Drainage Service Department

Monthly Environmental Monitoring & Auditing report for

Contract No.DC/2009/22 Drainage Improvement in Shuen Wan, Tai Po – Contract 1

October 2012

Environmental Pioneers & Solutions Limited
Flat A, 19/F, Chaiwan Industrial Building,
20 Lee Chung Street, Chai Wan, Hong Kong
Tel: 2556 9172 Fax: 2856 2010

Contract No. DC/2009/22 - Drainage Improvement in Shuen Wan, Tai Po - Contract I Monthly EM&A Report for October 2012

APPROVAL SHEET

The Contents of this report have been

Certified by:

Signature:

Date: (4 - NOV - 2012

Miss. Goldie Fung (Environmental Team Leader)

Ecologist (Asia Ecological Consultants Ltd.)

Signature: Michael

Date: 14 November 2012

Dr. Michael Leven (Ecologist)

RLA (Environmental Resources Management)

Signature: Date: 13/11/2012 Miss. Christina J (RLA)

and Verified by:

Signature:

IEC (ENVIRON Hong Kong Limited)

Date: 13/11/2012

Mr. Tony Cheng (IEC)

Environmental Pioneers & Solutions Limited

Pii

TABLE OF CONTENT

EXI	ECUT	TVE SUMMARY	v
1	Intr	oduction	1
2	Con	struction Stage	2
	2.1	Construction activities in the reporting period	2
	2.2	Construction activities for the coming month	2
	2.3	Environmental Status	3
3	Nois	se Monitoring	4
	3.1	Monitoring Parameters and Methodology	4
	3.2	Monitoring Equipment	4
	3.3	Monitoring Locations	5
	3.4	Monitoring Results and Interpretation	7
	3.5	Action and Limit level for Construction noise	7
	3.6	Monitoring Schedule for the next reporting period	8
4	Wat	er Monitoring	10
	4.1	Water Quality Monitoring Parameters and methodology	10
	4.2	Monitoring Equipment	10
	4.3	Monitoring Locations	11
	4.4	Monitoring Frequency	14
	4.5	Monitoring Results and Interpretation	14
	4.6	Action and limit level for Water Quality	15
	4.7	Monitoring Schedule for the next reporting period	20
5	Hyd	rological Characteristics Monitoring	21
	5.1	Hydrological Characteristics Monitoring Parameters	and
	met	hodology	21
	5.2	Monitoring Equipment	21
	5.3	Monitoring Locations	21
	5.4	Monitoring Frequency	23
	5.5	Monitoring Results and Interpretation	23
	5.6	Action and limit level for Hydrological Characteristics	23
	5.7	Monitoring Schedule for the next reporting period	28
6	Ecol	logical Monitoring of ECA	29
	6.1	Introduction	29
	6.2	Ecological Monitoring of ECA	29
	6.3	Monitoring Results	33
	6.4	Management Activities	40
	6.5	Implication of the Survey Findings	40

	6.6 Recommendations	40
7	Landscape and Visual	41
	7.1 Introduction	41
	7.2 Scope of Monitoring	41
	7.3 Landscape and Visual Monitoring Results	42
	7.4 Audit Schedule	49
8	Action taken in Event of Exceedance	51
9	Construction waste disposal	
10	Status of Permits and Licenses obtained	54
11	Compliant Log	55
	11.1 Site Inspection	56
	11.2 Compliance with legal and Contractual requirement	58
	11.3 Implementation status and effectiveness of the mitigat	ion measures
	58	
12	Future Key issues and recommendations	59
13	Conclusions	

LIST OF APPENDIXES

Appendix A: Site Location
Appendix B: Key Personal Contact information chart
Appendix C: Calibration Certificates for measuring instruments
Appendix D: Construction Noise Monitoring Data
Appendix E: Water Quality Monitoring Data
Appendix F: Hydrological Characteristics Monitoring Data
Appendix G: Landscape and Visual Monitoring Photos
Appendix H: Implementation status of environmental protection and mitigation
measures
Appendix I: Construction programme
Appendix J: Three month rolling programme
Appendix K: Graphical plots of trends of monitored parameters
Appendix L: Condition of transplanted species Pavetta hongkongensis in ECA
since 20 th Dec 2011
Appendix M: Photo Wai Ha River at October 2012
Appendix N: Approved Proposal of Revision for Action/Limit Level Criteria of
Water Quality Monitoring

EXECUTIVE SUMMARY

This is the twentieth monthly Environmental Monitoring and Audit (EM&A) Report for the drainage improvement works in Shuen Wan, Tai Po under Drainage Services Department Contract No. DC/2009/22 entitled "Drainage Improvement Works in Shuen Wan, Tai Po – Contract 1". This report concludes the impact monitoring for the activities undertaken during the period from 1st of October 2012 to 31st October 2012. The major site activities in this reporting period were mainly laying of E&M ducting for the proposed screen house and store room, concreting for the proposed columns and beams above pump hall, grouting heading tunnel for the proposed DN225 sewer, removal of sheetpiles from bay 9 to 13 and grouting for second layer of grouting hole at the proposed DN2800 twin pipes.

The Environmental Team (ET) is responsible for the EM&A works required in the EM&A manual (revision 3). Site inspections were carried out on weekly basis to investigate and audit the equipment and work methodologies with respect to pollution control and environmental mitigation. The weekly inspections records and photos taken were kept.

In general, waste management was satisfactory during the reporting period.

Impact monitoring for construction noise was conducted in the reporting period. No exceedance of A/L level was reported.

Furthermore, impact monitoring for water quality was conducted. Total 7 abnormal incidents of water quality criteria were recorded in this reporting month. It was observed that the river was narrowed for construction of mechanical penstocks and increases the speed of water current. During the reporting period, no construction works were carried out at the river bed. Proper mitigation measures were implemented by contractor to avoid site water release to the Wai Ha river and no particular observation of defective site activities were found causing water contamination; The exceedance of Turbidity and Total Suspended Solid were believed to be mainly attributed by high water flow rate, Besides, the recorded levels of turbidity at control station had also exceeded its A/L Level, the exceedances recorded at W2 was unlikely to be related to the Project.

Environmental Pioneers & Solutions Limited

No exceedance of A/L level was reported for the monitoring of hydrological characteristics in the reporting period.

The ecological monitoring of the Ecological Compensatory Area (ECA) of the project is conducted. Details of the findings are referred to sections 6.2.

According to Table 6.17 of the EM&A Manual, ecological monitoring of the ECA will be carried out by qualified ecologists during the 1-year wetland establishment period of the ECA before handing over to AFCD for their post establishment monitoring. Establishment phase of the ECA began in September 2011, ecological monitoring programme was conducted and monitoring data was presented in respective monthly EM&A reports. Ecological monitoring programme ended in September 2012 and hence there will be no ECA report attached in EM&A reports.

The monitoring of Pavetta hongkongensis in Ecological Compensatory Area (ECA) of the project is also conducted. Details of the findings are referred to sections 6.3.

Visual and landscape monitoring has been conducted for the project. Details of the observations are referred to sections 7.3.

There was no complaint, notification of any summons and successful prosecutions against the project received during the reporting period.

Site works proposed to be carried out in the upcoming month at Area A, B & C are refer to section 2.2.

It is expected that noise, air and water quality impacts will be resulted from the works. ET has reminded the contractor to provide environmental pollution control measures wherever necessary and to keep a good environmental management at site practice. The recommended mitigation measures proposed for the project as well as implementation status are refer to section 12.3.

The ET will continue to implement the environmental monitoring & audit programme in accordance with the EM&A Manual (revision 3) and Environmental Permit requirement.

1 Introduction

This is the twentieth monthly Environmental Monitoring and Audit (EM&A) Report for the drainage improvement works in Shuen Wan, Tai Po under Drainage Services Department Contract No. DC/2009/22 entitled "Drainage Improvement Works in Shuen Wan, Tai Po – Contract 1". The site layout plan is shown in Appendix A. The Environmental Team, Environmental Pioneers & Solutions Limited was appointed by Kwan Lee – Kuly Joint Venture, prepares the report. The report is to be submitted to the Contractor, the Engineer and the IEC.

This report presents the results of the environmental monitoring of the project activities conducted within the reporting period from 1st October 2012 to 31st October 2012. This included the noise monitoring, water quality monitoring, hydrological characteristics monitoring, ecological monitoring, visual and landscape monitoring, and regular site inspections once per week for verification of implementation of the mitigation measures as recommended in the Environmental Permit (EP-303/2008) (EP), EM&A Manual (revision 3) and the Contractor's Environmental Management Plan (EMP).

2 Construction Stage

2.1 Construction activities in the reporting period

Major activities in the reporting period included the followings:

Area A:

- Laying of E&M ducting for the proposed screen house and store room.
- Concreting for the proposed columns and beams above pump hall.
- Grouting heading tunnel for the proposed DN225 sewer.
- Excavation for the proposed DN1200 & DN1200 concrete pipe trench.
- Laying the proposed DN1200 & DN2100 storm drain.
- Excavation for the proposed storm relief drain DN2100 (CH20 CH70).

Area B:

- Removal of sheetpiles from bay 9 to 13.
- Installation of sheetpiles for bay 8A and 4.
- Drill cut for the third & fourth layer grout hole at the proposed DN2800 twin pipes.
- Grouting for second layer of grout hole at the proposed DN2800 twin pipes.

Area C:

- In Maintenance period.

2.2 Construction activities for the coming month

Proposed key construction works in the coming month will include:

Area A (Pumping Station)

- 1. Internal finishing for the proposed screen house and store room.
- 2. Construction of flowmeter chamber and DN1200 concrete pipe.
- 3. Construction of DN2100 Storm relief drains (CH20 to CH70) at Ting Kok Road.
- 4. Construction of the proposed DN1500 concrete pipe.
- 5. Construction of the proposed outfall structure of box culvert.

Area B (Tung Tsz Nursery)

- 1. Construction of box culvert & CH0.0 CH55
- 2. Construction of jacking pit for cross road DN2800 twin pipe.

Area C (HCA)

1. In Maintenance Period

2.3 Environmental Status

Appendix A shows the drawing of the project area.

Locations of the monitoring and control stations with environmental sensitive receivers are presented in Section 3.3, 4.3, and 5.3 for noise, water quality, and hydrological characteristics respectively.

3 Noise Monitoring

3.1 Monitoring Parameters and Methodology

The construction noise level was measured in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}). $L_{eq (30minutes)}$ was used as the monitoring parameter for the impact monitoring in the time period between 0700 to 1900 hours on normal weekdays. For all other time period, $L_{eq (5minutes)}$ was employed for comparison with the Noise Control Ordinance (NCO) criteria.

Noise measurement results obtained from each monitoring location were recorded in the Construction Noise Monitoring Data Sheet (Appendix D) immediately after the measurement. As supplementary information for data auditing, statistical results L_{10} and L_{90} were also be recorded for reference.

In case of non-compliance with the construction noise criteria, more frequent monitoring, as specified in the Action plan in Table 3.5.2, shall be carried out. This additional monitoring shall be carried out until the recorded noise levels are rectified or proved to be irrelevant to the construction activities.

3.2 Monitoring Equipment

The sound level meters and calibrators comply with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications as referred to in the Technical Memorandum (TM) to the Noise Control Ordinance was deployed as monitoring equipment for noise measurement.

Noise measurement was not be made in the presence of fog, rain, wind with a steady speed exceeding 5ms⁻¹ or wind with gust exceeding 10ms⁻¹. Thus wind speed was checked by the portable wind speed indicator capable of measuring the wind speed in m/s. Table 3.2.1 summarizes the equipment list for noise monitoring

Equipment	Manufacturer & Model No.	Precision Grade	Qty			
Integrated sound level meter	Svantek 949	IEC 651 Type 1	1			
Windscreen	Microtech gefell model W2	N/A	1			
Acoustical calibrator	Svantek SV30A	IEC 942 Type 1	1			
Wind speed indicator	Kestrel K1000	N/A	1			
Remarks: Calibrat	Remarks: Calibration details of the sound level meter is given in Appendix C for					

Table 3.2.1 Ec	quipment List for	Noise Monitoring
----------------	-------------------	------------------

3.3 Monitoring Locations

According to the Environmental Monitoring and Audit manual, impact noise monitoring for contract 1 was undertaken at two locations during the construction phase of the project. The monitoring locations are summarized in Table 3.3.1. Figure 3.3.1 shows the Noise Monitoring Locations

Noise measurement at each monitoring location was taken at a point 1m from the exterior of the selected premises and at a height of 1.2m above ground with no disturbance to the dweller and least obstructed view.

Noise Station	Monitoring	Location
M1		14, Shuen Wan Chim Uk
AL1		Joint Village Office for Villages in Shuen Wan, Tai Po

Table 3.3.1 Noise Monitoring Locations during Construction Phase

In accordance with the requirements in the EM&A manual (revision 3), weekly impact monitoring was conducted. For the time period between 0700 and 1900 hours on normal weekdays, and noise parameter of $L_{eq (30minutes)}$ was measured. As if the construction works were carried out during restricted period (i.e. 1900-2300, 2300-0700 of next day and Sundays / general holiday), impact monitoring that comprises 3 consecutive $L_{eq (5minutes)}$ would be carried out.

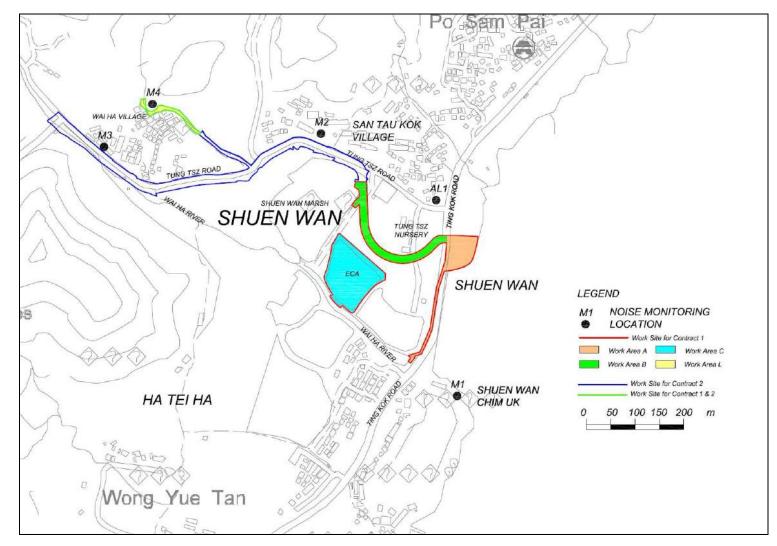


Figure 3.3.1 Impact noise monitoring locations

3.4 Monitoring Results and Interpretation

Relevant details of the noise monitoring results are presented in Table 3.4.1. The results of M1, ranged between 59.9dB (A) and 66.8dB (A), and AL1, ranged between 64.3dB (A) and 67.3dB (A), were within the limit levels and therefore, no exceedance was found.

Table 3.4.1 Noise Monitoring Results for the reporting period							
Location	Paramet	Date*	Time	LAeq	Limit	Exceedanc	Weathe
Location	er	Date	Time	dB(A)	dB(A)	e	r
M1	Leq 30mins	3-Oct-12	15:15	64.3	75	Ν	Sunny
M1	Leq 30mins	10-Oct-12	15:30	64.0	75	Ν	Sunny
M1	Leq 30mins	17-Oct-12	14:45	63.1	75	Ν	Sunny
M1	Leq 30mins	24-Oct-12	15:30	59.9	75	Ν	Sunny
M1	Leq 30mins	31-Oct-12	14:30	66.8	75	Ν	Sunny
AL1	Leq 30mins	3-Oct-12	15:50	66.3	75	Ν	Sunny
AL1	Leq 30mins	10-Oct-12	16:05	65.9	75	Ν	Sunny
AL1	Leq 30mins	17-Oct-12	15:25	67.3	75	Ν	Sunny
AL1	Leq 30mins	24-Oct-12	16:05	66.8	75	Ν	Sunny
AL1	Leq 30mins	31-Oct-12	15:05	64.3	75	Ν	Sunny

Remarks: Raw datasheet for noise monitoring are attached in **Appendix D** for reference.

3.5 Action and Limit level for Construction noise

The Action and Limit (A/L) levels for construction noise are defined in Table 3.5.1. Should non-compliance of the criteria occur, action in accordance with the Action Plan in Table 3.5.2 should be carried out.

There was no exceedance recorded in the reporting period.

Table 3.5.1 Action and Limit Levels for Construction noise

Time Period	Action Level	Limit Level	
0700 – 1900 hours on normal weekdays	When one documented complaint is received	75dB(A)	
Remarks: I	f works are to be carried	out during restricted	
hours, the	conditions stipulated in th	ne construction noise	
permit issu	ed by the Noise Control	Authority have to be	

followed.

Γ

3.6 Monitoring Schedule for the next reporting period

Noise monitoring schedule is proposed to be carried out on 7th, 14th, 21st and 28th of November 2012.

EVENT				
	ET Leader	IEC	ER	CONTRACTOR
Action	1. Notify IEC and	1. Review the	1. Confirm receipt	1. Submit noise
Level	Contractor.	analysed	of notification	mitigation
	2. Carry out	results	of	proposals to
	investigation.	submitted by	failur	IEC.
	3. Report the results	the ET.	e in writing.	2. Implement
	of investigation	2. Review the	2. Notify	noise
	to the IEC, ER	proposed	Contractor.	mitigation
	and Contractor.	remedial	3. Require	proposals.
	4. Discuss with the	measures by the	Contractor	
	Contractor and	Contractor and	to propose remedial	
	formulate	advise the ER	measures for	
	remedial	accordingly.	the analysed	
	measures.	3. Supervise the	noise problem;	
	5. Increase	implementation	4. Check remedial	
	monitoring	of remedial	measures are	
	frequency to	measures.	properly	
	check mitigation		implemented.	
	effectiveness.			

Table 3.5.2 Event / Action Plan for Construction Noise

			Γ	
Limit	1. Notify IEC, ER,	1. Discuss	1. Confirm	1. Take immediate
Level	EPD and	amongst ER,	receipt of	action to avoid
	Contractor.	ET, and	notification of	f
	2. Identify source.	Contractor on	2. Notify	urther
	3. Repeat	the potential	Contractor.	exceedance.
	measurements to	remedial	3. Require	2. Submit
	confirm findings.	actions.	Contractor	proposals for
	4. Increase	2. Review	4. Check remedial	remedial
	monitoring	C ontractor's'	measures	actions to IEC
	frequency.	remedial	properly	within 3
	5. Carry out	actions	implemented.	working days
	analysis of	whenever	5. If exceedance	of notification.
	Contractor's	necessary to	continues,	3. Implement the
	working	assure their	consider what	agreed
	procedures to	effectiveness	portion of the	proposals.
	determine	and advise	work is	4. Resubmit
	possible	the	responsible	proposals if
	mitigation to be	ER	and instruct the	problem still
	implemented.	accordingly.	Contractor to	not under
	6. Inform IEC, ER	3. Supervise the	stop that	control.
	and EPD the	implementation	portion of work	5. Stop the
	causes and	of remedial	until the	relevant portion
	actions taken for	measures.	exceedance is	of works as
	the exceedances.		abated.	determined by
	7. Assess			the ER until the
	effectiveness of			exceedance is
	Contractor's			abated.
	remedial actions			
	and keep IEC,			
	EPD and ER			
	informed of the			
	results.			
	8. If exceedance			
	stops, cease			
	additional			
	monitoring.			

4 Water Monitoring

4.1 Water Quality Monitoring Parameters and methodology

Turbidity in Nephelometric Turbidity Unit (NTU), and Dissolved Oxygen (DO) in mg/L, temperature, and pH measurements were in-situ measurements and suspended solids measurements were performed by a HOKLAS accredited laboratory using recommended reference method APHA 2540D.

4.2 Monitoring Equipment

Turbidity, DO, Salinity, pH and temperature were measured by an instrument complied with the following requirements:

The instrument is a portable as well as weatherproof multimeter complete with cable and uses a DC power source. It is capable of measuring:

- A turbidity between 0-800NTU;
- A dissolved Oxygen level in the range of 0-20mg/L and 0-200% saturation;
- A temperature of 0-50°C;
- Salinity in the range of 0-40ppt;
- pH in the range of 0-14.

The measurements were performed by a portable and weatherproof multi-meter, model TOA-DKK WQC-24. The equipment was calibrated and verified by certified laboratory every 3 months to ensure they perform to the same level of accuracy as stated in the manufacturer's specification. Detailed calibration records of the multi-meter were shown in Appendix C for reference

Suspended solids were determined by the water samples collected from the monitoring locations for further analysis in accredited HOKLAS laboratory. Water samples were contained by polythene bottles, packed in ice (cooled in 4°C without frozen) and delivered to the laboratory for analysis as soon as possible after collection.

4.3 Monitoring Locations

In accordance with the EM&A Manual (revision 3), monitoring stations for contract 1 were established at two locations, which are summarized in Table 4.3.1.

Monitoring Station	Location	Coordinates
W1	Between the Shuen Wan Marsh	E:839301
W I	and ECA	N:836386
wo	Between Tolo Harbour and	E:839542
W2	Proposed Penstock	N:836184

 Table 4.3.1 – Water Quality Monitoring Stations

As illustrated in Figure 4.3.1, W1 served as the control station while W2 was the monitoring location of water quality.

According to the approved proposal of revision for Action/Limit Level Criteria of Water Quality Monitoring, two reference points (C1 & C2) were added.

Should the water quality parameters monitoring results at the monitoring station W2 exceed the water quality criteria, the water quality monitoring data of two reference points (C1 and C2) will be used as the supplementary information. The monitoring data of C1 should be used for comparison with the monitoring data of W2 that taken at flood tide; and the monitoring data of C2 should be used for comparison with the monitoring data of W2 that taken at flood tide; and C1 at flood tide and between W2 and C2 at ebb tide is to prove whether influence of water quality is caused by the construction activities. The details of C1 and C2 are presented in Appendix N.

In accordance with the EM&A Manual (revision 3), measurements shall be taken at 3 water depths, namely, 1m below water surface, mid-depth and 1m above river bed, except where the water depth less than 6m, the mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station will be monitored.

As the depth of water was less than 3m, water samples were collected at mid-depth of each monitoring stations for measurements and sample collection.

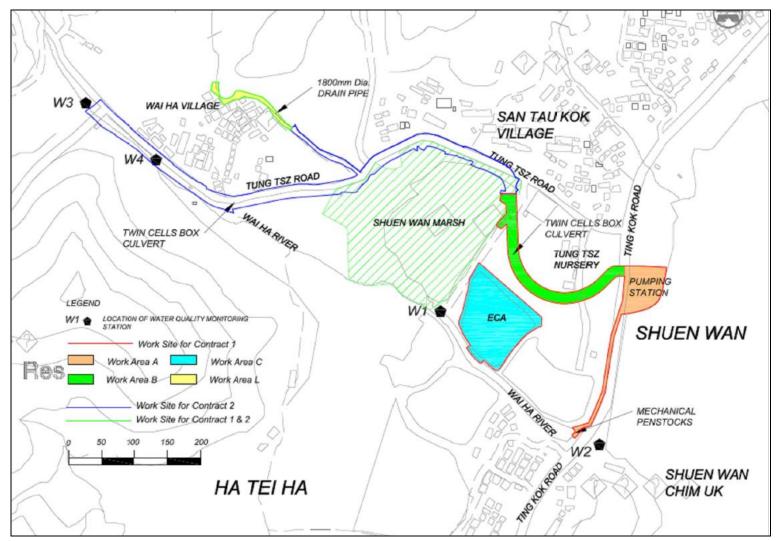


Figure 4.3.1 Water Quality Monitoring Locations

4.4 Monitoring Frequency

Impact water quality monitoring for each monitoring station were performed at mid-flood or mid-ebb tides for 3 days per week during the course of the construction river works.

Monitoring were carried out on 3rd, 5th, 8th, 10th, 12th, 15th, 17th, 19th, 22nd, 24th,26th, 29th and 31st of October 2012.

4.5 Monitoring Results and Interpretation

Water quality monitoring was carried out thirteen times in this reporting month. Detailed on-site measurements are shown in Appendix E. Table 4.5.1 presents consolidated results throughout the reporting month. And, the interpretations of abnormal incidents recorded in the reporting month were shown in the Table 4.5.2.

There were 7 abnormal incidents of water quality limits (Dissolved Oxygen, Suspended Solid and Turbidity) were recorded in this reporting month according to the established action and limit levels. ET has arranged site investigations for the abnormal incidents and it was observed that the river was narrowed for construction of mechanical penstocks; and increases the speed of water current. No construction activities were carried out at the river bed during the reporting period. Proper mitigation measures was implemented by contractor to avoid site water release to the Wai Ha river and no particular observation of defective site activities were found causing water contamination; The exceedance of Turbidity and Total Suspended Solid were believed to be mainly attributed by high water flow rate. Besides, the recorded levels of turbidity and DO at control station had also exceeded its A/L Level. Therefore, the exceedances recorded at W2 were unlikely to be related to the Project.

The water condition of Wai Ha River is presented in photo attached in Appendix M.

Table 4.5.1 Summary of Water Quality Monitoring Results of this reporting month

	Average of M	Average of Monitoring Results					
	Temperature (°C)	Turbidity (NTU)	pН	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	Suspended Solids (mg/L)	
W1	29.12	5.6	6.64	6.57	84.3	9.54	
W2	26.6	2.7	7.56	7.24	88.8	5.77	
C1	28.8	2.13	7.70	7.36	91.0	3.95	
C2	29.0	3.5	7.82	6.83	83.5	5.0	

Table 4.5.2 Interpretations of abnormal incidents recorded in the reporting month

Date	Tide	Parameter	Interpretations
3/10/2012	Ebb	Turbidity	Incident was regarded as high river flow rate since
5/10/2012	EUU	SS	river narrowed was observed.
5/10/2012	Ebb	Turbidity	Incident was regarded as high river flow rate since river narrowed was observed.
		Turbidity	The monitoring regult of W2 was similar to the
8/10/2012 Fl	Flood	DO	The monitoring result of W2 was similar to the results of C1.
		SS	
12/10/2012	Ebb	Turbidity	Incident was regarded as high river flow rate since river narrowed was observed.
22/10/2012	Flood	Turbidity	The monitoring result of W2 was similar to the
22/10/2012	11000	DO	results of C1.
24/10/2012	Flood	Turbidity	The monitoring result of W2 was similar to the
24/10/2012	24/10/2012 Flood DO		results of C1.
31/10/2012	Ebb	Turbidity	Incident was regarded as high river flow rate since river narrowed was observed.

4.6 Action and limit level for Water Quality

Based on the criteria stipulated in EM&A manual (revision 3) and baseline water quality monitoring data obtained, the A/L levels are shown in Table 4.6.1, Table 4.6.2. The A/L levels for W1 were ignored since W1 functions as the control station for contract 1. If the water quality monitoring results at any impact stations exceeded the criteria, the actions in accordance with the Event and Action Plan in Table 4.6.3 should be taken.

Parameters	Action	Limit
DO in mg/L	5 percentile of baseline data	4 mg/L
pН	N/A	6.0 - 9.0
SS in mg/L	95 percentile of baseline data or 120% of upstream control station's SS	99 percentile of baseline data or130% of upstream controlstation's SS
Turbidity in NTU	95 percentile of baseline data or 120% of upstream control station's Turbidity	99 percentile of baseline data or130% of upstream controlstation's Turbidity

Table 4.6.1 Action and Limit Levels for V	Water Quality at All	Monitoring Stations
---	----------------------	---------------------

Table 4.6.2 Action and Limit Levels for Water Quality at All Monitoring Stations

	Monitor	Monitoring Stations (Flood Tide)			Monitoring Stations (Ebb Tide)			
Parameters	W1		W2		W1		W2	
Farameters	Action	Limit	Action	Limit	Action	Limit	Action	Limit
	Level	Level	Level	Level	Level	Level	Level	Level
DO (mg/L)	8.07	4.0	7.81	4.0	7.12	4.0	6.77	4.0
pН	N/A	6.0-9.0	N/A	6.0-9.0	N/A	6.0-9.0	N/A	6.0-9.0
SS (mg/L)	7.7	8.1	7.7	8.6	10.5	10.9	9.4	9.9
Turbidity (NTU)	4.9	5.3	1.7	1.8	4.2	4.7	3.0	3.5

Remarks:

For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits

For SS and turbidity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Event	ET Leader	IEC	ER	Contractor
ACTION LEV	EL		•	
Action level	1. Repeat in-situ	1. Discuss	1. Discuss	1. Inform Engineer
being	measurements to	mitigation	proposed	and confirm in
exceeded by	confirm findings;	measures with	mitigation	writing
one sampling	2. Identify reasons for	ET, Engineer	measures with	notification of the
day	non-compliance	and Contractor;	IEC, ET and	non-compliance;
	and source(s) of	2. Review	Contractor;	2. Rectify
	impact;	proposals on	2. Make	unacceptable
	3. Inform IEC,	mitigation	agreement on	practice;
	Contractor and	measures	mitigation	3. Check all plant
	Engineer;	submitted by	measures to	and equipment;
	4. Check monitoring	Contractor and	be	4. Consider changes
	data, all plant,	advise the	implemented;	in working
	equipment and	Engineer	3. Assess	methods;
	Contractor's	accordingly;	effectiveness	5. Discuss with ET,
	working methods;	3. Assess	of	IEC and Engineer
	5. Discuss mitigation	effectiveness of	implemented	and propose
	measures with	implemented	mitigation	mitigation
	IEC, Engineer and	mitigation	measures.	measures to IEC
	Contractor;	measures.		and Engineer
	6. Ensure mitigation			within three
	measures are			working days;
	implemented.			6. Implement
	7. Repeat			agreed mitigation
	measurement on			measures.
	next day of			
	exceedance.			

Table 4.6.3 Event and action Plan for Water Quality

Contract No. DC/2009/22 – Drainage Improvement in Shuen Wan, Tai Po – Contract 1 Monthly EM&A Report for October 2012

		1		
Action level	•	1. Discuss		Inform Engineer
being	measurements to	mitigation	proposed	and confirm in
exceeded by	confirm findings;	measures with	mitigation	writing
more than	2. Identify reasons for	ET, Engineer	measures with	notification of the
two	non-compliance	and Contractor;	IEC, ET and	non-compliance;
consecutive	and source(s) of	2. Review	Contractor; 2.	Rectify
sampling	impact;	proposals on	2. Make	unacceptable
days	3. Inform IEC,	mitigation	agreement on	practice;
	Contractor and	measures	mitigation 3.	Check all plant
	Engineer;	submitted by	measures to	and equipment;
	4. Check monitoring	Contractor and	be 4.	Consider changes
	data, all plant,	advise the	implemented;	in working
	equipment and	Engineer	3. Assess	methods;
	Contractor's	accordingly;	effectiveness 5.	Discuss with ET,
	working methods;	3. Assess	of	IEC and Engineer
	5. Discuss mitigation	effectiveness of	implemented	and propose
	measures with	implemented	mitigation	mitigation
	IEC, Engineer and	mitigation	measures.	measures to IEC
	Contractor;	measures.		and Engineer
	6. Ensure mitigation			within three
	measures are			working days;
	implemented.		6.	Implement
	7. Prepare to increase			agreed mitigation
	the monitoring			measures.
	frequency to			
	daily;			
	8. Repeat			
	measurement on			
	next day of			
	exeedance.			
LIMIT LEV	'EL		· · ·	
Limit level	1. Repeat in-situ	1. Discuss	1. Discuss 1.	Inform Engineer
being	measurements to	mitigation	proposed	and confirm in
exceeded by	confirm findings;	measures with	mitigation	writing
one	2. Identify reasons for	ET, Engineer	measures with	notification of the
sampling	non-compliance	and Contractor;	IEC, ET and	non-compliance;
day	and source(s) of	2. Review	Contractor; 2.	Rectify

· · · · · · · · · · · · · · · · · · ·	-		I	
	impact;	proposals on	2. Request	unacceptable
	3. Inform EPD, IEC,	mitigation	Contractor to	practice;
	Contractor and	measures	critically 3.	Check all plant
	Engineer;	submitted by	review the	and equipment;
	4. Check monitoring	Contractor and	working 4.	Consider changes
	data, all plant,	advise the	methods;	in working
	equipment and	Engineer	3. Make	methods;
	Contractor's	accordingly;	agreement on 5.	Discuss with ET,
	working methods;	3. Assess	mitigation	IEC and Engineer
	5. Discuss mitigation	effectiveness of	measures to	and propose
	measures with IEC,	implemented	be	mitigation
	Engineer and	mitigation	implemented;	measures to IEC
	Contractor;	measures.	4. Assess	and Engineer
	6. Ensure mitigation		effectiveness	within three
	measures are		of	working days;
	implemented;		implemented 6.	Implement
	7. Increase the		mitigation	agreed mitigation
	monitoring		measures.	measures.
	frequency to daily			
	until no exceedance			
	of Limit level.			
Limit level	1. Repeat in-situ	1. Discuss	1. Discuss 1.	Inform Engineer
being	measurements to	mitigation	proposed	and confirm in
exceeded by	confirm findings;	measures with	mitigation	writing
more than	2. Identify reasons for	ET, Engineer	measures with	notification of the
two	non-compliance and	and Contractor;	IEC, ET and	non-compliance;
consecutive	source(s) of impact;	2. Review	Contractor; 2.	Rectify
sampling	3. Inform EPD, IEC,	proposals on	2. Request	unacceptable
days	Contractor and	mitigation	Contractor to	practice;
	Engineer;	measures	critically 3.	Check all plant
	4. Check monitoring	submitted by	review the	and equipment;
	data, all plant,	Contractor and	working 4.	Consider changes
	equipment and	advise the	methods;	in working
	Contractor's	Engineer	3. Make	methods;
	working methods;	accordingly;	agreement on 5.	Discuss with ET
	5. Discuss mitigation	3. Assess	mitigation	IEC and Engineer
	measures with IEC,	effectiveness of	measures to	and propose

Encincon	implemented	ha	mitication
Engineer and	implemented	be	mitigation
Contractor;	mitigation	implemented;	measures to IEC
6. Ensure mitigation	measures.	4. Assess	and Engineer
measures are		effectiveness	within three
implemented.		of	working days;
7. Increase the		implemented 6.	. Implement
monitoring		mitigation	agreed mitigation
frequency to daily		measures;	measures;
until no exceedance		5. Consider and 7.	. As directed by
of Limit level for		if necessary	the Engineer,
two consecutive		instruct	slow down or
days.		Contractor to	stop all or part of
		slow down or	the construction
		to stop all or	activities until no
		part of the	exceedance of
		construction	Limit level.
		activities until	
		no exceedance	
		of Limit	
		Level.	

4.7 Monitoring Schedule for the next reporting period

Water quality monitoring schedule is proposed to be carried out on 2nd, 5th, 7th, 9th, 12th, 14th, 16th, 19th, 21st, 23rd, 26th, 28th and 30th of November 2012.

5 Hydrological Characteristics Monitoring

5.1 Hydrological Characteristics Monitoring Parameters and methodology

Impact monitoring of hydrological characteristics was undertaken to establish hydrological characteristics of sections of Wai Ha River adjacent to Drainage Improvement Works in Shuen Wan, Tai Po.

The hydrological characteristics of sections of Wai Ha River were measured by water flow rate and depth.

5.2 Monitoring Equipment

Monitoring performed by a portable echo-sounder, model Greyline Stingray. The equipment was calibrated and verified by certified laboratory or manufacturer every year to ensure they perform to the same level of accuracy as stated in the manufacturer's specification.

Calibration Certificate of the multi-meter is given in Appendix C.

5.3 Monitoring Locations

In accordance with the EM&A Manual (revision 3), monitoring stations for contract 1 were established at two locations and summarized in Table 5.3.1.

Monitoring Station	Location	Coordinates
H1	Between the Shuen Wan Marsh	E:839301
	and ECA	N:836386
H2	Route to Sam Kung Temple	E:839163
		N:836433

Table 5.3.1 – Water Quality Monitoring Stations

As illustrated in Figure 5.3.1, H2 served as the control station while H1 was the monitoring location of hydrological characteristics.

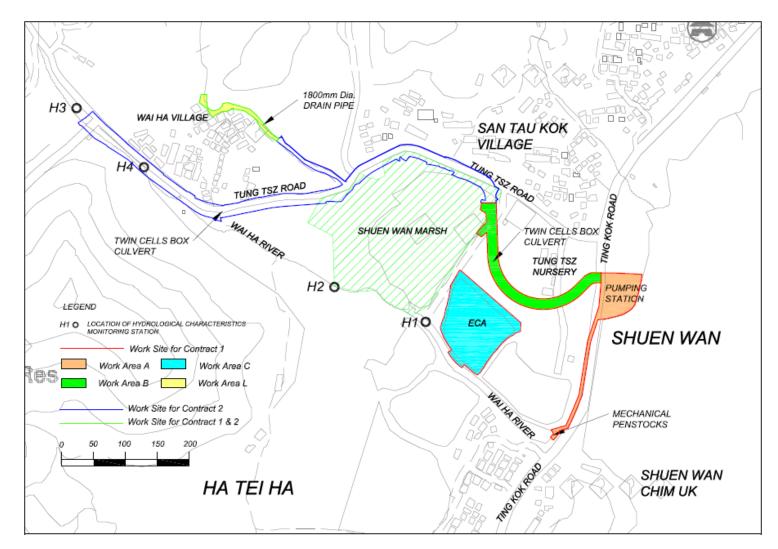


Figure 5.3.1 Hydrological Characteristics Monitoring Locations

5.4 Monitoring Frequency

Hydrological characteristics monitoring for each monitoring station were performed at mid-flood and mid-ebb tides for once per week during the course of the construction river works.

Monitoring was carried out on 5th, 12th, 19th and 26th of October 2012.

5.5 Monitoring Results and Interpretation

Hydrological characteristics monitoring was carried out four times in this reporting period. The monitoring results are summarized in Table 5.5. All results were within the action and limit levels, therefore, no exceedance was found.

	Average of Monitoring Results			
	Water Depth (m) Water Flow Rate (m ³ /s			
H1(Floor)	~0.390*	0.206		
H1(Ebb)	~0.165*	0.150		
H2(Floor)	~0.345*	0.848		
H2(Ebb)	~0.210*	0.866		

 Table 5.5
 Summary of Water Quality Monitoring Results

*: Since the water levels were too low for the depth detector to determine, tape measure was instead adopted for estimation.

Details of the monitoring data were presented in Appendix F.

5.6 Action and limit level for Hydrological Characteristics

The Action and Limit levels for all monitoring stations are summarized in Table 5.6.1, which would be applied for compliance assessment of hydrological characteristics for this project. If the hydrological characteristics monitoring results at any impact stations exceeded the criteria, the actions in accordance with the Event and Action Plan in Table 5.6.2 should be taken.

0		
Parameters	Action	Limit
Water Depth at Mid-flood (m)	0.08	0.06
Water Depth at Mid-ebb (m)	0.08	0.06
Water Flow Rate (m ³ /s)	120% of control station's water flow rate on the same day of measurement	140% of control station's water flow rate on the same day of measurement

Table 5.6.1 Action and Limit Levels for Hydrological Characteristics at All Monitoring Stations

Table 5.6.2 Event and action Plan for Hydrological Characteristics

Event	ET	Leader	IEC	ER	Contractor
ACTION LE	VEL	1			
Action	1.	Repeat in-situ	1. Discuss	1. Discuss	1. Inform Engineer
level being		measurements to	mitigation	proposed	and confirm in
exceeded		confirm findings;	measures with	h mitigation	writing
by one	2.	Identify reasons for	ET, Enginee	r measures	notification of
sampling		non-compliance and	and Contractor;	with IEC, ET	the
day		source(s) of impact;	2. Review	and	non-compliance;
	3.	Inform IEC,	, proposals or	n Contractor;	2. Rectify
		Contractor and	mitigation	2. Make	unacceptable
		Engineer;	measures	agreement on	practice;
	4.	Check monitoring	submitted by	y mitigation	3. Check working
		data, Contractor's	Contractor and	d measures to	methods and
		working methods	advise the	e be	any excavation
		and any excavation	Engineer	implemented;	works or
		works or dewatering	accordingly;	3. Assess	dewatering
		processes;	3. Assess	effectiveness	processes;
	5.	Discuss mitigation	effectiveness o	f of	4. Consider
		measures with IEC,	implemented	implemented	changes in
		Engineer and	mitigation	mitigation	working
		Contractor;	measures.	measures.	methods and
	6.	Ensure mitigation	u		plans;
		measures are			5. Discuss with ET,
		implemented.			IEC and

	7.	Repeat measurement				Engineer and
		on next day of				propose
		exceedance.				mitigation
						measures to IEC
						and Engineer
						within three
						working days;
					6.	Implement
						agreed
						mitigation
						measures.
Action	1.	Repeat in-situ	1. Discuss	1. Discuss	1.	Inform Engineer
level being		measurements to	mitigation	proposed		and confirm in
exceeded		confirm findings;	measures with	mitigation		writing
by more	2.	Identify reasons for	ET, Engineer	measures		notification of
than two		non-compliance and	and Contractor;	with IEC, ET		the
consecutive		source(s) of impact;	2. Review	and		non-compliance;
sampling	3.	Inform IEC,	proposals on	Contractor;	2.	Rectify
days		Contractor and	mitigation	2. Make		unacceptable
		Engineer;	measures	agreement on		practice;
	4.	Check monitoring	submitted by	mitigation	3.	Check working
		data, Contractor's	Contractor and	measures to		methods and
		working methods	advise the	be		any excavation
		and any excavation	Engineer	implemented;		works or
		works or dewatering	•••	3. Assess		dewatering
		processes;	3. Assess	effectiveness		processes;
	5.	Discuss mitigation			4.	
		measures with IEC,	implemented	implemented		changes in
		Engineer and	e	mitigation		working
		Contractor;	measures.	measures.		methods and
	6.	Ensure mitigation			_	plans;
		measures are			5.	Discuss with ET,
	7	implemented.				IEC and
	7.	Prepare to increase				Engineer and
		the monitoring				propose
	0	frequency to daily;				mitigation
	8.	Repeat measurement				measures to IEC

	, 1 d							
	on next day of			and Engineer				
	exeedance.			within three				
				working days;				
				6. Implement				
				agreed				
				mitigation				
				measures.				
LIMIT LEVEL								
Limit level 1	1. Repeat in-situ	1. Discuss	1. Discuss	1. Inform Engineer				
being	measurements to	mitigation	proposed	and confirm in				
exceeded	confirm findings;	measures with	mitigation	writing				
by one 2	2. Identify reasons for	ET, Engineer	measures	notification of the				
sampling	non-compliance and	and Contractor;	with IEC, ET	non-compliance;				
day	source(s) of impact;	2. Review	and	2. Rectify				
3	3. Inform AFCD, IEC,	proposals on	Contractor;	unacceptable				
	Contractor and	mitigation	2. Request	practice;				
	Engineer;	measures	Contractor to	3. Check working				
4	4. Check monitoring	submitted by	critically	methods and any				
	data, and	Contractor and	review the	excavation works				
	Contractor's	advise the	working	or dewatering				
	working methods	Engineer	methods;	processes;				
	and any excavation	accordingly;	3. Make	4. Consider changes				
	works or dewatering	3. Assess	agreement on	in working				
	processes;	effectiveness of	mitigation	methods and				
5	5. Discuss mitigation	implemented	measures to	plans;				
	measures with IEC,	mitigation	be	5. Discuss with ET,				
	Engineer and	measures.	implemented;	IEC and Engineer				
	Contractor;		4. Assess	and propose				
6	6. Ensure mitigation		effectiveness	mitigation				
	measures are		of	measures to IEC				
	implemented;		implemented	and Engineer				
7	7. Increase the		mitigation	within three				
	monitoring		measures.	working days;				
	frequency to daily			6. Implement agreed				
	until no exceedance			mitigation				
	of Limit level.			measures.				
Limit level 1	1. Repeat in-situ	1. Discuss	1. Discuss	1. Inform Engineer				

Contract No. DC/2009/22 – Drainage Improvement in Shuen Wan, Tai Po – Contract 1 Monthly EM&A Report for October 2012

being	measurements to	mitigation	proposed	and confirm in
exceeded	confirm findings;	measures with	mitigation	writing
by more 2.	Identify reasons for	ET, Engineer	measures	notification of the
than two	non-compliance and	and Contractor;	with IEC, ET	non-compliance;
consecutive	source(s) of impact;	2. Review	and 2.	Rectify
sampling 3.	Inform AFCD, IEC,	proposals on	Contractor;	unacceptable
days	Contractor and	mitigation	2. Request	practice;
	Engineer;	measures	Contractor to 3.	Check working
4.	Check monitoring	submitted by	critically	methods and any
	data, and	Contractor and	review the	excavation works
	Contractor's working	advise the	working	or dewatering
	methods and any	Engineer	methods;	processes;
	excavation works or	accordingly;	3. Make 4.	Consider changes
	dewatering processes;	3. Assess	agreement on	in working
5.	Discuss mitigation	effectiveness of	mitigation	methods and
	measures with IEC,	implemented	measures to	plans;
	Engineer and	mitigation	be 5.	Discuss with ET,
	Contractor;	measures.	implemented;	IEC and Engineer
6.	Ensure mitigation	2	4. Assess	and propose
	measures are		effectiveness	mitigation
	implemented.		of	measures to IEC
7.	Increase the		implemented	and Engineer
	monitoring frequency		mitigation	within three
	to daily until no		measures;	working days;
	exceedance of Limit	:	5. Consider and 6.	Implement agreed
	level for two		if necessary	mitigation
	consecutive days.		instruct	measures;
			Contractor to 7.	As directed by the
			slow down or	Engineer, slow
			to stop all or	down or stop all
			part of the	or part of the
			construction	construction
			activities	activities until no
			until no	exceedance of
			exceedance	Limit level.
			of Limit	
			Level.	

5.7 Monitoring Schedule for the next reporting period

Hydrological characteristics monitoring schedule is proposed to be carried out on 2nd, 9th, 16st, 23rd and 30th of November 2012.

6 Ecological Monitoring of ECA

6.1 Introduction

The Ecological Monitoring of the Ecological Compensatory Area (ECA) of the Project is conducted to fulfill Clauses 5.2 and 5.4 of EP-303/2008 and the monitoring requirements in accordance with Section 6 of the approved updated EM&A Manual (approved by EPD on 31st May 2012) and the approved updated Habitat Creation Plan (HCP) (approved by EPD on 8th December 2011) of the Project.

This report documents monitoring findings on the site inspections in the ECA undertaken in October 2012.

6.2 Ecological Monitoring of ECA

6.2.1 Scope of Monitoring

A specific ecological monitoring programme and ecological monitoring requirements of the ECA are detailed in Section 7 of the approved Habitat Creation Plan (HCP) and Section 6.18 of the approved updated Environmental Monitoring & Audit (EM&A) Manual of the Project.

During the construction phase of the ECA, monthly monitoring of vegetation health (including the planted, retained and transplanted trees and shrubs, and the proposed planting) and weekly site inspections should be undertaken. Monthly monitoring of in situ water quality will be carried out once the ECA is filled with water from the nearby Wai Ha River.

During the 12-month establishment phase of the ECA, monitoring of habitat types, vegetation cover, intertidal fauna and other fauna (including avifauna, herpetofauna, fish, odonates and butterflies) will be undertaken on a six-monthly basis, while the vegetation health and in situ water quality will be monitored monthly. Site inspections will be conducted twice per month.

6.2.2 Monitoring Methodology during the construction phase

Monitoring of vegetation health

Monthly monitoring of the health condition of the retained and transplanted trees and vegetation will be conducted. Following planting of vegetation in the ECA, monitoring of the growth and health conditions of the planted vegetation in the created habitats (i.e. brackish marsh, mangrove, woodland areas of planted trees and shrubs, and wooded areas with retained and (trans)planted trees) within the ECA is to be conducted during the construction and establishment phases. General health and growth status of the retained trees within the ECA are recorded and recommendation of appropriate tree care will be made to the maintenance party.

All planted, retained and transplanted trees and shrubs will be surveyed to update their growth and health status. Any signs of pests and/ or poor growth of planted, retained and transplanted trees and shrubs will be recorded. Appropriate treatment or removal of pests will be implemented if necessary. Supplemental planting will be arranged if needed.

A fixed transect line will be run through the wetland habitats (including intertidal mudflat, brackish marsh and mangrove) and the general growth and health of the planted vegetation along both sides of the transect will be inspected and evaluated. Any adverse plant health, such as dieback of planted species, will be noted and supplemental planting will be arranged. Any signs of pests which cause adverse health problems to the plants will be identified and recorded.

Monitoring of water quality

Since there will be free movement of brackish river water in and out of the ECA, water quality in the ECA will be largely dependent on water quality in the river. In this open system it is not appropriate to set specific targets for water quality parameters. Nevertheless, baseline data on water quality, in particular seasonal patterns, would potentially be useful long term management of the ECA. Once the ECA is filled with water during the construction phase of the ECA, in-situ water quality will be measured once per

month during both Construction and Establishment Phases. Parameters, including temperature, pH, salinity, turbidity and dissolved oxygen, will be monitored. Additional measurements of these parameters should also be made by the ecologist in response to unexpected events (e.g. algal blooms or fish die-offs) in order to inform remedial management measures.

Site inspection

Weekly site inspection will be carried out by the Wetland Specialist to update the status and monitor the progress of the construction of the ECA. Any adverse ecological impact resulting from the construction should be identified and remedial action should be undertaken.

6.2.3 Monitoring Methodology during the establishment phase

Monitoring of vegetation health

Same monitoring methodology as in Section 2.2.

Monitoring of water quality

Same monitoring methodology as in Section 2.2.

Site inspection

Site inspection during the establishment phase of the ECA will be conducted twice per month for monitoring the health and condition of the wetland during the establishment period. Any unsatisfied health and habitat criteria of the wetland will be identified and remedial action should be recommended. Twice monthly establishment phase monitoring has been commenced in November 2011.

Monitoring of habitat types and vegetation cover

Monitoring of habitat types and vegetation cover will be conducted twice during the 12 month Establishment Phase of the ECA; specifically at the end of the dry season and the end of the subsequent wet season after completion of the planting work. The monitoring aims to determine the exact extent of the wetland habitats and vegetation cover (i.e. open water, intertidal mudflat, brackish marsh and mangrove) during the establishment period and control any excessive colonization of unwanted vegetation specific habitats.

Monitoring of intertidal fauna

As the ECA largely comprises an intertidal mudflat, monitoring for intertidal fauna will be conducted. Recolonisation will take time: accordingly monitoring will be tentatively conducted in February 2012 and August 2012. As the important aim of monitoring of intertidal fauna in the ECA is to examine the diversity of the colonising community, a qualitative manner by walk-through survey (i.e. walk through the site with species and relative abundance recorded) will be conducted. Core sampling will also be conducted at different levels to record infauna. Three samples at each level (low, middle and high) will be collected during each monitoring event and the monitoring will be conducted at low tide.

Monitoring of other fauna

Monitoring of other faunal groups, including birds, herpetofauna, fish, odonate and butterflies, will be conducted. Monitoring of any aquatic invertebrates will be covered by the intertidal surveys. Since the site will be intertidal, it is considered unsuitable for local amphibian species. Therefore, no nighttime survey for detection of mating calls of amphibians is necessary and only daytime surveys are needed. Monitoring of these faunal groups will be conducted on a walk-through survey basis. The surveyor will walk through the site, recording and counting the fauna observed. Microhabitats for herpetofauna will be actively searched. This monitoring will be conducted twice within the establishment period (once in the dry season (tentatively in February 2012) and once in the wet season (tentatively in August 2012).

Monitoring of wild mammals is not necessary in this case; however, if signs of wild mammals are observed (such as footprints) during any field surveys, these will be recorded.

6.2.4 Monitoring time and weather condition

Site inspection and monitoring of vegetation, fauna groups and water quality should be carried out during day-time with calm weather. Monitoring of birds should commence within one hour of sunrise, when is the peak activity period for birds. Other fauna groups shall be undertaken during the warmer part of the monitoring day.

6.3 Monitoring Results

According to Table 6.17 of the EM&A Manual, ecological monitoring of the ECA will be carried out by qualified ecologists during the 1-year wetland establishment period of the ECA before handing over to AFCD for their post establishment monitoring. Establishment phase of the ECA began in September 2011, ecological monitoring programme was conducted and monitoring data was presented in respective monthly EM&A reports. Ecological monitoring programme ended in September 2012 and hence there will be no ECA report attached in EM&A reports.

6.3.1 Description of monitoring of transplanted Pavetta hongkongensis in Ecological Compensatory Area

According to the latest Transplantation Proposal, monitoring of the transplanted individual of Pavetta hongkongensis will cover a period of 12 months after the transplanting exercise. The monitoring will be conducted once a week in the first 3 months and once in each subsequent month in the remaining monitoring period. Health condition and growth of each transplanted individuals will be assessed and photographic records will be undertaken for each inspection.

Three specimens of protected species Pavetta hongkongensis were transplanted to ECA. Weekly monitoring was carried out since transplantation on 20th December 2011.

The monitoring of transplanted Pavetta hongkongensis of this report were carried out in 19th October 2012 in Ecological Compensatory Area.

All trees surveyed were evaluated according to the following criteria (Webb 1991).

Trees of good form, moderate to large size and in good health are classified as good;

Trees of reasonable form, with few or no visible defects or health problems are classified as being fair;

Trees that are of poor form, badly damaged or clearly suffering from decay die back or the effects of very heavy vine growth are classified as poor.

6.3.2 Description of transplanted Pavetta hongkongensis and remarks

Three specimens of protected species Pavetta hongkongensis were transplanted from work area under Contract 2 to ECA at Zone D (Figure 6.3.2.1) on 20th December 2011. Monthly monitoring was carried out and their overall conditions are fair so far (Appendix L). Representative photographs of the transplanted P. hongkongenesis are showed on Figure 6.3.2.2. Contract No. DC/2009/22 – Drainage Improvement in Shuen Wan, Tai Po – Contract 1 Monthly EM&A Report for October 2012

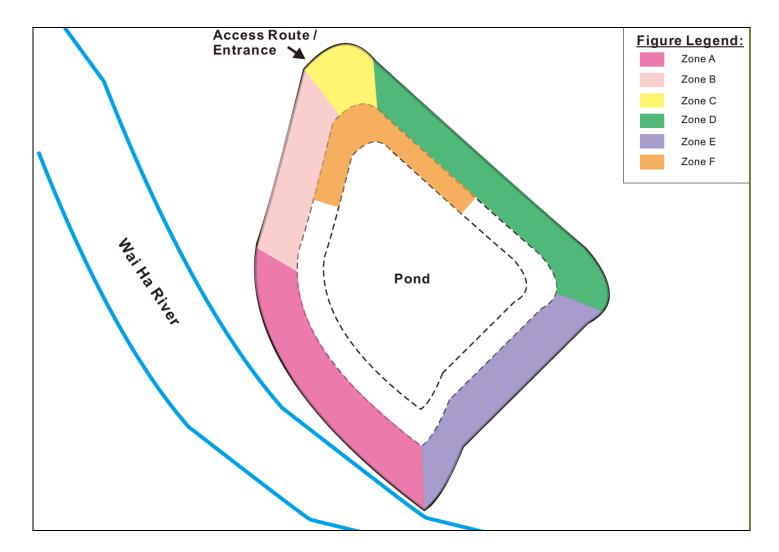


Figure 6.3.2.1 Landscape floor plan of ECA during establishment phase.

Figure 6.3.2.2. Representative photographs of transplanted *Pavetta hongkongensis* in ECA since the first transplantation in 19 Oct. 2012.

Regular watering is recommended to improve the condition of the transplanted Pavetta hongkongensis during non-raining period. Relevant mitigation measures will be proposed when necessary.

There is no sign of pest outbreak or dieback took place in the current monitoring.

6.3.3 Summary

Three specimens of protected species Pavetta hongkongensis were transplanted to ECA on 20th December 2011 and Monthly monitoring was carried out on 19th October 2012. All of them were in fair condition. Although there is no sign of pest outbreak or dieback , regular watering and close monitoring are still be recommended.

6.3.4 References

Webb, R (ed.) 1991, Tree Planting & Maintenance in Hong Kong, Hong Kong Government, Hong Kong.

6.3.5 Site Inspections

Twice monthly establishment phase monitoring has commenced in November 2011. Two site inspections were carried out on 5th and 16th October and one additional site visit by the Wetland Specialist on 12nd October 2012. Table 6-1 summarizes the observations and recommendations for each site inspection.

Table 6-1. Observations and reco	mmendations for each	h site inspection,	October 2012.
----------------------------------	----------------------	--------------------	---------------

Inspection Dates	Observation	Recommendations
5 th October 2012	A routine site visit to inspect the latest wetland performance and condition of about 30 newly replaced compensatory trees around the terrestrial areas. The newly replaced compensatory trees were in fair health and tree form, and sign of recent watering around the trunk base was observed on these compensatory trees. The created wetland and the remaining planted vegetation (including the shrubs, mangrove seedlings and the compensatory trees) have been maintained in fair to good condition. Small patches of planted wetland herbs (<i>Bacopa monnieri</i> and <i>Cyperus malaccensis</i>) appeared dry and weak, but it is a normal natural dieback phenomenon for perennial herbs and new population will resume in the next wet season. Naturally established wetland herbs (such as <i>Alternanthera</i> spp. and <i>Lindernia</i> spp.), other terrestrial herbs (such as <i>Abutilon indicum</i>) and seedlings of tree <i>Macaranga tanarius</i> var. <i>tomentosa</i> were observed in the created wetland and terrestrial pond, implying a gradual natural establishment of plants. The trees transplanted from Area A to the ECA have been maintained generally in fair to good condition. The three transplanted shrubs of conservation interest, <i>Pavetta</i> <i>hongkongensis</i> , were fruiting by the time of site visit and have shown satisfactory	The Contractor should maintain regular watering on all planted shrubs, newly planted and established compensatory trees in the whole ECA. The temporary site hoardings at the main site entrance should be replaced with a permanent wire mesh fence prior to the final handover meeting in mid-October 2012.
nd	performance.	
12 nd October 2012	This is an additional site visit by the Wetland Specialist prior to the final handover meeting for the ECA. The overall site condition of the wetland was satisfactory and recent watering	The Contractor should perform localized grass cutting, removal of <i>Leucaena leucocephala</i> in the whole ECA, and maintain
(Additional site visit)	of the compensatory trees was observed. Localized grass cutting close to the access	regular watering for the transplanted and retained trees,

	gate between Tung Tsz Nursery and the ECA,	planted compensatory trees and
	and the southeastern part of the ECA is	shrubs.
	required. Removal of seedlings and saplings	
	of the weedy tree Leucaena leucocephala in	
	the whole ECA is required to eradicate its	
	spread in the ECA.	
16 th October	The second site visit in October 2012 and the	The Contractor should fix the
2012	final handover meeting of the ECA was also	wire mesh fences and reinstate
	held on 16 th October 2012. Representatives	the original gate at the
	from the Project Engineer Teams, the Main	northwestern part of the ECA as
	Contractor, appointed Landscape Contractor,	soon as possible.
	the Wetland Specialist and AFCD officers	·
	attended the handover meeting. AFCD	
	officers generally satisfied the wetland	
	performance and the condition of the soft	
	landscape within the ECA.	
	The temporary site hoardings at the main site	
	entrance were removed and wire mesh fences	
	were also erected. The Main Contractor was	
	required to fix these fences permanently and	
	reinstate the original gate at the	
	northwestern part of the ECA.	
L	nor and estern part of the Eora	l

Photo 1. General view of the wetland as inspected on 5th October 2012.

Photo 2. The ECA as inspected on 16th October
2012.Photo 3. The ECA as inspected on 16th October
2012.

Photo 4. Transplanted Pavetta hongkongensisPhoto 5. Transplanted Pavetta hongkongensisPH-03 was in good condition.PH-01 and PH-02 were in good condition.

6.4 Management Activities

6.4.1 Ecological Issues/ Management Activities

No significant ecological issues were identified from the site inspection by the Wetland Specialist from the site inspections in October 2012.

The ECA has been maintained in satisfactory condition. The compensatory trees with poor performance were replaced and regular watering on these trees was observed prior to the final handover meeting on 16th October 2012. With the completion of the handover meeting in October 2012, AFCD will take up the maintenance of the soft landscape elements of the ECA with effect from 16th October 2012. As addressed during the meeting, the Main Contractor should fix the wire mesh fences and reinstate the gate at the northwestern part of the ECA as a final management activity for the wetland.

6.5 Implication of the Survey Findings

6.5.1 Implication to the Wetland design of the ECA

No implication to the wetland design from these two site inspections in October 2012.

6.6 Recommendations

The Contractor should fix the wire mesh fences and reinstate the gate at the northwestern part of the ECA as soon as possible. For the long-term maintenance and management of the ECA during the post-establishment phase, the maintenance party shall follow the ecological monitoring frequency and management items (especially for the removal of exotic/ undesirable invasive plants) as stipulated in the latest approved EM&A Manual of the Project. This is to ensure the wetland health and engineering stability of the created wetland in the long run.

7 Landscape and Visual

7.1 Introduction

The Landscape and Visual Monitoring of the Project is conducted to fulfill Clauses 5.2 and 5.4 of EP-303/2008 and the monitoring requirements in accordance with Section 7 of the approved updated EM&A Manual (approved by EPD on 31st May 2012) of the Project. A Baseline Review on updating the landscape and visual condition, and the mitigation measures of the Project (including Contracts 1 and 2 of the Project) was undertaken before the commencement of the Project. The review findings were updated in the Baseline Environmental Monitoring Report submitted to the EPD on 14th February 2011.

This monthly monitoring report will detail the scope of landscape and visual monitoring work, monitoring findings and observations, and any recommendations and advice on proper implementation of the landscape mitigation measures in the works areas under Contract 1 of the Project.

7.2 Scope of Monitoring

7.2.1 Monitoring Objectives

Landscape and Visual Monitoring of the Project should be conducted in a bi-weekly basis for checking the design, implementation and maintenance of the landscape and visual mitigation measures throughout the construction phase and in a quarterly basis during operational phase of the Project. Observations of any potential conflicts between the proposed mitigation measures and the project works carried out by the Contractors should be recorded. Recommendation and advice on proper implementation of the landscape mitigation measures should be provided to the Contractor for minimizing any potential impacts on the landscape and visual elements.

7.2.2 Monitoring during Construction Phase

The following landscape and visual mitigation measure should be implemented during the construction phase of the project to minimize the potential impacts:

- Visual Screen Use of hoardings as visual screens for the construction in the works areas;
- Contaminant/ Sediment Control Use of temporary barriers, covers and drainage provision around the construction works as contaminant/ sediment control to prevent the contaminants and sediments from entering the sensitive water-based habitats;

- Pollution Control Implementation of pollution control measures to minimize any adverse environmental impacts to the surrounding habitats;
- Liaison with Nursery Liaison with the nursery operator as necessary to minimize any adverse impact to the daily operation and plant holding capacity of the nursery;
- Existing Trees within Works Area Maintenance and protection of the existing trees, especially their crowns, trunks and roots, within work sites; and
- Construction Light Provision of construction light should be controlled at night to avoid excessive glare to the surrounding villages and to Plover Cove.

7.2.3 Monitoring during Operational Phase

The following landscape and visual mitigation measure should be implemented during the operational phase of the project to minimize the potential impacts:

- Viewing area formation by planting with shrubs, grasses and benches along the area;
- Architectural design of the pump house will help it fit into the existing suburban, natural to semi-natural surroundings;
- Landscape design of pump house by providing sufficient planting around its boundary fence;
- Enhancement planting along Tung Tsz Road with shrubs/ trees of suitable species to help protect the stream and marshes;
- Construction of box culvert should be with at least 1.0m soil depth for enhancement planting;
- Transplanting of existing affected trees to adjacent locations should be carried out;
- Preparation for transplanting is needed to allow sufficient time for root pruning and rootball preparation prior to transplanting; and
- Reinstatement of affected area should be carried out to check that the works areas are properly reinstated.

7.3 Landscape and Visual Monitoring Results

7.3.1 Monitoring Date(s)

This monthly Landscape and Visual Monitoring (October 2012) was conducted to cover only Areas A, B and C of Contract 1 of the Project. The bi-weekly monitoring was

conducted on 5th, 16th and 29th October 2012.

Area C was formally handed over to AFCD on 16th October 2012 for management and maintenance. No access into the Ecological Compensatory Area (ECA) is allowed after the handover.

All photos stated in this section are recorded in Appendix G.

The bi-weekly monitoring for Contract 2 was also undertaken on 5th, 16th and 29th October 2012. The monitoring findings and recommendation will be submitted in a separate Monthly EM&A Report under Contract DC/2010/02.

7.3.2 Visual Screen

No follow-up action by the Contractor is required as from the Monthly EM&A Report for September 2012.

Observation

Construction hoardings have been erected in Area A along the entire site boundary. Temporary construction hoardings have been erected around Wai Ha River estuary since the commenced work for building an automatic mechanical penstock at the area. Since February 2012, temporary construction hoardings have also been erected to surround the works area for constructing a drain pipe along Ting Kok Road. A section of cycling track outside Tung Tsz Nursery along Ting Kok Road was found surrounded by temporary hoardings (Photo 1).

A section of temporary hoarding has been erected from northwest to southwest parts (i.e. Phase I construction works) of Tung Tsz Nursery in Area B (approximately along the works boundary from Trees U42 to U62). Another section of temporary hoarding has been erected from southwest to eastern parts of the Nursery since May 2012 and connected with the Phase I construction works area. An open section with no construction work has been maintained as a major road access inside Tung Tsz Nursery for their daily operations.

A new set of chain link fence has been erected at the previous main entrance of Area C after the handover to AFCD (Photo 2). It was not allowed to access the ECA during the monitoring on 29th October 2012.

Recommendation

No specific recommendation is required.

7.3.3 Contaminant/ Sediment Control

No follow-up action by the Contractor is required as from the Monthly EM&A Report for June 2012.

Observation

Area A

Provision of dust control measure (such as vehicle wheel washing facilities) has been maintained at the exit point of Area A.

Used water for washing vehicle wheel and groundwater from the excavated sites were pumped into the silt/sand removal facilities for filtration before discharging into the manhole adjacent to Area A. No unauthorized discharge of contaminated water/ sewerage was observed during the monitoring.

Area B

Dust control measure (such as vehicle wheel washing facilities) has been resumed in October 2012. The construction vehicles were washed at the entrance of the access road leading towards the works area at northwestern part of Tung Tsz Nursery. Used water and groundwater from the built box culvert and the construction site within the Nursery were collected and drained directly to the sedimentation tank placed adjacent to the fenced Area C. The water was further filtered through the silt/sand removal facilities in the tank before discharging into the manhole adjacent to Area C. Some filtered water was also drained directly to the cycle tracks along Ting Kok Road. Area C

Area C was formally handed over to AFCD on 16th October 2012 for management and maintenance. The pond of the ECA has connected with the Wai Ha River directly. No water resulting from normal wetland maintenance practice was pumped out from the ECA.

Recommendation

No specific recommendation is required.

7.3.4 Pollution Control

All used water for washing vehicle wheel and construction works was filtered and drained to the manholes, as following the recommendation stated in Monthly EM&A Report for September 2012.

Observation

Area A

Provision of vehicle wheel washing facilities was observed at the exit point of Area A to reduce the contamination to the surrounding habitats in Plover Cove. Used water for washing vehicle wheel and groundwater from the excavated sites were pumped into the silt/sand removal facilities for filtration before discharging into the manhole adjacent to Area A. The drainage pipes were maintained appropriately to discharge the used water to

the manhole at Ting Kok Road. No direct discharge of polluted water into the adjacent Wai Ha River was observed from the works area for building the automatic mechanical penstock at Wai Ha River estuary.

Area B

All used water was collected and drained directly to the sedimentation tank placed adjacent to the fenced Area C. This water was further filtered through the silt/sand removal facilities in the tank before discharging into the manhole adjacent to Area C. Some filtered water was drained directly to the manholes next to the cycle tracks along Ting Kok Road.

Area C

Area C was formally handed over to AFCD on 16th October 2012 for management and maintenance. The pond of the ECA has been connected to Wai Ha River directly as following the scheme design of Habitat Compensatory Plan. No direct discharge of turbid water into the adjacent Wai Ha River was observed through the fence of Tung Tsz Nursery (Photo 3).

Recommendation

No specific recommendation is required for Areas A, B and C. As a reminder, the Contractor should regularly check the condition and locations of the drainage pipes and ensure that all used water should be appropriately filtered and discharged to the manholes/other discharge points agreed by the Engineer and EPD. This is to avoid any potential contamination to the vegetation in Shuen Wan marsh and other vegetated/marinated areas adjacent to the active works area.

7.3.5 Liaison with Nursery

Active construction works within Tung Tsz Nursery has been extended to the east of the nursery in connection with Ting Kok Road since May 2012. All of these active construction works area were demarcated with construction hoardings.

The health condition and stability of the tree Grevillea robusta (U58) has been closely monitored on a bi-weekly basis and regular watering of the retained trees and transplanted trees was anticipated. New leaves were observed along the trunk.

The works practice and maintenance of trees within the nursery generally follow the recommendation as stated in Monthly EM&A Report for September 2012. Any observed issues related to the liaison with the nursery are highlighted in this section.

Observation

The temporary hoarding has been erected from northwest to southwest parts of Tung Tsz Nursery in Area B since April 2011. Phase 2 construction work (i.e. from the eastern part of the nursery in connection with Ting Kok Road and finally connects with Phase 1 construction area at the southwest part) has commenced and temporary hoardings have

been erected since May 2012. The major road access within the Nursery has been maintained to minimize the impact on the nursery's daily operation resulting from the construction works.

Regular monitoring for all transplanted trees within the nursery was conducted on a bi-weekly basis. For tree U58 (Grevillea robusta) (Photo 4), the broken scaffold branch was still found to be overhung in the canopy. New but small leaves were observed along the branches and watersprouts were found along the trunk. The physiological condition of U58 has remained fairly poor in October 2012 and close monitoring has to be continued to update its health and structural conditions.

No muddy water was found leaking out through the temporary hoarding into the nursery.

Recommendation

The works area and the construction works should be properly managed and implemented without influencing the daily operation of the nursery (i.e. provide enough access road and works area for the nursery operation).

All transplanted trees should be watered regularly (e.g. at least every two days) by the appointed landscape contractor. Meanwhile, the Contractor should prevent forming waterlogged areas or leakage of used water from the active construction works area into the Nursery. This is to prevent causing any nuisance to the nursery's daily operation.

Regular monitoring and watering of Grevillea robusta (U58) are still recommended to be the major treatment to the tree. The appointed landscape contractor and the Contractor should closely monitor the health conditions throughout the establishment period.

7.3.6 Existing Trees within Works Areas

Tree Protection Zones (TPZs) in Areas A and B were demarcated within the construction sites as following the recommendation stated in the Monthly EM&A Report for September 2012, no piling of construction materials within or close to the TPZs were observed in Area A (see details in the following section).

Regular watering of the retained trees, transplanted trees and the compensatory planting was anticipated. Maintenance of the existing trees within the works areas generally follows the recommendation as stated in Monthly EM&A Report for September 2012, except the observations as highlighted in the following sections.

Observation

Area A

TPZs with temporary storage of construction materials were not observed for trees to be transplanted (E19 to E20) at the southwestern part of Area A (Photo 5) during the monitoring in October 2012.

During the monitoring on 16th October, 2012, the tree to be transplanted E17 (Bombax

ceiba) and E18 (Melaleuca cajuputi subsp. cumingiana) originally located within the TPZs nearby the main gate were found to be relocated to the northeastern part of Area A (Photo 6). They were found in poor condition due to transplantation shock.

As observed since July 2012, the tree to be transplanted E16 (Bombax ceiba) was relocated to the southern side of Area A next to the site hoarding. A TPZ was set up at the base. The tree was in poor condition during the monitoring in October 2012 (Photo 7).

No other significant damages on the crowns, trunks and roots of the remaining trees were observed during the monitoring in September 2012 in Area A.

Area B

As highlighted in the Section "Liaison with Nursery", small watersprouts and new leaves were observed on the trunk and branches of the transplanted tree U58 (Grevillea robusta) but its physiological condition has still remained fairly poor after the transplant. One of its scaffold branches was still found overhanging in the canopy.

The transplanted tree U61 (Lysidice rhodostegia) was still found leaning severely with its propping uplifted (Photo 8), and the crack on the planter of U75 (Dolichandrone cauda-felina) was still presence (Photo 9). There is a concern on the long-term stability on both trees.

The transplanted tree U55 (Pterocarpus indicus) was planted directly into the ground as permitted by the nursery. Decayed wood were found along the tree trunk (Photo 10) and such decay may probably due to wood borers.

A broken scaffold branch of the tree to be transplanted T102 (Melaleuca cajuputi subsp. cumingiana) was still found hanging in the canopy (Photo 11). No recovery signs have been observed on the relocated trees U34 (Photo 12), U35 (Photo 13) and U37 (Photo 14).

A42, U74, U72, U70, U69, A43, U62 and an untagged Terminalia catappa were inspected closely in October 2012 as construction of that section of the box culvert was about to be finished in the Nursery. They were in fair physiological condition. However, no proper TPZs were established (Photo 15).

A small sand pile next to three relocated trees (U76, U77 and U78) was removed in September 2012. However, waterlogging was still found in the areas around the trunk bases of these three trees. Areas around the trunk base of U76 and U78 were waterlogged and piles of stones (Photos 16-17). Irrigation water from the Nursery could be retained around the trunk bases of these trees, which were planted too deep previously. This would potentially damage the roots of these relocated trees.

The relocated tree U77 (Terminalia catappa) was dry and had no leaves in the canopy (Photo 18). The base of the tree was waterlogged with used water from the construction work (Photo 19).

All of the translocated trees were not guyed and only a few of these trees were protected within orange construction nets established as temporary TPZs.

Broken planters for three trees (U54 and two existing trees with no tag next to U54) were observed at their temporary receptor sites within the active works area to the northwest of the nursery. All of them have been generally surrounded by the orange construction nets to prevent further damage to the remained planters. However, stockpiling of construction materials were observed immediately next to the trunks and bark tearing on the trunk was observed (Photo 20).

The remaining trees, including retained and transplanted specimens, within the nursery were maintained generally in fair condition, with no significant damage on tree crowns, trunks and roots observed during the monitoring in October 2012.

Area C

Area C was formally handed over to AFCD on 16th October 2012 for management and maintenance. The area was fenced off and no access was allowed

Recommendations

Area A

Maintenance of proper TPZs with no temporarily stored construction materials, excessive stockpiled soil and waterlogged condition around the tree trunk flares have been the major tree management issues in Areas A and B. The Contractor should continue notifying the on-site workers not to stockpile soil/construction materials or place construction equipment within and close to the TPZs or lower trunk/trunk flare. Any temporarily stored construction materials/ equipment and excessive water around the trunk flares should be removed or drained immediately. Operators of the construction machines should be aware of the presence of these relocated and retained trees nearby their works.

All retained trees or trees to be transplanted should be watered regularly (e.g. at least every two days) by the landscape contractor. The Contractor should conduct regular inspection on the health condition and protection measures of each existing trees within the Area A. In particular, regular watering should be applied on those recently relocated trees with regard to their poor health condition. Area B

All transplanted trees should be watered regularly (e.g. at least every two days) by the landscape contractor. This is a necessary maintenance practice to improve the survival rates and growth for trees showing poor health condition as a result of the transplantation shock. Regular check of the tree health should be conducted. Proper protective measures such as guying and TPZs are recommended especially for the newly transplanted trees. Waterlogged areas (e.g. around trunk bases of U76, U77 and U78) should be avoided and all used water around the tree trunk flares should be drained out immediately. The Contractor was contacted immediately after the monitoring and it is confirmed that the used water would be drained immediately. To prevent accidental drainage of used water into the tree root zone of the relocated trees, the Contractor is recommended to establish a proper separation (e.g. sandbags barriers or wooden plates) between the trees (especially U76, T77 and U78) and the ground of the active construction work.

Regular inspection of the tree health of U58, U34, U35 and U37 should be undertaken to update their health condition and any tree defects. If these trees are found to be dead specimens in the wet season, the Contractor should replace these specimens.

The Contractor has to repair the planters or establish proper TPZs for the tree U54 and the two untagged trees adjacent to U54 as soon as possible. In addition, the Contractor should ensure that all planters have been properly maintained.

The Contractor is recommended to re-tag the translocated trees and regularly check the condition of the tags. All tree tags on the trees should be managed properly by the Contractor throughout the construction and establishment phases. A good tree tag system is important for the Contractor, subcontractor and the auditor to undertake routine maintenance, monitoring and rapid remedial actions (if any).

The leaning tree Lysidice rhodostegia (U61) should be restored to its proper position or guyed appropriately to prevent its further hazard to the targets. The planter of Dolichandrone cauda-felina (U75) should be rebuilt to provide better support and protection of its root ball. Both mitigation measures should be carried out by the appointed landscape contractor or other relevant parties as soon as possible.

The contractor is recommended to arrange the landscape contractor to inspect the transplanted tree U55 (Pterocarpus indicus) immediately and carry out any pest control management when needed for this tree.

Area C

As Area C was handed over to AFCD for management and maintenance, no further recommendation is given.

7.3.7 Construction Lights

No follow-up action on maintenance of construction light is required as from the Monthly EM&A Report for September 2012.

Observation

No construction light impact to the surrounding villages and to Plover Cove as all construction activities and construction sites are halted at 1800. No construction light at night is provided by the Contractor.

Recommendation

No specific recommendation is required.

7.4 Audit Schedule

The next bi-weekly Landscape & Visual Monitoring in November 2012 is scheduled to

be conducted in the weeks of 12th and 26th November 2012.

8 Action taken in Event of Exceedance

If the measurements (Noise, Water, Hydrological Characteristics, and Ecology) exceed the action / limit level, exceedance details will be reported and follow-up actions will be taken by relevant parties involved.

During the reporting month there was no exceedance for noise, hydrological characteristics, and ecological measurements recorded; therefore, no actions were taken.

For water quality monitoring, total 7 abnormal incidents of water quality limits (Dissolved Oxygen, Suspended solids and Turbidity) were recorded in this reporting month according to the established level. ET has arranged site investigations for the abnormal incidents and it was observed that the river was redirected and narrowed for construction of mechanical penstocks; and increases the speed of water current. No construction activities were carried out at the river bed during the reporting period. Proper mitigation measures was implemented by contractor to avoid site water release to the Wai Ha river and no particular observation of defective site activities were found causing water contamination. The exceedance of Turbidity and Total suspended solid were believed to be mainly attributed by high water flow rate. Besides, the levels of Turbidity and DO at W1 had been also exceeded its A/L Level. Therefore, the exceedances recorded at were unlikely to be related to the Project. The water condition of Wai Ha River is presented in photo attached in **Appendix M.**

9 Construction waste disposal

It is the contractor's responsibility to ensure that all wastes produced during the construction phase for the drainage improvement works are handled, stored and disposed of in accordance with good waste management practices and EPD's regulation and requirement. Waste materials generated during construction activities, such as construction and demolition (C&D) material, chemical wastes and general refuse, are recommended to be audited at regular intervals to ensure that proper storage, transportation and disposal practices are being implemented.

Table 9.1 is a summary of figures of the construction wastes disposal provided by Contractor.

	Actual Quantities of Inert C & D Materials Generated Monthly Actual Quantities of C & D Wastes Generated Monthly										
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboar d packaging	note3)		Others, e.g. general refuse
	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3	(in'000m3	(in'000kg	(in'000kg)	(in'000kg	(in'000kg)	(in'000kg)
Year2011	11.758	0.00	9.703	0.665	0.750	0.556	0.00	0.00	0.00	0.00	0.165
Jan-12	0.010	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.005
Feb-12	0.130	0.00	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mar-12	0.125	0.00	0.125	0.00	0.00	0.00	2.37	0.00	0.00	0.00	0.01
Apr-12	0.265	0.00	0.26	0.00	0.005	0.00	0.00	0.00	0.00	0.00	0.01
May-12	0.705	0.00	0.705	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
June-12	1.375	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
July-12	1.870	0.00	1.72	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.02
Aug-12	1.83	0.00	0.895	0.935	0.00	0.00	0.00	0.00	0.00	0.00	0.02
Sep-12	1.635	0.00	1.635	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.035
Oct-12	1.125	0	1.125	0	0	0	0	0	0	0	0.04
Total	21.543	0.00	17.402	1.75	0.71	0.556	2.37	0.00	0.00	0.00	0.345
	Forecast of Total Quantities of C & D Materials to be Generated from the Contract										
	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboar d packaging	note3)		Others, e.g. general refuse
	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	`)	`) `	(in'000kg)	(in'000kg)	(in'000kg)	(in'000kg)
	37.37	8.27	12.09	0.00	25.28	2.1	10	2	0.5	1	1

Table 9.1 Summary of Construction Waste Disposal

Notes (1) The Performance targets are given in PS Clause 26.23 (14)

(2) The waste flow table shall also include C & D materials that are specified in the Contract to be imported for used at the sites

(3) Plastics refer to plastics bottles/containers, plastic sheets/foam from packaging materials.

(4) The summary table shall be submitted to the Engineer's Representative monthly together with the Waste Flow Table for review and monitoring in accordance with the PS Clause 25.20A(4)

10 Status of Permits and Licenses obtained

Table 10.1 is the updated status of environmental related permits/ license obtained for the construction activities

Description	License / Permit No.#	Date of Issue	Site	Date of expiry	Status
Environmental Permit	EP-303/2008	2008/2/25	Area A, B & C	not applicable	Valid
Discharge Licence	WT00006448-2010	2010/6/15	Area A, B & C	30/6/2015	Valid
Registration as a Chemical Waste Producer	316597	2010/4/26	Area A, B & C	not applicable	Valid
Waste Disposal	7010348	2010/3/2	Area A, B & C	not applicable	Valid

Table 10.1 Status of Permits and Licenses Obtained

11 Compliant Log

There was no formal complaint received during the reporting period. Therefore, follow up actions for the environmental complaint is not required.

		-	-	
	Noise	Water	Ecology	Others
Year 2011	0	0	0	0
January 2012	0	0	0	0
February 2012	0	0	0	0
March 2012	0	0	0	0
April 2012	0	0	0	0
May 2012	0	0	0	0
June 2012	0	0	0	0
July 2012	0	0	0	0
August 2012	0	0	0	0
September 2012	0	0	0	0
October 2012	0	0	0	0
Total	0	0	0	0

Table 11.1 Summary of Formal Complaints received

Site Environmental Audits

11.1 Site Inspection

Site inspections were undertaken weekly to inspect the construction activities in active site areas to ensure that appropriate environmental protection and pollution control mitigation measures are properly implemented.

Within this reporting period, site inspections were conducted on 4nd, 11th, 19th and 24th of October 2012. A detailed checklist of each site inspection together with comments and relevant photos have been filed and kept. The findings from inspection were summarized in Table 12.1.

	Table 12.1 Summary results of site inspections findings					
Date	Findings	Identification	Advice from ET	Action taken	Closing date	Remarks
9, 16, 23 & 30 Aug 12 6, 13, 20 & 25 Sep 12 4, 11, 19 & 24 Oct 12	Construction materials were observed inside the tree protection zone at Area B.	Observation	Contractor was reminded to remove the construction materials as soon as possible	Outstanding		
30 Aug 12 6, 13, 20 & 25 Sep 12 4, 11 & 19 Oct 12	Damaged tree protection zone was observed at Area A	Observation	Contractor was reminded to replace the tree protection fence immediately.	Damaged tree protection fence was replaced by contractor.	24 Oct 12	
20 & 25 Sep 12 4,11, 19 & 24Oct 12	Stagnant water was observed at Area B.	Observation	Contractor was reminded that stagnant water should be removed regularly to prevent mosquito breeding.	Outstanding		

Table 12.1 Summary results of site inspections findings

Date	Findings	Identification	Advice from ET	Action taken	Closing date	Remarks
25 Sep 12 4 Oct 12	Findings Construction materials were near the U-channel of Cycle track. Mixed construction	Identification	Contractor was reminded to clean construction materials and keep away from the U-channel to prevent surface run-off. Contractor was reminded that all the	Construction materials were cleaned by contractor. Mixed C&D	Closing date	Remarks
4 Oct 12	materials were observed at Area A	Observation	C&D wastes should be sorted into different types and stored properly.	materials were removed by contractor.	11 Oct 12	
11, 19 & 24 Oct 12	Drip tray was not provided for the chemical materials at Area A.	Observation	Contractor was reminded that the chemical materials should be placed inside the drip tray.	Outstanding		
24 Oct 12	Construction materials were observed near the public drainage at Ting Kok Road.	Observation	Contractor was reminded that the construction materials should be cleaned to prevent the sand and muddy water from entering into the public drainage.	Outstanding		
24 Oct 12	Drip tray was not provided for the generator at Ting Kok Road.	Observation	Contractor was reminded that drip tray should be provided for the generator.	Outstanding		
24 Oct 12	Mixed C&D materials were observed at area	Observation	Contractor was reminded that all the C&D materials	Outstanding		

Date	Findings	Identification	Advice from ET	Action taken	Closing date	Remarks
	А.		should be sorted			
			before disposal to			
			public fill.			
	Ducty motorials		Contractor was			
	Dusty materials		reminded that			
24 Oct 12	were not	Observation	cement materials	Outstanding		
24 OCt 12	properly at	Observation	should be covered	Outstanding		
	Area A.		with tarpaulin for			
	Alta A.		dust suppression.			
		Observation	Contractor was	Outstanding		
	3-sides shelter		reminded that			
	coverage was		3-sides shelter			
24 Oct 12	not provided at		coverage should be			
	Area B.		provided during the			
	nica D.		cement mixing			
			works.			
			Contractor was			
	Tree protection		reminded that the			
24 Oct 12	zone was not	Observation	tree protection zone	Outstanding		
2.00012	provided at		should be set up for			
	Area A.		the tree within the			
			site boundary.			

11.2 Compliance with legal and Contractual requirement

There was no non-compliance recorded for the month of October 2012.

11.3 Implementation status and effectiveness of the mitigation measures

Contractor has implemented mitigation measures to address those problems as advised by ER and ET. Some of the measures taken by the contractor were considered as effective to minimize negative impact to the environment. Ongoing investigation will be carried out to observe performance and effectiveness of those measures. Outstanding environmental items will be inspected in next month. As there were some ongoing follow up practices, contractor was reminded to regularly review and rectify the discrepancy once found and maintain good site condition. The contractor implemented various environmental mitigation measures as recommended in the Environmental Permit and Final Mitigation Measures Report.

The recommend mitigation measures of EM&A manual (revision 3) are presented in Appendix H (A).

The implemented statues of mitigation measures are presented in Appendix H (B).

12 Future Key issues and recommendations

According to the forecasted site activities, key environmental issued to be considered should at least include:

- Site water control and relevant protective measures.
- Quality of effluent discharge from Area A.
- Control and disposal for construction wastes generated from works.

Tree protective measure for tree planting and transplanting, such as tree protection zone and regular watering.

13 Conclusions

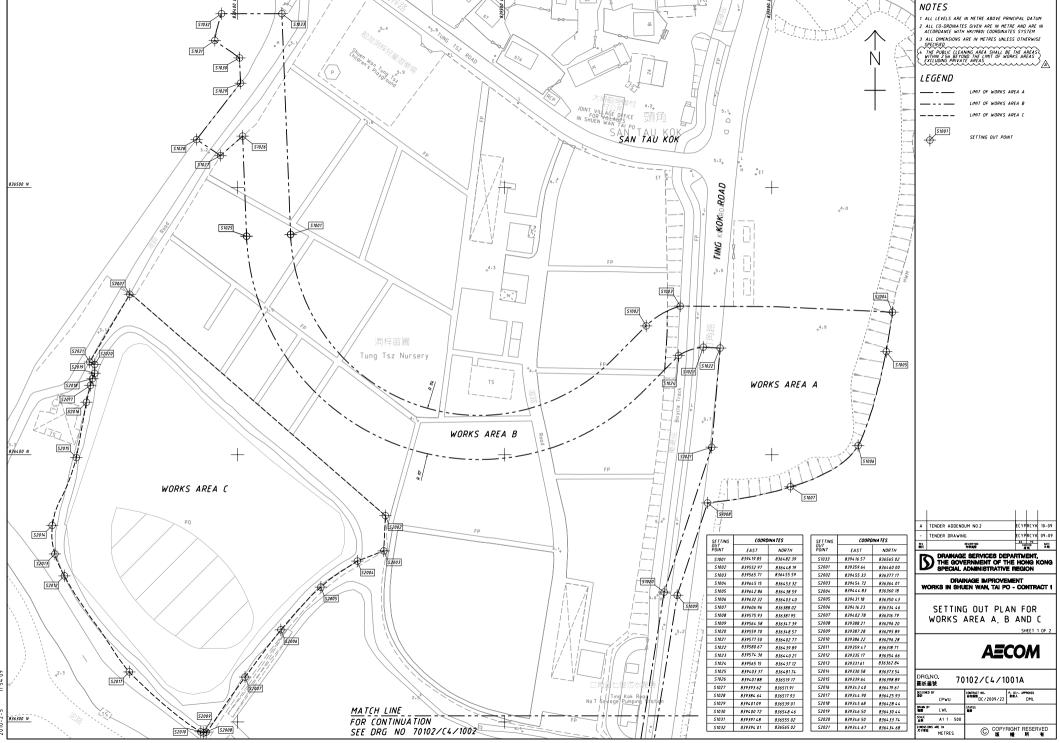
Laying of E&M ducting for the proposed screen house and store room, concreting for the proposed columns and beams above pump hall, grouting heading tunnel for the proposed DN225 sewer, removal of sheetpiles from bay 9 to 13 and grouting for second layer of grouting hole at the proposed DN2800 twin pipes were major site activities being carried out within this reporting period.

Regular site meetings and inspection audits led by the seniors for discussing site environmental matters were held among Project Proponent, Contractor and the ET on weekly basis. Also monthly site meeting and inspection audits with the above parties and IEC were carried out on 24th of October 2012.

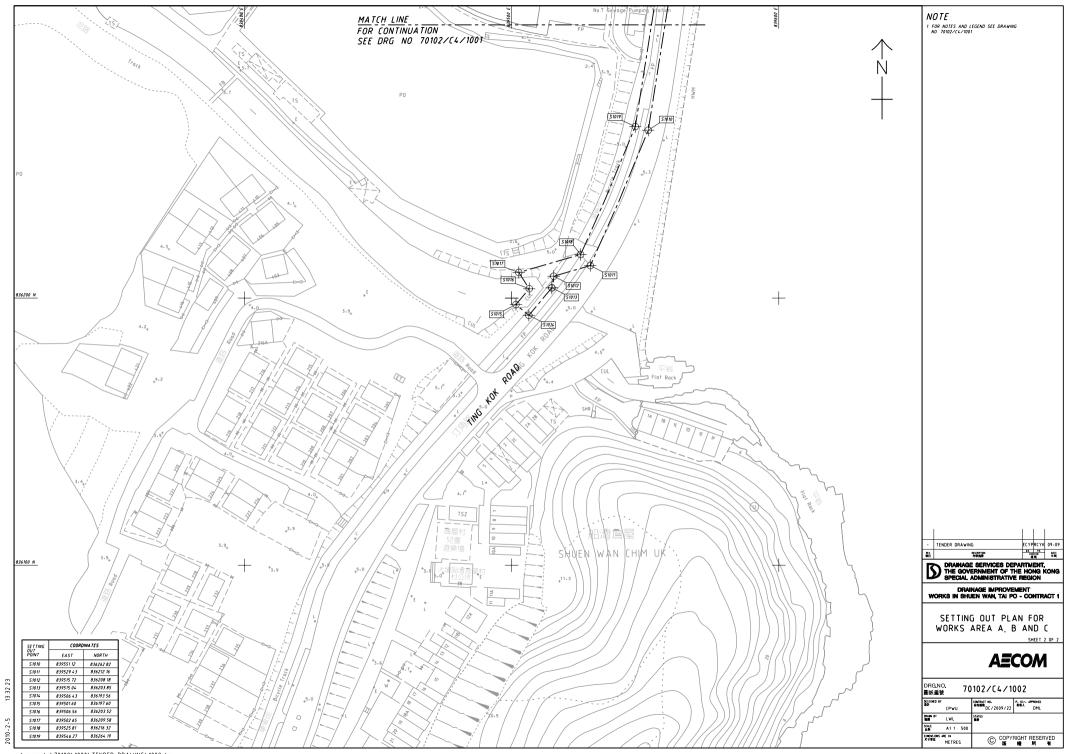
For noise level monitoring, all results were within the established A/L Level.

For water quality monitoring, total 7 abnormal accidents of water quality limits (Dissolved Oxygen, Suspended solids and Turbidity) were recorded in this reporting month according to the established level. ET has arranged site investigations for the abnormal incidents and it was observed that the river was narrowed for construction of mechanical penstocks and increases the speed of water current. Proper mitigation measures was implemented by contractor to avoid site water release to the Wai Ha river and no particular observation of defective site activities were found causing water contamination. The exceedance of turbidity and total suspended solid were believed to be mainly attributed by natural fluctuation, since the recorded levels of turbidity and DO at control station had also exceeded its baseline A/L Level. It was believed that the exceedances recorded at were unlikely to be related to the Project.

According to Table 6.17 of the EM&A Manual, ecological monitoring of the ECA will be carried out by qualified ecologists during the 1-year wetland establishment period of the ECA before handing over to AFCD for their post establishment monitoring. Establishment phase of the ECA began in September 2011, ecological monitoring programme was conducted and monitoring data was presented in respective monthly EM&A reports.


Ecological monitoring programme ended in September 2012 and hence there will be no ECA report attached in EM&A reports.

Also, there were no any notifications of summons recorded during the reporting period. Furthermore, there were not any formal prosecution and complaints recorded.


ET has reminded the contractor to provide environmental pollution control measures wherever necessary, and to keep a good environmental management at site practice.

The ET will continue to implement the environmental monitoring & audit programme in accordance with the EM&A Manual (revision 3) and Environmental Permit requirement.

Appendix A: Site Location Plan

p:\projects\70102\1000\TENDER_ADDENDUM_NO_2\1001A.dgn



p:\projects\70102\1000\TENDER_DRAWING\1002.dgn

Appendix B: Key Personal Contact Information Table

Post	Name	Contact No.	Contact Fax	e-mail
Project Manager	Mr. W. K. Chan	6821 1136	2674 6688	dc200922jv_pmcwk @yahoo.com.hk
Site Agent	Mr. C. L. Wong	9280 0166	2674 6688	dc200922jv_sa@yaho o.com.hk
Environmental Officer / Sub-agent	Mr. K. M. Ma	9552 1734	2674 6688	dc200922jv_suba@ya hoo.com.hk
Environmental Supervisor	Mr. Anthony Chan	9179 2092	2674 6688	anthony277@hotmail. com
Asia Ecological Consultants Ltd. (Wetland Specialist)	Dr. Mike Leven	2486 2885	2471 8389	mrleven@asiaecol.co m.hk
Environmental Pioneers & Solutions Limited (Environmental Team)	Miss Goldie Fung	2556 9172	2856 2010	goldiefung@fseng.co m.hk

Appendix C: Calibration Certificates for Measuring Instruments

Certificate No. 21289	Page 1 of 3 Pages
Customer: Environmental Pioneers and Solutions Limited	
Address : Flat A, 19/F., Chai Wan Industrial Centre Building	, 21 Lee Chung Street, Chai Wan, HK.
Order No.: Q20468	Date of receipt : 2-Mar-12
Item Tested	· · · · ·
Description : Digital Sound Level Meter Manufacturer : SVAN Model : 949	Serial No. : 8571
Test Conditions	
Date of Test: 5-Mar-12 Ambient Temperature: (23 ± 3)°C	Supply Voltage : Relative Humidity : (50 ± 25) %
Test Specifications	
Calibration check. Ref. Document/Procedure: Z01.	
Test Results	
All results were within the IEC 651 Type 1 & IEC 804 Type 1 spec The results are shown in the attached page(s).	ification after adjustment.
Main Test equipment used:	
Equipment No. Description Cert. No.	Traceable to
S017AMulti-Function Generator07279S024Sound Level Calibrator15136	SCL-HKSAR NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

P. F. Wong

Approved by :

Date: 7-Mar-12

Dorothy Cheuk

This Certificate is issued by: Hong Kong Calibration Ltd. Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 21289

Page 2 of 3 Pages

Results :

1. SPL Accuracy

UUT Setting			UUT Rea	ding (dB)		
Level Range	Octave Filter	Weight	Response	Applied Value (dB)	Before	After
			-		adjust	adjust
105 dB	OFF	Α	Fast	94.0	*92.0	94.0
			Slow			94.0
		С	Fast			94.0
130 dB	OFF	Α	Fast	94.0		94.0
			Slow			94.0
		С	Fast			94.0
	OFF	Α	Fast	114.0		114.1
			Slow			114.1
		С	Fast			114.1

IEC 651 Type 1 Spec. : \pm 0.7 dB Uncertainty : \pm 0.1 dB

Level Stability : 0.0 dB
 IEC 651 Type 1 Spec. : ± 0.3 dB
 Uncertainty : ± 0.01 dB

3. Linearity

3.1 Level Linearity

UUT Range	Applied			IEC 651 Type 1 Spec.
(dB)	Value (dB)	UUT Reading (dB)	Variation (dB)	(inside Primary)
130	114.0	114.0	0.0	± 0.7 dB
	104.0	104.0	0.0	
	94.0	94.0 (Ref.)		
105	84.0	84.0	0.0	
	74.0	74.0	0.0	
	64.0	64.0	0.0	
	54.0	54.0	0.0	

Uncertainty : $\pm 0.1 \text{ dB}$

Certificate No. 21289

Page 3 of 3 Pages

3.2 Differential level linearity

UUT Range (dB)	Applied Value (dB)	UUT Reading (dB)	Variation (dB)	IEC 651 Type 1 Spec.
130	84.0	84.0	0.0	± 0.4 dB
	94.0	94.0 (Ref.)	0.0	
i i	95.0	95.0	0.0	± 0.2 dB

Uncertainty : $\pm 0.1 \text{ dB}$

4. Frequency Weighting

. .

A weighting		
Frequency	Attenuation (dB)	IEC 651 Type 1 Spec.
31.5 Hz	-40.4	- 39.4 dB, ± 1.5 dB
63 Hz	-27.2	- 26.2 dB, ± 1.5 dB
125 Hz	-17.0	$-16.1 \text{ dB}, \pm 1 \text{ dB}$
250 Hz	-9.4	- 8.6 dB, ± 1 dB
500 Hz	-2.6	$- 3.2 dB, \pm 1 dB$
1 kHz	0.0 (Ref)	$0 dB, \pm 1 dB$
2 kHz	+1.8	$+ 1.2 dB, \pm 1 dB$
4 kHz	+1.8	$+ 1.0 dB, \pm 1 dB$
8 kHz	-0.4	- 1.1 dB, + 1.5 dB ~ -3 dB
16 kHz	-6.3	$- 6.6 \text{ dB}, + 3 \text{ dB} \sim -\infty$

Uncertainty : $\pm 0.1 \text{ dB}$

5. Time Averaging

Applied Burst duty Factor	Applied Leq. Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	50.0		
1/10	50.0	50.2	± 0.5 dB
1/10 ²	50.0	49.8	
1/10 ³	50.0	50.1	± 1.0 dB
1/10	50.0	49.9	<u> </u>

Uncertainty : $\pm 0.1 \text{ dB}$

Remarks : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure : 1 001 hPa.
- 4. *Out of specification.

----- END -----

Certificate No.	21290		Page	1 of	2 Pages
Customer :	Environmental Pioneers and So	olutions Limited			
Address :	Flat A, 19/F., Chai Wan Industr	ial Centre Building, 2	1 Lee Chung Stre	eet, Chai V	Van, HK.
Order No. :	Q20468		Date of receipt : 2-Mar-12		2-Mar-12
Item Tested					
Description :	Sound Level Calibrator				
Manufacturer :	Svantek				
Model :	SV30A		Serial No.	: 7908	
Test Conditi	ons	,			
Date of Test :	5-Mar-12		Supply Voltage	;	
Ambient Temp	erature : (23 ± 3)°C		Relative Humic	lity: (50 ±	25) %
Test Specific	cations				
Calibration chec	: k				
	Procedure : F21, Z02.				
Test Results	;				
All results were	within the IEC 942 Class 1 spec	ification.			
	shown in the attached page(s).				
Main Test equip	ment used:				
Equipment No.	Description	<u>Cert. No.</u>		Traceable	<u>to</u>
S014	Spectrum Analyzer	13535		NIM-PRC	& SCL-HKSAR
S024	Sound Level Calibrator	15136		NIM-PRC	& SCL-HKSAR
S041	Universal Counter	15610		SCL-HKS	AR
S206	Sound Level Meter	16338		SCL-HKS	AR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

P. F. Wona

Approved by : _

Date: 7-Mar-12

 This Certificate is issued by:
 Di

 Hong Kong Calibration Ltd.
 Di

 Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

 Tel: 2425 8801
 Fax: 2425 8646

Certificate No. 21290

Page 2 of 2 Pages

Results :

1. Level Accuracy

UUT Nominal Value (dB)	Measured Value (dB)	IEC 942 Class 1 Spec.
94	94.10	± 0.3 dB
114	114.18	

Uncertainty : $\pm 0.1 \text{ dB}$

2. Frequency

UUT Nominal Value	Measured Value	IEC 942 Class 1 Spec.
1 kHz	1.000 kHz	± 2 %

Uncertainty : \pm 3.6 x 10⁻⁶

- 3. Level Stability : 0.0 dB IEC 942 Class 1 Spec. : ± 0.1 dB Uncertainty : ± 0.01 dB
- 4. Total Harmonic Distortion : < 0.8 % IEC 942 Class 1 Spec. : < 3 % Uncertainty : ± 2.3 % of reading

Remark : 1. UUT : Unit-Under-Test

- 2. The above measured values are the mean of 3 measurements.
- 3. The uncertainty claimed is for a confidence probability of not less than 95%.
- 4. Atmospheric Pressure : 1001 hPa.

----- END -----

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR CHI HANG LAI CLIENT: ENVIRONMENTAL PIONEERS & SOLUTIONS LTD ADDRESS: FLAT 19A, CHAI WAN INDUSTRIAL CENTRE BUILDING, 20 LEE CHUNG STREET, CHAI WAN, HONG KONG. PROJECT: --
 WORK ORDER:
 HK1221859

 LABORATORY:
 HONG KONG

 DATE RECEIVED:
 17/08/2012

 DATE OF ISSUE:
 24/08/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Conductivity, Dissolved Oxygen, pH, Temperature and Turbidity
Description:	Multi-meter
Brand Name:	TOA-DKK
Model No.:	WQC-24, WMS-24
Serial No.:	682337
Equipment No.:	
Date of Calibration:	23 August, 2012
Date of Calibration:	23 August, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre 1–3 Wing Yip Street Kwai Chung HONG KONG Phone: Fax: Email:

852-2610 1044 852-2610 2021 <u>hongkong@alsglobal.com</u>

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: Client:

HK1221859 24/08/2012 ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Description:	Multi-meter		
Brand Name:	TOA-DKK		
Model No.:	WQC-24, WMS-24		
Serial No.:	682337		
Equipment No.:			
Date of Calibration:	23 August, 2012	Date of next Calibration:	23 November, 2012

Parameters:

Conductivity	Method Ref: APHA (21st edition), 2510B
--------------	--

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
142.6	138.0	-3.2
6667	6420	-3.7
12890	12200	-5.4
58670	56800	-3.2
	Tolerance Limit (%)	10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

	iction Rel. Al HA (Elst cutton), 45000. d					
E>	<pre>kpected Reading (mg/L)</pre>	Displayed Reading (mg/L)	Tolerance (mg/L)			
	4.68	4.83	0.15			
	6.53	6.60	0.07			
	8.23	8.35	0.12			
		Tolerance Limit (±mg/L)	0.20			

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.92	-0.08
7.0	6.95	-0.05
10.0	10.05	0.05
	Tolerance Limit (±unit)	0.20

Temperature

ALS Technichem (HK) Pty Ltd

ALS Environmental

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
12.5	12.7	0.2
22.0	21.9	-0.1
40.5	40.8	0.3
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong Page 2 of 3

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: HK1221859 Date of Issue: 24/08/2012 Client: **ENVIRONMENTAL PIONEERS & SOLUTIONS LTD**

Description:	Multi-meter
Brand Name:	TOA-DKK
Model No.:	WQC-24, WM
Serial No.:	682337
Equipment No.:	
Date of Calibration:	23 August, 2

К WMS-24 st, 2012

Date of next Calibration:

23 November, 2012

Parameters:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0	
4	4.2	5.0
40	43.4	8.5
80	86.8	8.5
400	438.0	9.5
800	870.9	8.9
	Tolerance Limit (±%)	10.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

Certificate N	lo. 17082		Page 1 of	2 Pages
Customer	: Environmental Pioneers an	d Solutions Limited		
Address	: Flat A, 19/F., Chai Wan Inc	lustrial Centre Building, 21 Le	e Chung Street, Chai	Wan, HK.
Order No.			te of receipt :	28-Nov-11
Item Test	ed			
Description	: Protable Level-Velocity Log	jger		
Manufactur	er: Greyline	_		05
Model	: Stingray	Se	rial No. : 455	
Test Con	ditions			
Date of Tes	t: 6-Dec-11		pply Voltage :	
Ambient Te	emperature : (23 ± 3)°C	Re	lative Humidity : (50	± 25) %
Test Spe	cifications			
Calibration of Ref. Docum	check. ient/Procedure : V12, T03, M07	,		
Test Res	ults			
• •	·			
	vere within the tolerance(s).			
i ne results	are shown in the attached page	5(5).		
Main Test e	equipment used:			
	No. Description	Cert. No.	Traceal	
S179	Std. Tape	10789	NIM-PF	
S136A	Stop Watch	07481	SCL-HI	
S223	Std. Thermometer	13173	NIM-PF	RC
will not includ overloading, r for any loss o	ven in this Calibration Certificate only r e allowance for the equipment long ter nis-handling, or the capability of any o r damage resulting from the use of the	ther laboratory to repeat the measure equipment.	ement. Hong Kong Calibra	
The test equi	pment used for calibration are traceabl Its apply to the above Unit-Under-Test	e to International System of Units (S only	I).	
	$\langle \rangle$	_	The the	Alt.
Calibrated	i by :	_ Appro	ved by :	
	Y, K. Wong	Date:	7-Dec-11)
This Contificate is	iscued by			

Hong Kong Calibration Ltd. Unit 88, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street,Kwai Chung, NT,Hong Kong. Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 17082

Page 2 of 2 Pages

Results :

1. Flow Rate

Γ	Applied Value (Ft/s)	UUT Reading (Ft/s)	Tolerance	Uncertainty
ł	1.67	1.6	± 5 %	±1%

2. Level

Applied Value (Ft)	UUT Reading (Ft)	Tolerance	Uncertainty
1.00	1.00	± 5 %	± 0.1 %
1.75	1.75		
3.00	3.00		

3. Temperature

Applied Value (°C)	UUT Reading (°C)	Tolerance	Uncertainty
23.0	24	± 2 °C	± 0.2 °C

Remarks : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Sensor Used : Model : QZ02L-UT-01-PS

S/N:10D18289

----- END -----

Appendix D: Construction Noise Monitoring Data

Noise Monitoring Data Sheet

Monitoring Location		M1	AL1
Monitoring Method		Façade	Façade
Date of Monitorin	g	3/10/2012	3/10/2012
Weather Conditio	n	Sunny	Sunny
Measurement Sta	art Time (hh:mm)	15:15	15:50
Measurement Tin	ne Length (mins)	30 r	nins
SLM Model & S/N	I	SVAN	N 955
Wind Speed (m/s)	0.2	0.2
	L _{eq} (dB(A))	64.3	66.3
Measurement Results	L ₁₀ (dB(A))	65.4	67.7
	L ₉₀ (dB(A))	49.1	56.3
Major Constructic During Monitoring	on Noise Source(s) J	The measured noise level was dominated by the background noise in the immediate vicinity of the monitoring location due to its large distance from the construction activities	The measured noise level was dominated by the background noise in the immediate vicinity of the monitoring location due to its large distance from the construction activities
Other Noise Source(s) During Monitoring		– Background Noise – Traffic Noise	– Background Noise – Traffic Noise

NameSignatureDatePerpared by:Lau Kai Chung3/10/2012

Noise Monitoring Data Sheet

Monitoring Location		M1	AL1
Monitoring Method		Façade	Façade
Date of Monitorin	g	10/10/2012	10/10/2012
Weather Conditio	n	Sunny	Sunny
Measurement Sta	art Time (hh:mm)	15:30	16:05
Measurement Tin	ne Length (mins)	30 r	nins
SLM Model & S/N	I	SVAN	N 955
Wind Speed (m/s)	0.2	0.2
	L _{eq} (dB(A))	64.0	65.9
Measurement Results	L ₁₀ (dB(A))	65.7	68.5
	L ₉₀ (dB(A))	49.0	54.9
Major Constructic During Monitoring	on Noise Source(s) J	The measured noise level was dominated by the background noise in the immediate vicinity of the monitoring location due to its large distance from the construction activities	The measured noise level was dominated by the background noise in the immediate vicinity of the monitoring location due to its large distance from the construction activities
Other Noise Source(s) During Monitoring		– Background Noise – Traffic Noise	– Background Noise – Traffic Noise

<u>Name</u>

<u>Signature</u>

Date

Perpared by: Lau Kai Chung Lau Kai Chung

<u>10/10/2012</u>

Noise Monitoring Data Sheet

Monitoring Location		M1	AL1
Monitoring Method		Façade	Façade
Date of Monitorin	g	17/10/2012	17/10/2012
Weather Condition	'n	Sunny	Sunny
Measurement Sta	art Time (hh:mm)	14:45	15:25
Measurement Tin	ne Length (mins)	30 r	nins
SLM Model & S/N	1	SVA	N 955
Wind Speed (m/s)	0.4	0.4
	L _{eq} (dB(A))	63.1	67.3
Measurement Results	L ₁₀ (dB(A))	65.4	68.2
	L ₉₀ (dB(A))	48.2	49.4
Major Construction Noise Source(s) During Monitoring		The measured noise level was dominated by the background noise in the immediate vicinity of the monitoring location due to its large distance from the construction activities	The measured noise level was dominated by the background noise in the immediate vicinity of the monitoring location due to its large distance from the construction activities
Other Noise Source(s) During Monitoring		– Background Noise – Traffic Noise	– Background Noise – Traffic Noise

<u>Name</u>

<u>Signature</u>

Date

Perpared by: Lau Kai Chung Lau Kai Chung

<u>17/10/2012</u>

Noise Monitoring Data Sheet

Monitoring Location		M1	AL1
Monitoring Method		Façade Façade	
Date of Monitorin	g	24/10/2012	24/10/2012
Weather Conditio	n	Sunny	Sunny
Measurement Sta	art Time (hh:mm)	15:30	16:05
Measurement Tin	ne Length (mins)	30 r	nins
SLM Model & S/N	I	SVA	N 955
Wind Speed (m/s)	0.6	0.6
	L _{eq} (dB(A))	59.9	66.8
Measurement Results	L ₁₀ (dB(A))	61.4	67.7
	L ₉₀ (dB(A))	48.6	49.8
Major Construction Noise Source(s) During Monitoring		The measured noise level was dominated by the background noise in the immediate vicinity of the monitoring location due to its large distance from the construction activities	The measured noise level was dominated by the background noise in the immediate vicinity of the monitoring location due to its large distance from the construction activities
Other Noise Source(s) During Monitoring		– Background Noise – Traffic Noise	– Background Noise – Traffic Noise

<u>Name</u> <u>Signature</u> Perpared by: Lau Kai Chung Lau Kai Chung

Date

Noise Monitoring Data Sheet

Monitoring Location		M1	AL1
Monitoring Method		Façade	Façade
Date of Monitorin	g	29/8/2012	29/8/2012
Weather Conditio	n	Sunny	Sunny
Measurement Sta	art Time (hh:mm)	13:05	13:45
Measurement Tin	ne Length (mins)	30 r	nins
SLM Model & S/N	I	SVAI	N 955
Wind Speed (m/s)	0.2	0.2
	L _{eq} (dB(A))	66.8	64.3
Measurement Results	L ₁₀ (dB(A))	67.1	65.1
	L ₉₀ (dB(A))	48.4	50.4
Major Construction Noise Source(s) During Monitoring		The measured noise level was dominated by the background noise in the immediate vicinity of the monitoring location due to its large distance from the construction activities	The measured noise level was dominated by the background noise in the immediate vicinity of the monitoring location due to its large distance from the construction activities
Other Noise Source(s) During Monitoring		– Background Noise – Traffic Noise	– Background Noise – Traffic Noise

NameSignatureDatePerpared by:Lai Chi HangLau Kai Chung29/8/2012

Appendix E: Water Quality Monitoring Data

Remark:

Red highlighting: The value is exceeding limit level

Yellow highlighting: The value is exceeding action levele

Date of Sampling : 3/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C2
Time (hhmm)	14:00	15:15	9:30
Tide Mode	Mid	-ebb	N/A
Water Depth (m)	<1	<1	<1
pH value	6.90	7.41	8.20
Temperature (°C)	30.2	28.8	30.5
Turbidity (NTU)	7.4	3.8	2.1
DO (mg/L)	6.70	6.91	7.60
DO Saturation (%)	94%	85%	99.70
Suspended Solids (mg/L)	21.0	11.0	2.0

Remark or Observation :

Name

Signature

Date

Prepared By: Lau kai chung Lau kai chung

Date of Sampling : 5/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C2
Time (hhmm)	15:00	16:00	15:15
Tide Mode	Mid	-ebb	N/A
Water Depth (m)	<1	<1	<1
pH value	6.30	7.38	8.30
Temperature (°C)	31.2	28.1	31.1
Turbidity (NTU)	1.8	3.9	1.0
DO (mg/L)	6.80	7.12	5.90
DO Saturation (%)	85%	85%	78%
Suspended Solids (mg/L)	14.0	3.4	2.0

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Date of Sampling : 8/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C1
Time (hhmm)	16:30	15:50	16:00
Tide Mode		Mid-flood	
Water Depth (m)	<1	<1	<1
pH value	7.60	7.98	7.88
Temperature (°C)	29.5	27.6	27.6
Turbidity (NTU)	3.30	3.7	4.00
DO (mg/L)	8.10	7.13	7.16
DO Saturation (%)	98%	90%	91%
Suspended Solids (mg/L)	2.0	11.0	5.6

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Date of Sampling : 10/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C1
Time (hhmm)	15:30	15:30	15:40
Tide Mode		Mid-fiood	
Water Depth (m)	<1	<1	<1
pH value	6.50	7.41	7.46
Temperature (°C)	30.6	30.1	30.3
Turbidity (NTU)	10.1	1.9	2.0
DO (mg/L)	8.20	7.84	7.82
DO Saturation (%)	107%	98%	99%
Suspended Solids (mg/L)	10.0	5.6	2.4

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Date of Sampling : 12/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C2
Time (hhmm)	10:00	10:45	9:45
Tide Mode	Mid	-ebb	N/A
Water Depth (m)	<1	<1	<1
pH value	6.50	7.38	7.40
Temperature (°C)	31.9	29.8	31.6
Turbidity (NTU)	10.6	4.3	10.0
DO (mg/L)	6.50	7.15	6.20
DO Saturation (%)	83%	88%	82%
Suspended Solids (mg/L)	14.0	6.4	5.0

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Date of Sampling : 15/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C2
Time (hhmm)	12:00	12:10	10:10
Tide Mode	Mid	-ebb	N/A
Water Depth (m)	<1	<1	<1
pH value	7.00	7.29	7.50
Temperature (°C)	29.4	25.6	29.6
Turbidity (NTU)	8.4	1.7	2.0
DO (mg/L)	6.80	6.87	7.40
DO Saturation (%)	95%	85%	93%
Suspended Solids (mg/L)	7.0	7.4	2.0

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Date of Sampling : 17/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C2
Time (hhmm)	14:00	14:45	10:30
Tide Mode	Mid	-ebb	N/A
Water Depth (m)	<1	<1	<1
pH value	6.30	7.65	8.40
Temperature (°C)	29.5	27.9	29.4
Turbidity (NTU)	7.8	1.4	1.7
DO (mg/L)	6.00	7.45	7.10
DO Saturation (%)	79%	95%	94%
Suspended Solids (mg/L)	16.0	5.8	2.0

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Date of Sampling : 19/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C2
Time (hhmm)	15:00	15:40	
Tide Mode	Mid	-ebb	N/A
Water Depth (m)	<1	<1	<1
pH value	6.10	7.67	7.50
Temperature (°C)	28.2	27.3	29.4
Turbidity (NTU)	3.3	1.0	1.8
DO (mg/L)	5.70	7.38	8.60
DO Saturation (%)	73%	94%	106%
Suspended Solids (mg/L)	2.0	3.0	2.0

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Date of Sampling : 22/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C1
Time (hhmm)	13:15	13:45	13:50
Tide Mode		Mid-flood	
Water Depth (m)	<1	<1	<1
pH value	6.90	7.84	7.72
Temperature (°C)	29.1	29.1	28.8
Turbidity (NTU)	3.2	2.1	1.2
DO (mg/L)	6.20	7.12	7.16
DO Saturation (%)	81%	88%	88%
Suspended Solids (mg/L)	5.0	5.0	3.6

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Date of Sampling : 24/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C1		
Time (hhmm)	13:15	15:30	15:40		
Tide Mode	- Mid-flood				
Water Depth (m)	<1	<1	<1		
pH value	6.60	7.95	7.74		
Temperature (°C)	29	27.9	28.3		
Turbidity (NTU)	3.2	3.6	1.3		
DO (mg/L)	6.50	7.46	7.30		
DO Saturation (%)	86%	95%	86%		
Suspended Solids (mg/L)	3.0	2.4	4.2		

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Date of Sampling : 26/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C2	
Time (hhmm)	10:30	11:00	15:30	
Tide Mode	Mid	N/A		
Water Depth (m)	<1	<1	<1	
pH value	6.60	7.01	7.60	
Temperature (°C)	27.4	28.1	27.5	
Turbidity (NTU)	4.4	1.0	7.9	
DO (mg/L)	D (mg/L) 5.10		3.90	
DO Saturation (%)	D Saturation (%) 62%		48%	
Suspended Solids (mg/L)	8.0	4.2	25.0	

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Date of Sampling : 29/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C2	
Time (hhmm)	12:15	13:20	12:00	
Tide Mode	Mid	N/A		
Water Depth (m)	<1	<1	<1	
pH value	6.50	7.77	7.50	
Temperature (°C)	27.6	25.4	27.9	
Turbidity (NTU)	5.4	1.7	2.5	
DO (mg/L)	5.50	7.69	6.90	
DO Saturation (%)	66%	91%	81%	
Suspended Solids (mg/L)	18.0	4.6	3.0	

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Date of Sampling : 31/10/2012

Weather: Sunny

Monitoring Location	W1	W2	C2	
Time (hhmm)	13:30	13:30	13:00	
Tide Mode	Mid	N/A		
Water Depth (m)	<1	<1	<1	
pH value	6.50	7.54	8.00	
Temperature (°C)	25	10.3	24.4	
Turbidity (NTU)	3.3	5.4	2.5	
DO (mg/L)	g/L) 7.30		7.90	
DO Saturation (%)	ration (%) 88%		85%	
Suspended Solids (mg/L)	4.0	5.2	2.0	

Remark or Observation :

Name

<u>Signature</u>

Date

Prepared By : ____ Lau kai chung

Lau kai chung

Appendix F: Hydrological Characteristics Monitoring Data

Location	Position	Tide	Date**	Time	Weather	Water Depth (m)*	Water Flow (m/s)	Water Flow (m ³ /s)
H1	Mid	Flood	5-Oct-2012	10:30	Sunny	0.48	0.24	0.300
H1	Mid	Flood	12-Oct-2012	15:35	Sunny	0.42	0.12	0.150
H1	Mid	Flood	19-Oct-2012	10:05	Sunny	0.36	0.24	0.300
H1	Mid	Flood	26-Oct-2012	15:35	Sunny	0.3	0.06	0.075
H2	Mid	Flood	5-Oct-2012	10:15	Sunny	0.24	0.24	1.507
H2	Mid	Flood	12-Oct-2012	15:10	Sunny	0.36	0.12	0.754
H2	Mid	Flood	19-Oct-2012	9:40	Sunny	0.3	0.12	0.754
H2	Mid	Flood	26-Oct-2012	15:10	Sunny	0.48	0.06	0.377
H1	Mid	Ebb	5-Oct-2012	15:50	Sunny	0.12	0.06	0.075
H1	Mid	Ebb	12-Oct-2012	10:30	Sunny	0.12	0.24	0.300
H1	Mid	Ebb	19-Oct-2012	15:25	Sunny	0.3	0.12	0.150
H1	Mid	Ebb	26-Oct-2012	10:55	Sunny	0.12	0.06	0.075
H2	Mid	Ebb	5-Oct-2012	15:30	Sunny	0.12	0.36	0.450
H2	Mid	Ebb	12-Oct-2012	10:10	Sunny	0.24	0.18	1.130
H2	Mid	Ebb	19-Oct-2012	15:00	Sunny	0.36	0.12	0.754
H2	Mid	Ebb	26-Oct-2012	10:30	Sunny	0.12	0.18	1.130

Appendix G: Landscape and Visual Monitoring Photos

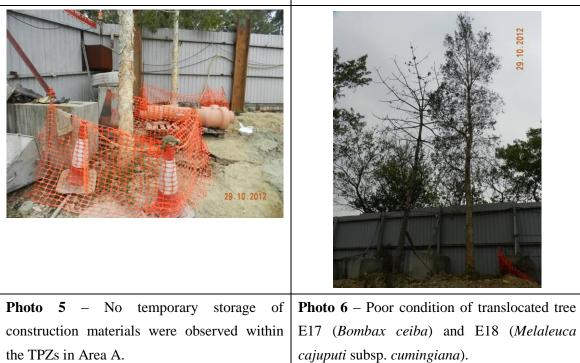

Photo 1 – Temporary hoardings have been established along Ting Kok Road outside Tung Tsz Nursery.

Photo 2 – A new set of chain link fence has been erected at the previous entrance of Area C after the handover to AFCD.

Photo 3 – No discharge of muddy water was
observed in Area C.Photo 4 – Overall view of the transplanted treeU58 Grevillea robusta.

Environmental Pioneers & Solutions Limited

Photo 13 – Declining health condition of U35Photo 14 – Declining health condition ofin Area B.U37 in Area B.

Photo 15 – No proper tree protection zones were set up along the transplanted tree in Area B.

Photo 16 – Waterlogged area was observed at the base of the relocated tree U76 in Area B.

Photo 17 – Soil and stones were piled close to the base of the relocated tree U78 in Area B.

Photo 18 – Poor health condition was observed in the canopy of the relocated tree U77 in Area B.

Photo 19 - The base of the tree U77 wasPhoto 20 - Stockpiling of constructionwaterlogged with used water from the
construction work.materials were observed immediately next to
the trunk and damage was observed near the
tree U54 and two existing trees with no tag
next to U54

Appendix H:

A)

The recommended mitigation measures of EM&A manual (revision 3)

B)

Implementation status of environmental protection and mitigation measures

A) The recommended mitigation measures of EM&A manual (revision 3)

EIA Ref. A	EM&A Ref.	Recommended Mitigation	Recommended Measure &	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
S 3.30	2.18	Good Site Practice:	To minimize construction	Contractor	Works areas	Construction	EIAO-TM
		 Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program Mobile plant, if any, shall be sited as far from NSRs as possible 	noise impacts			phase	NCO
		 Machines and plant (such as 					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		trucks) that may be in intermittent					
		use shall be shut down between					
		work periods or shall be throttled					
		down to a minimum					
		 Plant known to emit noise 					
		strongly in one direction shall,					
		wherever possible, be orientated so					
		that the noise is directed away from					
		the nearby NSRs					
		 Material stockpiles and other 					
		structures shall be effectively					
		utilized, wherever practicable, in					
		screening noise from on-site					
		construction activities.					
S 3.31 -	2.19	Use of quieter PME	To minimize construction	Contractor	Works areas	Construction	EIAO-TM
3.32			noise impacts			phase	NCO
S 3.33 –	2.20-2.	Use of temporary noise barrier	To minimize construction	Contractor	Works areas as	Construction	EIAO-TM
3.34	21		noise impacts		shown in Figure	phase	NCO

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
3.36-3.3	2.23-2.				3.5		
8	24						
S 3.35	2.22	Use of alternative quieter	To minimize construction	Contractor	Part of the works	Construction	EIAO-TM
and		construction method (the Low	noise impacts		area for pipe	phase	NCO
Table		Impact Method)			laying in Wai Ha		
3.6					(refer to Figure		
					3.5)		
3.36	2.23-2.	Use of noise enclosure	To minimize construction	Contractor	Part of the works	Construction	EIAO-TM
-3.38	24		noise impacts		area for pipe	phase	NCO
					laying in Wai Ha		
					(refer to Figure		
					3.5)		
В		Air Quality Impact					
S4.16	3.5	Implementation of mitigation	To minimize construction	Contractor	Construction	Construction	EIAO-TM
		measures stipulated in the Air	dust impacts		Sites	Phase	
		Pollution Control (Construction Dust)					
		Regulation and good site practices					
		including but not limited to the					
		following:					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		 Use of regular watering to reduce 					
		dust emissions from exposed site					
		surfaces and unpaved road, with					
		complete coverage, particularly					
		during dry weather;					
		 Use of frequent watering for 					
		particularly dusty static construction					
		areas and areas close to ASRs;					
		 Tarpaulin covering of all dusty 					
		vehicle loads transported to, from					
		and between site location;					
		 Establishment and use of vehicle 					
		wheel and body washing facilities at					
		the exit points of the site;					
		 Routing of vehicles and 					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		positioning of construction plant					
		should be at the maximum possible					
		distance from ASRs.					
		 Stockpiled excavated materials 					
		should be covered with tarpaulin,					
		and should be removed off-site					
		within 24 hours to avoid any odour					
		nuisance arising.					
С		Water Quality Impact			1	1	
S5.29	4.5	Construction Site Run-off and	To minimize water quality	Contractor	Works sites	Construction	ProPECC PN 1/94
		Drainage:	impacts			phase	Construction Site
							Drainage
		 Before commencing any site 					
		formation work, all sewer and					
		drainage connections shall be					
		sealed to prevent debris, soil, sand					
		etc. from entering public					

 sewers/drains. Temporary ditches shall be 		implement the measure?	measure	implement the measure?	or standards for the measure to achieve?
sewers/drains. Temporary ditches shall be 	Main Concern to Address	measure?		measure?	
 Temporary ditches shall be 					achieve?
 Temporary ditches shall be 					
provided to facilitate run-off					
discharge into appropriate					
watercourses, via a silt retention					
pond. No site run-off shall enter the					
fishponds at Shuen Wan.					
 Sand/silt removal facilities such 					
as sand traps, silt traps and					
sediment basins shall be provided to					
remove sand/silt particles from					
runoff to meet the requirements of					
the Technical Memorandum					
standard under the Water Pollution					
Control Ordinance. The design of					
silt removal facilities shall be based					
on the guidelines provided in					
ProPECC PN 1/94. All drainage					
	 watercourses, via a silt retention pond. No site run-off shall enter the fishponds at Shuen Wan. Sand/silt removal facilities such as sand traps, silt traps and sediment basins shall be provided to remove sand/silt particles from runoff to meet the requirements of the Technical Memorandum standard under the Water Pollution Control Ordinance. The design of silt removal facilities shall be based on the guidelines provided in 	 watercourses, via a silt retention pond. No site run-off shall enter the fishponds at Shuen Wan. Sand/silt removal facilities such as sand traps, silt traps and sediment basins shall be provided to remove sand/silt particles from runoff to meet the requirements of the Technical Memorandum standard under the Water Pollution Control Ordinance. The design of silt removal facilities shall be based on the guidelines provided in 	 watercourses, via a silt retention pond. No site run-off shall enter the fishponds at Shuen Wan. Sand/silt removal facilities such as sand traps, silt traps and sediment basins shall be provided to remove sand/silt particles from runoff to meet the requirements of the Technical Memorandum standard under the Water Pollution Control Ordinance. The design of silt removal facilities shall be based on the guidelines provided in 	 watercourses, via a silt retention pond. No site run-off shall enter the fishponds at Shuen Wan. Sand/silt removal facilities such as sand traps, silt traps and sediment basins shall be provided to remove sand/silt particles from runoff to meet the requirements of the Technical Memorandum standard under the Water Pollution Control Ordinance. The design of silt removal facilities shall be based on the guidelines provided in 	 watercourses, via a silt retention pond. No site run-off shall enter the fishponds at Shuen Wan. Sand/silt removal facilities such as sand traps, silt traps and sediment basins shall be provided to remove sand/silt particles from runoff to meet the requirements of the Technical Memorandum standard under the Water Pollution Control Ordinance. The design of silt removal facilities shall be based on the guidelines provided in

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		facilities and erosion and sediment					
		control structures shall be inspected					
		monthly and maintained to ensure					
		proper and efficient operation at all					
		times and particularly during					
		rainstorms.					
		 Water pumped out from 					
		excavated pits shall be discharged					
		into silt removal facilities.					
		 During rainstorms, exposed 					
		slope/soil surfaces shall be covered					
		by a tarpaulin or other means.					
		Other measures that need to be					
		implemented before, during, and					
		after rainstorms as summarized in					
		ProPECC PN 1/94 shall be followed.					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		 Exposed soil areas shall be 					
		minimized to reduce potential for					
		increased siltation and					
		contamination of runoff.					
		 Earthwork final surfaces shall be 					
		well compacted and subsequent					
		permanent work or surface					
		protection shall be immediately					
		performed to reduce the potential of					
		soil erosion.					
		 Open stockpiles of construction 					
		materials or construction wastes					
		on-site shall be covered with					
		tarpaulin or similar fabric during					
		rainstorms.					
S5.30	4.7	Further precautionary measures	To minimize water quality	Contractor	Works areas near	Rainy seasons	EIAO-TM
		during rainy season:	impacts to the designated		the Conservation	during	Water Pollution
			Conservation Area		Area	construction	Control Ordinance

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		 For the construction of the box 				phase	(WPCO)
		culvert next to the existing channel					
		of the Wai Ha River, sand bags					
		should be deployed around the					
		boundary of the works trench to					
		prevent muddy water ingress into					
		the adjacent CA or Wai Ha River.					
		Sand bags should also be used to					
		surround the excavated trench.					
		Generally, the sand bags will be					
		placed up to a height of 300mm to					
		provide adequate allowance for the					
		built-up water level during rainstorm					
		event. With sand bags in place,					
		surface runoff will be intercepted					
		and flow to Wai Ha River or					
		collected by the existing drainage					
		system as usual. For the construction of the box					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		culvert in the extreme northeast corner of Shuen Wan Marsh					
		Conservation Area sand bags					
		should be deployed along the limit					
		of the works area to prevent muddy water ingress into the CA. Sand					
		bags should be placed to a height					
		of at least 300mm from ground level and +2.5 mPD (whichever is					
		greater) to provide adequate allowance for the built-up water					
		level during rainstorm events.					
		Unpolluted surface runoff within the					
		works area should then be					
		collected and directed into the					
		existing drainage system.					
		 Sheet-piles, which would be 					
		installed around the works trench					
		near the Conservation Area, would					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		be extended above ground level for					
		about 2m to serve as hoardings to					
		isolate the works site.					
		 Tarpulin sheets would be used to 					
		cover the excavation areas during					
		heavy rainstorms. This would					
		prevent the ingress of rainwater into					
		the trench minimising the risk of					
		muddy water getting into Wai Ha					
		River and the adjacent Conservation					
		Area.					
		 Any concrete washing water 					
		would be contained inside the works					
		site surrounded by the extended					
		sheet piles. A pump sump at the					
		bottom of the trench would be					
		provided to pump any excess water					
		during concrete washing.					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		 Stockpiling the excavated 					
		materials adjacent to the					
		Conservation Area would not be					
		allowed. The excavated materials					
		would be either removed off site					
		immediately after excavation, or					
		stockpile at location(s) away from					
		the Conservation Area. The					
		stockpile locations shall be					
		approved by the site engineer.					
S5.31-S	4.8-4.9	General Construction Activities:	To minimize water quality	Contractor	Works sites	Construction	EIAO-TM
5.32		 Debris and refuse generated 	impacts			phase	WPCO
		on-site should be collected, handled					
		and disposed of properly to avoid					
		entering the Wa Ha River and fish					
		ponds at Shuen Wan. Stockpiles					
		of cement and other construction					
		materials should be kept covered					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		when not being used.					
		 Oils and fuels should only be 					
		used and stored in designated areas					
		which have pollution prevention					
		facilities. To prevent spillage of					
		fuels and solvents to nearby water					
		bodies, all fuel tanks and storage					
		areas should be provided with locks					
		and be sited on sealed areas, within					
		bunds of a capacity equal to 110%					
		of the storage capacity of the largest tank. The bund should be drained					
		of rainwater after a rain event.					
S5.33	4.10	Sewage from Construction	To minimize water quality	Contractor	Works sites	Construction	EIAO-TM
		workforce:	impacts			phase	WPCO
		 Temporary sanitary facilities, 					
		such as portable chemical toilets,					
		should be employed on-site. A					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		licensed contractor would be					
		responsible for appropriate disposal					
		and maintenance of these facilities.					
S5.34	4.11	River Channel Excavation Works:	To minimize water quality	Contractor	Works sites	Construction	EIAO-TM
			impacts			phase	WPCO
		The excavation works within the					
		upstream end of the existing river					
		channel of the Wai Ha River for the					
		construction of the proposed box					
		culvert shall be carried out in dry					
		condition. Containment					
		measures such as bunds and					
		barriers shall be used within the					
		affected length of the river channel					
		and the excavation works restricted					
		to within an enclosed dry section of					
		the channel. The excavation works					
		within Wai Ha River shall be					
		restricted to the period from October					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		to April.					
D		Waste Management Implications					
S6.20 –	5.5	Good site practices:	To reduce waste	Contractor	Works sites	Construction	ETWB TCW
6.22			management impacts			phase	No.19/2005
		 Nomination of approved 					ETWB TCW
		personnel, such as a site manager,					No.31/2004
		to be responsible for good site					
		practices and making arrangements					
		for collection of all wastes generated					
		at the site and effective disposal to					
		an appropriate facility.					
		 Training of site personnel in 					
		proper waste management and					
		chemical waste handling					
		procedures.					
		 Provision of sufficient waste 					
		disposal points and regular					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		collection for disposal.					
		 Appropriate measures to 					
		minimise windblown litter and dust					
		during transportation of waste by					
		either covering trucks or by					
		transporting wastes in enclosed					
		containers.					
		 Separation of chemical waste for 					
		special handling and appropriate					
		treatment at the Chemical Waste					
		Treatment Facility.					
		 Regular cleaning and 					
		maintenance programme for					
		drainage systems, sumps and oil					
		interceptors.					
		 A Waste Management Plan 					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		should be prepared and submitted to					
		the Engineer for approval. One					
		may make reference to ETWB TCW					
		No. 15/2003 for details.					
		 A recording system for the 					
		amount of wastes generated,					
		recycled and disposed (including the					
		disposal sites) should be proposed.					
S6.23-	5.7	Waste reduction measures:	To achieve waste reduction	Contractor	Works sites	Construction	EIAO-TM
6.24						phase	
		 Segregation and storage of 					
		different types of waste in different					
		containers, skips or stockpiles to					
		enhance reuse or recycling of					
		materials and their proper disposal.					
		 To encourage collection of 					
		aluminium cans by individual					
		collectors, separate labelled bins					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		shall be provided to segregate this					
		waste from other general refuse					
		generated by the work force.					
		 Any unused chemicals or those 					
		with remaining functional capacity					
		shall be recycled.					
		 Maximising the use of reusable 					
		steel formwork to reduce the amount					
		of C&D material.					
		 Proper storage and site practices 					
		to minimise the potential for damage					
		or contamination of construction					
		materials.					
		 Plan and stock construction 					
		materials carefully to minimise					
		amount of waste generated and					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		avoid unnecessary generation of					
		waste.					
S6.25-		Construction & Demolition (C&D)	To minimize off-site disposal	Contractor	Works sites	Construction	EIAO-TM
6.26		Material:	of C&D material			phase	
		Excavated material with suitable	To minimize environmental				
		characteristics/size should be	impacts during the handling				
		reused on-site as fill material as far	of C&D material				
		as practicable, such as for					
		backfilling of the box culvert and					
		drainage pipe works.					
		 Suitable areas should be 					
		designated within the works site					
		boundaries for temporary stockpiling					
		of C&D material.					
		 Within stockpile areas, the 					
		following measures should be taken					
		to control potential environmental					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		impacts or nuisance:					
		- covering material during					
		heavy rainfall;					
		- locating stockpiles to minimize					
		potential visual impacts; and					
		- minimizing land intake of					
		stockpile areas as far as possible.					
		 When disposing C&D material at 					
		a public filling area, the material					
		shall only consist of soil, rock,					
		concrete, brick, cement					
		plaster/mortar, inert building debris,					
		aggregates and asphalt. The					
		material shall be free from marine					
		mud, household refuse, plastic,					
		metals, industrial and chemical					
		waste, animal and vegetable matter,					
		and other material considered to be					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		unsuitable by the Filling Supervisor.					
S6.27		Chemical waste:	To minimize environmental	Contractor	Works sites	Construction	EIAO-TM
		 Contractor should register with 	impacts during the handling,			phase	Waste Disposal
		the EPD as a Chemical Waste	transportation and disposal				(Chemical Waste)
		Producer and to follow the	of chemical waste				(General) Regulation
		guidelines stated in the Code of					
		Practice on the Packaging,					
		Labelling and Storage of Chemical					
		Wastes.					
		 Good quality containers 					
		compatible with the chemical					
		wastes should be used, and					
		incompatible chemicals should be					
		stored separately.					
		 Appropriate labels should be 					
		securely attached on each chemical					
		waste container indicating the					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		corresponding chemical					
		characteristics of the chemical					
		waste, such as explosives,					
		flammable, oxidizing, irritant, toxic,					
		harmful, corrosive, etc.					
		The Contractor should use a					
		licensed collector to transport and					
		dispose of the chemical wastes					
		generated at the Chemical Waste					
		Treatment Centre at Tsing Yi, or					
		other licenced facility, in accordance					
		with the Waste Disposal (Chemical					
		Waste) (General) Regulation.					
S6.28		General refuse:	To minimize environmental	Contractor	Works sites	Construction	EIAO-TM
		It should be stored in enclosed	impacts during the handling			phase	
			and transportation of general				
			refuse				
		 A reputable waste collector 					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		should be employed by the					
		contractor to remove general refuse					
		from the site, separately from C&D					
		material.					
		An enclosed and covered area					
		is preferred to reduce the					
		occurrence of 'wind blown' light					
		material.					
E		Ecological Impact					
S. 7.95	6.6	 Sheet-pilings, which will be 	To minimize the impacts on	Contractor	Whole site	Construction	EIAO-TM
		installed around the trench of	the stream and natural river			Phase	
		excavation, should be extended	bank				
		above ground level for ~2m to act as					
		hoarding to isolate the works site.					
		 The trenching works for the 					
		construction of the proposed box					
		culvert should be carried out in					
		phases, with a trench length of not					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		more than 120m in each phase.					
		The trench should be backfilled and					
		compacted with suitable materials					
		upon completion of each phase of					
		the construction works.					
S7.117	6.6	 The construction of intercept 	To minimize the impacts on	Contractor	Whole site	Construction	EIAO-TM
		point of twin cell box culvert at the	the stream and natural river			Phase	
		upstream of Wai Ha River should be	bank				
		confined to only one side of the river					
		bank.					
		 To restore and enhance the 					
		ecological value of the stream, the					
		affected river bank should be					
		reinstated to its original condition or					
		lined with rock-filled gabion.					
		 Planting pits should be provided 					
		in the gabion bank to allow the					
		re-establishment of riparian					
		vegetation.					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		 The existing natural riverbed and 					
		substrates should be retained and					
		the natural pool-riffle sequence					
		should be re-created in the new					
		channel bed.					
S 7.118	6.7	 All works carried out within the 	To minimise sedimentation/	Contractor	Whole Site	Construction	EIAO-TM
		the river channel of Wai Ha River	water quality impacts			Phase	
		should be carried out from October					
		to April, with construction carried out					
		by land-based plant.					
		 Works within river/stream 					
		channels should be restricted to an					
		enclosed dry section of the river,					
		with containment measures such as					
		bunds and barriers used within the					
		river to minimize the impacts upon					
		the downstream water body.					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		 Site runoff should be directed 					
		towards regularly cleaned and					
		maintained silt traps and oil/grease					
		separators to minimize the risk of					
		sedimentation and pollution of river					
		water.					
		 The silt and oil/grease separators 					
		should be appropriately designed for					
		the local drainage and ground					
		conditions.					
		 To minimize leakage and loss of 					
		sediments during excavation in					
		narrow channels, tightly sealed					
		closed grab excavators should be					
		deployed where material to be					
		handled is wet.					
S 7.119	6.8	 The construction of the 	To protect plant species of	Contractor/	Whole site	Construction	EIAO-TM
		proposed box-culvert would have the	conservation interest	qualified		Phase	
		potential to directly impact a few		botanist/horticu			

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		individual of a plant species of		lturalist			
		conservation interest (Hong Kong					
		Pavetta, Pavetta hongkongensis).					
		The affected individuals should be					
		transplanted to a suitable nearby					
		habitats prior to the construction					
		phase.					
		 A detailed vegetation survey of 					
		the affected species of conservation					
		interest should be conducted by a					
		suitably qualified botanist/ecologist					
		to identify the affected individuals in					
		order to provide details for					
		transplantation scheme.					
		 Transplantation should be 					
		supervised by a suitably qualified					
		botanist/horticulturalist. A detailed					
		transplantation methodology should					
		be formulated during the detailed					
		design stage of this Project.					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
S 7.120	6.9	 Noise mitigation measures such 	To minimise disturbance	Contractor	Whole site	Construction	EIAO-TM
		as the use of quieter construction	impacts.			Phase	
		plant and temporary noise barriers					
		should be implemented to minimize					
		disturbance to habitats adjacent to					
		the works areas.					
		 Temporary noise barriers should 					
		be used during the construction of					
		the box-culvert along Tung Tsz					
		Road, the floodwater pumping					
		station, the mechanical gate, and					
		drainage pipe to minimize potential					
		construction phase disturbance to					
		ardeids and avifauna foraging in					
		marsh habitat.					
		 Noise generating construction 					
		works near the Shuen Wan Egretry					
		SSSI should be avoided as far as					
		practicable during the breeding					
		season (March to June) of the					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		ardeids.					
		 Works near the SSSI (i.e. 					
		installation of mechanical gate)					
		should be restricted to be executed					
		outside the breeding season by					
		provision of special conditions in the					
		contract document.					
		 Hoardings with minimum height 					
		of 2m should be set up along the					
		south side of the proposed box					
		culvert works area adjacent to the					
		marsh, extending at least 20m at					
		both ends, throughout the					
		construction period.					
S 7.121	6.10	 Placement of equipment or 	To minimise disturbance to	Contractor	Whole site	Construction	EIAO-TM
		stockpile in designated works areas	habitats.			Phase	
		and access routes selected on					
		existing disturbed land to minimise					
		disturbance to natural or					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		moderate-high ecological value					
		habitats.					
S 7.121	6.10	 Construction activities should be 	To minimise disturbance to	Contractor	Whole site	Construction	EIAO-TM
		restricted to work areas that would	natural habitats outside			Phase	
		be clearly demarcated. The work	works area.				
		areas should be reinstated after					
		completion of the works.					
S 7.121	6.10	 Waste skips should be provided 	To minimise disturbance to	Contractor	Whole site	Construction	EIAO-TM
		to collect general refuse and	habitats.			Phase	
		construction wastes. The wastes					
		would be disposed of timely and					
		properly off-site.					
S 7.121	6.10	General drainage arrangements	To minimise sedimentation/	Contractor	Whole site	Construction	EIAO-TM
		should include sediment and oil	water quality impacts			Phase	
		traps to collect and control					
		construction site run-off.					
S 7.121	6.10	 Open burning on works sites is 	To prevent accidental	Contractor	Whole site	Construction	EIAO-TM
		illegal, and should be strictly	hill-fires.			Phase	
		prohibited.					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
S 7.122	6.11	 De-silting should be limited to the 	To minimise sedimentation/	Maintenance	Whole site	Operation	EIAO-TM
		dry season.	water quality impacts	parties of the		Phase	
				channel			
S 7.122	6.11	 Waste material produced during 	To minimise sedimentation/	Maintenance	Whole site	Operation	EIAO-TM
		de-silting should be disposed of in a	water quality impacts	parties of the		Phase	
		timely and appropriate manner.		channel			
S 7.123	6.12	 Planting of trees should be 	To compensate the loss of	Contractor	Whole site	Construction	EIAO-TM
		provided within the project area to	vegetation			Phase	
		compensate for the unavoidable					
		loss of approximately 0.08ha					
		secondary woodland habitat due to					
		the Project.					
		 Planting of trees and other 					
		vegetation within project area along					
		the banks of Wai Ha River and Tung					
		Tsz Road should be carried out to					
		provide compensation for					
		unavoidable tree-felling and loss of					
		riparian vegetation resulting from the					

EIA Ref.	EM&A	Recommended Mitigation	Objectives of the	Who to	Location of the	When to	What requirements
	Ref.	Measures	Recommended Measure &	implement the	measure	implement the	or standards for the
			Main Concern to Address	measure?		measure?	measure to
							achieve?
		Project.					
		 The compensatory planting 					
		should make use of native plant					
		species with flowers/fruits attractive					
		to wildlife.					
S 7.124	6.13	Compensation would be required	To compensate the loss of	Contractor /	The recreational	Construction	EIAO-TM
		for the loss of a small area of marsh	marsh habitat and enhance	qualified	fish pond located	Phase	
		habitat (about 0.30ha) within the CA	the quality compensatory	ecologist	to the southwest		
		resulting from the construction of the	habitat		of the existing		
		box-culvert.			Tung Tsz Nursery		
		 An existing low ecological value 					
		recreational fishpond on government					
		land adjacent to the marsh would be					
		used as a proposed area (about					
		0.8ha) for the compensation for the					
		marsh as well as secondary					
		woodland habitats loss (0.08ha).					
		The pond should be enhanced					
		by removing boardwalks around the					

EIA Ref. EM Re	Measures	Recommended Measure &		When to implement the measure?	What requirements or standards for the measure to achieve?
	existing pond, and restoring vegetation along the pond bunds, and it would be re-profiled to provide areas of shallow water (approximately 15-50cm deep), creating a suitable foraging habitat for avifauna, particularly ardeids and other waders. • Screen planting of shrubs and trees along the south-eastern bund of the pond should be implemented to minimise disturbance to avifauna and other wildlife from the adjacent recreational fishpond. The enhanced pond is expected to provide a moderate-high ecological value wetland habitat.				

EIA Ref.	EM&A Ref.		Objectives of the Recommended Measure & Main Concern to Address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
F Table 8.4	7.6	Landscape and Visual Visual screen, contaminant/ liaison with nursery, protection of existing trees with works area and construction light are used or practiced to mitigate the impacts during construction phase.	To mitigate the landscape	Contractor	Whole site	Construction	EIAO-TM
Table 8.4	7.7	Viewing area formation, architectural design for pump house, landscape design for pump house, enhancement planting along Tung Tsz Road, sufficient soil depth for enhancement planting, transplanting of trees to adjacent locations, preparation for transplanting and reinstatement of affected area are practiced to mitigate the impacts during operational phase.	To mitigate the landscape and visual impacts during the operational phase.	Contractor	Whole site	Detail Design / Operational Phase	EIAO-TM

Appendix H:

A)

The recommend mitigation measures of EM&A manual (revision 3)

B)

Implementation status of environmental protection and mitigation measures

B) Implementation status of environmental protection and mitigation

EM&A Ref.	Recommended Mitgation Measures	Objectives of the Recommended Measure & main concern to Address	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?	Implementation status
	Use well maintained construction plant					Implemented
	Shut down plants between work periods					Implemented
2.18	Install silencers on construction equipment	To minimize construction noise impact	Works areas			Implemented
2.10	Locate mobile plant far away from NSRs			Construction phase	EIAO-TM NCO	Implemented
	Quiet plants should be used Use of quieter PME					Implemented
2.19						Not applicable
2.20 - 2.21			Pipe laying in Wai Ha			Not applicable
2.22			Part of the Works Pipe laying in Wai Ha			Not applicable
2.23 - 2.24	Use of noise enclosure		Pipe laying in Wai Ha			Not applicable

Contract No. DC/2009/22 – Drainage Improvement in Shuen Wan, Tai Po – Contract 1 Monthly EM&A Report for October 12

EM&A Ref.	Recommended Mitgation Measures	Objectives of the Recommended Measure & main concern to Address	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?	Implementation status	
	Implement regular watering and vehicle washing facilities					Outstandinng	
3.5	Cover excavated or stockpile of dusty material by impervious sheeting or sprayed with water	To minimize construction dust impact	Construction Site	Construction phase	EIAO-TM	Implemented	
	Use tarpaulin to cover dusty materials on vehicles					Implemented	
4.5	materials on vehicles Provide silt trap and oil interceptor to remove the oil, lubricants, grease, silt, grit and debris from the wastewater before pumped to the public storm water drainage system	interceptor to remove the oil, lubricants, grease, silt, grit and debris from the wastewater before pumped to the public					Implemented
4.5	During rainstorms, exposed slope/soil surfaces shall be covered by a tarpaulin or other means. Others measures that need to be implemented before, during, and after rainstorms as summarized in ProPECC PN 1/94 shall be followed	To minimize water quality impact	Construction Site	Construction phase	EIAO-TM WPCO	Not applicable	

EM&A Ref. 4.10	Recommended Mitgation Measures Provide site toilet facilities	Objectives of the Recommended Measure & main concern to Address To minimize water quality impact	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve? EIAO-TM WPCO	Implementation status
4.7	 Further precautionary measures during rainy season: For the construction of the box culvert next to the existing channel of the Wai Ha River, sand bags should be deployed around the boundary of the works trench to prevent muddy water ingress into the adjacent CA or Wai Ha River. Sand bags should also be used to surround the excavated trench. Generally, the sand bags will be placed up to a height of 300mm to provide adequate allowance for the built-up water level during rainstorm event. With sand bags in place, surface runoff will be intercepted and flow to Wai Ha River or collected by the existing drainage system as usual. For the construction of the box culvert in the extreme northeast corner of Shuen Wan Marsh Conservation Area sand bags should be deployed along the limit of the works area to prevent muddy water ingress into the CA. Sand bags should be placed to a height of at least 300mm from round level and +2.5 mPD (whichever is greater) to provide adequate allowance 	To minimize water quality impact to the designated Conservation Area	Works areas near the Conservation Area	Rainy seasons during construction	EIAO-TM WPCO	Not applicable

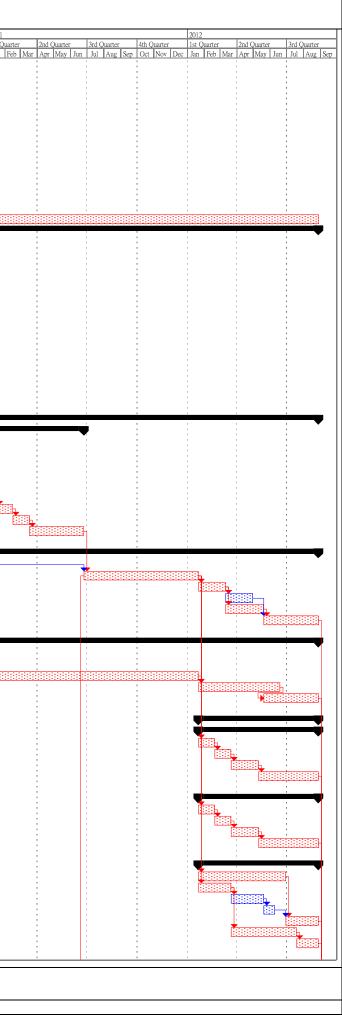
EM&A	Recommended	Objectives of the	Location of the	When to implement	What requirements	Implementation status
Ref.	Mitgation Measures	Recommended	measure	the measure?	or standards for the	
		Measure & main			measure to achieve?	
		concern to Address				
	for the built-up water level during rainstorm					
	events. Unpolluted surface runoff within the					
	works area should then be collected and					
	directed into the existing drainage system.					
	Sheet-piles, which would be installed around					
	the works trench near the Conservation Area,					
	would be extended above ground level for					
	about 2m to serve as hoardings to isolate the					
	works site.					
	Tarpulin sheets would be used to cover the					
	excavation areas during heavy rainstorms.					
	This would prevent the ingress of rainwater					
	into the trench minimising the risk of muddy					
	water getting into Wai Ha River and the					
	adjacent Conservation Area.					
	Any concrete washing water would be					
	contained inside the works site surrounded by					
	the extended sheet piles. A pump sump at the					
	bottom of the trench would be provided to					
	pump any excess water during concrete					
5.9	Reuse excavated material as much as possible					Implemented
5.7	Any unused chemicals or those with	-				Not applicable
	remaining functional capacity shall be	To achieve waste reduction	Works areas	Construction phase	EIAO-TM	rr
	recycled. Recycle scrap metals or abandoned equipment	-				Imploy-ut-1
						Implemented

EM&A Ref.	Recommended Mitgation Measures	Objectives of the Recommended Measure & main concern to Address	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?	Implementation status
5.5	A recording system for the amount of wastes generated, recycled and disposed should be proposed	To reduce waste			ETWB TCW No. 19/2005	Implemented
5.9	Adopt a trip ticket system for the disposal of C&D materials	management impacts	Works areas	Construction phase	ETWB TCW	Implemented
5.11	All general refuse should be segregated and stored in enclosed bins or compaction units				NO. 31/2004	Implemented
5.10	Contractor should be a required to register with the EPD as a Chemical Waste Producer and to follow the guidelines states in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and Incompatible chemicals should be stored separately.	To minimize the environmental impacts associated with the handling, transportation and	Work site	Construction phase	EIAO-TM Waste Disposal (Chemical	Implemented
	Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosives, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc.	disposal of chemical waste.			Waste)(General) Regulation	Not applicable

EM&A Ref.	Recommended Mitgation Measures	Objectives of the Recommended Measure & main concern to Address	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?	Implementation status
5.5	A recording system for the amount of wastes generated, recycled and disposed should be proposed	To reduce waste management impacts	Works areas	Construction phase	ETWB TCW No. 19/2005 ETWB TCW NO. 31/2004	Implemented
6.6	Sheet-pilings, which will be installed around the trench of excavation, should be extended above ground level for ~2m to act as hoarding to isolate the works site. The trenching works for the construction of the proposed box culvert should be carried out in phases, with a trench length of not more than 120m in each phase. The trench should be backfilled and compacted with suitable materials upon completion of each phase of the construction works.	To minimize the impacts on the steam and natural river bank.	Whole site	Construction phase	EIAO-TM	Implemented
6.6	The construction of intercept oint of twin cell box culvert at the upstream of Wai Ha River should be confined to only one side of the river bank. To restore and enhance the ecological value of the stream, the affected river bank should be reinstated to its original condition or lined with rock-filled gabion. Planting pits should be provided in the gabion bank to allow the re-establishment of riparian vegetation.	To minimize the impacts on the steam and natural river bank.	Whole site	Construction phase	EIAO-TM	No applicable

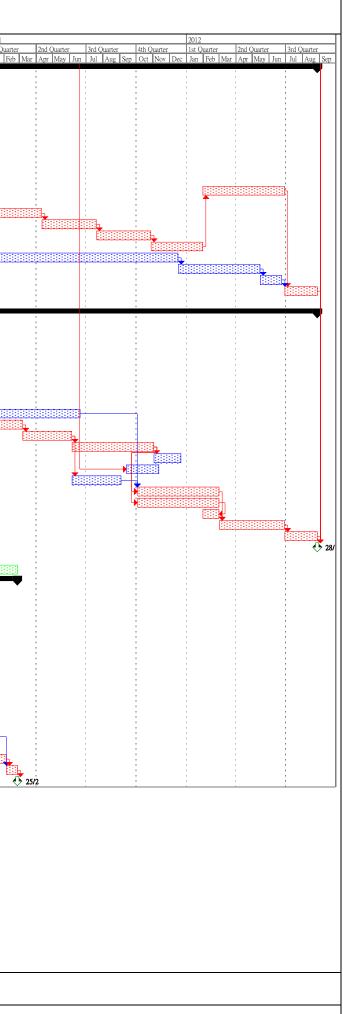
EM&A Ref.	Recommended Mitgation Measures			When to implement the measure?	What requirements or standards for the measure to achieve?	Implementation status
	The existing natural riverbed and substrates should be retained and the natural pool-riffle sequence should be re-created in the new channel bed. All works carried out within the the river					
6.7	All works carried out within the the river channel of Wai Ha River should be carried out from October to April, with construction carried out by land-based plant. Works within river/stream channels should be restricted to an enclosed dry section of the river, with containment measures such as bunds and barriers used within the river to minimize the impacts upon the downstream water body. Site runoff should be directed towards regularly cleaned and maintained silt traps and oil/grease separators to minimize the risk of sedimentation and pollution of river water. The silt and oil/grease separators should be appropriately designed for the local drainage and ground conditions. To minimize leakage and loss of sediments during excavation in narrow channels, tightly sealed closed grab excavators should be deployed where material to be handled is wet.	To minimize sedimentation/ water quality impacts	Whole site	Construction phase	EIAO-TM	No applicable

Contract No. DC/2009/22 – Drainage Improvement in Shuen Wan, Tai Po – Contract 1 Monthly EM&A Report for October 12


EM&A Ref.	Recommended Mitgation Measures	Objectives of the Recommended Measure & main concern to Address	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?	Implementation status
6.8	The construction of the proposed box-culvert would have the potential to directly impact a few individual of a plant species of conservation interest (Hong Kong Pavetta, Pavetta hongkongensis). The affected individuals should be transplanted to a suitable nearby habitats prior to the construction phase. A detailed vegetation survey of the affected species of conservation interest should be conducted by a suitably qualified botanist/ecologist to identify the affected individuals in order to provide details for transplantation scheme. Transplantation should be supervised by a suitably qualified botanist/horticulturalist. A detailed transplantation methodology should be formulated during the detailed design stage of this Project.	To protect plant species of conservation interest	Whole site	Construction phase	EIAO-TM	No applicable
6.9	Placement of equipment or stockpile in designated works areas and access routes selected on existing disturbed land to minimize disturbance to natural or moderate-high ecological value habitats.	To minimise disturbance to habitats.	Whole site	Construction phase	EIAO-TM	No applicable
6.13	General drainage arrangements should include sediment and oil traps to collect and control construction site run-off.	To minimise sedimentation/ water quality impacts	Whole site	Construction phase	EIAO-TM	Implemented

Contract No. DC/2009/22 – Drainage Improvement in Shuen Wan, Tai Po – Contract 1 Monthly EM&A Report for October 12

EM&A Ref.	Recommended Mitgation Measures	Objectives of the Recommended Measure & main concern to Address	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?	Implementation status
6.13	Construction activities should be restricted to work areas that would be clearly demarcated. The work areas should be reinstated after completion of the works.	To minimise disturbance to natural habitats outside works area.	Whole site	Construction phase	EIAO-TM	Implemented
6.13	work areas that would be clearly demarcated. The work areas should be reinstated after	To minimise disturbance to natural habitats	Whole site	Construction phase	EIAO-TM	Implemented
7.6	 minimize disturbance to natural or moderate-high ecological value habitats. Visual screen, contaminant/ liaison with nursery, protection of existing trees with works area and construction light are used of practiced to mitigate the impacts during construction phase 	To mitigate the landscape and visual impacts during the Construction phase	Whole site	Construction phase	EIAO-TM	Implemented
7.7	selected on existing disturbed land to minimize disturbance to natural or moderate-high ecological value habitats. Visual screen, contaminant/ liaison with nursery, protection of existing trees with works area and construction light are used of practiced to mitigate the impacts during construction phase Viewing area formation , architectural desig for pump house, landscape design for pump	To mitigate the landscape and visual impacts during the operational phase	Whole site	Detail Design / Operational Phase	EIAO-TM	Not Applicable


Appendix I: Construction Pogramme

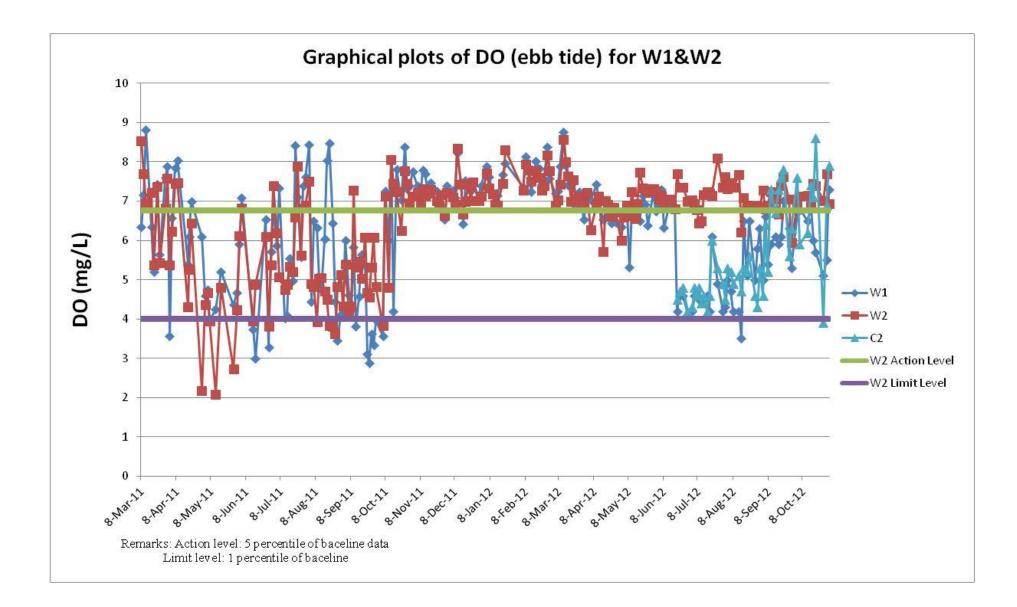
								ster Programme (Rev. 6)		
ID no. ir 5	Rev. ID no. in Rev 4	ID no. in Rev. 3	ID no. in Re 2	v. Task Name	Duration	Start	Finish	Predecessors	Successors	2010 1st Quarter 2nd Quarter 3rd Quarter 4th
	1	1	1	Preliminary Works (Area I - Pak Shek Kok)	175 days	Fri 26/2/10	Thu 19/8/10			Jan Feb Mar Apr May Jun Jul Aug Sep O
	2	2 2	2	Commencement of Works	0 days	Fri 26/2/10	Fri 26/2/10		3,83,88,105	5
		3 3	3	Design & Construction of Site Hoarding	30 days	Fri 26/2/10	Sat 27/3/10	2	4FS-5 days	
	4	4 4	4	Site Clearance	10 days	Tue 23/3/10	Thu 1/4/10	3FS-5 days	8FS+10 days,5	
	5	5 5	5	Design of Engineer's Site Office	30 days	Fri 2/4/10	Sat 1/5/10	4	6	
	6	5 6	6	Construction of Engineer's Site Office	60 days	Sun 2/5/10	Wed 30/6/10	5	7	
	7	7 7	7	Engineer's Site Office - Setup the Internal Finishing / Furniture/ Equipment	15 days	Thu 1/7/10	Thu 15/7/10	6		1
		8 8	8	Construction of Contractor's Accommodation	70 days	Mon 12/4/10	Sun 20/6/10	4FS+10 days	9	
	9	-		Installation of Sewerage Storage Tank	5 days	Mon 21/6/10	Fri 25/6/10	8	10	1 : 💺 :
	10 10			Contractor Accommodation - Setup the Internal Finishing / Furniture / Equipment	20 days	Sat 26/6/10	Thu 15/7/10	9	11	
	11 1 12 1			Establishment of Vehicular Gate, Storage Area Establishment of Welfare Facilities for Workers	15 days	Fri 16/7/10 Sat 31/7/10	Fri 30/7/10 Thu 19/8/10	10	12,13	
	12 1.			Temporary Drainage System	20 days 20 days	Sat 31/7/10	Thu 19/8/10	11		
	15 1.	15		remporary brankge of sen	20 utys	Bat Shirito	1110 15/0/10	11		
	15 1	5 15	15	Time for Completion of Section I	915 days	Fri 26/2/10	Tue 28/8/12			
	16 16	i 16	16	Section I (Area A, B - Shuen Wan)	915 days	Fri 26/2/10	Tue 28/8/12			
	17 1	1 17	17	Commencement of Works	0 days	Fri 26/2/10	Fri 26/2/10		19FS+30 days,35,111,22,20,28	3 • 26/2
	18 18	18	18	Preliminary Works	240 days	Fri 26/2/10	Sat 23/10/10			
	19 19			Seek clarification regarding Environmental Permit	30 days	Sun 28/3/10	Mon 26/4/10	17FS+30 days	30	• • • • • • • • • • • • • • • • •
	20 2			Design of TTA Scheme for Site Access	40 days	Fri 26/2/10	Tue 6/4/10	17	21	
	21 2		21	Submission of TTA to TMLG for Approval	60 days	Wed 7/4/10	Sat 5/6/10	20	25	
	22 2 23 2			Site Clearance Project Signboard	50 days 5 days	Fri 26/2/10 Sat 17/4/10	Fri 16/4/10 Wed 21/4/10	22	23,26	
	23 2.			Hoarding Erection	5 days 40 days	Sat 1//4/10 Thu 22/4/10	Mon 31/5/10	22	24	
	24 25			Establish Site Access	30 days	Sun 6/6/10	Mon 5/7/10	24,21	30	
	26 2			Ground Investigation	75 days	Sat 17/4/10	Wed 30/6/10	24,21	30	· · · · · · · · · · · · · · · · · · ·
							<u> </u>			1
	28 2	3 28	28	Tree Survey	75 days	Fri 26/2/10	Tue 11/5/10	17	29	
	29 2			Submission of Tree Survey Record	60 days	Wed 12/5/10	Sat 10/7/10	28	30,31	
	30 3		30	Tree Felling	20 days	Mon 26/7/10	Sat 14/8/10	29,139,25,26,19	94,99,37	
	31 3	31	31	Tree Transplanting	90 days	Mon 26/7/10	Sat 23/10/10	29,139	94FS-30 days,99FS-30 days,40FS-30 days	
		10	22	Downlos Okation	015 1	E-: 06/0/10	True 00/0/10			
	33 33 34 34		33	Pumping Station Piling Works	915 days 485 days	Fri 26/2/10 Fri 26/2/10	Tue 28/8/12 Sat 25/6/11			
	35 3			Submission of Method Statement	100 days	Fri 26/2/10	Sat 5/6/10	17	46,54,36	
	36 3			Material Ordering & Delivery to Site	60 days	Sun 6/6/10	Wed 4/8/10	35	38	
	37 3	37	36	Ground Preparation for Piling	10 days	Sun 15/8/10	Tue 24/8/10	139,30	38	
	38 3	3 38	37	Preliminary Pile	35 days	Wed 25/8/10	Tue 28/9/10	37,36	39,40	
	39 3	39	39	Loading Test	30 days	Wed 29/9/10	Thu 28/10/10	38		
	40 4	40	38	Working Piles	110 days	Wed 29/9/10	Sun 16/1/11	38,31FS-30 days	41	
	41 4			Loading Test for working piles	30 days	Mon 17/1/11	Tue 15/2/11	40	42	
	42 4			Sheetpiling	30 days	Wed 16/2/11	Thu 17/3/11	41	43	
	43 43	3 42	41	Excavation to Pile Cut Off Level / Shoring	100 days	Fri 18/3/11	Sat 25/6/11	42	47	
	45 43		43	Main Observations of Description Obstitute	91 <i>E</i> Jama	Sun 6/6/10	Tue 28/8/12			
	45 43 46 44			Main Structure of Pumping Station Temporary Works Submission	815 days 120 days	Sun 6/6/10 Sun 6/6/10	Sun 3/10/10	35	47	
	47 4		45	Reinforced Concrete Works	210 days	Sun 26/6/11	Sat 21/1/12	46,43	118SS+80 days,75,48,68,62,74,57	, I <u>a</u>
	48 4			Roofing	50 days	Sun 22/1/12	Sun 11/3/12	47	49,50	
	49 49			Manmade Slope	50 days	Mon 12/3/12	Mon 30/4/12	48	51	
	50 5		48	Internal Finishing Works	70 days	Mon 12/3/12	Sun 20/5/12	48	51	1 : : !
	51 5	50	49	External Finishing Works	100 days	Mon 21/5/12	Tue 28/8/12	50,49	125	
	53 53			E&M	815 days	Sun 6/6/10	Tue 28/8/12			
	54 5			Submission of E & M Design	120 days	Sun 6/6/10	Sun 3/10/10	35 54ES 20 damp	55FS-30 days	
	55 5			Approval of E & M Design Fabrication & Delivery of Plant & Material	90 days	Sat 4/9/10	Thu 2/12/10	54FS-30 days	56	
	56 50 57 51			Fabrication & Delivery of Plant & Material Plumbing & E&M works	415 days 150 days	Fri 3/12/10 Sun 22/1/12	Sat 21/1/12 Tue 19/6/12	55 56,47	57 58FS-30 days	
	58 5			Final Testing Works	100 days	Mon 21/5/12	Tue 28/8/12	57FS-30 days	125	
		51			200 04/5			5715 50 days	123	1 1 1 1 1
	60 60	59	58	External Structure	220 days	Sun 22/1/12	Tue 28/8/12			1
	61 6			Pumping Station to Outfall Structure	220 days	Sun 22/1/12	Tue 28/8/12			1 :
	62 6		60	Installation of Cofferdam & Site Hoarding Phase 2	30 days	Sun 22/1/12	Mon 20/2/12	47	63	
	63 6.	8 62	61	Excavation	30 days	Tue 21/2/12	Wed 21/3/12	62	64	
	64 6			Constrcution of 2nos. of 1500mm dia. Drainage Pipes	50 days	Thu 22/3/12	Thu 10/5/12	63	65	
	65 6.	5 64	63	2 nos. of Outfall Structures	110 days	Fri 11/5/12	Tue 28/8/12	64	125	
	<i>(</i>)		10	mide Level Markey's Cl. 1		0	The 00/0/10			
	67 6			Tide Level Monitoring Chamber	220 days	Sun 22/1/12	Tue 28/8/12			
	68 6		66 67	Installation of Cofferdam & Site Hoarding Phase 2	30 days 30 days	Sun 22/1/12 Tue 21/2/12	Mon 20/2/12 Wed 21/3/12	47	69 70	
	69 6 ¹ 70 7			Excavation Construction of Pipe & Tide Level Monitoring Chambers	30 days 50 days	Tue 21/2/12 Thu 22/3/12	Thu 10/5/12	68	70	
	70 71 7			Outfall Structure	110 days	Fri 11/5/12	Tue 28/8/12	70	125	
		10			110 44.95			10	123	
	73 73	72	71	External Misc. Works	220 days	Sun 22/1/12	Tue 28/8/12			1 1:
	74 74			Boundary Wall & Fencing	160 days	Sun 22/1/12	Fri 29/6/12	47	78	
	75 7		73	3nos. of Flow Measurement chambers and Pipes	60 days	Sun 22/1/12	Wed 21/3/12	47	76,79	
	76 7		74	Surface Drainage System & Catchpits	60 days	Thu 22/3/12	Sun 20/5/12	75	77	
	77 7			Concrete Pavement	20 days	Mon 21/5/12	Sat 9/6/12	76	78	
	78 7		77	Landscaping Works	60 days	Sat 30/6/12	Tue 28/8/12	77,74	125	
	79 7			225mm dia. Sewer Across Ting Kok Road and Connection to Existing Manholes	120 days	Thu 22/3/12	Thu 19/7/12	75	80	
	80 8)		Sewer Manhole SM1	40 days	Fri 20/7/12	Tue 28/8/12	79	125	

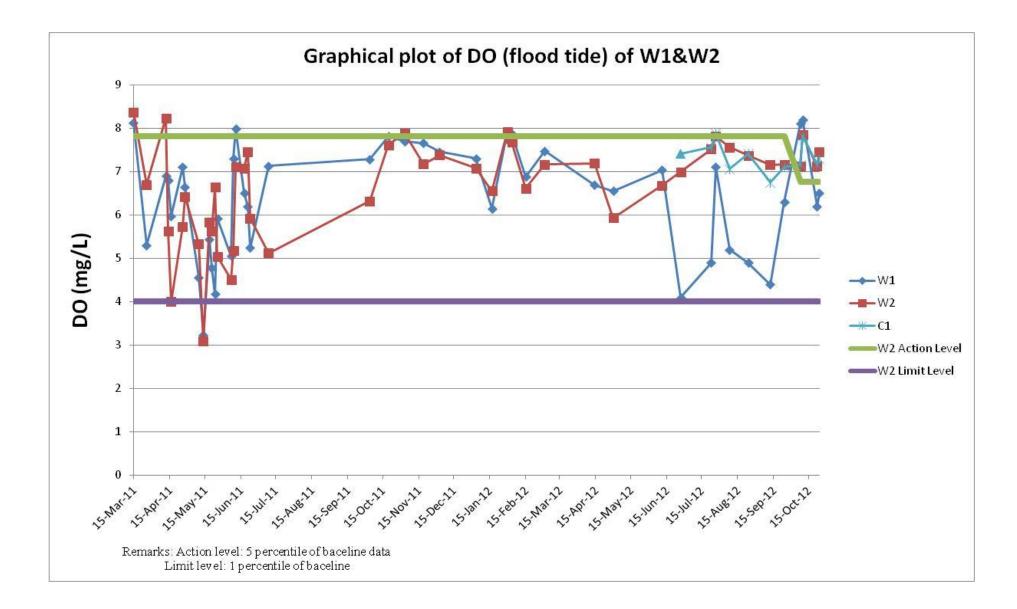
Bit Ub No.the No.the<									Ma	aster Programme (Rev. 6)				
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	ID		Rev. ID	no. in Rev. 3		v. Task Name	Duration	Start	Finish	Predecessors	Successors	1st Quarter 2nd Quarter	3rd Quarter	4th Quarter
Image: Section of the section of t	-	82	82	80	70	Twin Cell Box Culvert	915 dave	Eri 26/2/10	Tue 28/8/12			Jan Feb Mar Apr May Jun	Jul Aug Sep	Oct Nov
Image Image <th< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>84</td><td></td><td></td><td></td></th<>	-									2	84			
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
Image: Section of the sectin of the section of the section of th											86			
No. No. <td>1</td> <td>86</td> <td>86</td> <td>84</td> <td>83</td> <td>Condition Survey of Existing Structure</td> <td>15 days</td> <td>Wed 12/5/10</td> <td>Wed 26/5/10</td> <td>85</td> <td>87</td> <td></td> <td></td> <td></td>	1	86	86	84	83	Condition Survey of Existing Structure	15 days	Wed 12/5/10	Wed 26/5/10	85	87			
III III III Junise Crip Tubulization Mail Tubulization Mail Tubulization Mail Tubulization Mail Ma	1	87	87	85	84	Submission of Method Statement to LCSD	60 days	Thu 27/5/10	Sun 25/7/10	86	91		- 西日 - 日本	1
1 0 0 0 Parameter ware frager operations (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1	88	88	86	85	Design of Temporary Traffic Arrangement	60 days	Fri 26/2/10	Mon 26/4/10	2	89,90			1
Image: Bit in the state of	1	89	89	87	86	Submission of TTA to TMLG for Approval	90 days	Tue 27/4/10	Sun 25/7/10	88	90FF	1		
1 1 1 Non-Non-Charactering intring Num Num<		90		88	87	Excavation Permit	120 days	Tue 27/4/10	Tue 24/8/10			,		
10 10 10 10 10 10 10 10000 10000 10000 10000 10000 10 10 10 10 10 10 10000 10000 10000 10000 10000 10 10 10 10 10 10000 10000 10000 10000 10000 10 10 10 10 10 10000 10000 10000 10000 10 10 10 10 10 10 10000 10000 10000 10 10 10 10 10 100000 100000 100000 10 10 10 10 1000000 1000000 1000000000 10 10 10 10 1000000000000000000000000000000000000				89	88									1
No. No. <td></td> <td>-</td> <td></td> <td></td> <td>1</td>											-			1
Image: Probability Image: Probab													- I I I	<u>,</u>
9 9														<u>, etetetetetet</u>
19 9	-													1
No. No. No. No. Actional Charace 2007											,,		- ·	1
11000	-													1
00 <td></td> <td><u>/</u> ///////////////////////////////////</td>														<u>/</u> ///////////////////////////////////
100 100 100 100 100 100 100 100 100 100 000 000 Randian and instanted for ing function, ladius as throw 64 bits 100 bits	-													
Image: 100 Image: 100 <thimage: 100<="" th=""> Image: 100 Image: 1</thimage:>	+													1
Image: Note of the state of	1				97								· · · ·	1
100 106 100 More Story	1											1		1
08 060 0600 0600	1	104	104	102	99	Dia. 2100mm Drainage Pipe	915 days	Fri 26/2/10	Tue 28/8/12					<u> </u>
Interpretation Interpr	1	105	105	103	100	Record Survey	15 days	Fri 26/2/10	Fri 12/3/10	2	106	1 🛃		
198 0.05 0.00 0.00 0.00 0.00 0.0000000 109 0.00 0.00 0.00000000 0.000000000000 0.00000000000000000000000000000000000			106	104		Site Investigation (Trial Pit)	50 days	Sat 13/3/10	Sat 1/5/10		107			1
100 0.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td> · · · · · · · · · · · · · · · · ·</td><td>'</td><td>1</td></th<>											· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·	'	1
110 111 111 <td></td> <td>1</td>														1
111 111 110 016 Biologic fragment 66 as Nu 23000 72 0112 112 016 5 Stension fragment 66 as Nu 23000 Nu 23000 11 0113 114 114 114 014					104									-
112 110 100 100 Sdemisan for Approx1 0 days Nor.2001 111 1113 1113 111 111 111 111 111 1113 1111 1113 1111 1113 1111 1111 1113 11111 1111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111													B	1
103 101 007 Bircharle & Delayer of Personsk 280 dyn Son 20070 Men 2901 112 103 113 114 114 112 108 Men 2901 109,300 113 115 113 113 103 508 Mel 1091 109,300 113 114 116,113 116 116 116 116 116 116 116 1178-30.dyn,1115 11278-30.dyn,1115 11278-30.dyn,1115 11278-30.dyn,1115 11278-30.dyn,1115 11278-30.dyn,1115 11278-30.dyn,1115 1137 113 116 116 116 116 116 116 116 116 116 116 1178-30.dyn,1115 1137 1137 113 116 118 116 118 116 118 116 118 116 118 116 118 116 118 116 118 116 118 116 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118						_								<u>.</u>
114 114 112 0.08 MI to be MI to the MI to th														
115 115 113 110 Math Giu MH 60 90 app Txx 89711 Sas 5901 114 116(11) 116 116 110 Math MM 60 150 app Weight MM 70 115 1287.30 day, 2117.50 day, 117 117 117 115 115 Restaurment Math MM 60 61 day Weight MM 81 Sas 12011 105.80 day, 2117.50	_					-								1000
196 116 101 1010 Index 0x1010 150 days Num 6 69711 Web 69711 112 1125711 116 12078-30 days.1218-50 days.171 117 115 115 Restancent of Existing Famic 60 days Wei 149711 38: 171/11 137: 571/11 16 137: 571/11 13	-											I I		191919191919191
117 117 118 116 Benatomene di Busing Planer 90 days Thu 201211 Thu 202011 116 116 118 116 111 Milé 55 MH 66												-		
18 138 116 111 Mtl (6 s Mtl (6) 60 avg Weil Moll, Sit 2/11 478.89 dass 198 0 - Tomperportuge Mangement Mun 50 days Man 60411 Sit 3/211 113 Mangement Mun 121 121 113 Mtl (6 s Advanced ID y Saxod) 150 days Taw 4/011 The 1/722 116/85 days 1228 122 123 123 133 Mth (1 s Mtl (1 s Mtl (1 s Mtr (1 s											12013-30 days,12113-30 days,111			1
119 119 119 119 110 1						-								1
1010 1010 1111 Index (a wagned in Dry Sawo) 119 days $The 4/011$ $The 1/02$ <td>-</td> <td></td> <td></td> <td>110</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>120</td> <td></td> <td></td> <td>1</td>	-			110							120			1
12 12 10 113 Modifiation of backing Odds Snature of Wait River 190 days Tue 4/011 Tue 1/012 116F8-00 days 122F 121 122 123 124 Installation of social Penatoles 30 days Phi 20/12 Tue 1/012 118F8 123 123 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 125 125 125 125 125 126 126 Completion of Section I 0 days Fit 289/12 7k.124.102.51.58.65.71.84 125 128 128 126 119 Socion II (Acce - E- Ecological Companytion Acre at Share Wat) 365 days Fit 269/10 <	1			118	112									-
123123121 \cdot F. 8. Works120 days $in 22/12$ $in 2/12$ <														
114 124 124 124 124 124 124 124 124 124 125 126 125 126 125 126 125 126 125 126 125 126 125 126 125 126 125 126 125 126 125 126 125 126 125 126 125 126 126 125 126 126 125 126 126 126 125 126 126 126 125 126 126 126 126 125 126 126 126 125 126 1	1													1
125125123116Completion of Section I0 daysTue $288/12$ Tue $288/12$ $78_{124}, 102, 51, 58, 65, 71, 80$ 128128129118Time for Completion of Section II365 daysFri $260/10$ Fri $250/11$	1	123	123	121		E & M Works	120 days	Fri 2/3/12	Fri 29/6/12	122,120	124	.1 1 1		
Image: Note of the second second line of the second line second	1	124	124	122		Misc. Works & Reinstatement	60 days	Sat 30/6/12	Tue 28/8/12	123	125			-
12812812812919Section II (Area C - Ecological Compensation Area at Shuen Wan)365 daysFri 262/10Fri 262/10Sun 11/A/10Fri 262/10Fri 262/10Sun 1/A/10Fri 262/10Sun 1/A/10Sun 1/A/10Fri 262/10Sun 1/A/10Sun 1/A/10Fri 262/10Sun 1/A/10Sun 1/A/10Fri 262/10Sun 1/A/10Sun 1/A/10 <th< td=""><td></td><td>125</td><td>125</td><td>123</td><td>116</td><td>Completion of Section I</td><td>0 days</td><td>Tue 28/8/12</td><td>Tue 28/8/12</td><td>78,124,102,51,58,65,71,80</td><td></td><td></td><td></td><td></td></th<>		125	125	123	116	Completion of Section I	0 days	Tue 28/8/12	Tue 28/8/12	78,124,102,51,58,65,71,80				
128128128129119Social I (Area C - Ecological Compensation Area at Shuen Wan)365 daysFri 262/10Fri 262/10Sam 11/4/10Fri 262/10Sam 12/21Fri 262/10Sam 7/3/10Fri 262/10Sam 7/3/10Sam 7/3/10Fri 262/10Sam 7/3/10Sam 7/3/10Sam 7/3/10S														1
129 127 120 127 120 127 120 127 120 128 121 121 121 121 121 121 121 121 121 121 121 121 122 122 121 121 121 122 122 123 121 121 123 123 123 123 123 123 123 123 123 123 123 123 123 124 129 123 124 129 123 124 129 123 124 129 123 124 129 123 124 129 123 124 129 123 124 129 123 124 129 123 129 123 124 129 123 129 123 129 123 129 123 129 123 129 123 129 129 123 129 129 123 129 129 123 129 129 129 133 126 128 129 128 129 128 128 128 128 129 128 129 128 129 128 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
130 130 128 121 Preliminary Works 45 days Pri 26/210 Sun 11/4/10 (10) 1131 1131 129 122 Site Clearance 10 days Fri 26/210 Sun 71/10 129 136 1313 1313 131 124 Pumping Water out of Pond 15 days Fri 26/210 Sun 71/10 129 136 133 133 131 124 Pumping Water out of Pond 10 days Fri 26/210 Sun 71/10 129 136 134 134 132 125 Check actual Tidal agains Predicted Tidal Level 15 days Mon 82/10 Fri 12/X10 133 136 136 135 135 136 Garon of Ecological Compensation Area 50 days San 11/4/10 San 11/4/10 133 136 136 136 137 130 Refer to Pernit Requirement plus 15 weeks for Approval and Commencement of Weeks Inf days Mon 22/10 San 11/4/10 San 22/10/10 138 140,114,303,37,141,42 140 140														
131131129122Site Clearance10 days \dot{Hi} 26/2/10Sun 7/3/10 (12) (12) (13) 132133133123Hoarding Erection15 days \dot{Hi} 26/2/10 \dot{Sun} 7/3/10 (12) (13) (13) 133131124Pumping Water out of Pend 10 days \dot{Hi} 26/2/10 \dot{Sun} 7/3/10 (12) (13) (13) 134133126Survey Existing Pend leed 15 days $Mon 83/10$ $Mon 23/10$ (13) (13) (13) 135133126Survey Existing Pend Bed 5 days $Mon 83/10$ $Hi 23/10$ (13) (13) (13) 136134127Design of eCological Compensation Area 0 days $Sut 13/10$ $Sun 11/4/10$ (13) (13) (14) 138138136129Submission of Design of Ecological Compensation Area 0 days $Sut 13/10$ $Sun 11/4/10$ (13) (14) 149140143131Fill of Pond to Designed Level (16) days $Mon 26/7/10$ $Sut 23/100$ (13) (14) 141141139131Fill of Pond to Designed Level (16) days $Mon 26/7/10$ $Sut 23/100$ (13) (14) 144144144133Planting Works at Uper Level (6) days $Mon 26/7/10$ $Sut 23/100$ (13) (14) (14) 144144144134Planting Works at Uper Level (6) days $Mon 26/7/10$ <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>131,132,133</td> <td>26/2</td> <td></td> <td></td>	-										131,132,133	26/2		
132132130123Hearding Erection15 daysFri 26/10Fri 12/101212124Pumping Water out of Pend10 daysFri 26/210Sun 7/3/1012913131314132126Check actual Tichal against Predicted Tidal Level15 daysMone 8/3/10Mone 2/3/10131313131316's 136's 136'									1	100	• • •			1
133133113124Pumping Water out of Pond10 daysFri 26/2/10Sun 71/10Sun 71/101239131131134134132125Check actual Tidal against Pedicted Tidal Level15 daysMon 8/3/10Mon 223/10131136685-10 days135133133126Survey Existing Pond Bed5 daysMon 8/3/10Fri 123/10133136136136137127Design of Ecological Compensation Area30 daysSat 13/70Sun 11/1/10135,134FS-10 days,12138138138136129Submission of Design of Ecological Compensation Area to EPD for Approval0 daysSun 11/1/10Sun 11/1/10136139138138136Fill of Pond to Designed Level16 daysMon 267/10Sun 11/1/10138140143141141139132Transplanting Management Plan90 daysMon 267/10Sat 23/10/10139143144145Setting Water Curculation System20 daysSin 6/2/11Fri 25/2/11144,412144														1
134134132125Check actual Tidal against Predicted Tidal Level15 daysMon 8/3/10Mon 2/3/10Mon 2/3/10131136136/16/5-10 days136135135133126Survey Existing Pond Bed5 daysMon 8/3/10Fri 12/3/101313133136136137127Design of Ecological Compensation Area30 daysSat 13/3/10Sun 11/4/10135,134FS-10 days,12138136138138138138138138138138138138138138139130Refer to Permit Requirement plus 15 weeks for Approval and Commencement of Works105 daysSun 11/4/10Sun 11/4/10133140,114,30,31,37,141,142141141138131Fill of Pond to Design of Level165 daysMon 267/10Thu 6/1/111319132Transplanting141144143133Pinling Works at Upper Level90 daysMon 267/10Sat 23/10/101319140144144144144134Planting Works at Lower Level60 daysMon 81/110Thu 61/11140FS-60 days144145Setting up Water Circulation System20 daysSun 6/2/11Fri	-					_								1
135135136126Survey Existing Pond Bed5 daysMon 8/3/10Fri 12/3/10133133136136136136134127Design of of Ecological Compensation Area30 daysSat 13/3/10Sun 11/4/10135,134FS-10 days,132138137138136129Submission of Design of Ecological Compensation Area to EPD for Approval0 daysSun 11/4/10Sun 11/4/10136139138138136129Submission of Design of Ecological Compensation Area to EPD for Approval0 dosSun 11/4/10Sun 11/4/10139139139130Refer to Permit Requirement plus 15 weeks for Approval and Commencement of Works105 daysMon 267/10Sun 257/10138140,114,30,31,37,141,142141141139132Transplanting90 daysMon 267/10Sat 23/10/10139145143141133Planting Works at Upper Level90 daysMon 8/11/10Sat 23/10/10139145144144144134Planting Works at Upper Level60 daysMon 8/11/10Sat 52/11143141145145145143Setting up Mater Circulation System20 daysSun 6/2/11Fri 25/2/11144,142144145145145Setting up Mater Circulation System20 daysSun 6/2/11Fri 25/2/11144,142144145145145Setting up Mater Circulation System20 daysSun 6/2/11Fri 25/2/11	╢													-
136138127Design of Ecological Compensation Area30 daysSat 133/10Sun 11/410135,134FS-10 days,132138100101102100100100100100100100138138136129Submission of Design of Ecological Compensation Area to EPD for Approval0 daysSun 11/410Sun 11/4101361318140,114,30,31,37,14,142139139137130Refer to Permit Requirement plus 15 weeks for Approval and Commencement of Works105 daysMon 12/410Sun 25/101318140,114,30,31,37,14,142141141139132Fill of Pond to Designed Level165 daysMon 26/710Sat 23/1010Thu 61/1113991435Fs-60 days141141143143Patning Works at Upper Level60 daysMon 26/710Sat 23/1010Thu 61/11140FS-60 days144143143141133Patning Works at Upper Level60 daysMon 80/710Sat 52/11140,114140FS-60 days144144144143143Patning Works at Lower Level30 daysFir 7/1/11Sat 52/11144,1421441441441431431439 lating works at Lower Level30 daysSin 6/2/11Fir 52/2/11144,1421441441441431431431431431431431441441451441431435 setting up Mater Cinculation System20 days	-													
Image: Normal SectionImage: Normal Sectio	1													1
139130Refer to Permit Requirement plus 15 weeks for Approval and Commencement of Works105 daysMon 12/4/10Sun 25/7/10San 25/7/10 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td>130</td><td>l bistal</td><td></td><td>1</td></th<>										,	130	l bistal		1
139130Refer to Permit Requirement plus 15 weeks for Approval and Commencement of Works105 daysMon $12/4/10$ Sun $257/10$ Sun $257/10$ 103 13140(114,30.3)(3,7)(4),142140140138131Fill of Pond to Designed Level165 daysMon $267/10$ Thu $61/11$ 139143FS-60 days141141139132Transplanting90 daysMon $267/10$ Sat $231/010$ 139143FS-60 days14214214133Planting Works at Upper Level90 daysMon $267/10$ Sat $231/010$ 139145143141133Planting Works at Lower Level60 daysMon $801/10$ Thu $61/11$ 140FS-60 aps145144144142134Planting Works at Lower Level30 daysFir $71/11$ Sat $52/11$ 141143145145145143135Setting up Mater Circulation System20 daysSun $6/211$ Fir $25/211$ 144,412144	1	138	138	136	129	Submission of Design of Ecological Compensation Area to EPD for Approval	0 days	Sun 11/4/10	Sun 11/4/10	136	139	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		1
140141138131Fill of Pond to Designed Level165 daysMon 267/10Thu 61/11139143FS-60 days141141139132Transplanting90 daysMon 267/10Sat 231/010139	1										140,114,30,31,37,141,142	[:::::::::::::::::::::::::::::::::::::	all '	1
142 143 143 Temporary Drainage Management Plan 90 days Mon 267/10 Sat 23/10/10 133 143 143 143 143 Planting Works at Upper Level 60 days Mon 8/11/10 Thu 6/1/11 140FS-60 days 144 144 144 142 134 Planting Works at Lower Level 30 days Fri 7/1/11 Sat 52/11 143 145 145 145 143 Setting up Water Circulation System 20 days Sin 6/2/11 Fri 25/2/11 144,142 146	1											and the second sec		
143 143 143 Planting Works at Upper Level 60 days Mon 8/11/10 Thu 6/1/11 140FS-60 days 144 144 144 142 134 Planting Works at Lower Level 30 days Fri 7/1/11 Sat 50/11 143 145 145 145 143 135 Setting up Water Circulation System 20 days Sun 6/2/11 Fri 25/2/11 144,142 146	1	141	141	139	132	Transplanting	90 days	Mon 26/7/10	Sat 23/10/10	139		1 : :		
144 144 142 134 Planting Works at Lower Level 30 days Pri 7/1/1 Sat 5/2/1 143 145 145 145 143 135 Setting up Water Circulation System 20 days Sun 6/2/11 Fri 25/2/11 144,142 146		142	142				90 days	Mon 26/7/10	Sat 23/10/10	139	145			<u> </u>
145 143 135 Setting up Water Circulation System 20 days Sun 6/2/11 Fri 25/2/11 144,142 146														- 400
146 146 146 136 Completion of Section II 0 days Fri 25/2/11 Fri 25/2/11 145											146		,	1
		146	146	144	136	Completion of Section II	0 days	Fri 25/2/11	Fri 25/2/11	145		1 : :		<u>:</u>

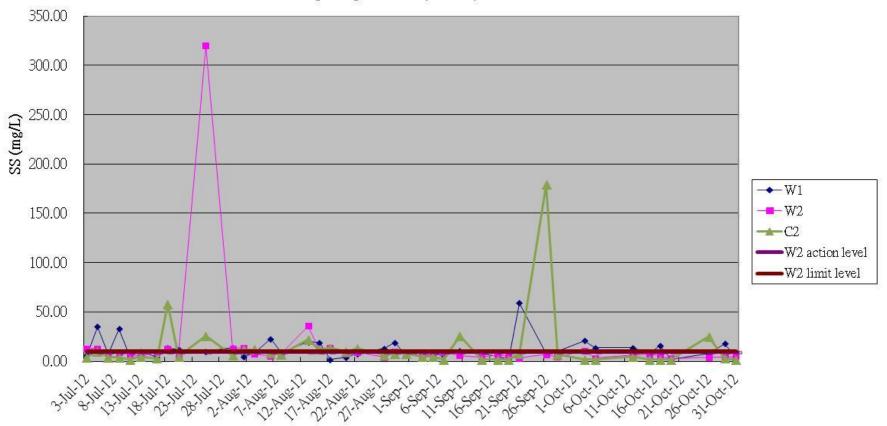
Master Programme - Rev. 6 Data Date: 2010-2-26	Task Critical Task		•	Summary Rolled Up Task	Rolled Up Critical Task	 Rolled Up Progress Split		External Tasks Project Summary	 Group By Summary Deadline	↓
						Page	2			

Appendix J: Three month rolling programme

							Contrac	t Title: Drainage Im	Contract No.: DC/2009/22 provement Works in Shuen Wa	n, Tai Po - Contract 1							
								M	laster Programme (Rev. 6)								
ID	ID no. in Rev.	ID no. in Rev.	ID no. in Rev.	ID no. in R	ev. Task Name	Duration	Start	Finish	Predecessors	Successors	20	011		2012			2013
	5	4	3	2							arter 1s	st Quarter 2nd Quarter	3rd Quarter 4th	n Quarter 1st Quarter	2nd Quarter 3rd Q	uarter 4th Quarter	r 1st Quarter
349	348	249	242	220	Time for Completion of Section IX	1280 days	Fri 26/2/10	Wed 28/8/13	ļ		Nov Dec J	ian Feb Mar Apr May	Jun Jui Aug Sep O	ict Nov Dec Jan Feb	Mar Apr May Jun Jui	Aug Sep Oct No	/ Dec Jan Feb
				330	-							******************************					
350	349	349	343	331	Section IX (Area A, B, - Shuen Wan)	1280 days	Fri 26/2/10	Wed 28/8/13				1			1	1	· · · ·
351	350	350	344	332	Commencement of Works	0 days	Fri 26/2/10	Fri 26/2/10		352		1				i	
352	351	351	345	333	Landscape Establishment Works in Area A & B	365 days	Wed 29/8/12	Wed 28/8/13	33,351	353	1 :	1	1		1 I I I I I I I I I I I I I I I I I I I		
355	354	354	348	336	Time for Completion of Section X	1280 days	Fri 26/2/10	Wed 28/8/13									
356	355	355	349	337	Section X (Area C - Ecological Compensation Area at Shuen Wan)	1280 days	Fri 26/2/10	Wed 28/8/13									
357	356	356	350	338	Commencement of Works	0 days	Fri 26/2/10	Fri 26/2/10		358,359,360	1∶	;	1	1	1	1	1
358	358	358	353	341	Ecological Monitoring	365 days	Sat 26/2/11	Sat 25/2/12	128,357	361							
359	359	359	354	342	Landscape Extablishment Works in Area C	365 days	Sat 26/2/11	Sat 25/2/12	128,357	361	1						
360					Maintenance of Ecological Compensation Area	915 days	Sat 26/2/11	Wed 28/8/13	128,357	361							

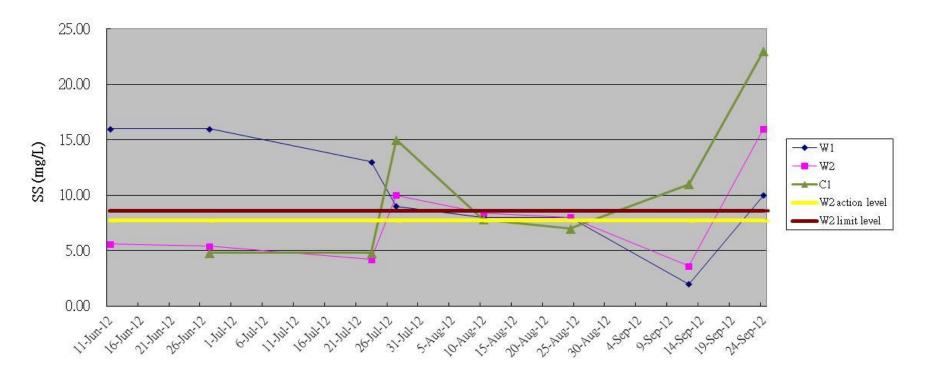

Master Programme - Rev. 6 Data Date: 2010-2-26	Task Critical Task	Progress Milestone	•	Summary Rolled Up Task	 Rolled Up Critical Task Rolled Up Milestone	Split	1 1 1 1 1 1 1	External Tasks Project Summary	 Group By Summary Deadline	₽ ▼	
						Page 1					

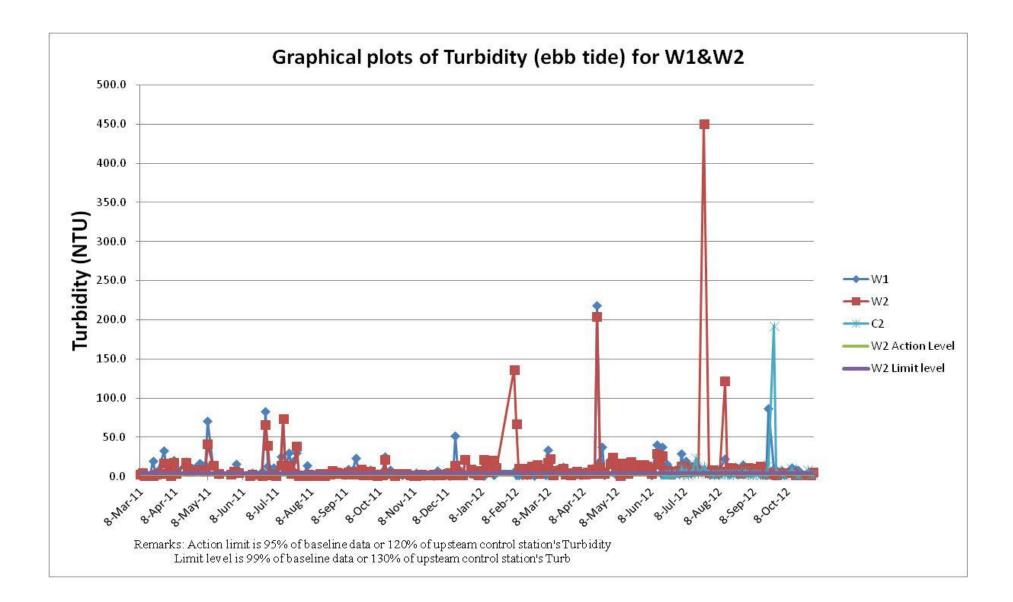

Appendix K: Graphical plots of trends of monitored parameter


10.00 9.00 8.00 7.00 6.00 -**→**- ₩1 5.00 **—**— W2 4.00 Reference Point Lower limit 3.00 2.00 1.00 0.00

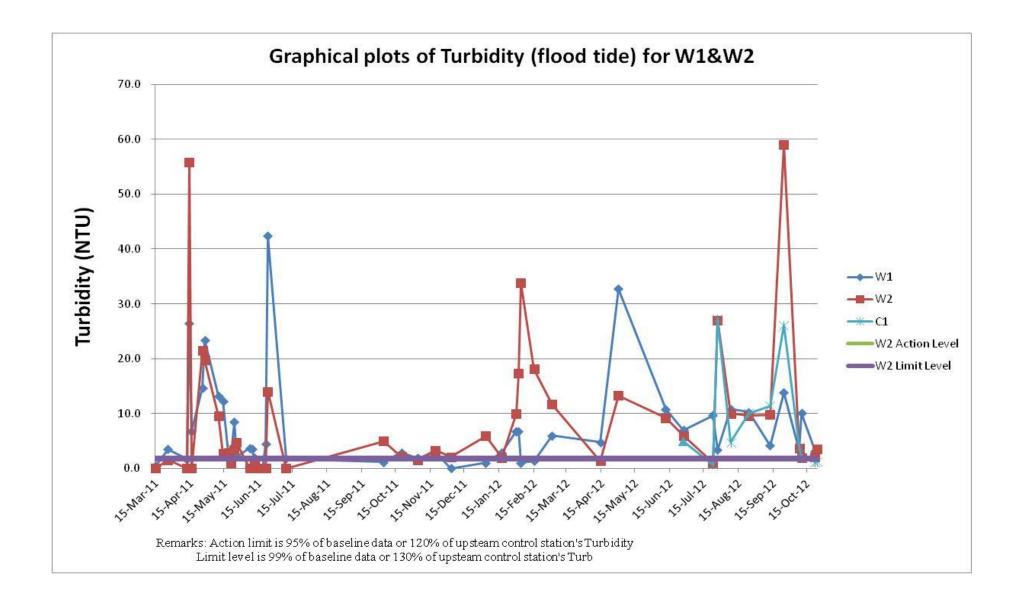
Graphical plots of pH values W1&W2

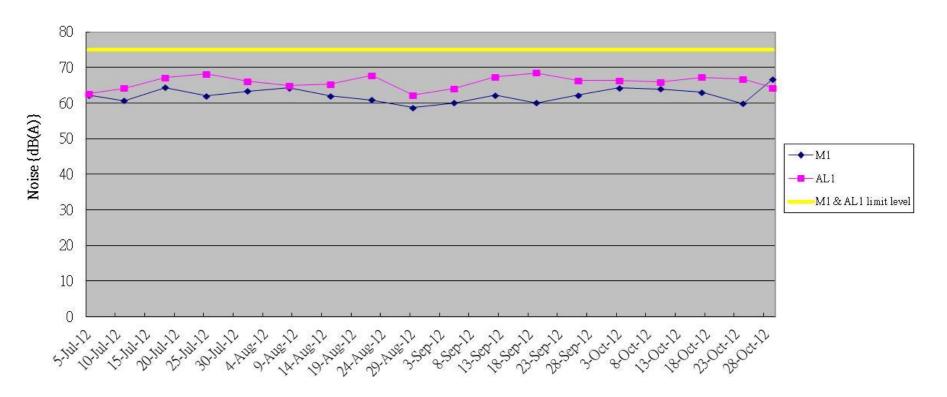
pH values



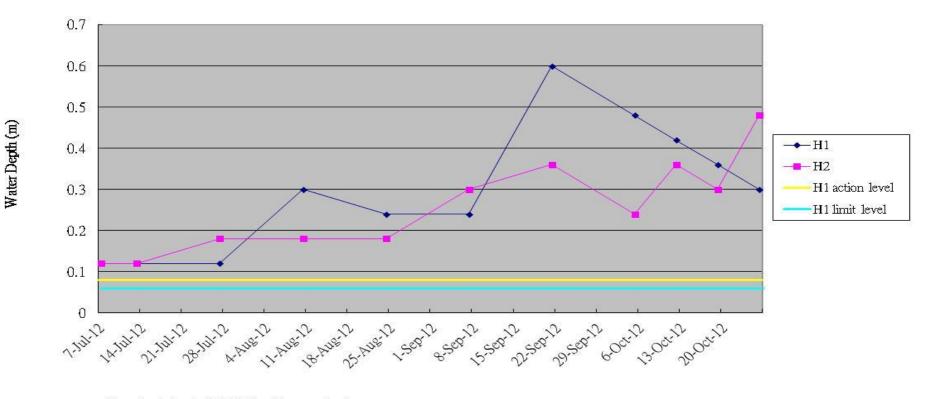

Graphical plots of SS (ebb tide) for W1&W2

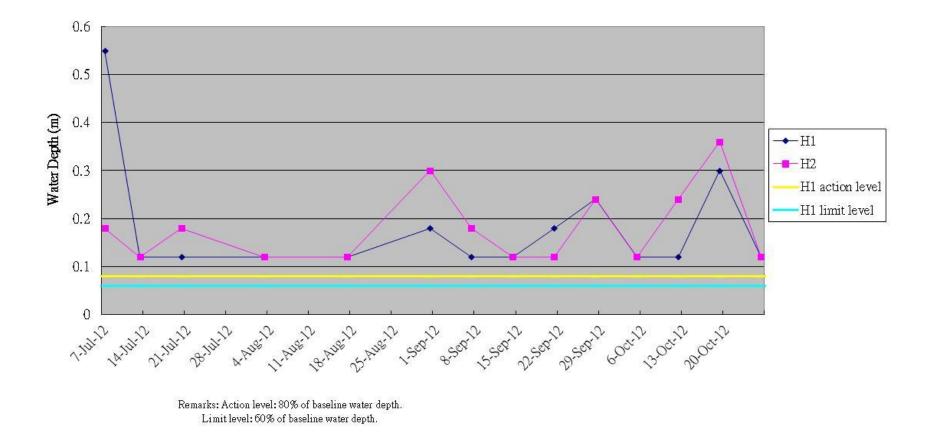
Remarks: Action limit is 95% of baseline data or 120% of upsteam control station's SS Limit level is 99% of baseline data or 130% of upsteam control station's SS

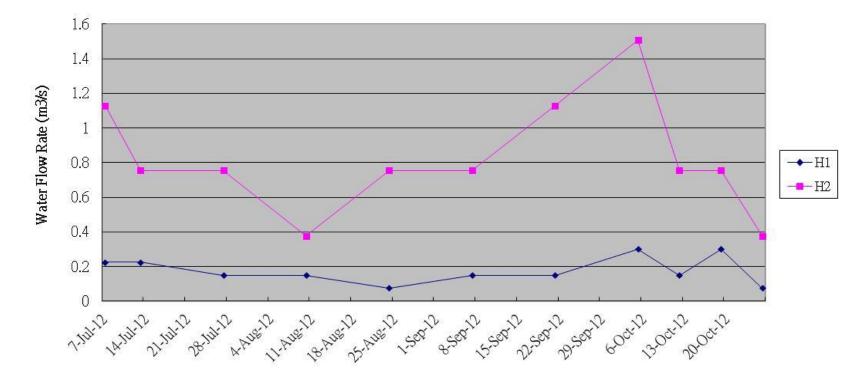

Graphical plots of SS (flood tide) for W1&W2



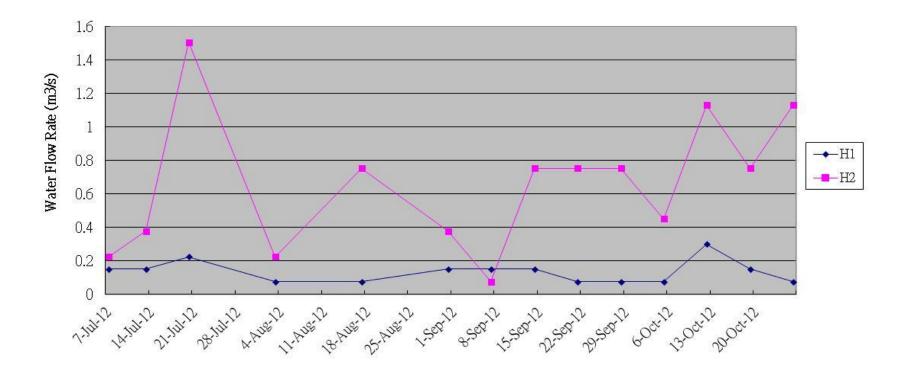
Remarks: Action limit is 95% of baseline data or 120% of upsteam control station's SS Limit level is 99% of baseline data or 130% of upsteam control station's SS


Environmental Pioneers & Solutions Limited


Graphical plots of Noise for M1 & AL1

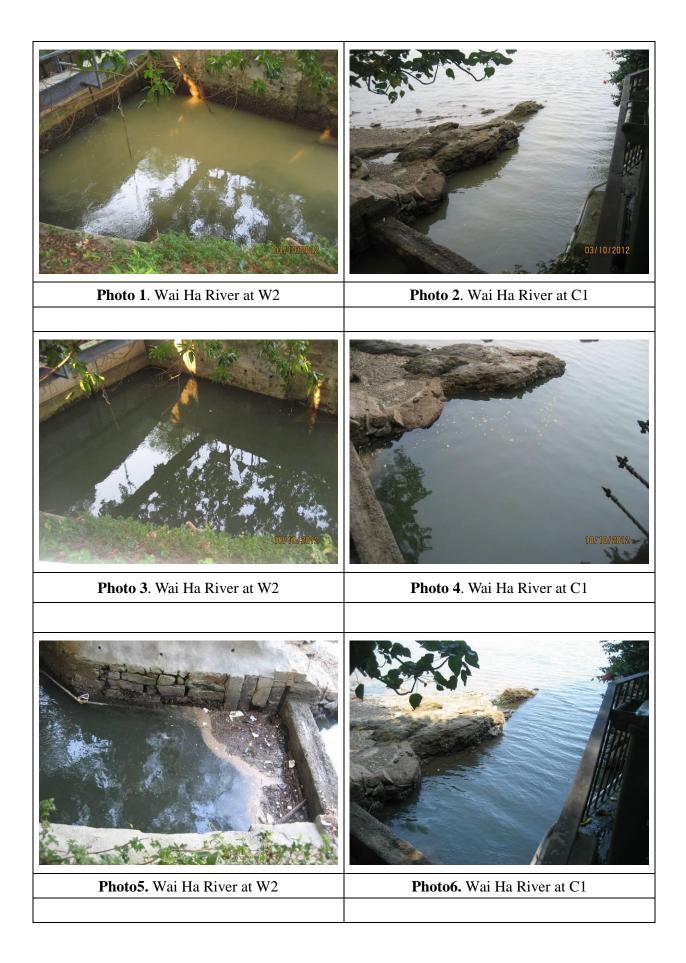

Remarks: Action limit is when one documented complaint is received

Graphical plots of Hydrological Monitoring (water depth at flood tide) for H1 & H2


Remarks: Action level: 80% of baseline water depth. Limit level: 60% of baseline water depth. Graphical plots of Hydrological Monitoring (water depth at ebb tide) for H1 & H2

Graphical plots of Hydrological Monitoring (water flow rate at flood tide) for H1 & H2

Remarks: Action level: 120% of control station's water flow rate on the same day of measurement. Limit level: 140% of control station's water flow rate on the same day of measurement. Graphical plots of Hydrological Monitoring (water flow rate at ebb tide) for H1 & H2


Remarks: Action level: 120% of control station's water flow rate on the same day of measurement. Limit level: 140% of control station's water flow rate on the same day of measurement. Appendix L: Condition of transplanted species *Pavetta hongkongensis* in ECA since 20th Dec 2011

Specimen No.	Species Name	Growth	Height (m)	Date of transplantation	Condition	Remarks
		Form				
PH01	Pavetta hongkongensis	Tree /	2.3	20 th Dec 2011	Fair	
		Shrub				
PH02	Pavetta hongkongensis	Tree /	2	20 th Dec 2011	Fair	
		Shrub				
PH03	Pavetta hongkongensis	Tree /	1.5	20 th Dec 2011	Fair	
		Shrub				

Appendix L Condition of transplanted species *Pavetta hongkongensis* in ECA since 20th Dec 2011

Date of weekly monitoring: 4 Jan, 13 Jan, 17 Jan, 28 Jan, 3 Feb, 6 Feb, 15 Feb, 22 Feb, 1 Mar, 6 Mar, 12 Mar, 18 Mar, 29 Mar, 27 Apr, 31 May, 26 Jun, 31 July, 30 Aug, 26 Sep, 19 Oct 2012.

Appendix M. Photo of Wai Ha River in October 2012

Appendix N Approved Proposal of Revision for Action/Limit Level Criteria of Water Quality Monitoring 28th Floor, Southorn Centre,

130 Hennessy Road,

Wan Chai, Hong Kong.

環境保護署分處

香港層仔 軒尼苛扭 百二十党 修照中心廿八桜

(2) in Ax (1) to EP2/G/I/117 Pt.4 本著檔號 OUR REF: 来雨槽皱 YOUR REF: 2835 1581 絬 2802 4511 TEL. NÔ.: 國文傳真 FAX NO.: 双子鲸件 E-MAIL: 航 1 HOMEPAGE: http://www.epd.gov.hk

By Post & Fax : 2827 8700

31 May 2012

Drainage Projects Division. Drainage Services Department, 40/F, 44/F & 45/F. Revenue Tower, 5 Gloucester Road, Wan Chai, Hong Kong (Attn: Mr. SO Chi Ho)

Dear Mr. So,

Drainage Improvement Works in Sha Tin and Tai Po Environmental Permit No. EP-303/2008 **Revised Water Quality Monitoring**

I refer to the letter from Environmental Pioncers & Solution Ltd (ET Leader) of 17 May 2012 proposing changes to water quality monitoring under the EM&A Programme for the captioned project.

Based on the justifications provided and pursuant to Condition 5.1 of the Environmental Permit No. EP-303/2008, I hereby approve the proposed changes to water quality monitoring.

Yours faithfully.

Principal Environmental Protection Officer for Director of Environmental Protection

97%

c.c.

Internal (w/cncl. proposal enclosed in the letter from Environmental Pioneers & Solutions Ltd. of 17.5.2012)

S(RN)1 EIAO Register Office

かみ、prーと CA ない RECYCLED PATR

EP-303/2008

Enquiry of Revision for Action/Limit Level Criteria of Water Quality Monitoring

	Prepared By:	Verified By:	Submitted By:
Parties:	Environmental Team Leader (Environmental Pioneers & Solutions Limited)	IEC (Environ Hong Kong Limited)	Contractor (Kwan Lee – Kuly Joint Venture)
Name:	Ms. Goldie Fung	Mr. Tony Cheng	Mr. C.L. Wong
Signature:		G.	$\overline{\mathcal{D}}$
Date:	16-5-2012	16 May 2012	16/5/2012

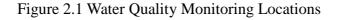
CONTENTS

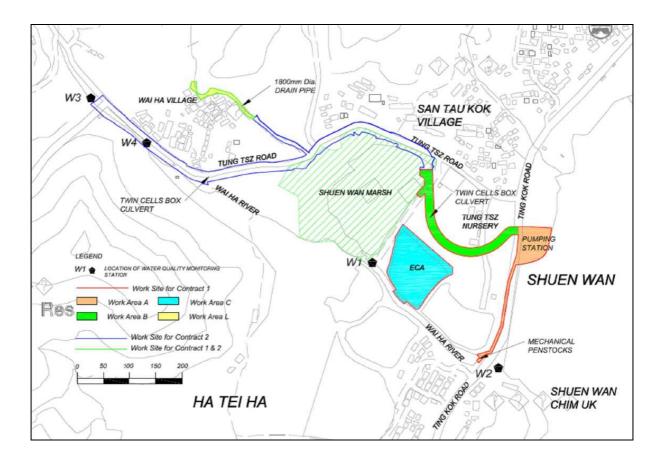
1.	Intro	oduction
2.	Wate	er Quality Monitoring4
	2.1	Monitoring Locations
	2.2	Reference Points for Contract No. 1
	2.3	Data Analysis
3.	Cone	clusion9
Арр	endix	Α
Арр	endix	В
Арр	endix	C
Арр	endix	D
Арр	endix	Ε
Арр	endix	F
Арр	endix	G
Арр	endix	Н
Арр	endix	I

1. Introduction

Environmental Pioneers and Solutions Limited (EPSL) has been appointed to work as the Environmental Team (ET) for the Contract No. DC/2009/22 Drainage Improvement Works in Shuen Wan, Tai Po (Contract no. 1) to implement the Environmental Monitoring and Audit (EM&A) programme.

The scope of the Project includes the following works:-


- Construction of a 1000m long, 3m x 2.5m twin-cell box culvert along Tung Tsz Road;
- (2) Replacement of existing gates by automatic mechanical gates at the mouth of Wai Ha River;
- (3) Construction of a 280m long, 1200 dia. Drainage pipe near Wai Ha Village;
- (4) Construction of a 260m long, 2100 dia. Flood relief drain along Ting Kok Road; and
- (5) Construction of a floodwater pumping station at Shuen Wan.


The construction period of the project was commenced on February 26th, 2010 and anticipated to complete in August 2013.

2. Water Quality Monitoring

2.1 Monitoring Locations

There are two separate contracts covered by the Environmental Permit EP-303/2008, including contract no. DC/2009/22 (contract no. 1) and contract no. DC/2010/02 (contract no. 2). There are totally 4 monitoring stations (W1, W2 and W4 for impact monitoring station and W3 for control station) selected for the water quality monitoring. With reference to the Clause 4.25 of EM&A Manual (Rev. 3), the water samples are collected at mid-depth of each proposed monitoring stations for measuring due to the water depth is less than 3m. The Location Plan is shown in Figure 2.1 for reference.

2.2 Reference Points for Contract No. 1

The construction activities of contract no. 1 were commenced on 9 March 2011 and anticipated to be completed in February 2013 and those of contract no. 2 were commenced on 29 April 2011 and anticipated to be completed on 27 October 2013. According to the current site situation of the project, there are construction activities carrying out for contract no. 1 and no. 2. The water quality of control station W1 may be affected by the construction activities of contract no. 2. Under this circumstance, 2 additional reference points (C1 and C2) are proposed for the water quality monitoring of contract no. 1. The water quality of both C1 and C2 will not be affected by any construction activities of this project. The location of C1 and C2 can refer to the Fig. 2.2. Reference point C1 is located at 20m apart from the estuary of Wai Ha River. The water quality of C1 will not be affected by the construction activities at flood tide and is free from contamination. The water quality parameter of C1; W1 and W2 are listed in Appendix A for reference. Reference point C2 is the same monitoring location of W3 which is approximate 70m apart from the site boundary and will not be affected by the construction activities.

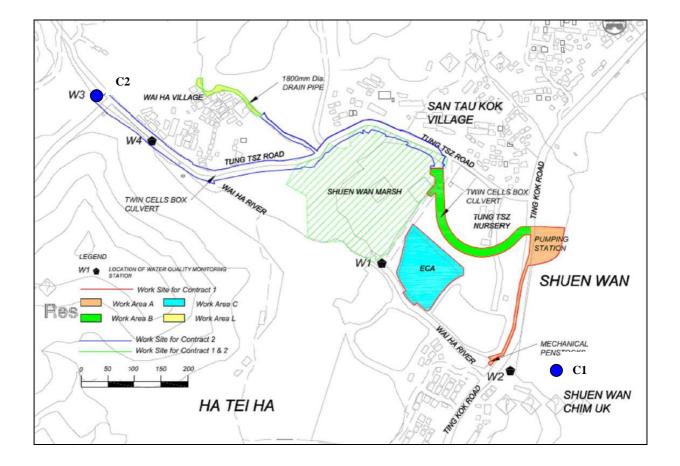


Figure 2.2 Reference Points C1 and C2 Locations

The monitoring parameters of C1 and C2 are same as those of W1, and the monitoring data of C1 and C2 will be reported as the supplementary information. When the water quality of W2 exceed the Action/Limit levels criteria, the monitoring data of C1 will be used for comparison when the monitoring of W2 is taken at flood tide; and the monitoring data of C2 will be used for comparison when the monitoring of W2 is taken at ebb tide. The comparison of water quality between W2 and C1 at flood tide and between W2 and C2 at ebb tide can help to prove whether influence of water quality is caused by the construction activities. The water quality monitoring of W1 will continuously be carried out and the collected data will be submitted for reference as well.

2.3 Data Analysis

With reference to the Location Plan shown in Figure 2.1, control station W3 is at the upstream location of the Wai Ha River for this project. According to the location, the water quality of W3 can be considered to be not affected by any construction activities of the project. Besides, the level of W3 should be +5.08mPD and its water quality can be considered to be not undergone any tidal influence. Based on these criteria, the Dissolved Oxygen (DO) of control station W3 were used for the analysis in the following sections. In order to indicate the current situation of DO level of the river, the DO level of W3 measured from August 2011 to January 2012 were selected to compare with baseline data.

a. Baseline Monitoring Data

The baseline data of DO of W3 are shown in Appendix B. The baseline monitoring data were collected before the commencement of any construction activities in dry season from 7th January, 2011 to 2nd February 2011. According to the submitted Baseline Environmental Monitoring Report, the Action/Limit level for monitoring station W3 are indicated in Table 2.1.

Parameters	Monitoring Statio	ons (Flood Tide)	Monitoring Stations (Ebb Tide)			
	Action	Limit	Action	Limit		
	Level	Level	Level	Level		
DO (mg/L)	8.66	8.00	8.71	8.61		

Table 2.1 Action and Limit Levels for	Water Quality at Monitoring Stations W3
	water Quanty at Montoring Stations we

b. Impact Monitoring Data

Water quality monitoring (WQM) for control station W3 was carried out 13 times in August 2011; 14 times in September 2011; 12 times in October 2011; 13 times in November 2011; 13 times in December 2011; 12 times in January 2012. The collected DO data of W3 in these 77 times monitoring are shown in Appendix C. Average DO monitoring result of each month at W3 are summarized in Table 2.2.

Month	Average Dissolved Oxygen (DO) in mg/L (Range)
August 2011	6.44 (7.31 – 4.44)
September 2011	6.08 (7.32 – 4.49)
October 2011	5.91 (6.86 – 5.09)
November 2011	5.79 (6.72 – 4.62)
December 2011	6.50 (7.91 – 5.09)
January 2012	7.14 (8.89 – 5.10)

Table 2.2 Water quality monitoring results of Dissolved Oxygen at W3

By comparing the WQM results from August 2011 to January 2012 and Action/Limit level (Ebb Tide) of W3 in Table 2.1, it is observed that only one WQM result has not exceeded the Action/Limit level and all other WQM results have exceeded the Limit Level. The result is highlighted in Appendix D for reference. As mentioned before, the water quality of W3 will not be affected by any construction activities of the project, so that the cause of exceedance may due to the natural fluctuation such as temperature and seasonal change.

c. Variation between Dry and Wet Seasons

As the cause of exceedance may due to the seasonal change, the variation between dry and wet season is calculated as below for the compensation of seasonal change. As the water quality in the Wai Ha River (also referred to as Tung Tze Stream) is monitored under the Environmental Protection Department (EPD) routine river water quality monitoring programme. Ten years (Year 2001 to 2010) of river water quality data at station TR6 Tung Tze Stream are extracted from EPD database for the calculation of DO variation between Dry and Wet seasons. TR6 is located near the estuary of Tung Tze Stream and the location can refer to the map in Appendix E. The raw data are listed in Appendix F for reference. After analyzed the distribution of the ten years data (refer to Appendix G), median of DO for dry and wet seasons are used to calculated the DO variation to eliminate the effect of the lowest and the highest values. The DO variation between Dry and Wet seasons variation is calculated by equation (eqt. 2-1).

Variation = (Dry Season $_{median}$ – Wet Season $_{median}$) / Dry Season $_{median}$ (eqt. 2-1)

According to the condition 3.7 of the Environmental Permit EP-303/2008, dry season should be defined from October to April; and the wet season should be defined from May to September. The data from October to April are used for the calculation of Dry Season; the data from April to October are used for the calculation of Wet Season. Total 6 sets of result for 3 different time period are calculated for comparison. Both median and mean of the DO have been calculated for time periods including 1) Recent year - Year 2010; 2) Four years data – from Year 2007 to 2010; and 3) Ten years data – from Year 2001 to 2010. The results can refer to Table 2.3.

Table 2.3 DO variation between dry and wet season from 2007 to 2010 at station TR6, Tung TzeStream

Collected Data	DO(mg/l)	Wet season	Dry season	Variation
Year 2010	Median	6.50	6.50	0%
Year 2007-2010	Median	5.65	6.55	13.74%
Year 2001-2010	Median	5.80	6.40	9.37%
Year 2010	Mean	6.16	6.36	3.14%
Year 2007-2010	Mean	5.81	6.28	7.48%
Year 2001-2010	Mean	5.85	6.38	8.31%

From the results in Table 2.3, the highest variation value 13.74% is used to enhance the effect of applying the variation. By applying the variation (13.74%) to the baseline data, a new set of Action/Limit level is calculated by equation (eqt. 2-2) and the result are shown in Table 2.4.

Revised Level = Original Level x (1-13.74%) (eqt. 2-2)

Para	ameters	Monitoring S Tio		Monitoring Stations (Ebb Tide)			
		Action Limit Level Level		Action Limit Level Level			
Original Level	DO (mg/L)	8.66	8.00	8.71	8.61		
Revised level	DO (mg/L)	7.47	6.90	7.51	7.43		

Table 2.4 New set of Action/Limit Level, using the calculated variation (13.74%)

With reference to the new set of Action/Limit level in Table 2.4, the higher DO level (Ebb tide) were used to compare with the WQM results from August 2011 to January 2012, it is observed that there were only five times of WQM results have not exceeded the Action/Limit level and all other 72 times of WQM results have exceeded the Limit Level. The result is highlighted in Appendix H for reference. Since W3 functions as the control station of this project, its water quality should not be affected by the construction works of this project. From the comparison results with the original and revised Action/Limit level, it was observed that both sets of Action/Limit level cannot reflect the actual river condition.

3. Conclusion

After the consideration of seasonal change which may affect the DO of W3 in section 2.3, the DO of W3 will also exceed the Limit level in almost all the measurement day in both dry and wet seasons. After the consideration of seasonal change and applied the DO variation between wet and dry season to amend the Action/Limit level, the DO of W3 will also exceed the Limit level in both dry and wet seasons. Both the original and revised Action/Limit level could not reflect the actual condition of Wai Ha River. The Action/Limit level criteria should be revised so as to reflect the actual condition of Wai Ha River.

With reference to other EM&A projects of river work in Hong Kong (refer to Appendix I), the limit level for DO is 4 mg/L and without the comparison of the percentile of baseline data. Suggest that the Action Level criteria remain unchanged which is DO exceedance occur when impact monitoring data is lower than 5

percentile of baseline data; and the Limit Level criteria should be revised to DO exceedance occur when impact monitoring data is lower than 4 mg/L.

Parameter	Original Limit Level	Revised Limit Level
DO in mg/L	4 mg/L or 1%-ile of baseline	4 mg/L
	data	

EP-303/2008 Water Quality Baseline Monitoring of Reference Point C1 - Flood

Position	Tide	Weather	Date	Time	Location	pH value	Salinity (ppt)	Temperature (°C)	Turbidity (NTU)	DO (mg/L)	
				8:45	C1	8.5	28.1	18	0.1	9.21	
Mid	Flood	Cloudy	2/3/2012	8:57	W2	7.16	4	18.1	11.7	7.16	
				9:23	W1	7.12	0.1	19.3	6	7.47	
					15:35	C1	8.59	28.3	20.8	0.1	9.5
Mid	Flood Cloudy	Cloudy	/ 5/3/2012	15:18	W2	7.14	6.6	21	7.2	6.97	
				15:00	W1	7.1	0.4	21.4	3.4	6.91	
				16:45	C1	8.51	29	20.5	0.1	9.32	
Mid	Flood	od Cloudy	ıdy 7/3/2012	16:30	W2	7.78	16.4	20.8	14.4	7.51	
				16:00	W1	7.3	3.8	20.4	27.3	7.39	
				9:40	C1	8.55	28.2	16.7	0.1	9.53	
Mid	Mid Flood	Rainy	12/3/2012	9:55	W2	8.18	26.3	16.9	1.2	7.86	
				10:25	W1	7.94	21.5	16.9	5.3	8.27	

EP-303/2008
Water Quality Baseline Monitoring of Control Point W3 - Flood

Location	Position	Tide	Date	Time	Weather	DO (mg/L)	DO (%)		(%)	Average
Location	FUSILION	Tide	Hue Date	Time	Weather	Data 1	Data 2	Average	Data 1	Data 2	Average
W3	Mid	Flood	7/1/2011	9:20	Cloudy	9.55	9.46	9.51	88	89	89
W3	Mid	Flood	10/1/2011	12:00	Cloudy	10.12	10.13	10.13	113	110	112
W3	Mid	Flood	12/1/2011	12:50	Cloudy	7.83	7.86	7.85	95	96	96
W3	Mid	Flood	14/1/2011	13:00	Cloudy	9.67	9.52	9.60	98	96	97
W3	Mid	Flood	17/1/2011	15:40	Cloudy	9.92	9.81	9.87	105	104	105
W3	Mid	Flood	19/1/2011	17:45	Sunny	9.25	9.41	9.33	98	101	100
W3	Mid	Flood	21/1/2011	7:40	Sunny	10.86	10.52	10.69	103	104	104
W3	Mid	Flood	24/1/2011	9:15	Cloudy	9.56	9.71	9.64	101	106	104
W3	Mid	Flood	26/1/2011	11:00	Sunny	11.10	10.69	10.90	111	108	110
W3	Mid	Flood	28/1/2011	13:05	Sunny	10.21	9.89	10.05	103	99	101
W3	Mid	Flood	31/1/2011	16:10	Sunny	10.54	10.72	10.63	116	112	114
W3	Mid	Flood	2/2/2011	7:00	Cloudy	10.78	10.66	10.72	109	103	106
5 percentile		DO Acti	on			8.	07	8.66			
1 percentile	tile DO Limit				7.84		8.00				

EP-303/2008
Water Quality Baseline Monitoring of Control Point W3 - Ebb

Location	Position	Tide	ide Date	Time	Weather	DO (mg/L)	Average	DO	(%)	Average
Location	Position	Tide	Dale	Time	weather	Data 1	Data 2	Average	Data 1	Data 2	Average
W3	Mid	Ebb	7/1/2011	14:10	Cloudy	8.91	9.00	8.96	97	99	98
W3	Mid	Ebb	10/1/2011	17:10	Cloudy	9.00	8.85	8.93	94	91	93
W3	Mid	Ebb	12/1/2011	18:40	Cloudy	9.84	9.61	9.73	96	95	96
W3	Mid	Ebb	14/1/2011	7:50	Cloudy	9.98	9.77	9.88	101	95	98
W3	Mid	Ebb	17/1/2011	10:30	Cloudy	10.92	10.63	10.78	104	104	104
W3	Mid	Ebb	19/1/2011	11:25	Sunny	8.77	8.41	8.59	96	97	97
W3	Mid	Ebb	21/1/2011	13:10	Sunny	10.08	9.97	10.03	106	101	104
W3	Mid	Ebb	24/1/2011	15:30	Cloudy	8.93	8.67	8.80	96	94	95
W3	Mid	Ebb	26/1/2011	17:35	Sunny	10.71	10.24	10.48	109	103	106
W3	Mid	Ebb	28/1/2011	7:50	Sunny	9.58	9.55	9.57	97	84	91
W3	Mid	Ebb	31/1/2011	10:45	Sunny	11.33	10.76	11.05	113	106	110
W3	Mid	Ebb	2/2/2011	12:15	Cloudy	9.96	9.59	9.78	102	96	99
5 percentile		DO Acti	on			8.	69	8.71			
1 percentile		DO Lin	nit			8.4	47	8.61			

					• • -
Monitoring Date	DO mg/L	Monitoring Date	DO mg/L	Monitoring Date	DO mg/L
1-Aug-2011	6.93	30-Sep-2011	5.52	1-Dec-2011	5.68
3-Aug-2011	7.31	4-Oct-2011	5.09	3-Dec-2011	5.09
6-Aug-2011	6.89	6-Oct-2011	5.12	6-Dec-2011	6.17
8-Aug-2011	7.26	8-Oct-2011	5.89	8-Dec-2011	5.59
11-Aug-2011	6.01	11-Oct-2011	6.09	10-Dec-2011	6.58
13-Aug-2011	6.76	13-Oct-2011	6.53	13-Dec-2011	6.44
15-Aug-2011	7.03	15-Oct-2011	5.19	15-Dec-2011	7.15
17-Aug-2011	6.40	18-Oct-2011	5.21	17-Dec-2011	6.60
19-Aug-2011	6.74	20-Oct-2011	6.04	20-Dec-2011	6.68
23-Aug-2011	6.21	22-Oct-2011	6.86	22-Dec-2011	7.14
25-Aug-2011	5.07	25-Oct-2011	6.58	24-Dec-2011	7.91
27-Aug-2011	4.44	27-Oct-2011	6.39	29-Dec-2011	6.90
30-Aug-2011	6.71	29-Oct-2011	5.92	31-Dec-2011	6.63
1-Sep-2011	7.18	1-Nov-2011	5.66	3-Jan-2012	6.22
3-Sep-2011	7.32	3-Nov-2011	6.64	5-Jan-2012	6.90
6-Sep-2011	5.86	5-Nov-2011	6.58	7-Jan-2012	5.10
8-Sep-2011	5.66	8-Nov-2011	5.47	10-Jan-2012	7.10
10-Sep-2011	6.88	10-Nov-2011	6.72	12-Jan-2012	7.25
12-Sep-2011	6.44	12-Nov-2011	6.53	14-Jan-2012	6.90
15-Sep-2011	6.09	15-Nov-2011	6.51	17-Jan-2012	7.60
17-Sep-2011	5.73	17-Nov-2011	4.74	19-Jan-2012	6.50
20-Sep-2011	6.26	19-Nov-2011	4.62	21-Jan-2012	8.41
22-Sep-2011	4.49	22-Nov-2011	5.09	26-Jan-2012	8.89
24-Sep-2011	6.43	24-Nov-2011	5.70	28-Jan-2012	7.62
26-Sep-2011	5.36	26-Nov-2011	5.69	31-Jan-2012	7.18
28-Sep-2011	5.91	29-Nov-2011	5.38		

Appendix C – W3 Monitoring data of dissolved oxygen from August 2011 to January 2012

Monitoring Date	DO	Monitoring Date	DO	Monitoring Date	DO
1 4 2011	mg/L	20.0 2011	mg/L	1.D. 2011	mg/L
1-Aug-2011	6.93	30-Sep-2011	5.52	1-Dec-2011	5.68
3-Aug-2011	7.31	4-Oct-2011	5.09	3-Dec-2011	5.09
6-Aug-2011	6.89	6-Oct-2011	5.12	6-Dec-2011	6.17
8-Aug-2011	7.26	8-Oct-2011	5.89	8-Dec-2011	5.59
11-Aug-2011	6.01	11-Oct-2011	6.09	10-Dec-2011	6.58
13-Aug-2011	6.76	13-Oct-2011	6.53	13-Dec-2011	6.44
15-Aug-2011	7.03	15-Oct-2011	5.19	15-Dec-2011	7.15
17-Aug-2011	6.40	18-Oct-2011	5.21	17-Dec-2011	6.60
19-Aug-2011	6.74	20-Oct-2011	6.04	20-Dec-2011	6.68
23-Aug-2011	6.21	22-Oct-2011	6.86	22-Dec-2011	7.14
25-Aug-2011	5.07	25-Oct-2011	6.58	24-Dec-2011	7.91
27-Aug-2011	4.44	27-Oct-2011	6.39	29-Dec-2011	6.90
30-Aug-2011	6.71	29-Oct-2011	5.92	31-Dec-2011	6.63
1-Sep-2011	7.18	1-Nov-2011	5.66	3-Jan-2012	6.22
3-Sep-2011	7.32	3-Nov-2011	6.64	5-Jan-2012	6.90
6-Sep-2011	5.86	5-Nov-2011	6.58	7-Jan-2012	5.10
8-Sep-2011	5.66	8-Nov-2011	5.47	10-Jan-2012	7.10
10-Sep-2011	6.88	10-Nov-2011	6.72	12-Jan-2012	7.25
12-Sep-2011	6.44	12-Nov-2011	6.53	14-Jan-2012	6.90
15-Sep-2011	6.09	15-Nov-2011	6.51	17-Jan-2012	7.60
17-Sep-2011	5.73	17-Nov-2011	4.74	19-Jan-2012	6.50
20-Sep-2011	6.26	19-Nov-2011	4.62	21-Jan-2012	8.41
22-Sep-2011	4.49	22-Nov-2011	5.09	26-Jan-2012	8.89
24-Sep-2011	6.43	24-Nov-2011	5.70	28-Jan-2012	7.62
26-Sep-2011	5.36	26-Nov-2011	5.69	31-Jan-2012	7.18
28-Sep-2011	5.91	29-Nov-2011	5.38		


Appendix D - Exceedance records from August 2011 to January 2012 for Existing Criteria

Remarks:

Red highlight: The value is exceeded Limit Level (<8.61)

Yellow highlight: The value is exceeded Action Level (<**8.71**)

Appendix E – Location of TR6 at Tung Tze Stream

Appendix F

EP-303/2008 Dissolved Oxygen Level at Tung Tze Stream Dry Season

				DO (mg/l)
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/1/2001	8.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	12/2/2001	10.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	16/3/2001	5
Tolo Harbour And Channel	Tung Tze Stream	TR6	19/4/2001	6.6
Tolo Harbour And Channel	Tung Tze Stream	TR6	12/10/2001	6.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	16/11/2001	7.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	17/12/2001	6.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	18/1/2002	6.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	20/2/2002	7.3
Tolo Harbour And Channel	Tung Tze Stream	TR6	18/3/2002	6.6
Tolo Harbour And Channel	Tung Tze Stream	TR6	18/4/2002	6.8
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/10/2002	4.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	4/11/2002	6.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	5/12/2002	5.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/1/2003	7.3
Tolo Harbour And Channel	Tung Tze Stream	TR6	7/2/2003	7.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	6/3/2003	6.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	10/4/2003	7.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	8/10/2003	4.8
Tolo Harbour And Channel	Tung Tze Stream	TR6	6/11/2003	5.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	4/12/2003	7.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	9/1/2004	6.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	4/2/2004	8.3
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/3/2004	6
Tolo Harbour And Channel	Tung Tze Stream	TR6	2/4/2004	7.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	8/10/2004	4.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	4/11/2004	5.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	2/12/2004	5.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	7/1/2005	7.8
Tolo Harbour And Channel	Tung Tze Stream	TR6	1/2/2005	5.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	4/3/2005	8.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	8/4/2005	5.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	7/10/2005	5.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/11/2005	5.7
Tolo Harbour And Channel	Tung Tze Stream	TR6	5/12/2005	5.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	5/1/2006	5.3
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/2/2006	6
Tolo Harbour And Channel	Tung Tze Stream	TR6	8/3/2006	5.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/4/2006	8.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	5/10/2006	6.6
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/11/2006	5.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	5/12/2006	7.4

Appendix F

EP-303/2008 Dissolved Oxygen Level at Tung Tze Stream Dry Season

				DO (mg/l)
Tolo Harbour And Channel	Tung Tze Stream	TR6	5/1/2007	5.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	2/2/2007	7.3
Tolo Harbour And Channel	Tung Tze Stream	TR6	2/3/2007	5.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	13/4/2007	5.3
Tolo Harbour And Channel	Tung Tze Stream	TR7	4/10/2007	5.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	2/11/2007	5
Tolo Harbour And Channel	Tung Tze Stream	TR6	4/12/2007	7.3
Tolo Harbour And Channel	Tung Tze Stream	TR6	7/1/2008	6.7
Tolo Harbour And Channel	Tung Tze Stream	TR6	13/2/2008	6.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	6/3/2008	6.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	10/4/2008	6.6
Tolo Harbour And Channel	Tung Tze Stream	TR6	20/10/2008	5.6
Tolo Harbour And Channel	Tung Tze Stream	TR6	13/11/2008	6.3
Tolo Harbour And Channel	Tung Tze Stream	TR6	2/12/2008	7
Tolo Harbour And Channel	Tung Tze Stream	TR6	7/1/2009	7.3
Tolo Harbour And Channel	Tung Tze Stream	TR6	6/2/2009	6.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	5/3/2009	6.7
Tolo Harbour And Channel	Tung Tze Stream	TR6	20/4/2009	5.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	16/10/2009	4.7
Tolo Harbour And Channel	Tung Tze Stream	TR6	16/11/2009	6.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	16/12/2009	7
Tolo Harbour And Channel	Tung Tze Stream	TR6	6/1/2010	6.6
Tolo Harbour And Channel	Tung Tze Stream	TR6	18/2/2010	7.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/3/2010	5.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	8/4/2010	6.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	20/10/2010	6.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	17/11/2010	6.6
Tolo Harbour And Channel	Tung Tze Stream	TR6	15/12/2010	5.6

EP-303/2008 Dissolved Oxygen Level at Tung Tze Stream Wet Season

				DO (mg/l)
Tolo Harbour And Channel	Tung Tze Stream	TR6	24/5/2001	6.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	15/6/2001	5.7
Tolo Harbour And Channel	Tung Tze Stream	TR6	11/7/2001	7.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/8/2001	6.6
Tolo Harbour And Channel	Tung Tze Stream	TR6	19/9/2001	5.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	22/5/2002	4.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	7/6/2002	5
Tolo Harbour And Channel	Tung Tze Stream	TR6	4/7/2002	5.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	2/8/2002	5.7
Tolo Harbour And Channel	Tung Tze Stream	TR6	4/9/2002	5.8
Tolo Harbour And Channel	Tung Tze Stream	TR6	14/5/2003	5.7
Tolo Harbour And Channel	Tung Tze Stream	TR6	9/6/2003	4.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	11/7/2003	6.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	8/8/2003	5.8
Tolo Harbour And Channel	Tung Tze Stream	TR6	5/9/2003	5.6
Tolo Harbour And Channel	Tung Tze Stream	TR6	7/5/2004	6.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	4/6/2004	5.8
Tolo Harbour And Channel	Tung Tze Stream	TR6	7/7/2004	5.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	9/8/2004	6.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	2/9/2004	6.7
Tolo Harbour And Channel	Tung Tze Stream	TR6	6/5/2005	6
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/6/2005	5.8
Tolo Harbour And Channel	Tung Tze Stream	TR6	8/7/2005	6.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/8/2005	5.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	2/9/2005	6.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	11/5/2006	5.2
Tolo Harbour And Channel	Tung Tze Stream	TR6	16/6/2006	7
Tolo Harbour And Channel	Tung Tze Stream	TR6	5/7/2006	5.6
Tolo Harbour And Channel	Tung Tze Stream	TR6	2/8/2006	6.7
Tolo Harbour And Channel	Tung Tze Stream	TR6	6/9/2006	5

EP-303/2008 Dissolved Oxygen Level at Tung Tze Stream Wet Season

				DO (mg/l)
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/5/2007	6.3
Tolo Harbour And Channel	Tung Tze Stream	TR6	1/6/2007	5.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	5/7/2007	7.3
Tolo Harbour And Channel	Tung Tze Stream	TR6	2/8/2007	6.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	10/9/2007	6.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	16/5/2008	5.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	18/6/2008	5.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	18/7/2008	5.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	25/8/2008	6.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	18/9/2008	4.1
Tolo Harbour And Channel	Tung Tze Stream	TR6	7/5/2009	6
Tolo Harbour And Channel	Tung Tze Stream	TR6	3/6/2009	5.4
Tolo Harbour And Channel	Tung Tze Stream	TR6	17/7/2009	5.5
Tolo Harbour And Channel	Tung Tze Stream	TR6	7/8/2009	4.9
Tolo Harbour And Channel	Tung Tze Stream	TR6	17/9/2009	5.3
Tolo Harbour And Channel	Tung Tze Stream	TR6	27/5/2010	5.8
Tolo Harbour And Channel	Tung Tze Stream	TR6	30/6/2010	6.8
Tolo Harbour And Channel	Tung Tze Stream	TR6	19/7/2010	5
Tolo Harbour And Channel	Tung Tze Stream	TR6	13/8/2010	6.7
Tolo Harbour And Channel	Tung Tze Stream	TR6	9/9/2010	6.5

EP-303/2008 Dissolved Oxygen Level at Tung Tze Stream Median of Dry Season

Date	DO(mg/l)
3/1/2001	8.1
12/2/2001	10.2
16/3/2001	5
19/4/2001	6.6
12/10/2001	6.1
16/11/2001	7.2
17/12/2001	6.2
18/1/2002	6.2
20/2/2002	7.3
18/3/2002	6.6
18/4/2002	6.8
3/10/2002	4.9
4/11/2002	6.9
5/12/2002	5.4
3/1/2003	7.3
7/2/2003	7.4
6/3/2003	6.4
10/4/2003	7.1
8/10/2003	4.8
6/11/2003	5.9
4/12/2003	7.5
9/1/2004	6.1
4/2/2004	8.3
3/3/2004	6
2/4/2004	7.2
8/10/2004	4.9
4/11/2004	5.9
2/12/2004	5.1
7/1/2005	7.8
1/2/2005	5.2
4/3/2005	8.2
8/4/2005	5.1
7/10/2005	5.4
3/11/2005	5.7
5/12/2005	5.1

For 2001 to 2010			
Minimum	4.7		
Median	6.40		
Maximum	10.2		
Mean	6.38		

EP-303/2008 Dissolved Oxygen Level at Tung Tze Stream Median of Dry Season

Date	DO(mg/l)
5/1/2006	5.3
3/2/2006	6
8/3/2006	5.5
3/4/2006	8.4
5/10/2006	6.6
3/11/2006	5.5
5/12/2006	7.4
5/1/2007	5.9
2/2/2007	7.3
2/3/2007	5.2
13/4/2007	5.3
4/10/2007	5.5
2/11/2007	5
4/12/2007	7.3
7/1/2008	6.7
13/2/2008	6.9
6/3/2008	6.1
10/4/2008	6.6
20/10/2008	5.6
13/11/2008	6.3
2/12/2008	7
7/1/2009	7.3
6/2/2009	6.9
5/3/2009	6.7
20/4/2009	5.2
16/10/2009	4.7
16/11/2009 16/12/2009	6.9 7
6/1/2010	7 6.6
18/2/2010	7.4
3/3/2010	5.4
8/4/2010	6.5
20/10/2010	6.4
17/11/2010	6.6
15/12/2010	5.6

For 2007 to 2010		
Minimum	4.7	
Median	6.55	
Maximum	7.4	
Mean	6.28	

For 2010				
Minimum	5.4			
Median	6.50			
Maximum	7.4			
Mean	6.36			

EP-303/2008 Dissolved Oxygen Level at Tung Tze Stream Median of Wet Season

Date	DO(mg/l)
24/5/2001	6.1
15/6/2001	5.7
11/7/2001	7.9
3/8/2001	6.6
19/9/2001	5.2
22/5/2002	4.1
7/6/2002	5
4/7/2002	5.4
2/8/2002	5.7
4/9/2002	5.8
14/5/2003	5.7
9/6/2003	4.9
11/7/2003	6.2
8/8/2003	5.8
5/9/2003	5.6
7/5/2004	6.5
4/6/2004	5.8
7/7/2004	5.2
9/8/2004	6.5
2/9/2004	6.7
6/5/2005	6
3/6/2005	5.8
8/7/2005	6.4
3/8/2005	5.5
2/9/2005	6.5
11/5/2006	5.2
16/6/2006	7
5/7/2006	5.6
2/8/2006	6.7
6/9/2006	5
3/5/2007	6.3
1/6/2007	5.1
5/7/2007	7.3
2/8/2007	6.9
10/9/2007	6.1
16/5/2008	5.5
18/6/2008	5.4 5.5
18/7/2008 25/8/2008	5.5 6.1
18/9/2008	4.1
10/0/2000	7.1

For 2001 to 2010					
Minimum	4.1				
Median	5.80				
Maximum	7.9				
Mean	5.85				

For 2007 to 2010					
Minimum	4.1				
Median	5.65				
Maximum	7.3				
Mean	5.81				

Appendix G

EP-303/2008 Dissolved Oxygen Level at Tung Tze Stream Median of Wet Season

Date	DO(mg/l)		
7/5/2009	6		
3/6/2009	5.4		
17/7/2009	5.5		
7/8/2009	4.9		
17/9/2009	5.3		
27/5/2010	5.8		
30/6/2010	6.8		
19/7/2010	5		
13/8/2010	6.7		
9/9/2010	6.5		

For 2010				
Minimum	5.0			
Median	6.50			
Maximum	6.8			
Mean	6.16			

••		-			-		
Monitoring Date	DO mg/L	Monitoring Date	DO mg/L	Monitoring Date	DO mg/L		
1-Aug-2011	6.93	30-Sep-2011	5.52	1-Dec-2011	5.68		
3-Aug-2011	7.31	4-Oct-2011	5.09	3-Dec-2011	5.09		
6-Aug-2011	6.89	6-Oct-2011	5.12	6-Dec-2011	6.17		
8-Aug-2011	7.26	8-Oct-2011	5.89	8-Dec-2011	5.59		
11-Aug-2011	6.01	11-Oct-2011	6.09	10-Dec-2011	6.58		
13-Aug-2011	6.76	13-Oct-2011	6.53	13-Dec-2011	6.44		
15-Aug-2011	7.03	15-Oct-2011	5.19	15-Dec-2011	7.15		
17-Aug-2011	6.40	18-Oct-2011	5.21	17-Dec-2011	6.60		
19-Aug-2011	6.74	20-Oct-2011	6.04	20-Dec-2011	6.68		
23-Aug-2011	6.21	22-Oct-2011	6.86	22-Dec-2011	7.14		
25-Aug-2011	5.07	25-Oct-2011	6.58	24-Dec-2011	7.91		
27-Aug-2011	4.44	27-Oct-2011	6.39	29-Dec-2011	6.90		
30-Aug-2011	6.71	29-Oct-2011	5.92	31-Dec-2011	6.63		
1-Sep-2011	7.18	1-Nov-2011	5.66	3-Jan-2012	6.22		
3-Sep-2011	7.32	3-Nov-2011	6.64	5-Jan-2012	6.90		
6-Sep-2011	5.86	5-Nov-2011	6.58	7-Jan-2012	5.10		
8-Sep-2011	5.66	8-Nov-2011	5.47	10-Jan-2012	7.10	Remarks:	
10-Sep-2011	6.88	10-Nov-2011	6.72	12-Jan-2012	7.25		
12-Sep-2011	6.44	12-Nov-2011	6.53	14-Jan-2012	6.90	Red highligh	ht: The value is exceed
15-Sep-2011	6.09	15-Nov-2011	6.51	17-Jan-2012	7.60	Limit Level	(<7.43)
17-Sep-2011	5.73	17-Nov-2011	4.74	19-Jan-2012	6.50		
20-Sep-2011	6.26	19-Nov-2011	4.62	21-Jan-2012	8.41	Yellow high	llight: The value is
22-Sep-2011	4.49	22-Nov-2011	5.09	26-Jan-2012	8.89	exceeded Action Level (<7.51)	
24-Sep-2011	6.43	24-Nov-2011	5.70	28-Jan-2012	7.62		
26-Sep-2011	5.36	26-Nov-2011	5.69	31-Jan-2012	7.18		
28-Sep-2011	5.91	29-Nov-2011	5.38				

Appendix H – W3 Monitoring data of dissolved oxygen from August 2011 to January 2012 with applying 13.74% variation

Appendix I

EP-303/2008 Enquiry of Revision for Action/Limit Level Criteria of Water Quality Monitoring

Reference Cases

Case	Environmental Permit No.	Propject Title	EM&A Manual	EIA Report	Limit Level for Water Quality - DO
1.	EP-434/2012	Drainage Improvements in Southern Lantau	Section 4.8.1, Table 4.1		4mg/L
2.	EP-429/2012	Development of the Integrated Waste Management Facilities Phase 1	Section 4a.7.12, Table 4a.4		4mg/L
3.	EP-413/2011	Integration of Siu Ho Wan and Silver Mine Bay Water Treatment Works	Section 4.7.8, Table 4.2		4mg/L
4.	EP-334/2009	Sludge Treatment Facilities	Section 5.8.1.1, Table 5.3		4mg/L
5.	EP-224/2005	Proposed Extension of Public Golf Course at Kau Sai Chau, Sai Kung	Section 3.9.1, Table 3.8		4mg/L
6.	EP-217/2005	Drainage Improvements in Sai Kung		Section 4.7.3, Table 4.2	4mg/L
7.	EP-190/2004	Improvements to San Tin Interchange	Section 4.25, Table 4.1		4mg/L