

PROJECT No.: TCS/00477/09

VERSION: 2

CEDD CONTRACT NO. ST/2008/02 ROADS, DRAINAGE AND SEWEAGE WORKS AT WHITEHEAD AND LOK WO SHA, PHASE 1

30TH MONTHLY ENVIRONMENTAL MONITORING AND AUDIT (EM&A) REPORT – MARCH 2012

PREPARED FOR CHINA ROAD & BRIDGE CORPORATION

Quality Index Date	Reference No.	Prepared By	Certified By
30 April 2012	TCS00477/09/600/R0355v2	36	Janu -
		Ben Tam	T.W. Tam
		Environmental Consultant	Environmental Team Leader

Version	Date	Description
1	24 April 2012	First Submission
2	30 April 2012	Amended against IEC's comments on 30 April 2012

3D Visualisation Environment & Energy Information Technology

ISO 9001 : 2008 Certificate No.: CC 3988

Civil Engineering and Development Department New Territories East Development Office Suite 1213 Chinachem Golden Plaza 77 Mody Road Tsim Sha Tsui East Kowloon Your reference:

Our reference:

HKCEDD01/50/101129

Date:

3 May 2012

Attn.: Mr Kevin C W Lam and Mr Tom W K Lee

BY FAX ONLY (Fax no.: 2739 0076)

Dear Sirs

Agreement No. NTE 01/2009
Ma On Shan Development Roads, Drainage and Sewerage Works at Whitehead and Lok Wo Sha Phase 1
Monthly EM&A Report No. 30

Reference is made to the Environmental Team's submission of the Monthly EM&A Report No. 29 for the captioned project by emails on 27 and 30 April 2012 for our review and comment.

Please be informed that we have no adverse comment on the captioned submission. We write to verify the captioned Monthly EM&A Report in accordance with Condition 5.3 of the Environmental Permit no. EP-332/2009.

Should you have any queries, please do not hesitate to contact the undersigned on 2869 6018.

Yours faithfully EDMS CONSULTING LIMITED

CPSJ/LYMA/csym

cc RE – Mr Angus Law (Fax: 2631 7226)

Independent Environmental Checker

EXECUTIVE SUMMARY

- ES.01 The China Road & Bridge Corporation (CRBC) have been awarded the Contract ST/2008/02 Ma On Shan Development Roads, Drainage and Sewerage Works at Whitehead and Lok Wo Sha Phase 1 (the Project) by the Civil Engineering & Development Department (CEDD) on 18 June 2009. The Project is part of an overall plan approved under a statutory EIA (Register No. AEIAR-068/2002) for a Feasibility Study for Housing Development at Whitehead & Lee on in Man On Shan commissioned by the Territory Development Department.
- ES.02 An Environmental Permit (No. EP-332/2009) for Road D1(N), Road D1(W) and Box Culvert of Whitehead & Lok Wo Sha Phase One Project (EP) has been obtained by the CEDD on 24 March 2009 under the Project. According to the Environmental Permit No. EP-332/2009 and Section 25 of the Particular Specification (PS), the overall scope of environmental monitoring including the aspect of air quality, construction noise, water quality, landscaping and visual and site environmental audit should be undertaken in accordance with the Final Report Environmental Monitoring and Audit Manual [2095/13.3] by an independent Environmental Team (ET).
- ES.03 Action-United Environmental Services and Consulting (AUES) have been commissioned by CRBC as the ET to implement the relevant EM&A program except the monitoring and audit works of landscaping and visual, which is undertaken by other.

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

- ES.04 This is the 30th Monthly EM&A Report which presents the monitoring results and inspection findings for the period from 26 February 2012 to 21 March 2012 (the Reporting Period). Upon agreement among the ER, IEC, ET and Contractor, termination of the EM&A under the Project has been proposed by the ET since 21 March 2012 and pending EPD's formal agreement.
- ES.05 Environmental monitoring activities under the EM&A program in this Reporting Month are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Aim Ovolity	1-hour TSP	15
Air Quality	24-hour TSP	4
Construction Noise	Leq (30min) Daytime	5
Water Quality	Marine Water Sampling	10
Inspection / Audit	ER and Contractor regular Environmental Site Inspection	4

BREACH OF ACTION AND LIMIT (A/L) LEVELS

- ES.06 No construction noise complaint (an Action Level exceedance) was received and no exceedance was recorded in construction noise monitoring in this Reporting Period.
- ES.07 No 1-hour and 24-hour TSP monitoring results that triggered the Action or Limit Level in this Reporting Period. Therefore, no associated corrective actions were required.
- ES.08 No marine water monitoring results that triggered the Action or Limit Level in this Reporting Period. Therefore, no associated corrective actions were then required.
- ES.09 Exceedances registered during the Reporting Period were summarized below:

	Construction	Air Quality		Marine Water Quality			
Exceedance	Construction Noise	24-hour TSP	1-hour TSP	DO	Turbidity	Suspended Solids	Total
Action Level	0	0	0	0	0	0	0
Limit Level	0	0	0	0	0	0	0

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.10 No environmental complaint, summons and successful prosecutions was recorded or received.

SITE INSPECTION BY EXTERNAL PARTIES

ES.11 In this Reporting Period, no site visit by EPD/ AFCD was recorded.

REPORTING CHANGE

ES.12 As the certificate of completion was issued on 13 January 2012 and no adverse environmental impacts generated from the construction activities under the Project are anticipated after 21 March 2012, when all the works under the Project, including the remaining outstanding construction works, has been completed. Upon agreement among the ER, IEC, ET and Contractor, termination of the EM&A under the Project has been proposed by the ET since 21 March 2012 and pending EPD's formal agreement.

FUTURE KEY ISSUES

ES.13 According to Chapter 4.7.2 of the Final EM&A Manual, a post project monitoring exercise on water quality is required. Upon agreement among the ER, IEC, ET and Contractor, commencement of the post project monitoring exercise on water quality and the associated schedule has been proposed since 21 March 2012 and pending EPD's formal agreement.

30th Monthly Environmental Monitoring and Audit (EM&A) Report for March 2012

TABLE OF CONTENTS

1 1.1 1.2	INTRODUCTION PROJECT BACKGROUND REPORT STRUCTURE	1 1 1
2 2.1 2.2 2.3	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE CONSTRUCTION PROGRESS SUMMARY OF ENVIRONMENTAL SUBMISSIONS	2 2 2 2
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	SUMMARY OF MONITORING REQUIREMENTS MONITORING PARAMETERS MONITORING LOCATIONS MONITORING FREQUENCY AND PERIOD MONITORING EQUIPMENT MONITORING METHODOLOGY EQUIPMENT CALIBRATION METEOROLOGICAL INFORMATION DATA MANAGEMENT AND DATA QA/QC CONTROL DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	3 3 3 5 6 7 9 9 10
4 4.1 4.2 4.3	IMPACT MONITORING RESULTS RESULTS OF AIR QUALITY MONITORING RESULTS OF CONSTRUCTION NOISE MONITORING RESULTS OF MARINE WATER QUALITY OF MONITORING	11 11 11 11
5 5.1	WASTE MANAGEMENT RECORDS OF WASTE QUANTITIES	15 15
6	SITE INSPECTION	16
7 7.1	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	17 17
8	IMPLEMENTATION STATUS OF MITIGATION MEASURES	18
9 9.1 9.2	IMPLEMENTATION STATUS OF MITIGATION MEASURES MAJOR FORTHCOMING ACTIVITIES KEY ISSUES FOR THE COMING MONTH	21 21 21
10 10 1	CONCLUSIONS AND RECOMMENTATIONS CONCLUSIONS	22 22

30th Monthly Environmental Monitoring and Audit (EM&A) Report for March 2012

LIST OF ANNEXES

Annex A	Project Site Layout Plan
Annex B	Organization Structure and Contact Details of the CRBC and Relevant Parties
Annex C	Certificate of Completion
Annex D	Monitoring Locations Designated in the EM&A Manual
Annex E	Currently Impact Monitoring Stations
Annex F	Monitoring Equipment Calibrated Certificates and Laboratory Certificate
Annex G	Event and Action Plan
Annex H	Monitoring Schedule in Reporting Month and Coming Month
Annex I	Database of Monitoring Results
Annex J	Graphical Plots of Impact Monitoring – Air, Noise and Marine Water
Annex K	Meteorological Data of Reporting Month
Annex L	Monthly Summary Waste Flow Table

LIST OF TABLES

Table 2-1	Status of Environmental Licenses and Permits
Table 3-1	Summary of EM&A Requirements
Table 3-2	Location of Air Quality Noise Monitoring Station
Table 3-3	Location of Noise Monitoring Station
Table 3-4	Location of Marine Water Quality Monitoring Stations
Table 3-5	Monitoring Equipments Used in EM&A Program
Table 3-6	Action and Limit Levels for Air Quality Monitoring
Table 3-7	Action and Limit Levels for Construction Noise Monitoring
Table 3-8	Action and Limit Levels for Water Quality Monitoring
Table 3-9	Action Level for Landscape and Visual Impact in Construction Phase
Table 4-1	Summary of 24-hour and 1-hour TSP Monitoring Results
Table 4-2	Summary of Construction Noise Monitoring Results
Table 4-3	Summary of Water Quality Results – Ebb Tides (The Sea Zone of the Project West and North)
Table 4-4	Summary of Water Quality Results – Flood Tides (The Sea Zone of the Project West and North)
Table 4-5	Summary of Water Quality Results – Ebb Tides (The Sea Zone of the Starfish Bay)
Table 4-6	Summary of Water Quality Results – Flood Tides (The Sea Zone of the Starfish Bay)
Table 4-7	Summary of Water Quality Exceedances
Table 5-1	Summary of Quantities of Inert C&D Materials
Table 5-2	Summary of Quantities of C&D Wastes
Table 7-1	Statistical Summary of Environmental Complaints
Table 7-2	Statistical Summary of Environmental Summons
Table 7-3	Statistical Summary of Environmental Prosecution
Table 8-1	Environmental Mitigation Measures

1 INTRODUCTION

1.1 PROJECT BACKGROUND

The China Road & Bridge Corporation (CRBC) has been awarded the *Contract ST/2008/02 Ma On Shan Development – Roads, Drainage and Sewerage Works at Whitehead and Lok Wo Sha Phase* 1 (the Project) by the Civil Engineering & Development Department (CEDD) on 18 June 2009. Total project time is expected to be 23 months.

The Project includes civil engineering infrastructure works for the construction of District Distributors: Road D1(N) & Road D1(W) and Local Road L3 with the associated footpath, cycle tracks, planting areas, drains, sewers, water-mains and landscaping works. There are also one box culvert, one sewage pumping station with pressurized sewers and two site formation works for G/IC and LWS-B areas at Lok Wo Sha to be constructed under the Project. The site layout plan is shown in *Annex A*.

The Project is part of an overall plan approved under a statutory EIA (Register No. AEIAR-068/2002) for a Feasibility Study for Housing Development at Whitehead & Lee On in Man On Shan commissioned by the then Territory Development Department. An Environmental Permit (EP-332/2009) for Road D1(N), Road D1(W) and Box Culvert of Whitehead & Lok Wo Sha Phase One Project (EP) has been obtained by the CEDD on 24 March 2009 for the relevant works.

According to the Particular Specification (PS) Section 25 and the Environmental Permit No. EP-332/2009, overall scope of environmental monitoring including air quality, construction noise, water quality, and site environmental audit should be undertaken in accordance with the Final Report Environmental Monitoring and Audit Manual [2095/13.3] by an independent Environmental Team (ET). Also, monitoring and audit works for landscaping and visual will be undertaken as part of the EM&A programme.

Action-United Environmental Services and Consulting (AUES) has been commissioned by CRBC as the ET to implement the relevant EM&A program. As part of the EM&A program, baseline monitoring is required to determine the ambient environmental conditions.

This is the 30th monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from 26 February 2012 to 21 March 2012. Upon agreement among the ER, IEC, ET and Contractor, termination of the EM&A under the Project has been proposed by the ET since 21 March 2012 and pending EPD's formal agreement.

1.2 REPORT STRUCTURE

The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-

SECTION 1	INTRODUCTION
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS
SECTION 3	SUMMARY OF MONITORING REQUIREMENTS
SECTION 4	IMPACT MONITORING RESULTS
SECTION 5	WASTE MANAGEMENT
SECTION 6	SITE INSPECTIONS
SECTION 7	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
SECTION 8	IMPLEMENTATION STATUES OF MITIGATION MEASURES
SECTION 9	IMPACT FORECAST
SECTION 10	CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Annex B*.

2.2 CONSTRUCTION PROGRESS

Upon agreement among the ER, IEC, ET and Contractor, termination of the EM&A under the Project has been proposed by the ET since 21 March 2012 and pending EPD's formal agreement. Therefore, no further master and three month rolling construction programs are enclosed and the certificate of completion is enclosed in *Annex C*.

2.3 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Environmental Permit EP-332/2009 - Road D1(N), Road D1(W) and Box Culvert of Whitehead & Lok Wo Sha Phase One Project	Permit Issued on 24 March 2009
2	Air pollution Control (Construction Dust)	Notified EPD on 12 June 09
3	Chemical waste Producer Registration (WPN:	Application date: 16/07/2009
	5123-757-C3124-31)	Date approved: 20/8/2009
4	Water Pollution Control Ordinance (Discharge License)	Application date: 06/07/2010
	(License no.: WT00005406-2009)	Date approved: 22/07/2010
5	Billing Account for Disposal of Construction Waste	Application no. :RN/00606
	(Account Number: 700892117)	Valid to: 28/2/2015
6	Landscape Master Plan for Roads D1(N) and D1(W)	Application date: 02/10/2009
		Status: Approved on 28/5/2010

The "Baseline/Impact Monitoring Methodology (R0009 Version 6)" was set out in accordance with the Final Report Environmental Monitoring and Audit Manual [2095/13.3]. It was approved by the ER and agreed with the Independent Environmental Checker (IEC) and submitted to the EPD for endorsement.

Baseline Monitoring Report (TCS00477/09/600/R0023Ver.3) for the Project was issued by the ETL and verified by the IEC on 5 October 2009. The report was also submitted to the EPD for endorsement.

3 SUMMARY OF MONITORING REQUIREMENTS

The Environmental Monitoring and Audit requirements are set out in the project EM&A manual. Air quality, construction noise and water quality have been identified to be the key issues during the construction phase of the Project. Also, monitoring and audit works for landscaping and visual will be undertaken as part of the EM&A programme by others during construction period.

A summary of the Impact EM&A requirements for air, noise and marine water monitoring are presented in the sub-sections below.

3.1 MONITORING PARAMETERS

The EM&A Impact monitoring program covers the following environmental issues:

- · Air quality;
- Construction noise;
- · Water quality; and
- Landscape and visual resources (to be provided by others separately)

A summary of the monitoring parameters is presented in *Table 3-1* as below.

Table 3-1 Summary of EM&A Requirements

Environmental Issue	Parameters		
Air Quality	 1-hour TSP Monitoring by Real-Time Portable Dust Meter; and 24-hour TSP Monitoring by High Volume Air Sampler. 		
Noise	 Leq_(30min) during normal working hours.; and Leq_(15min) during the construction works is undertaken in Restricted Hours. 		
Marine Water Quality*	In-situ Measurements • Dissolved Oxygen Concentration (mg/L); • Dissolved Oxygen Saturation (%); • Turbidity (NTU); • pH unit; • Salinity (ppt); • Water depth (m); and • Temperature (°C). Laboratory Analysis • Suspended Solids (mg/L)		
Landscape and Visual Resources	 Vegetation survey undertaken on an "area" basis to identify representative types and species composition; Assessment of landscape character; and Tree survey report. 		

Notes: Since there will be no workshop, vehicle repair area, canteens, workers' facilities or chemical storage facilities with water discharge points within the site boundaries, no measurements for oil and grease, BOD₅ or COD will be necessary based on Section 4.2.2 of the EM&A Manual.

3.2 MONITORING LOCATIONS

Some monitoring locations have been recommended in the *EM&A Manual* and shown in *Annex D*. However, as the *EM&A Manual* was originally approved for a much greater area, some of the monitoring locations have been refined in order to monitor the specific impacts of this Project only. Before the commencement of this EM&A programme, the proposed monitoring locations had been verified by the IEC and endorsed by the EPD.

Air Quality

Two designated monitoring stations: A1 and A2 were recommended in the *EM&A Manual*. Location A1 is situated at a village house in To Tau near a new pumping station to be constructed under the Project, and Location A2 is at the existing Li Po Chung United World College.

However, owing to the much reduced scale of the Project compare to the original scope envisaged in the 2002 EIA Study, it is considered, from experience, that it would be sufficient for both the baseline and impact monitoring programmes to be carried out at A1 only. The recommendation and proposal was issued by ET and verified by the IEC and endorsed by the EPD. The final Air Sensitive Receiver where monitoring shall be performed is listed in *Table* 3-2 and shown in *Annex E*.

Table 3-2 Location of Air Quality Monitoring Station

Sensitive Receiver	Location
A1	Village house in To Tau near the proposed pumping station

Construction Noise

Two designated monitoring stations: CN1 and CN2 were recommended by the *EM&A Manual*. They are identical to Locations A1 and A2 respectively for air monitoring.

Similarly, it is necessary to carry out baseline and impact monitoring at CN1 only. The noise sensitive receiver was performed in baseline monitoring period under the Project is renamed as N1 for brevity and shown in *Table 3-3* and *Annex E*.

Table 3-3 Location of Noise Monitoring Station

Sensitive Receiver	Location
N1	Village house in To Tau near the proposed pumping station

Marine Water Quality

Totally ten designated water monitoring stations are identified in the *EM&A Manual* including two control stations (C1-C2) and eight impact stations (W1-W8). Impact stations W1-W4 were identified near the discharge outfalls of the stormwater drainage systems at the north and west shore of Whitehead development; W5 & W6 were identified at the box culver outfall and natural stream outfall of Starfish Bay respectively; and W7 & W8 were located offshore near the Tolo Channel. Two control stations: C1 & C2 were recommended at the sea body of the Whitehead development and within Starfish Bay respectively.

Review of Monitoring Locations

According to Section 4.5.1 of the EM&A Manual, the monitoring locations designated in the manual are subject to change to cater for possible updates in the scale of development, design of works packages and surrounding sensitive receivers. A review in relation to the latest monitoring locations is given below.

- A Due to the relocation of the box culvert which is now diverted to discharge into the north of Whitehead development instead of Starfish Bay, one location, the old W6 location in the *EM&A Manual*, which was located at the immediate exit of the culvert may be deleted in the future.
- As the new discharge point at the north of Whitehead development is very close to one old station (W3 of the *EM&A Manual*), there is no need to provide an additional station for the new culvert exit.

For ease of administration, the new impact station's ID are renumbered as M1-M8 (meaning Marine Stations 1-8) to replace the old impact stations ID: W1-W8. The location of sampling points ID are listed in *Table 3-4* and a map showing these monitoring stations is presented in *Annex E*.

Table 3-4 Location of Marine Water Quality Monitoring Stations

Sensitive	Monitoring	Status	Co-or	dnance	Location/Remarks				
Receiver	Station	Status	East	North	Location/Remarks				
	C1	Control	833014	0842187	Upstream of sea body located at				
	C1	Station			north-west of Whitehead development				
The Sea	M1	Impact	832561	842518	Near the shore of Cheung Kang				
Zone of the	(old W1)	Station			Village				
Project West	M2	Impact	832795	842535	The shore of To Tau near the proposed				
and North	(old W2)	Station			sewage pumping station				
(Tolo	M3	Impact	833094	842649	Close to the new box culvert outfall of				
Harbour)	(old W3)	Station			the Project.				
	M4	Impact	833110	843038	The shore of Wo Kwai Sha Tsoi				
	(old W4)	Station			The shore of wo Kwar Sha 1801				
	C2	Control	832995	843819	Upstream of sea body located at				
	CZ	Station			Starfish Bay				
	M5	Impact	832784	843484	Located offshore near the Tolo				
The Sea	(old W7)	Station			Channel in Starfish Bay				
Zone of	M6	Impact	832713	843393	Located at the natural stream outfall in				
Starfish Bay	(old W5)	Station			Starfish Bay				
Starrish Day	M7	Impact	832649	843643	Located offshore near the Tolo				
	(old W8)	Station			Channel in Starfish Bay				
	M8	Impact	832584	843470	Located at the natural stream outfall in				
	(old W6)	Station			Starfish Bay				

3.3 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in *Sections 2.7*, *3.6*, and *4.7* of the EM&A Manual and listed as follows.

1-hour TSP Monitoring

Parameters : 1-hour TSP monitoring

Frequency: 3 times every six days for 1-hour TSP

Duration: Throughout out the construction period

24-hour TSP Monitoring

Parameters : 24-hour TSP monitoring

Frequency : once every 6 days for 24-hour TSP

Duration : Throughout out the construction period

Noise Monitoring

Parameters: One set of Leq(30min) as 6 consecutive Leq(5min) between 0700-1900 hours

on normal weekdays

Frequency: Once every week

Duration : Throughout out the construction period

Marine Water Quality Monitoring

Parameters : In-situ measurements including water depth, temperature, DO, pH, turbidity

and salinity; and Suspended Solids is analyzed by HOKLAS-accredited

laboratory.

<u>Frequency</u>: Three days a week, at mid ebb and mid flood tides. The interval between 2

sets of monitoring will be more than 36 hours.

<u>Sampling</u>: (a) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m.

(b) If the water depth is between 3m and 6m, two depths: 1m below water

surface and 1m above sea bottom.

(c) If the water depth is less than 3m, 1 sample at mid-depth is taken

Duration:

- (a) Stations C1, M1, M2, M3 and M4 will be carried out during the construction works is still on-going after stormwater drainage systems are built and operated or marine works undertaken (in accordance with the Section 4.5.4 EM&A Manual).
- (b) Station C2, M5, M6, M7 and M8 will be carried out throughout construction period (in accordance with the Section 4.5.3 EM&A Manual).

3.4 MONITORING EQUIPMENT

Air Quality Monitoring

The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

Noise Monitoring

Sound level meter in compliance with the *International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1)* specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s-1.

Water Quality Monitoring

- i. **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring as included a DO level in the range of 0-20mg L-1 and 0-200% saturation; and a temperature of 0-45 degree Celsius.
- ii. **pH Meter** The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in arrange of 0 to 14.
- iii. **Turbidity (NTU) Measuring Equipment** The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- iv. Water Sampling Equipment A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- v. **Water Depth Detector** A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat.
- vi. **Salinity Measuring Equipment** A portable salinometer capable of measuring salinity in the range of 0 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.
- vii. **Sample Containers and Storage** Water samples for SS should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- viii. **Monitoring Position Equipment** A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the

correct location before taking measurements.

ix. **Suspended Solids Analysis** – Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

The monitoring equipments using for the EM&A program were proposed by the ET and verified by the IEC prior to the commencement of the monitoring. Details of the equipments used for impact monitoring are listed in *Table 3-5* below.

Table 3-5 Monitoring Equipments Used in EM&A Program

Equipment	Model
Air Quality Monitoring	
High Volume Sampler – <u>24 hour TSP</u>	TE-5170 TSP MFC Sampler System
Calibration Kit – <u>24-hour TSP</u>	TISCH Model TE-5025A
Portable dust meter – <u>1-hour TSP</u>	TSI DustTrak Model 8520
Construction Noise	
Integrating Sound Level Meter	B&K Type 2238
Calibrator	B&K Type 4231
Portable Wind Speed Indicator	Testo Anemometer
Water quality	
A Digital Global Positioning System	GPS12 Garmin
Water Depth Detector	Eagle Sonar
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends
Thermometer & DO meter	
pH meter	YSI Professional Plus Multimeter and Hach 2100Q
Turbidimeter	Turbidimeter
Salinometer	
Sample Container	High density polythene bottles (provided by laboratory)
Storage Container	'Willow' 33-litter plastic cool box with Ice pad
Suspended Solids	HOKLAS-accredited laboratory (ALS Technichem (HK) Pty Ltd)

3.5 MONITORING METHODOLOGY

1-hour TSP Monitoring

The 1-hour TSP monitor was either a TSI Dust Track Aerosol Monitor Model 8520 which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:

- (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
- (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
- (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.

The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

24-hour TSP Monitoring

The equipment used for 24-hour TSP measurement is T TE-5170 TSP MFC Sampler System, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following

- (a.) An anodized aluminum shelter;
- (b.) A 8"x10" stainless steel filter holder;
- (c.) A blower motor assembly;
- (d.) A continuous flow/pressure recorder;
- (e.) A motor speed-voltage control/elapsed time indicator;

- (f.) A 7-day mechanical timer, and
- (g.) A power supply of 220v/50 Hz

The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). One point checking would carry out in two month interval while full point checking in every 6 month.

24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

Noise Monitoring

Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels (dB). Supplementary statistical results (L_{10} and L_{90}) were also obtained for reference.

Sound level meters listed in *Table 3-5* are complied with the *International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1)* specifications, as recommended in Technical Memorandum (TM) issued under the *Noise Control Ordinance (NCO)*.

During the monitoring, all noise measurements were performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level ($L_{\rm eq}$). Leq_(30min) in six consecutive Leq_(5min) measurements were used as the monitoring parameter for the time period between 0700-1900 hours on weekdays; and also Leq_(15min) in three consecutive Leq_(5min) measurements is used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.

During the measurement, the sound level meter is mounted on a tripod with a height of 1.2m above ground and placed at the assessment point and oriented such that the microphone is pointed to the site with the microphone facing perpendicular to the line of sight. The windshield is fitted for all measurements. The assessment point is normally set as free-field situation for the measurement.

Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking was performed before and after the noise measurement.

Water Quality

Water quality monitoring is conducted at the designated locations. The sampling produce with the in-situ monitoring are presented as below:

Sampling Procedure

A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder is used for the determination of water depth at each station. At each station, marine water samples is collected at three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m. Samples at 1m below water surface and 1m above sea bottom are collected when the water depth is between 3m and 6m. Only 1 sample at mid-depth is taken when the water depth is below 3m.

The marine water sampler is lowered into the water body at the predetermined depth. The trigger system of the sampler should been activated with a messenger. The opening ends of the sampler then is closed accordingly and water sample is collected.

The sample container is rinsed with a portion of the water sample. The water sample then is transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.

Before commencement of the sampling, general information such as the date and time of sampling, weather condition and tidal condition as well as the personnel responsible for the monitoring are to be recorded on the monitoring field data sheet.

A 'Willow' 33-litter plastic cool box packed with ice is used to preserve the collected water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4^oC as possible without being frozen. Samples collected are delivered to the laboratory upon collection

In-situ Measurement

Positioning of Monitoring Locations

A digital Global Positioning System (GPS) is used during marine water monitoring to ensure the monitoring vessel is at the correct location when taking measurement and samples.

Depth, Dissolved Oxygen (DO), Temperature, Turbidity, Salinity and pH value

The YSI Model 6820 Multi-parameter Water Quality Monitoring System is used for marine water in-situ measures, which automates the measurements and data logging of depth, temperature, dissolved oxygen, dissolved oxygen saturation, turbidity, pH and salinity simultaneously. Before each round of monitoring, the dissolved oxygen probe is calibrated by the wet bulb method and the turbidity and salinity probes checked with distilled water.

Laboratory Analysis

All water samples are analyzed with Suspended Solids (SS) as specified in the *EM&A Manual* by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS analysis is determined by the laboratory upon receipt of the water samples using HOKLAS accredited analytical methods namely ALS Method EA-025. The HOKLAS accredited certificate of laboratory is provided in *Annex F*.

3.6 EQUIPMENT CALIBRATION

Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.

The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.

The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.

The Multi-parameter Water Quality Monitoring System is calibrated by HOKLAS accredited laboratory of three month intervals.

All updated calibration certificates of the monitoring equipment used for the impact monitoring program in this Reporting Period are attached in Annex F.

3.7 METEOROLOGICAL INFORMATION

The meteorological information during the construction phase is obtained from Tai Po and Shatin Stations of the Hong Kong Observatory (HKO).

3.8 DATA MANAGEMENT AND DATA QA/QC CONTROL

The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring program.

The monitoring data recorded in the equipment e.g. 1-hour TSP meter, noise meter and Multi-parameter Water Quality Monitoring System are downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

3.9 DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

According to the Final Report Environmental Monitoring and Audit Manual [2095/13.3], the air quality, construction noise and water quality criteria with Landscape and Visual Impact were set up, namely Action and Limit levels are listed in *Tables 3-6*, *3-7*, *3-8* and *3-9* as below.

Table 3-6 Action and Limit Levels for Air Quality Monitoring

Monitoring Stations	Action Le	vel (μg/m³)	Limit Level (µg/m³)			
Monitoring Stations	1-hour	24-hour	1-hour	24-hour		
A1	302	172	500	260		

Table 3-7 Action and Limit Levels for Construction Noise

Time Period	Action Level in dB(A)	Limit Level in dB(A)
0700-1900 hours on normal weekdays	When one documented complaint is received	> 75* dB(A)

Note: * Reduces to 70 dB(A) for schools and 65 dB(A) during the school examination periods.

Table 3-8 Action and Limit Levels for Water Quality

Monitoring	DO (1 (Surface	mg/L) & Mid)	,	mg/L) tom)		y (NTU) Averaged)	SS (mg/L) (Depth Averaged)		
Location	Action Level			ction Limit Level Level		Limit Level	Action Limit Level Level		
M1	2.73	1.61	NA	NA NA		5.73 6.44		8.77	
M2	2.85	1.98	NA	NA	6.26	6.45	10.40	14.08	
M3	2.51	1.62	NA	NA	5.10 5.64		4.00	4.00	
M4	2.60	1.74	2.57	1.65	5.32	5.83	5.50	6.27	
M5	1.94	1.45	NA	NA	8.01	8.7	31.55	48.09	
M6	2.36	1.38	NA	NA	8.47	9.36	12.00	18.93	
M7	1.98	1.57	NA	NA	7.11	7.24	7.85	10.31	
M8	2.67	1.08	NA	NA	6.27	7.19	7.00	11.62	

Notes:

- "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths;
- For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 3-9 Action Level for Landscape and Visual Impact in Construction Phase

Parameter	Action Level	Limit Level
Any trespass by the contractor outside the limit of the works, including any damage to	Non-conformity on one occasion	NA
existing trees, woodland and vegetation	 Repeated non-conformity 	

Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in Annex G.

4 IMPACT MONITORING RESULTS

Further to the instruction by CRBC, the EM&A program was commenced on 20 October 2009 and the monitoring schedule of this reporting period and the forthcoming month are presented in *Annex H*. The monitoring results are presented in the following sub-sections.

4.1 RESULTS OF AIR QUALITY MONITORING

In this reporting period, a total of 4 events of 24-hour TSP monitoring and 15 events of 1-hour TSP monitoring were undertaken. The results for air quality monitoring are summarized in *Tables 4-1*. The 24-hour TSP data are shown in *Annex I* and the graphical plots of 24-hour and 1-hour TSP are shown in *Annex J*.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results

	24-hour TSP		1-hour TSP (μg/m³)								
Date	$(\mu g/m^3)$	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured					
1-Mar-12	31	28-Feb-12	9:45	79	81	80					
7-Mar-12	27	3-Mar-12	13:02	67	69	73					
13-Mar-12	18	8-Mar-12	11:24	112	110	107					
19-Mar-12	33	14-Mar-12	10:03	128	116	109					
-	-	20-Mar-12	10:59	144	131	149					
Average (Range)	33 (18-27)	Avera (Rang	0		104 (67–149)						

As shown in *Tables 4-1*, all the monitoring results for 1-hour and 24-hour TSP were well below the Action/ Limit Level. No associated corrective actions were therefore required.

The meteorological data during the impact monitoring days are summarized in *Annex K*.

4.2 RESULTS OF CONSTRUCTION NOISE MONITORING

5 events of construction noise monitoring were undertaken in this Reporting Period. The noise monitoring results at the designated location (N1) are summarized in *Table 4-2*. The sound level were measured as a free field situation, therefore, a façade correction of +3 dB(A) has been added accordance to acoustical principles of the EPD guidelines.

Table 4-2 Summary of Construction Noise Monitoring Results

Date	Start Time	1 st Leq _{5min}	2 nd Leq _{5min}	3 rd Leq _{5min}	4 th Leq _{5min}	5 th Leq _{5min}	6 th Leq _{5min}	Leq _{30min}	Corrected* Leq _{30min}
28-Feb-12	9:48	56.1	55.4	57.3	52.1	54.9	53.8	55.2	58.2
3-Mar-12	13:04	50.4	52.3	56.9	54.7	58.2	54.9	55.3	58.3
8-Mar-12	11:29	54.8	56.1	53.9	58.6	54.4	52.7	55.5	58.5
14-Mar-12	10:03	59.3	58.8	61.2	60.8	57.4	59.9	59.7	62.7
20-Mar-12	10:56	56.2	53.9	54.8	60.3	55.1	54.4	56.4	59.4

^(*) A façade correction of +3 dB(A) has been added according to acoustical principles and EPD guidelines.

It was noted that no noise complaint (which is an Action Level exceedance) and exceedances were received in this reporting month. The monitoring result is shown in *Tables 4-2* and the graphical plot is shown in *Annex J*.

4.3 RESULTS OF MARINE WATER QUALITY OF MONITORING

According to the information provided by the Contractor, the box culvert has built and operated since 8 June 2011. The concern monitoring at C1 and other four designed monitoring stations was commenced accordingly. After the stormwater drainage system was built, Starfish Bay and the sea zone of the project west and north (Tolo Harbour) are the potential impact area during construction phase as it would receive all the site runoff of the project. Therefore the control stations C1 & C2 and eight designated monitoring stations M1-M8 were ongoing adopted to carry out impact monitoring in this Reporting Period in accordance with Section 4.5 of the Final

EM&A Manual.

The monitoring results including in-situ measurements and laboratory testing results are provided in Annex I. The graphical plots are shown in Annex J.

During the Reporting Period, field measurements showed that marine water of the depth average of temperature was within 14.88 to 19.60° C, the salinity concentration was within 30.54 to 34.51 ppt, and pH value was within 6.95 to 8.48.

Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids in this Reporting Period, are summarized in *Tables 4-3* to *4-6*.

Table 4-3 Summary of Water Quality Results – Ebb Tides (The Sea Zone of the Project West and North)

Sampling date	DO conc. of Depth Ave. of Surf. and Mid Layer (mg/L)				DO Conc. Bottom layer (mg/L)	Turbic	lity Dep	oth Ave.	(NTU)	SS Depth Ave. (mg/L)				
	M1 M2 M3 M4				M4	M1	M2	M3	M4	M1	M2	M3	M4	
28-Feb-12	4.73	5.11	4.93	5.14	4.92	2.30	2.00	2.10	1.93	6.00	4.00	4.00	3.50	
1-Mar-12	4.27	4.54	4.62	4.64	4.58	1.65	1.65	1.60	1.70	2.00	4.00	3.00	3.50	
3-Mar-12	7.61	8.01	6.86	6.84	6.56	2.70	3.80	1.70	1.68	3.00	4.00	4.00	4.00	
6-Mar-12	5.54	5.89	5.47	5.54	5.35	1.45	1.45	2.10	1.75	8.00	9.00	3.00	4.00	
8-Mar-12	5.24	5.17	4.70	4.97	5.23	1.80	1.90	1.75	1.93	5.00	6.00	4.00	5.50	
10-Mar-12	7.01	7.58	7.31	7.51	7.55	2.75	2.20	2.25	2.03	7.00	9.00	4.00	5.00	
12-Mar-12	7.85	7.92	7.54	7.75	7.67	2.15	2.50	2.35	2.10	2.00	2.00	2.00	4.00	
14-Mar-12	7.96	8.00	7.58	7.77	7.58	1.90	1.95	2.10	2.23	2.00	2.00	2.00	2.50	
16-Mar-12	8.80	8.54	7.78	8.13	8.29	2.20	2.05	2.15	2.33	4.00	3.00	3.00	3.50	
20-Mar-12	10.40	10.24	9.45	10.02	10.12	1.65	1.75	1.65	1.70	2.00	2.00	2.00	2.00	

Table 4-4 Summary of Water Quality Results – Flood Tides (The Sea Zone of the Project West and North)

Sampling date	(mg/L)				DO Conc. Bottom layer (mg/L)	Turbid	lity Dep	th Ave.	(NTU)	SS	Depth A	Ave. (mg	g/L)
	M1	M2	M3	M4	M4	M1	M2	M3	M4	M1	M2	M3	M4
28-Feb-12	4.51	4.85	5.19	5.17	5.05	2.15	2.20	2.35	2.08	4.00	4.00	3.00	3.00
1-Mar-12	6.70	6.67	4.93	5.02	4.89	1.60	1.95	1.70	1.95	3.00	4.00	2.00	2.50
3-Mar-12	6.19	6.28	5.58	5.75	5.71	1.90	1.85	1.70	1.78	4.00	8.00	4.00	5.00
6-Mar-12	5.80	5.94	5.24	5.31	5.21	3.35	3.55	2.55	1.73	2.00	3.00	4.00	3.50
8-Mar-12	7.58	7.58	7.17	7.43	7.57	1.90	2.10	2.10	2.10	4.00	10.00	3.00	4.50
10-Mar-12	7.51	7.40	6.73	7.02	7.10	2.25	2.15	2.85	2.28	4.00	7.00	3.00	5.50
12-Mar-12	8.68	8.58	8.02	8.08	7.99	2.40	2.25	2.15	2.28	6.00	3.00	2.00	3.00
14-Mar-12	8.34	8.25	7.58	7.77	7.67	2.00	2.25	2.00	2.45	2.00	6.00	3.00	2.50
16-Mar-12				8.22	8.28	2.10	2.05	2.30	2.20	3.00	4.00	2.00	2.00
20-Mar-12	10.68	10.65	10.51	10.50	10.78	1.65	1.65	1.75	1.83	2.00	2.00	2.00	2.50

Table 4-5 Summary of Water Quality Results – Ebb Tides (The Sea Zone of the Starfish Bay)

Sampling		onc. of l and Mid			Turbic	lity Dep	th Ave.	(NTU)	SS Depth Ave. (mg/L)			
date	M5	M6	M7	M8	M5	M6	M7	M8	M5	M6	M7	M8
28-Feb-12	5.06	4.94	5.01	4.86	2.05	2.30	2.15	2.05	6.00	7.00	5.00	7.00
1-Mar-12	4.57	4.56	4.51	4.57	1.70	1.95	1.65	1.70	4.00	2.00	4.00	4.00
3-Mar-12	6.42	6.38	6.35	6.06	1.85	1.80	1.85	1.90	3.00	3.00	7.00	2.00
6-Mar-12	5.35	5.30	5.29	5.16	3.20	2.10	3.65	2.00	4.00	5.00	2.00	2.00
8-Mar-12	5.05	4.99	5.06	4.68	1.85	2.20	1.75	1.80	7.00	12.00	7.00	6.00
10-Mar-12	7.51	7.42	7.53	6.95	2.10	2.30	2.65	2.20	8.00	6.00	6.00	7.00
12-Mar-12	7.94	8.67	7.85	7.53	2.55	2.35	2.30	2.10	6.00	2.00	4.00	2.00
14-Mar-12	7.66	7.73	7.65	7.79	2.15	2.05	2.10	1.95	2.00	3.00	2.00	2.00
16-Mar-12	8.23	8.06	8.31	7.41	2.15	2.15	2.05	2.15	2.00	3.00	6.00	3.00
20-Mar-12	9.77	9.50	9.86	8.61	1.60	1.65	1.50	1.60	2.00	2.00	2.00	2.00

Table 4-6 Summary of Water Quality Results – Flood Tides (The Sea Zone of the Starfish Bay)

Sampling date			Depth A Layer		Turbid	lity Dep	th Ave.	(NTU)	SS Depth Ave. (mg/L)			
uate	M5	M6	M7	M8	M5	M6	M7	M8	M5	M6	M7	M8
28-Feb-12	4.52	4.57	4.50	4.60	1.90	1.95	2.10	2.80	3.00	4.00	3.00	2.00
1-Mar-12	4.81	4.77	4.79	4.64	1.60	1.65	1.70	1.55	3.00	2.00	2.00	3.00
3-Mar-12	6.14	5.80	6.08	5.71	1.80	1.85	1.80	1.60	2.00	8.00	6.00	5.00
6-Mar-12	5.16	5.05	5.12	4.98	2.60	1.70	1.85	1.45	4.00	4.00	6.00	3.00
8-Mar-12	7.53	7.47	7.56	7.38	1.85	1.90	1.90	1.85	7.00	5.00	5.00	4.00
10-Mar-12	6.98	6.89	7.02	6.43	2.10	2.35	2.25	2.35	6.00	10.00	7.00	6.00
12-Mar-12	7.83	7.77	7.84	7.44	2.05	2.05	2.10	2.20	3.00	4.00	5.00	4.00
14-Mar-12	7.32	7.35	7.24	7.42	2.10	1.95	1.95	2.05	3.00	2.00	2.00	2.00
16-Mar-12	8.37	8.26	8.42	7.65	2.00	2.15	2.15	2.00	3.00	2.00	3.00	3.00
20-Mar-12	10.33	10.19	10.42	9.45	1.70	1.95	1.70	1.80	2.00	3.00	2.00	4.00

A summary of exceedances for the three parameters: dissolved oxygen (DO), turbidity and suspended solids are shown in *Table 4-7*.

Table 4-7 Summarized Exceedances of Marine Water Quality

Station	(Ave of	O Top & lepth)		oidity h Ave.)		S h Ave)	Total Ex	ceedance
	Action	Limit	Action	Limit	Action	Limit	Action	Limit
			N	Iid-Ebb				
M1	0	0	0	0	0	0	0	0
M2	0	0	0	0	0	0	0	0
M3	0	0	0	0	0	0	0	0
M4	0	0	0	0	0	0	0	0
M5	0	0	0	0	0	0	0	0
M6	0	0	0	0	0	0	0	0
M7	0	0	0	0	0	0	0	0
M8	0	0	0	0	0	0	0	0
			M	id-Flood				
M1	0	0	0	0	0	0	0	0
M2	0	0	0	0	0	0	0	0
M3	0	0	0	0	0	0	0	0
M4	0	0	0	0	0	0	0	0
M5	0	0	0	0	0	0	0	0
M6	0	0	0	0	0	0	0	0
M7	0	0	0	0	0	0	0	0
M8	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	0	0	0	0	0

For marine water monitoring, no exceedance of Action/Limit level was recorded in this reporting month. Based on temporary discharge drainage system and air quality mitigation measures, all waste water or runoff as come from the work site should not be discharged into natural streams and flow to the Starfish Bay, due to its was collected and reused for dust mitigation measures at the site. It is therefore no corrective action required.

5 WASTE MANAGEMENT

Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

5.1 RECORDS OF WASTE QUANTITIES

All types of waste arising from the construction work are classified into the following:

- Construction & Demolition (C&D) Material;
- Chemical Waste:
- General Refuse; and
- Excavated Soil.

The quantities of waste for disposal in this Reporting Period are summarized in *Table 5-1* and 5-2 and the Monthly Summary Waste Flow Table is shown in *Annex L*. Whenever possible, materials were reused on-site as far as practicable.

Table 5-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
Reused in this Contract (Inert) (m ³)	0	Reuse in the contract
Reused in other Projects (Inert) (m ³)	0	-
Disposal as Public Fill (Inert) (m ³)	0	-

Table 5-2 Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Recycled Metal (kg)	0	-
Recycled Paper / Cardboard Packing (kg)	0	-
Recycled Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (m ³)	13	NENT Landfill

There was no site effluent or surface runoff discharged in this monthly period.

30th Monthly Environmental Monitoring and Audit (EM&A) Report for March 2012

6 SITE INSPECTION

According to the Final Report Environmental Monitoring and Audit Manual [2095/13.3], the environmental site inspection should be formulated by ET Leader. Regular environmental site inspections had been carried out by the Contractor and ER to confirm the environmental performance.

Due to the completion of the project, no join site inspections were carried out by the RE, IEC, and the Contractor with ET on March 2012 during the Reporting Period.

7 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

7.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION

No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 7-1*, *7-2* and *7-3*.

Table 7-1 Statistical Summary of Environmental Complaints

Domontino Donio d	Environmental Complaint Statistics			
Reporting Period	Frequency	Cumulative	Complaint Nature	
26 November 2009 – 25 February 2012	0	0	NA	
26 February 2012 – 21 March 2012	0	0	NA	

Table 7-2 Statistical Summary of Environmental Summons

Denouting Davied	Environmental Complaint Statistics				
Reporting Period	Frequency	Cumulative	Complaint Nature		
26 November 2009 – 25 February 2012	0	0	NA		
26 February 2012 – 21 March 2012	0	0	NA		

Table 7-3 Statistical Summary of Environmental Prosecution

Donouting Davied	Environmental Complaint Statistics				
Reporting Period	Frequency	Cumulative	Complaint Nature		
26 November 2009 – 25 February 2012	0	0	NA		
26 February 2012 – 21 March 2012	0	0	NA		

8 IMPLEMENTATION STATUS OF MITIGATION MEASURES

The environmental mitigation measures that recommended in the Final Report Environmental Monitoring and Audit Manual [2095/13.3] covered the issues of dust, noise and waste and they are summarized as following:

Dust Mitigation Measure

- (a) The contractor shall frequently clean and water the site to minimize fugitive dust emissions.
- (b) Effective water sprays shall be used during the delivery ad handling of aggregate, and other similar materials, when dust is likely to be created and to dampen all sited material during dry and windy weather.
- (c) Watering of exposed surfaces shall be exercised as often as possible depending on the circumstance.
- (d) Areas within the site where there is regular movement of vehicles must be regularly watered as often as necessary for effective suppression of dust or as often as directed by the Engineer.
- (e) Where dusty materials are being discharged to vehicle from a conveying system at a fixed transfer point, a three-sided roofed enclosure with a flexible curtain across the entry shall be provided. Exhausted fans shall be provided for this enclosure and vented to a suitable fabric filer system.
- (f) The Contractor shall restrict all motorized vehicles within the site, excluding those on public roads, to a maximum speed of 15km per hour and confine haulage and delivery vehicles to designated roadways inside the site.
- (g) Wheel washing facilities shall be installed and used by all vehicles leaving the site. No earth, mud, debris, dust and the like shall be deposited on public roads, water in wheel cleaning facility shall be changed at frequent intervals and sediments shall be removed regularly. The Contractor shall submit detailed proposals for the wheel cleaning facilities to the Engineer prior to construction of the facility. Such wheel washing facilities shall be usable prior to any earthworks excavating activity in the site.
- (h) Any material dropped in the roads will need to be cleaned up immediately to prevent dust nuisance.

Noise Mitigation Measure

- (a) Noisy equipment and activities should be sited by the Contractor as far from close-proximity sensitive receivers as practical. Prolonged operation of noisy equipment close to dwellings and schools should be avoided.
- (b) The Contractor should minimise construction noise exposure to the schools (especially during examination periods) as much as possible. The Contractor should liaise with the school and the Examination Authority to ascertain the exact dates and times of all examination periods during the course of the contract and to avoid noisy activities during these periods.
- (c) Noisy plant or processes should be replaced by quieter alternatives where possible. Silenced diesel and gasoline generators and power units, as well as silenced and super-silenced air compressors should be used.
- (d) Noisy activities should be scheduled to minimize exposure of nearby sensitive receivers to high levels of construction noise. For example, noisy activities can be scheduled for midday, or at times coinciding with periods of high background noise (such as during peak traffic hours).
- (e) Idle equipment should be turned off or throttled down. Noisy equipment should be properly maintained and used no more often than is necessary.
- (f) The power units of non-electric stationary plant and earth-moving plant should be quietened by vibration isolation and partial or full acoustic enclosures for individual noise-generating components.
- (g) Construction activities should be planned so that parallel operation of several sets of equipment close to a given receiver is avoided, thus reducing the cumulative impacts between operations. The numbers of operating items of powered mechanical equipment

should be minimized.

- (h) Construction plant should be properly maintained (well-greased, damage and worn parts promptly replaced) and operated. Construction equipment often has silencing measures built in or added on, e.g. bulldozer silencers, compressor panels, and mufflers. Silencing measures should be properly maintained and utilized. Where possible, rubber or damping materials should be introduced between metal panels to avoid rattle and reverberation of noise.
- (i) Equipment known to emit sound strongly in one direction, should where possible, be oriented so that the noise is directed away from nearby NSRs.
- (j) Material stockpiles and other structures (such as site offices) should be effectively utilized, where practicable, to screen noise from on-site construction activities. Alternatively, noise barriers having a surface density of 10 kg/m2 should be used to protect nearby NSRs if necessary.
- (k) The Contractor should devise, arrange methods of working and carry out the works in such manner as to minimize noise impacts on the surrounding environment, and should provide experienced personnel with suitable training to ensure that these measures are implemented properly.

Waste Mitigation Measures

- (a) The Contractor shall observe and comply with the Waste Disposal Ordinance (WDO) and its subsidiary regulations.
- (b) The Contractor shall submit to the Engineer for approval a Waste Management Plan with appropriate mitigation measures including the allocation of an area for waste segregation and shall ensure that the day-to-day site operations comply with the approved waste management plan.
- (c) The Contractor shall minimize the generation of waste from his work. Avoidance and minimization of waste generation can be achieved through changing or improving design and practices, careful planning and good site management.
- (d) The reuse and recycling of waste shall be practiced as far as possible. The recycled materials shall include paper/cardboard, timber and metal etc.
- (e) The Contractor shall ensure that Construction and Demolition (C&D) materials are sorted into public fill (inert portion) and C&D waste (non-inert portion). The public fill which comprises soil, rock, concrete, brick, cement plaster/mortar, inert building debris, aggregates and asphalt shall be reused in earth filling, reclamation or site formation works. The C&D waste which comprises metal, timber, paper, glass, junk and general garbage shall be reused or recycled where possible and, as the last resort, disposal of at landfills.
- (f) The Contractor shall record the amount of wastes generated, recycled and disposed of (including the disposal sites). The Contractor shall use a trip ticket system for the disposal of C&D materials to any designated public filling facility and/or landfill.
- (g) In order to avoid dust or odour impacts, any vehicles leaving a works area carrying construction waste or public fill shall have their load covered.
- (h) To avoid the excessive use of wood, reusable steel shutters shall be used as a preferred alternative to formwork and falsework where possible.
- (i) The Contractor shall observe and comply with the Waste Disposal (Chemical Waste) (General) Regulation. The Contractor shall apply for registration as chemical waste producer under the Waste Disposal (Chemical Waste) (General) Regulation when chemical waste is produced. All chemical waste shall be properly stored, labeled, packaged and collected in accordance with the Regulation.

CRBC had been implementing the required environmental mitigation measures according to the Final Report Environmental Monitoring and Audit Manual [2095/13.3] subject to the site condition. Environmental mitigation measures generally implemented by CRBC in this Reporting Period are summarized in *Table 8-1*.

Table 8-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Water	Wastewater were appropriately treated by treatment facilities;
Quality	 Drainage channels were provided to convey run-off into the treatment facilities; and
	 Drainage systems were regularly and adequately maintained.
	 De-silting facility was provided to treat the discharged water; also the treated water is reused for spraying the road surface.
Air Quality	 Regular watering to reduce dust emissions from all exposed site surface, particularly during dry weather;
	 Frequent watering for particularly dusty construction areas and areas close to air sensitive receivers;
	 Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet;
	 Public roads around the site entrance/exit had been kept clean and free from dust; and
	 Tarpaulin covering of any dusty materials on a vehicle leaving the site.
	 Sprinkler of water spray system is provided at haul road to reduce dust emissions during the vehicles passing through the haul road
	Wheel washing facility is provided at the site exit.
Noise	 Good site practices to limit noise emissions at the sources;
	Use of quiet plant and working methods;
	 Use of site hoarding or other mass materials as noise barrier to screen noise at ground level of NSRs;
	• Use of shrouds/temporary noise barriers to screen noise from relatively static PMEs;
	• Scheduling of construction works outside school examination period in critical area; and
	Alternative use of plant items within one worksite, where practicable.
Waste and	• Excavated material should be reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if possible;
Management	 Waste arising should be kept to a minimum and be handled, transported and disposed of in a suitable manner;
	 The Contractor should adopt a trip ticket system for the disposal of C&D materials to any designed public filling facility and/or landfill; and
	 Chemical waste shall be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

9 IMPLEMENTATION STATUS OF MITIGATION MEASURES

9.1 MAJOR FORTHCOMING ACTIVITIES

Post Environmental monitoring

9.2 KEY ISSUES FOR THE COMING MONTH

Key issues to be considered in the coming month include:

- Implementation of dust suppression measures at all times;
- Potential wastewater quality impact due to surface runoff;
- Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
- Disposal of empty engine oil containers within site area;
- Ensure dust suppression measures are implemented properly;
- Sediment catch-pits and silt removal facilities should be regularly maintained;
- Management of chemical wastes;
- Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
- Follow-up of improvement on general waste management issues; and
- Implementation of construction noise preventative control measures

10 CONCLUSIONS AND RECOMMENTATIONS

10.1 CONCLUSIONS

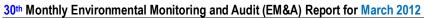
This is the 30th monthly EM&A report, covering the construction period from 26 February 2012 to 21 March 2012 (the Reporting Period).

No construction noise complaint (an Action Level exceedance) was received and no exceedance was recorded in construction noise monitoring in this Reporting Period.

No 1-hour and 24-hour TSP monitoring results that triggered the Action or Limit Level were recorded in this Reporting Period.

No marine water monitoring results that triggered the Action or Limit Level in this Reporting Period. Therefore, no associated corrective actions were then required.

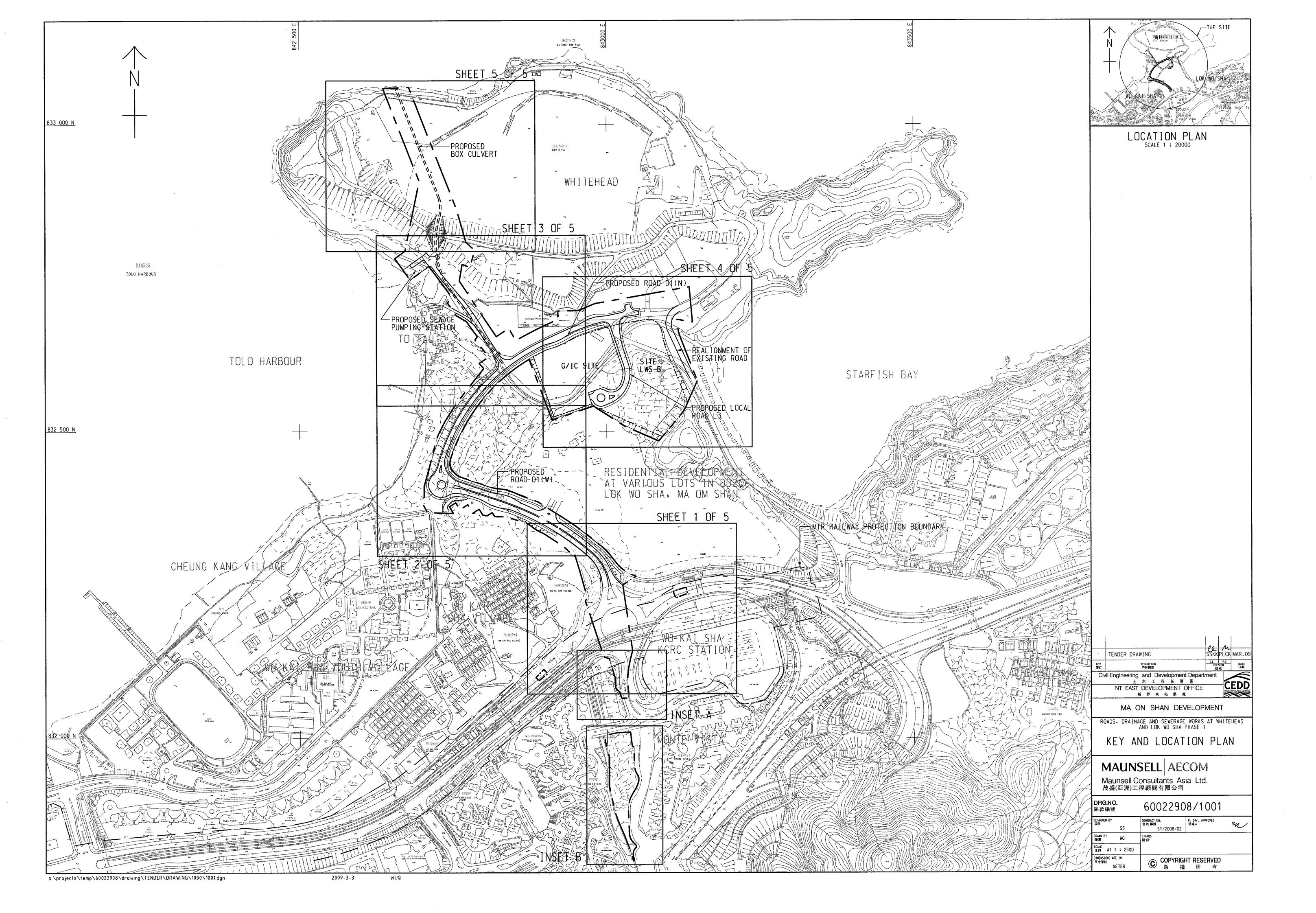
No documented complaint, notification of summons or successful prosecution was received.

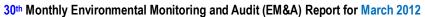

Due to the completion of the project, no join site inspections were carried out by the RE, IEC, and the Contractor with ET on March 2012 during the Reporting Period.

In this Reporting Period, no site visit by EPD/ AFCD was recorded.

The landscape and visual impacts monitoring was undertaken by the landscape sub-contractor. The monitoring results will be submitted separately as a stand-alone document.

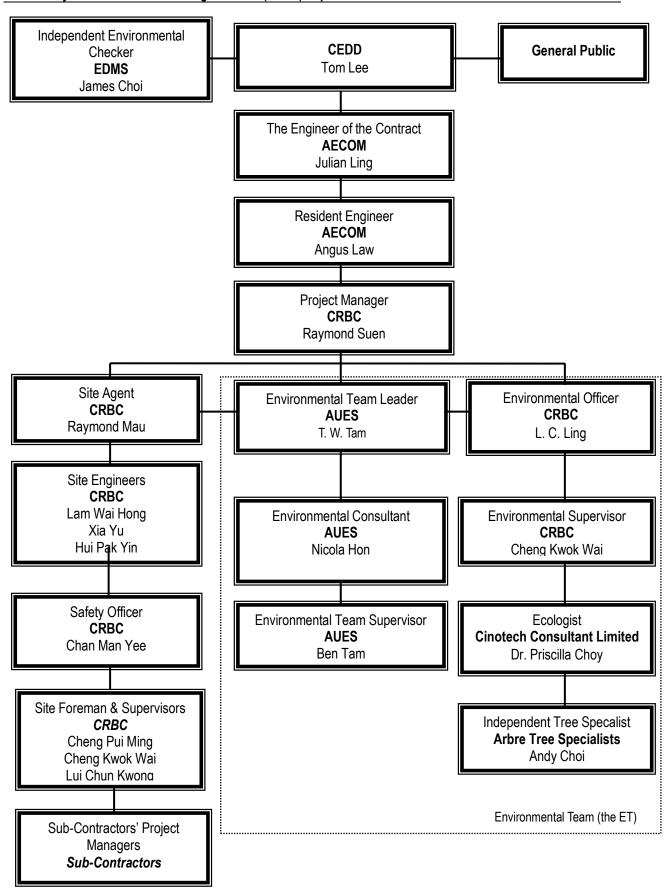
As the certificate of completion was issued on 13 January 2012 and no adverse environmental impacts generated from the construction activities under the Project are anticipated after 21 March 2012, when all the works under the Project, including the remaining outstanding construction works, has been completed. The construction phase of EM&A activities for the caption project was terminated on 21 March 2012.

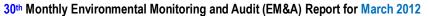

Upon agreement among the ER, IEC, ET and Contractor, termination of the EM&A under the Project has been proposed by the ET since 21 March 2012 and pending EPD's formal agreement. According to Chapter 4.7.2 of the Final EM&A Manual, the post project monitoring exercise on water quality and the associated schedule has also been proposed since 21 March 2012 and pending EPD's formal agreement.



Annex A

Project Site Layout Plan




Annex B

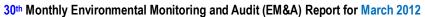
Organization Structure and Contact Details of the CRBC & Relevant Parties

30th Monthly Environmental Monitoring and Audit (EM&A) Report for March 2012

Contact Details of Key Personnel

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
CEDD	Employer	Mr. Tom Lee	2301-1317	2739-0076
AECOM	The Engineer of the Contract	Julian Ling	2631-7796	2631-7226
AECOM	Engineer's Representative	Mr. Angus Law	2631-7796	2631-7226
EDMS	Independent Environmental Checker	Mr. James Choi	2869-6018	3007-8556
CRBC	Project Director	Mr. Wang Yanhua	2283-1688	2283-1689
CRBC	Project Manager	Mr. Raymond Suen	9779-8871	2631-8993
CRBC	Site Agent	Mr. Raymond Mau	9048-3669	2631-8993
CRBC	Site Engineer	Mr. Lam Wai Hong	2631-8823	2631-8993
CRBC	Site Engineer	Mr. Xia Yu	2631-8823	2631-8993
CRBC	Site Engineer	Mr. Hui Pak Yin	2631-8823	2631-8993
CRBC	Environmental Officer	Mr. L.C. Ling	9858-1378	2631-8993
CRBC	Environmental Supervisor	Mr. Cheng Kwok Wai	2631-8823	2631-8993
CRBC	Safety Officer	Ms. Chan Man Yee	2631-8823	2631-8993
CRBC	Assistant Safety Officer	Ms. Wong Yih Tin	2631-8823	2631-8993
AUES	Environmental Team Leader	Mr. T. W. Tam	2959-6059	2959-6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959-6059	2959-6079
AUES	Team Supervisor	Mr. Ben Tam	2959-6059	2959-6079
ATS	Independent Tree Specialist	Andy Choi	9461-7173	-
CCL	Ecologist	Dr. Priscilla Choy	2151-2083	3107-1388

Legend:


CEDD (Employer) – Civil Engineering and Development Department

 $AECOM\ (Engineer) - AECOM$

 $CRBC\ (Main\ Contractor) - China\ Road\ and\ Bridge\ Corporation$

EDMS (IEC) – EDMS Consulting Limited

AUES (ET) – Action-United Environmental Services & Consulting

Annex C

Certificate of Completion

AECOM 8/F Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, Hong Kong 香港新界沙田鄉事會路138號 新城市中央廣場第2座8樓 www.aecom.com +852 3922 9000 tel +852 3922 9797 fax

LETTER IN

Your Ref: (out)CRBC/ST200802/S210(2)/005 Our Ref: JYL:VLUI:ccm:60022908/44-1219

13 January 2012

China Road and Bridge Corporation Units 07-11, 23A/F, K Wah Centre 191 Java Road North Point Hong Kong

(Attn: Mr. Raymond S.W. Mau)

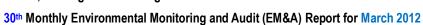
Dear Sir,

Ma On Shan Development Contract No. ST/2008/02 Roads, Drainage and Sewerage Works at Whitehead and Lok Wo Sha Phase 1

Certificate of Completion No. 4 in respect of Sections I, IA and V of the Works

In accordance with Clause 53(1)(a) of the General Conditions of Contract, we hereby certify that Sections I, IA and V of the Works were substantially completed on 7 January 2012.

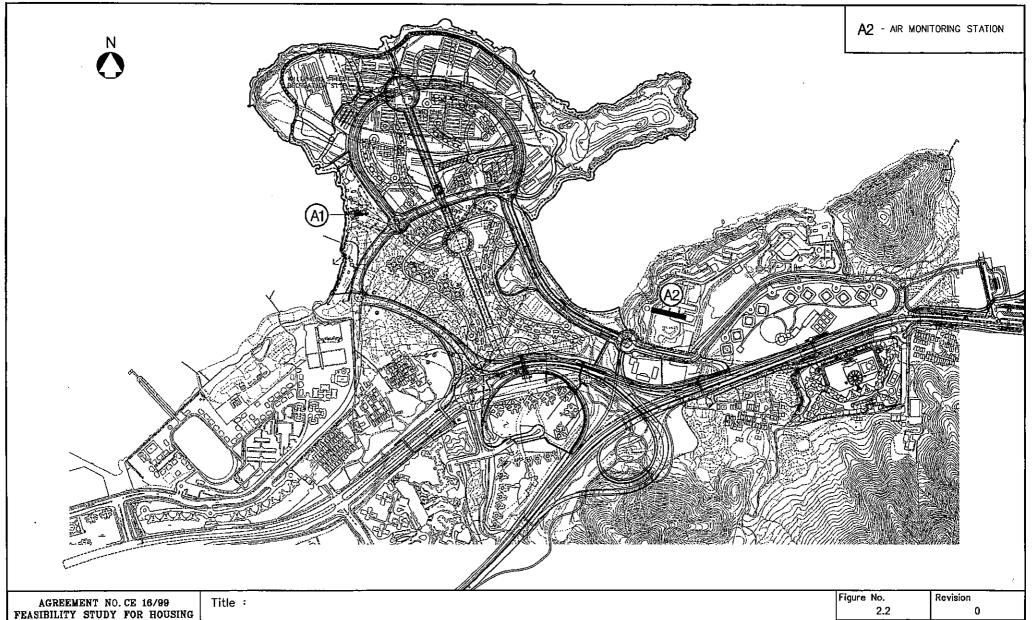
This certificate is issued following the receipt of your letter referenced above dated 9 January 2012 with notice that the said Sections had been substantially completed on 7 January 2012 and that you undertake to complete any outstanding works and to rectify any defects as identified during the maintenance period.


The maintenance period for the completed works shall commence on the day following the date of completion stated above.

Yours faithfully, For and on behalf of AECOM Asia Co. Ltd.

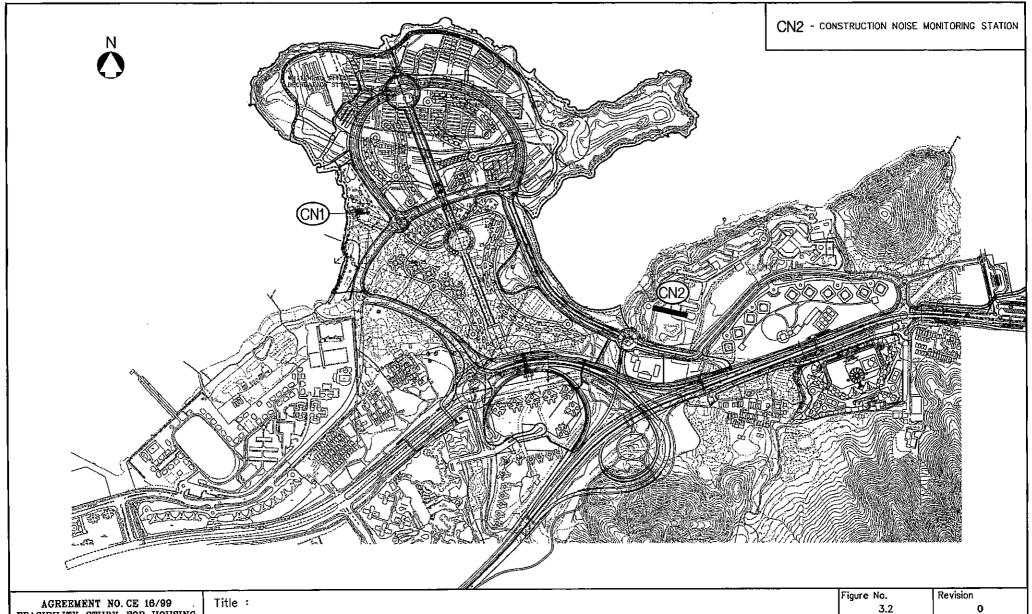
Julian Ling Project Director

Water & Urban Development


CC D of A
CTA(F), DEVB
PM/NTE, CEDD — Attn: Mr. S. M. Ma
STA
SE/CA
RE/LWS
CRBC Site Office c/o RE/LWS

Annex D

Monitoring Locations Designated in the EM&A Manual

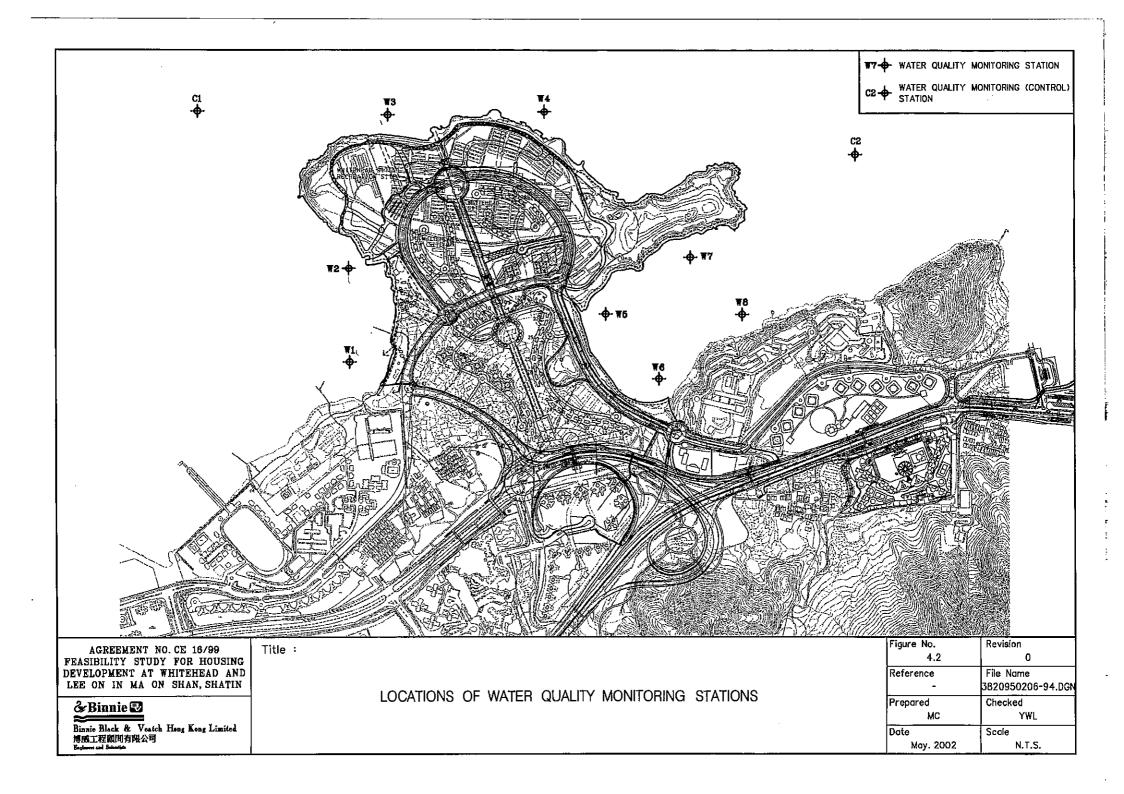


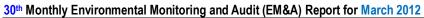
AGREEMENT NO. CE 16/99
FEASIBILITY STUDY FOR HOUSING
DEVELOPMENT AT WHITEHEAD AND
LEE ON IN MA ON SHAN, SHATIN

&Binnie 🗗

Binnie Black & Veatch Hong Keng Limited 時威工程顧問有限公司 Regions and Structure LOCATIONS OF AIR MONITORING STATION

Figure No.	Revision					
2.2	0					
Reference	File Name					
-	3820950206-76.DGN					
Prepared	Checked					
MC	YWL					
Date	Scale					
MAY. 2002	N.T.S.					

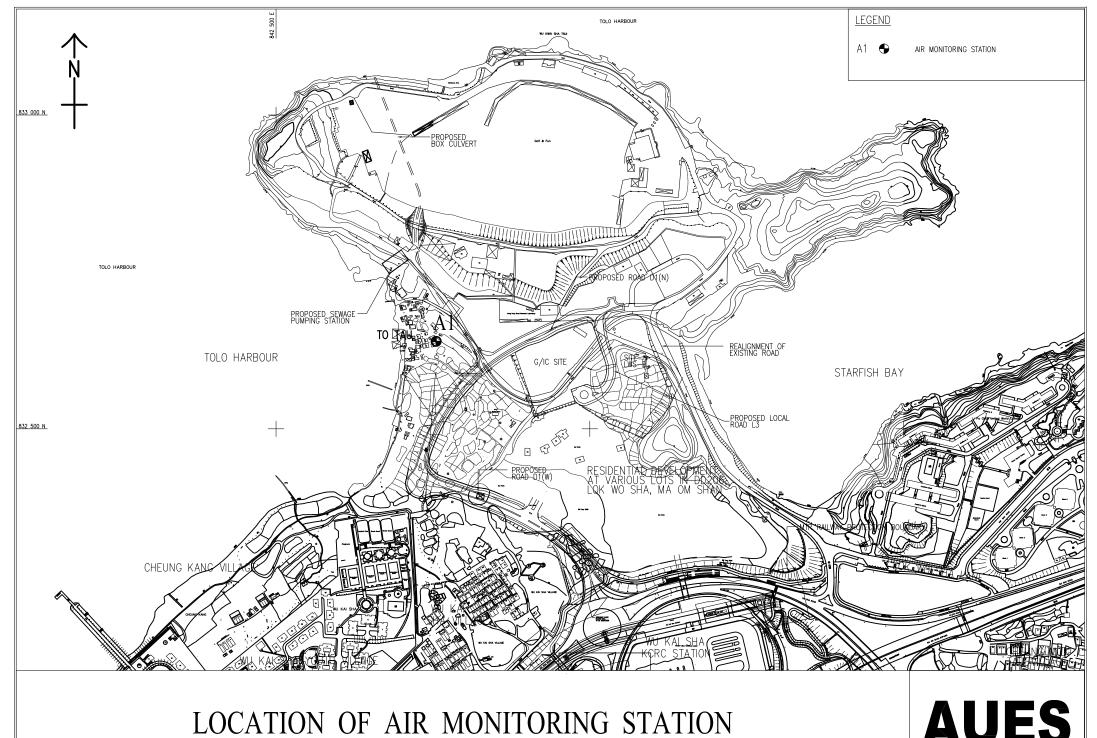


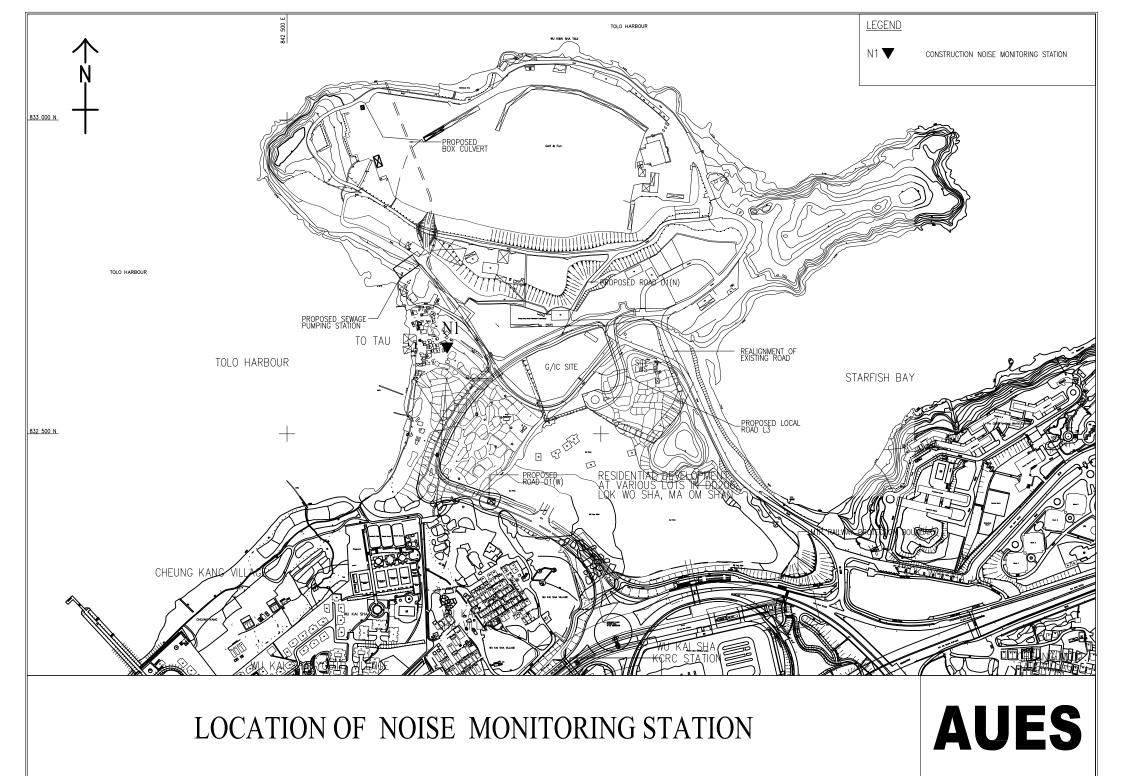

AGREEMENT NO. CE 16/99
FEASIBILITY STUDY FOR HOUSING
DEVELOPMENT AT WHITEHEAD AND
LEE ON IN MA ON SHAN, SHATIN

&Binnie 🖾

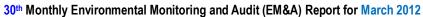
Binnie Black & Veatch Hong Kong Limited 博威工程顧問有限公司 LOCATIONS OF CONSTRUCTION NOISE MONITORING STATION

Figure No.	Revision				
3.2	0				
Reference	File Name				
-	3820950206-77.DGN				
Prepared	Checked				
MC	YWL				
Date	Scale				
MAY. 2002	N.T.S.				





Annex E


Current Impact Monitoring Stations

AUES

Annex F

Monitoring Equipment Calibrated Certificates and Laboratory Certificate

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate No.: C112473

Certificate of Calibration

This is to certify that the equipment

Description: Acoustical Calibrator (EQ081)

Manufacturer: Bruel & Kjaer

Model No.: 4231

Serial No.: 2326408

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C112473.

The equipment is supplied by

Co. Name: Action-United Environmental Services and Consulting

Address: Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

Date of Issue: 5 May 2011

Certified by: Um Am C HC Chan

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112473

Calibration Report

ITEM TESTED

DESCRIPTION

: Acoustical Calibrator (EQ081)

MANUFACTURER:

Bruel & Kjaer

MODEL NO.

4231

SERIAL NO.

: 2326408

TEST CONDITIONS

AMBIENT TEMPERATURE : $(23 \pm 2)^{\circ}$ C

RELATIVE HUMIDITY: $(55 \pm 20)\%$

LINE VOLTAGE

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 4 May 2011

JOB NO. : IC11-0947

TEST RESULTS

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested by:

Date: 5 May 2011

The test equipment used for calibration are traceable to the National Standards as specified in this report. This report shall not be reproduced except in full and with prior written approval from this laboratory.

Calibration and Testing Laboratory of Sun Creation Engineering Limited

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong Tel: 2927 2606 Fax: 2744 8986 E-mail: callab@suncreation.com

Website: www.sunereation.com

Page 1 of 2

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112473

Calibration Report

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment:

Equipment ID CL130 CL281 TST150A

<u>Description</u>
Universal Counter
Multifunction Acoustic Calibrator
Measuring Amplifier

Certificate No. C103289 C1006860 C101008

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	Nominal Value (dB)		(dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark: - The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate No.: C112474

Certificate of Calibration

This is to certify that the equipment

Description: Integrating Sound Level Meter (EQ008)

Manufacturer: Bruel & Kjaer

Model No.: 2238

Serial No.: 2285690

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C112474.

The equipment is supplied by

Co. Name: Action-United Environmental Services and Consulting

Address: Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

Date of Issue: 5 May 2011

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C112474

Calibration Report

ITEM TESTED

DESCRIPTION : Integrating Sound Level Meter (EQ008)

MANUFACTURER:

Bruel & Kjaer

MODEL NO.

2238

SERIAL NO.

: 2285690

TEST CONDITIONS

AMBIENT TEMPERATURE : $(23 \pm 2)^{\circ}$ C

RELATIVE HUMIDITY : $(55 \pm 20)\%$

LINE VOLTAGE

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 4 May 2011

JOB NO. : IC11-0947

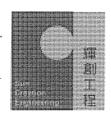
TEST RESULTS

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:


- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested by:

Date: 5 May 2011

The test equipment used for calibration are traceable to the National Standards as specified in this report. This report shall not be reproduced except in full and with prior written approval from this laboratory.

Calibration and Testing Laboratory of Sun Creation Engineering Limited

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112474

Calibration Report

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the B & K Acoustic Calibrator 4231, S/N: 2326408 was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

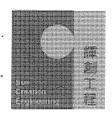
Equipment ID

Description

Certificate No.

CL280 CL281 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

C110018 C1006860


- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	TUU	Setting		Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Level	Freq.	Reading	Type 1 Spec.	
(dB)	B) Weighting Weighting				(kHz)	(dB)	(dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.3	± 0.7

6.1.2 Linearity

	עע	T Setting		Applied	d Value	UUT
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L_{AFP}	A F		94.00	1	94.3 (Ref.)
			104.00		104.3	
				114.00		114.3

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112474

Calibration Report

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT	Setting		Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L_{AFP}	A F		94.00	1	94.3	Ref.
	L _{ASP} S		S			94.3	± 0.1
	L_{AIP}					94.3	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		Арр	lied Value	UUT	IEC 60651
Range	Parameter	Frequency Time		Level	Burst	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	L _{AFP}	L _{AFP} A F		106.0	Continuous	106.0	Ref.
	L _{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L _{ASP} S			Continuous	106.0	Ref.	
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Applie	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	_	(dB)	(dB)
50 - 130	50 - 130 L _{AFP} A		F	94.00	31.5 Hz	55.0	-39.4 ± 1.5
					63 Hz	68.1	-26.2 ± 1.5
					125 Hz	78.1	-16.1 ± 1.0
					250 Hz	85.6	-8.6 ± 1.0
					500 Hz	91.1	-3.2 ± 1.0
					1 kHz	94.3	Ref.
					2 kHz	95.5	$+1.2 \pm 1.0$
					4 kHz	95.3	$+1.0 \pm 1.0$
					8 kHz	93.2	-1.1 (+1.5 ; -3.0)
					12.5 kHz	90.1	-4.3 (+3.0 ; -6.0)

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112474

Calibration Report

6.3.2 C-Weighting

		Setting	***************************************	Applie	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L_{CFP}	С	F	94.00	31.5 Hz	91.4	-3.0 ± 1.5
					63 Hz	93.5	-0.8 ± 1.5
					125 Hz	94.1	-0.2 ± 1.0
					250 Hz	94.3	0.0 ± 1.0
					500 Hz	94.3	0.0 ± 1.0
					l kHz	94.3	Ref.
					2 kHz	94.1	-0.2 ± 1.0
					4 kHz	93.5	-0.8 ± 1.0
					8 kHz	91.3	-3.0 (+1.5; -3.0)
					12.5 kHz	88.2	-6.2 (+3.0; -6.0)

6.4 Time Averaging

	UUT	Setting	Applied Value					UUT	IEC 60804	
Range	Parameter	Frequency	Time	Frequency	Burst	Burst	Burst	Equivalent	Reading	Type 1
(dB)		Weighting Weighting		(kHz)	Duration	Duty	Level	Level	(dB)	Spec.
					(ms)	Factor	(dB)	(dB)		(dB)
30 - 110	L_{Aeq}	A	10 sec.	4	1	1/10	110.0	100	99.9	± 0.5
				1/10 ² 90				90.1	± 0.5	
			60 sec.			1/10 ³		80	79.8	± 1.0
			5 min.			1/10 ⁴		70	69.7	± 1.0

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : 31.5 Hz - 125 Hz : $\pm 0.40 \text{ dB}$

250 Hz - 500 Hz : ± 0.30 dB 1 kHz : ± 0.20 dB 2 kHz : ± 0.40 dB 4 kHz : ± 0.50 dB 8 kHz : ± 0.70 dB

12.5 kHz : $\pm 1.20 \text{ dB}$

 104 dB: 1 kHz
 : \pm 0.10 dB (Ref. 94 dB)

 114 dB: 1 kHz
 : \pm 0.10 dB (Ref. 94 dB)

 Burst equivalent level
 : \pm 0.2 dB (Ref. 110 dB)

continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Village house in To Tau near the proposed pumping station Date of Calibration: 29-Feb-12 Location ID: Α1

Next Calibration Date: 29-Apr-12 Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa)

1014.2 Temperature (°C)

Corrected Pressure (mm Hg) Temperature (K)

760.65

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A

Calibration Date-> 2-Jun-11

Qstd Slope -> Qstd Intercept ->

Expiry Date->

2.11693 -0.02568 2-Jun-12

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4.6	4.6	9.2	1.471	51	52.85	Slope = 33.3503
13	3.1	3.1	6.2	1.210	44	45.59	Intercept = 4.2097
10	2.2	2.2	4.4	1.021	36	37.30	Corr. coeff. = 0.9963
7	1.5	1.5	3.0	0.845	32	33.16	
5	1.1	1.1	2.2	0.726	27	27.98	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

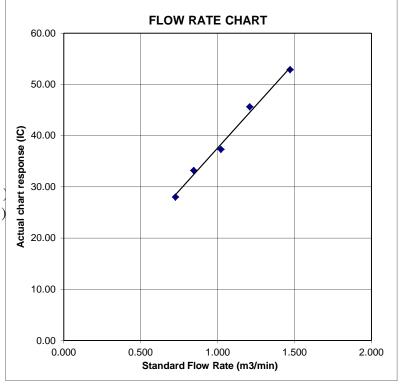
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

Work Order: HK1129081 Date of Issue: 16/12/2011

Client: ACTION UNITED ENVIRO SERVICES

Description: YSI Sonde Brand Name: YSI

Model No.: YSI 6820 / 650MDS Serial No.: 02J0912/02K0788 AA

Equipment No.: --

Date of Calibration: 16 December, 2011 Date of next Calibration: 16 March, 2012

Parameters:

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
5.70	5.83	0.13
6.91	7.05	0.14
8.00	8.08	0.08
	Tolerance Limit (±mg/L)	0.20

pH Value Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)	
4.0	3.95	-0.05	
7.0	6.95	-0.05	
10.0	9.92	-0.08	
	Tolerance Limit (±unit)	0.20	

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
0	0.00	
10	10.05	0.5
20	20.10	0.5
30	30.89	3.0
	Tolerance Limit (±%)	10.0

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	10.80	-0.2
22.0	21.40	-0.6
32.0	31.83	-0.2
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager – Hong Kong

Work Order:

HK1129081

Date of Issue:

16/12/2011

Client:

ACTION UNITED ENVIRO SERVICES

Description:

YSI Sonde

Brand Name:

YSI

Model No.:

YSI 6820 / 650MDS

Serial No.:

02J0912/02K0788 AA

Equipment No.:

--

Date of Calibration:

16 December, 2011

Date of next Calibration:

16 March, 2012

Parameters:

Turbidity

Method Ref: APHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	
0	0.6		
4	4.3	7.5	
10	10.0	0.0	
20	21.5	7.5	
50	50.9	1.8	
100	99.4	-0.6	
	Tolerance Limit (±%)	10.0	

Mr Chan Kwok/Fai, Godfrey Laboratory Manager - Hong Kong

Work Order: HK1204157

Amendment:

1 23/02/2012

Date of Issue:

Client: **ACTION UNITED ENVIRO SERVICES**

Description:

YSI Professional Plus

Brand Name:

YSI

Model No.:

YSI Professional Plus

Serial No.:

10G101946

Equipment No.:

Date of Calibration: 16 February, 2012 Date of next Calibration:

16 May, 2012

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
7.00	6.90	-0.1
7.40	7.22	-0.18
8.85	8.70	-0.15
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

	Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
Γ			
1	4.0	3.96	-0.04
-	7.0	7.00	0.00
	10.0	10.01	0.01
		Tolerance Limit (±unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	kpected Reading (g/L) Displayed Reading (g/L) Tolerance			
0	0.00			
10	9.83	-1.7		
20	19.35	-3.2		
30	29.66	-1.1		
	Tolerance Limit (+%)	10.0		

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	10.0	0.0
10.0	21.0	-0.5
31.0	30.9	-0.1
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey

Laboratory Manager - Hong Kong

Work Order:

HK1200383

Date of Issue:

10/01/2012

Client:

ACTION UNITED ENVIRO SERVICES

Description:

Turbidimeter

Brand Name:

HACH 21000

Model No.: Serial No.:

11030C008499

Equipment No.:

__

Date of Calibration:

09 January, 2012

Date of next Calibration:

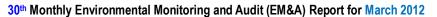
09 April, 2012

Parameters:

Turbidity

Method Ref: APHA 21st Ed. 2130B

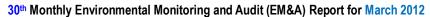
Method Rei: APRA 21St Ed. 2130B				
Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)		
0	0.15			
4	4.19	4.8		
40	39.3	-1.8		
80	78.9	-1.4		
400	370	-7.5		
800	817	2.1		
	Tolerance Limit (±%)	10.0		


Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

30th Monthly Environmental Monitoring and Audit (EM&A) Report for March 2012

Annex G

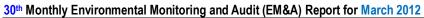
Event and Action Plan


Event and Action Plan for Air Quality

	ACTION			
EVENT	ET leader	IEC .	ER	Contractor
ACTION LEVEL				
Exceedance for one sample	Identify source Inform IEC, ER and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily	Check monitoring data submitted by ET leader Check Contractor's working method	1. Notify Contractor	Rectify any unacceptable practice Amend working methods if appropriate
Exceedance for two or more consecutive samples	Identify source Inform IEC, ER and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily Discuss with IEC, Contractor and ER on remedial actions required If exceedance continue, arrange meeting with IEC, ER and Contractor If exceedances stops, cease additional monitoring	Checking monitoring data submitted by BT leader. Check Contractor's working method Discuss with ET leader and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures Supervise implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor Ensure remedial measures properly implemented	Submit proposals for remedial actions to IEC and ER within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate
LIMITLEVEL				
Exceedance for one sample	Identify source Inform IEC, ER, EPD and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily Assess effectiveness of Contractor's remedial actions and kept IEC, EPD and ER informed of the results	Check monitoring data submitted by E1 leader Check Contractor's working method Discuss with ET leader and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures Audit implementation of remedial measures	Contirm receipt of notification of failure in writing Notify Contractor Ensure remedial measures properly implemented	Take immediate action to avoid for the exceedance Submit proposals for remedial actions to IEC and ER within 3 working days of notification Amend proposal if appropriate
Exceedance for two or more consecutive samples	Notify IEC, ER, Centractor and EPD Identify source Repeat measurement to confirm findings Increase monitoring frequency to daily Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Arrange meeting with IEC, Contractor and ER to discuss the remedial actions to be taken Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring	Discuss amongst ER, ET leader and Contractor on the potential remedial actions Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly Audit the implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor In consultation with IEC, agree with the Contractor on the remedial measures to be implemented Ensure remedial measures properly implemented I exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	Take immediate action to avoid for the exceedance Submit proposals for remedial actions to IEC and ER within 3 working days of antification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abate.

Event and Action Plan for Construction Noise Quality

		AC	TION		
EVENT	ET Leader IEC		ER	Contractor	
Action Lovel	Notify IEC, Contractor and ER Carry out investigation Report the results of investigation to the IEC, Contractor and ER Discuss with the Contractor and formulate remedial measures Double monitoring frequency Check compliance to Action/Limit Levels after application of mitigation measures	Review the analysed results submitted by the ET leader Review the proposed remedial measures by the Contractor and advise the ER accordingly Review the implementation of remedial measures	Confirm receipt of notification of complaint in writing Notify Contractor Require Contractor to propose remedial measures for the analysed noise problem Ensure remedial measures are properly implemented	Submit noise mitigation proposals to ER and IEC Implement noise mitigation proposals	
Limit Level	Notify IEC, ER, EPD and Contractor Identify Source Repeat measurement to confirm findings Increase monitoring frequency Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented Inform IEC, ER and EPD the causes & actions taken for the exceedances Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring	Discuss amongst ER, ET leader and Contractor on the potential remedial actions Review remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly Audit the implementation of remedial measures	Confirm receipt of notification of failure in writing Notify Contractor Require Contractor to propose remedial measures for the analysed noise problem Ensure remedial measures are properly implemented If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	Take immediate action to avoid further exceedance Submit proposals for remedial actions to within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated	


Contract No. ST/2008/02 – Ma On Shan Development Roads, Drainage and Sewerage Works at Whitehead and Lok Wo Sha Phase 1

Event and Action Plan for Water Quality

Event	ET leader	IEC	ER	Centractor
Action level	Repeat in-situ measurement to confirm findings	Discuss with ET leader and Contractor	Discuss with IEC on the proposed	Inform the ER and confirm notification of the
being exceeded	Identify source(s) of impact	on the mitigation measures	mitigation measures	non-compliance in writing
by one sampling	Inform IEC and Contractor	Review proposals on mitigation	Make agreement on the mitigation	Rectify unacceptable practice
day	Check monitoring data, all plant, equipment and Contractor's	measures submitted by Contractor and	measures to be implemented	Check all plant and equipment
1	working methods	advise the ER accordingly		Consider changes of working method
	Discuss mitigation measures with IEC and Contractor	Assess the effectiveness of the		Discuss with ET leader and IEC and propose
	Repeat measurement on next day of exceedance	implemented mitigation measures		mitigation measures to IEC and ER
				Implement the agreed mitigation measures
Action level	Repeat in-situ mensurement to confirm findings	Discuss with ET leader and Contractor	Discuss with IEC on the proposed	Inform the ER and confirm notification of the
being exceeded	Identify source(s) of impact	on the mitigation measures	mitigation measures	non-compliance in writing
by more than	Inform IEC and Contractor	Review proposals on mitigation	Make agreement on the mitigation	Rectify unacceptable practice
one consecutive	Check monitoring data, all plant, equipment and Contractor's	measures submitted by Contractor and	measures to be implemented	Check all plant and equipment
sampling days	working methods	advise the ER accordingly	Assess the effectiveness of the	Consider changes of working method
	Discuss mitigation measures with IEC and Contractor	Assess the effectiveness of the	implemented mitigation measures	Discuss with ET leader and IEC and propose
	Ensure mitigation measures are implemented	implemented mitigation measures		mitigation measures to IEC and ER
	Prepare to increase the monitoring frequency to daily			Implement the agreed mitigation measures
	Repeat measurement on next day of exceedance			
Limit level	Repeat in-situ measurement to confirm findings	Discuss with ET leader and Contractor	Discuss with IEC on the proposed	Inform the ER and confirm notification of the
being exceeded	Identify source(s) of impact	on the mitigation measures	mitigation measures	non-compliance in writing
by one sampling	Inform IEC, Contractor and EPD	Review proposals on mitigation	Request Contractor to critically	Rectify unacceptable practice
day	Check monitoring data, all plant, equipment and Contractor's	measures submitted by Contractor and	review the working methods	Check all plant and equipment
	working methods	advise the ER accordingly	Make agreement on the mitigation	Consider changes of working method
	Discuss mitigation measures with IEC and Contractor	Assess the effectiveness of the	measures to be implemented	Discuss with ET leader and IEC and propose
1	Ensure mitigation measures are implemented	implemented mitigation measures	Assess the effectiveness of the	mitigation measures to IEC and ER within 3
	Increase the monitoring frequency to daily until no exceedance		implemented mitigation measures	working days
	of Limit level			Implement the agreed mitigation measures
Limit level	Repeat in-situ measurement to confirm findings	Discuss with ET leader and Contractor	Discuss with IEC on the proposed	Inform the ER and confirm notification of the
being exceeded	Identify source(s) of impact	on the mitigation measures	mitigation measures	non-compliance in writing
by more than	Inform IEC, Contractor and EPD	Review proposals on mitigation	Request Contractor to critically	Rectify unacceptable practice
one consecutive	Check monitoring data, all plant, equipment and Contractor's	measures submitted by Contractor and	review the working methods	Check all plant and equipment
sampling days	working methods	advise the ER accordingly	Make agreement on the mitigation	Consider changes of working method
	Discuss mitigation measures with IEC and Contractor	Assess the effectiveness of the	measures to be implemented	Discuss with ET leader and IEC and propose
	Ensure mitigation measures are implemented	implemented mitigation measures	Assess the effectiveness of the	mitigation measures to IEC and ER within 3
	Increase the manitoring frequency to daily until no exceedance		implemented mitigation measures	working days Implement the agreed mitigation measures
1	of Limit level		Consider and instruct, if necessary, the Contractor to slow down or to	As directed by the Engineer, to slow down or
				to stop all or part of the marine work or
			stop all or part of the marine work until no exceedance of Limit level	construction activities
		· .	until no exceedance of Lamil level	construction activities

Annex H

Monitoring Schedule This Reporting Month And Next Reporting Month

30th Monthly Environmental Monitoring and Audit (EM&A) Report for March 2012

Monitoring Schedule in the Reporting Month

	D-4-	Air Q	Quality	Noise	W-4 O P4
	Date	1-hour TSP	24-hour TSP	Leq (30min)	- Water Quality
Sun	26-February-12				
Mon	27-February-12				
Tue	28-February-12	✓		✓	✓ (C1, C2, M1 – M8)
Wed	29-February-12				
Thu	1-March-12		✓		✓ (C1, C2, M1 – M8)
Fri	2-March-12				
Sat	3-March-12	✓		✓	✓ (C1, C2, M1 – M8)
Sun	4-March-12				
Mon	5-March-12				
Tue	6-March-12				✓ (C1, C2, M1 – M8)
Wed	7-March-12		✓		
Thu	8-March-12	✓		✓	✓ (C1, C2, M1 – M8)
Fri	9-March-12				
Sat	10-March-12				✓ (C1, C2, M1 – M8)
Sun	11-March-12				
Mon	12-March-12				✓ (C1, C2, M1 – M8)
Tue	13-March-12		✓		
Wed	14-March-12	✓		✓	✓ (C1, C2, M1 – M8)
Thu	15-March-12				
Fri	16-March-12				✓ (C1, C2, M1 – M8)
Sat	17-March-12				
Sun	18-March-12				
Mon	19-March-12		✓		
Tue	20-March-12	✓		✓	✓ (C1, C2, M1 – M8)
Wed	21-March-12				

Time Schedule for Impact Water Quality Monitoring for March 2012

Week	Cohodulo	d Manitarina Day	Scheduled Time for	or Measurements
vveek	Schedule	d Monitoring Day	Mid-Flood	Mid-Ebb
	28-February-12	Tuesday	10:15	17:00
1	1-March-12	Thursday	10:32	18:00*
	3-March-12	Saturday	11:58	18:00*
	6-March-12	Tuesday	17:08	11:25
2	8-March-12	Thursday	18:00*	12:54
	10-March-12	Saturday	8:14	14:20
	12-March-12	Monday	9:30	15:48
3	14-March-12	Wednesday	10:52	17:34
	16-March-12	Friday	12:49	8:00*
4	20-March-12	Tuesday	17:32	11:37

^{*} Due to safety precaution, the subsequent monitoring time the most early will be 8:00 and the latest will be 17:00.

Post Monitoring Schedule

	Date	Water Quality
Thu	22-March-12	✓ (C1, C2, M1 – M8)
Fri	23-March-12	
Sat	24-March-12	✓ (C1, C2, M1 – M8)
Sun	25-March-12	
Mon	26-March-12	✓ (C1, C2, M1 – M8)
Tue	27-March-12	
Wed	28-March-12	✓ (C1, C2, M1 – M8)
Thu	29-March-12	
Fri	30-March-12	✓ (C1, C2, M1 – M8)
Sat	31-March-12	
Sun	1-April-12	
Mon	2-April-12	
Tue	3-April-12	✓ (C1, C2, M1 – M8)
Wed	4-April-12	
Thu	5-April-12	✓ (C1, C2, M1 – M8)
Fri	6-April-12	
Sat	7-April-12	
Sun	8-April-12	
Mon	9-April-12	
Tue	10-April-12	✓ (C1, C2, M1 – M8)
Wed	11-April-12	
Thu	12-April-12	✓ (C1, C2, M1 – M8)
Fri	13-April-12	
Sat	14-April-12	✓ (C1, C2, M1 – M8)
Sun	15-April-12	
Mon	16-April-12	
Tue	17-April-12	✓ (C1, C2, M1 – M8)
Wed	18-April-12	
Thu	19-April-12	✓ (C1, C2, M1 – M8)

Time Schedule for Post Water Quality Monitoring

Cahadulad I	Manitarina Dav	Scheduled Time fo	or Measurements
Scheduled 1	Monitoring Day	Mid-Flood	Mid-Ebb
22-March-12	Thursday	18:00*	12:55
24-March-12	Saturday	8:00*	14:08
26-March-12	Monday	8:53	15:16
28-March-12	Wednesday	8:00*	14:43
30-March-12	Friday	9:53	18:00*
3-April-12	Tuesday	15:44	10:10
5-April-12	Thursday	17:56	11:47
10-April-12	Tuesday	9:03	15:31
12-April-12	Thursday	10:22	17:15
14-April-12	Saturday	12:28	18:00*
17-April-12	Tuesday	16:23	10:29
19-April-12	Thursday	18:00*	11:55

^{*} Due to safety precaution, the subsequent monitoring time the most early will be 8:00 and the latest will be 17:00.

30th Monthly Environmental Monitoring and Audit (EM&A) Report for March 2012

Annex I

Database of Monitoring Results

Impact 24-hour TSP Monitoring Results - A1 (Village house in To Tau near the proposed pumping station)

Date of Calibration: 29-Feb-12

Slope = 33.3503

									S	TANDAR	D	BLANK	BLANK	BLANK	BLANK	INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE	ELAPSED	ELAPSED	ELAPSED	MIN	MAX	AVG	AVG	AVG	FLOW	AIR	SAMPLE	INTIAL	FINAL	DIFF	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	TIME	TIME	TIME	CHART	CHART	CHART	TEMP	PRESS	RATE	VOLUME	NUMBER	WEIGHT	WEIGHT	WEIGHT	WEIGHT	WEIGHT	COLLECTE	IN AIR
		INITIAL	FINAL	(min)	READING	READING	READING	(oC)	(hPa)	(m3/min)	(std m3)		(g)	(g)	(g)	(g)	(g)	(g)	(ug/m ³)
1-Mar-12	24547	6551.61	6575.82	1452.60	32	34	33.0	16.7	1014.1	0.88	1275	NA	3.5669	3.5670	0.0001	2.7661	2.8058	0.0397	31
7-Mar-12	24548	6575.82	6600.53	1482.60	32	35	33.5	18.7	1009	0.89	1315	NA	2.8566	2.8570	0.0004	2.7738	2.8092	0.0354	27
13-Mar-12	24590	6600.53	6625.12	1475.40	33	34	33.5	14.2	1021	0.90	1329	NA	3.5674	3.5676	0.0002	2.7504	2.7742	0.0238	18
19-Mar-12	24591	6625.12	6649.55	1465.80	32	33	32.5	20.8	1014.1	0.86	1254	NA	2.8432	2.8440	0.0008	2.7437	2.7858	0.0421	33

Impact Data 28-Feb-12

Date / Time	Location	Tide*	Co-ordi	nates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
			North	East	m	m	℃	mg/L	%	NTU	ppt	unit	mg/l
2012/2/28 16:45:25	M1	ME	842518	832561	2.2	1.110	15.34	4.70	57.0	2.3	31.84	8.48	6
2012/2/28 16:45:32						1.140	15.33	4.76	57.8	2.3	31.84	8.47	-
2012/2/28 16:49:10 2012/2/28 16:49:17	M2	ME	842535	832795	1.9	0.948 0.956	15.34 15.33	5.12 5.10	62.1 61.9	2.0	31.86 31.85	8.47 8.47	4
2012/2/28 16:53:48						1.035	15.34	5.31	64.5	2.0	31.85	8.48	
2012/2/28 16:53:54	1					1.035	15.32	5.17	62.8	2.1	31.85	8.47	6
2012/2/28 16:54:19	<i>a</i> ,		0.40107	000014	7.6	3.788	15.63	5.19	63.5	2.1	32.32	8.45	
2012/2/28 16:54:26	C1	ME	842187	833014	7.6	3.830	15.64	5.04	61.7	1.8	32.35	8.44	4
2012/2/28 16:54:57						6.645	15.66	4.95	60.9	3.1	33.14	8.39	8
2012/2/28 16:55:05						6.651	15.65	4.88	60.0	2.4	33.02	8.39	
2012/2/28 17:00:53	M3	ME	842649	833094	2.4	1.221	15.32	4.90	59.4	2.0	31.86	8.47	4
2012/2/28 17:01:01 2012/2/28 17:06:30						1.135 1.030	15.31 15.31	4.95 5.15	60.1 62.5	2.2 1.9	31.86 31.86	8.47 8.48	
2012/2/28 17:06:37	1					1.002	15.32	5.13	62.3	2.0	31.87	8.47	3
2012/2/28 17:06:47	M4	ME	843038	833110	4.6	3.668	15.55	4.96	60.6	1.9	32.21	8.46	
2012/2/28 17:06:53						3.641	15.58	4.87	59.6	1.9	32.28	8.45	4
2012/2/28 17:13:23						1.042	15.37	5.16	62.7	2.1	31.93	8.48	6
2012/2/28 17:13:29						1.087	15.36	5.07	61.5	2.0	31.91	8.47	0
2012/2/28 17:13:49	C2	ME	832995	843811	9	4.502	15.65	5.16	63.1	1.9	32.30	8.44	4
2012/2/28 17:13:56	- 02	1112	032773	0.5011		4.576	15.63	5.05	61.8	1.9	32.29	8.44	ļ
2012/2/28 17:14:12	1					8.094	15.66	4.64	57.2 59.9	3.2	33.20	8.39	3
2012/2/28 17:14:20 2012/2/28 17:24:57						8.010 1.008	15.66 15.42	4.86 4.81	58.6	3.0 2.2	33.20 32.02	8.38 8.48	
2012/2/28 17:24:37	M8	ME	832650	843634	2	1.008	15.42	4.90	59.6	1.9	32.02	8.48	7
2012/2/28 17:28:28						0.827	15.38	4.92	59.9	2.0	31.97	8.47	
2012/2/28 17:28:35	M6	ME	832580	843477	1.6	0.811	15.37	4.96	60.3	2.6	31.94	8.48	7
2012/2/28 17:32:10	1/15	ME	022717	0.42206	2.2	1.175	15.36	5.13	62.3	2.2	31.93	8.48	6
2012/2/28 17:32:22	M5	ME	832717	843396	2.2	1.151	15.35	4.98	60.5	1.9	31.92	8.48	0
2012/2/28 17:35:56	M7	ME	832779	843492	2.4	1.262	15.38	5.00	60.8	2.2	31.98	8.48	5
2012/2/28 17:36:04	1417	IVIL	032117	013172	2.1	1.219	15.38	5.01	60.8	2.1	31.96	8.48	
2012/2020 10 10 40						1.005	14.00	4.50	50.7	2.1	20.52	0.20	
2012/2/28 10:19:40 2012/2/28 10:19:47	M1	MF	842518	832561	2.4	1.285 1.261	14.88 14.88	4.50 4.52	53.7 53.9	2.1	30.53 30.55	8.39 8.41	4
2012/2/28 10:19:47						1.135	14.89	4.85	57.9	2.4	30.58	8.45	
2012/2/28 10:23:54	M2	MF	842535	832795	2.2	1.161	14.89	4.85	57.9	2.0	30.59	8.45	4
2012/2/28 10:31:03						1.051	15.37	5.50	66.8	2.0	31.88	8.47	2
2012/2/28 10:31:10						1.107	15.38	5.46	66.4	2.0	31.87	8.47	2
2012/2/28 10:31:37	C1	MF	842187	833014	8	4.054	15.68	5.38	65.9	2.1	32.36	8.43	5
2012/2/28 10:31:44	Ci	1111	012107	033011	O	4.055	15.68	5.29	64.9	1.9	32.37	8.42	
2012/2/28 10:32:03						7.127	15.65	5.04	62.0	2.7	33.14	8.39	7
2012/2/28 10:32:10						7.019	15.65	5.06	62.3	2.8	33.15	8.39	
2012/2/28 10:38:39 2012/2/28 10:38:47	M3	MF	842649	833094	2.6	1.279 1.345	15.36 15.38	5.19 5.18	63.1 62.9	2.5	31.87 31.87	8.48 8.48	3
2012/2/28 10:43:18						1.010	15.35	5.17	62.8	2.0	31.86	8.48	
2012/2/28 10:43:23	,,,		0.40000	000110	<i>-</i> .	1.007	15.40	5.16	62.7	2.1	31.89	8.46	3
2012/2/28 10:43:37	M4	MF	843038	833110	5.4	4.472	15.68	5.04	61.8	2.2	32.45	8.44	3
2012/2/28 10:43:46						4.477	15.69	5.05	62.0	2.0	32.46	8.43	3
2012/2/28 10:49:47						0.982	15.35	4.88	59.2	2.0	31.86	8.46	3
2012/2/28 10:49:55	4					0.992	15.36	4.91	59.6	1.9	31.88	8.48	
2012/2/28 10:50:28	C2	MF	832999	843826	10	5.037	15.63	4.80	58.8	2.4	32.54	8.44	3
2012/2/28 10:50:35 2012/2/28 10:50:56	1					5.016 9.035	15.63 15.63	4.74 4.59	58.1 56.6	2.1 3.1	32.52 33.18	8.43 8.39	
2012/2/28 10:50:56	1					8.989	15.63	4.59	56.4	3.1	33.19	8.39	4
2012/2/28 10:51:05			004	0.45.51		1.215	15.36	4.61	56.0	2.8	31.86	8.47	_
2012/2/28 11:02:01	M8	MF	832640	843644	2.5	1.324	15.36	4.58	55.7	2.8	31.87	8.48	<2
2012/2/28 11:05:22	W) ATT	020577	0.40.470	2	1.084	15.34	4.56	55.4	2.1	31.88	8.48	4
2012/2/28 11:05:29	M6	MF	832577	843479	2	1.070	15.32	4.58	55.6	1.8	31.85	8.48	4
2012/2/28 11:08:54	M5	MF	832710	843394	2.6	1.325	15.31	4.51	54.7	2.0	31.85	8.48	3
2012/2/28 11:09:01	171.7	1411	032710	0-3394	2.0	1.332	15.32	4.53	55.0	1.8	31.85	8.48	ر
2012/2/28 11:12:29	M7	MF	832784	843493	2.5	1.272	15.37	4.49	54.6	1.9	31.87	8.48	3
2012/2/28 11:12:36	1			1110	110	1.248	15.36	4.51	54.7	2.3	31.87	8.46	

Impact Data 1-Mar-12

North	te / Time	Location	Tide*	Co-ordi	nates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
2012/91 17:33:38				North	East	•		℃	mg/L	%	NTU	ppt	unit	mg/l
2012/9117:37:94		M1	ME	842518	832561	2.2						32.83	8.39	<2
2012/91 17:37:11 M2			1,12	0.2310	032301	2.2	_						8.39	12
2012/91 17-40-94 2012/91 17-41-91 2012/91 18-41-91 2012/91		M2	ME	842535	832795	2							8.38	4
2012/31 1741-19													8.39 8.39	
2012/31/17:41:14													8.39	4
2012/31 17:41:19				0.404.05									8.33	
		Cl	ME	842187	833014	8						33.11	8.33	4
2012/31 17:49:30 M3 ME	3/1 17:41:41						6.995	15.49	4.31		1.9	33.20	8.33	3
Math	3/1 17:41:51						7.082	15.50	4.41	54.2	1.9	33.20	8.32	3
2012/31 1749/36		M3	ME.	842649	833094	2.2						32.83	8.38	3
D0127/1 17:54:13		1110	1,12	0.20.5	033071	2.2	_						8.39	
2012/31 17:54:30													8.39	3
2012/3/1 17:54:37		M4	ME	843038	833110	4.1							8.39 8.34	
2012/3/1 17:59:32 2012/3/1 18:00:52 C2 ME 832995 843811 9													8.34	4
2012/3/1 18:01:00 2012/3/1 18:01:00 2012/3/1 18:01:00 2012/3/1 18:01:30 2012/3/1 18:01:34 2012							_						8.37	
2012/3/1 18:00:52 C2 ME 832995 843811 9 4.524 15.41 4.37 53.5 1.9 33.15													8.39	3
2012/3/1 18:01:00 C2		GO.		000005	0.40011							33.15	8.33	_
2012/3/1 18:01:44		C2	ME	832995	843811	9	4.520	15.42	4.35	53.3	2.0	33.15	8.33	3
2012/3/1 18:13:25 M8 ME 832650 843634 2.4 1.305 15.46 4.56 55.8 1.9 32.86	/3/1 18:01:34						8.025	15.52	4.22	51.9	1.9	33.27	8.32	4
2012/3/1 18:13:33 M8	3/1 18:01:44						8.035	15.52	4.22	51.9	1.9	33.28	8.32	4
2012/3/1 18:17:12 M6 ME		M8	ME.	832650	843634	2.4						32.86	8.39	4
Math		1110	1,12	032030	0.1505.	2					+		8.39	·
ME Record State Me Record State Me Record		M6	ME	832580	843477	2							8.38	2
Math													8.38	
Math		M5	ME	832717	843396	2.6							8.38 8.37	4
2012/3/1 10:02:21 M1 MF 842518 832561 2.4 1.190 15.72 6.63 81.3 1.7 32.35 2012/3/1 10:05:54 M2 MF 842535 832795 2.2 1.076 15.72 6.68 81.9 2.1 32.36 2012/3/1 10:13:15 2012/3/1 10:13:22 2012/3/1 10:13:51 2012/3/1 10:13:51 2012/3/1 10:13:51 2012/3/1 10:13:51 2012/3/1 10:13:51 2012/3/1 10:13:51 2012/3/1 10:13:51 2012/3/1 10:13:52 2012/3/1 10:13:51 2012/3/1 10:13:52 2012/3/1 10:21:06 2012/3/1 10:21:06 2012/3/1 10:26:38 2012/3/1 10:26:38 2012/3/1 10:26:38 2012/3/1 10:26:59 2012/3/1 10:26:59 2012/3/1 10:23:52 2012/3/1 10:32:52 2012/3/1 10:33:35 2012/3/1 10:33:36 2012/3/1													8.38	
2012/3/1 10:02:21 2012/3/1 10:02:28 M1 MF 842518 832561 2.4 1.190 15.72 6.63 81.3 1.7 32.35 2012/3/1 10:02:28 M2 MF 842535 832795 2.2 1.076 15.72 6.68 81.9 2.1 32.36 2012/3/1 10:13:15 2012/3/1 10:13:15 2012/3/1 10:13:57 2012/3/1 10:13:57 2012/3/1 10:13:57 2012/3/1 10:13:57 2012/3/1 10:14:15 2012/3/1 10:14:15 2012/3/1 10:121:06 2012/3/1 10:21:06 2012/3/1 10:21:06 2012/3/1 10:21:06 2012/3/1 10:21:06 2012/3/1 10:21:06 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:21:05 2012/3/1 10:23:35 2012/3/1 10:23:35 2012/3/1 10:23:35 2012/3/1 10:23:35 2012/3/1 10:23:35 2012/3/1 10:33:46 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:34:36 2012/3/1 10:34:36 2012/3/1 10:35:36 2012/3/1 10:35:36 2012/3/1 10:35:36 2012/		M7	ME	832779	843492	2.4						32.88	8.38	4
Math														
2012/3/1 10:05:54 2012/3/1 10:05:54 2012/3/1 10:05:54 2012/3/1 10:06:00 M2 MF 842535 832795 2.2 1.076 15.72 6.68 81.9 2.1 32.36 2012/3/1 10:13:15 2012/3/1 10:13:15 2012/3/1 10:13:57 C1 MF 842187 833014 8.2 4.093 15.38 5.13 62.8 1.9 33.06 2012/3/1 10:14:23 2012/3/1 10:14:23 2012/3/1 10:121:06 2012/3/1 10:121:06 2012/3/1 10:21:07 2012/3/1 10:21:08 2012/3/1 10:23:09 2012/3/1 10:23:09 2012/3/1 10:33:36 2012/3	3/1 10:02:21	M1	ME	9/2519	922561	2.4	1.190	15.72	6.63	81.3	1.7	32.35	8.23	3
Math	3/1 10:02:28	IVII	IVII.	042310	032301	2.4	1.238	15.71	6.77	83.1		32.35	8.22	J
1.124 15.69 6.66 81.6 1.8 32.56		M2	MF	842535	832795	2.2						32.36	8.26	4
2012/3/1 10:13:22 2012/3/1 10:13:57 C1 MF 842187 833014 8.2 833014 8.2 4.093 15.38 5.13 62.8 1.9 33.06 4.159 15.38 5.08 62.2 1.7 33.06 62.012/3/1 10:14:23 62.012/3/1 10:121:06 7.261 15.52 4.74 58.3 1.8 33.21 7.208 15.52 4.74 58.3 1.8 33.21 7.208 15.52 4.81 59.0 1.7 33.26 7.208 15.45 4.92 60.3 1.7 32.86 7.208		1112		0.2333	032173	2.2							8.26	·
Math													8.37	5
2012/3/1 10:14:15 2012/3/1 10:14:23 2012/3/1 10:14:23 2012/3/1 10:21:06 2012/3/1 10:21:06 2012/3/1 10:221:06 2012/3/1 10:221:06 2012/3/1 10:26:38 2012/3/1 10:26:38 2012/3/1 10:26:39 2012/3/1 10:26:59 2012/3/1 10:26:59 2012/3/1 10:32:59 2012/3/1 10:32:59 2012/3/1 10:32:59 2012/3/1 10:32:59 2012/3/1 10:32:59 2012/3/1 10:32:59 2012/3/1 10:32:59 2012/3/1 10:33:46 2012/3/1 10:34:36													8.37 8.31	
7.261 15.52 4.74 58.3 1.8 33.21		C1	MF	842187	833014	8.2							8.31	5
The following color="1" style="background-color: blue; color: white; border-like: 150%; color: blue; blue; color: blue; blue													8.30	
2012/3/1 10:21:06 2012/3/1 10:21:13 M3 MF 842649 833094 2.4 1.204 15.45 4.92 60.3 1.7 32.80 2012/3/1 10:26:38 2012/3/1 10:26:44 2012/3/1 10:26:59 2012/3/1 10:27:07 2012/3/1 10:32:52 2012/3/1 10:32:52 2012/3/1 10:33:35 2012/3/1 10:33:36 2012/3/1 10:33:46 2012/3/1 10:33:46 2012/3/1 10:34:36 M4 MF 842649 833094 2.4 1.204 15.45 4.92 60.3 1.7 32.80 833094 2.4 1.239 15.46 4.94 60.4 1.7 32.70 1.239 15.46 4.98 60.9 2.1 32.77 1.5093 15.47 5.06 61.9 2.1 32.76 4.137 15.38 4.79 58.6 1.8 33.07 4.162 15.38 4.98 60.9 1.8 33.07 4.162 15.38 4.98 60.9 1.8 33.07 1.012/3/1 10:32:59 2012/3/1 10:33:35 2012/3/1 10:33:35 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:34:36												33.20	8.30	3
2012/3/1 10:21:13 M3 MF 842649 833094 2.4 1.239 15.46 4.94 60.4 1.7 32.79 2012/3/1 10:26:38 2012/3/1 10:26:44 2012/3/1 10:26:59 2012/3/1 10:27:07 2012/3/1 10:32:52 2012/3/1 10:33:35 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:46 2012/3/1 10:34:36 M4 MF 842049 833094 2.4 1.239 15.46 4.94 60.4 1.7 32.79 0.993 15.47 5.06 61.9 2.1 32.77 4.137 15.38 4.79 58.6 1.8 33.07 4.162 15.38 4.98 60.9 1.8 33.07 1.024 15.47 4.88 59.7 1.5 32.77 1.024 15.47 4.89 59.8 1.6 32.77 2.012/3/1 10:33:35 2.012/3/1 10:33:46 2.012/3/1 10:33:46 2.012/3/1 10:34:36		1.72) ATT	040640	022007	2.4						32.80	8.36	
2012/3/1 10:26:44 2012/3/1 10:26:59 2012/3/1 10:27:07 2012/3/1 10:32:59 2012/3/1 10:32:59 2012/3/1 10:33:35 2012/3/1 10:33:46 2012/3/1 10:33:46 2012/3/1 10:33:46		M3	MF	842649	833094	2.4	1.239		4.94			32.79	8.36	<2
2012/3/1 10:26:59 2012/3/1 10:32:52 2012/3/1 10:32:59 2012/3/1 10:33:36 2012/3/1 10:33:46 2012/3/1 10:33:46 2012/3/1 10:33:46							0.945					32.77	8.36	<2
2012/3/1 10:26:59 2012/3/1 10:27:07 2012/3/1 10:32:52 2012/3/1 10:33:35 2012/3/1 10:33:35 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:36 2012/3/1 10:33:46		M4	MF	843038	833110	5.1						32.76	8.36	\\\ <u>\</u>
2012/3/I 10:32:52 2012/3/I 10:32:59 2012/3/I 10:33:35 2012/3/I 10:33:46 2012/3/I 10:34:36 C2 MF 832999 843826 9.5 1.026 15.47 4.88 59.7 1.5 32.77 1.024 15.47 4.89 59.8 1.6 32.77 4.821 15.39 4.78 58.5 1.9 33.09 4.857 15.40 4.71 57.7 1.8 33.10 8.639 15.40 4.55 55.8 2.5 33.34				0.3030	033110	3.1							8.31	3
2012/3/1 10:32:59 2012/3/1 10:33:35 2012/3/1 10:33:46 2012/3/1 10:34:36 C2 MF 832999 843826 9.5 1.024 15.47 4.89 59.8 1.6 32.77 4.821 15.39 4.78 58.5 1.9 33.09 4.857 15.40 4.71 57.7 1.8 33.10 8.639 15.40 4.55 55.8 2.5 33.34		-											8.31	
2012/3/1 10:33:35 2012/3/1 10:33:46 2012/3/1 10:34:36		1											8.36 8.37	4
2012/3/I 10:33:46 2012/3/I 10:34:36	S/I IOISEIS)	1							,				8.30	
2012/3/1 10:34:36 8.639 15.40 4.55 55.8 2.5 33.34		C2	MF	832999	843826	9.5							8.31	4
		1										33.34	8.29	_
20.34 2.44 33.34 20.34 2.44 33.34 2.44 33.34 2.44 33.34 2.44 33.34 2.44 33.34			<u> </u>				8.595	15.40	4.52	55.4	2.4	33.34	8.29	2
2012/3/1 10:48:07		Mo	ME	832640	8/26//	2.4						32.79	8.39	3
M8 MF 837640 843644 74		IVI8	MF	832640	843044	2.4						32.79	8.38	5
M6 MF 833577 8/3/79 22		M6	ME	832577	8/3/70	2.2		15.49	4.77	58.4		32.80	8.38	2
2012/3/1 10:52:50 1.1/3 15.49 4.7/ 58.4 1.7 32.79		1410	1411	032311	0-3-17	2.2						32.79	8.38	
		M5	MF	832710	843394	2.4						32.80	8.38	3
2012/3/1 10:56:48 1.267 15:49 4.80 58.8 1.7 32.80		1.10	1.11	032710	0.3371	2.1						32.80	8.38	
M7 ME 837/84 843/93 74		M7	MF	832784	843493	2.4						32.80 32.79	8.38 8.38	2

Impact Data 3-Mar-12

Date / Time	Location	Tide*	Co-ordi	nates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
			North	East	m	m	℃	mg/L	%	NTU	ppt	unit	mg/l
2012/3/3 11:47:38	M1	ME	842518	832561	2.4	1.301	16.06	7.39	91.3	2.9	32.43	8.19	3
2012/3/3 11:47:49	1111	IVIL	012310	032301	2.1	1.299	16.03	7.82	96.6	2.5	32.44	8.21	
2012/3/3 11:51:18	M2	ME	842535	832795	2.2	1.146	16.05	8.04	99.3	2.1	32.44	8.22	4
2012/3/3 11:51:27 2012/3/3 11:55:11						1.170 1.001	16.04 16.22	7.98 7.90	98.5 97.8	5.5 2.6	32.44 32.29	8.22 8.25	
2012/3/3 11:55:18	1					1.043	16.24	7.89	97.8	2.4	32.29	8.25	6
2012/3/3 11:55:45					_	4.062	15.80	7.39	91.0	1.8	32.69	8.25	
2012/3/3 11:55:53	C1	ME	842187	833014	8	4.077	15.77	7.49	92.1	1.8	32.70	8.25	4
2012/3/3 11:56:42						6.980	15.52	6.95	85.3	2.5	33.14	8.19	4
2012/3/3 11:56:55						7.048	15.56	6.95	85.3	2.6	33.10	8.21	4
2012/3/3 12:11:34	M3	ME	842649	833094	2.4	1.214	16.10	6.83	84.4	1.7	32.37	8.29	4
2012/3/3 12:11:41	1113	IVIL	012017	033071	2.1	1.223	16.14	6.89	85.3	1.7	32.35	8.29	
2012/3/3 12:17:11						1.065	16.22	6.81	84.4	1.7	32.28	8.30	4
2012/3/3 12:17:22	M4	ME	843038	833110	5.2	1.090	16.29	6.86	85.0 81.3	1.7	32.23	8.30 8.29	
2012/3/3 12:18:09 2012/3/3 12:18:16	1					4.174 4.229	15.74 15.74	6.61	80.1	1.7	32.78 32.78	8.29	4
2012/3/3 12:18:10						1.057	15.74	6.37	78.6	1.6	32.46	8.30	
2012/3/3 12:24:08	1					1.075	16.01	6.33	78.1	1.7	32.46	8.30	4
2012/3/3 12:25:02) (F)	000005	0.40011	0.6	4.754	15.73	6.15	75.7	1.6	32.84	8.28	
2012/3/3 12:25:08	C2	ME	832995	843811	9.6	4.797	15.73	6.16	75.8	1.7	32.82	8.29	4
2012/3/3 12:25:27						8.650	15.51	5.89	72.4	2.5	33.22	8.24	4
2012/3/3 12:25:40						8.618	15.54	5.74	70.5	2.4	33.19	8.22	4
2012/3/3 12:36:25	M8	ME	832650	843634	2.4	1.248	16.16	6.01	74.3	1.6	32.39	8.32	<2
2012/3/3 12:36:32	1110	IVIL	032030	0 1505 1	2.1	1.238	16.19	6.10	75.5	2.2	32.37	8.32	- 12
2012/3/3 12:40:57	M6	ME	832580	843477	2	1.020	16.26	6.33	78.4	1.8	32.32	8.33	3
2012/3/3 12:41:03						1.023	16.21	6.42	79.5	1.8	32.39	8.31	
2012/3/3 12:44:32 2012/3/3 12:44:39	M5	ME	832717	843396	2.4	1.251 1.254	16.24 16.23	6.42	79.6 79.5	1.8 1.9	32.38 32.40	8.32 8.32	3
2012/3/3 12:44:39						1.275	16.27	6.36	78.8	1.9	32.38	8.32	
2012/3/3 12:48:16	M7	ME	832779	843492	2.4	1.255	16.28	6.33	78.6	1.9	32.38	8.31	7
2012/3/3 17:40:50	M1	MF	842518	832561	2.4	1.215	16.49	6.12	76.2	1.9	32.18	8.30	4
2012/3/3 17:40:56	1V1 1	IVII.	042310	032301	2.4	1.216	16.52	6.26	77.9	1.9	32.15	8.31	4
2012/3/3 17:44:18	M2	MF	842535	832795	1.8	0.986	16.59	6.25	77.9	1.7	32.07	8.30	8
2012/3/3 17:44:26	1112		0.12333	032773	1.0	0.950	16.65	6.31	78.7	2.0	32.02	8.32	
2012/3/3 17:47:50	-					1.007	16.66	6.30	78.5	1.8	32.02	8.31	3
2012/3/3 17:47:56	-					1.007	16.86	6.26	78.3	1.6	31.83	8.32	
2012/3/3 17:48:07 2012/3/3 17:48:22	C1	MF	842187	833014	7.8	3.789 3.864	15.76 15.75	5.76 5.91	70.9 72.8	1.7	32.79 32.84	8.31 8.31	5
2012/3/3 17:49:00	1					6.820	15.76	5.52	68.0	2.0	33.02	8.27	
2012/3/3 17:49:07	1					6.836	15.76	5.49	67.7	2.0	33.03	8.27	7
2012/3/3 17:56:44	3.60) m	0.106.10	000004	2.6	1.345	16.06	5.57	68.9	1.7	32.56	8.31	
2012/3/3 17:56:50	M3	MF	842649	833094	2.6	1.397	16.04	5.59	69.1	1.7	32.59	8.31	4
2012/3/3 18:01:14						0.996	16.13	5.72	70.8	2.0	32.52	8.32	- 5
2012/3/3 18:01:21	M4	MF	843038	833110	4.7	1.018	16.16	5.77	71.4	1.7	32.51	8.31	
2012/3/3 18:01:34			0.13030	033110	,	3.818	15.75	5.72	70.4	1.7	32.82	8.31	5
2012/3/3 18:01:40						3.799	15.75	5.69	70.1	1.7	32.81	8.31	
2012/3/3 18:07:19 2012/3/3 18:07:25	1					1.029	16.38	6.08	75.5	1.7	32.32	8.31	4
2012/3/3 18:07:23	1					1.046 4.540	16.19 15.75	5.86 5.66	72.7 69.8	1.7 2.0	32.50 32.94	8.31 8.30	
2012/3/3 18:07:47	C2	MF	832999	843826	9	4.540	15.76	5.64	69.5	1.8	32.94	8.29	4
2012/3/3 18:08:00	1					8.090	15.54	5.46	67.1	2.4	33.29	8.26	
2012/3/3 18:08:06	1					8.070	15.48	5.41	66.4	2.5	33.32	8.25	4
2012/3/3 18:19:28	Mo	V.	922640	042644	2.2	1.115	16.43	5.72	71.1	1.6	32.30	8.32	E
2012/3/3 18:19:35	M8	MF	832640	843644	2.2	1.137	16.30	5.70	70.7	1.6	32.43	8.31	5
2012/3/3 18:21:56	M6	MF	832577	843479	1.9	0.871	16.83	5.71	71.4	1.7	31.91	8.33	8
2012/3/3 18:22:02	IVIO	IVIF	032311	043479	1.9	0.870	16.71	5.88	73.4	2.0	32.02	8.33	٥
2012/3/3 18:25:24	M5	MF	832710	843394	2.2	1.219	17.02	6.15	77.1	1.8	31.74	8.33	2
2012/3/3 18:25:31	171.7	1411	032710	073374	2.2	1.160	16.71	6.13	76.5	1.8	32.08	8.33	
2012/3/3 18:29:00	M7	MF	832784	843493	2.4	1.223	16.78	6.03	75.4	1.8	31.98	8.34	6
2012/3/3 18:29:07			002701	0.0.00		1.223	16.72	6.12	76.5	1.8	32.03	8.35	1

Impact Data 6-Mar-12

Date / Time	Location	Tide*	Co-ordin	nates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
			North	East	m	m	℃	mg/L	%	NTU	ppt	unit	mg/l
2012/3/6 11:16:50	M1	ME	842518	832561	2.2	1.141	19.00	5.44	66.6	1.4	31.78	8.05	8
2012/3/6 11:16:59	1111	IVIL	012310	032301	2.2	1.172	18.89	5.63	69.1	1.5	31.81	8.05	Ü
2012/3/6 11:20:53	M2	ME	842535	832795	1.9	0.836	19.21	5.89	72.2	1.4	31.78	8.06	9
2012/3/6 11:21:01						0.879	19.18	5.88 5.94	72.1	1.5	31.79	8.06	
2012/3/6 11:24:38 2012/3/6 11:24:45	-					0.974 1.025	19.05 18.83	5.89	72.9 72.3	1.5 1.4	31.78 31.84	8.06 8.06	8
2012/3/6 11:29:32	1					3.584	16.68	5.70	70.0	2.0	32.52	8.08	
2012/3/6 11:29:40	C1	ME	842187	833014	6.9	3.553	16.65	5.68	69.6	2.1	32.54	8.08	6
2012/3/6 11:30:03	1					5.991	15.70	5.40	66.4	2.0	33.11	7.98	_
2012/3/6 11:30:14						5.995	15.71	5.41	66.5	2.0	33.10	7.97	5
2012/3/6 11:38:36	3.60) (T	0.40.640	022004	0.4	1.256	18.90	5.45	66.7	2.1	31.78	8.11	2
2012/3/6 11:38:45	M3	ME	842649	833094	2.4	1.203	18.86	5.49	67.3	2.1	31.86	8.12	3
2012/3/6 11:43:13						1.018	18.92	5.53	67.9	2.1	31.90	8.13	4
2012/3/6 11:43:20	M4	ME	843038	833110	4.5	1.042	18.98	5.54	68.0	1.6	31.85	8.13	4
2012/3/6 11:43:45	1717	IVIL	043030	055110	4.5	3.444	17.14	5.39	66.1	1.5	32.41	8.14	4
2012/3/6 11:43:52						3.505	17.19	5.31	65.1	1.8	32.40	8.13	
2012/3/6 11:49:37						1.026	19.03	5.34	65.4	1.9	31.86	8.14	7
2012/3/6 11:49:44	-					0.977	19.02	5.31	65.0	2.3	31.87	8.14	
2012/3/6 11:50:07	C2	ME	832995	843811	8.7	4.356 4.478	16.23	5.23 5.19	64.1	2.0	32.81	8.12	8
2012/3/6 11:50:15 2012/3/6 11:50:59						7.873	16.15 15.45	4.92	63.6 60.5	2.4	32.83 33.23	8.11 7.75	
2012/3/6 11:51:15	-					7.798	15.45	4.92	60.8	2.1	33.24	7.77	6
2012/3/6 12:03:58						1.067	18.33	5.13	62.9	2.1	32.04	8.11	
2012/3/6 12:04:06	M8	ME	832650	843634	2	1.007	18.34	5.19	63.7	1.9	32.05	8.10	<2
2012/3/6 12:07:36						0.974	18.42	5.28	64.8	2.1	32.05	8.10	_
2012/3/6 12:07:43	M6	ME	832580	843477	1.8	0.951	18.42	5.31	65.1	2.1	32.05	8.10	5
2012/3/6 12:12:14	1.65) (T	022717	0.42206	0.0	1.115	18.54	5.38	66.0	3.1	32.02	8.09	4
2012/3/6 12:12:22	M5	ME	832717	843396	2.2	1.141	18.59	5.32	65.2	3.3	32.00	8.09	4
2012/3/6 12:15:46	M7	ME	832779	843492	2.2	1.197	18.60	5.29	64.9	3.7	32.00	8.05	2
2012/3/6 12:15:53	IVI /	IVIE	632119	643492	2.2	1.198	18.63	5.29	64.9	3.6	31.99	8.05	Z
										,	,		
2012/3/6 17:05:31	M1	MF	842518	832561	2.2	1.235	18.80	5.75	70.4	3.4	31.92	8.03	<2
2012/3/6 17:05:39						1.187	18.74	5.85	71.6	3.3	31.96	8.03	
2012/3/6 17:09:03	M2	MF	842535	832795	1.8	0.945	18.83	5.93	72.6	3.5	31.95	8.04	3
2012/3/6 17:09:10 2012/3/6 17:12:36						0.959 1.030	18.86 18.89	5.94 5.68	72.7 69.8	3.6 4.1	31.94 31.93	8.04 8.04	
2012/3/6 17:12:43	-					1.030	18.90	5.64	69.5	4.2	31.93	8.05	5
2012/3/6 17:13:01	-					4.013	16.41	5.42	66.5	3.9	32.74	8.03	
2012/3/6 17:13:07	C1	MF	842187	833014	8	4.036	16.37	5.43	66.6	3.7	32.75	8.03	4
2012/3/6 17:13:28	1					7.077	15.68	5.10	62.8	3.2	33.23	7.89	
2012/3/6 17:14:19						7.055	15.68	5.12	63.0	3.2	33.22	7.88	4
2012/3/6 17:20:07	3.60) (T	0.40.640	022004	0.4	1.158	19.05	5.23	64.1	2.5	31.90	8.03	4
2012/3/6 17:20:14	M3	MF	842649	833094	2.4	1.254	19.06	5.24	64.1	2.6	31.88	8.04	4
2012/3/6 17:24:51						0.968	19.08	5.29	64.8	1.9	31.92	8.10	3
2012/3/6 17:24:56	M4	MF	843038	833110	5.2	1.033	19.09	5.33	65.3	1.8	31.91	8.11	,
2012/3/6 17:25:11	1111	1,111	0 13030	055110	3.2	4.202	16.58	5.18	63.6	1.6	32.79	8.00	4
2012/3/6 17:25:20						4.225	16.59	5.24	64.3	1.6	32.75	8.01	
2012/3/6 17:34:57						1.016	19.04	5.28	64.8	2.1	32.02	8.11	<2
2012/3/6 17:35:04	-					0.984	19.02	5.22	64.0	2.1	31.41	8.10	
2012/3/6 17:35:28 2012/3/6 17:35:36	C2	MF	832999	843826	10	4.993 4.967	16.18 16.14	5.08	62.4 61.8	2.0	32.91	7.98 7.97	<2
2012/3/6 17:35:57	1					8.988	15.47	4.87	59.8	2.0	32.93 33.32	7.91	
2012/3/6 17:36:04	1 !					9.007	15.48	4.84	59.4	2.3	33.32	7.93	4
2012/3/6 17:46:47			004	0.45 - 11		1.164	19.05	4.99	61.3	1.5	31.95	8.21	
2012/3/6 17:46:54	M8	MF	832640	843644	2.2	1.192	19.06	4.97	61.1	1.4	31.95	8.19	3
2012/3/6 17:50:17	1	. –	004	0.45.17		1.005	19.06	5.01	61.7	1.7	31.96	8.11	
2012/3/6 17:50:24	M6	MF	832577	843479	2	1.050	19.07	5.08	62.5	1.7	31.95	8.11	4
2012/3/6 17:54:47	145	ME	022710	0.42204	2.4	1.261	19.03	5.16	63.5	2.6	31.98	8.14	4
2012/3/6 17:54:54	M5	MF	832710	843394	2.4	1.227	19.06	5.15	63.4	2.6	31.97	8.15	4
2012/3/6 17:59:17	M7	ME	832794	843493	2.4	1.250	19.02	5.11	62.9	1.9	31.98	8.22	6
2012/3/6 17:59:24	M7	MF	832784	043493	2.4	1.257	19.01	5.13	63.2	1.8	31.98	8.23	6

Impact Data 8-Mar-12

Date / Time	Location	Tide*	Co-ordin	nates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
			North	East	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/l
2012/3/8 12:15:30	M1	ME	842518	832561	2.4	1.245	17.93	5.25	67.1	1.9	31.89	8.04	5
2012/3/8 12:15:51	1011	IVIL	042310	032301	2.4	1.268	17.93	5.23	66.7	1.7	31.92	8.07	,
2012/3/8 12:20:56	M2	ME	842535	832795	2	1.081	17.93	5.17	66.0	2.1	31.94	8.09	6
2012/3/8 12:21:21	2	1112	0.2333	032775	-	1.043	17.93	5.16	66.0	1.7	31.94	8.10	Ŭ
2012/3/8 12:26:16	4					0.991	17.92	5.14	65.7	1.8	31.97	8.10	6
2012/3/8 12:26:23	4					1.001	17.93	5.13	65.5	1.7	31.96	8.10	
2012/3/8 12:26:43	C1	ME	842187	833014	7.4	3.724	16.83	5.37	67.5	2.0	32.67	8.08	5
2012/3/8 12:26:50	-					3.746	16.83	5.24	65.9	2.0	32.69	8.09	
2012/3/8 12:27:17 2012/3/8 12:27:24						6.423 6.488	15.86 15.85	5.20 5.19	64.3 64.1	2.1	33.09 33.09	8.09 8.10	12
2012/3/8 12:27:24						1.248	17.92	4.61	58.9	1.7	31.96	8.11	
2012/3/8 12:34:07	M3	ME	842649	833094	2.4	1.246	17.92	4.01	61.1	1.7	31.96	8.10	4
2012/3/8 12:38:28	1					1.022	17.92	4.75	63.3	1.8	31.97	8.12	
2012/3/8 12:38:34						1.026	17.92	4.99	63.8	1.9	31.98	8.12	5
2012/3/8 12:38:50	M4	ME	843038	833110	4.4	3.431	16.80	5.28	66.2	2.0	32.73	8.10	
2012/3/8 12:38:57						3.497	16.93	5.17	65.1	2.0	32.67	8.11	6
2012/3/8 12:43:31	1					1.064	17.92	4.82	61.6	1.7	31.98	8.12	-
2012/3/8 12:43:41	1					1.018	17.92	4.90	62.6	3.3	31.99	8.12	6
2012/3/8 12:44:07	G2		000005	0.40014	0.0	4.368	16.49	5.22	65.2	2.1	32.83	8.10	_
2012/3/8 12:44:14	C2	ME	832995	843811	8.3	4.273	16.47	5.21	65.0	2.2	32.86	8.10	6
2012/3/8 12:44:45						7.389	15.73	5.06	62.4	2.0	33.14	8.09	-
2012/3/8 12:44:51						7.320	15.75	5.04	62.1	2.3	33.14	8.10	4
2012/3/8 12:55:30	M0	ME	922650	0.42624	2.2	1.135	17.90	4.59	58.7	1.7	32.03	8.12	
2012/3/8 12:55:37	M8	ME	832650	843634	2.2	1.162	17.90	4.77	60.9	1.9	32.02	8.12	6
2012/3/8 12:59:07	M6	ME	832580	843477	1.8	0.942	17.92	4.97	63.5	2.2	32.00	8.13	12
2012/3/8 12:59:13	IVIO	IVIL	632360	043477	1.0	0.945	17.91	5.00	63.8	2.2	32.02	8.14	12
2012/3/8 13:03:39	M5	ME	832717	843396	2.2	1.146	17.90	5.04	64.3	1.9	32.04	8.14	7
2012/3/8 13:03:46	1415	IVIL	032717	043370	2.2	1.129	17.90	5.05	64.5	1.8	32.05	8.14	,
2012/3/8 13:07:08	M7	ME	832779	843492	2.4	1.235	17.91	5.06	64.7	1.7	32.04	8.15	7
2012/3/8 13:07:16	1417	IVIL	032117	0 13 172	2.1	1.223	17.90	5.06	64.6	1.8	32.05	8.14	,
		1											
2012/3/8 17:19:04	M1	MF	842518	832561	2.4	1.221	17.89	7.58	96.8	1.9	32.09	8.16	4
2012/3/8 17:19:11				_		1.241	17.89	7.57	96.7	1.9	32.08	8.16	
2012/3/8 17:22:38	M2	MF	842535	832795	1.8	1.054	17.89	7.59	96.9	2.3	32.09	8.16	10
2012/3/8 17:22:45						0.987	17.89	7.57	96.7	1.9	32.08	8.17	
2012/3/8 17:26:19	-					1.044	17.89	7.90	100.9	2.2	32.08	8.16	7
2012/3/8 17:26:22 2012/3/8 17:26:40	-					1.023 4.092	17.89 17.00	7.66 7.67	97.8 96.7	2.0	32.09 32.64	8.17 8.16	
2012/3/8 17:26:40	C1	MF	842187	833014	8	4.092	17.05	7.62	96.7	2.1	32.65	8.15	5
2012/3/8 17:27:09						7.062	15.63	7.79	95.9	2.1	33.21	8.13	
2012/3/8 17:27:18	-					7.062	15.65	7.64	93.9	2.4	33.22	8.13	7
2012/3/8 17:27:18						1.334	17.88	7.04	90.8	2.1	32.13	8.16	
2012/3/8 17:34:00	M3	MF	842649	833094	2.4	1.262	17.88	7.23	92.4	2.1	32.12	8.17	3
2012/3/8 17:34:00						1.087	17.88	7.40	94.5	2.0	32.12	8.16	
2012/3/8 17:38:31	1					1.026	17.88	7.45	95.2	2.0	32.15	8.17	5
2012/3/8 17:38:48	M4	MF	843038	833110	5.1	4.100	16.97	7.62	96.0	2.2	32.70	8.16	
2012/3/8 17:38:59						4.137	17.03	7.51	94.7	2.2	32.64	8.15	4
2012/3/8 17:44:29						0.972	17.88	7.28	93.0	1.8	32.15	8.17	_
2012/3/8 17:44:36						1.055	17.89	7.40	94.6	1.9	32.13	8.17	7
2012/3/8 17:44:48	GO.		000000	0.40006	0.1	4.450	16.98	7.56	95.2	2.3	32.72	8.16	_
2012/3/8 17:44:54	C2	MF	832999	843826	9.1	4.440	17.02	7.54	95.0	2.0	32.69	8.16	5
2012/3/8 17:45:13						8.002	15.63	7.71	94.9	2.3	33.24	8.13	7
2012/3/8 17:45:23						8.135	15.62	7.57	93.2	2.7	33.25	8.13	7
2012/3/8 17:56:59	Vio	ME	922640	942644	2.2	1.258	17.87	7.37	94.1	1.8	32.19	8.18	
2012/3/8 17:57:07	M8	MF	832640	843644	2.3	1.310	17.85	7.39	94.4	1.9	32.20	8.18	4
2012/3/8 18:00:25	146	MO	022577	0.42.470	1.0	0.962	17.87	7.46	95.3	1.9	32.19	8.19	_
2012/3/8 18:00:32	M6	MF	832577	843479	1.8	0.991	17.86	7.48	95.6	1.9	32.21	8.18	5
2012/3/8 18:03:56	1/15	MF	922710	942204	26	1.299	17.86	7.53	96.2	1.9	32.19	8.19	7
2012/3/8 18:04:03	M5	MF	832710	843394	2.6	1.300	17.86	7.53	96.2	1.8	32.20	8.18	7
2012/3/8 18:07:25	M7	MF	832784	843493	2.4	1.237	17.87	7.55	96.4	1.9	32.19	8.19	5
		i ivit	0.17.784	041491	1.4	1.236	17.87	7.57	96.8	1.9	32.19	8.19	

Impact Data 10-Mar-12

Date / Time	Location	Tide*	Co-ordin	nates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
			North	East	m	m	℃	mg/L	%	NTU	ppt	unit	mg/l
2012/3/10 14:09:40	M1	ME	842518	832561	2.2	1.132	16.71	7.00	87.4	3.3	32.02	7.15	7
2012/3/10 14:09:54						1.133	16.71	7.02	87.6	2.2	32.04	7.17	·
2012/3/10 14:14:12 2012/3/10 14:14:18	M2	ME	842535	832795	1.8	0.951 0.985	16.71 16.71	7.58 7.57	94.6 94.6	2.2	32.04 32.03	7.17 7.16	9
2012/3/10 14:14:18						1.036	16.71	7.57	94.0	2.1	32.03	7.16	
2012/3/10 14:17:54	1					1.063	16.70	7.60	94.8	2.0	32.05	7.16	6
2012/3/10 14:18:16	<i>a</i> ,		0.40107	000014	7.0	3.644	16.69	7.62	95.2	2.0	32.04	7.17	
2012/3/10 14:18:23	C1	ME	842187	833014	7.2	3.669	16.70	7.60	94.8	2.0	32.05	7.17	8
2012/3/10 14:18:34						6.204	16.01	7.87	97.3	3.4	32.75	7.14	9
2012/3/10 14:18:41						6.252	15.96	7.85	97.0	3.6	32.77	7.14	
2012/3/10 14:26:23	M3	ME	842649	833094	2.4	1.217	16.70	7.28	90.9	2.4	32.03	7.18	4
2012/3/10 14:26:30 2012/3/10 14:30:52						1.206 1.040	16.70 16.69	7.34 7.51	91.6 93.7	2.1	32.03 32.05	7.18 7.19	
2012/3/10 14:30:59	1					1.040	16.70	7.50	93.7	2.0	32.05	7.19	5
2012/3/10 14:31:19	M4	ME	843038	833110	4.7	3.780	16.71	7.54	94.1	2.1	32.05	7.18	_
2012/3/10 14:31:25						3.792	16.70	7.55	94.2	2.0	32.05	7.18	5
2012/3/10 14:36:58						1.054	16.71	7.54	94.1	2.1	32.04	7.24	10
2012/3/10 14:37:05						1.086	16.71	7.54	94.1	2.2	32.05	7.23	10
2012/3/10 14:37:22	C2	ME	832995	843811	9.1	4.609	16.70	7.59	94.8	2.0	32.06	7.22	6
2012/3/10 14:37:33	- 02	1112	032773	0.5011	7.12	4.566	16.70	7.58	94.6	1.9	32.06	7.22	<u> </u>
2012/3/10 14:38:02	-					8.219 8.176	15.83	7.55 7.32	93.1	3.1	32.85	7.18	10
2012/3/10 14:38:11 2012/3/10 14:47:51						1.130	15.82 16.71	6.83	90.3 85.3	3.3 2.3	32.87 32.04	7.17	-
2012/3/10 14:47:57	M8	ME	832650	843634	2.2	1.111	16.71	7.06	88.1	2.1	32.04	7.19	7
2012/3/10 14:51:26						0.885	16.71	7.41	92.6	2.5	32.04	7.19	
2012/3/10 14:51:32	M6	ME	832580	843477	1.9	0.823	16.71	7.42	92.6	2.1	32.04	7.19	6
2012/3/10 14:55:03	M5	ME	832717	0.42206	2.2	1.102	16.72	7.50	93.7	2.1	32.04	7.19	8
2012/3/10 14:55:10	M5	IVIE	632/1/	843396	2.2	1.123	16.72	7.51	93.8	2.1	32.03	7.19	٥
2012/3/10 14:58:36	M7	ME	832779	843492	2.2	1.141	16.85	7.53	94.2	2.6	31.93	7.20	6
2012/3/10 14:58:42	1417	IVIL	032117	0 13 172	2.2	1.132	16.85	7.52	94.1	2.7	31.93	7.20	
2012/2/10 00 00 42						1.016	16.70	7.51	02.7	2.2	21.75	7.10	
2012/3/10 08:09:42 2012/3/10 08:09:49	M1	MF	842518	832561	2.4	1.216 1.253	16.78 16.76	7.51 7.50	93.7 93.5	2.2	31.75 31.79	7.18 7.16	4
2012/3/10 08:09:49						1.233	16.78	7.30	93.3	2.3	31.76	7.16	
2012/3/10 08:13:25	M2	MF	842535	832795	1.8	0.960	16.79	7.38	92.2	2.2	31.75	7.10	7
2012/3/10 08:16:56						0.972	16.78	7.21	89.9	3.0	31.76	7.15	10
2012/3/10 08:17:03						0.997	16.78	7.23	90.3	2.3	31.76	7.15	10
2012/3/10 08:17:19	C1	MF	842187	833014	8.2	4.100	16.61	7.29	90.9	2.3	32.12	7.14	8
2012/3/10 08:17:26	CI	IVII	042107	033014	0.2	4.136	16.60	7.28	90.8	2.3	32.14	7.14	
2012/3/10 08:17:44						7.273	15.90	7.34	90.6	3.2	32.73	7.10	3
2012/3/10 08:17:52						7.252	15.89	7.15	88.2	3.4	32.73	7.10	
2012/3/10 08:24:35 2012/3/10 08:24:42	M3	MF	842649	833094	2.6	1.362 1.332	16.75 16.75	6.69	83.5 84.3	3.5 2.2	31.84 31.85	7.16 7.16	3
2012/3/10 08:24:42						1.013	16.77	7.01	87.4	2.2	31.81	7.10	
2012/3/10 08:29:20	1		0.40000			1.001	16.76	7.03	87.7	2.5	31.81	7.18	8
2012/3/10 08:29:38	M4	MF	843038	833110	5.2	4.245	16.67	7.10	88.6	2.2	32.10	7.23	2
2012/3/10 08:29:46						4.227	16.67	7.10	88.6	2.2	32.10	7.24	3
2012/3/10 08:36:14						1.058	16.75	7.06	88.1	2.2	31.85	7.27	4
2012/3/10 08:36:20	4					1.034	16.75	7.06	88.1	2.0	31.84	7.26	<u> </u>
2012/3/10 08:36:43	C2	MF	832999	843826	10.4	5.229	16.44	7.18	89.4	2.3	32.36	7.27	10
2012/3/10 08:36:49 2012/3/10 08:37:13	-					5.232 9.475	16.45 15.79	7.17 7.06	89.2	2.2	32.35 32.82	7.25	
2012/3/10 08:37:13	1					9.475	15.79	6.68	87.0 82.3	6.4 3.6	32.82	7.20 7.21	4
2012/3/10 08:37:24			004	0.45.51		1.222	16.71	6.38	79.6	2.7	31.96	7.26	_
2012/3/10 08:47:13	M8	MF	832640	843644	2.4	1.237	16.71	6.48	80.9	2.0	31.94	7.25	6
2012/3/10 08:50:37	MC	V.C.	022577	0.42.470	2	1.049	16.70	6.88	85.9	2.4	32.00	7.27	10
2012/3/10 08:50:44	M6	MF	832577	843479	2	1.083	16.71	6.89	86.0	2.3	31.97	7.27	10
2012/3/10 08:54:13	M5	MF	832710	843394	2.4	1.236	16.70	6.97	86.9	2.1	32.01	7.24	6
2012/3/10 08:54:19	1112	1711	032710	013374	2.7	1.235	16.70	6.99	87.3	2.1	32.01	7.23	
2012/3/10 08:58:43	M7	MF	832784	843493	2.4	1.270	16.71	7.02	87.6	2.4	32.04	7.24	7
2012/3/10 08:58:49	1					1.279	16.71	7.02	87.6	2.1	32.05	7.25	1

Impact Data 12-Mar-12

Date / Time	Location	Tide*	Co-ordinates		Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
			North	East	m	m m	°C	mg/L	%	NTU	ppt	unit	mg/l
2012/3/12 15:13:10	M1	ME	842518	832561	2.4	1.203	15.92	7.85	96.7	2.2	32.31	7.10	2
2012/3/12 15:13:24						1.223	15.94	7.84	96.6	2.1	32.32	7.10	
2012/3/12 15:16:34 2012/3/12 15:16:42	M2	ME	842535	832795	2.2	1.158 1.130	15.93 15.93	7.93 7.90	97.6 97.4	2.9	32.35 32.33	7.15 7.16	<2
2012/3/12 15:10:42						1.061	15.93	7.90	96.3	2.1	32.33	7.10	
2012/3/12 15:20:21	1					1.079	15.92	7.83	96.4	2.1	32.33	7.17	<2
2012/3/12 15:20:36	C1) (F	0.40107	022014	0	4.055	16.00	7.77	96.0	2.3	32.50	7.16	
2012/3/12 15:20:47	C1	ME	842187	833014	8	4.087	15.99	7.76	95.7	2.3	32.51	7.16	3
2012/3/12 15:21:02						7.065	16.05	7.70	95.2	2.7	32.66	7.17	2
2012/3/12 15:21:12						7.065	16.06	7.62	94.4	2.5	32.70	7.18	
2012/3/12 15:27:57	M3	ME	842649	833094	2.4	1.206	15.91	7.51	92.4	2.4	32.35	7.18	<2
2012/3/12 15:28:07						1.273	15.92	7.56	93.1 95.3	2.3	32.31	7.17	
2012/3/12 15:32:55 2012/3/12 15:33:03						1.063	15.92 15.93	7.74 7.75	95.3	2.1	32.30 32.30	7.16 7.16	<2
2012/3/12 15:33:25	M4	ME	843038	833110	5	4.011	16.01	7.67	94.8	2.1	32.54	7.18	
2012/3/12 15:33:32						4.026	16.00	7.67	94.8	2.1	32.52	7.17	6
2012/3/12 15:40:17						1.022	15.90	7.66	94.3	2.3	32.28	7.16	4
2012/3/12 15:40:27	C2	ME	832995	843811	9	1.002	15.88	7.72	95.0	2.0	32.30	7.17	4
2012/3/12 15:40:48						4.594	16.02	7.68	94.8	2.2	32.55	7.16	<2
2012/3/12 15:41:03						4.543	16.03	7.63	94.3	2.1	32.55	7.16	3
2012/3/12 15:41:15						8.008	16.13	7.51	93.2	3.3	32.93	7.15	
2012/3/12 15:41:23						8.086	16.14	7.50	93.1	3.2	32.92	7.15	
2012/3/12 15:51:19 2012/3/12 15:51:34	M8	ME	832650	843634	2.2	1.173 1.131	15.87 15.86	7.46 7.59	91.7 93.3	2.2	32.27 32.27	7.16 7.16	<2
2012/3/12 15:55:43						0.982	15.88	8.85	108.8	2.0	32.27	7.16	
2012/3/12 15:55:51	M6	ME	832580	843477	1.8	0.982	15.86	8.48	104.3	2.6	32.28	7.17	2
2012/3/12 15:59:38	2.65) m	000515	0.40006	2.4	1,251	15.86	7.96	97.9	2.2	32.26	7.16	
2012/3/12 15:59:49	M5	ME	832717	843396	2.4	1.231	15.86	7.91	97.2	2.9	32.27	7.16	6
2012/3/12 16:03:20	M7	ME	832779	843492	2.2	1.202	15.88	7.84	96.4	2.3	32.26	7.15	4
2012/3/12 16:03:27	IV1 /	IVIL	032119	043492	2.2	1.194	15.87	7.85	96.6	2.3	32.26	7.16	4
2012/3/12 09:00:32	M1	MF	842518	832561	2.6	1.295	15.96	8.70	107.1	2.5	32.17	6.94	6
2012/3/12 09:00:40 2012/3/12 09:04:10						1.316 1.115	15.95 15.96	8.66 8.57	106.7 105.5	2.3	32.17 32.19	6.96 6.98	-
2012/3/12 09:04:10	M2	MF	842535	832795	2.2	1.113	15.94	8.58	105.5	2.4	32.19	6.97	3
2012/3/12 09:07:46						0.993	15.95	8.46	104.2	2.1	32.20	7.00	-
2012/3/12 09:07:54						1.004	15.95	8.46	104.2	2.1	32.20	7.01	7
2012/3/12 09:08:11	C1	ME	040107	022014	0.7	4.361	16.01	8.38	103.5	2.3	32.42	7.00	-2
2012/3/12 09:08:22	C1	MF	842187	833014	8.7	4.388	16.02	8.33	102.8	2.4	32.41	7.01	<2
2012/3/12 09:08:39						7.755	16.05	8.24	101.8	2.2	32.52	7.00	8
2012/3/12 09:08:50						7.742	16.04	8.17	100.9	2.4	32.53	7.01	
2012/3/12 09:15:32	M3	MF	842649	833094	2.6	1.300	15.96	8.01	98.7	2.1	32.26	7.03	<2
2012/3/12 09:15:38 2012/3/12 09:21:02						1.339 1.079	15.96 15.96	8.03 8.08	98.9 99.5	2.2	32.28 32.27	7.05 7.04	
2012/3/12 09:21:02	M4	MF	843038	833110	5.5	1.079	15.96	8.07	99.3	2.1	32.26	7.04	2
2012/3/12 09:21:30						4.554	16.02	8.02	99.4	2.5	32.52	7.04	4
2012/3/12 09:21:38						4.591	16.03	7.96	98.4	2.3	32.52	7.08	
2012/3/12 09:27:19						1.043	15.96	7.92	97.6	2.2	32.30	7.10	4
2012/3/12 09:27:26	1					1.146	15.95	7.89	97.2	2.3	32.31	7.10	4
2012/3/12 09:27:51	C2	MF	832999	843826	10.4	5.206	16.03	7.91	97.7	2.4	32.51	7.09	<2
2012/3/12 09:27:59			032///	0.3020	10.1	5.264	16.01	7.89	97.4	2.1	32.46	7.09	
2012/3/12 09:28:20	-					9.440	16.02	7.69	95.3	4.0	32.94	7.08	3
2012/3/12 09:28:29 2012/3/12 09:39:20						9.447 1.248	16.03 15.94	7.43	92.1 90.8	3.9	32.93 32.31	7.08	
2012/3/12 09:39:20	M8	MF	832640	843644	2.4	1.248	15.94	7.37 7.51	90.8	2.2	32.31	7.09	4
2012/3/12 09:42:49	M6	MF	832577	843479	2.2	1.127	15.95	7.75	95.5	2.0	32.31	7.09	4
2012/3/12 09:42:56						1.123	15.94	7.78	95.9	2.1	32.33	7.10	
2012/3/12 09:46:19	1/15	MIZ	020710	042204	2.4	1.289	15.94	7.83	96.4	2.0	32.32	7.07	2
2012/3/12 09:46:27	M5	MF	832710	843394	2.4	1.293	15.96	7.82	96.3	2.1	32.32	7.07	3
2012/3/12 09:49:52	M7	MF	832784	843493	2.6	1.380	15.93	7.85	96.7	2.2	32.33	7.09	5
2012/3/12 09:50:01	11/1/	1411.	032704	073493	2.0	1.318	15.94	7.83	96.4	2.0	32.32	7.09	,

Contract ST/2008/02 Ma On Shan Development - Roads, Drainage and Sewerage Works at whitehead and Lok Wo Sha, Phase 1 Baseline Marine Water Quality Monitoring

Impact Data 14-Mar-12

Date / Time	Location	Tide*	Co-ordi	nates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS									
			North	East	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/l									
2012/3/14 17:19:27	M1	ME	842518	832561	2.4	1.180	15.92	7.92	97.7	1.9	32.58	7.07	<2									
2012/3/14 17:19:33						1.219	15.93	7.99	98.6	1.9	32.56	7.07	-									
2012/3/14 17:22:57 2012/3/14 17:23:03	M2	ME	842535	832795	1.8	0.996 0.953	15.92 15.93	7.99 8.00	98.5 98.7	1.9 2.0	32.57 32.54	7.05 7.06	2									
2012/3/14 17:26:48						1.044	15.93	7.95	98.1	2.0	32.52	7.07										
2012/3/14 17:26:55	1					1.064	15.94	7.96	98.2	2.0	32.54	7.06	4									
2012/3/14 17:27:10	G1) m	0.40107	000014		3.759	15.94	7.83	96.8	2.4	32.86	7.05										
2012/3/14 17:27:19	C1	ME	842187	833014	7.4	3.723	15.95	7.78	96.2	2.5	32.85	7.06	3									
2012/3/14 17:27:35						6.483	15.87	7.65	94.5	2.6	33.02	7.06	<2									
2012/3/14 17:27:48						6.451	15.82	7.51	92.7	2.5	33.08	7.05	\2									
2012/3/14 17:35:44	M3	ME	842649	833094	2.4	1.246	15.95	7.57	93.4	2.1	32.54	7.15	<2									
2012/3/14 17:35:50						1.256	15.96	7.58	93.6	2.1	32.53	7.15										
2012/3/14 17:41:40 2012/3/14 17:41:50	-					1.008	15.96 15.95	7.77	95.8 95.9	2.5	32.53 32.54	7.10 7.09	<2									
2012/3/14 17:41:30	M4	ME	843038	833110	5	4.009	15.82	7.77	93.9	2.0	32.93	7.09										
2012/3/14 17:42:37	1					4.003	15.85	7.56	93.3	2.3	32.86	7.09	3									
2012/3/14 17:48:39	1					1.022	15.96	7.80	96.3	2.0	32.54	7.09	_									
2012/3/14 17:48:46]					1.018	15.97	7.76	95.7	2.1	32.53	7.10	3									
2012/3/14 17:49:06	C2	ME	832005	8/13811	8.6	4.319	15.86	7.60	93.8	2.1	32.92	7.10	<2									
2012/3/14 17:49:21	CZ	IVIL	832995	843811	0.0	4.343	15.86	7.49	92.5	2.1	32.97	7.09	\Z									
2012/3/14 17:49:54						7.655	15.79	7.21	89.0	3.4	33.09	7.09	3									
2012/3/14 17:50:16						7.640	15.78	7.14	88.1	3.0	33.10	7.09										
2012/3/14 18:07:17	M8	ME	832650	843634	2.2	1.191	15.95	7.80	96.2	1.9	32.55	7.11	<2									
2012/3/14 18:07:25 2012/3/14 18:10:58						1.155 0.882	15.97 15.94	7.78 7.73	96.0 95.4	2.0	32.52 32.54	7.12 7.11										
2012/3/14 18:11:05	M6	ME	832580	843477	1.8	0.885	15.94	7.72	95.4	1.9	32.54	7.11	3									
2012/3/14 18:15:04						1.166	15.98	7.65	94.4	2.0	32.50	7.12										
2012/3/14 18:15:12	M5	ME	832717	843396	2.2	1.183	15.94	7.66	94.5	2.3	32.54	7.10	2									
2012/3/14 18:18:37	MZ	ME	022770	0.42.402	2.4	1.187	15.98	7.65	94.4	2.2	32.50	7.11	2									
2012/3/14 18:18:49	M7	ME	832779	843492	2.4	1.218	15.98	7.64	94.3	2.0	32.50	7.11	Z									
2012/3/14 10:24:37	M1	MF	MF	MF	MF	MF	MF	MF	MF	MF	MF	842518	832561	2.4	1.268	15.94	8.33	102.6	2.0	32.24	7.04	<2
2012/3/14 10:24:45						1.254	15.94	8.34	102.7	2.0	32.24	7.04										
2012/3/14 10:28:22 2012/3/14 10:28:29	M2	MF	842535	832795	2.2	1.148 1.152	15.94 15.95	8.26 8.23	101.7 101.3	2.4	32.25 32.24	7.02	6									
2012/3/14 10:32:28						1.047	15.93	8.09	99.6	2.4	32.24	7.02										
2012/3/14 10:32:36						0.995	15.96	8.07	99.4	2.1	32.22	7.03	4									
2012/3/14 10:33:03	C1) m	0.40107	022014	0	3.991	15.95	7.84	96.8	2.4	32.69	7.01										
2012/3/14 10:33:14	C1	MF	842187	833014	8	4.057	15.97	7.72	95.3	2.8	32.67	7.02	<2									
2012/3/14 10:33:36						6.972	15.89	7.49	92.5	4.7	32.93	7.02	5									
2012/3/14 10:33:46						7.004	15.90	7.31	90.3	4.8	32.92	7.02	,									
2012/3/14 10:40:42	M3	MF	842649	833094	2.4	1.279	15.98	7.54	92.9	2.1	32.23	7.03	3									
2012/3/14 10:40:49						1.278	15.99	7.61	93.8	1.9	32.23	7.03										
2012/3/14 10:46:19	-					1.026	15.97	7.76	95.6	2.0	32.25	7.05	3									
2012/3/14 10:46:26 2012/3/14 10:46:44	M4	MF	843038	833110	5.1	0.969 4.172	15.96 15.96	7.77	95.8 95.3	2.1	32.26 32.72	7.04										
2012/3/14 10:46:53	1					4.172	15.94	7.62	93.3	3.1	32.75	7.04	2									
2012/3/14 10:51:55						1.071	15.98	7.60	93.7	2.1	32.25	7.05	_									
2012/3/14 10:52:01]					1.076	15.97	7.63	94.0	2.2	32.26	7.05	<2									
2012/3/14 10:52:20	C2	MF	832999	843826	9	4.502	15.98	7.58	93.6	3.1	32.72	7.04	2									
2012/3/14 10:52:29	CZ	IVIF	032999	043620	9	4.557	15.97	7.45	92.0	2.9	32.71	7.04										
2012/3/14 10:55:44	4					8.042	15.78	7.62	94.0	2.7	33.11	6.99	3									
2012/3/14 10:55:52	1					8.081	15.78	7.50	92.5	3.2	33.11	6.99										
2012/3/14 11:06:27	M8	MF	832640	843644	2.6	1.337	15.96	7.47	92.2	2.1	32.59	7.00	<2									
2012/3/14 11:06:33 2012/3/14 11:09:54						1.314 1.165	15.97 15.96	7.36 7.35	90.9 90.7	2.0	32.57 32.57	7.01 7.01										
2012/3/14 11:09:34	M6	MF	832577	843479	2.2	1.165	15.96	7.35	90.7	2.0	32.57	7.01	2									
2012/3/14 11:13:29			004	0.45.77		1.357	15.93	7.33	90.7	2.2	32.60	7.01	_									
2012/3/14 11:13:36	M5	MF	832710	843394	2.4	1.283	15.93	7.31	90.1	2.0	32.60	7.02	3									
2012/3/14 11:17:01	M7	MF	832784	843493	2.4	1.282	15.94	7.24	89.3	2.0	32.57	7.03	2									
2012/3/14 11:17:07		IVIH	X 1 / X/I				15.94	7.24	89.3	1.9	32.58											

Remarks: MF - Middle Flood tida ME - Middle Ebb tida

Contract ST/2008/02 Ma On Shan Development - Roads, Drainage and Sewerage Works at whitehead and Lok Wo Sha, Phase 1 Baseline Marine Water Quality Monitoring

Impact Data 16-Mar-12

Date / Time	Location	Tide*	Co-ordi	nates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
			North	East	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/l
2012/3/16 08:01:21	M1	ME	842518	832561	2.2	1.199	16.69	8.72	108.7	2.1	31.81	7.37	4
2012/3/16 08:01:29			0.200			1.174	16.70	8.87	110.5	2.3	31.80	7.35	-
2012/3/16 08:03:54 2012/3/16 08:04:01	M2	ME	842535	832795	2	1.010 1.021	16.70 16.72	8.57 8.51	106.8 106.1	2.1	31.80 31.79	7.26 7.24	3
2012/3/16 08:04:01						1.021	16.73	8.27	103.2	2.0	31.79	7.14	
2012/3/16 08:09:04	1					1.032	16.72	8.34	103.2	2.0	31.98	7.14	<2
2012/3/16 08:09:28			0.401.07	000014	7.0	3.812	16.41	8.42	104.7	2.3	32.21	7.14	_
2012/3/16 08:09:35	C1	ME	842187	833014	7.8	3.863	16.41	8.37	104.0	2.2	32.22	7.12	2
2012/3/16 08:10:10						6.648	16.07	7.45	92.3	2.7	32.80	7.10	6
2012/3/16 08:10:16						6.686	16.07	7.35	91.1	2.8	32.80	7.11	
2012/3/16 08:17:10	M3	ME	842649	833094	2.4	1.244	16.70	7.73	96.5	2.1	31.99	7.14	3
2012/3/16 08:17:15 2012/3/16 08:23:40	1					1.227 1.010	16.70 16.73	7.82 8.11	97.5 101.3	2.2	31.98 31.98	7.13 7.13	
2012/3/16 08:23:46	1					0.987	16.73	8.15	101.7	2.1	31.99	7.13	3
2012/3/16 08:24:06	M4	ME	843038	833110	4.8	3.848	16.38	8.32	103.3	2.7	32.24	7.13	
2012/3/16 08:24:14	1					3.857	16.38	8.25	102.4	2.3	32.24	7.13	4
2012/3/16 08:30:20						1.015	16.77	8.02	100.1	2.5	31.96	7.13	3
2012/3/16 08:30:27						1.014	16.73	8.13	101.5	2.0	31.97	7.13	ر
2012/3/16 08:30:55	C2	ME	832995	843811	9.6	4.627	16.33	8.09	100.4	2.3	32.46	7.11	3
2012/3/16 08:31:06	1 02	1112	032773	0.0011	7.0	4.676	16.35	7.95	98.8	2.4	32.43	7.12	
2012/3/16 08:31:40	4					8.608	15.72	7.81	96.2	3.5	32.98	7.09	6
2012/3/16 08:31:50 2012/3/16 08:42:07						8.635 1.204	15.72 16.74	7.40 7.24	91.1 90.4	3.5 2.3	32.97 31.98	7.10 7.14	
2012/3/16 08:42:14	M8	ME	832650	843634	2.2	1.191	16.74	7.57	94.6	2.0	31.96	7.14	3
2012/3/16 08:45:36						0.998	16.74	8.02	100.1	2.2	31.98	7.14	_
2012/3/16 08:45:43	M6	ME	832580	843477	2	1.003	16.76	8.09	101.1	2.1	31.97	7.15	3
2012/3/16 08:49:02	1/15	ME	832717	0.42206	2.4	1.273	16.75	8.21	102.6	2.1	31.98	7.16	-2
2012/3/16 08:49:09	M5	ME	032/1/	843396	2.4	1.260	16.76	8.24	103.0	2.2	31.98	7.16	<2
2012/3/16 08:52:36	M7	ME	832779	843492	2.4	1.208	16.75	8.31	103.7	2.0	31.98	7.23	6
2012/3/16 08:52:45	1117	IVIL	032117	013172	2.1	1.266	16.78	8.30	103.7	2.1	31.96	7.21	
2012/2/16 12 24 20						1.075	1670	0.00	102.2	0.1	21.00	7.10	
2012/3/16 12:24:38 2012/3/16 12:24:45	M1	MF	842518	832561	2.4	1.275 1.242	16.79 16.80	8.26 8.34	103.3 104.2	2.1	31.99 31.98	7.18 7.19	3
2012/3/16 12:28:11						1.100	16.77	8.44	104.2	2.0	32.00	7.19	
2012/3/16 12:28:18	M2	MF	842535	832795	2	1.077	16.81	8.43	105.4	2.1	31.97	7.19	4
2012/3/16 12:32:43						1.018	16.80	8.46	105.8	2.0	31.99	7.19	2
2012/3/16 12:32:50						1.030	16.79	8.47	105.9	2.0	31.99	7.19	2
2012/3/16 12:33:06	C1	MF	842187	833014	8	4.083	16.40	8.53	106.1	2.6	32.37	7.18	3
2012/3/16 12:33:14	<u> </u>	1111	012101	033011	Ü	4.017	16.40	8.39	104.3	2.4	32.37	7.18	
2012/3/16 12:33:44	4					7.052	16.05	7.51	93.1	3.7	32.91	7.15	2
2012/3/16 12:33:51	 					7.080 1.206	16.04	7.39 7.45	91.5 93.0	3.7 2.3	32.91 31.99	7.15 7.19	
2012/3/16 12:40:34 2012/3/16 12:40:41	M3	MF	842649	833094	2.4	1.222	16.73 16.74	7.74	96.6	2.3	31.99	7.19	2
2012/3/16 12:45:05						1.015	16.74	8.18	102.1	1.9	32.01	7.18	
2012/3/16 12:45:12			0.40000	000110	<i>-</i> .	1.018	16.77	8.25	103.0	2.3	31.99	7.19	<2
2012/3/16 12:45:31	M4	MF	843038	833110	5.1	4.112	16.36	8.33	103.5	2.3	32.39	7.17	2
2012/3/16 12:45:38						4.131	16.35	8.22	102.1	2.3	32.41	7.18	Z
2012/3/16 12:52:12	4					1.054	16.79	8.02	100.2	2.0	31.99	7.19	2
2012/3/16 12:52:19	4					1.044	16.81	8.14	101.8	2.2	31.99	7.19	
2012/3/16 12:52:33	C2	MF	832999	843826	10	5.058	16.32	8.31	103.2	2.3	32.51	7.18	<2
2012/3/16 12:52:42 2012/3/16 12:53:24	1					5.008 8.950	16.32 15.71	8.18 7.64	101.7 94.1	2.4 4.0	32.51 33.03	7.18 7.16	1
2012/3/16 12:53:24	1					9.099	15.72	7.04	94.1	4.0	33.03	7.16	4
2012/3/16 13:04:21	1.50	1.00	020640	0.40647	0.4	1.291	16.78	7.52	93.9	2.0	31.98	7.10	
2012/3/16 13:04:28	M8	MF	832640	843644	2.4	1.283	16.78	7.77	97.1	2.0	31.98	7.20	3
2012/3/16 13:07:54	M6	MF	832577	843479	2.2	1.145	16.80	8.21	102.7	2.1	31.98	7.20	2
2012/3/16 13:08:06	M6	IVIF	632311	043479	2.2	1.148	16.78	8.30	103.8	2.2	32.00	7.19	2
2012/3/16 13:11:26	M5	MF	832710	843394	2.4	1.226	16.79	8.35	104.3	2.0	31.98	7.21	3
2012/3/16 13:11:33	1/15	1.11	032710	0.5571		1.235	16.79	8.38	104.7	2.0	31.99	7.21	<u> </u>
2012/3/16 13:15:53	M7	MF	832784	843493	2.4	1.298	16.81	8.41	105.2	2.3	31.96	7.21	3
2012/3/16 13:15:59		lle Flood tid				1.268	16.77	8.42	105.2	2.0	31.99	7.22	L

Remarks: MF - Middle Flood tida ME - Middle Ebb tida

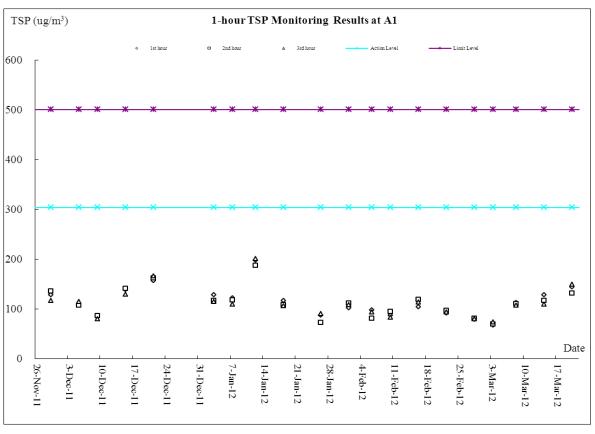
Contract ST/2008/02 Ma On Shan Development - Roads, Drainage and Sewerage Works at whitehead and Lok Wo Sha, Phase 1 Baseline Marine Water Quality Monitoring

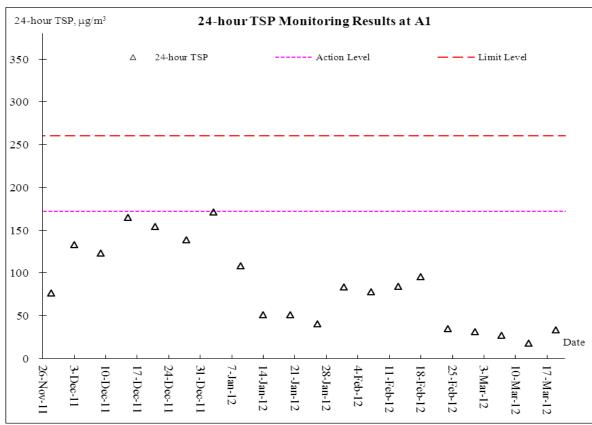
Impact Data 20-Mar-12

Date / Time	Location	Tide*	Co-ordi	nates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
			North	East	m	m	℃	mg/L	%	NTU	ppt	unit	mg/l
2012/3/20 11:20:34	M1	ME	842518	832561	2.4	1.202	19.06	10.42	137.6	1.7	33.91	7.50	<2
2012/3/20 11:20:42						1.225	19.07	10.38	137.1	1.6	33.93	7.51	
2012/3/20 11:24:33 2012/3/20 11:24:46	M2	ME	842535	832795	2	1.058 1.052	19.02 19.17	10.25 10.22	135.2 135.2	2.0	33.88 33.85	7.51 7.52	<2
2012/3/20 11:24:40						1.032	19.17	10.22	135.2	1.3	33.87	7.53	-
2012/3/20 11:29:32	1					1.046	18.98	10.24	135.8	1.8	33.88	7.51	3
2012/3/20 11:29:53	<i>a</i> ,) (F)	0.401.07	000014	- ·	3.688	18.60	10.34	135.5	1.7	34.06	7.49	
2012/3/20 11:30:00	C1	ME	842187	833014	7.4	3.706	18.62	10.24	134.2	1.6	34.03	7.49	<2
2012/3/20 11:30:31						6.411	16.10	9.44	118.8	2.1	35.30	7.27	<2
2012/3/20 11:30:42						6.463	16.10	8.92	112.2	2.0	35.30	7.27	~2
2012/3/20 11:38:06	M3	ME	842649	833094	2.4	1.223	18.94	9.35	123.2	1.7	33.91	7.57	<2
2012/3/20 11:38:12						1.228	18.96	9.54	125.7	1.6	33.89	7.57	
2012/3/20 11:44:43 2012/3/20 11:44:51	1					1.004	19.11 19.03	10.00 10.04	132.1 132.5	1.6 1.4	33.84 33.88	7.58 7.58	2
2012/3/20 11:45:24	M4	ME	843038	833110	4.6	3.650	18.48	10.17	133.0	1.4	34.15	7.55	-
2012/3/20 11:45:31						3.664	18.51	10.07	131.7	1.9	34.11	7.54	<2
2012/3/20 11:52:22						1.014	19.36	9.85	130.6	1.3	33.69	7.59	
2012/3/20 11:52:29						1.009	19.49	9.83	130.7	1.6	33.66	7.60	2
2012/3/20 11:53:12	C2	ME	832995	843811	8.8	4.427	17.82	10.20	132.0	1.8	34.46	7.49	7
2012/3/20 11:53:19	CZ	IVIL	032993	045011	0.0	4.432	17.76	10.09	130.5	1.5	34.47	7.50	,
2012/3/20 11:53:52						7.875	15.92	9.00	112.8	2.5	35.34	7.31	3
2012/3/20 11:54:01						7.865	15.90	8.58	107.6	2.8	35.35	7.33	
2012/3/20 12:05:43 2012/3/20 12:05:50	M8	ME	832650	843634	2	1.098 1.085	19.11 19.13	8.50 8.72	112.3 115.2	1.6 1.6	33.78 33.80	7.63 7.63	<2
2012/3/20 12:09:17						0.918	19.13	9.45	125.2	1.0	33.71	7.62	
2012/3/20 12:09:24	M6	ME	832580	843477	1.8	0.922	19.23	9.54	126.4	1.4	33.70	7.64	2
2012/3/20 12:12:57	2.65) (F)	000010	0.40006	2.2	1.167	19.03	9.78	128.9	1.5	33.86	7.59	
2012/3/20 12:13:04	M5	ME	832717	843396	2.2	1.167	19.17	9.75	128.9	1.7	33.78	7.59	<2
2012/3/20 12:16:56	M7	ME	832779	843492	2.4	1.206	19.25	9.85	130.4	1.2	33.73	7.61	2
2012/3/20 12:17:05	IV1 /	IVIL	032119	043492	2.4	1.219	19.28	9.86	130.5	1.8	33.71	7.62	Z
2012/3/20 17:26:54	M1	MF	842518	832561	2.4	1.220	19.01	10.70	141.0	1.6	33.76	7.60	<2
2012/3/20 17:27:02 2012/3/20 17:29:35						1.246 1.073	19.13 19.12	10.65 10.66	140.6 140.8	1.7	33.70 33.70	7.60 7.62	
2012/3/20 17:29:49	M2	MF	842535	832795	2	1.073	19.12	10.63	140.8	1.5	33.60	7.62	<2
2012/3/20 17:33:19						1.020	19.29	10.62	140.5	1.5	33.60	7.62	
2012/3/20 17:33:25						1.032	19.33	10.61	140.5	1.6	33.63	7.63	<2
2012/3/20 17:33:44	C1) (T	0.401.07	022014	0.4	4.204	17.84	11.01	142.4	1.6	34.40	7.56	.0
2012/3/20 17:33:57	C1	MF	842187	833014	8.4	4.274	17.87	10.77	139.5	1.7	34.39	7.55	<2
2012/3/20 17:34:29						7.477	15.80	9.55	119.5	2.5	35.26	7.33	<2
2012/3/20 17:34:37						7.461	15.76	9.13	114.1	2.7	35.30	7.36	~2
2012/3/20 17:42:35	M3	MF	842649	833094	2.4	1.214	18.99	10.51	138.5	1.5	33.82	7.62	2
2012/3/20 17:42:43						1.225	19.09	10.51	138.7	2.0	33.71	7.61	
2012/3/20 17:48:44	-					1.044	19.39	10.51	139.4	1.9	33.64	7.62	<2
2012/3/20 17:48:53 2012/3/20 17:49:06	M4	MF	843038	833110	5.3	1.023 4.348	19.49 18.06	10.48	139.2 141.3	1.7	33.64 34.35	7.63 7.57	
2012/3/20 17:49:21	1					4.331	18.01	10.67	138.5	1.9	34.38	7.56	3
2012/3/20 17:59:48						1.035	19.40	10.10	134.1	1.6	33.73	7.66	2
2012/3/20 17:59:55						1.032	19.60	10.17	135.4	1.6	33.61	7.66	<2
2012/3/20 18:00:26	C2	MF	832999	843826	10	5.008	17.24	10.45	133.9	2.0	34.56	7.53	<2
2012/3/20 18:00:33	C2	IVIF	032999	043620	10	5.025	17.15	10.45	133.6	2.1	34.60	7.51	<.2
2012/3/20 18:00:53	4					9.058	15.74	9.91	123.8	2.3	35.27	7.36	2
2012/3/20 18:01:00	<u> </u>					9.060	15.72	9.24	115.4	2.5	35.27	7.36	\vdash
2012/3/20 18:12:22	M8	MF	832640	843644	2.4	1.278	19.16	9.27	122.5	1.7	33.73	7.68	4
2012/3/20 18:12:29 2012/3/20 18:15:57						1.267 1.121	19.15 19.29	9.62 10.15	127.0 134.4	1.9 2.0	33.73 33.63	7.68 7.67	$\vdash \!$
2012/3/20 18:15:37	M6	MF	832577	843479	2.2	1.121	19.29	10.13	135.2	1.9	33.71	7.66	3
2012/3/20 18:19:27	3.65) C	000710	0.40007	0.4	1.222	19.27	10.30	136.3	1.7	33.64	7.65	
2012/3/20 18:19:34	M5	MF	832710	843394	2.4	1.234	19.17	10.36	136.8	1.7	33.69	7.66	<2
2012/3/20 18:23:55	M7	ME	922794	9.42.402	2.4	1.210	19.10	10.39	137.2	1.6	33.78	7.64	-2
2012/3/20 18:24:02	M7	MF	832784	843493	2.4	1.279	19.04	10.44	137.6	1.8	33.83	7.64	<2

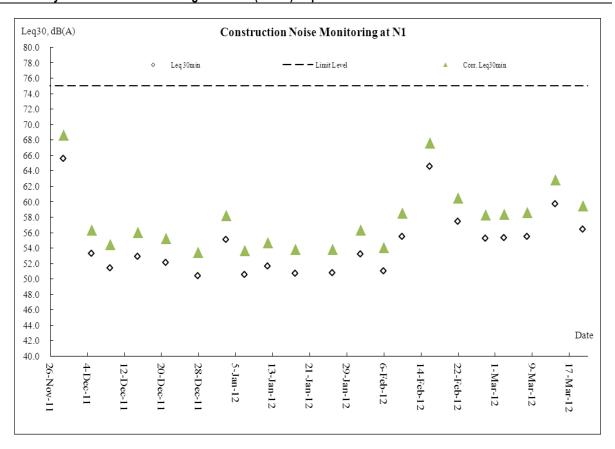
Remarks: MF - Middle Flood tida ME - Middle Ebb tida

Annex J

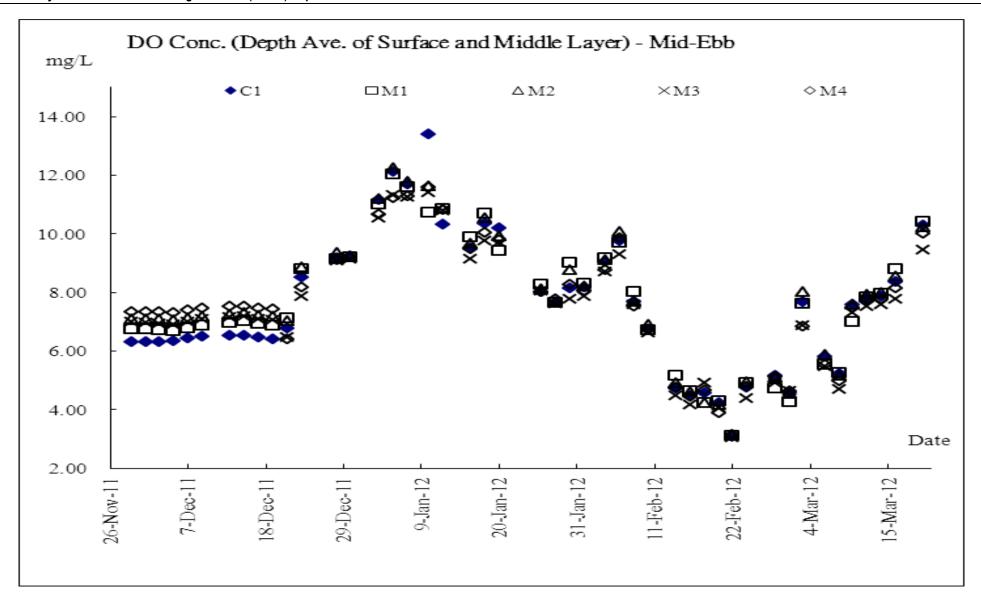

Graphical Plots of Impact Monitoring


- 1. Air
- 2. Noise
- 3. Marine Water

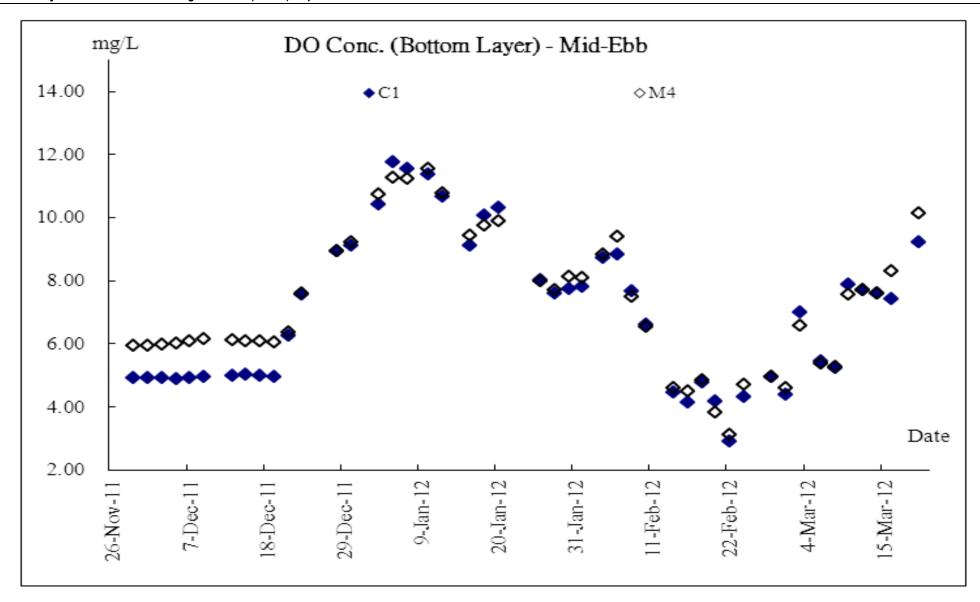
Air Quality



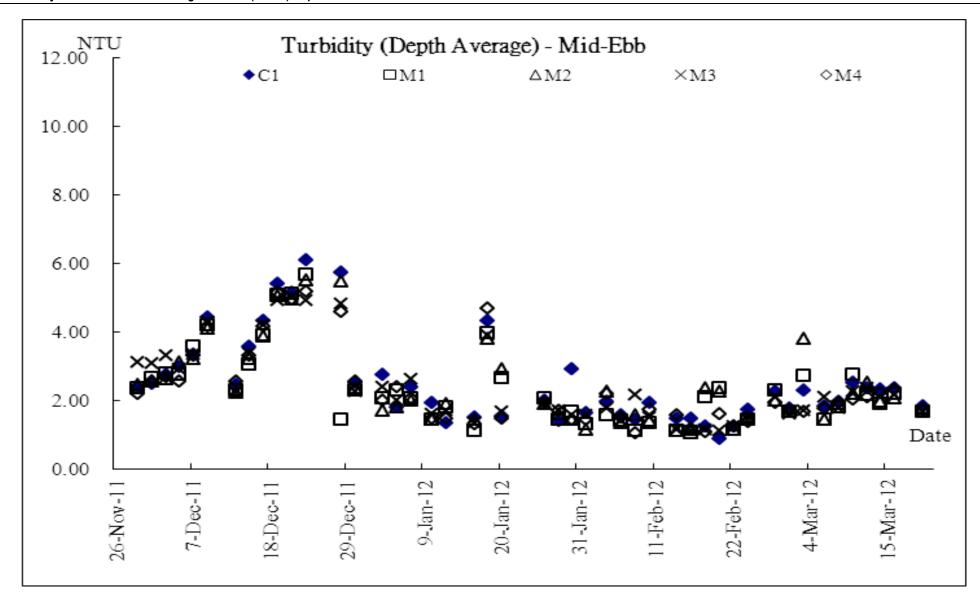
Construction Noise

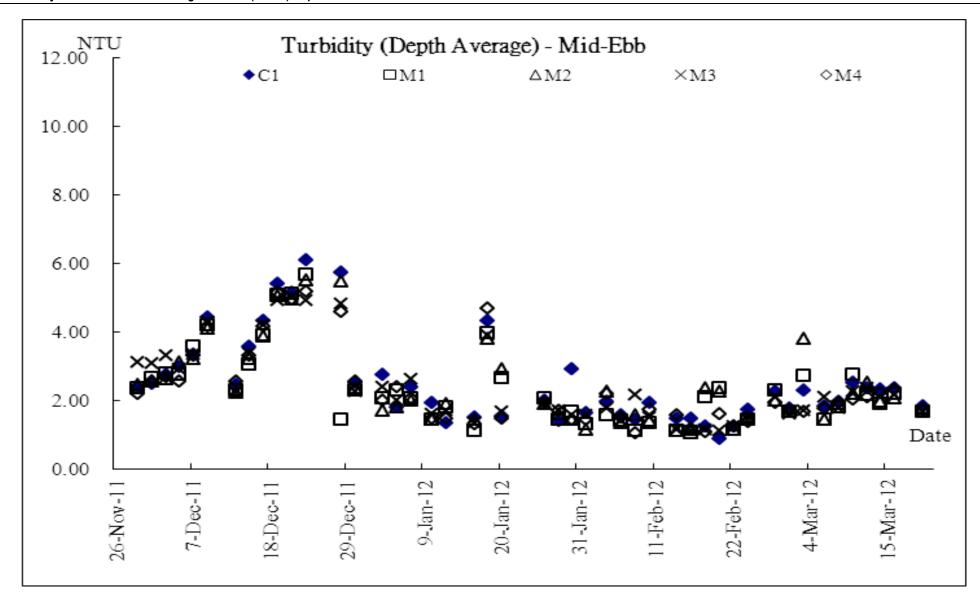


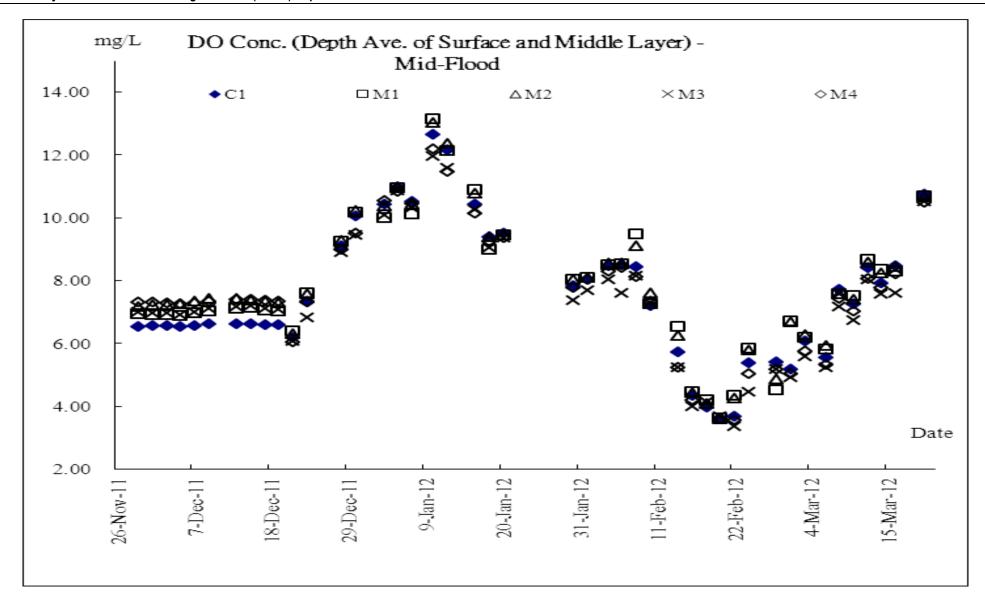
Marine Water

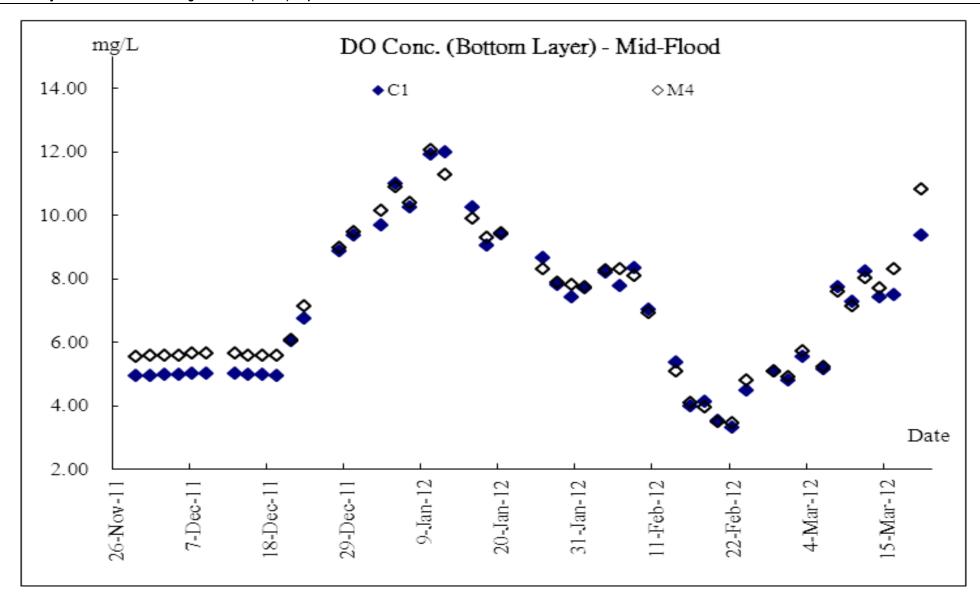


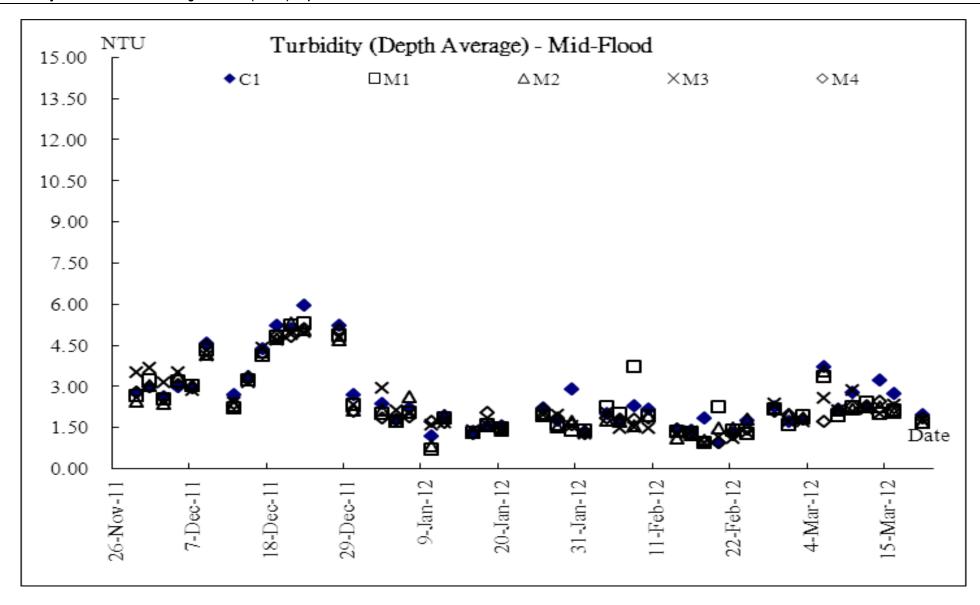
The Sea Zone of the Project West and North (Tolo Harbour)

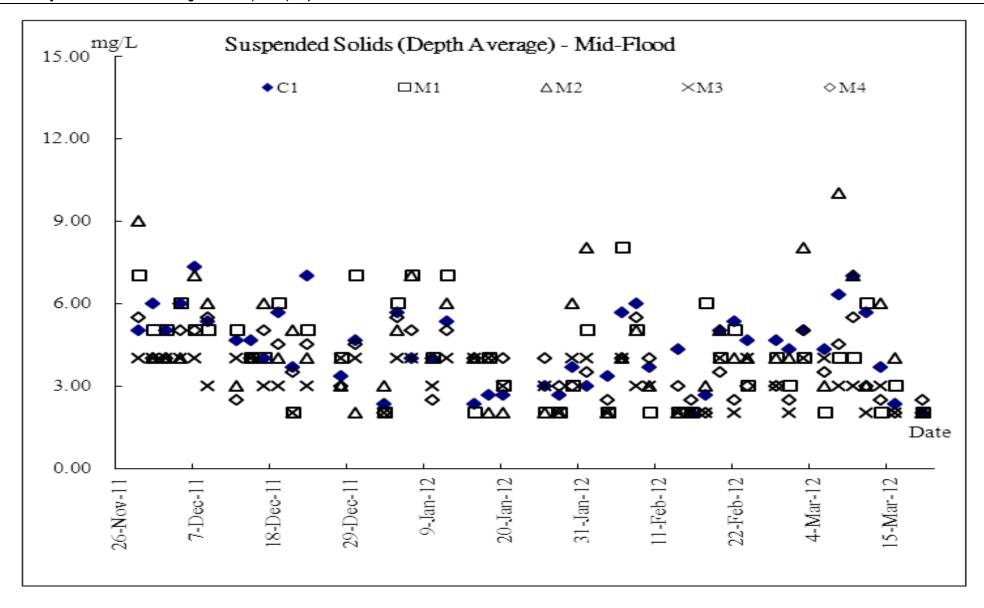


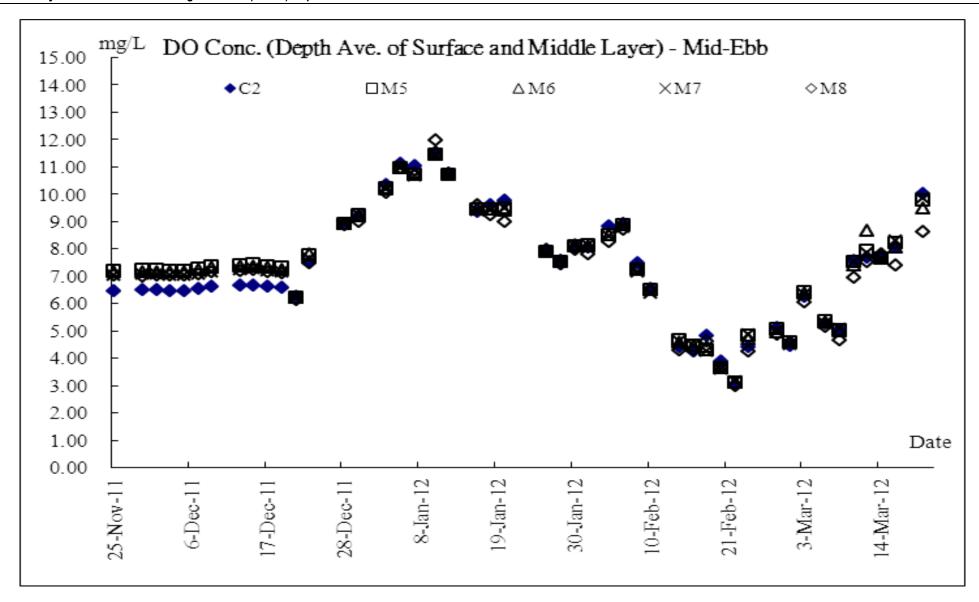


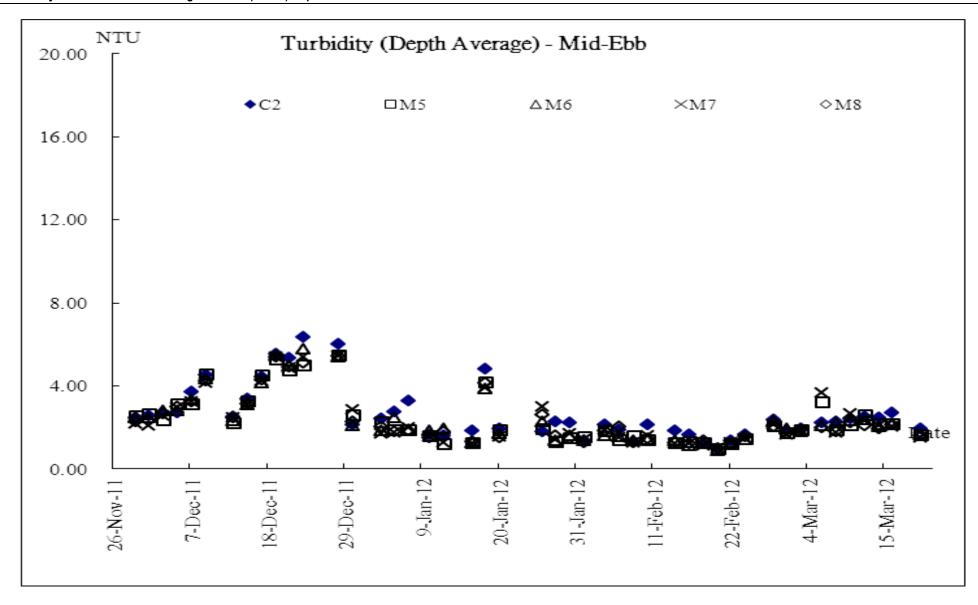




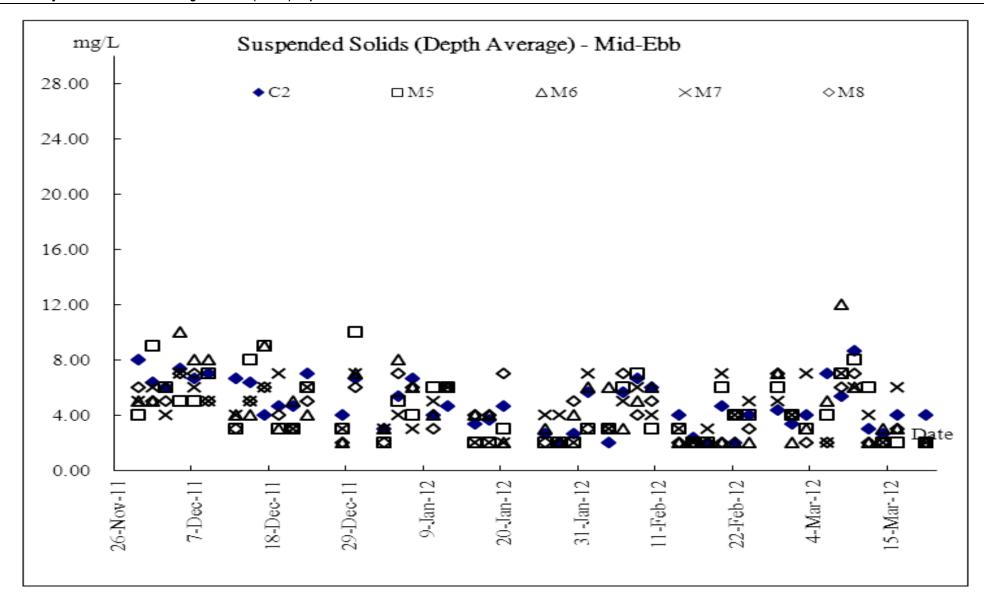


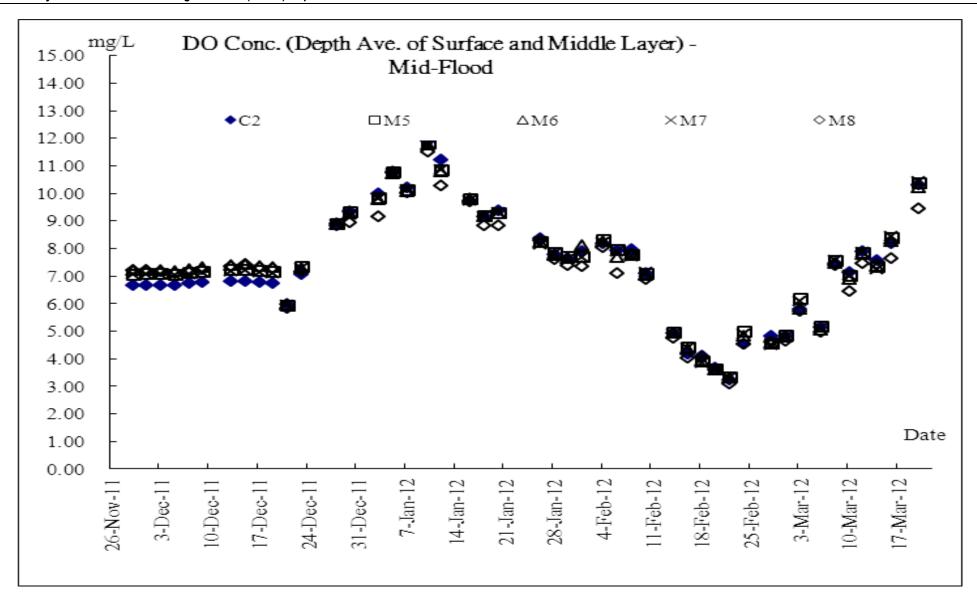


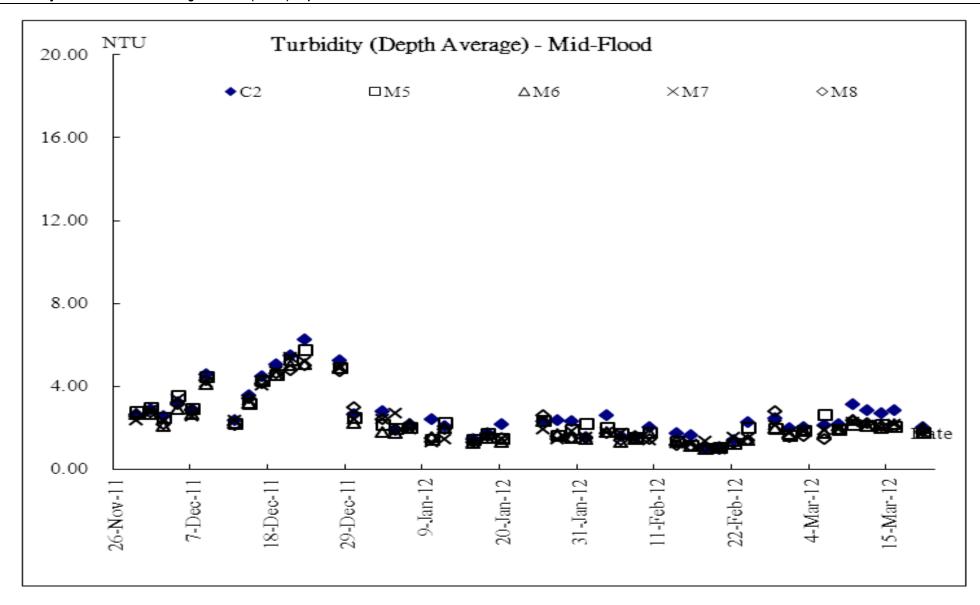


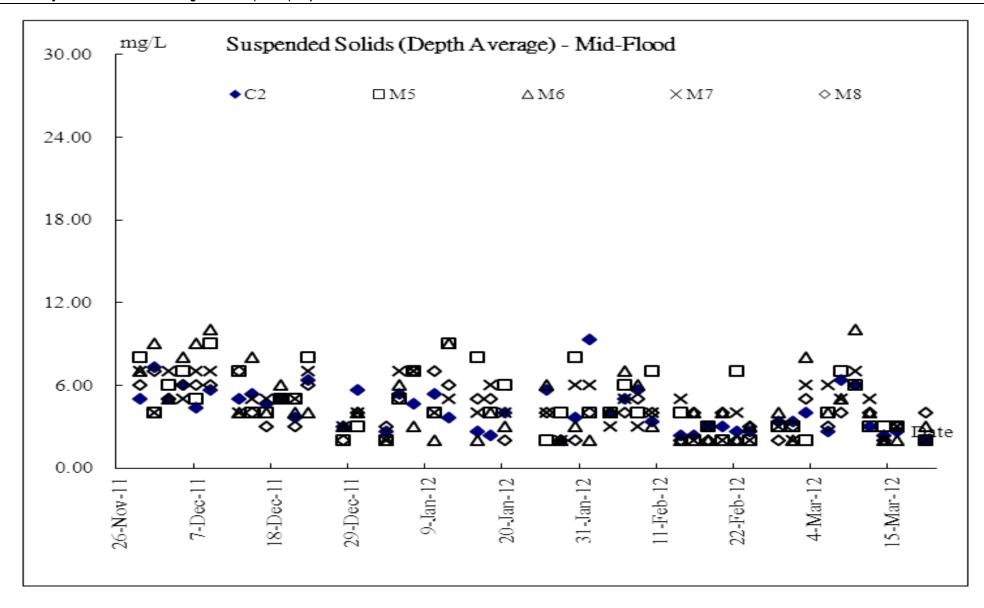


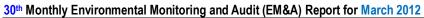
The Sea Zone of Starfish Bay

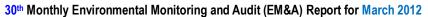




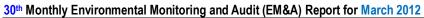








Annex K


Meteorological Data of Reporting Month

Meteorological Data in This Reporting Period

			Total	Tai Po Station (Wind Speed & Direction use Shatin Station)					
Date		Weather	Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidit y (%)	Wind Direction		
26-Feb-12	Sun	Fresh easterly winds	Trace	11.9	11.4	83	NE		
27-Feb-12	Mon	Moderate to fresh northerly winds	Trace	10	9.1	89.2	N		
28-Feb-12	Tue	Mainly cloudy with one or two rain patches.	18	11.5	7.4	92	N		
29-Feb-12	Wed	Cloudy with a few rain patches at first	0.5	14.7	11.6	85	Е		
1-Mar-12	Thu	Cloudy.	Trace	16.7	9.4	94.5	E/NE		
2-Mar-12	Fri	Coastal fog and one or two light rain patches at first.	0	21.4	8.2	85	N/NE		
3-Mar-12	Sat	Moderate easterly winds.	0.2	18.7	8.5	92	N/NE		
4-Mar-12	Sun	Moderate east to southeasterly winds.	0.5	18.6	13	91	Е		
5-Mar-12	Mon	Mainly cloudy with coastal mist.	Trace	23	10.2	84.7	N/NE		
6-Mar-12	Tue	Moderate easterly winds.	0.3	23.8	9	85.5	S/SE		
7-Mar-12	Wed	Mainly cloudy with a few light rain patches.	Trace	20.1	12	92	Е		
8-Mar-12	Thu	Moderate to fresh easterly winds.	3.3	14.7	11.7	93	Е		
9-Mar-12	Fri	Mainly cloudy with coastal mist.	0.2	14.7	8.2	95	N/NW		
10-Mar-12	Sat	Mainly cloudy with a few light rain patches.	Trace	12.5	7.7	89.5	N/NE		
11-Mar-12	Sun	Moderate east to northeasterly winds, freshening gradually.	8.4	12	8.7	93	N/NE		
12-Mar-12	Mon	Moderate northeasterly winds	6.6	11.6	8.6	94.7	N		
13-Mar-12	Tue	Cloudy with mist and a few light rain patches.	1.7	13.8	7	90.5	N/NE		
14-Mar-12	Wed	Cloudy with mist and a few light rain patches.	Trace	16.1	7.7	84	N		
15-Mar-12	Thu	Fresh easterly winds	0.6	17.9	9.8	85	E/SE		
16-Mar-12	Fri	Cloudy with fog.	0.2	21.1	7	87.5	N/NE		
17-Mar-12	Sat	Light to moderate easterly winds.	Trace	23.1	6.5	89	N/NE		
18-Mar-12	Sun	Cloudy and misty.	0	23.9	9	72.2	S/SW		
19-Mar-12	Mon	Moderate easterly winds, occasionally fresh offshore.	Trace	20.1	9.7	86	E/SE		
20-Mar-12	Tue	Cloudy.	Trace	20.8	9.5	83.5	E/NE		
21-Mar-12	Wed	Mainly cloudy with a few mist patches.	Trace	18.2	12.2	83.5	E/SE		

Annex L

Monthly Summary Waste Flow Table

	Monthly Summary Waste Flow Table for March 2012													
		Actual Quant	ities of Inert C &	D Materials Gene	rated Monthly		Actual Quantities of C & D Wastes Generated Monthly							
Month /Year	Total Quantitiy Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	Plastics (see note 3)	Chemical Waste	Others, e.g. General refuse			
	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000M ³)	(in '000KG)	(in '000KG)	(in '000KG)	(in '000KG)	(in '000M ³)			
Accumulate	0.000	18.334	18.334	0.000	0.000	16.909	0.000	0.000	0.000	0.000	0.512			
Jan-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.014			
Feb-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004			
Mar-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.013			
Apr-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
May-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Jun-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Sub-Total	0.000	18.334	18.334	0.000	0.000	16.909	0.000	0.000	0.000	0.000	0.543			
Jul-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Aug-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Sep-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Oct-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Nov-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Dec-12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
Total	0.000	18.334	18.334	0.000	0.000	16.909	0.000	0.000	0.000	0.000	0.543			

	Forecast of Total Quantities of C&D Materials to be Generated from the Contract*														
Total Quantity Generated	Hard Rock and Large Broken	Reused in the Contract	Reused in other projects	Disposed as Public Fill	Imported Fill	Metals	Paper / cardboard	Plastics (See Note 3)	Chemical Waste	Others, e.g. general refuse					
(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)					
0.00	20.00	7.00	13.00	0.00	23.00	2.00	2.00	1.00	1.00	5.00					

Notes:

- (1) The performance targets are given in PS Clause 1.100(14).
- (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the site.
- (3) Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material.
- * (4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the natrue where the total amount C&D materials expected to be generated from the works is equal to or exceeding 50,000m³.