Station	Sheung Wun Yiu	(AM1A)		Operator:	Shum Ka	am Yuen	
Cal. Date:	28-Jan-11			Next Due Date:	28-M	ar-11	
Equipment No.:	A-001-53T			Serial No.	102	216	
			Ambient	Condition			
Temperatu	re. Ta (K)	290		Pa (mmHg)		766.7	
	,,			_ (
			Orifice Transfer S	tandard Informatio	n		
Serial	No:	988	Slope, mc	2.01259	Interce	ept, bc	-0.0153
Last Calibra	ition Date:	7-May-10		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	7-May-11		Qstd = {[DH x (Pa/760) x (298/Ta)]	^{1/2} -bc} / mc	
			Calibration	of TSP Sampler			
		0	rfice	i Tor cumpler	HV	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m³/min) X -	Flow Recorder Reading (CFM)	Continuous Flov Reading IC (CFI	
18	10.4	3.28		1.64	52.0	52.94	
13	6.5		2.60	1.30	42.0	42.76	
10	4.8		2.23	1.12	36.0	36.65	
7	3.6		1.93	0.97	30.0	30.54	
5	2.2		1.51	0.76	22.0	22.40	
By Linear Regre Blope , mw = Correlation Coef	34.6597	_ 0.9	9943	Intercept, bw =	-2.9	911	
	efficient < 0.990,			_			
			Set Point	Calculation			
rom the TSP Fie	eld Calibration Cu	rve, take Qstd =	1.30m³/min				
rom the Regress	sion Equation, the	"Y" value accord	ding to				
					1/2		
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	[a)]" "		
herefore, Set Po	oint; IC = (mw x C	Qstd + bw) x [(76	60 / Pa) x (Ta / 29	98)] ^{1/2} =		41.32	-
Remarks:							
QC Reviewer:	OT	Fu	Signature:	loe		Date: 31	hn 1
		1	guturo.				

Station	Sheung Wun Yiu (AM1A)
Cal. Date:	28-Jan-11

Next Due Date: 28-Mar-11

Set Point (IC) 41.32

IC (CFM)	Qstd (m³/min)
24	0.779
25	0.808
26	0.836
27	0.865
28	0.894
29	0.923
30	0.952
31	0.981
32	1.010
33	1.038
34	1.067
35	1.096
36	1.125
37	1.154
38	1.183
39	1.212
40	1.240
41	1.269
42	1.298
43	1.327
44	1.356
45	1.385
46	1.413
47	1.442
	4.474
48 49	1,471
	1.500
50 51	1.529
52	1.558 1.587
52 53	THE STREET CONTRACTOR STREET, CO. L. CO. L. CO. L.
54	1.615 1.644
55	
56	1.673 1.702
57	1.731
58-	1.760
59	1.789
60	1.817
61	1.846
62	1.875
63	
	1.904
64 65	1.904 1.933 1.962

Operator:

Serial No.

Next Due Date:

Shum Kam Yuen

28-Mar-11

10202

Shan Tong New Village (AM2)

28-Jan-11

A-001-29T

Station

Cal. Date:

Equipment No.:

			Ambient	Condition				
Temperatu	ire, Ta (K)	290	Pressure, I	Pa (mmHg)		766.7		
				tandard Information				
Seria		988	Slope, mc	2.01259	Interce		-0.01532	
Last Calibra		7-May-10			= [DH x (Pa/760) x			
Next Calibra	ation Date:	7-May-11		Qstd = {[DH x (I	Pa/760) x (298/Ta)]	1/2 -bc} / mc		
		•	Calibration of	of TSP Sampler				
		(Orfice	HVS Flow Recorder				
Resistance Plate No.	DH (orifice), in. of water [DH x (Pa/760) x (2)		60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X -	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFI		
18	10.5	3.30		1.65	50.0	50.91		
13	8.1		2.90	1.45	42.0	42.76		
10	5.5		2.39	1.19	34.0	34.62		
7	4.1		2.06	1.03	28.0	28.51		
5	2.3		1.54	0.77	22.0	22.40		
Slope , mw = Correlation Coe *If Correlation Co	32.8959 fficient* = pefficient < 0.990, or		9917 brate.	Intercept, bw = _	-4.2	620		
			Set Point	Calculation				
From the TSP Fig	eld Calibration Cur	rve, take Qstd =						
l	sion Equation, the							
					4/0			
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Γa)] ^{1/2}			
Therefore, Set Po	oint; IC = (mw x C	Qstd + bw) x [(7	60 / Pa) x (Ta / 29	98)] ^{1/2} =		37.82		
				THE RESERVE OF THE PARTY OF THE				
Remarks:	Management of the State of the							
QC Reviewer:	Je F	ū_	Signature:	be		Date: 3(Jan 11	

Station	Shan Tong New Village (AM2)
Cal. Date:	28-Jan-11
Next Due Date:	<u>28-Mar-11</u>
Set Point (IC)	<u>37.82</u>

IC (CFM)	Qstd (m³/min)
24	0.859
25	0.890
26	0.920
27	0.950
28	0.981
29	1.011
30	1.042
31	1.072
32	1.102
33	1.133
34	1.163
35	1.194
36	1.224
37	1.254
38	1,285
39	1.315
40	1.346
41	1.376
42	1.406
43	1.437
44	1.467
45	1.498
46	1.528
47	1.558
55. 1946023. 034	
48	1.589
49	1.619
50 54	1.650
51	1.680
52 53	1.710
53	1.741
54 55	1.771
55 56	1.802 1.832
57	1.862
58	1.893
59	1.923
60	1.953
61	1.984
62	2.014
63	2.045
64	2.075
65	2.105

Station	Riverain Bayside	(AM3)		Operator:	Shum Ka	am Yuen
Cal. Date:	28-Jan-11			Next Due Date:	28-M	ar-11
quipment No.:	A-001-69T			Serial No.	71	6
			Ambient	Condition		
Temperatu	ire, Ta (K)	290	Pressure, F	Pa (mmHg)		766.7
		(Orifice Transfer S	tandard Informatio	n	
Seria	l No:	988	Slope, mc	2.01259	Interce	ept, bc -0.0153
Last Calibra	ation Date:	7-May-10			= [DH x (Pa/760) x	
Next Calibra	ation Date:	7-May-11		Qstd = {[DH x (F	Pa/760) x (298/Ta)]	^{1/2} -bc} / mc

				f TSP Sampler		
Danistanas		0	rfice		HV	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/76	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Flow Recorder Reading (CFM)	Continuous Flow Recorde Reading IC (CFM) Y-axis
18	10.4	3.28		1.64	52.0	52.94
13	8.1		2.90	1.45	46.0	46.84
10	5.9		2.47	1.24	40.0	40.73
7	4.4		2.14	1.07	32.0	32.58
5	2.6		1.64	0.82	24.0	24.44
By Linear Regre Slope , mw = Correlation Coe	35.4015 fficient* =	_	9940	Intercept, bw =	-4.4	998
	-	check and recalib		_		
			Set Point	Calculation		
rom the TSP Fig	eld Calibration Cu	irve, take Qstd = 1	1.30m³/min		*	
rom the Regres	sion Equation, the	e "Y" value accord	ling to			
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/1	Га)] ^{1/2}	
harafara Cat D	-i-t-10 - /	O-14 . b \ 1/ 7/	0 (D-) / T- / 00	00.11/2-		40.00
nereiore, Set Pi	oint; ic = (mw x i	asta + bw) x [(/c	60 / Pa) x (Ta / 29	98)] =		40.78
Remarks:						
o namo		h,				· · · · · · · · · · · · · · · · · · ·
				<u>i</u>		
C Reviewer	loe	Fu.	Signature:	be		Date: 3/5 An 11

Station	Riverain Bayside (AM3)
Cal. Date:	28-Jan-11

Next Due Date: 28-Mar-11

Set Point (IC) 40.78

IC (CFM)	Qstd (m³/min)
24	0.805
25	0.833
26	0.862
27	0.890
28	0.918
29	0.946
30	0,975
31	1.003
32	1.031
33	1.059
34	1.088
35	1.116
36	1.144
37	1.172
38	1.201
39	1.229
.40	1.257
41	1.285
42	1.313
43	1.342
44	1.370
45	1.398
46	1.426
47	1.455
71	1.400
48	1.483
49	1.511
50	1.539
51	1.568
52	1.596
53	1.624
54	1.652
55	1.681
56	1.709
57	1.737
58	1.765
59	1.794
60	1.822
61 62	1.850
63	1.878
64	1.907
SANSON SECURIORIS SANTERS	1.935 1.963
65	1.803

Station	Tai Kwong Secor	ndary School (AM	4)	Operator:	Shum Ka	am Yuen
Cal. Date:	28-Jan-11			Next Due Date:	28-M	ar-11
quipment No.:	A-001-70T			Serial No.	102	273
			Ambient	Condition		
Temperatu	re, Ta (K)	290	Pressure,	Pa (mmHg)		766.7
		(Orifice Transfer S	tandard Informatio	on	
Serial	l No:	988	Slope, mc	2.01259	Interce	ept, bc -0.01
Last Calibra	ation Date:	7-May-10		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}
Next Calibra	ation Date:	7-May-11		Qstd = {[DH x (Pa/760) x (298/Ta)]	^{1/2} -bc} / mc
			Calibration of	of TSP Sampler		
		0	rfice		HV	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Record Reading IC (CFM) Y-ax
18	10.1	3.24		1.62	52.0	52.94
13	8.4		2.95	1.47	48.0	48.87
10	6.0		2.49	1.25	38.0	38.69
7	4.1		2.06	1.03	30.0	30.54
5	2.2		1.51	0.76	22.0	22.40
lope , mw = orrelation Coe	36.7503 fficient* = 0.990,		9944 prate.	Intercept, bw =	-6.3	360
				~ I 121		
rom the TSD Fig	eld Calibration Cu	rve take Oetd = 1		Calculation		
	sion Equation, the					
ioni ine Regres	sion Equation, the	e i value accord	ang to			
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)1 ^{1/2}	
					/1	
herefore, Set Po	oint; IC = (mw x 0	Qstd + bw) x [(76	60 / Pa) x (Ta / 29	98)] ^{1/2} =		40.70
temarks:						
		_		1		S. 1
C Reviewer:	< be	tu :	Signature:	Joe		Date: 31 Jan

Station Tai Kwong Secondary School (AM4)

Cal. Date: <u>28-Jan-11</u>

Next Due Date: 28-Mar-11

Set Point (IC) 40.70

IC (CFM)	Qstd (m³/min)
24	0.825
25	0.853
26	0.880
27	0.907
28	0.934
29	0.962
30	0.989
31	1.016
32	1.043
33	1.070
34	1.098
35	1.125
36	1.152
37	1.179
38	1.206
39	1.234
40	1.261
41	1.288
42	1.315
43	1.342
44	1.370
45	1.397
46	1.424
47	1.451
48	1.479
49	1.506
50	1.533
51	1.560
52	1.587
53	1.615
54	1.642
55	1.669
56	1.696
57 58	1.723 1.751
59	1.778
60	1.805
61	1.832
62	1.859
63	1.887
64	1,914
65	1.941
	1.071

EQUIPMENT CALIBRATION RECORD

Manufacturer/Brand: Model No.; Equipment No.; Sensitivity Adjustment Scal		_		st Moni	tor		
Equipment No.:			SIBATA				
			LD-3				
Sensitivity Adjustment Scal		_	A.005.07				
	e Setting):	557 CPN	1			
Operator:		-	Mike She	k (MSKI	M)		
Standard Equipment							
Equipment:	Ruppre	cht & Pa	tashnick 1	FOM®			
Venue:			ing Seco		chool)		_
Model No.:		1400AB					_
Serial No:	Control		AB21989	9803			_
	Sensor	: 120	0C14365	9803	K _o : 12500		
Last Calibration Date*:	30 May						_
*Remarks: Recommended in	nterval fo	r hardwar	e calibrat	ion is 1	year		
Calibration Result							
Sensitivity Adjustment Scal Sensitivity Adjustment Scal	e Setting	(After Ca	alibration)	:	557 CP	М	
Hour Date	Time		Ambient		Concentration 1	Total	Count
(dd-mm-yy)			Cond	400000000000000000000000000000000000000	(mg/m³)	Count ²	Minute ³
			Temp	R.H.	Y-axis		X-axis
			/4/21				1500000
1 05-08-10 10	-00 -	11:00	(°C)	(%)	0.05537	1850	30.83
	:00 -	11:00	27.3	78	0.05537	1850	30.83
2 05-06-10 11.	:00 -	12:00	27.3 27.4	78 77	0.05441	1812	30.20
2 05-06-10 11 3 05-06-10 12	:00 -	12:00 13:00	27.3 27.4 27.4	78 77 78	0.05441 0.05245	1812 1753	30.20 29.22
2 05-06-10 11. 3 05-06-10 12. 4 05-06-10 13.	:00 - :00 -	12:00 13:00 14:00	27.3 27.4 27.4 27.5	78 77 78 78	0.05441 0.05245 0.05355	1812	30.20
2 05-06-10 11. 3 05-06-10 12. 4 05-06-10 13. Note: 1. Monitoring data v 2. Total Count was 3. Count/minute wa	:00 - :00 - :00 - was mea logged b as calcula	12:00 13:00 14:00 sured by by Laser [27.3 27.4 27.4 27.5 Rupprech Oust Moni	78 77 78 78 nt & Pata	0.05441 0.05245 0.05355	1812 1753	30.20 29.22
2 05-06-10 11. 3 05-06-10 12. 4 05-06-10 13. Note: 1. Monitoring data v 2. Total Count was 3. Count/minute wa	:00 - :00 - :00 - was mea logged b as calcula	12:00 13:00 14:00 sured by by Laser I ated by (T	27.3 27.4 27.4 27.5 Rupprech Oust Moni	78 77 78 78 nt & Pata	0.05441 0.05245 0.05355	1812 1753	30.20 29.22
2 05-06-10 11 3 05-06-10 12 4 05-06-10 13 Note: 1. Monitoring data v 2. Total Count was	:00 - :00 - :00 - was mea logged b as calcula	12:00 13:00 14:00 sured by by Laser [27.3 27.4 27.4 27.5 Rupprech Oust Moni	78 77 78 78 nt & Pata	0.05441 0.05245 0.05355	1812 1753	30.20 29.22
2 05-06-10 11. 3 05-06-10 12. 4 05-06-10 13. Note: 1. Monitoring data v 2. Total Count was 3. Count/minute wa By Linear Regression of Y or Slope (K-factor):	:00 - :00 - :00 - was mea logged b as calcula X	12:00 13:00 14:00 sured by by Laser I ated by (T	27.3 27.4 27.4 27.5 Rupprech Oust Moni otal Cour	78 77 78 78 nt & Pata	0.05441 0.05245 0.05355	1812 1753	30.20 29.22

EQUIPMENT CALIBRATION RECORD

					Laser Du	at morn	tor		
Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting:					SIBATA LD-3 A.005.09a				
				_					
				_					
				_	Mike Shek (MSKM)				
Operator:			_						
Standard	Equipment								
Equipme	int:	Rur	onrec	ht & Pat	ashnick 1	EOM [®]			
Venue:		Rupprecht & Patashnick TEOM® Cyberport (Pui Ying Secondary School)							
			Series 1400AB						
Serial No			ntrol:		AB21989	9803			_
			sor:		OC14365		K _o : 12500		
Last Calibration Date*: 30 May 2									
*Remarks:	Recommende	ed interva	l for	hardwar	e calibrat	ion is 1	year		
Calibratio	n Result								
							707 00	M	
Sensitivit	y Adjustment y Adjustment	Scale Set	tting (alibration)	:	797 CP	M	
Sensitivit	y Adjustment	Scale Set			Amb	ient	797 CP		Count/ Minute ³
Sensitivit	y Adjustment	Scale Set	tting (Amb Cond Temp	ient ition R.H.	797 CP	Total	
Sensitivit Hour	Date (dd-mm-yy)	Scale Set	tting ((After Ca	Amb Cond Temp (°C)	ient ition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total	Minute ³ X-axis
Hour 1	Date (dd-mm-yy)	Scale Set	tting ((After Ca	Amb Cond Temp	ient ition R.H.	797 CP Concentration ¹ (mg/m ³)	Total Count ²	Minute ³
Hour 1 2	Date (dd-mm-yy) 06-06-10 06-06-10	Scale Set	tting (14:30 15:30	Amb Cond Temp (°C) 27.8	ient ition R.H. (%)	797 CP Concentration¹ (mg/m³) Y-axis	Total Count ²	Minute ³ X-axis
Hour 1 2 3 4	Date (dd-mm-yy) 06-06-10 06-06-10 06-06-10	13:30 14:30 15:30 16:30	Time	14:30 15:30 16:30 17:30	Amb Cond Temp (°C) 27.8 27.8 27.9 27.7	ient iition R.H. (%) 77 78 78 78	797 CP Concentration ¹ (mg/m ³) Y-axis 0.06421 0.06643 0.06375 0.06159	Total Count ²	Minute ³ X-axis 40.13 41.52
Hour 1 2 3 4 Note: 1 2 3	Date (dd-mm-yy) 06-06-10 06-06-10 06-06-10 06-06-10 1. Monitoring d 2. Total Count 3. Count/minut	13:30 14:30 15:30 16:30 ata was n was logge e was cal	Time	14:30 15:30 16:30 17:30 ured by Laser I	Amb Cond Temp (°C) 27.8 27.9 27.7 Rupprech	ient lition R.H. (%) 77 78 78 78 78 at & Pata	797 CP Concentration ¹ (mg/m ³) Y-axis 0.06421 0.06643 0.06375	Total Count ² 2408 2491 2379	Minute ³ X-axis 40.13 41.52 39.65
Hour 1 2 3 4 Note: 1 2 3	Date (dd-mm-yy) 06-06-10 06-06-10 06-06-10 1. Monitoring d 2. Total Count 3. Count/minut	13:30 14:30 15:30 16:30 ata was n was logge e was cal	Time Time Time	14:30 15:30 16:30 17:30 ured by Laser Ded by (T	Amb Cond Temp (°C) 27.8 27.9 27.7 Rupprech	ient lition R.H. (%) 77 78 78 78 78 at & Pata	797 CP Concentration ¹ (mg/m ³) Y-axis 0.06421 0.06643 0.06375 0.06159	Total Count ² 2408 2491 2379	Minute ³ X-axis 40.13 41.52 39.65
Hour 1 2 3 4 Note: 1 2 3 By Linear F	Date (dd-mm-yy) 06-06-10 06-06-10 06-06-10 1. Monitoring de Count (and the co	13:30 14:30 15:30 16:30 ata was n was logge e was cal	rime	14:30 15:30 16:30 17:30 ured by Laser E ed by (T	Amb Cond Temp (°C) 27.8 27.9 27.7 Rupprech	ient lition R.H. (%) 77 78 78 78 78 at & Pata	797 CP Concentration ¹ (mg/m ³) Y-axis 0.06421 0.06643 0.06375 0.06159	Total Count ² 2408 2491 2379	Minute ³ X-axis 40.13 41.52 39.65
Hour 1 2 3 4 Note: 1 2 3 By Linear F	Date (dd-mm-yy) 06-06-10 06-06-10 06-06-10 1. Monitoring d 2. Total Count 3. Count/minut	13:30 14:30 15:30 16:30 ata was n was logge e was cal	rime	14:30 15:30 16:30 17:30 ured by Laser Ded by (T	Amb Cond Temp (°C) 27.8 27.9 27.7 Rupprech	ient lition R.H. (%) 77 78 78 78 78 at & Pata	797 CP Concentration ¹ (mg/m ³) Y-axis 0.06421 0.06643 0.06375 0.06159	Total Count ² 2408 2491 2379	Minute ³ X-axis 40.13 41.52 39.65
Hour 1 2 3 4 Note: 1 Slope (K-Correlation	Date (dd-mm-yy) 06-06-10 06-06-10 06-06-10 1. Monitoring de Count (and the co	13:30 14:30 15:30 16:30 ata was n was logge e was cal	rime	14:30 15:30 16:30 17:30 ured by Laser E ed by (T	Amb Cond Temp (°C) 27.8 27.9 27.7 Rupprech Oust Moni	ient lition R.H. (%) 77 78 78 78 78 at & Pata	797 CP Concentration ¹ (mg/m ³) Y-axis 0.06421 0.06643 0.06375 0.06159	Total Count ² 2408 2491 2379	Minute ³ X-axis 40.13 41.52 39.65

G/F, 9/F, 12/F, 13/F & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓

E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

10CA0728 02-01

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone B & K

Manufacturer: Type/Model No.: B & K 2238

4188

Serial/Equipment No.: Adaptors used:

2255680

2250447

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

.

Request No.: Date of request:

28-Jul-2010

Date of test:

29-Jul-2010

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator Signal generator B&K 4226 DS 360 DS 360 2288444 33873 61227

12-Jan-2011 28-Jun-2011 24-Jun-2011 CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

(21 ± 1) °C

Relative humidity:

(60 ± 5) %

Air pressure:

 $(1000 \pm 5) hPa$

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of $\pm 20\%$.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

in/ifeng Jun Qi

Actual Measurement data are documented on worksheets.

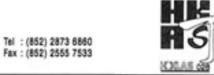
Approved Signatory:

Date:

29-Jul-2010

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.


© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

G/F., B/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓

E-mail: smec@cigismec.com Website: www.clgismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

10CA0724 01

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer: Type/Model No.: B&K 2238

B&K 4188

Serial/Equipment No.: Adaptors used:

2255677

2250455

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer: Request No .:

Date of request:

24-Jul-2010

Date of test:

26-Jul-2010

Reference equipment used in the calibration

Description:

Model:

DS 360

Serial No.

Explry Date:

Traceable to:

Multi function sound calibrator Signal generator Signal generator

B&K 4226 DS 360

2288444 33873 61227

12-Jan-2011 28-Jun-2011 24-Jun-2011

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

(21 ± 1) °C

Relative humidity:

(60 ± 5) %

Air pressure:

(1000 ± 5) hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

3. The accustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580; Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

26-Jul-2010

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Sol's & Materials Engineering Co., Ltd.

Form No.CARP152-1/seue 1/Rev.C/01/02/2007

G/F, 9/F, 12/F, 13/F & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mall: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

10CA0313 05-03

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer: Type/Model No.: B & K 2238 B & K 4188

Serial/Equipment No.:

2285692

2565556

Adaptors used:

_

-

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer: Request No.:

•

-

Date of request:

13-Mar-2010

Date of test:

15-Mar-2010

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator B&K 4226 DS 360 2288444 33873

12-Jan-2011 22-Jun-2010 CIGISMEC CEPREI

Signal generator

DS 360

61227

22-Jun-2010

CEPREI

Ambient conditions

Temperature:

(22 ± 1) °C (60 ± 10) %

Relative humidity: Air pressure:

(1010 ± 5) hPa

Test specifications

1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

27-Mar-2010

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/issue 1/Rev.C/01/02/2007

G/F, 9/F, 12/F, 13/F & 20/F, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港實竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

10CA0708 04-01

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B&K

Type/Model No.: Serial/Equipment No.: 4231 1790985 / N004.01

Adaptors used:

.....

Item submitted by

Curstomer:

AECOM ASIA CO. LTD

Address of Customer:

Request No.:

Date of request:

08-Jul-2010

Date of test:

14-Jul-2010

Reference equipment used in the calibration

Description: Model: Serial No. Explry Date: Traceable to: Lab standard microphone B&K 4180 2412857 02-Jul-2011 SCL Preamplifier B&K 2673 2239857 CEPREI 15-Dec-2010 Measuring amplifier B&K 2610 2346941 11-Dec-2010 CEPREI Signal generator DS 360 61227 24-Jun-2011 CEPREI Digital multi-meter 34401A US36087050 03-Dec-2010 CIGISMEC 89038 Audio analyzer GB41300350 07-Dec-2010 CEPREI Universal counter 53132A MY40003662 05-Jul-2011 CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

60 ± 5 %

Air pressure:

1000 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-158.
- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference
 pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure
 changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date:

14-Jul-2010

Company Chop:

综合故障 会有限企司

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

O Sole & Materials Engineering Co., Ltd.

Form No.CARP158-1/leaue 1/Rev.DI01/03/2007