Quality	 Regular watering to reduce dust emissions from all exposed site surface, particularly during dry weather; Frequent watering for particularly dusty construction areas and areas close to air sensitive receivers; Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet; Public roads around the site entrance/exit had been kept clean and free from dust; and 		
1	• Tarpaulin covering of any dusty materials on a vehicle leaving the site.		

Issues	Environmental Mitigation Measures
	 Good site practices to limit noise emissions at the sources; Use of quite plant and working methods; Use of site hoarding or other mass materials as noise barrier to screen noise at ground level of NSRs; Use of shrouds/temporary noise barriers to screen noise from relatively static PMEs; Scheduling of construction works nearly Tung Tsz Road; and Alternative use of plant items within one worksite, where practicable.
Chemical Management	• Excavated material should be reused on site as far as possible to minimize off-site disposal. Scrap metals or abandoned equipment should be recycled if
General	The site was generally kept tidy and clean.

9.0 IMPACT FORCAST

CONSTRUCTION ACTIVITIES FOR THE FORTH-COMING MONTH

- 9.01 Construction activities planned to be carried out next month at Shuen Wan is listed as below:-
 - Driving sheetpiles
 - Excavation and installation of lateral shoring system
 - Formwork and concreting of Box Culvert
 - Tree felling
- 9.02 Three months Rolling Construction Program is attached in *Appendix C*

KEY ISSUES FOR THE COMING MONTH

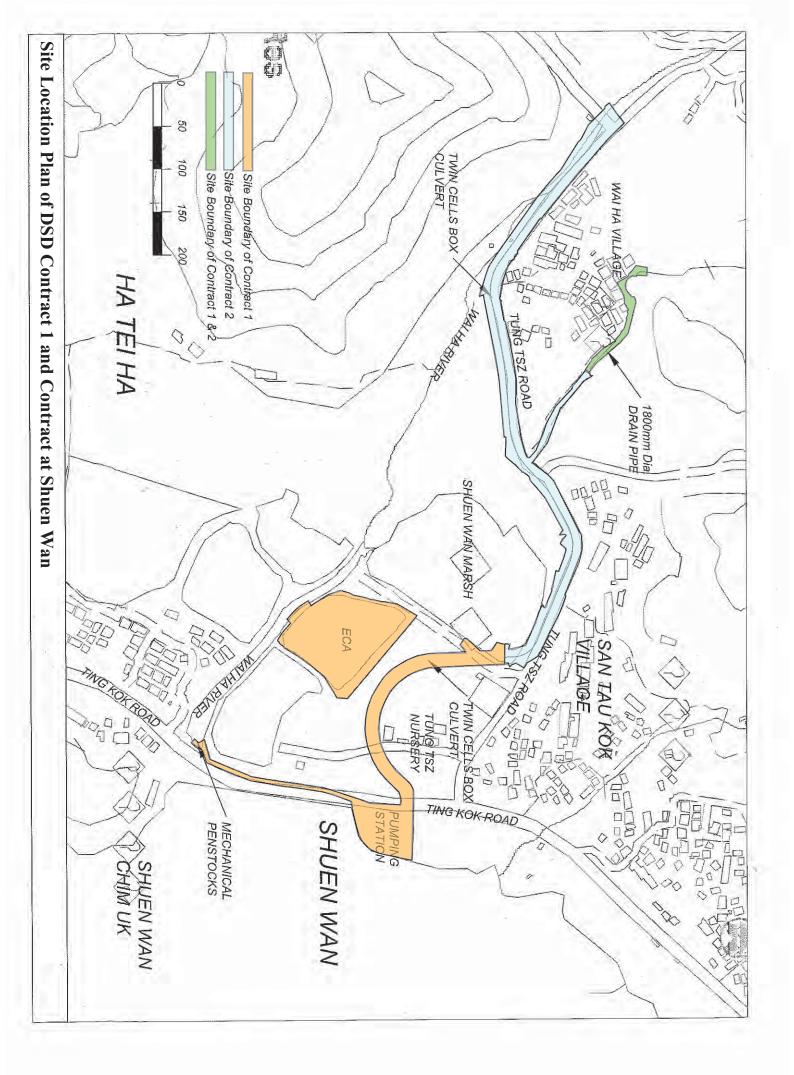
- 9.03 According to construction activities carry out in coming months, key issues to be considered include:
 - Implementation of dust suppression measures at all times;
 - Ensure dust suppression measures are implemented properly;
 - Disposal of empty engine oil containers within site area;
 - Sediment catch-pits and silt removal facilities should be regularly maintained;
 - Management of chemical wastes;
 - Discharge of site effluent to the nearby local stream or storm drainage, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
 - Follow-up of improvement on general waste management issues; and
 - Implementation of construction noise preventative control measures.

10.0 CONCLUSIONS AND RECOMMENTATIONS

CONCLUSIONS

- 10.01 This is the 5th monthly EM&A report for Contract 2 presenting the monitoring results and inspection findings for the Reporting Period from 1 to 30 November 2011.
- 10.02 No noise complaint (which is an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period. No NOE or the associated corrective actions were therefore issued.
- 10.03 For water quality monitoring, a total of 34 Action/Limit Level exceedances, namely 29 Action/Limit Level exceedances in dissolved oxygen, 4 Action/Limit Level exceedances in turbidity and 1 Limit Level exceedances in suspended solids were recorded in this Reporting Period. NOEs were issued to notify EPD, IEC, the Contractor and RE upon confirmation of the results. According to information such as construction activities provided by KLKVJ, all the exceedances are considered not due to the Project. Furthermore, the hydrological characteristics of water depth and water flow rate were found no exceedance in this Reporting Period.
- 10.04 No documented complaint, notification of summons or successful prosecution was received.
- 10.05 Weekly environmental site inspections had been carried out by the Contractor, ET and the RE on 3, 10, 17 and 24 November 2011. Furthermore, joint site inspection with the IEC was carried out on 10 November 2011. No non-compliance was indicated during the site inspection. In general, it was reminded that air mitigation measures such as covering of stockpile and watering at site exit should be maintained especially during dry season. The environmental performance of the Project was therefore considered satisfactory.
- 10.06 In this Reporting Period, landscape and visual inspection was carried on **4 and 18 November 2011**. The stand-alone of monthly Landscape & Visual Report (November 2011) as signed by the registered Landscape Architect.
- 10.07 No site visit was undertaken by any external party in this Reporting Period.

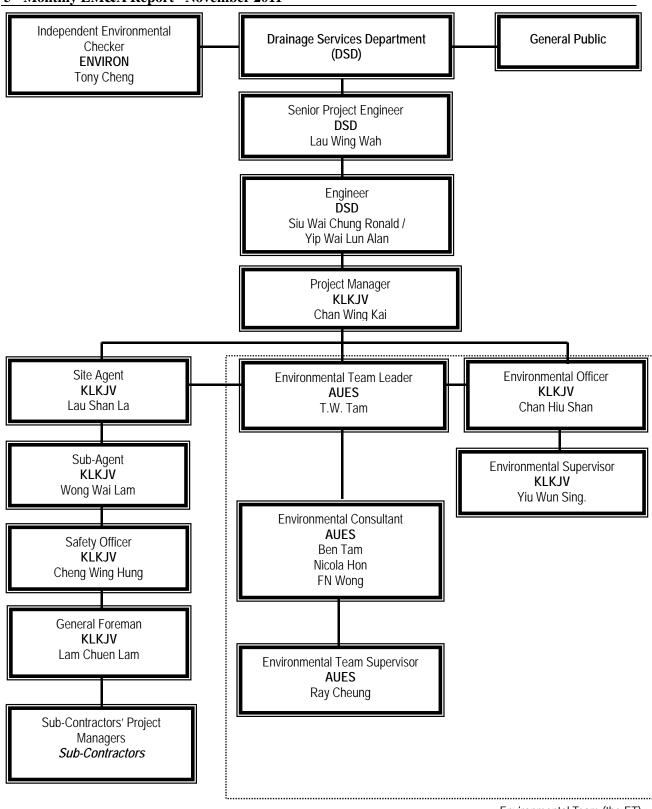
RECOMMENDATIONS


- 10.08 As excavation works of construction box culvert or a trench, surface runoff or water discharge to local stream course should be key environment aspect issue. The contractor is reminded that mitigation measures for water quality and ecology should be fully implemented.
- 10.09 Furthermore, dry season (November to March next year) will come, special attention should be paid to the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. On the other hand, construction noise should be other key environmental issue during sheet-piling process. The noise mitigation measures should be necessary to implement in accordance with EM&A Manual stipulation.
- 10.10 To control the site performance on waste management, the KLKJV shall ensure that all solid and liquid waste management works are fully in compliance with the relevant license/permit requirements, such as the effluent discharge licence and the chemical waste producer registration. KLKJV is also reminded to implement the recommended environmental mitigation measures according to the Updated Environmental Monitoring and Audit Manual.
- 10.11 Baseline monitoring of water quality was conducted during typical Hong Kong dry season (November to March of next year). It is important that influence of the seasonal changes is taken into account when interpreting monitoring data of water quality obtained in the coming wet season. Review of the baseline conditions may need to be conducted regularly in particular during times of seasonal changes. If the baseline changes are evident, the environmental performance criteria should be re-established under agreement of the ER and IEC and submitted to the EPD for endorsement.

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\5th Month (November 2011)\R0063v2.docx Action-United Environmental Services and Consulting

Appendix A

Site Location Plan (DSD Contract 1 and Contract 2 at Shuen Wan)



Appendix B

Organization Chart and the Key Contact Person

DSD Contract No. Contract No. DC/2010/02 - Drainage Improvement in Shuen Wan and Shek Wu Wai 5th Monthly EM&A Report –November 2011

Environmental Team (the ET)

AUES

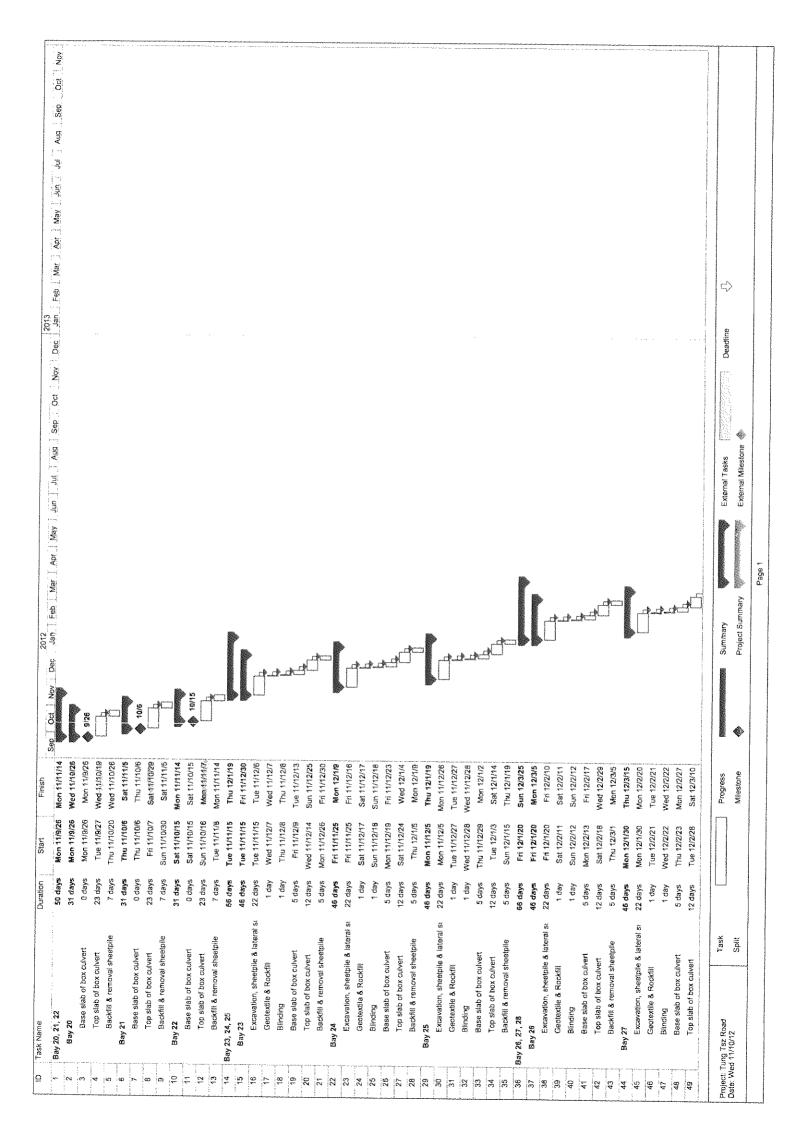
Environmental Management Organization

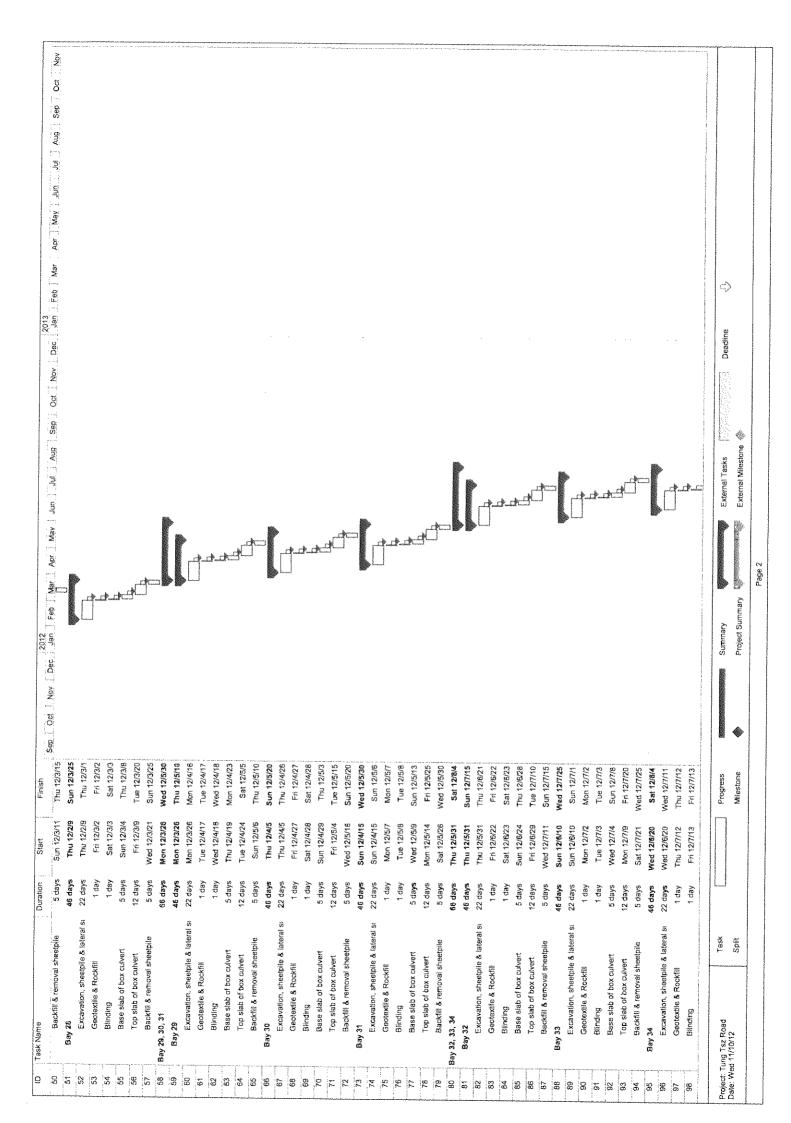
Contact Details of Key Personnel

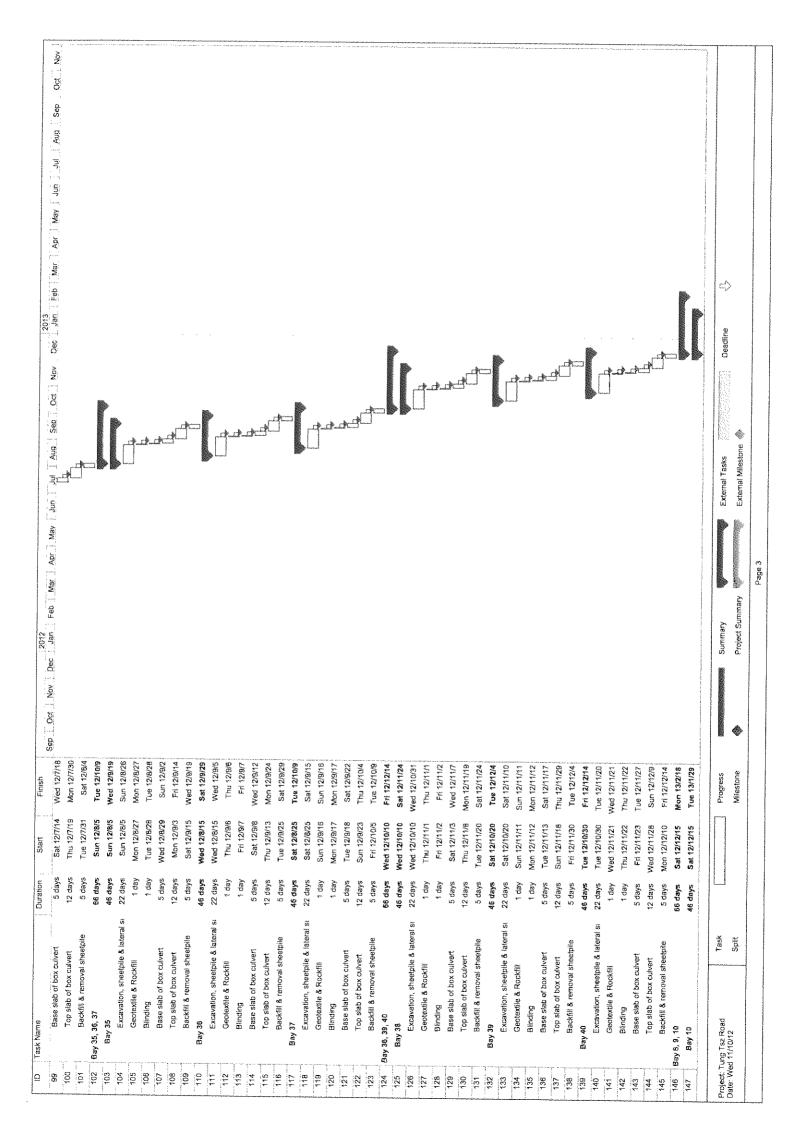
Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr. Luk Wai Hung	2594 7400	2827 8700
DSD	Senior Engineer	Mr. Lau Wing Wah	2594 7402	2827 8700
DSD	Engineer	Mr. Siu Wai Chung, Ronald	2594 7595	2827 8700
DSD	Engineer	Mr. Yip Wai Lun	2594 7359	2827 8700
DSD	Senior Inspector	Mr. Tso Si On	6778 2708	2827 8700
ENVIRON	Independent Environmental Checker	Mr. Tong Cheng	3743-0788	3548-6988
KLKJV	Project Director	Mr. Poon Chi Yeung Francis	2674 3888	2674 9988
KLKJV	Project Manager	Mr. Chan Wing Kai	2674 3888	2674 9988
KLKJV	Site Agent	Mr. Lau Shan La	2674 3888	2674 9988
KLKJV	Sub- Agent	Mr. Wong Wai Lam,	2674 3888	2674 9988
KLKJV	Technical Manager	Mr. Yeung Tai Yung	9674 9712	2674 9988
KLKJV	Site Forman	Mr. Lam Chuen Lam	2674 3888	2674 9988
KLKJV	Environmental Officer	Miss. Chan Hiu Shan	2674 3888	2674 9988
KLKJV	Environmental Supervisor	Mr. Yiu Wun Sing	2674 3888	2674 9988
AUES	Environmental Team Leader	Mr. T.W. Tam	2959-6059	2959-6079
AUES	Senior Environmental Consultant	Mr. Wong Fu Nam	2959-6059	2959-6079
AUES	Environmental Consultant	Miss. Nicola Hon	2959-6059	2959-6079
AUES	Environmental Consultant	Mr. Ben Tam	2959-6059	2959-6079
AUES Environmental Team Supervisor		Mr. Ray Cheung	2959-6059	2959-6079

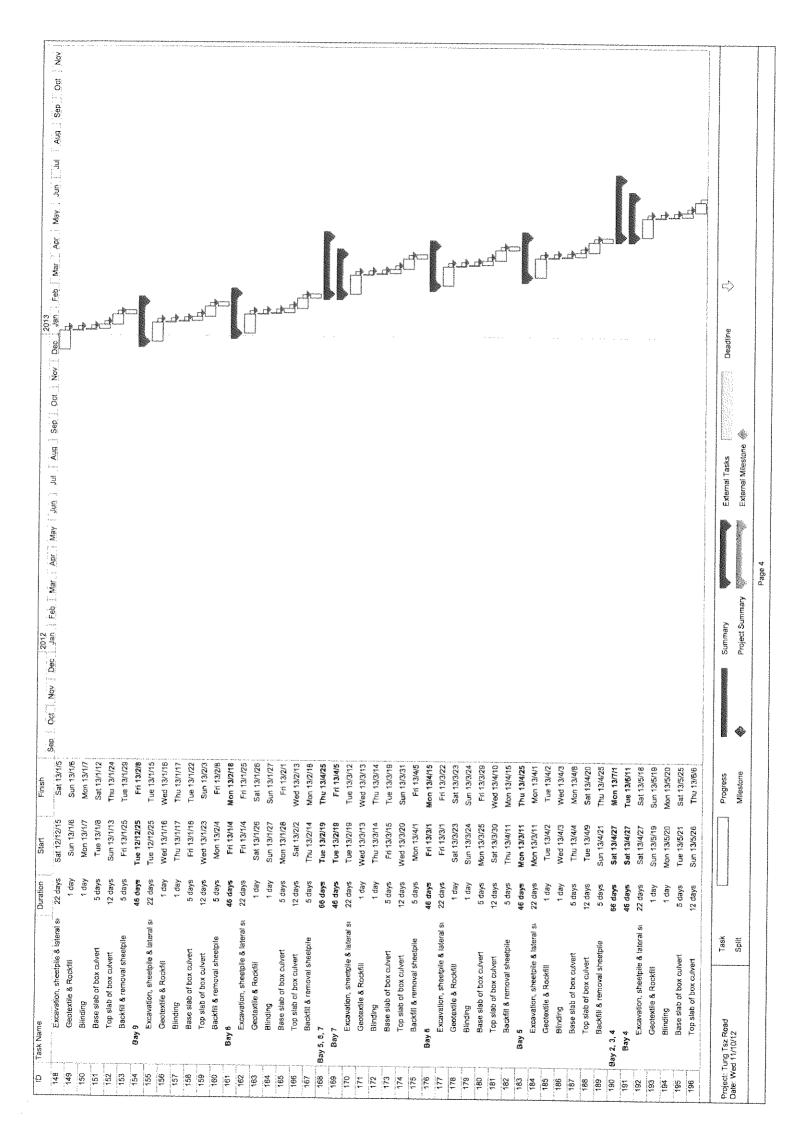
Legends:

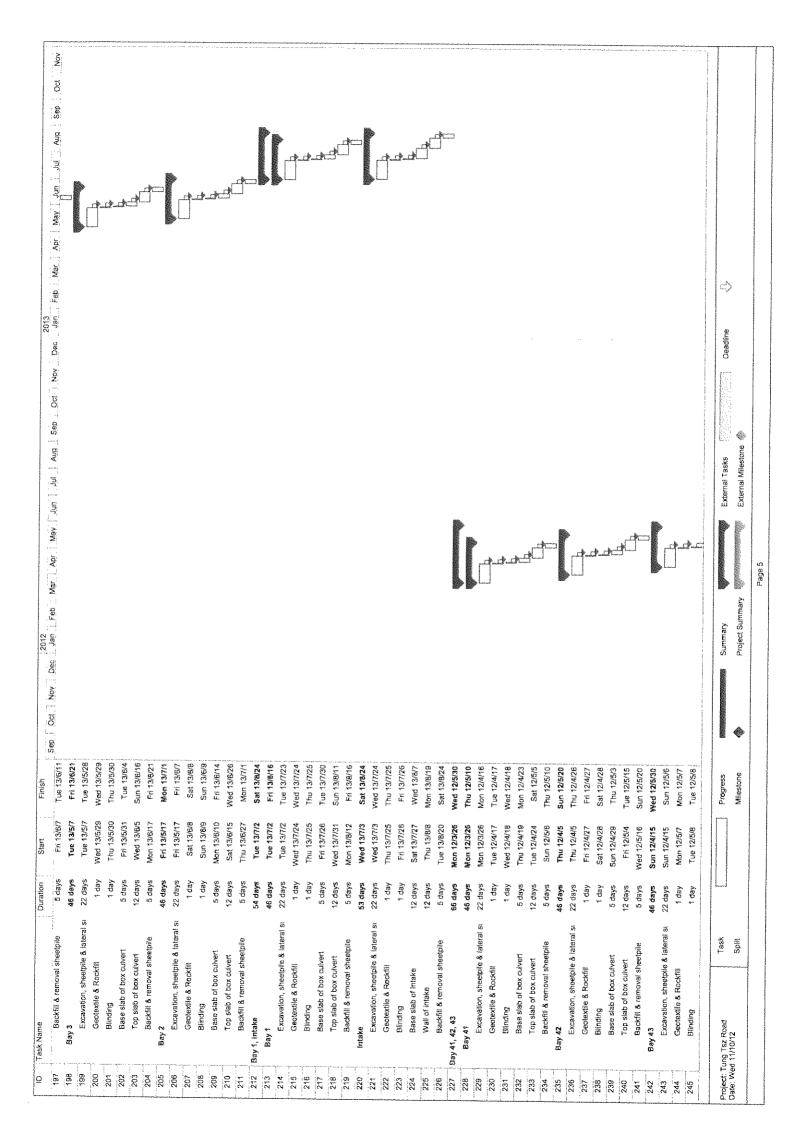
DSD	(Employer) – Drainage Services Department
DSD	(Engineer) – Drainage Services Department
KLKJV	(Main Contractor) – Kwan Lee-Kuly Joint Venture
ENVIRON	(IEC) – ENVIRON Hong Kong Limited
AUES	(ET) – Action-United Environmental Services & Consulting

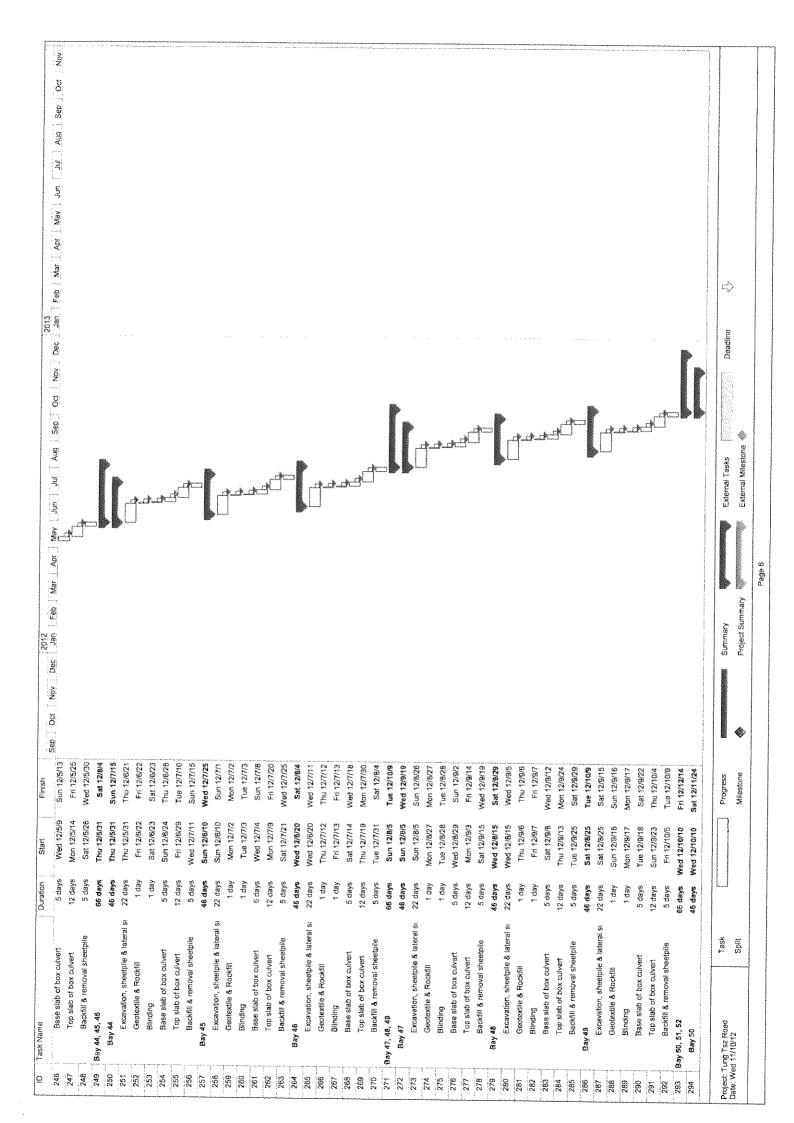


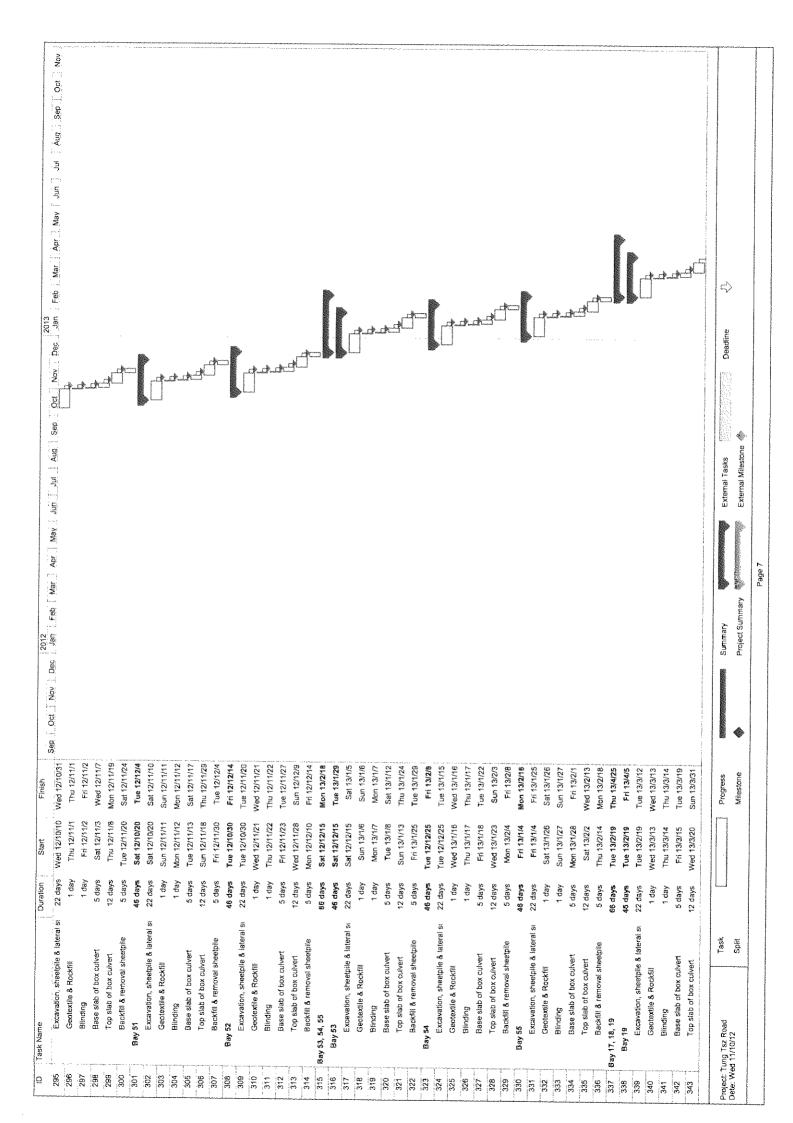

Appendix C

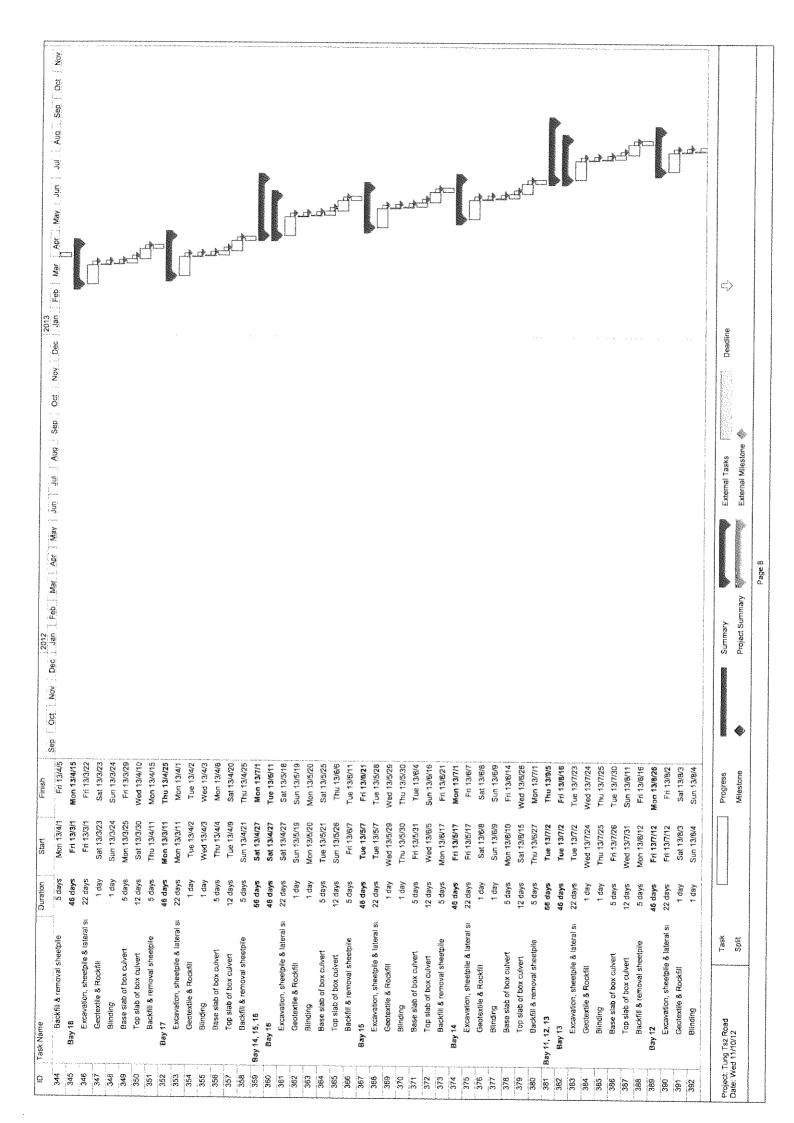

Master and Three Months Rolling Construction Programs

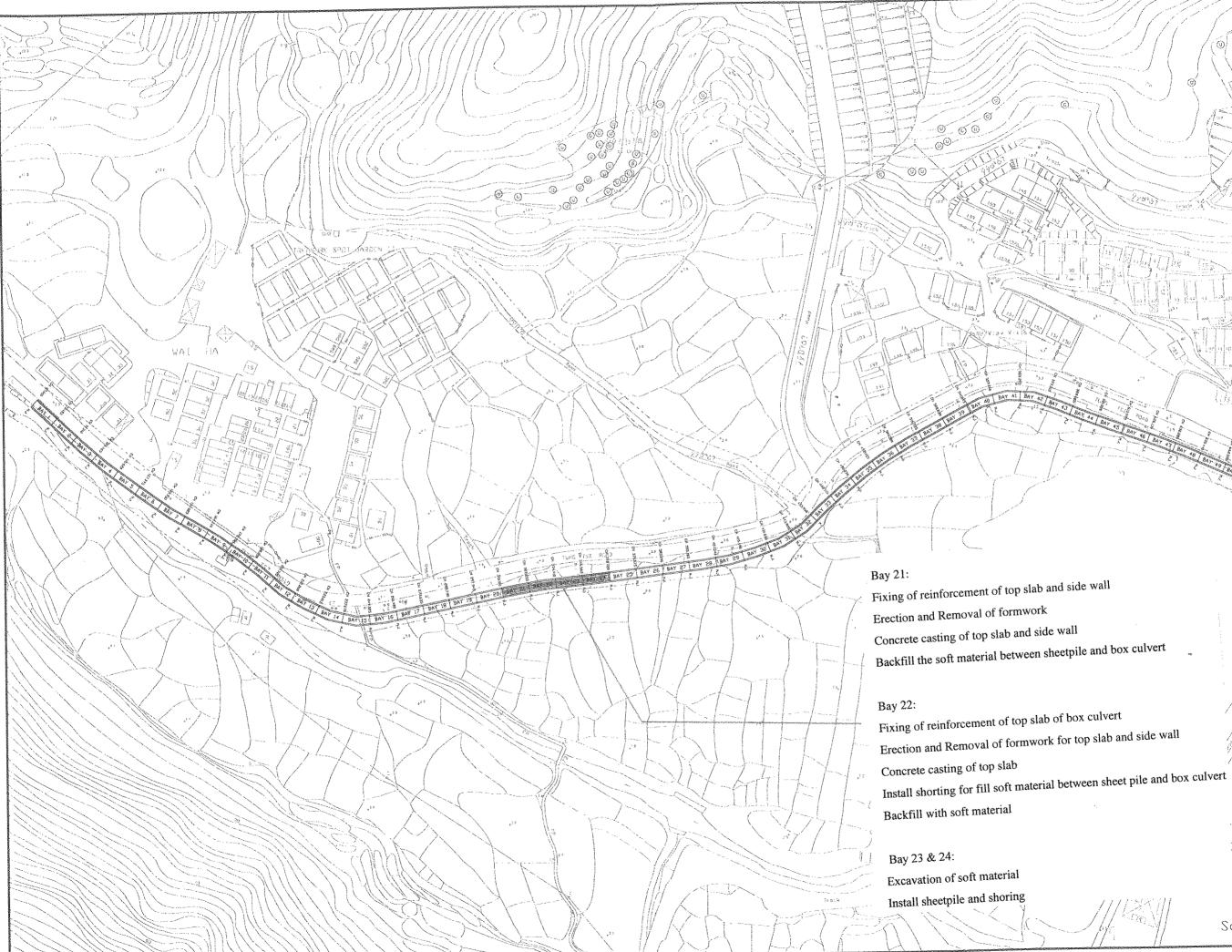

				Contract No.: DC/2010/02 Contract Title: Drainage Improvement Works in Shuen Wan and Shek Wu Wai MASTER PROGRAMME (Rev. 1)
ID Task Name	Duration	Start	Finish	Half 2, 2011 Half 1, 2012 Half 2, 2012 Half 1, 2013 Half 2, 2013 Half 1, 2014 Half 2, 2014
Image: Description of the second se	158 days	Fri 29/4/11	Mon 3/10/11	r Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
2 Commencement of Works 3 Site Clearance	0 days 44 days	Fri 29/4/11 Fri 29/4/11	Fri 29/4/11 Sat 11/6/11	◆ 29/4
4 Record Survey	14 days	Sun 12/6/11	Sat 25/6/11	
5 III Design & Construction of Hoarding 6 Signboard (Type B)	51 days 14 days	Mon 16/5/11 Wed 22/6/11	Tue 5/7/11 Tue 5/7/11	
7 Design & Approval of Engineer's Site Office	30 days	Wed 6/7/11	Thu 4/8/11	
Construction of Engineer's Site Office Pre-construction Condition Survey	60 days 14 days	Fri 5/8/11 Mon 16/5/11	Mon 3/10/11 Sun 29/5/11	
10 Relocation of Existing Shrines (2 Nos.)	60 da ys	Mon 30/5/11	Thu 28/7/11	
11 12 Section I (Construction Works in Shuen Wan)	913 days	Fri 29/4/11	Sun 27/10/13	
13 📰 Design of TTA	47 days	Fri 29/4/11	Tue 14/6/11	
14 Submission of TTA to TMLG for Approval 15 Excavation Permit	30 days	Wed 15/6/11 Mon 16/5/11	Thu 14/7/11 Wed 7/9/11	
15 Excavation Fermit 16 III Submission & approval of caluclation & MS for BC (including trench ELS/slope)	l 15 days 58 days	Fri 29/4/11	Sat 25/6/11	
17 Image: Second s	30 days 30 days	Mon 16/5/11 Wed 15/6/11	Tue 14/6/11 Thu 14/7/11	
16 1 rec reling 19 III Utility detection and diversion programme	30 da ys	Wed 15/6/11 Wed 1/6/11	Thu 14/7/11 Thu 30/6/11	
20 Utilities Diversion	30 days	Thu 8/9/11	Fri 7/10/11	
21 Construction of Single Cell (approx. 724 m) 22 Intake of Box Culvert	776 days 125 days	Fri 15/7/11 Fri 26/4/13	Wed 28/8/13 Wed 28/8/13	
23 from CH67 to CH100 (including cross road ducts) (Bay 1,2,3)	60 days	Mon 25/2/13	Thu 25/4/13	
24 Section 1 25 Traffic Arragnement at Tung Tsz. Road (CH50 to 270)	399 days 30 days	Thu 26/7/12 Sat 2/3/13	Wed 28/8/13 Sun 31/3/13	
26 from CH100 to CH200 (Bay 4,5,6,7,8,9,10,11)	125 days	Fri 26/4/13	Wed 28/8/13	
27 Construction of Refuse Collection Point 28 from CH200 to CH300 (including cross road ducts) (Bay 12,13,14,15,16,17,18,19)	120 days 121 days	Thu 26/7/12 Mon 26/11/12	Thu 22/11/12 Tue 26/3/13	
29 Section 2	270 days	Fri 15/7/11	Mon 9/4/12	
30 Traffic Arrangement at Tung Tsz. Road 31 from CH300 to CH400 (Bay 20.21.22 2.324.25.26.27)	30 days 1 19 days	Fri 15/7/11 Sun 14/8/11	Sat 13/8/11 Sat 10/12/11	
31 Ifform CH300 to CH400 (Bay 20,21,22,23,24,25,26,27) 32 Ifform CH400 to CH500 (Bay 28,29,30,31,32,33,34,35,36)	119 days 121 days	Sun 14/8/11 Sun 11/12/11	Sat 10/12/11 Mon 9/4/12	
33 Section 3	436 days	Sat 17/12/11	Sun 24/2/13	
34 Image: Traffic Arrangement at Tung Tsz Road for crossing connection 35 Cross Box Culvert Connection	30 da y s 60 da y s	Sat 17/12/11 Mon 16/1/12	Sun 15/1/12 Thu 15/3/12	
36 from CH500 to CH600 (Bay 37,38,39,40,41,42,43,44)	107 da y s	Tue 10/4/12	Wed 25/7/12	
37 III from CH600 to CH700 (Bay 45,46,47,48,49,50,51,52) 38 III from CH700 to CH724 (Bay 53,54,55)	123 days 91 days	Thu 26/7/12 Mon 26/11/12	Sun 25/11/12 Sun 24/2/13	
39 CCTVInspection	60 days	Thu 29/8/13	Sun 27/10/13	
40 Installation of Type 2 Railing at Upstream (CH67 to CH240) 41 E Landscape Softwork	60 da y s 60 da y s	Thu 29/8/13 Thu 29/8/13	Sun 27/10/13 Sun 27/10/13	
41 and copy softwork 42 are Completion of Section I	0 days	Sun 27/10/13	Sun 27/10/13	₹ 27/10
43 44 Section II (Construction Works in Shek Wu Wai)	012 dava	Fri 29/4/11	Sun 27/10/13	
44 Section II (Construction Works in Side Wu wal) 45 Commence of Works	913 days O days	Fri 29/4/11 Fri 29/4/11	Fri 29/4/11	◆229/4
46 Design of TTA 47 Submission of TTA to TMLG for Approval	48 days	Fri 29/4/11	Wed 15/6/11 Sun 14/8/11	
47 Submission of 11A to 1MLCr for ApproVal 48 Excavation Permit	60 days 90 days	Thu 16/6/11 Mon 16/5/11	Sun 14/8/11 Sat 13/8/11	
49 Temp. Work Design	30 days	Fri 15/7/11	Sat 13/8/11	
50 Image: Site Investigation for Utilities 51 Submit Program for Utilities Divertion	90 days 30 days	Mon 16/5/11 Sun 14/8/11	Sat 13/8/11 Mon 12/9/11	
52 Site Clearance and Tree Felling	48 da ys	Mon 16/5/11	Sat 2/7/11	
53 Implement Stage 1 of TTA 54 Construction of Retaining Wall RW3 and RW4	10 da y s 60 da y s	Mon 15/8/11 Thu 25/8/11	Wed 24/8/11 Sun 23/10/11	
55 Pipe Work	30 days	Mon 24/10/11	Tue 22/11/11	
56 Temp. Steel Decking 57 Implement Stage 2 of TTA	60 days 10 days	Mon 24/10/11 Fri 23/12/11	Thu 22/12/11 Sun 1/1/12	
58 Construction of Box Culvert along Castle Peak Road (West Bound) including demolition of ex. BC	120 da y s	Mon 2/1/12	Mon 30/4/12	
59 Road Surfacing 60 Implement Stage 3 of TTA	30 days 14 days	Tue 1/5/12 Thu 3 1/5/12	Wed 30/5/12 Wed 13/6/12	
61 Demolish Exisiting Box Culvert (East Bound)	60 da y s	Thu 14/6/12	Sun 12/8/12	
62 Construction of Box Culvert along Castle Peak Road (East Bound) 63 Road Surfacing	120 days 30 days	Thu 1/11/12 Fri 1/3/13	Thu 28/2/13 Sat 30/3/13	
64 Reinstate and Remove TTA	30 days	Sun 31/3/13	Mon 29/4/13	
65 Utilities Divertion (300dia, Gas Main, 200dia, Water Main, Lighting Cable, CLP cable and 2x Cable 66 Utilities Divertion (100dia, Water Main, 4x 100dia, NWT Duct, 4x 100dia, HGC Duct, 100dia, PCCW)		Tue 1/5/12 Fri 1/3/13	Wed 31/10/12 Sun 28/7/13	
67 III Construction of Retaining Wall RWI and RW2	90 days	Thu 1/11/12	Tue 29/1/13	
Construction of Access Ramp Installation of Type 2 Railing and Reconstruction of Flood Wall	30 days 90 days	Wed 30/1/13 Fri 1/3/13	Thu 28/2/13 Wed 29/5/13	
09 Installation of 1ype 2 kalling and Reconstruction of Flood wall 70 Backfill and Reinstatement	90 days 151 days	Thu 30/5/13	Sun 27/10/13	
71 Landscape Softwork 72 Im Completion of Section II	90 days O days	Tue 30/7/13 Sun 27/10/13	Sun 27/10/13 Sun 27/10/13	
73	o da ys	Jun 27710/13	Juit 211 10/13	
74 Section III (Construction Works in Wai Ha Village) 75 Communication (Works in Wai Ha Village)	730 days	Fri 29/4/11	Sat 27/4/13	
75 Commence of Works 76 DSD's Excision	0 days 180 days	Fri 29/4/11 Fri 29/4/11	Fri 29/4/11 Tue 25/10/11	
77 🔣 Site Clearance	30 days	Wed 15/2/12	Thu 15/3/12	
78 Image: Design of Precast Box 79 Submission for ApproVal	60 days 90 days	Sat 15/10/11 Wed 14/12/11	Tue 13/12/11 Mon 12/3/12	
80 Supply Precast Box	120 da y s	Tue 13/3/12	Tue 10/7/12	
81 Construction of Precast Box (approx. 200m) 82 Construction of 225dia. VC Pipe (approx. 200m)	2 10 da ys 200 da ys	Sat 12/5/12 Mon 11/6/12	Fri 7/12/12 Thu 27/12/12	
83 Construction of 1500dia. Concrete Pipe (approx. 100m)	100 da y s	Mon 29/10/12	Tue 5/2/13	
CCTV in spection of Concrete Pipe Reinstatement Concrete Pavement	21 days 60 days	Wed 6/2/13 Wed 27/2/13	Tue 26/2/13 Sat 27/4/13	
86 Completion of Section III	0 days	Sat 27/4/13	Sat 27/4/13 Sat 27/4/13	¥ 27/4
87	1070	8-1001411	Mon 27/10/14	
88 Section IV (Portion A1 and A2, Shuen Wan) 89 Landscape Establishment Works and preservation & protection of trees	1278 days 1278 days	Fri 29/4/11 Fri 29/4/11	Mon 27/10/14 Mon 27/10/14	
90				
91 Section V (Portion B, Sheck Wu Wai) 92 Landscape Establishment Works and preservation & protection of trees	1278 days 1278 days	Fri 29/4/11 Fri 29/4/11	Mon 27/10/14 Mon 27/10/14	
	*			
92 Lanoscape Establishment Works and preservation & projection or trees Data Date: 29 April 2011 Ta sk Printed on : 18 July 2011 Ta sk Critical Ta sk Milestone	•	Summary Rolled Up Task		Rolled Up Critical Task Rolled Up Progress External Tasks Group By Summary


Page 1









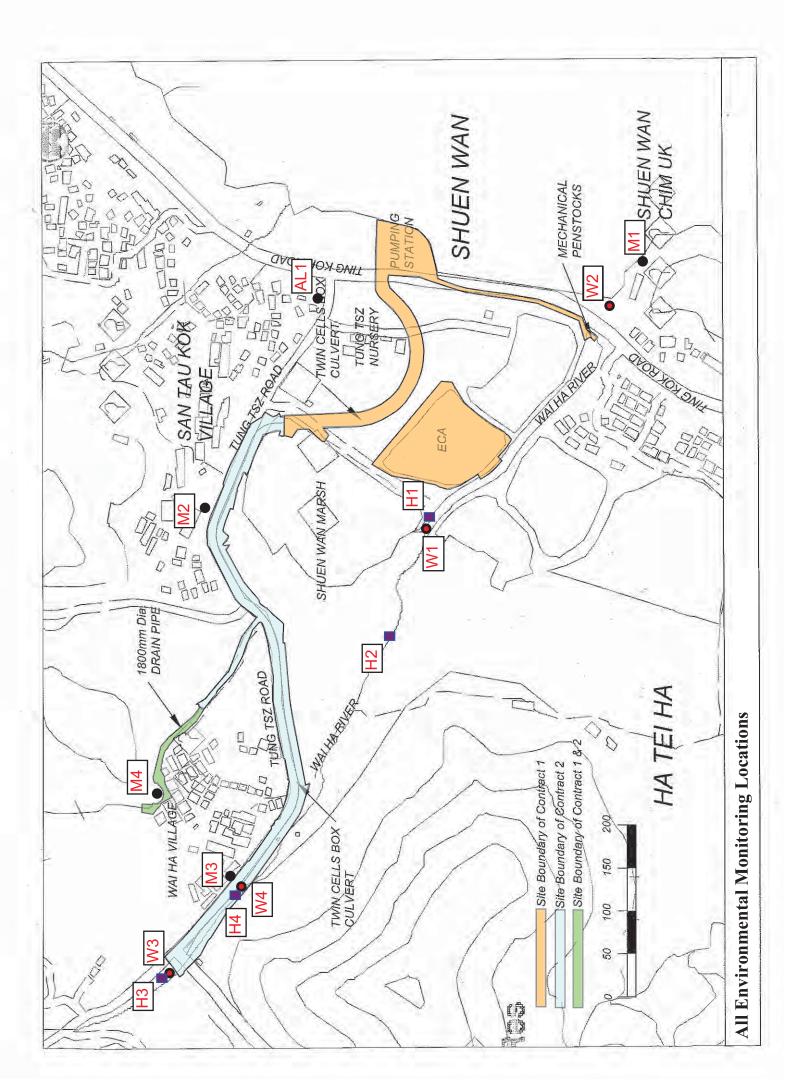
ti i. Nevi Dece [Jan.]. Feb i. Mar. I. Apr. I. May [Jun.]. Jul. J. Aun. Burmany External Tasks Project Summany External Miscione	Firsh Tri 1989 ed 13685 Thi 1986 at 1987 at 1987 at 1987 hi 1986 at 1987 hi 1986 at 1987 hi 1986 at 1987 hi 1986 at 1987 hi 1986 at 2871 hi 1986 at 2872 hi	Start Frain See Oet Nei Start St	Aus Sep. [Oct.]. Nov							
77	Finish Fri 1378/3 ed 1318/2 on 13/8/16 on 13/8/12 on 13/8/13 at 13/8/31 fhu 13/8/19 fhu 13/9/5 fhu	Finish Fri 13/85 Wed 13/81/2 Mon 13/81/12 Wed 13/81/13 Won 13/81/13 Sat 13/81/13 Sat 13/83/1 Thu 13/9/5 Thu 13/9/5 Progress	Sep [.Oct. I.Nov.] Dec [.Jan.] Feb Mar. [.Apr.]. May [.Jun.] Jut [.Aug.] Sep [.Oct.] Nov. [.Dec [.Jan.] Feb Mar.] Apr.] May Jun.] Jul.]							
	Durration 5 days 5 days 1 day 1 day 5 days 5 days		Task Name Base slab of box culvert Top slab of box culvert	Backfill & removal sheetpile	Bay 11	Excavation, sheetpile & lateral su Geotextile & Rockfill	Blinding	Base siab of box cuivert	Top slab of box culvert	Backfill & removal sheetpile
Duration Start se stab of box cuivert 5 days Mon 13/85 c stab of box cuivert 12 days Sat 13/8/10 c stab of box cuivert 12 days Sat 13/8/10 c stab 46 days Mon 13/722 c stab 1 day Wed 13/8/15 c stab 1 day Wed 13/8/15 c stab 1 day Wed 13/8/15 c stab 1 day Tue 13/8/15 c stab c stab Sun 13/9/15 s stab c stab Sun 13/9/15 c stab c stab Sun 13/9/15 c stab Sun 23/9/15 Sun 13/9/15	Provident of box culvert stab of box culvert avaton, sheetpile & lateral su ding e stab of box culvert stab of box culvert fill & removal sheetpile Affil & removal sheetpile Split	Sk Name Sk Name Base slab of box culvert Top slab of box culvert Bay 11 Excavation, sheetpile & lateral st Geotextile & Rockfill Blackfill & removal sheetpile Base slab of box culvert Pop slab of box culvert Base slab of box culvert Fast state Fast State Fast state Base slab of box culvert Fast state Fast Rockfill & removal sheetpile Fast Rockfill & removal sheetpile	1D Tas 393 394	395	396	398	399	400	401	402

6

220207

-

SAN TAU


SS

Scale 1:1500

Appendix D

Environmental Monitoring Locations

Appendix E

Calibration certificates of the monitoring equipment and Certificate of ALS Technichem (HK) Pty Ltd

Items	Aspect	Description of Equipment	Date of Calibration	Date of Next Calibration
1	Noise	Bruel & Kjaer Integrating Sound Level Meter (Serial No. 2285722)	18 May 11	18 May 12
2	NOISE	Bruel & Kjaer Acoustical Calibrator (Serial No. 2326408)	04 May 11	04 May 12
3		YSI Professional Plus (Serial No. 10G101946)	16 Aug 11	16 Nov 11
4*	Water	YSI Professional Plus (Serial No. 10G101946)	16 Nov 11	16 Feb 12
5		Turbidimeter HACH 2100p (Serial No. 950900008735)	06 Sep 11	06 Dec 11
6	Hydrological Characteristics	GLOBAL WATER model FP211 (Serial No.1124158766)	14 Jun 11	14 Jun 12

Equipment Calibration List

Note: *Calibration certificates will only be provided when monitoring equipment is re-calibrated or new.

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLDEN KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG. PROIECT: --

WORK ORDER:	HK1127006
LABORATORY:	HONG KONG
DATE RECEIVED:	16/11/2011
DATE OF ISSUE:	25/11/2011

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Dissolved Oxygen, pH, Salinity and Temperature
Description:	YSI Professional Plus
Brand Name:	YSI
Model No.:	YSI Professional Plus
Serial No.:	10G101946
Equipment No.:	
Date of Calibration:	16 November, 2011

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung HONG KONG Phone: Fax: Email:

852-2610 1044 852-2610 2021 <u>hongkong@alsglobal.com</u>

Mr Çhan Kwol/Àai, Codfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1127006
Date of Issue:	25/11/2011
Client:	ACTION UNITED ENVIRO SERVICES

Description:	YSI Professional Plus
Brand Name:	YSI
Model No.:	YSI Professional Plus
Serial No.:	10G101946
Equipment No.:	
Date of Calibration:	16 November, 2011

Date of next Calibration:

16 February, 2012

Parameters:

Dissolved Oxygen Method Ref. AFTA (21st edition), 43000. d	Dissolved Oxygen	Method Ref: APHA (21st edition), 4500O: G
--	------------------	---

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
6.04	5.98	-0.06
6.85	6.83	-0.02
7.76	7.80	0.04
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

thou ker. ATTA (21st edition), 45001.b					
Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)			
4.0	4.13	0.13			
7.0	7.05	0.05			
10.0	9.90	-0.10			
		0.20			
	Tolerance Limit (±unit)	0.20			

Salinity

Method Ref: APHA (21st edition), 2520B

	200	
Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0.00	0.00	
10.00	9.50	-5.0
20.00	19.21	-4.0
30.00	28.58	-4.7
	Tolerance Limit (±%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working	g Thermometer Calibration Procedure.
--	--------------------------------------

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	11.0	0.0
24.5	24.0	-0.5
33.0	33.0	0.0
	Tolerance Limit (°C)	2.0

Mr Chan K Godfrey wok Fai. Laboratory - Hong Kong)Managek

ALS Technichem (HK) Pty Ltd ALS Environmental

Appendix F

Event and Action Plan

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\5th Month (November 2011)\R0063v2.docx Action-United Environmental Services and Consulting

Event Action Plan for Construction Noise

EVENT	ACTION						
EVENI	ET Leader	IEC	ER	Contractor			
Action Level	 Notify IEC and Contractor Carry out investigation. Report the results of investigation to the IEC, ER and Contractor. Discuss with the Contractor and formulate remedial measures Increase monitoring frequency to check mitigation effectiveness. 	 Review the analyzed results submitted by the ET. Review the proposed remedial measures by the Contractor and advise the ER accordingly Supervise the implementation of remedial measures 	 Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose 'remedial measures for the analyzed noise problem Check remedial measures are properly implemented. 	 Submit noise mitigation proposals to IEC Implement noise mitigation proposals 			
Limit Level	 Notify IEC, ER, EPD and Contractor Identify source. Repeat measurements to confirm findings Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Inform IEC, ER and EPD the causes and actions taken for the exceedances Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions Review Contractor's' remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly Supervise the implementation of remedial measures 	 Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analyzed noise problem Check remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated 			

Event and action Plan for Water Quality

Event	ET Leader		ER	Contractor
Action level being exceeded by one sampling day	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Repeat measurement on next day of agreements 	ACTION LEVEL 1. Discuss mitigation measures with ET, Engineer and Contractor; 2. Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; 3. Assess effectiveness of implemented mitigation measures.	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures.
Action level being exceeded by more than two consecutive sampling days	of exceedance. 1. Repeat in-situ measurements to confirm findings; 2. Identify reasons for non-compliance and source(s) of impact; 3. Inform IEC, Contractor and Engineer; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, Engineer and Contractor; 6. Ensure mitigation measures are implemented. 7. Prepare to increase the monitoring frequency to daily; 8. Repeat measurement on next day of exeedance.	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures
	of excedence.	LIMIT LEVEL		
Limit level being exceeded by one sampling day	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform EPD, IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures.
Limit level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform EPD, IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures; Consider and if necessary instruct Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures; As directed by the Engineer, slow down or stop all or part of the construction activities until no exceedance of Limit level.

 $\label{eq:loss2011} Z: Jobs \ 2011 \ TCS \ 00553 \ (DC-2010-02) \ 600 \ EM\&A \ Monthly \ Report \ 5th \ Month \ (November \ 2011) \ R0063v \ 2.docx \ Action-United \ Environmental \ Services \ and \ Consulting$

Event and action Plan for Hydrological Characteristics

Event ACTION LEVEL	ET Leader	IEC	ER	Contractor
Action level being exceeded by one sampling day	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and Engineer; Check monitoring data, Contractor's working methods and any excavation works or dewatering processes; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Repeat measurement on next day of exceedance. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check working methods and any excavation works or dewatering processes; Consider changes in working methods and plans; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures.
Action level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and Engineer; Check monitoring data, Contractor's working methods and any excavation works or dewatering processes; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of exceedance. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check working methods and any excavation works or dewatering processes; Consider changes in working methods and plans; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures
LIMIT LEVEL Limit level being	1. Repeat in-situ measurements to	1. Discuss mitigation	1. Discuss proposed	1. Inform Engineer and confirm in
exceeded by one sampling day	 confirm findings; 2. Identify reasons for non-compliance and source(s) of impact; 3. Inform AFCD, IEC, Contractor and Engineer; 4. Check monitoring data, and Contractor's working methods and any excavation works or dewatering processes; 5. Discuss mitigation measures with IEC, Engineer and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit level. 1. Repeat in-situ measurements to 	 measures with ET, Engineer and Contractor; 2. Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; 3. Assess effectiveness of implemented mitigation measures. 	 mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 writing notification of the non-compliance; 2. Rectify unacceptable practice; 3. Check working methods and any excavation works or dewatering processes; 4. Consider changes in working methods and plans; 5. Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; 6. Implement agreed mitigation measures.
exceeded by more than two consecutive sampling days	 Intervention intervention in the source intervention intervention in the source intervention intervention intervention in the source intervention interventintex intervention intervention interventintervention interventin	 neasures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 I) but as proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures; Consider and if necessary instruct Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform Engineer and community writing notification of the non-compliance; Rectify unacceptable practice; Check working methods and any excavation works or dewatering processes; Consider changes in working methods and plans; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures; As directed by the Engineer, slow down or stop all or part of the construction activities until no exceedance of Limit level.

Appendix G

Monitoring Schedule in Reporting Period and the Coming Month

		Stream M		
D	ate	Water Sampling	Flow Monitoring	- Noise Monitoring
Tue	1-Nov-11	W1, W2, W3, W4		
Wed	2-Nov-11			
Thu	3-Nov-11	W1, W2, W3, W4		M1, AL1
Fri	4-Nov-11			
Sat	5-Nov-11	W1, W2, W3, W4	H1, H2, H3, H4	M2, M3, M4
Sun	6-Nov-11			
Mon	7-Nov-11			
Tue	8-Nov-11	W1, W2, W3, W4		M2, M3, M4
Wed	9-Nov-11			
Thu	10-Nov-11	W1, W2, W3, W4		M1, AL1
Fri	11-Nov-11			
Sat	12-Nov-11	W1, W2, W3, W4	H1, H2, H3, H4	
Sun	13-Nov-11			
Mon	14-Nov-11			
Tue	15-Nov-11	W1, W2, W3, W4		
Wed	16-Nov-11			
Thu	17-Nov-11	W1, W2, W3, W4		M1, AL1, M2, M3, M4
Fri	18-Nov-11			
Sat	19-Nov-11	W1, W2, W3, W4	H1, H2, H3, H4	
Sun	20-Nov-11			
Mon	21-Nov-11			
Tue	22-Nov-11	W1, W2, W3, W4		M2, M3, M4
Wed	23-Nov-11			
Thu	24-Nov-11	W1, W2, W3, W4		M1, AL1
Fri	25-Nov-11			
Sat	26-Nov-11	W1, W2, W3, W4	H1, H2, H3, H4	
Sun	27-Nov-11			
Mon	28-Nov-11			
Tue	29-Nov-11	W1, W2, W3, W4		
Wed	30-Nov-11			

Monitoring Schedule in this Reporting Period – November 2011

Monitoring Day
Sunday or Public Holiday

Monitoring Schedule in the coming month – December 2011

Date		Stream M	Noise Menitorine	
	Jate	Water Sampling	Flow Monitoring	 Noise Monitoring
Thu	1-Dec-11	W1, W2, W3, W4		
Fri	2-Dec-11			
Sat	3-Dec-11	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1, M2, M3, M4
Sun	4-Dec-11			
Mon	5-Dec-11			
Tue	6-Dec-11	W1, W2, W3, W4		
Wed	7-Dec-11			
Thu	8-Dec-11	W1, W2, W3, W4		
Fri	9-Dec-11			
Sat	10-Dec-11	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1, M2, M3, M4
Sun	11-Dec-11			
Mon	12-Dec-11			
Tue	13-Dec-11	W1, W2, W3, W4		
Wed	14-Dec-11			
Thu	15-Dec-11	W1, W2, W3, W4		M1, AL1, M2, M3, M4
Fri	16-Dec-11			
Sat	17-Dec-11	W1, W2, W3, W4	H1, H2, H3, H4	
Sun	18-Dec-11			
Mon	19-Dec-11			
Tue	20-Dec-11	W1, W2, W3, W4		
Wed	21-Dec-11			
Thu	22-Dec-11	W1, W2, W3, W4		
Fri	23-Dec-11			
Sat	24-Dec-11	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1,M2, M3, M4
Sun	25-Dec-11			
Mon	26-Dec-11			
Tue	27-Dec-11			
Wed	28-Dec-11			
Thu	29-Dec-11	W1, W2, W3, W4		
Fri	30-Dec-11			
Sat	31-Dec-11	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1,M2, M3, M4

Mo	nitoring Day
Sur	day or Public Holiday

Appendix H

Meteorological Data of Reporting Period

				Tai Po S	Station	Shatin S	station
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Mean Relative Humidity (%)	Wind Speed (km/h)	Wind Direction
1-Nov-11	Tue	Moderate east to northeasterly winds.	0	24.7	66	7	E/NE
2-Nov-11	Wed	cloudy	0	25.2	71.5	5.9	N/NE
3-Nov-11	Thu	Mainly cloudy with a few rain patches.	0	26	74.5	8.1	Ν
4-Nov-11	Fri	Moderate east to northeasterly winds,	Trace	26.8	73.7	8.7	Ν
5-Nov-11	Sat	Mainly cloudy with a few rain patches.	Trace	26.1	72.2	7.1	Ν
6-Nov-11	Sun	Occasionally strong offshore and on high ground.	Trace	27	73.7	15	E/NE
7-Nov-11	Mon	Fresh easterly winds	Trace	25.6	78.5	12.2	N/NE
8-Nov-11	Tue	Cloudy to overcast with rain.	13.9	22.5	90.7	12	N/NE
9-Nov-11	Wed	Fresh northerly winds	44.2	19.3	92.7	13.5	N
10-Nov-11	Thu	Fresh easterly winds	0.2	18.3	78.7	10.4	N/NW
11-Nov-11	Fri	Fresh easterly winds	Trace	18.3	75.5	7.4	N/NW
12-Nov-11	Sat	Moderate east to northeasterly winds,	0	21.2	64	9	N/NE
13-Nov-11	Sun	Mainly cloudy with a few light rain patches.	0	22.2	74.7	36	N/NE
14-Nov-11	Mon	Sunny periods	Trace	23.7	77	6.5	E/SE
15-Nov-11	Tue	Mainly cloudy with a few rain patches.	0	23.9	72	9.5	E/NE
16-Nov-11	Wed	Moderate to fresh easterly winds.	0	23.5	73	8.5	N/NE
17-Nov-11	Thu	Moderate east to northeasterly winds,	18.1	22.9	85.7	8.3	N/NW
18-Nov-11	Fri	Fresh northerly winds	8.6	24.4	90.7	6	N/NW
19-Nov-11	Sat	Fresh easterly winds	1.1	25.1	67.7	7.8	Е
20-Nov-11	Sun	Sunny periods	Trace	22.4	70.2	9	E
21-Nov-11	Mon	Moderate northeasterly winds.	Trace	21.6	67.5	10	E
22-Nov-11	Tue	Mainly cloudy.	Trace	21.6	67	6	N/NE
23-Nov-11	Wed	Cloudy with one or two rain patches.	Trace	21.6	63.5	8	N/NE
24-Nov-11	Thu	Moderate to fresh easterly winds.	0	20	60	9.9	N/NE
25-Nov-11	Fri	Moderate east to northeasterly winds,	0	20.3	70	7.5	Е
26-Nov-11	Sat	Mainly fine and dry	Trace	20.9	69.7	7	N/NE
27-Nov-11	Sun	Fresh northerly winds	0	21.1	67.7	6.5	N/NE
28-Nov-11	Mon	Mainly fine and dry	0	21.7	76.2	8.2	E/SE
29-Nov-11	Tue	strong offshore and on high ground	0	22.8	74	7.6	Е
30-Nov-11	Wed	Cloudy and rather cool	Trace	23.3	73.2	6.6	N/NE

* The record was extracted from The Hong Kong Observatory Weather Stations

Appendix I

Data Base of Monitoring Results

Construction Noise Measurement Data

-	-	_						
Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min*}
3-Nov-11	12:24	-	-	-	-	-	-	48
10-Nov-11	13:54	-	-	-	-	-	-	47.8
17-Nov-11	13:00							51.2
24-Nov-11	12:50	-	-	-	-	-	-	51
Limit I	Level				-			> 75 dB(A)

Designated Monitoring Station – M1 (14, Shuen Wan Chim Uk)

(*)The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.

Designated Monitoring Station -	AT 1 /T ' / T/'11 /	$\gamma cc' = c = \chi r r r r$	(1) (U) (T) (D)
Designated Monitoring Station -	$= \Delta I = I (I \cap Int VIII) \cap O O$	Ittice for Villages in	Shuen Wan 191 P(1)
Designated Montolling Station -	- ALI (JOIIIL VIIIAge (Jinee for vinages m	Shuch wan, fai t O)

Date	Start Time	1st Leq5mi n	2nd Leq5mi n	3rd Leq5mi n	4th Leq5mi n	5th Leq5mi n	6th Leq5mi n	Leq30min*
3-Nov-11	12:59	-	-	-	-	-	-	54.5
10-Nov-11	13:19	-	-	-	-	-	-	53
17-Nov-11	12:20	-	-	-	-	-	-	56.6
24-Nov-11	13:27	-	-	-	-	-	-	56.9
Limit l	Limit Level -				> 75 dB(A)			

(*)The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.

Designated Monitoring Station - M2 (150, San Tau Kok)

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min}	Corrected* Leq _{30min}
5-Nov-11	15:01	60.3	57.8	59.0	59.0	55.4	62.1	59.4	62.4
8-Nov-11	13:23	56.0	56.3	59.1	60.9	61.5	59.9	59.4	62.4
17-Nov-11	13:03	64.1	68.5	64.5	60.3	69.4	59.6	65.9	68.9
22-Nov-11	10:45	56.5	56.5	59.1	58.2	48.4	46.7	56.2	59.2
Limit l	Level				•			> 75	5 dB(A)

(*) A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines.

Designated Monitoring Station – M3 (31, Wai Ha)

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min}	Corrected* Leq _{30min}
5-Nov-11	14:17	70.3	65.5	64.9	51.8	53.3	60.3	65.0	68.0
8-Nov-11	14:58	56.5	67.0	64.9	49.7	52.2	58.5	62.0	65.0
17-Nov-11	10:47	64.6	68.6	64.3	63.8	64.9	68.1	66.2	69.2
22-Nov-11	9:18	45.4	46.5	44.6	52.4	52.8	46.5	49.4	52.4
Limit l	Level				-			> 75	5 dB(A)

(*) A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines.

Designated Monitoring Station – M4 (Block 15, Treasure Spot Garden)

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min}	Corrected* Leq _{30min}	
5-Nov-11	14:39	69.3	44.2	50.0	43.2	42.8	47.0	61.6	64.6	
8-Nov-11	14:12	48.9	47.3	47.4	48.7	52.3	44.1	48.8	51.8	
17-Nov-11	11:21	41.8	46.0	43.8	47.9	45.0	47.5	45.8	48.8	
22-Nov-11	9:56	47.7	44.9	46.6	47.6	54.3	56.6	51.9	54.9	
Limit Level					-			> 75 dB(A)		

(*) A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines.

DSD Contract No. DC/2010/02

Contract No. - Drainage Improvement in Shuen Wan and Shek Wu Wai

Summary of Water Quality Monitoring Results

Location					D0 (r	ng/L)	00	(%)	Turbidit	V (NTU)	n	Н	SS(m	a/L)
				Action	7.27	Action	n/a	Action	4.77	Action	n/a	Action	9.73	
W1 (impact)					Limit	7.05	Limit	n/a	Limit	5.26	Limit	n/a	Limit	10.77
W2 (impact)		Action/ Limi	it Level		Action Limit	7.26	Action Limit	n/a n/a	Action Limit	2.46 3.42	Action Limit	n/a n/a	Action Limit	8.89 9.75
W3 (control)					n	/a	n	/a	n.	/a	n	/a	n/	/a
W4 (impact)					Action Limit	9.27 7.98	Action Limit	n/a n/a	Action Limit	3.32 4.52	Action Limit	n/a n/a	Action Limit	6.98 7.66
Date	1-Nov-11					7.70		II/d	LIIII	4.32		11/4		7.00
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	ig/L)
W1(impact)	14:30	<1	27.1 27.1	27.1	7.75	7.8	77 77	77.0	<u>1.2</u> 1.2	1.2	7.66	7.7	4.8 4.8	4.8
W2 (Impact)	14:50	<1	28.4	28.4	7.12	7.1	72	72.0	3.5	3.5	7.89	7.9	2	2.0
			28.4 25.5		7.12 5.67		72 69.0		3.5 1.25		7.89 8.4		2 24	-
W3 (control)	11:25	0.30	25.4	25.5	5.64	5.7	68.8	68.9	1.28	1.3	8.4	8.4	24	24.0
W4 (impact)	11:38	0.40	25.6 25.8	25.7	6.20 6.18	6.2	81.1 81.5	81.3	1.06 1.04	1.1	8.1 8.1	8.1	<2 <2	2.0
Date	3-Nov-11													
Location	Time	Depth (m)	Temp) (oC)	DO (r	ng/L)	DO	(%)	Turbidit	v (NTU)	p	н	SS(m	a/L)
W1(impact)	13:30	<1	27.4	27.4	7.7	7.7	78	78.0	1.9	1.9	7.33	7.3	1.8	1.8
			27.4 28.2		7.7 7.89		78 79		1.9 1.6		7.33 7.64		1.8 8	-
W2 (Impact)	12:30	<1	28.2	28.2	7.89	7.9	79	79.0	1.6	1.6	7.64	7.6	8	8.0
W3 (control)	14:45	0.30	24.6 24.8	24.7	6.63 6.65	6.6	66.8 67.1	67.0	0.95 0.93	0.9	8.6 8.6	8.6	5 5	5.0
W4 (impact)	15:00	0.40	24.3 24.6	24.5	5.61 5.68	5.6	61.3 61.4	61.4	1.28 1.29	1.3	8.5 8.5	8.5	<2 <2	2.0
			21.0		0.00						0.0		÷2	
Date	5-Nov-11	I		(->				(a)		(1			
Location	Time	Depth (m)	Temp 26		DO (r 7.39	mg/L)	DO 79	1	Turbidit 0.3		р 7.23	н	2.8	
W1(impact)	10:00	<1	26	26.0	7.39	7.4	79	79.0	0.3	0.3	7.23	7.2	2.8	2.8
W2 (Impact)	9:30	<1	26.8 26.8	26.8	7.21	7.2	79 79	79.0	1.2 1.2	1.2	7.53 7.53	7.5	2.8 2.8	2.8
W3 (control)	14:05	0.30	29.3 29.5	29.4	6.56 6.59	6.6	68 67.8	67.9	1.13	1.1	7.1 7.1	7.1	<2 <2	2.0
W4 (impact)	14:17	0.40	29.1	29.2	5.67	5.7	64.2	64.4	0.96	1.0	7.5	7.5	<2	2.0
W4 (impact)	14.17	0.10	29.3	27.2	5.78	0.7	64.5	04.4	1.02	1.0	7.5	7.0	<2	2.0
Date	8-Nov-11													
Location	Time	Depth (m)	Temp) (oC)		mg/L)	DO	(%)	Turbidit	y (NTU)		Н	SS(m	ig/L)
Location W1(impact)	Time 12:25	Depth (m) <1	Temp 24.1 24.1	(oC) 24.1	DO (r 7.13 7.13	ng/L) 7.1	DO 59 59	(%) 59.0	Turbidit 1.8 1.8	y (NTU) 1.8	7.15	н 7.2	SS(m 3.4 3.4	g/L) 3.4
			24.1 24.1 25.1		7.13 7.13 6.88		59 59 54	i i	1.8 1.8 0.1		7.15 7.15 7.41		3.4 3.4 2.4	
W1(impact) W2 (Impact)	12:25 11:56	<1 <1	24.1 24.1 25.1 25.1 24.2	24.1 25.1	7.13 7.13 6.88 6.88 5.46	- 7.1 - 6.9	59 59 54 54 64.4	59.0 54.0	1.8 1.8 0.1 0.1 1.05	1.8 0.1	7.15 7.15 7.41 7.41 7.8	7.2 7.4	3.4 3.4 2.4 2.4 11	3.4
W1(impact) W2 (Impact) W3 (control)	12:25 11:56 14:16	<1 <1 0.30	24.1 24.1 25.1 25.1 24.2 24.2 24.2	24.1 25.1 24.2	7.13 7.13 6.88 6.88 5.46 5.48	7.1 6.9 5.5	59 59 54 54 64.4 64.7	59.0 54.0 64.6	1.8 1.8 0.1 0.1 1.05 1.03	1.8 0.1 1.0	7.15 7.15 7.41 7.41 7.8 7.8 7.8	7.2 7.4 7.8	3.4 3.4 2.4 2.4 11 11	3.4 2.4 11.0
W1(impact) W2 (Impact)	12:25 11:56	<1 <1	24.1 24.1 25.1 25.1 24.2	24.1 25.1	7.13 7.13 6.88 6.88 5.46	- 7.1 - 6.9	59 59 54 54 64.4	59.0 54.0	1.8 1.8 0.1 0.1 1.05	1.8 0.1	7.15 7.15 7.41 7.41 7.8	7.2 7.4	3.4 3.4 2.4 2.4 11	3.4
W1(impact) W2 (Impact) W3 (control)	12:25 11:56 14:16	<1 <1 0.30	24.1 24.1 25.1 25.1 24.2 24.2 24.2 24	24.1 25.1 24.2	7.13 7.13 6.88 6.88 5.46 5.48 5.51	7.1 6.9 5.5	59 59 54 54 64.4 64.7 65.3	59.0 54.0 64.6	1.8 1.8 0.1 0.1 1.05 1.03 1.08	1.8 0.1 1.0	7.15 7.15 7.41 7.41 7.8 7.8 7.9	7.2 7.4 7.8	3.4 3.4 2.4 2.4 11 11 4	3.4 2.4 11.0
W1(impact) W2 (Impact) W3 (control) W4 (impact)	12:25 11:56 14:16 14:38	<1 <1 0.30	24.1 24.1 25.1 25.1 24.2 24.2 24.2 24	24.1 25.1 24.2 24.0	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 5.51	7.1 6.9 5.5	59 59 54 54 64.4 64.7 65.3	59.0 54.0 64.6 65.3	1.8 1.8 0.1 0.1 1.05 1.03 1.08	1.8 0.1 1.0 1.1	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9	7.2 7.4 7.8	3.4 3.4 2.4 2.4 11 11 4	3.4 2.4 11.0 4.0
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date	12:25 11:56 14:16 14:38 10-Aug-11	<1 <1 0.30 0.40	24.1 24.1 25.1 25.1 24.2 24.2 24 24 24 24 24 24 24	24.1 25.1 24.2 24.0	7.13 7.13 6.88 5.46 5.51 5.51 5.51 DO (r 7.78	7.1 6.9 5.5 5.5	59 59 54 64.4 64.7 65.3 65.2 DO 79	59.0 54.0 64.6 65.3	1.8 1.8 0.1 0.1 1.05 1.03 1.1 Turbidit 4.4	1.8 0.1 1.0 1.1	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9	7.2 7.4 7.8 7.9	3.4 3.4 2.4 11 11 4 4 9.3	3.4 2.4 11.0 4.0
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57	<1 <1 0.30 0.40 Depth (m) <1	24.1 24.1 25.1 24.2 24.2 24 24 24 24 24 24 24 24 24 24 24 24 24	24.1 25.1 24.2 24.0 (oC) 22.1	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 DO (7 7.78 7.78 7.31	7.1 6.9 5.5 5.5 mg/L) 7.8	59 59 54 64.4 64.7 65.3 65.2 DO 79 79 75	59.0 54.0 64.6 65.3 (%) 79.0	1.8 1.8 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 4.4 0.4	1.8 0.1 1.0 1.1 y (NTU) 4.4	7.15 7.15 7.41 7.41 7.8 7.9 7.9 7.9 7.9 7.9 7.23 7.23 7.23 7.37	7.2 7.4 7.8 7.9 H 7.2	3.4 3.4 2.4 11 11 4 4 9.3 9.3 15.8	3.4 2.4 11.0 4.0 9.3
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27	<1 <1 0.30 0.40 Depth (m) <1 <1	24.1 24.1 25.1 24.2 24.2 24 24 24 Temp 22.1 22.1	24.1 25.1 24.2 24.0 24.0 2000) 2000) 22.1 23.0	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 DO (r 7.78	7.1 6.9 5.5 5.5 mg/L) 7.8 7.3	59 59 54 64.4 64.7 65.3 65.2 DO 79 79	59.0 54.0 64.6 65.3 (%) 79.0 75.0	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 4.4	1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4	7.15 7.15 7.41 7.41 7.8 7.9 7.9 7.9 7.9 7.9	7.2 7.4 7.8 7.9 H 7.2 7.4	3.4 3.4 2.4 11 11 4 4 SS(m 9.3 9.3	3.4 2.4 11.0 4.0 9.3 15.8
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W3 (control)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57	<1 <1 0.30 0.40 Depth (m) <1 <1 <1 0.30	24.1 24.1 25.1 24.2 24.2 24.2 24.2 24 24 24 24 24 22.1 22.1	24.1 25.1 24.2 24.0 (oC) 22.1	7.13 7.13 6.88 5.88 5.46 5.48 5.51 5.51 DO (r 7.78 7.78 7.31 7.31 6.81 6.63	7.1 6.9 5.5 5.5 mg/L) 7.8	59 54 54 64.4 65.3 65.2 DO 79 79 75 75 75 67.5 68	59.0 54.0 64.6 65.3 (%) 79.0	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 4.4 0.4 0.4 0.4 1.13 1.07	1.8 0.1 1.0 1.1 y (NTU) 4.4	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.23 7.23 7.23 7.23 7.37 7.37 7.9 7.9	7.2 7.4 7.8 7.9 H 7.2	3.4 3.4 2.4 2.4 11 11 4 4 SS(m 9.3 9.3 9.3 15.8 15.8 4 4	3.4 2.4 11.0 4.0 9.3 15.8 4.0
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27	<1 <1 0.30 0.40 Depth (m) <1 <1	24.1 25.1 25.1 24.2 24.2 24.2 24.2 24 24 24 24 24 24 22.1 22.1	24.1 25.1 24.2 24.0 24.0 2000) 2000) 22.1 23.0	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 DO (r 7.78 7.78 7.31 7.31 6.81	7.1 6.9 5.5 5.5 mg/L) 7.8 7.3	59 59 54 64.4 65.3 65.2 DO 79 79 75 67.5	59.0 54.0 64.6 65.3 (%) 79.0 75.0	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 4.4 0.4 0.4 0.4 1.13	1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.23 7.23 7.23 7.37 7.37 7.9	7.2 7.4 7.8 7.9 H 7.2 7.4	3.4 3.4 2.4 11 11 4 4 SS(m 9.3 9.3 15.8 15.8 4	3.4 2.4 11.0 4.0 9.3 15.8
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W3 (control) W4 (impact)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27 12:45 12:55	<1 <1 0.30 0.40 Depth (m) <1 <1 <1 0.30	24.1 25.1 25.1 24.2 24.2 24.2 24 24 24 24 22 24 24 22.1 22.1	24.1 25.1 24.2 24.0 24.0 22.1 22.1 23.0 22.9	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 DO (r 7.78 7.78 7.78 7.31 7.31 6.81 6.63 5.73	7.1 6.9 5.5 5.5 7.8 7.8 7.3 6.7	59 54 54 64.4 65.3 65.2 DO 79 79 75 75 67.5 68 62.3	59.0 54.0 64.6 65.3 (%) 79.0 75.0 67.8	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 0.4 0.4 1.13 1.07 1.2	1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4 1.1	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.23 7.23 7.23 7.37 7.37 7.9 7.9 7.9 7.9	7.2 7.4 7.8 7.9 H 7.2 7.4 7.9	3.4 3.4 2.4 11 11 4 4 55(m 9.3 9.3 15.8 15.8 15.8 4 4 2	3.4 2.4 11.0 4.0 9.3 15.8 4.0
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W3 (control)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27 12:45	<1 <1 0.30 0.40 Depth (m) <1 <1 <1 0.30	24.1 25.1 25.1 24.2 24.2 24.2 24 24 24 24 22 24 24 22.1 22.1	24.1 25.1 24.2 24.0 24.0 22.1 22.1 22.0 22.9 22.8	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 DO (r 7.78 7.31 7.31 7.31 6.81 6.63 5.73 5.69	7.1 6.9 5.5 5.5 7.8 7.8 7.3 6.7	59 59 54 54 64.4 65.3 65.2 DO 79 79 75 67.5 68 62.3 62.1	59.0 54.0 64.6 65.3 (%) 79.0 75.0 67.8	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 0.4 0.4 1.13 1.07 1.2	1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4 1.1 1.2	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.23 7.23 7.23 7.23 7.23 7.23 7.23 7.23	7.2 7.4 7.8 7.9 H 7.2 7.4 7.9	3.4 3.4 2.4 11 11 4 4 55(m 9.3 9.3 15.8 15.8 15.8 4 4 2	3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact)	12:25 11:56 14:16 14:38 10-Aug-11 10-Aug-11 12:57 12:27 12:45 12:55 12-Nov-11	<1 <1 0.30 0.40 Depth (m) <1 <1 <1 0.30 0.40	24.1 25.1 24.2 24.2 24.2 24.2 24 24 24 24 24 24 22.1 22.1	24.1 25.1 24.2 24.0 24.0 22.1 22.1 22.0 22.9 22.8	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 5.51 DO (r 7.78 7.31 7.31 6.81 6.63 5.73 5.69 DO (r 7.69	7.1 6.9 5.5 5.5 7.8 7.8 7.3 6.7 5.7	59 54 54 64.4 65.3 65.2 DO 79 79 75 67.5 68 62.3 62.1 DO 82	59.0 54.0 64.6 65.3 (%) 79.0 75.0 67.8 62.2	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 1.13 1.07 1.2 1.1	1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4 1.1 1.2	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.23 7.23 7.23 7.37 7.37 7.37 7.9 7.9 7.9 7.9 7.2 7.2 7.2 7.2	7.2 7.4 7.8 7.9 H 7.2 7.4 7.9 7.2	3.4 3.4 2.4 2.4 11 11 4 4 SS(m 9.3 9.3 15.8 15.8 15.8 4 4 2 2 SS(m 6.8	3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27 12:45 12:55 12:55	<1 <1 0.30 0.40 Depth (m) <1 <1 <1 0.30 0.40 Depth (m)	24.1 25.1 25.1 24.2 24.2 24.2 24 24 24 24 24 22 24 24 22 24 22 24 22 24 22 22	24.1 25.1 24.2 24.0 24.0 2000) 22.1 23.0 22.9 22.8	7.13 7.13 6.88 6.88 5.46 5.51 5.51 5.51 DO (r 7.78 7.78 7.78 7.71 6.81 6.63 5.73 5.69 DO (r 7.69 7.69 7.13	7.1 6.9 5.5 5.5 7.8 7.3 6.7 5.7	59 59 54 54 64.4 64.7 65.3 65.2 DO 79 75 67.5 68 62.3 62.1 DO 82 76	59.0 54.0 64.6 65.3 (%) 79.0 75.0 67.8 62.2 (%)	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 0.4 0.4 1.13 1.07 1.2 1.1 Turbidit 0.7 0.7 1.2	1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4 1.1 1.2 y (NTU)	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.23 7.23 7.37 7.37 7.9 7.9 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	7.2 7.4 7.8 7.9 H 7.2 7.4 7.9 7.2 H	3.4 3.4 2.4 2.4 11 11 4 4 4 SS(m 9.3 15.8 15.8 15.8 15.8 4 4 2 2 SS(m 6.8 6.8 6.4	3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1(impact) W2 (Impact)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27 12:45 12:55 12-Nov-11 Time 12:22 12:33	<1 <1 0.30 0.40 Depth (m) <1 <1 0.30 0.40 Depth (m) <1 <1 <1	24.1 25.1 25.1 24.2 24.2 24.2 24 24 24 24 24 22 24 24 24 22.1 22.1	24.1 25.1 24.2 24.0 2000 22.1 23.0 22.9 22.8 2000 22.8	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 DO (r 7.78 7.78 7.78 7.31 6.63 5.73 5.69 DO (r 7.69 7.69	7.1 6.9 5.5 5.5 7.8 7.3 6.7 5.7 mg/L) 7.7 7.7 7.1	59 54 54 64.4 64.7 65.3 65.2 DO 79 79 75 67.5 68 62.3 62.1 DO 82 82 82 76 76 67.2	59.0 54.0 64.6 65.3 (%) 79.0 75.0 67.8 62.2 (%) 82.0 76.0	1.8 1.8 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 1.07 1.2 1.1	1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4 1.1 1.2	7.15 7.15 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.23 7.37 7.37 7.37 7.37 7.9 7.9 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	7.2 7.4 7.8 7.9 H 7.2 7.4 7.9 7.2 7.2 H 7.2	3.4 3.4 2.4 2.4 11 11 4 4 SS(m 9.3 9.3 9.3 15.8 15.8 4 4 4 2 2 SS(m 6.8 6.8 6.8 6.4 6.4 3	3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0 9.3 6.8 6.4
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W4 (impact) W4 (impact) Date Location W1(impact) W2 (Impact) W3 (control)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27 12:45 12:55 12-Nov-11 Time 12:22 12:33 10:28	<1 <1 <1 0.30 0.40 Depth (m) <1 <1 0.30 0.40 Depth (m) <1 <1	24.1 24.1 25.1 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24	24.1 25.1 24.2 24.0 22.1 22.1 22.0 22.9 22.8 22.8 20(oC) 22.1 22.3 22.3 22.3 22.3 22.3 22.3 22.3	7.13 7.13 6.88 5.46 5.48 5.51 5.51 7.78 7.78 7.31 7.31 6.81 6.63 5.73 5.69 DO (r 7.69 7.69 7.69 7.13 6.54 6.51	7.1 6.9 5.5 5.5 7.8 7.8 7.3 6.7 5.7 5.7 mg/L) 7.7 7.1 6.5	59 54 64.4 64.7 65.3 65.2 DO 79 75 75 67.5 68 62.3 62.1 DO 82 82 82 76 76 76 75 67.5	59.0 54.0 64.6 65.3 79.0 75.0 67.8 62.2 (%) 82.0 76.0 67.4	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 1.13 1.07 1.2 1.1 Turbidit 0.7 0.7 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.99 1.02	1.8 0.1 1.0 1.1 4.4 0.4 1.1 1.2 y (NTU) 0.7 1.2 1.0	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.2 7.23 7.37 7.37 7.37 7.37 7.37 7.37	7.2 7.4 7.8 7.9 7.2 7.4 7.9 7.2 7.2 7.4 7.2 7.4 7.2	3.4 3.4 2.4 2.4 11 11 4 4 4 SS(m 9.3 9.3 9.3 15.8 15.8 15.8 15.8 4 4 2 2 SS(m 6.8 6.8 6.8 6.4 3 3	3.4 3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0 g/L) 6.8 6.4 3.0
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1(impact) W2 (Impact)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27 12:45 12:55 12-Nov-11 Time 12:22 12:33	<1 <1 0.30 0.40 Depth (m) <1 <1 0.30 0.40 Depth (m) <1 <1 <1	24.1 24.1 25.1 24.2 24.2 24.2 24.2 24 24 24 24 24 22.1 22.1	24.1 25.1 24.2 24.0 2000 22.1 23.0 22.9 22.8 2000 22.8	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 7.78 7.78 7.31 6.81 6.63 5.73 5.69 DO (r 7.69 7.69 7.69 7.13 7.13 6.54	7.1 6.9 5.5 5.5 7.8 7.3 6.7 5.7 mg/L) 7.7 7.7 7.1	59 54 54 64.4 64.7 65.3 65.2 DO 79 79 75 67.5 68 62.3 62.1 DO 82 82 82 76 76 67.2	59.0 54.0 64.6 65.3 (%) 79.0 75.0 67.8 62.2 (%) 82.0 76.0	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 1.13 1.07 1.2 1.1	1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4 1.1 1.2	7.15 7.15 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.23 7.37 7.37 7.37 7.37 7.9 7.9 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	7.2 7.4 7.8 7.9 H 7.2 7.4 7.9 7.2 7.2 H 7.2	3.4 3.4 2.4 2.4 11 11 4 4 SS(m 9.3 9.3 9.3 15.8 15.8 4 4 4 2 2 SS(m 6.8 6.8 6.8 6.4 6.4 3	3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0 9.3 6.8 6.4
 W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W2 (Impact) W3 (control) W2 (Impact) W3 (control) W3 (control) W3 (control) W3 (control) W4 (impact) 	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27 12:45 12:55 12-Nov-11 Time 12:22 12:33 10:28 10:38	<1 <1 <1 0.30 0.40 Depth (m) <1 <1 0.30 0.40 Depth (m) <1 <1	24.1 24.1 25.1 24.2 24.2 24.2 24 24 24 24 24 24 22 24 24 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 23 22.9 22.8 22.8 22.8 22.8 22.8 22.8 22.8	24.1 25.1 24.2 24.0 22.1 22.1 22.0 22.9 22.8 22.8 20(oC) 22.1 22.3 22.3 22.3 22.3 22.3 22.3 22.3	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 7.78 7.78 7.78 7.78 7.78 7.31 6.63 5.73 5.69 DO (r 7.69 7.69 7.69 7.69 7.13 7.13 6.54 6.51 5.89	7.1 6.9 5.5 5.5 7.8 7.8 7.3 6.7 5.7 5.7 mg/L) 7.7 7.1 6.5	59 59 54 64.4 64.7 65.3 65.2 DO 79 79 75 75 67.5 68 62.3 62.1 DO 82 82 82 76 76 76 67.2 67.5 62.3	59.0 54.0 64.6 65.3 79.0 75.0 67.8 62.2 (%) 82.0 76.0 67.4	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 0.4 0.4 1.13 1.07 1.2 1.1 Turbidit 0.7 1.2 1.2 0.7 0.7 0.7 1.2 1.2 0.99 1.02 0.9	1.8 0.1 1.0 1.1 4.4 0.4 1.1 1.2 y (NTU) 0.7 1.2 1.0	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.23 7.23 7.23 7.23 7.23 7.23 7.23 7.23	7.2 7.4 7.8 7.9 7.2 7.4 7.9 7.2 7.2 7.4 7.2 7.4 7.2	3.4 3.4 3.4 2.4 11 11 4 9.3 9.3 15.8 15.8 4 2 6.8 6.8 6.4 3 3 <<2	3.4 3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0 g/L) 6.8 6.4 3.0
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W4 (impact) W4 (impact) W2 (Impact) W2 (Impact) W3 (control) W3 (control) W4 (impact)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27 12:45 12:55 12-Nov-11 12:22 12:33 10:28 10:38	<1 <1 0.30 0.40 <1 <1 <1 0.30 0.40 Depth (m) <1 <1 <1 0.30 0.40	24.1 24.1 25.1 24.2 24.2 24.2 24.2 24 24 24 24 24 24 22.1 22.1	24.1 25.1 24.2 24.0 22.1 22.1 22.0 22.9 22.9 22.8 2000 22.9 22.8 23.1 23.1 23.1	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 7.78 7.78 7.31 7.31 6.81 6.63 5.73 5.69 DO (r 7.69 7.69 7.69 7.69 7.69 7.13 6.54 6.51 5.89 5.92	7.1 6.9 5.5 5.5 7.8 7.8 7.3 6.7 5.7 5.7 mg/L) 7.7 7.1 6.5 5.9	59 59 54 64.4 65.3 65.2 DO 79 79 75 67.5 67.5 68 62.3 62.1 DO 82 82 82 76 76 75 67.5 68.2 62.3	59.0 54.0 64.6 65.3 79.0 75.0 67.8 62.2 (%) 82.0 76.0 67.4	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 0.4 0.4 1.13 1.07 1.2 1.1 Turbidit 0.7 1.2 1.2 0.7 0.7 0.7 1.2 1.2 0.99 1.02 0.9	1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4 1.1 1.2 y (NTU) 0.7 1.2 1.0 0.9	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.23 7.23 7.23 7.23 7.23 7.23 7.23 7.23	7.2 7.4 7.8 7.9 7.2 7.4 7.9 7.2 7.2 7.4 7.2 7.4 7.2	3.4 3.4 2.4 2.4 11 11 4 4 SS(m 9.3 9.3 15.8 15.8 4 4 4 2 2 SS(m 6.8 6.4 6.4 3 3 -<2 -<2	3.4 3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0 6.8 6.4 3.0 2.0
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W3 (control) W4 (impact) W2 (Impact) W2 (Impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27 12:45 12:55 12:45 12:55 12:22 12:33 12:22 12:33 10:28 10:28 10:38	<1 <1 <1 0.30 0.40 Depth (m) <1 <1 0.30 0.40 Depth (m) <1 <1 <1 <1 <1 0.30 0.40 Depth (m) <1 <1<td>24.1 24.1 25.1 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24</td><td>24.1 25.1 24.2 24.0 (oC) 22.1 23.0 22.9 22.8 23.1 23.4 23.1 23.1 23.1 23.1 23.1 23.1</td><td>7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 DO (r 7.78 7.31 7.31 6.81 6.63 5.73 5.69 DO (r 7.69 7.13 5.69 DO (r 7.69 7.13 6.51 5.51 DO (r 7.13 6.51 5.92 DO (r 7.13</td><td>7.1 6.9 5.5 5.5 7.8 7.3 6.7 5.7 mg/L) 7.7 7.1 6.5 5.9 mg/L)</td><td>59 59 54 64.4 64.7 65.3 65.2 DO 79 79 75 67.5 68 62.3 62.1 DO 82 82 76 76 67.2 67.5 62.3 62.5 DO 82 82 76 76</td><td>59.0 54.0 64.6 65.3 (%) 79.0 75.0 67.8 62.2 (%) 82.0 76.0 67.4 62.4</td><td>1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 1.13 1.07 1.2 1.1 Turbidit 0.7 0.7 1.2 0.99 1.02 0.94 Turbidit 2.2</td><td>1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4 1.1 1.2 y (NTU) 0.7 1.2 1.0 0.7 1.2 y (NTU) 0.7 1.2 1.0 0.9 y (NTU)</td><td>7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.23 7.37 7.37 7.37 7.37 7.37 7.37 7.37</td><td>7.2 7.4 7.8 7.9 H 7.2 7.4 7.9 7.2 7.4 7.2 7.4 7.2 7.4 7.2 7.4 7.5 7.9</td><td>3.4 3.4 2.4 2.4 11 11 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>3.4 3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 15.8 1</td>	24.1 24.1 25.1 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24	24.1 25.1 24.2 24.0 (oC) 22.1 23.0 22.9 22.8 23.1 23.4 23.1 23.1 23.1 23.1 23.1 23.1	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 DO (r 7.78 7.31 7.31 6.81 6.63 5.73 5.69 DO (r 7.69 7.13 5.69 DO (r 7.69 7.13 6.51 5.51 DO (r 7.13 6.51 5.92 DO (r 7.13	7.1 6.9 5.5 5.5 7.8 7.3 6.7 5.7 mg/L) 7.7 7.1 6.5 5.9 mg/L)	59 59 54 64.4 64.7 65.3 65.2 DO 79 79 75 67.5 68 62.3 62.1 DO 82 82 76 76 67.2 67.5 62.3 62.5 DO 82 82 76 76	59.0 54.0 64.6 65.3 (%) 79.0 75.0 67.8 62.2 (%) 82.0 76.0 67.4 62.4	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 1.13 1.07 1.2 1.1 Turbidit 0.7 0.7 1.2 0.99 1.02 0.94 Turbidit 2.2	1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4 1.1 1.2 y (NTU) 0.7 1.2 1.0 0.7 1.2 y (NTU) 0.7 1.2 1.0 0.9 y (NTU)	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.23 7.37 7.37 7.37 7.37 7.37 7.37 7.37	7.2 7.4 7.8 7.9 H 7.2 7.4 7.9 7.2 7.4 7.2 7.4 7.2 7.4 7.2 7.4 7.5 7.9	3.4 3.4 2.4 2.4 11 11 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	3.4 3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 15.8 1
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W3 (control) W4 (impact) W4 (impact) W2 (Impact) W3 (control) W2 (Impact) W3 (control) W3 (control) W4 (impact) W4 (impact)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:57 12:45 12:55 12:55 12:53 12:53 12:33 10:28 10:38 10:38 10:38	<1 <1 <1 0.30 0.40	24.1 24.1 25.1 24.2 24.2 24.2 24.2 24 24 24 24 24 24 22.1 22.1	24.1 25.1 24.2 24.0 22.1 22.1 23.0 22.9 22.8 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 7.78 7.31 7.31 7.31 6.81 6.63 5.73 5.69 DO (r 7.69 7.69 7.69 7.69 7.69 7.69 7.13 6.54 6.51 5.51	7.1 6.9 5.5 5.5 7.8 7.8 7.3 6.7 5.7 5.7 7.1 6.5 5.9 mg/L) 7.1	59 59 54 64.4 65.3 65.2 DO 79 79 75 67.5 68 62.3 62.1 DO 82 82 82 82 76 76 75 67.5 68.2 62.3 62.1	59.0 59.0 54.0 64.6 65.3 79.0 75.0 67.8 62.2 (%) 82.0 76.0 67.4 62.4 (%) 76.0	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 4.4 0.4 0.4 1.13 1.07 1.2 1.1	1.8 0.1 1.0 1.1 4.4 0.4 1.1 1.2 9 (NTU) 0.7 1.2 1.0 0.9 9 (NTU) 2.2	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.2 7.2 7.37 7.37 7.9 7.9 7.9 7.9 7.9 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	7.2 7.4 7.8 7.9 7.2 7.4 7.2 7.4 7.9 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	3.4 3.4 2.4 2.4 11 11 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	3.4 3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0 6.8 6.4 3.0 2.0 g/L) 3.2
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W2 (Impact) W3 (control) W4 (impact) W2 (Impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:27 12:45 12:55 12:45 12:55 12:22 12:33 12:22 12:33 10:28 10:28 10:38	<1 <1 <1 0.30 0.40 Depth (m) <1 <1 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	24.1 24.1 25.1 24.2 24.2 24.2 24.2 24 24 24 24 24 24 22.1 22.1	24.1 25.1 24.2 24.0 (oC) 22.1 23.0 22.9 22.8 23.1 23.4 23.1 23.1 23.1 23.1 23.1 23.1	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 7.78 7.31 7.31 7.31 6.81 6.63 5.73 5.69 DO (r 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69	7.1 6.9 5.5 5.5 7.8 7.3 6.7 5.7 mg/L) 7.7 7.1 6.5 5.9 mg/L) 7.1 7.2	59 59 54 54.4 64.7 65.3 65.2 DO 79 75 67.5 68 62.3 62.1 DO 82 82 76 76.5 62.3 62.5 DO 82 76 77 77	59.0 54.0 64.6 65.3 (%) 79.0 75.0 67.8 62.2 (%) 82.0 76.0 67.4 62.4	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 4.4 0.4 0.4 0.4 0.4 0.7 1.2 1.1 Turbidit 0.7 0.7 0.7 0.7 0.2 0.9 0.94 Turbidit 2.2 2.3 2.3	1.8 0.1 1.0 1.1 y (NTU) 4.4 0.4 1.1 1.2 y (NTU) 0.7 1.2 1.0 0.7 1.2 y (NTU) 0.7 1.2 1.0 0.9 y (NTU)	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.2 7.37 7.37 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	7.2 7.4 7.8 7.9 H 7.2 7.4 7.9 7.2 7.4 7.2 7.4 7.2 7.4 7.2 7.4 7.5 7.9	3.4 3.4 2.4 2.4 11 11 4 4 SS(m 9.3 9.3 15.8 15.8 4 4 4 2 SS(m 6.8 6.4 6.4 3 3 3 SS(m 3.2 SS(m 3.2 6.4 6.4 6.4	3.4 3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 4.0 2.0 9.3 15.8 6.8 6.4 3.0 2.0 9.2 6.8 6.4 3.2 6.4
W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W3 (control) W4 (impact) W4 (impact) W2 (Impact) W3 (control) W2 (Impact) W3 (control) W3 (control) W4 (impact) W4 (impact)	12:25 11:56 14:16 14:38 10-Aug-11 Time 12:57 12:57 12:45 12:55 12:55 12:53 12:53 12:33 10:28 10:38 10:38 10:38	<1 <1 <1 0.30 0.40	24.1 24.1 25.1 25.1 24.2 24.2 24.2 24 24 24 24 24 24 24 22.1 22.1	24.1 25.1 24.2 24.0 22.1 22.1 23.0 22.9 22.8 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1	7.13 7.13 6.88 6.88 5.46 5.48 5.51 5.51 5.51 7.78 7.78 7.31 7.31 6.81 6.63 5.73 5.69 DO (r 7.69 7.69 7.69 7.69 7.69 7.13 6.51 5.51 5.92 DO (r 7.13 7.13 7.13 7.21	7.1 6.9 5.5 5.5 7.8 7.8 7.3 6.7 5.7 5.7 7.1 6.5 5.9 mg/L) 7.1	59 59 54 54 64.4 65.3 65.2 DO 79 75 67.5 68 62.3 62.1 DO 82 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76	59.0 59.0 54.0 64.6 65.3 79.0 75.0 67.8 62.2 (%) 82.0 76.0 67.4 62.4 (%) 76.0	1.8 1.8 0.1 0.1 1.05 1.03 1.08 1.1 Turbidit 4.4 0.4 0.4 1.13 1.07 1.2 1.1 Turbidit 0.7 1.2 1.1 0.7 0.7 0.7 1.2 1.2 1.2 1.2 2.2 2.2 2.3	1.8 0.1 1.0 1.1 4.4 0.4 1.1 1.2 9 (NTU) 0.7 1.2 1.0 0.9 9 (NTU) 2.2	7.15 7.15 7.41 7.41 7.8 7.8 7.9 7.9 7.9 7.9 7.23 7.23 7.23 7.23 7.23 7.23 7.23 7.23	7.2 7.4 7.8 7.9 7.2 7.4 7.2 7.4 7.9 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	3.4 3.4 3.4 2.4 2.4 11 11 4 4 5 5.8 15.8 15.8 15.8 15.8 15.8 4 4 4 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5	3.4 3.4 2.4 11.0 4.0 9.3 15.8 4.0 2.0 6.8 6.4 3.0 2.0 g/L) 3.2

6.5 6.13

6.2

23.6 23.4

23.6

23.5

0.40

11:22

W4 (impact)

66.1 62.3

63.1

62.7

6.2

1.1

1.13 1.09

1.11

7.5

2.0

7.8 7.5

7.5

DSD Contract No. DC/2010/02

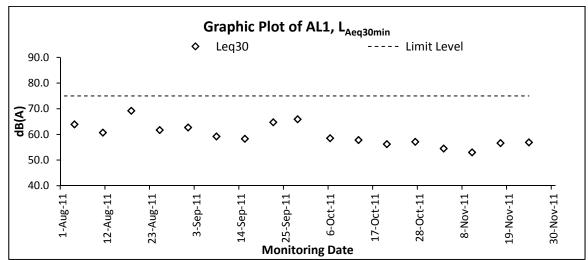
Contract No. - Drainage Improvement in Shuen Wan and Shek Wu Wai

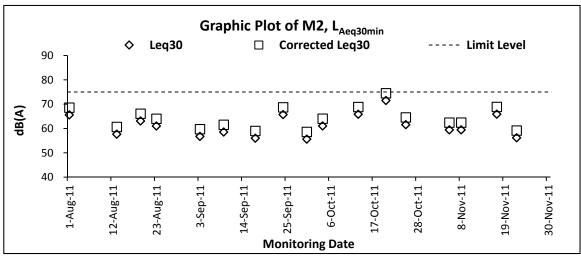
Summary of Water Quality Monitoring Results

Artion / Limit Level Artion / 12/2 Artion / 12/2 Artion / 12/2 Artion / 10/2 Artion	Location					DO (I	mg/L)	DO	(%)	Turbidit	y (NTU)	q	Н	SS(m	ig/L)
ImageImageJosImage <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>• ·</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>. .</td></t<>							• ·					•			. .
Mart and matrix	vvi (impact)														
Mathematic Level Lute Lute Lute No Lute	W2 (impact)										2.46				
Number Action 9.20 Action 9.20 Action 3.20 Action 0.70 Action 9.30 Location Time Dept(n) Temp(c) Do (mayL) Do (mayL) Number of (mayL) Numer of (mayL) Numer of (mayL) N			Action/ Limi	it Level					•						
Jimit J.mit J.mit <t< td=""><td>W3 (control)</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1</td></t<>	W3 (control)						1				1				1
Interpretation Interp	W4 (impact)														
Image Depth (m) Temp (ac) DD (mp/L) DD (mp/L) DD (mp/L) DD (mp/L) PIL introduct (MTU) PIL SS(mp/L) W1 (mpac) 155.0 <1						i Limit	7.98	I Limit	n/a	I Limit	4.52	Limit	n/a	I Limit	7.66
With (mpace) 15:00 <1 244 24.4 7.46 7.5 7.7 7.0 0.3 0.3 7.7 7.3 1 1.0 W2 (mpace) 15:15 <1 25.1 25.1 7.1 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 1 1.0 W3 (mmace) 10.50 0.40 24.4 24.4 64.6 4.7 26.8 550 1.12 1.3 8.0 6.8 ~ 2.2 2.0 W4 (mpace) 10.50 0.0 24.4 24.4 64.6 7.8 7.7 7.8 1.02 1.0 7.7 7.8 ~ 2.2 2.0 W4 (mpace) 12.57 <1 2.8 2.0 7.6 7.7 7.4 7.0 2.3 1.0 7.7 7.3 1.2 1.2 1.3 8.0 6.9 7.0 7.3 1.2 1.2 1.2 1.3 7.0 7.3 7.3 1.2 1.2 1.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	Date	17-Nov-11													
number 1530 77 77 70 03	Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(m	g/L)
N2 (mpace) 15:15 c1 25:1 7.3 7.3 7.6	W1(impact)	15:00	<1		24.4		7.5		77.0		0.3		7.3		1.0
m2 (mpac) is.is															
m1 (01/4) (0.3) (2.3) (2.3) (2.3) (2.4) (4.6) (4.7) (4.8) (0.0) (1.2) (1.0) (0.0) (0.0) (2.2) (2.0) Date (1.0) (0.0) (2.4) (2.4) (4.6) (4.7) (7.8) (1.0) (1.0) (2.0) <	W2 (Impact)	15:15	<1		25.1		7.3		76.0		1.2		7.6		3.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W3 (control)	10:40	0.30		24.3		4.7		55.0		1.3		6.8		2.0
main (mage) main main <td></td>															
Lacation Time Depth (m) Temp (oC) D0 (mg/L) D0 (%) Turbitity (NTU) pH SS(mg/L) W1(mpact) 12:57 <1	W4 (impact)	10:50	0.40		24.4		6.4		77.8		1.0		7.8		2.0
Lacation Time Depth (m) Temp (oC) D0 (mg/L) D0 (%) Turbitity (NTU) pH SS(mg/L) W1(mpact) 12:57 <1															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			· · · · ·	_				1		1		-			
$\begin{split} & \text{W(mpac)} & 12.37 & <1 & 26 & 260 & 7.65 & 7.7 & 74 & 740 & 2.9 & 7.38 & 7.3 & 1.2 & 1.2 \\ \hline 26.1 & 26.1 & 26.1 & 7.17 & 7.2 & 70 & 700 & 3.3 & 3.3 & 7.39 & 7.4 & 3.4 & 3.4 \\ \hline 26.1 & 26.1 & 26.1 & 26.1 & 7.17 & 7.2 & 70 & 700 & 3.3 & 3.3 & 7.39 & 7.4 & 3.4 & 3.4 \\ \hline 36 (control) & 11.52 & 0.30 & 25.8 & 25.8 & 4.65 & 4.6 & 55.7 & 55.5 & 0.83 & 0.9 & 7.1 & 7.0 & 2 & 2.0 \\ \hline W4 (mpac) & 12.26 & 0.40 & 25.7 & 5.7 & 6.18 & 6.2 & 6.7 & 6.21 & 0.9 & 0.9 & 7.1 & 7.0 & 2 & 2.0 \\ \hline M4 (mpac) & 12.26 & 0.40 & 25.7 & 5.7 & 6.18 & 6.2 & 6.7 & 6.21 & 0.9 & 0.9 & 7.5 & 7.5 & -2 & 2.0 \\ \hline M4 (mpac) & 10.43 & <1 & 22.4 & 2.4 & 7.25 & 7.3 & 78 & 78 & 780 & 1 & 10.0 & 7.27 & 7.3 & 2.4 & 2.4 \\ \hline W1 (mpac) & 10.43 & <1 & 22.4 & 22.4 & 7.25 & 7.3 & 78 & 780 & 1 & 10.0 & 7.27 & 7.3 & 2.4 & 2.4 \\ \hline W3 (mpac) & 10.23 & <1 & 22.6 & 22.8 & 7 & 7.0 & 76 & 76.0 & 1.2 & 1.2 & 7.46 & 7.5 & 3.8 & 3.8 \\ \hline W3 (contro) & 10.23 & 0.3 & 25.2 & 25.3 & 5.1 & 5.1 & 6.22 & 4.5 & 4.4 & 4.4 & 8.6 & 4.4 & 4.0 \\ \hline W4 (mpac) & 10.41 & 0.20 & 25.2 & 25.3 & 5.1 & 5.1 & 6.22 & 4.5 & 4.4 & 4.4 & 8.6 & 8.6 & 4. \\ \hline W4 (mpac) & 10.41 & 0.20 & 25.2 & 25.3 & 5.1 & 5.1 & 6.22 & 4.5 & 4.4 & 4.4 & 8.6 & 8.6 & 4. \\ \hline W4 (mpac) & 10.41 & 0.20 & 25.2 & 25.3 & 5.1 & 5.1 & 6.22 & 4.5 & 4.4 & 4.4 & 8.6 & 8.6 & 4. \\ \hline W4 (mpac) & 10.41 & 0.20 & 25.2 & 25.3 & 5.1 & 5.1 & 6.22 & 4.5 & 4.4 & 4.4 & 8.6 & 8.6 & 4. \\ \hline W4 (mpac) & 10.41 & 0.20 & 25.2 & 25.2 & 7.18 & 7.2 & 7.6 & 7.6 & 1.5 & 1.5 & 7.5 & 3.8 & 3.6 & -2.2 \\ \hline Dat & 2-Nov-11 & UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU$	Location	Time	Depth (m)		o (oC)		ng/L)		(%)		y (NTU)		H		g/L)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W1(impact)	12:57	<1		26.0		7.7		74.0		2.9		7.3		1.2
$\begin{split} & \text{We (inpace)} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W/2 (Immed)	10.00	. 4		24.1		7.0		70.0		2.2		7 4		2.4
Main (main) 11.52 0.30 25.8 2.5.8 4.6.5 4.9. 55.7 5.3. 0.83 0.9 7.1 7.0 2.2 2.0 W4 (mpact) 12:06 0.40 25.7 25.7 6.11 6.2 61.9 62.7 62.3 10.2 0.9 7.4 7.5 <.2	vv∠ (Impact)	12:30	<1	26.1	26.1	7.17	7.2	70	/0.0	3.3	3.3	7.39	7.4	3.4	3.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W3 (control)	11:52	0.30		25.8		4.6		55.5		0.9		7.0		2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10.07	0.10		05.7						0.0		7.5		
Location Time Depth (m) Temp (oC) D0 (mg/L) D0 (%) Turbidity (NTU) pH SS(mg/L) W1(impact) 10:43 <1	W4 (impact)	12:06	0.40		25.7		6.2		62.3		0.9		7.5		2.0
Location Time Depth (m) Temp (oC) D0 (mg/L) D0 (%) Turbidity (NTU) pH SS(mg/L) W1(impact) 10:43 <1															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-		-	()	56 ("		(0.1)		(1.177.1)			221	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Location	Time	Depth (m)		5 (0C)	,	ng/L)		(%)	lurbidit	у (NIU)		H	-	g/L)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W1(impact)	10:43	<1		22.4		7.3		78.0	1	1.0		7.3		2.4
V3 (control) 10:23 0.30 $\frac{22.8}{25.2}$ 25.3 5.0 5.1 60.7 61.5 4.4 4.4 8.6 8.6 4.4 4.4 4.4 8.6 8.6 4.4 4.4 8.6 8.6 4.4 4.6 8.6 8.6	W2 (Impact)	10.22	-1		22.0		7.0		76.0		1.2		7 5		20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	wz (mpact)	10.23	~1		22.0	-	7.0		70.0		1.2		7.0		5.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W3 (control)	10:23	0.30		25.3		5.1		61.5		4.4		8.6		4.0
Vie (inflict) 10.41 0.20 25.1 2.3.2 5.38 5.4 63.4 64.0 4.2 4.2 8.2 6.3 <2 2.0 Date 24-Nov-11 Image: Constraint of the	W/A (impact)	10.41	0.20		25.2		E 4		64.0		4.2		0.2		2.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	w4 (impact)	10:41	0.20		25.2		5.4		04.0		4.Z		0.3		2.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date	24 Nov 11													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		24-1107-11							DO (%) Turbidity (NTU)						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LUCATION		Depth (m)	Tem	o (oC)	DO (I	ng/L)	DO	(%)	Turbidit	y (NTU)	a	н	SS(m	g/L)
W2 (Impact) 12:05 <1 22.7 22.7 6.87 6.9 73 73.0 0.9 0.9 7.67 7.7 7.7 3.2 3.2 W3 (control) 10:37 0.30 22.1 22.2 5.6 5.7 66.4 65.7 1.06 1.1 7.6 7.7 $<$ $<$ 2.0 W4 (impact) 10:47 0.40 22.4 2.3 6.1 6.2 68.8 69.1 0.98 1.0 8.1 8.2 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$		Time				-			1	1.5		7.51		-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Time		22.5 22.5		7.18 7.18		76 76	1	1.5 1.5		7.51 7.51		3.6 3.6	
With (unpact) 10.37 0.30 22.1 22.2 5.8 5.7 66 65.7 1.12 1.1 7.8 7.7 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$	W1(impact)	Time 12L37	<1	22.5 22.5 22.7	22.5	7.18 7.18 6.87	7.2	76 76 73	76.0	1.5 1.5 0.9	1.5	7.51 7.51 7.67	7.5	3.6 3.6 3.2	3.6
W4 (inpact) 10:47 0.40 22.2 22.3 6.23 6.2 69.3 69.1 1.02 1.0 8.2 8.2 $< < 2$ 2.0 Date 26-Nov-11 Exaction Time Depth (m) Temp (oC) DO (mg/L) DO (%) Turbidity (NTU) pH SS(mg/L) W1(inpact) 13:16 <1 $\frac{21.8}{21.8}$ 21.8 7.1 7.1 7.7 77.0 0 0.0 7.45 7.5 1 1.0 W2 (impact) 15:50 <1 22.4 22.4 7.16 7.2 78 78.0 2.4 2.4 7.7 7.7 2.8 2.8 W3 (control 11:02 0.30 $\frac{22.1}{22.4}$ 22.2 5.67 5.7 663.3 65.8 1.66 1.8 6.9 7.1 2.2 2.0 W4 (impact) 11:02 0.40 25.2 25.2 5.92 5.9 70.4 69.4 1.62 1.8	W1(impact) W2 (Impact)	Time 12L37 12:05	<1 <1	22.5 22.5 22.7 22.7	22.5 22.7	7.18 7.18 6.87 6.87	7.2 6.9	76 76 73 73	76.0 73.0	1.5 1.5 0.9 0.9	1.5 0.9	7.51 7.51 7.67 7.67	7.5 7.7	3.6 3.6 3.2 3.2	3.6 3.2
Date 26-Nov-11 Location Time Depth (m) Temp (oC) DO (mg/L) DO (%) Turbidity (NTU) pH SS(mg/L) W1(inpact) 13:16 <1	W1(impact) W2 (Impact)	Time 12L37 12:05	<1 <1	22.5 22.5 22.7 22.7 22.7 22.3 22.1	22.5 22.7	7.18 7.18 6.87 6.87 5.6 5.8	7.2 6.9	76 76 73 73 65.4 66	76.0 73.0	1.5 1.5 0.9 0.9 1.06 1.12	1.5 0.9	7.51 7.51 7.67 7.67 7.6 7.8	7.5 7.7	3.6 3.6 3.2 3.2 <2 <2	3.6 3.2
LocationTimeDepth (m)Temp (oC)DO (mg/L)DO (%)Turbidity (NTU)pHSS(mg/L)W1(inpact)13:16<1	W1(impact) W2 (Impact) W3 (control)	Time 12L37 12:05 10:37	<1 <1 0.30	22.5 22.5 22.7 22.7 22.7 22.3 22.1 22.4	22.5 22.7 22.2	7.18 7.18 6.87 6.87 5.6 5.8 6.1	7.2 6.9 5.7	76 76 73 73 65.4 66 68.8	76.0 73.0 65.7	1.5 1.5 0.9 0.9 1.06 1.12 0.98	1.5 0.9 1.1	7.51 7.51 7.67 7.67 7.6 7.8 8.1	7.5 7.7 7.7	3.6 3.6 3.2 3.2 <2 <2 <2 <2	3.6 3.2 2.0
W1(impact) 13:16 <1 21.8 21.8 7.1 7.1 7.1 7.7 77.0 0 0.0 7.45 7.5 1 1.0 W2 (Impact) 15:50 <1	W1(impact) W2 (Impact) W3 (control)	Time 12L37 12:05 10:37	<1 <1 0.30	22.5 22.5 22.7 22.7 22.7 22.3 22.1 22.4	22.5 22.7 22.2	7.18 7.18 6.87 6.87 5.6 5.8 6.1	7.2 6.9 5.7	76 76 73 73 65.4 66 68.8	76.0 73.0 65.7	1.5 1.5 0.9 0.9 1.06 1.12 0.98	1.5 0.9 1.1	7.51 7.51 7.67 7.67 7.6 7.8 8.1	7.5 7.7 7.7	3.6 3.6 3.2 3.2 <2 <2 <2 <2	3.6 3.2 2.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W1(impact) W2 (Impact) W3 (control) W4 (impact)	Time 12L37 12:05 10:37 10:47	<1 <1 0.30	22.5 22.5 22.7 22.7 22.7 22.3 22.1 22.4	22.5 22.7 22.2	7.18 7.18 6.87 6.87 5.6 5.8 6.1	7.2 6.9 5.7	76 76 73 73 65.4 66 68.8	76.0 73.0 65.7	1.5 1.5 0.9 0.9 1.06 1.12 0.98	1.5 0.9 1.1	7.51 7.51 7.67 7.67 7.6 7.8 8.1	7.5 7.7 7.7	3.6 3.6 3.2 3.2 <2 <2 <2 <2	3.6 3.2 2.0
W2 (Impact) 15:50 <1 $\frac{22.4}{22.4}$ 22.4 22.4 7.16 7.2 78 78.0 2.4 2.4 7.7 7.7 7.7 2.8 2.8 2.8 W3 (control) 11:02 0.30 $\frac{22.1}{22.3}$ 22.2 5.67 5.7 65.2 65.8 1.66 1.8 6.9 7.1 2 2.0 W4 (impact) 11:22 0.40 $\frac{21.7}{22.6}$ 22.2 5.67 5.7 66.3 69.4 1.62 1.8 6.9 7.1 2 2.0 Date 29-Nov-11 Location Time Depth (m) Temp (oC) DO (mg/L) DO (%) Turbidity (NTU) pH SS(mg/L) W1(impact) 14:00 <1 25.2 25.2 6.63 6.6 70 70.0 7.2 7.2 7.5 7.5 1 10.0 W2 (Impact) 14:21 <1 25.5 25.5 6.63 6.6 70 70.0	W1(impact) W2 (Impact) W3 (control) W4 (impact) Date	Time 12L37 12:05 10:37 10:47 26-Nov-11	<1 <1 0.30 0.40	22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2	22.5 22.7 22.2 22.3	7.18 7.18 6.87 6.87 5.6 5.8 6.1 6.23	7.2 6.9 5.7 6.2	76 76 73 65.4 66 68.8 69.3	76.0 73.0 65.7 69.1	1.5 1.5 0.9 0.9 1.06 1.12 0.98 1.02	1.5 0.9 1.1 1.0	7.51 7.67 7.67 7.6 7.8 8.1 8.2	7.5 7.7 7.7 8.2	3.6 3.6 3.2 3.2 <2	3.6 3.2 2.0 2.0
W2 (impact) 15:50 <1 22.4 22.4 7.16 7.2 78 78.0 2.4 2.4 7.7 7.7 2.8 2.8 W3 (control) 11:02 0.30 $\frac{22.1}{22.3}$ 22.2 $\frac{5.67}{5.7}$ 5.7 $\frac{65.2}{66.3}$ 65.8 $\frac{1.66}{2.02}$ 1.8 $\frac{6.9}{7.3}$ 7.1 $\frac{2}{2}$ 2.0 W4 (impact) 11:22 0.40 $\frac{21.7}{22.6}$ 22.2 $\frac{5.88}{5.92}$ 5.9 $\frac{68.4}{70.4}$ 69.4 1.62 1.7 8 8.1 8.1 $\frac{2}{2}$ 2.0 Date 29-Nov-11 Location Time Depth (m) Temp (oC) DO (mg/L) DO (%) Turbidity (NTU) pH SS(mg/L) W1(impact) 14:00 <1 $\frac{25.2}{25.2}$ 25.5 6.63 6.6 70 70.0 7.2 7.2 7.5 7.5 1 1.0 W2 (Impact) 14:21 <1 25.5 25.5 6.63 6.6 70 70.0 1.6 1.6	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location	Time 12L37 12:05 10:37 10:47 26-Nov-11 Time	<1 <1 0.30 0.40 Depth (m)	22.5 22.5 22.7 22.7 22.3 22.1 22.4 22.2 Temp 21.8	22.5 22.7 22.2 22.3	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (1 7.1	7.2 6.9 5.7 6.2	76 76 73 65.4 66 68.8 69.3 DO 77	76.0 73.0 65.7 69.1	1.5 1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0	1.5 0.9 1.1 1.0 y (NTU)	7.51 7.51 7.67 7.6 7.8 8.1 8.2 P 7.45	7.5 7.7 7.7 8.2 H	3.6 3.6 3.2 3.2 <2 <2 <2 <2 <2 <2 SS(m 1	3.6 3.2 2.0 2.0 g/L)
W3 (control) 11:02 0.30 $\frac{22.1}{22.3}$ 22.2 5.67 5.7 65.2 65.8 1.66 1.8 6.9 7.1 2 2.0 W4 (impact) 11:22 0.40 $\frac{21.7}{22.6}$ 22.2 5.88 5.9 66.4 69.4 1.62 1.7 8 8.1 <2 2.0 Date Depth (m) Temp (oC) D0 (mg/L) Do (%) Turbidity (NTU) pH SS(mg/L) W1 (impact) 14:00 <1	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact)	Time 12L37 12:05 10:37 10:47 26-Nov-11 Time 13:16	<1 <1 0.30 0.40 Depth (m) <1	22.5 22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2 Temp 21.8 21.8	22.5 22.7 22.2 22.3 22.3 (oC) 21.8	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (7.1 7.1	7.2 6.9 5.7 6.2 mg/L) 7.1	76 73 73 65.4 66 68.8 69.3 DO 77 77	76.0 73.0 65.7 69.1 (%) 77.0	1.5 1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0	1.5 0.9 1.1 1.0 y (NTU) 0.0	7.51 7.51 7.67 7.6 7.8 8.1 8.2 P 7.45 7.45	7.5 7.7 7.7 8.2 H 7.5	3.6 3.2 3.2 <2 <2 <2 <2 <2 SS(m 1 1	3.6 3.2 2.0 2.0 2.0 g/L) 1.0
W4 (impact) 11:22 0.40 $\frac{22.3}{21.7}$ $\frac{5.7}{5.88}$ $\frac{66.4}{68.4}$ $\frac{2.02}{1.62}$ $\frac{7.3}{8.1}$ $\frac{2}{2.2}$ $\frac{2}{2.6}$ $\frac{2}{2.6}$ $\frac{5.7}{5.92}$ $\frac{66.4}{68.4}$ $\frac{69.4}{1.82}$ $\frac{1.62}{1.82}$ 1.7 $\frac{8}{8.1}$ 8.1 $\frac{2}{<2}$ 2.02 Date 29-Nov-11 Location Time Depth (m) Temp (oC) DO (mg/L) DO (%) Turbidity (NTU) pH SS(mg/L) W1(inpact) 14:00 <1 $\frac{25.2}{25.2}$ 25.5 6.63 6.6 70 70.0 7.2 7.2 7.5 7.5 1 10.0 W2 (Impact) 14:21 <1 $\frac{25.5}{25.5}$ 25.5 6.63 6.6 70 70.0 1.6 1.6 7.71 7.7 2.4 2.4 W3 (control) 10:15 0.30 $\frac{24.7}{25.1}$ 2.49 5.33 5.4 665 65.2 2.06 2.2	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact)	Time 12L37 12:05 10:37 10:47 26-Nov-11 Time 13:16	<1 <1 0.30 0.40 Depth (m) <1	22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2 Temp 21.8 21.8 21.8 22.4	22.5 22.7 22.2 22.3 22.3 (oC) 21.8	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (t 7.1 7.1 7.1	7.2 6.9 5.7 6.2 mg/L) 7.1	76 73 73 65.4 66 68.8 69.3	76.0 73.0 65.7 69.1 (%) 77.0	1.5 1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4	1.5 0.9 1.1 1.0 y (NTU) 0.0	7.51 7.67 7.67 7.6 8.1 8.2 P 7.45 7.45 7.7	7.5 7.7 7.7 8.2 H 7.5	3.6 3.6 3.2 <2 <2 <2 <2 <2 SS(m 1 1 2.8	3.6 3.2 2.0 2.0 2.0 g/L) 1.0
W4 (impact) 11:22 0.40 22.6 22.2 5.92 3.9 70.4 69.4 1.82 1.7 8.1 6.1 <2 2.0 Date 29-Nov-11 25.2 5.92 5.92 3.9 70.4 69.4 1.82 1.7 8.1 6.1 <2 2.0 Location Time Depth (m) Temp (oC) DO (mg/L) DO (%) Turbidity (NTU) pH SS(mg/L) W1(inpact) 14:00 <1 25.2 25.2 6.53 6.5 70 70.0 7.2 7.2 7.5 7.5 1 10.0 W2 (Impact) 14:21 <1 25.5 25.5 6.63 6.6 70 70.0 1.6 1.6 7.71 7.7 2.4 2.	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact) W2 (Impact)	Time 12L37 12:05 10:37 10:47 26-Nov-11 Time 13:16 15:50	<1 <1 0.30 0.40 Depth (m) <1 <1	22.5 22.5 22.7 22.7 22.3 22.1 22.4 22.2 Temp 21.8 21.8 21.8 22.4 22.4 22.4 22.4	22.5 22.7 22.2 22.3 0 (oC) 21.8 22.4	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (7.1 7.1 7.1 7.16 7.16 5.67	7.2 6.9 5.7 6.2 mg/L) 7.1 7.2	76 76 73 65.4 66 68.8 69.3 DO 77 78 78 65.2	76.0 73.0 65.7 69.1 (%) 77.0 78.0	1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66	1.5 0.9 1.1 1.0 y (NTU) 0.0 2.4	7.51 7.51 7.67 7.67 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.7 7.7 7.7	7.5 7.7 8.2 H 7.5 7.7	3.6 3.2 3.2 <2 <2 <2 <2 <2 <2 <2 SS(m 1 1 2.8 2.8 2	3.6 3.2 2.0 2.0 g/L) 1.0 2.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact) W2 (Impact) W3 (control)	Time 12L37 12:05 10:37 10:47 26-Nov-11 Time 13:16 15:50 11:02	<1 <1 0.30 0.40 0epth (m) <1 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <	22.5 22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2 Temp 21.8 21.8 21.8 21.8 22.4 22.4 22.4 22.4 22.4	22.5 22.7 22.2 22.3 22.3 20(oC) 21.8 22.4 22.4 22.2	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (7.1 7.1 7.1 7.16 7.16 5.67 5.7	7.2 6.9 5.7 6.2 mg/L) 7.1 7.2 5.7	76 73 73 65.4 66 68.8 69.3 DO 77 78 78 65.2 66.3	76.0 73.0 65.7 69.1 (%) 77.0 78.0 65.8	1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02	1.5 0.9 1.1 1.0 y (NTU) 0.0 2.4 1.8	7.51 7.51 7.67 7.67 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.45 7.45 7.45 7.7 7.7 7.7	7.5 7.7 8.2 H 7.5 7.7 7.1	3.6 3.6 3.2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3.6 3.2 2.0 2.0 g/L) 1.0 2.8 2.0
Location Time Depth (m) Temp (oC) DO (mg/L) DO (%) Turbidity (NTU) pH SS(mg/L) W1(inpact) 14:00 <1	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact) W2 (Impact) W3 (control)	Time 12L37 12:05 10:37 10:47 26-Nov-11 Time 13:16 15:50 11:02	<1 <1 0.30 0.40 0epth (m) <1 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <	22.5 22.5 22.7 22.7 22.3 22.1 22.4 22.2 Temp 21.8 21.8 21.8 22.4 22.4 22.4 22.4 22.4 22.4 22.1	22.5 22.7 22.2 22.3 22.3 20(oC) 21.8 22.4 22.4 22.2	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO ((7.1 7.1 7.1 7.16 7.16 7.16 5.67 5.7	7.2 6.9 5.7 6.2 mg/L) 7.1 7.2 5.7	76 73 73 65.4 66 68.8 69.3 DO 77 78 78 65.2 66.3 68.4	76.0 73.0 65.7 69.1 (%) 77.0 78.0 65.8	1.5 1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02 1.62	1.5 0.9 1.1 1.0 y (NTU) 0.0 2.4 1.8	7.51 7.67 7.67 7.67 7.66 7.8 8.1 8.2 p 7.45 7.45 7.45 7.7 7.7 7.7 8.9 7.3 8	7.5 7.7 8.2 H 7.5 7.7 7.1	3.6 3.2 3.2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3.6 3.2 2.0 2.0 g/L) 1.0 2.8 2.0
W1(impact) $14:00$ <1 $\frac{25.2}{25.2}$ 25.2 6.53 6.5 70 70.0 7.2 7.2 7.5 7.5 1 1.0 W2 (Impact) $14:21$ <1	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact) W2 (Impact) W3 (control) W4 (impact)	Time 12L37 12:05 10:37 10:47 26-Nov-11 Time 13:16 15:50 11:02 11:22	<1 <1 0.30 0.40 0epth (m) <1 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <1 0.30 <	22.5 22.5 22.7 22.7 22.3 22.1 22.4 22.2 Temp 21.8 21.8 21.8 22.4 22.4 22.4 22.4 22.4 22.4 22.1	22.5 22.7 22.2 22.3 22.3 20(oC) 21.8 22.4 22.4 22.2	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO ((7.1 7.1 7.1 7.16 7.16 7.16 5.67 5.7	7.2 6.9 5.7 6.2 mg/L) 7.1 7.2 5.7	76 73 73 65.4 66 68.8 69.3 DO 77 78 78 65.2 66.3 68.4	76.0 73.0 65.7 69.1 (%) 77.0 78.0 65.8	1.5 1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02 1.62	1.5 0.9 1.1 1.0 y (NTU) 0.0 2.4 1.8	7.51 7.67 7.67 7.67 7.66 7.8 8.1 8.2 p 7.45 7.45 7.45 7.7 7.7 7.7 8.9 7.3 8	7.5 7.7 8.2 H 7.5 7.7 7.1	3.6 3.2 3.2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3.6 3.2 2.0 2.0 g/L) 1.0 2.8 2.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date	Time 12L37 12:05 10:37 10:47 26-Nov-11 13:16 15:50 11:02 11:22 29-Nov-11	<1 <1 0.30 0.40 Depth (m) <1 <1 <1 0.30 0.40	22.5 22.5 22.7 22.7 22.3 22.1 22.4 22.2 Temp 21.8 21.8 21.8 22.4 22.4 22.1 22.4 22.1 22.3 21.7 22.6	22.5 22.7 22.2 22.3 22.3 22.3 20(oC) 21.8 22.4 22.4 22.2 22.2	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (t 7.1 7.1 7.16 7.16 5.67 5.7 5.88 5.92	7.2 6.9 5.7 6.2 mg/L) 7.1 7.2 5.7 5.9	76 76 73 65.4 66 68.8 69.3 DO 77 78 78 65.2 66.3 68.4 70.4	76.0 73.0 65.7 69.1 (%) 77.0 78.0 65.8 69.4	1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02 1.62 1.82	1.5 0.9 1.1 1.0 y (NTU) 0.0 2.4 1.8 1.7	7.51 7.67 7.67 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.45 7.45 7.45 7.7 6.9 7.3 8 8.1	7.5 7.7 8.2 H 7.5 7.7 7.1 8.1	3.6 3.6 3.2 3.2 <2 <2 <2 <2 <2 <2 <2 <2 <2 SS(m 1 1 1 2.8 2.8 2.8 2 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3.6 3.2 2.0 2.0 2.0 1.0 2.8 2.0 2.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date	Time 12L37 12:05 10:37 10:47 26-Nov-11 13:16 15:50 11:02 11:22 29-Nov-11	<1 <1 0.30 0.40 Depth (m) <1 <1 <1 0.30 0.40	22.5 22.5 22.7 22.7 22.3 22.1 22.4 22.2 Temp 21.8 21.8 21.8 21.8 22.4 22.4 22.1 22.3 21.7 22.6 Temp	22.5 22.7 22.2 22.3 22.3 22.3 20(oC) 21.8 22.4 22.4 22.2 22.2	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (1 7.1 7.16 7.16 7.16 5.67 5.7 5.88 5.92	7.2 6.9 5.7 6.2 mg/L) 7.1 7.2 5.7 5.9	76 76 73 65.4 66 68.8 69.3 DO 77 78 65.2 66.3 68.4 70.4	76.0 73.0 65.7 69.1 (%) 77.0 78.0 65.8 69.4	1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02 1.62 1.82	1.5 0.9 1.1 1.0 y (NTU) 0.0 2.4 1.8 1.7	7.51 7.67 7.67 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.45 7.45 7.45 7.7 6.9 7.3 8 8.1	7.5 7.7 8.2 H 7.5 7.7 7.1 8.1	3.6 3.2 3.2 <2	3.6 3.2 2.0 2.0 2.0 1.0 2.8 2.0 2.0
W2 (impact) 14:21 <1 25.5 25.5 6.63 6.6 70 70.0 1.6 1.6 7.71 7.7 2.4 2.4 W3 (control) 10:15 0.30 24.7 24.9 5.33 5.4 66 66.8 2.1 2.2 7.4 7.5 5 5.0 W4 (impact) 10:30 0.40 24.8 24.9 5.45 5.5 65 65.2 2.06 2.2 7.7 7.8 3 2.0	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact)	Time 12L37 12:05 10:37 10:47 26-Nov-11 Time 13:16 15:50 11:02 11:22 29-Nov-11 Time	<1 <1 0.30 0.40 Depth (m) <1 <1 0.30 0.40 Depth (m)	22.5 22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2 2.4 22.2 21.8 21.8 21.8 22.4 22.4 22.4 22.4 22.1 22.3 21.7 22.6 Temp 25.2	22.5 22.7 22.2 22.3 (oC) 21.8 22.4 22.2 22.2 22.2	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (7.1 7.16 7.16 7.16 5.67 5.7 5.88 5.92 DO (6.53	7.2 6.9 5.7 6.2 mg/L) 7.1 7.2 5.7 5.9 mg/L)	76 73 73 65.4 66 68.8 69.3 DO 77 78 65.2 66.3 68.4 70.4	76.0 73.0 65.7 69.1 (%) 77.0 78.0 65.8 69.4 (%)	1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02 1.62 1.82 Turbidit 7.2	1.5 0.9 1.1 1.0 y (NTU) 0.0 2.4 1.8 1.7 y (NTU)	7.51 7.67 7.67 7.67 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45	7.5 7.7 8.2 H 7.5 7.7 7.1 8.1 H	3.6 3.2 3.2 <2	3.6 3.2 2.0 2.0 1.0 2.8 2.0 2.0 2.0 2.0
Work (control) 10.15 0.30 25.1 24.9 5.43 5.4 67.5 60.6 2.21 2.2 7.6 7.3 5 5.0 W/4 (impact) 10.30 0.40 24.8 24.9 5.45 5.5 65 45.2 2.06 2.2 7.7 7.8 3 3.0	W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W3 (control) W4 (impact) Date Location W1(impact)	Time 12L37 12:05 10:37 10:47 26-Nov-11 Time 13:16 15:50 11:02 11:22 29-Nov-11 Time 14:00	<1 <1 <1 0.30 0.40 Depth (m) <1 <1 0.30 0.40 Depth (m) <1 	22.5 22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2 22.4 22.2 21.8 21.8 21.8 22.4 22.4 22.4 22.4 22.4 22.4 22.1 22.3 21.7 22.6 Temp 25.2 25.2	22.5 22.7 22.2 22.3 22.3 22.3 21.8 22.4 22.4 22.2 22.2 22.2 25.2	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (7.1 7.1 7.16 7.16 7.16 7.16 5.67 5.7 5.88 5.92 DO (6.53 6.53	7.2 6.9 5.7 6.2 7.1 7.1 7.2 5.7 5.9 mg/L) 6.5	76 73 73 65.4 66 68.8 69.3 DO 77 78 65.2 66.3 68.4 70.4	76.0 73.0 65.7 69.1 77.0 78.0 65.8 69.4 (%) 70.0	1.5 1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02 1.62 1.82 Turbidit 7.2 7.2	1.5 0.9 1.1 1.0 y (NTU) 0.0 2.4 1.8 1.7 y (NTU) 7.2	7.51 7.67 7.67 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.45 7.45 7.7 7.7 7.7 8.8 8.1 8.1 9 7.5 7.5 7.5	7.5 7.7 8.2 H 7.5 7.7 7.1 8.1 H 7.5	3.6 3.2 3.2 <2	3.6 3.2 2.0 2.0 1.0 2.8 2.0 2.0 2.0 g/L) 1.0 1.0
W4 (impact) 10:20 0.40 24.8 24.9 5.45 55 65 45.2 2.06 2.2 7.7 7.8 3 3.0	W1(impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1(impact) W3 (control) W4 (impact) Date Location W1(impact)	Time 12L37 12:05 10:37 10:47 26-Nov-11 Time 13:16 15:50 11:02 11:22 29-Nov-11 Time 14:00	<1 <1 <1 0.30 0.40 Depth (m) <1 <1 0.30 0.40 Depth (m) <1 	22.5 22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2 21.8 21.8 21.8 21.8 22.4 22.4 22.4 22.4 22.4 22.4 22.1 22.5 21.7 22.6 Temp	22.5 22.7 22.2 22.3 22.3 22.3 21.8 22.4 22.4 22.2 22.2 22.2 25.2	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO ((7.1 7.1 7.1 7.16 7.16 7.16 7.16 5.67 5.7 5.88 5.92 DO ((7.2 6.9 5.7 6.2 7.1 7.1 7.2 5.7 5.9 mg/L) 6.5	76 76 73 65.4 66 68.8 69.3 DO 77 77 78 65.2 66.3 68.4 70.4 DO 70 70 70 70 70 70	76.0 73.0 65.7 69.1 77.0 78.0 65.8 69.4 (%) 70.0	1.5 1.5 0.9 1.06 1.12 0.98 1.02 Turbidit 0 2.4 2.4 1.66 2.02 1.62 1.82	1.5 0.9 1.1 1.0 y (NTU) 0.0 2.4 1.8 1.7 y (NTU) 7.2	7.51 7.67 7.67 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45	7.5 7.7 8.2 H 7.5 7.7 7.1 8.1 H 7.5	3.6 3.2 3.2 <2	3.6 3.2 2.0 2.0 1.0 2.8 2.0 2.0 2.0 g/L) 1.0 1.0
	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact) W3 (control) W4 (impact) W4 (impact) Date Location W1 (impact) W2 (Impact)	Time 12L37 12:05 10:37 10:47 26-Nov-11 Time 13:16 15:50 11:02 11:22 29-Nov-11 Time 14:00 14:21	<1 <1 <1 0.30 0.40 Depth (m) <1 <1 0.30 0.40 Depth (m) <1 <1 <1 <1 <1 	22.5 22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2 21.8 21.8 21.8 21.8 22.4 22.4 22.4 22.1 22.3 21.7 22.6 Temp 25.2 25.5 25.5 25.5 24.7	22.5 22.7 22.2 22.3 22.3 20 (oC) 21.8 22.4 22.2 22.2 22.2 22.2 22.2	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (7.1 7.16 7.16 7.16 5.67 5.7 5.88 5.92 DO (6.53 6.63 6.63 6.63 5.33	7.2 6.9 5.7 6.2 mg/L) 7.1 7.2 5.7 5.9 mg/L) 6.5 6.6	76 76 73 73 65.4 66 68.8 69.3 DO 77 78 65.2 66.3 68.4 70.4 DO 70 70 70 66	76.0 73.0 65.7 69.1 (%) 77.0 78.0 65.8 69.4 (%) 70.0 70.0 70.0	1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02 1.62 1.82 Turbidit 7.2 7.2 1.6 1.6 2.1	1.5 0.9 1.1 1.0 y (NTU) 0.0 2.4 1.8 1.7 y (NTU) 7.2 1.6	7.51 7.67 7.67 7.67 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45	7.5 7.7 8.2 H 7.5 7.7 8.1 8.1 H 7.5 7.7	3.6 3.2 3.2 <2	3.6 3.2 2.0 2.0 g/L) 1.0 2.8 2.0 2.0 g/L) 1.0 2.4
	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact) W3 (control) W4 (impact) Date Location W1 (impact) W2 (Impact) W3 (control)	Time 12L37 12:05 10:37 10:47 26-Nov-11 13 :16 15:50 11:02 11:22 29-Nov-11 1 4:00 14:21 10:15	<1 <1 0.30 0.40 <p< td=""><td>22.5 22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2 21.8 21.8 21.8 21.8 21.8 22.4 22.4 22.4 22.4 22.4 22.4 22.1 22.3 21.7 22.6 Temp 25.2 25.5 25.5 25.5 25.5</td><td>22.5 22.7 22.2 22.3 22.3 22.3 21.8 22.4 22.4 22.2 22.2 22.2 22.2 25.5 24.9</td><td>7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (7.1 7.1 7.16 7.16 7.16 5.67 5.7 5.88 5.92 DO (6.53 6.53 6.63 6.63 5.33 5.43</td><td>7.2 6.9 5.7 6.2 7.1 7.1 7.2 5.7 5.7 5.9 mg/L) 6.5 6.6 5.4</td><td>76 73 73 65.4 66 68.8 69.3 77 77 78 65.2 66.3 68.4 70.4 70 70 70 70 70 70 70 66.5.5</td><td>76.0 73.0 65.7 69.1 (%) 77.0 78.0 65.8 69.4 (%) 70.0 66.8</td><td>1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02 1.62 1.82 Turbidit 7.2 7.2 1.6 1.6 2.1 2.21</td><td>1.5 0.9 1.1 1.0 9 (NTU) 0.0 2.4 1.8 1.7 7.2 1.6 2.2</td><td>7.51 7.67 7.67 7.67 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45</td><td>7.5 7.7 8.2 H 7.5 7.7 7.1 8.1 H 7.5 7.7 7.5 7.7</td><td>3.6 3.2 3.2 <2</td> <2</p<>	22.5 22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2 21.8 21.8 21.8 21.8 21.8 22.4 22.4 22.4 22.4 22.4 22.4 22.1 22.3 21.7 22.6 Temp 25.2 25.5 25.5 25.5 25.5	22.5 22.7 22.2 22.3 22.3 22.3 21.8 22.4 22.4 22.2 22.2 22.2 22.2 25.5 24.9	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO (7.1 7.1 7.16 7.16 7.16 5.67 5.7 5.88 5.92 DO (6.53 6.53 6.63 6.63 5.33 5.43	7.2 6.9 5.7 6.2 7.1 7.1 7.2 5.7 5.7 5.9 mg/L) 6.5 6.6 5.4	76 73 73 65.4 66 68.8 69.3 77 77 78 65.2 66.3 68.4 70.4 70 70 70 70 70 70 70 66.5.5	76.0 73.0 65.7 69.1 (%) 77.0 78.0 65.8 69.4 (%) 70.0 66.8	1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02 1.62 1.82 Turbidit 7.2 7.2 1.6 1.6 2.1 2.21	1.5 0.9 1.1 1.0 9 (NTU) 0.0 2.4 1.8 1.7 7.2 1.6 2.2	7.51 7.67 7.67 7.67 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45	7.5 7.7 8.2 H 7.5 7.7 7.1 8.1 H 7.5 7.7 7.5 7.7	3.6 3.2 3.2 <2	3.6 3.2 2.0 2.0 2.0 1.0 2.8 2.0 2.0 2.0 g/L) 1.0 2.4 5.0
	W1 (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 (impact) W3 (control) W4 (impact) Date Location W1 (impact) W2 (Impact) W3 (control)	Time 12L37 12:05 10:37 10:47 26-Nov-11 13 :16 15:50 11:02 11:22 29-Nov-11 1 4:00 14:21 10:15	<1 <1 0.30 0.40 <p< td=""><td>22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2 21.8 21.8 21.8 21.8 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22</td><td>22.5 22.7 22.2 22.3 22.3 22.3 21.8 22.4 22.4 22.2 22.2 22.2 22.2 25.5 24.9</td><td>7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO ((7.1 7.1 7.16 7.16 7.16 7.16 7.16 5.67 5.7 5.88 5.92 DO ((6.53 6.53 6.63 6.63 6.63 5.33 5.43 5.45</td><td>7.2 6.9 5.7 6.2 7.1 7.1 7.2 5.7 5.7 5.9 mg/L) 6.5 6.6 5.4</td><td>76 73 73 65.4 66 68.8 69.3 DO 77 77 78 65.2 66.3 68.4 70.4 DO 70 70 70 70 66 67.5 65</td><td>76.0 73.0 65.7 69.1 (%) 77.0 78.0 65.8 69.4 (%) 70.0 66.8</td><td>1.5 1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02 1.62 1.82 Turbidit 7.2 7.2 1.6 1.6 2.1 2.06</td><td>1.5 0.9 1.1 1.0 9 (NTU) 0.0 2.4 1.8 1.7 7.2 1.6 2.2</td><td>7.51 7.67 7.67 7.67 7.6 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45</td><td>7.5 7.7 8.2 H 7.5 7.7 7.1 8.1 H 7.5 7.7 7.5 7.7</td><td>3.6 3.6 3.2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2</td><td>3.6 3.2 2.0 2.0 2.0 1.0 2.8 2.0 2.0 2.0 g/L) 1.0 2.4 5.0</td></p<>	22.5 22.7 22.7 22.7 22.3 22.1 22.4 22.2 21.8 21.8 21.8 21.8 22.4 22.4 22.4 22.4 22.4 22.4 22.4 22	22.5 22.7 22.2 22.3 22.3 22.3 21.8 22.4 22.4 22.2 22.2 22.2 22.2 25.5 24.9	7.18 7.18 6.87 5.6 5.8 6.1 6.23 DO ((7.1 7.1 7.16 7.16 7.16 7.16 7.16 5.67 5.7 5.88 5.92 DO ((6.53 6.53 6.63 6.63 6.63 5.33 5.43 5.45	7.2 6.9 5.7 6.2 7.1 7.1 7.2 5.7 5.7 5.9 mg/L) 6.5 6.6 5.4	76 73 73 65.4 66 68.8 69.3 DO 77 77 78 65.2 66.3 68.4 70.4 DO 70 70 70 70 66 67.5 65	76.0 73.0 65.7 69.1 (%) 77.0 78.0 65.8 69.4 (%) 70.0 66.8	1.5 1.5 0.9 0.9 1.06 1.12 0.98 1.02 Turbidit 0 0 2.4 2.4 1.66 2.02 1.62 1.82 Turbidit 7.2 7.2 1.6 1.6 2.1 2.06	1.5 0.9 1.1 1.0 9 (NTU) 0.0 2.4 1.8 1.7 7.2 1.6 2.2	7.51 7.67 7.67 7.67 7.6 7.6 7.8 8.1 8.2 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45	7.5 7.7 8.2 H 7.5 7.7 7.1 8.1 H 7.5 7.7 7.5 7.7	3.6 3.6 3.2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3.6 3.2 2.0 2.0 2.0 1.0 2.8 2.0 2.0 2.0 g/L) 1.0 2.4 5.0

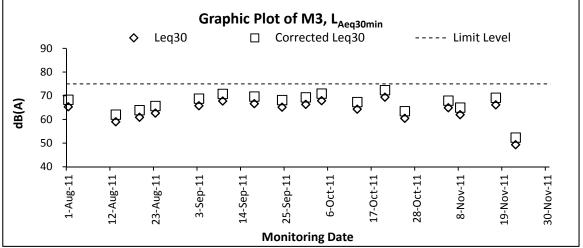
AUES

Appendix J

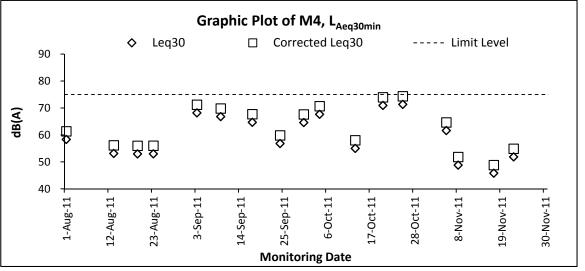

Graphical Plots of Impact Monitoring – Noise, Water Quality and Hydrological Characteristics


Graphic Plot – Construction Noise

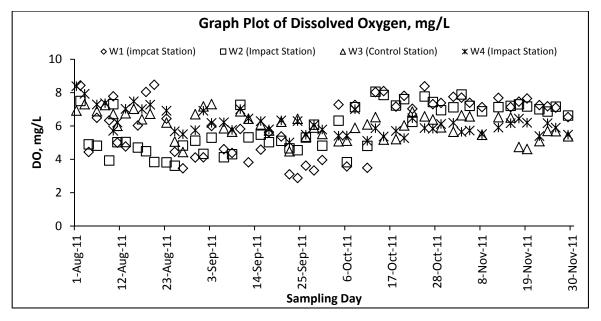
Remark: The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.



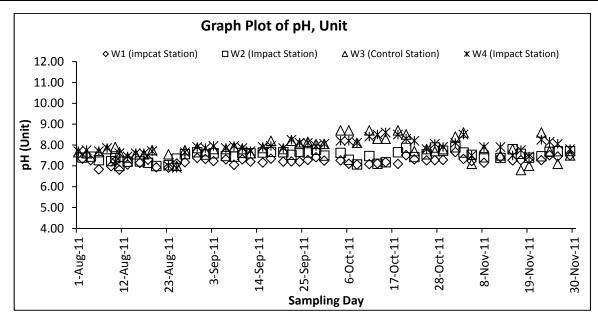
Remark: The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.

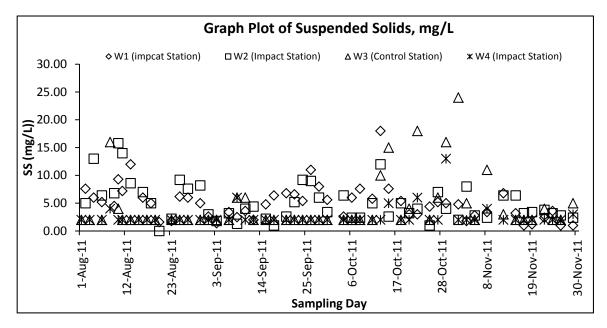


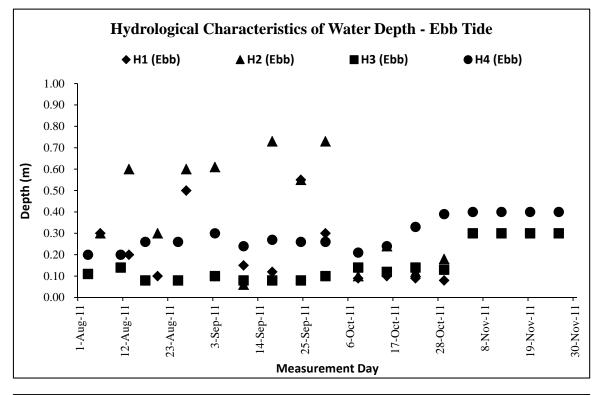
Remark: The monitoring is undertaken under free field situation. A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines

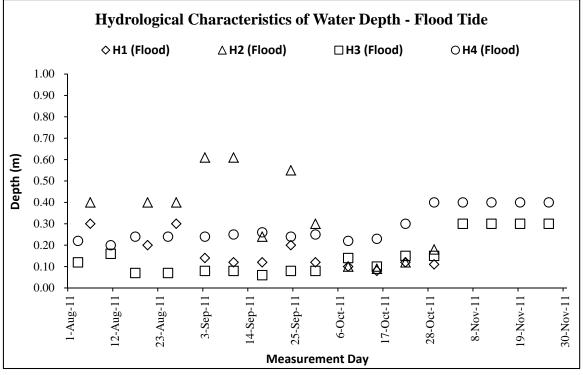

Remark: The monitoring is undertaken under free field situation. A façade correction of $+3 \, dB(A)$ has been added according to acoustical principles and EPD guidelines

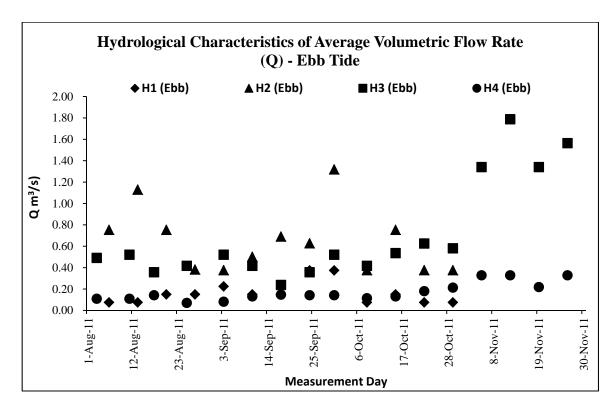
Remark: The monitoring is undertaken under free field situation. A façade correction of $+3 \, dB(A)$ has been added according to acoustical principles and EPD guidelines

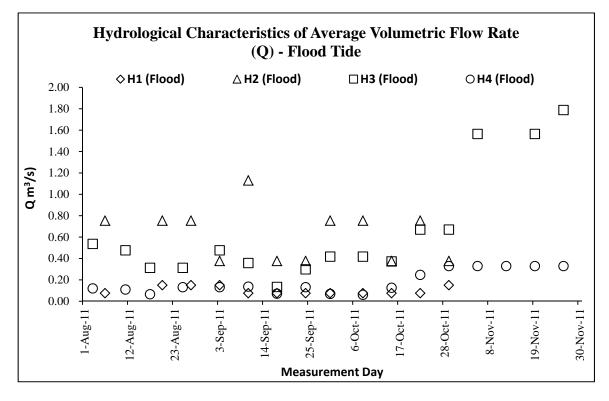



Graphic Plot – Water Quality






Graphic Plot – Hydrological Characteristics (Water Depth)



Appendix K

Monthly Summary Waste Flow Table

Name of Department: DSD

Contract No.: DC/2010/02 Monthly Summary Waste Flow Table for 2011 (Year)

	A	ctual Quantities	of Inert C&D	Materials Ger	nerated Monthly	у	Actu	al Quantities o	f C&D Wastes	Generated M	onthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in othe Projects	r Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Apr	Nil	-	-	-	-	_	_	-	_	-	-
May	Nil	-	-	-	-	-	_	-	-	-	-
June	Nil	_	-	-	-	-	_	-	-	-	-
Sub-Total	Nil	0	0	0	0	0	0	0	0	0	0
July	Nil	-	-	-	-	-	_	-	-	-	-
Aug	0.7855	0	0	0.7855	0	0	0	0	0	0	0
Sept	Nil	0	0	0	0	0	0	0	0	0	0
Oct	Nil	0	0	0	0	0	0	0	0	0	0.02
Nov	Nil	0	0	0	0	0	0	0	0	0	0.045
Dec											
Total	0.7855	0	0	0.7855	0	0	0	0	0	0	0.065
	•		Forecast o	f Total Quantit	ies of C&D Ma	terials to be G	enerated from	the Contract*			
Total Quantity Generated		nd Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastic (see Note	Chem	ical Waste	Others, e.g. general refuse
(in '000m ³)) (in '000 m^3)) $(in '000m^3)$	$(in '000m^3)$	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000k	(in	'000kg)	(in '000m ³)
23	1	10	0	10	2	5	2	1		1	3

Notes:

(1) The performance targets are given in ETWB Technical Circular PS Clause 6(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m3. (ETWB Technical Circular PS Clause 5(4)(b) refers). [Delete Note (4) and the table above on the forecast, where inapplicable].

Summary Table for Work Processes or Activities Requiring Timber for Temporary Works

Contract No. : <u>DC/2010/02</u>

Contract Title : Drainage Improvement Works in Shuen Wan and Shek Wu Wai

Item No.	Description of Works Process or Activity [see note (a) below]	Justifications for Using Timber in Temporary Construction Works	Est. Quantities of Timber Used (m3)	Actual Quantities used (m3)	Remarks
1.	Formwork for concreting	Easy handle by manpower	2.5	2.3	
2.					
3.					
4.					
5.					
6.					
7.					
8.					
		Total Estimated Quantity of Timber Used	2.5		

Notes:

- a. The Contractor shall list out all the work items requiring timber for use in temporary construction works. Several minor work items may be grouped into one for ease of updating.
- b. The summary table shall be submitted to the *Architect/Engineer's Representative monthly together with the Waste Flow Table for review and monitoring in accordance with the ETWB Technical Circular 19/2005 PS sub-clause 5(5) in Appendix C.

Appendix L

Inspection and Auditing Checklist

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\5th Month (November 2011)\R0063v2.docx Action-United Environmental Services and Consulting

Projec	:t:	DSD Contract No. DC/2010/02						Inspected	by		Checkli	ist No.	DC1002-03112011	
			age Imp Wu Wai	provemei	nt in S	Shuen W	an and	IEC/IEC's F	Represe	ntative:	-			
Inspec	tion:			, Shuen W	/an			RE/RE's R ETL/ ET's I	-		- Wong H	lok Vin		
Date:	_	-	ember 201					EO/EO's R		Wong Hok Yin Chan Hiu Shan				
Time:		14:00						Contractor	esentative:	Chan Hiu Shan				
PAR	Т А:					GENERAL		N		Environmental Permit No.				
	Weather: Sunny Fine Cloudy							Rain	У	Calm	1	EP-303	/2008	
	perature	9:	26.0	°C		Andorato								
Humi Wind			High Stror			Moderate Breeze	Low Light					N/A		
	nspect	ed		'9		510020								
1. B 2.	Box Culv	vert Bay	y 20 - 23											
3. PART	в:					SITE	AUDIT							
Note:				es: Complia				Not	Yes	No	Follow	N/A	Photo/	
		ater Qu			ow-Up ac	tions N/A : I	Not Applicable	Obs.		-	Up	-	Remarks	
1.01			•	license ob	tained fo	or the Proj	ect?							
1.02	Is the	e efflue	-				the discharge							
1.02	licence		ne of turbio	d water av	oided?									
		re there proper desilting facilities in the drainage systems t												
1.04			els in efflu nnels, san		bunds to	o direct su	rface run-off to							
1.05	sedime	entation	tanks?	-			boundaries to							
1.06				om crossin										
1.07		• •		maintaine										
1.08			or gravel		oorary a	ccess road	ds protected by							
1.09	Are ter	mporary	v exposed	slopes pro	operly co	overed?						\square		
1.10	Are ea	arthwork	s final sur	faces well	compac	ted or prot	tected?							
1.11	Are ma	anholes	adequate	ly covered	l or temp	porarily sea	aled?		\checkmark					
1.12	Are the	ere any	procedure	s and equ	ipment f	for rainsto	rm protection?							
1.13	Are wh	neel was	shing facili	ities well m	naintaine	ed?								
1.14	ls runc	off from	wheel was	shing facili	ties avoi	ided?								
1.15	Are the	ere toile	ts provide	d on site?					\checkmark					
1.16	Are toi	ilets pro	perly mair	tained?										
1.17		e vehicl areas?		nt servicing	g areas	paved and	d located within							
1.18	Is the o	oil leaka	age or spill	lage avoid	ed?									
1.19		iere any ge syste		s to prev	ent leak	ked oil froi	m entering the							
1.20	Are th	nere an	y measur	res to col ting works		ilt cement	and concrete							
1.21				eptors/grea			ainage systems n, etc?							
1.22	Are the	e oil inte	erceptors/g	grease trap	os maint	ained prop	perly?							

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the Wai Ha River course.						
1.25	License collector should be employed for handling the sewage of mobile toilet.						
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						-
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?	\checkmark					
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						-
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?						
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
Sectio	n 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?						
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical waste storage area properly labelled?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bunded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?	\square					
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\square				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.20	Are appropriate procedures followed if contaminated material exists?					\square	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\square				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						
5.02	Are retained and transplanted trees properly protected?	\checkmark					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Sectio	on 6: Ecology						
6.01	Gabion banks and base had been provide for channel linings and banks for typical sections of work area?						
6.02	Prevent site effluent/runoff discharge to the seasonal wetlands at Wai Ha River?						
6.03	Stockpiling or disposal of materials, and any dredging or construction activities at the seasonal wetlands at Wai Ha River are prohibited?						
Sectio	on 7: Others						
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						

Remarks

Follow up of last Site Inspection (27 October 2011):	
The stagnant water was found to be removed.	

Observations recorded in this Site Inspection (3-11-2011):

The Contractor is reminded to keep the site entrance/exit clean.	

Reminder

Nil.

IEC's representative	R	E's representative	ET	"s representative	EO's repr	esentative		Contractor's representative	
() ()	(Wong Hok Yin)	()	()

Project	t:	DSD Contract No. DC/2010/02	Inspected b	у		Checkli	st No.	DC1002-10112011	
	_	Drainage Improvement in Shuen Wan and	IEC/IEC's R	epresen	tative:	Justin Y	e.		
Inspec	tion:	Shek Wu Wai Tung Tsz Road, Shuen Wan	RE/RE's Re ETL/ ET's F		Lau Siu T.W. Ta				
Date:		10 November 2011	EO/EO's Re		Chan Hiu Shan				
Time:		10:30	Contractor	s Repres	sentative:	Chan Hiu Shan			
PART	ГА:	GENERAL INFORMATIC	N			Environmental Permit No.			
Weath		Sunny Fine Cloudy	Rain	/	Calm	1	EP-303/	2008	
	erature						N/A		
Humio Wind:	•	High / Moderate Low					IN/A		
Area Ir	nspecte	ed							
2.	ox Culv	ert Bay 20 - 23							
3. PART I	B:	SITE AUDIT							
	Not Ob	s.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not			Follow		Photo/	
Note:	Follow	Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks	
		nter Quality			_				
		ffluent discharge license obtained for the Project?							
	licence	effluent discharged in accordance with the discharge ?		/					
1.03	Is the c	discharge of turbid water avoided?		\checkmark					
1.04		ere proper desilting facilities in the drainage systems to SS levels in effluent?							
1.05		ere channels, sandbags or bunds to direct surface run-off to entation tanks?	\checkmark						
		ere any perimeter channels provided at site boundaries to pt storm runoff from crossing the site?							
1.07	Is drair	age system well maintained?							
1.08		avation proceeds, are temporary access roads protected by d stone or gravel?							
1.09	Are ter	nporary exposed slopes properly covered?							
1.10	Are ea	rthworks final surfaces well compacted or protected?							
1.11	Are ma	inholes adequately covered or temporarily sealed?		\square					
1.12	Are the	ere any procedures and equipment for rainstorm protection?	\checkmark						
1.13	Are wh	eel washing facilities well maintained?							
1.14	ls runo	ff from wheel washing facilities avoided?							
1.15	Are the	ere toilets provided on site?							
1.16	Are toil	ets properly maintained?	\checkmark						
	Are the roofed	e vehicle and plant servicing areas paved and located within areas?	\checkmark						
1.18	Is the c	il leakage or spillage avoided?	\checkmark						
		ere any measures to prevent leaked oil from entering the ge system?							
1.20	washin	ere any measures to collect spilt cement and concrete gs during concreting works?	\checkmark						
1.21	Are the for veh	ere any oil interceptors/grease traps in the drainage systems icle and plant servicing areas, canteen kitchen, etc?							
1.22	Are the	oil interceptors/grease traps maintained properly?							

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the Wai Ha River course.						
1.25	License collector should be employed for handling the sewage of mobile toilet.						
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?	\checkmark					
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?						
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?						
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
Sectio	n 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?						
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical waste storage area properly labelled?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bunded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?	\square					
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\square				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.20	Are appropriate procedures followed if contaminated material exists?						
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\square				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						
5.02	Are retained and transplanted trees properly protected?	\checkmark					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Sectio	n 6: Ecology						
6.01	Gabion banks and base had been provide for channel linings and banks for typical sections of work area?						
6.02	Prevent site effluent/runoff discharge to the seasonal wetlands at Wai Ha River?						
6.03	Stockpiling or disposal of materials, and any dredging or construction activities at the seasonal wetlands at Wai Ha River are prohibited?						
Section 7: Others							
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						

Remarks

Follow up of last Site Inspection (3-11-2011):	
Cleanliness at site entrance/exit was satisfactory.	

Observations recorded in this Site Inspection (10-11-2011):

No adverse environmental impact was observed during site inspection.

Reminder:

- 1. Waste disposal should be in accordance with the Project WMP.
- 2. Housekeeping should be maintained.
- 3. Waste bin should be provided on site.

Reminder

Nil.

IEC's representative		RE's representative	E	r's representative	,	EO's representative		Contractor's representative	
())	()	(T.W. Tam)	()	()

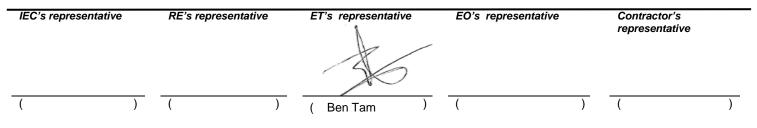
Project:		DSD Contract No. DC/2010/02				Inspected		Checklist No.		DC1002-17112011		
			age Impro Wu Wai	ovemen	t in Shuen	Wan and	IEC/IEC's I	Represe	ntative:	-		
Inspec	tion:		Tsz Road, S	huen W	an		RE/RE's R ETL/ ET's	•		- Ben Tai	m	
Date:	_	17 November 2011 10:30				EO/EO's R		Chan Hiu Shan				
Time:						Contractor	r's Repre	esentative:	Chan Hiu Shan			
PART A: GENERAL INFORMATIO			ON			Environmental Permit No.						
Weat			Sunny	0	Fine	Cloudy	Rair	у	Calm	1	EP-303	/2008
	oerature	9:	23.4	°C							N1/A	
Humi Wind	,		High		Moderate	Low Light					N/A	
	nspect	ed				Light						
1. B 2.	lox Culv	vert Bay	y 20 - 23									
3. PART	в.				SIT	E AUDIT						
FARI							Net			F . U		Dhata/
Note:					nce; No : Non-Corr w-Up actions N/A		Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	on 1: Wa	ater Qu	ality				_	_	_	_	_	
1.01			-		ained for the Pro			2				
1.02	Is the licence		nt discharge	ed in a	ccordance with	the discharge	ë □					
1.03	Is the o	dischar	ge of turbid v	vater avo	oided?			\checkmark				
1.04			oper desiltin els in effluer		es in the drain	age systems to	° □	\checkmark				
1.05		ere cha entation		ags or b	ounds to direct s	surface run-off to	> ∠					
1.06			<pre>v perimeter of n runoff from</pre>			te boundaries to	° □					
1.07	Is drair	nage sy	stem well m	aintained	1?							
1.08			proceeds, a or gravel?	are temp	orary access roa	ads protected by	′ 🗆					
1.09	Are ter	mporary	exposed slo	opes proj	perly covered?							
1.10	Are ea	arthwork	s final surfac	ces well o	compacted or pr	otected?					\checkmark	
1.11	Are ma	anholes	adequately	covered	or temporarily s	ealed?		\checkmark				
1.12	Are the	ere any	procedures	and equi	pment for rainst	orm protection?	\checkmark					
1.13	Are wh	heel was	shing facilitie	s well m	aintained?		\checkmark					
1.14	ls runc	off from	wheel washi	ng faciliti	ies avoided?							
1.15	Are the	ere toile	ts provided o	on site?								
1.16	Are toi	ilets pro	perly mainta	ined?			\checkmark					
1.17		e vehicl I areas?		servicing	areas paved a	nd located withir						
1.18	Is the o	oil leaka	age or spillag	je avoide	ed?							
1.19		iere any ge syste		to preve	ent leaked oil fr	om entering the	· 🖂					
1.20			y measures			nt and concrete						
1.21					se traps in the d is, canteen kitch	rainage systems en, etc?						
1.22	Are the	e oil inte	erceptors/gre	ase trap	s maintained pro	operly?						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the Wai Ha River course.						
1.25	License collector should be employed for handling the sewage of mobile toilet.						
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		Ł				
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						Remark 1
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?						
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?						
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
Sectio	n 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?						
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical waste storage area properly labelled?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bunded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?	\square					
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\square				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.20	Are appropriate procedures followed if contaminated material exists?					\square	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\square				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						
5.02	Are retained and transplanted trees properly protected?	\checkmark					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Sectio	on 6: Ecology						
6.01	Gabion banks and base had been provide for channel linings and banks for typical sections of work area?						
6.02	Prevent site effluent/runoff discharge to the seasonal wetlands at Wai Ha River?						
6.03	Stockpiling or disposal of materials, and any dredging or construction activities at the seasonal wetlands at Wai Ha River are prohibited?						
Sectio	on 7: Others						
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						

Remarks


Follow up of last Site Inspection (10-11-2011):								
Nil.								

Observations recorded in this Site Inspection (17-11-2011):

 Open stockpile was observed within the site, the Contractor is reminded to cover any dusty material with tarpaulin sheet under dry and windy conditions. 	

Reminder

Nil.

Projec	:t:	DSD Contract No. DC/2010/02	Inspected b		Checkli	st No.	DC1002-24112011			
		Drainage Improvement in Shuen Wan and Shek Wu Wai	IEC/IEC's R	•		-				
Inspec	tion:	Tung Tsz Road, Shuen Wan	RE/RE's Re ETL/ ET's R	-		- Wong Hok Yin				
Date:	_	24 November 2011	EO/EO's Re		Chan Hiu Shan					
Time:		10:30	Contractor'	s Repre	esentative:	Chan Hiu Shan				
PAR	TA:	GENERAL INFORMATIC	N		Environmental Permit No.					
Weat		Sunny Fine Cloudy	Rainy	/	Calm	1	EP-303/	2008		
	berature						N1/A			
Humi Wind		High Moderate Low					N/A			
	nspect									
1. B 2.	Box Culv	vert Bay 20 - 23								
3.										
PART	В:	SITE AUDIT								
Note:		 s.: Not Observed; Yes: Compliance; No: Non-Compliance; Up: Observations requiring follow-Up actions N/A: Not Applicable 	Not Obs.	Yes	Νο	Follow Up	N/A	Photo/ Remarks		
Sectio	on 1: Wa	ater Quality								
1.01	ls an e	ffluent discharge license obtained for the Project?		\checkmark						
1.02	Is the licence	effluent discharged in accordance with the discharge ?								
1.03	Is the	discharge of turbid water avoided?								
1.04		here proper desilting facilities in the drainage systems to e SS levels in effluent?								
1.05	sedime	ere channels, sandbags or bunds to direct surface run-off to entation tanks?								
1.06		ere any perimeter channels provided at site boundaries to pt storm runoff from crossing the site?								
1.07	ls drai	nage system well maintained?								
1.08		cavation proceeds, are temporary access roads protected by ad stone or gravel?								
1.09	Are ter	mporary exposed slopes properly covered?					\square			
1.10	Are ea	rthworks final surfaces well compacted or protected?					\checkmark			
1.11	Are ma	anholes adequately covered or temporarily sealed?								
1.12	Are the	ere any procedures and equipment for rainstorm protection?								
1.13	Are wh	neel washing facilities well maintained?								
1.14	ls runc	off from wheel washing facilities avoided?								
1.15	Are the	ere toilets provided on site?								
1.16	Are toi	lets properly maintained?								
1.17		e vehicle and plant servicing areas paved and located within areas?								
1.18	Is the	oil leakage or spillage avoided?								
1.19		ere any measures to prevent leaked oil from entering the ge system?								
1.20		nere any measures to collect spilt cement and concrete ngs during concreting works?								
1.21		ere any oil interceptors/grease traps in the drainage systems iicle and plant servicing areas, canteen kitchen, etc?								
1.22	Are the	e oil interceptors/grease traps maintained properly?								

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m3 capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the Wai Ha River course.						
1.25	License collector should be employed for handling the sewage of mobile toilet.						
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						-
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?	\checkmark					
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						-
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?						
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
Sectio	n 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?						
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Sectio	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical waste storage area properly labelled?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bunded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?	\square					
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?		\square				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.20	Are appropriate procedures followed if contaminated material exists?					\square	
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\square				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						
5.02	Are retained and transplanted trees properly protected?	\checkmark					

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Sectio	on 6: Ecology						
6.01	Gabion banks and base had been provide for channel linings and banks for typical sections of work area?						
6.02	Prevent site effluent/runoff discharge to the seasonal wetlands at Wai Ha River?						
6.03	Stockpiling or disposal of materials, and any dredging or construction activities at the seasonal wetlands at Wai Ha River are prohibited?						
Sectio	on 7: Others						
7.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						

Remarks

Follow up of last Site Inspection (17-11-2011):				
The stockpile was found to be removed.				

Observations recorded in this Site Inspection (24-11-2011):

No adverse environmental impact was observed during site	
inspection.	

Reminder

Nil.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
()	()	(Wong Hok Yin)	()	()

Appendix M

Monthly Landscape & Visual Report

Environmental Resources Management

21 / F Lincoln House 979 King's Road Taikoo Place Island East Hong Kong Telephone : (852) 2271 3000 Facsimile : (852) 2723 5660 E-mail : post.hk@erm.com http://www.erm.com

06 December 2011

Kwan Lee – Kuly Joint Venture Unit 6, 16/F, Yuen Long Trading Centre 33 Wang Yip Street West Yuen Long, Hong Kong

Attn.: Nicola Hon

Our ref: 0125606_Cert01_20111206

Dear Shan,

Contract No. DC/2010/02 – Drainage Improvement in Shuen Wan, Tai Po – Contract 2 Monthly EM&A (Landscape & Visual) Report

Reference is made to the Monthly EM&A (Landscape & Visual) Report – Contract 2 for the month of November 2011, please kindly note that we have no adverse comment on the report.

Should you have any queries, please feel free to contact the undersigned at 2271 3117.

Yours sincerely, For ERM-Hong Kong, Limited

Christina 4p Senior Landscape Architect

Registered Office ERM-Hong Kong, Ltd 21/F Lincoln House 979 King's Road Taikoo Place Island East Hong Kong

ISO 9001 : 2008 Certificate No. PS 32515

Offices worldwide

Kwan Lee – Kuly Joint Venture

CONTENTS

1	INTRODUCTION	1
	SCOPE OF MONITORING	
3	LANDSCAPE & VISUAL MONITORING RESULTS	2
4	AUDIT SCHEDULE	5

LIST OF APPENDICE

Appendix A – Photographs

1 **INTRODUCTION**

- 1.1.1 The Landscape and Visual Monitoring of the Project is conducted to fulfill Clauses 5.2 and 5.4 of EP-303/2008 and the monitoring requirements in accordance with Section 7 of the approved updated EM&A Manual (approved by EPD on December 2010) of the Project. A Baseline Review on updating the landscape and visual condition, and the mitigation measures of the Project (including Contracts 1 and 2 of the Project) was undertaken before the commencement of the Project. The review findings were updated in the Baseline Environmental Monitoring Report submitted to the EPD on 14 February 2011.
- 1.1.2 This monthly monitoring report will detail the scope of landscape and visual monitoring work, monitoring findings and observations, and anv recommendation and advice on proper implementation of the landscape mitigation measures in the works areas under Contract 2 of the Project.

SCOPE OF MONITORING 2

2.1 **Monitoring objectives**

2.1.1 Landscape and Visual Monitoring of the Project should be conducted in a biweekly basis for checking the design, implementation and maintenance of the landscape and visual mitigation measures throughout the construction phase and in a quarterly basis during operational phase of the Project. Observations of any potential conflicts between the proposed mitigation measures and the project works carried out by the Contractors should be recorded. Recommendation and advice on proper implementation of the landscape mitigation measures should be provided to the Contractor for minimizing any potential impacts on the landscape and visual elements.

Monitoring during Construction Phase 2.2

- 2.2.1 The following landscape and visual mitigation measure should be implemented during the construction phase of the Project to minimize the potential impacts:
 - Visual Screen Use of hoardings as visual screens for the construction in the works areas;
 - Contaminant/ Sediment Control Use of temporary barriers, covers and drainage provision around the construction works as contaminant/ sediment control to prevent the contaminants and sediments from entering the sensitive water-based habitats;
 - Pollution Control Implementation of pollution control measures to minimize any adverse environmental impacts to the surrounding habitats;
 - Liaison with Nursery (Not relevant to Contract 2 of the Project) Liaison with the nursery operator as necessary to minimize any adverse impact to the daily operation and plant holding capacity of the nursery;

- ٠ Existing Trees within Works Area - Maintenance and protection of the existing trees, especially their crowns, trunks and roots, within work sites; and
- Construction Light Provision of construction light should be controlled at night to avoid excessive glare to the surrounding villages and to Plover Cove.

2.3 **Monitoring during Operational Phase**

- 2.3.1 The following landscape and visual mitigation measure should be implemented during the operational phase of the Project to minimize the potential impacts:
 - Viewing area formation by planting with shrubs, grasses and benches along the area;
 - Architectural design of the pump house will help it fit into the existing suburban, natural to semi-natural surroundings (Not relevant to Contract 2 of the Project);
 - Landscape design of pump house by providing sufficient planting around its boundary fence (Not relevant to Contract 2 of the Project);
 - Enhancement planting along Tung Tsz Road with shrubs/ trees of suitable species to help protect the stream and marshes;
 - Construction of box culvert should be with at least 1.0m soil depth for enhancement planting;
 - Transplanting of existing affected trees to adjacent locations should be carried out;
 - Preparation for transplanting is needed to allow sufficient time for root pruning and root ball preparation prior to transplanting; and
 - Reinstatement of affected area should be carried out to check that the works areas are properly reinstated.

LANDSCAPE & VISUAL MONITORING RESULTS 3

Monitoring Date(s) 3.1

- 3.1.1 This monthly Landscape and Visual Monitoring (November 2011) was conducted to cover only areas of Contract 2 of the Project (i.e. the construction of a twin-cell box culvert close to Shuen Wan Conservation Area and Wai Ha River along Tung Tsz Road, and a drainage pipe near Wai Ha Village). The bi-weekly monitoring was conducted on 4th and 18th November 2011.
- 3.1.2 All photos stated in this section are recorded in **Appendix A**.

3.2 **Visual Screen**

3.2.1 No follow-up action by the Contractor is required as from the *Monthly EM*&A *Report for October 2011*.

Observation

- 3.2.2 A section of temporary hoardings have been erected from west to east parts along Tung Tsz Road and opposite to San Tau Kwok.
- 3.2.3 No hoardings have been erected along the rest of the proposed works area since neither construction works nor any associated preparation works have been commenced. **Photos 1-2** show the views of the erected hoardings in the area.

Recommendation

3.2.4 No specific recommendation is required.

3.3 Contaminant/ Sediment Control

3.3.1 No follow-up action by the Contractor is required as from the *Monthly EM&A Report for October 2011*. Regular monitoring on the contaminant/sediment control has been undertaken regularly by the appointed Environmental Team and by the current bi-weekly inspection.

Observation

3.3.2 No direct discharge of contaminants or any polluted fluid was observed within the active works area. All used water and underground water was collected and drained into a filtration bed and a sedimentation tank before the discharge (**Photo 3**). As observed, a sheet of PVC liner was overlaid along the filtration beds within the active works area. This practice could lower the chance of contaminating the vegetation in the adjacent Shuen Wan marsh.

Recommendation

3.3.3 Regular monitoring should be conducted to ensure no direct discharge or leakage of contaminants or any polluted fluid into the adjacent Wai Ha River.

3.4 Pollution Control

3.4.1 No follow-up action by the Contractor is required as from the *Monthly EM*&A *Report for October 2011*.

Observation

3.4.2 Drained water from underground was observed to be filtered in the sedimentation tank and filtration beds before the discharge (**Photo 3**). As observed, a sheet of PVC liner was overlaid along the filtration beds within the active works area. This practice could lower the chance of contaminating the vegetation in the adjacent Shuen Wan marsh. No direct discharge of water into the adjacent Wai Ha River was observed (**Photo 4**).

Recommendation

3.4.3 No specific recommendation is required.

3.5 Liaison with Nursery

3.5.1 The construction undertaken within Tung Tsz Nursery is restricted under Contract 1 of the Project. This monitoring item is not applicable to Contract 2 of the Project.

3.6 **Existing Trees within Works Areas**

3.6.1 Tree Protection Zones (TPZs) were not yet demarcated for the retained trees and trees to be transplanted within the active construction areas in accordance with the recommendation stated in the Monthly EM&A Report for October 2011. Proper protection zones have been established around the four identified specimens of the protected shrub Pavetta hongkonensis within the active works area.

Observation

- 3.6.2 Tree felling had been continued within the fenced area from west to east parts along Tung Tsz Road and opposite to San Tau Kwok (Photo 5). Clearance of herbaceous vegetation within the fenced area was also recorded.
- 3.6.3 All trees proposed to be retained within the Project Area were recorded generally in fair health conditions. Significant signs of damage of existing tree crowns, trunks and roots resulting from the construction works were not observed in this monthly monitoring.
- 3.6.4 Protective areas had been established to protect the four specimens (including one dead specimen (Tree No.: PH04) due to natural dieback) of the protected shrub species of conservation interest Pavetta hongkongensis (Photos 6-8). No significant signs of damage on the health of these specimens due to the Project were observed. Provision of the shade netting for the two specimens (PH01 and PH02) of the protected plants P. hongkongensis was observed (**Photo 6**).

Recommendations

- 3.6.5 Within the active works area, proper TPZs should be demarcated for the retained trees and the trees to be transplanted that would be directly affected by the construction work. In addition, if necessary, these retained trees or trees to be transplanted shall be watered regularly to maintain their health.
- 3.6.6 Provision of a larger shade net for the protected plants P. hongkongensis is recommended before the actual transplantation. The net should be mounted horizontally on top of the plants. Shade net should be provided for the living seedling of *P* hongkongensis (PH03) on the opposite side to House 63, Tung Tsz Road.
- 3.6.7 Disturbance is prohibited in all TPZs. In any practical circumstances, the contractor should follow Section 8 of Annex 4 of the approved Landscape Plan for protecting the existing trees from any potential damages resulting from the construction works.

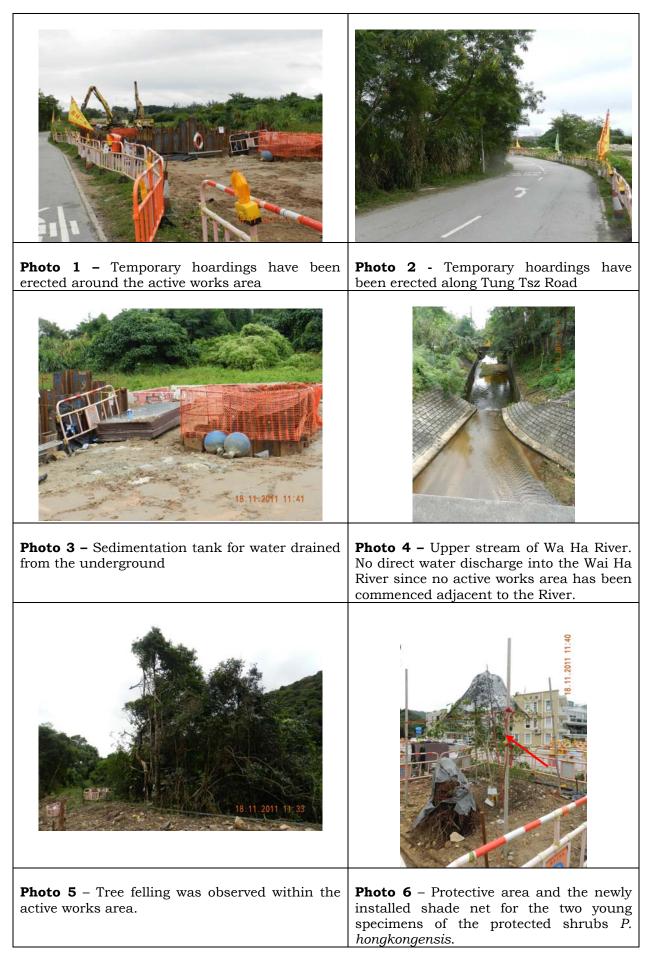
3.7 **Construction Light**

Observation

3.7.1 No construction light impact to the surrounding villages and to Plover Cove as all construction activities and construction sites are halted at 1800. No construction light at night is provided by the Main Contractor.

Recommendation

3.7.2 No specific recommendation is required.


4 **AUDIT SCHEDULE**

4.1.1 The next bi-weekly Landscape & Visual Monitoring in December 2011 is scheduled to be conducted in the weeks of 1st, 12th and 26th December 2011.

Appendix A

Photographs

Contract No. DC/2010/02 – Drainage Improvement Works in Shuen Wan and Shek Wu Wai Bi-weekly Landscape & Visual Monitoring – EM&A (Landscape & Visual) Report November 2011 (Issue 2) **Project Number: 09/317/161D Kwan Lee – Kuly Joint Venture**

Photo 7 – Protective area for the seedling of the protected shrub of <i>P. hongkongensis</i> .	Photo 8 – A fenced-area for the seedling of the protected shrub of <i>P. hongkongensis</i> . It is a dead seedling resulting from natural dieback.