FUGRO TECHNICAL SERVICES LIMITED Tel

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

MONTHLY EM&A REPORT

October 2018

Client	:	Civil Engineering and Development Department, HKSAR
Contract No.	:	KLN/2015/07
Contract Name	:	Environmental Monitoring Works for Contract KL/2014/03 – Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway
Report No.	:	0405/15/ED/1119A
EP-337/2009	New Deve	Distributor Roads Serving the Planned Kai Tak elopment Area
EP-339/2009/A	Deco Builc of the	ommissioning of the Remaining Parts (Ex-GFS ling, Radar Station and Hong Kong Aviation Club) e former Kai Tak Airport

EP-451/2013 Trunk Road T2

Prepared by Janet W. T. Yu 2

1

Reviewed by 2

Certified by

Alfred Y. S. Lam

Colin K. L. Yung Environmental Team Leader **Fugro Technical Services Limited**

A Fugro Group Company

12 November 2018

Ref.: CEDKTDS3EM00_0_0345L.18

By Post and Email

Hyder-Meinhardt Joint Venture 17/F, Two Harbour Square, 180 Wai Yip Street, Kwun Tong Kowloon, Hong Kong

Attention: Mr. Wong W. K., Chris

Dear Mr. Wong,

Re: Contract No. KL/2014/03 – Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway <u>Monthly EM&A Report for October 2018</u>

Reference is made to the Environmental Team's submission of the Monthly EM&A Report for October 2018 (Report No. 0405/15/ED/1119A) we received by e-mail on 12 November 2018.

Please be informed that we have no adverse comment on the captioned report. We hereby verify the captioned submission according to Condition 3.3 of EP-337/2009, Condition 3.3 of EP-339/2009/A and Condition 3.4 of EP-451/2013.

Thank you for your attention. Please do not hesitate to contact us should you have any queries.

Yours sincerely, For and on behalf of Ramboll Hong Kong Limited

Angthe Bloop

F. C. Tsang Independent Environmental Checker

c.c.	CEDD	Attn.:	Ms. Amy Chu
	MateriaLab	Attn.:	Mr. Colin K. L. Yung
	CRBC	Attn.:	Mr. Dickey Yau

Fax: 2369 4980 Fax: 3565 4160 Fax: 2283 1689

Q:\Projects\CEDKTDS3EM00\02_Proj_Mgt\02_Corr\CEDKTDS3EM00_0_0345L.18.docx

Ramboll Hong Kong Limited 英環香港有限公司

21/F, BEA Harbour View Centre, 56 Gloucester Road, Wan Chai, Hong Kong Tel: 852.3465 2888 Fax: 852.3465 2899 www.ramboll.com

TABLE OF CONTENTS

EXE(CUTIVE SUMMARY	
1.	INTRODUCTION	1
2.	AIR QUALITY	4
3.	NOISE	9
4.	LANDSCAPE AND VISUAL	13
5.	WASTE MANAGEMENT	14
6.	SITE INSPECTION	15
7.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	16
8.	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	17
9.	FUTURE KEY ISSUES	18
10.	CONCLUSIONS	19

FIGURES

Figure 1	Project General Layout
Figure 2	Air and Noise Monitoring Locations

LIST OF APPENDICES

Appendix A	Construction Programme
------------	------------------------

- Appendix B Project Organization Chart
- Appendix C Action and Limit Levels for Air Quality and Noise
- Appendix D Calibration Certificates of Monitoring Equipment
- Appendix E Environmental Monitoring Schedules
- Appendix F Air Quality Monitoring Data
- Appendix G Noise Monitoring Data
- Appendix H Event Action Plans
- Appendix I Waste Flow Table
- Appendix J Environmental Mitigation Implementation Schedule (EMIS)
- Appendix K Weather and Meteorological Conditions during Reporting Month
- Appendix L Cumulative statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions
- Appendix M Summary of Site Audit in the Reporting Month
- Appendix N Outstanding Issues and Deficiencies

EXECUTIVE SUMMARY

- i. The Civil Engineering and Development Department HKSAR has appointed Fugro Technical Services Limited (FTS) to undertake the Environmental Team services for the Project and implement the EM&A works.
- ii. This Monthly EM&A report presents the environmental monitoring and audit works for the period between 1 October and 31 October 2018. As informed by the Contractor, major activities in the reporting month were:
 - Excavation and laying of drainage pipe and manhole;
 - Excavation and ELS construction;
 - · Construction of Supporting Underground Structure; and
 - · Construction of District Cooling System.

Breaches of the Action and Limit Levels

iii. No Action / Limit Level exceedance was recorded for 24-hr TSP and construction noise at KTD1a, KTD2b and KER1b in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

iv. No environmental complaint, notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

v. There was no reporting change in the reporting month.

Future Key Issues

vi. The key issues to be considered in the coming reporting month include:

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality, waste management and landscape and visual impact.

1. INTRODUCTION

1.1 Background

- 1.1.1 The Kai Tak Development is located in the south-eastern part of Kowloon Peninsula of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling.
- 1.1.2 Contract No. KL/2014/03 is the works package to construct an approximately 420m long supporting underground structure (SUS) underneath Shing Cheong Road and Cheung Yip Street. The EM&A programme under this Contract is governed by three EPs (EP-337/2009, EP-339/2009/A and EP-451/2013) and two EM&A Manuals (AEIAR-130/2009 and AEIAR-174/2013). The Works to be executed under this Contract and corresponding EPs include but not be limited to the following main items:

EP-451/2013 – Trunk Road T2

(i) Construction of approximately 420m long supporting underground structure (SUS) including diaphragm walls, barrettes, piled foundation, top and bottom slabs, end wall and adits underneath Shing Cheong Road and Cheung Yip Street;

EP-337/2009 – New Distributor Roads Serving the Planned Kai Tak Development

- (ii) Widening and re-alignment of Cheung Yip Street of approximately 330m long and associated footpaths;
- (iii) Demolition, reconstruction and widening of Shing Cheong Road of approximately 410m long and associated footpaths;
- (iv) Construction of drainage outfall and modification of existing seawall;
- (v) Construction of ancillary works including surface drainage, sewerage, water, fire fighting, street lighting, street furniture, road marking, road signage, utilities and services, irrigation and landscape works.

EP-339/2009/A – Decommissioning of the Remaining Parts (Ex-GFS Building, Radar Station and Hong Kong Aviation Club) of the former Kai Tak Airport

(vi) Demolition of RADAR Tower and guard house;

Other works not covered by any EP

- (vii) Construction of two subways between Phase II of New Acute Hospital (Site A) and Hong Kong Children's Hospital (Site C), and between Phase I of New Acute Hospital (Site B) and Site C;
- (viii) Construction of District Cooling System (DCS) along Cheung Yip Street and Shing Cheong Road
- 1.1.3 The location and boundary of the site is shown in **Figure 1**.
- 1.1.4 This Monthly EM&A report is required under EP-337/2009 Condition 3.3, EP-339/2009/A Condition 3.3 and EP-451/2013 Condition 3.4. It is to report the results and findings of the EM&A programme required in the EM&A Manuals.
- 1.1.5 This is the thirty second monthly EM&A Report which summarize the impact monitoring results and audit findings for the Project within the period between 1 October 2018 and 31 October 2018.

1.2 **Project Organization**

- 1.2.1 The project proponent was the Civil Engineering and Development Department, HKSAR (CEDD). Hyder Meinhardt Joint Venture (HMJV) was commissioned by CEDD as the Engineer for the Project. Ramboll Hong Kong Limited was commissioned as the Independent Environmental Checker (IEC). China Road and Bridge Corporation (Hong Kong) (CRBC) was appointed as the main contractor for the construction works under the contract KL/2014/03. Fugro Technical Services Limited (FTS) was appointed as the Environmental Team (ET) by CEDD to implement the EM&A programme for the Project.
- 1.2.2 The organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarized in **Table 1.1**.

Party	Position	Name	Telephone	Fax
Project Proponent (CEDD)	Co-ordinator	Ms. Amy Chu	3106 3172	2369 4980
Engineer's Representative (HMJV)	Chief Resident Engineer	Mr. W. K., Chris Wong	3742 3803	3742 3899
IEC (Ramboll Hong Kong Limited)	Independent Environmental Checker	Mr. F. C. Tsang	3465 2851	3465 2899
Main Contractor (CRBC)	Site Agent	Mr. Yau Kwok Kiu, Dickey	5699 4503	2283 1689
	Environmental Officer	Mr. Calvin So	9724 6254	2283 1689
ET (FTS)	Environmental Team Leader	Mr. Colin Yung	3565 4114	3565 4160

 Table 1.1
 Contact Information of Key Personnel

1.3 Construction Programme and Activities

- 1.3.1 The construction of the Project commenced in February 2016 and is expected to complete in 2020. The construction programme is shown in **Appendix A**.
- 1.3.2 A summary of the major construction activities undertaken in the reporting month were:
 - · Excavation and laying of drainage pipe and manhole;
 - Excavation and ELS construction;
 - · Construction of Supporting Underground Structure; and
 - · Construction of District Cooling System.

1.4 Inter-relationship with the environmental protection/ mitigation measures with the construction programme

1.4.1 According to the construction activities in the construction programme mentioned in Section 1.3.2, the following environmental protection/ mitigation measures including Air Quality Impact, Construction Noise Impact, Water Quality Impact, Chemical and Waste Management, Landscape and Visual Impact shall be implemented:

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

- · Sufficient watering of the works site with the active dust emitting activities;
- · Limitation of the speed for vehicles on unpaved site roads;
- · Properly cover or enclosure of the stockpiles and dusty materials;
- · Good site practices on loading dusty materials;
- · Providing sufficient vehicles washing facilities at every vehicle exit point;
- · Good maintenance to the plant and equipment;
- · Use of quieter plant and Quality Powered Mechanical Equipment (QPME);
- Use of acoustic fabric and noise barrier;
- Using the approved Non-road Mobile Machineries (NRMMs);
- Proper storage and handling of chemical;
- Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge;
- Onsite waste sorting and implementation of trip ticket system;
- Training of the site personnel in proper waste management and chemical waste handling procedures;
- · Proper storage of the construction materials;
- · Erection of decorative screen hoarding;
- · Strictly following the Environmental Permits and Licenses;
- Provide sufficient mitigation measures as recommended in Approved EIA Reports

1.5 Status of Environmental Licences, Notifications and Permits

1.5.1 A summary of the relevant environmental licenses, permits and/or notifications on environmental protection for this Contract is presented in **Table 1.2**.

Environmental License / Permit / Notification	Reference Number	Valid From	Valid Till
Environmental Permit	EP-337/2009	23 April 2009	Not Applicable
	EP-339/2009/A	18 June 2009	Not Applicable
	EP-451/2013	19 September 2013	Not Applicable
Air Pollution (Construction Dust) Regulation	395601	4 December 2015	Not Арріїсаріе
Billing Account for Waste Disposal	A/C No.: 7023814	22 December 2015	Not Applicable
Billing Account for Waste Disposal (Vessel)	A/C No.: 7027469	9 August 2018	18 November 2018
Construction Noise Permit	GW-RE0395-18	5 June 2018	4 December 2018
Construction Noise Permit	GW-RE0489-18	14 July 2018	11 January 2019
Wastewater Discharge License	WT00023125-2015	6 January 2016	31 January 2021
Chemical Waste Producer License	5213-247-C1232-12	23 November 2015	Not Applicable

Table 1.2 Relevant Environmental Licenses, Permits and/or Notifications

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

2. AIR QUALITY

2.1 Monitoring Requirement

In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out at least once every 6 days. In case of complaints, 1-hour TSP monitoring should be carried out at least 3 times per 6 days when the highest dust impacts are likely to occur. The Action and Limit Levels of the air quality monitoring are given in **Appendix C**.

2.2 Monitoring Equipment

The 24-hour TSP air quality monitoring was performed using High Volume Air Samplers (HVS) located at each of the designated monitoring station. Portable TSP Monitors would be used in case of complaints for 1-hour TSP monitoring.

Table 2.1 summarizes the equipment used in air quality monitoring.

	Seria Seria				
ltem	Location	Brand	Model	Equipment	Number
1			TE-5170 (TSP)	High Volume Sampler	
			TE-300-310X	- Mass Flow Controller	2037
	KER1b	Tisch	TE-5005X	- Blower Motor Assembly	3482
			TE-5007X	- Mechanical Timer	4488
			TE-5009X	- Continuous Flow Recorder	4371
2			TE-5170 (TSP)	High Volume Sampler	
		Tisch	TE-300-310X	- Mass Flow Controller	2524
	KTD1a		TE-5005X	- Blower Motor Assembly	4037
			TE-5007X	- Mechanical Timer	5160
			TE-5009X	- Continuous Flow Recorder	4377
3			TE-5170 (TSP)	High Volume Sampler	
			TE-300-310X	- Mass Flow Controller	2618
	KTD2b	Tisch	TE-5005X	- Blower Motor Assembly	3838
			G3031	- Mechanical Timer	2251
			G1051	- Continuous Flow Recorder	2307
4		Tisch	TE-5025A	HVS Sampler Calibrator	438320/2456
5		*Sibata	Model LD-3B	Sibata Portable TSP Monitors	NA

Table 2.1 Air Quality Monitoring Equipment

Note:

No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted.

2.3 Monitoring Methodology

2.3.1 24-hour TSP air quality monitoring

HVS Installation

The following guidelines were adopted during the installation of HVS:

- Sufficient support is provided to secure the samplers against gusty wind.
- No two samplers are placed less than 2 meters apart.

- The distance between the sampler and an obstacle, such as buildings, is at least twice the height that the obstacle protrudes above the sampler.
- A minimum of 2 meters of separation from walls, parapets and penthouses is required for rooftop samples.
- A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
- No furnaces or incineration flues are nearby.
- Airflow around the samplers is unrestricted.
- The samplers are more than 20 meters from the drip line.
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.

Filters Preparation

Fiberglass filters (provided by the HOKLAS accredited laboratory) shall be used (Note: these filters have a collection efficiency of larger than 99% for particles of 0.3 µm diameter). A HOKLAS accredited laboratory (ALS Technichem (HK) Pty Ltd.) is responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for monitoring team.

All filters are equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature is around 25°C and not variable by more than \pm 3°C; the relative humidity (RH) is < 50% and not variable by more than \pm 5%. A convenient working RH is 40%.

Operating / Analytical Procedures

Operating / analytical procedures for the air quality monitoring are highlighted as follows:

- Prior to the commencement of the dust sampling, the flow rate of the HVS are properly set (between 0.6 m³/min and 1.7 m³/min) in accordance with the EM&A manual. The flow rate shall be indicated on the flow rate chart.
- The power supply shall be checked to ensure the samplers worked properly.
- On sampling, the samplers shall be operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
- The filter holding frame is then removed by loosening the four nuts and carefully a weighted and conditioned filter is centered with the stamped number upwards, on a supporting screen.
- The filter shall be aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame is tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The shelter lid shall be closed and secured with the aluminum strip.
- The timer is then programmed. Information shall be recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After sampling, the filter shall be removed and sent to laboratory for weighing. The elapsed time is also recorded.
- Before weighing, all filters are equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results are returned to MCL for further analysis of TSP concentrations collected by each filter.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

2.3.2 1-hour TSP air quality monitoring

Operating / Analytical Procedures

The measuring procedures of the 1-hr dust meter are in accordance with the Manufacturer's instruction Manual as follows:

- Pull up the air sampling inlet cover
- Change the Mode 0 to BG once
- Push Start/Stop switch once
- Turn the knob to SENSI.ADJ and press it
- Push Start/Stop switch once
- Return the knob to the position MEASURE slowly
- Push the timer set switch to set measuring time
- Remove the cap and make a measurement

2.4 Maintenance / Calibration

2.4.1 24-hour TSP air quality monitoring

The following maintenance / calibration are required for the HVS:

- The high volume motors and their accessories are properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking are made to ensure that the equipments and necessary power supply are in good working condition.
- All HVS shall be calibrated (five point calibration) using Calibration Kit upon installation and thereafter in every 3 months.
- A copy of the calibration certificates for the HVS and calibrator are provided in Appendix D.
- 2.4.2 1-hour TSP air quality monitoring

The portable TSP monitor should be calibrated at 1 year intervals

2.5 Monitoring Locations

- 2.5.1 According to the EM&A Manual, three air quality monitoring locations, namely KTD1, KTD2 and KER1, are covered by this Contract within the South Apron Area of Former Kai Tak Airport. The other two air quality monitoring locations, which are identified in Cha Kwo Ling area, are farther than 500m away from the site boundary and thus not covered by this Contract. The monitoring works in Cha Kwo Ling area are covered by other Contract(s) respectively.
- 2.5.2 According to the approved alternative baseline air quality and noise monitoring locations (EPD reference: () in EP2/K19/A/21 pt.5), the original monitoring locations (KTD1, KTD2 and KER1) are proposed to be replaced by alternative monitoring locations (KTD1a, KTD2a and KER1a) for air quality monitoring.
- 2.5.3 According to the approved relocation of monitoring location KER1a (EPD reference: () in EP2/K19/A/21 pt.5), the monitoring location KER1a are proposed to be relocated by alternative monitoring locations KER1b for air quality monitoring.

- 2.5.4 According to the approved relocation of monitoring location KTD2a (EPD reference: () in EP2/K19/A/21 pt.6), the monitoring location KTD2a are proposed to be relocated by alternative monitoring locations KTD2b for air quality monitoring.
- 2.5.5 The most updated locations are summarized in **Table 2.2** and shown in **Figure 2**.

Monitoring Station	Location			
KTD1a	Centre of Excellence in Paediatrics (Children's Hospital)			
KTD2b	G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital)			
KER1b	Site Boundary at Cheung Yip Street			

 Table 2.2
 Location of Air Quality Monitoring Station

2.6 Results and Observations

- 2.6.1 The schedule of air quality monitoring in reporting month is provided in **Appendix E**. Power supply of high volume sampler at KER1b was suspended on 8 October 2018 due to the damage of the cable, TSP monitoring was resumed on 10 October 2018.
- 2.6.2 No Action / Limit Level exceedance was recorded for 24-hr TSP at KTD1a, KTD2b and KER1b in the reporting month.
- 2.6.3 No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted in the reporting month.
- 2.6.4 During the reporting month, major dust sources including loading and unloading of C&D wastes, vehicles movement were observed in the site. Non-project related construction activities at the nearby construction site and road traffic along Shing Cheong Road, Cheung Yip Street and the Kwun Tong By-pass were observed. The above factors may affect the monitoring results.
- 2.6.5 The weather conditions during the monitoring are provided in **Appendix K**.
- 2.6.6 The monitoring data of 24-hr TSP are summarized in **Table 2.3**. Detailed monitoring data are presented in **Appendix F**.

Table 2.5	able 2.5 Summary of 24-min TSP Monitoring Results					
Parameter	Monitoring Station	Average (µg/m³)	Range (µg/ m ³)	Action Level (µg/ m ³)	Limit Level (µg/ m ³)	
24-hr TSP in µg/m³	KTD1a	58	36 - 81	177		
	KTD2b	58	27 - 89	157	260	
	KER1b	66	33 - 143	172		

Table 2.3Summary of 24-hr TSP Monitoring Results

2.6.7 The Event and Action Plan for air quality is given in Appendix H.

2.7 Comparison of 24-hr TSP Monitoring Results with EIA Predictions

2.7.1 The monitoring data of 24-hr TSP was compared with the EIA predictions as summarized in **Table 2.4**.

Website : www.fugro.com

Monitoring StationReceiver ReferencePredicted Maximum 24-hour TSP Concentration (µg/m³)24-hour TSP concentration in October 2018 (µg/m³)Average 24-hour TSP concentration in October 2018 (µg/m³)KTD1aKTD312636 - 8158KTD2b27 - 8958KER1bKTD616933 - 14366	Table 2.4 Comparison of 24-hr TSP data with EIA predictions					
KTD1a KTD3 126 36 - 81 58 KTD2b - - 27 - 89 58 KER1b KTD6 169 33 - 143 66	Monitoring Station	Receiver Reference	Predicted Maximum 24-hour TSP Concentration (µg/m ³)	24-hour TSP concentration in October 2018 (µg/m³)	Average 24-hour TSP concentration in October 2018 (µg/m³)	
KTD2b - 27 - 89 58 KER1b KTD6 169 33 - 143 66	KTD1a	KTD3	126	36 - 81	58	
KER1b KTD6 169 33 - 143 66	KTD2b	-	-	27 - 89	58	
	KER1b	KTD6	169	33 - 143	66	

Note:

Hong Kong.

For KTD2b, there was no receiver reference in the EIA report, EIAR-174/2013. Predicted Maximum TSP Concentration extracted from Table 4.14 of EIA Report, EIAR-174/2013.

2.7.2 The 24-hour TSP monitoring results at KTD1a, KTD2b and KER1b were below the Predicted Maximum 24-hr TSP concentration in the approved Environmental Impact Assessment (EIA) Report and no Action / Limit Level exceedance was recorded in the reporting period.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

3. NOISE

3.1 Monitoring Requirement

3.1.1 In accordance with the approved EM&A Manuals, Leq (30min) monitoring is conducted for at least once a week during the construction phase between 0700 and 1900 on normal weekdays at the designated monitoring locations.

3.2 Monitoring Equipment

- 3.2.1 The sound level meter used in noise monitoring will comply with the International Electrotechnical Commission Publication (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications as referred to in the Technical Memorandum issued under the Noise Control Ordinance (NCO).
- 3.2.2 Sound level calibrator will be used for the on-site calibration of the meter. This calibrator complies with the IEC Publication 942 (1988) Class 1 and ANSI S1.40 1984. Noise measurements were only accepted to be valid if the calibration levels from before and after the measurement agree to within 1.0dB.
- 3.2.3 Measurements shall be recorded to the nearest 0.1dB. Sound level meters are programmed to measure A-weighted equivalent continuous sound pressure level at 30-minute intervals between 0700 and 1900 on normal weekdays at least once a week when construction activities are underway.

Table 3.1 summarizes the noise monitoring equipment model being used for this project.

Item	Brand	Model	Equipment	Serial Number
1	Casella	CEL-63X Series	Integrating Sound Level Meter	3148029
2	Casella	CEL-63X Series	Integrating Sound Level Meter	3756127
3	Casella	CEL-63X Series	Integrating Sound Level Meter	0873599
4	Casella	CEL-120/1	Calibrator	5230758
5	Benetech	GM816	Wind Speed Anemometer	13372555
6	Testo	05600480	Wind Speed Anemometer	61003846

Table 3.1 Noise Monitoring Equipment

3.3 Monitoring Parameters and Frequency

Table 3.2 presents the noise monitoring parameters and frequencies.

Table 3.2 Monitoring Parameters and Frequencies of Noise Monitoring

Parameter	Frequency and Period
LAeq (30min)	At each station at 0700-1900 hours on normal weekdays at a frequency
L10 and L90 will be recorded for reference	of once a week

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

3.4 Monitoring Methodology

3.4.1 The monitoring procedures are as follows:

- The monitoring station is set at a point 1m from the exterior of the sensitive receivers building façade and set at a position 1.2m above the ground.
- The battery condition is checked to ensure good functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time are set as follows:
 - frequency weighting : A
 - time weighting : Fast
 - measurement time : Weekly 30 minutes between 0700-1900 on normal weekdays
- Prior to and after noise measurement, the meter shall be calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement will be considered invalid and repeat of noise measurement is required after re-calibration or repair of the equipment.
- Noise monitoring should be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.
- Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
- At the end of the monitoring period, the Leq, L10 and L90 are recorded. In addition, site conditions and noise sources are recorded on a standard record sheet.

3.5 Maintenance / Calibration

- 3.5.1 Maintenance and Calibration procedures are as follows:
 - The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.
 - The sound level meter and calibrator should be calibrated annually by a HOKLAS laboratory.
 - Relevant calibration certificates are provided in **Appendix D**.

3.6 Monitoring Locations

- 3.6.1 According to the EM&A Manual, three noise monitoring locations, namely KTD1, KTD2 and KER1, are covered by this Contract within the South Apron Area of Former Kai Tak Airport. The other two noise monitoring locations, which are identified in Cha Kwo Ling area, are farther than 300m away from the site boundary and thus not covered by this Contract. The monitoring works in Cha Kwo Ling area are covered by other Contract(s) respectively.
- 3.6.2 According to the approved alternative baseline air quality and noise monitoring locations (EPD reference: () in EP2/K19/A/21 pt.5), the original monitoring locations (KTD1, KTD2 and KER1) are proposed to be replaced by alternative monitoring locations (KTD1a, KTD2a and KER1a) for noise monitoring.
- 3.6.3 According to the approved relocation of monitoring location KER1a (EPD reference: () in EP2/K19/A/21 pt.5), the monitoring location KER1a are proposed to be relocated by alternative monitoring locations KER1b for noise monitoring.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

- 3.6.4 According to the approved relocation of monitoring location KTD2a (EPD reference: () in EP2/K19/A/21 pt.6), the monitoring location KTD2a are proposed to be relocated by alternative monitoring locations KTD2b for noise monitoring.
- 3.6.5 The most updated locations are summarized in **Table 3.3** and shown in **Figure 2**.

Monitoring Station	Location
KTD1a	Centre of Excellence in Paediatrics (Children's Hospital)
KTD2b	G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital)
KER1b	Site Boundary at Cheung Yip Street

 Table 3.3
 Location of Noise Monitoring Station

3.7 Results and Observations

- 3.7.1 The schedule of noise monitoring in reporting month is provided in **Appendix E**.
- 3.7.2 During the monitoring month, at KTD1a, project related construction activities and road traffic along Shing Cheong Road were observed in the surroundings. At KTD2b, road traffic along the Kwun Tong By-pass and non-project related construction activities at the nearby construction site was observed. At KER1b, road traffic along Cheung Yip Street was observed. Major noise sources including noise emission from plant & PME and some other construction activities, travel of vehicles, loading and unloading of C&D waste were observed in the site. The above factors may affect the monitoring results.
- 3.7.3 No raining and wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation. The weather conditions during the monitoring month are provided in **Appendix K**.
- 3.7.4 The noise monitoring data are summarized in **Table 3.4**. Detailed monitoring data are presented in **Appendix G**.

Time Period	Lo Noise I	eq _(30min) dB(/ (Range) Monitoring S	A) Stations	Action Level	Limit Level
	KTD1a	KTD2b	KER1b		
0700-1900 hrs on normal weekdays	65 - 74	63 - 72	64 - 71	When one documented complaint is received	75 dB(A)

 Table 3.4
 Summary of Noise Impact Monitoring Results

Note:

KTD1a: Façade Measurement

KTD2b & KER1b: Free-field measurement (+3dB(A) correction has been applied)

- 3.7.5 No Action / Limit Level exceedance of location KTD1a, KTD2b and KER1b was recorded for construction noise in the reporting month.
- 3.7.6 The Action and Limit Levels for noise impact monitoring have been set and are presented in **Appendix C**.

3.7.7 The Event and Action Plan for noise is given in **Appendix H**.

3.8 Comparison of Noise Monitoring Results with EIA Predictions

3.8.1 The noise monitoring data was compared with the EIA predictions as summarized in Table 3.5.

Table 3.5	Comparison of Nois	e Monitoring data	with EIA predictions

Monitoring Station	Receiver Reference	Maximum Predicted Mitigated Construction Noise Level, dB(A)	Maximum Leq _(30min) dB(A) In October 2018
KTD1a	KTD1	74	74
KTD2b	KTD2	75	72
KER1b	KER1	75	71

Note:

Maximum Predicted Mitigated Construction Noise Level extracted from Table 5.13 of EIA Report, EIAR-174/2013.

3.8.2 The impact noise monitoring results of location KTD1a, KTD2b and KER1b in the reporting month did not exceed the Maximum Predicted Mitigated Construction Noise Level in the approved Environmental Impact Assessment (EIA) Report and no Action / Limit Level exceedance was recorded in the reporting period.

4. LANDSCAPE AND VISUAL

4.1 Audit Requirements

- 4.1.1 As per the Trunk Road T2 EM&A Manual, the landscape and visual mitigation measures during the construction phase shall be audited by a Registered Landscape Architect, as a member of the Environmental Team, at least once every two weeks to ensure compliance with the intended aims of the measures.
- 4.1.2 According to the Kai Tak Development EM&A Manual, measures to mitigate landscape and visual impacts during construction should be checked to ensure compliance with the intended aims of the measures. The progress of the engineering works shall be regularly reviewed onsite to identify the earliest practical opportunities for the landscape works to be undertaken. The ET shall report on the Contractor's compliance on a weekly basis.

4.2 Results and Observations

- 4.2.1 To monitor and audit the implementation of landscape and visual mitigation measures, five weekly Landscape and Visual Site audits were carried out on 3, 10, 16, 24 and 31 October 2018 and two of them 10 and 24 October 2018 were carried out by a Registered Landscape Architect. The weekly Landscape and Visual Impact reports were counter-signed by IEC as according to the requirement of EM&A Manual (AEIAR-130/2009).
- 4.2.2 Should non-compliance of the landscape and visual impact occur, action in accordance to the event action plan presented in **Appendix H** shall be carried out.

5. WASTE MANAGEMENT

5.1 Audit Requirements

- 5.1.1 The effective management of waste arising during the construction phase will be monitored through the site audit programme. Regular audits and site inspections should be carried out to ensure that the recommended good site practices and other mitigation measures are implemented by the Contractor.
- 5.1.2 The audit should look at all aspects of on-site waste management practices including the waste generation, storage, recycling, transport and disposal. The aims of waste audit are:
 - to ensure the waste arising from the works are handled, stored, collected, transferred and disposed of in an environmentally acceptable manner;
 - verify the implementation status and evaluate the effectiveness of the mitigation measures; and
 - to encourage the reuse and recycling of material.

5.2 Results and Observations

- 5.2.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.2.2 The amount of wastes generated by the site activities in the reporting month is shown in **Appendix I**.

6. SITE INSPECTION

6.1 Site Inspection

- 6.1.1 Site inspections were carried out weekly to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix J**.
- 6.1.2 In the reporting month, five site inspections were carried out on 3, 10, 16, 24 and 31 October 2018. Two of them, held on 3 and 24 October 2018 was the joint inspections with the IEC, ER, the Contractor and the ET.
- 6.1.3 No outstanding issues were reported during the reporting month. Details of observations recorded during the site inspections are summarized in **Appendix M**.
- 6.1.4 All the follow-up actions requested by Contractor's ET and IEC during the site inspections were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting month.

7. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

7.1 Environmental Exceedance

7.1.1 No Action / Limit Level exceedance was recorded for 24-hr TSP and construction noise at KTD1a, KTD2b and KER1b in the reporting month.

7.2 Complaints, Notification of Summons and Prosecution

- 7.2.1 No environmental complaint, notification of summons and successful prosecution were received in the reporting month.
- 7.2.2 Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in **Appendix L.**

8. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

8.1 Implementation Status

8.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and the EM&A Manuals. The implementation status of the mitigation measures during the reporting month is summarized in **Appendix J**. Status of required submission under the EP during the reporting period is summarized in **Table 8.1**.

EP Condition	Submission	Submission Date
EP-337/2009		
Condition 2.3	Management Organization of Main Construction Companies	18/12/2015
Condition 2.4	Design Drawing of the Project	18/12/2015
Condition 2.11	Landscape Mitigation Plan(s)	18/12/2015
Condition 3.3	Monthly EM&A Report (September 2018)	12/10/2018
EP-339/2009/A		
Condition 2.4	Management Organization of Main Construction Companies	18/12/2015
Condition 2.5	Design Drawing of the Project	18/12/2015
Condition 3.3	Monthly EM&A Report (September 2018)	12/10/2018
EP-451/2013		
Condition 2.3	Management Organization of Main Construction Companies	18/12/2015
Condition 2.4	Design Drawing of the Project	18/12/2015
Condition 2.5	Landscape Mitigation Plan(s)	18/12/2015
Condition 2.10	Supplementary Contamination Assessment Report	18/12/2015
Condition 3.3	Baseline Monitoring Report	12/02/2016
Condition 3.4	Monthly EM&A Report (September 2018)	12/10/2018

 Table 8.1
 Status of Required Submission under Environmental Permit

 FUGRO TECHNICAL SERVICES LIMITED

 Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T.,
 Tel Fax
 : +852 2450 8233 : +852 2450 6138 E-mail

 : +852 2450 6138
 : -mail ± : matab @fugro.com

9. FUTURE KEY ISSUES

Hong Kong.

9.1 Construction Programme for the Next Two Months

Website : www.fugro.com

- · Installation of sheet pile for drainage works;
- Excavation and laying of drainage pipe and manhole;
- · Construction of road base and road pavement;
- · Construction of Supporting Underground Structure;
- Construction of socketed H-Pile; and
- · Excavation and ELS construction;
- · Construction of District Cooling System.

9.2 Key Issues for the Coming Month

9.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality, waste management and landscape and visual impact.

9.3 Monitoring Schedules for the Next Three Months

9.3.1 The tentative schedules for environmental monitoring in the coming three months are provided in **Appendix E**.

10. CONCLUSIONS

- 10.1.1 24-hour TSP impact monitoring and construction noise monitoring were carried out in the reporting month, no Action / Limit Level exceedance was recorded during the period.
- 10.1.2 No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted in the reporting month.
- 10.1.3 Five environmental site inspections were carried out in the reporting month. Recommendations on mitigation measures on air quality, chemical and waste management and landscape and visual impact were given to the Contractor for remediating the deficiencies identified during the site inspections.
- 10.1.4 Five weekly Landscape and Visual Site audits were carried out on 3, 10, 16, 24 and 31 October 2018 and two of them, 10 and 24 October 2018 were carried out by a Registered Landscape Architect in the reporting month. The weekly Landscape and Visual Impact reports were counter-signed by IEC as according to the requirement of EM&A Manual (AEIAR-130/2009).
- 10.1.5 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

10.2 Comment and Recommendations

- 10.2.1 The recommended environmental mitigation measures, as proposed in the EIA reports and EM&A Manuals shall be effectively implemented to minimize the potential environmental impacts from the Project. The EM&A programme would effectively monitor the environmental impacts generated from the construction activities and ensure the proper implementation of mitigation measures.
- 10.2.2 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

Backfilling materials should be properly covered.

Construction Noise Impact

• No specific observation was identified in the reporting month.

Water Quality Impact

• No specific observation was identified in the reporting month.

Chemical and Waste Management

• Chemical containers should be placed in drip tray.

Land Contamination

• No specific observation was identified in the reporting month.

Landscape and Visual Impact

• Backfilling materials should be properly covered.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

General Condition

• No specific observation was identified in the reporting month.

Permit / Licenses

• No specific observation was identified in the reporting month.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Figure 1

Project General Layout

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

NTED BY: kitchan 18/2/2015 13:00:43 .ENAME: K:\91164 Trunk Road T2\Tender Drawing (Contract 1)\

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Figure 2

Air and Noise Monitoring Locations

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix A

Construction Programme

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Hyder MEINHARDT

	Hyder - Meinh						
Activity ID		Activity Name	Rem Dur	Start	Finish	September 39	October 40 30 07 14 21 29
SUS	updated +	SCR for SUS calendar days Zone 3 stage 2 Time Compression delete Section	on 1 C	SR		02 03 10 23	
Proj	ect Key Date	°S					
Site	Handover D	Pate					
K-P	K-SHD-1100	Portion B	0		30-Sep-18*		Portion B
K-P	K-SHD-1200	Portion B1	0		30-Sep-18*		Portion B1
K-P	K-SHD-1400	Portion D	0		30-Nov-18*		
K-P	K-SHD-1500	Portion E	0		30-Sep-18*		Portion E
K-P	PK-SHD-1600	Portion F	0		08-Oct-18*		◆ Portion F
K-P	PK-SHD-1700	Portion H	0		30-Sep-18*		Portion H
K-P	rK-SHD-2300	Portion P	0		30-Sep-18*		Portion P
K-P	rK-SHD-2500	Portion R	0		30-Sep-18*		Portion R
Gen	eral Submis	sion					
Ma	jor Tempora	ry Works Design					
K-I	PA-GSP-6840	ELS design for construction of subway A (Bay 1&5)	6	28-Feb-18 A	05-Oct-18		ELS design for construction of s
Ma	jor Construc	tion Works Method Statement					
K-I	PA-GSP-7455	Engineer's comments and approval	8	23-Oct-17 A	07-Oct-18		Engineer's comments and app
K-I	PA-GSP-7460	Method statement for Construction of subway A (Bay 1&5)	7	16-Aug-18 A	06-Oct-18		Method statement for Construc
K-I	PA-GSP-7465	Engineer's comments and approval	28	07-Oct-18	03-Nov-18		
Ten	nporary Traf	fic Management					
Im	plementation of	f Temporary Traffic Arrangement					
K-	-PA-TTA-4400	TTA stage 4 - Road diversion for Handover of Portion N	0		02-Oct-18		◆ TTA stage 4 - Road diversion for Ha
Mat	terials Procu	rement (Major Materials)					
Wa	ter Works						
K-I	PA-MP-1050	Manufacturing & delivery to site	80	30-Sep-18	18-Dec-18		
ELS	S struct / wali	ing					
K-I	PA-MP-1150	Manufacturing & delivery to site	57	10-Jun-16 A	25-Nov-18		
Chi	illed Water P	ipes - DCS					
K-I	PA-MP-1350	Manufacturing & delivery to site	155	06-Feb-17 A	03-Mar-19		
Pre	limiaries						
K-D	DR-PRE-1800	Submission of time-lapsed photographs and video	453	20-Feb-16 A	27-Dec-19		
Bar	rge Loading F	acilities					

中國路橋工程有限責任公司 CHINA ROAD AND BRIDGE CORPORATION

Milestone
 Critical Activity
 Non-Critical Activity
 Remaining Level of Effort
 Actual Work

3 MRP Oct 2018 - Dec 2018

Page 1 of 7

Project ID :39 3MRP Oct - Dec 18 Layout : KL201403 3MRP Page 1 of 7

r Runway		CEDD	100 million (100 million)	土木工 Civil Engli Developm 九龍拓展	程拓展 neering a nent Depa	美署 nd irtment	
November	1	~~~~	3	Decen	nber	ue:	arv
41				42	2		43
04 11 18	25	02		09	16	23	30
	•	 Portion I)				
							·;
hway A (Bay 1&5)							
loway A (Day 100)							
oval							
ion of subway A (Bay 1&	5)						
- F		1					
Engineer's comments ar	id appr	ovai					
ndover of Portion N							
					Ma	nufacti	iring &
					Ivia	nuracu	u ing a
				•••••			
	Mar	nufacturing	, &	deliver	y to sit	e	
<u></u>	<u></u>	<u></u>		<u></u>	<u></u>	<u></u>	

		Checkeu	Appiov
30-Sep-18	Oct18 - Dec 18		

Hyder	MEINHARDT	KL/2014/03 Kai Tak Development - S	tage 3 Infras	tructure W	/orks for D	Developments at the So	outhern Part of the Form
Activity ID	Activity Name		Rem Dur	Start	Finish	September 39	October 40
K-DR-PRE-14	480 Operation of tempor	ary barging point	80	21-Jun-17 A	07-Jan-19	02 09 16 23	30 07 14 21 28
Instrumenta	tion and Monitoring						
Tilt Monitor	ing Tile Plates						
K-IM-TMT-10	000 Tilt Monitoring near	PWCL	136	25-Apr-16 A	12-Feb-19		
Section 1 of t	he Works-Remainde	r of the Works					
Roadwork a	nd Drainage Works						
Road D4-3 (Ching Shung Road)						
Zone 2 R & D	Works (Stage 1) CH410	-CH340					
SCR1000	SUS		0	02-Oct-18*			♦ SUS
SCR1020	Trim westside Dwa	1	0		23-Nov-18		
SCR1040	DN250 sewerage (I	HKCH - FMH24-1E - FMH24-1G)	18	04-Dec-18*	24-Dec-18		
SCR1050	Proposed drainage (westbound) SMH14-13 to M111c	18	27-Dec-18*	17-Jan-19		
SCR1120	DN250 sewerage (I	MH24-1G - FMH24-1F)	3	23-Nov-18*	26-Nov-18		
SCR1130	DN350x3 Rising ma	in (from Subway B - FMH24-1B) phase 1 near EB Dwall	6	27-Nov-18*	03-Dec-18		
SCR1140	Proposed drainage M	1112 to M110 (eastbound)	18	27-Nov-18*	17-Dec-18		
SCR1150	Lay fresh watermain	n (eastbound)	24	04-Dec-18*	03-Jan-19		
SCR1210	Construct and divert	temporary footpath	12	04-Dec-18*	17-Dec-18		
SCR1220	Sewerage (from FM	H24-1F - FMH24-1B - FMH24-1C)	48	18-Dec-18	18-Feb-19		
Shing Fung R	Road R & D Works (Stage	1)					
SCR1260	DCS at Zone 2 Bay	1 (CH20 - CH35)	62	16-Oct-18*	29-Dec-18		
Zone 3 R & D	Works (Stage 1) CH340	to CH270 - For shifting of gate no. 1	,,				
SCR1490	Demolition of Dwal	(105mL) for Bay 5 - 7	0		29-Oct-18		♦ De
SCR1510	Drainage (westbour	d) SMH14-9A to SMH14-8	12	19-Nov-18*	01-Dec-18		
SCR1520	Gully Construction		6	03-Dec-18*	08-Dec-18		
SCR1530	Lay 300mm dia. sal	t watermain (westbound)	6	10-Dec-18*	15-Dec-18		
SCR1540	Removal of tempora	ry crane platform	6	17-Dec-18*	22-Dec-18		
SCR1550	Proposed drainage N	1109 to M108 (eastbound)	18	15-Oct-18*	05-Nov-18		
SCR1560	Proposed drainage N	4109c to M109 (eastbound)	12	06-Nov-18*	19-Nov-18		
SCR1570	Gully Construction		6	20-Nov-18*	26-Nov-18		
SCR1580	Proposed drainage N	1108a to M108b (eastbound)	11	06-Nov-18*	17-Nov-18		
SCR1590	Gully Construction		6	19-Nov-18*	24-Nov-18		

Critical Activity Non-Critical Activity Remaining Level of Effort Actual Work

Milestone

•

3 MRP Oct 2018 - Dec 2018

Page 2 of 7

Project ID :39 3MRP Oct - Dec 18 Layout : KL201403 3MRP Page 2 of 7

r Runway		CEDD	土木 Civil Er Develo 九龍托	工程拓度 ngineering a pment Depa i展處	観響 nd irtment
November			Dec	ember	ary
41	25		00	42	43
	25	02	03	10	23 30
•	Trim w	estside Dwa	all		
					DN250 se
	DN	250 sewer	age (Fl	MH24-10	G - FMH24-1
		DN35	0x3 R	ising mai	n (from Subw
				Prop	osed drainage
				Cons	struct and dive
					DC:
nolition of Dwall (105mL)	for Bay	y 5 - 7			
		Drainage	e (west	bound) S	MH14-9A to
			Gully		ion
					Removal of
Proposed drainage M	109 to 1	M108 (east	bound		
Prop	oosed dr	ainage M10)9c to	M109 (ea	astbound)
	🗖 Gu	lly Construc	ction		
Propos	ed drair	nage M108a	a to M	108b (eas	stbound)
	Gully	Constructio	on		

Date Revision Checked Appro 30-Sep-18 Oct18 - Dec 18
30-Sep-18 Oct18 - Dec 18

KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former

Hyder - Mein	ardt JV	·				
ivity ID	Activity Name	Rem Dur	Start	Finish	September 39	October 40
SCR1600	Lay 600mm dia, fresh watermain (eastbound)	6	26-Nov-18*	01-Dec-18	02 09 16 23	30 07 14 21 28
SCR1610	Construct termorery econose read (normanent neuroment) to gete no. 1 and divert econose read	20	17 Dec 19*	22 Jap 10		
SCK1010	Construct temporary access toad (permanent pavement) to gate no. 1 and divert access toad	50	17-Dec-18	23-Jan-19		
Zone 3 R & D Wo	rks (Stage 2) CH270 to 190					
SCR1730	Demolition of Dwall (110mL) for Bay 8 - 10	0		20-Dec-18		
SCR1780	Proposed drainage M107 to M108 (eastbound)	16	20-Dec-18	10-Jan-19		
Zone 4 SUS						
SCR1880	Dismantling of Struts_S3 - 1 to 10 for Subway A	0		03-Dec-18		
SCR1890	Backfill to level approx -2.3 mPD for DCS	33	03-Dec-18	12-Jan-19		
Chaung Vin Stuart	Culda Saa					
SCR2182	Storm drainage M103 to M105/M104 to M201/M104a to M104	48	20-Nov-18*	17-Jan-19		
SCR2183	Trim formation, lay subbase and kerb (half of cul de sac)	18	20-Nov-18	10-Dec-18		
SCR2185	Lay bituminous pavement	18	11-Dec-18	03-Jan-19		
Road D4-4 (Che	ung Yip Street)					
CH220 - CH420 S	Southbound					
Part 1						
Sewerage Works						
		0	20 4 10 4	02 0 10 1	Laving Sawaraga Pina and Car	retruction of EMH22 16A /EMH22 17A
K-01-RWS-947	2 Laying Sewerage Pipe and Construction of FMH23-16A /FMH23-1/A (Part 2)	0	30-Aug-18 A	03-Sep-18 A		
K-01-RWS-947	Backfilling Sewerage Pipe and FMH23-16A /FMH23-17A (Part 2)	0	04-Sep-18 A	10-Sep-18 A	Backfilling Sewerage	Pipe and FMH23-16A /FMH23-17A (Pa
K-01-RWS-947	5 Laying Sewerage Pipe aFMH23-15A (Part 2)	12	02-Oct-18	15-Oct-18		Laying Sewerage P
K-01-RWS-947	6 Backfilling Sewerage Pipe FMH23-15A (Part 2)	12	16-Oct-18	30-Oct-18		B
K-01-RWS-947	7 Relocation of Underground Utilities under Center Median	7	31-Oct-18	07-Nov-18		
Laying of Draina	ge Pipe and Construction of Manhole (M301 to M306)					
K-01-RWS-948	S Excavation of Drainage Pipe and Manhole (M301 to M306)	6	01-Sep-18 A	08-Oct-18		Excavation of Drainage Pipe
	Leving Drainage Pine and Construction of Manhala (M201 to M206)	15	11 Sop 19 A	10 Oct 19		Laving Draina
K-01-KWS-949		15	11-Sep-18 A	19-001-18		Euying Diuma
K-01-RWS-950	0 Backfilling Drainage Pipe and Manhole (M301 to M306)	12	20-Oct-18	02-Nov-18		
K-01-RWS-950	2 Construction of Gully and other drainage works along M301 to M306	10	08-Nov-18	19-Nov-18		
Water Works						
K-01-RWS-958	0 Laying of Fresh Watermain Pipe	5	20-Nov-18	24-Nov-18		
K-01-RWS-960	4 Laying of Salt Watermain Pipe	5	20-Nov-18	24-Nov-18		
Road Works						
K-01 RWS 107	S Construction of Subgrade Works and Subbase Works	5	26-Nov 19	30-Nov 19		
K-01-KWS-107		5	20-1107-10	50-1107-10		

中國路檔工程有限責任公司 CHINA ROAD AND BRIDGE CORPORATION

Milestone
 Critical Activity
 Non-Critical Activity
 Remaining Level of Effort
 Actual Work

3 MRP Oct 2018 - Dec 2018

Page 3 of 7

Project ID :39 3MRP Oct - Dec 18 Layout : KL201403 3MRP Page 3 of 7

r Runway	土木工程拓展署 Civil Engineering and Development Department 九龍拓度處
November	Kowloon Development Office
41 04 11 18	42 43 25 02 09 16 23 30
	Lay 600mm dia. Iresh watermain (eas
	◆ Demolition of I
	◆ Dismantling of Struts_S3 - 1 to 10 f
	Trim formation lay subbas
Part 2)	
t 2)	
pe aFMH23-15A (Part 2)	
ackfilling Sewerage Pipe F	MH23-15A (Part 2)
Relocation of Unde	rground Utilities under Center Median
and Manhole (M301 to M	306)
e Pipe and Construction of	Manhole (M301 to M306)
Backfilling Drainage Pip	e and Manhole (M301 to M306)
Con	struction of Gully and other drainage works alon
	Laying of Fresh Watermain Pipe
	Laying of Salt Watermain Pipe
	Construction of Subgrade Works and Su
1	

3 Months Rolling Programme					
Date 30-Sep-18	Revision	Checked	Approved		
30-Sep-18	Oct18 - Dec 18				

		KL/2014/03 Kai Tak Developmen	it - Stage 3 Infras	tructure V	Vorks for D	evelopments at the So	outhern Part of the Form
Activity ID	Activity Name		Rem	Start	Finish	September 39	October 40
	K 01 BWS 1076 Pood Pose and	Devement Works	2	01 Dec 18	04 Dec 18	02 09 16 23	30 07 14 21 28
	K-01-KWS-1070 Koau Base and		5	02 D 10	04-Dec-18		
	K-01-RWS-1077 Temporary Roa	a Construction for 11A stage 3 - phase 2	5	03-Dec-18	0/-Dec-18		
P	art 2						
	aying of Drainage Pipe and Cor	struction of Manhole (SMH4048691, SHM4048692 and M401)					
	K-01-RWS-1052 Excavation of I	Drainage Pipe and Manhole (SMH4048691-92)	6	08-Dec-18	14-Dec-18		
	K-01-RWS-1052 Laying Drainas	e Pipe and Construction Manhole (SMH4048691-92)	18	12-Dec-18	04-Jan-19		
	K-01-RWS-1095 Relocation of U	Inderground Utilities under Center Median	7	08-Dec-18	15-Dec-18		
Sect	ion 1A of the Works -Cor	struction of Supporting Underground Structure					· · · · · · · · · · · · · · · · · · ·
SU	8 and Ventilation Adits fr	om CH6+150 to CH6+220 in Zone 1					
Co	nstruction of Tunnel Box S	ructure					
Ba	ckfilling Works						
K	-1A-SV1-6900 Backfilling (ba	y 1 to bay 2) (to +3.7m)	6	02-Oct-18	08-Oct-18		Backfilling (bay 1 to bay 2)
SU	8 and Ventilation Adits fr	om CH6+220 to CH6+291 in Zone 2					
Co	nstruction of SUS Structur	e at Zone 2					
VA	12						
A	1610 Dismantling St	ruts _SV1Bay 2	2	28-Sep-18 A	01-Oct-18		Dismantling Struts _SV1Bay 2
A	1620 Erect Scaffoldi	ng_Base Slab 1A & B	2	02-Oct-18	03-Oct-18		■ Erect Scaffolding_Base Slab 1A &
A	1630 Soffit formwor	ks_Base Slab 1A & B	1	04-Oct-18	04-Oct-18		Soffit formworks_Base Slab 1A
Sc	affolding / Falseworks						
В	ay 1						
	A1642 Base Slab _Ba	y 1B	8	15-Oct-18	22-Oct-18		Base Slab
	A1668 RSB_Bay 1WI	3	6	24-Oct-18	29-Oct-18		RS
	Top Slab_1B		12	25-Oct-18	05-Nov-18		
I	A2500 Dismantling of	Struts_S1B - 1 to 5	3	09-Nov-18	11-Nov-18		
	A2510 Waterproofing	Works (1440 m2) and Screeding Works (108 m3)	5	12-Nov-18	16-Nov-18		
	A2520 Demolition of I	Dwall (96mL)	10	17-Nov-18	26-Nov-18		
	A2530 Backfilling Wo	rks for Bay 1 to +2mPD (950m3)	5	27-Nov-18	01-Dec-18		
B	ay 2						
	A2540 Dismantling of	Struts_S1B - 1 to 5	5	30-Sep-18	04-Oct-18	l	Dismantling of Struts_S1B - 1 to
	A2550 Waterproofing	Works (1440 m2) and Screeding Works (108 m3)	6	08-Oct-18	13-Oct-18		Waterproofing Works
	A2552 Backfilling Wo	rks to S1B (950m3)	18	14-Oct-18	31-Oct-18		
		· · · ·					

◆ ◆ Milestone Critical Act

Critical Activity Non-Critical Activity Remaining Level of Effort Actual Work

3 MRP Oct 2018 - Dec 2018

Project ID :39 3MRP Oct - Dec 18 Layout : KL201403 3MRP Page 4 of 7

Page 4 of 7

Page 4 of 7

r Runway	土木工程拓展署 Civil Engineering and Development Department
	九龍拓展處 Kowloon Development Office
November 41	<u>December</u> 42 43
04 11 18	25 02 09 16 23 30 Road Base and Pavement Work's
	Temporary Road Construction
	Excavation of Drainag
	Relocation of Unders
(to +3.7m)	
В	
B B	
Bay 1B	
D. D 1WD	
B_Bay I WB	
Top Slab _1B	
Dismantling o	of Struts_S1B - 1 to 5
Waterpi	roofing Works (1440 m2) and Screeding Works (
	Demolition of Dwall (96mL)
	Backfilling Works for Bay 1 to +2mF
5	
, 	
1440 m2) and Screeding V	Works (108 m3)
Backfilling Works to S1B (950m3)
	i

	3 Months Rolling	Programme	
Date	3 Months Rolling Programme Revision Checked Oct18 - Dec 18	Approved	
30-Sep-18	Oct18 - Dec 18		

	Hyder	EIN-ARDT	KL/2014/03 Kai Tak Developmer	nt - Stage 3 Infras	tructure V	Vorks for D	evelopments at the Sc	outhern Part of the Forme
Acti	ivity ID	Activity Name		Rem Dur	Start	Finish	September 39	October 40
	A2555	Dismantling of Strut	s_S1B - 6 to 9, S1A - 1 to 6	7	01-Nov-18	07-Nov-18	02 09 16 23	<u>30 07 14 21 28</u>
	A2560	Demolition of Dwal	(142mL)	15	08-Nov-18	22-Nov-18		
	SUS Structure	from CH6+291 to	6+467 in Zone 3					
	Construction o	f SUS Structure at	Zone 3					
	System Formwor	rks - SUS Construction	Works at Zone 3					
	Bay 5 to 7							
	A2570	Dismantling of Strut	s_S4 - 1 to 7	0	03-Sep-18 A	10-Sep-18 A	Dismantling of Struts_	S4 - 1 to 7
	A2580	Waterproofing Work	s (1440 m2) and Screeding Works (105 m3)	0	20-Sep-18 A	23-Sep-18 A	Water	roofing Works (1440 m2) and Screeding
	A2590	Backfilling Works to	S1A (6850m3)	12	29-Sep-18 A	11-Oct-18	•	Backfilling Works to S1
	A2600	Dismantling of Strut	s_S1A - 7 to 12	6	12-Oct-18	17-Oct-18		Dismantling of St
	A2610	Demolition of Dwal	(105mL)	11	18-Oct-18	28-Oct-18		Den
	Bay 8 to 10							
	A2240	Top slab_SF_Bay 9		8	15-Sep-18 A	07-Oct-18		Top slab_SF_Bay 9
	A2290	Top slab_SF_Bay 1	0	16	05-Oct-18	20-Oct-18		Top slab_SF_
	A2620	Dismantling of Strut	s_S4 - 8 to 12 for Bay 8 and Bay9	5	11-Oct-18	15-Oct-18		Dismantling of Strut
	A2625	Dismantling of Strut	s_S4 - 13 to 15 for Bay 10	3	24-Oct-18	26-Oct-18		💻 Disma
	A2630	Waterproofing Work	s (1540 m2)	13	17-Oct-18	29-Oct-18		Wa
	A2635	Screeding Works (1	5 m3)	2	30-Oct-18	31-Oct-18		
	A2640	Backfilling Works to	S2A (6850m3) @400m3 (A)	18	26-Oct-18	12-Nov-18		
	A2645	Dismantling of Strut	s_S2A - 1 to 8	7	13-Nov-18	19-Nov-18		
	A2649	Backfilling Works to	S1 (6350m3) @400m3 (B)	16	20-Nov-18	05-Dec-18		
	A2650	Dismantling of Strut	s_S1 - 1 to 7	7	05-Dec-18	11-Dec-18		
	A2660	Demolition of Dwal	(110mL)	11	09-Dec-18	19-Dec-18		
	SUS Structure	from CH6+467 to	6+568 in Zone 4					
	System Works	- Construction of S	US Structure at Zone 4					
	Bay 11 to 13 (To	p Slab)						
	A2340	Top slab_SF_Bay 1	I	0	10-Sep-18 A	24-Sep-18 A	Top s	ab_SF_Bay 11
	A2370	Wall_Bay 12		0	05-Sep-18 A	13-Sep-18 A	Wall_Bay 12	
	A2390	Top slab_SF_Bay 1	2	0	20-Sep-18 A	30-Sep-18 A		Top slab_SF_Bay 12
	A2420	Wall_Bay 13		0	15-Sep-18 A	27-Sep-18 A	W	all_Bay 13
	A2670	Top slab_SF_Bay 1	3	13	30-Sep-18 A	12-Oct-18		Top slab_SF_Bay 13

中國路德工程有限責任公司 CHINA ROAD AND BRIDGE CORPORATION

♦ ♦ Milestone Critical Activity Non-Critical Activity Remaining Level of Effort Actual Work

Project ID :39 3MRP Oct - Dec 18 Layout : KL201403 3MRP Page 5 of 7

r Rur	nway	CEDD	土木工程拓 Civil Engineering Development Dep 九龍拓展處 Kowloon Development (展署 and partment
	November		December	ary
04		25 02	42	23 30
	Dismantling of Str	uts_S1B - 6 to 9, S1	A - 1 to 6	
		Demolition of Dwal	l (142mL)	
Works (105 m3)			
(6850n	n3)			
uts_S1A	- 7 to 12			
olition of	f Dwall (105mL)			
	i Dwaii (103iiiL)			
Pov 10				
Bay 10				
s_S4 - 8	to 12 for Bay 8 a	ind Bay9		
ntling of	Struts_S4 - 13 to	15 for Bay 10		
-				
terproon	ing works (1340)	m2)		
creeding	g Works (115 m3))		
	Backfilling	Works to S2A (6850)m3) @400m2	3 (A)
	Dia	montling of Strate	2 A 1 to 9	
	DIS	manumg of Struts_S	2A - 1 10 8	
		Bac	kfilling Works	to S1 (6350m
			 Dismantlin 	g of Struts_\$1
				Demolition of D
		3 Months Rolling P	rogramme	
	Date	Revision	Checked	Approved

	Revision Checked Approved Oct18 - Dec 18		
Date	Revision	Checked	Approved
30-Sep-18	Oct18 - Dec 18		

Huder	MEINHARDT
nguei	771-111 74121

KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former

	Hyder - Meint	VL three					
Activ	vity ID	Activity Name	Rem Dur	Start	Finish	September 39	October 40
	A2680	Dismantling of Struts_S4 - 16 to 25	10	15-Oct-18	24-Oct-18	02 09 16 23	30 07 14 21 28 Image: Second colspan="4">Dismantli
	A2700	Waterproofing Works (1900 m2)	4	25-Oct-18	28-Oct-18		Wate
	A2710	Screeding Works (145 m3)	3	29-Oct-18	31-Oct-18		S
	A2720	Backfilling Works to S3 (8760m3) @400m3 (C)	22	01-Nov-18	22-Nov-18		
	A2730	Dismantling of Struts_S3 - 1 to 10	10	23-Nov-18	02-Dec-18		
	A2740	Backfilling Works to S2 (3230m3) @400m3 (D)	8	03-Dec-18	10-Dec-18		
	A2750	Dismantling of Struts_S2 - 1 to 5	5	10-Dec-18	14-Dec-18		
	A2752	Backfilling Works to S1 (7730m3) @400m3 (E)	20	15-Dec-18	03-Jan-19		
	Bay 14 to 15 (Top	o Slab)					
	A2440	Base Slab_bay 14	8	27-Sep-18 A	07-Oct-18		Base Slab_bay 14
	A2450	Dismantling of Struts _Bay 14	7	12-Oct-18	18-Oct-18		Dismantling of S
	A2460	Wall_Bay 14	8	19-Oct-18	26-Oct-18		Wall_B
	A2490	Top slab_Bay 14	15	01-Nov-18	15-Nov-18		-
	A2770	Dismantling of Struts_S4 - 26 to 28 & DS1-4	7	18-Nov-18	24-Nov-18		
	A2780	Waterproofing Works (1350 m2)	3	25-Nov-18	27-Nov-18		
	A2790	Screeding Works (100 m3)	2	28-Nov-18	29-Nov-18		
	A2800	Backfilling Works to S3 (5670m3) @400m3 (F)	15	30-Nov-18	14-Dec-18		
	A2810	Dismantling of Struts_S3 - 11 to 14	8	15-Dec-18	22-Dec-18		
	A2830	Backfilling Works to S2 (6040m3) @400m3 (G)	16	23-Dec-18	07-Jan-19		
	Section 3 of the V	Works- Construction of District Cooling System (Subject to Excision)					
	Construction of	District Cooling System					
	Construction of	DCS Works at Zone 2					
ſ	SCR1030	DCS at Zone 2 Bay 2 to Bay 4 (CH35 - CH110)	24	27-Nov-18*	24-Dec-18		
	Construction of	DCS Works at Zone 3					
I	SCR1500	Zone 3 DCS (3 x 900) south of Gate 1 bridge (CH140 - CH190)	18	29-Oct-18	17-Nov-18		
	SCR1740	Zone 3 DCS (3 x 900) westbound (CH190 - CH270)	28	20-Dec-18*	24-Jan-19		
	Construction of	DCS Works at Zone 4					
	K-03-DCS-7800	Construction of DCS Valve Pit	65	10-Aug-18 A	17-Dec-18		
	K-03-DCS-7810	ELS for DCS (Outside of SUS)	48	20-Nov-18*	17-Jan-19		
	Section 4A of the	Works-Construction of Subway A (Subject to Excision)					
	K-4A-BAY-1900	ELS for Subway A Bay 1 (west of D-wall)	48	02-Oct-18*	27-Nov-18		
		1				I	

◆ 中國路德工程有限責任公司 CHINA ROAD AND BRIDGE CORPORATION

Milestone
 Critical Activity
 Non-Critical Activity
 Remaining Level of Effort
 Actual Work

3 MRP Oct 2018 - Dec 2018

Page 6 of 7

Project ID :39 3MRP Oct - Dec 18 Layout : KL201403 3MRP Page 6 of 7

r Runway		CEDD	土木工程 Civil Engineerin Development D 九龍拓展處 Kowloon Developme	石展署 ng and pepartment nt Office	
November 41			December 42		ary 43
04 11 18 ng of Struts_S4 - 16 to 25	25	02	09 16	23	30
erproofing Works (1900 m	2)				
creeding Works (145 m3)					
	Backfill	ing Works t	o S3 (8760n	n3)@400m3	(C)
		Dismar	tling of Strut	s_S3 - 1 to 1	0
			Backfillin	g Works to S	2 (3
			Dism	antling of Str	uts_
truts Bay 14					
Bay 14					
Top slab	_Bay 14	4			
	Disma	antling of St	ruts_S4 - 26	to 28 & DS	1-4
	W	aterproofin	g Works (13	50 m2)	
		Screeding	Works (100 1	n3)	
	l		Back	filling Works	to (
				D ismant	ling
					····
				DCS	
Zone 3	DCS (3 x 900) so	uth of Gate 1	bridge (CH1	140
			C	onstruction of	f D(
	EI	LS for Subv	vay A Bay 1	(west of D-w	all)
	3 Mont	hs Rolling F	Programme		
	-				

30-Sen-18	Oct18 - Dec 18	 													
30-3ep-10	OCTIO - DEC 10														
		KL/2014/03 Kai Tak Development - Stage	e 3 Infras	tructure W	orks for D)evelop	ment	s at t	the S	outhe	ern Pa	art of	the	Forn	ne
-------------------	----------------------	--	------------	-------------	------------	---------	-------	--------	-------	---------	-----------	-----------	---------	----------	------
Hyder - Mein	hardt JV														
Activity ID	Activity Name		Rem	Start	Finish		Septe	ember		October				+	
			Dur			02	09	16	23	30	07	14	21	2	28
K-4A-BAY-1910	Form wall opening f	or Subway A	33	03-Dec-18*	12-Jan-19										
K-4A-BAY-1930	ELS for Subway A I	Bay 3 (east of D-wall)	48	26-Nov-18	23-Jan-19					-					
K-4A-BAY-1960	Construction of Sub-	vay A Bay 2 (within SUS)	48	03-Dec-18*	30-Jan-19					-					
Section 4B of the	e Works- Constru	ction of Subway B (Subject to Excision)													
Bay 1 & 2										-					
K-4B-BAY-3100	Handover of Portion	В	0		30-Sep-18*					• Hand	over of I	Portion B			
Bay 3 & 4										-					
K-4B-BAY-3310	Backfilling Works (I	3ay 3)	12	02-Oct-18	15-Oct-18					-		Bac	kfillin	g Work	s (I
K-4B-BAY-3330	Excavation and Late	ral Support works for Bay 4	15	14-Sep-18 A	19-Oct-18								Exca	vation a	and
K-4B-BAY-3340	Casting Blinding La	yer for Bay 4	5	20-Oct-18	25-Oct-18					-				Casti	ng
K-4B-BAY-3350	Construction of Base	e Slab at Bay 4	12	26-Oct-18	08-Nov-18					-					
K-4B-BAY-3360	Construction of Wall	and Top Slab at Bay 4	30	09-Nov-18	13-Dec-18					-					
K-4B-BAY-3370	Backfilling Works (I	3ay4)	20	14-Dec-18	09-Jan-19					-					
Section 5 of the	Works-Completio	on of All Landscape Softworks													
K-05-LCS-1000	Procurement of plan	t species	90	30-Sep-18	28-Dec-18										
Section 7 of the	Works-Preservati	on and Protection of Existing Trees								-					
K-07-001-1000	Section 7 of the Wor	ks-Preservation and Protection of Existing Trees	390	04-Jan-16 A	08-Nov-19										

3 MRP Oct 2018 - Dec 2018

Page 7 of 7

Project ID :39 3MRP Oct - Dec 18 Layout : KL201403 3MRP Page 7 of 7

er Rur	nway			CEDI		土木工 Civil Eng Developr 九龍拓居	程拓 ineering nent De & 處	展署 and partme	ent.	
	Novemb	ber			~	Decer	nber	Office		ary
1 04	41	10	05		_	42	2		22	43
04	1 11	10	25	02		09	10		23	30
				<u></u>						
Bay 3)										
Lateral	Support w	orks fo	or Bay 4							
Blinding	Laver for	Bay A								
omung	Luyer IOI	Day 4								
	Construct	ion of l	Base Sla	b at Bay	4					
						C	onstru	ction	of W	all an
										Proci
			3 Mant	he Dollin	<u>a D</u>	rogram	ne			
	Det	ρ		vision	yР	Cher	ile ked	Δ	nprov	ed
	30-Sen-1	8	Oct18 -	Dec 18			cu		PPIOV	cu
	50 00p-1	5		200 10		-				
			l			1		1		

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix B

Project Organization Chart

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Legen	d:
	Line of Reporting
	Line of Communication

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix C

Action and Limit Levels for Air Quality and Noise

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Action and Limit Levels for 24-hr TSP and 1-hr TSP

Parameter	Monitoring Station	Action Level (μg/m³)	Limit Level (µg/ m³)		
	KTD1a	177			
24-nr ISP	KTD2b	157	260		
(µg/m²)	KER1b				
1 6 700	KTD1a	285			
"1-nr ISP	KTD2b	279	500		
(µg/m²)	KER1b	295			

Note:

1-hr TSP monitoring should be required in case of complaints.

Action and Limit Levels for Construction Noise, Leq (30min), dB(A)

Time Period	Location	Action	Limit
0700-1900 hrs on normal weekdays	KTD1a KTD2b KER1b	When one documented complaint is received	75 dB(A)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix D

Calibration Certificates of Monitoring Equipment

sch Environmental, Inc. 45 South Miami Avenue illage of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

MateriaLab

Draigat - En	dropmontal A	TSP SA	MPLER CA			ALCULAT	ION SPREAD	DSHEET	0 11 11	
Project : Env		vionitoring vv	orks For Cor	itract No. P	(LIN/	2015/07		Date of	Calibration:	2-Oct-18
Location : K	ID Ia	Tiech						Next Calibi	ration Date:	1-Jan-19
Branu. Medel:	a	TE 5170		C/NI-		207			l echnician:	Toby Wan
Model.		1E-3170		5/N:	40)37				
		ing an attempt		CON	DIT	IONS				
	Se	ea Level Pres	ssure (hPa):	1014.	9	Corre	ected Pressu	re (mm Hg):	761	
	Temperature (°C): 2						Temp	perature (K):	300	
				CALIBRA	TIOI			1. diff. (see		the Strivent and a strivent second second
		Make:		Tisch			Qstd Slope:		2.07013	
		Model:		TE-5025A		Q	std Intercept:		-0.01892	
	Calib	ration Date:		20-Nov-17			Expiry Date:		20-Nov-18	
		S/N:		2456						
	H2O (I)	H20 /D/	L120	CALIE			10	1		
Plate No.	(in)	(in)	(in)	(m ³ /min)		(chart)	(corrected)			N
18	11.50	0.40	11 100	1.61/	+-	(chart) 59.00	(conected)	Slopo -	21 0470	
13	10.30	1.60	8 700	1.01-	5	55.00	54.85	Intercent =	7 58/5	
10	9.40	2.30	7 100	1.100	ίΙ.	48.00	47.87	Corr coeff :	0 0030	
7	8.30	3.70	4,600	1.200	5	40.00	39.89	0011.00011.	0.0000	
5	7.30	4.60	2.700	0.801		34.00	33.91			
Calculation	s:		-]						_
Qstd = 1/m[S	Sqrt(H2O(Pa/	/Pstd)(Tstd/T	a))-b]				FLOW	RATE CHAR	Г	
IC = I[Sqrt(P	a/Pstd)(Tstd/	/Ta)]				70.00 T	1	1		
Qstd = stand	lard flow rate	•				co. oo				
IC = correcte	ed chart resp	onse				60.00				
I = actual cha	art response				ΰ	50.00		/		
m = calibrate	or Qstd slope	e			e (l					
b = calibrato	or Qstd interc	ept			ŝuoc	40.00 +				
Ta = actual to	emperature o	during calibra	ation (deg K)		Res	30.00		<		
Pa = actual p	pressure duri	ng calibration	n (mm Hg)		art					
1 std = 298 d	eg K				al Ch	20.00				
-sia = 760 m For subserv	iii) rig ient calcula	tion of com	olor flow		lotue	10.00				
1/m((I)[Sart()		(760)1 b)	JIEI HOW:		A					
m = sample	slone	(100)[-b]				0.00 +				
h = sample	r intercent					0.00	0 0.500	1.000 1.5	2.000	
= chart res	sponse						Standard	Flow Rate (m ³ /n	nin)	
Tay = daily average temperature										
Pav = dailv a	verage press	sure								
					-			10		

CHOI KAM HO Project Consultant

4

Report Date: 2nd October, 2018

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

A Fugro Group Company

MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk

		TSP SAM	IPLER CAL	IBRATION (CALCULAT	ION SPREAD	SHEET		
Project : Env	ironmantal M	onitoring Wo	rks For Con	tract No. KLI	N/2015/07		Date of (Calibration: 2	2-Oct-18
Location : KE	R1b						Next Calibr	ation Date:	1-Jan-19
Brand:	Т	īisch					-	Technician:	Toby Wan
Model:	г	E-5170	;	S/N:	3482				
					-		-		
				COND	TIONS			704	
	Se	a Level Pres	sure (hPa):	1014.9	Corr	ected Pressu	re (mm Hg):	/61	
		Tempe	erature (°C):	27		Temp	erature (K):	300	
						E			
				CALIBRA II Tiach		Ostd Slope:		2.07013	
		Make:			C	std Intercent:		-0.01892	
	0 11	Model:		20 Nov 17		Expiry Date:		20-Nov-18	
	Calibi	RATION Date:		2456		Expiry Date:			
		5/IN.		CALIBE	ATIONS	20		11 //1100 -	
		H2O (R)	H2O	Ostd		IC		LINEAR	
Plate No.	(in)	(in)	(in)	(m ³ /min)	(chart)	(corrected)		REGRESSIC	DN
19	12.00	0.00	12.000	1.678	56.00	55.85	Slope =	32.9848	
13	10.60	1.30	9.300	1.478	49.00	48.87	Intercept =	0.1261	
10	940	2.10	7.300	1.311	44.00	43.88	Corr. coeff.:	0.9961	
7	8 70	3.50	5.200	1.108	35.00	34.91			
5	7.60	5.20	2.400	0.755	26.00	25.93			
Calculation	ns:			<u>г</u>					
Qstd = 1/m[Sgrt(H2O(Pa	/Pstd)(Tstd/	Га))-b]		FLOW RATE CHART				
IC = I[Sqrt(F	Pa/Pstd)(Tstd	I/Ta)]			60.00	T			
Qstd = stan	dard flow rate	e						1	
IC = correct	ted chart resp	oonse			50.00			-	-
I = actual ch	hart response)			ŝ			1	
m = calibra	tor Qstd slop	e			€ 40.00				
b = calibrat	tor Qstd inter	cept			onse				
Ta = actual	temperature	during calibr	ation (deg K	.)	G 30.00				
Pa = actual	pressure du	ring calibratio	on (mm Hg)		R L		•		
Tstd = 298	deg K				ප 20.00				
Pstd = 760	mm Hg				In the second				
For subsec	quent calcul	ation of san	pler flow:		10.00 Act				
1/m((I)[Sqrl	t(298/Tav)(Pa	av/760)]-b)			0.00				
m = samp	ler slope				0.00	+ +	0 1 000	1 500	2 000
b = sampl	b = sampler intercept					J.000 0.50	0 1.000	1.500	2.000
i = chart r	esponse					Stand	ard Flow Rate (m³/min)	
Tav = daily	average tem	perature							J
Pav = daily	average pre	ssure							

CHOI KAM HO

Project Consultant

Report Date: 2nd October, 2018

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

A Fugro Group Company

MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk MateriaLab

Project : Environmantal Monitoring Works For Contract No. KLN/2015/07 Date of Calibration : 9-Aug-18 Next Calibration Date: 8-Nov-18 Next Calibration Date: 8-Nov-18 Technician: Toby Wan Model: TE-5170 S/N: 3838 CONDITIONS Sea Level Pressure (hPa): 1003.3 Corrected Pressure (mm Hg): 753 Temperature (°C): 30 Temperature (K): 303 CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.07013 Model: TE-5025A Qstd Intercept: -0.01892 Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 S/N: 2466 Plate No. (in) (in) (in) (m ² /min) (chart) (corrected) REGRESSION 18 3.60 -8.50 12.300 1.682 55.00 54.29 Slope = 31.2460 13 2.90 -6.50 9.400 1.471 46.00 45.41 Intercept = 0.7345 10 1.00 -5.70 6.700 12.43 41.00 40.47 Corr. coeff.: 0.9933 7 0.20 4.20 4.400 1.009 31.00 30.60 Calculations: Calculations: Calculations: Qstd = 1/m[Sqt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqt(Pa/Pstd)(Tstd/Ta)] Cstd = standard flow rate IC = corrected chart response m = calibrator Qstd slope b = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (mm Hg) Ta = actual tem			TSP SA	MPLER CA	IBRATION	CA	LCULATI	ON SPREAD	SHEET		and the second second
Location : KTD2b Brand: Tisch Te-5170 S/N: 3833 CONDITIONS Sea Level Pressure (hPa): 1003.3 Temperature (°C): 30 Temperature (K): 303 Corrected Pressure (mm Hg): 753 Temperature (K): 303 Corrected Pressure (mm Hg): 753 Temperature (K): 303 Corrected Slope: 2.07013 Calibration Date: 20-Nov-18 S/N: 2456 Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 S/N: 2456 Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 S/N: 2456 Calibration Date: 20-Nov-17 Calibration Date: 20-Nov-18 S/N: 2456 Calibration Date: 20-Nov-17 S/N: 2456 Calibration Date: 20-Nov-17 S/N: 2456 Calibration Calibration Object 20-Nov-17 Calibration Calibration (mm Hg) Tsd = 298 deg K Psd = 780 mm Hg Psd = aliva verage pressure Similar Signe Sig	Project : Env	ironmantal M	Ionitoring Wo	orks For Con	tract No. KL	N/2	015/07		Date of	Calibration:	9-Aug-18
Brand: Tisch Technician: Toby Wan Model: TE-5170 S/N: 3838 CONDITIONS Sea Level Pressure (hPa): 1003.3 Corrected Pressure (mm Hg): 753 Temperature (°C): 30 Temperature (K): 303 CALIBRATION ORIFICE Model: TE-5025A Qatd Intercept: -0.01892 Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 S/N: 2456 10 LINEAR Plate No. (in) (in) (in) (in) (chart) (corrected) REGRESSION 18 3.80 -8.50 12.300 1.682 55.00 54.29 Slope = 31.2460 13 2.90 -6.50 9.400 1.471 46.00 45.41 Intercept = 0.7345 10 1.00 -5.70 8.700 1.234 41.00 40.01 60.00 30.60 30.60 28dd = standard flow rate (corrected chart response -3.10 2.300 0.732 25.00 24.68 30.00	Location : K1	TD2b							Next Calibr	ration Date:	8-Nov-18
Model: TE-5170 S/N: 3838 CONDITIONS Sea Level Pressure (hPa): 1003.3 Corrected Pressure (mm Hg): 753 Temperature (°C): 30 Temperature (K): 303 CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.07013 Model: TE-5025A Qstd Intercept: -0.01892 Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 S/N: 2456 CALIBRATIONS INNERCEPT INECREPSION Plate No. H2O (L) H2O (R) H2O Qstd I IC LINEAR 13 2.90 6.50 9.400 1.471 46.00 45.41 Intercept 0.7345 10 1.00 -5.70 6.700 1.243 41.00 40.47 Corr. coeff.= 0.9933 7 0.20 -4.20 4.400 1.009 31.00 30.60 25.00 24.68 25.00 24.68 25.00 24.68 20.00 25.00 24.68 20.00	Brand:	-	Tisch							Technician:	Toby Wan
CONDITIONS Sea Level Pressure (hPa): 1003.3 Corrected Pressure (mm Hg): 753 Temperature (*C): 30 Temperature (K): 303 CALIBRATION ORIFICE Model: TE-5025A Qstd Slope: 2.07013 CALIBRATION ORIFICE Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 S/N: 2456 CALIBRATIONS LINEAR	Model:	3 . —	TE-5170		S/N:	383	38				
CONDITIONS Sea Level Pressure (hPa): 1003.3 Corrected Pressure (mm Hg): 753 Temperature (°C): 30 Temperature (K): 303 CALIBRATION ORIFICE Make: Titicch Calibration Date: 2.07013 CALIBRATION ORIFICE CALIBRATION ORIFICE Calibration Date: 2.07013 CALIBRATION ORIFICE CALIBRATION ORIFICE CALIBRATION OR CALIBRATION CRETCE CALIBRATION CRETCE CALIBRATIONS CALIBRATION CALIBRATION CALIBRATION CRETCE CALIBRATION CRETCE CALIBRATION CRETCE CALIBRATION CRETCE CALIBRATIONS CALIBRATIONS CALIBRATION CALIBRATION CALIBRATION CALIBRATI											
Sea Level Pressure (hPa): 1003.3 Corrected Pressure (mm Hg): 753 Temperature (°C): 30 Temperature (K): 303 CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.07013 Model: TE-5025A Qstd Intercept: -0.01892 Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 S/N: 2456 CALIBRATIONS INEC Plate No. H2O (L) H2O (R) H2O Qstd 1 IC LINEAR 18 3.80 -8.50 12.300 1.882 55.00 54.29 Slope = 31.2460 13 2.90 -6.50 9.400 1.471 46.00 45.41 Intercept = 0.7345 10 1.00 -5.70 6.700 1.243 41.00 40.47 Corr. coeff.: 0.3933 7 0.20 -4.20 4.400 1.009 31.00 30.60 20.00 24.68 20.00 24.68 20.00 20.00 20.00 <td></td> <td></td> <td></td> <td></td> <td>COND</td> <td>DITIC</td> <td>ONS</td> <td></td> <td></td> <td></td> <td></td>					COND	DITIC	ONS				
Temperature (°C): 30 Temperature (K): 303 CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.07013 Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 S/N: 2456 CALIBRATIONS CALIBRATION of Sol 1 CALIBRATIONS CALIBRATIONS Calidivator Add 1		Se	ea Level Pres	ssure (hPa):	1003.3		Corre	ected Pressu	re (mm Hg):	753	
CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.07013 Model: TE-5025A Qstd Intercept: -0.01892 Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 S/N: 2456			Temp	erature (°C):	30			Temp	erature (K):	303	
Make: Tisch Qstd Slope: 2.07013 Model: TE-5025A Qstd Intercept: -0.01892 Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 S/N: 2456 20-Nov-17 Expiry Date: 20-Nov-18 Plate No. H2O (L) H2O (R) H2O Qstd I IC LINEAR 13 2.90 -6.50 9.400 1.471 46.00 45.41 Intercept = 0.7345 10 1.00 -5.70 6.700 1.243 41.00 40.47 Corr. coeff.: 0.9933 7 0.20 -4.20 4.400 1.009 31.00 30.60 25.00 24.68 20-No Calculations: Casta response - - 0.732 25.00 24.68 20-No Calculations: Caculatorequiption (mm Hg) 30.00 30.00 30.00 25.00 24.68 20-No Stat = 298 deg K For subsequent calculation of sampler flow: 1/((())(())(())(())(())())())())())())())						ION	ORIFICE				
Model: TE-5025A Qasta Intercept: -0.01892 Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 S/N: 2456 Calibration Date: 20-Nov-17 Expiry Date: 20-Nov-18 Plate No. (in) (in) <td></td> <td></td> <td>Make.</td> <td></td> <td>Tisch</td> <td></td> <td></td> <td>Ostd Slope:</td> <td></td> <td>2 07013</td> <td></td>			Make.		Tisch			Ostd Slope:		2 07013	
Televity Date: 20-Nov-17 Expiry Date: 20-Nov-18 CALIBRATIONS CALIBRATIONS Plate No. H2O (L) H2O (R) H2O Nov-18 CALIBRATIONS Plate No. H2O (L) H2O (R) LINEAR Image: Colspan="2">CALIBRATIONS CALIBRATIONS CALIBRATIONS CALIBRATIONS Image: Colspan="2">CALIBRATIONS CALIBRATIONS CALIBRATIONS Image: Colspan="2">CALIBRATIONS Image: Colspan="2">CALIBRATIONS Image: Colspan="2">Lineary colspan="2">Convected Nate REGRESSION 13 2.90 -6.50 9.400 1.471 46.00 45.41 Intercept = 0.7345 Corr. coeff:: 0.9933 Calculations: Calculations: Calculations: Calculation flow rate IC = [Geqt(Pa/Pstd)(Tstd/Ta)] Calibrator Qstd slope <td></td> <td></td> <td>Model:</td> <td></td> <td>TE-5025A</td> <td></td> <td>Qs</td> <td>std Intercept:</td> <td></td> <td>-0.01892</td> <td></td>			Model:		TE-5025A		Qs	std Intercept:		-0.01892	
S/N: 2456 CALIBRATIONS CALIBRATIONS Plate No. H2O (L) H2O (R) H2O (R) Gast I IC LINEAR 18 3.80 -8.50 12.300 1.682 55.00 54.29 Slope = 31.2460 13 2.90 -6.50 9.400 1.471 46.00 45.41 Intercept = 0.7345 10 1.00 -5.70 6.700 1.243 41.00 40.47 Corr. coeff.: 0.9933 7 0.20 -4.20 4.400 1.009 31.00 30.60 5 -0.80 -3.10 2.300 0.732 25.00 24.68 Calculations: Qstd = standard flow rate IC = [Sqrt(Pa/Pstd)(Tstd/Ta)] 40.00 40.00 50.00		Calib	ration Date:		20-Nov-17			Expirv Date:		20-Nov-18	
CALIBRATIONS Plate No. H2O (L) (in) H2O (R) (in) LINEAR (chart) 18 3.80 -8.50 12.300 1.682 55.00 54.29 Slope = 31.2460 13 2.90 -6.50 9.400 1.471 46.00 45.41 Intercept = 0.7345 10 1.00 -5.70 6.700 1.243 41.00 40.47 Corr. coeff: 0.9933 7 0.20 -4.20 4.400 1.009 31.00 30.60 5 -0.80 -3.10 2.300 0.732 25.00 24.68 Calculations: Qstd = standard flow rate IC = [ISqrt(Pa/Pstd)(Tstd/Ta)] Go.00 50.00 40.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00		Callo	S/N:		2456						
Plate No. H2O (L) (in) H2O (R) (in) H2O (n) (in) H2O (n) (in) Qstd (m³/min) I IC (corrected) LINEAR REGRESSION 18 3.80 -8.50 12.300 1.682 55.00 54.29 Slope = 31.2460 13 2.90 -6.50 9.400 1.471 46.00 45.41 Intercept = 0.7345 10 1.00 -5.70 6.700 1.243 41.00 30.60 20.01 5 -0.80 -3.10 2.300 0.732 25.00 24.68 Carr. coeff.: 0.9933 Calculations: Qstd = standard flow rate 60.00 25.00 24.68 Carr. coeff.: 0.9933 IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] 3.00 0.732 25.00 24.68 Carr. coeff.: 0.9933 Qstd = standard flow rate IC = corrected chart response 50.00 25.00 24.68 S0.00 S0.00 </td <td></td> <td></td> <td></td> <td></td> <td>CALIBI</td> <td>RAT</td> <td>IONS</td> <td></td> <td></td> <td></td> <td></td>					CALIBI	RAT	IONS				
Plate No. (in) (in) (in) (in) (m³/min) (chart) (corrected) REGRESSION 18 3.80 -8.50 12.300 1.682 55.00 54.29 Slope = 31.2460 13 2.90 -6.50 9.400 1.471 46.00 45.41 Intercept = 0.7345 10 1.00 -5.70 6.700 1.243 41.00 40.47 Corr. coeff.: 0.9933 7 0.20 -4.20 4.400 1.009 31.00 30.60 Orr. coeff.: 0.9933 Calculations: Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta)]-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate FLOW RATE CHART 60.00 50.00		H2O (L)	H2O (R)	H2O	Qstd	Τ	1	IC		LINEAR	
18 3.80 -8.50 12.300 1.682 55.00 54.29 Slope = 31.2460 13 2.90 -6.50 9.400 1.471 46.00 45.41 Intercept = 0.7345 10 1.00 -5.70 6.700 1.243 41.00 40.47 Corr. coeff.: 0.9933 7 0.20 -4.20 4.400 1.009 31.00 30.60 2 -0.80 -3.10 2.300 0.732 25.00 24.68 FLOW RATE CHART (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.10 4.60 (0.0	Plate No.	(in)	(in)	(in)	(m ³ /min)		(chart)	(corrected)	l i	REGRESSIC	N
13 2.90 -6.50 9.400 1.471 46.00 45.41 Intercept = 0.7345 10 1.00 -5.70 6.700 1.243 41.00 40.47 Corr. coeff.: 0.9933 7 0.20 -4.20 4.400 1.009 31.00 30.60 25.00 24.68 Calculations: Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] Calculations: Qstd = standard flow rate 60.00 50.00 24.68 IC = [Sqrt(Pa/Pstd)(Tstd/Ta)] Cast = standard flow rate 60.00 50.00 50.00 I = actual chart response 60.00 50.00 50.00 50.00 50.00 I = actual temperature during calibration (deg K) 90.00 30.00 90.00 90.00 90.00 Tstd = 298 deg K 92 deg K 90.00<	18	3.80	-8.50	12.300	1.682		55.00	54.29	Slope =	31.2460	
10 1.00 -5.70 6.700 1.243 41.00 40.47 Corr. coeff.: 0.9933 7 0.20 -4.20 4.400 1.009 31.00 30.60 24.68 Calculations: Calculation segment Calculation Calculation (deg K) Pa: actual pressure during calibration (mm Hg) Tst = 298 deg K Pst = 760 mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) 0.00 0.000 0.500 1.000 1.500 2.000 0 0.000 0.500 1.000 1.500 2.000 0.000	13	2.90	-6.50	9.400	1.471		46.00	45.41	Intercept =	0.7345	
7 0.20 -4.20 4.400 1.009 31.00 30.60 5 -0.80 -3.10 2.300 0.732 25.00 24.68 Calculations:Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta)])Qstd = standard flow rate $IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]$ Qstd = standard flow rate $IC = corrected chart response$ I = actual chart response $I = actual chart response$ I = actual chart response $I = actual temperature during calibration (deg K)$ Pa = actual pressure during calibration (mm Hg)Tstd = 298 deg KPstd = 760 mm HgFor subsequent calculation of sampler flow: $1/m((I)[Sqrt(298/Tav)(Pav/760]-b))$ m = sampler slopeb = sampler interceptI = chart responseTav = daily average temperaturePav = daily average pressure	10	1.00	-5.70	6.700	1.243		41.00	40.47	Corr. coeff.:	0.9933	
5-0.80-3.102.3000.73225.0024.68Calculations: Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta)])-b]IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm HgFullow RATE CHARTFor subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure0.0000.5001.0001.5002.000Standard Flow Rate (m³/min)	7	0.20	-4.20	4.400	1.009		31.00	30.60			
Calculations: Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta)]-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response II = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((1)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure	5	-0.80	-3.10	2.300	0.732		25.00	24.68			
Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta)]) IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler slope	Calculation	s:			Г						
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response II = actual chart response m = calibrator Qstd slope b = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure	Qstd = 1/m[Sqrt(H2O(Pa	/Pstd)(Tstd/1	Га))-b]				FLOV	V RATE CHA	RT	
Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept Tav = daily average temperature Pav = daily average pressure	IC = I[Sqrt(P	a/Pstd)(Tstd/	/Ta)]				60.00 -		T		
IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept Tav = daily average temperature Pav = daily average pressure	Qstd = stand	dard flow rate)							2	
I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((1)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure	IC = correct	ed chart resp	onse				50.00 -			1	
m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((1)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure	I = actual ch	art response				ô					
b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure	m = calibrat	tor Qstd slope	8			e (IC	40.00 -		- 1		
Ia = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pay = daily average pressure	b = calibrate	or Qstd interd	cept			ons					
Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg K Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((1)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler intercept b = sampler intercept 1 = chart response Tav = daily average temperature Pav = daily average pressure	la = actual	temperature	during callbr	ation (deg K)		tesp	30.00 -				
Pstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure	Tate = 200	pressure auri	ing calibratio	n (mm Hg)		art F	20.00		*		
For subsequent calculation of sampler flow: 1/m((1)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept 1 = chart response Tav = daily average temperature Pav = daily average pressure	Potd = 760	ueg K mm Ha				Chê	20.00 -				
1/m((1)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept 1 = chart response Tav = daily average temperature Pav = daily average pressure	For subcor	uent calcula	tion of sam	nler flow:		tual	10.00				
m = sampler slope 0.00 b = sampler intercept 0.000 I = chart response 0.000 Tav = daily average temperature Standard Flow Rate (m³/min)	1/m((1)[Sort	208/Tav//Pa	v/760)1_h)	pier now.		Ac	10.00 -				
b = sampler intercept l = chart response Tav = daily average temperature Pav = daily average pressure	m = sampl	er slope	,,,oo)]-o)				0.00 -				
I = chart response Standard Flow Rate (m³/min) Tav = daily average temperature Standard Flow Rate (m³/min)	h = sample	er intercent					0.00	000 0.500	1 000	1 500	2.000
Tav = daily average temperature Standard Flow Rate (m³/min) Pav = daily average pressure	I = chart re	b – sampler intercept L = chart response							1.000	1.500	2.000
Pav = daily average pressure	Tay = daily	average temp	perature					Standa	rd Flow Rate (m	ո³/min)	
	Pav = daily	average pres	sure								

CHOI KAM HO Project Consultant Report Date: 9th August, 2018

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

A Fugro Group Company

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report no.: 172379CA185011A

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client : MateriaLab Consultants Ltd.

Address : Room 723 & 725, 7/F., Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T. Project : Calibration Services

Project . Calibration Services

Details of Unit Under Test, UUT

Description	:	Sound Level Meter			
Manufacturer	:	Casella			
		Meter	Microphone	F	Preamplifier
Model No.	:	CEL-63X	CE-251		CEL-495
Serial No.	:	3148029	01910		003318
Next Calibration Date	1	12-Apr-2019		C	
Specification Limit	:	EN 61672: 2003 Type 1			
Laboratory Information					
Description : B a	& K	Acoustic Multifunction Ca	alibrator 4226 (Tra	adition	al free field setting)
Equipment ID. : R-	108	-1			
Date of Calibration :	13	-Apr-2018 Ambie	nt Temperature :	22	°C
Calibration Location :	Ca	libration Laboratory of F	rs		

Method Used : By direct comparison

Calibration Results :

Parame	ters	Mean Value (dB)	Specification Limit(dB)			
	4000Hz	1.7	2.6	to	-0.6	
	2000Hz	1.4	2.8	to	-0.4	
26 AL 102002	1000Hz	0.0	1.1	to	-1.1	
A-weighing	500Hz	-3.4	-1.8	to	-4.6	
response	250Hz	-8.8	-7.2	to	-10.0	
	125Hz	-16.2	-14.6	to	-17.6	
	63Hz	-26.2	-24.7	to	-27.7	
	31.5Hz	-39.1	-37.4	to	-41.4	
Differential level linearity	94dB-104dB	0.0		± 0.6	6	
	104dB-114dB	0.0		± 0.6	5	

Remarks:

1. The equipment used in this calibration is traceable to recognized National Standards.

- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighing is fast
- 4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement.
- 5. This is to supersede the previous report no. 172379CA185011.

Checked by :	Date : <u>5 - 7 - 2018</u>	_ Certified by : _	CI Leung Date : _	7-7-2018
CA-R-297 (22/07/2009)		Leung K	wok Tai (Assistant Manager)	
	** E	nd of Report **		

This report shall not be reproduced except in full with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 1 of 1

Report no.: 172379CA180517A

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client : MateriaLab Consultants Ltd.

Address : Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project : Calibration Services

Details of Unit Under Test, UUT

Description	:	Sound Level Meter							
Manufacturer	:	Casella							
		Meter	Microphone	Preamplifier					
Model No.		CEL-63X	CE-251	CEL-495					
Serial No.	:	3756127	00995	003350					
Next Calibration Date	:	11-Mar-2019							
Specification Limit	:	EN 61672: 2003 Type 1							

Laboratory Information

Description	:	В	& K Acoustic Multifund	tion Calibrator 4226 (Trac	dition	al free field setting)
Equipment ID.	:	R-	108-1			
Date of Calibrat	ion :		12-Mar-2018	Ambient Temperature :	22	°C
Calibration Location : 0			Calibration Laboratory of FTS			
Method Used	:	By	direct comparison			

Calibration Results :

Parameters		Mean Value (dB)	Specification Limit(dE		Limit(dB)
	4000Hz	-0.3	2.6	to	-0.6
	2000Hz	0.9	2.8	to	-0.4
	1000Hz	0.3	1.1	to	-1.1
A-weighing frequency response	500Hz	-2.9	-1.8	to	-4.6
	250Hz	-8.2	-7.2	to	-10.0
	125Hz	-15.6	-14.6	to	-17.6
	63Hz	-25.6	-24.7	to	-27.7
	31.5Hz	-38.6	-37.4	to	-41.4
Differential level	94dB-104dB	0.0	± 0.6		3
linearity	104dB-114dB	0.0		± 0.6	5

Remarks :

1. The equipment used in this calibration is traceable to recognized National Standards.

2. The mean value is the average of four measurements.

3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighing is fast

4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement.

5. This is to supersede the previous report no. 172379CA180517.

Checked by :	Date: 5-7-2018 Certified by: Kovering Date: 7.7.2018	_
CA-R-297 (22/07/2009)	Leung Kwok Tai (Assistant Manager)	
	** End of Report **	

This report shall not be reproduced except in full with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 1 of 1

Report no.: 172379CA185066A

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client : MateriaLab Consultants Ltd.

Address : Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project : Calibration Services

Details of Unit Under Test, UUT

Description	:	Sound Level Meter					
Manufacturer	:	Casella					
		Meter	Microphone	P	reamplifier		
Model No.	:	CEL-63X	CE-251		CEL-495		
Serial No.	:	0873599	01801		003341		
Next Calibration Date : 26-Apr-2019							
Specification Limit	Specification Limit : EN 61672: 2003 Type 1						
Laboratory Information							
Description : B	& K	Acoustic Multifunction C	alibrator 4226 (Tra	dition	al free field setting	g)	
Equipment ID. : R-	108	-1					
Date of Calibration :	27	-Apr-2018 Ambie	ent Temperature :	22	°C		

Calibration Location : Calibration Laboratory of FTS

Method Used : By direct comparison

Calibration Results :

Parameters		Mean Value (dB)	Specification Limit(dE		Limit(dB)
	4000Hz	1.9	2.6	to	-0.6
	2000Hz	1.3	2.8	to	-0.4
	1000Hz	-0.1	1.1	to	-1.1
A-weighing frequency response	500Hz	-3.5	-1.8	to	-4.6
	250Hz	-8.9	-7.2	to	-10.0
	125Hz	-16.4	-14.6	to	-17.6
	63Hz	-26.4	-24.7	to	-27.7
	31.5Hz	-39.3	-37.4	to	-41.4
Differential level linearity	94dB-104dB	0.0	± 0.6		i
	104dB-114dB	0.0		± 0.6	5

Remarks:

1. The equipment used in this calibration is traceable to recognized National Standards.

2. The mean value is the average of four measurements.

3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighing is fast

4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement.

5. This is to supersede the previous report no. 172379CA185066.

Checked by :	_Date : _	5-7-2018	Certified by :	t I Jeung	Date : 7.7-2018
CA-R-297 (22/07/2009)			Leung	Kwok Tai (Assistan	t Manager)
		** E	nd of Report *	*	

This report shall not be reproduced except in full with prior written approval from the Company

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1 of 1

Report no.: 172379CA180517(1)

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client Supplied Information

Client : MateriaLab Consultants Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

Description	:	Sound Calibrator
Manufacturer	:	Casella (Model no. CEL-120/1)
Serial No.	:	5230758
Equipment ID	:	FY-SLC-01
Next Calibration Date	:	11-Mar-2019
Specification Limit	:	EN 60942: 2003 Type 1

Laboratory Information

Description	:	Reference Sound level r	eference Sound level meter				
Equipment ID.	÷	R-119-1	119-1				
Date of Calibrat	ion	: 12-Mar-2018	Ambient Temperature :	22	°C		
Calibration Location : Calibration Laboratory of FTS							
Method Used	:	By direct comparison					

Calibration Results :

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)			
94dB	-0.4 dB	+0.4dB			
114dB	-0.3 dB	10.400			

Remarks :

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.

Checked by :	Date: 13-3-2018 Certified by: Date: 13.3.2019.
CA-R-297 (22/07/2009)	Chan Chun Wai (Manager)
	/ ** End of Report **

This report shall not be reproduced except in full with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No. : 183057CA185180(1)

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client : MateriaLab Consultants Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

Description	;	Anemometer
Manufacturer	:	Benetech
Model No.	:	GM816
Serial No.	:	13372555
Equipment ID.	:	N/A
Next Calibration Date	:	08-Jun-2019

Laboratory Information

Details of Reference Equipment -

Description	:	Reference Anemometer			
Equipment ID	.:	R-101-4			
Date of Calibration	:	09-Jun-2018	Ambient Temperature	:	22 °C
Calibration Location	:	Calibration Laboratory of	FTS		
Method Used : By	dire	ect Comparison			

Calibration Results :

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
1.96	2.2	0.2
4.04	4.1	0.1
6.05	6.2	0.2
8.02	7.9	-0.1
10.06	9.7	-0.4

Remark :

1. The equipment being used in this calibration is traceable to recognized National Standards.

Checked by : / Milliam	Date :	12-6-2018	Certified by :	his	Date :	136.20/8-
CA-R-297 (22/07/2009)			Chan	Chun Wai (Mar	nager)	

** End of Report **

This report shall not be reproduced except in full with prior written approval from the Company.

Page 1 of 1

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 1 of 1

Report No. : 182933CA185214(2)

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client : Materialab Consultants Ltd.

Address: Room 723 & 725, 7F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project : Calibration Services

Details of Unit Under Test, UUT

Description	•	Comfort Level	Probe			
Manufacturer	6 0	Testo				
		Meter	Probe			
Model No.		480	409			
Serial No.	•	61003846	03216409			
Equipment ID	•	N/A				
Next Calibration Due Date	:	22-Aug-2019				
Laboratory Information						
Details of Reference Equipmer	1t —					
Description : Refe	rence	Anemometer				
Equipment ID. : R-10)1-4					
Date of Calibration : 23-A	ug-20	018	Ambient Temperature	0	20± 2	°C
Calibration Location : Calib	oratior	Laboratory of	FTS			
Method Used : By direct Co	mpar	ison				

Calibration Results :

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
1.05	1.06	0.01
3.02	3.06	0.04
5.04	5.07	0.03

Remarks :

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The reported readings in this calibration are an average from 10 trials.

Checked by : Milliam	Date: 31-8-2018	Certified by :_	+ J. Loung	_Date : <u>3(-</u>	- 8-2018
CA-R-297 (22/07/2009)		Leung Kw	ok Tai (Assistant	Manager)	

** End of Report **

This report shall not be reproduced except in full with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix E

Environmental Monitoring Schedule

Tel

Fugro Development Centre,	
5 Lok Yi Street, Tai Lam,	
Tuen Mun, N.T.,	
Hong Kong.	

: +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Project: KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Impact Monitoring Schedule (October 2018)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
	1	2 TSP Monitoring	3 Noise Monitoring	4	5	6
7	8 TSP Monitoring ^[4] Noise Monitoring	9	10 TSP Monitoring ^[4]	11	12	13 TSP Monitoring Noise Monitoring
14	15	16	17	18	19 TSP Monitoring Noise Monitoring	20
21	22	23	24 TSP Monitoring Noise Monitoring	25	26	27
28	29	30 TSP Monitoring Noise Monitoring	31			

Remarks

1. Monitoring Locations - KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital), KER1b: Site Boundary at Cheung Yip Street

2. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)

Noise Monitoring: Leq (30 min) between 0700 and 1900 hours. 3.

4. Power supply of high volume sampler at KER1b was suspended due to the damage of the cable, TSP monitoring was resumed at 10 October 2018.

Tel

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Project: KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Impact Monitoring Schedule (November 2018)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
				1	2	3
4	5 TSP Monitoring Noise Monitoring	6	7	8	9	10 TSP Monitoring Noise Monitoring
11	12	13	14	15	16 TSP Monitoring Noise Monitoring	17
18	19	20	21	22 TSP Monitoring Noise Monitoring	23	24
25	26	27	28 TSP Monitoring Noise Monitoring	29	30	

Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition

2. Monitoring Locations - KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital), KER1b: Site Boundary at Cheung Yip Street

3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)

4. Noise Monitoring: Leg (30 min) between 0700 and 1900 hours.

Tel

Fugro Development Centre, 5 Lok Yi Street. Tai Lam. Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Project: KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Impact Monitoring Schedule (December 2018)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
						1
2	3	4 TSP Monitoring Noise Monitoring	5	6	7	8
9	10 TSP Monitoring Noise Monitoring	11	12	13	14	15 TSP Monitoring Noise Monitoring
16	17	18	19	20	21 TSP Monitoring Noise Monitoring	22
23	24	25	26	27 TSP Monitoring Noise Monitoring	28	29
30	31					

Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition

2. Monitoring Locations - KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital), KER1b: Site Boundary at Cheung Yip Street

3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)

4. Noise Monitoring: Leg (30 min) between 0700 and 1900 hours.

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company

Tel

Fugro Development Centre, 5 Lok Yi Street. Tai Lam. Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Project: KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Impact Monitoring Schedule (January 2019)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
		1	2 TSP Monitoring Noise Monitoring	3	4	5
6	7	8 TSP Monitoring Noise Monitoring	9	10	11	12
13	14 TSP Monitoring Noise Monitoring	15	16	17	18	19 TSP Monitoring Noise Monitoring
20	21	22	23	24	25 TSP Monitoring Noise Monitoring	26
27	28	29	30	31 TSP Monitoring Noise Monitoring		

Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition

2. Monitoring Locations - KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital), KER1b: Site Boundary at Cheung Yip Street

3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)

4. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix F

Air Quality Monitoring Data

24-hour TSP Monitoring Result for Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

KTD1a - Centre of Excellence in Paediatrics (Children's Hospital)

Start Date	Weather	Air Temperature	Atmospheric Pressure, Pa	Filter W	ter Weight (g) Particulate		Filter Weight (g)		Sampling	Flow (m ³ /ı	Rate min.)	Average flow	Total volume	Conc.	Action Level	Limit Level
	Condition	(K)	(mmHg)	Initial	Final	weight (g)	Time(IIIS)	Initial	Final	(m /min.)	(m)	(ug/m)	(ug/m^3)	(ug/m^3)		
2-Oct-18	Fine	300.2	761.2	2.6880	2.8113	0.1233	24	1.50	1.51	1.50	2165.5	57				
8-Oct-18	Fine	299.7	760.7	2.6194	2.6914	0.0720	24	1.37	1.38	1.38	1980.3	36				
13-Oct-18	Fine	279.2	763.0	2.6757	2.7928	0.1171	24	1.50	1.44	1.47	2115.1	55	177	260		
19-Oct-18	Fine	297.2	763.0	2.6801	2.8095	0.1294	24	1.45	1.44	1.44	2079.6	62	177	200		
24-Oct-18	Cloudy	298.7	763.0	2.6501	2.7634	0.1133	24	1.38	1.38	1.38	1983.7	57				
30-Oct-18	Fine	298.7	761.2	2.6574	2.8248	0.1674	24	1.44	1.44	1.44	2075.5	81				
											Min	36				
											Max	81				
											Average	58				

KTD 2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital)

Start Date	Weather	Air Temperature	Atmospheric Pressure, Pa	Filter W	Veight (g) Particulate		Sampling	Flow (m ³ /i	Rate min.)	Average flow	Total volume	Conc.	Action Level	Limit Level
	Contaition	(14)	(mmHg)	Initial	Final	Wolgin (g)	11110(1110)	Initial	Final	(111 /11111.)	(iii	(ug/iii)	(ug/m^3)	(ug/m ³)
2-Oct-18	Fine	300.2	761.2	2.6886	2.7379	0.0493	24	1.27	1.27	1.27	1832.0	27		
8-Oct-18	Fine	299.7	760.7	2.6275	2.7533	0.1258	24	1.56	1.57	1.57	2255.0	56		
13-Oct-18	Fine	279.2	763.0	2.6813	2.8094	0.1281	24	1.56	1.49	1.53	2197.0	58	157	260
19-Oct-18	Fine	297.2	763.0	2.6375	2.7333	0.0958	24	1.50	1.49	1.50	2156.6	44	157	200
24-Oct-18	Cloudy	298.7	763.0	2.6538	2.7907	0.1369	24	1.28	1.27	1.28	1836.1	75		
30-Oct-18	Fine	298.7	761.2	2.6563	2.8566	0.2003	24	1.57	1.57	1.57	2257.6	89		
											Min	27		
											Max	89		
											Average	58]	

KER1b - Site Boundary at Cheung Yip Street

Start Date	Weather	Air Temperature	Atmospheric Pressure, Pa	Atmospheric Pressure, Pa (mmHa) Filter Weight (g) Particulate S weight (g) 7	Sampling Time(hrs)	Flow Rate (m ³ /min.)		Average flow	Total volume	Conc.	Action Level	Limit Level		
	Condition	(13)	(mmHg)	Initial	Final	weight (g)	11116(1113)	Initial	Final	(111 /11111.)	(m ·	(ug/iii)	(ug/m^3)	(ug/m^3)
2-Oct-18	Fine	300.2	761.2	2.6715	2.7980	0.1265	24	1.28	1.29	1.29	1850.5	68		
10-Oct-18	Fine	296.2	764.2	2.6158	2.6652	0.0494	24	1.05	1.04	1.04	1503.1	33		
13-Oct-18	Fine	279.2	763.0	2.6870	2.7833	0.0963	24	1.21	1.16	1.19	1711.7	56	172	260
19-Oct-18	Fine	297.2	763.0	2.6294	2.7237	0.0943	24	1.17	1.16	1.17	1679.1	56	172	200
24-Oct-18	Cloudy	298.7	763.0	2.6689	2.7436	0.0747	24	1.29	1.29	1.29	1854.5	40		
30-Oct-18	Fine	298.7	761.2	2.6587	2.9246	0.2659	24	1.29	1.29	1.29	1853.2	143		
											Min	33		
											Max	143		
											Average	66		

Note:

Underline: Exceedance of Action Level

Underline and Bold: Exceedance of Limit Level

Power supply of high volume sampler at KER1b was suspended due to the damage of the cable, TSP monitoring was resumed at 10 October 2018.

Note:

1) The major activities being carried out on site during the reporting period can be referred to Section 1.3.2.

3) Any other factors which might affect the monitoing results can be referred to Section 2.6.4.

4) QA/QC results, calibration results and detection limits can be referred to Appendix D.

5) KTD 2a was relocated to KTD2b on 9 August 2018

6) Power supply of high volume sampler at KER1b was suspended on 8 October 2018 due to the damage of the cable, TSP monitoring was resumed at 10 October 2018.

²⁾ The weather conditions during the reporting period can be referred to Appendix K.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix G

Noise Monitoring Data

Noise Impact Monitoring Result for Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

		Leq 30min	L10	L90	Wind Speed	
Date	Start Time	dB(A)	dB(A)	dB(A)	(m/s)	Weather
3-Oct-18	10:16	74	76	66	0.2	Fine
8-Oct-18	14:00	71	74	69	0.9	Fine
13-Oct-18	10:30	68	71	67	0.0	Fine
19-Oct-18	10:00	68	71	65	0.2	Fine
24-Oct-18	10:01	65	66	61	0.8	Cloudy
30-Oct-18	9:54	72	75	68	0.3	Fine
	Max	74				
	Min	65				
	Limit Level	75				

KTD 1a: Centre of Excellence in Paediatrics (Children's Hospital)

KTD 2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital)

Date	Start Time	Leq 30min dB(A)	L10 dB(A)	L90 dB(A)	Wind Speed (m/s)	Weather
3-Oct-18	9:37	72	77	64	0.3	Fine
8-Oct-18	14:50	70	72	67	2.3	Fine
13-Oct-18	9:42	67	68	65	0.0	Fine
19-Oct-18	9:00	67	69	65	0.1	Fine
24-Oct-18	9:13	63	64	62	0.0	Cloudy
30-Oct-18	10:33	65	67	62	0.5	Fine
	Max	72				
	Min	63				
	Limit Level	75				

KER 1b: Site Boundary at Cheung Yip Street

		Leq 30min	L10	L90	Wind Speed	
Date	Start Time	dB(A)	dB(A)	dB(A)	(m/s)	Weather
3-Oct-18	11:00	65	67	63	0.6	Fine
8-Oct-18	15:42	68	69	62	0.8	Fine
13-Oct-18	8:30	65	67	62	0.0	Fine
19-Oct-18	11:00	67	69	65	0.2	Fine
24-Oct-18	10:39	64	65	62	1.2	Cloudy
30-Oct-18	9:04	71	73	67	1.3	Fine
	Max	71				
	Min	64				
	Limit Level	75				

Note:

KTD1a: Façade Measurement

KTD2b & KER1b: Free-field measurement (+3dB(A) correction has been applied)

No raining or wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation.

Note:

1) The major activities being carried out on site during the reporting period can be referred to Section 1.3.2.

- 2) The weather conditions during the reporting period can be referred to Appendix K.
- 3) Any other factors which might affect the monitoing results can be referred to Section 3.7.2.
- 4) QA/QC results, calibration results and detection limits can be referred to Appendix D.

5) KTD 2a was relocated to KTD2b on 9 August 2018

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix H

Events and Action Plan

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Event and Action Plan for Construction Dust Monitoring

EVENT		ACT		
	ET	IEC	ER	Contractor
Action Level				
Exceedance for one sample.	 Identify sources, investigate the causes of complaint and propose remedial measures. Inform IEC and ER. Repeat measurement to confirm finding;. Increase monitoring 	 Check monitoring data submitted by the ET. Check the Contractor's working methods. 	1. Notify the Contractor.	 Rectify any unacceptable practices. Amend working methods agreed with the ER as appropriate.
Exceedance for two or more consecutive samples.	 Indentify sources. Inform the IEC and ER. Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings. Increase monitoring frequency to daily. Discuss with the IEC, ER and Contractor on remedial action required. If exceedance continues, arrange meeting with the IEC, Contractor and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET. Check the Contractor's working methods. Discuss with the ET, ER and Contractor on possible remedial measures if required. Advise the ER on the effectiveness of proposed remedial measures if required. 	 Notify the Contractor. Ensure remedial measures properly implemented. 	 Submit proposals for remedial action to the ER within 3 working days of notification. Implement the agreed proposals. Amend proposal as appropriate
Excoodance for one	1 Identify sources	1 Check monitoring	1 Confirm receipt of the	1 Taka immodiate action
Exceedance for two cr	 Identity sources, investigate causes of exceedance and proposed remedial measures. Inform the IEC, ER, and Contractor. Repeat measurement to confirm finding. Increase monitoring frequency to daily. Assess effectiveness of the Contractor's remedial action and keep the IEC and ER informed of the results 	 Check monitoring data submitted by the ET. Check the Contractor's working methods. Discuss with the ET, ER and Contractor on possible remedial measures. Advise the ER and ET on the effectiveness of the proposed remedial measures. Supervise the implementation of remedial measures. 	 Confirm receipt of the notification of exceedance in writing. Notify the Contractor. Ensure remedial measures are properly implemented. 	 rake immediate action to avoid further exceedance. Submit proposals for remedial action to the ER and copy to the ET and IEC within 3 working days of notification. Implement the agreed proposals. Amend proposal as appropriate.
Exceedance for two or more consecutive samples	 Notity the IEC, ER and Contractor. Identify sources. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Carry out analysis of the Contractor's working procedures with the ER to determine the possible mitigation to be implemented. Arrange meeting with the IEC and ER to discuss the remedial 	 Discuss amongst the ER, ET and Contractor on the potential remedial action. Review the Contractor's remedial action whenever necessary to assure their effectiveness and advise the ER and ET accordingly. Supervise the implementation of remedial measures. 	 Contirm receipt of the notification of exceedance in writing. Notify the Contractor. In consultation with the IEC and ET, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures are properly implemented. If exceedance continues, consider 	 I ake immediate action to avoid further exceedance. Submit proposals for remedial action to the ER and copy to the IEC and ET within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problems still not under control. Stop the relevant portion of works as determined by the ER

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

EVENT		ACT	ION		
EVENI	ET	IEC	ER	Contractor	
	action to be taken. 7. Assess the effectiveness of the Contractor's remedial action and keep the IEC, EPD and ER informed of the results. 8. If exceedance stops, cease additional monitoring		what portion of works is responsible and instruct the Contractor to stop that portion of works until the exceedance is abated.	until the exceedance is abated.	

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Event and Action Plan for Noise Impact

EVENT	ACTION							
	ET	IEC	ER	Contractor				
Action Level	 Notify the IEC, ER and Contractor. Carry out investigation. Report the results of investigation to the IEC and Contractor. Discuss jointly with the ER and Contractor and formulate remedial measures. Increase the monitoring frequency to check the mitigation effectiveness 	 Review the monitoring data submitted by the ET. Review the construction methods and proposed redial measures by the Contractor, and advise the ET and ER if the proposed remedial measures would be sufficient 	 Notify the Contractor. Require the Contractor to propose remedial measures for implementation if required. 	 Submit noise mitigation proposals to the ER and copy to the IEC and ET. Implement noise mitigation proposals. 				
Limit Level	 Notify the IEC, ER and Contractor. Identify sources. Repeat measurements to confirm findings. Carry out analysis of the Contractor's working procedures with the ER and Contractor to determine possible mitigations to be implemented. Record the causes and action taken for the exceedances. Increase the monitoring frequency. Assess the effectiveness of the Contractor's remedial action with the ER and keep the IEC informed of the results. If exceedance stops, cease additional monitoring 	 Discuss amongst the ER, ET and Contractor on the potential remedial action. Review the Contractor's remedial action whenever necessary to assure their effectiveness and advise the ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing. Notify the Contractor. Require the Contractor to propose remedial measures for the analysed noise problems. Ensure remedial measures are properly implemented. If exceedance continues, consider what portion of work is responsible and instruct the Contractor to stop that portion of works until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial action to the ER and copy to the ET and IEC within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problems still not under control. Stop the relevant portion of works as determined by the ER until the exceedance is abated. 				

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Event and Action Plan for Landscape and Visual Impact

EVENT		ACT	TON	
EVENT	ET	IEC	ER	Contractor
Non-conformity on one occasion	 Identify Source Inform the IEC and the ER Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed 	 Check report Check the Contractor's working method Discuss with the ET and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures. Check implementation of remedial measures. 	 Notify Contractor Ensure remedial measures are properly implemented 	 Amend working methods Rectify damage and undertake any necessary replacement
Repeated Non- conformity	 Identify Source Inform the IEC and the ER Increase monitoring frequency Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed If exceedance stops, cease additional monitoring 	 Check monitoring report Check the Contractor's working method Discuss with the ET and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures Supervise implementation of remedial measures. 	 Notify the Contractor Ensure remedial measures are properly implemented 	 Amend working methods Rectify damage and undertake any necessary replacement

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix I

Waste Flow Table

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Waste Flow	Waste Flow Table for Year 2016												
		Actual Quant	tities of Inert C&I	D Materials Gene	erated Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly						
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse		
	(in '000m ³)	(in '000m³)	(in '000m³)	(in '000m ³)	(in '000m³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)		
2016 Jan	0.159	0.101	0.058	Nil	Nil	Nil	Nil	0.023	0.00002	0.0158	0.0335		
2016 Feb	0.291	0.050	0.241	Nil	Nil	Nil	1.34	0.023	0.00002	0.0158	0.0335		
2016 Mar	2.7389	0.0407	0.0662	Nil	2.632	Nil	5.92	0.023	0.00002	0.0158	0.0571		
2016 Apr	4.1718	0.0578	0.462	Nil	3.652	Nil	12.5	0.023	0.00002	0.0158	0.0426		
2016 May	3.592	Nil	0.299	Nil	3.293	Nil	5.23	0.023	0.00002	0.0158	0.0621		
2016 June	4.6035	Nil	0.8555	Nil	3.748	Nil	Nil	0.023	0.00002	0.0158	0.0619		
2016 July	6.155	0.153	0.015	Nil	5.987	Nil	7.84	0.023	0.00002	0.0158	0.0433		
2016 Aug	5.1155	Nil	Nil	Nil	5.1155	Nil	19.93	0.023	Nil	Nil	0.0147		
2016 Sept	7.2267	Nil	Nil	Nil	7.2267	Nil	33.65	0.023	Nil	Nil	0.0103		
2016 Oct	4.6448	Nil	Nil	Nil	4.6448	Nil	13.30	0.023	Nil	Nil	0.0385		
2016 Nov	6.1626	Nil	Nil	Nil	6.1626	Nil	27.06	0.023	Nil	Nil	0.0192		
2016 Dec	6.3522	Nil	Nil	Nil	6.3522	Nil	13.30	0.023	Nil	Nil	0.0121		
Total	51.213	0.4025	1.9967	Nil	48.8138	Nil	140.07	0.276	0.00014	0.1106	0.4288		

Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill - Imported Fill

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Waste Flow	Naste Flow Table for Year 2017												
		Actual Quant	tities of Inert C&I	D Materials Gene	erated Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly						
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse		
	(in '000m ³)	(in '000m³)	(in '000m³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)		
2017 Jan	4.2300	Nil	Nil	Nil	4.2300	Nil	0.015	0.023	Nil	Nil	0.0109		
2017 Feb	3.2128	Nil	Nil	Nil	3.2128	Nil	0.015	0.023	Nil	Nil	0.0096		
2017 Mar	9.4759	Nil	Nil	Nil	9.4759	Nil	0.034	0.023	Nil	Nil	0.0162		
2017 Apr	4.8827	Nil	Nil	Nil	4.8827	Nil	0.016	0.023	Nil	Nil	0.0062		
2017 May	3.0366	Nil	Nil	Nil	3.0366	Nil	0.022	0.023	Nil	Nil	0.0282		
2017 Jun	2.5656	Nil	Nil	Nil	2.5656	Nil	41.25	Nil	Nil	Nil	0.0357		
2017 Jul	5.5267	Nil	0.7851	Nil	4.7416	Nil	4.01	0.4515	Nil	0.25	0.0364		
2017 Aug	11.4734	Nil	0.0276	Nil	11.4458	Nil	7.4	Nil	Nil	Nil	0.0196		
2017 Sep	23.9373	Nil	2.6167	Nil	21.3206	Nil	3.52	Nil	Nil	Nil	0.0333		
2017 Oct	17.8261	Nil	0.4069	Nil	17.4192	Nil	Nil	Nil	Nil	Nil	0.0156		
2017 Nov	5.8834	Nil	0.6664	Nil	5.217	Nil	Nil	Nil	Nil	Nil	0.023		
2017 Dec	21.3554	Nil	0.4763	Nil	20.8791	Nil	29.13	Nil	Nil	Nil	0.022		
Total	113.4059	Nil	4.9790	Nil	108.4269	Nil	85.412	0.5665	Nil	0.25	0.2567		

Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill – Imported Fill

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Waste Flow	Table for Ye	ear 2018									
		Actual Quan	tities of Inert C&I	D Materials Gene	erated Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly				
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2018 Jan	10.2340	Nil	Nil	Nil	10.2340	Nil	32.39	Nil	Nil	Nil	0.0161
2018 Feb	6.5256	Nil	Nil	Nil	6.5256	Nil	Nil	Nil	Nil	Nil	0.0235
2018 Mar	28.1995	Nil	Nil	Nil	28.1995	Nil	54.54	Nil	Nil	Nil	0.0190
2018 Apr	11.2165	Nil	Nil	Nil	11.2165	Nil	Nil	Nil	Nil	Nil	0.0270
2018 May	5.6011	Nil	Nil	Nil	5.6011	Nil	Nil	Nil	Nil	Nil	0.0140
2018 Jun	5.8072	Nil	Nil	Nil	5.8072	Nil	93.3	Nil	Nil	Nil	0.0235
2018 Jul	7.4206	Nil	Nil	Nil	7.4206	Nil	Nil	Nil	Nil	Nil	0.0383
2018 Aug	2.0815	Nil	Nil	Nil	2.0815	Nil	Nil	Nil	Nil	Nil	0.0665
2018 Sep	0.3710	Nil	Nil	Nil	0.3710	Nil	Nil	Nil	Nil	Nil	0.0436
2018 Oct	0.9087	Nil	Nil	Nil	0.9620	0.0533	Nil	Nil	Nil	Nil	0.0444
2018 Nov											
2018 Dec											
Total	78.3657	Nil	Nil	Nil	78.4190	0.0533	180.23	Nil	Nil	Nil	0.3159

Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill - Imported Fill
Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix J

Environmental Mitigation Implementation Schedule (EMIS)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status					
Air Quality Measur	Air Quality Measures									
New Distributor Ro	oads Serving the Pla	anned KTD								
AEIAR-130/2009 S3.2	AEIAR 130/2009 EM&A Manual S2.2	8 times daily watering of the work site with active dust emitting activities.	Contractor	All relevant worksites	Implemented					
Decommissioning	of the Radar Station	n of the former Kai Tak Airport								
AEIAR-130/2009 S5.2.19	AEIAR 130/2009 EM&A Manual S4.2.4	The excavation area should be limited to as small in size as possible and backfilled with clean and/or treated soil shortly after excavation work. The exposed excavated area should be covered by the tarpaulin during night time. The top layer soils should be sprayed with fine misting of water immediately before the excavation.	Contractor	All relevant worksites	Not Applicable					
Trunk Road T2			1		1					
AEIAR-174/2013 S4.9.2.1	AEIAR-174/2013 EM&A Manual S2.3.1.1	Watering of the construction areas 12 times per day to reduce dust emissions by 91.7%, with reference to the "Control of Open Fugitive Dust Sources" (USEPA AP-42). The amount of water to be applied would be 0.91L/m2 for the respective watering frequency.	Contractor	All relevant worksites	Implemented					
		Dust enclosures with watering would be provided along the loading ramps and conveyor belts for unloading the C&D materials to the barge for dust suppression.	Contractor	All relevant worksites	Not Applicable					
		8 km per hour is the recommended limit of the speed for vehicles on unpaved site roads.	Contractor	All relevant worksites	Implemented					
		Good Site Practices								
AEIAR-130/2009	AEIAR 130/2009	Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should	Contractor	All relevant	Implemented					

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
S3.2, S5.2.19,	EM&A Manual	be fully covered by impermeable sheeting to reduce dust emission.		worksites	
S4.9.2.2	174/2013 EM&A Manual S2.3.1.2	Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs.	Contractor	All relevant worksites	Implemented
		Misting for the dusty material should be carried out before being loaded into the vehicle. Any vehicle with an open load carrying area should have properly fitted side and tail boards.	Contractor	All relevant worksites	Implemented
		Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	Contractor	All relevant worksites	Implemented
		Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations; The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation.	Contractor	All relevant worksites	Implemented
		The vehicles should be restricted to maximum speed of 10 km per hour. Confined haulage and delivery vehicle to designated roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	Contractor	All relevant worksites	Implemented
		Vehicle washing facilities should be provided at every vehicle exit point. Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.	Contractor	All relevant worksites	Implemented
		The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.			
		Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet.	Contractor	All relevant worksites	Implemented
		Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed.	Contractor	All relevant worksites	Implemented
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system.	Contractor	All relevant worksites	Implemented
		Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.	Contractor	All relevant worksites	Implemented
		Open stockpiles shall be avoided or covered. Prevent placing dusty material storage piles near ASRs.	Contractor	All relevant worksites	Implemented
		Routing of vehicles and position of construction plant should be at the maximum possible distance from ASRs.	Contractor	All relevant worksites	Implemented
		Dark smoke			
		Dark smoke emission shall be control in accordance with the Air Pollution Control (Smoke) Regulation and ETWB TCW 19/2005.	Contractor	All relevant worksites	Implemented
		Plant and equipment should be well maintained to prevent dark smoke emission.	Contractor	All relevant worksites	Implemented
Noise Measures					
Trunk Road T2					
AEIAR-174/2013 S5.9.2.1	AEIAR-174/2013 EM&A Manual S3.4.1.1	The use of quieter plant, including Quality Powered Mechanical Equipment (QPME) is specified for the list of equipment: • Concrete lorry mixer • Dump Truck, 5.5 tonne < gross vehicle weight <= 38 tonne • Generator, Super Silenced, 70 dB(A) at 7m	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		 Poker, vibratory, Hand-held (electric) Water Pump, Submersible (Electric) Mobile Crane - KOBELCO CKS900 Excavator, wheeled/tracked - HYUNDAI R80CR-9 			
		Use of temporary or fixed noise barriers with a surface density of at least 10kg/m ² to screen noise from movable and stationary plant.	Contractor	All relevant worksites	Implemented
		Use of enclosures with covers at top and three sides and a surface density of at least 10kg/m ² to screen noise from generally static noisy plant such as air compressors.	Contractor	All relevant worksites	Implemented
		Use of acoustic fabric for the silent piling system, drill rigs, rock drills etc.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009 S3.3, S5.3.10,	AEIAR 130/2009 EM&A Manual S2.3, S4.3.2, AEIAR-174/2013 EM&A Manual S3.4.1.1	Only well-maintained plant should be operated on-site and plant shall be serviced regularly during the construction/ decommissioning program.	Contractor	All relevant worksites	Implemented
S5.9.2.1		Silencers or mufflers on construction equipment should be utilized and shall be properly maintained during the construction/ decommissioning program.	Contractor	All relevant worksites	Implemented
		Mobile plant, if any, should be sited as far away from NSRs as possible.	Contractor	All relevant worksites	Implemented
		Machines and plant (such as trucks) that may be in intermittent use shall be shut down between works periods or should be throttled down to a minimum.	Contractor	All relevant worksites	Implemented
		Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.	Contractor	All relevant worksites	Implemented
		Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction/ decommissioning activities.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Use of site hoarding as a noise barrier to screen noise at low level NSRs.	Contractor	All relevant worksites	Implemented
		For the use of hand held percussive breakers (with mass of above 10kg) and portable air compressors (supply air at 500 kPa or above), the noise level of such PME shall comply with a stringent noise emission standard and a noise emission label shall be obtained from the DEP before use at any time in construction site.	Contractor	All relevant worksites	Implemented
		Quiet powered mechanical equipment (PME) shall be used for the construction of the Project.	Contractor	All relevant worksites	Implemented
		Full enclosures shall be used to screen noise from relatively static PMEs (including air compressor, bar bender, concrete pump, generator and water pump) from sensitive receiver(s).	Contractor	All relevant worksites	Implemented
		Movable cantilevered noise barriers shall be used to screen noise from mobile PMEs (including asphalt paver, breaker, excavator and hand-held breaker) from sensitive receiver(s). These movable cantilevered noise barriers shall be located close to the mobile PMEs and shall be moved/adjusted iteratively in step with each movement of the corresponding mobile PMEs in order to maximize their noise reduction effects.	Contractor	All relevant worksites	Implemented
		Only approved or exempted Non-road Mobile Machineries (NRMMs) including regulated machines and non-road vechicles with proper labels are allowed to be used in specified activities on-site.	Contractor	All relevant worksites	Implemented
Water Quality Mea	asures				
Trunk Road T2					
		Accidental Spillage			
AEIAR-174/2013 S6.4.8.5	AEIAR-174/2013 EM&A Manual S4.2.1.1	All bentonite slurry should be stored in a container that resistant to corrosion, maintained in good conditions and securely closed; The container should be labelled in English and Chinese and note that the container is for storage of bentonite slurry only.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		The storage container should be placed on an area of impermeable flooring and bunded with capacity to accommodate 110% of the volume of the container size or 20% by volume stored in the area and enclosed with at least 3 sides.	Contractor	All relevant worksites	Implemented
		The storage container should be sufficiently covered to prevent rainfall entering the container or bunded area (water collected within the bund must be tested and disposed of as chemical waste, if necessary). An emergency clean up kit shall be readily available where bentonite fluid will be stored or used.	Contractor	All relevant worksites	Implemented
		The handling and disposal of bentonite slurries should be undertaken in accordance within ProPECC PN 1/94. Surplus bentonite slurries used in construction works shall be reconditioned and reused wherever practicable. Residual bentonite slurry shall be disposed of from the site as soon as possible as stipulated in Clause 8.56 of the General Specification for Civil Engineering Works. The Contractor should explore alternative disposal outlets for the residual bentonite slurry to be disposed to a public filling area and liquid bentonite slurry, if mixed with inert fill material, to be disposed to a public filling area) and disposal at landfill should be the last resort.	Contractor	All relevant worksites	Implemented
AEIAR-174/2013 S6.4.8.8	AEIAR-174/2013 EM&A Manual S4.2.1.1	In order to protect against impacts to the surrounding marine waters of the KTTS and Victoria Harbour in the event of an accidental spillage of fuel or oil, the Contractor will be required to prepare a spill response plan to the satisfaction of AFCD, EPD, FSD, Police, TD and WSD to define procedures for the control, containment and clean-up of any spillage that could occur on the construction site.	Contractor	All relevant worksites	Implemented
		Dredging, Reclamation and Filling			
		No dredging, reclamation or filling in the marine environment shall be carried out.	Contractor	All relevant worksites	Implemented
Decommissioning	of the Radar Station	n of the former Kai Tak Airport			
		Building Demolition			

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
AEIAR-130/2009 S5.4	AEIAR 130/2009 EM&A Manual	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion.	Contractor	All relevant worksites	Not Applicable
	54.4	There is a need to apply to EPD for a discharge licence under the WPCO for discharging effluent from the construction site. The discharge quality is required to meet the requirements specified in the discharge licence. All the runoff, wastewater or extracted groundwater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. It is anticipated that the wastewater generated from the works areas would be of small quantity. Monitoring of the treated effluent quality from the works areas should be carried out in accordance with the WPCO license which is under the ambit of regional office (RO) of EPD.	Contractor	All relevant worksites	Not Applicable
		General Construction Works			
		Construction Runoff			
AEIAR- 130/2009 S3.4, S5.4/ AEIAR- 174/2013 S6.4.8.1	AEIAR 130/2009 EM&A Manual S2.4, S4.4/ AEIAR 174/2013 EM&A Manual S4.2.1.1	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include the use of sediment traps and adequate maintenance of drainage systems to prevent flooding and overflow.	Contractor	All relevant worksites	Implemented
		Construction site should be provided with adequately designed perimeter channel and pre- treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	Contractor	All relevant worksites	Implemented
		Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.			
		Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	Contractor	All relevant worksites	Implemented
		Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	Contractor	All relevant worksites	Implemented
		Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	Contractor	All relevant worksites	Implemented
		Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.	Contractor	All relevant worksites	Implemented
		Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	Contractor	All relevant worksites	Implemented
		An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Drainage			
		It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.	Contractor	All relevant worksites	Implemented
		All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	Contractor	All relevant worksites	Implemented
		Stormwater Discharges			
		Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes.	Contractor	All relevant worksites	Implemented
		Sewage Effluent			
		Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	Contractor	All relevant worksites	Implemented
		Debris and Litter			
		In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur. Debris and refuse generated on-site should be collected, handled and disposed of	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		properly to avoid entering into the adjacent harbour waters. Stockpiles of cement and other construction materials should be kept covered when not being used.			
		Accidental Spillage			
		Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to the nearby harbour waters, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ. The bund should be drained of rainwater after a rain event.	Contractor	All relevant worksites	Partially Implemented
		Waste Management Measures			
		Waste Management Plan			
AEIAR-174/2013 S11.4.8.1	AEIAR-174/2013 EM&A Manual S9.2.1.2	Contractor should be requested to submit an outline Waste Management Plan (WMP) prior to the commencement of construction work, in accordance with the ETWB TC(W) No.19/2005 so as to provide an overall framework of waste management and reduction.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009 S3.5, S5.5	AEIAR 130/2009 EM&A Manual S2.5, S4.5	Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.	Contractor	All relevant worksites	Implemented
		Training of site personnel in proper waste management and chemical waste handling procedures.	Contractor	All relevant worksites	Implemented
		Provision of sufficient waste disposal points and regular collection for disposal.	Contractor	All relevant worksites	Implemented
		Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	Contractor	All relevant worksites	Implemented
		Waste Reduction Measures			
		Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals.	Contractor	All relevant worksites	Implemented
		Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.	Contractor	All relevant worksites	Implemented
		Encourage collection of aluminum cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the work force.	Contractor	All relevant worksites	Implemented
		Any unused chemicals or those with remaining functional capacity should be recycled.	Contractor	All relevant worksites	Implemented
		Proper storage and site practices to minimize the potential for damage or contamination of construction materials.	Contractor	All relevant worksites	Implemented
		Construction and Demolition Materials			
		Where it is unavoidable to have transient stockpiles of C&D material within the work site pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible.	Contractor	All relevant worksites	Implemented
		Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric.	Contractor	All relevant worksites	Implemented
		Skip hoist for material transport should be totally enclosed by impervious sheeting.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site.	Contractor	All relevant worksites	Implemented
		The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.	Contractor	All relevant worksites	Implemented
		The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle.	Contractor	All relevant worksites	Implemented
		All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet.	Contractor	All relevant worksites	Implemented
		The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.	Contractor	All relevant worksites	Implemented
		When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Contractor	All relevant worksites	Implemented
		Chemical Waste			
		After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		General Refuse			
		General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem.	Contractor	All relevant worksites	Implemented
Land Contamination	on Measures				
		For any excavation works conducted at Radar Station			
		As the risk due to dermal contact with groundwater by site workers is uncertain, it is recommended that personnel protective equipment (PPE) be used by site workers as a mitigation measure.	Contractor	All relevant worksites	Not Applicable
Landscape and Vi	sual Impact				
		New Distributor Roads Serving the Planned KTD			
		Construction Phase			
		All existing trees should be carefully protected during construction.	Contractor	All relevant worksites	Not Applicable
		Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	Contractor	All relevant worksites	Not Applicable
		Control of night-time lighting.	Contractor	All relevant worksites	Not Applicable

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Lef Environmental Protection Measures / Mitigation Measures		Location / Timing	Construction Phase Implementation Status
		Erection of decorative screen hoarding.	Contractor	All relevant worksites	Implemented
		Trunk Road T2			
		Construction Phase			
AEIAR-174/2013 S9.9.1.1	AEIAR-174/2013 EM&A Manual	All works shall be carefully designed to minimize impacts on existing landscape resources and visually sensitive receivers. Existing trees within works area shall be retained and protected.	Contractor	All relevant worksites	Not Applicable
	37.2.1.2	Existing trees of good quality and condition that are unavoidably affected by the works should be transplanted.	Contractor	All relevant worksites	Not Applicable
		Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance.	Contractor	All relevant worksites	Partially Implemented
		Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance.	Contractor	All relevant worksites	Implemented
		Erection of decorative screen hoarding should be designed to be compatible with the existing urban context.	Contractor	All relevant worksites	Implemented
		All lighting in construction site shall be carefully controlled to minimize light pollution and night- time glare to nearby residences and GIC user. The contractor shall consider other security measures, which shall minimize the visual impacts.	Contractor	All relevant worksites	Not Applicable
General Condition					
		The Permit Holder shall display conspicuously a copy of this Permit on the Project site(s) at all vehicular site entrances/exits or at a convenient location for public's information at all times. The Permit Holder shall ensure that the most updated information about the Permit, including any amended Permit, is displayed at such locations. If the Permit Holder surrenders a part or the whole of the Permit, the notice he sends to the Director shall also be displayed at the same	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		locations as the original Permit. The suspended, varied or cancelled Permit shall be removed from display at the Project site(s).			

Implementation status: Implemented / Partially Implemented / Not Implemented / Not Applicable

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix K

Weather and Meteorological Conditions during Reporting Month

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Data	Mean		Air Temperature		Mean Relative	Total	
Date	Pressure (hPa)	Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	Humidity (%)	(mm)	
	-	-	October 2018	-	-	-	
01	1013.9	29.6	26.8	23.2	70	2.9	
02	1014.9	30.4	27.2	25.3	67	0	
03	1015.3	30.5	26.9	25	68	0	
04	1013.8	30.5	26.9	24.2	54	0	
05	1012.1	31.4	27.1	23.6	40	0	
06	1013.4	30.9	26.8	23.5	48	0	
07	1014.7	30.5	27.1	25.1	69	0	
08	1014.2	29.8	26.7	24.3	75	2	
09	1013.7	29.3	26.5	25.1	78	0.6	
10	1014.7	29.2	24.8	22.5	83	42.8	
11	1017.6	24.7	23.2	22.3	72	0	
12	1018.9	27.1	23.8	22	73	0.3	
13	1017.5	26.8	24.7	22.7	72	0.4	
14	1015.5	27.3	25.3	23.6	79	0.6	
15	1014.6	27.9	25.6	24.3	84	31.4	
16	1013.2	25.8	24.3	23.2	92	8.9	
17	1012.5	25.2	23.5	21.9	84	1.5	
18	1014.7	23.9	22.5	20.9	87	12.6	
19	1017.2	26	24.2	23	77	0.2	
20	1018.6	24.9	24	23.3	78	Trace	
21	1017.6	27.3	24.8	23.2	77	Trace	
22	1015.9	27.4	25	23.7	81	Trace	
23	1016.5	27.4	25.3	24.1	79	0.1	
24	1016.8	27.4	25.2	24	80	Trace	
25	1017	27.7	25.5	24.4	79	0	
26	1016.5	28.6	26.3	23.9	76	0	
27	1018.1	27.9	25.4	23.7	61	0	
28	1017.4	27.5	24.3	21.7	54	0	
29	1015.1	28.9	25.2	22.2	35	0	
30	1014.8	28.5	25.7	23.4	33	0	
31	1014.2	27.2	25	22.9	37	0	

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix L

Cumulative statistics on Environmental Complaints, Notifications of Summons and Successful Prosecution

Tuen Mun, N.T., Hong Kong.

: +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Environmental Complaints Log

Reference No.	Date of Complaint Received	Received From	Received By	Nature of Complaint	Date of Investigation	Outcome	Date of Reply
20161207_complaint_c	7 Dec 2016	EPD	Andy Choy (CRBC)	Air	13 Feb 2017	Project- related	13 Feb 2017
20170209_complaint_c	9 Feb 2017	EPD	Andy Choy (CRBC)	Air	22 Feb2017	Not Project- related	7 Mar 2017
20170502_complaint_c	2 May 2017	CEDD	Andy Choy (CRBC)	Noise	4 May 2017	Not Valid	22 May 2017
20170716_complaint_a	16 July 2017	CEDD	HMJV	Water Quality	4 Aug 2017	Not Project- related	4 Aug 2017
20180530_complaint	30 May 2018	EPD	CRBC	Air	9 June 2018	Not Valid	20 June 2018

Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	3	0	3
Noise	1	0	1
Water	1	0	1
Waste	0	0	0
Total	0	0	0

Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix M

Summary of Site Audit in the Reporting Month

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel Fax : +852 2450 8233 Fax : +852 2450 6138 : +852 2450 6138

Summary of Site Audit in the Reporting Month

Parameters	Date	Observations and Recommendations	Follow-up	
Air Quality	24 October 2018	Reminder: Backfilling material in Zone 1 should be properly covered.	NA	
Noise		NA		
Water Quality		NA		
Chemical and Waste Management	3 October 2018	Observation: Chemical containers were not placed on drip tray (Zone 3). Contractor should provide drip tray to store chemical containers properly.	The item was rectified by the Contractor and inspected on 10 October 2018.	
Land Contamination	NA			
Landscape and Visual 24 October 2018 Ba Impact be		Reminder: Backfilling material in Zone 1 should be properly covered.	NA	
General Condition	NA			

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix N

Outstanding Issues and Deficiencies

Summary of Outstanding Issues and Deficiencies in the Reporting Month

Parameters	Outstanding Issues	Deficiencies
Air Quality	NA	
Noise	NA	
Water Quality	NA	
Chemical and Waste Management	NA	Any items of deficiencies can be referred to Appendix M .
Land Contamination	NA	
Landscape and Visual Impact	NA	
General Condition	NA	
Others	NA	