

PROJECT NO.: TCS/00553/11

CONTRACT NO. DC/2010/02 – DRAINAGE IMPROVEMENT IN SHUEN WAN AND SHEK WU WAI

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (NO.29) – NOVEMBER 2013

PREPARED FOR Kwan Lee-Kuly Joint Venture

Date R	Reference No.	Prepared By	Certified by
20 December 2013 TCS005	553/11/600/R0310v1	Nicola Hon (Environmental Consultant)	T.W. Tam (Environmental Team Leader)

Ver.	Date	Description
1	20 December 2013	First submission

This report has been prepared by Action-United Environmental Services & Consulting with all reasonable skill, care and diligence within the terms of the Agreement with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

S ENVIRON

20 Feb 2014

By Fax (2827 8700) and Post

Drainage Services Department Drainage Projects Division 44 & 45/F., Revenue Tower 5 Gloucester Road, Wan Chai, Hong Kong

Ref.: DSDSHUWNEM00_0_0630L.12

Attention: Mr. H.K.Chan and Mr. So Chi Ho

Dear Sirs,

Re: Agreement No. DP 01/2010 Services as Independent Environmental Checker for the Drainage Improvement Works in Sha Tin and Tai Po under Contract No. DC/2010/02 <u>Monthly Environmental Monitoring and Audit Report for November 2013</u>

Reference is made to Environment Team's submission of the Monthly Environmental Monitoring and Audit Report for November 2013 by Email on 20 December 2013 (entitled "DC/2010/22 - Monthly Impact EM&A Report (Contract 2) No.29 - November 2013").

Please be informed that we have no comment on the captioned revised report. We write to verify the captioned submission in accordance with Condition 5.4 of EP-303/2008.

Thank you very much for your kind attention and please do not hesitate to contact Mr. Max Lee (3465 - 2809) or the undersigned should you have any queries.

Yours sincerely,

Tony Cheng Independent Environmental Checker

c.c.

AUES Kwan Lee-Kuly JV Attn: Mr. T. W. Tam Attn: Mr. W. K. Chan

By Fax: 2959 6079 By Fax: 2674 6688

Q:\Projects\DSDSHUWNEM00\Corr\Out\DSDSHUWNEM00_0_06301..12.doc

EXECUTIVE SUMMARY

ES.01. This is the 29th Monthly Environmental Monitoring and Audit (EM&A) Report for designated works of *DSD Contract No. DC/2010/02 - Drainage Improvement in Shuen Wan and Shek Wu Wai* (hereafter "Contract 2") under Environmental Permit No.EP-303/2008, covering a period from 1 to 30 November 2013 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Construction	$L_{eq (30min)}$ Daytime – M2, M3 & M4	15
Noise $L_{eq (30min)}$ Daytime – M1 & AL1		8
	Local Stream Water Sampling – W1, W3 and W4	13
Water Quality	Local Stream Water Sampling – W2	13
water Quality	Hydrological characteristics measurement – H1 and H2	5
	Hydrological characteristics measurement – H3 and H4	5
Inspection /	Monthly Environmental Site Inspection and audit by IEC	1
Audit	Regular weekly Environmental inspection by the Contractor, ET and Site Representative Engineer	4
Ecological	Bi- monthly Ecological Monitoring	1
Landscape & Visual	Bi-weekly Inspection by a registered Landscape Architect	2

- ES.03. In this Reporting Period, bi-monthly ecological monitoring in Area under Contract 2 was performed on 25 November 2013.
- ES.04. Landscape and visual inspection was carried on 15 and 28 November 2013 and the monthly Landscape & Visual Report (November 2013) has been signed by the registered Landscape Architect.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.05. No exceedance in construction noise monitoring is recorded in this Reporting Period. For water quality monitoring, a total of 69 Action/ Limit Level exceedances, namely 28 exceedances in dissolved oxygen, 28 exceedances in turbidity and 13 exceedances in suspended solids were recorded in this Reporting Period. NOEs were issued to notify EPD, IEC, the Contractor and RE upon confirmation of the results. The statistics of environmental exceedance, NOE issued and investigation result are summarized in the following table.

Environmental	Monitoring	Action Limit		Event & Action			
Issues	Parameters	Level	Linnt Level	NOE Issued	Investigation	Corrective Actions	
Construction Noise	L _{eq(30min)} Daytime	0	0	0	N.A.	N.A.	
	DO	28	0	28	Exceedances on 6, 11 and 22	Enhance the water	
Watan Onality	Turbidity	9	19	28		quality mitigation	
Water Quality	SS	1	12	13	November 2013 were partially due to Project	measures during rainy	
Hydrological	Water Flow	0	0	0	N.A.	N.A.	
Characteristics	Water Depth	0	0	0	N.A.	N.A.	

Note: NOE – Notification of Exceedance

SITE INSPECTION

ES.06. Weekly environmental site inspections had been carried out by the Contractor, ET and the RE on

7, 14, 21 and 25 November 2013. Furthermore, joint site inspection with the IEC was carried out on 25 November 2013. In this Reporting Period, 3 observations were recorded but no non-compliance was noted during the site inspection.

ENVIRONMENTAL COMPLAINT

ES.07. No written or verbal complaint was recorded in this Reporting Period.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.08. No environmental summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.09. No report changes were made in this Reporting Period.

FUTURE KEY ISSUES

- ES.10. During dry season, dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road would be a key issue in coming months.
- ES.11. Special attention should be also paid on the muddy water and other water quality pollutants via site surface water runoff into the local stream Wah Ha River. As an effective water quality mitigation measure, the rock bund in the de-silting channel should be repaired regularly and ensure the de-silting performance.
- ES.12. On the other hand, construction noise should be other key environmental issue during sheet-piling process. The noise mitigation measures should be necessary to implement in accordance with EM&A Manual stipulation. Dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road is also reminded.

TABLE OF CONTENTS

1.0	INTRODUCTION		1
	PROJECT BACKGROUND	1	
	REPORT STRUCTURE	1	
2.0	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION		2
	PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE	2	
	CONSTRUCTION PROGRESS	2	
	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	2	
3.0	EM&A PROGRAM REQUIREMENT FOR THE CONTRACT 2		3
	MONITORING PARAMETERS	3	
	MONITORING LOCATIONS	3	
	MONITORING FREQUENCY	4	
	MONITORING EQUIPMENT	5	
	MONITORING METHODOLOGY	6	
	DATA MANAGEMENT AND DATA QA/QC CONTROL	8	
	OTHERS MONITORING IMPLEMENTATION FOR THE CONTRACT	8	
	DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	8	
	EQUIPMENT CALIBRATION	9	
	METEOROLOGICAL INFORMATION	9	
4.0	IMPACT MONITORING RESULTS		10
	MONITORING RESULTS SHARING	10)
	RESULTS OF CONSTRUCTION NOISE MONITORING	10)
	RESULTS OF LOCAL STREAM WATER QUALITY MONITORING	10)
	RESULTS OF HYDROLOGICAL CHARACTERISTICS MONITORING	12	
	RESULTS OF ECOLOGICAL MONITORING	13	;
5.0	WASTE MANAGEMENT		14
	RECORDS OF WASTE QUANTITIES	14	ŀ
6.0	SITE INSPECTION		15
	REGULAR SITE INSPECTION AND MONTHLY AUDIT	15	5
	LANDSCAPE AND VISUAL INSPECTION	15	
7.0	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE		16
	ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	16	5
8.0	IMPLEMENTATION STATUS OF MITIGATION MEASURES		17
9.0	IMPACT FORCAST		21
	CONSTRUCTION ACTIVITIES FOR THE FORTH-COMING MONTH	21	
	KEY ISSUES FOR THE COMING MONTH	21	
10.0	CONCLUSIONS AND RECOMMENTATIONS		22
	Conclusions	22	
	RECOMMENDATIONS	22	2

LIST OF TABLES

- TABLE 2-1
 STATUS OF ENVIRONMENTAL LICENSES AND PERMITS
- TABLE 3-1
 SUMMARY OF MONITORING PARAMETERS
- TABLE 3-2
 DESIGNATED MONITORING LOCATIONS OF THE EM&A PROGRAMME
- TABLE 3-3
 MONITORING EQUIPMENT USED IN EM&A PROGRAM
- TABLE 3-4
 TESTING METHOD AND DETECTION LIMIT OF SUSPENDED SOLIDS
- TABLE 3-5
 ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
- TABLE 3-6
 ACTION AND LIMIT LEVELS FOR WATER QUALITY
- TABLE 3-7
 ACTION AND LIMIT LEVELS FOR HYDROLOGICAL CHARACTERISTICS
- TABLE 4-1SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS, dB(A)
- TABLE 4-2WATER QUALITY RESULTS SUMMARY FOR W1 & W2
- TABLE 4-3WATER QUALITY RESULTS SUMMARY FOR W3 & W4
- TABLE 4-4
 STATISTICS WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
- TABLE 4-5DETAILED MONITORING RESULTS OF HYDROLOGICAL CHARACTERISTICS AT H3 AND H4
- TABLE 4-6SUMMARIZED HYDROLOGICAL CHARACTERISTICS OF WATER DEPTH, M
- TABLE 4-7 SUMMARIZED HYDROLOGICAL CHARACTERISTICS OF AVERAGE VOLUMETRIC FLOW RATE $(Q), M^3/S$
- TABLE 5-1SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
- TABLE 5-2SUMMARY OF QUANTITIES OF C&D WASTES
- TABLE 6-1
 SITE INSPECTION OF OBSERVATIONS FINDINGS AND DEFICIENCIES
- TABLE 6-2LANDSCAPE & VISUAL INSPECTION OF OBSERVATIONS
- TABLE 7-1
 STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
- TABLE 7-2
 STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
- TABLE 7-3
 STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
- TABLE 8-1
 ENVIRONMENTAL MITIGATION MEASURES

LIST OF APPENDICES

- APPENDIX A SITE LOCATION PLAN OF DSD CONTRACT 1 AND CONTRACT 2 AT SHUEN WAN
- APPENDIX B ORGANIZATION CHART AND THE KEY CONTACT PERSON
- APPENDIX C MASTER CONSTRUCTION PROGRAMS
- APPENDIX D ENVIRONMENTAL MONITORING LOCATIONS
- APPENDIX E CALIBRATION CERTIFICATES OF THE MONITORING EQUIPMENT AND CERTIFICATE OF ALS TECHNICHEM (HK) PTY LTD
- APPENDIX F EVENT AND ACTION PLAN
- APPENDIX G MONITORING SCHEDULE IN REPORTING PERIOD AND COMING MONTH
- APPENDIX H METEOROLOGICAL DATA OF REPORTING PERIOD
- APPENDIX I DATA BASE OF MONITORING RESULT S
- APPENDIX J GRAPHICAL PLOTS OF IMPACT MONITORING –NOISE, WATER QUALITY AND HYDROLOGICAL CHARACTERISTICS
- APPENDIX K MONTHLY SUMMARY WASTE FLOW TABLE
- APPENDIX L MONTHLY LANDSCAPE & VISUAL INSPECTION REPORT
- APPENDIX M ECOLOGICAL MONITORING REPORT IN AREA UNDER CONTRACT 2

1.0 INTRODUCTION

PROJECT BACKGROUND

- 1.01 *Kwan Lee-Kuly Joint Venture* (hereinafter 'KLKJV') has been awarded by Drainage Services Department (hereinafter 'DSD') of the Contract No. DC/2010/02 - Drainage Improvement in Shuen Wan and Shek Wu Wai (hereinafter 'the Project'). The Project is scheduled to commence in May 2011 and complete in March 2014 for about 35 months.
- 1.02 The works to be executed under the Project are located in Shuen Wan and Shek Wu Wai. The works mainly comprise construction of about 735 metres long single-cell box culvert along Tung Tsz Road in Shuen Wan, Tai Po and construction of about 15 m long three-cell box culvert in Shek Wu Wai, San Tin .
- 1.03 For the Project, the construction work at Tung Tsz Road Shuen Wan (hereinafter 'the Contract 2') is part of the Drainage Improvement works amongst Shatin and Tai Po and it is defined as a "Designated Project" which controlled under Environmental Permit EP-303/2008. Currently, DSD has another Contract DC/2009/22 (hereinafter 'the Contract 1') ongoing for construction at Shuen Wan working area which under the same Environmental Permit and the updated Environmental Monitoring and Audit Manual (hereinafter 'the Updated EM&A Manual'). Both DSD contract's site boundary at Shuen Wan are shown in *Appendix A*. On the other hand, Shek Wu Wai San Tin is a non-designated project work and no environmental monitoring and audit is request to carry out.
- 1.04 In order to effectively implement the environmental protection measures stipulated in the Project Profile (hereinafter 'the PP'), Environmental Impact Assessment Report (hereinafter "the EIAR'), Environmental Permit EP303/2008, a corresponding EM&A Manual have been prepared to outline the environmental monitoring and auditing (hereinafter 'the EM&A') programme undertake for the Contracts 1 and 2.
- 1.05 KLKJV has commissioned Action-United Environmental Services and Consulting (AUES) as an independent environmental team (hereinafter 'the ET') to implement the EM&A program for the environmental protection of the Project. Due to the construction of Contracts 1 and 2 carry out is just about the time, a Proposal Environmental Monitoring Programme and Methodology (hereinafter the "PEMPM") was prepared and submitted to describe EM&A programme would be undertaken during construction period of the Contract 2.
- 1.06 The baseline monitoring of EM&A program has been performed by the Contract 1 ET. Although Action and Limit levels of environmental performance criteria have established by the Contract 1 ET, the Action/Limit levels re-establishment to use the Contract 2 was conducted by the Contract 2 ET. The re-established environment performance criteria has accepted by the IEC and also submitted to the EPD seek for endorsement.
- 1.07 This is the 29th Monthly EM&A Report for Contract 2 presenting the monitoring results and inspection findings for the reporting period from 1 to 30 November 2013.

REPORT STRUCTURE

1.08 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-.

INTRODUCTION
PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION
EM&A PROGRAM REQUIREMENT FOR THE PROJECT
IMPACT MONITORING RESULTS
WASTE MANAGEMENT
SITE INSPECTIONS
ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
IMPLEMENTATION STATUES OF MITIGATION MEASURES
IMPACT FORECAST
CONCLUSIONS AND RECOMMENDATION

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\29th - November 2013\R0310v1.docx Action-United Environmental Services and Consulting

2.0 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The master construction programs are enclosed in *Appendix C* and the major construction activities undertaken at Tung Tsz Road, Shuen Wan in this Report Period are listed below:-
 - Excavation of box culvert at Bay (3-4)
 - Installing sheetpile of box culvert at Bay (16-19)
 - Excavation of box culvert at Bay (28-31)
 - Installing sheetpile of box culvert at Bay (32-34)

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1	Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notified EPD on 17 October 2011
2	Chemical Waste Producer Registration (WPN5213-727-K2972-02)	Approved on 28 October 2011
3	Water Pollution Control Ordinance (Discharge License) WT00009528-2011	Valid to 31 July 2016
4	Billing Account for Disposal of Construction Waste (Account No.: 7012838)	Effective

- 2.04 The "Proposal Environmental Monitoring Programme and Methodology (R0006 Version 2)" was set out in accordance with the Updated Environmental Monitoring and Audit Manual. It was approved by the ER and agreed with the Independent Environmental Checker (IEC) and submitted to the EPD for endorsement.
- 2.05 For Contract 2 of the Project, no Baseline Monitoring Report was issued by the ETL. However, a new set of the Action/ Limit levels as used to Contract 2 were proposed by ET. It had been accepted by the IEC and also submitted to the EPD seek for endorsement.

3.0 EM&A PROGRAM REQUIREMENT FOR THE CONTRACT 2

3.01 The EM&A requirements set out in the PP, EIAR, Environmental Permit EP303/2008 (hereinafter 'the EP'), and the associated updated EM&A Manual, are presented below sub-section.

MONITORING PARAMETERS

3.02 According to the EIAR and the updated EM&A Manual, The monitoring parameters of each environmental aspect summarized in *Table 3-1* will be performed as under the Project.

Table 3-1 Summary of Monitoring Parameters	Table 3-1	Summary	of Monitoring	Parameters
--	-----------	---------	---------------	-------------------

Parameters		
A-weighted equival	lent continuous sound pressure level (30min) (hereinafter	
'Leq(30min)' during the normal working hours; and		
• A-weighted equival	lent continuous sound pressure level (5min) (hereinafter	
'Leq(5min)' for construction work during the restricted hours.		
• In Situ Temperature, Dissolved Oxygen, Dissolved Oxygen		
Measurement	Saturation, pH and Turbidity	
• Laboratory Suspended Solids (hereinafter 'SS')		
Analysis		
The water flow and depth measurement onsite		
Monitor and audit the proper implementation of mitigation measures stipulated		
in EIA report and the updated EM&A Manual		
Inspect and audit the in	mplementation and maintenance of landscape and visual	
mitigation measures		
	 'Leq(30min)' durin A-weighted equiva 'Leq(5min)' for con In Situ Measurement Laboratory Analysis The water flow and dep Monitor and audit the pin EIA report and the u Inspect and audit the in 	

Remarks: * the monitoring is carried out by IEC

MONITORING LOCATIONS

3.03 Monitoring locations have been proposed in the updated EM&A Manual. Graphic plot to show in *Appendix D* and summarized in *Table 3-2*.

 Table 3-2
 Designated Monitoring Locations of the EM&A Programme

.		
Aspect	Location ID	Address
	M1	14, Shuen Wan Chim Uk
Construction	AL1	Joint Village Office for Villages in Shuen Wan, Tai PO
Noise	M2	150, San Tau Kok
Noise	M3	31, Wai Ha
	M4	Block 15, T rèasure Spot Garden
		Between the Shuen Wan Marsh and ECA
	^(#) W1	• Co-ordinates: E839301, N836386
		• Existing River Bed Level: +1.75mPD).
		Between Tolo Harbour and Proposed Penstock
	W2	• Co-ordinates: E839542, N836184
Water Quality		• Exiting River Bed Level: +1.48mPD)
water Quanty	^(*) W3	Upstream of Tung Tze Shan Road
		• Co-ordinates: E838760, N836714
		• Exiting River Bed Level: +5.08mPD)
		Wai Ha Village 29D
	W4	• Co-ordinates: E838865, N836621
		• Exiting River Bed Level: +4.05mPD)
	H1	Between the Shuen Wan Marsh and ECA
Hudrological		• Coordinates: E839306, N836379)
Hydrological	H2	Route 10 Sam Kung Temple
	112	• Coordinates: E839163, N836433

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\29th - November 2013\R0310v1.docx Action-United Environmental Services and Consulting

Aspect	Location ID Address		
	H3 Upstream of Tung Tze Shan Road • Coordinates: E838760, N836714		
	H4	Wai Ha Village 29D • Coordinates: E838865, N836621	
Ecology	Areas within 100m of the works boundary under Contract 2		
Landscape &	As within and adjacent to the construction sites and works areas under the Contract		
Visual	2,		

Remarks:

^(#) Control Station of Contract 1, however impact station of Contract 2 $\binom{(*)}{2}$

(*) Control Station of Contract 2

MONITORING FREQUENCY

3.04 The monitoring frequency and duration as specified in the updated EM&A Manual are summarized below.

Construction Noise

Frequency: Once a week during 0700-1900 on normal weekdays for L_{eq(30min)}

If the construction work is undertake at restricted hour, the monitoring frequency of construction noise will be conducted in accordance with the related Construction Noise Permit requirement issued by EPD as follow

- 2 3 consecutive L_{eq(5min)} at restrict hour from 1700 2300;
- 3 consecutive $L_{eq(5min)}$ for restrict hour from 2300 0700 next day;
- 3 consecutive $L_{eq(5min)}$ for Sunday or public holiday from 0700 1900;
- <u>Duration</u>: Throughout the construction period when the major construction activities are undertaken

Water Quality

- <u>Frequency</u>: Three times a week. The interval between 2 sets monitoring are not less than 36 hours
- <u>Duration</u>: During the construction phase of Contract 2 to undertake (in accordance with the Updated EM&A Manual Section 4.27).

Hydrological Characteristics

Frequency: Once per week at mid-flood and mid-ebb tides

<u>Duration</u>: During the construction phase of Contract 2 to undertake; and one year after the construction is complete as operation phase monitoring (in accordance with the Updated EM&A Manual Section 4.32).

<u>Ecology</u>

3.05 In according with Section 6.17 of the Updated EM&A Manual, ecological monitoring should be conducted by the Independent Environmental Checker (hereinafter 'IEC'). Monitoring programme details should be agreed with the Agriculture, Fisheries and Conservation Department (AFCD). Moreover, the IEC should submit reports on the findings of each monitoring trip, and a final report summarizing the monitoring results over the entire monitoring period to AFCD and Environmental Protection Department (EPD). Hence, no monitoring or surveying should be carried out by ET of the Project.

Landscape & Visual

3.06 According to Section 7.4 of the Updated EM&A Manual, site inspection bi-weekly should be performed to check the implementation and maintenance of landscape and visual mitigation measures whether to full realize.

MONITORING EQUIPMENT

Noise Monitoring

3.07 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for noise monitoring. The sound level meter shall be checked with an acoustic calibrator. The wind speed shall be check with a portable wind speed meter, which capable to measure wind speed in m/s.

Water Quality Monitoring

- 3.08 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring DO level in the range of 0 20mg L-1 and 0 200% saturation; and temperature of 0 45 degree Celsius.
- 3.09 **pH Meter** The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in arrange of 0 to 14.
- 3.10 **Turbidity (NTU) Measuring Equipment** The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.11 **Water Sampling Equipment** A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.12 **Water Depth Detector** A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. The unit can either be hand held or affixed to the bottom of the work boat.
- 3.13 **Sample Containers and Storage** Water samples for SS should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.14 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

Hydrological Characteristics

- 3.15 **Water Depth Detector** A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station.
- 3.16 **Stream water flow Equipment** –A portable, battery-operated flow meter should be used for the determination of water flow rate at each designated monitoring location and record in m^3/s .
- 3.17 The monitoring equipment using for the Project's EM&A program were proposed by the ET and verified by the IEC prior commencement of the monitoring. Details of the equipment used for impact monitoring are listed in *Table 3-3*.

Table 3-3Monitoring Equipment Used in EM&A Program

Equipment	Model
1 1	Iviouei
Construction Noise	
Integrating Sound Level Meter	B&K Type 2238
Calibrator	B&K Type 4231
Portable Wind Speed Indicator	Testo Anemometer
Water quality	
Water Depth Detector	Eagle Sonar
Water Sampler	A transparent PVC cylinder / bucket

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\29th - November 2013\R0310v1.docx Action-United Environmental Services and Consulting

Equipment	Model		
Thermometer & DO meter	YSI DO Meter 550A or YSI Professional Plus or YSI Sonde6820 / 650MDS		
pH meter	YSI pH10N or YSI Professional Plus or YSI Sonde 6820 / 650MDS		
Turbidimeter	Hach 2100Q or YSI Sonde 6820 / 650MDS		
Sample Container	High density polythene bottles (provided by laboratory)		
Storage Container	'Willow' 33-litre plastic cool box		
Suspended Solids	HOKLAS-accredited laboratory (ALS Technichem (HK) Pty Ltd)		
Hydrological Characteristics			
Water flow meter	GLOBAL WATER model FP211		
Water Depth Detector	Eagle Sonar or an appropriate steel ruler or rope with appropriate weight		

MONITORING METHODOLOGY

Noise Monitoring

- 3.18 Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels (dB). Supplementary statistical results (L_{10} and L_{90}) were also obtained for reference.
- 3.19 Sound level meter as listed in *Table 3-3* are complied with the *International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1)* specifications, as recommended in Technical Memorandum (TM) issued under the *Noise Control Ordinance (NCO)*.
- 3.20 During the monitoring, all noise measurements were performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). Leq_(30min) in six consecutive Leq_(5min) measurements were used as the monitoring parameter for the time period between 0700-1900 hours on weekdays; and also Leq_(15min) in three consecutive Leq_(5min) measurements is used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.21 During the course of measurement, the sound level meter is mounted on a tripod with a height of 1.2m above ground and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield is fitted for all measurements. The assessment point is normally set as free-field situation for the measurement.
- 3.22 Prior to noise measurement, the accuracy of the sound level meter is checked by an acoustic calibrator which generated a known sound pressure level at a known frequency. The checking was performed before and after the noise measurement.

Water Quality

- 3.23 Water quality monitoring are conducted at the depth below:-
 - Three depths: 1m below water surface, 1m above river bed and at mid-depth when the water depth exceeds 6m, or
 - If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above river bed, and or
 - If the water depth is less than 3m, 1 sample at mid-depth is taken
- 3.24 Water depths are determined prior to measurement and sampling, using a portable battery operated depth detector, brand named 'Eagle Sonar', if the depths exceed 1.5 meter. If the depth between 1.5 meter and 1 meter, plastic tape measurement tied with appropriate weight are used the depth estimation. For the depth well below 1 meter, an appropriate steel ruler or rope with appropriate weight are used for the depth measurement.

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\29th - November 2013\R0310v1.docx Action-United Environmental Services and Consulting

- 3.25 A transparent PVC cylinder, with a capacity of not less than 2 litres, is used for water sampling. The water sampler is lowered into the water body at a predetermined depth. The trigger system of the sampler is activated with a messenger and opening ends of the sampler are closed accordingly then the sample of water is collected. If the water depth is less than 500mm, a water bucket is be used as a water sampler to minimize the possibility of the latching system disturbing sediment during water sampling
- 3.26 A portable YSI DO Meter 550A or YSI Professional Plus is used for in-situ DO measurement. The DO meter is capable of measuring DO in the range of 0 20 mg/L and 0 200 % saturation and checked against water saturated ambient air on each monitoring day prior to monitoring. Although the DO Meter automatically compensates ambient water temperature to a standard temperature of 20° C for ease of comparison of the data under the changing reality, the temperature readings of the DO Meter are be recorded in the field data sheets. The equipment calibration is performed on quarterly basis.
- 3.27 A portable YSI pH10N Meter or or YSI Professional Plus is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1. Standard buffer solutions of pH 7 and pH 10 are used for calibration of the instrument before and after measurement. The equipment calibration is performed on quarterly basis.
- 3.28 A portable Hach 2100Q Turbidity Meter is be used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU. The equipment calibration is performed on quarterly basis.
- 3.29 Water samples are contained in screw-cap PE (Poly-Ethylene) bottles, which are provided and pretreated and 'PE' (Poly-Ethylene) sampling bottles provided and pre-treated according to corresponding analytical requirements. Where appropriate, the sampling bottles are rinsed with the water to be contained. Water sample is then transferred from the sampler to the sample bottles.
- 3.30 One liter or 500 mL water sample are collected from each depth for SS determination. The collected samples are stored in a cool box maintained at 4^oC and delivered to laboratory upon completion of the sampling by end of each sampling day.
- 3.31 All water samples are analyzed with Suspended Solids (SS) as specified in the updated *EM&A Manual* by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS are determined by the laboratory upon receipt of the water samples using HOKLAS accredited analytical method. The detection limits and testing method are shown below in *Table 3-4*. The certificate of ALS Technichem (HK) Pty Ltd is provided in *Appendix E*.

 Table 3-4
 Testing Method and Detection limit of Suspended Solids

Determinant	Testing Method	Detection Limit
Suspended solid	Determination use HOKLAS accredited analytical methods namely ALS Method EA-025 (based on APHA 2540 D)	2mg/L

Hydrological Characteristics

- 3.32 A portable, water flow meter, brand named "*GLOBAL WATER model FP211*" are used to determine the water current flow at the designated monitoring stations. A water flow velocity is measured at mid depth of current water body or 0.5m below water level.
- 3.33 Water depths are determined prior to measurement, using a portable battery operated depth detector, brand named 'Eagle Sonar', if the depths exceed 1.5 meter. If the depth between 1.5 meter and 1 meter, plastic tape measurement tied with appropriate weight are used the depth estimation. For the depths well below 1 meter, an appropriate steel ruler or rope with appropriate weight are used for the depth measurement.

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\29th - November 2013\R0310v1.docx Action-United Environmental Services and Consulting

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.34 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring program.
- 3.35 The monitoring data recorded in the equipment e.g. noise meter and Multi-parameter Water Quality Monitoring System are downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

OTHERS MONITORING IMPLEMENTATION FOR THE CONTRACT

<u>Ecology</u>

3.36 Ecological monitoring and reporting should be performed by IEC. No equipment and procedure are presented in the EM&A Monthly Report.

Landscape and Visual

3.37 A registered Landscape Architect as member of the ET is employed by the Contractor to undertake site inspection. Site inspection will undertake at least once every two weeks throughout the construction period to ensure compliance with the intended aims of the mitigation measures are proposed in the EIA and the updated EM&A Manual, implemented by the Contractor.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.38 The re-established performance criteria for construction noise, water quality and hydrological, namely Action and Limit levels is used for Contract 2 are listed in *Tables 3-5, 3-6,* and *3-7*.

Location	Time Period	Action Level in dB(A)	Limit Level in dB(A)
	Daytime 0700 – 1900 hrs on normal weekdays	When one	75* dB(A)
M1, AL1, M2, M3, M4	1900 – 2300 on all days and 0700 – 2300 on general holidays (including Sundays	documented complaint is	60/65/70 dB(A)**
	2300 – 0700 on all days	received	45/50/55 dB(A)**

Table 3-5Action and Limit Levels for Construction Noise

Note: * Reduces to 70dB(A) for schools and 65dB(A) during the school examination periods. ** To be selected based on the Area Sensitivity Rating of A/B/C, and the conditions of the applicable CNP(s) must be followed

Table 3-6Action and Limit Levels for Water Quality

Peremeter	Performance	Impact Station				
Parameter	Criteria	W1	W2	W4		
DO Concentration (ma/L)	Action Level	7.27	7.26	9.27		
DO Concentration (mg/L)	Limit Level	4.00	4.00	4.00		
all	Action Level	NA	NA	NA		
pH	Limit Level	6 - 9	6 - 9	6 - 9		
Typhidity (NITLI)	Action Level	4.77	2.46	3.32		
Turbidity (NTU)	Limit Level	5.26	3.42	4.52		
Suspended Solids (mg/L)	Action Level	9.73	8.89	6.98		
Suspended Solids (mg/L)	Limit Level	10.77	9.75	7.66		

Notes:

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\29th - November 2013\R0310v1.docx Action-United Environmental Services and Consulting

- The proposed Action/Limit Levels of DO are established to be used 5%-ile/1%-ile of all the baseline data;
- The proposed Action/Limit Levels of Turbidity and SS are established to be used 95%-ile/99%-ile of all the baseline data;
- For DO, non-compliance of the water quality limits occur is when monitoring result lower than the action/limit levels;
- For turbidity and SS, non-compliance of the water quality limits occurs is when monitoring result higher than the limits; and
- For pH, non-compliance of the quality limit occur is when monitoring result lower than 6 and higher than 9; and
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered necessary

 Table 3-7
 Action and Limit Levels for Hydrological Characteristics

Parameter	Acceptance	Monitorin	g Station
rarameter	Criteria	H1	H2
Water Depth	Action Level	0.08 (80% of baseline water depth)	0.40 (80% of baseline water depth)
(m)	Limit Level	0.06 (60% of baseline water depth)	0.30 (60% of baseline water depth)
Volumetric	Action Level	120% of control station's water flow rate on the same day of measurement	
Flow Rate (Q), m ³ /s	Limit Level	140% of control station's water flow rate on the same day of measurement	140% of control station's water flow rate on the same day of measurement

- 3.39 The locations H3 and H4 are a reference measurement point in order to monitor any changes in the hydrological characteristics of Wai Ha River arising from the work Contract 2 to affect the Shuen Wan Marsh.
- 3.40 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

EQUIPMENT CALIBRATION

- 3.41 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme in yearly basis.
- 3.42 All the water quality monitoring equipment such as the DO, pH and Turbidity meters are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.43 A portable, water flow meter, brand named "GLOBAL WATER model FP211" is calibrated in yearly basis.
- 3.44 All updated calibration certificates of the monitoring equipment used for the impact monitoring program in this Reporting Period are attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.45 The meteorological information during the construction phase is obtained from Tai Po and Shatin Stations of the Hong Kong Observatory (HKO). The meteorological data during the impact monitoring days are summarized in *Appendix H*

4.0 IMPACT MONITORING RESULTS

4.01 The monitoring schedule had been issued to relevant parties before each Reporting Period which presented in *Appendix G*. The works undertaken during the Reporting Period are illustrated in *Appendix C*. The monitoring results are presented in the following sub-sections.

MONITORING RESULTS SHARING

4.02 Environmental Permit EP-203/2008 was issued on 25 February 2008 by EPD which adopted for both Contracts 1 and 2 of DSD construction at Shuen Wan. Also, the EM&A programme of both contracts are undertaken in accordance with the same updated EM&A Manual which has to be carried out during construction period. According to the updated EM&A manual, designated monitoring Locations M1 and AL1 for noise monitoring stations, Locations W1 and W2 for water quality monitoring stations, and Locations H1 and H2 for hydrological measurement are requested to perform at both Contracts 1 and 2. Since Contract 1 has already commenced in January 2011, those results measured by Contract 1 would be shared for the Contract 2. This recommendation has been accepted by IEC and submitted to EPD.

RESULTS OF CONSTRUCTION NOISE MONITORING

4.03 In this Reporting Period, the noise monitoring results at the designated locations M1, AL1, M2, M3 and M4 are summarized in *Table 4-1*. The detail monitoring data are presented in *Appendix I*. The graphical plot is shown in *Appendix J*.

Data	$L_{eq(30min)}(dB(A))$		Data	$L_{eq(30min)}(dB(A))$			
Date	M1 ^(#)	AL1 ^(#)	Date	M2 ^(*)	M3 ^(*)	M4 ^(*)	
6-Nov-13	68.4	66.8	1-Nov-13	67.1	65.6	63.2	
13-Nov-13	66.9	70.1	6-Nov-13	69.3	74.8	56.4	
20-Nov-13	61.5	66.5	15-Nov-13	66.6	72.9	51.4	
27-Nov-13	63.5 68.9		22-Nov-13	66.8	67.3	63.3	
			29-Nov-13	64.9	72.8	54.4	
Limit Level	75 dB(A)						

Table 4-1Summary of Construction Noise Monitoring Results, dB(A)

Remarks:

(#) The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.

- 4.04 The sound meter was set in a free field situation at the designated monitoring locations M2, M3 and M4, therefore, a façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines. For Location A1 and AN1, the monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.
- 4.05 No noise complaint (which is an Action Level exceedance) was received in this Reporting Period. As shown in *Table 4-1*, all the noise monitoring result are well below 75dB(A) and no Action or Limit Level exceedance was triggered during this Reporting Period. The graphical plot is shown in *Appendix J*.

RESULTS OF LOCAL STREAM WATER QUALITY MONITORING

- 4.06 In this Reporting Period, **13** sampling days at W1, W2, W3 and W4 were performed at designated measurement Points for local stream water quality monitoring. The monitoring results including in-situ measurements and laboratory testing results are provided in *Appendix I*. The graphical plots are shown in *Appendix J*.
- 4.07 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids in this Reporting Period, are summarized in *Tables 4-2 and 4-3*.

 $[\]stackrel{(*)}{=} The monitoring is undertaken under free field situation. A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines$

Somuling	DO (mg/L)			Turb	Turbidity (NTU)			SS (mg/L)		
Sampling date	W1 (ebb)	W1 (flood)	W2 W2	W2	W1 (ebb)	W1 (flood)	W2			
1-Nov-13	7.60	7.19	7.23	4.4	3.2	3.5	4.00	3.00	3.40	
4-Nov-13	7.46	5.52	7.56	4.3	4.2	2.9	6.00	4.00	3.60	
6-Nov-13	7.55	7.27	7.33	4.1	3.3	<u>4.1</u>	4.00	5.00	6.40	
8-Nov-13	7.83	7.38	6.89	45.7	49.2	3.6	27.00	<u>27.00</u>	6.20	
11-Nov-13	6.62	5.22	<i>6.98</i>	<u>19.3</u>	20.0	<u>3.8</u>	<u>17.00</u>	<u>15.00</u>	3.20	
13-Nov-13	8.31	7.82	7.65	4.3	4.7	5.3	5.00	4.00	12.00	
15-Nov-13	6.92	5.52	7.67	4.6	4.7	3	6.00	4.00	2.00	
18-Nov-13	8.48	7.87	7.23	4.2	3.6	5	9.00	4.00	1.80	
20-Nov-13	7.49	7.19	7.31	8.2	5.2	3.3	10.00	7.00	2.40	
22-Nov-13	7.36	6.93	7.89	3.7	4.2	<u>3.8</u>	6.00	8.00	1.80	
25-Nov-13	7.20	5.97	7.25	21.2	21.3	2.7	<u>17.00</u>	<u>16.00</u>	4.00	
27-Nov-13	7.78	6.05	8.1	8.7	5.4	2.9	16.00	16.00	2.00	
29-Nov-13	8.03	6.61	7.5	4.0	5.1	2.5	8.00	7.00	2.00	

Table 4-2Water Quality Results Summary for W1 & W2

Bold and Italic is indicated exceeded Action Level; Bold with underline is indicated exceeded Limit Level

Table 4-3	Water Quality Results Summary for W3 & W4
-----------	---

~ ~ ~						(T)
Sampling	DO (mg/L)		Turbidi	ty (NTU)	SS (mg/L)	
date	W3	W4	W3	W4	W3	W4
1-Nov-13	7.93	7.17	5.11	3.66	5.00	6.00
4-Nov-13	7.74	7.83	2.75	3.22	2.00	4.00
6-Nov-13	6.10	7.41	1.76	<u>8.50</u>	3.00	<u>10.00</u>
8-Nov-13	6.58	8.14	3.23	3.25	3.00	3.00
11-Nov-13	9.32	7.61	2.61	<u>14.10</u>	2.00	<u>12.00</u>
13-Nov-13	7.52	8.41	2.35	2.83	2.00	5.00
15-Nov-13	8.70	8.08	2.46	2.81	2.00	2.00
18-Nov-13	9.48	10.43	1.60	1.89	3.00	2.00
20-Nov-13	8.36	8.74	1.53	1.40	2.00	2.00
22-Nov-13	7.88	9.94	7.84	5.50	16.00	<u>11.00</u>
25-Nov-13	8.20	9.40	5.80	3.11	12.00	4.00
27-Nov-13	9.53	9.16	3.16	3.04	2.00	2.00
29-Nov-13	7.78	7.78	1.61	2.10	3.00	4.00

• Bold and Italic is indicated exceeded Action Level; Bold with underline is indicated exceeded Limit Level

- 4.08 During the Reporting Period, field measurements showed that stream water temperatures were within 16.4° C to 33.7° C and pH values within 6.56 to 8.84.
- 4.09 A statistics of exceedances for the three parameters: dissolved oxygen (DO), turbidity and suspended solids are shown in *Table 4-4*.

 Table 4-4
 Statistics Water Quality Exceedance

Station	DO		Turbidity		SS		Total Exceedance	
Station	Action	Limit	Action	Limit	Action	Limit	Action	Limit
W1	13	0	2	9	1	8	16	17
W2	5	0	6	7	0	1	11	8
W4	10	0	1	3	0	3	11	6
No. of Exceedance	28	0	9	19	1	12	38	31

4.10 As shown in *Table 4-4*, a total of 69 Action/ Limit Level exceedances, namely 28 exceedances in dissolved oxygen, 28 exceedances in turbidity and 13 exceedances in suspended solids were recorded in this Reporting Period. NOEs were issued to notify EPD, IEC, the Contractor and RE upon confirmation of the results.

- 4.11 According to site information provided by the Contractor, the site activities undertaken on site included construction of Box Culvert Bays 8 11 and excavation at Bays 28 32.
- 4.12 The active construction activities may increase the turbidity and suspended solids levels of the stream by washed out from stockpiles of dusty materials, excavated surface or dusty haul roads. To minimize the impact to the existing stream, precautionary measures such as sedimentation pit and temporary artificial precipitation stream to remove the suspended solids from wastewater have been implemented on-site. During regular site inspection with RE and Contractor, the implemented water quality mitigation measures are considered as moderate with the needed of regular maintenance. The investigation results for the exceedances are summarized as follows:
 - For the DO exceedances, the construction activities comprised none of DO depleting characteristics. Therefore, it is considered that all the DO exceedances were due to natural variation of the stream and not related to the works under the Project.
 - For the turbidity and SS exceedances recorded at W4 on 6, 11 and 22 November 2013, it is noted that exceedances were recorded after rainy day. It is concluded that the exceedances were partially due to the Project. The Contractor should enhance the water quality mitigation measures such as covering all exposed slopes to prevent surface runoff and improve the desilting facilities as far as practicable.
 - For monitoring points W1, it is noted that the water quality at W1 was affected by marine water that comes from the Tolo Harbour during flood tide. Therefore, it is considered that the exceedances in W1 were not related to the works under the Project.
- 4.13 KLKJV is reminded to fully implement the required water quality mitigation measures in accordance with the updated EM&A Manual stipulation during construction under the Project. In particular when excavation and the associated box culvert construction works are undertaken near Wai Ha River, all construction wastewater or runoff generated from work area should be treated and drained to the designated discharge point. Moreover, as an effective water quality mitigation measure, the rock bund in the de-silting channel should be repaired regularly and ensure the de-silting performance.

RESULTS OF HYDROLOGICAL CHARACTERISTICS MONITORING

4.14 In this Reporting Period, hydrological characteristics measurement at were carried out on 1, 8, 15, 22 and 29 November 2013. The monitoring data of H1 and H2 provided by DC/2009/22 is showed *Appendix I*. The detailed H3 and H4 measurement results in this Reporting Period are presented in *Tables 4-5*.

Date	Measurement Time	Tide Condition	River Width (m)	Water Depth (m)	Cut Section (m ²)	Velocity Flow Rate (m/s)	Average Volumetric Flow Rate (Q), m ³ /s
Measurem	ent Point: H3						
1-Nov-13	9:30	Flood	7.45	0.352	2.6224	0.012	0.031
1-INOV-13	16:15	Ebb	7.45	0.34	2.5330	0.03	0.076
0.11	10:57	Flood	7.45	0.266	1.9817	0.016	0.032
8-Nov-13	15:35	Ebb	7.45	0.21	1.5645	0.05	0.078
15 Nav. 12	14:37	Flood	7.45	0.11	0.8195	0.25	0.205
15-Nov-13	11:06	Ebb	7.45	0.16	1.1920	0.2	0.238
22 Mar. 12	10:30	Flood	7.45	0.086	0.6407	0.75	0.481
22-Nov-13	17:29	Ebb	7.45	0.077	0.5737	0.62	0.356
20 Nov 12	15:13	Flood	7.45	0.057	0.4247	0.1	0.042
29-Nov-13	9:48	Ebb	7.45	0.058	0.4321	0.1	0.043
Measurem	ent Point: H4						
1-Nov-13	9:37	Flood	2.74	0.171	0.4685	0.07	0.033

Table 4-5Detailed monitoring results of hydrological characteristics at H3 and H4

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\29th - November 2013\R0310v1.docx Action-United Environmental Services and Consulting

Date	Measurement Time	Tide Condition	River Width (m)	Water Depth (m)	Cut Section (m ²)	Velocity Flow Rate (m/s)	Average Volumetric Flow Rate (Q), m ³ /s
	16:27	Ebb	2.74	0.17	0.4658	0.07	0.033
8-Nov-13	10:49	Flood	2.74	0.411	1.1261	0.025	0.028
0-INOV-15	15:41	Ebb	2.74	0.37	1.0138	0.04	0.041
15-Nov-13	14:50	Flood	2.74	0.31	0.8494	0.61	0.518
13-100-15	11:12	Ebb	2.74	0.33	0.9042	0.54	0.488
22-Nov-13	10:42	Flood	2.74	0.22	0.6028	0.91	0.549
22-INOV-15	17:15	Ebb	2.74	0.134	0.3672	0.6	0.220
29-Nov-13	15:30	Flood	2.74	0.13	0.3562	0.07	0.025
29-1NOV-15	9:57	Ebb	2.74	0.12	0.3288	0.07	0.023

4.15 Hydrological characteristics results of the all measurement points are summarized in *Tables 4-6* and *4-7*.

Data	Mid-Flood			Mid-Ebb				
Date	H1	H2	H3	H4	H1	H2	H3	H4
1-Nov-13	0.36	0.42	0.35	0.07	0.3	0.24	0.34	0.07
8-Nov-13	0.36	0.36	0.27	0.03	0.12	0.18	0.21	0.04
15-Nov-13	0.24	0.24	0.11	0.61	0.12	0.12	0.16	0.54
22-Nov-13	0.3	0.24	0.09	0.91	0.24	0.24	0.08	0.60
29-Nov-13	0.3	0.3	0.06	0.07	0.3	0.3	0.06	0.07

Table 4-7Summarized Hydrological Characteristics of Average Volumetric flow rate
(Q), m³/s

Data	Mid-Flood			Mid-Ebb				
Date	H1	H2	H3	H4	H1	H2	H3	H4
1-Nov-13	0.15	0.754	0.03	0.03	0.3	1.507	0.08	0.03
8-Nov-13	0.225	1.507	0.03	0.03	0.15	0.754	0.08	0.04
15-Nov-13	0.15	1.13	0.20	0.52	0.225	0.754	0.24	0.49
22-Nov-13	0.15	1.13	0.48	0.55	0.15	1.13	0.36	0.22
29-Nov-13	0.225	1.13	0.04	0.02	0.15	1.13	0.04	0.02

4.16 To compare the monitoring data between the Reporting Period (rainy season) and baseline monitoring period, the currently water depth and volumetric flow rate has insignificant changed. Furthermore, water depth and water flow rate were found no exceedance in this Reporting Period.

RESULTS OF ECOLOGICAL MONITORING

- 4.17 According to updated EM&A Manual Section 6.17, bi-monthly ecological monitoring is conducted by the IEC – ENVIRON Hong Kong Limited. In brief, the monitoring tasks include regular check on the retained and transplanted trees and shrubs, monitoring on fauna groups and aquatic fauna within the works area and any ecologically sensitive area within 100 m of the works boundary.
- 4.18 In this Reporting Period, ecological monitoring in Area under Contract 2 is performed on 25 November 2013.

5.0 WASTE MANAGEMENT

5.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

RECORDS OF WASTE QUANTITIES

- 5.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 5.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 5-1* and *5-2* and the Monthly Summary Waste Flow Table is shown in *Appendix K*. Whenever possible, materials were reused on-site as far as practicable.

Table 5-1Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) (m ³)	0	-
Reused in this Contract (Inert) (m ³)	0	-
Reused in other Projects (Inert) (m ³)	0	-
Disposal as Public Fill (Inert) (m ³)	215	Tuen Mun Area 38

Table 5-2Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Recycled Metal (kg)	0	-
Recycled Paper / Cardboard Packing (kg)	0	-
Recycled Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (m ³)	5.25	Local refuse station

5.04 To control over the site performance on waste management, the Contractor shall ensure that all solid and liquid waste management works are in full compliance with the relevant license/permit requirements, such as the effluent discharge license and the chemical waste producer registration. The Contractor is also reminded to implement the recommended environmental mitigation measures according to the EM&A Manual based on actual site conditions.

6.0 SITE INSPECTION

REGULAR SITE INSPECTION AND MONTHLY AUDIT

- 6.01 According to the Updated Environmental Monitoring and Audit Manual, regular site inspection to evaluate the project environmental performance should be carried out during construction phase. Weekly environmental site inspections had been carried out by the Contractor, ET and RE on 7, 14, 21 and 25 November 2013. Also, joint site inspection with the IEC was carried out on 25 November 2013. In this Reporting period, 3 observations were recorded but no non-compliance was noted.
- 6.02 Observations for the site inspection and monthly audit within this Reporting Period are summarized in *Table 6-1*.

Date	Findings / Deficiencies	Follow-Up Status
7 November 2013	No adverse environmental issue was observed	N.A.
	during site inspection.	
14 November 2013	• Muddy trails from vehicles were observed,	Rectified on 21
	the Contractor should clean that muddy trails	Nov 2013
	and make sure all vehicles are keep clear of	
	mud before leaving the site.	
21 November 2013	• Stagnant water was observed inside the site	Rectified on 25
	area, the Contractor was reminded to	Nov 2013
	implement mitigation measures to prevent	
	mosquito breeding.	
25 November 2013	• Free standing chemical without drip tray was	Rectified on 5 Dec
	observed, the Contractor should provide drip	2013
	tray for all chemical container in case of	
	leaking and land contamination.	

 Table 6-1
 Site Inspection of Observations – Findings and Deficiencies

LANDSCAPE AND VISUAL INSPECTION

- 6.03 In this Reporting Period, landscape and visual inspection was carried on 15 and 28 November 2013.
- 6.04 The stand-alone of monthly Landscape & Visual Report signed by the registered Landscape Architect. Mitigation measures implemented in this Reporting Period are presented in the monthly Landscape & Visual Report (November 2013) which enclosed in *Appendix L*.
- 6.05 The next bi-weekly Landscape & Visual Monitoring in **December 2013** is scheduled to be conducted in the week of **9 and 23 December 2013**.

7.0 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

7.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 7-1, 7-2* and *7-3*.

Table 7-1 Statistical Summary of Environmental Complaints

Departing Devied	Environmental Complaint Statistics				
Reporting Period	Frequency	Cumulative	Complaint Nature		
July 2011 –October 2013	0	0	NA		
November 2013	0	0	NA		

Table 7-2 Statistical Summary of Environmental Summons

Departing Devied	Environmental Summons Statistics				
Reporting Period	Frequency	Cumulative	Complaint Nature		
July 2011 –October 2013	0	0	NA		
November 2013	0	0	NA		

Table 7-3 Statistical Summary of Environmental Prosecution

Bononting Doriod	Environmental Prosecution Statistics				
Reporting Period	Frequency Cumulative		Complaint Nature		
July 2011 –October 2013	0	0	NA		
November 2013	0	0	NA		

8.0 IMPLEMENTATION STATUS OF MITIGATION MEASURES

8.01 The environmental mitigation measures that recommended in the Updated Environmental Monitoring and Audit Manual covered the issues of dust, noise and waste and they are summarized as follows:

Noise Mitigation Measure

- (a) Only well-maintained plant should be operated on-site and plant shall be serviced regularly during the construction program;
- (b) Silencers or mufflers on construction equipment should be utilized and shall be properly maintained during the construction program;
- (c) Mobile plant, if any, should be sited as far from NSRs as possible;
- (d) Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;
- (e) Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs;
- (f) Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities;
- (g) Use of quieter plants to carry out the construction tasks proposed for the Project;
- (h) Use about 3.5m high of temporary noise barriers as screened the noisy PMEs to carry out construction of box culvert and site clearance.
- (i) Low Impact Method, such as using PMEs smaller in size and to be enclosed by noise enclosure, should be adopted for the construction of box culvert and pipe laying in Wai Ha; and
- (j) Use of noise enclosure during the works area for pipe laying in Wai Ha.

Dust Mitigation Measure

- 8.02 Implementation of mitigation measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices including but not limited to the following:
 - (a) Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved road, with complete coverage, particularly during dry weather;
 - (b) Use of frequent watering for particularly dusty static construction areas and areas close to ASRs;
 - (c) Tarpaulin covering of all dusty vehicle loads transported to, from and between site location;
 - (d) Establishment and use of vehicle wheel and body washing facilities at the exit points of the site;
 - (e) Routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs;
 - (f) Stockpiled excavated materials should be covered with tarpaulin and should be removed offsite within 24 hours to avoid any odour nuisance arising.

Local Stream Water Quality Mitigation Measure

- (a) Before commencing any site formation work, all sewer and drainage connections shall be sealed to prevent debris, soil, sand etc. from entering public sewers/drains;
- (b) Temporary ditches shall be provided to facilitate run-off discharge into appropriate watercourses, via a silt retention pond. No site run-off shall enter the fishponds at Shuen Wan;
- (c) Sand/silt removal facilities such as sand traps, silt traps and sediment basins shall be provided to remove sand/silt particles from runoff to meet the requirements of the Technical Memorandum standard under the Water Pollution Control Ordinance. The design of silt removal facilities shall be based on the guidelines provided in ProPECC PN 1/94. All drainage facilities and erosion and sediment control structures shall be inspected monthly and maintained to ensure proper and efficient operation al all times and particularly during rainstorms
- (d) Water pumped out from excavated pits shall be discharged into sill removal facilities;

- (e) During rainstorms, exposed slope/soil surfaces shall be covered by a tarpaulin or other means. Other measures that need to be implemented before, during, and after rainstorms as summarized in ProPECC PN 1/94 shall be followed
- (f) Exposed soil areas shall be minimized to reduce potential for increased siltation and contamination of runoff
- (g) Earthwork final surfaces shall be well compacted and subsequent permanent work or surface protection shall be immediately performed to reduce the potential of soil erosion;
- (h) Open stockpiles of construction materials or construction wastes on-site shall be covered with tarpaulin or similar fabric during rainstorms;
- (i) For the construction of the box culvert next to the existing channel of the Wai Ha River, sand bags should be deployed around the boundary of the works trench to prevent muddy water ingress into the adjacent CA or Wai Ha River. Sand bags should also be used to surround the excavated trench. Generally, the sand bags will be placed up to a height 01 300mm to provide adequate allowance for the built-up water level during rainstorm event. With sand bags in place surface runoff will be intercepted and flow to Wai Ha River or collected by the existing drainage system as usual;
- (j) For the construction of the box culvert in the extreme northeast corner of Shuen Wan Marsh Conservation Area sand bags should be deployed along the limit of the works area to prevent muddy water ingress into the CA. Sand bags should be placed to a height 0.1 at least 300mm from ground level and +2.5 mPD (whichever is greater) to provide adequate allowance for the built-up water level during rainstorm events Unpolluted surface runoff within the works area should then be collected and directed into the existing drainage system;
- (k) Sheet-piles, which would be installed around the works trench near the Conservation Area, would be extended above ground level for about 2m to serve as hoardings to isolate the works site;
- Tarpaulin sheets would be used to cover the excavation areas during heavy rainstorms. This would prevent the ingress of rainwater into the trench minimizing the risk of muddy water getting into Wai Ha River and the adjacent Conservation Area;
- (m) Any concrete washing water would be contained inside the works site surrounded by the extended sheet piles. A pump sump at the bottom 0f the trench would be provided to pump any excess water during concrete washing;
- (n) Stockpiling the excavated materials adjacent to the Conservation Area would not be allowed. The excavated materials would be either removed off site immediately after excavation, or stockpile at location(s) away from the Conservation Area. The stockpile locations shall be approved by the site engineer;
- (o) Debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering the Wai Ha River and fish ponds at Shuen Wan. Stockpiles of cement and other construction materials should be kept covered when not being used.
- (p) Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities to prevent spillage of fuels and solvents to nearby water bodies, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity 01 the largest tank The bund should be drained of rainwater after a rain event
- (q) Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site. A licensed contractor would be responsible for appropriate disposal and maintenance of these facilities;
- (r) The excavation works within the upstream end of the existing river channel of the Wai Ha River for the construction of the proposed box culvert should be carried out in dry condition. Containment measures such as bunds and barriers shall be used within the affected length of the river channel and the excavation works restricted to within an enclosed dry section of the channel. The excavation works within Wai Ha River shall be restricted to the period from October to April.

Waste Mitigation Measures

- (a) The Contractor shall observe and comply with the Waste Disposal Ordinance (WDO) and its subsidiary regulations.
- (b) The Contractor shall submit to the Engineer for approval a Waste Management Plan with appropriate mitigation measures including the allocation of an area for waste segregation and shall ensure that the day-to-day site operations comply with the approved waste management plan.
- (c) The Contractor shall minimize the generation of waste from his work. Avoidance and minimization of waste generation can be achieved through changing or improving design and practices, careful planning and good site management.
- (d) The reuse and recycling of waste shall be practised as far as possible. The recycling materials shall include paper/cardboard, timber and metal etc.
- (e) The Contractor shall ensure that Construction and Demolition (C&D) materials are sorted into public fill (inert portion) and C&D waste (non-inert portion). The public fill which comprises soil, rock, concrete, brick, cement plaster/mortar, inert building debris, aggregates and asphalt shall be reused in earth filling, reclamation or site formation works. The C&D waste which comprises metal, timber, paper, glass, junk and general garbage shall be reused or recycled where possible and, as the last resort, disposal of at landfills.
- (f) The Contractor shall record the amount of wastes generated, recycled and disposed of (including the disposal sites). The Contractor shall use a trip ticket system for the disposal of C&D materials to any designated public filling facility and/or landfill.
- (g) In order to avoid dust or odour impacts, any vehicles leaving a works area carrying construction waste or public fill shall have their load covered.
- (h) To avoid the excessive use of wood, reusable steel shutters shall be used as a preferred alternative to formwork and falsework where possible.
- (i) The Contractor shall observe and comply with the Waste Disposal (Chemical Waste) (General) Regulation. The Contractor shall apply for registration as chemical waste producer under the Waste Disposal (Chemical Waste) (General) Regulation when chemical waste is produced. All chemical waste shall be properly stored, labeled, packaged and collected in accordance with the Regulation.
- 8.03 KLKJV had been implementing the required environmental mitigation measures according to the Updated Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by KLKJV in this Reporting Period are summarized in *Table 8-1*.

 Table 8-1
 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Water Quality	 Wastewater were appropriately treated by treatment facilities; Drainage channels were provided to convey run-off into the treatment facilities; and Drainage systems were regularly and adequately maintained.
Air Quality	 Regular watering to reduce dust emissions from all exposed site surface, particularly during dry weather; Frequent watering for particularly dusty construction areas and areas close to air sensitive receivers; Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet; Public roads around the site entrance/exit had been kept clean and free from dust; and Tarpaulin covering of any dusty materials on a vehicle leaving the site.
Noise	 Good site practices to limit noise emissions at the sources; Use of quite plant and working methods; Use of site hoarding or other mass materials as noise barrier to screen noise at ground level of NSRs; Use of shrouds/temporary noise barriers to screen noise from relatively static PMEs; Scheduling of construction works nearly Tung Tsz Road; and Alternative use of plant items within one worksite, where practicable.

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\29th - November 2013\R0310v1.docx Action-United Environmental Services and Consulting

Issues	Environmental Mitigation Measures
	 Excavated material should be reused on site as far as possible to minimize off-site disposal. Scrap metals or abandoned equipment should be recycled if possible; Waste arising should be kept to a minimum and be handled, transported and disposed of in a suitable manner; The Contractor should adopt a trip ticket system for the disposal of C&D materials to any designed public filling facility and/or landfill; and Chemical waste shall be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

9.0 IMPACT FORCAST

CONSTRUCTION ACTIVITIES FOR THE FORTH-COMING MONTH

- 9.01 Construction activities planned to be carried out next month at Shuen Wan is listed as below:-
 - Construction of Box Culvert Bay (3-4)
 - Installing sheetpile of box culvert at Bay (12-15)
 - Excavation of box culvert at Bay (16-19)
 - Construction of Box Culvert Bay (28-31)
 - Excavation of box culvert at Bay (32-34)
 - Excavation of box culvert at Bay (Wai Ha Intake and Bay 15)
- 9.02 Three months Rolling Construction Program is attached in *Appendix C*

KEY ISSUES FOR THE COMING MONTH

- 9.03 According to construction activities carry out in coming months, key issues to be considered include:
 - Implementation of dust suppression measures at all times;
 - Ensure dust suppression measures are implemented properly;
 - Disposal of empty engine oil containers within site area;
 - Sediment catch-pits and silt removal facilities should be regularly maintained;
 - Management of chemical wastes;
 - Discharge of site effluent to the nearby local stream or storm drainage, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
 - Follow-up of improvement on general waste management issues; and
 - Implementation of construction noise preventative control measures.

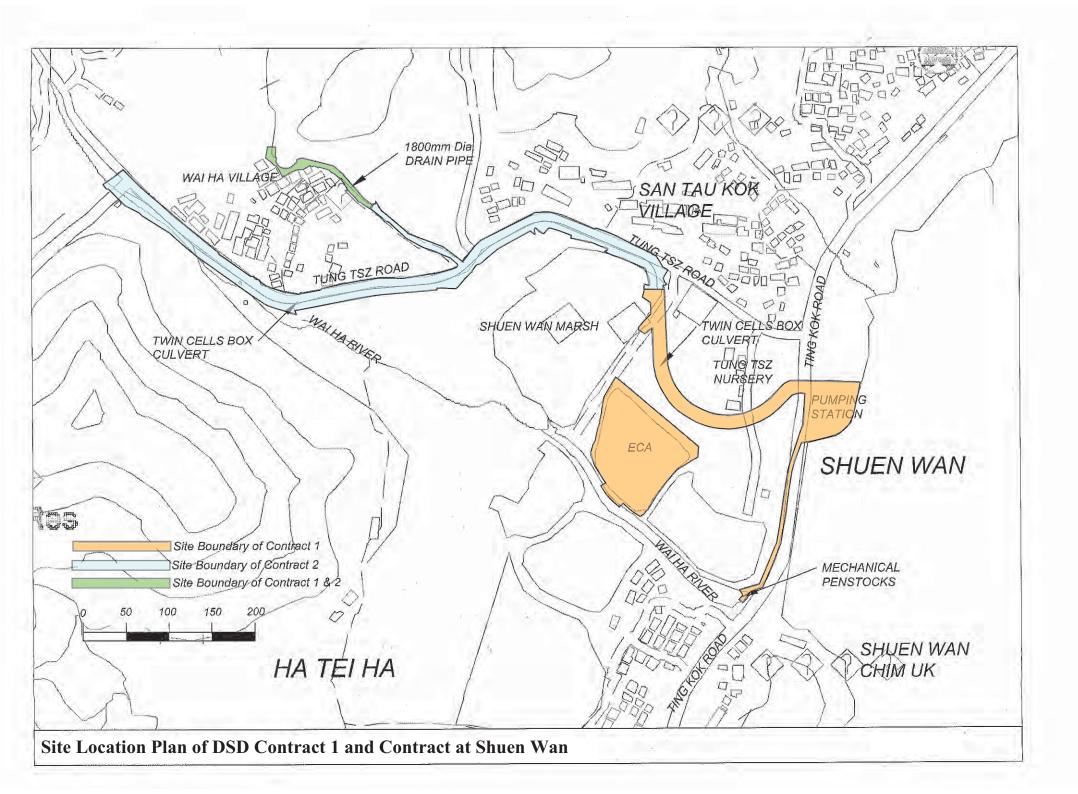
10.0 CONCLUSIONS AND RECOMMENTATIONS

CONCLUSIONS

- 10.01 This is the **29th** monthly EM&A report for Contract 2 presenting the monitoring results and inspection findings for the Reporting Period from **1 to 30 November 2013**.
- 10.02 No noise complaint (which is an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period. No NOE or the associated corrective actions were therefore issued.
- 10.03 For water quality monitoring, a total of 69 Action/ Limit Level exceedances, namely 28 exceedances in dissolved oxygen, 28 exceedances in turbidity and 13 exceedances in suspended solids were recorded in this Reporting Period. NOEs were issued to notify EPD, IEC, the Contractor and RE upon confirmation of the results. It is concluded that exceedances on 6, 11 and 22 November 2013 were partially due to Project. The Contractor should enhance the water quality mitigation measures such as covering all exposed slopes to prevent surface runoff and improve the desilting facilities as far as practicable.
- 10.04 The hydrological characteristics of water depth and water flow rate were found no exceedance in this Reporting Period.
- 10.05 In this Reporting Period, ecological monitoring in Area under Contract 2 was performed on 25 November 2013.
- 10.06 No documented complaint, notification of summons or successful prosecution was received.
- 10.07 Weekly environmental site inspections had been carried out by the Contractor, ET and the RE on 7, 14, 21 and 25 November 201. Furthermore, joint site inspection with the IEC was carried out on 25 November 2013. In this Reporting Period, 3 observations were recorded but no non-compliance was noted during the site inspection.
- 10.08 In this Reporting Period, landscape and visual inspection was carried on 15 and 28 November 2013 and the monthly Landscape & Visual Report (November 2013) has been signed by the registered Landscape Architect.

RECOMMENDATIONS

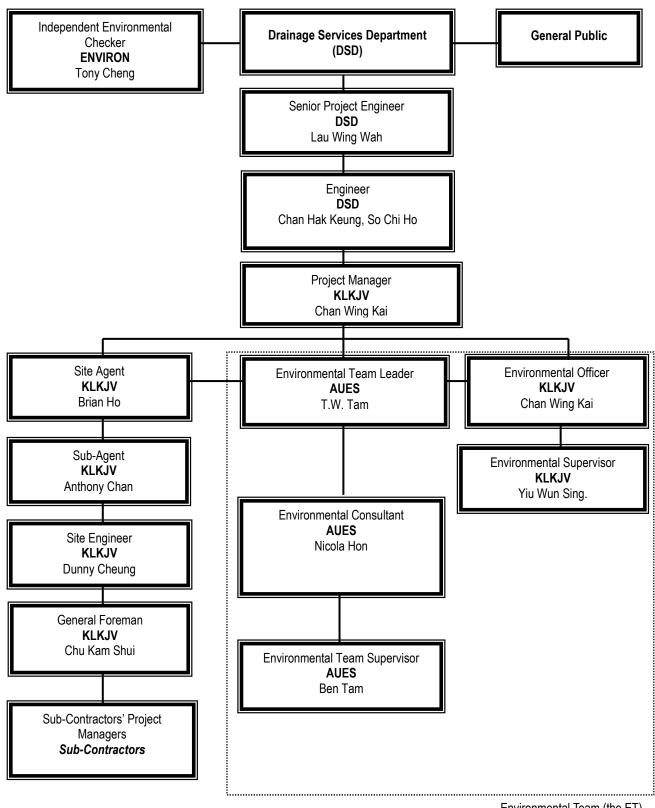
- 10.09 As river works is in progress, surface runoff or water discharge to local stream course should be key environment aspect issue. The Contractor is reminded that mitigation measures for water quality and ecology should be fully implemented. As an effective water quality mitigation measure, the rock bund in the de-silting channel should be repaired regularly and ensure the de-silting performance.
- 10.10 During dry season, dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road would be a key issue in coming months.
- 10.11 Special attention should be also paid on the muddy water and other water quality pollutants via site surface water runoff into the local stream Wah Ha River. As an effective water quality mitigation measure, the rock bund in the de-silting channel should be repaired regularly and ensure the de-silting performance.
- 10.12 To control the site performance on waste management, the KLKJV shall ensure that all solid and liquid waste management works are fully in compliance with the relevant license/permit requirements, such as the effluent discharge licence and the chemical waste producer registration. KLKJV is also reminded to implement the recommended environmental mitigation measures according to the Updated Environmental Monitoring and Audit Manual.


 $[\]label{eq:loss_2011_TCS00553} CC-2010-02) \\ 600 \\ EM&A Monthly Report \\ 29th - November 2013 \\ R0310v1.docx \\ Action-United Environmental Services and Consulting$

Appendix A

Site Location Plan (DSD Contract 1 and Contract 2 at Shuen Wan)

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\29th - November 2013\R0310v1.docx Action-United Environmental Services and Consulting


Appendix B

Organization Chart and the Key Contact Person

 $\label{eq:loss2011} Z: Jobs \ 2011 \ CS00553 \ (DC-2010-02) \ 600 \ EM\&A \ Monthly \ Report \ 29th - November \ 2013 \ R0310v1. docx \ Action-United \ Environmental \ Services \ and \ Consulting$

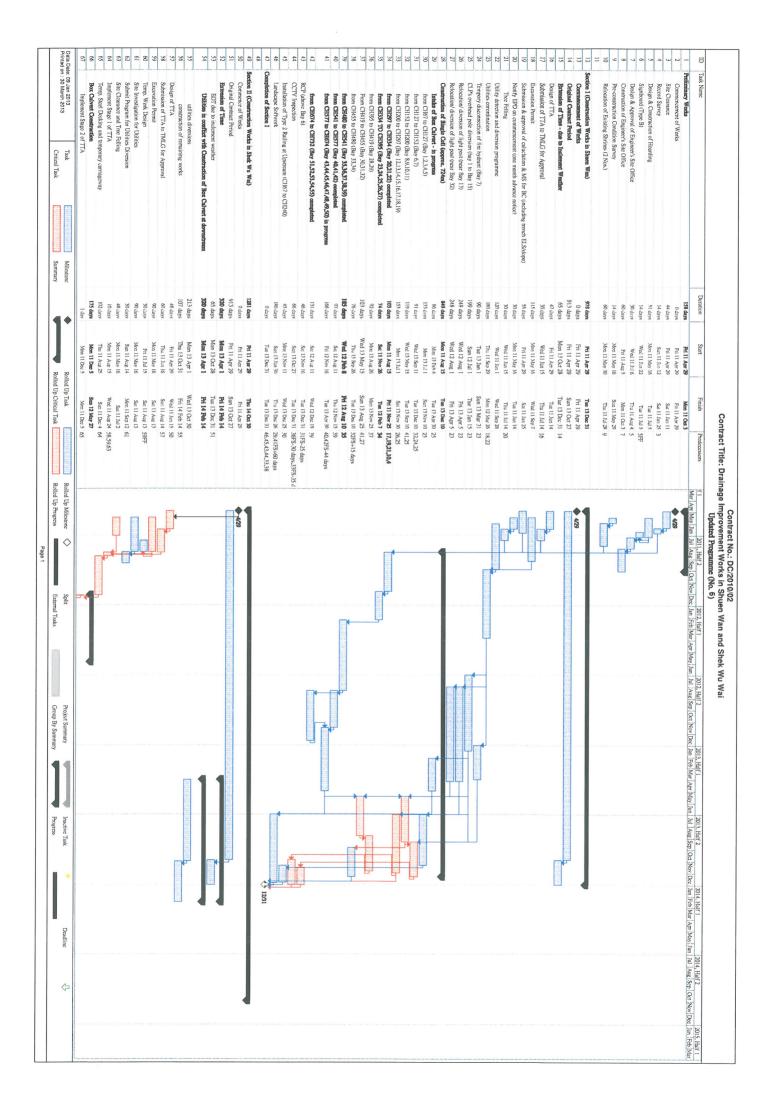
DSD Contract No. Contract No. DC/2010/02 - Drainage Improvement in Shuen Wan and Shek Wu Wai 29th Monthly EM&A Report –November 2013

Environmental Team (the ET)

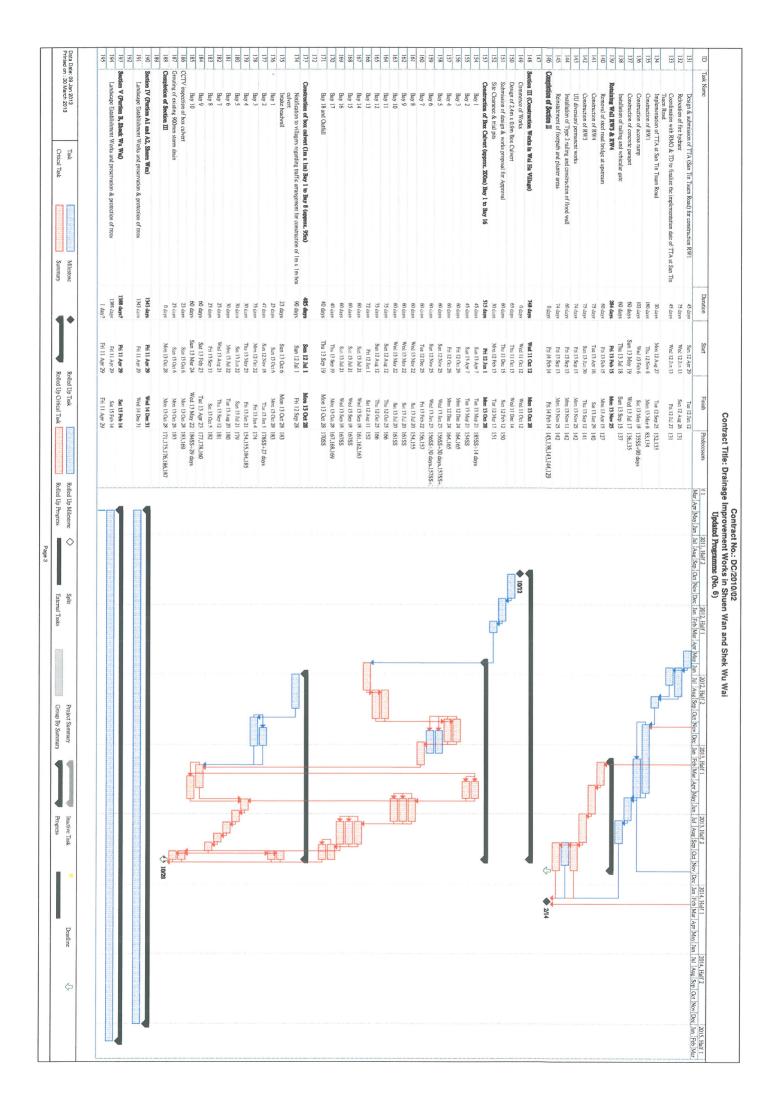
Environmental Management Organization

Contact Details of Key Personnel

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr. Luk Wai Hung	2594 7400	2827 8700
DSD	Senior Engineer	Mr. Lau Wing Wah	2594 7402	2827 8700
DSD	Engineer	Mr. Chan Hak Keung	2594 7596	2827 8700
DSD	Engineer	Mr. So Chi Ho	2594 7356	2827 8700
DSD	Senior Inspector	Mr. Tso Si On	6778 2708	2827 8700
ENVIRON	Independent Environmental Checker	Mr. Tong Cheng	3465-2888	3465-2899
KLKJV	Project Director	Mr. Poon Chi Yeung Francis	2674 3888	2674 9988
KLKJV	Project Manager	Mr. Chan Wing Kai	2674 3888	2674 9988
KLKJV	Site Agent	Mr. Brian Ho	2674 3888	2674 9988
KLKJV	Sub-Agent	Mr. Anthony Chan	2674 3888	2674 9988
KLKJV	Site Forman	Mr. Chu Kam Shui	2674 3888	2674 9988
KLKJV	Environmental Officer	Mr. Chan Wing Kai	2674 3888	2674 9988
KLKJV	Environmental Supervisor	Mr. Yiu Wun Sing	2674 3888	2674 9988
AUES	Environmental Team Leader	Mr. T.W. Tam	2959-6059	2959-6079
AUES	Environmental Consultant	Miss. Nicola Hon	2959-6059	2959-6079
AUES	Environmental Supervisor	Mr. Ben Tam	2959-6059	2959-6079

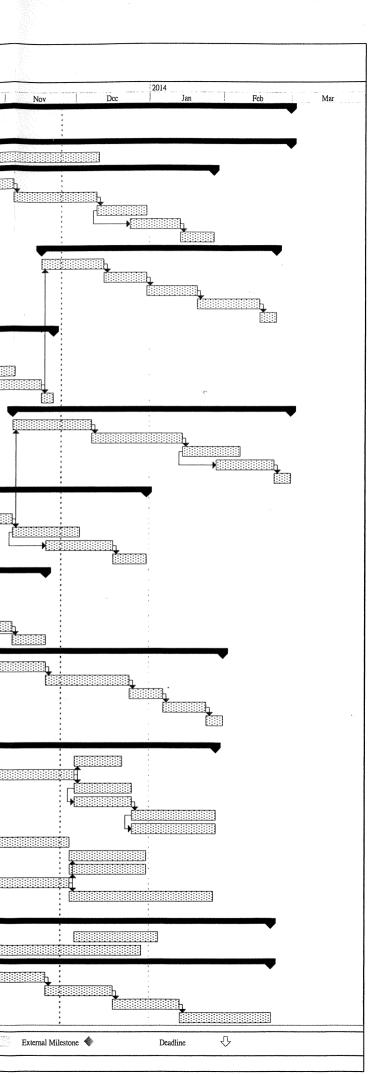

Legends:

- DSD (Employer) Drainage Services Department
- DSD (Engineer) Drainage Services Department
- KLKJV (Main Contractor) Kwan Lee-Kuly Joint Venture
- ENVIRON (IEC) ENVIRON Hong Kong Limited
- AUES (ET) Action-United Environmental Services & Consulting



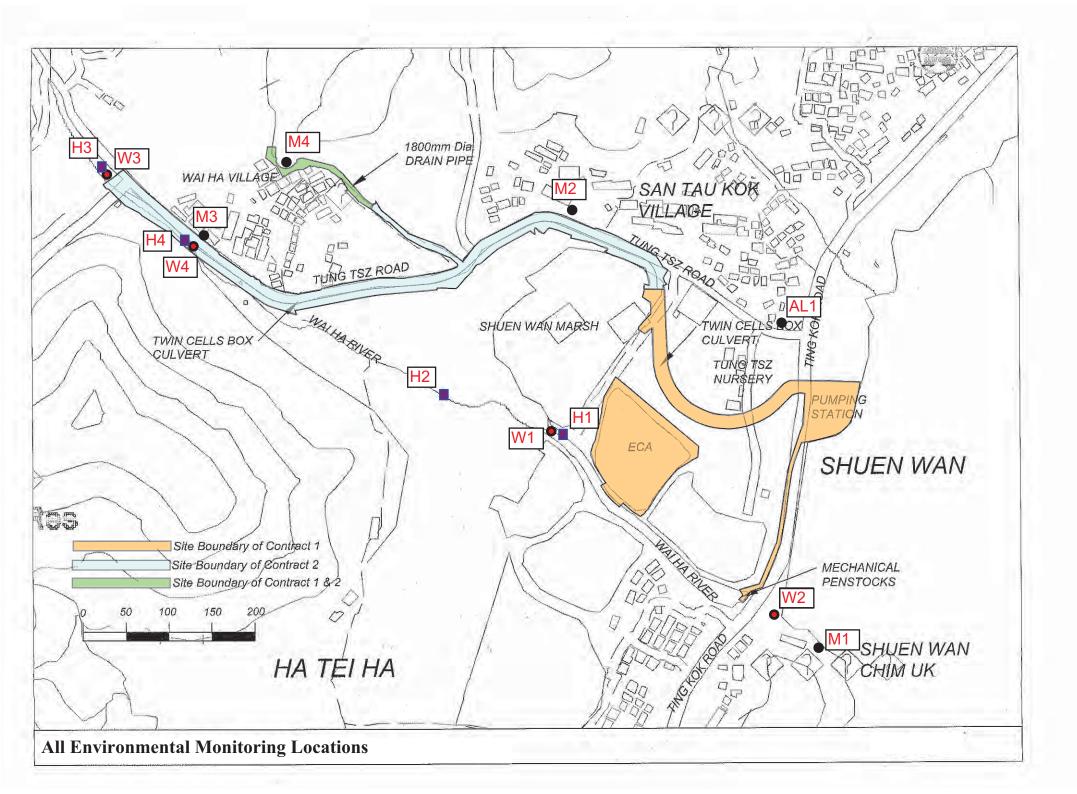
Appendix C

Master Construction Programs



Rolled Up Milestone
Fri 14 Feb 14 128FS-7 days.136
Wed 13 Dec 4 127,108,93,98,103
116.115
87
Wed 12 New 14 83FS-5 days,111
83,107
1
101
102.106
1
Mar LAnz May Jun; Jul LAnz, Ren Get New Decham Reb Mar LAnz Mey Jun; Jul LAng (Sep Get Nov) Dec Jan Reb Mar LAnz Mey Jun; Jul LAng (Sep Get Nov) Dec Jan Reb Mar LAnz Mey Jun; Jul LAng (Sep Get Nov) Dec Jan Reb Mar
2014, Half 2

					Contract No. : DC/2010/02 Drainage Improvement Works in Shuen Wan and Shek Wu Wai Sub-Programme for Remaining Box Culvert
•	Task Name	Duration	Start	Finish Predecessors Resource Name	
	Sub-programme for Remaining Box Culvert	290 days	Wed 13 May 15	Fri 14 Feb 28	
	Box Culvert at Tung Tsz Road	290 days	Wed 13 May 15	Fri 14 Feb 28	
-	Intake	57 days	Tue 13 Oct 15	Tue 13 Dec 10	
	Bay 1 - 3	105 days	Tue 13 Oct 15	Mon 14 Jan 27	
	Sheetpiling	21 days	Tue 13 Oct 15	Mon 13 Nov 4	
	Excavation	35 days	Tue 13 Nov 5	Mon 13 Dec 9 6	
	Base Slab	21 days	Tue 13 Dec 10	Mon 13 Dec 30 7	
	Wall & Top Slab Backfilling	21 days	Tue 13 Dec 24 Tue 14 Jan 14	Mon 14 Jan 13 8SS+14 days Mon 14 Jan 27 9	
	Bay 4 - 7	14 days 98 days	Sun 13 Nov 17	Sat 14 Feb 22	
-	Shectpiling	26 days	Sun 13 Nov 17	Thu 13 Dec 12 21	
	Excavation	18 days	Fri 13 Dec 13	Mon 13 Dcc 30 12	
	Base Slab	21 days	Tue 13 Dec 31	Mon 14 Jan 20 13	
	Wall & Top Slab	26 days	Tue 14 Jan 21	Sat 14 Feb 15 14	
	Backfilling	7 days	Sun 14 Feb 16	Sat 14 Feb 22 15	
	Bay 8 - 11 Sheetpiling	191 days	Wed 13 May 15	Thu 13 Nov 21	
	Excavation	65 days 85 days	Wed 13 May 15 Fri 13 Jul 19	Thu 13 Jul 18 Fri 13 Oct 11 18	
	Base Slab	25 days	Sat 13 Oct 12	Tue 13 Nov 5 19	
	Wall & Top Slab	22 days	Sat 13 Oct 26	Sat 13 Nov 16 20SS+14 days	
	Backfilling	5 days	Sun 13 Nov 17	Thu 13 Nov 21 21	
	Bay 12 - 15	116 days	Tue 13 Nov 5	Fri 14 Feb 28	
_	Sheetpiling	33 days	Tue 13 Nov 5	Sat 13 Dec 7 31	
_	Excavation Base Slab	38 days	Sun 13 Dec 8	Tue 14 Jan 14 24	
	Wall & Top Slab	24 days 24 days	Wed 14 Jan 15 Wed 14 Jan 29	Fri 14 Feb 7 25 Fri 14 Feb 21 26SS+14 days	
_	Backfilling	7 days	Sat 14 Feb 22	Fri 14 Feb 28 27	
	Bay 16 - 19	146 days	Wed 13 Aug 7	'Mon 13 Dec 30	
	Sheetpiling	35 days	Wed 13 Aug 7	Tue 13 Sep 10	EXERCISE A CONTRACTOR OF
	Excavation	55 days	Wed 13 Sep 11	Mon 13 Nov 4 30	
	Base Slab	28 days	Tue 13 Nov 5	Mon 13 Dec 2 31	
_	Wall & Top Slab Backfilling	28 days	Tue 13 Nov 19	Mon 13 Dec 16 32SS+14 days	
	Backfinning Bay 28 - 31	14 days 1 60 days	Tue 13 Dec 17 Wed 13 Jun 12	Mon 13 Dec 30 33 Mon 13 Nov 18	
E	Sheetpiling	35 days	Wed 13 Jun 12	Tue 13 Jul 16	
	Excavation	55 days	Wed 13 Jul 17	Mon 13 Sep 9 36	
	Base Slab	28 days	Tue 13 Sep 10	Mon 13 Oct 7 37	
	Wall & Top Slab	28 days	Tue 13 Oct 8	Mon 13 Nov 4 38	
1	Backfilling	14 days	Tue 13 Nov 5	Mon 13 Nov 18 39	
	Bay 32 - 34 Sheetpiling	102 days 28 days	Tue 13 Oct 22 Tue 13 Oct 22	Fri 14 Jan 31	
	Excavation	35 days	Tue 13 Nov 19	Mon 13 Nov 18 39FS-14 days Mon 13 Dec 23 42	
	Base Slab	14 days	Tue 13 Dec 24	Mon 14 Jan 6 43	
	Wall & Top Slab	18 days	Tue 14 Jan 7	Fri 14 Jan 24 44	
	Backfilling	7 days	Sat 14 Jan 25	Fri 14 Jan 31 45	
_	Box Culvert at Wai Ha	121 days	Mon 13 Sep 30	Tue 14 Jan 28	
	Intake Bay 1	20 days 39 days	Sun 13 Dec 1	Fri 13 Dec 20 50	۰. ا
-	Bay 4	39 days 24 days	Wed 13 Oct 23 Sun 13 Dec 1	Sat 13 Nov 30 Tue 13 Dec 24 50	
1	Bay 5	24 days	Sun 13 Dec 1	Tue 13 Dec 24 51SS	
1	Bay 6	35 days	Wed 13 Dec 25	Tue 14 Jan 28 52	,
1	Bay 7	35 days	Wed 13 Dec 25	Tue 14 Jan 28 53SS	
	Bay 14	60 days	Mon 13 Sep 30	Thu 13 Nov 28 58SS	h
-	Bay 15	32 days	Fri 13 Nov 29	Mon 13 Dec 30 58	
-	Bay 16	32 days	Fri 13 Nov 29	Mon 13 Dec 30 58	
	Bay 17 Bay 18 & outfall	60 days	Mon 13 Sep 30 Fri 13 Nov 20	Thu 13 Nov 28 Mon 14 Jan 27, 58	
-	Day 10 & Odličili	60 days	Fri 13 Nov 29	Mon 14 Jan 27 58	
-	Shek Wu Wai	129 days	Tue 13 Oct 15	Thu 14 Feb 20	
	Remaining Box Culvert - wall stem & top slab	35 days	Sun 13 Dec 1	Sat 14 Jan 4	
6	Retaining Wall - RW3	75 days	Tue 13 Oct 15	Sat 13 Dec 28	
]	Access Ramp at RW1	122 days	Tue 13 Oct 22	Thu 14 Feb 20	
	Bay 5	28 days	Tue 13 Oct 22	Mon 13 Nov 18	
_	Bay 4	28 days	Tue 13 Nov 19	Mon 13 Dec 16 65	
1	Bay 3 Bay 2	28 days 38 days	Tue 13 Dec 17 Tue 14 Jan 14	Mon 14 Jan 13 66 Thu 14 Feb 20 67	
1					


Page 1

Appendix D

Environmental Monitoring Locations

Appendix E

Calibration certificates of the monitoring equipment and Certificate of ALS Technichem (HK) Pty Ltd

Items	Aspect	Description of Equipment	Date of Calibration	Date of Next Calibration
1	N. '	Bruel & Kjaer Integrating Sound Level Meter (Serial No. 2285762)	27 April 13	27 April 14
2	Noise	Bruel & Kjaer Acoustical Calibrator (Serial No. 2326408)	15 April 13	15 April 14
3	Water	SONDA YSI 6820 (Serial No. 02J0912)	15 Oct 13	15 Jan 14

Equipment Calibration List

Note: *Calibration certificates will only be provided when monitoring equipment is re-calibrated or new.

Appendix F

Event and Action Plan

Event Action Plan for Construction Noise

EVENT				
EVENT	ET Leader	IEC	ER	Contractor
Action Level	 Notify IEC and Contractor Carry out investigation. Report the results of investigation to the IEC, ER and Contractor. Discuss with the Contractor and formulate remedial measures Increase monitoring frequency to check mitigation effectiveness. 	 Review the analyzed results submitted by the ET. Review the proposed remedial measures by the Contractor and advise the ER accordingly Supervise the implementation of remedial measures 	 Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose 'remedial measures for the analyzed noise problem Check remedial measures are properly implemented. 	 Submit noise mitigation proposals to IEC Implement noise mitigation proposals
Limit Level	 Notify IEC, ER, EPD and Contractor Identify source. Repeat measurements to confirm findings Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Inform IEC, ER and EPD the causes and actions taken for the exceedances Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions Review Contractor's' remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly Supervise the implementation of remedial measures 	 Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analyzed noise problem Check remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated

Event and action Plan for Water Quality

Event	ET Leader	IEC	ER	Contractor
Action level	1 Denest in situ measurements to	ACTION LEVEL	1. Discuss proposed	1 Inform Engineer and confirm in
Action level being exceeded by one sampling day	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Repeat measurement on next day of exceedance. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures.
Action level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of exeedance. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures
		LIMIT LEVEL		
Limit level being exceeded by one sampling day	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform EPD, IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures.
Limit level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform EPD, IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures; Consider and if necessary instruct Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures; As directed by the Engineer, slow down or stop all or part of the construction activities until no exceedance of Limit level.

 $\label{eq:loss2011} Z: Jobs \ 2011 \ CS00553 \ (DC-2010-02) \ 600 \ EM \& A \ Monthly \ Report \ 29th - November \ 2013 \ R0310v1. docx \ Action-United \ Environmental \ Services \ and \ Consulting$

Event and action Plan for Hydrological Characteristics

Event	ET Leader	IEC	ER	Contractor
ACTION LEVEL				
Action level being exceeded by one sampling day	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and Engineer; Check monitoring data, Contractor's working methods and any excavation works or dewatering processes; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Repeat measurement on next day of exceedance. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check working methods and any excavation works or dewatering processes; Consider changes in working methods and plans; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures.
Action level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and Engineer; Check monitoring data, Contractor's working methods and any excavation works or dewatering processes; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of exceedance. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check working methods and any excavation works or dewatering processes; Consider changes in working methods and plans; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures
LIMIT LEVEL	1 Depect in situ messuremente te	1 Discuss mitiastics	1 Discuss proposed	1 Inform Engineer and confirm in
Limit level being exceeded by one sampling day	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform AFCD, IEC, Contractor and Engineer; Check monitoring data, and Contractor's working methods and any excavation works or dewatering processes; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check working methods and any excavation works or dewatering processes; Consider changes in working methods and plans; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures.
Limit level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform AFCD, IEC, Contractor and Engineer; Check monitoring data and Contractor's working methods and any excavation works or dewatering processes; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures; Consider and if necessary instruct Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check working methods and any excavation works or dewatering processes; Consider changes in working methods and plans; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures; As directed by the Engineer, slow down or stop all or part of the construction activities until no exceedance of Limit level.

Appendix G

Monitoring Schedule in Reporting Period and the Coming Month

_	_	Stream M	Ionitoring		
Ľ	Date	Water Sampling	Flow Monitoring	Noise Monitoring	
Fri	1-Nov-13	W1, W2, W3, W4	H1, H2, H3, H4	M2, M3, M4	
Sat	2-Nov-13				
Sun	3-Nov-13				
Mon	4-Nov-13	W1, W2, W3, W4			
Tue	5-Nov-13				
Wed	6-Nov-13	W1, W2, W3, W4		M1, AL1, M2, M3, M4	
Thu	7-Nov-13				
Fri	8-Nov-13	W1, W2, W3, W4	H1, H2, H3, H4		
Sat	9-Nov-13				
Sun	10-Nov-13				
Mon	11-Nov-13	W1, W2, W3, W4			
Tue	12-Nov-13				
Wed	13-Nov-13	W1, W2, W3, W4		M1, AL1	
Thu	14-Nov-13				
Fri	15-Nov-13	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1, M2, M3, M4	
Sat	16-Nov-13				
Sun	17-Nov-13				
Mon	18-Nov-13	W1, W2, W3, W4			
Tue	19-Nov-13				
Wed	20-Nov-13	W1, W2, W3, W4		M1, AL1	
Thu	21-Nov-13				
Fri	22-Nov-13	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1, M2, M3, M4	
Sat	23-Nov-13				
Sun	24-Nov-13				
Mon	25-Nov-13	W1, W2, W3, W4			
Tue	26-Nov-13				
Wed	27-Nov-13	W1, W2, W3, W4		M1, AL1	
Thu	28-Nov-13				
Fri	29-Nov-13	W1, W2, W3, W4	H1, H2, H3, H4	M2, M3, M4	
Sat	30-Nov-13				

Monitoring Schedule in this Reporting Period – November 2013

Monitoring Day
Sunday or Public Holiday

		Stream M	lonitoring	
L	Date	Water Sampling	Flow Monitoring	 Noise Monitoring
Sun	1-Dec-13			
Mon	2-Dec-13	W1, W2, W3, W4		
Tue	3-Dec-13			
Wed	4-Dec-13	W1, W2, W3, W4		
Thu	5-Dec-13			
Fri	6-Dec-13	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1,M2, M3, M4
Sat	7-Dec-13			
Sun	8-Dec-13			
Mon	9-Dec-13	W1, W2, W3, W4		
Tue	10-Dec-13			
Wed	11-Dec-13	W1, W2, W3, W4		
Thu	12-Dec-13			
Fri	13-Dec-13	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1,M2, M3, M4
Sat	14-Dec-13			
Sun	15-Dec-13			
Mon	16-Dec-13	W1, W2, W3, W4		
Tue	17-Dec-13			
Wed	18-Dec-13	W1, W2, W3, W4		
Thu	19-Dec-13			
Fri	20-Dec-13	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1,M2, M3, M4
Sat	21-Dec-13			
Sun	22-Dec-13			
Mon	23-Dec-13	W1, W2, W3, W4		
Tue	24-Dec-13			
Wed	25-Dec-13			
Thu	26-Dec-13			
Fri	27-Dec-13	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1, M2, M3, M4
Sat	28-Dec-13			
Sun	29-Dec-13			
Mon	30-Dec-13	W1, W2, W3, W4		
Tue	31-Dec-13			

Monitoring Schedule for next Reporting Period – December 2013

Monitoring Day
Sunday or Public Holiday

Appendix H

Meteorological Data of Reporting Period

 $\label{eq:loss2011} Z: Jobs \ 2011 \ CS00553 \ (DC-2010-02) \ 600 \ EM \& A \ Monthly \ Report \ 29th - November \ 2013 \ R0310v1. docx \ Action-United \ Environmental \ Services \ and \ Consulting$

Meteorological Data in Reporting Period

Date				Tai Po	Station	Shatin Station		
		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Mean Relative Humidity (%)	Wind Speed (km/h)	Wind Direction	
1-Nov-13	Fri	Fine, dry, cloudy. Moderate northeasterly winds, freshening later.	0	24.5	74.5	6.5	N/NE	
2-Nov-13	Sat	Cloudy, a few showers later, Moderate to fresh east to northeasterly winds.	Trace	25	66	11.1	N/NE	
3-Nov-13	Sun	Cloudy, few showers. Fresh northeasterly winds, strong offshore and on high ground.	0.4	25.3	71.2	15	N/NE	
4-Nov-13	Mon	Cloudy, rain, moderate. Moderate to fresh east to northeasterly winds.	12.2	22.7	82.5	9.2	N/NE	
5-Nov-13	Tue	Cloudy, rain, moderate. Moderate to fresh east to northeasterly winds.	3.6	22	87.2	7.1	Ν	
6-Nov-13	Wed	Mainly fine. Moderate to fresh easterly winds.	Trace	23.9	78.5	5.6	N/NE	
7-Nov-13	Thu	Mainly fine. Moderate to fresh easterly winds.	0	24.1	80.7	8.2	N	
8-Nov-13	Fri	Mainly fine. Moderate to fresh easterly winds.	Trace	24.6	70	7.5	N/NE	
9-Nov-13	Sat	Mainly fine. Moderate to fresh easterly winds.	Trace	24.5	79.3	9.5	E/NE	
10-Nov-13		Cloudy, rain. Fresh to strong easterly winds.	7.6	25.6	85	10	E/NE	
11-Nov-13		Cloudy, rain. Fresh to strong easterly winds.	Trace	Maintena nce	Maintenan ce	12.2	E/NE	
12-Nov-13	Tue	Cloudy, rain, moderate. Fresh to strong easterly winds.	33.4	22	89.7	12.1	E/SE	
13-Nov-13	Wed	Fine, dry. Moderate north to northeasterly winds.	3.9	19.5	88.7	6.6	N/NW	
14-Nov-13	Thu	Fine, dry. Moderate north to northeasterly winds.	Trace	20.6	77	7	N	
15-Nov-13	Fri	Fine, dry. Moderate north to northeasterly winds.	0	20.2	70	6.1	N/NE	
16-Nov-13	Sat	Fine, dry, cloudy. Moderate northeasterly winds.	0	20.6	59.7	5.6	N	
17-Nov-13	Sun	Fine, dry, cloudy. Moderate northeasterly winds.	0	19.9	61	5.7	N/NE	
18-Nov-13	Mon	Fine, very dry. Moderate northeasterly winds.	0	20.2	46.5	7	N/NE	
19-Nov-13	Tue	Cloudy, dry. Moderate to fresh east to northeasterly winds.	0	18.8	64.2	4.1	Е	
20-Nov-13	Wed	Cloudy, dry. Moderate to fresh east to northeasterly winds.	Trace	19.3	66	6	N/NE	
21-Nov-13	Thu	Cloudy, dry. Moderate to fresh east to northeasterly winds.	0.5	20.2	61.7	5.5	N/NE	
22-Nov-13	Fri	Cloudy, dry. Moderate to fresh east to northeasterly winds.	0.7	20.1	75.7	7.4	E/SE	
23-Nov-13	Sat	Fine, dry. Moderate to fresh north to northeasterly winds.	Trace	22.2	73.2	7.9	E/SE	
24-Nov-13	Sun	Fine, dry. Moderate to fresh north to northeasterly winds.	15.2	22.4	82.2	8.2	N/NE	
25-Nov-13	Mon	Fine and very dry. Moderate to fresh north to northeasterly winds.	0	18.8	55	8.8	N/NE	
26-Nov-13	Tue	Fine, dry, cool. Moderate to fresh east to northeasterly winds.	0	17.4	66.5	5.7	N/NE	
27-Nov-13	Wed	Fine, cloudy, very dry. Moderate to fresh north to northeasterly winds.	0.5	18.7	73.7	6.5	N/NE	
28-Nov-13	Thu	Fine, cloudy, very dry. Moderate to fresh north to northeasterly winds.	5.1	14.7	63.5	12.5	Ν	
29-Nov-13	Fri	Fine and very dry. Moderate to fresh north to northeasterly winds.	0	14.3	33.5	12.5	N/NE	
30-Nov-13	Sat	Fine and very dry. Moderate to fresh north to northeasterly winds.	0	14.3	46	6	E/NE	

* The record was downloaded from The Hong Kong Observatory Weather Stations

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\29th - November 2013\R0310v1.docx Action-United Environmental Services and Consulting

Appendix I

Data Base of Monitoring Results

Construction Noise Measurement Data

Designated Monitoring Station – M1 (14, Shuen Wan Chim Uk)

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 ^{ra} Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 ^{tn} Leq _{5min}	Leq _{30min*}
6-Nov-13	9:45	-	-	-	-	-	-	68.4
13-Nov-13	10:00	-	-	-	-	-	-	66.9
20-Nov-13	14:40	-	-	-	-	-	-	61.5
27-Nov-13	15:00	-	-	-	-	-	-	63.5
Limit I	Level				-			> 75 dB(A)

(*)The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.

Designated Monitoring Station - AL1 (Joint Village Office for Villages in Shuen Wan, Tai Po)

Date	Start Time	1st Leq5m in	2nd Leq5m in	3rd Leq5m in	4th Leq5m in	5th Leq5m in	6th Leq5m in	Leq30min*
6-Nov-13	10:20	-	-	-	-	-	-	66.8
13-Nov-13	10:35	-	-	-	-	-	-	70.1
20-Nov-13	15:30	-	-	-	-	-	-	66.5
27-Nov-13	15:35	-	-	-	-	-	-	68.9
Limit Level								>75 dB(A)

(*)The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.

Designated Monitoring Station - M2 (150, San Tau Kok)

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min}	Corrected* Leq _{30min}
1-Nov-13	15:08	64.1	62.9	63.4	65.4	64.0	64.4	64.1	67.1
6-Nov-13	13:11	66.4	66.9	63.4	65.2	66.5	68.0	66.3	69.3
15-Nov-13	15:32	61.7	64.5	63.3	64.0	65.6	60.8	63.6	66.6
22-Nov-13	15:21	64.4	61.1	66.8	62.7	63.3	61.5	63.8	66.8
29-Nov-13	17:05	60.3	58.8	62.1	62.8	62.2	63.7	61.9	64.9
Limit I	Level							> 75	5 dB(A)

(*) A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines.

Designated Monitoring Station – M3 (31, Wai Ha)

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min}	Corrected* Leq _{30min}
1-Nov-13	14:27	62.2	62.9	60.0	61.9	64.0	63.7	62.6	65.6
6-Nov-13	14:56	70.6	71.6	70.9	69.2	71.3	74.9	71.8	74.8
15-Nov-13	14:56	67.3	70.3	70.1	70.3	70.4	70.3	69.9	72.9
22-Nov-13	16:32	62.2	59.7	56.1	63.3	69.2	64.0	64.3	67.3
29-Nov-13	16:30	70.2	69.3	71.0	69.6	70.5	67.5	69.8	72.8
Limit I	Level							> 75	5 dB(A)

(*) A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines.

Designated Monitoring Station – M4 (Block 15, Treasure Spot Garden)

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min}	Corrected* Leq _{30min}
1-Nov-13	14:44	57.8	59.6	62.3	52.8	63.3	58.3	60.2	63.2
6-Nov-13	13:52	51.5	54.1	53.2	54.3	55.2	50.3	53.4	56.4
15-Nov-13	15:25	47.0	50.9	49.1	47.1	48.9	45.6	48.4	51.4
22-Nov-13	15:57	58.0	62.4	54.9	53.7	64.5	58.7	60.3	63.3
29-Nov-13	16:45	53.6	53.8	49.9	48.8	51.3	47.6	51.4	54.4
Limit I	Level			> 75	5 dB(A)				

(*) A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines.

DSD Contract No. DC/2010/02 Contract No. - Drainage Improvement in Shuen Wan and Shek Wu Wai Summary of Water Quality Monitoring Results

AUES

									Turkiditer (NTU)					
Location					DO (r	ng/L)	DO	(%)	Turbidit	v (NTU)	r	н	SS(m	a/L)
						7.27				4.77	Action		-	9.73
W1 (impact)					Action		Action	n/a	Action			n/a	Action	
					Limit	4	Limit	n/a	Limit	5.26	Limit	n/a	Limit	10.77
W2 (impact)					Action	7.26	Action	n/a	Action	2.46	Action	n/a	Action	8.89
	, P	Action/ Lim	it Level		Limit	4	Limit	n/a	Limit	3.42	Limit	n/a	Limit	9.75
W3 (control)					n	/a	n	/a	n,	/a	n	n/a	n/	а
W4 (impact)					Action	9.27	Action	n/a	Action	3.32	Action	n/a	Action	6.98
u (inpuot)					Limit	4	Limit	n/a	Limit	4.52	Limit	n/a	Limit	7.66
Date	1-Nov-13													
Location	Time	Depth	Temp	(oC)		ng/L)	DO	(%)	Turbidit	v (NTU)	r	н	SS(m	a/L)
W1 - ebb	Time	(m)		(00)		lig/ E/		(70)		5 (1110)				g, L)
	10:54	0.21	30.4 30.4	30.4	7.54	7.6	104.5 105.7	105.1	4.3 4.5	4.4	7.5 7.49	7.5	4 4	4.0
(impact) W1- flood			30.4		7.66 7.23		100.6		3.2		7.49	-	3	
(impact)	16:55	0.33	32.9	32.9	7.14	7.2	97.3	99.0	3.25	3.2	7.76	7.8	3	3.0
			26.8		7.23		75		3.5		7.73		3.4	
W2 (Impact)	12:05	<1	26.8	26.8	7.23	7.2	75	75.0	3.5	3.5	7.73	7.7	3.4	3.4
	44.45	0.05	33.7		7.88	7.0	108.7	100.0	5.26		8.49		5	
W3 (control)	16:15	0.35	33.7	33.7	7.97	7.9	109.3	109.0	4.96	5.1	8.49	8.5	5	5.0
W/4 (impact)	16:27	0.17	33.3	33.3	7.12	7.2	97.4	97.8	3.65	3.7	7.95	8.0	6	6.0
W4 (impact)	10.27	0.17	33.3	33.3	7.22	1.2	98.2	77.0	3.66	3.7	7.96	8.0	6	0.0
Date	4-Nov-13													
Location	Time	Depth	Temp	(nC)	DO (r	ng/L)	DO	(%)	Turbidit	v (NTU)	r	н	SS(m	a/L)
W1 - ebb		(m)	24		7.42		88.5		4.22			1	6	
(impact)	12:40	0.19	24	24.0	7.5	7.5	88.5	88.7	4.22	4.3	6.63 6.63	6.6	6	6.0
W1- flood		e	24	a	5.58		65.3		4.30		6.85		4	
(impact)	9:00	0.25	22.7	22.7	5.45	5.5	63.9	64.6	4.12	4.2	6.86	6.9	4	4.0
	14.00	.1	24.1	24.1	7.56	7 /	78	70.0	2.9	2.0	8.01	0.0	3.6	27
W2 (Impact)	14:00	<1	24.1	24.1	7.56	7.6	78	78.0	2.9	2.9	8.01	8.0	3.6	3.6
W3 (control)	14:27	0.26	24.2	24.2	7.77	7.7	60.7	75.2	2.73	2.8	8.21	8.2	<2	2.0
	17.27	0.20	24.2	27.2	7.7	1.1	89.6	13.2	2.77	2.0	8.19	0.2	<2	2.0
W4 (impact)	14:10	0.31	24.2	24.2	7.87	7.8	92	91.6	3.22	3.2	7.63	7.6	4	4.0
ma (impact)	14.10	0.01	24.2	27.2	7.78	7.0	91.1	21.0	3.22	J.2	7.62	1.0	4	4.U
Date	6-Nov-13													
Location	Time	Deptn	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	P	н	SS(m	.g/L)
W1 - ebb	13:08	0.30	24.6	24.6	7.7	7.6	87.4	86.0	4.13	4.1	6.81	6.8	4	4.0
(impact)	13.06	0.30	24.6	24.0	7.4	7.0	84.5	60.0	3.98	4.1	6.81	0.0	4	4.0
W1- flood	9:12	0.50	24.4	24.5	7.3	7.3	83.8	83.5	3.07	3.3	6.62	6.6	5	5.0
(impact)			24.5		7.24		83.2		3.54		6.63		5	
W2 (Impact)	15:20	<1	26.6	26.6	7.33	7.3	78	78.0	4.1	4.1	7.85	7.9	6.4	6.4
(1 - - - 3			26.6		7.33	-	78		4.1		7.85		6.4	
W3 (control)	13:24	0.30	25.3 25.1	25.2	6.15 6.05	6.1	71.8 71	71.4	1.44 2.07	1.8	7.99 7.98	8.0	3	3.0
			25.4		7.53		86.4		8.9		7.82		10	
W4 (impact)	13:19	0.20	25.4	25.4	7.29	7.4	83.4	84.9	8.1	8.5	7.81	7.8	10	10.0
			2011		//		0011		0.1		7.01			
Date	8-Nov-13													
Date	8-Nov-13	Deptn	Tomp	(00)	DO (1	mg/l)	DO	(%)	Turbidit	v (NTU)	r	<u>, </u>	SS(m	g/l)
Location	Time	Deptn (m)	Temp		-	ng/L)	DO		Turbidit			ын	SS(m	
Location W1 - ebb		0.12	31.2	(oC) 31.2	7.88	ng/L) 7.8	98.8	(%) 99.3	50.7	y (NTU) 45.7	7.05	H 7.1	27	g/L) 27.0
Location W1 - ebb (impact)	Time 15:50	(m) 0.12	31.2 31.2	31.2	7.88	7.8	98.8 99.8	99.3	50.7 40.6	45.7	7.05	7.1	27 27	27.0
Location W1 - ebb (impact) W1- flood	Time	(m)	31.2 31.2 29.1		7.88 7.77 7.37		98.8 99.8 94.5		50.7 40.6 50.9		7.05 7.06 7.33	1	27 27 27 27	
Location W1 - ebb (impact) W1- flood (impact)	Time 15:50 10:43	0.12 0.28	31.2 31.2 29.1 29.1	31.2 29.1	7.88 7.77 7.37 7.38	7.8	98.8 99.8 94.5 94	99.3 94.3	50.7 40.6 50.9 47.4	45.7 49.2	7.05 7.06 7.33 7.34	7.1	27 27 27 27 27	27.0 27.0
Location W1 - ebb (impact) W1- flood	Time 15:50	(m) 0.12	31.2 31.2 29.1	31.2	7.88 7.77 7.37	7.8	98.8 99.8 94.5	99.3	50.7 40.6 50.9	45.7	7.05 7.06 7.33	7.1	27 27 27 27	27.0
Location W1 - ebb (impact) W1- flood (impact) W2 (Impact)	Time 15:50 10:43 16:00	(m) 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7	31.2 29.1 25.7	7.88 7.77 7.37 7.38 6.89	7.8 7.4 6.9	98.8 99.8 94.5 94 68	99.3 94.3 68.0	50.7 40.6 50.9 47.4 3.6	45.7 49.2 3.6	7.05 7.06 7.33 7.34 7.8	7.1 7.3 7.8	27 27 27 27 27 6.2	27.0 27.0 6.2
Location W1 - ebb (impact) W1- flood (impact)	Time 15:50 10:43	0.12 0.28	31.2 31.2 29.1 29.1 25.7 25.7	31.2 29.1	7.88 7.77 7.37 7.38 6.89 6.89	7.8	98.8 99.8 94.5 94 68 68	99.3 94.3	50.7 40.6 50.9 47.4 3.6 3.6	45.7 49.2	7.05 7.06 7.33 7.34 7.8 7.8	7.1	27 27 27 27 6.2 6.2	27.0 27.0
Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control)	Time 15:50 10:43 16:00 15:35	(m) 0.12 0.28 <1 0.21	31.2 31.2 29.1 29.1 25.7 25.7 30.7 30.7 25.5	31.2 29.1 25.7 30.7	7.88 7.77 7.37 7.38 6.89 6.89 6.51 6.65 8.1	7.8 7.4 6.9 6.6	98.8 99.8 94.5 94 68 68 84.6 86.9 97	99.3 94.3 68.0 85.8	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26	45.7 49.2 3.6 3.2	7.05 7.06 7.33 7.34 7.8 7.8 7.8 8.3 8.3 8.3	7.1 7.3 7.8 8.3	27 27 27 6.2 6.2 3 3 3 3	27.0 27.0 6.2 3.0
Location W1 - ebb (impact) W1- flood (impact) W2 (Impact)	Time 15:50 10:43 16:00	(m) 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 30.7 30.7	31.2 29.1 25.7	7.88 7.77 7.37 7.38 6.89 6.89 6.89 6.51 6.65	7.8 7.4 6.9	98.8 99.8 94.5 94 68 68 68 84.6 86.9	99.3 94.3 68.0	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33	45.7 49.2 3.6	7.05 7.06 7.33 7.34 7.8 7.8 7.8 8.3 8.3	7.1 7.3 7.8	27 27 27 6.2 6.2 3 3	27.0 27.0 6.2
Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W4 (impact)	Time 15:50 10:43 16:00 15:35 15:41	(m) 0.12 0.28 <1 0.21	31.2 31.2 29.1 29.1 25.7 25.7 30.7 30.7 25.5	31.2 29.1 25.7 30.7	7.88 7.77 7.37 7.38 6.89 6.89 6.51 6.65 8.1	7.8 7.4 6.9 6.6	98.8 99.8 94.5 94 68 68 84.6 86.9 97	99.3 94.3 68.0 85.8	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26	45.7 49.2 3.6 3.2	7.05 7.06 7.33 7.34 7.8 7.8 7.8 8.3 8.3 8.3	7.1 7.3 7.8 8.3	27 27 27 6.2 6.2 3 3 3 3	27.0 27.0 6.2 3.0
Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W4 (impact) Date	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13	(m) 0.12 0.28 <1	31.2 31.2 29.1 25.7 25.7 30.7 30.7 25.5 25.5	31.2 29.1 25.7 30.7 25.5	7.88 7.77 7.37 7.38 6.89 6.89 6.51 6.65 8.1 8.17	7.8 7.4 6.9 6.6 8.1	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8	99.3 94.3 68.0 85.8 97.4	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24	45.7 49.2 3.6 3.2 3.3	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.31 8.3	7.1 7.3 7.8 8.3 8.3 8.3	27 27 27 6.2 6.2 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0
Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W4 (impact) Date Location	Time 15:50 10:43 16:00 15:35 15:41	(m) 0.12 0.28 <1 0.21	31.2 31.2 29.1 25.7 25.7 30.7 30.7 25.5 25.5 Temp	31.2 29.1 25.7 30.7 25.5	7.88 7.77 7.37 7.38 6.89 6.89 6.51 6.65 8.1 8.17 8.17	7.8 7.4 6.9 6.6	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8 DO	99.3 94.3 68.0 85.8	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26 3.24 Turbidit	45.7 49.2 3.6 3.2 3.3	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.31 8.3	7.1 7.3 7.8 8.3	27 27 27 6.2 6.2 3 3 3 3 3 SS(m	27.0 27.0 6.2 3.0 3.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) Date Location W1 - ebb	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time	0.12 0.28 <1 0.21 0.37	31.2 31.2 29.1 25.7 25.7 30.7 30.7 25.5 25.5 25.5 Temp 22.9	31.2 29.1 25.7 30.7 25.5	7.88 7.77 7.37 6.89 6.89 6.51 6.65 8.1 8.17 DO (r 6.71	7.8 7.4 6.9 6.6 8.1	98.8 99.8 94.5 94 68 84.6 86.9 97 97.8 DO 78.3	99.3 94.3 68.0 85.8 97.4	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4	45.7 49.2 3.6 3.2 3.3 y (NTU)	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	7.1 7.3 7.8 8.3 8.3 8.3	27 27 27 6.2 3 3 3 3 SS(m 17	27.0 27.0 6.2 3.0 3.0 g/L)
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact) Date Location W1 - ebb (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13	(m) 0.12 0.28 <1	31.2 31.2 29.1 25.7 25.7 25.7 30.7 30.7 30.7 25.5 25.5 25.5 Temp 22.9 22.9	31.2 29.1 25.7 30.7 25.5	7.88 7.77 7.37 6.89 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53	7.8 7.4 6.9 6.6 8.1	98.8 99.8 94.5 94 68 84.6 86.9 97 97.8 DO 78.3 76.6	99.3 94.3 68.0 85.8 97.4	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2	45.7 49.2 3.6 3.2 3.3	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	7.1 7.3 7.8 8.3 8.3 8.3	27 27 27 6.2 6.2 3 3 3 3 3 5 \$\$(m 17 17	27.0 27.0 6.2 3.0 3.0
Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact) Date Location W1 - ebb (impact) W1- flood	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time	0.12 0.28 <1 0.21 0.37	31.2 31.2 29.1 25.7 25.7 30.7 30.7 25.5 25.5 25.5 25.5 Temp 22.9 22.9 22.9	31.2 29.1 25.7 30.7 25.5	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (r 6.53 5.32	7.8 7.4 6.9 6.6 8.1	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8 97 97.8 DO 78.3 76.6 62.1	99.3 94.3 68.0 85.8 97.4	50.7 40.6 50.9 47.4 3.6 3.6 3.2 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2	45.7 49.2 3.6 3.2 3.3 y (NTU)	7.05 7.06 7.33 7.34 7.8 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	7.1 7.3 7.8 8.3 8.3 8.3	27 27 27 6.2 6.2 3 3 3 3 3 3 3 5 \$\$(m 17 17 15	27.0 27.0 6.2 3.0 3.0 g/L)
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact) Date Location W1 - ebb (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00	0.12 0.28 <1 0.21 0.37	31.2 31.2 29.1 29.1 25.7 30.7 25.5 25.5 25.5 Temp 22.9 22.9 22.9 22.1 24.1	31.2 29.1 25.7 30.7 25.5 (oC) 22.9	7.88 7.77 7.37 7.38 6.89 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.11	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8 97.8 778.3 76.6 62.1 59.8	99.3 94.3 68.0 85.8 97.4 (%) 77.5	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3	7.05 7.06 7.33 7.34 7.8 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	7.1 7.3 7.8 8.3 8.3 8.3 0H 6.6	27 27 27 6.2 3 3 3 3 3 3 3 5 5 (m 17 17 15 15	27.0 27.0 6.2 3.0 3.0 9/L) 17.0
Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact) Date Location W1 - ebb (impact) W1- flood	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43	0.12 0.28 <1 0.21 0.37	31.2 31.2 29.1 29.1 25.7 25.7 25.5 25.5 25.5 25.5 22.9 22.9 22.9 22.9	31.2 29.1 25.7 30.7 25.5 (oC) 22.9	7.88 7.77 7.37 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.11 6.98	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6	98.8 99.8 94.5 94.6 86.6 84.6 86.9 97 97.8 DO 78.3 76.6 62.1 59.8 70	99.3 94.3 68.0 85.8 97.4 (%) 77.5	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3	7.05 7.06 7.34 7.34 7.8 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	7.1 7.3 7.8 8.3 8.3 8.3 0H 6.6	27 27 27 6.2 3 3 3 3 3 3 3 5 5 5 (m 17 17 15 5 3.2	27.0 27.0 6.2 3.0 3.0 9/L) 17.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - flood (impact) W1 - flood (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05	(m) 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 30.7 30.7 25.5 25.5 Temp 22.9 22.9 24.1 24.1 25.3	31.2 29.1 25.7 30.7 25.5 (oC) 22.9 24.1 25.3	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.11 6.98 6.98	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8 DO 78.3 76.6 62.1 59.8 70	99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0 70.0	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3 20.0 3.8	7.05 7.06 7.34 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 H 6.6 6.8 7.9 	27 27 27 6.2 6.2 3 3 3 3 3 3 3 3 3 3 5 5 5 15 15 15 3.2 3.2	27.0 27.0 6.2 3.0 3.0 3.0 17.0 15.0 3.2
Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact) W4 (impact) U1- flood (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43	Image: constraint of the second sec	31.2 31.2 29.1 29.1 25.7 25.7 30.7 25.5 25.5 25.5 Temp 22.9 22.9 22.9 22.9 22.4 1 24.1 24.1 25.3 25.3	31.2 29.1 25.7 30.7 25.5 (oC) 22.9 24.1	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (1 6.71 6.53 5.32 5.11 6.98 6.98 6.98 6.98	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2	98.8 99.8 94.5 94 68 84.6 86.9 97 97.8 77.8 76.6 62.1 59.8 70 70 70 108.6	99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 20.2 19.7 3.8 3.8 2.65	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3 20.0	7.05 7.06 7.34 7.8 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 H 6.6 6.8 	27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35	Cml 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 30.7 30.7 25.5 25.5 Temp 22.9 22.9 24.1 24.1 25.3	31.2 29.1 25.7 25.5 25.5 22.9 24.1 25.3 24.1	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.11 6.98 6.98	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8 DO 78.3 76.6 62.1 59.8 70	99.3 99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0 70.0 109.0 109.0	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8	45.7 49.2 3.6 3.2 3.3 3.3 y (NTU) 19.3 20.0 3.8 2.6	7.05 7.06 7.34 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 	27 27 27 6.2 6.2 3 3 3 3 3 3 3 3 3 3 5 5 5 15 15 15 3.2 3.2	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - flood (impact) W1 - flood (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05	(m) 0.12 0.28 <1	31.2 29.1 29.1 25.7 25.7 25.7 25.5 25.5 25.5 25.5 22.9 22.9 22.9 22.9	31.2 29.1 25.7 30.7 25.5 (oC) 22.9 24.1 25.3	7.88 7.77 7.37 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.32 5.31 6.98 6.98 6.98 9.28 9.36	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0	98.8 99.8 94.5 94 68 84.6 86.9 97 97.8 97.8 DO 78.3 76.6 62.1 59.8 70 70 108.6	99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0 70.0	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 2.65 2.56	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3 20.0 3.8	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 H 6.6 6.8 7.9 	27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 3.0 17.0 15.0 3.2
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35	Cml 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 30.7 30.7 25.5 25.5 25.5 25.5 22.9 22.9 22.9 22.9	31.2 29.1 25.7 25.5 25.5 22.9 24.1 25.3 24.1	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.32 5.11 6.98 6.98 9.28 9.36 7.55	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8 78.3 76.6 62.1 59.8 70 108.6 109.4	99.3 99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0 70.0 109.0 109.0	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 3.8 2.65 2.56 14.4	45.7 49.2 3.6 3.2 3.3 3.3 y (NTU) 19.3 20.0 3.8 2.6	7.05 7.06 7.34 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 	27 27 27 6.2 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 3.2 3.2 3.2 4 2 2 2 2 2 2 2 7 27 27 27 27 27 27 27 27	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35	Image: constraint of the second se	31.2 31.2 29.1 29.1 25.7 25.7 30.7 30.7 25.5 25.5 25.5 25.5 22.9 22.9 22.9 22.9	31.2 29.1 25.7 25.5 25.5 22.9 24.1 25.3 24.1	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.32 5.11 6.98 6.98 9.28 9.36 7.55	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8 78.3 76.6 62.1 59.8 70 108.6 109.4	99.3 99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0 70.0 109.0 109.0	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 3.8 2.65 2.56 14.4	45.7 49.2 3.6 3.2 3.3 3.3 y (NTU) 19.3 20.0 3.8 2.6	7.05 7.06 7.34 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 	27 27 27 6.2 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 3.2 3.2 3.2 4 2 2 2 2 2 2 2 7 27 27 27 27 27 27 27 27	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40	Cml 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 30.7 30.7 25.5 25.5 25.5 25.5 22.9 22.9 22.9 22.9	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 23.3	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.11 6.98 6.98 9.36 7.55 7.66	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8 70.7 70.5 70.5 70 70 70 70 70.0 8.6 62.1 59.8 70 70 70 70 70 8.3 70 70 70 8.5 88.9	99.3 99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0 70.0 109.0 109.0	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 3.8 2.65 2.56 14.4	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3 20.0 3.8 2.6 14.1	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 	27 27 27 6.2 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 3.2 3.2 3.2 4 2 2 2 2 2 2 2 7 27 27 27 27 27 27 27 27	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time	/ml 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 25.5 25.5 25.5 25.5 25.5 22.9 22.9 22.9	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 23.3 24.1 23.3	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.11 6.98 6.98 9.36 7.55 7.66	7.8 7.4 6.9 6.6 8.1 6.6 5.2 7.0 9.3 7.6	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8 70.7 70.5 70.5 70 70 70 70 70.0 8.6 62.1 59.8 70 70 70 70 70 8.3 70 70 70 8.5 88.9	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 2.65 14.4 13.8	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3 20.0 3.8 2.6 14.1 y (NTU)	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 9H 6.6 6.8 7.9 7.8 7.5 	27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 12.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W3 (control) W3 (control) W3 (control) W4 (impact) W4 (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40	Image: constraint of the second se	31.2 31.2 29.1 29.1 25.7 25.7 25.5 25.5 25.5 25.5 25.5 22.9 22.9 22.9	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 23.3	7.88 7.77 7.37 6.89 6.89 6.51 6.65 8.1 8.17 00 (r 6.71 6.53 5.32 5.11 6.98 6.98 6.98 9.36 7.55 7.66 DO (r 8.28 8.33	7.8 7.4 6.9 6.6 8.1 6.6 5.2 7.0 9.3 7.6	98.8 99.8 94.5 94 68 84.6 86.9 97 97.8 97.8 DO 78.3 76.6 62.1 59.8 70 70 70.0 108.6 109.4 87.6 88.9	99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0 70.0 109.0 88.3	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26 3.24 7 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 2.65 14.4 13.8 Turbidit	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3 20.0 3.8 2.6 14.1	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 9H 6.6 6.8 7.9 7.8 7.5 	27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W1 - flood	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time 9:43	/ml 0.12 0.28 <1	31.2 29.1 29.1 29.1 25.7 25.7 25.5 25.5 25.5 25.5 25.5 25.5	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 23.3 24.1 23.3	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (r 8.28 9.36 7.55 7.66 DO (r 8.28 8.33 7.82	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3 7.6 9.3 7.6	98.8 99.8 94.5 94 68 68.6 84.6 86.9 97 97.8 000 78.3 76.6 62.1 59.8 70 108.6 109.4 87.6 88.9 DO 91.4 91.4 96.6	99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0 70.0 109.0 88.3 (%) 91.5	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26 3.24 7 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 2.65 14.4 13.8 Turbidit 13.8 Turbidit 4.36 4.66	45.7 49.2 3.6 3.2 3.3 9 (NTU) 19.3 20.0 3.8 2.6 14.1 4.3	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 7.5 H 7.2 	27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 5.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W3 (control) W3 (control) W3 (control) W4 (impact) W4 (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time	/ml 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 25.7 25.5 25.5 25.5 25.5 25.5	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 23.3 24.1 23.3	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.11 6.98 6.98 9.28 9.36 7.55 7.66 DO (r 8.28 8.33 7.82 7.81	7.8 7.4 6.9 6.6 8.1 6.6 5.2 7.0 9.3 7.6	98.8 99.8 94.5 94 68 68.6 84.6 86.9 97.8 DO 78.3 76.6 62.1 59.8 70 108.6 109.4 88.9 DO 91.4 91.6 86.6	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8 2.65 2.56 14.4 13.8 Turbidit 4.25 4.36 4.66	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3 20.0 3.8 2.6 14.1 y (NTU)	7.05 7.06 7.34 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 9H 6.6 6.8 7.9 7.8 7.5 	27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 12.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W1 - flood	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time 9:43 15:43	/ml 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 25.7 25.7 25.5 25.5 25.5 Temp 22.9 24.1 24.1 24.1 24.1 24.3 24.1 24.1 24.1 23.3 23.3 24.1 24.2 22.2 22.2 21.6 21.6 22.9	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 23.3 24.1 23.3	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 6.53 5.32 5.11 6.98 6.98 9.36 7.55 7.66 7.55 7.66	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3 7.6 9.3 7.6	98.8 99.8 94.5 94 68 68 84.6 86.9 97.8 97.8 97.8 97.8 97.8 97.8 97.8 97	99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0 70.0 109.0 88.3 (%) 91.5	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.24 3.24 19.4 19.2 20.2 19.7 3.8 3.8 2.65 2.56 14.4 13.8 7 Turbidit 4.25 4.36 4.66 4.66 5.3	45.7 49.2 3.6 3.2 3.3 9 (NTU) 19.3 20.0 3.8 2.6 14.1 4.3	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 7.5 H 7.2 	27 27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 5.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W3 (control) W3 (control) W4 (impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood	Time 15:50 10:43 16:00 15:35 15:41 Il-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 Il-Nov-13 Time 9:43 15:43 10:00	/max 0.12 0.28 <1	31.2 29.1 29.1 29.1 25.7 25.7 25.5 25.5 25.5 25.5 25.5 25.5	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 25.3 24.1 23.3 24.1 23.3 24.1 23.3	7.88 7.77 7.37 6.89 6.51 6.65 8.1 8.17 6.53 5.32 5.11 6.98 6.98 9.28 9.28 9.36 7.55 7.66 DO (r 8.28 8.33 7.82 7.81 7.65	7.8 7.4 6.9 6.6 8.1 6.6 5.2 7.0 9.3 7.6 8.3 7.8 7.7	98.8 99.8 94.5 94 68 68.6 84.6 86.9 97 97.8 DO 78.3 76.6 62.1 59.8 70 108.6 109.4 87.6 88.9 DO 91.4 91.6 86.61 778 78	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3 91.5 86.4 78.0	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26 3.24 7 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 2.65 14.4 13.8 Turbidit 13.8 Turbidit 4.36 4.66 4.66 4.66 5.3	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3 20.0 3.8 2.6 14.1 y (NTU) 4.3 4.7 5.3	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 7.5 H 7.2 7.2 7.9 	27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 g/L) 5.0 4.0 12.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time 9:43 15:43	Image: constraint of the second se	31.2 31.2 29.1 29.1 25.7 25.7 25.5 25.5 25.5 25.5 25.5 25.5	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 23.3 24.1 23.3 24.1 23.3	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.11 6.98 6.98 9.36 7.55 7.66 DO (r 8.28 8.33 7.82 7.81 7.65 7.65	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3 7.6 mg/L) 8.3 7.8	98.8 99.8 94.5 94 68 68.6 84.6 86.9 97 97.8 78.3 76.6 62.1 59.8 70 108.4 87.6 88.9 DO 91.4 91.6 86.1 78 84.3	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3 91.5 86.4	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8 2.65 2.56 14.4 13.8 Turbidit 4.25 4.36 4.66 5.3 5.3 5.3 2.36	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3 20.0 3.8 2.6 14.1 y (NTU) 4.3 4.7	7.05 7.06 7.34 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 8.3 8.4 8.5 8.5 8.6 6.6 6.8 7.9 7.8 7.5 7.5 7.2 7.2 7.2 	27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 12.0 5.0 4.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - flood (impact) W1 - flood	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time 9:43 15:43 10:00 11:56	Jump 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 25.7 25.7 25.5 25.5 25.5 25.5 Temp 22.9 24.1 24.1 24.1 24.1 24.1 24.3 24.1 24.1 24.1 24.1 24.3 24.1 24.2 21.6 21.6 21.9 21.5 21.5	31.2 29.1 25.7 30.7 25.5 (oC) 22.9 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3	7.88 7.77 7.37 6.89 6.89 6.51 6.65 8.1 8.17 6.53 5.32 5.11 6.98 6.98 9.36 7.55 7.66 DO (r 8.28 8.33 7.82 7.81 7.65 7.57 7.46	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3 7.6 9.3 7.6 8.3 7.8 7.7 7.5	98.8 99.8 94.5 94 68 68 68 68 68 68 68 97 70 70 70 70 70 70 70 70 70 70 70 70 70	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3 91.5 86.4 78.0 83.7	50.7 40.6 50.9 47.4 3.6 3.6 3.2 3.33 3.24 3.24 19.4 19.2 20.2 19.7 19.7 3.8 3.8 2.65 2.56 14.4 13.8 7 Turbidit 19.2 20.2 19.7 19.7 19.7 19.2 20.2 19.7 19.2 20.5 19.4 19.4 19.2 20.5 19.4 19.4 19.2 20.5 19.5 19.5 19.5 19.5 2.56 14.4 13.8 3.8 3.8 5.3 5.3 5.3 2.33 2.33	45.7 49.2 3.6 3.2 3.3 9 (NTU) 19.3 20.0 3.8 2.6 14.1 4.3 4.7 5.3 2.3	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 7.5 H 7.2 7.2 7.9 8.8 	27 27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 15.0 12.0 2.0 12.0 12.0 2.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W3 (control) W3 (control) W4 (impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood	Time 15:50 10:43 16:00 15:35 15:41 Il-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 Il-Nov-13 Time 9:43 15:43 10:00	/max 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 25.5 25.5 25.5 25.5 25.5 25.5	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 25.3 24.1 23.3 24.1 23.3 24.1 23.3	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 6.53 5.32 5.11 6.98 6.98 9.28 9.36 7.55 7.66 DO (r 8.28 8.33 7.82 7.81 7.65 7.65 7.65	7.8 7.4 6.9 6.6 8.1 6.6 5.2 7.0 9.3 7.6 8.3 7.8 7.7	98.8 99.8 94.5 94 68 68.6 84.6 86.9 97 97.8 DO 78.3 76.6 62.1 59.8 70 108.6 109.4 87.6 88.9 DO 91.4 91.6 86.61 78 78 84.3 83 91.5	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3 91.5 86.4 78.0	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26 3.24 7 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 2.65 14.4 13.8 2.56 14.4 13.8 Turbidit 4.36 4.66 4.66 4.66 5.3 2.36 2.33 2.78	45.7 49.2 3.6 3.2 3.3 y (NTU) 19.3 20.0 3.8 2.6 14.1 y (NTU) 4.3 4.7 5.3	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 7.5 H 7.2 7.2 7.9 	27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 g/L) 5.0 4.0 12.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - flood (impact) W1 - flood	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time 9:43 15:43 10:00 11:56	Jump 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 25.7 25.7 25.5 25.5 25.5 25.5 Temp 22.9 24.1 24.1 24.1 24.1 24.1 24.3 24.1 24.1 24.1 24.1 24.3 24.1 24.2 21.6 21.6 21.9 21.5 21.5	31.2 29.1 25.7 30.7 25.5 (oC) 22.9 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3	7.88 7.77 7.37 6.89 6.89 6.51 6.65 8.1 8.17 6.53 5.32 5.11 6.98 6.98 9.36 7.55 7.66 DO (r 8.28 8.33 7.82 7.81 7.65 7.57 7.46	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3 7.6 9.3 7.6 8.3 7.8 7.7 7.5	98.8 99.8 94.5 94 68 68 68 68 68 68 68 97 70 70 70 70 70 70 70 70 70 70 70 70 70	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3 91.5 86.4 78.0 83.7	50.7 40.6 50.9 47.4 3.6 3.6 3.2 3.33 3.24 3.24 19.4 19.2 20.2 19.7 19.7 3.8 3.8 2.65 2.56 14.4 13.8 7 Turbidit 19.2 20.2 19.7 19.7 19.7 19.2 20.2 19.7 19.2 20.5 19.4 19.4 19.2 20.5 19.4 19.4 19.2 20.5 19.5 19.5 19.5 19.5 2.56 14.4 13.8 3.8 3.8 5.3 5.3 5.3 2.33 2.33	45.7 49.2 3.6 3.2 3.3 9 (NTU) 19.3 20.0 3.8 2.6 14.1 4.3 4.7 5.3 2.3	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 7.5 H 7.2 7.2 7.9 8.8 	27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 5.0 4.0 12.0 2.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W3 (control) W4 (impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood (impact) W2 (Impact) W2 (Impact) W3 (control) W4 (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time 9:43 15:43 10:00 11:56 12:00	Jump 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 25.5 25.5 25.5 25.5 25.5 25.5	31.2 29.1 25.7 30.7 25.5 (oC) 22.9 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 6.53 5.32 5.11 6.98 6.98 9.28 9.36 7.55 7.66 DO (r 8.28 8.33 7.82 7.81 7.65 7.65 7.65	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3 7.6 9.3 7.6 8.3 7.8 7.7 7.5	98.8 99.8 94.5 94 68 68.6 84.6 86.9 97 97.8 DO 78.3 76.6 62.1 59.8 70 108.6 109.4 87.6 88.9 DO 91.4 91.6 86.61 78 78 84.3 83 91.5	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3 91.5 86.4 78.0 83.7	50.7 40.6 50.9 47.4 3.6 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 2.65 14.4 13.8 Turbidit 4.36 4.36 4.66 4.68 5.3 2.36 2.33 2.78	45.7 49.2 3.6 3.2 3.3 9 (NTU) 19.3 20.0 3.8 2.6 14.1 4.3 4.7 5.3 2.3	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 7.5 H 7.2 7.2 7.9 8.8 	27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 15.0 12.0 2.0 4.0 12.0 2.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W3 (control) W4 (impact) W4 (impact) W1 - flood (impact) W1 - flood (imp	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 9:43 15:43 10:00 11:56 12:00	Jump 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 25.7 25.5 25.5 25.5 25.5 25.5	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 25.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.5 21.9	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 DO (r 6.71 6.53 5.32 5.11 6.98 6.98 9.28 9.36 7.55 7.66 DO (r 8.28 8.33 7.82 7.81 7.65 7.65 7.46 8.31 8.51	7.8 7.4 6.9 6.6 8.1 6.6 5.2 7.0 9.3 7.6 8.3 7.8 7.7 7.5 8.4	98.8 99.8 94.5 94 68 68 84.6 86.9 97 70 70 70 70 70 70 70 70 70 70 70 70 70	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3 91.5 86.4 78.0 83.7 93.5	50.7 40.6 50.9 47.4 3.6 3.6 3.24 3.24 3.24 19.4 19.2 20.2 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	45.7 49.2 3.6 3.2 3.3 19.3 20.0 3.8 2.6 14.1 4.3 4.7 5.3 2.3 2.8	7.05 7.06 7.34 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.4 8.3 8.8 7.9 7.8 7.5 7.5 7.2 7.2 7.9 8.8 8.2 	27 27 27 27 6.2 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 5.0 4.0 12.0 2.0 5.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood (impact) W3 (control) W3 (control) W4 (impact) W3 (control) W4 (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time 9:43 15:43 10:00 11:56 12:00	(m) 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 25.7 25.5 25.5 25.5 25.5 25.5 25.5 22.9 22.9 24.1 24.1 24.1 24.1 23.3 23.3 Temp 22.2 22.4 24.1 24.1 24.1 24.1 23.3 24.1 24.9 21.9 21.9 21.9 21.9 21.9 21.9	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 25.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.5 21.9	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 6.65 8.1 6.65 8.1 6.71 6.53 5.32 5.11 6.98 6.98 9.36 7.55 7.66 7.66 7.55 7.57 7.46 8.31 8.51 8.51	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3 7.6 9.3 7.6 8.3 7.8 7.7 7.5	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8 70 70 70 70 70 70 70 70 70 70 70 70 70	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3 91.5 86.4 78.0 83.7	50.7 40.6 50.9 47.4 3.6 3.6 3.2 3.24 3.24 3.24 3.24 3.24 19.4 19.2 20.2 19.7 3.8 3.8 2.65 2.56 14.4 13.8 Turbidit 4.25 2.56 14.4 13.8 Turbidit 4.25 2.56 14.4 13.8 Turbidit 4.25 2.36 2.36 2.33 2.78 2.87	45.7 49.2 3.6 3.2 3.3 19.3 20.0 3.8 2.6 14.1 4.3 4.7 5.3 2.3 2.8	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 H 6.6 6.8 7.9 7.8 7.5 H 7.2 7.2 7.9 8.8 	27 27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 5.0 4.0 12.0 2.0 5.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood (impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W1 - flood (impact) W2 (Impact) W1 - flood (impact) W1 - ebb	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 9:43 15:43 10:00 11:56 12:00	(m) 0.12 0.28 <1	31.2 31.2 29.1 29.1 29.1 25.7 25.7 25.5 25.5 25.5 25.5 25.5 22.9 22.9 22.9	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 25.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.5 21.9	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 6.53 5.32 5.11 6.98 6.98 9.28 9.28 9.36 7.55 7.66 DO (r 8.28 8.33 7.82 7.81 7.65 7.65 7.65 7.46 8.31 8.51	7.8 7.4 6.9 6.6 8.1 6.6 5.2 7.0 9.3 7.6 8.3 7.8 7.7 7.5 8.4	98.8 99.8 94.5 94 68 84.6 86.9 97 97.8 70 77.8 70 70.6 6 62.1 59.8 70 70.0 108.6 87.6 88.9 91.4 91.4 91.6 88.6 88.6 88.1 70 91.4 91.4 91.6 88.6 86.6 86.1 78 78 95.4 95.4	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3 91.5 86.4 78.0 83.7 93.5	50.7 40.6 50.9 47.4 3.6 3.12 3.33 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 2.65 14.4 19.2 20.2 19.7 3.8 3.8 2.65 14.4 13.8 Turbidit 4.25 4.36 4.66 4.66 4.68 5.3 2.36 2.33 2.78 2.87	45.7 49.2 3.6 3.2 3.3 19.3 20.0 3.8 2.6 14.1 4.3 4.7 5.3 2.3 2.8	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.4 8.3 8.8 7.9 7.8 7.5 7.5 7.2 7.2 7.9 8.8 8.2 	27 27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 5.0 4.0 12.0 2.0 5.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time 9:43 15:43 10:00 11:56 12:00 15-Nov-13 Time	/max 0.12 0.28 <1	31.2 31.2 29.1 29.1 29.1 25.7 25.7 25.5 25.5 25.5 25.5 25.5 25.5	31.2 29.1 25.7 30.7 25.5 22.9 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.5 21.6 22.9 21.5 21.5 21.5	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 00 (r 6.71 6.53 5.32 5.11 6.98 6.98 9.28 9.36 7.55 7.66 00 (r 8.28 8.33 7.82 7.81 7.65 7.57 7.46 8.31 8.51 00 (r 7.04 6.79	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3 7.6 9.3 7.6 8.3 7.8 7.7 7.5 8.4 9.4	98.8 99.8 94.5 94 68 68.6 84.6 86.9 97 97.8 70 76.6 62.1 59.8 70 109.4 87.6 88.9 DO 91.4 91.6 86.1 78 78 78 95.4 DO 85 82.1	99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0 70.0 109.0 88.3 91.5 86.4 78.0 83.7 93.5	50.7 40.6 50.9 47.4 3.6 3.12 3.23 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 2.65 2.02 19.7 3.8 3.8 2.65 14.4 13.8 Turbidit 4.25 4.36 4.66 2.33 2.38 2.33 2.78 2.87 Turbidit	45.7 49.2 3.6 3.2 3.3 9 (NTU) 19.3 20.0 3.8 2.6 14.1 4.3 4.7 5.3 2.3 2.8 2.8	7.05 7.06 7.34 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.4 7.9 7.8 7.5 7.2 7.2 7.2 7.9 8.8 8.2 8.2 	27 27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 15.0 12.0 12.0 12.0 12.0 2.0 12.0 5.0 4.0 12.0 5.0 4.0 12.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood (impact) W3 (control) W4 (impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time 9:43 15:43 10:00 11:56 12:00 15-Nov-13 Time	/max 0.12 0.28 <1	31.2 31.2 29.1 29.1 25.7 25.7 25.7 25.5 25.5 25.5 25.5 25.5 25.5 22.9 22.9 24.1 24.1 24.1 25.3 24.1 24.1 24.3 24.1 24.9 21.9	31.2 29.1 25.7 30.7 25.5 22.9 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.5 21.6 22.9 21.5 21.5 21.5	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 6.65 8.1 6.65 8.1 7.65 7.51 7.66 7.55 7.66 DO (r 8.28 8.33 7.82 7.81 7.65 7.57 7.46 8.31 8.51 8.51	7.8 7.4 6.9 6.6 8.1 mg/L) 6.6 5.2 7.0 9.3 7.6 9.3 7.6 8.3 7.8 7.7 7.5 8.4 9.4	98.8 99.8 94.5 94 68 68 84.6 86.9 97 97.8 97.8 70 70.6 66.109.4 88.9 91.6 86.6 86.1 78 78 91.6 86.6 86.1 78 91.5 95.4 DO 85 82.1 67.8	99.3 94.3 68.0 85.8 97.4 (%) 77.5 61.0 70.0 109.0 88.3 91.5 86.4 78.0 83.7 93.5	50.7 40.6 50.9 47.4 3.6 3.6 3.2 3.24 3.24 3.24 3.24 3.24 19.4 19.2 20.2 19.7 3.8 3.8 2.65 2.56 14.4 13.8 Turbidit 4.25 4.36 4.66 4.66 5.3 2.36 2.33 2.78 2.87 Turbidit	45.7 49.2 3.6 3.2 3.3 9 (NTU) 19.3 20.0 3.8 2.6 14.1 4.3 4.7 5.3 2.3 2.8 2.8	7.05 7.06 7.33 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.4 7.9 7.8 7.5 7.2 7.2 7.2 7.9 8.8 8.2 8.2 	27 27 27 27 6.2 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 6.2 3.0 3.0 17.0 15.0 15.0 12.0 12.0 12.0 12.0 2.0 12.0 5.0 4.0 12.0 5.0 4.0 12.0
Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W3 (control) W4 (impact) W1 - flood (impact) W1 - flood (impact)	Time 15:50 10:43 16:00 15:35 15:41 11-Nov-13 Time 9:00 13:43 8:05 16:35 16:40 13-Nov-13 Time 9:43 15:43 10:00 11:56 12:00 15-Nov-13 Time 0:05	/max 0.12 0.28 <1	31.2 31.2 29.1 29.1 29.1 25.7 25.7 25.5 25.5 25.5 25.5 25.5 25.5	31.2 29.1 25.7 30.7 25.5 22.9 24.1 25.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 23.3 24.1 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 24.1 25.5 21.9 25.5 21.9 24.1 25.5 21.9 25.5 21.9 22.9 24.1 23.3 24.1 23.3 24.1 23.3 24.1 25.5 21.9 22.9 24.1 25.5 21.9 22.9 24.1 25.5 21.9 22.9 24.1 25.3 22.9 24.1 25.3 22.9 24.1 25.3 22.9 22.9 24.1 25.3 22.9 22.9 24.1 25.3 22.9 22.9 22.9 24.1 25.3 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22	7.88 7.77 7.37 7.38 6.89 6.51 6.65 8.1 8.17 00 (r 6.71 6.53 5.32 5.11 6.98 6.98 9.28 9.36 7.55 7.66 00 (r 8.28 8.33 7.82 7.81 7.65 7.57 7.46 8.31 8.51 00 (r 7.04 6.79	7.8 7.4 6.9 6.6 8.1 9.3 7.6 9.3 7.6 9.3 7.6 8.3 7.8 7.7 7.5 8.4 9.9	98.8 99.8 94.5 94 68 68.6 84.6 86.9 97 97.8 70 76.6 62.1 59.8 70 109.4 87.6 88.9 DO 91.4 91.6 86.1 78 78 78 95.4 DO 85 82.1	99.3 94.3 68.0 85.8 97.4 77.5 61.0 70.0 109.0 88.3 91.5 86.4 78.0 83.7 93.5 (%) 83.6	50.7 40.6 50.9 47.4 3.6 3.12 3.23 3.26 3.24 Turbidit 19.4 19.2 20.2 19.7 3.8 3.8 2.65 2.02 19.7 3.8 3.8 2.65 14.4 13.8 Turbidit 4.25 4.36 4.66 2.33 2.38 2.33 2.78 2.87 Turbidit	45.7 49.2 3.6 3.2 3.3 19.3 20.0 3.8 2.6 14.1 4.3 4.7 5.3 2.8 2.8 y (NTU) 4.6	7.05 7.06 7.34 7.34 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 7.1 7.3 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.4 7.9 7.8 7.5 7.8 7.7 7.8 7.5 7.9 8.8 8.2 9 7.3 	27 27 27 27 6.2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27.0 27.0 27.0 6.2 3.0 3.0 17.0 15.0 3.2 2.0 12.0 12.0 4.0 12.0 5.0 4.0 12.0 5.0 6.0

7.6

7.7

24.4

24.4

12:00

W2 (Impact)

<1

75.0

3.0

7.84

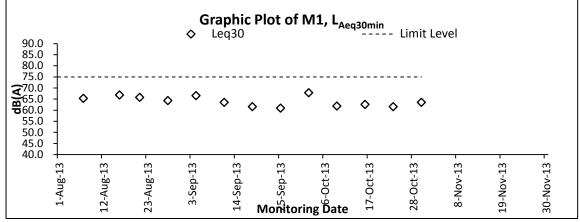
7.8

2.0

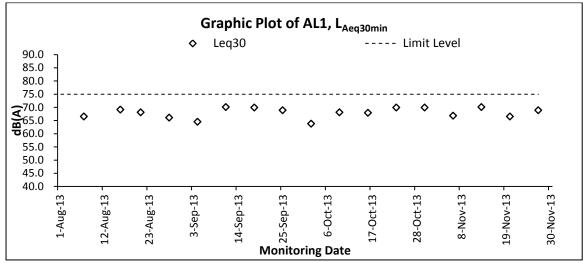
DSD Contract No. DC/2010/02 Contract No. - Drainage Improvement in Shuen Wan and Shek Wu Wai Summary of Water Quality Monitoring Results

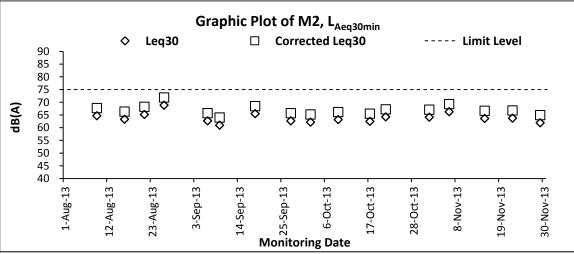
AUES

Leasting					DO (*			(0/)	Turchialia				66/m	- (1)
Location					DO (n Action	ng/L) 7.27	DO Action	(%) n/a	Action	ty (NTU) 4.77	P Action	n/a	SS(m Action	9.73
W1 (impact)					Limit	4	Limit	n/a	Limit	5.26	Limit	n/a	Limit	9.73
W2 (impact)					Action	7.26	Action	n/a	Action	2.46	Action	n/a	Action	8.89
	A	ction/ Lim	it Level		Limit	4 /a	Limit	n/a /a	Limit	3.42 /a	Limit	n/a n/a	Limit n/	9.75
W3 (control)					Action	9.27	Action	n/a	Action	3.32	Action	n/a	Action	a 6.98
W4 (impact)					Limit	4	Limit	n/a	Limit	4.52	Limit	n/a	Limit	7.66
W3 (control)	14:37	0.11	25.3 25.3	25.3	8.71	8.7	104.2	103.7	2.26	2.5	8.34	8.3	<2	2.0
			25.3		8.68 8.12		103.2 96.7		2.66 2.95		8.32 8.22		<2 <2	
W4 (impact)	14:50	0.31	25.1	25.1	8.03	8.1	95.5	96.1	2.67	2.8	8.23	8.2	<2	2.0
Date	18-Nov-13													
Location	Time	Deptn	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	ty (NTU)	F	эΗ	SS(m	g/L)
W1 - ebb	12:54	0.23	21.6	21.6	8.36	8.5	90.5	91.9	4.12	4.2	7.37	7.4	9	9.0
(impact) W1- flood			21.6 20.6		8.6 7.91		93.3 86		4.22 3.62		7.38 7.19		9 4	
(impact)	9:00	0.31	20.6	20.6	7.82	7.9	84.8	85.4	3.66	3.6	7.19	7.2	4	4.0
W2 (Impact)	14:00	<1	23.8	23.8	7.23	7.2	75 75	75.0	5	5.0	8.13	8.1	1.8	1.8
14/0 (17.00	0.10	23.8 21.7	01.7	7.23 9.44	0.5	101.3	101.0	5 1.56	1.(8.13 8.69	0.7	1.8 3	
W3 (control)	17:00	0.18	21.7	21.7	9.51	9.5	102.4	101.9	1.63	1.6	8.68	8.7	3	3.0
W4 (impact)	17:04	0.26	21.3 21.3	21.3	10.49 10.36	10.4	113.1 111.6	112.4	2.02	1.9	8.55 8.56	8.6	<2 <2	2.0
										·				
Date	20-Nov-13	Depth	<u> </u>	(5)			T	(a.)	T =	/ - · ·				
Location W1 - ebb	Time	(m)	Temp 21.9		DO (n 7.44	mg/L)	DO	1		ty (NTU)	p 7.78	н	SS(m	
(impact)	13:58	0.28	21.9	21.9	7.53	7.5	82.7 83.3	83.0	8.2 8.26	8.2	7.78	7.8	10	10.0
W1- flood	9:38	0.33	21.5	21.5	7.22	7.2	79.7	79.3	5.19	5.2	7.84	7.8	7	7.0
(impact)			21.5 22.5		7.16 7.31		78.8 73		5.26 3.3		7.84 8.16		7 2.4	
W2 (Impact)	14:40	<1	22.5	22.5	7.31	7.3	73	73.0	3.3	3.3	8.16	8.2	2.4	2.4
W3 (control)	12:37	0.21	20.3 20.3	20.3	8.31 8.41	8.4	90.3 91.5	90.9	1.61 1.45	1.5	8.46 8.45	8.5	<2 <2	2.0
W4 (impact)	12:44	0.27	20.6	20.6	8.76	8.7	95.7	95.5	1.49	1.4	8.33	8.3	<2	2.0
W4 (impact)	12.44	0.27	20.6	20.0	8.71	0.7	95.2	75.5	1.3	1.4	8.33	0.5	<2	2.0
Date	22-Nov-13													I
Location	Time	Depth	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	ty (NTU)	F	ы	SS(m	g/L)
W1 - ebb	14:42	0.14	24.1	24.1	7.39	7.4	85.9	85.1	3.65	3.7	7.5	7.5	6	6.0
(impact) W1- flood			24.1 23.3		7.32 6.99		84.2 81.1		3.66 4.12		7.49 7.34		6	
(impact)	9:48	0.31	23.3	23.3	6.87	6.9	79.6	80.4	4.26	4.2	7.35	7.3	8	8.0
W2 (Impact)	16:00	<1	23.6 23.6	23.6	7.89 7.89	7.9	<u>80</u> 80	80.0	3.8 3.8	3.8	8.23 8.23	8.2	1.8 1.8	1.8
W3 (control)	17:31	0.08	22.3	22.3	7.89	7.9	89	88.2	7.71	7.8	8.54	8.5	1.0	16.0
	17.31	0.08	22.3 21	22.3	7.83 9.97	1.7	87.3 108	00.2	7.97 5.71	7.0	8.53 8.35	0.5	16 11	10.0
W4 (impact)	17:13	0.13	21	21.0	9.91	9.9	107.6	107.8	5.29	5.5	8.34	8.3	11	11.0
Data	2E Nov 12													ı
Date Location	25-Nov-13 Time	Deptn	Temp	(aC)	DO (n	ma /l)	DO	(9/)	Turbidit			ж	SS(m	a(I)
W1 - ebb		(m)	22.6		7.27		82.4	r	22		8.24		17	
(impact)	18:00	0.26	22.6	22.6	7.12	7.2	81.3	81.9	20.4	21.2	8.23	8.2	17	17.0
W1- flood (impact)	12:37	0.37	23 23	23.0	6.01 5.93	6.0	69.1 68.4	68.8	21.9 20.6	21.3	8.2 8.2	8.2	16 16	16.0
W2 (Impact)	16:00	<1	22.8	22.8	7.25	7.3	75	75.0	2.7	2.7	8.16	8.2	4	4.0
			22.8		7.25		75		2.7		8.16		4	
W3 (control)	15:20	0.41	22.2 22.2	22.2	8.06 8.34	8.2	90.2 93.7	92.0	5.85 5.75	5.8	8.2 8.21	8.2	12 12	12.0
W4 (impact)	15:24	0.29	21.7	21.7	9.32	9.4	104.5	105.5	3.19	3.1	8.84	8.8	4	4.0
			21.7		9.48	L	106.4	L	3.02	L	8.84	L	4	
Date	27-Nov-13													
Location	Time	Deptn	Temp	(oC)	DO (n	ng/L)	DO	(%)	-	ty (NTU)		ын	SS(m	g/L)
W1 - ebb (impact)	8:00	0.19	18.1 18.1	18.1	7.72	7.8	82.3 83.7	83.0	8.69 8.63	8.7	7.59	7.6	16 16	16.0
W1- flood	13:59	0.31	20.6	20.6	6.01	6.1	67.3	68.3	5.58	5.4	8.12	8.1	16	16.0
(impact)			20.6 23.8		6.09 8.1		69.2 85		5.23 2.9		8.12 8.26		16 2	
W2 (Impact)	8:26	<1	23.8	23.8	8.1	8.1	85	85.0	2.9	2.9	8.26	8.3	2	2.0
W3 (control)	13:00	0.42	21.4 21.4	21.4	9.59 9.47	9.5	101.3 100.4	100.9	3.24 3.08	3.2	8.07 8.08	8.1	<2	2.0
W4 (impact)	13:24	0.13	20.9	20.9	9.17	9.2	96.3	95.9	3.07	3.0	8.24	8.2	<2	2.0
	.0.27	5.10	20.9		9.15		95.4		3.01	5.0	8.25		<2	
Date	29-Nov-13									I				
Location	Time	Depth	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	ty (NTU)	F	ын	SS(m	g/L)
W1 - ebb	9:00	0.12	16.4	16.4	8.04	8.0	69.3	69.2	4.16	4.0	7.47	7.5	8	8.0
(impact) W1- flood			16.4 18.7		8.02 6.64		69 83.8		3.82 4.55		7.47		8	
(impact)	15:13	0.38	18.7	18.7	6.58	6.6	83.5	83.7	5.74	5.1	7.66	7.7	7	7.0
W2 (Impact)	10:20	<1	21.3 21.3	21.3	7.5	7.5	78 78	78.0	2.5 2.5	2.5	7.94	7.9	2	2.0
	16:15	0.45	18.2	18.2	7.84	7.8	80.7	80.0	1.15	1.6	8.08	8.1	3	3.0
W3 (control)				10.2		1.0		00.0	2.06	1.0	8.07	0.1	3	3.0
W3 (control)	10.15	0.10	18.2		7.71		79.3	-						Ι Ι
W3 (control) W4 (impact)	16:23	0.31	18.2 17.9 17.9	17.9	7.73 7.82	7.8	79.3	80.2	2.06	2.1	8.47 8.47	8.5	4 4	4.0

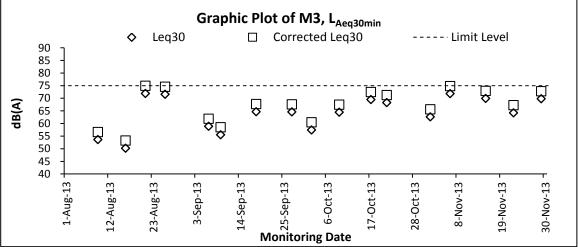


Appendix J

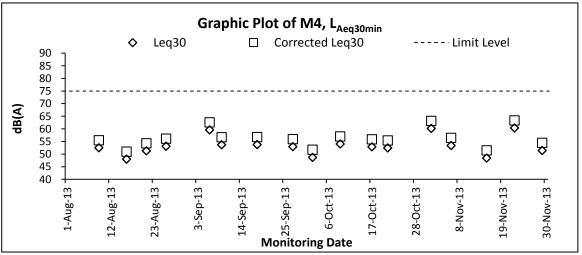

Graphical Plots of Impact Monitoring – Noise, Water Quality and Hydrological Characteristics


Graphic Plot – Construction Noise

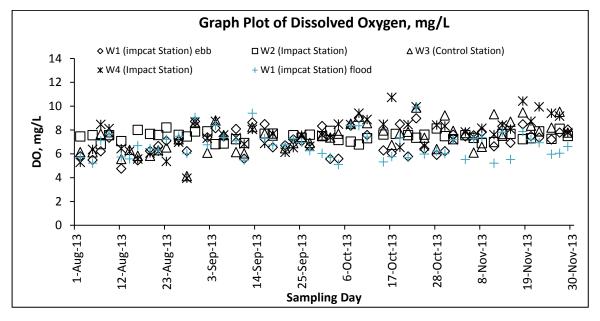
Remark: The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.

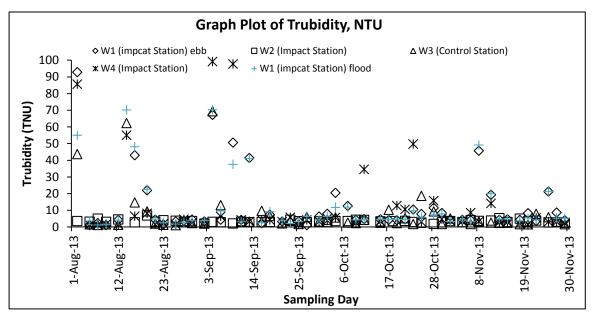


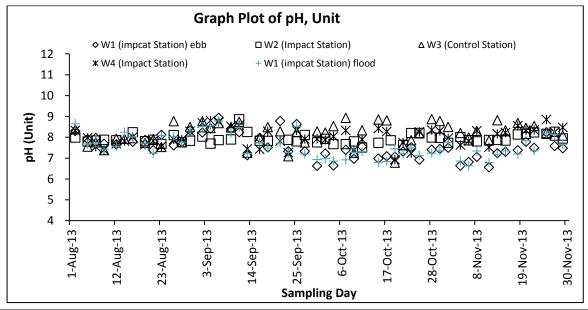
Remark: The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.



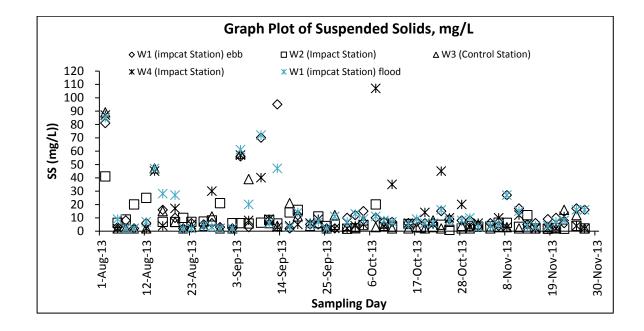
Remark: The monitoring is undertaken under free field situation. A façade correction of $+3 \, dB(A)$ has been added according to acoustical principles and EPD guidelines.

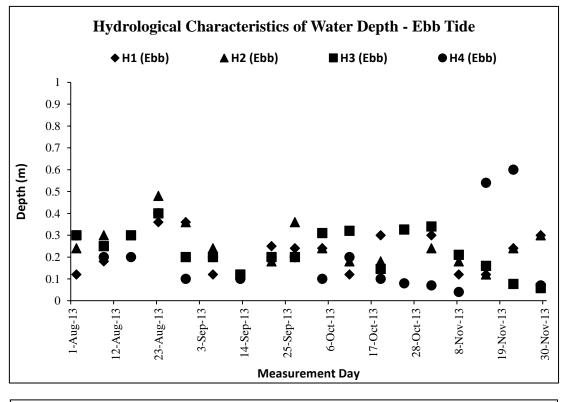

Remark: The monitoring is undertaken under free field situation. A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines

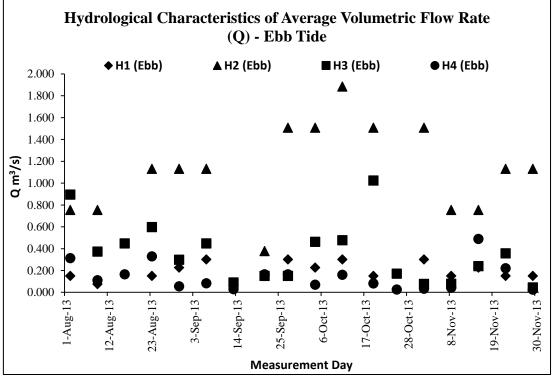


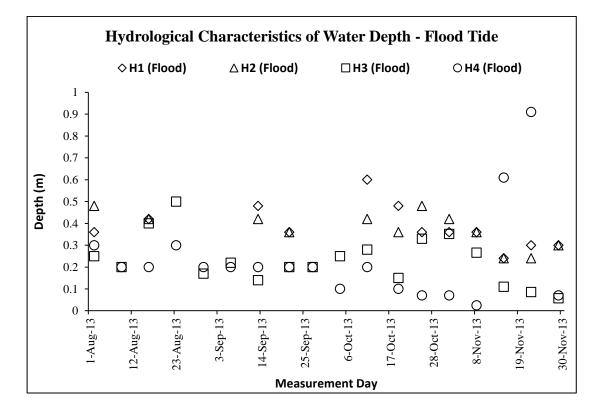

Remark: The monitoring is undertaken under free field situation. A façade correction of $+3 \, dB(A)$ has been added according to acoustical principles and EPD guidelines

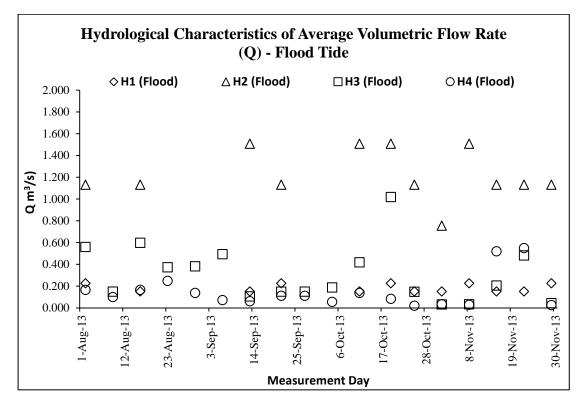
Graphic Plot – Water Quality




Z:Jobs/2011/TCS00553(DC-2010-02)/600/EM&A Monthly Report/29th - November 2013/R0310v1.docx Action-United Environmental Services and Consulting




Graphic Plot – Hydrological Characteristics (Water Depth)



Graphic Plot – Hydrological Characteristics (Water Flow Rate)

Appendix K

Monthly Summary Waste Flow Table

r	·····			,			Actual Quantities of C&D Wastes Generated Monthly						
		Actual Quantities		O Materials Gen	erated Month	ly	Actı	al Quantities o	of C&D Wastes	Generated M	onthly		
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse		
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	$(in '000m^3)$		
Apr 2011	Nil	0	0	0	0	0	0	0	0	0	0		
May 2011	Nil	0	0	0	0	0	0	0	0	0	0		
June 2011	Nil	0	0	0	0	0	0	0	0	0	0		
July 2011	Nil	0	0	0	0	0	0	0	0	0	0		
Aug 2011	0.7855	0	0	0.7855	0	0	0	0	0	0	0		
Sept 2011	Nil	0	0	0	0	0	0	0	0	0	0		
Oct 2011	Nil	0	0	0	0	0	0	0	0	0	0.02		
Nov 2011	Nil	0	0	0	0	0	0	0	0	0	0.045		
Dec 2011	0.08	0	0	0	0.08	0	0	0	0	0	0		
Jan 2012	Nil	0	0	0	0	0	0	0	0	0	0.01		
Feb 2012	0.01	0	0	0	0.01	0	0	0	0	0	0.03		
Mar 2012	0.405	0	0	0	0.405	0	0	0	0	0	0		
Apr 2012	0.005	0	0	0	0.005	0	0	0	0	0	0		
May 2012	0.165	0	0	0	0.165	0	0	0	0	0	0		
June 2012	0.145	0	0	0	0.145	0	0	0	0	0	0.035		
July 2012	0.005	0	0	0	0.005	0	0	0	0	0	0.005		
Aug 2012	0.775	0	0	0	0.775	0	0	0	0	0	0		
Sept 2012	0.21	0	0	0	0.21	0	0	0	0	0	0		
Oct 2012	0.49	0	0	0	0.49	0	0	0	0	0	0		
Nov 2012	0	0	0	0	0	0	0	0	0	0	0.03		
Dec 2012	0	0	0	0	0	0	0	0	0	0	0.01		
Jan 2013	0.035	0	0	0	0.035	0	0	0	0	0	0.025		
Feb. 2013	0.035	0	0	0	0.035	0	0	0	0	0	0.005		
Mar. 2013	0.002	0	0	0	0.002	0	0	0	0	0	0.005		
Apr. 2013	0.31	0	0	0	0.31	0	0	0	0	0	0.005		
May. 2013	0.04	0	0	0	0.04	0	0	0	0	0	0.035		
June 2013	0.37	0	0	0	0.37	0	0	0	0	0	0.017		

Monthly Summary Waste Flow Table for 2011 to 2013 (Year)

July 2013	0.015			na snek wu w	·		r	1	N	ame of Dep	artment: DSD
	0.015	<u> </u>	0	0	0.015	0	0	0	0	0	0.01
Aug 2013	0	0	0	0	0	0	0	0	0	0	0
Sep 2013	0.036	0	0	0	0.036	0	0	0	0	0	0
Oct 2013	0.301	0	0	0	0.301	0	0	0	0	0	0
Nov 2013	0.215	0	0	0	0.215	0	0	0	0	0	0.00525
Total	4.435	0	0	0.7855	3.65	0	0	0	0	0	0.29

Kwan Lee - Kuly Joint Venture Environmental Management Plan for Contract No. DC/2010/02 Drainage Improvement Works in Shuen Wan and Shek Wu Wai

			Forecast o	f Total Quanti	ties of C&D Mat	erials to be G	enerated from th	e Contract*	······	
Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill		Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in '000m')	(in '000m ³)	(in '000m')	$(in '000m^3)$	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
23	1	10	0	10	2	5	2	1	1	3

Notes:

(1) The performance targets are given in ETWB Technical Circular PS Clause 6(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m3. (ETWB Technical Circular PS Clause 5(4)(b) refers). [Delete Note (4) and the table above on the forecast, where inapplicable].

Appendix L

Monthly Landscape & Visual Inspection Report

 $\label{eq:loss2011} Z: Jobs \ 2011 \ CS00553 \ (DC-2010-02) \ 600 \ EM\&A \ Monthly \ Report \ 29th - November \ 2013 \ R0310v1. docx \ Action-United \ Environmental \ Services \ and \ Consulting$

Contract No. DC/2010/02 Drainage Improvement Works in Shuen Wan and Shek Wu Wai Bi-weekly Landscape & Visual Monitoring

EM&A (Landscape & Visual) Report (October 2013) (Issue 1)

> Job Ref.: 09/317/161D KLKJV-SW Date: November 2013

Contract No. DC/2010/02 Drainage Improvement Works in Shuen Wan and Shek Wu Wai Bi-weekly Landscape & Visual Monitoring

EM&A (Landscape & Visual) Report (October 2013)

(Issue 1)

November 2013

	Name	Signature
Prepared by:	Sean FONG	AA
Reviewed by:	lda YU	Elayn
Date:	7 th November 2013	0

Job Ref.: 09/317/161D KLKJV-SW

EM&A (Landscape & Visual) Report (October 2013) (Issue 1)

CONTENTS

1	INTRODUCTION	1
2	SCOPE OF MONITORING	1
3	LANDSCAPE & VISUAL MONITORING RESULTS	2
4	AUDIT SCHEDULE	9

LIST OF APPENDICES

Appendix A – Photographs

1 INTRODUCTION

- 1.1.1 The Landscape and Visual Monitoring of the Project is conducted to fulfill Clauses 5.2 and 5.4 of EP-303/2008 and the monitoring requirements in accordance with Section 7 of the approved updated EM&A Manual (approved by EPD on 31st May 2012) of the Project. A Baseline Review on updating the landscape and visual condition, and the mitigation measures of the Project (including Contracts 1 and 2 of the Project) was undertaken before the commencement of the Project. The review findings were updated in the Baseline Environmental Monitoring Report submitted to the EPD on 14th February 2011.
- 1.1.2 This monthly monitoring report will detail the scope of landscape and visual monitoring work, monitoring findings and observations, and any recommendation and advice on proper implementation of the landscape mitigation measures in the works areas under Contract 2 of the Project.

2 SCOPE OF MONITORING

2.1 Monitoring objectives

2.1.1 Landscape and Visual Monitoring of the Project should be conducted on a bi-weekly basis for checking the design, implementation and maintenance of the landscape and visual mitigation measures throughout the construction phase and in a quarterly basis during operational phase of the Project. Observations of any potential conflicts between the proposed mitigation measures and the project works carried out by the Contractors should be recorded. Recommendation and advice on proper implementation of the landscape mitigation measures should be provided to the Contractor for minimizing any potential impacts on the landscape and visual elements.

2.2 Monitoring during Construction Phase

- 2.2.1 The following landscape and visual mitigation measures should be implemented during the construction phase of the project to minimize the potential impacts:
 - Visual Screen Use of hoardings as visual screens for the construction in the works areas;
 - Contaminant/ Sediment Control Use of temporary barriers, covers and drainage provision around the construction works as contaminant/ sediment control to prevent the contaminants and sediments from entering the sensitive water-based habitats;
 - *Pollution Control* Implementation of pollution control measures to minimize any adverse environmental impacts to the surrounding habitats;
 - Liaison with Nursery (Not relevant to Contract 2 of the Project) Liaison with the nursery operator as necessary to minimize any adverse impact to the daily operation and plant holding capacity of the nursery;
 - Existing Trees within Works Area Maintenance and protection of the existing trees, especially their crowns, trunks and roots, within work sites; and
 - Construction Light Provision of construction light should be controlled at night to avoid excessive glare to the surrounding villages and to Plover Cove.

2.3 Monitoring during Operational Phase

- 2.3.1 The following landscape and visual mitigation measures should be implemented during the operational phase of the project to minimize the potential impacts:
 - Viewing area formation by planting with shrubs, grasses and benches along the area;
 - Architectural design of the pump house will help it fit into the existing suburban, natural to semi-natural surroundings (Not relevant to Contract 2 of the Project);
 - Landscape design of pump house by providing sufficient planting around its boundary fence (Not relevant to Contract 2 of the Project);
 - Enhancement planting along Tung Tsz Road with shrubs/ trees of suitable species to help protect the stream and marshes;
 - Construction of box culvert should be with at least 1.0m soil depth for enhancement planting;
 - Transplanting of existing affected trees to adjacent locations should be carried out;
 - Preparation for transplanting is needed to allow sufficient time for root pruning and rootball preparation prior to transplanting; and
 - Reinstatement of affected area should be carried out to check that the works areas are properly reinstated.

3 LANDSCAPE & VISUAL MONITORING RESULTS

3.1 Monitoring Date(s)

- 3.1.1 This monthly Landscape and Visual Monitoring (October 2013) was conducted to cover only areas of Contract 2 of the Project (i.e. the construction of a twin-cell box culvert close to Shuen Wan Conservation Area and Wai Ha River along Tung Tsz Road, and a drainage pipe near Wai Ha Village). The bi-weekly monitoring was conducted on 4th, 18th and 31st October 2013.
- 3.1.2 All photos stated in this section are recorded in **Appendix A**.

3.2 Visual Screen

3.2.1 No follow-up action by the Contractor is required as from the *Monthly EM&A Report for September 2013*.

Observation

- 3.2.2 Temporary hoardings, in the form of construction barriers, have been erected from west to east parts along Tung Tsz Road from the opposite side of Wai Ha to the opposite side of San Tau Kwok. The construction works along the access road from Tung Tsz Road towards Treasure Spot Garden II have also been demarcated with temporary construction barriers. Another section of temporary hoardings has been erected next to the path outside Treasure Spot Garden II. **Photos 1-2** show the views of the erected hoardings along the active works area under Contract 2.
- 3.2.3 Construction works for building the box culverts continue in the works area along Tung Tsz Road opposite to Wai Ha outside the public toilet (**Photo 3**) and near the tree group T181-184 (**Photo 4**).

- 3.2.4 Construction works have been started again along Wai Ha River (**Photo 5**). The river was divided by sand bags and water from the upper stream was pumped to the lower stream behind the works area (**Photo 6**). Sheet piling work was seen in the works area during the monitoring on 18th October 2013 (**Photo 7**) while excavation works was observed instead of sheet piling work on 31st October 2013 (**Photo 8**).
- 3.2.5 To the southeast of Jade View Villa and adjacent to the current active works area, a demarcated wetland rehabilitation area has been maintained by parties other than the Project Proponent, the Project's Contractor and Sub-contractors since January 2012. Temporary construction barriers were seen surrounding the eastern side of the area (**Photo 9**). A filtration tank covered by plastic mat was still next to the area in October 2013 (**Photo 10**). Underground water from the box culvert was found pumping into the tank and then releasing to the adjacent grassland. The discharge was clear as observed during the monitoring.
- 3.2.6 Outside the established hoardings of the Project Area, temporary storage of construction materials was still found next to the retained tree T179 in October 2013 (**Photo 11**).
- 3.2.7 The temporary parking area was still maintained at the end of the access path to Treasure Spot Garden Phase II in October 2013 (**Photo 12**). The untagged leaning tree was still guyed at the edge of the area within a Tree Protection Zone (TPZ), which was demarcated by orange construction nets (**Photo 13**). Vehicles were parked quite close to the TPZ.
- 3.2.8 As reported in the previous *Monthly EM&A Reports*, dumping on the Taro field located along the path towards the Treasure Spot Garden was observed and a paved area created for parking next to the retained tree groups (T088 T091) has been found since November 2012. The path to Treasure Spot Garden II was expanded towards the Taro field within the period between 18th and 31st October 2013 (**Photos 14-15**). Information from the Contractor revealed that a temporary access road was required by the villagers during the period when the Project blocked the original access road for construction.
- 3.2.9 Works were observed at the end of the Treasure Spot Garden II near the retained tree T103 and the works area was surrounded by temporary construction barriers (**Photo 16**). Excavation work was noted for joining the old pipe to the new box culvert (**Photos 17-18**).
- 3.2.10 No hoardings have been erected along the rest of the proposed works area since neither construction works nor any associated preparation works have been commenced.

Recommendations

- 3.2.11 No specific recommendation is required. However, with regard to the previous dumping incident by other parties on the Taro field near the Treasure Spot Garden, the Contractor is recommended to check the site condition regularly to avoid any extent of dumping or paving of area within the project boundary.
- 3.2.12 The Contractor should also make sure there are no piled rocks, construction materials or programmed construction works influencing the existing trees within the Project Area or the wetland rehabilitation area.
- 3.2.13 The Contractor could establish a warning sign to remind the driver to beware of the presence of the tree(s) close to the temporary parking area.

3.3 Contaminant/ Sediment Control

- EM&A (Landscape & Visual) Report (October 2013) (Issue 1)
- 3.3.1 A series of sedimentation beds with gravels have been built along the boundary of the active works area to the south of Wai Ha and close to Tung Tsz Road in accordance with the recommendation stated in the *Monthly EM&A Report for September 2013*.

Observation

- 3.3.2 The exit point of Contract 2 works area was previously opposite to the entrance of the access to Treasure Spot Garden II. During the monitoring, this exit has been closed and its associated wheel washing pool has not been found since 18th October 2013 (**Photo 19**). A new exit was seen opposite to the tree group T021-029 (*Leucaena leucocephala*) and workers were noted washing the wheels of the vehicles which were leaving the works area (**Photo 20**).
- 3.3.3 A sedimentation tank was seen receiving the waste water from the works area near the previous collapsed tree T196 (*Macaranga tanarius* var. *tomentosa*) and the discharge was seen to be clear (**Photo 21**). Granules were found piled in the previous discharge point (**Photo 22**).
- 3.3.4 Another sedimentation bed aligned from the area opposite to the Jade View Villa towards the marsh area at southeast has been maintained since October 2012. No muddy water was observed to be discharged into the drainage points but the bed was overgrown by dense grassy vegetation (**Photo 23**).
- 3.3.5 There has been another section of sedimentation bed aligned from the area opposite to the eastern part of Jade View Villa towards the marsh area since December 2012. The used water was released into the sedimentation bed and no discharge of muddy water was observed (**Photo 24**).
- 3.3.6 As mentioned above, construction works have been started again along Wai Ha River. The muddy water from the works area was pumped out from the river to a sedimentation tank settled at the end of the works area (Photo 25). After sedimentation, the water was released back to the river along with the water pumped from the upper stream. Sections of granules with underlaid PVC liners were found along the river for further sedimentation (Photos 26-27). However, several sections of granules were washed away and some muddy water ran through it directly (Photo 28). Muddy water was noted at the lower stream (Photos 29-30).
- 3.3.7 Water from the box culvert in the works area outside the public toilet was noted pumping to a pipe next to Wai Ha River (**Photos 31-32**). The pipe was then directed along the river to the grassland behind the tree group T181-183 (**Photos 33-34**) and the water was then released directly without any treatment (**Photo 35**). Some muddy water from the box culvert in the works area was also found pumping to Wai Ha River directly without any treatment (**Photos 36-38**).
- 3.3.8 In the works area at the end of the Treasure Spot Garden II next to the retained tree T103, a stream was blocked and the stream water was pumped to the drainage of the adjacent building (**Photos 39-41**).

Recommendations

3.3.9 Regular monitoring should be conducted to ensure no direct discharge or leakage of contaminants or any polluted fluid into the adjacent Wai Ha River and the nearby Shuen Wan marsh. The Contractor should maintain regular check (e.g. daily) on the sedimentation and filtration facilities and appropriate sedimentation beds and/or tanks throughout the construction phase (e.g. check the function of the sedimentation beds and remove surplus

: 09/317/161D KLKJV -SW EM&A (Landscape & Visual) Report (October 2013) (Issue 1) sand and gravels deposited along the beds or within the tanks) to make sure all discharged water was filtered appropriately prior to any discharge. This recommendation should be applied in dealing with the overflow and leakage problems of the filtration tank mentioned in Section 3.3.6.

3.3.10 The Contractor should have *ad hoc* inspection and emergency measures for any accidental spillage of polluted fluid, contaminants or grease from the construction sites. To prevent the impact of the unclear discharge on the nearby vegetated area, it is suggested to overlay PVC liners along the site edge and remove any surplus sand and gravels deposited in the beds and tank even some parts of the construction works may be completed at this stage.

3.4 Pollution Control

3.4.1 No follow-up action by the Contractor is required as from the *Monthly EM&A Report for September 2013*.

Observation

- 3.4.2 As mentioned in Section 3.3, a sedimentation tank was seen receiving the waste water from the works area near the previous collapsed tree T196 (*Macaranga tanarius* var. *tomentosa*) and the discharge was seen to be clear (**Photo 21**). Granules were found piled in the previous discharge point (**Photo 22**).
- 3.4.3 Another sedimentation bed aligned from the area opposite to the Jade View Villa towards the marsh area at southeast has been maintained since October 2012. No muddy water was observed to be discharged into the drainage points but the bed was overgrown by dense grassy vegetation (**Photo 23**).
- 3.4.4 There has been another section of sedimentation bed aligned from the area opposite to the eastern part of Jade View Villa towards the marsh area since December 2012. The used water was released into the sedimentation bed and no discharge of muddy water was observed (**Photo 24**).
- 3.4.5 As mentioned above, construction works have been started again along Wai Ha River. The muddy water from the works area was pumped out from the river to a sedimentation tank settled at the end of the works area (Photo 25). After sedimentation, the water was released back to the river along with the water pumped from the upper stream. Sections of granules with underlaid PVC liners were found along the river for further sedimentation (Photos 26-27). However, several section of granules was noted collapsed and the muddy water ran through it directly (Photo 28). Muddy water was noted at the lower stream (Photos 29-30) but not observed at the estuary of Wai Ha River.
- 3.4.6 Water from the box culvert in the works area outside the public toilet was noted pumping to a pipe next to Wai Ha River (**Photos 31-32**). The pipe was then directed along the river to the grassland behind the tree group T181-183 (**Photos 33-34**) and the water was then released directly (**Photo 35**). Some muddy water from the box culvert in the works area was also found pumping to Wai Ha River directly (**Photos 36-38**).
- 3.4.7 In the works area at the end of the Treasure Spot Garden II next to the retained tree T103, a stream was blocked and the stream water was pumped to the drainage of the adjacent building (**Photos 39-41**). No muddy water was observed.

Job Ref.: 09/317/161D KLKJV -SWEM&A (Landscape & Visual) Report (October 2013) (Issue 1)3.4.8No direct water discharge into the upper stream of Wai Ha River was observed as the active
construction works have been concentrated at the lower end of Wai Ha River to the southeast
of Tung Tsz Shan Road (Photo 42).

Recommendations

- 3.4.9 The Contractor should prevent any contaminants and sediments from entering the sensitive water-based habitats (i.e. Shuen Wan marsh and Wai Ha River) and implement pollution control measures to minimize any adverse environmental impacts to the water body. The Contractor should maintain appropriate sedimentation beds and/or tanks throughout the construction phase. The Contractor should adopt a good site practice in maintaining appropriate sedimentation beds and filtration tanks as recommended in the above Section for Contaminant/ Sediment Control. Muddy water pumped from the works area should be filtered appropriately through sedimentation beds or other filtration system prior to the discharge.
- 3.4.10 The Contractor should have *ad hoc* inspection and emergency measures for any accidental spillage of polluted fluid, contaminants or grease from the construction sites. It is also recommended to overlay PVC liners along the site edge and remove any surplus sand and gravels deposited in the beds and tank so as to prevent the impact of the unclear discharge on the nearby vegetated area.

3.5 Liaison with Nursery

3.5.1 The construction undertaken within Tung Tsz Nursery is restricted under Contract 1 of the Project. This monitoring item is not applicable to Contract 2 of the Project.

3.6 Existing Trees within Works Areas

3.6.1 Individual trees retained within the active works area have been protected within TPZs. The protection measures generally follow the recommendations stated in the *Monthly EM&A Report for September 2013*. Particular observations are highlighted in the following paragraphs.

Observation

- 3.6.2 Vegetation clearance was found in the works area at the entrance of the access from Tung Tsz Road to Treasure Spot Garden II (**Photo 43**). As informed by the Contractor, a temporary access road has to be maintained for the villagers during the period when the Project blocked the original access road for construction. The cleared area will be used for constructing the temporary access road.
- 3.6.3 Most trees which are proposed to be retained within the Project Area were recorded generally in fair health condition and some of the retained trees were naturally covered by invasive climbers.
- 3.6.4 A broken branch was found hanging in the canopy of the retained tree T091 (*Leucaena leucocephala*) (**Photos 44-45**).
- 3.6.5 A broken branch was still seen hanging on the retained tree T093 next to the main access road to Treasure Spot Garden II (**Photo 46**). Temporary storage of construction materials was still observed placing close to the trunk flares and tree trunks of T093 and T094 (both *Litsea cubeba*) in October 2013 (**Photo 47**).

- EM&A (Landscape & Visual) Report (October 2013) (Issue 1)
- 3.6.6 The relocated tree T190 (*Ficus hispida*) was suspected to be dead due to transplantation shock and inappropriate transplantation skill (**Photo 48**). Loose bark was noted along the trunk and dry fruit was also seen on branches (**Photo 49**).
- 3.6.7 Construction works at the end of the Treasure Spot Garden have commenced since October 2012. Works had been started again in the area and stockpiling were noted close to the trunk base of the retained tree T103 (*Litchi chinensis*) (**Photo 50**).
- 3.6.8 Sheet piling works were conducted within the tree root zone of a retained tree T025 (*Celtis sinensis*) in June 2013, in which the sheet piles were installed very close to the trunk base. Therefore, root damage by the sheet piling works is anticipated. The tree was also overpruned in June 2013. It has been temporarily guyed by three strings so as to provide additional support to the tree. One major branch was topped and the whole tree form was changed due to the recent pruning and topping practice. The condition of the tree was still closely monitored in October 2013 (**Photo 51**).
- 3.6.9 As stated in Section 3.2, a TPZ was set up with orange construction nets to protect the untagged leaning tree from the newly formed temporary parking area at Treasure Spot Garden Phase II. However, the vehicle was parked close to the TPZ (**Photos 12-13**).
- 3.6.10 Two trees were reported to have been collapsed and damaged after the severe typhoon Usagi during 22nd to 23rd September 2013. They were T085 (*Leucaena leucocephala*) and T184 (*Ficus hispida*). Photos recorded were provided by the Main Contractor (**Photos 52-53**). Another tree (*Leucaena leucocephala*) on the slope next to the Wai Ha River was also noted collapsed with decayed trunk base during the monitoring on 18th October 2013. As no tree tag was found on this tree, this collapsed tree is suspected as T107 in according to its location in the Tree Removal Application Report (**Photo 54**).
- 3.6.11 No significant signs of damage on other existing tree crowns, trunks and roots resulting from the construction works were observed in this monthly monitoring.
- 3.6.12 As Area C under Contract 1 of the Project has been formally handed over to AFCD for management and maintenance since October 2012, no access into the ECA is allowed. Two transplanted shrubs of *Pavetta hongkongensis* (PH-01 and PH-03) were inspected through the fence of Tung Tsz Nursery and they have remained in satisfactory condition (**Photos 55-56**).

Recommendations

- 3.6.13 Within the active works area, maintenance of TPZs for the retained trees and the trees to be transplanted should be continued. Trunk bases of all retained trees should be kept clear, with no stockpiled soil, construction equipments and rubbish allowed around the trunk bases and within the TPZs. If necessary, these retained trees shall be watered regularly to maintain their health. All fallen trees or tree parts of the existing trees maintained within the works area of Contract No. DC/2010/02 should be removed if they pose imminent hazards to the people/property or cause obstruction to the traffic. Any broken tree parts still attached to the trees could be pruned appropriately to prevent their potential hazard to the public and property.
- 3.6.14 Disturbance is prohibited in all TPZs. In any practical circumstances, the contractor should follow Section 8 of Annex 4 of the approved Landscape Plan for protecting the existing trees from any potential damages resulting from the construction works. In addition, the Contractor and the Project Proponent should have routine inspection on any tree remedial works conducted by other party on the trees within the Project Area.

EM&A (Landscape & Visual) Report (October 2013) (Issue 1)

- 3.6.15 The relocated tree T190 (*Ficus hispida*) was suspected to be dead due to transplantation shock and poor transplantation skill. The Contractor is strongly advised to remove the tree from the site or fence off the falling zone of the tree in order to prevent the dead tree falling onto the works area and causing injury to the workers.
- 3.6.16 The tape and ropes tided on the tree trunk of the retained tree T103 should be removed. If necessary, it is recommended to remove the overgrown climbers on the tree canopy so as to reduce the crown load supported by this tree. As the construction works around T103 was commenced again in October 2013, the Contractor should have close monitoring of the stability and health condition of this tree.
- 3.6.17 With regard to the previous tree topping incident on the retained trees T088 and T089, as a reminder, the Contractor is suggested to monitor the trees protected within the project boundary regularly. The Contractor should also be aware of any potential damage on the trees by other contractor(s) undertaking construction work concurrently.
- 3.6.18 Tree topping (like the case for T025) should be prohibited and the Contractor should appoint qualified landscape contractor to perform appropriate pruning practice. The pruning works should follow any local, national or international standards for pruning works and relevant tree remedial works. Given that the tree roots could be damaged by sheet piling works and the topped tree exists with unbalanced tree form, the long-term tree stability and health condition should be checked after the removal of the sheet piles. The Contractor should have close monitoring of tree stability with regard to its unbalanced tree form. Meanwhile, the Contractor and sub-contractor should carefully design the civil works. Common civil works, such as excavation and sheet piling works should be programmed and designed carefully by taking tree buffer zone into consideration. The works should avoid affecting the tree canopy, trunk and underground root zone with regard to tree dripline as far as possible.
- 3.6.19 As the concrete paved temporary parking area at Treasure Spot Garden Phase II was close to the untagged tree, the roots may be damaged and hence the stability of the tree would be affected. The tree may also be damaged by the parking vehicles. Therefore, the Contractor is advised to provide better tree protection measures such as increasing the buffer zone between the parking area and the trees and establish a warning sign to remind the driver to beware of the presence of trees within the tree protection zone. The health and stability of the tree should also be monitored by the Contractor regularly.
- 3.6.20 As temporary storage of construction materials were noted close to the tree flares of T093, T094 and T103 and within their dripline areas, the Contractor is advised to establish proper Tree Protection Zone (e.g. an area of at least 1m from tree trunks) and prohibit any construction works and storage of construction materials within and close to the zone.

3.7 Construction Light

3.7.1 No follow-up action on maintenance of construction light is required as from the *Monthly EM&A Report for September 2013.*

Observation

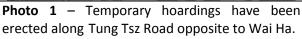
3.7.2 No construction light impact to the surrounding villages and to Plover Cove as all construction activities and construction sites are halted at 1800. No construction light at night is provided by the Contractor.

Recommendation

3.7.3 No specific recommendation is required.

4 AUDIT SCHEDULE

4.1.1 The next bi-weekly Landscape & Visual Monitoring in November 2013 is scheduled to be conducted in the weeks of 11th and 25th November 2013.



Appendix A

Photographs

Photo 2 – Temporary hoardings have been erected along the access road from Tung Tsz Road to Treasure Spot Garden II.

Photo 3 – Construction works for building the box culverts along Tung Tsz Road opposite to Wai Ha outside the public toilet.

Photo 4 – Construction works for building the box culverts along Tung Tsz Road opposite to Wai Ha and near the tree group T181-184.

Photo 5 – Construction work was started again along Wai Ha River.

Photo 6 – The river was divided by sand bags (Red arrow) and water from the upper stream was pumped to the lower stream behind the works area along Wai Ha River (Blue arrow).

Photo 7 – Sheet piling work in the works area along Wai Ha River on 18th October 2013.

Photo 9 – Temporary construction barriers
surrounding the eastern side of the wetland
rehabilitation area.Photo 10 – A filtration tank covered by plastic
mat next to the area in October 2013.

Photo 11 – Temporary storage of construction materials next to the retained tree T179 in October 2013.

Photo 12 – Temporary parking area was still maintained at the end of the access path to Treasure Spot Garden Phase II in October 2013.

pipe (Red arrow) to the new box culvert.

of the Treasure Spot Garden II for joining the old pipe to the new box culvert (Red arrow).

Photo 19 – The previous exit point of Contract 2 works area opposite to the entrance of the access to Treasure Spot Garden II has been closed and the wheel washing pool has not been found since 18th October 2013.

Photo 20 – A new exit for Contract 2 works area was seen opposite to the tree group T021-029 (*Leucaena leucocephala*) and workers were noted washing the wheels of the vehicles which were leaving the works area.

Photo 21 – A sedimentation tank receiving the waste water from the works area near the previous collapsed tree T196 (*Macaranga tanarius* var. *tomentosa*). Clear discharge was noted.

Photo 22 – Granules piled in the previous discharge point near the previous collapsed tree T196 (*Macaranga tanarius* var. *tomentosa*).

Photo 23 – A sedimentation bed aligned from the area opposite to the Jade View Villa towards the marsh area at southeast. No muddy water was observed but the bed were overgrown by dense grassy vegetation.

Photo 24 – A section of sedimentation bed aligned from the area opposite to the eastern part of Jade View Villa towards the marsh area. No muddy water was discharged.

Photo 25 – The muddy water from the works area along Wai Ha River was pumped out from the river to a sedimentation tank settled at the end of the works area.

Photo 26 – Sections of granules with underlaid PVC liners were found along the river for further sedimentation.

Photo 27 - Sections of granules with underlaid PVC liners were found along the river for further sedimentation. directly.

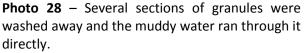


Photo 29 – Muddy water was noted at the lower Photo 30 - Muddy water was noted at the lower stream. stream.

Photo 31 – Water from the box culvert in the works area outside the public toilet was noted pumping to a pipe next to Wai Ha River.

Photo 32 – Water from the box culvert in the works area outside the public toilet was noted pumping to a pipe next to Wai Ha River.

Photo 33 – The pipe was then directed along the
river to the grassland behind the tree group T181-
183.Photo 34 – The pipe was then directed along the
river to the grassland behind the tree group T181-
183.

Photo 35 – The pipe was then directed along the
river to the grassland behind the tree group T181-
183 and the water was then released directly.Photo 36 – Some muddy water from the box
culvert in the works area was also found pumping
to Wai Ha River directly.

Photo 37 – Some muddy water from the box culvert in the works area was also found pumping to Wai Ha River directly.

Photo 38 – Some muddy water from the box culvert in the works area was also found pumping to Wai Ha River directly.

Photo 39 – In the works area at the end of the Treasure Spot Garden II next to the retained tree T103, a stream was blocked and the stream water was pumped to the drainage of the adjacent building.

Photo 40 – The stream water was pumped to the drainage of the adjacent building.

Photo 41 - Another view showing the pipesPhoto 42 -which pump the stream water from the stream to
the drainage of the adjacent building.upper stread
the construction

Photo 42 – No direct water discharge into the upper stream of Wai Ha River was observed as the construction works have been concentrated at the lower end of the river.

Photo 43 – Vegetation clearance in the works
area at the entrance of the access from Tung Tsz
Road to Treasure Spot Garden II.Photo 44 – A broken branch was found hanging in
the canopy of the retained tree T091.

Photo 45 – A broken branch was found hanging in
the canopy of the retained tree T091.Photo 46 – A broken branch was seen hanging on
the retained tree T093.

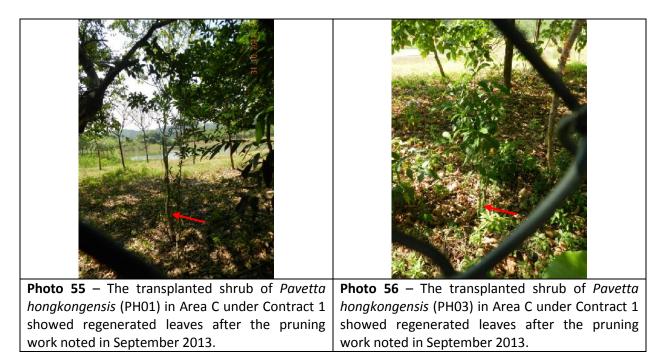


Photo 47 – Temporary storage of construction
materials were still noted close to the trunk flares
and trunks of T093 and T094 (both indicated).Photo 48 – The relocated tree T190 was
suspected to be dead due to transplantation
shock and poor transplantation skill.

Appendix M

Ecological Monitoring Report in Area under Contract 2 Agreement No. DP/01/2010 Drainage Improvement Works in Shatin and Tai Po: Ecological Monitoring in area under Contract 2 (Report 17b for Nov 2013)

> Prepared for: Drainage Services Department

Prepared by: ENVIRON Hong Kong Limited

> Date: Dec 2013

Reference Number: R3478_V1.0

Agreement No. DP/01/2010 Drainage Improvement Works in Shatin and Tai Po: Ecological Monitoring in area under Contract 2 (Report 17b for Nov 2013)

Prepared by:

Max Lee Assistant Environmental Consultant

Approved by:

Tony Cheng Project Manager

ENVIRON Hong Kong Limited Room 2403, Jubilee Centre 18 Fenwick Street, Wan Chai, Hong Kong Tel: (852) 3465 2888 Fax: (852) 34652899

Email: hkinfo@environcorp.com

Q:\Projects\DSDSHUWNEM00\Report\Bi-Monthly Construction Phase Ecological Monitoring Report\201311\17b

Contents

1.	Introduction	Error! Bookmark not defined.
2.	Highlights of this report	Error! Bookmark not defined.
3.	Summary of construction activities for the month	Error! Bookmark not defined.
4.	Monitoring Methodology	Error! Bookmark not defined.
4.1	Vegetation survey	Error! Bookmark not defined.
4.2	Avifauna	Error! Bookmark not defined.
4.3	Herpetofauna	Error! Bookmark not defined.
4.4	Butterflies and Odonata	Error! Bookmark not defined.
4.5	Mammals	Error! Bookmark not defined.
4.6	Aquatic fauna	Error! Bookmark not defined.
5.	Monitoring data	Error! Bookmark not defined.
5.1	Vegetation survey	Error! Bookmark not defined.
5.2	Avifauna	Error! Bookmark not defined.
5.4	Butterflies	Error! Bookmark not defined.
5.5	Odonata	Error! Bookmark not defined.
5.6	Mammal	Error! Bookmark not defined.
5.7	Aquatic fauna	Error! Bookmark not defined.

Page

List of Tables

Table 1:	List of riparian vegetation and coverage (%) recorded from two stream sampling points under Contract 2 (i.e. SEMP 3 & 4).
Table 2:	List of vegetation recorded from works area under Contracts 2 and 100 m buffer area in the impact monitoring survey conducted in July 2013. Vegetation species presents in the
	identified location was indicated by "V".
Table 3:	List of avifauna species and maximum counts recorded from the impact monitoring
	survey in Sept 2013 at work area under Contracts 2 and 100 m buffer area.
Table 4:	List of herpetofauna and maximum counts recorded from the impact monitoring survey
	in July 2013 at work area under Contracts 2 and 100 m buffer area.
Table 5:	Relative abundance of butterfly species recorded under Contracts 2 in impact monitoring survey during Sept 2013.
Table 6:	Relative abundance of odonata species recorded under Contracts 2 in impact monitoring survey during Sept 2013.
Table 7:	Relative abundance of aquatic species recorded in Wai Ha River within the 100 m buffer of works boundary under Contracts 2 in the impact monitoring survey during Sept 2013.

List of Figures

- Figure 1: Map showing the ecological monitoring transect and the boundary of assessment area.
- Figure 2: SEMP 3, the third sampling point of Wai Ha River under Contract 2.
- Figure 3: SEMP 2, the second sampling point along Wai Ha River under Contract 2.

1. Introduction

1.1 Project description

The Drainage Improvement Works in Shuen Wan was undertaken to minimize the potential flooding impacts in Sha Tin and Tai Po area. Although the Ecological Impact Assessment in the EIA Report identified that ecological impacts resulting from the proposed drainage improvement works at Shuen Wan were anticipated to be very minor in scale, ecological mitigation and ecological monitoring were recommended in the EM&A Manual (http://env-shuenwan.com/pdf/review_note_em&a_rev.3.pdf) as stipulated under Environment Permit No. EP-303/2008.

- 1.2 Scope of ecological impact monitoring was described in the Particular Specifications and EM & A Manual of the projects. In brief, the monitoring tasks include regular check on the retained and transplanted trees and shrubs, monitoring on fauna groups and aquatic fauna within the works area and any ecologically sensitive area within 100 m of the works boundary.
- 1.3 China-Hong Kong Ecology Consultants Co. was commissioned by ENVIRON Hong Kong Limited to perform the ecological impact monitoring survey for the projects under Contract 2 since July 2011.
- 1.4 The outline of this ecological monitoring report was as follow:
 - Highlights of this report
 - Summary of construction activities for the month
 - Monitoring methodology
 - Monitoring data
 - Remedial measures adopted to the adverse condition
 - Record of complains and remedial measures
 - Review of monitoring results
 - Forecast of works programme and monitoring requirements
 - Comments and brief summary
- 1.5 This is the report No. 17b ecological monitoring conducted on 25th Nov 2013 within the works boundary under Contract 2 and area within 100 m from the works boundary.

2. Highlights of this report

- Field survey was conducted on 25th Nov 2013
- Construction activities of Contract 2 was initiated since June 2011
- Lower number of species was observed within the works area under Contract 2, but habitats in the 100 m buffer area retain its natural condition.

3. Summary of construction activities for the month

Major construction activities carried out in Contract 2 at Wai Ha Village and Tung Tsz Road by the contractor during the present monitoring period (Nov 2013) includes:

- 1) Construction of Box Culvert Bay (8-12) near Tung Tsz Road.
- Sheetpiling and Excavation for Construction of Box Culvert Bay (28-32) near Tung Tsz Road.
- 3) Construction of Box Culvert Bay (17-19) near Tung Tsz Road.
- Sheetpiling and Excavation for Construction of Box Culvert Bay (1-4) near Tung Tsz Road
- 5) Construction of Intake Structure
- 6) Construction of box culvert (Bay 17) in Wai Ha
- 7) Construction of box culvert (Bay 1-2) in Trasure Sport Garden

4. Monitoring Methodology

Ecological monitoring methods were generally followed those described in the baseline ecological surveys (DC/2009/22). However, sampling area maybe reduced because of habitat change, for instance, deforestation and channel modification due to drainage works, where sampling was not applicable. Survey data and evaluation are detailed in the following sections.

4.1 Vegetation survey

Vegetation survey was performed along the designated transects (**Figure 1**) for ecological monitoring as described in the project specifications to monitor the vegetation health which could be adversely influenced by any bad site practice. Qualitative data of plants within the works boundary and wetland vegetation in the 100 m buffer area of Contract 2 adjacent to construction site and wetland was recorded. Riparian vegetation including aquatic and emergent at 4 stream ecological monitoring points (hereinafter referred to as "SEMP") under Contract 2 (i.e. SEMP 3 & 4; **Figure 2 & 3**) along the affected stream channel and riparian habitat was recorded in terms of species, relative abundance and average heights. Any signs of damages and adverse health problems directly caused the works were recorded and reported. Nomenclature and protection status of the species followed those documented in the AFCD website (www.hkbiodiversity.net) and Hong Kong Herbarium (2004).

4.2 Avifauna

Bird survey was conducted by following the proposed transects which cover the major ecologically sensitive areas of the Project (**Figure 1**). All bird species were recorded with special attention paid on the species of conservation importance and wetland-dependent species. List of bird species recorded and the relative abundance was provided.

4.3 Herpetofauna

Herpetofauna groups are considered to be inactive during dry season (November to March), thus detailed herpetofauna monitoring was not conducted. However, any sign/calling of reptiles or amphibians encountered during the *in situ* survey was recorded.

4.4 Butterflies and Odonata

Odonates and butterfly are considered to be inactive during dry season (November to March), thus detailed monitoring was not conducted.

4.5 Mammals

As the monitoring site was situated near traffics, plant nursery and residential buildings, mammals were unlikely inhabited at the site except rodents, domestic dogs and cats. Detailed mammal monitoring was not conducted. However, any sighting, tracks and signs of mammals encountered during survey of other faunal groups was recorded. Bat was surveyed by search for potential colony habitat, such as palm trees, which are often used by fruit bats as nesting sites.

4.6 Aquatic fauna

Monitoring of aquatic fauna was carried out mainly by bank-side observation, sometimes with the aid of binoculars, at two stream ecological monitoring points under Contract 2 (i.e. SEMP 3 & 4). These points are selected for covering representative sections of Wai Ha River and are shown in **Figure 1**. Netting and fish traps were also deployed at these points to collect supplementary data. Aquatic fauna seen/collected was identified *in situ* to the lowest possible taxon and relative abundance was presented.

5. Monitoring data

5.1 Vegetation survey

The habitats identified in area under Contract 2 are river course, wooded area, mangrove, marsh and developed area (including village). Vegetation were found in wooded area, mangrove, marsh, develop area and river bank. The riparian vegetation which were dominated by Leucaena leucocephala, Bidens alba, and Rhaphiolepis salicifolias with average coverage ranged from 15% to 30% (Table 1). A list of plant species recorded from different habitats within the assessment area under Contract 2 is presented on Table 2. A total of 180 species were recorded within the assessment boundary in which 175 species were recorded within the buffer area, while 120 species recorded within the work areas under Contract 2. About 20% of common vegetation species in the edge of marsh under Contract 2 were removed due to direct conflict with the construction activities. Most of the vegetation species were distributed in the Among them, species protected under Hong Kong secondary woodland area. ordinance were found in buffer area under Contract 2, namely Aquilaria sinensis (Cap. 586), Cibotium barometz (Cap. 586). Three individuals of protected species Pavetta hongkongensis located within works area of Contract 2 were transplanted to ECA on 20th Dec 2011.

5.2 Avifauna

A total of 11 bird species were recorded in the current survey (**Table 3**). In the work area under Contract 2, 1 bird species were recorded in which none are considered to be of conservation concern. A total of 11 bird species were recorded in the 100m buffer area in which one bird species *Stachyris ruficeps* is recognized as being local conservation concern.

5.3 Herpetofauna

No amphibian or reptile was recorded within the assessment area during dry season.

5.4 Butterflies

No butterfly was recorded within the assessment area during dry season.

5.5 Odonata

No Odonata was recorded within the assessment area during dry season.

5.6 Mammal

No other mammals or trace of mammals was observed within the assessment area.

5.7 Aquatic fauna

Under Contract 2 (i.e. SEMP 3 & 4), a total of 10 fish species, 1 crustacean, 1 gastropod and 1 arthropod were recorded and most of them were freshwater species (**Table 7**). *Carassius auratus* was commonly observed at SEMP 3 because of the traditional Buddhist practice from the nearby temple in which captured organisms were released back to nature. In addition, river section at SEMP 3 is relatively natural and the presence of *Parazacco spilurus* may imply that good water quality at this section is maintained. Overall, no protected or rare species were recorded.

6. Remedial measures adopted to the adverse condition

There was no non-compliance event recorded within this reporting month.

7. Record of complains and remedial measures

There was no complaint in relation to environmental issue recorded in this reporting month.

8. Review of the monitoring results

During the present survey period, construction activities were carried out at works area under Contract 2, while 100 m buffer area remains natural. Much of the construction activities are carried out along Tung Tsz Road under Contact 2. In general, lower numbers of species were recorded within the works area under Contract 2 than that of 100 m buffer area because of the associated constructions and urbanized in nature. Water quality in river section of Contract 2 (i.e. SEMP 3) was maintained at acceptable condition as indicated by the presence of *Parazacco spilurus*. The impact of excavation work on downstream of SEMP4 is anticipated to be minimized as proper mitigation measure was implemented. In addition, most of the construction activities are restricted in the developed area with low ecological significance. As mitigation measures recommended in the EM&A Manual were properly implemented during the current survey, and hence the residual environmental impacts would be minimized.

9. Forecast of works programme and monitoring requirements

The tentative construction activities undertaken by the contractor at Wai Ha Village and Tung Tsz Road in the coming month are as follows:

- 1) Backfilling of trench for Box Culvert Bay (8-12) near Tung Tsz Road.
- 2) Construction of Box Culvert Bay (28-32) near Tung Tsz Road.
- 3) Construction of Box Culvert Bay (17-19) near Tung Tsz Road
- 4) Construction of Box Culvert Bay (1-4) near Tung Tsz Road
- 5) Construction of Intake Structure
- 6) Construction of Box Culvert Bay (16-17) in Wai Ha
- 7) Construction of Box Culvert Bay (3-4) in Trasure Sport Garden

The monitoring programme described in EM&A will strictly follow to verify compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

10. Comments and summary

The bi-monthly ecological impact monitoring under Contracts 2 was conducted in Nov 2013 and relevant flora and fauna data were collected according to project specification and EM & A Manual. As indicated by the low abundance and diversity of species within the work areas, habitats within the work boundary under Contracts 2 offer few ecological opportunities for colonization of fauna and flora. Given that the construction activities are restricted in the developed area with proper mitigation measures being implemented, disturbances associated with the current construction activities are largely affecting area with low ecological significance. On the other hand, the natural habitats

in the 100 m buffer area are retained at acceptable condition, and hence the 100 m buffer area has not been significantly affected by the construction works.

11. References

Lo PYF & Hui WL (2005). *Hong Kong Butterflies* (2nd Edition). Friends of Country Parks. Hong Kong.

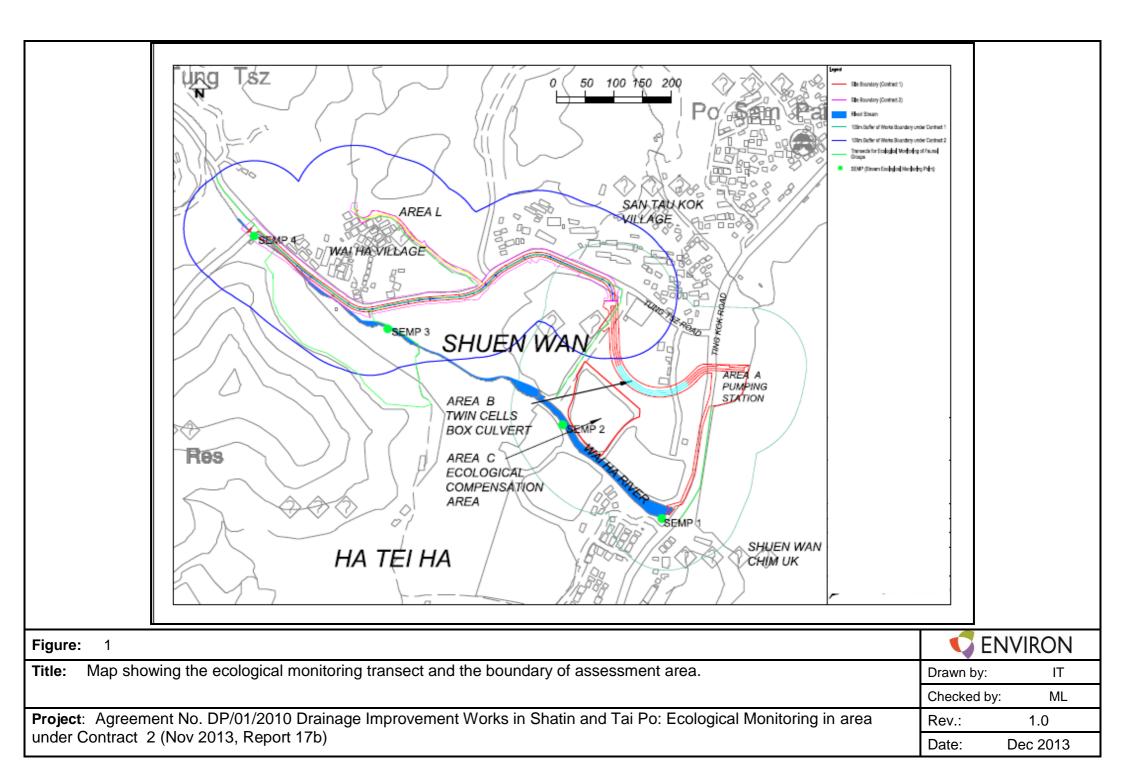
Wilson KDP (2003). *Field Guide to the Dragonflies of Hong Kong*. Agriculture, Fisheries and Conservation Department. Hong Kong.

Viney C, Philips K, Lam CY (2005). *The Birds of Hong Kong and South China* (8th Edition). Hong Kong Government Information Service. Hong Kong.

Hong Kong Herbarium (2004). Check List of Hong Kong Plants. Agriculture, Fisheries and Conservation Department. Hong Kong.

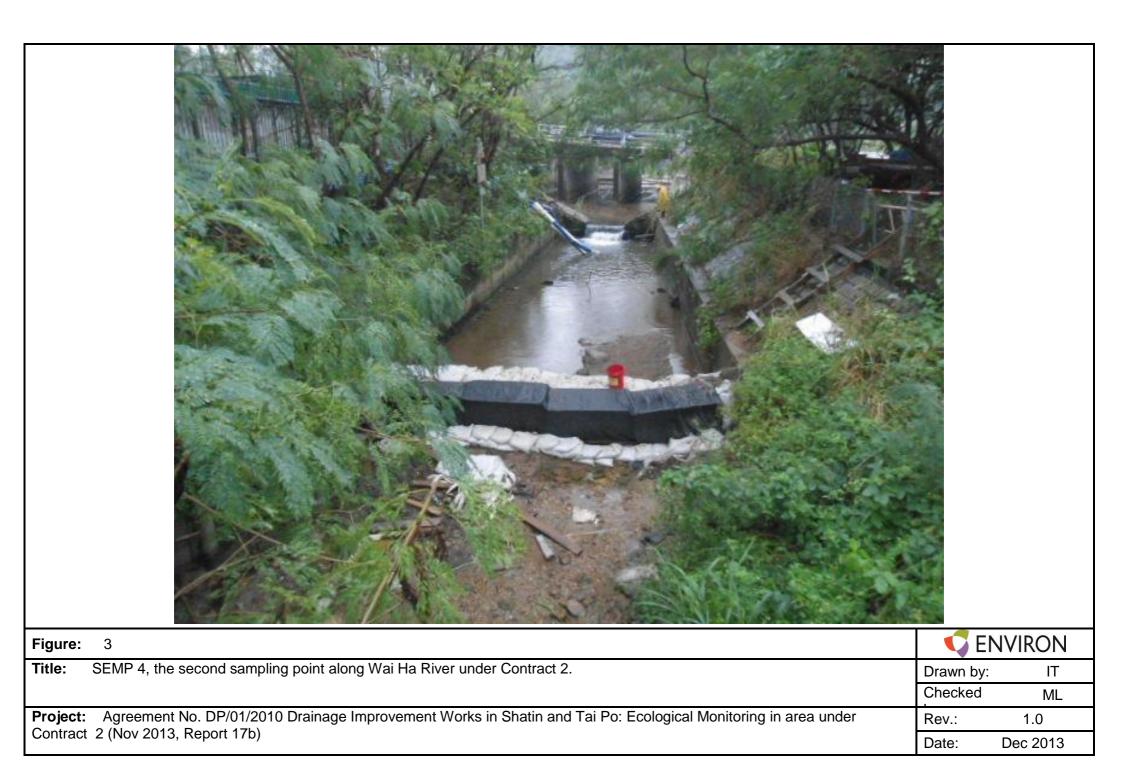
AFCD, Hong Kong Biodiversity Website: http://www.afcd.gov.hk/english/conservation/hkbiodiversity/database/search.asp

Lee VLF, La, SKS, Ng FKY, Chan TKT, Young MLC (2004). *Field Guide to the freshwater fish of Hong Kong*. Agriculture, Fisheries and Conservation Department. Hong Kong.


Shek CT (2006) A *Field Guide to the Terrestrial Mammals*. Agriculture, Fisheries and Conservation Department. Hong Kong.


Fellowes, J.R., Lau, M.W.N., Dudgeon, D., Reels, G., Ades, G.W.J., Carey, G.J., Chan, B.P.L., Kendrick, R.C., Lee, K.S., Leven, M.R., Wilson, K.D.P. & Yu, Y.T. (2002). Wild animals to watch: Terrestrial and freshwater fauna of conservation concern in Hong Kong. *Memoirs of the Hong Kong Natural History Society* 25: 123-159.

Karsen SJ, Lau MWN, Bogadek A (1986) *Hong Kong Amphibians and Reptiles*. The Urban Council Hong Kong. Hong Kong.


Figure

Project: Agreement No. DP/01/2010 Drainage Improvement Works in Shatin and Tai Po: Ecological Monitoring in area under Contract 2 (Nov 2013, Report 17b)

Date: Dec 2013

Table

			Sampling point	SEMP 3		SEMP 4	
Species	Family	Growth form	Status in Hong Kong	Height (cm)	%	Height (cm)	%
Bidens alba	ASTERACEAE	Herb	E			0.9	30
Commelina communis	COMMELINACEAE	Herb	Ν	0.2	10		
Leucaena leucocephala	MIMOSACEAE	Small Tree	E			4	20
Microstegium ciliatum	POACEAE	Perennial Procumbent Herb	Ν	1.2	10		
Pistia stratiotes	ARACEAE	Floating Aquatic Herb	N	0.1	10		
Polygonum chinensis	POLYGONACEAE	Herb	N	0.8	5		
Polygonum lapathifolium	POLYGONACEAE	Herb	N	0.9	10		
Rhaphiolepis salicifolia	ROSACEAE	Shrub or Small Tree	N	1.2	10		
Spirodela polyrrhiza	LEMNACEAE	Floating Small Herb	Ν			n/a	5
Wedelia chinensis	ASTERACEAE	Perennial Herb	Ν	n/a	10		
Bare	n/a	n/a	n/a	n/a	35	n/a	45

Table 1. List of riparian vegetation and coverage (%) recorded from two stream sampling points under Contract 2 (i.e. SEMP 3 & 4).

*Key:

E = Exotic

N = Native

n/a = not available

Table 2. List of vegetation recorded from works area under Contracts 2 and 100 m buffer area in the impact monitoring survey conducted in Nov 2013. Vegetation species presents in the identified location was indicated by "V".

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
Stream	Chrysalidocarpus lutescens	ARECACEAE	Shrub Palm	Е	V	V
	Melia azedarach	MELIACEAE	Tree	Е	V	V
	Murraya paniculata	RUTACEAE	Small Tree	Е	V	V
	Lantana camara	VERBENACEAE	Shrub	Е	V	V
	Ficus hispida	MORACEAE	Tree	Ν	V	V
	Ficus virens	MORACEAE	Tree	Ν	V	V
	Chrysopogon aciculatus	POACEAE	Perennial Herb	Ν	V	V
	Microstegium ciliatum	POACEAE	Perennial Procumbent Herb	Ν	V	V
	Mucuna birdwoodiana	FABACEAE (PAPILIONACEAE)	Climber: Vine	Ν	V	V
	Pistia stratiotes	ARACEAE	Floating Aquatic Herb	N	V	V
	Cyperus flabelliformis	CYPERACEAE	Herb	Е	V	V
	Acanthopanax gracilistylus	ARALIACEAE	Shrub	Е	V	V
	Ficus triangularis	MORACEAE	Tree	Е	V	V
	Spirodela polyrrhiza	LEMNACEAE	Floating Small Herb	Ν	V	V
	Glochidion zeylanicum	EUPHORBIACEAE	Shrub or Small Tree	N	V	V
	Sterculia lanceolata	STERCULIACEAE	Semi-deciduous	Ν	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
			Tree			
	Albizia lebbeck	MIMOSACEAE	Tree	Е		V
	Arundinella nepalensis	POACEAE	Perennial Herb	Ν		V
	Bidens alba	ASTERACEAE	Herb	Е		V
	Clerodendrum inerme	VERBENACEAE	Shrub	Ν		V
	Coculus orbiculatus	MENISPERMACEAE	Climber: Vine	Ν		V
	Hibiscus tiliaceus	MALVACEAE	Tree or Shrub	Ν		V
	Leucaena leucocephala	MIMOSACEAE	Small Tree	Е		V
	Manilkara zapota	SAPOTACEAE	Tree	Е		V
	Sapium discolor	EUPHORBIACEAE	Tree	Ν		V
Developed area	Pericampylus glaucus	MENISPERMACEAE	Woody Vine	Ν	V	V
	Ficus variegata var. chlorocarpa	MORACEAE	Tree or Shrub	Ν	V	V
	Citrus reticulata Blanco	RUTACEAE	Small Tree	Е	V	V
	Salvia japonica	LAMIACEAE (LABIATAE)	Herb	N	V	V
	Morus alba	MORACEAE	Tree or Shrub	N	V	V
	Emilia sonchifolia	ASTERACEAE	Herb	N	V	V
	Clausena lansium	RUTACEAE	Small Tree	Е	V	V
	Pyrostegia venusta	BIGNONIACEAE	Climber: Vine	Е	V	V
	Psidium guajava	MYRTACEAE	Tree	Е	V	V
	Catharanthus roseus	APOCYNACEAE	Subshrub	N	V	V
	Archontophoenix alexandrae	ARECACEAE	Tree Palm	Е	V	V
	Desmodium heterocarpon	FABACEAE (PAPILIONACEAE)	Shrub	N	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Rhinacanthus nasutus	ACANTHACEAE	Herb	Е	V	V
	Acacia confusa	MIMOSACEAE	Tree	Е		V
	Artocarpus macrocarpon	MORACEAE	Tree	Е		V
	Averrhoa carambola	OXALIDACEAE	Small Tree	Е		V
	Bauhinia blakeana	CAESALPINIACEAE	Tree or Shrub	Ν		V
	Bauhinia variegata	CAESALPINIACEAE	Tree	Е		V
	Bridelia tomentosa	EUPHORBIACEAE	Shrub or Small Tree	Ν		V
	Calliandra haematocephala	MIMOSACEAE	Shrub	Е		V
	Caryota ochlandra	ARECACEAE	Tree palm	Е		V
	Cassia spectabilis	CAESALPINIACEAE	Small Tree	Е		V
	Casuarina equisetifolia	CASUARINACEAE	Tree	Е		V
	Citrus grandis	CASUARINACEAE	Tree	Е		V
	Cordyline fruticosa	AGAVACEAE	Shrub	Е		V
	Cynodon dactylon	POACEAE	Perennial Herb	Ν		V
	Dracaena draco	AGAVACEAE	Tree	E		V
	Elaeocapus haminanensis	ELAEOCARPACEAE	Small Tree	Е		V
	Eleusine indica	POACEAE	Herb	Ν		V
	Eriobotrya japonica	ROSACEAE	Small Tree	E		V
	Ficus benjamina	MORACEAE	Tree	E		V
	Ficus elastica	MORACEAE	Tree	Е		V
	Ficus simplicissima	MORACEAE	Shrub	Ν		V
	Hibiscus rosa-sinensis	MALVACEAE	Shrub	Е		V
	Lantana camara	VERBENACEAE	Shrub	Е		V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Litchi chinensis	SAPINDACEAE	Tree	Е		V
	Lumnitzera racemosa	COMBRETACEAE	Shrub or Small Tree	Ν		V
	Lygodium japonicum	LYGODIACEAE	Climbing Herb	Ν		V
	Melaleuca quinquenervia	MYRTACEAE	Tree	E		V
	Oxalis corniculata	OXALIDACEAE	Perennial Herb	Ν		V
	Phoenix roebelenii	ARECACEAE	Small Tree Palm	E		V
	Polygonum hydropiper	POLYGONACEAE	Herb	Ν		V
	Psychotria serpens	RUBIACEAE	Climber: Vine	Ν		
	Pterocypsela indica	ASTERACEAE	Herb	Ν		V
	Rhapis excelsa	ARECACEAE	Shrub Palm	N		V
	Sansevieria trifasciata	AGAVACEAE	Perennial Herb	Е		V
	Schefflera actinophylla	ARALIACEAE	Climbing Shrub	Е		V
	Schefflera heptaphylla	ARALIACEAE	Tree	N		V
	Sesbania cannabina	FABACEAE	Herb	Е		V
	Terminalia catappa	COMBRETACEAE	Large Tree	E		V
	Thuja orientalis	CUPRESSACEAE	Tree	Е		V
	Tradescantia spathacea	COMMELINACEAE	Herb	Е		V
	Youngia japonica	ASTERACEAE	Herb	Ν		V
	Phragmites karka	POACEAE	Perennial Herb	Ν	V	
	Coix lacryma-jobi	POACEAE	Herb	Ν	V	
	Apluda mutica	POACEAE	Perennial Herb	Ν	V	
	Glochidion puberum	EUPHORBIACEAE	Shrub	Ν	V	
	Acanthus ilicifolius	ACANTHACEAE	Shrub	N	V	V
	Acrostichum aureum	ACROSTICHACEAE	Herb	N	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Aegiceras corniculatum	MYRSINACEAE	Shrub	N	V	V
	Alocasia odora	ARACEAE	Perennial Herb	Ν	V	V
	Avicennia marina	VERBENACEAE	Shrub	Ν	V	V
	Digitaria ciliaris	POACEAE	Herb	N	V	V
	Panicum repens L.	POACEAE	Perennial Herb	N	V	V
	Pennisetum alopecuroides	POACEAE	Perennial Herb	Ν	V	V
	Phragmites anstralis	POACEAE	Perennial Herb	Ν	V	V
	Plantago major	PLANTAGINACEAE	Perennial herb	Ν	V	V
	Solanum nigrum	SOLANACEAE	Herb	Ν	V	V
Plantation	Bischofia javanica	EUPHORBIACEAE	Tree	Ν	V	V
	Scolopia chinensis	FLACOURTIACEAE	Tree or Large Shrub	Ν	V	V
	Piper hancei	PIPERACEAE	Climber: Vine	N	V	V
	Dimocarpus longan	SAPINDACEAE	Tree	Е	V	V
	Paederia scandens	RUBIACEAE	Climber: Vine	Ν	V	V
	Cleistocalyx operculatus	MYRTACEAE	Tree	Ν	V	V
	Antidesma bunius	EUPHORBIACEAE	Tree	N	V	V
	Litsea monopetala	LAURACEAE	Small Tree	N	V	V
	Microcos paniculata	TILIACEAE	Shrub or Small Tree	Ν	V	V
	Maesa perlarius	MYRSINACEAE	Shrub	N	V	V
	Boehmeria nivea (L.) Gaudich.	URTICACEAE	Subshrub or shrub	E	V	V
	Mallotus apelta	EUPHORBIACEAE	Shrub or Small Tree	N	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Sapindus saponaria	SAPINDACEAE	Tree	Ν	V	V
	Aporusa dioica	EUPHORBIACEAE	Tree	Ν	V	V
	Wedelia chinensis	ASTERACEAE	Perennial Herb	Ν	V	V
	Carica papaya	CARICACEAE	Tree	Е	V	V
	Rubus reflexus	ROSACEAE	Climbing Shrub	Ν	V	V
	Brassica rapa	BRASSICACEAE (CRUCIFERAE)	Biennial Herb	E	V	V
	Mucuna championii Benth.	FABACEAE	Climbing Vine	Ν		V
	Pinus massoniana	PINACEAE	Tree	Ν	V	V
Cultivated land	Coriandrum sativum	APIACEAE (UMBELLIFERAE)	Herb	E	V	V
	Allium fistulosum	LILIACEAE	Herb	Е	V	V
	Lactuca sativa	ASTERACEAE	Herb	Е	V	V
	Musa x paradisiaca L.	MUSACEAE	Perennial Herb	Е	V	V
	Lycopersicon esculentum	SOLANACEAE	Herb	E	V	V
	Chrysanthemum coronarium	ASTERACEAE	Herb	E	V	V
	Myosoton aquaticum	CARYOPHYLLACEAE	Herb	Ν	V	V
	Drymaria diandra	CARYOPHYLLACEAE	Herb	Ν	V	V
	Eupatorium odoratum	ASTERACEAE	Perennial Herb	E	V	V
	Conyza canadensis	ASTERACEAE	Herb	E	V	V
	Polygonum chinensis	POLYGONACEAE	Herb	Ν	V	V
	Pueraria lobata	FABACEAE	Climber: Vine	Ν	V	V
	Panicum maximum	POACEAE	Perennial Herb	Е	V	V
	Pteridium aquilinum	PTERIDIACEAE	Herb	Ν	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Polygonum lapathifolium	POLYGONACEAE	Herb	Ν	V	V
	Colocasia esculenta	ARACEAE	Herb	Ν	V	V
	Cuscuta chinensis	CUSCUTACEAE	Parasitic Herb	Ν	V	V
	Panicum trypheron	POACEAE	Perennial Herb	Е	V	V
Secondary woodland	Mallotus paniculatus	EUPHORBIACEAE	Tree or Shrub	Ν	V	V
	Litsea glutinosa	LAURACEAE	Tree	Ν	V	V
	Trifolium repens	FABACEAE (PAPILIONACEAE)	Herb	Е	V	V
	Hedyotis hedyotidea	RUBIACEAE	Scandent Shrub	Ν	V	V
	Solanum torvum	SOLANACEAE	Shrub	Е	V	V
	Uvaria macrophylla	ANNONACEAE	Climbing Shrub	Ν	V	V
	Psychotria asiatica	RUBIACEAE	Tree or Shrub	Ν	V	V
	Glochidion eriocarpum	EUPHORBIACEAE	Shrub	Ν	V	V
	Ardisia quinquegona	MYRSINACEAE	Shrub	Ν	V	V
	Pteris semipinnata	PTERIDACEAE	Herb	Ν	V	V
	Melastoma sanguineum	MELASTOMATACEAE	Shrub	Ν	V	V
	Lasianthus chinensis	RUBIACEAE	Shrub	Ν	V	V
	Cinnamomum camphora	LAURACEAE	Large Tree	Ν	V	V
	Rhus hypoleuca	ANACARDIACEAE	Shrub or Small Tree	N	V	V
	Syzygium jambos (L.) Alston	MYRTACEAE	Tree	Е	V	V
	Canthium dicoccum	RUBIACEAE	Tree or Shrub	Ν	V	V
	Stephania longa	MENISPERMACEAE	Climber: Vine	Ν	V	V
	Aquilaria sinensis	THYMELAEACEAE	Tree	N (Cap. 586)		V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Bridelia insulana	EUPHORBIACEAE	Shrub	N	V	V
	Disporum cantoniense	LILIACEAE	Herb	Е	V	V
	Litsea cubeba	LAURACEAE	Shrub to Small Tree	Ν	V	V
	Cibotium barometz	DICKSONIACEAE	Large Herb	N (Cap. 586)		V
	Sapium discolor	EUPHORBIACEAE	Tree	Ν	V	V
	Melastoma candidum	MELASTOMATACEAE	Shrub	N	V	V
	Dicranopteris pedata	GLEICHENIACEAE	Herb	N	V	V
	Cratoxylum cochinchinense	CLUSIACEAE	Tree or Shrub	Ν	V	V
	Desmos chinensis	ANNONACEAE	Shrub	N	V	V
	Acronychia pedunculata	RUTACEAE	Tree	Ν	V	V
	Selaginella uncinata	SELAGINELLACEAE	Herb	N	V	V
	Rhus succedanea	ANACARDIACEAE	Shrub or Small Tree	Ν	V	V
	Millettia reticulata	FABACEAE (PAPILIONACEAE)	Climber: Vine	N	V	V
	Embelia ribes	MYRSINACEAE	Climber: Vine	N	V	V
	Pavetta hongkongensis	RUBIACEAE	Tree or Shrub	N (Cap. 96)		V
	Mangifera indica	ANACARDIACEAE	Tree	Е	V	V
	Cinnamomum burmannii	LAURACEAE	Tree or Large Shrub	N	V	V
	Ficus microcarpa	MORACEAE	Tree	N	V	V
	Byttneria aspera	STERCULIACEAE	Woody Vine	N	V	V
	Equisetum debile	EQUISETACEAE	Herb	N	V	V
	Bambusa sp.	POACEAE	Clumped Tree	/	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
			Bamboo			
	Rourea microphylla	CONNARACEAE	Climbing Shrub	Ν	V	V
	Pennisetum alopecuroides	POACEAE	Perennial Herb	Ν	V	V
	Ipomea cairica	CONVOLVULACEAE	Climber: Twining Herb	Е	V	V
	Mikania micrantha	ASTERACEAE	Climbing Herb	Е	V	V
Wooded area	Celtis sinensis	ULMACEAE	Tree	Ν		V
	Ligustrum sinensis	OLEACEAE	Tree or Shrub	Ν		V
	Macaranga tanarius	EUPHORBIACEAE	Tree	Ν		V
	Pandanus tectorius	PANDANACEAE	Shrub or Small Tree	Ν		V
	Excoecaria agallocha	EUPHORBIACEAE	Tree	Ν		V
	Kandelia obovata	RHIZOPHORACEAE	Shrub or Small Tree	Ν		V
	Thespesia populnea	MALVACEAE	Tree or Shrub	Ν		V
	Zoysia sinica	POACEAE	Perennial Herb	Ν		V
Marsh	Acanthus ilicifolius	ACANTHACEAE	Shrub	Ν		V
	Acrostichum aureum	ACROSTICHACEAE	Herb	Ν		V
	Aegiceras corniculatum	MYRSINACEAE	Shrub	Ν		V
	Alocasia odora	ARACEAE	Perennial Herb	Ν		V
	Avicennia marina	VERBENACEAE	Shrub	Ν		V
	Digitaria ciliaris	POACEAE	Herb	Ν		V
	Ficus hispida	MORACEAE	Tree	Ν		V
	Hibiscus tiliaceus	MALVACEAE	Tree or Shrub	Ν		V
	Ipomea cairica	CONVOLVULACEAE	Climber: Twining Herb	E		V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Kandelia obovata	RHIZOPHORACEAE	Shrub or Small Tree	Ν		V
	Macaranga tanarius	EUPHORBIACEAE	Tree	Ν		V
	Mikania micrantha	ASTERACEAE	Climbing Herb	Е		V
	Panicum repens L.	POACEAE	Perennial Herb	N		V
	Pennisetum alopecuroides	POACEAE	Perennial Herb	Ν		V
	Phragmites anstralis	POACEAE	Perennial Herb	Ν		V
	Plantago major	PLANTAGINACEAE	Perennial herb	Ν		V
	Polygonum lapathifolium	POLYGONACEAE	Herb	Ν		V
	Pueraria lobata	FABACEAE	Climber: Vine	N		V
	Schefflera heptaphylla	ARALIACEAE	Tree	Ν		V
	Solanum nigrum	SOLANACEAE	Herb	Ν		V
	Solanum torvum	SOLANACEAE	Shrub	Е		V

*Key: E = Exotic

N = Native

Table 3. List of avifauna species and maximum counts recorded from the impact monitoring survey in Nov 2013 at work area under Contracts 2 and 100 m buffer area.

Species	Common name	Habitat	Conservation status in Hong Kong	Work area: Contract 2	100m buffer area
Copsychus saularis	Oriental Magpie Robin				2
Passer montanus	Eurasian Tree Sparrow				2
Garrulax perspicillatus	Masked Laughing thrush				2
Motacilla alba	White Wagtail				1
Orthotomus sutorius	Common Tailorbird				1
Prinia flaviventris	Yellow-bellied Prinia			1	1
Pycnonotus jocosus	Red-whiskered Bulbul				1
Pycnonotus sinensis	Chinese Bulbul				2
Stachyris ruficeps	Rufous-capped Babbler		LC		1
Streptopelia chinensis	Spotted Dove				2
Zosterops japonicus	Japanese White-eye				3
Total number of species:				1	11

*Key :

W = Wetland dependent species ; RC = Regional Concern ; LC = Local Concern

Table 4. Relative abundance of aquatic species recorded in Wai Ha River within the 100 m buffer of works boundary under Contracts 2 in the impact monitoring survey during Nov 2013.

Species	Common name	¹ Life-cycle characteristics	² Origin	SEMP 3	SEMP 4
Carassius auratus	Goldfish	F	Ι	++	+
Cirrhinus molitorella	Mud carp	F	Ι	++	+
Cyprinus carpio	Common Carp	F	Ι	+	+
Gambusia affinis	Mosquito Fish	F	Ι	++	+
Oreochromis niloticus	Nile Tilapa	F	Ι	+	
Parazacco spilurus	Predaceaous Chub	F	Ν	+	
Poecilia reticulata	Guppy	F	Ι	+	+
Puntius semifasciolatus	Chinese Barb	F	Ν	+	
Rhinogobius duospilus	Goby	F	N	+	+
Xiphophorus hellerii	Swordtail	F	Ι	+	+
Uca arcuata	Fiddler Crab	М	N	+	
Pomacea lineata	Apple snail	F	Ι	+	
Gerris sp.	Water Strider	F	/	+	
Total number of species:	13			13	7

Key:

Relative abundance:

+ : Species exists in the survey area

++ : Species common in the survey area

+++ : Species abundant in the survey area

¹ Life-cycle characteristics:

M = Marine vagrant

F = Freshwater species

²Origin:

N = Native

I = Introduced; / = not available