

PROJECT NO.: TCS/00553/11

CONTRACT NO. DC/2010/02 – DRAINAGE IMPROVEMENT IN SHUEN WAN AND SHEK WU WAI

PREPARED FOR Kwan Lee-Kuly Joint Venture

Quality Index			
Date	Reference No.	Prepared By	Certified by
18 June 2014	TCS00553/11/600/R0351v1	Ben Tam (Environmental Consultant)	T.W. Tam (Environmental Team Leader)

Ver.	Date	Description
1	18 June 2014	First submission

This report has been prepared by Action-United Environmental Services & Consulting with all reasonable skill, care and diligence within the terms of the Agreement with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

27 June 2014

Ref.: DSDSHUWNEM00_0_0650L.14

By Fax (2827 8700) and Post

Drainage Services Department Drainage Projects Division 44 & 45/F., Revenue Tower 5 Gloucester Road, Wan Chai, Hong Kong

Attention: Mr. H.K.Chan and Mr. So Chi Ho

Dear Sirs,

Re: Agreement No. DP 01/2010 Services as Independent Environmental Checker for the Drainage Improvement Works in Sha Tin and Tai Po under Contract No. DC/2010/02 Monthly Environmental Monitoring and Audit Report for May 2014

Reference is made to Environment Team's submission of the Monthly Environmental Monitoring and Audit Report for May 2014 by Email on 19 June 2014 (entitled "DC/2010/22 - Monthly Impact EM&A Report (Contract 2) No.35 - May 2014").

Please be informed that we have no comment on the captioned revised report. We write to verify the captioned submission in accordance with Condition 5.4 of EP-303/2008.

Thank you very much for your kind attention and please do not hesitate to contact Mr. Max Lee (5181 - 5165) or the undersigned should you have any queries.

Yours sincerely,

Tony Cheng Independent Environmental Checker

c.c.	AUES
	Kwan Lee-Kuly JV

Attn: Mr. T. W. Tam Attn: Mr. W. K. Chan By Fax: 2959 6079 By Fax: 2674 6688

 $\label{eq:projects} Q: Projects DSDSHUWNEM00 \ Corr Out \ DSDSHUWNEM00 \ 0.0650 \ L.14. doc$

EXECUTIVE SUMMARY

ES.01. This is the **35th** Monthly Environmental Monitoring and Audit (EM&A) Report for designated works of *DSD Contract No. DC/2010/02 - Drainage Improvement in Shuen Wan and Shek Wu Wai* (hereafter "Contract 2") under Environmental Permit No.EP-303/2008, covering a period from **1 to 31 May 2014** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Construction	$L_{eq (30min)}$ Daytime – M2, M3 & M4	12
Noise	$L_{eq (30 min)}$ Daytime – M1 & AL1	8
	Local Stream Water Sampling – W1, W3 and W4	13
Water Quality	Local Stream Water Sampling – W2	13
Water Quality	Hydrological characteristics measurement – H1 and H2	5
	Hydrological characteristics measurement – H3 and H4	5
Inspection /	Monthly Environmental Site Inspection and audit by IEC	1
Audit	Regular weekly Environmental inspection by the Contractor, ET and Site Representative Engineer	4
Ecological Bi- monthly Ecological Monitoring		1
Landscape & Visual	Bi-weekly Inspection by a registered Landscape Architect	2

- ES.03. In this Reporting Period, ecological monitoring in Area under Contract 2 was performed on 13 May 2014.
- ES.04. Landscape and visual inspection was carried on 12 and 30 May 2014 and the monthly Landscape & Visual Report (May 2014) has been signed by the registered Landscape Architect.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.05. No exceedance in construction noise monitoring is recorded in this Reporting Period. For water quality monitoring, a total of 82 Action/ Limit Level exceedances, namely 39 exceedances in dissolved oxygen, 35 exceedances in turbidity and 18 exceedances in SS were recorded in this Reporting Period. NOEs were issued to notify EPD, IEC, the Contractor and RE upon confirmation of the results. The statistics of environmental exceedance, NOE issued and investigation result are summarized in the following table.

Environmental	Monitoring	Action	Limit	Event & Action		
Issues	Parameters	Level	Linnt Level	NOE Issued	Investigation	Corrective Actions
Construction Noise	L _{eq(30min)} Daytime	0	0	0	N.A.	N.A.
	DO	39	0	39		
Water Quality	Turbidity	3	32	35	Not project related	N.A.
	SS	0	18	18		
Hydrological	Water Flow	0	0	0	N.A.	N.A.
Characteristics	Water Depth	0	0	0	N.A.	N.A.

Note: NOE – Notification of Exceedance

SITE INSPECTION

ES.06. Weekly environmental site inspections had been carried out by the Contractor, ET and the RE on 9, 16, 23 and 26 May 2014 Furthermore, joint site inspection with the IEC was carried out on 26 May 2014. In this Reporting Period, 2 observations were recorded but no non-compliance was noted during the site inspection.

ENVIRONMENTAL COMPLAINT

ES.07. No written or verbal complaint was recorded in this Reporting Period.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.08. No environmental summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.09. No report changes were made in this Reporting Period.

FUTURE KEY ISSUES

- ES.10. During wet season special attention should be paid on the muddy water and other water quality pollutants via site surface water runoff into the local stream Wah Ha River. As an effective water quality mitigation measure, the rock bund in the de-silting channel should be repaired regularly and ensure the de-silting performance.
- ES.11. Dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road would also be a key issue in coming months.
- ES.12. On the other hand, construction noise should be other key environmental issue during sheet-piling process. The noise mitigation measures should be necessary to implement in accordance with EM&A Manual stipulation. Dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road is also reminded.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	PROJECT BACKGROUND	1
	REPORT STRUCTURE	1
2.0	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION	2
	PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE	2
	CONSTRUCTION PROGRESS	2
	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	2
3.0	EM&A PROGRAM REQUIREMENT FOR THE CONTRACT 2	3
	MONITORING PARAMETERS	3
	MONITORING LOCATIONS	3
	Monitoring Frequency	4
	Monitoring Equipment	5
	MONITORING METHODOLOGY	6
	DATA MANAGEMENT AND DATA QA/QC CONTROL	8
	OTHERS MONITORING IMPLEMENTATION FOR THE CONTRACT	8
	DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	8
	EQUIPMENT CALIBRATION	9
	METEOROLOGICAL INFORMATION	9
4.0	IMPACT MONITORING RESULTS	10
	MONITORING RESULTS SHARING	10
	RESULTS OF CONSTRUCTION NOISE MONITORING	10
	RESULTS OF LOCAL STREAM WATER QUALITY MONITORING	10
	RESULTS OF HYDROLOGICAL CHARACTERISTICS MONITORING	12
	RESULTS OF ECOLOGICAL MONITORING	13
5.0	WASTE MANAGEMENT	14
	RECORDS OF WASTE QUANTITIES	14
6.0	SITE INSPECTION	15
	REGULAR SITE INSPECTION AND MONTHLY AUDIT	15
	LANDSCAPE AND VISUAL INSPECTION	15
7.0	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	16
	ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	16
8.0	IMPLEMENTATION STATUS OF MITIGATION MEASURES	17
9.0	IMPACT FORCAST	21
	CONSTRUCTION ACTIVITIES FOR THE FORTH-COMING MONTH	21
	KEY ISSUES FOR THE COMING MONTH	21
10.0	CONCLUSIONS AND RECOMMENTATIONS	22
	CONCLUSIONS	22
	RECOMMENDATIONS	22

LIST OF TABLES

- TABLE 2-1
 STATUS OF ENVIRONMENTAL LICENSES AND PERMITS
- TABLE 3-1
 SUMMARY OF MONITORING PARAMETERS
- TABLE 3-2
 DESIGNATED MONITORING LOCATIONS OF THE EM&A PROGRAMME
- TABLE 3-3
 MONITORING EQUIPMENT USED IN EM&A PROGRAM
- TABLE 3-4
 TESTING METHOD AND DETECTION LIMIT OF SUSPENDED SOLIDS
- TABLE 3-5
 ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
- TABLE 3-6
 ACTION AND LIMIT LEVELS FOR WATER QUALITY
- TABLE 3-7
 ACTION AND LIMIT LEVELS FOR HYDROLOGICAL CHARACTERISTICS
- TABLE 4-1SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS, dB(A)
- TABLE 4-2WATER QUALITY RESULTS SUMMARY FOR W1 & W2
- TABLE 4-3WATER QUALITY RESULTS SUMMARY FOR W3 & W4
- TABLE 4-4
 STATISTICS WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
- TABLE 4-5DETAILED MONITORING RESULTS OF HYDROLOGICAL CHARACTERISTICS AT H3 AND H4
- TABLE 4-6SUMMARIZED HYDROLOGICAL CHARACTERISTICS OF WATER DEPTH, M
- TABLE 4-7 Summarized Hydrological Characteristics of Average Volumetric flow rate $(Q), M^3/s$
- TABLE 5-1SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
- TABLE 5-2SUMMARY OF QUANTITIES OF C&D WASTES
- TABLE 6-1
 SITE INSPECTION OF OBSERVATIONS FINDINGS AND DEFICIENCIES
- TABLE 6-2LANDSCAPE & VISUAL INSPECTION OF OBSERVATIONS
- TABLE 7-1
 STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
- TABLE 7-2
 STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
- TABLE 7-3
 STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
- TABLE 8-1
 ENVIRONMENTAL MITIGATION MEASURES

LIST OF APPENDICES

- APPENDIX A SITE LOCATION PLAN OF DSD CONTRACT 1 AND CONTRACT 2 AT SHUEN WAN
- APPENDIX B ORGANIZATION CHART AND THE KEY CONTACT PERSON
- APPENDIX C MASTER CONSTRUCTION PROGRAMS
- APPENDIX D ENVIRONMENTAL MONITORING LOCATIONS
- APPENDIX E CALIBRATION CERTIFICATES OF THE MONITORING EQUIPMENT AND CERTIFICATE OF ALS TECHNICHEM (HK) PTY LTD
- APPENDIX F EVENT AND ACTION PLAN
- APPENDIX G MONITORING SCHEDULE IN REPORTING PERIOD AND COMING MONTH
- APPENDIX H METEOROLOGICAL DATA OF REPORTING PERIOD
- APPENDIX I DATA BASE OF MONITORING RESULT S
- APPENDIX J GRAPHICAL PLOTS OF IMPACT MONITORING –NOISE, WATER QUALITY AND HYDROLOGICAL CHARACTERISTICS
- APPENDIX K MONTHLY SUMMARY WASTE FLOW TABLE
- APPENDIX L MONTHLY LANDSCAPE & VISUAL INSPECTION REPORT
- APPENDIX M ECOLOGICAL MONITORING REPORT IN AREA UNDER CONTRACT 2

1.0 INTRODUCTION

PROJECT BACKGROUND

- 1.01 *Kwan Lee-Kuly Joint Venture* (hereinafter 'KLKJV') has been awarded by Drainage Services Department (hereinafter 'DSD') of the Contract No. DC/2010/02 - Drainage Improvement in Shuen Wan and Shek Wu Wai (hereinafter 'the Project'). The Project is scheduled to commence in May 2011 and complete in March 2014 for about 35 months.
- 1.02 The works to be executed under the Project are located in Shuen Wan and Shek Wu Wai. The works mainly comprise construction of about 735 metres long single-cell box culvert along Tung Tsz Road in Shuen Wan, Tai Po and construction of about 15 m long three-cell box culvert in Shek Wu Wai, San Tin .
- 1.03 For the Project, the construction work at Tung Tsz Road Shuen Wan (hereinafter 'the Contract 2') is part of the Drainage Improvement works amongst Shatin and Tai Po and it is defined as a "Designated Project" which controlled under Environmental Permit EP-303/2008. Currently, DSD has another Contract DC/2009/22 (hereinafter 'the Contract 1') ongoing for construction at Shuen Wan working area which under the same Environmental Permit and the updated Environmental Monitoring and Audit Manual (hereinafter 'the Updated EM&A Manual'). Both DSD contract's site boundary at Shuen Wan are shown in *Appendix A*. On the other hand, Shek Wu Wai San Tin is a non-designated project work and no environmental monitoring and audit is request to carry out.
- 1.04 In order to effectively implement the environmental protection measures stipulated in the Project Profile (hereinafter 'the PP'), Environmental Impact Assessment Report (hereinafter "the EIAR'), Environmental Permit EP303/2008, a corresponding EM&A Manual have been prepared to outline the environmental monitoring and auditing (hereinafter 'the EM&A') programme undertake for the Contracts 1 and 2.
- 1.05 KLKJV has commissioned Action-United Environmental Services and Consulting (AUES) as an independent environmental team (hereinafter 'the ET') to implement the EM&A program for the environmental protection of the Project. Due to the construction of Contracts 1 and 2 carry out is just about the time, a Proposal Environmental Monitoring Programme and Methodology (hereinafter the "PEMPM") was prepared and submitted to describe EM&A programme would be undertaken during construction period of the Contract 2.
- 1.06 The baseline monitoring of EM&A program has been performed by the Contract 1 ET. Although Action and Limit levels of environmental performance criteria have established by the Contract 1 ET, the Action/Limit levels re-establishment to use the Contract 2 was conducted by the Contract 2 ET. The re-established environment performance criteria has accepted by the IEC and also submitted to the EPD seek for endorsement.
- 1.07 This is the **35th** Monthly EM&A Report for Contract 2 presenting the monitoring results and inspection findings for the reporting period from **1 to 31 May 2014**.

REPORT STRUCTURE

1.08 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-.

SECTION 1	INTRODUCTION
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION
SECTION 3	EM&A PROGRAM REQUIREMENT FOR THE PROJECT
SECTION 4	IMPACT MONITORING RESULTS
SECTION 5	WASTE MANAGEMENT
SECTION 6	SITE INSPECTIONS
SECTION 7	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
SECTION 8	IMPLEMENTATION STATUES OF MITIGATION MEASURES
SECTION 9	IMPACT FORECAST
SECTION 10	CONCLUSIONS AND RECOMMENDATION

2.0 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS AND SUBMISSION

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The master construction programs are enclosed in *Appendix C* and the major construction activities undertaken at Tung Tsz Road, Shuen Wan in this Report Period are listed below:-
 - Backfilling of trench for Box Culvert Bay (1-7) near Tung Tsz Road.
 - Backfilling of trench for Box Culvert Bay (12-15) near Tung Tsz Road
 - Backfilling of trench for Box Culvert Bay (28-34) near Tung Tsz Road

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notified EPD on 17 October 2011
2	Chemical Waste Producer Registration (WPN5213-727-K2972-02)	Approved on 28 October 2011
3	Water Pollution Control Ordinance (Discharge License) WT00009528-2011	Valid to 31 July 2016
4	Billing Account for Disposal of Construction Waste (Account No.: 7012838)	Effective

Table 2-1Status of Environmental Licenses and Permits

- 2.04 The "Proposal Environmental Monitoring Programme and Methodology (R0006 Version 2)" was set out in accordance with the Updated Environmental Monitoring and Audit Manual. It was approved by the ER and agreed with the Independent Environmental Checker (IEC) and submitted to the EPD for endorsement.
- 2.05 For Contract 2 of the Project, no Baseline Monitoring Report was issued by the ETL. However, a new set of the Action/ Limit levels as used to Contract 2 were proposed by ET. It had been accepted by the IEC and also submitted to the EPD seek for endorsement.

3.0 EM&A PROGRAM REQUIREMENT FOR THE CONTRACT 2

3.01 The EM&A requirements set out in the PP, EIAR, Environmental Permit EP303/2008 (hereinafter 'the EP'), and the associated updated EM&A Manual, are presented below sub-section.

MONITORING PARAMETERS

3.02 According to the EIAR and the updated EM&A Manual, The monitoring parameters of each environmental aspect summarized in *Table 3-1* will be performed as under the Project.

Table 3-1	Summary of Monitoring Parameters
-----------	----------------------------------

Parameters		
• A-weighted equival	ent continuous sound pressure level (30min) (hereinafter	
'Leq(30min)' durin	g the normal working hours; and	
• A-weighted equival	lent continuous sound pressure level (5min) (hereinafter	
'Leq(5min)' for cor	nstruction work during the restricted hours.	
• In Situ	Temperature, Dissolved Oxygen, Dissolved Oxygen	
Measurement	Saturation, pH and Turbidity	
Laboratory	Suspended Solids (hereinafter 'SS')	
Analysis		
The water flow and depth measurement onsite		
Monitor and audit the proper implementation of mitigation measures stipulated		
in EIA report and the updated EM&A Manual		
Inspect and audit the implementation and maintenance of landscape and visual		
mitigation measures		
	 'Leq(30min)' durin A-weighted equivaling (Leq(5min)' for contract of the con	

Remarks: * the monitoring is carried out by IEC

MONITORING LOCATIONS

3.03 Monitoring locations have been proposed in the updated EM&A Manual. Graphic plot to show in *Appendix D* and summarized in *Table 3-2*.

 Table 3-2
 Designated Monitoring Locations of the EM&A Programme

Acmost				
Aspect	Location ID	Address		
	M1	14, Shuen Wan Chim Uk		
Construction	AL1	Joint Village Office for Villages in Shuen Wan, Tai PO		
Noise	M2	150, San Tau Kok		
NOISC	M3	, Wai Ha		
	M4	Block 15, Treasure Spot Garden		
		Between the Shuen Wan Marsh and ECA		
	^(#) W1	• Co-ordinates: E839301, N836386		
		• Existing River Bed Level: +1.75mPD).		
	W2	Between Tolo Harbour and Proposed Penstock		
		• Co-ordinates: E839542, N836184		
Watan Quality		• Exiting River Bed Level: +1.48mPD)		
Water Quality	^(*) W3	Upstream of Tung Tze Shan Road		
		• Co-ordinates: E838760, N836714		
		• Exiting River Bed Level: +5.08mPD)		
		Wai Ha Village 29D		
	W4	• Co-ordinates: E838865, N836621		
		• Exiting River Bed Level: +4.05mPD)		
	HI	Between the Shuen Wan Marsh and ECA		
Hudrological		• Coordinates: E839306, N836379)		
Hydrological		Route 10 Sam Kung Temple		
	H2	• Coordinates: E839163, N836433		

Aspect	Location ID	Address	
	H3	Upstream of Tung Tze Shan Road	
		• Coordinates: E838760, N836714	
	H4	Wai Ha Village 29D	
	П4	• Coordinates: E838865, N836621	
Ecology	Areas within 100m of the works boundary under Contract 2		
Landscape &	As within and adjacent to the construction sites and works areas under the Contract		
Visual	2,		

Remarks:

(#) Control Station of Contract 1, however impact station of Contract 2 ^(*) Control Station of Contract 2

MONITORING FREQUENCY

3.04 The monitoring frequency and duration as specified in the updated EM&A Manual are summarized below.

Construction Noise

Once a week during 0700-1900 on normal weekdays for Leq(30min) Frequency:

> If the construction work is undertake at restricted hour, the monitoring frequency of construction noise will be conducted in accordance with the related Construction Noise Permit requirement issued by EPD as follow

- 3 consecutive $L_{eq(5min)}$ at restrict hour from 1700 2300;
- 3 consecutive $L_{eq(5min)}$ for restrict hour from 2300 0700 next day;
- 3 consecutive $L_{eq(5min)}$ for Sunday or public holiday from 0700 1900;
- Throughout the construction period when the major construction activities are Duration: undertaken

Water Quality

- Frequency: Three times a week. The interval between 2 sets monitoring are not less than 36 hours
- Duration: During the construction phase of Contract 2 to undertake (in accordance with the Updated EM&A Manual Section 4.27).

Hydrological Characteristics

Frequency: Once per week at mid-flood and mid-ebb tides

Duration: During the construction phase of Contract 2 to undertake; and one year after the construction is complete as operation phase monitoring (in accordance with the Updated EM&A Manual Section 4.32).

Ecology

3.05 In according with Section 6.17 of the Updated EM&A Manual, ecological monitoring should be conducted by the Independent Environmental Checker (hereinafter 'IEC'). Monitoring programme details should be agreed with the Agriculture, Fisheries and Conservation Department (AFCD). Moreover, the IEC should submit reports on the findings of each monitoring trip, and a final report summarizing the monitoring results over the entire monitoring period to AFCD and Environmental Protection Department (EPD). Hence, no monitoring or surveying should be carried out by ET of the Project.

Landscape & Visual

3.06 According to Section 7.4 of the Updated EM&A Manual, site inspection bi-weekly should be performed to check the implementation and maintenance of landscape and visual mitigation measures whether to full realize.

MONITORING EQUIPMENT

<u>Noise Monitoring</u>

3.07 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for noise monitoring. The sound level meter shall be checked with an acoustic calibrator. The wind speed shall be check with a portable wind speed meter, which capable to measure wind speed in m/s.

Water Quality Monitoring

- 3.08 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring DO level in the range of 0 20mg L-1 and 0 200% saturation; and temperature of 0 45 degree Celsius.
- 3.09 **pH Meter** The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in arrange of 0 to 14.
- 3.10 **Turbidity (NTU) Measuring Equipment** The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.11 **Water Sampling Equipment** A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.12 **Water Depth Detector** A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. The unit can either be hand held or affixed to the bottom of the work boat.
- 3.13 **Sample Containers and Storage** Water samples for SS should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.14 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

Hydrological Characteristics

- 3.15 **Water Depth Detector** A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station.
- 3.16 **Stream water flow Equipment** –A portable, battery-operated flow meter should be used for the determination of water flow rate at each designated monitoring location and record in m^3/s .
- 3.17 The monitoring equipment using for the Project's EM&A program were proposed by the ET and verified by the IEC prior commencement of the monitoring. Details of the equipment used for impact monitoring are listed in *Table 3-3*.

Table 3-3Monitoring Equipment Used in EM&A Program

Equipment	Model
Construction Noise	
Integrating Sound Level Meter	B&K Type 2238
Calibrator	B&K Type 4231
Portable Wind Speed Indicator	Testo Anemometer
Water quality	
Water Depth Detector	Eagle Sonar
Water Sampler	A transparent PVC cylinder / bucket

Equipment	Model
Thermometer & DO meter	YSI DO Meter 550A or YSI Professional Plus or YSI Sonde6820 / 650MDS
pH meter	YSI pH10N or YSI Professional Plus or YSI Sonde 6820 / 650MDS
Turbidimeter	Hach 2100Q or YSI Sonde 6820 / 650MDS
Sample Container	High density polythene bottles (provided by laboratory)
Storage Container	'Willow' 33-litre plastic cool box
Suspended Solids	HOKLAS-accredited laboratory (ALS Technichem (HK) Pty Ltd)
Hydrological Characteristics	
Water flow meter	GLOBAL WATER model FP211
Water Depth Detector	Eagle Sonar or an appropriate steel ruler or rope with appropriate weight

MONITORING METHODOLOGY

Noise Monitoring

- 3.18 Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels (dB). Supplementary statistical results (L_{10} and L_{90}) were also obtained for reference.
- 3.19 Sound level meter as listed in *Table 3-3* are complied with the *International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1)* specifications, as recommended in Technical Memorandum (TM) issued under the *Noise Control Ordinance (NCO)*.
- 3.20 During the monitoring, all noise measurements were performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). Leq_(30min) in six consecutive Leq_(5min) measurements were used as the monitoring parameter for the time period between 0700-1900 hours on weekdays; and also Leq_(15min) in three consecutive Leq_(5min) measurements is used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.21 During the course of measurement, the sound level meter is mounted on a tripod with a height of 1.2m above ground and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield is fitted for all measurements. The assessment point is normally set as free-field situation for the measurement.
- 3.22 Prior to noise measurement, the accuracy of the sound level meter is checked by an acoustic calibrator which generated a known sound pressure level at a known frequency. The checking was performed before and after the noise measurement.

Water Quality

- 3.23 Water quality monitoring are conducted at the depth below:-
 - Three depths: 1m below water surface, 1m above river bed and at mid-depth when the water depth exceeds 6m, or
 - If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above river bed, and or
 - If the water depth is less than 3m, 1 sample at mid-depth is taken
- 3.24 Water depths are determined prior to measurement and sampling, using a portable battery operated depth detector, brand named 'Eagle Sonar', if the depths exceed 1.5 meter. If the depth between 1.5 meter and 1 meter, plastic tape measurement tied with appropriate weight are used the depth estimation. For the depth well below 1 meter, an appropriate steel ruler or rope with appropriate weight are used for the depth measurement.

- 3.25 A transparent PVC cylinder, with a capacity of not less than 2 litres, is used for water sampling. The water sampler is lowered into the water body at a predetermined depth. The trigger system of the sampler is activated with a messenger and opening ends of the sampler are closed accordingly then the sample of water is collected. If the water depth is less than 500mm, a water bucket is be used as a water sampler to minimize the possibility of the latching system disturbing sediment during water sampling
- 3.26 A portable YSI DO Meter 550A or YSI Professional Plus is used for in-situ DO measurement. The DO meter is capable of measuring DO in the range of 0 20 mg/L and 0 200 % saturation and checked against water saturated ambient air on each monitoring day prior to monitoring. Although the DO Meter automatically compensates ambient water temperature to a standard temperature of 20° C for ease of comparison of the data under the changing reality, the temperature readings of the DO Meter are be recorded in the field data sheets. The equipment calibration is performed on quarterly basis.
- 3.27 A portable YSI pH10N Meter or or YSI Professional Plus is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1. Standard buffer solutions of pH 7 and pH 10 are used for calibration of the instrument before and after measurement. The equipment calibration is performed on quarterly basis.
- 3.28 A portable Hach 2100Q Turbidity Meter is be used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU. The equipment calibration is performed on quarterly basis.
- 3.29 Water samples are contained in screw-cap PE (Poly-Ethylene) bottles, which are provided and pretreated and 'PE' (Poly-Ethylene) sampling bottles provided and pre-treated according to corresponding analytical requirements. Where appropriate, the sampling bottles are rinsed with the water to be contained. Water sample is then transferred from the sampler to the sample bottles.
- 3.30 One liter or 500 mL water sample are collected from each depth for SS determination. The collected samples are stored in a cool box maintained at 4° C and delivered to laboratory upon completion of the sampling by end of each sampling day.
- 3.31 All water samples are analyzed with Suspended Solids (SS) as specified in the updated *EM&A Manual* by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS are determined by the laboratory upon receipt of the water samples using HOKLAS accredited analytical method. The detection limits and testing method are shown below in *Table 3-4*. The certificate of ALS Technichem (HK) Pty Ltd is provided in *Appendix E*.

Table 3-4	Testing Method and Detection limit of Suspended Solids

Determinant	Testing Method	Detection Limit
Suspended solid	Determination use HOKLAS accredited analytical methods namely ALS Method EA-025 (based on APHA 2540 D)	2mg/L

Hydrological Characteristics

_

- 3.32 A portable, water flow meter, brand named "*GLOBAL WATER model FP211*" are used to determine the water current flow at the designated monitoring stations. A water flow velocity is measured at mid depth of current water body or 0.5m below water level.
- 3.33 Water depths are determined prior to measurement, using a portable battery operated depth detector, brand named 'Eagle Sonar', if the depths exceed 1.5 meter. If the depth between 1.5 meter and 1 meter, plastic tape measurement tied with appropriate weight are used the depth estimation. For the depths well below 1 meter, an appropriate steel ruler or rope with appropriate weight are used for the depth measurement.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.34 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring program.
- 3.35 The monitoring data recorded in the equipment e.g. noise meter and Multi-parameter Water Quality Monitoring System are downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

OTHERS MONITORING IMPLEMENTATION FOR THE CONTRACT

<u>Ecology</u>

3.36 Ecological monitoring and reporting should be performed by IEC. No equipment and procedure are presented in the EM&A Monthly Report.

Landscape and Visual

3.37 A registered Landscape Architect as member of the ET is employed by the Contractor to undertake site inspection. Site inspection will undertake at least once every two weeks throughout the construction period to ensure compliance with the intended aims of the mitigation measures are proposed in the EIA and the updated EM&A Manual, implemented by the Contractor.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.38 The re-established performance criteria for construction noise, water quality and hydrological, namely Action and Limit levels is used for Contract 2 are listed in *Tables 3-5, 3-6,* and *3-7*.

Table 3-5	Action and Limit Levels for	Construction Noise
Table 3-5	Action and Linne Devels for	

Location	Time Period	Action Level in dB(A)	Limit Level in dB(A)
	Daytime 0700 – 1900 hrs on normal weekdays	When one	75* dB(A)
M1, AL1, M2, M3, M4	1900 – 2300 on all days and 0700 – 2300 on general holidays (including Sundays	documented complaint is	60/65/70 dB(A)**
	2300 – 0700 on all days	received	45/50/55 dB(A)**

Note: * *Reduces to 70dB(A) for schools and 65dB(A) during the school examination periods.*

** To be selected based on the Area Sensitivity Rating of A/B/C, and the conditions of the applicable CNP(s) must be followed

Table 3-6Action and Limit Levels for Water Quality

Parameter	Performance	Ι	mpact Statio	n
rarameter	Criteria	W1	W2	W4
DO Concentration (mg/L)	Action Level	7.27	7.26	9.27
DO Concentration (mg/L)	Limit Level	4.00	4.00	4.00
all	Action Level	NA	NA	NA
рН	Limit Level	6 - 9	6 - 9	6 - 9
Track ditta (NITU)	Action Level	4.77	2.46	3.32
Turbidity (NTU)	Limit Level	5.26	3.42	4.52
Sugnanded Solids (mg/L)	Action Level	9.73	8.89	6.98
Suspended Solids (mg/L)	Limit Level	10.77	9.75	7.66

Notes:

- The proposed Action/Limit Levels of DO are established to be used 5%-ile/1%-ile of all the baseline data;
- The proposed Action/Limit Levels of Turbidity and SS are established to be used 95%-ile/99%-ile of all the baseline data;
- For DO, non-compliance of the water quality limits occur is when monitoring result lower than the action/limit levels;
- For turbidity and SS, non-compliance of the water quality limits occurs is when monitoring result higher than the limits; and
- For pH, non-compliance of the quality limit occur is when monitoring result lower than 6 and higher than 9; and
- All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered necessary

 Table 3-7
 Action and Limit Levels for Hydrological Characteristics

Parameter	Acceptance	Monitorin	g Station		
Parameter	Criteria	H1	H2		
Water Depth	Action Level	0.08 (80% of baseline water depth)	0.40 (80% of baseline water depth)		
(m)	Limit Level	0.06 (60% of baseline water depth)	0.30 (60% of baseline water depth)		
Volumetric	Action Level	120% of control station's water flow rate on the same day of measurement			
Flow Rate (Q), m ³ /s	Limit Level	140% of control station's water flow rate on the same day of measurement	140% of control station's water flow rate on the same day of measurement		

- 3.39 The locations H3 and H4 are a reference measurement point in order to monitor any changes in the hydrological characteristics of Wai Ha River arising from the work Contract 2 to affect the Shuen Wan Marsh.
- 3.40 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

EQUIPMENT CALIBRATION

- 3.41 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme in yearly basis.
- 3.42 All the water quality monitoring equipment such as the DO, pH and Turbidity meters are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.43 A portable, water flow meter, brand named "GLOBAL WATER model FP211" is calibrated in yearly basis.
- 3.44 All updated calibration certificates of the monitoring equipment used for the impact monitoring program in this Reporting Period are attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.45 The meteorological information during the construction phase is obtained from Tai Po and Shatin Stations of the Hong Kong Observatory (HKO). The meteorological data during the impact monitoring days are summarized in *Appendix H*

4.0 IMPACT MONITORING RESULTS

4.01 The monitoring schedule had been issued to relevant parties before each Reporting Period which presented in *Appendix G*. The works undertaken during the Reporting Period are illustrated in *Appendix C*. The monitoring results are presented in the following sub-sections.

MONITORING RESULTS SHARING

4.02 Environmental Permit EP-203/2008 was issued on 25 February 2008 by EPD which adopted for both Contracts 1 and 2 of DSD construction at Shuen Wan. Also, the EM&A programme of both contracts are undertaken in accordance with the same updated EM&A Manual which has to be carried out during construction period. According to the updated EM&A manual, designated monitoring Locations M1 and AL1 for noise monitoring stations, Locations W1 and W2 for water quality monitoring stations, and Locations H1 and H2 for hydrological measurement are requested to perform at both Contracts 1 and 2. Since Contract 1 has already commenced in January 2011, those results measured by Contract 1 would be shared for the Contract 2. This recommendation has been accepted by IEC and submitted to EPD.

RESULTS OF CONSTRUCTION NOISE MONITORING

4.03 In this Reporting Period, the noise monitoring results at the designated locations M1, AL1, M2, M3 and M4 are summarized in *Table 4-1*. The detail monitoring data are presented in *Appendix I*. The graphical plot is shown in *Appendix J*.

Date	L _{eq(30min)} (dB(A)		Date	$L_{eq(30min)}(dB(A))$					
	M1 ^(#)	AL1 ^(#)	Date	M2 ^(*)	M3 ^(*)	M4 ^(*)			
7-May-14	63.8	68.8	9-May-14	62.6	61.6	58.6			
14-May-14	64.5	67.4	16-May-14	63.1	60.3	52.7			
21-May-14	61.2	65.8	23-May-14	59.9	57.6	53.2			
28-May-14	61.5	65.4	30-May-14	63.0	58.7	52.2			
Limit Level		75 dB(A)							

Table 4-1Summary of Construction Noise Monitoring Results, dB(A)

Remarks:

(#) The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.

(*) The monitoring is undertaken under free field situation. A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines

- 4.04 The sound meter was set in a free field situation at the designated monitoring locations M2, M3 and M4, therefore, a façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines. For Location A1 and AN1, the monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.
- 4.05 No noise complaint (which is an Action Level exceedance) was received in this Reporting Period. As shown in *Table 4-1*, all the noise monitoring result are well below 75dB(A) and no Action or Limit Level exceedance was triggered during this Reporting Period. The graphical plot is shown in *Appendix J*.

RESULTS OF LOCAL STREAM WATER QUALITY MONITORING

- 4.06 In this Reporting Period, **13** sampling days at W1, W2, W3 and W4 were performed at designated measurement Points for local stream water quality monitoring. The monitoring results including in-situ measurements and laboratory testing results are provided in *Appendix I*. The graphical plots are shown in *Appendix J*.
- 4.07 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids in this Reporting Period, are summarized in *Tables 4-2 and 4-3*.

Sompling]	DO (mg/L)		Turb	oidity (NTU	U)		SS (mg/L)	
Sampling date	W1 (ebb)	W1 (flood)	W2	W1 (ebb)	W1 (flood)	W2	W1 (ebb)	W1 (flood)	W2
2-May-14	6.27	5.87	7.21	3.1	2.9	<u>4.5</u>	4.00	3.00	3.50
5-May-14	6.26	6.18	7.89	4.4	4.9	6.1	5.00	5.00	2.40
7-May-14	6.55	6.32	8.21	<u>5.8</u>	5.5	<u>6.4</u>	8.00	7.00	5.80
9-May-14	6.44	7.01	7.84	<u>32.9</u>	<u>29.9</u>	<u>38.8</u>	18.00	<u>18.00</u>	<u>19.00</u>
12-May-14	7.06	6.79	7.01	<u>8.6</u>	<u>8.3</u>	<u>5.1</u>	2.00	2.00	7.40
14-May-14	6.63	6.28	7.01	<u>5.6</u>	4.9	<u>4.8</u>	63.00	<u>11.00</u>	1.80
16-May-14	6.70	6.24	8.34	2.1	2.4	<u>44.3</u>	2.00	2.00	21.00
19-May-14	7.87	7.15	6.89	<u>10.5</u>	<u>13.4</u>	<u>4.1</u>	<u>11.00</u>	<u>14.00</u>	2.40
21-May-14	7.43	7.11	7.81	23.1	23.7	<u>4.8</u>	60.00	<u>57.00</u>	2.80
23-May-14	6.39	6.94	8.62	22.2	21.7	<u>49.1</u>	54.00	<u>52.00</u>	<u>16.00</u>
26-May-14	6.39	6.94	7.14	2.2	2.2	4.0	3.00	3.00	3.00
28-May-14	7.98	7.50	7.27	2.9	3.8	4.1	3.00	2.00	2.60
30-May-14	7.61	7.27	7.38	2.6	3.6	<u>5.5</u>	2.00	2.00	3.20

Table 4-2Water Quality Results Summary for W1 & W2

Bold and Italic is indicated exceeded Action Level; Bold with underline is indicated exceeded Limit Level
 # No data was provided by Contract 1.

Table 4-3Water Quality Results Summary for W3 & W4

Sampling	DO (I	mg/L)	Turbidit	y (NTU)	SS (1	mg/L)
date	W3	W4	W3	W4	W3	W4
2-May-14	5.59	6.01	2.84	2.57	3.00	4.00
5-May-14	7.38	7.40	3.45	3.49	3.00	3.00
7-May-14	7.71	7.57	2.26	2.21	2.00	2.00
9-May-14	8.07	7.93	32.35	<u>47.95</u>	21.00	<u>24.00</u>
12-May-14	7.11	7.36	5.86	<u>6.15</u>	2.00	2.00
14-May-14	7.01	6.79	9.82	7.65	5.00	<u>20.00</u>
16-May-14	6.84	6.53	2.93	2.91	2.00	2.00
19-May-14	6.38	7.26	86.15	<u>12.35</u>	24.00	<u>9.00</u>
21-May-14	7.91	7.68	21.50	<u>21.28</u>	74.00	73.00
23-May-14	8.68	6.63	21.23	<u>21.71</u>	41.00	<u>38.00</u>
26-May-14	8.68	6.63	1.23	1.71	2.00	2.00
28-May-14	8.12	8.03	2.75	3.13	3.00	2.00
30-May-14	7.79	7.52	2.83	3.12	2.00	3.00

Bold and Italic is indicated exceeded Action Level; Bold with underline is indicated exceeded Limit Level

- 4.08 During the Reporting Period, field measurements showed that stream water temperatures were within 20.1° C to 31.50° C and pH values within 7.00 to 8.35.
- 4.09 A statistics of exceedances for the three parameters: dissolved oxygen (DO), turbidity and suspended solids are shown in *Table 4-4*.

Table 4-4Statistics Water Quality Exceedance

Station	DO		Turbidity		SS		Total Exceedance	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit
W1	21	0	2	13	0	10	23	23
W2	5	0	0	13	0	3	5	16
W4	13	0	1	6	0	5	13	2
No. of Exceedance	39	0	3	32	0	18	41	41

4.10 As shown in *Table 4-4*, a total of 82 Action/ Limit Level exceedances, namely 39 exceedances in dissolved oxygen, 35 exceedances in turbidity and 18 exceedances in SS were recorded in this Reporting Period. NOEs were issued to notify EPD, IEC, the Contractor and RE upon confirmation of the results.

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\35th - May 2014\R0351v1.docx Action-United Environmental Services and Consulting

- 4.11 According to site information provided by the Contractor, the site activities undertaken on site included installing sheetpile in Box Culvert and excavation.
- 4.12 The active construction activities may increase the turbidity and suspended solids levels of the stream by washed out from stockpiles of dusty materials, excavated surface or dusty haul roads. To minimize the impact to the existing stream, precautionary measures such as sedimentation pit and temporary artificial precipitation stream to remove the suspended solids from wastewater have been implemented on-site. During regular site inspection with RE and Contractor, the implemented water quality mitigation measures are considered as moderate with the needed of regular maintenance. The investigation results for the exceedances are summarized as follows:
 - For the DO exceedances, the construction activities comprised none of DO depleting characteristics. Therefore, it is considered that all the DO exceedances were due to natural variation of the stream and not related to the works under the Project.
 - For the turbidity and SS exceedances at W2, since no construction activities under Contract 2 was carried out close to W2, it is concluded that the exceedances were not project related.
 - For the turbidity and SS exceedances recorded at W4, it is noted that the turbidity and SS levels recorded in the control station (W3) at the same days were similar to W4, therefore it is concluded that the exceedances at W4 were likely due to natural variation and not related to the project.
 - For monitoring points W1, it is noted that the water quality at W1 was affected by marine water that comes from the Tolo Harbour during flood tide. Therefore, it is considered that the exceedances in W1 were not related to the works under the Project.
- 4.13 KLKJV is reminded to fully implement the required water quality mitigation measures in accordance with the updated EM&A Manual stipulation during construction under the Project. In particular when excavation and the associated box culvert construction works are undertaken near Wai Ha River, all construction wastewater or runoff generated from work area should be treated and drained to the designated discharge point. Moreover, as an effective water quality mitigation measure, the rock bund in the de-silting channel should be repaired regularly and ensure the de-silting performance.

RESULTS OF HYDROLOGICAL CHARACTERISTICS MONITORING

4.14 In this Reporting Period, hydrological characteristics measurements were carried out on 2, 9, 16, 23 and 30 May 2014. The monitoring data of H1 and H2 provided by DC/2009/22 is showed Appendix I. The detailed H3 and H4 measurement results in this Reporting Period are presented in Tables 4-5.

Date	Measurement Time	Tide Condition	River Width (m)	Water Depth (m)	Cut Section (m ²)	Velocity Flow Rate (m/s)	Average Volumetric Flow Rate (Q), m ³ /s
Measureme	ent Point: H3						
2 May 14	9:27	Flood	7.45	0.41	3.0545	0.5	1.527
2-May-14	15:18	Ebb	7.45	0.36	2.6820	0.4	1.073
0 May 14	14:20	Flood	7.45	0.47	3.5015	0.7	2.451
9-May-14	9:29	Ebb	7.45	0.34	2.5330	1.3	3.293
16 May 14	9:15	Flood	7.45	0.24	1.7880	0.6	1.073
16-May-14	13:47	Ebb	7.45	0.21	1.5645	0.2	0.313
22 May 14	13:01	Flood	0.28	0.27	0.0756	0.6	0.045
23-May-14	9:00	Ebb	0.21	0.19	0.0399	0.1	0.004
20 May 14	9:00	Flood	7.45	0.27	2.0115	0.3	0.603
30-May-14	13:59	Ebb	7.45	0.19	1.4155	0.1	0.142

Table 4-5Detailed monitoring results of hydrological characteristics at H3 and H4

Date	Measurement Time	Tide Condition	River Width (m)	Water Depth (m)	Cut Section (m ²)	Velocity Flow Rate (m/s)	Average Volumetric Flow Rate (Q), m ³ /s
Measurem	Measurement Point: H4						
2 May 14	9:49	Flood	2.74	0.32	0.8768	0.3	0.263
2-May-14	15:42	Ebb	2.74	0.29	0.7946	0.2	0.159
9-May-14	14:45	Flood	2.74	0.41	1.1234	0.8	0.899
9-1v1ay-14	9:38	Ebb	2.74	0.32	0.8768	1	0.877
16 May 14	9:27	Flood	2.74	0.22	0.6028	0.3	0.181
16-May-14	14:10	Ebb	2.74	0.19	0.5206	0.1	0.052
22 May 14	13:32	Flood	0.26	0.24	0.0624	0.3	0.019
23-May-14	9:20	Ebb	0.19	0.17	0.0323	0.1	0.003
20 May 14	9:15	Flood	2.74	0.24	0.6576	0.1	0.066
30-May-14	14:11	Ebb	2.74	0.17	0.4658	0.1	0.047

4.15 Hydrological characteristics results of the all measurement points are summarized in *Tables 4-6* and *4-7*.

Table 4-6	Summarized Hydrological Characteristics of Water Depth, m
-----------	---

Dete		Mid-	Flood			Mid	-Ebb	
Date	H1	H2	H3	H4	H1	H2	H3	H4
2-May-14	0.36	0.36	0.41	0.32	0.24	0.24	0.36	0.29
9-May-14	0.48	0.48	0.47	0.41	0.48	0.48	0.34	1.3
16-May-14	#	#	0.24	0.22	0.48	0.42	0.21	0.19
23-May-14	0.42	0.42	0.27	0.24	0.6	0.48	0.19	0.17
30-May-14	#	#	0.27	0.24	0.24	0.3	0.19	0.17

No data was provided by Contract 1.

Table 4-7Summarized Hydrological Characteristics of Average Volumetric flow rate
(Q), m³/s

Date		Mid-	Flood			Mid	-Ebb	
Date	H1	H2	H3	H4	H1	H2	H3	H4
2-May-14	0.3	1.507	1.527	0.263	0.3	1.507	1.073	0.159
9-May-14	#	#	2.451	0.899	0.3	1.507	3.293	0.877
16-May-14	0.375	1.884	1.073	0.181	0.375	1.884	0.313	0.052
23-May-14	#	#	0.045	0.019	0.15	0.754	0.004	0.003
30-May-14	0.3	1.507	0.603	0.066	0.3	1.507	0.142	0.047

No data was provided by Contract 1.

4.16 To compare the monitoring data between the Reporting Period (rainy season) and baseline monitoring period, the currently water depth and volumetric flow rate has insignificant changed. Furthermore, water depth and water flow rate were found no exceedance in this Reporting Period.

RESULTS OF ECOLOGICAL MONITORING

- 4.17 According to updated EM&A Manual Section 6.17, bi-monthly ecological monitoring is conducted by the IEC – ENVIRON Hong Kong Limited. In brief, the monitoring tasks include regular check on the retained and transplanted trees and shrubs, monitoring on fauna groups and aquatic fauna within the works area and any ecologically sensitive area within 100 m of the works boundary.
- 4.18 In this Reporting Period, ecological monitoring in Area under Contract 2 was performed 13 May 2014. The details monitoring report is presented in *Appendix M*.

5.0 WASTE MANAGEMENT

5.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

RECORDS OF WASTE QUANTITIES

- 5.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 5.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 5-1* and *5-2* and the Monthly Summary Waste Flow Table is shown in *Appendix K*. Whenever possible, materials were reused on-site as far as practicable.

Table 5-1Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) (m ³)	0	-
Reused in this Contract (Inert) (m ³)	0	-
Reused in other Projects (Inert) (m ³)	0	-
Disposal as Public Fill (Inert) (m ³)	333	Tuen Mun Area 38

Table 5-2Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Recycled Metal (kg)	0	-
Recycled Paper / Cardboard Packing (kg)	0	-
Recycled Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (m ³)	0	Local refuse station

5.04 To control over the site performance on waste management, the Contractor shall ensure that all solid and liquid waste management works are in full compliance with the relevant license/permit requirements, such as the effluent discharge license and the chemical waste producer registration. The Contractor is also reminded to implement the recommended environmental mitigation measures according to the EM&A Manual based on actual site conditions.

6.0 SITE INSPECTION

REGULAR SITE INSPECTION AND MONTHLY AUDIT

- 6.01 According to the Updated Environmental Monitoring and Audit Manual, regular site inspection to evaluate the project environmental performance should be carried out during construction phase. Weekly environmental site inspections had been carried out by the Contractor, ET and RE on 9, 16, 23 and 26 May 2014. Also, joint site inspection with the IEC was carried out on 26 May 2014. In this Reporting period, 2 observations were recorded but no non-compliance was noted.
- 6.02 Observations for the site inspection and monthly audit within this Reporting Period are summarized in *Table 6-1*.

Date	Findings / Deficiencies	Follow-Up Status
9 May 2014	• Housekeeping of the site should be maintained.	Rectified on 16 May 2014
16 May 2014	No adverse environmental issue was observed during site inspection.	-
23 May 2014	• Haul road should be regularly wetted as dust suppression.	Rectified on 26 May 2014
26 May 2014	No adverse environmental issue was observed during site inspection.	-

 Table 6-1
 Site Inspection of Observations – Findings and Deficiencies

LANDSCAPE AND VISUAL INSPECTION

- 6.03 In this Reporting Period, landscape and visual inspection was carried on **12 and 30 May 2014**.
- 6.04 The stand-alone of monthly Landscape & Visual Report signed by the registered Landscape Architect. Mitigation measures implemented in this Reporting Period are presented in the monthly Landscape & Visual Report (May 2014) which is enclosed in *Appendix L*.
- 6.05 The next bi-weekly Landscape & Visual Monitoring in June 2014 is scheduled to be conducted in the week of 9 and 23 June 2014.

7.0 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

7.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 7-1, 7-2* and *7-3*.

Table 7-1Statistical Summary of Environmental Complaints

	Environmental Complaint Statistics				
Reporting Period	Frequency	Cumulative	Complaint Nature		
July 2011 – April 2014	1	1	Air Quality (1)		
May 2014	0	1	Air Quality (1)		

Table 7-2 Statistical Summary of Environmental Summons

Doporting Dovied	Environmental Summons Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature			
July 2011 – April 2014	0	0	NA			
May 2014	0	0	NA			

Table 7-3 Statistical Summary of Environmental Prosecution

Departing Devied	Environmental Prosecution Statistics					
Reporting Period	Frequency Cumulative		Complaint Nature			
July 2011 – April 2014	0	0	NA			
May 2014	0	0	NA			

8.0 IMPLEMENTATION STATUS OF MITIGATION MEASURES

8.01 The environmental mitigation measures that recommended in the Updated Environmental Monitoring and Audit Manual covered the issues of dust, noise and waste and they are summarized as follows:

Noise Mitigation Measure

- (a) Only well-maintained plant should be operated on-site and plant shall be serviced regularly during the construction program;
- (b) Silencers or mufflers on construction equipment should be utilized and shall be properly maintained during the construction program;
- (c) Mobile plant, if any, should be sited as far from NSRs as possible;
- (d) Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;
- (e) Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs;
- (f) Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities;
- (g) Use of quieter plants to carry out the construction tasks proposed for the Project;
- (h) Use about 3.5m high of temporary noise barriers as screened the noisy PMEs to carry out construction of box culvert and site clearance.
- (i) Low Impact Method, such as using PMEs smaller in size and to be enclosed by noise enclosure, should be adopted for the construction of box culvert and pipe laying in Wai Ha; and
- (j) Use of noise enclosure during the works area for pipe laying in Wai Ha.

Dust Mitigation Measure

- 8.02 Implementation of mitigation measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices including but not limited to the following:
 - (a) Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved road, with complete coverage, particularly during dry weather;
 - (b) Use of frequent watering for particularly dusty static construction areas and areas close to ASRs;
 - (c) Tarpaulin covering of all dusty vehicle loads transported to, from and between site location;
 - (d) Establishment and use of vehicle wheel and body washing facilities at the exit points of the site;
 - (e) Routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs;
 - (f) Stockpiled excavated materials should be covered with tarpaulin and should be removed offsite within 24 hours to avoid any odour nuisance arising.

Local Stream Water Quality Mitigation Measure

- (a) Before commencing any site formation work, all sewer and drainage connections shall be sealed to prevent debris, soil, sand etc. from entering public sewers/drains;
- (b) Temporary ditches shall be provided to facilitate run-off discharge into appropriate watercourses, via a silt retention pond. No site run-off shall enter the fishponds at Shuen Wan;
- (c) Sand/silt removal facilities such as sand traps, silt traps and sediment basins shall be provided to remove sand/silt particles from runoff to meet the requirements of the Technical Memorandum standard under the Water Pollution Control Ordinance. The design of silt removal facilities shall be based on the guidelines provided in ProPECC PN 1/94. All drainage facilities and erosion and sediment control structures shall be inspected monthly and maintained to ensure proper and efficient operation al all times and particularly during rainstorms
- (d) Water pumped out from excavated pits shall be discharged into sill removal facilities;

- (e) During rainstorms, exposed slope/soil surfaces shall be covered by a tarpaulin or other means. Other measures that need to be implemented before, during, and after rainstorms as summarized in ProPECC PN 1/94 shall be followed
- (f) Exposed soil areas shall be minimized to reduce potential for increased siltation and contamination of runoff
- (g) Earthwork final surfaces shall be well compacted and subsequent permanent work or surface protection shall be immediately performed to reduce the potential of soil erosion;
- (h) Open stockpiles of construction materials or construction wastes on-site shall be covered with tarpaulin or similar fabric during rainstorms;
- (i) For the construction of the box culvert next to the existing channel of the Wai Ha River, sand bags should be deployed around the boundary of the works trench to prevent muddy water ingress into the adjacent CA or Wai Ha River. Sand bags should also be used to surround the excavated trench. Generally, the sand bags will be placed up to a height 01 300mm to provide adequate allowance for the built-up water level during rainstorm event. With sand bags in place surface runoff will be intercepted and flow to Wai Ha River or collected by the existing drainage system as usual;
- (j) For the construction of the box culvert in the extreme northeast corner of Shuen Wan Marsh Conservation Area sand bags should be deployed along the limit of the works area to prevent muddy water ingress into the CA. Sand bags should be placed to a height 0.1 at least 300mm from ground level and +2.5 mPD (whichever is greater) to provide adequate allowance for the built-up water level during rainstorm events Unpolluted surface runoff within the works area should then be collected and directed into the existing drainage system;
- (k) Sheet-piles, which would be installed around the works trench near the Conservation Area, would be extended above ground level for about 2m to serve as hoardings to isolate the works site;
- Tarpaulin sheets would be used to cover the excavation areas during heavy rainstorms. This would prevent the ingress of rainwater into the trench minimizing the risk of muddy water getting into Wai Ha River and the adjacent Conservation Area;
- (m) Any concrete washing water would be contained inside the works site surrounded by the extended sheet piles. A pump sump at the bottom 0f the trench would be provided to pump any excess water during concrete washing;
- (n) Stockpiling the excavated materials adjacent to the Conservation Area would not be allowed. The excavated materials would be either removed off site immediately after excavation, or stockpile at location(s) away from the Conservation Area. The stockpile locations shall be approved by the site engineer;
- (o) Debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering the Wai Ha River and fish ponds at Shuen Wan. Stockpiles of cement and other construction materials should be kept covered when not being used.
- (p) Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities to prevent spillage of fuels and solvents to nearby water bodies, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity 01 the largest tank The bund should be drained of rainwater after a rain event
- (q) Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site. A licensed contractor would be responsible for appropriate disposal and maintenance of these facilities;
- (r) The excavation works within the upstream end of the existing river channel of the Wai Ha River for the construction of the proposed box culvert should be carried out in dry condition. Containment measures such as bunds and barriers shall be used within the affected length of the river channel and the excavation works restricted to within an enclosed dry section of the channel. The excavation works within Wai Ha River shall be restricted to the period from October to April.

Waste Mitigation Measures

- (a) The Contractor shall observe and comply with the Waste Disposal Ordinance (WDO) and its subsidiary regulations.
- (b) The Contractor shall submit to the Engineer for approval a Waste Management Plan with appropriate mitigation measures including the allocation of an area for waste segregation and shall ensure that the day-to-day site operations comply with the approved waste management plan.
- (c) The Contractor shall minimize the generation of waste from his work. Avoidance and minimization of waste generation can be achieved through changing or improving design and practices, careful planning and good site management.
- (d) The reuse and recycling of waste shall be practised as far as possible. The recycling materials shall include paper/cardboard, timber and metal etc.
- (e) The Contractor shall ensure that Construction and Demolition (C&D) materials are sorted into public fill (inert portion) and C&D waste (non-inert portion). The public fill which comprises soil, rock, concrete, brick, cement plaster/mortar, inert building debris, aggregates and asphalt shall be reused in earth filling, reclamation or site formation works. The C&D waste which comprises metal, timber, paper, glass, junk and general garbage shall be reused or recycled where possible and, as the last resort, disposal of at landfills.
- (f) The Contractor shall record the amount of wastes generated, recycled and disposed of (including the disposal sites). The Contractor shall use a trip ticket system for the disposal of C&D materials to any designated public filling facility and/or landfill.
- (g) In order to avoid dust or odour impacts, any vehicles leaving a works area carrying construction waste or public fill shall have their load covered.
- (h) To avoid the excessive use of wood, reusable steel shutters shall be used as a preferred alternative to formwork and falsework where possible.
- (i) The Contractor shall observe and comply with the Waste Disposal (Chemical Waste) (General) Regulation. The Contractor shall apply for registration as chemical waste producer under the Waste Disposal (Chemical Waste) (General) Regulation when chemical waste is produced. All chemical waste shall be properly stored, labeled, packaged and collected in accordance with the Regulation.
- 8.03 KLKJV had been implementing the required environmental mitigation measures according to the Updated Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by KLKJV in this Reporting Period are summarized in *Table 8-1*.

Table 8-1Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Water Quality	 Wastewater were appropriately treated by treatment facilities; Drainage channels were provided to convey run-off into the treatment facilities; and Drainage systems were regularly and adequately maintained.
Air Quality	 Regular watering to reduce dust emissions from all exposed site surface, particularly during dry weather; Frequent watering for particularly dusty construction areas and areas close to air sensitive receivers; Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet; Public roads around the site entrance/exit had been kept clean and free from dust; and Tarpaulin covering of any dusty materials on a vehicle leaving the site.
Noise	 Good site practices to limit noise emissions at the sources; Use of quite plant and working methods; Use of site hoarding or other mass materials as noise barrier to screen noise at ground level of NSRs; Use of shrouds/temporary noise barriers to screen noise from relatively static PMEs; Scheduling of construction works nearly Tung Tsz Road; and Alternative use of plant items within one worksite, where practicable.

Issues	Environmental Mitigation Measures
	 Excavated material should be reused on site as far as possible to minimize off-site disposal. Scrap metals or abandoned equipment should be recycled if possible; Waste arising should be kept to a minimum and be handled, transported and disposed of in a suitable manner; The Contractor should adopt a trip ticket system for the disposal of C&D materials to any designed public filling facility and/or landfill; and Chemical waste shall be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

9.0 IMPACT FORCAST

CONSTRUCTION ACTIVITIES FOR THE FORTH-COMING MONTH

- 9.01 Construction activities planned to be carried out next month at Shuen Wan is listed as below:-
 - Landscaping work
- 9.02 Three months Rolling Construction Program is attached in *Appendix C*

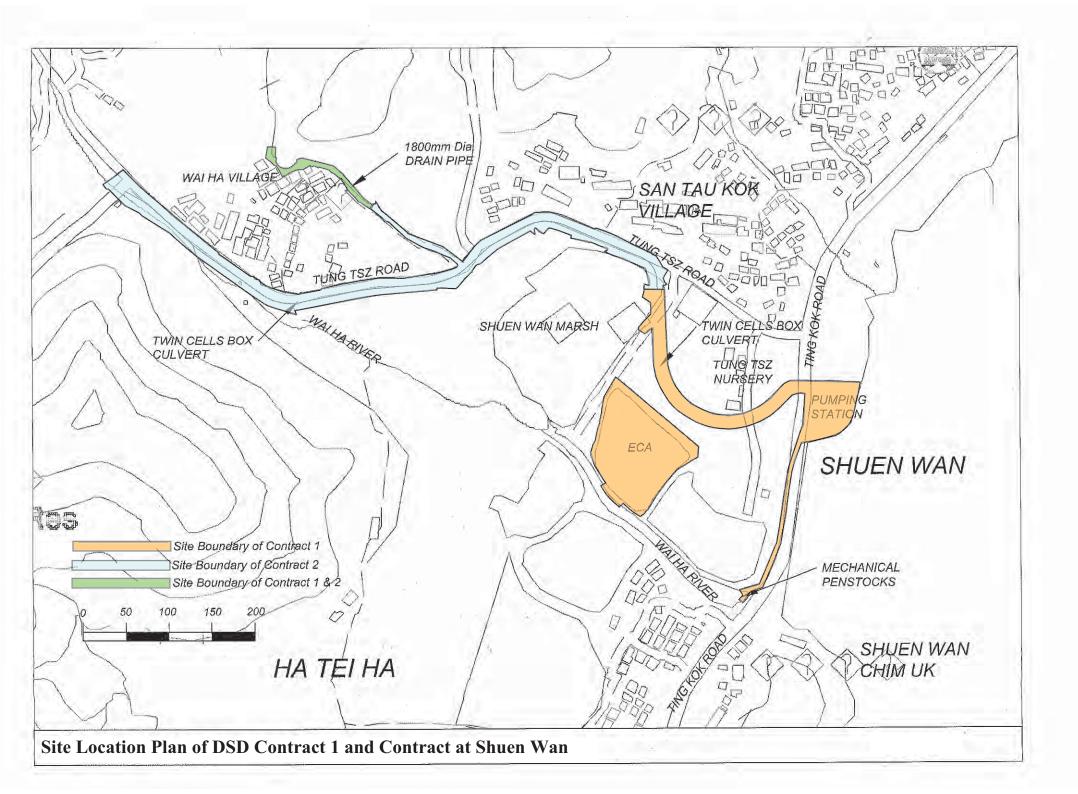
KEY ISSUES FOR THE COMING MONTH

- 9.03 According to construction activities carry out in coming months, key issues to be considered include:
 - Implementation of dust suppression measures at all times;
 - Ensure dust suppression measures are implemented properly;
 - Disposal of empty engine oil containers within site area;
 - Sediment catch-pits and silt removal facilities should be regularly maintained;
 - Management of chemical wastes;
 - Discharge of site effluent to the nearby local stream or storm drainage, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
 - Follow-up of improvement on general waste management issues; and
 - Implementation of construction noise preventative control measures.

10.0 CONCLUSIONS AND RECOMMENTATIONS

CONCLUSIONS

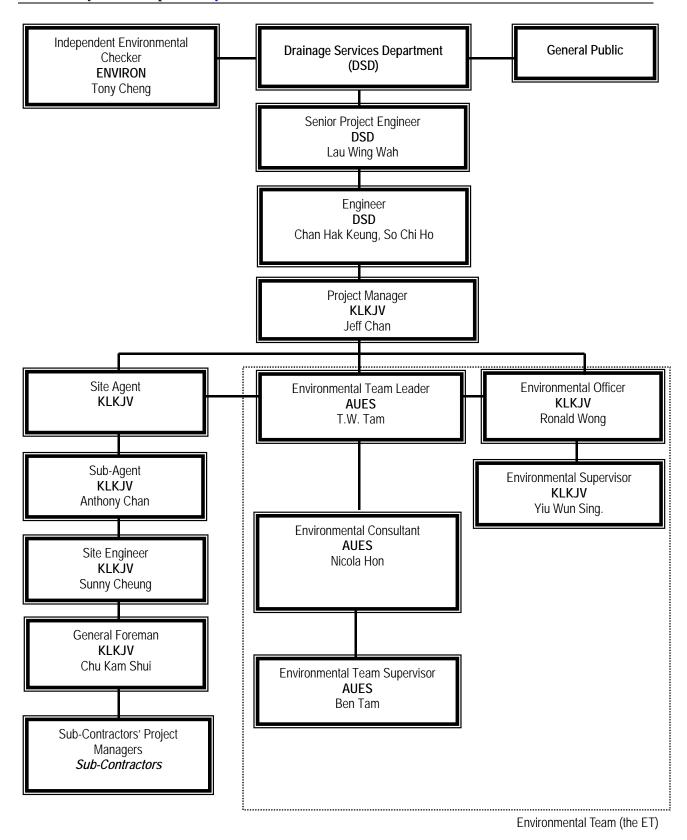
- 10.01 This is the **35th** monthly EM&A report for Contract 2 presenting the monitoring results and inspection findings for the Reporting Period from **1 to 31 May 2014**.
- 10.02 No noise complaint (which is an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period. No NOE or the associated corrective actions were therefore issued.
- 10.03 For water quality monitoring, a total of 82 Action/ Limit Level exceedances, namely 39 exceedances in dissolved oxygen, 35 exceedances in turbidity and 18 exceedances in SS were recorded in this Reporting Period. NOEs were issued to notify EPD, IEC, the Contractor and RE upon confirmation of the results. It is concluded that exceedances were not related to the Project.
- 10.04 The hydrological characteristics of water depth and water flow rate were found no exceedance in this Reporting Period.
- 10.05 In this Reporting Period, ecological monitoring in Area under Contract 2 was performed 13 May 2014.
- 10.06 No documented complaint, notification of summons or successful prosecution was received.
- 10.07 Weekly environmental site inspections had been carried out by the Contractor, ET and the RE on 9,
 16, 23 and 26 May 2014. Furthermore, joint site inspection with the IEC was carried out on 26 May 2014. In this Reporting Period, 2 observations were recorded but no non-compliance was noted during the site inspection.
- 10.08 In this Reporting Period, landscape and visual inspection was carried on 12 and 30 May 2014 and the monthly Landscape & Visual Report (May 2014) has been signed by the registered Landscape Architect.


RECOMMENDATIONS

- 10.09 During wet season and river works is in progress, surface runoff or water discharge to local stream course should be key environment aspect issue. The Contractor is reminded that mitigation measures for water quality and ecology should be fully implemented. As an effective water quality mitigation measure, the rock bund in the de-silting channel should be repaired regularly and ensure the de-silting performance.
- 10.10 Dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road would also be a key issue in coming months.
- 10.11 Special attention should be also paid on the muddy water and other water quality pollutants via site surface water runoff into the local stream Wah Ha River. As an effective water quality mitigation measure, the rock bund in the de-silting channel should be repaired regularly and ensure the de-silting performance.
- 10.12 To control the site performance on waste management, the KLKJV shall ensure that all solid and liquid waste management works are fully in compliance with the relevant license/permit requirements, such as the effluent discharge licence and the chemical waste producer registration. KLKJV is also reminded to implement the recommended environmental mitigation measures according to the Updated Environmental Monitoring and Audit Manual.

Appendix A

Site Location Plan (DSD Contract 1 and Contract 2 at Shuen Wan)



Appendix B

Organization Chart and the Key Contact Person

DSD Contract No. Contract No. DC/2010/02 - Drainage Improvement in Shuen Wan and Shek Wu Wai 35th Monthly EM&A Report – May 2014

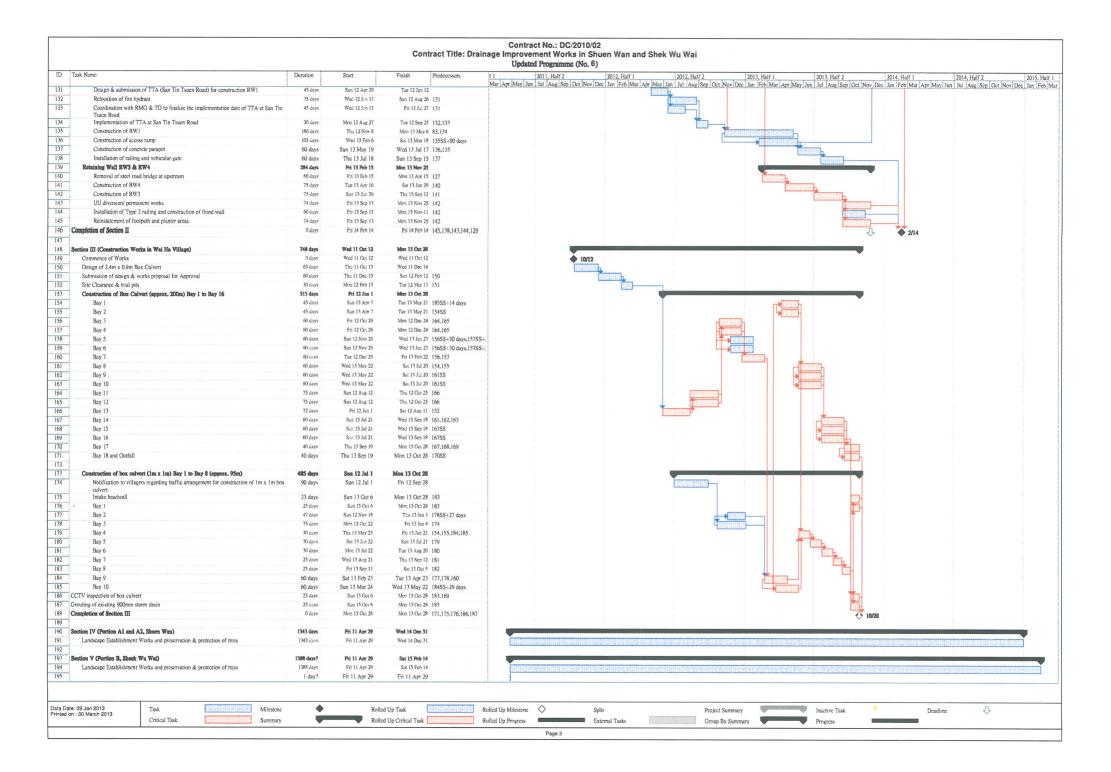
Environmental Management Organization

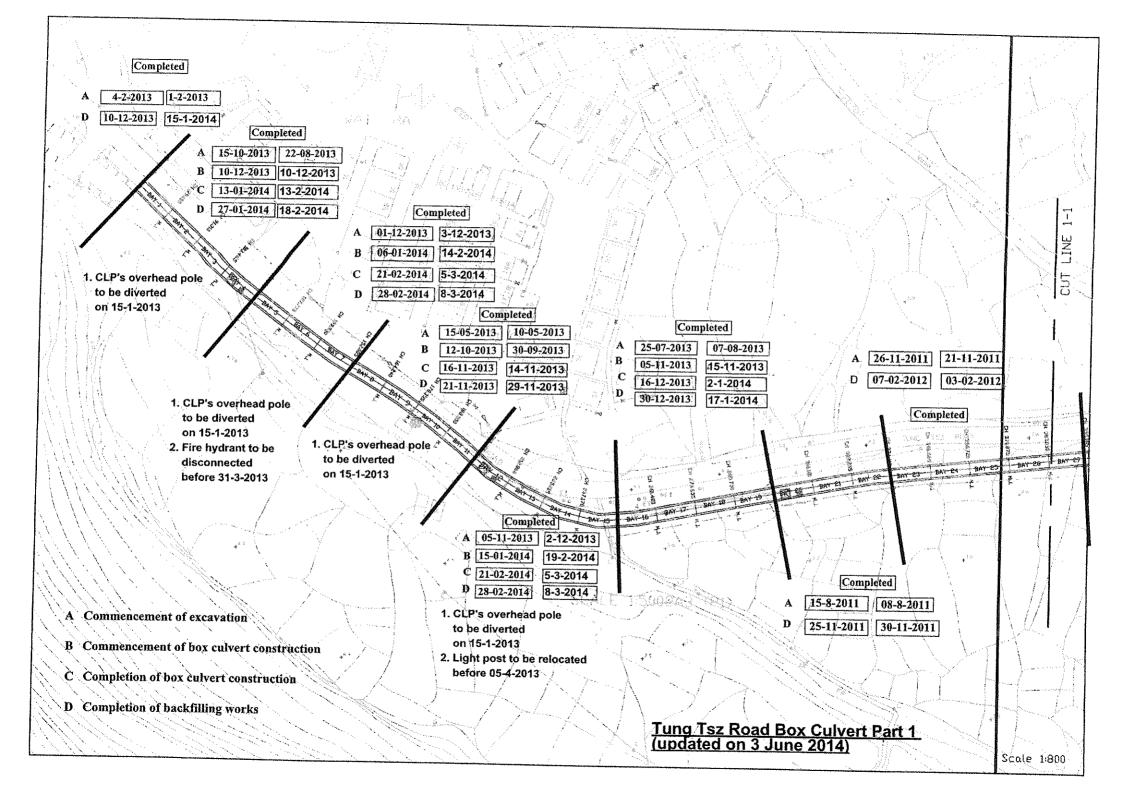
Contact Details of Key Personnel

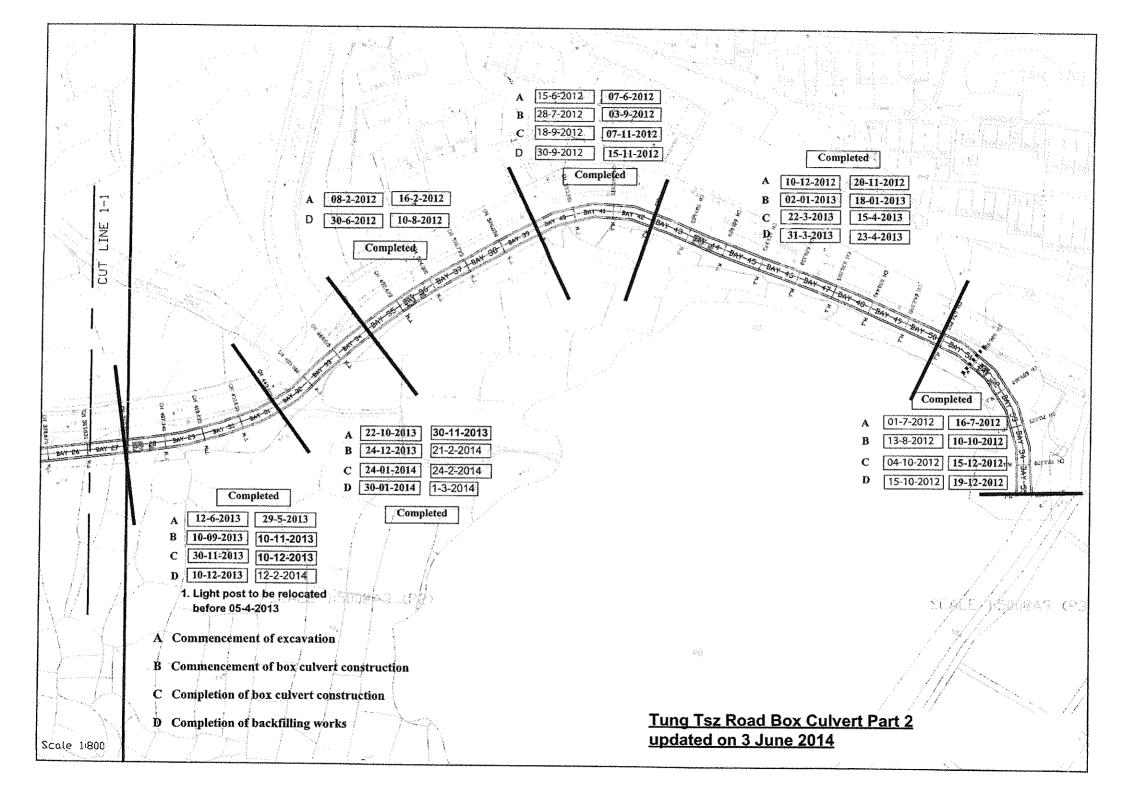
Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr. Luk Wai Hung	2594 7400	2827 8700
DSD	Senior Engineer	Mr. Lau Wing Wah	2594 7402	2827 8700
DSD	Engineer	Mr. Chan Hak Keung	2594 7596	2827 8700
DSD	Engineer	Mr. So Chi Ho	2594 7356	2827 8700
DSD	Senior Inspector	Mr. Tso Si On	6778 2708	2827 8700
ENVIRON	Independent Environmental Checker	Mr. Tong Cheng	3465-2888	3465-2899
KLKJV	Project Director	Mr. Poon Chi Yeung Francis	2674 3888	2674 9988
KLKJV	Project Manager	Mr. Jeff Chan	2674 3888	2674 9988
KLKJV	Sub-Agent	Mr. Anthony Chan	2674 3888	2674 9988
KLKJV	Site Forman	Mr. Chu Kam Shui	2674 3888	2674 9988
KLKJV	Environmental Officer	Mr. Ronald Wong	2674 3888	2674 9988
KLKJV	Environmental Supervisor	Mr. Yiu Wun Sing	2674 3888	2674 9988
AUES	Environmental Team Leader	Mr. T.W. Tam	2959-6059	2959-6079
AUES	Environmental Consultant	Miss. Nicola Hon	2959-6059	2959-6079
AUES	Environmental Supervisor	Mr. Ben Tam	2959-6059	2959-6079

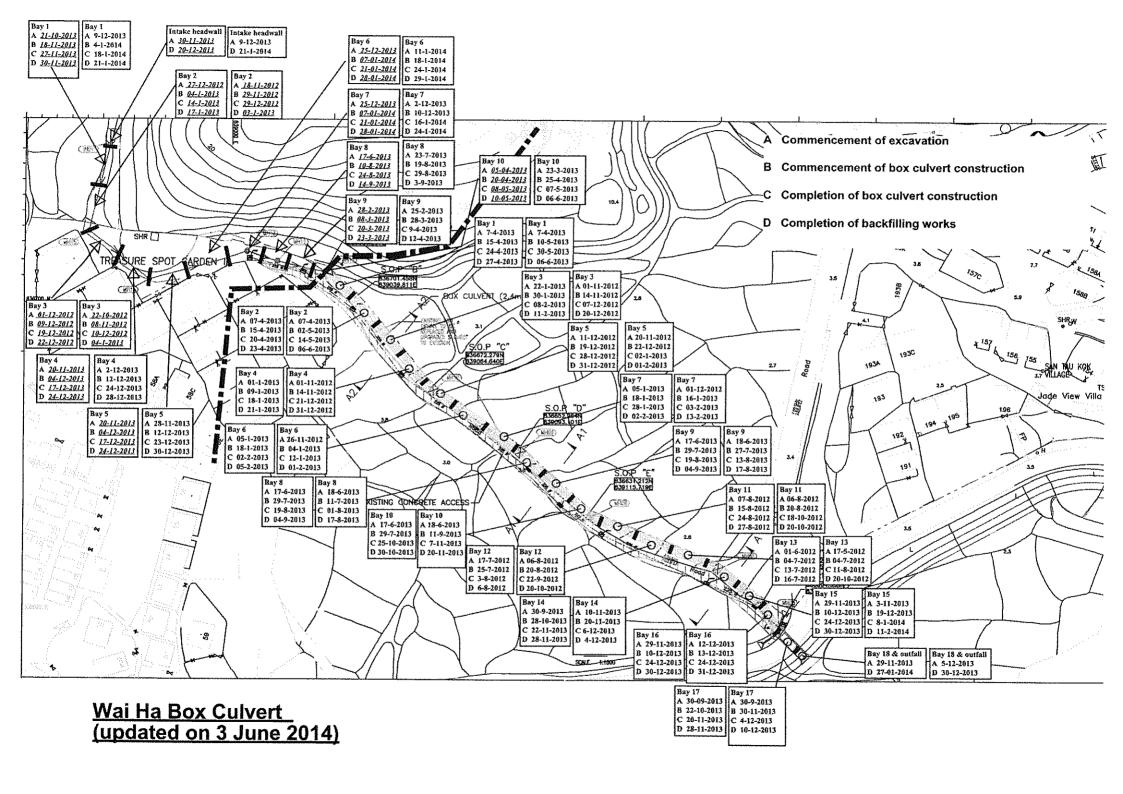
Legends:

- DSD (Employer) Drainage Services Department
- DSD (Engineer) Drainage Services Department
- KLKJV (Main Contractor) Kwan Lee-Kuly Joint Venture
- ENVIRON (IEC) ENVIRON Hong Kong Limited
- AUES (ET) Action-United Environmental Services & Consulting

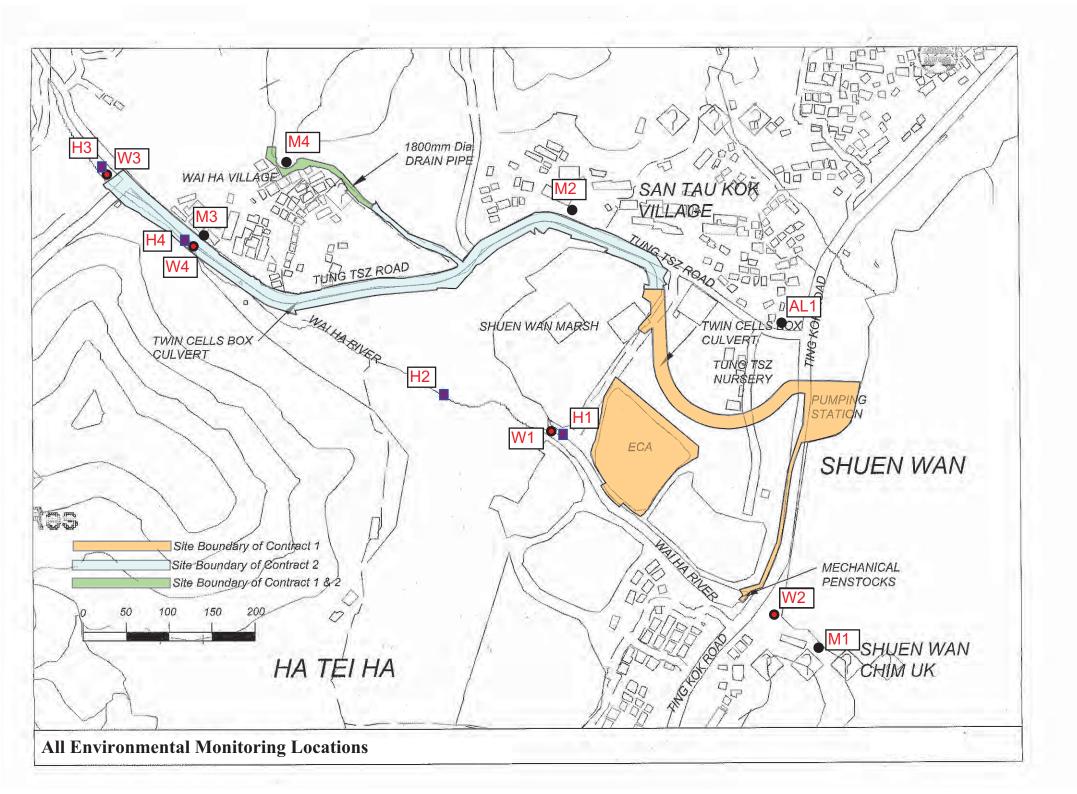



Appendix C


Master Construction Programs


Contract No.: DC/2010/02 Contract Title: Drainage Improvement Works in Shuen Wan and Shek Wu Wai Updrated Programme (No. 6)								
D Task Name	Duration	Start	Finish Predecessors	f 1 2011, Half 2 2012, Half 1 2012, Half 1 2012, Half 2 2013, Half 1 2013, Half 2 2014, Half 1 2014, Half 2 2014, Half 2 2015,				
Preliminary Works	158 days	Fri 11 Apr 29	Mon 11 Oct 3	Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Apr				
Commencement of Works	0 days	Fri 11 Apr 29	Fri 11 Apr 29	♦ 429				
Site Clearance	44 days	Fri 11 Apr 29	Sat 11 Jun 11					
Record Survey	14 days	Sun 11 Jun 12	Sat 11 Jun 25 3					
Design & Construction of Hoarding	51 days	Mon 11 May 16	Tue 11 Jul 5					
Signboard (Type B)	14 days	Wed 11 Jun 22	Tue 11 Jul 5 5FF					
Design & Approval of Engineer's Site Office	30 days	Wed 11 Jul 6	Thu 11 Aug 4 5					
Construction of Engineer's Site Office	60 days	Fri 11 Aug 5	Mon 11 Oct 3 7					
Pre-construction Condition Survey	14 days	Mon 11 May 16	Sun 11 May 29					
) Relocation of Existing Shrines (2 Nos.)	60 days	Mon 11 May 30	Thu 11 Jul 28 9					
2 Section I (Construction Works in Shuen Wan)	978 days	Fri 11 Apr 29	T-+ 12 D-+ 11					
Commencement of Works	0 days	Fri 11 Apr 29	Tue 13 Dec 31 Fri 11 Apr 29					
4 Original Contract Period	913 days	Fri 11 Apr 29	Sun 13 Oct 27	♦ 4/29				
Extension of Time - due to Inclement Weather	65 days	Mon 13 Oct 28	Tue 13 Dec 31 14					
Design of TTA	47 days	Fri 11 Apr 29	Tue 11 Jun 14					
Submission of TTA to TMLG for Approval	30 days	Wed 11 Jun 15	Thu 11 Jul 14 16					
Excavation Permit	115 days	Mon 11 May 16	Wed 11 Sep 7					
Submission & approval of caluclation & MS for BC (including trench ELS/slope)	58 days	Fri 11 Apr 29	Sat 11 Jun 25					
Notify EPD on commencement (one month advance notice)	58 days 30 days	Mon 11 May 16	Sat 11 Jun 25 Tue 11 Jun 14					
Tree Felling	30 days	Wed 11 Jun 15	Thu 11 Jul 14 20					
	30 days 120 days	Wed 11 Jun 15 Wed 11 Jun 1	Wed 11 Sep 28					
Utility detection and diversion programme Utilities corordination	120 days	Thu 11 Sep 29	Mon 12 Mar 26 18,22					
Tempory disconnection of fire hydrant (Bay 7)	90 days	Tue 13 Jan 1						
CLP's overhead pole diversion (bay 1 to Bay 15)	90 days 199 days	Sun 12 Jul 1	Sun 13 Mar 31 23 Tue 13 Jan 15 23					
Relocation/ diversion of light post (near Bay 13)	248 days	Wed 12 Aug 1	Fri 13 Apr 5 23					
Relocation/ diversion of light post (near Bay 13) Relocation/ diversion of light post (near Bay 32)	248 days	Wed 12 Aug 1 Wed 12 Aug 1	Fri 13 Apr 5 23					
Construction of Single Cell (approx. 724m)	248 days 849 days	Mon 11 Aug 15	Tue 13 Dec 10	目示:####################################				
Intake of Box Culvert - in progress	86 days	Mon 13 Feb 4	Tue 13 Apr 30 25					
from CH67 to CH127 (Bay 1.2,3,4,5)	133 days	Mon 13 Jul 1	Sun 13 Nov 10 25					
from CH127 to CH152 (Bay 6,7)	91 days	Wed 13 Sep 11	Tue 13 Dec 10 32,24,25					
from CH152 to CH200 (Bay 8,9.10,11)	119 days	Wed 13 May 15	Tue 13 Sep 10 41,25					
from CH200 to CH297 (Bay 12.13,14,15,16,17,18,19)	153 days	Mon 13 Jul 1	Sat 13 Nov 30 26,25					
from CH297 to CH334 (Bay 20,21,22) completed	103 days	Mon 11 Aug 15	Fri 11 Nov 25 17,19,21,10,4					
from CH334 TO CH395 (Bay 23,24,25,26,27) completed	74 days	Sat 11 Nov 26	Tue 12 Feb 7 34					
from CH395 to CH419 (Bay 28,29)	92 days	Mon 13 Aug 26	Mon 13 Nov 25 37					
From CH419 to CH455 (Bay 30,31.32)	103 days	Wed 13 May 15	Sun 13 Aug 25 41.27					
from CH455 to CH480 (Bay 33,34)	76 days	Thu 13 Sep 26	Tue 13 Dec 10 32FS+15 days					
from CH480 to CH541 (Bay 35,36,37,38,39) completed	185 days	Wed 12 Feb 8	Fri 12 Aug 10 35					
from CH541 to CH577 (Bay 40,41,42) completed	97 days	Sat 12 Aug 11	Thu 12 Nov 15 39					
from CH577 to CH674 (Bay 43,44,45,46,47,48,49,50) in progress	166 days	Fri 12 Nov 16	Tue 13 Apr 30 40,42FS-44 days					
from CH674 to CH732 (Bay 51,52,53,54,55) completed	131 days	Sat 12 Aug 11	Wed 12 Dec 19 39					
RCP (above Bay 6)	46 days	Sat 13 Nov 16	Tue 13 Dec 31 31FS-25 days					
CCTV Inspection	65 days	Sun 13 Oct 27	Tue 13 Dec 31 36FS-30 days.33FS-35					
Installation of Type 2 Railing at Upstream (CH67 to CH240)	45 days	Mon 13 Nov 11	Wed 13 Dec 25 30					
Landscape Softwork	180 days	Sun 13 Jun 30	Thu 13 Dec 26 29,41FS+60 days					
Completion of Section I	0 days	Tue 13 Dec 31	Tue 13 Dec 31 46,45,43,44,33,38					
Section II (Construction Works in Shek Wu Wai)	1281 days	Pri 11 Apr 29	Thu 14 Oct 30					
Commence of Works	0 days	Fri 11 Apr 29	Fri 11 Apr 29					
	913 days	Fri 11 Apr 29	Sun 13 Oct 27	◆ 4/29				
Original Contract Period Extension of Time	320 days	Mon 13 Apr 1	Sun 13 Oct 27 Fri 14 Feb 14					
EOT due to inclement weather	65 days	Mon 13 Oct 28	Tue 13 Dec 31 51					
Utilities in conflict with Construction of Box Culvert at downstream	320 days	Mon 13 Oct 28 Mon 13 Apr 1	Fri 14 Feb 14					
utilities diversions	213 days	Mon 13 Apr 1	Wed 13 Oct 30	神经神道公司 (新聞)				
construction of remaining works	107 days	Thu 13 Oct 31	Fri 14 Feb 14 55					
Design of TTA	48 days	Fri 11 Apr 29	Wed 11 Jun 15 50					
Submission of TTA to TMLG for Approval	60 days	Thu 11 Jun 16	Sun 11 Aug 14 57	T int is the second seco				
Excavation Permit Temp. Work Design	90 days	Mon 11 May 16	Sat 11 Aug 13					
Temp: o on beagn	30 days	Fri 11 Jul 15	Sat 11 Aug 13 59FF					
Site Investigation for Utilities	90 days	Mon 11 May 16	Sat 11 Aug 13					
Submit Program for Utilities Diversion	30 days	Sun 11 Aug 14	Mon 11 Sep 12 61					
Site Clearance and Tree Felling	48 days	Mon 11 May 16	Sat 11 Jul 2					
Implement Stage 1 of TTA	10 days	Mon 11 Aug 15	Wed 11 Aug 24 58,59,63					
Temp. Steel Decking and temporary carriageway	102 days	Thu 11 Aug 25	Sun 11 Dec 4 64	Televener B				
Box Culvert Construction	175 days	Mon 11 Dec 5	Sun 12 May 27					
Implement Stage 2 of TTA	1 day	Mon 11 Dec 5	Mon 11 Dec 5 65	<u>Б</u>				
Date: 09 Jan 2013 Task M	lestone 🔶	Pollo	d Up Task	Rolled Up Milestone 🛇 Split Project Summary V Inactive Task Deadline 🖓				
id on : 30 March 2013		Rolle	a op nøb	Rolled Up Milestone 🛇 Split Project Summary Inactive Task Deadline 🖓				
	mmary		d Up Critical Task	Rolled Up Progress External Tasks Group By Summary Progress				

	Contract No.: DC/2010/02 Contract Title: Drainage Improvement Works in Shuen Wan and Shek Wu Wai Updated Programme (No. 6)									
	Half 2 2014, Half 1 2014, Half 2	2014, Half 2								
Bits Process of the DITA Bits Values Latter Dis Important Section Secti	ug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep C	ul Aug Sep Oct Nov Dec								
Image: Log / The mode log /										
Description Nume Exclusion Nume Exclusion Description Exclusion Exclusion Exclusion Exclusion Descl										
Product State State <thstate< th=""> State</thstate<>										
Theorem Theorem Number Number Number 0 Descision Numbr Numbr Numbr <td></td> <td></td>										
Description State St										
O O O O State No.										
Bodd Stade Stade Stade Stade Bodd Temperature Stade Stade Stade Control Control Stade Stade Stade Control Control Stade Stade Stade Control Stade Stade Stade Stade Contro Stade Stade Stade Stade Contro Stade Stade Stade Stade										
Image: Non-View of the Addition of the										
Note: Note: Note: Note: Note: Construction: Schwart Schwart Schwart Schwart Construction: Schwart Schwart Schwart Schwart Schwart Construction: Schwart Schwart Schwart Schwart Schwart Construction: Schwart Schwart Schwart Schwart Schwart Constrest										
Image: Section of the section of t										
International state of the										
Image: Constraint of the constraint of constraintof constraint of constraint of constraint of constraint										
Image and Prov. subg appenda dura Number of Prov. Provided American Section Prov.										
NNon-Standard File (sign scale)Use (sole)Non-Standard FileNNon-Standard File (sign scale)Non-Standard File (sign scale)NNon-Standard File (sign scale)Non-Standard File (sign scale)										
Stype Stype Stype Stype Stype 0 Stype Stype Stype Stype Stype Stype 0 Stype										
Styp: Automic and consegnation and										
No. Number of NU Number of NU Number of NU Number of NU V UNDer Order, 1107 called POR of NU										
No. No. No. No. No. No. No. No. CP and 11V values. Walue No.										
Image: Proceeding of the second of										
0 CUD do 11W dots)-sing data Max 9 Max 19 Mas 19 Ma										
Image: Display and a local start with a										
Image: Classifier Name of Cl										
Diff Ult dis NUV addition-during used Diff display Bail Display Bail Display Diff NUT - N2 epideain 64 aba Num 1, N2 epideain 64 aba Diff NUT - N2 epideain 64 aba Num 1, N2 epideain 74 abas Diff NUT - Advende A during contraction who for NUM 1 84 aba Num 1, N2 abas Num 1, N2 abas Diff NUT - Advende A during contraction who for NUM 1 Num 1, N2 abas Num 1, N2 abas Num 1, N2 abas Diff NUT - Advende A during contraction who for NUM 1 Num 1, N2 abas Num 1, N2 abas Num 1, N2 abas Diff NUT - Advende A during contraction who for NUM 1 Num 1, N2 abas Num 1, N2 abas Num 1, N2 abas Diff NUT - Advende A during contraction who for NUM 1 Num 1, N2 abas Diff NUT - Advende A during contraction who for NUM 1 Num 1, N2 abas Num 1, N2										
VitVit/C <td></td> <td></td>										
δ NWT-methols & doing constants works for WV1 13 des WW113bg 2 Ter 13 ho 11 7,101 W NWT-device & doing constants works for WV1 46 des Methods 4, doing constants works for WV1 46 des Methods 4, doing constants works for WV1 46 des Methods 4, doing constants works for WV1 46 des Methods 4, doing constants works for WV1 46 des Methods 4, doing constants works for WV1 46 des Methods 4, doing constants works for WV1 46 des Methods 4, doing constants works for WV1 46 des Methods 4, doing constants works for WV1 46 des Methods 4, doing constants works for WV1 46 des Methods 4, doing constants works for WV1 46 des Methods 4										
7 NPT - makes during constance web cong NPT) Hole Mats LA Motoc 8 NPT - makes during constance web cong NPT) Moto Motoc Motoc 97 NPC Address during constance web cong NPT) Motoc Motoc Motoc 97 NPT - makes during constance web cong NPT) Motoc Motoc Motoc Motoc 97 NPT - makes during constance web cong NPT) Lists Motoc Motoc Motoc 97 NPT - makes during constance web cong NPT) Lists Motoc Motoc Motoc 97 NPT - makes during constance web cong NPT) Lists Motoc Motoc Motoc Motoc 97 NPT - makes during constance web cong NPT) Motoc Motoc Motoc Motoc Motoc Motoc 97 NPT - makes during constance web cong NPT) Motoc Motoc <td>•</td> <td></td>	•									
NWT - Artition & Allowing ord Nucl. 15 m.11 Nucl. 15 m.14 Nucl. 15 m.14 U UC Nucl. 15 m.14 Nucl. 15 m.14 Nucl. 15 m.14 00 HIC - XP application 66 das Nucl. 15 m.14 Nucl. 15 m.14 Nucl. 15 m.14 01 HIC - XP application 66 das Nucl. 15 m.14 Nucl. 15 m.14 Nucl. 15 m.14 Nucl. 15 m.14 02 HIC - Arandok & duding contraction work tord NU7) 14 das Nucl. 15 m.14 Nucl. 15 m.14 Nucl. 15 m.14 Nucl. 15 m.14 02 HIC - Arandok & duding contraction work tord NU7) 14 das Nucl. 15 m.14 Nucl. 15 m.14 Nucl. 15 m.14 Nucl. 15 m.14 02 HIC - Stardok & duding contraction work tord NU7) 14 das Nucl. 15 m.14 Nucl. 15 m.14 Nucl. 15 m.14 03 PROX - seablok & duding contraction work tord NU7) 90 das Fit 15 m.14 Nucl. 15 m.14 Nucl. 15 m.14 04 PROX - seablok & duding contraction work tord NU7) 90 das Fit 15 m.15 Nucl. 15 m.15 Nucl. 15 m.14 Nucl. 15 m.14 01 PROX - seablok & duding contraction work tord NU7 9										
PHC PhoC PhoC Mon PhoC										
00 HCC - XP application 60 cos Mol 13 Mol 1 The 13 Mol 1 The 13 Mol 1 01 HCC - machelis & duting contraction work (net RVV) 14 dos San 13 Mol 13 Mol 10 San 13 Mol 13 Mol 10 02 HCC - machelis & duting contraction work (net RVV) 14 dos San 13 Mol 13 Mol 10 San 13 Mol 13 Mol 10 02 HCC - machelis & duting contraction work (net RVV) 44 dos Mol 13 Mol 10 The 14 Gos 30 03 PCCV - Pupicication San 13 Mol 14 The 14 Gos 30 Mol 13 Mol 10 The 14 Gos 30 03 PCCV - Avanska & duting contraction work (net RVV) 44 dos Mol 13 Mol 10 The 14 Gos 30 04 PCCV - Avanska & duting contraction work (net RVV) 44 dos Not 13 Mol 10 The 14 Gos 30 05 PCCV - Avanska & duting contraction work (net RVV) 44 dos Not 13 Mol 10 The 14 Gos 30 04 PCCV - Avanska & duting contraction work (net RVV) 12 dos The 14 Son 10 Hol 10 The 14 Son 10 Hol 10 05 PCCV - Avanska & duting contraction work (net RVV) 12 dos The 14 Son 10 Hol 10 The 14 Son 10 Hol 10 The 14 Son 10 Hol 10 04 WSD - secontrain dunoting A bying cont RVV) 12 dos										
0 HCC - makels & during conversion works (our WV) 14 day Wull Nay 1 Tu 10 Nay 11 U(0) (6) 01 HCC - sevenias & during conversion works (our WV) 14 day Wull Nay 1 Tu 10 Nay 11 U(0) (6) 05 HCC - sevenias & during conversion works (our WV) 90 day Wull Nay 1 Tu 10 Nay 11 U(0) (6) 06 HCC - sevenias & during conversion works (our WV) 90 day Mull Nay 1 Tu 12 Na 12 07 FCCW - makels & during construction works (our WV) 90 day Mull Nay 1 Tu 12 Na 12 07 FCCW - makels & during construction works (our WV) 90 day Mull Nay 1 Tu 12 Na 12 07 FCCW - makels & during construction works (our WV) 90 day Mull Nay 1 Tu 12 Na 12 07 FCCW - makels & during construction works (our WV) 90 day Full Nay 1 Tu 12 Na 12 07 FCCW - devenias & during to construction works (our WV) 12 day Tu 12 Na 12 Tu 12 Na 12 07 FCCW - devenias & during to construction works (our WV) 12 day Tu 12 Na 12 Tu 12 Na 12 17 WSD - searcatin during work (our WV) 12 day Tu 12 Na 12 Tu 12 Na 12 18 WSD - searcatin d	•									
102 HC2 - rankels & dashing contraction works (nor P(V2) H4 is Non 13 kr it Son										
00/10 HCC - develoal, de danage port 00 million de long to marke de danage port 00 million de long to marke de danage port 00 million de long to marke de danage port 05 PCCW - XP agelación 0 million de long to marke de danage port fond daname de mark de la million de long to marke de marke de l										
Image: display in the second of the secon	7									
695 PCCW -2F application Φh dop Mole 1244 μ/4 The 174 μ/4 μ/4 697 PCCWstandols ducting construction stor (Stor RW2) Φ dop Fiel 134 μ/4 μ/4 R 2105 μ/10 697 PCCWstandols ducting construction stor (Stor RW2) Φ dop Fiel 134 μ/4 R 2105 μ/10 697 PCCWstandols ducting construction stor (Stor RW2) Φ dop Fiel 134 μ/4 K 200 μ/10 697 PCCWdenoise dubes, -shout 4 analyse or (Stor RW2) Φ dop Weil 136 μ/4 710 PCCWdenoise dubes, -shout 4 analyse or (Stor RW1) 124 gs Weil 136 μ/4 711 WSD - nutrini dulvery 55 ds Stor 124 k/4 Weil 136 μ/4 713 WSD - spits finitediation, insultation & laying (tor RW1) 124 gs Stor 124 k/3 k Stor 124 k/3 k 713 WSD - spits finitediation, insultation & laying (tor RW1) 124 gs Stor 124 k/3 k Stor 124 k/3 k Stor 124 k/3 k 716 WSD - storation of constance points 124 gs Tor 124 kr 11 Stor 124 kr 11										
66 PCCW - mathels & ducing contruction works (ner WV1) 44:an Men 13 Mar 18 The 13 Mar 18 Station 18 Stati		•								
PCCW dynamics A-barging over (reveause) and solution 2. Bud A park (well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar) Well 3 Mar 3 Well 3 Mar 3 Well 3 Mar 3 Well 3 Mar 3 										
109 PCCW- drown ok changing over (oversace able) - so to the solution of remaining Bac Cubert \$46 av Yud 13 Mor 1 The 14 Out 30 106 110 WSD - material delivery 75 days The 12 Mor 22 The 13 Jan 27 Sta 12 Aug 4 111 WSD - pipes functication, insultation & laying (nerr RW1) 12 days Sta 12 Aug 4 Sta 12 Aug 4 111 WSD - pipes functication, insultation & laying (nerr RW1) 12 days Sta 12 Aug 4 Sta 12 Aug 4 111 WSD - pipes functication, insultation & laying (nerr RW1) 12 days Sta 12 Aug 4 Sta 12 Aug 4 112 WSD - pipes functication, insultation & laying (nerr RW1) 12 days Sta 12 Aug 4 Sta 12 Aug 4 114 WSD - scaveline of connection points with WSD 16 days The 12 Ner 2 The 12 Ner 2 The 12 Ner 2 116 WSD - standown & down (are Dippes functication insultation & laying (nerr RW1) 3 days Wei 12 Ner 2 The 12 Ner 2 The 12 Ner 2 118 WSD - standown & down (are Dippes functication insultation & laying (nerr RW2) 3 days Wei 12 Ner 2 The 12 Ner 2 <										
Image: Processituation of remaining Base Calibret Image: Processituation of construction points Pail days The 12 May 22 Stul 2 May 4 Image: Processituation of connection points with W3D 12 days Stul 2 May 4 Stul 2 May 4 Image: Processituation of connection points with W3D 12 days Stul 2 May 14 Stul 2 May 12 Stul										
111 WSD - matcrial delivery 75 6gs The 12.89 / 2 Sul 12.84 / 4 112 WSD - pipes findrication, insulial and kiying (near RW) 12 days Sul 12.80 / 3 Wel 12.80 / 4 Sul 52.85 / 3 113 WSD - pipes findrication, insulial and kiying (near RW) 12 days The 12.80 / 18 Sul 12.80 / 2 The 12.80										
112 WSD - pipes fubrication, installation & laying (near RW1) 12 days Star 12 Sep 18 Star 12 Se										
111 WSD - pices frabrication, installation & kaying (meer RW2) 12 days Tw 12 See 18 Stal 12 See 28 111 WSD - concaviation of connection points 7 days Thu 12 Nov 15 Wed 12 Nov 22 Thu 12 Nov 15 115 WSD - inspection of connection points with WSD 1 days Thu 12 Nov 15 Wed 12 Nov 22 Thu 12 Nov 12 116 WSD - swakiling flashing seculitation 6 days Thu 12 Nov 22 Thu 12 Nov 22 Thu 12 Nov 12 116 WSD - stadework commissioning by WSD 3 days Thu 12 Nov 22 Thu 12 Nov 22 Thu 12 Nov 12 116 WSD - stadework commissioning by WSD 3 days Thu 12 Nov 12 Thu 12 Nov 12 Thu 12 Nov 12 118 WSD - construction of and, dia.25 pipes 46 days Stal 12 Dec 1 Thu 13 Nov 17 T/T 117 Construction of fon sla of fox culvert for East Bound 1 days Wei 12 Dec 2 Thu 13 Nov 12										
111 WSD - cavavition of connection points with WSD 7 days Thu 12 Nov 22 Thu 12 Nov 23 Thu 12 Nov 24 Thu 13 Na 17 Thu 13 Na 17 Thu 13 Na 17 Thu 13 Na 17 Thu 13 Na 12 Thu 13 Na										
115 WSD - inspection of connection points with WSD 1 day The 12 Nov 22 114 116 WSD - swabing flushing sterilization 6 days The 12 Nov 22 114 117 WSD - studowe a commissioning WSD 6 days Wel 12 Nov 24 Fn 12 Nov 21 114 118 WSD - removal of disaced pipes/reinstatement 4 days Soit 12 Doc 1 The 12 Nov 21 117 119 WSD - studowe a commissioning box culvert of 2 has flucture at 4 days Soit 12 Doc 1 The 12 Nov 25 118 120 Construction of top slab of box culvert for East Bound 21 days Weil 2 Doc 25 Tue 13 Jan 17 117 123 Backfilling and romould of temporary works 44 days Weil 2 Doc 26 Tue 13 Jan 18 121 124 Construction of top, fotway at downstream 14 days Weil 12 Noc 2 Tue 13 Jan 12 123 125 Resume the case bound maffic 1 days Weil 13 Jan 2 12 Jai 13 Jai 12 12 Jai 13 Jai 12 12 Jai 13 Jai 12 126 Temporary coad surface for Fast Bound 1 days The 13 Jai 12 Jai 13 Jai 12 Jai 13 Jai 12 Jai 13 Jai 12 Jai 13 Jai 14 Jai 13 Jai 13 Jai 13 Jai 13 Jai 13 Jai 13										
110 WSD - swabling/ flushing/ sterilization 6 days Thu 12 Nov 22 The 12 Nov 27 114 117 WSD - shutdown & commissioning by WSD 3 days Wed 12 Nov 28 Fn 12 Nov 30 116,115 118 WSD - removal of disusce plops rinstatement 4 days Satt 12 Dec 1 The 12 Dec 4 117 119 WSD - environi of 3 nos. dia.25 pipes 46 days Satt 12 Dec 1 Thu 13 Jan 17 117 117 Do startection of the slab of box culvert for East Bound 42 ays Wed 12 Dec 5 Fn 13 Dec 75 118 112 Construction of the slab of box culvert for East Bound 42 ays Wed 12 Dec 26 The 13 Jan 8 12 121 Construction of the slab of box culvert for East Bound 44 days Wed 12 Dec 26 The 13 Jan 8 12 122 Construction of temp, footway at downstream 14 days Wed 13 Jan 23 Wed 13 Jan 23 12,124 123 Resume Castbound traffic Labor Labor Thu 13 Sph 14 126 123 Resume Castbound traffic Labor Yed 13 Jan 23 Wed 13 Jan 23 Wed 13 Jan 24 Wed 13 Jan 24 124 Temporprorstoad surfact										
17 WSD - shutdown & commissioning by WSD 3 days Wed 12 Nov 28 Fn 12 Nov 30 116,115 18 WSD - removal of dissed piped reinstatement 4 days Sati 12 Dec 1 The 12 Dec 4 117 19 WSD - distribution of 3 nos, dia 25 pipes 44 days Sati 12 Dec 1 The 12 Dec 4 117 20 Resulting box culvert 477 days Wed 12 Dec 5 Fn 14 Reb 14 21 Construction of tom fab of box culvert for East Bound 21 days Wed 12 Dec 5 The 13 Dan 17 117 22 Construction of tom, fortowy at downstream 14 days Wed 12 Dec 5 The 13 Dan 18 121 23 Backfilling and removal of temporary works 14 days Wed 13 Jan 23 Wed 13 Jan 23 24 Temporary road surface for Fast Bound 14 days Wed 13 Jan 23 Wed 13 Jan 23 25 Resume the cast bound traffic 1 days The 13 Feb 14 126 Temporary road surface for West Bound 1 days 27 Resume Castle Paak Road traffic for both direction 1 days Thu 13 Feb 14 126 Tem 13 Feb 14 126 28 Construction of Tran. Hermater trad surface & Paximg block for foroptath and downstream 35 days Thu 13 Feb 14 126 Tem 13 Feb 14 126 <td></td> <td></td>										
18 WSD - removal of disusced pipes/reinstatement 4 days Set 12 Dec 1 The 13 Jan 17 117 19 WSD - diversion of 3 nos. dia 25 pipes 48 days Set 12 Dec 1 Thu 13 Jan 17 117 20 Recating box culvert 63 day Web 12 Dec 5 Ful Peb 14 21 Construction of top slab of box culvert for East Bound 21 days Weil 12 Dec 5 Tue 12 Dec 25 Tue 13 Jan 8 121 22 Construction of top, footway at downstream 14 days Weil 12 Dec 25 Tue 13 Jan 8 121 23 Backfilling and convolution of term, footway at downstream 14 days Weil 13 Jan 23 123 24 Temporary coast surface for East Bound 14 days Weil 13 Jan 23 123 25 Resume the cust bound raffic 1 daw Weil 13 Jan 23 Weil 13 Jan 23 125 27 Resume Castb Peak Road traffic for both direction 1 day Thu 13 Feb 14 126 28 Construction of remaining top slab of box culvert and footpath at downstream 35 days Thu 13 Feb 14 126 28 Construction of remaining top slab of box culvert and footpath at downstream 35 days Thu										
19 WSD - diversion of 3 nos. dia.25 pipes 48 days Sat 12 Dec 1 Thu 13 Jan 17 117 20 Remaining hor cutwert 437 days Wed 12 Dec 5 FPi 14 Reb 14 21 Construction of tog slab of box culvert for East Bound 12 days Wed 12 Dec 5 TPi 13 Dan 17 22 Construction of tog slab of box culvert for East Bound 12 days Wed 12 Dec 5 TPi 13 Dan 18 121 23 Backfilling and removal of temporary works 14 days Wed 12 Dec 26 TPi 13 Jan 8 121 24 Temporary road surface for East Bound 14 days Wed 13 Jan 23 Wed 13 Feb 14 126 25 Resume the cast bound ruffic 1 days Wed 13 Feb 14 Jan 26 TPi 13 Jan 24 Wed 13 Feb 13 125 27 Resume CaskP exak Road ruffic for both direction 1 day Thu 13 Oct 31 Wed 13 Feb 14 Jan 26 127.108.93.98.103 Tru 13 days Thu 13 Nov 28 Fri 14 Feb 14 J26Fer 74 days.136 28 Implementation of TTA, Permanent road surface & Paving block for footpath and downstream 79 days										
20 Renating box calvert 437 days Wei 12 Dec 5 Pi 14 Peb 14 21 Construction of trop slab of box culvert for East Bound 12 days Wei 12 Dec 5 Tue 12 Dec 5 Tue 12 Dec 5 Tue 13 Low 5 22 Construction of trop, solvay at downstream 14 days Wei 12 Dec 5 Tue 13 Jan 8 12 1 23 Backfilling and removal of temporary works 14 days Wei 13 Jan 9 Tue 13 Jan 8 12 1 24 Temporary road surface for East Bound 14 days Wei 13 Jan 23 12 J.2 J 25 Resume the cash bound traffic 1 days Wei 13 Jan 23 12 J.2 J 27 Resume the cash bound traffic for both direction 1 days Tue 13 Fab 14 12 J.2 J 26 Temporary coad surface for West Bound 1 days Tue 13 Fab 14 12 J.5 J 27 Resume Cashe Paak Road traffic for both direction 1 days Thu 13 Feb 14 126 J 28 Construction of remaining top slab of box culvert and footpath at downstream 35 days Thu 13 Nov 28 Fri 14 Feb 14 126Fs-7 days,136 29 Implementation of TTA. Permanent roud surface & Paving block for forotpath and 79 days Fri 14 Feb 14 <td></td> <td></td>										
121 Construction of top slab of box culvert for East Bound 21 days Weil 12 Dec 25 Tue 12 Dec 25 118 122 Construction of temp, footway at downstream 14 days Weil 12 Dec 26 Tue 13 Jan 8 121 123 Backfilling and removal of temporary works 14 days Weil 12 Dec 26 Tue 13 Jan 8 121 124 Temporary toad surface for East Bound 14 days Weil 13 Jan 23 123 125 Resume the cast bound raffic 1 day Weil 13 Jan 23 123 125 Resume Castle Peak Road traffic for both direction 1 day Tue 13 Fab 14 126 126 Construction of tempnanet revis surface for Vest Bound 1 day Tue 13 Fab 14 126 127 Resume Castle Peak Road traffic for both direction 1 day Tue 13 Fab 14 126 128 Construction of Temp. Finanger Tempa at the downstream 35 days Thu 13 Nov 28 Fri 14 Feb 14 128Fs-7 days.136 129 Implementation of TA. Permanent revis surface & Paving block for forotpath and 79 days Thu 13 Nov 28 Fri 14 Feb 14 128Fs-7 days.136										
222 Construction of temp, footway at downstream 14 days Weil 12 Dec 26 Tue 13 Jan 8 121 23 Backfilling and removal of temporary works 14 days Weil 12 Dec 26 Tue 13 Jan 8 121 24 Temporary coad surface for East Bound 14 days Weil 13 Dec 23 Tue 13 Jan 2 123 24 Temporary coad surface for East Bound 14 days Weil 13 Jan 2 123 25 Resume the cast bound maffic 12 days Weil 13 Jan 2 123 26 Temporary coad surface for West Bound 21 days Weil 13 Jan 2 Weil 13 Jan 2 27 Resume Castle Peak Road maffic for both direction 1 day Thu 13 Feb 14 126 28 Construction of tremaining top slab of box culvert and footpath at downstream 35 days Thu 13 Nov 28 Fri 14 Feb 14 128Fe-7 days.136 29 Implementation of TTA. Permanent road surface & Paving block for footpath and 79 days Thu 13 Nov 28 Fri 14 Feb 14 128Fe-7 days.136	Ť									
124 Temporary tood surface for East Bound 14 days Wei 13 Jan 23 123 125 Resume the cast bound traffic 1 day Wei 13 Jan 23 122,124 126 Temporary tood surface for West Bound 21 day Thu 13 Reh 14 126 127 Resume Castle Peak Road traffic for both direction 1 day Thu 13 Reh 14 126 127 Resume Castle Peak Road traffic for both direction 1 day Thu 13 Reh 14 126 128 Construction of temaining top slab of box culvert and footpath at downstream 35 days Thu 13 Reh 14 1264 129 Implementation of TTA, Permanent rivid surface & Paving block for footpath and 79 days Thu 13 Nov 28 Fri 14 Feb 14 128Fs-7 days.136										
25 Resume the case bound traffic 1 daw Wed 13 Jan 23 Wed 13 Jan 23 122,124 26 Temporary road surface for West Bound 21 days Thu 13 Jan 24 Wed 13 Jeb 13 125 27 Resume Casel Peak Road traffic for both direction 1 day Thu 13 Feb 14 126 28 Construction of remaining top Bab of box culvert and footpath at downstream 35 days Thu 13 Cot 31 Wed 13 Dec 4 127,108,93,98,103 29 Implementation of TTA. Permanent roud surface & Paving block for footpath and mand 79 days Thu 13 Nov 28 Fri 14 Feb 14 128FS-7 days.136										
26 Temporary road surface for West Bound 21 days Tau 13 Jan 24 Wed 13 Feb 13 125 27 Resume Cuale Peak Road raffic for both direction 1 day The 13 Feb 14 Thu 13 Feb 14 Thu 13 Feb 14 126 28 Construction of remaining top slab of box culvert and footpath at downstream 35 days Thu 13 Oct 31 Wed 13 Dec 4 127.108.93.98.103 29 Implementation of TTA. Perment roud surface & Paving block for footpath and any stream 79 days Thu 13 Nov 28 Fri 14 Feb 14 128Fe5.7 days.136										
27 Resume Casule Peak Road traffic for both direction 1 day Thu 13 Feb 14 126 28 Construction of remaining top slab of hox culvert and footpath at downstream 35 days Thu 13 Feb 14 127,108,93,98,103 29 Implementation of TTA, Permanent road surface & Paving block for footpath and associated works 79 days Thu 13 Nev 28 Fri 14 Feb 14 128Fs-7 days,136										
28 Construction of remaining top slab of box culvert and footpath at downstream 35 days Thu 13 Oct 31 Wed 13 Dec 4 127,108,93,98,103 29 Implementation of TTA, Permanent road surface & Paving block for footpath and associated works 79 days Thu 13 Nov 28 Fri 14 Feb 14 1226FS-7 days,136										
29 Implementation of TTA. Permanent road surface & Paving block for footpath and 79 days Thu 13 Nov 28 Fri 14 Feb 14 128FS-7 days.136 associated works										
associated works										
ata Date: 09 Jan 2013 Task Independent Milestone A Rolled Up Task Ender Up Milestone Split Project Summary Inactive Task Deadline	re Task Deadline									



Appendix D

Environmental Monitoring Locations

 $\label{eq:loss} \hline Z:\label{eq:loss} Z:\label{eq:loss} $$ Z:\label{eq:loss} $$ Z:\label{eq:loss} $$ Z:\label{eq:loss} $$ Z:\label{eq:loss} $$ A consulting $$ A consulting $$ A consulting $$ Loss $$$

Appendix E

Calibration certificates of the monitoring equipment and Certificate of ALS Technichem (HK) Pty Ltd

Equipment Calibration List

Items	Aspect	Description of Equipment	Date of Calibration	Date of Next Calibration
1	N	Rion Sound Level Meter (Serial No. 00410247)	29 Apr 14	29 Apr 15
2	Noise	Rion Sound Calibrator (Serial No. 34246492)	28 Feb 14	28 Feb 15
3	Water	SONDA YSI 6820 (Serial No. 02J0912)	11 Apr 14	11 June 14

Note: *Calibration certificates will only be provided when monitoring equipment is re-calibrated or new.

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C142548 證書編號

ITEM TESTED / 送檢I	頁目	(Job No. / 序引編號: IC14-0853)	Date of Receipt / 收件日期: 14 April 2014
Description / 儀器名稱	:	Sound Level Meter (EQ068)	
Manufacturer / 製造商	:	Rion	
Model No. / 型號	:	NL-31	
Serial No. / 編號	:	00410247	
Supplied By / 委託者	:	Action-United Environmental Services and G	Consulting
		Unit A, 20/F., Gold King Industrial Building	7 27
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 26 April 2014

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試	:Pr	K/G Lee roject Engineer			
Certified By 核證	:	K M Wu Engineer	Date of Issue 簽發日期	:	29 April 2014

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C142548 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	UUT	Setting		Applied	Value	UUT	IEC 60651 Type 1
Range	Mode	de Frequency Time Level Freq.				Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	1	93.9	± 0.7

6.1.2 Linearity

	UU	T Setting		Applie	d Value	UUT
Range	Mode	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 120	L _A	А	Fast	94.00	1	93.9 (Ref.)
				104.00		103.9
				114.00		113.9

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

6.2 Time Weighting

6.2.1 Continuous Signal

	Γ Setting		Applied	Value	UUT	IEC 60651 Type 1	
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	А	Fast	94.00 1		93.9	Ref.
			Slow			93.9	± 0.1

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C142548 證書編號

6.2.2 Tone Burst Signal (2 kHz)

	U	JUT Setting		Applied Value		UUT	IEC 60651 Type 1
Range	Mode	Frequency	Time	Level	Level Burst		Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
20 -110	L _A	А	Fast	106.00	106.00 Continuous		Ref.
	L _A max				200 ms	105.0	-1.0 ± 1.0
	L _A		Slow	Continuous		106.0	Ref.
	L _A max				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

UUT Setting			Appl	ied Value	UUT	IEC 60651 Type 1	
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	31.5 Hz	54.2	-39.4 ± 1.5
					63 Hz	67.6	-26.2 ± 1.5
					125 Hz	77.6	-16.1 ± 1.0
					250 Hz	85.2	-8.6 ± 1.0
					500 Hz	90.6	-3.2 ± 1.0
					1 kHz	93.9	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.8	-1.1 (+1.5; -3.0)
					12.5 kHz	89.9	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

		T Setting		Applied Value		UUT	IEC 60651 Type 1
Range	Mode	Frequency	Time	Level	Level Freq.		Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _C	С	Fast	94.00	31.5 Hz	90.6	-3.0 ± 1.5
					63 Hz	93.0	-0.8 ± 1.5
					125 Hz	93.7	-0.2 ± 1.0
					250 Hz	93.9	0.0 ± 1.0
					500 Hz	93.9	0.0 ± 1.0
					1 kHz	93.9	Ref.
					2 kHz	93.8	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	91.0	-3.0 (+1.5; -3.0)
					12.5 kHz	88.1	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C142548 證書編號

6.4 Time Averaging

	UU	JT Setting		ŀ		UUT	IEC 60804			
Range	Mode	Frequency	Integrating	Freq.	Burst	Burst	Burst	Equivalent	Reading	Type 1
(dB)		Weighting	Time	(kHz)	Duration	Duty	Level	Level	(dB)	Spec.
					(ms)	Factor	(dB)	(dB)		(dB)
20 - 110	L _{Aeq}	А	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						$1/10^{2}$		90	90.0	± 0.5
			60 sec.			$1/10^{3}$		80	80.0	± 1.0
			5 min.			1/104		70	70.0	± 1.0

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 319841

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

	No. of Astron	call and previous another provide and provide	to the and the second
- Uncertainties of Applied Value :	94 dB	: 31.5 Hz - 125 Hz	$= \pm 0.35 \text{ dB}$
		250 Hz - 500 Hz	: ± 0.30 dB
		1 kHz	: ± 0.20 dB
		2 kHz - 4 kHz	: ± 0.35 dB
		8 kHz	: ± 0.45 dB
		12.5 kHz	: ± 0.70 dB
	104 dB	: 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	114 dB	: 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	Burst eq	uivalent level	: ± 0.2 dB (Ref. 110 dB
			continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Appendix F

Event and Action Plan

 $\label{eq:loss2011} \hline Z: Jobs \ 2011 \ CS00553 \ (DC-2010-02) \ 600 \ EM\&A\ Monthly\ Report \ 35th - May\ 2014 \ R0351v1. docx\ Action-United\ Environmental\ Services\ and\ Consulting$

Event Action Plan for Construction Noise

EVENT		AC	TION	
EVENI	ET Leader	IEC	ER	Contractor
Action Level	 Notify IEC and Contractor Carry out investigation. Report the results of investigation to the IEC, ER and Contractor. Discuss with the Contractor and formulate remedial measures Increase monitoring frequency to check mitigation effectiveness. 	 Review the analyzed results submitted by the ET. Review the proposed remedial measures by the Contractor and advise the ER accordingly Supervise the implementation of remedial measures 	 Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose 'remedial measures for the analyzed noise problem Check remedial measures are properly implemented. 	 Submit noise mitigation proposals to IEC Implement noise mitigation proposals
Limit Level	 Notify IEC, ER, EPD and Contractor Identify source. Repeat measurements to confirm findings Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Inform IEC, ER and EPD the causes and actions taken for the exceedances Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions Review Contractor's' remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly Supervise the implementation of remedial measures 	 Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analyzed noise problem Check remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated

Event and action Plan for Water Quality

Event	ET Leader	IEC	ER	Contractor
Action level	1. Repeat in-situ measurements to	ACTION LEVEL 1. Discuss mitigation	1. Discuss proposed	1. Inform Engineer and confirm in
being exceeded by one sampling day	 Repeat IF-site intersation in	 Discuss initigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and community writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures.
Action level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of excedance. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures
		LIMIT LEVEL		
Limit level being exceeded by one sampling day	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform EPD, IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures.
Limit level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform EPD, IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures; Consider and if necessary instruct Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check all plant and equipment; Consider changes in working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures; As directed by the Engineer, slow down or stop all or part of the construction activities until no exceedance of Limit level.

 $\label{eq:loss2011} Z: Jobs \ 2011 \ TCS \ 00553 \ (DC-2010-02) \ 600 \ EM \& A \ Monthly \ Report \ 35th - May \ 2014 \ R0351v1. docx \ Action-United \ Environmental \ Services \ and \ Consulting$

Event and action Plan for Hydrological Characteristics

Event	ET Leader	IEC	ER	Contractor
ACTION LEVEL				
Action level being exceeded by one sampling day	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and Engineer; Check monitoring data, Contractor's working methods and any excavation works or dewatering processes; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Repeat measurement on next day of exceedance. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check working methods and any excavation works or dewatering processes; Consider changes in working methods and plans; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures.
Action level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and Engineer; Check monitoring data, Contractor's working methods and any excavation works or dewatering processes; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of exceedance. 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 Discuss proposed mitigation measures with IEC, ET and Contractor; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check working methods and any excavation works or dewatering processes; Consider changes in working methods and plans; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures
Limit level being	1 Repeat in situ measurements to	1 Discuss mitigation	1 Discuss proposed	1. Inform Engineer and confirm in
Limit level being exceeded by one sampling day	 Repeat in-situ measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform AFCD, IEC, Contractor and Engineer; Check monitoring data, and Contractor's working methods and any excavation works or dewatering processes; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. Repeat in-situ measurements to 	 Discuss mitigation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 1. Discuss mitigation	 Discuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures. 1. Discuss proposed	 Inform Engineer and confirm in writing notification of the non-compliance; Rectify unacceptable practice; Check working methods and any excavation works or dewatering processes; Consider changes in working methods and plans; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures.
exceeded by more than two consecutive sampling days	 Repeat in-slid measurements to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform AFCD, IEC, Contractor and Engineer; Check monitoring data and Contractor's working methods and any excavation works or dewatering processes; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented. Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Discuss filligation measures with ET, Engineer and Contractor; Review proposals on mitigation measures submitted by Contractor and advise the Engineer accordingly; Assess effectiveness of implemented mitigation measures. 	 I) blcuss proposed mitigation measures with IEC, ET and Contractor; Request Contractor to critically review the working methods; Make agreement on mitigation measures to be implemented; Assess effectiveness of implemented mitigation measures; Consider and if necessary instruct Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform Engineer and community in writing notification of the non-compliance; Rectify unacceptable practice; Check working methods and any excavation works or dewatering processes; Consider changes in working methods and plans; Discuss with ET, IEC and Engineer and propose mitigation measures to IEC and Engineer within three working days; Implement agreed mitigation measures; As directed by the Engineer, slow down or stop all or part of the construction activities until no exceedance of Limit level.

Appendix G

Monitoring Schedule in Reporting Period and the Coming Month

_		Stream M		
	Date	Water Sampling	Flow Monitoring	 Noise Monitoring
Thu	1-May-14			
Fri	2-May-14	W1, W2, W3, W4	H1, H2, H3, H4	
Sat	3-May-14			
Sun	4-May-14			
Mon	5-May-14	W1, W2, W3, W4		
Tue	6-May-14			
Wed	7-May-14	W1, W2, W3, W4		
Thu	8-May-14			
Fri	9-May-14	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1, M2, M3, M4
Sat	10-May-14			
Sun	11-May-14			
Mon	12-May-14	W1, W2, W3, W4		M1, AL1, M2, M3, M4
Tue	13-May-14			
Wed	14-May-14	W1, W2, W3, W4		
Thu	15-May-14			
Fri	16-May-14	W1, W2, W3, W4	H1, H2, H3, H4	
Sat	17-May-14			
Sun	18-May-14			
Mon	19-May-14	W1, W2, W3, W4		M1, AL1, M2, M3, M4
Tue	20-May-14			
Wed	21-May-14	W1, W2, W3, W4		
Thu	22-May-14			
Fri	23-May-14	W1, W2, W3, W4	H1, H2, H3, H4	
Sat	24-May-14			
Sun	25-May-14			
Mon	26-May-14	W1, W2, W3, W4		
Tue	27-May-14			
Wed	28-May-14	W1, W2, W3, W4		
Thu	29-May-14			
Fri	30-May-14	W1, W2, W3, W4	H1, H2, H3, H4	M1, AL1, M2, M3, M4
Sat	31-May-14			

Monitoring Schedule in this Reporting Period – May 2014

Monitoring Day
Sunday or Public Holiday

-		Stream M		
	Date	Water Sampling	Flow Monitoring	- Noise Monitoring
Sun	1-Jun-14			
Mon	2-Jun-14			
Tue	3-Jun-14	W1, W2, W3, W4		
Wed	4-Jun-14			
Thu	5-Jun-14	W1, W2, W3, W4		M1, AL1, M2, M3, M4
Fri	6-Jun-14			
Sat	7-Jun-14	W1, W2, W3, W4	H1, H2, H3, H4	
Sun	8-Jun-14			
Mon	9-Jun-14	W1, W2, W3, W4		
Tue	10-Jun-14			
Wed	11-Jun-14	W1, W2, W3, W4		M1, AL1, M2, M3, M4
Thu	12-Jun-14			
Fri	13-Jun-14	W1, W2, W3, W4	H1, H2, H3, H4	
Sat	14-Jun-14			
Sun	15-Jun-14			
Mon	16-Jun-14	W1, W2, W3, W4		M1, AL1, M2, M3, M4
Tue	17-Jun-14			
Wed	18-Jun-14	W1, W2, W3, W4		
Thu	19-Jun-14			
Fri	20-Jun-14	W1, W2, W3, W4	H1, H2, H3, H4	
Sat	21-Jun-14			
Sun	22-Jun-14			
Mon	23-Jun-14	W1, W2, W3, W4		M1, AL1, M2, M3, M4
Tue	24-Jun-14			
Wed	25-Jun-14	W1, W2, W3, W4		
Thu	26-Jun-14			
Fri	27-Jun-14	W1, W2, W3, W4	H1, H2, H3, H4	
Sat	28-Jun-14			
Sun	29-Jun-14			
Mon	30-Jun-14	W1, W2, W3, W4		

Monitoring Day
Sunday or Public Holiday

Appendix H

Meteorological Data of Reporting Period

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\35th - May 2014\R0351v1.docx Action-United Environmental Services and Consulting

Meteorological Data in Reporting Period

				Tai Po	Station	Shatin Station		
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Mean Relative Humidity (%)	Wind Speed (km/h)	Wind Direction	
1-May-14	Thu	Sunny periods in the afternoon. Mainly cloudy tonight. Moderate easterly winds, fresh offshore.	2.8	22.6	85.7	7.5	74	
2-May-14	Fri	Sunny periods in the afternoon. Mainly cloudy tonight. Moderate easterly winds, fresh offshore.	Trace	24.6	78	6.8	74	
3-May-14	Sat	Sunny intervals. Moderate northeasterly winds, fresh at times.	0.2	25	82	7.5	81	
4-May-14	Sun	Sunny intervals. Moderate northeasterly winds, fresh at times.	7.3	22.4	86	7.9	86.2	
5-May-14	Mon	Sunny intervals. Moderate northeasterly winds, fresh at times.	26.6	21.1	85	8.1	83.2	
6-May-14	Tue	Cloudy to overcast with showers and a few thunderstorms. Moderate east to southeasterly winds.	1	19.1	85.5	7.8	86	
7-May-14	Wed	Cloudy to overcast with showers and a few thunderstorms. Moderate east to southeasterly winds.	3.2	20.2	92.2	5.5	92.2	
8-May-14	Thu	Cloudy to overcast with showers and squally thunderstorms. Moderate easterly winds.	106.3	21.8	94.2	6.6	92.5	
9-May-14	Fri	Cloudy to overcast with rain and squally thunderstorms. Moderate to fresh east to southeasterly winds.	89.1	21.3	97	8.3	93.7	
10-May-14	Sat	Mainly cloudy with a few showers. Moderate south to southeasterly winds.	12.5	23.5	95	8	92	
11-May-14	Sun	Mainly cloudy with a few showers. Moderate south to southeasterly winds.	164.5	23.4	93	8.2	90	
12-May-14	Mon	Mainly cloudy with a few showers. Moderate south to southeasterly winds.	40.9	24.9	90.7	8.2	83	
13-May-14	Tue	Mainly cloudy, Scattered showers, Sunny intervals. Moderate southwesterly winds.	57.5	26.7	89	11.6	87	
14-May-14	Wed	Mainly cloudy, Scattered showers, Sunny intervals. Moderate southwesterly winds.	2	28	84.5	19.8	81.2	
15-May-14	Thu	Mainly cloudy with a few showers. Moderate south to southeasterly winds.	2.8	28.3	84.5	12.2	83.2	
16-May-14	Fri	Mainly cloudy with a few showers. Moderate southerly winds.	18.8	27.6	88	10	86.5	
17-May-14	Sat	Mainly cloudy with a few showers. Moderate southerly winds.	10.7	27.7	85.7	10	84	
18-May-14	Sun	Mainly cloudy with sunny intervals. Moderate south to southwesterly winds.	1.2	27.1	86.7	12.2	84	
19-May-14	Mon	Mainly cloudy with sunny intervals. Moderate south to southwesterly winds.	0.7	27.4	84	11.2	82.5	
20-May-14	Tue	Mainly cloudy, few showers, frequent with thunderstorms. Moderate south to southwesterly winds.	53.2	26.7	83.2	11.6	80.5	
21-May-14	Wed	Mainly cloudy, few showers, frequent with thunderstorms. Moderate south to southwesterly winds.	47.1	26.4	85.7	11.2	82.2	
22-May-14	Thu	Mainly cloudy with a few showers and isolated thunderstorms. Moderate to fresh south to southwesterly winds.	Trace	27.1	86	16.4	82	
23-May-14	Fri	Hot, rain, sunny periods, a few showers. Moderate south to southeasterly winds.	33.1	25.7	92.7	9.7	88	
24-May-14	Sat	Mainly fine apart from isolated showers, very hot. Moderate southwesterly winds.	0	27.5	85	7.2	82.7	
25-May-14	Sun	Mainly fine apart from isolated showers, very hot. Moderate southwesterly winds.	3.6	28.1	81.7	9.7	79	
26-May-14	Mon	Mainly fine apart from isolated showers, very hot. Moderate southwesterly winds.	Trace	29.6	76.2	9.9	77	
27-May-14	Tue	Mainly cloudy and hot apart from isolated showers. Moderate west to southwesterly winds.	0	30.5	73.7	9.7	74.5	
28-May-14	Wed	Mainly fine and very hot with isolated showers. Moderate to fresh west to southwesterly winds.	0	29.8	72.5	11	73.5	
29-May-14	Thu	Hot. Mainly fine in the afternoon apart from isolated showers. Moderate southwesterly winds, fresh at times.	Trace	29.5	76.7	16	74.5	
30-May-14	Fri	Mainly fine and very hot apart from isolated showers in the afternoon. Moderate southwesterly winds.	2.2	29.9	76.5	9.7	75.2	
31-May-14	Sat	Mainly fine and very hot apart from isolated showers in the afternoon. Moderate southwesterly winds.	Trace	30.2	73	9	72.2	

* The record was downloaded from The Hong Kong Observatory Weather Stations

Appendix I

Data Base of Monitoring Results

Construction Noise Measurement Data

Designated Monitoring Station – M1 (14, Shuen Wan Chim Uk)

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min*}
7-May-14	11:00	-	-	-	-	-	-	63.8
14-May-14	13:35	-	-	-	-	-	-	64.5
21-May-14	12:30	-	-	-	-	-	-	61.2
28-May-14	13:35	-	-	-	-	-	-	61.5
Limit Level		-					> 75 dB(A)	

(*)The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.

Designated Monitoring Station - AL1 (Joint Village Office for Villages in Shuen Wan, Tai Po)

Date	Start Time	1st Leq5m in	2nd Leq5m in	3rd Leq5m in	4th Leq5m in	5th Leq5m in	6th Leq5m in	Leq30min*
7-May-14	11:40	-	-	-	-	-	-	68.8
14-May-14	14:01	-	-	-	-	-	-	67.4
21-May-14	13:10	-	-	-	-	-	-	65.8
28-May-14	14:01	-	-	-	-	_	-	65.4
Limit I	Level	-					> 75 dB(A)	

(*)The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.

Designated Monitoring Station - M2 (150, San Tau Kok)

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min}	Corrected* Leq _{30min}
9-May-14	14:23	60.0	58.2	53.0	58.8	61.4	61.5	59.6	62.6
16-May-14	18:30	60.5	61.8	60.6	57.0	60.4	59.1	60.1	63.1
23-May-14	13:44	56.7	57.9	57.1	56.9	55.7	56.6	56.9	59.9
30-May-14	11:51	60.5	63.4	61.5	55.7	56.4	57.1	60.0	63.0
Limit Level		-					> 75	5 dB(A)	

(*) A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines.

Designated Monitoring Station - M3 (31, Wai Ha)

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min}	Corrected* Leq _{30min}
9-May-14	13:04	56.3	58.3	59.4	58.2	59.6	58.8	58.6	61.6
16-May-14	17:15	59.7	54.0	59.3	57.8	54.8	54.6	57.3	60.3
23-May-14	11:12	53.6	54.8	55.4	53.1	55.0	55.0	54.6	57.6
30-May-14	10:44	55.2	54.4	55.9	56.0	57.5	54.5	55.7	58.7
Limit I	Level				-			> 75	5 dB(A)

(*) A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines.

Designated Monitoring Station – M4 (Block 15, Treasure Spot Garden)

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min}	Corrected* Leq _{30min}
9-May-14	13:41	54.6	53.5	51.6	55.7	53.9	59.6	55.6	58.6
16-May-14	17:52	50.7	48.5	50.2	44.0	51.1	50.5	49.7	52.7
23-May-14	13:01	50.4	48.2	51.1	49.5	50.7	50.7	50.2	53.2
30-May-14	11:18	47.6	47.9	48.4	50.2	51.6	47.9	49.2	52.2
Limit Level					-			> 75 dB(A)	

(*) A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines.

DSD Contract No. DC/2010/02 Contract No. - Drainage Improvement in Shuen Wan and Shek Wu Wai Summary of Water Quality Monitoring Results

AUES

Location					DO (1	ng/L)	-	(%)	Turbidit	y (NTU)		н	SS(m	a/l)
					Action	7.27	Action	n/a	Action	4.77	Action	n/a	Action	9.73
W1 (impact)					Limit	4	Limit	n/a	Limit	5.26	Limit	n/a	Limit	10.77
W2 (impact)					Action	7.26	Action	n/a	Action	2.46	Action	n/a	Action	8.89
W3 (control)		Action/ Limi	t Level		Limit	4 /a	Limit	n/a /a	Limit	3.42 /a	Limit	n/a /a	Limit n/	9.75 ′a
W4 (impact)					Action	9.27	Action	n/a	Action	3.32	Action	n/a	Action	6.98
					Limit	4	Limit	n/a	Limit	4.52	Limit	n/a	Limit	7.66
Date	2-May-14		Tomo	(-0)	DO (D 0	DO (%)					66/	- (1)
Location W1 - ebb	Time	Depth (m)	Temp 28.2		6.2	ng/L)	76.7	i i	3.04	y (NTU)	7.7	H	SS(m	-
(impact)	14:58	0.32	28.2	28.2	6.33	6.3	7.74	42.2	3.11	3.1	7.7	7.7	4	4.0
W1- flood (impact)	9:14	0.39	26.3 26.3	26.3	5.9 5.84	5.9	73.2	73.0	2.87	2.9	7.7	7.7	3	3.0
W2 (Impact)		<1		0.0		0.0		0.0		0.0		0.0		0.0
,			0 28.4		0 5.64		0 72		0 2.91		0 8.1		03	
W3 (control)	15:21	0.36	28.4	28.4	5.53	5.6	71.7	71.9	2.77	2.8	8.1	8.1	3	3.0
W4 (impact)	15:44	0.29	28.5 28.5	28.5	6.07 5.94	6.0	76.1 75.5	75.8	2.56 2.58	2.6	8	8.0	4 4	4.0
			20.3		3.74		75.5		2.30		0		4	
Date	5-May-14				-								-	
Location	Time	Depth (m)	Temp	(oC)		ng/L)	DO	(%)		y (NTU)		H	SS(m	g/L)
W1 - ebb (impact)	16:13	0.21	22.8 22.8	22.8	6.27 6.24	6.3	71.6	71.5	4.31 4.54	4.4	7.1	7.1	5 5	5.0
W1- flood	8:29	0.32	23.4	23.4	6.15	6.2	69.5	70.1	4.88	4.9	7	7.0	5	5.0
(impact)	0.27		23.4		6.21		70.7		4.82		7		5	
W2 (Impact)		<1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
W3 (control)	16:39	0.36	22.5 22.5	22.5	7.35	7.4	82.4 83.5	83.0	3.26 3.64	3.5	7.4	7.4	3	3.0
W4 (impact)	16:54	0.27	22.5	22.5	7.41	7.4	84	83.9	3.47	3.5	7.8	7.8	3	3.0
	10.01	5.27	22.5	22.0	7.38	7.7	83.7	50.7	3.5	5.5	7.8	7.5	3	5.0
Date	7-May-14													
Location	Time	Depth (m)	Temp	(oC)	1) OC	ng/L)	DO	(%)	Turbidit	y (NTU)	pН		SS(mg/L)	
W1 - ebb	17:00	0.32	21	21.0	6.47	6.5	74.7	75.4	5.92	5.8	7.3	7.3	8	8.0
(impact) W1- flood			21 21.7		6.62 6.33		76.1 71.3		5.76 5.43		7.3 7.3		8	
(impact)	9:00	0.24	21.7	21.7	6.3	6.3	70.9	71.1	5.51	5.5	7.3	7.3	7	7.0
W2 (Impact)		<1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
W3 (control)	17:22	0.27	22	22.0	7.62	7.7	87.1	87.7	2.33	2.3	7.6	7.6	2	2.0
	47.44	0.00	22 21.7	04.7	7.79 7.54	7.4	88.2 86.2	<i></i>	2.19 2.16		7.6 7.9	7.0	2	
W4 (impact)	17:41	0.22	21.7	21.7	7.59	7.6	87	86.6	2.26	2.2	7.9	7.9	2	2.0
Date	9-May-14													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(m	g/L)
W1 - ebb	9:04	0.31	22.6	22.6	6.35	6.4	73.8	74.5	33	32.9	7.4	7.4	18	18.0
(impact) W1- flood			22.6 23		6.53 7.03		75.2 81		32.8 29.8		7.3 7.5		18 18	
(impact)	14:12	0.43	23	23.0	6.99	7.0	80.7	80.9	30	29.9	7.5	7.5	18	18.0
W2 (Impact)		<1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
W3 (control)	9:21	0.34	22.5	22.5	8.1	8.1	93.8	93.4	31.8	32.4	7.9	7.9	21	21.0
		-	22.5 22.5		8.04 7.94		92.9 88.3		32.9 48.8		7.9 8.1		21 24	
W4 (impact)	9:17	0.32	22.5	22.5	7.91	7.9	87.9	88.1	47.1	48.0	8.1	8.1	24	24.0
Date	12-May-14													
Location	Time	Depth (m)	Temp	(0C)	DO (r	mg/L)	DO	(%)	Turbidit	y (NTU)	n	н	SS(m	a/L)
W1 - ebb	10:42	0.24	24.1		7.1		84	83.6	8.43	8.6	7.7	7.7	<2	2.0
(impact) W1- flood		-	24.1	24.1	7.02	7.1	83.1 80		8.75		7.7		<2	
(impact)	17:00	0.33	24.6 24.6	24.6	6.75 6.83	6.8	80 80.8	80.4	8.17 8.33	8.3	7.7	7.7	<2 <2	2.0
W2 (Impact)		<1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
W3 (control)	17:30		0 24.8	24.8	0 7.17	7.1	0 85.6	84.6	0 5.78	5.9	0 7.9	7.9	0 <2	2.0
	17:30	0.22	24.8	24.0	7.04	7.1	83.6	04.0	5.94	5.9	7.9	1.9	<2	2.0
W4 (impact)	17:47	0.17	25.2 25.2	25.2	7.33	7.4	86.7 87.2	87.0	6.27 6.03	6.2	8.1 8.1	8.1	<2 <2	2.0
Date	14-May-14	Donth (m)	Temp		DO (mg/l)		(%)	Tuchidia	y (NTU)		H	SS(m	a/l)
Location	Time	Depth (m)	25.4		6.61	mg/L)	81.1	1	5.75		р 7.7	1	63	
W1 - ebb		0.27	25.4	25.4	6.65	6.6	81.7	81.4	5.53	5.6	7.7	7.7	63	63.0
(impact)	11:52				6.26	6.3	76.8	77.1	5.02 4.85	4.9	7.4	7.4	11	11.0
(impact) W1- flood	11:52 17:00	0.34	26.1 26.1	26.1		0.0	11.3				1.4		11	
(impact) W1- flood (impact)		-	26.1		6.3		77.3	0.0		0.0	7.4	0.0	11	0.0
(impact) W1- flood (impact) W2 (Impact)	17:00	<1	26.1 0	0.0	6.3 0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
(impact) W1- flood (impact)		-	26.1 0 26 26		6.3 0 6.99 7.02		0 85.6 86	0.0 85.8	0 9.96 9.68	0.0 9.8	0 7.7 7.7	0.0	0 5 5	0.0 5.0
(impact) W1- flood (impact) W2 (Impact)	17:00	<1	26.1 0 26 26 25.8	0.0	6.3 0 6.99 7.02 6.84	0.0	0 85.6 86 83.2		0 9.96 9.68 7.73		0 7.7 7.7 8		0 5 5 20	
(impact) W1- flood (impact) W2 (Impact) W3 (control)	17:00 17:30	<1 0.25	26.1 0 26 26	0.0 26.0	6.3 0 6.99 7.02	0.0	0 85.6 86	85.8	0 9.96 9.68	9.8	0 7.7 7.7	7.7	0 5 5	5.0
(impact) W1- flood (impact) W2 (Impact) W3 (control)	17:00 17:30	<1 0.25	26.1 0 26 26 25.8	0.0 26.0	6.3 0 6.99 7.02 6.84	0.0	0 85.6 86 83.2	85.8	0 9.96 9.68 7.73	9.8	0 7.7 7.7 8	7.7	0 5 5 20	5.0

DSD Contract No. DC/2010/02 Contract No. - Drainage Improvement in Shuen Wan and Shek Wu Wai Summary of Water Quality Monitoring Results

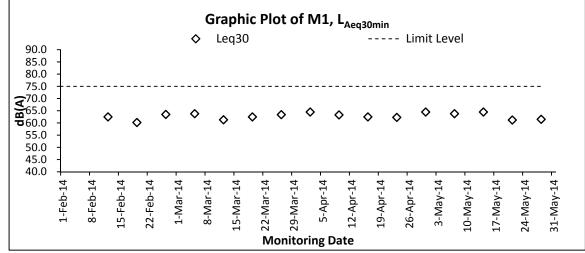
AUES

Location					DO (mg/L) DO (%)			Turbidity (NTU		r	н	SS(m	na/L)	
					Action	7.27	Action	n/a	Action	4.77	Action	n/a	Action	9.73
W1 (impact)					Limit	4	Limit	n/a	Limit	5.26	Limit	n/a	Limit	10.77
W2 (impact)					Action	7.26	Action	n/a	Action	2.46	Action	n/a	Action	8.89
w2 (impact)		Action/ Limi	it Level		Limit	4	Limit	n/a	Limit	3.42	Limit	n/a	Limit	9.75
W3 (control)					-	n/a		/a		/a		n/a	n/	
W4 (impact)					Action	9.27	Action	n/a	Action	3.32	Action	n/a	Action	6.98
			-	(0)	Limit	4	Limit	n/a	Limit	4.52	Limit	n/a	Limit	7.66
Location W1 - ebb	Time	Depth (m)	Temp	(oC)		mg/L)		(%)	Turbidit	Y (NIU)		н	SS(m	ig/L)
(impact)	13:15	0.28	27.5 27.5	27.5	6.78 6.62	6.7	85.1 82.8	84.0	2.11 2.14	2.1	7.1	7.1	<2 <2	2.0
W1- flood	0.00	0.25	26.1	26.1	6.27	4.2	78.7	70.4	2.43	2.4	7	7.0	<2	2.0
(impact)	9:00	0.35	26.1	26.1	6.2	6.2	78	78.4	2.32	2.4	7	7.0	<2	2.0
W2 (Impact)		<1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
			0 27.4		0 6.85		0 86		0 2.99		0		0 <2	
W3 (control)	13:47	0.21	27.4	27.4	6.82	6.8	85.3	85.7	2.87	2.9	7.4	7.4	<2	2.0
W4 (impact)	14:09	0.19	27	27.0	6.51	6.5	81.7	82.3	2.92	2.9	7.3	7.3	<2	2.0
II (impact)	11107	0.17	27	2/10	6.55	0.0	82.8	0210	2.9	2.7	7.3	710	<2	2.0
Data	10													
Date	19-May-14		T	(-0)	DO (D 0	(0/)	Truckisla				66/	
Location	Time	Depth (m)	Temp) (oC)		mg/L)		(%)	Turbidit	iy (NIU)		н	SS(m	ig/L)
W1 - ebb (impact)	15:40	0.24	31.3 31.3	31.3	7.92	7.9	102.2 100.7	101.5	<u>11.1</u> 9.85	10.5	7.1	7.1	<u>11</u> 11	11.0
W1- flood	0.47	0.00	30.2	20.0	7.82	7 4	92.8	02.0	9.85	12.4	7.1	7.0	14	14.0
(impact)	9:47	0.33	30.2	30.2	7.1	7.1	91.2	92.0	12.9	13.4	7	7.0	14	14.0
W2 (Impact)		<1	^	0.0		0.0		0.0		0.0		0.0		0.0
			0 31.5		0 6.32		0 86		0 87.5		0 7.4		0 24	
W3 (control)	15:00	0.29	31.5	31.5	6.44	6.4	87.6	86.8	87.5	86.2	7.4	7.4	24	24.0
W4 (impact)	15:27	0.22	31	31.0	7.29	7.3	94.2	94.6	12.1	12.4	7.3	7.3	9	9.0
www (impact)	13.27	0.22	31	51.0	7.22	1.3	94.9	74.0	12.6	12.4	7.3	1.3	9	7.0
Date	21-May-14													
Location	Time	Depth (m)	Temp	(0C)		mg/L)		(%)	Turbidit	y (NTU)		ьH	SS(m	ig/L)
W1 - ebb	17:18	0.23	28.7	28.7	7.36	7.4	100.5	101.2	23.16	23.1	7.5	7.5	60	60.0
(impact) W1- flood			28.7 27.9		7.49 7.03		101.9 95.1		23.08 23.62		7.5 7.3		60 57	
(impact)	10:31	0.27	27.9	27.9	7.18	7.1	96.6	95.9	23.87	23.7	7.4	7.4	57	57.0
W2 (Impact)		<1		0.0		0.0		0.0		0.0		0.0		0.0
112 (impuot)			0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
W3 (control)	17:36	0.22	28.5 28.5	28.5	7.82	7.9	103.4 104.4	103.9	21.47 21.53	21.5	7.7	7.8	74 74	74.0
	17.10		28.3		7.73		104.4		21.33		7.4		73	
W4 (impact)	17:49													
L , ,		0.18	28.3	28.3	7.62	7.7	101.2	102.0	21.24	21.3	7.5	7.5	73	73.0
		0.10	28.3	28.3		7.7		102.0		21.3		7.5		73.0
Date	23-May-14	0.10			7.62		101.2		21.24		7.5		73	
Date Location		Depth (m)	Temp		7.62 DO (1	7.7 mg/L)	101.2 DO	102.0 (%)	21.24 Turbidit		7.5	7.5 DH	73 SS(m	
Date Location W1 - ebb	23-May-14	1	Temp 30.1		7.62 DO (1 6.44		101.2 DO 83.1		21.24 Turbidit 22.35		7.5 F 7.3		73 SS(m 54	
Date Location W1 - ebb (impact)	23-May-14 Time 10:46	Depth (m) 0.21	Temp 30.1 30.1	o (oC) 30.1	7.62 DO (1 6.44 6.33	mg/L) 6.4	101.2 DO 83.1 79.6	(%) 81.4	21.24 Turbidit 22.35 21.99	:y (NTU) 22.2	7.5 F 7.3 7.3	рН 7.3	73 SS(m 54 54	g∕L) 54.0
Date Location W1 - ebb	23-May-14 Time	Depth (m)	Temp 30.1) (oC)	7.62 DO (1 6.44	mg/L)	101.2 DO 83.1	(%)	21.24 Turbidit 22.35	y (NTU)	7.5 F 7.3	bH	73 SS(m 54	ig/L)
Date Location W1 - ebb (impact) W1- flood (impact)	23-May-14 Time 10:46	Depth (m) 0.21 0.25	Temp 30.1 30.1 29 29	(oC) 30.1 29.0	7.62 DO ((6.44 6.33 6.96 6.91	mg/L) 6.4 6.9	DO 83.1 79.6 93.2 92.4	(%) 81.4 92.8	21.24 Turbidit 22.35 21.99 21.28 22.08	y (NTU) 22.2 21.7	7.5 7.3 7.3 7.4 7.4	5H 7.3 7.4	73 SS(m 54 54 52 52	g/L) 54.0 52.0
Date Location W1 - ebb (impact) W1- flood (impact) W2 (Impact)	23-May-14 Time 10:46 17:00	Depth (m) 0.21 0.25 <1	Temp 30.1 30.1 29 29 0	(oC) 30.1 29.0 0.0	7.62 DO (6.44 6.33 6.96 6.91 0	mg/L) 6.4 6.9 0.0	101.2 DO 83.1 79.6 93.2 92.4 0	(%) 81.4 92.8 0.0	21.24 Turbidit 22.35 21.99 21.28 22.08 0	y (NTU) 22.2 21.7 0.0	7.5 7.3 7.3 7.4 7.4 0	рН 7.3	73 SS(m 54 52 52 0	g∕L) 54.0
Date Location W1 - ebb (impact) W1- flood (impact)	23-May-14 Time 10:46 17:00	Depth (m) 0.21 0.25	Temp 30.1 30.1 29 29 0 30.4	(oC) 30.1 29.0	7.62 DO (1 6.44 6.33 6.96 6.91 0 8.71	mg/L) 6.4 6.9	101.2 DO 83.1 79.6 93.2 92.4 0 71.2	(%) 81.4 92.8	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21	y (NTU) 22.2 21.7	7.5 7.3 7.3 7.4 7.4 0 7.6	о н 7.3 7.4	73 SS(m 54 52 52 0 41	g/L) 54.0 52.0
Date Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control)	23-May-14 Time 10:46 17:00 10:11	Depth (m) 0.21 0.25 <1 0.22	Temp 30.1 30.1 29 29 0	(oC) 30.1 29.0 0.0 30.4	7.62 DO (6.44 6.33 6.96 6.91 0	mg/L) 6.4 6.9 0.0 8.7	101.2 DO 83.1 79.6 93.2 92.4 0	(%) 81.4 92.8 0.0 71.1	21.24 Turbidit 22.35 21.99 21.28 22.08 0	y (NTU) 22.2 21.7 0.0 21.2	7.5 7.3 7.3 7.4 7.4 0	PH 7.3 7.4 0.0 7.6	73 SS(m 54 52 52 0	g/L) 54.0 52.0 0.0 41.0
Date Location W1 - ebb (impact) W1- flood (impact) W2 (Impact)	23-May-14 Time 10:46 17:00	Depth (m) 0.21 0.25 <1	Temp 30.1 30.1 29 29 0 30.4 30.4	(oC) 30.1 29.0 0.0	7.62 DO (1 6.44 6.33 6.96 6.91 0 8.71 8.65	mg/L) 6.4 6.9 0.0	DO 83.1 79.6 93.2 92.4 0 71.2 70.9	(%) 81.4 92.8 0.0	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25	y (NTU) 22.2 21.7 0.0	7.5 7.3 7.3 7.4 7.4 0 7.6 7.6	DH 7.3 7.4 0.0	73 SS(m 54 54 52 52 0 41 41	19/L) 54.0 52.0 0.0
Date Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W4 (impact)	23-May-14 Time 10:46 17:00 10:11 10:26	Depth (m) 0.21 0.25 <1 0.22	Temp 30.1 30.1 29 29 0 30.4 30.4 30.5	(oC) 30.1 29.0 0.0 30.4	7.62 DO (6.44 6.33 6.96 6.91 0 8.71 8.65 6.67	mg/L) 6.4 6.9 0.0 8.7	101.2 DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6	(%) 81.4 92.8 0.0 71.1	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78	y (NTU) 22.2 21.7 0.0 21.2	7.5 7.3 7.3 7.4 7.4 7.4 0 7.6 7.6 7.7	PH 7.3 7.4 0.0 7.6	73 SS(m 54 52 52 0 41 41 38	g/L) 54.0 52.0 0.0 41.0
Date Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14	Depth (m) 0.21 0.25 <1 0.22 0.18	Temp 30.1 30.1 29 29 0 30.4 30.4 30.5 30.5	(oC) 30.1 29.0 0.0 30.4 30.5	7.62 DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59	mg/L) 6.4 6.9 0.0 8.7 6.6	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3	 (%) 81.4 92.8 0.0 71.1 85.0 	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64	y (NTU) 22.2 21.7 0.0 21.2 21.7	7.5 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7	7.3 7.4 0.0 7.6 7.7	73 54 54 52 52 0 41 41 38 38	g/L) 54.0 52.0 0.0 41.0 38.0
Date Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact) Date Location	23-May-14 Time 10:46 17:00 10:11 10:26	Depth (m) 0.21 0.25 <1 0.22	Temp 30.1 30.1 29 29 0 30.4 30.4 30.5 30.5 Temp	(oC) 30.1 29.0 0.0 30.4 30.5	DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (i	mg/L) 6.4 6.9 0.0 8.7	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 DO	(%) 81.4 92.8 0.0 71.1	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit	y (NTU) 22.2 21.7 0.0 21.2 21.7	7.5 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7 7.7	PH 7.3 7.4 0.0 7.6	73 54 54 52 52 0 41 41 38 38 SS(m	g/L) 54.0 52.0 0.0 41.0 38.0
Date Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) Date Location W1 - ebb	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14	Depth (m) 0.21 0.25 <1 0.22 0.18	Temp 30.1 30.1 29 29 0 30.4 30.4 30.5 30.5 Temp 30.1	(oC) 30.1 29.0 0.0 30.4 30.5	DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (i 6.44	mg/L) 6.4 6.9 0.0 8.7 6.6	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 DO 83.1	 (%) 81.4 92.8 0.0 71.1 85.0 	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35	y (NTU) 22.2 21.7 0.0 21.2 21.7	7.5 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7 7.7	7.3 7.4 0.0 7.6 7.7	73 54 52 52 0 41 41 38 38 SS(m 3	g/L) 54.0 52.0 0.0 41.0 38.0
Date Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact) Date Location	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46	Depth (m) 0.21 0.25 <1 0.22 0.18	Temp 30.1 30.1 29 29 0 30.4 30.4 30.5 30.5 Temp	(oC) 30.1 29.0 0.0 30.4 30.5	DO (t) 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (t) 6.44 6.33	mg/L) 6.4 6.9 0.0 8.7 6.6 mg/L) 6.4	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 DO 83.1 79.9	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7 y (NTU) 2.2	7.5 7.3 7.4 7.4 7.4 7.6 7.6 7.6 7.7 7.7 7.7 7.7	н 7.3 7.4 0.0 7.6 7.7 н т 7.3	73 54 54 52 52 0 41 41 38 38 SS(m 3 3 3	g/L) 54.0 52.0 0.0 41.0 38.0 g/L) 3.0
Date Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W4 (impact) Date Location W1 - ebb (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time	Depth (m) 0.21 0.25 <1 0.22 0.18	Temp 30.1 30.1 29 0 30.4 30.4 30.5 30.5 Temp 30.1 30.1	(oC) 30.1 29.0 0.0 30.4 30.5	DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (i 6.44	mg/L) 6.4 6.9 0.0 8.7 6.6	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 DO 83.1	 (%) 81.4 92.8 0.0 71.1 85.0 (%) 	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7	7.5 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7 7.7	H 7.3 7.4 0.0 7.6 7.7	73 54 52 52 0 41 41 38 38 SS(m 3	g/L) 54.0 52.0 0.0 41.0 38.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46	Depth (m) 0.21 0.25 <1 0.22 0.18	Temp 30.1 30.1 29 29 0 30.4 30.4 30.5 30.5 30.5 Temp 30.1 30.1 29 29	(oC) 30.1 29.0 0.0 30.4 30.5	DO (t) 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (t) 6.44 6.33 6.96 6.91	mg/L) 6.4 6.9 0.0 8.7 6.6 mg/L) 6.4	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 DO 83.1 79.6 93.2 92.4	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7 y (NTU) 2.2	7.5 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7 7.7 7.7 7.3 7.3 7.4 7.4	н 7.3 7.4 0.0 7.6 7.7 н т 7.3	73 54 52 52 62 0 41 38 38 38 3 3 3 3 3 3 3 3 3 3	g/L) 54.0 52.0 0.0 41.0 38.0 g/L) 3.0
Date Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m)	Temp 30.1 30.1 29 29 0 30.4 30.4 30.4 30.5 30.5 Temp 30.1 29 29 29 0 0 0 0 0 0 0 0 0 0 0 0 0	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0	DO (i) 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (i) 6.44 6.33 6.96 6.91 0 0 0 0	mg/L) 6.4 6.9 0.0 8.7 6.6 6.4 6.4 6.9 0.0	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 83.6 84.3 DO 83.1 79.6 93.2 92.4 0 71.2 70.9 83.1 79.6 93.2 92.4 0	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 0 0 0 0 0 0 0 0 0 0 0 0	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7 y (NTU) 2.2 2.2 0.0	7.5 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.3 7.3 7.4 7.4	H 7.3 7.4 0.0 7.6 7.7 H T.7 0.0	73 54 52 52 52 0 41 38 38 38 31 3 3 3 0 0 0	g/L) 54.0 52.0 0.0 41.0 38.0 g/L) 3.0 3.0 0.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m)	Temp 30.1 30.1 29 0 30.4 30.4 30.5 30.5 30.5 Temp 30.1 30.1 29 29 29 0 30.4	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0	DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 0 6.33 6.96 6.91 0 8.71	mg/L) 6.4 6.9 0.0 8.7 6.6 mg/L) 6.4 6.9	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 DO 83.1 79.6 93.2 92.4	 (%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 0 1.21	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7 y (NTU) 2.2 2.2 2.2	7.5 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.3 7.3 7.4 7.4 7.4 0 7.6	H 7.3 7.4 0.0 7.6 7.7 H T.3 7.4	73 54 52 52 52 0 41 38 38 SS(m) 3 3 3 3 3 0 <2	g/L) 54.0 52.0 0.0 41.0 38.0 g/L) 3.0 3.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m)	Temp 30.1 30.1 29 29 0 30.4 30.4 30.4 30.5 30.5 30.5 Temp 30.1 29 29 29 0	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0 30.4	DO (t) 6.44 6.33 6.96 0 8.71 8.65 6.67 6.59 DO (t) 6.44 6.33 6.96 0.91 0 8.71 8.65 6.91 0 8.71 8.65 6.67	mg/L) 6.4 6.9 0.0 8.7 6.6 6.6 6.4 6.9 0.0 8.7	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 DO 83.1 79.9 0 71.2 70.9 85.6	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 0 0 0 0 0 0 0 0 0 0 0 0	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7 y (NTU) 2.2 2.2 2.2 0.0 1.2	7.5 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.6 7.6 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 0 7.6 7.6 7.7	H 7.3 7.4 0.0 7.6 7.7 H 7.3 7.4 0.0 7.6	73 54 52 52 0 41 38 38 33 41 3 3 3 3 3 4 4 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 <	g/L) 54.0 52.0 0.0 41.0 38.0 38.0 3.0 3.0 3.0 2.0
Date Location W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m)	Temp 30.1 30.1 29 0 30.4 30.4 30.4 30.5 30.5 30.5 Temp 30.1 30.1 30.1 29 0 0 30.4 30.4	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0	DO (i 6.44 6.33 6.96 6.91 0 8.65 6.67 6.59 DO (i 6.44 6.33 6.96 6.91 0 8.65 6.67 6.99 0 8.71 8.65	mg/L) 6.4 6.9 0.0 8.7 6.6 6.4 6.4 6.9 0.0	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 DO 83.1 79.6 93.2 92.4 0 71.9 85.6 84.3 0 73.2 92.4 0 71.2 70.9	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 0 1.21 1.25 2.08	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7 y (NTU) 2.2 2.2 0.0	7.5 7.3 7.4 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7 7.7 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.6	H 7.3 7.4 0.0 7.6 7.7 H T.7 0.0	73 54 52 52 52 0 41 38 38 33 3 3 3 0 <2	g/L) 54.0 52.0 0.0 41.0 38.0 g/L) 3.0 3.0 0.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W3 (control) W3 (control)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m)	Temp 30.1 30.1 29 29 0 30.4 30.4 30.5 30.5 Temp 30.1 30.1 30.1 29 9 0 0 30.4 30.4 30.5 30.5 30.5 30.5 30.1 29 30.4 30.4 30.5 30 30 30 30 30 30 30 30 30 30	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0 30.4	DO (t) 6.44 6.33 6.96 0 8.71 8.65 6.67 6.59 DO (t) 6.44 6.33 6.96 0.91 0 8.71 8.65 6.91 0 8.71 8.65 6.67	mg/L) 6.4 6.9 0.0 8.7 6.6 6.6 6.4 6.9 0.0 8.7	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 DO 83.1 79.9 0 71.2 70.9 85.6	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 1.21 1.99 2.28 2.08 0 1.25 1.99 2.28 2.08 0 1.99 2.28 2.08 0 1.99 2.125 1.78 2.1.78 2.1.78 2.1.78 2.1.84 1.99 2.28 2.08 0 1.99 2.1.25 2.1.78 2.1.25 2.1.78 2.1.84 1.99 2.28 2.08 1.99 2.1.25 2.1.78 2.1.25 2.1.78 2.1.84 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.99 2.28 2.08 1.78 2.78	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7 y (NTU) 2.2 2.2 2.2 0.0 1.2	7.5 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.6 7.6 7.3 7.3 7.3 7.3 7.4 7.4 7.4 0 7.6 7.6 7.7	H 7.3 7.4 0.0 7.6 7.7 H 7.3 7.4 0.0 7.6	73 54 52 52 0 41 38 38 33 41 3 3 3 3 3 4 4 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 <	g/L) 54.0 52.0 0.0 41.0 38.0 38.0 3.0 3.0 3.0 2.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W3 (control) W3 (control) W4 (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m) <1	Temp 30.1 30.1 29 0 30.4 30.4 30.5 30.5 Temp 30.1 30.1 30.1 29 29 29 0 30.4 30.5 30.5 5 30.5	a (oC) 30.1 29.0 0.0 30.4 30.5 30.1 29.0 0.0 30.1 29.0 0.0 30.4 30.5 30.1	DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 0 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.96 0 8.71 8.65 6.67 6.59	mg/L) 6.4 6.9 0.0 8.7 6.6 6.4 6.4 6.9 0.0 8.7 6.6	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 1.21 1.25 1.78 1.64	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7 y (NTU) 2.2 2.2 2.2 0.0 1.2 1.7	7.5 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	H 7.3 7.4 0.0 7.6 7.7 H 7.3 7.4 0.0 7.6 7.6	73 54 52 52 52 60 41 38 38 38 30 31 32 33 3 3 3 3 3 3 0 <2 <2 <2 <2 <2	g/L) 54.0 52.0 0.0 41.0 38.0 3.0 3.0 3.0 0.0 2.0 2.0
Date Location W1 - ebb (impact) W1- flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W3 (control) W3 (control) W4 (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m)	Temp 30.1 30.1 29 0 30.4 30.4 30.5 30.5 Temp 29 29 0 30.4 30.1 30.1 30.1 29 29 0 30.4 30.5 30.5 Temp 29 29 7 7 7 7 7 7 7 7 7 7 7 7 7	a (oC) 30.1 29.0 0.0 30.4 30.5 30.1 29.0 0.0 30.1 29.0 0.0 30.4 30.5 30.1	DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 0 6.44 6.33 6.96 0 8.71 8.65 6.67 6.96 0 8.71 8.65 6.67 6.59 0 8.71 8.65 6.67 6.59	mg/L) 6.4 6.9 0.0 8.7 6.6 6.6 6.4 6.9 0.0 8.7	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 93.2 92.4 0 71.2 70.9 85.6 84.3 0 77.9 85.6 84.3	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.08 Turbidit 1.25 2.08 0 1.21 1.25 1.99 2.28 2.08 0 1.21 1.25 1.99 2.28 2.08 0 1.21 1.25 1.99 2.12 21.64 Turbidit 1.99 2.08 Turbidit Turbidit 1.99 2.08 Turbidit Turbidit 1.25 1.78 1.64	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7 y (NTU) 2.2 2.2 2.2 0.0 1.2 1.7	7.5 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7	H 7.3 7.4 0.0 7.6 7.7 H 7.3 7.4 0.0 7.6	73 54 52 52 52 52 0 41 38 38 SS(m) 3 3 3 3 3 3 3 0 <2 <2 <2 <2 <2 SS(m)	g/L) 54.0 52.0 0.0 41.0 38.0 3.0 3.0 3.0 0.0 2.0 2.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact) W4 (impact) W4 (impact) W4 (impact) W4 (impact) W4 (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m)	Temp 30.1 30.1 29 0 30.4 30.4 30.5 30.5 Temp 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.5 Temp 30.4 30.5 30.5 7 30.5 30	a (oC) 30.1 29.0 0.0 30.4 30.5 30.1 29.0 0.0 30.1 29.0 0.0 30.4 30.5 30.1	DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (i 6.44 6.33 6.96 90 6.44 6.33 6.96 91 0 8.71 8.65 6.67 6.59 DO (i 7.93	mg/L) 6.4 6.9 0.0 8.7 6.6 6.4 6.4 6.9 0.0 8.7 6.6	DO 83.1 79.6 93.2 92.4 0 70.9 85.6 84.3 DO 83.1 79.6 93.2 92.4 0 70.9 85.6 84.3 0 70.9 92.4 0 70.9 85.6 84.3 DO 70.9 85.6 84.3 DO 93.4	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 1.21 1.25 1.99 2.28 2.08 0 1.21 21.25 1.99 2.125 21.78 21.64 Turbidit 2.08 Turbidit 2.08 Turbidit 2.08 Turbidit 2.08 Turbidit 2.125 2.178 2.164 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.91 Turbidit 2.91	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7 y (NTU) 2.2 2.2 2.2 0.0 1.2 1.7	7.5 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	H 7.3 7.4 0.0 7.6 7.7 H 7.3 7.4 0.0 7.6 7.6	73 54 52 52 52 52 52 38 38 3 3 3 3 3 3 3 0 <2	g/L) 54.0 52.0 0.0 41.0 38.0 3.0 3.0 3.0 0.0 2.0 2.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14 Time 12:41	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m) <1 <1 Depth (m) 0.24	Temp 30.1 30.1 29 29 0 30.4 30.4 30.5 30.5 30.5 Temp 29 29 0 30.4 30.1 29 29 0 30.4 30.1 30.5 30.	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0 30.1 29.0 0.0 30.1 29.0 0.0 30.4 30.5 (oC) 30.4 30.5 (oC) 30.3	DO (t) 6.44 6.33 6.96 0 8.71 8.65 6.67 6.59 DO (t) 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 0 8.71 8.65 6.67 6.59 DO (t) 8.03	mg/L) 6.4 6.9 0.0 8.7 6.6 6.4 6.4 6.9 0.0 8.7 6.6 8.7 6.6	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 DO 83.1 79.6 93.2 92.4 0 70.9 93.2 92.4 0 71.2 70.9 92.4 0 71.2 70.6 93.2 92.4 0 71.2 70.9 92.4 0 71.2 70.9 93.6 84.3 DO 93.4 92.8	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0 (%) 93.1	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 1.21 1.25 1.78 1.64 Turbidit 2.91 2.84	y (NTU) 22.2 21.7 0.0 21.2 21.7 2.1.7 2.2 2.2 0.0 1.2 1.7 1.7 y (NTU) 2.9	7.5 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.6 7.7 7.7	H 7.3 7.4 0.0 7.6 7.6 7.7 7.7 7.4 0.0 7.4 0.0 7.6 7.6 7.7	73 54 52 52 52 0 41 38 38 3 3 0 <2	g/L) 54.0 52.0 0.0 41.0 38.0 g/L) 3.0 2.0 2.0 g/L) 3.0 3.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact) W4 (impact) W4 (impact) W4 (impact) W4 (impact) W4 (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14 Time	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m) <1	Temp 30.1 30.1 29 0 30.4 30.4 30.5 30.5 Temp 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.5 Temp 30.4 30.5 30.5 7 30.5 30	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.4 30.5 (oC) 30.4 30.5	DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (i 6.44 6.33 6.96 90 6.44 6.33 6.96 91 0 8.71 8.65 6.67 6.59 DO (i 7.93	mg/L) 6.4 6.9 0.0 8.7 6.6 6.4 6.4 6.9 0.0 8.7 6.6 8.7 6.6	DO 83.1 79.6 93.2 92.4 0 70.9 85.6 84.3 DO 83.1 79.6 93.2 92.4 0 70.9 85.6 84.3 0 70.9 92.4 0 70.9 85.6 84.3 DO 70.9 85.6 84.3 DO 93.4	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0 (%)	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 1.21 1.25 1.99 2.28 2.08 0 1.21 21.25 1.99 2.125 21.78 21.64 Turbidit 2.08 Turbidit 2.08 Turbidit 2.08 Turbidit 2.08 Turbidit 2.125 2.178 2.164 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.28 2.08 Turbidit 2.91 Turbidit 2.91	y (NTU) 22.2 21.7 0.0 21.2 21.7 y (NTU) 2.2 2.2 0.0 1.2 1.7 1.7	7.5 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	H 7.3 7.4 0.0 7.6 7.7 7.7 7.7 7.4 0.0 7.4 0.0 7.6 7.7	73 54 52 52 52 52 52 38 38 3 3 3 3 3 3 3 0 <2	g/L) 54.0 52.0 0.0 41.0 38.0 g/L) 3.0 0.0 2.0 2.0 g/L)
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14 Time 12:41 17:09	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m) Depth (m) <1	Temp 30.1 30.1 29 0 30.4 30.4 30.5 30.5 Temp 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.5 Temp 30.4 30.5 30.5 30.5 7 30.4 30.5 30	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0 30.1 29.0 0.0 30.4 30.5 (oC) 30.4 30.5 (oC) 30.3 28.4	DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.91 0 8.71 8.65 6.67 6.59 DO (i 7.93 8.03 7.41 7.58	mg/L) 6.4 6.9 0.0 8.7 6.6 mg/L) 6.4 6.4 6.9 0.0 8.7 6.6 mg/L) 8.0 7.5	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 0 71.2 70.9 85.6 84.3 0 71.2 70.9 85.6 84.3 0 71.2 70.9 85.6 84.3 0 71.2 70.9 85.6 84.3	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0 (%) 93.1 85.4	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 1.21 1.25 1.78 1.64 Turbidit 2.91 2.84 3.84 3.72	y (NTU) 22.2 21.7 0.0 21.2 21.7 y (NTU) 2.2 2.2 0.0 1.2 1.7 1.7 y (NTU) 2.9 3.8	7.5 7.3 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	7.3 7.4 0.0 7.6 7.7 7.7 7.7 7.7 7.3 7.3 7.4 0.0 7.3 7.4 0.0 7.4 0.0 7.4 0.0 7.6 7.7 0.0 7.5 7.6	73 54 52 52 52 0 41 38 38 3 3 3 3 3 0 <2	g/L) 54.0 52.0 0.0 41.0 38.0 38.0 3.0 0.0 2.0 2.0 3.0 2.0 2.0 3.0 2.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W1 - ebb (impact) W2 (Impact) W2 (Impact) W3 (control) W3 (control) W3 (control) W4 (impact) W3 (control) W4 (impact) W3 (control) W4 (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14 Time 12:41 17:09	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m) <1 <1 Depth (m) 0.24	Temp 30.1 30.1 29 29 0 30.4 30.4 30.5 30.5 30.5 30.5 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0 30.1 29.0 0.0 30.1 29.0 0.0 30.4 30.5 (oC) 30.4 30.5 (oC) 30.3	DO (i) 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (i) 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.90 0 8.71 8.65 6.67 6.59 0 7.93 8.03 7.41 7.58 0	mg/L) 6.4 6.9 0.0 8.7 6.6 6.4 6.4 6.9 0.0 8.7 6.6 8.7 6.6	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 83.1 70.6 93.2 92.4 0 71.2 70.9 83.1 79.6 93.2 92.4 0 71.2 70.9 83.6 84.3 DO 71.2 70.9 85.6 85.6 85.6 85.1 0	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0 (%) 93.1	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 1.21 1.25 1.78 1.64 Turbidit 2.91 0 1.21 1.64	y (NTU) 22.2 21.7 0.0 21.2 21.7 2.1.7 2.2 2.2 0.0 1.2 1.7 1.7 y (NTU) 2.9	7.5 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.6 7.7 7.7 7.7	H 7.3 7.4 0.0 7.6 7.6 7.7 7.7 7.4 0.0 7.4 0.0 7.6 7.6 7.7	73 54 52 52 52 0 41 38 38 3 3 3 3 3 0 <2	g/L) 54.0 52.0 0.0 41.0 38.0 g/L) 3.0 2.0 2.0 g/L) 3.0 3.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14 Time 12:41 17:09	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m) Depth (m) <1	Temp 30.1 30.1 29 0 30.4 30.4 30.5 30.5 30.5 Temp 29 29 29 0 30.4 30.1 29 29 0 30.4 30.5 30.5 Temp 29 29 29 29 29 29 29 29 29 29 29 29 29	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0 30.1 29.0 0.0 30.4 30.5 (oC) 30.4 30.5 (oC) 30.3 28.4	DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 0 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 0 8.71 8.65 6.67 6.59 0 8.03 7.41 7.58 0 8.16	mg/L) 6.4 6.9 0.0 8.7 6.6 mg/L) 6.4 6.4 6.9 0.0 8.7 6.6 mg/L) 8.0 7.5	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 0 71.2 70.9 85.6 84.3 0 71.2 70.9 85.6 84.3 0 71.2 70.9 85.6 84.3 0 93.4 92.8 85.1 0 97.6	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0 (%) 93.1 85.4	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 1.21 1.25 1.78 1.64 Turbidit 2.91 2.28 2.08 0 1.21 1.25 1.78 1.64 Turbidit 2.91 2.84 3.72 0 2.69	y (NTU) 22.2 21.7 0.0 21.2 21.7 y (NTU) 2.2 2.2 0.0 1.2 1.7 1.7 y (NTU) 2.9 3.8	7.5 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.7 7.7 7.7 7.7	7.3 7.4 0.0 7.6 7.7 7.7 7.7 7.7 7.3 7.3 7.4 0.0 7.3 7.4 0.0 7.4 0.0 7.4 0.0 7.6 7.7 0.0 7.5 7.6	73 54 52 52 52 52 38 38 38 31 33 3 3 3 3 3 3 3 3 3 3 2 2 0 3 2 0 3 <tr< td=""><td>g/L) 54.0 52.0 0.0 41.0 38.0 38.0 3.0 0.0 2.0 2.0 3.0 2.0 3.0 2.0</td></tr<>	g/L) 54.0 52.0 0.0 41.0 38.0 38.0 3.0 0.0 2.0 2.0 3.0 2.0 3.0 2.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W3 (control) W1 - ebb (impact) W1 - flood (impact) W1 - flood (impact) W3 (control) W3 (control) W3 (control)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14 Time 12:41 17:09 17:09	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m) Depth (m) 0.24 0.24 0.27 <1 0.21	Temp 30.1 30.1 29 29 0 30.4 30.4 30.5 30.5 30.5 30.5 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0 30.1 29.0 0.0 30.4 30.5 (oC) 30.4 30.5 (oC) 30.4 30.5 (oC) 30.3 28.4 0.0 28.5	DO (i) 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (i) 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.90 0 8.71 8.65 6.67 6.59 0 7.93 8.03 7.41 7.58 0	mg/L) 6.4 6.9 0.0 8.7 6.6 mg/L) 6.4 6.4 6.9 0.0 8.7 6.6 mg/L) 8.0 7.5 0.0 8.1	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 83.1 70.6 93.2 92.4 0 71.2 70.9 83.1 79.6 93.2 92.4 0 71.2 70.9 83.6 84.3 DO 71.2 70.9 85.6 85.6 85.6 85.1 0	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0 (%) 92.8 0.0 71.1 85.0 (%) 93.1 85.4 0.0 97.4	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 1.21 1.25 1.78 1.64 Turbidit 2.91 0 1.21 1.64	y (NTU) 22.2 21.7 0.0 21.2 21.7 y (NTU) 2.2 2.2 0.0 1.2 1.7 1.7 2.9 3.8 0.0 2.8	7.5 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.3 7.4 7.4 7.4 7.4 7.6 7.6 7.6 7.7 7.7 7.7	H 7.3 7.4 0.0 7.6 7.7 H 7.3 7.4 0.0 7.3 7.4 0.0 7.3 7.4 0.0 7.4 0.0 7.4 0.0 7.6 0.0 7.5 7.6 0.0 7.5 7.6 0.0 7.7	73 54 52 52 52 0 41 38 38 3 3 3 3 3 0 <2 <2 <2 <2 3 3 3 2 0 0 0 <2 <2 0 0	g/L) 54.0 52.0 0.0 41.0 38.0 38.0 3.0 2.0 2.0 2.0 3.0 2.0 3.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W1 - ebb (impact) W2 (Impact) W3 (control) W3 (control) W4 (impact) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - ebb (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood (impact) W1 - flood	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14 Time 12:41 17:09	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m) Depth (m) <1	Temp 30.1 30.1 29 29 0 30.4 30.4 30.5 30.5 30.5 Temp 30.1 30.1 29 29 29 0 30.4 30.1 30.5 30.5 Temp 30.4 30.5 30.5 29 29 29 29 29 29 29 29 29 29	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0 30.1 29.0 0.0 30.1 29.0 0.0 30.4 30.5 (oC) 30.4 30.5 (oC) 30.3 28.4 0.0	DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 DO (i 6.44 6.33 6.96 6.91 0 8.65 6.67 6.91 0 8.71 8.65 6.67 6.59 DO (i 7.93 8.03 7.41 7.58 0 8.16 8.07	mg/L) 6.4 6.9 0.0 8.7 6.6 mg/L) 6.4 6.4 6.9 0.0 8.7 6.6 mg/L) 8.0 7.5 0.0	DO 83.1 79.6 92.4 0 71.2 70.9 85.6 84.3 DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 0 71.2 70.9 85.6 84.3 DO 93.4 92.8 85.6 97.6 97.6 97.7	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0 (%) 93.1 85.4 0.0	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 1.21 1.25 1.78 1.64 Turbidit 2.91 2.84 3.84 3.72 0 0 2.69 2.81	y (NTU) 22.2 21.7 0.0 21.2 21.7 21.7 2.2 2.2 0.0 1.2 1.7 1.7 2.9 3.8 0.0	7.5 7.3 7.3 7.4 7.4 7.4 0 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.5 7.5 7.5	H 7.3 7.4 0.0 7.6 7.7 7.7 7.7 7.4 0.0 7.4 0.0 7.6 7.6 7.7 7.7	73 54 52 53 3	g/L) 54.0 52.0 0.0 41.0 38.0 g/L) 3.0 2.0 g/L) 3.0 2.0 g/L) 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W3 (control) W1 - ebb (impact) W1 - flood (impact) W3 (control) W1 - flood (impact) W1 - flood (impact) W3 (control) W3 (control) W3 (control)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14 Time 12:41 17:09 17:09 17:02 17:19	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m) Depth (m) 0.24 0.24 0.27 <1	Temp 30.1 30.1 29 0 30.4 30.4 30.5 30.5 30.5 Temp 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.5 30.5 Temp 30.4 30.5 30.5 30.5 29 0 7 29 0 30.4 30.5 30.5 30.5 29 29 0 30.4 30.5 30.5 29 29 0 30.4 30.5 30.5 29 29 0 30.4 30.5 29 29 29 29 29 29 29 29 29 29	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0 30.1 29.0 0.0 30.4 30.5 (oC) 30.4 30.5 (oC) 30.4 30.5 (oC) 30.3 28.4 0.0 28.5	DO (i 6.44 6.33 6.96 0 8.71 8.65 6.67 6.59 DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 0 8.71 8.65 6.67 6.59 DO (i 7.93 8.03 7.41 7.58 0 8.16 8.07 8.02	mg/L) 6.4 6.9 0.0 8.7 6.6 mg/L) 6.4 6.4 6.9 0.0 8.7 6.6 mg/L) 8.0 7.5 0.0 8.1	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 84.3 0 71.2 70.9 93.2 92.4 0 71.2 70.9 93.2 92.4 0 71.2 70.9 93.2 92.4 0 71.2 0 71.2 93.4 92.8 85.6 85.1 0 97.6 97.1 92.9	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0 (%) 92.8 0.0 71.1 85.0 (%) 93.1 85.4 0.0 97.4	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 1.99 2.28 2.08 0 1.21 1.25 1.78 1.64 Turbidit 2.91 2.84 3.84 3.72 0 2.81 3.13	y (NTU) 22.2 21.7 0.0 21.2 21.7 y (NTU) 2.2 2.2 0.0 1.2 1.7 1.7 2.9 3.8 0.0 2.8	7.5 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	H 7.3 7.4 0.0 7.6 7.7 H 7.3 7.4 0.0 7.3 7.4 0.0 7.3 7.4 0.0 7.4 0.0 7.4 0.0 7.6 0.0 7.5 7.6 0.0 7.5 7.6 0.0 7.7	73 54 52 52 52 0 41 38 38 3 3 3 3 3 0 <2	g/L) 54.0 52.0 0.0 41.0 38.0 38.0 3.0 2.0 2.0 2.0 3.0 2.0 3.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W3 (control) W1 - ebb (impact) W1 - flood (impact) W1 - flood (impact) W3 (control) W3 (control) W3 (control)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14 Time 12:41 17:09 17:09	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m) Depth (m) 0.24 0.24 0.27 <1	Temp 30.1 30.1 29 0 30.4 30.4 30.5 30.5 30.5 Temp 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.5 30.5 Temp 30.4 30.5 30.5 30.5 29 0 7 29 0 30.4 30.5 30.5 30.5 29 29 0 30.4 30.5 30.5 29 29 0 30.4 30.5 30.5 29 29 0 30.4 30.5 29 29 29 29 29 29 29 29 29 29	(oC) 30.1 29.0 0.0 30.4 30.5 (oC) 30.1 29.0 0.0 30.1 29.0 0.0 30.4 30.5 (oC) 30.4 30.5 (oC) 30.4 30.5 (oC) 30.3 28.4 0.0 28.5	DO (i 6.44 6.33 6.96 0 8.71 8.65 6.67 6.59 DO (i 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 0 8.71 8.65 6.67 6.59 DO (i 7.93 8.03 7.41 7.58 0 8.16 8.07 8.02	mg/L) 6.4 6.9 0.0 8.7 6.6 mg/L) 6.4 6.4 6.9 0.0 8.7 6.6 mg/L) 8.0 7.5 0.0 8.1	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 85.6 85.1 0 71.2 70.9 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 85.6 85.1 0 97.6 97.1 92.9 93.4	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0 (%) 93.1 85.4 0.0 97.4 93.2	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 21.78 21.64 0 1.21 1.25 1.78 1.64 0 1.21 1.25 1.78 1.64 Turbidit 2.91 0 1.21 1.64 0 1.21 1.64 0 0 2.81 3.13 3.12	y (NTU) 22.2 21.7 0.0 21.2 21.7 2.1.7 2.2 2.2 0.0 1.2 1.7 1.7 y (NTU) 2.9 3.8 0.0 2.8 3.1	7.5 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	H 7.3 7.4 0.0 7.6 7.7 H 7.3 7.4 0.0 7.3 7.4 0.0 7.3 7.4 0.0 7.4 0.0 7.4 0.0 7.6 0.0 7.5 7.6 0.0 7.5 7.6 0.0 7.7	73 54 52 52 52 52 6 41 41 38 38 3 3 3 3 3 3 3 0 <2	g/L) 54.0 52.0 0.0 41.0 38.0 3.0 3.0 2.0 2.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Date Location W1 - ebb (impact) W2 (Impact) W3 (control) W4 (impact) W4 (impact) W4 (impact) W1 - ebb (impact) W1 - flood (impact) W2 (Impact) W3 (control) W4 (impact) W1 - ebb (impact) W3 (control) W1 - ebb (impact) W1 - flood (impact) W3 (control) W1 - flood (impact) W1 - flood (impact) W3 (control) W3 (control) W3 (control)	23-May-14 Time 10:46 17:00 10:11 10:26 26-May-14 Time 10:46 17:00 10:11 10:26 28-May-14 Time 12:41 17:09 17:09 17:02 17:19	Depth (m) 0.21 0.25 <1 0.22 0.18 Depth (m) Depth (m) 0.24 0.24 0.27 <1 0.21	Temp 30.1 30.1 29 0 30.4 30.4 30.5 30.5 30.5 7 emp 30.1 30.1 29 29 0 30.4 30.4 30.5 30.5 30.5 7 emp 30.4 30.4 30.5 30.5 29 29 20 0 28.5 28.5 29 29 29	a(oC) 30.1 29.0 0.0 30.4 30.5 a(oC) 30.1 29.0 0.0 30.1 29.0 30.1 29.0 30.3 28.4 0.0 28.5 29.0	7.62 DO (i) 6.44 6.33 6.96 6.91 0 8.71 8.65 6.67 6.59 0 8.71 8.65 6.67 6.96 6.91 0 8.71 8.65 6.67 6.59 0 8.03 7.41 7.58 0 8.16 8.07 8.04	mg/L) 6.4 6.9 0.0 8.7 6.6 mg/L) 6.4 6.4 6.9 0.0 8.7 6.6 mg/L) 8.0 7.5 0.0 8.1	DO 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 85.6 85.1 0 71.2 70.9 83.1 79.6 93.2 92.4 0 71.2 70.9 85.6 85.6 85.1 0 97.6 97.1 92.9 93.4	(%) 81.4 92.8 0.0 71.1 85.0 (%) 81.4 92.8 0.0 71.1 85.0 (%) 92.8 0.0 71.1 85.0 (%) 93.1 85.4 0.0 97.4	21.24 Turbidit 22.35 21.99 21.28 22.08 0 21.21 21.25 21.78 21.64 Turbidit 2.35 21.78 21.64 0 1.21 1.25 1.78 1.64 0 1.21 1.25 1.78 1.64 Turbidit 2.91 0 1.21 1.64 0 1.21 1.64 0 0 2.81 3.13 3.12	y (NTU) 22.2 21.7 0.0 21.2 21.7 y (NTU) 2.2 2.2 0.0 1.2 1.7 1.7 2.9 3.8 0.0 2.8	7.5 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	H 7.3 7.4 0.0 7.6 7.7 H 7.3 7.4 0.0 7.3 7.4 0.0 7.3 7.4 0.0 7.4 0.0 7.4 0.0 7.6 0.0 7.5 7.6 0.0 7.5 7.6 0.0 7.7	73 54 52 52 52 0 41 38 38 3 3 3 3 3 0 <2 <2 <2 <2 <2 3 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 3 2	g/L) 54.0 52.0 0.0 41.0 38.0 3.0 3.0 2.0 2.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

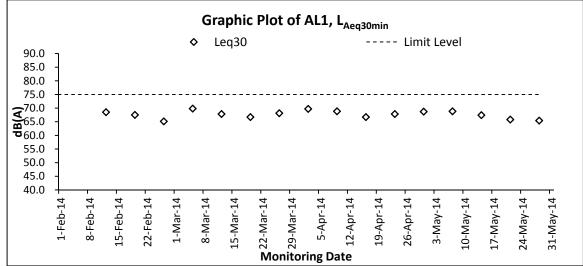
DSD Contract No. DC/2010/02	
Contract No Drainage Improvement in Shuen Wan and Shek Wu Wai	
Summary of Water Quality Monitoring Results	

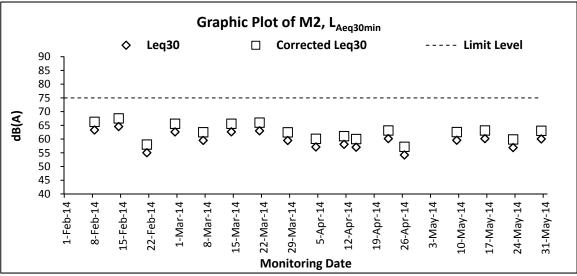
AUES

Location					DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	рН		SS(mg/L)	
W1 (impact)					Action	7.27	Action	n/a	Action	4.77	Action	n/a	Action	9.73
wi (impact)					Limit	4	Limit	n/a	Limit	5.26	Limit	n/a	Limit	10.77
W2 (impact)					Action	7.26	Action	n/a	Action	2.46	Action	n/a	Action	8.89
wz (impact)	1	Action/ Lim	it Level		Limit	4	Limit	n/a	Limit	3.42	Limit	n/a	Limit	9.75
W3 (control)					n	/a	n	/a	n	/a	n	n/a	n/	'a
W4 (impact)					Action	9.27	Action	n/a	Action	3.32	Action	n/a	Action	6.98
· · · /					Limit	4	Limit	n/a	Limit	4.52	Limit	n/a	Limit	7.66
W1 - ebb	13:46	0.22	30.6	30.6	7.69	7.6	91.9	91.1	2.59	2.6	7.7	7.7	<2	2.0
(impact)	15:40	0.22	30.6	50.0	7.53	7.0	90.2	/1.1	2.64	2.0	7.7	7.7	<2	2.0
W1- flood	9:17	0.24	28.2	28.2	7.31	7.3	82.9	82.6	3.54	3.6	7.5	7.5	2	2.0
(impact)	,,	0.21	28.2	2012	7.23	7.10	82.2	02:0	3.73	0.0	7.5	7.0	2	2.0
W2 (Impact)		<1	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
W3 (control)	13:59	13.59 0.19 30.2 30.2				7.8	92.4	91.7	2.72	2.8	7.5	7.5	2	2.0
(. 2107	30.2					90.9		2.93	2.0	7.5		2	2.0
W4 (impact)	14:11	0.17	29.4 29.4	29.4	7.53 7.51	7.5	88.4 87.9	88.2	3.08 3.16	3.1	7.4 7.4	7.4	3	3.0

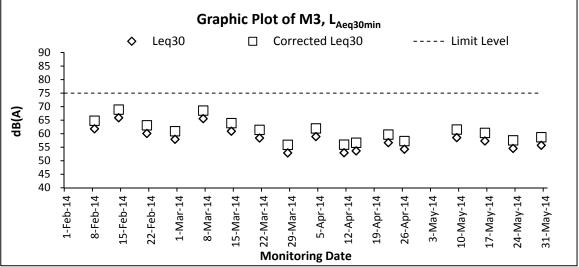


Appendix J

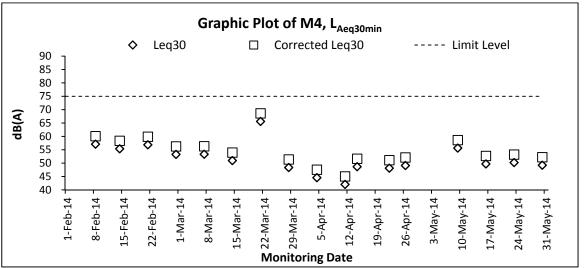

Graphical Plots of Impact Monitoring – Noise, Water Quality and Hydrological Characteristics


Graphic Plot – Construction Noise

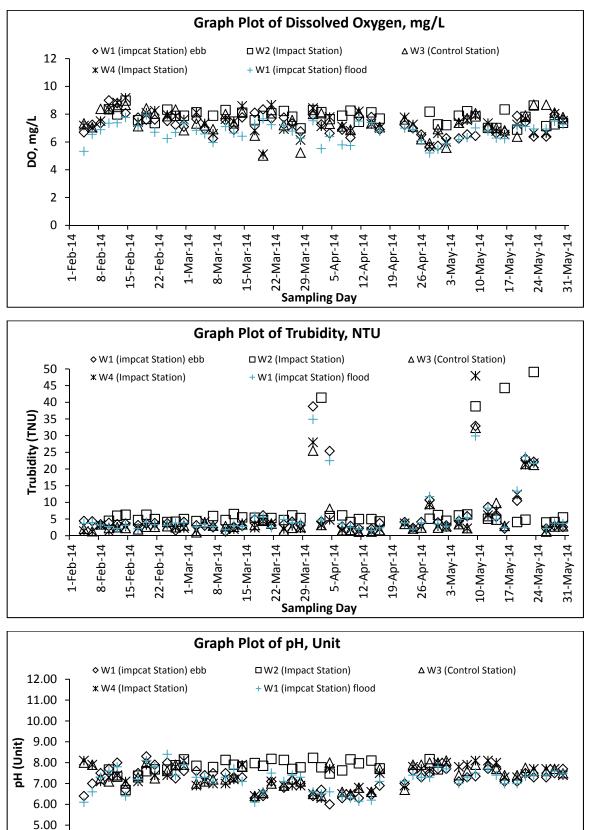
Remark: The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.



Remark: The monitoring is undertaken under façade situation. No façade correction is added according to acoustical principles and EPD guidelines.



Remark: The monitoring is undertaken under free field situation. A façade correction of $+3 \, dB(A)$ has been added according to acoustical principles and EPD guidelines.


Remark: The monitoring is undertaken under free field situation. A façade correction of $+3 \, dB(A)$ has been added according to acoustical principles and EPD guidelines

Remark: The monitoring is undertaken under free field situation. A façade correction of $+3 \, dB(A)$ has been added according to acoustical principles and EPD guidelines

Graphic Plot – Water Quality

29-Mar-14 -5-Apr-14 -5-Apr-14 -

12-Apr-14

19-Apr-14

26-Apr-14

3-May-14

10-May-14

17-May-14

24-May-14

31-May-14

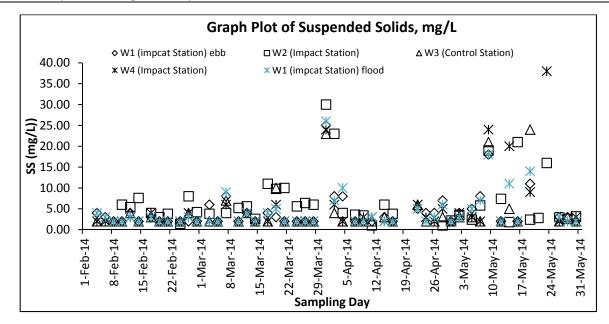
22-Mar-14

15-Mar-14

8-Feb-14

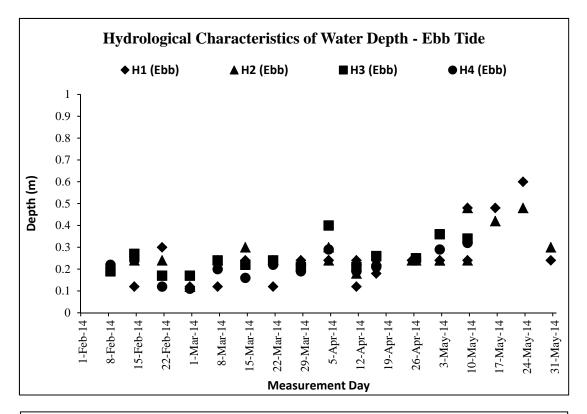
15-Feb-14

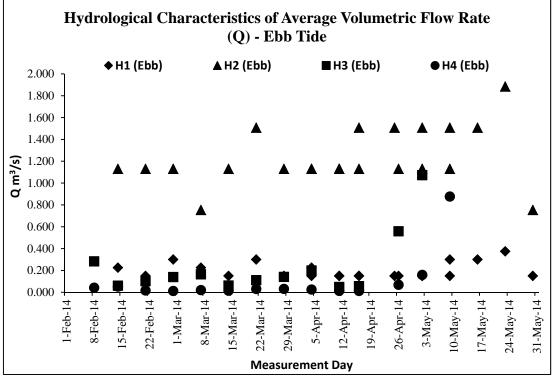
22-Feb-14

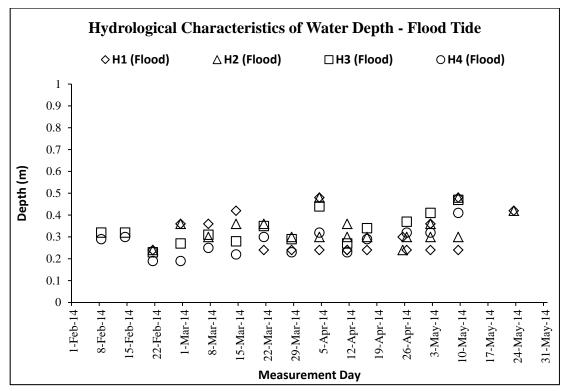

8-Mar-14

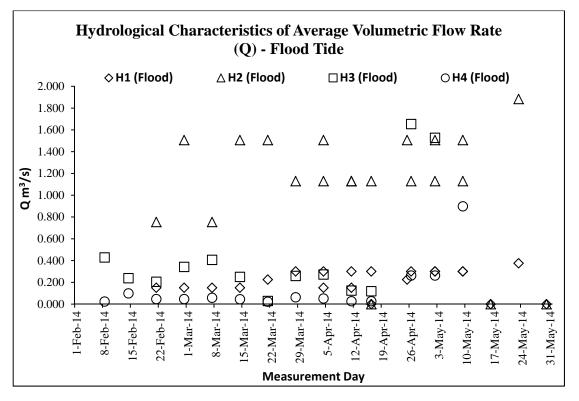
1-Mar-14

1-Feb-14


4.00




Graphic Plot – Hydrological Characteristics (Water Depth)



Graphic Plot – Hydrological Characteristics (Water Flow Rate)

Appendix K

Monthly Summary Waste Flow Table

	ar) of C&D Wastes	Concepted M									
	Total	Actual Quantities	Dewoodin	[<u>,</u>		Paper/			1
Month	Quantity	Large Broken	the	Reused in other		Imported Fill	Metals	cardboard	Plastics	Chemical	Others, e.g.
	Generated	Concrete	Contract	Projects	Public Fill			packaging	(see Note 3)	Waste	general refuse
	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)					
Apr 2011	Nil	0	0	0	0	0	0	0	0	0	0
May 2011	Nil	0	0	0	0	0	0	0	0	0	0
June 2011	Nil	0	0	0	0	0	0	0	0	0	0
July 2011	Nil	0	0	0	0	0	0	0	0	0	0
Aug 2011	0.7855	0	0	0.7855	0	0	0	0	0	0	0
Sept 2011	Nil	0	0	0	0	0	0	0	0	0	0
Oct 2011	Nil	0	0	0	0	0	0	0	0	0	0.02
Nov 2011	Nil	0	0	0	0	0	0	0	0	0	0.045
Dec 2011	0.08	0	0	0	0.08	0	0	0	0	0	0
Jan 2012	Nil	0	0	0	0	0	0	0	0	0	0.01
Feb 2012	0.01	0	0	0	0.01	0	0	0	0	0	0.03
Mar 2012	0.405	0	0	0	0.405	0	0	0	0	0	0
Apr 2012	0.005	0	0	0	0.005	0	0	0	0	0	0
May 2012	0.165	0	0	0	0.165	0	0	0	0	0	0
June 2012	0.145	0	0	0	0.145	0	0	0	0	0	0.035
July 2012	0.005	0	0	0	0.005	0	0	0	0	0	0.005
Aug 2012	0.775	0	0	0	0.775	0	0	0	0	0	0
Sept 2012	0.21	0	0	0	0.21	0	0	0	0	0	0
Oct 2012	0.49	0	0	0	0.49	0	0	0	0	0	0
Nov 2012	0	0	0	0	0	0	0	0	0	0	0.03
Dec 2012	0	0	0	0	0	0	0	0	0	0	0.01
Jan 2013	0.035	0	0	0	0.035	0	0	0	0	0	0.025
Feb. 2013	0.035	0	0	0	0.035	0	0	0	0	0	0.005
Mar. 2013	0.002	0	0	0	0.002	0	0	0	0	0	0.005
Apr. 2013	0.31	0	0	0	0.31	0	0	0	0	0	0.005
May. 2013	0.04	0	0	0	0.04	0	0	0	0	0	0.035
June 2013	0.37	0	0	0	0.37	0	0	0	0	0	0.017

Monthly Summary Waste Flow Table for 2011, 2013 to 2014 (Year)

Kwan Lee - Kuly Joint Venture	
Environmental Management Plan	for Contract No. DC/2010/02
Drainage Improvement Works in	Shuen Wan and Shek Wu Wai

Total	6.03	0	0	0.7855	5.335	0	0	0	0	0	0.3095
May 2014	0.333	0	0	0	0.333	0	0	0	00	0	0
	0.333	0	0	0	0.333	0	0	0	0	0	0
April 2014	0.036			0	0.036	0	0	0	0	0	0
March 2014	0.215	0	0	0	0.215	00	0	0	0	0	0
Feb 2014	0.435	0	0	0	0.435	0	0	0	0	0	0.0150
Jan 2014	0.333	<u> </u>	0	0	0.333	0	0	0	0	0	0.0045
Dec 2013		<u> </u>	0	0	0.215	0	0	0	0	0	0.00525
Nov 2013	0.215	0	0	0	0.301	0	0	0	0	0	0
Oct 2013	0.301	0	0	0	0.036	0	0	0	0	0	0
Sep 2013	0.036	0	0	0		0	0	0	0	0	0
Aug 2013	0.015	0	0		0.015	0	0	0	0	0	0.01
July 2013	0.015	0		ulu shek wu y					N;	ame of Dep	oartment: DSD

			Forecast o	f Total Quanti	ties of C&D Mat	erials to be G	enerated from th	e Contract*		
Generated	Hard Rock and Large Broken Concrete	Contract	Reused in other Projects	Disposed as Public Fill		Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	$(in '000m^3)$	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
23	1	10	0	10	2	5	2	1	1	3

Notes:

(1) The performance targets are given in ETWB Technical Circular PS Clause 6(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m3. (ETWB Technical Circular PS Clause 5(4)(b) refers). [Delete Note (4) and the table above on the forecast, where inapplicable].

Summary Table for Work Processes or Activities Requiring Timber for Temporary Works

Contract No. : <u>DC/2010/02</u>

Contract Title : Drainage Improvement Works in Shuen Wan and Shek Wu Wai

Item No.	[see note (a) below]	Justifications for Using Timber in Temporary Construction Works	Est. Quantities of Timber Used (m3)	Actual Quantities used (m3)	Remarks
	Formwork for concreting	Easy handle by manpower	2.71	2.7	
2.					
3.					······································
4.					
5.					
6.					
7.	· · · · · · · · · · · · · · · · · · ·				
8.					
		Total Estimated Quantity of Timber Used	2.71	······	

Notes:

- a. The Contractor shall list out all the work items requiring timber for use in temporary construction works. Several minor work items may be grouped into one for ease of updating.
- b. The summary table shall be submitted to the *Architect/Engineer's Representative monthly together with the Waste Flow Table for review and monitoring in accordance with the ETWB Technical Circular 19/2005 PS sub-clause 5(5) in Appendix C.

Appendix L

Monthly Landscape & Visual Inspection Report

Z:\Jobs\2011\TCS00553(DC-2010-02)\600\EM&A Monthly Report\35th - May 2014\R0351v1.docx Action-United Environmental Services and Consulting

Contract No. DC/2010/02 Drainage Improvement Works in Shuen Wan and Shek Wu Wai Bi-weekly Landscape & Visual Monitoring

EM&A (Landscape & Visual) Report (May 2014) (Issue 1)

> Job Ref.: 09/317/161D KLKJV-SW Date: June 2014

Contract No. DC/2010/02 Drainage Improvement Works in Shuen Wan and Shek Wu Wai Bi-weekly Landscape & Visual Monitoring

EM&A (Landscape & Visual) Report (May 2014)

(Issue 1)

June 2014

	Name	Signature
Prepared by:	Тгасу НО	Fracy ho
Reviewed by:	lda YU	Salayn
Date:	10 th June 2014	0

Job Ref.: 09/317/161D KLKJV-SW

EM&A (Landscape & Visual) Report (May 2014) (Issue 1)

CONTENTS

1	INTRODUCTION	1
2	SCOPE OF MONITORING	1
3	LANDSCAPE & VISUAL MONITORING RESULTS	2
4	AUDIT SCHEDULE	8

LIST OF APPENDICES

Appendix A – Photographs

1 INTRODUCTION

- 1.1.1 The Landscape and Visual Monitoring of the Project is conducted to fulfill Clauses 5.2 and 5.4 of EP-303/2008 and the monitoring requirements in accordance with Section 7 of the approved updated EM&A Manual (approved by EPD on 31st May 2012) of the Project. A Baseline Review on updating the landscape and visual condition, and the mitigation measures of the Project (including Contracts 1 and 2 of the Project) was undertaken before the commencement of the Project. The review findings were updated in the Baseline Environmental Monitoring Report submitted to the EPD on 14th February 2011.
- 1.1.2 This monthly monitoring report will detail the scope of landscape and visual monitoring work, monitoring findings and observations, and any recommendation and advice on proper implementation of the landscape mitigation measures in the works areas under Contract 2 of the Project.

2 SCOPE OF MONITORING

2.1 Monitoring objectives

2.1.1 Landscape and Visual Monitoring of the Project should be conducted on a bi-weekly basis for checking the design, implementation and maintenance of the landscape and visual mitigation measures throughout the construction phase and in a quarterly basis during operational phase of the Project. Observations of any potential conflicts between the proposed mitigation measures and the project works carried out by the Contractors should be recorded. Recommendation and advice on proper implementation of the landscape mitigation measures should be provided to the Contractor for minimizing any potential impacts on the landscape and visual elements.

2.2 Monitoring during Construction Phase

- 2.2.1 The following landscape and visual mitigation measures should be implemented during the construction phase of the project to minimize the potential impacts:
 - Visual Screen Use of hoardings as visual screens for the construction in the works areas;
 - Contaminant/ Sediment Control Use of temporary barriers, covers and drainage provision around the construction works as contaminant/ sediment control to prevent the contaminants and sediments from entering the sensitive water-based habitats;
 - *Pollution Control* Implementation of pollution control measures to minimize any adverse environmental impacts to the surrounding habitats;
 - Liaison with Nursery (Not relevant to Contract 2 of the Project) Liaison with the nursery operator as necessary to minimize any adverse impact to the daily operation and plant holding capacity of the nursery;
 - Existing Trees within Works Area Maintenance and protection of the existing trees, especially their crowns, trunks and roots, within work sites; and
 - Construction Light Provision of construction light should be controlled at night to avoid excessive glare to the surrounding villages and to Plover Cove.

2.3 Monitoring during Operational Phase

- 2.3.1 The following landscape and visual mitigation measures should be implemented during the operational phase of the project to minimize the potential impacts:
 - Viewing area formation by planting with shrubs, grasses and benches along the area;
 - Architectural design of the pump house will help it fit into the existing suburban, natural to semi-natural surroundings (Not relevant to Contract 2 of the Project);
 - Landscape design of pump house by providing sufficient planting around its boundary fence (Not relevant to Contract 2 of the Project);
 - Enhancement planting along Tung Tsz Road with shrubs/ trees of suitable species to help protect the stream and marshes;
 - Construction of box culvert should be with at least 1.0m soil depth for enhancement planting;
 - Transplanting of existing affected trees to adjacent locations should be carried out;
 - Preparation for transplanting is needed to allow sufficient time for root pruning and rootball preparation prior to transplanting; and
 - Reinstatement of affected area should be carried out to check that the works areas are properly reinstated.

3 LANDSCAPE & VISUAL MONITORING RESULTS

3.1 Monitoring Date(s)

- 3.1.1 This monthly Landscape and Visual Monitoring (May 2014) was conducted to cover only areas of Contract 2 of the Project (i.e. the construction of a twin-cell box culvert close to Shuen Wan Conservation Area and Wai Ha River along Tung Tsz Road, and a drainage pipe near Wai Ha Village). The bi-weekly monitoring was conducted on 12th and 30th May 2014.
- 3.1.2 All photos stated in this section are recorded in **Appendix A**.

3.2 Visual Screen

3.2.1 No follow-up action by the Contractor is required as from the *Monthly EM&A Report for April* 2014.

Observation

- 3.2.2 Temporary hoardings, in the form of construction barriers, have been erected from west to east parts along Tung Tsz Road from the opposite side of Wai Ha to the opposite side of San Tau Kwok. The construction works along the access road from Tung Tsz Road towards Treasure Spot Garden II have also been demarcated with temporary construction barriers. Another section of temporary hoardings has been erected next to the path outside Treasure Spot Garden II. **Photos 1-2** show the views of the erected hoardings along the active works area under Contract 2.
- 3.2.3 Construction works for building the box culverts have continued in the works area along Tung Tsz Road opposite to Wai Ha (**Photo 3**).

- 3.2.4 Construction works continued next to Wai Ha River (**Photo 4**). The sand bags used to divide the river were removed (**Photo 5**).
- 3.2.5 To the southeast of Jade View Villa and adjacent to the current active works area, a demarcated wetland rehabilitation area has been maintained by parties other than the Project Proponent, the Project's Contractor and Sub-contractors since January 2012. Temporary construction barriers were surrounding the eastern side of the area (**Photo 6**).
- 3.2.6 The temporary parking area was still maintained at the end of the access path to Treasure Spot Garden Phase II (**Photo 7**). The untagged leaning tree was still guyed at the edge of the area within a Tree Protection Zone (TPZ), which was demarcated by orange construction nets and vehicles were still parked next to the TPZ (**Photo 8**).
- 3.2.7 As reported in the previous *Monthly EM&A Reports*, dumping on the Taro field located along the path towards the Treasure Spot Garden was observed and a paved area created for parking next to the retained tree groups (T088 T091) has been found since November 2012. In October 2013, the path to Treasure Spot Garden II was expanded towards the Taro field due to the reprovision of vehicular access road to the villagers during the works at the entrance of the Treasure Spot Garden. Cement mortar discharged to the Taro field was observed in March 2014 and such as was covered by ground vegetation (**Photo 9**).
- 3.2.8 Works were observed at the end of the Treasure Spot Garden II near the retained tree T103 and the works area was surrounded by temporary construction barriers and chain-link fence (**Photo 10**).
- 3.2.9 The works area near the previous collapsed tree T190 (*Ficus hispida*) was found to be expanded to the grassland on the south in January 2014. Most of the construction materials stored in this area were removed in April 2014 and this area has been covered by a mat in May 2014 (**Photo 11**).
- 3.2.10 A fenced area has been seen on the field next to the construction site along the access to Treasure Spot Garden since March 2014 (**Photo 12**). The area was surrounded by chain-link fence and a sign on the gate stated that it was a private land. As confirmed by the Contractor, this area was not fenced by the construction works related to the current project.
- 3.2.11 No hoardings have been erected along the rest of the proposed works area since neither construction works nor any associated preparation works have been commenced.

Recommendations

- 3.2.12 No specific recommendation is required. However, with regard to the previous dumping incident by other parties on the Taro field near the Treasure Spot Garden, the Contractor is recommended to check the site condition regularly to avoid any extent of dumping or paving of area within the project boundary.
- 3.2.13 The Contractor should also make sure there are no piled rocks, construction materials or programmed construction works influencing the existing trees within the Project Area or the wetland rehabilitation area. Otherwise, the Contractor should request the on-site workers to remove those piled rocks or construction materials. As a reminder, the Contractor should keep all construction works within the Project Boundary.
- 3.2.14 The Contractor could establish a warning sign to remind the driver to beware of the presence of the tree(s) close to the temporary parking area.

3.3 Contaminant/ Sediment Control

3.3.1 No follow-up action by the Contractor is required as from the *Monthly EM&A Report for April* 2014.

Observation

- 3.3.2 The exit points of Contract 2 works area opposite to the tree group T021-029 (*Leucaena leucocephala*) were still maintained in May 2014 (**Photo 13**). Workers were seen washing the wheels of the vehicles which were leaving the works area.
- 3.3.3 As observed in May 2014, construction works have been mainly concentrated next to Wai Ha River. No more muddy water has been released from the works area as the construction works at the upper stream was almost finished. The river water was generally clear (Photos 14-16). Down the stream near the public toilet, no more litter and broken branches from the adjacent trees were found blocking the stream (Photo 15).
- 3.3.4 In May 2014, no water from the nearby box culvert and from the works area opposite to Wai Ha was released to the area near the expanded works area near the previous collapsed tree T190 (*Ficus hispida*), which was removed in January 2014.

Recommendations

- 3.3.5 Regular monitoring should be conducted to ensure no direct discharge or leakage of contaminants or any polluted fluid into the adjacent Wai Ha River and the nearby Shuen Wan marsh. The Contractor should maintain regular check (e.g. daily) on the sedimentation and filtration facilities and appropriate sedimentation beds and/or tanks throughout the construction phase (e.g. check the function of the sedimentation beds and remove surplus sand and gravels deposited along the beds or within the tanks) to make sure all discharged water was filtered appropriately prior to any discharge.
- 3.3.6 The Contractor should have *ad hoc* inspection and emergency measures for any accidental spillage of polluted fluid, contaminants or grease from the construction sites. To prevent the impact of the unclear discharge on the nearby vegetated area, it is suggested to overlay PVC liners along the site edge and remove any surplus sand and gravels deposited in the beds and tank even some parts of the construction works may be completed at this stage. If needed (e.g. after heavy rainfall), the Contractor is suggested to remove the broken branches in the stream so as to prevent their blockage of the stream flow and trapping greasy substances in the stream.

3.4 Pollution Control

3.4.1 No follow-up action by the Contractor is required as from the *Monthly EM&A Report for April* 2014.

Observation

3.4.2 Construction works have been resumed along Wai Ha River. Since February 2014, no more muddy water has been released from the works area as the construction works at the upper stream was almost finished. The river water was generally clear (Photos 14-16). Down the stream near the public toilet, no more litter and broken branches from the adjacent trees were found blocking the stream (Photo 15).

- 3.4.3 In May 2014, no water from the nearby box culvert and from the works area opposite to Wai Ha was released to the area near the expanded works area near the previous collapsed tree T190 (*Ficus hispida*).
- 3.4.4 No direct water discharge into the upper stream of Wai Ha River was observed as the active construction works have been concentrated at the lower end of Wai Ha River to the southeast of Tung Tsz Shan Road (**Photo 17**).
- 3.4.5 Cement mortar was found spraying along the southern boundary edge close to the wetland rehabilitation habitat in February 2014. The cement mortar at this area has been removed. A mat was found covering this area with cement mortar in mid-March 2014, and it was removed in May 2014 (**Photo 18**).
- 3.4.6 Cement mortar and construction materials were found next to the rehabilitation wetland nearby the exit point and opposite to the tree group T021-029 in April 2014. The cement mortar and construction materials were removed in May 2014 (Photo 19).
- 3.4.7 As observed in May 2014, excavation work was noted from the area opposite to Jade View Villa to the exit point near Shuen Wan Tung Tsz Children's Playground. As observed on 30th May 2014, this area was waterlogged and unclear water has overflowed to the nearby marsh area (**Photo 20**).

Recommendations

- 3.4.8 The Contractor should prevent any contaminants and sediments from entering the sensitive water-based habitats (i.e. Shuen Wan marsh and Wai Ha River) and implement pollution control measures to minimize any adverse environmental impacts to the water body. The Contractor should maintain appropriate sedimentation beds and/or tanks throughout the construction phase. The Contractor should adopt a good site practice in maintaining appropriate sedimentation beds and filtration tanks as recommended in the above Section for Contaminant/ Sediment Control. Muddy water pumped from the works area should be filtered appropriately through sedimentation beds or other filtration system prior to the discharge.
- 3.4.9 The Contractor should have *ad hoc* inspection and emergency measures for any accidental spillage of polluted fluid, contaminants or grease from the construction sites. It is also recommended to overlay PVC liners along the site edge and remove any surplus sand and gravels deposited in the beds and tank so as to prevent the impact of the unclear discharge on the nearby vegetated area. Moreover, the Contractor should restrict and control the works areas where cement mortar has to be applied, and avoid spraying the cement mortar and chemical fluids on vegetation and waterbody.

3.5 Liaison with Nursery

3.5.1 The construction undertaken within Tung Tsz Nursery is restricted under Contract 1 of the Project. This monitoring item is not applicable to Contract 2 of the Project.

3.6 Existing Trees within Works Areas

3.6.1 Individual trees retained within the active works area have been protected within TPZs. The protection measures generally follow the recommendations stated in the *Monthly EM&A Report for April 2014*. Particular observations are highlighted in the following paragraphs.

- **Observation**
- 3.6.2 Most trees which are proposed to be retained within the Project Area were recorded generally in fair health condition and some of the retained trees were naturally covered by invasive climbers.
- 3.6.3 As stated in Section 3.2, a TPZ was set up with orange construction nets to protect the untagged leaning tree from the newly formed temporary parking area at Treasure Spot Garden Phase II. However, the vehicle was parked close to the TPZ (**Photo 8**).
- 3.6.4 The retained trees T167 (*Litsea monopetala*) and T168 (*Celtis sinensis*) were topped after the vegetation clearance in the surrounding works area in November 2013 (**Photo 21**). Both of them have been monitored and both were in poor health condition with development of watersprouts along trunks or branches. Excavated soil was found piling around their trunk flares and the construction work was undertaken close to these trees.
- 3.6.5 Temporary storage of construction materials was still noted close to the trunk flares and tree trunks of T093 and T094 (both *Litsea cubeba*) in May 2014 (**Photos 22-23**). Sand piling was seen close to the trunk flare of T093, while spread of cement mortar on the soil was also noted to the southwest of T093 and T094.
- 3.6.6 Construction works at the end of the Treasure Spot Garden have commenced since October 2012. Works have been resumed in the area since October 2013. Excavation works were resumed near the trunk base of the tree in previous months and the minor excavated soil and rocks and construction materials were piled close to the root flare of the tree as observed in May 2014 (**Photo 24**).
- 3.6.7 Sheet piling works were conducted within the tree root zone of a retained tree T025 (*Celtis sinensis*) in June 2013. Due to the close proximity of the erected sheet piles to the tree, root damage by previous sheet piling works was anticipated. The tree was also over-pruned in June 2013. It has been temporarily guyed by strings so as to provide additional support to the tree. The nearby piled sheets were removed in the previous months. The condition of the tree has been closely monitored (**Photo 25**). Excessive soil was still piled close to the root flare of T025 (**Photo 26**).
- 3.6.8 Concrete pavement, which was assumed to be applied for additional parking area for the villagers, was still observed very close to the root flare of the tree group T089-091 (**Photo 27**).
- 3.6.9 Excavation work was noted between T153 and T155 and severe exposed roots were noted on these two trees (Photo 28). Both trees were proposed to be felled in the approved Tree Felling Application Report for the Project.
- 3.6.10 Excavation work was noted very close to the tree group T181-T183 in May 2014. Excavated soil was noted piling around their trunk flares and the orange construction nets covered on the three trees were removed. These trees have been surrounded by some stones as observed in May 2014 (Photo 29). Exposed and pruned roots were noted in T183 (Photo 30).
- 3.6.11 Another two untagged trees (*Cleistocalyx nervosum* and *Macaranga tanarius* var. *tomentosa*) near the tree group T181-T183 but outside the Project boundary were also affected by the excavation work conducted by a party other than the Contractor of this Project. Severe exposed roots were noted on these two trees in May 2014 (Photos 31-32).

- 3.6.12 The two scaffold of T089 were found broken and removed after the adverse weather in early May 2014 (Photo 33).
- 3.6.13 No significant signs of damage on other existing tree crowns, trunks and roots resulting from the construction works were observed in this monthly monitoring.
- 3.6.14 As Area C under Contract 1 of the Project has been formally handed over to AFCD for management and maintenance since October 2012, no access into the ECA is allowed. Two transplanted shrubs of *Pavetta hongkongensis* (PH-01 and PH-03) were inspected through the fence of Tung Tsz Nursery and they have remained in satisfactory condition (**Photos 34-35**).

<u>Recommendations</u>

- 3.6.15 Within the active works area, maintenance of TPZs for the retained trees and the trees to be transplanted should be continued. Trunk bases of all retained trees should be kept clear, with no stockpiled soil, construction equipments and rubbish allowed around the trunk bases and within the TPZs. If necessary, these retained trees shall be watered regularly to maintain their health. All fallen trees or tree parts of the existing trees maintained within the works area of Contract No. DC/2010/02 should be removed if they pose imminent hazards to the people/property or cause obstruction to the traffic. Any broken tree parts still attached to the trees could be pruned appropriately to prevent their potential hazard to the public and property.
- 3.6.16 Disturbance is prohibited in all TPZs. In any practical circumstances, the contractor should follow Section 8 of Annex 4 of the approved Landscape Plan for protecting the existing trees from any potential damages resulting from the construction works. In addition, the Contractor and the Project Proponent should have routine inspection on any tree remedial works conducted by other party on the trees within the Project Area.
- 3.6.17 The tape and ropes tied on the tree trunk of the retained tree T103 should be removed. If necessary, it is recommended to remove the overgrown climbers on the tree canopy so as to reduce the crown load supported by this tree. As the construction works around T103 was resumed in January 2014, the Contractor should have close monitoring of the stability and health condition of this tree.
- 3.6.18 With regard to the previous tree topping incident on the retained trees (such as T088 and T089), as well as T118 in which the civil work was undertaken close to the tree trunk and potentially damage the tree roots, the Contractor is suggested to monitor all trees protected within the project boundary regularly. The Contractor should also be aware of any potential damage on the trees by other contractor(s) undertaking construction work concurrently. In addition, the Contractor should design and programme the civil works by taking into consideration of providing adequate buffer zone between the tree dripline and the civil work. No spreading of cement mortar within the tree root zone is allowed, and any cement mortar spread immediately around the trunk flares should be removed immediately.
- 3.6.19 Tree topping (like the case for T025, T167 and T168) should be prohibited and the Contractor should appoint qualified landscape contractor to perform appropriate pruning practice. The pruning works should follow any local, national or international standards for pruning works and relevant tree remedial works. Given that the tree roots of T025 could be damaged by previous sheet piling works and the topped tree exists with unbalanced tree form, the long-term tree stability and health condition should be checked after the removal of the sheet piles. In addition, the excessive soil piled close to the trunk flare of T025 should be removed to prevent suffocation of trunk. The Contractor should have close monitoring of tree stability

09/317/161D KLKJV -SWEM&A (Landscape & Visual) Report (May 2014) (Issue 1)with regard to its unbalanced tree form and health condition. Meanwhile, the Contractor and
sub-contractor should carefully design the civil works. Common civil works, such as excavation
and sheet piling works should be programmed and designed carefully by taking tree buffer
zone into consideration. The works should avoid affecting the tree canopy, trunk and
underground root zone with regard to tree dripline as far as possible.

- 3.6.20 As the concrete paved temporary parking area at Treasure Spot Garden Phase II was close to the untagged tree, the roots may be damaged and hence the stability of the tree would be affected. The tree may also be damaged by the parking vehicles. Therefore, the Contractor is advised to provide better tree protection measures such as increasing the buffer zone between the parking area and the trees and establish a warning sign to remind the driver to beware of the presence of trees within the tree protection zone. The health and stability of the tree should also be monitored by the Contractor regularly.
- 3.6.21 As temporary storage of construction materials were once noted within the dripline areas of T093, T094, T103 and T119-122, the Contractor is advised to establish proper Tree Protection Zone (e.g. an area of at least 1m from tree trunks) and prohibit any construction works and storage of construction materials within and close to the zone.
- 3.6.22 As there were excavation works (either by the Project or by the third party) close to T118 in as observed in February 2014, between T153 and T155 as observed in April 2014, close to T181, T182, T183 and two untagged trees as observed in May 2014, the Contractor should have close monitoring of the stability and health condition of these trees. In addition, for the recent excavation work around tree group of T181-T183 conducted by the third party, the Contractor should regularly check the status of these trees and have close liaison with the third party for maintaining appropriate tree protection during the works.

3.7 Construction Light

3.7.1 No follow-up action on maintenance of construction light is required as from the *Monthly EM&A Report for April 2014*.

Observation

3.7.2 No construction light impact to the surrounding villages and to Plover Cove as all construction activities and construction sites are halted at 1800. No construction light at night is provided by the Contractor.

Recommendation

3.7.3 No specific recommendation is required.

4 AUDIT SCHEDULE

4.1.1 The next bi-weekly Landscape & Visual Monitoring in June 2014 is scheduled to be conducted in the weeks of 9th and 23rd June 2014.

Appendix A

Photographs

rehabilitation area.

EM&A (Landscape & Visual) Report (May 2014) (Issue 1)

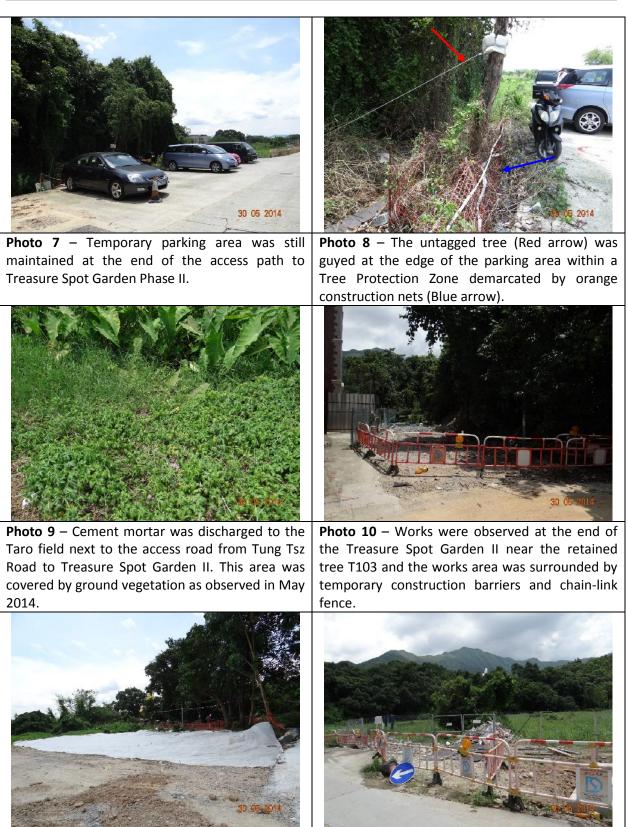


Photo 11 – The construction materials stored on
the works area near the location of the previously
removed tree T190 (*Ficus hispida*) were removed.Pho
next
Trea
wasThis area has been covered by a mat.was

Photo 12 – A fenced area was seen on the field next to the construction site along the access to Treasure Spot Garden in March 2014. The area was still surrounded by chain-link fence by an unknown party.

Photo 13 – One exit point was seen opposite to
the tree group T021-029 (Leucaena
leucocephala).Photo 14 – The river water was noted clear near
the tree group T119-122.

Photo 15 – Down the stream near the public
toilet, the water was noted clear and free of any
blockage from litter and broken branches.Photo 16 – The water was still noted clear at the
lower stream.

Photo 17 – No direct water discharge into the
upper stream of Wai Ha River was observed as
the construction works have been concentrated
at the lower end of the river.Photo 18 – Cement mortar along the southern
boundary edge close to the wetland
rehabilitation habitat was removed. The mat
covering this area in mid-March 2014 was
removed in May 2014.

Photo 19 – Cement mortar and construction materials next to the rehabilitation wetland near the exit point opposite to the tree group T021-029 was removed.

Photo 20 – Unclear water overflowed into the nearby marsh area.

Photo 21 – Topped T167 (Red arrow) and T168 (Blue arrow) were in poor health condition with development of watersprouts. Excavated soil was noted piling around the trunk flare.

Photo 22 – Storage of construction materials and sand piling was noted close to the trunk flares and trunk of T093. Cement mortar was also noted on the soil surface close to T093.

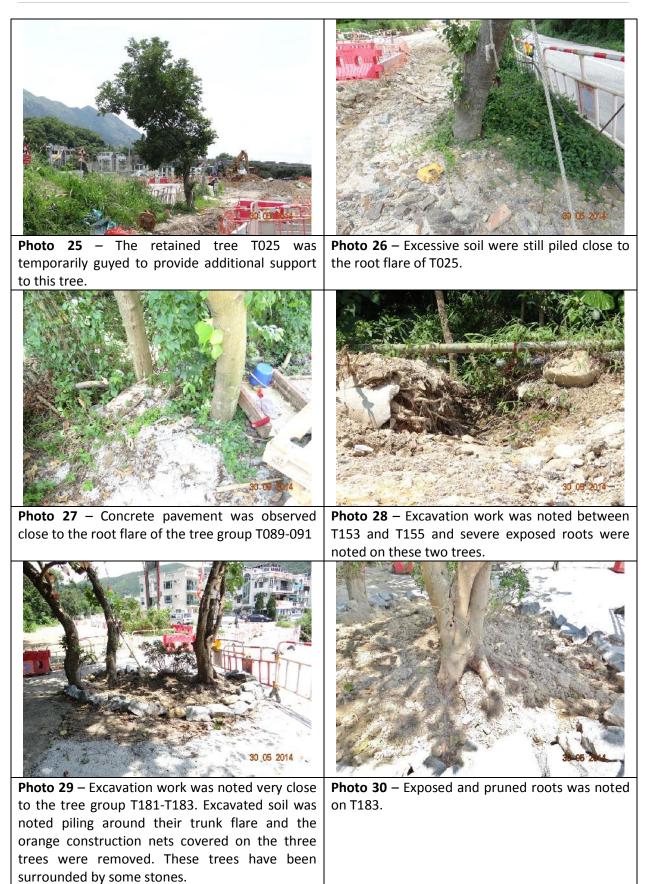


Photo 23 – Storage of construction materials and sand piling was noted close to the trunk flares and trunk of T094. Cement mortar was also noted on the soil surface close to T094.

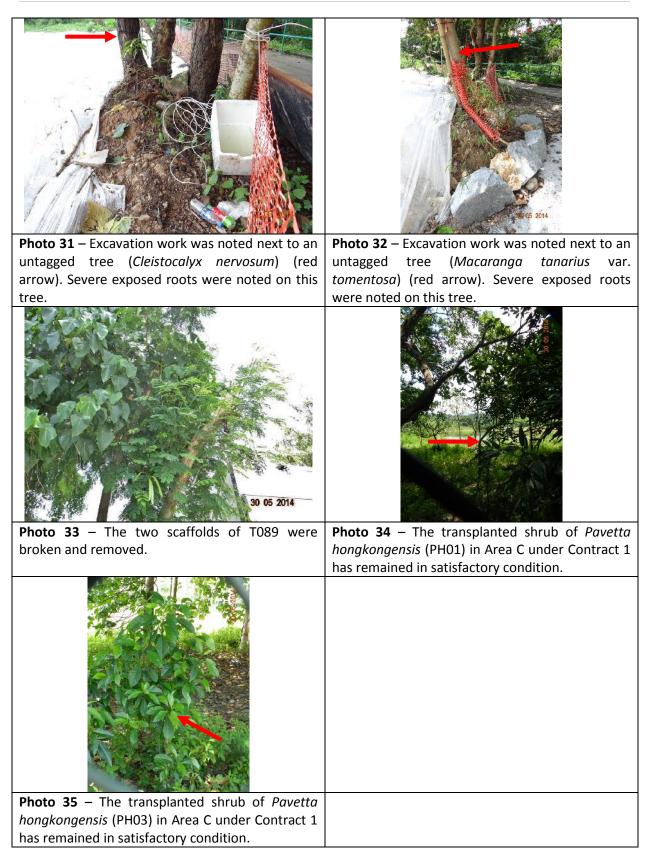


Photo 24 – Excavated soil and rocks and construction materials were noted piling close to the trunk base of the retained tree T103.

Appendix M

Ecological Monitoring Report in Area under Contract 2 Agreement No. DP/01/2010 Drainage Improvement Works in Shatin and Tai Po: Ecological Monitoring in area under Contract 2 (Report 20b for May 2014)

> Prepared for: Drainage Services Department

Prepared by: ENVIRON Hong Kong Limited

> Date: April 2014

Reference Number: R3834_V1.0

Agreement No. DP/01/2010 Drainage Improvement Works in Shatin and Tai Po: Ecological Monitoring in area under Contract 2 (Report 20b for May 2014)

Prepared by:

Max Lee Assistant Environmental Consultant

5

Approved by:

Tony Cheng Project Manager

ENVIRON Hong Kong Limited Room 2403, Jubilee Centre 18 Ferwick Street, Wan Chai, Hong Kong Tel: (852) 3465 2888 Fax: (852) 34652899

Email: hkinfo@environcorp.com

Q:\Projects\DSDSHUWNEM00\Report\Bi-Monthly Construction Phase Ecological Monitoring Report\20140y\20b

Contents

		Page
2.	Highlights of this report	5
3.	Summary of construction activities for the month	5
4.	Monitoring Methodology	5
4.1	Vegetation survey	5
4.2	Avifauna	6
4.3	Herpetofauna	6
4.4	Butterflies and Odonata	6
4.5	Mammals	6
4.6	Aquatic fauna	6
5.	Monitoring data	8
5.1	Vegetation survey	8
5.2	Avifauna	8
5.3	Herpetofauna	8
5.4	Butterflies	9
5.5	Odonata	9
5.6	Mammal	9
5.7	Aquatic fauna	9
6.	Remedial measures adopted to the adverse condition	
7.	Record of complains and remedial measures	10
8.	Review of the monitoring results	10
9.	Forecast of works programme and monitoring requirements	10
10.	Comments and summary	
11.	References	11

List of Tables

Table 1:	List of riparian vegetation and coverage (%) recorded from two stream sampling points under Contract 2 (i.e. SEMP 3 & 4).
Table 2:	List of vegetation recorded from works area under Contracts 2 and 100 m buffer area in the impact monitoring survey conducted in May 2014. Vegetation species presents in the identified location was indicated by "V".
Table 3:	List of avifauna species and maximum counts recorded from the impact monitoring survey in May 2014at work area under Contracts 2 and 100 m buffer area.
Table 4:	List of herpetofauna and maximum counts recorded from the impact monitoring survey in May 2014 at work area under Contracts 2 and 100 m buffer area.
Table 5:	Relative abundance of butterfly species recorded under Contracts 2 in impact monitoring survey during May 2014.
Table 6:	Relative abundance of odonata species recorded under Contracts 2 in impact monitoring survey during May 2014.
Table 7:	Relative abundance of aquatic species recorded in Wai Ha River within the 100 m buffer of works boundary under Contracts 2 in the impact monitoring survey during May 2014.

List of Figures

- Figure 1: Map showing the ecological monitoring transect and the boundary of assessment area.
- Figure 2: SEMP 3, the third sampling point of Wai Ha River under Contract 2.
- Figure 3: SEMP 2, the second sampling point along Wai Ha River under Contract 2.

1. Introduction

1.1 Project description

The Drainage Improvement Works in Shuen Wan was undertaken to minimize the potential flooding impacts in Sha Tin and Tai Po area. Although the Ecological Impact Assessment in the EIA Report identified that ecological impacts resulting from the proposed drainage improvement works at Shuen Wan were anticipated to be very minor in scale, ecological mitigation and ecological monitoring were recommended in the EM&A Manual (http://env-shuenwan.com/pdf/review_note_em&a_rev.3.pdf) as stipulated under Environment Permit No. EP-303/2008.

- 1.2 Scope of ecological impact monitoring was described in the Particular Specifications and EM & A Manual of the projects. In brief, the monitoring tasks include regular check on the retained and transplanted trees and shrubs, monitoring on fauna groups and aquatic fauna within the works area and any ecologically sensitive area within 100 m of the works boundary.
- 1.3 China-Hong Kong Ecology Consultants Co. was commissioned by ENVIRON Hong Kong Limited to perform the ecological impact monitoring survey for the projects under Contract 2 since July 2011.
- 1.4 The outline of this ecological monitoring report was as follow:
 - Highlights of this report
 - Summary of construction activities for the month
 - Monitoring methodology
 - Monitoring data
 - Remedial measures adopted to the adverse condition
 - Record of complains and remedial measures
 - Review of monitoring results
 - Forecast of works programme and monitoring requirements
 - Comments and brief summary
- 1.5 This is the report No. 19b ecological monitoring conducted on 13th May 2014 within the works boundary under Contract 2 and area within 100 m from the works boundary.

2. Highlights of this report

- Field survey was conducted on 13th May 2014
- Construction activities of Contract 2 was initiated since June 2011
- Lower number of species was observed within the works area under Contract 2, but habitats in the 100 m buffer area retain its natural condition.

3. Summary of construction activities for the month

Major construction activities carried out in Contract 2 at Wai Ha Village and Tung Tsz Road by the contractor during the present monitoring period (May 2014) includes:

- 1. Backfilling of trench for Box Culvert Bay (1-7) near Tung Tsz Road.
- 2. Backfilling of trench for Box Culvert Bay (12-15) near Tung Tsz Road
- 3. Backfilling of trench for Box Culvert Bay (28-34) near Tung Tsz Road

4. Monitoring Methodology

Ecological monitoring methods were generally followed those described in the baseline ecological surveys (DC/2009/22). However, sampling area maybe reduced because of habitat change, for instance, deforestation and channel modification due to drainage works, where sampling was not applicable. Survey data and evaluation are detailed in the following sections.

4.1 Vegetation survey

Vegetation survey was performed along the designated transects (Figure 1) for ecological monitoring as described in the project specifications to monitor the vegetation health which could be adversely influenced by any bad site practice. Qualitative data of plants within the works boundary and wetland vegetation in the 100 m buffer area of Contract 2 adjacent to construction site and wetland was recorded. Riparian vegetation including aquatic and emergent at 4 stream ecological monitoring points (hereinafter referred to as "SEMP") under Contract 2 (i.e. SEMP 3 & 4; Figure 2 & 3) along the affected stream channel and riparian habitat was recorded in terms of species, relative abundance and average heights. Any signs of damages and adverse health problems directly caused the works were recorded and reported. Nomenclature and protection status of the species followed those documented in the AFCD website (www.hkbiodiversity.net) and Hong Kong Herbarium (2004).

4.2 Avifauna

Bird survey was conducted by following the proposed transects which cover the major ecologically sensitive areas of the Project (**Figure 1**). All bird species were recorded with special attention paid on the species of conservation importance and wetland-dependent species. List of bird species recorded and the relative abundance was provided.

4.3 Herpetofauna

Hepetofauna survey was conducted via direct observation and active searching along the survey transects with a focus in the work areas (**Figure 1**). All reptiles and amphibians encountered or heard were recorded. Nomenclature and conservation status of herpetofauna species follows AFCD website (www.hkbiodiversity.net).

4.4 Butterflies and Odonata

Odonates and butterfly survey of different habitats within the Study Area was conducted along the proposed transect (**Figure 1**). All butterflies and odonata were identified and relative abundance was recorded. Nomenclauture and status of conservation of butterflies follows Lo & Hui (2005) while that of odonata follows AFCD websites (www.hkbiodiversity.net).

4.5 Mammals

As the monitoring site was situated near traffics, plant nursery and residential buildings, mammals were unlikely inhabited at the site except rodents, domestic dogs and cats. Detailed mammal monitoring was not conducted. However, any sighting, tracks and signs of mammals encountered during survey of other faunal groups was recorded. Bat was surveyed by search for potential colony habitat, such as palm trees, which are often used by fruit bats as nesting sites.

4.6 Aquatic fauna

Monitoring of aquatic fauna was carried out mainly by bank-side observation, sometimes with the aid of binoculars, at two stream ecological monitoring points under Contract 2 (i.e. SEMP 3 & 4). These points are selected for covering representative sections of Wai Ha River and are shown in **Figure 1**. Netting and fish traps were also deployed at these points to collect supplementary data. Aquatic fauna seen/collected

was identified *in situ* to the lowest possible taxon and relative abundance was presented.

5. Monitoring data

5.1 Vegetation survey

The habitats identified in area under Contract 2 are river course, wooded area, mangrove, marsh and developed area (including village). Vegetation were found in wooded area, mangrove, marsh, develop area and river bank. The riparian vegetation which were dominated by Leucaena leucocephala, Bidens alba, and Rhaphiolepis salicifolias with average coverage ranged from 15% to 30% (Table 1). A list of plant species recorded from different habitats within the assessment area under Contract 2 is presented on **Table 2**. A total of 180 species were recorded within the assessment boundary in which 175 species were recorded within the buffer area, while 120 species recorded within the work areas under Contract 2. About 20% of common vegetation species in the edge of marsh under Contract 2 were removed due to direct conflict with the construction activities. Most of the vegetation species were distributed in the Among them, species protected under Hong Kong secondary woodland area. ordinance were found in buffer area under Contract 2, namely Aquilaria sinensis (Cap. 586), Cibotium barometz (Cap. 586). Three individuals of protected species Pavetta hongkongensis located within works area of Contract 2 were transplanted to ECA on 20th Dec 2011.

5.2 Avifauna

A total of 18 bird species were recorded in the current survey (**Table 3**). In the work area under Contract 2, 4 bird species were recorded in which none are considered to be of conservation concern. A total of 14 bird species were recorded in the 100m buffer area in which one bird species *Ardeola bacchus* is recognized as being regional conservation concern.

5.3 Herpetofauna

No reptile was recorded within the assessment area Mating call of Gunter's Frog was recorded from the water of pools, ditches and river bank within work area, while calling of Gunter's Frog, Asiatic Painted Frog and Paddy Frog were heard within 100m buffer zone. Common Toad was found on both work area and buffer zone of the site. The species recorded belongs to common species in Hong Kong. (**Table 4**).

5.4 Butterflies

A total of 14 butterfly species were recorded during surveys (**Table 5**). However, none of the species are of the conservation concern.

5.5 Odonata

Only 1 odonata species were recorded during the surveys (**Table 6**). Only Wandering Glider (*Pantala flavescens*) was found within both the work boundaries and the 100m buffer zone under Contract 2. This odonata species was very common in Hong Kong.

5.6 Mammal

No other mammals or trace of mammals was observed within the assessment area.

5.7 Aquatic fauna

Under Contract 2 (i.e. SEMP 3 & 4), a total of 10 fish species, 1 crustacean, 1 gastropod and 1 arthropod were recorded and most of them were freshwater species (**Table 7**). *Carassius auratus* was commonly observed at SEMP 3 because of the traditional Buddhist practice from the nearby temple in which captured organisms were released back to nature. In addition, river section at SEMP 3 is relatively natural and the presence of *Parazacco spilurus* may imply that good water quality at this section is maintained. Overall, no protected or rare species were recorded.

6. Remedial measures adopted to the adverse condition

There was no non-compliance event recorded within this reporting month.

7. Record of complains and remedial measures

There was no complaint in relation to environmental issue recorded in this reporting month.

8. Review of the monitoring results

During the present survey period, construction activities were carried out at works area under Contract 2, while 100 m buffer area remains natural. Much of the construction activities are carried out along Tung Tsz Road under Contact 2. In general, lower numbers of species were recorded within the works area under Contract 2 than that of 100 m buffer area because of the associated constructions and urbanized in nature. Water quality in river section of Contract 2 (i.e. SEMP 3) was maintained at acceptable condition as indicated by the presence of *Parazacco spilurus*. The impact of excavation work on downstream of SEMP4 is anticipated to be minimized as proper mitigation measure was implemented. In addition, most of the construction activities are restricted in the developed area with low ecological significance. As mitigation measures recommended in the EM&A Manual were properly implemented during the current survey, and hence the residual environmental impacts would be minimized.

9. Forecast of works programme and monitoring requirements

The tentative construction activities undertaken by the contractor at Wai Ha Village and Tung Tsz Road in the coming month are as follows:

- 4. Backfilling of trench for Box Culvert Bay (1-7) near Tung Tsz Road.
- 5. Backfilling of trench for Box Culvert Bay (12-15) near Tung Tsz Road
- 6. Backfilling of trench for Box Culvert Bay (28-34) near Tung Tsz Road

The monitoring programme described in EM&A will strictly follow to verify compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

10. Comments and summary

The bi-monthly ecological impact monitoring under Contracts 2 was conducted in May 2014 and relevant flora and fauna data were collected according to project specification and EM & A Manual. As indicated by the low abundance and diversity of

species within the work areas, habitats within the work boundary under Contracts 2 offer few ecological opportunities for colonization of fauna and flora. Given that the construction activities are restricted in the developed area with proper mitigation measures being implemented, disturbances associated with the current construction activities are largely affecting area with low ecological significance. On the other hand, the natural habitats in the 100 m buffer area are retained at acceptable condition, and hence the 100 m buffer area has not been significantly affected by the construction works.

11. References

Lo PYF & Hui WL (2005). *Hong Kong Butterflies* (2nd Edition). Friends of Country Parks. Hong Kong.

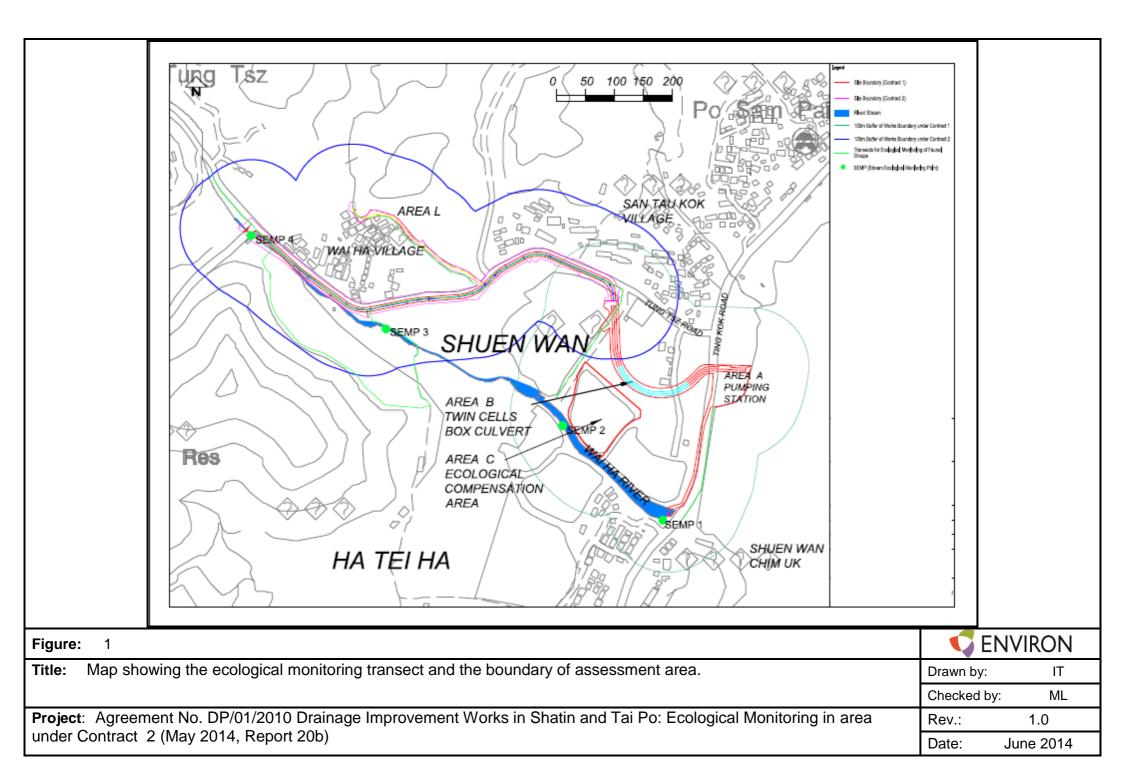
Wilson KDP (2003). *Field Guide to the Dragonflies of Hong Kong*. Agriculture, Fisheries and Conservation Department. Hong Kong.

Viney C, Philips K, Lam CY (2005). *The Birds of Hong Kong and South China* (8th Edition). Hong Kong Government Information Service. Hong Kong.

Hong Kong Herbarium (2004). Check List of Hong Kong Plants. Agriculture, Fisheries and Conservation Department. Hong Kong.

AFCD, Hong Kong Biodiversity Website: http://www.afcd.gov.hk/english/conservation/hkbiodiversity/database/search.asp

Lee VLF, La, SKS, Ng FKY, Chan TKT, Young MLC (2004). *Field Guide to the freshwater fish of Hong Kong*. Agriculture, Fisheries and Conservation Department. Hong Kong.


Shek CT (2006) A *Field Guide to the Terrestrial Mammals*. Agriculture, Fisheries and Conservation Department. Hong Kong.

Fellowes, J.R., Lau, M.W.N., Dudgeon, D., Reels, G., Ades, G.W.J., Carey, G.J., Chan, B.P.L., Kendrick, R.C., Lee, K.S., Leven, M.R., Wilson, K.D.P. & Yu, Y.T. (2002). Wild animals to watch: Terrestrial and freshwater fauna of conservation concern in Hong Kong. *Memoirs of the Hong Kong Natural History Society* 25: 123-159.


Karsen SJ, Lau MWN, Bogadek A (1986) Hong Kong Amphibians and Reptiles. The Urban Council Hong Kong. Hong Kong.

Figure

Table

			Sampling point	SEMP 3		SEMP 4	
Species	Family	Growth form	Status in Hong Kong	Height (cm)	%	Height (cm)	%
Bidens alba	ASTERACEAE	Herb	E			0.9	30
Commelina communis	COMMELINACEAE	Herb	Ν	0.2	10		
Leucaena leucocephala	MIMOSACEAE	Small Tree	E			4	20
Microstegium ciliatum	POACEAE	Perennial Procumbent Herb	Ν	1.2	10		
Pistia stratiotes	ARACEAE	Floating Aquatic Herb	N	0.1	10		
Polygonum chinensis	POLYGONACEAE	Herb	N	0.8	5		
Polygonum Iapathifolium	POLYGONACEAE	Herb	N	0.9	10		
Rhaphiolepis salicifolia	ROSACEAE	Shrub or Small Tree	N	1.2	10		
Spirodela polyrrhiza	LEMNACEAE	Floating Small Herb	N			n/a	5
Wedelia chinensis	ASTERACEAE	Perennial Herb	N	n/a	10		
Bare	n/a	n/a	n/a	n/a	35	n/a	45

Table 1. List of riparian vegetation and coverage (%) recorded from two stream sampling points under Contract 2 (i.e. SEMP 3 & 4).

*Key:

E = Exotic

N = Native

n/a = not available

Table 2. List of vegetation recorded from works area under Contracts 2 and 100 m buffer area in the impact monitoring survey conducted in Mar 2014. Vegetation species presents in the identified location was indicated by "V".

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
Stream	Chrysalidocarpus lutescens	ARECACEAE	Shrub Palm	E	v	V
	Melia azedarach	MELIACEAE	Tree	E	V	V
	Murraya paniculata	RUTACEAE	Small Tree	E	V	V
	Lantana camara	VERBENACEAE	Shrub	E	V	V
	Ficus hispida	MORACEAE	Tree	Ν	V	V
	Ficus virens	MORACEAE	Tree	Ν	V	V
	Chrysopogon aciculatus	POACEAE	Perennial Herb	Ν	v	V
	Microstegium ciliatum	POACEAE	Perennial Procumbent Herb	Ν	V	V
	Mucuna birdwoodiana	FABACEAE (PAPILIONACEAE)	Climber: Vine	Ν	V	V
	Pistia stratiotes	ARACEAE	Floating Aquatic Herb	Ν	V	V
	Cyperus flabelliformis	CYPERACEAE	Herb	E	V	V
	Acanthopanax gracilistylus	ARALIACEAE	Shrub	E	V	V
	Ficus triangularis	MORACEAE	Tree	E	V	V
	Spirodela polyrrhiza	LEMNACEAE	Floating Small	Ν	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
			Herb			
	Glochidion zeylanicum	EUPHORBIACEAE	Shrub or Small Tree	Ν	V	V
	Sterculia lanceolata	STERCULIACEAE	Semi-deciduous Tree	Ν	V	V
	Albizia lebbeck	MIMOSACEAE	Tree	E		V
	Arundinella nepalensis	POACEAE	Perennial Herb	N		V
	Bidens alba	ASTERACEAE	Herb	E		V
	Clerodendrum inerme	VERBENACEAE	Shrub	Ν		V
	Coculus orbiculatus	MENISPERMACEAE	Climber: Vine	Ν		V
	Hibiscus tiliaceus	MALVACEAE	Tree or Shrub	N		V
	Leucaena leucocephala	MIMOSACEAE	Small Tree	E		V
	Manilkara zapota	SAPOTACEAE	Tree	E		V
	Sapium discolor	EUPHORBIACEAE	Tree	N		V
Developed area	Pericampylus glaucus	MENISPERMACEAE	Woody Vine	N	V	V
	Ficus variegata var. chlorocarpa	MORACEAE	Tree or Shrub	Ν	v	V
	Citrus reticulata Blanco	RUTACEAE	Small Tree	E	V	V
	Salvia japonica	LAMIACEAE (LABIATAE)	Herb	N	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Morus alba	MORACEAE	Tree or Shrub	Ν	V	V
	Emilia sonchifolia	ASTERACEAE	Herb	Ν	V	V
	Clausena lansium	RUTACEAE	Small Tree	E	V	V
	Pyrostegia venusta	BIGNONIACEAE	Climber: Vine	E	V	V
	Psidium guajava	MYRTACEAE	Tree	E	V	V
	Catharanthus roseus	APOCYNACEAE	Subshrub	Ν	V	V
	Archontophoenix alexandrae	ARECACEAE	Tree Palm	E	V	V
	Desmodium heterocarpon	FABACEAE (PAPILIONACEAE)	Shrub	N	V	V
	Rhinacanthus nasutus	ACANTHACEAE	Herb	E	V	V
	Acacia confusa	MIMOSACEAE	Tree	E		V
	Artocarpus macrocarpon	MORACEAE	Tree	E		V
	Averrhoa carambola	OXALIDACEAE	Small Tree	E		V
	Bauhinia blakeana	CAESALPINIACEAE	Tree or Shrub	Ν		V
	Bauhinia variegata	CAESALPINIACEAE	Tree	E		V
	Bridelia tomentosa	EUPHORBIACEAE	Shrub or Small Tree	N		V
	Calliandra haematocephala	MIMOSACEAE	Shrub	E		V
	Caryota ochlandra	ARECACEAE	Tree palm	E		V
	Cassia spectabilis	CAESALPINIACEAE	Small Tree	E		V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Casuarina equisetifolia	CASUARINACEAE	Tree	E		V
	Citrus grandis	CASUARINACEAE	Tree	E		V
	Cordyline fruticosa	AGAVACEAE	Shrub	E		V
	Cynodon dactylon	POACEAE	Perennial Herb	Ν		V
	Dracaena draco	AGAVACEAE	Tree	E		V
	Elaeocapus haminanensis	ELAEOCARPACEAE	Small Tree	E		V
	Eleusine indica	POACEAE	Herb	Ν		V
	Eriobotrya japonica	ROSACEAE	Small Tree	E		V
	Ficus benjamina	MORACEAE	Tree	E		V
	Ficus elastica	MORACEAE	Tree	E		V
	Ficus simplicissima	MORACEAE	Shrub	Ν		V
	Hibiscus rosa-sinensis	MALVACEAE	Shrub	E		V
	Lantana camara	VERBENACEAE	Shrub	E		V
	Litchi chinensis	SAPINDACEAE	Tree	E		V
	Lumnitzera racemosa	COMBRETACEAE	Shrub or Small Tree	Ν		V
	Lygodium japonicum	LYGODIACEAE	Climbing Herb	Ν		V
	Melaleuca quinquenervia	MYRTACEAE	Tree	E		V
	Oxalis corniculata	OXALIDACEAE	Perennial Herb	N		V
	Phoenix roebelenii	ARECACEAE	Small Tree Palm	E		V
	Polygonum	POLYGONACEAE	Herb	N		V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	hydropiper					
	Psychotria serpens	RUBIACEAE	Climber: Vine	Ν		
	Pterocypsela indica	ASTERACEAE	Herb	Ν		V
	Rhapis excelsa	ARECACEAE	Shrub Palm	Ν		V
	Sansevieria trifasciata	AGAVACEAE	Perennial Herb	E		V
	Schefflera actinophylla	ARALIACEAE	Climbing Shrub	E		V
	Schefflera heptaphylla	ARALIACEAE	Tree	Ν		V
	Sesbania cannabina	FABACEAE	Herb	E		V
	Terminalia catappa	COMBRETACEAE	Large Tree	E		V
	Thuja orientalis	CUPRESSACEAE	Tree	E		V
	Tradescantia spathacea	COMMELINACEAE	Herb	E		V
	Youngia japonica	ASTERACEAE	Herb	Ν		V
	Phragmites karka	POACEAE	Perennial Herb	Ν	V	
	Coix lacryma-jobi	POACEAE	Herb	Ν	V	
	Apluda mutica	POACEAE	Perennial Herb	Ν	V	
	Glochidion puberum	EUPHORBIACEAE	Shrub	Ν	V	
	Acanthus ilicifolius	ACANTHACEAE	Shrub	Ν	V	V
	Acrostichum aureum	ACROSTICHACEAE	Herb	Ν	V	V
	Aegiceras corniculatum	MYRSINACEAE	Shrub	Ν	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Alocasia odora	ARACEAE	Perennial Herb	N	V	V
	Avicennia marina	VERBENACEAE	Shrub	N	V	V
	Digitaria ciliaris	POACEAE	Herb	N	V	V
	Panicum repens L.	POACEAE	Perennial Herb	N	V	V
	Pennisetum alopecuroides	POACEAE	Perennial Herb	N	V	V
	Phragmites anstralis	POACEAE	Perennial Herb	N	V	V
	Plantago major	PLANTAGINACEAE	Perennial herb	N	V	V
	Solanum nigrum	SOLANACEAE	Herb	N	V	V
Plantation	Bischofia javanica	EUPHORBIACEAE	Tree	N	V	V
	Scolopia chinensis	FLACOURTIACEAE	Tree or Large Shrub	N	V	V
	Piper hancei	PIPERACEAE	Climber: Vine	N	V	V
	Dimocarpus longan	SAPINDACEAE	Tree	E	V	V
	Paederia scandens	RUBIACEAE	Climber: Vine	N	V	V
	Cleistocalyx operculatus	MYRTACEAE	Tree	N	V	V
	Antidesma bunius	EUPHORBIACEAE	Tree	N	V	V
	Litsea monopetala	LAURACEAE	Small Tree	N	V	V
	Microcos paniculata	TILIACEAE	Shrub or Small Tree	N	V	V
	Maesa perlarius	MYRSINACEAE	Shrub	N	V	V
	Boehmeria nivea (L.) Gaudich.	URTICACEAE	Subshrub or shrub	E	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Mallotus apelta	EUPHORBIACEAE	Shrub or Small Tree	N	V	V
	Sapindus saponaria	SAPINDACEAE	Tree	Ν	V	V
	Aporusa dioica	EUPHORBIACEAE	Tree	Ν	V	V
	Wedelia chinensis	ASTERACEAE	Perennial Herb	Ν	V	V
	Carica papaya	CARICACEAE	Tree	E	V	V
	Rubus reflexus	ROSACEAE	Climbing Shrub	Ν	V	V
	Brassica rapa	BRASSICACEAE (CRUCIFERAE)	Biennial Herb	E	V	V
	Mucuna championii Benth.	FABACEAE	Climbing Vine	N		V
	Pinus massoniana	PINACEAE	Tree	Ν	V	V
Cultivated land	Coriandrum sativum	APIACEAE (UMBELLIFERAE)	Herb	E	V	V
	Allium fistulosum	LILIACEAE	Herb	E	V	V
	Lactuca sativa	ASTERACEAE	Herb	E	V	V
	Musa x paradisiaca L.	MUSACEAE	Perennial Herb	E	V	V
	Lycopersicon esculentum	SOLANACEAE	Herb	E	V	V
	Chrysanthemum coronarium	ASTERACEAE	Herb	E	V	V
	Myosoton aquaticum	CARYOPHYLLACEAE	Herb	N	V	V
	Drymaria diandra	CARYOPHYLLACEAE	Herb	Ν	V	V
	Eupatorium	ASTERACEAE	Perennial Herb	E	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	odoratum					
	Conyza canadensis	ASTERACEAE	Herb	E	V	V
	Polygonum chinensis	POLYGONACEAE	Herb	Ν	V	V
	Pueraria lobata	FABACEAE	Climber: Vine	Ν	V	V
	Panicum maximum	POACEAE	Perennial Herb	E	V	V
	Pteridium aquilinum	PTERIDIACEAE	Herb	Ν	V	V
	Polygonum Iapathifolium	POLYGONACEAE	Herb	Ν	V	V
	Colocasia esculenta	ARACEAE	Herb	Ν	V	V
	Cuscuta chinensis	CUSCUTACEAE	Parasitic Herb	N	V	V
	Panicum trypheron	POACEAE	Perennial Herb	E	V	V
Secondary woodland	Mallotus paniculatus	EUPHORBIACEAE	Tree or Shrub	Ν	V	V
	Litsea glutinosa	LAURACEAE	Tree	N	V	V
	Trifolium repens	FABACEAE (PAPILIONACEAE)	Herb	E	V	V
	Hedyotis hedyotidea	RUBIACEAE	Scandent Shrub	N	V	V
	Solanum torvum	SOLANACEAE	Shrub	E	V	V
	Uvaria macrophylla	ANNONACEAE	Climbing Shrub	N	V	V
	Psychotria asiatica	RUBIACEAE	Tree or Shrub	N	V	V
	Glochidion eriocarpum	EUPHORBIACEAE	Shrub	N	V	V
	Ardisia quinquegona	MYRSINACEAE	Shrub	N	V	V
	Pteris semipinnata	PTERIDACEAE	Herb	N	V	V
	Melastoma	MELASTOMATACEAE	Shrub	N	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	sanguineum					
	Lasianthus chinensis	RUBIACEAE	Shrub	N	V	V
	Cinnamomum camphora	LAURACEAE	Large Tree	Ν	v	V
	Rhus hypoleuca	ANACARDIACEAE	Shrub or Small Tree	Ν	V	V
	Syzygium jambos (L.) Alston	MYRTACEAE	Tree	E	V	V
	Canthium dicoccum	RUBIACEAE	Tree or Shrub	N	V	V
	Stephania longa	MENISPERMACEAE	Climber: Vine	N	V	V
	Aquilaria sinensis	THYMELAEACEAE	Tree	N (Cap. 586)		V
	Bridelia insulana	EUPHORBIACEAE	Shrub	N	V	V
	Disporum cantoniense	LILIACEAE	Herb	E	V	V
	Litsea cubeba	LAURACEAE	Shrub to Small Tree	Ν	V	V
	Cibotium barometz	DICKSONIACEAE	Large Herb	N (Cap. 586)		V
	Sapium discolor	EUPHORBIACEAE	Tree	N	V	V
	Melastoma candidum	MELASTOMATACEAE	Shrub	N	V	V
	Dicranopteris pedata	GLEICHENIACEAE	Herb	N	V	V
	Cratoxylum cochinchinense	CLUSIACEAE	Tree or Shrub	N	V	V
	Desmos chinensis	ANNONACEAE	Shrub	N	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Acronychia pedunculata	RUTACEAE	Tree	N	V	V
	Selaginella uncinata	SELAGINELLACEAE	Herb	Ν	V	V
	Rhus succedanea	ANACARDIACEAE	Shrub or Small Tree	Ν	V	V
	Millettia reticulata	FABACEAE (PAPILIONACEAE)	Climber: Vine	Ν	V	V
	Embelia ribes	MYRSINACEAE	Climber: Vine	N	V	V
	Pavetta hongkongensis	RUBIACEAE	Tree or Shrub	N (Cap. 96)		V
	Mangifera indica	ANACARDIACEAE	Tree	E	V	V
	Cinnamomum burmannii	LAURACEAE	Tree or Large Shrub	Ν	V	V
	Ficus microcarpa	MORACEAE	Tree	N	V	V
	Byttneria aspera	STERCULIACEAE	Woody Vine	Ν	V	V
	Equisetum debile	EQUISETACEAE	Herb	Ν	V	V
	Bambusa sp.	POACEAE	Clumped Tree Bamboo	/	V	V
	Rourea microphylla	CONNARACEAE	Climbing Shrub	Ν	V	V
	Pennisetum alopecuroides	POACEAE	Perennial Herb	N	V	V
	Ipomea cairica	CONVOLVULACEAE	Climber: Twining Herb	E	V	V
	Mikania micrantha	ASTERACEAE	Climbing Herb	E	V	V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
Wooded area	Celtis sinensis	ULMACEAE	Tree	Ν		V
	Ligustrum sinensis	OLEACEAE	Tree or Shrub	Ν		V
	Macaranga tanarius	EUPHORBIACEAE	Tree	Ν		V
	Pandanus tectorius	PANDANACEAE	Shrub or Small Tree	Ν		V
	Excoecaria agallocha	EUPHORBIACEAE	Tree	Ν		V
	Kandelia obovata	RHIZOPHORACEAE	Shrub or Small Tree	Ν		V
	Thespesia populnea	MALVACEAE	Tree or Shrub	Ν		V
	Zoysia sinica	POACEAE	Perennial Herb	Ν		V
Marsh	Acanthus ilicifolius	ACANTHACEAE	Shrub	Ν		V
	Acrostichum aureum	ACROSTICHACEAE	Herb	Ν		V
	Aegiceras corniculatum	MYRSINACEAE	Shrub	Ν		V
	Alocasia odora	ARACEAE	Perennial Herb	Ν		V
	Avicennia marina	VERBENACEAE	Shrub	Ν		V
	Digitaria ciliaris	POACEAE	Herb	Ν		V
	Ficus hispida	MORACEAE	Tree	N		V
	Hibiscus tiliaceus	MALVACEAE	Tree or Shrub	Ν		V
	Ipomea cairica	CONVOLVULACEAE	Climber: Twining Herb	E		V
	Kandelia obovata	RHIZOPHORACEAE	Shrub or Small Tree	N		V
	Macaranga tanarius	EUPHORBIACEAE	Tree	N		V

Habitat	Species name	Family	Growth form	*Status in Hong Kong	Work Area of Contract 2	100 m buffer area under Contract 2
	Mikania micrantha	ASTERACEAE	Climbing Herb	E		V
	Panicum repens L.	POACEAE	Perennial Herb	N		V
	Pennisetum alopecuroides	POACEAE	Perennial Herb	Ν		V
	Phragmites anstralis	POACEAE	Perennial Herb	N		V
	Plantago major	PLANTAGINACEAE	Perennial herb	N		V
	Polygonum Iapathifolium	POLYGONACEAE	Herb	Ν		V
	Pueraria lobata	FABACEAE	Climber: Vine	N		V
	Schefflera heptaphylla	ARALIACEAE	Tree	Ν		V
	Solanum nigrum	SOLANACEAE	Herb	N		V
	Solanum torvum	SOLANACEAE	Shrub	E		V

*Key:

E = Exotic

N = Native

Table 3. List of avifauna species and maximum counts recorded from the impact monitoring survey in Mar 2014 at work area underContracts 2 and 100 m buffer area.

Species	Common name	Habitat	Conservation status in	Work area:	100m buffer
			Hong Kong	Contract 2	area
Garrulax perspicillatus	Masked Laughing				3
	thrush				
Orthotomus sutorius	Common Tailorbird				1
Pycnonotus jocosus	Red-whiskered				6
	Bulbul				
Phoenicurus auroreus	Daurian redstart				1
Pycnonotus sinensis	Chinese Bulbul				5
Parus major(commixtus)	Great Tit				1
Stachyris ruficeps	Rufous-capped		LC		1
	Babbler				
Streptopelia chinensis	Spotted Dove			2	3
Prinia flaviventris	Yellow-bellied				1
	Prinia				
Eudynamys scolopacea	Common Koel				1
Egretta garzetta	Little Egret				1
Copsychus saularis	Oriental Magpie				1
	Robin				

Species	Common name	Habitat	Conservation status in	Work area:	100m buffer
			Hong Kong	Contract 2	area
Motacilla alba	White Wagtail				1
Amaurornis phoenicurus	White-breasted				1
	Water hen				
Hirundo rustica	Barn Swallow				2
Sturnus nigricollis	Black-collared				2
	Starling				
Passer montanus	Eurasian Tree				2
	Sparrow				
Urocissa erythrorhyncha	Blue Magpie				2
Total number of species:			1	1	18

*Key:

W = Wetland dependent species ; RC = Regional Concern ; LC = Local Concern

Table 4. Relative abundance of aquatic species recorded in Wai Ha River within the 100 m buffer of works boundary under Contracts2 in the impact monitoring survey during Mar 2014.

Species	Common name	¹ Life-cycle characteristics	² Origin	SEMP 3	SEMP 4
Carassius auratus	Goldfish	F		++	+
Cirrhinus molitorella	Mud carp	F	1	++	+
Cyprinus carpio	Common Carp	F	I	+	+
Gambusia affinis	Mosquito Fish	F		++	+
Oreochromis niloticus	Nile Tilapa	F		+	
Parazacco spilurus	Predaceaous Chub	F	N	+	
Poecilia reticulata	Guppy	F		+	+
Puntius semifasciolatus	Chinese Barb	F	Ν	+	
Rhinogobius duospilus	Goby	F	Ν	+	+
Xiphophorus hellerii	Swordtail	F		+	+
Uca arcuata	Fiddler Crab	M	N	+	
Pomacea lineata	Apple snail	F		+	
Gerris sp.	Water Strider	F	/	+	
Total number of species:	13			13	7

Key:

Relative abundance:

+ : Species exists in the survey area

++ : Species common in the survey area

+++ : Species abundant in the survey area

¹Life-cycle characteristics:

M = Marine vagrant

F = Freshwater species

²Origin:

N = Native I = Introduced; / = not available