Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

19th CONSOLIDATED MONTHLY EM&A REPORT

May 2018

Client : Civil Engineering and Development Department, HKSAR

EP No. : EP-337/2009 –

New Distributor Roads Serving the Planned Kai Tak

Development Area

Contract No. : KLN/2016/05 -

Independent Environmental Checker for

Contract No. KL/2015/02 Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area

Report No. : 0087/16/ED/0750

Prepared by : Wingo So

Reviewed by : Calvin Leung

Certified by :

Colin Yung

Independent Environmental Checker Fugro Technical Services Limited

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

TABLE OF CONTENTS

EXE	CUTIVE SU	JMMARY	I
1.	INTRODU	CTION	1
2.	ENVIRON	MENTAL MONITORING AND AUDIT	8
3.	SITE INSI	PECTION	11
4.	ENVIRON	MENTAL COMPLAINT AND NON-COMPLIANCE	12
5.	IMPLEME	NTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURE	S 13
6.	FUTURE	KEY ISSUES	14
7.	CONCLU	SIONS	17
LIST	OF APPEN	DICES	
Appe	endix A	Monthly EM&A Report For Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at North Apron Area	
Арре	endix B	Monthly EM&A Report For Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at North Apron Area	
Арре	endix C	Monthly EM&A Report For Contract No. KL/2014/01 Kai Tak Development - Stage 2 Infrastructure works for Developments at Southern the Former Runway	Part of
Appe	endix D	Monthly EM&A Report For Contract No. KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the South Part of the Former Runway	hern
Appendix E		Monthly EM&A Report For Contract No. KL/2015/02 Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area	

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel: +852 2450 8233
Fax: +852 2450 6138
Fax: +852 2450 6138
Fax: +852 2450 6138
Fax: +852 2450 6138
Fax: +852 2450 8233
Fax: +852 2450 6138
Fax: +

EXECUTIVE SUMMARY

- This is the 19th Consolidated Monthly EM&A Report which summaries the EM&A works undertaken by respective contract under EP-337/2009 within the period between 1 May 2018 and 31 May 2018.
- ii. The EP-337/2009 relevant major construction activities undertaken in the reporting month are summarized as follow:

Contract No. KL/2010/03:

• NA (The works has been completed and no further EM&A submission is required.)

Contract No. KL/2012/02:

- · Laying paving block to remaining concorde footpath
- Multi-part cover installation
- · Fencing installation
- Defect rectification
- Thrie-beams installation
- Water mains modification
- Modification works for Lift system

Contract No. KL/2012/03:

- Daily Cleaning;
- Finishing works, E&M work, Access Road Construction in PS2;
- Site Clearance Works in DCS:
- Road widening work, Pavement Construction in Sung Wong Toi Road;
- Installation of Drainage pipe, Pressure test for Water Main, UU laying works and Road works in Road D2;
- Finishing works, E&M works and Access Road Construction in Portion 4 (NPS & Sewerage); and
- Removal of excavated material in Portion 6.

Contract No. KL/2014/01:

- TTA implementation, junction improvement works at Shing Fung Road, Wang Chiu Road / Sheung Yee Road and Wang Chiu Road / Kai Cheung Road;
- ELS installation and construction of box culvert and underpass;
- Construction of utilities trough at Kai Tak Bridge;
- Construction of pile caps, noise barrier footings and steel structure, outfalls, deck structure and columns; and
- Laying of sewer, drainage and pavement.

Contract No. KL/2014/03:

- Excavation and laying of drainage pipe and manhole;
- Seawall modification works:
- Construction of tunnel box structure;
- D-wall construction works;
- · Pumping test; and
- · Excavation and ELS construction.

Contract No. KL/2015/02:

- Excavation and Concreting blinding layer at Subway SW6 within Kai Tak Site
- Carry out grouting works and divert existing UU at carriageway of PERE (W/B)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

- Carry out trial pits and install sheet piles at SKLR Playground
- Install sheet piles at the existing bridge K72
- Construction works for abutment at slip road S15
- · Remedial works and application of joint sealant in box culverts
- Construction of Baseslab of Box Culvert B1
- DCS pipe laying works in Portion 1 & 6
- DCS valve chamber construction works in Portion 6
- Sewerage Works in Portion 4
- Drainage and Sewerage works in Portion 2 & 3

Breaches of the Action and Limit Levels

- iii. No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- iv. No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.
- v. No Action / Limit Level exceedance was recorded for noise monitoring in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

vi. No notification of summons or prosecution was received and one complaint received for Contract No. KL/2014/03 in this reporting month.

Reporting Changes

vii. There was no reporting change in the reporting month.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Future Key Issues

viii. The potential environmental impacts for the coming month and the control measures are shown in **Table I**:

Table I Summary of Key Issues for the Coming Month and Control Measures

Major Impact Prediction	Control Measures					
Contract No. KL/2012/02:						
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 					
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 					
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary. 					
Contract No. KL/2						
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 					
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of site boundary bund such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 					
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary. 					
Contract No. KL/2014/01:						
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 					
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to 					

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Major Impact	Control Measures			
Prediction				
	avoid run-off from entering the existing storm water drainage system via public road; and			
	Provision of measures to prevent discharge into the stream.			
	Scheduling of noisy construction activities if necessary to avoid persistent			
	noisy operation;			
Noise Impact	Controlling the number of plants use on site;			
	Regular maintenance of machines; and			
	Use of acoustic barriers if necessary.			
Contract No. KL/2	<u>014/03:</u>			
	Sufficient watering of the works site with the active dust emitting activities;			
	Limitation of the speed for vehicles on unpaved site roads;			
	Properly cover or enclosure of the stockpiles and dusty materials;			
	Good site practices on loading dusty materials; Providing sufficient vehicles weeking facilities at every vehicle suit points.			
:	 Providing sufficient vehicles washing facilities at every vehicle exit point; Good maintenance to the plant and equipment; 			
Construction	Use of quieter plant and Quality Powered Mechanical Equipment (QPME);			
dust,	Use of acoustic fabric and noise barrier;			
construction	Using the approved Non-road Mobile Machineries (NRMMs);			
noise, water quality, waste	Proper storage and handling of chemical;			
management	Appropriate desilting, oil interceptors or sedimentation devices provided on			
and landscape	site for treatment before discharge;			
and visual	Onsite waste sorting and implementation of trip ticket system;			
impact.	Training of the site personnel in proper waste management and chemical weste handling procedures:			
	waste handling procedures;Proper storage of the construction materials;			
	Erection of decorative screen hoarding;			
	Strictly following the Environmental Permits and Licenses;			
	Provide sufficient mitigation measures as recommended in Approved EIA			
	Reports			
Contract No. KL/2	015/02:			
	Frequent watering of haul road and unpaved/exposed areas;			
Air quality	Frequent watering or covering stockpiles with tarpaulin or similar means;			
impact (dust)	and			
	Watering of any earth moving activities.			
	Diversion of the collected effluent to de-silting facilities for treatment prior to displaying to public storm water drains:			
	discharge to public storm water drains;Provision of adequate de-silting facilities for treating surface run-off and			
Water quality	other collected effluents prior to discharge;			
impact (surface	Provision of perimeter protection such as sealing of hoarding footings to			
run-off)	avoid run-off from entering the existing storm water drainage system via			
	public road; and			
	Provision of measures to prevent discharge into the stream.			
	Scheduling of noisy construction activities if necessary to avoid persistent point energian:			
Noise Impact	noisy operation; Controlling the number of plants use on site;			
TYOISE IIIIPAUL	 Controlling the number of plants use on site; Regular maintenance of machines; and 			
	Use of acoustic barriers if necessary.			
	235 C. Goodon Barriore ii ricocccary.			

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

1. INTRODUCTION

1.1 Background

- 1.1.1 The Kai Tak Development is located in the south-eastern part of Kowloon Peninsula of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling.
- 1.1.2 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 March 2009.
- 1.1.3 The EP-337/2009 was issued on 23 April 2009 for the new distributor roads serving the planned Kai Tak Development to the following scale and slope:
 - a) Road D1 a dual 2-lane carriageway of approximately 1.3 km long.
 - b) Road D2 a dual 3-lane carriageway of approximately 1.1 km long.
 - c) Road D3 a dual 2-lane carriageway of approximately 2.3 km long.
 - d) Road D4 a dual 2-lane carriageway of approximately 0.9 km long.
- 1.1.4 The Civil Engineering and Development Department HKSAR has appointed Fugro Technical Services Limited (FTS) to undertake the role of Independent Environmental Checker (IEC) for the Contract No. KL/2015/02.
- 1.1.5 This is the 19th Consolidated Monthly EM&A Report which summaries the EM&A works undertaken by respective contract under EP-337/2009 within the period between 1 May 2018 and 31 May 2018.

1.2 Summary of relevant Contract Information of Key Personnel

Party	Position	Name	Telephone	Fax		
Contract No. KL/2012/02:						
Project Proponent CEDD)	Senior Engineer	Mr. Mike Cho	3106 2584	3579 4512		
Engineer's	SRE	Mr. Gary Cheung	2210 6100	2210 6110		
Representative (ARUP)	RE	Ms. Edith Fung	2210 0100	2210 0110		
IEC (ANewR)	IEC	Mr. Adi Lee	2618 2836	3007 8648		
	ET Leader	Dr. Priscilla Choy	2151 2089			
ET (Cinotech)	Project Coordinator and Audit Team Leader	Ms. Ivy Tam	2151 2090	3107 1388		
Main Contractor	Project Manager	Mr. Joe Yip	9209 5920			
(Build King)	Construction Manager	Mr. Cheung Wai Por	9663 9908	2639 6208		
Contract No. KL/2012/0	<u>3:</u>					
Project Proponent (CEDD)	Senior Engineer	Mr. C. K. Choi	2301 1174	2301 1277		
Engineer's	CRE	Mr. W. K. Leung	2798 0771	3013 8864		
Representative (AECOM)	RE	Mr. Jacky Pun	2/90 0//1	3013 0004		
IEC (Arcadis)	IEC	Mr. Wong Fu Nam	2911 2744	2805 5028		
IEC (ANewR)	IEC	Mr. Adi Lee	2618 2831	3007 8648		
ET (Cinotech)	ET Leader	Dr. Priscilla Choy	2151 2089	3107 1388		

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Party	Position	Name	Telephone	Fax	
	Project Coordinator and Audit Team Leader	Ms. Ivy Tam	2151 2090		
Main Contractor	Site Agent	Mr. Albert Ng	3689 7752	3689 7726	
(Kwan On)			6146 6761 (Ho	otline)	
Contract No. KL/2014/0	<u>11:</u>				
Project Proponent	Senior Engineer	Mr. Sunny Lo	3579 2450	3579 4516	
(CEDD)	Engineer	Mr. Keith Chu	3579 2124	3579 4510	
Engineer's Representative (AECOM)	CRE	Mr. Clive Cheng	3746 1801	2798 0783	
IEC (KSMC)	IEC	Dr. C. F. Ng	2618 2166	2120 7752	
	ET Leader	Dr. Priscilla Choy	2151 2089		
ET (Cinotech)	Audit Team Leader	Ms. Ivy Tam	2151 2090	3107 1388	
Main Contractor (CCJV)	EO	Mr. Dennis Ho	2960 1398	2960 1399	
Contract No. KL/2014/0	3:				
Project Proponent (CEDD)	Co-ordinator	Ms. Amy Chu	3106 3172	2369 4980	
Engineer's Representative (HMJV)	CRE	Mr. Chris Wong	3742 3803	3742 3899	
IEC (Ramboll Hong Kong Limited)	IEC	Mr. F. C. Tsang	3465 2851	3465 2899	
ET (MCL)	ET Leader	Mr. Colin Yung	3565 4114	3565 4160	
Main Contractor (CRBC)	Site Agent	Mr. Arnold Chan	9380 4110	2283 1689	
Wall Colliació (CRBC)	EO	Mr. Calvin So	9724 6254	2203 1009	
Contract No. KL/2015/02:					
Project Proponent (CEDD)	Senior Engineer	Ms. K. Pong	2301 1466	2369 4980	
Engineer's Representative (AECOM)	SRE	Mr. Vincent Lee	2798 0771	2210 6110	
IEC (FTS)	IEC	Mr. Colin Yung	3565 4114	2450 8032	
	ET Leader	Dr. Priscilla Choy	2151 2089		
ET (Cinotech)	Audit Team Leader	Ms. Ivy Tam	2151 2090	3107 1388	
Main Contractor (PWHJV)	Site Agent	Mr. W. M. Wong	6386 3535	2398 8301	

1.3 Summary of Construction Programme and Activities

- 1.3.1 The construction programme of each Contract is summarized in the appendices of the corresponding Monthly EM&A.
- 1.3.2 The major construction activities undertaken in the reporting month are summarized as follow:

Contract No. KL/2010/03:

• NA (The works has been completed and no further EM&A submission is required.)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Contract No. KL/2012/02:

- · Laying paving block to remaining concorde footpath
- Multi-part cover installation
- Fencing installation
- · Defect rectification
- Thrie-beams installation
- Water mains modification
- Modification works for Lift system

Contract No. KL/2012/03:

- · Daily Cleaning;
- Finishing works, E&M work, Access Road Construction in PS2;
- Site Clearance Works in DCS;
- Road widening work, Pavement Construction in Sung Wong Toi Road;
- Installation of Drainage pipe, Pressure test for Water Main, UU laying works and Road works in Road D2;
- Finishing works, E&M works and Access Road Construction in Portion 4 (NPS & Sewerage); and
- Removal of excavated material in Portion 6.

Contract No. KL/2014/01:

- TTA implementation, junction improvement works at Shing Fung Road, Wang Chiu Road / Sheung Yee Road and Wang Chiu Road / Kai Cheung Road;
- ELS installation and construction of box culvert and underpass;
- Construction of utilities trough at Kai Tak Bridge;
- Construction of pile caps, noise barrier footings and steel structure, outfalls, deck structure and columns; and
- Laying of sewer, drainage and pavement.

Contract No. KL/2014/03:

- Excavation and laying of drainage pipe and manhole;
- Seawall modification works:
- Construction of tunnel box structure;
- D-wall construction works;
- Pumping test; and
- Excavation and ELS construction.

Contract No. KL/2015/02:

- Excavation and Concreting blinding layer at Subway SW6 within Kai Tak Site
- Carry out grouting works and divert existing UU at carriageway of PERE (W/B)
- Carry out trial pits and install sheet piles at SKLR Playground
- Install sheet piles at the existing bridge K72
- Construction works for abutment at slip road S15
- Remedial works and application of joint sealant in box culverts
- Construction of Baseslab of Box Culvert B1
- DCS pipe laying works in Portion 1 & 6
- DCS valve chamber construction works in Portion 6
- Sewerage Works in Portion 4
- Drainage and Sewerage works in Portion 2 & 3

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

1.4 Summary of Inter-relationship with the environmental protection/ mitigation measures with the construction programme

1.4.1 The summary of inter-relationship with environmental protection/mitigation measures are presented as follow:

Major Environmental Impact	Control Measures		
Contract No. KL/2012/02:			
Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement. 		
Contract No. KL/2012/03:			
Dust, Water Quality, Waste Management (Construction of superstructure of Pumping Station PS2 and NPS)	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; and On-site waste sorting and implementation of trip ticket system. 		
Dust, Noise (Backfilling between sewerage manholes 1K1_1 and FMH10_340 and construction of manhole FMH10_370a at L6)	Use of quiet plant and well-maintained construction plant; and Properly cover the stockpiles;		
Noise, Waste Management (Installation of precast unit and construction of in-situ portions of Box Culvert B6; Construction of jacking pits nos. 1 and 2; Installation of gas pipe at pit no. 10; Construction of washout chamber at pit no. 11)	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. Good management and control on construction waste reduction 		
Noise (Construction of sewerage manhole FMH 10 at Bailey Street; Widening works of Sung Wong Toi Road.) Noise, Water Quality (Pipe laying from manhole SMH2204 to Box Culvert B6; Laying of rising mains from PS2 to	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. Use of quiet plant and well-maintained construction plant; and Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall. 		
chainage CHA-18; Pipe laying from stormwater manholes SMH1962 to SMH1963 and construction of			

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Major Environmental Impact	Control Measures
manholes SMH1953 and SMH1963 at L6; Installation of DCS)	
Contract No. KL/2014/01:	
Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide mitigation measure to temporary use of chemicals; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.
Contract No. KL/2014/03:	
Air Quality Impact, Construction Noise Impact, Water Quality Impact, Chemical and Waste Management, Landscape and Visual Impact	 Sufficient watering of the works site with the active dust emitting activities; Limitation of the speed for vehicles on unpaved site roads; Properly cover or enclosure of the stockpiles and dusty materials; Good site practices on loading dusty materials; Providing sufficient vehicles washing facilities at every vehicle exit point; Good maintenance to the plant and equipment; Use of quieter plant and Quality Powered Mechanical Equipment (QPME); Use of acoustic fabric and noise barrier; Using the approved Non-road Mobile Machineries (NRMMs); Proper storage and handling of chemical; Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge; Onsite waste sorting and implementation of trip ticket system; Training of the site personnel in proper waste management and chemical waste handling procedures; Proper storage of the construction materials; Erection of decorative screen hoarding; Strictly following the Environmental Permits and Licenses; Provide sufficient mitigation measures as recommended in Approved EIA Reports
Contract No. KL/2015/02:	
Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier; Well maintain the drainage system to prevent the spillage of

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Major Environmental Impact	Control Measures	
	wastewater during heavy rainfall; • Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.	

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

1.5 Summary Status of Environmental Licences, Notifications and Permits

1.5.1 A summary of the relevant environmental licenses, permits and/or notifications on environmental protection for this EP and relevant Contract are presented in **Table 1.1**.

Table 1.1 Relevant Environmental Licenses, Permits and/or Notifications

	Licenses, Permits and/o	or Nothication	15		
Environmental License / Permit / Notification	Reference Number	Valid From	Valid Till		
Contract No. KL/2012/02:					
Environmental Permit	EP-337/2009	23/04/2009	N/A		
Effluent Discharge License	WT00016873-2013	-	31/08/2018		
Effluent Discharge License	WT00016723-2013	-	31/08/2018		
Registration of Chemical Waste Producer	5213-286-K3022-04	-	N/A		
Construction Noise Permit	GW-RE0198-18	27/03/2018	23/06/2018		
Contract No. KL/2012/03:					
Environmental Permit	EP-337/2009	23/04/2009	N/A		
	EP-344/2009	23/04/2009	N/A		
Effluent Discharge License	WT00020971-2015	22/04/2015	21/04/2020		
Registration of Chemical Waste Producer	5213-286-K2958-05	-	N/A		
Contract No. KL/2014/01:					
Environmental Permit	EP-337/2009	23/04/2009	N/A		
Livioninental Fermit	EP-445/2013/A	13/08/2009	N/A		
Effluent Discharge License	WT00023634-2016	-	31/03/2021		
Registration of Chemical Waste Producer	5213-247-C4004-01	-	N/A		
Construction Noise Permit	GW-RE0182-18	22/03/2018	17/09/2018		
Contract No. KL/2014/03:					
	EP-337/2009	23/04/2009	N/A		
Environmental Permit	EP-339/2009/A	18/06/2009	N/A		
	EP-451/2013	19/09/2013	N/A		
Notification pursuant to Air Pollution (Construction Dust) Regulation	395601	16/11/2015	N/A		
Billing Account for Waste Disposal	A/C No.: 7023814	30/11/2015	N/A		
Billing Account for Waste Disposal	A/C No.: 7027469	25/08/2017	18/11/2017		
(Vessel)	A/C No.: 7027469	22/11/2017	18/02/2018		
Construction Noise Permit	GW-RE0946-17	06/12/2017	05/06/2018		
Construction Noise Fermit	GW-RE0006-18	12/01/2018	11/07/2018		
Wastewater Discharge License	WT00023125-2015	06/01/2016	31/01/2021		
Chemical Waste Producer License	5213-247-C1232-12	23/11/2015	N/A		
Contract No. KL/2015/02:					
Environmental Permit	EP-337/2009	23/04/2009	N/A		
Wastewater Discharge License	WT00027495-2017	28/03/2017	31/03/2022		
Billing Account for Waste Disposal	A/C No.: 7026164	20/10/2016	N/A		
Registration of Chemical Waste Producer	WPN5213-229-P3271-01	14/08/2017	N/A		
Construction Noise Permit	GW-RE1011-17	28/12/2017	27/06/2018		

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel :+852 2450 8233
Fax :+852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

2. ENVIRONMENTAL MONITORING AND AUDIT

2.1 Results and Observations

Air Quality

- 2.1.1 The schedule of air quality monitoring in reporting month is provided in the appendices of the corresponding Monthly EM&A.
- 2.1.2 The weather conditions during the monitoring are provided in the appendices of the corresponding Monthly EM&A.
- 2.1.3 The monitoring data of 24-hr TSP and 1 hour TSP are summarized in **Table 2.1**. Detailed monitoring data are presented in the appendices of the corresponding Monthly EM&A.

Table 2.1 Summary of 24-hr and 1 hour TSP Monitoring Results

Parameter	Monitoring Station	Average (µg/m³)	Range (µg/ m³)	Action Level (µg/ m³)	Limit Level (µg/ m³)
Contract No.	KL/2012/02:				
1-hr TSP	AM1(C)	106.4	18.9 – 231.4	342	500
1-111 131	AM2	221.0	164.6 – 297.0	346	300
24-hr TSP	AM1(C)	55.4	39.8 – 75.8	159	260
24-111 131	AM2(A)	49.0	33.8 – 74.4	157	200
Contract No.	KL/2012/03:				
	AM2	207.0	140.6 – 288.3	346	
4 h. TCD	AM3(A)	180.1	113.7 – 265.5	351	F00
1-hr TSP	AM4(C)	267.8	190.6 – 326.8	371	500
	AM5	203.6	153.3 – 231.6	345	
	AM2(A)	60.0	25.4 – 114.2	157	
24-hr TSP	AM3(B)	49.4	26.5 – 69.7	187	260
24-111 135	AM4(C)	34.4	23.0 - 42.0	187	200
	AM5	24.1	17.0 – 36.6	156	
Contract No.	KL/2014/01:				
NA (No air qu	ality monitoring is red	quired for the Proje	ct)		
Contract No.	KL/2014/03:				
	KTD1a	No complaint of air quality was received. Therefore,			
1-hr TSP	KTD2a				
	KER1b	no impad	ct 1-hour TSP mo	nitoring was cond	auciea.
	KTD1a	32	19 - 57	177	
24-hr TSP	KTD2a	46	21 - 72	157	260
	KER1b	54	29 - 98	172	
Contract No. KL/2015/02:					
1-hr TSP	AM2	212.4	168.1 – 268.3	346	500
24-hr TSP	AM2(A)	49	33.8 – 74.4	157	260

- 2.1.4 No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- 2.1.5 No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

- 2.1.6 The monitoring data of 24-hr TSP was compared with the EIA predictions are presented in the appendices of the corresponding Monthly EM&A.
- 2.1.7 The Event and Action Plan for air quality is given in the appendices of the corresponding Monthly EM&A.

Noise

- 2.1.8 The schedule of noise monitoring in reporting month is provided in in the appendices of the corresponding Monthly EM&A.
- 2.1.9 The noise monitoring data are summarized in **Table 2.2**. Detailed monitoring data are presented in the appendices of the corresponding Monthly EM&A.

Table 2.2 Summary of Noise Impact Monitoring Results

Monitoring Stations	Construction Noise Level Leq _(30min) dB(A) (Range)	Action Level	Limit Level dB (A)
Contract No. KL/2012/02:			
M3	64.6 – 69.5		70*
M4	76.1 – 76.2 [#]		70*
M9	58.3 – 70.9		75
Contract No. KL/2012/03:			
M6(A)	52.4 - 64.6		70*
M7	59.6 – 67.2		70*
M8	58.4 – 67.0		70*
M9	59.0 – 70.1	When one	75
Contract No. KL/2014/01:	documented complaint is received		
		NIA	
(No Construction noise me		NA	
Contract No. KL/2014/03:			
KTD1a	63 - 74		75
KTD2a	58 - 68		75
KER1b	62 - 68		75
Contract No. KL/2015/02:			
M3	62.3 – 69.5		70*
M4	76.1 – 76.5 [#]		70*
M5(C)	65.1 <i>–</i> 70.2 [#]		75

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

- 2.1.10 The noise monitoring data was compared with the EIA predictions are presented in the appendices of the corresponding Monthly EM&A.
- 2.1.11 No Action / Limit Level exceedance was recorded for noise monitoring in the reporting month.
- 2.1.12 The Event and Action Plan for noise is given in in the appendices of the corresponding Monthly EM&A.

^{(&}lt;sup>#</sup>) Measured noise level ≤ background / baseline noise level, detailed data refer to the corresponding Monthly EM&A report.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Landscape and Visual

2.1.13 Site audits were carried out on a weekly basis to monitor and audit the landscape and visual mitigation measures within the site boundaries of this Project. Detailed of observations are presented in the appendices of the corresponding Monthly EM&A.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

3. SITE INSPECTION

3.1 Site Inspection

3.1.1 Site inspections were carried out weekly to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. The site inspection of each Contract are summarized as follow:

Contract No. KL/2012/02:

Site audits were conducted on 2, 9, 16, 21 and 30 May 2018 in the reporting month. IEC site inspection was conducted on 16 May 2018.

Contract No. KL/2012/03:

Site audits were conducted on 4, 11, 16, 25 May 2018 in the reporting month. IEC site inspection was conducted on 16 May 2018.

Contract No. KL/2014/01:

Site audits were conducted by representatives of the Contractor, Supervising Officer and ET on 2, 9, 16, 23 and 30 May 2018 in the reporting month. IEC joint site inspection was conducted on 30 May 2018.

Contract No. KL/2014/03:

In the reporting month, five site inspections were carried out on 3, 10, 16, 24 and 31 May 2018. Two of them, held on 10 and 16 May 2018 were the joint inspections with the IEC, ER, the Contractor and the FT

Contract No. KL/2015/02:

Site audits were conducted on 9, 15, 21 and 28 May 2018 in the reporting month. A joint site audit with the representative of IEC, ER, the Contractor and the ET was conducted on 9 May 2018.

3.1.2 Detailed of observation, recommendation of site inspections and summary of the mitigation measures implementation schedule is provided in the appendices of the corresponding Monthly EM&A.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

4. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

4.1 Complaints, Notification of Summons and Prosecution

4.1.1 The summary of complaints, notification of summons and prosecution in the reporting month is shown as **Table 4.1**.

Table 4.1 Summary of Complaints, Notification of Summons and Prosecution

Event	No. of Event This Month	Remark
Contract No. KL/2012/02:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA
Contract No. KL/2012/03:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA
Contract No. KL/2014/01:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA
Contract No. KL/2014/03:		
Complaint received	1	NA
Notifications of any summons & prosecutions received	0	NA
Contract No. KL/2015/02:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA

- 4.1.2 No notification of summons or prosecution was received and one complaint received for Contract No. KL/2014/03 in this reporting month.
- 4.1.3 Detailed records are presented in the appendices of the corresponding Monthly EM&A.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

5. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

5.1 Implementation Status

5.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and the EM&A Manuals. The implementation status of the mitigation measures during the reporting month are presented in the appendices of the corresponding Monthly EM&A.

5.2 Waste Management

5.2.1 The amount of wastes generated of this Project during the reporting month is shown in the appendices of the corresponding Monthly EM&A.

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel: +852 2450 8233
Fax: +852 2450 6138
Fax: +852 2450 6138
Fe-mail: matlab@fugro.com
Website: www.fugro.com

6. FUTURE KEY ISSUES

6.1 Construction Programme for the Next Two Months

6.1.1 The major site activities undertaken for the coming two months are summarized in follow:

Contract No. KL/2012/02:

- · Multi-part cover installation
- · Fencing installation
- · Defect rectification
- CCTV reinspection
- · Modification works for Lift system

Contract No. KL/2012/03:

- Daily Cleaning;
- Finishing works, E&M work and Access Road Construction in PS2;
- · Site Clearance works in DCS;
- · Road widening works and Pavement Construction at Sung Wong Toi Road;
- UU laying works, Road works and water main connection in Road D2;
- Finishing works and E&M works and Access Road Construction in Portion 4 (NPS & Sewerage); and
- Removal of excavated materials in Portion 6.

Contract No. KL/2014/01:

- TTA implementation, junction improvement works at Shing Fung Road, Wang Chiu Road / Sheung Yee Road and Wang Chiu Road / Kai Cheung Road;
- · ELS installation and construction of box culvert and underpass;
- Construction of utilities trough at Kai Tak Bridge;
- Construction of pile caps, noise barrier footings, outfalls, deck structure and columns;
- Laying of sewer, drainage and pavement.

Contract No. KL/2014/03:

- Installation of sheet pile for drainage works;
- Excavation and laying of drainage pipe and manhole;
- Construction of road base and road pavement:
- · Seawall modification works:
- · Construction of tunnel box structure;
- · D-wall construction works;
- Construction of socketed H-Pile;
- Pumping test; and
- Excavation and ELS construction.

Contract No. KL/2015/02:

- Excavation and Concreting works at Subway SW6 within Kai Tak Site
- Carry out grouting works and divert existing UU at carriageway of PERE
- Carry out trial pits and grouting works at SKLR Playground
- Excavate with ELS works and trim pile heads at the existing bridge K72
- Remedial works and application of joint sealant in box culverts
- Construction of platform under access manhole
- Construction of the connection between existing box culvert and B5
- Preparation works for temporary flow diversion at upstream, i.e. B6 connection.
- DCS pipe laying works in Portion 1 & 6
- DCS valve chamber construction works in Portion 1 & 6
- · Watermains laying works in road L7
- Sewerage works in Portion 4

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

- · Watermains laying works in Portion 4
- Drainage and Sewerage works in Portion 2 & 3

6.2 Key Issues for the Coming Month

6.2.1 The potential environmental impacts arising from the above construction activities and the control measures are shown in **Table 6.1**:

Table 6.1 Summary of Key Issues for the Coming Month and Control Measures

	Major Impact				
Major Impact Prediction	Control Measures				
Contract No. KL/2012/02:					
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 				
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 				
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary. 				
Contract No. KL/20	012/03 <u>:</u>				
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 				
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of site boundary bund such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 				
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary. 				
Contract No. KL/2014/01:					
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 				
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; 				

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Major Impact Prediction	Control Measures		
	andProvision of measures to prevent discharge into the stream.		
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary. 		
Contract No. KL/20			
Contract No. KL/2014/03: Sufficient watering of the works site with the active dust emitting and Limitation of the speed for vehicles on unpaved site roads; Properly cover or enclosure of the stockpiles and dusty materials; Good site practices on loading dusty materials; Providing sufficient vehicles washing facilities at every vehicle exit Good maintenance to the plant and equipment; Use of quieter plant and Quality Powered Mechanical Equipment (Use of acoustic fabric and noise barrier; Using the approved Non-road Mobile Machineries (NRMMs); Proper storage and handling of chemical; Appropriate desilting, oil interceptors or sedimentation devices prosite for treatment before discharge; Onsite waste sorting and implementation of trip ticket system; Training of the site personnel in proper waste management and chewaste handling procedures; Proper storage of the construction materials; Erection of decorative screen hoarding; Strictly following the Environmental Permits and Licenses; Provide sufficient mitigation measures as recommended in Approvential.			
Contract No. KL/20			
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 		
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 		
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary. 		

6.3 Monitoring Schedules for the Next Three Months

6.3.1 The tentative schedules for environmental monitoring in the coming three months are provided in in the appendices of the corresponding Monthly EM&A.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

7. CONCLUSIONS

- 7.1.1 No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- 7.1.2 No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.
- 7.1.3 No Action / Limit Level exceedance was recorded for noise monitoring in the reporting month.
- 7.1.4 No notification of summons or prosecution was received and one complaint received for Contract No. KL/2014/03 in this reporting month.
- 7.1.5 The potential environmental impacts arising from the coming two months of major construction activities and the control measures are shown in **Table 6.1**

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Appendix A

Monthly EM&A Report
For
Contract No. KL/2012/02
Kai Tak Development - Stage 3A Infrastructure at North Apron Area

Civil Engineering and Development Department

EP-337/2009 – New Distributor Roads Serving the Planned KTD

Contract No. KL/2012/02 Kai Tak Development – Stage 3A Infrastructure at Former North Apron Area

Monthly EM&A Report

May 2018

(Version 1.0)

Approved By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: <u>info@cinotech.com.hk</u>

Ove Arup & Partners Hong Kong Limited

L5 Festival Walk

80 Tat Chee Avenue

Kowloon Tong

Hong Kong

Your reference:

Our reference:

HKCEDD04/50/105058

Date:

12 June 2018

Attention: Mr Gary Cheung / Mr Chris Lee

BY POST

Dear Sirs

Contract No.: KLN/2013/01

Independent Environmental Checker for "Contract No. KL/2012/02

Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area"

Verification of Monthly EM&A Report for May 2018

We refer to emails of 6 and 11 June2018 attaching a Monthly EM&A Report for May 2018 prepared by the ET.

We have no further comment and hereby verify the Report in accordance with Clause 3.3 of the Environmental Permit no. EP-337/2009.

Please do not hesitate to contact the undersigned or our Mr Adi Lee on 2618 2831 should you have any queries.

Yours faithfully

ANEWR CONSULTING LIMITED

James Choi

Independent Environmental Checker

CPSJ/LYMA/LHHN/WCKJ/csym

Email: info@anewr.com Web: www.anewr.com

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
	Introduction	1
	Environmental Monitoring Works	2
	Environmental Licenses and Permits	2
	Key Information in the Reporting Month	3
	Future Key Issues	3
1.	INTRODUCTION	4
	Background Project Organizations	
	Construction Activities undertaken during the Reporting Month	
	Summary of EM&A Requirements	
	•	
2.	AIR QUALITY	7
	Monitoring Requirements	7
	Monitoring Locations	7
	Monitoring Equipment	7
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedure	8
	Results and Observations	10
3.	NOISE	11
	Monitoring Requirements	11
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedures	12
	Maintenance and Calibration	
	Results and Observations.	
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	
₹.	COMPARISON OF EMICA RESULTS WITH EIATREDICTIONS	, 1 7
5.	LANDSCAPE AND VISUAL	16
	Monitoring Requirements	16
	Results and Observations	16
6.	ENVIRONMENTAL AUDIT	17
	Site Audits	17
	Review of Environmental Monitoring Procedures	
	Status of Environmental Licensing and Permitting	
	Status of Waste Management	
	Implementation Status of Environmental Mitigation Measures	
	Summary of Mitigation Measures Implemented	
	Implementation Status of Event Action Plans	
	Summary of Complaint, Warning, Notification of any Summons and Successful	
	Prosecution	20
7.	FUTURE KEY ISSUES	21
	Key Issues for the Coming Month	
	Monitoring Schedule for the Next Month	
	1.101111011115 Selledule 101 tile 11eAt 1.1011til	

8.	CONCLUSIONS AND RECOMMENDATIONS	22
	Conclusions	22
	Recommendations	22

LIST OF TABLES

Table I	Air Quality and Noise Monitoring Stations for this Project
Table II	Non-compliance Recorded for the Project in the Reporting Month
Table III	Summary Table for Key Information in the Reporting Month
Table 1.1	Key Project Contacts
Table 1.2	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 2.1	Locations for Air Quality Monitoring
Table 2.2	Air Quality Monitoring Equipment
Table 2.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 2.4	Summary Table of Air Quality Monitoring Results during the reporting month
Table 3.1	Noise Monitoring Stations
Table 3.2	Noise Monitoring Equipment
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 3.5	Summary Table of Noise Monitoring Results during the Reporting Month
Table 4.1	Comparison of 1-hr TSP data with EIA predictions
Table 4.2	Comparison of 24-hr TSP data with EIA predictions
Table 4.3	Comparison of Noise Monitoring Data with EIA predictions
Table 6.1	Summary of Environmental Licensing and Permit Status
Table 6.2	Observations and Recommendations of Site Inspections

LIST OF FIGURES

Figure 1	Site Layout Plan
Figure 2	Location of Air Quality Monitoring Stations under this Project
Figure 3	Location of Noise Monitoring Stations under this Project

LIST OF APPENDICES

A	Action and Limit Levels for Air Quality and Noise
В	Copies of Calibration Certificates
C	Weather Information
D	Environmental Monitoring Schedules
E	1-hour TSP Monitoring Results and Graphical Presentations
F	24-hour TSP Monitoring Results and Graphical Presentations
G	Noise Monitoring Results and Graphical Presentations
Н	Summary of Exceedance
I	Site Audit Summary
J	Event Action Plans
K	Environmental Mitigation Implementation Schedule (EMIS)
L	Summaries of Environmental Complaint, Warning, Summon and Notification
	of Successful Prosecution
M	Summary of Waste Generation and Disposal Records

EXECUTIVE SUMMARY

Introduction

- 1. This is the 56th Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2012/02 Kai Tak Development Stage 3A Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises one Schedule 2 designated project (DP), namely the new distributor road D1 serving the planned KTD. The DP is part of the designated project under Environmental Permit (EP) No.: EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") respectively. This report documents the findings of EM&A Works conducted from 1 31 May 2018.
- 2. With reference to the same principle of EIA report of the Project, air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in **Table I** (see **Figure 2 and 3** for their locations).

Table I – Air Quality and Noise Monitoring Stations for this Project

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations			
Air Quality Monitoring Stations					
AM1 - Rhythm Garden	No (1-hour & 24-hour TSP)	AM1(C) – Contractor Site Office (SCL 1107)			
AM2 – Lee Kau Yan Memorial School	Yes (1-hour TSP)	N/A			
AMIZ – Lee Rau Tan Memoriai School	No (24-hour TSP)	AM2(A) – Ng Wah Catholic Secondary School			
AM6 – Site 1B4 (Planned)	N/A				
Noise Monitoring Stations	Noise Monitoring Stations				
M3 – Cognitio College	Yes	N/A			
M4 – Lee Kau Yan Memorial School	Yes	N/A			
M9 – Tak Long Estate	Yes	N/A			
M10 – Site 1B4 (Planned)		N/A			

- 3. The major site activities undertaken in the reporting month included:
 - Laying paving block to remaining concorde footpath
 - Multi-part cover installation
 - Fencing installation
 - Defect rectification
 - Thrie beams installation
 - Water mains modification
 - Modification works for Lift system

Environmental Monitoring Works

- 4. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 5. Summary of the non-compliance in the reporting month for the Project is tabulated in **Table II**.

Table II Non-compliance Recorded for the Project in the Reporting Month

Parameter	No. of Project-rela	No. of Project-related Exceedance		
Farameter	Action Level	Limit Level	Action Taken	
1-hr TSP	0	0	N/A	
24-hr TSP	0	0	N/A	
Noise	0	0	N/A	

1-hour & 24-hour TSP Monitoring

- 6. 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 7. 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8. All construction noise monitoring was conducted as scheduled in the reporting month. No project-related Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, EP-337/2009 issued on 23 April 2009.
- 10. Registration of Chemical Waste Producer (License: 5213-286-K3022-04).
- 11. Water Discharge License (License No.: WT00016873-2013 and WT00016723-2013).
- 12. Construction Noise Permit (Permit No. GW-RE0069-18 and GW-RE0196-18)

Key Information in the Reporting Month

13. Summary of key information in the reporting month is tabulated in **Table III**.

Table III Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Remark
Event	Number	Nature	Action Taken	Status	Kemark
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues

- 14. The future key environmental issues in the coming month include:
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels; and
 - Review and implementation of temporary drainage system for the surface runoff.

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 3A Infrastructure at Former North Apron Area is one of the construction stages of KTD. It contains one Schedule 2 DP including new distributor roads serving the planned KTD. The general layout of the Project is shown in **Figure 1.**
- 1.2 One Environmental Permit (EP) No. EP-337/2009 was also issued on 23 April 2009 for new distributor roads serving the planned KTD to Civil Engineering and Development Department as the Permit Holder.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. An EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Cinotech Consultants Limited (Cinotech) was commissioned by Build King Construction Ltd. (the Contractor) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2012/02 Stage 3A Infrastructure at Former North Apron Area. The construction work under KL/2012/02 comprises the construction of part of the Road D1 under the EP (EP-337/2009).
- 1.5 Cinotech Consultants Limited was commissioned by Build King Construction Ltd. To undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The construction commencement of this Contract was on 24th October 2013 for Road D1 (part). This is the 56th Monthly EM&A report summarizing the EM&A works for the Project from 1 31 May 2018.

Project Organizations

- 1.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) Ove Arup & Partners (ARUP).
 - Environmental Team (ET) Cinotech Consultants Limited (CCL)
 - Independent Environmental Checker (IEC) ANewR Consulting Limited (ANewR)
 - Contractor Build King Construction Ltd. (Build King)

1.7 The key contacts of the Project are shown in **Table 1.1**.

Table 1.1 Key Project Contacts

Party	Role	Contact Person	Position	Phone No.	Fax No.	
CEDD	Project Proponent	Mr. Mike Cho	Senior Engineer	3106 2584	3579 4512	
ARUP	Engineer's	Mr. Gary Cheung	SRE	2210 6100	2210 6110	
AKUI	Representative	Ms. Edith Fung	RE	2210 0100	2210 0110	
Cinofech	Environmental Team	Dr. Priscilla Choy	Environmental Team Leader	2151 2089	3107 1388	
		Ms. Ivy Tam	Project Coordinator and Audit Team Leader	2151 2090		
ANewR	Independent Environmental Checker	Mr. Adi Lee	Independent Environmental Checker	2618 2836	3007 8648	
		Mr. Joe Yip	Project Manager	9209 5920		
Build King	Contractor	Mr. Cheung Wai Por	Construction Manager	9663 9908	2639 6208	

Construction Activities undertaken during the Reporting Month

- 1.8 The site activities undertaken in the reporting month included:
 - Laying paving block to remaining concorde footpath
 - Multi-part cover installation
 - Fencing installation
 - Defect rectification
 - Thrie-beams installation
 - Water mains modification
 - Modification works for Lift system

1.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 1.2**.

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Section 1.8	Noise, dust impact, water quality and waste generation	Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.

Summary of EM&A Requirements

- 1.10 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in **Section 6** of this report.
- 1.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project from 1-31 May 2018.

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the EP, 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix** A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Impact dust monitoring was conducted at the air quality monitoring stations, AM1(C) - Contractor Site Office (SCL 1107), AM2 - Lee Kau Yan Memorial School and AM2(A) - Ng Wah Catholic Secondary School in the reporting month. **Table 2.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 2.1 Locations for Air Quality Monitoring

Monitoring Stations	Locations	Monitoring Parameter	Location of Measurement
AM1(C)	Contractor Site Office (SCL 1107)	1-hour & 24-hour TSP	Ground Floor Area
AM2	Lee Kau Yan Memorial School	1-hour TSP	Rooftop (about 8/F) Area
AM2(A)	Ng Wah Catholic Secondary School	24-hour TSP	Rooftop (about 8/F) Area
#AM6	PA 15	1-hour & 24-hour TSP	Site 1B4 (Planned)

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

2.3 **Table 2.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix B**.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	TISCH TE-5025A	1
1-hour TSP Dust Meter	Hal Technology Hal-HPC300 & Hal-HPC301	5
HVS Sampler	TISCH TE-5170	2

Monitoring Parameters, Frequency and Duration

2.4 **Table 2.3** summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 2.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

Measuring Procedures

2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual.

Maintenance/Calibration

2.6 The following maintenance/calibration was required for the direct dust meters:

Check the meter at a 3-month interval and calibrate the meter at a 1-year interval throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.7 High volume (HVS) samplers (TISCH TE-5170) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required

for rooftop samples.

- A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
- No furnaces or incineration flues were nearby.
- Airflow around the sampler was unrestricted.
- The sampler was more than 20 meters from the drip line.
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For TSP sampling, fiberglass filters have a collection efficiency of > 99% for particles of 0.3μm diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.16 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good

- working condition.
- High volume samplers were calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 2.19 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.20 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21 The weather information for the reporting month is summarized in **Appendix C.**
- 2.22 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.23 The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the air quality monitoring.
- 2.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Station	Major Dust Source	
AM1(C) – Contractor Site Office (SCL 1107)	Road Traffic Dust Exposed site area and open stockpiles Site vehicle movement	
AM2 – Lee Kau Yan Memorial School	Road Traffic Dust Exposed site area and open stockpiles Excavation works Site vehicle movement	
AM2(A) – Ng Wah Catholic Secondary School		

2.25 The summary of 1-hour and 24-hour TSP air quality monitoring results during the reporting month are shown in **Appendix E** and **Appendix F** respectively.

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Four designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at three designated monitoring stations (M3, M4, M9). **Figure 3** shows the locations of these stations.

Table 3.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
M3	Cognitio College	Rooftop (about 6/F) Area
M4	Lee Kau Yan Memorial School	Rooftop (about 7/F) Area
M9	Tak Long Estate	Car Park Building (about 2/F)
#M10	Site 1B4 (Planned)	-

Remarks:

Monitoring Equipment

Table 3.2 summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2 Noise Monitoring Equipment

Equipment		Model and Make	Qty.
Integrating Sound Level Meter		SVANTEK 955, 957	2
		BSWA 801	3
Calibrator	•	SVANTEK SV30A	2

Monitoring Parameters, Frequency and Duration

3.4 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

[#] The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameter	Period	Frequency	Measurement
M3 M4 M9	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Façade

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting
time weighting
time measurement
: A
: Fast
: 30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 3.8 All construction noise monitoring was conducted as scheduled in the reporting month. No project-related Action/Limit Level exceedance was recorded.
- 3.9 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.4**.
- 3.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.

3.11 The major noise source identified at the designated noise monitoring stations are as follows:

Monitoring Stations	Locations	Major Noise Source
М3	Cognitio College	Traffic Noise Daily school activities
M4	Lee Kau Yan Memorial School	Traffic Noise Site vehicle movement Excavation works Piling works Daily school activities
M9	Tak Long Estate	Traffic Noise Construction works

Table 3.4 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)	
M3	76.3/78.6 ⁽¹⁾ (at 0700 – 1900 hrs	$70^{(2)(4)}$ (at $0700 - 1900$ hrs on	
1013	on normal weekdays) /	normal weekdays)	
M4	76.7 (at 0700 – 1900 hrs on normal weekdays)	70 ⁽⁴⁾ (at 0700 – 1900 hrs on normal weekdays)	
M9	59.9 (at 0700 – 1900 hrs on normal weekdays)	75 (at 0700 – 1900 hrs on normal weekdays)	

Note:

- (1) The baseline noise review report submitted under KLN/2013/16 for M3 was approved by EPD on 23rd August 2013. (Baseline Level was found to be 78.6 dB(A)at Rooftop of Cognitio College)
- (2) The background Noise Level was recorded during the Lunch Hour of Construction Site (i.e. 12:00-13:00) and to be used as the referencing value for compliance checking for Noise Action and Limit Level.
- (3) The noise level due to the construction work (CNL) was calculated by the following formula:

$$CNL = 10 \log (10^{MNL/10} - 10^{BNL/10})$$

MNL = Measured Noise Level, BNL = Baseline Noise Level

(4) Noise Limit Level is 65 dB(A) during school examination periods.

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 The EM&A data was compared with the EIA predictions as summarized in **Tables 4.1 to Table 4.3**.

Table 4.1 Comparison of 1-hr TSP data with EIA predictions

	Predicted 1	Measured 1-hr TSP conc.	
Station	Scenario1 (Mid Scenario2 (Mid 2009 to Mid 2013 to Late 2013), μg/m³ 2016), μg/m³		Reporting Month (May 18), µg/m³
AM1(C) – Contractor Site Office of SCL 1107	192	298	106.4
AM2 – Lee Kau Yan Memorial School	290	312	221.0

Table 4.2 Comparison of 24-hr TSP data with EIA predictions

	Predicted 24	Measured 24-hr TSP conc.	
Station	Scenario1 (Mid Scenario2 (Mid 2009 to Mid 2013 to Late 2013), μg/m³ 2016), μg/m³		Reporting Month (May 18), µg/m³
AM1(C) – Contractor Site Office of SCL 1107	121	156	55.4
AM2(A) – Ng Wah Catholic Secondary School	145	169	49.0

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (Leq (30min) dB(A))	Reporting Month (May 18), Leq (30min) dB(A)
M3 – Cognitio College	47 - 75	64.6 – 69.5
M4 – Lee Kau Yan Memorial School	47 – 74	76.1 – 76.2 ⁽¹⁾
M9 – Tak Long Estate	Not Predicted in EIA Report	58.3 – 70.9

Remark:

- (1) Since the baseline noise level was higher than those measured noise level during the construction period, the construction noise levels were considered as non-valid exceedance of Noise Limit Level.
- 4.2 The 1-hour TSP concentrations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3 The 24-hour TSP concentrations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.4 The noise data at M3 were within the range of construction noise level predicted in EIA Report.

- 4.5 The noise data at M4 were slightly above the predicted mitigated construction noise level in the EIA Report while did not exceed the referencing baseline level. This was due to the major noise source during monitoring, i.e. background road traffic noise at the monitoring station. As the baseline noise level was higher than those measured noise level during the construction period, the construction noise levels were considered as non-valid exceedance of Noise Limit Level.
- 4.6 Mitigated construction noise levels at M9 were not predicted in EIA Report.

5. LANDSCAPE AND VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix J** shall be performed.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 2, 9, 16, 21 and 30 May 2018 in the reporting month. IEC site inspection was conducted on 16 May 2018. No non-compliance was observed during the site audits.

Review of Environmental Monitoring Procedures

6.3 The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Status of Environmental Licensing and Permitting

6.4 All permits/licenses obtained for the Project are summarized in **Table 6.1**.

 Table 6.1
 Summary of Environmental Licensing and Permit Status

Permit No.	Valid Period		Details	Status
Permit No.	From	To	Details	Status
Environmental Pern	nit (EP)			
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	Valid
Effluent Discharge Lie	cense			
WT00016873-2013	-	31/08/18	Wastewater from the construction site	Valid
WT00016723-2013	-	31/08/18	including contaminated surface run-off	Valid
Registration of Chemi	cal Waste Pi	roducer		
5213-286-K3022-04	-	N/A	Chemical Waste Types: Spent lubricating oil, Soil contaminated with lubricating oil, Spent battery containing heavy metals, Surplus paint, Spend solvent, Spend alkali and acid	Valid
Construction Noise Pe	rmit (CNP)			
GW-RE0198-18	27/03/18	23/06/18	Construction Noise Permit for the use of powered mechanical equipment for carrying out construction work other than percussive pilling and performing prescribed construction work.	

Status of Waste Management

- 6.5 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.
- 6.6 The Contractor is advised to take photo and inspection records to ensure that all dump trucks have the skip fully covered before leaving the site.

Implementation Status of Environmental Mitigation Measures

6.7 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in **Table 6.2**.

 Table 6.2
 Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality	1		
Air Quality			
Noise			
Waste/ Chemical Management			
Landscape and Visual			
Permits/ Licenses			

Summary of Mitigation Measures Implemented

6.8 The monthly IEC audit was carried out on 16 May 2018, the observations were recorded and they are presented as follows:

Observation/Reminder:

No major environmental deficiency was observed.

Follow up of last observation:

- N/A
- 6.9 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.10 The Event Action Plans for air quality, noise and landscape and visual are presented in **Appendix J**.

1-hr TSP Monitoring

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.12 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.13 No project-related Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.14 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.15 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix L**.

7. FUTURE KEY ISSUES

- 7.1 Major site activities undertaken for the coming two months include:
 - Multi-part cover installation
 - Fencing installation
 - Defect rectification
 - CCTV reinspection
 - Modification works for Lift system

Key Issues for the Coming Month

- 7.2 Key environmental issues in the coming month include:
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels;
 - Review and implementation of temporary drainage system for the surface runoff;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site.
- 7.3 The tentative program of major site activities and the impact prediction and control measures for the coming two months, i.e. May to June 2018 are summarized as follows:

Construction Works	Major Impact Prediction	Control Measures		
As mentioned in Section 7.1	Air quality impact (dust) Water quality impact (surface run-off)	 (a) Frequent watering of haul road and unpaved/exposed areas; (b) Frequent watering or covering stockpiles with tarpaulin or similar means; and (c) Watering of any earth moving activities. (a) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; (b) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; (c) Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and (d) Provision of measures to prevent discharge into the 		
	Noise Impact	stream. (a) Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; (b) Controlling the number of plants use on site; (c) Regular maintenance of machines; and (d) Use of acoustic barriers if necessary.		

Monitoring Schedule for the Next Month

7.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.

1-hr TSP Monitoring

8.2 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hr TSP Monitoring

8.3 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

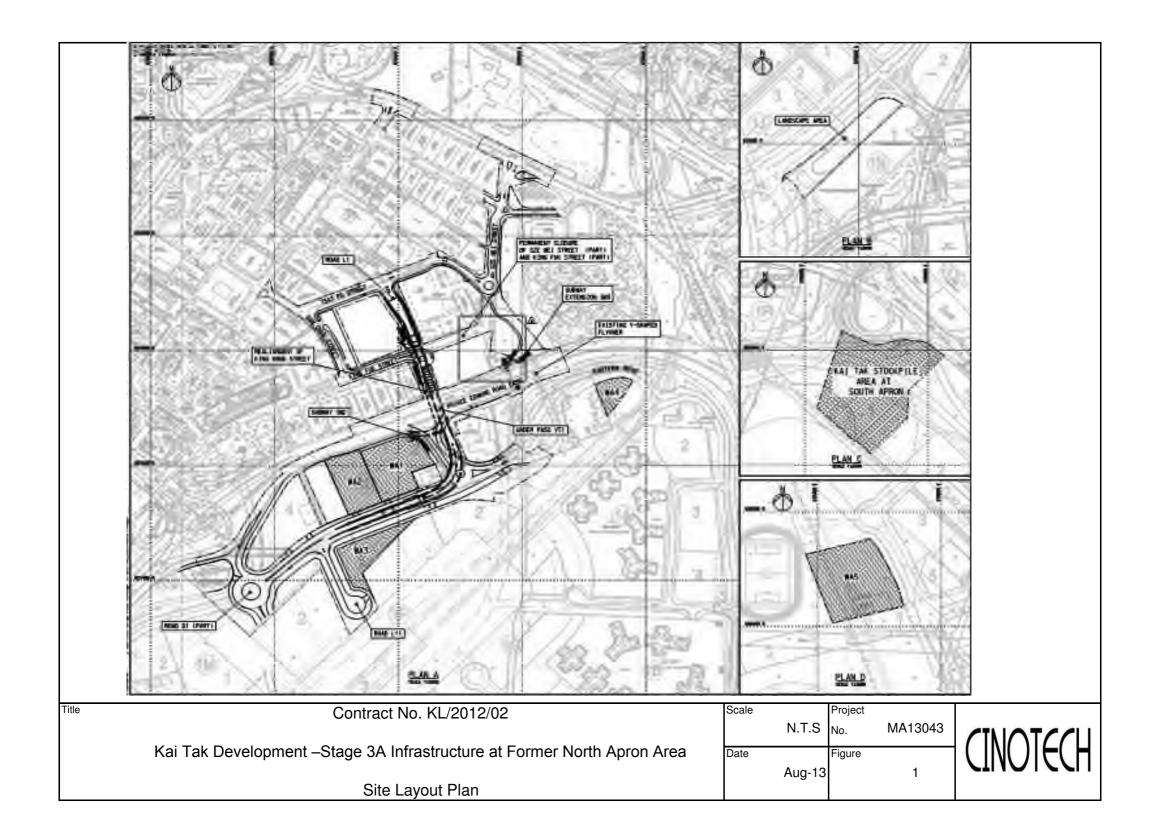
8.4 All construction noise monitoring was conducted as scheduled in the reporting month. No project-related Action/Limit Level exceedance was recorded.

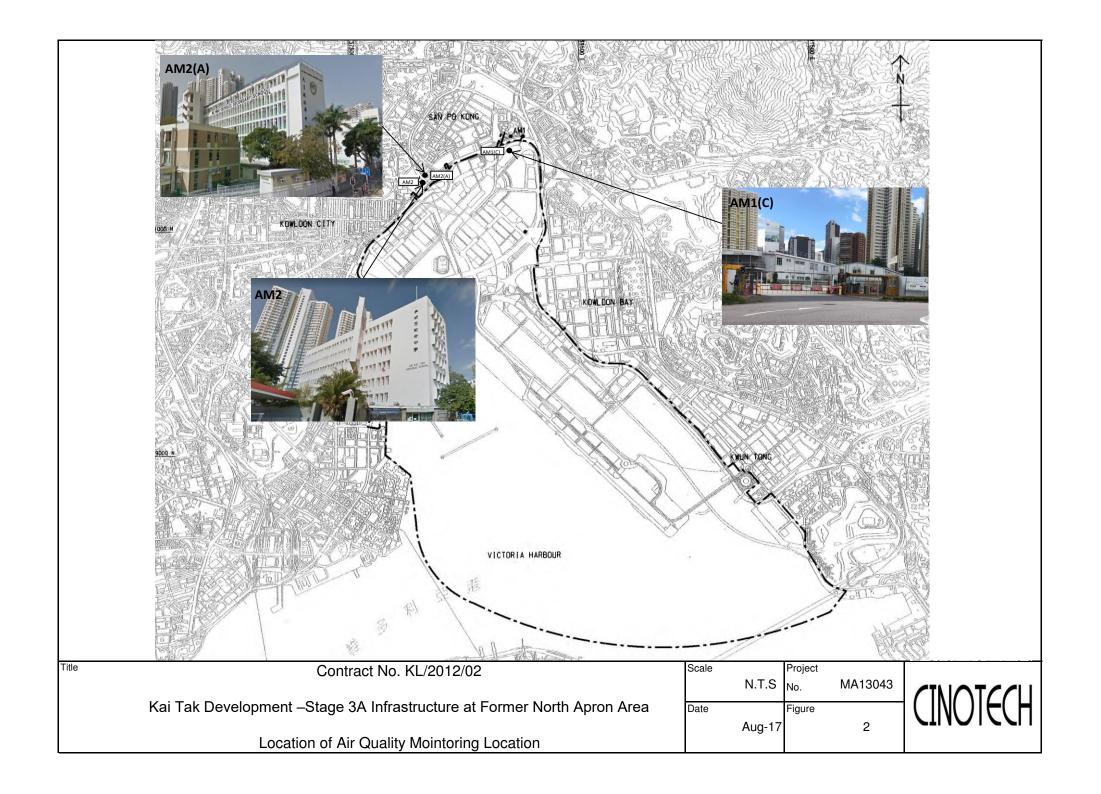
Landscape and visual

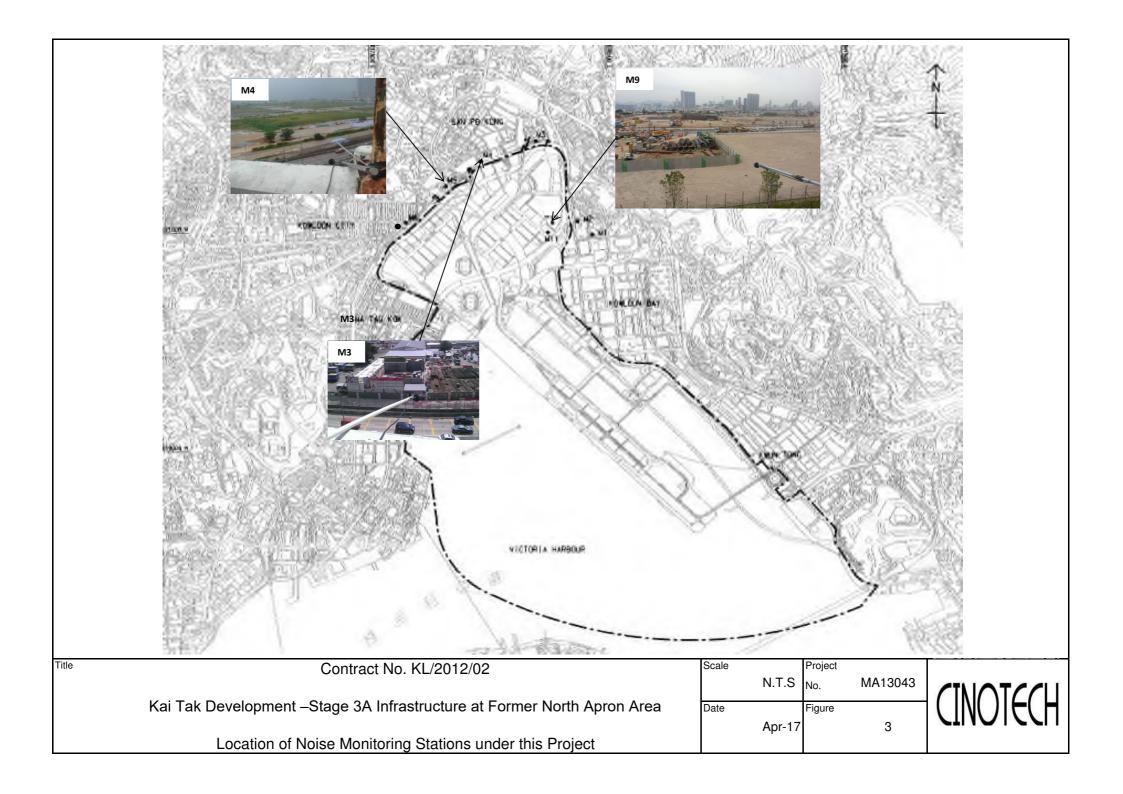
8.5 No non-compliance was recorded in the reporting month.

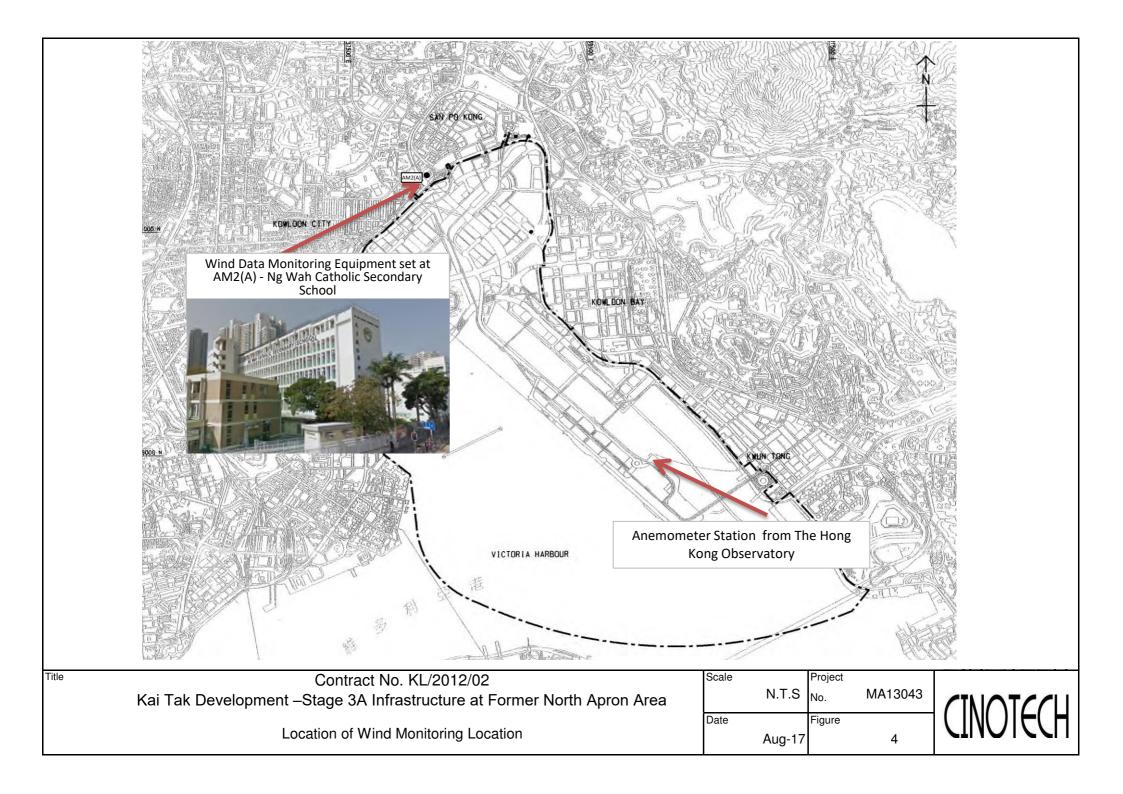
Complaint and Prosecution

8.6 No environmental complaint and environmental prosecution was received in the reporting month.


Recommendations


8.7 According to the environmental audit performed in the reporting month, the following recommendations were made:


Waste/Chemical Management


• To clear up and properly remove wastes to prevent accumulation, if any.

FIGURES

APPENDIX A
ACTION AND LIMIT LEVELS FOR AIR
QUALITY AND NOISE

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for 1-Hour TSP

Location Action Level, μg/m ³		Limit Level, μg/m³	
AM1(C)	342	500	
AM2	346	500	

Table A-2 Action and Limit Levels for 24-Hour TSP

Location Action Level, μg/m ³		Limit Level, μg/m³	
AM1(C)	159	260	
AM2(A)	157	260	

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: Date of Issue:

28791 2018-04-23

Date Received:

2018-04-20

Date Tested:

2018-04-20

Date Completed: Next Due Date:

2018-04-23 2018-06-22

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020408

- Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-01

Test Conditions:

Room Temperatre

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.199

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Ci

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28792

Date of Issue: 2018-04-23 Date Received: 2018-04-20

Date Tested: 2018-04-20
Date Completed: 2018-04-23

Next Due Date: 2018-06-22

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC300

Serial No.

: 3020409

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-26-02

Test Conditions:

Room Temperatre

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.183

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28787

Date of Issue: 2018-04-16

Date Received: 2018-04-13

Date Tested: 2018-04-13 Date Completed: 2018-04-16

Next Due Date: 2018-06-15

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701019

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-01

Test Conditions:

Room Temperature

: 17-22 degree Celsius

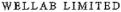
Relative Humidity

: 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:


Correlation Factor (CF)

1.168

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28787A

Date of Issue: 2018-04-16

Date Received: 2018-04-13

Date Tested: 2018-04-13

Date Completed: 2018-04-16

1 of 1

Next Due Date: 2018-06-15

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Page:

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701016

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-03

Test Conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.203

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 28788

 Date of Issue:
 2018-04-16

 Date Received:
 2018-04-13

 Date Tested:
 2018-04-13

 Date Completed:
 2018-04-16

Next Due Date:

2018-06-15

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701017

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-04

Test Conditions:

Room Temperature

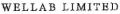
: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.


Results:

Correlation Factor (CF) 1.158

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/170915A
Date of Issue: 2017-09-18
Date Received: 2017-09-15

Date Tested: 2017-09-15 Date Completed: 2017-09-18

Next Due Date: 2018-09-17

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 955

Serial No.
Microphone No.

: 12563 : 34377

Equipment No.

: N-08-03

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 60%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WBLLAB LIMITED

Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T. Hong Kong.
Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/170825
Date of Issue: 2017-08-28
Date Received: 2017-08-25
Date Tested: 2017-08-25
Date Completed: 2017-08-28
Next Due Date: 2018-08-27

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21455

Microphone No.

: 43730

Equipment No.

: N-08-07

Test conditions:

Room Temperatre

: 23 degree Celsius

Relative Humidity

: 60 %

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB		
94	94.0		
114	114.0		

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716,

Technology Park, 18 On Lai Street,

Shatin, N.T., Hong Kong.

Tel: 2898 7388 Fax: 2898 7076

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/171215A
Date of Issue: 2017-12-18
Date Received: 2017-12-15
Date Tested: 2017-12-15
Date Completed: 2017-12-18
Next Due Date: 2018-12-17

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Sound & Vibration Analyser

Manufacturer

: BSWA

Model No.

: BSWA 801

Serial No.

: 35921

Equipment No.

: N-13-02

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170929
Date of Issue:	2017-09-30
Date Received:	2017-09-29
Date Tested:	2017-09-29
Date Completed:	2017-09-30
Next Due Date:	2018-09-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 60 %

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance	
At 94 dB SPL	94.0	94.0 ± 0.1 dB	
At 114 dB SPL	114.0	$114.0 \pm 0.1 \text{ dB}$	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170929B	
Date of Issue:	2017-09-30	
Date Received:	2017-09-29	
Date Tested:	2017-09-29	
Date Completed:	2017-09-30	
Next Due Date:	2018-09-29	

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24780

Equipment No.

: N-09-05

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

:60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA13043/53/0006

Project No. AM1(C) -Boundary of KTD/ Outside Contractor's site office of Contract SCL 1107 Date: 2-May-18 Next Due Date: 1-Jul-18 Operator: Equipment No.: A-01-53 Model No.: TE-5170 1536 Serial No.: Ambient Condition Temperature, Ta (K) 304.6 Pressure, Pa (mmHg) 760.3 Orifice Transfer Standard Information Serial No. 2896 0.0585 Intercept, be Slope, mc -0.00045 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 13-Feb-18 Ostd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 13-Feb-19 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), Qstd (CFM) ΔW (HVS), in. $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2} \text{ Y-}$ Point [ΔH x (Pa/760) x (298/Ta)]^{1/2} in. of water X - axis of water axis 16.3 3.99 68.25 10.1 3.14 2 13.8 3.68 62.80 8.7 2.92 10.0 3 3.13 53.46 6.4 2.50 4 7.4 2.69 45.99 4.7 2.14 5 4.2 2.03 34.65 2.6 1.60 By Linear Regression of Y on X Slope , mw = ____ Intercept, bw = 0.0111 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.08 Remarks: Conducted by: Ltt MAN 452 Signature: Date: Checked by: Wh Tang Signature: Date:

RECALIBRATION **DUE DATE:**

February 13, 2019

ertificate o

Calibration Certification Information

Cal. Date: February 13, 2018 Rootsmeter S/N: 438320

Ta: 293 Pa: 763.3

Operator: Jim Tisch Calibration Model #:

TE-5025A

Calibrator S/N: 2896

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4670	3.2	2.00
2	3	4	1	1.0380	6.4	4.00
3	5	6	1	0.9220	8.0	5.00
4	7	8	1	0.8840	8.8	5.50
5	9	10	1	0.7250	12.8	8.00

Data Tabulation							
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H(Ta/Pa)}$		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
1.0172	0.6934	1.4293	0.9958	0.6788	0.8762		
1.0129	0.9758	2.0213	0.9916	0.9553	1.2392		
1.0107	1.0962	2.2599	0.9895	1.0732	1.3854		
1.0097	1.1422	2.3702	0.9885	1.1182	1.4530		
1.0043	1.3853	2.8586	0.9832	1.3562	1.7524		
QSTD	m=	2.06726		m=	1.29448		
	b=	-0.00045	QA [b=	-0.00028		
	r=	0.99992	4	r=	0.99992		

	Calculatio	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime
	For subsequent flow ra	te calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
	r manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	solute temperature (°K)
	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No	MA13056/13/0005	
Station	AM2(A) - Ng Wal	h Catholic Seconda	•	_				
Date:	19-Mar-18	_	Next Due Date	: <u>18-May-18</u>	_	Operator:_	MH	
Equipment No.:	: <u>A-01-13</u>	_	Model No.	.: <u>TE-5170</u>	-	Serial No.: _	1352	
			Ambien	t Condition				
Temperature, Ta (K)		294.4	Pressure, P	Pressure, Pa (mmHg)		760.2		
C	1.57-	2896	rifice Transfer S	1			0.00045	
	Serial No. Last Calibration Date:		Slope, mc	0.0585	Intercept, bc -0.0004 $bc = [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$		-0.00045	
Next Calibi		13-Feb-18 13-Feb-19	Oetd = JAH v		к (Ра/760) x (298/Та)] ^{1/2} -bc} / mc			
TVCXI Canol	ation Bate.			QStt ~ {[Zii X (1 2/700) X (290/12)] -DC} / IIIC				
			Calibration of	of TSP Sampler				
Calibration		Or	fice					
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis	
1	12.8	3	.60	61.52	7.9		2.83	
2	10.9	3	3.32	56.77	6.8		2.62	
3	8.1	2	2.86		5.0	, , , , , , , , , , , , , , , , , , , ,	2.25	
4	5.6	2	2.38		3.4		1.86	
5	3.3	1	.83	31.24	2,3		1.53	
By Linear Regi Slope , mw =	ression of Y on X 0.0439			Intercept, bw =	0.1186	6		
Correlation coefficient* =		0.99	981					
*If Correlation (Coefficient < 0.990	0, check and reca	alibrate.	-				
			Set Point	Calculation				
From the TSP F	ield Calibration C	urve, take Qstd =	= 43 CFM					
From the Regres	ssion Equation, the	e "Y" value acco	rding to					
			O / 1 - 1 - 1439	U (D (E(D) (200m \1/2			
		mw x	$Qstd + bw = [\Delta V$	v x (Pa//60) x (A	298/1a)]			
Therefore, S	Set Point; W = (m	w x Qstd + bw) ²	x (760 / Pa) x (Ta/298)=	3.97			
							I	
Remarks:								
Conducted be-	10. 1m. 1m	Cianatura	/4.	ta		Data	13 7 7-10	
Charled by:	LEE MAN HER	Signature:		<u>// </u>		Date:	191210.18	
спескей бу:	WK. Tang	orginature:	/(\u00bb)	<i>10</i> ~		Date:	1 [[2 [70] 0	

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

CINOTECH

						File No	MA13056/13/0006
Station		h Catholic Seconda		- 16 7 1 10		0	* 4**
Date:	17-May-18	-	Next Due Date		-	_	MH
Equipment No.:	A-01-13	_	Model No.	: TE-5170	-	Serial No.:_	1352
			Ambien	t Condition			
Temperatu	ıre, Ta (K)	305.2	Pressure, Pa	a (mmHg)		759,3	
		0	rifice Transfer S	tandard Inforn	nation		
Serial No.		2896	Slope, mc	0.0585	Intercept		-0.00045
Last Calibr	ation Date:	13-Feb-18	=		$bc = [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$		
Next Calibr	ration Date:	13-Feb-19		$Qstd = \{ [\Delta H$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} /	mc
			Colibertian a	of TSP Sampler			
	Lines egin on reduktion redirektige, Diejford	Or	fice	x xor bamplet	y terminy mentra terminy mentra dia ben'ny tanàna mandri dia ben'ny tanàna mandri dia ben'ny tanàna mandri dia	HVS	7 4 44,457 (44.44)
Calibration Point	ΔH (orifice), in. of water		0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	12.6	3	.51	59.91	8.0		2.79
2	10.8		.25	55.46	6.8		2.58
3	8.0		.79	47.74	4.9		2.19
4	5,4	2	.30	39.22	3.3		1.79
5	3.4	1	.82	31.12	2.3		1.50
	ression of Y on X 0.0455 oefficient* =	- 0.99		Intercept, bw =	0.0433	3	·
*If Correlation C	Coefficient < 0.99	0, check and reca	alibrate.	•			
			Set Point	Calculation			
From the TSP Fi	eld Calibration C	urve, take Qstd =	= 43 CFM			-	
From the Regres	sion Equation, the	e "Y" value accor	rding to				
		mw x	Qstd + bw = [ΔW	x (Pa/760) x (2	298/Ta)] ^{1/2}		•
Therefore, Se	et Point; W=(m	w x Qstd + bw) ²	x (760 / Pa) x (Γa / 298) =	4.11		
<u></u>						·	
Remarks:							
. Committee							·
Conducted by:	LEB MAN HEZ	Signotura	h	· ·		Data	17/6/20
	W K Jang	Signature: _	Kw	où		Date: Date:	17/5/2018

RECALIBRATION **DUE DATE:**

February 13, 2019

Calibration Certification Information

Cal. Date: February 13, 2018 Rootsmeter 5/N: 438320

Calibrator S/N: 2896

Ta: 293 Pa: 763.3

Operator: Jim Tisch

mm Hg

Calibration Model #:

TE-5025A

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4670	3.2	2.00
2	3	4	1	1.0380	6.4	4.00
3	5	6	1	0.9220	8.0	5.00
4	7	8	1	0.8840	8.8	5.50
5	g	10	1	0.7250	12.8	8.00

	Data Tabulation						
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)}$		Qa	$\sqrt{\Delta H \left(\text{Ta/Pa} \right)}$		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
1.0172	0.6934	1.4293	0.9958	0.6788	0.8762		
1.0129	0.9758	2.0213	0.9916	0.9553	1.2392		
1.0107	1.0962	2.2599	0.9895	1.0732	1.3854		
1.0097	1.1422	2.3702	0.9885	1,1182	1.4530		
1.0043	1.3853	2.8586	0.9832	1.3562	1.7524		
	m=	2.06726		m=	1.29448		
QSTD[b=	-0.00045	QA [b=	-0.00028		
	r=	0.99992	1	r=	0.99992		

Calculations					
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime		
For subsequent flow rate calculations:					
$\mathbf{Qstd} = \frac{1}{m} \left(\left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b \right) \qquad \mathbf{Qa} = \frac{1}{m} \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$					

	Standard	Conditions
Tstd:	298.15	°K
Pstd:	760	mm Hg
	ŀ	(ey
ΔH: calibrato	r manomet	er reading (in H2O)
ΔP: rootsmet	er manom	eter reading (mm Hg)
Ta: actual ab	solute tem	perature (°K)
Pa: actual ba	rometric pi	ressure (mm Hg)
b: intercept		
m: slope		

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 May 2018	27.3	80	Trace
2 May 2018	27.9	75	-
3 May 2018	27.1	80	1.9
4 May 2018	23.8	82	0.8
5 May 2018	25.3	82	Trace
6 May 2018	27.6	80	1
7 May 2018	28	82	6.7
8 May 2018	25.2	91	28.4
9 May 2018	24.6	88	5.4
10 May 2018	23	89	8
11 May 2018	23.8	86	1
12 May 2018	26.5	82	-
13 May 2018	27.7	79	-
14 May 2018	28.6	77	-
15 May 2018	28.7	76	-
16 May 2018	28.6	74	-
17 May 2018	29.4	75	-
18 May 2018	29.8	74	-
19 May 2018	29.8	74	-

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 May 2018	30.1	72	-
21 May 2018	30.3	71	-
22 May 2018	30.4	69	-
23 May 2018	30.5	69	-
24 May 2018	30	73	-
25 May 2018	29.8	71	Trace
26 May 2018	30.7	72	0.9
27 May 2018	30	76	3.4
28 May 2018	30.3	72	-
29 May 2018	31.1	69	-
30 May 2018	31.2	69	-
31 May 2018	31.1	70	-

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

^{**} Trace means rainfall less than 0.05 mm

1-May-2018 00:00 1.8 1-May-2018 01:00 1.5 1-May-2018 02:00 1.8 1-May-2018 03:00 1.6 1-May-2018 04:00 1.4 1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	rection NE ENE ENE ENE N NE NE NNE NNE NE ESE
1-May-2018 01:00 1.5 1-May-2018 02:00 1.8 1-May-2018 03:00 1.6 1-May-2018 04:00 1.4 1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	ENE ENE N NE NNE NE
1-May-2018 02:00 1.8 1-May-2018 03:00 1.6 1-May-2018 04:00 1.4 1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	ENE N NE NNE NE
1-May-2018 03:00 1.6 1-May-2018 04:00 1.4 1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	ENE N NE NNE NE
1-May-2018 04:00 1.4 1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	N NE NNE NE
1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	NE NNE NE
1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	NNE NE
1-May-2018 07:00 1.6	NE
1-May-2018 08:00 2	ESE
1-May-2018 09:00 2.6	WSW
1-May-2018 10:00 2.8	W
1-May-2018 11:00 3.1	N
1-May-2018 12:00 3.3	NE
1-May-2018 13:00 3.4	SW
1-May-2018 14:00 3.2	NE
1-May-2018 15:00 2.8	N
1-May-2018 16:00 2.7	N
1-May-2018 17:00 2.2	NNE
1-May-2018 18:00 2.3	ENE
1-May-2018 19:00 1.9	NE
1-May-2018 20:00 2	SE
1-May-2018 21:00 2.6	N
1-May-2018 22:00 2.8	ENE
1-May-2018 23:00 2.4	E
2-May-2018 00:00 1.9	ENE
2-May-2018 01:00 1.7	ENE
2-May-2018 02:00 1.9	NNW
2-May-2018 03:00 1.6	SSE
2-May-2018 04:00 1.6	ENE
2-May-2018 05:00 1.4	ENE
2-May-2018 06:00 1.2	ENE
2-May-2018 07:00 1.3	N
2-May-2018 08:00 1.4	N
2-May-2018 09:00 1.4	ENE
2-May-2018 10:00 1.7	SSE
2-May-2018 11:00 1.9	NE
2-May-2018 12:00 2.3	SW

2-May-2018 2-May-2018	13:00	2.1	N
2-May-2018			1
,	14:00	2.4	NE
2-May-2018	15:00	2.3	ENE
2-May-2018	16:00	2	NE
2-May-2018	17:00	2	NNE
2-May-2018	18:00	1.6	NNW
2-May-2018	19:00	1.4	N
2-May-2018	20:00	1.1	N
2-May-2018	21:00	1.5	N
2-May-2018	22:00	1.3	NNE
2-May-2018	23:00	1.3	NE
3-May-2018	00:00	1.6	NNE
3-May-2018	01:00	2	N
3-May-2018	02:00	1.8	E
3-May-2018	03:00	1.6	SE
3-May-2018	04:00	1.3	ENE
3-May-2018	05:00	1.5	NE
3-May-2018	06:00	1.3	ENE
3-May-2018	07:00	1.8	ENE
3-May-2018	08:00	2	SE
3-May-2018	09:00	2.3	Е
3-May-2018	10:00	2.8	ENE
3-May-2018	11:00	3.1	Е
3-May-2018	12:00	3.2	WSW
3-May-2018	13:00	3.4	W
3-May-2018	14:00	3.3	NNE
3-May-2018	15:00	2.8	Е
3-May-2018	16:00	3.5	E
3-May-2018	17:00	2.9	W
3-May-2018	18:00	2.5	Е
3-May-2018	19:00	2.3	Е
3-May-2018	20:00	2.1	NNE
3-May-2018	21:00	2	N
3-May-2018	22:00	2.4	ENE
3-May-2018	23:00	1.7	E
4-May-2018	00:00	2	N
4-May-2018	01:00	2.4	ENE
4-May-2018	02:00	2.7	Е

4-May-2018 04:00 2.3 M 4-May-2018 05:00 2.7 M 4-May-2018 06:00 2.4 E 4-May-2018 07:00 2.7 E 4-May-2018 08:00 2.7 M 4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 S 4-May-2018 12:00 3.5 W	E NE
4-May-2018 05:00 2.7 N 4-May-2018 06:00 2.4 E 4-May-2018 07:00 2.7 E 4-May-2018 08:00 2.7 N 4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 S 4-May-2018 12:00 3.5 W	NE :NE :NE :NE :NE :NE :NE :NE :NE
4-May-2018 06:00 2.4 E 4-May-2018 07:00 2.7 E 4-May-2018 08:00 2.7 N 4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 3 4-May-2018 12:00 3.5 W	INE INE INE INE INE INE INE INE INE
4-May-2018 07:00 2.7 E 4-May-2018 08:00 2.7 N 4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 3 4-May-2018 12:00 3.5 W	INE INE INE INE SE INW
4-May-2018 08:00 2.7 M 4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 3 4-May-2018 12:00 3.5 W	NE INE INE SE 'NW
4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 \$ 4-May-2018 12:00 3.5 W	INE INE SE 'NW
4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 S 4-May-2018 12:00 3.5 W	INE SE 'NW
4-May-2018 11:00 3.4 5 4-May-2018 12:00 3.5 W	SE 'NW
4-May-2018 12:00 3.5 W	'NW
4 May 2019 12:00 2.5	SE ————
4-IVIAY-2016 13.00 3.5	
4-May-2018 14:00 3.4 S	SSE
4-May-2018 15:00 3.1 E	SE
4-May-2018 16:00 3.3 E	SE
4-May-2018 17:00 3.3	SE
4-May-2018 18:00 2.7	SE
4-May-2018 19:00 2.7 N	INE
4-May-2018 20:00 2.7	N
4-May-2018 21:00 2.5	NE
4-May-2018 22:00 2.7 N	INE
4-May-2018 23:00 2.6 N	INE
5-May-2018 00:00 2.6	NE
5-May-2018 01:00 2.2 N	INE
5-May-2018 02:00 2.1 E	SE
5-May-2018 03:00 1.9 S	SSE
5-May-2018 04:00 2.2	N
5-May-2018 05:00 2	NE
5-May-2018 06:00 2.5	NE
5-May-2018 07:00 1.5 N	INE
5-May-2018 08:00 2.4 N	NE
5-May-2018 09:00 3.2 N	NW
5-May-2018 10:00 3.3 N	NE
5-May-2018 11:00 2.7 E	:NE
5-May-2018 12:00 2.6	NE
5-May-2018 13:00 2.8	N
5-May-2018 14:00 2.4 E	:NE
5-May-2018 15:00 3.2 N	NE
5-May-2018 16:00 3.1	SE

II.	Mean Wind	Speed and Wind D	irection	
	5-May-2018	17:00	3.1	SE
	5-May-2018	18:00	3.2	S
	5-May-2018	19:00	2.2	N
	5-May-2018	20:00	2.3	ENE
	5-May-2018	21:00	2.7	NW
	5-May-2018	22:00	2.5	WSW
	5-May-2018	23:00	2.4	NE
	6-May-2018	00:00	2.3	W
	6-May-2018	01:00	2.2	WSW
	6-May-2018	02:00	2	NE
	6-May-2018	03:00	2.3	SSW
	6-May-2018	04:00	2	W
	6-May-2018	05:00	1.8	E
	6-May-2018	06:00	1.6	NNE
	6-May-2018	07:00	1.4	N
	6-May-2018	08:00	1.6	NNE
	6-May-2018	09:00	2	NE
	6-May-2018	10:00	2.5	NNE
	6-May-2018	11:00	2.8	NNE
	6-May-2018	12:00	3	NE
	6-May-2018	13:00	3.3	ESE
	6-May-2018	14:00	2.6	E
	6-May-2018	15:00	2.5	ENE
	6-May-2018	16:00	2.9	SSE
	6-May-2018	17:00	2.5	ESE
	6-May-2018	18:00	2.5	NE
	6-May-2018	19:00	2.1	WNW
	6-May-2018	20:00	1.9	WNW
	6-May-2018	21:00	1.6	SE
	6-May-2018	22:00	1.6	N
	6-May-2018	23:00	1.4	ESE
	7-May-2018	00:00	1.4	SSE
	7-May-2018	01:00	1.4	ESE
	7-May-2018	02:00	1.3	NE
	7-May-2018	03:00	1.2	ESE
	7-May-2018	04:00	1.2	NE
	7-May-2018	05:00	1.1	SE
	7-May-2018	06:00	0.9	ENE

II. Mean Win	d Speed and Wind D	Pirection	
7-May-2018	07:00	0.8	SSE
7-May-2018	08:00	1	SSE
7-May-2018	09:00	1.5	ENE
7-May-2018	10:00	2	N
7-May-2018	11:00	2.3	NE
7-May-2018	12:00	2.7	WNW
7-May-2018	13:00	2.3	WNW
7-May-2018	14:00	2.3	SW
7-May-2018	15:00	2.5	W
7-May-2018	16:00	2.3	SE
7-May-2018	17:00	2.1	SSE
7-May-2018	18:00	1.6	SSW
7-May-2018	19:00	1.6	NE
7-May-2018	20:00	1.5	NNE
7-May-2018	21:00	1.6	WNW
7-May-2018	22:00	1.4	W
7-May-2018	23:00	1.1	ENE
8-May-2018	00:00	1.2	ESE
8-May-2018	01:00	1.5	SSW
8-May-2018	02:00	1.6	S
8-May-2018	03:00	1.4	S
8-May-2018	04:00	1.1	W
8-May-2018	05:00	1.3	SE
8-May-2018	06:00	1.3	SSE
8-May-2018	07:00	1.4	WSW
8-May-2018	08:00	1.6	ESE
8-May-2018	09:00	2.2	NE
8-May-2018	10:00	2.3	SE
8-May-2018	11:00	2.4	WSW
8-May-2018	12:00	2.7	WNW
8-May-2018	13:00	2.8	SW
8-May-2018	14:00	3	W
8-May-2018	15:00	3.3	WNW
8-May-2018	16:00	2.3	WSW
8-May-2018	17:00	2.2	S
8-May-2018	18:00	2.2	SW
8-May-2018	19:00	2	N
8-May-2018	20:00	1.8	NE

2.2 2.1 2 2.2 2.3 2 2.1 1.9	ENE SW SW ENE ESE NNE ESE NNE
2 2.2 2.3 2 2.1 1.9	SW ENE ESE NNE ESE
2.2 2.3 2 2.1 1.9	ENE ESE NNE ESE
2.3 2 2.1 1.9	ESE NNE ESE
2 2.1 1.9	NNE ESE
2.1	ESE
1.9	
	NNE
1.7	Î.
	ENE
1.4	ENE
1.5	WNW
1.9	WNW
2.2	NNW
2.5	NE
2.5	SSE
3	ESE
2.7	NNE
2	NNE
2.3	ENE
2.4	WSW
2.2	W
1.6	ENE
1.3	ESE
1.1	N
1	W
1	SW
1.1	S
1.3	WSW
1.3	ESE
1.1	SSE
0.9	W
0.9	NNE
1	E
0.8	ENE
1	SSE
1.1	NNE
1.5	WSW
2	ENE
	1.4 1.5 1.9 2.2 2.5 2.5 2.5 3 2.7 2 2.3 2.4 2.2 1.6 1.3 1.1 1 1 1 1 1 0.9 0.9 0.9 1 0.8 1 1.1

		Speed and wind D	11 0001011	
	10-May-2018	11:00	2.6	S
,	10-May-2018	12:00	2.7	NNE
	10-May-2018	13:00	2.6	NNE
	10-May-2018	14:00	2.4	ESE
	10-May-2018	15:00	2.4	S
	10-May-2018	16:00	2.5	NW
,	10-May-2018	17:00	2.5	N
	10-May-2018	18:00	1.8	NNE
	10-May-2018	19:00	1.2	NE
	10-May-2018	20:00	1.5	WNW
	10-May-2018	21:00	1.7	SE
	10-May-2018	22:00	1.3	SSE
	10-May-2018	23:00	1.3	SE
	11-May-2018	00:00	1.3	SE
	11-May-2018	01:00	1.4	NE
	11-May-2018	02:00	1.4	E
	11-May-2018	03:00	1.5	NE
	11-May-2018	04:00	1.4	NE
	11-May-2018	05:00	1.3	NE
	11-May-2018	06:00	1.3	Е
	11-May-2018	07:00	1.2	NE
	11-May-2018	08:00	1.3	NE
	11-May-2018	09:00	1.5	NE
	11-May-2018	10:00	2	ESE
	11-May-2018	11:00	2.5	WSW
	11-May-2018	12:00	2.7	NE
	11-May-2018	13:00	2.5	SSW
	11-May-2018	14:00	2.4	WSW
	11-May-2018	15:00	2.6	SW
	11-May-2018	16:00	2.1	SSW
	11-May-2018	17:00	2	WNW
	11-May-2018	18:00	1.6	ESE
	11-May-2018	19:00	1.5	ENE
	11-May-2018	20:00	1.4	ENE
	11-May-2018	21:00	1.3	Е
	11-May-2018	22:00	1.2	NE
	11-May-2018	23:00	1.2	ENE
	12-May-2018	00:00	1.1	ENE

II. Mean Wind	Speed and Wind D	irection	
12-May-2018	01:00	1.1	ENE
12-May-2018	02:00	0.9	NNE
12-May-2018	03:00	1	WNW
12-May-2018	04:00	1	NNE
12-May-2018	05:00	1.1	WNW
12-May-2018	06:00	0.9	NNE
12-May-2018	07:00	0.7	N
12-May-2018	08:00	1.1	NNE
12-May-2018	09:00	1.7	S
12-May-2018	10:00	2.2	SSW
12-May-2018	11:00	2.5	SSW
12-May-2018	12:00	2.9	ENE
12-May-2018	13:00	2.7	NNE
12-May-2018	14:00	2.9	NNE
12-May-2018	15:00	3	NE
12-May-2018	16:00	2.7	WNW
12-May-2018	17:00	2.7	W
12-May-2018	18:00	2.3	WSW
12-May-2018	19:00	2.6	NE
12-May-2018	20:00	2.4	NE
12-May-2018	21:00	2.1	NE
12-May-2018	22:00	2.1	SSW
12-May-2018	23:00	2.3	WSW
13-May-2018	00:00	1.9	SSW
13-May-2018	01:00	1.9	NE
13-May-2018	02:00	1.9	NNE
13-May-2018	03:00	1.9	W
13-May-2018	04:00	1.7	WNW
13-May-2018	05:00	1.6	WNW
13-May-2018	06:00	1.6	ENE
13-May-2018	07:00	1.5	NE
13-May-2018	08:00	1.5	SE
13-May-2018	09:00	2.1	SSE
13-May-2018	10:00	2.2	SSE
13-May-2018	11:00	2.6	SW
13-May-2018	12:00	3.1	SW
13-May-2018	13:00	2.9	SW
13-May-2018	14:00	3.1	SW

11.	Wican Willu	Speed and wind D	ii ection	
	13-May-2018	15:00	2.5	ENE
	13-May-2018	16:00	2.8	SW
	13-May-2018	17:00	2.5	NNE
	13-May-2018	18:00	2.2	SSW
	13-May-2018	19:00	1.8	SW
	13-May-2018	20:00	1.6	SW
	13-May-2018	21:00	1.6	WNW
	13-May-2018	22:00	1.3	W
	13-May-2018	23:00	1.3	SW
	14-May-2018	00:00	1.3	NNE
	14-May-2018	01:00	1.3	ESE
	14-May-2018	02:00	1.3	SSE
	14-May-2018	03:00	1.4	N
	14-May-2018	04:00	1.2	WSW
	14-May-2018	05:00	1.3	WSW
	14-May-2018	06:00	1.2	WSW
	14-May-2018	07:00	1.3	ESE
	14-May-2018	08:00	1.7	NE
	14-May-2018	09:00	2.2	NE
	14-May-2018	10:00	2.3	NNE
	14-May-2018	11:00	2.7	ENE
	14-May-2018	12:00	2.9	W
	14-May-2018	13:00	3	W
	14-May-2018	14:00	2.8	WNW
	14-May-2018	15:00	2.4	W
	14-May-2018	16:00	2.3	S
	14-May-2018	17:00	2.1	WNW
	14-May-2018	18:00	1.9	WNW
	14-May-2018	19:00	1.9	W
	14-May-2018	20:00	1.8	W
	14-May-2018	21:00	1.8	NW
	14-May-2018	22:00	1.7	WNW
	14-May-2018	23:00	1.5	WNW
	15-May-2018	00:00	1.7	WNW
	15-May-2018	01:00	1.4	W
	15-May-2018	02:00	1.6	W
	15-May-2018	03:00	1.6	WNW
	15-May-2018	04:00	1.8	NW

11.	Mean wind	Speed and Wind D	rection	
	15-May-2018	05:00	1.9	W
	15-May-2018	06:00	1.8	W
	15-May-2018	07:00	1.7	W
	15-May-2018	08:00	1.8	WNW
	15-May-2018	09:00	1.7	W
	15-May-2018	10:00	1.9	W
	15-May-2018	11:00	2	WSW
	15-May-2018	12:00	2	SW
	15-May-2018	13:00	2	SSW
	15-May-2018	14:00	2	W
	15-May-2018	15:00	2	SSW
	15-May-2018	16:00	2	W
	15-May-2018	17:00	1.7	WNW
	15-May-2018	18:00	1.5	W
	15-May-2018	19:00	1.3	WSW
	15-May-2018	20:00	1	SSW
	15-May-2018	21:00	1.1	WSW
	15-May-2018	22:00	1	WSW
	15-May-2018	23:00	1.1	W
	16-May-2018	00:00	1.2	W
	16-May-2018	01:00	1.4	WSW
	16-May-2018	02:00	1.4	WNW
	16-May-2018	03:00	1.7	NNE
	16-May-2018	04:00	1.7	SSW
	16-May-2018	05:00	1.7	WNW
	16-May-2018	06:00	1.2	W
	16-May-2018	07:00	1.7	WNW
	16-May-2018	08:00	1.8	WSW
	16-May-2018	09:00	2.4	WNW
	16-May-2018	10:00	2.6	NE
	16-May-2018	11:00	2.7	WSW
	16-May-2018	12:00	3	WSW
	16-May-2018	13:00	2.7	WNW
	16-May-2018	14:00	2.8	W
	16-May-2018	15:00	3	W
	16-May-2018	16:00	2.8	W
	16-May-2018	17:00	2.5	WSW
	16-May-2018	18:00	2.2	W

11.	Wicali Willu	Speed and wind D	пссион	
	16-May-2018	19:00	2.2	W
	16-May-2018	20:00	1.8	W
	16-May-2018	21:00	1.8	WSW
	16-May-2018	22:00	2	SW
	16-May-2018	23:00	1.9	N
	17-May-2018	00:00	1.7	N
	17-May-2018	01:00	1.9	NE
	17-May-2018	02:00	1.9	ESE
	17-May-2018	03:00	1.8	W
	17-May-2018	04:00	1.6	WNW
	17-May-2018	05:00	1.8	WNW
	17-May-2018	06:00	1.7	W
	17-May-2018	07:00	1.9	S
	17-May-2018	08:00	2.2	WNW
	17-May-2018	09:00	2.6	SW
	17-May-2018	10:00	3	WSW
	17-May-2018	11:00	2.7	W
	17-May-2018	12:00	2.9	WSW
	17-May-2018	13:00	2.9	SW
	17-May-2018	14:00	2.9	SW
	17-May-2018	15:00	3.2	SW
	17-May-2018	16:00	3.4	W
	17-May-2018	17:00	2.9	W
	17-May-2018	18:00	2.6	N
	17-May-2018	19:00	2.6	N
	17-May-2018	20:00	2.7	E
	17-May-2018	21:00	2.7	ENE
	17-May-2018	22:00	2.8	ENE
	17-May-2018	23:00	2.4	E
	18-May-2018	00:00	2.2	ENE
	18-May-2018	01:00	2.4	ENE
	18-May-2018	02:00	2.2	ENE
	18-May-2018	03:00	2	ENE
	18-May-2018	04:00	2.4	ENE
	18-May-2018	05:00	2.3	NNE
	18-May-2018	06:00	2.2	NNE
	18-May-2018	07:00	2.2	ENE
	18-May-2018	08:00	2.8	E

11.	Wicali Willu	Speed and wind D	ii cetton	
	18-May-2018	09:00	2.3	NNE
	18-May-2018	10:00	2.5	NE
	18-May-2018	11:00	2.7	NNE
	18-May-2018	12:00	2.8	NE
	18-May-2018	13:00	3	NE
	18-May-2018	14:00	3.4	NE
	18-May-2018	15:00	3.4	NE
	18-May-2018	16:00	3.2	W
	18-May-2018	17:00	2.8	W
	18-May-2018	18:00	2.2	WSW
	18-May-2018	19:00	1.9	WSW
	18-May-2018	20:00	1.7	WSW
	18-May-2018	21:00	1.8	W
	18-May-2018	22:00	1.7	W
	18-May-2018	23:00	2.1	W
	19-May-2018	00:00	2.3	W
	19-May-2018	01:00	2.3	WNW
	19-May-2018	02:00	1.9	W
	19-May-2018	03:00	1.7	WNW
	19-May-2018	04:00	1.9	NW
	19-May-2018	05:00	1.7	W
	19-May-2018	06:00	1.5	WNW
	19-May-2018	07:00	1.4	W
	19-May-2018	08:00	1.9	N
	19-May-2018	09:00	2.3	NE
	19-May-2018	10:00	2.5	N
	19-May-2018	11:00	2.9	ESE
	19-May-2018	12:00	3.2	ENE
	19-May-2018	13:00	3	NE
	19-May-2018	14:00	3.2	SSE
	19-May-2018	15:00	2.9	N
	19-May-2018	16:00	2.9	NNE
	19-May-2018	17:00	2.7	ENE
	19-May-2018	18:00	2.1	ENE
	19-May-2018	19:00	1.7	NE
	19-May-2018	20:00	1.1	WNW
	19-May-2018	21:00	0.8	WNW
	19-May-2018	22:00	1.3	N

		Speed and wind D	11 0001011	
1	9-May-2018	23:00	0.9	N
2	20-May-2018	00:00	0.9	NE
2	20-May-2018	01:00	1	E
2	20-May-2018	02:00	1	N
2	20-May-2018	03:00	0.8	ENE
2	20-May-2018	04:00	0.9	ESE
2	20-May-2018	05:00	1.1	ENE
2	20-May-2018	06:00	1	NE
2	20-May-2018	07:00	1.2	NE
2	20-May-2018	08:00	1.4	NE
2	20-May-2018	09:00	1.9	NE
2	20-May-2018	10:00	2.3	ENE
2	20-May-2018	11:00	2.5	NE
2	20-May-2018	12:00	2.5	NE
2	20-May-2018	13:00	2.6	NNE
2	20-May-2018	14:00	2.3	NE
2	20-May-2018	15:00	2.1	WNW
2	20-May-2018	16:00	2	W
2	20-May-2018	17:00	1.8	WSW
2	20-May-2018	18:00	1.8	WSW
2	20-May-2018	19:00	1.5	W
2	20-May-2018	20:00	1.4	SW
2	20-May-2018	21:00	1.4	WSW
2	20-May-2018	22:00	1.5	WSW
2	20-May-2018	23:00	1.4	WSW
2	21-May-2018	00:00	1.5	W
2	21-May-2018	01:00	1.4	WSW
2	21-May-2018	02:00	1.4	W
2	21-May-2018	03:00	1.5	W
2	21-May-2018	04:00	1.5	S
2	21-May-2018	05:00	1.5	N
2	21-May-2018	06:00	1.5	N
2	21-May-2018	07:00	1.2	W
2	21-May-2018	08:00	1.3	WSW
2	21-May-2018	09:00	1.5	W
2	21-May-2018	10:00	1.9	WSW
2	21-May-2018	11:00	2.1	W
2	21-May-2018	12:00	2.5	W

11.	Wican Winu	Speed and wind D	ii ection	
	21-May-2018	13:00	2.4	SSW
	21-May-2018	14:00	2.3	SSW
2	21-May-2018	15:00	2.3	SSW
2	21-May-2018	16:00	2.1	SSW
2	21-May-2018	17:00	2.1	SW
2	21-May-2018	18:00	1.7	SW
	21-May-2018	19:00	1.2	W
2	21-May-2018	20:00	1.1	WSW
2	21-May-2018	21:00	1.4	SW
2	21-May-2018	22:00	1	WSW
2	21-May-2018	23:00	1.2	WSW
	22-May-2018	00:00	1.4	WSW
2	22-May-2018	01:00	1.5	SW
2	22-May-2018	02:00	1.3	SW
	22-May-2018	03:00	1.1	SW
2	22-May-2018	04:00	1.2	SW
2	22-May-2018	05:00	1	SW
2	22-May-2018	06:00	0.7	WNW
	22-May-2018	07:00	0.8	NNE
2	22-May-2018	08:00	1	ENE
	22-May-2018	09:00	1.3	W
2	22-May-2018	10:00	1.5	S
2	22-May-2018	11:00	2	WNW
2	22-May-2018	12:00	2.1	W
2	22-May-2018	13:00	2.2	W
2	22-May-2018	14:00	2.4	W
	22-May-2018	15:00	2.4	NNE
2	22-May-2018	16:00	2	ENE
2	22-May-2018	17:00	2.1	ENE
2	22-May-2018	18:00	1.8	W
- :	22-May-2018	19:00	1.7	W
	22-May-2018	20:00	1.8	Е
- :	22-May-2018	21:00	1.6	S
	22-May-2018	22:00	1.6	W
	22-May-2018	23:00	2	W
:	23-May-2018	00:00	1.8	W
:	23-May-2018	01:00	1.5	W
;	23-May-2018	02:00	1.2	NNE

11.	Wican Wind	Speed and wind D	пссион	
	23-May-2018	03:00	1.3	W
	23-May-2018	04:00	1.4	W
	23-May-2018	05:00	1.6	W
	23-May-2018	06:00	1.9	SW
	23-May-2018	07:00	1.8	W
	23-May-2018	08:00	2.1	ENE
	23-May-2018	09:00	2.3	SSW
	23-May-2018	10:00	3	SSW
	23-May-2018	11:00	3.3	SW
	23-May-2018	12:00	3.2	SW
	23-May-2018	13:00	3.4	W
	23-May-2018	14:00	3.5	W
	23-May-2018	15:00	3.1	SW
	23-May-2018	16:00	2.9	W
	23-May-2018	17:00	2.5	WNW
	23-May-2018	18:00	2.3	SSW
	23-May-2018	19:00	2	SW
	23-May-2018	20:00	1.9	W
	23-May-2018	21:00	1.8	WSW
	23-May-2018	22:00	2	WSW
	23-May-2018	23:00	2	W
	24-May-2018	00:00	1.9	W
	24-May-2018	01:00	1.8	W
	24-May-2018	02:00	2	WSW
	24-May-2018	03:00	1.7	S
	24-May-2018	04:00	2	S
	24-May-2018	05:00	2.1	W
	24-May-2018	06:00	1.9	ENE
	24-May-2018	07:00	1.7	WNW
	24-May-2018	08:00	1.9	W
	24-May-2018	09:00	2.4	WNW
	24-May-2018	10:00	3	WNW
	24-May-2018	11:00	3	WNW
	24-May-2018	12:00	3.3	WNW
	24-May-2018	13:00	3.3	WNW
	24-May-2018	14:00	3.4	WNW
	24-May-2018	15:00	3.3	WNW
	24-May-2018	16:00	3.1	SW

11.	TVICUIT VVIIIU	Speed and wind D	пссион	
	24-May-2018	17:00	3	SW
	24-May-2018	18:00	2.7	WNW
	24-May-2018	19:00	2.7	NW
	24-May-2018	20:00	2.1	W
	24-May-2018	21:00	1.9	W
	24-May-2018	22:00	2.1	WSW
	24-May-2018	23:00	1.8	SW
	25-May-2018	00:00	2.3	WNW
	25-May-2018	01:00	2.6	WNW
	25-May-2018	02:00	2.6	WNW
	25-May-2018	03:00	2.2	WSW
	25-May-2018	04:00	2.3	WSW
	25-May-2018	05:00	2.4	WSW
	25-May-2018	06:00	2.3	WSW
	25-May-2018	07:00	1.9	SW
	25-May-2018	08:00	2.3	W
	25-May-2018	09:00	2.8	W
	25-May-2018	10:00	2	W
	25-May-2018	11:00	3	W
	25-May-2018	12:00	2.9	SSW
	25-May-2018	13:00	2.9	SSW
	25-May-2018	14:00	2.2	WNW
	25-May-2018	15:00	2.3	W
	25-May-2018	16:00	2.7	WSW
	25-May-2018	17:00	2.3	WNW
	25-May-2018	18:00	1.7	WNW
	25-May-2018	19:00	2.1	WNW
	25-May-2018	20:00	1.9	WNW
	25-May-2018	21:00	2	SSW
	25-May-2018	22:00	1.8	SW
	25-May-2018	23:00	1.9	W
	26-May-2018	00:00	1.7	WNW
	26-May-2018	01:00	1.7	SW
	26-May-2018	02:00	1.7	SW
	26-May-2018	03:00	1.6	WSW
	26-May-2018	04:00	1.5	WSW
	26-May-2018	05:00	1.3	WNW
	26-May-2018	06:00	1	WSW

11.	Wican Willa	Speed and wind D	пссион	
	26-May-2018	07:00	1.4	WNW
	26-May-2018	08:00	1.2	W
	26-May-2018	09:00	2	W
	26-May-2018	10:00	2	W
	26-May-2018	11:00	2.4	S
	26-May-2018	12:00	2.9	S
	26-May-2018	13:00	3.3	S
	26-May-2018	14:00	2.5	WNW
	26-May-2018	15:00	2.4	N
	26-May-2018	16:00	2.4	NNE
	26-May-2018	17:00	2.4	N
	26-May-2018	18:00	2.1	SW
	26-May-2018	19:00	1.9	W
	26-May-2018	20:00	1.5	WNW
	26-May-2018	21:00	1.7	N
	26-May-2018	22:00	1.6	N
	26-May-2018	23:00	1.6	N
	27-May-2018	00:00	1.6	W
	27-May-2018	01:00	1.5	WSW
	27-May-2018	02:00	1.5	SW
	27-May-2018	03:00	1.5	WSW
	27-May-2018	04:00	1.4	W
	27-May-2018	05:00	1.5	W
	27-May-2018	06:00	1.2	W
	27-May-2018	07:00	1.5	W
	27-May-2018	08:00	1.6	W
	27-May-2018	09:00	1.8	W
	27-May-2018	10:00	2	NNE
	27-May-2018	11:00	2.3	S
	27-May-2018	12:00	2.9	N
	27-May-2018	13:00	2.9	NE
	27-May-2018	14:00	2.8	SW
	27-May-2018	15:00	2.8	WNW
	27-May-2018	16:00	2.4	WNW
	27-May-2018	17:00	2.4	W
	27-May-2018	18:00	1.9	WNW
	27-May-2018	19:00	1.8	SSW
L	27-May-2018	20:00	1.7	WNW

II. Mean Wind	Speed and Wind D	irection	
27-May-2018	21:00	2.5	WNW
27-May-2018	22:00	1.2	WSW
27-May-2018	23:00	1.3	SW
28-May-2018	00:00	1.3	WNW
28-May-2018	01:00	1.3	NW
28-May-2018	02:00	1.5	SW
28-May-2018	03:00	1.5	SW
28-May-2018	04:00	1.3	SW
28-May-2018	05:00	1.1	SW
28-May-2018	06:00	1	ENE
28-May-2018	07:00	1.4	WSW
28-May-2018	08:00	1.8	WSW
28-May-2018	09:00	2.1	WSW
28-May-2018	10:00	2.4	WSW
28-May-2018	11:00	2.5	WSW
28-May-2018	12:00	2.9	WSW
28-May-2018	13:00	2.8	WNW
28-May-2018	14:00	2.6	WNW
28-May-2018	15:00	2.8	SSW
28-May-2018	16:00	2.3	SSW
28-May-2018	17:00	2.2	WNW
28-May-2018	18:00	1.9	WNW
28-May-2018	19:00	1.6	WNW
28-May-2018	20:00	1.4	WNW
28-May-2018	21:00	1.6	WNW
28-May-2018	22:00	1.4	WNW
28-May-2018	23:00	1.4	W
29-May-2018	00:00	1.6	WSW
29-May-2018	01:00	1.4	WSW
29-May-2018	02:00	1.3	WSW
29-May-2018	03:00	1.3	SW
29-May-2018	04:00	1.1	SW
29-May-2018	05:00	1.2	WSW
29-May-2018	06:00	1.2	WNW
29-May-2018	07:00	1.1	WNW
29-May-2018	08:00	1.5	W
29-May-2018	09:00	1.9	WNW
29-May-2018	10:00	2.6	WNW

11.	Tricuit Trillu	Speed and wind D	ii cetion	
	29-May-2018	11:00	2.8	WNW
	29-May-2018	12:00	2.8	NE
	29-May-2018	13:00	3.1	NNE
	29-May-2018	14:00	2.7	NNE
	29-May-2018	15:00	2.6	NNE
	29-May-2018	16:00	2.7	NE
	29-May-2018	17:00	2.3	N
	29-May-2018	18:00	2.1	NE
	29-May-2018	19:00	1.6	NE
	29-May-2018	20:00	1.6	ENE
	29-May-2018	21:00	1.4	ENE
	29-May-2018	22:00	1.3	SSE
	29-May-2018	23:00	1.2	ENE
	30-May-2018	00:00	1.2	NE
	30-May-2018	01:00	1.3	ENE
	30-May-2018	02:00	1	SSE
	30-May-2018	03:00	1.1	SSE
	30-May-2018	04:00	1.7	ESE
	30-May-2018	05:00	1.7	NE
	30-May-2018	06:00	1.6	NE
	30-May-2018	07:00	1.5	ENE
	30-May-2018	08:00	1.9	ENE
	30-May-2018	09:00	2.1	SE
	30-May-2018	10:00	2.3	SSE
	30-May-2018	11:00	2.3	NNE
	30-May-2018	12:00	2.8	N
	30-May-2018	13:00	2.7	N
	30-May-2018	14:00	2.6	N
	30-May-2018	15:00	2.6	NNE
	30-May-2018	16:00	2.4	NNE
	30-May-2018	17:00	2.3	ESE
	30-May-2018	18:00	2.4	ESE
	30-May-2018	19:00	2	N
	30-May-2018	20:00	1.8	N
	30-May-2018	21:00	1.8	NE
	30-May-2018	22:00	1.8	SSE
	30-May-2018	23:00	1.8	SE
	31-May-2018	00:00	2.3	SSE

II. Mean Wind	Speed and Wind D	irection	
31-May-2018	01:00	2.2	SE
31-May-2018	02:00	2.3	ESE
31-May-2018	03:00	1.9	ESE
31-May-2018	04:00	2.5	ENE
31-May-2018	05:00	2.6	NE
31-May-2018	06:00	2.2	ESE
31-May-2018	07:00	2.3	SSE
31-May-2018	08:00	2.3	SSE
31-May-2018	09:00	2.4	NNE
31-May-2018	10:00	2.6	ESE
31-May-2018	11:00	2.4	ESE
31-May-2018	12:00	2.3	SSE
31-May-2018	13:00	1.6	ENE
31-May-2018	14:00	1.7	ENE
31-May-2018	15:00	1.5	ESE
31-May-2018	16:00	1.4	SE
31-May-2018	17:00	0.9	ESE
31-May-2018	18:00	1	SSE
31-May-2018	19:00	1.3	SE
31-May-2018	20:00	1.2	SSE
31-May-2018	21:00	1.3	SE
31-May-2018	22:00	0.7	ESE
31-May-2018	23:00	0.8	SSE

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for May 2018

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	,	1-May	2-May	3-May	4-May	5-May
			1 hr TSP X3 [AM1C, AM2] Noise [M4]	Noise [M3]	Noise [M9] 24 hr TSP [AM1(C), AM2(A)]	
6-May	7-May	8-May	9-May	10-May	11-May	12-May
	1 hr TSP X3 [AM2] Noise [M4]	1 hr TSP X3 [AM1C]	Noise [M3]	Noise [M9] 24 hr TSP [AM1(C), AM2(A)]	1 hr TSP X3 [AM1C, AM2]	
13-May	14-May	15-May	16-May	17-May	18-May	19-May
		Noise [M3]	Noise [M9] 24 hr TSP [AM1(C), AM2(A)]	1 hr TSP X3 [AM1C, AM2] Noise [M4]		
20-May	21-May	22-May	23-May	24-May	25-May	26-May
	Noise [M3] 24 hr TSP [AM1(C), AM2(A)]		1 hr TSP X3 [AM1C, AM2] Noise [M4]		Noise [M9] 24 hr TSP [AM1(C), AM2(A)]	
27-May	28-May	29-May	30-May	31-May		
	1 hr TSP X3 [AM1C]	1 hr TSP X3 [AM2] Noise [M4]		Noise [M3,M9] 24 hr TSP [AM1(C), AM2(A)]		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM1(C) -Boundary of KTD/Outside Contractor's site office of Contract SCL 1107 AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School

Noise Monitoring Station

M3 - Cognitio College

M4 - Lee Kau Yan Memorial School

M9 - Tak Long Estate

Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for June 2018

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	monday	Tuosaay	Wednesday	Thursday	1-Jun	2-Jun
					1 hr TSP X3 [AM1C]	
3-Jun	4-Jun	5-Jun	6-Jun	7-Jun	8-Jun	9-Jun
	1 hr TSP X3 [AM2] Noise [M4]		Noise [M3,M9] 24 hr TSP [AM1(C), AM2(A)]	1 hr TSP X3 [AM1C]		1 hr TSP X3 [AM2]
10-Jun	11-Jun	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun
		Noise [M3,M9] 24 hr TSP [AM1(C), AM2(A)]	1 hr TSP X3 [AM1C]		1 hr TSP X3 [AM2] Noise [M4]	24 hr TSP [AM1(C), AM2(A)]
17-Jun	18-Jun	19-Jun	20-Jun	21-Jun	22-Jun	23-Jun
		1 hr TSP X3 [AM1C]		1 hr TSP X3 [AM2] Noise [M4]	Noise [M3,M9] 24 hr TSP [AM1(C), AM2(A)]	
24-Jun	25-Jun	26-Jun	27-Jun	28-Jun	29-Jun	30-Jun
	1 hr TSP X3 [AM1C]		1 hr TSP X3 [AM2] Noise [M4]	Noise [M3,M9] 24 hr TSP [AM1(C), AM2(A)]	1 hr TSP X3 [AM1C]	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM1(C) -Boundary of KTD/Outside Contractor's site office of Contract SCL 1107 AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School

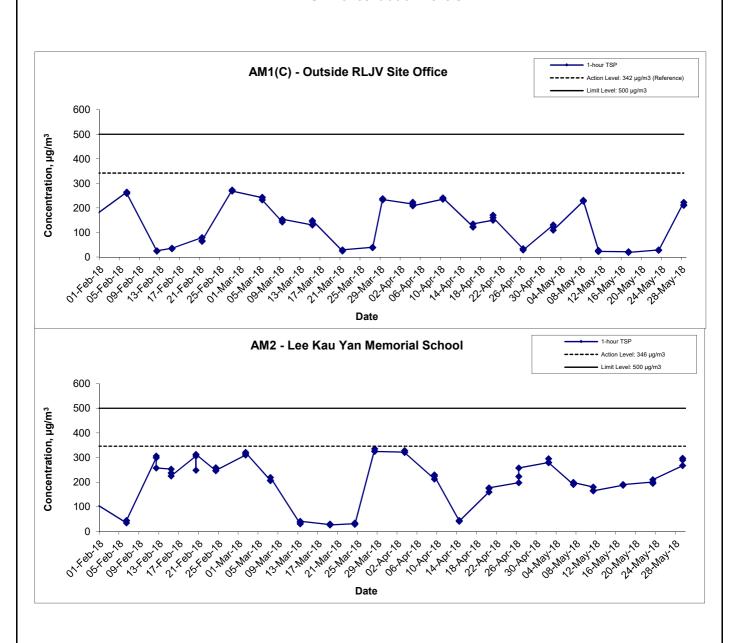
Noise Monitoring Station

M3 - Cognitio College

M4 - Lee Kau Yan Memorial School

M9 - Tak Long Estate

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix E - 1-hour TSP Monitoring Results

Location AM1	(C) - Bound	dary of KTD/ Contract S	Outside Contractor's site office of
Date	Time	Weather	Particulate Concentration (µg/m3)
2-May-18	13:00	Sunny	131.0
2-May-18	14:00	Sunny	122.7
2-May-18	15:00	Sunny	109.4
8-May-18	13:00	Sunny	227.6
8-May-18	14:00	Sunny	231.4
8-May-18	15:00	Sunny	228.8
11-May-18	9:00	Cloudy	27.6
11-May-18	10:00	Cloudy	22.8
11-May-18	11:00	Cloudy	22.8
17-May-18	9:00	Sunny	21.3
17-May-18	10:00	Sunny	21.3
17-May-18	11:00	Sunny	18.9
23-May-18	9:00	Sunny	28.4
23-May-18	10:00	Sunny	28.4
23-May-18	11:00	Sunny	27.2
28-May-18	9:00	Sunny	223.1
28-May-18	10:00	Sunny	212.5
28-May-18	11:00	Sunny	210.3
		Average	106.4
		Maximum	231.4
		Minimum	18.9

Location AM2	- Lee Kau `	Yan Memoria	al School
Date	Time	Weather	Particulate Concentration (µg/m3)
2-May-18	13:05	Sunny	279.9
2-May-18	14:05	Sunny	295.2
2-May-18	15:05	Sunny	279.1
7-May-18	13:05	Cloudy	190.8
7-May-18	14:05	Cloudy	198.1
7-May-18	15:05	Cloudy	198.7
11-May-18	13:05	Cloudy	180.0
11-May-18	14:05	Cloudy	165.5
11-May-18	15:05	Cloudy	164.6
17-May-18	13:05	Sunny	187.4
17-May-18	14:05	Sunny	189.2
17-May-18	15:05	Sunny	190.3
23-May-18	13:10	Sunny	200.1
23-May-18	14:10	Sunny	195.1
23-May-18	15:10	Sunny	210.1
29-May-18	13:10	Sunny	267.4
29-May-18	14:10	Sunny	297.0
29-May-18	15:10	Sunny	289.8
		Average	221.0
		Maximum	297.0
		Minimum	164.6

MA13043/App E - 1hr TSP Cinotech

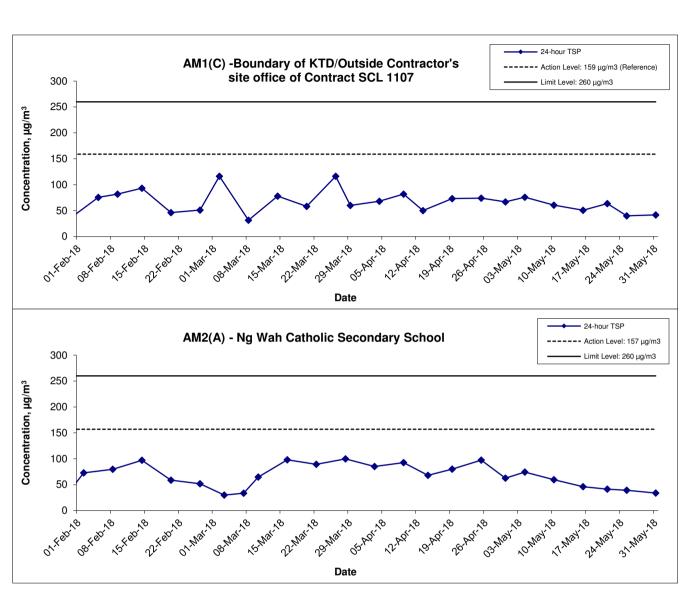
1-hr TSP Concentration Levels

Title	Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area	Scale		Project No.	MA13043	CINOTECH
	Graphical Presentation of 1-hour TSP Monitoring Results	Date	May 18	Appendi	ix E	CINOICCII

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

AM1(C) -Boundary of KTD/Outside Contractor's site office of Contract SCL 1107


Start Date	Weather	Air	Atmospheric	Filter W	'eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(μg/m ³)
4-May-18	Sunny	297.0	765.2	3.2831	3.4185	0.1354	7906.2	7930.2	24.0	1.24	1.24	1.24	1785.4	75.8
10-May-18	Cloudy	296.5	764.7	3.3473	3.4553	0.1080	7932.8	7956.8	24.0	1.24	1.24	1.24	1786.3	60.5
16-May-18	Sunny	301.9	760.2	3.3619	3.4514	0.0895	7956.8	7980.8	24.0	1.23	1.23	1.23	1764.9	50.7
21-May-18	Sunny	303.9	760.7	3.6454	3.7572	0.1118	7980.8	8004.8	24.0	1.22	1.22	1.22	1759.7	63.5
25-May-18	Sunny	303.5	760.3	3.6167	3.6868	0.0701	8004.8	8028.8	24.0	1.22	1.22	1.22	1760.4	39.8
31-May-18	Sunny	305.7	760.4	3.5990	3.6724	0.0734	8028.8	8052.8	24.0	1.22	1.22	1.22	1754.1	41.8
													Min	39.8
													Max	75.8
													Average	55.4

Location AM2(A) - Ng Wah Catholic Secondary School

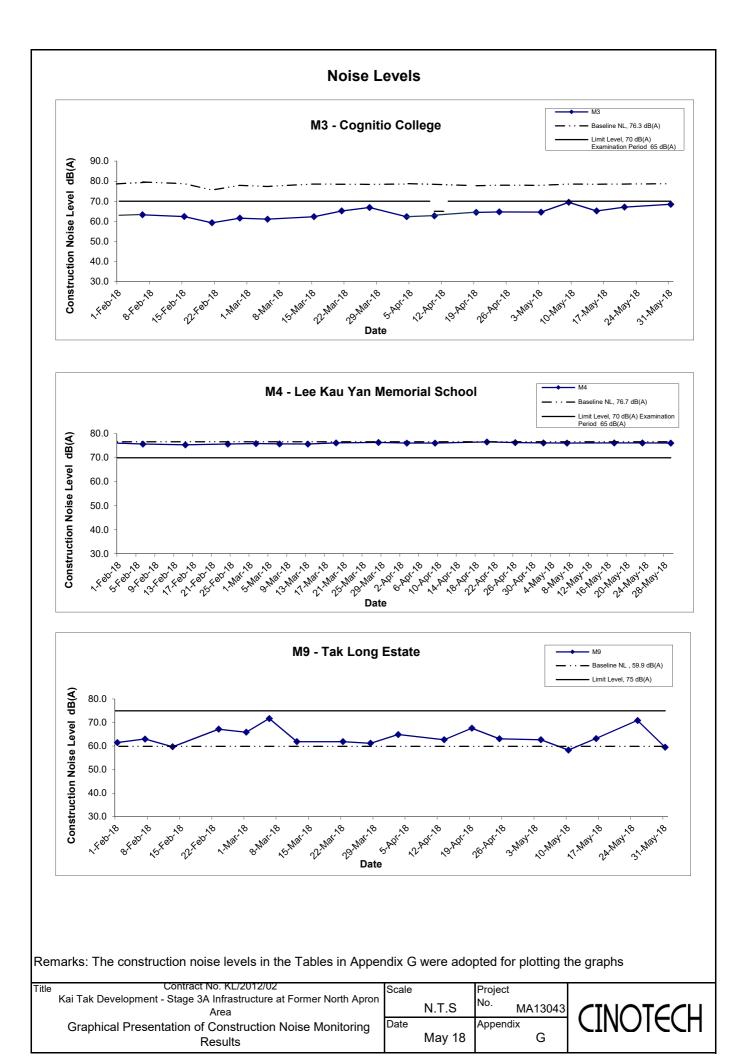
Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
4-May-18	Cloudy	296.9	765.0	3.2889	3.4195	0.1306	1416.2	1440.2	24.0	1.22	1.22	1.22	1756.0	74.4
10-May-18	Cloudy	296.1	765.1	3.6108	3.7155	0.1047	1464.2	1488.2	24.0	1.22	1.22	1.22	1758.7	59.5
16-May-18	Sunny	303.1	760.1	3.2906	3.3704	0.0798	1512.2	1536.2	24.0	1.20	1.20	1.20	1730.9	46.1
21-May-18	Sunny	305.3	760.5	3.2863	3.3586	0.0723	1560.2	1584.2	24.0	1.22	1.22	1.22	1753.5	41.2
25-May-18	Sunny	304.5	759.9	3.6185	3.6872	0.0687	1608.2	1632.2	24.0	1.22	1.22	1.22	1755.2	39.1
31-May-18	Sunny	305.2	760.8	3.6243	3.6836	0.0593	1656.2	1680.2	24.0	1.22	1.22	1.22	1754.2	33.8
													Min	33.8
													Max	74.4
													Average	49.0

MA13056/App F - 24hr TSP

24-hr TSP Concentration Levels

Title	Contract No. KL/2012/02 Kai Tak Development - Stage 3A Infrastructure at Former North Apron Area	Scale		Project No.	MA13043	CINOTECH
	Graphical Presentation of 24-hour TSP Monitoring Results	Date	May 18	1-1	ix F	CINOIECU

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix G - Noise Monitoring Results

Location M3 -	Location M3 - Cognitio College											
			Unit: dB (A) (30-min)									
Date	ate Time Weather		Mea	sured Noise I	Level	Background Noise	Construction Noise Level					
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
3-May-18	13:00	Sunny	78.1	79.2	77.4	77.9	64.6					
9-May-18	13:00	Cloudy	79.1	81.2	77.4	78.6	69.5					
15-May-18	11:30	Sunny	78.7	80.4	76.7	78.5	65.2					
21-May-18	13:00	Sunny	78.9	80.6	77.1	78.6	67.1					
31-May-18	11:30	Sunny	79.1	80.6	77.2	78.7	68.5					

Location M4 - Lee Kau Yan Memorial School											
Date	Time	Weather	Unit: dB (A) (30-min)								
			Measured Noise Level			Baseline Level	Construction Noise Level				
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}				
2-May-18	13:15	Sunny	76.2	77.5	74.5		76.2 Measured ≦ Baseline				
7-May-18	13:15	Cloudy	76.1	77.9	74.5		76.1 Measured ≦ Baseline				
17-May-18	13:15	Sunny	76.2	77.9	73.2	76.7	76.2 Measured ≤ Baseline				
23-May-18	13:45	Sunny	76.2	78.1	74.3		76.2 Measured ≤ Baseline				
29-May-18	13:15	Sunny	76.1	77.2	72.3		76.1 Measured ≦ Baseline				

Location M9 - Tak Long Estate											
Date	Time	Weather	Unit: dB (A) (30-min)								
			Measured Noise Level			Baseline Level	Construction Noise Level				
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}				
4-May-18	9:00	Cloudy	64.5	66.2	61.3		62.7				
10-May-18	14:15	Cloudy	62.2	63.8	60.3		58.3				
16-May-18	16:00	Sunny	64.9	66.3	61.5	59.9	63.2				
25-May-18	10:30	Sunny	71.2	72.3	68.3	1	70.9				
31-May-18	16:30	Sunny	62.7	64.0	60.4		59.5				

MA13043/App G - Noise Cinotech

APPENDIX H SUMMARY OF EXCEEDANCE

Contract No. KL/2012/02 Kai Tak Development –Stage 3A Infrastructure at Former North Apron Area

Appendix H – Summary of Exceedance

Exceedance Report for Contract No. KL/2012/02

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Checklist Reference Number	180502	
Date	2 May 2018	
Time	15:30 – 16:30	

Ref. No.	Non-Compliance	Related Item No.
-	None identified	_
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during the site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during the site inspection.	
	D. Noise	
	No environmental deficiency was identified during the site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during the site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during the site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 180426), no major environmental deficiency was identified by the Contractor.	

	Name	Signature	Date
Recorded by	KC Chung	Clay	2 May 2017
Checked by	Dr. Priscilla Choy	NZ	2 May 2017

Checklist Reference Number	180509
Date	9 May 2018
Time	14:30 – 15:30

Ref. No.	Non-Compliance	Related Item No.
	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during the site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during the site inspection.	
	D. Noise	
	No environmental deficiency was identified during the site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during the site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during the site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 180509), no major environmental deficiency was identified by the Contractor.	

	Name	Signature	Date
Recorded by	Tommy Cheng	7	9 May 2017
Checked by	Dr. Priscilla Choy	N.J.	9 May 2017
Checked by	Dr. Priscilla Choy	Nife	9 May 2017

Contract No. KL/2012/02

Stage 3A Infrastructure at Former North Apron Area

Checklist Reference Number	180516
Date	16 May 2018
Time	10:00-10:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during the site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during the site inspection.	
	D. Noise	
	No environmental deficiency was identified during the site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during the site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during the site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 180509), no major environmental deficiency was identified by the Contractor.	

	Name	Signature	Date
Recorded by	Tommy Cheng	T	18 May 2017
Checked by	Ivy Tam	YM	18 May 2017
		<u> </u>	101111111111111111111111111111111111111

Checklist Reference Number	180521
Date	21 May 2018
Time	14:30 – 15:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during the site inspection.	***
	C. Air Quality	
	No environmental deficiency was identified during the site inspection.	
	D. Noise	
	No environmental deficiency was identified during the site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during the site inspection.	
***	G. Permits /Licences	
	No environmental deficiency was identified during the site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 180516), no major environmental deficiency was identified by the Contractor.	

	Name	Signature	Date
Recorded by	Tommy Cheng		23 May 2017
Checked by	Dr. Priscilla Choy	WI	23 May 2017

Checklist Reference Number	180530
Date	30 May 2018
Time	14:30 – 15:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	_
Ref. No.	Remarks/Observations	Related Item No
	B. Water Quality	
	No environmental deficiency was identified during the site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during the site inspection.	
	D. Noise	
	No environmental deficiency was identified during the site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during the site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during the site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during the site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 180521), no major environmental deficiency was identified by the Contractor.	

	Name	Signature	Date
Recorded by	Tommy Cheng	Tool	31 May 2017
Checked by	Dr. Priscilla Choy	WI	31 May 2017

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Action Level being	1. Identify source and investigate the causes of	1. Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;
exceeded by	exceedance;	by ET;		2. Amend working methods if
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working method.		appropriate.
	3. Repeat measurement to confirm finding.			
Action Level being	1. Identify source and investigate the causes of	1. Check monitoring data submitted by	1. Confirm receipt of notification of	1. Discuss with ET and IEC on proper
exceeded by	exceedance;	ET;	exceedance in writing;	remedial actions;
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working method;	2. Notify Contractor;	2. Submit proposals for remedial actions
consecutive	3. Increase monitoring frequency to daily;	3. Discuss with ET and Contractor on	3. In consolidation with the IEC,	to ER and IEC within three working days
sampling	4. Discuss with IEC and Contractor on	possible remedial measures;	agree with the Contractor on the	of notification;
	remedial actions required;	4. Advise the ER on the effectiveness of	remedial measures to be	3. Implement the agreed proposals;
	5. Assess the effectiveness of	the proposed remedial measures.	implemented;	4. Amend proposal if appropriate.
	Contractor's remedial actions;		4. Supervise implementation of	
	6. If exceedance continues, arrange meeting		remedial measures;	
	with IEC and ER;		5. Conduct meeting with ET and	
	7. If exceedance stops, cease additional		IEC if exceedance continues.	
	monitoring.			
Limit Level being	1. Identify source and investigate the causes of	1. Check monitoring data submitted by	1. Confirm receipt of notification of	1. Take immediate action to avoid further
exceeded by	exceedance;	ET;	exceedance in writing;	exceedance;
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working method;	2. Notify Contractor;	2. Discuss with ET and IEC on proper
	3. Repeat measurement to confirm finding;	3. Discuss with ET and Contractor on	3. In consolidation with the IEC,	remedial actions;
	4. Assess effectiveness of	possible remedial measures;	agree with the Contractor on the	3. Submit proposals for remedial actions
	Contractor's remedial actions and keep EPD,	4. Advise the ER on the	remedial measures to be	to ER and IEC within three working days

	IEC and ER informed of	effectiveness of the proposed remedial	implemented;	of notification;
	the results.	measures.	4. Supervise implementation of	4. Implement the agreed proposals.
			remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	1. Check monitoring data submitted by	1. Confirm receipt of notification of	1. Take immediate action to avoid
exceeded by	EPD;	ET;	exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working days
	investigate the causes of exceedance;	actions;	implemented;	of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues, consider	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	stopping the Contractor to continue	6. Stop the relevant portion of works as
	remedial actions to be taken;		working on that portion of work	instructed by the ER until the exceedance
	6. Assess effectiveness of		which causes the exceedance until	is abated.
	Contractor's remedial actions and		the exceedance is abated.	
	keep EPD, IEC and ER informed			
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of notification of	1. Submit noise mitigation proposals to
being	2. Carry out investigation;	results submitted by the ET;	failure in writing;	IEC and ER;
exceeded	3. Report the results of investigation	2. Review the proposed remedial	2. Notify Contractor;	2. Implement noise mitigation proposals.
	to the IEC, ER and Contractor;	measures by the Contractor and advise	3. In consolidation with the IEC,	(The above actions should be
	4. Discuss with the IEC and	the ER accordingly;	agree with the Contractor on the	taken within 2 working days after
	Contractor on remedial measures	3. Advise the ER on the effectiveness of	remedial measures to be	the exceedance is identified)
	required;	the proposed remedial measures.	implemented;	
	5. Increase monitoring frequency to	(The above actions should be taken	4. Supervise the implementation of	
	check mitigation effectiveness.	within 2 working days after the	remedial measures.	
	(The above actions should be taken	exceedance is identified)	(The above actions should be taken	
	within 2 working days after the exceedance is		within 2 working days after the	
	identified)		exceedance is identified)	
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of notification of	1. Take immediate action to
being	EPD;	Contractor on the potential remedial	failure in writing;	avoid further exceedance;
exceeded	2. Repeat measurements to confirm	actions;	2. Notify Contractor;	2. Submit proposals for remedial actions
	findings;	2. Review Contractor's remedial	3. In consolidation with the IEC,	to IEC and ER within 3 working days of
	3. Increase monitoring frequency;	actions whenever necessary to	agree with the Contractor on the	notification;
	4. Identify source and investigate the	assure their effectiveness and	remedial measures to be	3. Implement the agreed proposals;
	cause of exceedance;	advise the ER accordingly.	implemented;	4. Submit further proposal if problem
	5. Carry out analysis of Contractor's	(The above actions should be taken	4. Supervise the implementation of	still not under control;
	working procedures;	within 2 working days after the	remedial measures;	5. Stop the relevant portion of
	6. Discuss with the IEC, Contractor	exceedance is identified)	5. If exceedance continues,	works as instructed by the ER until the

and ER on remedial measures	consider stopping the Contractor to	exceedance is abated.
required;	continue working on that portion of	(The above actions should be
7. Assess effectiveness of	work which causes the exceedance	taken within 2 working days after
Contractor's remedial actions and	until the exceedance is abated.	the exceedance is identified)
keep IEC, EPD and ER informed of	(The above actions should be taken	
the results;	within 2 working days after the	
8. If exceedance stops, cease additional	exceedance is identified)	
monitoring.		
(The above actions should be taken		
within 2 working days after the		
exceedance is identified)		

Event/Action Plan for Landscape and Visual

EVENT			ACTION	
ACTION LEVEL	ЕТ	IEC	ER	CONTRACTOR
Design Check	1. Check final design	1. Check report.	Undertake remedial design if necessary	
	conforms to the	2. Recommend remedial		
	requirements of EP	design if necessary		
	and prepare report.			
Non-conformity on one occasion	1. Identify Source	1. Check report	1. Notify Contractor	Amend working methods
	2. Inform IEC and ER	2. Check Contractor's working	2. Ensure remedial measures are properly implemented	2. Rectify damage and undertake
	3. Discuss remedial	method		any necessary replacement
	actions with IEC, ER	3. Discuss with ET and		
	and Contractor	Contractor on possible		
	4. Monitor remedial	remedial measures		
	actions until	4. Advise ER on effectiveness		
	rectification has been	of proposed remedial		
	completed	measures.		
		5. Check implementation of		
		remedial measures.		
Repeated Non-conformity	1. Identify Source	1. Check monitoring report	1. Notify Contractor	1. Amend working methods
	Inform IEC and ER	2. Check Contractor's working	2. Ensure remedial measures are properly implemented	2. Rectify damage and undertake
	2. Increase monitoring	method		any necessary replacement
	frequency	3. Discuss with ET and		
	3. Discuss remedial	Contractor on possible		

actions with IEC, ER	remedial measures
and Contractor	4. Advise ER on effectiveness
4. Monitor remedial	of proposed remedial
actions until	measures
rectification has been	5. Supervise implementation
completed	of remedial measures.
5. If non-conformity	
stops, cease additional	
monitoring	

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	Recommended Mitigation Measures	Implementation
		Status
	ction Air Quality	
S6.5	8 times daily watering of the work site with active dust emitting activities.	٨
S6.8	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation	
	measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative	
	dust impacts.	
	Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable	٨
	sheeting to reduce dust emission.	
	Misting for the dusty material should be carried out before being loaded into the vehicle. Any vehicle with an open load carrying	٨
	area should have properly fitted side and tail boards.	
	Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be	٨
	dampened and covered by a clean tarpaulin.	
	The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The	٨
	material should also be dampened if necessary before transportation.	
	The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated	٨
	roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	
	Vehicle washing facilities should be provided at every vehicle exit point.	٨
	The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should	٨
	be paved with concrete, bituminous materials or hardcores.	
	Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain	٨
	the entire road surface wet.	
	Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on	٨
	the top and the three sides.	
	Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.	٨

S6.8		DWFI compound for JVBC:	N/A
		A DWFI compound is proposed at the downstream of JVC to contain pollution in drainage systems entering the KTAC and KTTS	
		by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of	
		the compounds to prevent any accumulation of sediment within the downstream section of JVBC and hence fully mitigate the	
		potential odour emissions from the headspace of JVBC near the existing discharge locations. The odour generating operations	
		within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high efficiency	
		deodorizers before discharge to the atmosphere.	
	•	Desilting compound for KTN:	N/A
		Two desilting compounds are proposed for KTN (at Site 1D6 and Site 1P1) to contain pollution in drainage systems entering the	
		KTAC and KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities	
		will form part of the compounds to prevent any accumulation of sediment within the downstream section of KTN and hence fully	
		mitigate the potential odour emissions from the headspace of KTN near the existing discharge locations. The odour generating	
		operations within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high	
		efficiency deodorizers before discharge to the atmosphere.	
	•	Decking or reconstruction of KTN within apron area:	N/A
		It is proposed to deck the KTN or reconstruct the KTN within the former Apron area into Kai Tak River from the south of Road D1	
		to the north of Road D2 along the existing alignment of KTN. The Kai Tak River will compose of a number of channels flowing with	
		nonodorous fresh water and THEES effluent. The channel flowing with THEES effluent will be designed with the width of water	
		surface of not more than 16m.	
		Localised maintenance dredging:	N/A
		Localised maintenance dredging should be conducted to provide water depth of not less than 3.5m over the whole of KTAC and	
		KTTS. With reference to the water depth data recorded during the odour survey, only some of the areas in the northern part of	
		KTAC (i.e. to the north of taxiway bridge) including the area near the northern edge of KTAC, the area near western bank of	
		KTAC, and the area near the JVC discharge have water depths shallower than 3.5m. The area involved would be about 40% of	
		the northern KTAC and the dredging depth required would be from about 2.7m to less than 1m. The maintenance dredging to be	
		carried out prior to the occupation of any new development in the immediate vicinity of KTAC to avoid potential localized odour	

	impacts at the future ASRs during the maintenance dredging operation.	
	Improvement of water circulation in KTAC and KTTS:	N/A
	600m gap opening at the northern part of the former Kai Tak runway, the water circulation in KTAC and KTTS would be	
	substantially improved. Together with the improvement in water circulation, the DO level in KTAC and KTTS would also be	
	increased.	
	In-situ sediment treatment by bioremediation:	N/A
	Bioremediation would be applied to the entire KTAC and KTTS.	
Constru	uction Noise	
S7.8	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air	٨
	Compressor, Bar Bender, Concrete Pump, Generator and Water Pump.	
S7.9	Good Site Practice:	
	Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program.	۸
	Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction	۸
	program.	
	Mobile plant, if any, should be sited as far away from NSRs as possible.	٨
	Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be	۸
	throttled down to a minimum.	
	Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away	۸
	from the nearby NSRs.	
	Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site	۸
	construction activities.	
S7.9	Scheduling of Construction Works during School Examination Period	۸
S7.8	(i) Provision of low noise surfacing in a section of Road L2; and	N/A
	(ii) Provision of structural fins	N/A
S7.8	(i) Avoid the sensitive façade of class room facing Road L2 and L4; and	N/A
	(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A

S7.8	(i)	Provision of low noise surfacing in a section of Road L4 before occupation of Site 1I1; and	N/A
	(ii)	Setback of building about 5m from site boundary.	N/A
S7.8	Setbac	ck of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
S7.8	(i)	avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and Avoid the sensitive	N/A
		façade of class room facing Road L2 and L4; and	
	(ii)	for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or	N/A
		do not provide the facades with openable window.	
S7.8	(i)	avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or	N/A
	(ii)	provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height of the residential block(s)	N/A
		located at less than 55m away from To Kwa Wan Road to no more than 25m above ground	
S7.8	(i)	avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po	٨
		Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to	
		minimise the potential traffic noise impacts from the slip road	
S7.8	All the	ventilation fans installed in the below will be provided with silencers or acoustics treatment.	
	(i)	SPS	N/A
	(ii)	ESS	N/A
	(iii)	Tunnel Ventilation Shaft	N/A
	(iv)	EFTS depot	N/A
S7.8	Installa	ation of retractable roof or other equivalent measures	N/A
Constru	uction V	Vater Quality	
S8.8	The fo	llowing mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including:	
		Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply;	N/A
		Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty	N/A
		pumps;	
		An alarm should be installed to signal emergency high water level in the wet well at all SPSs; and	N/A

${\bf Appendix} \; {\bf K-Summary} \; {\bf of} \; {\bf Implementation} \; {\bf Schedule} \; {\bf of} \; {\bf Mitigation} \; {\bf Measures} \; {\bf for} \; {\bf Construction} \; {\bf Phase}$

	For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should	N/A
	be provided so that swift actions could be taken in case of malfunction of unmanned facilities	
S8.8	Construction Phase	
	Marine-based Construction	
	Capital and Maintenance Dredging for Cruise Terminal	
	Mitigation measures for construction of the proposed cruise terminal should follow those recommended in the approved EIA for CT	N/A
	Dredging.	
S8.8	Fireboat Berth, Runway Opening and Road T2	
	Silt curtains should be deployed around the close grab dredger to minimize release of sediment and other contaminants for any	N/A
	dredging and filling activities in open water.	
S8.8	Dredging at and near the seawall area for construction of the public landing steps cum fireboat berth should be carried out at a	N/A
	maximum production rate of 1,000m³ per day using one grab dredger.	
S8.8	The proposed construction method for runway opening should adopt an approach where the existing seawall at the runway will not be	N/A
	removed until completion of all excavation and dredging works for demolition of the runway. Thus, excavation of bulk fill and majority of	
	the dredging works will be carried out behind the existing seawall, and the sediment plume can be effectively contained within the works	
	area. As there is likely some accumulation of sediments alongside the runway, there will be a need to dredge the existing seabed after	
	completion of all the demolition works. Dredging alongside the 600m opening should be carried out at a maximum production rate of	
	2,000m³ per day using one grab dredger.	
8.8	Dredging for Road T2 should be conducted at a maximum rate of 8,000m³ per day (using four grab dredgers) whereas the sand filling	N/A
	should be conducted at a maximum rate of 2,000m3 per day (using two grab dredgers).	
8.8	Silt screens shall be applied to seawater intakes at WSD seawater intake.	N/A

S8.8	Land-based Construction	
	Construction Runoff	
	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion.	
	Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of	
	appropriate mitigation measures which include:	
	use of sediment traps	٨
	adequate maintenance of drainage systems to prevent flooding and overflow	۸
S8.8	Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September).	۸
	All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days	
	of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year	
	when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.	
S8.8	Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance.	۸
	The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection.	
	Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond.	
	Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of	
	efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	
S8.8	Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m³ capacity, are	۸
	recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is	
	flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	
S8.8	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m³ should be covered with	۸
	tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt	
	or debris into any drainage system.	
S8.8	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt,	۸
	construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	
S8.8	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and	۸
	actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid	

	to the control of silty surface runoff during storm events.	
S8.8	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm	N/A(1)
	water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	
S8.8	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by	٨
	them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should	
	have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of	
	access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the	
	wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	
S8.8	Drainage	
	It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities.	٨
	Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There	
	should be no direct discharge of effluent from the site into the sea	
S8.8	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the	٨
	controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and	
	efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original	
	condition when the construction work has finished or the temporary diversion is no longer required.	
S8.8	All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110%	۸
	of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	
S8.8	Sewage Effluent	
	Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment	٨
	facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer	
	system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction	
	workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	

${\bf Appendix} \; {\bf K-Summary} \; {\bf of} \; {\bf Implementation} \; {\bf Schedule} \; {\bf of} \; {\bf Mitigation} \; {\bf Measures} \; {\bf for} \; {\bf Construction} \; {\bf Phase}$

S8.8	Stormwater Discharges	
	Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes	۸
S8.8	Debris and Litter	
	In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur	۸
S8.8	Construction Works at or in Close Proximity of Storm Culvert or Seafront	
	The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	^
S8.8	The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm culvert / nullah.	۸
S8.8	Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works	Λ
S8.8	Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	٨
S8.8	Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	۸
S8.8	Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	۸
S8.8	Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	۸
S8.8	Construction effluent, site run-off and sewage should be properly collected and/or treated.	٨
S8.8	Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead	N/A

	edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	
S8.8	Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage	N/A
	of construction materials.	
S8.8	Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	N/A
S8.8	Supervisory staff should be assigned to station on site to closely supervise and monitor the works	۸
S8.8	Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	N/A
Constru	uction Waste Management	
S9.5	Good Site Practices	
	It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to.	
	Recommendations for good site practices during the dredging activities include:	
	Nomination of an approved person, such as a site manager, be responsible for good site practices, arrangements for collection	۸
	and effective disposal to an appropriate facility, of all wastes generated at the site.	
	Training of site personnel in proper waste management and chemical waste handling procedures.	۸
	Provision of sufficient waste disposal points and regular collection for disposal.	۸
	Appropriate measure to minimize windblown litter and dust during transportation of waste by either covering trucks or by	۸
	transporting wastes in enclosed containers.	
	A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	۸
S9.5	Waste Reduction Measures	
	Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the	
	planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste	
	reduction include:	
	Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals	۸
	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of	۸
	materials and their proper disposal	
	Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be	۸
	segregated from other general refuse generated by the work force	

	Any unused chemicals or those with remaining functional capacity should be recycled	٨
		۸
	Proper storage and site practices to minimise the potential for damage or contamination of construction materials	٨
S9.5	Dredged Marine Sediment	
	The basic requirements and procedures for dredged mud disposal are specified under the ETWB TCW No. 34/2002. The management	N/A
	of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is required under the	
	Dumping at Sea Ordinance and is the responsibility of the Director of Environmental Protection (DEP)	
S9.5	The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC	N/A
	depending on their level of contamination. Sediment classified as Category L would be suitable for Type 1 - Open Sea Disposal.	
	Contaminated sediment would require either Type 1 - Open Sea Disposal (Dedicated Sites), Type 2 - Confined Marine Disposal, or	
	Type 3 – Special Treatment / Disposal and must be dredged and transported with great care in accordance with ETWB TCW No.	
	34/2002. Subject to the final allocation of the disposal sites by MFC, the dredged contaminated sediment must be effectively isolated	
	from the environment and disposed properly at the designated disposal site	
S9.5	It will be the responsibility of the contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to	
	be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal	
	Sediment Quality Report to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works should apply	
	for allocation of marine disposal sites and all necessary permits from relevant authorities for the disposal of dredged sediment. During	
	transportation and disposal of the dredged marine sediments requiring Type 1, Type 2, or Type 3 disposal, the following measures	
	should be taken to minimise potential impacts on water quality:	
	Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be	N/A
	cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved	
	Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation.	N/A
	Transport barges or vessels should be equipped with automatic selfmonitoring devices as required under the Dumping at Sea	
	Ordinance and as specified by the DEP	
	Barges or hopper barges should not be filled to a level that would cause the overflow of materials or sediment laden water during	N/A
	loading or transportation	

S9.5	Construction and Demolition Material	
	Mitigation measures and good site practices should be incorporated into contract document to control potential environmental impact	
	from handling and transportation of C&D material. The mitigation measures include:	
	Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal,	۸
	the transient stockpiles should be located away from waterfront or storm drains as far as possible	
	Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric	۸
	Skip hoist for material transport should be totally enclosed by impervious sheeting	۸
	Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site	۸
	The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should	۸
	be paved with concrete, bituminous materials or hardcores	
	The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting	٨
	to ensure dust materials do not leak from the vehicle	
	All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty	۸
	materials wet	
	The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust	۸
	generation from unloading	
	When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of	۸
	size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the	
	surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB	
	TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the	
	contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An	
	Independent Environmental Checker should be responsible for auditing the results of the system.	

S9.5	Chemica	l Waste	
		e, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of	۸
		on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation	
S9.5	General		
00.0	deneral	Total Control of the	
	General	refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be	۸
	employe	d by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage	
	methods	(including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by	
	wind, wa		
Construc	ction Lai	ndscape and Visual	
S13.9	CM1	All existing trees should be carefully protected during construction.	٨
	CM2	Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be	٨
		submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations	
		of transplanted trees should be agreed prior to commencement of the work.	
	СМЗ	Control of night-time lighting.	N/A(1)
	CM4	Erection of decorative screen hoarding.	٨

Remarks:

- ^ Compliance of mitigation measure
- * Recommendation was made during site audit but improved/rectified by the Contractor
- Non-compliance but rectified by the Contractor
- X Non-compliance of mitigation measure
- N/A Not Applicable at this stage
- N/A(1) Not observed

APPENDIX L
SUMMARIES OF ENVIRONMENTAL
COMPLAINT, WARNING, SUMMON
AND NOTIFICATION OF SUCCESSFUL
PROSECUTION

Contract No. KL/2012/02

Kai Tak Development –Stage 3A Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Reporting Month: May 2018

Contract No. KL/2012/02

Log Ref.	Location	Received Date	Details of Complaint/warning/summon and prosecution	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A	N/A

APPENDIX M SUMMARY OF WASTE GENERATION AND DISPOSAL RECORDS

Appendix M: MONTHLY SUMMARY WASTE FLOW TABLE FOR <u>2018</u> (YEAR)

	A	ctual Quantitio	es of Inert C&D	Materials Ger	nerated Monthl	y	Actua	al Quantities of	f C&D Wastes	Generated Mo	nthly
Month	Total Quantity Generated	Borken Concrete (4)	Reused in the Contract	Reused in other Projects	Disposal as Public Fill	Import Fill	Metals	Paper / Cardboard Packaging	Plastics (3)	Chemical Waste	Other, e.g. general refuse
	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]
JAN	0.13459	0	0	0	0.08129	0	0	0	0	0	0.0533
FEB	0.14402	0	0	0	0.08117	0	0	0	0	0	0.06285
MAR	0.34721	0	0	0	0.09636	0	0	0	0	0	0.25085
APR	0.03363	0	0	0	0.03363	0	0	0	0	0	0
MAY	0.09975	0	0	0	0.02930	0	0	0	0	0	0.07045
JUNE											
SUB-	0.75920	0	0	0.00000	0.32175	0	0	0	0	0	0.43745
TOTAL	0.73720	U	U	0.0000	0.32173	U	U	U	U	U	0.43743
JULY											
AUG											
SEPT											
OCT											
NOV											
DEC											
Jan-19				_						_	
TOTAL	0.75920	0	0	0.00000	0.32175	0	0	0	0	0	0.43745

Contract No. : <u>KL/2012/02</u>

	Forecast of Total Quantities of C&D materials to be Generated from the Contracts *											
Total	Total Borken Reused in the Reused in Disposal as Import Fill Metals (3) Paper / Plastics (2)(3) Chemical Other, e.g.											
Quantity	Concrete	Contract	other	Public Fill	import rin Me	Import Fin	import rin	IVICIAIS (3)	Cardboard	Flastics (2)(3)	Waste (3)	general
$[in '000m^3]$	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000m ³]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000kg]	[in '000m ³]		
2	1	0	0	0	0	0	0.2	0	0.2	1		

Notes:

- (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the site.
- (2) Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material.
- (3) Quantities of Metals, Paper/Cardboard, Plastics and Chemical Waste are excluded from total quantities of C&D materials to be generated from the contracts

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Appendix B

Monthly EM&A Report
For
Contract No. KL/2012/03
Kai Tak Development - Stage 4 Infrastructure at North Apron Area

Civil Engineering and Development Department

EP-344/2009 – New Sewage Pumping Stations Serving KTD EP-337/2009 – New Distributor Roads Serving the Planned KTD

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Monthly EM&A Report

May 2018

(Version 1.0)

Approved By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

Kai Tak Development Site Office Contract No. KL/2012/03 c/o AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin New Territories

Your reference:

Our reference:

HKCEDD11/50/105050

Date:

7 June 2018

Attention: Mr Stanley Chan

BY EMAIL & POST (email: RE1@ktd-5a.com)

Dear Sirs

Hong Kong

Agreement No. EDO 08/2018
Independent Environmental Checker (IEC) for CEDD Contract No. KL/2012/03
Kai Tak Development – Stage 4 infrastructure at former north apron area
Verification of Monthly EM&A Report for May 2018

We refer to emails of 6 and 7 June 2018 attaching a Monthly EM&A Report for April 2018 prepared by the ET.

We have no further comment and hereby verify the Report in accordance with Clause 3.3 of the Environmental Permit nos. EP-337/2009 and EP-344/2009.

Please do not hesitate to contact the undersigned or our Ms Alice Cheung on 2618 2831 should you have any queries.

Yours faithfully
ANEWR CONSULTING LIMITED

Adi Lee

Independent Environmental Checker

LYMA/LHHN/CLYA/csym

cc CEDD – Mr C K Choi (email: ckchoi@cedd.gov.hk) Cinotech – Dr Priscilla Choy (email: priscilla.choy@cinotech.com.hk)

Unit 517, 5/F, Tower A, Regent Centre 63 Wo Yi Hop Road, Kwai Chung, Hong Kong Tel: (852) 2618 2831 Fax: (852) 3007 8648

Email: info@anewr.com Web: www.anewr.com

TABLE OF CONTENTS

EX	ECUTIVE SUMMARY	1
	Introduction Environmental Monitoring Works Environmental Licenses and Permits Key Information in the Reporting Month Future Key Issues	1 2 2
1.	INTRODUCTION	3
	Background	3 4 5
2.	AIR QUALITY	8
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and Quality Assurance and Quality Control (QA/QC) Procedenesults, Observations and Action/Limit Level Exceedance	8 9 9 ure . 9
3.	NOISE	13
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and QA/QC Procedures Maintenance and Calibration Results, Observations and Action/Limit Level Exceedance	13 13 13 14
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	16
5.	LANDSCAPE AND VISUAL	18
	Monitoring Requirements	
6.	ENVIRONMENTAL AUDIT	19
	Site Audits Status of Environmental Licensing and Permitting Status of Waste Management Implementation Status of Environmental Mitigation Measures Summary of Mitigation Measures Implemented Implementation Status of Event Action Plans Summary of Complaint, Warning, Notification of any Summons and Successful Prosec	19 20 20 21 21
7.	FUTURE KEY ISSUES	

		es for the Coming Month
8. CONCI		LUSIONS AND RECOMMENDATIONS24
		ons
		endations
	Effective	siless of Environmental Management
LIS	ST OF TA	BLES
Tal	ole I	Breaches of Action and Limit Levels for the Project in the Reporting Month
Tal	ole II	Summary Table for Key Information in the Reporting Month
	ole 1.1	Key Project Contacts
Tab	ole 1.2	Construction Programme Showing the Inter-Relationship with Environmental
		Protection/Mitigation Measures
	ole 1.3	Air Quality and Noise Monitoring Stations for this Project
	ole 1.4	Summary Table for Required Submission under EP No. EP-337/2009
	ole 1.5	Summary Table for Required Submission under EP No. EP-344/2009
	ole 2.1	Locations for Air Quality Monitoring
	ole 2.2	Air Quality Monitoring Equipment
	ole 2.3	Impact Dust Monitoring Parameters, Frequency and Duration
	ole 2.4	Major dust source identified at the designated air quality monitoring stations
	ole 3.1	Noise Monitoring Stations
	ole 3.2	Noise Monitoring Equipment
	ole 3.3	Noise Monitoring Parameters, Frequency and Duration
	ole 3.4	Major noise source identified at the designated noise monitoring stations
	ole 3.5	Baseline Noise Level and Noise Limit Level for Monitoring Stations
	ole 4.1	Comparison of 1-hr TSP data with EIA predictions
	ole 4.2	Comparison of 24-hr TSP data with EIA predictions
	ole 4.3	Comparison of Noise Monitoring Data with EIA predictions
	ole 6.1	Summary of Environmental Licensing and Permit Status
	ole 6.2	Observations and Recommendations of Site Inspections for EP-337/2009
	ole 6.3	Observations and Recommendations of Site Inspections for EP-344/2009
Tat	ole 7.1	Summary of the tentative program of major site activities, the impact prediction and control measures for June and July 2018
Tab	ole 8.1	Examples of Mitigation Measures for Environmental Recommendations

LIST OF FIGURES

Figure 1	Layout Plan of the Project Site
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of Construction Noise Monitoring Stations
Figure 4	Locations of Wind Anemometer
Figure 5	Management Structure

LIST OF APPENDICES

A	Action and Limit Levels for Air Quality and Noise
В	Copies of Calibration Certificates
C	Weather Information
D	Environmental Monitoring Schedules
E	1-hour TSP Monitoring Results and Graphical Presentations
F	24-hour TSP Monitoring Results and Graphical Presentations
G	Noise Monitoring Results and Graphical Presentations
H	Summary of Exceedance
I	Site Audit Summary
J	Event Action Plans
K	Environmental Mitigation Implementation Schedule (EMIS)
L	Summaries of Environmental Complaint, Warning, Summon and Notification of
	Successful Prosecution
M	Summary of Waste Generation and Disposal Records
N	Construction Programme

EXECUTIVE SUMMARY

Introduction

- 1. This is the 54th Monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises the construction of Schedule 2 Designated Projects (DP) Road D2 & Sewage Pumping Station PS2 and PS NPS which forms a part of the works under two Environmental Permits (EP), EP-337/2009 and EP-344/2009. The title of the designated projects under Environmental Permit No.: EP-344/2009 is "New sewage pumping stations serving Kai Tak Development" and under Environmental Permit No.: EP-337/2009 is "New distributor roads serving the planned Kai Tak Development". This report documents the findings of EM&A Works conducted from 1 to 31 May 2018.
- 2. The major site activities undertaken in the reporting month included:
 - Daily Cleaning;
 - Finishing works, E&M work, Access Road Construction in PS2;
 - Site Clearance Works in DCS;
 - Road widening work, Pavement Construction in Sung Wong Toi Road;
 - Installation of Drainage pipe, Pressure test for Water Main, UU laying works and Road works in Road D2;
 - Finishing works, E&M works and Access Road Construction in Portion 4 (NPS & Sewerage); and
 - Removal of excavated material in Portion 6.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the breaches of action and limit levels in the reporting month for the Project is tabulated in **Table I**.

Table I Breaches of Action and Limit Levels for the Project in the Reporting Month

Parameter	No. of Project-rela	Action Taken	
1 al ametei	Action Level	Limit Level	Action Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

1-hour & 24-hour TSP Monitoring

- 5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 6. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No

Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

7. All construction noise monitoring was conducted as scheduled in the reporting month. No Action and Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 8. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, Environmental Permits No. EP-344/2009 and EP-337/2009 were issued on 23 April 2009.
- 9. Registration of Chemical Waste Producer (Waste Producer Number: 5213-286-K2958-05).
- 10. Water Discharge License (WT00020971-2015).

Key Information in the Reporting Month

11. Summary of complaint received, reporting changes and notifications of any summons and successful prosecutions in the reporting month is tabulated in **Table II**.

Table II Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Remark
2,010	Number	Nature	1100001111011	2000	244
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues

- 12. The future key environmental issues in the coming month include:

 - Daily Cleaning; Finishing works, E&M work and Access Road Construction in PS2; Site Clearance works in DCS;

 - Road widening works and Pavement Construction at Sung Wong Toi Road;
 - UU laying works, Road works and water main connection in Road D2;
 - Finishing works and E&M works and Access Road Construction in Portion 4 (NPS & Sewerage); and
 - Removal of excavated materials in Portion 6

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 4 Infrastructure at Former North Apron Area is one of the construction stages of KTD. Schedule 2 DPs in this Project include new distributor roads serving the planned KTD and new sewage pumping stations serving the planned KTD. The general layout of the Project is shown in **Figure 1.**
- 1.2 Two Environmental Permits (EPs) No. EP-344/2009 and EP-337/2009 were also issued to the Permit Holder Civil Engineering and Development Department on 23 April 2009 for new sewage pumping stations serving the planned KTD and new distributor roads serving the planned KTD respectively.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to identify the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and recommend possible mitigation measures associated with the works. The EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Cinotech Consultants Limited (Cinotech) is commissioned by Kwan On Construction Co., Ltd. (the Contractor) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2012/03 Stage 4 Infrastructure at Former North Apron Area. The construction work under KL/2012/03 comprises the construction of Road D2 & Sewage Pumping Station PS2 and PS NPS which forms a part of the works under two EPs (EP-337/2009 and EP-344/2009).
- 1.5 The construction commencement of this Contract was on 1st December 2013 for Road D2, Sewage Pumping Station PS2 and PS NPS. This is the 54th Monthly EM&A report summarizing the EM&A works for the Project from 1 to 31 May 2018.

Project Organizations

- 1.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) AECOM.
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) Arcadis Design & Engineering Limited. (Arcadis) (IEC services under the Contract have been terminated since 17 May 2018)
 - Independent Environmental Checker (IEC) ANewR Consulting Limited. (ANewR).
 - Contractor Kwan On Construction Co., Ltd. (Kwan On).

1.7 The key contacts of the Project are shown in **Table 1.1** and **Figure 5**.

Table 1.1 Key Project Contacts

Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. C. K. Choi	Senior Engineer	2301 1174	2301 1277
AECOM	Engineer's	Mr. W. K. Leung	CRE	2798 0771	3013 8864
ALCOM	Representative	Mr. Jacky Pun	RE	2770 0771	3013 0004
	Environmental	Dr. Priscilla Choy	Environmental Team Leader	2151 2089	
('inotech	Environmental Team	Ms. Ivy Tam	Project Coordinator and Audit Team Leader	2151 2090	3107 1388
Arcadis	Independent Environmental Checker	Mr. Wong Fu Nam	Independent Environmental Checker	2911 2744	2805 5028
ANewR	Independent Environmental Checker	Mr. Adi Lee	Independent Environmental Checker	2618 2831	3007 8648
				3689 7752	3689 7726
Kwan On	Contractor	Mr. Albert Ng	Site Agent	6146 6761 (H	

Construction Activities undertaken during the Reporting Month

- 1.8 The site activities undertaken in the reporting month included:
 - Daily Cleaning;
 - Finishing works, E&M work, Access Road Construction in PS2;
 - Site Clearance Works in DCS;
 - Road widening work, Pavement Construction in Sung Wong Toi Road;
 - Installation of Drainage pipe, Pressure test for Water Main, UU laying works and Road works in Road D2;
 - Finishing works, E&M works and Access Road Construction in Portion 4 (NPS & Sewerage); and
 - Removal of excavated material in Portion 6.
- 1.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures is presented in **Table 1.2**.

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

1 Totection/Witugation Weasures				
Construction Works	Generated Major Environmental Impact	Control Measures		
Construction of superstructure of Pumping Station PS2 and NPS;	Dust, Water Quality, Waste Management	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; and On-site waste sorting and implementation of trip ticket system. 		
Backfilling between sewerage manholes 1K1_1 and FMH10_340 and construction of manhole FMH10_370a at L6;	Dust, Noise	 Use of quiet plant and well-maintained construction plant; and Properly cover the stockpiles; 		
Installation of precast unit and construction of in-situ portions of Box Culvert B6; Construction of jacking pits nos. 1 and 2; Installation of gas pipe at pit no. 10; Construction of washout chamber at pit no. 11;	Noise, Waste Management	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. Good management and control on construction waste reduction 		
Construction of sewerage manhole FMH 10 at Bailey Street; Widening works of Sung Wong Toi Road.	Noise	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. 		
Pipe laying from manhole SMH2204 to Box Culvert B6; Laying of rising mains from PS2 to chainage CHA-18; Pipe laying from stormwater manholes SMH1962 to SMH1963 and construction of manholes SMH1953 and SMH1963 at L6; Installation of DCS;	Noise, Water Quality	 Use of quiet plant and well-maintained construction plant; and Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall. 		

Summary of EM&A Requirements

- 1.10 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
- All monitoring parameters;
- Action and Limit levels for all environmental parameters;
- Event Action Plans;
- Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.12 This report presents the implementation of the EM&A programme for the Project from 1 to 31 May 2018.

Monthly EM&A Report – May 2018

1.13 Air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in **Table 1.3** (see **Figure 2 and 3** for their locations).

 Table 1.3 Air Quality and Noise Monitoring Stations for this Project

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations
Air Quality Monitoring Stations		
AM2 - Lee Kau Yan Memorial School	Yes	AM2(A) – Ng Wah Catholic Secondary School
AM3 – Sky Tower	No	AM3(A) – Holy Trinity Bradbury Centre
AM4 – Grand Waterfront	No	AM4(A) – EMSD Workshop*
AM5 – CCC Kei To Secondary School	No	N/A^
AM6 – Site 1B4 (Planned)		N/A
Noise Monitoring Stations		
M6 – Holy Carpenter Primary School	No	M6(A) – Oblate Primary School
M7 – CCC Kei To Secondary School	Yes	N/A
M8 – Po Leung Kuk Ngan Po Ling College	Yes	N/A
M9 – Tak Long Estate	Yes	N/A
M10 – Site 1B4 (Planned)		N/A

Remarks:

- Yes" Monitoring station is the same as that stated in EM&A Manual
- No Monitoring station is not the same as that stated in EM&A Manual. Request for carrying monitoring works at the monitoring stations stated in EM&A Manual was rejected by owner of premise. Alternative monitoring stations were proposed by the ET of Schedule 3 EIA and approved by the EPD.
- ➤ N/A No alternative monitoring station is required.
- *AM4(A) EMSD Workshop was cancelled due to unsuccessful accessibility of the facility. 1-hr TSP monitoring was conducted at AM4(B) Ma Tau Kok Road (next to EMSD workshop) temporarily and 24-hr TSP monitoring was conducted at AM4(C) New Pumping Station under Contract No. KL/2012/03.
- ^AM5(A) Po Leung Kuk Ngan Po Ling College was cancelled because no permission was granted from the premise. Air quality monitoring was carried out at AM5 CCC Kei To Secondary School.
- 1.14 According to the Environmental Monitoring and Audit Manual (EM&A Manual) of the Kai Tak Development (KTD) Schedule 3 Environmental Impact Assessment (EIA) Report, the impact monitoring at the designated monitoring stations as required in KTD EM&A Manual under the EP, has been conducted in Environmental Monitoring Works for Kai Tak Development under Schedule 3 of KTD, which is on-going starting from December 2010, when the impact monitoring data under Schedule 3 of KTD were adopted for the Project.
- 1.15 Although Contract no. KLN/2013/16 under Schedule 3 of KTD has been superseded by KLN/2016/09 since early March 2017, the ET continued to adopt the impact monitoring data under Schedule 3 of KTD until appropriate new arrangement is agreed. The KLN/2016/09 impact environmental monitoring schedule is shown in **Appendix D**.

Monthly EM&A Report - May 2018

Status of Compliance with Environmental Permits Conditions

1.16 The status of required submission related to this Project under the Environmental Permits No. EP-337/2009 and EP-344/2009 is summarized in the **Table 1.4** and **Table 1.5** respectively:

Table 1.4 Summary Table for Required Submission under EP No. EP-337/2009

EP Conditions	Submission	Submission Date	Remark
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Road D2
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03
2.4	Design Drawing(s) of the Project	28 October 2013	For Road D2
2.11	Landscape Mitigation Plan(s) for distributors road(s)	7 January 2014	For Road D2
2.12	As-built drawing(s) for the distributor road(s)	To be submitted at least one vocammencement of operation	
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	/
3.3	Four hard copies and one electronic copy of the Monthly EM&A Report No. 53 (April 2018)	9 May 2018	Monthly EM&A Report for Contract No. KL/2012/03

Table 1.5 Summary Table for Required Submission under EP No. EP-344/2009

EP Conditions	Submission	Submission Date	Remark
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Pumping Station PS2 and PS NPS
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03
2.4	Design Drawing(s) of the Project	28 October 2013	For Pumping Station PS2 and PS NPS
2.11	Landscape Mitigation Plan(s) for sewage pumping station(s)	7 January 2014	For Pumping Station PS2 and PS NPS
2.12	As-built drawing(s) for the sewage pumping station (s)	To be submitted at least one commencement of operation	
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	/
3.3	Four hard copies and one electronic copy of the Monthly EM&A Report No. 53 (April 2018)	9 May 2018	Monthly EM&A Report for Contract No. KL/2012/03

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the Eps, 1-hour and 24-hour Total Suspended Particulates (TSP) monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Five designated monitoring stations were selected for air quality monitoring programme. Impact dust monitoring was conducted at four of the air quality monitoring stations (AM2, AM3(A), AM4(C) and AM5. **Table 2.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 2.1 Locations for Air Quality Monitoring

Monitoring Stations Locations Location of Measuremen		Location of Measurement
AM2	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
AM2(A)	Ng Wah Catholic Secondary School	Rooftop (about 8/F) Area
AM3(A)	Holy Trinity Bradbury Centre	Rooftop (about 8/F) Area
AM4(C)	New Pumping Station	Rooftop (about 6/F) Area
AM5	CCC Kei To Secondary School	Rooftop (about 10/F) Area
#AM6	PA 15	Site 1B4 (Planned)

Remarks: # The impact monitoring at these locations will only be carried out until the sensitive receivers at the building are resided.

Monitoring Equipment

2.3 **Table 2.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates and laboratory accreditation are attached in **Appendix B**.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	TE-5025A	1
1-hour TSP Dust Meter	Laser Dust Monitor – Model LD-3, LD-3B/ Hal-HPC300/ 301	7
HVS Sampler	TE-5170X	4
Wind Anemometer	Davis Weather Monitor, Vantage Pro2	1

Monitoring Parameters, Frequency and Duration

2.4 Table 2.3 summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 2.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	At least three times every 6 days
24-hr TSP	At least once every 6 days

Monitoring Methodology and Quality Assurance and Quality Control (QA/QC) Procedure

1-hour TSP Monitoring

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Set POWER to "ON" and make sure that the battery level was not flash or in low level.
 - Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
 - Push the knob at MEASURE position.
 - Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
 - Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
 - Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 2.6 The following maintenance/calibration was required for the direct dust meters:
 - Check and calibrate the meter by High-Volume Sampler (HVS) to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.7 High volume samplers (HVS) (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the 24-hour TSP sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For 24-hour TSP sampling, fiberglass filters having a collection efficiency of $\geq 99\%$ for particles of 0.3µm (DOP) diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.

- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed so that the TSP will be sampled for 24 hours. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After completion of sampling, the filter was removed and sent to Wellab Ltd., which is 2.16 accredited under HOKLAS for laboratory analysis. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning temperature should be between 25°C and 30°C and not vary by more than $\pm 3^{\circ}$ C; the relative humidity (RH) should be < 50% and not vary by more than $\pm 5\%$. A convenient working RH is 40%.

Maintenance/Calibration

- The following maintenance/calibration was required for the HVS: 2.18
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using G25A Calibration Kit throughout all stages of the air quality monitoring.
 - Orifice Transfer Standards were calibrated at yearly intervals throughout all stages of the air quality monitoring.

Results, Observations and Action/Limit Level Exceedance

- 2.19 All other 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.20 All other 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21 This weather information for the reporting month is summarized in **Appendix C.**
- 2.22 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.23 The summary of exceedance record in the reporting month is shown in **Appendix H**. No exceedance in Action/Limit Levels of 1-hour and 24-hour TSP was recorded for the air

quality monitoring.

2.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations is as follows:

Table 2.4 Major dust source identified at the designated air quality monitoring stations

Station	Major Dust Source
AM2 – Lee Kau Yan Memorial School	Road Traffic Dust
	Exposed site area and open stockpiles
	Site vehicle movement
AM2(A) – Ng Wah Catholic Secondary	Road Traffic Dust
School	Exposed site area and open stockpiles
	Excavation works
	Site vehicle movement
AM3(B) – Family Planning Association	Road Traffic Dust
of Hong Kong	Exposed site area
	Excavation works
	Site vehicle movement
AM4(C) – New Pumping Station under	Site vehicle movement
Contract No. KL/2012/03	
AM5 – CCC Kei To Secondary School	Road Traffic Dust

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis to conduct one set of measurements between 0700 and 1900 hours on normal weekdays.

Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

- 3.2 Five designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at four designated monitoring stations (M6, M7, M8 and M9). **Figure 3** shows the locations of these stations.
- 3.3 Construction noise monitoring at Station M6 Holy Carpenter Primary School was rejected by the premise owner on 6th October 2014. The monitoring station has been relocated at a proposed alternative noise monitoring station M6(A) Oblate Primary School since 10th October 2014 to carry out the monitoring works.

Table 3.1 Noise Monitoring Stations

L	Monitoring Stations	Locations	Location of Measurement
*M6(A) Oblate Primary School		Oblate Primary School	Rooftop (about 7/F) Area
	M7	CCC Kei To Secondary School	Rooftop (about 8/F) Area
	M8	Po Leung Kuk Ngan Po Ling College	
	M9	Tak Long Estate	Car Park Building (about 2/F)
	#M10	Site 1B4 (Planned)	-

Remarks:

Monitoring Equipment

Table 3.2 summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2 Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVAN 955, 957, BSWA 801	5
Calibrator	SVAN 30A	4

Monitoring Parameters, Frequency and Duration

3.5 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

 ^{*} Alternative noise monitoring station for M6 – Holy Carpenter Primary School from 10th October 2014 onwards

[#] The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Stations	Parameter	Period	Frequency	Type of Measurement
M7 M8 M9	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Façade (*)
M6(A)	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Free Field (*)

 Table 3.3
 Noise Monitoring Parameters, Frequency and Duration

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
- For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting
time weighting
Fast
time measurement
30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.6 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 3.7 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

^(*) Refer to bullet point 1 and 2 in the following section.

- 3.9 All construction noise monitoring was conducted as scheduled in the reporting month. No Action and Limit Level exceedance was recorded.
- 3.10 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.4**.
- 3.11 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 3.12 The major noise source identified at the designated noise monitoring stations is as follows:

Table 3.4 Major noise source identified at the designated noise monitoring stations

Monitoring Stations	Locations	Major Noise Source
M6(A)	Oblate Primary School	Road and marine traffic Noise
M7	CCC Kei To Secondary School	Road and marine traffic Noise
M8	Po Leung Kuk Ngan Po Ling College	Excavation works at the site (Contract No.: 1/WSD/14(K)) facing Po Leung Kuk Ngan Po Ling College
M9	Tak Long Estate	Road paving and asphalt paving works

Table 3.5 Baseline noise level and noise limit level for monitoring stations

Monitoring Stations	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
M6(A)	63.9 (at 0700 – 1900 hrs on normal weekdays)	
M7	68.7 (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on normal weekdays)
M8	61.9 (at 0700 – 1900 hrs on normal weekdays)	
M9	59.9 (at 0700 – 1900 hrs on normal weekdays)	75 (at 0700 – 1900 hrs on normal weekdays)

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 According to Section 16.1.6 (vi) of the EM&A Manual, the EM&A data were compared with the EIA predictions as summarized in **Table 4.1** to **4.3** below.

 Table 4.1
 Comparison of 1-hr TSP data with EIA predictions

Station	Predicted 1-hr TSP conc.			
	Scenario1 (Mid 2009 to	Scenario2 (Mid 2013 to	Reporting Month (May 2018), μg/m3	
	Mid 2013), μg/m3	Late 2016), μg/m3	Average	Range
AM2 – Lee Kau Yan Memorial School	290	312	207.0	140.6 – 288.3
AM3(A) - Holy Trinity Bradbury Centre (Alternative station for Sky Tower)	217	247	180.1	113.7 – 265.5
AM4(C) – New Pumping Station	N/A	N/A	267.8	190.6 – 326.8
AM5– CCC Kei To Secondary School	159	221	203.6	153.3 – 231.6

Table 4.2 Comparison of 24-hr TSP data with EIA predictions

Station	Predicted 24-hr TSP conc.			
	Scenario1 (Mid 2009 to	Scenario2 (Mid 2013 to	Reporting Month (May 2018), µg/m3	
	Mid 2013), μg/m3	Late 2016), μg/m3	Average	Range
AM2(A) – Ng Wah Catholic Secondary School (Alternative station for Lee Kau Yan Memorial School)	145	169	60.0	25.4 – 114.2
AM3(B) – Family Planning Association of Hong Kong	N/A	N/A	49.4	26.5 – 69.7
AM4(C) – New Pumping Station	N/A	N/A	34.4	23.0 – 42.0
AM5 – CCC Kei To Secondary School	103	128	24.1	17.0 – 36.6

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (Leq (30min) dB(A))	Reporting Month (May 2018), $L_{eq~(30min)}~dB(A)$
M6(A) - Oblate Primary School ^	N/A	52.4 – 64.6
M7 - CCC Kei To Secondary School	45 – 68	59.6 – 67.2
M8 - Po Leung Kuk Ngan Po Ling College	44 – 70	58.4 – 67.0
M9 – Tak Long Estate	Not predicted in EIA Report	59.0 – 70.1

^(^) Alternative noise monitoring station for M6 – Holy Carpenter Primary School from 10th October 2014 onwards.

- 4.2 The averages of 1-hour TSP concentrations in all stations in the reporting month were above the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3 The averages of 24-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.

5. LANDSCAPE AND VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's activities during the construction period on a weekly basis, and to report on the contractor's performance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 In accordance with the Action Plan presented in **Appendix J**, no corrective actions were required in the reporting month.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 4, 11, 16, 25 May 2018 in the reporting month. IEC (Arcadis) site inspection was conducted on 16 May 2018. No non-compliance was observed during the site audits.

Status of Environmental Licensing and Permitting

6.3 All permits/licenses obtained for the Project are summarized in Table 6.1.

 Table 6.1
 Summary of Environmental Licensing and Permit Status

Downit No	Valid	Period	Details	Status
Permit No.	From	To	Details	Status
Environmental Perm	it (EP)			
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	Valid
EP-344/2009	23/04/09	N/A	Construction of a new sewage pumping station serving the planned Kai Tak development with installed capacity of more than 2,000 m³ per day and a boundary of which is less than 150m from an existing or planned residential area or educational institution.	Valid
Effluent Discharge Li	cense			
WT00020971-2015	22/04/15	21/04/20	Discharge License for the discharge of wastewater from the construction site including contaminated surface run-off to the communal storm water drain	Valid
Registration of Chem	ical Waste P	roducer		
5213-286-K2958-05			Registration of chemical waste producer for chemical waste produced during construction of Stage 4 at former North Apron Area Infrastructure.	Valid

Status of Waste Management

- 6.4 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.
- In respect of the dump truck cover, the Contractor is advised to take record photos and 6.5 inspection to ensure that the skips of all dump trucks have been fully covered before leaving the site.

Implementation Status of Environmental Mitigation Measures

6.6 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 6.2.

Observations and Recommendations of Site Inspections for EP-337/2009 Table 6.2

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality			
Air Quality	4 May 2018	Reminder: To cover dusty stockpile near Sung Wong Toi Road With impervious materials.	The dusty stockpile was observed to be covered properly on 11 May 2018.
	11 May 2018	Reminder: The NRMM label should be display at a conspicuous position of the PME.	The NRMM label was provided on 16 May 2018.
Noise			
Waste/Chemical Management	ŀ		
Landscape and Visual	1-		
Permits /Licences			

Table 6.3 Observations and Recommendations of Site Inspections for EP-344/2009

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality	16 May 2018	Reminder: Debris and rubbish should be removed within the U-channel. Boarding should be provided as obstruction of drainage system.	Debris and rubbish were removed and boarding was observed to be provided as obstruction of drainage on 25 May 2018.
Air Quality	25 May 2018	Reminder: Dusty stockpile should be covered properly by impervious sheeting.	This item will be followed up in the next reporting month.
Noise			

Parameters	Date	Observations and Recommendations	Follow-up
Waste/Chemical Management			
Landscape and Visual			
Permits /Licences			

Summary of Mitigation Measures Implemented

6.7 The monthly IEC audit was carried out on 16 May 2018, the observations were recorded and they are presented as follows:

Follow up of last monthly audit:

• No follow-up actions are needed for the last monthly audit.

Observation(s) in the reporting month:

- Nil.
- 6.8 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.9 The Event Action Plans for air quality, noise and landscape and visual are presented in **Appendix J**.

1-hr TSP Monitoring

6.10 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.12 No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.13 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.14 No environmental complaint and environmental prosecution was received in the reporting month. The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project are presented in **Appendix L**.

7. FUTURE KEY ISSUES

- 7.1 Major site activities undertaken for the coming two months include:
- 13. Daily Cleaning;
 - Finishing works, E&M work and Access Road Construction in PS2;
- 14. Site Clearance works in DCS;
- 15. Road widening works and Pavement Construction at Sung Wong Toi Road;
- 16. UU laying works, Road works and water main connection in Road D2;
- 17. Finishing works and E&M works and Access Road Construction in Portion 4 (NPS & Sewerage); and
- 18. Removal of excavated materials in Portion 6.
- 7.2 The tentative construction program for the Project is provided in **Appendix N.**

Key Issues for the Coming Month

- 7.3 Key environmental issues in the coming month include:
 - 1. Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - 2. Water spraying for dust generating activity and on haul road;
 - 3. Proper storage of construction materials on site;
 - 4. Storage of chemicals/fuel and chemical waste/waste oil on site;
 - 5. Accumulation of general and construction waste on site;
 - 6. Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site; and
 - 7. Review and implementation of temporary drainage system for the surface runoff.
- 7.4 The tentative program of major site activities and the impact prediction and environmental mitigation measures for the coming two months, i.e. June and July 2018 are summarized as follows:

Table 7.1 Summary of the tentative program of major site activities, the impact prediction and control measures for June and July 2018

Construction Works	Major Impact Prediction	Control Measures
As mentioned in Section 7.1	Air quality impact (dust) Water quality impact (surface run-off)	 a) Frequent watering of haul road and unpaved/exposed areas; b) Frequent watering or covering stockpiles with tarpaulin or similar means; and c) Watering of any earth moving activities. d) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; e) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; f) Provision of site boundary bund such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and g) Provision of measures to prevent discharge into the stream.
	Noise Impact	 h) Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; i) Controlling the number of plants use on site; j) Regular maintenance of machines; and k) Use of acoustic barriers if necessary.

Monitoring Schedule for the Next Month

7.5 The tentative environmental monitoring schedules for the next month are shown in Appendix D.

Monthly EM&A Report – April 2018

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works required under the EM&A Manual were performed in the reporting month and all monitoring results were checked and reviewed.

1-hr TSP Monitoring

8.2 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. 1-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.

24-hr TSP Monitoring

All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No 8.3 Action/Limit Level exceedance was recorded. 24-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report

Construction Noise Monitoring

8.4 All construction noise monitoring was conducted as scheduled in the reporting month. No Action and Limit Level exceedance was recorded. The construction noise levels in all stations in the reporting month were within the range of predicted mitigated construction noise levels in the approved Environmental Impact Assessment (EIA) report.

Complaints, Notification of any Summons and Prosecution Received

8.5 No environmental complaint and environmental prosecution was received in the reporting month. The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project are presented in **Appendix L**.

Recommendations

8.6 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To mitigate the dust generation by adequate water spraying on dry days.

Noise Impact

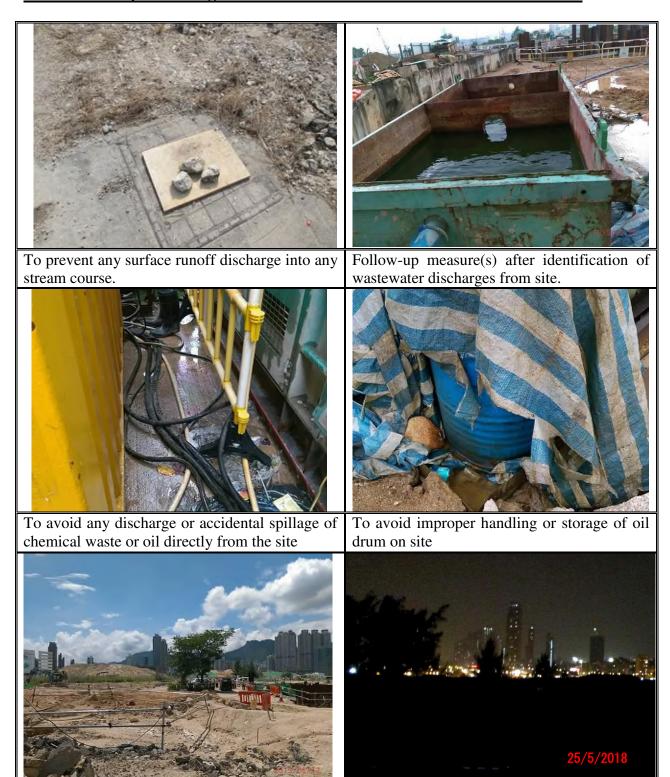
- To inspect the noise sources inside the site.
- To disperse the locations of noisy equipments and position the equipments as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers in an appropriate location.

Water Impact

- To prevent any surface runoff discharge into any stream course.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.

Waste/Chemical Management

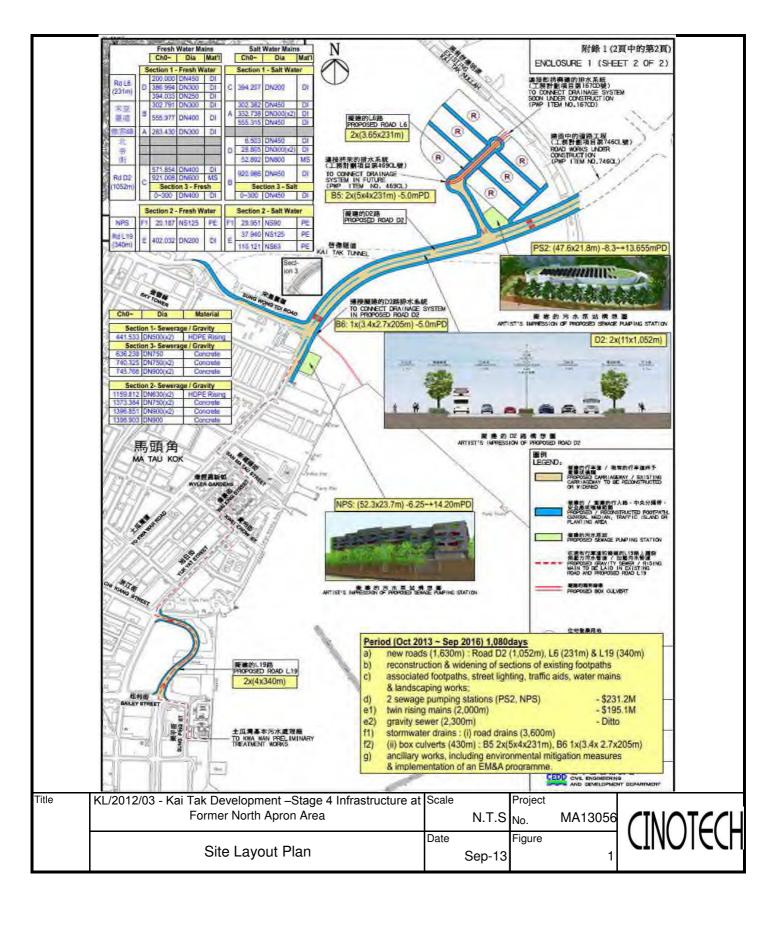
- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation);
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To provide proper storage area or drip trays for oil containers/ equipment on site.
- To avoid improper handling or storage of oil drum on site.

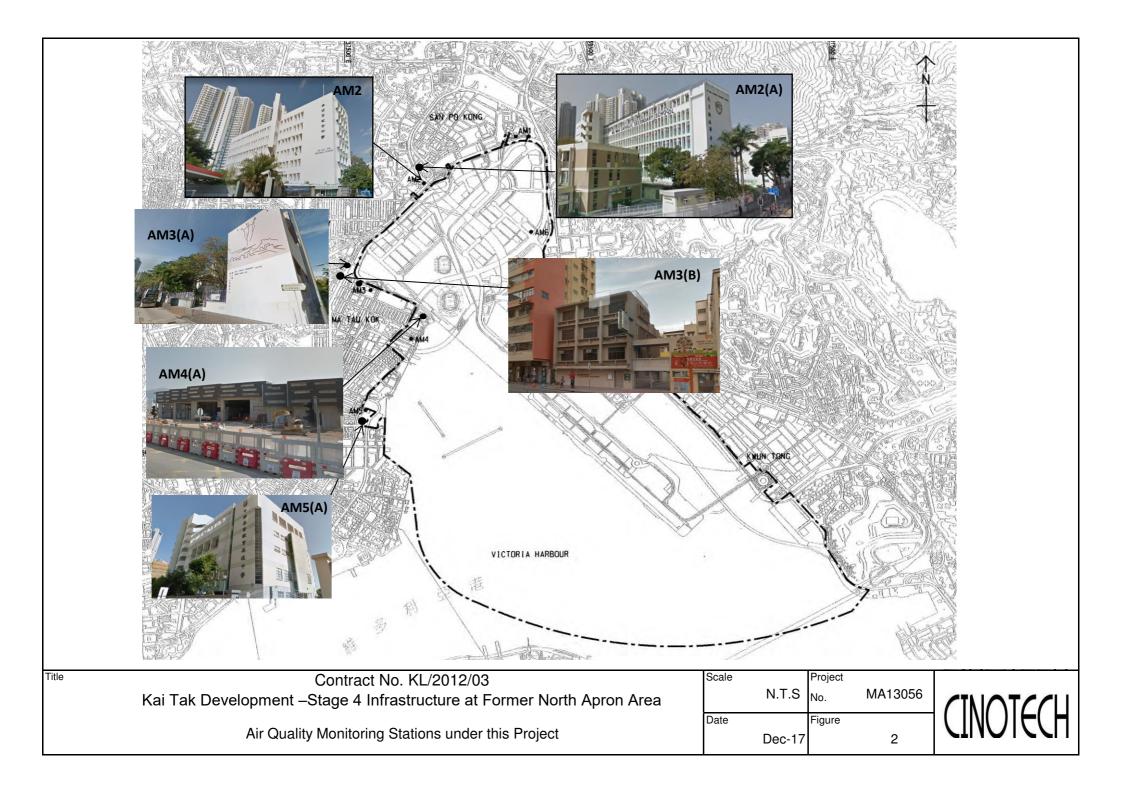

Landscape and Visual

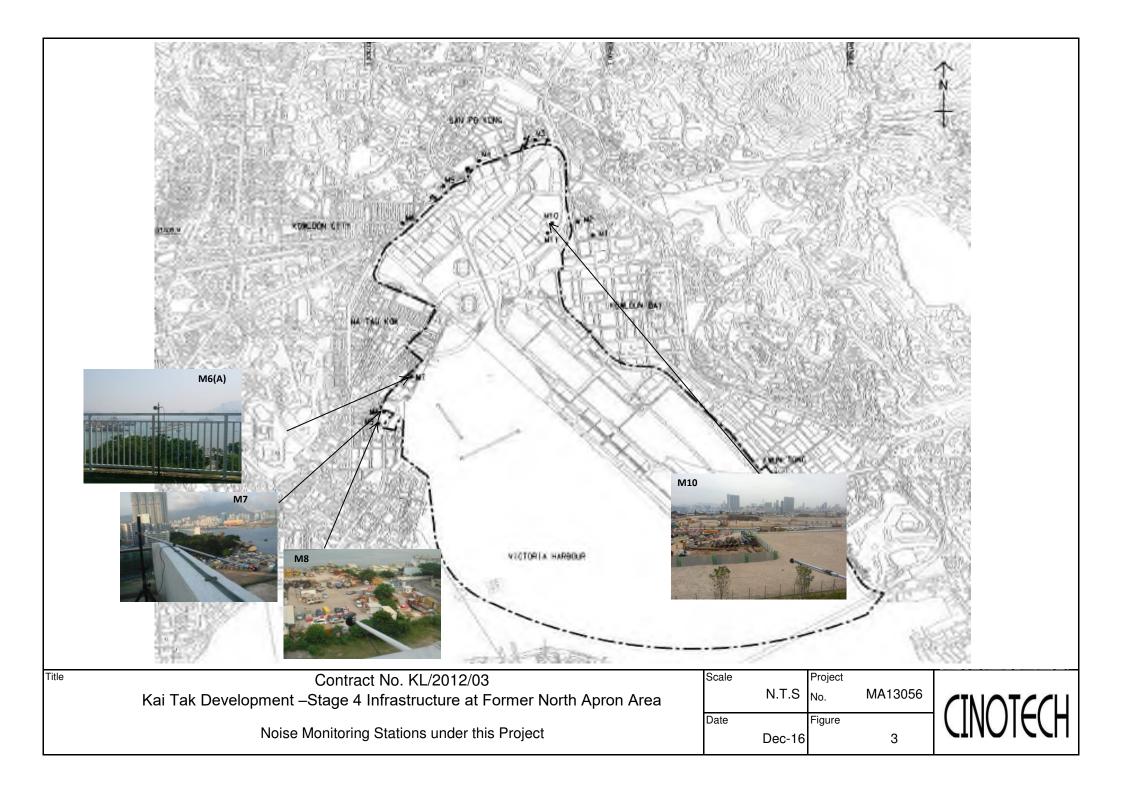
- To protect the existing trees to be retained.
- To transplant the trees unavoidably affected by the works.
- To control of night-time lighting.
- To provide decorative screen hoarding.
- To complete landscape works at site area as early as possible.

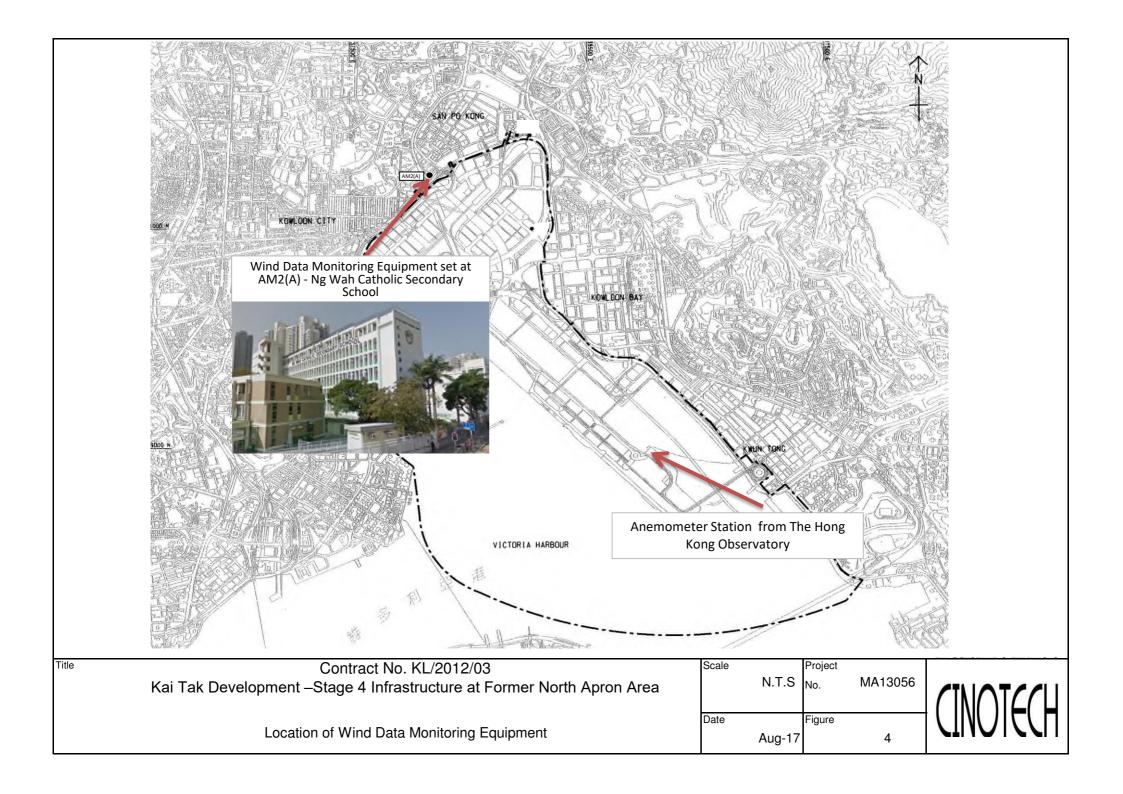
Effectiveness of Environmental Management

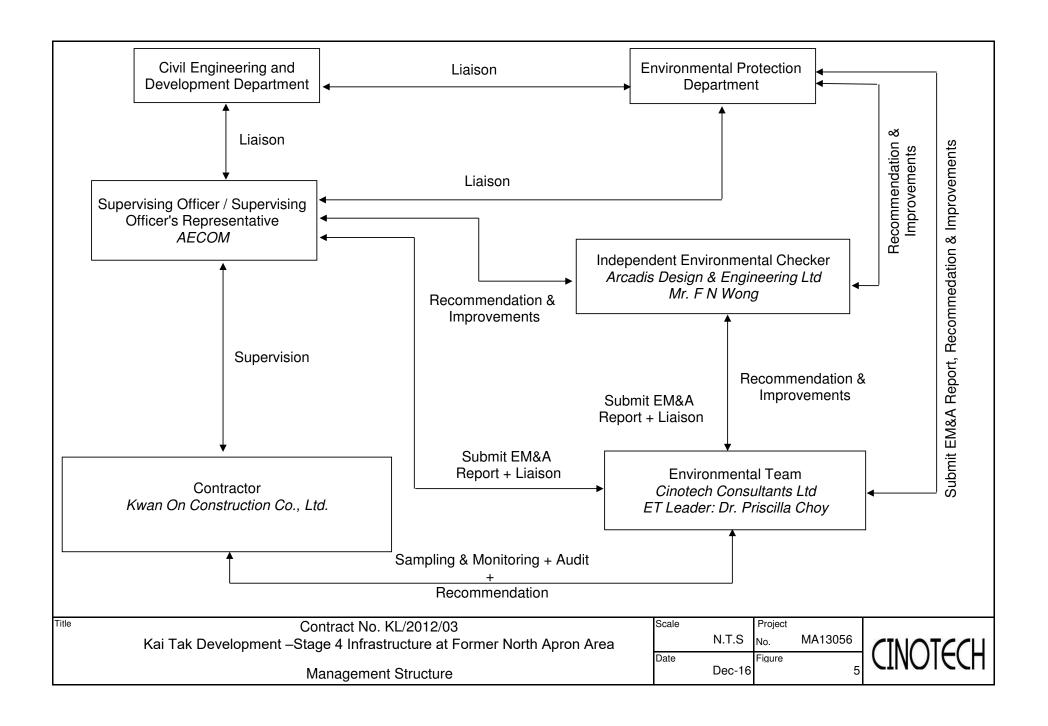
- 8.7 The above recommendations and the recommended mitigation measures in the EM&A Manual were carried out by the Contractor during construction. No non-compliance was recorded during the environmental site inspections as shown in **Appendix I**.
- 8.8 The effectiveness of environmental management is satisfactory as the above recommendations are met. Some of the examples of mitigation measures for the following recommendations are given in **Table 8.1** below.
 - Surface runoff discharge into any stream course is prevented;
 - Provision of sedimentation facilities after identification of wastewater discharges from site;
 - Discharge or accidental spillage of chemical waste or oil directly from the site is avoided:
 - Improper handling or storage of oil drum on site is avoided;
 - The existing trees to be retained are protected; and
 - Night-time lighting is controlled.


Table 8.1 Examples of Mitigation Measures for Environmental Recommendations




To protect the existing trees to be retained


To control of night-time lighting


FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for 1-Hour TSP

Location Action Level, μg/m ³		Limit Level, μg/m³		
AM2	346			
AM3(A)	351	500		
AM4(C)	371	500		
AM5	345			

Table A-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m³		
AM2(A)	157			
AM3(B)	167	260		
AM4(C)	187	260		
AM5	156			

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level	
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*	

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28787

Date of Issue: 2018-04-16

Date Received: 2018-04-13

Date Tested: 2018-04-13 Date Completed: 2018-04-16

Next Due Date: 2018-06-15

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701019

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-01

Test Conditions:

Room Temperature

: 17-22 degree Celsius

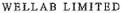
Relative Humidity

: 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:


Correlation Factor (CF)

1.168

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28787A

Date of Issue: 2018-04-16

Date Received: 2018-04-13

Date Tested: 2018-04-13

Date Completed: 2018-04-16

Next Due Date: 2018-06-15

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701016

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-03

Test Conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.203

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28788

Date of Issue: 2018-04-16

Date Received: 2018-04-13

Date Tested: 2018-04-13

Date Tested: 2018-04-15

Date Completed: 2018-04-16

Next Due Date: 2018-06-15

Page:

1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701017

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-04

Test Conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

1.158

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28789

Date of Issue: 2018-04-16

Date Received: 2018-04-13 Date Tested: 2018-04-13

Date Completed: 2018-04-16

Next Due Date:

2018-06-15

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701012

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-07

Test Conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

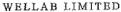
: 40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:


Correlation Factor (CF)

1.155

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/170915A
Date of Issue: 2017-09-18
Date Received: 2017-09-15

Date Tested: 2017-09-15

Date Completed: 2017-09-18

Next Due Date:

2017-09-18

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 955

Serial No.

: 12563

Microphone No.

: 34377

Equipment No.

: N-08-03

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 60%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB		
94	94.0		
114	114.0		

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Wabsite: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/170825
Date of Issue: 2017-08-28
Date Received: 2017-08-25
Date Tested: 2017-08-25
Date Completed: 2017-08-28
Next Due Date: 2018-08-27

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21455

Microphone No.

: 43730

Equipment No.

: N-08-07

Test conditions:

Room Temperatre

: 23 degree Celsius

Relative Humidity

: 60 %

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: Date of Issue:

C/N/171215 2017-12-18

Date Received:

2017-12-15

Date Tested:

2017-12-15

Date Completed:

2017-12-18

Next Due Date:

2017-12-18

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Sound & Vibration Analyser

Manufacturer

: BSWA

Model No.

:BSWA 801

Serial No.

: 35924

Equipment No.

: N-13-01

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/171215A Date of Issue: 2017-12-18 Date Received: 2017-12-15 Date Tested: 2017-12-15 Date Completed: 2017-12-18 Next Due Date:

ATTN:

Mr. W.K. Tang

Page:

1 of 1

2018-12-17

Certificate of Calibration

Item for calibration:

Description

: Sound & Vibration Analyser

Manufacturer

: BSWA

Model No.

: BSWA 801

Serial No.

: 35921

Equipment No.

: N-13-02

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB		
94	94.0		
114	114.0		

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170929
Date of Issue:	2017-09-30
Date Received:	2017-09-29
Date Tested:	2017-09-29
Date Completed:	2017-09-30
Next Due Date:	2018-09-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No. Equipment No.

: 24803 : N-09-03

Test conditions:

Room Temperatre

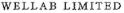
: 21 degree Celsius

Relative Humidity

: 60 %

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.


Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance	
At 94 dB SPL	94.0	94.0 ± 0.1 dB	
At 114 dB SPL	114.0	114.0 ± 0.1 dB	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170929B
Date of Issue:	2017-09-30
Date Received:	2017-09-29
Date Tested:	2017-09-29
Date Completed:	2017-09-30
Next Due Date:	2018-09-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24780

Equipment No.

: N-09-05

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 60 %

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance	
At 94 dB SPL	94.0	94.0 ± 0.1 dB	
At 114 dB SPL	114.0	114.0 ± 0.1 dB	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

						File No	MA13056/13/0005	
Station	AM2(A) - Ng Wal	h Catholic Seconda	•	_				
Date:	19-Mar-18	Next Due Date: 18-May-18 Operator:		MH				
Equipment No.:	: <u>A-01-13</u>	_	Model No.	.: <u>TE-5170</u>	-	Serial No.: _	1352	
			Ambien	t Condition				
Temperatu	ure, Ta (K)	294.4	Pressure, P	a (mmHg)		760.2		
C	1.57-		rifice Transfer S	1			0.00045	
Seria Last Calibr		2896 13-Feb-18	Slope, mc	0.0585 Intercept, bc $mc \times Qstd + bc = [\Delta H \times (Pa/760) \times (298/\Gamma a)]^{1/2}$		-0.00045		
Next Calibi		13-Feb-19		Oetd = JIAH	x (Pa/760) x (298	/Tall ^{1/2} -hel /	me .	
Next Canor	ration Date.	13-160-19		Qstu – \(\frac{1}{2}\)	X (1 A) 100) X (236	/1a) -bc//	IIIC	
			Calibration (of TSP Sampler				
Calibration	""	Or	fice			HVS		
Calibration Point	ΔH (orifice), in. of water	[ΔH x (Pa/760	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis	
1	12.8	3	.60	61.52	7.9		2.83	
2	10.9	3	.32	56.77	6.8		2.62	
3	8.1	2	2.86	48.94	5.0		2.25	
4	5.6	2	2.38	40.69	3.4		1.86	
5	3.3	1	.83	31.24	2.3		1.53	
By Linear Regi Slope , mw =	ression of Y on X 0.0439			Intercept, bw =	0.1186	6		
Correlation c	oefficient* =	0.99	981			_		
*If Correlation (Coefficient < 0.99	0, check and reca	alibrate.	-				
			Set Point	Calculation				
From the TSP F	ield Calibration C	urve, take Qstd =	= 43 CFM					
From the Regres	ssion Equation, the	e "Y" value acco	rding to					
		mw x	$Qstd + bw = [\Delta V$	V x (Pa/760) x (7	298/Ta)] ²			
Therefore, S	Set Point; W = (m	w x Qstd + bw) ²	² x (760 / Pa)x (Ta / 298)=	3.97			
Remarks:								
0.1.11	110 60 100	at .	1	· / • *		ъ.	12 2 2	
Conducted by:	LEE MAN HOL	Signature:	17	×1		Date:	19121018	
спескей бу:	WK. Tang	oignature:	/[\sigma	J/m		Date:	111217018	

CINOTECH

						File No	MA13056/13/0006
Station		h Catholic Seconda		- 16 7 1 10		0	* 4**
Date:	17-May-18	-	Next Due Date		-	_	MH
Equipment No.:	A-01-13	_	Model No.	: TE-5170	-	Serial No.:_	1352
			Ambien	t Condition			
Temperatu	ıre, Ta (K)	305.2	Pressure, Pa	a (mmHg)		759,3	
		0	rifice Transfer S	tandard Inforn	nation		
Seria	l No.	2896	Slope, mc	0.0585	Intercept		-0.00045
Last Calibr	ation Date:	13-Feb-18			bc = [ΔH x (Pa/76		
Next Calibr	ration Date:	13-Feb-19		$Qstd = \{ [\Delta H$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} /	mc
			Colibertian a	of TSP Sampler			
	Lines egin on reduktion redirektive, gillegrad	Or	fice	x xor bamplet	general entre et energie altera frei de belië	HVS	7 4 44,457 (44.44)
Calibration Point	ΔH (orifice), in. of water		0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	12.6	3	.51	59.91	8.0		2.79
2	10.8		.25	55.46	6.8		2.58
3	8.0		.79	47.74	4.9		2.19
4	5,4	2	.30	39.22	3.3		1.79
5	3.4	1	.82	31.12	2.3		1.50
	ression of Y on X 0.0455 oefficient* =	- 0.99		Intercept, bw =	0.0433	3	·
*If Correlation C	Coefficient < 0.99	0, check and reca	alibrate.	•			
			Set Point	Calculation			
From the TSP Fi	eld Calibration C	urve, take Qstd =	= 43 CFM			-	
From the Regres	sion Equation, the	e "Y" value accor	rding to				
		mw x	Qstd + bw = [ΔW	x (Pa/760) x (2	298/Ta)] ^{1/2}		•
Therefore, Se	et Point; W=(m	w x Qstd + bw) ²	x (760 / Pa) x (Γa / 298) =	4.11		
<u></u>						·	
Remarks:							
. Committee							·
Conducted by:	LEB MAN HEZ	Signotura	h	· ·		Data	17/6/20
	W K Jang	Signature: _	Kw	où		Date: Date:	17/5/2018

(B) - Hong K -Mar-18 -01-16 (K)	ong Family Plan	Ambient o	Next Due Date: Serial No. Condition	MH 21-May 3456	-18	
-01-16	293.3	Ambient	Serial No.			V. V. V.
	293.3		Condition	3456		S 44
(K)	293.3					5 15
(K)	293.3	Pressure, Pa	(mmHg)			
				l	766	
	化电压 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基					
	Or	ifice Transfer Sta	andard Inform	ation		jil.il
	2896	Slope, mc	0.0585	Intercept	, be -0.00045	
Date:	13-Feb-18		mc x Qstd + b	$\mathbf{c} = [\Delta \mathbf{H} \times (\mathbf{Pa}/76$	0) x (298/Ta) ^{1/2}	
Date:	13-Feb-19					
	· · · · · · · · · · · · · · · · · · ·					
		Calibration of	TSP Sampler			
	Orf		•	,	HVS	
(orifice),			Qstd (CFM)	ΔW (HVS), in.)] ^{1/2}
of water	[ΔH x (Pa/760) x (298/1a)]	X - axis	of water	Y-axis	-
12.6	3	.59	61.38	8.0	2.86	
10.0	3	.20	54.68	6.4	2.56	
7.9	_ 2	.84	48.60	5.3	2,33	
5.2	2.	31	39.43	3.6	1.92	
3.1	1.	.78	30.45	2.1	1,47	
0.0447	Α 96		Intercept, bw	0.1331	<u>. </u>	
			-			
		Set Point C	alculation			
libration Cu	rve, take Qstd =				· · · · · · · · · · · · · · · · · · ·	
1 ,		_				
	mw x Q	$\mathbf{std} + \mathbf{bw} = [\Delta \mathbf{W}]$	x (Pa/760) x (29	98/Ta)] ^{1/2}		
		x (760 / Pa) x (7		4.12		
	10.0 7.9 5.2 3.1 of Y on X 0.0447 ient* = cient < 0.990	Date: 13-Feb-19	Calibration of Orfice (orifice), of water [ΔH x (Pa/760) x (298/Ta)] 1/2 12.6 3.59 10.0 3.20 7.9 2.84 5.2 2.31 3.1 1.78 of Y on X 0.0447 tent* = 0.9990 client < 0.990, check and recalibrate. Set Point Calibration Curve, take Qstd = 43 CFM (quation, the "Y" value according to	Calibration of TSP Sampler	Date: 13-Feb-18 mc x Qstd + bc = [ΔH x (Pa/760) x (298/760)] Calibration of TSP Sampler Orfice (orifice), of water [ΔH x (Pa/760) x (298/Ta)] Qstd (CFM) X - axis ΔW (HVS), in. of water 12.6 3.59 61.38 8.0 10.0 3.20 54.68 6.4 7.9 - 2.84 48.60 5.3 5.2 2.31 39.43 3.6 3.1 1.78 30.45 2.1 of Y on X 0.0447 Intercept, bw : 0.1331 ient* = 0.9990 0.9990, check and recalibrate. Set Point Calculation	Date: 13-Feb-18

						File No.	MA13056/16/0004
Station	AM3(B) - Hong	Kong Family Plan	ning Association	Operator:	МН		
Date:	21-May-18			Next Due Date:	20-Jul-	18	
Equipment No.:	: <u>A-01-16</u>			Serial No.	3456		
			Ambient	Condition			
Temperatu	ıre, Ta (K)	305.9	Pressure, P	a (mmHg)		758.5	
		Or	ifice Transfer St	andard Inform	ation		
Seria	l No.	2896	Slope, mc	0.0585	Intercept	, bc	-0.00045
Last Calibr	ation Date:	13-Feb-18		mc x Qstd + l	oc = [ΔH x (Pa/76	0) x (298/Ta)]	1/2
Next Calibr	ation Date:	13-Feb-19		$Qstd = \{ [\Delta H :$	x (Pa/760) x (298/	$[Ta]^{1/2} -bc$ / 1	me
		•					
			Calibration of	TSP Sampler			
Calibration		Orf	ice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	12.7	3	.51	60.04	7.8		2.75
2	9.9	3	.10	53.01	6.1		2.44
3	8.0	2.	.79 ,	47.66	5.0		2.20
4	5.4	2.	.29	39.16	3.5		1.84
5	3.3	1.	.79	30.61	2.0		1.39
By Linear Regr	ession of Y on X	[
Slope , mw =	0.0456	_		Intercept, bw :	0.0242	<u> </u>	
Correlation co	oefficient* =	0.99	91	_			
*If Correlation C	Coefficient < 0.99	0, check and reca	librate.				
			Set Point C	Calculation			
From the TSP Fi	eld Calibration C	urve, take Qstd =	43 CFM				
From the Regress	sion Equation, th	e "Y" value accor	ding to				
			otal I. ber [A337]	(Do /7/0) (O	0.0 /2r_\1/2		
		mw x Q	$\mathbf{std} + \mathbf{bw} = [\Delta \mathbf{W}]$	x (xa//bu) x (2)	20/18)]		
Therefore, Se	et Point; W = (m	$w \times Qstd + bw)^2$	x (760 / Pa) x (Γa / 298) =	4.05		•
	,			, , <u>, , , , , , , , , , , , , , , , , </u>			
Remarks:							-
,							
			. /				
	LTT MAN HEZ	Signature:	hu,	<u>; </u>]	Date:	21/5/2018
Checked by:	wh Jana	Signature:	Kw	m <u> </u>]	Date:	21/5/2018

File No. MA13056/62/0006

Project No.	AM4(C) -						
	New Pumping S	tation under Cont	ract KL/2012/03	Operator:	MH		
Date:	3-Mar-18			Next Due Date:	2-May-	-18	
Equipment No.:	: <u>A-01-62</u>			Serial No.	2351		
			Ambient C	ondition			
Temperati	ure, Ta (K)	294,3	Pressure, Pa			759.8	
		Oı	ifice Transfer Star	adard Informati	on .		
Seria	al No.	2896	Slope, mc	0.0585	Intercept		-0.00045
Last Calibr	ration Date:	13-Feb-18	r	nc x Qstd + bc =	· [ΔH x (Pa/760) :	x (298/Ta)] ^{1/2}	
Next Calib	ration Date:	13-Feb-19		$Qstd = \{ [\Delta H \times (P)] \}$	² a/760) x (298/Ta)] ^{1/2} -bc} / mc	
		•	State of the state		a wasan wasan sa a wasan sa a a a a a a a a a a a a a a a a		observation de Management de Nation de Nation
			Calibration of	ΓSP Sampler			
Calibration		O	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/70	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	13.6		3.71	63.40	8.1		2.86
2	10.2		3.21	54.91	6.4		2.55
3	8.7		2.97	50.71	5.6		2.38
4	5.4		2.34	39.95	3.4		1.86
5	3.1		1.77	30.27	2.0		1.42
By Linear Regi	ression of Y on X			Intercept, bw :	0.0993	3	
Correlation 4	coefficient* =	0.:	9986				
- OLI VIII VIII V		0 1 1 1	ibrate.				
	 Coefficient < 0.99	u, check and reca					
	_	u, check and reca				e sa a jeg s se sejeve e deste	
	_	u, check and reca	Set Point Ca	lculation			
*If Correlation (Coefficient < 0.99	urve, take Qstd =	Set Point Ca 43 CFM	lculation			
*If Correlation (Coefficient < 0.99	urve, take Qstd =	Set Point Ca 43 CFM	ılculation			
*If Correlation (Coefficient < 0.99	urve, take Qstd = e "Y" value accor	Set Point Ca 43 CFM ding to		Та)ј ^{1/2}		
*If Correlation (Coefficient < 0.99	urve, take Qstd = e "Y" value accor	Set Point Ca 43 CFM		Ta)] ^{1/2}		
*If Correlation (Coefficient < 0.99	urve, take Qstd = e "Y" value accor mw x (Set Point Ca 43 CFM ding to	(Pa/760) x (298/	Ta)] ^{1/2}		
*If Correlation (Coefficient < 0.99	urve, take Qstd = e "Y" value accor mw x (Set Point Ca 43 CFM ding to $2 \text{ Std} + b w = [\Delta W \text{ x}]$	(Pa/760) x (298/			
*If Correlation (Coefficient < 0.99	urve, take Qstd = e "Y" value accor mw x (Set Point Ca 43 CFM ding to $2 \text{ Std} + b w = [\Delta W \text{ x}]$	(Pa/760) x (298/			
*If Correlation (From the TSP F From the Regres	Coefficient < 0.99	urve, take Qstd = e "Y" value accor mw x (Set Point Ca 43 CFM ding to $2 \text{ Std} + b w = [\Delta W \text{ x}]$	(Pa/760) x (298/			
*If Correlation (From the TSP F From the Regres	Coefficient < 0.99	urve, take Qstd = e "Y" value accor mw x (Set Point Ca 43 CFM ding to $2 \text{ Std} + b w = [\Delta W \text{ x}]$	(Pa/760) x (298/			
*If Correlation (From the TSP F From the Regres	Coefficient < 0.99	urve, take Qstd = e "Y" value accor mw x (Set Point Ca 43 CFM ding to $2 \text{ Std} + b w = [\Delta W \text{ x}]$	(Pa/760) x (298/			
*If Correlation O From the TSP F From the Regres Therefore, Remarks:	Coefficient < 0.99	urve, take Qstd = e "Y" value accor mw x (mw x Qstd + bw)	Set Point Ca 43 CFM ding to $2 \text{ Std} + b w = [\Delta W \text{ x}]$	(Pa/760) x (298/	3.95		7 - 3 - 2.0
*If Correlation O From the TSP F From the Regres Therefore, Remarks:	Coefficient < 0.99	urve, take Qstd = e "Y" value accor mw x (mw x Qstd + bw)	Set Point Ca 43 CFM ding to $2 \text{ Std} + b w = [\Delta W \text{ x}]$	(Pa/760) x (298/	3.95	Date:	3-3-20

File No. MA13056/62/0007 Project No. AM4(C) -New Pumping Station under Contract KL/2012/03 Operator: MH 29-Jun-18 Date: 30-Apr-18 Next Due Date: Equipment No.: A-01-62 Serial No. 2351 **Ambient Condition** Temperature, Ta (K) 301.1 Pressure, Pa (mmHg) 763 Orifice Transfer Standard Information Serial No. 2896 0.0585 Slope, mc Intercept, bc -0.00045 $mc \times Qstd + bc = [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 13-Feb-18 Qstd = $\{[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc\} / mc$ Next Calibration Date: 13-Feb-19 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 13.6 3.68 62.81 1 8.2 2.85 10.4 2 3.21 54.93 6.7 2.58 8.8 2.96 3 50.53 5.4 2.32 4 5.1 38.47 2.25 3.2 1.78 5 3.2 1.78 30.47 2.1 1.44 By Linear Regression of Y on X Slope, mw = 0.04450.0849 Intercept, bw :____ Correlation coefficient* = 0.9986 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(\text{mw x Qstd} + \text{bw})^2 \times (760 / \text{Pa}) \times (\text{Ta}/298) =$ 4.02 Remarks:

Conducted by: UK 1044 HDz Signature: Signature:

						File No	MA13056/59/0006
Station	AM5 - CCC Ke	To Secondary S	chool	_ Operator:	МН		
Date:	3-Apr-18			Next Due Date:	2-Jun-	18	
Equipment No.:	Equipment No.: A-01-59			Serial No.	2354		
			Ambient	Condition			
Temperati	ıre, Ta (K)	301.2	Pressure, Pa			763	
•			<u> </u>	τ σ,			
		Or	ifice Transfer St	andard Inform	ation		
Seria	I No.	2896	Slope, mc	0.0585	Intercept		-0.00045
Last Calibr	ation Date:	13-Feb-18		mc x Qstd + l	$\mathbf{c} = \mathbf{\Delta}\mathbf{H} \times (\mathbf{P}\mathbf{a}/76)$	(0) x (298/Ta)]	1/2
Next Caliba	ration Date:	13-Feb-19		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} :$	x (Pa/760) x (298/	/Ta)] ^{1/2} -bc} /1	mc
		•					
			Calibration of	TSP Sampler			
Calibration		Ort	ice	T		HVS	1/2
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760)) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	12.8	3	.57	60.93	7.9		2.80
2	10.7	3	.26	55.71	6.6		2.56
3	7.9	2	.80	47.87	4.7		2.16
4	5.3	2	.29	39.21	3.4		1.84
5	3.5	1	.86	31.86	2.3		1.51
By Linear Regi Slope , mw = Correlation c	0.0441 coefficient* =	0. 99		Intercept, bw	0.0942	2	,
	Coefficient < 0.99	0, check and reca	librate.	-			
The Sales of the S	Silver and the second second second second		The first factor of the factor	rant a ar warner and as beaut a	AND THE RESIDENCE OF THE PROPERTY OF THE PARTY OF THE PAR		. Na sana ili a suo cara a sana a sana a sana a
				Calculation			
	ield Calibration C	-					
From the Regres	ssion Equation, the	e "Y" value accor	ding to				
		mw x O	$\mathbf{p}_{\mathbf{S}}(\mathbf{M}) = \mathbf{M}$	x (Pa/760) x (2	98/Ta)l ^{1/2}		*
				(
Therefore, S	et Point; W = (m	$w \times Qstd + bw)^2$	x (760/Pa)x(Ta / 298) =	4.00		
Remarks:							
· · · · ·							
			,				
Conducted by:	LATE MAN HELL	Signature:	he	<u>'```</u>	1	Date:	3/4/2018

RECALIBRATION **DUE DATE:**

February 13, 2019

Calibration Certification Information

Cal. Date: February 13, 2018 Rootsmeter 5/N: 438320

Calibrator S/N: 2896

Ta: 293 Pa: 763.3

Operator: Jim Tisch

mm Hg

Calibration Model #:

TE-5025A

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4670	3.2	2.00
2	3	4	1	1.0380	6.4	4.00
3	5	6	1	0.9220	8.0	5.00
4	7	8	1	0.8840	8.8	5.50
5	g	10	1	0.7250	12.8	8.00

	Data Tabulation						
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)}$		Qa	$\sqrt{\Delta H \left(\text{Ta/Pa} \right)}$		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
1.0172	0.6934	1.4293	0.9958	0.6788	0.8762		
1.0129	0.9758	2.0213	0.9916	0.9553	1.2392		
1.0107	1.0962	2.2599	0.9895	1.0732	1.3854		
1.0097	1.1422	2.3702	0.9885	1,1182	1.4530		
1.0043	1.3853	2.8586	0.9832	1.3562	1.7524		
	m=	2.06726		m=	1.29448		
QSTD[b=	-0.00045	QA [b=	-0.00028		
	r=	0.99992	1	r=	0.99992		

Calculations					
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime		
	For subsequent flow ra	te calculatio	ns:		
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$		

	Standard	Conditions
Tstd:	298.15	°K
Pstd:	760	mm Hg
	ŀ	(ey
ΔH: calibrato	r manomet	er reading (in H2O)
ΔP: rootsmet	er manom	eter reading (mm Hg)
Ta: actual ab	solute tem	perature (°K)
Pa: actual ba	rometric pi	ressure (mm Hg)
b: intercept		
m: slope		

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 28394E

 Date of Issue:
 2018-02-25

 Date Received:
 2018-02-24

 Date Tested:
 2018-02-24

Date Completed: 2018-02-25 Next Due Date: 2018-08-24

1 of 2

ATTN: Mr. W.K. Tang Page:

Certificate of Calibration

Item for calibration:

Description

: Weather Stations, Vantage Pro2

Manufacturer

: Davis Instruments

Model No.

: 6152CUK

Serial No.

: AK130520006

Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70 %

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 28394E

 Date of Issue:
 2018-02-25

 Date Received:
 2018-02-24

 Date Tested:
 2018-02-24

 Date Completed:
 2018-02-25

 Next Due Date:
 2018-08-24

Page:

2 of 2

Results:

1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	Reference Value (V1)	D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45.1	45	0.1
90	90	0
135.2	135	0.2
180.3	180	0.3
224.8	225	-0.2
270	270	0
315.1	315	0.1
360	360	0

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 May 2018	27.3	80	Trace
2 May 2018	27.9	75	-
3 May 2018	27.1	80	1.9
4 May 2018	23.8	82	0.8
5 May 2018	25.3	82	Trace
6 May 2018	27.6	80	1
7 May 2018	28	82	6.7
8 May 2018	25.2	91	28.4
9 May 2018	24.6	88	5.4
10 May 2018	23	89	8
11 May 2018	23.8	86	1
12 May 2018	26.5	82	-
13 May 2018	27.7	79	-
14 May 2018	28.6	77	-
15 May 2018	28.7	76	-
16 May 2018	28.6	74	-
17 May 2018	29.4	75	-
18 May 2018	29.8	74	-
19 May 2018	29.8	74	-

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 May 2018	30.1	72	-
21 May 2018	30.3	71	-
22 May 2018	30.4	69	-
23 May 2018	30.5	69	-
24 May 2018	30	73	-
25 May 2018	29.8	71	Trace
26 May 2018	30.7	72	0.9
27 May 2018	30	76	3.4
28 May 2018	30.3	72	-
29 May 2018	31.1	69	-
30 May 2018	31.2	69	-
31 May 2018	31.1	70	-

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

^{**} Trace means rainfall less than 0.05 mm

1-May-2018 00:00 1.8 1-May-2018 01:00 1.5 1-May-2018 02:00 1.8 1-May-2018 03:00 1.6 1-May-2018 04:00 1.4 1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	rection NE ENE ENE ENE N NE NE NNE NNE NE ESE
1-May-2018 01:00 1.5 1-May-2018 02:00 1.8 1-May-2018 03:00 1.6 1-May-2018 04:00 1.4 1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	ENE ENE N NE NNE NE
1-May-2018 02:00 1.8 1-May-2018 03:00 1.6 1-May-2018 04:00 1.4 1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	ENE N NE NNE NE
1-May-2018 03:00 1.6 1-May-2018 04:00 1.4 1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	ENE N NE NNE NE
1-May-2018 04:00 1.4 1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	N NE NNE NE
1-May-2018 05:00 1.5 1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	NE NNE NE
1-May-2018 06:00 1.2 1-May-2018 07:00 1.6	NNE NE
1-May-2018 07:00 1.6	NE
1-May-2018 08:00 2	ESE
1-May-2018 09:00 2.6	WSW
1-May-2018 10:00 2.8	W
1-May-2018 11:00 3.1	N
1-May-2018 12:00 3.3	NE
1-May-2018 13:00 3.4	SW
1-May-2018 14:00 3.2	NE
1-May-2018 15:00 2.8	N
1-May-2018 16:00 2.7	N
1-May-2018 17:00 2.2	NNE
1-May-2018 18:00 2.3	ENE
1-May-2018 19:00 1.9	NE
1-May-2018 20:00 2	SE
1-May-2018 21:00 2.6	N
1-May-2018 22:00 2.8	ENE
1-May-2018 23:00 2.4	E
2-May-2018 00:00 1.9	ENE
2-May-2018 01:00 1.7	ENE
2-May-2018 02:00 1.9	NNW
2-May-2018 03:00 1.6	SSE
2-May-2018 04:00 1.6	ENE
2-May-2018 05:00 1.4	ENE
2-May-2018 06:00 1.2	ENE
2-May-2018 07:00 1.3	N
2-May-2018 08:00 1.4	N
2-May-2018 09:00 1.4	ENE
2-May-2018 10:00 1.7	SSE
2-May-2018 11:00 1.9	NE
2-May-2018 12:00 2.3	SW

2-May-2018 2-May-2018	13:00	2.1	N
2-May-2018			1
,	14:00	2.4	NE
2-May-2018	15:00	2.3	ENE
2-May-2018	16:00	2	NE
2-May-2018	17:00	2	NNE
2-May-2018	18:00	1.6	NNW
2-May-2018	19:00	1.4	N
2-May-2018	20:00	1.1	N
2-May-2018	21:00	1.5	N
2-May-2018	22:00	1.3	NNE
2-May-2018	23:00	1.3	NE
3-May-2018	00:00	1.6	NNE
3-May-2018	01:00	2	N
3-May-2018	02:00	1.8	E
3-May-2018	03:00	1.6	SE
3-May-2018	04:00	1.3	ENE
3-May-2018	05:00	1.5	NE
3-May-2018	06:00	1.3	ENE
3-May-2018	07:00	1.8	ENE
3-May-2018	08:00	2	SE
3-May-2018	09:00	2.3	Е
3-May-2018	10:00	2.8	ENE
3-May-2018	11:00	3.1	Е
3-May-2018	12:00	3.2	WSW
3-May-2018	13:00	3.4	W
3-May-2018	14:00	3.3	NNE
3-May-2018	15:00	2.8	Е
3-May-2018	16:00	3.5	E
3-May-2018	17:00	2.9	W
3-May-2018	18:00	2.5	Е
3-May-2018	19:00	2.3	Е
3-May-2018	20:00	2.1	NNE
3-May-2018	21:00	2	N
3-May-2018	22:00	2.4	ENE
3-May-2018	23:00	1.7	E
4-May-2018	00:00	2	N
4-May-2018	01:00	2.4	ENE
4-May-2018	02:00	2.7	Е

4-May-2018 04:00 2.3 M 4-May-2018 05:00 2.7 M 4-May-2018 06:00 2.4 E 4-May-2018 07:00 2.7 E 4-May-2018 08:00 2.7 M 4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 S 4-May-2018 12:00 3.5 W	E NE
4-May-2018 05:00 2.7 N 4-May-2018 06:00 2.4 E 4-May-2018 07:00 2.7 E 4-May-2018 08:00 2.7 N 4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 S 4-May-2018 12:00 3.5 W	NE :NE :NE :NE :NE :NE :NE :NE :NE :NE
4-May-2018 06:00 2.4 E 4-May-2018 07:00 2.7 E 4-May-2018 08:00 2.7 N 4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 3 4-May-2018 12:00 3.5 W	INE
4-May-2018 07:00 2.7 E 4-May-2018 08:00 2.7 N 4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 3 4-May-2018 12:00 3.5 W	INE INE INE INE SE INW
4-May-2018 08:00 2.7 M 4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 3 4-May-2018 12:00 3.5 W	NE :NE INE SE 'NW
4-May-2018 09:00 3.2 E 4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 \$ 4-May-2018 12:00 3.5 W	INE INE SE 'NW
4-May-2018 10:00 3.1 N 4-May-2018 11:00 3.4 S 4-May-2018 12:00 3.5 W	INE SE 'NW
4-May-2018 11:00 3.4 5 4-May-2018 12:00 3.5 W	SE 'NW
4-May-2018 12:00 3.5 W	'NW
4 May 2019 12:00 2.5	SE ————
4-IVIAY-2016 13.00 3.5	
4-May-2018 14:00 3.4 S	SSE
4-May-2018 15:00 3.1 E	SE
4-May-2018 16:00 3.3 E	SE
4-May-2018 17:00 3.3	SE
4-May-2018 18:00 2.7	SE
4-May-2018 19:00 2.7 N	INE
4-May-2018 20:00 2.7	N
4-May-2018 21:00 2.5	NE
4-May-2018 22:00 2.7 N	INE
4-May-2018 23:00 2.6 N	INE
5-May-2018 00:00 2.6	NE
5-May-2018 01:00 2.2 N	INE
5-May-2018 02:00 2.1 E	SE
5-May-2018 03:00 1.9 S	SSE
5-May-2018 04:00 2.2	N
5-May-2018 05:00 2	NE
5-May-2018 06:00 2.5	NE
5-May-2018 07:00 1.5 N	INE
5-May-2018 08:00 2.4 N	NE
5-May-2018 09:00 3.2 N	NW
5-May-2018 10:00 3.3 N	NE
5-May-2018 11:00 2.7 E	:NE
5-May-2018 12:00 2.6	NE
5-May-2018 13:00 2.8	N
5-May-2018 14:00 2.4 E	:NE
5-May-2018 15:00 3.2 N	NE
5-May-2018 16:00 3.1	SE

II.	Mean Wind	Speed and Wind D	irection	
	5-May-2018	17:00	3.1	SE
	5-May-2018	18:00	3.2	S
	5-May-2018	19:00	2.2	N
	5-May-2018	20:00	2.3	ENE
	5-May-2018	21:00	2.7	NW
	5-May-2018	22:00	2.5	WSW
	5-May-2018	23:00	2.4	NE
	6-May-2018	00:00	2.3	W
	6-May-2018	01:00	2.2	WSW
	6-May-2018	02:00	2	NE
	6-May-2018	03:00	2.3	SSW
	6-May-2018	04:00	2	W
	6-May-2018	05:00	1.8	E
	6-May-2018	06:00	1.6	NNE
	6-May-2018	07:00	1.4	N
	6-May-2018	08:00	1.6	NNE
	6-May-2018	09:00	2	NE
	6-May-2018	10:00	2.5	NNE
	6-May-2018	11:00	2.8	NNE
	6-May-2018	12:00	3	NE
	6-May-2018	13:00	3.3	ESE
	6-May-2018	14:00	2.6	E
	6-May-2018	15:00	2.5	ENE
	6-May-2018	16:00	2.9	SSE
	6-May-2018	17:00	2.5	ESE
	6-May-2018	18:00	2.5	NE
	6-May-2018	19:00	2.1	WNW
	6-May-2018	20:00	1.9	WNW
	6-May-2018	21:00	1.6	SE
	6-May-2018	22:00	1.6	N
	6-May-2018	23:00	1.4	ESE
	7-May-2018	00:00	1.4	SSE
	7-May-2018	01:00	1.4	ESE
	7-May-2018	02:00	1.3	NE
	7-May-2018	03:00	1.2	ESE
	7-May-2018	04:00	1.2	NE
	7-May-2018	05:00	1.1	SE
	7-May-2018	06:00	0.9	ENE

11.	Wican Willu	Speed and wind D	ii ection	
	7-May-2018	07:00	0.8	SSE
	7-May-2018	08:00	1	SSE
	7-May-2018	09:00	1.5	ENE
	7-May-2018	10:00	2	N
	7-May-2018	11:00	2.3	NE
	7-May-2018	12:00	2.7	WNW
	7-May-2018	13:00	2.3	WNW
	7-May-2018	14:00	2.3	SW
	7-May-2018	15:00	2.5	W
	7-May-2018	16:00	2.3	SE
	7-May-2018	17:00	2.1	SSE
	7-May-2018	18:00	1.6	SSW
	7-May-2018	19:00	1.6	NE
	7-May-2018	20:00	1.5	NNE
	7-May-2018	21:00	1.6	WNW
	7-May-2018	22:00	1.4	W
	7-May-2018	23:00	1.1	ENE
	8-May-2018	00:00	1.2	ESE
	8-May-2018	01:00	1.5	SSW
	8-May-2018	02:00	1.6	S
	8-May-2018	03:00	1.4	S
	8-May-2018	04:00	1.1	W
	8-May-2018	05:00	1.3	SE
	8-May-2018	06:00	1.3	SSE
	8-May-2018	07:00	1.4	WSW
	8-May-2018	08:00	1.6	ESE
	8-May-2018	09:00	2.2	NE
	8-May-2018	10:00	2.3	SE
	8-May-2018	11:00	2.4	WSW
	8-May-2018	12:00	2.7	WNW
	8-May-2018	13:00	2.8	SW
	8-May-2018	14:00	3	W
	8-May-2018	15:00	3.3	WNW
	8-May-2018	16:00	2.3	WSW
	8-May-2018	17:00	2.2	S
	8-May-2018	18:00	2.2	SW
	8-May-2018	19:00	2	N
	8-May-2018	20:00	1.8	NE

11.	Wican Willu	Speed and wind D	пссион	
	8-May-2018	21:00	2.2	ENE
	8-May-2018	22:00	2.1	SW
	8-May-2018	23:00	2	SW
	9-May-2018	00:00	2.2	ENE
	9-May-2018	01:00	2.3	ESE
	9-May-2018	02:00	2	NNE
	9-May-2018	03:00	2.1	ESE
	9-May-2018	04:00	1.9	NNE
	9-May-2018	05:00	1.7	ENE
	9-May-2018	06:00	1.4	ENE
	9-May-2018	07:00	1.5	WNW
	9-May-2018	08:00	1.9	WNW
	9-May-2018	09:00	2.2	NNW
	9-May-2018	10:00	2.5	NE
	9-May-2018	11:00	2.5	SSE
	9-May-2018	12:00	3	ESE
	9-May-2018	13:00	2.7	NNE
	9-May-2018	14:00	2	NNE
	9-May-2018	15:00	2.3	ENE
	9-May-2018	16:00	2.4	WSW
	9-May-2018	17:00	2.2	W
	9-May-2018	18:00	1.6	ENE
	9-May-2018	19:00	1.3	ESE
	9-May-2018	20:00	1.1	N
	9-May-2018	21:00	1	W
	9-May-2018	22:00	1	SW
	9-May-2018	23:00	1.1	S
	10-May-2018	00:00	1.3	WSW
	10-May-2018	01:00	1.3	ESE
	10-May-2018	02:00	1.1	SSE
	10-May-2018	03:00	0.9	W
	10-May-2018	04:00	0.9	NNE
	10-May-2018	05:00	1	Е
	10-May-2018	06:00	0.8	ENE
	10-May-2018	07:00	1	SSE
	10-May-2018	08:00	1.1	NNE
	10-May-2018	09:00	1.5	WSW
	10-May-2018	10:00	2	ENE

		Speed and wind D	11 0001011	
	10-May-2018	11:00	2.6	S
,	10-May-2018	12:00	2.7	NNE
,	10-May-2018	13:00	2.6	NNE
	10-May-2018	14:00	2.4	ESE
	10-May-2018	15:00	2.4	S
	10-May-2018	16:00	2.5	NW
,	10-May-2018	17:00	2.5	N
	10-May-2018	18:00	1.8	NNE
	10-May-2018	19:00	1.2	NE
	10-May-2018	20:00	1.5	WNW
	10-May-2018	21:00	1.7	SE
	10-May-2018	22:00	1.3	SSE
	10-May-2018	23:00	1.3	SE
	11-May-2018	00:00	1.3	SE
	11-May-2018	01:00	1.4	NE
	11-May-2018	02:00	1.4	E
	11-May-2018	03:00	1.5	NE
	11-May-2018	04:00	1.4	NE
	11-May-2018	05:00	1.3	NE
	11-May-2018	06:00	1.3	Е
	11-May-2018	07:00	1.2	NE
	11-May-2018	08:00	1.3	NE
	11-May-2018	09:00	1.5	NE
	11-May-2018	10:00	2	ESE
	11-May-2018	11:00	2.5	WSW
	11-May-2018	12:00	2.7	NE
	11-May-2018	13:00	2.5	SSW
	11-May-2018	14:00	2.4	WSW
	11-May-2018	15:00	2.6	SW
	11-May-2018	16:00	2.1	SSW
	11-May-2018	17:00	2	WNW
	11-May-2018	18:00	1.6	ESE
	11-May-2018	19:00	1.5	ENE
	11-May-2018	20:00	1.4	ENE
	11-May-2018	21:00	1.3	E
	11-May-2018	22:00	1.2	NE
	11-May-2018	23:00	1.2	ENE
	12-May-2018	00:00	1.1	ENE

II. Mean Wind	Speed and Wind D	irection	
12-May-2018	01:00	1.1	ENE
12-May-2018	02:00	0.9	NNE
12-May-2018	03:00	1	WNW
12-May-2018	04:00	1	NNE
12-May-2018	05:00	1.1	WNW
12-May-2018	06:00	0.9	NNE
12-May-2018	07:00	0.7	N
12-May-2018	08:00	1.1	NNE
12-May-2018	09:00	1.7	S
12-May-2018	10:00	2.2	SSW
12-May-2018	11:00	2.5	SSW
12-May-2018	12:00	2.9	ENE
12-May-2018	13:00	2.7	NNE
12-May-2018	14:00	2.9	NNE
12-May-2018	15:00	3	NE
12-May-2018	16:00	2.7	WNW
12-May-2018	17:00	2.7	W
12-May-2018	18:00	2.3	WSW
12-May-2018	19:00	2.6	NE
12-May-2018	20:00	2.4	NE
12-May-2018	21:00	2.1	NE
12-May-2018	22:00	2.1	SSW
12-May-2018	23:00	2.3	WSW
13-May-2018	00:00	1.9	SSW
13-May-2018	01:00	1.9	NE
13-May-2018	02:00	1.9	NNE
13-May-2018	03:00	1.9	W
13-May-2018	04:00	1.7	WNW
13-May-2018	05:00	1.6	WNW
13-May-2018	06:00	1.6	ENE
13-May-2018	07:00	1.5	NE
13-May-2018	08:00	1.5	SE
13-May-2018	09:00	2.1	SSE
13-May-2018	10:00	2.2	SSE
13-May-2018	11:00	2.6	SW
13-May-2018	12:00	3.1	SW
13-May-2018	13:00	2.9	SW
13-May-2018	14:00	3.1	SW

11.	Wican Willu	Speed and wind D	ii ection	
	13-May-2018	15:00	2.5	ENE
	13-May-2018	16:00	2.8	SW
	13-May-2018	17:00	2.5	NNE
	13-May-2018	18:00	2.2	SSW
	13-May-2018	19:00	1.8	SW
	13-May-2018	20:00	1.6	SW
	13-May-2018	21:00	1.6	WNW
	13-May-2018	22:00	1.3	W
	13-May-2018	23:00	1.3	SW
	14-May-2018	00:00	1.3	NNE
	14-May-2018	01:00	1.3	ESE
	14-May-2018	02:00	1.3	SSE
	14-May-2018	03:00	1.4	N
	14-May-2018	04:00	1.2	WSW
	14-May-2018	05:00	1.3	WSW
	14-May-2018	06:00	1.2	WSW
	14-May-2018	07:00	1.3	ESE
	14-May-2018	08:00	1.7	NE
	14-May-2018	09:00	2.2	NE
	14-May-2018	10:00	2.3	NNE
	14-May-2018	11:00	2.7	ENE
	14-May-2018	12:00	2.9	W
	14-May-2018	13:00	3	W
	14-May-2018	14:00	2.8	WNW
	14-May-2018	15:00	2.4	W
	14-May-2018	16:00	2.3	S
	14-May-2018	17:00	2.1	WNW
	14-May-2018	18:00	1.9	WNW
	14-May-2018	19:00	1.9	W
	14-May-2018	20:00	1.8	W
	14-May-2018	21:00	1.8	NW
	14-May-2018	22:00	1.7	WNW
	14-May-2018	23:00	1.5	WNW
	15-May-2018	00:00	1.7	WNW
	15-May-2018	01:00	1.4	W
	15-May-2018	02:00	1.6	W
	15-May-2018	03:00	1.6	WNW
	15-May-2018	04:00	1.8	NW

11.	Mean wind	Speed and Wind D	rection	
	15-May-2018	05:00	1.9	W
	15-May-2018	06:00	1.8	W
	15-May-2018	07:00	1.7	W
	15-May-2018	08:00	1.8	WNW
	15-May-2018	09:00	1.7	W
	15-May-2018	10:00	1.9	W
	15-May-2018	11:00	2	WSW
	15-May-2018	12:00	2	SW
	15-May-2018	13:00	2	SSW
	15-May-2018	14:00	2	W
	15-May-2018	15:00	2	SSW
	15-May-2018	16:00	2	W
	15-May-2018	17:00	1.7	WNW
	15-May-2018	18:00	1.5	W
	15-May-2018	19:00	1.3	WSW
	15-May-2018	20:00	1	SSW
	15-May-2018	21:00	1.1	WSW
	15-May-2018	22:00	1	WSW
	15-May-2018	23:00	1.1	W
	16-May-2018	00:00	1.2	W
	16-May-2018	01:00	1.4	WSW
	16-May-2018	02:00	1.4	WNW
	16-May-2018	03:00	1.7	NNE
	16-May-2018	04:00	1.7	SSW
	16-May-2018	05:00	1.7	WNW
	16-May-2018	06:00	1.2	W
	16-May-2018	07:00	1.7	WNW
	16-May-2018	08:00	1.8	WSW
	16-May-2018	09:00	2.4	WNW
	16-May-2018	10:00	2.6	NE
	16-May-2018	11:00	2.7	WSW
	16-May-2018	12:00	3	WSW
	16-May-2018	13:00	2.7	WNW
	16-May-2018	14:00	2.8	W
	16-May-2018	15:00	3	W
	16-May-2018	16:00	2.8	W
	16-May-2018	17:00	2.5	WSW
	16-May-2018	18:00	2.2	W

11.	Wicali Willu	Speed and wind D	пссион	
	16-May-2018	19:00	2.2	W
	16-May-2018	20:00	1.8	W
	16-May-2018	21:00	1.8	WSW
	16-May-2018	22:00	2	SW
	16-May-2018	23:00	1.9	N
	17-May-2018	00:00	1.7	N
	17-May-2018	01:00	1.9	NE
	17-May-2018	02:00	1.9	ESE
	17-May-2018	03:00	1.8	W
	17-May-2018	04:00	1.6	WNW
	17-May-2018	05:00	1.8	WNW
	17-May-2018	06:00	1.7	W
	17-May-2018	07:00	1.9	S
	17-May-2018	08:00	2.2	WNW
	17-May-2018	09:00	2.6	SW
	17-May-2018	10:00	3	WSW
	17-May-2018	11:00	2.7	W
	17-May-2018	12:00	2.9	WSW
	17-May-2018	13:00	2.9	SW
	17-May-2018	14:00	2.9	SW
	17-May-2018	15:00	3.2	SW
	17-May-2018	16:00	3.4	W
	17-May-2018	17:00	2.9	W
	17-May-2018	18:00	2.6	N
	17-May-2018	19:00	2.6	N
	17-May-2018	20:00	2.7	E
	17-May-2018	21:00	2.7	ENE
	17-May-2018	22:00	2.8	ENE
	17-May-2018	23:00	2.4	E
	18-May-2018	00:00	2.2	ENE
	18-May-2018	01:00	2.4	ENE
	18-May-2018	02:00	2.2	ENE
	18-May-2018	03:00	2	ENE
	18-May-2018	04:00	2.4	ENE
	18-May-2018	05:00	2.3	NNE
	18-May-2018	06:00	2.2	NNE
	18-May-2018	07:00	2.2	ENE
	18-May-2018	08:00	2.8	E

11.	Wicali Willu	Speed and wind D	пссион	
	18-May-2018	09:00	2.3	NNE
	18-May-2018	10:00	2.5	NE
	18-May-2018	11:00	2.7	NNE
	18-May-2018	12:00	2.8	NE
	18-May-2018	13:00	3	NE
	18-May-2018	14:00	3.4	NE
	18-May-2018	15:00	3.4	NE
	18-May-2018	16:00	3.2	W
	18-May-2018	17:00	2.8	W
	18-May-2018	18:00	2.2	WSW
	18-May-2018	19:00	1.9	WSW
	18-May-2018	20:00	1.7	WSW
	18-May-2018	21:00	1.8	W
	18-May-2018	22:00	1.7	W
	18-May-2018	23:00	2.1	W
	19-May-2018	00:00	2.3	W
	19-May-2018	01:00	2.3	WNW
	19-May-2018	02:00	1.9	W
	19-May-2018	03:00	1.7	WNW
	19-May-2018	04:00	1.9	NW
	19-May-2018	05:00	1.7	W
	19-May-2018	06:00	1.5	WNW
	19-May-2018	07:00	1.4	W
	19-May-2018	08:00	1.9	N
	19-May-2018	09:00	2.3	NE
	19-May-2018	10:00	2.5	N
	19-May-2018	11:00	2.9	ESE
	19-May-2018	12:00	3.2	ENE
	19-May-2018	13:00	3	NE
	19-May-2018	14:00	3.2	SSE
	19-May-2018	15:00	2.9	N
	19-May-2018	16:00	2.9	NNE
	19-May-2018	17:00	2.7	ENE
	19-May-2018	18:00	2.1	ENE
	19-May-2018	19:00	1.7	NE
	19-May-2018	20:00	1.1	WNW
	19-May-2018	21:00	0.8	WNW
	19-May-2018	22:00	1.3	N

		Speed and wind D	11 0001011	
1	9-May-2018	23:00	0.9	N
2	20-May-2018	00:00	0.9	NE
2	20-May-2018	01:00	1	E
2	20-May-2018	02:00	1	N
2	20-May-2018	03:00	0.8	ENE
2	20-May-2018	04:00	0.9	ESE
2	20-May-2018	05:00	1.1	ENE
2	20-May-2018	06:00	1	NE
2	20-May-2018	07:00	1.2	NE
2	20-May-2018	08:00	1.4	NE
2	20-May-2018	09:00	1.9	NE
2	20-May-2018	10:00	2.3	ENE
2	20-May-2018	11:00	2.5	NE
2	20-May-2018	12:00	2.5	NE
2	20-May-2018	13:00	2.6	NNE
2	20-May-2018	14:00	2.3	NE
2	20-May-2018	15:00	2.1	WNW
2	20-May-2018	16:00	2	W
2	20-May-2018	17:00	1.8	WSW
2	20-May-2018	18:00	1.8	WSW
2	20-May-2018	19:00	1.5	W
2	20-May-2018	20:00	1.4	SW
2	20-May-2018	21:00	1.4	WSW
2	20-May-2018	22:00	1.5	WSW
2	20-May-2018	23:00	1.4	WSW
2	21-May-2018	00:00	1.5	W
2	21-May-2018	01:00	1.4	WSW
2	21-May-2018	02:00	1.4	W
2	21-May-2018	03:00	1.5	W
2	21-May-2018	04:00	1.5	S
2	21-May-2018	05:00	1.5	N
2	21-May-2018	06:00	1.5	N
2	21-May-2018	07:00	1.2	W
2	21-May-2018	08:00	1.3	WSW
2	21-May-2018	09:00	1.5	W
2	21-May-2018	10:00	1.9	WSW
2	21-May-2018	11:00	2.1	W
2	21-May-2018	12:00	2.5	W

11.	Wican Winu	Speed and wind D	ii ection	
	21-May-2018	13:00	2.4	SSW
	21-May-2018	14:00	2.3	SSW
2	21-May-2018	15:00	2.3	SSW
2	21-May-2018	16:00	2.1	SSW
2	21-May-2018	17:00	2.1	SW
2	21-May-2018	18:00	1.7	SW
	21-May-2018	19:00	1.2	W
2	21-May-2018	20:00	1.1	WSW
2	21-May-2018	21:00	1.4	SW
2	21-May-2018	22:00	1	WSW
2	21-May-2018	23:00	1.2	WSW
	22-May-2018	00:00	1.4	WSW
2	22-May-2018	01:00	1.5	SW
2	22-May-2018	02:00	1.3	SW
	22-May-2018	03:00	1.1	SW
2	22-May-2018	04:00	1.2	SW
2	22-May-2018	05:00	1	SW
2	22-May-2018	06:00	0.7	WNW
	22-May-2018	07:00	0.8	NNE
2	22-May-2018	08:00	1	ENE
	22-May-2018	09:00	1.3	W
2	22-May-2018	10:00	1.5	S
2	22-May-2018	11:00	2	WNW
2	22-May-2018	12:00	2.1	W
2	22-May-2018	13:00	2.2	W
2	22-May-2018	14:00	2.4	W
	22-May-2018	15:00	2.4	NNE
2	22-May-2018	16:00	2	ENE
2	22-May-2018	17:00	2.1	ENE
2	22-May-2018	18:00	1.8	W
- :	22-May-2018	19:00	1.7	W
	22-May-2018	20:00	1.8	Е
- :	22-May-2018	21:00	1.6	S
	22-May-2018	22:00	1.6	W
	22-May-2018	23:00	2	W
:	23-May-2018	00:00	1.8	W
;	23-May-2018	01:00	1.5	W
;	23-May-2018	02:00	1.2	NNE

11.	Wican Wind	Speed and wind D	пссион	
	23-May-2018	03:00	1.3	W
	23-May-2018	04:00	1.4	W
	23-May-2018	05:00	1.6	W
	23-May-2018	06:00	1.9	SW
	23-May-2018	07:00	1.8	W
	23-May-2018	08:00	2.1	ENE
	23-May-2018	09:00	2.3	SSW
	23-May-2018	10:00	3	SSW
	23-May-2018	11:00	3.3	SW
	23-May-2018	12:00	3.2	SW
	23-May-2018	13:00	3.4	W
	23-May-2018	14:00	3.5	W
	23-May-2018	15:00	3.1	SW
	23-May-2018	16:00	2.9	W
	23-May-2018	17:00	2.5	WNW
	23-May-2018	18:00	2.3	SSW
	23-May-2018	19:00	2	SW
	23-May-2018	20:00	1.9	W
	23-May-2018	21:00	1.8	WSW
	23-May-2018	22:00	2	WSW
	23-May-2018	23:00	2	W
	24-May-2018	00:00	1.9	W
	24-May-2018	01:00	1.8	W
	24-May-2018	02:00	2	WSW
	24-May-2018	03:00	1.7	S
	24-May-2018	04:00	2	S
	24-May-2018	05:00	2.1	W
	24-May-2018	06:00	1.9	ENE
	24-May-2018	07:00	1.7	WNW
	24-May-2018	08:00	1.9	W
	24-May-2018	09:00	2.4	WNW
	24-May-2018	10:00	3	WNW
	24-May-2018	11:00	3	WNW
	24-May-2018	12:00	3.3	WNW
	24-May-2018	13:00	3.3	WNW
	24-May-2018	14:00	3.4	WNW
	24-May-2018	15:00	3.3	WNW
	24-May-2018	16:00	3.1	SW

11.	TVICUIT VVIIIU	Speed and wind D	пссион	
	24-May-2018	17:00	3	SW
	24-May-2018	18:00	2.7	WNW
	24-May-2018	19:00	2.7	NW
	24-May-2018	20:00	2.1	W
	24-May-2018	21:00	1.9	W
	24-May-2018	22:00	2.1	WSW
	24-May-2018	23:00	1.8	SW
	25-May-2018	00:00	2.3	WNW
	25-May-2018	01:00	2.6	WNW
	25-May-2018	02:00	2.6	WNW
	25-May-2018	03:00	2.2	WSW
	25-May-2018	04:00	2.3	WSW
	25-May-2018	05:00	2.4	WSW
	25-May-2018	06:00	2.3	WSW
	25-May-2018	07:00	1.9	SW
	25-May-2018	08:00	2.3	W
	25-May-2018	09:00	2.8	W
	25-May-2018	10:00	2	W
	25-May-2018	11:00	3	W
	25-May-2018	12:00	2.9	SSW
	25-May-2018	13:00	2.9	SSW
	25-May-2018	14:00	2.2	WNW
	25-May-2018	15:00	2.3	W
	25-May-2018	16:00	2.7	WSW
	25-May-2018	17:00	2.3	WNW
	25-May-2018	18:00	1.7	WNW
	25-May-2018	19:00	2.1	WNW
	25-May-2018	20:00	1.9	WNW
	25-May-2018	21:00	2	SSW
	25-May-2018	22:00	1.8	SW
	25-May-2018	23:00	1.9	W
	26-May-2018	00:00	1.7	WNW
	26-May-2018	01:00	1.7	SW
	26-May-2018	02:00	1.7	SW
	26-May-2018	03:00	1.6	WSW
	26-May-2018	04:00	1.5	WSW
	26-May-2018	05:00	1.3	WNW
	26-May-2018	06:00	1	WSW

11.	Wican Willa	Speed and wind D	пссион	
	26-May-2018	07:00	1.4	WNW
	26-May-2018	08:00	1.2	W
	26-May-2018	09:00	2	W
	26-May-2018	10:00	2	W
	26-May-2018	11:00	2.4	S
	26-May-2018	12:00	2.9	S
	26-May-2018	13:00	3.3	S
	26-May-2018	14:00	2.5	WNW
	26-May-2018	15:00	2.4	N
	26-May-2018	16:00	2.4	NNE
	26-May-2018	17:00	2.4	N
	26-May-2018	18:00	2.1	SW
	26-May-2018	19:00	1.9	W
	26-May-2018	20:00	1.5	WNW
	26-May-2018	21:00	1.7	N
	26-May-2018	22:00	1.6	N
	26-May-2018	23:00	1.6	N
	27-May-2018	00:00	1.6	W
	27-May-2018	01:00	1.5	WSW
	27-May-2018	02:00	1.5	SW
	27-May-2018	03:00	1.5	WSW
	27-May-2018	04:00	1.4	W
	27-May-2018	05:00	1.5	W
	27-May-2018	06:00	1.2	W
	27-May-2018	07:00	1.5	W
	27-May-2018	08:00	1.6	W
	27-May-2018	09:00	1.8	W
	27-May-2018	10:00	2	NNE
	27-May-2018	11:00	2.3	S
	27-May-2018	12:00	2.9	N
	27-May-2018	13:00	2.9	NE
	27-May-2018	14:00	2.8	SW
	27-May-2018	15:00	2.8	WNW
	27-May-2018	16:00	2.4	WNW
	27-May-2018	17:00	2.4	W
	27-May-2018	18:00	1.9	WNW
	27-May-2018	19:00	1.8	SSW
L	27-May-2018	20:00	1.7	WNW

II. Mean Wind	Speed and Wind D	irection	
27-May-2018	21:00	2.5	WNW
27-May-2018	22:00	1.2	WSW
27-May-2018	23:00	1.3	SW
28-May-2018	00:00	1.3	WNW
28-May-2018	01:00	1.3	NW
28-May-2018	02:00	1.5	SW
28-May-2018	03:00	1.5	SW
28-May-2018	04:00	1.3	SW
28-May-2018	05:00	1.1	SW
28-May-2018	06:00	1	ENE
28-May-2018	07:00	1.4	WSW
28-May-2018	08:00	1.8	WSW
28-May-2018	09:00	2.1	WSW
28-May-2018	10:00	2.4	WSW
28-May-2018	11:00	2.5	WSW
28-May-2018	12:00	2.9	WSW
28-May-2018	13:00	2.8	WNW
28-May-2018	14:00	2.6	WNW
28-May-2018	15:00	2.8	SSW
28-May-2018	16:00	2.3	SSW
28-May-2018	17:00	2.2	WNW
28-May-2018	18:00	1.9	WNW
28-May-2018	19:00	1.6	WNW
28-May-2018	20:00	1.4	WNW
28-May-2018	21:00	1.6	WNW
28-May-2018	22:00	1.4	WNW
28-May-2018	23:00	1.4	W
29-May-2018	00:00	1.6	WSW
29-May-2018	01:00	1.4	WSW
29-May-2018	02:00	1.3	WSW
29-May-2018	03:00	1.3	SW
29-May-2018	04:00	1.1	SW
29-May-2018	05:00	1.2	WSW
29-May-2018	06:00	1.2	WNW
29-May-2018	07:00	1.1	WNW
29-May-2018	08:00	1.5	W
29-May-2018	09:00	1.9	WNW
29-May-2018	10:00	2.6	WNW

11.	Tricuit Trillu	Speed and wind D	ii cetion	
	29-May-2018	11:00	2.8	WNW
	29-May-2018	12:00	2.8	NE
	29-May-2018	13:00	3.1	NNE
	29-May-2018	14:00	2.7	NNE
	29-May-2018	15:00	2.6	NNE
	29-May-2018	16:00	2.7	NE
	29-May-2018	17:00	2.3	N
	29-May-2018	18:00	2.1	NE
	29-May-2018	19:00	1.6	NE
	29-May-2018	20:00	1.6	ENE
	29-May-2018	21:00	1.4	ENE
	29-May-2018	22:00	1.3	SSE
	29-May-2018	23:00	1.2	ENE
	30-May-2018	00:00	1.2	NE
	30-May-2018	01:00	1.3	ENE
	30-May-2018	02:00	1	SSE
	30-May-2018	03:00	1.1	SSE
	30-May-2018	04:00	1.7	ESE
	30-May-2018	05:00	1.7	NE
	30-May-2018	06:00	1.6	NE
	30-May-2018	07:00	1.5	ENE
	30-May-2018	08:00	1.9	ENE
	30-May-2018	09:00	2.1	SE
	30-May-2018	10:00	2.3	SSE
	30-May-2018	11:00	2.3	NNE
	30-May-2018	12:00	2.8	N
	30-May-2018	13:00	2.7	N
	30-May-2018	14:00	2.6	N
	30-May-2018	15:00	2.6	NNE
	30-May-2018	16:00	2.4	NNE
	30-May-2018	17:00	2.3	ESE
	30-May-2018	18:00	2.4	ESE
	30-May-2018	19:00	2	N
	30-May-2018	20:00	1.8	N
	30-May-2018	21:00	1.8	NE
	30-May-2018	22:00	1.8	SSE
	30-May-2018	23:00	1.8	SE
	31-May-2018	00:00	2.3	SSE

II. Mean Wind	Speed and Wind D	irection	
31-May-2018	01:00	2.2	SE
31-May-2018	02:00	2.3	ESE
31-May-2018	03:00	1.9	ESE
31-May-2018	04:00	2.5	ENE
31-May-2018	05:00	2.6	NE
31-May-2018	06:00	2.2	ESE
31-May-2018	07:00	2.3	SSE
31-May-2018	08:00	2.3	SSE
31-May-2018	09:00	2.4	NNE
31-May-2018	10:00	2.6	ESE
31-May-2018	11:00	2.4	ESE
31-May-2018	12:00	2.3	SSE
31-May-2018	13:00	1.6	ENE
31-May-2018	14:00	1.7	ENE
31-May-2018	15:00	1.5	ESE
31-May-2018	16:00	1.4	SE
31-May-2018	17:00	0.9	ESE
31-May-2018	18:00	1	SSE
31-May-2018	19:00	1.3	SE
31-May-2018	20:00	1.2	SSE
31-May-2018	21:00	1.3	SE
31-May-2018	22:00	0.7	ESE
31-May-2018	23:00	0.8	SSE

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Kai Tak Development -Stage 4 Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for May 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
•		1-May	2-May	3-May	4-May	5-May
			1 hr TSP X3 AM2, AM3(A) 24-hr TSP AM2(A),AM3(B) AM4(C),AM5		1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8, M9	
6-May	7-May	8-May	9-May	10-May	11-May	12-May
	1 hr TSP X3 AM2, AM3(A)	24-hr TSP		1 hr TSP X3 AM4(C), AM5 Noise	1 hr TSP X3 AM2, AM3(A)	
		AM2(A),AM3(B) AM4(C),AM5		M6(A) M7, M8, M9		
13-May	14-May	15-May	16-May	17-May	18-May	19-May
			1 hr TSP X3 AM4(C), AM5	1 hr TSP X3 AM2, AM3(A)		
	24-hr TSP AM2(A),AM3(B) AM4(C),AM5		Noise M6(A) M7, M8, M9		24-hr TSP AM2(A),AM3(B) AM4(C),AM5	
20-May	21-May	22-May	23-May	24-May	25-May	26-May
	1 hr TSP X3 AM4(C), AM5		1 hr TSP X3 AM2, AM3(A)	A44 7707	1 hr TSP X3 AM4(C), AM5 24-hr TSP AM4(C)	
				24-hr TSP AM2(A),AM3(B) AM5	Noise M6(A) M7, M8, M9	
27-May	28-May	29-May	30-May	31-May		
		1 hr TSP X3 AM2, AM3(A)		1 hr TSP X3 AM4(C), AM5		
			24-hr TSP AM2(A),AM3(B) AM4(C),AM5	Noise M6(A) M7, M8, M9		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM2 - Lee Kau Yan Memorial School

AM2(A) - Ng Wah Catholic Secondary School

AM3(A) - Holy Trinity Bradbury Centre

AM3(B) - Hong Kong Family Planning Association

AM4(C) - New Pumping Station under Contract KL/2012/03

AM5 - CCC Kei To Secondary School

Noise Monitoring Station

M6(A) - Oblate Primary School M7 - CCC Kei To Secondary School

M8 - Po Leung Kuk Ngan Po Ling College

M9 - Tak Long Estate

Kai Tak Development -Stage 4 Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for June 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Jun	2-Jun
					1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8, M9	
3-Jun	4-Jun	5-Jun	6-Jun	7-Jun	8-Jun	9-Jun
	1 hr TSP X3 AM2, AM3(A)		1 hr TSP X3 AM4(C), AM5			1 hr TSP X3 AM2, AM3(A)
		24-hr TSP AM2(A),AM3(B) AM4(C),AM5	Noise M6(A) M7, M8, M9			
10-Jun	11-Jun	12-Jun	13-Jun	14-Jun	15-Jun	16-Jun
		1 hr TSP X3 AM4(C), AM5			1 hr TSP X3 AM2, AM3(A)	1 hr TSP X3 AM4(C), AM5
	24-hr TSP AM2(A),AM3(B) AM4(C),AM5	Noise M6(A) M7, M8, M9			24-hr TSP AM2(A),AM3(B) AM4(C),AM5	
17-Jun	18-Jun	19-Jun	20-Jun	21-Jun	22-Jun	23-Jun
				1 hr TSP X3 AM2, AM3(A)	1 hr TSP X3 AM4(C), AM5	
				24-hr TSP AM2(A),AM3(B) AM4(C),AM5	Noise M6(A) M7, M8, M9	
24-Jun	25-Jun	26-Jun	27-Jun	28-Jun	29-Jun	30-Jun
				1 hr TSP X3 AM4(C), AM5		
			24-hr TSP AM2(A),AM3(B) AM4(C),AM5	Noise M6(A) M7, M8, M9		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM2 - Lee Kau Yan Memorial School

AM2(A) - Ng Wah Catholic Secondary School

AM3(A) - Holy Trinity Bradbury Centre

AM3(B) - Hong Kong Family Planning Association

AM4(C) - New Pumping Station under Contract KL/2012/03

AM5 - CCC Kei To Secondary School

Noise Monitoring Station

M6(A) - Oblate Primary School M7 - CCC Kei To Secondary School

M8 - Po Leung Kuk Ngan Po Ling College

M9 - Tak Long Estate

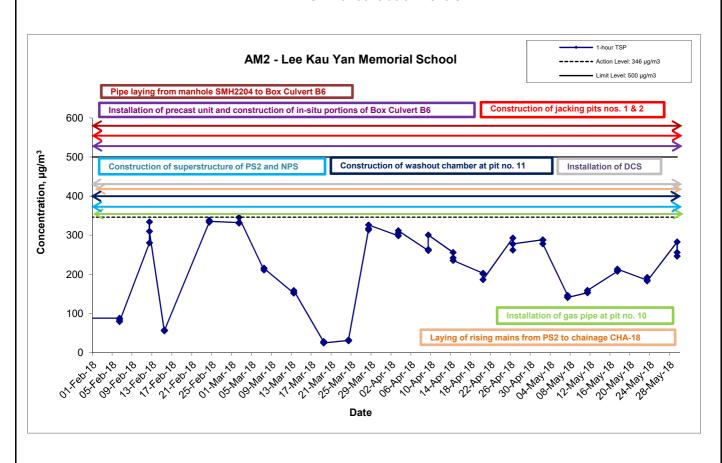
APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

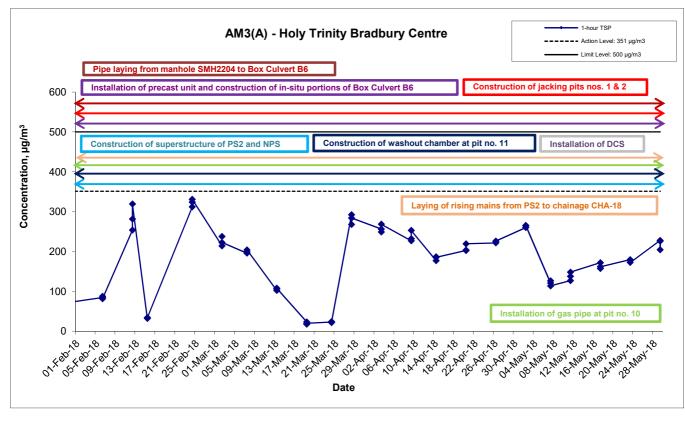
Appendix E - 1-hour TSP Monitoring Results

Location AM2 - Lee Kau Yan Memorial School					
Date	Time	Weather	Particulate Concentration (μg/m3)		
2-May-18	13:00	Sunny	288.3		
2-May-18	14:00	Sunny	287.4		
2-May-18	15:00	Sunny	278.1		
7-May-18	13:00	Cloudy	146.1		
7-May-18	14:00	Cloudy	143.6		
7-May-18	15:00	Cloudy	140.6		
11-May-18	13:00	Cloudy	152.8		
11-May-18	14:00	Cloudy	153.8		
11-May-18	15:00	Cloudy	159.1		
17-May-18	13:00	Sunny	207.7		
17-May-18	14:00	Sunny	208.8		
17-May-18	15:00	Sunny	213.4		
23-May-18	13:00	Sunny	184.9		
23-May-18	14:00	Sunny	192.1		
23-May-18	15:00	Sunny	183.2		
29-May-18	13:00	Sunny	282.9		
29-May-18	14:00	Sunny	255.8		
29-May-18	15:00	Sunny	246.5		
		Average	207.0		
		Maximum	288.3		
		Minimum	140.6		

Date	Time	Weather	Particulate Concentration (µg/m3)
2-May-18	9:00	Sunny	260.0
2-May-18	10:00	Sunny	264.3
2-May-18	11:00	Sunny	265.5
7-May-18	9:00	Cloudy	120.8
7-May-18	10:00	Cloudy	126.6
7-May-18	11:00	Cloudy	113.7
11-May-18	9:00	Cloudy	126.9
11-May-18	10:00	Cloudy	137.5
11-May-18	11:00	Cloudy	148.1
17-May-18	9:00	Sunny	171.8
17-May-18	10:00	Sunny	157.2
17-May-18	11:00	Sunny	161.6
23-May-18	9:00	Sunny	179.5
23-May-18	10:00	Sunny	177.7
23-May-18	11:00	Sunny	172.5
29-May-18	9:00	Sunny	227.8
29-May-18	10:00	Sunny	204.2
29-May-18	11:00	Sunny	225.9
		Average	180.1
	Γ	Maximum	265.5
	Ī	Minimum	113.7

MA13056/App E - 1hr TSP Cinotech

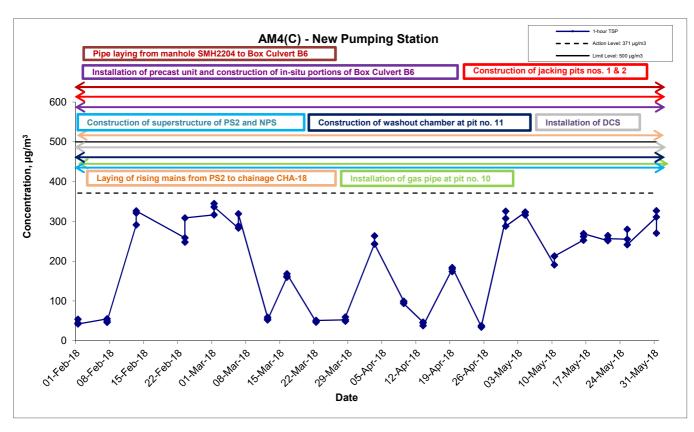

Appendix E - 1-hour TSP Monitoring Results

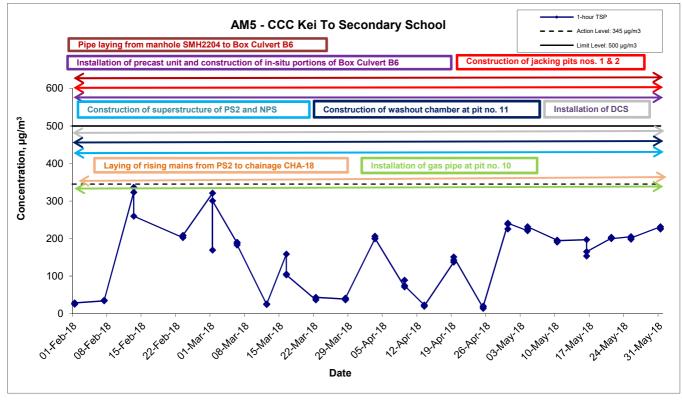

Location AM4(C) - New Pun	nping Station	
Date	Time	Weather	Particulate Concentration (μg/m3)
4-May-18	13:00	Cloudy	322.8
4-May-18	14:00	Cloudy	323.6
4-May-18	15:00	Cloudy	315.8
10-May-18	9:00	Cloudy	190.6
10-May-18	10:00	Cloudy	213.0
10-May-18	11:00	Cloudy	212.5
16-May-18	9:00	Sunny	252.9
16-May-18	10:00	Sunny	262.1
16-May-18	11:00	Sunny	269.2
21-May-18	14:00	Sunny	251.6
21-May-18	15:00	Sunny	264.3
21-May-18	16:00	Sunny	256.7
25-May-18	13:00	Sunny	255.2
25-May-18	14:00	Sunny	280.0
25-May-18	15:00	Sunny	241.3
31-May-18	9:00	Sunny	311.1
31-May-18	10:00	Sunny	326.8
31-May-18	11:00	Sunny	270.2
		Average	267.8
		Maximum	326.8
		Minimum	190.6

Date	Time	Weather	Particulate Concentration (µg/m3)
4-May-18	9:00	Cloudy	221.0
4-May-18	10:00	Cloudy	224.7
4-May-18	11:00	Cloudy	231.6
10-May-18	13:00	Cloudy	195.6
10-May-18	14:00	Cloudy	190.5
10-May-18	15:00	Cloudy	194.3
16-May-18	13:00	Sunny	196.8
16-May-18	14:00	Sunny	153.3
16-May-18	15:00	Sunny	165.1
21-May-18	13:00	Sunny	200.8
21-May-18	14:00	Sunny	203.4
21-May-18	15:00	Sunny	199.8
25-May-18	13:00	Sunny	204.9
25-May-18	14:00	Sunny	198.2
25-May-18	15:00	Sunny	201.5
31-May-18	13:00	Sunny	231.4
31-May-18	14:00	Sunny	225.4
31-May-18	15:00	Sunny	226.3
		Average	203.6
	Ţ	Maximum	231.6
		Minimum	153.3

MA13056/App E - 1hr TSP Cinotech

1-hr TSP Concentration Levels





Title Contract No. KL/2012/03
Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area
Graphical Presentation of 1-hour TSP Monitoring Results

Scale
N.T.S
No. MA13056
Date
May 18
Appendix
E

1-hr TSP Concentration Levels

Title Contract No. KL/2012/03
Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area
Graphical Presentation of 1-hour TSP Monitoring Results

Scale
N.T.S
Project
No. MA13056
Date
May 18

Appendix
E

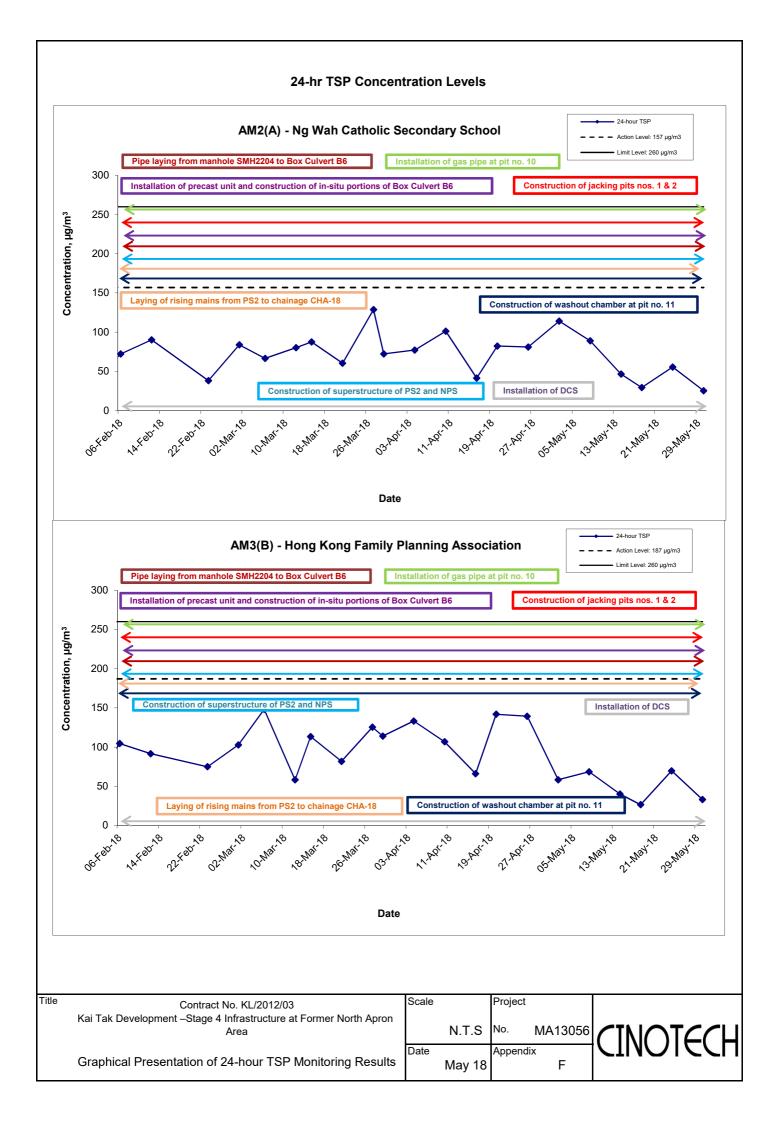
APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

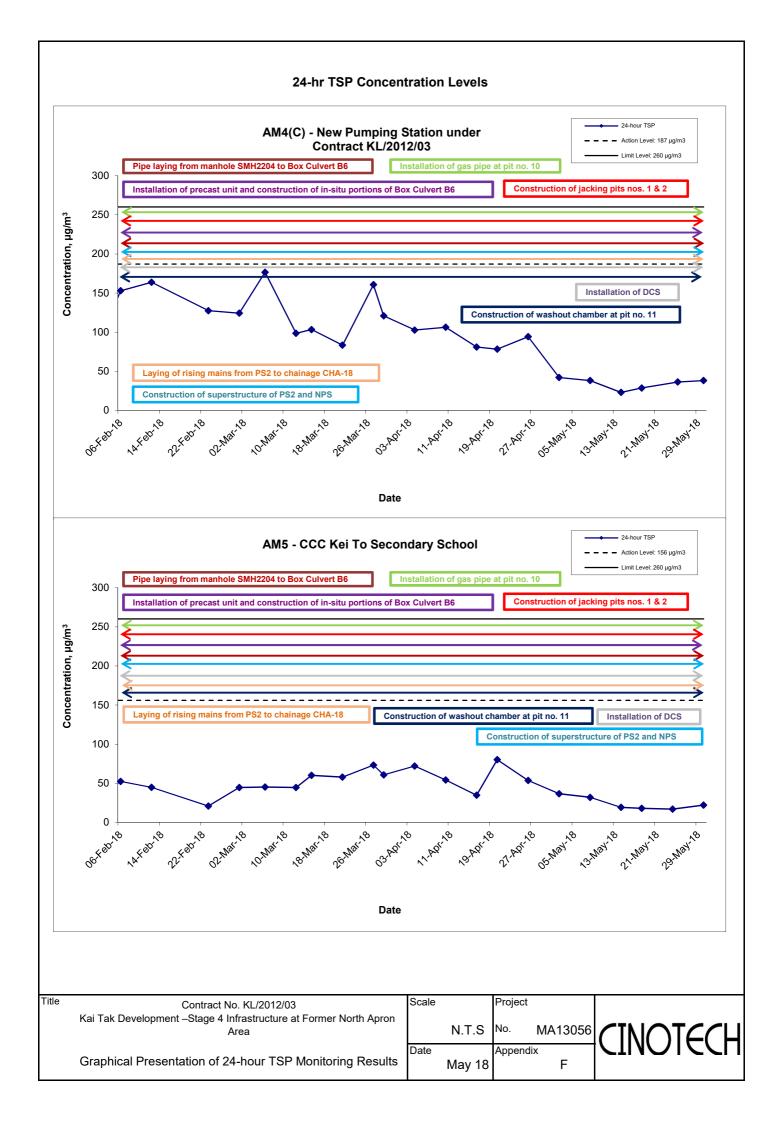
Appendix F - 24-hour TSP Monitoring Results

Location AM2(A) - Ng Wah Catholic Secondary School

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
2-May-18	Cloudy	301.3	762.9	3.3448	3.5435	0.1987	1392.2	1416.2	24.0	1.21	1.21	1.21	1739.8	114.2
8-May-18	Cloudy	298.0	758.9	3.2716	3.4269	0.1553	1440.2	1464.2	24.0	1.21	1.21	1.21	1745.1	89.0
14-May-18	Sunny	303.9	760.8	3.3097	3.3904	0.0807	1488.2	1512.2	24.0	1.20	1.20	1.20	1729.3	46.7
18-May-18	Cloudy	305.1	759.0	3.2818	3.3333	0.0515	1536.2	1560.2	24.0	1.22	1.22	1.22	1752.4	29.4
24-May-18	Sunny	303.1	760.4	3.6372	3.7349	0.0977	1584.2	1608.2	24.0	1.22	1.22	1.22	1759.9	55.5
30-May-18	Sunny	305.1	760.6	3.6318	3.6763	0.0445	1632.2	1656.2	24.0	1.22	1.22	1.22	1754.2	25.4
													Min	25.4
													Max	114.2
													Average	60.0

Location AM3(B) - Hong Kong Family Planning Association


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m³/min)	(m ³)	(µg/m ³)
2-May-18	Cloudy	301.7	762.6	3.3688	3.4688	0.1000	601.2	625.2	24.0	1.19	1.19	1.19	1716.4	58.3
8-May-18	Cloudy	298.5	759.5	3.2945	3.4125	0.1180	625.2	649.2	24.0	1.20	1.20	1.20	1722.5	68.5
14-May-18	Sunny	303.5	759.5	3.2858	3.3543	0.0685	649.2	673.2	24.0	1.19	1.19	1.19	1707.3	40.1
18-May-18	Cloudy	304.8	759.6	3.2541	3.2992	0.0451	673.2	697.2	24.0	1.18	1.18	1.18	1703.5	26.5
24-May-18	Sunny	302.7	760.2	3.2723	3.3960	0.1237	697.2	721.2	24.0	1.23	1.23	1.23	1774.1	69.7
30-May-18	Sunny	304.9	760.4	3.2852	3.3436	0.0584	721.2	745.2	24.0	1.23	1.23	1.23	1767.8	33.0
													Min	26.5
													Max	69.7
													Average	49.4


Location AM4(C) - New Pumping Station under Contract KL/2012/03

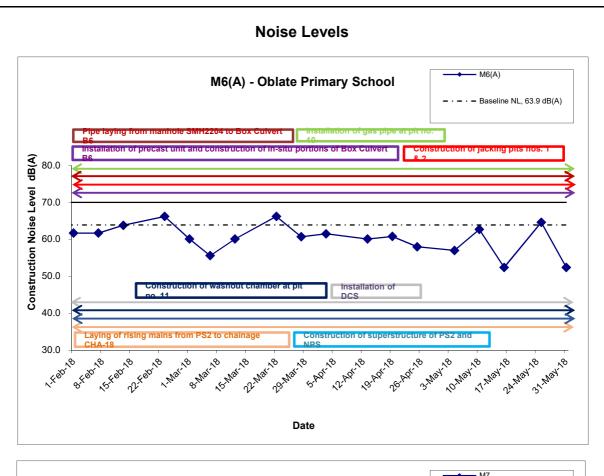
Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
2-May-18	Cloudy	302.3	762.7	3.5981	3.6714	0.0733	977.1	1001.1	24.0	1.21	1.21	1.21	1744.0	42.0
8-May-18	Cloudy	297.4	759.2	3.3658	3.4329	0.0671	1001.1	1025.1	24.0	1.22	1.22	1.22	1754.7	38.2
14-May-18	Sunny	304.4	758.5	3.3324	3.3723	0.0399	1025.1	1049.1	24.0	1.20	1.20	1.20	1732.7	23.0
18-May-18	Cloudy	304.7	759.7	3.3014	3.3511	0.0497	1049.1	1073.1	24.0	1.20	1.20	1.20	1733.2	28.7
25-May-18	Sunny	305.5	757.5	3.2955	3.3583	0.0628	1073.1	1097.1	24.0	1.20	1.20	1.20	1728.2	36.3
30-May-18	Sunny	304.8	759.6	3.6003	3.6665	0.0662	1097.1	1121.1	24.0	1.20	1.20	1.20	1732.8	38.2
													Min	23.0
													Max	42.0
													Average	34.4

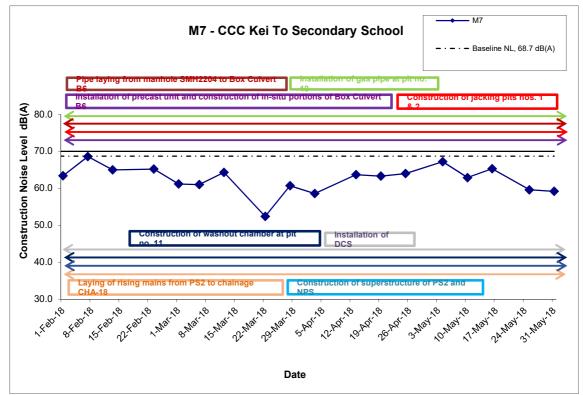
Location AM5 - CCC Kei To Secondary School

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m³/min)	(m ³)	$(\mu g/m^3)$
2-May-18	Cloudy	302.0	762.4	3.3122	3.3763	0.0641	1082.0	1106.0	24.0	1.22	1.22	1.22	1751.7	36.6
8-May-18	Cloudy	297.7	759.6	3.2733	3.3296	0.0563	1106.0	1130.0	24.0	1.22	1.22	1.22	1761.6	32.0
14-May-18	Sunny	303.5	760.1	3.3483	3.3816	0.0333	1130.0	1154.0	24.0	1.21	1.21	1.21	1744.4	19.1
18-May-18	Cloudy	304.8	759.3	3.2588	3.2901	0.0313	1154.0	1178.0	24.0	1.21	1.21	1.21	1739.5	18.0
24-May-18	Sunny	303.4	760.6	3.6111	3.6408	0.0297	1178.0	1202.0	24.0	1.21	1.21	1.21	1745.3	17.0
30-May-18	Sunny	305.3	760.2	3.2546	3.2930	0.0384	1202.0	1226.0	24.0	1.21	1.21	1.21	1739.1	22.1
													Min	17.0
													Max	36.6
													Average	24.1

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix G - Noise Monitoring Results


Location M6	Location M6(A) - Oblate Primary School									
				Unit: dB (A) (30-min)						
Date	Time	Weather	Measured Noise Level			Baseline Level	Construction Noise Level			
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}			
4-May-18	10:45	Cloudy	64.7	65.8	63.1		57.0			
10-May-18	15:00	Cloudy	62.7	64.9	60.3		62.7 Measured ≦ Baseline			
16-May-18	13:15	Sunny	64.2	66.3	62.5	63.9	52.4			
25-May-18	15:00	Sunny	67.3	69.3	61.4		64.6			
31-May-18	15:00	Sunny	64.2	67.7	60.0		52.4			


Location M7	- CCC Ke	i To Seconda	ary School				
					Unit	: dB (A) (30-min)	
Date	Time	Weather	Measured Noise Level			Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
4-May-18	9:10	Cloudy	67.2	68.3	65.1		67.2 Measured ≤ Baseline
10-May-18	13:00	Rainy	62.9	62.7	63.7		62.9 Measured ≦ Baseline
16-May-18	13:30	Sunny	65.3	67.5	62.5	68.7	65.3 Measured ≦ Baseline
25-May-18	13:05	Sunny	69.2	70.1	63.4		59.6
31-May-18	13:05	Sunny	59.2	60.7	57.1		59.2 Measured ≦ Baseline

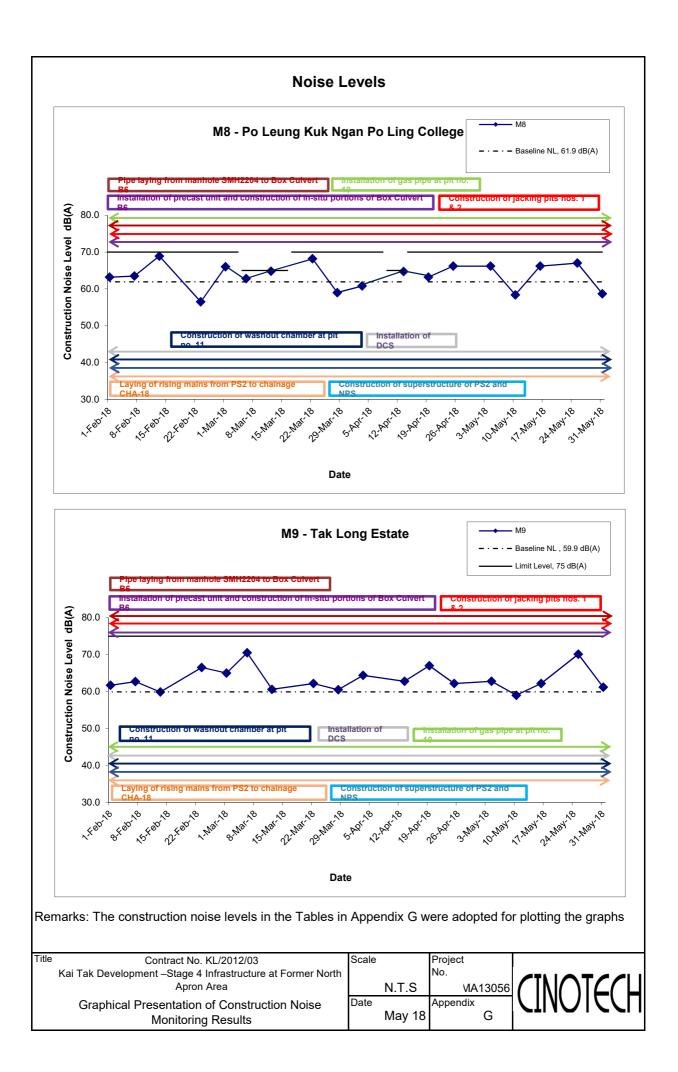
Location M8	Location M8 - Po Leung Kuk Ngan Po Ling College								
			Unit: dB (A) (30-min)						
Date	Time	Weather	Measured Noise Level			Baseline Level	Construction Noise Level		
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}		
4-May-18	10:00	Cloudy	67.6	71.2	60.7		66.2		
10-May-18	14:00	Cloudy	63.5	66.1	60.7		58.4		
16-May-18	14:00	Sunny	67.6	70.4	60.3	61.9	66.2		
25-May-18	14:00	Sunny	68.2	69.4	62.3		67.0		
31-May-18	14:00	Sunny	63.6	65.7	59.8		58.7		

Location M9	Location M9 - Tak Long Estate Unit: dB (A) (30-min)								
Date	Time	Weather	Measured Noise Level			Baseline Level	Construction Noise Level		
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}		
4-May-18	9:30	Cloudy	64.6	66.8	61.2		62.8		
10-May-18	14:45	Cloudy	62.5	64.3	59.9		59.0		
16-May-18	15:30	Sunny	64.2	66.2	61.1	59.9	62.2		
25-May-18	10:00	Sunny	70.5	71.4	66.9		70.1		
31-May-18	16:00	Sunny	63.6	65.6	60.8		61.2		

MA13056/App G - Noise Cinotech

Remarks: The construction noise levels in the Tables in Appendix G were adopted for plotting the graphs

Title Contract No. KL/2012/03


Kai Tak Development –Stage 4 Infrastructure at Former North

Apron Area

Graphical Presentation of Construction Noise Monitoring Results

Scale		Project No.
	N.T.S	WA13056
Date	May 18	Appendix G

APPENDIX H SUMMARY OF EXCEEDANCE

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Appendix H – Summary of Exceedance

Exceedance Report for Contract No. KL/2012/03

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	180504
Date	4 May 2018
Time	10:00-12:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	_
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
180504-R01	To cover the dusty stockpile near Sung Wong Toi Road with impervious material.	C7
	D. Noise	
	No environmental deficiency was identified during site inspection.	
***************************************	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit session (Ref. No.: 180427), no environmental deficiency was identified during site inspection	

	Name	Signature	Date
Recorded by	Tommy Cheng	to	4 May 2018
Checked by	Ivy Tam	YW	4 May 2018

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	180511	
Date	11 May 2018	
Time	10:00-12:00	

n-c n-	N. G. W.	Related
Ref. No.	Non-Compliance	Item No
-	None identified	_
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
180518-R01	The NRMM label should be displayed at a conspicuous position of the PME.	C19
,,, <u> </u>	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	· · · · · · · · · · · · · · · · · · ·
	Follow-up on previous audit session (Ref. No.: 180504), the environmental deficiency was rectified/improved by the Contractor.	

	Name	Signature	Date
Recorded by	Tommy Cheng	-T-/	11 May 2018
Checked by	Ivy Tam	Jun 3	11 May 2018

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	180516
Date	16 May 2018
Time	14:00-16:00

		Related
Ref. No.	Non-Compliance	Item No.
_	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	* ***
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	 Follow-up on previous audit session (Ref. No.: 180511), the environmental deficiency was rectified/improved by the Contractor. 	

	Name	Signature	Date
Recorded by	Tommy Cheng		18 May 2018
Checked by	Ivy Tam	Tux	18 May 2018

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	180525
Date	25 May 2018
Time	10:00-11:00

		Related
Ref. No.	Non-Compliance	Item No
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 180516), no environmental deficiency was identified during site inspection.	

	Name	Signature	Date
Recorded by	Tommy Cheng	Tool	25 May 2018
Checked by	Dr. Priscilla Choy	NE	25 May 2018

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	180504
Date	4 May 2018
Time	10:00-12:00

		Related
Ref. No.	Non-Compliance	Item No.
	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit session (Ref. No.: 180427), no environmental deficiency	
	was identified during site inspection	

	Name	Signature	Date
Recorded by	Tommy Cheng	T-8	4 May 2018
Checked by	Dr. Priscilla Choy	Tud	4 May 2018
		· · · //	

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	180511	
Date	11 May 2018	
Time	10:00-12:00	

Ref. No.	Non Compliance	Related
- TVO.	Non-Compliance None identified	Item No
	Note delined	Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	Item 140
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit session (Ref. No.: 180504), no environmental deficiency was identified during site inspection	

	Name	Signature	Date
Recorded by	Tommy Cheng	The	11 May 2018
Checked by	Ivy Tam	Yw	11 May 2018

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	180516
Date	16 May 2018
Time	14:00-16:00

D-C M-	N. C.	Related
Ref. No.	Non-Compliance None identified	Item No.
_	None Identified	- TD 1 4 1
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
180516-R01	• Debris and rubbish should be removed within the U- channel. Boarding should be	B15
	provided as obstruction of drainage system.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit session (Ref. No.: 180511), no environmental deficiency was identified during site inspection	

	Name	Signature	Date
Recorded by	Tommy Cheng	T-8	18 May 2018
Checked by	Ivy Tam	Yul	18 May 2018

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	180525
Date	25 May 2018
Time	10:00-11:00

		Related
Ref. No.	Non-Compliance	Item No.
	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
180525-R01	Dusty stockpile should be covered properly by impervious sheeting.	C7
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit session (Ref. No.: 180516), the environmental deficiency was observed to be rectified/improved by the Contractor.	A A M 10 A A A M 10 A M 1

	Name	Signature	Date
Recorded by	Tommy Cheng	7	25 May 2018
Checked by	Dr. Priscilla Choy	WI	25 May 2018

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.
	3. Repeat measurement to confirm finding.	method.		
Action Level being	I. Identify source and investigate the	1. Check monitoring data submitted	Confirm receipt of notification	1. Discuss with ET and IEC on proper
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of	
	6. If exceedance continues, arrange		remedial measures;	
	meeting with IEC and ER;		5. Conduct meeting with ET and	
	7. If exceedance stops, cease additional		IEC if exceedance continues.	
	monitoring.			
Limit Level being	1. Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	, , , , , , , , , , , , , , , , , , ,
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
12-21	4 Notify IEO ED Controllers of	4. Oh o ha o o o'll o'll o dala a		4 Tallaction of Pater and
Limit Level being	Notify IEC, ER, Contractor and	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Action Level	1. Notify ER, IEC and Contractor;	Review the investigation	Confirm receipt of	1. Submit noise mitigation
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;	
	check mitigation effectiveness.	(The above actions should be	4. Supervise the	
	(The above actions should be taken	taken within 2 working days after	implementation of remedial	
	within 2 working days after the	the exceedance is identified)	measures.	
	exceedance is identified)		(The above actions should be	
			taken within 2 working days	
			after the exceedance is	
			identified)	
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT			ACTION	
ACTION LEVEL	ET	IEC	ER	CONTRACTOR
Design Check	Check final design conforms to	 Check report. Recommend 	Undertake remedial design if necessary	
	the requirements of EP and prepare	remedial design if necessary		
Non-conformity on one occasion	report. 1. Identify Source 2. Inform IEC and	Check report Check Contractor's	Notify Contractor Ensure remedial measures are properly	Amend working methods Rectify damage and
	ER 3. Discuss remedial	working method 3. Discuss with ET and	implemented	undertake any necessary replacement
	actions with IEC,	Contractor on possible remedial measures		теріасеттеті
	4. Monitor remedial actions until	Advise ER on effectiveness of		
	rectification has been completed	proposed remedial measures.		
	Som Sompletou	5. Check implementation of remedial measures.		
Repeated Non-conformity	Inform IEC and	Check monitoring report	Notify Contractor Ensure remedial measures are properly	 Amend working methods Rectify damage and

ER	2. Check Contractor's	implemented	undertake any necessary
2. Increase	working method		replacement
monitoring	3. Discuss with ET and		
frequency	Contractor on possible		
3. Discuss remedial	remedial measures		
actions with IEC,	4. Advise ER on		
ER and Contractor	effectiveness of		
4. Monitor remedial	proposed remedial		
actions until	measures		
rectification has	5. Supervise		
been completed	implementation of		
5. If non-conformity	remedial measures.		
stops, cease			
additional			
monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Appendix K - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

Types of Impacts	Mitigation Measures	Status
	8 times daily watering of the work site with active dust emitting activities. Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	۸
	 Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. Misting for the dusty material should be carried out. 	*
	before being loaded into the vehicle. Any vehicle with an open load carrying area should.	^
	have properly fitted side and tail boards. Material having the potential to create dust should not	^
	be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	^
	 The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation. 	٨
Construction Dust	 The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. On- site unpaved roads should be compacted and kept free of lose materials. 	۸
	 Vehicle washing facilities should be provided at every vehicle exit point. 	^
	 The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete. 	٨
	 Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet. 	۸
	 Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides. 	^
	 Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites. 	^

	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump	^
	Good Site Practice: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Silencers or muttlers on construction equipment should	^
	be utilized and should be properly maintained during the construction program.	N/A(1)
	 Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in 	^
	intermittent use should be shut down between works periods or should be throttled down to a minimum.	^
	 Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the 	^
	 noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	^
	Scheduling of Construction Works during School Examination Period	^
Construction Noise	(i) Provision of low noise surfacing in a section of Road L2; and	N/A
	(ii) Provision of structural fins	N/A
	(i) Avoid the sensitive façade of class room facing Road L2 and L4; and	N/A
	(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A
	(i) Provision of low noise surfacing in a section of Road L4 before occupation of Site 1I1; and	N/A
	(ii) Setback of building about 5m from site boundary.	N/A
	Setback of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
	 avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and 	N/A
	(ii) for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not provide the facades with openable window.	N/A

	avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height of the residential block(s) located at less than 55m away from To Kwa Wan Road to no more than	N/A N/A
	(i) avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic noise impacts from the slip road	N/A
	All the ventilation fans installed in the below will be provided with silencers or acoustics treatment. (i) SPS (ii) ESS (iii) Tunnel Ventilation Shaft	N/A N/A N/A
	(iv) EFTS depot Installation of retractable roof or other equivalent measures	N/A N/A
Construction Water Quality	The following mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including: Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply; Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps; An alarm should be installed to signal emergency high water level in the wet well at all SPSs; and For all unmanned SPSs, a remote moritor system connecting SPSs with the control station through telemetry system should be provided so that swift actions could be taken in case of malfunction of unmanned facilities. Land-based Construction Construction Runoff Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include: use of sediment traps adequate maintenance of drainage systems to prevent flooding and overflow	N/A N/A N/A N/A

Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.

Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.

Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m³ capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.

Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.

Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.

Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.

Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.

Drainage

It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.

All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.

All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.

Sewage Effluent

Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical tollets prior to the commission of the on-site sewer system. Appropriate numbers of portable tollets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.

Stormwater Discharges

Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes

N/A

Debris and Litter	*
In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials. litter or wastes to marine waters does not occur	*
Construction Works at or in Close Proximity of Storm Culvert or Seafront	
The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	۸
The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm culvert / nullah.	۸
Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works.	۸
Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	۸
Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	۸
Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	۸
Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	۸
Construction effluent, site run-off and sewage should be properly collected and/or treated.	۸
Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	۸
Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of construction materials.	۸
Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	۸

	ervisory staff should be assigned to station on site to ely supervise and monitor the works	^
shal	ine water quality monitoring and audit programme I be implemented for the proposed sediment tment operation.	٨
It is relat prac	d Site Practices not anticipated that adverse waste management ed impacts would arise, provided that good site tices are adhered to. Recommendations for good site tices during construction activities include: Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at	^
	the site Training of site personnel in proper waste management and chemical waste handling procedures	٨
	Provision of sufficient waste disposal points and regular collection for disposal	٨
	Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in	^
•	enclosed containers A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites)	^
Goo gene redu stag site	te Reduction Measures d management and control can prevent the eration of a significant amount of waste. Waste ction is best achieved at the planning and design e, as well as by ensuring the implementation of good practices. Recommendations to achieve waste ction include: Sort C&D waste from demolition of the remaining	
	structures to recover recyclable portions such as metals	
	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal	^
	Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the work force	٨
	Any unused chemicals or those with remaining functional capacity should be recycled	^
•	Proper storage and site practices to minimise the potential for damage or contamination of construction materials	٨

Construction and Demolition Material

Mitigation measures and good site practices should be incorporated into contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include:

- Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles should be located away from waterfront or storm drains as far as possible
- Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric
- Skip hoist for material transport should be totally enclosed by impervious sheeting
- Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site
- The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete bituminous materials or hardcores
- The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle
- All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet
- The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading

When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.

Chemical Waste

After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation

	General Refuse	
	General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem	٨
	CM1 All existing trees should be carefully protected during construction.	^
Landscape and Visual	CM2 Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	N/A
	CM3 Control of night-time lighting.	^
	CM4 Erection of decorative screen hoarding.	٨

Remarks:	^ Compliance of mitigation measure;
	X Non-compliance of mitigation measure;
	N/A Not Applicable at this stage;
	N/A(1) Not observed;
	Non-compliance but rectified by the contractor;
	* Recommendation was made during site audit but improved/rectified by the contractor.

APPENDIX L
SUMMARIES OF ENVIRONMENTAL
COMPLAINT, WARNING, SUMMON
AND NOTIFICATION OF SUCCESSFUL
PROSECUTION

Contract No. KL/2012/03

Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Reporting Month: May 2018

Warnings / Summons and Successful Prosecutions received in the reporting month

]	Log Ref.	Received Date	Details of Warning / Summons and Successful Prosecutions	Investigation/Mitigation Action	Status
	N/A	N/A	N/A	N/A	N/A

Remarks: No warning/summon and prosecution were received in the reporting period.

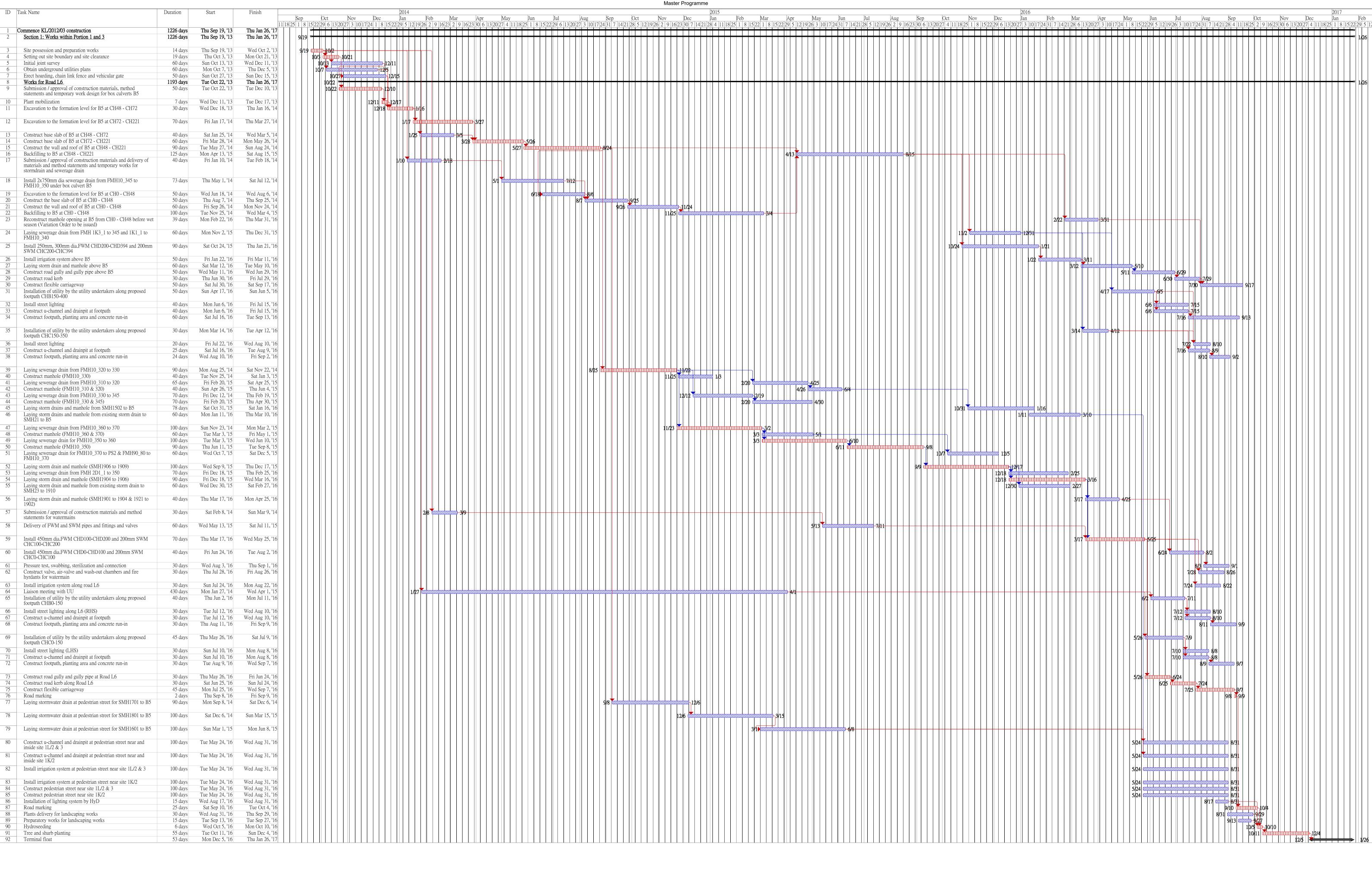
Complaint Log

EP Comp Ref	laint	Date of Complaint	Complaint Details	Investigation / Mitigation Action						
N/A	A	N/A	N/A	N/A	N/A					

APPENDIX M GENERATED WASTE QUANTITY

APPENDIX IV

Monthly Summary Waste Flow Table


(PS Clause 1.86)

Name of Department: CEDD Contract No.: KL/2012/03

Monthly Summary Waste Flow Table for May 2018 (year) (in tons)

			Actual	Quantities of Ir	ert C&D Mater	ials Generated N	Actual Quantities of C&D Wastes Generated Monthly						
Month	Total Disposal Loads	Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse	
	(No.s)	(in tons)	0	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	
2013 (Oct - Dec) Sub-Total	108	463.69	0	0	0	0	0	0	0	0	0	463.69	
2014 (Jan – Dec) Sub-Total	24	16925.7	0	0	16798.93	83.66	1804.27	0	0	0	0	43.11	
2015 (Jan – Dec) Sub-Total	284	81859.97	0	0	38291.91	43457.21	19920	0	0	0	0	310.26	
2016 (Jan – Dec) Sub-Total	3369	50762.64	0	0	0	49894.67	4020	0	0	0	0	867.95	
2017 (Jan – Dec) Sub-Total	2737	39615.16	0	0	0	38996.26	0	0	0	0	0	603.11	
Jan-18	48	575.23	0	0	0	497.91	0	0	0	0	0	77.32	
Feb-18	10	81.78	0	0	0	30.34	0	0	0	0	0	51.44	
Mar-18	59	869.93	0	0	0	817.87	0	0	0	0	0	52.06	
Apr-18	14	136.71	0	0	0	91.67	0	0	0	0	0	45.04	
May-18	327	5176.05	0	0	0	5125.76	0	0	0	0	0	50.29	
Jun-18													
Jul-18													
Aug-18													
Sep-18													
Oct-18													
Nov-18													
Dec-18													
Total	6980	196466.86	0	0	55090.84	138995.4	25744.27	0	0	0	0	2564.27	

APPENDIX N CONSTRUCTION PROGRAMME

Critical tasks

Non-critical Tasks

Working days

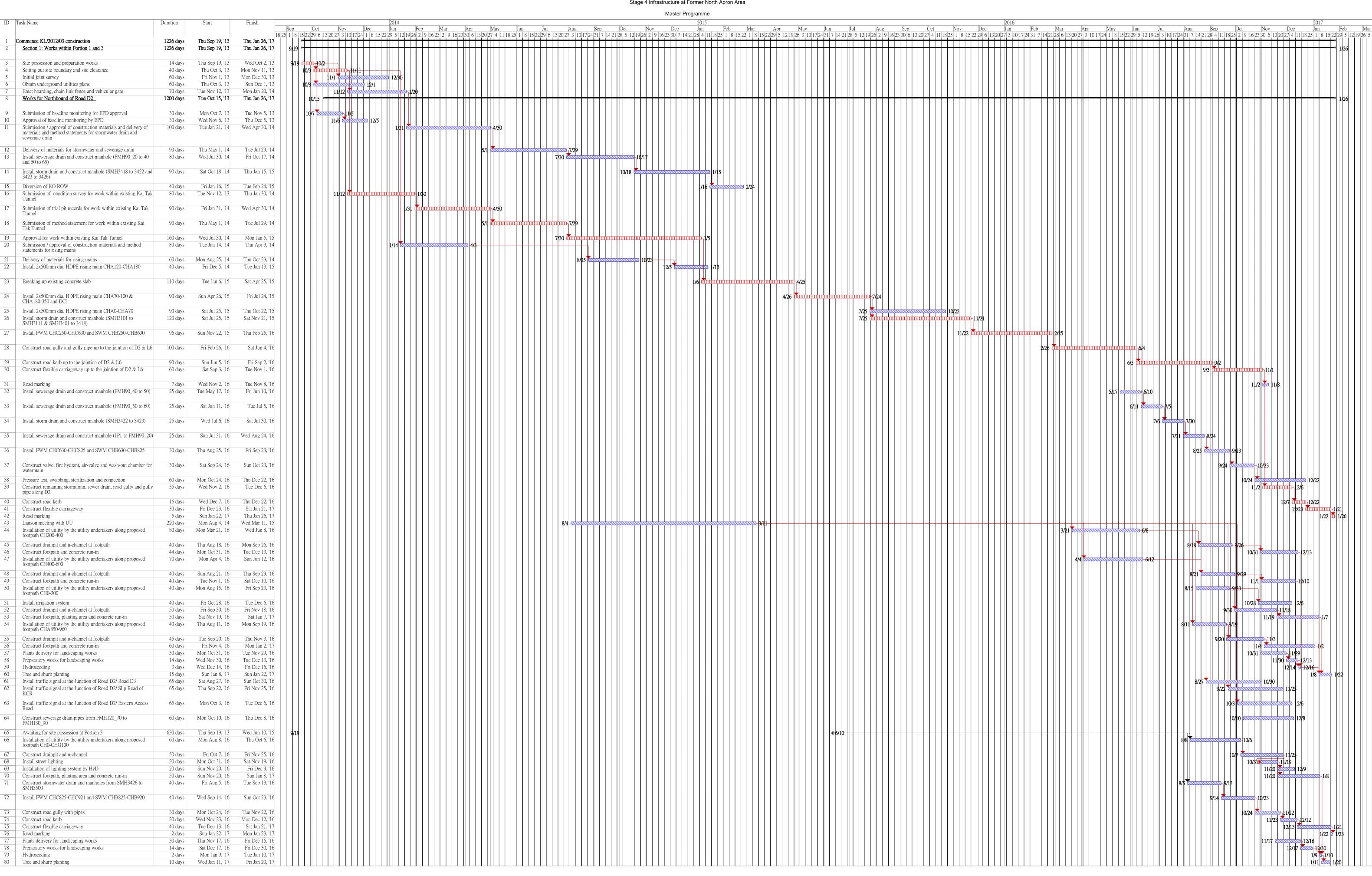
Inactive Milestone

Inactive Summary

Manual Task

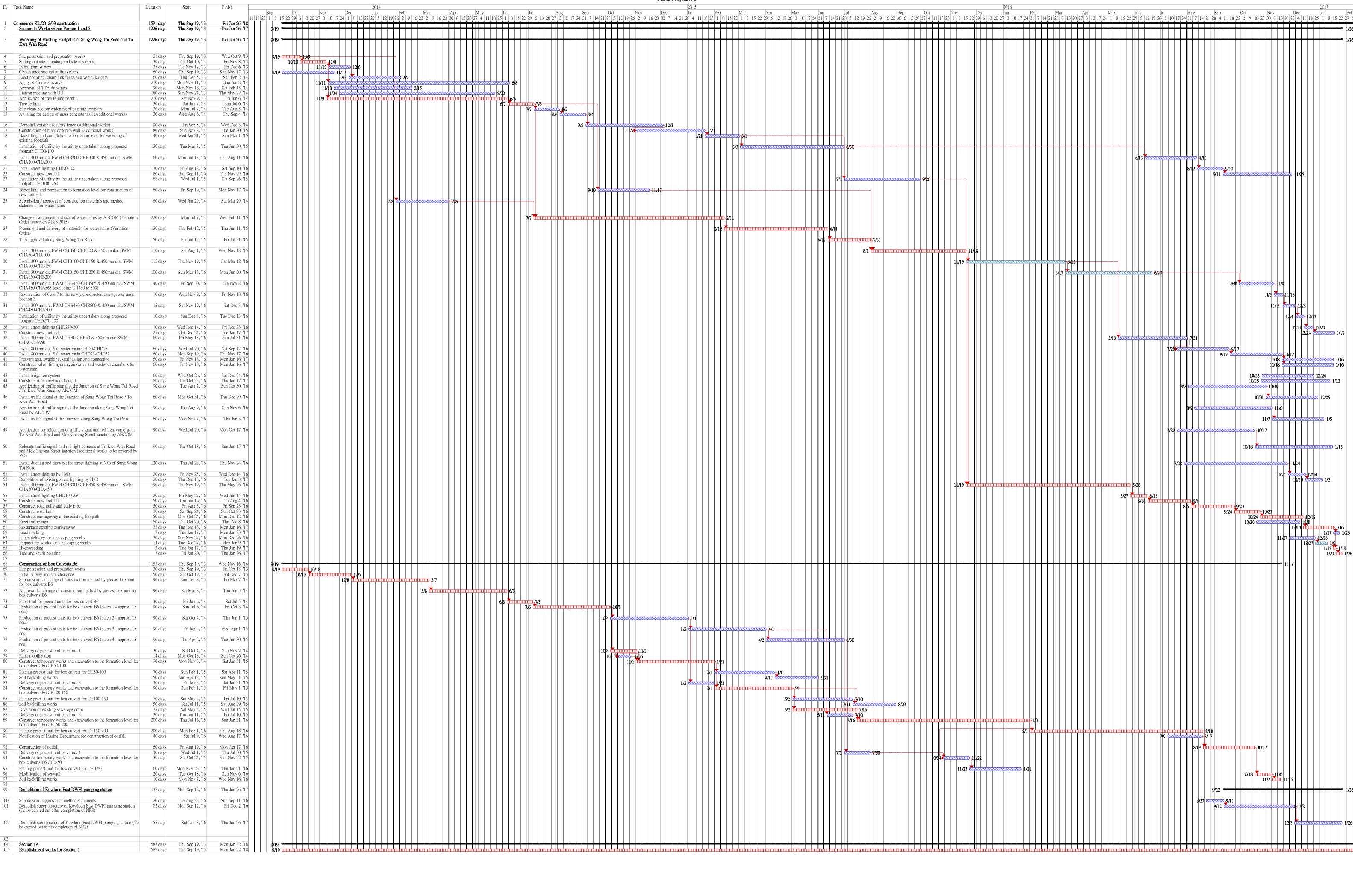
Duration-only

Manual Summary Rollup ◆


Manual Summary

Start-only

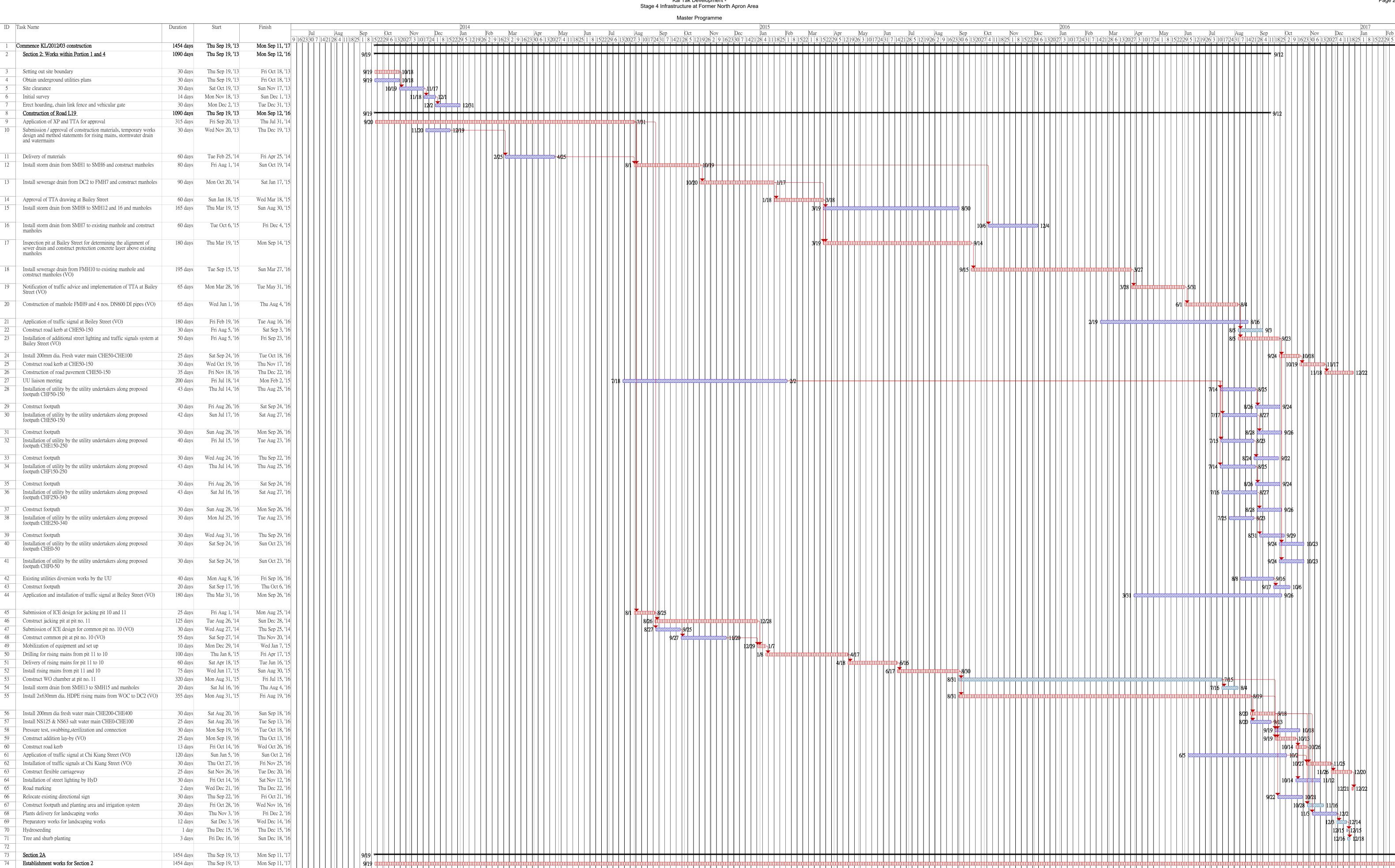
Finish-only


External Tasks

External Milestone

Critical tasks | Unactive Summary | Unactive Summary | Unactive Summary | Unactive Summary | Unactive Milestone |

Completion Date: 2 September 2016 Revised Completion Date: 26 January 2017


Commencement Date: 19 September 2013
Completion Date: 2 September 2016
Revised Completion Date: 46 January 2017

Critical tasks

Critical tasks

Manual Summary Non-critical tasks

Updated on 29 July 2016

Critical tasks

Non-critical tasks

Working days

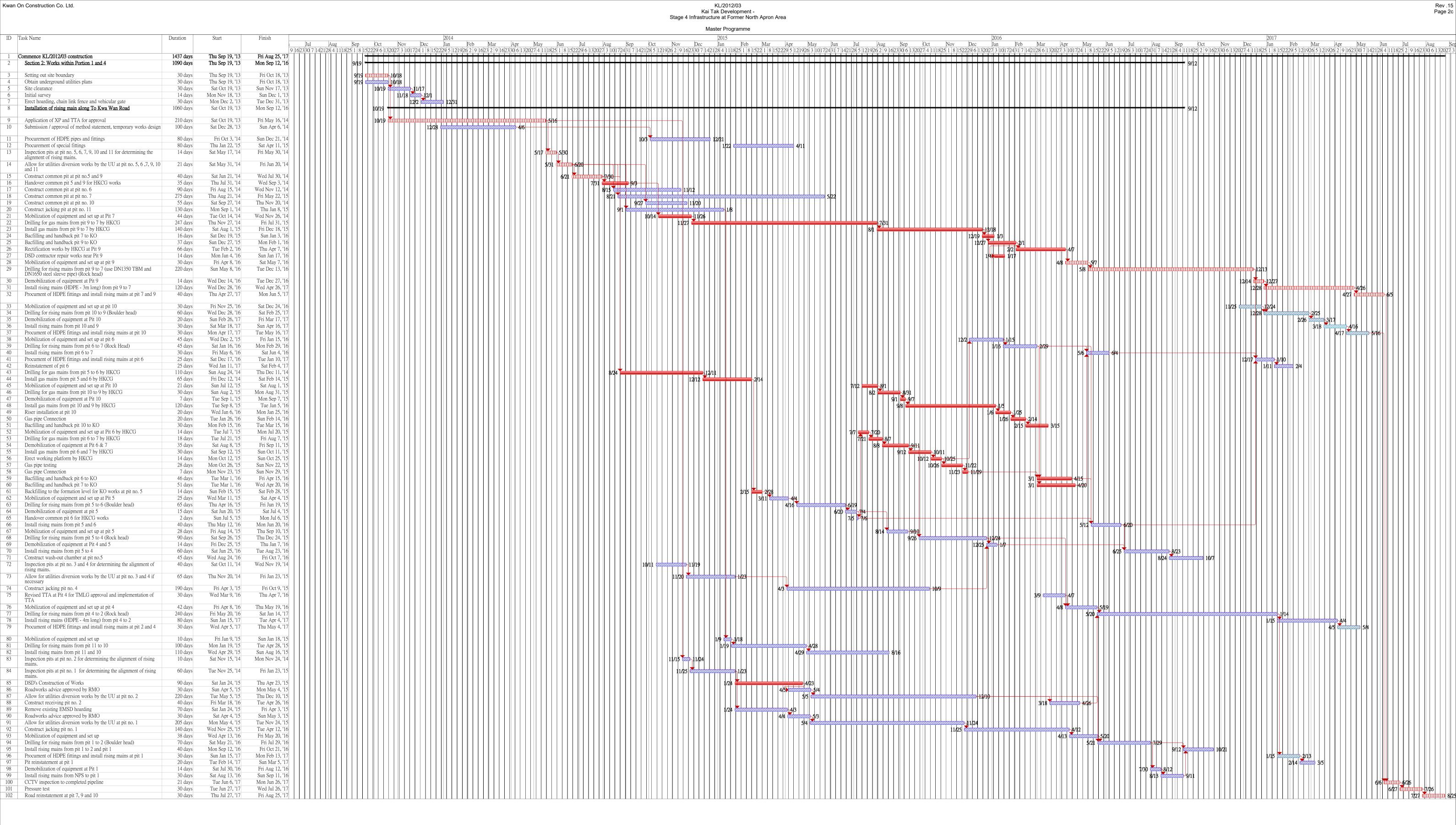
Inactive Milestone

Inactive Summary

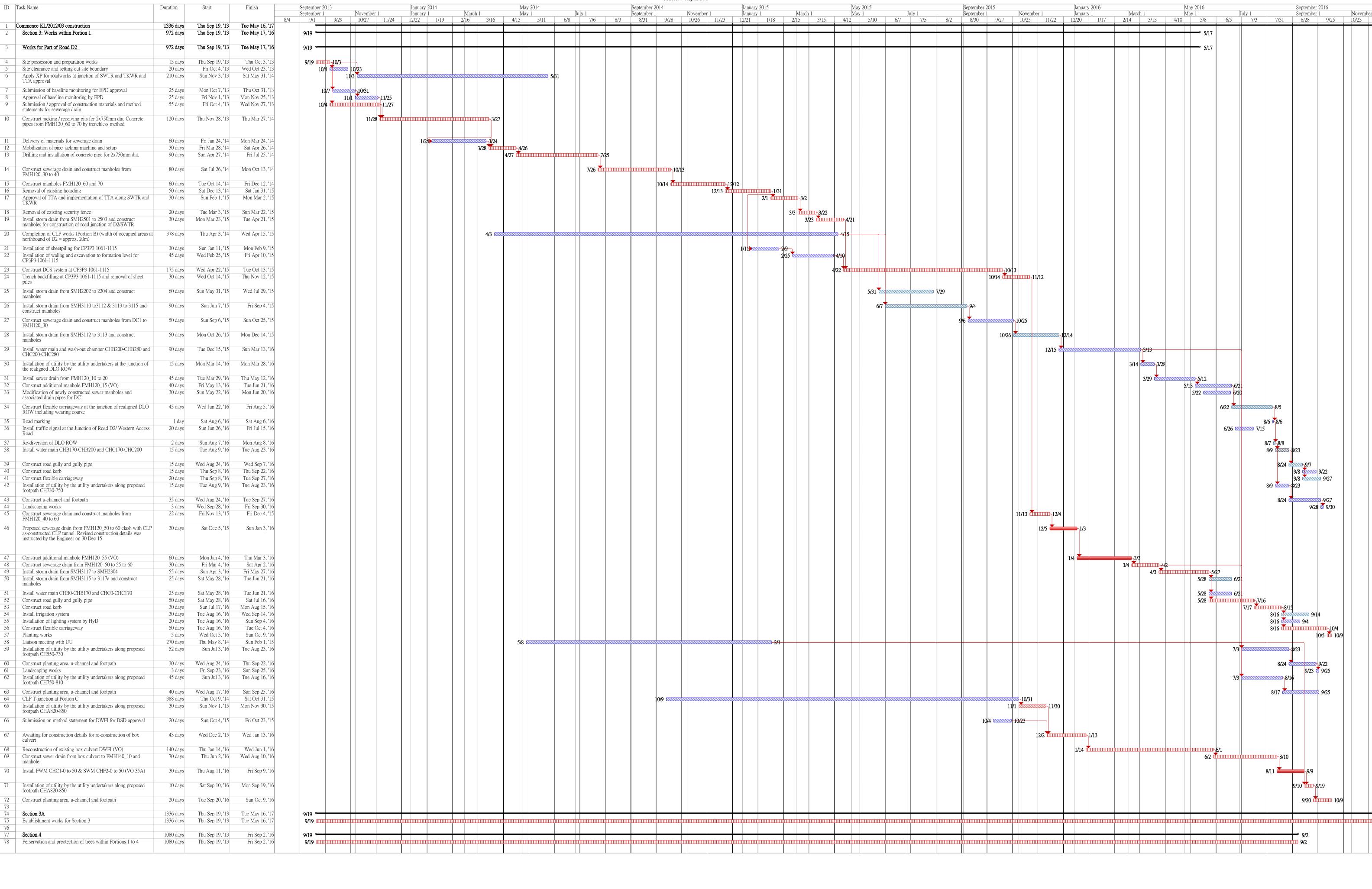
Manual Task

Duration-only

Manual Summary Rollup


Manual Summary

Start-only


Finish-only

External Tasks

External Milestone

Master Programme

Section 3 Commencement Date: 19 September 2013 Completion Date: 17 May 2016

Critical tasks

Non-critical tasks

Working days

Inactive Milestone

Inactive Summary

Manual Task

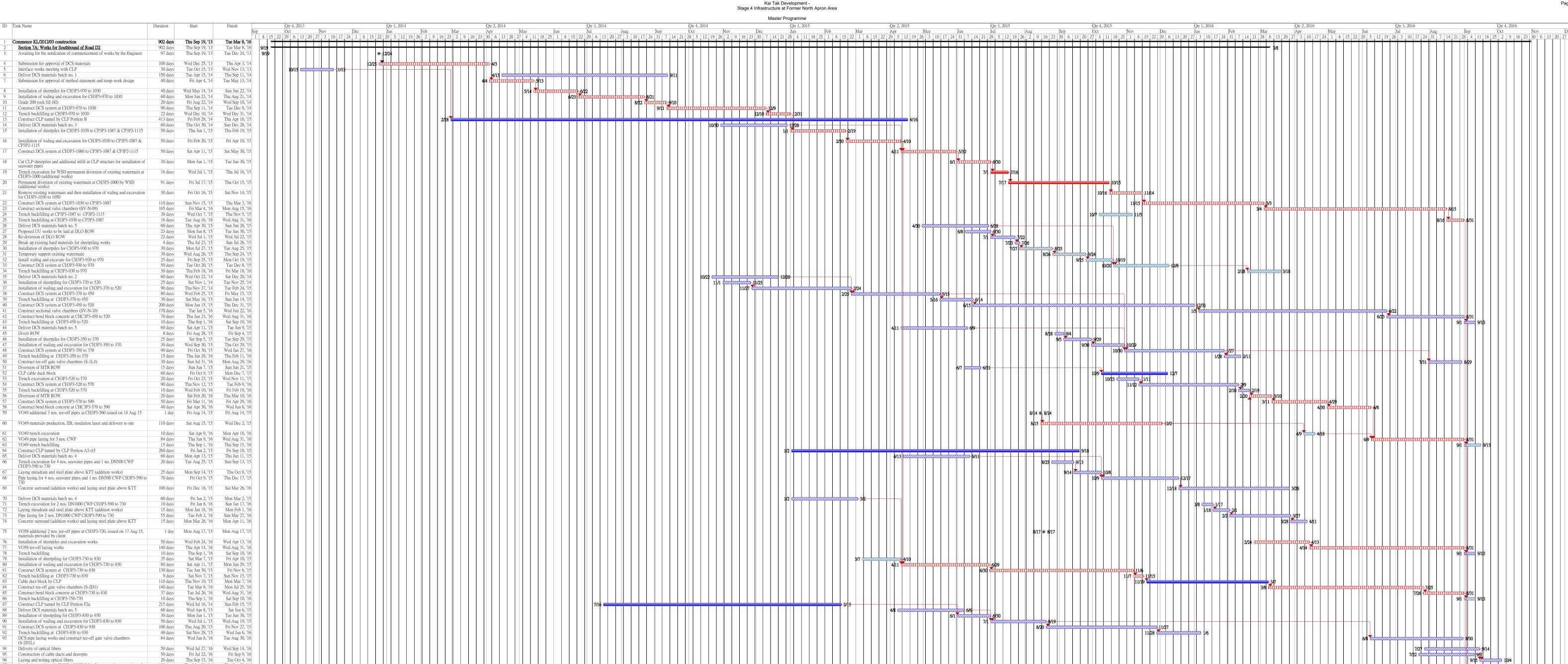
Duration-only

Manual Summary Rollup ◆

Manual Summary

Start-only

Finish-only


External Tasks

External Milestone

Kai Tak Development Stage 4 Infrastructure at Former North Apron Area

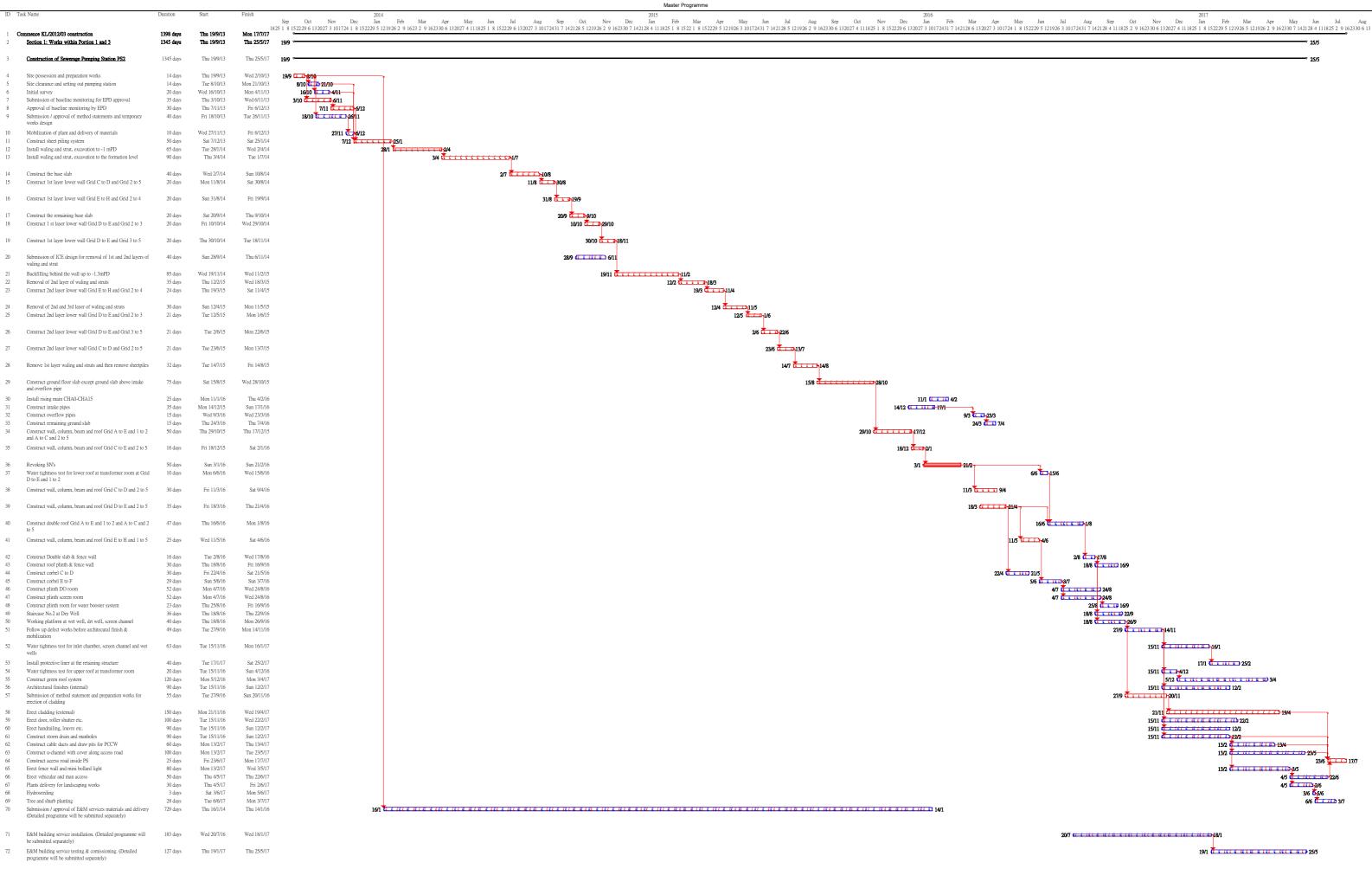
Master Programme

Master Programme ID Task Name September 2015 September 2013 September 2014 January 2015 September 1 September 1 September 1 November 1 November 1 January 1 Commence KL/2012/03 construction Thu Sep 19, '13 Thu Sep 15, '16 Section 5: Works for Southbound of Road D2 1093 days Thu Sep 19, '13 Thu Sep 15, '16 **9/19** Awaiting for the notification of commencement of works by the Engineer **⊚** 12/24 97 days Thu Sep 19, '13 Tue Dec 24, '13 **9/19** Completion of DCS works for CH3P3-970 to 1030 372 days Wed Dec 25, '13 12/25 Wed Dec 31, '14 Installation of utility by the utility undertakers along proposed footpath 20 days Mon Aug 29, '16 Sat Sep 17, '16 Construct drainpit and u-channel Sun Sep 18, '16 Wed Oct 12, '16 9/18 🖎 Install street lighting 15 days Sun Sep 25, '16 Sun Oct 9, '16 20 days Installation of lighting system by HyD Mon Oct 10, '16 Sat Oct 29, '16 Construct footpath, planting area and concrete run-in 35 days Mon Oct 17, '16 Sun Nov 20, '16 11/21 🕈 11/23 Landscape works Mon Nov 21, '16 Wed Nov 23, '16 Construct stormwater drain and manholes 17 days Mon Aug 15, '16 Wed Aug 31, '16 8/15 8/31 Construct road gully with pipes 15 days Thu Sep 1, '16 Thu Sep 15, '16 Construct road kerb 15 days Fri Sep 16, '16 Fri Sep 30, '16 Construct flexible carriageway 30 days Sat Oct 1, '16 Sun Oct 30, '16 Road marking Mon Oct 31, '16 Mon Oct 31, '16 Construct CLP tunnel by CLP Portion B 413 days Fri Feb 28, '14 Thu Apr 16, '15 610 days Completion of DCS works for CH3P3-1030 to 1115 Thu Jan 1, '15 Thu Sep 1, '16 Installation of utility by the utility undertakers along proposed footpath 25 days Sun Sep 18, '16 Wed Oct 12, '16 9/18 Construct drainpit and u-channel Thu Oct 13, '16 Fri Nov 11, '16 Wed Nov 23, '16 11/12 11/23 Sat Nov 12, '16 Install street lighting Construct footpath, planting area and concrete run-in 39 days Thu Oct 13, '16 Sun Nov 20, '16 11/21 🕈 11/23 3 days Landscape works Mon Nov 21, '16 Wed Nov 23, '16 33 days Construct stormwater drain and manholes Fri Sep 2, '16 Tue Oct 4, '16 Wed Oct 5, '16 Construct road gully with pipes 16 days Thu Oct 20, '16 Construct road kerb Fri Oct 21, '16 Fri Nov 4, '16 10/21 11/4 25 days Sat Nov 5, '16 Construct flexible carriageway Tue Nov 29, '16 Road marking Wed Nov 30, '16 Wed Nov 30, '16 Completion of DCS works for CH3P3-930 to 970 141 days Wed Jul 1, '15 Wed Nov 18, '15 Construct CLP tunnel by CLP Portion F1 126 days Thu Nov 19, '15 Wed Mar 23, '16 8/15 Installation of utility by the utility undertakers along proposed footpath 31 days Mon Aug 15, '16 Wed Sep 14, '16 Wed Oct 19, '16 Construct drainpit and u-channel Thu Sep 15, '16 9/15 20 days Thu Sep 15, '16 Install street lighting Tue Oct 4, '16 40 days Thu Sep 15, '16 Mon Oct 24, '16 Construct footpath, planting area and concrete run-in 10/25 📉 10/31 7 days Tue Oct 25, '16 Mon Oct 31, '16 Landscape works 45 days Mon May 2, '16 6/15 Construct stormwater drain and manholes Wed Jun 15, '16 40 days Thu Jun 16, '16 Mon Jul 25, '16 Construct road gully with pipes 7/26 8/4 Construct road kerb 10 days Tue Jul 26, '16 Thu Aug 4, '16 Construct flexible carriageway 40 days Fri Aug 5, '16 Tue Sep 13, '16 9/14 9/15 Road marking Wed Sep 14, '16 Thu Sep 15, '16 Completion of DCS works for CH3P3-370 to 520 400 days Sun Dec 28, '14 Sun Jan 31, '16 Completion of DCS works for CH3P3-350 to 370 120 days Sun Oct 4, '15 Sun Jan 31, '16 Completion of DCS works for CH3P3-520 to 570 Thu Feb 11, '16 10/25 110 days Sun Oct 25, '15 Installation of utility by the utility undertakers along proposed footpath 35 days Sun Aug 28, '16 Sat Oct 1, '16 8/28 44 Construct drainpit and u-channel Sun Oct 2, '16 Tue Nov 15, '16 Install street lighting 20 days Sun Oct 2, '16 Fri Oct 21, '16 Construct footpath, planting area and concrete run-in 45 days Tue Nov 15, '16 Sun Oct 2, '16 Wed Nov 16, '16 Tue Nov 22, '16 11/16 🔖 11/22 7 Landscape works Sun Aug 28, '16 Construct stormwater drain and manholes Mon Sep 26, '16 Construct road gully with pipes Tue Sep 27, '16 Sun Oct 16, '16 10/17 50 Construct road kerb Mon Oct 17, '16 Sat Nov 5, '16 Construct flexible carriageway 20 days Fri Nov 25, '16 Sun Nov 6, '16 3 days 11/26 🕈 11/28 Road marking Sat Nov 26, '16 Mon Nov 28, '16 Completion of DCS works for CH3P3-570 to 730 Sat Sep 19, '15 Tue Apr 5, '16 9/19 🛚 8/21 Installation of utility by the utility undertakers along proposed footpath 35 days Sun Aug 21, '16 Sat Sep 24, '16 55 Construct drainpit and u-channel Sun Sep 25, '16 Fri Nov 18, '16 9/25 56 Install street lighting Sun Sep 25, '16 Fri Oct 14, '16 9/25 Construct footpath, planting area and concrete run-in 50 days Sun Sep 25, '16 Sun Nov 13, '16 11/14 📩 11/20 58 Landscape works 7 days Mon Nov 14, '16 Sun Nov 20, '16 59 Construct stormwater drain and manholes 40 days Sun May 29, '16 Thu Jul 7, '16 5/29 29 days Fri Jul 8, '16 Fri Aug 5, '16 60 Construct road gully with pipes 61 Construct road kerb 20 days Sat Aug 6, '16 Thu Aug 25, '16 20 days 62 Construct flexible carriageway Fri Aug 26, '16 Wed Sep 14, '16 9/15 9/15 Thu Sep 15, '16 Thu Sep 15, '16 63 Road marking 64 Completion of DCS works for CH3P3-730 to 830 Mon Mar 2, '15 Mon Nov 16, '15 65 Cable duct block by CLP 126 days Tue Nov 17, '15 Mon Mar 21, '16 11/17 240 days Mon Apr 27, '15 Completion of DCS works for CH3P3-830 to 930 (except 860 to 900) Tue Dec 22, '15 <u>№ 12/22</u> Installation of utility by the utility undertakers along proposed footpath 40 days Sun Aug 28, '16 Thu Oct 6, '16 68 Construct drainpit and u-channel Fri Oct 7, '16 Sun Nov 20, '16 69 Install street lighting 20 days Fri Oct 7, '16 Wed Oct 26, '16 10/7 Construct footpath, planting area and concrete run-in 45 days Fri Oct 7, '16 Sun Nov 20, '16 Mon Nov 21, '16 Sun Nov 27, '16 Landscape works 21 days Sun Mar 27, '16 Sat Apr 16, '16 Construct stormwater drain and manholes 3/27 4/16 Proposed sewer drain FMH120_20 to 10 clash with as-constructed CLP's 10 days Sun Apr 17, '16 Tue Apr 26, '16 4/17 4/26 cable tunnel. Further instruction is required Construct additional manhole with backdrop (VO) Wed Apr 27, '16 Sun Jun 5, '16 Mon Jun 6, '16 Wed Jul 20, '16 Construct road gully with pipes 7/21 8/10 8/10 Thu Jul 21, '16 Construct road kerb 20 days Tue Aug 9, '16 Construct flexible carriageway 35 days Wed Aug 10, '16 Tue Sep 13, '16 9/14 9/15 Road marking 2 days Wed Sep 14, '16 Thu Sep 15, '16 Completion of DCS works for CH3P3-860 to 900 for realignment of DLO 110 days Sun Apr 17, '16 Thu Aug 4, '16 ROW including wearing course 80 Installation of utility by the utility undertakers along proposed footpath Fri Aug 5, '16 Wed Aug 24, '16 8/20 Fri Aug 5, '16 Sat Aug 20, '16 81 Construct stormwater drain and manholes 8/21 8/30 82 Construct road gully with pipes Sun Aug 21, '16 Tue Aug 30, '16 8/31 \$\square{5}9/4 83 Construct road kerb 5 days Wed Aug 31, '16 Sun Sep 4, '16 9/5 5 9/14 84 Construct flexible carriageway 10 days Mon Sep 5, '16 Wed Sep 14, '16 85 Road marking 1 day Thu Sep 15, '16 9/15 9/15 Thu Sep 15, '16

Laying and testing optical fibers

99 Swabbing, pressure test and chemical test for DCS Pipes

98 CCTV for DCS pipes


Interfacing works with EMSD 1020EM12A Contractor for connection of the proposed four seawater pipes and three chilled water pipes in Section C to their construction of seawater pipes and chilled water pipes

120 days Thu May 29, '14 Thu Sep 25, '14

100 days Sun May 22, '16 Mon Aug 29, '16 60 days Thu Sep 1, '16 Sun Oct 30, '16

Working days Inactive Milestone Inactive Summary Manual Task Critical tasks Duration-only Manual Summary Rollup ◆ Start-only Finish-only External Tasks External Milestone Updated on 29 July 2016

								Programn	me for Installation of DCS Pipelines	(Revised Design) within Portion	n 3											
ID Task Name	Duration	Start	Finish		May 2015 May 1	fuly 1	September 2015 September 1	November 1	January 2016 January 1	March 1	May 2016 May 1	July 1		September 2016 September 1	N	Jovember 1		nuary 2017 nuary 1	March 1		May 2017 May 1	
1 Section 7B: Open Cut Section and Heading Section	763 davs	Fri Apr 3, '15	Thu May 4, '17	15 12	10 7	5 2	30 27	25 22	2 20 17	14 13	10 8	5	3 31	28	25	23 20	18	15		2 9	7	4
2 Western Approach			Tue Jun 28, '16	1/2								6/29										
3 Submission for temporary ELS system and approval	14 days	Fri Apr 3, '15	Thu Apr 16, '15	4/3 4/3 4/17								0/28										
 Install sheet piles at formation level Submission for revised temporary ELS system and approval 		Fri Apr 17, '15 I Sat May 23, '15	Fri May 22, '15 Fri Jun 5, '15	4/17	5/22																	
6 Install waling 7 Install strut			Tue Jun 16, '15 Wed Jul 1, '15		6/6 6/17 6/16	 -7/1																
8 Trench excavation down to 2m and 8m long for drilling	13 days		Tue Jul 14, '15			7/14																
horizontal pipe-piles 9 Submission for heading method	20 days	Fri Jul 17, '15 \	Wed Aug 5, '15			7/17																
10 Comment on heading method		Thu Aug 6, '15 M				8/6 411 8/10	0/0															
11 Mobilization and set up for drilling works 12 Drilling for 219 dia. pipe-piles		Tue Aug 11, '15 Thu Sep 10, '15				8/11	9/10 11111111111111111111111111111111111	0/14														
13 Review design for heading method 14 Grout trial to obtain design parameter		Thu Oct 15, '15 Sat Nov 14, '15 M					9/10 10/15	11/13														
15 Update method statement for heading method	3 days	Tue Nov 24, '15 T	Thu Nov 26, '15					11/14 11/23 11/24 11/26	6													
Upon grout trial successful, proceed with drilling for all grout holes and grouting	52 days	Fri Nov 27, '15	Sun Jan 17, '16					11/27 111111	1/17													
17 Rectification of existing ELS system		Mon Jan 18, '16							1/18		<u>4</u> /26											
Release of suspension of works order Fixing bottom layer reinforcement bar (Additional works - no		Wed Apr 27, '16 T Fri May 13, '16									4/27	D-5/28										
steel bar shown on original design)			Wed Jun 1, '16																			
20 Concreting up to bottom level of sleeve pipe 21 Install 1 no. DN2800 dia sleeve pipe and 4 nos. DN2100 dia.			Sun Jun 5, '16								5/29	6/2 4/5										
Sleeve pipe Concreting up to middle level of sleeve pipe			Tue Jun 7, '16									6/6										
Concreting up to top level of sleeve pipe	3 days	Wed Jun 8, '16	Fri Jun 10, '16									6/8 6/10										
Fixing top layer reinforcement bar (Additional works - no steel bar shown on original design)	3 days	Sat Jun 11, '16 N	Mon Jun 13, '16									6/11 6/13										
25 Concreting up to final level of concrete surround		Tue Jun 14, '16										6/14 6/16										
26 Backfilling and remove stage 1 strut and waling 27 Remove sheetpiles and filling the gap		Fri Jun 17, '16 Wed Jun 22, '16										6/17 6/21										
28 Grade 400 rock fill (additional works)	15 days	Sun Nov 15, '15 S	Sun Nov 29, '15					11/15	/29			0.22										
29 Blinding layer for PJ-N-02 30 Construct base slab of PJ-N-02		Mon Nov 30, '15 Sun Dec 20, '15	Sat Dec 19, 15 Sat Jan 23, '16					11/30	12/19													
31 Construct wall of PJ-N-02 up to +3mPD		Sun Jun 12, '16 W	Wed Aug 10, '16						1.13			6/12	8/11									
32 Soil Backfilling up to +2.8mPD 33 Construct top slab of PJ-N-02		Thu Aug 11, '16 W Thu Aug 25, '16											8/11	8/24	10/23							
34 Soil Backfilling up to formation level	8 days	Mon Oct 24, '16 N	Mon Oct 31, '16										0,25		10/24	10/31						
Remove strut and waling Remove sheetpiles and filling the gap		Tue Nov 1, '16 T Fri Nov 11, '16 S													11/1	11/10 1/11 11/20						
Hand back the site to CCC's	2 days	Wed Jun 29, '16	Thu Jun 30, '16									6/29 1 6/30 7/1										
38 Construction of remaining box culvert by CCC's. 39 Section 7B: Open-cut Section & Heading from Eastern Approach		Fri Jul 1, '16 Mon Jul 27, '15	Fri Oct 28, '16 Thu May 4, '17			7/27						7/1			100000000000000000000000000000000000000	0/28					5/4	
Approach 40 Submission for temporary ELS system and approval			Sun Aug 9, '15			7/27																
41 Site possession	1 day	Mon Aug 10, '15 M	Mon Aug 10, '15			8/10 §8/10																
42 Install sheet piles43 Install 1st layer waling and strut and excavate to 2nd layer		Tue Aug 11, '15 Sat Sep 5, '15	Fri Sep 4, '15			8/11	9/5															
44 Install 2nd layer waling and strut and excavate to 3rd layer		Fri Sep 25, '15					9/25	10/24														
45 Install 3rd layer waling and strut and excavate to 4th layer	30 days	Sun Oct 25, '15 M	Mon Nov 23, '15				10/	25 11/23														
46 Install 4th layer waling and strut and excavate to formation level	30 days	Tue Nov 24, '15 W	Wed Dec 23, '15					11/24	12/23													
47 Drilling for 50 dia. grout holes at 2 layers and grouting		Thu Dec 24, '15							12/24	2/11												
 Strengthening existing ELS system Preparation of method statement for hand-shield construction and 		Fri Feb 12, '16 T Sun Feb 21, '16 T							2/	/12 2/21 3/22	,			10								
approval										2/21			0/	10								
50 Mobilize equipment & materials 51 Pipeline 1 - DN2100		Fri Aug 19, '16 T Wed Aug 31, '16 T											8/19 📆	8/30		11/15						
52 Ground treatment works	7 days	Wed Aug 31, '16	Tue Sep 6, '16										8	/31 29/6		1,10						
53 Pipe jacking 54 DN1400 installation works	-		Sun Oct 16, '16 Wed Nov 9, '16											9/7	10/17	11/9						
55 Annulus grout	6 days	Thu Nov 10, '16 T	Tue Nov 15, '16													/10 11/15						
56 Pipeline 5 - DN2800 57 Ground treatment works	118 days 7 days		Fri Jan 27, '17 Sat Oct 8, '16											10/	/210/8			1/27				
58 Pipe jacking	-	Mon Oct 17, '16	Mon Dec 5, '16												10/17	12	2/5	4/00				
59 CWP installation works 60 Annulus grout	46 days 7 days		Fri Jan 20, '17 Fri Jan 27, '17													12/6		1/20				
61 Pipeline 3 - DN2100	87 days	Mon Nov 14, '16	Wed Feb 8, '17													11/14		1	2/8			
62 Ground treatment works 63 Pipe jacking		Mon Nov 14, '16 Tue Dec 6, '16	Fri Nov 18, '16 Tue Jan 10, '17													11/14 11/18 12/6						
64 DN1400 installation works	23 days	Wed Jan 11, '17	Thu Feb 2, '17													1210	1/	/11 2/2				
65 Annulus grout 66 Pipeline 2 - DN2100	5 days 92 days	Fri Feb 3, '17 Mon Dec 19, '16 M	Tue Feb 7, '17 Mon Mar 20, '17													12	2/19	2/3 🚻 2	2/7 3	/20		
67 Ground treatment works	7 days	Mon Dec 19, '16	Sun Dec 25, '16													12	2/19 11111 12/25			= -		
68 Pipe jacking 69 DN1400 installation works		Wed Jan 11, '17 S Mon Feb 20, '17 W															1/	/11	2/20 11111111111111133/15			
70 Annulus grout	5 days	Thu Mar 16, '17 M	Mon Mar 20, '17																3/16 3/16	/20		
71 Pipeline 4 - DN2100 72 Ground treatment works		Mon Dec 19, '16 M Mon Dec 19, '16 S														12	2/19 12/25	5	3.	/20		
73 Pipe jacking	40 days	Wed Jan 11, '17	Sun Feb 19, '17													12		/11	2/19			
74 DN1400 installation works 75 Annulus grout		Mon Feb 20, '17 W Thu Mar 16, '17 M																	2/20 3/16 3/15	/20		
76 Removal of plant	10 days	Tue Mar 21, '17 T	Thu Mar 30, '17																3/16 11-3. 3/21 11	3/30		
77 Backfilling and removal ELS system	35 days	Fri Mar 31, '17	Thu May 4, '17																3/	31 (11111111111111111111111111111111111	III 5/4	

Master Programme

ID Task Name Commence KL/2012/03 construction 1350 days Thu 19/9/13 Tue 30/5/17 Section 2: Works within Portion 1 and 4 1350 days Thu 19/9/13 Tue 30/5/17 19/9 19/9 18/10 30 days Thu 19/9/13 Fri 18/10/13 19/9 ### 18/10 Site clearance 30 days Sat 19/10/13 Sun 17/11/13 4 19/10 11/11 14 days Mon 18/11/13 Sun 1/12/13 6 18/11 12 Initial survey Erect hoarding, chain link fence and vehicular gate Mon 2/12/13 Thu 30/1/14 7 Construction of sewerage pumping station NPS 1350 days Thu 19/9/13 Tue 30/5/17 19/9 Submission / approval of method statements and temporary work 70 days Sun 29/12/13 Sat 8/3/14 Mobilization 20 days Tue 18/3/14 Sun 6/4/14 10 18/3 6/4 Mon 7/4/14 Thu 5/6/14 12,11 Install waling and strut, excavation to the formation level (1st and 90 days Fri 6/6/14 Wed 3/9/14 13 Install waling and strut, excavation to the formation level (3rd 89 days Thu 4/9/14 Mon 1/12/14 14 4/9 29/11 (11/11/12/14/1 Construct the base slab Sat 29/11/14 Wed 14/1/15 Construct the external and internal wall Grid E to G and Grid 2 to 34 days Sat 3/1/15 Thu 5/2/15 3 up to -1.25 mPD 6/2 📥 20/2 Construct the external wall Grid C to E and Grid 2 to 4 up to -0.95 Thu 5/2/15 Sat 11/4/15 Construct the external wall Grid C to E and Grid 1 to 2 up to -0.95 23 days Fri 24/4/15 2/4 Thu 2/4/15 Construct the internal wall Grid D to E up to -0.95 mPD Wed 27/5/15 Sat 20/6/15 20 Backfilling works behind constructed wall and remove 2nd layer 14 days Mon 22/6/15 Sun 5/7/15 21 22/6 🚈 5/7 Construct the external wall Grid C to E and Grid 2 to 4 up to Mon 6/7/15 Thu 30/7/15 25 days Construct the external wall Grid C to E and Grid 1 to 2 up to +2..25 mPD 15 days Fri 31/7/15 Fri 14/8/15 23 31/7 414/8 Construct the internal wall Grid D to E up to +2.25 mPD 7 days Sat 15/8/15 Fri 21/8/15 24 15/8 雄 21/8 Backfilling works behind constructed wall and remove 1st layer of 42 days Sat 15/8/15 Fri 25/9/15 15/8 25/9 waling and strut and sheetpiles Construct the external and internal wall Grid A to E and Grid 1 to 36 days Sat 26/9/15 Sat 31/10/15 26 26/9 31/10 Construct the external and internal wall Grid A to E and Grid 2 to 4 up to ± 4.7 mPD 31 days Sat 26/9/15 26/9 26/10 Construct the external and internal wall Grid E to G and Grid 2 to 103 days Sat 6/6/15 Wed 16/9/15 6/6 Construct upper wall and column up to beam level Grid A to C 21/11 25/1 66 days Sat 21/11/15 Mon 25/1/16 29 Construct the beam and roof Grid A to C and 1 to 5, Only double ceiling will be divided into two layers for construction 47 days Tue 26/1/16 Sat 12/3/16 30 26/1 12/3 Construct upper wall and column up to beam level Grid E to G 80 days Thu 24/12/15 Sat 12/3/16 24/12 12/3 Construct upper wall and column up to beam level Grid C to E and 1 to 5 $\,$ Tue 22/12/15 Mon 7/3/16 22/12 Construct the beam and roof Grid E to G and 1 to 5 78 days Mon 14/3/16 Mon 30/5/16 14/3 Construct the beam and roof Grid C to E and 1 to 5 Fri 22/4/16 33 46 days 8/3 22/4 31/5 22/6 31/5 22/6 Construct roof plinth and fence wall 23 days Tue 31/5/16 Wed 22/6/16 34 Construct ventilation house 23 days Tue 31/5/16 Wed 22/6/16 34 Construct corbel Grid Cto D 21 days Tue 31/5/16 Mon 20/6/16 34 Construct corbel Grid E to F 21 days Tue 21/6/16 Mon 11/7/16 38 21/6 📥 11/7 Construct Plinth DO room 1 16 days Thu 23/6/16 Fri 8/7/16 36 23/6 23/7 Thu 21/7/16 40 977 2177 Construct Plinth DO room 2 13 days Construct Plinth Room for waterbooster system 20 days Fri 22/7/16 Wed 10/8/16 41 22/7 📥 10/8 21/6 Staircase No1 at Dry Well 35 days Tue 21/6/16 Mon 25/7/16 38 Working plantform at Wet well, Dry weel, screen channel 56 days Tue 21/6/16 Mon 15/8/16 38 Follow up defect works before arcectural finish works & 35 days Tue 16/8/16 Mon 19/9/16 44 16/8 70 days Tue 20/9/16 Water tightness test for retaining structure Mon 28/11/16 45 20/9 W 28/11 29/11 28/12 Install protective liner at the retaining structure Wed 28/12/16 46 Water tightness test for the double ceiling 20 days Thu 29/12/16 Tue 17/1/17 47 29/12 29/17/1 Establishment of green roof system 50 days Wed 18/1/17 Wed 8/3/17 48 18/1 Architectural finishes (internal) Tue 20/9/16 Fri 18/11/16 45 18/11 20/9 🕇 Erect granite tile 90 days Tue 20/9/16 Sun 18/12/16 45 20/9 Erect louvre and door 60 days Tue 20/9/16 Fri 18/11/16 45 20/9 18/11 20/9 Erect handrailing and roller shutter etc. Sun 18/12/16 45 90 days Tue 20/9/16 Install rising main 30 days Tue 16/8/16 Wed 14/9/16 44 Construct sewerage, drainage drain and manhole 46 days Thu 15/9/16 Sun 30/10/16 54 15/9 Fri 17/2/17 59,55,58,57 19/1 47/2 Construct assess road 30 days Thu 19/1/17 Construct cable ducts and draw pits for PCCW and CLP Mon 31/10/16 Fri 9/12/16 55 31/10 9/12 31/10 9/12 10/12 18/1 Construct u-channel with cover along access road 40 days Mon 31/10/16 Fri 9/12/16 55 Wed 18/1/17 55,58,57 Erect vehicular and man access and mini bollard light 40 days Sat 10/12/16 Sat 18/2/17 Sun 19/3/17 56 Preparatory works for landscaping works 7 days 3 days Mon 20/3/17 Sun 26/3/17 60 20/3 26/3 Wed 29/3/17 61,49 27/3 1 29/3 Mon 27/3/17 Hydroseeding Wed 12/4/17 62 Submission / approval of E&M services materials and delivery 793 days Thu 16/1/14 Fri 18/3/16 16/1 20/7 submitted separately) 23/1 E&M building service Testing & Commissioning (Detailed 128 days Mon 23/1/17 Tue 30/5/17 65

evised Completion Date: 30 May 2017

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Appendix C

Monthly EM&A Report
For
Contract No. KL/2014/01
Kai Tak Development - Stage 2 Infrastructure works for Developments at Southern Part of the Former Runway

Civil Engineering and Development Department

EP-337/2009 & EP-445/2013/A Contract No. KL/2014/01

Kai Tak Development – Stage 2 Infrastructure works for Developments at Southern Part of the Former Runway

Monthly EM&A Report May 2018

(Version 1.0)

Approved By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388

Email: info@cinotech.com.hk

Ka Shing management consultant Limited

Our ref: 6-6-2018

6-6-2018

By email: clive.cheng@aecom-ktd.com and By hand

Supervising Officer Representative

Aecom Asia Co Ltd.

8/F Grand Central Plaza Tower 2

138 Shatin Rural Committee Road

Sha Tin, N.T. Hong Kong

(Attn: Mr. Cheng Chi Hung)

Dear Mr. Cheng,

Re: Contract No. KL/2014/01 (Environmental Permit Nos. EP-337/2009 and EP-445/2013/A) Kai Tak Development - Stage 2 Infrastructure Works for Developments at Southern Part of the Former Runway Monthly EM&A report for May 2018

Reference is made to the Environmental Team's submission of the draft Monthly EM&A Report (version 1.0) for May 2018 provided to Independent Environmental Checker (IEC) via email dated on 5 th June 2018 for review and comment.

Please be informed that IEC has no adverse comment on the captioned submission. IEC writes to verify the captioned submission in accordance with Specific Condition 2.2 of the Environmental Permit No. 337/2009 and 445/2013/A.

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully,

For and on behalf of

Ka Shing Management Consultant Limited

Independent Environmental Checker

c.c.

CEDD

Mr. Sunny Lo

(By email: sunnysplo@cedd.gov.hk)

AECOM

Mr. Anthony Lok

(By email: anthony.lok@aecom-ktd.com)

CEC-CCC

Mr. Eric Fong

(By email: eric-cs-fong@continental-engineering.com)

Cinotech

Dr. Priscilla Choy

(By email: priscilla.choy@cinotech.com.hk)

SFK

Ms Alice Leung

(By email: aliceleung@sfk.com.hk)

TABLE OF CONTENTS

	EXECUTIVE SUMMARY Introduction Environmental Monitoring Works Environmental Licenses and Permits Key Information in the Reporting Month Future Key Issues	1 2 2
1.	INTRODUCTION	3
	Background Project Organizations Construction Activities undertaken during the Reporting Month Summary of EM&A Requirements	4 4
2.	AIR QUALITY	6
	Monitoring Requirements Observations	
3.	NOISE	7
	Monitoring Requirements Observations	
4.	LANDSCAPE AND VISUAL	8
	Monitoring Requirements Results and Observations	
5.	ENVIRONMENTAL AUDIT	9
	Site Audits Status of Environmental Licensing and Permitting Status of Waste Management Implementation Status of Environmental Mitigation Measures Summary of Mitigation Measures Implemented Implementation Status of Event Action Plans Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution	9 10 10
6.	FUTURE KEY ISSUES	11
	Key Issues for the Coming Month	11
7.	CONCLUSIONS AND RECOMMENDATIONS	13
	Conclusions	

LIST OF TABLES

Table I	Non-compliance Recorded for the Project in the Reporting Month
Table II	Summary Table for Key Information in the Reporting Month
Table 1.1	Key Project Contacts
Table 1.2	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 5.1	Summary of Environmental Licensing and Permit Status
Table 5.2	Observations and Recommendations of Site Inspections

LIST OF FIGURES

Figure 1 Site Layout Plan

LIST OF APPENDICES

A	Action and Limit Levels
В	Summary of Exceedance
C	Site Audit Summary
D	Event Action Plans
E	Environmental Mitigation Implementation Schedule (EMIS)
F	Summaries of Environmental Complaint, Warning, Summon and Notification
	of Successful Prosecution
G	Waste Generated Quantity

Monthly EM&A Report – May 2018

EXECUTIVE SUMMARY

Introduction

- 1. This is the 26th Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2014/01 Kai Tak Development Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway" (Hereafter referred to as "the Project"). This contract work comprises two Schedule 2 designated projects (DP), namely the new distributor road D4(part) and roads D3A & D4A serving the planned KTD. The DPs are part of the designated projects under Environmental Permits (EP) No.: EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") and EP-445/2013/A ("Kai Tak Development Roads D3A & D4A") respectively. This report documents the findings of EM&A Works conducted from 1 31 May 2018.
- 2. With reference to the same principle of EIA report of the Project, no air quality monitoring station within 500m and noise monitoring station within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, no relevant air quality and noise monitoring location are required for monitoring under the Project. The monitoring works for recommended monitoring stations in EM&A Manual of the DPs are conducted by Kai Tak Development (KTD) Schedule 3 Project.
- 3. The major site activities undertaken in the reporting month included:
 - TTA implementation, junction improvement works at Shing Fung Road, Wang Chiu Road / Sheung Yee Road and Wang Chiu Road / Kai Cheung Road;
 - ELS installation and construction of box culvert and underpass;
 - Construction of utilities trough at Kai Tak Bridge;
 - Construction of pile caps, noise barrier footings and steel structure, outfalls, deck structure and columns; and
 - Laying of sewer, drainage and pavement.

Environmental Monitoring Works

- 4. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 5. Summary of the non-compliance in the reporting month for the Project is tabulated in Table I.

 Table I
 Non-compliance Recorded for the Project in the Reporting Month

Parameter	No. of Project-rela	ted Exceedance	Action Taken
1 at afficted	Action Level	Limit Level	Action Taken
Noise	0	0	N/A

Environmental Monitoring for Air Quality and Construction Noise

6. No monitoring for air quality and construction noise is required. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 7. Licenses/Permits granted to the Project include the Environmental Permits (EP) for the Project, EP-337/2009 issued on 23 April 2009 and EP-445/2013 issued on 3 May 2013 (Amended Environmental Permit (No.: EP-445/2013/A) issued on 13 August 2014).
- 8. Billing Account for Disposal of Construction Waste (A/C No. 7024073)
- 9. Registration of Chemical Waste Producer (License: 5213-247-C4004-01).
- 10. Water Discharge License (License: WT00023634-2016).
- 11. Construction Noise Permits (Permit: GW-RE0182-18)

Key Information in the Reporting Month

12. Summary of key information in the reporting month is tabulated in Table II.

Table II Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues

- 13. The future key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for excavation activities and machinery on-site;
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels and sedimentation tanks; and
 - Review and implementation of temporary drainage system for the surface runoff.

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 2 Infrastructure Works for Developments for Southern Part of the Former Runway is one of the construction stages of KTD. It contains two Schedule 2 DPs including new distributor roads serving the planned KTD and KTD Roads D3A & D4A. The general layout of the Project is shown in **Figure 1.**
- 1.2 One Environmental Permit (EP) No.: EP-337/2009 was issued on 23 April 2009 for new distributor roads serving the planned KTD and one Environmental Permit No.: EP-445/2013 was issued on 3 May 2013 for Kai Tak Development Roads D3A & D4A to Civil Engineering and Development Department (CEDD) as the Permit Holder. Pursuant to Section 13 of the EIAO, the Director of Environmental Protection Department amended the Environmental Permit No.: EP-445/2013 based on the Application No. VEP-449/2014 and the Environmental Permit (No.: EP-445/2013/A) was issued on 13 August 2014.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. EIA Reports (Register No. AEIAR-130/2009 and AEIAR-170/2013) were approved by the Environmental Protection Department (EPD) on 4 March 2009 and 3 May 2013 respectively.
- 1.4 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2014/01 Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway. The construction work under KL/2014/01 comprises the construction of part of the Road D4 under the EP (EP-337/2009) and the construction of Roads D3A & D4A under the EP (EP-445/2013/A).
- 1.5 Cinotech Consultants Limited was commissioned by Civil Engineering and Development Department (CEDD) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The construction commencement of this Contract is on 13 April 2016. This is the 26th Monthly EM&A report summarizing the EM&A works for the Project from 1 31 May 2018.
- 1.6 All project information since the commencement of work under EPs including Monthly EM&A Reports is made available to the public via internet access at the website: http://www.kl201401.com/

Project Organizations

- 1.7 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Supervising Officer and the Supervising Officer's Representative (SO) AECOM Asia Co. Ltd. (AECOM).
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) Ka Shing Management Consultant Ltd. (KSMC).
 - Contractor Continental Engineering Corp. and Chit Cheung Construction Co. Ltd. Joint Venture (CCJV).
- 1.8 The key contacts of the Project are shown in **Table 1.1**.

Table 1.1 Key Project Contacts

Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project	Mr. Sunny Lo	Senior Engineer	3579 2450	3579 4516
CEDD	Proponent	Mr. Keith Chu	Engineer	3579 2124	3379 4310
AECOM	Supervising Officer	Mr. Clive Cheng	CRE	3746 1801	2798 0783
G	Environmental Team	Dr. Priscilla Choy	Environmental Team Leader	2151 2089	
Cinotech		Ms. Ivy Tam	Audit Team Leader	2151 2090	3107 1388
KSMC Independent Environmental Dr. C. F. Checker		Dr. C. F. Ng	IEC	2618 2166	2120 7752
CCJV	CCJV Contractor Mr. Dennis Ho		Environmental Officer	2960 1398	2960 1399

Construction Activities undertaken during the Reporting Month

- 1.9 The site activities undertaken in the reporting month included:
 - TTA implementation, junction improvement works at Shing Fung Road, Wang Chiu Road / Sheung Yee Road and Wang Chiu Road / Kai Cheung Road;
 - ELS installation and construction of box culvert and underpass;
 - Construction of utilities trough at Kai Tak Bridge;
 - Construction of pile caps, noise barrier footings and steel structure, outfalls, deck structure and columns; and
 - Laying of sewer, drainage and pavement.
- 1.10 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in Table 1.2.

Monthly EM&A Report – May 2018

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Section 1.8	Noise, dust impact, water quality and waste generation	Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide mitigation measure to temporary use of chemicals; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.

Summary of EM&A Requirements

- 1.11 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
- All monitoring parameters;
- Action and Limit levels for all environmental parameters;
- Event Action Plans;
- Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.12 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 5 of this report.

2. AIR QUALITY

Monitoring Requirements

2.1 With reference to the same principle of EIA report of the Project, no air quality monitoring station within 500m from the boundary of this Project are considered as relevant monitoring locations. No air quality monitoring is required for the Project.

Observations

- 2.2 No monitoring for air quality is required for the Project.
- 2.3 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of air quality mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix C.**

3. NOISE

Monitoring Requirements

3.1 With reference to the same principle of EIA report of the Project, no construction noise monitoring station within 300m from the boundary of this Project are considered as relevant monitoring locations. No Construction noise monitoring is required for the Project. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Observations

- 3.2 No monitoring for construction noise is required for the Project. No Action/Limit Level exceedance was recorded. The summary of exceedance record in reporting month is shown in **Appendix B**.
- 3.3 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of construction noise mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix C**.

4. LANDSCAPE AND VISUAL

Monitoring Requirements

4.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 4.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix C**.
- 4.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 4.4 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix D** shall be performed.

5. ENVIRONMENTAL AUDIT

Site Audits

- 5.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix C**.
- 5.2 Site audits were conducted by representatives of the Contractor, Supervising Officer and ET on 2, 9, 16, 23 and 30 May 2018 in the reporting month. IEC joint site inspection was conducted on 30 May 2018. No non-compliance was observed during the site audits.

Status of Environmental Licensing and Permitting

5.3 All permits/licenses obtained for the Project are summarized in Table 5.1.

Table 5.1 Summary of Environmental Licensing and Permit Status

Table 3.1 Summary of Environmental Electioning and Termit Status				
Permit No.	Valid Period		Details	Status
1 Climt 140.	From	To	Details	Status
Environmental Permit (EP)				
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	
EP-445/2013/A	13/08/14	N/A	Construction of Kai Tak Development roads D3A and D4A	Valid
Effluent Discharge Li	cense			
WT00023634-2016		Wastewater from the construction site including effluent treated by screen and sedimentation tank		Valid
Registration of Chem	ical Waste P	roducer		
5213-247-C4004-01		N/A		
Construction Noise P	ermit (CNP))		
GW-RE0182-18	22/03/18	17/09/18	Construction Noise Permit for the use of powered mechanical equipment for carrying out construction work other than percussive pilling and performing prescribed construction work.	Valid

Status of Waste Management

- 5.4 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix G**.
- 5.5 In respect of the dump truck cover, the Contractor is reminded to take record photos and inspection to ensure that all dump trucks have fully covered the skip before leaving the site.

Implementation Status of Environmental Mitigation Measures

5.6 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 5.2.

 Table 5.2
 Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality			
	25 April 2018	Reminder: Water spraying should be provided more frequently for dust suppression.	The condition was observed to be improved/rectified by the contractor during the audit session on 2 May 2018
Air Quality	16 May 2018	Reminder: To provide mitigation measure for dust suppression at EVA Road (e.g. Watering).	The condition was observed to be improved/rectified by the contractor during the audit session on 23 May 2018
	23 May 2018	Reminder: The water spraying should be provided for loading the dusty material at DCS Area.	The condition was observed to be improved/rectified by the contractor during the audit session on 30 May 2018
Noise			
Waste/ Chemical Management	ŀ		
Landscape and Visual			
Permits/ Licences			

Summary of Mitigation Measures Implemented

5.7 An updated summary of the EMIS is provided in **Appendix E**.

Implementation Status of Event Action Plans

5.8 The Event Action Plans for noise and landscape and visual are presented in **Appendix D**. No Event Action Plan for air quality is considered necessary.

Construction Noise

5.9 No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

5.10 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

5.11 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix F**.

6. FUTURE KEY ISSUES

- 6.1 Major site activities undertaken for the coming two months include:
 - TTA implementation, junction improvement works at Shing Fung Road, Wang Chiu Road / Sheung Yee Road and Wang Chiu Road / Kai Cheung Road;
 - ELS installation and construction of box culvert and underpass;
 - Construction of utilities trough at Kai Tak Bridge;
 - Construction of pile caps, noise barrier footings, outfalls, deck structure and columns;
 - Laying of sewer, drainage and pavement.

Key Issues for the Coming Month

- 6.2 Key environmental issues in the coming month include:
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels and sedimentation tanks;
 - Review and implementation of temporary drainage system for the surface runoff;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site.
- 6.3 The tentative program of major site activities and the impact prediction and control measures for the coming two months, i.e. June and July 2018 are summarized as follows:

Construction Works	Major Impact Prediction	Control Measures
	Air quality impact (dust)	a) Frequent watering of haul road and unpaved/exposed areas;b) Frequent watering or covering stockpiles with tarpaulin or similar means; andc) Watering of any earth moving activities.
As mentioned in Section 7.1	Water quality impact (surface run-off)	d) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; e) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; f) Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and g) Provision of measures to prevent discharge into the stream.

Construction Works	Major Impact	Control Measures
	Prediction	
	Noise Impact	h) Scheduling of noisy construction activities if necessary to
		avoid persistent noisy operation;
		i) Controlling the number of plants use on site;
		j) Regular maintenance of machines; and
		k) Use of acoustic barriers if necessary.

7. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

7.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 to 31 May 2018.

Air Quality and Construction Noise

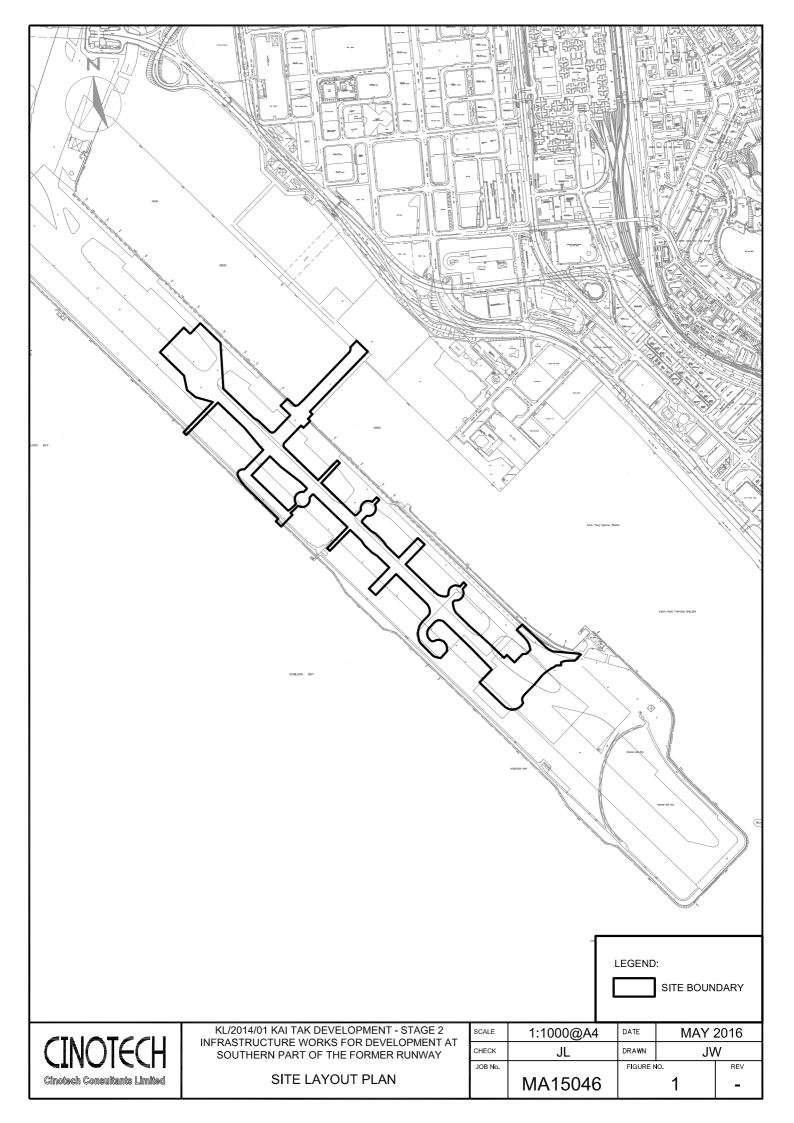
7.2 No regular monitoring air quality and noise monitoring is required for the Project. No Action/Limit Level exceedance was recorded.

Landscape and visual

7.3 No non-compliance was recorded in the reporting month.

Complaint and Prosecution

- 7.4 No environmental complaints and environmental prosecution were received in the reporting month.
- 7.5 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.


Recommendations

7.6 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality

• To provide water spraying more frequently to haul roads or unpaved area for dust suppression.

FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level ⁽¹⁾⁽²⁾
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: (1) If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

- (2) No regular noise impact monitoring station for this Contract. It is subject to the noise sensitive receiver(s) and additional monitoring work.
- (*) 70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B SUMMARY OF EXCEEDANCE

Contract No. KL/2014/01 Kai Tak Development –Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway

Appendix B – Summary of Exceedance

Exceedance Record for Contract No. KL/2014/01

Reporting Month: May 2018

(A) Exceedance Record for Construction Noise

(NIL in the reporting month)

(B) Exceedance Record for Landscape and Visual

(NIL in the reporting month)

APPENDIX C SITE AUDIT SUMMARY

Contract No. KL/2014/01 Kai Tak Development - Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway EP-337/2009 & EP-445/2013/A

Checklist Reference Number	180502
Date	02 May 2018 (Wednesday)
Time	14:00 – 16:00

Ref. No.	Non-Compliance	Related Item No.
_	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	,
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.:180425), all identified deficiencies were observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Andy Chan	Anely	03 May 2018
Checked by	Dr. Priscilla Choy	WI	03 May 2018
		J	

Contract No. KL/2014/01

Kai Tak Development - Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway

EP-337/2009 & EP-445/2013/A

Checklist Reference Number	180509
Date	09 May 2018 (Wednesday)
Time	14:00 – 16:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.:180502), no major environmental deficiency was observed during site inspection.	

	Name	Signature	Date
Recorded by	Kinson Poon		16 May 2018
Checked by	Ivy Tam	Yux	16 May 2018

Contract No. KL/2014/01

Kai Tak Development - Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway

EP-337/2009 & EP-445/2013/A

Checklist Reference Number	180516
Date	16 May 2018 (Wednesday)
Time	14:00 – 16:00

Ref. No.	Non-Compliance	Related Item No.
_	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
180516-R01	To provide mitigation measure for dust suppression at EVA Road (e.g. Watering).	C 5
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit session (Ref. No.:180509), no major environmental deficiency was observed during site inspection.	

	Name	Signature	Date
Recorded by	Kinson Poon	J. S.	16 May 2018
Checked by	Ivy Tam	TUH	17 May 2018

Contract No. KL/2014/01 Kai Tak Development - Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway EP-337/2009 & EP-445/2013/A

Checklist Reference Number	180523
Date	23 May 2018 (Wednesday)
Time	14:00 – 16:00

		Related
Ref. No.	Non-Compliance	Item No.
	None identified	-
Dof No	Remarks/Observations	Related Item No.
Ref. No.		Item 10.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	***
	C. Air Quality	
180523-R01	The water spraying should be provided for loading the dusty material at DCS Area.	C 13
	D. Noise	
	No environmental deficiency was identified during site inspection.	
···	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit session (Ref. No.:180516), all identified deficiencies were observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Janet Wai	11-	23 May 2018
Checked by	Dr. Priscilla Choy	WI	24 May 2018

Contract No. KL/2014/01
Kai Tak Development - Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway
EP-337/2009 & EP-445/2013/A

Checklist Reference Number	180530
Date	30 May 2018 (Wednesday)
Time	14:00 – 16:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	
	·	Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.:180523), all identified deficiencies were observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Kinson Poon	1	30 May 2018
Checked by	Dr. Priscilla Choy	WI	31 May 2018

APPENDIX D EVENT ACTION PLANS

Appendix D - Event Action Plans

Event/Action Plan for Construction Noise

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Action Level being exceeded	4. Notify ER, IEC and Contractor; 5. Carry out investigation; 6. Report the results of investigation to the IEC, ER and Contractor; 7. Discuss with the IEC and Contractor on remedial measures required; 8. Increase monitoring frequency to check mitigation effectiveness. (The above actions should be taken within 2 working days after the exceedance is identified)	Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals. (The above actions should be taken within 2 working days after the exceedance is identified)	
Limit Level being exceeded	Inform IEC, ER, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and ER on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. (The above actions should be taken within 2 working days after the exceedance is identified)	Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)	

Appendix D - Event Action Plans

Event/Action Plan for Landscape and Visual

EVENT ACTION	ACTION			
LEVEL	ET	IEC	ER	CONTRACTOR
Design Check	Check final design conforms to the requirements of EP and prepare report.	Check report. Recommend remedial design if necessary	Undertake remedial design if necessary	
Non- conformity on one occasion	Identify Source Inform IEC and ER Discuss remedial actions with IEC, ER and Contractor Monitor remedial actions until rectification has been completed	Check report Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise ER on effectiveness of proposed remedial measures. Check implementatio n of remedial measures.	Notify Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake any necessary replacement
Repeated Non- conformity	Identify Source Inform IEC and ER Increase monitoring frequency Discuss remedial actions with IEC, ER and Contractor Monitor remedial actions until rectification has been completed If non- conformity stops, cease additional monitoring	Check monitoring report Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise ER on effectiveness of proposed remedial measures Supervise implementatio n of remedial measures.	Notify Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake any necessary replacement

APPENDIX E ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Appendix E - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

EIA Ref.	Mitigation Measures	Status
Construction Air Qu	ıality	
S3.2 (AEIAR-130/2009)	8 times daily watering of the work site with active dust emitting activities.	٨
S4.8 (AEIAR-170/2013)	Control measures stipulated in the approved KTD Schedule 3 EIA Report should be strictly followed.	٨
S3.2 (AEIAR-130/2009) and S4.8	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	
(AEIAR-170/2013)	 Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. Misting for the dusty material should be carried out before being loaded into the vehicle. 	^
	 Any vehicle with an open load carrying area should have properly fitted side and tail boards. 	^
	• Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	^
	• The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation.	^
	• The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	^
	• Vehicle washing facilities should be provided at every vehicle exit point.	^

EIA Ref.	Mitigation Measures	Status
	 The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores. Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet. Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides; and Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites. 	
Construction Noise		L
S3.3 (AEIAR-130/2009)	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump.	۸
S3.3	Good Site Practice:	
(AEIAR-130/2009)	• Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program.	٨
	• Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program.	۸
	 Mobile plant, if any, should be sited as far away from NSRs as possible. 	٨
	• Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum.	٨
	Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.	۸
	Material stockpiles and other structures should be effectively utilized, wherever	۸

EIA Ref.	Mitigation Measures	Status
	practicable, in screening noise from on-site construction activities.	
S3.3 (AEIAR-130/2009)	Scheduling of Construction Works during School Examination Period	N/A
S3.8 (AEIAR-170/2013)	Provision of a landscaped deck along Roads D3A & D4A.	N/A
S3.8 (AEIAR-170/2013)	 Provision of about 1090 m length of vertical noise barrier (connected to the deck) at Roads D3A & D4A; Provision of about 60 m length of overhang vertical noise barrier (connected to the deck) at Road D4A; and Provision of staircases with noise barriers next to Sites 4A1 and 4B1 It should be noted that the exact length of the mitigation measures would be subject to minor refinement during the detailed design stage. 	N/A N/A N/A
S3.8 (AEIAR-170/2013)	Non-noise sensitive use areas within Sites 4A1 and 4B1.	N/A
S3.8 (AEIAR-170/2013)	Avoid sensitive façade with openable window facing Road D3A.	N/A
Construction Water	Quality	
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	 Construction Runoff Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include: use of sediment traps adequate maintenance of drainage systems to prevent flooding and overflow 	^ ^

EIA Ref.	Mitigation Measures	Status
	Construction site should be provided with adequately designed perimeter channel and pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	^
	Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.	^
S5.8 (AEIAR-170/2013)	Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary.	٨
	Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they should be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	^
S3.4 (AEIAR-130/2009)	Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m ³ capacity, are recommended as a general mitigation measure	٨

EIA Ref.	Mitigation Measures	Status
	which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	^
	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	۸
S3.4 (AEIAR-130/2009)	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.	^
	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	^
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting	^

EIA Ref.	Mitigation Measures	Status
	from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	
S5.8 (AEIAR-170/2013)	Boring and Drilling Water Water used in ground boring and drilling for site investigation or rock / soil anchoring should as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater should be discharged into storm drains via silt removal facilities.	۸
	Acid Cleaning, Etching and Pickling Wastewater Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be neutralized to within the pH range of 6 to 10 before discharging into foul sewers	^
S3.4 (AEIAR-130/2009)	Drainage It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.	^
S3.4 (AEIAR-130/2009)	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	٨

EIA Ref.	Mitigation Measures	Status
S3.4 (AEIAR-130/2009)	All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	٨
S5.8 (AEIAR-170/2013)	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distance of 100 m should be maintained between the discharge points of construction site effluent and the existing seawater intakes and the planned WSR mentioned in S5.3.1 as appropriate. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO licence which is under the ambit of regional office (RO) of EPD.	^
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	Sewage Effluent Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	^
S5.8	Notices should be posted at conspicuous locations to remind the workers not to discharge	٨

EIA Ref.	Mitigation Measures	Status
(AEIAR-170/2013)	any sewage or wastewater into the surrounding environment. Regular environmental audit of the construction site will provide an effective control of any malpractices and can encourage continual improvement of environmental performance on site. It is anticipated that sewage generation during the construction phase of the project would not cause water pollution problem after undertaking all required measures.	
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	Stormwater Discharges Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes.	^
	Debris and Litter In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur.	^
S5.8 (AEIAR-170/2013)	Accidental Spillage Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation, should be observed and complied with for control of chemical wastes. Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.	^

EIA Ref.	Mitigation Measures	Status
	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: Suitable containers should be used to hold the chemical wastes to avoid leakage or	٨
	 spillage during storage, handling and transport. Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. 	۸
	• Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.	۸
Construction Waste	Management	
S6.7 (AEIAR-170/2013)	Prepare a Waste Management Plan, which becomes a part of the Environmental Management Plan, in accordance with the requirements stipulated in ETWB TC(W) No. 19/2005, approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites.	٨
S3.5 (AEIAR-130/2009) and S6.7 (AEIAR-170/2013)	Good Site Practices It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations for good site practices during construction activities include: Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training of site personnel in proper waste management and chemical waste handling procedures	٨
	Provision of sufficient waste disposal points and regular collection for disposal	٨

EIA Ref.	Mitigation Measures	Status
	Appropriate measures to minimise windblown litter and dust during transportation of	٨
	waste by either covering trucks or by transporting wastes in enclosed containers	
	 A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites) 	^
	Regular cleaning and maintenance systems, sumps and oil interceptors	٨
	Separation of chemical wastes for special handling and appropriate treatment	۸
	Waste Reduction Measures	
	Good management and control can prevent the generation of a significant amount of	
	waste. Waste reduction is best achieved at the planning and design stage, as well as by	
	ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	
	 Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals 	۸
	 Segregation and storage of different types of waste in different containers, skips or 	٨
	stockpiles to enhance reuse or recycling of materials and their proper disposal	
	 Encourage collection of aluminium cans, PET bottles and paper by providing separate 	٨
	labelled bins to enable these wastes to be segregated from other general refuse generated by the work force	
	 Any unused chemicals or those with remaining functional capacity should be recycled 	٨
	 Proper storage and site practices to minimise the potential for damage or 	٨
	contamination of construction materials	
	 Plan and stock construction materials carefully to minimize amount of waste 	۸
	generated and avoid unnecessary generation of waste	
	• Training should be provided to workers about the concepts of site cleanliness and	٨
	appropriate waste management procedures, including waste reduction, reuse and recycle.	

EIA Ref.	Mitigation Measures	Status
S3.5 (AEIAR-130/2009)	Construction and Demolition Materials Mitigation measures and good site practices should be incorporated in the contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include: ■ Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible.	٨
	 Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric. 	۸
	• Skip hoist for material transport should be totally enclosed by impervious sheeting.	^
	• Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site.	۸
	• The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.	۸
	• The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle.	٨
	 All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet. 	۸
	• The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.	٨
	When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket	^

EIA Ref.	Mitigation Measures	Status
	System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirement sand implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	
S3.5 (AEIAR-130/2009)	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem	^
Construction Lands	cape and Visual	I
S3.8.12	Minimized construction area and contractor's temporary works areas.	٨
(AEIAR-130/2009)	• All existing trees should be carefully protected during construction.	٨
and	• Trees unavoidably affected by the works should be transplanted where practical.	٨
S7.9 (AEIAR-170/2013)	Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	
	• Control of night-time lighting.	٨
	• Erection of decorative screen hoarding.	٨
	Reduction of construction period to practical minimum.	٨
	• Limitation of / Ensuring no run-off into surrounding landscape and adjacent seawater areas.	٨
	 Temporary or advance landscape should be provided along the temporary access roads to the Cruise Terminal until such time as road D3 is open. 	N/A

Remarks:	EIA Report (AEIAR-130/2009) – Kai Tak Development					
	EIA Report (AEIAR-170/2013) – Kai Tak Development – Roads D3A & D4A					
	^ Compliance of mitigation measure; N/A Not Applicable at this stage; N/A(1) Not observed; * Recommendation was made during site audit	 X Non-compliance of mitigation measure; Non-compliance but rectified by the contractor; 				
	but improved/rectified by the contractor.					

APPENDIX F
SUMMARIES OF ENVIRONMENTAL
COMPLAINT, WARNING, SUMMON
AND NOTIFICATION OF SUCCESSFUL
PROSECUTION

Contract No. KL/2014/01

Kai Tak Development –Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway

 $\label{eq:complaint} \textbf{Appendix} \ \textbf{F} - \textbf{Summary} \ \textbf{of} \ \textbf{environmental} \ \textbf{complaint}, \ \textbf{warning}, \ \textbf{summon} \ \textbf{and} \ \textbf{notification} \ \textbf{of} \ \textbf{successful} \ \textbf{prosecution}$

Reporting Month: May 2018

Contract No. KL/2014/01

Log Ref.	Location	Received Date	Details of Complaint/warning/summon and prosecution	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A	N/A

Remarks: No environmental complaint/warning/summon and prosecution were received in the reporting period.

APPENDIX G WASTE GENERATED QUANTITY

Name of Department: CEDD Contract No. KL/2014/01

Waste Flow Table for Year 2018

		Actual	Quantities of Inert C&D M	laterials Generated Mor	nthly			Actual Quantities	of C&D Wastes Gen	erated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in tonne)
Jan	5,821.15	0	0	0	5821.15	0	0	0.02	0	0	121.57
Feb	2,270.11	0	0	0	2270.11	0	0	0	0	0	85.98
Mar	2,914.70	0	0	0	2914.70	0	0	0.25	0	0	81.4
Apr	2,248.44	0	0	0	2248.44	0	0	0	0	0	75.27
May	2,022.25	0	0	0	2022.25	0	0	0.3	0	0	50.92
June											
Sub-total	15,276.65	0.00	0.00	0.00	15,276.65	0.00	0.00	0.570	0.000	0.00	415.14
July											
Aug											
Sept											
Oct											
Nov											
Dec											
Total	15,276.65	0.00	0.00	0.00	15,276.65	0.00	0.00	0.570	0.000	0.00	415.14

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Appendix D

Monthly EM&A Report
For
Contract No. KL/2014/03
Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part
of the Former Runway

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong..

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

MONTHLY EM&A REPORT

May 2018

Client : Civil Engineering and Development

Department, HKSAR

Contract No. : KLN/2015/07

Contract Name: Environmental Monitoring Works for

Contract KL/2014/03 – Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Report No. : 0405/15/ED/1049B

EP-337/2009 New Distributor Roads Serving the Planned Kai Tak

Development Area

EP-339/2009/A Decommissioning of the Remaining Parts (Ex-GFS

Building, Radar Station and Hong Kong Aviation Club)

of the former Kai Tak Airport

EP-451/2013 Trunk Road T2

Prepared by : Janet W. T. Yu

Reviewed by: Alfred Y. S. Lam

Certified by :

Colin K. L. Yung

Environmental Team Leader MateriaLab Consultants Limited

Ref.: CEDKTDS3EM00 0 0300L.18

12 June 2018

By Post and Email

Hyder-Meinhardt Joint Venture 20/F., AXA Tower, Landmark East, 100 How Ming Street, Kwun Tong, Kowloon, Hong Kong

Attention: Mr. Wong W. K., Chris

Dear Mr. Wong,

Re: Contract No. KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway Monthly EM&A Report for May 2018

Reference is made to the Environmental Team's submission of the Monthly EM&A Report for May 2018 (Report No. 0405/15/ED/1049B) we received by e-mail on 12 June 2018.

Please be informed that we have no adverse comment on the captioned report. We hereby verify the captioned submission according to Condition 3.3 of EP-337/2009, Condition 3.3 of EP-339/2009/A and Condition 3.4 of EP-451/2013.

Thank you for your attention. Please do not hesitate to contact us should you have any queries.

Yours sincerely, For and on behalf of Ramboll Hong Kong Limited

Fasta Benj

F. C. Tsang

Independent Environmental Checker

CEDD C.C.

Attn.: Ms. Amy Chu

Fax: 2369 4980

MateriaLab Attn.: Mr. Colin K. L. Yung

Fax: 2450 8032

Fax: 2283 1689

CRBC

Attn.: Mr. Arnold Chan

Q:\Projects\CEDKTDS3EM00\02 Proj_Mgt\02 Corr\CEDKTDS3EM00 0 0300L.18.docx

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong.. Em

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY	I
1.	INTRODUCTION	1
2.	AIR QUALITY	5
3.	NOISE	10
4.	LANDSCAPE AND VISUAL	14
5.	WASTE MANAGEMENT	15
6.	SITE INSPECTION	16
7.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	17
8.	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	18
9.	FUTURE KEY ISSUES	19
10.	CONCLUSIONS	20

FIGURES

Figure 1 Project General Layout

Figure 2 Air and Noise Monitoring Locations

LIST OF APPENDICES

Appendix A	Construction Programme
Appendix B	Project Organization Chart
Appendix C	Action and Limit Levels for Air Quality and Noise
Appendix D	Calibration Certificates of Monitoring Equipment
Appendix E	Environmental Monitoring Schedules
Appendix F	Air Quality Monitoring Data
Appendix G	Noise Monitoring Data
Appendix H	Event Action Plans
Appendix I	Waste Flow Table
Appendix J	Environmental Mitigation Implementation Schedule (EMIS)
Appendix K	Weather and Meteorological Conditions during Reporting Month
Appendix L	Cumulative statistics on Environmental Complaints, Notifications of Summons
	and Successful Prosecutions
Appendix M	Summary of Site Audit in the Reporting Month
Appendix N	Outstanding Issues and Deficiencies

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hona Kona.. Email : mcl@fuaro.com

EXECUTIVE SUMMARY

- i. The Civil Engineering and Development Department HKSAR has appointed MateriaLab Consultants Limited (MCL) to undertake the Environmental Team services for the Project and implement the EM&A works.
- ii. This Monthly EM&A report presents the environmental monitoring and audit works for the period between 1 May 2018 and 31 May 2018. As informed by the Contractor, major activities in the reporting month were:
 - Excavation and laying of drainage pipe and manhole;
 - Seawall modification works:
 - Construction of tunnel box structure:
 - D-wall construction works:
 - Pumping test; and
 - Excavation and ELS construction.

Breaches of the Action and Limit Levels

iii. No Action / Limit Level exceedance was recorded for 24-hr TSP and construction noise at KTD1a, KTD2a and KER1b in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

A complaint received on 30 May 2018 referred from EPD regarding some large stockpiles were iv. found uncovered and dust emission was observed during excavation (the site between Kai Fuk Road and Shing Cheong Road, Southwest of Kowloon Bay International Trade & Exhibition Center).

The notification of complaint was received by ET on 8 June 2018.

No notification of summons and successful prosecution were received in the reporting month. V.

Reporting Changes

vi. There was no reporting change in the reporting month.

Future Key Issues

vii. The key issues to be considered in the coming reporting month include:

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality, waste management and landscape and visual impact.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hona Kona.. Email : mcl@fuaro.com

INTRODUCTION 1.

1.1 **Background**

- The Kai Tak Development is located in the south-eastern part of Kowloon Peninsula of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling.
- Contract No. KL/2014/03 is the works package to construct an approximately 420m long supporting underground structure (SUS) underneath Shing Cheong Road and Cheung Yip Street. The EM&A programme under this Contract is governed by three EPs (EP-337/2009, EP-339/2009/A and EP-451/2013) and two EM&A Manuals (AEIAR-130/2009 and AEIAR-174/2013). The Works to be executed under this Contract and corresponding EPs include but not be limited to the following main items:

EP-451/2013 - Trunk Road T2

Construction of approximately 420m long supporting underground structure (SUS) (i) including diaphragm walls, barrettes, piled foundation, top and bottom slabs, end wall and adits underneath Shing Cheong Road and Cheung Yip Street;

EP-337/2009 - New Distributor Roads Serving the Planned Kai Tak Development

- Widening and re-alignment of Cheung Yip Street of approximately 330m long and associated footpaths;
- Demolition, reconstruction and widening of Shing Cheong Road of approximately 410m (iii) long and associated footpaths;
- Construction of drainage outfall and modification of existing seawall; (iv)
- Construction of ancillary works including surface drainage, sewerage, water, fire (v) fighting, street lighting, street furniture, road marking, road signage, utilities and services, irrigation and landscape works.

EP-339/2009/A - Decommissioning of the Remaining Parts (Ex-GFS Building, Radar Station and Hong Kong Aviation Club) of the former Kai Tak Airport

(vi) Demolition of RADAR Tower and guard house;

Other works not covered by any EP

- Construction of two subways between Phase II of New Acute Hospital (Site A) and Hong Kong Children's Hospital (Site C), and between Phase I of New Acute Hospital (Site B) and Site C:
- (viii) Construction of District Cooling System (DCS) along Cheung Yip Street and Shing Cheong Road
- 1.1.3 The location and boundary of the site is shown in **Figure 1**.
- This Monthly EM&A report is required under EP-337/2009 Condition 3.3, EP-339/2009/A Condition 3.3 and EP-451/2013 Condition 3.4. It is to report the results and findings of the EM&A programme required in the EM&A Manuals.
- This is the twenty seventh monthly EM&A Report which summaries the impact monitoring results and audit findings for the Project within the period between 1 May 2018 and 31 May 2018.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Email : mcl@fugro.com Hong Kong..

1.2 **Project Organization**

- 1.2.1 The project proponent was the Civil Engineering and Development Department, HKSAR (CEDD). Hyder Meinhardt Joint Venture (HMJV) was commissioned by CEDD as the Engineer for the Project. Ramboll Hong Kong Limited was commissioned as the Independent Environmental Checker (IEC). China Road and Bridge Corporation (Hong Kong) (CRBC) was appointed as the main contractor for the construction works under the contract KL/2014/03. MateriaLab Consultants Limited (MCL) was appointed as the Environmental Team (ET) by CEDD to implement the EM&A programme for the Project.
- The organization structure is shown in **Appendix B**. The key personnel contact names and 1.2.2 numbers for the Project are summarized in **Table 1.1**.

Table 1 1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Project Proponent (CEDD)	Co-ordinator	Co-ordinator Ms. Amy Chu		2369 4980
Engineer's Representative (HMJV)	Chief Resident Engineer			3742 3899
IEC (Ramboll Hong Kong Limited)	Independent Environmental Checker Independent Mr. F. C. Tsang		3465 2851	3465 2899
Main Contractor (CRBC)	Site Agent	Mr. Chan See Wai, Arnold	9380 4110	2283 1689
Iviairi Contractor (CRBC)	Environmental Officer	Mr. Calvin So	9724 6254	2283 1689
ET (MCL)	Environmental Team Leader	Mr. Colin Yung	3565 4114	3565 4160

1.3 **Construction Programme and Activities**

- 1.3.1 The construction of the Project commenced in February 2016 and is expected to complete in 2020. The construction programme is shown in Appendix A.
- 1.3.2 A summary of the major construction activities undertaken in the reporting month were:
 - Excavation and laying of drainage pipe and manhole;
 - Seawall modification works:
 - Construction of tunnel box structure;
 - D-wall construction works:
 - Pumping test; and
 - Excavation and ELS construction.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Email : mcl@fuaro.com

Inter-relationship with the environmental protection/ mitigation measures with the 1.4 construction programme

- According to the construction activities in the construction programme mentioned in Section 1.3.2, the following environmental protection/ mitigation measures including Air Quality Impact, Construction Noise Impact, Water Quality Impact, Chemical and Waste Management, Landscape and Visual Impact shall be implemented:
 - Sufficient watering of the works site with the active dust emitting activities:
 - Limitation of the speed for vehicles on unpaved site roads:
 - Properly cover or enclosure of the stockpiles and dusty materials;
 - Good site practices on loading dusty materials;
 - Providing sufficient vehicles washing facilities at every vehicle exit point;
 - Good maintenance to the plant and equipment;
 - Use of guieter plant and Quality Powered Mechanical Equipment (QPME):
 - Use of acoustic fabric and noise barrier:
 - Using the approved Non-road Mobile Machineries (NRMMs):
 - Proper storage and handling of chemical:
 - Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge;
 - Onsite waste sorting and implementation of trip ticket system:
 - Training of the site personnel in proper waste management and chemical waste handling procedures:
 - Proper storage of the construction materials;
 - Erection of decorative screen hoarding:
 - Strictly following the Environmental Permits and Licenses;
 - Provide sufficient mitigation measures as recommended in Approved EIA Reports

1.5 Status of Environmental Licences, Notifications and Permits

A summary of the relevant environmental licenses, permits and/or notifications on environmental protection for this Contract is presented in **Table 1.2**.

Table 1.2 Relevant Environmental Licenses, Permits and/or Notifications

Environmental License / Permit / Notification	Reference Number	Valid From	Valid Till
Environmental Permit	EP-337/2009 EP-339/2009/A EP-451/2013	23 April 2009 18 June 2009 19 September 2013	Not Applicable Not Applicable Not Applicable
Notification pursuant to Air Pollution (Construction Dust) Regulation	395601	4 December 2015	Not Applicable
Billing Account for Waste Disposal	A/C No.: 7023814	22 December 2015	Not Applicable
Billing Account for Waste Disposal (Vessel)	A/C No.: 7027469	25 April 2018	18 August 2018
Construction Noise Permit	GW-RE0946-17	6 December 2017	5 June 2018

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 Fax Email : mcl@fugro.com

MateriaLab

Environmental License / Permit / Notification	Reference Number	Valid From	Valid Till
Construction Noise Permit	GW-RE0006-18	12 January 2018	11 July 2018
Wastewater Discharge License	WT00023125-2015	6 January 2016	31 January 2021
Chemical Waste Producer License	5213-247-C1232-12	23 November 2015	Not Applicable

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong.. Email : mcl@fuaro.com

AIR QUALITY 2.

2.1 **Monitoring Requirement**

In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out at least once every 6 days. In case of complaints, 1-hour TSP monitoring should be carried out at least 3 times per 6 days when the highest dust impacts are likely to occur. The Action and Limit Levels of the air quality monitoring are given in Appendix C.

2.2 **Monitoring Equipment**

The 24-hour TSP air quality monitoring was performed using High Volume Air Samplers (HVS) located at each of the designated monitoring station. Portable TSP Monitors would be used in case of complaints for 1-hour TSP monitoring.

Table 2.1 summarizes the equipment used in air quality monitoring.

Table 2.1 Air Quality Monitoring Equipment

Item	Location	Brand	Model Model	Equipment	Serial Number
1			TE-5170 (TSP)	High Volume Sampler	
			TE-300-310X	- Mass Flow Controller	2037
	KER1b	Tisch	TE-5005X	- Blower Motor Assembly	3482
			TE-5007X	- Mechanical Timer	4488
			TE-5009X	- Continuous Flow Recorder	4371
2			TE-5170 (TSP)	High Volume Sampler	
			TE-300-310X	- Mass Flow Controller	2524
	KTD1a	Tisch	TE-5005X	- Blower Motor Assembly	4037
			TE-5007X	- Mechanical Timer	5160
			TE-5009X	- Continuous Flow Recorder	4377
3			TE-5170 (TSP)	High Volume Sampler	
			TE-300-310X	- Mass Flow Controller	2618
	KTD2a	Tisch	TE-5005X	- Blower Motor Assembly	3838
			G3031	- Mechanical Timer	2251
			G1051	- Continuous Flow Recorder	2307
4		Tisch	TE-5025A	HVS Sampler Calibrator	438320/2456
5		*Sibata	Model LD-3B	Sibata Portable TSP Monitors	NA

No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted.

2.3 **Monitoring Methodology**

2.3.1 24-hour TSP air quality monitoring

HVS Installation

The following guidelines were adopted during the installation of HVS:

- Sufficient support is provided to secure the samplers against gusty wind.
- No two samplers are placed less than 2 meters apart.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

- The distance between the sampler and an obstacle, such as buildings, is at least twice the height that the obstacle protrudes above the sampler.
- A minimum of 2 meters of separation from walls, parapets and penthouses is required for rooftop samples.
- A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
- No furnaces or incineration flues are nearby.
- Airflow around the samplers is unrestricted.
- The samplers are more than 20 meters from the drip line.
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.

Filters Preparation

Fiberglass filters (provided by the HOKLAS accredited laboratory) shall be used (Note: these filters have a collection efficiency of larger than 99% for particles of 0.3 µm diameter). A HOKLAS accredited laboratory (ALS Technichem (HK) Pty Ltd.) is responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for monitoring team.

All filters are equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature is around 25°C and not variable by more than ± 3 °C; the relative humidity (RH) is < 50% and not variable by more than ± 5 %. A convenient working RH is 40%.

Operating / Analytical Procedures

Operating / analytical procedures for the air quality monitoring are highlighted as follows:

- Prior to the commencement of the dust sampling, the flow rate of the HVS are properly set (between 0.6 m³/min and 1.7 m³/min) in accordance with the EM&A manual. The flow rate shall be indicated on the flow rate chart.
- The power supply shall be checked to ensure the samplers worked properly.
- On sampling, the samplers shall be operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
- The filter holding frame is then removed by loosening the four nuts and carefully a weighted and conditioned filter is centered with the stamped number upwards, on a supporting screen.
- The filter shall be aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame is tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The shelter lid shall be closed and secured with the aluminum strip.
- The timer is then programmed. Information shall be recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After sampling, the filter shall be removed and sent to laboratory for weighing. The elapsed time is also recorded.
- Before weighing, all filters are equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results are returned to MCL for further analysis of TSP concentrations collected by each filter.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

Hong Kong.

Hong Kong.

Hong Kong.

2.3.2 1-hour TSP air quality monitoring

Operating / Analytical Procedures

The measuring procedures of the 1-hr dust meter are in accordance with the Manufacturer's instruction Manual as follows:

- Pull up the air sampling inlet cover
- Change the Mode 0 to BG once
- Push Start/Stop switch once
- Turn the knob to SENSI.ADJ and press it
- Push Start/Stop switch once
- Return the knob to the position MEASURE slowly

: (852)-24508238

: (852)-24508032

: mcl@fuaro.com

- Push the timer set switch to set measuring time
- Remove the cap and make a measurement

2.4 Maintenance / Calibration

2.4.1 24-hour TSP air quality monitoring

The following maintenance / calibration are required for the HVS:

- The high volume motors and their accessories are properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking are made to ensure that the equipments and necessary power supply are in good working condition.
- All HVS shall be calibrated (five point calibration) using Calibration Kit upon installation and thereafter in every 3 months.
- A copy of the calibration certificates for the HVS and calibrator are provided in Appendix D.

2.4.2 1-hour TSP air quality monitoring

The portable TSP monitor should be calibrated at 1 year intervals

2.5 Monitoring Locations

- 2.5.1 According to the EM&A Manual, three air quality monitoring locations, namely KTD1, KTD2 and KER1, are covered by this Contract within the South Apron Area of Former Kai Tak Airport. The other two air quality monitoring locations, which are identified in Cha Kwo Ling area, are farther than 500m away from the site boundary and thus not covered by this Contract. The monitoring works in Cha Kwo Ling area are covered by other Contract(s) respectively.
- 2.5.2 According to the approved alternative baseline air quality and noise monitoring locations (EPD reference: EP2/K19/A/21 Pt.5), the original monitoring locations (KTD1, KTD2 and KER1) are proposed to be replaced by alternative monitoring locations (KTD1a, KTD2a and KER1b) for air quality monitoring, they are summarized in **Table 2.2** and shown in **Figure 2**.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hona Kona.. Email : mcl@fuaro.com

Table 2.2 **Location of Air Quality Monitoring Station**

Monitoring Station	Location	
KTD1a	Centre of Excellence in Paediatrics (Children's Hospital)	
KTD2a	G/IC Zone next to Kwun Tong Bypass (Future Hospital at Site 3C1)	
KER1b	Site Boundary at Cheung Yip Street	

2.6 **Results and Observations**

- 2.6.1 The schedule of air quality monitoring in reporting month is provided in **Appendix E**.
- 2.6.2 No Action / Limit Level exceedance was recorded for 24-hr TSP at KTD1a, KTD2a and KER1b in the reporting month.
- 2.6.3 A complaint received on 30 May 2018 referred from EPD regarding some large stockpiles were found uncovered and dust emission was observed during excavation (the site between Kai Fuk Road and Shing Cheong Road, Southwest of Kowloon Bay International Trade & Exhibition Center).
- No impact 1-hour TSP monitoring was conducted in the reporting month.
- 2.6.5 During the reporting month, major dust sources including loading and unloading of C&D wastes, vehicles movement were observed in the site. Non-project related construction activities at the nearby construction site and road traffic along Shing Cheong Road, Cheung Yip Street and the Kwun Tong By-pass were observed. The above factors may affect the monitoring results.
- 2.6.6 The weather conditions during the monitoring are provided in **Appendix K**.
- 2.6.7 The monitoring data of 24-hr TSP are summarized in Table 2.3. Detailed monitoring data are presented in Appendix F.

Table 2.3 Summary of 24-hr TSP Monitoring Results

Parameter	Monitoring Station	Average (µg/m³)	Range (µg/ m³)	Action Level (µg/ m³)	Limit Level (µg/ m³)
24-hr TSP	KTD1a	32	19 - 57	177	
in μg/m ³	KTD2a	46	21 - 72	157	260
iii µg/iii°	KER1b	54	29 - 98	172	

The Event and Action Plan for air quality is given in **Appendix H**.

2.7 Comparison of 24-hr TSP Monitoring Results with EIA Predictions

2.7.1 The monitoring data of 24-hr TSP was compared with the EIA predictions as summarized in **Table 2.4**.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Table 2.4 Comparison of 24-hr TSP data with EIA predictions

Monitoring Station	Receiver Reference	Predicted Maximum 24-hour TSP Concentration (µg/m³)	24-hour TSP concentration in May 2018 (µg/m³)	Average 24-hour TSP concentration in May 2018 (µg/m³)
KTD1a	KTD3	126	19 - 57	32
KTD2a	-	•	21 - 72	46
KER1b	KTD6	169	29 - 98	54

Note:

For KTD2a, there was no receiver reference in the EIA report, EIAR-174/2013. Predicted Maximum TSP Concentration extracted from Table 4.14 of EIA Report, EIAR-174/2013.

2.7.2 The 24-hour TSP monitoring results at KTD1a, KTD2a and KER1b were below the Predicted Maximum 24-hr TSP concentration in the approved Environmental Impact Assessment (EIA) Report and no Action / Limit Level exceedance was recorded in the reporting period.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Fax
Hong Kong.. Emai

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

3. NOISE

3.1 Monitoring Requirement

In accordance with the approved EM&A Manuals, Leq (30min) monitoring is conducted for at least once a week during the construction phase between 0700 and 1900 on normal weekdays at the designated monitoring locations.

3.2 Monitoring Equipment

The sound level meter used in noise monitoring will comply with the International Electrotechnical Commission Publication (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications as referred to in the Technical Memorandum issued under the Noise Control Ordinance (NCO).

Sound level calibrator will be used for the on-site calibration of the meter. This calibrator complies with the IEC Publication 942 (1988) Class 1 and ANSI S1.40 - 1984. Noise measurements were only accepted to be valid if the calibration levels from before and after the measurement agree to within 1.0dB.

Measurements shall be recorded to the nearest 0.1dB. This noise monitors are programmed to measure A-weighted equivalent continuous sound pressure level at 30-minute intervals between 0700 and 1900 on normal weekdays at least once a week when construction activities are underway.

Table 3.1 summarizes the noise monitoring equipment model being used for this project.

Table 3.1 Noise Monitoring Equipment

Item	Brand	Model	Equipment	Serial Number
1	Casella	CEL-63X Series	Integrating Sound Level Meter	1057034
2	Casella	CL63X Series	Integrating Sound Level Meter	1057055
3	Casella	CL63X Series	Integrating Sound Level Meter	4637931
4	Casella	CEL-120/1	Calibrator	4358250
5	Casella	CEL-120/1	Calibrator	1677126
6	Testo	05600480	Wind Speed Anemometer	61003846

3.3 Monitoring Parameters and Frequency

Table 3.2 presents the noise monitoring parameters and frequencies.

Table 3.2 Monitoring Parameters and Frequencies of Noise Monitoring

Parameter	Frequency and Period
LAeq (30min)	At each station at 0700-1900 hours on normal weekdays at a frequency
L10 and L90 will be recorded for reference	of once a week

Room 723 & 725, 7/F, Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Email : mcl@fuaro.com

3.4 **Monitoring Methodology**

The monitoring procedures are as follows:

- The monitoring station is set at a point 1m from the exterior of the sensitive receivers building facade and set at a position 1.2m above the ground.
- The battery condition is checked to ensure good functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time are set as follows:
 - frequency weighting: A
 - time weighting: Fast
 - measurement time: Weekly 30 minutes between 0700-1900 on normal weekdays
- Prior to and after noise measurement, the meter shall be calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement will be considered invalid and repeat of noise measurement is required after re-calibration or repair of the equipment.
- Noise monitoring should be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.
- Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
- At the end of the monitoring period, the Leq, L10 and L90 are recorded. In addition, site conditions and noise sources are recorded on a standard record sheet.

3.5 **Maintenance / Calibration**

Maintenance and Calibration procedures are as follows:

- The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.
- The sound level meter and calibrator should be calibrated annually by a HOKLAS laboratory.
- Relevant calibration certificates are provided in **Appendix D**.

3.6 **Monitoring Locations**

- 3.6.1 According to the EM&A Manual, three noise monitoring locations, namely KTD1, KTD2 and KER1, are covered by this Contract within the South Apron Area of Former Kai Tak Airport. The other two noise quality monitoring locations, which are identified in Cha Kwo Ling area, are farther than 300m away from the site boundary and thus not covered by this Contract. The monitoring works in Cha Kwo Ling area are covered by other Contract(s) respectively.
- According to the approved alternative baseline air quality and noise monitoring locations (EPD reference: EP2/K19/A/21 Pt.5), the original monitoring locations (KTD1, KTD2 and KER1) are proposed to be replaced by alternative monitoring locations (KTD1a, KTD2a and KER1b) for noise monitoring, they are summarized in **Table 3.3** and shown in **Figure 2**.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hona Kona.. Email : mcl@fuaro.com

Table 3.3 Location of Noise Monitoring Station

Monitoring Station	Location		
KTD1a	Centre of Excellence in Paediatrics (Children's Hospital)		
KTD2a	G/IC Zone next to Kwun Tong Bypass (Future Hospital at Site 3C1)		
KER1b	Site Boundary at Cheung Yip Street		

3.7 **Results and Observations**

- 3.7.1 The schedule of noise monitoring in reporting month is provided in **Appendix E**.
- During the monitoring month, at KTD1a, non-project related construction activities at the nearby construction site and road traffic along Shing Cheong Road were observed in the surroundings. At KTD2a, road traffic along the Kwun Tong By-pass was observed. At KER1b, road traffic along Cheung Yip Street was observed. Major noise sources including noise emission from plant & PME and some other construction activities, travel of vehicles, loading and unloading of C&D waste were observed in the site. The above factors may affect the monitoring results.
- No raining and wind with speed over 5 m/s was observed during noise monitoring according to 3.7.3 the onsite observation. The weather conditions during the monitoring month are provided in Appendix K.
- The noise monitoring data are summarized in Table 3.4. Detailed monitoring data are 3.7.4 presented in Appendix G.

Summary of Noise Impact Monitoring Results Table 3.4

Time Period	Leq _(30min) dB(A) (Range) Noise Monitoring Stations		Action Level	Limit Level	
	KTD1a	KTD2a	KER1b		
0700-1900 hrs on normal weekdays	63 - 74	58 - 68	62 - 68	When one documented complaint is received	75 dB(A)

Note:

KTD1a: Facade Measurement

KTD2a & KER1b: Free-field measurement (+3dB(A) correction has been applied)

- No Action / Limit Level exceedance of location KTD1a, KTD2a and KER1b was recorded for construction noise in the reporting month.
- 3.7.6 The Action and Limit Levels for noise impact monitoring have been set are presented in Appendix C.
- 3.7.7 The Event and Action Plan for noise is given in **Appendix H**.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

3.8 **Comparison of Noise Monitoring Results with EIA Predictions**

The noise monitoring data was compared with the EIA predictions as summarized in **Table 3.5**. 3.8.1

Table 3.5 Comparison of Noise Monitoring data with EIA predictions

Monitoring Station	Receiver Reference	Maximum Predicted Mitigated Construction Noise Level, dB(A)	Maximum Leq _(30min) dB(A) In May 2018
KTD1a	KTD1	74	74
KTD2a	KTD2	75	68
KER1b	KER1	75	68

Note:

Maximum Predicted Mitigated Construction Noise Level extracted from Table 5.13 of EIA Report, EIAR-174/2013.

The impact noise monitoring results of location KTD1a, KTD2a and KER1b in the reporting 3.8.2 month did not exceed the Maximum Predicted Mitigated Construction Noise Level in the approved Environmental Impact Assessment (EIA) Report and no Action / Limit Level exceedance was recorded in the reporting period.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hona Kona.. Email : mcl@fuaro.com

LANDSCAPE AND VISUAL 4.

4.1 **Audit Requirements**

- As per the Trunk Road T2 EM&A Manual, the landscape and visual mitigation measures during the construction phase shall be audited by a Registered Landscape Architect, as a member of the Environmental Team, at least once every two weeks to ensure compliance with the intended aims of the measures.
- 4.1.2 According to the Kai Tak Development EM&A Manual, measures to mitigate landscape and visual impacts during construction should be checked to ensure compliance with the intended aims of the measures. The progress of the engineering works shall be regularly reviewed onsite to identify the earliest practical opportunities for the landscape works to be undertaken. The ET shall report on the Contractor's compliance on a weekly basis.

4.2 **Results and Observations**

- To monitor and audit the implementation of landscape and visual mitigation measures, five weekly Landscape and Visual Site audits were carried out on 3, 10, 16, 24 and 31 May 2018 and two of them 10 and 24 May 2018 were carried out by a Registered Landscape Architect. The weekly Landscape and Visual Impact reports were counter-signed by IEC as according to the requirement of EM&A Manual (AEIAR-130/2009).
- During the site audit on 10 May 2018, Contractor was reminded to secure the stockpiling cover to avoid blown over by strong wind.
- 4.2.3 Should non-compliance of the landscape and visual impact occur, action in accordance to the event action plan presented in **Appendix H** shall be carried out.

Room 723 & 725, 7/F, Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Email : mcl@fugro.com Hong Kong..

WASTE MANAGEMENT 5.

5.1 **Audit Requirements**

- The effective management of waste arising during the construction phase will be monitored through the site audit programme. Regular audits and site inspections should be carried out to ensure that the recommended good site practices and other mitigation measures are implemented by the Contractor.
- The audit should look at all aspects of on-site waste management practices including the waste generation, storage, recycling, transport and disposal. The aims of waste audit are:
 - to ensure the waste arising from the works are handled, stored, collected, transferred and disposed of in an environmentally acceptable manner;
 - verify the implementation status and evaluate the effectiveness of the mitigation measures; and
 - to encourage the reuse and recycling of material.

5.2 **Results and Observations**

- 5.2.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- The amount of wastes generated by the site activities in the reporting month is shown in Appendix I.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

SITE INSPECTION 6.

6.1 **Site Inspection**

- Site inspections were carried out weekly to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix J**.
- In the reporting month, five site inspections were carried out on 3, 10, 16, 24 and 31 May 2018. Two of them, held on 10 and 16 May 2018 were the joint inspections with the IEC, ER, the Contractor and the ET.
- No outstanding issues were reported during the reporting month. Details of observations recorded during the site inspections are summarized in **Appendix M**.
- All the follow-up actions requested by Contractor's ET and IEC during the site inspections were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting month.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

7.

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

7.1 **Environmental Exceedance**

No Action / Limit Level exceedance was recorded for 24-hr TSP and construction noise at KTD1a, KTD2a and KER1b in the reporting month.

7.2 **Complaints, Notification of Summons and Prosecution**

7.2.1 A complaint received on 30 May 2018 was referred from EPD regarding some large stockpiles were found uncovered and dust emission was observed during excavation (the site between Kai Fuk Road and Shing Cheong Road, Southwest of Kowloon Bay International Trade & Exhibition Center).

The notification was received by ET on 9 June 2018.

- 7.2.2 No Notification of summons and successful prosecution were received in the reporting month.
- Cumulative complaint log, summaries of complaints, notification of summons and successful 7.2.3 prosecutions are presented in Appendix L.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

8. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

8.1 **Implementation Status**

8.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and the EM&A Manuals. The implementation status of the mitigation measures during the reporting month is summarized in Appendix J. Status of required submission under the EP during the reporting period is summarized in **Table 8.1**.

Table 8.1 Status of Required Submission under Environmental Permit

Table 6.1 Otatus of Nequired Oublinission under Environmental Fernit		
EP Condition	Submission	Submission Date
EP-337/2009		
Condition 2.3	Management Organization of Main Construction Companies	18/12/2015
Condition 2.4	Design Drawing of the Project	18/12/2015
Condition 2.11	Landscape Mitigation Plan(s)	18/12/2015
Condition 3.3	Monthly EM&A Report (April 2018)	14/5/2018
EP-339/2009/A		
Condition 2.4	Management Organization of Main Construction Companies	18/12/2015
Condition 2.5	Design Drawing of the Project	18/12/2015
Condition 3.3	Monthly EM&A Report (April 2018)	14/5/2018
EP-451/2013		
Condition 2.3	Management Organization of Main Construction Companies	18/12/2015
Condition 2.4	Design Drawing of the Project	18/12/2015
Condition 2.5	Landscape Mitigation Plan(s)	18/12/2015
Condition 2.10	Supplementary Contamination Assessment Report	18/12/2015
Condition 3.3	Baseline Monitoring Report	12/02/2016
Condition 3.4	Monthly EM&A Report (April 2018)	14/5/2018

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

FUTURE KEY ISSUES 9.

9.1 **Construction Programme for the Next Two Months**

- Installation of sheet pile for drainage works;
- Excavation and laying of drainage pipe and manhole;
- Construction of road base and road pavement:
- Seawall modification works:
- Construction of tunnel box structure:
- D-wall construction works:
- Construction of socketed H-Pile;
- Pumping test; and
- Excavation and ELS construction.

9.2 **Key Issues for the Coming Month**

9.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality, waste management and landscape and visual impact.

9.3 **Monitoring Schedules for the Next Three Months**

9.3.1 The tentative schedules for environmental monitoring in the coming three months are provided in Appendix E.

Room 723 & 725, 7/F, Block B. Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Email : mcl@fuaro.com

CONCLUSIONS 10.

- 10.1.1 24-hour TSP impact monitoring and construction noise monitoring were carried out in the reporting month, no Action / Limit Level exceedance was recorded during the period.
- 10.1.2 A complaint received on 30 May 2018 referred from EPD regarding some large stockpiles were found uncovered and dust emission was observed during excavation (the site between Kai Fuk Road and Shing Cheong Road, Southwest of Kowloon Bay International Trade & Exhibition Center).
- 10.1.3 No impact 1-hour TSP monitoring was conducted in the reporting month.
- 10.1.4 Five environmental site inspections were carried out in the reporting Recommendations on mitigation measures on air quality, water quality, waste management and landscape and visual impact were given to the Contractor for remediating the deficiencies identified during the site inspections.
- 10.1.5 Five weekly Landscape and Visual Site audits were carried out on 3, 10, 16, 24 and 31 May 2018 and two of them, 10 and 24 May 2018 were carried out by a Registered Landscape Architect in the reporting month. The weekly Landscape and Visual Impact reports were counter-signed by IEC as according to the requirement of EM&A Manual (AEIAR-130/2009).
- 10.1.6 Referring to the Contractor's information, no notification of summons and successful prosecution was received in the reporting month.

10.2 **Comment and Recommendations**

- 10.2.1 The recommended environmental mitigation measures, as proposed in the EIA reports and EM&A Manuals shall be effectively implemented to minimize the potential environmental impacts from the Project. The EM&A programme would effectively monitor the environmental impacts generated from the construction activities and ensure the proper implementation of mitigation measures.
- 10.2.2 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

- Machine plant/equipment should be maintained regularly to prevent dark smoke emission.
- Stockpile should be covered properly with impermeable sheeting.
- Stockpile should be removed to avoid dust.

Construction Noise Impact

No specific observation was identified in the reporting month.

Water Quality Impact

- Stagnant water shall be removed.
- Concrete bunding should be provided at site exits to prevent leakage of muddy water to
- The mud in wheel washing facility should be removed and handled with proper treatment.

Chemical and Waste Management

Chemical container shall be placed on drip tray.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Hong Kong.. Email : mcl@fugro.com

Land Contamination

No specific observation was identified in the reporting month.

Landscape and Visual Impact

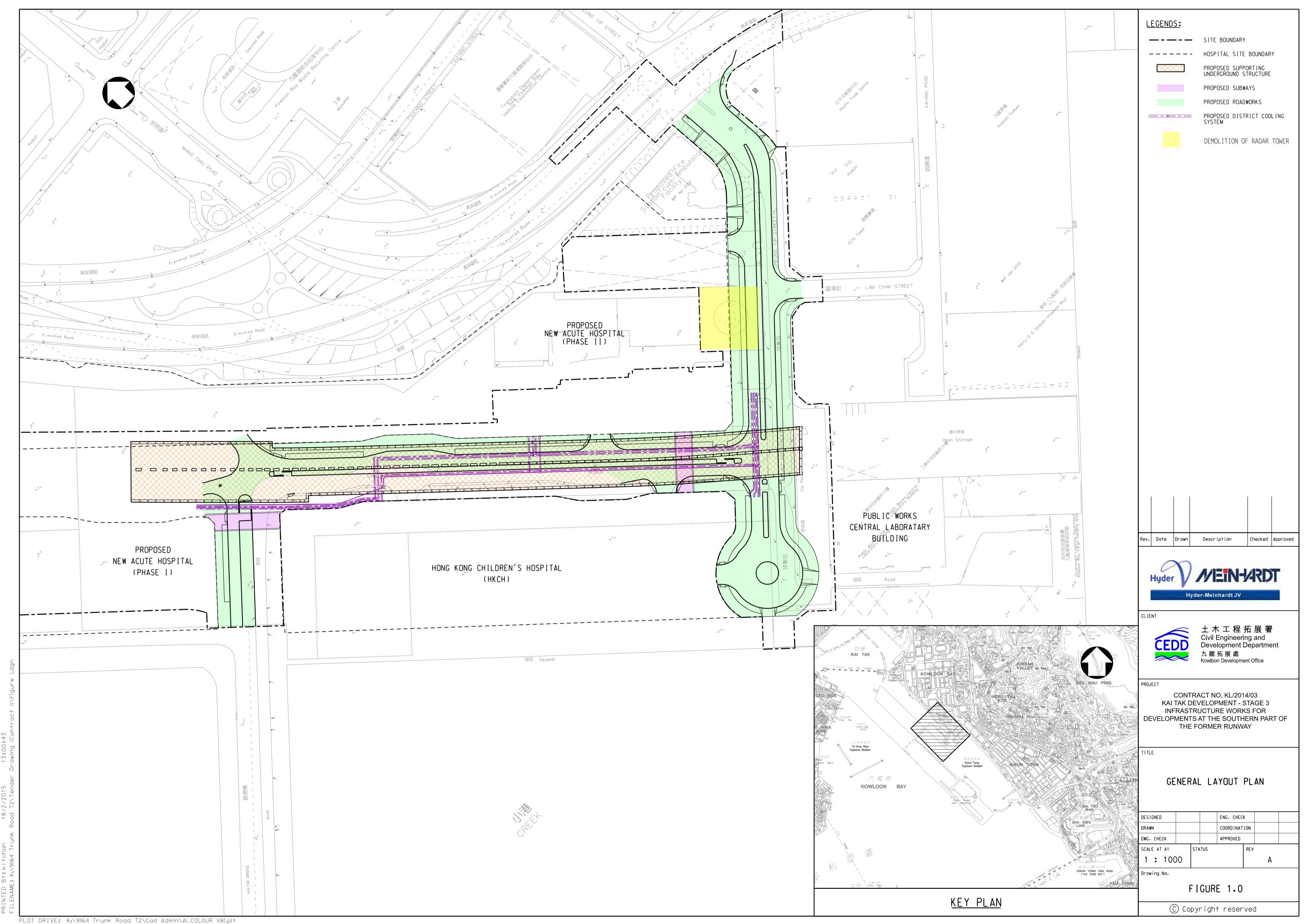
Stockpile should be covered properly with impermeable sheeting.

General Condition

No specific observation was identified in the reporting month.

Permit / Licenses

No specific observation was identified in the reporting month.


Room 723 & 725, 7/F, Block B,

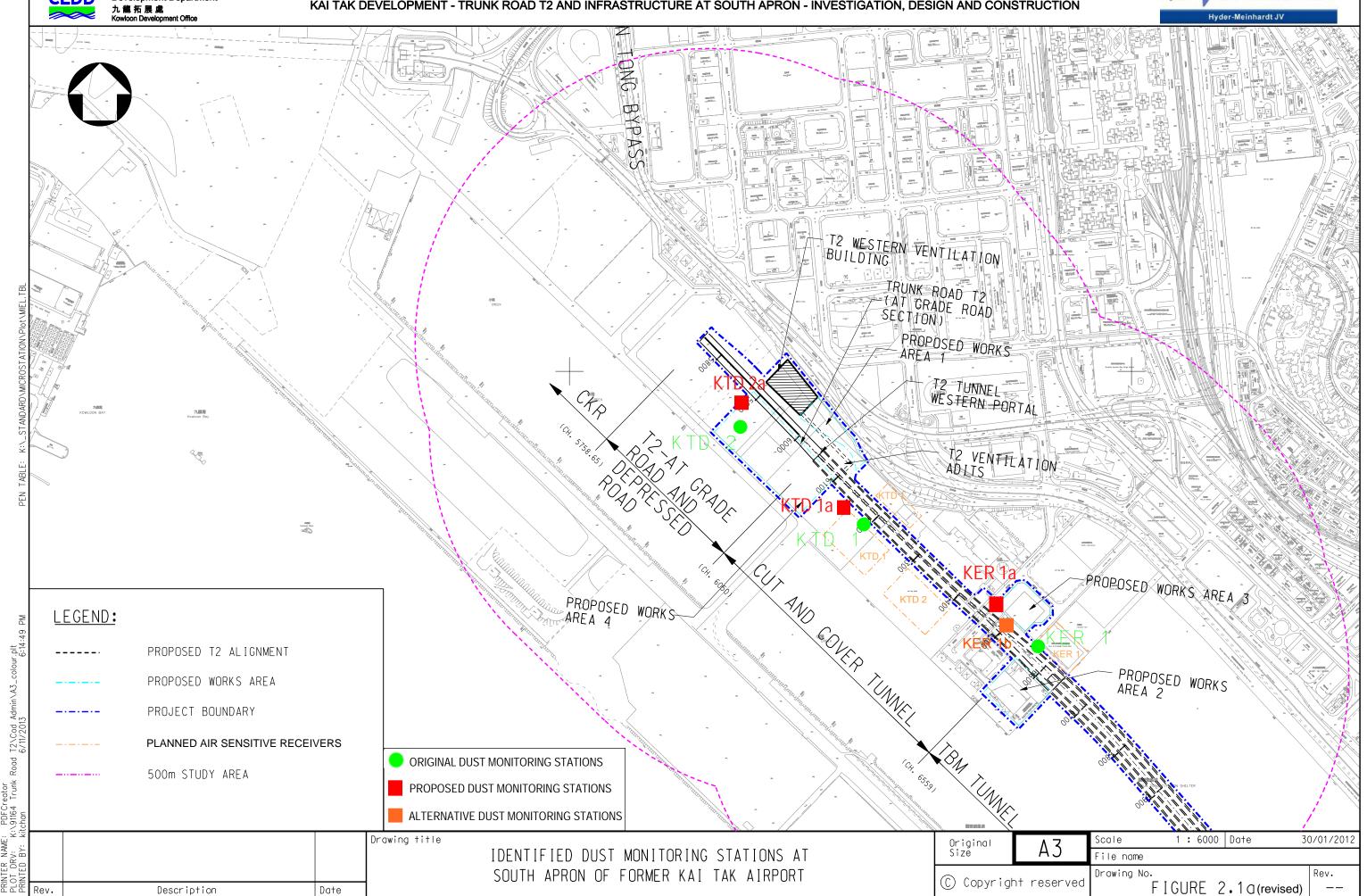
Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Figure 1

Project General Layout

Room 723 & 725, 7/F, Block B,

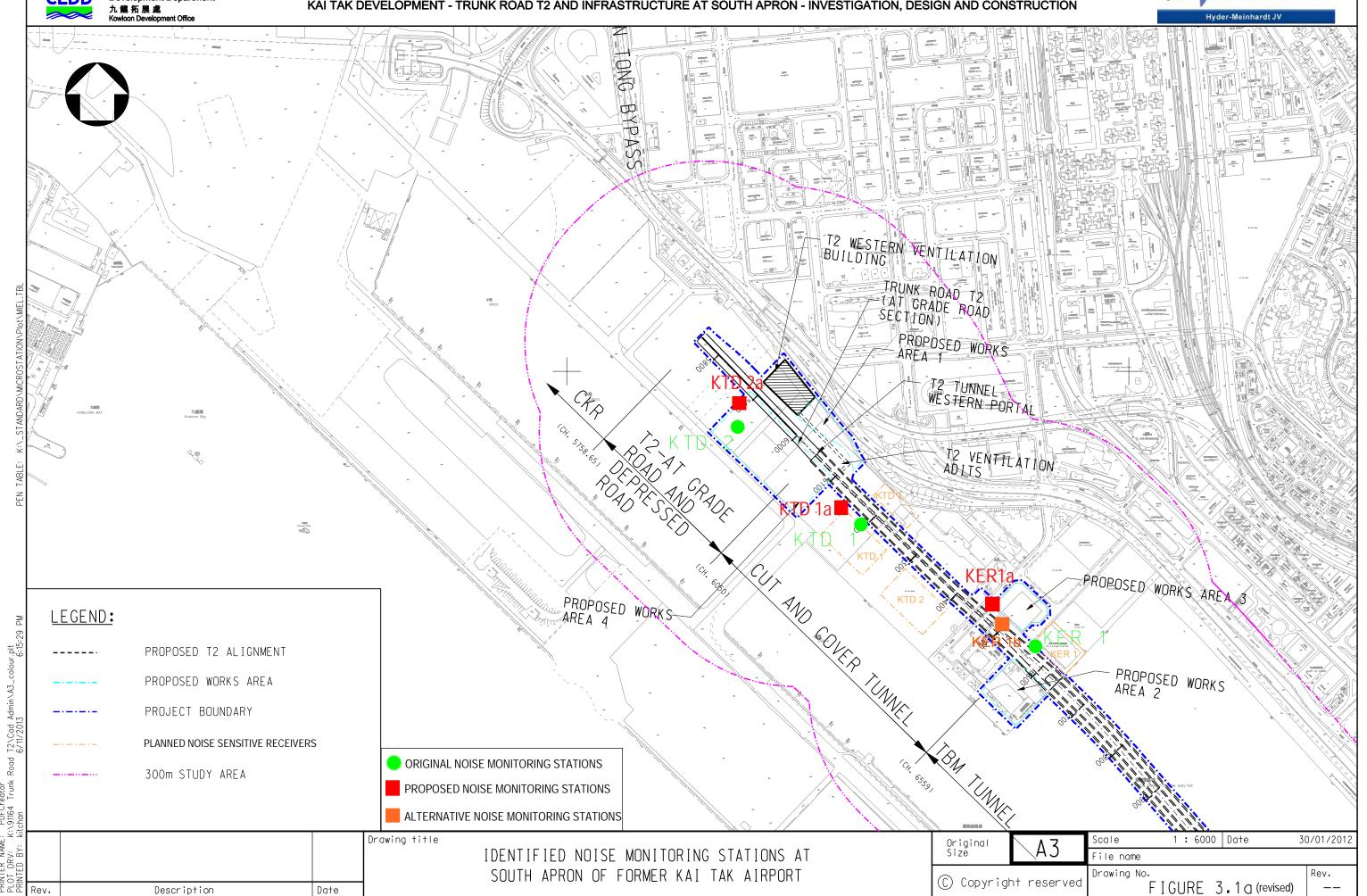
Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com


Figure 2

Air and Noise Monitoring Locations

土木工程拓展署
Civil Engineering and
Development Department
九龍拓展處
Kowloon Development Office

AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION



土木工程拓展署
Civil Engineering and
Development Department
九龍拓展處
Kowloon Development Office

AGREEMENT NO. CE 38/2008(HY) KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix A

Construction Programme

Hyder MEIN-ARDT KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway CEDD KL/2014/03-Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway **Project Key Dates Site Handover Date** K-PK-SHD-1100 Portion B 31-May-18* Portion B1 K-PK-SHD-1200 Portion B1 31-May-18* 31-Jul-18* K-PK-SHD-1300 Portion C Portion E K-PK-SHD-1500 Portion E 31-May-18* ◆ Portion F K-PK-SHD-1600 Portion F 11-Jun-18* ◆ Portion H K-PK-SHD-1700 Portion H 31-Jul-18* 0 ◆ Portion I K-PK-SHD-2300 Portion P 31-Jul-18* K-PK-SHD-2500 Portion R 31-May-18* 0 **General Submission Major Temporary Works Design** ■ ELS design for construction of subway A (Bay 1&5) K-PA-GSP-6840 ELS design for construction of subway A (Bay 1&5) 04-Jul-18 35 28-Feb-18 A ELS design for construction of DCS - Stag K-PA-GSP-7010 ELS design for construction of DCS - Stage 2 31-Jul-18 27-Jun-18 **Major Construction Works Method Statement** Method statement of Excavation and ELS for SUS Construction for Zone 4 K-PA-GSP-7160 Method statement of Excavation and ELS for SUS Construction for Zone 4 10 12-Aug-17 A 09-Jun-18 Engineer's comments and approval 07-Jul-18 K-PA-GSP-7165 Engineer's comments and approval 28 10-Jun-18 Method statement of Excavation and ELS for SUS Construction for Zone K-PA-GSP-7170 Method statement of Excavation and ELS for SUS Construction for Zone 2 15 20-Sep-17 A 14-Jun-18 Engineer's comments and approva K-PA-GSP-7175 Engineer's comments and approval 15-Jun-18 12-Jul-18 Engineer's comments and approval K-PA-GSP-7455 Engineer's comments and approval 8 23-Oct-17 A 22-Jun-18 Method statement for Construction of subway A (Bay 1&5) K-PA-GSP-7460 Method statement for Construction of subway A (Bay 1&5) 28 31-May-18 27-Jun-18 Engineer's comments and approval K-PA-GSP-7465 Engineer's comments and approval 28-Jun-18 25-Jul-18 28 **Temporary Traffic Management** Temp Traffic Arrangement Schemes K-PA-TTA-8950 Submission and approval of TTA schemes-TTA stage 4 for re-construction of Shing Cheong 11-Jul-18 08-Oct-18 Implementation of Temporary Traffic Arrangement ◆ TTA stage 3 - Road diversion at Cheung Yip Street phase K-PA-TTA-4100 TTA stage 3 - Road diversion at Cheung Yip Street phase 2 12-Jun-18 **Materials Procurement (Major Materials)** ELS struct / waling Manufacturing & delivery to site K-PA-MP-1150 Manufacturing & delivery to site 09-Jun-18

3 MRP Jun 2018 - Aug 2018

10 10-Jun-16 A

Project ID:30 3MRP Jun -Aug 18 Layout: KL201403 3MRP Page 1 of 7

3 Months Rolling Programme									
Date Revision Checked Approve									
31-May-18	Jun 18 - Aug 18								

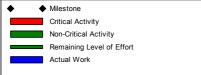
Hyder MEIN-ARDT KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway CEDD Rem Dur **Water Works** K-PA-MP-1050 Manufacturing & delivery to site 150 31-May-18 27-Oct-18 **Chilled Water Pipes - DCS** K-PA-MP-1350 Manufacturing & delivery to site 16-Dec-18 200 06-Feb-17 A **Prelimiaries** 29-Aug-19 K-DR-PRE-1800 Submission of time-lapsed photographs and video 456 20-Feb-16 A **Barge Loading Facilities** K-DR-PRE-1480 Operation of temporary barging point 115 21-Jun-17 A 16-Oct-18 **Instrumentation and Monitoring Tilt Monitoring Tile Plates** 147 25-Apr-16 A 24-Oct-18 K-IM-TMT-1000 Tilt Monitoring near PWCL Section 1 of the Works-Remainder of the Works **Roadwork and Drainage Works Road D4-4 (Cheung Yip Street)** CH240 - CH400 Northbound Laying of Drainage Pipe and Construction of Manhole (M206 to M213) Construction of Electromagnetic Flowmeter, Pressure Reducing Valve and In-line Strainer Combined Chamber (V.O) K-01-RWS-9420 Construction of Electromagnetic Flowmeter, Pressure Reducing Valve and In-line Strainer 0 17-Apr-18 A 17-May-18 A Combined Chamber (V.O) **Road Works** Construction of Road Base and Road Paveme K-01-RWS-9440 Construction of Road Base and Road Pavement 14-Mar-18 A 07-Jun-18 CH240 - CH400 Southbound Sewerage Works Excavation of Sewerage Pipe and Manhole (3E1-1) K-01-RWS-9387 Excavation of Sewerage Pipe and Manhole (3E1-1) 12-Jun-18 19-Jun-18 Laying Sewerage Pipe and Manhole (3E1-1) K-01-RWS-9460 Laying Sewerage Pipe and Manhole (3E1-1) 22 16-Jul-18 20-Jun-18 Backfilling Sewerage Pipe and Manhole (3 K-01-RWS-9470 Backfilling Sewerage Pipe and Manhole (3E1-1) 17-Jul-18 30-Jul-18 Laying of Drainage Pipe and Construction of Manhole (M214, M301 to M306) Excavation of Drainage Pipe and K-01-RWS-9485 Excavation of Drainage Pipe and Manhole (M214, M301 to M306) 31-Jul-18 06-Aug-18 K-01-RWS-9490 Laying Drainage Pipe and Construction Manhole (M214, M301 to M306) 22 07-Aug-18 31-Aug-18 Temporary Traffic Arrangement Temporary Road Construction for TTA stage 3 - phase 2 K-01-RWS-9445 | Temporary Road Construction for TTA stage 3 - phase 2 7 26-May-18 A 11-Jun-18 ◆ Implementation of TTA stage 3 - phase 2 K-01-RWS-9450 Implementation of TTA stage 3 - phase 2 0 12-Jun-18 Section 1A of the Works -Construction of Supporting Underground Structure (Alternative Design) 3 Months Rolling Programm Project ID:30 3MRP Jun -Aug 18

3 MRP Jun 2018 - Aug 2018

Project ID :30 3MRP Jun -Aug 18 Layout : KL201403 3MRP Page 2 of 7

3 Working Flogramme							
Date	Revision	Checked	Approved				
31-May-18 Jun 18 - Aug 18							

Hyder MEIN-ARDT KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway CEDD SUS and Ventilation Adits from CH6+150 to CH6+220 in Zone 1 **Construction of Tunnel Box Structure** SUS Bay 1 (Ch6150-Ch6167.5) ■ Breaking and Removal D-wall to +2.5mPD K-1A-SV1-8420 Breaking and Removal D-wall to +2.5mPD 05-Jun-18 5 22-May-18 A SUS Bay 2 (Ch6167.5-Ch6185) Breaking and Removal of D-wall to +2.5mPD K-1A-SV1-9020 Breaking and Removal of D-wall to +2.5mPD 5 04-May-18 A 05-Jun-18 **Backfilling Works** Backfilling (bay 1 to bay 2) (to +3.7m) 6 23-Apr-18 A K-1A-SV1-6900 Backfilling (bay 1 to bay 2) (to ± 3.7 m) 11-Jun-18 SUS and Ventilation Adits from CH6+220 to CH6+291 in Zone 2 W/B Construction of D-Wall in TTA Stage 2 K-1A-SV2-4800 Trimming D-wall at Cut-off Level 20-Aug-18 22-Sep-18 K-1A-SV2-4810 Open through D-walls for DCS mains 20-Aug-18 22-Sep-18 **Excavation and ELS Construction** Excavation and Lateral Support (S6) to --9.95mPI K-1A-SV2-6400 Excavation and Lateral Support (S6) to --9.95mPD 0 12-Apr-18 A 31-May-18 A Excavation to formation -12.8mPD K-1A-SV2-6450 Excavation to formation -12.8mPD 6 27-Apr-18 A 06-Jun-18 Sheet pile installation or VA2 construction (CH6+220 to CH6+260) K-1A-SV2-6500 Sheet pile installation for VA2 construction (CH6+220 to CH6+260) 0 30-Apr-18 A 12-May-18 A Excavation and Lateral Support to formation -19.1mPD for VA2 construction K-1A-SV2-6550 Excavation and Lateral Support to formation -19.1mPD for VA2 construction (CH6+220 to 22 07-Jun-18 04-Jul-18 CH6+260) **Excavation and ELS Construction-1** Excavation and Lateral Support to S6A (CH6+260 to CH6+291) K-1A-SV2-9020 Excavation and Lateral Support to S6A (CH6+260 to CH6+291) 0 12-Apr-18 A 30-Apr-18 A Level (CH6+260 to CH6+291) K-1A-SV2-9030 Excavation to formation Level (CH6+260 to CH6+291) 0 01-May-18 A 12-May-18 A Lateral Support for S6A (CH6+220 to CH6+260) K-1A-SV2-9050 Lateral Support for S6A (CH6+220 to CH6+260) 0 21-May-18 A 31-May-18 A Excavation to formation Level (CH6+220 to CH6+260) K-1A-SV2-9060 Excavation to formation Level (CH6+220 to CH6+260) 5 31-May-18 05-Jun-18 or VA2 construction (CH6+220 to CH6+260) K-1A-SV2-9070 | Sheet pile installation for VA2 construction (CH6+220 to CH6+260) 0 30-Apr-18 A 12-May-18 A Excavation and Lateral Support to formation -19.1mPD for VA2 construction (CH6 K-1A-SV2-9730 Excavation and Lateral Support to formation -19.1mPD for VA2 construction (CH6+220 to 20 06-Jun-18 29-Jun-18 CH6+260) **Construction of SUS Structure at Zone 2-1** Bay 1 (CH6+220 to CH6+245)


K-1A-SV2-9158 Construction of Base Slab

K-1A-SV2-9290 | Construction of Base Slab

Bay 2 (CH6+244 to CH6+277)

K-1A-SV2-9155 Construction of Base Slab and Side Wall for VA2

K-1A-SV2-9285 | Construction of Base Slab and Side Wall for VA2

3 MRP Jun 2018 - Aug 2018

13-Jul-18

16-Aug-18

30-Jun-18

31-Jul-18

14

10-Aug-18

31-Aug-18

30-Jul-18

15-Aug-18

Project ID :30 3MRP Jun -Aug 18 Layout : KL201403 3MRP Page 3 of 7

Date Revision Checked Approved 31-May-18 Jun 18 - Aug 18	3 Months Rolling Programme							
31-May-18 Jun 18 - Aug 18	Date	Revision	Checked	Approved				
	31-May-18 Jun 18 - Aug 18							

O Mantha Dallina Danasa

Construction of Base Slab and Side Wall for

Construction of Base :

Hyder MEIN-ARDT KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway CEDD Dur K-1A-SV2-9350 | Construction of Wall and Top Slab 20-Aug-18 12-Sep-18 Bay 3 (CH6+277 to CH6+307) K-1A-SV2-9480 Construction of Base Slab 0 11-May-18 A 26-May-18 A K-1A-SV2-9490 | Construction of Wall and Top Slab 21 20-Jun-18 14-Jul-18 Laying Waterproofing and Protective Screeding K-1A-SV2-9600 Laying Waterproofing and Protective Screeding 20-Jul-18 16-Jul-18 Dismantling of Struts for 1st Later K-1A-SV2-9610 Dismantling of Struts for 1st Later 26-Jul-18 21-Jul-18 **Backfilling Works** K-1A-SV2-9840 Backfilling (bay 3) (to +3.7mPD) 27-Jul-18 11-Sep-18 SUS Structure from CH6+291 to 6+467 in Zone 3 **Construction of Socketed H-Pile** Trimming Pile Head at Cut-off Level K-1A-SV3-3600 Trimming Pile Head at Cut-off Level 20 28-Mar-18 A 23-Jun-18 **Excavation and ELS Construction** Excavation and Lateral Support (S7) to -18.20mPD K-1A-SV3-5850 Excavation and Lateral Support (S7) to -18.20mPD 0 02-Mar-18 A 15-May-18 A Excavation to formation -21.5mPD K-1A-SV3-5900 Excavation to formation -21.5mPD 0 18-Mar-18 A 21-May-18 A **Construction of SUS Structure at Zone 3** SUS Construction Works at Zone 3 Bay 4 (CH6+307 to CH6+332) Dismantling of Struts _Bay K-1A-SV3-8000 Dismantling of Struts Bay 4 0 02-May-18 A 08-May-18 A Wall Bay 4 K-1A-SV3-8010 Wall Bay 4 8 09-May-18 A 17-Jun-18 K-1A-SV3-8020 Dismantling Steel formwork 18-Jun-18 19-Jun-18 K-1A-SV3-8030 Construction of Top slab Bay 4 19-Jul-18 17 03-Jul-18 Bay 5 (CH6+332 to CH6+355) K-1A-SV3-8070 Construction of Base Slab for Bay 5 (CH6+332 to CH6+355) 0 30-Mar-18 A 05-May-18 A Construction of Base Slab for Bay 5 (CH6+332 to CH6+355) Dismantling of Struts Bay 5 Crane No. 2 K-1A-SV3-8080 Dismantling of Struts Bay 5 Crane No. 2 0 11-May-18 A 17-May-18 A K-1A-SV3-8090 Wall 7 29-May-18 A 24-Jun-18 K-1A-SV3-8100 Construction of Top slab_bay 5 20 20-Jul-18 08-Aug-18 Bay 6 (CH6+355 to CH6+378) Dismantling of Struts Bay 6 Crane No. K-1A-SV3-8040 Dismantling of Struts Bay 6 Crane No. 3 0 07-May-18 A 10-May-18 A K-1A-SV3-8050 Wall 10 14-May-18 A 09-Jun-18 K-1A-SV3-8060 Construction of Top slab_Bay 6 04-Jul-18 20 15-Jun-18

Bay 7 (CH6+378 to CH6+401)

3 MRP Jun 2018 - Aug 2018

Project ID :30 3MRP Jun -Aug 18 Layout : KL201403 3MRP Page 4 of 7

3 Months Rolling Programme							
Date Revision Checked Approved							
31-May-18	Jun 18 - Aug 18						

Hyder MEIN-ARDT KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway CEDD K-1A-SV3-8110 Construction of Base Slab for Bay 7 (CH6+378 to CH6+401) Construction of Base Slab for Bay 7 (CH6+378 to CH6+401) 0 30-Apr-18 A 19-May-18 A ■ Dismantling of Struts Bay 7 Crane No. 3 K-1A-SV3-8120 Dismantling of Struts Bay 7 Crane No. 3 15 31-May-18 14-Jun-18 K-1A-SV3-8130 Construction of Intermediate Wall 02-Jul-18 25-Jun-18 K-1A-SV3-8140 Construction of Top slab bay 7 17 06-Aug-18 22-Aug-18 Bay 8 (CH6+401 to CH6+424) Construction of Base Slab for Bay 8 (CH6+401 to CH6+424) K-1A-SV3-8150 Construction of Base Slab for Bay 8 (CH6+401 to CH6+424) 5 30-Apr-18 A 11-Jun-18 Dismantling of Struts Bay 8 Crane No. 3 K-1A-SV3-8160 Dismantling of Struts Bay 8 Crane No. 3 16-Jun-18 30-Jun-18 Construction of Intermediate Wall K-1A-SV3-8170 Construction of Intermediate Wall 01-Jul-18 08-Jul-18 K-1A-SV3-8180 Construction of Top slab bay 8 05-Sep-18 17 20-Aug-18 Bay 9 (CH6+424 to CH6+447) Construction of Base Slab for Bay 9 (CH6+424 to CH6+447) K-1A-SV3-8190 Construction of Base Slab for Bay 9 (CH6+424 to CH6+447) 10 22-May-18 A 17-Jun-18 K-1A-SV3-8200 Dismantling of Struts Bay 9 Crane No. 3 15 01-Jul-18 15-Jul-18 Construction of Intermediate Wall K-1A-SV3-8210 Construction of Intermediate Wall 8 16-Jul-18 23-Jul-18 Bay 10 (CH6+447 to CH6+467) Construction of Base Slab for Bay 10 (CH6+447 to CH6+467 K-1A-SV3-8220 Construction of Base Slab for Bay 10 (CH6+447 to CH6+467) 2 23-May-18 A 01-Jun-18 Dismantling of Struts _Bay 10_Crane No. K-1A-SV3-8230 Dismantling of Struts Bay 10 Crane No. 4 16-Jul-18 30-Jul-18 Construction of Intermediate Wa K-1A-SV3-8240 Construction of Intermediate Wall 31-Jul-18 07-Aug-18 **Backfilling Works** K-1A-SV3-9020 Backfilling (CH6+291 to CH6+347 +0.65mPD) 50 09-Aug-18 08-Oct-18 SUS Structure from CH6+467 to 6+568 in Zone 4 **Excavation and ELS Construction** Excavation and Lateral Support (S4) to -14.20mPD (Excavation works resequenced) K-1A-SV4-5750 Excavation and Lateral Support (S4) to -14.20mPD (Excavation works resequenced) 0 01-Feb-18 A 10-May-18 A Excavation and Lateral Support (S5) to -18.20mPD K-1A-SV4-5800 Excavation and Lateral Support (S5) to -18.20mPD 07-Jun-18 7 05-Mar-18 A Excavation and Lateral Support (S6) to -21.20mPD K-1A-SV4-5850 Excavation and Lateral Support (S6) to -21.20mPD 10 02-Apr-18 A 20-Jun-18 Excavation and Lateral Support (S7) to -25.20mPD K-1A-SV4-5900 Excavation and Lateral Support (S7) to -25.20mPD 18 07-May-18 A 05-Jul-18 Excavation to Formation -27.0mPD K-1A-SV4-5950 Excavation to Formation -27.0mPD 8 19-May-18 A 11-Jul-18 **Construction of SUS Structure at Zone 4** Bay 1 (CH6+467 to CH6+478)

K-1A-SV4-6000 Construction of Base Slab

Bay 2 (CH6+478 to CH6+493)

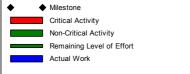
K-1A-SV4-6050 | Construction of Wall and Top Slab

3 MRP Jun 2018 - Aug 2018

16-Jul-18

21 09-Aug-18

31-Jul-18


01-Sep-18

Project ID :30 3MRP Jun -Aug 18 Layout : KL201403 3MRP Page 5 of 7

3 Months Rolling Programme									
Date Revision Checked Approve									
31-May-18	Jun 18 - Aug 18								

Hyder MEINHARDT KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway CEDD Rem Dur 15 22 K-1A-SV4-6100 Construction of Base Slab 26-Jun-18 12-Jul-18 06-Aug-18 Construction of Wall and Top Slat K-1A-SV4-6150 | Construction of Wall and Top Slab 21 13-Jul-18 K-1A-SV4-6180 Laying Waterproofing and Protective Screeding 07-Aug-18 11-Aug-18 Bay 3 (CH6+493 to CH6+508) K-1A-SV4-6200 Construction of Base Slab 13-Jul-18 28-Jul-18 K-1A-SV4-6250 Construction of Wall and Top Slab 07-Aug-18 30-Aug-18 Bay 4 (CH6+508 to CH6+523) K-1A-SV4-6400 | Construction of base slab 14 01-Aug-18 16-Aug-18 Bay 5 (CH6+523 to CH6+538) K-1A-SV4-7601 Construction of Base Slab 14 15-Aug-18 30-Aug-18 Bay 6 (CH6+538 to CH6+553) K-1A-SV4-6300 | Construction of Base Slab 30-Jul-18 14-Aug-18 Bay 7 (CH6+553 to CH6+568) K-1A-SV4-6500 Construction of Base Slab 04-Sep-18 14 20-Aug-18 Section 4A of the Works-Construction of Subway A (Subject to Excision) Bay 1 Installation of She K-4A-BAY-1100 Installation of Sheetpile for Bay 1 26-Jul-18 18-Aug-18 K-4A-BAY-1150 Excavation and Lateral Support works for Bay 1 28 20-Aug-18 20-Sep-18 Bay 5 21 20-Aug-18 K-4A-BAY-1500 Installation of sheetpile for Bay 5 12-Sep-18 Section 4B of the Works- Construction of Subway B (Subject to Excision) Bay 1 & 2 K-4B-BAY-3100 Handover of Portion B Handover of Portion B 31-May-18* 0 Bay 3 & 4 Installation of Sheetpile for Bay 3 K-4B-BAY-6000 Installation of Sheetpile for Bay 3 7 25-Apr-18 A 07-Jun-18 Excavation and Lateral Support works for Bay 3 Excavation and Lateral Support works for Bay 3 08-Jun-18 26-Jun-18 K-4B-BAY-6010 Casting Blinding Layer for Bay 3 Casting Blinding Layer for Bay 3 03-Jul-18 K-4B-BAY-6020 27-Jun-18 Construction of Base Slab at Bay K-4B-BAY-6030 Construction of Base Slab at Bay 3 12 04-Jul-18 17-Jul-18 K-4B-BAY-6040 Construction of Wall and Top Slab at Bay 3 18-Jul-18 21-Aug-18 K-4B-BAY-6050 Backfilling Works (Bay 3) 04-Sep-18 12 22-Aug-18 Section 5 of the Works-Completion of All Landscape Softworks

3 MRP Jun 2018 - Aug 2018

Project ID :30 3MRP Jun -Aug 18 Layout : KL201403 3MRP Page 6 of 7

3 Months Rolling Flogramme							
Date	Revision	Checked	Approved				
31-May-18	Jun 18 - Aug 18						

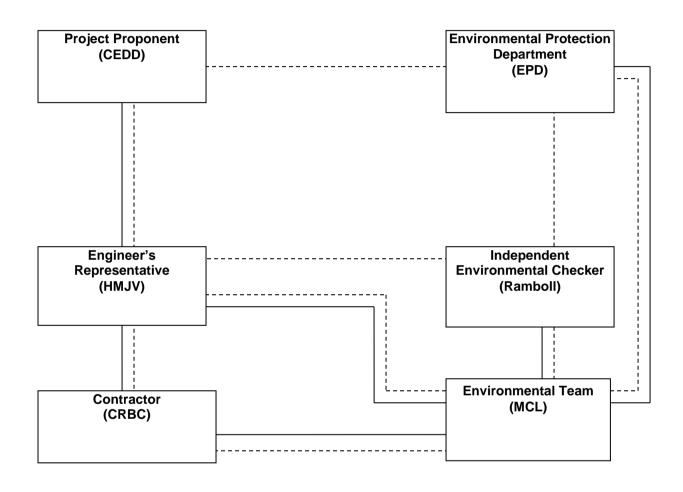
Hyder - Mein	EIN-ARDT	KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway									CEDD	土木工程 Civil Engines Developmen 九龍拓展處 Kowloon Develop	上拓展署 ering and t Department					
Activity ID	Activity Name		Rem	Start	Finish		May		June			July				August		per
,			Dur			П	35		36			37				38		39
						29	06 13 20 27	7	03 10 17 24	01	08	15	22	29	05	12	19	26 2
K-05-LCS-1000	Procurement of plan	t species	90	31-May-18	28-Aug-18							•			•		,	Procu
K 03 ECS 1000	1 rocurement or plan	t species	70	31 May 10	20 7145 10					1								
										.;								
Section 7 of the	Works-Preservati	on and Protection of Existing Trees						l		1								
Section 7 of the	· · or its i reser vite	on and Proceeding of Empling Proces						l		i								
W 07 001 1000	C 4: 7 C4 W	1 D (CE) CE	450	04 T 16 A	22 4 10					. .								
K-07-001-1000	Section / of the Wor	ks-Preservation and Protection of Existing Trees	450	04-Jan-16 A	23-Aug-19					ï	·		·		·	·		
										1								J

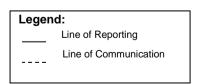
Project ID :30 3MRP Jun -Aug 18 Layout : KL201403 3MRP Page 7 of 7

3 Months Rolling Programme							
Date	Revision	Checked	Approved				
31-May-18	Jun 18 - Aug 18						

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com


Appendix B


Project Organization Chart

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 Tel 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong.. Email : mcl@fugro.com

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix C

Action and Limit Levels for Air Quality and Noise

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong.. Email : mcl@fugro.com

Action and Limit Levels for 24-hr TSP and 1-hr TSP

Parameter	Monitoring Station	Action Level (μg/m³)	Limit Level (µg/ m³)
24 hr TCD	KTD1a	177	
24-hr TSP (μg/m³)	KTD2a	157	260
(μg/πι*)	KER1b	172	
*1 br TCD	KTD1a	285	
*1-hr TSP (µg/m³)	KTD2a	279	500
	KER1b	295	

Note:

Action and Limit Levels for Construction Noise, Leq (30min), dB(A)

Time Period	Location	Action	Limit
0700-1900 hrs on normal weekdays	KTD1a KTD2a KER1b	When one documented complaint is received	75 dB(A)

¹⁻hr TSP monitoring should be required in case of complaints.

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

MateriaLab

Appendix D

Calibration Certificates of Monitoring Equipment

RECALIBRATION DUE DATE:

November 20, 2018

Pertificate o libration

Calibration Certification Information

Cal. Date: November 20, 2017 Rootsmeter S/N: 438320

Ta: 294 Pa: 756.9 °K

Operator: Jim Tisch

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 2456

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)	
1	1	2	1	1.4440	3.2	2.00	
2	3	4	1	1.0260	6.4	4.00	
3	5	6	1	0.9130	7.8	5.00	
4	7	8	1	0.8680	8.8	5.50	
5	9	10	1	0.7190	12.7	8.00	

		Data Tabulat	ion		
Vstd (m3)	Qstd (x-axis)	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ (y-axis)	Va	Qa (v. pvis)	√∆H(Ta/Pa)
1.0052				(x-axis)	(y-axis)
	0.6961	1.4209	0.9958	0.6896	0.8814
1.0010	0.9756	2.0095	0.9915	0.9664	1.2465
0.9991	1.0943	2.2467	0.9897	1.0840	1.3936
0.9978	1.1495	2.3563	0.9884	1.1387	1.4616
0.9926	1.3805	2.8418	0.9832	1.3675	1.7628
	m=	2.07133		m=	1.29703
QSTD	b=	-0.01892	QA	b=	-0.01173
	r= 0.99995			r=	0.99995

	Calculation	IS			
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/∆Time		Qa= Va/ΔTime		
	For subsequent flow rat	e calculatio	ns:		
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$		

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
	manometer reading (in H2O)
ΔP: rootsmete	r manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

sch Environmental, Inc. 45 South Miami Avenue illage of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 Tel (852)-24508032 Email : mcl@fugro.com.hk

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07

Date of Calibration: 3-Apr-18

Next Calibration Date: 2-Jul-18

Location: KTD2a Brand:

Tisch

3838

Technician: Toby Wan

Model:

TE-5170

S/N:

CONDITIONS

Sea Level Pressure (hPa):

1013.6

Corrected Pressure (mm Hg):

760

Temperature (°C):

25

Temperature (K):

298

CALIBRATION ORIFICE

Make:

Tisch

Qstd Slope:

2.07013

Model: Calibration Date:

H2O (R)

(in)

-5.70

-4.20

-3.40

-1.60

-1.00

TE-5025A 20-Nov-17

Qstd

1.724

1.506

1.384

1.034

0.846

(m³/min)

Qstd Intercept:

IC

55

46

41

31

25.00

(correct

-0.01892

2456

Expiry Date:

20-Nov-18

S/N:

H20

(in)

12.600

9.600

8.100

4.500

3.000

CALIBRATIONS

(chart)

55.00

46.00

41.00

31.00

25.00

		LINEAR	
ted)	R	EGRESSION	
.00		33.3531	
.00	Intercept =	-3.7146	
.00	Corr. coeff.:	0.9963	
.00			

5 Calculations:

Plate No.

18

13

10

7

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

H2O (L)

(in)

6.90

5.40

4.70

2.90

2.00

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

FLOW RATE CHART 60.00 50.00 Actual Chart Response (IC) 40.00 30.00 20.00 10.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

CHOI KAM HO Project Consultant Report Date: 3rd April, 2018

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07

Date of Calibration: 3-Apr-18

Location: KTD1a

Next Calibration Date: 2-Jul-18

Brand: Tisch Technician: Toby Wan Model: TE-5170 S/N: 4037

CONDITIONS

Sea Level Pressure (hPa): 1013.6 Corrected Pressure (mm Hg): 760

Temperature (°C): 25 Temperature (K): 298

CALIBRATION ORIFICE

Make: Tisch Qstd Slope: 2.07013

Model: TE-5025A Qstd Intercept: -0.01892

Model: TE-5025A Qstd Intercept: -0.01892
Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18

S/N: 2456

	CALIBRATIONS								
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	1	IC		LINEAR	
Plate No. (in)		(in)	(in)	(m³/min)	(chart) (corrected		REGRESSION		
18	6.00	-6.10	12.100	1.689	58.00	58.00	Slope =	28.1358	
13	4.80	-4.70	9.500	1.498	55.00	55.00	Intercept =	11.1997	
10	3.60	-3.90	7.500	1.332	48.00	48.00	Corr. coeff.:	0.9947	
7	2.50	-2.70	5.200	1.111	42.00	42.00			
5	1.30	-1.40	2.700	0.803	34.00	34.00			

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

FLOW RATE CHART 70.00 60.00 Actual Chart Response (IC) 50.00 40.00 30.00 20.00 10.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

CHOI KAM HO
Project Consultant

Report Date: 3rd April, 2018

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

(852)-24508238 : (852)-24508032 : mcl@fugro.com.hk Fax Hong Kong.

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07

Date of Calibration: 3-Apr-18

Next Calibration Date: 2-Jul-18

Location: KER1b Brand:

Tisch

Model:

TE-5170

S/N:

Technician: Toby Wan

CONDITIONS

3482

Sea Level Pressure (hPa):

1013.6

Corrected Pressure (mm Hg):

760

Temperature (°C):

25

Temperature (K):

298

CALIBRATION ORIFICE

Make:

Tisch

Qstd Slope:

2.07013

Model: Calibration Date: TE-5025A 20-Nov-17 **Qstd Intercept:**

-0.01892

S/N:

2456

Expiry Date:

20-Nov-18

CALIBRATIONS

Plate No.	H2O (L)	H2O (R)	H2O	Qstd	- 1	IC		LINEAR	
	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	F	REGRESSION	
18	7.00	-5.70	12.700	1.731	56.00	56.00	Slope =	34.9372	
13	5.70	-4.50	10.200	1.552	49.00	49.00	Intercept =	-4.4008	
10	4.60	-3.30	7.900	1.367	44.00	44.00	Corr. coeff.:	0.9965	
7	3.10	-1.90	5.000	1.089	35.00	35.00			
5	2.20	-1.00	3.200	0.873	25.00	25.00			

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

FLOW RATE CHART 60.00 50.00 Actual Chart Response (IC) 40.00 30.00 20.00 10.00 0.00 0.000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

CHOI KAM HO Project Consultant Report Date: 3rd April, 2018

Fugro Development Centre, 5 Lok Yi Street. Tai Lam. Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report no.: 172379CA171674

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client: MateriaLab Consultants Ltd.

Address: Room 723 & 725, 7F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project: Calibration Services Details of Unit Under Test, UUT

Description

Sound Level Meter

Manufacturer

Casella

Model No.

Casella (Model no. CEL-63X(meter), CEL-251(microphone), CEL-495(Preamplifier))

Serial No.

1057034 (meter), 01308 (microphone), 002672 (Preamplifier))

Next Calibration Date

30-Jul-2018

Specification Limit

EN 61672: 2003 Type 1

Laboratory Information

Description

B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)

Equipment ID.

R-108-1

Date of Calibration:

31-Jul-2017

Ambient Temperature: 22

Calibration Location:

Calibration Laboratory of MateriaLab

Method Used

By direct comparison

Calibration Results:

Parameters		Mean Value (dB)	Specification Limi		Limit(dB)
	4000Hz	2.5	2.6	to	-0.6
	2000Hz	0.5	2.8	to	-0.4
	1000Hz	-1.0	1.1	to	-1.1
A-weighing frequency	500Hz	-4.5	-1.8	to	-4.6
response	250Hz	-10.0	-7.2	to	-10.0
	125Hz	-17.4	-14.6	to	-17.6
	63Hz	-27.3	-24.7	to	-27.7
	31.5Hz	-40.0	-37.4	to	-41.4
Differential level	94dB-104dB	0.0		± 0.6	
linearity	104dB-114dB	0.0		± 0.6	

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighing is fast
- 4. The equipment complies with EN 61672: 2003 Type 1 sound level meter for the above measurement.

CA-R-297 (22/07/2009)

Date:

Kwok Chi Wa (Assistant Manager)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam. Tuen Mun, N.T., Hong Kong.

Fax : +852 2450 6138 E-mail: matlab@fugro.com

Website: www.fugro.com

Report no.: 172379CA180329

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client: MateriaLab Consultants Ltd.

Address: Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project: Calibration Services Details of Unit Under Test, UUT

Description

Sound Level Meter

Manufacturer

Casella

Model No.

Serial No.

Meter Microphone Preamplifier CL63X CE-251 CEL-495 1057055 00995 002317

Next Calibration Date

12-Feb-2019

Specification Limit

EN 61672: 2003 Type 1

Laboratory Information

Description

B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)

Equipment ID. R-108-1

Date of Calibration:

13-Feb-2018

Ambient Temperature: 22

Calibration Location:

Calibration Laboratory of FTS

Method Used

By direct comparison

Calibration Results:

Parameters		Mean Value (dB)	Value (dB) Specification Li		Limit(dB)
	4000Hz	0.4	2.6	to	-0.6
	2000Hz	1.0	2.8	to	-0.4
	1000Hz	0.2	1.1	to	-1.1
A-weighing frequency	500Hz	-3.0	-1.8	to	-4.6
response	250Hz	-8.3	-7.2	to	-10.0
	125Hz	-15.7	-14.6	to	-17.6
	63Hz	-25.7	-24.7	to	-27.7
	31.5Hz	-38.7	-37.4	to	-41.4
Differential level	94dB-104dB	0.1		± 0.6	3
linearity	104dB-114dB	0.0		± 0.6	3

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighing is fast
- 4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement.

Certified by:

CA-R-297 (22/07/2009)

Chan Chun Wai (Manager)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report no.: 172379CA172109

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client: MateriaLab Consultants Ltd.

Address: Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project : Calibration Services
Details of Unit Under Test, UUT

Description

Sound Level Meter

Manufacturer

Casella

Model No. Serial No.
 Meter
 Microphone
 Preamplifier

 CL63X
 CE-251
 CEL-495

 4637931
 01993
 003538

Equipment ID

N-13

Next Calibration Date

17-Sep-2018

Specification Limit

EN 61672: 2003 Type 1

Laboratory Information

Description

B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)

Equipment ID. :

R-108-1

Date of Calibration:

18-Sep-2017

Ambient Temperature: 22

2°C

Calibration Location:

Calibration Laboratory of MateriaLab

Method Used

By direct comparison

Calibration Results:

Parameters		Mean Value (dB)	Specification Lir		Limit(dB)
	4000Hz	1.4	2.6	to	-0.6
	2000Hz	1.3	2.8	to	-0.4
A-weighing	1000Hz	0.0	1.1	to	-1.1
frequency	500Hz	-3.2	-1.8	to	-4.6
	250Hz	-8.8	-7.2	to	-10.0
response	125Hz	-16.3	-14.6	to	-17.6
	63Hz	-26.3	-24.7	to	-27.7
	31.5Hz	-39.3	-37.4	to	-41.4
Differential level	94dB-104dB	0.0		± 0.6	
linearity	104dB-114dB	0.0		± 0.6	i

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference range is 30-130dB, reference SPL is 94,104 & 114dB, frequency weighing is A,
- 4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement.

Checked by:

/

Date: 19-9- 2011

Certified by :

_ Date

e. Bitch

CA-R-297 (22/07/2009)

Chan Chun Wai (Manager)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report no.: 172379CA171364 Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client Supplied Information

Client: MateriaLab Consultants Ltd.

Project: Calibration Services

Details of Unit Under Test, UUT

Description : Sound Calibrator

Manufacturer : Casella (Model CEL-120/1)

Serial No. : 4358250

Equipment ID : N/A

Next Calibration Date : 15-Jun-2018

Specification Limit : EN 60942: 2003 Type 1

Laboratory Information

Description : Reference Sound level meter

Equipment ID. : R-119-1

Date of Calibration: 16-Jun-2017 Ambient Temperature: 22 °C

Calibration Location: Calibration Laboratory of MateriaLab

Method Used : By direct comparison

Calibration Results:

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)
94dB	-0.2 dB	±0.4dB
114dB	-0.1 dB	10.40

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.

Certificate of Conformance and Calibration for

Conformance and Calibration for							
CEL-120 Acou	CEL-120 Acoustic Calibrator						
Applicable Standards : JEC (50942: 2003 & ANSI S1.40: 2006						
CEL-120/1 Class 1							
CEL-120/2 Class 2							
Serial No:	26						
Firmware: O4							
Temperature: 228°C Pr	essure: 010.8 _{mb} %RH 51.8						
Frequency = 1.00 kHz ± 2 Hz T.H.D. = $< 1\%$	Calibration Level						
SPL @ 114.0dB Setting	114.01 dB						
SPL @ 94.0dB Setting (CEL-120/1 only)	93.96 dB/N.A						
Engineer:	1 4 JUN 2017						
Company test equipment and acoustic working standards, used for conformance testing, are subject to periodic calibration, traceable to UK national standards, in accordance with the company's ISO9001 Quality System.							
DECLARATION OF CONFORMITY is certificate confirms that the instrument specified above has been produced and tested to comply with the manufacturer's published specifications and the relevant European Community CE directives.							
Casella CEL (U.K.), Regent House, Wolseley Road, Kempston, Bedford. MK42 7JY Phone: +44 (0) 1234 844100 Fax: +44 (0) 1234 841490 E-mail: info@caselle.com							
Web: www.casellar	neasurement.com 198032A-01						

Kalibrier-Protokoll

Certificate of conformity . Protocole d'étalonnage Certicifato di taratura o Informe de calibración

Gerät / Module type / Modèle / Modelo:

0560 0480

Serien-Nr. / Serial no. /

No. de série / Número de serie:

61003846

Segmenttest / Display test /

Testes d'affichage / Test del visualizador:

ok

Tastaturtest / Keyboard test /

Testes de clavier / Test del teclado:

ok

Messwerte / Measured values / Valeurs mesurées / Valores medidos:

Sollwert /

Toleranz /

Istwert /

Reference /

Tolerance / Tolérance / Actual Value /

Référence / Referencia:

Tolerancia:

Valeur réelle / Valor medido:

Druck / Pressure / Pression / Presión

10.000 hPa

± 0.103 hPa

10.000 hPa

19.999 hPa

± 0.203 hPa

20.000 hPa

Temperatur / Temperature / Température / Temperatura (TE1, TE2)

500.0 °C

± 1.3 °C

500.0 °C

500.0 °C

± 1.3 °C

499.9 °C

Absolutdruck / Absolute pressure / Pression absolue / Presión absoluta

927.8 hPa

± 3.0 hPa

927.8 hPa

Datum / Date /

Date / Fecha:

Prüfer / Inspector / Vérificateur / Verificador:

20.06.2017

40

Kalibrier-Protokoll

Certificate of conformity • Protocole d'étalonnage Certicifato di taratura • Informe de calibración

Gerät / Module type / Modèle / Modelo:

0628 0143

Serien-Nr. / Serial no. / No. de série / Número de serie:

03216409

Messwerte / Measured values / Valeurs mesurées / Valores medidos:

Sollwert /

Reference / Référence /

Reference / Referencia:

Toleranz /

Tolerance / Tolerance / Tolerancia: Istwert /

Actual Value / Valeur réelle / Valor medido:

Strömung / Velocity / Vitesse d'air / Velocidad

1 00 m/s

± 0.07 m/s

1.01 m/s

3.00 m/s

± 0.15 m/s

3.08 m/s

5.00 m/s

± 0.23 m/s

5.04 m/s

Temperatur / Temperature / Température / Temperatura (NTC)

21.3 °C

± 0.5 °C

21.0 °C

Absolutdruck / Barometric pressure / Pression d'air / Présion atmosférica

926.5 hPa

± 3.0 hPa

926.4 hPa

Datum / Date / Date / Fecha:

Prüfer / Inspector / Vérificateur / Verificador:

21.06.2017

425

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax

Hong Kong.. Email : mcl@fugro.com

Appendix E

Environmental Monitoring Schedule

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 Tel : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong. Email: mcl@fugro.com

Project: KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Developments at the **Southern Part of the Former Runway**

Impact Monitoring Schedule (May 2018)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
		1	2	3 TSP Monitoring Noise Monitoring	4	5
6	7	8	9 TSP Monitoring Noise Monitoring	10	11	12
13	14	15 TSP Monitoring Noise Monitoring	16	17	18	19
20	21 TSP Monitoring Noise Monitoring	22	23	24	25	26 TSP Monitoring Noise Monitoring
27	28	29	30	31		

- 1. Monitoring Locations KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2a: G/IC Zone next to Kwun Tong Bypass (Future at Site 3C1), KER1b: Site Boundary at Cheung Yip Street
- 2. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)
- 3. Noise Monitoring: Leg (30 min) between 0700 and 1900 hours.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 Tel : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Email: mcl@fugro.com Hong Kong.

Project: KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Developments at the **Southern Part of the Former Runway**

Impact Monitoring Schedule (June 2018)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
					1 TSP Monitoring Noise Monitoring	2
3	4	5	6	7 TSP Monitoring Noise Monitoring	8	9
10	11	12	13 TSP Monitoring Noise Monitoring	14	15	16
17	18	19 TSP Monitoring Noise Monitoring	20	21	22	23
24	25 TSP Monitoring Noise Monitoring	26	27	28	29	30 TSP Monitoring Noise Monitoring

- 1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition
- 2. Monitoring Locations KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2a: G/IC Zone next to Kwun Tong Bypass (Future at Site 3C1), KER1b: Site Boundary at Cheung Yip Street
- 3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)
- 4. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

Profit Industrial Building, Tel
1-15 Kwai Fung Crescent, Kwai Fong, Fax
Hong Kong. Email

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

Project: KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Impact Monitoring Schedule (July 2018)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
1	2	3	4	5	6 TSP Monitoring Noise Monitoring	7
8	9	10	11	12 TSP Monitoring Noise Monitoring	13	14
15	16	17	18 TSP Monitoring Noise Monitoring	19	20	21
22	23	24 TSP Monitoring Noise Monitoring	25	26	27	28
29	30 TSP Monitoring Noise Monitoring	31				

- 1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition
- 2. Monitoring Locations KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2a: G/IC Zone next to Kwun Tong Bypass (Future at Site 3C1), KER1b: Site Boundary at Cheung Yip Street
- 3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)
- 4. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours.

Room 723 & 725. 7/F. Block B. Profit Industrial Building,

: (852)-24508238 Tel : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Email: mcl@fugro.com Hong Kong.

Project: KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Developments at the **Southern Part of the Former Runway**

Impact Monitoring Schedule (August 2018)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
			1	2 TSP Monitoring Noise Monitoring	3	4
5	6	7	8 TSP Monitoring Noise Monitoring	9	10	11
12	13	14 TSP Monitoring Noise Monitoring	15	16	17	18
19	20 TSP Monitoring Noise Monitoring	21	22	23	24	25 TSP Monitoring Noise Monitoring
26	27	28	29	30	31 TSP Monitoring Noise Monitoring	

- 1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition
- 2. Monitoring Locations KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2a: G/IC Zone next to Kwun Tong Bypass (Future at Site 3C1), KER1b: Site Boundary at Cheung Yip Street
- 3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)
- 4. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours.

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix F

Air Quality Monitoring Data

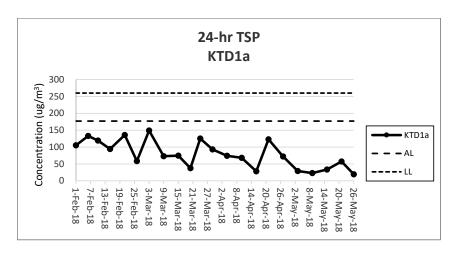
24-hour TSP Monitoring Result for Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

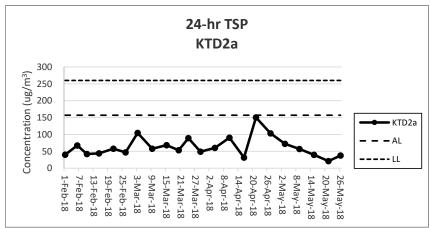
KTD1a - Centre of Excellence in Paediatrics (Children's Hospital)

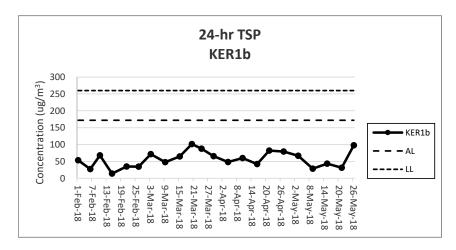
Start Date	Start Date	Air Temperature	Pressure, Pa		Filter Weight (g) Pa		Sampling Time(hrs)	Flow (m ³ /r		Average flow (m³/min.)	Total volume	Conc.	Action Level	Limit Level
	Condition	(K)	(mmHg)	Initial	Final	weight (g)	Tillie(IIIS)	Initial	Final	(m /min.)	(m ·	(ug/m³)	(ug/m ³)	(ug/m ³)
3-May-18	Fine	300.1	760.6	2.6619	2.7165	0.0546	24	1.31	1.31	1.31	1886.7	29		
9-May-18	Cloudy	297.6	759.7	2.6581	2.7080	0.0499	24	1.51	1.51	1.51	2169.4	23		
15-May-18	Fine	301.7	757.0	2.6763	2.7486	0.0723	24	1.49	1.51	1.50	2159.5	33	177	260
21-May-18	Fine	303.3	757.2	2.6722	2.7954	0.1232	24	1.49	1.51	1.50	2156.6	57		
26-May-18	Fine	303.7	756.3	2.6674	2.7093	0.0419	24	1.49	1.51	1.50	2155.1	19		
											Min	19		
											Max	57		

KTD2a - G/IC Zone next to Kwun Tong Bypass (Future Hospital at Site 3C1)

	C E C		-		,									
Start Date	ate	Air Temperature	(K) Pressure, Pa		3 (3)		Sampling Flow Rate (m³/min.			Average flow (m³/min.)	Total volume	Conc.	Action Level	Limit Level
	Condition	(K)	(mmHg)	Initial	Final	weight (g)	Tillie(IIIS)	Initial	Final	(m /min.)	(m ·	(ug/m³)	(ug/m ³)	(ug/m ³)
3-May-18	Fine	300.1	760.6	2.6558	2.8186	0.1629	24	1.56	1.57	1.57	2254.0	72		
9-May-18	Cloudy	297.6	759.7	2.6569	2.7672	0.1103	24	1.35	1.35	1.35	1941.5	57		ł
15-May-18	Fine	301.7	757.0	2.5543	2.6433	0.0890	24	1.55	1.57	1.56	2247.4	40	157	260
21-May-18	Fine	303.3	757.2	2.6540	2.7014	0.0474	24	1.55	1.57	1.56	2244.1	21		ł
26-May-18	Fine	303.7	756.3	2.6973	2.7781	0.0808	24	1.47	1.49	1.48	2137.4	38		<u> </u>
	-	•	•		-	•	•		-	•	Min	21		
											Max	72		


KER1b - Sit	KER1b - Site Boundary at Cheung Yip Street													
Start Date Weather Condition		Atmospheric Pressure, Pa	Filter Weight (g) Particulate Sa	Sampling Time(hrs)	Flow Rate (m³/min.)		Average flow (m³/min.)	Total volume	Conc. (ug/m ³)	Action Level	Limit Level			
	Condition	(14)	(mmHg)	Initial	Final	weight (g)	Tillie(III3)	Initial	Final	(111 /111111.)	(III ·	(ug/III)	(ug/m^3)	(ug/m ³)
3-May-18	Fine	300.1	760.6	2.6447	2.7444	0.0997	24	1.04	1.04	1.04	1494.8	67		
9-May-18	Cloudy	297.6	759.7	2.6664	2.7196	0.0532	24	1.29	1.29	1.29	1854.2	29		
15-May-18	Fine	301.7	757.0	2.6763	2.7486	0.0723	24	1.15	1.16	1.16	1667.4	43	172	260
21-May-18	Fine	303.3	757.2	2.6596	2.7176	0.0580	24	1.27	1.29	1.28	1841.9	31		
26-May-18	Fine	303.7	756.3	2.6822	2.8365	0.1543	24	1.09	1.10	1.09	1575.1	98		


98 Max Average


Average

Average

Underline: Exceedance of Action Level Underline and Bold: Exceedance of Limit Level

Note

- 1) The major activities being carried out on site during the reporting period can be referred to Section 1.3.2.
- 2) The weather conditions during the reporting period can be referred to Appendix K.
- 3) Any other factors which might affect the monitoing results can be referred to Section 2.6.4.
- 4) QA/QC results, calibration results and detection limits can be referred to Appendix D.

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix G

Noise Monitoring Data

Noise Impact Monitoring Result for Kai Tak Development - Stage 3 Infrastructure Works for **Developments at the Southern Part of the Former Runway**

KTD 1a: Centre of Excellence in Paediatrics (Children's Hospital)

Date	Start Time	Leq 30min dB(A)	L10 dB(A)	L90 dB(A)	Wind Speed (m/s)	Weather
3-May-18	10:41	68	69	66	0.3	Fine
9-May-18	10:06	68	70	65	0.6	Cloudy
15-May-18	9:58	63	64	59	0.8	Fine
21-May-18	10:04	74	80	66	0.6	Fine
26-May-18	10:00	70	72	66	3.7	Fine
	Max	74				
	Min	63				

75

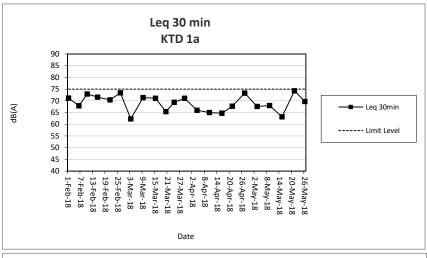
Date	Start Time	Leq 30min dB(A)	L10 dB(A)	L90 dB(A)	Wind Speed (m/s)	Weather
3-May-18	10:05	65	66	59	0.7	Fine
9-May-18	9:26	63	64	60	1.3	Cloudy
15-May-18	10:33	68	70	61	1.0	Fine
21-May-18	9:25	60	62	57	1.4	Fine
26-May-18	10:35	58	60	56	2.5	Fine
	Max	68				
	Min	58				

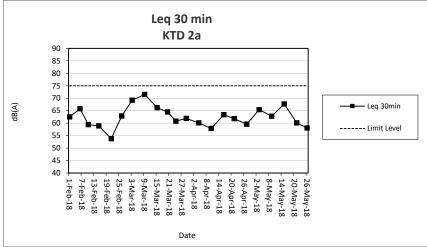
KER 1b: Site Boundary at Cheung Yip Street

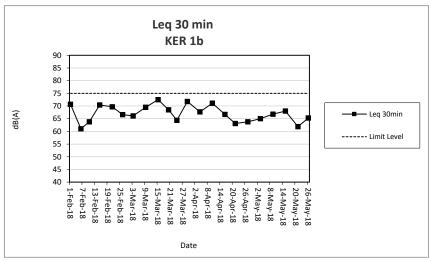
Limit Level

Limit Level

Date	Start Time	Leq 30min dB(A)	L10 dB(A)	L90 dB(A)	Wind Speed (m/s)	Weather
3-May-18	9:28	65	67	61	0.0	Fine
9-May-18	10:42	67	69	64	0.0	Cloudy
15-May-18	11:12	68	70	60	0.0	Fine
21-May-18	8:30	62	64	60	0.3	Fine
26-May-18	9:20	65	67	64	0.0	Fine
	Max	68				


Min Limit Level


Note:


KTD1a: Façade Measurement

KTD2a & KER1b: Free-field measurement (+3dB(A) correction has been applied)

No raining or wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation.

- 1) The major activities being carried out on site during the reporting period can be referred to Section 1.3.2.
- 2) The weather conditions during the reporting period can be referred to Appendix K.
- 3) Any other factors which might affect the monitoing results can be referred to Section 3.7.2.
- 4) QA/QC results, calibration results and detection limits can be referred to Appendix D.

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix H

Events and Action Plan

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong..

: (852)-24508238 : (852)-24508032 Tel Email : mcl@fugro.com

Event and Action Plan for Construction Dust Monitoring

		ion Dust Monitorinç ACT		
EVENT	ET	IEC	ER	Contractor
Action Level				
Exceedance for one sample.	I. Identify sources, investigate the causes of complaint and propose remedial measures. Inform IEC and ER. Repeat measurement to confirm finding;. Increase monitoring frequency	Check monitoring data submitted by the ET. Check the Contractor's working methods.	Notify the Contractor.	Rectify any unacceptable practices. Amend working methods agreed with the ER as appropriate.
Exceedance for two or more consecutive samples.	1.Identify sources. 2.Inform the IEC and ER. 3.Advise the ER on the effectiveness of the proposed remedial measures; 4.Repeat measurements to confirm findings. 5.Increase monitoring frequency to daily. 6.Discuss with the IEC, ER and Contractor on remedial action required. 7.If exceedance continues, arrange meeting with the IEC, Contractor and ER. 8.If exceedance stops, cease additional monitoring.	1. Check monitoring data submitted by the ET. 2. Check the Contractor's working methods. 3. Discuss with the ET, ER and Contractor on possible remedial measures if required. 4. Advise the ER on the effectiveness of proposed remedial measures if required.	Notify the Contractor. Ensure remedial measures properly implemented.	Submit proposals for remedial action to the ER within 3 working days of notification. Implement the agreed proposals. Amend proposal as appropriate
Limit Level				
Exceedance for two or	1. Identify sources, investigate causes of exceedance and proposed remedial measures. 2. Inform the IEC, ER, and Contractor. 3. Repeat measurement to confirm finding. 4. 4. Increase monitoring frequency to daily. 5. Assess effectiveness of the Contractor's remedial action and keep the IEC and ER informed of the results 1. Notify the IEC, ER and	1. Check monitoring data submitted by the ET. 2. Check the Contractor's working methods. 3. Discuss with the ET, ER and Contractor on possible remedial measures. 4. Advise the ER and ET on the effectiveness of the proposed remedial measures. 5. Supervise the implementation of remedial measures.	Confirm receipt of the notification of exceedance in writing. Notify the Contractor. Ensure remedial measures are properly implemented.	1. Take immediate action to avoid further exceedance. 2. Submit proposals for remedial action to the ER and copy to the ET and IEC within 3 working days of notification. 3. Implement the agreed proposals. 4. Amend proposal as appropriate.
Exceedance for two or more consecutive samples	1. Notify the IEC, ER and Contractor. 2. Identify sources. 3. Repeat measurements to confirm findings. 4. Increase monitoring frequency to daily. 5. Carry out analysis of the Contractor's working procedures with the ER to determine the possible mitigation to be implemented. 6. Arrange meeting with the IEC and ER to	Discuss amongst the ER, ET and Contractor on the potential remedial action. Review the Contractor's remedial action whenever necessary to assure their effectiveness and advise the ER and ET accordingly. Supervise the implementation of remedial measures.	1. Confirm receipt of the notification of exceedance in writing. 2. Notify the Contractor. 3. In consultation with the IEC and ET, agree with the Contractor on the remedial measures to be implemented. 4. Ensure remedial measures are properly implemented. 5. If exceedance	 Take immediate action to avoid further exceedance. Submit proposals for remedial action to the ER and copy to the IEC and ET within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problems still not under control. Stop the relevant portion of works as

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax

Hong Kong.. Email : mcl@fugro.com

EVENT		ACT	ION	
EVENT	ET	IEC	ER	Contractor
	discuss the remedial action to be taken. 7. Assess the effectiveness of the Contractor's remedial action and keep the IEC, EPD and ER informed of the results. 8. If exceedance stops, cease additional monitoring		continues, consider what portion of works is responsible and instruct the Contractor to stop that portion of works until the exceedance is abated.	determined by the ER until the exceedance is abated.

Room 723 & 725, 7/F, Block B,

Fax

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Hong Kong.. Email : mcl@fugro.com

Event and Action Plan for Noise Impact

	n Plan for Noise Im _l		TION	
EVENT	ET	IEC	ER	Contractor
Action Level	1.Notify the IEC, ER and Contractor. 2.Carry out investigation. 3.Report the results of investigation to the IEC and Contractor. 4.Discuss jointly with the ER and Contractor and formulate remedial measures. 5.Increase the monitoring frequency to check the mitigation effectiveness	Review the monitoring data submitted by the ET. Review the construction methods and proposed redial measures by the Contractor, and advise the ET and ER if the proposed remedial measures would be sufficient	Notify the Contractor. Require the Contractor to propose remedial measures for implementation if required.	Submit noise mitigation proposals to the ER and copy to the IEC and ET. Implement noise mitigation proposals.
Limit Level	1.Notify the IEC, ER and Contractor. 2.Identify sources. 3.Repeat measurements to confirm findings. 4.Carry out analysis of the Contractor's working procedures with the ER and Contractor to determine possible mitigations to be implemented. 5.Record the causes and action taken for the exceedances. 6.Increase the monitoring frequency. 7.Assess the effectiveness of the Contractor's remedial action with the ER and keep the IEC informed of the results. 8.If exceedance stops, cease additional monitoring	1.Discuss amongst the ER, ET and Contractor on the potential remedial action. 2.Review the Contractor's remedial action whenever necessary to assure their effectiveness and advise the ER accordingly. 3.Supervise the implementation of remedial measures.	1. Confirm receipt of notification of exceedance in writing. 2. Notify the Contractor. 3. Require the Contractor to propose remedial measures for the analysed noise problems. 4. Ensure remedial measures are properly implemented. 5. If exceedance continues, consider what portion of work is responsible and instruct the Contractor to stop that portion of works until the exceedance is abated.	1.Take immediate action to avoid further exceedance. 2.Submit proposals for remedial action to the ER and copy to the ET and IEC within 3 working days of notification. 3.Implement the agreed proposals. 4.Resubmit proposals if problems still not under control. 5.Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Event and Action Plan for Landscape and Visual Impact

EVENT		ACT	TON	
EVENI	ET	IEC	ER	Contractor
Non-conformity on one occasion	1. Identify Source 2. Inform the IEC and the ER 3. Discuss remedial actions with the IEC, the ER and the Contractor 4. Monitor remedial actions until rectification has been completed	1. Check report 2. Check the Contractor's working method 3. Discuss with the ET and the Contractor on possible remedial measures 4. Advise the ER on effectiveness of proposed remedial measures. 5. Check implementation of remedial measures.	Notify Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake any necessary replacement
Repeated Non-conformity	1. Identify Source 2. Inform the IEC and the ER 3. Increase monitoring frequency 4. Discuss remedial actions with the IEC, the ER and the Contractor 5. Monitor remedial actions until rectification has been completed 6. If exceedance stops, cease additional monitoring	1. Check monitoring report 2. Check the Contractor's working method 3. Discuss with the ET and the Contractor on possible remedial measures 4. Advise the ER on effectiveness of proposed remedial measures 5. Supervise implementation of remedial measures.	Notify the Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake any necessary replacement

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix I

Waste Flow Table

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

Waste Flow	Table for Ye	ar 2016									
		Actual Quant	tities of Inert C&I	O Materials Gene	erated Monthly		Actual	Quantities of Non-	inert C&D Wast	es Generated M	lonthly
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2016 Jan	0.159	0.101	0.058	Nil	Nil	Nil	Nil	0.023	0.00002	0.0158	0.0335
2016 Feb	0.291	0.050	0.241	Nil	Nil	Nil	1.34	0.023	0.00002	0.0158	0.0335
2016 Mar	2.7389	0.0407	0.0662	Nil	2.632	Nil	5.92	0.023	0.00002	0.0158	0.0571
2016 Apr	4.1718	0.0578	0.462	Nil	3.652	Nil	12.5	0.023	0.00002	0.0158	0.0426
2016 May	3.592	Nil	0.299	Nil	3.293	Nil	5.23	0.023	0.00002	0.0158	0.0621
2016 June	4.6035	Nil	0.8555	Nil	3.748	Nil	Nil	0.023	0.00002	0.0158	0.0619
2016 July	6.155	0.153	0.015	Nil	5.987	Nil	7.84	0.023	0.00002	0.0158	0.0433
2016 Aug	5.1155	Nil	Nil	Nil	5.1155	Nil	19.93	0.023	Nil	Nil	0.0147
2016 Sept	7.2267	Nil	Nil	Nil	7.2267	Nil	33.65	0.023	Nil	Nil	0.0103
2016 Oct	4.6448	Nil	Nil	Nil	4.6448	Nil	13.30	0.023	Nil	Nil	0.0385
2016 Nov	6.1626	Nil	Nil	Nil	6.1626	Nil	27.06	0.023	Nil	Nil	0.0192
2016 Dec	6.3522	Nil	Nil	Nil	6.3522	Nil	13.30	0.023	Nil	Nil	0.0121
Total	51.213	0.4025	1.9967	Nil	48.8138	Nil	140.07	0.276	0.00014	0.1106	0.4288

¹⁾ The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

²⁾ Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

Waste Flow	Table for Ye	ar 2017										
		Actual Quant	tities of Inert C&I	D Materials Gene	erated Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly					
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse	
	(in '000m ³)	(in '000m ³)	(in '000m³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)	
2017 Jan	4.2300	Nil	Nil	Nil	4.2300	Nil	0.015	0.023	Nil	Nil	0.0109	
2017 Feb	3.2128	Nil	Nil	Nil	3.2128	Nil	0.015	0.023	Nil	Nil	0.0096	
2017 Mar	9.4759	Nil	Nil	Nil	9.4759	Nil	0.034	0.023	Nil	Nil	0.0162	
2017 Apr	4.8827	Nil	Nil	Nil	4.8827	Nil	0.016	0.023	Nil	Nil	0.0062	
2017 May	3.0366	Nil	Nil	Nil	3.0366	Nil	0.022	0.023	Nil	Nil	0.0282	
2017 Jun	2.5656	Nil	Nil	Nil	2.5656	Nil	41.25	Nil	Nil	Nil	0.0357	
2017 Jul	5.5267	Nil	0.7851	Nil	4.7416	Nil	4.01	0.4515	Nil	0.25	0.0364	
2017 Aug	11.4734	Nil	0.0276	Nil	11.4458	Nil	7.4	Nil	Nil	Nil	0.0196	
2017 Sep	23.9373	Nil	2.6167	Nil	21.3206	Nil	3.52	Nil	Nil	Nil	0.0333	
2017 Oct	17.8261	Nil	0.4069	Nil	17.4192	Nil	Nil	Nil	Nil	Nil	0.0156	
2017 Nov	5.8834	Nil	0.6664	Nil	5.217	Nil	Nil	Nil	Nil	Nil	0.023	
2017 Dec	21.3554	Nil	0.4763	Nil	20.8791	Nil	29.13	Nil	Nil	Nil	0.022	
Total	113.4059	Nil	4.9790	Nil	108.4269	Nil	85.412	0.5665	Nil	0.25	0.2567	

¹⁾ The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

²⁾ Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

Waste Flow	Table for Ye	ar 2018									
		Actual Quan	tities of Inert C&I	O Materials Gene	rated Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly				
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2018 Jan	10.2340	Nil	Nil	Nil	10.2340	Nil	32.39	Nil	Nil	Nil	0.0161
2018 Feb	6.5256	Nil	Nil	Nil	6.5256	Nil	Nil	Nil	Nil	Nil	0.0235
2018 Mar	28.1995	Nil	Nil	Nil	28.1995	Nil	54.54	Nil	Nil	Nil	0.0190
2018 Apr	11.2165	Nil	Nil	Nil	11.2165	Nil	Nil	Nil	Nil	Nil	0.0270
2018 May	5.6011	Nil	Nil	Nil	5.6011	Nil	Nil	Nil	Nil	Nil	0.0140
2018 Jun											
2018 Jul											
2018 Aug											
2018 Sep											
2018 Oct											
2018 Nov											
2018 Dec											
Total	61.7767	Nil	Nil	Nil	61.7767	Nil	86.93	Nil	Nil	Nil	0.0996

¹⁾ The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

²⁾ Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax

Hong Kong.. Email : mcl@fugro.com

Appendix J

Environmental Mitigation Implementation Schedule (EMIS)

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong,

Hong Kong..

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
Air Quality Measur	es				
New Distributor Ro	oads Serving the Pla	anned KTD			
AEIAR-130/2009 \$3.2	AEIAR 130/2009 EM&A Manual S2.2	8 times daily watering of the work site with active dust emitting activities.	Contractor	All relevant worksites	Implemented
Decommissioning	of the Radar Station	n of the former Kai Tak Airport			
AEIAR-130/2009 S5.2.19	AEIAR 130/2009 EM&A Manual S4.2.4	The excavation area should be limited to as small in size as possible and backfilled with clean and/or treated soil shortly after excavation work. The exposed excavated area should be covered by the tarpaulin during night time. The top layer soils should be sprayed with fine misting of water immediately before the excavation.	Contractor	All relevant worksites	Not Applicable
Trunk Road T2					1
AEIAR-174/2013 S4.9.2.1	AEIAR-174/2013 EM&A Manual S2.3.1.1	Watering of the construction areas 12 times per day to reduce dust emissions by 91.7%, with reference to the "Control of Open Fugitive Dust Sources" (USEPA AP-42). The amount of water to be applied would be 0.91L/m2 for the respective watering frequency.	Contractor	All relevant worksites	Implemented
		Dust enclosures with watering would be provided along the loading ramps and conveyor belts for unloading the C&D materials to the barge for dust suppression.	Contractor	All relevant worksites	Not Applicable
		8 km per hour is the recommended limit of the speed for vehicles on unpaved site roads.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009	AEIAR 130/2009	Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should	Contractor	All relevant	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong,

Hong Kong..

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status		
S3.2, S5.2.19, AEIAR-174/2013	EM&A Manual S2.2, S4.2, AEIAR-	be fully covered by impermeable sheeting to reduce dust emission.		worksites			
S4.9.2.2	174/2013 EM&A Manual S2.3.1.2	Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs.	Contractor	All relevant worksites	Implemented		
		Misting for the dusty material should be carried out before being loaded into the vehicle. Any vehicle with an open load carrying area should have properly fitted side and tail boards.	Contractor	All relevant worksites	Implemented		
		Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	Contractor	All relevant worksites	Implemented		
		Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations; The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation.	Contractor	All relevant worksites	Implemented		
				The vehicles should be restricted to maximum speed of 10 km per hour. Confined haulage and delivery vehicle to designated roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	Contractor	All relevant worksites	Implemented
			Vehicle washing facilities should be provided at every vehicle exit point. Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.	Contractor	All relevant worksites	Implemented	
		The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.					
		Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet.	Contractor	All relevant worksites	Implemented		
		Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.	Contractor	All relevant worksites	Implemented		

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032

Hong Kong..

Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed.	Contractor	All relevant worksites	Implemented
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system.	Contractor	All relevant worksites	Implemented
		Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.	Contractor	All relevant worksites	Implemented
		Open stockpiles shall be avoided or covered. Prevent placing dusty material storage piles near ASRs.	Contractor	All relevant worksites	Partially Implemented
		Routing of vehicles and position of construction plant should be at the maximum possible distance from ASRs.	Contractor	All relevant worksites	Implemented
		Dark smoke			
		Dark smoke emission shall be control in accordance with the Air Pollution Control (Smoke) Regulation and ETWB TCW 19/2005.	Contractor	All relevant worksites	Partially Implemented
		Plant and equipment should be well maintained to prevent dark smoke emission.	Contractor	All relevant worksites	Implemented
Noise Measures			<u> </u>		
Trunk Road T2					
AEIAR-174/2013 \$5.9.2.1	AEIAR-174/2013 EM&A Manual S3.4.1.1	The use of quieter plant, including Quality Powered Mechanical Equipment (QPME) is specified for the list of equipment: • Concrete lorry mixer • Dump Truck, 5.5 tonne < gross vehicle weight <= 38 tonne • Generator, Super Silenced, 70 dB(A) at 7m	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong,

Hong Kong..

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Poker, vibratory, Hand-held (electric) Water Pump, Submersible (Electric) Mobile Crane - KOBELCO CKS900 Excavator, wheeled/tracked - HYUNDAI R80CR-9			
		Use of temporary or fixed noise barriers with a surface density of at least 10kg/m² to screen noise from movable and stationary plant.	Contractor	All relevant worksites	Implemented
		Use of enclosures with covers at top and three sides and a surface density of at least 10kg/m ² to screen noise from generally static noisy plant such as air compressors.	Contractor	All relevant worksites	Implemented
		Use of acoustic fabric for the silent piling system, drill rigs, rock drills etc.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009 S3.3, S5.3.10, AEIAR-174/2013	AEIAR 130/2009 EM&A Manual	Only well-maintained plant should be operated on-site and plant shall be serviced regularly during the construction/ decommissioning program.	Contractor	All relevant worksites	Implemented
S5.9.2.1	S2.3, S4.3.2, AEIAR-174/2013 EM&A Manual S3.4.1.1	Silencers or mufflers on construction equipment should be utilized and shall be properly maintained during the construction/ decommissioning program.	Contractor	All relevant worksites	Implemented
	33.4.1.1	Mobile plant, if any, should be sited as far away from NSRs as possible.	Contractor	All relevant worksites	Implemented
		Machines and plant (such as trucks) that may be in intermittent use shall be shut down between works periods or should be throttled down to a minimum.	Contractor	All relevant worksites	Implemented
		Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.	Contractor	All relevant worksites	Implemented
		Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction/ decommissioning activities.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B,

Hong Kong..

Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Use of site hoarding as a noise barrier to screen noise at low level NSRs.	Contractor	All relevant worksites	Implemented
		For the use of hand held percussive breakers (with mass of above 10kg) and portable air compressors (supply air at 500 kPa or above), the noise level of such PME shall comply with a stringent noise emission standard and a noise emission label shall be obtained from the DEP before use at any time in construction site.	Contractor	All relevant worksites	Implemented
		Quiet powered mechanical equipment (PME) shall be used for the construction of the Project.	Contractor	All relevant worksites	Implemented
		Full enclosures shall be used to screen noise from relatively static PMEs (including air compressor, bar bender, concrete pump, generator and water pump) from sensitive receiver(s).	Contractor	All relevant worksites	Implemented
		Movable cantilevered noise barriers shall be used to screen noise from mobile PMEs (including asphalt paver, breaker, excavator and hand-held breaker) from sensitive receiver(s). These movable cantilevered noise barriers shall be located close to the mobile PMEs and shall be moved/adjusted iteratively in step with each movement of the corresponding mobile PMEs in order to maximize their noise reduction effects.	Contractor	All relevant worksites	Implemented
		Only approved or exempted Non-road Mobile Machineries (NRMMs) including regulated machines and non-road vechicles with proper labels are allowed to be used in specified activities on-site.	Contractor	All relevant worksites	Implemented
Water Quality Mea	asures				•
Trunk Road T2					
		Accidental Spillage			
AEIAR-174/2013 S6.4.8.5	AEIAR-174/2013 EM&A Manual S4.2.1.1	All bentonite slurry should be stored in a container that resistant to corrosion, maintained in good conditions and securely closed; The container should be labelled in English and Chinese and note that the container is for storage of bentonite slurry only.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032

Hong Kong..

Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		The storage container should be placed on an area of impermeable flooring and bunded with capacity to accommodate 110% of the volume of the container size or 20% by volume stored in the area and enclosed with at least 3 sides.	Contractor	All relevant worksites	Implemented
		The storage container should be sufficiently covered to prevent rainfall entering the container or bunded area (water collected within the bund must be tested and disposed of as chemical waste, if necessary). An emergency clean up kit shall be readily available where bentonite fluid will be stored or used.	Contractor	All relevant worksites	Implemented
		The handling and disposal of bentonite slurries should be undertaken in accordance within ProPECC PN 1/94. Surplus bentonite slurries used in construction works shall be reconditioned and reused wherever practicable. Residual bentonite slurry shall be disposed of from the site as soon as possible as stipulated in Clause 8.56 of the General Specification for Civil Engineering Works. The Contractor should explore alternative disposal outlets for the residual bentonite slurry (dewatered bentonite slurry to be disposed to a public filling area and liquid bentonite slurry, if mixed with inert fill material, to be disposed to a public filling area) and disposal at landfill should be the last resort.	Contractor	All relevant worksites	Partially Implemented
AEIAR-174/2013 \$6.4.8.8	AEIAR-174/2013 EM&A Manual S4.2.1.1	In order to protect against impacts to the surrounding marine waters of the KTTS and Victoria Harbour in the event of an accidental spillage of fuel or oil, the Contractor will be required to prepare a spill response plan to the satisfaction of AFCD, EPD, FSD, Police, TD and WSD to define procedures for the control, containment and clean-up of any spillage that could occur on the construction site.	Contractor	All relevant worksites	Implemented
		Dredging, Reclamation and Filling			
		No dredging, reclamation or filling in the marine environment shall be carried out.	Contractor	All relevant worksites	Implemented
Decommissioning	of the Radar Station	n of the former Kai Tak Airport			
		Building Demolition			

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong, Fa

Hong Kong..

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
AEIAR-130/2009 S5.4	AEIAR 130/2009 EM&A Manual S4.4	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion.	Contractor	All relevant worksites	Not Applicable
	34.4	There is a need to apply to EPD for a discharge licence under the WPCO for discharging effluent from the construction site. The discharge quality is required to meet the requirements specified in the discharge licence. All the runoff, wastewater or extracted groundwater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. It is anticipated that the wastewater generated from the works areas would be of small quantity. Monitoring of the treated effluent quality from the works areas should be carried out in accordance with the WPCO license which is under the ambit of regional office (RO) of EPD.	Contractor	All relevant worksites	Not Applicable
		General Construction Works			
		Construction Runoff			
AEIAR- 130/2009 S3.4, S5.4/ AEIAR- 174/2013 S6.4.8.1	AEIAR 130/2009 EM&A Manual S2.4, S4.4/ AEIAR- 174/2013 EM&A Manual S4.2.1.1	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include the use of sediment traps and adequate maintenance of drainage systems to prevent flooding and overflow.	Contractor	All relevant worksites	Partially Implemented
		Construction site should be provided with adequately designed perimeter channel and pretreatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	Contractor	All relevant worksites	Implemented
		Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032

Hong Kong..

Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.			
		Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	Contractor	All relevant worksites	Implemented
		Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	Contractor	All relevant worksites	Implemented
		Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	Contractor	All relevant worksites	Implemented
		Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.	Contractor	All relevant worksites	Implemented
		Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	Contractor	All relevant worksites	Implemented
		An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 Tel 1-15 Kwai Fung Crescent, Kwai Fong, Fax Email : mcl@fugro.com

Hong Kong..

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		<u>Drainage</u>			
		It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.	Contractor	All relevant worksites	Implemented
		All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	Contractor	All relevant worksites	Implemented
		Stormwater Discharges			
		Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes.	Contractor	All relevant worksites	Implemented
		Sewage Effluent			
		Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	Contractor	All relevant worksites	Implemented
		Debris and Litter			
		In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not	Contractor	All relevant worksites	Implemented

occur. Debris and refuse generated on-site should be collected, handled and disposed of

Room 723 & 725, 7/F, Block B,

Hong Kong..

Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		properly to avoid entering into the adjacent harbour waters. Stockpiles of cement and other construction materials should be kept covered when not being used.			
		Accidental Spillage			
		Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to the nearby harbour waters, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ. The bund should be drained of rainwater after a rain event.	Contractor	All relevant worksites	Implemented
		Waste Management Measures			
		Waste Management Plan			
AEIAR-174/2013 S11.4.8.1	AEIAR-174/2013 EM&A Manual S9.2.1.2	Contractor should be requested to submit an outline Waste Management Plan (WMP) prior to the commencement of construction work, in accordance with the ETWB TC(W) No.19/2005 so as to provide an overall framework of waste management and reduction.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009 S3.5, S5.5	AEIAR 130/2009 EM&A Manual S2.5, S4.5	Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.	Contractor	All relevant worksites	Implemented
		Training of site personnel in proper waste management and chemical waste handling procedures.	Contractor	All relevant worksites	Implemented
		Provision of sufficient waste disposal points and regular collection for disposal.	Contractor	All relevant worksites	Implemented
		Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

1-15 Kwai Fung Crescent, Kwai Fong,

Hong Kong..

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	Contractor	All relevant worksites	Implemented
		Waste Reduction Measures			
		Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals.	Contractor	All relevant worksites	Implemented
		Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.	Contractor	All relevant worksites	Implemented
		Encourage collection of aluminum cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the work force.	Contractor	All relevant worksites	Implemented
		Any unused chemicals or those with remaining functional capacity should be recycled.	Contractor	All relevant worksites	Implemented
		Proper storage and site practices to minimize the potential for damage or contamination of construction materials.	Contractor	All relevant worksites	Implemented
		Construction and Demolition Materials			
		Where it is unavoidable to have transient stockpiles of C&D material within the work site pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible.	Contractor	All relevant worksites	Implemented
		Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric.	Contractor	All relevant worksites	Implemented
		Skip hoist for material transport should be totally enclosed by impervious sheeting.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032

Hong Kong..

Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site.	Contractor	All relevant worksites	Implemented
		The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.	Contractor	All relevant worksites	Implemented
		The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle.	Contractor	All relevant worksites	Implemented
		All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet.	Contractor	All relevant worksites	Implemented
		The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.	Contractor	All relevant worksites	Implemented
		When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Contractor	All relevant worksites	Implemented
		Chemical Waste			
		After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Contractor	All relevant worksites	Partially Implemented

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032

Hong Kong.. Email : mcl@fugro.com **MateriaLab**

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		General Refuse			
		General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem.	Contractor	All relevant worksites	Implemented
Land Contamination	on Measures				
		For any excavation works conducted at Radar Station			
	As the risk due to dermal contact with groundwater by site workers is uncertain, it is recommended that personnel protective equipment (PPE) be used by site workers as a mitigation measure.			All relevant worksites	Not Applicable
Landscape and Vi	sual Impact				
		New Distributor Roads Serving the Planned KTD			
		Construction Phase			
		All existing trees should be carefully protected during construction.	Contractor	All relevant worksites	Not Applicable
		Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	Contractor	All relevant worksites	Not Applicable
		Control of night-time lighting.	Contractor	All relevant worksites	Not Applicable

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, Tel : (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032

Hong Kong..

Email : mcl@fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Construction Phase Implementation Status
		Erection of decorative screen hoarding.	Contractor	All relevant worksites	Implemented
		Trunk Road T2			
		Construction Phase			
AEIAR-174/2013 S9.9.1.1	AEIAR-174/2013 EM&A Manual S7.2.1.2	All works shall be carefully designed to minimize impacts on existing landscape resources and visually sensitive receivers. Existing trees within works area shall be retained and protected.	Contractor	All relevant worksites	Not Applicable
	37.2.1.2	Existing trees of good quality and condition that are unavoidably affected by the works should be transplanted.	Contractor	All relevant worksites	Not Applicable
		Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance.	Contractor	All relevant worksites	Partially Implemented
		Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance.	Contractor	All relevant worksites	Implemented
		Erection of decorative screen hoarding should be designed to be compatible with the existing urban context.	Contractor	All relevant worksites	Implemented
		All lighting in construction site shall be carefully controlled to minimize light pollution and night-time glare to nearby residences and GIC user. The contractor shall consider other security measures, which shall minimize the visual impacts.	Contractor	All relevant worksites	Not Applicable
General Condition					
		The Permit Holder shall display conspicuously a copy of this Permit on the Project site(s) at all vehicular site entrances/exits or at a convenient location for public's information at all times. The Permit Holder shall ensure that the most updated information about the Permit, including any amended Permit, is displayed at such locations. If the Permit Holder surrenders a part or the whole of the Permit, the notice he sends to the Director shall also be displayed at the same	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

Tel: (852)-24508238 1-15 Kwai Fung Crescent, Kwai Fong, Fax : (852)-24508032 Email : mcl@fugro.com

Hong Kong..

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Construction Phase Implementation Status
		locations as the original Permit. The suspended, varied or cancelled Permit shall be removed from display at the Project site(s).			

Implementation status: Implemented / Partially Implemented / Not Implemented / Not Applicable

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix K

Weather and Meteorological Conditions during Reporting Month

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax

Hong Kong.. Email : mcl@fugro.com

_	Mean	Air Temperature					Mean Relative	Total
Date	Pressure (hPa)	Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	Humidity (%)	Rainfall (mm)		
May 2018								
01	1012.5	30.6	27.3	25.4	80	Trace		
02	1012.4	31.8	27.9	25.6	75	0		
03	1014.1	33.5	27.1	22.9	80	1.9		
04	1016.1	25.1	23.8	22.1	82	0.8		
05	1015.5	27.7	25.3	23.6	82	Trace		
06	1011.3	31	27.6	25.4	80	1		
07	1007.2	29.6	28	24.4	82	6.7		
08	1008.3	27.1	25.2	23.7	91	28.4		
09	1012.9	25.7	24.6	22.8	88	5.4		
10	1015	23.9	23	22.2	89	8		
11	1014.2	25.3	23.8	22.3	86	1		
12	1012.3	30.6	26.5	24.2	82	0		
13	1011	31.5	27.7	25.3	79	0		
14	1010	31.9	28.6	26.6	77	0		
15	1009.3	32.3	28.7	27.1	76	0		
16	1008.8	32.2	28.6	26.1	74	0		
17	1008.2	33.1	29.4	27.4	75	0		
18	1007.7	33.4	29.8	27.7	74	0		
19	1007.7	33.4	29.8	27.8	74	0		
20	1008.4	34.5	30.1	27.8	72	0		
21	1009.5	34.7	30.3	28.1	71	0		
22	1010.5	34.8	30.4	27.9	69	0		
23	1009.6	35.1	30.5	27.6	69	0		
24	1009.3	33.5	30	28.4	73	0		
25	1008.2	33.1	29.8	27.6	71	Trace		
26	1008.3	34.7	30.7	28.8	72	0.9		
27	1008.9	33.4	30	26.9	76	3.4		
28	1009	34.5	30.3	27.8	72	0		
29	1009.6	35.3	31.1	28.3	69	0		
30	1009.7	35.4	31.2	29	69	0		
31	1009.7	34.8	31.1	28.9	70	0		

Source: Hong Kong Observatory – Hong Kong Observatory

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong.. Email : mcl@fugro.com

Appendix L

Cumulative statistics on Environmental Complaints, Notifications of Summons and **Successful Prosecution**

Room 723 & 725, 7/F, Block B, Profit Industrial Building,

: (852)-24508238 : (852)-24508032 Tel 1-15 Kwai Fung Crescent, Kwai Fong, Fax Hong Kong.. : mcl@fugro.com

Environmental Complaints Log

in on the companies cog							
Reference No.	Date of Complaint Received	Received From	Received By	Nature of Complaint	Date of Investigation	Outcome	Date of Reply
20161207_complaint_ c	7 Dec 2016	EPD	Andy Choy (CRBC)	Air	13 Feb 2017	Project- related	13 Feb 2017
20170209_complaint_ c	9 Feb 2017	EPD	Andy Choy (CRBC)	Air	22 Feb 2017	Not Project- related	7 Mar 2017
20170502_complaint_ c	2 May 2017	CEDD	Andy Choy (CRBC)	Noise	4 May 2017	Not Valid	22 May 2017
20170716_complaint_ a	16 Jul 2017	CEDD	HMJV	Water Quality	4 Aug 2017	Not Project- related	4 Aug 2017
20180530_complaint	30 May 2018	EPD	CRBC	Air	Investig	ation in progre	ess

Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	2	1	3
Noise	1	0	1
Water	1	0	1
Waste	0	0	0
Total	0	0	0

Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax

Hong Kong.. Email : mcl@fugro.com

Appendix M

Summary of Site Audit in the Reporting Month

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 : mcl@fugro.com Tel Fax

Summary of Sit	Summary of Site Audit in the Reporting Month				
Parameters	rameters Date Observations and Recommendations		Follow-up		
	3 May 2018	Dark smoke was emitted from machine plant (Zone 2). Contractor should maintain plant/equipment regularly to prevent dark smoke emission.	The item was rectified by the Contractor and inspected on 10 May 2018.		
Air Quality	10 May 2018	Contractor was reminded that stockpile should be covered properly with impermeable sheeting (Zone 1)	The item was rectified by the Contractor and inspected on 16 May 2018.		
	31 May 2018	Contractor was reminded to remove the stockpile to avoid dust (Zone 2)	The item was rectified by the Contractor and inspected on 7 June 2018.		
Noise	NA				
	3 May 2018	Contractor was reminded that stagnant water shall be removed (Zone 3).	The item was rectified by the Contractor and inspected on 10 May 2018.		
Water Quality	16 May 2018	Contractor was reminded to provide concrete bunding at site exits to prevent leakage of muddy water to public areas (Zone 3 and 4).	The item was rectified by the Contractor and inspected on 24 May 2018. (Zone 3)		
	24 May 2018	Contractor was reminded to provide concrete bunding at site exits to prevent leakage of muddy water to public areas (Zone 4).	The item was rectified by the Contractor and inspected on 31 May 2018.		
	31 May 2018	The mud in wheel washing facility should be removed (Portion I). The item was rectified Contractor and inspec June 2018.			
Chemical and Waste Management	16 May 2018	Chemical containers shall be placed on drip tray (Zone 2 and 3). Drip tray shall be provided.	The item was rectified by the Contractor and inspected on 24 May 2018.		
Land Contamination	NA				

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.. : (852)-24508238 : (852)-24508032 : mcl@fugro.com Tel Fax

Parameters	Date	Observations and Recommendations	Follow-up	
Landscape and Visual Impact	10 May 2018	Contractor was reminded that stockpile should be covered properly with impermeable sheeting (Zone 1)	The item was rectified by the Contractor and inspected on 16 May 2018.	
General Condition		NA		

Room 723 & 725, 7/F, Block B,

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, : (852)-24508238 : (852)-24508032 Fax Hong Kong.. Email : mcl@fugro.com

Appendix N

Outstanding Issues and Deficiencies

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong,

: (852)-24508238 : (852)-24508032 : mcl@fugro.com Tel Fax Hong Kong.. Email

Summary of Outstanding Issues and Deficiencies in the Reporting Month

Parameters	Outstanding Issues	Deficiencies
Air Quality	NA	
Noise	NA	
Water Quality	NA	
Chemical and Waste Management	NA	Any items of deficiencies can be referred to Appendix M .
Land Contamination	NA	
Landscape and Visual Impact	NA	
General Condition	NA	
Others	NA	

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Appendix E

Monthly EM&A Report
For
Contract No. KL/2015/02
Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area

Civil Engineering and Development Department

EP-337/2009 – New Distributor Roads Serving the Planned KTD

Contract No. KLN/2016/04
Environmental Monitoring Works for
Contract No. KL/2015/02
Kai Tak Development – Stage 5A Infrastructure
at Former North Apron Area

Monthly EM&A Report

May 2018

(version 1.0)

Approved By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388

Email: info@cinotech.com.hk

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel: +852 2450 8233

Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com Date

6 June 2018

Our Ref. MCL/ED/0280/2018/C

Cinotech Consultants Limited Rm 1710, Technology Park, 18 On Lai Street, Shatin, New Territories, Hong Kong

BY EMAIL

Attn.: Dr. Priscilla Choy

Dear Madam,

Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Verification of Monthly EM&A Report for May 2018

We refer to your emails dated 6 June 2018 regarding the Monthly EM&A Report for May 2018 for the captioned project prepared by the ET.

We have no further comment and hereby verify the Report in accordance with Clause 3.3 of Environmental Permit no. EP-337/2009.

Should you require further information, please do not hesitate to contact Mr. Wingo So at 3565 4374 or the undersigned on 3565 4114.

Assuring you of our best attention at all times.

Yours faithfully, For and on behalf of FUGRO TECHNICAL SERVICES LIMITED

Colin K. L. Yung

Independent Environmental Checker

CY/ws

c.c. CEDD -

Attn.: Ms. K. Pong

Attn.: Mr. Jeremy Yuen

AECOM -

Attn.: Mr. Vincent Lee Attn.: Mr. Teddy Shih

TABLE OF CONTENTS

	EXECUTIVE SUMMARY Introduction Environmental Manitorina Wester	1
	Environmental Monitoring Works Environmental Licenses and Permits	
	Key Information in the Reporting Month	
	Future Key Issues	
1.	INTRODUCTION	4
_,		
	Background Project Organizations	
	Construction Activities undertaken during the Reporting Month	
	Summary of EM&A Requirements	
2.	AIR QUALITY	
	Monitoring Requirements	
	Monitoring Locations	
	Monitoring Equipment	7
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedure	
	Results and Observations	10
3.	NOISE	12
	Monitoring Requirements	
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedures	13
	Results and Observations	
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	
5.	LANDSCAPE AND VISUAL	17
3.		
	Monitoring Requirements	
	Results and Observations	
6.	ENVIRONMENTAL AUDIT	18
	Site Audits	18
	Review of Environmental Monitoring Procedures	
	Status of Environmental Licensing and Permitting	
	Status of Waste Management	
	Implementation Status of Environmental Mitigation Measures Summary of Mitigation Measures Implemented	
	Implementation Status of Event Action Plans	
	Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution	
7.	FUTURE KEY ISSUES	
-	Monitoring Schedule for the Next Month	
8.	CONCLUSIONS AND RECOMMENDATIONS	
	Conclusions	
	Recommendations	

LIST OF TABLES

Table I	Air Quality and Naisa Manitoring Stations for this Praisat
	Air Quality and Noise Monitoring Stations for this Project
Table II	Non-compliance Recorded for the Project in the Reporting Month
Table III	Summary Table for Key Information in the Reporting Month
Table 1.1	Key Project Contacts
Table 1.2	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 2.1	Locations for Air Quality Monitoring
Table 2.2	Air Quality Monitoring Equipment
Table 2.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 2.4	Summary Table of Air Quality Monitoring Results during the reporting month
Table 3.1	Noise Monitoring Stations
Table 3.2	Noise Monitoring Equipment
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Major Noise Source identified at the Designated Noise Monitoring Stations
Table 3.5	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 4.1	Comparison of 1-hr TSP data with EIA predictions
Table 4.2	Comparison of 24-hr TSP data with EIA predictions
Table 4.3	Comparison of Noise Monitoring Data with EIA predictions
Table 6.1	Summary of Environmental Licensing and Permit Status
Table 6.2	Observations and Recommendations of Site Inspections
LIST OF F	IGURES

Figure 1	Site Layout Plan
Figure 2	Location of Air Quality Monitoring Stations
Figure 3	Location of Noise Monitoring Stations
Figure 4	Location of Wind Data Monitoring Equipment

LIST OF APPENDICES

A	Action and Limit Levels for Air Quality and Noise
В	Copies of Calibration Certificates
C	Weather Information
D	Environmental Monitoring Schedules
E	1-hour TSP Monitoring Results and Graphical Presentations
F	24-hour TSP Monitoring Results and Graphical Presentations
G	Noise Monitoring Results and Graphical Presentations
Н	Summary of Exceedance
I	Site Audit Summary
J	Event Action Plans
K	Environmental Mitigation Implementation Schedule (EMIS)
L	Summaries of Environmental Complaint, Warning, Summon and Notification
	of Successful Prosecution
M	Summary of Waste Generation and Disposal Records

EXECUTIVE SUMMARY

Introduction

- 1. This is the 17th Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2015/02 - Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises one Schedule 2 designated project (DP), namely the new distributor road D1 serving the planned KTD. The DP is part of the designated project under Environmental Permit (EP) No.: EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") respectively. This report documents the findings of EM&A Works conducted during May 2018.
- 2. With reference to the same principle of EIA report of the Project, air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in **Table I** (see **Figure 2 and 3** for their locations).

Table I – Air Quality and Noise Monitoring Stations for this Project

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations	
Air Quality Monitoring Stations			
	Yes (1-hour TSP)	N/A	
AM2 - Lee Kau Yan Memorial School	No (24-hour TSP)	AM2(A) – Ng Wah Catholic Secondary School	
Noise Monitoring Stations			
M3 - Cognitio College	Yes	N/A	
M4 - Lee Kau Yan Memorial School	Yes	N/A	
M5 – Nam Yuen	No	M5(C) – Mercy Grace's Home	

- 3. The major site activities undertaken in the reporting month included:
 - Excavation and Concreting blinding layer at Subway SW6 within Kai Tak Site
 - Carry out grouting works and divert existing UU at carriageway of PERE (W/B)
 - Carry out trial pits and install sheet piles at SKLR Playground
 - Install sheet piles at the existing bridge K72
 - Construction works for abutment at slip road S15
 - Remedial works and application of joint sealant in box culverts
 - Construction of Baseslab of Box Culvert B1
 - DCS pipe laying works in Portion 1 & 6
 - DCS valve chamber construction works in Portion 6
 - Sewerage Works in Portion 4
 - Drainage and Sewerage works in Portion 2 & 3

Environmental Monitoring Works

- 4. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 5. Summary of the non-compliance in the reporting month for the Project is tabulated in **Table II**.

Table II Non-compliance Recorded for the Project in the Reporting Month

Davamatan	No. of Project-rela	No. of Project-related Exceedance		
Parameter	Action Level	Limit Level	Action Taken	
1-hr TSP	0	0	N/A	
24-hr TSP	0	0	N/A	
Noise	0	0	N/A	

1-hour & 24-hour TSP Monitoring

- 6. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 7. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, EP-337/2009 issued on 23 April 2009.
- 10. Construction Noise Permit (License No.: GW-RE1011-17).
- 11. Billing Account for Construction Waste Disposal (A/C# 7026164).
- 12. Effluent Discharge License (WT00027495-2017).
- 13. Registration of Chemical Waste Producer (WPN5213-286-P3271-01).

Key Information in the Reporting Month

14. Summary of key information in the reporting month is tabulated in **Table III**.

Table III Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Remark
Event	Number	Nature	Nature Action Taken		
Complaint received			N/A	N/A	
Reporting Changes			N/A	N/A	
Notifications of any summons & prosecutions received			N/A	N/A	

Future Key Issues

- 15. The future key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels and sedimentation tanks; and
 - Review and implementation of temporary drainage system for the surface runoff.

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 5A Infrastructure at Former North Apron Area is one of the construction stages of KTD. It contains one Schedule 2 DP including new distributor roads serving the planned KTD. The general layout of the Project is shown in **Figure 1.**
- 1.2 An Environmental Permit (EP) No. EP-337/2009 was issued on 23 April 2009 for new distributor roads serving the planned KTD to Civil Engineering and Development Department as the Permit Holder.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. An EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2015/02 Stage 5A Infrastructure at Former North Apron Area. The construction work under KL/2015/02 comprises the construction of part of the Road D1 under the EP (EP-337/2009).
- 1.5 Cinotech Consultants Limited was commissioned by Civil Engineering and Development Department (CEDD) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The commencement date of construction of Road D1 (part) under this Contract was on 16 January 2017.
- 1.6 This is the 17th Monthly EM&A report summarizing the EM&A works for the Project during May 2018.

Project Organizations

- 1.7 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) AECOM Asia Co. Ltd (AECOM).
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech).
 - Independent Environmental Checker (IEC) Fugro Technical Services Limited (FTS).
 - Contractor Peako Wo Hing Joint Venture (PWHJV).

1.8 The key contacts of the Project are shown in **Table 1.1**.

Table 1.1 Key Project Contacts

Party	Role	Contact Person	Position	Phone No.	Fax No.	
CEDD	Project Proponent	Ms. K. Pong	Senior Engineer	2301 1466	2369 4980	
AECOM	Engineer's Representative	Mr. Vincent Lee	SRE	2798 0771	2210 6110	
	Cinotech Environmental Team	Dr. Priscilla Choy	Environmental Team Leader	2151 2089		
Cinotech		Ms. Ivy Tam	Audit Team Leader	2151 2090	3107 1388	
FTS	Independent Environmental Checker	Mr. Colin Yung	Independent Environmental Checker	3565 4114	2450 8032	
PWHJV	Contractor	Mr. W.M. Wong	Site Agent	6386 3535	2398 8301	

Construction Activities undertaken during the Reporting Month

- 1.9 The site activities undertaken in the reporting month included:
 - Excavation and Concreting blinding layer at Subway SW6 within Kai Tak Site
 - Carry out grouting works and divert existing UU at carriageway of PERE (W/B)
 - Carry out trial pits and install sheet piles at SKLR Playground
 - Install sheet piles at the existing bridge K72
 - Construction works for abutment at slip road S15
 - Remedial works and application of joint sealant in box culverts
 - Construction of Baseslab of Box Culvert B1
 - DCS pipe laying works in Portion 1 & 6
 - DCS valve chamber construction works in Portion 6
 - Sewerage Works in Portion 4
 - Drainage and Sewerage works in Portion 2 & 3
- 1.10 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 1.2**.

Monthly EM&A Report – May 2018

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Section 1.9	Noise, dust impact, water quality and waste generation	Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.

Summary of EM&A Requirements

- 1.11 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.12 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.13 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project during May 2018.

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the EP, 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix** A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

- 2.2 1-hour TSP impact dust monitoring was conducted at the air quality monitoring station, AM2 Lee Kau Yan Memorial School and 24-hour TSP impact dust monitoring were conducted at the air quality monitoring station, AM2(A) Ng Wah Catholic Secondary School in the reporting month.
- 2.3 **Table 2.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 2.1 Locations for Air Quality Monitoring

Monitoring Stations	Locations	Location of Measurement
AM2 (1-hour TSP)	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
AM2(A) (24-hour TSP)	Ng Wah Catholic Secondary School	Rooftop (about 8/F) Area

Monitoring Equipment

2.4 **Table 2.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix B**.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	TISCH TE-5025A	1
1-hour TSP Dust Meter	Hal Technology Hal-HPC301	2
HVS Sampler	GMWS 2310 c/w of TSP sampling inlet	1
Wind Anemometer	Davis Instruments 7440	1

Monitoring Parameters, Frequency and Duration

2.5 **Table 2.3** summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

 Table 2.3
 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency	
1-hr TSP	Three times / 6 days	
24-hr TSP	Once / 6 days	

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

(Equipment: Sibata; Model no. LD-3, LD-3B)

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - Pull up the air sampling inlet cover
 - Change the Mode 0 to BG with once
 - Push Start/Stop switch once
 - Turn the knob to SENSI.ADJ and press it
 - Push Start/Stop switch once
 - Return the knob to the position MEASURE slowly
 - Push the timer set switch to set measuring time
 - Remove the cap and make a measurement

(Equipment: Hal Technology; Model no. Hal-HPC300)

Measuring Procedures

- 2.6 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Set POWER to "ON" and make sure that the battery level was not flash or in low level.
 - Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
 - Push the knob at MEASURE position.
 - Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
 - Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
 - Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

2.7 The following maintenance/calibration was required for the direct dust meters:

Check the meter at a 3-month interval and calibrate the meter at a 1-year interval throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

<u>Instrumentation</u>

2.7 High volume (HVS) samplers (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For TSP sampling, fiberglass filters have a collection efficiency of > 99% for particles of 0.3μm diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.

- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.16 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 2.19 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.20 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21 The weather information for the reporting month is summarized in **Appendix C.**
- 2.22 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.23 The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the air quality monitoring.

2.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Station	Major Dust Source
	Road Traffic Dust
AM2 – Lee Kau Yan Memorial School	Exposed site area and open stockpiles
AMZ – Lee Kau Tan Memoriai School	Excavation works
	Site vehicle movement
	Road Traffic Dust
AM2(A) – Ng Wah Catholic Secondary School	Exposed site area and open stockpiles
	Excavation works
	Site vehicle movement

2.25 The summary of 1-hour and 24-hour TSP air quality monitoring results during the reporting month are shown in **Appendix E** and **Appendix F** respectively.

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays.

Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Three designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at three designated monitoring stations (M3, M4, M5(C)). **Figure**3 shows the locations of these stations.

Table 3.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
M3	Cognitio College	Rooftop (about 6/F) Area
M4	Lee Kau Yan Memorial School	Rooftop (about 7/F) Area
M5(C)	Mercy Grace's Home	Rooftop (about 5/F) Area

Monitoring Equipment

3.3 **Table 3.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2 Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVANTEK SVAN 955 & 957BSWA 801	5
Calibrator	SVANTEK SV30A	2

Monitoring Parameters, Frequency and Duration

3.4 **Table 3.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameter	Period	Frequency	Measurement
M3 M4 M5(C)	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Façade

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting
time weighting
Fast
time measurement
30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 3.8 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. The summary of exceedance record in reporting month is shown in **Appendix H**.
- 3.9 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.5**.

- 3.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 3.11 The major noise source identified at the designated noise monitoring stations are shown in **Table 3.4**.

Table 3.4 Major Noise Source identified at the Designated Noise Monitoring Stations

Monitoring Stations	Locations	Major Noise Source
М3	Cognitio College	Traffic Noise Daily school activities
M4	Lee Kau Yan Memorial School	Traffic Noise Site vehicle movement Excavation works Piling works Daily school activities
M5(C)	Mercy Grace's Home	Traffic Noise Site vehicle movement

Table 3.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
M3	76.3/78.6 ⁽¹⁾ (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on normal
M4	76.7 (at 0700 – 1900 hrs on normal weekdays)	weekdays)
M5(C)	N/A ⁽²⁾ (at 0700 – 1900 hrs on normal weekdays)	75 (at 0700 – 1900 hrs on normal weekdays)

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

$$CNL = 10 \log (10^{MNL/10} - 10^{BNL/10})$$

Remarks: MNL = Measured Noise Level, BNL = Baseline Noise Level

Note (1): The baseline noise review report submitted for M3 was approved by EPD on 23rd August 2013. (Baseline Level was found to be 78.6 dB(A) at Rooftop of Cognitio College)

Note (2): The background Noise Level was recorded during the Lunch Hour of Construction Site (i.e. 12:00-13:00) and to be used as the referencing value for compliance checking for Noise Action and Limit Level.

Note (3): The noise level due to the construction work (CNL) was calculated by the following formula:

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 The EM&A data was compared with the EIA predictions as summarized in **Tables 4.1** to **4.3**.

Table 4.1 Comparison of 1-hr TSP data with EIA predictions

	Predicted 1-hr TSP conc.		Predicted 1-hr TSP conc. Measured 1-hr TSP conc.		
Station	2009 to Mid (Mid 2013 to (May 18		ting Month 18), µg/m³		
	2013), μg/m ³	Late 2016), μg/m ³	Average	Range	
AM2 – Lee Kau Yan Memorial School	290	312	212.4	168.1 – 268.3	

Table 4.2 Comparison of 24-hr TSP data with EIA predictions

	Predicted 24-hr TSP conc. Measure 24-hr TSP c			
Station	Scenario1 (Mid Scenario2 (Mid 2009 to Mid 2013 to Late 2013), μg/m³ 2016), μg/m³		Reporting Month (May 18), μg/m ³	
			Average	Range
AM2(A) – Ng Wah Catholic Secondary School	145	169	49	33.8 – 74.4

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (Leq (30min) dB(A))	Reporting Month (May 18), Leq (30min) dB(A)
M3 – Cognitio College	47 – 75	62.3 – 69.5
M4 – Lee Kau Yan Memorial School	47 – 74	76.1 – 76.5 ⁽²⁾
M5(C) – Mercy Grace's Home	Not predicted in EIA Report	$65.1 - 70.2^{(1)}$

Remarks:

- (1) Since the background noise level recorded during 12:00 to 13:00 was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.
- (2) Since the baseline noise level was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.
- 4.2 The average 1-hour TSP concentrations at AM2 in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3 The average 24-hour TSP concentrations at AM2(A) in the reporting month were below the prediction in the approved EIA Report.
- 4.4 The noise monitoring results in the reporting month at M3 were within the range of the

Environmental Monitoring Works for Contract No. KL/2015/02

Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area

Monthly EM&A Report – May 2018

predicted mitigated constriction noise levels in the EIA Report, while the noise monitoring results at M4 were not.

4.5 Construction noise levels at M5(C) were not predicted in EIA Report.

5. LANDSCAPE AND VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix J** shall be performed.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 9, 15, 21 and 28 May 2018 in the reporting month. A joint site audit with the representative of IEC, ER, the Contractor and the ET was conducted on 9 May 2018. The details of the observations during site audit are summarized in **Table 6.2**.

Review of Environmental Monitoring Procedures

6.3 The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Status of Environmental Licensing and Permitting

6.4 All permits/licenses obtained for the Project are summarized in **Table 6.1**.

Table 6.1	Summary of Environmental	Licensing and Permit Status
-----------	---------------------------------	------------------------------------

·	Volid	Period	
Permit No.	vanu	1 er iou	Status
Termit No.	From	To	Status
Environmental Permit (EP)			
EP-337/2009	23/04/09	N/A	Valid
Effluent Discharge License			
WT00027495-2017	28/03/17	31/03/22	Valid
Billing Account for Construction Waste Disposal			
A/C# 7026164	20/10/16	N/A	Valid
Registration of Chemical Waste Producer			
WPN5213-229-P3271-01	14/08/17	N/A	Valid
Construction Noise Permit (CNP)			
GW-RE1011-17	28/12/17	27/06/2018	Valid

Status of Waste Management

6.5 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.

Implementation Status of Environmental Mitigation Measures

6.6 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in **Table 6.2**.

 Table 6.2
 Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality	9 May 2018	Reminder: The Contractor was reminded to clear the muddy runoff after rain and the muddy runoff should be properly treated prior to discharge. (Portion 2)	Rectification/improvement was observed during the follow-up audit session on 15 May 2018
	28 May 2018	Reminder: Exposed slope surface should be covered by tarpaulin properly. (Portion 2)	Rectification/improvement was observed during the follow-up audit session on 4 June 2018
Air Quality	30 April 2018	Reminder: Stockpile of cement bags should be properly covered on top and three sides. (Portion 1)	Rectification/improvement was observed during the follow-up audit session on 9 May 2018
	28 May 2018	Reminder: Stockpile of dusty material should be covered properly. (Portion 2)	Rectification/improvement was observed during the follow-up audit session on 4 June 2018
Noise	N/A		
Waste/ Chemical Management	30 April 2018	Reminder: Chemical container should be properly stored at appropriate storage area. (Box Culvert 1)	Rectification/improvement was observed during the follow-up audit session on 9 May 2018
	9 May 2018	Reminder: The chemical containers should be properly stored at designated area with drip tray provided underneath. (Portion 1)	Rectification/improvement was observed during the follow-up audit session on 21 May 2018
	15 May 2018	The general waste in the drip tray should be cleared. (Portion 2)	Rectification/improvement was observed during the follow-up audit session on 21 May 2018

Parameters	Date	Observations and Recommendations	Follow-up
	15 May 2018	The chemical containers should be properly stored at designated area to avoid leakage. (Portion 1)	Rectification/improvement was observed during the follow-up audit session on 21 May 2018
21 May 2018		The chemical container should be stored properly at the designated area to avoid leakage. (Portion 1)	
Landscape and Visual	N/A	-	
Permits/ Licenses	N/A		

Summary of Mitigation Measures Implemented

6.7 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.8 The Event Action Plans for air quality, noise and landscape and visual are presented in **Appendix J**.

1-hr TSP Monitoring

6.9 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.10 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.12 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.13 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix L**.

20

7. FUTURE KEY ISSUES

- 7.1 Major site activities undertaken for the coming two months include:
 - Excavation and Concreting works at Subway SW6 within Kai Tak Site
 - Carry out grouting works and divert existing UU at carriageway of PERE
 - Carry out trial pits and grouting works at SKLR Playground
 - Excavate with ELS works and trim pile heads at the existing bridge K72
 - Remedial works and application of joint sealant in box culverts
 - Construction of platform under access manhole
 - Construction of the connection between existing box culvert and B5
 - Preparation works for temporary flow diversion at upstream, i.e. B6 connection.
 - DCS pipe laying works in Portion 1 & 6
 - DCS valve chamber construction works in Portion 1 & 6
 - Watermains laying works in road L7
 - Sewerage works in Portion 4
 - Watermains laying works in Portion 4
 - Drainage and Sewerage works in Portion 2 & 3
- 7.2 Key environmental issues in the coming month include:
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels and sedimentation tanks;
 - Review and implementation of temporary drainage system for the surface runoff;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site.
- 7.3 The tentative program of major site activities and the impact prediction and control measures for the coming two months (June and July 2018) are summarized as follows:

Construction Works	Major Impact Prediction	Control Measures
As mentioned in Section 7.1	Air quality impact (dust) Water quality impact (surface run-off)	 (a) Frequent watering of haul road and unpaved/exposed areas; (b) Frequent watering or covering stockpiles with tarpaulin or similar means; and (c) Watering of any earth moving activities. (a) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; (b) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; (c) Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and (d) Provision of measures to prevent discharge into the
	Noise Impact	stream. (a) Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; (b) Controlling the number of plants use on site; (c) Regular maintenance of machines; and (d) Use of acoustic barriers if necessary.

Monitoring Schedule for the Next Month

7.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.

1-hr TSP Monitoring

8.2 All 1-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hr TSP Monitoring

8.3 All 24-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8.4 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Landscape and visual

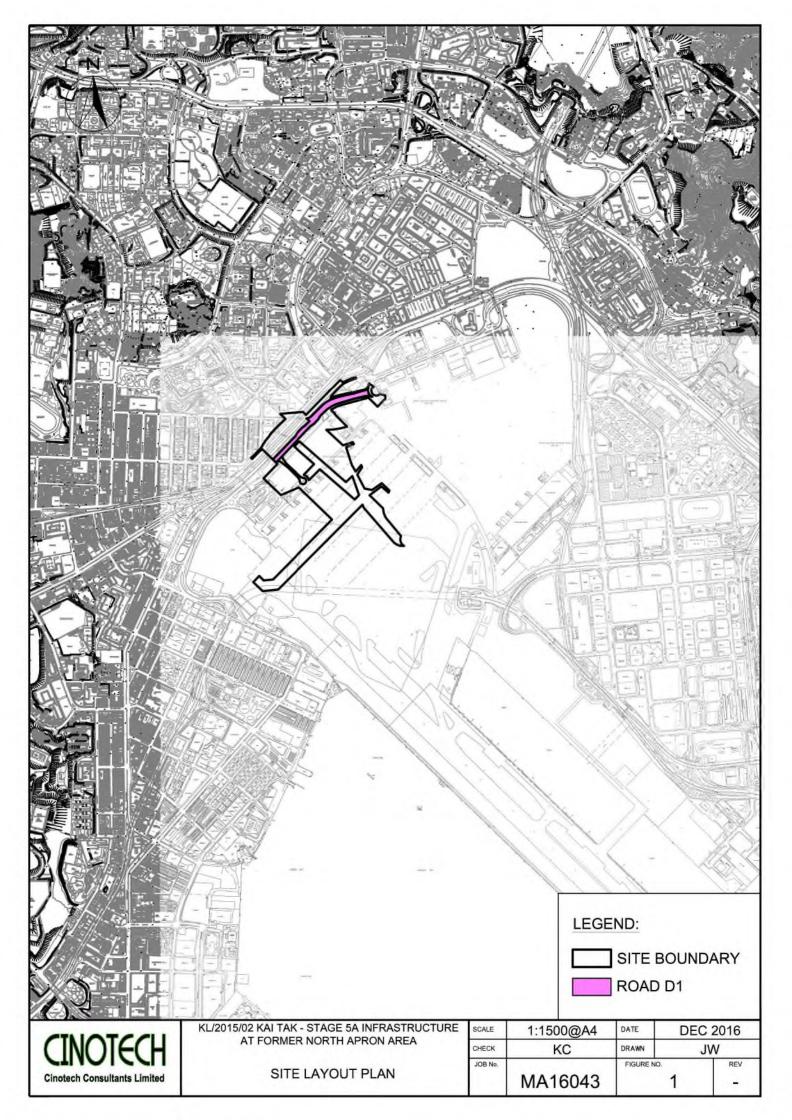
8.5 No non-compliance was recorded in the reporting month.

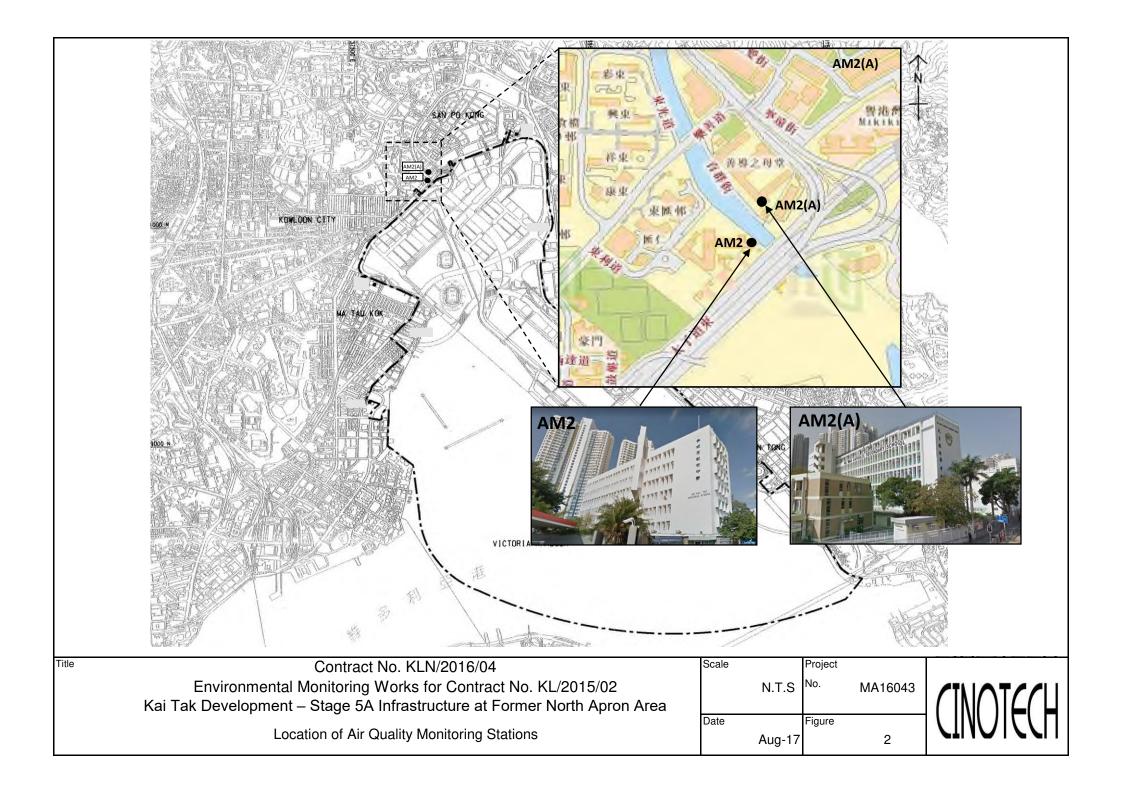
Complaint and Prosecution

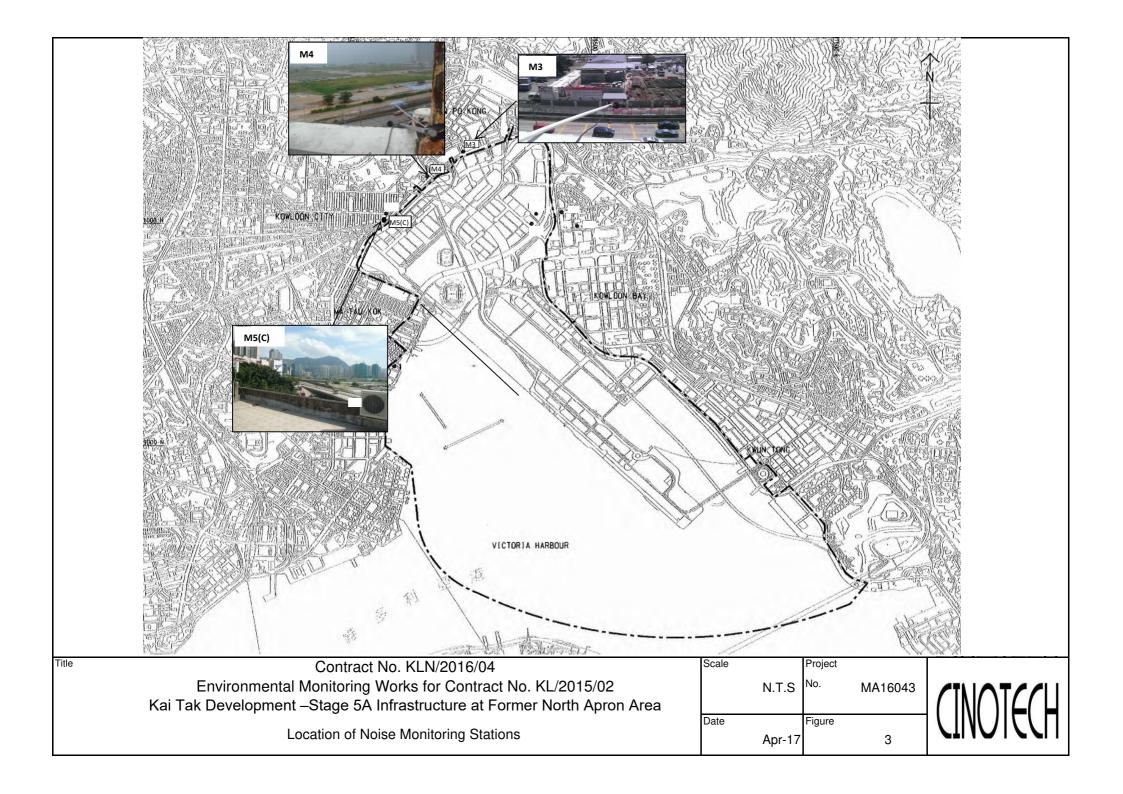
8.6 No environmental complaint and environmental prosecution was received in the reporting month.

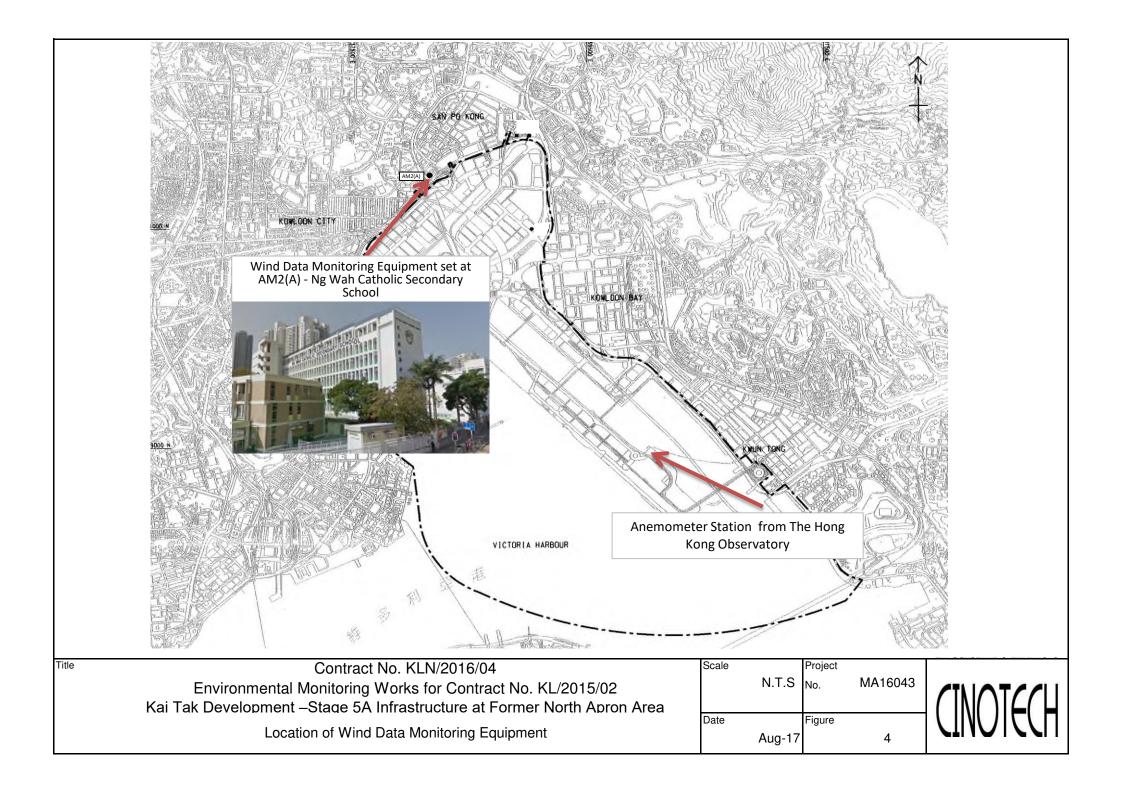
Recommendations

8.7 According to the environmental audit performed in the reporting month, the following recommendations were made:


Air Quality


- Exposed stockpile and slope should be properly covered by impervious sheeting for dust suppression.
- Water spraying should be provided to the haul roads and unpaved areas frequently to minimize the dust impact.


Waste/Chemical Management


- Drip tray should be provided underneath for chemical container to avoid chemical leakage.
- The chemical container should be temporary stored at the chemical waste storage area before disposal

FIGURES

APPENDIX A
ACTION AND LIMIT LEVELS FOR AIR
QUALITY AND NOISE

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m³
AM2	346	500

Table A-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m³
AM2(A)	157	260

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No._

						File No.	MA13056/13/0005
Station	AM2(A) - Ng Wa	h Catholic Seconda		-			
Date:	19-Mar-18	_	Next Due Date		-	Operator:	
Equipment No.	: <u>A-01-13</u>	-	Model No.	:TE-5170	-	Serial No.:	1352
			Ambien	t Condition			
Temperati	ure, Ta (K)	294.4	Pressure, Pa	ı (mmHg)		760.2	
		O	rifice Transfer S	tandard Infori	nation		
Seria	ıl No.	2896	Slope, mc	0.0585	Intercept		-0.00045
Last Calibi	ration Date:	13-Feb-18			bc = [ΔH x (Pa/76		
Next Calib	ration Date:	13-Feb-19		$Qstd = \{ [\Delta H$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} /	me
		•					
			Calibration of	f TSP Sampler			
Calibration		Or	fice	1		HVS	
Point	ΔH (orifice), in. of water	[ΔΗ x (Pa/76	O) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	n/760) x (298/Ta)] ^{1/2} Y-axis
1	12.8	3	.60	61.52	7.9		2.83
2	10.9	3	.32	56.77	6.8		2.62
3	8.1	2	.86	48.94	5.0		2.25
. 4	5.6	2	.38	40.69	3.4		1.86
5	3.3	1	.83	31.24	2,3		1.53
By Linear Reg Slope , mw = Correlation o	ression of Y on X 0.0439 coefficient* =	0.9		Intercept, bw =	0.1186	6	
*If Correlation (Coefficient < 0.99	0, check and rec	alibrate.	•			
			Set Point	Calculation			
From the TSP F	ield Calibration C	urve, take Ostd =					
	ssion Equation, the						
20.00	1		_				
		mw x	$Qstd + bw = [\Delta W$	x (Pa/760) x (2	$[298/Ta)]^{1/2}$		
Therefore, S	Set Point; W = (m	w x Ostd + bw)²	x(760/Pa)x(Ta / 298) =	3.97		
	, (***	- 1	(, (=- = /	0.57	,	
Remarks:							
			1				
Conducted by:	LEE MAN HER	Signature:	jki	<u>'i</u>		Date:	19-3-2018
Checked by:	: WK. Tana	Signature:	Kin	bri		Date:	1913/2018

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

CINOTECH

						File No	MA13056/13/0006
Station		h Catholic Seconda		- 16 7 1 10		0	* 4**
Date:	17-May-18	-	Next Due Date		-	_	MH
Equipment No.:	A-01-13	_	Model No.	: TE-5170	-	Serial No.:_	1352
			Ambien	t Condition			
Temperatu	ıre, Ta (K)	305.2	Pressure, Pa	a (mmHg)		759,3	
		0	rifice Transfer S	tandard Inforn	nation		
Seria	l No.	2896	Slope, mc	0.0585	Intercept		-0.00045
Last Calibr	ation Date:	13-Feb-18			bc = [ΔH x (Pa/76		
Next Calibr	ration Date:	13-Feb-19		$Qstd = \{ [\Delta H$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} /	mc
			Colibertian a	of TSP Sampler			
	Lines egin on reduktion redirektige, Diejford	Or	fice	x xor bamplet	y terminy mentra terminy mentra dia ben'ny tanàna mandri dia ben'ny tanàna mandri dia ben'ny tanàna mandri dia	HVS	7 4 44,457 (44.44)
Calibration Point	ΔH (orifice), in. of water		0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	12.6	3	.51	59.91	8.0		2.79
2	10.8		.25	55.46	6.8		2.58
3	8.0		.79	47.74	4.9		2.19
4	5,4	2	.30	39.22	3.3		1.79
5	3.4	1	.82	31.12	2.3		1.50
	ression of Y on X 0.0455 oefficient* =	- 0.99		Intercept, bw =	0.0433	3	·
*If Correlation C	Coefficient < 0.99	0, check and reca	alibrate.	•			
			Set Point	Calculation			
From the TSP Fi	eld Calibration C	urve, take Qstd =	= 43 CFM			-	
From the Regres	sion Equation, the	e "Y" value accor	rding to				
		mw x	Qstd + bw = [ΔW	x (Pa/760) x (2	298/Ta)] ^{1/2}		•
Therefore, Se	et Point; W=(m	w x Qstd + bw) ²	x (760 / Pa) x (Γa / 298) =	4.11		
<u></u>						·	
Remarks:							
. Committee							·
Conducted by:	LEB MAN HEZ	Signotura	h	· ·		Data	17/6/20
	W K Jang	Signature: _	Kw	où		Date: Date:	17/5/2018

RECALIBRATION **DUE DATE:**

February 13, 2019

Calibration Certification Information

Cal. Date: February 13, 2018

Rootsmeter S/N: 438320

Ta: 293

Operator: Jim Tisch Calibration Model #:

Calibrator S/N: 2896 TE-5025A

Pa: 763.3

mm Hg

Run		Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
	1	1	2	1	1.4670	3.2	2.00
	2	3	4	1	1.0380	6.4	4.00
	3	5	6	1	0.9220	8.0	5.00
	4	7	8	1	0.8840	8.8	5.50
	5	9	10	1	0.7250	12.8	8.00

	Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$	
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)	
1.0172	0.6934	1.4293	0.9958	0.6788	0.8762	
1.0129	0.9758	2.0213	0.9916	0.9553	1.2392	
1.0107	1.0962	2.2599	0.9895	1.0732	1.3854	
1.0097	1.1422	2.3702	0.9885	1.1182	1.4530	
1.0043	1.3853	2.8586	0.9832	1.3562	1.7524	
	m=	2.06726		m=	1.29448	
QSTD	b=	-0.00045	QA [b=	-0.00028	
	r=	0.99992	•	r=	0.99992	

Calculations				
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime	
For subsequent flow rate calculations:				
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$	

	Standard Conditions				
Tstd:	298.15 °K				
Pstd:	760 mm Hg				
	Key				
ΔH: calibrator	manometer reading (in H2O)				
ΔP: rootsmete	er manometer reading (mm Hg)				
Ta: actual abs	olute temperature (°K)				
Pa: actual barometric pressure (mm Hg)					
b: intercept					
m: slope					

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28394E

Date of Issue: 2018-02-25 Date Received: 2018-02-24

Date Tested: 2018-02-24

Date Completed: 2018-02-25

Next Due Date: 2018-08-24

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Weather Stations, Vantage Pro2

Manufacturer

: Davis Instruments

Model No.

: 6152CUK

Serial No.

: AK130520006

Test conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70 %

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Test Report No.:
 28394E

 Date of Issue:
 2018-02-25

 Date Received:
 2018-02-24

 Date Tested:
 2018-02-24

 Date Completed:
 2018-02-25

 Next Due Date:
 2018-08-24

Page:

2 of 2

Results:

1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	D = V1 - V2	
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dir	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45.1	45	0.1
90	90	0
135.2	135	0.2
180.3	180	0.3
224.8	225	-0.2
270	270	0
315.1	315	0.1
360	360	0

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28787 Date of Issue:

2018-04-16

Date Received:

2018-04-13

Date Tested:

2018-04-13

Date Completed:

2018-04-16

Next Due Date:

2018-06-15

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701019

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-01

Test Conditions:

Room Temperature

: 17-22 degree Celsius

Relative Humidity

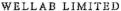
: 40-70%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)


1.168

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: 28788 2018-04-16 Date of Issue: Date Received: 2018-04-13 2018-04-13 Date Tested:

Date Completed: 2018-04-16

Next Due Date:

2018-06-15

1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:

Description

: Handheld Particle Counter

Page:

Manufacturer

: Hal Technology

Model No.

: Hal-HPC301

Serial No.

: 3011701017

Flow rate

: 0.1 cfm

Zero Count Test

: 0 count per 5 minutes

Equipment No.

: A-27-04

Test Conditions:

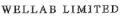
Room Temperature

: 17-22 degree Celsius

Relative Humidity

: 40-70%

Test Specifications & Methodology:


- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 1.158

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170915A
Date of Issue:	2017-09-18
Date Received:	2017-09-15
Date Tested:	2017-09-15
Date Completed:	2017-09-18
Next Due Date:	2018-09-17

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 955

Serial No.

: 12563

Microphone No.

: 34377

Equipment No.

: N-08-03

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 60%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED
Rms 816, 1516 & 1701, Technology Park,
18 On Lai Street, Shatin, N.T. Hong Kong.
Tel: 2898 7388 Fax: 2898 7076
Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/170825
Date of Issue: 2017-08-28
Date Received: 2017-08-25
Date Tested: 2017-08-25
Date Completed: 2017-08-28

Next Due Date:

2017-08-28 2018-08-27

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.
Microphone No.

: 21455 : 43730

Equipment No.

: N-08-07

Test conditions:

Room Temperatre

: 23 degree Celsius

Relative Humidity

: 60 %

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/171215 Date of Issue:

2017-12-18 Date Received: 2017-12-15

Date Tested:

2017-12-15

Date Completed: Next Due Date:

2017-12-18 2018-12-17

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Sound & Vibration Analyser

Manufacturer

: BSWA

Model No.

: BSWA 801

Serial No.

: 35924

Equipment No.

: N-13-01

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/171215A
Date of Issue: 2017-12-18
Date Received: 2017-12-15
Date Tested: 2017-12-15
Date Completed: 2017-12-18

ATTN:

Mr. W.K. Tang

Page:

Next Due Date:

1 of 1

2018-12-17

Certificate of Calibration

Item for calibration:

Description

: Sound & Vibration Analyser

Manufacturer

: BSWA

Model No.

: BSWA 801

Serial No.

: 35921

Equipment No.

: N-13-02

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 C/N/171215B

 Date of Issue:
 2017-12-18

 Date Received:
 2017-12-15

 Date Tested:
 2017-12-15

 Date Completed:
 2017-12-18

 Next Due Date:
 2018-12-17

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Sound & Vibration Analyser

Manufacturer

:BSWA

Model No.

: BSWA 801

Serial No.

: 35927

Equipment No.

: N-13-03

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 64%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170929
Date of Issue:	2017-09-30
Date Received:	2017-09-29
Date Tested:	2017-09-29
Date Completed:	2017-09-30
Next Due Date:	2018-09-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

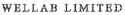
: 21 degree Celsius

Relative Humidity

:60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.


Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.ak

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/170929B
Date of Issue:	2017-09-30
Date Received:	2017-09-29
Date Tested:	2017-09-29
Date Completed:	2017-09-30
Next Due Date:	2018-09-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No. Serial No. : SV30A : 24780

Equipment No.

: N-09-05

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 60 %

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	$114.0 \pm 0.1 \text{ dB}$

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 May 2018	27.3	80	Trace
2 May 2018	27.9	75	-
3 May 2018	27.1	80	1.9
4 May 2018	23.8	82	0.8
5 May 2018	25.3	82	Trace
6 May 2018	27.6	80	1
7 May 2018	28	82	6.7
8 May 2018	25.2	91	28.4
9 May 2018	24.6	88	5.4
10 May 2018	23	89	8
11 May 2018	23.8	86	1
12 May 2018	26.5	82	-
13 May 2018	27.7	79	-
14 May 2018	28.6	77	-
15 May 2018	28.7	76	-
16 May 2018	28.6	74	-
17 May 2018	29.4	75	-
18 May 2018	29.8	74	-
19 May 2018	29.8	74	-

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 May 2018	30.1	72	-
21 May 2018	30.3	71	-
22 May 2018	30.4	69	-
23 May 2018	30.5	69	-
24 May 2018	30	73	-
25 May 2018	29.8	71	Trace
26 May 2018	30.7	72	0.9
27 May 2018	30	76	3.4
28 May 2018	30.3	72	-
29 May 2018	31.1	69	-
30 May 2018	31.2	69	-
31 May 2018	31.1	70	-

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

^{**} Trace means rainfall less than 0.05 mm

II. Mean Wind Speed and Wind Direction			
Date	Time	Wind Speed m/s	Direction
1-May-2018	00:00	1.8	NE
1-May-2018	01:00	1.5	ENE
1-May-2018	02:00	1.8	ENE
1-May-2018	03:00	1.6	ENE
1-May-2018	04:00	1.4	N
1-May-2018	05:00	1.5	NE
1-May-2018	06:00	1.2	NNE
1-May-2018	07:00	1.6	NE
1-May-2018	08:00	2	ESE
1-May-2018	09:00	2.6	WSW
1-May-2018	10:00	2.8	W
1-May-2018	11:00	3.1	N
1-May-2018	12:00	3.3	NE
1-May-2018	13:00	3.4	SW
1-May-2018	14:00	3.2	NE
1-May-2018	15:00	2.8	N
1-May-2018	16:00	2.7	N
1-May-2018	17:00	2.2	NNE
1-May-2018	18:00	2.3	ENE
1-May-2018	19:00	1.9	NE
1-May-2018	20:00	2	SE
1-May-2018	21:00	2.6	N
1-May-2018	22:00	2.8	ENE
1-May-2018	23:00	2.4	Е
2-May-2018	00:00	1.9	ENE
2-May-2018	01:00	1.7	ENE
2-May-2018	02:00	1.9	NNW
2-May-2018	03:00	1.6	SSE
2-May-2018	04:00	1.6	ENE
2-May-2018	05:00	1.4	ENE
2-May-2018	06:00	1.2	ENE
2-May-2018	07:00	1.3	N
2-May-2018	08:00	1.4	N
2-May-2018	09:00	1.4	ENE
2-May-2018	10:00	1.7	SSE
2-May-2018	11:00	1.9	NE
2-May-2018	12:00	2.3	SW

11.	Mican Willu	Speed and Wind D	ii cetton	
	2-May-2018	13:00	2.1	N
	2-May-2018	14:00	2.4	NE
	2-May-2018	15:00	2.3	ENE
	2-May-2018	16:00	2	NE
	2-May-2018	17:00	2	NNE
	2-May-2018	18:00	1.6	NNW
	2-May-2018	19:00	1.4	N
	2-May-2018	20:00	1.1	N
	2-May-2018	21:00	1.5	N
	2-May-2018	22:00	1.3	NNE
	2-May-2018	23:00	1.3	NE
	3-May-2018	00:00	1.6	NNE
	3-May-2018	01:00	2	N
	3-May-2018	02:00	1.8	Е
	3-May-2018	03:00	1.6	SE
	3-May-2018	04:00	1.3	ENE
	3-May-2018	05:00	1.5	NE
	3-May-2018	06:00	1.3	ENE
	3-May-2018	07:00	1.8	ENE
	3-May-2018	08:00	2	SE
	3-May-2018	09:00	2.3	E
	3-May-2018	10:00	2.8	ENE
	3-May-2018	11:00	3.1	Е
	3-May-2018	12:00	3.2	WSW
	3-May-2018	13:00	3.4	W
	3-May-2018	14:00	3.3	NNE
	3-May-2018	15:00	2.8	E
	3-May-2018	16:00	3.5	E
	3-May-2018	17:00	2.9	W
	3-May-2018	18:00	2.5	E
	3-May-2018	19:00	2.3	E
	3-May-2018	20:00	2.1	NNE
	3-May-2018	21:00	2	N
	3-May-2018	22:00	2.4	ENE
	3-May-2018	23:00	1.7	Е
	4-May-2018	00:00	2	N
	4-May-2018	01:00	2.4	ENE
	4-May-2018	02:00	2.7	E

11.	Mean wind	Speed and Wind D	rection	
	4-May-2018	03:00	2.2	Е
	4-May-2018	04:00	2.3	NE
	4-May-2018	05:00	2.7	NE
	4-May-2018	06:00	2.4	ENE
	4-May-2018	07:00	2.7	ENE
	4-May-2018	08:00	2.7	NE
	4-May-2018	09:00	3.2	ENE
	4-May-2018	10:00	3.1	NNE
	4-May-2018	11:00	3.4	SE
	4-May-2018	12:00	3.5	WNW
	4-May-2018	13:00	3.5	SE
	4-May-2018	14:00	3.4	SSE
	4-May-2018	15:00	3.1	ESE
	4-May-2018	16:00	3.3	ESE
	4-May-2018	17:00	3.3	SE
	4-May-2018	18:00	2.7	SE
	4-May-2018	19:00	2.7	NNE
	4-May-2018	20:00	2.7	Ν
	4-May-2018	21:00	2.5	NE
	4-May-2018	22:00	2.7	NNE
	4-May-2018	23:00	2.6	NNE
	5-May-2018	00:00	2.6	NE
	5-May-2018	01:00	2.2	NNE
	5-May-2018	02:00	2.1	ESE
	5-May-2018	03:00	1.9	SSE
	5-May-2018	04:00	2.2	Ν
	5-May-2018	05:00	2	NE
	5-May-2018	06:00	2.5	NE
	5-May-2018	07:00	1.5	NNE
	5-May-2018	08:00	2.4	NE
	5-May-2018	09:00	3.2	NNW
	5-May-2018	10:00	3.3	NE
	5-May-2018	11:00	2.7	ENE
	5-May-2018	12:00	2.6	NE
	5-May-2018	13:00	2.8	N
	5-May-2018	14:00	2.4	ENE
	5-May-2018	15:00	3.2	NE
	5-May-2018	16:00	3.1	SE

11.	Mean wind	Speed and Wind D	rection	
	5-May-2018	17:00	3.1	SE
	5-May-2018	18:00	3.2	S
	5-May-2018	19:00	2.2	N
	5-May-2018	20:00	2.3	ENE
	5-May-2018	21:00	2.7	NW
	5-May-2018	22:00	2.5	WSW
	5-May-2018	23:00	2.4	NE
	6-May-2018	00:00	2.3	W
	6-May-2018	01:00	2.2	WSW
	6-May-2018	02:00	2	NE
	6-May-2018	03:00	2.3	SSW
	6-May-2018	04:00	2	W
	6-May-2018	05:00	1.8	Е
	6-May-2018	06:00	1.6	NNE
	6-May-2018	07:00	1.4	N
	6-May-2018	08:00	1.6	NNE
	6-May-2018	09:00	2	NE
	6-May-2018	10:00	2.5	NNE
	6-May-2018	11:00	2.8	NNE
	6-May-2018	12:00	3	NE
	6-May-2018	13:00	3.3	ESE
	6-May-2018	14:00	2.6	E
	6-May-2018	15:00	2.5	ENE
	6-May-2018	16:00	2.9	SSE
	6-May-2018	17:00	2.5	ESE
	6-May-2018	18:00	2.5	NE
	6-May-2018	19:00	2.1	WNW
	6-May-2018	20:00	1.9	WNW
	6-May-2018	21:00	1.6	SE
	6-May-2018	22:00	1.6	N
	6-May-2018	23:00	1.4	ESE
	7-May-2018	00:00	1.4	SSE
	7-May-2018	01:00	1.4	ESE
	7-May-2018	02:00	1.3	NE
	7-May-2018	03:00	1.2	ESE
	7-May-2018	04:00	1.2	NE
	7-May-2018	05:00	1.1	SE
	7-May-2018	06:00	0.9	ENE

П.	Mean wind	Speed and wind D	rection	
	7-May-2018	07:00	0.8	SSE
	7-May-2018	08:00	1	SSE
	7-May-2018	09:00	1.5	ENE
	7-May-2018	10:00	2	N
	7-May-2018	11:00	2.3	NE
	7-May-2018	12:00	2.7	WNW
	7-May-2018	13:00	2.3	WNW
	7-May-2018	14:00	2.3	SW
	7-May-2018	15:00	2.5	W
	7-May-2018	16:00	2.3	SE
	7-May-2018	17:00	2.1	SSE
	7-May-2018	18:00	1.6	SSW
	7-May-2018	19:00	1.6	NE
	7-May-2018	20:00	1.5	NNE
	7-May-2018	21:00	1.6	WNW
	7-May-2018	22:00	1.4	W
	7-May-2018	23:00	1.1	ENE
	8-May-2018	00:00	1.2	ESE
	8-May-2018	01:00	1.5	SSW
	8-May-2018	02:00	1.6	S
	8-May-2018	03:00	1.4	S
	8-May-2018	04:00	1.1	W
	8-May-2018	05:00	1.3	SE
	8-May-2018	06:00	1.3	SSE
	8-May-2018	07:00	1.4	WSW
	8-May-2018	08:00	1.6	ESE
	8-May-2018	09:00	2.2	NE
	8-May-2018	10:00	2.3	SE
	8-May-2018	11:00	2.4	WSW
	8-May-2018	12:00	2.7	WNW
	8-May-2018	13:00	2.8	SW
	8-May-2018	14:00	3	W
	8-May-2018	15:00	3.3	WNW
	8-May-2018	16:00	2.3	WSW
	8-May-2018	17:00	2.2	S
	8-May-2018	18:00	2.2	SW
	8-May-2018	19:00	2	N
	8-May-2018	20:00	1.8	NE
Щ_	-	l		l

II. N	Mean Wind	Speed and Wind D	irection	
8-M	ay-2018	21:00	2.2	ENE
8-M	ay-2018	22:00	2.1	SW
8-M	ay-2018	23:00	2	SW
9-M	ay-2018	00:00	2.2	ENE
9-M	ay-2018	01:00	2.3	ESE
9-M	ay-2018	02:00	2	NNE
9-M	ay-2018	03:00	2.1	ESE
9-M	ay-2018	04:00	1.9	NNE
9-M	ay-2018	05:00	1.7	ENE
9-M	ay-2018	06:00	1.4	ENE
9-M	ay-2018	07:00	1.5	WNW
9-M	ay-2018	08:00	1.9	WNW
9-M	ay-2018	09:00	2.2	NNW
9-M	ay-2018	10:00	2.5	NE
9-M	ay-2018	11:00	2.5	SSE
9-M	ay-2018	12:00	3	ESE
9-M	ay-2018	13:00	2.7	NNE
9-M	ay-2018	14:00	2	NNE
9-M	ay-2018	15:00	2.3	ENE
9-M	ay-2018	16:00	2.4	WSW
9-M	ay-2018	17:00	2.2	W
9-M	ay-2018	18:00	1.6	ENE
9-M	ay-2018	19:00	1.3	ESE
9-M	ay-2018	20:00	1.1	N
9-M	ay-2018	21:00	1	W
9-M	ay-2018	22:00	1	SW
9-M	ay-2018	23:00	1.1	S
10-N	1ay-2018	00:00	1.3	WSW
10-N	1ay-2018	01:00	1.3	ESE
10-N	1ay-2018	02:00	1.1	SSE
10-N	1ay-2018	03:00	0.9	W
10-M	1ay-2018	04:00	0.9	NNE
10-M	1ay-2018	05:00	1	E
10-M	1ay-2018	06:00	0.8	ENE
10-M	1ay-2018	07:00	1	SSE
10-M	1ay-2018	08:00	1.1	NNE
10-M	1ay-2018	09:00	1.5	WSW
10-M	1ay-2018	10:00	2	ENE

10-May-2018 11:00 2.6 S 10-May-2018 12:00 2.7 NNE 10-May-2018 13:00 2.6 NNE 10-May-2018 14:00 2.4 ESE 10-May-2018 15:00 2.4 S 10-May-2018 16:00 2.5 NW 10-May-2018 17:00 2.5 N 10-May-2018 18:00 1.8 NNE 10-May-2018 19:00 1.2 NE 10-May-2018 20:00 1.5 WNW 10-May-2018 21:00 1.7 SE 10-May-2018 22:00 1.3 SSE 10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-M
10-May-2018 13:00 2.6 NNE 10-May-2018 14:00 2.4 ESE 10-May-2018 15:00 2.4 S 10-May-2018 16:00 2.5 NW 10-May-2018 17:00 2.5 N 10-May-2018 18:00 1.8 NNE 10-May-2018 19:00 1.2 NE 10-May-2018 20:00 1.5 WNW 10-May-2018 21:00 1.7 SE 10-May-2018 22:00 1.3 SSE 10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 06:00 1.3 NE 11-May-2018 06:00 1.3 NE 11-Ma
10-May-2018 14:00 2.4 ESE 10-May-2018 15:00 2.4 S 10-May-2018 16:00 2.5 NW 10-May-2018 17:00 2.5 N 10-May-2018 18:00 1.8 NNE 10-May-2018 19:00 1.2 NE 10-May-2018 20:00 1.5 WNW 10-May-2018 21:00 1.7 SE 10-May-2018 22:00 1.3 SSE 10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 06:00 1.3 NE 11-May-2018 07:00 1.2 NE 11-May-2018 09:00 1.5 NE 11-May-2018 09:00 1.5 NE 11-Ma
10-May-2018 15:00 2.4 S 10-May-2018 16:00 2.5 NW 10-May-2018 17:00 2.5 N 10-May-2018 18:00 1.8 NNE 10-May-2018 19:00 1.2 NE 10-May-2018 20:00 1.5 WNW 10-May-2018 21:00 1.7 SE 10-May-2018 22:00 1.3 SE 10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 NE 11-May-2018 07:00 1.2 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-20
10-May-2018 16:00 2.5 NW 10-May-2018 17:00 2.5 N 10-May-2018 18:00 1.8 NNE 10-May-2018 19:00 1.2 NE 10-May-2018 20:00 1.5 WNW 10-May-2018 21:00 1.7 SE 10-May-2018 22:00 1.3 SSE 10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 NE 11-May-2018 07:00 1.2 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-
10-May-2018 17:00 2.5 N 10-May-2018 18:00 1.8 NNE 10-May-2018 19:00 1.2 NE 10-May-2018 20:00 1.5 WNW 10-May-2018 21:00 1.7 SE 10-May-2018 22:00 1.3 SE 10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 10:00 2 ESE 11-May-201
10-May-2018 18:00 1.8 NNE 10-May-2018 19:00 1.2 NE 10-May-2018 20:00 1.5 WNW 10-May-2018 21:00 1.7 SE 10-May-2018 22:00 1.3 SSE 10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 NE 11-May-2018 07:00 1.2 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May
10-May-2018 19:00 1.2 NE 10-May-2018 20:00 1.5 WNW 10-May-2018 21:00 1.7 SE 10-May-2018 22:00 1.3 SSE 10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
10-May-2018 20:00 1.5 WNW 10-May-2018 21:00 1.7 SE 10-May-2018 22:00 1.3 SSE 10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
10-May-2018 21:00 1.7 SE 10-May-2018 22:00 1.3 SSE 10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
10-May-2018 22:00 1.3 SSE 10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
10-May-2018 23:00 1.3 SE 11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 08:00 1.3 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 00:00 1.3 SE 11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 08:00 1.3 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 01:00 1.4 NE 11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 08:00 1.3 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 02:00 1.4 E 11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 08:00 1.3 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 03:00 1.5 NE 11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 08:00 1.3 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 04:00 1.4 NE 11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 08:00 1.3 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 05:00 1.3 NE 11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 08:00 1.3 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 06:00 1.3 E 11-May-2018 07:00 1.2 NE 11-May-2018 08:00 1.3 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 07:00 1.2 NE 11-May-2018 08:00 1.3 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 08:00 1.3 NE 11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 09:00 1.5 NE 11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 10:00 2 ESE 11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 11:00 2.5 WSW 11-May-2018 12:00 2.7 NE
11-May-2018 12:00 2.7 NE
11-May-2018 13:00 2.5 SSW
11-May-2018 14:00 2.4 WSW
11-May-2018 15:00 2.6 SW
11-May-2018 16:00 2.1 SSW
11-May-2018 17:00 2 WNW
11-May-2018 18:00 1.6 ESE
11-May-2018 19:00 1.5 ENE
11-May-2018 20:00 1.4 ENE
11-May-2018 21:00 1.3 E
11-May-2018 22:00 1.2 NE
11-May-2018 23:00 1.2 ENE
12-May-2018 00:00 1.1 ENE

11.	Tylean yyma	Speed and Wind D	ii cetton	
	12-May-2018	01:00	1.1	ENE
	12-May-2018	02:00	0.9	NNE
	12-May-2018	03:00	1	WNW
	12-May-2018	04:00	1	NNE
	12-May-2018	05:00	1.1	WNW
	12-May-2018	06:00	0.9	NNE
	12-May-2018	07:00	0.7	N
	12-May-2018	08:00	1.1	NNE
	12-May-2018	09:00	1.7	S
	12-May-2018	10:00	2.2	SSW
	12-May-2018	11:00	2.5	SSW
	12-May-2018	12:00	2.9	ENE
	12-May-2018	13:00	2.7	NNE
	12-May-2018	14:00	2.9	NNE
	12-May-2018	15:00	3	NE
	12-May-2018	16:00	2.7	WNW
	12-May-2018	17:00	2.7	W
	12-May-2018	18:00	2.3	WSW
	12-May-2018	19:00	2.6	NE
	12-May-2018	20:00	2.4	NE
	12-May-2018	21:00	2.1	NE
	12-May-2018	22:00	2.1	SSW
	12-May-2018	23:00	2.3	WSW
	13-May-2018	00:00	1.9	SSW
	13-May-2018	01:00	1.9	NE
	13-May-2018	02:00	1.9	NNE
	13-May-2018	03:00	1.9	W
	13-May-2018	04:00	1.7	WNW
	13-May-2018	05:00	1.6	WNW
	13-May-2018	06:00	1.6	ENE
	13-May-2018	07:00	1.5	NE
	13-May-2018	08:00	1.5	SE
	13-May-2018	09:00	2.1	SSE
	13-May-2018	10:00	2.2	SSE
	13-May-2018	11:00	2.6	SW
	13-May-2018	12:00	3.1	SW
	13-May-2018	13:00	2.9	SW
	13-May-2018	14:00	3.1	SW

ш.	Mean wind	Speed and Wind D	n ection	
	13-May-2018	15:00	2.5	ENE
	13-May-2018	16:00	2.8	SW
	13-May-2018	17:00	2.5	NNE
	13-May-2018	18:00	2.2	SSW
	13-May-2018	19:00	1.8	SW
	13-May-2018	20:00	1.6	SW
	13-May-2018	21:00	1.6	WNW
	13-May-2018	22:00	1.3	W
	13-May-2018	23:00	1.3	SW
	14-May-2018	00:00	1.3	NNE
	14-May-2018	01:00	1.3	ESE
	14-May-2018	02:00	1.3	SSE
	14-May-2018	03:00	1.4	N
	14-May-2018	04:00	1.2	WSW
	14-May-2018	05:00	1.3	WSW
	14-May-2018	06:00	1.2	WSW
	14-May-2018	07:00	1.3	ESE
	14-May-2018	08:00	1.7	NE
	14-May-2018	09:00	2.2	NE
	14-May-2018	10:00	2.3	NNE
	14-May-2018	11:00	2.7	ENE
	14-May-2018	12:00	2.9	W
	14-May-2018	13:00	3	W
	14-May-2018	14:00	2.8	WNW
	14-May-2018	15:00	2.4	W
	14-May-2018	16:00	2.3	S
	14-May-2018	17:00	2.1	WNW
	14-May-2018	18:00	1.9	WNW
	14-May-2018	19:00	1.9	W
	14-May-2018	20:00	1.8	W
	14-May-2018	21:00	1.8	NW
	14-May-2018	22:00	1.7	WNW
	14-May-2018	23:00	1.5	WNW
	15-May-2018	00:00	1.7	WNW
	15-May-2018	01:00	1.4	W
	15-May-2018	02:00	1.6	W
	15-May-2018	03:00	1.6	WNW
	15-May-2018	04:00	1.8	NW
	· · / = · · ·			1

11.	Mican Willu	Speed and Wind D	ii ection	
	15-May-2018	05:00	1.9	W
	15-May-2018	06:00	1.8	W
	15-May-2018	07:00	1.7	W
	15-May-2018	08:00	1.8	WNW
	15-May-2018	09:00	1.7	W
	15-May-2018	10:00	1.9	W
	15-May-2018	11:00	2	WSW
	15-May-2018	12:00	2	SW
	15-May-2018	13:00	2	SSW
	15-May-2018	14:00	2	W
	15-May-2018	15:00	2	SSW
	15-May-2018	16:00	2	W
	15-May-2018	17:00	1.7	WNW
	15-May-2018	18:00	1.5	W
	15-May-2018	19:00	1.3	WSW
	15-May-2018	20:00	1	SSW
	15-May-2018	21:00	1.1	WSW
	15-May-2018	22:00	1	WSW
	15-May-2018	23:00	1.1	W
	16-May-2018	00:00	1.2	W
	16-May-2018	01:00	1.4	WSW
	16-May-2018	02:00	1.4	WNW
	16-May-2018	03:00	1.7	NNE
	16-May-2018	04:00	1.7	SSW
	16-May-2018	05:00	1.7	WNW
	16-May-2018	06:00	1.2	W
	16-May-2018	07:00	1.7	WNW
	16-May-2018	08:00	1.8	WSW
	16-May-2018	09:00	2.4	WNW
	16-May-2018	10:00	2.6	NE
	16-May-2018	11:00	2.7	WSW
	16-May-2018	12:00	3	WSW
	16-May-2018	13:00	2.7	WNW
	16-May-2018	14:00	2.8	W
	16-May-2018	15:00	3	W
	16-May-2018	16:00	2.8	W
	16-May-2018	17:00	2.5	WSW
	16-May-2018	18:00	2.2	W

11. Mean wind	i Speeu and wind D	ii cetton	
16-May-2018	19:00	2.2	W
16-May-2018	20:00	1.8	W
16-May-2018	21:00	1.8	WSW
16-May-2018	22:00	2	SW
16-May-2018	23:00	1.9	N
17-May-2018	00:00	1.7	N
17-May-2018	01:00	1.9	NE
17-May-2018	02:00	1.9	ESE
17-May-2018	03:00	1.8	W
17-May-2018	04:00	1.6	WNW
17-May-2018	05:00	1.8	WNW
17-May-2018	06:00	1.7	W
17-May-2018	07:00	1.9	S
17-May-2018	08:00	2.2	WNW
17-May-2018	09:00	2.6	SW
17-May-2018	10:00	3	WSW
17-May-2018	11:00	2.7	W
17-May-2018	12:00	2.9	WSW
17-May-2018	13:00	2.9	SW
17-May-2018	14:00	2.9	SW
17-May-2018	15:00	3.2	SW
17-May-2018	16:00	3.4	W
17-May-2018	17:00	2.9	W
17-May-2018	18:00	2.6	N
17-May-2018	19:00	2.6	N
17-May-2018	20:00	2.7	E
17-May-2018	21:00	2.7	ENE
17-May-2018	22:00	2.8	ENE
17-May-2018	23:00	2.4	E
18-May-2018	00:00	2.2	ENE
18-May-2018	01:00	2.4	ENE
18-May-2018	02:00	2.2	ENE
18-May-2018	03:00	2	ENE
18-May-2018	04:00	2.4	ENE
18-May-2018	05:00	2.3	NNE
18-May-2018	06:00	2.2	NNE
18-May-2018	07:00	2.2	ENE
18-May-2018	08:00	2.8	Е

11.	Wican Wind	Speed and Wind D	ii cetion	
1	8-May-2018	09:00	2.3	NNE
1	8-May-2018	10:00	2.5	NE
1	8-May-2018	11:00	2.7	NNE
1	8-May-2018	12:00	2.8	NE
1	8-May-2018	13:00	3	NE
1	8-May-2018	14:00	3.4	NE
1	8-May-2018	15:00	3.4	NE
1	8-May-2018	16:00	3.2	W
1	8-May-2018	17:00	2.8	W
1	8-May-2018	18:00	2.2	WSW
1	8-May-2018	19:00	1.9	WSW
1	8-May-2018	20:00	1.7	WSW
1	8-May-2018	21:00	1.8	W
1	8-May-2018	22:00	1.7	W
1	8-May-2018	23:00	2.1	W
1	9-May-2018	00:00	2.3	W
1	9-May-2018	01:00	2.3	WNW
1	9-May-2018	02:00	1.9	W
1	9-May-2018	03:00	1.7	WNW
1	9-May-2018	04:00	1.9	NW
1	9-May-2018	05:00	1.7	W
1	9-May-2018	06:00	1.5	WNW
1	9-May-2018	07:00	1.4	W
1	9-May-2018	08:00	1.9	N
1	9-May-2018	09:00	2.3	NE
1	9-May-2018	10:00	2.5	N
1	9-May-2018	11:00	2.9	ESE
1	9-May-2018	12:00	3.2	ENE
1	9-May-2018	13:00	3	NE
1	9-May-2018	14:00	3.2	SSE
1	9-May-2018	15:00	2.9	Ν
1	9-May-2018	16:00	2.9	NNE
1	9-May-2018	17:00	2.7	ENE
1	9-May-2018	18:00	2.1	ENE
1	9-May-2018	19:00	1.7	NE
1	9-May-2018	20:00	1.1	WNW
1	9-May-2018	21:00	0.8	WNW
1	9-May-2018	22:00	1.3	N

19-May-2018 23:00 0.9 N 20-May-2018 00:00 0.9 NE 20-May-2018 01:00 1 E 20-May-2018 02:00 1 N 20-May-2018 03:00 0.8 ENE 20-May-2018 04:00 0.9 ESE 20-May-2018 05:00 1.1 ENE 20-May-2018 06:00 1 NE 20-May-2018 07:00 1.2 NE 20-May-2018 08:00 1.4 NE 20-May-2018 09:00 1.9 NE 20-May-2018 10:00 2.3 ENE	=
20-May-2018 01:00 1 E 20-May-2018 02:00 1 N 20-May-2018 03:00 0.8 ENE 20-May-2018 04:00 0.9 ESE 20-May-2018 05:00 1.1 ENE 20-May-2018 06:00 1 NE 20-May-2018 07:00 1.2 NE 20-May-2018 08:00 1.4 NE 20-May-2018 09:00 1.9 NE	=
20-May-2018 02:00 1 N 20-May-2018 03:00 0.8 ENE 20-May-2018 04:00 0.9 ESE 20-May-2018 05:00 1.1 ENE 20-May-2018 06:00 1 NE 20-May-2018 07:00 1.2 NE 20-May-2018 08:00 1.4 NE 20-May-2018 09:00 1.9 NE	<u> </u>
20-May-2018 03:00 0.8 ENE 20-May-2018 04:00 0.9 ESE 20-May-2018 05:00 1.1 ENE 20-May-2018 06:00 1 NE 20-May-2018 07:00 1.2 NE 20-May-2018 08:00 1.4 NE 20-May-2018 09:00 1.9 NE	<u> </u>
20-May-2018 04:00 0.9 ESE 20-May-2018 05:00 1.1 ENE 20-May-2018 06:00 1 NE 20-May-2018 07:00 1.2 NE 20-May-2018 08:00 1.4 NE 20-May-2018 09:00 1.9 NE	<u> </u>
20-May-2018 05:00 1.1 ENE 20-May-2018 06:00 1 NE 20-May-2018 07:00 1.2 NE 20-May-2018 08:00 1.4 NE 20-May-2018 09:00 1.9 NE	
20-May-2018 06:00 1 NE 20-May-2018 07:00 1.2 NE 20-May-2018 08:00 1.4 NE 20-May-2018 09:00 1.9 NE	
20-May-2018 07:00 1.2 NE 20-May-2018 08:00 1.4 NE 20-May-2018 09:00 1.9 NE	
20-May-2018 08:00 1.4 NE 20-May-2018 09:00 1.9 NE	
20-May-2018 09:00 1.9 NE	
20-May-2018 10:00 2.3 ENE	
	Ξ
20-May-2018 11:00 2.5 NE	
20-May-2018 12:00 2.5 NE	
20-May-2018 13:00 2.6 NNE	Ξ
20-May-2018 14:00 2.3 NE	
20-May-2018 15:00 2.1 WNV	٧
20-May-2018 16:00 2 W	
20-May-2018 17:00 1.8 WSV	V
20-May-2018 18:00 1.8 WSV	V
20-May-2018 19:00 1.5 W	
20-May-2018 20:00 1.4 SW	
20-May-2018 21:00 1.4 WSV	V
20-May-2018 22:00 1.5 WSV	V
20-May-2018 23:00 1.4 WSV	V
21-May-2018 00:00 1.5 W	
21-May-2018 01:00 1.4 WSV	V
21-May-2018 02:00 1.4 W	
21-May-2018 03:00 1.5 W	
21-May-2018 04:00 1.5 S	
21-May-2018 05:00 1.5 N	
21-May-2018 06:00 1.5 N	
21-May-2018 07:00 1.2 W	
21-May-2018 08:00 1.3 WSV	V
21-May-2018 09:00 1.5 W	
21-May-2018 10:00 1.9 WSV	V
21-May-2018 11:00 2.1 W	
21-May-2018 12:00 2.5 W	

		irection	
21-May-2018	13:00	2.4	SSW
21-May-2018	14:00	2.3	SSW
21-May-2018	15:00	2.3	SSW
21-May-2018	16:00	2.1	SSW
21-May-2018	17:00	2.1	SW
21-May-2018	18:00	1.7	SW
21-May-2018	19:00	1.2	W
21-May-2018	20:00	1.1	WSW
21-May-2018	21:00	1.4	SW
21-May-2018	22:00	1	WSW
21-May-2018	23:00	1.2	WSW
22-May-2018	00:00	1.4	WSW
22-May-2018	01:00	1.5	SW
22-May-2018	02:00	1.3	SW
22-May-2018	03:00	1.1	SW
22-May-2018	04:00	1.2	SW
22-May-2018	05:00	1	SW
22-May-2018	06:00	0.7	WNW
22-May-2018	07:00	0.8	NNE
22-May-2018	08:00	1	ENE
22-May-2018	09:00	1.3	W
22-May-2018	10:00	1.5	S
22-May-2018	11:00	2	WNW
22-May-2018	12:00	2.1	W
22-May-2018	13:00	2.2	W
22-May-2018	14:00	2.4	W
22-May-2018	15:00	2.4	NNE
22-May-2018	16:00	2	ENE
22-May-2018	17:00	2.1	ENE
22-May-2018	18:00	1.8	W
22-May-2018	19:00	1.7	W
22-May-2018	20:00	1.8	E
22-May-2018	21:00	1.6	S
22-May-2018	22:00	1.6	W
22-May-2018	23:00	2	W
23-May-2018	00:00	1.8	W
23-May-2018	01:00	1.5	W
23-May-2018	02:00	1.2	NNE

II. Mean Win	d Speed and Wind D	irection	
23-May-2018	03:00	1.3	W
23-May-2018	04:00	1.4	W
23-May-2018	05:00	1.6	W
23-May-2018	06:00	1.9	SW
23-May-2018	07:00	1.8	W
23-May-2018	08:00	2.1	ENE
23-May-2018	09:00	2.3	SSW
23-May-2018	10:00	3	SSW
23-May-2018	11:00	3.3	SW
23-May-2018	12:00	3.2	SW
23-May-2018	13:00	3.4	W
23-May-2018	14:00	3.5	W
23-May-2018	15:00	3.1	SW
23-May-2018	16:00	2.9	W
23-May-2018	17:00	2.5	WNW
23-May-2018	18:00	2.3	SSW
23-May-2018	19:00	2	SW
23-May-2018	20:00	1.9	W
23-May-2018	21:00	1.8	WSW
23-May-2018	22:00	2	WSW
23-May-2018	23:00	2	W
24-May-2018	00:00	1.9	W
24-May-2018	01:00	1.8	W
24-May-2018	02:00	2	WSW
24-May-2018	03:00	1.7	S
24-May-2018	04:00	2	S
24-May-2018	05:00	2.1	W
24-May-2018	06:00	1.9	ENE
24-May-2018	07:00	1.7	WNW
24-May-2018	08:00	1.9	W
24-May-2018	09:00	2.4	WNW
24-May-2018	10:00	3	WNW
24-May-2018	11:00	3	WNW
24-May-2018	12:00	3.3	WNW
24-May-2018	13:00	3.3	WNW
24-May-2018	14:00	3.4	WNW
24-May-2018	15:00	3.3	WNW
24-May-2018	16:00	3.1	SW

-	:00 3	SW
24-May-2018 18		
21 May 2010	:00 2.7	WNW
24-May-2018 19	:00 2.7	NW
24-May-2018 20	:00 2.1	W
24-May-2018 21	:00 1.9	W
24-May-2018 22	:00 2.1	WSW
24-May-2018 23	:00 1.8	SW
25-May-2018 00	:00 2.3	WNW
25-May-2018 01	:00 2.6	WNW
25-May-2018 02	:00 2.6	WNW
25-May-2018 03	:00 2.2	WSW
25-May-2018 04	:00 2.3	WSW
25-May-2018 05	:00 2.4	WSW
25-May-2018 06	:00 2.3	WSW
25-May-2018 07	:00 1.9	SW
25-May-2018 08	:00 2.3	W
25-May-2018 09	:00 2.8	W
25-May-2018 10	:00 2	W
25-May-2018 11	:00 3	W
25-May-2018 12	:00 2.9	SSW
25-May-2018 13	:00 2.9	SSW
25-May-2018 14	:00 2.2	WNW
25-May-2018 15	:00 2.3	W
25-May-2018 16	:00 2.7	WSW
25-May-2018 17	:00 2.3	WNW
25-May-2018 18	:00 1.7	WNW
25-May-2018 19	:00 2.1	WNW
25-May-2018 20	:00 1.9	WNW
25-May-2018 21	:00 2	SSW
25-May-2018 22	:00 1.8	SW
25-May-2018 23	:00 1.9	W
26-May-2018 00	:00 1.7	WNW
26-May-2018 01	:00 1.7	SW
26-May-2018 02	:00 1.7	SW
26-May-2018 03	:00 1.6	WSW
26-May-2018 04	:00 1.5	WSW
26-May-2018 05	:00 1.3	WNW
26-May-2018 06	:00 1	WSW

11.	wican wina	Speed and Wind D	ii cetioii	
	26-May-2018	07:00	1.4	WNW
	26-May-2018	08:00	1.2	W
	26-May-2018	09:00	2	W
	26-May-2018	10:00	2	W
	26-May-2018	11:00	2.4	S
	26-May-2018	12:00	2.9	S
	26-May-2018	13:00	3.3	S
	26-May-2018	14:00	2.5	WNW
	26-May-2018	15:00	2.4	N
	26-May-2018	16:00	2.4	NNE
	26-May-2018	17:00	2.4	N
	26-May-2018	18:00	2.1	SW
	26-May-2018	19:00	1.9	W
	26-May-2018	20:00	1.5	WNW
	26-May-2018	21:00	1.7	N
	26-May-2018	22:00	1.6	N
	26-May-2018	23:00	1.6	N
	27-May-2018	00:00	1.6	W
	27-May-2018	01:00	1.5	WSW
	27-May-2018	02:00	1.5	SW
	27-May-2018	03:00	1.5	WSW
	27-May-2018	04:00	1.4	W
	27-May-2018	05:00	1.5	W
	27-May-2018	06:00	1.2	W
	27-May-2018	07:00	1.5	W
	27-May-2018	08:00	1.6	W
	27-May-2018	09:00	1.8	W
	27-May-2018	10:00	2	NNE
	27-May-2018	11:00	2.3	S
	27-May-2018	12:00	2.9	N
	27-May-2018	13:00	2.9	NE
	27-May-2018	14:00	2.8	SW
	27-May-2018	15:00	2.8	WNW
	27-May-2018	16:00	2.4	WNW
	27-May-2018	17:00	2.4	W
	27-May-2018	18:00	1.9	WNW
	27-May-2018	19:00	1.8	SSW
	27-May-2018	20:00	1.7	WNW

11.	Wican Willu	Speed and Wind D	H ection	
	27-May-2018	21:00	2.5	WNW
	27-May-2018	22:00	1.2	WSW
	27-May-2018	23:00	1.3	SW
	28-May-2018	00:00	1.3	WNW
	28-May-2018	01:00	1.3	NW
	28-May-2018	02:00	1.5	SW
	28-May-2018	03:00	1.5	SW
	28-May-2018	04:00	1.3	SW
	28-May-2018	05:00	1.1	SW
	28-May-2018	06:00	1	ENE
	28-May-2018	07:00	1.4	WSW
	28-May-2018	08:00	1.8	WSW
	28-May-2018	09:00	2.1	WSW
	28-May-2018	10:00	2.4	WSW
	28-May-2018	11:00	2.5	WSW
	28-May-2018	12:00	2.9	WSW
	28-May-2018	13:00	2.8	WNW
	28-May-2018	14:00	2.6	WNW
	28-May-2018	15:00	2.8	SSW
	28-May-2018	16:00	2.3	SSW
	28-May-2018	17:00	2.2	WNW
	28-May-2018	18:00	1.9	WNW
	28-May-2018	19:00	1.6	WNW
	28-May-2018	20:00	1.4	WNW
	28-May-2018	21:00	1.6	WNW
	28-May-2018	22:00	1.4	WNW
	28-May-2018	23:00	1.4	W
	29-May-2018	00:00	1.6	WSW
	29-May-2018	01:00	1.4	WSW
	29-May-2018	02:00	1.3	WSW
	29-May-2018	03:00	1.3	SW
	29-May-2018	04:00	1.1	SW
	29-May-2018	05:00	1.2	WSW
	29-May-2018	06:00	1.2	WNW
	29-May-2018	07:00	1.1	WNW
	29-May-2018	08:00	1.5	W
	29-May-2018	09:00	1.9	WNW
	29-May-2018	10:00	2.6	WNW

11.	Mean wind	Speed and Wind D	n ection	
	29-May-2018	11:00	2.8	WNW
	29-May-2018	12:00	2.8	NE
	29-May-2018	13:00	3.1	NNE
	29-May-2018	14:00	2.7	NNE
	29-May-2018	15:00	2.6	NNE
	29-May-2018	16:00	2.7	NE
	29-May-2018	17:00	2.3	N
	29-May-2018	18:00	2.1	NE
	29-May-2018	19:00	1.6	NE
	29-May-2018	20:00	1.6	ENE
	29-May-2018	21:00	1.4	ENE
	29-May-2018	22:00	1.3	SSE
	29-May-2018	23:00	1.2	ENE
	30-May-2018	00:00	1.2	NE
	30-May-2018	01:00	1.3	ENE
	30-May-2018	02:00	1	SSE
	30-May-2018	03:00	1.1	SSE
	30-May-2018	04:00	1.7	ESE
	30-May-2018	05:00	1.7	NE
	30-May-2018	06:00	1.6	NE
	30-May-2018	07:00	1.5	ENE
	30-May-2018	08:00	1.9	ENE
	30-May-2018	09:00	2.1	SE
	30-May-2018	10:00	2.3	SSE
	30-May-2018	11:00	2.3	NNE
	30-May-2018	12:00	2.8	N
	30-May-2018	13:00	2.7	N
	30-May-2018	14:00	2.6	N
	30-May-2018	15:00	2.6	NNE
	30-May-2018	16:00	2.4	NNE
	30-May-2018	17:00	2.3	ESE
	30-May-2018	18:00	2.4	ESE
	30-May-2018	19:00	2	N
	30-May-2018	20:00	1.8	N
	30-May-2018	21:00	1.8	NE
	30-May-2018	22:00	1.8	SSE
	30-May-2018	23:00	1.8	SE
	31-May-2018	00:00	2.3	SSE

II. Mean wind	Speed and wind D	H ection	
31-May-2018	01:00	2.2	SE
31-May-2018	02:00	2.3	ESE
31-May-2018	03:00	1.9	ESE
31-May-2018	04:00	2.5	ENE
31-May-2018	05:00	2.6	NE
31-May-2018	06:00	2.2	ESE
31-May-2018	07:00	2.3	SSE
31-May-2018	08:00	2.3	SSE
31-May-2018	09:00	2.4	NNE
31-May-2018	10:00	2.6	ESE
31-May-2018	11:00	2.4	ESE
31-May-2018	12:00	2.3	SSE
31-May-2018	13:00	1.6	ENE
31-May-2018	14:00	1.7	ENE
31-May-2018	15:00	1.5	ESE
31-May-2018	16:00	1.4	SE
31-May-2018	17:00	0.9	ESE
31-May-2018	18:00	1	SSE
31-May-2018	19:00	1.3	SE
31-May-2018	20:00	1.2	SSE
31-May-2018	21:00	1.3	SE
31-May-2018	22:00	0.7	ESE
31-May-2018	23:00	0.8	SSE

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KLN/2016/04

Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for May 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
·	j	1-May	2-May	3-May	4-May	5-May
			1 hr TSP X3 [AM2] Noise [M4]	Noise [M3, M5(C)]	24hr TSP AM2(A)	
6-May	7-May	8-May	9-May	10-May	11-May	12-May
	1 hr TSP X3 [AM2] Noise [M4]		Noise [M3, M5(C)]	24hr TSP AM2(A)	1 hr TSP X3 [AM2]	
13-May	14-May	15-May	16-May	17-May	18-May	19-May
		Noise [M3, M5(C)]	24hr TSP AM2(A)	1 hr TSP X3 [AM2] Noise [M4]		
20-May	21-May	22-May	23-May	24-May	25-May	26-May
	Noise [M3, M5(C)] 24hr TSP AM2(A)		1 hr TSP X3 [AM2] Noise [M4]		24hr TSP AM2(A)	
27-May	28-May	29-May	30-May	31-May		
		1 hr TSP X3 [AM2] Noise [M4]		Noise [M3, M5(C)] 24hr TSP AM2(A)		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Statio

Noise Monitoring Station

AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School M3 - Cognitio College M4 - Lee Kau Yan Memorial School M5(C) - Mercy Grace's Home

Contract No. KLN/2016/04

Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for June 2018

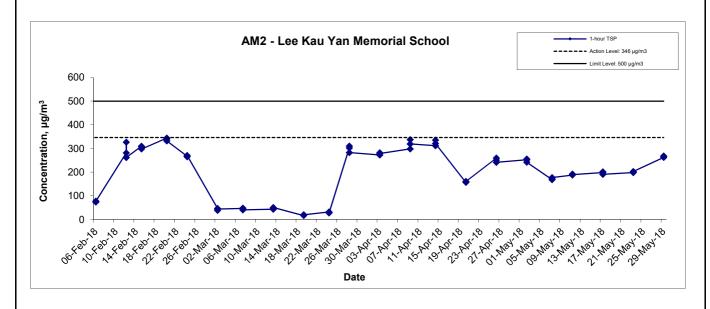
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Jun	2-Jun
3-Jun	4-Jun	5-Jun	6-Jun	7-Jun	8-Jun	9-Jun
	1 hr TSP X3					1 hr TSP X3
	[AM2]					[AM2]
	Noise		Noise			
	[M4]		[M3, M5(C)]			
			24hr TSP			
10-Jun	11-Jun	12-Jun	AM2(A) 13-Jun	14-Jun	15-Jun	16-Jun
10-3011	11-5411	12-Juli	13-3411	14-Juli	13-3411	10-3411
					1 hr TSP X3	
					[AM2]	
		Noise			Noise	
		[M3, M5(C)]			[M4]	
		24hr TSP				24hr TSP
		AM2(A)				AM2(A)
17-Jun	18-Jun	19-Jun	20-Jun	21-Jun	22-Jun	23-Jun
				1 hr TSP X3		
				[AM2]		
				Noise	Noise	
				[M4]	[M3, M5(C)]	
				[212.1]	24hr TSP	
					AM2(A)	
24-Jun	25-Jun	26-Jun	27-Jun	28-Jun	29-Jun	30-Jun
			1 k., TCD V2			
			1 hr TSP X3 [AM2]			
			Noise	Noise		
			[M4]	[M3, M5(C)]		
			ניידן	24hr TSP		
				AM2(A)		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Statio

Noise Monitoring Station

AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School M3 - Cognitio College M4 - Lee Kau Yan Memorial School M5(C) - Mercy Grace's Home


APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix E - 1-hour TSP Monitoring Results

Location AM2	- Lee Kau	Yan Memo	rial School
Date	Time	Weather	Particulate Concentration (µg/m3)
2-May-18	13:10	Sunny	252.2
2-May-18	14:10	Sunny	255.7
2-May-18	15:10	Sunny	241.8
7-May-18	13:10	Cloudy	168.1
7-May-18	14:10	Cloudy	172.1
7-May-18	15:10	Cloudy	177.2
11-May-18	13:10	Cloudy	187.5
11-May-18	14:10	Cloudy	191.8
11-May-18	15:10	Cloudy	189.0
17-May-18	13:05	Sunny	198.0
17-May-18	14:05	Sunny	201.4
17-May-18	15:05	Sunny	190.7
23-May-18	13:05	Sunny	198.2
23-May-18	14:05	Sunny	200.3
23-May-18	15:05	Sunny	202.5
29-May-18	13:05	Sunny	262.5
29-May-18	14:05	Sunny	265.8
29-May-18	15:05	Sunny	268.3
			212.4
		Maximum	268.3
		Minimum	168.1

MA16043/App E - 1hr TSP Cinotech

1-hr TSP Concentration Levels

Title Contract No. KLN/2016/04
Environmental Monitoring Works for Contract No. KL/2015/02
Kai Tak Development –Stage 5A Infrastructure at Former North Apron
Graphical Presentation of 1-hour TSP Monitoring Results

Scale N.T.S Project No. MA16043

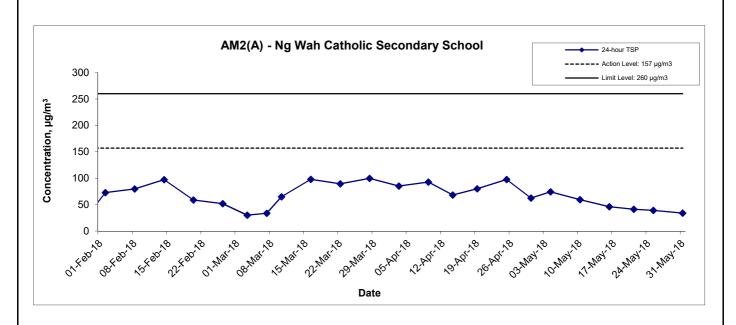
Date May 18 Appendix E

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

Location AM2(A) - Ng Wah Catholic Secondary School

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
04-May-18	Cloudy	296.9	765.0	3.2889	3.4195	0.1306	1416.2	1440.2	24.0	1.22	1.22	1.22	1756.0	74.4
10-May-18	Cloudy	296.1	765.1	3.6108	3.7155	0.1047	1464.2	1488.2	24.0	1.22	1.22	1.22	1758.7	59.5
16-May-18	Sunny	303.1	760.1	3.2906	3.3704	0.0798	1512.2	1536.2	24.0	1.20	1.20	1.20	1730.9	46.1
21-May-18	Sunny	305.3	760.5	3.2863	3.3586	0.0723	1560.2	1584.2	24.0	1.22	1.22	1.22	1753.5	41.2
25-May-18	Sunny	304.5	759.9	3.6185	3.6872	0.0687	1608.2	1632.2	24.0	1.22	1.22	1.22	1755.2	39.1
31-May-18	Sunny	305.2	760.8	3.6243	3.6836	0.0593	1656.2	1680.2	24.0	1.22	1.22	1.22	1754.2	33.8
													Min	33.8


Max

Average

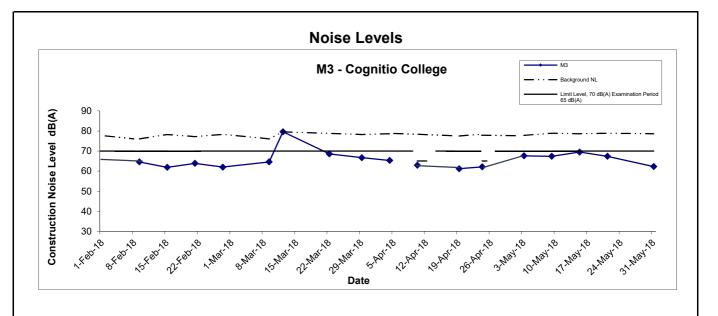
74.4 49.0

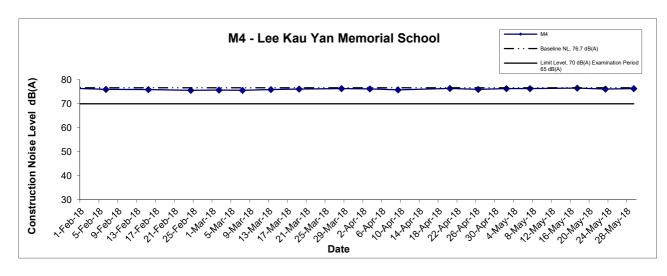
MA16043/App F - 24hr TSP

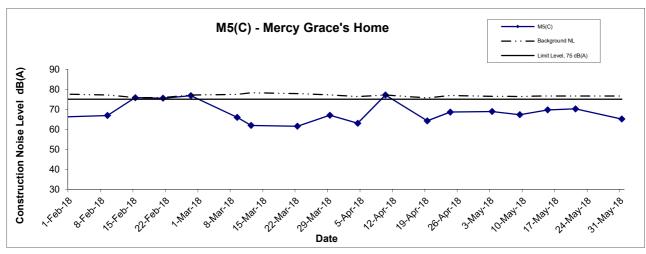
24-hr TSP Concentration Levels

Title Contract No. KLN/2016/04
Environmental Monitoring Works for Contract No. KL/2015/02
Kai Tak Development –Stage 5A Infrastructure at Former North Apron
Graphical Presentation of 24-hour TSP Monitoring Results

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix G - Noise Monitoring Results


Location M3 -	Location M3 - Cognitio College										
					Ur	nit: dB (A) (30-min)					
Date	Time	Weather	Mea	Construction Noise Level							
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}				
3-May-18	11:30	Sunny	78.2	79.3	77.5	77.8	67.6				
9-May-18	11:30	Cloudy	79.2	81.0	77.4	78.9	67.4				
15-May-18	13:00	Sunny	79.1	82.3	78.5	78.6	69.5				
21-May-18	11:30	Sunny	79.2	80.5	77.2	78.9	67.4				
31-May-18	13:00	Sunny	78.7	80.3	76.5	78.6	62.3				


Location M4 -	Location M4 - Lee Kau Yan Memorial School											
Unit: dB (A) (30-min)												
Date	Time	Weather	Mea	sured Noise I	Construction Noise Level							
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
2-May-18	13:45	Sunny	76.3	77.8	74.3		76.3 Measured ≦ Baseline					
7-May-18	13:45	Cloudy	76.3	77.8	74.3		76.3 Measured ≤ Baseline					
17-May-18	13:45	Sunny	76.5	77.8	73.1	76.7	76.5 Measured ≤ Baseline					
23-May-18	13:15	Sunny	76.1	78.2	74.1		76.1 Measured ≦ Baseline					
29-May-18	13:45	Sunny	76.3	77.9	72.1		76.3 Measured ≦ Baseline					

Location M5(C) - Mercy Grace's Home											
Unit: dB (A) (30-min)											
Date	Time	Weather	Mea	sured Noise I	Construction Noise Level						
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}				
3-May-18	13:00	Sunny	77.2	78.8	74.3	76.5	68.9				
9-May-18	13:00	Cloudy	76.9	78.5	75.1	76.4	67.3 Measured ≦ Baseline				
15-May-18	13:00	Sunny	77.4	79.2	75.6	76.6	69.7				
21-May-18	13:00	Sunny	77.5	78.2	74.4	76.6	70.2				
31-May-18	11:30	Sunny	76.9	78.9	74.1	76.6	65.1				

MA16043/App G - Noise Cinotech

Remarks: The construction noise levels in the Tables in Appendix G were adopted for plotting the graphs

Title

Contract No. KLN/2016/04

Environmental Monitoring Works for Contract No. KL/2015/02

Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area

Graphical Presentation of Construction Noise Monitoring Results

Scale		Project
	N.T.S	No. MA16043
Date		Appendix
	May 18	G

APPENDIX H SUMMARY OF EXCEEDANCE

Appendix H – Summary of Exceedance

Exceedance Report for Contract No. KL/2015/02

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Checklist Reference Number	180509
Date	9 May 2018
Time	09:30-11:30

Ref. No.	Non-Compliance	Related Item No.
Rei. 140.	None identified	- Ttem 140.
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
180509-R02	The Contractor was reminded to clear the muddy runoff after rain and the muddy runoff should be properly treated prior to discharge. (Portion 2)	B 8, B 11ii
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
180509-R01	• The chemical containers should be properly stored at designated area with drip tray provided underneath. (Portion 1)	E 2i, E 9
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit sections (Ref. No.: 180430), the environmental deficiencies were improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Victor Wong	A Comment	9 May 2018
Checked by	Dr. Priscilla Choy	WI	9 May 2018

Checklist Reference Number	180515
Date	15 May 2018
Time	14:00-15:30

D.C.M.	N. C. I	Related
Ref. No.	Non-Compliance	Item No.
	None identified	1
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	_
UIIII	D. Noise	
	No environmental deficiency was identified during site inspection.	
***************************************	E. Waste / Chemical Management	
180515-O01	The general refuse in the drip tray should be cleared. (Portion 2)	E 9
180515-O02	Chemical containers should be properly stored at designated area to avoid leakage (Portion 1).	E 2i
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	-	

	Name	Signature	Date
Recorded by	Victor Wong	SAT	15 May 2018
Checked by	Ivy Tam	Yuh	15 May 2018

Checklist Reference Number	180521
Date	21 May 2018
Time	14:00-15:30

Ref. No.	Non-Compliance	Related
Rei. No.	Non-Compliance	Item No.
-	None identified	
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
-	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
180521-O01	Chemical containers should be properly stored at designated area to avoid leakage (Portion 1).	E 2i
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	-	

	Name	\$\fgnature	Date
Recorded by	Jonathan Lee		21 May 2018
Checked by	Dr. Priscilla Choy	NI	21 May 2018

Checklist Reference Number	180528
Date	28 May 2018
Time	14:00-15:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	nem No.
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
180528-R02	Exposed slope surfaces should be covered by tarpaulin properly. (Portion 2)	B 5
	C. Air Quality	
180528-R01	Excavated dusty materials should be covered properly. (Portion 2)	C 7
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	-	

	Name	(Aignature	Date
Recorded by	Jonathan Lee		28 May 2018
Checked by	Dr. Priscilla Choy	MI	28 May 2018

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Action Level being	Identify source and investigate the	Check monitoring data submitted	1. Notify Contractor.	Rectify any unacceptable practice;	
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if	
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.	
	3. Repeat measurement to confirm finding.	method.			
Action Level being	Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	1. Discuss with ET and IEC on proper	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;	
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial	
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three	
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;	
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;	
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.	
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of		
	6. If exceedance continues, arrange		remedial measures;		
	meeting with IEC and ER;		5. Conduct meeting with ET and		
	7. If exceedance stops, cease additional		IEC if exceedance continues.		
	monitoring.				
Limit Level being	Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;	
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper	
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;	
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial	
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three	

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	1. Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation		
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;		
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation		
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.		
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be		
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after		
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)		
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;			
	check mitigation effectiveness.	(The above actions should be	4. Supervise the			
	(The above actions should be taken	taken within 2 working days after	implementation of remedial			
	within 2 working days after the	the exceedance is identified)	measures.			
	exceedance is identified)		(The above actions should be			
			taken within 2 working days			
			after the exceedance is			
			identified)			
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to		
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;		
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial		
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3		
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;		
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed		
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;		

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT	ACTION				
ACTION LEVEL	ET	IEC	ER	CONTRACTOR	
Design Check	1. Check final	1. Check report.	Undertake remedial design if necessary		
	design conforms to	2. Recommend			
	the requirements	remedial design if			
	of EP and prepare	necessary			
	report.				
Non-conformity on one occasion	1. Identify Source	1. Check report	Notify Contractor	1. Amend working methods	
	2. Inform IEC and	2. Check Contractor's	2. Ensure remedial measures are properly	2. Rectify damage and	
	ER	working method	implemented	undertake any necessary	
	3. Discuss remedial	3. Discuss with ET and		replacement	
	actions with IEC,	Contractor on possible			
	ER and Contractor	remedial measures			
	4. Monitor remedial	4. Advise ER on			
	actions until	effectiveness of			
	rectification has	proposed remedial			
	been completed	measures.			
		5. Check implementation			
		of remedial measures.			
Repeated Non-conformity	1. Identify Source	1. Check monitoring	1. Notify Contractor	Amend working methods	
	Inform IEC and	report	2. Ensure remedial measures are properly	2. Rectify damage and	

ER	2. Check Contractor's	implemented	undertake any necessary
2. Increase	working method		replacement
monitoring	3. Discuss with ET and		
frequency	Contractor on possible		
3. Discuss remedial	remedial measures		
actions with IEC,	4. Advise ER on		
ER and Contractor	effectiveness of		
4. Monitor remedial	proposed remedial		
actions until	measures		
rectification has	5. Supervise		
been completed	implementation of		
5. If non-conformity	remedial measures.		
stops, cease			
additional			
monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	Recommended Mitigation Measures	Implementation
Entre	Teetominentee Magailon Measures	Status
Constructi	on Air Quality	
S6.5	8 times daily watering of the work site with active dust emitting activities.	۸
S6.8	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation	
	measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	
	Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to	
	reduce dust emission.	*
	Misting for the dusty material should be carried out before being loaded into the vehicle. Any vehicle with an open load carrying area should	
	have properly fitted side and tail boards.	۸
	Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened	
	and covered by a clean tarpaulin.	۸
	The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should	
	also be dampened if necessary before transportation.	٨
	The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways	
	insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	۸
	Vehicle washing facilities should be provided at every vehicle exit point.	
	The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with	۸
	concrete, bituminous materials or hardcores.	۸
	Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road	
	surface wet.	۸
	• Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the	
	three sides.	*
	Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.	
		۸

S6.8	DWFI compound for JVBC:	N/A
	A DWFI compound is proposed at the downstream of JVC to contain pollution in drainage systems entering the KTAC and KTTS	
	by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of	
	the compounds to prevent any accumulation of sediment within the downstream section of JVBC and hence fully mitigate the	
	potential odour emissions from the headspace of JVBC near the existing discharge locations. The odour generating operations	
	within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high efficiency	
	deodorizers before discharge to the atmosphere.	
	Desilting compound for KTN:	N/A
	Two desilting compounds are proposed for KTN (at Site 1D6 and Site 1P1) to contain pollution in drainage systems entering the	
	KTAC and KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities	
	will form part of the compounds to prevent any accumulation of sediment within the downstream section of KTN and hence fully	
	mitigate the potential odour emissions from the headspace of KTN near the existing discharge locations. The odour generating	
	operations within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high	
	efficiency deodorizers before discharge to the atmosphere.	
	Decking or reconstruction of KTN within apron area:	N/A
	It is proposed to deck the KTN or reconstruct the KTN within the former Apron area into Kai Tak River from the south of Road D1	
	to the north of Road D2 along the existing alignment of KTN. The Kai Tak River will compose of a number of channels flowing with	
	nonodorous fresh water and THEES effluent. The channel flowing with THEES effluent will be designed with the width of water	
	surface of not more than 16m.	
	Localised maintenance dredging:	N/A
	Localised maintenance dredging should be conducted to provide water depth of not less than 3.5m over the whole of KTAC and	
	KTTS. With reference to the water depth data recorded during the odour survey, only some of the areas in the northern part of	
	KTAC (i.e. to the north of taxiway bridge) including the area near the northern edge of KTAC, the area near western bank of	
	KTAC, and the area near the JVC discharge have water depths shallower than 3.5m. The area involved would be about 40% of	
	the northern KTAC and the dredging depth required would be from about 2.7m to less than 1m. The maintenance dredging to be	
	carried out prior to the occupation of any new development in the immediate vicinity of KTAC to avoid potential localized odour	

	impacts at the future ASRs during the maintenance dredging operation.	
	Improvement of water circulation in KTAC and KTTS:	N/A
	600m gap opening at the northern part of the former Kai Tak runway, the water circulation in KTAC and KTTS would be	
	substantially improved. Together with the improvement in water circulation, the DO level in KTAC and KTTS would also be	
	increased.	
	In-situ sediment treatment by bioremediation:	N/A
	Bioremediation would be applied to the entire KTAC and KTTS.	
Constru	uction Noise	
S7.8	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air	۸
	Compressor, Bar Bender, Concrete Pump, Generator and Water Pump.	
S7.9	Good Site Practice:	
	Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program.	۸
	Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction	۸
	program.	
	Mobile plant, if any, should be sited as far away from NSRs as possible.	۸
	Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be	۸
	throttled down to a minimum.	
	Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away	۸
	from the nearby NSRs.	
	Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site	۸
	construction activities.	
S7.9	Scheduling of Construction Works during School Examination Period	٨
S7.8	(i) Provision of low noise surfacing in a section of Road L2; and	N/A
	(ii) Provision of structural fins	N/A
S7.8	(i) Avoid the sensitive façade of class room facing Road L2 and L4; and	N/A
	(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A
		L

S7.8	(i)	Provision of low noise surfacing in a section of Road L4 before occupation of Site 1I1; and	N/A
	(ii)	Setback of building about 5m from site boundary.	N/A
S7.8	Setbac	ck of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
S7.8	(i)	avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and Avoid the sensitive	N/A
		façade of class room facing Road L2 and L4; and	
	(ii)	for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or	N/A
		do not provide the facades with openable window.	
S7.8	(i)	avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or	N/A
	(ii)	provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height of the residential block(s)	N/A
		located at less than 55m away from To Kwa Wan Road to no more than 25m above ground	
S7.8	(i)	avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po	٨
		Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to	
		minimise the potential traffic noise impacts from the slip road	
S7.8	All the	ventilation fans installed in the below will be provided with silencers or acoustics treatment.	
	(i)	SPS	N/A
	(ii)	ESS	N/A
	(iii)	Tunnel Ventilation Shaft	N/A
	(iv)	EFTS depot	N/A
S7.8	Installa	ntion of retractable roof or other equivalent measures	N/A
Constru	uction W	ater Quality	
S8.8	The fol	lowing mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including:	
	•	Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply;	N/A
	•	Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty	N/A
		pumps;	
	•	An alarm should be installed to signal emergency high water level in the wet well at all SPSs; and	N/A

	For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should	N/A
	be provided so that swift actions could be taken in case of malfunction of unmanned facilities	
S8.8	Construction Phase	
	Marine-based Construction	
	Capital and Maintenance Dredging for Cruise Terminal	
	Mitigation measures for construction of the proposed cruise terminal should follow those recommended in the approved EIA for CT	N/A
	Dredging.	
S8.8	Fireboat Berth, Runway Opening and Road T2	
	Silt curtains should be deployed around the close grab dredger to minimize release of sediment and other contaminants for any	N/A
	dredging and filling activities in open water.	
S8.8	Dredging at and near the seawall area for construction of the public landing steps cum fireboat berth should be carried out at a	N/A
	maximum production rate of 1,000m³ per day using one grab dredger.	
S8.8	The proposed construction method for runway opening should adopt an approach where the existing seawall at the runway will not be	N/A
	removed until completion of all excavation and dredging works for demolition of the runway. Thus, excavation of bulk fill and majority of	
	the dredging works will be carried out behind the existing seawall, and the sediment plume can be effectively contained within the works	
	area. As there is likely some accumulation of sediments alongside the runway, there will be a need to dredge the existing seabed after	
	completion of all the demolition works. Dredging alongside the 600m opening should be carried out at a maximum production rate of	
	2,000m³ per day using one grab dredger.	
8.8	Dredging for Road T2 should be conducted at a maximum rate of 8,000m³ per day (using four grab dredgers) whereas the sand filling	N/A
	should be conducted at a maximum rate of 2,000m3 per day (using two grab dredgers).	
8.8	Silt screens shall be applied to seawater intakes at WSD seawater intake.	N/A

S8.8	Land-based Construction	
	Construction Runoff	
	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion.	
	Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of	
	appropriate mitigation measures which include:	
	use of sediment traps	۸
	adequate maintenance of drainage systems to prevent flooding and overflow	*
S8.8	Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September).	*
	All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days	
	of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year	
	when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.	
S8.8	Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance.	۸
	The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection.	
	Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond.	
	Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of	
	efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	
S8.8	Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m³ capacity, are	۸
	recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is	
	flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	
S8.8	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m³ should be covered with	۸
	tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt	
	or debris into any drainage system.	
S8.8	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt,	۸
	construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	
S8.8	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and	۸
	actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid	

	to the control of silty surface runoff during storm events.	
S8.8	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm	N/A(1)
	water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	
S8.8	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by	٨
	them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should	
	have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of	
	access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the	
	wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	
S8.8	Drainage	
	It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities.	٨
	Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There	
	should be no direct discharge of effluent from the site into the sea	
S8.8	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the	٨
	controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and	
	efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original	
	condition when the construction work has finished or the temporary diversion is no longer required.	
S8.8	All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110%	٨
	of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	
S8.8	Sewage Effluent	
	Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment	Λ
	facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer	
	system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction	
	workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	

S8.8	Stormwater Discharges	
	Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned	۸
	seawater intakes	
S8.8	Debris and Litter	
	In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under	۸
	conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine	
	waters does not occur	
S8.8	Construction Works at or in Close Proximity of Storm Culvert or Seafront	
	The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah	۸
	is low.	
S8.8	The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage	۸
	channel /storm culvert / nullah.	
S8.8	Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials	٨
	should be located well away from any water courses during carrying out of the construction works	
S8.8	Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	۸
S8.8	Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water	۸
	receivers.	
S8.8	Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where	۸
	practicable.	
S8.8	Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality	۸
	impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	
S8.8	Construction effluent, site run-off and sewage should be properly collected and/or treated.	٨
S8.8	Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead	N/A

	edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	
S8.8	Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage	N/A
	of construction materials.	
S8.8	Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	N/A
S8.8	Supervisory staff should be assigned to station on site to closely supervise and monitor the works	۸
S8.8	Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	N/A
Constru	uction Waste Management	
S9.5	Good Site Practices	
	It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to.	
	Recommendations for good site practices during the dredging activities include:	
	Nomination of an approved person, such as a site manager, be responsible for good site practices, arrangements for collection	۸
	and effective disposal to an appropriate facility, of all wastes generated at the site.	
	Training of site personnel in proper waste management and chemical waste handling procedures.	٨
	Provision of sufficient waste disposal points and regular collection for disposal.	٨
	Appropriate measure to minimize windblown litter and dust during transportation of waste by either covering trucks or by	٨
	transporting wastes in enclosed containers.	
	A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	٨
S9.5	Waste Reduction Measures	
	Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the	
	planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste	
	reduction include:	
	Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals	٨
	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of	۸
	materials and their proper disposal	
	Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be	۸
	segregated from other general refuse generated by the work force	

	Annual description with a second for the second sec	۸
	Any unused chemicals or those with remaining functional capacity should be recycled	
	Proper storage and site practices to minimise the potential for damage or contamination of construction materials	^
S9.5	Dredged Marine Sediment	
	The basic requirements and procedures for dredged mud disposal are specified under the ETWB TCW No. 34/2002. The management	N/A
	of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is required under the	
	Dumping at Sea Ordinance and is the responsibility of the Director of Environmental Protection (DEP)	
S9.5	The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC	N/A
	depending on their level of contamination. Sediment classified as Category L would be suitable for Type 1 - Open Sea Disposal.	
	Contaminated sediment would require either Type 1 – Open Sea Disposal (Dedicated Sites), Type 2 - Confined Marine Disposal, or	
	Type 3 – Special Treatment / Disposal and must be dredged and transported with great care in accordance with ETWB TCW No.	
	34/2002. Subject to the final allocation of the disposal sites by MFC, the dredged contaminated sediment must be effectively isolated	
	from the environment and disposed properly at the designated disposal site	
S9.5	It will be the responsibility of the contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to	
	be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal	
	Sediment Quality Report to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works should apply	
	for allocation of marine disposal sites and all necessary permits from relevant authorities for the disposal of dredged sediment. During	
	transportation and disposal of the dredged marine sediments requiring Type 1, Type 2, or Type 3 disposal, the following measures	
	should be taken to minimise potential impacts on water quality:	
	Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be	N/A
	cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved	
	Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation.	N/A
	Transport barges or vessels should be equipped with automatic selfmonitoring devices as required under the Dumping at Sea	
	Ordinance and as specified by the DEP	
	Barges or hopper barges should not be filled to a level that would cause the overflow of materials or sediment laden water during	N/A
	loading or transportation	
	1	

S9.5	Construction and Demolition Material	
	Mitigation measures and good site practices should be incorporated into contract document to control potential environmental impact	
	from handling and transportation of C&D material. The mitigation measures include:	
	Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal,	۸
	the transient stockpiles should be located away from waterfront or storm drains as far as possible	
	Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric	۸
	Skip hoist for material transport should be totally enclosed by impervious sheeting	٨
	Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site	٨
	The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should	٨
	be paved with concrete, bituminous materials or hardcores	
	The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting	۸
	to ensure dust materials do not leak from the vehicle	
	All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty	۸
	materials wet	
	The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust	٨
	generation from unloading	
	When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of	٨
	size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the	
	surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB	
	TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the	
	contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An	
	Independent Environmental Checker should be responsible for auditing the results of the system.	

S9.5	Chemica	al Waste	
	After use	e, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of	*
		on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for	
	disposal	at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation	
S9.5	General	Refuse	
	General	refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be	*
	employe	d by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage	
	methods	(including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by	
	wind, wa	stewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem	
Construc	ction La	ndscape and Visual	
S13.9	CM1	All existing trees should be carefully protected during construction.	٨
	CM2	Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be	٨
		submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations	
		of transplanted trees should be agreed prior to commencement of the work.	
	СМЗ	Control of night-time lighting.	N/A(1)
	CM4	Erection of decorative screen hoarding.	۸

Remarks:

- ^ Compliance of mitigation measure
- * Recommendation was made during site audit but improved/rectified by the Contractor
- Non-compliance but rectified by the Contractor
- X Non-compliance of mitigation measure
- N/A Not Applicable at this stage
- N/A(1) Not observed

APPENDIX L
SUMMARIES OF ENVIRONMENTAL
COMPLAINT, WARNING, SUMMON
AND NOTIFICATION OF SUCCESSFUL
PROSECUTION

Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Reporting Period: May 2018

Complaint Log

EPD Complaint Ref No.	Location	Received Date	Details of Complaint	Investigation/Mitigation Action	Status
17-34438	Dakota Drive and Olympic Avenue	23 October 2017	The complainant concerned about the dust emission when vehicle running on the dry surface outside Dakota Drive and Olympic Avenue. In addition, vehicles were not clear enough before leaving the construction site.	In accordance with the information gathered in the investigation, construction activities were conducted with proper mitigation measures to minimize the dust impact arise from the construction site to the vicinity of this Project. Regular water spraying was provided to haul roads and unpaved areas within the site areas to reduce the dust impact arise from the construction site to the vicinity of this Project. The Contractor had also ensured vehicles and plants were wheel washed to be cleaned of mud and debris before leaving the construction site area. Therefore, the complaint is considered as non-project related. The following recommendations were made to further enhance the mitigation measures: • Where practicable, to provide sheltered area on the top and three sides for stockpiles of dusty materials, or perform frequent water spraying so as to maintain the entire surface wet; • Frequent checking and repair the gaps or broken tarpaulin sheets; and • To provide a hard-surfaced road between any cleaning facility and the public Road	Closed

Remarks: No complaint was received in the reporting month.

MA16043\App L

Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Warnings / Summons and Successful Prosecutions received

Log Ref.	Received Date	Details of Warning / Summons and Successful Prosecutions	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A

Remarks: No warning/summon and prosecution was received in the reporting month.

 $MA16043\App L$ 2

APPENDIX M SUMMARY OF WASTE GENERATION AND DISPOSAL RECORDS Department: CEDD

Contract No.: KL/2015/02

Project : Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area

Monthly Summary Waste Flow Table for 2018

As at 1 June 2018

	Actual Quantities of Inert C & D Materials Generated Monthly							Actual Quantities of C & D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse	
	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)	
Jan	0	0	0	0	0	0	0	0	0	0	63	
Feb	0	0	0	0	0	0	0	0	0	0	56	
Mar	0	0	0	0	0	0	0	0	0	0	21	
Apr	0	0	0	0	0	0	0	0	0	0	14	
May	0	0	0	0	0	0	0	0	0	0	28	
June												
Sub-total	0	0	0	0	0	0	0	0	0	0	182	
July												
Aug												
Sept												
Oct												
Nov												
Dec												
Total	0	0	0	0	0	0	0	0	0	0	182	

Forecast of Total Quantities of C&D Materials to be Generated from the Contract*										
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)

Notes:

- (1) The performance targets are given in PS clause 6(14).
- (2) The waste flow table shall also include C & D materials that are specified in the Contract to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging material.
- (4) The Contractor shall also submit the latest forcast of the total amount of C&D materials exected to be generated from the Works, together with a braskdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or excreeding 50,00 m³. (PS Cleuse 25.02A(7) refers).