Civil Engineering and Development Department

EP-337/2009 - New Distributor Roads Serving the Planned KTD

Contract No. KL/2012/02 Kai Tak Development –Stage 3A Infrastructure at Former North Apron Area

Monthly EM&A Report

October 2014

(version 1.0)

Approved By	(Environmental Team Leader)
REMARKS:	

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: <u>info@cinotech.com.hk</u>

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	
	Introduction	
	Environmental Monitoring Works	
	Environmental Licenses and Permits.	
	Key Information in the Reporting Month Future Key Issues	
	-	
1.	INTRODUCTION	4
	Background	4
	Project Organizations	
	Construction Activities undertaken during the Reporting Month	
	Summary of EM&A Requirements	
2.	AIR QUALITY	7
4.	-	
	Monitoring Requirements	
	Monitoring Locations	
	Monitoring Equipment.	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedure Results and Observations	
3.	NOISE	
	Monitoring Requirements	12
	Monitoring Locations	
	Monitoring Equipment	12
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedures	13
	Maintenance and Calibration	
	Results and Observations	13
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	16
4. 5.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	
	LANDSCAPE AND VISUAL	 18 18
	LANDSCAPE AND VISUAL	 18 18
	LANDSCAPE AND VISUAL	 18 18 18
5.	LANDSCAPE AND VISUAL Monitoring Requirements Results and Observations ENVIRONMENTAL AUDIT	
5.	LANDSCAPE AND VISUAL Monitoring Requirements Results and Observations ENVIRONMENTAL AUDIT Site Audits	
5.	LANDSCAPE AND VISUAL Monitoring Requirements Results and Observations ENVIRONMENTAL AUDIT Site Audits Review of Environmental Monitoring Procedures	
5.	LANDSCAPE AND VISUAL	18 18 19 19 19 19 19
5.	LANDSCAPE AND VISUAL	18 18 19 19 19 19 19 19 19
5.	LANDSCAPE AND VISUAL	18 18 19 19 19 19 19 19 20 20
5.	LANDSCAPE AND VISUAL	18 18 19 19 19 19 19 19 20 20 21
5.	LANDSCAPE AND VISUAL	18 18 19 19 19 19 19 19 20 20 21
5.	LANDSCAPE AND VISUAL	18 18 19 19 19 19 19 19 20 21
5.	LANDSCAPE AND VISUAL	18 18 19 19 19 19 19 20 20 21 21
5.	LANDSCAPE AND VISUAL	18 18 18 19 19 19 20 20 21 21 22 23
5.	LANDSCAPE AND VISUAL	18 18 18 19 19 19 19 20 20 21 22 23 23

8.	CONCLUSIONS AND RECOMMENDATIONS	. 25
	Conclusions	. 25
	Recommendations	

LIST OF TABLES

- Table IAir Quality and Noise Monitoring Stations for this Project
- Table II
 Non-compliance Recorded for the Project in the Reporting Month
- Table III
 Summary Table for Key Information in the Reporting Month
- Table 1.1Key Project Contacts
- Table 1.2Construction Programme Showing the Inter-Relationship with Environmental
Protection/Mitigation Measures
- Table 2.1Locations for Air Quality Monitoring
- Table 2.2Air Quality Monitoring Equipment
- Table 2.3
 Impact Dust Monitoring Parameters, Frequency and Duration
- Table 2.4
 Summary Table of Air Quality Monitoring Results during the reporting month
- Table 3.1Noise Monitoring Stations
- Table 3.2Noise Monitoring Equipment
- Table 3.3Noise Monitoring Parameters, Frequency and Duration
- Table 3.4Baseline Noise Level and Noise Limit Level for Monitoring Stations
- Table 3.5Summary Table of Noise Monitoring Results during the Reporting Month
- Table 4.1Comparison of 1-hr TSP data with EIA predictions
- Table 4.2Comparison of 24-hr TSP data with EIA predictions
- Table 4.3
 Comparison of Noise Monitoring Data with EIA predictions
- Table 6.1
 Summary of Environmental Licensing and Permit Status
- Table 6.2
 Observations and Recommendations of Site Inspections

LIST OF FIGURES

- Figure 1 Layout Plan of the Project Site
- Figure 2 Locations of Air Quality Monitoring Stations
- Figure 3 Locations of Construction Noise Monitoring Stations
- Figure 4 Locations of Wind Anemometer

LIST OF APPENDICES

- A Action and Limit Levels for Air Quality and Noise
- B Copies of Calibration Certificates
- C Weather Information
- D Environmental Monitoring Schedules
- E 1-hour TSP Monitoring Results, Graphical Presentations
- F 24-hour TSP Monitoring Results, Graphical Presentations
- G Noise Monitoring Results and Graphical Presentations
- H Summary of Exceedance
- I Site Audit Summary
- J Event Action Plans
- K Environmental Mitigation Implementation Schedule (EMIS)
- L Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution
- M Summary of Waste Generation and Disposal Records

EXECUTIVE SUMMARY

Introduction

- 1. This is the 13^{th} Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2012/02 - Kai Tak Development – Stage 3A Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises one Schedule 2 designated project (DP), namely the new distributor road D1 serving the planned KTD. The DP is part of the designated project under Environmental Permit (EP) No.: EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") respectively. This report documents the findings of EM&A Works conducted from 1 - 31October 2014.
- 2. With reference to the same principle of EIA report of the Project, air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in Table I (see Figure 2 and 3 for their locations).

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations
Air Quality Monitoring Stations		
AM1 - Rhythm Garden	No	AM1(B) - Contractor Site Office (KL/2012/02)
AM2 - Lee Kau Yan Memorial School	Yes	N/A
AM6 – Site 1B4 (Planned)	N/A	
Noise Monitoring Stations		
M3 - Cognitio College	Yes	N/A
M4 - Lee Kau Yan Memorial School	Yes	N/A
M9 – Tak Long Estate	Yes	N/A
M10 – Site 1B4 (Planned)		N/A

 Table I – Air Quality and Noise Monitoring Stations for this Project

- 3. According to the Environmental Monitoring and Audit Manual (EM&A Manual) of the Kai Tak Development (KTD) Schedule 3 Environmental Impact Assessment (EIA) Report, the impact monitoring at the designated monitoring stations as required in KTD EM&A Manual under the EP, have been conducted in Contract No. KLN/2013/16 – Environmental Monitoring Works for Kai Tak Development under Schedule 3 of KTD, which is on-going starting from December 2010. The impact monitoring data under Contract No. KLN/2013/16 will be adopted for the Project. Therefore, this report presents the air quality and noise monitoring works extracted from Contract No. KLN/2013/16.
- 4. The major site activities undertaken in the reporting month included:
 - Site Clearance;
 - Trial Pit Excavation for SW3;
 - Erection of site Boundary Fencing;

- Sheet Piling and Earthworks for VT1;
- Roadworks at Portion F2;
- Drainage Works at Portion F2, G & B6;
- Ground Investigation; and
- Pre-bored H-pile.

Environmental Monitoring Works

- 5. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 6. Summary of the non-compliance in the reporting month for the Project is tabulated in Table II.

Parameter	No. of Project-rela	No. of Project-related Exceedance		
1 al ameter	Action Level	Limit Level	Action Taken	
1-hr TSP	0	0	N/A	
24-hr TSP	0	0	N/A	
Noise	0	0	N/A	

 Table II
 Non-compliance Record for the Project in the Reporting Month

1-hour & 24-hour TSP Monitoring

7. All 1-hour & 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, EP-337/2009 issued on 23 April 2009.
- 10. Registration of Chemical Waste Producer (License: 5213-286-K3022-04).
- 11. Water Discharge License (License No.: WT00016873-2013 and WT00016723-2013).
- 12. Construction Noise Permit (License No.: GW-RE0365-14, GW-RE0532-14, GW-RE0537-14 and GW-RE0964-14).

Key Information in the Reporting Month

13. Summary of key information in the reporting month is tabulated in Table III.

Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

 Table III
 Summary Table for Key Information in the Reporting Month

Future Key Issues

14. The future key environmental issues in the coming month include:

- Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- Water spraying for dust generating activity and on haul road;
- Proper storage of construction materials on site;
- Storage of chemicals/fuel and chemical waste/waste oil on site;
- Accumulation of general and construction waste on site;
- Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
- Wastewater and runoff discharge from site;
- Regular removal of silt, mud and sand along u-channels and sedimentation tanks; and
- Review and implementation of temporary drainage system for the surface runoff.

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 3A Infrastructure at Former North Apron Area is one of the construction stages of KTD. It contains one Schedule 2 DP including new distributor roads serving the planned KTD. The general layout of the Project is shown in **Figure 1.**
- 1.2 One Environmental Permit (EP) No. EP-337/2009 was also issued on 23 April 2009 for new distributor roads serving the planned KTD to Civil Engineering and Development Department as the Permit Holder.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. An EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Cinotech Consultants Limited (Cinotech) was commissioned by Kaden Construction Ltd. (the Contractor) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2012/02 Stage 3A Infrastructure at Former North Apron Area. The construction work under KL/2012/02 comprises the construction of part of the Road D1 under the EP (EP-337/2009).
- 1.5 Cinotech Consultants Limited was commissioned by Kaden Construction Ltd. to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The construction commencement of this Contract was on 24th October 2013 for Road D1. This is the 13th Monthly EM&A report summarizing the EM&A works for the Project from 1 – 31 October 2014.

Project Organizations

- 1.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) Ove Arup & Partners (ARUP).
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) ANewR Consulting Limited (ANewR).
 - Contractor Kaden Construction Ltd. (Kaden).

Table 1.1 Key Project Contacts					
Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. Mike Cho / Mr. Thomas Fu	Engineer	2301 1465 / 2301 1473	2301 1277
ARUP	Engineer's Representative	Mr. Keith Cheung Ms. Edith Fung	SRE RE	2716 0122	2716 0232
	Environmental	Dr. Priscilla Choy	Environmental Team Leader	2151 2089	
Cinotech	Team	Ms. Ivy Tam	Project Coordinator and Audit Team Leader	2151 2090	3107 1388
ANewR	Independent Environmental Checker	Mr. Adi Lee	Independent Environmental Checker	2230 7165	3007 8556
Kaden	Contractor	Mr. Osbert Sit	Project Manager		

1.7 The key contacts of the Project are shown in **Table 1.1**.

Construction Activities undertaken during the Reporting Month

- 1.8 The site activities undertaken in the reporting month included:
 - Site Clearance;
 - Trial Pit Excavation for SW3;
 - Erection of site Boundary Fencing;
 - Sheet Piling and Earthworks for VT1;
 - Roadworks at Portion F2;
 - Drainage Works at Portion F2, G & B6;
 - Ground Investigation; and
 - Pre-bored H-pile.
- 1.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in Table 1.2.

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Section 1.8	Noise, dust impact, water quality and waste generation	Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall;

	Provide sufficient mitigation measures as
	recommended in Approved EIA
	Report/Lease requirement.

Summary of EM&A Requirements

- 1.10 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
- All monitoring parameters;
- Action and Limit levels for all environmental parameters;
- Event Action Plans;
- Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project from 1 31 October 2014.

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the EPs, 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. Appendix A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Three designated monitoring stations were selected for air quality monitoring programme. Impact dust monitoring was conducted at two air quality monitoring stations, Contractor Site Office (KL/2012/02) AM1(B), Lee Kau Yan Memorial School (AM2) in the reporting month. Table 2.1 describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Monitoring Stations	Locations	Location of Measurement
AM1(B)	Contractor Site Office (KL/2012/02)	Ground Floor Area
AM2	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
#AM6	PA 15	Site 1B4 (Planned)

Table 2.1 Locations for Air Quality Monitoring

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

2.3 Table 2.2 summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix B**.

Table 2.2	Air Quality Monitoring Equipment
-----------	----------------------------------

Equipment	Model and Make	Quantity
Calibrator	G25A	1
1-hour TSP Dust Meter	Laser Dust Monitor – Model LD-3, LD-3B, AEROCET-531	6
HVS Sampler	GMWS 2310 c/w of TSP sampling inlet	2
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters, Frequency and Duration

2.4 Table 2.3 summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting

month is shown in **Appendix D**.

1 able 2.5	Impact Dust Monitoring Parameters, Frequency and Duration		
Parameters		Frequency	
	1-hr TSP	Three times / 6 days	
	24-hr TSP	Once / 6 days	

Level and Devel Marilla in a Development of the Evelopment and Development T-11- 2 2

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Set POWER to "ON" and make sure that the battery level was not flash or in low level.
 - Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
 - Push the knob at MEASURE position.
 - Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
 - Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
 - Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 2.6 The following maintenance/calibration was required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.7 High volume (HVS) samplers (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For TSP sampling, fiberglass filters have a collection efficiency of > 99% for particles of $0.3\mu m$ diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.16 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary

by more than $\pm 3^{\circ}$ C; the relative humidity (RH) should be < 50% and not vary by more than $\pm 5\%$. A convenient working RH is 40%.

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using G25A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 2.19 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.20 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer set at rooftop (about 8/F) Lee Kau Yan Memorial School. The location is shown in **Figure 4**. This weather information for the reporting month is summarized in **Appendix C.**
- 2.22 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.23 The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the air quality monitoring.
- 2.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Station	Major Dust Source
AM1(B) – Contractor Site Office (KL/2012/02)	Road Traffic Dust
	Exposed site area and open stockpiles
	Site vehicle movement
AM2 – Lee Kau Yan Memorial School	Road Traffic Dust
	Exposed site area and open stockpiles
	Excavation works
	Site vehicle movement

2.25 Table 2.4 shows the summary of air quality monitoring results during the reporting month.

		inty monitoring Rest		0
Parameter	Date	Concentration (µg/m3)	Action Level, µg/m3	Limit Level, µg/m3
AM1(B) – Contractor Site Off	ice (KL/2012/02)			
	6-Oct-14	123.2		
	6-Oct-14	124.3		
	6-Oct-14	114.6		
	10-Oct-14	157.7		
	10-Oct-14	153.7		
	10-Oct-14	153.0		
	16-Oct-14	197.6		
1-hr TSP	16-Oct-14	194.6	342	500
	16-Oct-14	187.5		
	22-Oct-14	237.5		
	22-Oct-14	241.4		
	22-Oct-14	247.1		
	28-Oct-14	75.4		
	28-Oct-14	79.4		
	28-Oct-14	83.8		
	3-Oct-14	114.5		
	9-Oct-14	85.3		
24-hr TSP	15-Oct-14	115.8	159	260
	21-Oct-14	97.7		
	27-Oct-14	113.4		
AM2 – Lee Kau Yan Memoria	al School			
	6-Oct-14	104.2		
	6-Oct-14	112.0		
	6-Oct-14	118.0		
	10-Oct-14	167.6		
	10-Oct-14	174.2		
	10-Oct-14	169.8		
	16-Oct-14	238.4		
1-hr TSP	16-Oct-14	231.3	346	500
	16-Oct-14	229.7		
	22-Oct-14	218.8		
	22-Oct-14	197.4		
	22-Oct-14	194.5		
	28-Oct-14	149.0		
	28-Oct-14	152.1		
	28-Oct-14	158.8		
	3-Oct-14	111.1		
	9-Oct-14	109.4		
24-hr TSP	15-Oct-14	111.9	157	260
	21-Oct-14	140.3		
	27-Oct-14	126.7		

Table 2.4 Summary Table of Air Quality Monitoring Results during the reporting month

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Four designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at three designated monitoring stations (M3, M4, M9). **Figure 3** shows the locations of these stations.

Monitoring Stations	Locations	Location of Measurement
M3	Cognitio College	Rooftop (about 6/F) Area
M4	Lee Kau Yan Memorial College	Rooftop (about 7/F) Area
M9	Tak Long Estate	Car Park Building (about 2/F)
#M10	Site 1B4 (Planned)	-

Table 3.1Noise Monitoring Stations

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

3.3 **Table 3.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVAN 955 & 957	2
Calibrator	SVAN 30A, B&K4231	2

Monitoring Parameters, Frequency and Duration

3.4 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 3.3	Noise Monitoring	g Parameters, Frequenc	y and Duration

Monitoring Stations	Parameter	Period	Frequency	Measurement
M3 M4 M9	$\begin{array}{c} L_{10}(30 \text{ min.}) \text{ dB}(A) \\ L_{90}(30 \text{ min.}) \text{ dB}(A) \\ L_{eq}(30 \text{ min.}) \text{ dB}(A) \end{array}$	0700-1900 hrs on normal weekdays	Once per week	Façade

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting : A
 - time weighting : Fast
 - time measurement : 30 minutes
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 3.8 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. The summary of exceedance record in reporting month is shown in **Appendix H**.
- 3.9 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.4**.
- 3.10 Noise monitoring results and graphical presentations are shown in Appendix G.
- 3.11 The major noise source identified at the designated noise monitoring stations are as follows:

Monitoring Stations	Locations	Major Noise Source
M3	Cognitio College	Traffic Noise Daily school activities
M4	Lee Kau Yan Memorial School	Traffic Noise Site vehicle movement Excavation works Piling works Daily school activities
M9	Tak Long Estate	Traffic Noise Construction works

Table 3.4 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
M3	76.3/78.6 ⁽¹⁾ (at 0700 – 1900 hrs on normal weekdays) /	70* (at 0700 – 1900 hrs on
M4	76.7 (at 0700 – 1900 hrs on normal weekdays)	normal weekdays)
M9	59.9 (at 0700 – 1900 hrs on normal weekdays)	75 (at 0700 – 1900 hrs on normal weekdays)

(*) Noise Limit Level is 65 dB(A) during school examination periods.

Note (1): The baseline noise review report submitted under KLN/2013/16 for M3 was approved by EPD on 23rd August 2013. (Baseline Level was found to be 78.6 dB(A)at Rooftop of Cognitio College)

1 abic 5.5	Summary Table of Noise Montoring Results during the Reporting Month					
Date	Measured Noise Level, Leq(30min) dB (A)	Baseline Level dB (A)	Construction Noise Level ⁽¹⁾ : Leq(30min) dB (A)			
M3 - Cognitio	College					
		Background Noise ⁽²⁾				
6-Oct-14	78.8	78.7	62.4			
16-Oct-14	79.2	79.0	65.7			
22-Oct-14	78.8	78.6	65.3			
28-Oct-14	74.7	74.8	74.7 Measured \leq Background			
M4 – Lee Kau	Yan Memorial College		·			
6-Oct-14	74.6		74.6 Measured \leq Baseline			
16-Oct-14	74.0	7(7	74.0 Measured \leq Baseline			
22-Oct-14	74.3	76.7	74.3 Measured \leq Baseline			
28-Oct-14	72.6		72.6 Measured \leq Baseline			
M9 – Tak Long	M9 – Tak Long Estate					
9-Oct-14	64.2		62.2			
15-Oct-14	64.5	50.0	62.7			
21-Oct-14	69.5	59.9	69.0			
27-Oct-14	63.1		60.3			

Table 3.5 Summary Table of Noise Monitoring Results during the Reporting Month

Note (1) The noise level due to the construction work (CNL) was calculated by the following formula:

 $\text{CNL} = 10 \log (10^{\text{MNL/10}} - 10^{\text{BNL/10}})$

Remarks: MNL = Measured Noise Level BNL = Baseline Noise Level

(2): The background Noise Level was recorded during the Lunch Hour of Construction Site (i.e. 12:00-13:00) and to be used as the referencing value for compliance checking for Noise Action and Limit Level.

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 The EM&A data was compared with the EIA predictions as summarized in 4.1 to 4.3.

Table 4.1Comparison of 1-hr TSP data with EIA predictions

Station	Predicted 1-hr TSP conc.			
	Scenario1 (Mid 2009 to Mid 2013), μg/m3	Scenario2 (Mid 2013 to Late 2016), μg/m3	Reporting Month (Oct 14), μg/m3	
AM1(B) – Contractor Site Office of KL/2008/09	192	298	158.1	
AM 2 – Lee Kau Yan Memorial School	290	312	174.4	

Table 4.2Comparison of 24-hr TSP data with EIA predictions

Station	Predicted 24-hr TSP conc.			
	Scenario1 (Mid 2009 to Mid 2013), μg/m3	Scenario2 (Mid 2013 to Late 2016), μg/m3	Reporting Month (Oct 14), μg/m3	
AM1(B) – Contractor Site Office of KL/2008/09	121	156	105.3	
AM2 – Lee Kau Yan Memorial School	145	169	119.9	

Table 4.3Compa	rison of Noise	e Monitoring l	Data with EIA	predictions
----------------	----------------	----------------	---------------	-------------

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (L _{eq (30min)} dB(A))	Reporting Month (Oct 14), L _{eq (30min)} dB(A)
M3 – Cognitio College	47 – 75	$62.4 - 74.7^{(1)}$
M4 – Lee Kau Yan Memorial School	47 – 74	$72.6 - 74.6^{(2)}$
M9 – Tak Long Estate	Not Predicted in EIA Report	60.3 - 69.0

Remark:

(1) Since the background noise level recorded during 12:00 to 13:00 was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.

(2) Since the baseline noise level was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.

- 4.2 The 1-hour TSP concentrations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3 The 24-hour TSP concentrations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.

4.4 Mitigated construction noise levels at M9 were not predicted in EIA Report. The noise monitoring results in the reporting month at noise monitoring station (M4) was not within the range of predicted mitigated construction noise levels in the EIA report. The noise data at M4 exceeds the prediction of mitigated scenario in EIA report but did not exceed the baseline level.

5. LANDSCAPE AND VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix J** shall be performed.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 8th, 15th, 23rd and 29th October 2014 in the reporting month. IEC site inspections were conducted on 23rd October 2014. No non-compliance was observed during the site audits.

Review of Environmental Monitoring Procedures

6.3 The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- 1. The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- 2. Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Status of Environmental Licensing and Permitting

6.4 All permits/licenses obtained for the Project are summarized in Table 6.1.

Permit No.	Valid Period		Details	Status
remit no.	From	То	- Details Sta	
Environmental Peri	Environmental Permit (EP)			
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	
Effluent Discharge License				
WT00016873-2013	-	31/08/18	Wastewater from the construction site Valid	
WT00016723-2013	-	31/08/18	including contaminated surface run-off Valid	
Registration of Chemical Waste Producer				

Permit No.	Valid Period		Details	Status	
remit No.	From	То	Details	Status	
5213-286-K3022-04	-	N/A	Chemical Waste Types: Spent lubricating oil, Soil contaminated with lubricating oil, Spent battery containing heavy metals, Surplus paint, Spend solvent, Spend alkali and acid	Valid	
Construction Noise P	Construction Noise Permit (CNP)				
GW-RE0365-14	21/04/14	20/10/14	Construction Noise Permit for the use of powered mechanical equipment for carrying out construction work other than percussive pilling and performing prescribed construction work.The mont mont		
GW-RE0532-14	19/05/14	11/11/14			
GW-RE0537-14	19/05/14	11/11/14			
GW-RE0964-14	01/09/14	27/02/15			

Status of Waste Management

- 6.5 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.
- 6.6 In respect of the dump truck cover, the Contractor is advised to take record photos and inspection to ensure that all dump trucks have fully covered the skip before leaving the site.

Implementation Status of Environmental Mitigation Measures

6.7 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 6.2.

 Table 6.2
 Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up
30 Sep & 8 Oct 14		Locker for chemical waste should be properly maintained.	Rectification/improvement was observed during the follow-up audit session.
Water Quality 8 Oct 14		Stand water should be properly treated and removed from unused sedimentation tank.	Rectification/improvement was observed during the follow-up audit session.
	23 Oct 14	Stagnant water and mud in u-channel should be regularly cleared. (near Sam Chuk Street)	Rectification/improvement was observed during the follow-up audit session.
	8 Oct 14	Water spraying should be provided more frequently to haul road.	Rectification/improvement was observed during the follow-up audit session.
Air Quality	15 Oct 14	Dusty stockpile should be covered with impervious sheet to suppress dust emission.	Rectification/improvement was observed during the follow-up audit session.
	29 Oct 14	Sand deposited opposite to bus stop should be regularly removed.	Follow up action will be reported in next reporting month.

Parameters	Date	Observations and Recommendations	Follow-up
	29 Oct 14	Water spraying should be provided for breaking work to suppress dust generation.	Follow up action will be reported in next reporting month.
Noise			
Waste/Chemical	25 & 30 Sep 14	Oil stain on the ground near KTOB was observed. The oil stain should be properly removed as chemical waste.	Rectification/improvement was observed during the follow-up audit session.
Management 30 Sep & 8 Oct 14		Locker for chemical waste should be properly maintained.	Rectification/improvement was observed during the follow-up audit session.
Landscape and Visual			
Permits /Licences			

Summary of Mitigation Measures Implemented

6.8 The monthly IEC audit was carried out on 23rd October 2014, the observations were recorded and they are presented as follows:

Observations:

 Work site area near Sam Chuk Street -Stagnant water in channel was observed. The Contractor should properly drain away the water.

Follow up of last observation:

- Work site area near Operation Base -Oil stain was properly removed. Item closed.
- 6.9 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.10 The Event Action Plans for air quality, noise and landscape and visual are presented in Appendix J.

<u>1-hr TSP Monitoring</u>

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.12 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.13 No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.14 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.15 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix L**.

7. FUTURE KEY ISSUES

- 7.1 Major site activities undertaken for the coming two months include:
 - Site Clearance for all possessed portion;
 - ELS for VT1 at Portion G;
 - Sheet piling and earthworks for VT1;
 - Tree transplanting;
 - Piling works for SW2 and SW3;
 - Ground investigation and predrilling works at Portion C, B5 & B6;
 - Sheet piling for SW2 and SW3;
 - RC works for VT1 at Portion G; and
 - Waterworks at Portion G & B.

Key Issues for the Coming Month

- 7.2 Key environmental issues in the coming month include:
 - Wastewater and runoff discharge from site;
 - Overflow of the sedimentation tanks;
 - Regular removal of silt, mud and sand along u-channels and sedimentation tanks;
 - Review and implementation of temporary drainage system for the surface runoff;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Dust generation should be mitigated by adequate water spraying, especially in dry days;
 - Watering for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site.
- 7.3 The tentative program of major site activities and the impact prediction and control measures for the coming two months, i.e. November and December 2014 are summarized as follows:

Construction Works	Major Impact Prediction	Control Measures
	Air quality impact (dust) Water quality	 a) Frequent watering of haul road and unpaved/exposed areas; b) Frequent watering or covering stockpiles with tarpaulin or similar means; and c) Watering of any earth moving activities. d) Diversion of the collected effluent to de-silting facilities
As mentioned in Section 7.1	impact (surface run-off)	 for treatment prior to discharge to public storm water drains; e) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; f) Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and g) Provision of measures to prevent discharge into the stream.
	Noise Impact	 h) Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; i) Controlling the number of plants use on site; j) Regular maintenance of machines; and k) Use of acoustic barriers if necessary.

Monitoring Schedule for the Next Month

7.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.

<u>1-hr TSP Monitoring</u>

8.2 All 1-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hr TSP Monitoring

8.3 All 24-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8.4 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Landscape and visual

8.5 No non-compliance was recorded in the reporting month.

Complaint and Prosecution

8.6 No environmental complaints and environmental prosecution were received in the reporting month.

Recommendations

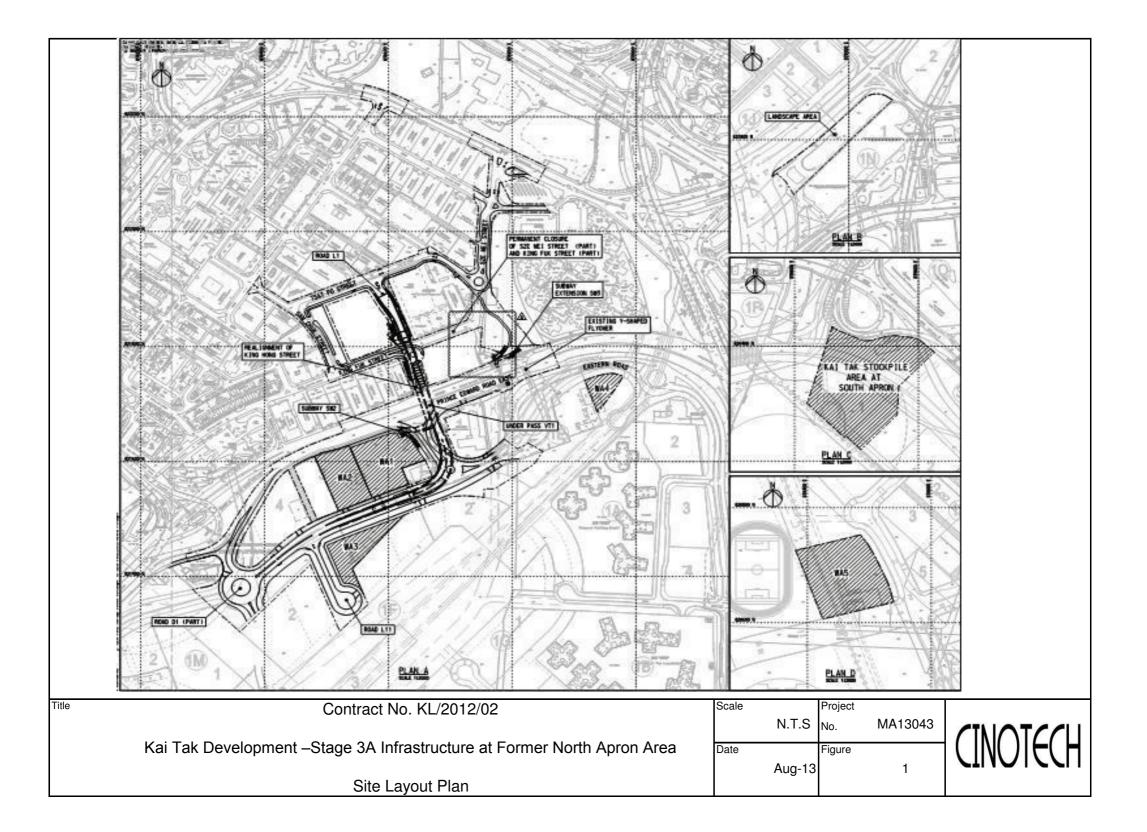
8.7 According to the environmental audit performed in the reporting month, the following recommendations were made:

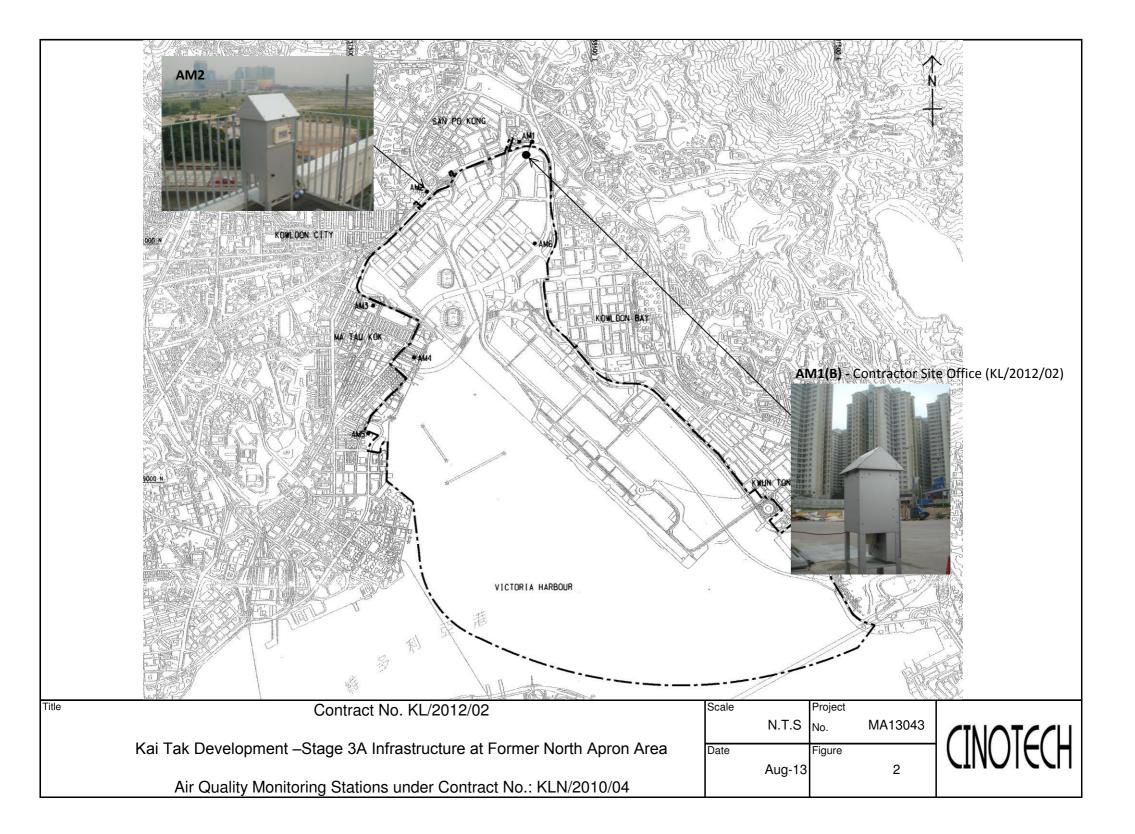
Air Quality Impact

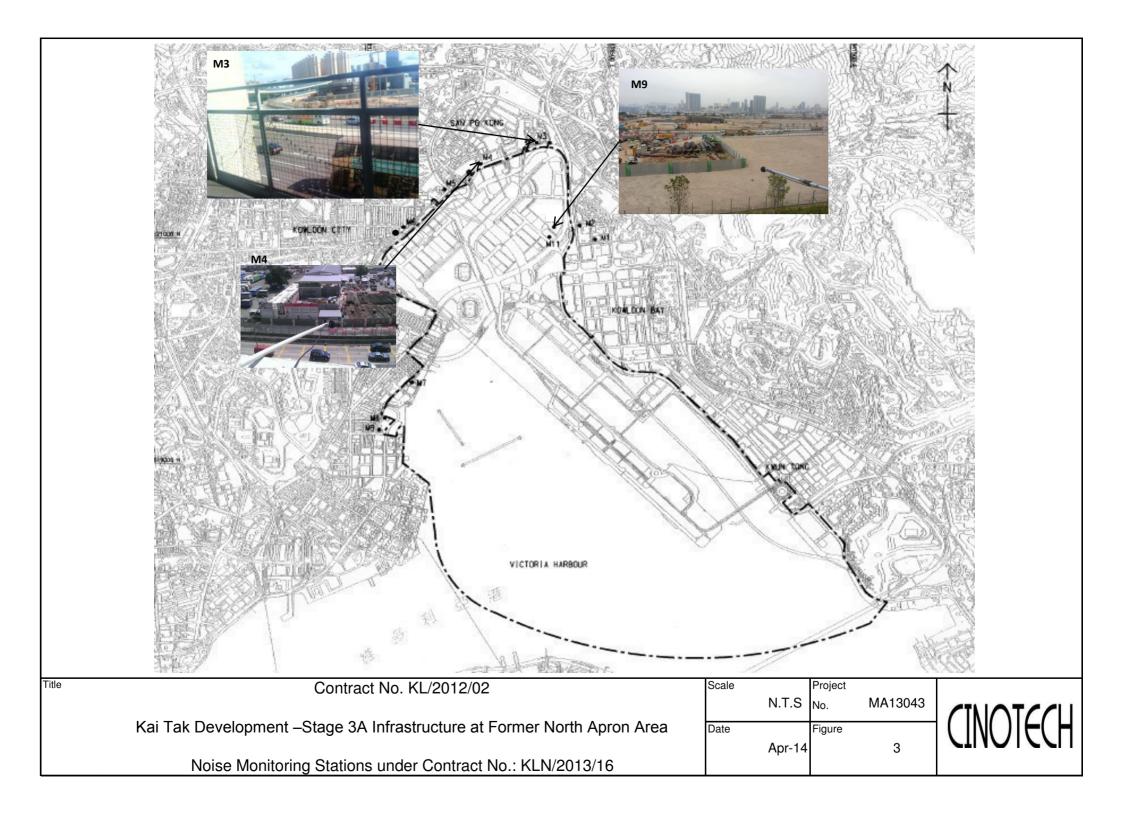
- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation and breaking works.
- To mitigate the dust generation by adequate water spraying in dry days.
- To reduce dust and sand on ground to suppress dust generation by vehicle movement.

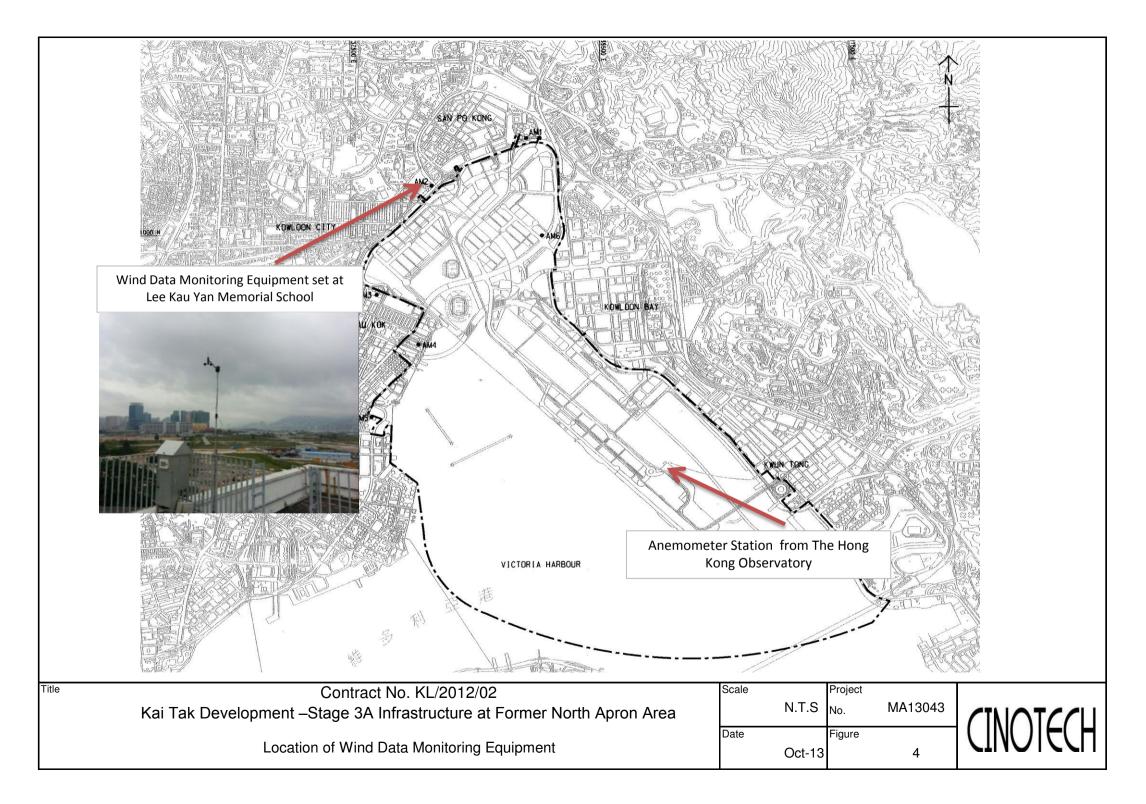
Water Impact

- To prevent any surface runoff discharge into any stream course.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with


enough handling capacity before discharge.


• To treat and drain away stagnant water in site area.


Waste/Chemical Management


- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation).
- To regularly inspect and maintain drip trays to prevent accumulation of stagnant and/or oily liquid.
- To regularly inspect and maintain the equirements/plants to prevent oil leakage onto the ground.
- To regularly maintain the collection area for chemical waste.

FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Location	Action Level, μg/m ³	Limit Level, µg/m ³
AM1(B)	342	500
AM2	346	500

Table A-1Action and Limit Levels for 1-Hour TSP

Table A-2Action and Limit Levels for 24-Hour TSP

Location	Action Level, µg/m ³	Limit Level, µg/m ³
AM1(B)	159	200
AM2	157	260

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

CINOTECH

						File No.	. MA14008/58/0023
Station	AMI(B) - Outsic	le RLJV site offi	ce (KL/2008/09)	Operator:	WK		
Date:	25-Aug-14		1	Next Due Date:	24-Oct	-14	_
Equipment No.: A-01-58			Serial No.	2357		_	
· . ·					· · · ·		· · · · · · · · · · · · · · · · · · ·
				Condition	1		
Temperatu	ıre, Ta (K)	304.5	Pressure, Pa	ı (mmHg)		759.6	
<u> </u>	·						
	and Maria		ifice Transfer St	T	1	4 1	0.04(1
	ent No.:	A-04-04	Slope, mc	0.0588	Intercep be = [ΔH x (Pa/76		-0.0461
	ration Date:	30-Sep-13		$ \int \frac{d}{dt} = \frac{d}{dt} = \frac{d}{dt} + \frac{d}{dt} = \frac{d}{dt} + \frac{d}{dt} + \frac{d}{dt} = \frac{d}{dt} + \frac{d}{d$	х (Pa/760) х (298	$(T_0)^{1/2} - b_0^{1/2}$	(me
Next Canor	ration Date:	29-Sep-14	·	Qstu – {[ΔII]	X (F 4/700) X (290	/18] -003	
			Calibration of	TSP Sampler		<u>veteşs</u>	
		Or				HVS	<u> </u>
Calibration Point	ΔH (orifice),			Qstd (CFM)	ΔW		(760) x (298/Ta)] ^{1/2} Y-
rom	in. of water	[ΔH x (Pa/760	0) x (298/Ta)] ^{1/2}	X - axis	(HVS), in. of oil		axis
1	11.9	3	.41	58.81	8.1		2.81
2	9.7	3.08		53.17	6.4		2.50
3	7.7	2.74		47.46	5.2		2.26
4	5.1	2	.23	38.77	3.3		1.80
5	3.3	1	.80	31.34	2.0		1.40
Slope , mw =	ression of Y on X 		995	Intercept, bw -	-0.191	18	-
*If Correlation	Coefficient < 0.99	0, check and reca	alibrate.				
			<u>ti da tendera de tendera de la comp</u> ete	<u>a në ninë në positi në në k</u>			
	Vald Calibustian C			alculation			raje telever 1 i televiti i til en tra
	ield Calibration C						
From the Regre	ssion Equation, th	e "Y" value acco	raing to				
		mw x Q	$Qstd + bw = \Delta W $	x (Pa/760) x (2	298/Ta)] ^{1/2}		
		0.11.1.2					
Therefore, S	Set Point; W = (m	w x Qstd + bw) ⁻	x (760 / Pa) x ('	Ta / 298) =	4.11		-
Remarks:							
	<u></u>						
Conducted by: Checked by	k.7.ang :	Signature: Signature:	Kwi		-	Date: Date:	<u>25 8 2014</u> 25 <u>Dugu st</u> 201(
				v			

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

Date: 23-Oct-14 Next Due Date: 22-Dec-14 Equipment No: A-01-58 Serial No. 2337 Ambient Condition Temperature, Ta (K) 297.5 Pressure, Pa (mmHg) 764.2 Orifice Transfer Standard Information Equipment No: A-04-04 Slope, ne 0.0582 Intercept, bc -0.0249 Last Calibration Date: 27-Sep-14 mx x Qstd + bc = [AH x (Pa760) x (298/Ta)] ^{1/2} -0.0249 Calibration Date: 2 2.5-Sep-15 Qstd = ([AH x (Pa760) x (298/Ta)] ^{1/2} -0.0249 Calibration Date: Calibration of TSP Simpler Calibration dit (orifice), 1 11.8 3.45 59.66 8.2 2.87 2 9.7 3.13 54.13 6.5 2.27 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 Ster Point Calibration Curve, take Qatd = 43 CPM Intercept, bw0.1622 Correlation coefficient < 0.5							File No.	MA14008/58/0024	
Serial No	Station	AM1(B) - Outsi	de RLJV site offi	ce (KL/2008/09)	Operator:	WK			
Ambient Condition Temperature, Ta (K) 297.5 Pressure, Pa (mml1g) 764.2 Orifice Transfer Standard Information Equipment No.: A-04-04 Slope, ne 0.0582 Intercept, bc -0.0249 Last Calibration Date: 27-Sep-14 mex Qstd + be = [AH x (Pa/760) x (298/Ta)] ^{1/2} -0.0249 Calibration Date: 27-Sep-14 mex Qstd + be = [AH x (Pa/760) x (298/Ta)] ^{1/2} Calibration Date: 26-Sep-15 Qstd = (IAH x (Pa/760) x (298/Ta)] ^{1/2} -0.0249 Calibration of TSP Sampler INT Sampler Calibration of TSP Sampler Calibration of TSP Sampler Intercept, bw:	Date:	23-Oct-14		Next Due Date:		22-Dec-14			
Temperature, Ta (K) 297.5 Pressure, Pa (mniFig) 764.2 Orlfice Transfer Standard Information Equipment No.: $A-04-04$ Slope, no 0.0582 Intercept, be -0.0249 Last Calibration Date: 27-Sep-14 me x Qstd + bc = [AH x (Pa/760) x (298/Ta)] ^{1/2} -0.0249 Next Calibration Date: 26-Sep-15 Qstd = [IAH x (Pa/760) x (298/Ta)] ^{1/2} -0.0249 Calibration ΔH (orifice), in, of water $(\Delta H \times (Pa/760) x (298/Ta))^{1/2}$ ΔW $(\Delta W \times (Pa/760) x (298/Ta))^{1/2}$ 2 9.7 3.13 54.13 6.5 2.287 2 9.7 3.13 54.13 6.5 2.56 3 7.8 2.80 44.5.9 5.1 2.277 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 Set Point Calculation mer	Equipment No.: A-01-58				Serial No.	2357			
Temperature, Ta (K) 297.5 Pressure, Pa (mniFig) 764.2 Orlfice Transfer Standard Information Equipment No.: $A-04-04$ Slope, no 0.0582 Intercept, be -0.0249 Last Calibration Date: 27-Sep-14 me x Qstd + bc = [AH x (Pa/760) x (298/Ta)] ^{1/2} -0.0249 Next Calibration Date: 26-Sep-15 Qstd = [IAH x (Pa/760) x (298/Ta)] ^{1/2} -0.0249 Calibration ΔH (orifice), in, of water $(\Delta H \times (Pa/760) x (298/Ta))^{1/2}$ ΔW $(\Delta W \times (Pa/760) x (298/Ta))^{1/2}$ 2 9.7 3.13 54.13 6.5 2.287 2 9.7 3.13 54.13 6.5 2.56 3 7.8 2.80 44.5.9 5.1 2.277 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 Set Point Calculation mer				Ambient	Condition				
Orlifee Transfer Standard Information Equipment No.: A-04-04 Slope, me 0.0582 Intercept, bc -0.0249 Last Calibration Date: 27-Sep-14 mc x Ostif + bc = [AH x (Pa/760) x (298/Ta)] ^{1/2} Next Calibration Date: 26-Sep-15 Qstd = {[AH x (Pa/760) x (298/Ta)] ^{1/2} Next Calibration Date: 26-Sep-15 Qstd = {[AH x (Pa/760) x (298/Ta)] ^{1/2} Next Calibration Date: 1000000000000000000000000000000000000	Temperatu	re, Ta (K)	297.5				764.2		
Equipment No.: A-04-04 Slope, mc 0.0582 Intercept, bc -0.0249 Last Calibration Date: 27-Sep-14 mc x Qstd + bc = [All x (Pa/760) x (298/Ta)] ^{1/2} -0.0249 Next Calibration Date: 26-Sep-15 Qstd = {[All x (Pa/760) x (298/Ta)] ^{1/2} -0.0249 Calibration of TSP Sampler Calibration of TSP Sampler Calibration Orfice HVS AH (orifice), in. of water [All x (Pa/760) x (298/Ta)] ^{1/2} Qstd (CFM) ΔW [axis 1 11.8 3.45 59.66 8.2 2.87 2 9.7 3.13 54.13 6.5 2.56 3 7.8 2.80 48.59 5.1 2.27 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Stet Point Calculation From the Regression Equation, the "Y" value according to mw x Qstd + bw = [$\Delta W x (Pa/760) x (298/Ta)$] ^{1/2} Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta /					<u> </u>	L			
Last Calibration Date: 27-Sep-14 mc x Qstd + bc = [AII x (Pa/760) x (298/Ta)] ^{1/2} Next Calibration Date: 26-Sep-15 Qstd = {[AII x (Pa/760) x (298/Ta)] ^{1/2} -bc} / mc Calibration of TSP Sampler Calibration of TSP Sampler Calibration Orfice HVS ΔH (orifice), in. of water $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$ Qstd (CFM) X - xxis ΔW $[\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Ye 2 9.7 3.13 54.13 6.5 2.26 3 7.8 2.80 48.59 5.1 2.27 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Set Point Calculation Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = [$\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 4.00 Conducted by: <td colspan<="" td=""><td></td><td></td><td>Or</td><td>ifice Transfer Sta</td><td>andard Inform</td><td>ation</td><td></td><td></td></td>	<td></td> <td></td> <td>Or</td> <td>ifice Transfer Sta</td> <td>andard Inform</td> <td>ation</td> <td></td> <td></td>			Or	ifice Transfer Sta	andard Inform	ation		
Next Calibration Date: 26-Sep-15 Qstd = {[AH x (Pa/760) x (298/Ta)]^{1/2} - be} / me Calibration of TSP Sampler Calibration Orfice HVS ΔH (orifice), in, of water [AH x (Pa/760) x (298/Ta)]^{1/2} Qstd (CFM) X - axis ΔW (Pa/760) x (298/Ta)]^{1/2} Y- 1 11.8 3.45 59.66 8.2 2.87 2 9.7 3.13 54.13 6.5 2.56 3 7.8 2.80 48.59 5.1 2.27 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Slope, mw = 0.0504 Intercept, bw0.1622 Correlation coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = [$\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 4.00$ Remarks: Conducted by: $M_{12} Am_{12} M_{12} M$	Equipme	ent No.:	A-04-04	Slope, mc					
Calibration of TSP Sampler Calibration of TSP Sampler MVS Calibration Orfice HVS ΔH (orifice), in of water [$\Delta H x (Pa/760) x (298/Ta)]^{1/2}$ Qstd (CFM) X - axis ΔW (HVS), in. of oil axis 1 11.8 3.45 59.66 8.2 2.87 2 9.7 3.13 54.13 6.5 2.56 3 7.8 2.80 48.59 5.1 2.27 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Stet Point Calculation Fourt calculation Fourt calculation Fourt Calculation Form the TSP Field Calibration Curve, take Qstd = 43 CFM Form the Regression Equation, the "Y" value according to mw x Qstd + bw = [$\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) =$	Last Calibra	ation Date:	27-Sep-14		mc x Qstd + l	oc = [ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	
Calibration Point Orfice HVS ΔH (orifice), in. of water $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) X - axis ΔW (HVS), in. of oil $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Y. axis 1 11.8 3.45 59.66 8.2 2.87 2 9.7 3.13 54.13 6.5 2.26 3 7.8 2.80 48.59 5.1 2.27 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Slope, mw = 0.0504 Intercept, bw :	Next Calibr	ation Date:	26-Sep-15		Qstd = $\{[\Delta H]$	x (Pa/760) x (298	/Ta)] ^{1/2} -be} /	' me	
Calibration Point Orfice HVS ΔH (orifice), in. of water $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) X - axis ΔW (HVS), in. of oil $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Y. 1 11.8 3.45 59.66 8.2 2.87 2 9.7 3.13 54.13 6.5 2.266 3 7.8 2.80 48.59 5.1 2.27 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Slope, mw = 0.0504 Intercept, bw :			•						
Calibration Point ΔH (orifice), in. of water $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) X - axis ΔW (HVS), in. of oil ΔW axis 1 11.8 3.45 59.66 8.2 2.87 2 9.7 3.13 54.13 6.5 2.267 3 7.8 2.80 48.59 5.1 2.27 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Stope, mw = 0.0504 Intercept, bw :		n and the strangent in the strain in the s Strain in the strain in the A strain in the		Calibration of	TSP Sampler				
Point ΔH (orifice) in. of water $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ $Qstid (CFM)$ X - axis ΔW (HVS), in. of oil $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ X - axis 1 11.8 3.45 59.66 8.2 2.87 2 9.7 3.13 54.13 6.5 2.56 3 7.8 2.80 48.59 5.1 2.27 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Set Point Calculation Correlation coefficient *=	Calibration		Or	fice	1			10	
2 9.7 3.13 54.13 6.5 2.56 3 7.8 2.80 48.59 5.1 2.27 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Slope , mw =			[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}			[ΔW x (Pa/7		
3 7.8 2.80 48.59 5.1 2.27 4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Slope , mw =	1	11.8	3.45		59.66	8.2		2.87	
4 5.2 2.29 39.75 3.3 1.82 5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Slope , mw =	2	9.7	3	3.13		6.5		2.56	
5 3.4 1.85 32.22 2.2 1.49 By Linear Regression of Y on X Slope , mv =	3	7.8	2.80		48.59	5.1		2.27	
By Linear Regression of Y on X Slope, $mw = 0.0504$ Intercept, $bw : -0.1622$ Correlation coefficient* = 0.9991 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to $mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 4.00$ Remarks: Conducted by: $MK Tang$ Signature: $M_{by} Q_{by}^2$ Date: $23 / to / 14$	4	5.2	2	2.29		3.3		1.82	
Slope, mw =0.0504	5	3.4	1.85		32.22	2.2		1.49	
*If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to $mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) = 4.00 Remarks: Conducted by: $MK lang$ Signature: $MW lang$	Slope, mw =	0.0504	-		Intercept, bw	-0.162	2		
Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) =					-				
From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to $mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) = Remarks: Conducted by: <u>MK Tang</u> Signature: <u>Kwai</u> Date: <u>23 / 1.0 / 14</u>	*If Correlation (Coefficient < 0.99	90, check and rec	alibrate.					
From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to $mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) = Remarks: Conducted by: <u>MK Tang</u> Signature: <u>Kwai</u> Date: <u>23 / 1.0 / 14</u>				Set Point (Calculation				
From the Regression Equation, the "Y" value according to $mw x Qstd + bw = \left \Delta W x (Pa/760) x (298/Ta) \right ^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) = 4.00 Remarks: Conducted by: <u>WK Tang</u> Signature: <u>Kwai</u> Date: <u>23 / 10/14</u>	From the TSP F	ield Calibration (Curve, take Qstd =						
$mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) =			-						
Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 4.00$ Remarks: Conducted by: <u>WK. Tana</u> Signature: <u>Kwai</u> Date: <u>23/10/14</u>	Ŭ	1 2		_		10			
Remarks: Conducted by: \underline{WK} and $\underline{Signature}$: \underline{WW} Date: $\underline{23/10/14}$			mw x ($Qstd + bw = \Delta W $	x (Pa/760) x (2	298/Ta)] ¹¹²			
Remarks: Conducted by: \underline{WK} and $\underline{Signature}$: \underline{KWW} Date: $\underline{23/10/14}$	Therefore S	et Point: W == (n	yy x Octd + by y	$\frac{2}{2} \times (760 / P_{2}) \times (760 / P_{2})$	$T_{9} / 298) =$	4.00	1		
Conducted by: WK-Tang Signature: Kww Date: 23/10/14	flicterore, o	\neq t rom, w – (n	iw x Qsiu + bw j	x(70071a)x(1a/290)	4.00			
Conducted by: <u>WK-Tang</u> Signature: <u>Kwai</u> Date: <u>23/10/14</u>									
Conducted by: WK-Tang Signature: Kww Date: 23/10/14									
	Remarks:								
				1	,] _			1 ,	
Checked by: <u>H</u> Signature: <u>A</u> Date: <u>A</u> Date: <u>A</u>	Conducted by:	Wik-Tang	Signature:	K	wei/	_	Date:	23/10/14	
	Checked by:	the o	Signature:		\mathcal{A}	_	Date:	23 October Doll	

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

			· .			File No.	MA14008/59/0025
Station	AM2 - Lee Kau	Yan Memorial S	chool	Operator:	WK		
Date:	29-Aug-14			Next Due Date:	:28-Oct-14		
Equipment No.: A-01-59			Serial No.	2354			
				Condition	T		
Temperatu	ire, Ta (K)	303.7	Pressure, Pa	ı (mmHg)		761.4	
		O	ifice Transfer St	andard Inform	ation		
Equipme	ent No.:	A-04-04	Slope, mc	0.0588	Intercep	t, bc	-0.0461
Last Calibra		30-Sep-13	······ · · · · · · · · · · · · · · · ·	mc x Qstd + l	$bc = [\Delta H x (Pa/76)]$		
Next Calibr	ation Date:	29-Sep-14			x (Pa/760) x (298		
		•					
	이는 아이는 아이지 T		Calibration of	TSP Sampler			
Calibration	177 (10)	Or	fice			HVS	10
Point	∆H (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil		60) x (298/Ta)] ^{1/2} Y- axis
1	11.8		3.41	58.71	7.9		2.79
2	9.7	3	1.09	53.30	6.3		2.49
3	7.5	2	2.72	46.96	4.8		2.17
4	5.4	2.30		39.97	3.3		1.80
5	3.3	1.80		31.42	2.1		1.44
By Linear Regr Slope , mw = Correlation c	0.0497 oefficient* =	- 0.9	989	Intercept, bw : -	-0.152	3	
*If Correlation (Coefficient < 0.99	90, check and reca	alibrate.				
			Set Point C	Calculation			
From the TSP Fi	ield Calibration C	Curve, take Qstd =	- 43 CFM				
From the Regres	sion Equation, th	ie "Y" value acco	rding to				
		mw x Q	Qstd + bw = [∆W	x (Pa/760) x (2	98/Ta)1 ^{1/2}		
Therefore, S	et Point; W = (n	1w x Qstd + bw) ²	x (760 / Pa) x (1	Γa / 298) =	4.01		
Remarks:							
Conducted by: Checked by:	wk.7anz H	Signature: Signature:	<u> </u>			Date:	2918/14 29 August 0014
			,				

TEST REPORT

DescriptionCalibration OrificeSerial No.0993Model No.TE-5025ADate27 September 2014

ManufacturerTTemperature,Ta (K)2Pressure, Pa (mmHg)7Equipment No.:A

(X axis)

Qa

0.6997

0.9865

1.1053

1.1531

1.3883

Qa Slope (m) = $\frac{1.28617}{0.01559}$ Intercept (b) = $\frac{-0.01559}{0.01559}$

Coefficient (r) = 0.99996

Y axis= SQRT[H₂O(Ta/Pa)]

TISCH 299 761.8 A-04-04

(Y axis)

0.8860

1.2530

1.4009

1.4693

1.7720

Plate	Diff.Vol (m ³)	Diff.Time (min)	Diff.Hg (mm)	Diff.H₂O (in.)
1	1.00	1.4230	3.3	2.00
2	1.00	1.0050	6.5	4.00
3	1.00	0.8950	8.2	5.00
4	1.00	0.8570	9.0	5.50
5	1.00	0.7080	13.0	8.00

Va

0.9957

0.9915

0.9892

0.9882

0.9829

DATA TABULATION

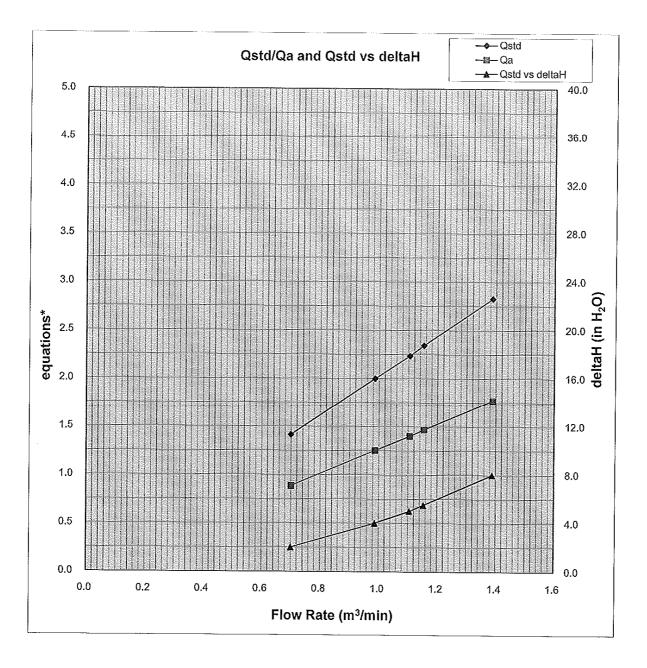
Vstd	(X axis)	(Y axis)			
	Qstd				
0.9947	0.6990	1.4135			
0.9905	0.9856	1.9990			
0.9883	1.1042	2.2350			
0.9872	1.1519	2.3441			
0.9820	1.3870	2.8270			
Y axis= SQRT[H ₂ O(Pa/760)(298/Ta)]					
Qstd Slope (m) = 2.05398					

Intercept (b)	= <u>-0.02487</u>
A	0 00000

Coefficient (r) = 0.99996

CALCULATIONS

Vstd=Diff. Vol[(Pa-Diff.Hg)/760](298/Ta) Qstd=Vstd/Time Va=Diff.Vol[(Pa-Diff.Hg)/Pa] Qa=Va/Time


For subsequent flow rate calculations: $Qstd=I/m{[SQRT(H_2O(Pa/760)(298/Ta))]-b}$ $Qa=I/m{[SQRT H_2O(Ta/Pa)]-b}$

> PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Y-axis equations:

Qstd series: SQRT[∆H(Pa/Pstd)(Tstd/Ta)]

Qa series: SQRT[\triangle H(Ta/Pa)]

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/141011A
Date of Issue:	2014-10-11
Date Received:	2014-10-11
Date Tested:	2014-10-11
Date Completed:	2014-10-11
Next Due Date:	2015-04-10
Page:	1 of 2

ATTN:

FLLAB 歴 Testing & Research ノ

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description	: Weather Monitor II
Manufacturer	: Davis Instruments
Model No.	: 7440
Serial No.	: MC20813A11

Test conditions:

Room Temperature	: 22 degree Celsius
Relative Humidity	: 54%

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No.:	C/141011A
Date of Issue:	2014-10-11
Date Received:	2014-10-11
Date Tested:	2014-10-11
Date Completed:	2014-10-11
Next Due Date:	2015-04-10
Page:	2 of 2

Results:

1. Performance check of anemometer

Air Velocity, m/s		Difference D (m/s)
Instrument Reading (V1) Reference Value (V1)		$\mathbf{D} = \mathbf{V}1 - \mathbf{V}2$
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Direction (°)		Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45.1	45	0.1
90.3	90.5	-0.2
134.8	135	-0.2
180.1	180	0.1
225.2	225	0.2
270.2	270	0.2
315	315	0
359.8	360	-0.2

WELLAB 匯 Testing & Research 力 WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

APPLICANT:	Cinotech Consultants l	Limited	Test Report No.:	C/140905/1
	Room 1710, Technolog		Date of Issue:	2014-09-08
	18 On Lai Street,		Date Received:	2014-09-05
	Shatin, NT, Hong Kon	g	Date Tested:	2014-09-05
	, , 6	0	Date Completed:	2014-09-08
			Next Due Date:	2014-11-07
ATTN:	Mr. W.K. Tang		Page:	1 of 1
	Certifica	te of Calil	oration	
Item for Calibr	ation:			
Description			r Dust Monitor	
Manufacture	er	: Siba		
Model No.		: LD-3		
Serial No.		: 251634		
Sensitivity (K) 1 CPM	$: 0.001 \text{ mg/m}^3$		
Sen. Adjust	nent Scale Setting	: 550 CPM		
Equipment 1	No.	: A-02-01		
Test Condition		.	a 1 Y	
Room Temp			egree Celsius	
	midity	: 63%		

ittouitot	
Correlation Factor (CF)	0.0031

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT Test Report No.: C/140815/1 **Cinotech Consultants Limited** APPLICANT: Date of Issue: 2014-08-18 Room 1710, Technology Park, Date Received: 2014-08-15 18 On Lai Street, 2014-08-15 Date Tested: Shatin, NT, Hong Kong Date Completed: 2014-08-18 Next Due Date: 2014-10-17 Page: 1 of 1 ATTN: Mr. WK Tang **Certificate of Calibration Item for Calibration:** Description : Laser Dust Monitor Manufacturer : Sibata Model No. : LD-3B Serial No. :954253 Sensitivity (K) 1 CPM $: 0.001 \text{ mg/m}^3$ Sen. Adjustment Scale Setting :772 CPM : A-02-05 Equipment No. **Test Conditions:** : 23 degree Celsius Room Temperature : 64% **Relative Humidity Test Specifications & Methodology:** 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0030

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

P'ATRICK TSE Laboratory Manager

WELLAB 匯 Testing & Research 力 WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT				
APPLICANT:	Cinotech Consultants I Room 1710, Technolog 18 On Lai Street, Shatin, NT, Hong Kong	y Park,	Test Report No.: Date of Issue: Date Received: Date Tested: Date Completed: Next Due Date:	C/140905/3 2014-09-08 2014-09-05 2014-09-05 2014-09-08 2014-11-07
ATTN:	Mr. W. K. Tang		Page:	1 of 1
	Certifica	te of Calib	ration	
Equipment	er K) 1 CPM ment Scale Setting No.	: Laser : Sibata : LD-31 : 01475 : 0.001 : 790 C : A-02-	3 60 mg/m ³ PM	
Test Conditions:Room Temperature: 23 degree CelsiusRelative Humidity: 63%				
1. Instruction 2. In-house	ions & Methodology: on and Operation Manual H method in according to the with a calibrated High Volu	e instruction	manual: The Laser I and the result was us	Dust Monitor was ed to generate the

Results:

Correlation Factor (CF)	0.0030

Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT:	Cinotech Consultants Limited
	Room 1710, Technology Park,
	18 On Lai Street,
	Shatin, NT, Hong Kong

Test Report No .:	C/140630/2
Date of Issue:	2014-09-01
Date Received:	2014-08-29
Date Tested:	2014-08-29
Date Completed:	2014-09-01
Next Due Date:	2014-10-31
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration				
Item for Calibration:				
Description	: Laser Dust Monitor			
Manufacturer	: Sibata			
Model No.	: LD-3B			
Serial No.	: 095050			
Sensitivity (K) 1 CPM	: 0.001 mg/m ³			
Sen. Adjustment Scale Setting	: 577 CPM			
Equipment No.	: A-02-09			
Test Conditions:				
Room Temperature	: 22 degree Celsius			
Relative Humidity	: 65%			

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0032		

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT Test Report No.: C/140630/3 **Cinotech Consultants Limited** APPLICANT: Date of Issue: 2014-09-01 Room 1710, Technology Park, Date Received: 2014-08-29 18 On Lai Street, Date Tested: 2014-08-29 Shatin, NT, Hong Kong Date Completed: 2014-09-01 Next Due Date: 2014-10-31 1 of 1 Page: Mr. W. K. Tang ATTN: **Certificate of Calibration Item for Calibration:** : Laser Dust Monitor Description : Sibata Manufacturer Model No. : LD-3B :095029 Serial No. $: 0.001 \text{ mg/m}^3$ Sensitivity (K) 1 CPM : 551 CPM Sen. Adjustment Scale Setting : A-02-10 Equipment No. **Test Conditions:** : 22 degree Celsius Room Temperature :65% **Relative Humidity** Test Specifications & Methodology: 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc. 2. In-house method in according to the instruction manual: The Laser Dust Monitor was

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0031

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/140630/4
Date of Issue:	2014-09-01
Date Received:	2014-08-29
Date Tested:	2014-08-29
Date Completed:	2014-09-01
Next Due Date:	2014-10-31
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-531	
Serial No.	: N6734	
Flow rate	:0.1 cfm	
Zero Count Test	:0 mg (The result of the 2-minute sample)	
Equipment No.	: A-02-13	
Test Conditions:		
Room Temperature	: 22 degree Celsius	
Relative Humidity	: 65%	

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.173
****	*****

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/N/140822/3
Date of Issue:	2014-08-25
Date Received:	2014-08-22
Date Tested:	2014-08-22
Date Completed:	2014-08-25
Next Due Date:	2015-08-24
Page:	1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 21459
Microphone No.	: 43676
Equipment No.	: N-08-08

Test conditions:

Room Temperatre Relative Humidity : 22 degree Celsius : 55%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

Cinotech Consultants Limited APPLICANT: Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/N/140822/1
Date of Issue:	2014-08-25
Date Received:	2014-08-22
Date Tested:	2014-08-22
Date Completed:	2014-08-25
Next Due Date:	2015-08-24
Page:	1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 21460
Microphone No.	: 43679
Equipment No.	: N-08-09

Test conditions:

Room Temperatre **Relative Humidity**

NTEK N 957 50 79 8-09

: 22 degree Celsius : 55%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

TEST REPORT

APPLICANT:	Cinotech Consultants L	imited	Test Report No.:	C/N/131004/1
	Room 1710, Technology	/ Park,	Date of Issue:	2013-10-05
	18 On Lai Street,		Date Received:	2013-10-04
	Shatin, NT, Hong Kong		Date Tested:	2013-10-04
			Date Completed:	2013-10-05
			Next Due Date:	2014-10-04
ATTN:	Mr. W.K. Tang		Page:	1 of 1
Item for calibration:				
	Description	: Acoustic	al Calibrator	
	Manufacturer	: SVANTI	EK	
	Model No.	: SV30A		
	Serial No.	: 24803		
	Equipment No.	: N-09-03		
Test conditions:				
	Room Temperatre	: 21 degree	e Celsius	
	Relative Humidity	: 57%		

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 \text{ dB}$
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

ah2h

PATRICK TSE Laboratory Manager

	TES	ST REPOR	R T	
APPLICANT:	Cinotech Consultant	s Limited	Test Report No.:	C/N/141003/1
	Room 1710, Technol	ogy Park,	Date of Issue:	2014-10-04
	18 On Lai Street,		Date Received:	2014-10-03
	Shatin, NT, Hong Ko	ong	Date Tested:	2014-10-03
		_	Date Completed:	2014-10-04
			Next Due Date:	2015-10-03
ATTN:	Mr. W.K. Tang		Page:	1 of 1
Item for calibr	ation:			
	Description	: Acoustic	al Calibrator	
	Manufacturer	: SVANT	EK	
	Model No.	: SV30A		
	Serial No.	: 24803		
	Equipment No.	: N-09-03		
Test condition	s:			
	D Transford	1 22 decue	a Calaina	

Room Temperatre: 22 degree CelsiusRelative Humidity: 56%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/N/140822/2
Date of Issue:	2014-08-25
Date Received:	2014-08-22
Date Tested:	2014-08-22
Date Completed:	2014-08-25
Next Due Date:	2015-08-24
Page:	1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description Manufacturer Model No. Serial No. Equipment No. : Acoustical Calibrator : Brüel & Kjær : 4231 : 2412367 : N-02-03

Test conditions:

Room Temperatre Relative Humidity : 20 degree Celsius : 64%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 \text{ dB}$
At 114 dB SPL	114.0	$114.0 \pm 0.1 \text{ dB}$

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 October 2014	25.2 - 31.4	70 – 96	26.7
2 October 2014	26.6 - 30.8	65 - 88	Trace
3 October 2014	25.2 - 30.0	76 – 92	23.7
4 October 2014	24.9 - 28.9	75 – 96	2.6
5 October 2014	25.4 - 30.7	54 - 88	0.1
6 October 2014	24.5 - 29.8	47 – 78	0
7 October 2014	24.4 - 28.9	54 - 72	Trace
8 October 2014	23.9 - 29.1	48-73	0
9 October 2014	25.0 - 29.2	48 - 71	0
10 October 2014	24.2 - 30.3	48 - 76	0
11 October 2014	25.1 - 31.4	49 - 72	0
12 October 2014	25.0 - 30.9	42 - 79	0
13 October 2014	23.8 - 29.9	45 - 68	0
14 October 2014	23.0 - 28.7	51 – 71	Trace
15 October 2014	22.8 - 28.4	56 – 74	0
16 October 2014	23.9 - 27.6	53 - 78	Trace
17 October 2014	23.4 - 28.0	53 - 74	0
18 October 2014	23.1 - 28.3	58 - 78	0
19 October 2014	24.5 - 28.5	56 - 82	Trace

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 October 2014	25.0 - 29.4	66 - 83	0
21 October 2014	24.6 - 30.4	50 - 84	Trace
22 October 2014	23.4 - 30.6	54 - 96	56.4
23 October 2014	23.9 - 25.7	75 – 95	0.2
24 October 2014	24.2 - 26.0	70 - 80	0
25 October 2014	24.1 - 26.0	76 - 83	0
26 October 2014	24.4 - 28.3	68 – 87	0.1
27 October 2014	24.4 - 28.7	65 – 87	0
28 October 2014	23.7 - 26.8	59 - 78	Trace
29 October 2014	23.9 - 27.7	62 - 82	Trace
30 October 2014	24.5 - 27.5	70 - 86	0
31 October 2014	28.1 - 24.3	70 - 87	0

* The above information was extracted from the daily weather summary by Hong Kong Observatory.

Date	Time	Wind Speed m/s	Direction
1-Oct-2014	00:00	3.1	NE
1-Oct-2014	01:00	3	ENE
1-Oct-2014	02:00	2.7	ENE
1-Oct-2014	03:00	2.5	ENE
1-Oct-2014	04:00	2.6	NE
1-Oct-2014	05:00	2.1	ENE
1-Oct-2014	06:00	1.6	ENE
1-Oct-2014	07:00	2.4	ENE
1-Oct-2014	08:00	1.6	ENE
1-Oct-2014	09:00	2.5	E
1-Oct-2014	10:00	2.3	ESE
1-Oct-2014	11:00	3.1	Ν
1-Oct-2014	12:00	3	NNE
1-Oct-2014	13:00	3.2	ENE
1-Oct-2014	14:00	3.1	NE
1-Oct-2014	15:00	3	NE
1-Oct-2014	16:00	2.9	ENE
1-Oct-2014	17:00	3	NE
1-Oct-2014	18:00	2.4	ENE
1-Oct-2014	19:00	2.2	ENE
1-Oct-2014	20:00	2.4	ENE
1-Oct-2014	21:00	2.9	NE
1-Oct-2014	22:00	2.4	Ν
1-Oct-2014	23:00	2	ENE
2-Oct-2014	00:00	1.9	NE
2-Oct-2014	01:00	1.8	ENE
2-Oct-2014	02:00	1.9	ENE
2-Oct-2014	03:00	1.9	NNE
2-Oct-2014	04:00	1.9	NE
2-Oct-2014	05:00	1.8	SW
2-Oct-2014	06:00	1.4	SSW
2-Oct-2014	07:00	1.9	SW
2-Oct-2014	08:00	1.8	W
2-Oct-2014	09:00	1.8	WSW
2-Oct-2014	10:00	2.3	W
2-Oct-2014	11:00	2.3	WSW

2-Oct-2014	12:00	2.7	SE
2-Oct-2014	13:00	2.3	SE
2-Oct-2014	14:00	2.6	WSW
2-Oct-2014	15:00	2.5	SW
2-Oct-2014	16:00	2	NNE
2-Oct-2014	17:00	1.7	WNW
2-Oct-2014	18:00	1.7	WNW
2-Oct-2014	19:00	1.5	WSW
2-Oct-2014	20:00	1.6	WSW
2-Oct-2014	21:00	1.6	ENE
2-Oct-2014	22:00	1.6	SW
2-Oct-2014	23:00	1.4	SW
3-Oct-2014	00:00	1.3	ENE
3-Oct-2014	01:00	1.2	ENE
3-Oct-2014	02:00	1.2	ENE
3-Oct-2014	03:00	1.6	ENE
3-Oct-2014	04:00	1.7	ENE
3-Oct-2014	05:00	1.7	ENE
3-Oct-2014	06:00	1.2	ESE
3-Oct-2014	07:00	1.6	ENE
3-Oct-2014	08:00	1.4	ENE
3-Oct-2014	09:00	1.8	SW
3-Oct-2014	10:00	2	SW
3-Oct-2014	11:00	1.9	ESE
3-Oct-2014	12:00	2.2	SSW
3-Oct-2014	13:00	2.6	SW
3-Oct-2014	14:00	2.1	NE
3-Oct-2014	15:00	2.8	NE
3-Oct-2014	16:00	1.7	ENE
3-Oct-2014	17:00	1.5	NE
3-Oct-2014	18:00	1.5	ENE
3-Oct-2014	19:00	1.3	NE
3-Oct-2014	20:00	1.1	ENE
3-Oct-2014	21:00	1.1	NE
3-Oct-2014	22:00	1.1	NE
3-Oct-2014	23:00	0.8	NE
4-Oct-2014	00:00	0.9	NE
	1		1

		1	
4-Oct-2014	01:00	1	NE
4-Oct-2014	02:00	0.8	NE
4-Oct-2014	03:00	0.8	NE
4-Oct-2014	04:00	1	ENE
4-Oct-2014	05:00	0.8	NE
4-Oct-2014	06:00	1	NE
4-Oct-2014	07:00	0.9	ENE
4-Oct-2014	08:00	1	NE
4-Oct-2014	09:00	1.2	ENE
4-Oct-2014	10:00	1.9	ENE
4-Oct-2014	11:00	2.2	NE
4-Oct-2014	12:00	2.4	ENE
4-Oct-2014	13:00	2.5	NE
4-Oct-2014	14:00	2.1	NE
4-Oct-2014	15:00	2.4	NE
4-Oct-2014	16:00	2	NE
4-Oct-2014	17:00	1.7	NE
4-Oct-2014	18:00	1.3	NE
4-Oct-2014	19:00	1	NE
4-Oct-2014	20:00	0.8	NE
4-Oct-2014	21:00	0.8	ENE
4-Oct-2014	22:00	1	W
4-Oct-2014	23:00	1	SW
5-Oct-2014	00:00	1.1	SSW
5-Oct-2014	01:00	1.2	SW
5-Oct-2014	02:00	1.1	SW
5-Oct-2014	03:00	1.2	SW
5-Oct-2014	04:00	1	W
5-Oct-2014	05:00	1.3	SW
5-Oct-2014	06:00	1.3	SSW
5-Oct-2014	07:00	1.2	ENE
5-Oct-2014	08:00	1.2	ENE
5-Oct-2014	09:00	1.5	SSW
5-Oct-2014	10:00	1.7	SW
5-Oct-2014	11:00	1.7	SW
5-Oct-2014	12:00	1.8	SW
5-Oct-2014	13:00	2.2	SW

	1		
5-Oct-2014	14:00	2.2	SW
5-Oct-2014	15:00	2.3	SW
5-Oct-2014	16:00	2.1	SSW
5-Oct-2014	17:00	1.7	SW
5-Oct-2014	18:00	1.9	SW
5-Oct-2014	19:00	1.3	WNW
5-Oct-2014	20:00	1.3	WNW
5-Oct-2014	21:00	1.3	WNW
5-Oct-2014	22:00	1.2	WNW
5-Oct-2014	23:00	1.1	WNW
6-Oct-2014	00:00	1.1	SW
6-Oct-2014	01:00	1.1	SW
6-Oct-2014	02:00	1.1	SSW
6-Oct-2014	03:00	1.3	WSW
6-Oct-2014	04:00	1.4	W
6-Oct-2014	05:00	1.3	WSW
6-Oct-2014	06:00	1.1	WSW
6-Oct-2014	07:00	1.2	WSW
6-Oct-2014	08:00	1.3	WSW
6-Oct-2014	09:00	1.4	WSW
6-Oct-2014	10:00	1.7	W
6-Oct-2014	11:00	1.9	NE
6-Oct-2014	12:00	2	SW
6-Oct-2014	13:00	2.4	SW
6-Oct-2014	14:00	2.7	SW
6-Oct-2014	15:00	2.6	SW
6-Oct-2014	16:00	2.4	SSW
6-Oct-2014	17:00	1.9	SW
6-Oct-2014	18:00	1.7	SE
6-Oct-2014	19:00	1.2	SW
6-Oct-2014	20:00	1.3	SSW
6-Oct-2014	21:00	0.9	SW
6-Oct-2014	22:00	1.1	SSW
6-Oct-2014	23:00	1	SSW
7-Oct-2014	00:00	1.1	SW
7-Oct-2014	01:00	1	S
7-Oct-2014	02:00	1.2	SE

7-Oct-2014	03:00	1.3	SSE
7-Oct-2014	04:00	1.1	S
7-Oct-2014	05:00	1.1	ENE
7-Oct-2014	06:00	1.4	ENE
7-Oct-2014	07:00	1	E
7-Oct-2014	08:00	1.2	E
7-Oct-2014	09:00	1.1	E
7-Oct-2014	10:00	1.6	NE
7-Oct-2014	11:00	1.9	NE
7-Oct-2014	12:00	2.5	NE
7-Oct-2014	13:00	2.2	NE
7-Oct-2014	14:00	1.9	SW
7-Oct-2014	15:00	1.5	SSW
7-Oct-2014	16:00	1.5	E
7-Oct-2014	17:00	1.6	E
7-Oct-2014	18:00	1.2	E
7-Oct-2014	19:00	1.3	E
7-Oct-2014	20:00	0.9	E
7-Oct-2014	21:00	0.8	E
7-Oct-2014	22:00	0.9	N
7-Oct-2014	23:00	0.9	W
8-Oct-2014	00:00	0.9	W
8-Oct-2014	01:00	1.1	W
8-Oct-2014	02:00	1.1	W
8-Oct-2014	03:00	0.9	W
8-Oct-2014	04:00	0.8	W
8-Oct-2014	05:00	0.8	N
8-Oct-2014	06:00	0.8	N
8-Oct-2014	07:00	0.9	NE
8-Oct-2014	08:00	1.1	SSW
8-Oct-2014	09:00	1.5	W
8-Oct-2014	10:00	1.7	SSW
8-Oct-2014	11:00	1.8	SW
8-Oct-2014	12:00	1.9	SW
8-Oct-2014	13:00	1.9	SW
8-Oct-2014	14:00	1.9	NE
8-Oct-2014	15:00	1.9	WNW

8-Oct-2014 16:00 1.8 SSW 8-Oct-2014 17:00 2.4 SSW 8-Oct-2014 18:00 1.5 SSE 8-Oct-2014 19:00 1.9 SE 8-Oct-2014 19:00 1.9 SE 8-Oct-2014 20:00 1.6 N 8-Oct-2014 21:00 1.9 N 8-Oct-2014 22:00 1.9 N 8-Oct-2014 23:00 1.7 N 9-Oct-2014 00:00 1.8 S 9-Oct-2014 01:00 1.9 SSW 9-Oct-2014 02:00 1.5 E 9-Oct-2014 02:00 1.5 N 9-Oct-2014 03:00 1.6 NNW 9-Oct-2014 04:00 1.5 NW 9-Oct-2014 05:00 1 SSE 9-Oct-2014 06:00 1.1 SW	
8-Oct-2014 18:00 1.5 SSE 8-Oct-2014 19:00 1.9 SE 8-Oct-2014 20:00 1.6 N 8-Oct-2014 21:00 1.9 N 8-Oct-2014 22:00 1.9 N 8-Oct-2014 22:00 1.9 N 8-Oct-2014 23:00 1.7 N 9-Oct-2014 00:00 1.8 S 9-Oct-2014 01:00 1.9 SSW 9-Oct-2014 02:00 1.5 E 9-Oct-2014 02:00 1.5 NW 9-Oct-2014 03:00 1.6 NNW 9-Oct-2014 04:00 1.5 NW 9-Oct-2014 05:00 1 SSE 9-Oct-2014 06:00 1.1 SW	
8-Oct-2014 19:00 1.9 SE 8-Oct-2014 20:00 1.6 N 8-Oct-2014 21:00 1.9 N 8-Oct-2014 22:00 1.9 N 8-Oct-2014 22:00 1.9 N 8-Oct-2014 22:00 1.9 N 8-Oct-2014 23:00 1.7 N 9-Oct-2014 00:00 1.8 S 9-Oct-2014 01:00 1.9 SSW 9-Oct-2014 02:00 1.5 E 9-Oct-2014 03:00 1.6 NNW 9-Oct-2014 04:00 1.5 NW 9-Oct-2014 06:00 1.1 SW	
8-Oct-2014 20:00 1.6 N 8-Oct-2014 21:00 1.9 N 8-Oct-2014 22:00 1.9 N 8-Oct-2014 22:00 1.9 N 8-Oct-2014 23:00 1.7 N 9-Oct-2014 00:00 1.8 S 9-Oct-2014 01:00 1.9 SSW 9-Oct-2014 02:00 1.5 E 9-Oct-2014 03:00 1.6 NNW 9-Oct-2014 04:00 1.5 NW 9-Oct-2014 05:00 1 SSE 9-Oct-2014 06:00 1.1 SW	I
8-Oct-2014 21:00 1.9 N 8-Oct-2014 22:00 1.9 N 8-Oct-2014 23:00 1.7 N 9-Oct-2014 00:00 1.8 S 9-Oct-2014 01:00 1.9 SSW 9-Oct-2014 01:00 1.9 SSW 9-Oct-2014 02:00 1.5 E 9-Oct-2014 03:00 1.6 NNW 9-Oct-2014 04:00 1.5 NW 9-Oct-2014 05:00 1 SSE 9-Oct-2014 06:00 1.1 SW	I
8-Oct-2014 22:00 1.9 N 8-Oct-2014 23:00 1.7 N 9-Oct-2014 00:00 1.8 S 9-Oct-2014 01:00 1.9 SSW 9-Oct-2014 02:00 1.5 E 9-Oct-2014 02:00 1.6 NNW 9-Oct-2014 04:00 1.5 NW 9-Oct-2014 05:00 1 SSE 9-Oct-2014 06:00 1.1 SW	I
8-Oct-2014 23:00 1.7 N 9-Oct-2014 00:00 1.8 S 9-Oct-2014 01:00 1.9 SSW 9-Oct-2014 02:00 1.5 E 9-Oct-2014 03:00 1.6 NNW 9-Oct-2014 04:00 1.5 NW 9-Oct-2014 06:00 1 SSE	I
9-Oct-2014 00:00 1.8 S 9-Oct-2014 01:00 1.9 SSW 9-Oct-2014 02:00 1.5 E 9-Oct-2014 03:00 1.6 NNW 9-Oct-2014 04:00 1.5 NW 9-Oct-2014 05:00 1 SSE 9-Oct-2014 06:00 1.1 SW	I
9-Oct-2014 01:00 1.9 SSW 9-Oct-2014 02:00 1.5 E 9-Oct-2014 03:00 1.6 NNW 9-Oct-2014 04:00 1.5 NW 9-Oct-2014 05:00 1 SSE 9-Oct-2014 06:00 1.1 SW	I
9-Oct-2014 02:00 1.5 E 9-Oct-2014 03:00 1.6 NNW 9-Oct-2014 04:00 1.5 NW 9-Oct-2014 05:00 1 SSE 9-Oct-2014 06:00 1.1 SW	I
9-Oct-2014 03:00 1.6 NNW 9-Oct-2014 04:00 1.5 NW 9-Oct-2014 05:00 1 SSE 9-Oct-2014 06:00 1.1 SW	
9-Oct-2014 04:00 1.5 NW 9-Oct-2014 05:00 1 SSE 9-Oct-2014 06:00 1.1 SW	
9-Oct-2014 05:00 1 SSE 9-Oct-2014 06:00 1.1 SW	
9-Oct-2014 06:00 1.1 SW	
9-Oct-2014 07:00 1 SE	
9-Oct-2014 08:00 1.5 WSW	I
9-Oct-2014 09:00 2 NE	
9-Oct-2014 10:00 2.2 SSW	1
9-Oct-2014 11:00 2.5 E	
9-Oct-2014 12:00 2.5 N	
9-Oct-2014 13:00 2.2 N	
9-Oct-2014 14:00 2.1 N	
9-Oct-2014 15:00 2.1 N	
9-Oct-2014 16:00 1.9 ENE	
9-Oct-2014 17:00 1.8 S	
9-Oct-2014 18:00 1.4 ENE	
9-Oct-2014 19:00 0.8 NNE	
9-Oct-2014 20:00 0.8 ENE	1
9-Oct-2014 21:00 1.3 ENE	
9-Oct-2014 22:00 1.4 ESE	
9-Oct-2014 23:00 1.3 W	
10-Oct-2014 00:00 1.3 SW	
10-Oct-2014 01:00 1.4 SW	
10-Oct-2014 02:00 1.5 WSW	/
10-Oct-2014 03:00 2 NE	
10-Oct-2014 04:00 1.7 N	

		I	
10-Oct-2014	05:00	1.5	ENE
10-Oct-2014	06:00	1	N
10-Oct-2014	07:00	1.1	W
10-Oct-2014	08:00	1.4	W
10-Oct-2014	09:00	1.6	WSW
10-Oct-2014	10:00	2.6	WSW
10-Oct-2014	11:00	2.6	SSW
10-Oct-2014	12:00	2.7	WSW
10-Oct-2014	13:00	2.8	WNW
10-Oct-2014	14:00	1.9	WNW
10-Oct-2014	15:00	1.5	S
10-Oct-2014	16:00	1.8	SSW
10-Oct-2014	17:00	1.4	S
10-Oct-2014	18:00	0.9	W
10-Oct-2014	19:00	1	W
10-Oct-2014	20:00	1.2	W
10-Oct-2014	21:00	1.3	W
10-Oct-2014	22:00	1.3	W
10-Oct-2014	23:00	0.9	WSW
11-Oct-2014	00:00	1.6	SW
11-Oct-2014	01:00	1.2	W
11-Oct-2014	02:00	1	W
11-Oct-2014	03:00	0.8	W
11-Oct-2014	04:00	1.3	W
11-Oct-2014	05:00	1.3	WNW
11-Oct-2014	06:00	1.6	W
11-Oct-2014	07:00	1.4	W
11-Oct-2014	08:00	1.5	W
11-Oct-2014	09:00	2.3	WSW
11-Oct-2014	10:00	2.1	W
11-Oct-2014	11:00	2.1	SSE
11-Oct-2014	12:00	2.2	SSE
11-Oct-2014	13:00	2.4	W
11-Oct-2014	14:00	2.6	N
11-Oct-2014	15:00	2.7	NNE
11-Oct-2014	16:00	2	WSW
11-Oct-2014	17:00	1.9	NW

11-Oct-2014	18:00	1.8	WSW
11-Oct-2014	19:00	1.4	WSW
11-Oct-2014	20:00	1.4	WSW
11-Oct-2014	21:00	1.3	WSW
11-Oct-2014	22:00	0.8	SSW
11-Oct-2014	23:00	1.1	S
12-Oct-2014	00:00	1.2	SSW
12-Oct-2014	01:00	1.1	W
12-Oct-2014	02:00	1	WSW
12-Oct-2014	03:00	1.3	SW
12-Oct-2014	04:00	1.3	W
12-Oct-2014	05:00	1.3	SSW
12-Oct-2014	06:00	1.3	W
12-Oct-2014	07:00	1.2	W
12-Oct-2014	08:00	1.6	W
12-Oct-2014	09:00	2.1	WSW
12-Oct-2014	10:00	2.4	W
12-Oct-2014	11:00	2.4	W
12-Oct-2014	12:00	3.3	ESE
12-Oct-2014	13:00	3.1	SSW
12-Oct-2014	14:00	3.1	SSW
12-Oct-2014	15:00	2.7	ENE
12-Oct-2014	16:00	2.8	N
12-Oct-2014	17:00	2.7	WSW
12-Oct-2014	18:00	2.5	WNW
12-Oct-2014	19:00	2.3	W
12-Oct-2014	20:00	2.1	W
12-Oct-2014	21:00	2.1	W
12-Oct-2014	22:00	2.4	W
12-Oct-2014	23:00	2.7	W
13-Oct-2014	00:00	2.7	WSW
13-Oct-2014	01:00	2.8	W
13-Oct-2014	02:00	2.3	NNE
13-Oct-2014	03:00	2.4	S
13-Oct-2014	04:00	1.9	S
13-Oct-2014	05:00	2	SSW
13-Oct-2014	06:00	2.1	W

13-Oct-2014	07:00	1.9	SSE
13-Oct-2014	08:00	2	SSE
13-Oct-2014	09:00	2.3	S
13-Oct-2014	10:00	2.8	W
13-Oct-2014	11:00	3.4	W
13-Oct-2014	12:00	3.9	W
13-Oct-2014	13:00	3.5	SW
13-Oct-2014	14:00	3.4	WSW
13-Oct-2014	15:00	3.2	W
13-Oct-2014	16:00	2.5	WNW
13-Oct-2014	17:00	2.4	W
13-Oct-2014	18:00	2.4	W
13-Oct-2014	19:00	2.5	WNW
13-Oct-2014	20:00	2.5	W
13-Oct-2014	21:00	2.4	W
13-Oct-2014	22:00	2.1	WNW
13-Oct-2014	23:00	2.3	W
14-Oct-2014	00:00	2.3	WNW
14-Oct-2014	01:00	2	W
14-Oct-2014	02:00	2.2	WNW
14-Oct-2014	03:00	1.7	W
14-Oct-2014	04:00	1.9	WNW
14-Oct-2014	05:00	1.8	WNW
14-Oct-2014	06:00	1.5	S
14-Oct-2014	07:00	2.1	W
14-Oct-2014	08:00	2.2	WNW
14-Oct-2014	09:00	3.1	SSE
14-Oct-2014	10:00	2.7	S
14-Oct-2014	11:00	2.7	W
14-Oct-2014	12:00	2.9	W
14-Oct-2014	13:00	2.9	W
14-Oct-2014	14:00	2.4	W
14-Oct-2014	15:00	2.7	NNE
14-Oct-2014	16:00	2.7	ENE
14-Oct-2014	17:00	2.3	ENE
14-Oct-2014	18:00	2	NE
14-Oct-2014	19:00	2.2	NE

14-Oct-2014	20:00	2	ENE
14-Oct-2014	21:00	2.2	NE
14-Oct-2014	22:00	2.3	SW
14-Oct-2014	23:00	2.1	S
15-Oct-2014	00:00	2.4	SSW
15-Oct-2014	01:00	2.1	SW
15-Oct-2014	02:00	2.3	SW
15-Oct-2014	03:00	2.4	SW
15-Oct-2014	04:00	1.9	WSW
15-Oct-2014	05:00	1.8	SW
15-Oct-2014	06:00	1.9	SW
15-Oct-2014	07:00	2.1	SW
15-Oct-2014	08:00	2.3	SW
15-Oct-2014	09:00	2.2	W
15-Oct-2014	10:00	2.7	SW
15-Oct-2014	11:00	2.4	SW
15-Oct-2014	12:00	2.2	WSW
15-Oct-2014	13:00	2.2	WSW
15-Oct-2014	14:00	2.3	SW
15-Oct-2014	15:00	2.1	SW
15-Oct-2014	16:00	1.9	SW
15-Oct-2014	17:00	2.1	SW
15-Oct-2014	18:00	1.9	W
15-Oct-2014	19:00	1.6	W
15-Oct-2014	20:00	1.5	W
15-Oct-2014	21:00	1.7	W
15-Oct-2014	22:00	1.6	WSW
15-Oct-2014	23:00	1.8	W
16-Oct-2014	00:00	2	WNW
16-Oct-2014	01:00	2	WNW
16-Oct-2014	02:00	1.8	W
16-Oct-2014	03:00	2	WNW
16-Oct-2014	04:00	2.2	WNW
16-Oct-2014	05:00	2.4	WNW
16-Oct-2014	06:00	2.2	W
16-Oct-2014	07:00	2.4	SSW
16-Oct-2014	08:00	2.2	WSW

16-Oct-2014 09:00 2.3 N 16-Oct-2014 10:00 1.9 N 16-Oct-2014 11:00 2.2 N 16-Oct-2014 12:00 2.4 N 16-Oct-2014 13:00 2.6 NNE 16-Oct-2014 13:00 2.5 NE 16-Oct-2014 14:00 2.5 NE 16-Oct-2014 16:00 2.5 NE 16-Oct-2014 16:00 2.5 NE 16-Oct-2014 16:00 2.5 NE 16-Oct-2014 16:00 2.5 NE 16-Oct-2014 17:00 2.5 NE 16-Oct-2014 18:00 1.9 W 16-Oct-2014 20:00 1.4 W 16-Oct-2014 21:00 1.7 W 16-Oct-2014 23:00 1.8 W 17-Oct-2014 02:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014	
16-Oct-2014 11:00 2.2 N 16-Oct-2014 12:00 2.4 N 16-Oct-2014 13:00 2.6 NNE 16-Oct-2014 14:00 2.5 NE 16-Oct-2014 15:00 2.5 NE 16-Oct-2014 15:00 2.5 NE 16-Oct-2014 16:00 2.5 NE 16-Oct-2014 16:00 2.5 NE 16-Oct-2014 16:00 2.5 NE 16-Oct-2014 17:00 2.5 NE 16-Oct-2014 19:00 2 WSW 16-Oct-2014 20:00 1.4 W 16-Oct-2014 21:00 1.7 W 16-Oct-2014 23:00 1.8 W 17-Oct-2014 00:00 1.9 WSW 17-Oct-2014 01:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014 03:00 2.1 WSW 17-Oct-2014<	
16-Oct-201412:002.4N16-Oct-201413:002.6NNE16-Oct-201414:002.5NE16-Oct-201415:002.5NE16-Oct-201416:002.5NE16-Oct-201416:002.5NE16-Oct-201417:002.5NE16-Oct-201419:002WSW16-Oct-201419:002WSW16-Oct-201420:001.4W16-Oct-201421:001.7W16-Oct-201423:001.8W17-Oct-201401:002WSW17-Oct-201402:002WSW17-Oct-201402:002WSW17-Oct-201403:002.1WSW17-Oct-201404:001.5WSW	
16-Oct-201413:002.6NNE16-Oct-201414:002.5NE16-Oct-201415:002.5NE16-Oct-201416:002.5NE16-Oct-201417:002.5NE16-Oct-201419:002.5NE16-Oct-201419:002WSW16-Oct-201419:002WSW16-Oct-201420:001.4W16-Oct-201421:001.7W16-Oct-201422:001.4WNW16-Oct-201423:001.8W17-Oct-201401:002WSW17-Oct-201401:002WSW17-Oct-201402:002WSW17-Oct-201403:002.1WSW17-Oct-201404:001.5WSW	
16-Oct-201414:002.5NE16-Oct-201415:002.5NE16-Oct-201416:002.5NE16-Oct-201417:002.5NE16-Oct-201418:001.9W16-Oct-201419:002WSW16-Oct-201420:001.4W16-Oct-201421:001.7W16-Oct-201422:001.4WNW16-Oct-201422:001.8W17-Oct-201400:001.9WSW17-Oct-201401:002WSW17-Oct-201402:002WSW17-Oct-201403:002.1WSW17-Oct-201404:001.5WSW	
16-Oct-201415:002.5NE16-Oct-201416:002.5NE16-Oct-201417:002.5NE16-Oct-201418:001.9W16-Oct-201419:002WSW16-Oct-201420:001.4W16-Oct-201421:001.7W16-Oct-201422:001.4WNW16-Oct-201422:001.4WNW16-Oct-201423:001.8W17-Oct-201400:001.9WSW17-Oct-201402:002WSW17-Oct-201403:002.1WSW17-Oct-201404:001.5WSW	
16-Oct-201416:002.5NE16-Oct-201417:002.5NE16-Oct-201418:001.9W16-Oct-201419:002WSW16-Oct-201420:001.4W16-Oct-201421:001.7W16-Oct-201422:001.4WNW16-Oct-201422:001.4WNW16-Oct-201423:001.8W17-Oct-201400:001.9WSW17-Oct-201401:002WSW17-Oct-201402:002.1WSW17-Oct-201404:001.5WSW	
16-Oct-201417:002.5NE16-Oct-201418:001.9W16-Oct-201419:002WSW16-Oct-201420:001.4W16-Oct-201421:001.7W16-Oct-201422:001.4WNW16-Oct-201422:001.4WNW16-Oct-201423:001.8W17-Oct-201400:001.9WSW17-Oct-201401:002WSW17-Oct-201402:002WSW17-Oct-201403:002.1WSW17-Oct-201404:001.5WSW	
16-Oct-201418:001.9W16-Oct-201419:002WSW16-Oct-201420:001.4W16-Oct-201421:001.7W16-Oct-201422:001.4WNW16-Oct-201423:001.8W17-Oct-201400:001.9WSW17-Oct-201401:002WSW17-Oct-201402:002WSW17-Oct-201402:001.5WSW	
16-Oct-201419:002WSW16-Oct-201420:001.4W16-Oct-201421:001.7W16-Oct-201422:001.4WNW16-Oct-201423:001.8W17-Oct-201400:001.9WSW17-Oct-201401:002WSW17-Oct-201402:002WSW17-Oct-201402:001.5WSW	
16-Oct-2014 20:00 1.4 W 16-Oct-2014 21:00 1.7 W 16-Oct-2014 22:00 1.4 WNW 16-Oct-2014 22:00 1.4 WNW 16-Oct-2014 23:00 1.8 W 17-Oct-2014 00:00 1.9 WSW 17-Oct-2014 01:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014 03:00 2.1 WSW 17-Oct-2014 04:00 1.5 WSW	
16-Oct-2014 21:00 1.7 W 16-Oct-2014 22:00 1.4 WNW 16-Oct-2014 23:00 1.8 W 17-Oct-2014 00:00 1.9 WSW 17-Oct-2014 01:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014 02:00 1.10 1.10 17-Oct-2014 01:00 1.10 1.10 1.10 17-Oct-2014 01:00 1.10 1.10 1.10 1.10 1.10 17-Oct-2014 01:00 1.10	
16-Oct-2014 22:00 1.4 WNW 16-Oct-2014 23:00 1.8 W 17-Oct-2014 00:00 1.9 WSW 17-Oct-2014 01:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014 03:00 2.1 WSW 17-Oct-2014 04:00 1.5 WSW	
16-Oct-2014 23:00 1.8 W 17-Oct-2014 00:00 1.9 WSW 17-Oct-2014 01:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014 03:00 2.1 WSW 17-Oct-2014 04:00 1.5 WSW	
17-Oct-2014 00:00 1.9 WSW 17-Oct-2014 01:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014 03:00 2.1 WSW 17-Oct-2014 04:00 1.5 WSW	
17-Oct-2014 01:00 2 WSW 17-Oct-2014 02:00 2 WSW 17-Oct-2014 03:00 2.1 WSW 17-Oct-2014 04:00 1.5 WSW	
17-Oct-2014 02:00 2 WSW 17-Oct-2014 03:00 2.1 WSW 17-Oct-2014 04:00 1.5 WSW	
17-Oct-2014 03:00 2.1 WSW 17-Oct-2014 04:00 1.5 WSW	
17-Oct-2014 04:00 1.5 WSW	
17-Oct-2014 05:00 1.5 W/SW/	
17 GU 2017 00.00 1.0 WSW	
17-Oct-2014 06:00 1.8 W	
17-Oct-2014 07:00 1.8 W	
17-Oct-2014 08:00 1.6 WSW	
17-Oct-2014 09:00 1.9 W	
17-Oct-2014 10:00 2.2 NW	
17-Oct-2014 11:00 2.5 NE	
17-Oct-2014 12:00 2.7 ENE	
17-Oct-2014 13:00 2.2 E	
17-Oct-2014 14:00 2.4 NE	
17-Oct-2014 15:00 2.2 NE	
17-Oct-2014 16:00 2.4 E	
17-Oct-2014 17:00 1.7 E	
17-Oct-2014 18:00 1.4 E	
17-Oct-2014 19:00 1.3 W	
17-Oct-2014 20:00 1.1 NE	
17-Oct-2014 21:00 1 N	

17-Oct-2014	22:00	1.5	NNE
17-Oct-2014	23:00	1.3	NNE
18-Oct-2014	00:00	1	ENE
18-Oct-2014	01:00	1.3	ENE
18-Oct-2014	02:00	1.1	S
18-Oct-2014	03:00	1.1	NNE
18-Oct-2014	04:00	1.3	N
18-Oct-2014	05:00	1.3	N
18-Oct-2014	06:00	1.2	NW
18-Oct-2014	07:00	1.1	NW
18-Oct-2014	08:00	1.5	N
18-Oct-2014	09:00	2.4	WNW
18-Oct-2014	10:00	2.6	SSE
18-Oct-2014	11:00	3	N
18-Oct-2014	12:00	2.6	N
18-Oct-2014	13:00	2.6	NNE
18-Oct-2014	14:00	2.2	ENE
18-Oct-2014	15:00	2.2	ENE
18-Oct-2014	16:00	2.1	NE
18-Oct-2014	17:00	1.8	NNE
18-Oct-2014	18:00	1.6	N
18-Oct-2014	19:00	1.5	ENE
18-Oct-2014	20:00	1.4	W
18-Oct-2014	21:00	1.4	W
18-Oct-2014	22:00	1.4	WSW
18-Oct-2014	23:00	1.6	SW
19-Oct-2014	00:00	1.8	W
19-Oct-2014	01:00	1.7	W
19-Oct-2014	02:00	1.6	W
19-Oct-2014	03:00	1.3	W
19-Oct-2014	04:00	1.2	WNW
19-Oct-2014	05:00	1.3	WNW
19-Oct-2014	06:00	1	W
19-Oct-2014	07:00	1	WNW
19-Oct-2014	08:00	1.2	WNW
19-Oct-2014	09:00	1.3	WNW
19-Oct-2014	10:00	2.5	W

19-Oct-2014	11:00	2.8	W
19-Oct-2014	12:00	2.5	S
19-Oct-2014	13:00	2.5	W
19-Oct-2014	14:00	2.4	W
19-Oct-2014	15:00	2.9	W
19-Oct-2014	16:00	2.7	WSW
19-Oct-2014	17:00	2.7	WSW
19-Oct-2014	18:00	2	WSW
19-Oct-2014	19:00	1.5	WNW
19-Oct-2014	20:00	0.9	SW
19-Oct-2014	21:00	0.7	W
19-Oct-2014	22:00	1.1	W
19-Oct-2014	23:00	1	W
20-Oct-2014	00:00	0.8	WNW
20-Oct-2014	01:00	0.8	W
20-Oct-2014	02:00	0.9	W
20-Oct-2014	03:00	0.9	W
20-Oct-2014	04:00	0.8	WNW
20-Oct-2014	05:00	0.9	WNW
20-Oct-2014	06:00	0.9	W
20-Oct-2014	07:00	0.9	E
20-Oct-2014	08:00	1.5	Ν
20-Oct-2014	09:00	2.2	NE
20-Oct-2014	10:00	2.3	NNE
20-Oct-2014	11:00	2.2	NE
20-Oct-2014	12:00	2.4	ESE
20-Oct-2014	13:00	2.6	E
20-Oct-2014	14:00	2.1	ENE
20-Oct-2014	15:00	1.9	ENE
20-Oct-2014	16:00	1.8	ENE
20-Oct-2014	17:00	1.2	ENE
20-Oct-2014	18:00	0.8	ENE
20-Oct-2014	19:00	0.8	ENE
20-Oct-2014	20:00	0.7	NE
20-Oct-2014	21:00	0.9	WNW
20-Oct-2014	22:00	0.8	ENE
20-Oct-2014	23:00	1	NNE

r		T	I
21-Oct-2014	00:00	1.3	NE
21-Oct-2014	01:00	1.2	NE
21-Oct-2014	02:00	1.4	ENE
21-Oct-2014	03:00	1.4	Ν
21-Oct-2014	04:00	1.5	NNE
21-Oct-2014	05:00	1.2	Ν
21-Oct-2014	06:00	1.2	N
21-Oct-2014	07:00	0.8	Ν
21-Oct-2014	08:00	0.8	Ν
21-Oct-2014	09:00	1.9	NE
21-Oct-2014	10:00	2.1	N
21-Oct-2014	11:00	2.3	N
21-Oct-2014	12:00	2.4	Ν
21-Oct-2014	13:00	1.9	Ν
21-Oct-2014	14:00	1.7	Ν
21-Oct-2014	15:00	1.6	NNW
21-Oct-2014	16:00	1.9	WNW
21-Oct-2014	17:00	1.9	NNE
21-Oct-2014	18:00	1.4	NNE
21-Oct-2014	19:00	1.2	NE
21-Oct-2014	20:00	1.1	NE
21-Oct-2014	21:00	1.2	N
21-Oct-2014	22:00	1.1	NNE
21-Oct-2014	23:00	1.3	NE
22-Oct-2014	00:00	1.3	NE
22-Oct-2014	01:00	1.1	NNE
22-Oct-2014	02:00	1.5	NNE
22-Oct-2014	03:00	1.5	NE
22-Oct-2014	04:00	1.3	NE
22-Oct-2014	05:00	1.2	NE
22-Oct-2014	06:00	1.4	WNW
22-Oct-2014	07:00	1.6	NNE
22-Oct-2014	08:00	2	W
22-Oct-2014	09:00	2.2	W
22-Oct-2014	10:00	2.4	W
22-Oct-2014	11:00	2.2	W
22-Oct-2014	12:00	2.6	W

			1	
22-Oct-2014	13:00	2.6	WSW	
22-Oct-2014	14:00	2.3	WSW	
22-Oct-2014	15:00	2.2	W	
22-Oct-2014	16:00	2.5	W	
22-Oct-2014	17:00	2.4	W	
22-Oct-2014	18:00	2	N	
22-Oct-2014	19:00	2	NNE	
22-Oct-2014	20:00	1.8	NNE	
22-Oct-2014	21:00	2	NNE	
22-Oct-2014	22:00	1.8	NNE	
22-Oct-2014	23:00	1.8	ENE	
23-Oct-2014	00:00	2.1	ENE	
23-Oct-2014	01:00	2	NNE	
23-Oct-2014	02:00	1.8	WSW	
23-Oct-2014	03:00	2.1	SSW	
23-Oct-2014	04:00	2.2	SSW	
23-Oct-2014	05:00	2.1	SSW	
23-Oct-2014	06:00	2.2	SSW	
23-Oct-2014	07:00	2	W	
23-Oct-2014	08:00	2.1	WNW	
23-Oct-2014	09:00	2.2	W	
23-Oct-2014	10:00	2.6	W	
23-Oct-2014	11:00	2.8	W	
23-Oct-2014	12:00	2.9	SSW	
23-Oct-2014	13:00	2.9	W	
23-Oct-2014	14:00	2.9	W	
23-Oct-2014	15:00	2.4	W	
23-Oct-2014	16:00	2.4	WNW	
23-Oct-2014	17:00	2.5	SSW	
23-Oct-2014	18:00	2.2	SW	
23-Oct-2014	19:00	2.1	W	
23-Oct-2014	20:00	2.2	W	
23-Oct-2014	21:00	1.9	N	
23-Oct-2014	22:00	2.3	NE	
23-Oct-2014	23:00	2	E	
24-Oct-2014	00:00	2.2	ENE	
24-Oct-2014	01:00	2.5	ENE	

24-Oct-2014	02:00	2.5	E	
24-Oct-2014	03:00	2.5	ENE	
24-Oct-2014	04:00	2.2	ENE	
24-Oct-2014	05:00	2.4	NE	
24-Oct-2014	06:00	2.2	NE	
24-Oct-2014	07:00	2.1	N	
24-Oct-2014	08:00	2.3	NNE	
24-Oct-2014	09:00	2.6	NNE	
24-Oct-2014	10:00	2.9	NE	
24-Oct-2014	11:00	3.4	ESE	
24-Oct-2014	12:00	3	E	
24-Oct-2014	13:00	3.3	ENE	
24-Oct-2014	14:00	2.9	ENE	
24-Oct-2014	15:00	2.9	ENE	
24-Oct-2014	16:00	3	ENE	
24-Oct-2014	17:00	3.1	ENE	
24-Oct-2014	18:00	2.3	NE	
24-Oct-2014	19:00	2.2	NE	
24-Oct-2014	20:00	2.2	NNE	
24-Oct-2014	21:00	2.2	N	
24-Oct-2014	22:00	2.9	Ν	
24-Oct-2014	23:00	2.8	ENE	
25-Oct-2014	00:00	2.8	W	
25-Oct-2014	01:00	2.7	SE	
25-Oct-2014	02:00	2.7	E	
25-Oct-2014	03:00	2.4	E	
25-Oct-2014	04:00	2.2	WSW	
25-Oct-2014	05:00	2.3	SW	
25-Oct-2014	06:00	2.1	W	
25-Oct-2014	07:00	1.6	SSW	
25-Oct-2014	08:00	1.6	SW	
25-Oct-2014	09:00	2.6	W	
25-Oct-2014	10:00	3	SSW	
25-Oct-2014	11:00	3.5	SW	
25-Oct-2014	12:00	2.8	WSW	
25-Oct-2014	13:00	3	SW	
25-Oct-2014	14:00	3.2	SW	

25-Oct-2014	15:00	3.1	WNW	
25-Oct-2014	16:00	2.7	W	
25-Oct-2014	17:00	2.1	SW	
25-Oct-2014	18:00	1.6	SW	
25-Oct-2014	19:00	1.9	WNW	
25-Oct-2014	20:00	2.2	WNW	
25-Oct-2014	21:00	2	WNW	
25-Oct-2014	22:00	2.1	SW	
25-Oct-2014	23:00	2.6	SW	
26-Oct-2014	00:00	2.3	SW	
26-Oct-2014	01:00	2.4	NW	
26-Oct-2014	02:00	2.2	N	
26-Oct-2014	03:00	1.9	W	
26-Oct-2014	04:00	2.2	WNW	
26-Oct-2014	05:00	1.7	NNE	
26-Oct-2014	06:00	1	W	
26-Oct-2014	07:00	1.4	WSW	
26-Oct-2014	08:00	1.1	W	
26-Oct-2014	09:00	2.1	W	
26-Oct-2014	10:00	2.1	WSW	
26-Oct-2014	11:00	2.2	WNW	
26-Oct-2014	12:00	2.4	W	
26-Oct-2014	13:00	2.5	WNW	
26-Oct-2014	14:00	2.8	W	
26-Oct-2014	15:00	2.7	W	
26-Oct-2014	16:00	2.2	WNW	
26-Oct-2014	17:00	1.9	SW	
26-Oct-2014	18:00	1	SW	
26-Oct-2014	19:00	1.1	SW	
26-Oct-2014	20:00	1.2	WSW	
26-Oct-2014	21:00	1.3	W	
26-Oct-2014	22:00	1	W	
26-Oct-2014	23:00	1.1	W	
27-Oct-2014	00:00	1.1	1.1 WSW	
27-Oct-2014	01:00	1	N	
27-Oct-2014	02:00	1	ENE	
27-Oct-2014	03:00	1.7	ENE	

27-Oct-2014	04:00	1.7	ENE	
27-Oct-2014	05:00	1.7	NE	
27-Oct-2014	06:00	1.6	SSW	
27-Oct-2014	07:00	1.8	N	
27-Oct-2014	08:00	2.1	NNW	
27-Oct-2014	09:00	2.4	N	
27-Oct-2014	10:00	2.6	Ν	
27-Oct-2014	11:00	3.2	Ν	
27-Oct-2014	12:00	2.8	NW	
27-Oct-2014	13:00	2.3	NNW	
27-Oct-2014	14:00	2.6	NNW	
27-Oct-2014	15:00	2.2	Ν	
27-Oct-2014	16:00	2.3	NW	
27-Oct-2014	17:00	2.2	N	
27-Oct-2014	18:00	1.8	NNW	
27-Oct-2014	19:00	2	N	
27-Oct-2014	20:00	2.2	N	
27-Oct-2014	21:00	2.2	NE	
27-Oct-2014	22:00	1.7	NNE	
27-Oct-2014	23:00	1.7	N	
28-Oct-2014	00:00	1.7	N	
28-Oct-2014	01:00	1.7	N	
28-Oct-2014	02:00	1.8	NE	
28-Oct-2014	03:00	1.7	ENE	
28-Oct-2014	04:00	1.6	NNE	
28-Oct-2014	05:00	1.5	N	
28-Oct-2014	06:00	1.4	N	
28-Oct-2014	07:00	1.4	NNE	
28-Oct-2014	08:00	1.6	N	
28-Oct-2014	09:00	2.3	NNE	
28-Oct-2014	10:00	3	NNE	
28-Oct-2014	11:00	3.1	NNE	
28-Oct-2014	12:00	3	NNE	
28-Oct-2014	13:00	2.9	ENE	
28-Oct-2014	14:00	2.5	N	
28-Oct-2014	15:00	2.5	N	
28-Oct-2014	16:00	2.4	NNE	

28-Oct-2014	17:00	1.9	Ν
28-Oct-2014	18:00	1.7	Ν
28-Oct-2014	19:00	1.4	Ν
28-Oct-2014	20:00	1.3	Ν
28-Oct-2014	21:00	1.6	NNW
28-Oct-2014	22:00	1.3	NE
28-Oct-2014	23:00	1.3	NNE
29-Oct-2014	00:00	1.3	NE
29-Oct-2014	01:00	1.3	NNE
29-Oct-2014	02:00	1.3	E
29-Oct-2014	03:00	1.2	E
29-Oct-2014	04:00	1.6	E
29-Oct-2014	05:00	1.5	NNE
29-Oct-2014	06:00	1.6	Ν
29-Oct-2014	07:00	1.9	NNW
29-Oct-2014	08:00	1.8	NNW
29-Oct-2014	09:00	2.2	SW
29-Oct-2014	10:00	2.7	SW
29-Oct-2014	11:00	2.5	SW
29-Oct-2014	12:00	2.2	NE
29-Oct-2014	13:00	1.9	NE
29-Oct-2014	14:00	1.6	ENE
29-Oct-2014	15:00	1.8	NE
29-Oct-2014	16:00	1.5	ENE
29-Oct-2014	17:00	1.5	ENE
29-Oct-2014	18:00	1.2	NE
29-Oct-2014	19:00	0.8	NE
29-Oct-2014	20:00	0.9	SW
29-Oct-2014	21:00	0.8	SW
29-Oct-2014	22:00	0.8	SW
29-Oct-2014	23:00	0.8	SW
30-Oct-2014	00:00	0.8	SW
30-Oct-2014	01:00	0.7	Ν
30-Oct-2014	02:00	0.8	Ν
30-Oct-2014	03:00	0.8	SW
30-Oct-2014	04:00	0.9	SW
30-Oct-2014	05:00	0.9	SW

r	1	1		
30-Oct-2014	06:00	1.2	SW	
30-Oct-2014	07:00	1.9	ENE	
30-Oct-2014	08:00	2	ENE	
30-Oct-2014	09:00	1.8	ENE	
30-Oct-2014	10:00	1.9	ENE	
30-Oct-2014	11:00	1.8	NE	
30-Oct-2014	12:00	1.7	ENE	
30-Oct-2014	13:00	1.9	NE	
30-Oct-2014	14:00	1.3	ENE	
30-Oct-2014	15:00	1.8	Ν	
30-Oct-2014	16:00	1.5	NE	
30-Oct-2014	17:00	1.7	E	
30-Oct-2014	18:00	1.6	ENE	
30-Oct-2014	19:00	1.5	ENE	
30-Oct-2014	20:00	1.4	ENE	
30-Oct-2014	21:00	1	E	
30-Oct-2014	22:00	0.9	WNW	
30-Oct-2014	23:00	0.9	W	
31-Oct-2014	00:00	1.8	WSW	
31-Oct-2014	01:00	1.7	W	
31-Oct-2014	02:00	1.7	W	
31-Oct-2014	03:00	1.6	W	
31-Oct-2014	04:00	1.6	W	
31-Oct-2014	05:00	1.3	ENE	
31-Oct-2014	06:00	1.1	N	
31-Oct-2014	07:00	1	N	
31-Oct-2014	08:00	1.1	N	
31-Oct-2014	09:00	1.9	WSW	
31-Oct-2014	10:00	2	WSW	
31-Oct-2014	11:00	2	WSW	
31-Oct-2014	12:00	1.8	N	
31-Oct-2014	13:00	1.5	N	
31-Oct-2014	14:00	1.2	E	
31-Oct-2014	15:00	1.3	N	
31-Oct-2014	16:00	1.5	N	
31-Oct-2014	17:00	1.4	NE	
31-Oct-2014	18:00	0.8	NE	

31-Oct-2014	19:00	0.6	ENE
31-Oct-2014	20:00	0.5	ENE
31-Oct-2014	21:00	0.4	WSW
31-Oct-2014	22:00	0.4	Ν
31-Oct-2014	23:00	0.4	Ν

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for October 2014

Image: series of the serie	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Sold Good TOP Bood					t 2-Oct		
Sold Good TOP Bood							
Sold Good TOP Bood							
Sold Good TOP Bood							
Sold Good TOP Bood							
$h \ h \ TSP \ X3$ $h \ rSP \ X3$						24 hr TSP	
$h \ h \ TSP \ X3$ $h \ rSP \ X3$	5.0.4	(0)	7.0.4	9.0-	0.0	10 0-1	11 Oct
Noise (M3, M4)Noise (M3, M4)Noise (M9) 24 hr TSPNoise (M9) 24 hr TSPNoise (M9) 24 hr TSP X3It hr CP X3It hr CP X3Image: Comparison of the compa	5-061	6-Oct	/-Oct	8-00	9-00	10-Oct	11-Oct
Noise (M3, M4)Noise (M3, M4)Noise (M9) 24 hr TSPNoise (M9) 24 hr TSPNoise (M9) 24 hr TSP X3It hr CP X3It hr CP X3Image: Comparison of the compa		1 hr TSP X3				1 hr TSP X3	
Noise (M3, M4) Noise (M3, M4) $(M9)$ 24 hr TSP $(M9)24 hr TSP (M9)24 hr TSP (M9)(H) (M9)(H) (M9)(H) (M9)(H) (M9)(H) (M9)(H) (H) (H)$							
(M3, M4) Image: Main matrix (M3, M4) Image: Mai					Noise		
Image: Noise of the second					(M9) 24 hr TSD		
Image: book book book book book book book boo		(M15, M14)			24 hr 15P		
Noise (M9) 24 hr TSPNoise (M3, M4)Noise (M3, M4)Noise (M3, M4)19-0et $20-0et$ $21-0et$ $22-0et$ $23-0et$ $24-0et$ $25-0et$ Noise (M9) 24 hr TSP $1 hr$ TSP X3 $1 hr$ TSP X3 $1 hr$ CSP $1 hr$ CSP $1 hr$ CSPNoise (M9) 24 hr TSPNoise (M3, M4) $1 hr$ CSP $30-0et$ $31-0et$ $1 hr$ CSP1 hr TSP X3 $1 hr$ TSP X3 $1 hr$ TSP X3 $31-0et$ $1 hr$ CSP	12-Oct	13-Oct	14-Oct	15-Oc	t 16-Oc	t 17-Oct	18-Oct
Noise (M9) 24 hr TSPNoise (M3, M4)Noise (M3, M4)Noise (M3, M4)19-0et $20-0et$ $21-0et$ $22-0et$ $23-0et$ $24-0et$ $25-0et$ Noise (M9) 							
M99 Noise (M9) Noise (M3, M4) 19-0ct 20-0ct 22-0ct 23-0ct 24-0ct 25-0ct Image: Second					1 hr TSP X3		
M99 Noise (M9) Noise (M3, M4) 19-0ct 20-0ct 22-0ct 23-0ct 24-0ct 25-0ct Image: Second				Noise			
Image: Marrie				(M9)	Noise		
Image: Noise (M9) 24 hr TSP X3Image: Noise (M3, M4)Image: Noise (M3							
Image: height begin							
Noise (M9) 24 hr TSPNoise (M3, M4)Noise (M3, M4)Image: Mail MailImage: Mail Mail26-Oct27-Oct28-Oct29-Oct30-Oct31-OctImage: Mail Mail MailImage: Mail Mail 	19-Oct	20-Oct	21-Oct	22-Oc	t 23-Oct	t 24-Oct	25-Oct
Noise (M9) 24 hr TSPNoise (M3, M4)Noise (M3, M4)Image: Mail MailImage: Mail Mail26-Oct27-Oct28-Oct29-Oct30-Oct31-OctImage: Mail Mail MailImage: Mail Mail MailImage: Mail Mail MailImage: Mail Mail MailImage: Mail Mail MailImage: Mail Mail MailMail Mail Mail Mail MailImage: Mail Mail Mail MailImage: Mail Mail Mail MailImage: Mail Mail Mail Mail MailImage: Mail Mail Mail MailImage: Mail Mail MailImage: Mail Mail Mail MailImage: Mail Mail Mail MailImage: Mail Mail Mail MailImage: Mail Mail Mail Mail MailImage: Mail Mail Mail Mail Mail MailImage: Mail Mail Mail Mail Mail Mail MailImage: Mail 				1 hr TSP X3			
(M9) 24 hr TSPNoise (M3, M4)26-Oct27-Oct28-Oct29-Oct30-Oct31-Oct1 hr TSP X31 hr TSP X3							
(M9) 24 hr TSPNoise (M3, M4)26-Oct27-Oct28-Oct29-Oct30-Oct31-Oct1 hr TSP X31 hr TSP X3			Noise				
Image: Mark Series Image:			(M9)				
1 hr TSP X3			24 hr TSP	(M3, M4)			
1 hr TSP X3	26-Oct	27-Oct	28-Oct	29-00	t 30-Oc	t 31-Oct	
		27 000	20 000	2) 00	50 00	51 000	
			1 hr TSP X3				
		Noise	Noise				
(M9)Noise24 hr TSP(M3, M4)		(1/19) 24 hr TSP					
		21111101	(1112), 1117)				

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM1(B) -Boundary of KTD/Outside Contractor's site office of Contract KL/2012/02 AM2 - Lee Kau Yan Memorial School Noise Monitoring Station

M3 - Cognitio College M4 - Lee Kau Yan Memorial School M9 - Tak Long Estate

Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for November 2014

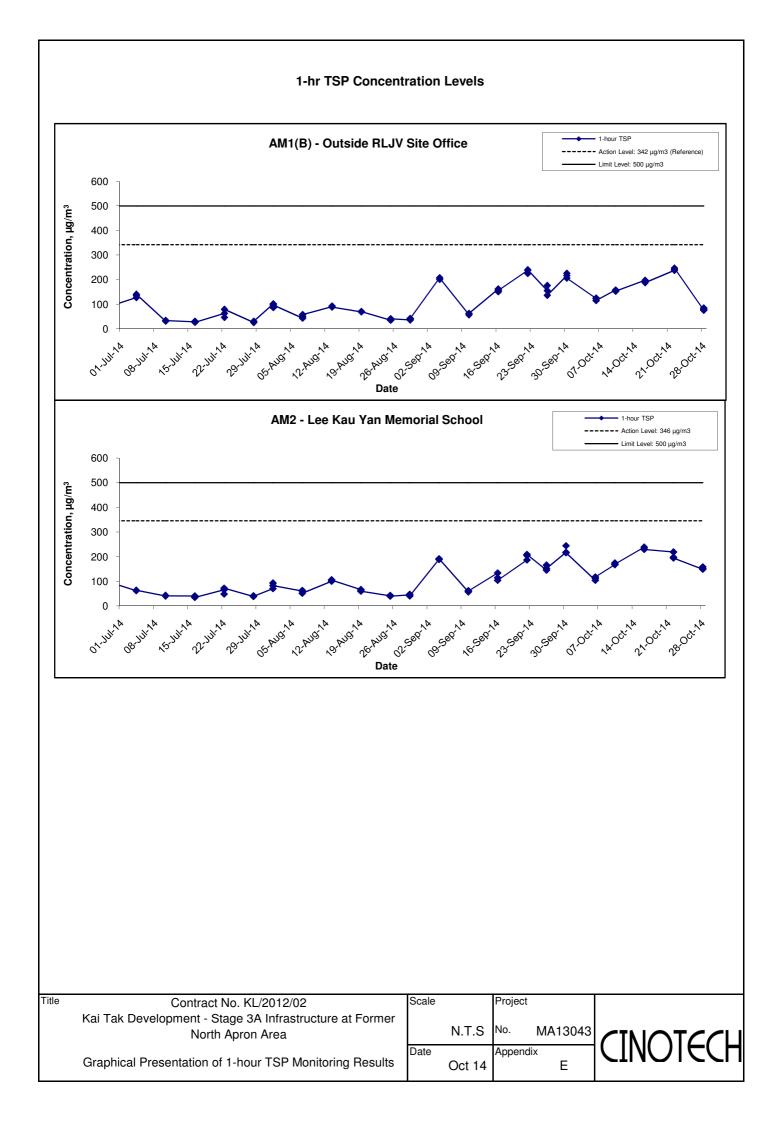
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	monuuj	Tuobuuj	ounosuuy	Indibudy	1 1100	1-Nov
						24 hr TSP
						0 N
2-Nov	3-Nov	4-Nov	5-Nov	6-Nov	7-Nov	8-Nov
	$1 h_{\pi} TSD V_{2}$				$1 h_{\pi} TSD V_{2}$	
	1 hr TSP X3				1 hr TSP X3	
				Noise		
	Noise			(M9)		
	(M3, M4)				24 hr TSP	
	()					
9-Nov	10-Nov	11-Nov	12-Nov	13-Nov	14-Nov	15-Nov
				1 hr TSP X3		
		Noise (M9)				
		(M9)		Noise		
			24 hr TSP	(M3, M4)		
16-Nov	17-Nov	18-Nov	19-Nov	20-Nov	21-Nov	22-Nov
101107	17 1107	10 1107	19 1101	201101	211107	221101
		1 hr TSP X3				
	Noise					
	(M9)	Noise				
	24 hr TSP	(M3, M4)			24 hr TSP	
23-Nov	24-Nov	25-Nov	26-Nov	27-Nov	28-Nov	29-Nov
	1 hr TSP X3				1 hr TSP X3	
	1 III 1 SF XS				1 III 13F X3	
				Noise		
	Noise			(M9)		
	(M3, M4)					
				24 hr TSP		
30-Nov						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM1(B) -Boundary of KTD/Outside Contractor's site office of Contract KL/2012/02 AM2 - Lee Kau Yan Memorial School

Noise Monitoring Station


M3 - Cognitio College M4 - Lee Kau Yan Memorial School M9 - Tak Long Estate

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix E	1-hour	TSP	Monitoring	Results
------------	--------	-----	------------	---------

Location AM1(B) - Outside RLJV Site Office					
Date	Time	Weather	Particulate Concentration (µg/m ³)		
6-Oct-14	13:40	Sunny	123.2		
6-Oct-14	14:40	Sunny	124.3		
6-Oct-14	15:40	Sunny	114.6		
10-Oct-14	9:00	Sunny	157.7		
10-Oct-14	10:00	Sunny	153.7		
10-Oct-14	11:00	Sunny	153.0		
16-Oct-14	13:35	Sunny	197.6		
16-Oct-14	14:35	Sunny	194.6		
16-Oct-14	15:35	Sunny	187.5		
22-Oct-14	13:30	Cloudy	237.5		
22-Oct-14	14:30	Cloudy	241.4		
22-Oct-14	15:30	Cloudy	247.1		
28-Oct-14	9:00	Sunny	75.4		
28-Oct-14	10:00	Sunny	79.4		
28-Oct-14	11:00	Sunny	83.8		
		Average	158.1		
		Maximum	247.1		
		Minimum	75.4		

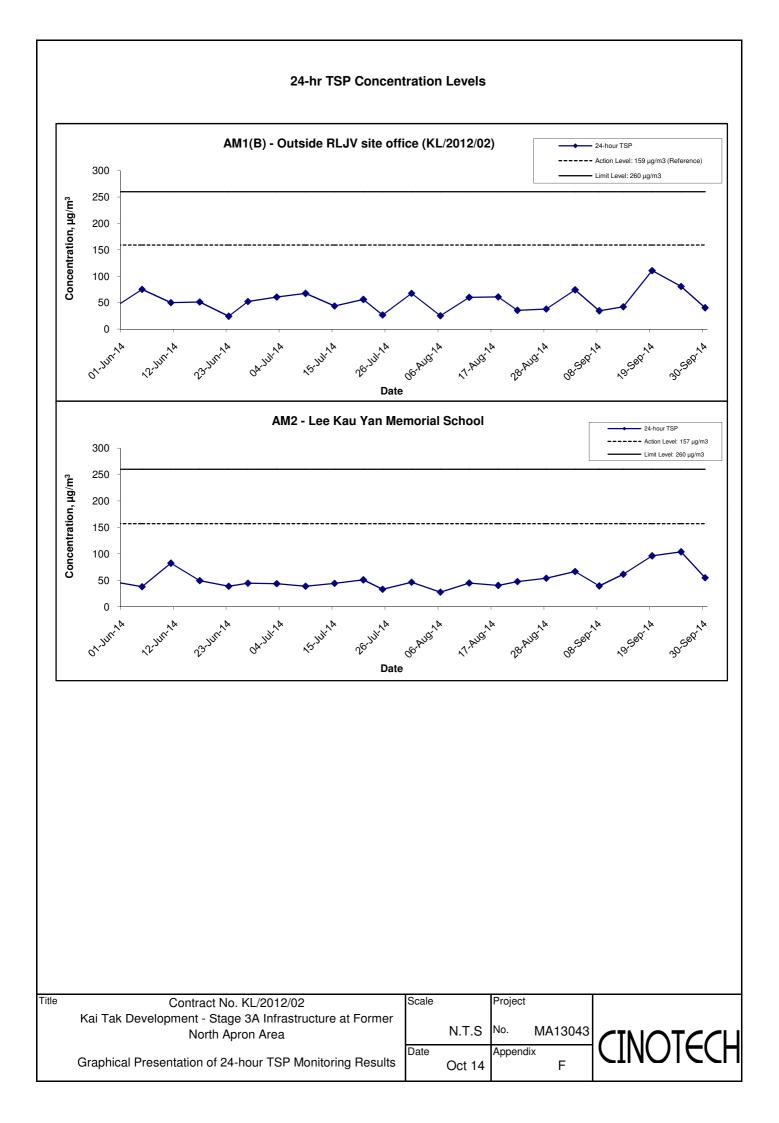
Location AM2 -	Lee Kau Yar	Memorial School	
Date	Time	Weather	Particulate Concentration (μ g/m ³)
6-Oct-14	9:00	Sunny	104.2
6-Oct-14	10:00	Sunny	112.0
6-Oct-14	11:00	Sunny	118.0
10-Oct-14	13:00	Sunny	167.6
10-Oct-14	14:00	Sunny	174.2
10-Oct-14	15:00	Sunny	169.8
16-Oct-14	9:00	Sunny	238.4
16-Oct-14	10:00	Sunny	231.3
16-Oct-14	11:00	Sunny	229.7
22-Oct-14	13:00	Sunny	218.8
22-Oct-14	14:00	Sunny	197.4
22-Oct-14	15:00	Sunny	194.5
28-Oct-14	13:00	Cloudy	149.0
28-Oct-14	14:00	Cloudy	152.1
28-Oct-14	15:00	Cloudy	158.8
		Average	174.4
		Maximum	238.4
		Minimum	104.2

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

Location AM1(B) - Outside RLJV site office (KL/2012/02)

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Oct-14	Sunny	303.0	760.7	3.1921	3.3931	0.2010	2844.8	2868.8	24.0	1.22	1.22	1.22	1755.1	114.5
9-Oct-14	Sunny	298.8	761.8	3.2608	3.4116	0.1508	2868.8	2892.8	24.0	1.23	1.23	1.23	1767.5	85.3
15-Oct-14	Sunny	303.9	757.3	3.2415	3.4440	0.2025	2892.8	2916.8	24.0	1.21	1.21	1.21	1749.2	115.8
21-Oct-14	Cloudy	300.0	764.8	3.2426	3.4152	0.1726	2916.8	2940.8	24.0	1.23	1.23	1.23	1767.4	97.7
27-Oct-14	Sunny	299.2	765.5	3.1746	3.3732	0.1986	2940.8	2964.8	24.0	1.22	1.22	1.22	1750.8	113.4
													Min	85.3
													Max	115.8
													Average	105.3


Location AM2 - Lee Kau Yan Memorial School

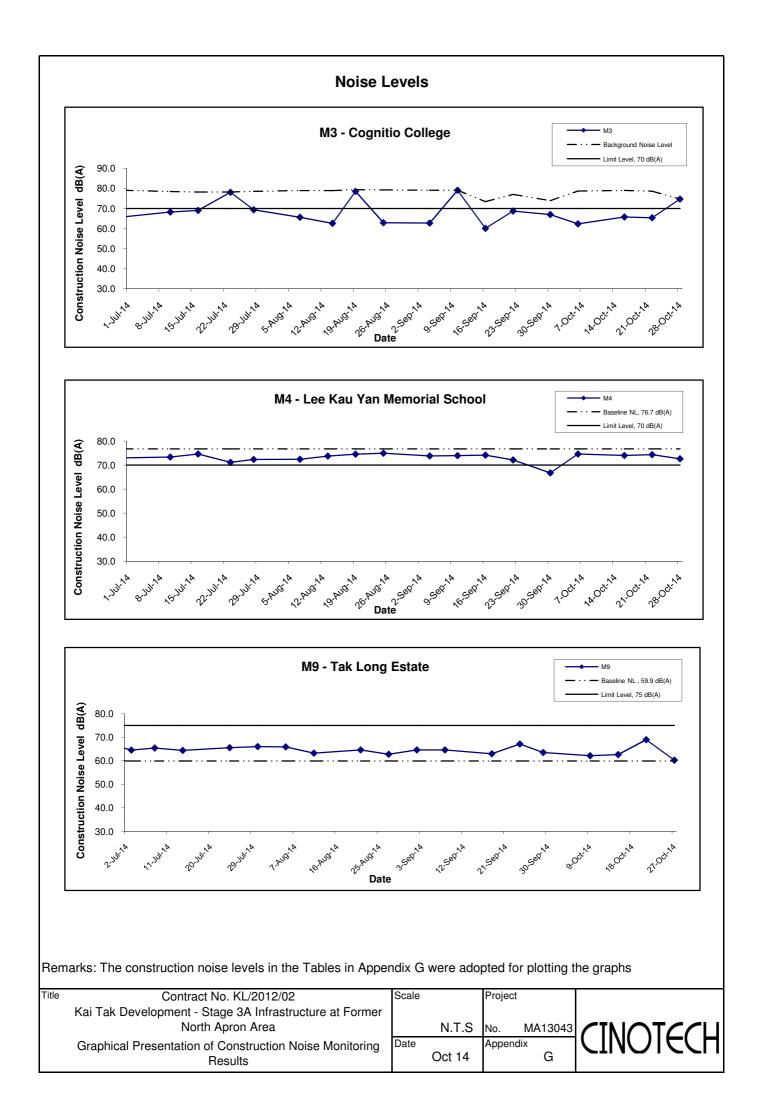
Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Oct-14	Sunny	302.2	760.2	3.1854	3.3802	0.1948	13876.8	13900.8	24.0	1.22	1.22	1.22	1753.6	111.1
9-Oct-14	Sunny	299.0	761.4	3.2070	3.4000	0.1930	13900.8	13924.8	24.0	1.23	1.22	1.22	1763.6	109.4
15-Oct-14	Sunny	304.0	757.5	3.2331	3.4285	0.1954	13924.8	13948.8	24.0	1.21	1.21	1.21	1745.9	111.9
21-Oct-14	Sunny	299.8	764.7	3.2174	3.4651	0.2477	13948.8	13972.8	24.0	1.23	1.23	1.23	1765.1	140.3
27-Oct-14	Sunny	299.7	765.3	3.2286	3.4524	0.2238	13972.8	13996.8	24.0	1.23	1.23	1.23	1765.9	126.7
													Min	109.4

 Min
 109.4

 Max
 140.3

 Average
 119.9

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix G - Noise Monitoring Results

Location M3 -	Cognitio Co	ollege					
					Uni	it: dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Background Noise	Construction Noise Level
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
6-Oct-14	15:00	Sunny	78.8	80.5	76.4	78.7	62.4
16-Oct-14	15:00	Sunny	79.2	81.0	76.8	79.0	65.7
22-Oct-14	15:00	Cloudy	78.8	80.6	76.6	78.6	65.3
28-Oct-14	15:15	Cloudy	74.7	77.2	71.6	74.8	74.7 Measured \leq Background

Location M4 -	Lee Kau Ya	n Memorial S	chool				
					Uni	t: dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
6-Oct-14	9:00	Sunny	74.6	76.0	72.6		74.6 Measured \leq Baseline
16-Oct-14	9:00	Sunny	74.0	75.4	72.3	76.7	74.0 Measured \leq Baseline
22-Oct-14	13:15	Sunny	74.3	75.7	72.5	70.7	74.3 Measured \leq Baseline
28-Oct-14	13:05	Cloudy	72.6	74.3	68.5		72.6 Measured \leq Baseline

Location M9 - Tak Long Estate

					Uni	t: dB (A) (30-min)	
Date	Time	Weather	Mea	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}
9-Oct-14	9:15	Sunny	64.2	66.2	61.8		62.2
15-Oct-14	9:15	Sunny	64.5	66.2	62.3	59.9	62.7
21-Oct-14	9:15	Cloudy	69.5	70.1	63.3	59.9	69.0
27-Oct-14	13:10	Sunny	63.1	65.0	60.7		60.3

APPENDIX H SUMMARY OF EXCEEDANCE

Contract No. KL/2012/02 Kai Tak Development –Stage 3A Infrastructure at Former North Apron Area

Appendix H – Summary of Exceedance

Exceedance Report for Contract No. KL/2012/02

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Checklist Reference Number	141008	
Date	8 October 2014	
Time	14:00 - 15:15	

		Related Item No.
Ref. No.	Non-Compliance	Item ive.
-	None identified	Related
		Item No.
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	B 8
141008-R02	Stand water should be properly treated and removed from unused sedimentation tank.	
141008-R03	Locker for chemical waste should be properly maintained.	B 8
	C. Air Quality	· · · · · · · · · · · · · · · · · · ·
141008-R01	Water spraying should be provided more frequently to haul road.	C 5
141000 1001		
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
141008-R03	Locker for chemical waste should be properly maintained.	E 2i
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 140930), item 140930-R02 was found outstanding and remarked as 141008-R03. Review will be needed during next audit section.	

Recorded by Jason Lai	An	8 October 2014
Checked by Dr. Priscilla Choy	NI	8 October 2014

Checklist Reference Number	141015	
Date	15 October 2014	
Time	14:00 - 15:30	

D.C.N.		Related Item No.
Ref. No.	Non-Compliance	
-	None identified	Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
141015-001	• Dusty stockpile should be covered with impervious sheet to suppress dust emission.	C 7
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 141008), all environmental deficiencies have been rectified/improved by the Contractor.	

	Name	Signature	Date
Recorded by	Jason Lai	der	15 October 2014
Checked by	Dr. Priscilla Choy	N.F.	15 October 2014

Checklist Reference Number	141023	
Date	23 October 2014	
Time	14:30 - 16:00	

		Related Item No.
Ref. No.	Non-Compliance	Item No.
-	None identified	
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
141023-R01	• Stagnant water and mud in u-channel should be regularly cleared. (near Sam Chuk Street)	B4&B8
<u></u> .	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 141015), all environmental deficiencies have been rectified/improved by the Contractor.	

	Name	Signature	Date
Recorded by	Jason Lai	() m	23 October 2014
Checked by	Dr. Priscilla Choy	WH	23 October 2014

ş.

Checklist Reference Number	141029	
Date	29 October 2014	
Time	14:00 - 15:30	

Ref. No.	Non-Compliance	Related Item No.
	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
141029-001	 Sand deposited opposite to bus stop should be regularly removed. 	C 3
141029-R02	Water spraying should be provided for breaking work to suppress dust generation.	C 13
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 141023), all environmental deficiencies have been rectified/improved by the Contractor.	

	Name	Signature	Date
Recorded by	Jason Lai	der	29 October 2014
Checked by	Dr. Priscilla Choy	WI	29 October 2014

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;		
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if		
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.		
	3. Repeat measurement to confirm finding.	method.				
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Discuss with ET and IEC on proper		
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;		
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial		
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three		
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;		
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;		
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.		
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of			
	6. If exceedance continues, arrange		remedial measures;			
	meeting with IEC and ER;		5. Conduct meeting with ET and			
	7. If exceedance stops, cease additional		IEC if exceedance continues.			
	monitoring.					
Limit Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid		
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;		
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper		
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;		
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial		
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three		

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation		
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;		
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation		
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.		
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be		
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after		
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)		
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;			
	check mitigation effectiveness.	(The above actions should be	4. Supervise the			
	(The above actions should be taken	taken within 2 working days after	implementation of remedial			
	within 2 working days after the	the exceedance is identified)	measures.			
	exceedance is identified)		(The above actions should be			
			taken within 2 working days			
			after the exceedance is			
			identified)			
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to		
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;		
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial		
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3		
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;		
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed		
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;		

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT	ACTION				
ACTION LEVEL	ET	IEC	ER	CONTRACTOR	
Design Check	1. Check final	1. Check report.	1. Undertake remedial design if necessary		
	design conforms to	2. Recommend			
	the requirements	remedial design if			
	of EP and prepare	necessary			
	report.				
Non-conformity on one occasion	1. Identify Source	1. Check report	1. Notify Contractor	1. Amend working methods	
	2. Inform IEC and	2. Check Contractor's	2. Ensure remedial measures are properly	2. Rectify damage and	
	ER	working method	implemented	undertake any necessary	
	3. Discuss remedial	3. Discuss with ET and		replacement	
	actions with IEC,	Contractor on possible			
	ER and Contractor	remedial measures			
	4. Monitor remedial	4. Advise ER on			
	actions until	effectiveness of			
	rectification has	proposed remedial			
	been completed	measures.			
		5. Check implementation			
		of remedial measures.			
Repeated Non-conformity	1. Identify Source	1. Check monitoring	1. Notify Contractor	1. Amend working methods	
	Inform IEC and	report	2. Ensure remedial measures are properly	2. Rectify damage and	

ER		2. Check Contractor's	implemented	undertake any necessary
2. Inc	ncrease	working method		replacement
mon	nitoring	3. Discuss with ET and		
frequ	quency	Contractor on possible		
3. Dis	iscuss remedial	remedial measures		
actic	ons with IEC,	4. Advise ER on		
ERa	and Contractor	effectiveness of		
4. Mo	Ionitor remedial	proposed remedial		
actic	ons until	measures		
recti	tification has	5. Supervise		
beer	en completed	implementation of		
5. If r	non-conformity	remedial measures.		
stop	os, cease			
addi	litional			
mon	nitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Mitigation Measures Types of Impacts Status 8 times daily watering of the work site with active dust * emitting activities. Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts. Stockpiling site(s) should be lined with impermeable * sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. · Misting for the dusty material should be carried out Λ before being loaded into the vehicle. · Any vehicle with an open load carrying area should Λ have properly fitted side and tail boards. **Construction Dust** · Material having the potential to create dust should not be loaded from a level higher than the side and tail Λ boards and should be dampened and covered by a clean tarpaulin. · The tarpaulin should be properly secured and should Λ extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation. · The vehicles should be restricted to maximum speed Λ of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials. Vehicle washing facilities should be provided at every ٨

Appendix K - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

	vehicle exit point.	
•	The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete,	٨
(•))	bituminous materials or hardcores. Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water	٨
	so as to maintain the entire road surface wet. Every stock of more than 20 bags of cement should be	
	covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides.	٨
•	Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.	*
	<u>DWFI compound for JVBC</u> : a DWFI compound is proposed at the downstream of JVC to contain pollution in drainage systems entering the KTAC and KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the compounds to prevent any accumulation of sediment within the downstream section of JVBC and hence fully mitigate the potential odour emissions from the headspace of JVBC near the existing discharge locations. The odour generating operations within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high	N/A

efficiency deodorizers before discharge to the atmosphere. <u>Desilting compound for KTN</u> : Two desilting compounds are proposed for KTN (at Site 1D6 and Site 1P1) to contain pollution in drainage systems entering the KTAC and KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the compounds to prevent any accumulation of sediment within the downstream section of KTN and	N/A
hence fully mitigate the potential odour emissions from the headspace of KTN near the existing discharge locations. The odour generating operations within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high efficiency deodorizers before discharge to the atmosphere.	
Decking or reconstruction of KTN within apron area: it is proposed to deck the KTN or reconstruct the KTN within the former Apron area into Kai Tak River from the south of Road D1 to the north of Road D2 along the existing alignment of KTN. The Kai Tak River will compose of a number of channels flowing with non- odorous fresh water and THEES effluent. The channel flowing with THEES effluent will be designed with the width of water surface of not more than 16m.	N/A

Localised maintenance dredging: Localised maintenance dredging should be conducted to provide water depth of not less than 3.5m over the whole of KTAC and KTTS. With reference to the water depth data recorded during the odour survey, only some of the areas in the northern part of KTAC (i.e. to the north of taxiway bridge) including the area near the northern edge of KTAC, the area near western bank of KTAC, and the area near the JVC discharge have water depths shallower than 3.5m. The area involved would be about 40% of the northern KTAC and the dredging depth required would be from about 2.7m to less than 1m. The maintenance dredging to be carried out prior to the occupation of any new development in the immediate vicinity of KTAC to avoid potential localized odour impacts at the future ASRs during the maintenance dredging operation.	Λ
 Improvement of water circulation in KTAC and KTTS: 600m gap opening at the northern part of the former Kai Tak runway, the water circulation in KTAC and KTTS would be substantially improved. Together with the improvement in water circulation, the DO level in KTAC and KTTS would also be increased. In-situ sediment treatment by bioremediation: Diaremediation would be applied to the antice KTAC 	N/A N/A
Bioremediation would be applied to the entire KTAC and KTTS.	

	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump	٨
Construction Noise	 Good Site Practice: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	л N/A(1) л л л л
	Examination Period (i) Provision of low noise surfacing in a section of Road L2; and	N/A
	(ii) Provision of structural fins	N/A

 (i) Avoid the sensitive façade of class room facing Road L2 and L4; and 	N/A
(ii) Provision of low noise surfacing in a section of Road L2& L4	N/A
(i) Provision of low noise surfacing in a section of Road L4 before occupation of Site 111; and	N/A
(ii) Setback of building about 5m from site boundary.	N/A
Setback of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
 avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and 	N/A
 (ii) for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not provide the facades with openable window. 	N/A
(i) avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or	N/A
 (ii) provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height of the residential block(s) located at less than 55m away from To Kwa Wan Road to no more than 25m above ground. 	N/A
 avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic noise impacts from the slip road 	N/A

p (i (i (i	Il the ventilation fans installed in the below will be rovided with silencers or acoustics treatment.) SPS i) ESS ii) Tunnel Ventilation Shaft v) EFTS depot	N/A N/A N/A N/A
	nstallation of retractable roof or other equivalent neasures	N/A

Construction Water Quality	 The following mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including: Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply; Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps; An alarm should be installed to signal emergency high water level in the wet well at all SPSs; and For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should be provided so that swift actions could be taken in case of malfunction of unmanned facilities. Construction Phase Marine-based Construction Capital and Maintenance Dredging for Cruise Terminal Mitigation measures for construction of the proposed cruise terminal should follow those recommended in the approved EIA for CT Dredging. 	N/A N/A N/A N/A
-------------------------------	---	--------------------------

Fireboat Berth, Runway Opening and Road T2	
Silt curtains should be deployed around the close grab dredger to minimize release of sediment and other contaminants for any dredging and filling activities in open	۸
water. Dredging at and near the seawall area for construction of the public landing steps cum fireboat berth should be carried out at a maximum production rate of 1,000m ³ per day using one grab dredger.	۸
The proposed construction method for runway opening should adopt an approach where the existing seawall at the runway will not be removed until completion of all excavation and dredging works for demolition of the runway. Thus, excavation of bulk fill and majority of the dredging works will be carried out behind the existing seawall, and the sediment plume can be effectively contained within the works area. As there is likely some accumulation of sediments alongside the runway, there will be a need to dredge the existing seabed after completion of all the demolition works. Dredging alongside the 600m opening should be carried out at a maximum production rate of 2,000m ³ per day using one grab dredger.	٨
Dredging for Road T2 should be conducted at a maximum rate of 8,000m ³ per day (using four grab dredgers) whereas the sand filling should be conducted at a maximum rate of 2,000m ³ per day (using two grab dredgers).	N/A (1)
Silt screens shall be applied to seawater intakes at WSD seawater intake.	٨

Land-based Construction

Construction Runoff

Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include:

- use of sediment traps
- adequate maintenance of drainage systems to prevent flooding and overflow

Λ

٨

Λ

Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.

Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.	^
Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m ³ capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	*
Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	^
Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	^

Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.	л Л
Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	^
All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	^
Drainage It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.	^

All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	٨
All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	*
Sewage Effluent	
Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	^
Stormwater Discharges	
Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes	^

Debris and Litter	
In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials. litter or wastes to marine waters does not occur	^
Construction Works at or in Close Proximity of Storm Culvert or Seafront	
The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	^
The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm culvert / nullah.	^
Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works.	^
Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	^
Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	^
Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	^

Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	Λ
Construction effluent, site run-off and sewage should be properly collected and/or treated.	*
Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	٨
Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of construction materials.	۸
Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	^
Supervisory staff should be assigned to station on site to closely supervise and monitor the works	٨
Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	۸

TT		
	Good Site Practices	
	It is not anticipated that adverse waste management	
	related impacts would arise, provided that good site	
	practices are adhered to. Recommendations for good site	
	practices during construction activities include:	^
	 Nomination of an approved person, such as a site 	X
	manager, to be responsible for good site practices,	
	arrangements for collection and effective disposal	
	to an appropriate facility, of all wastes generated at	
	the site	
		^
	 Training of site personnel in proper waste 	~
	management and chemical waste handling	
	procedures	
	 Provision of sufficient waste disposal points and 	^
	regular collection for disposal	
	 Appropriate measures to minimise windblown litter 	^
	and dust during transportation of waste by either	
	covering trucks or by transporting wastes in	
	enclosed containers	
	 A recording system for the amount of wastes 	^
	generated, recycled and disposed of (including the	
	disposal sites)	
	disposal sites/	

Waste Reduction Measures Good management and control can prevent the generation of a significant amount of waste. Waste	
generation of a significant amount of waste. Waste	
reduction is best achieved at the planning and design	
stage, as well as by ensuring the implementation of good	
site practices. Recommendations to achieve waste	
reduction include:	Λ
 Sort C&D waste from demolition of the remaining 	
structures to recover recyclable portions such as metals	
 Segregation and storage of different types of 	Λ
waste in different containers, skips or stockpiles to	
enhance reuse or recycling of materials and their proper disposal	
 Encourage collection of aluminium cans, PET 	^
bottles and paper by providing separate labelled	X
bins to enable these wastes to be segregated from	
other general refuse generated by the work force	
 Any unused chemicals or those with remaining 	^
functional capacity should be recycled	
 Proper storage and site practices to minimise the 	^
potential for damage or contamination of construction materials	
construction materials	
Dredged Marine Sediment	
The basic requirements and procedures for dredged mud	Λ
disposal are specified under the ETWB TCW No. 34/2002.	
The management of the dredging, use and disposal of	
marine mud is monitored by the MFC, while the licensing	
of marine dumping is required under the Dumping at Sea	
Ordinance and is the responsibility of the Director of	
Environmental Protection (DEP)	

The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC depending on their level of contamination. Sediment classified as Category L would be suitable for Type 1 - Open Sea Disposal. Contaminated sediment would require either Type 1 – Open Sea Disposal (Dedicated Sites), Type 2 - Confined Marine Disposal, or Type 3 - Special Treatment / Disposal and must be dredged and transported with great care in accordance with ETWB TCW No. 34/2002. Subject to the final allocation of the disposal sites by MFC, the dredged contaminated sediment must be effectively isolated from the environment and disposed properly at the designated disposal site	

It will be the responsibility of the contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works should apply for allocation of marine disposal sites and all necessary permits from relevant authorities for the disposal of dredged sediment. During transportation and disposal of the dredged marine sediments requiring Type 1, Type 2, or Type 3 disposal, the following measures should be taken to minimise potential impacts on water quality:

 Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved

Λ

Λ

Λ

- Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic selfmonitoring devices as required under the Dumping at Sea Ordinance and as specified by the DEP
- Barges or hopper barges should not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation

Construction and Demolition Material	
 Mitigation measures and good site practices should be incorporated into contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include: Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles should be located away from waterfront 	Λ
 Open stockpiles of construction materials or construction wastes on-site should be covered with 	٨
 Skip hoist for material transport should be totally enclosed by impervious sheeting 	^
 Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site 	^
 The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores 	Λ
leaving a construction site should be covered entirely by clean impervious sheeting to ensure	^
 All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet 	٨
 The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading 	Λ
	 Mitigation measures and good site practices should be incorporated into contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include: Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles should be located away from waterfront or storm drains as far as possible Open stockpiles of construction materials or construction wastes on-site should be totally enclosed by impervious sheeting Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be covered with concrete, bituminous materials or hardcores The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet The height from which excavated materials wet

When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.

Λ

*

٨

Chemical Waste

After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation

General Refuse

General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem

	CM1 All existing trees should be carefully protected during construction.	^
	CM2 Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	^
Landscape and Visual	CM3 Control of night-time lighting.	N/A(1)
	CM4 Erection of decorative screen hoarding.	^

Remarks:	 Compliance of mitigation measure; 	X Non-compliance of mitigation measure;
	N/A Not Applicable at this stage; N/A(1) Not observed;	•Non-compliance but rectified by the contractor;
	* Recommendation was made during site audit but improved/rectified by the contractor.	

APPENDIX L SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

Contract No. KL/2012/02 Kai Tak Development –Stage 3A Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Reporting Month: October 2014

Contract No. KL/2012/02

Log Ref.	Location	Received Date	Details of Complaint/warning/summon and prosecution	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A	N/A

Remarks: No environmental complaint/warning/summon and prosecution were received in the reporting period.

APPENDIX M WASTE GENERATED QUANTITY

	Actual Quantities of Inert C&D Materials Generated Monthly Actual Quantities of C&D Wastes Generated Monthly						onthly				
Month	Total Quantity Generated	Borken Concrete (4)	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Import Fill	Metals	Paper / Cardboard Packaging	Plastics (3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
JAN	0.0442	0	0	0	0.000	0	0	0	0	0	0.0442
FEB	0.04142	0	0	0	0.012	0	0	0	0	0	0.02945
MAR	0.27205	0	0	0	0.2	0	0	0	0	0	0.07205
APR	0.12566	0	0	0	0.0624	0	0	0	0	0	0.06325
MAY	0.10620	0	0	0	0	0	0	0	0	0	0.1062
JUNE	0.07680	0	0	0	0	0	0	0	0	0	0.0768
SUB- TOTAL	0.6663	0	0	0	0.274	0	0	0	0	0	0.39195
JULY	0.10225	0	0	0	0.019	0	0	0	0	0	0.08375
AUG	0.15083	0	0	0	0.015	0	0	0	0	0	0.1362
SEPT	0.14695	0	0	0	0.009	0	0	0	0	0	0.13815
ОСТ	0.32166	0	0	0	0.1418	0	0	0	0	0	0.17985
NOV											
DEC											
TOTAL	1.24622	0	0	0	0.316	0	0	0	0	0	0.92990

MONTHLY SUMMARY WASTE FLOW TABLE FOR _____ 2014 (YEAR)

	Forecast of Total Quantities of C&D materials to be Generated from the Contracts *										
I DEAL AND AND AND AND AND AND AND AND AND AND						Other, e.g. general					
[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]	
27.972	26.472	0	0	0	0	0	0.9	0	1.8	1.5	

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the site.

(2) Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material.