Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong. Email : mcl@fugro.com

2nd CONSOLIDATED MONTHLY **EM&A REPORT**

December 2016

Client Civil Engineering and Development Department, HKSAR

EP No. EP-337/2009 -

New Distributor Roads Serving the Planned Kai Tak

Development Area

Contract No. KLN/2016/05 -

Independent Environmental Checker for

Contract No. KL/2015/02 Kai Tak Development -Stage 5A Infrastructure at Former North Apron Area

Report No. 0087/16/ED/0232

> Prepared by Wingo So

Reviewed by Calvin Leung

Certified by

Colin Yung

Independent Environmental Checker MateriaLab Consultants Limited

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Tel Fax Hong Kong. Email : mcl@fugro.com

TABLE OF CONTENTS

EXE	CUTIVE SU	IMMARY	I	
1.	INTRODU	CTION	1	
2.	ENVIRON	MENTAL MONITORING AND AUDIT	8	
3.	SITE INSPECTION			
4.	ENVIRON	MENTAL COMPLAINT AND NON-COMPLIANCE	11	
5.	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES			
6.	FUTURE R	KEY ISSUES	13	
7.	CONCLUS	SIONS	16	
LIST	OF APPENI	DICES		
Appe	ndix A	Monthly EM&A Report For Contract No. KL/2012/02 Stage 3A infrastructure works at north apron area of Kai Tak Airport		
Appe	ndix B	Monthly EM&A Report For Contract No. KL/2012/03 Stage 4 infrastructure works at north apron area of Kai Tak Airport		
Appe	ndix C	Monthly EM&A Report For Contract No. KL/2014/01 Stage 2 infrastructure works for developments at the southern part of the former runw	vay	
Appe	ndix D	Monthly EM&A Report For Contract No. KL/2014/03 Stage 3 infrastructure works for developments at the southern part of the former runw	vav	

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong. Email : mcl@fugro.com

EXECUTIVE SUMMARY

- i. This is the 2nd Consolidated Monthly EM&A Report which summaries the EM&A works undertaken by respective contract under EP-337/2009 within the period between 1 December and 31 December 2016.
- ii. The EP-337/2009 relevant major construction activities undertaken in the reporting month are summarized as follow:

Contract No. KL/2010/03:

NA (The works has been completed and no further EM&A submission is required.)

Contract No. KL/2012/02:

- · Site Clearance:
- RC works for VT1 at Portion G;
- Drainage works for connection to box culvert (KTOB);
- Hard landscaping works for Portion F1;
- Cross road duct at Choi Hung Road;
- Road and drainage works at Sze Mei Street and Luk Hop Street;
- Condition survey and monitoring survey;
- Earthwork at Portion E3;
- Footpath construction at Sam Chuk Street and Tsat Po Street; and
- · ELS works for SW3 at San Po Kong.

Contract No. KL/2012/03:

- Daily Cleaning;
- Installation of hand-railing & ladder inside Box Culvert B5;
- Construction of staircase and landing and E&M Works at PS2;
- Water test, backfill and sheet-pile removal in Heading 7A;
- Segment tunneling, backfill and sheet-pile removed chamber construction in Heading 7B;
- Outfall construction at Box Culvert B6;
- Road widening works (excavation and UU works) at Sung Wong Toi Road:
- Maintenance & Servicing Engineer's Office at Portion 9;
- Lay HDPE pipe at Pit 1 and 9;
- Pipe jacking at Pit 4;
- Chamber construction at Pit 5;
- Installation of drainage, UU laying works and Road works at Road D2;
- Finishing works and E&M works at NPS;
- UU works and Road works at Road L19 & Bailey St; and
- Storage of excavated material at Portion 6.

Contract No. KL/2014/01:

- · Watermain works
- · Ground investigation work;
- Construction of boundary wall at EPD recycling centre;
- Bored piles and Pre-bored socketed H-piles;
- TTA implementation at Shing Fung Road and Wang Chiu Road / Sheung Yee Road;
- Cable laying for transformer room;
- Open excavation for box culvert, piles caps and underpass; and
- ELS installation for box culvert and underpass.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

Profit Industrial Building, Tel (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax (852)-24508032 Hong Kong. Email :mcl@fugro.com

Contract No. KL/2014/03:

- Temporary utility diversion;
- Implementation of Temporary Traffic Arragement (TTA);
- Construction of Socket H piles;
- Excavation and Earth Lateral Support (ELS) construction for Supporting Underground Structure (SUS).
- Construction of Subway B;
- · Construction of guide walls and D-walls; and
- · Construction of District Cooling System Works.

Contract No. KL/2015/02:

- NA (No construction work for D1 road in reporting period)
- The commencement date of construction of Road D1 (part) is 16 January 2017.
- Submission related to this Project under the EP and EM&A Manual in reporting month are summarized as follow:

EP/ EM&A Manual Condition	Submission	Submission Date
EP Condition 1.11	Notification of Commencement Date of Construction	16/12/2016
EP Condition 2.3	Management Organization of Main Construction Companies	02/12/2016
EP Condition 2.4	Design Drawing(s) of Road D1	02/12/2016
EP Condition 2.11	Landscape Mitigation Plan(s) for Road D1(part)	02/12/2016
EM&A Manual	Method Statement for Baseline/Impact Environmental Monitoring (Version 2.0)	09/12/2016
Section 2.2.26	Method Statement for Baseline/Impact Environmental Monitoring (Version 3.0)	22/12/2016

Breaches of the Action and Limit Levels

- iii. No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- iv. No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.
- v. No Action / Limit Level exceedance was recorded for noise monitoring in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

vi. No environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

vii. There was no reporting change in the reporting month.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 : (852)-24508032 Tel Fax Hong Kong. Email : mcl@fugro.com

Future Key Issues

viii. The potential environmental impacts for the coming month and the control measures are shown in **Table I**:

Table I Summary of Key Issues for the Coming Month and Control Measures

Table I Summary of Key Issues for the Coming Month and Control Measures							
Major Impact Prediction	Control Measures						
Contract No. KL/2012/02:							
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 						
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 						
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary. 						
Contract No. KL/2	012/03:						
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 						
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of site boundary bund such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 						
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary. 						
Contract No. KL/2	014/01:						
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 						
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 						

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. : (852)-24508238 : (852)-24508032 : mcl@fugro.com Tel Fax Email

Major Impact Prediction	Control Measures
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary.
Contract No. KL/2	2014/03:
Construction dust, construction noise, water quality, waste management and landscape and visual impact.	 Sufficient watering of the works site with the active dust emitting activities; Limitation of the speed for vehicles on unpaved site roads; Properly cover or enclosure of the stockpiles and dusty materials; Good site practices on loading dusty materials; Providing sufficient vehicles washing facilities at every vehicle exit point; Good maintenance to the plant and equipment; Use of quieter plant and Quality Powered Mechanical Equipment (QPME); Use of acoustic fabric and noise barrier; Using the approved Non-road Mobile Machineries (NRMMs); Proper storage and handling of chemical; Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge; Onsite waste sorting and implementation of trip ticket system; Training of the site personnel in proper waste management and chemical waste handling procedures; Proper storage of the construction materials; Erection of decorative screen hoarding; Strictly following the Environmental Permits and Licenses; Provide sufficient mitigation measures as recommended in Approved EIA Reports

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong. Email : mcl@fugro.com

1. INTRODUCTION

1.1 **Background**

- The Kai Tak Development is located in the south-eastern part of Kowloon Peninsula of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling.
- 1.1.2 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 March 2009.
- The EP-337/2009 was issued on 23 April 2009 for the new distributor roads serving the planned Kai Tak Development to the following scale and slope:
 - Road D1 a dual 2-lane carriageway of approximately 1.3 km long.
 - Road D2 a dual 3-lane carriageway of approximately 1.1 km long.
 - Road D3 a dual 2-lane carriageway of approximately 2.3 km long.
 - d) Road D4 a dual 2-lane carriageway of approximately 0.9 km long.
- The Civil Engineering and Development Department HKSAR has appointed MateriaLab Consultants Limited (MCL) to undertake the role of Independent Environmental Checker (IEC) for the Contract No. KL/2015/02.
- This is the 2nd Consolidated Monthly EM&A Report which summaries the EM&A works undertaken by respective contract under EP-337/2009 within the period between 1 December and 31 December 2016.

1.2 **Summary of relevant Contract Information of Key Personnel**

Party	Position	Name	Telephone	Fax			
Contract No. KL/2012/0	Contract No. KL/2012/02:						
Project Proponent CEDD)	Engineer	Mr. Mike Cho	3579 2450	2369 4980			
Project Proportent CEDD)	Engineer	Mr. Kelvin Chow	3579 2453	2309 4900			
Engineer's	SRE	Mr. Gary Cheung	2210 6100	2210 6110			
Representative (ARUP)	RE	Ms. Edith Fung	2210 0100	2210 0110			
IEC (ANewR)	IEC	Mr. Adi Lee	2618 2836	3007 8648			
	ET Leader	Dr. Priscilla Choy	2151 2089				
ET (Cinotech)	Project Coordinator and Audit Team Leader	Ms. Ivy Tam	2151 2090	3107 1388			
Main Contractor	Project Manager	Mr. Osbert Sit					
(Build King)	EO	Mr. Edmond Wong	2639 6290	2639 6208			
Contract No. KL/2012/0	<u>3:</u>						
Project Proponent (CEDD)	Senior Engineer	Mr. C. K. Choi	2301 1174	2301 1277			
Engineer's	SRE	Mr. John Yam	2798 0771	3013 8864			
Representative (AECOM)	RE	Mr. Ivan Yim	2190 0111	3013 0004			
IEC (Hyder)	IEC	Mr. Wong Fu Nam	2911 2744	2805 5028			

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong. Email : mcl@fugro.com

Party	Position	Name	Telephone	Fax		
	ET Leader	Dr. Priscilla Choy	2151 2089			
ET (Cinotech)	Project Coordinator and Audit Team Leader	Ms. Ivy Tam	2151 2090	3107 1388		
Main Contractor	Site Agent	Mr. Albert Ng	3689 7752	3689 7726		
(Kwan On)	Site Agent	IVII. Albert Ng	6146 6761 (Ho	otline)		
Contract No. KL/2014/0)1:					
Project Proponent	Senior Engineer	Mr. Ronald Siu	2301 1453	0004 4077		
(CEDD)	Engineer	Mr. Bernard Chan	2301 1207	2301 1277		
Engineer's Representative (AECOM)	CRE	Mr. Clive Cheng	3746 1801	2798 0783		
IEC (KSMC)	IEC	Dr. C. F. Ng	2618 2166	2120 7752		
,	ET Leader	Dr. Priscilla Choy	2151 2089			
ET (Cinotech)	Audit Team Leader	Ms. Ivy Tam	2151 2090	3107 1388		
Main Contractor (CCJV)	EO	Mr. Dennis Ho	2960 1398	2960 1399		
Contract No. KL/2014/0	3:					
Project Proponent (CEDD)	Co-ordinator	Ms. Amy Chu	3106 3172	2369 4980		
Engineer's Representative (HMJV)	CRE	Mr. Chris Wong	3742 3803	3742 3899		
IEC (Ramboll Environ)	IEC	Mr. F. C. Tsang	3465 2888	3465 2899		
ET (MCL)	ET Leader	Mr. Colin Yung	3565 4114	3565 4160		
Main Contractor (CRBC)	Site Agent	Mr. Arnold Chan	9380 4110	2283 1689		
Iviairi Contractor (CNBC)	EO	Mr. Andy Choy	6278 2693	2203 1009		
Contract No. KL/2015/02:						
Project Proponent (CEDD)	Senior Engineer	Ms. K. Pong	2301 1466	2369 4980		
Engineer's Representative (HMJV)	SRE	Mr. John Yam	2798 0771	2798 0783		
IEC (MCL)	IEC	Mr. Colin Yung	3565 4114	2450 8032		
ET (MCL)	ET Leader	Dr. Priscilla Choy	2151 2089	3107 1388		
Main Contractor (PWHJV)	Site Agent	Mr. W. M. Wong	6386 3535	2398 8301		

1.3 Summary of Construction Programme and Activities

- 1.3.1 The construction programme of each Contract is summarized in the appendices of the corresponding Monthly EM&A.
- 1.3.2 The major construction activities undertaken in the reporting month are summarized as follow:

Contract No. KL/2010/03:

• NA (The works has been completed and no further EM&A submission is required.)

Contract No. KL/2012/02:

- Site Clearance;
- RC works for VT1 at Portion G;
- Drainage works for connection to box culvert (KTOB);
- Hard landscaping works for Portion F1;

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong. Email : mcl@fugro.com

- Cross road duct at Choi Hung Road;
- Road and drainage works at Sze Mei Street and Luk Hop Street;
- Condition survey and monitoring survey;
- Earthwork at Portion E3;
- · Footpath construction at Sam Chuk Street and Tsat Po Street; and
- ELS works for SW3 at San Po Kong.

Contract No. KL/2012/03:

- Daily Cleaning;
- Installation of hand-railing & ladder inside Box Culvert B5;
- Construction of staircase and landing and E&M Works at PS2;
- Water test, backfill and sheet-pile removal in Heading 7A;
- Segment tunneling, backfill and sheet-pile removed chamber construction in Heading 7B;
- Outfall construction at Box Culvert B6;
- Road widening works (excavation and UU works) at Sung Wong Toi Road;
- Maintenance & Servicing Engineer's Office at Portion 9;
- Lay HDPE pipe at Pit 1 and 9;
- Pipe jacking at Pit 4:
- Chamber construction at Pit 5:
- Installation of drainage, UU laying works and Road works at Road D2;
- Finishing works and E&M works at NPS;
- UU works and Road works at Road L19 & Bailey St; and
- Storage of excavated material at Portion 6.

Contract No. KL/2014/01:

- · Watermain works
- Ground investigation work;
- Construction of boundary wall at EPD recycling centre;
- Bored piles and Pre-bored socketed H-piles:
- TTA implementation at Shing Fung Road and Wang Chiu Road / Sheung Yee Road;
- Cable laying for transformer room;
- Open excavation for box culvert, piles caps and underpass; and
- ELS installation for box culvert and underpass.

Contract No. KL/2014/03:

- Temporary utility diversion;
- Implementation of Temporary Traffic Arragement (TTA);
- Construction of Socket H piles;
- Excavation and Earth Lateral Support (ELS) construction for Supporting Underground Structure (SUS).
- Construction of Subway B;
- Construction of guide walls and D-walls; and
- Construction of District Cooling System Works.

Contract No. KL/2015/02:

- NA (No construction work for D1 road in reporting period)
- The commencement date of construction of Road D1 (part) is 16 January 2017.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong. Email : mcl@fugro.com

Submission related to this Project under the EP and EM&A Manual in reporting month are summarized as follow:

EP/ EM&A Manual Condition	Submission	Submission Date
EP Condition 1.11	Notification of Commencement Date of Construction	16/12/2016
EP Condition 2.3	Management Organization of Main Construction Companies	02/12/2016
EP Condition 2.4	Design Drawing(s) of Road D1	02/12/2016
EP Condition 2.11	Landscape Mitigation Plan(s) for Road D1(part)	02/12/2016
EM&A Manual	Method Statement for Baseline/Impact Environmental Monitoring (Version 2.0)	09/12/2016
Section 2.2.26	Method Statement for Baseline/Impact Environmental Monitoring (Version 3.0)	22/12/2016

1.4 Summary of Inter-relationship with the environmental protection/ mitigation measures with the construction programme

The summary of inter-relationship with environmental protection/mitigation measures are presented as follow:

Major Environmental Impact	Control Measures
Contract No. KL/2012/02:	
Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.
Contract No. KL/2012/03:	
Dust, Water Quality, Waste Management (Construction of superstructure of Pumping Station PS2 and NPS;	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; and On-site waste sorting and implementation of trip ticket system.
Dust, Noise (Backfilling between sewerage manholes 1K1_1 and FMH10_340 and construction of manhole FMH10_370a at L6;)	 Use of quiet plant and well-maintained construction plant; and Properly cover the stockpiles;
Noise, Waste Management (Installation of precast unit and construction of in-situ portions of	 Use of quiet plant and well-maintained construction plant; and Provide hoarding.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. : (852)-24508238 : (852)-24508032 : mcl@fugro.com Tel Fax Email

Maior Environmental Immed	Ocarbus I Managemen
Major Environmental Impact	Control Measures
Box Culvert B6; Construction of jacking pits nos. 1 and 2; Installation of gas pipe at pit no. 10; Construction of washout chamber at pit no. 11;)	Good management and control on construction waste reduction
Noise (Construction of sewerage manhole FMH 10 at Bailey Street; Widening works of Sung Wong Toi Road.)	 Use of quiet plant and well-maintained construction plant; and Provide hoarding.
Noise, Water Quality (Pipe laying from manhole SMH2204 to Box Culvert B6; Laying of rising mains from PS2 to chainage CHA-18; Pipe laying from stormwater manholes SMH1962 to SMH1963 and construction of manholes SMH1953 and SMH1963 at L6; Installation of DCS;)	 Use of quiet plant and well-maintained construction plant; and Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall.
Contract No. KL/2014/01:	
Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide mitigation measure to temporary use of chemicals; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.
Air Quality Impact, Construction Noise Impact, Water Quality Impact, Chemical and Waste Management, Landscape and Visual Impact	 Sufficient watering of the works site with the active dust emitting activities; Limitation of the speed for vehicles on unpaved site roads; Properly cover or enclosure of the stockpiles and dusty materials; Good site practices on loading dusty materials; Providing sufficient vehicles washing facilities at every vehicle exit point; Good maintenance to the plant and equipment; Use of quieter plant and Quality Powered Mechanical Equipment (QPME); Use of acoustic fabric and noise barrier; Using the approved Non-road Mobile Machineries (NRMMs); Proper storage and handling of chemical; Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge; Onsite waste sorting and implementation of trip ticket system; Training of the site personnel in proper waste management and chemical waste handling procedures;

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. : (852)-24508238 : (852)-24508032 : mcl@fugro.com Tel Fax Email

Major Environmental Impact	Control Measures
	 Proper storage of the construction materials; Erection of decorative screen hoarding; Strictly following the Environmental Permits and Licenses; Provide sufficient mitigation measures as recommended in Approved EIA Reports

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 Fax : (852)-24508032 Hong Kong. Email : mcl@fugro.com

1.5 Summary Status of Environmental Licences, Notifications and Permits

A summary of the relevant environmental licenses, permits and/or notifications on environmental protection for this EP and relevant Contract are presented in **Table 1.1**.

Table 1.1 Relevant Environmental Licenses, Permits and/or Notifications

Environmental License / Permit /	·	Valid From	Valid Till			
Notification	Reference Number	valid From	valid IIII			
Contract No. KL/2012/02:						
Environmental Permit	EP-337/2009	23/04/2009	N/A			
Effluent Discharge License	WT00016873-2013	-	31/08/2018			
	WT00016723-2013	-	31/08/2018			
Registration of Chemical Waste Producer	5213-286-K3022-04	-	N/A			
	GW-RE0646-16	14/09/2016	13/03/2017			
	GW-RE0648-16	25/07/2016	24/01/2017			
	GW-RE1002-16	15/10/2016	11/12/2016			
Construction Noise Permit	GW-RE1033-16	23/10/2016	11/12/2016			
Construction Noise Permit	GW-RE1041-16	27/10/2016	23/04/2017			
	GW-RE1054-16	28/10/2016	23/04/2017			
	GW-RE1154-16	04/12/2016	25/12/2016			
	GW-RE1197-16	17/12/2016	12/03/2017			
Contract No. KL/2012/03:						
	EP-337/2009	23/04/2009	N/A			
Environmental Permit	EP-344/2009	23/04/2009	N/A			
Effluent Discharge License	WT00020971-2015	22/04/2015	21/04/2020			
Registration of Chemical Waste Producer	5213-286-K2958-05	=	N/A			
Construction Noise Permit	GW-RE0964-16	30/09/2016	29/03/2017			
Contract No. KL/2014/01:						
Environmental Permit	EP-337/2009	23/04/2009	N/A			
	EP-445/2013/A	13/08/2009	N/A			
Effluent Discharge License	WT00023634-2016	-	31/03/2021			
Registration of Chemical Waste Producer	5213-247-C4004-01	-	N/A			
Construction Noise Permit	GW-RE1092-16	09/11/2016	08/05/2017			
Contract No. KL/2014/03:						
	EP-337/2009	23/04/2009	N/A			
Environmental Permit	EP-339/2009/A	18/06/2009	N/A			
	EP-451/2013	19/09/2013	N/A			
Notification pursuant to Air Pollution	395601	16/11/2015	N/A			
(Construction Dust) Regulation						
Billing Account for Waste Disposal	A/C No.: 7023814	30/11/2015	N/A			
Construction Noise Permit	GW-RE1008-16	19/10/2016	09/04/2017			
	PP-RE0032-16	23/11/2016	15/05/2017			
Wastewater Discharge License	WT00023125-2015	06/01/2016	31/01/2021			
Chemical Waste Producer License	5213-247-C1232-12	23/11/2015	N/A			

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong. Email : mcl@fugro.com

2. **ENVIRONMENTAL MONITORING AND AUDIT**

Results and Observations 2.1

Air Quality

- The schedule of air quality monitoring in reporting month is provided in the appendices of the corresponding Monthly EM&A.
- 2.1.2 The weather conditions during the monitoring are provided in the appendices of the corresponding Monthly EM&A.
- 2.1.3 The monitoring data of 24-hr TSP and 1 hour TSP are summarized in Table 2.1. Detailed monitoring data are presented in the appendices of the corresponding Monthly EM&A.

Table 2.1 Summary of 24-hr and 1 hour TSP Monitoring Results

Parameter	Monitoring Station	Average (µg/m³)	Range (μg/ m³)	Action Level (μg/ m³)	Limit Level (μg/ m³)	
Contract No.	KL/2012/02:					
1-hr TSP	AM1(B)	169.3	106.2 - 277.7	342	500	
1-111 135	AM2	150.6	63.7 - 218.7	346	500	
24-hr TSP	AM1(B)	72.3	42.1 - 86.7	159	260	
24-111 135	AM2	69.8	45.8 - 89.0	157	200	
Contract No.	KL/2012/03:					
	AM2	155.6	97.7 – 218.7	346		
1-hr TSP	AM3(A)	154.3	63.7 – 226.7	351	500	
1-111 13P	AM4(A)	157.0	97.7 - 240.2	371	500	
	AM5(5)	119.9	66.0 - 185.1	345		
	AM2	69.8	45.8 - 89.0	157		
24-hr TSP	AM3(A)	70.2	46.2 - 93.7	167	260	
24-111 135	AM4(A)	62.4	38.3 - 91.8	187	200	
	AM5(5)	38.6	26.8 – 56.1	156		
Contract No.	KL/2014/01:					
NA (No air qu	ality monitoring is red	quired for the Proje	ct)			
Contract No.	KL/2014/03:					
	KTD1a	No compl	aint of air quality	was resolved. Th	oroforo	
1-hr TSP	KTD2a	No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted.				
	KER1a	по трас	5. 1-110ul 13P 1110	milloring was cond	Jucieu.	
	KTD1a	131	60-174	177		
24-hr TSP	KTD2a	56	19-93	157	260	
	KER1a	128	110-144	172		
		.=5		=		

- 2.1.4 No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- 2.1.5 No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.
- The monitoring data of 24-hr TSP was compared with the EIA predictions are presented in the appendices of the corresponding Monthly EM&A.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong. Email : mcl@fugro.com

The Event and Action Plan for air quality is given in in the appendices of the corresponding 2.1.7 Monthly EM&A.

Noise

- The schedule of noise monitoring in reporting month is provided in in the appendices of the corresponding Monthly EM&A.
- The noise monitoring data are summarized in Table 2.2. Detailed monitoring data are presented in the appendices of the corresponding Monthly EM&A.

Table 2.2 **Summary of Noise Impact Monitoring Results**

Monitoring Construction Noise Level Leq (30min) dB(A) (Range)		Action Level	Limit Level dB (A)
Contract No. KL/2012/02:			
M3	60.6 – 79.8 [#]		70*
M4	60.4 – 76.4 [#]		70*
M9	55.7 – 60.1		75
Contract No. KL/2012/03:			
M6(A)	60.4 - 63.1		70*
M7	63.5 - 68.2	1	70*
M8	58.7 – 67.6	When one	70*
M9	55.7 – 60.1	documented complaint is	75
Contract No. KL/2014/01:	received		
(No Construction noise m		NA	
Contract No. KL/2014/03:			
KTD1a	KTD1a 68 - 71		75
KTD2a	63 - 69		75
KER1a	64 - 74		75

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

- 2.1.10 The noise monitoring data was compared with the EIA predictions are presented in the appendices of the corresponding Monthly EM&A.
- 2.1.11 No Action / Limit Level exceedance was recorded for noise monitoring in the reporting month.
- 2.1.12 The Event and Action Plan for noise is given in the appendices of the corresponding Monthly EM&A.

Landscape and Visual

2.1.13 Site audits were carried out on a weekly basis to monitor and audit the landscape and visual mitigation measures within the site boundaries of this Project. Detailed of observations are presented in the appendices of the corresponding Monthly EM&A.

EM&A report.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong. Email : mcl@fugro.com

3. SITE INSPECTION

3.1 **Site Inspection**

Site inspections were carried out weekly to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. The site inspection of each Contract are summarized as follow:

Contract No. KL/2012/02:

Site audits were conducted on 7th, 15th, 21st and 28th December 2016 in the reporting month. IEC site inspection was conducted on 15th December 2016.

Contract No. KL/2012/03:

Site audits were conducted on 2nd, 15th, 23rd and 29th December 2016 in the reporting month. IEC site inspection was conducted on 15th December 2016.

Contract No. KL/2014/01:

Site audits were conducted by representatives of the Contractor, Supervising Officer and ET on 7, 14, 21 and 28 December 2016 in the reporting month. IEC joint site inspection was conducted on 28 December 2016.

Contract No. KL/2014/03:

In the reporting month, five site inspections were carried out on 1, 8, 14, 21 and 29 December 2016. Two of them, held on 14 and 21 December 2016 were the joint inspections with the IEC, ER, the Contractor and the ET.

3.1.2 Detailed of observation, recommendation of site inspections and summary of the mitigation measures implementation schedule is provided in the appendices of the corresponding Monthly EM&A.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong. Email : mcl@fugro.com

4. **ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE**

4.1 **Complaints, Notification of Summons and Prosecution**

The summary of complaints, notification of summons and prosecution in the reporting month is shown as Table 4.1. Detailed records are presented in the appendices of the corresponding Monthly EM&A.

Table 4.1 Summary of Complaints, Notification of Summons and Prosecution

Event	No. of Event This Month	Remark
Contract No. KL/2012/02:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA
Contract No. KL/2012/03:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA
Contract No. KL/2014/01:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA
Contract No. KL/2014/03:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA

4.1.2 No complaint, notification of summons or prosecution was received in this reporting month.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong. Email : mcl@fugro.com

5. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

5.1 **Implementation Status**

5.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and the EM&A Manuals. The implementation status of the mitigation measures during the reporting month are presented in the appendices of the corresponding Monthly EM&A.

5.2 **Waste Management**

5.2.1 The amount of wastes generated of this Project during the reporting month is shown in the appendices of the corresponding Monthly EM&A.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong. Email : mcl@fugro.com

6. **FUTURE KEY ISSUES**

Construction Programme for the Next Two Months 6.1

The major site activities undertaken for the coming two months are summarized in follow: 6.1.1

Contract No. KL/2012/02:

- Site Clearance for all possessed portion;
- Condition survey and monitoring survey;
- Road and drainage works at Sze Mei Street;
- Painting and Roadwork at VT1;
- VE panel installation at SW2 and SW3;
- PERE Stage 1 works;
- Earthwork at Portion E3:
- RC for SW2 and SW3;
- Drainage works for connection to box culvert adjacent to KTOB; and
- Road works at King Fuk Street

Contract No. KL/2012/03:

- Daily Cleaning;
- Installation of hand-railing & ladder inside Box Culvert B5:
- Construction of staircase and landing and E&M Works at PS2:
- Water test, backfill and sheet-pile removal in Heading 7A;
- Segment tunneling, backfill and sheet-pile removed chamber construction in Heading 7B:
- Outfall construction at Box Culvert B6;
- Road widening works (excavation and UU works) at Sung Wong Toi Road;
- Maintenance & Servicing Engineer's Office at Portion 9;
- Lay HDPE pipe at Pit 1 and 9;
- Pipe jacking at Pit 4;
- · Chamber construction at Pit 5;
- Installation of drainage, UU laying works and Road works at Road D2;
- Finishing works and E&M works at NPS;
- UU works and Road works at Road L19 & Bailey St; and
- Storage of excavated material at Portion 6.

Contract No. KL/2014/01:

- Watermain works;
- Ground investigation work;
- Construction of boundary wall at EPD recycling centre;
- Bored piles and Pre-bored socketed H-piles:
- TTA implementation at Shing Fung Road and Wang Chiu Road/ Sheung Yee Road;
- Open excavation for box culvert, pile caps and underpass; and
- ELS installation for box culvert.

Contract No. KL/2014/03:

- Temporary utility diversion;
- Implementation of Temporary Traffic Arragement (TTA);
- Construction of Socket H piles;
- Construction of Supporting Underground Structure (SUS).
- · Construction of Subway B;
- Construction of guide walls and D-walls; and
- Construction of District Cooling System Works.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

6.2 **Key Issues for the Coming Month**

The potential environmental impacts arising from the above construction activities and the 6.2.1 control measures are shown in Table 6.1:

Table 6.1 Summary of Key Issues for the Coming Month and Control Measures

Table 6.1 Summary of Key Issues for the Coming Month and Control Measures							
Major Impact Prediction	Control Measures						
Contract No. KL/2	Contract No. KL/2012/02:						
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 						
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 						
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary. 						
Contract No. KL/2	012/03:						
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 						
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of site boundary bund such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 						
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary. 						
Contract No. KL/2							
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 						
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 						

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

Tel : (852)-24508238 Fax : (852)-24508032 Hong Kong. Email : mcl@fugro.com

Major Impact Prediction	Control Measures
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary.
Contract No. KL/2	014/03:
Construction dust, construction noise, water quality, waste management and landscape and visual impact.	 Sufficient watering of the works site with the active dust emitting activities; Limitation of the speed for vehicles on unpaved site roads; Properly cover or enclosure of the stockpiles and dusty materials; Good site practices on loading dusty materials; Providing sufficient vehicles washing facilities at every vehicle exit point; Good maintenance to the plant and equipment; Use of quieter plant and Quality Powered Mechanical Equipment (QPME); Use of acoustic fabric and noise barrier; Using the approved Non-road Mobile Machineries (NRMMs); Proper storage and handling of chemical; Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge; Onsite waste sorting and implementation of trip ticket system; Training of the site personnel in proper waste management and chemical waste handling procedures; Proper storage of the construction materials; Erection of decorative screen hoarding; Strictly following the Environmental Permits and Licenses; Provide sufficient mitigation measures as recommended in Approved EIA Reports

Monitoring Schedules for the Next Three Months 6.3

6.3.1 The tentative schedules for environmental monitoring in the coming three months are provided in in the appendices of the corresponding Monthly EM&A.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong. Email : mcl@fugro.com

7. **CONCLUSIONS**

- No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- 7.1.2 No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting
- 7.1.3 No Action / Limit Level exceedance was recorded for noise monitoring in the reporting month.
- No complaint, notification of summons or prosecution was received in this reporting month. 7.1.4
- 7.1.5 The potential environmental impacts arising from the coming two months of major construction activities and the control measures are shown in Table 6.1

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix A

Monthly EM&A Report For Contract No. KL/2012/02 Stage 3A infrastructure works at north apron area of Kai Tak Airport

Civil Engineering and Development Department

EP-337/2009 – New Distributor Roads Serving the Planned KTD

Contract No. KL/2012/02 Kai Tak Development –Stage 3A Infrastructure at Former North Apron Area

Monthly EM&A Report

December 2016

(version 1.0)

Approved By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: <u>info@cinotech.com.hk</u>

Ove Arup & Partners Hong Kong Limited

L5 Festival Walk

80 Tat Chee Avenue

Kowloon Tong

Hong Kong

Your reference:

Our reference:

HKCEDD04/50/104039

Date:

16 January 2017

Attention: Mr Gary Cheung / Mr Chris Lee

BY POST

Dear Sirs

Contract No.: KLN/2013/01

Independent Environmental Checker for "Contract No. KL/2012/02

Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area"

Verification of Monthly EM&A Report for December 2016

We refer to emails of 10, 13 and 16 January 2017 attaching a Monthly EM&A Report for December 2016 prepared by the ET.

We have no comment and hereby verify the Report in accordance with Clause 3.3 of the Environmental Permit no. EP-337/2009.

Should you have any queries, please do not hesitate to contact the undersigned or our Mr Anthony Fong on 2618 2836.

Yours faithfully

ANEWR CONSULTING LIMITED

James Choi

Independent Environmental Checker

CPSJ/FCCA/cklc

Web: www.anewr.com

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	
	IntroductionEnvironmental Monitoring Works	
	Environmental Licenses and Permits.	
	Key Information in the Reporting Month	
	Future Key Issues	
1	•	
1.	INTRODUCTION	
	Background	
	Project Organizations	
	Construction Activities undertaken during the Reporting Month	
	Summary of EM&A Requirements	6
2.	AIR QUALITY	7
	Monitoring Requirements	7
	Monitoring Locations	7
	Monitoring Equipment	7
	Monitoring Parameters, Frequency and Duration	7
	Monitoring Methodology and QA/QC Procedure	8
	Results and Observations	
3.	NOISE	12
	Monitoring Requirements	12
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedures	
	Maintenance and Calibration	
	Results and Observations.	
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	16
→.	COMPARISON OF EMICA RESULTS WITH EIATREDICTIONS	10
5.	LANDSCAPE AND VISUAL	18
	Monitoring Requirements	18
	Results and Observations	
6.	ENVIRONMENTAL AUDIT	19
	Site Audits	19
	Review of Environmental Monitoring Procedures	
	Status of Environmental Licensing and Permitting	
	Status of Waste Management	
	Implementation Status of Environmental Mitigation Measures	20
	Summary of Mitigation Measures Implemented	22
	Implementation Status of Event Action Plans	
	Summary of Complaint, Warning, Notification of any Summons and Successful	
	Prosecution	23
7.	FUTURE KEY ISSUES	24
	Key Issues for the Coming Month	24
	Monitoring Schedule for the Next Month	
	=	

8.	CONCLUSIONS AND RECOMMENDATIONS	26
	Conclusions	26
	Recommendations	26

LIST OF TABLES

Table I	Air Quality and Noise Monitoring Stations for this Project
Table II	Non-compliance Recorded for the Project in the Reporting Month
Table III	Summary Table for Key Information in the Reporting Month
Table 1.1	Key Project Contacts
Table 1.2	Construction Programme Showing the Inter-Relationship with Environmental
14010 1.2	Protection/Mitigation Measures
Table 2.1	Locations for Air Quality Monitoring
Table 2.2	Air Quality Monitoring Equipment
Table 2.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 2.4	Summary Table of Air Quality Monitoring Results during the reporting month
Table 3.1	Noise Monitoring Stations
Table 3.2	Noise Monitoring Equipment
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 3.5	Summary Table of Noise Monitoring Results during the Reporting Month
Table 4.1	Comparison of 1-hr TSP data with EIA predictions
Table 4.2	Comparison of 24-hr TSP data with EIA predictions
Table 4.3	Comparison of Noise Monitoring Data with EIA predictions
Table 6.1	Summary of Environmental Licensing and Permit Status
Table 6.2	Observations and Recommendations of Site Inspections

LIST OF FIGURES

Figure 1	Site Layout Plan
Figure 2	Air Quality Monitoring Stations under Contract No.: KLN/2013/16
Figure 3	Noise Monitoring Stations under Contract No.: KLN/2013/16
Figure 4	Locations of Wind Data Monitoring Equipment

LIST OF APPENDICES

A	Action and Limit Levels for Air Quality and Noise
В	Copies of Calibration Certificates
C	Weather Information
D	Environmental Monitoring Schedules
E	1-hour TSP Monitoring Results and Graphical Presentations
F	24-hour TSP Monitoring Results and Graphical Presentations
G	Noise Monitoring Results and Graphical Presentations
H	Summary of Exceedance
I	Site Audit Summary
J	Event Action Plans
K	Environmental Mitigation Implementation Schedule (EMIS)
L	Summaries of Environmental Complaint, Warning, Summon and Notification
	of Successful Prosecution
M	Summary of Waste Generation and Disposal Records

EXECUTIVE SUMMARY

Introduction

- 1. This is the 39th Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2012/02 Kai Tak Development Stage 3A Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises one Schedule 2 designated project (DP), namely the new distributor road D1 serving the planned KTD. The DP is part of the designated project under Environmental Permit (EP) No.: EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") respectively. This report documents the findings of EM&A Works conducted from 1 31 December 2016.
- 2. With reference to the same principle of EIA report of the Project, air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in Table I (see Figure 2 and 3 for their locations).

Table I – Air Quality and Noise Monitoring Stations for this Project

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations		
Air Quality Monitoring Stations				
AM1 - Rhythm Garden	No	AM1(B) - Contractor Site Office (KL/2012/02)		
AM2 - Lee Kau Yan Memorial School	Yes	N/A		
AM6 – Site 1B4 (Planned)	N/A			
Noise Monitoring Stations				
M3 - Cognitio College	Yes	N/A		
M4 - Lee Kau Yan Memorial School	Yes	N/A		
M9 – Tak Long Estate	Yes	N/A		
M10 – Site 1B4 (Planned)		N/A		

3. According to the Environmental Monitoring and Audit Manual (EM&A Manual) of the Kai Tak Development (KTD) Schedule 3 Environmental Impact Assessment (EIA) Report, the impact monitoring at the designated monitoring stations as required in KTD EM&A Manual under the EP, have been conducted in Contract No. KLN/2013/16 – Environmental Monitoring Works for Kai Tak Development under Schedule 3 of KTD, which is on-going starting from December 2010. The impact monitoring data under Contract No. KLN/2013/16 will be adopted for the Project. Therefore, this report presents the air quality and noise monitoring works extracted from Contract No. KLN/2013/16.

- 4. The major site activities undertaken in the reporting month included:
 - Site Clearance;
 - RC works for VT1 at Portion G;
 - Drainage works for connection to box culvert (KTOB);
 - Hard landscaping works for Portion F1;
 - Cross road duct at Choi Hung Road;
 - Road and drainage works at Sze Mei Street and Luk Hop Street;
 - Condition survey and monitoring survey;
 - Earthwork at Portion E3;
 - Footpath construction at Sam Chuk Street and Tsat Po Street; and
 - ELS works for SW3 at San Po Kong.

Environmental Monitoring Works

- 5. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 6. Summary of the non-compliance in the reporting month for the Project is tabulated in Table II.

Table II Non-compliance Recorded for the Project in the Reporting Month

Danamatan	No. of Project-rela	A ation Tokon	
Parameter	Action Level	Limit Level	Action Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

1-hour & 24-hour TSP Monitoring

7. All 1-hour & 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, EP-337/2009 issued on 23 April 2009.
- 10. Registration of Chemical Waste Producer (License: 5213-286-K3022-04).
- 11. Water Discharge License (License No.: WT00016873-2013 and WT00016723-2013).
- 12. Construction Noise Permit (License No.: GW-RE0646-16, GW-RE0648-16, GW-RE1002-16, GW-RE1033-16, GW-RE1041-16, GW-RE1054-16, GW-RE1154-16 & GW-RE1197-16).

Key Information in the Reporting Month

13. Summary of key information in the reporting month is tabulated in Table III.

Table III Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Remark
Event	Number	Nature	Action Taken	Status	Keiliai K
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues

- 14. The future key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels and sedimentation tanks; and
 - Review and implementation of temporary drainage system for the surface runoff.

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 3A Infrastructure at Former North Apron Area is one of the construction stages of KTD. It contains one Schedule 2 DP including new distributor roads serving the planned KTD. The general layout of the Project is shown in **Figure 1.**
- 1.2 One Environmental Permit (EP) No. EP-337/2009 was also issued on 23 April 2009 for new distributor roads serving the planned KTD to Civil Engineering and Development Department as the Permit Holder.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. An EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Cinotech Consultants Limited (Cinotech) was commissioned by Build King Construction Ltd. (the Contractor) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2012/02 Stage 3A Infrastructure at Former North Apron Area. The construction work under KL/2012/02 comprises the construction of part of the Road D1 under the EP (EP-337/2009).
- 1.5 Cinotech Consultants Limited was commissioned by Build King Construction Ltd. To undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The construction commencement of this Contract was on 24th October 2013 for Road D1. This is the 39th Monthly EM&A report summarizing the EM&A works for the Project from 1 31 December 2016.

Project Organizations

- 1.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) Ove Arup & Partners (ARUP).
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) AnewR Consulting Limited (AnewR).
 - Contractor Build King Construction Ltd. (Build King).

1.7

Table 1.1 Key Project Contacts

The key contacts of the Project are shown in **Table 1.1**.

Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. Mike Cho / Mr. Kelvin Chow	Engineer	3579 2450 / 3579 2453	2369 4980
ARUP	Engineer's Representative	Mr. Gary Cheung Ms. Edith Fung	SRE RE	2210 6100	2210 6110
Cinotech	Environmental Team	Dr. Priscilla Choy	Environmental Team Leader	2151 2089	
		Ms. Ivy Tam	Project Coordinator and Audit Team Leader	2151 2090	3107 1388
AnewR	Independent Environmental Checker	Mr. Adi Lee	Independent Environmental Checker	2618 2836	3007 8648
	Contractor	Mr. Osbert Sit	Project Manager		
Build King		Mr. Edmond Wong	Environmental Officer	2639 6290	2639 6208

Construction Activities undertaken during the Reporting Month

- 1.8 The site activities undertaken in the reporting month included:
 - Site Clearance:
 - RC works for VT1 at Portion G;
 - Drainage works for connection to box culvert (KTOB);
 - Hard landscaping works for Portion F1;
 - Cross road duct at Choi Hung Road;
 - Road and drainage works at Sze Mei Street and Luk Hop Street;
 - Condition survey and monitoring survey;
 - Earthwork at Portion E3;
 - Footpath construction at Sam Chuk Street and Tsat Po Street; and
 - ELS works for SW3 at San Po Kong.
- 1.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in Table 1.2.

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Section 1.8	Noise, dust impact, water quality and waste generation	Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant;

Provide movable noise barrier;
Well maintain the drainage system to
prevent the spillage of wastewater during
heavy rainfall;
Provide sufficient mitigation measures as
recommended in Approved EIA
Report/Lease requirement.

Summary of EM&A Requirements

- 1.10 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
- All monitoring parameters;
- Action and Limit levels for all environmental parameters;
- Event Action Plans;
- Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project from 1-31 December 2016.

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the EP, 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix** A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Three designated monitoring stations were selected for air quality monitoring programme. Impact dust monitoring was conducted at two air quality monitoring stations, Contractor Site Office (KL/2012/02) AM1(B), Lee Kau Yan Memorial School (AM2) in the reporting month. Table 2.1 describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 2.1 Locations for Air Quality Monitoring

Monitoring Stations	Locations	Location of Measurement
AM1(B)	Contractor Site Office (KL/2012/02)	Ground Floor Area
AM2	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
#AM6	PA 15	Site 1B4 (Planned)

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

2.3 Table 2.2 summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix B**.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	TISCH TE-5025A	1
1-hour TSP Dust Meter	Laser Dust Monitor – Model LD-3, LD-3B, AEROCET-531	5
HVS Sampler	GMWS 2310 c/w of TSP sampling inlet	2
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters, Frequency and Duration

2.4 Table 2.3 summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting

month is shown in **Appendix D**.

 Table 2.3
 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

(Equipment: Sibata; Model no. LD-3, LD-3B)

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - Pull up the air sampling inlet cover
 - Change the Mode 0 to BG with once
 - Push Start/Stop switch once
 - Turn the knob to SENSI.ADJ and press it
 - Push Start/Stop switch once
 - Return the knob to the position MEASURE slowly
 - Push the timer set switch to set measuring time
 - Remove the cap and make a measurement

Maintenance/Calibration

2.6 The following maintenance/calibration was required for the direct dust meters:

Check the meter at a 3-month interval and calibrate the meter at a 1-year interval throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.7 High volume (HVS) samplers (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers

- against gusty wind.
- No two samplers were placed less than 2 meters apart.
- The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
- A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
- A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
- No furnaces or incineration flues were nearby.
- Airflow around the sampler was unrestricted.
- The sampler was more than 20 meters from the drip line.
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For TSP sampling, fiberglass filters have a collection efficiency of > 99% for particles of 0.3μm diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.16 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

Monthly EM&A Report – December 2016

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 2.19 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.20 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer set at rooftop (about 8/F) Lee Kau Yan Memorial School. The location is shown in **Figure 4**. This weather information for the reporting month is summarized in **Appendix C.**
- 2.22 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.23 The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the air quality monitoring.
- 2.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Station	Major Dust Source	
	Road Traffic Dust	
AM1(B) – Contractor Site Office (KL/2012/02)	Exposed site area and open stockpiles	
	Site vehicle movement	
	Road Traffic Dust	
AM2 – Lee Kau Yan Memorial School	Exposed site area and open stockpiles	
AWIZ – Lee Kau Faii Wellioffai School	Excavation works	
	Site vehicle movement	

2.25 Table 2.4 shows the summary of air quality monitoring results during the reporting month.

Table 2.4 Summary Table of Air Quality Monitoring Results during the reporting month

Date	Concentration (µg/m3)	Action Level, µg/m3	Limit Level, µg/m3
ce (KL/2012/02)			
1-Dec-16	254.7		
1-Dec-16	277.7		
1-Dec-16	260.4		
7-Dec-16	230.8		
7-Dec-16	233.8		
7-Dec-16	233.2		
13-Dec-16	107.2		
13-Dec-16	106.7		
13-Dec-16	106.2	3/12	500
19-Dec-16	128.6	J+2	300
19-Dec-16	129.3		
19-Dec-16	128.9		
23-Dec-16	156.6		
23-Dec-16	158.6		
23-Dec-16	161.3		
29-Dec-16	123.4		
29-Dec-16	132.7		
29-Dec-16	116.5		
6-Dec-16 42.1			
12-Dec-16	81.4		
	86.7	159	260
22-Dec-16	75.2		
	75.8		
			T
		_	
13-Dec-16	97.7	_	
		_	
		346	500
19-Dec-16	131.4	_	
19-Dec-16	131.5	_	
23-Dec-16	123.4	_	
23-Dec-16	93.6	_	
23-Dec-16	63.7	_	
	190.1	_	
29-Dec-16	180.6	_	
29-Dec-16	182.0		
6-Dec-16	45.8	_	
12-Dec-16	64.6		
16-Dec-16		157	260
22-Dec-16	68.8 89.0	_	
	1-Dec-16 1-Dec-16 1-Dec-16 7-Dec-16 7-Dec-16 7-Dec-16 7-Dec-16 13-Dec-16 13-Dec-16 13-Dec-16 19-Dec-16 19-Dec-16 23-Dec-16 23-Dec-16 29-Dec-16 29-Dec-16 22-Dec-16 22-Dec-16 22-Dec-16 22-Dec-16 23-Dec-16 13-Dec-16	te (KL/2012/02) 1-Dec-16	tee (KL/2012/02) 1-Dec-16

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Four designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at three designated monitoring stations (M3, M4, M9). **Figure 3** shows the locations of these stations.

Table 3.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
M3	Cognitio College	Rooftop (about 6/F) Area
M4	Lee Kau Yan Memorial School	Rooftop (about 7/F) Area
M9	Tak Long Estate	Car Park Building (about 2/F)
#M10	Site 1B4 (Planned)	-

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

3.3 **Table 3.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2 Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	BSWA 801, SVAN 955 & 957	5
Calibrator	SVAN 30A, B&K4231	5

Monitoring Parameters, Frequency and Duration

3.4 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameter	Period	Frequency	Measurement
M3 M4 M9	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Façade

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting
time weighting
time measurement
: A
: Fast
: 30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 3.8 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. The summary of exceedance record in reporting month is shown in **Appendix H**.
- 3.9 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.4**.
- 3.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.

3.11 The major noise source identified at the designated noise monitoring stations are as follows:

Monitoring Stations	Locations	Major Noise Source
М3	Cognitio College	Traffic Noise Daily school activities
M4	Lee Kau Yan Memorial School	Traffic Noise Site vehicle movement Excavation works Piling works Daily school activities
M9	Tak Long Estate	Traffic Noise Construction works

Table 3.4 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A)	Noise Limit Level,dB (A)
M3	76.3/78.6 ⁽¹⁾ (at 0700 – 1900 hrs on normal weekdays) /	70* (at 0700 – 1900 hrs on
M4	76.7 (at 0700 – 1900 hrs on normal weekdays)	`
M9	59.9 (at 0700 – 1900 hrs on normal weekdays)	75 (at 0700 – 1900 hrs on normal weekdays)

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

Note (1): The baseline noise review report submitted under KLN/2013/16 for M3 was approved by EPD on 23rd August 2013. (Baseline Level was found to be 78.6 dB(A)at Rooftop of Cognitio College)

Table 3.5 Summary Table of Noise Monitoring Results during the Reporting Month

Table 5.5 Summary Table of Noise Womening Results during the Reporting Month				
Date	Measured Noise Level, Leq(30min) dB (A)	Baseline Level dB (A)	Construction Noise Level (1): Leq(30min) dB (A)	
M3 – Cognitio	College			
		Background Noise ⁽²⁾		
1-Dec-16	72.4	72.1	60.6	
7-Dec-16	77.0	76.8	63.5	
13-Dec-16	77.6	77.2	67.0	
19-Dec-16	77.3	76.8	67.7	
29-Dec-16	79.8	79.8	$79.8 \text{ Measured} \leq \text{Background}$	
M4 – Lee Kau `	Yan Memorial School			
1-Dec-16	74.3		74.3 Measured \leq Baseline	
7-Dec-16	76.8		60.4	
13-Dec-16	76.4	76.7	76.4 Measured \leq Baseline	
19-Dec-16	76.3		76.3 Measured ≤ Baseline	
29-Dec-16	77.9		71.7	
M9 – Tak Long Estate				
5-Dec-16	63.0		60.1	
9-Dec-16	61.5		56.4	
13-Dec-16	55.7	59.9	55.7 Measured ≤ Baseline	
19-Dec-16	62.3		58.6	
28-Dec-16	62.3		58.6	

Note (1) The noise level due to the construction work (CNL) was calculated by the following formula:

 $\text{CNL} = 10 \ \text{log} \ (10^{\text{MNL/10}} - 10^{\text{BNL/10}})$

Remarks: MNL = Measured Noise Level BNL = Baseline Noise Level

(2): The background Noise Level was recorded during the Lunch Hour of Construction Site (i.e. 12:00-13:00) and to be used as the referencing value for compliance checking for Noise Action and Limit Level.

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 The EM&A data was compared with the EIA predictions as summarized in Tables 4.1 to 4.3.

Table 4.1 Comparison of 1-hr TSP data with EIA predictions

	Predicted 1-hr TSP conc.		
Station	Scenario1 (Mid 2009 to Mid 2013), μg/m3	Scenario2 (Mid 2013 to Late 2016), µg/m3	Reporting Month (Dec 16), µg/m3
AM1(B) – Contractor Site Office of KL/2012/02	192	298	169.3
AM 2 – Lee Kau Yan Memorial School	290	312	150.6

 Table 4.2
 Comparison of 24-hr TSP data with EIA predictions

	Predicted 24-hr TSP conc.			
Station	Scenario1 (Mid 2009 to Mid 2013), µg/m3	Scenario2 (Mid 2013 to Late 2016), µg/m3	Reporting Month (Dec 16), µg/m3	
AM1(B) – Contractor Site Office of KL/2012/02	121	156	72.3	
AM2 – Lee Kau Yan Memorial School	145	169	69.8	

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (Leq (30min) dB(A))	Reporting Month (Dec 16), $L_{eq~(30min)}~dB(A)$
M3 – Cognitio College	47 - 75	$72.4 - 79.8^{(1)}$
M4 – Lee Kau Yan Memorial School	47 – 74	74.3 – 77.9 ⁽²⁾
M9 – Tak Long Estate	Not Predicted in EIA Report	55.7 – 63.0

Remark:

- (1) Since the background noise level recorded during 12:00 to 13:00 was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.
- (2) Since the baseline noise level was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.
- 4.2 The 1-hour TSP concentrations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3 The 24-hour TSP concentrations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.

Monthly EM&A Report – December 2016

4.4 Mitigated construction noise levels at M9 were not predicted in EIA Report. The noise monitoring results in the reporting month at M3 & M4 were not within the range of predicted mitigated construction noise levels in the EIA report. For M3, please refer to remark in Table 4.3. The noise data at M4 exceeds the prediction of mitigated scenario in EIA report but did not exceed the baseline level.

5. LANDSCAPE AND VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix J** shall be performed.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 7th, 15th, 21st and 28th December 2016 in the reporting month. IEC site inspection was conducted on 15th December 2016. No non-compliance was observed during the site audits.

Review of Environmental Monitoring Procedures

6.3 The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Status of Environmental Licensing and Permitting

6.4 All permits/licenses obtained for the Project are summarized in Table 6.1.

Table 6.1	Summary	of Environmental	Licensing	and Permit Status
-----------	----------------	------------------	-----------	-------------------

Down:4 No	Valid	Period	Dotoila	Chatria
Permit No.	From	To	Details	Status
Environmental Pe	rmit (EP)			
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	Valid
Effluent Discharge l	License			
WT00016873-2013	ı	31/08/18	Wastewater from the construction site	Valid
WT00016723-2013	-	31/08/18	including contaminated surface run-off	Valid
Registration of Cher	mical Waste	Producer		
5213-286-K3022- 04	-	N/A	Chemical Waste Types: Spent lubricating oil, Soil contaminated with lubricating oil, Spent battery containing heavy metals, Surplus paint, Spend solvent, Spend alkali and acid	Valid
Construction Noise	Permit (CNI	P)		
GW-RE0646-16	14/09/16	13/03/17		Valid
GW-RE0648-16	25/07/16	24/01/17		Valid
GW-RE1002-16	15/10/16	11/12/16	Construction Noise Permit for the use of	Valid until 11/12/16
GW-RE1033-16	23/10/16	11/12/16	powered mechanical equipment for carrying out construction work other than	Valid until 11/12/16
GW-RE1041-16	27/10/16	23/04/17	percussive pilling and performing	Valid
GW-RE1054-16	28/10/16	23/04/17	prescribed construction work.	Valid
GW-RE1154-16	04/12/16	25/12/16		Valid until 25/12/16
GW-RE1197-16	17/12/16	12/03/17		Valid

Status of Waste Management

- 6.5 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.
- 6.6 The Contractor is advised to take photo and inspection records to ensure that all dump trucks have the skip fully covered before leaving the site.

Implementation Status of Environmental Mitigation Measures

6.7 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 6.2.

 Table 6.2
 Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality		1	
	30 November 2016	Observation: The haul road of Sze Mei Street should be properly maintained and the dusty trail should be cleared.	Rectification/improvement was observed during the follow-up audit session.
	30 November 2016	Reminder: The dusty material on the access road near T.I. Tower should be cleared.	Rectification/improvement was observed during the follow-up audit session.
Air Quality	7 December 2016	Reminder: The stockpile of dusty material placed near Concorde Road should be properly covered to prevent dust generation.	Rectification/improvement was observed during the follow-up audit session.
	28 December 2016	Observation: Dust suppression measures should be provided to supress the dust generation arise from the construction works at VT1.	Follow-up action will be reported in the next report month.
Noise			
W	30 November 2016	Reminder: Waste sorting area should be provided for the waste stored near King Fuk Street prior disposal.	Rectification/improvement was observed during the follow-up audit session.
Waste/ Chemical Management	30 November 2016	Reminder: General refuse at SW3 should be properly disposed of to prevent accumulation.	Rectification/improvement was observed during the follow-up audit session.
	21 December 2016	Reminder: General refuse at VT1 should be properly disposed of to prevent accumulation.	Rectification/improvement was observed during the follow-up audit session.
Landscape and Visual	28 December 2016	Reminder: The fencing of tree protection zone at SW3 should be properly erected and maintained.	Follow-up action will be reported in the next report month.
Permits/ Licenses			

Summary of Mitigation Measures Implemented

6.8 The monthly IEC audit was carried out on 15th December 2016, the observations were recorded and they are presented as follows:

Observations / Reminder:

• No major environmental deficiency was observed during the site inspection.

Follow up of last observation:

- All stockpiles and dusty materials had been entirely covered during the site inspection. No further follow-up action was required.
- General refuse and C&D waste had been cleaned up during the site inspection. No further follow-up action was required.
- 6.9 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.10 The Event Action Plans for air quality, noise and landscape and visual are presented in **Appendix J**.

1-hr TSP Monitoring

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.12 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.13 No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.14 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.15 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix L**.

7. FUTURE KEY ISSUES

- 7.1 Major site activities undertaken for the coming two months include:
 - Site Clearance for all possessed portion;
 - Condition survey and monitoring survey;
 - Road and drainage works at Sze Mei Street;
 - Painting and Roadwork at VT1;
 - VE panel installation at SW2 and SW3;
 - PERE Stage 1 works;
 - Earthwork at Portion E3;
 - RC for SW2 and SW3;
 - Drainage works for connection to box culvert adjacent to KTOB; and
 - Road works at King Fuk Street

Key Issues for the Coming Month

- 7.2 Key environmental issues in the coming month include:
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels and sedimentation tanks;
 - Review and implementation of temporary drainage system for the surface runoff;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site.
- 7.3 The tentative program of major site activities and the impact prediction and control measures for the coming two months, i.e. January 2017 and February 2017 are summarized as follows:

Construction Works	Major Impact Prediction	Control Measures
As mentioned in Section 7.1	Air quality impact (dust) Water quality impact (surface run-off)	 (a) Frequent watering of haul road and unpaved/exposed areas; (b) Frequent watering or covering stockpiles with tarpaulin or similar means; and (c) Watering of any earth moving activities. (a) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; (b) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; (c) Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and (d) Provision of measures to prevent discharge into the
	Noise Impact	stream. (a) Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; (b) Controlling the number of plants use on site; (c) Regular maintenance of machines; and (d) Use of acoustic barriers if necessary.

Monitoring Schedule for the Next Month

7.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.

1-hr TSP Monitoring

8.2 All 1-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hr TSP Monitoring

8.3 All 24-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8.4 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Landscape and visual

8.5 No non-compliance was recorded in the reporting month.

Complaint and Prosecution

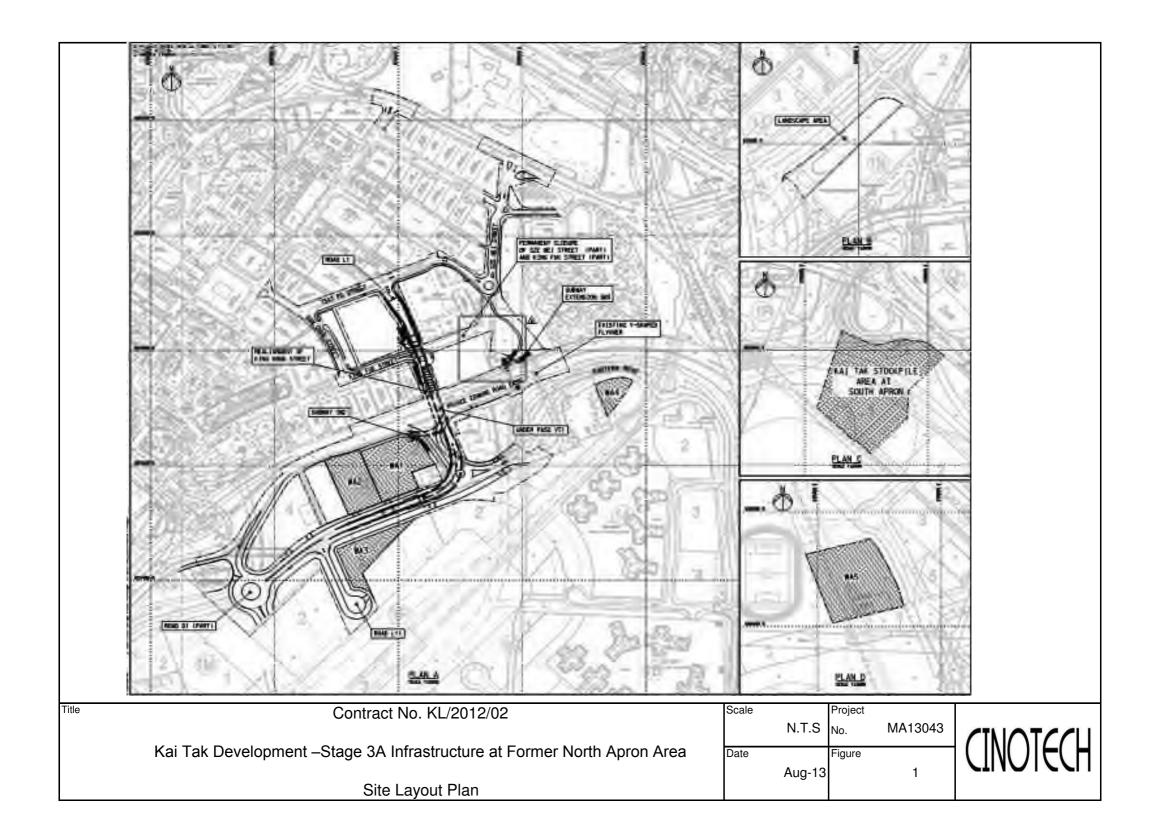
- 8.6 No environmental complaints and environmental prosecution were received in the reporting month.
- 8.7 No environmental prosecution was received in the reporting month.

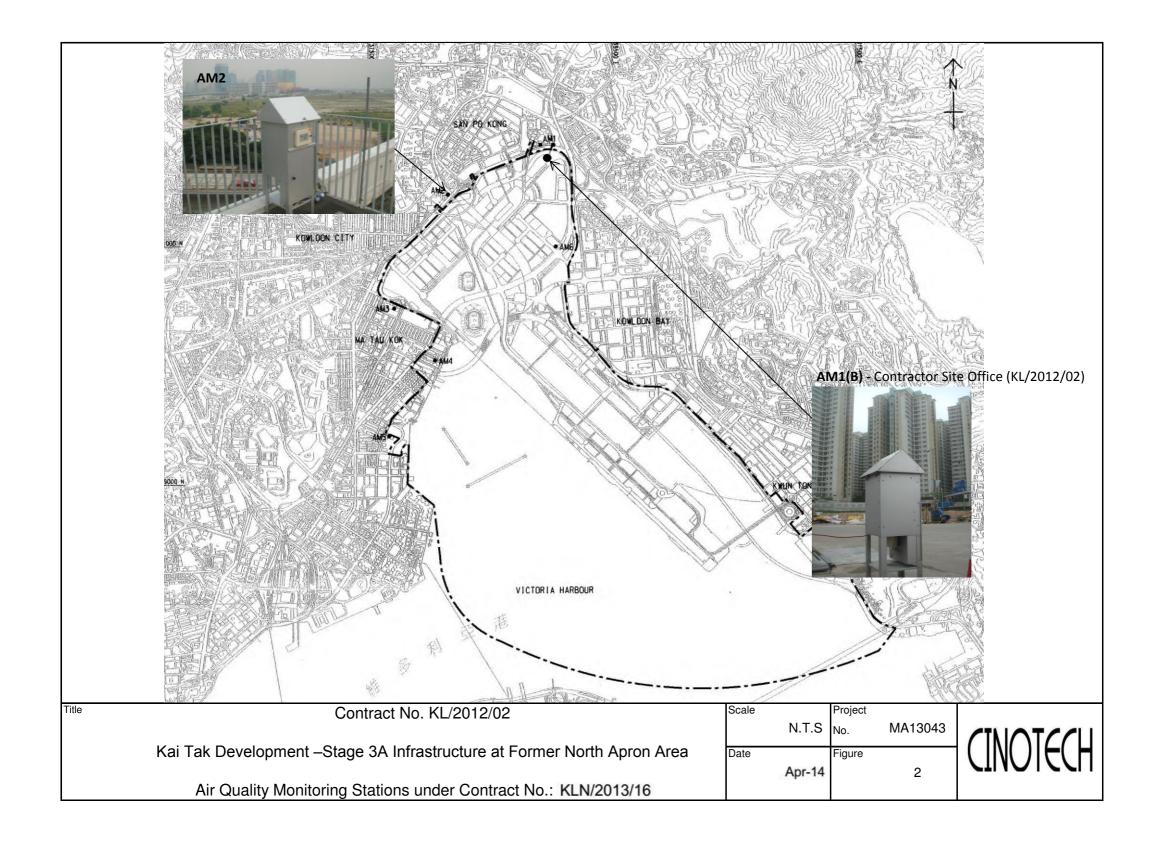
Recommendations

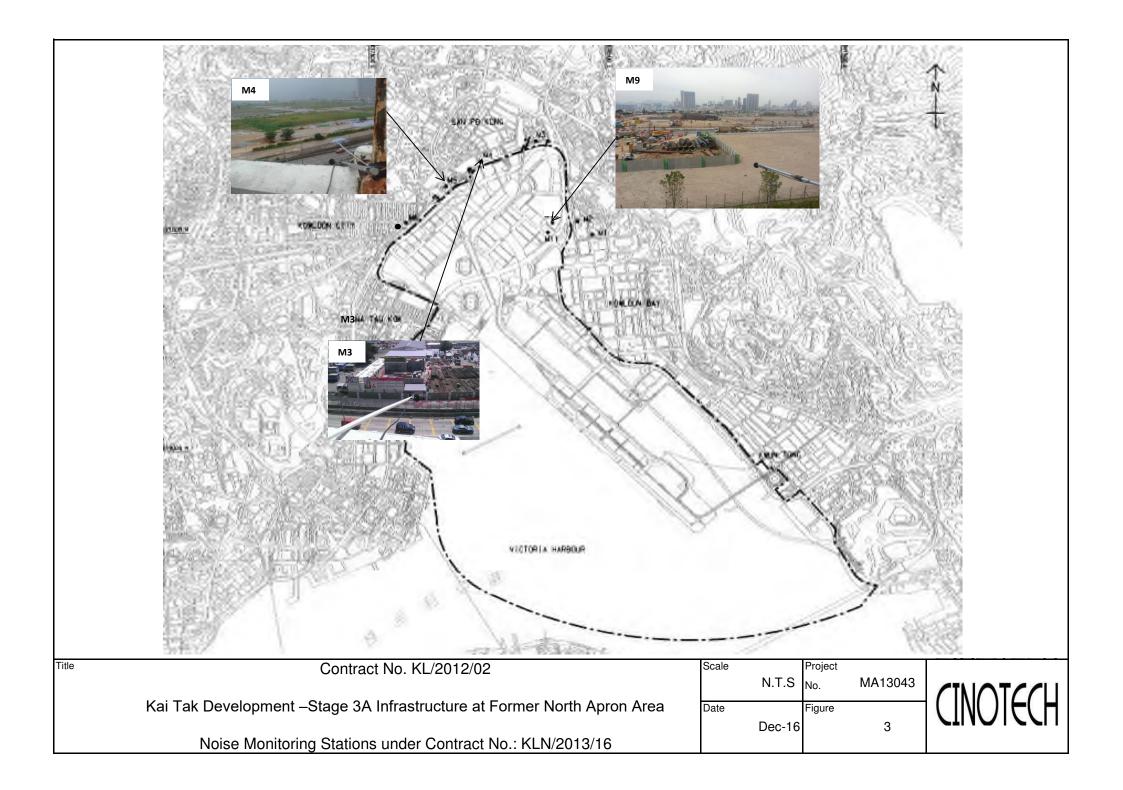
8.8 According to the environmental audit performed in the reporting month, the following recommendations were made:

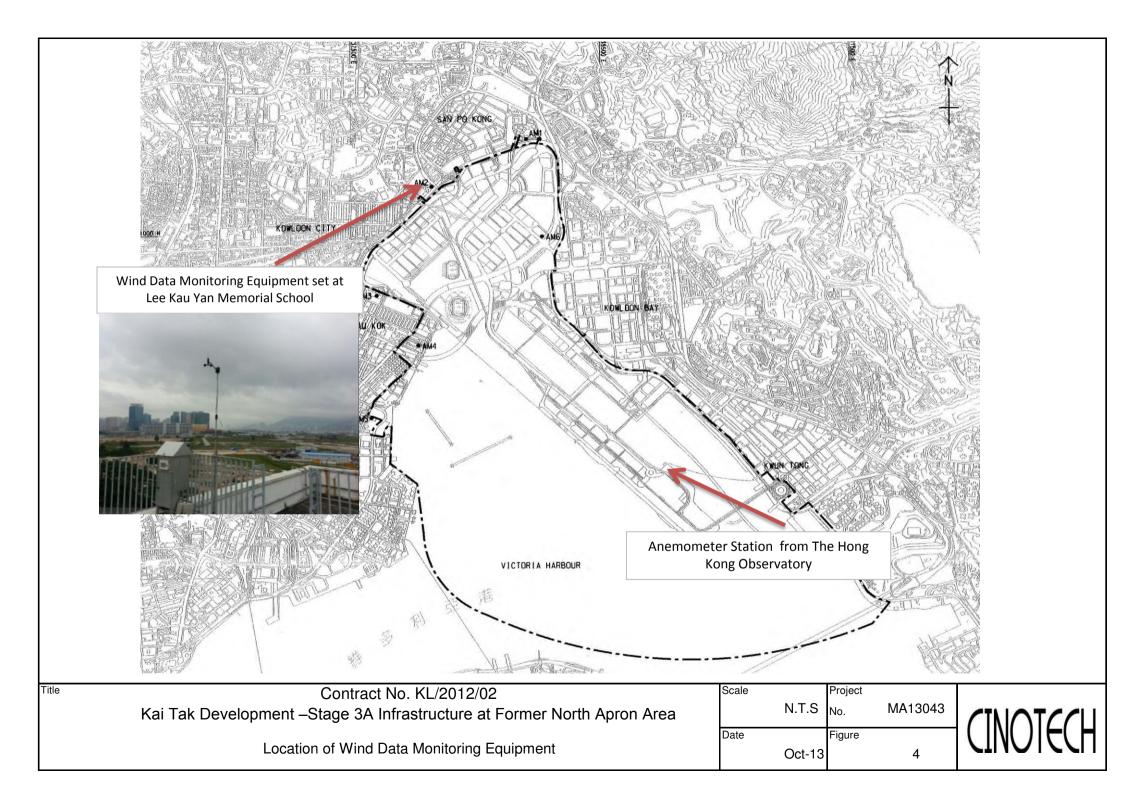
Air quality

- To properly covered the stockpile stored within the site area to prevent dust generation; and
- To apply dust suppression measures to suppress the dust generation arise from the construction works.


Waste / Chemical Management


• To dispose the general refuse regularly to prevent accumulation.


Landscape and Visual


• To properly maintain the fencing of tree protection zone to avoid damage to the retained tree.

FIGURES

APPENDIX A
ACTION AND LIMIT LEVELS FOR AIR
QUALITY AND NOISE

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1(B)	342	500
AM2	346	500

Table A-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m³
AM1(B)	159	260
AM2	157	260

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No	MA14008/58/0037
Station	AM1(B) - Outsic	le RLJV site of	fice (KL/2008/09)	Operator:	WK		
Date:	21-Nov-16		_ 1	Next Due Date:	20-Jan-	-17	
Equipment No.:	A-01-58		-	Serial No.	2357		
			Ambient	Condition			
Temperatu	re, Ta (K)	298.2	Pressure, Pa			762.7	
		C	Prifice Transfer Sta	andard Inform	ation		
Serial	No.:	2896	Slope, mc (CFM) 0.0598 Intercept, bc			-0.05079	
Last Calibra	ation Date:	4-Mar-16			$\mathbf{pc} = [\Delta \mathbf{H} \times (\mathbf{Pa}/76)]$		
Next Calibr	ation Date:	3-Mar-17		$Qstd = \{ [\Delta H] \}$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} / 1	ne
				ACC C			
		Δ	Calibration of rfice	131 Sampler		HVS	
Calibration Point	ΔH (orifice), in. of water		60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in.		0) x (298/Ta)] ^{1/2} Y- axis
1	11.6		3.41	57.90	7.9		2.81
2	9.8		3.13	53.28	6.6		2.57
3	7.7		2.78	47.33	5.2		2.28
4	5.0		2.24	38.30	3.4		1.85
5	3.3		1.82	31.28	2.1		1.45
By Linear Regr Slope, mw = Correlation c	ession of Y on X 0.0506 oefficient* =		9996	Intercept, bw =	-0.115	52	
	Coefficient < 0.99						
			Set Point C	Calculation		1858 - 1951 - 1952 - 1953 - 19	
From the TSP Fi	eld Calibration C	urve, take Qstd	= 43 CFM				
From the Regres	sion Equation, the	e "Y" value acc	ording to				
			$Qstd + bw = [\Delta W]$	(Da 1760) (3	00/5-11/2		
		mw x	Qsta + bw ~ Δw	x (Fa//00) x (2	90/13/]		
Therefore, Se	et Point; W = (my	w x Qstd + bw)) ² x (760 / Pa) x (7	Га / 298)=	4.24		
Remarks:							
Conducted by: Checked by:	Wk 7anj	Signature: Signature:	Kua	<u>i </u>		Date: 2	ulullb Kalenber Oolb

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No	MA14008/59/0039
Station	AM2 - Lee Kau	Yan Memorial S	School	Operator	:WK		
Date:	21-Nov-16			Next Due Date:	: 20-Jan	-17	
Equipment No.:	A-01-59		_	Serial No.	. 2354	-	
5.000	T (V)	000 -	Ambient				
Temperatu	ire, Ta (K)	298.6	Pressure, Pa	(mmHg)		762.2	
or the state of th		12000	rifice Transfer Sta	ndard Info	1040n	V 1	
Seria	No.:	2896	Slope, mc (CFM)	T	Intercep	t ho	0.05070
Last Calibr		4-Mar-16	Biope, me (CFWI)	•	$bc = [\Delta H \times (Pa/76)]$		-0.05079
Next Calibr		3-Mar-17			x (Pa/760) x (298		<i>*</i>
1.521 041101		3 mul-17	<u> </u>	Spece Mirms	A (1 10 / 00) A (2 / 0	" = a)	HFC .
	199 4 , 201		Calibration of	TSP Sambler			
Calibration	A Commercial Control of the	Or	fice		THE RESERVENCE AND A STATE	HVS	on the contract of the contrac
Point	ΔH (orifice), in. of water		60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} Y-axis
1	11.4		3.38	57.35	7.3		2.70
2	9.8		3.13	53.23	6.4		2.53
3	7.6		2.76	46.98	5.0		2.24
4	4.9		2.21	37.89	3.1		1.76
5	3.3		1.82	31.25	2.2		1.48
By Linear Regr	ression of Y on X						
Slope , mw =]	Intercept, bw	-0.016	58	
Correlation c			993	•			
*If Correlation C	Coefficient < 0.99	0, check and rec	alibrate.				
88. S. C.				Spania Brown - Cherry	PERSONAL PROPERTY OF THE STREET		
	110		Set Point C	alculation			100 CO
	eld Calibration Co						
rrom the Regres	sion Equation, the	"Y" value acco	rding to				
		mw x ($Qstd + bw = [\Delta W]$	(Pa/760) x (2)	98/Ta)] ^{1/2}		
			_		~ ~ ~ ~ ~ ~ ~ / / /		
Therefore, Se	et Point; W = (my	w x Qstd + bw)	x (760 / Pa) x (T	Ca/298)=	4.12		
- 1111							
		<u> </u>					
D							
Remarks:							
Conducted ber	1 10-0	Ot	V				110
Conducted by:	- 7	Signature:	Kwa			Date:	2111116
Checked by:		Signature:		72		Date: C	21 November de

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		Rootsmeter Orifice I.I		438320 2896	Ta (K) - Pa (mm) -	295 755.65
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4340 1.0250 0.9150 0.8770 0.7210	3.2 6.4 7.9 8.7 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0001 0.9959 0.9938 0.9928 0.9875	0.6974 0.9716 1.0861 1.1320 1.3696	1.4173 2.0044 2.2410 2.3503 2.8346		0.9957 0.9915 0.9894 0.9885 0.9831	0.6944 0.9674 1.0814 1.1271 1.3636	0.8836 1.2496 1.3971 1.4653 1.7672
Qstd slop	(b) = 1	2.11176 -0.05079 0.99982		Qa slope intercept coefficie	= (b) $=$	1.32235 -0.03166 0.99982
y axis =	SQRT[H20(F	°a/760) (298/7	[a)]	y axis =	SQRT [H20 (T	: :a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/160820 Date of Issue: 2016-08-20

Date Received: 2016-08-20

Date Tested: 2016-08-20

Date Completed: 2016-08-20

Next Due Date: 2017-02-19

Page: 1 of 2

ATTN:

Miss Mei Ling Tang

Certificate of Calibration

Item for calibration:

Description

: Weather Monitor II

Manufacturer

: Davis Instruments

Model No.

: 7440

Serial No.

: MC01010A44

Test conditions:

Room Temperature

: 24 degree Celsius

Relative Humidity

: 56 %

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Test Report No.: C/160820

Date of Issue: 2016-08-20

Date Received: 2016-08-20

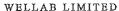
Date Tested: 2016-08-20

Date Completed: 2016-08-20

Next Due Date: 2017-02-19

Page:

2 of 2


Results:

1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	D = V1 - V2	
2.00 2.00		0.00

2. Performance check of wind direction sensor

Wind Dire	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45.2	45	0.2
90.1	90	0.1
134.8	135	-0.2
180.3	180	0.3
225.1	225	0.1
270.2	270	0.2
315.1	315	0.1
360	360	0

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/A/161104B Date of Issue: 2016-11-07 Date Received: 2016-11-04 2016-11-04 Date Tested:

Date Completed: Next Due Date:

2016-11-07 2017-01-06

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Laser Dust Monitor

Manufacturer

: Sibata

Model No.

: LD-3B

Serial No.

: 014750 $: 0.001 \text{ mg/m}^3$

Sensitivity (K) 1 CPM

: 790 CPM

Sen. Adjustment Scale Setting

Equipment No.

: A-02-06

Test Conditions:

Room Temperature

: 22 degree Celsius

Relative Humidity

:61%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

0.0032

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/A/161104A Date of Issue: 2016-11-07 Date Received: 2016-11-04 Date Tested: 2016-11-04 Date Completed: 2016-11-07 Next Due Date: 2017-01-06

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata Model No. : LD-3B : 853944 Serial No. Sensitivity (K) 1 CPM $: 0.001 \text{ mg/m}^3$: 685 CPM Sen. Adjustment Scale Setting

Equipment No.

Test Conditions:

: 22 degree Celsius Room Temperature

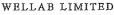
:61% Relative Humidity

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

: A-02-04

Results:


Correlation Factor (CF) 0.0034

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/A/161104C
Date of Issue:	2016-11-07
Date Received:	2016-11-04
Date Tested:	2016-11-04
Date Completed:	2016-11-07
Next Due Date:	2017-01-06

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer: SibataModel No.: LD-3BSerial No.: 541146Sensitivity (K) 1 CPM: 0.001 mg/m³Sen. Adjustment Scale Setting: 625 CPM

Equipment No.

Test Conditions:

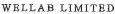
Room Temperature : 22 degree Celsius

Relative Humidity : 61 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

: A-02-07


Results:

Correlation Factor (CF)	0.0031

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/161028C
Date of Issue:	2016-10-31
Date Received:	2016-10-28
Date Tested:	2016-10-28
Date Completed:	2016-10-31
Next Due Date:	2016-12-30

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 095029

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 551 CPM Equipment No. : A-02-10

Test Conditions:

Room Temperature : 21 degree Celsius

Relative Humidity : 64 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0038

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/161028D
Date of Issue:	2016-10-31
Date Received:	2016-10-28
Date Tested:	2016-10-28
Date Completed:	2016-10-31
Next Due Date:	2016-12-30

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Dust Monitor

Manufacturer

: Met One Instruments

Model No.

: AEROCET-531

Serial No.

: N6734

Flow rate

:0.1 cfm

Zero Count Test

:0 mg (The result of the 2-minute sample)

Equipment No.

: A-02-13

Test Conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 64 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

-	Correlation Factor (CF)	1.138

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160826A
Date of Issue: 2016-08-29
Date Received: 2016-08-26
Date Tested: 2016-08-26
Date Completed: 2016-08-29
Next Due Date: 2017-08-28

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK : SVAN 957

Model No. Serial No.

: 21455

Microphone No. Equipment No.

: 43730 : N-08-07

.

- - -

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PÁTRICK TŠE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160819B
Date of Issue:	2016-08-22
Date Received:	2016-08-19
Date Tested:	2016-08-19
Date Completed:	2016-08-22
Next Due Date:	2017-08-21
Date Received: Date Tested: Date Completed:	2016-08-19 2016-08-19 2016-08-22

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No. : SVANTEK : SVAN 957

Model No. Serial No.

: 21459

Microphone No.

: 43676

Equipment No.

: N-08-08

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

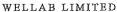
: 58%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual


Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong, Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160819C
Date of Issue:	2016-08-22
Date Received:	2016-08-19
Date Tested:	2016-08-19
Date Completed:	2016-08-22
Next Due Date:	2017-08-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No : SVANTEK

Model No. Serial No.

: SVAN 957 : 21460

Microphone No.

: 43679

Equipment No.

: N-08-09

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 58%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T. Hong Kong.
Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161128
Date of Issue: 2016-11-30
Date Received: 2016-11-28
Date Tested: 2016-11-28
Date Completed: 2016-11-30
Next Due Date: 2017-11-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer: SVANTEKModel No.: SVAN 957Serial No.: 23853Microphone No.: 48530

Equipment No.

: N-08-10

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 66%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T. Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161128B

Date of Issue: 2016-11-30

Date Received: 2016-11-28

Date Tested: 2016-11-28

Date Completed: 2016-11-30

ATTN:

Mr. W.K. Tang

Page:

Next Due Date:

1 of 1

2017-11-29

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No. : SVANTEK : SVAN 957

Serial No.
Microphone No.

: 23851 : 48532

Equipment No.

: N-08-12

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 66%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930A
Date of Issue:	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer Model No.

: SVANTEK : SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930B
Date of Issue:	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24791

Equipment No.

: N-09-04

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

RATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930C
Date of Issue:	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24780

Equipment No.

: N-09-05

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED
Rús 816, 1516 & 1701, Technology Park,
18 On Lal Street, Shatin, N.T. Hong Kong,
Tel: 2898 7388 Fax: 2898 7076
Websiter www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/161104/1
Date of Issue:	2016-11-07
Date Received:	2016-11-04
Date Tested:	2016-11-04
Date Completed:	2016-11-07
Next Due Date:	2017-11-06

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2326353

Equipment No.

: N-02-01

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

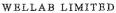
: 62 %

Methodology:

The sound calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB


PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160819D
Date of Issue:	2016-08-22
Date Received:	2016-08-19
Date Tested:	2016-08-19
Date Completed:	2016-08-22
Next Due Date:	2017-08-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 58%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 December 2016	17.2 – 22.4	60 – 76	0
2 December 2016	18.4 – 22.4	64 – 82	0
3 December 2016	19.9 – 22.8	70 – 83	0
4 December 2016	21.0 – 24.9	64 – 88	Trace
5 December 2016	21.8 – 25.9	63 – 90	0
6 December 2016	19.4 – 22.9	45 – 67	Trace
7 December 2016	18.2 – 22.2	50 – 72	Trace
8 December 2016	17.1 – 21.7	54 – 71	0
9 December 2016	16.5 – 21.9	52 – 79	0
10 December 2016	18.3 – 23.1	59 – 81	0
11 December 2016	19.5 – 21.5	69 – 80	Trace
12 December 2016	19.0 – 23.3	67 – 84	Trace
13 December 2016	20.7 – 25.7	58 – 90	Trace
14 December 2016	18.8 - 23.4	56 – 72	Trace
15 December 2016	15.6 – 20.4	56 – 67	0
16 December 2016	13.2 – 17.1	53 – 66	0
17 December 2016	13.7 – 18.6	58 – 78	0
18 December 2016	17.2 – 21.3	65 – 86	0
19 December 2016	18.5 – 22.5	61 – 87	0

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 December 2016	20.0 – 22.9	66 – 85	0
21 December 2016	21.0 – 22.6	82 – 95	2.8
22 December 2016	19.7 – 24.8	60 – 95	0.1
23 December 2016	19.1 – 21.9	66 – 80	Trace
24 December 2016	16.9 – 19.5	67 – 92	3.7
25 December 2016	18.4 – 20.3	78 – 87	Trace
26 December 2016	19.5 – 23.7	70 – 89	0
27 December 2016	12.8 – 21.8	47 – 77	0
28 December 2016	11.5 – 15.7	55 – 65	0
29 December 2016	13.9 – 17.9	47 – 61	0
30 December 2016	14.8 – 18.6	53 – 73	0
31 December 2016	15.6 – 20.7	59 – 84	0

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

Date	Time	Wind Speed m/s	Direction
1-Dec-2016	0:00	1.4	NE
1-Dec-2016	1:00	1.1	ENE
1-Dec-2016	2:00	0.9	ENE
1-Dec-2016	3:00	1.1	ENE
1-Dec-2016	4:00	1.0	ENE
1-Dec-2016	5:00	0.7	ENE
1-Dec-2016	6:00	0.8	NE
1-Dec-2016	7:00	0.8	ENE
1-Dec-2016	8:00	1.0	ENE
1-Dec-2016	9:00	1.5	NE
1-Dec-2016	10:00	2.0	NE
1-Dec-2016	11:00	2.7	NE
1-Dec-2016	12:00	3.1	NE
1-Dec-2016	13:00	3.0	NE
1-Dec-2016	14:00	3.0	NE
1-Dec-2016	15:00	2.7	NE
1-Dec-2016	16:00	2.4	NE
1-Dec-2016	17:00	2.6	NE
1-Dec-2016	18:00	2.2	N
1-Dec-2016	19:00	2.3	N
1-Dec-2016	20:00	2.2	ENE
1-Dec-2016	21:00	1.9	NE
1-Dec-2016	22:00	1.7	NE
1-Dec-2016	23:00	2.1	ENE
2-Dec-2016	0:00	2	ENE
2-Dec-2016	1:00	2.6	ENE
2-Dec-2016	2:00	2.7	ENE
2-Dec-2016	3:00	2.3	NNE
2-Dec-2016	4:00	2.1	E
2-Dec-2016	5:00	2.1	ENE
2-Dec-2016	6:00	1.7	ENE
2-Dec-2016	7:00	2	ENE
2-Dec-2016	8:00	1.1	E
2-Dec-2016	9:00	1.9	NW
2-Dec-2016	10:00	1.9	N
2-Dec-2016	11:00	3.5	NNE
l	l	I	

0 D = 0040	40.00	2.2	N/=
2-Dec-2016	12:00	3.6	NE NE
2-Dec-2016	13:00	3.7	NE
2-Dec-2016	14:00	4.1	N
2-Dec-2016	15:00	3.3	N
2-Dec-2016	16:00	3.3	ENE
2-Dec-2016	17:00	2.7	E
2-Dec-2016	18:00	2.9	Е
2-Dec-2016	19:00	3.1	ENE
2-Dec-2016	20:00	3.1	N
2-Dec-2016	21:00	3.6	NNE
2-Dec-2016	22:00	3	NE
2-Dec-2016	23:00	3.1	ENE
3-Dec-2016	0:00	3.1	ENE
3-Dec-2016	1:00	3.7	ENE
3-Dec-2016	2:00	3.1	ENE
3-Dec-2016	3:00	3.6	NNE
3-Dec-2016	4:00	3.7	NNE
3-Dec-2016	5:00	3.8	N
3-Dec-2016	6:00	3	NE
3-Dec-2016	7:00	3.6	NE
3-Dec-2016	8:00	2.6	N
3-Dec-2016	9:00	2	ENE
3-Dec-2016	10:00	2.6	NE
3-Dec-2016	11:00	2.2	ESE
3-Dec-2016	12:00	2.6	SSE
3-Dec-2016	13:00	3.1	SSE
3-Dec-2016	14:00	3.2	SSE
3-Dec-2016	15:00	3.3	SSE
3-Dec-2016	16:00	3.4	SSE
3-Dec-2016	17:00	3	ESE
3-Dec-2016	18:00	3.8	SE
3-Dec-2016	19:00	3.9	SE
3-Dec-2016	20:00	3	SE
3-Dec-2016	21:00	2.9	SE
3-Dec-2016	22:00	2.8	ENE
3-Dec-2016	23:00	2.1	ENE
4-Dec-2016	0:00	3.8	ENE

4-Dec-2016 1:00 3.5 ENE 4-Dec-2016 2:00 2.3 ENE 4-Dec-2016 3:00 2.2 ENE 4-Dec-2016 4:00 2.1 N 4-Dec-2016 5:00 1.9 NE 4-Dec-2016 6:00 1.7 ENE 4-Dec-2016 7:00 1.9 ENE 4-Dec-2016 8:00 3 ENE 4-Dec-2016 9:00 2.9 ENE 4-Dec-2016 10:00 3.4 ENE 4-Dec-2016 11:00 4.3 ENE 4-Dec-2016 11:00 4.3 ENE 4-Dec-2016 12:00 4.1 ENE 4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 15:00 4.2 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 1	4 D 0040	4:00	2.5	ENE
4-Dec-2016 3:00 2.2 ENE 4-Dec-2016 4:00 2.1 N 4-Dec-2016 5:00 1.9 NE 4-Dec-2016 6:00 1.7 ENE 4-Dec-2016 7:00 1.9 ENE 4-Dec-2016 8:00 3 ENE 4-Dec-2016 9:00 2.9 ENE 4-Dec-2016 10:00 3.4 ENE 4-Dec-2016 11:00 4.3 ENE 4-Dec-2016 12:00 4.1 ENE 4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 19:00 1 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00				
4-Dec-2016 4:00 2.1 N 4-Dec-2016 5:00 1.9 NE 4-Dec-2016 6:00 1.7 ENE 4-Dec-2016 7:00 1.9 ENE 4-Dec-2016 8:00 3 ENE 4-Dec-2016 9:00 2.9 ENE 4-Dec-2016 10:00 3.4 ENE 4-Dec-2016 11:00 4.3 ENE 4-Dec-2016 12:00 4.1 ENE 4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 23:0				
4-Dec-2016 5:00 1.9 NE 4-Dec-2016 6:00 1.7 ENE 4-Dec-2016 7:00 1.9 ENE 4-Dec-2016 8:00 3 ENE 4-Dec-2016 9:00 2.9 ENE 4-Dec-2016 10:00 3.4 ENE 4-Dec-2016 11:00 4.3 ENE 4-Dec-2016 12:00 4.1 ENE 4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 19:00 1 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 20:00 1.9 ENE 4-Dec-2016 20:00 <td></td> <td></td> <td></td> <td></td>				
4-Dec-2016 6:00 1.7 ENE 4-Dec-2016 7:00 1.9 ENE 4-Dec-2016 8:00 3 ENE 4-Dec-2016 9:00 2.9 ENE 4-Dec-2016 10:00 3.4 ENE 4-Dec-2016 11:00 4.3 ENE 4-Dec-2016 12:00 4.1 ENE 4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 19:00 1 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 3:00 <td></td> <td></td> <td></td> <td></td>				
4-Dec-2016 7:00 1.9 ENE 4-Dec-2016 8:00 3 ENE 4-Dec-2016 9:00 2.9 ENE 4-Dec-2016 10:00 3.4 ENE 4-Dec-2016 11:00 4.3 ENE 4-Dec-2016 12:00 4.1 ENE 4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 3:00 <td>4-Dec-2016</td> <td>5:00</td> <td></td> <td>NE</td>	4-Dec-2016	5:00		NE
4-Dec-2016 8:00 3 ENE 4-Dec-2016 9:00 2.9 ENE 4-Dec-2016 10:00 3.4 ENE 4-Dec-2016 11:00 4.3 ENE 4-Dec-2016 12:00 4.1 ENE 4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 3:00 </td <td>4-Dec-2016</td> <td>6:00</td> <td>1.7</td> <td>ENE</td>	4-Dec-2016	6:00	1.7	ENE
4-Dec-2016 9:00 2.9 ENE 4-Dec-2016 10:00 3.4 ENE 4-Dec-2016 11:00 4.3 ENE 4-Dec-2016 12:00 4.1 ENE 4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 3:00 2.4 ENE 5-Dec-2016 5:00	4-Dec-2016	7:00	1.9	ENE
4-Dec-2016 10:00 3.4 ENE 4-Dec-2016 11:00 4.3 ENE 4-Dec-2016 12:00 4.1 ENE 4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 5:00 2.6 SE<	4-Dec-2016	8:00	3	ENE
4-Dec-2016 11:00 4.3 ENE 4-Dec-2016 12:00 4.1 ENE 4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 7:00 3.3 N </td <td>4-Dec-2016</td> <td>9:00</td> <td>2.9</td> <td>ENE</td>	4-Dec-2016	9:00	2.9	ENE
4-Dec-2016 12:00 4.1 ENE 4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 7:00 3.3 N	4-Dec-2016	10:00	3.4	ENE
4-Dec-2016 13:00 4.4 ENE 4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 23:00 1.1 ENE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 7:00 3.3 N 5-Dec-2016 9:00 3.3 N	4-Dec-2016	11:00	4.3	ENE
4-Dec-2016 14:00 4 ENE 4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 23:00 1.1 ENE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N	4-Dec-2016	12:00	4.1	ENE
4-Dec-2016 15:00 4.2 N 4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 1:00 2.3 E 5-Dec-2016 3:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE	4-Dec-2016	13:00	4.4	ENE
4-Dec-2016 16:00 3.1 N 4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 1:00 2.3 E 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 10:00 3.9 ENE	4-Dec-2016	14:00	4	ENE
4-Dec-2016 17:00 2.2 N 4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 9:00 3.3 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.6 ENE	4-Dec-2016	15:00	4.2	N
4-Dec-2016 18:00 1.8 N 4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 9:00 3.3 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.6 ENE	4-Dec-2016	16:00	3.1	N
4-Dec-2016 19:00 1 N 4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 11:00 3.3 ENE	4-Dec-2016	17:00	2.2	N
4-Dec-2016 20:00 1 N 4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 11:00 3.3 ENE	4-Dec-2016	18:00	1.8	N
4-Dec-2016 21:00 0.7 ENE 4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 5:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 11:00 3.3 ENE	4-Dec-2016	19:00	1	N
4-Dec-2016 22:00 1.9 ENE 4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 11:00 3.3 ENE	4-Dec-2016	20:00	1	N
4-Dec-2016 23:00 1.1 ENE 5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 11:00 3.3 ENE	4-Dec-2016	21:00	0.7	ENE
5-Dec-2016 0:00 1.8 SE 5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	4-Dec-2016	22:00	1.9	ENE
5-Dec-2016 1:00 2.3 E 5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	4-Dec-2016	23:00	1.1	ENE
5-Dec-2016 2:00 2.4 ENE 5-Dec-2016 3:00 2.4 NE 5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	5-Dec-2016	0:00	1.8	SE
5-Dec-2016 3:00 2.4 NE 5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	5-Dec-2016	1:00	2.3	Е
5-Dec-2016 4:00 3 N 5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	5-Dec-2016	2:00	2.4	ENE
5-Dec-2016 5:00 2.6 SE 5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	5-Dec-2016	3:00	2.4	NE
5-Dec-2016 6:00 2.7 SSE 5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	5-Dec-2016	4:00	3	N
5-Dec-2016 7:00 3.3 SE 5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	5-Dec-2016	5:00	2.6	SE
5-Dec-2016 8:00 2.7 N 5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	5-Dec-2016	6:00	2.7	SSE
5-Dec-2016 9:00 3.3 N 5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	5-Dec-2016	7:00	3.3	SE
5-Dec-2016 10:00 3.9 ENE 5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	5-Dec-2016	8:00	2.7	N
5-Dec-2016 11:00 3.3 ENE 5-Dec-2016 12:00 3.6 ENE	5-Dec-2016	9:00	3.3	N
5-Dec-2016 12:00 3.6 ENE	5-Dec-2016	10:00	3.9	ENE
	5-Dec-2016	11:00	3.3	ENE
	5-Dec-2016	12:00	3.6	ENE
,	5-Dec-2016	13:00	4	NE

5-Dec-2016 14:00 4.2 ENE 5-Dec-2016 15:00 4.1 ENE 5-Dec-2016 16:00 3.9 NE 5-Dec-2016 17:00 3.5 NE 5-Dec-2016 18:00 3.5 NE 5-Dec-2016 19:00 3.2 ESE 5-Dec-2016 20:00 3.4 E 5-Dec-2016 21:00 3.3 E 5-Dec-2016 22:00 3 NE 5-Dec-2016 23:00 3.2 SE 6-Dec-2016 0:00 3.1 ESE 6-Dec-2016 1:00 3.9 SE
5-Dec-2016 16:00 3.9 NE 5-Dec-2016 17:00 3.5 NE 5-Dec-2016 18:00 3.5 NE 5-Dec-2016 19:00 3.2 ESE 5-Dec-2016 20:00 3.4 E 5-Dec-2016 21:00 3.3 E 5-Dec-2016 22:00 3 NE 5-Dec-2016 23:00 3.2 SE 6-Dec-2016 0:00 3.1 ESE 6-Dec-2016 1:00 3.9 SE
5-Dec-2016 17:00 3.5 NE 5-Dec-2016 18:00 3.5 NE 5-Dec-2016 19:00 3.2 ESE 5-Dec-2016 20:00 3.4 E 5-Dec-2016 21:00 3.3 E 5-Dec-2016 22:00 3 NE 5-Dec-2016 23:00 3.2 SE 6-Dec-2016 0:00 3.1 ESE 6-Dec-2016 1:00 3.9 SE
5-Dec-2016 18:00 3.5 NE 5-Dec-2016 19:00 3.2 ESE 5-Dec-2016 20:00 3.4 E 5-Dec-2016 21:00 3.3 E 5-Dec-2016 22:00 3 NE 5-Dec-2016 23:00 3.2 SE 6-Dec-2016 0:00 3.1 ESE 6-Dec-2016 1:00 3.9 SE
5-Dec-2016 19:00 3.2 ESE 5-Dec-2016 20:00 3.4 E 5-Dec-2016 21:00 3.3 E 5-Dec-2016 22:00 3 NE 5-Dec-2016 23:00 3.2 SE 6-Dec-2016 0:00 3.1 ESE 6-Dec-2016 1:00 3.9 SE
5-Dec-2016 20:00 3.4 E 5-Dec-2016 21:00 3.3 E 5-Dec-2016 22:00 3 NE 5-Dec-2016 23:00 3.2 SE 6-Dec-2016 0:00 3.1 ESE 6-Dec-2016 1:00 3.9 SE
5-Dec-2016 21:00 3.3 E 5-Dec-2016 22:00 3 NE 5-Dec-2016 23:00 3.2 SE 6-Dec-2016 0:00 3.1 ESE 6-Dec-2016 1:00 3.9 SE
5-Dec-2016 22:00 3 NE 5-Dec-2016 23:00 3.2 SE 6-Dec-2016 0:00 3.1 ESE 6-Dec-2016 1:00 3.9 SE
5-Dec-2016 23:00 3.2 SE 6-Dec-2016 0:00 3.1 ESE 6-Dec-2016 1:00 3.9 SE
6-Dec-2016 0:00 3.1 ESE 6-Dec-2016 1:00 3.9 SE
6-Dec-2016 1:00 3.9 SE
6-Dec-2016 2:00 4.1 ENE
6-Dec-2016 3:00 3.9 SE
6-Dec-2016 4:00 4.1 SE
6-Dec-2016 5:00 3.6 E
6-Dec-2016 6:00 3.5 SE
6-Dec-2016 7:00 3.5 SSE
6-Dec-2016 8:00 3.3 SE
6-Dec-2016 9:00 3.2 SE
6-Dec-2016 10:00 2.6 SE
6-Dec-2016 11:00 3.8 E
6-Dec-2016 12:00 3.9 E
6-Dec-2016 13:00 4.4 ENE
6-Dec-2016 14:00 3.7 ENE
6-Dec-2016 15:00 3.4 E
6-Dec-2016 16:00 3.9 E
6-Dec-2016 17:00 3.9 E
6-Dec-2016 18:00 3.2 E
6-Dec-2016 19:00 3.5 SSE
6-Dec-2016 20:00 3.7 SE
6-Dec-2016 21:00 2.6 SE
6-Dec-2016 22:00 3.3 ENE
6-Dec-2016 23:00 3 ENE
7-Dec-2016 0:00 2.9 ENE
7-Dec-2016 1:00 3.5 ENE
7-Dec-2016 2:00 3.3 SSE

	1	T	
7-Dec-2016	3:00	3.3	SSE
7-Dec-2016	4:00	2.8	SSE
7-Dec-2016	5:00	2.8	SE
7-Dec-2016	6:00	2.6	SSE
7-Dec-2016	7:00	2.5	SSE
7-Dec-2016	8:00	2.7	SSE
7-Dec-2016	9:00	2.4	SSW
7-Dec-2016	10:00	3.2	SSE
7-Dec-2016	11:00	2.7	E
7-Dec-2016	12:00	2.7	NE
7-Dec-2016	13:00	2.6	NE
7-Dec-2016	14:00	2.7	SE
7-Dec-2016	15:00	3.2	N
7-Dec-2016	16:00	3.2	NE
7-Dec-2016	17:00	3.3	N
7-Dec-2016	18:00	3	NNE
7-Dec-2016	19:00	2.9	ENE
7-Dec-2016	20:00	1.9	ENE
7-Dec-2016	21:00	1.7	NNE
7-Dec-2016	22:00	1.7	NNE
7-Dec-2016	23:00	1.9	NE
8-Dec-2016	0:00	1.4	NE
8-Dec-2016	1:00	1.6	WSW
8-Dec-2016	2:00	1.7	WSW
8-Dec-2016	3:00	1.6	ESE
8-Dec-2016	4:00	1.6	NNE
8-Dec-2016	5:00	1.6	ENE
8-Dec-2016	6:00	1.7	ENE
8-Dec-2016	7:00	1.9	E
8-Dec-2016	8:00	2.2	NNE
8-Dec-2016	9:00	2.3	ENE
8-Dec-2016	10:00	2.8	NNE
8-Dec-2016	11:00	2.8	NNE
8-Dec-2016	12:00	2.6	E
8-Dec-2016	13:00	2.8	ENE
8-Dec-2016	14:00	2.9	NE
8-Dec-2016	15:00	3.2	ENE

8-Dec-2016 16:00 2.7 SSE 8-Dec-2016 17:00 2.3 SE 8-Dec-2016 18:00 2.2 SSE 8-Dec-2016 19:00 2.1 SSE 8-Dec-2016 20:00 2.3 SE 8-Dec-2016 21:00 2.4 SSE 8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 1:00 1.2 SSW 9-Dec-2016 1:00 1.5 SSW 9-Dec-2016 2:00 1.2 SSW 9-Dec-2016 2:00 1.2 SSW 9-Dec-2016 3:00 1 SSW 9-Dec-2016 3:00 1.2 SSW 9-Dec-2016 3:00 1.2 SSW 9-Dec-2016 3:00 1.5 SSW 9-Dec-2016 3:00 1.5 SSW 9-Dec-2016 3:00 3.3 SSW 9-Dec-2016 3:00 3.3 SSW 9-Dec-2016 3:00 3.3 SSW 9-Dec-2016 3:00 3.3 SSW 9-Dec-2016 3:00 2.3 SW 9-Dec-2016 3:00 2.3 SW 9-Dec-2016 3:00 2.3 SW 9-Dec-2016 3:00 2.3 SW 9-Dec-2016 3:00 3.6 SSE 9-Dec-2016 11:00 3.6 SSE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 16:00 2.7 WW 9-Dec-2016 16:00 2.7 SSE 9-Dec-2016 16:00 3.1 SSE 9-Dec-2016 2:00 1.5 SE 10-Dec-2016 1:00 1.2 SE 10-Dec-2016 1:00 1.2 SE	9 Dec 2046	16:00	2.7	005
8-Dec-2016 18:00 2.2 SSE 8-Dec-2016 19:00 2.1 SSE 8-Dec-2016 20:00 2.3 SE 8-Dec-2016 21:00 2.4 SSE 8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW 9-Dec-2016 1:00 1.5 SSW 9-Dec-2016 2:00 1.2 S 9-Dec-2016 3:00 1 SSW 9-Dec-2016 3:00 1 SSW 9-Dec-2016 3:00 1.2 SSW 9-Dec-2016 5:00 1.5 S 9-Dec-2016 5:00 1.5 S 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 <td></td> <td></td> <td></td> <td></td>				
8-Dec-2016 19:00 2.1 SSE 8-Dec-2016 20:00 2.3 SE 8-Dec-2016 21:00 2.4 SSE 8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW 9-Dec-2016 1:00 1.5 SSW 9-Dec-2016 2:00 1.2 S 9-Dec-2016 3:00 1 SSW 9-Dec-2016 3:00 1 SSW 9-Dec-2016 4:00 1.2 SSW 9-Dec-2016 5:00 1.5 S 9-Dec-2016 6:00 1.3 SSW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 11:00 3.7 ENE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00<				
8-Dec-2016 20:00 2.3 SE 8-Dec-2016 21:00 2.4 SSE 8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW 9-Dec-2016 1:00 1.5 SSW 9-Dec-2016 2:00 1.2 S 9-Dec-2016 3:00 1 SSW 9-Dec-2016 4:00 1.2 SSW 9-Dec-2016 5:00 1.5 S 9-Dec-2016 5:00 1.5 S 9-Dec-2016 6:00 1.3 SSW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 13:00 3.6 ESE 9-Dec-2016 15:00<				
8-Dec-2016 21:00 2.4 SSE 8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW 9-Dec-2016 1:00 1.5 SSW 9-Dec-2016 2:00 1.2 S 9-Dec-2016 3:00 1 SSW 9-Dec-2016 4:00 1.2 SSW 9-Dec-2016 5:00 1.5 S 9-Dec-2016 6:00 1.3 SSW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 17:0				
8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW 9-Dec-2016 1:00 1.5 SSW 9-Dec-2016 2:00 1.2 S 9-Dec-2016 3:00 1 SSW 9-Dec-2016 4:00 1.2 SSW 9-Dec-2016 5:00 1.5 S 9-Dec-2016 6:00 1.3 SSW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 17:00<				
8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW 9-Dec-2016 1:00 1.5 SSW 9-Dec-2016 2:00 1.2 S 9-Dec-2016 3:00 1 SSW 9-Dec-2016 4:00 1.2 SSW 9-Dec-2016 5:00 1.5 S 9-Dec-2016 5:00 1.3 SSW 9-Dec-2016 6:00 1.3 SSW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 15:00 2.9 E 9-Dec-2016 15:00 2.9 NNW 9-Dec-2016 15:00				
9-Dec-2016	8-Dec-2016	22:00		SW
9-Dec-2016 1:00 1.5 SSW 9-Dec-2016 2:00 1.2 S 9-Dec-2016 3:00 1 SSW 9-Dec-2016 4:00 1.2 SSW 9-Dec-2016 5:00 1.5 S 9-Dec-2016 6:00 1.3 SSW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:0		23:00	1	SW
9-Dec-2016 2:00 1.2 S 9-Dec-2016 3:00 1 SSW 9-Dec-2016 4:00 1.2 SSW 9-Dec-2016 5:00 1.5 S 9-Dec-2016 6:00 1.3 SSW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 ESE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 20	9-Dec-2016	0:00	1.2	SSW
9-Dec-2016 3:00 1 SSW 9-Dec-2016 4:00 1.2 SSW 9-Dec-2016 5:00 1.5 S 9-Dec-2016 6:00 1.3 SSW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 21:	9-Dec-2016	1:00	1.5	SSW
9-Dec-2016 4:00 1.2 SSW 9-Dec-2016 5:00 1.5 S 9-Dec-2016 6:00 1.3 SSW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 9:00 3.7 ENE 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 20:00 1.5 SE 9-Dec-2016 <td< td=""><td>9-Dec-2016</td><td>2:00</td><td>1.2</td><td>S</td></td<>	9-Dec-2016	2:00	1.2	S
9-Dec-2016 5:00 1.5 S 9-Dec-2016 6:00 1.3 SSW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 21:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 9-Dec-2016 <td< td=""><td>9-Dec-2016</td><td>3:00</td><td>1</td><td>SSW</td></td<>	9-Dec-2016	3:00	1	SSW
9-Dec-2016 6:00 1.3 SSW 9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 <	9-Dec-2016	4:00	1.2	SSW
9-Dec-2016 7:00 1.9 SW 9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 <	9-Dec-2016	5:00	1.5	S
9-Dec-2016 8:00 2.3 SW 9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016	9-Dec-2016	6:00	1.3	SSW
9-Dec-2016 9:00 2.8 SW 9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016	9-Dec-2016	7:00	1.9	SW
9-Dec-2016 10:00 3.7 ENE 9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	8:00	2.3	SW
9-Dec-2016 11:00 4.2 ESE 9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	9:00	2.8	SW
9-Dec-2016 12:00 3.6 ESE 9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	10:00	3.7	ENE
9-Dec-2016 13:00 3.6 SE 9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	11:00	4.2	ESE
9-Dec-2016 14:00 2.9 NNW 9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 2:00 1.1 SE	9-Dec-2016	12:00	3.6	ESE
9-Dec-2016 15:00 2.9 E 9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	13:00	3.6	SE
9-Dec-2016 16:00 2.7 NW 9-Dec-2016 17:00 3.1 W 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	14:00	2.9	NNW
9-Dec-2016 17:00 3.1 W 9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	15:00	2.9	E
9-Dec-2016 18:00 2.7 W 9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	16:00	2.7	NW
9-Dec-2016 19:00 2.3 SE 9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	17:00	3.1	W
9-Dec-2016 20:00 1.6 SSE 9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	18:00	2.7	W
9-Dec-2016 21:00 1.3 SE 9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	19:00	2.3	SE
9-Dec-2016 22:00 1.5 SE 9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	20:00	1.6	SSE
9-Dec-2016 23:00 1.5 SE 10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	21:00	1.3	SE
10-Dec-2016 0:00 1.2 SE 10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	22:00	1.5	SE
10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	9-Dec-2016	23:00	1.5	SE
10-Dec-2016 1:00 1.2 ESE 10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE	10-Dec-2016	0:00	1.2	SE
10-Dec-2016 2:00 1.1 SE 10-Dec-2016 3:00 1.2 ESE				
10-Dec-2016 3:00 1.2 ESE				
	10-Dec-2016	4:00	1	ESE

40 D 0040	5.00	4.4	0.5
10-Dec-2016	5:00	1.1	SE
10-Dec-2016	6:00	1.5	S
10-Dec-2016	7:00	1.3	W
10-Dec-2016	8:00	1.3	SW
10-Dec-2016	9:00	2.1	WSW
10-Dec-2016	10:00	2.4	NE
10-Dec-2016	11:00	3.1	NE
10-Dec-2016	12:00	3.4	NE
10-Dec-2016	13:00	3.9	WNW
10-Dec-2016	14:00	3.7	SSE
10-Dec-2016	15:00	3.9	SSE
10-Dec-2016	16:00	3.5	SE
10-Dec-2016	17:00	4.3	SE
10-Dec-2016	18:00	2.4	SE
10-Dec-2016	19:00	2	SE
10-Dec-2016	20:00	2.7	SE
10-Dec-2016	21:00	1.8	SE
10-Dec-2016	22:00	4.3	ESE
10-Dec-2016	23:00	1.7	SE
11-Dec-2016	0:00	3.8	NNE
11-Dec-2016	1:00	1.1	NE
11-Dec-2016	2:00	2.2	SE
11-Dec-2016	3:00	2.1	S
11-Dec-2016	4:00	2.1	SSW
11-Dec-2016	5:00	2.1	SSW
11-Dec-2016	6:00	2.3	S
11-Dec-2016	7:00	1.8	S
11-Dec-2016	8:00	2.1	S
11-Dec-2016	9:00	3.2	SSE
11-Dec-2016	10:00	3.6	SSE
11-Dec-2016	11:00	3.6	SSE
11-Dec-2016	12:00	3.8	SSE
11-Dec-2016	13:00	3.7	SSE
11-Dec-2016	14:00	3.7	SE
11-Dec-2016	15:00	3.7	NE
11-Dec-2016	16:00	3.8	N
11-Dec-2016	17:00	2.9	N

11-Dec-2016 18:00 2.1	0
	S
11-Dec-2016 19:00 1.9	SSW
11-Dec-2016 20:00 2.4	SSE
11-Dec-2016 21:00 2.6	SSE
11-Dec-2016 22:00 2.8	SSE
11-Dec-2016 23:00 2.6	S
12-Dec-2016 0:00 2.4	S
12-Dec-2016 1:00 2.3	SE
12-Dec-2016 2:00 2.6	SSE
12-Dec-2016 3:00 2.8	SE
12-Dec-2016 4:00 2.5	SE
12-Dec-2016 5:00 2.8	SE
12-Dec-2016 6:00 2.7	SE
12-Dec-2016 7:00 3	SE
12-Dec-2016 8:00 3	SE
12-Dec-2016 9:00 3.4	SE
12-Dec-2016 10:00 3.1	SE
12-Dec-2016 11:00 3.5	SE
12-Dec-2016 12:00 4	SE
12-Dec-2016 13:00 4	SE
12-Dec-2016 14:00 4.6	SE
12-Dec-2016 15:00 4.1	SE
12-Dec-2016 16:00 4.1	SE
12-Dec-2016 17:00 3.4	SSE
12-Dec-2016 18:00 3.4	S
12-Dec-2016 19:00 2.4	SE
12-Dec-2016 20:00 2.2	S
12-Dec-2016 21:00 1.5	SSW
12-Dec-2016 22:00 1.2	SSW
12-Dec-2016 23:00 1.7	SSW
13-Dec-2016 0:00 1.5	SSE
13-Dec-2016 1:00 1.8	SSE
13-Dec-2016 2:00 1.9	SE
13-Dec-2016 3:00 1.7	NE
13-Dec-2016 4:00 2	SSE
13-Dec-2016 5:00 1.3	SSE
13-Dec-2016 6:00 2.2	SE

		_	
13-Dec-2016	7:00	2	SE
13-Dec-2016	8:00	2.2	NE
13-Dec-2016	9:00	1.7	ESE
13-Dec-2016	10:00	2.8	E
13-Dec-2016	11:00	3.2	NE
13-Dec-2016	12:00	3.7	NNE
13-Dec-2016	13:00	4.3	ENE
13-Dec-2016	14:00	3.8	SE
13-Dec-2016	15:00	3.8	W
13-Dec-2016	16:00	3.1	ESE
13-Dec-2016	17:00	2.8	W
13-Dec-2016	18:00	2.7	E
13-Dec-2016	19:00	2.2	SE
13-Dec-2016	20:00	1.7	ESE
13-Dec-2016	21:00	1.4	SE
13-Dec-2016	22:00	1.4	N
13-Dec-2016	23:00	2.4	NE
14-Dec-2016	0:00	1.9	ENE
14-Dec-2016	1:00	1.5	ESE
14-Dec-2016	2:00	1.8	NE
14-Dec-2016	3:00	1.8	NE
14-Dec-2016	4:00	1.7	N
14-Dec-2016	5:00	1.3	NE
14-Dec-2016	6:00	1.8	NNE
14-Dec-2016	7:00	1.4	NE
14-Dec-2016	8:00	1.9	ESE
14-Dec-2016	9:00	2.7	NE
14-Dec-2016	10:00	3.2	NE
14-Dec-2016	11:00	3.7	E
14-Dec-2016	12:00	3.7	ENE
14-Dec-2016	13:00	4.1	SE
14-Dec-2016	14:00	3.8	NE
14-Dec-2016	15:00	3.9	E
14-Dec-2016	16:00	3.3	Е
14-Dec-2016	17:00	3.8	ENE
14-Dec-2016			
	18:00	4	NE

		T	
14-Dec-2016	20:00	3.8	E
14-Dec-2016	21:00	3.6	NE
14-Dec-2016	22:00	3.6	NE
14-Dec-2016	23:00	3.1	N
15-Dec-2016	0:00	2.8	NE
15-Dec-2016	1:00	2.7	NE
15-Dec-2016	2:00	2.9	NE
15-Dec-2016	3:00	2.9	ESE
15-Dec-2016	4:00	3.1	ESE
15-Dec-2016	5:00	3.2	ESE
15-Dec-2016	6:00	3.2	ENE
15-Dec-2016	7:00	3.2	E
15-Dec-2016	8:00	3.4	SE
15-Dec-2016	9:00	3.9	E
15-Dec-2016	10:00	2.8	E
15-Dec-2016	11:00	3.3	E
15-Dec-2016	12:00	3.2	NE
15-Dec-2016	13:00	3.2	NE
15-Dec-2016	14:00	2.9	NE
15-Dec-2016	15:00	3.6	E
15-Dec-2016	16:00	2.8	E
15-Dec-2016	17:00	2.6	ESE
15-Dec-2016	18:00	3.2	ESE
15-Dec-2016	19:00	2.9	E
15-Dec-2016	20:00	2.6	E
15-Dec-2016	21:00	2.9	E
15-Dec-2016	22:00	2.6	E
15-Dec-2016	23:00	2.2	E
16-Dec-2016	0:00	2.8	E
16-Dec-2016	1:00	2.4	Е
16-Dec-2016	2:00	2.7	ESE
16-Dec-2016	3:00	1.9	E
16-Dec-2016	4:00	2.2	E
16-Dec-2016	5:00	2.7	Е
16-Dec-2016	6:00	1.6	SE
16-Dec-2016	7:00	2.7	ESE
16-Dec-2016	8:00	1.6	Е

16-Dec-2016	9:00	2.3	E
16-Dec-2016	10:00	2.6	E
16-Dec-2016	11:00	3.6	E
16-Dec-2016	12:00	4.4	E
16-Dec-2016	13:00	4.3	E
16-Dec-2016	14:00	4	ENE
16-Dec-2016	15:00	4.4	E
16-Dec-2016	16:00	3.2	E
16-Dec-2016	17:00	3.4	E
16-Dec-2016	18:00	4.3	ENE
16-Dec-2016	19:00	4.5	ENE
16-Dec-2016	20:00	2.5	NE
16-Dec-2016	21:00	2.9	SE
16-Dec-2016	22:00	1.8	ESE
16-Dec-2016	23:00	1.7	SE
17-Dec-2016	0:00	2.6	SE
17-Dec-2016	1:00	2	SE
17-Dec-2016	2:00	1.3	SE
17-Dec-2016	3:00	1.8	SE
17-Dec-2016	4:00	0.9	E
17-Dec-2016	5:00	1.2	NE
17-Dec-2016	6:00	4.4	E
17-Dec-2016	7:00	1.3	NE
17-Dec-2016	8:00	0.8	NE
17-Dec-2016	9:00	1.8	N
17-Dec-2016	10:00	1.1	N
17-Dec-2016	11:00	2.2	ESE
17-Dec-2016	12:00	2.4	SE
17-Dec-2016	13:00	1.7	NNE
17-Dec-2016	14:00	1.6	E
17-Dec-2016	15:00	2.3	ESE
17-Dec-2016	16:00	3.8	ESE
17-Dec-2016	17:00	1.5	SE
17-Dec-2016	18:00	1.8	ESE
17-Dec-2016	19:00	1.7	E
17-Dec-2016	20:00	0.6	ESE
17-Dec-2016	21:00	0.8	SE
L	<u> </u>	<u>i</u>	<u> </u>

17-Dec-2016	22:00	0.7	SSW
17-Dec-2016	23:00	0.8	S
18-Dec-2016	0:00	1	SSW
18-Dec-2016	1:00	1.7	W
18-Dec-2016	2:00	0.7	W
18-Dec-2016	3:00	0.8	NNW
18-Dec-2016	4:00	0.9	NW
18-Dec-2016	5:00	1.2	NW
18-Dec-2016	6:00	1	NW
18-Dec-2016	7:00	0.8	N
18-Dec-2016	8:00	1.7	N
18-Dec-2016	9:00	2.9	N
_		-	
18-Dec-2016	10:00	3.5	N NNE
18-Dec-2016	11:00	3.3	NNE
18-Dec-2016	12:00	3.7	ESE
18-Dec-2016	13:00	3.4	N
18-Dec-2016	14:00	3.4	SE
18-Dec-2016	15:00	3.8	SE
18-Dec-2016	16:00	3.4	SE
18-Dec-2016	17:00	2.5	E
18-Dec-2016	18:00	2.7	E
18-Dec-2016	19:00	2.8	E
18-Dec-2016	20:00	2.9	E
18-Dec-2016	21:00	2.6	ESE
18-Dec-2016	22:00	3.3	ESE
18-Dec-2016	23:00	2.9	ESE
19-Dec-2016	0:00	3.8	ESE
19-Dec-2016	1:00	2.9	SE
19-Dec-2016	2:00	3.5	SE
19-Dec-2016	3:00	2.8	ENE
19-Dec-2016	4:00	2.3	E
19-Dec-2016	5:00	2.8	Е
19-Dec-2016	6:00	2.8	WNW
19-Dec-2016	7:00	2.1	WNW
19-Dec-2016	8:00	2.7	E
19-Dec-2016	9:00	3.6	E
19-Dec-2016	10:00	3.3	SE

20-Dec-2016	23:00	4.1	WNW
20-Dec-2016	22:00	3	WNW
20-Dec-2016	21:00	2.1	W
20-Dec-2016	20:00	2.1	NW
20-Dec-2016	19:00	2.2	SE
20-Dec-2016	18:00	2.3	S
20-Dec-2016	17:00	4.3	N
20-Dec-2016	16:00	3.9	SE
20-Dec-2016	15:00	3.5	ESE
20-Dec-2016	14:00	3.3	ESE
20-Dec-2016	13:00	3.3	SE
20-Dec-2016	12:00	2.4	SE
20-Dec-2016	11:00	3	NE
20-Dec-2016	10:00	2.6	NE
20-Dec-2016	9:00	3.8	NE
20-Dec-2016	8:00	2.1	E
20-Dec-2016	7:00	2.9	E
20-Dec-2016	6:00	4.4	E
20-Dec-2016	5:00	4.5	ESE
20-Dec-2016	4:00	4	NE
20-Dec-2016	3:00	3.8	NE
20-Dec-2016	2:00	3.1	NE
20-Dec-2016	1:00	2.9	E
20-Dec-2016	0:00	3.2	E
19-Dec-2016	23:00	3.8	E
19-Dec-2016	22:00	3.3	SE
19-Dec-2016	21:00	1.3	SE
19-Dec-2016	20:00	3	SE
19-Dec-2016	19:00	3.1	SE
19-Dec-2016	18:00	2.9	N
19-Dec-2016	17:00	3.4	NNE
19-Dec-2016	16:00	3.8	NE NE
19-Dec-2016	15:00	3.5	E
19-Dec-2016	14:00	2.7	E
19-Dec-2016	13:00	3.4	ESE
19-Dec-2016 19-Dec-2016	11:00 12:00	3.9	ESE E

		T	T
21-Dec-2016	0:00	2.3	SW
21-Dec-2016	1:00	1.9	W
21-Dec-2016	2:00	2.4	SSW
21-Dec-2016	3:00	3.2	SSE
21-Dec-2016	4:00	2.3	W
21-Dec-2016	5:00	3.2	SSW
21-Dec-2016	6:00	2.3	SSE
21-Dec-2016	7:00	1.7	ESE
21-Dec-2016	8:00	1.7	ESE
21-Dec-2016	9:00	2.2	SE
21-Dec-2016	10:00	3.4	NNE
21-Dec-2016	11:00	3.7	NNE
21-Dec-2016	12:00	3.5	ESE
21-Dec-2016	13:00	3.8	ESE
21-Dec-2016	14:00	3	E
21-Dec-2016	15:00	1.9	Е
21-Dec-2016	16:00	2.3	NE
21-Dec-2016	17:00	2.4	ESE
21-Dec-2016	18:00	3.2	SE
21-Dec-2016	19:00	3.5	NE
21-Dec-2016	20:00	2.6	NE
21-Dec-2016	21:00	3.6	ESE
21-Dec-2016	22:00	2.8	SE
21-Dec-2016	23:00	3.9	SSW
22-Dec-2016	0:00	3.6	SSW
22-Dec-2016	1:00	1.9	S
22-Dec-2016	2:00	2	SSW
22-Dec-2016	3:00	1.8	S
22-Dec-2016	4:00	2.6	SSE
22-Dec-2016	5:00	1.8	SSE
22-Dec-2016	6:00	2.3	SE
22-Dec-2016	7:00	2.5	SE
22-Dec-2016	8:00	3.7	SE
22-Dec-2016	9:00	2.5	NNE
22-Dec-2016	10:00	3.3	NNE
22-Dec-2016	11:00	3.1	ENE
22-Dec-2016	12:00	3.3	ESE

22-Dec-2016 22-Dec-2016	16:00 17:00	3.5	NE NE
22-Dec-2016	17:00	3.5	NE
22-Dec-2016	18:00	3.4	NE
22-Dec-2016	19:00	3.3	SE
22-Dec-2016	20:00	3.3	SE
22-Dec-2016	21:00	2.3	S
22-Dec-2016	22:00	1.3	SSW
22-Dec-2016	23:00	2.3	SSW
23-Dec-2016	0:00	1.7	SSW
23-Dec-2016	1:00	1.1	SSW
23-Dec-2016	2:00	1.7	SSW
23-Dec-2016	3:00	1.8	S
23-Dec-2016	4:00	1.1	S
23-Dec-2016	5:00	0.7	SSW
23-Dec-2016	6:00	0.9	W
23-Dec-2016	7:00	1.3	WNW
23-Dec-2016	8:00	2	WSW
23-Dec-2016	9:00	2.5	W
23-Dec-2016	10:00	3.3	WNW
23-Dec-2016	11:00	3.4	W
23-Dec-2016	12:00	3.6	WNW
23-Dec-2016	13:00	3.7	W
23-Dec-2016	14:00	3.3	WNW
23-Dec-2016	15:00	4	W
23-Dec-2016	16:00	4.1	WNW
23-Dec-2016	17:00	3	W
23-Dec-2016	18:00	2.2	W
23-Dec-2016	19:00	2.5	WNW
23-Dec-2016	20:00	1.5	SSW
23-Dec-2016	21:00	1.4	NW
23-Dec-2016	22:00	1.5	NNE
23-Dec-2016	23:00	1.5	N
24-Dec-2016	0:00	0.8	NE
24-Dec-2016	1:00	1.4	NNE

04.5 0040	0.00	0.0	NE
24-Dec-2016	2:00	0.9	NE _
24-Dec-2016	3:00	0.8	E
24-Dec-2016	4:00	0.9	N
24-Dec-2016	5:00	1.2	N
24-Dec-2016	6:00	1.3	NNE
24-Dec-2016	7:00	1	NNE
24-Dec-2016	8:00	2	NNE
24-Dec-2016	9:00	2.2	NE
24-Dec-2016	10:00	2.4	NE
24-Dec-2016	11:00	2.7	ENE
24-Dec-2016	12:00	2.5	ENE
24-Dec-2016	13:00	2.9	ENE
24-Dec-2016	14:00	2.9	E
24-Dec-2016	15:00	3.2	ENE
24-Dec-2016	16:00	3.3	E
24-Dec-2016	17:00	3	ESE
24-Dec-2016	18:00	2.1	ESE
24-Dec-2016	19:00	2.3	SE
24-Dec-2016	20:00	1.7	SE
24-Dec-2016	21:00	2	SSE
24-Dec-2016	22:00	2.6	S
24-Dec-2016	23:00	2.4	S
25-Dec-2016	0:00	2.2	S
25-Dec-2016	1:00	2.7	S
25-Dec-2016	2:00	2.4	SSW
25-Dec-2016	3:00	1.9	SSW
25-Dec-2016	4:00	1.9	SSW
25-Dec-2016	5:00	2.3	S
25-Dec-2016	6:00	2.1	S
25-Dec-2016	7:00	2	S
25-Dec-2016	8:00	2.4	S
25-Dec-2016	9:00	2.5	S
25-Dec-2016	10:00	2.1	SSW
25-Dec-2016	11:00	3	SSW
25-Dec-2016	12:00	3.5	S
25-Dec-2016	13:00	3.2	S
	13.00	0.2	0

25-Dec-2016	15:00	3.5	SSW
25-Dec-2016	16:00	3.9	SSW
25-Dec-2016	17:00	3.5	SSW
25-Dec-2016	18:00	2.9	NNW
25-Dec-2016	19:00	2.9	WNW
25-Dec-2016	20:00	3	WNW
25-Dec-2016	21:00	2.5	SSE
25-Dec-2016	22:00	2.5	ESE
25-Dec-2016	23:00	2.3	S
26-Dec-2016	0:00	2	NNW
26-Dec-2016	1:00	2	NNW
26-Dec-2016	2:00	2.4	WNW
26-Dec-2016	3:00	3.4	NW
26-Dec-2016	4:00	1.1	NNW
26-Dec-2016	5:00	1.4	NNW
26-Dec-2016	6:00	1.4	NNW
26-Dec-2016	7:00	2.2	WNW
26-Dec-2016	8:00	2.3	NNW
26-Dec-2016	9:00	2	WNW
26-Dec-2016	10:00	2.3	NW
26-Dec-2016	11:00	3.7	WNW
26-Dec-2016	12:00	3.9	NW
26-Dec-2016	13:00	3.5	WNW
26-Dec-2016	14:00	4	WNW
26-Dec-2016	15:00	3.1	NNW
26-Dec-2016	16:00	4.2	WNW
26-Dec-2016	17:00	2.7	NNW
26-Dec-2016	18:00	2.4	NNW
26-Dec-2016	19:00	2.4	WNW
26-Dec-2016	20:00	2.1	W
26-Dec-2016	21:00	3	NW
26-Dec-2016	22:00	2.6	NW
26-Dec-2016	23:00	2.7	NNW
27-Dec-2016	0:00	3.8	WNW
27-Dec-2016	1:00	2.7	WNW
27-Dec-2016	2:00	2.8	WNW
27-Dec-2016	3:00	1.7	NNW

27-Dec-2016	16 4:00		NNW	
27-Dec-2016	5:00	1.2	NNW	
27-Dec-2016	6:00	0.9	NNW	
27-Dec-2016	7:00	1	NNW	
27-Dec-2016	8:00	1.1	NNW	
27-Dec-2016	9:00	2	NNW	
27-Dec-2016	10:00	2.7	NW	
27-Dec-2016	11:00	2.2	WNW	
27-Dec-2016	12:00	2.5	W	
27-Dec-2016	13:00	2	WNW	
27-Dec-2016	14:00	2.6	SE	
27-Dec-2016	15:00	2.3	NW	
27-Dec-2016	16:00	1.7	WNW	
27-Dec-2016	17:00	2.8	ENE	
27-Dec-2016	18:00	1.9	ESE	
27-Dec-2016	19:00	0.9	SE	
27-Dec-2016	20:00	1.2	SW	
27-Dec-2016	21:00	1.1	E	
27-Dec-2016	22:00	0.8	ESE	
27-Dec-2016	23:00	2.4	S	
28-Dec-2016	0:00	2.7	S	
28-Dec-2016	1:00	2.3	WSW	
28-Dec-2016	2:00	2.4	WSW	
28-Dec-2016	3:00	1.6	NW	
28-Dec-2016	4:00	2.2	NE	
28-Dec-2016	5:00	1.8	ESE	
28-Dec-2016	6:00	1.2	NNW	
28-Dec-2016	7:00	1.2	NW	
28-Dec-2016	8:00	0.9	NW	
28-Dec-2016	9:00	1.4	WSW	
28-Dec-2016	10:00	2	WNW	
28-Dec-2016	11:00	1.9	WNW	
28-Dec-2016	12:00	2.1	W	
28-Dec-2016	13:00	3.7	SSW	
28-Dec-2016	14:00	1.9	SE	
28-Dec-2016	15:00	1.7	SSW	
28-Dec-2016	16:00	1.5	NE	
1	1	1	I .	

28-Dec-2016	17:00	3	N	
28-Dec-2016	18:00	2.3	NNW	
28-Dec-2016	19:00	1.1	NNW	
28-Dec-2016	20:00	1.6	WNW	
28-Dec-2016	21:00	2.5	NNW	
28-Dec-2016	22:00	2.2	NNW	
28-Dec-2016	23:00	2.4	WSW	
29-Dec-2016	0:00	2.5	WSW	
29-Dec-2016	1:00	3.4	WNW	
29-Dec-2016	2:00	3.6	WNW	
29-Dec-2016	3:00	2.9	WNW	
29-Dec-2016	4:00	2.2	WNW	
29-Dec-2016	5:00	1.9	ENE	
29-Dec-2016	6:00	2.3	N	
29-Dec-2016	7:00	1.5	SE	
29-Dec-2016	8:00	1.7	SE	
29-Dec-2016	9:00	1.4	NW	
29-Dec-2016	10:00	2.8	NW	
29-Dec-2016	11:00	2.8	NNW	
29-Dec-2016	12:00	1.7	NW	
29-Dec-2016	13:00	1.8	SW	
29-Dec-2016	14:00	2.2	SW	
29-Dec-2016	15:00	2.8	NNW	
29-Dec-2016	16:00	2.5	NW	
29-Dec-2016	17:00	1.9	NW	
29-Dec-2016	18:00	1.6	NW	
29-Dec-2016	19:00	2.1	W	
29-Dec-2016	20:00	2.2	W	
29-Dec-2016	21:00	2.8	NW	
29-Dec-2016	22:00	3.9	NW	
29-Dec-2016	23:00	2.8	WNW	
30-Dec-2016	0:00	2.7	N	
30-Dec-2016	1:00	3.1	NNW	
30-Dec-2016	2:00	2.3	NNW	
30-Dec-2016	3:00	2.1	NNW	
30-Dec-2016	4:00	2.3	NW	
30-Dec-2016	5:00	2.4	NNW	

30-Dec-2016	6:00	1.3	NNW	
30-Dec-2016	7:00	1.5	WSW	
30-Dec-2016	8:00	2.3	WNW	
30-Dec-2016	9:00	3.2	WNW	
30-Dec-2016	10:00	3		
30-Dec-2016	11:00	2.6	NW	
30-Dec-2016	12:00	3.3	NW	
30-Dec-2016	13:00	2.8	NW	
30-Dec-2016	14:00	2.7	NNW	
30-Dec-2016	15:00	2.7	NW	
30-Dec-2016	16:00	2.9	WNW	
30-Dec-2016	17:00	2.3	WSW	
30-Dec-2016	18:00	2	WNW	
30-Dec-2016	19:00	2.3	W	
30-Dec-2016	20:00	2.4	WNW	
30-Dec-2016	21:00	2	WNW	
30-Dec-2016	22:00	2.3	WSW	
30-Dec-2016	23:00	2.1	NW	
31-Dec-2016	0:00	1.3	WNW	
31-Dec-2016	1:00	1.3	NW	
31-Dec-2016	2:00	1.7	WNW	
31-Dec-2016	3:00	1.6	NW	
31-Dec-2016	4:00	1.5	SSE	
31-Dec-2016	5:00	0.8	S	
31-Dec-2016	6:00	1.1	S	
31-Dec-2016	7:00	1.4	S	
31-Dec-2016	8:00	2.1	SSW	
31-Dec-2016	9:00	2.2	WNW	
31-Dec-2016	10:00	3.2	SW	
31-Dec-2016	11:00	3.7	NNE	
31-Dec-2016	12:00	3.4	WNW	
31-Dec-2016	13:00	3	WNW	
31-Dec-2016	14:00	3.3	SSW	
31-Dec-2016	15:00	3.5	NW	
31-Dec-2016	16:00	3.2	NNW	
31-Dec-2016	17:00	3.1	S	
31-Dec-2016	18:00	3	S	

31-Dec-2016	19:00	2.4	S	
31-Dec-2016	20:00	2.3	SSW	
31-Dec-2016	21:00	2.1	SW	
31-Dec-2016	22:00	1.6	SSW	
31-Dec-2016	31-Dec-2016 23:00		NNW	

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for December 2016

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Dec	2-Dec	3-Dec
				1 hr TSP X3		
				AM1(B), AM2		
				Noise		
				(M3 & M4)		
4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec
			1 hr TSP X3			
			AM1(B) & AM2			
	Noise		Noise		Noise	
	(M9)		(M3 & M4)		(M9)	
11-Dec	12-Dec	24 hr TSP 13-Dec	14-Dec	15-Dec	16-Dec	17-Dec
11-Dec	12-Dec	13-Dec	14-Dec	13-Dec	10-Дес	17-Dec
		1 hr TSP X3				
		AM1(B) & AM2				
		Noise				
	24 by TSD	(M3, M4 & M9)			24 l TOD	
18-Dec	24 hr TSP 19-Dec	20-Dec	21-Dec	22-Dec	24 hr TSP 23-Dec	24-Dec
	1 hr TSP X3				1 hr TSP X3	
	AM1(B) & AM2				AM1(B) & AM2	
	Noise					
	(M3, M4 & M9)			24 hr TSP		
25-Dec	26-Dec	27-Dec	28-Dec	29-Dec	30-Dec	31-Dec
				1 hr TSP X3		·
			Noise			
			(M9)	AM1(B) & AM2		
				Noise (M3 & M4)		
			24 hr TSP	(NIJ & NIT)		

Air Quality Monitoring Station

Noise Monitoring Station

AM1(B) -Boundary of KTD/Outside Contractor's site office of Contract KL/2012/02 AM2 - Lee Kau Yan Memorial School

M3 - Cognitio College M4 - Lee Kau Yan Memorial School M9 - Tak Long Estate

Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for January 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jan	2-Jan	3-Jan	4-Jan	5-Jan	6-Jan	7-Jan
			1.1 TOD 1/2			
		Noise	1 hr TSP X3			
		(M9)	AM1(B) & AM2			
		(5.52)	Noise			
		24 hr TSP	(M3 & M4)			
2.5						
8-Jan	9-Jan	10-Jan	11-Jan	12-Jan	13-Jan	14-Jan
		1 hr TSP X3				
		AM1(B) & AM2				
		Noise		Noise		
		(M3 & M4)		(M9)		
	24 hr TSP				24 hr TSP	
15-Jan	16-Jan	17-Jan	18-Jan	19-Jan	20-Jan	21-Jan
	1 hr TSP X3				1 hr TSP X3	
	AM1(B) & AM2				AM1(B) & AM2	
					AMI(B) & AM2	
	Noise (M3 & M4)		Noise			
	(M3 & M4)		(M9)	24 hr TSP		
22-Jan	23-Jan	24-Jan	25-Jan	26-Jan	27-Jan	28-Jan
				1 hr TSP X3		
	Noise			AM1(B) & AM2		
	(M9)			Noise		
				(M3 & M4)		
20.1	20.1	21.7	24 hr TSP		24 hr TSP	
29-Jan	30-Jan	31-Jan				
771 1 1 1 1 1 1 1						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

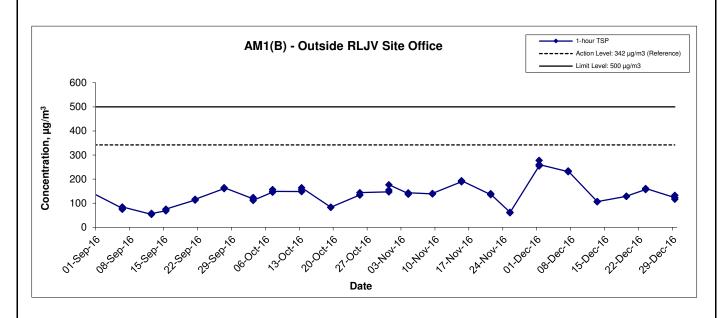
AM1(B) -Boundary of KTD/Outside Contractor's site office of Contract KL/2012/02 AM2 - Lee Kau Yan Memorial School

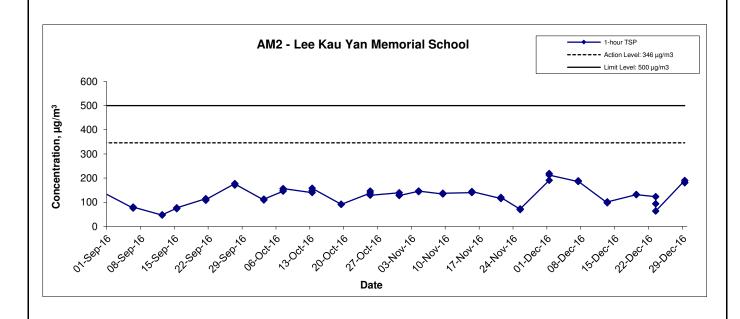
Noise Monitoring Station

M3 - Cognitio College M4 - Lee Kau Yan Memorial School

M9 - Tak Long Estate

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix E - 1-hour TSP Monitoring Results


Location AM1(E	3) - Outside F	RLJV Site Office	
Date	Time	Weather	Particulate Concentration (μg/m3)
1-Dec-16	13:00	Sunny	254.7
1-Dec-16	14:00	Sunny	277.7
1-Dec-16	15:00	Sunny	260.4
7-Dec-16	9:00	Cloudy	230.8
7-Dec-16	10:00	Cloudy	233.8
7-Dec-16	11:00	Cloudy	233.2
13-Dec-16	9:00	Sunny	107.2
13-Dec-16	10:00	Sunny	106.7
13-Dec-16	11:00	Sunny	106.2
19-Dec-16	9:00	Sunny	128.6
19-Dec-16	10:00	Sunny	129.3
19-Dec-16	11:00	Sunny	128.9
23-Dec-16	13:30	Cloudy	156.6
23-Dec-16	14:30	Cloudy	158.6
23-Dec-16	15:30	Cloudy	161.3
29-Dec-16	9:00	Sunny	123.4
29-Dec-16	10:00	Sunny	132.7
29-Dec-16	11:00	Sunny	116.5
		Average	169.3
		Maximum	277.7
		Minimum	106.2

Location AM2 -	Lee Kau Yar	n Memorial Schoo	I
Date	Time	Weather	Particulate Concentration (μg/m3)
1-Dec-16	13:00	Sunny	190.6
1-Dec-16	14:00	Sunny	218.7
1-Dec-16	15:00	Sunny	212.2
7-Dec-16	9:00	Cloudy	185.2
7-Dec-16	10:00	Cloudy	188.7
7-Dec-16	11:00	Cloudy	187.0
13-Dec-16	13:00	Sunny	97.7
13-Dec-16	14:00	Sunny	100.8
13-Dec-16	15:00	Sunny	101.5
19-Dec-16	13:00	Sunny	131.5
19-Dec-16	14:00	Sunny	131.4
19-Dec-16	15:00	Sunny	131.5
23-Dec-16	9:00	Sunny	123.4
23-Dec-16	10:00	Sunny	93.6
23-Dec-16	11:00	Sunny	63.7
29-Dec-16	9:00	Sunny	190.1
29-Dec-16	10:00	Sunny	180.6
29-Dec-16	11:00	Sunny	182.0
		Average	150.6
		Maximum	218.7
		Minimum	63.7

MA13043/App E - 1hr TSP Cinotech

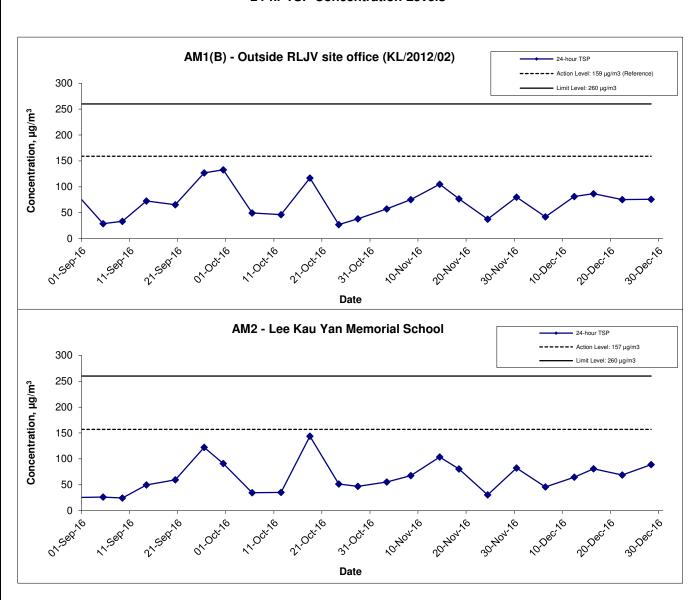
1-hr TSP Concentration Levels

Title	Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area	Scale		Project No.	MA13043	CINOTECH
	Graphical Presentation of 1-hour TSP Monitoring Results	Date	Dec 16		ix E	CINOIECH

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

Location AM1(B) - Outside RLJV site office (KL/2012/02)


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	(m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
6-Dec-16	Cloudy	292.7	769.4	3.6163	3.6908	0.0745	840.6	864.6	24.0	1.23	1.23	1.23	1768.5	42.1
12-Dec-16	Sunny	293.8	765.6	3.2914	3.4348	0.1434	864.6	888.6	24.0	1.22	1.22	1.22	1761.2	81.4
16-Dec-16	Sunny	286.5	773.1	3.3173	3.4725	0.1552	888.6	912.6	24.0	1.24	1.24	1.24	1790.6	86.7
22-Dec-16	Sunny	294.3	766.4	3.5838	3.7162	0.1324	912.6	936.6	24.0	1.22	1.22	1.22	1760.6	75.2
28-Dec-16	Sunny	284.6	771.8	3.6106	3.7467	0.1361	936.6	960.6	24.0	1.25	1.25	1.25	1794.8	75.8
													Min	42.1
													Max	86.7
													Average	72.3

Location AM2 - Lee Kau Yan Memorial School

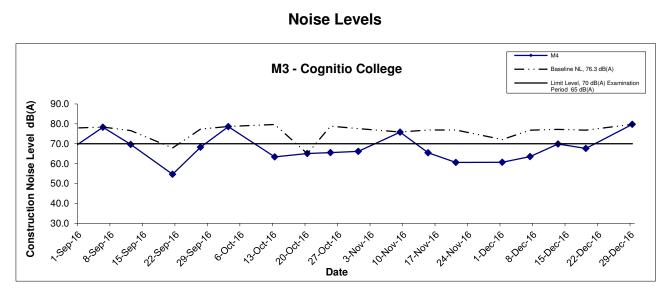
Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
6-Dec-16	Cloudy	293.5	769.0	3.6364	3.7176	0.0812	17477.5	17501.5	24.0	1.23	1.23	1.23	1771.5	45.8
12-Dec-16	Sunny	294.2	765.1	3.2875	3.4015	0.1140	17501.5	17525.5	24.0	1.23	1.23	1.23	1764.9	64.6
16-Dec-16	Sunny	286.9	772.7	3.2909	3.4359	0.1450	17525.5	17549.5	24.0	1.25	1.25	1.25	1795.8	80.7
22-Dec-16	Sunny	294.4	766.7	3.5488	3.6703	0.1215	17549.5	17573.5	24.0	1.23	1.23	1.23	1766.2	68.8
28-Dec-16	Sunny	284.4	770.5	3.6307	3.7910	0.1603	17573.5	17597.5	24.0	1.25	1.25	1.25	1801.1	89.0
													Min	45.8
													Max	89.0
													Average	69.8

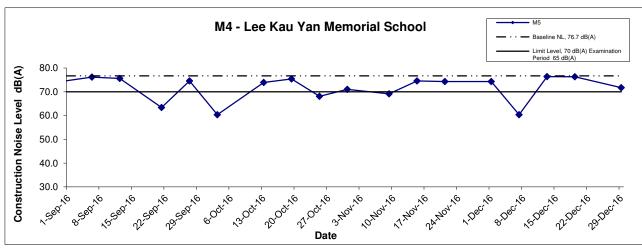
MA13043/App F - 24hr TSP

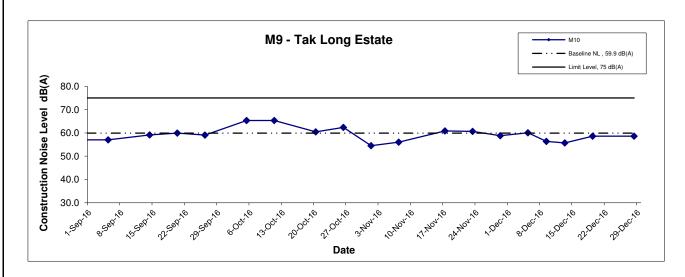
24-hr TSP Concentration Levels

Title	Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area	Scale	N.T.S	Project No.	MA13043	CINOTEC
	Graphical Presentation of 24-hour TSP Monitoring Results	Date	Dec 16	Appendix	F	CINOICO

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix G - Noise Monitoring Results


Location M3 -	Location M3 - Cognitio College										
					Un	it: dB (A) (30-min)					
Date	Time	Weather	Meas	sured Noise	Level	Background Noise	Construction Noise Level				
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}				
1-Dec-16	13:15	Sunny	72.4	75.3	70.1	72.1	60.6				
7-Dec-16	15:15	Cloudy	77.0	78.1	74.3	76.8	63.5				
13-Dec-16	15:10	Sunny	77.6	79.1	75.7	77.2	67.0				
19-Dec-16	13:00	Sunny	77.3	78.1	76.5	76.8	67.7				
29-Dec-16	11:30	Sunny	79.8	81.4	78.1	79.8	79.8 Measured \leq Background				


Location M4 -	Location M4 - Lee Kau Yan Memorial School										
					Uni	t: dB (A) (30-min)	_				
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level				
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}				
1-Dec-16	13:15	Sunny	74.3	76.8	72.1		74.3 Measured ≤ Baseline				
7-Dec-16	13:05	Sunny	76.8	78.1	75.3		60.4				
13-Dec-16	13:10	Sunny	76.4	77.7	75.0	76.7	76.4 Measured ≤ Baseline				
19-Dec-16	13:30	Sunny	76.3	77.4	75.2		76.3 Measured ≤ Baseline				
29-Dec-16	09:15	Cloudy	77.9	79.1	76.3		71.7				

Location M9 -	Location M9 - Tak Long Estate											
					Uni	t: dB (A) (30-min)						
Date	Time	Weather	Meas	Measured Noise Level			Construction Noise Level					
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
5-Dec-16	13:30	Cloudy	63.0	65.2	60.3		60.1					
9-Dec-16	13:30	Sunny	61.5	63.2	59.2		56.4					
13-Dec-16	13:15	Sunny	55.7	57.5	53.3	59.9	55.7 Measured ≤ Baseline					
19-Dec-16	13:10	Sunny	62.3	64.5	59.1		58.6					
28-Dec-16	15:00	Cloudy	62.3	63.7	60.5		58.6					

MA13043/App G - Noise Cinotech

Remarks: The construction noise levels in the Tables in Appendix G were adopted for plotting the graphs

Title Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area	Scale	N.T.S	Project No. MA13043	CINOTECH
Graphical Presentation of Construction Noise Monitoring Results	Date	Dec 16	Appendix G	CINOIECU

APPENDIX H SUMMARY OF EXCEEDANCE

Contract No. KL/2012/02 Kai Tak Development –Stage 3A Infrastructure at Former North Apron Area

Appendix H – Summary of Exceedance

Exceedance Report for Contract No. KL/2012/02

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Checklist Reference Number	161207
Date	7 December 2016
Time	14:00 – 16:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	,
161207-R01	The stockpile of dusty material placed near Concorde Road should be properly covered to prevent dust generation.	C 7
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 161130), all environmental were improved/rectified by the Contractor.	

Name		Signature	Date
Recorded by	KC Chung	Chy	7 December 2016
Checked by	Dr. Priscilla Choy	WI	7 December 2016

Checklist Reference Number	161215
Date	15 December 2016
Time	14:00 – 16:00

Ref. No.	Non-Compliance	Related Item No.
	None identified	_
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
•	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 161207), all environmental were improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	KC Chung	Change	15 December 2016
Checked by	Dr. Priscilla Choy	WT	15 December 2016

Stage 3A Infrastructure at Former North Apron Area

Checklist Reference Number	161221
Date	21 December 2016
Time	14:00 – 16:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	nem No.
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	100111101
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
161221-R01	General refuse at VT1 should be properly disposed of to prevent accumulation.	E1 iii
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit section (Ref. No.: 161215), all environmental were improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	KC Chung	Chy	21 December 2016
Checked by	Dr. Priscilla Choy	WF	21 December 2016

Checklist Reference Number	161228
Date	28 December 2016
Time	14:00 16:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
D.C.N.	D	Related Item No.
Ref. No.	Remarks/Observations	Hem 140.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
161228-001	• Dust suppression measures should be provided to suppress the dust generation arise from the construction works at VT1.	C 13
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
161228-R02	The fencing of tree protection zone at SW3 should be properly erected and maintained.	F 1
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 161221), all environmental were improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	KC Chung	Cly	28 December 2016
Checked by	Dr. Priscilla Choy	NI	28 December 2016

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Action Level being	Identify source and investigate the	Check monitoring data submitted	1. Notify Contractor.	Rectify any unacceptable practice;	
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if	
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.	
	3. Repeat measurement to confirm finding.	method.			
Action Level being	Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	1. Discuss with ET and IEC on proper	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;	
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial	
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three	
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;	
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;	
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.	
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of		
	6. If exceedance continues, arrange		remedial measures;		
	meeting with IEC and ER;		5. Conduct meeting with ET and		
	7. If exceedance stops, cease additional		IEC if exceedance continues.		
	monitoring.				
Limit Level being	Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;	
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper	
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;	
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial	
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three	

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	1. Check monitoring data submitted	Confirm receipt of notification	1. Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT		ACTION				
	ET	IEC	ER	CONTRACTOR		
Action Level	1. Notify ER, IEC and Contractor;	Review the investigation	1. Confirm receipt of	1. Submit noise mitigation		
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;		
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation		
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.		
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be		
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after		
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)		
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;			
	check mitigation effectiveness.	(The above actions should be	4. Supervise the			
	(The above actions should be taken	taken within 2 working days after	implementation of remedial			
	within 2 working days after the	the exceedance is identified)	measures.			
	exceedance is identified)		(The above actions should be			
			taken within 2 working days			
			after the exceedance is			
			identified)			
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to		
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;		
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial		
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3		
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;		
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed		
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;		

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT			ACTION	
ACTION LEVEL	ET	IEC	ER	CONTRACTOR
Design Check	1. Check final	1. Check report.	Undertake remedial design if necessary	
	design conforms to	2. Recommend		
	the requirements	remedial design if		
	of EP and prepare	necessary		
	report.			
Non-conformity on one occasion	1. Identify Source	1. Check report	Notify Contractor	Amend working methods
	2. Inform IEC and	2. Check Contractor's	2. Ensure remedial measures are properly	2. Rectify damage and
	ER	working method	implemented	undertake any necessary
	3. Discuss remedial	3. Discuss with ET and		replacement
	actions with IEC,	Contractor on possible		
	ER and Contractor	remedial measures		
	4. Monitor remedial	4. Advise ER on		
	actions until	effectiveness of		
	rectification has	proposed remedial		
	been completed	measures.		
		5. Check implementation		
		of remedial measures.		
Repeated Non-conformity	1. Identify Source	1. Check monitoring	1. Notify Contractor	Amend working methods
	Inform IEC and	report	2. Ensure remedial measures are properly	2. Rectify damage and

E	ER	2. Check Contractor's	implemented	undertake any necessary
2	2. Increase	working method		replacement
r	monitoring	3. Discuss with ET and		
f	frequency	Contractor on possible		
3	3. Discuss remedial	remedial measures		
8	actions with IEC,	4. Advise ER on		
E	ER and Contractor	effectiveness of		
4	4. Monitor remedial	proposed remedial		
8	actions until	measures		
r	rectification has	5. Supervise		
l t	been completed	implementation of		
5	5. If non-conformity	remedial measures.		
	stops, cease			
a	additional			
r	monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Appendix K - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

Types of Impacts	Mitigation Measures	Status
	8 times daily watering of the work site with active dust emitting activities.	*
	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	
	 Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. 	*
	 Misting for the dusty material should be carried out before being loaded into the vehicle; 	^
Construction Dust	 Any vehicle with an open load carrying area should have properly fitted side and tail boards. Material having the potential to create dust should not 	٨
	be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	^
	 The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation. 	^
	 The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. On- site unpaved roads should be compacted and kept free of lose materials. 	^
	Vehicle washing facilities should be provided at every	

 The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores. 	^
 Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet. 	٨
 Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides. 	٨
 Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites. 	٨
• DWFI compound for JVBC: a DWFI compound is proposed at the downstream of JVC to contain pollution in drainage systems entering the KTAC and KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the compounds to prevent any accumulation of sediment within the downstream section of JVBC and hence fully mitigate the potential odour emissions from the headspace of JVBC near the existing discharge locations. The odour generating operations within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high	N/A

efficiency deodorizers before discharge to the atmosphere.	
• Desilting compound for KTN: Two desilting compounds are proposed for KTN (at Site 1D6 and Site 1P1) to contain pollution in drainage systems entering the KTAC and KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the compounds to prevent any accumulation of sediment within the downstream section of KTN and hence fully mitigate the potential odour emissions from the headspace of KTN near the existing discharge locations. The odour generating operations within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high efficiency deodorizers before discharge to the atmosphere.	N/A
• Decking or reconstruction of KTN within apron area: it is proposed to deck the KTN or reconstruct the KTN within the former Apron area into Kai Tak River from the south of Road D1 to the north of Road D2 along the existing alignment of KTN. The Kal Tak River will compose of a number of channels flowing with non-odorous fresh water and THEES effluent. The channel flowing with THEES effluent will be designed with the width of water surface of not more than 16m.	N/A

• Localised maintenance dredging. Localised maintenance dredging should be conducted to provide water depth of not less than 3.5m over the whole of KTAC and KTTS. With reference to the water depth data recorded during the odour survey, only some of the areas in the northern part of KTAC (i.e. to the north of taxiway bridge) including the area near the northern edge of KTAC, the area near western bank of KTAC, and the area near the JVC discharge have water depths shallower than 3.5m. The area involved would be about 40% of the northern KTAC and the dredging depth required would be from about 2.7m to less than tm. The maintenance dredging to be carried out prior to the occupation of any new development in the immediate vicinity of KTAC to avoid potential localized odour impacts at the future ASRs during the maintenance dredging operation.	N/A
 Improvement of water circulation in KTAC and KTTS: 600m gap opening at the northern part of the former Kal Tak runway, the water circulation in KTAC and KTTS would be substantially improved. Together with the improvement in water circulation, the DO level in KTAC and KTTS would also be increased. 	N/A
 In-situ sediment treatment by bioremediation: Bioremediation would be applied to the entire KTAC and KTTS. 	N/A

	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump	٨
Construction Noise	 Good Site Practice: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Silencers or muttlers on construction equipment should be utilized and should be properly maintained during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	^
	Scheduling of Construction Works during School Examination Period	^
	(i) Provision of low noise surfacing in a section of Road L2; and	N/A
	(ii) Provision of structural fins	N/A

	void the sensitive façade of class room facing Road nd L4; and	N/A
(ii) P & L4	rovision of low noise surfacing in a section of Road L2	N/A
	ovision of low noise surfacing in a section of Road L4 e occupation of Site 1I1; and	N/A
(ii) S	etback of building about 5m from site boundary.	N/A
	ack of building about 35m to the northwest direction 3 and 5m at Site 1L2.	N/A
(i)	avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and	N/A
(ii)	for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not provide the facades with openable window.	N/A
(i)	avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or	N/A
(ii)	provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height of the residential block(s) located at less than 55m away from To Kwa Wan Road to no more than 25m above ground.	N/A
(i)	avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic noise impacts from the slip road	N/A

provided (i) S (ii) E (iii) T	rentilation fans installed in the below will be with silencers or acoustics treatment. SPS SSS SUMMER TO STATE OF THE STAT	N/A N/A N/A N/A
Installatio measures	on of retractable roof or other equivalent	N/A

	The following mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including: • Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply; • Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps; • An alarm should be installed to signal emergency high	N/A N/A N/A
	 water level in the wet well at all SPSs, and For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should be provided so that swift actions could be taken in case of malfunction of unmanned facilities. 	N/A
Construction Water Quality	Construction Phase Marine-based Construction Conital and Maintenance Pradaing for Cruica Terminal	
	Capital and Maintenance Dredging for Cruise Terminal Mitigation measures for construction of the proposed cruise terminal should follow those recommended in the approved EIA for CT Dredging.	N/A

Fireboat Berth, Runway Opening and Road T2	
Fireboat Bertif, nuriway Opening and noad 12	
Silt curtains should be deployed around the close grab dredger to minimize release of sediment and other contaminants for any dredging and filling activities in open	N/A
water. Dredging at and near the seawall area for construction of the public landing steps cum fireboat berth should be carried out at a maximum production rate of 1,000m ³ per day using one grab dredger.	N/A
The proposed construction method for runway opening should adopt an approach where the existing seawall at the runway will not be removed until completion of all excavation and dredging works for demolition of the runway. Thus, excavation of bulk fill and majority of the dredging works will be carried out behind the existing seawall, and the sediment plume can be effectively contained within the works area. As there is likely some accumulation of sediments alongside the runway, there will be a need to dredge the existing seabed after completion of all the demolition works. Dredging alongside the 600m opening should be carried out at a maximum production rate of 2,000m ² per day using one grab dredger.	N/A
Dredging for Road T2 should be conducted at a maximum rate of 8,000m³ per day (using four grab dredgers) whereas the sand filling should be conducted at a maximum rate of 2,000m³ per day (using two grab dredgers).	N/A (1)
Silt screens shall be applied to seawater intakes at WSD seawater intake.	N/A

Land-based Construction	
Construction Runoff	
Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include: use of sediment traps adequate maintenance of drainage systems to prevent flooding and overflow	^ ^
Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	

ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means. Λ Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m³ capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped. Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m3 should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris Λ into any drainage system. Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.

Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.	^
Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	^
All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	^
It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.	^

locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ. Sewage Effluent Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical tollets prior to the commission of the on-site sewer system. Appropriate numbers of portable tollets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices. Stormwater Discharges	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	٨
Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical tollets prior to the commission of the on-site sewer system. Appropriate numbers of portable tollets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices. Stormwater Discharges	locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the	^
expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical tollets prior to the commission of the on-site sewer system. Appropriate numbers of portable tollets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices. Stormwater Discharges	Sewage Effluent	
	expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical tollets prior to the commission of the on-site sewer system. Appropriate numbers of portable tollets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal	^
Minimum distances of 100 m should be maintained	Stormwater Discharges	
between the existing or planned stormwater discharges and the existing or planned seawater intakes	between the existing or planned stormwater discharges	^

Debris and Litter	
In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials. litter or wastes to marine waters does not occur	٨
Construction Works at or in Close Proximity of Storm Culvert or Seafront	
The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	^
The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm culvert / nullah.	۸
Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works.	۸
Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	۸
Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	۸
Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	۸

Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	^
Construction effluent, site run-off and sewage should be properly collected and/or treated.	^
Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	^
Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of construction materials.	^
Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	٨
Supervisory staff should be assigned to station on site to closely supervise and monitor the works	^
Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	N/A

Good Site Practices It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations for good site practices during construction activities include: Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at	^
 Training of site personnel in proper waste management and chemical waste handling procedures 	۸
 Provision of sufficient waste disposal points and regular collection for disposal Appropriate measures to minimise windblown litter 	^
and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers	^
 A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites) 	X

Wasta Daductica Managera	
Waste Reduction Measures Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: • Sort C&D waste from demolition of the remaining	٨
structures to recover recyclable portions such as metals	
 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 	۸
 Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other separate refuse assessed by the work force. 	٨
 other general refuse generated by the work force Any unused chemicals or those with remaining functional capacity should be recycled 	۸
Proper storage and site practices to minimise the potential for damage or contamination of construction materials	۸
Dredged Marine Sediment	N/A
The basic requirements and procedures for dredged mud disposal are specified under the ETWB TCW No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is required under the Dumping at Sea Ordinance and is the responsibility of the Director of Environmental Protection (DEP)	

The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC depending on their level of contamination. Sediment classified as Category L would be suitable for Type 1 — Open Sea Disposal. Contaminated sediment would require either Type 1 — Open Sea Disposal (Dedicated Sites), Type 2 — Confined Marine Disposal, or Type 3 — Special Treatment / Disposal and must be dredged and transported with great care in accordance with ETWB TCW No. 34/2002. Subject to the final allocation of the disposal sites by MFC, the dredged contaminated sediment must be effectively isolated from the environment and disposed properly at the designated disposal site	N/A

or vessels should be equipped with automatic self- monitoring devices as required under the Dumping at Sea Ordinance and as specified by the DEP Barges or hopper barges should not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation	monitoring devices as required under the Dumping at Sea Ordinance and as specified by the DEP • Barges or hopper barges should not be filled to a level that would cause the overflow of materials or sediment laden water during loading or	N/A	appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works should apply for allocation of marine disposal sites and all necessary permits from relevant authorities for the disposal of dredged sediment. During transportation and disposal of the dredged marine sediments requiring Type 1, Type 2, or Type 3 disposal, the following measures should be taken to minimise potential impacts on water quality: • Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved • Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges
		N/A	monitoring devices as required under the Dumping at Sea Ordinance and as specified by the DEP • Barges or hopper barges should not be filled to a level that would cause the overflow of materials or sediment. laden water during loading or

Mitigation measures and good site practices should be	
Incorporated Into contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include: Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles should be located away from waterfront or storm drains as far as possible	^
Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric.	^
Skip hoist for material transport should be totally enclosed by impervious sheeting Every vehicle should be washed to remove any	^
dusty materials from its body and wheels before leaving a construction site The area where vehicle washing takes place and the section of the road between the washing	٨
facilities and the exit point should be paved with concrete, bituminous materials or hardcores The lond of dusty materials carried by vehicle	^
leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle	^
 All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet The height from which excavated materials are 	٨
dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading	

When delivering inert C&D material to public fill reception tacilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.

Chemical Waste

After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation

General Refuse

General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem

	CM1 All existing trees should be carefully protected during construction.	*
	CM2 Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	N/A(1)
Landscape and Visual	CM3 Control of night-time lighting.	
	CM4 Erection of decorative screen hoarding.	^

Remarks:	^ Compliance of mitigation measure;	X Non-compliance of mitigation measure;
	N/A Not Applicable at this stage; N/A(1) Not observed;	•Non-compliance but rectified by the contractor;
	* Recommendation was made during site audit but improved/rectified by the contractor.	

APPENDIX L
SUMMARIES OF ENVIRONMENTAL
COMPLAINT, WARNING, SUMMON
AND NOTIFICATION OF SUCCESSFUL
PROSECUTION

Contract No. KL/2012/02

Kai Tak Development –Stage 3A Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Reporting Month: December 2016

Contract No. KL/2012/02

Log Ref.	Location	Received Date	Details of Complaint/warning/summon and prosecution	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A	N/A

Remarks: No environmental complaint/warning/summon and prosecution were received in the reporting period.

APPENDIX M SUMMARY OF WASTE GENERATION AND DISPOSAL RECORDS

MONTHLY SUMMARY WASTE FLOW TABLE FOR <u>2016</u> (YEAR)

	Actual Quantities of Inert C&D Materials Generated Monthly					Actual Quantities of C&D Wastes Generated Monthly				nthly	
Month	Total Quantity Generated	Borken Concrete (4)	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Import Fill	Metals	Paper / Cardboard Packaging	Plastics (3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
JAN	1.33977	0	0	0.89856	0.32871	0	0	0	0	0	0.11250
FEB	3.60932	0	0	3.47750	0.04472	0	0	0	0	0	0.08710
MAR	5.27182	0	0	5.08400	0.01982	0	0	0	0	0	0.16800
APR	8.34401	0	0	8.12400	0.00451	0	0	0	0	0	0.21550
MAY	15.66432	0	0	15.29400	0.04401	0	0	0	0	0	0.32632
JUNE	3.47485	0	0	3.34700	0.01415	0	0	0	0	0	0.11370
SUB- TOTAL	37.70411	0	0	36.22506	0.45594	0	0	0	0	0	1.02312
JULY	2.45816	0	0	1.83100	0.04076	0	0	0	0	0	0.58640
AUG	0.34249	0	0	0	0.04059	0	0	0	0	0	0.30190
SEPT	0.53205	0	0	0.14700	0.06335	0	0	0	0	0	0.32170
OCT	1.13318	0	0	0.77000	0.04833	0	0	0	0	0	0.31485
NOV	1.12286	0	0	0.70700	0.02466	0	0	0	0	0	0.39120
DEC	3.83480	0	0	2.99000	0.04620	0	0	0	0	0	0.79860
TOTAL	47.12765	0	0	42.67006	0.71983	0	0	0	0	0	3.73777

Contract No. : <u>KL/2012/02</u>

	Forecast of Total Quantities of C&D materials to be Generated from the Contracts *									
Total	Borken	Reused in the	Reused in	Disposal as	Import Fill	Metals	Paper /	Plastics (3)	Chemical	Other, e.g.
Quantity	Concrete (4)	Contract	other	Public Fill	Import rm	Metais	Cardboard	Flastics (5)	Waste	general
[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
27.972	26.472	0	0	0	0	0	0.9	0	1.8	1.5

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the site.

(2) Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material.

MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix B

Monthly EM&A Report For Contract No. KL/2012/03 Stage 4 infrastructure works at north apron area of Kai Tak Airport

Civil Engineering and Development Department

EP-344/2009 – New Sewage Pumping Stations Serving KTD EP-337/2009 – New Distributor Roads Serving the Planned KTD

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Monthly EM&A Report

December 2016

(Version 1.0)

Approved By

(Environmental Team/Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, New Territories

For the attention of: Dr. Priscilla Choy

Subject: Contract No. KL/2012/03 Kai Tak Development – Stage 4

Infrastructure at Former North Apron Area

Verification for Monthly EM&A Report (December 2016)

(Draft_Mrpt1612_v1.0 (Revised_2))

Our ref: EB001399-320/THW17-31460

Your ref:

Date: 19 January 2017

Dear Dr. Choy,

We have no further comments on the revised report received via e-mail dated 19 January 2017 and hereby verify the report.

Should you have any queries, please feel free to contact the undersigned on 2911 2744.

Yours faithfully, For and on behalf of Arcadis Design & Engineering Limited

F N Wong

Independent Environmental Checker

cc. Mr. John Yam (AECOM) (By-email)

FN/my

ARCADIS DESIGN & ENGINEERING LIMITED

20/F, AXA Tower, Landmark East 100 How Ming Street Kwun Tong, Kowloon Hong Kong

Tel +852 2911 2233 Fax +852 2805 5028 arcadis.com

By Email

TABLE OF CONTENTS

EX	ECUTIVE SUMMARY	1
	Introduction	
	Environmental Monitoring Works	1
	Environmental Licenses and Permits	2
	Key Information in the Reporting Month	2
	-	
1.	INTRODUCTION	
	Background	4
	Project Organizations	4
	Construction Activities undertaken during the Reporting Month	5
	Status of Compliance with Environmental Permits Conditions	0 8
	•	
2.	AIR QUALITY	9
	Monitoring Requirements	
	Monitoring Locations	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and Quality Assurance and Quality Control (QA/QC) Procedure	10 re10
	Results, Observations and Action/Limit Level Exceedance	12
2	NOICE	1.1
3.	NOISE	14 17
	Monitoring Locations	14 14
	Monitoring Equipment.	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedures	15
	Maintenance and Calibration	15
	Results, Observations and Action/Limit Level Exceedance	16
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	17
5.	LANDSCAPE AND VISUAL	19
	Monitoring Requirements	19
	Results and Observations	19
6.	ENVIRONMENTAL AUDIT	20
υ.	Site Audits	
	Status of Environmental Licensing and Permitting	
	Status of Waste Management	21
	Implementation Status of Environmental Mitigation Measures	21
	Summary of Mitigation Measures Implemented	22
	Implementation Status of Event Action Plans	22
	Summary of Complaint, Warning, Notification of any Summons and Successful Prosecut	
7.	FUTURE KEY ISSUES	24
- •	Key Issues for the Coming Month	
	Monitoring Schedule for the Next Month	25
8.	CONCLUSIONS AND RECOMMENDATIONS	26
σ.	Conclusions	
	Recommendations	
	Effectiveness of Environmental Management	

LIST OF TABLES

Table I	Breaches of Action and Limit Levels for the Project in the Reporting Month
Table II	Summary Table for Key Information in the Reporting Month
Table 1.1	Key Project Contacts
Table 1.2	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 1.3	Air Quality and Noise Monitoring Stations for this Project
Table 1.4	Summary Table for Required Submission under EP No. EP-337/2009
Table 1.5	Summary Table for Required Submission under EP No. EP-344/2009
Table 2.1	Locations for Air Quality Monitoring
Table 2.2	Air Quality Monitoring Equipment
Table 2.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 2.4	Major dust source identified at the designated air quality monitoring stations
Table 3.1	Noise Monitoring Stations
Table 3.2	Noise Monitoring Equipment
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Major noise source identified at the designated noise monitoring stations
Table 3.5	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 4.1	Comparison of 1-hr TSP data with EIA predictions
Table 4.2	Comparison of 24-hr TSP data with EIA predictions
Table 4.3	Comparison of Noise Monitoring Data with EIA predictions
Table 6.1	Summary of Environmental Licensing and Permit Status
Table 6.2	Observations and Recommendations of Site Inspections for EP-337/2009
Table 6.3	Observations and Recommendations of Site Inspections for EP-344/2009
Table 7.1	Summary of the tentative program of major site activities, the impact prediction and
	control measures for January and February 2017
Table 8.1	Examples of Mitigation Measures for Environmental Recommendations

LIST OF FIGURES

Figure 1	Layout Plan of the Project Site
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of Construction Noise Monitoring Stations
Figure 4	Locations of Wind Anemometer
Figure 5	Management Structure

LIST OF APPENDICES

A	Action and Limit Levels for Air Quality and Noise
В	Copies of Calibration Certificates
C	Weather Information
D	Environmental Monitoring Schedules
E	1-hour TSP Monitoring Results and Graphical Presentations
F	24-hour TSP Monitoring Results and Graphical Presentations
G	Noise Monitoring Results and Graphical Presentations
Н	Summary of Exceedance
I	Site Audit Summary
J	Event Action Plans
K	Environmental Mitigation Implementation Schedule (EMIS)
L	Summaries of Environmental Complaint, Warning, Summon and Notification of
	Successful Prosecution
M	Summary of Waste Generation and Disposal Records
N	Construction Programme

EXECUTIVE SUMMARY

Introduction

- 1. This is the 37th Monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises the construction of Schedule 2 Designated Projects (DP) Road D2 & Sewage Pumping Station PS2 and PS NPS which forms a part of the works under two Environmental Permits (EP), EP-337/2009 and EP-344/2009. The title of the designated projects under Environmental Permit No.: EP-344/2009 is "New sewage pumping stations serving Kai Tak Development" and under Environmental Permit No.: EP-337/2009 is "New distributor roads serving the planned Kai Tak Development". This report documents the findings of EM&A Works conducted from 1 to 31 December 2016.
- 2. The major site activities undertaken in the reporting month included:
 - Daily Cleaning;
 - Installation of hand-railing & ladder inside Box Culvert B5;
 - Construction of staircase and landing and E&M Works at PS2;
 - Water test, backfill and sheet-pile removal in Heading 7A;
 - Segment tunneling, backfill and sheet-pile removed chamber construction in Heading 7B;
 - Outfall construction at Box Culvert B6;
 - Road widening works (excavation and UU works) at Sung Wong Toi Road;
 - Maintenance & Servicing Engineer's Office at Portion 9;
 - Lay HDPE pipe at Pit 1 and 9;
 - Pipe jacking at Pit 4;
 - Chamber construction at Pit 5;
 - Installation of drainage, UU laying works and Road works at Road D2;
 - Finishing works and E&M works at NPS;
 - UU works and Road works at Road L19 & Bailey St; and
 - Storage of excavated material at Portion 6.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the breaches of action and limit levels in the reporting month for the Project is tabulated in **Table I**.

Table I Breaches of Action and Limit Levels for the Project in the Reporting Month

Parameter	No. of Project-rela	Action Taken	
Farameter	Action Level	Limit Level	Action Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

- 5. 1-hour TSP monitoring at AM4(A) EMSD Workshop on 29 December 2016 was cancelled due to unsuccessful accessibility to the facility.
- 6. All other 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 7. 24-hour TSP monitoring at AM4(A) EMSD Workshop on 28 December 2016 was cancelled due to unsuccessful accessibility to the facility.
- 8. All other 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

9. All construction noise monitoring was conducted as scheduled in the reporting month. No Action and Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 10. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, Environmental Permits No. EP-344/2009 and EP-337/2009 were issued on 23 April 2009.
- 11. Registration of Chemical Waste Producer (Waste Producer Number: 5213-286-K2958-05).
- 12. Water Discharge License (WT00020971-2015).
- 13. Construction Noise Permit (GW-RE0964-16).

Key Information in the Reporting Month

14. Summary of complaint received, reporting changes and notifications of any summons and successful prosecutions in the reporting month is tabulated in **Table II**.

Table II Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues

- 15. The future key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;

- Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site; and Review and implementation of temporary drainage system for the surface runoff.

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 4 Infrastructure at Former North Apron Area is one of the construction stages of KTD. Schedule 2 DPs in this Project include new distributor roads serving the planned KTD and new sewage pumping stations serving the planned KTD. The general layout of the Project is shown in **Figure 1.**
- 1.2 Two Environmental Permits (EPs) No. EP-344/2009 and EP-337/2009 were also issued to the Permit Holder Civil Engineering and Development Department on 23 April 2009 for new sewage pumping stations serving the planned KTD and new distributor roads serving the planned KTD respectively.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to identify the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and recommend possible mitigation measures associated with the works. The EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Cinotech Consultants Limited (Cinotech) is commissioned by Kwan On Construction Co., Ltd. (the Contractor) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2012/03 Stage 4 Infrastructure at Former North Apron Area. The construction work under KL/2012/03 comprises the construction of Road D2 & Sewage Pumping Station PS2 and PS NPS which forms a part of the works under two EPs (EP-337/2009 and EP-344/2009).
- 1.5 The construction commencement of this Contract was on 1st December 2013 for Road D2, Sewage Pumping Station PS2 and PS NPS. This is the 37th Monthly EM&A report summarizing the EM&A works for the Project from 1 to 31 December 2016.

Project Organizations

- 1.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) AECOM.
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) Arcadis Design & Engineering Limited. (Arcadis).
 - Contractor –Kwan On Construction Co., Ltd. (Kwan On).

1.7 The key contacts of the Project are shown in **Table 1.1** and **Figure 5**.

Table 1.1 **Key Project Contacts**

Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. C. K. Choi	Senior Engineer	2301 1174	2301 1277
AECOM	Engineer's Representative	Mr. John Yam Mr. Ivan Yim	SRE RE	2798 0771	3013 8864
	Environmental	Dr. Priscilla Choy	Environmental Team Leader	2151 2089	
Cinotech	Team	Ms. Ivy Tam	Project Coordinator and Audit Team Leader	2151 2090	3107 1388
Arcadis	Independent Environmental Checker	Mr. Wong Fu Nam	Independent Environmental Checker	2911 2744	2805 5028
Kwan On	Contractor	Mr. Albert Ng	Site Agent	3689 7752 6146 6763 telephone nur	

Construction Activities undertaken during the Reporting Month

- 1.8 The site activities undertaken in the reporting month included:
 - Daily Cleaning;
 - Installation of hand-railing & ladder inside Box Culvert B5;
 - Construction of staircase and landing and E&M Works at PS2;
 - Water test, backfill and sheet-pile removal in Heading 7A;
 - Segment tunneling, backfill and sheet-pile removed chamber construction in Heading 7B;
 - Outfall construction at Box Culvert B6;
 - Road widening works (excavation and UU works) at Sung Wong Toi Road;
 - Maintenance & Servicing Engineer's Office at Portion 9;
 - Lay HDPE pipe at Pit 1 and 9;
 - Pipe jacking at Pit 4;
 - Chamber construction at Pit 5;
 - Installation of drainage, UU laying works and Road works at Road D2;
 - Finishing works and E&M works at NPS;
 - UU works and Road works at Road L19 & Bailey St; and
 - Storage of excavated material at Portion 6.
- 1.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures is presented in **Table 1.2**.

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

T Toteetion ivite	1 Totection/witigation weasures					
Construction Works	Generated Major Environmental Impact	Control Measures				
Construction of superstructure of Pumping Station PS2 and NPS;	Dust, Water Quality, Waste Management	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; and On-site waste sorting and implementation of trip ticket system. 				
Backfilling between sewerage manholes 1K1_1 and FMH10_340 and construction of manhole FMH10_370a at L6;	Dust, Noise	 Use of quiet plant and well-maintained construction plant; and Properly cover the stockpiles; 				
Installation of precast unit and construction of in-situ portions of Box Culvert B6; Construction of jacking pits nos. 1 and 2; Installation of gas pipe at pit no. 10; Construction of washout chamber at pit no. 11;	Noise, Waste Management	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. Good management and control on construction waste reduction 				
Construction of sewerage manhole FMH 10 at Bailey Street; Widening works of Sung Wong Toi Road.	Noise	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. 				
Pipe laying from manhole SMH2204 to Box Culvert B6; Laying of rising mains from PS2 to chainage CHA-18; Pipe laying from stormwater manholes SMH1962 to SMH1963 and construction of manholes SMH1953 and SMH1963 at L6; Installation of DCS;	Noise, Water Quality	 Use of quiet plant and well-maintained construction plant; and Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall. 				

Summary of EM&A Requirements

- 1.10 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
- All monitoring parameters;
- Action and Limit levels for all environmental parameters;
- Event Action Plans;
- Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.12 This report presents the implementation of the EM&A programme for the Project from 1 to 31 December 2016.

1.13 Air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in **Table 1.3** (see Figure 2 and 3 for their locations).

Table 1.3 Air Quality and Noise Monitoring Stations for this Project

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations	
Air Quality Monitoring Stations			
AM2 - Lee Kau Yan Memorial School	Yes	N/A	
AM3 – Sky Tower	No	AM3(A) – Holy Trinity Bradbury Centre	
AM4 – Grand Waterfront	No	AM4(A) – EMSD Workshop	
AM5 – CCC Kei To Secondary School	No	AM5(A) – Po Leung Kuk Ngan Po Ling College	
AM6 – Site 1B4 (Planned)	N/A		
Noise Monitoring Stations			
M6 – Holy Carpenter Primary School	No	M6(A) – Oblate Primary School	
M7 – CCC Kei To Secondary School	Yes	N/A	
M8 – Po Leung Kuk Ngan Po Ling College	Yes	N/A	
M9 – Tak Long Estate	Yes	N/A	
M10 – Site 1B4 (Planned)	N/A		

Remarks:

- "Yes" Monitoring station is the same as that stated in EM&A Manual
- No Monitoring station is not the same as that stated in EM&A Manual. Request for carrying monitoring works at the monitoring stations stated in EM&A Manual was rejected by owner of premise. Alternative monitoring stations were proposed by the ET of Schedule 3 EIA and approved by the EPD.
- N/A No alternative monitoring station is required.
- According to the Environmental Monitoring and Audit Manual (EM&A Manual) of the Kai 1.14 Tak Development (KTD) Schedule 3 Environmental Impact Assessment (EIA) Report, the impact monitoring at the designated monitoring stations as required in KTD EM&A Manual under the EP, has been conducted in Environmental Monitoring Works for Kai Tak Development under Schedule 3 of KTD, which is on-going starting from December 2010. The impact monitoring data under Schedule 3 of KTD will be adopted for the Project. Therefore, this report presents the air quality and noise monitoring works extracted from Schedule 3 of KTD.

Status of Compliance with Environmental Permits Conditions

1.15 The status of required submission related to this Project under the Environmental Permits No. EP-337/2009 and EP-344/2009 is summarized in the **Table 1.4** and **Table 1.5** respectively:

Table 1.4 Summary Table for Required Submission under EP No. EP-337/2009

EP Conditions	Submission	Submission Date	Remark
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Road D2
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03
2.4	Design Drawing(s) of the Project	28 October 2013	For Road D2
2.11	Landscape Mitigation Plan(s) for distributors road(s)	7 January 2014	For Road D2
2.12	As-built drawing(s) for the distributor road(s)	To be submitted at least one commencement of operation	
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	/
3.3	Four hard copies and one electronic copy of the Monthly EM&A Report No. 36 (November 2016)	12 December 2016	Monthly EM&A Report for Contract No. KL/2012/03

Table 1.5 Summary Table for Required Submission under EP No. EP-344/2009

EP Conditions	Submission	Submission Date	Remark
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Pumping Station PS2 and PS NPS
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03
2.4	Design Drawing(s) of the Project	28 October 2013	For Pumping Station PS2 and PS NPS
2.11	Landscape Mitigation Plan(s) for sewage pumping station(s)	7 January 2014	For Pumping Station PS2 and PS NPS
2.12	As-built drawing(s) for the sewage pumping station (s)	To be submitted at least one week before the commencement of operation of distributor road(s)	
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	/
3.3	Four hard copies and one electronic copy of the Monthly EM&A Report No.36 (November 2016)	12 December 2016	Monthly EM&A Report for Contract No. KL/2012/03

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the EPs, 1-hour and 24-hour Total Suspended Particulates (TSP) monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Five designated monitoring stations were selected for air quality monitoring programme. Impact dust monitoring was conducted at four of the air quality monitoring stations (AM2, AM3(A), AM4(A) and AM5(A)). **Table 2.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 2.1 Locations for Air Quality Monitoring

Monitoring Stations	Locations	Location of Measurement
AM2	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
AM3(A) Holy Trinity Bradbury Centre		Rooftop (about 8/F) Area
AM4(A)	EMSD Workshops	Rooftop (about 6/F) Area
AM5(A)	Po Leung Kuk Ngan Po Ling College	Rooftop (about 10/F) Area
#AM6	PA 15	Site 1B4 (Planned)

Remarks: # The impact monitoring at these locations will only be carried out until the sensitive receivers at the building are resided.

Monitoring Equipment

2.3 **Table 2.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates and laboratory accreditation are attached in **Appendix B**.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	TE-5025A	1
1-hour TSP Dust Meter	Laser Dust Monitor – Model LD-3, LD-3B/ Met One Instruments – AEROCET-531	5
HVS Sampler	GMWS 2310 c/w of TSP sampling inlet	4
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters, Frequency and Duration

2.4 Table 2.3 summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 2.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency	
1-hr TSP	At least three times every 6 days	
24-hr TSP	At least once every 6 days	

Monitoring Methodology and Quality Assurance and Quality Control (QA/QC) Procedure

1-hour TSP Monitoring

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Set POWER to "ON" and make sure that the battery level was not flash or in low level.
 - Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
 - Push the knob at MEASURE position.
 - Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
 - Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
 - Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 2.6 The following maintenance/calibration was required for the direct dust meters:
 - Check and calibrate the meter by High-Volume Sampler (HVS) to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.7 High volume samplers (HVS) (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the 24-hour TSP sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For 24-hour TSP sampling, fiberglass filters having a collection efficiency of $\geq 99\%$ for particles of 0.3µm (DOP) diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.

- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed so that the TSP will be sampled for 24 hours. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.16 After completion of sampling, the filter was removed and sent to Wellab Ltd., which is accredited under HOKLAS for laboratory analysis. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning temperature should be between 25°C and 30°C and not vary by more than ± 3 °C; the relative humidity (RH) should be < 50% and not vary by more than ± 5 %. A convenient working RH is 40%.

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate
 maintenance such as routine motor brushes replacement and electrical wiring checking
 were made to ensure that the equipment and necessary power supply are in good
 working condition.
 - High volume samplers were calibrated at bi-monthly intervals using G25A Calibration Kit throughout all stages of the air quality monitoring.
 - Orifice Transfer Standards were calibrated at yearly intervals throughout all stages of the air quality monitoring.

Results, Observations and Action/Limit Level Exceedance

- 2.19 1-hour TSP monitoring at AM4(A) EMSD Workshop on 29 December 2016 was cancelled due to unsuccessful accessibility to the facility. CEDD informed that the EMSD Workshop will be demolished shortly. 1-hr TSP monitoring will be resumed after an alternative location is confirmed.
- 2.20 All other 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21 24-hour TSP monitoring at AM4(A) EMSD Workshop on 28 December 2016 was cancelled due to unsuccessful accessibility to the facility. CEDD informed that the EMSD Workshop will be demolished shortly. 24-hr TSP monitoring will be resumed after an alternative location is confirmed.
- 2.22 All other 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.23 The air temperature, precipitation and the relative humidity data were obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer set at rooftop (about 8/F) Lee Kau Yan Memorial School. The location is shown in **Figure 4**. This weather information for the reporting month is summarized in **Appendix C.**

- 2.24 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.25 The summary of exceedance record in the reporting month is shown in **Appendix H**. No exceedance in Action/Limit Levels of 1-hour and 24-hour TSP was recorded for the air quality monitoring.
- 2.26 According to our field observations, the major dust source identified at the designated air quality monitoring stations is as follows:

Table 2.4 Major dust source identified at the designated air quality monitoring stations

Station	Major Dust Source
AM2 – Lee Kau Yan Memorial School	Road Traffic Dust
	Exposed site area and open stockpiles
	Site vehicle movement
AM3(A) – Holy Trinity Bradbury	Road Traffic Dust
Centre	Exposed site area
	Excavation works
	Site vehicle movement
AM4(A) – EMSD Workshops	Site vehicle movement
AM5(A) – Po Leung Kuk Ngan Po	Road Traffic Dust
Ling College	Excavation works at the site (Contract No.:
	1/WSD/14(K)) facing Po Leung Kuk Ngan Po
	Ling College

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis to conduct one set of measurements between 0700 and 1900 hours on normal weekdays.

Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

- 3.2 Five designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at four designated monitoring stations (M6, M7, M8 and M9). **Figure 3** shows the locations of these stations.
- 3.3 Construction noise monitoring at Station M6 Holy Carpenter Primary School was rejected by the premise owner on 6th October 2014. The monitoring station has been relocated at a proposed alternative noise monitoring station M6(A) Oblate Primary School since 10th October 2014 to carry out the monitoring works.

Table 3.1 Noise Monitoring Stations

	Monitoring Stations	Locations	Location of Measurement
Ī	*M6(A)	Oblate Primary School	Rooftop (about 7/F) Area
	M7	CCC Kei To Secondary School	Rooftop (about 8/F) Area
	M8	Po Leung Kuk Ngan Po Ling College	
Ī	M9	Tak Long Estate	Car Park Building (about 2/F)
	#M10	Site 1B4 (Planned)	-

Remarks:

Monitoring Equipment

Table 3.2 summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2 Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVAN 955, 957	5
Calibrator	SVAN 30A	3
Cambrator	B&K4231	2

Monitoring Parameters, Frequency and Duration

3.5 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

 ^{*} Alternative noise monitoring station for M6 – Holy Carpenter Primary School from 10th October 2014 onwards

[#] The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Table 3.5 Professional analysis, Frequency and Duration				
Monitoring Stations	Parameter	Period	Frequency	Type of Measurement
M7 M8 M9	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Façade ^(*)
M6(A)	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Free Field (*)

Noise Monitoring Parameters, Frequency and Duration Table 3.3

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
- For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting : A time weighting : Fast time measurement : 30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq}, L₉₀ and L₁₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator was cleaned with a soft cloth 3.6 at quarterly intervals.
- 3.7 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

^(*) Refer to bullet point 1 and 2 in the following section.

Results, Observations and Action/Limit Level Exceedance

- 3.9 All construction noise monitoring was conducted as scheduled in the reporting month. No Action and Limit Level exceedance was recorded.
- 3.10 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.4**.
- 3.11 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 3.12 The major noise source identified at the designated noise monitoring stations is as follows:

Table 3.4 Major noise source identified at the designated noise monitoring stations

Monitoring Stations	Locations	Major Noise Source
M6(A)	Oblate Primary School	Road and marine traffic Noise
M7	CCC Kei To Secondary School	Road and marine traffic Noise
M8	Po Leung Kuk Ngan Po Ling College	Excavation works at the site (Contract No.: 1/WSD/14(K)) facing Po Leung Kuk Ngan Po Ling College
M9	Tak Long Estate	Road paving and asphalt paving works

Table 3.5 Baseline noise level and noise limit level for monitoring stations

Monitoring Stations	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
M6(A)	63.9 (at 0700 – 1900 hrs on normal weekdays)	
M7	68.7 (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on normal weekdays)
M8	61.9 (at 0700 – 1900 hrs on normal weekdays)	
M9	59.0 (at 0700 – 1900 hrs on normal weekdays)	75 (at 0700 – 1900 hrs on normal weekdays)

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 According to Section 16.1.6 (vi) of the EM&A Manual, the EM&A data were compared with the EIA predictions as summarized in **Table 4.1** to **4.3** below.

Table 4.1 Comparison of 1-hr TSP data with EIA predictions

Station		Predicted 1-	hr TSP conc.		
	Scenario1 (Mid 2009 to	Scenario2 (Mid 2013 to		Reporting Month (December 2016), μg/m3	
	Mid 2013), μg/m3	Late 2016), μg/m3	Average	Range	
AM2 – Lee Kau Yan Memorial School	290	312	155.6	97.7-218.7	
AM3(A) - Holy Trinity Bradbury Centre (Alternative station for Sky Tower)	217	247	154.3	63.7-226.7	
AM4(A) – EMSD Workshops (Alternative station for Grand Waterfront)	246	258	157.0	97.7-240.2	
AM5(A) – Po Leung Kuk Ngan Po Ling College (Alternative station for CCC Kei To Secondary School)	159	221	119.9	66.0-185.1	

Table 4.2 Comparison of 24-hr TSP data with EIA predictions

Station		Predicted 24-	hr TSP conc.	
	Scenario1 (Mid 2009 to	Scenario2 (Mid 2013 to		ng Month 2016), μg/m3
	Mid 2013), μg/m3	Late 2016), μg/m3	Average	Range
AM2 – Lee Kau Yan Memorial School	145	169	69.8	45.8-89.0
AM3(A) - Holy Trinity Bradbury Centre (Alternative station for Sky Tower)	106	138	70.2	46.2-93.7
AM4(A) – EMSD Workshops (Alternative station for Grand Waterfront)	143	152	62.4	38.3-91.8
AM5(A) – Po Leung Kuk Ngan Po Ling College (Alternative station for CCC Kei To Secondary School)	103	128	38.6	26.8-56.1

Table 4.3	Comparison of Noise Monitoring Data with EIA pred		
		Predicted Mitigated	Reporting

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (Leq (30min) dB(A))	Reporting Month (December 2016), Leq (30min) dB(A)
M6(A) - Oblate Primary School ^	N/A	60.4 - 63.1
M7 - CCC Kei To Secondary School	45 – 68	63.5 – 68.2
M8 - Po Leung Kuk Ngan Po Ling College	44 – 70	58.7 – 67.6
M9 – Tak Long Estate	Not predicted in EIA Report	55.7 – 60.1

^(^) Alternative noise monitoring station for M6 – Holy Carpenter Primary School from 10th October 2014 onwards.

- 4.2 The averages of 1-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3 The averages of 24-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.4 The noise monitoring results in the reporting month were within the range of predicted mitigated construction noise levels in the EIA report.

5. LANDSCAPE AND VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's activities during the construction period on a weekly basis, and to report on the contractor's performance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 In accordance with the Action Plan presented in **Appendix J**, no corrective actions were required in the reporting month.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 2nd, 15th, 23rd and 29th December 2016 in the reporting month. IEC site inspection was conducted on 15th December 2016. No non-compliance was observed during the site audits.

Status of Environmental Licensing and Permitting

6.3 All permits/licenses obtained for the Project are summarized in Table 6.1.

 Table 6.1
 Summary of Environmental Licensing and Permit Status

D24 NJ-	Valid	Period	D-4-21-	C4 - 4
Permit No.	From	To	Details	Status
Environmental Perm	it (EP)			
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	Valid
EP-344/2009	23/04/09	N/A	Construction of a new sewage pumping station serving the planned Kai Tak development with installed capacity of more than 2,000 m³ per day and a boundary of which is less than 150m from an existing or planned residential area or educational institution.	Valid
Effluent Discharge Li	icense			
WT00020971-2015 22/04/15 21/04/20 Disc wastinclu		Discharge Licence for the discharge of wastewater from the construction site including contaminated surface run-off to the communal storm water drain	Valid	
Registration of Chem	ical Waste F	Producer		
Fegistration of chemical waste producer for chemical waste produced during construction of Stage 4 at former North Apron Area Infrastructure.		Valid		
Construction Noise P	ermit			
GW-RE0964-16	30/09/16	29/03/17	Location: Heading 7A & 7B	Valid

Status of Waste Management

- 6.4 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.
- 6.5 In respect of the dump truck cover, the Contractor is advised to take record photos and inspection to ensure that the skips of all dump trucks have been fully covered before leaving the site.

Implementation Status of Environmental Mitigation Measures

6.6 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 6.2.

Table 6.2 Observations and Recommendations of Site Inspections for EP-337/2009

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality			
	2 December 2016	Observation: Water spraying should be provided to the haul road.	Haul road was observed wet.
Air Quality	15 December 2016	Observation: Water spraying should be provided to the haul road to suppress dust emission. (near PS2)	Water spraying was provided to the haul road.
Air Quainy	23 December 2016	Observation: Stockpile of dusty material should be covered. (Portion 6)	Stockpile of dusty material was covered.
	29 December 2016	Observation: Water spray should be provided to the haul road near Gate D for dust suppression.	Water spraying was provided near Gate D.
Noise			
Waste/Chemical	2 December 2016	Observation: Oil stain should be cleared an oil/chemical containers should be provided with drip trays.	Oil stain was cleared. Chemical containers should be provided with tray and labels. Item was remarked as 161209- R01.
Waste/Cnemical Management	9 December 2016	Reminder: Chemical containers should be provided with labels and trays.	Chemical containers were provided with drip trays and labels.
Q December Reminder:		Chemical refuse should be cleared.	Chemical refuse was cleared.
Landscape and Visual			
Permits /Licences			

Table 6.3 Observations and Recommendations of Site Inspections for EP-344/2009

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality			
Air Quality			
Noise			
Waste/Chemical Management			
Landscape and Visual			
Permits /Licences			

Summary of Mitigation Measures Implemented

The monthly IEC audit was carried out on 15th December 2016, the observations were 6.7 recorded and they are presented as follows:

Follow up of last monthly audit:

Nil

Observation(s) in the reporting month:

- No adverse environmental impacts or deficiencies of mitigation measures are observed. No follow-up actions are therefore required.
- 6.8 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.9 The Event Action Plans for air quality, noise and landscape and visual are presented in Appendix J.

1-hr TSP Monitoring

6.10 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.12 No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.13 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.14 No environmental complaints and environmental prosecution were received in the reporting month. The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project are presented in **Appendix L**.

7. FUTURE KEY ISSUES

- 7.1 Major site activities undertaken for the coming two months include:
 - Daily Cleaning;
 - Installation of hand-railing & ladder inside Box Culvert B5;
 - Construction of staircase and landing and E&M Works at PS2;
 - Water test, backfill and sheet-pile removal in Heading 7A;
 - Segment tunneling, backfill and sheet-pile removed chamber construction in Heading 7B;
 - Outfall construction at Box Culvert B6;
 - Road widening works (excavation and UU works) at Sung Wong Toi Road;
 - Maintenance & Servicing Engineer's Office at Portion 9;
 - Lay HDPE pipe at Pit 1 and 9;
 - Pipe jacking at Pit 4;
 - Chamber construction at Pit 5;
 - Installation of drainage, UU laying works and Road works at Road D2;
 - Finishing works and E&M works at NPS;
 - UU works and Road works at Road L19 & Bailey St; and
 - Storage of excavated material at Portion 6.
- 7.2 The tentative construction program for the Project is provided in **Appendix N.**

Key Issues for the Coming Month

- 7.3 Key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site; and
 - Review and implementation of temporary drainage system for the surface runoff.
- 7.4 The tentative program of major site activities and the impact prediction and environmental mitigation measures for the coming two months, i.e. January and February 2017 are summarized as follows:

Construction Works	Major Impact Prediction	Control Measures
As mentioned in Section 7.1	Air quality impact (dust) Water quality impact (surface run-off)	 a) Frequent watering of haul road and unpaved/exposed areas; b) Frequent watering or covering stockpiles with tarpaulin or similar means; and c) Watering of any earth moving activities. d) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; e) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; f) Provision of site boundary bund such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and g) Provision of measures to prevent discharge into the stream.
	Noise Impact	 h) Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; i) Controlling the number of plants use on site; j) Regular maintenance of machines; and k) Use of acoustic barriers if necessary.

Monitoring Schedule for the Next Month

7.5 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works required under the EM&A Manual were performed in the reporting month and all monitoring results were checked and reviewed.

1-hr TSP Monitoring

- 8.2 1-hour TSP monitoring at AM4(A) EMSD Workshop on 29 December 2016 was cancelled due to unsuccessful accessibility to the facility. CEDD informed that the EMSD Workshop will be demolished shortly. 1-hr TSP monitoring will be resumed after an alternative location is confirmed.
- 8.3 All other 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. 1-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.

24-hr TSP Monitoring

- 8.4 24-hour TSP monitoring at AM4(A) EMSD Workshop on 28 December 2016 was cancelled due to unsuccessful accessibility to the facility. CEDD informed that the EMSD Workshop will be demolished shortly. 24-hr TSP monitoring will be resumed after an alternative location is confirmed.
- 8.5 All other 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. 4-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.

Construction Noise Monitoring

8.6 All construction noise monitoring was conducted as scheduled in the reporting month. No Action and Limit Level exceedance was recorded. The construction noise levels in all stations in the reporting month were within the range of predicted mitigated construction noise levels in the approved Environmental Impact Assessment (EIA) report.

Complaints, Notification of any Summons and Prosecution Received

8.7 No environmental complaints and environmental prosecution were received in the reporting month. The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project are presented in **Appendix L**.

Recommendations

8.8 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To mitigate the dust generation by adequate water spraying in dry days.

Noise Impact

- To inspect the noise sources inside the site.
- To disperse the locations of noisy equipments and position the equipments as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers in an appropriate location.

Water Impact

- To prevent any surface runoff discharge into any stream course.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.

Waste/Chemical Management

- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation);
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To provide proper storage area or drip trays for oil containers/ equipment on site.
- To avoid improper handling or storage of oil drum on site.

Landscape and Visual

- To protect the existing trees to be retained.
- To transplant the trees unavoidably affected by the works.
- To control of night-time lighting.
- To provide decorative screen hoarding.
- To complete landscape works at site area as early as possible.

Effectiveness of Environmental Management

- 8.9 The above recommendations and the recommended mitigation measures in the EM&A Manual were carried out by the Contractor during construction. No non-compliance was recorded during the environmental site inspections as shown in **Appendix I**.
- 8.10 The effectiveness of environmental management is satisfactory as the above recommendations are met. Some of the examples of mitigation measures for the following recommendations are given in **Table 8.1** below.
 - Surface runoff discharge into any stream course is prevented;
 - Provision of sedimentation facilities after identification of wastewater discharges from site;
 - Discharge or accidental spillage of chemical waste or oil directly from the site is avoided:
 - Improper handling or storage of oil drum on site is avoided;
 - The existing trees to be retained are protected; and
 - Night-time lighting is controlled.

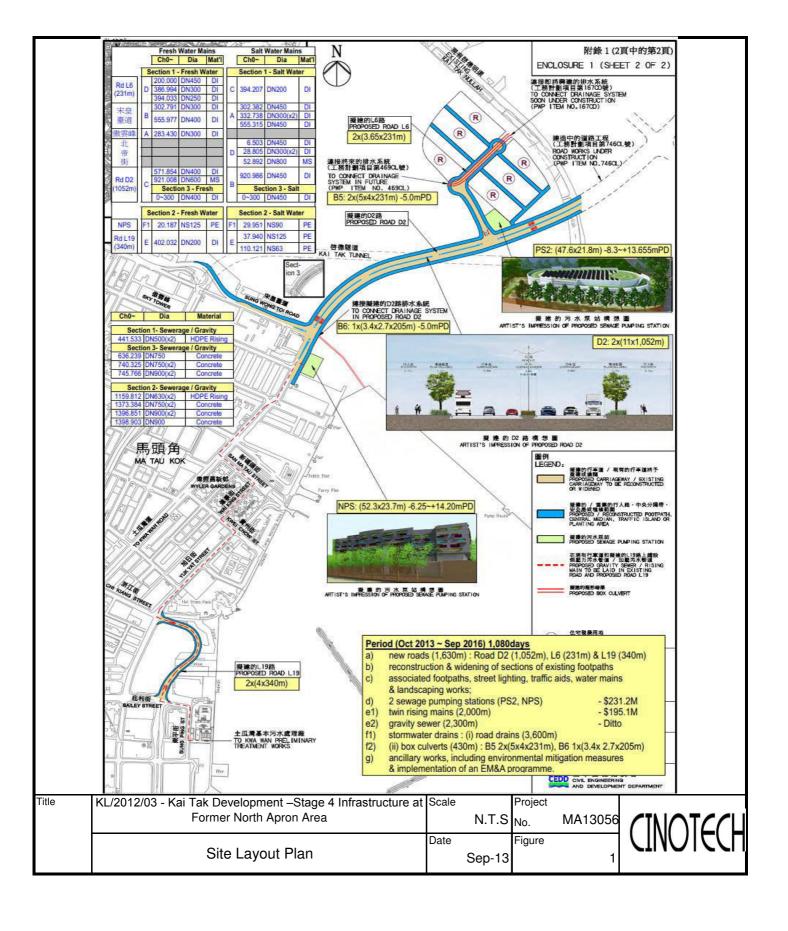
Table 8.1 Examples of Mitigation Measures for Environmental Recommendations

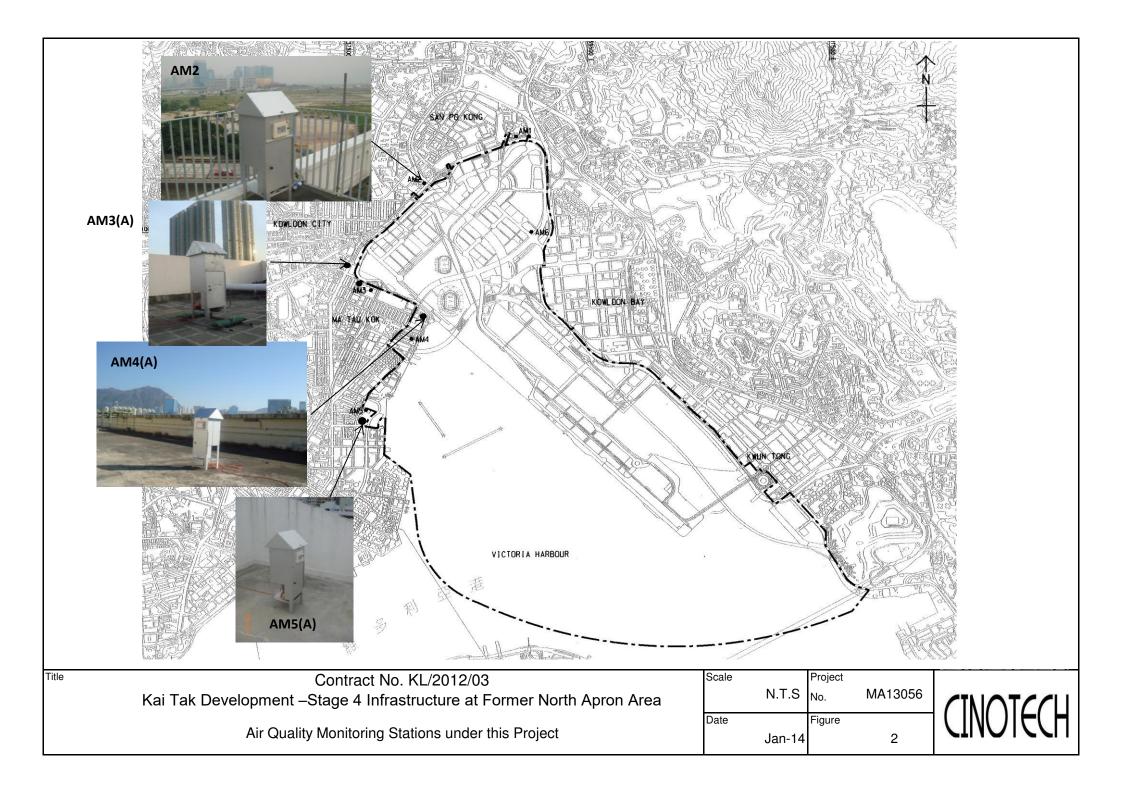
stream course.

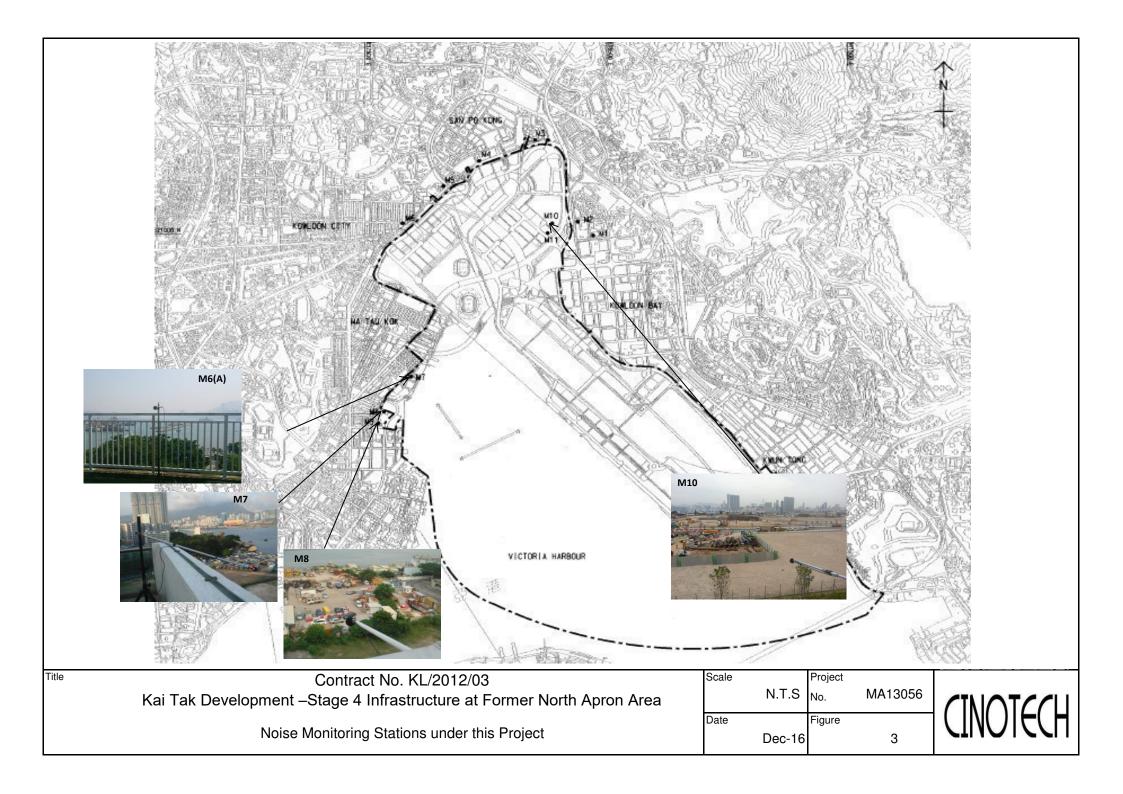
Follow-up measure(s) after identification of wastewater discharges from site.

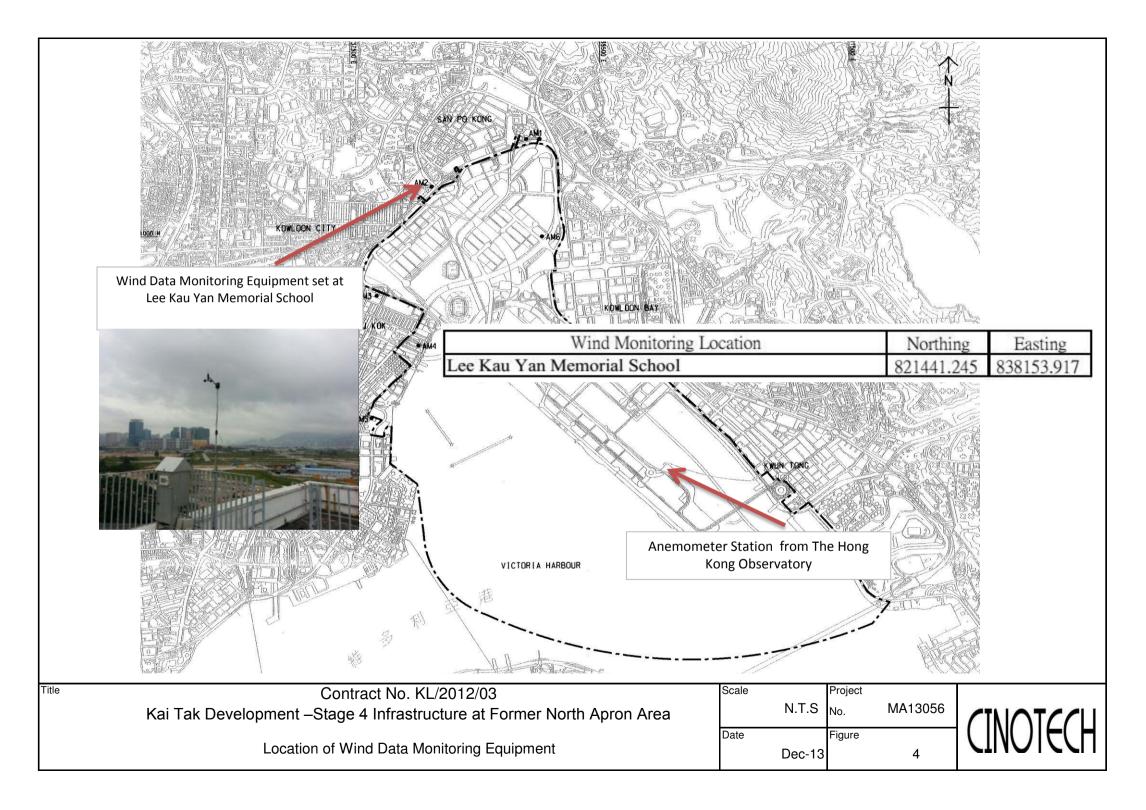
To avoid any discharge or accidental spillage of chemical waste or oil directly from the site

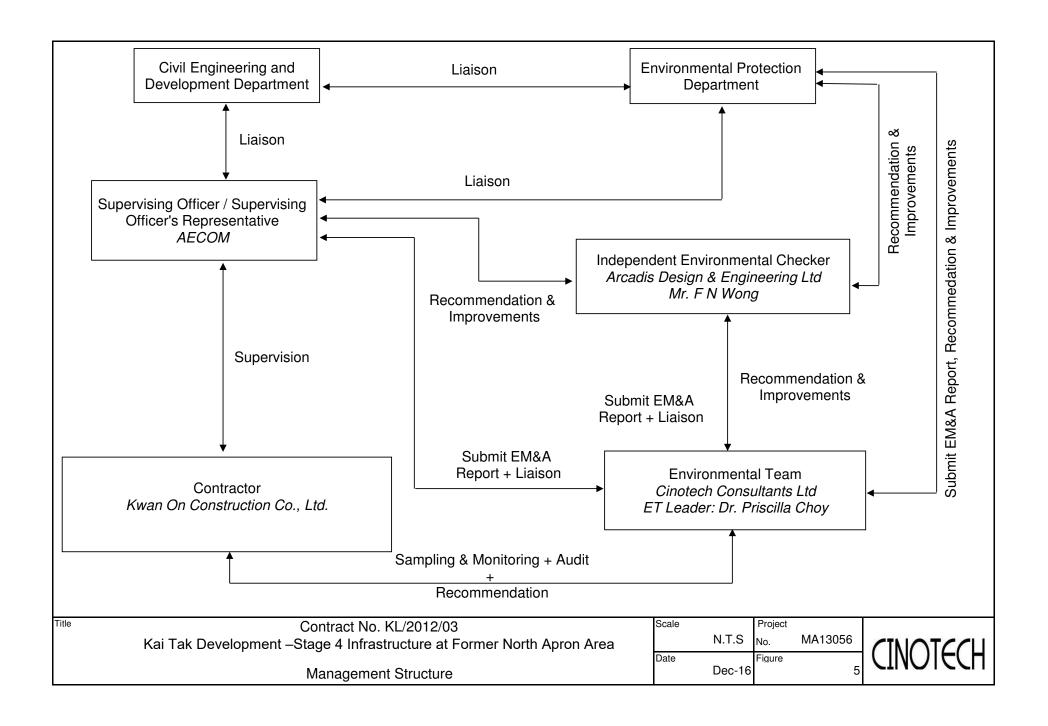
To avoid improper handling or storage of oil drum on site




To protect the existing trees to be retained




To control of night-time lighting


FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AM2	346	
AM3(A)	351	500
AM4(A)	371	500
AM5(A)	345	

Table A-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AM2	157	
AM3(A)	167	260
AM4(A)	187	260
AM5(A)	156	

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

						File No	MA14008/59/0039
Station	AM2 - Lee Kau	Yan Memorial S	School	Operator	:WK		
Date:	21-Nov-16		Next Due Date:		: 20-Jan	-17	
Equipment No.:	A-01-59		_	Serial No.	. 2354	-	
5.000	- (K)	000 -	Ambient				
Temperatu	ire, Ta (K)	298.6	Pressure, Pa	(mmHg)		762.2	
The state of the s		12000	rifice Transfer Sta	ndard Info	1040a	V 1	
Seria	No.:	2896	Slope, mc (CFM)	T	Intercep	t ho	0.05070
Last Calibr		4-Mar-16	Biope, me (CFWI)	•	$bc = [\Delta H \times (Pa/76)]$		-0.05079
Next Calibr		3-Mar-17			x (Pa/760) x (298		<i>*</i>
1.521 041101			<u> </u>	Spece Mirms	A (1 10 / 00) A (2 / 0	" = a)	HFC .
	199 4 , 207, 103		Calibration of	TSP Sambler			
Calibration	A Champaga Can Call	Or	fice		THE RESERVENCE AND A STATE	HVS	on the contract of the contrac
Point	ΔH (orifice), in. of water		60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} Y-axis
1	11.4		3.38	57.35	7.3		2.70
2	9.8		3.13	53.23	6.4		2.53
3	7.6		2.76	46.98	5.0		2.24
4	4.9		2.21	37.89	3.1		1.76
5	3.3		1.82	31.25	2.2		1.48
By Linear Regr	ression of Y on X						
Slope , mw =]	Intercept, bw	-0.016	58	
Correlation c			993	•			
*If Correlation C	Coefficient < 0.99	0, check and rec	alibrate.				
88. S. C.				Spania Brown - Cherry	PERSONAL PROPERTY OF THE STREET		
	110		Set Point C	alculation			100 CO
	eld Calibration Co						
rrom the Regres	sion Equation, the	"Y" value acco	rding to				
		mw x ($Qstd + bw = [\Delta W]$	(Pa/760) x (2)	98/Ta)] ^{1/2}		
			_		~ ~ ~ ~ ~ ~ ~ / / /		
Therefore, Se	et Point; W = (my	w x Qstd + bw)	x (760 / Pa) x (T	Ca/298)=	4.12		
- 1111							
		<u> </u>					
D							
Remarks:							
Conducted ber	1 10-0	Ot	V				110
Conducted by:	- 7	Signature:	Kwa			Date:	2111116
Checked by:		Signature:		72		Date: C	21 November de

CINOTECH

File No. MA14008/49/0037 Station AM3(A) - Holy Trinity Bradbury Centre Operator: WK Date: 21-Nov-16 Next Due Date: 20-Jan-17 Equipment No.: A-01-49 Serial No. 1793 **Ambient Condition** Temperature, Ta (K) 297.8 Pressure, Pa (mmHg) 763.5 Orifice Transfer Standard Information Serial No.: 2896 Slope, mc (CFM) 0.0598 Intercept, bc -0.05079 Last Calibration Date: 4-Mar-16 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 3-Mar-17 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), Qstd (CFM) ΔW (HVS), in. $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Point [ΔH x (Pa/760) x (298/Ta)]^{1/2} in. of water X - axis of water Y-axis 11.6 3.41 57.96 7.6 2.76 2 9.4 3.07 52.26 6.2 2.50 3 7.6 2.76 47.08 5.2 2.29 4 5.2 2.29 39.09 3.4 1.85 5 3.4 1.85 31.77 2.3 1.52 By Linear Regression of Y on X Slope, mw = 0.0479Intercept, bw: -0.0045 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Date:

Date:

CINOTECH

Date:

Date:

File No. MA14008/62/0038 Station AM4(A) - EMSD Workshops Operator: WK Date: 21-Nov-16 Next Due Date: 20-Jan-17 Equipment No.: A-01-62 Serial No. 2351 **Ambient Condition** Temperature, Ta (K) 297.2 Pressure, Pa (mmHg) 761.1 Orifice Transfer Standard Information Serial No.: 2896 Slope, mc (CFM) 0.0598 Intercept, bc -0.05079 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 4-Mar-16 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 3-Mar-17 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), Qstd (CFM) ΔW (HVS), in. $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 10.8 3.29 55.93 7.4 2.73 2 9.7 3.12 53.05 6.3 2,52 3 7.4 2.73 46.44 5.0 2.24 4 5.2 2.29 39.07 3.3 1.82 3.3 1.82 31.30 2.1 1.45 By Linear Regression of Y on X Intercept, bw : -0.1538 Slope, mw = 0.0510Correlation coefficient* = 0.9985 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.15 Remarks:

Conducted by: W

Checked by:

M5(A) - Po Le	and the second s				File No	MA14008/60/0039
	ung Kuk Ngan I	o Ling College	Operator:	WK		
21-Nov-16		. 1	Vext Due Date:	20-Jan	-17	
A-01-60			Serial No.	2358	3	
			7. 3.2		Sal Sal	
To (K)	207.0				B	
14 (IX)	491.9	riessuie, Pa	(mmrig)		/61.5	
ANGEL CO	Ōı	ifice Transfer Sta	udard Inform	ation		
o.:			I		t be	-0.05079
n Date:						
on Date:						
	•		<u> </u>			
- 2000 - 1210 - 1210		Calibration of	TSP Sampler			1000 1000 1000 1000 1000 1000 1000 100
	Or		Januar 1 a		HVS	end gyddyddiadau yr 11 y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} Y axis
11.4	3	.38	57.39	7.8		2.80
9.8	3	.13	53,27	6.7		2.59
7.5	2	.74	46.71	5.1		2.26
5.1	2	.26	38.66	3.4		1.85
3.2	1	.79	30.80	2.0		1.42
ion of Y on X 0.0518 ficient* =	0.9		ntercept, bw :	-0.168	36	
		· · · · · · · · · · · · · · · · · · ·				
CBASACA TOTAL Basaca Caraca		Set Point Co	alculation	1 Common	J. (1990)	51665
Calibration Cu	rve, take Ostd =		arculatiVII		The Control of the Co	
	=					
4		B +0				
	mw x Q	$\mathbf{pstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Pa/760) x (25	98/Ta)] ^{1/2}		
	AH (orifice), in. of water 11.4 9.8 7.5 5.1 3.2 ion of Y on X 0.0518 ficient* = Calibration Cu	Or 2896 In Date: 4-Mar-16 In Date: 3-Mar-17 Or 24 (orifice), in. of water 11.4 3 9.8 3 7.5 2 5.1 2 3.2 1 ion of Y on X 0.0518 ficient* = 0.99 Calibration Curve, take Qstd =	Calibration of Orfice Calibration of Orfice	Calibration of TSP Sampler Orfice	Calibration of TSP Sampler Orfice	Ta (K) 297.9 Pressure, Pa (mmHg) 761.5

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

		Rootsmeter Orifice I.I		438320 2896	Ta (K) - Pa (mm) -	295 · 755.65
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H20 (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4340 1.0250 0.9150 0.8770 0.7210	3.2 6.4 7.9 8.7 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0001 0.9959 0.9938 0.9928 0.9875	0.6974 0.9716 1.0861 1.1320 1.3696	1.4173 2.0044 2.2410 2.3503 2.8346		0.9957 0.9915 0.9894 0.9885 0.9831	0.6944 0.9674 1.0814 1.1271 1.3636	0.8836 1.2496 1.3971 1.4653 1.7672
Qstd slop	(b) = 0	2.11176 -0.05079 0.99982		Qa slope intercept coefficie	(b) =	1.32235 -0.03166 0.99982
y = SQRT[H20(Pa/760)(298/Ta)]			[a)]	y axis =	SQRT [H2O (T	'a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/160820

Date of Issue: 2016-08-20

Date Received: 2016-08-20 Date Tested: 2016-08-20

Date Completed: 2016-08-20

Next Due Date: 2017-02-19

ATTN:

Miss Mei Ling Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Weather Monitor II

Manufacturer

: Davis Instruments

Model No.

: 7440

Serial No.

: MC01010A44

Test conditions:

Room Temperature

: 24 degree Celsius

Relative Humidity

: 56 %

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Test Report No.: C/160820

Date of Issue: 2016-08-20

Date Received: 2016-08-20

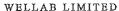
Date Tested: 2016-08-20

Date Completed: 2016-08-20

Next Due Date: 2017-02-19

Page:

2 of 2


Results:

1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	Reference Value (V1)	D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45.2	45	0.2
90.1	90	0.1
134.8	135	-0.2
180.3	180	0.3
225.1	225	0.1
270.2	270	0.2
315.1	315	0.1
360	360	0

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/A/161104B Date of Issue: 2016-11-07

Date Received: 2016-11-04

2016-11-04 Date Tested:

Date Completed: 2016-11-07

Next Due Date:

2017-01-06

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

: Laser Dust Monitor Description

: Sibata Manufacturer Model No. : LD-3B Serial No. : 014750 $: 0.001 \text{ mg/m}^3$ Sensitivity (K) 1 CPM

Sen. Adjustment Scale Setting : 790 CPM : A-02-06

Equipment No.

Test Conditions:

Room Temperature : 22 degree Celsius

:61% Relative Humidity

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

0.0032 Correlation Factor (CF) *********************************

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/A/161104A Date of Issue: 2016-11-07 Date Received: 2016-11-04 Date Tested: 2016-11-04 Date Completed: 2016-11-07 Next Due Date: 2017-01-06

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata Model No. : LD-3B : 853944 Serial No. Sensitivity (K) 1 CPM $: 0.001 \text{ mg/m}^3$: 685 CPM Sen. Adjustment Scale Setting

Equipment No.

: A-02-04

Test Conditions:

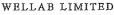
: 22 degree Celsius Room Temperature

:61% Relative Humidity

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:


Correlation Factor (CF) 0.0034

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/A/161104C
Date of Issue:	2016-11-07
Date Received:	2016-11-04
Date Tested:	2016-11-04
Date Completed:	2016-11-07
Next Due Date:	2017-01-06

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata Model No. : LD-3B Serial No. : 541146 Sensitivity (K) 1 CPM $: 0.001 \text{ mg/m}^3$: 625 CPM Sen. Adjustment Scale Setting : A-02-07

Equipment No.

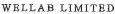
Test Conditions:

: 22 degree Celsius Room Temperature

Relative Humidity : 61 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.


Results:

	,
Correlation Factor (CF)	0.0031

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/161028C
Date of Issue:	2016-10-31
Date Received:	2016-10-28
Date Tested:	2016-10-28
Date Completed:	2016-10-31
Next Due Date:	2016-12-30

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer: SibataModel No.: LD-3BSerial No.: 095029Sensitivity (K) 1 CPM: 0.001 mg/m³

Sen. Adjustment Scale Setting : 551 CPM Equipment No. : A-02-10

Test Conditions:

Room Temperature : 21 degree Celsius

Relative Humidity : 64 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

H	
Correlation Factor (CF)	0.0038
	· · · · · · · · · · · · · · · · · · ·

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/161028D
Date of Issue:	2016-10-31
Date Received:	2016-10-28
Date Tested:	2016-10-28
Date Completed:	2016-10-31
Next Due Date:	2016-12-30

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Dust Monitor

Manufacturer

: Met One Instruments

Model No.

: AEROCET-531

Serial No.

: N6734

Flow rate

:0.1 cfm

Zero Count Test

:0 mg (The result of the 2-minute sample)

Equipment No.

: A-02-13

Test Conditions:

Room Temperature

: 21 degree Celsius

Relative Humidity

: 64 %

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.138

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/160826A
Date of Issue: 2016-08-29
Date Received: 2016-08-26
Date Tested: 2016-08-26
Date Completed: 2016-08-29
Next Due Date: 2017-08-28

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK : SVAN 957

Model No. Serial No.

: 21455

Microphone No. Equipment No.

: 43730 : N-08-07

.

- - -

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PÁTRICK TŠE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160819B
Date of Issue:	2016-08-22
Date Received:	2016-08-19
Date Tested:	2016-08-19
Date Completed:	2016-08-22
Next Due Date:	2017-08-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No. Microphone No. : 21459 : 43676

Equipment No.

: N-08-08

Test conditions:

Room Temperatre

: 24 degree Celsius

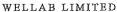
Relative Humidity

: 58%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:


In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong, Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160819C
Date of Issue:	2016-08-22
Date Received:	2016-08-19
Date Tested:	2016-08-19
Date Completed:	2016-08-22
Next Due Date:	2017-08-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No : SVANTEK

Model No. Serial No. : SVAN 957 : 21460

Microphone No.

: 43679

Equipment No.

: N-08-09

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 58%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T. Hong Kong.
Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161128
Date of Issue: 2016-11-30
Date Received: 2016-11-28
Date Tested: 2016-11-28
Date Completed: 2016-11-30
Next Due Date: 2017-11-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer: SVANTEKModel No.: SVAN 957Serial No.: 23853Microphone No.: 48530

Equipment No.

: N-08-10

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 66%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T. Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/161128B

Date of Issue: 2016-11-30

Date Received: 2016-11-28

Date Tested: 2016-11-28

Date Completed: 2016-11-30

ATTN:

Mr. W.K. Tang

Page:

Next Due Date:

1 of 1

2017-11-29

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No. : SVANTEK : SVAN 957

Serial No.
Microphone No.

: 23851 : 48532

Equipment No.

: N-08-12

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 66%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930A
Date of Issue:	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer Model No.

: SVANTEK : SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930B
Date of Issue:	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24791

Equipment No.

: N-09-04

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

RATRICK TSE

WELLAB LIMITED

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160930C
Date of Issue:	2016-10-03
Date Received:	2016-09-30
Date Tested:	2016-09-30
Date Completed:	2016-10-03
Next Due Date:	2017-10-02

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24780

Equipment No.

: N-09-05

Test conditions:

Room Temperatre

: 25 degree Celsius

Relative Humidity

: 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED
Rús 816, 1516 & 1701, Technology Park,
18 On Lal Street, Shatin, N.T. Hong Kong,
Tel: 2898 7388 Fax: 2898 7076
Websiter www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/161104/1
Date of Issue:	2016-11-07
Date Received:	2016-11-04
Date Tested:	2016-11-04
Date Completed:	2016-11-07
Next Due Date:	2017-11-06

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2326353

Equipment No.

: N-02-01

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

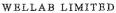
: 62 %

Methodology:

The sound calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB


PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/160819D
Date of Issue:	2016-08-22
Date Received:	2016-08-19
Date Tested:	2016-08-19
Date Completed:	2016-08-22
Next Due Date:	2017-08-21

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

: 24 degree Celsius

Relative Humidity

: 58%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 December 2016	17.2 – 22.4	60 – 76	0
2 December 2016	18.4 – 22.4	64 – 82	0
3 December 2016	19.9 – 22.8	70 – 83	0
4 December 2016	21.0 – 24.9	64 – 88	Trace
5 December 2016	21.8 – 25.9	63 – 90	0
6 December 2016	19.4 – 22.9	45 – 67	Trace
7 December 2016	18.2 – 22.2	50 – 72	Trace
8 December 2016	17.1 – 21.7	54 – 71	0
9 December 2016	16.5 – 21.9	52 – 79	0
10 December 2016	18.3 – 23.1	59 – 81	0
11 December 2016	19.5 – 21.5	69 – 80	Trace
12 December 2016	19.0 – 23.3	67 – 84	Trace
13 December 2016	20.7 – 25.7	58 – 90	Trace
14 December 2016	18.8 – 23.4	56 – 72	Trace
15 December 2016	15.6 – 20.4	56 – 67	0
16 December 2016	13.2 – 17.1	53 – 66	0
17 December 2016	13.7 – 18.6	58 – 78	0
18 December 2016	17.2 – 21.3	65 – 86	0
19 December 2016	18.5 – 22.5	61 – 87	0

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 December 2016	20.0 – 22.9	66 – 85	0
21 December 2016	21.0 – 22.6	82 – 95	2.8
22 December 2016	19.7 – 24.8	60 – 95	0.1
23 December 2016	19.1 – 21.9	66 – 80	Trace
24 December 2016	16.9 – 19.5	67 – 92	3.7
25 December 2016	18.4 – 20.3	78 – 87	Trace
26 December 2016	19.5 – 23.7	70 – 89	0
27 December 2016	12.8 – 21.8	47 – 77	0
28 December 2016	11.5 – 15.7	55 – 65	0
29 December 2016	13.9 – 17.9	47 – 61	0
30 December 2016	14.8 – 18.6	53 – 73	0
31 December 2016	15.6 – 20.7	59 – 84	0

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

Date	Time	Wind Speed m/s	Direction
1-Dec-2016	0:00	1.4	NE
1-Dec-2016	1:00	1.1	ENE
1-Dec-2016	2:00	0.9	ENE
1-Dec-2016	3:00	1.1	ENE
1-Dec-2016	4:00	1.0	ENE
1-Dec-2016	5:00	0.7	ENE
1-Dec-2016	6:00	0.8	NE
1-Dec-2016	7:00	0.8	ENE
1-Dec-2016	8:00	1.0	ENE
1-Dec-2016	9:00	1.5	NE
1-Dec-2016	10:00	2.0	NE
1-Dec-2016	11:00	2.7	NE
1-Dec-2016	12:00	3.1	NE
1-Dec-2016	13:00	3.0	NE
1-Dec-2016	14:00	3.0	NE
1-Dec-2016	15:00	2.7	NE
1-Dec-2016	16:00	2.4	NE
1-Dec-2016	17:00	2.6	NE
1-Dec-2016	18:00	2.2	N
1-Dec-2016	19:00	2.3	N
1-Dec-2016	20:00	2.2	ENE
1-Dec-2016	21:00	1.9	NE
1-Dec-2016	22:00	1.7	NE
1-Dec-2016	23:00	2.1	ENE
2-Dec-2016	0:00	2	ENE
2-Dec-2016	1:00	2.6	ENE
2-Dec-2016	2:00	2.7	ENE
2-Dec-2016	3:00	2.3	NNE
2-Dec-2016	4:00	2.1	E
2-Dec-2016	5:00	2.1	ENE
2-Dec-2016	6:00	1.7	ENE
2-Dec-2016	7:00	2	ENE
2-Dec-2016	8:00	1.1	E
2-Dec-2016	9:00	1.9	NW
2-Dec-2016	10:00	1.9	N
2-Dec-2016	11:00	3.5	NNE

		1	
2-Dec-2016	12:00	3.6	NE
2-Dec-2016	13:00	3.7	NE
2-Dec-2016	14:00	4.1	N
2-Dec-2016	15:00	3.3	N
2-Dec-2016	16:00	3.3	ENE
2-Dec-2016	17:00	2.7	E
2-Dec-2016	18:00	2.9	E
2-Dec-2016	19:00	3.1	ENE
2-Dec-2016	20:00	3.1	N
2-Dec-2016	21:00	3.6	NNE
2-Dec-2016	22:00	3	NE
2-Dec-2016	23:00	3.1	ENE
3-Dec-2016	0:00	3.1	ENE
3-Dec-2016	1:00	3.7	ENE
3-Dec-2016	2:00	3.1	ENE
3-Dec-2016	3:00	3.6	NNE
3-Dec-2016	4:00	3.7	NNE
3-Dec-2016	5:00	3.8	N
3-Dec-2016	6:00	3	NE
3-Dec-2016	7:00	3.6	NE
3-Dec-2016	8:00	2.6	N
3-Dec-2016	9:00	2	ENE
3-Dec-2016	10:00	2.6	NE
3-Dec-2016	11:00	2.2	ESE
3-Dec-2016	12:00	2.6	SSE
3-Dec-2016	13:00	3.1	SSE
3-Dec-2016	14:00	3.2	SSE
3-Dec-2016	15:00	3.3	SSE
3-Dec-2016	16:00	3.4	SSE
3-Dec-2016	17:00	3	ESE
3-Dec-2016	18:00	3.8	SE
3-Dec-2016	19:00	3.9	SE
3-Dec-2016	20:00	3	SE
3-Dec-2016	21:00	2.9	SE
3-Dec-2016	22:00	2.8	ENE
3-Dec-2016	23:00	2.1	ENE
4-Dec-2016	0:00	3.8	ENE

	<u> </u>	T	1
4-Dec-2016	1:00	3.5	ENE
4-Dec-2016	2:00	2.3	ENE
4-Dec-2016	3:00	2.2	ENE
4-Dec-2016	4:00	2.1	N
4-Dec-2016	5:00	1.9	NE
4-Dec-2016	6:00	1.7	ENE
4-Dec-2016	7:00	1.9	ENE
4-Dec-2016	8:00	3	ENE
4-Dec-2016	9:00	2.9	ENE
4-Dec-2016	10:00	3.4	ENE
4-Dec-2016	11:00	4.3	ENE
4-Dec-2016	12:00	4.1	ENE
4-Dec-2016	13:00	4.4	ENE
4-Dec-2016	14:00	4	ENE
4-Dec-2016	15:00	4.2	N
4-Dec-2016	16:00	3.1	N
4-Dec-2016	17:00	2.2	N
4-Dec-2016	18:00	1.8	N
4-Dec-2016	19:00	1	N
4-Dec-2016	20:00	1	N
4-Dec-2016	21:00	0.7	ENE
4-Dec-2016	22:00	1.9	ENE
4-Dec-2016	23:00	1.1	ENE
5-Dec-2016	0:00	1.8	SE
5-Dec-2016	1:00	2.3	E
5-Dec-2016	2:00	2.4	ENE
5-Dec-2016	3:00	2.4	NE
5-Dec-2016	4:00	3	N
5-Dec-2016	5:00	2.6	SE
5-Dec-2016	6:00	2.7	SSE
5-Dec-2016	7:00	3.3	SE
5-Dec-2016	8:00	2.7	N
5-Dec-2016	9:00	3.3	N
5-Dec-2016	10:00	3.9	ENE
5-Dec-2016	11:00	3.3	ENE
5-Dec-2016	12:00	3.6	ENE
5-Dec-2016	13:00	4	NE
·	•		•

	1	T	
5-Dec-2016	14:00	4.2	ENE
5-Dec-2016	15:00	4.1	ENE
5-Dec-2016	16:00	3.9	NE
5-Dec-2016	17:00	3.5	NE
5-Dec-2016	18:00	3.5	NE
5-Dec-2016	19:00	3.2	ESE
5-Dec-2016	20:00	3.4	E
5-Dec-2016	21:00	3.3	E
5-Dec-2016	22:00	3	NE
5-Dec-2016	23:00	3.2	SE
6-Dec-2016	0:00	3.1	ESE
6-Dec-2016	1:00	3.9	SE
6-Dec-2016	2:00	4.1	ENE
6-Dec-2016	3:00	3.9	SE
6-Dec-2016	4:00	4.1	SE
6-Dec-2016	5:00	3.6	E
6-Dec-2016	6:00	3.5	SE
6-Dec-2016	7:00	3.5	SSE
6-Dec-2016	8:00	3.3	SE
6-Dec-2016	9:00	3.2	SE
6-Dec-2016	10:00	2.6	SE
6-Dec-2016	11:00	3.8	E
6-Dec-2016	12:00	3.9	E
6-Dec-2016	13:00	4.4	ENE
6-Dec-2016	14:00	3.7	ENE
6-Dec-2016	15:00	3.4	E
6-Dec-2016	16:00	3.9	E
6-Dec-2016	17:00	3.9	E
6-Dec-2016	18:00	3.2	E
6-Dec-2016	19:00	3.5	SSE
6-Dec-2016	20:00	3.7	SE
6-Dec-2016	21:00	2.6	SE
6-Dec-2016	22:00	3.3	ENE
6-Dec-2016	23:00	3	ENE
7-Dec-2016	0:00	2.9	ENE
7-Dec-2016	1:00	3.5	ENE
7-Dec-2016	2:00	3.3	SSE
	•		

	•	r	1
7-Dec-2016	3:00	3.3	SSE
7-Dec-2016	4:00	2.8	SSE
7-Dec-2016	5:00	2.8	SE
7-Dec-2016	6:00	2.6	SSE
7-Dec-2016	7:00	2.5	SSE
7-Dec-2016	8:00	2.7	SSE
7-Dec-2016	9:00	2.4	SSW
7-Dec-2016	10:00	3.2	SSE
7-Dec-2016	11:00	2.7	E
7-Dec-2016	12:00	2.7	NE
7-Dec-2016	13:00	2.6	NE
7-Dec-2016	14:00	2.7	SE
7-Dec-2016	15:00	3.2	N
7-Dec-2016	16:00	3.2	NE
7-Dec-2016	17:00	3.3	N
7-Dec-2016	18:00	3	NNE
7-Dec-2016	19:00	2.9	ENE
7-Dec-2016	20:00	1.9	ENE
7-Dec-2016	21:00	1.7	NNE
7-Dec-2016	22:00	1.7	NNE
7-Dec-2016	23:00	1.9	NE
8-Dec-2016	0:00	1.4	NE
8-Dec-2016	1:00	1.6	WSW
8-Dec-2016	2:00	1.7	WSW
8-Dec-2016	3:00	1.6	ESE
8-Dec-2016	4:00	1.6	NNE
8-Dec-2016	5:00	1.6	ENE
8-Dec-2016	6:00	1.7	ENE
8-Dec-2016	7:00	1.9	E
8-Dec-2016	8:00	2.2	NNE
8-Dec-2016	9:00	2.3	ENE
8-Dec-2016	10:00	2.8	NNE
8-Dec-2016	11:00	2.8	NNE
8-Dec-2016	12:00	2.6	E
8-Dec-2016	13:00	2.8	ENE
8-Dec-2016	14:00	2.9	NE
8-Dec-2016	15:00	3.2	ENE
	•		•

8-Dec-2016 16:00 2.7 SSE 8-Dec-2016 17:00 2.3 SE 8-Dec-2016 18:00 2.2 SSE 8-Dec-2016 19:00 2.1 SSE 8-Dec-2016 20:00 2.3 SE 8-Dec-2016 21:00 2.4 SSE 8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW 9-Dec-2016 1:00 1.5 SSW
8-Dec-2016 18:00 2.2 SSE 8-Dec-2016 19:00 2.1 SSE 8-Dec-2016 20:00 2.3 SE 8-Dec-2016 21:00 2.4 SSE 8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW
8-Dec-2016 19:00 2.1 SSE 8-Dec-2016 20:00 2.3 SE 8-Dec-2016 21:00 2.4 SSE 8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW
8-Dec-2016 20:00 2.3 SE 8-Dec-2016 21:00 2.4 SSE 8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW
8-Dec-2016 21:00 2.4 SSE 8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW
8-Dec-2016 22:00 1.8 SW 8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW
8-Dec-2016 23:00 1 SW 9-Dec-2016 0:00 1.2 SSW
9-Dec-2016 0:00 1.2 SSW
9-Dec-2016 1:00 1.5 SSW
9-Dec-2016 2:00 1.2 S
9-Dec-2016 3:00 1 SSW
9-Dec-2016 4:00 1.2 SSW
9-Dec-2016 5:00 1.5 S
9-Dec-2016 6:00 1.3 SSW
9-Dec-2016 7:00 1.9 SW
9-Dec-2016 8:00 2.3 SW
9-Dec-2016 9:00 2.8 SW
9-Dec-2016 10:00 3.7 ENE
9-Dec-2016 11:00 4.2 ESE
9-Dec-2016 12:00 3.6 ESE
9-Dec-2016 13:00 3.6 SE
9-Dec-2016 14:00 2.9 NNW
9-Dec-2016 15:00 2.9 E
9-Dec-2016 16:00 2.7 NW
9-Dec-2016 17:00 3.1 W
9-Dec-2016 18:00 2.7 W
9-Dec-2016 19:00 2.3 SE
9-Dec-2016 20:00 1.6 SSE
9-Dec-2016 21:00 1.3 SE
9-Dec-2016 22:00 1.5 SE
9-Dec-2016 23:00 1.5 SE
10-Dec-2016 0:00 1.2 SE
10-Dec-2016 1:00 1.2 ESE
10-Dec-2016 2:00 1.1 SE
10-Dec-2016 3:00 1.2 ESE
10-Dec-2016 4:00 1 ESE

_	1		
10-Dec-2016	5:00	1.1	SE
10-Dec-2016	6:00	1.5	S
10-Dec-2016	7:00	1.3	W
10-Dec-2016	8:00	1.3	SW
10-Dec-2016	9:00	2.1	WSW
10-Dec-2016	10:00	2.4	NE
10-Dec-2016	11:00	3.1	NE
10-Dec-2016	12:00	3.4	NE
10-Dec-2016	13:00	3.9	WNW
10-Dec-2016	14:00	3.7	SSE
10-Dec-2016	15:00	3.9	SSE
10-Dec-2016	16:00	3.5	SE
10-Dec-2016	17:00	4.3	SE
10-Dec-2016	18:00	2.4	SE
10-Dec-2016	19:00	2	SE
10-Dec-2016	20:00	2.7	SE
10-Dec-2016	21:00	1.8	SE
10-Dec-2016	22:00	4.3	ESE
10-Dec-2016	23:00	1.7	SE
11-Dec-2016	0:00	3.8	NNE
11-Dec-2016	1:00	1.1	NE
11-Dec-2016	2:00	2.2	SE
11-Dec-2016	3:00	2.1	S
11-Dec-2016	4:00	2.1	SSW
11-Dec-2016	5:00	2.1	SSW
11-Dec-2016	6:00	2.3	S
11-Dec-2016	7:00	1.8	S
11-Dec-2016	8:00	2.1	S
11-Dec-2016	9:00	3.2	SSE
11-Dec-2016	10:00	3.6	SSE
11-Dec-2016	11:00	3.6	SSE
11-Dec-2016	12:00	3.8	SSE
11-Dec-2016	13:00	3.7	SSE
11-Dec-2016	14:00	3.7	SE
11-Dec-2016	15:00	3.7	NE
11-Dec-2016	16:00	3.8	N
11-Dec-2016	17:00	2.9	N
	1	1	1

	1	r	
11-Dec-2016	18:00	2.1	S
11-Dec-2016	19:00	1.9	SSW
11-Dec-2016	20:00	2.4	SSE
11-Dec-2016	21:00	2.6	SSE
11-Dec-2016	22:00	2.8	SSE
11-Dec-2016	23:00	2.6	S
12-Dec-2016	0:00	2.4	8
12-Dec-2016	1:00	2.3	SE
12-Dec-2016	2:00	2.6	SSE
12-Dec-2016	3:00	2.8	SE
12-Dec-2016	4:00	2.5	SE
12-Dec-2016	5:00	2.8	SE
12-Dec-2016	6:00	2.7	SE
12-Dec-2016	7:00	3	SE
12-Dec-2016	8:00	3	SE
12-Dec-2016	9:00	3.4	SE
12-Dec-2016	10:00	3.1	SE
12-Dec-2016	11:00	3.5	SE
12-Dec-2016	12:00	4	SE
12-Dec-2016	13:00	4	SE
12-Dec-2016	14:00	4.6	SE
12-Dec-2016	15:00	4.1	SE
12-Dec-2016	16:00	4.1	SE
12-Dec-2016	17:00	3.4	SSE
12-Dec-2016	18:00	3.4	S
12-Dec-2016	19:00	2.4	SE
12-Dec-2016	20:00	2.2	S
12-Dec-2016	21:00	1.5	SSW
12-Dec-2016	22:00	1.2	SSW
12-Dec-2016	23:00	1.7	SSW
13-Dec-2016	0:00	1.5	SSE
13-Dec-2016	1:00	1.8	SSE
13-Dec-2016	2:00	1.9	SE
13-Dec-2016	3:00	1.7	NE
13-Dec-2016	4:00	2	SSE
13-Dec-2016	5:00	1.3	SSE
13-Dec-2016	6:00	2.2	SE

Γ	T	T	T
13-Dec-2016	7:00	2	SE
13-Dec-2016	8:00	2.2	NE
13-Dec-2016	9:00	1.7	ESE
13-Dec-2016	10:00	2.8	E
13-Dec-2016	11:00	3.2	NE
13-Dec-2016	12:00	3.7	NNE
13-Dec-2016	13:00	4.3	ENE
13-Dec-2016	14:00	3.8	SE
13-Dec-2016	15:00	3.8	W
13-Dec-2016	16:00	3.1	ESE
13-Dec-2016	17:00	2.8	W
13-Dec-2016	18:00	2.7	Е
13-Dec-2016	19:00	2.2	SE
13-Dec-2016	20:00	1.7	ESE
13-Dec-2016	21:00	1.4	SE
13-Dec-2016	22:00	1.4	N
13-Dec-2016	23:00	2.4	NE
14-Dec-2016	0:00	1.9	ENE
14-Dec-2016	1:00	1.5	ESE
14-Dec-2016	2:00	1.8	NE
14-Dec-2016	3:00	1.8	NE
14-Dec-2016	4:00	1.7	N
14-Dec-2016	5:00	1.3	NE
14-Dec-2016	6:00	1.8	NNE
14-Dec-2016	7:00	1.4	NE
14-Dec-2016	8:00	1.9	ESE
14-Dec-2016	9:00	2.7	NE
14-Dec-2016	10:00	3.2	NE
14-Dec-2016	11:00	3.7	E
14-Dec-2016	12:00	3.7	ENE
14-Dec-2016	13:00	4.1	SE
14-Dec-2016	14:00	3.8	NE
14-Dec-2016	15:00	3.9	E
14-Dec-2016	16:00	3.3	E
14-Dec-2016	17:00	3.8	ENE
14-Dec-2016	18:00	4	NE
14-Dec-2016	19:00	4.1	Е
	•		•

14-Dec-2016	20:00	3.8	E
14-Dec-2016	21:00	3.6	NE
14-Dec-2016	22:00	3.6	NE
14-Dec-2016	23:00	3.1	N
15-Dec-2016	0:00	2.8	NE
15-Dec-2016	1:00	2.7	NE
15-Dec-2016	2:00	2.9	NE
15-Dec-2016	3:00	2.9	ESE
15-Dec-2016	4:00	3.1	ESE
15-Dec-2016	5:00	3.2	ESE
15-Dec-2016	6:00	3.2	ENE
15-Dec-2016	7:00	3.2	E
15-Dec-2016	8:00	3.4	SE
15-Dec-2016	9:00	3.9	Ш
15-Dec-2016	10:00	2.8	E
15-Dec-2016	11:00	3.3	E
15-Dec-2016	12:00	3.2	NE
15-Dec-2016	13:00	3.2	NE
15-Dec-2016	14:00	2.9	NE
15-Dec-2016	15:00	3.6	E
15-Dec-2016	16:00	2.8	E
15-Dec-2016	17:00	2.6	ESE
15-Dec-2016	18:00	3.2	ESE
15-Dec-2016	19:00	2.9	E
15-Dec-2016	20:00	2.6	E
15-Dec-2016	21:00	2.9	E
15-Dec-2016	22:00	2.6	E
15-Dec-2016	23:00	2.2	E
16-Dec-2016	0:00	2.8	E
16-Dec-2016	1:00	2.4	Е
16-Dec-2016	2:00	2.7	ESE
16-Dec-2016	3:00	1.9	E
16-Dec-2016	4:00	2.2	E
16-Dec-2016	5:00	2.7	E
16-Dec-2016	6:00	1.6	SE
16-Dec-2016	7:00	2.7	ESE
16-Dec-2016	8:00	1.6	Е

			T
16-Dec-2016	9:00	2.3	E
16-Dec-2016	10:00	2.6	Е
16-Dec-2016	11:00	3.6	Е
16-Dec-2016	12:00	4.4	E
16-Dec-2016	13:00	4.3	E
16-Dec-2016	14:00	4	ENE
16-Dec-2016	15:00	4.4	E
16-Dec-2016	16:00	3.2	E
16-Dec-2016	17:00	3.4	Ш
16-Dec-2016	18:00	4.3	ENE
16-Dec-2016	19:00	4.5	ENE
16-Dec-2016	20:00	2.5	NE
16-Dec-2016	21:00	2.9	SE
16-Dec-2016	22:00	1.8	ESE
16-Dec-2016	23:00	1.7	SE
17-Dec-2016	0:00	2.6	SE
17-Dec-2016	1:00	2	SE
17-Dec-2016	2:00	1.3	SE
17-Dec-2016	3:00	1.8	SE
17-Dec-2016	4:00	0.9	Ш
17-Dec-2016	5:00	1.2	NE
17-Dec-2016	6:00	4.4	Ш
17-Dec-2016	7:00	1.3	NE
17-Dec-2016	8:00	0.8	NE
17-Dec-2016	9:00	1.8	N
17-Dec-2016	10:00	1.1	N
17-Dec-2016	11:00	2.2	ESE
17-Dec-2016	12:00	2.4	SE
17-Dec-2016	13:00	1.7	NNE
17-Dec-2016	14:00	1.6	E
17-Dec-2016	15:00	2.3	ESE
17-Dec-2016	16:00	3.8	ESE
17-Dec-2016	17:00	1.5	SE
17-Dec-2016	18:00	1.8	ESE
17-Dec-2016	19:00	1.7	E
17-Dec-2016	20:00	0.6	ESE
17-Dec-2016	21:00	0.8	SE

17 D 0010	00.00	0.7	00144
17-Dec-2016	22:00	0.7	SSW
17-Dec-2016	23:00	0.8	S
18-Dec-2016	0:00	1	SSW
18-Dec-2016	1:00	1.7	W
18-Dec-2016	2:00	0.7	W
18-Dec-2016	3:00	0.8	NNW
18-Dec-2016	4:00	0.9	NW
18-Dec-2016	5:00	1.2	NW
18-Dec-2016	6:00	1	NW
18-Dec-2016	7:00	0.8	N
18-Dec-2016	8:00	1.7	N
18-Dec-2016	9:00	2.9	N
18-Dec-2016	10:00	3.5	N
18-Dec-2016	11:00	3.3	NNE
18-Dec-2016	12:00	3.7	ESE
18-Dec-2016	13:00	3.4	N
18-Dec-2016	14:00	3.4	SE
18-Dec-2016	15:00	3.8	SE
18-Dec-2016	16:00	3.4	SE
18-Dec-2016	17:00	2.5	E
18-Dec-2016	18:00	2.7	E
18-Dec-2016	19:00	2.8	E
18-Dec-2016	20:00	2.9	E
18-Dec-2016	21:00	2.6	ESE
18-Dec-2016	22:00	3.3	ESE
18-Dec-2016	23:00	2.9	ESE
19-Dec-2016	0:00	3.8	ESE
19-Dec-2016	1:00	2.9	SE
19-Dec-2016	2:00	3.5	SE
19-Dec-2016	3:00	2.8	ENE
19-Dec-2016	4:00	2.3	E
19-Dec-2016	5:00	2.8	Е
19-Dec-2016	6:00	2.8	WNW
19-Dec-2016	7:00	2.1	WNW
19-Dec-2016	8:00	2.7	E
19-Dec-2016	9:00	3.6	E
19-Dec-2016	10:00	3.3	SE
	1	l	1

20-Dec-2016	23:00	4.1	WNW
20-Dec-2016	22:00	3	WNW
20-Dec-2016	21:00	2.1	W
20-Dec-2016	20:00	2.1	NW
20-Dec-2016	19:00	2.2	SE
20-Dec-2016	18:00	2.3	S
20-Dec-2016	17:00	4.3	N
20-Dec-2016	16:00	3.9	SE
20-Dec-2016	15:00	3.5	ESE
20-Dec-2016	14:00	3.3	ESE
20-Dec-2016	13:00	3.3	SE
20-Dec-2016	12:00	2.4	SE
20-Dec-2016	11:00	3	NE
20-Dec-2016	10:00	2.6	NE
20-Dec-2016	9:00	3.8	NE
20-Dec-2016	8:00	2.1	E
20-Dec-2016	7:00	2.9	E
20-Dec-2016	6:00	4.4	E
20-Dec-2016	5:00	4.5	ESE
20-Dec-2016	4:00	4	NE
20-Dec-2016	3:00	3.8	NE
20-Dec-2016	2:00	3.1	NE
20-Dec-2016	1:00	2.9	E
20-Dec-2016	0:00	3.2	E
19-Dec-2016	23:00	3.8	E
19-Dec-2016	22:00	3.3	SE
19-Dec-2016	21:00	1.3	SE
19-Dec-2016	20:00	3	SE
19-Dec-2016	19:00	3.1	SE
19-Dec-2016	18:00	2.9	N
19-Dec-2016	17:00	3.4	NNE
19-Dec-2016	16:00	3.8	NE
19-Dec-2016	15:00	3.5	E
19-Dec-2016	14:00	2.7	E
19-Dec-2016	13:00	3.4	ESE
19-Dec-2016 19-Dec-2016	11:00	3.9	ESE E

21-Dec-2016 1:00 1.9 W 21-Dec-2016 1:00 1.9 W 21-Dec-2016 2:00 2.4 SSW 21-Dec-2016 3:00 3.2 SSE 21-Dec-2016 4:00 2.3 W 21-Dec-2016 5:00 3.2 SSW 21-Dec-2016 6:00 2.3 SSE 21-Dec-2016 7:00 1.7 ESE 21-Dec-2016 8:00 1.7 ESE 21-Dec-2016 9:00 2.2 SE 21-Dec-2016 10:00 3.4 NNE 21-Dec-2016 11:00 3.7 NNE 21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 15:00 1.9 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 15:00 2.4 ESE 21-Dec-201	04 D - 0040	0.00	0.0	OW
21-Dec-2016 2:00 2.4 SSW 21-Dec-2016 3:00 3.2 SSE 21-Dec-2016 4:00 2.3 W 21-Dec-2016 5:00 3.2 SSW 21-Dec-2016 6:00 2.3 SSE 21-Dec-2016 7:00 1.7 ESE 21-Dec-2016 8:00 1.7 ESE 21-Dec-2016 9:00 2.2 SE 21-Dec-2016 10:00 3.4 NNE 21-Dec-2016 11:00 3.7 NNE 21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 16:00 2.3 NE 21-Dec-2016 16:00 2.3 NE 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 19:00 3.5 NE 21-Dec-20	21-Dec-2016	0:00	2.3	SW
21-Dec-2016 3:00 3.2 SSE 21-Dec-2016 4:00 2.3 W 21-Dec-2016 5:00 3.2 SSW 21-Dec-2016 6:00 2.3 SSE 21-Dec-2016 7:00 1.7 ESE 21-Dec-2016 8:00 1.7 ESE 21-Dec-2016 9:00 2.2 SE 21-Dec-2016 10:00 3.4 NNE 21-Dec-2016 11:00 3.7 NNE 21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 16:00 2.3 NE 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-20				
21-Dec-2016 4:00 2.3 W 21-Dec-2016 5:00 3.2 SSW 21-Dec-2016 6:00 2.3 SSE 21-Dec-2016 7:00 1.7 ESE 21-Dec-2016 8:00 1.7 ESE 21-Dec-2016 9:00 2.2 SE 21-Dec-2016 10:00 3.4 NNE 21-Dec-2016 11:00 3.7 NNE 21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 20:00 2.8 SE 21-Dec-201				
21-Dec-2016 5:00 3.2 SSW 21-Dec-2016 6:00 2.3 SSE 21-Dec-2016 7:00 1.7 ESE 21-Dec-2016 8:00 1.7 ESE 21-Dec-2016 9:00 2.2 SE 21-Dec-2016 10:00 3.4 NNE 21-Dec-2016 11:00 3.7 NNE 21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 15:00 1.9 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 20:00 2.8 SE 21-D		+		
21-Dec-2016 6:00 2.3 SSE 21-Dec-2016 7:00 1.7 ESE 21-Dec-2016 8:00 1.7 ESE 21-Dec-2016 9:00 2.2 SE 21-Dec-2016 10:00 3.4 NNE 21-Dec-2016 11:00 3.7 NNE 21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 20:00 2.8 SE 21-Dec-2016 20:00 3.6 SSW 22-Dec-		_		
21-Dec-2016 7:00 1.7 ESE 21-Dec-2016 8:00 1.7 ESE 21-Dec-2016 9:00 2.2 SE 21-Dec-2016 10:00 3.4 NNE 21-Dec-2016 11:00 3.7 NNE 21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec	21-Dec-2016	5:00	3.2	SSW
21-Dec-2016 8:00 1.7 ESE 21-Dec-2016 9:00 2.2 SE 21-Dec-2016 10:00 3.4 NNE 21-Dec-2016 11:00 3.7 NNE 21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 16:00 2.3 NE 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-De	21-Dec-2016	6:00	2.3	SSE
21-Dec-2016 9:00 2.2 SE 21-Dec-2016 10:00 3.4 NNE 21-Dec-2016 11:00 3.7 NNE 21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 16:00 2.3 NE 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec	21-Dec-2016	7:00	1.7	ESE
21-Dec-2016 10:00 3.4 NNE 21-Dec-2016 11:00 3.7 NNE 21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 16:00 2.3 NE 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 23:00 3.9 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2	21-Dec-2016	8:00	1.7	ESE
21-Dec-2016 11:00 3.7 NNE 21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 16:00 2.3 NE 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 3:00 1.8 S 22-Dec-2016 5:00 1.8 SSE 22-Dec-20	21-Dec-2016	9:00	2.2	SE
21-Dec-2016 12:00 3.5 ESE 21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 16:00 2.3 NE 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-201	21-Dec-2016	10:00	3.4	NNE
21-Dec-2016 13:00 3.8 ESE 21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 16:00 2.3 NE 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 <td>21-Dec-2016</td> <td>11:00</td> <td>3.7</td> <td>NNE</td>	21-Dec-2016	11:00	3.7	NNE
21-Dec-2016 14:00 3 E 21-Dec-2016 15:00 1.9 E 21-Dec-2016 16:00 2.3 NE 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.	21-Dec-2016	12:00	3.5	ESE
21-Dec-2016 15:00 1.9 E 21-Dec-2016 16:00 2.3 NE 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 10:00	21-Dec-2016	13:00	3.8	ESE
21-Dec-2016 16:00 2.3 NE 21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016	21-Dec-2016	14:00	3	E
21-Dec-2016 17:00 2.4 ESE 21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016	21-Dec-2016	15:00	1.9	E
21-Dec-2016 18:00 3.2 SE 21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 10:00 3.3 NNE	21-Dec-2016	16:00	2.3	NE
21-Dec-2016 19:00 3.5 NE 21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	21-Dec-2016	17:00	2.4	ESE
21-Dec-2016 20:00 2.6 NE 21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	21-Dec-2016	18:00	3.2	SE
21-Dec-2016 21:00 3.6 ESE 21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	21-Dec-2016	19:00	3.5	NE
21-Dec-2016 22:00 2.8 SE 21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	21-Dec-2016	20:00	2.6	NE
21-Dec-2016 23:00 3.9 SSW 22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	21-Dec-2016	21:00	3.6	ESE
22-Dec-2016 0:00 3.6 SSW 22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	21-Dec-2016	22:00	2.8	SE
22-Dec-2016 1:00 1.9 S 22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	21-Dec-2016	23:00	3.9	SSW
22-Dec-2016 2:00 2 SSW 22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	22-Dec-2016	0:00	3.6	SSW
22-Dec-2016 3:00 1.8 S 22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	22-Dec-2016	1:00	1.9	S
22-Dec-2016 4:00 2.6 SSE 22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	22-Dec-2016	2:00	2	SSW
22-Dec-2016 5:00 1.8 SSE 22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	22-Dec-2016	3:00	1.8	S
22-Dec-2016 6:00 2.3 SE 22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	22-Dec-2016	4:00	2.6	SSE
22-Dec-2016 7:00 2.5 SE 22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	22-Dec-2016	5:00	1.8	SSE
22-Dec-2016 8:00 3.7 SE 22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	22-Dec-2016	6:00	2.3	SE
22-Dec-2016 9:00 2.5 NNE 22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	22-Dec-2016	7:00	2.5	SE
22-Dec-2016 10:00 3.3 NNE 22-Dec-2016 11:00 3.1 ENE	22-Dec-2016	8:00	3.7	SE
22-Dec-2016 11:00 3.1 ENE	22-Dec-2016	9:00	2.5	NNE
	22-Dec-2016	10:00	3.3	NNE
22-Dec-2016 12:00 3.3 ESE	22-Dec-2016	11:00	3.1	ENE
	22-Dec-2016	12:00	3.3	ESE

22-Dec-2016 14:00 3.6 ESE 22-Dec-2016 15:00 3.8 NE 22-Dec-2016 16:00 3.5 NE 22-Dec-2016 17:00 3.5 NE 22-Dec-2016 18:00 3.4 NE 22-Dec-2016 19:00 3.3 SE 22-Dec-2016 20:00 3.3 SE 22-Dec-2016 21:00 2.3 S 22-Dec-2016 22:00 1.3 SSW 22-Dec-2016 23:00 2.3 SSW 23-Dec-2016 23:00 2.3 SSW 23-Dec-2016 1:00 1.7 SSW 23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 7:00 1.3 WNW 23-Dec-201			T	
22-Dec-2016 15:00 3.8 NE 22-Dec-2016 16:00 3.5 NE 22-Dec-2016 17:00 3.5 NE 22-Dec-2016 18:00 3.4 NE 22-Dec-2016 19:00 3.3 SE 22-Dec-2016 20:00 3.3 SE 22-Dec-2016 21:00 2.3 S 22-Dec-2016 22:00 1.3 SSW 22-Dec-2016 23:00 2.3 SSW 23-Dec-2016 23:00 2.3 SSW 23-Dec-2016 0:00 1.7 SSW 23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016	22-Dec-2016	13:00	3.4	ESE
22-Dec-2016 16:00 3.5 NE 22-Dec-2016 17:00 3.5 NE 22-Dec-2016 18:00 3.4 NE 22-Dec-2016 19:00 3.3 SE 22-Dec-2016 20:00 3.3 SE 22-Dec-2016 21:00 2.3 S 22-Dec-2016 22:00 1.3 SSW 22-Dec-2016 23:00 2.3 SSW 23-Dec-2016 23:00 2.3 SSW 23-Dec-2016 0:00 1.7 SSW 23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016	22-Dec-2016	14:00	3.6	ESE
22-Dec-2016 17:00 3.5 NE 22-Dec-2016 18:00 3.4 NE 22-Dec-2016 19:00 3.3 SE 22-Dec-2016 20:00 3.3 SE 22-Dec-2016 21:00 2.3 S 22-Dec-2016 22:00 1.3 SSW 22-Dec-2016 23:00 2.3 SSW 23-Dec-2016 0:00 1.7 SSW 23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016	22-Dec-2016	15:00	3.8	NE
22-Dec-2016 18:00 3.4 NE 22-Dec-2016 19:00 3.3 SE 22-Dec-2016 20:00 3.3 SE 22-Dec-2016 21:00 2.3 S 22-Dec-2016 22:00 1.3 SSW 22-Dec-2016 23:00 2.3 SSW 23-Dec-2016 0:00 1.7 SSW 23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 <td>22-Dec-2016</td> <td>16:00</td> <td>3.5</td> <td>NE</td>	22-Dec-2016	16:00	3.5	NE
22-Dec-2016 19:00 3.3 SE 22-Dec-2016 20:00 3.3 SE 22-Dec-2016 21:00 2.3 S 22-Dec-2016 22:00 1.3 SSW 22-Dec-2016 23:00 2.3 SSW 23-Dec-2016 0:00 1.7 SSW 23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 </td <td>22-Dec-2016</td> <td>17:00</td> <td>3.5</td> <td>NE</td>	22-Dec-2016	17:00	3.5	NE
22-Dec-2016 20:00 3.3 SE 22-Dec-2016 21:00 2.3 S 22-Dec-2016 22:00 1.3 SSW 22-Dec-2016 23:00 2.3 SSW 23-Dec-2016 0:00 1.7 SSW 23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016	22-Dec-2016	18:00	3.4	NE
22-Dec-2016 21:00 2.3 S 22-Dec-2016 22:00 1.3 SSW 22-Dec-2016 23:00 2.3 SSW 23-Dec-2016 0:00 1.7 SSW 23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 15:00 4 W 23-Dec-2016	22-Dec-2016	19:00	3.3	SE
22-Dec-2016 22:00 1.3 SSW 22-Dec-2016 23:00 2.3 SSW 23-Dec-2016 0:00 1.7 SSW 23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 5:00 0.9 W 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016	22-Dec-2016	20:00	3.3	SE
22-Dec-2016 23:00 2.3 SSW 23-Dec-2016 0:00 1.7 SSW 23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 6:00 0.9 W 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 15:00 4.1 WNW 23-Dec-2016	22-Dec-2016	21:00	2.3	S
23-Dec-2016 0:00 1.7 SSW 23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 3:00 1.1 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 6:00 0.9 W 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 15:00 4 W 23-Dec-2016 15:00 4 W 23-Dec-2016 15:00 4.1 WNW 23-Dec-2016	22-Dec-2016	22:00	1.3	SSW
23-Dec-2016 1:00 1.1 SSW 23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 6:00 0.9 W 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 15:00 4.1 WNW 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016	22-Dec-2016	23:00	2.3	SSW
23-Dec-2016 2:00 1.7 SSW 23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 6:00 0.9 W 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 <td>23-Dec-2016</td> <td>0:00</td> <td>1.7</td> <td>SSW</td>	23-Dec-2016	0:00	1.7	SSW
23-Dec-2016 3:00 1.8 S 23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 6:00 0.9 W 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016	23-Dec-2016	1:00	1.1	SSW
23-Dec-2016 4:00 1.1 S 23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 6:00 0.9 W 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 15:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NE 23-Dec-2016	23-Dec-2016	2:00	1.7	SSW
23-Dec-2016 5:00 0.7 SSW 23-Dec-2016 6:00 0.9 W 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 NE	23-Dec-2016	3:00	1.8	S
23-Dec-2016 6:00 0.9 W 23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 NNE	23-Dec-2016	4:00	1.1	S
23-Dec-2016 7:00 1.3 WNW 23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	5:00	0.7	SSW
23-Dec-2016 8:00 2 WSW 23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	6:00	0.9	W
23-Dec-2016 9:00 2.5 W 23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	7:00	1.3	WNW
23-Dec-2016 10:00 3.3 WNW 23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	8:00	2	WSW
23-Dec-2016 11:00 3.4 W 23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	9:00	2.5	W
23-Dec-2016 12:00 3.6 WNW 23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	10:00	3.3	WNW
23-Dec-2016 13:00 3.7 W 23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	11:00	3.4	W
23-Dec-2016 14:00 3.3 WNW 23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	12:00	3.6	WNW
23-Dec-2016 15:00 4 W 23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	13:00	3.7	W
23-Dec-2016 16:00 4.1 WNW 23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	14:00	3.3	WNW
23-Dec-2016 17:00 3 W 23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	15:00	4	W
23-Dec-2016 18:00 2.2 W 23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	16:00	4.1	WNW
23-Dec-2016 19:00 2.5 WNW 23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	17:00	3	W
23-Dec-2016 20:00 1.5 SSW 23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	18:00	2.2	W
23-Dec-2016 21:00 1.4 NW 23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	19:00	2.5	WNW
23-Dec-2016 22:00 1.5 NNE 23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	20:00	1.5	SSW
23-Dec-2016 23:00 1.5 N 24-Dec-2016 0:00 0.8 NE	23-Dec-2016	21:00	1.4	NW
24-Dec-2016 0:00 0.8 NE	23-Dec-2016	22:00	1.5	NNE
	23-Dec-2016	23:00	1.5	N
	24-Dec-2016	0:00	0.8	NE
24-Dec-2016 1:00 1.4 NNE	24-Dec-2016	1:00	1.4	NNE

24-Dec-2016	2:00	0.9	NE
24-Dec-2016	3:00	0.8	E
24-Dec-2016	4:00	0.9	N
24-Dec-2016	5:00	1.2	N
24-Dec-2016	6:00	1.3	NNE
24-Dec-2016	7:00	1	NNE
24-Dec-2016	8:00	2	NNE
24-Dec-2016	9:00	2.2	NE
24-Dec-2016	10:00	2.4	NE
24-Dec-2016	11:00	2.7	ENE
24-Dec-2016	12:00	2.5	ENE
24-Dec-2016	13:00	2.9	ENE
24-Dec-2016	14:00	2.9	E
24-Dec-2016	15:00	3.2	ENE
24-Dec-2016	16:00	3.3	E
24-Dec-2016	17:00	3	ESE
24-Dec-2016	18:00	2.1	ESE
24-Dec-2016	19:00	2.3	SE
24-Dec-2016	20:00	1.7	SE
24-Dec-2016	21:00	2	SSE
24-Dec-2016	22:00	2.6	S
24-Dec-2016	23:00	2.4	S
25-Dec-2016	0:00	2.2	S
25-Dec-2016	1:00	2.7	S
25-Dec-2016	2:00	2.4	SSW
25-Dec-2016	3:00	1.9	SSW
25-Dec-2016	4:00	1.9	SSW
25-Dec-2016	5:00	2.3	S
25-Dec-2016	6:00	2.1	S
25-Dec-2016	7:00	2	S
25-Dec-2016	8:00	2.4	S
25-Dec-2016	9:00	2.5	S
25-Dec-2016	10:00	2.1	SSW
25-Dec-2016	11:00	3	SSW
25-Dec-2016	12:00	3.5	S
25-Dec-2016	13:00	3.2	S
25-Dec-2016	14:00	3.7	SSW
	•		•

25-Dec-2016	15:00	3.5	SSW
25-Dec-2016	16:00	3.9	SSW
25-Dec-2016	17:00	3.5	SSW
25-Dec-2016	18:00	2.9	NNW
25-Dec-2016	19:00	2.9	WNW
25-Dec-2016	20:00	3	WNW
25-Dec-2016	21:00	2.5	SSE
25-Dec-2016	22:00	2.5	ESE
25-Dec-2016	23:00	2.3	S
26-Dec-2016	0:00	2	NNW
26-Dec-2016	1:00	2	NNW
26-Dec-2016	2:00	2.4	WNW
26-Dec-2016	3:00	3.4	NW
26-Dec-2016	4:00	1.1	NNW
26-Dec-2016	5:00	1.4	NNW
26-Dec-2016	6:00	1.4	NNW
26-Dec-2016	7:00	2.2	WNW
26-Dec-2016	8:00	2.3	NNW
26-Dec-2016	9:00	2	WNW
26-Dec-2016	10:00	2.3	NW
26-Dec-2016	11:00	3.7	WNW
26-Dec-2016	12:00	3.9	NW
26-Dec-2016	13:00	3.5	WNW
26-Dec-2016	14:00	4	WNW
26-Dec-2016	15:00	3.1	NNW
26-Dec-2016	16:00	4.2	WNW
26-Dec-2016	17:00	2.7	NNW
26-Dec-2016	18:00	2.4	NNW
26-Dec-2016	19:00	2.4	WNW
26-Dec-2016	20:00	2.1	W
26-Dec-2016	21:00	3	NW
26-Dec-2016	22:00	2.6	NW
26-Dec-2016	23:00	2.7	NNW
27-Dec-2016	0:00	3.8	WNW
27-Dec-2016	1:00	2.7	WNW
27-Dec-2016	2:00	2.8	WNW
27-Dec-2016	3:00	1.7	NNW

07.5	4.00		A 14 19 4 7
27-Dec-2016	4:00	1.5	NNW
27-Dec-2016	5:00	1.2	NNW
27-Dec-2016	6:00	0.9	NNW
27-Dec-2016	7:00	1	NNW
27-Dec-2016	8:00	1.1	NNW
27-Dec-2016	9:00	2	NNW
27-Dec-2016	10:00	2.7	NW
27-Dec-2016	11:00	2.2	WNW
27-Dec-2016	12:00	2.5	W
27-Dec-2016	13:00	2	WNW
27-Dec-2016	14:00	2.6	SE
27-Dec-2016	15:00	2.3	NW
27-Dec-2016	16:00	1.7	WNW
27-Dec-2016	17:00	2.8	ENE
27-Dec-2016	18:00	1.9	ESE
27-Dec-2016	19:00	0.9	SE
27-Dec-2016	20:00	1.2	SW
27-Dec-2016	21:00	1.1	E
27-Dec-2016	22:00	0.8	ESE
27-Dec-2016	23:00	2.4	S
28-Dec-2016	0:00	2.7	S
28-Dec-2016	1:00	2.3	WSW
28-Dec-2016	2:00	2.4	WSW
28-Dec-2016	3:00	1.6	NW
28-Dec-2016	4:00	2.2	NE
28-Dec-2016	5:00	1.8	ESE
28-Dec-2016	6:00	1.2	NNW
28-Dec-2016	7:00	1.2	NW
28-Dec-2016	8:00	0.9	NW
28-Dec-2016	9:00	1.4	WSW
28-Dec-2016	10:00	2	WNW
28-Dec-2016	11:00	1.9	WNW
28-Dec-2016	12:00	2.1	W
28-Dec-2016	13:00	3.7	SSW
28-Dec-2016	14:00	1.9	SE
28-Dec-2016	15:00	1.7	SSW
28-Dec-2016	16:00	1.5	NE
28-Dec-2016	16:00	1.5	NE

28-Dec-2016	17:00	3	N
28-Dec-2016	18:00	2.3	NNW
28-Dec-2016	19:00	1.1	NNW
28-Dec-2016	20:00	1.6	WNW
28-Dec-2016	21:00	2.5	NNW
28-Dec-2016	22:00	2.2	NNW
28-Dec-2016	23:00	2.4	WSW
29-Dec-2016	0:00	2.5	WSW
29-Dec-2016	1:00	3.4	WNW
29-Dec-2016	2:00	3.6	WNW
29-Dec-2016	3:00	2.9	WNW
29-Dec-2016	4:00	2.2	WNW
29-Dec-2016	5:00	1.9	ENE
29-Dec-2016	6:00	2.3	N
29-Dec-2016	7:00	1.5	SE
29-Dec-2016	8:00	1.7	SE
29-Dec-2016	9:00	1.4	NW
29-Dec-2016	10:00	2.8	NW
29-Dec-2016	11:00	2.8	NNW
29-Dec-2016	12:00	1.7	NW
29-Dec-2016	13:00	1.8	SW
29-Dec-2016	14:00	2.2	SW
29-Dec-2016	15:00	2.8	NNW
29-Dec-2016	16:00	2.5	NW
29-Dec-2016	17:00	1.9	NW
29-Dec-2016	18:00	1.6	NW
29-Dec-2016	19:00	2.1	W
29-Dec-2016	20:00	2.2	W
29-Dec-2016	21:00	2.8	NW
29-Dec-2016	22:00	3.9	NW
29-Dec-2016	23:00	2.8	WNW
30-Dec-2016	0:00	2.7	N
30-Dec-2016	1:00	3.1	NNW
30-Dec-2016	2:00	2.3	NNW
30-Dec-2016	3:00	2.1	NNW
30-Dec-2016	4:00	2.3	NW
30-Dec-2016	5:00	2.4	NNW

30-Dec-2016	6:00	1.3	NNW
30-Dec-2016	7:00	1.5	WSW
30-Dec-2016	8:00	2.3	WNW
30-Dec-2016	9:00	3.2	WNW
30-Dec-2016	10:00	3	WNW
30-Dec-2016	11:00	2.6	NW
30-Dec-2016	12:00	3.3	NW
30-Dec-2016	13:00	2.8	NW
30-Dec-2016	14:00	2.7	NNW
30-Dec-2016	15:00	2.7	NW
30-Dec-2016	16:00	2.9	WNW
30-Dec-2016	17:00	2.3	WSW
30-Dec-2016	18:00	2	WNW
30-Dec-2016	19:00	2.3	W
30-Dec-2016	20:00	2.4	WNW
30-Dec-2016	21:00	2	WNW
30-Dec-2016	22:00	2.3	WSW
30-Dec-2016	23:00	2.1	NW
31-Dec-2016	0:00	1.3	WNW
31-Dec-2016	1:00	1.3	NW
31-Dec-2016	2:00	1.7	WNW
31-Dec-2016	3:00	1.6	NW
31-Dec-2016	4:00	1.5	SSE
31-Dec-2016	5:00	0.8	S
31-Dec-2016	6:00	1.1	S
31-Dec-2016	7:00	1.4	S
31-Dec-2016	8:00	2.1	SSW
31-Dec-2016	9:00	2.2	WNW
31-Dec-2016	10:00	3.2	SW
31-Dec-2016	11:00	3.7	NNE
31-Dec-2016	12:00	3.4	WNW
31-Dec-2016	13:00	3	WNW
31-Dec-2016	14:00	3.3	SSW
31-Dec-2016	15:00	3.5	NW
31-Dec-2016	16:00	3.2	NNW
31-Dec-2016	17:00	3.1	S
31-Dec-2016	18:00	3	S
	1	1	Í.

31-Dec-2016	19:00	2.4	S
31-Dec-2016	20:00	2.3	SSW
31-Dec-2016	21:00	2.1	SW
31-Dec-2016	22:00	1.6	SSW
31-Dec-2016	23:00	1.4	NNW

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KL/2012/03

Kai Tak Development -Stage 4 Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for December 2016

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Dec	2-Dec	3-Dec
				1 hr TSP X3 AM1(B), AM2, AM3(A), AM4(A) & AM5(A) Noise (M8)		
4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec
	Noise (M9)	Noise (M6(A) and M7) 24 hr TSP	1 hr TSP X3 AM1(B), AM2, AM3(A), AM4(A) & AM5(A) Noise (M8)			
11-Dec	12-Dec	13-Dec	14-Dec	15-Dec	16-Dec	17-Dec
		1 hr TSP X3 AM1(B), AM2, AM3(A), AM4(A), AM5(A), AA1 & AA2 Noise (M8 & M9)			Noise (M6(A) and M7)	
	24 hr TSP				24 hr TSP	
18-Dec	19-Dec	20-Dec	21-Dec	22-Dec	23-Dec	24-Dec
	1 hr TSP X3 AM1(B), AM2, AM3(A), AM4(A), AM5(A), AA1 & AA2 Noise (M8 & M9)		Noise (M6(A) and M7)		1 hr TSP X3 AM1(B), AM2, AM3(A), AM4(A) & AM5(A)	
				24 hr TSP		
25-Dec	26-Dec	27-Dec	28-Dec	29-Dec	30-Dec	31-Dec
			Noise (M9) 24 hr TSP*	1 hr TSP X3 AM1(B), AM2, AM3(A), AM4(A) & AM5(A)* Noise (M8)	Noise (M6(A) and M7)	

^{*}Air monitoring at AM4(A) was cancelled due to unsuccessful accessibility to the facility

Air Quality Monitoring Station

AM1(B) -Boundary of KTD/Outside Contractor's site office of Contract KL/2012/02

AM2 - Lee Kau Yan Memorial School

AM3(A) - Holy Trinity Bradbury Centre

AM4(A) - EMSD Workshops

AM5(A) - Po Leung Kuk Ngan Po Ling College

Noise Monitoring Station

M6(A) - Oblate Primary School M7 - CCC Kei To Secondary School M8 - Po Leung Kuk Ngan Po Ling College

M9 - Tak Long Estate

Contract No. KL/2012/03

Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for January 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jan	2-Jan	3-Jan	4-Jan	5-Jan	6-Jan	7-Jan
		Noise (M9) 24 hr TSP*	1 hr TSP X3 AM1(B), AM2, AM3(A), AM4(A) & AM5(A)* Noise (M8)		1 hr TSP X3 AM4(B)	
8-Jan	9-Jan	10-Jan	11-Jan	12-Jan	13-Jan	14-Jan
	Noise (M6(A) and M7) 24 hr TSP	1 hr TSP X3 AM1(B), AM2, AM3(A), AM4(B) & AM5(A) Noise (M8)		Noise (M9)	24 hr TSP	
15-Jan		17-Jan	18-Jan	19-Jan	20-Jan	21-Jan
	1 hr TSP X3 AM1(B), AM2, AM3(A), AM4(B) & AM5(A) Noise (M8)	Noise (M6(A) and M7)	Noise (M9)	24 hr TSP	1 hr TSP X3 AM1(B), AM2, AM3(A), AM4(B) & AM5(A)	
22-Jan	23-Jan	24-Jan	25-Jan		27-Jan	28-Jan
	Noise (M6(A), M7, M9)		24 hr TSP	1 hr TSP X3 AM1(B), AM2, AM3(A), AM4(B) & AM5(A) Noise (M8)	24 hr TSP	
29-Jan	30-,Jan	31-,Jan	21111191		21111101	
*Almostication AMA(A)						

^{*}Air monitoring at AM4(A) was cancelled due to unsuccessful accessibility to the facility

Air Quality Monitoring Station

AM1(B) -Boundary of KTD/Outside Contractor's site office of Contract KL/2012/02

AM2 - Lee Kau Yan Memorial School

AM3(A) - Holy Trinity Bradbury Centre

AM4(A) - EMSD Workshops

AM4(B) - Ma Tau Kok Road (next to EMSD Workshops) (Temporary)

AM5(A) - Po Leung Kuk Ngan Po Ling College

Noise Monitoring Station

M6(A) - Oblate Primary School M7 - CCC Kei To Secondary School M8 - Po Leung Kuk Ngan Po Ling College

M9 - Tak Long Estate

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix E - 1-hour TSP Monitoring Results

Location AM2 -	Lee Kau Yar	n Memorial Schoo	
Date	Time	Weather	Particulate Concentration (μg/m3)
1-Dec-16	13:00	Sunny	190.6
1-Dec-16	14:00	Sunny	218.7
1-Dec-16	15:00	Sunny	212.2
7-Dec-16	9:00	Cloudy	185.2
7-Dec-16	10:00	Cloudy	188.7
7-Dec-16	11:00	Cloudy	187.0
13-Dec-16	13:00	Sunny	97.7
13-Dec-16	14:00	Sunny	100.8
13-Dec-16	15:00	Sunny	101.5
19-Dec-16	13:00	Sunny	131.5
19-Dec-16	14:00	Sunny	131.4
19-Dec-16	15:00	Sunny	131.5
23-Dec-16	9:00	Sunny	132.5
23-Dec-16	10:00	Sunny	113.5
23-Dec-16	11:00	Sunny	124.6
29-Dec-16	9:00	Sunny	190.1
29-Dec-16	10:00	Sunny	180.6
29-Dec-16	11:00	Sunny	182.0
		Average	155.6
		Maximum	218.7
		Minimum	97.7

Cation Aws(A)	- Holy Hillity	Bradbury Centre	-
Date	Time	Weather	Particulate Concentration (µg/m3)
1-Dec-16	9:00	Sunny	181.9
1-Dec-16	10:00	Sunny	196.4
1-Dec-16	11:00	Sunny	171.6
7-Dec-16	9:00	Cloudy	202.7
7-Dec-16	10:00	Cloudy	207.5
7-Dec-16	11:00	Cloudy	207.9
13-Dec-16	13:00	Sunny	102.9
13-Dec-16	14:00	Sunny	104.6
13-Dec-16	15:00	Sunny	104.8
19-Dec-16	9:00	Sunny	118.9
19-Dec-16	10:00	Sunny	117.8
19-Dec-16	11:00	Sunny	115.3
23-Dec-16	9:00	Sunny	123.4
23-Dec-16	10:00	Sunny	93.6
23-Dec-16	11:00	Sunny	63.7
29-Dec-16	9:00	Sunny	222.3
29-Dec-16	10:00	Sunny	226.7
29-Dec-16	11:00	Sunny	214.8
		Average	154.3
		Maximum	226.7
		Minimum	63.7

MA13056/App E - 1hr TSP Cinotech

Appendix E - 1-hour TSP Monitoring Results

Location AM4(A)	- EMSD Wor	rkshops	
Date	Time	Weather	Particulate Concentration (μg/m3)
1-Dec-16	8:45	Sunny	206.2
1-Dec-16	9:45	Sunny	240.2
1-Dec-16	10:45	Sunny	231.5
7-Dec-16	13:00	Cloudy	210.9
7-Dec-16	14:00	Cloudy	204.9
7-Dec-16	15:00	Cloudy	206.9
13-Dec-16	13:00	Sunny	97.7
13-Dec-16	14:00	Sunny	99.3
13-Dec-16	15:00	Sunny	99.5
19-Dec-16	13:00	Sunny	113.3
19-Dec-16	14:00	Sunny	113.1
19-Dec-16	15:00	Sunny	117.5
23-Dec-16	9:00	Cloudy	149.5
23-Dec-16	10:00	Cloudy	139.8
23-Dec-16	11:00	Cloudy	125.4
		Average	157.0
		Maximum	240.2
		Minimum	97.7

Location AM5(A) - Po Leung	g Kuk Ngan Po Lir	ng College
Date	Time	Weather	Particulate Concentration (μg/m3)
1-Dec-16	9:00	Sunny	149.1
1-Dec-16	10:00	Sunny	173.9
1-Dec-16	11:00	Sunny	136.6
7-Dec-16	14:00	Cloudy	182.7
7-Dec-16	15:00	Cloudy	185.1
7-Dec-16	16:00	Cloudy	184.4
13-Dec-16	14:00	Sunny	115.2
13-Dec-16	15:00	Sunny	114.7
13-Dec-16	16:00	Sunny	115.5
19-Dec-16	14:00	Sunny	94.2
19-Dec-16	15:00	Sunny	94.9
19-Dec-16	16:00	Sunny	97.7
23-Dec-16	13:00	Sunny	96.2
23-Dec-16	14:00	Sunny	100.6
23-Dec-16	15:00	Sunny	102.1
29-Dec-16	9:00	Sunny	66.0
29-Dec-16	10:00	Sunny	77.7
29-Dec-16	11:00	Sunny	71.3
		Average	119.9
		Maximum	185.1
		Minimum	66.0

MA13056/App E - 1hr TSP Cinotech

1-hr TSP Concentration Levels AM2 - Lee Kau Yan Memorial School - - Action Level: 346 ug/m3 Pipe laying from manhole SMH2204 to Box Culvert B6 Installation of gas pipe at pit no. 10 Installation of precast unit and construction of in-situ portions of Box Culvert B6 Construction of jacking pits nos, 1 & 2 600 500 Concentration, µg/m³ Construction of superstructure of PS2 and NPS Construction of washout chamber at pit no. 11 400 300 Installation of DCS 200 100 0 06.Oct. No 27,000,16 Date 1-hour TSP AM3(A) - Holy Trinity Bradbury Centre - Action Level: 351 µg/m3 Limit Level: 500 µg/m3 Pipe laying from manhole SMH2204 to Box Culvert B6 Installation of precast unit and construction of in-situ portions of Box Culvert B6 600 500 Concentration, µg/m³ Laying of rising mains from PS2 to chainage CHA-18 400 300 Construction of washout chamber at pit no. 11 Installation of DCS 200 100

Title Contract No. KL/2012/03
Kai Tak Development – Stage 4 Infrastructure at Former North Apron Area

Graphical Presentation of 1-hour TSP Monitoring Results

Scale Project
N.T.S No. MA13056

Date Dec 16 Dec 16 E

Date

1-hr TSP Concentration Levels 1-hour TSP AM4(A) - EMSD Workshops Pipe laying from manhole SMH2204 to Box Culvert B6 Construction of jacking pits nos. 1 & 2 Installation of precast unit and construction of in-situ portions of Box Culvert B6 600 500 Concentration, µg/m³ Construction of washout chamber at pit no. 11 Construction of superstructure of PS2 and NPS 400 Laving of rising mains from PS2 to chainage CHA-18 Installation of DCS 300 200 100 0 Date 1-hour TSP AM5(A) - Po Leung Kuk Ngan Po Ling College - - Action Level: 345 µg/m3 Pipe laying from manhole SMH2204 to Box Culvert B6 Limit Level: 500 µg/m3 Installation of precast unit and construction of in-situ portions of Box Culvert B6 600 500 Concentration, µg/m³ Construction of superstructure of PS2 and NPS Construction of washout chamber at pit no. 11 400 300 Laying of rising mains from PS2 to chainage CHA-18 200 100 0 Date Title Scale Project Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron No. MA13056 N.T.S CINOTECH Date **Appendix** Graphical Presentation of 1-hour TSP Monitoring Results Ε Dec 16

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

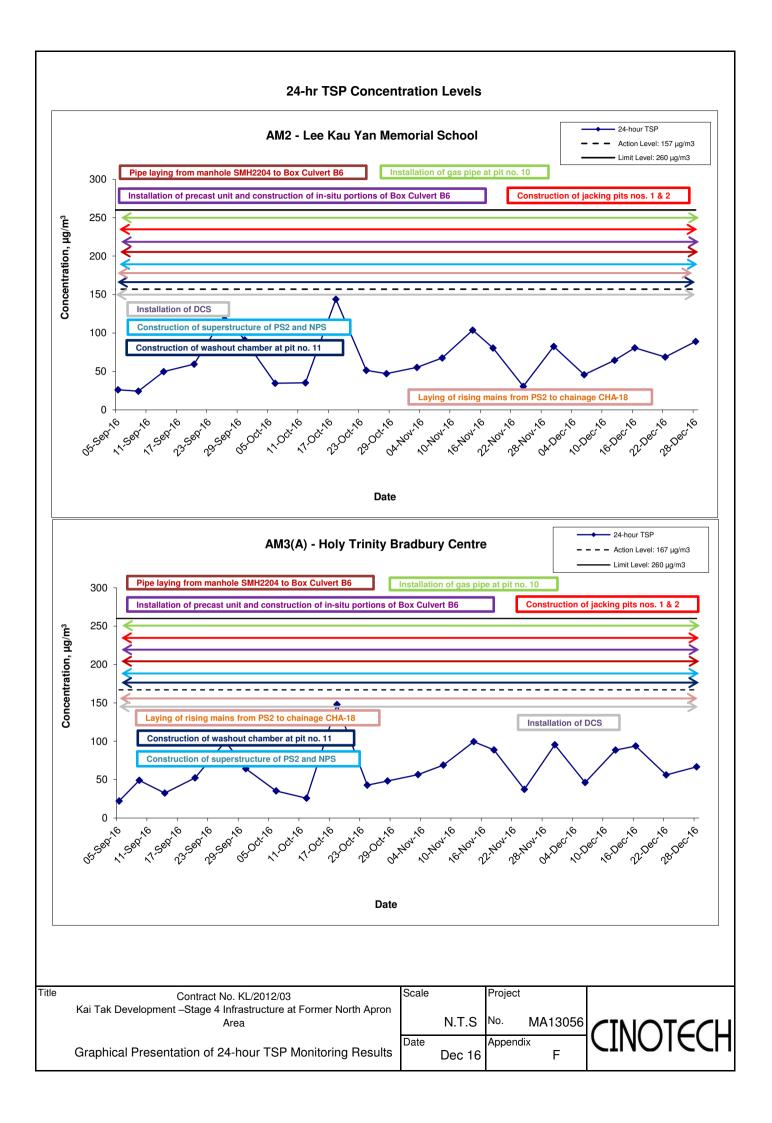
Appendix F - 24-hour TSP Monitoring Results

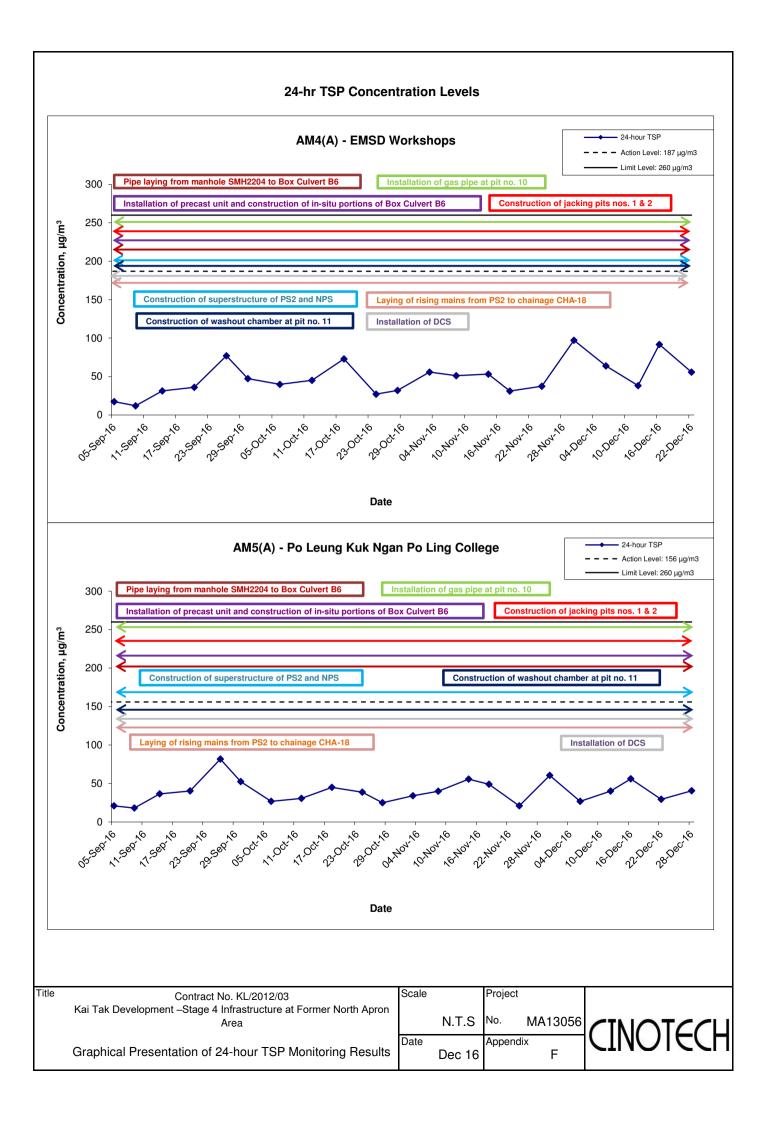
Location AM2 - Lee Kau Yan Memorial School

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
6-Dec-16	Cloudy	293.5	769.0	3.6364	3.7176	0.0812	17477.5	17501.5	24.0	1.23	1.23	1.23	1771.5	45.8
12-Dec-16	Sunny	294.2	765.1	3.2875	3.4015	0.1140	17501.5	17525.5	24.0	1.23	1.23	1.23	1764.9	64.6
16-Dec-16	Sunny	286.9	772.7	3.2909	3.4359	0.1450	17525.5	17549.5	24.0	1.25	1.25	1.25	1795.8	80.7
22-Dec-16	Sunny	294.4	766.7	3.5488	3.6703	0.1215	17549.5	17573.5	24.0	1.23	1.23	1.23	1766.2	68.8
28-Dec-16	Sunny	284.4	770.5	3.6307	3.7910	0.1603	17573.5	17597.5	24.0	1.25	1.25	1.25	1801.1	89.0
													Min	45.8
													Max	89.0
													Average	69.8

Location AM3(A) - Holy Trinity Bradbury Centre

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
6-Dec-16	Cloudy	292.6	769.7	3.6010	3.6830	0.0820	9975.6	9999.6	24.0	1.23	1.23	1.23	1774.6	46.2
12-Dec-16	Sunny	294.2	764.5	3.2609	3.4170	0.1561	9999.6	10023.6	24.0	1.23	1.22	1.22	1763.8	88.5
16-Dec-16	Sunny	286.7	772.3	3.2834	3.4517	0.1683	10023.6	10047.6	24.0	1.25	1.25	1.25	1795.7	93.7
22-Dec-16	Sunny	293.3	765.2	3.6270	3.7261	0.0991	10047.6	10071.6	24.0	1.23	1.23	1.23	1767.3	56.1
28-Dec-16	Sunny	283.7	771.1	3.5629	3.6830	0.1201	10071.6	10095.6	24.0	1.25	1.25	1.25	1803.8	66.6
													Min	46.2
													Max	93.7
													Average	70.2


Location AM4(A) - EMSD Workshops


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
6-Dec-16	Cloudy	293.8	769.2	3.5981	3.7120	0.1139	1200.1	1224.1	24.0	1.24	1.24	1.24	1782.1	63.9
12-Dec-16	Sunny	294.3	765.7	3.3143	3.3823	0.0680	1224.1	1248.1	24.0	1.23	1.23	1.23	1776.9	38.3
16-Dec-16	Sunny	287.8	772.0	3.2793	3.4447	0.1654	1248.1	1272.1	24.0	1.25	1.25	1.25	1802.3	91.8
22-Dec-16	Sunny	294.2	766.5	3.6372	3.7364	0.0992	1272.1	1296.1	24.0	1.24	1.23	1.23	1778.1	55.8
													Min	38.3
													Max	91.8
													Average	62.4

Location AM5(A) - Po Leung Kuk Ngan Po Ling College

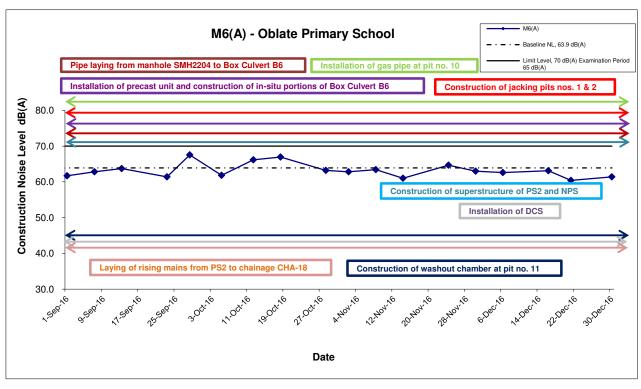
Start Date	Weather	Air	Atmospheric	Filter Weight (g)		Particulate	Elapse Time		Sampling	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
6-Dec-16	Cloudy	292.5	769.4	3.5679	3.6153	0.0474	2554.1	2578.1	24.0	1.23	1.23	1.23	1770.1	26.8
12-Dec-16	Sunny	292.8	765.6	3.2978	3.3685	0.0707	2578.1	2602.1	24.0	1.23	1.23	1.23	1765.2	40.1
16-Dec-16	Sunny	286.8	773.3	3.2826	3.383	0.1004	2602.1	2626.1	24.0	1.24	1.24	1.24	1790.4	56.1
22-Dec-16	Sunny	294.4	765.6	3.6199	3.6717	0.0518	2626.1	2650.1	24.0	1.22	1.22	1.22	1760.7	29.4
28-Dec-16	Sunny	284.8	770.7	3.5694	3.642	0.0726	2650.1	2674.1	24.0	1.25	1.25	1.25	1793.4	40.5
													Min	26.8
													Max	56.1
													Average	38.6

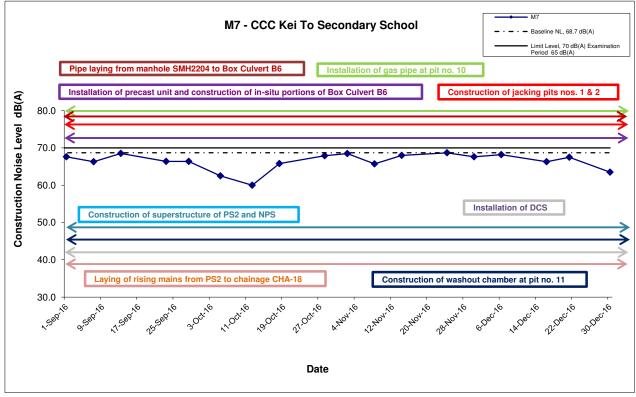
MA13056/App F - 24hr TSP

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix G - Noise Monitoring Results

Location M6(A	A) - Oblate P	rimary Schoo	ol								
				Unit: dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level				
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}				
6-Dec-16	14:00	Cloudy	66.3	68.0	64.2		62.6				
16-Dec-16	14:00	Cloudy	63.1	64.7	60.6	00.0	63.1 Measured ≤ Baseline				
21-Dec-16	10:20	Cloudy	60.4	62.0	58.4	63.9	60.4 Measured ≤ Baseline				
30-Dec-16	14:45	Cloudy	61.4	62.2	58.0		61.4 Measured ≤ Baseline				

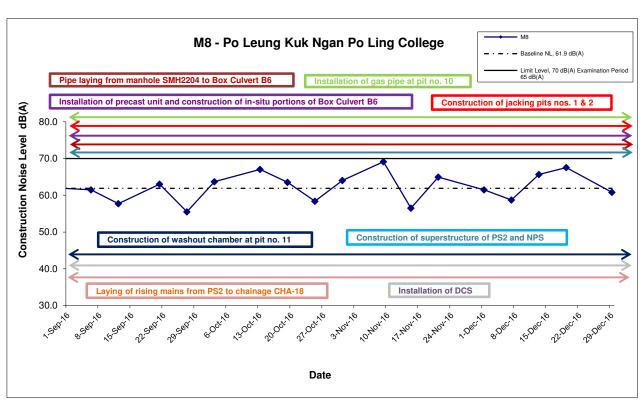

Location M7 -	CCC Kei To	Location M7 - CCC Kei To Secondary School												
					Uni	t: dB (A) (30-min)								
Date	Time	Weather	Meas	Measured Noise Level Baseline Level Construction Noise Leve										
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}							
6-Dec-16	14:45	Cloudy	68.2	69.8	63.0		68.2 Measured ≤ Baseline							
16-Dec-16	15:00	Cloudy	66.3	68.2	63.1	68.7	66.3 Measured ≤ Baseline							
21-Dec-16	9:35	Cloudy	67.5	70.7	61.8	00.7	67.5 Measured ≤ Baseline							
30-Dec-16	14:00	Cloudy	63.5	65.2	60.0		63.5 Measured ≤ Baseline							

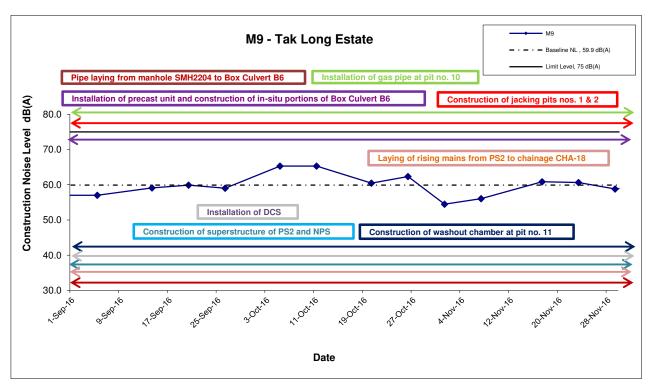

Location M8 -	Po Leung k	(uk Ngan Po I	Ling College)	Location M8 - Po Leung Kuk Ngan Po Ling College												
				Unit: dB (A) (30-min)													
Date	Time	Weather	Measured Noise Level Baseline Level Construction Noise														
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}										
1-Dec-16	9:15	Sunny	61.5	63.1	59.0		61.5 Measured ≤ Baseline										
7-Dec-16	14:15	Sunny	63.6	65.4	60.5		58.7										
13-Dec-16	14:10	Sunny	67.2	69.6	64.0	61.9	65.7										
19-Dec-16	14:30	Sunny	68.6	71.3	64.6		67.6										
29-Dec-16	9:30	Cloudy	64.4	65.1	61.6		60.8										

Location M9 -	Tak Long E	state								
			Unit: dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level			
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}			
5-Dec-16	13:30	Cloudy	63.0	65.2	60.3		60.1			
9-Dec-16	13:30	Sunny	61.5	63.2	59.2		56.4			
13-Dec-16	13:15	Sunny	55.7	57.5	53.3	59.9	55.7 Measured ≤ Baseline			
19-Dec-16	13:10	Sunny	62.3	64.5	59.1		58.6			
28-Dec-16	15:00	Cloudy	62.3	63.7	60.5		58.6			

MA13056/App G - Noise Cinotech

Noise Levels





Remarks: The construction noise levels in the Tables in Appendix G were adopted for plotting the graphs

Title	Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area	Scale		Project No. MA13056	CINOTECH
	Graphical Presentation of Construction Noise Monitoring Results	Date	Dec 16	Appendix G	

Noise Levels

Remarks: The construction noise levels in the Tables in Appendix G were adopted for plotting the graphs

Title	Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area	Scale		Project No. MA13056	CINOTACL
	Graphical Presentation of Construction Noise Monitoring Results	Date	Dec 16	Appendix G	CINOICCI

APPENDIX H SUMMARY OF EXCEEDANCE

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Appendix H – Summary of Exceedance

Exceedance Report for Contract No. KL/2012/03

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	161202	
Date	2 December 2016	
Time	10:00-12:00	

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
161202-O01	Water spraying should be provided to the haul road.	C 5
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
161202-O02	Oil stain should be cleared and oil/chemical containers should be provided with drip trays.	E8&9
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 161125), all environmental deficiencies were observed rectified/improved by the Contractor.	

Name	Signature	Date
Carrie Leung	0	2 December 2016
Dr. Priscilla Choy	N.T.	2 December 2016
-	Carrie Leung	Name Signature Carrie Leung Dr. Priscilla Choy

Checklist Reference Number	161209
Date	9 December 2016
Time	10:00-12:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	1
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
161209-R01	Chemical containers should be provided with labels and trays.	E 9
161209-R02	General refuse should be cleared. (PS2)	E liii
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 161202), item 161202-O02 was remarked as 161209-R01.	

	Name	Signature	Date
Recorded by	Carrie Leung	ane	9 December 2016
Checked by	Dr. Priscilla Choy	Wil	9 December 2016

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	161215
Date	15 December 2016
Time	14:00-17:00

		Related
Ref. No.	Non-Compliance	Item No.
**	None identified	
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
161215-O01	• Water spraying should be provided to the haul road to suppress dust emission. (near PS2)	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit section (Ref. No.: 161209), all environmental deficiencies were observed rectified/improved by the Contractor.	

	Name	Signature	Date
Recorded by	Carrie Leung	(\$	15 December 2016
Checked by	Dr. Priscilla Choy	WI	15 December 2016

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	161223	
Date	23 December 2016	
Time	10:00-12:00	

		Related
Ref. No.	Non-Compliance	Item No.
_	None identified	_
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
161223-001	Stockpile of dusty material should be covered. (Portion 6)	C 7
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 161215), all environmental deficiencies were observed rectified/improved by the Contractor.	

	Name	Signature	Date
Recorded by	Carrie Leung	(e - e	23 December 2016
Checked by	Dr. Priscilla Choy	WT	23 December 2016

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	161229
Date	29 December 2016
Time	10:00-12:00

D C M	N. C. C.	Related Item No.
Ref. No.	Non-Compliance	Item No.
-	None identified	
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
***************************************	C. Air Quality	
161229-001	Water spray should be provided to the haul road near Gate D for dust suppression.	C 4
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit section (Ref. No.: 161223), all environmental deficiencies were observed rectified/improved by the Contractor.	

	Name	Signature	Date
Recorded by	KC Chung	U	29 December 2016
Checked by	Dr. Priscilla Choy	MI	29 December 2016

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	161202
Date	2 December 2016
Time	10:00-12:00

		Related
Ref. No.	Non-Compliance	Item No
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 161125), no major environmental	
	deficiencies were observed during the site inspection.	

	Name	Signature	Date
Recorded by	Carrie Leung	(5) 5	2 December 2016
Checked by	Dr. Priscilla Choy	Wif	2 December 2016
		11	• • • • • • • • • • • • • • • • • • • •

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	161209	
Date	9 December 2016	
Time	10:00-12:00	

==		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
***	• Follow-up on previous audit section (Ref. No.: 161202), no major environmental	
	deficiencies were observed during the site inspection.	

	Name	Signature	Date
Recorded by	Carrie Leung	0	9 December 2016
Checked by	Dr. Priscilla Choy	W/_	9 December 2016

161209(EP3442009)

Checklist Reference Number	161215
Date	15 December 2016
Time	14:00-17:00

Non-Compliance	Related Item No.
None identified	_
Remarks/Observations	Related Item No
B. Water Quality	
No environmental deficiency was identified during site inspection.	
C. Air Quality	
No environmental deficiency was identified during site inspection.	
D. Noise	
No environmental deficiency was identified during site inspection.	
E. Waste / Chemical Management	
No environmental deficiency was identified during site inspection.	
F. Visual and Landscape	
No environmental deficiency was identified during site inspection.	
G. Permits /Licences	
No environmental deficiency was identified during site inspection.	
H. Others	
• Follow-up on previous audit section (Ref. No.: 161209), no major environmental	
	Remarks/Observations B. Water Quality No environmental deficiency was identified during site inspection. C. Air Quality No environmental deficiency was identified during site inspection. D. Noise No environmental deficiency was identified during site inspection. E. Waste / Chemical Management No environmental deficiency was identified during site inspection. F. Visual and Landscape No environmental deficiency was identified during site inspection. G. Permits /Licences No environmental deficiency was identified during site inspection.

	Name	Signature	Date
Recorded by	Carrie Leung	(b	15 December 2016
Checked by	Dr. Priscilla Choy		15 December 2016

Checklist Reference Number	161223
Date	23 December 2016
Time	10:00-12:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	_
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
•	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 161215), no major environmental	
	deficiencies were observed during the site inspection.	

	Name	Signature	Date
Recorded by	Carrie Leung	C	23 December 2016
Checked by	Dr. Priscilla Choy	N/A	23 December 2016

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	161229
Date	29 December 2016
Time	10:00-12:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.: 161223), no major environmental	
	deficiencies were observed during the site inspection.	

	Name	Signature	Date
Recorded by	KC Chung	Clar	29 December 2016
Checked by	Dr. Priscilla Choy	WI	29 December 2016

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Action Level being	Identify source and investigate the	Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.
	3. Repeat measurement to confirm finding.	method.		
Action Level being	Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	1. Discuss with ET and IEC on proper
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of	
	6. If exceedance continues, arrange		remedial measures;	
	meeting with IEC and ER;		5. Conduct meeting with ET and	
	7. If exceedance stops, cease additional		IEC if exceedance continues.	
	monitoring.			
Limit Level being	Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	, , , , , , , , , , , , , , , , , , ,
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
12-21	4 Notify IEO ED Controllers of	4. Oh o ha o o o'll o'll o dala a		4 Tallaction of Pater and
Limit Level being	Notify IEC, ER, Contractor and	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION ACTION			
	ET	IEC	ER	CONTRACTOR
Action Level	1. Notify ER, IEC and Contractor;	Review the investigation	1. Confirm receipt of	1. Submit noise mitigation
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;	
	check mitigation effectiveness.	(The above actions should be	4. Supervise the	
	(The above actions should be taken	taken within 2 working days after	implementation of remedial	
	within 2 working days after the	the exceedance is identified)	measures.	
	exceedance is identified)		(The above actions should be	
			taken within 2 working days	
			after the exceedance is	
			identified)	
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT	ACTION				
ACTION LEVEL	ET	IEC	ER	CONTRACTOR	
Design Check	Check final design conforms to	 Check report. Recommend 	Undertake remedial design if necessary		
	the requirements of EP and prepare	remedial design if necessary			
Non-conformity on one occasion	report. 1. Identify Source	Check report	Notify Contractor	Amend working methods	
	2. Inform IEC and	2. Check Contractor's	Ensure remedial measures are properly	Rectify damage and	
	ER	working method	implemented	undertake any necessary	
	3. Discuss remedial	3. Discuss with ET and		replacement	
	actions with IEC,	Contractor on possible			
	ER and Contractor	remedial measures			
	4. Monitor remedial	4. Advise ER on			
	actions until	effectiveness of			
	rectification has	proposed remedial			
	been completed	measures.			
		5. Check implementation			
		of remedial measures.			
Repeated Non-conformity	1. Identify Source	1. Check monitoring	1. Notify Contractor	Amend working methods	
	Inform IEC and	report	2. Ensure remedial measures are properly	2. Rectify damage and	

ER	2. Check Contractor's	implemented	undertake any necessary
2. Increase	working method		replacement
monitoring	3. Discuss with ET and		
frequency	Contractor on possible		
3. Discuss remedial	remedial measures		
actions with IEC,	4. Advise ER on		
ER and Contractor	effectiveness of		
4. Monitor remedial	proposed remedial		
actions until	measures		
rectification has	5. Supervise		
been completed	implementation of		
5. If non-conformity	remedial measures.		
stops, cease			
additional			
monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

$\label{lem:construction} \begin{tabular}{ll} Appendix K - Summary of Implementation Schedule of Mitigation Measures for Construction Phase \\ \end{tabular}$

Types of Impacts	Mitigation Measures	Status
Construction Dust	8 times daily watering of the work site with active dust emitting activities. Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts. • Stockpiling site(s) should be lined with impermeable	٨
	sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. • Misting for the dusty material should be carried out	^
	 before being loaded into the vehicle. Any vehicle with an open load carrying area should have properly fitted side and tail boards. 	٨
	 Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin. 	۸
	The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation.	^
	 The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. On- site unpaved roads should be compacted and kept free of lose materials. 	۸
	 Vehicle washing facilities should be provided at every vehicle exit point. 	*
	 The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores. 	٨
	 Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet. 	۸
	 Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides. Every vehicle should be washed to remove any dusty 	۸
	materials from its body and wheels before leaving the construction sites.	^

	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump	۸
Construction	 Good Site Practice: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. Scheduling of Construction Works during School Examination Period (i) Provision of low noise surfacing in a section of Road L2; and 	^
Noise	(ii) Develois and American fine	27/1
	(ii) Provision of structural fins(i) Avoid the sensitive façade of class room facing Road L2 and L4; and	N/A N/A
	(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A
	(i) Provision of low noise surfacing in a section of Road L4 before occupation of Site 1I1; and	N/A
	(ii) Setback of building about 5m from site boundary.	N/A
	Setback of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
	avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and	N/A
	(ii) for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not provide the facades with openable window.	N/A

	avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height of the residential block(s) located at less than 55m away from To Kwa Wan Road to no more than	N/A N/A
	(i) above ground. avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic noise impacts from the slip road	N/A
	All the ventilation fans installed in the below will be provided with silencers or acoustics treatment. (i) SPS (ii) ESS	N/A N/A
	(iii) Tunnel Ventilation Shaft (iv) EFTS depot	N/A N/A
	Installation of retractable roof or other equivalent measures	N/A
	The following mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including:	
	 Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply; Standby pumps should be provided at all SPSs to 	N/A
	ensure smooth operation of the SPS during maintenance of the duty pumps; An alarm should be installed to signal emergency high	N/A N/A
Construction Water	 All alarm should be installed to signal emergency high water level in the wet well at all SPSs; and For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should be provided so that swift actions could be taken in case of malfunction of unmanned facilities. 	N/A
Quality	Land-based Construction	
	Construction Runoff	
	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include: • use of sediment traps	^
	adequate maintenance of drainage systems to prevent flooding and overflow	۸

Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.

Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.

Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m³ capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.

Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.

Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.

Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.

Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.

Λ

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains. Drainage It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea. All temporary and permanent drainage pipes and culverts ٨ provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ. Sewage Effluent Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. Contractor should also be responsible for waste disposal and maintenance practices. Stormwater Discharges Minimum distances of 100 m should be maintained N/A

K-5

between the existing or planned stormwater discharges

and the existing or planned seawater intakes

Debris and Litter	
In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials. litter or wastes to marine waters does not occur	۸
Construction Works at or in Close Proximity of Storm Culvert or Seafront	
The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	۸
The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm culvert / nullah.	۸
Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works.	^
Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	۸
Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	۸
Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	۸
Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	۸
Construction effluent, site run-off and sewage should be properly collected and/or treated.	۸
Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	۸
Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of construction materials.	۸
Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	۸

Supervisory staff should be assigned to station on site to closely supervise and monitor the works	۸
Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	۸
Good Site Practices It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations for good site practices during construction activities include: • Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site • Training of site personnel in proper waste	^
management and chemical waste handling procedures Provision of sufficient waste disposal points and	^
 regular collection for disposal Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in 	۸
 enclosed containers A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites) 	۸
Waste Reduction Measures Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	
Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals	۸
 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 	۸
Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the work force Any unused shamingle or these with remaining.	۸
 Any unused chemicals or those with remaining functional capacity should be recycled Proper storage and site practices to minimise the potential for damage or contamination of 	٨
construction materials	

Construction and Demolition Material

Mitigation measures and good site practices should be incorporated into contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include:

- Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles should be located away from waterfront or storm drains as far as possible
- Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric

٨

Λ

Λ

٨

- Skip hoist for material transport should be totally enclosed by impervious sheeting
- Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site
- The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores
- The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle
- All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet
- The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading

When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.

Chemical Waste

After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation

	General Refuse	
	General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem	۸
	CM1 All existing trees should be carefully protected during construction.	^
Landscape and Visual	CM2 Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	N/A
	CM3 Control of night-time lighting.	۸
	CM4 Erection of decorative screen hoarding.	٨

Remarks:	^ Compliance of mitigation measure;						
	X Non-compliance of mitigation measure;						
	N/A Not Applicable at this stage;						
	N/A(1) Not observed;						
	Non-compliance but rectified by the contractor;						
	* Recommendation was made during site audit but improved/rectified by the contractor.						

APPENDIX L
SUMMARIES OF ENVIRONMENTAL
COMPLAINT, WARNING, SUMMON
AND NOTIFICATION OF SUCCESSFUL
PROSECUTION

Contract No. KL/2012/03

Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Reporting Month: December 2016

Warnings / Summons and Successful Prosecutions received in the reporting month

Log Ref.	Received Date	Details of Warning / Summons and Successful Prosecutions	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A

Remarks: No warning/summon and prosecution were received in the reporting period.

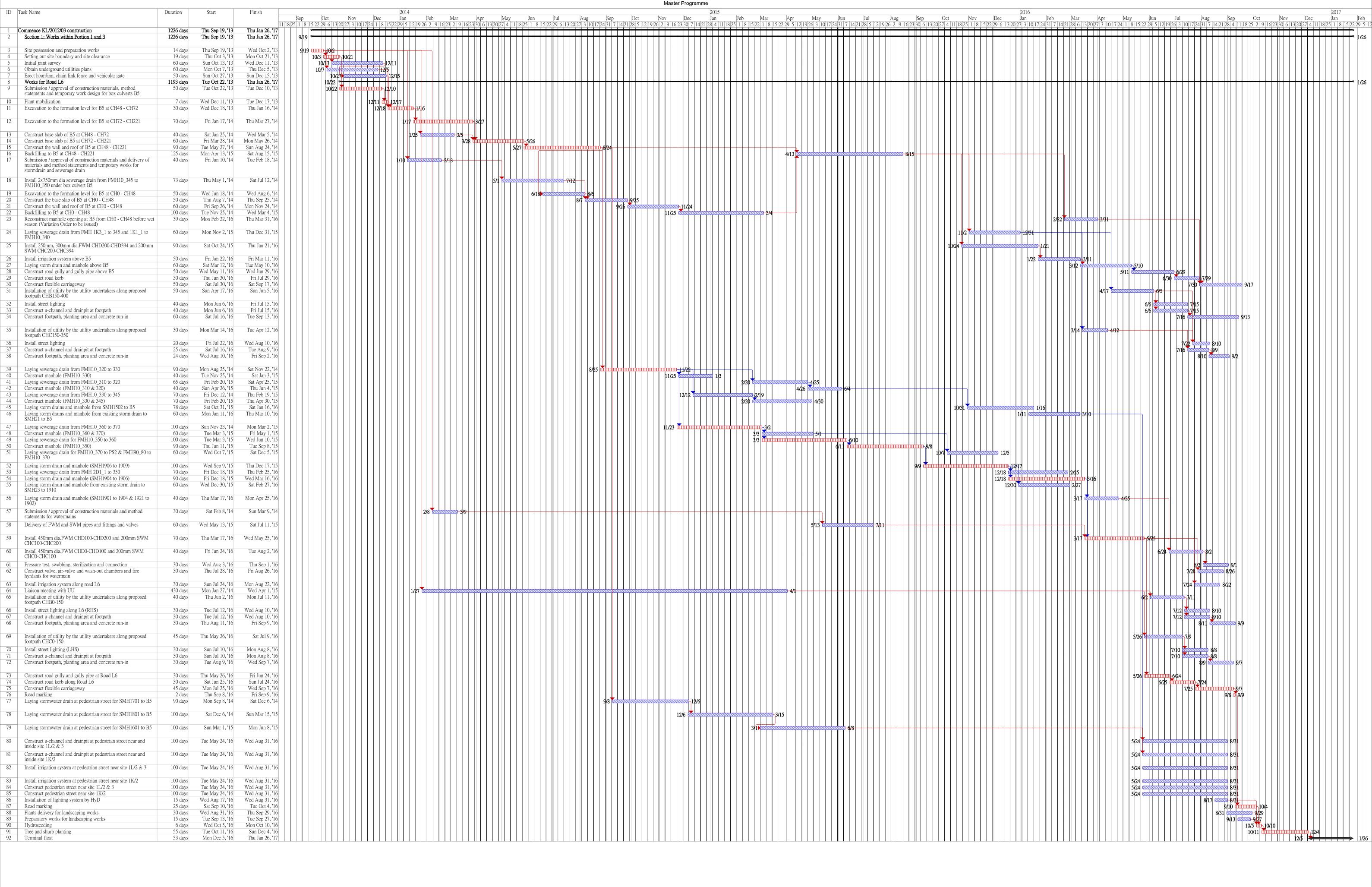
Complaint Log

EPD Complaint Ref No.	Date of Complaint	Complaint Details	Investigation / Mitigation Action	Status
15-14258	10/6/2015	Complainant said dust emission from the construction work affecting him/her. The stockpiles was not covered properly such that dust emission was observed. Some muddy water was found in To Kwa Wan Typhoon Shelter.	Complaint cases referred to the Contractor. Investigation conducted by the Contract ET. The investigation results showed that no major construction activities were conducted at the time of complaint on the day - 10 th June 2015. Since no marine works or land-based construction activities near the To Kwa Wan Typhoon Shelter were conducted, muddy effluent discharged to the To Kwa Wan Typhoon Shelter is not anticipated. The regular impact air monitoring results in the first three weeks of June 2015 were in full compliance with the Action and Limit levels. No major environmental deficiencies were observed related to the air quality and water quality, and the deficiencies as mentioned in the complaint were not recorded during the site inspections.	Closed

APPENDIX M GENERATED WASTE QUANTITY

APPENDIX IV

Monthly Summary Waste Flow Table


(PS Clause 1.86)

Name of Department: CEDD Contract No.: KL/2012/03

Monthly Summary Waste Flow Table for December 2016 (year) (in tons)

		<u> </u>	Actual	Quantities of I	nert C&D Mate	rials Generated N	Monthly	Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Disposal Loads	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse	
	(No.s)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	
2013 (Oct - Dec) Sub-Total	108	463.69	0	0	0	0	0	0	0	0	0	463.69	
2014 (Jan – Dec) Sub-Total	24	16925.7	0	0	16798.93	83.66	1804.27	0	0	0	0	43.11	
Jan-15	3	38301.47	0	0	38291.91	0	2064	0	0	0	0	9.56	
Feb-15	2	7.8	0	0	0	0	1776	0	0	0	0	7.8	
Mar-15	7	21.46	0	0	0	0	2450	0	0	0	0	21.46	
Apr-15	26	2041.48	0	0	0	2230.43	2610	0	0	0	0	10.46	
May-15	7	647.2	0	0	0	640.58	1550	0	0	0	0	6.62	
Jun-15	60	516.9	0	0	0	501.45	0	0	0	0	0	15.45	
Jul-15	9	27.74	0	0	0	0	510	0	0	0	0	27.74	
Aug-15	12	45.39	0	0	0	0	2410	0	0	0	0	45.39	
Sep-15	51	398.77	0	0	0	359.78	1120	0	0	0	0	38.99	
Oct-15	54	367.55	0	0	0	323.83	240	0	0	0	0	43.72	
Nov-15	24	119.28	0	0	0	81.64	1920	0	0	0	0	37.64	
Dec-15	29	39364.93	0	0	0	39319.5	3270	0	0	0	0	45.43	
Jan-16	22	119.94	0	0	0	81.77	2930	0	0	0	0	38.15	
Feb-16	13	63.37	0	0	0	38.04	1090	0	0	0	0	25.33	
Mar-16	1664	28328.67	0	0	0	28298	0	0	0	0	0	30.67	
Apr-16	10	34.02	0	0	0	0	0	0	0	0	0	34.02	
May-16	26	174.63	0	0	0	130.44	0	0	0	0	0	44.19	
Jun-16	59	397.69	0	0	0	319.98	0	0	0	0	0	77.71	
Jul-16	1049	16056.81	0	0	0	15973.72	0	0	0	0	0	83.09	
Aug-16	344	4606.05	0	0	0	4455.94	0	0	0	0	0	150.11	
Sep-16	58	377.77	0	0	0	290.28	0	0	0	0	0	87.49	
Oct-16	21	60.62	0	0	0	0	0	0	0	0	0	60.62	
Nov-16	64	344.74	0	0	0	167.59	0	0	0	0	0	177.15	
Dec-16	39	198.33	0	0	0	138.91	0	0	0	0	0	59.42	
Total	3785	150012	0	0	55090.84	93435.54	25744.27	0	0	0	0	1685.01	

APPENDIX N CONSTRUCTION PROGRAMME

Critical tasks

Non-critical Tasks

Working days

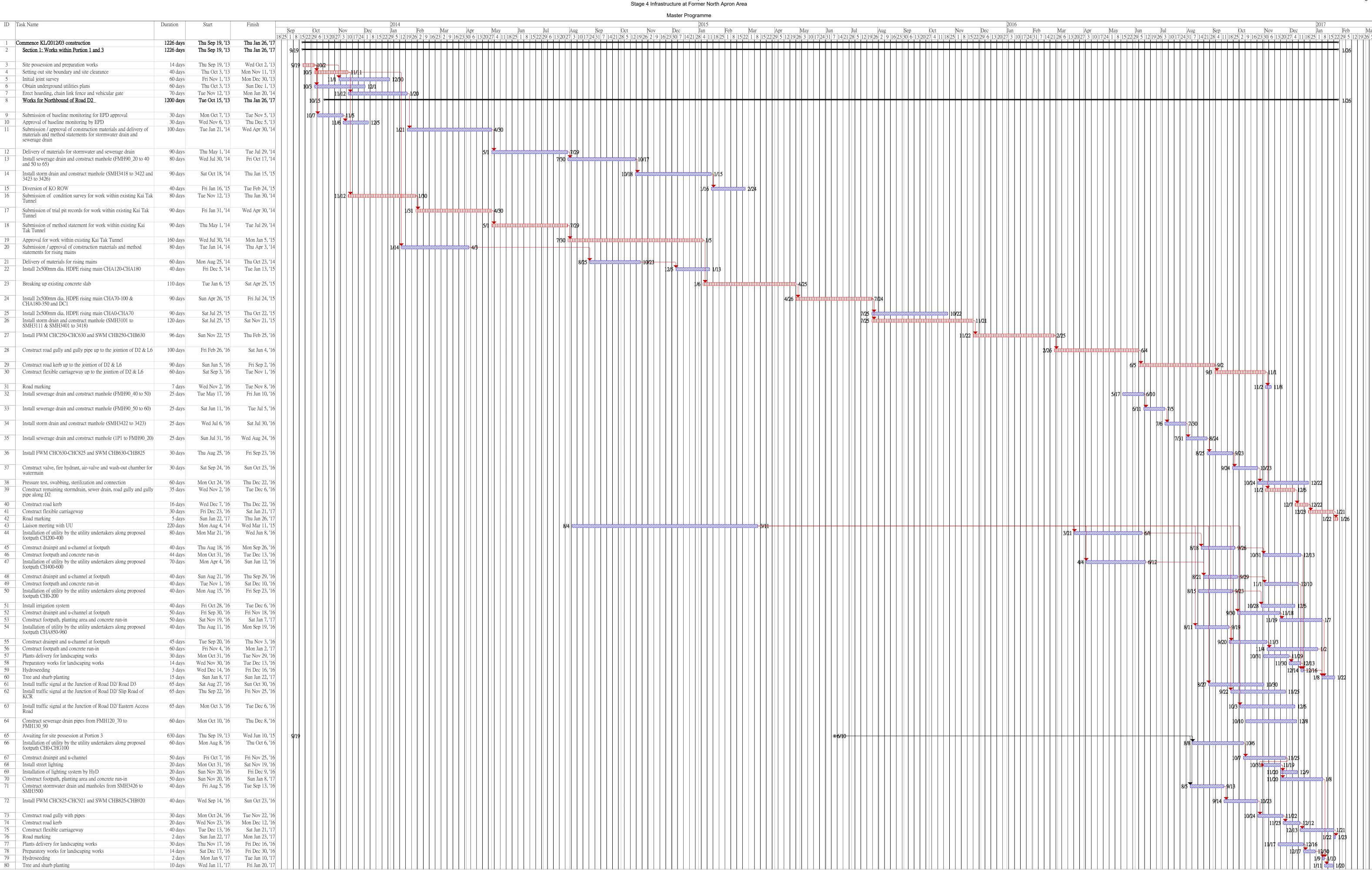
Inactive Milestone

Inactive Summary

Manual Task

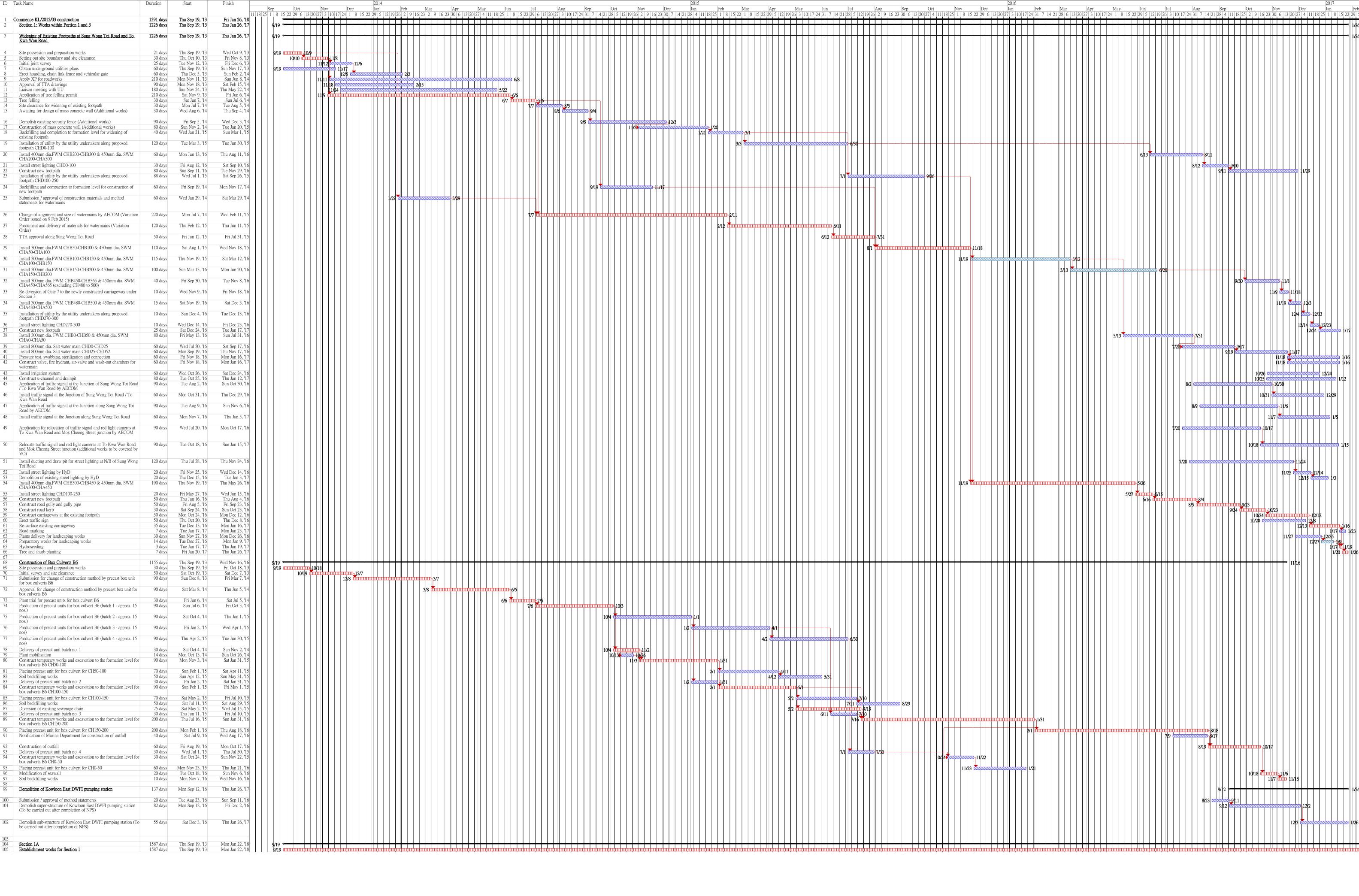
Duration-only

Manual Summary Rollup ◆


Manual Summary

Start-only

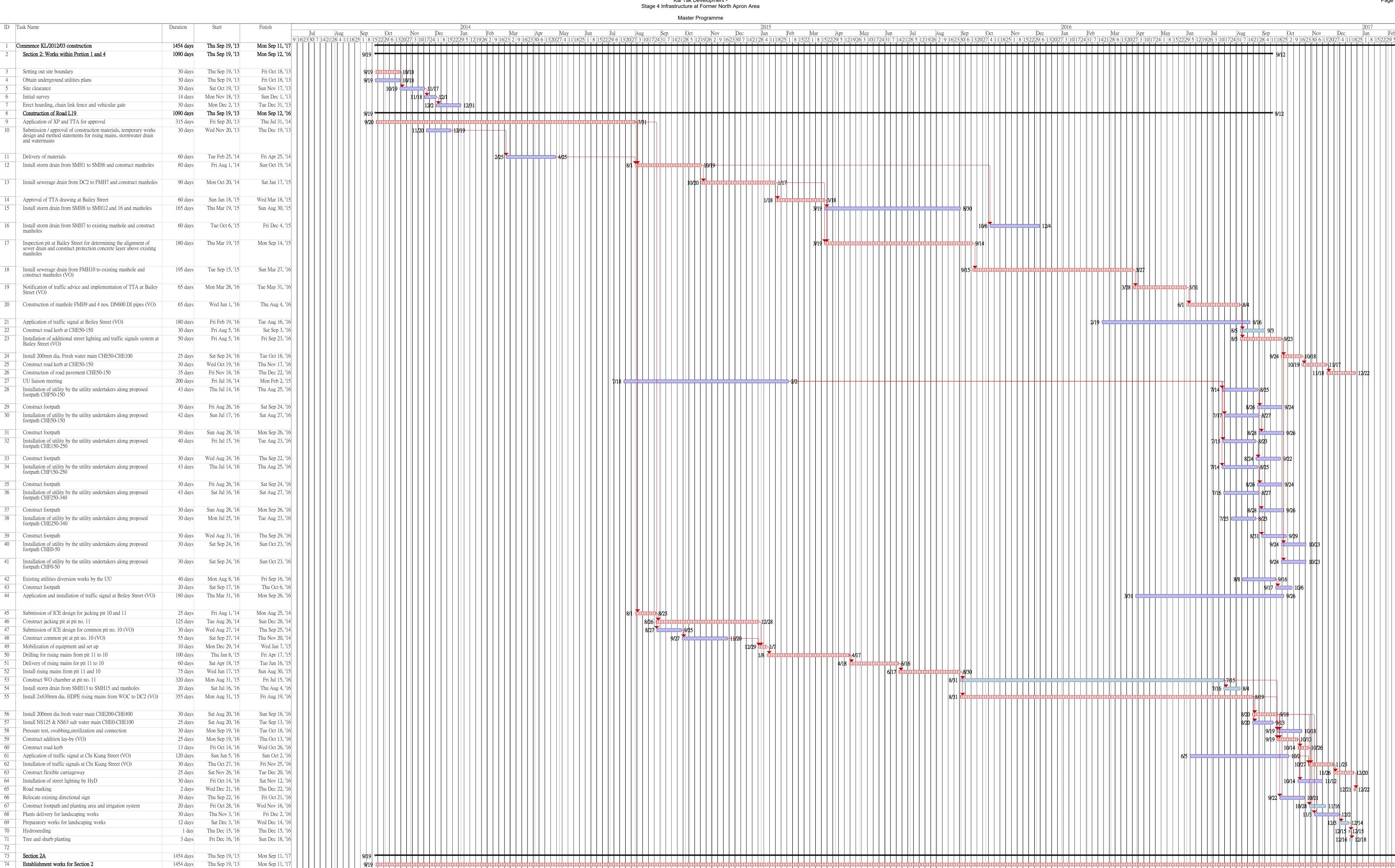
Finish-only


External Tasks

External Milestone

Critical tasks Inactive Summary Inactive Manual Summary Rollup I

Revised Completion Date: 26 January 2017


Commencement Date: 19 September 2013
Completion Date: 2 September 2016
Revised Completion Date: 26 January 2017

Critical tasks

Critical tasks

Manual Summary Non-critical tasks

Updated on 29 July 2016

Critical tasks

Non-critical tasks

Working days

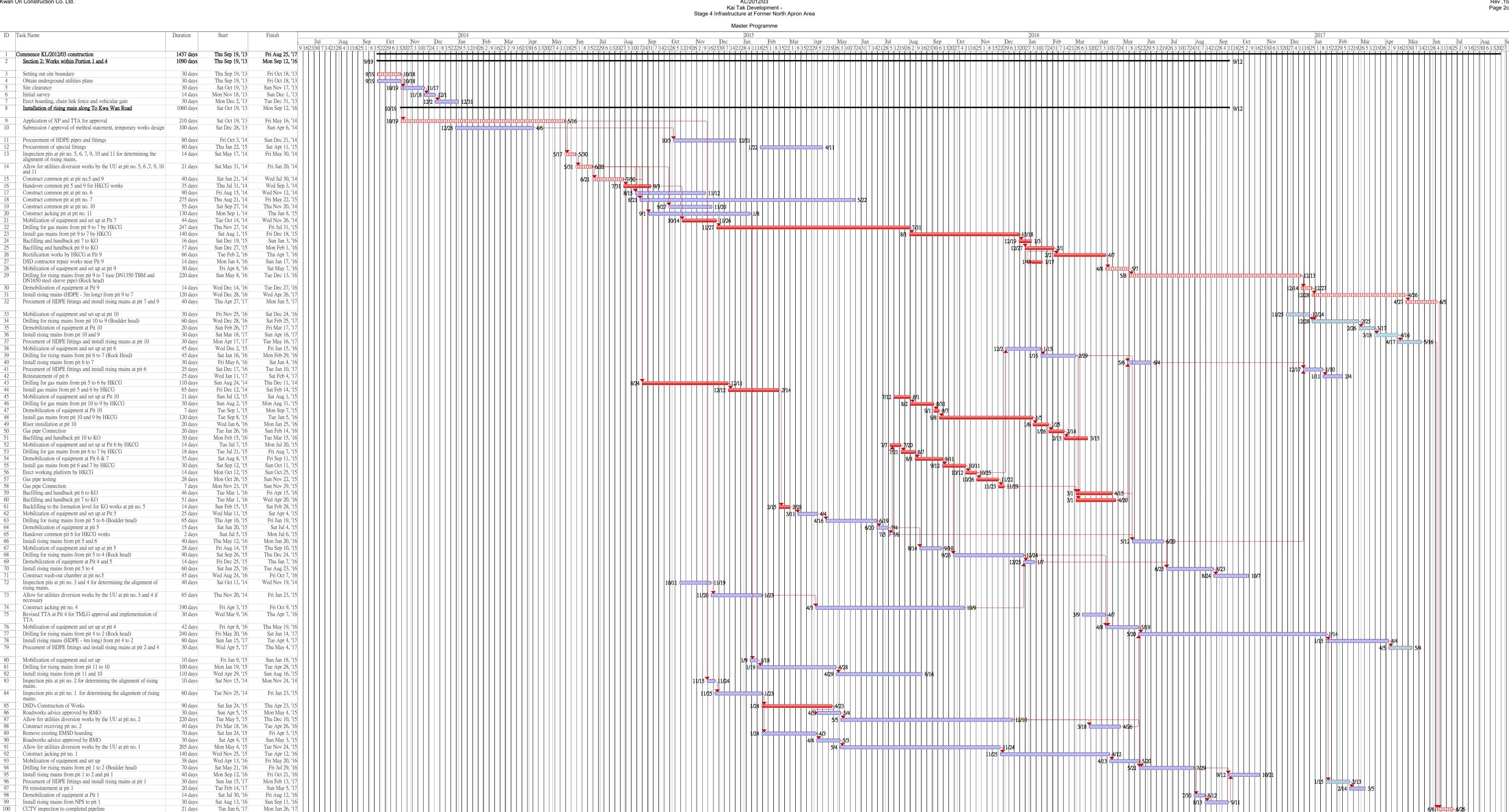
Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup


Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

30 days

Pressure test

Completion Date: 5 May 2016

Revised Completion Date: 12 September 2016

02 Road reinstatement at pit 7, 9 and 10

Tue Jun 27, '17

Thu Jul 27, '17

Wed Jul 26, '17

Fri Aug 25, '17

Master Programme

ID Task Name September 2014 January 1 12/20 September 1 January 1 12/21 1/18 September 1 September 1 September 1 11/22 9/25 10/23 9/29 10/27 11/24 12/22 1/19 2/16 3/16 5/11 8/3 9/28 10/26 2/15 3/15 5/10 8/2 9/27 10/25 2/14 3/13 4/10 5/8 6/5 7/31 4/13 8/31 4/12 8/30 8/28 Commence KL/2012/03 construction 1336 days Thu Sep 19, '13 Tue May 16, '17 Section 3: Works within Portion 1 Thu Sep 19, '13 Tue May 17, '16 Works for Part of Road D2 Thu Sep 19, '13 Tue May 17, '16 9/19 🕶 Thu Oct 3, '13 9/19 Site possession and preparation works 20 days Fri Oct 4, '13 Wed Oct 23, '13 Site clearance and setting out site boundary Apply XP for roadworks at junction of SWTR and TKWR and 210 days Sun Nov 3, '13 Sat May 31, '14 Mon Oct 7, '13 Thu Oct 31, '13 Submission of baseline monitoring for EPD approval Approval of baseline monitoring by EPD 25 days Fri Nov 1, '13 Mon Nov 25, '13 Submission / approval of construction materials and method Fri Oct 4, '13 Wed Nov 27, '13 h11/27 Construct jacking / receiving pits for 2x750mm dia. Concrete pipes from FMH120_60 to 70 by trenchless method 120 days Thu Nov 28, '13 Thu Mar 27, '14 Fri Jan 24, '14 Mon Mar 24, '14 Delivery of materials for sewerage drain Fri Mar 28, '14 Sat Apr 26, '14 Mobilization of pipe jacking machine and setup Drilling and installation of concrete pipe for 2x750mm dia. Sun Apr 27, '14 Fri Jul 25, '14 Construct sewerage drain and construct manholes from FMH120_30 to 40 Sat Jul 26, '14 Mon Oct 13, '14 7/26 🚻 12/13 Construct manholes FMH120_60 and 70 Tue Oct 14, '14 Fri Dec 12, '14 10/14 🚻 Sat Dec 13, '14 Sat Jan 31, '15 Removal of existing hoarding 50 days Approval of TTA and implementation of TTA along SWTR and TKWR Sun Feb 1, '15 Mon Mar 2, '15 30 days 3/3 3/22 Removal of existing security fence Tue Mar 3, '15 Sun Mar 22, '15 Install storm drain from SMH2501 to 2503 and construct Mon Mar 23, '15 Tue Apr 21, '15 manholes for construction of road junction of D2/SWTR Completion of CLP works (Portion B) (width of occupied areas at 378 days Thu Apr 3, '14 Wed Apr 15, '15 northbound of D2 = approx. 20m) Installation of sheetpiling for CP3P3 1061-1115 Sun Jan 11, '15 Mon Feb 9, '15 1/11 Installation of waling and excavation to formation level for Wed Feb 25, '15 Fri Apr 10, '15 CP3P3 1061-1115 Construct DCS system at CP3P3 1061-1115 Wed Apr 22, '15 Tue Oct 13, '15 10/14 Trench backfilling at CP3P3 1061-1115 and removal of sheet Wed Oct 14, '15 Thu Nov 12, '15 30 days Install storm drain from SMH2202 to 2204 and construct Sun May 31, '15 Wed Jul 29, '15 Install storm drain from SMH3110 to3112 & 3113 to 3115 and Sun Jun 7, '15 Fri Sep 4, '15 Construct sewerage drain and construct manholes from DC1 to FMH120_30 Sun Sep 6, '15 Sun Oct 25, '15 10/25 Install storm drain from SMH3112 to 3113 and construct Mon Oct 26, '15 Mon Dec 14, '15 Install water main and wash-out chamber CHB200-CHB280 and 90 days Tue Dec 15, '15 Sun Mar 13, '16 12/15 CHC200-CHC280 Installation of utility by the utility undertakers at the junction of the realigned DLO ROW 3/14 3/28 15 days Mon Mar 14, '16 Mon Mar 28, '16 3/29 📉 Tue Mar 29, '16 Thu May 12, '16 Install sewer drain from FMH120_10 to 20 Construct additional manhole FMH120_15 (VO) Fri May 13, '16 Tue Jun 21, '16 5/22 6/20 Modification of newly constructed sewer manholes and 30 days Sun May 22, '16 Mon Jun 20, '16 associated drain pipes for DC1 6/22 Construct flexible carriageway at the junction of realigned DLO Wed Jun 22, '16 Fri Aug 5, '16 ROW including wearing course Sat Aug 6, '16 Sat Aug 6, '16 Install traffic signal at the Junction of Road D2/ Western Access 20 days Fri Jul 15, '16 6/26 7/15 8/7 \$\int_8/8 8/9 \$\int_8/23 Re-diversion of DLO ROW Sun Aug 7, '16 Mon Aug 8, '16 Tue Aug 9, '16 Tue Aug 23, '16 Install water main CHB170-CHB200 and CHC170-CHC200 Wed Sep 7, '16 Construct road gully and gully pipe 8/24 Construct road kerb Thu Sep 8, '16 Thu Sep 22, '16 Construct flexible carriageway Thu Sep 8, '16 Tue Sep 27, '16 20 days Installation of utility by the utility undertakers along proposed 15 days Tue Aug 9, '16 Tue Aug 23, '16 footpath CH730-750 Construct u-channel and footpath Wed Aug 24, '16 Tue Sep 27, '16 8/24 Landscaping works Wed Sep 28, '16 Fri Sep 30, '16 9/28 💆 9/30 11/13 Construct sewerage drain and construct manholes from Fri Nov 13, '15 Fri Dec 4, '15 Proposed sewerage drain from FMH120_50 to 60 clash with CLP as-constructed CLP tunnel. Revised construction details was Sat Dec 5, '15 Sun Jan 3, '16 30 days instructed by the Engineer on 30 Dec 15 Construct additional manhole FMH120_55 (VO) Mon Jan 4, '16 Thu Mar 3, '16 Construct sewerage drain from FMH120_50 to 55 to 60 Fri Mar 4, '16 Sat Apr 2, '16 30 days 4/3 🚻 Install storm drain from SMH3117 to SMH2304 55 days Sun Apr 3, '16 Fri May 27, '16 Install storm drain from SMH3115 to 3117a and construct 25 days Sat May 28, '16 Tue Jun 21, '16 5/28 5/28 **5**/28 **1** Install water main CHB0-CHB170 and CHC0-CHC170 25 days Sat May 28, '16 Tue Jun 21, '16 Construct road gully and gully pipe 50 days Sat May 28, '16 Sat Jul 16, '16 7/17 **111111** Construct road kerb 30 days Sun Jul 17, '16 Mon Aug 15, '16 Install irrigation system 30 days Tue Aug 16, '16 Wed Sep 14, '16 8/16 8/16 Installation of lighting system by HyD 20 days Tue Aug 16, '16 Sun Sep 4, '16 Construct flexible carriageway 50 days Tue Aug 16, '16 Tue Oct 4, '16 5 days Wed Oct 5, '16 Sun Oct 9, '16 Planting works 270 days Thu May 8, '14 Sun Feb 1, '15 Liaison meeting with UU Installation of utility by the utility undertakers along proposed 52 days Sun Jul 3, '16 Tue Aug 23, '16 footpath CH550-730 Wed Aug 24, '16 30 days 8/24 Construct planting area, u-channel and footpath Thu Sep 22, '16 9/23 🔰 9/25 3 days Fri Sep 23, '16 Sun Sep 25, '16 Landscaping works Installation of utility by the utility undertakers along proposed 45 days Sun Jul 3, '16 Tue Aug 16, '16 footpath CH750-810 Wed Aug 17, '16 Construct planting area, u-channel and footpath Sun Sep 25, '16 8/17 9/25 CLP T-junction at Portion C Thu Oct 9, '14 Sat Oct 31, '15 388 days Installation of utility by the utility undertakers along proposed 30 days Sun Nov 1, '15 Mon Nov 30, '15 footpath CHA820-850 Submission on method statement for DWFI for DSD approval Sun Oct 4, '15 Fri Oct 23, '15 10/4 10/23 Wed Dec 2, '15 Wed Jan 13, '16 Awaiting for construction details for re-construction of box Reconstruction of existing box culvert DWFI (VO) Thu Jan 14, '16 Wed Jun 1, '16 1/14 Construct sewer drain from box culvert to FMH140_10 and 70 days Thu Jun 2, '16 Wed Aug 10, '16 Install FWM CHC1-0 to 50 & SWM CHF2-0 to 50 (VO 35A) 30 days Thu Aug 11, '16 Fri Sep 9, '16 Installation of utility by the utility undertakers along proposed 10 days Sat Sep 10, '16 Mon Sep 19, '16 footpath CHA820-850 9/20 챆 Construct planting area, u-channel and footpath Tue Sep 20, '16 Sun Oct 9, '16 1336 days Section 3A Thu Sep 19, '13 Tue May 16, '17 Establishment works for Section 3 1336 days Thu Sep 19, '13 Tue May 16, '17 9/19 🎹 1080 days Thu Sep 19, '13 Fri Sep 2, '16 Section 4 9/19 🕶 1080 days Thu Sep 19, '13 Fri Sep 2, '16 Perservation and preotection of trees within Portions 1 to 4 9/19 🎹

Section 3 Commencement Date: 19 September 2013 Completion Date: 17 May 2016

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup ◆

Manual Summary

Start-only

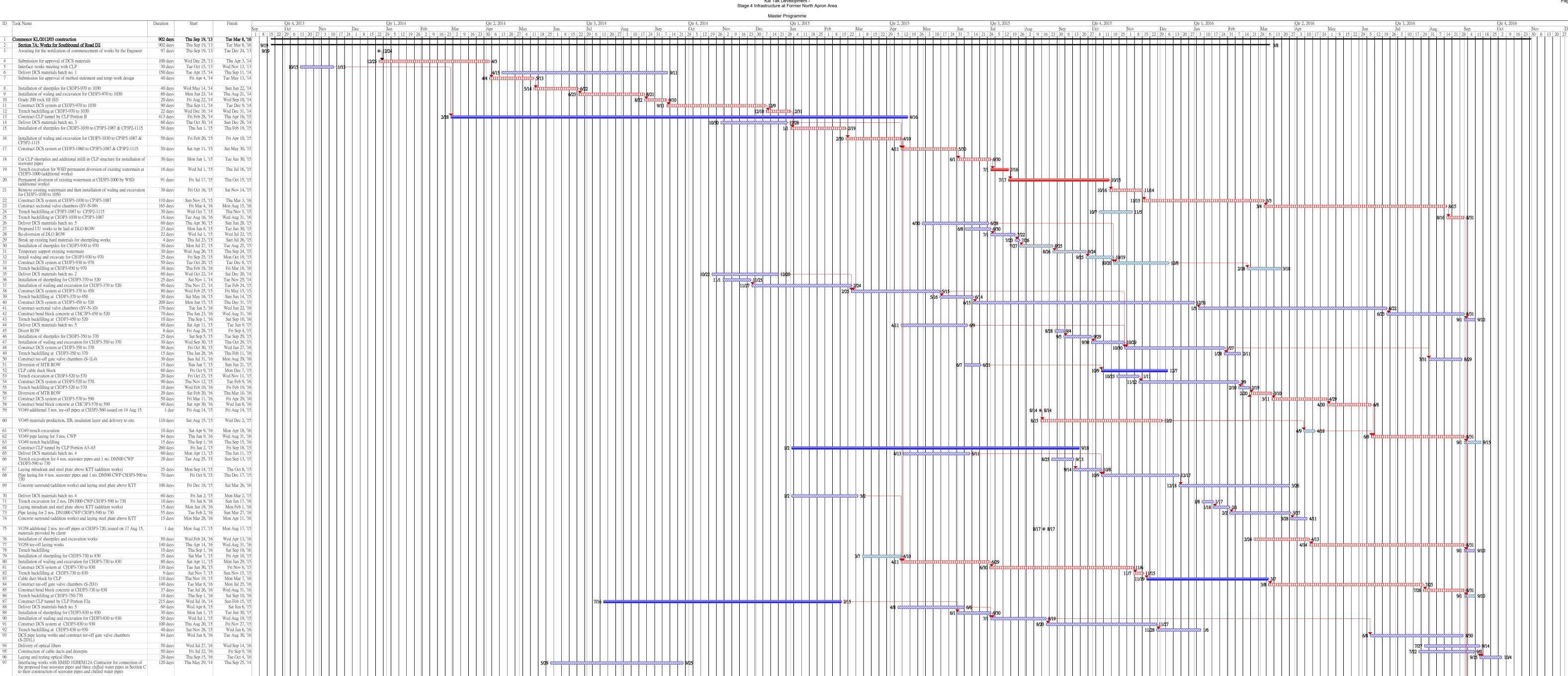
Finish-only

External Tasks

External Milestone

Critical tasks

Non-critical tasks


Working days

Inactive Milestone

Kai Tak Development Stage 4 Infrastructure at Former North Apron Area

Master Programme

ID Task Name September 2015 September 2013 September 2014 January 2015 September 1 September 1 January 1 September 1 November 1 November 1 January 1 Commence KL/2012/03 construction Thu Sep 19, '13 Thu Sep 15, '16 Thu Sep 15, '16 **9/19** Section 5: Works for Southbound of Road D2 1093 days Thu Sep 19, '13 **⊛** 12/24 Awaiting for the notification of commencement of works by the Engineer 97 days Thu Sep 19, '13 Tue Dec 24, '13 **9/19** Completion of DCS works for CH3P3-970 to 1030 372 days Wed Dec 25, '13 12/25 Wed Dec 31, '14 Installation of utility by the utility undertakers along proposed footpath 20 days Mon Aug 29, '16 Sat Sep 17, '16 Construct drainpit and u-channel Sun Sep 18, '16 Wed Oct 12, '16 9/18 🖎 Install street lighting 15 days Sun Oct 9, '16 Sun Sep 25, '16 20 days Installation of lighting system by HyD Mon Oct 10, '16 Sat Oct 29, '16 Construct footpath, planting area and concrete run-in 35 days Mon Oct 17, '16 Sun Nov 20, '16 11/21 🕈 11/23 Mon Nov 21, '16 Landscape works Wed Nov 23, '16 Construct stormwater drain and manholes 17 days Mon Aug 15, '16 Wed Aug 31, '16 8/15 8/31 Construct road gully with pipes 15 days Thu Sep 1, '16 Thu Sep 15, '16 Construct road kerb 15 days Fri Sep 16, '16 Fri Sep 30, '16 Construct flexible carriageway 30 days Sat Oct 1, '16 Sun Oct 30, '16 Road marking Mon Oct 31, '16 Mon Oct 31, '16 Construct CLP tunnel by CLP Portion B 413 days Fri Feb 28, '14 Thu Apr 16, '15 610 days Completion of DCS works for CH3P3-1030 to 1115 Thu Jan 1, '15 Thu Sep 1, '16 Installation of utility by the utility undertakers along proposed footpath 25 days Sun Sep 18, '16 Wed Oct 12, '16 9/18 Thu Oct 13, '16 Construct drainpit and u-channel Fri Nov 11, '16 Wed Nov 23, '16 11/12 11/23 Sat Nov 12, '16 Install street lighting Construct footpath, planting area and concrete run-in 39 days Thu Oct 13, '16 Sun Nov 20, '16 11/21 🕈 11/23 3 days Landscape works Mon Nov 21, '16 Wed Nov 23, '16 33 days Construct stormwater drain and manholes Fri Sep 2, '16 Tue Oct 4, '16 Wed Oct 5, '16 Construct road gully with pipes 16 days Thu Oct 20, '16 Construct road kerb Fri Oct 21, '16 Fri Nov 4, '16 10/21 11/4 25 days Sat Nov 5, '16 Construct flexible carriageway Tue Nov 29, '16 Road marking Wed Nov 30, '16 Wed Nov 30, '16 Completion of DCS works for CH3P3-930 to 970 141 days Wed Jul 1, '15 Wed Nov 18, '15 Construct CLP tunnel by CLP Portion F1 126 days Thu Nov 19, '15 Wed Mar 23, '16 8/15 Installation of utility by the utility undertakers along proposed footpath 31 days Mon Aug 15, '16 Wed Sep 14, '16 Wed Oct 19, '16 Construct drainpit and u-channel Thu Sep 15, '16 9/15 20 days Thu Sep 15, '16 Install street lighting Tue Oct 4, '16 40 days Thu Sep 15, '16 Mon Oct 24, '16 Construct footpath, planting area and concrete run-in 10/25 📉 10/31 7 days Tue Oct 25, '16 Mon Oct 31, '16 Landscape works 45 days Mon May 2, '16 6/15 Construct stormwater drain and manholes Wed Jun 15, '16 Construct road gully with pipes 40 days Thu Jun 16, '16 Mon Jul 25, '16 7/26 8/4 Construct road kerb 10 days Tue Jul 26, '16 Thu Aug 4, '16 Construct flexible carriageway 40 days Fri Aug 5, '16 Tue Sep 13, '16 9/14 9/15 Road marking Wed Sep 14, '16 Thu Sep 15, '16 Completion of DCS works for CH3P3-370 to 520 400 days Sun Dec 28, '14 Sun Jan 31, '16 Completion of DCS works for CH3P3-350 to 370 120 days Sun Oct 4, '15 Sun Jan 31, '16 Completion of DCS works for CH3P3-520 to 570 Thu Feb 11, '16 10/25 110 days Sun Oct 25, '15 Installation of utility by the utility undertakers along proposed footpath 35 days Sun Aug 28, '16 Sat Oct 1, '16 8/28 44 Construct drainpit and u-channel Sun Oct 2, '16 Tue Nov 15, '16 Install street lighting 20 days Sun Oct 2, '16 Fri Oct 21, '16 Construct footpath, planting area and concrete run-in 45 days Tue Nov 15, '16 Sun Oct 2, '16 Wed Nov 16, '16 Tue Nov 22, '16 11/16 🔖 11/22 7 Landscape works Construct stormwater drain and manholes Sun Aug 28, '16 Mon Sep 26, '16 Construct road gully with pipes Tue Sep 27, '16 Sun Oct 16, '16 10/17 50 Construct road kerb 20 days Mon Oct 17, '16 Sat Nov 5, '16 Construct flexible carriageway 20 days Sun Nov 6, '16 Fri Nov 25, '16 3 days Sat Nov 26, '16 Mon Nov 28, '16 11/26 🕈 11/28 Road marking 53 Completion of DCS works for CH3P3-570 to 730 Sat Sep 19, '15 Tue Apr 5, '16 9/19 🛚 8/21 Installation of utility by the utility undertakers along proposed footpath 35 days Sun Aug 21, '16 Sat Sep 24, '16 55 Construct drainpit and u-channel Sun Sep 25, '16 55 days Fri Nov 18, '16 9/25 56 Install street lighting Sun Sep 25, '16 Fri Oct 14, '16 9/25 Construct footpath, planting area and concrete run-in 50 days Sun Sep 25, '16 Sun Nov 13, '16 11/14 📩 11/20 58 Landscape works 7 days Mon Nov 14, '16 Sun Nov 20, '16 40 days Sun May 29, '16 Thu Jul 7, '16 5/29 Construct stormwater drain and manholes 29 days Fri Jul 8, '16 Fri Aug 5, '16 60 Construct road gully with pipes 61 Construct road kerb 20 days Sat Aug 6, '16 Thu Aug 25, '16 20 days 62 Construct flexible carriageway Fri Aug 26, '16 Wed Sep 14, '16 9/15 9/15 Thu Sep 15, '16 Thu Sep 15, '16 63 Road marking 64 Completion of DCS works for CH3P3-730 to 830 260 days Mon Mar 2, '15 Mon Nov 16, '15 65 Cable duct block by CLP 126 days Tue Nov 17, '15 Mon Mar 21, '16 11/17 240 days Mon Apr 27, '15 Completion of DCS works for CH3P3-830 to 930 (except 860 to 900) Tue Dec 22, '15 <u>№ 12/22</u> 40 days Sun Aug 28, '16 Installation of utility by the utility undertakers along proposed footpath Thu Oct 6, '16 68 Construct drainpit and u-channel Fri Oct 7, '16 Sun Nov 20, '16 69 Install street lighting 20 days Fri Oct 7, '16 Wed Oct 26, '16 10/7 Construct footpath, planting area and concrete run-in 45 days Fri Oct 7, '16 Sun Nov 20, '16 Mon Nov 21, '16 Sun Nov 27, '16 Landscape works 21 days Sun Mar 27, '16 Sat Apr 16, '16 Construct stormwater drain and manholes 3/27 4/16 Proposed sewer drain FMH120_20 to 10 clash with as-constructed CLP's 10 days Sun Apr 17, '16 Tue Apr 26, '16 4/17 4/26 cable tunnel. Further instruction is required Construct additional manhole with backdrop (VO) Wed Apr 27, '16 Sun Jun 5, '16 Mon Jun 6, '16 Wed Jul 20, '16 Construct road gully with pipes 7/21 8/10 8/10 Thu Jul 21, '16 Construct road kerb 20 days Tue Aug 9, '16 Construct flexible carriageway 35 days Wed Aug 10, '16 Tue Sep 13, '16 2 days Wed Sep 14, '16 9/14 9/15 Road marking Thu Sep 15, '16 Completion of DCS works for CH3P3-860 to 900 for realignment of DLO 110 days Sun Apr 17, '16 Thu Aug 4, '16 ROW including wearing course 80 Installation of utility by the utility undertakers along proposed footpath Fri Aug 5, '16 Wed Aug 24, '16 8/20 Fri Aug 5, '16 Sat Aug 20, '16 81 Construct stormwater drain and manholes 8/21 8/30 82 Construct road gully with pipes Sun Aug 21, '16 Tue Aug 30, '16 8/31 🌄 9/4 83 Construct road kerb 5 days Wed Aug 31, '16 Sun Sep 4, '16 9/5 5 9/14 84 Construct flexible carriageway 10 days Mon Sep 5, '16 Wed Sep 14, '16 85 Road marking 1 day Thu Sep 15, '16 9/15 9/15 Thu Sep 15, '16

120 days Thu May 29, '14 Thu Sep 25, '14

98 CCTV for DCS pipes

99 Swabbing, pressure test and chemical test for DCS Pipes

Critical tasks

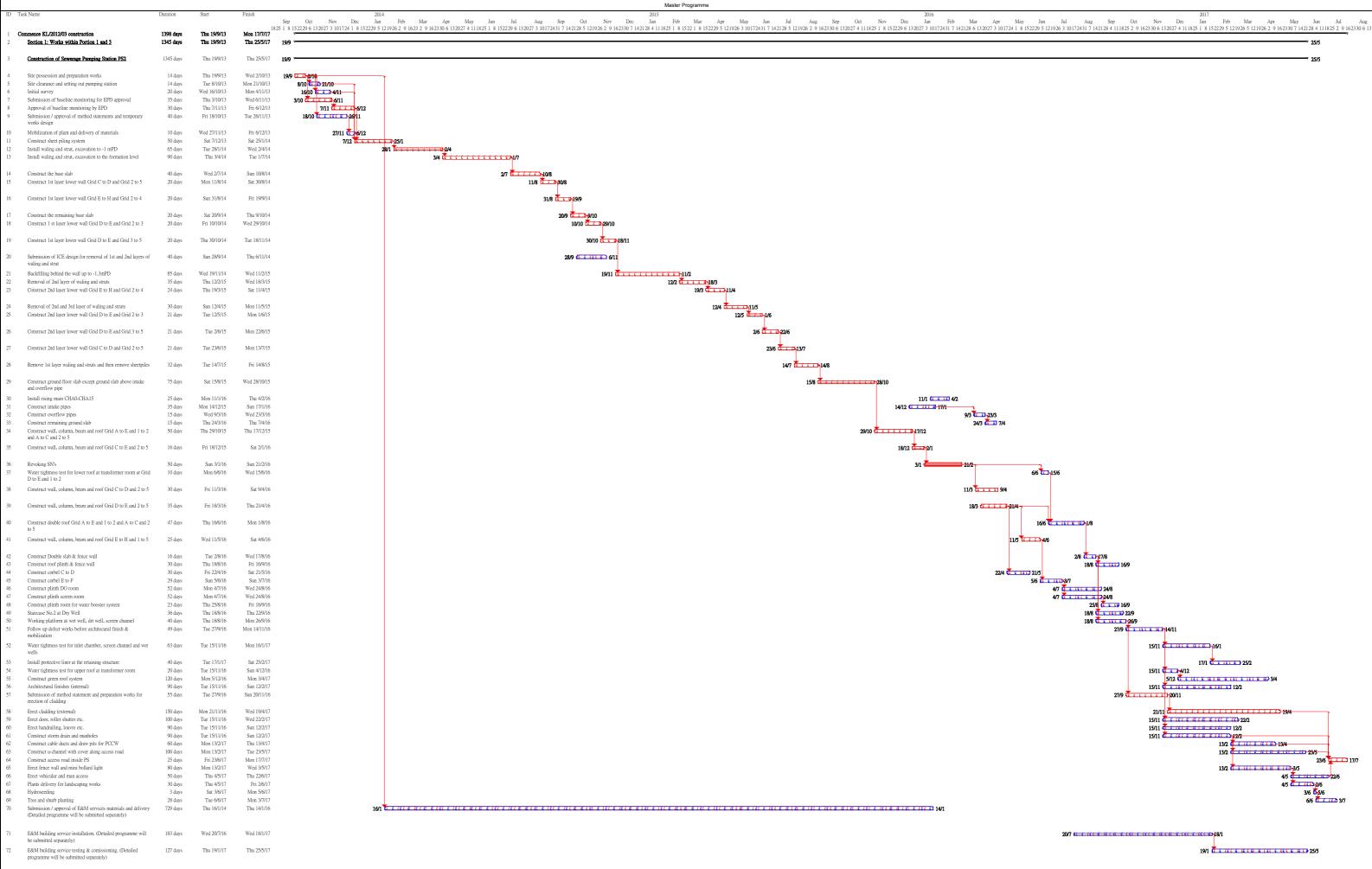
100 days Sun May 22, '16 Mon Aug 29, '16 60 days Thu Sep 1, '16 Sun Oct 30, '16

Working days

Inactive Milestone Inactive Summary Manual Task

Updated on 29 July 2016

Start-only


Finish-only

External Tasks

External Milestone

Duration-only Manual Summary Rollup ◆

Programme for Installation of DCS Pipelines (Revised Design) within Portion 3																		
ID Task Name	Duration	Start Finish		May 2015	n 1	September 2015	Mayambar 1	January 2016	Maual 1	May 2016	₇ - 1	, 1	September 2016	NT	January 2017	Moual 1	May 2017	l v
			15 12	May 1 July 7	<u>y 1</u> 5 2	September 1 30 27	November 1 25 22	January 1 20 17	March 1 13	May 1	Jul ₃	3 31	September 1 28	November 1 25 23 20	January 1 15 15	March 1 12 12	May 1	7 4 J
Section 7B: Open Cut Section and Heading Section	763 days	Fri Apr 3, '15 Thu May 4, '17																
2 Western Approach	453 days	Fri Apr 3, '15 Tue Jun 28, '16	4/3								6/2	8						
3 Submission for temporary ELS system and approval		Fri Apr 3, '15 Thu Apr 16, '15																
 Install sheet piles at formation level Submission for revised temporary ELS system and approval 		Fri Apr 17, '15 Fri May 22, '15 Sat May 23, '15 Fri Jun 5, '15		5/22														
6 Install waling 7 Install strut		Sat Jun 6, '15 Tue Jun 16, '15 Wed Jun 17, '15 Wed Jul 1, '15		6/6 dilling 6/16	7/1													
8 Trench excavation down to 2m and 8m long for drilling		Thu Jul 2, '15 Tue Jul 14, '15			71 11111111-7/14													
horizontal pipe-piles Submission for heading method	20 days	Fri Jul 17, '15 Wed Aug 5, '15			7/17													
10 Comment on heading method		Thu Aug 6, '15 Mon Aug 10, '15			8/6 10													
11 Mobilization and set up for drilling works	30 days	Tue Aug 11, '15 Wed Sep 9, '15			8/11	9/9												
Drilling for 219 dia. pipe-piles Review design for heading method	-	Thu Sep 10, '15 Wed Oct 14, '15 Thu Oct 15, '15 Fri Nov 13, '15				9/10 10/15	4 11/12											
Grout trial to obtain design parameter		Sat Nov 14, '15 Mon Nov 23, '15				10/13 41111	11/14											
Update method statement for heading method		Tue Nov 24, '15 Thu Nov 26, '15					11/14 11/23 11/24 11/26	445										
Upon grout trial successful, proceed with drilling for all grout holes and grouting	52 days	Fri Nov 27, '15 Sun Jan 17, '16					11/27	1/17										
17 Rectification of existing ELS system		Mon Jan 18, '16 Tue Apr 26, '16						1/18		4/26								
Release of suspension of works order Fixing bottom layer reinforcement bar (Additional works - no		Wed Apr 27, '16 Thu May 12, '16 Fri May 13, '16 Sat May 28, '16								4/27 1 5/12	111111-5/2R							
steel bar shown on original design)																		
20 Concreting up to bottom level of sleeve pipe 21 Install 1 no. DN2800 dia sleeve pipe and 4 nos. DN2100 dia.		Sun May 29, '16 Wed Jun 1, '16 Thu Jun 2, '16 Sun Jun 5, '16								5	/29 (1) 6/2 (1) 6/5							
Sleeve pipe																		
 Concreting up to middle level of sleeve pipe Concreting up to top level of sleeve pipe 		Mon Jun 6, '16 Tue Jun 7, '16 Wed Jun 8, '16 Fri Jun 10, '16									6/6 10							
Fixing top layer reinforcement bar (Additional works - no steel		Sat Jun 11, '16 Mon Jun 13, '16									6/6 0.6/7 6/8 0.6/10 6/11 0.6/13							
bar shown on original design) 25 Concreting up to final level of concrete surround	2 days	Tue Jun 14, '16 Thu Jun 16, '16									6/14 16/16							
26 Backfilling and remove stage 1 strut and waling	-	Fri Jun 17, '16 Tue Jun 21, '16									6/17 4 456/16 6/17 4 6/21 6/22 4 6/2							
27 Remove sheetpiles and filling the gap		Wed Jun 22, '16 Tue Jun 28, '16					11117				6/22 1111-6/2	8						
28 Grade 400 rock fill (additional works) 29 Blinding layer for PJ-N-02		Sun Nov 15, '15 Sun Nov 29, '15 Mon Nov 30, '15 Sat Dec 19, '15					11/15	12/19										
30 Construct base slab of PJ-N-02	35 days	Sun Dec 20, '15 Sat Jan 23, '16					12/2											
31 Construct wall of PJ-N-02 up to +3mPD 32 Soil Backfilling up to +2.8mPD		Sun Jun 12, '16 Wed Aug 10, '16 Thu Aug 11, '16 Wed Aug 24, '16									6/12	8/11	9/24					
33 Construct top slab of PJ-N-02		Thu Aug 25, '16 Sun Oct 23, '16										8/25	0/24	10/23				
34 Soil Backfilling up to formation level	-	Mon Oct 24, '16 Mon Oct 31, '16												10/23				
Remove strut and waling Remove sheetpiles and filling the gap	10 days 10 days													11/1 11/10				
Hand back the site to CCC's		Wed Jun 29, '16 Thu Jun 30, '16									6/29 1 6/ 7/1	30						
Construction of remaining box culvert by CCC's. Section 7B: Open-cut Section & Heading from Eastern	120 days	Fri Jul 1, '16 Fri Oct 28, '16 Mon Jul 27, '15 Thu May 4, '17			7/27						7/1			10/28			5/4	
Approach																	5/4	
40 Submission for temporary ELS system and approval41 Site possession		Mon Jul 27, '15 Sun Aug 9, '15 Mon Aug 10, '15 Mon Aug 10, '15			7/27 411111115-8/9 8/10 <mark>5</mark> 8/10													
42 Install sheet piles	25 days	Tue Aug 11, '15 Fri Sep 4, '15			8/11	9/4												
Install 1st layer waling and strut and excavate to 2nd layer	20 days	Sat Sep 5, '15 Thu Sep 24, '15				9/5 1												
Install 2nd layer waling and strut and excavate to 3rd layer		Fri Sep 25, '15 Sat Oct 24, '15				9/25	10/24											
Install 3rd layer waling and strut and excavate to 4th layer Install 4th layer waling and strut and excavate to formation level		Sun Oct 25, '15 Mon Nov 23, '15 Tue Nov 24, '15 Wed Dec 23, '15				10/25	11/23	12/23										
47 Drilling for 50 dia. grout holes at 2 layers and grouting		Thu Dec 24, '15 Wed Bec 23, 15 Thu Feb 11, '16						2/24	ID-2/11									
48 Strengthening existing ELS system 49 Preparation of method statement for hand-shield construction and	40 days	Fri Feb 12, '16 Tue Mar 22, '16 Sun Feb 21, '16 Thu Aug 18, '16						2/12	2 2/21 3/22				118					
approval 50 Mobilize equipment & materials	12 days	Fri Aug 19, '16 Tue Aug 30, '16										8/19	8/30					
51 Pipeline 1 - DN2100	77 days	Wed Aug 31, '16 Tue Nov 15, '16											3/3	11/15				
52 Ground treatment works 53 Pipe jacking		Wed Aug 31, '16 Tue Sep 6, '16 Wed Sep 7, '16 Sun Oct 16, '16											9/6	10/16				
54 DN1400 installation works	24 days	Mon Oct 17, '16 Wed Nov 9, '16												10/17				
55 Annulus grout 56 Pineline 5 - DN2800	6 days	Thu Nov 10, '16 Tue Nov 15, '16 Sun Oct 2, '16 Fri Jan 27, '17											100	11/10 11/15	1/07			
56 <u>Pipeline 5 - DN2800</u> 57 Ground treatment works	7 days	Sun Oct 2, '16 Sat Oct 8, '16											10/2 110/2 110/2 110/2 1110/2 1110/2	D-10/8				
58 Pipe jacking	50 days	Mon Oct 17, '16 Mon Dec 5, '16												10/17	12/5			
59 CWP installation works 60 Annulus grout	46 days 7 days	Tue Dec 6, '16 Fri Jan 20, '17 Sat Jan 21, '17 Fri Jan 27, '17												12/6	1/20			
61 Pipeline 3 - DN2100	87 days	Mon Nov 14, '16 Wed Feb 8, '17												11/14		2/8		
62 Ground treatment works 63 Pine jacking	2 Gay 5	Mon Nov 14, '16 Fri Nov 18, '16 Tue Dec 6, '16 Tue Jan 10, '17												11/14 IIII 11/18				
63 Pipe jacking 64 DN1400 installation works	23 days	Wed Jan 11, '17 Thu Feb 2, '17												12/6	1/11	$_{2}\left \right \left \right $		
65 Annulus grout	5 days	Fri Feb 3, '17 Tue Feb 7, '17													2/3	2/7		
66 Pipeline 2 - DN2100 67 Ground treatment works		Mon Dec 19, '16 Mon Mar 20, '17 Mon Dec 19, '16 Sun Dec 25, '16													12/19 12/25	3/20		
68 Pipe jacking	40 days	Wed Jan 11, '17 Sun Feb 19, '17													1/11	2/19		
69 DN1400 installation works70 Annulus grout		Mon Feb 20, '17 Wed Mar 15, '17 Thu Mar 16, '17 Mon Mar 20, '17														2/20 3/15 3/16 1 3/20		
70 Annulus grout 71 Pipeline 4 - DN2100	92 days	Mon Dec 19, '16 Mon Mar 20, '17													12/19	3/20		
72 Ground treatment works	7 days	Mon Dec 19, '16 Sun Dec 25, '16													12/19 12/25	2/12		
73 Pipe jacking 74 DN1400 installation works		Wed Jan 11, '17 Sun Feb 19, '17 Mon Feb 20, '17 Wed Mar 15, '17													1/11	2/19		
75 Annulus grout	5 days	Thu Mar 16, '17 Mon Mar 20, '17														2/20 3/15 3/16 113/20 3/21 113/3/30		
76 Removal of plant77 Backfilling and removal ELS system		Tue Mar 21, '17 Thu Mar 30, '17 Fri Mar 31, '17 Thu May 4, '17														3/21 3/30	11111111111111111111111111111111111111	
December and removal LLD system	55 days	THU IVIAY 4, 17				1	1										μ μ μ μ μ	

ID Task Name Commence KL/2012/03 construction 1350 days Thu 19/9/13 Tue 30/5/17 Section 2: Works within Portion 1 and 4 1350 days Thu 19/9/13 Tue 30/5/17 19/9 19/9 18/10 30 days Thu 19/9/13 Fri 18/10/13 19/9 ### 18/10 Site clearance 30 days Sat 19/10/13 Sun 17/11/13 4 19/10 11/11 14 days Mon 18/11/13 Sun 1/12/13 6 18/11 12 Initial survey Erect hoarding, chain link fence and vehicular gate Mon 2/12/13 Thu 30/1/14 7 Construction of sewerage pumping station NPS 1350 days Thu 19/9/13 Tue 30/5/17 19/9 Submission / approval of method statements and temporary work 70 days Sun 29/12/13 Sat 8/3/14 29/12 Mobilization 20 days Tue 18/3/14 Sun 6/4/14 10 18/3 6/4 Mon 7/4/14 Thu 5/6/14 12,11 Install waling and strut, excavation to the formation level (1st and 90 days Fri 6/6/14 Wed 3/9/14 13 Install waling and strut, excavation to the formation level (3rd 89 days 4/9 Thu 4/9/14 Mon 1/12/14 14 29/11 (14/1 Construct the base slab Sat 29/11/14 Wed 14/1/15 Construct the external and internal wall Grid E to G and Grid 2 to 34 days Sat 3/1/15 Thu 5/2/15 3 up to -1.25 mPD 6/2 📥 20/2 Construct the external wall Grid C to E and Grid 2 to 4 up to -0.95 Thu 5/2/15 Sat 11/4/15 Construct the external wall Grid C to E and Grid 1 to 2 up to -0.95 23 days Fri 24/4/15 2/4 Thu 2/4/15 Construct the internal wall Grid D to E up to -0.95 mPD Wed 27/5/15 Sat 20/6/15 20 Backfilling works behind constructed wall and remove 2nd layer 14 days Mon 22/6/15 Sun 5/7/15 21 22/6 🛺 5/7 Construct the external wall Grid C to E and Grid 2 to 4 up to Mon 6/7/15 Thu 30/7/15 25 days Construct the external wall Grid C to E and Grid 1 to 2 up to +2..25 mPD 15 days Fri 31/7/15 Fri 14/8/15 23 31/7 20-14/8 Construct the internal wall Grid D to E up to +2.25 mPD 7 days Sat 15/8/15 Fri 21/8/15 24 15/8 雄 21/8 Backfilling works behind constructed wall and remove 1st layer of 42 days Sat 15/8/15 Fri 25/9/15 15/8 425/9 waling and strut and sheetpiles Construct the external and internal wall Grid A to E and Grid 1 to 36 days Sat 26/9/15 Sat 31/10/15 26 26/9 31/10 Construct the external and internal wall Grid A to E and Grid 2 to 4 up to ± 4.7 mPD 26/9 26/10 31 days Sat 26/9/15 Construct the external and internal wall Grid E to G and Grid 2 to 103 days Sat 6/6/15 Wed 16/9/15 6/6 Construct upper wall and column up to beam level Grid A to C 21/11 25/1 66 days Sat 21/11/15 Mon 25/1/16 29 Construct the beam and roof Grid A to C and 1 to 5, Only double ceiling will be divided into two layers for construction 47 days Tue 26/1/16 Sat 12/3/16 30 26/1 12/3 Construct upper wall and column up to beam level Grid E to G 80 days Thu 24/12/15 Sat 12/3/16 24/12 12/3 Construct upper wall and column up to beam level Grid C to E and 1 to 5 $\,$ Tue 22/12/15 Mon 7/3/16 22/12 Construct the beam and roof Grid E to G and 1 to 5 78 days Mon 14/3/16 Mon 30/5/16 Construct the beam and roof Grid C to E and 1 to 5 Fri 22/4/16 33 46 days 8/3 22/4 31/5 22/6 31/5 22/6 Construct roof plinth and fence wall 23 days Tue 31/5/16 Wed 22/6/16 34 Construct ventilation house 23 days Tue 31/5/16 Wed 22/6/16 34 Construct corbel Grid Cto D 21 days Tue 31/5/16 Mon 20/6/16 34 Construct corbel Grid E to F 21 days Tue 21/6/16 Mon 11/7/16 38 21/6 📥 11/7 Construct Plinth DO room 1 16 days Thu 23/6/16 Fri 8/7/16 36 23/6 23/7 Thu 21/7/16 40 977 2177 Construct Plinth DO room 2 13 days Construct Plinth Room for waterbooster system 20 days Fri 22/7/16 Wed 10/8/16 41 22/7 📥 10/8 21/6 25/7 Staircase No1 at Dry Well 35 days Tue 21/6/16 Mon 25/7/16 38 Working plantform at Wet well, Dry weel, screen channel 56 days Tue 21/6/16 Mon 15/8/16 38 Follow up defect works before arcectural finish works & 35 days Tue 16/8/16 Mon 19/9/16 44 16/8 19/9 70 days Tue 20/9/16 Water tightness test for retaining structure Mon 28/11/16 45 20/9 28/11 29/11 28/12 Install protective liner at the retaining structure Wed 28/12/16 46 Water tightness test for the double ceiling 20 days Thu 29/12/16 Tue 17/1/17 47 29/12 29/17/1 Establishment of green roof system 50 days Wed 18/1/17 Wed 8/3/17 48 18/1 Architectural finishes (internal) Tue 20/9/16 Fri 18/11/16 45 18/11 20/9 🕇 Erect granite tile 90 days Tue 20/9/16 Sun 18/12/16 45 20/9 Erect louvre and door 60 days Tue 20/9/16 Fri 18/11/16 45 20/9 18/11 20/9 Erect handrailing and roller shutter etc. Sun 18/12/16 45 90 days Tue 20/9/16 Install rising main 30 days Tue 16/8/16 Wed 14/9/16 44 Construct sewerage, drainage drain and manhole 46 days Thu 15/9/16 Sun 30/10/16 54 15/9 Fri 17/2/17 59,55,58,57 19/1 47/2 Construct assess road 30 days Thu 19/1/17 Construct cable ducts and draw pits for PCCW and CLP Mon 31/10/16 Fri 9/12/16 55 31/10 0/12 31/10 9/12 10/12 18/1 Construct u-channel with cover along access road 40 days Mon 31/10/16 Fri 9/12/16 55 Wed 18/1/17 55,58,57 Erect vehicular and man access and mini bollard light 40 days Sat 10/12/16 Plants delivery for landscaping works Sat 18/2/17 Sun 19/3/17 56 Preparatory works for landscaping works 7 days 3 days Mon 20/3/17 Sun 26/3/17 60 20/3 26/3 Wed 29/3/17 61,49 27/3 1 29/3 Mon 27/3/17 Hydroseeding Wed 12/4/17 62 Submission / approval of E&M services materials and delivery 793 days Thu 16/1/14 Fri 18/3/16 16/1 E&M building service installation. (Detailed programme will be 20/7 submitted separately) 23/1 E&M building service Testing & Commissioning (Detailed 128 days Mon 23/1/17 Tue 30/5/17 65

evised Completion Date: 30 May 2017

MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix C

Monthly EM&A Report For

Contract No. KL/2014/01 Stage 2 infrastructure works for developments at the southern part of the former runway

Civil Engineering and Development Department

EP-337/2009 & EP-445/2013/A Contract No. KL/2014/01

Kai Tak Development – Stage 2 Infrastructure works for Developments at Southern Part of the Former Runway

Monthly EM&A Report December 2016

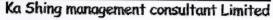
(Version 1.0)

Approved By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.


CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388

Email: info@cinotech.com.hk

嘉誠管理顧問有限公司

Our ref: 5-1-2017 5 th January 2017

By email: clive.cheng@aecom-ktd.com and By post

Supervising Officer Representative Aecom Asia Co Ltd. 8/F Grand Central Plaza Tower 2 138 Shatin Rural Committee Road Sha Tin, N.T. Hong Kong (Attn: Mr. Cheng Chi Hung)

Dear Mr. Cheng,

Re: Contract No. KL/2014/01 (Environmental Permit Nos. EP-337/2009 and EP-445/2013/A)

Kai Tak Development –Stage 2 Infrastructure Works for Developments at Southern Part of the Former Runway

Monthly EM&A report for December 2016

Reference is made to the Environmental Team's submission of the draft Monthly EM&A Report (version 1.0) for December 2016 provided to Independent Environmental Checker (IEC) via email dated on 4 th January 2017 for review and comment.

Please be informed that IEC has no adverse comment on the captioned submission. IEC writes to verify the captioned submission in accordance with Specific Condition 2.2 of the Environmental Permit No. 337/2009 and 445/2013/A.

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully,

For and on behalf of

Ka Shing Management Consultant Limited

Dr. C.F. Ng

Independent Environmental Checker

c.c. CEDD

Mr. Ronald Siu

(By email: ronaldsiu@cedd.gov.hk)

AECOM

Mr. Anthony Lok

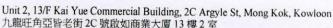
(By email: anthony.lok@aecom-ktd.com)

CEC-CCC

Mr. Andrew Wong

(By email: andrew-wong@continental-engineering.com)

Cinotech


Dr. Priscilla Choy

(By email: priscilla.choy@cinotech.com.hk)

SFK

Ms Alice Leung

(By email: aliceleung@sfk.com.hk)

Tel: (852) 2618 2166 電話: (852) 2618 2166

Fax: (852) 2120 7752 傳真: (852) 2120 7752 Wed Site: http://www.ka-shing.net 網站: http://www.ka-shing.net

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	
	Introduction	
	Environmental Monitoring Works Environmental Licenses and Permits	
	Key Information in the Reporting Month	
	Future Key Issues	
1	INTRODUCTION	
1.		
	Background	
	Project Organizations	
	Construction Activities undertaken during the Reporting Month	
_	•	
2.	AIR QUALITY	6
	Monitoring Requirements	6
	Observations	6
3.	NOISE	7
	Monitoring Requirements	7
	Observations	
4.	LANDSCAPE AND VISUAL	8
	Monitoring Requirements	8
	Results and Observations	
5.	ENVIRONMENTAL AUDIT	9
	Site Audits	9
	Status of Environmental Licensing and Permitting	
	Status of Waste Management	
	Implementation Status of Environmental Mitigation Measures	
	Summary of Mitigation Measures Implemented	
	Implementation Status of Event Action Plans	10
	Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution	11
6.	FUTURE KEY ISSUES	
0.		
	Key Issues for the Coming Month	12
7.	CONCLUSIONS AND RECOMMENDATIONS	14
	Conclusions	14
	Recommendations	14

LIST OF TABLES

Table I	Non-compliance Recorded for the Project in the Reporting Month
Table II	Summary Table for Key Information in the Reporting Month
Table 1.1	Key Project Contacts
Table 1.2	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 5.1	Summary of Environmental Licensing and Permit Status
Table 5.2	Observations and Recommendations of Site Inspections

LIST OF FIGURES

Figure 1 Site Layout Plan

LIST OF APPENDICES

A	Action and Limit Levels
В	Summary of Exceedance
C	Site Audit Summary
D	Event Action Plans
E	Environmental Mitigation Implementation Schedule (EMIS)
F	Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution
G	Waste Generated Quantity

EXECUTIVE SUMMARY

Introduction

- 1. This is the 9th Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2014/01 Kai Tak Development Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway" (Hereafter referred to as "the Project"). This contract work comprises two Schedule 2 designated projects (DP), namely the new distributor road D4(part) and roads D3A & D4A serving the planned KTD. The DPs are part of the designated projects under Environmental Permits (EP) No.: EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") and EP-445/2013/A ("Kai Tak Development Roads D3A & D4A") respectively. This report documents the findings of EM&A Works conducted from 1 31 December 2016.
- 2. With reference to the same principle of EIA report of the Project, no air quality monitoring station within 500m and noise monitoring station within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, no relevant air quality and noise monitoring location are required for monitoring under the Project. The monitoring works for recommended monitoring stations in EM&A Manual of the DPs are conducted by Kai Tak Development (KTD) Schedule 3 Project.
- 3. The major site activities undertaken in the reporting month included:
 - Watermain works
 - Ground investigation work;
 - Construction of boundary wall at EPD recycling centre;
 - Bored piles and Pre-bored socketed H-piles;
 - TTA implementation at Shing Fung Road and Wang Chiu Road / Sheung Yee Road;
 - Cable laying for transformer room;
 - Open excavation for box culvert, piles caps and underpass; and
 - ELS installation for box culvert and underpass.

Environmental Monitoring Works

- 4. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 5. Summary of the non-compliance in the reporting month for the Project is tabulated in Table I.

Table I Non-compliance Recorded for the Project in the Reporting Month

Parameter	No. of Project-rela	Action Taken	
Parameter	Action Level	Limit Level	Action Taken
Noise	0	0	N/A

Environmental Monitoring for Air Quality and Construction Noise

6. No monitoring for air quality and construction noise is required. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 7. Licenses/Permits granted to the Project include the Environmental Permits (EP) for the Project, EP-337/2009 issued on 23 April 2009 and EP-445/2013 issued on 3 May 2013 (Amended Environmental Permit (No.: EP-445/2013/A) issued on 13 August 2014).
- 8. Billing Account for Disposal of Construction Waste (A/C No. 7024073)
- 9. Registration of Chemical Waste Producer (License: 5213-247-C4004-01).
- 10. Water Discharge License (License: WT00023634-2016).
- 11. Construction Noise Permit (Permit: GW-RE1092-16)

Key Information in the Reporting Month

12. Summary of key information in the reporting month is tabulated in Table II.

Table II Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues

- 13. The future key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for excavation activities and machinery on-site;
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels and sedimentation tanks; and
 - Review and implementation of temporary drainage system for the surface runoff.

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 2 Infrastructure Works for Developments for Southern Part of the Former Runway is one of the construction stages of KTD. It contains two Schedule 2 DPs including new distributor roads serving the planned KTD and KTD Roads D3A & D4A. The general layout of the Project is shown in **Figure 1.**
- 1.2 One Environmental Permits (EP) No.: EP-337/2009 was issued on 23 April 2009 for new distributor roads serving the planned KTD and one Environmental Permit No.: EP-445/2013 was issued on 3 May 2013 for Kai Tak Development Roads D3A & D4A to Civil Engineering and Development Department (CEDD) as the Permit Holder. Pursuant to Section 13 of the EIAO, the Director of Environmental Protection amended the Environmental Permit No.: EP-445/2013 based on the Application No. VEP-449/2014 and the Environmental Permit (No.: EP-445/2013/A) was issued on 13 August 2014.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. EIA Reports (Register No. AEIAR-130/2009 and AEIAR-170/2013) were approved by the Environmental Protection Department (EPD) on 4 March 2009 and 3 May 2013 respectively.
- 1.4 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2014/01 Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway. The construction work under KL/2014/01 comprises the construction of part of the Road D4 under the EP (EP-337/2009) and the construction of Roads D3A & D4A under the EP (EP-445/2013/A).
- 1.5 Cinotech Consultants Limited was commissioned by Civil Engineering and Development Department (CEDD) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The construction commencement of this Contract is on 13 April 2016. This is the 9th Monthly EM&A report summarizing the EM&A works for the Project from 1 31 December 2016.
- 1.6 All project information since the commencement of work under EPs including Monthly EM&A Reports is made available to the public via internet access at the website: http://www.kl201401.com/

Project Organizations

- 1.7 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Supervising Officer and the Supervising Officer's Representative (SO) AECOM Asia Co. Ltd. (AECOM).
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) Ka Shing Management Consultant Ltd. (KSMC).
 - Contractor Continental Engineering Corp. and Chit Cheung Construction Co. Ltd. Joint Venture (CCJV).
- 1.8 The key contacts of the Project are shown in **Table 1.1**.

Table 1.1 Key Project Contacts

Party	Role	Contact Person	Position	Phone No.	Fax No.	
CEDD	Project Proponent	Mr. Ronald Siu	Senior Engineer	2301 1453	2301 1277	
		Mr. Bernard Chan Engineer		2301 1207	2301 1277	
AECOM	Supervising Officer	Mr. Clive Cheng CRE		3746 1801	2798 0783	
Cinotech	Environmental Team	Dr. Priscilla Choy	Environmental Team Leader	2151 2089	3107 1388	
		Ms. Ivy Tam	Audit Team Leader	2151 2090		
KSMC	Independent Environmental Checker	Dr. C. F. Ng	IEC	2618 2166	2120 7752	
CCJV	Contractor	Mr. Dennis Ho	Environmental Officer	2960 1398	2960 1399	

Construction Activities undertaken during the Reporting Month

- 1.9 The site activities undertaken in the reporting month included:
 - Watermain works
 - Ground investigation work;
 - Construction of boundary wall at EPD recycling centre;
 - Bored piles and Pre-bored socketed H-piles;
 - TTA implementation at Shing Fung Road and Wang Chiu Road / Sheung Yee Road;
 - Cable laying for transformer room;
 - Open excavation for box culvert, piles caps and underpass; and
 - ELS installation for box culvert and underpass.
- 1.10 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in Table 1.2.

Kai Tak Development – Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway Monthly EM&A Report – December 2016

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Section 1.8	Noise, dust impact, water quality and waste generation	Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide mitigation measure to temporary use of chemicals; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.

Summary of EM&A Requirements

- 1.11 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
- All monitoring parameters;
- Action and Limit levels for all environmental parameters;
- Event Action Plans;
- Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.12 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 5 of this report.

2. AIR QUALITY

Monitoring Requirements

2.1 With reference to the same principle of EIA report of the Project, no air quality monitoring station within 500m from the boundary of this Project are considered as relevant monitoring locations. No air quality monitoring is required for the Project.

Observations

- 2.2 No monitoring for air quality is required for the Project.
- 2.3 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of air quality mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix C.**

Monthly EM&A Report – December 2016

3. NOISE

Monitoring Requirements

3.1 With reference to the same principle of EIA report of the Project, no construction noise monitoring station within 300m from the boundary of this Project are considered as relevant monitoring locations. No Construction noise monitoring is required for the Project. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Observations

- 3.2 No monitoring for air quality is required for the Project. No Action/Limit Level exceedance was recorded. The summary of exceedance record in reporting month is shown in **Appendix B**.
- 3.3 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of construction noise mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix C**.

4. LANDSCAPE AND VISUAL

Monitoring Requirements

4.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 4.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix C**.
- 4.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 4.4 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix D** shall be performed.

5. ENVIRONMENTAL AUDIT

Site Audits

- 5.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix C**.
- 5.2 Site audits were conducted by representatives of the Contractor, Supervising Officer and ET on 7, 14, 21 and 28 December 2016 in the reporting month. IEC joint site inspection was conducted on 28 December 2016. No non-compliance was observed during the site audits.

Status of Environmental Licensing and Permitting

5.3 All permits/licenses obtained for the Project are summarized in Table 5.1.

Table 5.1 Summary of Environmental Licensing and Permit Status

Dameid Na	Valid Period		D.A. II.	C4 · 4		
Permit No.	From	To	Details	Status		
Environmental Permit (EP)						
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	Valid		
EP-445/2013/A	13/08/14	N/A	Construction of Kai Tak Development roads D3A and D4A	Valid		
Effluent Discharge Li	icense					
WT00023634-2016		31/03/21	Wastewater from the construction site including effluent treated by screen and sedimentation tank	Valid		
Registration of Chem	ical Waste P	roducer				
5213-247-C4004-01		N/A	Chemical Waste Types: Surplus paint, waste contaminated by paint, diesel, waste contaminated by diesel, spent lubricating oil and waste, soil contaminated by lubricating oil.	Valid		
Construction Noise P	ermit (CNP)					
GW-RE1092-16	09/11/16	08/05/17	Construction Noise Permit for the use of powered mechanical equipment for carrying out construction work other than percussive pilling and performing prescribed construction work.	Valid		

Status of Waste Management

- 5.4 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix G**.
- 5.5 In respect of the dump truck cover, the Contractor is reminded to take record photos and inspection to ensure that all dump trucks have fully covered the skip before leaving the site.

Implementation Status of Environmental Mitigation Measures

5.6 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 5.2.

 Table 5.2
 Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up
W O . P.	21 Dec 2016	Silty ponding water within the Site should be properly cleared after rain events.	Rectification/improvement was observed during the follow-up audit session.
Water Quality	30 Nov 2016	Appropriate signage should be provided to remind drivers of all types of vehicles to use wheel washing machines before leaving the Site.	Rectification/improvement was observed during the follow-up audit session.
	7 Dec 2016	Stockpiles and exposed area within the Site should be properly covered with impervious sheets for dust suppression.	Rectification/improvement was observed during the follow-up audit session.
Air Quality	28 Dec 2016	Bagged cement should be properly covered in Section 2 for dust suppression.	Follow up actions will be reported in the next month.
Noise			
Waste/ Chemical Management			
Landscape and Visual			
Permits/ Licences			

Summary of Mitigation Measures Implemented

5.7 An updated summary of the EMIS is provided in **Appendix E**.

Implementation Status of Event Action Plans

5.8 The Event Action Plans for noise and landscape and visual are presented in **Appendix D**. No Event Action Plan for air quality is considered necessary.

Construction Noise

5.9 No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

5.10 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

5.11	The	summaries	of	environmental	complaint,	warning,	summon	and	notification	of
	succe	ssful prosec	utio	n for the Project	is presented	in Appen	dix F.			

6. FUTURE KEY ISSUES

- 6.1 Major site activities undertaken for the coming two months include:
 - Watermain works;
 - Ground investigation work;
 - Construction of boundary wall at EPD recycling centre;
 - Bored piles and Pre-bored socketed H-piles;
 - TTA implementation at Shing Fung Road and Wang Chiu Road/ Sheung Yee Road;
 - Open excavation for box culvert, pile caps and underpass; and
 - ELS installation for box culvert.

Key Issues for the Coming Month

- 6.2 Key environmental issues in the coming month include:
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels and sedimentation tanks;
 - Review and implementation of temporary drainage system for the surface runoff;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site.
- 6.3 The tentative program of major site activities and the impact prediction and control measures for the coming two months, i.e. January and February 2017 are summarized as follows:

Construction Works	Major Impact Prediction	Control Measures
	Air quality impact (dust)	a) Frequent watering of haul road and unpaved/exposed areas;b) Frequent watering or covering stockpiles with tarpaulin or similar means; andc) Watering of any earth moving activities.
As mentioned in Section 7.1	Water quality impact (surface run-off)	d) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; e) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; f) Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and g) Provision of measures to prevent discharge into the stream.

Construction Works	Major Impact	Control Measures
	Prediction	
	Noise Impact	h) Scheduling of noisy construction activities if necessary to
		avoid persistent noisy operation;
		i) Controlling the number of plants use on site;
		j) Regular maintenance of machines; and
		k) Use of acoustic barriers if necessary.

7. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

7.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 to 31 December 2016.

Air Quality and Construction Noise

7.2 No regular monitoring air quality and noise monitoring is required for the Project. No Action/Limit Level exceedance was recorded.

Landscape and visual

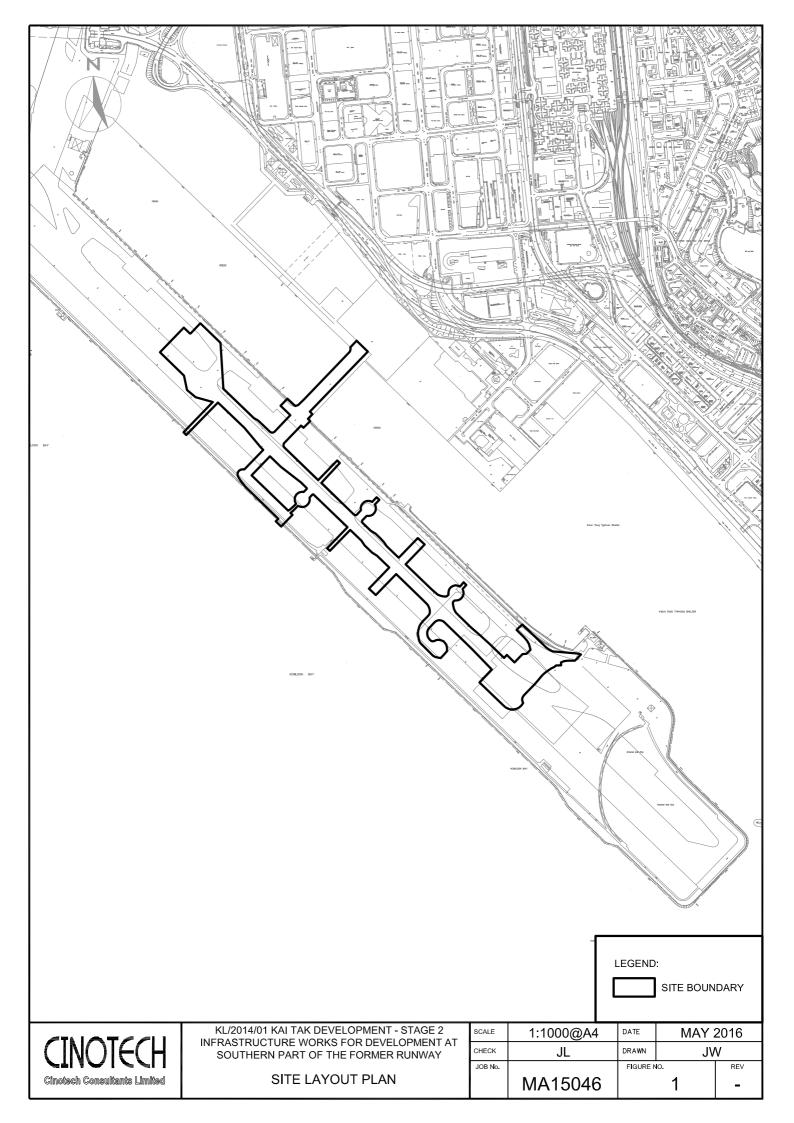
7.3 No non-compliance was recorded in the reporting month.

Complaint and Prosecution

- 7.4 No environmental complaints and environmental prosecution were received in the reporting month.
- 7.5 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

7.6 According to the environmental audit performed in the reporting month, the following recommendations were made:


Air Quality Impact

- To maintain good site practices including covering stockpiles of dusty materials with impervious sheets in order to prevent dust generation.
- To properly cover bagged cement with impervious materials for dust suppression.

Water Quality Impact

• To provide adequate mitigation measures to prevent silty runoff on public areas, and clear muddy trails or sand on public road, if any.

FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level ⁽¹⁾⁽²⁾
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: (1) If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

- (2) No regular noise impact monitoring station for this Contract. It is subject to the noise sensitive receiver(s) and additional monitoring work.
- (*) 70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B SUMMARY OF EXCEEDANCE

Contract No. KL/2014/01 Kai Tak Development –Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway

Appendix B – Summary of Exceedance

Exceedance Record for Contract No. KL/2014/01

Reporting Month: December 2016

(A) Exceedance Record for Construction Noise

(NIL in the reporting month)

(B) Exceedance Record for Landscape and Visual

(NIL in the reporting month)

APPENDIX C SITE AUDIT SUMMARY

Checklist Reference Number	161207
Date	7 December 2016 (Wednesday)
Time	14:00 – 16:00

Ref. No.	Non-Compliance	Related Item No.
1401. 140.	None identified	-
Ref. No.	Remarks/Observation's	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
161207-R01	• Stockpiles and exposed area within the Site should be properly covered with impervious sheet for dust suppression.	C 7
	D. Naise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.:161130), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Kelvin Koo	Land	7 December 2016
Checked by	Dr. Priscilla Choy	NZ	7 December 2016

Checklist Reference Number	161214
Date	14 December 2016 (Wednesday)
Time	14:00 – 16:30

Ref. No.	Non Compliance	Related
Kel. Ivo.	Non-Compliance	Item No.
	None identified	
D 6 M	B 1 /01 /	Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	**
	· J. 1	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
 	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
· · · · · · · · · · · · · · · · · · ·		
	H. Others	
	• Follow-up on previous audit session (Ref. No.:161207), all identified environmental	
	deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Kelvin Koo	K	14 December 2016
Checked by	Dr. Priscilla Choy	WA	14 December 2016

Checklist Reference Number	161221
Date	21 December 2016 (Wednesday)
Time · · · ·	14:00 – 16:00

Ref. No.	Non-Compliance	Related Item No.
Kei. 140.	None identified	item ivo.
<u>-</u>	1401C Idelicified	Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
161221-R01	Silty ponding water within the Site should be properly cleared after rain events.	В 8
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.:161214), no major environmental deficiencies were observed during the site inspection.	

	Name	Signature	Date
Recorded by	Kelvin Koo	+	21 December 2016
Checked by	Dr. Priscilla Choy	WI	21 December 2016

Checklist Reference Number	161228
Date	28 December 2016 (Wednesday)
Time	14:30 – 17:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
161228-O01	Bagged cement should be properly covered in Section 2 for dust suppression.	C 18
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.:161221), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Kelvin Koo	Andrew Commence of the Commenc	28 December 2016
Checked by	Dr. Priscilla Choy	WI	28 December 2016

APPENDIX D EVENT ACTION PLANS

Appendix D - Event Action Plans

Event/Action Plan for Construction Noise

EVENT		ACTI	ON	
	ET	IEC	ER	CONTRACTOR
Action Level being exceeded	4. Notify ER, IEC and Contractor; 5. Carry out investigation; 6. Report the results of investigation to the IEC, ER and Contractor; 7. Discuss with the IEC and Contractor on remedial measures required; 8. Increase monitoring frequency to check mitigation effectiveness. (The above actions should be taken within 2 working days after the exceedance is identified)	Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals. (The above actions should be taken within 2 working days after the exceedance is identified)
Limit Level being exceeded	1. Inform IEC, ER, Contractor and EPD; 2. Repeat measurements to confirm findings; 3. Increase monitoring frequency; 4. Identify source and Investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. (The above actions should be taken within 2 working days after the exceedance is identified)	Confirm receipt of notification of fallure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC and ER within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

Appendix D - Event Action Plans

Event/Action Plan for Landscape and Visual

EVENT ACTION		ACTION				
LEVEL	ET	IEC ER		CONTRACTOR		
Design Check	Check final design conforms to the requirements of EP and prepare report.	Check report. Recommend remedial design if necessary	Undertake remedial design if necessary			
Non- conformity on one occasion	Identify Source Inform IEC and ER Discuss remedial actions with IEC, ER and Contractor Monitor remedial actions until rectification has been completed	Check report Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise ER on effectiveness of proposed remedial measures. Check implementatio n of remedial measures.	Notify Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake any necessary replacement		
Repeated Non- conformity	Identify Source Inform IEC and ER Increase monitoring frequency Discuss remedial actions with IEC, ER and Contractor Monitor remedial actions until rectification has been completed If non- conformity stops, cease additional monitoring	Check monitoring report Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise ER on effectiveness of proposed remedial measures Supervise implementatio n of remedial measures.	Notify Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake any necessary replacement		

APPENDIX E ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Appendix E - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

EIA Ref.	Mitigation Measures	Status		
Construction Air Qu	Construction Air Quality			
S3.2 (AEIAR-130/2009)	8 times daily watering of the work site with active dust emitting activities.	٨		
S4.8 (AEIAR-170/2013)	Control measures stipulated in the approved KTD Schedule 3 EIA Report should be strictly followed.	٨		
S3.2 (AEIAR-130/2009) and S4.8	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.			
(AEIAR-170/2013)	 Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. Misting for the dusty material should be carried out before being loaded into the vehicle. 	^		
	 Any vehicle with an open load carrying area should have properly fitted side and tail boards. 	۸		
	• Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	^		
	• The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation.	^		
	• The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	^		
	• Vehicle washing facilities should be provided at every vehicle exit point.	۸		

EIA Ref.	Mitigation Measures	Status
	 The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores. Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet. Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides; and Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites. 	^ ^
Construction Noise		L
S3.3 (AEIAR-130/2009)	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump.	۸
S3.3 (AEIAR-130/2009)	 Good Site Practice: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. 	^ N/A(1) ^ ^ ^
	 Material stockpiles and other structures should be effectively utilized, wherever 	^

EIA Ref.	Mitigation Measures	Status
	practicable, in screening noise from on-site construction activities.	
S3.3 (AEIAR-130/2009)	Scheduling of Construction Works during School Examination Period	N/A
S3.8 (AEIAR-170/2013)	Provision of a landscaped deck along Roads D3A & D4A.	N/A
S3.8 (AEIAR-170/2013)	 Provision of about 1090 m length of vertical noise barrier (connected to the deck) at Roads D3A & D4A; Provision of about 60 m length of overhang vertical noise barrier (connected to the deck) at Road D4A; and Provision of staircases with noise barriers next to Sites 4A1 and 4B1 It should be noted that the exact length of the mitigation measures would be subject to minor refinement during the detailed design stage. 	N/A N/A N/A
S3.8 (AEIAR-170/2013)	Non-noise sensitive use areas within Sites 4A1 and 4B1.	N/A
S3.8 (AEIAR-170/2013)	Avoid sensitive façade with openable window facing Road D3A.	N/A
Construction Water	· Quality	
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	 Construction Runoff Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include: use of sediment traps adequate maintenance of drainage systems to prevent flooding and overflow 	^ ^

EIA Ref.	Mitigation Measures	Status
	Construction site should be provided with adequately designed perimeter channel and pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	
	Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.	^
S5.8 (AEIAR-170/2013)	Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary.	^
	Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they should be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	^
S3.4 (AEIAR-130/2009)	Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m ³ capacity, are recommended as a general mitigation measure	۸

EIA Ref.	Mitigation Measures	Status
	which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	٨
()	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	٨
S3.4 (AEIAR-130/2009)	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.	٨
	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	٨
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting	٨

EIA Ref.	Mitigation Measures	Status
	from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	
S5.8 (AEIAR-170/2013)	Boring and Drilling Water Water used in ground boring and drilling for site investigation or rock / soil anchoring should as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater should be discharged into storm drains via silt removal facilities.	٨
	Acid Cleaning, Etching and Pickling Wastewater Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be neutralized to within the pH range of 6 to 10 before discharging into foul sewers	^
S3.4 (AEIAR-130/2009)	Drainage It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.	^
S3.4 (AEIAR-130/2009)	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	٨

EIA Ref.	Mitigation Measures	Status
S3.4 (AEIAR-130/2009)	All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	٨
S5.8 (AEIAR-170/2013)	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distance of 100 m should be maintained between the discharge points of construction site effluent and the existing seawater intakes and the planned WSR mentioned in S5.3.1 as appropriate. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO licence which is under the ambit of regional office (RO) of EPD.	^
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	Sewage Effluent Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	^
S5.8	Notices should be posted at conspicuous locations to remind the workers not to discharge	۸

EIA Ref.	Mitigation Measures	Status
(AEIAR-170/2013)	any sewage or wastewater into the surrounding environment. Regular environmental audit of the construction site will provide an effective control of any malpractices and can encourage continual improvement of environmental performance on site. It is anticipated that sewage generation during the construction phase of the project would not cause water pollution problem after undertaking all required measures.	
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	Stormwater Discharges Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes.	^
	Debris and Litter In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur.	^
S5.8 (AEIAR-170/2013)	Accidental Spillage Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation, should be observed and complied with for control of chemical wastes. Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.	^

EIA Ref.	Mitigation Measures	Status
	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: Suitable containers should be used to hold the chemical wastes to avoid leakage or	^
	 spillage during storage, handling and transport. Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. 	٨
	• Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.	٨
Construction Waste	Management	
S6.7 (AEIAR-170/2013)	Prepare a Waste Management Plan, which becomes a part of the Environmental Management Plan, in accordance with the requirements stipulated in ETWB TC(W) No. 19/2005, approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites.	٨
S3.5 (AEIAR-130/2009) and S6.7 (AEIAR-170/2013)	Good Site Practices It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations for good site practices during construction activities include: Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training of site personnel in proper waste management and chemical waste handling procedures	^
	Provision of sufficient waste disposal points and regular collection for disposal	۸

EIA Ref.	Mitigation Measures	
	Appropriate measures to minimise windblown litter and dust during transportation of	٨
	waste by either covering trucks or by transporting wastes in enclosed containers	
	• A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites)	^
	Regular cleaning and maintenance systems, sumps and oil interceptors	٨
	Separation of chemical wastes for special handling and appropriate treatment	٨
	Waste Reduction Measures	
	Good management and control can prevent the generation of a significant amount of	
	waste. Waste reduction is best achieved at the planning and design stage, as well as by	
	ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	
	 Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals 	^
	 Segregation and storage of different types of waste in different containers, skips or 	٨
	stockpiles to enhance reuse or recycling of materials and their proper disposal	
	• Encourage collection of aluminium cans, PET bottles and paper by providing separate	٨
	labelled bins to enable these wastes to be segregated from other general refuse generated by the work force	
	 Any unused chemicals or those with remaining functional capacity should be recycled 	٨
	 Proper storage and site practices to minimise the potential for damage or contamination of construction materials 	۸
	Plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste	۸
	 Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycle. 	۸

EIA Ref.	Mitigation Measures	Status
S3.5 (AEIAR-130/2009)	Construction and Demolition Materials Mitigation measures and good site practices should be incorporated in the contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include: • Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles shall be	^
	 located away from waterfront or storm drains as far as possible. Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric. 	*
	 Skip hoist for material transport should be totally enclosed by impervious sheeting. Every vehicle should be washed to remove any dusty materials from its body and 	^ ^
	 wheels before leaving a construction site. The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores. 	٨
	 The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle. 	۸
	• All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet.	٨
	The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.	٨
	When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket"	^

EIA Ref.	Mitigation Measures	Status
	System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirement sand implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	
S3.5 (AEIAR-130/2009)	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem	
Construction Lands	cape and Visual	
S3.8.12	Minimized construction area and contractor's temporary works areas.	٨
(AEIAR-130/2009)	• All existing trees should be carefully protected during construction.	٨
and	• Trees unavoidably affected by the works should be transplanted where practical.	٨
S7.9 (AEIAR-170/2013)	Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	
	 Control of night-time lighting. 	N/A(1)
	 Erection of decorative screen hoarding. 	Λ
	Reduction of construction period to practical minimum.	٨
	Limitation of / Ensuring no run-off into surrounding landscape and adjacent seawater areas.	٨
	• Temporary or advance landscape should be provided along the temporary access roads to the Cruise Terminal until such time as road D3 is open.	N/A

Remarks:	EIA Report (AEIAR-130/2009) – Kai Tak Development			
	EIA Report (AEIAR-170/2013) – Kai Tak Development – Roads D3A & D4A			
	^ Compliance of mitigation measure; N/A Not Applicable at this stage; N/A(1) Not observed;	 X Non-compliance of mitigation measure; Non-compliance but rectified by the contractor; 		
	* Recommendation was made during site audit but improved/rectified by the contractor.			

APPENDIX F
SUMMARIES OF ENVIRONMENTAL
COMPLAINT, WARNING, SUMMON
AND NOTIFICATION OF SUCCESSFUL
PROSECUTION

Contract No. KL/2014/01

Kai Tak Development –Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway

 $\label{eq:complaint} \textbf{Appendix} \ F-Summary \ of \ environmental \ complaint, \ warning, \ summon \ and \ notification \ of \ successful \ prosecution$

Reporting Month: December 2016

Contract No. KL/2014/01

Log Ref.	Location	Received Date	Details of Complaint/warning/summon and prosecution	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A	N/A

Remarks: No environmental complaint/warning/summon and prosecution were received in the reporting period.

APPENDIX G WASTE GENERATED QUANTITY

Name of Department: CEDD Contract No. KL/2014/01

Waste Flow Table for Year 2016

	Actual Quantities of Inert C&D Materials Generated Monthly			Actual Quantities of C&D Wastes Generated Monthly							
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in tonne)
Jan	3,750.00	0	3,750.00	0	0	0	0	0	0	0	0
Feb	150.00	0	150.00	0	0	0	0	0	0	0	9.41
Mar	24.96	0	0	0	24.96	0	0	0	0	0	1.22
Apr	0	0	0	0	0	0	0	0	0	0	3.69
May	929.49	0	0	0	929.49	0	0	0	0	0	42.73
June	2,861.45	6.34	0	0	2855.11	0	0.0003	0.360	0.004	0	11.55
Sub-total	7,715.90	6.34	3,900.00	0	3809.56	0	0.0003	0.360	0.004	0	68.60
July	3,228.90	0	0	0	3228.90	0	0	0	0	0	19.89
Aug	5,068.14	0	0	0	5068.14	0	0	0	0	0	8.72
Sept	4703.17	0	0	0	4703.17	0	0	0	0	0	15.59
Oct	6222.41	0	0	0	6222.41	0	0	0.179	0.552	0	44.23
Nov	19729.94	0	0	0	19729.94	0	0	0	0	0	35.02
Dec	19544.98	0	0	0	19544.98	0	0	0	0	0	43.00
Total	66,213.44	6.34	3,900.00	0	62,307.10	0	0.0003	0.539	0.556	0	235.05

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix D

Monthly EM&A Report For Contract No. KL/2014/03 Stage 3 infrastructure works for developments at the southern part of the former runway

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax

: (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

MONTHLY EM&A REPORT

December 2016

Client Civil Engineering and Development

Department, HKSAR

Contract No. KLN/2015/07

Contract Name: Environmental Monitoring Works for

Contract KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

0405/15/ED/0670 Report No.

EP-337/2009 New Distributor Roads Serving the Planned Kai Tak

Development Area

EP-339/2009/A Decommissioning of the Remaining Parts (Ex-GFS

Building, Radar Station and Hong Kong Aviation Club)

of the former Kai Tak Airport

EP-451/2013 Trunk Road T2

Prepared by Alfred Y. S. Lam

Reviewed by Cyrus C. Y. Lai

Certified by Colin K. L. Yung

Environmental Team Leader

MateriaLab Consultants Limited

Ref.: CEDKTDS3EM00_0_0155L.17

12 January 2017

By Post and Email

Hyder-Meinhardt Joint Venture 20/F., AXA Tower, Landmark East, 100 How Ming Street, Kwun Tong, Kowloon, Hong Kong

Attention: Mr. Wong W K, Chris

Dear Mr. Wong,

Re: Contract No. KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway Monthly EM&A Report for December 2016

Reference is made to the Environmental Team's submission of the Monthly EM&A Report for December 2016 (Report No. 0405/15/ED/0670A) we received by e-mail on 11 January 2017.

Please be informed that we have no adverse comment on the captioned report. We hereby verify the captioned submission according to Condition 3.3 of EP-337/2009, Condition 3.3 of EP-339/2009/A and Condition 3.4 of EP-451/2013.

Thank you for your attention. Please do not hesitate to contact us should you have any queries.

Yours sincerely, For and on behalf of Ramboll Environ Hong Kong Limited

F. C. Tsang

Independent Environmental Checker

CEDD C.C.

Attn.: Ms. Amy Chu

Fax: 2369 4980

MateriaLab Attn.: Mr. Colin K. L. Yung

Coappan Deorg

Fax: 2450 8032

CRBC Attn.: Mr. Arnold Chan

Fax: 2283 1689

Q:\Projects\CEDKTDS3EM00\02_Proj_Mgt\02_Corr\CEDKTDS3EM00_0_0155L.17.docx

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong..

: (852)-24508238 : (852)-24508032 Tel Fax Email: mcl@fugro.com.hk

TABLE OF CONTENTS

EXE (CUTIVE SUMMARY	- 1
1.	INTRODUCTION	1
2.	AIR QUALITY	5
3.	NOISE	10
4.	LANDSCAPE AND VISUAL	14
5.	WASTE MANAGEMENT	15
6.	SITE INSPECTION	16
7.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	17
8.	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	18
9.	FUTURE KEY ISSUES	19
10	CONCLUSIONS	20

FIGURES

Figure 1 Project General Layout

Figure 2 Air and Noise Monitoring Locations

LIST OF APPENDICES

Appendix A Appendix B	Construction Programme Project Organization Chart
Appendix C	Action and Limit Levels for Air Quality and Noise
Appendix D	Calibration Certificates of Monitoring Equipment
Appendix E	Environmental Monitoring Schedules
Appendix F	Air Quality Monitoring Data
Appendix G	Noise Monitoring Data
Appendix H	Event Action Plans
Appendix I	Waste Flow Table
Appendix J	Environmental Mitigation Implementation Schedule (EMIS)
Appendix K	Weather and Meteorological Conditions during Reporting Month
Appendix L	Cumulative statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions
Appendix M	Summary of Site Audit in the Reporting Month
Appendix N	Outstanding Issues and Deficiencies

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. Email : mcl@fugro.com.hk

EXECUTIVE SUMMARY

- i. The Civil Engineering and Development Department HKSAR has appointed MateriaLab Consultants Limited (MCL) to undertake the Environmental Team services for the Project and implement the EM&A works.
- ii. This Monthly EM&A report presents the environmental monitoring and audit works for the period between 1 December 2016 and 31 December 2016. As informed by the Contractor, major activities in the reporting month were:
 - Temporary utility diversion;
 - Implementation of Temporary Traffic Arragement (TTA);
 - Construction of Socket H piles;
 - Excavation and Earth Lateral Support (ELS) construction for Supporting Underground Structure (SUS).
 - Construction of Subway B;
 - Construction of guide walls and D-walls; and
 - Construction of District Cooling System Works.

Breaches of the Action and Limit Levels

iii. No Action / Limit Level exceedance was recorded for 24-hr TSP and construction noise at KTD1a, KTD2a and KER1b in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

iv. No environmental complaint and no notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

v. There was no reporting change in the reporting month.

Future Key Issues

vi. The key issues to be considered in the coming reporting month include:

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality, waste management and landscape and visual impact.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong.. Email : mcl@fugro.com.hk

1. INTRODUCTION

1.1 **Background**

- The Kai Tak Development is located in the south-eastern part of Kowloon Peninsula of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling.
- 1.1.2 Contract No. KL/2014/03 is the works package to construct an approximately 420m long supporting underground structure (SUS) underneath Shing Cheong Road and Cheung Yip Street. The EM&A programme under this Contract is governed by three EPs (EP-337/2009, EP-339/2009/A and EP-451/2013) and two EM&A Manuals (AEIAR-130/2009 and AEIAR-174/2013). The Works to be executed under this Contract and corresponding EPs include but not be limited to the following main items:

EP-451/2013 - Trunk Road T2

Construction of approximately 420m long supporting underground structure (SUS) (i) including diaphragm walls, barrettes, piled foundation, top and bottom slabs, end wall and adits underneath Shing Cheong Road and Cheung Yip Street;

EP-337/2009 - New Distributor Roads Serving the Planned Kai Tak Development

- Widening and re-alignment of Cheung Yip Street of approximately 330m long and associated footpaths:
- Demolition, reconstruction and widening of Shing Cheong Road of approximately 410m (iii) long and associated footpaths;
- Construction of drainage outfall and modification of existing seawall; (iv)
- Construction of ancillary works including surface drainage, sewerage, water, fire (v) fighting, street lighting, street furniture, road marking, road signage, utilities and services, irrigation and landscape works.

EP-339/2009/A - Decommissioning of the Remaining Parts (Ex-GFS Building, Radar Station and Hong Kong Aviation Club) of the former Kai Tak Airport

(vi) Demolition of RADAR Tower and guard house;

Other works not covered by any EP

- Construction of two subways between Phase II of New Acute Hospital (Site A) and Hong Kong Children's Hospital (Site C), and between Phase I of New Acute Hospital (Site B) and Site C;
- (viii) Construction of District Cooling System (DCS) along Cheung Yip Street and Shing Cheong Road
- The location and boundary of the site is shown in **Figure 1**.
- This Monthly EM&A report is required under EP-337/2009 Condition 3.3, EP-339/2009/A Condition 3.3 and EP-451/2013 Condition 3.4. It is to report the results and findings of the EM&A programme required in the EM&A Manuals.
- This is the tenth monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project within the period between 1 December 2016 and 31 December 2016.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

1.2 **Project Organization**

- The project proponent was the Civil Engineering and Development Department, HKSAR 1.2.1 (CEDD), Hyder Meinhardt Joint Venture (HMJV) was commissioned by CEDD as the Engineer for the Project. Ramboll Environ Hong Kong Limited was commissioned as the Independent Environmental Checker (IEC). China Road and Bridge Corporation (Hong Kong) (CRBC) was appointed as the main contractor for the construction works under the contract KL/2014/03. MateriaLab Consultants Limited (MCL) was appointed as the Environmental Team (ET) by CEDD to implement the EM&A programme for the Project.
- 1.2.2 The organization structure is shown in Appendix B. The key personnel contact names and numbers for the Project are summarized in Table 1.1.

Table 1 1 Contact Information of Key Personnel

Table 1.1 Contact information of Key Fersonner					
Party	Position	Name	Telephone	Fax	
Project Proponent (CEDD)	Co-ordinator	Ms. Amy Chu	3106 3172	2369 4980	
Engineer's Representative (HMJV)	Chief Resident Engineer	Mr. W. K., Chris Wong	3742 3803	3742 3899	
IEC (Ramboll Environ Hong Kong Limited)	Independent Environmental Checker	Mr. F. C. Tsang	3465 2888	3465 2899	
Main Contractor (CRBC)	Site Agent	Mr. Chan See Wai, Arnold	9380 4110	2283 1689	
Main Contractor (CRBC)	Environmental Officer	Mr. Andy Choy	6278 2693	2283 1689	
ET (MCL)	Environmental Team Leader	Mr. Colin Yung	3565 4114	3565 4160	

1.3 **Construction Programme and Activities**

- 1.3.1 The construction of the Project commenced in February 2016 and is expected to complete in 2020. The construction programme is shown in Appendix A.
- 1.3.2 A summary of the major construction activities undertaken in the reporting month were:
 - Temporary utility diversion;
 - Implementation of Temporary Traffic Arragement (TTA);
 - Construction of Socket H piles;
 - Excavation and Earth Lateral Support (ELS) construction for Supporting Underground Structure (SUS).
 - Construction of Subway B:
 - Construction of guide walls and D-walls; and
 - Construction of District Cooling System Works.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 : (852)-24508032 Hong Kong. Email : mcl@fugro.com.hk

1.4 Inter-relationship with the environmental protection/ mitigation measures with the construction programme

- According to the construction activities in the construction programme mentioned in Section 1.4.1 1.3.2, the following environmental protection/ mitigation measures including Air Quality Impact, Construction Noise Impact, Water Quality Impact, Chemical and Waste Management, Landscape and Visual Impact shall be implemented:
 - Sufficient watering of the works site with the active dust emitting activities;
 - Limitation of the speed for vehicles on unpaved site roads;
 - Properly cover or enclosure of the stockpiles and dusty materials;
 - Good site practices on loading dusty materials;
 - Providing sufficient vehicles washing facilities at every vehicle exit point;
 - Good maintenance to the plant and equipment;
 - Use of guieter plant and Quality Powered Mechanical Equipment (QPME);
 - Use of acoustic fabric and noise barrier;
 - Using the approved Non-road Mobile Machineries (NRMMs);
 - Proper storage and handling of chemical:
 - Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge;
 - Onsite waste sorting and implementation of trip ticket system;
 - Training of the site personnel in proper waste management and chemical waste handling procedures;
 - Proper storage of the construction materials:
 - Erection of decorative screen hoarding:
 - Strictly following the Environmental Permits and Licenses:
 - Provide sufficient mitigation measures as recommended in Approved EIA Reports

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

1.5 Status of Environmental Licences, Notifications and Permits

A summary of the relevant environmental licenses, permits and/or notifications on 1.5.1 environmental protection for this Contract is presented in Table 1.2.

Table 1.2 Relevant Environmental Licenses, Permits and/or Notifications

	Elivironiniental Eloche	l						
Environmental License / Permit / Notification	Reference Number	Valid From	Valid Till					
Environmental Permit	EP-337/2009 EP-339/2009/A EP-451/2013	23 April 2009 18 June 2009 19 September 2013	Not Applicable Not Applicable Not Applicable					
Notification pursuant to Air Pollution (Construction Dust) Regulation	395601	16 November 2015	Not Applicable					
Billing Account for Waste Disposal	A/C No.: 7023814	30 November 2015	Not Applicable					
Construction Noise Permit	GW-RE1008-16	19 October 2016	09 April 2017					
Construction Noise Permit	PP-RE0032-16	23 November 2016	15 May 2017					
Wastewater Discharge License	WT00023125-2015	6 January 2016	31 January 2021					
Chemical Waste Producer License	5213-247-C1232-12	23 November 2015	Not Applicable					

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com.hk

2. **AIR QUALITY**

2.1 **Monitoring Requirement**

In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out at least once every 6 days. In case of complaints, 1-hour TSP monitoring should be carried out at least 3 times per 6 days when the highest dust impacts are likely to occur. The Action and Limit Levels of the air quality monitoring are given in Appendix C.

2.2 **Monitoring Equipment**

The 24-hour TSP air quality monitoring was performed using High Volume Air Samplers (HVS) located at each of the designated monitoring station. Portable TSP Monitors would be used in case of complaints for 1-hour TSP monitoring.

Table 2.1 summarizes the equipment used in air quality monitoring.

Table 2.1 Air Quality Monitoring Equipment

Item	Brand	Model	Equipment	Serial Number
1		TE-5170 (TSP)	High Volume Sampler	
		TE-300-310X	- Mass Flow Controller	2037
	Tisch	TE-5005X	- Blower Motor Assembly	3482
		TE-5007X	- Mechanical Timer	4488
		TE-5009X	- Continuous Flow Recorder	4371
2		TE-5170 (TSP)	High Volume Sampler	
		TE-300-310X	- Mass Flow Controller	2524
	Tisch	TE-5005X	- Blower Motor Assembly	4037
		TE-5007X	- Mechanical Timer	5160
		TE-5009X	- Continuous Flow Recorder	4377
3		TE-5170 (TSP)	High Volume Sampler	
		TE-300-310X	- Mass Flow Controller	2618
	Tisch	TE-5005X	- Blower Motor Assembly	3838
		G3031	- Mechanical Timer	2251
		G1051	- Continuous Flow Recorder	2307
4	Tisch	TE-5025A	HVS Sampler Calibrator	0438320 / 2456
5	*Sibata	Model LD-3B	Sibata Portable TSP Monitors	NA

Note:

No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted.

2.3 **Monitoring Methodology**

2.3.1 24-hour TSP air quality monitoring

HVS Installation

The following guidelines were adopted during the installation of HVS:

- Sufficient support is provided to secure the samplers against gusty wind.
- No two samplers are placed less than 2 meters apart.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 Fax : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

- The distance between the sampler and an obstacle, such as buildings, is at least twice the height that the obstacle protrudes above the sampler.
- A minimum of 2 meters of separation from walls, parapets and penthouses is required for rooftop samples.
- A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
- No furnaces or incineration flues are nearby.
- Airflow around the samplers is unrestricted.
- The samplers are more than 20 meters from the drip line.
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.

Filters Preparation

Fiberglass filters (provided by the HOKLAS accredited laboratory) shall be used (Note: these filters have a collection efficiency of larger than 99% for particles of 0.3 µm diameter). A HOKLAS accredited laboratory (ALS Technichem (HK) Pty Ltd.) is responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for monitoring team.

All filters are equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature is around 25°C and not variable by more than ±3°C; the relative humidity (RH) is < 50% and not variable by more than ±5%. A convenient working RH is 40%.

Operating / Analytical Procedures

Operating / analytical procedures for the air quality monitoring are highlighted as follows:

- Prior to the commencement of the dust sampling, the flow rate of the HVS are properly set (between 0.6 m³/min and 1.7 m³/min) in accordance with the EM&A manual. The flow rate shall be indicated on the flow rate chart.
- The power supply shall be checked to ensure the samplers worked properly.
- On sampling, the samplers shall be operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
- The filter holding frame is then removed by loosening the four nuts and carefully a weighted and conditioned filter is centered with the stamped number upwards, on a supporting screen.
- The filter shall be aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame is tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The shelter lid shall be closed and secured with the aluminum strip.
- The timer is then programmed. Information shall be recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After sampling, the filter shall be removed and sent to laboratory for weighing. The elapsed time is also recorded.
- Before weighing, all filters are equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results are returned to MCL for further analysis of TSP concentrations collected by each filter.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

2.3.2 1-hour TSP air quality monitoring

Operating / Analytical Procedures

The measuring procedures of the 1-hr dust meter are in accordance with the Manufacturer's instruction Manual as follows:

- Pull up the air sampling inlet cover
- Change the Mode 0 to BG once
- Push Start/Stop switch once
- Turn the knob to SENSI.ADJ and press it
- Push Start/Stop switch once
- Return the knob to the position MEASURE slowly
- Push the timer set switch to set measuring time
- Remove the cap and make a measurement

2.4 Maintenance / Calibration

24-hour TSP air quality monitoring

The following maintenance / calibration are required for the HVS:

- The high volume motors and their accessories are properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking are made to ensure that the equipments and necessary power supply are in good working condition.
- All HVS shall be calibrated (five point calibration) using Calibration Kit upon installation and thereafter in every 3 months.
- A copy of the calibration certificates for the HVS and calibrator are provided in **Appendix** D.

2.4.2 1-hour TSP air quality monitoring

The portable TSP monitor should be calibrated at 1 year intervals

2.5 **Monitoring Locations**

- According to the EM&A Manual, three air quality monitoring locations, namely KTD1, KTD2 and KER1, are covered by this Contract within the South Apron Area of Former Kai Tak Airport. The other two air quality monitoring locations, which are identified in Cha Kwo Ling area, are farther than 500m away from the site boundary and thus not covered by this Contract. The monitoring works in Cha Kwo Ling area are covered by other Contract(s) respectively.
- 2.5.2 According to the approved alternative baseline air quality and noise monitoring locations (EPD reference: EP2/K19/A/21 Pt.5), the original monitoring locations (KTD1, KTD2 and KER1) are proposed to be replaced by alternative monitoring locations (KTD1a, KTD2a and KER1b) for air quality monitoring, they are summarized in Table 2.2 and shown in Figure 2.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com.hk

Table 2.2 **Location of Air Quality Monitoring Station**

Monitoring Station	Location
KTD1a	Centre of Excellence in Paediatrics (Children's Hospital)
KTD2a	G/IC Zone next to Kwun Tong Bypass (Future Hospital at Site 3C1)
KER1b	Site Boundary at Cheung Yip Street

2.6 **Results and Observations**

- 2.6.1 The schedule of air quality monitoring in reporting month is provided in **Appendix E**.
- 2.6.2 No Action / Limit Level exceedance was recorded for 24-hr TSP at KTD1a, KTD2a and KER1b in the reporting month.
- No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was 2.6.3 conducted in the reporting month.
- During the reporting month, major dust sources including loading and unloading of C&D wastes, vehicles movement were observed in the site. Non-project related construction activities at the nearby construction site and road traffic along Shing Cheong Road, Cheung Yip Street and the Kwun Tong By-pass were observed. The above factors may affect the monitoring results.
- 2.6.5 The weather conditions during the monitoring are provided in **Appendix K**.
- 2.6.6 The monitoring data of 24-hr TSP are summarized in Table 2.3. Detailed monitoring data are presented in Appendix F.

Summary of 24-hr TSP Monitoring Results Table 2.3

Parameter	Monitoring Station	Average (µg/m³)	Range (μg/ m³)	Action Level (µg/ m³)	Limit Level (µg/ m³)
24-hr TSP	KTD1a	131	60 – 174	177	
in µg/m ³	KTD2a	56	19 – 93	157	260
πι μg/πι	KER1b	128	110 – 144	172	

2.6.7 The Event and Action Plan for air quality is given in **Appendix H**.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

2.7 Comparison of 24-hr TSP Monitoring Results with EIA Predictions

The monitoring data of 24-hr TSP was compared with the EIA predictions as summarized in 2.7.1 **Table 2.4.**

Table 2.4 Comparison of 24-hr TSP data with EIA predictions

Monitoring Station	Receiver Reference	Predicted Maximum 24-hour TSP Concentration (µg/m³)	24-hour TSP concentration in December 2016 (µg/m³)	Average 24-hour TSP concentration in December 2016 (µg/m³)
KTD1a	KTD3	126	60 – 174	131
KTD2a	-	-	19 – 93	56
KER1b	KTD6	169	110 – 144	128

Note:

For KTD2a, there was no receiver reference in the EIA report, EIAR-174/2013. Predicted Maximum TSP Concentration extracted from Table 4.14 of EIA Report, EIAR-174/2013.

- 2.7.2 The 24-hour TSP monitoring results at KER1b was below the Predicted Maximum 24-hr TSP concentration in the approved Environmental Impact Assessment (EIA) Report and no Action / Limit Level exceedance was recorded in the reporting period.
- The 24-hour TSP monitoring result of KTD 1a on 3, 9, 15 and 20 December 2016 exceeded the prediction in the approved in the approved EIA report. However, the result did not exceed the Action Level. Mitigation measures, including water spraying and covering of stockpiles of dusty materials were adopted and observed near the monitoring station KTD1a during the site inspections in December 2016. The discrepancy between the 24-hour TSP concentration and EIA Prediction in KTD1a is considered due to dust source from the non-project related construction activities near the monitoring station and the road travel along Shing Fung Road.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong.. Email : mcl@fugro.com.hk

3. **NOISE**

3.1 **Monitoring Requirement**

In accordance with the approved EM&A Manuals, Leg (30min) monitoring is conducted for at least once a week during the construction phase between 0700 and 1900 on normal weekdays at the designated monitoring locations.

3.2 **Monitoring Equipment**

The sound level meter used in noise monitoring will comply with the International Electrotechnical Commission Publication (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications as referred to in the Technical Memorandum issued under the Noise Control Ordinance (NCO).

Sound level calibrator will be used for the on-site calibration of the meter. This calibrator complies with the IEC Publication 942 (1988) Class 1 and ANSI S1.40 - 1984. Noise measurements were only accepted to be valid if the calibration levels from before and after the measurement agree to within 1.0dB.

Measurements shall be recorded to the nearest 0.1dB. This noise monitors are programmed to measure A-weighted equivalent continuous sound pressure level at 30-minute intervals between 0700 and 1900 on normal weekdays at least once a week when construction activities are underway.

Table 3.1 summarizes the noise monitoring equipment model being used for this project.

Table 3.1 **Noise Monitoring Equipment**

Item	Brand	Model	Equipment	Serial Number
1	Casella	CEL-63X Series	Integrating Sound Level Meter	1057063
2	Casella	CEL-633A Series	Integrating Sound Level Meter	3756072
3	Casella	CEL-633A Series	Integrating Sound Level Meter	3756084
4	Casella	CEL-633A Series	Integrating Sound Level Meter	3756127
5	Casella	CEL-120/1	Calibrator	5230736
6	Casella	CEL-120/1	Calibrator	5230742
7	Casella	CEL-120/1	Calibrator	4358251
8	Smart Sensor	AR816+	Wind Speed Anemometer	MC-A-001

3.3 **Monitoring Parameters and Frequency**

Table 3.2 presents the noise monitoring parameters and frequencies.

Table 3.2 Monitoring Parameters and Frequencies of Noise Monitoring

Parameter	Frequency and Period
LAeq (30min)	At each station at 0700-1900 hours on normal weekdays at a frequency
L10 and L90 will be recorded for reference	of once a week

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 Fax : (852)-24508032 Hong Kong. Email : mcl@fugro.com.hk

3.4 **Monitoring Methodology**

The monitoring procedures are as follows:

- The monitoring station is set at a point 1m from the exterior of the sensitive receivers building façade and set at a position 1.2m above the ground.
- The battery condition is checked to ensure good functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time are set as follows:

frequency weighting: A

time weighting: Fast

measurement time: Weekly 30 minutes between 0700-1900 on normal weekdays

- Prior to and after noise measurement, the meter shall be calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement will be considered invalid and repeat of noise measurement is required after re-calibration or repair of the equipment.
- Noise monitoring should be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.
- Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
- At the end of the monitoring period, the Leg, L10 and L90 are recorded. In addition, site conditions and noise sources are recorded on a standard record sheet.

3.5 **Maintenance / Calibration**

Maintenance and Calibration procedures are as follows:

- The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.
- The sound level meter and calibrator should be calibrated annually by a HOKLAS laboratory.
- Relevant calibration certificates are provided in **Appendix D**.

3.6 **Monitoring Locations**

- According to the EM&A Manual, three noise monitoring locations, namely KTD1, KTD2 and KER1, are covered by this Contract within the South Apron Area of Former Kai Tak Airport. The other two noise quality monitoring locations, which are identified in Cha Kwo Ling area, are farther than 300m away from the site boundary and thus not covered by this Contract. The monitoring works in Cha Kwo Ling area are covered by other Contract(s) respectively.
- 3.6.2 According to the approved alternative baseline air quality and noise monitoring locations (EPD reference: EP2/K19/A/21 Pt.5), the original monitoring locations (KTD1, KTD2 and KER1) are proposed to be replaced by alternative monitoring locations (KTD1a, KTD2a and KER1b) for noise monitoring, they are summarized in **Table 3.3** and shown in **Figure 2**.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

Table 3.3 **Location of Noise Monitoring Station**

Monitoring Station	Location
KTD1a	Centre of Excellence in Paediatrics (Children's Hospital)
KTD2a	G/IC Zone next to Kwun Tong Bypass (Future Hospital at Site 3C1)
KER1b	Site Boundary at Cheung Yip Street

3.7 **Results and Observations**

- 3.7.1 The schedule of noise monitoring in reporting month is provided in **Appendix E**.
- 3.7.2 During the monitoring month, at KTD1a, non-project related construction activities at the nearby construction site and road traffic along Shing Cheong Road were observed in the surroundings. At KTD2a, road traffic along the Kwun Tong By-pass was observed. At KER1b, road traffic along Cheung Yip Street was observed. Major noise sources including noise emission from plant & PME and some other construction activities, travel of vehicles, loading and unloading of C&D waste were observed in the site. The above factors may affect the monitoring results.
- No raining and wind with speed over 5 m/s was observed during noise monitoring according to 3.7.3 the onsite observation. The weather conditions during the monitoring month are provided in Appendix K.
- 3.7.4 The noise monitoring data are summarized in Table 3.4. Detailed monitoring data are presented in Appendix G.

Table 3.4 Summary of Noise Impact Monitoring Results

Time Period		eq _(30min) dB(<i>l</i> (Range) Monitoring S		Action Level	Limit Level
	KTD1a	KTD2a	KER1b		
0700-1900 hrs on normal weekdays	68 - 71	63 - 69	64 - 74	When one documented complaint is received	75 dB(A)

Note:

KTD1a: Façade Measurement

KTD2a & KER1b: Free-field measurement (+3dB(A) correction has been applied)

- 3.7.5 No Action / Limit Level exceedance was recorded for construction noise in the reporting month.
- 3.7.6 The Action and Limit Levels for noise impact monitoring have been set are presented in Appendix C.
- 3.7.7 The Event and Action Plan for noise is given in **Appendix H**.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

3.8 **Comparison of Noise Monitoring Results with EIA Predictions**

The noise monitoring data was compared with the EIA predictions as summarized in **Table 3.5**. 3.8.1

Table 3.5 Comparison of Noise Monitoring data with EIA predictions

Monitoring Station	Receiver Reference	Maximum Predicted Mitigated Construction Noise Level, dB(A)	Leq _(30min) dB(A) in December 2016
KTD1a	KTD1	74	68 - 71
KTD2a	KTD2	75	63 - 69
KER1b	KER1	75	64 - 74

Note:

Maximum Predicted Mitigated Construction Noise Level extracted from Table 5.13 of EIA Report, EIAR-174/2013.

3.8.2 The impact noise monitoring results in the reporting month did not exceed the Maximum Predicted Mitigated Construction Noise Level in the approved Environmental Impact Assessment (EIA) Report and no Action / Limit Level exceedance was recorded in the reporting period.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

4. LANDSCAPE AND VISUAL

4.1 **Audit Requirements**

- 4.1.1 As per the Trunk Road T2 EM&A Manual, the landscape and visual mitigation measures during the construction phase shall be audited by a Registered Landscape Architect, as a member of the Environmental Team, at least once every two weeks to ensure compliance with the intended aims of the measures.
- 4.1.2 According to the Kai Tak Development EM&A Manual, measures to mitigate landscape and visual impacts during construction should be checked to ensure compliance with the intended aims of the measures. The progress of the engineering works shall be regularly reviewed onsite to identify the earliest practical opportunities for the landscape works to be undertaken. The ET shall report on the Contractor's compliance on a weekly basis.

4.2 **Results and Observations**

- 4.2.1 To monitor and audit the implementation of landscape and visual mitigation measures, five weekly Landscape and Visual Site audits were carried out on 1, 8, 14, 21 and 29 December 2016 and three of them, 1, 8 and 21 December 2016 were carried out by a Registered Landscape Architect. The weekly Landscape and Visual Impact reports were counter-signed by IEC as according to the requirement of EM&A Manual (AEIAR-130/2009).
- During the Site audit on 14 December 2016, it is observed that open stockpiles at Portion I were not fully covered with impervious sheeting. The item was rectified by the Contractor and inspected on 21 December 2016.
- 4.2.3 During the Site audit on 29 December 2016, it is observed that open stockpiles at Portion I were not fully covered by impervious sheeting. The item was rectified by the Contractor and inspected on 5 January 2016.
- Should non-compliance of the landscape and visual impact occur, action in accordance to the event action plan presented in **Appendix H** shall be carried out.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

5. **WASTE MANAGEMENT**

5.1 **Audit Requirements**

- The effective management of waste arising during the construction phase will be monitored through the site audit programme. Regular audits and site inspections should be carried out to ensure that the recommended good site practices and other mitigation measures are implemented by the Contractor.
- 5.1.2 The audit should look at all aspects of on-site waste management practices including the waste generation, storage, recycling, transport and disposal. The aims of waste audit are:
 - to ensure the waste arising from the works are handled, stored, collected, transferred and disposed of in an environmentally acceptable manner;
 - verify the implementation status and evaluate the effectiveness of the mitigation measures; and
 - to encourage the reuse and recycling of material.

5.2 **Results and Observations**

- C&D materials and wastes sorting were carried out on site. Receptacles were available for 5.2.1 C&D wastes and general refuse collection.
- 5.2.2 The amount of wastes generated by the site activities in the reporting month is shown in Appendix I.
- 5.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

6. SITE INSPECTION

6.1 **Site Inspection**

- Site inspections were carried out weekly to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix J**.
- 6.1.2 In the reporting month, five site inspections were carried out on 1, 8, 14, 21 and 29 December 2016. Two of them, held on 14 and 21 December 2016 were the joint inspections with the IEC, ER, the Contractor and the ET.
- 6.1.3 No outstanding issues were reported during the reporting month. Details of observations recorded during the site inspections are summarized in **Appendix M**.
- 6.1.4 All the follow-up actions requested by Contractor's ET and IEC during the site inspections were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting month.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

7. **ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE**

7.1 **Environmental Exceedance**

No Action / Limit Level exceedance was recorded for 24-hr TSP and construction noise at KTD1a, KTD2a and KER1b in the reporting month.

7.2 **Complaints, Notification of Summons and Prosecution**

No complaint, inspection notice, notification of summons or prosecution was received in this reporting month. Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in Appendix L.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

8. **IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES**

8.1 **Implementation Status**

8.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and the EM&A Manuals. The implementation status of the mitigation measures during the reporting month is summarized in Appendix J. Status of required submission under the EP during the reporting period is summarized in Table 8.1.

Table 8.1 Status of Required Submission under Environmental Permit

Table 6.1 Status of Required Submission under Environmental Fermit						
EP Condition	EP Condition Submission					
EP-337/2009						
Condition 2.3	Management Organization of Main Construction Companies	18/12/2015				
Condition 2.4	Design Drawing of the Project	18/12/2015				
Condition 2.11	Landscape Mitigation Plan(s)	18/12/2015				
Condition 3.3	Monthly EM&A Report (November 2016)	13/12/2016				
EP-339/2009/A						
Condition 2.4	Management Organization of Main Construction Companies	18/12/2015				
Condition 2.5	Condition 2.5 Design Drawing of the Project					
Condition 3.3 Monthly EM&A Report (November 2016)		13/12/2016				
EP-451/2013						
Condition 2.3	Management Organization of Main Construction Companies	18/12/2015				
Condition 2.4	Design Drawing of the Project	18/12/2015				
Condition 2.5	Landscape Mitigation Plan(s)	18/12/2015				
Condition 2.10	Supplementary Contamination Assessment Report	18/12/2015				
Condition 3.3	Baseline Monitoring Report	12/2/2016				
Condition 3.4	Monthly EM&A Report (November 2016)	13/12/2016				

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

9. **FUTURE KEY ISSUES**

9.1 **Construction Programme for the Next Two Months**

- Temporary utility diversion;
- Implementation of Temporary Traffic Arragement (TTA);
- Construction of Socket H piles;
- Construction of Supporting Underground Structure (SUS).
- Construction of Subway B;
- Construction of guide walls and D-walls; and
- Construction of District Cooling System Works.

9.2 **Key Issues for the Coming Month**

9.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality, waste management and landscape and visual impact.

9.3 **Monitoring Schedules for the Next Three Months**

9.3.1 The tentative schedules for environmental monitoring in the coming three months are provided in Appendix E.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 : (852)-24508032 Hong Kong. Email : mcl@fugro.com.hk

10. CONCLUSIONS

- 10.1.1 24-hour TSP impact monitoring and construction noise monitoring were carried out in the reporting month, no Action / Limit Level exceedance was recorded during the period.
- 10.1.2 No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted in the reporting month.
- 10.1.3 Five environmental site inspections were carried out in December 2016. Recommendations on mitigation measures on air quality, water quality, noise, waste management and landscape and visual impact were given to the Contractor for remediating the deficiencies identified during the site inspections.
- 10.1.4 Five weekly Landscape and Visual Site audits were carried out on 1, 8, 14, 21 and 29 December 2016 and three of them, 1, 8 and 21 December 2016 were carried out by a Registered Landscape Architect in the reporting month. The weekly Landscape and Visual Impact reports were counter-signed by IEC as according to the requirement of EM&A Manual (AEIAR-130/2009).
- 10.1.5 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

10.2 **Comment and Recommendations**

- 10.2.1 The recommended environmental mitigation measures, as proposed in the EIA reports and EM&A Manuals shall be effectively implemented to minimize the potential environmental impacts from the Project. The EM&A programme would effectively monitor the environmental impacts generated from the construction activities and ensure the proper implementation of mitigation measures.
- 10.2.2 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

Open stockpiles shall be covered by unobtrusive sheeting to prevent dust emission.

Construction Noise Impact

The door of air compressor shall be closed in order to reduce noise impact.

Water Quality Impact

No specific observation was identified in the reporting month.

Chemical and Waste Management

- Sufficient waste disposal points and regular collection for disposal shall be provided.
- Chemical oil shall be stored properly. Drip tray shall be provided.

Landscape and Visual Impact

Open stockpiles shall be covered by unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance.

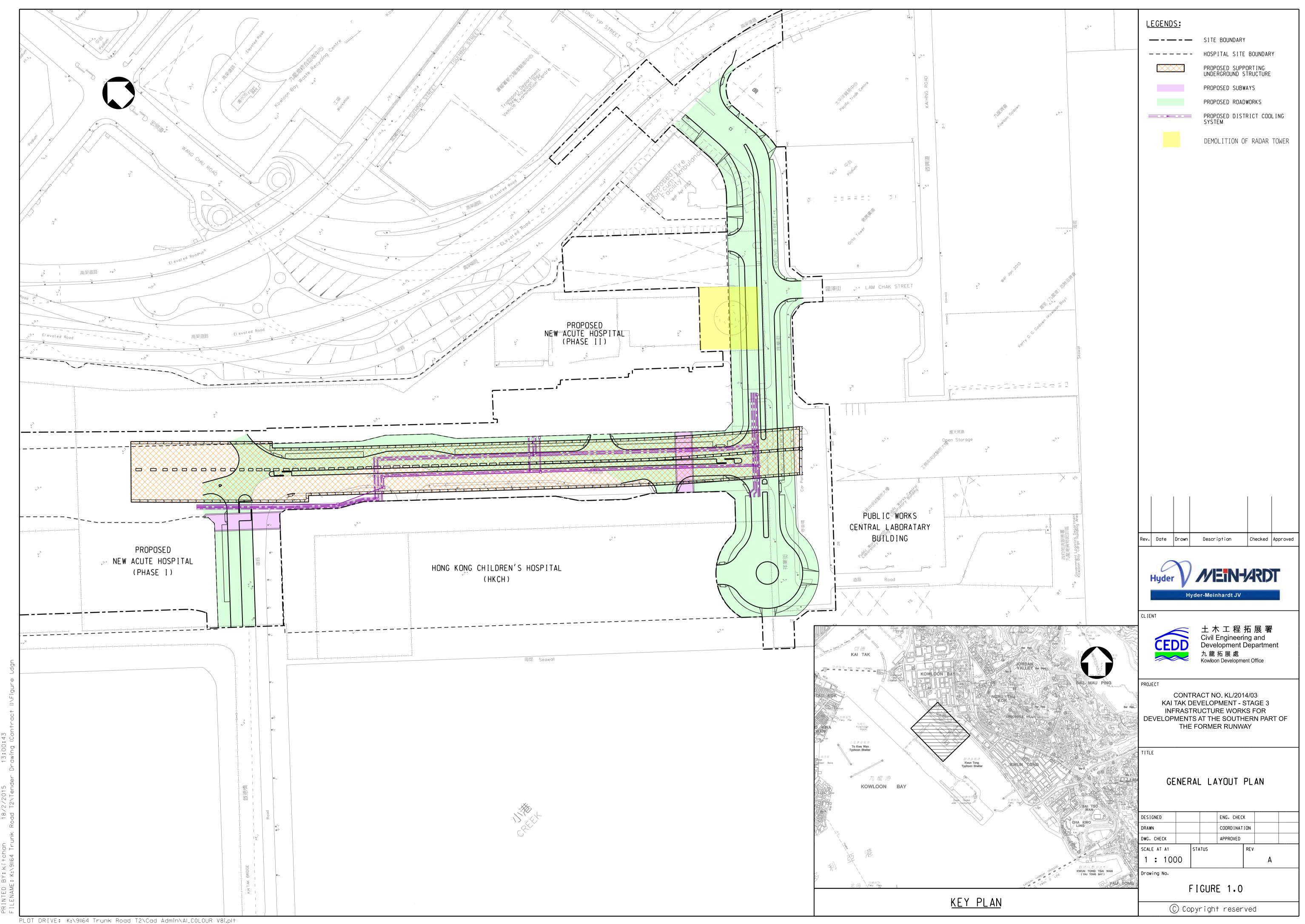
Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

General Condition

Stagnant water was found in the storage area of construction materials. Stagnant water shall be removed.

Permit / Licenses

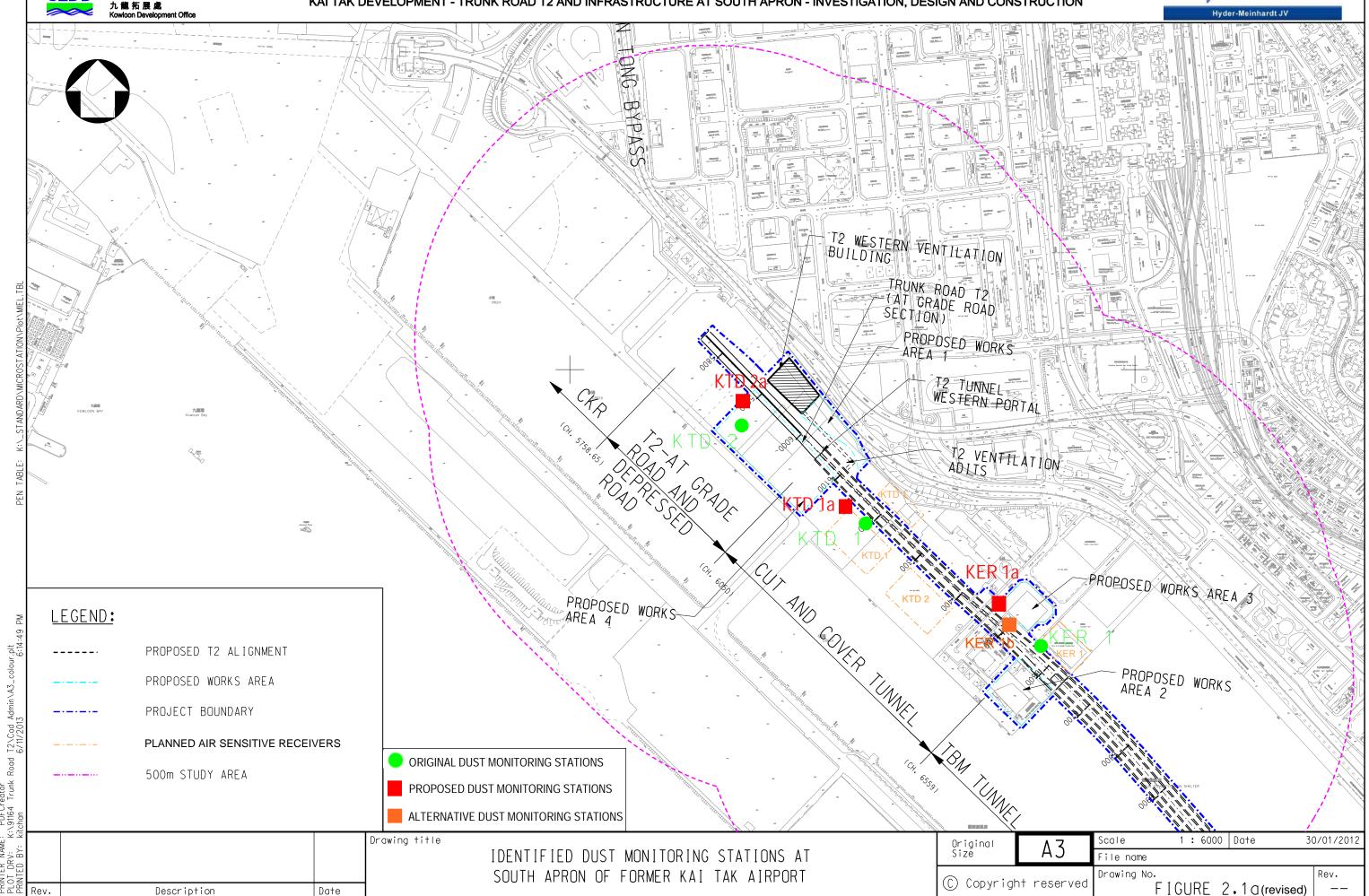

No specific observation was identified in the reporting month.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk Fax Email

Figure 1

Project General Layout

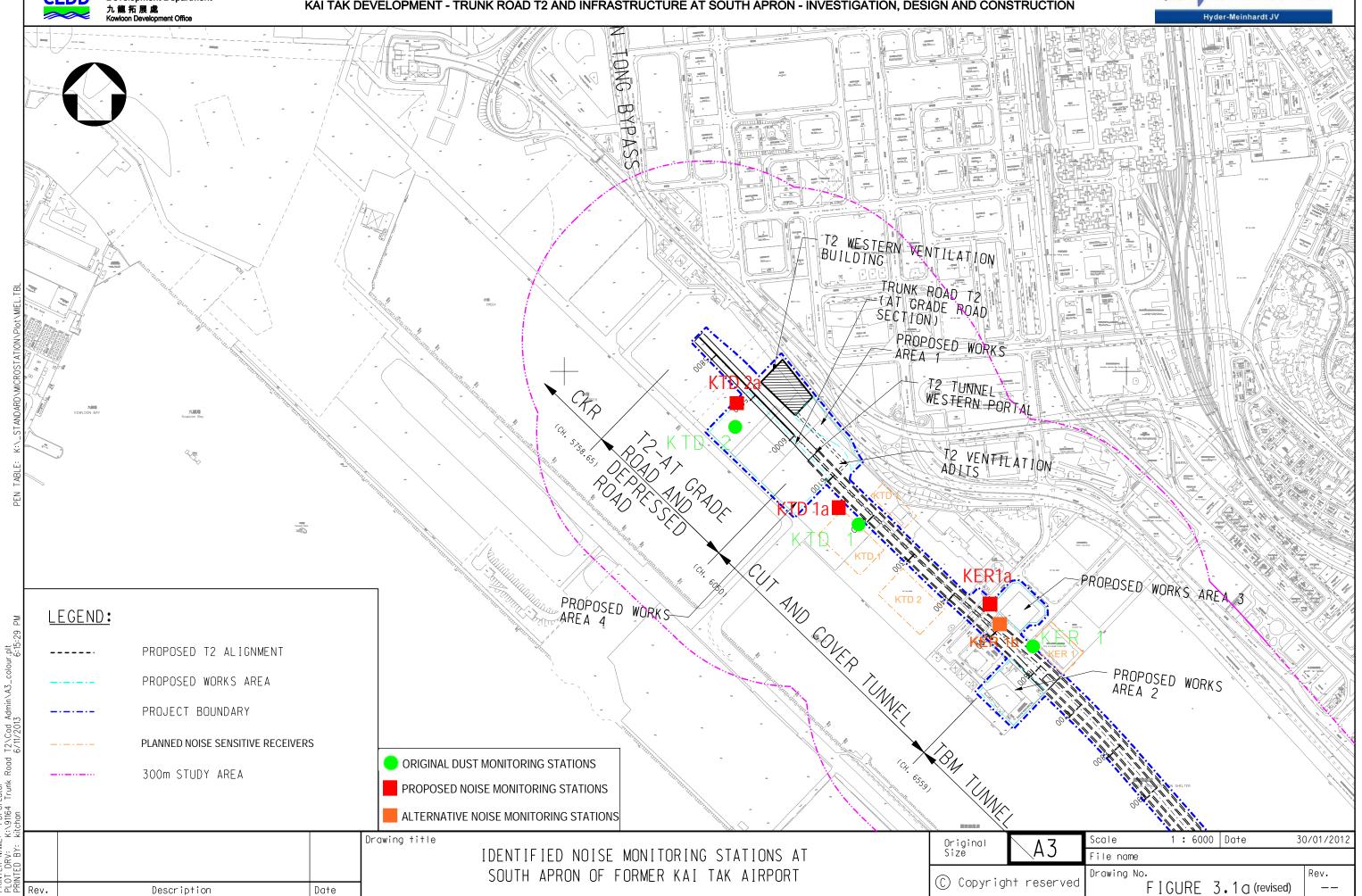
Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk


Figure 2

Air and Noise Monitoring Locations

土木工程拓展署
Civil Engineering and
Development Department
九龍拓展處
Kowloon Development Office

AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION



土木工程拓展署
Civil Engineering and
Development Department
九龍拓展處
Kowloon Development Office

AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk Tel Fax Email

Appendix A

Construction Programme

KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

KL/2014/03-Stage 3 Infrastructure Works for Developments at the Southern Part of the Forme 925 04-Jan-16 A 12-Jun-19 1190 925 01-Feb-16 A **Project Key Dates** 147 11-May-16 A 25-Apr-17 **General Submission** 112 11-May-16 A 21-Mar-17 **Condition Survey & Construction Impact Assessment** Approval of the CIA report submissions for Zone K-DR-PRE-1230 Approval of the CIA report submissions for Zone 1 56 38 14-Sep-16 A 06-Jan-17 Revise & resubmit CIA Report for Zone 2 to 4 30 K-DR-PRE-1320 Revise & resubmit CIA Report for Zone 2 to 4 56 11-May-16 A 24-Jan-17 K-DR-PRE-1330 Approval of the CIA report submissions 25-Jan-17 21-Mar-17 112 12-Jul-16 A 21-Mar-17 **Alternative Design Submission and Approval** Package B03: SUS Tunnel box from (CH6+150 to CH6+220) 56 38 12-Jul-16 A 06-Jan-17 Engineer's review and approval K-PA-ADS-1030 Engineer's review and approval 38 12-Jul-16 A 06-Jan-17 Package B05: SUS D-wall from (CH6+291 to CH6+568) 14 13-Jul-16 A 13-Dec-16 Engineer's review and approval (SUS D-Wall from Westbound CH6+291 to CH6+467) K-PA-ADS-1510 Engineer's review and approval (SUS D-Wall from Westbound CH6+291 to CH6+467) 21 12 13-Jul-16 A 11-Dec-16 Engineer's review and approval (SUS D-Wall from Westbound CH6+467 to CH6+568) K-PA-ADS-1550 Engineer's review and approval (SUS D-Wall from Westbound CH6+467 to CH6+568) 28 14 13-Jul-16 A 13-Dec-16 Package B06: SUS Top & base slab and intermediate wall from (CH6+220 to CH6+568) 222 112 12-Aug-16 A 21-Mar-17 Revise & resubmit DDA drawing (SUS Top & B K-PA-ADS-1420 Revise & resubmit DDA drawing (SUS Top & Base slab and Intermediate wall from CH6+220 to CH6+568) 28 56 12-Aug-16 A 24-Jan-17 K-PA-ADS-1430 Engineer's review and approval 21-Mar-17 25-Jan-17 **Programming / Reporting** 28 48 09-Jun-16 A 16-Jan-17 Works Programme 28 48 09-Jun-16 A 16-Jan-17 K-PA-GSP-4300 Acceptance of the Works Programme 28 48 09-Jun-16 A 16-Jan-17 134 24-Aug-16 A 12-Apr-17 Major Temporary Works Design K-PA-GSP-6820 ELS design for construction of SUS from CH6+220 to CH6+291 in Zone 2 - horizontal members 16-Feb-17 12-Apr-17 K-PA-GSP-6835 | ELS design for construction of SUS from CH6+291 to CH6+568 in Zone 4 - horizontal members 16-Nov-16 A 16-Jan-17 Temporary vehicular and pedestrian access for HKCH K-PA-GSP-6870 Temporary vehicular and pedestrian access for HKCH 35 14 24-Aug-16 A 13-Dec-16 Formwork and falsework design for construction of tunnel box 56 K-PA-GSP-6880 Formwork and falsework design for construction of tunnel box structure 45 02-Nov-16 A 13-Jan-17 Pumping Test for SUS Cofferdam in Zone 4 50 21-Jan-17 11-Mar-17 K-PA-GSP-8860 Temporary support for existing 132kV CLP cable across SUS at CH6+560 K-PA-GSP-9100 Temporary support for existing 132kV CLP cable across SUS at CH6+560 35 19-Dec-16 20 16-Nov-16 A 35 15-Mar-17 K-PA-GSP-9250 ELS design for construction of existing seawall 35 09-Feb-17 Design review for revised construction sequence of Ventilition Adit 2 for Zone 1 CH6+185 to CH K-PA-GSP-9260 Design review for revised construction sequence of Ventilition Adit 2 for Zone 1 CH6+185 to CH6+220 28 16 26-Nov-16 A 15-Dec-16 165 27-Feb-17 06-Sep-16 A **Major Construction Works Method Statement** Engineer's comments and approval for Method statement of Excavation and ELS for SUS Constructi K-PA-GSP-7145 Engineer's comments and approval for Method statement of Excavation and ELS for SUS Construction for Zone 1 14 06-Sep-16 A 13-Dec-16 28 K-PA-GSP-7150 Method statement of Excavation and ELS for SUS Construction for Zone 3 31-Jan-17 27-Feb-17 Engineer's comments and approval K-PA-GSP-7316 Engineer's comments and approval 28 11 28-Oct-16 A 10-Dec-16 Method statement for Construction of tunnel box structure for Zone 1 K-PA-GSP-7400 Method statement for Construction of tunnel box structure for Zone 1 28 28 26-Nov-16 A 27-Dec-16 ■ Engineer's comments and approval K-PA-GSP-7405 Engineer's comments and approval 28 28 28-Dec-16 24-Jan-17 Method statement for Erection and Removal of the temporary vehi Method statement for Erection and Removal of the temporary vehicular and pedestrian access for HKCH 28 28 14-Dec-16 10-Jan-17 K-PA-GSP-7490 Engineer's comments and appro 28 07-Feb-17 28 11-Jan-17 K-PA-GSP-7495 Engineer's comments and approval Method statement for Erection and Removal of the temporary support for the utilities K-PA-GSP-7500 Method statement for Erection and Removal of the temporary support for the utilities 28 24 26-Nov-16 A 23-Dec-16 Engineer's comments and approval K-PA-GSP-7505 Engineer's comments and approval 28 24-Dec-16 20-Jan-17

3 MRP Dec 2016 - Feb 2017

Project ID :12 3MPR Dec - Feb 17 Layout : KL201403 WP3 3MRP Page 1 of 7

3 Months Rolling Programme						
Date	Revision	Checked	Approved			
30-Nov-16 3MPR Dec 16 - Feb 17						

KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Hyder - Meinl	that the same transfer and transfer											九龍拓展處 Kowloon Development Office
vity ID	Activity Name		Orig Dur	Rem Dur	Start	Finish	ember 17		December 18		January 19	February March 20 21
K-PA-GSP-9270	Method Statement	for revised construction sequence of Ventilition Adit 2 for Zone 1 CH6+185 to CH6+220	18	18	02-Dec-16	19-Dec-16	13 20	27	7 04 11 18 Method	25 Staten	nent for revised construction s	2
	Engineer's commer	<u> </u>	28	28		16-Jan-17					Engineer'	s comments and approval
	ity Diversion Wo		175	116	05-Sep-16 A	25-Apr-17						
<u> </u>	sion for Drainage W		175		05-Sep-16 A	25-Apr-17						
K-PA-TUD-2400	Diversion of 2100	storm drain at zone 4	60	21	05-Sep-16 A	23-Dec-16			Di	versior	n of 2100 storm drain at zone	4
K-PA-TUD-2500	Excavation and lay	ying of DN600 MS pipe and manhole (N-CP-1) at zone 4 for HKCH connection	25	25	26-Jan-17	27-Feb-17	<u> </u>					Excav
K-PA-TUD-2600	Excavation and lay	ying of DN300 MS pipe and manhole (FMH23-15D) at zone 4	70	70	26-Jan-17	25-Apr-17	<u> </u>					
Temporary Divers	sion for Watermain	Works	47	50	31-Oct-16 A	04-Feb-17						
Laying Proposed	(Fresh) Watermain		47	47	31-Oct-16 A	03-Feb-17	 					
K-PA-TUD-1100	0 Excavation trench	for DN600 MS & DI fresh watermain at subway B & zone 1	15	5	31-Oct-16 A	25-Jan-17						Excavation trench for DN600 MS & DI fresh
K-PA-TUD-1120	0 Laying DN600 MS	S & DI fresh watermain at subway B & zone 1	20	21	21-Nov-16 A	03-Feb-17						Laying DN600 MS & DI fresh wat
K-PA-TUD-2050	0 DN450 DI connec	ted (X4)	0	0		23-Dec-16	 		♦ DN	N450 T	OI connected (X4)	
K-PA-TUD-2140	0 DN300 DI connec	eted (X5)	0	0		03-Dec-16	 		◆ DN300 DI connected (X5))		
K-PA-TUD-2150	0 DN300 DI connec	eted (X6)	0	0		03-Dec-16			◆ DN300 DI connected (X6))		
Laying Proposed	(Salt) Watermain		46	50	31-Oct-16 A	04-Feb-17						
K-PA-TUD-1200	0 Excavation trench	for DN300 MS salt watermain at subway B & zone 1	18	5	31-Oct-16 A	25-Jan-17						Excavation trench for DN300 MS salt waterm
K-PA-TUD-1220	0 Laying DN300 MS	S salt watermain at subway B & zone 1	20	5	21-Nov-16 A	04-Feb-17						Laying DN300 MS salt watermain
K-PA-TUD-2250	0 DN300 DI connec	ted (Y2 and Y3)	0	0		19-Dec-16	 			:	nnected (Y2 and Y3)	
K-PA-TUD-2340	0 DN250 DI connec	eted (Y4)	0	0		02-Dec-16	<u> </u>		◆ DN250 DI connected (Y4)			
K-PA-TUD-2350	0 DN250 DI connec	eted (Y5)	0	0		02-Dec-16	<u> </u>		◆ DN250 DI connected (Y5)			
Temporary Divers	sion for CLP Cable	at CH6+560	71	45	17-Oct-16 A	24-Jan-17	<u> </u>					
K-PA-TUD-3300	Trench excavation	for cable diversion at zone 4 - stage 1	22	8	17-Oct-16 A	08-Dec-16			Trench excavation fo	or cable	e diversion at zone 4 - stage 1	
K-PA-TUD-3500	Trench excavation	for cable diversion at zone 4 - stage 2	22	22	09-Dec-16	06-Jan-17	·				Trench excavation for	cable diversion at zone 4 - stage 2
K-PA-TUD-3600	CLP cable slewing	g works at zone 4 by CLP	0	0		24-Jan-17					•	CLP cable slewing works at zone 4 by CLP
K-PA-TUD-3650	Erection temporary	y support to utilities at zone 4	5	5	19-Jan-17	24-Jan-17						Erection temporary support to utilities at zone 4
Temporary Divers	ion for Sewage Ris	sing Main	10	16	15-Nov-16 A	17-Dec-16	·					
K-PA-TUD-1600	Construction of DN	N750 sewage pipe and manhole - stage 1	10	16	15-Nov-16 A	17-Dec-16			Constructi	ion of T	ON750 sewage pipe and man	hole - stage 1
Temporary Divers	ion for Telecommu	inication Cable	18	18	04-Jan-17	24-Jan-17						
K-PA-TUD-4000	Diversion of Fibre	cable (PCCW)	18	18	04-Jan-17	24-Jan-17	·					Diversion of Fibre cable (PCCW)
K-PA-TUD-4050	Diversion of Fibre	optical cable (HGC)	18	18	04-Jan-17	24-Jan-17						Diversion of Fibre optical cable (HGC)
Temporary Traf	ffic Management	t en	212	90	31-Jul-16 A	27-Feb-17						
Temp Traffic Arra	angement Schemes		212	90	31-Jul-16 A	27-Feb-17						
K-PA-TTA-8100	Submit and approv	val of TTA schemes-TTA stage 2 for D-wall W/B at Zone 2	90	60	31-Jul-16 A	28-Jan-17						Submit and approval of TTA schemes-TTA
K-PA-TTA-8900	Submit and approv	val of TTA schemes-TTA stage 3 for re-construction of Cheung Yip Street	90	90	30-Nov-16	27-Feb-17	1					Submi
Materials Procu	rement (Major	Materials)	921	665	01-Feb-16 A	25-Sep-18	ļ					
ELS struct / wal	ling		360	300	10-Jun-16 A	25-Sep-17						
K-PA-MP-1150	Manufacturing & o	delivery to site	360	300	10-Jun-16 A	25-Sep-17						
Chilled Water P	Pines - DCS		630	630	04-Jan-17	25-Sep-18						

3 MRP Dec 2016 - Feb 2017

Project ID :12 3MPR Dec - Feb 17 Layout : KL201403 WP3 3MRP Page 2 of 7

3 Months Rolling Programme					
Date	Revision	Checked	Approved		
30-Nov-16	3MPR Dec 16 - Feb 17				

Hyder MEIN-ARDT KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway CEDD K-PA-MP-1300 Place Order 04-Jan-17 0 630 K-PA-MP-1350 Manufacturing & delivery to site 630 04-Jan-17 25-Sep-18 160 01-Feb-16 A 08-May-17 **Steel H-Pile** 08-May-17 K-PA-MP-1250 Manufacturing & delivery to site 160 01-Feb-16 A **Prelimiaries** 925 11-Mar-16 A 12-Jun-19 K-DR-PRE-1800 Submission of time-lapsed photographs and viedo 12-Jun-19 1190 925 11-Mar-16 A 30-Nov-16 24-Dec-16 **Barge Loading Facilities** Set up temporary barging point K-DR-PRE-1450 Set up temporary barging point 21 21 30-Nov-16 23-Dec-16 ◆ Operation of the barging point K-DR-PRE-1480 Operation of the barging point 0 0 24-Dec-16 240 19-Jul-16 A 27-Jul-17 Instrumentation and Monitoring 82 19-Jul-16 A 11-Mar-17 **Westbound Instrumentation and Monitoring** Extensomter (EXT) 15 23-Feb-17 11-Mar-17 15 K-IM-EXT-1370 Installation of EXT at Zone 3 15 23-Feb-17 11-Mar-17 Piezometer/Standpipe (PZR) 179 55 19-Jul-16 A 08-Feb-17 K-IM-PZR-1360 Installation of PZR at Zone 2 15 15 19-Jan-17 08-Feb-17 K-IM-PZR-1370 Installation of PZR at Zone 3 30 05-Aug-16 A 06-Jan-17 K-IM-PZR-1380 Installation of PZR at Zone 4 40 34 19-Jul-16 A 11-Jan-17 27-Jul-17 240 03-Aug-16 A Tilt Monitoring Tile Plates 27-Jul-17 K-IM-TMT-1000 Tilt Monitoring Tile Plates near PWCL 240 03-Aug-16 A Section 1A of the Works -Construction of Supporting Underground Structure (Alternative Design) 117 15-Oct-16 A 26-Apr-17 78 15-Nov-16 A 07-Mar-17 SUS and Ventilation Adits from CH6+150 to CH6+220 in Zone 1 **Construction of Socketed H-Pile** 09-Dec-16 27-Jan-17 K-1A-SV1-3400 Trimming pilehead at cut-off level 40 40 09-Dec-16 27-Jan-17 30-Dec-16 **Pumping Test** 16-Dec-16 ■ Stage 2 - Installation of dewatering well control in Zone K-1A-SV1-4210 Stage 2 - Installation of dewatering well control in Zone 1 4 4 16-Dec-16 20-Dec-16 Stage 2 - Pumping test for excavation in Zone K-1A-SV1-4220 Stage 2 - Pumping test for excavation in Zone 1 30-Dec-16 7 21-Dec-16 8 18-Nov-16 A 08-Dec-16 **Excavation and ELS Construction** Excavation and ELS(S5) to -11.85mPD (CH6+150 to CH6+185) K-1A-SV1-5450 Excavation and ELS(S5) to -11.85mPD (CH6+150 to CH6+185) 17 2 18-Nov-16 A 01-Dec-16 ■ Excavation to formation -13.30mPD (CH6+150 to CH6+185) K-1A-SV1-5550 Excavation to formation -13.30mPD (CH6+150 to CH6+185) 6 02-Dec-16 08-Dec-16

K-1A-SV1-8100 Removal ELS SV1A

Construction of Tunnel Box Structure

K-1A-SV1-8040 Excavation foundation level for VA2

K-1A-SV1-8060 | Setting out and waterproofing works for VA2

K-1A-SV1-8070 | Construction of base slab for VA2 (-18.0mPD)

K-1A-SV1-8090 Clearance works and cast mass concrete fill

K-1A-SV1-8050 Modify the dewatering well and cast blinding layer for VA2

K-1A-SV1-8080 Strip formwork and laying protection layer / washing C.J.

SUS Bay 1 (Ch6150-Ch6167.5)

3 MRP Dec 2016 - Feb 2017

78 15-Nov-16 A

70 09-Dec-16

3

5

5

2

2

2

09-Dec-16

19-Dec-16

22-Dec-16

30-Dec-16

06-Jan-17

09-Jan-17

4 11-Jan-17

07-Mar-17

07-Mar-17

17-Dec-16

21-Dec-16

29-Dec-16

05-Jan-17

07-Jan-17

10-Jan-17

14-Jan-17

Project ID :12 3MPR Dec - Feb 17 Layout : KL201403 WP3 3MRP Page 3 of 7

Excavation foundation level for VA2

Modify the dewatering well and cast blinding layer for VA2

Setting out and waterproofing works for VA2

Construction of base slab for VA2 (-18.0mPD)

Removal ELS SV1A

■ Strip formwork and laying protection layer / washing C.J.

■ Clearance works and cast mass concrete fill

3 Months Rolling Programme					
Date	Revision	Checked	Approved		
30-Nov-16 3MPR Dec 16 - Feb 17					

KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Activity ID	Activity Name	Orig Rem Start	Finish	Ember December January February March
Activity ID	roung round	Dur Dur	i iiioti	T
K-1A-SV1-8110	Formwork erection for No-Fine conc. (external wall)	4 4 16-Jan-17	19-Jan-17	Formwork erection for No-Fine conc. (external wall)
K-1A-SV1-8120	Cast blinding layer and waterproofing laying (VA1 and VA3)	4 4 20-Jan-17	24-Jan-17	Cast blinding layer and waterproofing laying (VA
K-1A-SV1-8130	Scaffold erection for VA2 base slab construction	4 4 20-Jan-17	24-Jan-17	Scaffold erection for VA2 base slab construction
K-1A-SV1-8140	Construct of base slab VA1 and VA3 (-13.9 mPD)	6 6 25-Jan-17	03-Feb-17	Construct of base slab VA1 and VA3
K-1A-SV1-8150	Strip formwork and laying protection layer / washing C.J.	3 3 04-Feb-17	07-Feb-17	Strip formwork and laying protect
K-1A-SV1-8160	Cast mass concrete between VA1 and VA3	5 5 08-Feb-17	13-Feb-17	Cast mass concrete between
K-1A-SV1-8170	Removal ELS S5	4 4 14-Feb-17	17-Feb-17	Removal ELS S5
K-1A-SV1-8180	Make good the D wall surface and waterproofing works	5 5 18-Feb-17	23-Feb-17	Make good th
K-1A-SV1-8190	Construction of wall struct for VA1 and VA3	10 10 24-Feb-17	07-Mar-17	
Sheet pile installa	tion and Excavation works to VA2 formation level	44 50 15-Nov-16 A	02-Feb-17	
K-1A-SV1-8430	Sheetpile install to required level for Zone 1	15 14 15-Nov-16 A	15-Dec-16	Sheetpile install to required level for Zone 1
K-1A-SV1-8440	Pump well installation	5 5 16-Dec-16	21-Dec-16	Pump well installation
K-1A-SV1-8450	Pumping test	10 10 22-Dec-16	05-Jan-17	Pumping test
K-1A-SV1-8460	ELS erection for SV1	4 4 31-Dec-16	05-Jan-17	ELS erection for SV1
K-1A-SV1-8470	Excavation to SV2 erection	8 8 06-Jan-17	14-Jan-17	Excavation to SV2 erection
K-1A-SV1-8480	ELS erection for SV2	5 5 16-Jan-17	20-Jan-17	ELS erection for SV2
K-1A-SV1-8490	Excavation to VA2 formation level	8 8 21-Jan-17	02-Feb-17	Excavation to VA2 formation level
SUS Bay 4 (Ch62	202.5-Ch6220)	60 60 16-Dec-16	02-Mar-17	
K-1A-SV1-8500	Excavation for filling sheetpile	8 8 16-Dec-16	24-Dec-16	Excavation for filling sheetpile
K-1A-SV1-8510	Compact the soil surface and cast temporary blinding layer	4 4 28-Dec-16	31-Dec-16	Compact the soil surface and cast temporary blinding layer
K-1A-SV1-8520	Scaffold erection for temporary support of base slab construction	5 5 03-Jan-17	07-Jan-17	Scaffold erection for temporary support of base slab construction
K-1A-SV1-8530	Formwork erection and waterproofing works	4 4 09-Jan-17	12-Jan-17	Formwork erection and waterproofing works
K-1A-SV1-8540	Cast blinding layer and modifyaction the pile head	4 4 31-Dec-16	05-Jan-17	Cast blinding layer and modifyaction the pile head
K-1A-SV1-8550	Construction of base slab	8 8 13-Jan-17	21-Jan-17	Construction of base slab
K-1A-SV1-8560	Removal ELS S3	4 4 23-Jan-17	26-Jan-17	Removal ELS S3
K-1A-SV1-8570	Make good the D wall surface and waterproofing works	4 4 27-Jan-17	03-Feb-17	Make good the D wall surface and wa
K-1A-SV1-8580	Construct of side wall structure (external wall)	10 10 04-Feb-17	15-Feb-17	Construct of side wall s
K-1A-SV1-8590	Erection scaffold and install re-prop struct inside W/B and E/B	8 8 16-Feb-17	24-Feb-17	Erection sca
K-1A-SV1-8600	Removal ELS S2	5 5 25-Feb-17	02-Mar-17	Rem
SUS Bay 3 (Ch61)	85-Ch6202.5)	52 52 28-Dec-16	02-Mar-17	
K-1A-SV1-8660	Excavation for filling sheetpile	3 3 28-Dec-16	30-Dec-16	Excavation for filling sheetpile
K-1A-SV1-8670	Compact the soil surface and cast temporary blinding layer	1 1 31-Dec-16	31-Dec-16	Compact the soil surface and cast temporary blinding layer
K-1A-SV1-8680	Scaffold erection for temporary support of base slab construction	3 3 03-Jan-17	05-Jan-17	Scaffold erection for temporary support of base slab construction
K-1A-SV1-8690	Formwork erection and waterproofing works	1 1 06-Jan-17	06-Jan-17	■ Formwork erection and waterproofing works
K-1A-SV1-8700	Cast blinding layer and modifyaction the pile head	3 3 07-Jan-17	10-Jan-17	Cast blinding layer and modifyaction the pile head
K-1A-SV1-8710	Construction of base slab	7 7 23-Jan-17	02-Feb-17	Construction of base slab
K-1A-SV1-8720	Removal ELS S3	3 3 03-Feb-17	06-Feb-17	Removal ELS S3
K-1A-SV1-8730	Make good the D wall surface and waterproofing works	3 3 07-Feb-17	09-Feb-17	Make good the D wall surface

3 MRP Dec 2016 - Feb 2017

Project ID :12 3MPR Dec - Feb 17 Layout : KL201403 WP3 3MRP Page 4 of 7

3 Months Rolling Programme						
Date	Revision	Checked	Approved			
30-Nov-16	3MPR Dec 16 - Feb 17					

KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway Hyder / MEINHARDT CEDD K-1A-SV1-8740 | Construct of side wall construction (external wall) 10-Feb-17 18-Feb-17 K-1A-SV1-8750 | Erection scaffold and install re-prop struct inside W/B and E/B 6 20-Feb-17 25-Feb-17 K-1A-SV1-8760 Removal ELS S2 27-Feb-17 02-Mar-17 SUS Bay 2 (Ch6167.5-Ch6185) 22 22 03-Feb-17 28-Feb-17 Cast blinding layer for VA2 K-1A-SV1-8820 Cast blinding layer for VA2 2 03-Feb-17 04-Feb-17 Waterproofing works at 5 K-1A-SV1-8830 Waterproofing works at VA2 08-Feb-17 13-Feb-17 K-1A-SV1-8840 Construction of base slab for VA2 15-Feb-17 23-Feb-17 4 4 24-Feb-17 28-Feb-17 K-1A-SV1-8850 | Cast mass conc. fill 129 100 17-Oct-16 A 01-Apr-17 SUS and Ventilation Adits from CH6+220 to CH6+291 in Zone 2 12 17-Oct-16 A 13-Dec-16 **Construction of Socketed H-Pile** Installation of socketted H-piles (CH6+265 to CH6+291) K-1A-SV2-3201 Installation of socketted H-piles (CH6+265 to CH6+291) 30 12 17-Oct-16 A 13-Dec-16 27-Feb-17 01-Apr-17 W/B Construction of D-Wall in TTA Stage 1A K-1A-SV2-5000 Construction of guide wall 30 30 27-Feb-17 01-Apr-17 117 15-Oct-16 A 26-Apr-17 SUS Structure from CH6+291 to 6+467 in Zone 3 E/B Construction of D-Wall 09-Dec-16 07-Mar-17 Construction of D-wall eastbound(CH6+344 to CH6+405) EM28 K-1A-SV3-2310 Construction of D-wall eastbound(CH6+344 to CH6+405) EM28 09-Dec-16 20-Dec-16 10 10 Construction of D-wall eastbound(CH6+405 to CH6+467) EH17 K-1A-SV3-2355 Construction of D-wall eastbound(CH6+405 to CH6+467) EH17 12 12 19-Dec-16 04-Jan-17 ■ Testing of D-wall (Sonic tes K-1A-SV3-2400 Testing of D-wall (Sonic test and IC) 30 11-Feb-17 30 05-Jan-17 29-Dec-16 K-1A-SV3-2500 Toe grouting works 55 55 07-Mar-17 10-Feb-17 03-Apr-17 **Construction of Socketed H-Pile** K-1A-SV3-3008 Installation of socketted H-piles (CH6+320 to CH6+380) 45 45 10-Feb-17 03-Apr-17 W/B Construction of D-Wall in TTA Stage 1A 15-Oct-16 A 26-Apr-17 Construction of guide wall K-1A-SV3-4000 Construction of guide wall 45 25 15-Oct-16 A 30-Dec-16 Construction of D-wall westbound (CH6+344 to CH6+405) WM32 K-1A-SV3-4010 | Construction of D-wall westbound (CH6+344 to CH6+405) WM32 10 2 23-Nov-16 A 01-Dec-16 Construction of D-wall westbound (CH6+405 to CH6+467) WM26 10 K-1A-SV3-4030 | Construction of D-wall westbound (CH6+405 to CH6+467) WM26 4 16-Nov-16 A 03-Dec-16 Construction of D-wall westbound (CH6+291 to CH6+344) WH39 12 06-Dec-16 K-1A-SV3-4040 | Construction of D-wall westbound (CH6+291 to CH6+344) WH39 6 14-Nov-16 A Construction of D-wall westbound (CH6+344 to CH6+405) WH29 12 K-1A-SV3-4050 Construction of D-wall westbound (CH6+344 to CH6+405) WH29 8 25-Nov-16 A 08-Dec-16

中國路檔工程有限責任公司 CHINA ROAD AND BRIDGE CORPORATION

K-1A-SV3-4060 Construction of D-wall westbound (CH6+405 to CH6+467) WH21

K-1A-SV3-4070 Construction of D-wall westbound (CH6+291 to CH6+344) WH44

K-1A-SV3-4080 Construction of D-wall westbound (CH6+344 to CH6+405) WM36

K-1A-SV3-4100 | Construction of D-wall westbound (CH6+405 to CH6+467) WH19

K-1A-SV3-4110 Construction of D-wall westbound (CH6+344 to CH6+405) WH33

K-1A-SV3-4120 | Construction of D-wall westbound (CH6+405 to CH6+467) WM20

K-1A-SV3-4130 | Construction of D-wall westbound (CH6+405 to CH6+467) WM24

K-1A-SV3-4140 | Construction of D-wall westbound (CH6+344 to CH6+405) WM38

K-1A-SV3-4150 Construction of D-wall westbound (CH6+405 to CH6+467) WH28

K-1A-SV3-4160 Construction of D-wall westbound (CH6+291 to CH6+344) WM47

Construction of D-wall westbound (CH6+405 to CH6+467) WH25

3 MRP Dec 2016 - Feb 2017

12 29-Nov-16 A

12 03-Dec-16

10

12

12

10

10

10

12

10

03-Dec-16

13-Dec-16

16-Dec-16

19-Dec-16

22-Dec-16

24-Dec-16

29-Dec-16

03-Jan-17

05-Jan-17

13-Dec-16

16-Dec-16

14-Dec-16

28-Dec-16

31-Dec-16

04-Jan-17

05-Jan-17

07-Jan-17

10-Jan-17

16-Jan-17

16-Jan-17

12

12

12

12

12

10

10

10

12

Project ID :12 3MPR Dec - Feb 17 Layout : KL201403 WP3 3MRP Page 5 of 7

Construction of D-wall westbound (CH6+405 to CH6+467) WH21

Construction of D-wall westbound (CH6+291 to CH6+344) WH44

Construction of D-wall westbound (CH6+405 to CH6+467) WH25

Construction of D-wall westbound (CH6+405 to CH6+467) WH19

Construction of D-wall westbound (CH6+344 to CH6+405) WH33

Construction of D-wall westbound (CH6+405 to CH6+467) WM20

Construction of D-wall westbound (CH6+405 to CH6+467) WM24

Construction of D-wall westbound (CH6+344 to CH6+405) WM3

Construction of D-wall westbound (CH6+405 to CH6+467

Construction of D-wall westbound (CH6+291 to CH6+344

Construction of D-wall westbound (CH6+344 to CH6+405) WM36

3 Months Rolling Programme							
Date	Revision	Checked	Approved				
30-Nov-16	3MPR Dec 16 - Feb 17						

KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Hyder - Meinh	-		<u> </u>	-	<u> </u>		ombor	Describes		lonuer	九龍五展版 Kowloon Development Office
vity ID	Activity Name		Orig Dur	Rem Dur	Start	Finish	17	December 18	05	January 19	February Mai
K-1A-SV3-4170	Construction of D-v	vall westbound (CH6+344 to CH6+405) WM34	10	10	07-Jan-17	18-Jan-17	13 20	27 04 11 18	25 01 0	15 22 Constructi	29 05 12 19 26 on of D-wall westbound (CH6+344 to CH
		vall westbound (CH6+291 to CH6+344) WM43	10	10	11-Jan-17	21-Jan-17				Constr	uction of D-wall westbound (CH6+291 to
		vall westbound (CH6+291 to CH6+344) WH40	12	12	13-Jan-17	26-Jan-17					Construction of D-wall westbound (CH6+2
		vall westbound (CH6+344 to CH6+405) WH37	12	12	16-Jan-17	01-Feb-17					Construction of D-wall westbound (
		vall westbound (CH6+291 to CH6+344) WH42	12	12	19-Jan-17	04-Feb-17					Construction of D-wall westbour
		vall westbound (CH6+291 to CH6+344) WM45	10	10	23-Jan-17	06-Feb-17					Construction of D-wall westbe
		vall westbound (CH6+291 to CH6+344) WM39A	10	10	26-Jan-17	09-Feb-17					Construction of D-wall we
		vall westbound (CH6+291 to CH6+344) WM41	10	10	01-Feb-17	11-Feb-17					Construction of D-wall
		vall westbound (CH6+291 to CH6+344) WH46	12	12		17-Feb-17					Construction of I
	Testing of D-wall (30	30	22-Feb-17	28-Mar-17			<u> </u>		
	Toe grouting works	·	56	56	16-Feb-17	26-Apr-17					
		porary cut-off wall at CH6+291	44	44	15-Dec-16	10-Feb-17					Construction of temporar
		porary cut-off wall at CH6+467	61	61	27-Jan-17	12-Apr-17					
Pumping Test	Construction of ten	policy cut off want at effection	80	80	05-Jan-17	12-Apr-17					
	Installation of dewa	tering well, observation well and recharging well in Zone 3	80	80	05-Jan-17	12-Apr-17					
Excavation and l			94	94		21-Apr-17					
		TTA scheme for alternative access road to HKCH at Zone 3	12	12	22-Dec-16	07-Jan-17			Im	plementation og TTA	scheme for alternative access road to HK
		porary vehicular access at CH6+325	42	42	28-Feb-17	21-Apr-17					
		6+568 in Zone 4	85		25-Nov-16 A	10-Mar-17					
Construction of		0 0+508 III Z0IIE 4	32		25-Nov-16 A	20-Dec-16					
		etted H-piles(CH6+550 to CH6+565)	32		25-Nov-16 A	20-Dec-16		Install	ation of socketted	H-niles(CH6+550 to	CH6+565)
E/B Construction		eneu n-pnes(Cno+550 to Cno+505)	66	66		03-Mar-17			:	-	
		lo well (CH6±555 to CH6±560)	5	5				Construction	of guide wall (CI	I6+555 to CH6+560	
		de wall (CH6+555 to CH6+560)			10 200 10	15-Dec-16			`		
		le wall (CH6+467 to CH6+555) vall eastbound(CH6+555 to CH6+560)	45	45	07-Jan-17	03-Mar-17				Constructi	on of D-wall eastbound(CH6+555 to CH6
		<u> </u>	12	12	05-Jan-17	18-Jan-17					on of D-wan castoound(C110+353 to C110
		Wall in TTA Stage 1A	-		29-Nov-16 A	10-Mar-17		Construction of guid	le well (CH6+55)	to CHK+5K0)	
		de wall (CH6+555 to CH6+560)	5	5	05-Dec-16	09-Dec-16		Construction of guid	``		······································
		de wall (CH6+467 to CH6+555)	50	49	29-Nov-16 A	02-Feb-17					Construction of guide wall (CH6+4 version of 132kV CLP cable across SUS a
		CLP cable across SUS at CH6+560 by CLP	0	0		24-Jan-17					rersion of 132kV CLP cable across SUS a
K-1A-SV4-4050	Construction of guid	de wall (End Wall)	30	30	25-Jan-17	03-Mar-17					
K-1A-SV4-4300	Construction of D-v	vall westbound (CH6+555 to CH6+560)	12	12	21-Dec-16	06-Jan-17			Cor	struction of D-wall w	estbound (CH6+555 to CH6+560)
K-1A-SV4-4700	Construction of D-v	vall (CH6+560 to CH6+568) & end wall at CH6+568 SH06	12	12	15-Feb-17	28-Feb-17					Cor
K-1A-SV4-4702	Construction of D-v	vall (CH6+560 to CH6+568) & end wall at CH6+568 SH03	12	12	18-Feb-17	03-Mar-17					
K-1A-SV4-4703	Construction of D-v	vall (CH6+560 to CH6+568) & end wall at CH6+568 EH01	12	12	22-Feb-17	07-Mar-17					
K-1A-SV4-4704	Construction of D-v	vall (CH6+560 to CH6+568) & end wall at CH6+568 SH07	12	12	25-Feb-17	10-Mar-17					
Section 3 of the V	Works- Construc	etion of District Cooling System (Subject to Excision)	212	113	23-Aug-16 A	22-Mar-17					
Preparation Wor			149	50	23-Aug-16 A	18-Jan-17		†			
•		t and profile of the DCS pipeline	30		23-Aug-16 A	19-Dec-16		Pagubr	nit catting out and	profile of the DCS pi	valina

3 MRP Dec 2016 - Feb 2017

Project ID :12 3MPR Dec - Feb 17 Layout : KL201403 WP3 3MRP Page 6 of 7

3 Months Rolling Programme							
Date	Revision	Checked	Approved				
30-Nov-16	3MPR Dec 16 - Feb 17						

土木工程拓展署 Civil Engineering and Development Department Hyder MEINHARDT KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway CEDD Orig Dur Dur 18 25 01 08 15 22 29 05 30 20-Dec-16 18-Jan-17 K-03-DCS-0830 Engineer's review and approval 30 91 10-Sep-16 A 22-Mar-17 **Construction of District Cooling System** 120 91 10-Sep-16 A 22-Mar-17 **Construction of DCS Works at Zone 1** Construction of DSC Washout Pit (CHR5-000) K-03-DCS-1050 Construction of DSC Washout Pit (CHR5-000) 30 18 10-Sep-16 A 20-Dec-16 Installation of sheetpile K-03-DCS-1100 Installation of sheetpile 21-Dec-16 04-Jan-17 Excavation and ELS works K-03-DCS-1150 | Excavation and ELS works 14 05-Jan-17 20-Jan-17 K-03-DCS-1200 Laying chilled water pipes from CHR5-000 to CHR5-024 14 14 21-Jan-17 09-Feb-17 K-03-DCS-1300 Backfilling at Zone 1 (CHR5-000 to CHR5-024) 35 35 10-Feb-17 22-Mar-17 25 19-Dec-16 19-Jan-17 Section 4B of the Works- Construction of Subway B (Subject to Excision) 19-Jan-17 25 19-Dec-16 Bay 1 & 2 K-4B-BAY-2450 Backfilling (Bay 1 and Bay 2) 25 25 19-Dec-16 19-Jan-17 90 30-Nov-16 27-Feb-17 Section 5 of the Works-Completion of All Landscape Softworks Procurement of plant species 90 30-Nov-16 27-Feb-17 916 04-Jan-16 A 03-Jun-19 **Section 7 of the Works-Preservation and Protection of Existing Trees** K-07-001-1000 Section 7 of the Works-Preservation and Protection of Existing Trees 916 04-Jan-16 A 03-Jun-19

0 06-Jan-17

0

06-Jan-17

06-Jan-17

Sections Completion Date

K-PK-SCC-2100 Completion of Section 2-Demolition of Radar Tower and Guard House

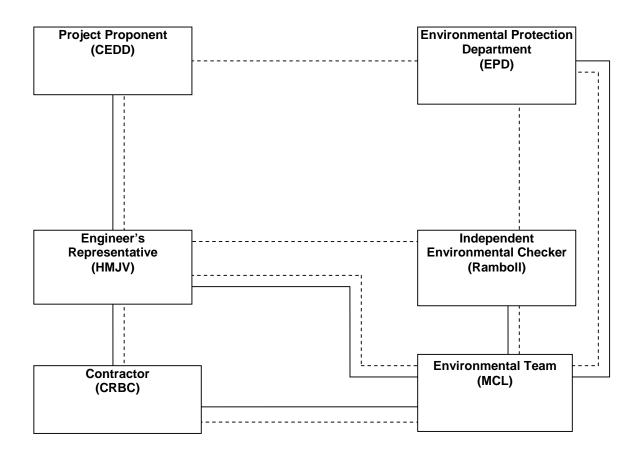
Page 7 of 7

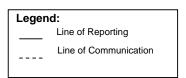
3 Months Rolling Programme							
Date	Revision	Checked	Approved				
30-Nov-16	3MPR Dec 16 - Feb 17						

◆ Completion of Section 2-Demolition of Radar Tower and Guard House

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk Tel Email

Appendix B


Project Organization Chart


The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Tel Fax Email : mcl@fugro.com.hk

Appendix C

Action and Limit Levels for Air Quality and Noise

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong.. Email : mcl@fugro.com.hk

Action and Limit Levels for 24-hr TSP and 1-hr TSP

Parameter	Monitoring Station	Action Level (μg/m³)	Limit Level (µg/ m³)
24-hr TSP	KTD1a	177	
(μg/m ³)	KTD2a	157	260
(µg/111)	KER1b	172	
*1 br TCD	KTD1a	285	
*1-hr TSP (µg/m³)	KTD2a	279	500
(µg/III)	KER1b	295	

Note:

Action and Limit Levels for Construction Noise, Leq (30min), dB(A)

Time Period	Location	Action	Limit
0700-1900 hrs on normal weekdays	KTD1a KTD2a KER1b	When one documented complaint is received	75 dB(A)

¹⁻hr TSP monitoring should be required in case of complaints.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Fax Email: mcl@fugro.com.hk

Appendix D

Calibration Certificates of Monitoring Equipment

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ja Operator		Rootsmeter Orifice I.I	-/	438320 2456	Ta (K) - Pa (mm) -	292 748.03
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4420 1.0220 0.9130 0.8670 0.7170	3.2 6.4 7.9 8.8 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0002 0.9959 0.9938 0.9926 0.9874	0.6936 0.9745 1.0885 1.1449 1.3771	1.4174 2.0045 2.2411 2.3504 2.8347		0.9957 0.9915 0.9893 0.9882 0.9830	0.6905 0.9701 1.0836 1.1398 1.3710	0.8836 1.2496 1.3971 1.4653 1.7672
Qstd slop intercept coefficie	t (b) =	2.07173 -0.01761 0.99996	n e n	Qa slop intercep coeffici	t (b) =	1.29728 -0.01098 0.99996
y axis =	SQRT[H2O(Pa/760)(298/7	[a)]	y axis =	SQRT[H2O(Га/Ра)].

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT (H2O (Pa/760) (298/Ta))] - b\}$ Qa = $1/m\{ [SQRT H2O (Ta/Pa)] - b\}$

Room 723 & 725, 7/F, Block B. Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong,

Hong Kong.

: (852)-24508238 Tel (852)-24508032 **Email** : mcl@fugro.com.hk

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07

Location: KER1b

Brand:

Tisch

Model:

TE-5170

S/N: 3482

Date of Calibration: 16-Nov-16 Next Calibration Date: 15-Feb-17

Technician: Jimmy Lui

CONDITIONS

Sea Level Pressure (hPa):

1017.2

Corrected Pressure (mm Hg):

763

Temperature (°C):

25

Temperature (K):

298

CALIBRATION ORIFICE

Make: Model: Tisch

TE-5025A

Qstd Slope: **Qstd Intercept:** 2.07173

Calibration Date:

14-Jan-16

Expiry Date:

-0.01761

S/N:

2456

14-Jan-17

CALIBRATIO

Dista Na	H2O (L)	H2O (R)	H2O	Qstd	I	IC	LINEAR	
Plate No.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	REGRESSION	
18	12.20	1.90	10.300	1.561	59.00	59.12	Slope = 32.3615	
13	11.50	2.10	9.400	1.491	56.00	56.11	Intercept = 8.3422	
10	10.30	3.80	6.500	1.242	49.00	49.10	Corr. coeff.: 0.9987	
7	8.80	4.60	4.200	1.000	40.00	40.08		
5	7.90	5.10	2.800	0.818	35.00	35.07		

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

FLOW RATE CHART 70.00 60.00 50.00 Actual Chart Response (IC) 40.00 30.00 20.00 10.00 0.00 0.000 2.000 0.500 1.000 1.500 Standard Flow Rate (m3/min)

CHOI KAM HO **Project Consultant**

16th November, 2016 Report Date:

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

Hong Kong.

: (852)-24508238 Tel : (852)-24508032 Fax : mcl@fugro.com.hk

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07

Date of Calibration: 12-Oct-16

Location: KTD2a

Next Calibration Date: 11-Jan-17

Technician: Jimmy Lui

Brand: Model: Tisch

TE-5170

S/N: 3838

CONDITIONS

Sea Level Pressure (hPa):

1012.5

Corrected Pressure (mm Hg):

759

Temperature (°C):

25

Temperature (K):

298

CALIBRATION ORIFICE

Make:

Tisch

Qstd Slope:

2.07173

Model: Calibration Date: TE-5025A 14-Jan-16

Qstd Intercept:

-0.01761

Expiry Date:

S/N:

14-Jan-17

2456

CALIBRATIONS

	CALIBRATIONS										
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	I	IC		LINEAR			
riate No.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	R	EGRESSION			
18	11.30	-2.90	14.200	1.826	57.00	56.96	Slope =	27.2421			
13	9.70	-1.30	11.000	1.608	52.00	51.97	Intercept =	7.2807			
10	8.70	-0.30	9.000	1.456	46.00	45.97	Corr. coeff.:	0.9979			
7	6.90	1.50	5.400	1.129	38.00	37.97					
5	5.90	2.50	3.400	0.898	32.00	31.98					

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

= chart response

Tav = daily average temperature

Pav = daily average pressure

FLOW RATE CHART 60.00 50.00 Actual Chart Response (IC) 40.00 30.00 20.00 10.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

CHOI KAM HO

Project Consultant

Report Date:

12th October, 2016

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 : (852)-24508032 Fax : mcl@fugro.com.hk

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07

Date of Calibration: 12-Oct-16

Location: KTD1a

Next Calibration Date: 11-Jan-17

Technician: Jimmy Lui

Brand: Model: Tisch

TE-5170

S/N:

4037

CONDITIONS

Sea Level Pressure (hPa):

1012.5

Corrected Pressure (mm Hg):

759

Temperature (°C):

25

Temperature (K):

298

CALIBRATION ORIFICE

Make:

Tisch

Qstd Slope:

2.07173

Model:

TE-5025A

Qstd Intercept:

-0.01761

Calibration Date:

14-Jan-16

Expiry Date:

14-Jan-17

S/N: 2456

CALIBRATIONS

	CALIBRATIONS											
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	I	IC		LINEAR				
	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	F	REGRESSION				
18	11.00	-2.40	13.400	1.774	59.00	58.96	Slope =	30.9648				
13	9.50	-0.90	10.400	1.564	52.00	51.97	Intercept =	3.3615				
10	8.80	-0.20	9.000	1.456	47.00	46.97	Corr. coeff.:	0.9968				
7	6.90	1.80	5.100	1.098	38.00	37.97						
5	6.10	2.50	3.600	0.924	32.00	31.98						

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Ha

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

FLOW RATE CHART 70.00 60.00 50.00 Actual Chart Response (IC) 40.00 30.00 20.00 10.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

CHOI KAM HO Project Consultant Report Date: 12th October, 2016

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.materialab.com

Report No.: 161966CA161195

Page 1 of 1

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client: Materialab Consultants Ltd.

Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T. Address:

Project: Calibration Services

Details of Unit Under Test, UUT

Description

Anemometer

Manufacturer:

Smart Sensor

Model No.

AR816+

Equipment ID.:

MC-A-001

Next Calibration Date:

05-Jun-2017

Laboratory Information

Details of Reference Equipment -

Description

Reference Anemometer

Equipment ID.:

R-101-4

Date of Calibration

06-Jun-2016

Ambient Temperature

21 °C

Calibration Location :

Calibration Laboratory of MateriaLab

Method Used: By direct Comparison

Calibration Results:

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
0.00	0.0	0.00
0.99	1.0	+0.01
2.02	2.0	-0.02
5.00	5.0	0.00
9.98	9.9	-0.08

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

CA-R-297 (22/07/2009)

Date: 7-6-2016 Certified by: _____ Chan Chun Wai (Manager)

** End of Report **

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel: +852 2450 8233 Fax: +852 2450 6138 E-mail: matlab@fugro.com.hk Website: www.materialab.com.hk

Page 1 of 1

Report no.: 940891CA160442(1)

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client: Fugro Technical Services Ltd.

Project: Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

Sound Calibrator

Manufacturer

Casella (Model no. CEL-120/1)

Serial No.

5230742

Next Calibration Date

02-Mar-2017

Specification Limit

±0.5dB

Laboratory Information

Description

Reference Sound Level Meter

Equipment ID.

R-119-1

Date of Calibration:

03-Mar-2016

Ambient Temperature: 21

21 °C

Calibration Location:

Calibration Laboratory of MateriaLab

Method Used

By direct comparison

Calibration Results:

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)		
94dB	-0.1 dB	±0.5dB		
114dB	-0.3 dB			

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with specification limit.

Checked by:

Date: 43.001%

Certified by

Date:

07 MAR 2016

Kwok Chi Wa (Assistant Manager)

** End of Report **

Fugro Development Centre. 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.materialab.com

Report no.: 161966CA160797

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client: MateriaLab Consultants Ltd.

Address: Room 723 & 725, 7F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project: Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description

Sound Calibrator

Manufacturer

Casella (Model no. CEL-120/1)

Serial No.

5230736

Next Calibration Date

20-Apr-2017

Specification Limit

±0.5dB

Laboratory Information

Description

Reference Sound Level Meter

Equipment ID. :

R-119-1

Date of Calibration:

21-Apr-2016

Ambient Temperature: 21

°C

Calibration Location:

Calibration Laboratory of MateriaLab

Method Used

By direct comparison

Calibration Results:

Parameters (Setting of UUT)	Mean of Measured value	Specification Limit(dB)		
94dB	93.9 dB	±0.5dB		
114dB	114.1 dB			

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with specification limit.

Date: 2 6 Del 6 Certified by

Date:

2 2 APR 2016

CA-R-297 (22/07/2009)

Kwok Chi Wa (Assistant Manager)

** End of Report **

Certificate of Conformance and Calibration for

CEL-120 Acoustic Calibrator

Applicable Standards :-IEC 60942: 2003 & ANSI S1.40: 2006

CEL-120/1 Class 1

CEL-120/2 Class 2

Serial No: 4358251

Firmware: 03

Temperature: 22.0 °C Pressure: 999.5 mb %RH 55.0

Frequency = 1.00 kHz \pm 2Hz T.H.D. = $< 1\%$	Calibration Level
SPL @ 114.0dB Setting	113.99 dB
SPL @ 94.0dB Setting	93-92 dB/N.A

Engineer: - W- Durces Date: 12 MAY 2016

Company test equipment and acoustic working standards, used for conformance testing, are subject to periodic calibration, traceable to UK national standards, in accordance with the company's ISO9001 Quality System.

DECLARATION OF CONFORMITY

This certificate confirms that the instrument specified above has been produced and tested to comply with the manufacturer's published specifications and the relevant European Community CE directives.

Casella CEL (U.K.),
Regent House, Wolseley Road, Kempston, Bedford. MK42 7JY
Phone: +44 (0) 1234 844100 Fax: +44 (0) 1234 841490
E-mail: info@casellace.om
Web: www.casellameasurement.com

198032A-01

Certificate of Conformity and Calibration

CEL-633A Instrument Model:-3756127 Serial Number

V129-09 Firmware revision

CEL-495 Preamplifier Type:-**CEL-251** Microphone Type:-003036 Serial Number 1231 Serial Number

Instrument Class/Type:-1

Applicable standards:-

IEC 61672: 2002 / EN 60651 (Electroacoustics - Sound Level Meters) IEC 60651 1979 (Sound Level Meters), ANSI S1.4: 1983 (Specifications For Sound Level Meters)

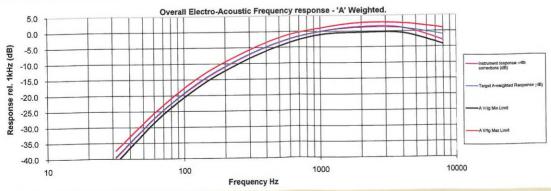
Note:- The test sequences performed in this report are in accordance with the current Sound level meter Standard - IEC61672. The combination of tests performed are considered to confirm the products electro-acoustic performance to all applicable standards including superceeded Sound Level Meter Standards - IEC60651 and IEC60804.

Test Conditions:-25 °C Test Engineer:-Millie Duncan February 2, 2016 52 %RH Date of Issue:-

1010 mBar

Declaration of conformity:-

This test certificate confirms that the instrument specified above has been successfully tested to comply with the manufacturer's published specifications. Tests are performed using equipment traceable to national standards in accordance with Casella's ISO 9001:2008 quality procedures. This product is certified as being compliant to the requirements of the CE Directive.


Test Summary:-

All Tests Pass Self Generated Noise Test All Tests Pass Electrical Signal Test Of Frequency Weightings All Tests Pass Frequency & Time Weightings At 1 kHz **All Tests Pass** Level Linearity On The Reference Level Range All Tests Pass Toneburst Response Test **All Tests Pass** C-peak Sound Levels **All Tests Pass** Overload Indication **All Tests Pass** Acoustic Tests

Combined Electro-Acoustic Frequency Response - A Weighted

Combined Electro-Acoustic Frequency Response - A Weighted (IEC 61672-3:2006)

The following A-Weighted frequency response graph shows this instruments overall frequency response based upon the application of multi-frequency pressure field calibrations. The microphones Pressure to Free field correction coefficients are applied to pressure response. Reference level taken at 1kHz.

Casella CEL Regen House, Wolseley Road, Kempston, Bedford MK42 7JY

Phone: +44(0) 1234 844100 Fax: +44(0) 1234 841490

Fax: +44(0) 1234 841490 E-mail: info@casellameasurement.com www.casellameasurement.com

Casella CEL. Inc. a subsidiary of IDEAL Industries, Inc.

415 Lawrence Bell Drive Unit 4 Buffalo NY 14221

Toll Free. (800) 366-2966

(603) 672-0031 Fax: (603) 672-8053

E-mail: Web: info@casellausa.com www.casellausa.com

Certificate of Conformity and Calibration

Instrument Model:-

CEL-633A

Serial Number Firmware revision 3756084 V129-09

Microphone Type:-Serial Number CEL-251

1257

Preamplifier Type:-

CEL-495 003538

Instrument Class/Type:-

1

Applicable standards:-

IEC 61672: 2002 / EN 60651 (Electroacoustics - Sound Level Meters)

IEC 60651 1979 (Sound Level Meters), ANSI S1.4: 1983 (Specifications For Sound Level Meters)

Note:- The test sequences performed in this report are in accordance with the current Sound level meter Standard - IEC61672. The combination of tests performed are considered to confirm the products electro-acoustic performance to all applicable standards including superceeded Sound Level Meter Standards - IEC60651 and IEC60804.

Test Conditions:-

25 °C 52 %RH

Test Engineer:-Date of Issue:- Millie Duncan

1010 mBar

February 2, 2016

Declaration of conformity:-

This test certificate confirms that the instrument specified above has been successfully tested to comply with the manufacturer's published specifications. Tests are performed using equipment traceable to national standards in accordance with Casella's ISO 9001:2008 quality procedures. This product is certified as being compliant to the requirements of the CE Directive.

Test Summary:-

All Tests Pass Self Generated Noise Test All Tests Pass Electrical Signal Test Of Frequency Weightings All Tests Pass Frequency & Time Weightings At 1 kHz **All Tests Pass** Level Linearity On The Reference Level Range All Tests Pass Toneburst Response Test **All Tests Pass** C-peak Sound Levels **All Tests Pass** Overload Indication All Tests Pass Acoustic Tests

Combined Electro-Acoustic Frequency Response - A Weighted

Combined Electro-Acoustic Frequency Response - A Weighted (IEC 61672-3:2006)

The following A-Weighted frequency response graph shows this instruments overall frequency response based upon the application of multi-frequency pressure field calibrations. The microphones Pressure to Free field correction coefficients are applied to pressure response. Reference level taken at 1kHz.

Casella CEL Regen House, Wolseley Road, Kempston, Bedford MK42 7JY

Phone: +44(0) 1234 844100

Fax: +44(0) 1234 841490 E-mail: info@casellameasurement.com Web: www.casellameasurement.com Casella CEL. Inc. a subsidiary of IDEAL Industries, Inc.

415 Lawrence Bell Drive

Buffalo. NY 14221

Toll Free. (800) 366-2966 Tel: (603) 672-0031 Fax: (603) 672-8053

E-mail: info@casellausa.com Web: www.casellausa.com

Certificate of Conformity and Calibration

Instrument Model:-

CEL-633A

Serial Number Firmware revision 3756072 V129-09

Microphone Type:-Serial Number

CEL-251 1361

Preamplifier Type:-Serial Number

CEL-495

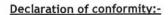
003527

Instrument Class/Type:-

Applicable standards:-

IEC 61672: 2002 / EN 60651 (Electroacoustics - Sound Level Meters)

IEC 60651 1979 (Sound Level Meters), ANSI S1.4: 1983 (Specifications For Sound Level Meters)


Note:- The test sequences performed in this report are in accordance with the current Sound level meter Standard - IFC61672 The combination of tests performed are considered to confirm the products electro-acoustic performance to all applicable standards including superceeded Sound Level Meter Standards - IEC60651 and IEC60804.

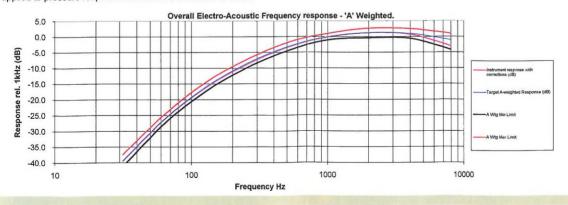
Test Conditions:-

25 °C

Test Engineer:-Date of Issue'-

52 %RH 1010 mBar May 13, 2016

This test certificate confirms that the instrument specified above has been successfully tested to comply with the manufacturer's published specifications. Tests are performed using equipment traceable to national standards in accordance with Casella's ISO 9001:2008 quality procedures. This product is certified as being compliant to the requirements of the CE Directive.


Test Summary:-

All Tests Pass Self Generated Noise Test All Tests Pass Electrical Signal Test Of Frequency Weightings All Tests Pass Frequency & Time Weightings At 1 kHz Level Linearity On The Reference Level Range **All Tests Pass All Tests Pass** Toneburst Response Test **All Tests Pass** C-peak Sound Levels All Tests Pass Overload Indication **All Tests Pass** Acoustic Tests

Combined Electro-Acoustic Frequency Response - A Weighted

Combined Flectro-Acoustic Frequency Response - A Weighted (IEC 61672-3:2006)

The following A-Weighted frequency response graph shows this instruments overall frequency response based upon the application of multi-frequency pressure field calibrations. The microphones Pressure to Free field correction coefficients are applied to pressure response. Reference level taken at 1kHz.

Casella CEL Regen House, Wolseley Road, Kempston, Bedford MK42 7JY

Phone: +44(0) 1234 844100 Fax: +44(0) 1234 841490 E-mail: info@casellameasurement.com www.casellameasurement.com Casella CEL. Inc. a subsidiary of IDEAL Industries, Inc.

415 Lawrence Bell Drive I Init 4

Buffalo, NY 14221

Toll Free. (800) 366-2966

(603) 672-0031 Fax: (603) 672-8053 E-mail: info@casellausa.com

www.casellausa.com

Fugro Development Centre. 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 : +852 2450 6138 Fax E-mail: matlab@fugro.com Website: www.materialab.com.hk

Report no.: 161966CA162301

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client: Materialab Consultants Ltd.

Address: Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project: Calibration Services Details of Unit Under Test, UUT

Description

Sound Level Meter

Manufacturer

Casella

Model No.

Casella (Model no. CEL-63X(meter), CEL-251(microphone), CEL-495(Preamplifier))

Serial No.

1057063 (meter), 01163(microphone), 002748 (Preamplifier))

Next Calibration Date

11-Nov-2017

Specification Limit

EN 61672: 2003 Type 1

Laboratory Information

Description

B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)

Equipment ID.

R-108-1

Date of Calibration:

12-Nov-2016

Ambient Temperature: 22

Calibration Location:

Calibration Laboratory of MateriaLab

Method Used

By direct comparison

Calibration Results:

Parame	eters	Mean Value (dB)	Specification Limit(dB)			
	4000Hz	2.5	2.6	to	-0.6	
*	2000Hz	0.5	2.8	to	-0.4	
	1000Hz	-0.9	1.1	to	-1.1	
A-weighing frequency	500Hz	-4.0	-1.8	to	-4.6	
response	250Hz	-9.1	-7.2	to	-10.0	
	125Hz	-16.5	-14.6	to	-17.6	
	63Hz	-26.5	-24.7	to	-27.7	
	31.5Hz	-39.2	-37.4	to	-41.4	
Differential level	94dB-104dB	0.3	± 0.6			
linearity	104dB-114dB	-0.1		± 0.6	3	

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighing is fast
- 4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement.

Checked by:

CA-R-297 (22/07/2009)

Date: 1516 2016 Certified by:

** End of Report *

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Fax Email : mcl@fugro.com.hk

Appendix E

Environmental Monitoring Schedule

Room 723 & 725, 7/F, Block B,

Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong. Email : mcl@fugro.com.hk

Project: KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Developments at the **Southern Part of the Former Runway**

Impact Monitoring Schedule (December 2016)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
				1 December 2016	2	3 TSP Monitoring Noise Monitoring
4	5	6	7	8	9 TSP Monitoring Noise Monitoring	10
11	12	13	14	15 TSP Monitoring Noise Monitoring	16	17
18	19	20 TSP Monitoring Noise Monitoring	21	22	23	24 TSP Monitoring Noise Monitoring
25	26	27	28	29	30 TSP Monitoring Noise Monitoring	31

- 1. Monitoring Locations KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2a: G/IC Zone next to Kwun Tong Bypass (Future at Site 3C1), KER1b: Site Boundary at Cheung Yip Street, close to open space car park area
- 2. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)
- 3. Noise Monitoring: Leg (30 min) between 0700 and 1900 hours.

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 : (852)-24508032 Fax Hong Kong. Email: mcl@fugro.com.hk

Project: KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Developments at the **Southern Part of the Former Runway**

Impact Monitoring Schedule (January 2017)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
1 January	2	3	4	5 TSP Monitoring Noise Monitoring	6	7
8	9	10	11 TSP Monitoring Noise Monitoring	12	13	14
15	16	17 TSP Monitoring Noise Monitoring	18	19	20	21
22	23 TSP Monitoring Noise Monitoring	24	25	26	27 TSP Monitoring Noise Monitoring	28
29	30	31				

- 1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition
- 2. Monitoring Locations KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2a: G/IC Zone next to Kwun Tong Bypass (Future at Site 3C1), KER1b: Site Boundary at Cheung Yip Street, close to open space car park area
- 3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)
- 4. Noise Monitoring: Leg (30 min) between 0700 and 1900 hours.

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 : (852)-24508032 Fax Hong Kong. Email: mcl@fugro.com.hk

Project: KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Developments at the **Southern Part of the Former Runway**

Impact Monitoring Schedule (February 2017)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
			1 February	2 TSP Monitoring Noise Monitoring	3	4
5	6	7	8 TSP Monitoring Noise Monitoring	9	10	11
12	13	14 TSP Monitoring Noise Monitoring		16	17	18
19	20 TSP Monitoring Noise Monitoring	21	22	23	24	25 TSP Monitoring Noise Monitoring
26	27	28				

- 1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition
- 2. Monitoring Locations KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2a: G/IC Zone next to Kwun Tong Bypass (Future at Site 3C1), KER1b: Site Boundary at Cheung Yip Street, close to open space car park area
- 3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)
- 4. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours.

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, Tel : (8
1-15 Kwai Fung Crescent, Kwai Fong, Fax : (8
Hong Kong. Email : m

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

Project: <u>KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway</u>

Impact Monitoring Schedule (March 2017)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
			1 March	2	3 TSP Monitoring Noise Monitoring	4
5	6	7	8	9 TSP Monitoring Noise Monitoring	10	11
12	13	14	15 TSP Monitoring Noise Monitoring	16	17	18
19	20	21 TSP Monitoring Noise Monitoring	22	23	24	25
26	27 TSP Monitoring Noise Monitoring	28	29	30	31	

- 1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition
- 2. Monitoring Locations KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2a: G/IC Zone next to Kwun Tong Bypass (Future at Site 3C1), KER1b: Site Boundary at Cheung Yip Street
- 3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)
- 4. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Fax : mcl@fugro.com.hk Email

Appendix F

Air Quality Monitoring Data

24-hour TSP Monitoring Result for Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

KTD1a - Centre of Excellence in Paediatrics (Children's Hospital)

Start Date	Weather	Air Temperature	Atmospheric Pressure, Pa	Filter W		Particulate weight (g)				Average flow	Total volume	Conc. (ug/m³)	Action Level	Limit Level
	Condition	(K)	(mmHg)	Initial	Final	weight (g)	111116(1113)	Initial	Final	(m³/min.)	(m ³⁾	(ug/m)	(ug/m ³)	(ug/m ³)
3-Dec-16	Hazy	294.3	765.7	2.8183	3.2711	0.4528	24	1.69	1.67	1.68	2614.4	173		
9-Dec-16	Fine	292.4	761.6	2.7946	3.2013	0.4067	24	1.65	1.67	1.66	2489.1	163		
15-Dec-16	Fine	291.0	767.0	2.8305	3.1426	0.3121	24	1.53	1.51	1.52	2221.9	140	177	260
20-Dec-16	Fine	294.3	763.0	2.8254	3.3148	0.4894	24	1.71	1.67	1.69	2819.0	174	177	200
24-Dec-16	Cloudy	291.1	764.5	2.8256	2.9788	0.1532	24	1.46	1.44	1.45	2092.4	73		
30-Dec-16	Fine	289.6	768.2	2.8165	2.9480	0.1315	24	1.54	1.51	1.52	2179.2	60		
											Min	60		
											Max	171	Ī	

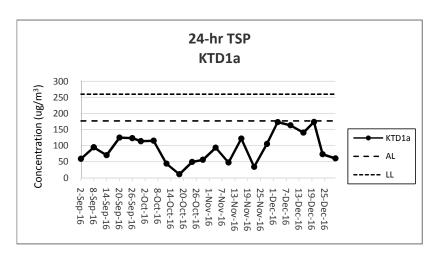
Max 174
Average 131

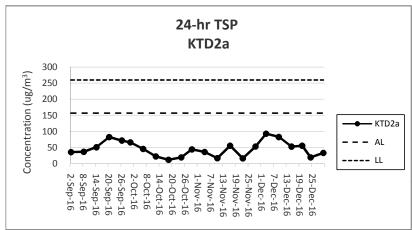
KTD2a - G/IC Zone next to Kwun Tong Bypass (Future Hospital at Site 3C1)

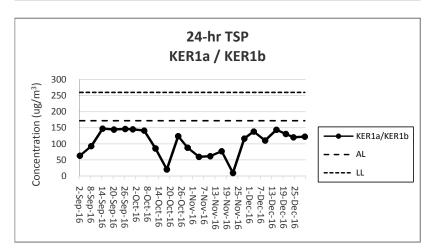
KIDZa - O/I	102a - G/IC Zone next to Kwun Tong Bypass (Future nospital at Site 3C1)													
Start Date	Weather	Air Temperature	Atmospheric Pressure, Pa	Filter We	eight (g)	Particulate weight (g)		/m3/r	Rate min.)	Average flow	Total volume	Conc. (ug/m³)	Action Level	Limit Level
	Condition	(K)	(mmHg)	Initial	Final	weight (g)	111116(1113)	Initial	Final	(m³/min.)	(m ³⁾	(ug/III)	(ug/m ³)	(ug/m ³)
3-Dec-16	Hazy	294.3	765.7	2.7548	2.9657	0.2109	24	1.59	1.57	1.58	2271.4	93		
9-Dec-16	Fine	292.4	761.6	2.8517	3.0439	0.1922	24	1.59	1.64	1.61	2325.0	83		
15-Dec-16	Fine	291.0	767.0	2.8170	2.9428	0.1258	24	1.67	1.64	1.66	2386.7	53	157	260
20-Dec-16	Fine	294.3	763.0	2.8333	2.9385	0.1052	24	1.21	1.42	1.32	1896.8	55	137	200
24-Dec-16	Cloudy	291.1	764.5	2.8227	2.8660	0.0433	24	1.60	1.57	1.58	2277.6	19		1
30-Dec-16	Fine	289.6	768.2	2.8070	2.8755	0.0685	24	1.45	1.42	1.44	2070.8	33		
											Min	19		
											Max	93	Ī	

KER1b - Site Boundary at Cheung Yip Street

KEKID - SI	AER TO - Site Boundary at Crieding Tip Street													
Start Date	Weather	Air Temperature	Atmospheric Pressure, Pa	Filter W	eight (g)	Particulate weight (g)				Average flow	Total volume	Conc.	Action Level	Limit Level
	Condition	(K)	(mmHg)	Initial	Final	weight (g)	111116(1113)	Initial	Final	(m³/min.)	(m ³⁾	(ug/m ³)	(ug/m ³)	(ug/m ³)
3-Dec-16	Hazy	294.3	765.7	2.8164	3.0735	0.2571	24	1.27	1.26	1.26	1860.3	138		
9-Dec-16	Fine	292.4	761.6	2.8416	3.0803	0.2387	24	1.49	1.47	1.48	2165.8	110		
15-Dec-16	Fine	291.0	767.0	2.8117	3.1280	0.3163	24	1.50	1.47	1.49	2202.9	144	172	260
20-Dec-16	Fine	294.3	763.0	2.8283	3.0293	0.2010	24	1.05	1.04	1.05	1537.4	131	172	200
24-Dec-16	Cloudy	291.1	764.5	2.8258	3.0739	0.2481	24	1.37	1.35	1.36	2065.9	120		
30-Dec-16	Fine	289.6	768.2	2.8144	3.0867	0.2723	24	1.51	1.53	1.52	2226.4	122		


Min 110 Max 144 Average 128


Average


56

Note:

<u>Underline</u>: Exceedance of Action Level <u>Underline and Bold</u>: Exceedance of Limit Level

Note:

- 1) The major activities being carried out on site during the reporting period can be referred to Section 1.3.2.
- 2) The weather conditions during the reporting period can be referred to Appendix K.
- 3) Any other factors which might affect the monitoing results can be referred to Section 2.6.4.
- 4) QA/QC results, calibration results and detection limits can be referred to Appendix D.
- 5) The 24-hour TSP monitoring location KER1a was replaced by KER1b, effective from 16 November 2016.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Fax : mcl@fugro.com.hk Email

Appendix G

Noise Monitoring Data

Noise Impact Monitoring Result for Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

KTD 1a: Centre of Excellence in Paediatrics (Children's Hospital)

Date	Start Time	Leq 30min dB(A)	L10 dB(A)	L90 dB(A)	Wind Speed (m/s)	Weather
3-Dec-16	10:21	68	71	64	0.8	Hazy
9-Dec-16	10:42	69	72	65	1.1	Fine
15-Dec-16	13:23	68	70	65	1.0	Fine
20-Dec-16	10:25	71	73	67	0.6	Fine
24-Dec-16	10:43	69	72	65	3.9	Cloudy
30-Dec-16	11:10	70	70	69	0.4	Fine
	Max	71	_			
	8.5					

KTD 2a: G/IC Zone next to Kwun Tong Bypass (Future Hospital at Site 3C1)

Dete	Ot and Time	Leq 30min dB(A)	L10 dB(A)	L90 dB(A)	Wind Speed (m/s)	Masthan
Date	Start Time	UD(A)	ub(A)	UD(A)	(111/5)	Weather
3-Dec-16	10:56	63	65	62	1.4	Hazy
9-Dec-16	11:18	65	67	61	1.6	Fine
15-Dec-16	14:00	65	67	61	0.9	Fine
20-Dec-16	9:35	64	66	62	1.2	Fine
24-Dec-16	10:09	65	66	63	2.0	Cloudy
30-Dec-16	10:33	69	69	69	0.6	Fine

 Max
 69

 Min
 63

 Limit Level
 75

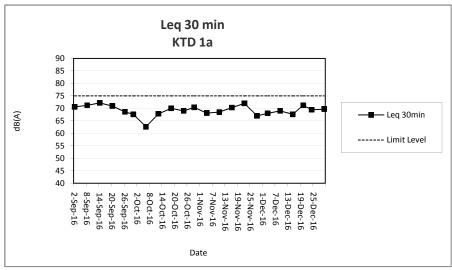
KER 1b: Site Boundary at Cheung Yip Street

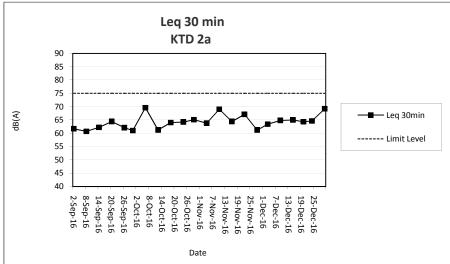
Limit Level

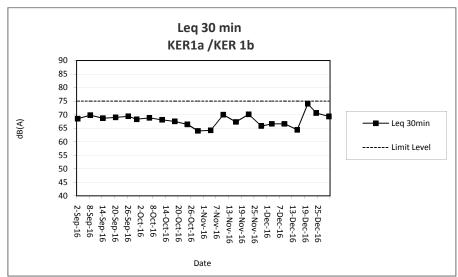
Date	Start Time	Leq 30min dB(A)	L10 dB(A)	L90 dB(A)	Wind Speed (m/s)	Weather
3-Dec-16	9:43	67	69	64	1.1	Hazy
9-Dec-16	11:59	67	69	63	0.6	Fine
15-Dec-16	12:42	64	66	63	0.8	Fine
20-Dec-16	11:05	74	78	66	0.6	Fine
24-Dec-16	11:21	71	73	69	1.5	Cloudy
30-Dec-16	11:48	69	69	69	0.7	Fine
`						

 Max
 74

 Min
 64


 Limit Level
 75


Note:


KTD1a: Façade Measurement

KTD2a & KER1b: Free-field measurement (+3dB(A) correction has been applied)

No raining or wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation.

Note

- 1) The major activities being carried out on site during the reporting period can be referred to Section 1.3.2.
- 2) The weather conditions during the reporting period can be referred to Appendix K.
- 3) Any other factors which might affect the monitoing results can be referred to Section 3.7.2.
- 4) QA/QC results, calibration results and detection limits can be referred to Appendix D.
- 5) Noise monitoring location KER1a was replaced by KER1b, effective from 16 November 2016.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Fax : mcl@fugro.com.hk Email

Appendix H

Events and Action Plan

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Tel Fax : mcl@fugro.com.hk Email

	Plan for Construct		TION	
EVENT	ET	IEC	ER	Contractor
Action Level				_
Exceedance for one sample.	I. Identify sources, investigate the causes of complaint and propose remedial measures. Inform IEC and ER. Repeat measurement to confirm finding; Increase monitoring frequency	Check monitoring data submitted by the ET. Check the Contractor's working methods.	Notify the Contractor.	Rectify any unacceptable practices. Amend working methods agreed with the ER as appropriate.
Exceedance for two or more consecutive samples.	1.Identify sources. 2.Inform the IEC and ER. 3.Advise the ER on the effectiveness of the proposed remedial measures; 4.Repeat measurements to confirm findings. 5.Increase monitoring frequency to daily. 6.Discuss with the IEC, ER and Contractor on remedial action required. 7.If exceedance continues, arrange meeting with the IEC, Contractor and ER. 8.If exceedance stops, cease additional monitoring.	Check monitoring data submitted by the ET. Check the Contractor's working methods. Discuss with the ET, ER and Contractor on possible remedial measures if required. Advise the ER on the effectiveness of proposed remedial measures if required.	Notify the Contractor. Ensure remedial measures properly implemented.	Submit proposals for remedial action to the ER within 3 working days of notification. Implement the agreed proposals. Amend proposal as appropriate
Limit Level	-		•	•
Exceedance for one sample. Exceedance for two or	1. Identify sources, investigate causes of exceedance and proposed remedial measures. 2. Inform the IEC, ER, and Contractor. 3. Repeat measurement to confirm finding. 4. 4. Increase monitoring frequency to daily. 5. Assess effectiveness of the Contractor's remedial action and keep the IEC and ER informed of the results 1. Notify the IEC, ER and	1. Check monitoring data submitted by the ET. 2. Check the Contractor's working methods. 3. Discuss with the ET, ER and Contractor on possible remedial measures. 4. Advise the ER and ET on the effectiveness of the proposed remedial measures. 5. Supervise the implementation of remedial measures.	Confirm receipt of the notification of exceedance in writing. Notify the Contractor. Ensure remedial measures are properly implemented. Confirm receipt of the	Take immediate action to avoid further exceedance. Submit proposals for remedial action to the ER and copy to the ET and IEC within 3 working days of notification. Implement the agreed proposals. Amend proposal as appropriate. Take immediate action
Exceedance for two or more consecutive samples	1. Notify the IEC, ER and Contractor. 2. Identify sources. 3. Repeat measurements to confirm findings. 4. Increase monitoring frequency to daily. 5. Carry out analysis of the Contractor's working procedures with the ER to determine the possible mitigation to be implemented. 6. Arrange meeting with the IEC and ER to	Discuss amongst the ER, ET and Contractor on the potential remedial action. Review the Contractor's remedial action whenever necessary to assure their effectiveness and advise the ER and ET accordingly. Supervise the implementation of remedial measures.	Confirm receipt of the notification of exceedance in writing. Notify the Contractor. In consultation with the IEC and ET, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures are properly implemented. If exceedance	1. Take immediate action to avoid further exceedance. 2. Submit proposals for remedial action to the ER and copy to the IEC and ET within 3 working days of notification. 3. Implement the agreed proposals. 4. Resubmit proposals if problems still not under control. 5. Stop the relevant portion of works as

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk Tel Fax Email

EVENT	ACTION						
EVENT	ET	IEC	ER	Contractor			
	discuss the remedial action to be taken. 7. Assess the effectiveness of the Contractor's remedial action and keep the IEC, EPD and ER informed of the results. 8. If exceedance stops, cease additional monitoring		continues, consider what portion of works is responsible and instruct the Contractor to stop that portion of works until the exceedance is abated.	determined by the ER until the exceedance is abated.			

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. Fax

: (852)-24508238 : (852)-24508032 Tel : mcl@fugro.com.hk Email

Event and Action Plan for Noise Impact

EVENT	ACTION ACTION						
EVENI	ET	IEC	ER	Contractor			
Action Level	1.Notify the IEC, ER and Contractor. 2.Carry out investigation. 3.Report the results of investigation to the IEC and Contractor. 4.Discuss jointly with the ER and Contractor and formulate remedial measures. 5.Increase the monitoring frequency to check the mitigation effectiveness	Review the monitoring data submitted by the ET. Review the construction methods and proposed redial measures by the Contractor, and advise the ET and ER if the proposed remedial measures would be sufficient	Notify the Contractor. Require the Contractor to propose remedial measures for implementation if required.	Submit noise mitigation proposals to the ER and copy to the IEC and ET. Implement noise mitigation proposals.			
Limit Level	1.Notify the IEC, ER and Contractor. 2.Identify sources. 3.Repeat measurements to confirm findings. 4.Carry out analysis of the Contractor's working procedures with the ER and Contractor to determine possible mitigations to be implemented. 5.Record the causes and action taken for the exceedances. 6.Increase the monitoring frequency. 7.Assess the effectiveness of the Contractor's remedial action with the ER and keep the IEC informed of the results. 8.If exceedance stops, cease additional monitoring	1.Discuss amongst the ER, ET and Contractor on the potential remedial action. 2.Review the Contractor's remedial action whenever necessary to assure their effectiveness and advise the ER accordingly. 3.Supervise the implementation of remedial measures.	1.Confirm receipt of notification of exceedance in writing. 2.Notify the Contractor. 3.Require the Contractor to propose remedial measures for the analysed noise problems. 4.Ensure remedial measures are properly implemented. 5.If exceedance continues, consider what portion of work is responsible and instruct the Contractor to stop that portion of works until the exceedance is abated.	1.Take immediate action to avoid further exceedance. 2.Submit proposals for remedial action to the ER and copy to the ET and IEC within 3 working days of notification. 3.Implement the agreed proposals. 4.Resubmit proposals if problems still not under control. 5.Stop the relevant portion of works as determined by the ER until the exceedance is abated.			

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Fax : mcl@fugro.com.hk Email

Event and Action Plan for Landscape and Visual Impact

EVENT	ACTION					
EVENI	ET	IEC	ER	Contractor		
Non-conformity on one occasion	1. Identify Source 2. Inform the IEC and the ER 3. Discuss remedial actions with the IEC, the ER and the Contractor 4. Monitor remedial actions until rectification has been completed	Check report Check the Contractor's working method Discuss with the ET and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures. Check implementation of remedial measures.	Notify Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake any necessary replacement		
Repeated Non-conformity	1. Identify Source 2. Inform the IEC and the ER 3. Increase monitoring frequency 4. Discuss remedial actions with the IEC, the ER and the Contractor 5. Monitor remedial actions until rectification has been completed 6. If exceedance stops, cease additional monitoring	Check monitoring report Check the Contractor's working method Discuss with the ET and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures Supervise implementation of remedial measures.	Notify the Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake any necessary replacement		

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk Tel Fax Email

Appendix I

Waste Flow Table

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

		Actual Quant	tities of Inert C&I	Materials Gene	erated Monthly		Actual	Quantities of Non-	inert C&D Wast	es Generated M	onthly
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2016 Jan	0.159	0.101	0.058	Nil	Nil	Nil	Nil	0.023	0.00002	0.0158	0.0335
2016 Feb	0.291	0.050	0.241	Nil	Nil	Nil	1.34	0.023	0.00002	0.0158	0.0335
2016 Mar	2.7389	0.0407	0.0662	Nil	2.632	Nil	5.92	0.023	0.00002	0.0158	0.0571
2016 Apr	4.1718	0.0578	0.462	Nil	3.652	Nil	12.5	0.023	0.00002	0.0158	0.0426
2016 May	3.592	Nil	0.299	Nil	3.293	Nil	5.23	0.023	0.00002	0.0158	0.0621
2016 June	4.6035	Nil	0.8555	Nil	3.748	Nil	Nil	0.023	0.00002	0.0158	0.0619
2016 July	6.155	0.153	0.015	Nil	5.987	Nil	7.84	0.023	0.00002	0.0158	0.0433
2016 Aug	5.1155	Nil	Nil	Nil	5.1155	Nil	19.93	0.023	Nil	Nil	0.0147
2016 Sept	7.2267	Nil	Nil	Nil	7.2267	Nil	33.65	0.023	Nil	Nil	0.0103
2016 Oct	4.6448	Nil	Nil	Nil	4.6448	Nil	13.30	0.023	Nil	Nil	0.0385
2016 Nov	6.1626	Nil	Nil	Nil	6.1626	Nil	27.06	0.023	Nil	Nil	0.0192
2016 Dec	6.3522	Nil	Nil	Nil	6.3522	Nil	13.30	0.023	Nil	Nil	0.0121
Total	51.213	0.4025	1.9967	Nil	48.8138	Nil	140.07	0.276	0.00014	0.1106	0.4288

Note:

¹⁾ The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

²⁾ Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com.hk

Appendix J

Environmental Mitigation Implementation Schedule (EMIS)

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong..

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
Air Quality Measur	<u>es</u>				
New Distributor Ro	oads Serving the Pla	anned KTD			
AEIAR-130/2009 S3.2	AEIAR 130/2009 EM&A Manual S2.2	8 times daily watering of the work site with active dust emitting activities.	Contractor	All relevant worksites	Implemented
Decommissioning	of the Radar Station	n of the former Kai Tak Airport			1
AEIAR-130/2009 S5.2.19	AEIAR 130/2009 EM&A Manual S4.2.4	The excavation area should be limited to as small in size as possible and backfilled with clean and/or treated soil shortly after excavation work. The exposed excavated area should be covered by the tarpaulin during night time. The top layer soils should be sprayed with fine misting of water immediately before the excavation.	Contractor	All relevant worksites	Implemented
Trunk Road T2	l				1
AEIAR-174/2013 S4.9.2.1	AEIAR-174/2013 EM&A Manual S2.3.1.1	Watering of the construction areas 12 times per day to reduce dust emissions by 91.7%, with reference to the "Control of Open Fugitive Dust Sources" (USEPA AP-42). The amount of water to be applied would be 0.91L/m2 for the respective watering frequency.	Contractor	All relevant worksites	Implemented
		Dust enclosures with watering would be provided along the loading ramps and conveyor belts for unloading the C&D materials to the barge for dust suppression.	Contractor	All relevant worksites	Not Applicable
		8 km per hour is the recommended limit of the speed for vehicles on unpaved site roads.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009	AEIAR 130/2009	Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should	Contractor	All relevant	Partially

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status						
S3.2, S5.2.19, AEIAR-174/2013	EM&A Manual S2.2, S4.2, AEIAR-	be fully covered by impermeable sheeting to reduce dust emission.		worksites	Implemented						
\$4.9.2.2	174/2013 EM&A Manual S2.3.1.2	Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs.	Contractor	All relevant worksites	Implemented						
		Misting for the dusty material should be carried out before being loaded into the vehicle. Any vehicle with an open load carrying area should have properly fitted side and tail boards.	Contractor	All relevant worksites	Implemented						
					Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	Contractor	All relevant worksites	Implemented			
			Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations; The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation.	Contractor	All relevant worksites	Implemented					
								The vehicles should be restricted to maximum speed of 10 km per hour. Confined haulage and delivery vehicle to designated roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	Contractor	All relevant worksites	Implemented
					Vehicle washing facilities should be provided at every vehicle exit point. Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.	Contractor	All relevant worksites	Implemented			
		The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.									
		Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet.	Contractor	All relevant worksites	Implemented						
		Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.	Contractor	All relevant worksites	Implemented						

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed.	Contractor	All relevant worksites	Implemented
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system.	Contractor	All relevant worksites	Implemented
		Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.	Contractor	All relevant worksites	Partially Implemented
		Open stockpiles shall be avoided or covered. Prevent placing dusty material storage piles near ASRs.	Contractor	All relevant worksites	Partially Implemented
		Routing of vehicles and position of construction plant should be at the maximum possible distance from ASRs.	Contractor	All relevant worksites	Not Applicable
		<u>Dark smoke</u>			
		Dark smoke emission shall be control in accordance with the Air Pollution Control (Smoke) Regulation and ETWB TCW 19/2005.	Contractor	All relevant worksites	Implemented
		Plant and equipment should be well maintained to prevent dark smoke emission.	Contractor	All relevant worksites	Implemented
Noise Measures					
Trunk Road T2					
AEIAR-174/2013 \$5.9.2.1	AEIAR-174/2013 EM&A Manual S3.4.1.1	The use of quieter plant, including Quality Powered Mechanical Equipment (QPME) is specified for the list of equipment: • Concrete lorry mixer • Dump Truck, 5.5 tonne < gross vehicle weight <= 38 tonne • Generator, Super Silenced, 70 dB(A) at 7m	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong..

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		 Poker, vibratory, Hand-held (electric) Water Pump, Submersible (Electric) Mobile Crane - KOBELCO CKS900 Excavator, wheeled/tracked - HYUNDAI R80CR-9 			
		Use of temporary or fixed noise barriers with a surface density of at least 10kg/m² to screen noise from movable and stationary plant.	Contractor	All relevant worksites	Implemented
		Use of enclosures with covers at top and three sides and a surface density of at least 10kg/m ² to screen noise from generally static noisy plant such as air compressors.	Contractor	All relevant worksites	Implemented
		Use of acoustic fabric for the silent piling system, drill rigs, rock drills etc.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009 S3.3, S5.3.10, AEIAR-174/2013	AEIAR 130/2009 EM&A Manual S2.3, S4.3.2,	Only well-maintained plant should be operated on-site and plant shall be serviced regularly during the construction/ decommissioning program.	Contractor	All relevant worksites	Implemented
\$5.9.2.1	AEIAR-174/2013 EM&A Manual S3.4.1.1	Silencers or mufflers on construction equipment should be utilized and shall be properly maintained during the construction/ decommissioning program.	Contractor	All relevant worksites	Implemented
	33.4.1.1	Mobile plant, if any, should be sited as far away from NSRs as possible.	Contractor	All relevant worksites	Implemented
		Machines and plant (such as trucks) that may be in intermittent use shall be shut down between works periods or should be throttled down to a minimum.	Contractor	All relevant worksites	Implemented
		Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.	Contractor	All relevant worksites	Implemented
		Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction/ decommissioning activities.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong..

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Use of site hoarding as a noise barrier to screen noise at low level NSRs.	Contractor	All relevant worksites	Implemented
		For the use of hand held percussive breakers (with mass of above 10kg) and portable air compressors (supply air at 500 kPa or above), the noise level of such PME shall comply with a stringent noise emission standard and a noise emission label shall be obtained from the DEP before use at any time in construction site.	Contractor	All relevant worksites	Implemented
		Quiet powered mechanical equipment (PME) shall be used for the construction of the Project.	Contractor	All relevant worksites	Implemented
		Full enclosures shall be used to screen noise from relatively static PMEs (including air compressor, bar bender, concrete pump, generator and water pump) from sensitive receiver(s).	Contractor	All relevant worksites	Partially Implemented
		Movable cantilevered noise barriers shall be used to screen noise from mobile PMEs (including asphalt paver, breaker, excavator and hand-held breaker) from sensitive receiver(s). These movable cantilevered noise barriers shall be located close to the mobile PMEs and shall be moved/adjusted iteratively in step with each movement of the corresponding mobile PMEs in order to maximize their noise reduction effects.	Contractor	All relevant worksites	Implemented
		Only approved or exempted Non-road Mobile Machineries (NRMMs) including regulated machines and non-road vechicles with proper labels are allowed to be used in specified activities on-site.	Contractor	All relevant worksites	Implemented
Water Quality Mea	<u>sures</u>				
Trunk Road T2					
		Accidental Spillage			
AEIAR-174/2013 S6.4.8.5	AEIAR-174/2013 EM&A Manual S4.2.1.1	All bentonite slurry should be stored in a container that resistant to corrosion, maintained in good conditions and securely closed; The container should be labelled in English and Chinese and note that the container is for storage of bentonite slurry only.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong..

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		The storage container should be placed on an area of impermeable flooring and bunded with capacity to accommodate 110% of the volume of the container size or 20% by volume stored in the area and enclosed with at least 3 sides.	Contractor	All relevant worksites	Implemented
		The storage container should be sufficiently covered to prevent rainfall entering the container or bunded area (water collected within the bund must be tested and disposed of as chemical waste, if necessary). An emergency clean up kit shall be readily available where bentonite fluid will be stored or used.	Contractor	All relevant worksites	Implemented
		The handling and disposal of bentonite slurries should be undertaken in accordance within ProPECC PN 1/94. Surplus bentonite slurries used in construction works shall be reconditioned and reused wherever practicable. Residual bentonite slurry shall be disposed of from the site as soon as possible as stipulated in Clause 8.56 of the General Specification for Civil Engineering Works. The Contractor should explore alternative disposal outlets for the residual bentonite slurry (dewatered bentonite slurry to be disposed to a public filling area and liquid bentonite slurry, if mixed with inert fill material, to be disposed to a public filling area) and disposal at landfill should be the last resort.	Contractor	All relevant worksites	Implemented
AEIAR-174/2013 S6.4.8.8	AEIAR-174/2013 EM&A Manual S4.2.1.1	In order to protect against impacts to the surrounding marine waters of the KTTS and Victoria Harbour in the event of an accidental spillage of fuel or oil, the Contractor will be required to prepare a spill response plan to the satisfaction of AFCD, EPD, FSD, Police, TD and WSD to define procedures for the control, containment and clean-up of any spillage that could occur on the construction site.	Contractor	All relevant worksites	Implemented
		Dredging, Reclamation and Filling			
		No dredging, reclamation or filling in the marine environment shall be carried out.	Contractor	All relevant worksites	Implemented
Decommissioning	of the Radar Station	n of the former Kai Tak Airport			
		Building Demolition			

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong..

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
AEIAR-130/2009 S5.4	AEIAR 130/2009 EM&A Manual S4.4	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion.	Contractor	All relevant worksites	Implemented
	54.4	There is a need to apply to EPD for a discharge licence under the WPCO for discharging effluent from the construction site. The discharge quality is required to meet the requirements specified in the discharge licence. All the runoff, wastewater or extracted groundwater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. It is anticipated that the wastewater generated from the works areas would be of small quantity. Monitoring of the treated effluent quality from the works areas should be carried out in accordance with the WPCO license which is under the ambit of regional office (RO) of EPD.	Contractor	All relevant worksites	Implemented
		General Construction Works			
		Construction Runoff			
AEIAR- 130/2009 S3.4, S5.4/ AEIAR- 174/2013 S6.4.8.1	AEIAR 130/2009 EM&A Manual S2.4, S4.4/ AEIAR- 174/2013 EM&A Manual S4.2.1.1	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include the use of sediment traps and adequate maintenance of drainage systems to prevent flooding and overflow.	Contractor	All relevant worksites	Implemented
		Construction site should be provided with adequately designed perimeter channel and pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	Contractor	All relevant worksites	Implemented
		Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.			
		Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	Contractor	All relevant worksites	Implemented
		Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	Contractor	All relevant worksites	Partially Implemented
		Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	Contractor	All relevant worksites	Implemented
		Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.	Contractor	All relevant worksites	Implemented
		Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	Contractor	All relevant worksites	Not Applicable
		An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		<u>Drainage</u>			
		It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.	Contractor	All relevant worksites	Implemented
		All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	Contractor	All relevant worksites	Implemented
		Stormwater Discharges			
		Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes.	Contractor	All relevant worksites	Not Applicable
		Sewage Effluent			
		Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	Contractor	All relevant worksites	Implemented
		Debris and Litter			
		In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur. Debris and refuse generated on-site should be collected, handled and disposed of	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong..

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		properly to avoid entering into the adjacent harbour waters. Stockpiles of cement and other construction materials should be kept covered when not being used.			
		Accidental Spillage			
		Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to the nearby harbour waters, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ. The bund should be drained of rainwater after a rain event.	Contractor	All relevant worksites	Implemented
		Waste Management Measures			
		Waste Management Plan			
AEIAR-174/2013 S11.4.8.1	AEIAR-174/2013 EM&A Manual S9.2.1.2	Contractor should be requested to submit an outline Waste Management Plan (WMP) prior to the commencement of construction work, in accordance with the ETWB TC(W) No.19/2005 so as to provide an overall framework of waste management and reduction.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009 S3.5, S5.5	AEIAR 130/2009 EM&A Manual S2.5, S4.5	Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.	Contractor	All relevant worksites	Implemented
		Training of site personnel in proper waste management and chemical waste handling procedures.	Contractor	All relevant worksites	Implemented
		Provision of sufficient waste disposal points and regular collection for disposal.	Contractor	All relevant worksites	Implemented
		Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Construction Phase Implementation Status
		A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	Contractor	All relevant worksites	Implemented
		Waste Reduction Measures			
		Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals.	Contractor	All relevant worksites	Not Applicable
		Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.	Contractor	All relevant worksites	Implemented
		Encourage collection of aluminum cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the work force.	Contractor	All relevant worksites	Implemented
		Any unused chemicals or those with remaining functional capacity should be recycled.	Contractor	All relevant worksites	Implemented
		Proper storage and site practices to minimize the potential for damage or contamination of construction materials.	Contractor	All relevant worksites	Implemented
		Construction and Demolition Materials			
		Where it is unavoidable to have transient stockpiles of C&D material within the work site pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible.	Contractor	All relevant worksites	Implemented
		Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric.	Contractor	All relevant worksites	Partially Implemented
		Skip hoist for material transport should be totally enclosed by impervious sheeting.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site.	Contractor	All relevant worksites	Implemented
		The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.	Contractor	All relevant worksites	Implemented
		The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle.	Contractor	All relevant worksites	Implemented
		All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet.	Contractor	All relevant worksites	Implemented
		The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.	Contractor	All relevant worksites	Implemented
		When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Contractor	All relevant worksites	Implemented
		Chemical Waste			
		After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Contractor	All relevant worksites	Partially Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong..

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures t		Location / Timing	Construction Phase Implementation Status
		General Refuse			
		General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem.		All relevant worksites	Partially Implemented
Land Contamination	on Measures				
		For any excavation works conducted at Radar Station			
AEIAR-130/2009 S3.6.57	AEIAR 130/2009 EM&A Manual S4.6	As the risk due to dermal contact with groundwater by site workers is uncertain, it is recommended that personnel protective equipment (PPE) be used by site workers as a mitigation measure.	Contractor	All relevant worksites	Not Applicable
Landscape and Vis	sual Impact		1		1
New Distributor Ro	oads Serving the Pla	anned KTD			
		Construction Phase			
AEIAR-130/2009 S3.8.12	AEIAR 130/2009 EM&A Manual	All existing trees should be carefully protected during construction.	Contractor	All relevant worksites	Not Applicable
	S2.8	Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	Contractor	All relevant worksites	Not Applicable
		Control of night-time lighting.	Contractor	All relevant worksites	Not Applicable

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong..

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures ith		Location / Timing	Construction Phase Implementation Status
		Erection of decorative screen hoarding.	Contractor	All relevant worksites	Implemented
Trunk Road T2					
		Construction Phase			
AEIAR-174/2013 S9.9.1.1	AEIAR-174/2013 EM&A Manual S7.2.1.2	All works shall be carefully designed to minimize impacts on existing landscape resources and visually sensitive receivers. Existing trees within works area shall be retained and protected.	Contractor	All relevant worksites	Not Applicable
	37.2.1.2	Existing trees of good quality and condition that are unavoidably affected by the works should be transplanted.	Contractor	All relevant worksites	Not Applicable
		Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance.	Contractor	All relevant worksites	Partially Implemented
		Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance.	Contractor	All relevant worksites	Implemented
		Erection of decorative screen hoarding should be designed to be compatible with the existing urban context.	Contractor	All relevant worksites	Implemented
		All lighting in construction site shall be carefully controlled to minimize light pollution and night-time glare to nearby residences and GIC user. The contractor shall consider other security measures, which shall minimize the visual impacts.	Contractor	All relevant worksites	Not Applicable
General Condition					
		The Permit Holder shall display conspicuously a copy of this Permit on the Project site(s) at all vehicular site entrances/exits or at a convenient location for public's information at all times. The Permit Holder shall ensure that the most updated information about the Permit, including any amended Permit, is displayed at such locations. If the Permit Holder surrenders a part or the whole of the Permit, the notice he sends to the Director shall also be displayed at the same	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		locations as the original Permit. The suspended, varied or cancelled Permit shall be removed from display at the Project site(s).			

Implementation status: Implemented / Partially Implemented / Not Implemented / Not Applicable

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Tel Fax Email : mcl@fugro.com.hk

Appendix K

Weather and Meteorological Conditions during Reporting Month

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk Tel Fax Email

	Mean		Air Temperature)	Mean Relative	Total
Date	Pressure (hPa)	Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	Humidity (%)	Rainfall (mm)
	-		December 2016		- -	-
01	1022.1	22.4	19.8	17.2	67	0.0
02	1022.6	22.4	20.5	18.4	74	0.0
03	1020.9	22.8	21.3	19.9	77	0.0
04	1018.2	24.9	22.3	21.0	79	Trace
05	1017.7	25.9	23.3	21.8	79	0.0
06	1020.7	22.9	20.8	19.4	54	Trace
07	1019.1	22.2	19.9	18.2	61	Trace
08	1016.5	21.7	19.2	17.1	61	0.0
09	1015.4	21.9	19.4	16.5	65	0.0
10	1016.4	23.1	20.8	18.3	72	0.0
11	1016.6	21.5	20.4	19.5	76	Trace
12	1015.1	23.3	21.1	19.0	77	Trace
13	1014.5	25.7	22.9	20.7	75	Trace
14	1018.2	23.4	21.4	18.8	63	Trace
15	1022.6	20.4	18.0	15.6	62	0.0
16	1025.5	17.1	15.2	13.2	61	0.0
17	1023.2	18.6	16.6	13.7	68	0.0
18	1021.6	21.3	19.2	17.2	76	0.0
19	1018.5	22.5	20.3	18.5	73	0.0
20	1017.3	22.9	21.3	20.0	80	0.0
21	1016.8	22.6	21.9	21.0	90	2.8
22	1016.8	24.8	22.4	19.7	75	0.1
23	1019.0	21.9	20.2	19.1	73	Trace
24	1019.2	19.5	18.1	16.9	76	3.7
25	1018.4	20.3	19.5	18.4	82	Trace
26	1017.0	23.7	21.4	19.5	80	0.0
27	1020.4	21.8	16.6	12.8	61	0.0
28	1023.0	15.7	14.0	11.5	60	0.0
29	1024.1	17.9	15.9	13.9	54	0.0
30	1024.2	18.6	16.6	14.8	60	0.0
31	1022.8	20.7	18.2	15.6	74	0.0

Source: Hong Kong Observatory – Hong Kong Observatory

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com.hk

Appendix L

Cumulative statistics on Environmental Complaints, Notifications of Summons and **Successful Prosecution**

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Tel Fax Hong Kong.. Email : mcl@fugro.com.hk

Environmental Complaints Log

Complaint Log No.	Date of Receipt	Received From and Received By	Nature of Complaint	Date Investigated	Outcome	Date of Reply
Nil	-	-	-	-	ı	-

Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Fax Email : mcl@fugro.com.hk

Appendix M

Summary of Site Audit in the Reporting Month

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong..

ng, Tel : (852)-24508238 Dent, Kwai Fong, Fax : (852)-24508032 Email : mcl@fugro.com.hk

Summary of Site Audit in the Reporting Month

Parameters	Date	Observations and Recommendations	Follow-up
Air Quality	14 December 2016	Open stockpile shall be covered with impermeable sheeting to prevent dust emission. (Portion I)	The item was rectified by the Contractor and inspected on 21 December 2016.
Air Quality	29 December 2016	Open stockpile shall be covered with impermeable sheeting to prevent dust emission. (Portion I)	The item was rectified by the Contractor and inspected on 5 January 2017.
Noise	1 December 2016	The door of air compressor shall be closed in order to reduce noise impact. (Zone 4)	The item was rectified by the Contractor and inspected on 8 December 2016.
Water Quality	Vater Quality NA		
Chemical and Waste	21 December 2016	Sufficient waste disposal points and regular collection for disposal shall be provided. Larger skip shall be provided. General refuse shall be collected regularly (Zone 2).	The item was rectified by the Contractor and inspected on 29 December 2016.
Management	21 December 2016	Chemical oil shall be stored properly. Drip tray shall be provided (Zone 3).	The item was rectified by the Contractor and inspected on 29 December 2016.
Land Contamination		NA	
Landscape and Visual	14 December 2016	Open stockpiles shall be covered by unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance. (Portion I and Zone 1)	The item was rectified by the Contractor and inspected on 21 December 2016.
Impact	29 December 2016	Open stockpiles shall be covered by unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance. (Portion I)	The item was rectified by the Contractor and inspected on 5 January 2017.
General Condition	8 December 2016	Stagnant water was found in the platform in Zone 1. Stagnant water shall be removed. (Zone 1)	The item was rectified by the Contractor and inspected on 14 December 2016.

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Fax Email : mcl@fugro.com.hk

Appendix N

Outstanding Issues and Deficiencies

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk Tel Fax Email

Summary of Outstanding Issues and Deficiencies in the Reporting Month

Parameters	Outstanding Issues	Deficiencies
Air Quality	NA	
Noise	NA	
Water Quality	NA	
Chemical and Waste Management	NA	Any items of deficiencies can be referred to Appendix M .
Land Contamination	NA	
Landscape and Visual Impact	NA	
General Condition	NA	
Others	NA	