FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T.,

Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

29th CONSOLIDATED MONTHLY **EM&A REPORT**

March 2019

Client	:	Civil Engineering and Development Department, HKSAR
EP No.	:	EP-337/2009 – New Distributor Roads Serving the Planned Kai Tak Development Area
Contract No.	:	KLN/2016/05 – Independent Environmental Checker for Contract No. KL/2015/02 Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area
Report No.	:	0087/16/ED/0953

Reviewed by	:	Calvin Leung	
Certified by	:	$(\Lambda$	

Colin Yung Independent Environmental Checker Fugro Technical Services Limited

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

TABLE OF CONTENTS

EXE	CUTIVE SU	JMMARY	I	
1.	INTRODU	CTION	1	
2.	ENVIRONMENTAL MONITORING AND AUDIT 7			
3.	SITE INS	PECTION	10	
4.	ENVIRON	MENTAL COMPLAINT AND NON-COMPLIANCE	11	
5.	IMPLEME	NTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	12	
6.	FUTURE KEY ISSUES 1			
7.	CONCLU	SIONS	16	
LIST	OF APPEN	DICES		
Арре	endix A	Monthly EM&A Report For Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at North Apron Area		
Appendix B Monthly EM&A Report For Contract No. KL/2014/01 Kai Tak Development - Stage 2 Infrastructure works for Developments at Southe the Former Runway		art of		
Арре	Appendix C Monthly EM&A Report For Contract No. KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the South Part of the Former Runway		ərn	
Арре	endix D	Monthly EM&A Report For Contract No. KL/2015/02 Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area		

EXECUTIVE SUMMARY

Hong Kong.

- i. This is the 29th Consolidated Monthly EM&A Report which summaries the EM&A works undertaken by respective contract under EP-337/2009 within the period between 1 March and 31 March 2019.
- ii. The EP-337/2009 relevant major construction activities undertaken in the reporting month are summarized as follow:

Contract No. KL/2012/03:

- Daily Cleaning;
- E&M Work, Landscape Work in PS2;
- Maintenance platform in DCS;
- Landscape Work at Sung Wong Toi Road; and

Website : www.fugro.com

• E&M Works, Landscape Work in NPS.

Contract No. KL/2014/01:

- TTA implementation, junction improvement works at Shing Fung Road and Wang Chiu Road / Kai Cheung Road;
- Construction of box culvert and underpass;
- Construction of utilities trough at Kai Tak Bridge;
- Construction of pile caps, noise barrier footings and outfalls;
- Laying of sewer, drainage and pavement;
- Erection of noise barrier steel structure and panels
- Construction of Architectural features on Open Space

Contract No. KL/2014/03:

- Excavation and laying of drainage pipe and manhole;
- Excavation and ELS construction.
- Construction of SUS structure; and
- Construction of District Cooling System.

Contract No. KL/2015/02:

- Structural works and backfilling works for subway construction at PERE
- Backfilling works for subway SW6 from CH0 to CH45 and Staircase ST3
- Erection of underpinning frame at the existing Bridge K72
- Sheet piling works at SKLR playground (Stage 4)
- Construction of chain-link fence for land sale sites
- Filling work for slip road S15
- Drainage works at slip road S15
- DCS Works in Road D1, road L7, Portion 6, Portion 1 Water mains laying works in Portion 4

Tuen Mun, N.T., Hong Kong.

Breaches of the Action and Limit Levels

- iii. No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- iv. No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.

Contract No. KL/2014/03

- v. A Limit Level exceedance was recorded. Exceedance was recorded for construction noise Limit Level at KTD2b on 22 March 2019. No Action / Limit Level exceedance was recorded for construction noise at KTD1a and KER1b in the reporting month.
- vi. On 22 March 2019, at KTD2b non-project related construction works were carried out during noise monitoring, noise was generated by the reverse circulation drill works from construction site of New Acute Hospital next to the monitoring location KTD2b, also vehicle noise source from Construction site of New Acute Hospital was observed during noise monitoring. Thus, it is considered that this exceedance is not project related. No exceedance is recorded in the following monitoring conducted on 28 March 2019.

Complaint, Notification of Summons and Successful Prosecution

E-mail : matlab@fugro.com

Website : www.fugro.com

vii. No complaint, notification of summons or prosecution was received in this reporting month.

Reporting Changes

viii. There was no reporting change in the reporting month.

Future Key Issues

Hong Kong.

ix. The potential environmental impacts for the coming month and the control measures are shown in **Table I**:

Table I Summary	/ of Kev	/ Issues for the	Coming Month	and Control Measures
rabic r Ourninar	y OI I (C y			

Website : www.fugro.com

Major Impact Prediction	Control Measures
Contract No. KL/2	012/03:
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities.
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of site boundary bund such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream.
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary.
Contract No. KL/2	014/01:
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities.
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream.
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary.
Contract No. KL/2	<u>014/03:</u>
Construction dust, construction noise, water quality, waste management and landscape and visual impact.	 Sufficient watering of the works site with the active dust emitting activities; Limitation of the speed for vehicles on unpaved site roads; Properly cover or enclosure of the stockpiles and dusty materials; Good site practices on loading dusty materials; Providing sufficient vehicles washing facilities at every vehicle exit point; Good maintenance to the plant and equipment; Use of quieter plant and Quality Powered Mechanical Equipment (QPME); Use of acoustic fabric and noise barrier; Using the approved Non-road Mobile Machineries (NRMMs); Proper storage and handling of chemical;

Ш

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Major Impact Prediction	Control Measures
	 Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge; Onsite waste sorting and implementation of trip ticket system; Training of the site personnel in proper waste management and chemical waste handling procedures; Proper storage of the construction materials; Erection of decorative screen hoarding; Strictly following the Environmental Permits and Licenses; Provide sufficient mitigation measures as recommended in Approved EIA Reports
Contract No. KL/2	015/02:
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities.
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream.
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary.

1. INTRODUCTION

1.1 Background

- 1.1.1 The Kai Tak Development is located in the south-eastern part of Kowloon Peninsula of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling.
- 1.1.2 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 March 2009.
- 1.1.3 The EP-337/2009 was issued on 23 April 2009 for the new distributor roads serving the planned Kai Tak Development to the following scale and slope:
 - a) Road D1 a dual 2-lane carriageway of approximately 1.3 km long.
 - b) Road D2 a dual 3-lane carriageway of approximately 1.1 km long.
 - c) Road D3 a dual 2-lane carriageway of approximately 2.3 km long.
 - d) Road D4 a dual 2-lane carriageway of approximately 0.9 km long.
- 1.1.4 The Civil Engineering and Development Department HKSAR has appointed Fugro Technical Services Limited (FTS) to undertake the role of Independent Environmental Checker (IEC) for the Contract No. KL/2015/02.
- 1.1.5 This is the 29th Consolidated Monthly EM&A Report which summaries the EM&A works undertaken by respective contract under EP-337/2009 within the period between 1 March and 31 March 2019.

Party	Position	Name	Telephone	Fax	
Contract No. KL/2012/0	3:				
Project Proponent (CEDD)	Senior Engineer	Mr. C. K. Choi	2301 1174	2301 1277	
Engineer's	CRE	Mr. W. K. Leung	2798 0771	3013 8864	
Representative (AECOM)	RE	Mr. Mickey Lee	2790 0771	3013 0004	
IEC (ANewR)	IEC	Mr. Adi Lee	2618 2831	3007 8648	
	ET Leader	Dr. Priscilla Choy	2151 2089		
ET (Wellab)	Project Coordinator and Audit Team Leader	Ms. Ivy Tam	2151 2090	3107 1388	
Main Contractor	Site Agent	Mr. Albert Na	3689 7752	3689 7726	
(Kwan On)	Site Agent Mr. Albert Ng		6146 6761 (Hotline)		
Contract No. KL/2014/01:					
Project Proponent	Senior Engineer	Mr. Keith Chu	3579 2450	0570 4540	
(CEDD)	Engineer	Ms. Adonia Yung	3579 2124	3579 4516	
Engineer's Representative (AECOM)	CRE	Mr. Clive Cheng	3746 1801	2798 0783	
IEC (KSMC)	IEC	Dr. C. F. Ng	2618 2166	2120 7752	
, ,	ET Leader	K.S Lee	2151 2091	2107 1200	
ET (Cinotech)	Audit Team	Ms. Betty Choi	2151 2072	3107 1388	

1.2 Summary of relevant Contract Information of Key Personnel

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel :+852 2450 8233 Fax :+852 2450 6138 E-mail :matlab@fugro.com Website : www.fugro.com

Party	Position	Name	Telephone	Fax	
	Leader				
Main Contractor (CCJV)	EO	Mr. Dennis Ho	2960 1398	2960 1399	
Contract No. KL/2014/0	3:				
Project Proponent (CEDD)	Co-ordinator	Ms. Amy Chu	3106 3172	2369 4980	
Engineer's Representative (HMJV)	CRE	Mr. Chris Wong	3742 3803	3742 3899	
IEC (Ramboll Hong Kong Limited)	IEC	Mr. F. C. Tsang	3465 2851	3465 2899	
ET (MCL)	ET Leader	Mr. Colin Yung	3565 4114	3565 4160	
Main Contractor (CRBC)	Site Agent	Mr. Dickey Yau	5699 4503	2283 1689	
	EO	Mr. Kola Lam	5545 4625	2203 1009	
Contract No. KL/2015/0	2:				
Project Proponent (CEDD)	Senior Engineer	Mr. Ricky Chan	2116 3753	2116 0714	
Engineer's Representative (AECOM)	SRE	Mr. Vincent Lee	2798 0771	2210 6110	
IEC (FTS)	IEC	Mr. Colin Yung	3565 4114	2450 8032	
ET (Cinotech)	ET Leader	Mr. K.S Lee	2151 2091		
	Audit Team Leader	Ms. Betty Choy	2151 2072	3107 1388	
Main Contractor (PWHJV)	Site Agent	Mr. W. M. Wong	6386 3535	2398 8301	

1.3 Summary of Construction Programme and Activities

- 1.3.1 The construction programme of each Contract is summarized in the appendices of the corresponding Monthly EM&A.
- 1.3.2 The major construction activities undertaken in the reporting month are summarized as follow:

Contract No. KL/2012/03:

- Daily Cleaning;
- E&M Work, Landscape Work in PS2;
- Maintenance platform in DCS;
- Landscape Work at Sung Wong Toi Road; and
- E&M Works, Landscape Work in NPS.

Contract No. KL/2014/01:

- TTA implementation, junction improvement works at Shing Fung Road and Wang Chiu Road / Kai Cheung Road;
- Construction of box culvert and underpass;
- Construction of utilities trough at Kai Tak Bridge;
- Construction of pile caps, noise barrier footings and outfalls;
- Laying of sewer, drainage and pavement;
- Erection of noise barrier steel structure and panels
- Construction of Architectural features on Open Space

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Contract No. KL/2014/03:

- Excavation and laying of drainage pipe and manhole;
- Excavation and ELS construction.
- · Construction of SUS structure; and
- Construction of District Cooling System.

Contract No. KL/2015/02:

- Structural works and backfilling works for subway construction at PERE
- Backfilling works for subway SW6 from CH0 to CH45 and Staircase ST3
- Erection of underpinning frame at the existing Bridge K72
- Sheet piling works at SKLR playground (Stage 4)
- Construction of chain-link fence for land sale sites
- Filling work for slip road S15
- Drainage works at slip road S15
- DCS Works in Road D1, road L7, Portion 6, Portion 1
- Water mains laying works in Portion 4

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Tel : +852 2450 8233 Fax : +852 2450 6138

Hong Kong.

E-mail : matlab@fugro.com Website : www.fugro.com

1.4 Summary of Inter-relationship with the environmental protection/ mitigation measures with the construction programme

1.4.1 The summary of inter-relationship with environmental protection/mitigation measures are presented as follow:

Major Environmental Impact	Control Measures
Contract No. KL/2012/03:	
Dust, Water Quality, Waste Management (Construction of superstructure of Pumping Station PS2 and NPS)	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; and On-site waste sorting and implementation of trip ticket system.
Dust, Noise (Backfilling between sewerage manholes 1K1_1 and FMH10_340 and construction of manhole FMH10_370a at L6)	 Use of quiet plant and well-maintained construction plant; and Properly cover the stockpiles;
Noise, Waste Management (Installation of precast unit and construction of in-situ portions of Box Culvert B6; Construction of jacking pits nos. 1 and 2; Installation of gas pipe at pit no. 10; Construction of washout chamber at pit no. 11)	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. Good management and control on construction waste reduction
Noise (Construction of sewerage manhole FMH 10 at Bailey Street; Widening works of Sung Wong Toi Road) Noise, Water Quality (Pipe laying from manhole SMH2204 to Box Culvert B6; Laying of rising mains from PS2 to chainage CHA-18; Pipe laying from stormwater manholes SMH1962 to SMH1963 and construction of manholes SMH1953 and SMH1963 at L6; Installation of DCS;)	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. Use of quiet plant and well-maintained construction plant; and Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall.
Contract No. KL/2014/01: Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide mitigation measure to temporary use of chemicals;

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Major Environmental Impact	Control Measures
	 Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.
Contract No. KL/2014/03:	
Air Quality Impact, Construction Noise Impact, Water Quality Impact, Chemical and Waste Management, Landscape and Visual Impact	 Sufficient watering of the works site with the active dust emitting activities; Limitation of the speed for vehicles on unpaved site roads; Properly cover or enclosure of the stockpiles and dusty materials; Good site practices on loading dusty materials; Providing sufficient vehicles washing facilities at every vehicle exit point; Good maintenance to the plant and equipment; Use of quieter plant and Quality Powered Mechanical Equipment (QPME); Use of acoustic fabric and noise barrier; Using the approved Non-road Mobile Machineries (NRMMs); Proper storage and handling of chemical; Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge; Onsite waste sorting and implementation of trip ticket system; Training of the site personnel in proper waste management and chemical waste handling procedures; Proper storage of the construction materials; Erection of decorative screen hoarding; Strictly following the Environmental Permits and Licenses; Provide sufficient mitigation measures as recommended in Approved EIA Reports
Contract No. KL/2015/02:	
Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

FUGRO TECHNICAL SERVICES LIMITEDFugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.Tel
Exaction 1: +852 2450 8233
Fax
Exaction 1: +852 2450 6138
Email
Email
Email
Exaction 1: mattab @fugro.com

1.5 Summary Status of Environmental Licences, Notifications and Permits

1.5.1 A summary of the relevant environmental licenses, permits and/or notifications on environmental protection for this EP and relevant Contract are presented in **Table 1.1**.

Table 1.1 Relevant Environmental Licenses, Permits and/or Notifications

Environmental License / Permit /	Reference Number	Valid From	Valid Till
Notification	Reference Number	valid From	
Contract No. KL/2012/03:			
Environmental Permit	EP-337/2009	23/04/2009	N/A
	EP-344/2009	23/04/2009	N/A
Effluent Discharge License	WT00020971-2015	22/04/2015	21/04/2020
Registration of Chemical Waste Producer	5213-286-K2958-05	-	N/A
Contract No. KL/2014/01:			
	EP-337/2009	23/04/2009	N/A
Environmental Permit	EP-445/2013/A	13/08/2009	N/A
Effluent Discharge License	WT00023634-2016	-	31/03/2021
Registration of Chemical Waste Producer	5213-247-C4004-01	-	N/A
Construction Noise Permit	GW-RE0646-18	17/12/2018	16/03/2019
Construction Noise Permit	GW-RE0186-19	16/03/2019	15/06/2019
Contract No. KL/2014/03:			
	EP-337/2009	23/04/2009	N/A
Environmental Permit	EP-339/2009/A	18/06/2009	N/A
	EP-451/2013	19/09/2013	N/A
Notification pursuant to Air Pollution	395601	16/11/2015	N/A
(Construction Dust) Regulation			
Billing Account for Waste Disposal	A/C No.: 7023814	30/11/2015	N/A
Billing Account for Waste Disposal	A/C No.: 7027469	25/08/2017	18/11/2017
(Vessel)		22/11/2017	18/02/2018
Construction Noise Permit	GW-RE0866-18	04/01/2018	03/06/2019
	GW-RE0036-19	21/01/2019	11/07/2019
Wastewater Discharge License	WT00023125-2015	06/01/2016	31/01/2021
Chemical Waste Producer License	5213-247-C1232-12	23/11/2015	N/A
Contract No. KL/2015/02:			
Environmental Permit	EP-337/2009	23/04/2009	N/A
Wastewater Discharge License	WT00027495-2017	28/03/2017	31/03/2022
Billing Account for Waste Disposal	A/C No.: 7026164	20/10/2016	N/A
Registration of Chemical Waste Producer	WPN5213-229-P3271-01	14/08/2017	N/A
Construction Noise Permit	-	-	-

2. ENVIRONMENTAL MONITORING AND AUDIT

2.1 **Results and Observations**

Air Quality

- The schedule of air quality monitoring in reporting month is provided in the appendices of the 2.1.1 corresponding Monthly EM&A.
- 2.1.2 The weather conditions during the monitoring are provided in the appendices of the corresponding Monthly EM&A.
- 2.1.3 The monitoring data of 24-hr TSP and 1 hour TSP are summarized in Table 2.1. Detailed monitoring data are presented in the appendices of the corresponding Monthly EM&A.

Table 2.1	Summary of 24-hr and 1 hour TSP Monitoring Results

Parameter	Monitoring Station	Average (µg/m³)	Range (µg/ m³)	Action Level (µg/ m ³)	Limit Level (µg/ m ³)
Contract No.	KL/2012/03:				
	AM2	99.9	65.6 – 132.8	346	500
1-hr TSP	AM3(A)	90.0	55.0 – 121.9	351	
1-111 1 3F	AM4(C)	96.6	73.5 – 144.3	371	500
	AM5	83.3	61.0 – 104.8	345	
	AM2(A)	40.5	21.6 – 54.5	157	
24-hr TSP	AM3(B)	78.1	36.0 – 99.6	187	260
24-11 135	AM4(C)	50.0	40.3 – 59.7	187	200
	AM5	56.9	40.6 - 76.9	156	
Contract No.	KL/2014/01: ality monitoring is rec	nuired for the Proie	ct)		
Contract No.	,				
	KTD1a	No compl	aint of air quality	was received. Th	oroforo
1-hr TSP	KTD2a			mitoring was cond	
	KER1b	ποιπρα		milloring was cond	ucieu.
	KTD1a	81	52-114	177	
24-hr TSP	KTD2a	91	68-124	157	260
	KER1b	85	48-130	172	
Contract No. KL/2015/02:					
1-hr TSP	AM2	139	78 – 210	346	500
24-hr TSP	AM2(A)	40	27 – 73	157	260

- 2.1.4 No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- 2.1.5 No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.
- The monitoring data of 24-hr TSP was compared with the EIA predictions are presented in the 2.1.6 appendices of the corresponding Monthly EM&A.
- 2.1.7 The Event and Action Plan for air quality is given in in the appendices of the corresponding Monthly EM&A.

<u>Noise</u>

- 2.1.8 The schedule of noise monitoring in reporting month is provided in in the appendices of the corresponding Monthly EM&A.
- 2.1.9 The noise monitoring data are summarized in **Table 2.2**. Detailed monitoring data are presented in the appendices of the corresponding Monthly EM&A.

Monitoring Stations	Construction Noise Level Leq _(30min) dB(A) (Range)	Action Level	Limit Level dB (A)
Contract No. KL/2012/03:			
M6(A)	53.7 - 62.0		70*
M7	61.5 - 64.2		70*
M8(A)	59.5 - 69.5		70*
M9	58.9 - 59.3		75
Contract No. KL/2014/01:	Contract No. KL/2014/01:		
(No Construction noise m	When one documented complaint is	NA	
Contract No. KL/2014/03:			
KTD1a	69-74	received	75
KTD2a	73-79		75
KER1b	69-74		75
Contract No. KL/2015/02:			
M3	63 – 70	-	70*
M4	68 – 76#		70*
M5(C)	62 – 75		75

(*) Noise Limit Level is 65 dB(A) during school examination periods.

([#]) Measured noise level ≤ background / baseline noise level, detailed data refer to the corresponding Monthly EM&A report.

2.1.10 The noise monitoring data was compared with the EIA predictions are presented in the appendices of the corresponding Monthly EM&A.

Contract No. KL/2014/03

- 2.1.11 A Limit Level exceedance was recorded. Exceedance was recorded for construction noise Limit Level at KTD2b on 22 March 2019. No Action / Limit Level exceedance was recorded for construction noise at KTD1a and KER1b in the reporting month.
- 2.1.12 On 22 March 2019, at KTD2b non-project related construction works were carried out during noise monitoring, noise was generated by the reverse circulation drill works from construction site of New Acute Hospital next to the monitoring location KTD2b, also vehicle noise source from Construction site of New Acute Hospital was observed during noise monitoring. Thus, it is considered that this exceedance is not project related. No exceedance is recorded in the following monitoring conducted on 28 March 2019.
- 2.1.13 The Event and Action Plan for noise is given in in the appendices of the corresponding Monthly EM&A.

Landscape and Visual

2.1.14 Site audits were carried out on a weekly basis to monitor and audit the landscape and visual mitigation measures within the site boundaries of this Project. Detailed of observations are presented in the appendices of the corresponding Monthly EM&A.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

3. SITE INSPECTION

3.1 Site Inspection

3.1.1 Site inspections were carried out weekly to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. The site inspection of each Contract are summarized as follow:

Contract No. KL/2012/03:

Site audits were conducted on 1st, 8th, 12th, 20th and 29th March 2019 in the reporting month. IEC site inspection was conducted on 12th March 2019.

Contract No. KL/2014/01:

Site audits were conducted by representatives of the Contractor, Supervising Officer and ET on 6, 13, 20 and 27 March 2019 in the reporting month. IEC joint site inspection was conducted on 27 March 2019. No non-compliance was observed during the site audits.

Contract No. KL/2014/03:

In the reporting month, four site inspections were carried out on 6, 13, 20 and 27 March 2019. Two of them, held on 6 and 13 March 2019 was the joint inspections with the IEC, ER, the Contractor and the ET.

Contract No. KL/2015/02:

Site audits were conducted on 4, 13, 18 and 25 March 2019 in the reporting month. A joint site audit with the representative of IEC, ER, the Contractor and the ET was conducted on 13 March 2019.

3.1.2 Detailed of observation, recommendation of site inspections and summary of the mitigation measures implementation schedule is provided in the appendices of the corresponding Monthly EM&A.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

4. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

4.1 Complaints, Notification of Summons and Prosecution

4.1.1 The summary of complaints, notification of summons and prosecution in the reporting month is shown as **Table 4.1**.

Table 4.1 Summary of Complaints, Notification of Summons and Prosecution

Event	No. of Event This Month	Remark
Contract No. KL/2012/03:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA
Contract No. KL/2014/01:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA
Contract No. KL/2014/03:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA
Contract No. KL/2015/02:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA

4.1.2 Detailed records are presented in the appendices of the corresponding Monthly EM&A.

5. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

5.1 Implementation Status

5.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and the EM&A Manuals. The implementation status of the mitigation measures during the reporting month are presented in the appendices of the corresponding Monthly EM&A.

5.2 Waste Management

5.2.1 The amount of wastes generated of this Project during the reporting month is shown in the appendices of the corresponding Monthly EM&A.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

6. FUTURE KEY ISSUES

6.1 Construction Programme for the Next Two Months

6.1.1 The major site activities undertaken for the coming two months are summarized in follow:

Contract No. KL/2012/03:

- Daily Cleaning;
- E&M Work, GRC coping, Landscape Work in PS2;
- Maintenance platform in DCS; and
- E&M Works, Scaffold Platform Installation in NPS.

Contract No. KL/2014/01:

- TTA implementation, junction improvement works at Shing Fung Road and Wang Chiu Road / Kai Cheung Road;
- · Construction of box culvert and underpass;
- · Construction of utilities trough at Kai Tak Bridge;
- Construction of pile caps, noise barrier footings and steel structure, outfalls, deck structure and columns;
- · Laying of sewer, drainage and pavement;
- Erection of noise barrier steel structure and panels

Contract No. KL/2014/03:

- Installation of sheet pile for drainage works;
- Excavation and laying of drainage pipe and manhole;
- · Construction of road base and road pavement;
- · Construction of SUS structure;
- Construction of socketed H-Pile;
- Excavation and ELS construction; and
- Construction of District Cooling System.

Contract No. KL/2015/02:

- Structural works and backfilling works for subway construction at PERE
- Backfilling works for subway SW6 from CH0 to CH45 and Staircase ST3
- Erection of underpinning frame and demolition of the exiting wall at the existing Bridge K72
- Sheet piling works at SKLR playground (Stage 4)
- Implementation of stage 2 TTA at PERE
- Drainage work and road pavement construction at slip road S15
- Preparation for Refurbishment of bridge K72
- Construction of chain-link fence for land sale sites
- DCS Works in Road D1, road L7, Portion 6, Portion 1
- Water mains laying works in road D1, L7

Fugro Development Centre,			
5 Lok Yi Street, Tai Lam,			
Tuen Mun, N.T.,			
Hong Kong.			

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

6.2 Key Issues for the Coming Month

6.2.1 The potential environmental impacts arising from the above construction activities and the control measures are shown in **Table 6.1**:

Major Impact	Control Measures			
Prediction				
Contract No. KL/2012/03:				
Air quality	 Frequent watering of haul road and unpaved/exposed areas; 			
impact	Frequent watering or covering stockpiles with tarpaulin or similar means; and			
(dust)	Watering of any earth moving activities.			
	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; 			
Water quality	Provision of adequate de-silting facilities for treating surface run-off and other			
impact (surface	collected effluents prior to discharge;			
run-off)	Provision of site boundary bund such as sealing of hoarding footings to avoid			
run-on)	run-off from entering the existing storm water drainage system via public road;			
	and			
	Provision of measures to prevent discharge into the stream.			
	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; 			
Noise Impact	 Controlling the number of plants use on site; 			
	 Regular maintenance of machines; and 			
	Use of acoustic barriers if necessary.			
Contract No. KL/2	D14/01:			
Air quality	Frequent watering of haul road and unpaved/exposed areas;			
Air quality	• Frequent watering or covering stockpiles with tarpaulin or similar means; and			
impact (dust)	Watering of any earth moving activities.			
	Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water draine:			
	discharge to public storm water drains; Provision of adaguate do alking facilities for treating surface run off and other			
Water quality	 Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; 			
impact (surface	 Provision of perimeter protection such as sealing of hoarding footings to avoid 			
run-off)	run-off from entering the existing storm water drainage system via public road;			
	and			
	 Provision of measures to prevent discharge into the stream. 			
	Scheduling of noisy construction activities if necessary to avoid persistent			
	noisy operation;			
Noise Impact	Controlling the number of plants use on site;			
	Regular maintenance of machines; and			
	Use of acoustic barriers if necessary.			
Contract No. KL/2014/03:				
	 Sufficient watering of the works site with the active dust emitting activities; 			
Construction	 Limitation of the speed for vehicles on unpaved site roads; 			
dust,	 Properly cover or enclosure of the stockpiles and dusty materials; 			
construction	 Good site practices on loading dusty materials; 			
noise, water	 Providing sufficient vehicles washing facilities at every vehicle exit point; 			
quality, waste	Good maintenance to the plant and equipment;			
management	Use of quieter plant and Quality Powered Mechanical Equipment (QPME);			
and landscape	Use of acoustic fabric and noise barrier;			
and visual	Using the approved Non-road Mobile Machineries (NRMMs);			
impact.	Proper storage and handling of chemical;			
	 Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge; 			

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Major Impact Prediction	Control Measures		
	 Onsite waste sorting and implementation of trip ticket system; Training of the site personnel in proper waste management and chemical waste handling procedures; Proper storage of the construction materials; Erection of decorative screen hoarding; Strictly following the Environmental Permits and Licenses; Provide sufficient mitigation measures as recommended in Approved EIA Reports 		
Contract No. KL/2	015/02:		
Air quality impact (dust)	 Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with tarpaulin or similar means; and Watering of any earth moving activities. 		
Water quality impact (surface run-off)	 Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and Provision of measures to prevent discharge into the stream. 		
Noise Impact	 Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; Controlling the number of plants use on site; Regular maintenance of machines; and Use of acoustic barriers if necessary. 		

6.3 Monitoring Schedules for the Next Three Months

6.3.1 The tentative schedules for environmental monitoring in the coming three months are provided in in the appendices of the corresponding Monthly EM&A.

7. CONCLUSIONS

- 7.1.1 No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- 7.1.2 No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.

Contract No. KL/2014/03

- 7.1.3 A Limit Level exceedance was recorded. Exceedance was recorded for construction noise Limit Level at KTD2b on 22 March 2019. No Action / Limit Level exceedance was recorded for construction noise at KTD1a and KER1b in the reporting month.
- 7.1.4 On 22 March 2019, at KTD2b non-project related construction works were carried out during noise monitoring, noise was generated by the reverse circulation drill works from construction site of New Acute Hospital next to the monitoring location KTD2b, also vehicle noise source from Construction site of New Acute Hospital was observed during noise monitoring. Thus, it is considered that this exceedance is not project related. No exceedance is recorded in the following monitoring conducted on 28 March 2019.
- 7.1.5 No complaint, notification of summons or prosecution was received in this reporting month.
- 7.1.6 The potential environmental impacts arising from the coming two months of major construction activities and the control measures are shown in **Table 6.1**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Appendix A

Monthly EM&A Report For Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at North Apron Area

Civil Engineering and Development Department

EP-344/2009 - New Sewage Pumping Stations Serving KTD EP-337/2009 - New Distributor Roads Serving the **Planned KTD**

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area

Monthly EM&A Report

March 2019

(Version 1.0)

Approved By 👘	(Environmental Team Leader)
DEMADES.	

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

WELLAB accepts no responsibility for changes made to this report by third parties

WELLAB LIMITED Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2898 7388 Fax: (852) 2898 7076 Website: www.wellab.com.hk

Kai Tak Development Site Office Contract No. KL/2012/03 c/o AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin New Territories Hong Kong Your reference:

Our reference:

HKCEDD11/50/105671

Date: 1

10 April 2019

Attention: Mr Mickey Lee

BY EMAIL & POST (email: RE3@ktd-5a.com)

Dear Sirs

Agreement No. EDO 08/2018 Independent Environmental Checker (IEC) for CEDD Contract No. KL/2012/03 Kai Tak Development – Stage 4 Infrastructure at Former North Apron Area Verification of Monthly EM&A Report for March 2019

We refer to emails of 4 and 10 April 2019 attaching a Monthly EM&A Report for March 2019 prepared by the ET.

We have no further comment and hereby verify the captioned report in accordance with Clause 3.3 of the Environmental Permit nos. EP-337/2009 and EP-344/2009.

Please do not hesitate to contact the undersigned or our Ms Hazel Chan on 2618 2831 should you have any queries.

Yours faithfully ANEWR CONSULTING LIMITED

Independent Environmental Checker

LYMA/CYYH/lhmh

cc CEDD – Mr C K Choi (email: ckchoi@cedd.gov.hk) Wellab – Dr Priscilla Choy (email: Priscilla.Choy@wellab.com.hk)

TABLE OF CONTENTS

EX	ECUTIVE SUMMARY	1
	Introduction Environmental Monitoring Works Environmental Licenses and Permits Key Information in the Reporting Month Future Key Issues	1 2 2
1.	INTRODUCTION	3
	Background Project Organizations Construction Activities undertaken during the Reporting Month Summary of EM&A Requirements Status of Compliance with Environmental Permits Conditions	3 4 5 7
2.	AIR QUALITY	9
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and Quality Assurance and Quality Control (QA/QC) Procedure Results, Observations and Action/Limit Level Exceedance	9 10 10 210
3.	NOISE	14
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and QA/QC Procedures Maintenance and Calibration Results, Observations and Action/Limit Level Exceedance	14 14 15 15 16
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	18
5.	LANDSCAPE AND VISUAL	20
	Monitoring Requirements Results and Observations	
6.	ENVIRONMENTAL AUDIT	21
	Site Audits Status of Environmental Licensing and Permitting Status of Waste Management Implementation Status of Environmental Mitigation Measures Summary of Mitigation Measures Implemented Implementation Status of Event Action Plans Summary of Complaint, Warning, Notification of any Summons and Successful Prosecuti	21 22 22 22 23 on
		<i></i>

7.	FUTURE KEY ISSUES	
	Key Issues for the Coming Month	
	Monitoring Schedule for the Next Month	
8.	CONCLUSIONS AND RECOMMENDATIONS	
	Conclusions	
	Recommendations	
	Effectiveness of Environmental Management	

LIST OF TABLES

- Table I
 Breaches of Action and Limit Levels for the Project in the Reporting Month
- Table IISummary Table for Key Information in the Reporting Month
- Table 1.1Key Project Contacts
- Table 1.2Construction Programme Showing the Inter-Relationship with Environmental
Protection/Mitigation Measures
- Table 1.3Air Quality and Noise Monitoring Stations for this Project
- Table 1.4Summary Table for Required Submission under EP No. EP-337/2009
- Table 1.5Summary Table for Required Submission under EP No. EP-344/2009
- Table 2.1Locations for Air Quality Monitoring
- Table 2.2Air Quality Monitoring Equipment
- Table 2.3
 Impact Dust Monitoring Parameters, Frequency and Duration
- Table 2.4
 Major dust source identified at the designated air quality monitoring stations
- Table 3.1Noise Monitoring Stations
- Table 3.2Noise Monitoring Equipment
- Table 3.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 3.4
 Major noise source identified at the designated noise monitoring stations
- Table 3.5Baseline Noise Level and Noise Limit Level for Monitoring Stations
- Table 4.1Comparison of 1-hr TSP data with EIA predictions
- Table 4.2
 Comparison of 24-hr TSP data with EIA predictions
- Table 4.3
 Comparison of Noise Monitoring Data with EIA predictions
- Table 6.1
 Summary of Environmental Licensing and Permit Status
- Table 6.2
 Observations and Recommendations of Site Inspections for EP-337/2009
- Table 6.3
 Observations and Recommendations of Site Inspections for EP-344/2009
- Table 7.1Summary of the tentative program of major site activities, the impact prediction and
control measures for April 2019 and May 2019
- Table 8.1
 Examples of Mitigation Measures for Environmental Recommendations

LIST OF FIGURES

- Figure 1 Layout Plan of the Project Site
- Figure 2 Locations of Air Quality Monitoring Stations
- Figure 3 Locations of Construction Noise Monitoring Stations
- Figure 4 Locations of Wind Anemometer
- Figure 5 Management Structure

LIST OF APPENDICES

- A Action and Limit Levels for Air Quality and Noise
- B Copies of Calibration Certificates
- C Weather Information
- D Environmental Monitoring Schedules
- E 1-hour TSP Monitoring Results and Graphical Presentations
- F 24-hour TSP Monitoring Results and Graphical Presentations
- G Noise Monitoring Results and Graphical Presentations
- H Summary of Exceedance
- I Site Audit Summary
- J Event Action Plans
- K Environmental Mitigation Implementation Schedule (EMIS)
- L Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution
- M Summary of Waste Generation and Disposal Records
- N Construction Programme

EXECUTIVE SUMMARY

Introduction

- This is the 64th Monthly Environmental Monitoring and Audit (EM&A) Report prepared by Wellab Ltd. for "Contract No. KL/2012/03 - Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises the construction of Schedule 2 Designated Projects (DP) Road D2 & Sewage Pumping Station PS2 and PS NPS which forms a part of the works under two Environmental Permits (EP), EP-337/2009 and EP-344/2009. The title of the designated projects under Environmental Permit No.: EP-344/2009 is "New sewage pumping stations serving Kai Tak Development" and under Environmental Permit No.: EP-337/2009 is "New distributor roads serving the planned Kai Tak Development". This report documents the findings of EM&A Works conducted from 1 to 31 March 2019.
- 2. The major site activities undertaken in the reporting month included:
 - Daily Cleaning;
 - E&M Work, Landscape Work in PS2;
 - Maintenance platform in DCS;
 - Landscape work at Sung Wong Toi Road; and
 - E&M Works, Landscape Work in NPS.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the breaches of action and limit levels in the reporting month for the Project is tabulated in **Table I**.

Parameter	No. of Project-rela	Action Taken	
r arameter	Action Level	Limit Level	ACTION TAKEN
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

 Table I
 Breaches of Action and Limit Levels for the Project in the Reporting Month

1-hour & 24-hour TSP Monitoring

- 5. 1-hour TSP monitoring at AM4(C) on 21st and 27th March 2019 was cancelled due to the permission problem, the monitoring works will be resumed on 2nd April 2019. No Action/Limit Level exceedance was recorded.
- 6. 24-hour TSP monitoring at AM4(C) on 15th, 21st and 27th March 2019 was cancelled due to power failure and technical problem. The monitoring works will be resumed on 12 April 2019. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

7. The proposal for alternative position of M8 (remark as M8(A)) was agreed by IEC on 20th March 2019 in accordance with the Section 2.3.9 of EM&A Manual of the Project and the Environmental Protection Department (EPD) has no major objection on the proposal. The Free Field noise measurement was adopted for Station M8(A) and its baseline reference noise level was adjusted with a correction of +3dB(A). No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 8. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, Environmental Permits No. EP-344/2009 and EP-337/2009 were issued on 23 April 2009.
- 9. Registration of Chemical Waste Producer (Waste Producer Number: 5213-286-K2958-05).
- 10. Water Discharge License (WT00020971-2015).

Key Information in the Reporting Month

11. Summary of complaint received, reporting changes and notifications of any summons and successful prosecutions in the reporting month is tabulated in **Table II**.

Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

 Table II
 Summary Table for Key Information in the Reporting Month

Future Key Issues

- 12. The future key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for machinery on-site; and
 - Review and implementation of temporary drainage system for the surface runoff.

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kuk, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 4 Infrastructure at Former North Apron Area is one of the construction stages of KTD. Schedule 2 DPs in this Project include new distributor roads serving the planned KTD and new sewage pumping stations serving the planned KTD. The general layout of the Project is shown in **Figure 1**.
- 1.2 Two Environmental Permits (EPs) No. EP-344/2009 and EP-337/2009 were also issued to the Permit Holder Civil Engineering and Development Department on 23 April 2009 for new sewage pumping stations serving the planned KTD and new distributor roads serving the planned KTD respectively.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to identify the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and recommend possible mitigation measures associated with the works. The EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Wellab Limited (Wellab) is commissioned by Kwan On Construction Co., Ltd. (the Contractor) on 1st January 2019 to undertake the role of the Environmental Team (ET) for the Contract No. KL/2012/03 Stage 4 Infrastructure at Former North Apron Area. The construction work under KL/2012/03 comprises the construction of Road D2 & Sewage Pumping Station PS2 and PS NPS which forms a part of the works under two EPs (EP-337/2009 and EP-344/2009).
- 1.5 The construction commencement of this Contract was on 1st December 2013 for Road D2, Sewage Pumping Station PS2 and PS NPS. This is the 64th Monthly EM&A report summarizing the EM&A works for the Project from 1 to 31 March 2019.

Project Organizations

- 1.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) AECOM.
 - Environmental Team (ET) Wellab Limited (WL).
 - Independent Environmental Checker (IEC) ANewR Consulting Limited. (ANewR).
 - Contractor Kwan On Construction Co., Ltd. (Kwan On).

1.7 The key contacts of the Project are shown in **Table 1.1** and **Figure 5**.

Table 1.	Table 1.1Key Project Contacts				
Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. C. K. Choi	Senior Engineer	3106 2583	3579 4512
AECOM	Engineer's	Mr. W. K. Leung	CRE	2798 0771	3013 8864
ALCOM	Representative	Mr. Mickey Lee	RE	2798 0771	5015 0004
	Environmental Team	Dr. Priscilla Choy	Environmental Team Leader	2151 2089	
Wellab		Ms. Ivy Tam	Project Coordinator and Audit Team Leader	2151 2090	3107 1388
ANewR	Independent Environmental Checker	Mr. Adi Lee	Independent Environmental Checker	2618 2831	3007 8648
Kwan On	Contractor	Mr. Albert Ng	Site Agent	3689 7752	3689 7726
				6146 6761 (Hotline telephone number)	

Construction Activities undertaken during the Reporting Month

- 1.8 The site activities undertaken in the reporting month included:
 - Daily Cleaning;
 - E&M Work, Landscape Work in PS2;
 - Maintenance platform in DCS;
 - Landscape Work at Sung Wong Toi Road; and
 - E&M Works, Landscape Work in NPS.
- 1.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures is presented in **Table 1.2**.

Protection/Mitigation Measures				
Construction Works	Generated Major Environmental Impact	Control Measures		
Construction of superstructure of Pumping Station PS2 and NPS;	Dust, Water Quality, Waste Management	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; and On-site waste sorting and implementation of trip ticket system. 		
Backfilling between sewerage manholes 1K1_1 and FMH10_340 and construction of manhole FMH10_370a at L6;	Dust, Noise	 Use of quiet plant and well-maintained construction plant; and Properly cover the stockpiles; 		
Installation of precast unit and construction of in-situ portions of Box Culvert B6; Construction of jacking pits nos. 1 and 2; Installation of gas pipe at pit no. 10; Construction of washout chamber at pit no. 11;	Noise, Waste Management	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. Good management and control on construction waste reduction 		
Construction of sewerage manhole FMH 10 at Bailey Street; Widening works of Sung Wong Toi Road.	Noise	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. 		
Pipe laying from manhole SMH2204 to Box Culvert B6; Laying of rising mains from PS2 to chainage CHA-18; Pipe laying from stormwater manholes SMH1962 to SMH1963 and construction of manholes SMH1953 and SMH1963 at L6; Installation of DCS;	Noise, Water Quality	 Use of quiet plant and well-maintained construction plant; and Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall. 		

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Summary of EM&A Requirements

- 1.10 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.12 This report presents the implementation of the EM&A programme for the Project from 1 to 31 March 2019.

1.13 Air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in **Table 1.3** (see **Figure 2 and 3** for their locations).

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations			
Air Quality Monitoring Stations	Air Quality Monitoring Stations				
AM2 - Lee Kau Yan Memorial School	Yes	AM2(A) – Ng Wah Catholic Secondary School			
AM3 – Sky Tower	No	AM3(A) – Holy Trinity Bradbury Centre AM3(B) – Family Planning Association of Hong Kong**			
AM4 – Grand Waterfront	No	AM4(A) – EMSD Workshop*			
AM5 – CCC Kei To Secondary School	No	N/A^			
AM6 – Site 1B4 (Planned)		N/A			
Noise Monitoring Stations					
M6 – Holy Carpenter Primary School	No	M6(A) – Oblate Primary School			
M7 – CCC Kei To Secondary School	Yes	N/A			
M8 – Po Leung Kuk Ngan Po Ling College	No	M8(A) – Po Leung Kuk Ngan Po Ling College (Site Broundary) [#]			
M9 – Tak Long Estate	Yes	N/A			
M10 – Site 1B4 (Planned)	N/A				

Table 1.3 Air Quality and Noise Monitoring Stations for this Project

Remarks:

> "Yes" – Monitoring station is the same as that stated in EM&A Manual

No – Monitoring station is not the same as that stated in EM&A Manual. Request for carrying monitoring works at the monitoring stations stated in EM&A Manual was rejected by owner of premise. Alternative monitoring stations were proposed by the ET of Schedule 3 EIA and approved by the EPD.

 \triangleright N/A – No alternative monitoring station is required.

**AM3(B) – The permission of air quality monitoring works (24-hour TSP) at station AM3(A) was denied in November 2017, the monitoring works were resumed at the alternative station – AM3(B) in December 2017.

- *AM4(A) EMSD Workshop was cancelled due to unsuccessful accessibility of the facility. 1-hr TSP monitoring was conducted at AM4(B) Ma Tau Kuk Road (next to EMSD workshop) temporarily and 24-hr TSP monitoring was conducted at AM4(C) New Pumping Station under Contract No. KL/2012/03.
- ^AM5(A) Po Leung Kuk Ngan Po Ling College was cancelled because no permission was granted from the premise. Air quality monitoring was carried out at AM5 – CCC Kei To Secondary School.
- # The proposal for alternative position of M8 (remark as M8(A)) was agreed by IEC on 20th March 2019 in accordance with the Section 2.3.9 of EM&A Manual of the Project and the Environmental Protection Department (EPD) has no major objection on the proposal. The Free Field noise measurement was adopted for Station M8(A) and its baseline reference noise level was adjusted with a correction of +3dB(A).
- 1.14 According to the Environmental Monitoring and Audit Manual (EM&A Manual) of the Kai Tak Development (KTD) Schedule 3 Environmental Impact Assessment (EIA) Report, the impact monitoring at the designated monitoring stations as required in KTD EM&A Manual under the EP, has been conducted in Environmental Monitoring Works for Kai Tak Development under Schedule 3 of KTD, which is on-going starting from December 2010, when the impact monitoring data under Schedule 3 of KTD were adopted for the Project.

1.15 Although Contract no. KLN/2013/16 under Schedule 3 of KTD has been superseded by KLN/2016/09 since early March 2017, the ET continued to adopt the impact monitoring data under Schedule 3 of KTD until appropriate new arrangement is agreed. The KLN/2016/09 impact environmental monitoring schedule is shown in **Appendix D**.

Status of Compliance with Environmental Permits Conditions

1.16 The status of required submission related to this Project under the Environmental Permits No. EP-337/2009 and EP-344/2009 is summarized in the **Table 1.4** and **Table 1.5** respectively:

EP Conditions	Submission	Submission Date	Remark	
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Road D2	
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03	
2.4	Design Drawing(s) of the Project	28 October 2013	For Road D2	
2.11	Landscape Mitigation Plan(s) for distributors road(s)	7 January 2014	For Road D2	
2.12	As-built drawing(s) for the distributor road(s)	To be submitted at least one week before the commencement of operation of distributor road(s)		
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	/	
3.3	Four hard copies and one electronic copy of the Monthly EM&A Report No. 63 (February 2019)	13 March 2019	Monthly EM&A Report for Contract No. KL/2012/03	

Table 1.4 Summary Table for Required Submission under EP No. EP-337/2009

Table 1.5 Summary Table for Required Submission under EP No. EP-344/2009

EP Conditions	ons Submission Submission Date Rem		Remark
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Pumping Station PS2 and PS NPS
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03
2.4	Design Drawing(s) of the Project	28 October 2013	For Pumping Station PS2 and PS NPS
2.11	Landscape Mitigation Plan(s) for sewage pumping station(s)	7 January 2014	For Pumping Station PS2 and PS NPS
2.12	As-built drawing(s) for the sewage pumping station (s)	To be submitted at least one week before the commencement of operation of distributor road(s)	
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	/

EP Conditions	Submission	Submission Date	Remark
3.3	Four hard copies and one electronic copy of the Monthly EM&A Report No. 63 (February 2019)	13 March 2019	Monthly EM&A Report for Contract No. KL/2012/03

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the EPs, 1-hour and 24-hour Total Suspended Particulates (TSP) monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Seven designated monitoring stations were selected for air quality monitoring programme. Impact dust monitoring was conducted at six of the air quality monitoring stations (AM2, AM2(A), AM3(A), AM3(B), AM4(C) and AM5. **Table 2.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Monitoring Stations	Locations	Location of Measurement
AM2	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
AM2(A)	Ng Wah Catholic Secondary School	Rooftop (about 8/F) Area
AM3(A)	Holy Trinity Bradbury Centre	Rooftop (about 8/F) Area
AM3(B)	Hong Kong Family Planning Association	Rooftop (about 4/F) Area
AM4(C)	New Pumping Station	Rooftop (about 6/F) Area
AM5	CCC Kei To Secondary School	Rooftop (about 10/F) Area
#AM6	PA 15	Site 1B4 (Planned)

Table 2.1Locations for Air Quality Monitoring

Remarks: # The impact monitoring at these locations will only be carried out until the sensitive receivers at the building are resided.

Monitoring Equipment

2.3 **Table 2.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates and laboratory accreditation are attached in **Appendix B**.

Equipment	Model and Make	Quantity
Calibrator	TE-5025A	1
1-hour TSP Dust Meter	Met One Instruments – AEROCET-831	4
HVS Sampler	TE-5170	4
Wind Anemometer	Davis Weather Monitor, Vantage Pro2	1

 Table 2.2
 Air Quality Monitoring Equipment

Monitoring Parameters, Frequency and Duration

2.4 Table 2.3 summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 2.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	At least three times every 6 days
24-hr TSP	At least once every 6 days

Monitoring Methodology and Quality Assurance and Quality Control (QA/QC) Procedure

1-hour TSP Monitoring

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Set POWER to "ON" and make sure that the battery level was not flash or in low level.
 - Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
 - Push the knob at MEASURE position.
 - Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
 - Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
 - Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 2.6 The following maintenance/calibration was required for the direct dust meters:
 - Check and calibrate the meter by High-Volume Sampler (HVS) to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.7 High volume samplers (HVS) (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the 24-hour TSP sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For 24-hour TSP sampling, fiberglass filters having a collection efficiency of \ge 99% for particles of 0.3µm (DOP) diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting

screen.

- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed so that the TSP will be sampled for 24 hours. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.16 After completion of sampling, the filter was removed and sent to Wellab Ltd., which is accredited under HOKLAS for laboratory analysis. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning temperature should be between 25°C and 30°C and not vary by more than \pm 3°C; the relative humidity (RH) should be < 50% and not vary by more than \pm 5%. A convenient working RH is 40%.

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using G25A Calibration Kit throughout all stages of the air quality monitoring.
 - Orifice Transfer Standards were calibrated at yearly intervals throughout all stages of the air quality monitoring.

Results, Observations and Action/Limit Level Exceedance

- 2.19 1-hour TSP monitoring at AM4(C) on 21st and 27th March 2019 was cancelled due to the permission problem and will be resumed on 2nd April 2019. No Action/Limit Level exceedance was recorded.
- 2.20 24-hour TSP monitoring at AM4(C) on 15th, 21st and 27th March 2019 was cancelled due to power failure and will be resumed on 12th April 2019. No Action/Limit Level exceedance was recorded.
- 2.21 This weather information for the reporting month is summarized in Appendix C.
- 2.22 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.

- 2.23 The summary of exceedance record in the reporting month is shown in **Appendix H**. No exceedance in Action/Limit Levels of 1-hour and 24-hour TSP was recorded for the air quality monitoring.
- 2.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations is as follows:

Station	Major Dust Source
AM2 – Lee Kau Yan Memorial School	Road Traffic Dust
	Exposed site area and open stockpiles
	Site vehicle movement
AM2(A) – Ng Wah Catholic Secondary	Road Traffic Dust
School	Exposed site area and open stockpiles
	Excavation works
	Site vehicle movement
AM3(A) – Holy Trinity Bradbury	Road Traffic Dust
Centre	Exposed site area
	Excavation works
	Site vehicle movement
AM3(B) – Family Planning Association	Road Traffic Dust
of Hong Kong	Exposed site area
	Excavation works
	Site vehicle movement
AM4(C) – New Pumping Station under	Site vehicle movement
Contract No. KL/2012/03	
AM5 – CCC Kei To Secondary School	Road Traffic Dust

Table 2.4Major dust source identified at the designated air quality monitoringstations

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis to conduct one set of measurements between 0700 and 1900 hours on normal weekdays. Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

- 3.2 Five designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at four designated monitoring stations (M6, M7, M8 and M9). **Figure 3** shows the locations of these stations.
- 3.3 Construction noise monitoring at Station M6 Holy Carpenter Primary School was rejected by the premise owner on 6th October 2014. The monitoring station has been relocated at a proposed alternative noise monitoring station M6(A) Oblate Primary School since 10th October 2014 to carry out the monitoring works.
- 3.4 The proposal for alternative position of M8 (remark as M8(A)) was agreed by IEC on 20th March 2019 in accordance with the Section 2.3.9 of EM&A Manual of the Project and the Environmental Protection Department (EPD) has no major objection on the proposal. No Action/Limit Level exceedance was recorded.

Monitoring Stations	Locations	Location of Measurement
*M6(A)	Oblate Primary School	Rooftop (about 7/F) Area
M7	CCC Kei To Secondary School	Rooftop (about 8/F) Area
^M8(A)	Po Leung Kuk Ngan Po Ling College	Ground Level (at a position
(A)	(Site Boundary)	3m above the ground)
M9	Tak Long Estate	Car Park Building (about 2/F)
#M10	Site 1B4 (Planned)	-

Table 3.1	Noise Monitoring Stations
-----------	----------------------------------

Remarks:

Monitoring Equipment

3.5 **Table 3.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

^k Alternative noise monitoring station for M6 – Holy Carpenter Primary School from 10th October 2014 onwards

A The proposal for alternative position of M8 (remark as M8(A)) was agreed by IEC on 20th March 2019 in accordance with the Section 2.3.9 of EM&A Manual of the Project and the Environmental Protection Department (EPD) has no major objection on the proposal. The Free Field noise measurement was adopted for Station M8(A) and its baseline reference noise level was adjusted with a correction of +3dB(A).

[#] The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Table 5.2 Noise Montoring Equipment		
Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVANTEK SVAN 977 & BSWA 801	3
Calibrator	SVANTEK SV30A & Brüel & Kjær 4231	2

Table 3.2Noise Monitoring Equipment

Monitoring Parameters, Frequency and Duration

3.6 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration				
Monitoring Stations	Parameter	Period	Frequency	Type of Measurement
M7 M9	$L_{10}(30 \text{ min.}) dB(A)$ $L_{90}(30 \text{ min.}) dB(A)$ $L_{eq}(30 \text{ min.}) dB(A)$	0700-1900 hrs on normal weekdays	Once per week	Façade ^(*)
M6(A) M8(A)	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Free Field (*)

 Table 3.3
 Noise Monitoring Parameters, Frequency and Duration

(*) Refer to bullet point 1 and 2 in the following section.

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground (3m above the ground for Station M8(A)).
- For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting : A
 - time weighting : Fast
 - time measurement : 30 minutes
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.7 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 3.8 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.9 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results, Observations and Action/Limit Level Exceedance

- 3.10 The construction noise monitoring at Station M8 Po Leung Kuk Ngan Po Ling College was conducted on 5th November 2018 and cancelled on 15th November 2018. The college principal rejected our permission application on 12th November 2018.
- 3.11 The proposal for alternative position of M8 (remark as M8(A)) was agreed by IEC on 20th March 2019 in accordance with the Section 2.3.9 of EM&A Manual of the Project and the Environmental Protection Department (EPD) has no major objection on the proposal. The Free Field noise measurement was adopted for Station M8(A) and its baseline reference noise level was adjusted with a correction of +3dB(A). No Action/Limit Level exceedance was recorded.
- 3.12 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.4**.
- 3.13 Noise monitoring results and graphical presentations are shown in Appendix G.
- 3.14 The major noise source identified at the designated noise monitoring stations is as follows:

Monitoring Stations	Locations	Major Noise Source
M6(A)	Oblate Primary School	Road and marine traffic Noise
M7	CCC Kei To Secondary School	Road and marine traffic Noise
M8	Po Leung Kuk Ngan Po Ling College	Excavation works at the site (Contract
MQ(A)	Po Leung Kuk Ngan Po Ling College	No.: 1/WSD/14(K)) facing Po Leung Kuk
M8(A)	(Site Boundary)	Ngan Po Ling College
M9	Tak Long Estate	Road paving and asphalt paving works

 Table 3.4
 Major noise source identified at the designated noise monitoring stations

Table 3.5	Baseline noise level and noise limit level for monitoring stations
-----------	--

Monitoring Stations	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
M6(A)	63.9 (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on normal
M7	68.7 (at 0700 – 1900 hrs on normal weekdays)	weekdays)

M8(A) [#]	61.9 (at 0700 – 1900 hrs on normal weekdays) 64.9 (at 0700 – 1900 hrs on normal weekdays) (adopted since 20 March	
	2019) 59.9 (at 0700 – 1900 hrs on normal	75 (at 0700 – 1900 hrs on normal
M9	weekdays)	weekdays)

(*) Noise Limit Level is 65 dB(A) during school examination periods.

(#) The Baseline Noise Level of Station M8 was adopted for alternative Station M8(A) temporarily until the baseline checking was completed. Since 20 March 2019, The Free Field noise measurement was adopted for Station M8(A) and its baseline reference noise level was adjusted with a correction of +3dB(A).

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 According to Section 16.1.6 (vi) of the EM&A Manual, the EM&A data were compared with the EIA predictions as summarized in **Table 4.1** to **4.3** below.

Station	Predicted 1-hr TSP conc.				
	Scenario1 (Mid 2009 to	Scenario2 (Mid 2013 to		ng Month 19), μg/m3	
	Mid 2013), µg/m3	Late 2016), µg/m3	Average	Range	
AM2 – Lee Kau Yan Memorial School	290	312	99.9	65.6 – 132.8	
AM3(A) - Holy Trinity Bradbury Centre (Alternative station for Sky Tower)	217	247	90.0	55.0 - 121.9	
AM4(C) – New Pumping Station	N/A	N/A	96.6	73.5 – 144.3	
AM5– CCC Kei To Secondary School	159	221	83.3	61.0 - 104.8	

 Table 4.1
 Comparison of 1-hr TSP data with EIA predictions

Table 4.2	Comparison of 24-hr TSP data with EIA predictions
-----------	---

Station	Predicted 24-hr TSP conc.				
	Scenario1 (Mid 2009 to	Scenario2 (Mid 2013 to	Reporting Month (Mar 2019), μg/m3		
	Mid 2013), µg/m3	Late 2016), µg/m3	Average	Range	
AM2(A) – Ng Wah Catholic Secondary School (Alternative station for Lee Kau Yan Memorial School)	145	169	40.5	21.6 - 54.5	
AM3(B) – Family Planning Association of Hong Kong	N/A	N/A	78.1	36.0 - 99.6	
AM4(C) – New Pumping Station	N/A	N/A	50.0	40.3 - 59.7	
AM5 – CCC Kei To Secondary School	103	128	56.9	40.6 - 76.9	

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (Leq (30min) dB(A))	Reporting Month (Mar 2019), Leq (30min) dB(A)
M6(A) - Oblate Primary School ^	N/A	53.7 - 62.0
M7 - CCC Kei To Secondary School	45 - 68	61.5 - 64.2
M8(A) - Po Leung Kuk Ngan Po Ling College (Site Boundary)*	44 - 70	59.5 - 69.5
M9 – Tak Long Estate	Not predicted in EIA Report	58.9 - 59.3

 Table 4.3
 Comparison of Noise Monitoring Data with EIA predictions

(^) Alternative noise monitoring station for M6 – Holy Carpenter Primary School from 10^{th} October 2014 onwards.

(*)The proposal for alternative position of M8 (remark as M8(A)) was agreed by IEC on 20th March 2019 in accordance with the Section 2.3.9 of EM&A Manual of the Project and the Environmental Protection Department (EPD) has no major objection on the proposal. The Free Field noise measurement was adopted for Station M8(A) and its baseline reference noise level was adjusted with a correction of +3dB(A).

- 4.2 The averages of 1-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3 The averages of 24-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.4 The range of noise level monitoring at station M7 in the reporting month was recorded within the prediction in the approved Environmental Impact Assessment (EIA) Report. The range of noise level monitoring at stations M8(A) in the reporting month was recorded within the prediction of M8 in the approved Environmental Impact Assessment (EIA) Report.

5. LANDSCAPE AND VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's activities during the construction period on a weekly basis, and to report on the contractor's performance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 In accordance with the Action Plan presented in **Appendix J**, no corrective actions were required in the reporting month.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 1st, 8th, 12th, 20th and 29th March 2019 in the reporting month. IEC site inspection was conducted on 12th March 2019. No non-compliance was observed during the site audits.

Status of Environmental Licensing and Permitting

6.3 All permits/licenses obtained for the Project are summarized in Table 6.1.

Downsid No.	Valid Period		Dataila	Statur
Permit No. From		То	Details	Status
Environmental Perm	it (EP)			
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	Valid
EP-344/2009	23/04/09	N/A	Construction of a new sewage pumping station serving the planned Kai Tak development with installed capacity of	
Effluent Discharge Li	icense			
WT00020971-2015	22/04/15	21/04/20	Discharge License for the discharge of wastewater from the construction site including contaminated surface run-off to the communal storm water drain	Valid
Registration of Chem	ical Waste P	roducer		
5213-286-K2958-05			Registration of chemical waste producer for chemical waste produced during construction of Stage 4 at former North Apron Area Infrastructure.	Valid

Table 6.1Summary of Environmental Licensing and Permit Status

Status of Waste Management

- 6.4 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.
- 6.5 In respect of the dump truck cover, the Contractor is advised to take record photos and inspection to ensure that the skips of all dump trucks have been fully covered before leaving the site.

Implementation Status of Environmental Mitigation Measures

6.6 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 6.2.

1 able 0.2		and Recommendations of Site ms	pections for E1-55/72007
Parameters	Date	Observations and Recommendations	Follow-up
Water Quality			
Air Quality			
Noise			
Waste/Chemical Management			
Landscape and Visual			
Permits /Licences			

 Table 6.2
 Observations and Recommendations of Site Inspections for EP-337/2009

Table 6.3	Observations and Recomm	endations of Site In	spections for EP-344/2009
-----------	--------------------------------	----------------------	---------------------------

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality			
Air Quality			
Noise			
Waste/Chemical	8 th March 2019	<u>Reminder:</u> General refuse should be collected and disposed properly.	The general refuse was cleared on 12 th March 2019.
Management	29 th March 2019	Reminder: General refuse/construction waste should be disposed properly.	The item will be followed up in the next reporting month.
Landscape and Visual			
Permits /Licences			

Summary of Mitigation Measures Implemented

6.7 The monthly IEC audit was carried out on 12th March 2019, the summary were recorded as follows:

Follow up of last monthly audit:

• No major environmental deficiency was observed during the previous site audit.

Observation(s) in the reporting month:

- No major environmental deficiency was observed during the site audit.
- 6.8 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.9 The Event Action Plans for air quality, noise and landscape and visual are presented in **Appendix J**.

<u>1-hr TSP Monitoring</u>

6.10 No Action/Limit Level exceedance was recorded in the reporting month.

<u>24-hr TSP Monitoring</u>

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.12 No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.13 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.14 No environmental complaint and environmental prosecution was received in the reporting month. The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project are presented in **Appendix L**.

7. FUTURE KEY ISSUES

- 7.1 Major site activities undertaken for the coming two months include:
 - Daily Cleaning;
 - E&M Work, GRC coping, Landscape Work in PS2;
 - Maintenance platform in DCS; and
 - E&M Works, Scaffold Platform Installation in NPS.
- 7.2 The tentative construction program for the Project is provided in **Appendix N.**

Key Issues for the Coming Month

- 7.3 Key environmental issues in the coming month include:
 - - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for machinery on-site; and
 - Review and implementation of temporary drainage system for the surface runoff.
- 7.4 The tentative program of major site activities and the impact prediction and environmental mitigation measures for the coming two months, i.e. April 2019 and May 2019 are summarized as follows:

Table 7.1Summary of the tentative program of major site activities, the impact prediction
and control measures for April 2019 and May 2019

Construction Works	Major Impact Prediction	Control Measures
As mentioned in Section 7.1	Air quality impact (dust) Water quality impact (surface run-off)	 a) Frequent watering of haul road and unpaved/exposed areas; b) Frequent watering or covering stockpiles with tarpaulin or similar means; and c) Watering of any earth moving activities. d) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; e) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; f) Provision of site boundary bund such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and g) Provision of measures to prevent discharge into the stream.
	Noise Impact	 h) Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; i) Controlling the number of plants use on site; j) Regular maintenance of machines; and k) Use of acoustic barriers if necessary.

Monitoring Schedule for the Next Month

7.5 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works required under the EM&A Manual were performed in the reporting month and all monitoring results were checked and reviewed.

<u>1-hr TSP Monitoring</u>

8.2 1-hour TSP monitoring at AM4(C) on 21st and 27th March 2019 was cancelled due to the permission problem and will be resumed on 2nd April 2019. No Action/Limit Level exceedance was recorded. The average of 1-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.

24-hr TSP Monitoring

8.3 24-hour TSP monitoring at AM4(C) on 15th, 21st and 27th March 2019 was cancelled due to power failure and will be resumed on 12th April 2019. No Action/Limit Level exceedance was recorded. 24-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.

Construction Noise Monitoring

- 8.4 The proposal for alternative position of M8 (remark as M8(A)) was agreed by IEC on 20th March 2019 in accordance with the Section 2.3.9 of EM&A Manual of the Project and the Environmental Protection Department (EPD) has no major objection on the proposal. The Free Field noise measurement was adopted for Station M8(A) and its baseline reference noise level was adjusted with a correction of +3dB(A).No Action/Limit Level exceedance was recorded.
- 8.5 The range of noise level monitoring at station M7 in the reporting month was recorded within the prediction in the approved Environmental Impact Assessment (EIA) Report. The range of noise level monitoring at stations M8(A) in the reporting month was recorded within the prediction of M8 in the approved Environmental Impact Assessment (EIA) Report.

Complaints, Notification of any Summons and Prosecution Received

8.6 No environmental complaint and environmental prosecution was received in the reporting month. The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project are presented in **Appendix L**.

Recommendations

8.7 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To mitigate the dust generation by adequate water spraying on dry days.

Noise Impact

- To inspect the noise sources inside the site.
- To disperse the locations of noisy equipments and position the equipments as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers in an appropriate location.

Water Impact

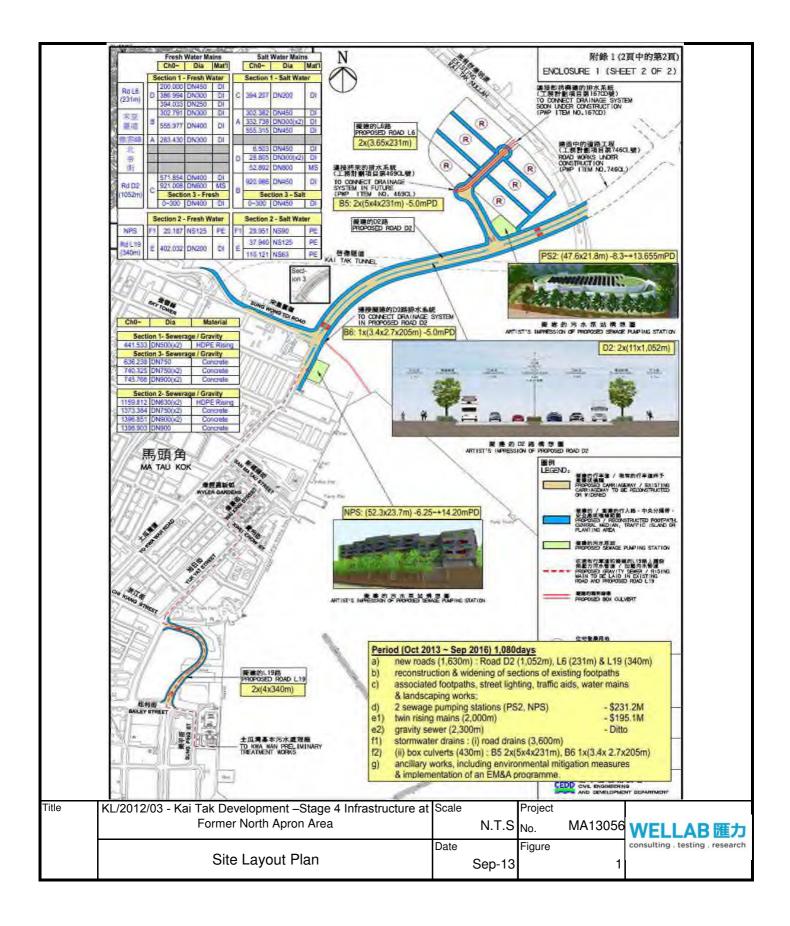
- To prevent any surface runoff discharge into any stream course.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.

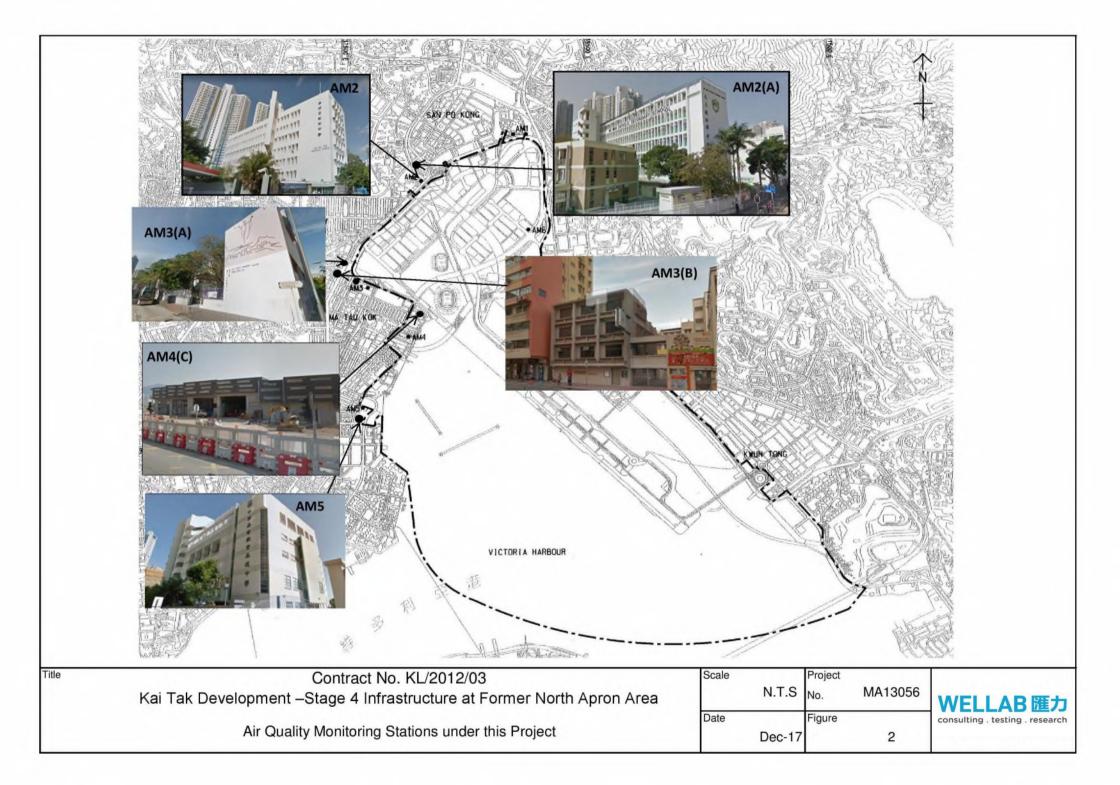
Waste/Chemical Management

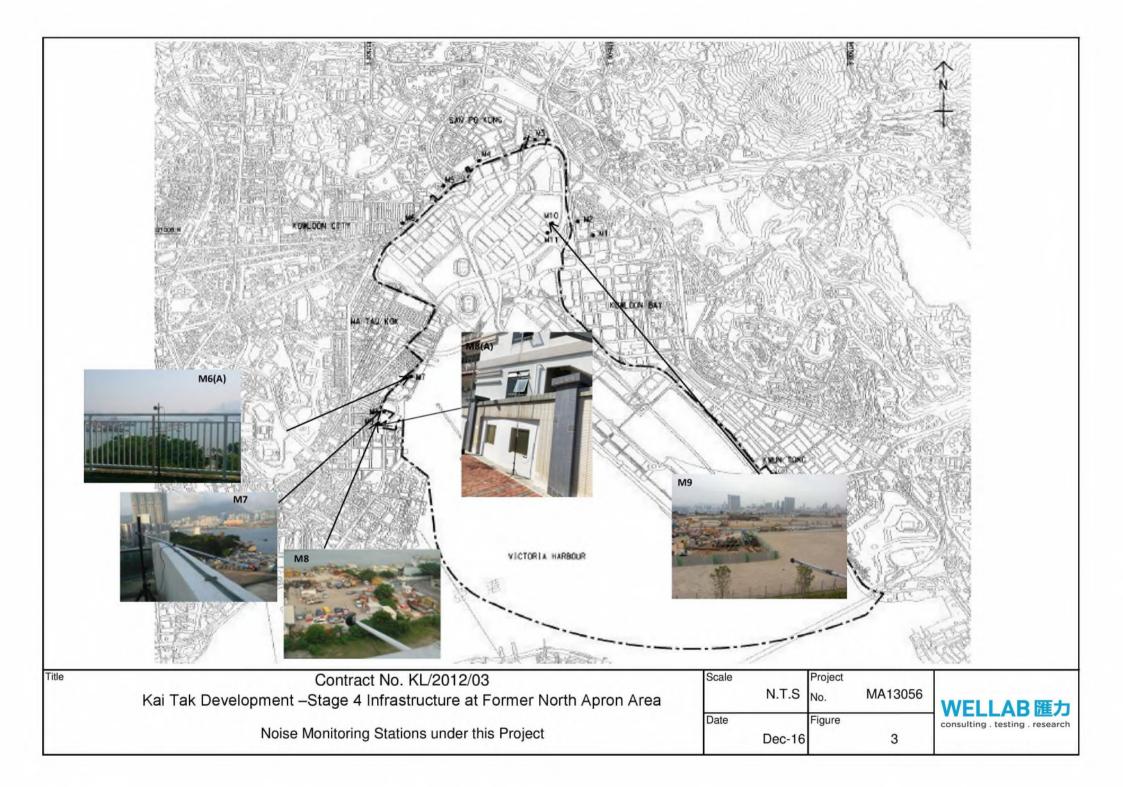
- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation);
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To provide proper storage area or drip trays for oil containers/ equipment on site.
- To avoid improper handling or storage of oil drum on site.

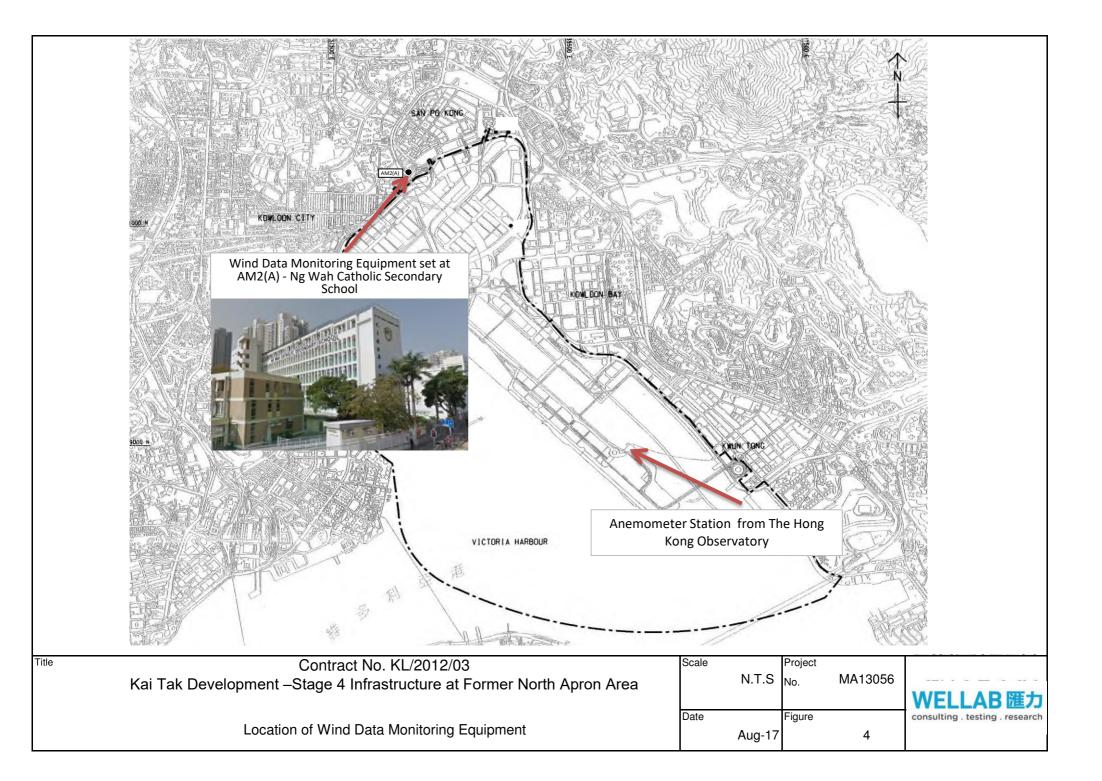
Landscape and Visual

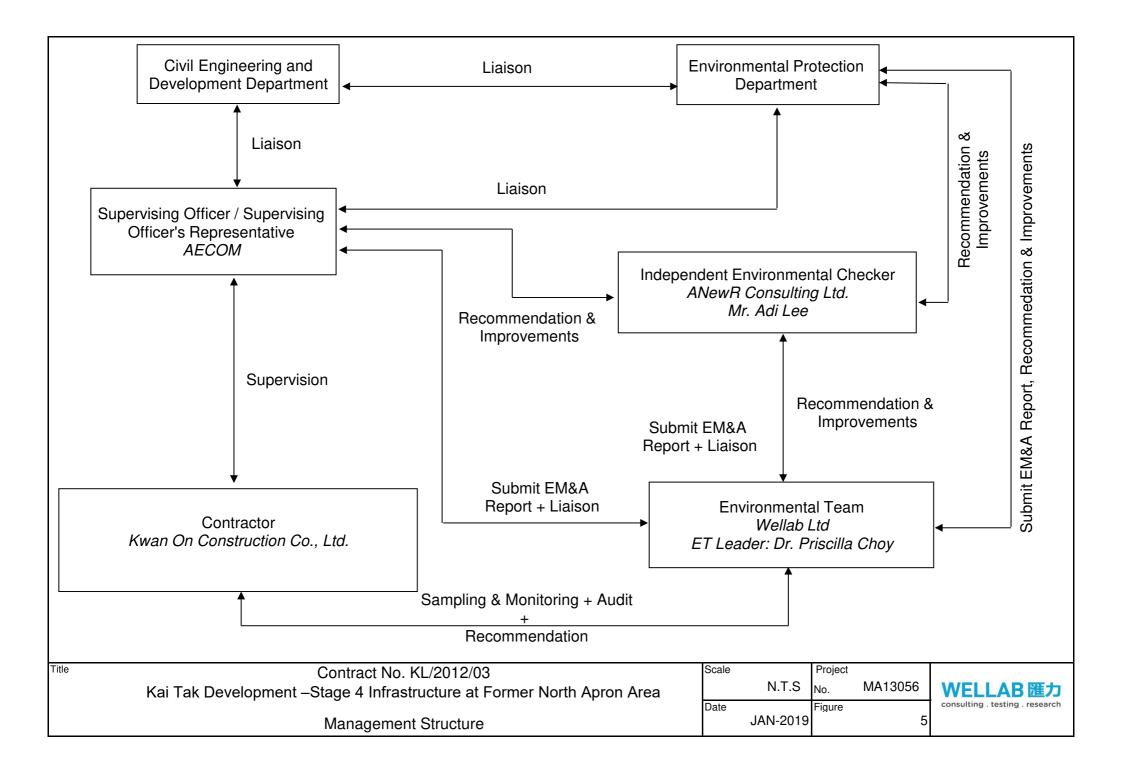
- To protect the existing trees to be retained.
- To transplant the trees unavoidably affected by the works.
- To control of night-time lighting.
- To provide decorative screen hoarding.
- To complete landscape works at site area as early as possible.


Effectiveness of Environmental Management


- 8.8 The above recommendations and the recommended mitigation measures in the EM&A Manual were carried out by the Contractor during construction. No non-compliance was recorded during the environmental site inspections as shown in **Appendix I**.
- 8.9 The effectiveness of environmental management is satisfactory as the above recommendations are met. Some of the examples of mitigation measures for the following recommendations are given in **Table 8.1** below.
 - Surface runoff discharge into any stream course is prevented;
 - Provision of sedimentation facilities after identification of wastewater discharges from site;
 - Discharge or accidental spillage of chemical waste or oil directly from the site is avoided;
 - Improper handling or storage of oil drum on site is avoided;
 - The existing trees to be retained are protected; and
 - Night-time lighting is controlled.


Table 8.1 Examples of Mitigation Measures for Environmental Recommendations




FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Location	Action Level, μg/m ³	Limit Level, µg/m ³
AM2	346	
AM3(A)	351	500
AM4(C)	371	- 500
AM5	345	

Table A-1Action and Limit Levels for 1-Hour TSP

Table A-2	Action and Limit Levels for 24-Hour TSP

Location	Action Level, µg/m ³	Limit Level, µg/m ³
AM2(A)	157	
AM3(B)	167	260
AM4(C)	187	260
AM5	156	

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

1 of 1

TEST REPORT

APPLICANT:	Wellab Limited	Test Report No.:	31065
	(EM&A Department)	Date of Issue:	2019-03-11
	Room 1701, Technology Park,	Date Received:	2019-03-08
	18 On Lai Street,	Date Tested:	2019-03-08
	Shatin, NT, Hong Kong	Date Completed:	2019-03-11
		Next Due Date:	2019-05-10

Page:

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X23807	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-01	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.164

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

ł

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30677A
Date of Issue:	2019-01-14
Date Received:	2019-01-11
Date Tested:	2019-01-11
Date Completed:	2019-01-14
Next Due Date:	2019-03-13
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X23808	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-02	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	
Test Specifications & Methodology:		

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

XXOS CITES .	
Correlation Factor (CF)	1.159

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	31065A
Date of Issue:	2019-03-11
Date Received:	2019-03-08
Date Tested:	2019-03-08
Date Completed:	2019-03-11
Next Due Date:	2019-05-10
Page:	1 of 1

ATTN: N

Mr. W. K. Tang

Certificate of Calibration	
Item for Calibration:	
Description	: Dust Monitor
Manufacturer	: Met One Instruments
Model No.	: AEROCET-831
Serial No.	: X23808
Flow rate	: 0.1 cfm
Zero Count Test	: 0 count per 1 minute
Equipment No.	: WA-01-02
Test Conditions:	
Room Temperatre	: 17-22 degree Celsius
Relative Humidity	: 40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:	
Correlation Factor (CF)	1.122

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30677B
Date of Issue:	2019-01-14
Date Received:	2019-01-11
Date Tested:	2019-01-11
Date Completed:	2019-01-14
Next Due Date:	2019-03-13
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X23809	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-03	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.211

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	31065B
Date of Issue:	2019-03-11
Date Received:	2019-03-08
Date Tested:	2019-03-08
Date Completed:	2019-03-11
Next Due Date:	2019-05-10
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration		
Item for Calibration:		
Description	: Dust Monitor	
Manufacturer	: Met One Instruments	
Model No.	: AEROCET-831	
Serial No.	: X23809	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 1 minute	
Equipment No.	: WA-01-03	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:	
Correlation Factor (CF)	1.178
*****	******

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Wellab Limited (EM&A Department) Room 1701, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30914
Date of Issue:	2019-02-25
Date Received:	2019-02-22
Date Tested:	2019-02-22
Date Completed:	2019-02-25
Next Due Date:	2019-04-24
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration			
Item for Calibration:			
Description	: Dust Monitor		
Manufacturer	: Met One Instruments		
Model No.	: AEROCET-831		
Serial No.	: X24476		
Flow rate	: 0.1 cfm		
Zero Count Test	: 0 count per 1 minute		
Equipment No.	: WA-01-05		
Test Conditions:			
Room Temperatre	: 17-22 degree Celsius		
Relative Humidity	: 40-70%		

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results: Correlation Factor (CF) 1.131

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

FATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	29815
Date of Issue:	2018-09-15
Date Received:	2018-09-14
Date Tested:	2018-09-14
Date Completed:	2018-09-15
Next Due Date:	2019-09-14
Page:	1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 977
Serial No.	: 45482
Microphone No.	: 63626
Equipment No.	: N-08-14
* * ·	

Test conditions:

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30524A
Date of Issue:	2018-12-17
Date Received:	2018-12-15
Date Tested:	2018-12-15
Date Completed:	2018-12-17
Next Due Date:	2019-12-16
Page:	1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

: BSWA : BSWA 801

Item for calibration:

Description	
Manufacturer	
Model No.	
Serial No.	
Equipment No.	

Test conditions:

Room Temperatre Relative Humidity : 35921 : N-13-02

: Sound & Vibration Analyser

: 17-22 degree Celsius : 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	30524C
Date of Issue:	2018-12-17
Date Received:	2018-12-15
Date Tested:	2018-12-15
Date Completed:	2018-12-17
Next Due Date:	2019-12-16
Page:	1 of 1

ATTN: Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description Manufacturer Model No. Serial No. Equipment No.

: Sound & Vibration Analyser : BSWA : BSWA 801 : 35927 : N-13-03

Test conditions:

Room Temperatre Relative Humidity

: 17-22 degree Celsius : 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of **WELLAB Ltd.**

TEST REPORT				
APPLICANT	: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong	Test Report No.: Date of Issue: Date Received: Date Tested:	29816 2018-09-29 2018-09-28 2018-09-28	
	Shatin, 141, Hong Kong	Date Tested. Date Completed: Next Due Date:	2018-09-29 2019-09-28	
ATTN:	Mr. W.K. Tang	Page:	1 of 1	
Item for calib	ration:			
	Description: AcousManufacturer: SVANModel No.: SV30Serial No.: 24803Equipment No.: N-09-	A		
Test condition	s:			
	Room Temperatre: 17-22Relative Humidity: 40-70	degree Celsius %		
Methodology:				
The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.				

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	$114.0 \pm 0.1 \mathrm{dB}$

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

 $114.0 \pm 0.1 \, \text{dB}$

TEST REPORT **APPLICANT: Cinotech Consultants Limited** Test Report No .: 29817 Room 1710, Technology Park, Date of Issue: 2018-09-29 18 On Lai Street, Date Received: 2018-09-28 Shatin, NT, Hong Kong Date Tested: 2018-09-28 Date Completed: 2018-09-29 Next Due Date: 2019-09-28 ATTN: Mr. W.K. Tang Page: 1 of 1 Item for calibration: Description : Acoustical Calibrator Manufacturer : SVANTEK Model No. : SV30A Serial No. :24780 Equipment No. : N-09-05 **Test conditions:** Room Temperatre : 17-22 degree Celsius **Relative Humidity** : 40-70% Methodology: The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent. 12...

Kesuns:		
Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 dB$

114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

At 114 dB SPL

WELLAB 匯力

consulting . testing . research

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

in. of water IATX (Far No) X (250 Fa)] X - axis of water Y-axis 1 12.3 3.57 61.05 8.1 2.90 2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Slope , mw =							File No.	MA13056/13/0011	
Bequipment No: <u>A-01-13</u> Model No: <u>TE-5170</u> Serial No.: <u>1352</u> Ambient Condition Temperature, Ta (K) 291.8 Pressure, Pa (mmHg) 772.3 Orifice Transfer Standard Information Serial No. 2896 Slope, mc 0.0585 Intercept, bc -0.00045 Last Calibration Date: 13-Feb-18 mc x Qstd + bc = [AH x (Pa760) x (298/Ta)] ^{1/2} Calibration of TSP Sampler IM (AH x (Pa760) x (298/Ta)] ^{1/2} X = xxis 1 10.6 3.32 5.667 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 3 <th< td=""><td>Station</td><td>AM2(A) - Ng Wa</td><td>h Catholic Secondz</td><td></td><td>_</td><td></td><td></td><td></td></th<>	Station	AM2(A) - Ng Wa	h Catholic Secondz		_				
Ambient Condition Temperature, Ta (IC) 291.8 Pressure, Pa (mmHg) 772.3 Orifice Transfer Standard Information Serial No. 2896 Slope, me 0.0585 Intercept, be -0.00045 Last Calibration Date: 13-Peb-18 me x Qstd + be = [All x (Pa/760) x (298/Ta)] ^{1/2} Calibration Date: 13-Peb-19 Qstd (CFM) AW (HVS) Calibration Date: IAH x (Pa/760) x (298/Ta)] ^{1/2} Next Calibration Date: IAH x (Pa/760) x (298/Ta)] ^{1/2} Calibration of TSP Sampler Calibration of TSP Sampler Calibration of TSP Sampler IAH x (Pa/760) x (298/Ta)] ^{1/2} X - axis of vater Y-axis 13-Peb-19 Qstd (CFM) AW (HVS) (in (IW X (HVS), in (IW X (Pa/760) x (298/Ta)]) Calibration of water IAW x (Pa/760) x (298/Ta)] IAW x (Pa/760) x (298/Ta)] 12.2.6 <	Date:	11-Feb-19	_	Next Due Date		_			
Temperature, Ta (K) 291.8 Pressure, Pa (mmHg) 772.3 Orifice Transfer Standard Information Serial No. 2896 Slope, mc 0.0585 Intercept, bc -0.00045 Last Calibration Date: 13-Feb-19 Waxt Qstd + bc = [All x (Pa/760) x (298/Ta)]^{1/2} - bc] / mc -0.00045 Calibration of TSP Sampler Calibration of TSP Sampler Calibration of Mater [All x (Pa/760) x (298/Ta)]^{1/2} Qstd (CFM) AW (Pd/760) x (298/Ta)]^{1/2} - bc] / mc Calibration of water HVS Point 1 12.3 3.57 61.05 8.1 2.90 2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Slope , mw = 0.0464 Intercept, bw = 0.0387 Correlation coefficient < 0.9900, check and recalibrate.	Equipment No.:	A-01-13	_	Model No.: <u>TE-5170</u> Serial No.:		1352			
Temperature, Ta (K) 291.8 Pressure, Pa (mmHg) 772.3 Orifice Transfer Standard Information Serial No. 2896 Slopo, mc 0.0585 Intercept, bc -0.00045 Last Calibration Date: 13-Feb-19 Qstd + bc = [All x (Pa/760) x (298/Ta)]^{1/2}. bc] / mc -0.00045 Calibration of TSP Sampler Calibration of TSP Sampler Calibration of TSP Sampler Calibration of water IVS 1 12.3 3.57 61.05 8.1 2.90 2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Slope, mw = 0.9464 Intercept, bw = 0.0387 Correlation coefficient < 0.9900, check and recalibrate.		· · · · · · · · · · · · · · · · · · ·		Ambient	t Condition		· · · · · ·		
Serial No. 2896 Slope, mc 0.0585 Intercept, bc -0.00045 Last Calibration Date: 13-Feb-18 me x Qstd + bc = [AH x (Pa7/60) x (298/Ta)] ^{1/2} -0.00045 Next Calibration Date: 13-Feb-19 Qstd = {[AH x (Pa7/60) x (298/Ta)]^{1/2} -bc} / mc -0.00045 Calibration of TSP Sampler Calibration Orfice HVS AH (orifice), in of water [AH x (Pa7/60) x (298/Ta)] Qstd (CFM) X - axis AW (HVS), in. of water [AW x (Pa7/60) x (298/Ta)] 1 12.3 3.57 61.05 8.1 2.90 2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 Stope , mw =	Temperatu	re, Ta (K)	291.8				772.3		
Serial No. 2896 Slope, mc 0.0585 Intercept, bc -0.00045 Last Calibration Date: 13-Feb-18 me x Qstd + bc = [AH x (Pa7760) x (298/Ta)] ^{1/2} -0.00045 Next Calibration Date: 13-Feb-19 Qstd = {[AH x (Pa7760) x (298/Ta)] ^{1/2} -bc} / mc -0.00045 Calibration of TSP Sampler Calibration Orfice HVS AH (orifice), in, of water [AH x (Pa760) x (298/Ta)] ^{1/2} Qstd (CFM) X - axis ΔW (HVS), in. [$\Delta W x (Pa760) x (298/Ta)$] 1 12.3 3.57 61.05 8.1 2.90 2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 Set Point Calculation mex Qstd + d3 CFM Form the Regression of Y on X Slope , mw = 0.0464 nutrecept, bw = 0.0387 Correlati		· · · ·							
Last Calibration Date: 13-Feb-18 mc x Qstd + bc = [AH x (Pa/760) x (298/Ta)] ^{1/2} Next Calibration Date: 13-Feb-19 Qstd = {[AH x (Pa/760) x (298/Ta)] ^{1/2} -bc} / mc Calibration of TSP Sampler Calibration of TSP Sampler Calibration \overline{AH} (orifice), in. of water [AH x (Pa/760) x (298/Ta)] ^{1/2} Qstd (CFM) \overline{AW} (HVS), in. [AW x (Pa/760) x (298/Ta)] 1 12.3 3.57 61.05 8.1 2.90 2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Ster Point Calculation Freduction Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Fa)]^{1/2} Therefore, Set Point;					1	T			
Next Calibration Date: 13-Feb-19 Qstd = {[AH x (Pa/760) x (298/Ta)]^{1/2} -bc} / mc Calibration of TSP Sampler Calibration of TSP Sampler Calibration Orfice HVS ΔH (orifice), in. of water [$\Delta H x$ (Pa/760) x (298/Ta)]^{1/2} Qstd (CFM) ΔW (HVS), in. [$\Delta W x$ (Pa/760) x (298/Ta)] 1 12.3 3.57 61.05 8.1 2.90 2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Set Point Calculation Set Point Calculation Therefore, set Point, the value according to mw vgstd + bw = [$\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) =				Slope, mc					
Calibration of TSP Sampler Calibration of TSP Sampler Calibration Orfice HVS ΔH (orifice), in. of water $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. of water $[\Delta W \times (Pa/760) \times (298/Ta)]$ 1 12.3 3.57 61.05 8.1 2.90 2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Slope , mw =0.0464 Intercept, bw =	Last Calibra	ation Date:	13-Feb-18						
Orfice HVS ΔH (orifice), in. of water $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ $Qstd$ (CFM) $X - axis$ ΔW (HVS), in. of water $[\Delta W \times (Pa/760) \times (298/Ta)]$ 1 12.3 3.57 61.05 8.1 2.90 2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Slope, nw =	Next Calibra	ation Date:	13-Feb-19		Qstd = $\{[\Delta H]$	x (Pa/760) x (298	/Ta)] ^{1/2} -be}	/ mc	
Orfice HVS AH (orifice), in. of water $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) X - axis ΔW (HVS), in. of water $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ 1 12.3 3.57 61.05 8.1 2.90 2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Slope, mw = 0.0464 Intercept, bw = 0.0387 Correlation coefficient < 0.990, check and recalibrate.			•	Calibration (of TSP Sampler	•			
Point AH (orifice), in. of water $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ $Qstid$ (CFM) X - axis ΔW (HVS), in. of water $[\Delta W \times (Pa/760) \times (298/Ta)]$ 1 12.3 3.57 61.05 8.1 2.90 2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Slope, $mw = \$			Or		······		HVS		
2 10.6 3.32 56.67 6.7 2.64 3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Slope, nw =			1				[ΔW x (Pa/760) x (298/Ta)] ^{1/2}		
3 7.4 2.77 47.35 4.9 2.26 4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Slope , mw =0.0464	1	12.3	3	.57	61.05	8.1		2.90	
4 5.0 2.28 38.93 3.2 1.82 5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Slope , mw =	2	10.6	3	.32	56.67	6.7		2.64	
5 3.4 1.88 32.10 2.3 1.54 By Linear Regression of Y on X Slope , mw =0.0464	3	7.4	2	2.77	47.35	4.9		2.26	
By Linear Regression of Y on X Slope , $mw = 0.0464$ Intercept, $bw = 0.0387$ Correlation coefficient $* = 0.9988$ *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to $mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.99$ Remarks:	4	5.0	2		8 38.93 3.2		1.82		
Slope, $mw = 0.0464$ Intercept, $bw = 0.0387$ Correlation coefficient* = 0.998 *If Correlation Coefficient < 0.990, check and recalibrate.	5	3.4	1.88		32.10	2.3	1.54		
*If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to $mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =	Slope , mw =	0.0464	_		Intercept, bw =	0.038	7		
Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = [$\Delta W \times (Pa/760) \times (298/Ta)$] ^{1/2} Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$					-				
From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to $mw \ x \ Qstd + bw = [\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =3.99 Remarks:	*If Correlation C	oemcient < 0.99	o, check and reca	anorate.					
From the Regression Equation, the "Y" value according to $\mathbf{mw \ x \ Qstd + bw = [\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) = 3.99 Remarks:				Set Point	Calculation				
$mw \ x \ Qstd + bw = [\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =	From the TSP Fi	eld Calibration C	Curve, take Qstd =	= 43 CFM					
Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.99$ Remarks:	From the Regres	sion Equation, th	e "Y" value acco	rding to					
Therefore, Set Point; $W = (mw x Qstd + bw)^2 x (760 / Pa) x (Ta / 298) = 3.99$ Remarks:			mw vi	Ostd + bw = [AW]	/ x (Pa/760) v ($298/T_{\rm B}$			
Remarks:			111 17 A	χοια - μπ - [Δη		=> 0/ 1 10/]			
	Therefore, Se	et Point; W = (m	w x Qstd + bw $)^2$	² x (760 / Pa) x (Ta / 298) =	3.99			
	Remarks:	**********							
Conducted by 101 444 Was Signatures 16 Date: 11/2/28	0 1 4 11	101 1 100	0't-	Å	5		Data	al in in	

Conducted by: <u>UZE MAN ME</u>2 Signature: Checked by: <u>LIK, Jane</u> Signature: Kwori

Date: Date:

11/2/2019

WELLAB 匯力

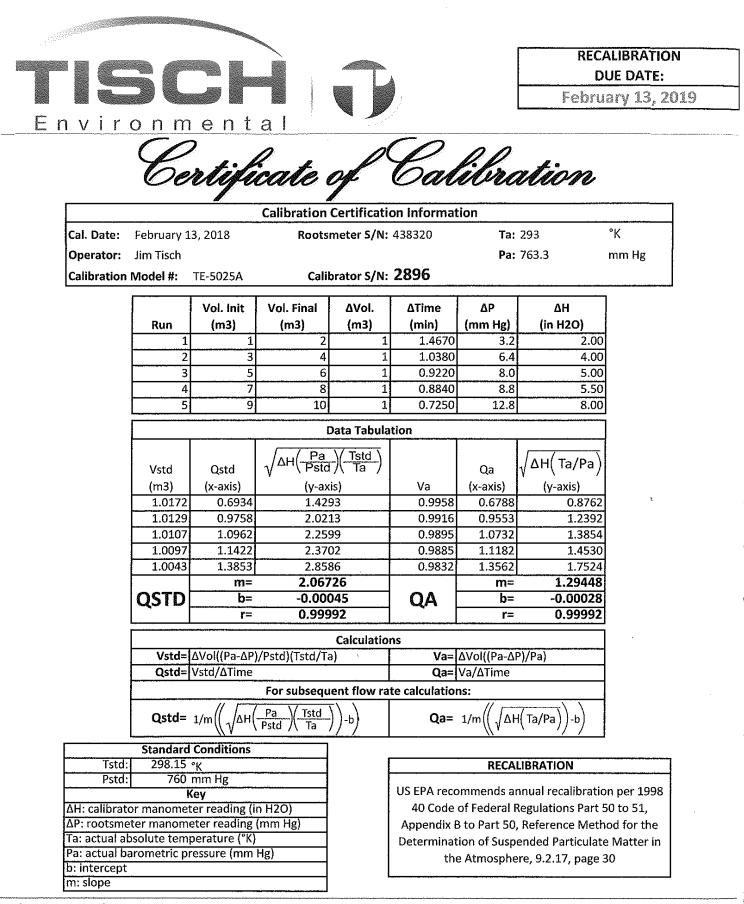
consulting . testing . research

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	MA13056/17/0003
Station	AM3(B) - Hong	Kong Family Plan	ning Association	Operator:	MH		
Date:	11-Feb-19			Next Due Date:	10-Apr-	-19	
Equipment No.:	A-01-17			Serial No.	3460		
			Ambient	Condition			
Temperatu	re, Ta (K)	291.4	Pressure, P			771.7	
	X / I						
		Oı	ifice Transfer St	andard Inform	ation		
Serial	l No.	2896	Slope, mc	0.0585	Intercept		-0.00045
Last Calibra	ation Date:	13-Feb-18			ос = [ΔН x (Ра/76		
Next Calibr	ation Date:	13-Feb-19		Qstd = ${[\Delta H]}$	x (Pa/760) x (298/	/Ta)] ^{1/2} -bc} /	me
			Calibration of	f TSP Sampler		n na fra di servi	
Calibration		Or	fice			HVS	
Point	∆H (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis
1	11.8	3	3.50	59.81	7.9		2.86
2	9.9	3	3.21	54.79	6.6		2.62
3	8.2	2	2.92	49.86	5.2		2.32
4	5.6	2	2.41	41.21	3.6		1.93
5	3.2	1	.82	31.15	2.2		1.51
Slope , mw = Correlation c		- 0.9	981	Intercept, bw [:] _	0.007	4	
							· · · · · · · · · · · · · · · · · · ·
				Calculation			
	eld Calibration C						
from the Regres	sion Equation, th	e "Y" value acco	rding to				
		mw x (Qstd + bw = [∆W	x (Pa/760) x (2	98/Ta)1 ^{1/2}		
			2000 000 1-00				
Therefore, S	et Point; W = (m	w x Qstd + bw $)^{2}$	² x (760 / Pa) x (Ta / 298) =	4.02		
Remarks:				· · · · · · · · · · · · · · · · · · ·			
			1	1			1 1
	let many Her		N	4		Date: -	11/2/2019
Checked by:	Wh Tang	Signature:	Kuni			Date:	11/2/2019

WELLAB 匯力 consulting . testing . research

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET


File No MA13056/62/0012

						THC NO	. WAT5050/02/0012
Project No.	AM4(C) -	4-4' C	tract KL/2012/03	Outerstand	MOT		
Data	11-Feb-19	tation under Cor		-	MH 10-Apr		_
Date: Equipment No.:					2351		
Equipment No	A-01-02			Bendindo,	2331		_
· ·		-	Ambient Co	ndition	· .		·
Temperatu	re, Ta (K)	291.3	Pressure, Pa (770.8	
<u> </u>							
e por la factoria de 1700. Este		C	rifice Transfer Stan	dard Informati	on		
Seria	l No.	2896	Slope, mc	0.0585	Intercep		-0.00045
Last Calibra	ation Date:	13-Feb-18	m	c x Qstd + bc =	- [ΔH x (Pa/760)	x (298/Ta)]	1/2
Next Calibr	ation Date:	13-Feb-19	Q	std = $\{[\Delta H x (I)]\}$	Pa/760) x (298/Ta)] ^{1/2} -bc} / n	nc
		•					
			Calibration of T	SP Sampler			a oraștin provente a constru-
Calibration		(Orfice	1		HVS	
Point	ΔH (orifice), in. of water	[Δ H x (Pa/	760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	a/760) x (298/Ta)] ^{1/2} Y-axis
1	13.6		3.76	64.19	8.6		2.99
2	11.8		3.50	59.79	7.4		2.77
3	8.8		3.02	51.63	5.7		2.43
4	5.4		2.37	40.45	3.3		1.85
5	3.3		1.85	31.62	2.4		1.58
Slope , mw = Correlation c		(.9973	Intercept, bw = _	0.132	2	-
		· · · ·	Set Point Cal	culation			
From the TSP Fi	ield Calibration C	urve, take Ostd :					
	sion Equation, the						
1 rom the reegies	sion Equation, an						
		mw x	$Qstd + bw = [\Delta W x ($	(Pa/760) x (298/	(Ta)] ^{1/2}		
Therefore,	Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta	a / 298) =	3.99		-
Remarks:			· · · · · · · · · · · · · · · · · · ·				
Conducted by: Checked by:	<u>LEE MAN HEZ</u> Wh. Janz	Signature: Signature:	hi Kari	n'		Date: Date:	11/2/2019

WELLAB 匯力 consulting . testing . research

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No	. MA13056/59/0011
Station	AM5 - CCC Kei	To Secondary S	chool	Operator:	MH		_
Date:	11-Feb-19			Next Due Date:	10-Apr	-19	_
Equipment No.:	A-01-59			Serial No.	2354		_
			Ambient	Condition	······································		
Temperatu	re, Ta (K)	291.5	Pressure, Pa			772.1	
L				- (1		
		O	ifice Transfer St	andard Inform	ation		
Seria	l No.	2896	Slope, mc	0.0585	Intercept	t, bc	-0.00045
Last Calibra	ation Date:	13-Feb-18		mc x Qstd + I	oc = [ΔH x (Pa/76	0) x (298/T	a)] ^{1/2}
Next Calibr	ation Date:	13-Feb-19		Qstd = $\{[\Delta H]\}$	x (Pa/760) x (298/	/Ta)] ^{1/2} -bc}	/ me
		•					
			Calibration of	TSP Sampler		·	
Calibration		Or	fice	,		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	∆W (HVS), in. of water	[ΔW x (F	Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	12.3	3	.57	61.07	8.0		2.88
2	10.9	3	.36	57.49	6.9		2.68
3	7.9	2	86	48.95	5.4		2.37
4	5.4	2	.37	40.47	3.6		1.93
5	3.5	1	.91	32.58	2.2		1.51
Slope , mw = Correlation c		0.9	976	Intercept, bw -	0.009	6	_
			Set Point C	alculation			1 8 18 07 000000
From the TSP Fi	eld Calibration C	urve take Ostd =					
	sion Equation, the	-					
Therefore, Se	et Point; W = (m		$Qstd + bw = [\Delta W]$ x (760 / Pa) x (7		98/Ta)] ^{1/2} 3.98		-
Remarks:							
Conducted by: Checked by:	<u>LEE MAN HEZ</u> WK. Jang	Signature:	h Ku	10		Date: Date:	<u>(1/2/2019</u> 11/2/2019

Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	29953A
Date of Issue:	2018-10-15
Date Received:	2018-10-12
Date Tested:	2018-10-12
Date Completed:	2018-10-15
Next Due Date:	2019-04-14
Page:	1 of 2

ATTN:

Mr. W.K. Tang

Certificate of Calibration

: BC180522050

Item for calibration:

Description Manufacturer Model No. Serial No. : Weather Stations, Vantage Pro2 : Davis Instruments : 6152

Test conditions:

Room Temperature Relative Humidity : 17-22 degree Celsius : 40-70 %

Test Specifications:

1. Performance check of anemometer

2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

P'ATRICK TSE Laboratory Manager

TEST REPORT

29953A
2018-10-15
2018-10-12
2018-10-12
2018-10-15
2019-04-14
2 of 2

Results:

1. Performance check of anemometer

Air Velo	Difference D (m/s)	
Instrument Reading (V1)	D = V1 - V2	
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	$\mathbf{D} = \mathbf{W}1 - \mathbf{W}2$
0	0	0
45	45	0
90	90	0
135.2	135	0.2
180.1	180	0.1
225.3	225	0.3
270	270	0
315.1	315	0.1
360	360	0

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
01-Mar-19	20.8	89	0.4
02-Mar-19	21.5	87	Trace
03-Mar-19	21.5	87	6.3
04-Mar-19	20.9	82	10.2
05-Mar-19	22.2	88	30.3
06-Mar-19	20.5	92	45.5
07-Mar-19	17.9	93	29.6
08-Mar-19	16.5	92	11.5
09-Mar-19	17.8	95	14.5
10-Mar-19	17.7	87	4.6
11-Mar-19	18.4	81	7.6
12-Mar-19	20.1	77	-
13-Mar-19	20.8	71	-
14-Mar-19	20.4	83	6.4
15-Mar-19	18.7	81	0.4
16-Mar-19	20.2	65	-
17-Mar-19	20.9	77	-
18-Mar-19	21.7	82	-
19-Mar-19	23.4	84	-

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20-Mar-19	23.5	88	-
21-Mar-19	25.3	81	-
22-Mar-19	25.8	84	Trace
23-Mar-19	20.0	89	3.3
24-Mar-19	17.5	88	0.3
25-Mar-19	20.5	85	1.0
26-Mar-19	21.9	85	-
27-Mar-19	22.3	82	Trace
28-Mar-19	24.4	84	-
29-Mar-19	24.4	86	6.9
30-Mar-19	23.1	86	Trace
31-Mar-19	21.4	85	7.7

* The above information was extracted from the daily weather summary by Hong Kong Observatory. ** Trace = rainfall less than 0.05 mm.

*** The level of precipitation indicate the total amount of rainfall for each date (24 hours).

Date	Time	Wind Speed m/s	Direction
1-Mar-2019	00:00	0.4	NE
1-Mar-2019	01:00	0.9	NE
1-Mar-2019	02:00	0.9	NE
1-Mar-2019	03:00	0.9	NE
1-Mar-2019	04:00	0.9	E
1-Mar-2019	05:00	0.9	NE
1-Mar-2019	06:00	0.9	NE
1-Mar-2019	07:00	0.9	NE
1-Mar-2019	08:00	0.9	NE
1-Mar-2019	09:00	0.9	ENE
1-Mar-2019	10:00	0.9	ENE
1-Mar-2019	11:00	1.3	ENE
1-Mar-2019	12:00	1.3	ENE
1-Mar-2019	13:00	1.3	ESE
1-Mar-2019	14:00	1.3	ENE
1-Mar-2019	15:00	1.3	ENE
1-Mar-2019	16:00	1.3	ENE
1-Mar-2019	17:00	1.3	ENE
1-Mar-2019	18:00	1.3	ENE
1-Mar-2019	19:00	1.3	NE
1-Mar-2019	20:00	1.3	ENE
1-Mar-2019	21:00	1.8	ENE
1-Mar-2019	22:00	1.3	ENE
1-Mar-2019	23:00	1.3	E
2-Mar-2019	00:00	0.9	E
2-Mar-2019	01:00	0.9	E
2-Mar-2019	02:00	0.9	NE
2-Mar-2019	03:00	0.9	ENE
2-Mar-2019	04:00	1.3	E
2-Mar-2019	05:00	1.3	E
2-Mar-2019	06:00	1.3	E
2-Mar-2019	07:00	1.8	E
2-Mar-2019	08:00	2.2	E
2-Mar-2019	09:00	1.3	E
2-Mar-2019	10:00	1.3	E
2-Mar-2019	11:00	2.2	E

2-Mar-2019 12:00 2.2 E 2-Mar-2019 13:00 2.7 E 2-Mar-2019 14:00 2.2 E 2-Mar-2019 16:00 1.8 E 2-Mar-2019 16:00 0.9 E 2-Mar-2019 17:00 0.9 NE 2-Mar-2019 19:00 0.9 NE 2-Mar-2019 19:00 0.9 NE 2-Mar-2019 20:00 0.9 E 2-Mar-2019 21:00 0.9 E 2-Mar-2019 22:00 0.9 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 03:00 0.4 ENE 3-Mar-2019 06:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 09		1		
2-Mar-2019 14:00 2.2 E 2-Mar-2019 15:00 2.2 E 2-Mar-2019 16:00 1.8 E 2-Mar-2019 17:00 0.9 NE 2-Mar-2019 18:00 0.9 NE 2-Mar-2019 19:00 0.9 NE 2-Mar-2019 20:00 0.9 NE 2-Mar-2019 21:00 0.9 E 2-Mar-2019 23:00 0.9 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 06:00 0.4 ENE 3-Mar-2019 06:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 07:00 0.9 E 3-Mar-2019 07:00 0.9 E 3-Mar-2019 10:00 0.9 E 3-Mar-2019 10:	2-Mar-2019	12:00	2.2	E
2-Mar-2019 15:00 2.2 E 2-Mar-2019 16:00 1.8 E 2-Mar-2019 17:00 0.9 ENE 2-Mar-2019 18:00 0.9 NE 2-Mar-2019 19:00 0.9 NE 2-Mar-2019 20:00 0.9 NE 2-Mar-2019 22:00 0.9 E 2-Mar-2019 23:00 0.9 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 05:00 0.0 ENE 3-Mar-2019 06:00 0.9 E 3-Mar-2019 07	2-Mar-2019	13:00	2.7	E
2-Mar-2019 16:00 1.8 E 2-Mar-2019 17:00 0.9 ENE 2-Mar-2019 18:00 0.9 NE 2-Mar-2019 19:00 0.9 NE 2-Mar-2019 20:00 0.9 NE 2-Mar-2019 21:00 0.9 E 2-Mar-2019 22:00 0.9 E 3-Mar-2019 23:00 0.9 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 02:00 0.4 ENE 3-Mar-2019 03:00 0.4 ENE 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 06:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 07:00 0.0 SW 3-Mar-2019 07:00 0.9 E 3-Mar-2019 <td< td=""><td>2-Mar-2019</td><td>14:00</td><td>2.2</td><td>E</td></td<>	2-Mar-2019	14:00	2.2	E
2-Mar-2019 17:00 0.9 ENE 2-Mar-2019 18:00 0.9 NE 2-Mar-2019 19:00 0.9 NE 2-Mar-2019 20:00 0.9 NE 2-Mar-2019 21:00 0.9 E 2-Mar-2019 22:00 0.9 E 2-Mar-2019 22:00 0.9 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 03:00 0.4 ENE 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 06:00 0.0 ENE 3-Mar-2019 06:00 0.0 ENE 3-Mar-2019 06:00 0.0 ENE 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 08:00 0.9 E 3-Mar-2019 10:00 0.9 E 3-Mar-2019 10:00 0.9 E 3-Mar-2019 <t< td=""><td>2-Mar-2019</td><td>15:00</td><td>2.2</td><td>Е</td></t<>	2-Mar-2019	15:00	2.2	Е
2-Mar-2019 18:00 0.9 NE 2-Mar-2019 19:00 0.9 NE 2-Mar-2019 20:00 0.9 NE 2-Mar-2019 21:00 0.9 E 2-Mar-2019 22:00 0.9 E 2-Mar-2019 23:00 0.9 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 03:00 0.4 ENE 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 05:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 10:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 <t< td=""><td>2-Mar-2019</td><td>16:00</td><td>1.8</td><td>E</td></t<>	2-Mar-2019	16:00	1.8	E
2-Mar-2019 19:00 0.9 NE 2-Mar-2019 20:00 0.9 NE 2-Mar-2019 21:00 0.9 E 2-Mar-2019 22:00 0.9 E 2-Mar-2019 23:00 0.9 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 01:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 03:00 0.4 E 3-Mar-2019 03:00 0.4 ENE 3-Mar-2019 03:00 0.4 ENE 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 06:00 0.0 ENE 3-Mar-2019 06:00 0.0 WSW 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 08:00 0.9 E 3-Mar-2019 10:00 0.9 E 3-Mar-2019 10:00 0.9 E 3-Mar-2019 1	2-Mar-2019	17:00	0.9	ENE
2-Mar-2019 20:00 0.9 NE 2-Mar-2019 21:00 0.9 E 2-Mar-2019 22:00 0.9 E 2-Mar-2019 23:00 0.9 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 01:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 03:00 0.4 E 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 05:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 07:00 0.9 E 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 10:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 13:00 0.9 E 3-Mar-2019 14:0	2-Mar-2019	18:00	0.9	NE
2-Mar-2019 21:00 0.9 E 2-Mar-2019 22:00 0.9 E 2-Mar-2019 23:00 0.9 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 01:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 03:00 0.4 E 3-Mar-2019 03:00 0.4 E 3-Mar-2019 03:00 0.4 ENE 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 05:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 07:00 0.9 E 3-Mar-2019 07:00 0.9 E 3-Mar-2019 10:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 14:00 1.8 E 3-Mar-2019 15:00	2-Mar-2019	19:00	0.9	NE
2-Mar-2019 22:00 0.9 E 2-Mar-2019 23:00 0.9 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 01:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 03:00 0.4 E 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 05:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 06:00 0.0 WSW 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 07:00 0.9 E 3-Mar-2019 10:00 0.9 E 3-Mar-2019 10:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 14:00 1.8 E 3-Mar-2019 15:	2-Mar-2019	20:00	0.9	NE
2-Mar-2019 23:00 0.9 E 3-Mar-2019 00:00 0.4 E 3-Mar-2019 01:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 03:00 0.4 E 3-Mar-2019 03:00 0.4 E 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 05:00 0.0 ENE 3-Mar-2019 06:00 0.0 WSW 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 08:00 0.9 E 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 10:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 13:00 0.9 E 3-Mar-2019 14:00 1.8 E 3-Mar-2019 16:00 1.3 E 3-Mar-2019 16:00	2-Mar-2019	21:00	0.9	E
3-Mar-2019 00:00 0.4 E 3-Mar-2019 01:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 03:00 0.4 E 3-Mar-2019 03:00 0.4 SSW 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 05:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 08:00 0.9 E 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 10:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 13:00 0.9 E 3-Mar-2019 14:00 1.8 E 3-Mar-2019 15:00 1.3 E 3-Mar-2019 16:00 1.3 E 3-Mar-2019 18:	2-Mar-2019	22:00	0.9	E
3-Mar-2019 01:00 0.4 E 3-Mar-2019 02:00 0.4 E 3-Mar-2019 03:00 0.4 SSW 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 05:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 06:00 0.0 WSW 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 08:00 0.9 E 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 10:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 12:00 0.9 E 3-Mar-2019 13:00 0.9 E 3-Mar-2019 14:00 1.8 E 3-Mar-2019 15:00 1.3 E 3-Mar-2019 16:00 1.3 E 3-Mar-2019 <td< td=""><td>2-Mar-2019</td><td>23:00</td><td>0.9</td><td>E</td></td<>	2-Mar-2019	23:00	0.9	E
3-Mar-2019 02:00 0.4 E 3-Mar-2019 03:00 0.4 SSW 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 05:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 06:00 0.0 WSW 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 07:00 0.9 E 3-Mar-2019 07:00 0.9 E 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 10:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 12:00 0.9 E 3-Mar-2019 13:00 0.9 E 3-Mar-2019 14:00 1.8 E 3-Mar-2019 15:00 1.3 E 3-Mar-2019 17:00 1.8 E 3-Mar-2019 18:00 1.8 E 3-Mar-2019 2	3-Mar-2019	00:00	0.4	E
3-Mar-2019 03:00 0.4 SSW 3-Mar-2019 04:00 0.4 ENE 3-Mar-2019 05:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 06:00 0.0 WSW 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 09:00 0.9 E 3-Mar-2019 10:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 13:00 0.9 E 3-Mar-2019 14:00 1.8 E 3-Mar-2019 16:00 1.3 E 3-Mar-2019 16:00 1.3 E 3-Mar-2019 16:00 1.8 E 3-Mar-2019 18:00 1.8 E 3-Mar-2019 <td< td=""><td>3-Mar-2019</td><td>01:00</td><td>0.4</td><td>Е</td></td<>	3-Mar-2019	01:00	0.4	Е
3-Mar-201904:000.4ENE3-Mar-201905:000.0ENE3-Mar-201906:000.0ESE3-Mar-201907:000.0WSW3-Mar-201908:000.9E3-Mar-201909:001.3SSW3-Mar-201910:000.9E3-Mar-201911:000.9E3-Mar-201911:000.9E3-Mar-201911:000.9E3-Mar-201911:000.9E3-Mar-201911:000.9E3-Mar-201913:000.9E3-Mar-201914:001.8E3-Mar-201916:001.3E3-Mar-201916:001.3E3-Mar-201918:001.8E3-Mar-201919:001.8E3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201922:000.4S	3-Mar-2019	02:00	0.4	E
3-Mar-2019 05:00 0.0 ENE 3-Mar-2019 06:00 0.0 ESE 3-Mar-2019 07:00 0.0 WSW 3-Mar-2019 08:00 0.9 E 3-Mar-2019 09:00 1.3 SSW 3-Mar-2019 10:00 0.9 E 3-Mar-2019 10:00 0.9 SSW 3-Mar-2019 11:00 0.9 E 3-Mar-2019 11:00 0.9 E 3-Mar-2019 12:00 0.9 E 3-Mar-2019 13:00 0.9 E 3-Mar-2019 14:00 1.8 E 3-Mar-2019 16:00 1.3 E 3-Mar-2019 16:00 1.3 E 3-Mar-2019 17:00 1.8 E 3-Mar-2019 19:00 1.8 E 3-Mar-2019 19:00 1.8 E 3-Mar-2019 20:00 0.4 S 3-Mar-2019 21:00	3-Mar-2019	03:00	0.4	SSW
3-Mar-201906:000.0ESE3-Mar-201907:000.0WSW3-Mar-201908:000.9E3-Mar-201909:001.3SSW3-Mar-201910:000.9SSW3-Mar-201911:000.9E3-Mar-201911:000.9E3-Mar-201911:000.9E3-Mar-201911:000.9E3-Mar-201911:000.9E3-Mar-201911:000.9E3-Mar-201911:001.8E3-Mar-201915:001.3E3-Mar-201916:001.3E3-Mar-201917:001.8E3-Mar-201919:001.8E3-Mar-201919:000.4S3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201923:000.4S	3-Mar-2019	04:00	0.4	ENE
3-Mar-201907:000.0WSW3-Mar-201908:000.9E3-Mar-201909:001.3SSW3-Mar-201910:000.9SSW3-Mar-201911:000.9E3-Mar-201911:000.9E3-Mar-201912:000.9E3-Mar-201913:000.9E3-Mar-201914:001.8E3-Mar-201915:001.3E3-Mar-201916:001.3E3-Mar-201917:001.8E3-Mar-201919:001.8E3-Mar-201919:001.8E3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201923:000.4S	3-Mar-2019	05:00	0.0	ENE
3-Mar-201908:000.9E3-Mar-201909:001.3SSW3-Mar-201910:000.9SSW3-Mar-201911:000.9E3-Mar-201912:000.9E3-Mar-201913:000.9E3-Mar-201913:000.9E3-Mar-201914:001.8E3-Mar-201915:001.3E3-Mar-201916:001.3E3-Mar-201917:001.8E3-Mar-201918:001.8E3-Mar-201919:001.8E3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201922:000.4S	3-Mar-2019	06:00	0.0	ESE
3-Mar-201909:001.3SSW3-Mar-201910:000.9SSW3-Mar-201911:000.9E3-Mar-201912:000.9E3-Mar-201913:000.9E3-Mar-201913:000.9E3-Mar-201914:001.8E3-Mar-201915:001.3E3-Mar-201916:001.3E3-Mar-201917:001.8E3-Mar-201919:001.8E3-Mar-201919:001.8E3-Mar-201919:001.8E3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201922:000.4S	3-Mar-2019	07:00	0.0	WSW
3-Mar-201910:000.9SSW3-Mar-201911:000.9E3-Mar-201912:000.9E3-Mar-201913:000.9E3-Mar-201913:000.9E3-Mar-201914:001.8E3-Mar-201915:001.3E3-Mar-201916:001.3E3-Mar-201917:001.8E3-Mar-201918:001.8E3-Mar-201919:001.8E3-Mar-201919:000.4S3-Mar-201921:000.4S3-Mar-201922:000.4S	3-Mar-2019	08:00	0.9	E
3-Mar-201911:000.9E3-Mar-201912:000.9E3-Mar-201913:000.9E3-Mar-201914:001.8E3-Mar-201915:001.3E3-Mar-201916:001.3E3-Mar-201917:001.8E3-Mar-201918:001.8E3-Mar-201919:001.8E3-Mar-201919:001.8E3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201922:000.4E3-Mar-201922:000.4S	3-Mar-2019	09:00	1.3	SSW
3-Mar-201912:000.9E3-Mar-201913:000.9E3-Mar-201914:001.8E3-Mar-201915:001.3E3-Mar-201916:001.3E3-Mar-201917:001.8E3-Mar-201917:001.8E3-Mar-201919:001.8E3-Mar-201919:001.8E3-Mar-201919:000.4S3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201922:000.4S	3-Mar-2019	10:00	0.9	SSW
3-Mar-201913:000.9E3-Mar-201914:001.8E3-Mar-201915:001.3E3-Mar-201916:001.3E3-Mar-201917:001.8E3-Mar-201918:001.8E3-Mar-201919:001.8E3-Mar-201919:001.8E3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201922:000.4E3-Mar-201923:000.4S	3-Mar-2019	11:00	0.9	E
3-Mar-201914:001.8E3-Mar-201915:001.3E3-Mar-201916:001.3E3-Mar-201917:001.8E3-Mar-201918:001.8E3-Mar-201919:001.8E3-Mar-201920:000.4S3-Mar-201921:000.4E3-Mar-201922:000.4S	3-Mar-2019	12:00	0.9	E
3-Mar-201915:001.3E3-Mar-201916:001.3E3-Mar-201917:001.8E3-Mar-201918:001.8E3-Mar-201919:001.8E3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201922:000.4E3-Mar-201922:000.4S	3-Mar-2019	13:00	0.9	E
3-Mar-201916:001.3E3-Mar-201917:001.8E3-Mar-201918:001.8E3-Mar-201919:001.8E3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201922:000.4E3-Mar-201922:000.4S	3-Mar-2019	14:00	1.8	E
3-Mar-201917:001.8E3-Mar-201918:001.8E3-Mar-201919:001.8E3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201922:000.4E3-Mar-201922:000.4S	3-Mar-2019	15:00	1.3	E
3-Mar-201918:001.8E3-Mar-201919:001.8E3-Mar-201920:000.4S3-Mar-201921:000.4S3-Mar-201922:000.4E3-Mar-201922:000.4S	3-Mar-2019	16:00	1.3	E
3-Mar-2019 19:00 1.8 E 3-Mar-2019 20:00 0.4 S 3-Mar-2019 21:00 0.4 S 3-Mar-2019 21:00 0.4 E 3-Mar-2019 22:00 0.4 E 3-Mar-2019 23:00 0.4 S	3-Mar-2019	17:00	1.8	E
3-Mar-2019 20:00 0.4 S 3-Mar-2019 21:00 0.4 S 3-Mar-2019 22:00 0.4 E 3-Mar-2019 22:00 0.4 S	3-Mar-2019	18:00	1.8	E
3-Mar-2019 21:00 0.4 S 3-Mar-2019 22:00 0.4 E 3-Mar-2019 23:00 0.4 S	3-Mar-2019	19:00	1.8	E
3-Mar-2019 22:00 0.4 E 3-Mar-2019 23:00 0.4 S	3-Mar-2019	20:00	0.4	S
3-Mar-2019 23:00 0.4 S	3-Mar-2019	21:00	0.4	S
	3-Mar-2019	22:00	0.4	E
4-Mar-2019 00:00 0.4 S	3-Mar-2019	23:00	0.4	S
	4-Mar-2019	00:00	0.4	S

r		1	
4-Mar-2019	01:00	0.9	S
4-Mar-2019	02:00	0.4	SW
4-Mar-2019	03:00	0.4	S
4-Mar-2019	04:00	0.4	WSW
4-Mar-2019	05:00	0.9	WSW
4-Mar-2019	06:00	0.4	WSW
4-Mar-2019	07:00	0.4	SSE
4-Mar-2019	08:00	0.9	WSW
4-Mar-2019	09:00	1.3	WSW
4-Mar-2019	10:00	1.3	ESE
4-Mar-2019	11:00	1.3	NE
4-Mar-2019	12:00	1.3	NE
4-Mar-2019	13:00	1.3	E
4-Mar-2019	14:00	2.2	E
4-Mar-2019	15:00	2.2	E
4-Mar-2019	16:00	1.3	ENE
4-Mar-2019	17:00	1.3	NE
4-Mar-2019	18:00	1.3	E
4-Mar-2019	19:00	1.3	ENE
4-Mar-2019	20:00	1.8	NE
4-Mar-2019	21:00	1.3	NE
4-Mar-2019	22:00	0.9	NE
4-Mar-2019	23:00	1.8	ENE
5-Mar-2019	00:00	1.8	NE
5-Mar-2019	01:00	0.9	ENE
5-Mar-2019	02:00	1.8	E
5-Mar-2019	03:00	2.2	E
5-Mar-2019	04:00	2.7	E
5-Mar-2019	05:00	2.7	E
5-Mar-2019	06:00	2.7	E
5-Mar-2019	07:00	2.2	E
5-Mar-2019	08:00	1.8	E
5-Mar-2019	09:00	0.9	NE
5-Mar-2019	10:00	0.9	E
5-Mar-2019	11:00	1.3	E
5-Mar-2019	12:00	3.1	E
5-Mar-2019	13:00	2.7	E

		1	
5-Mar-2019	14:00	2.2	E
5-Mar-2019	15:00	2.2	E
5-Mar-2019	16:00	2.7	E
5-Mar-2019	17:00	2.2	E
5-Mar-2019	18:00	1.3	E
5-Mar-2019	19:00	0.9	E
5-Mar-2019	20:00	1.8	E
5-Mar-2019	21:00	1.8	E
5-Mar-2019	22:00	1.3	E
5-Mar-2019	23:00	2.2	E
6-Mar-2019	00:00	2.2	E
6-Mar-2019	01:00	1.8	E
6-Mar-2019	02:00	1.3	E
6-Mar-2019	03:00	2.7	E
6-Mar-2019	04:00	2.7	E
6-Mar-2019	05:00	2.2	E
6-Mar-2019	06:00	1.8	E
6-Mar-2019	07:00	2.2	E
6-Mar-2019	08:00	2.2	E
6-Mar-2019	09:00	2.2	E
6-Mar-2019	10:00	1.3	E
6-Mar-2019	11:00	1.3	E
6-Mar-2019	12:00	1.3	S
6-Mar-2019	13:00	0.9	SSW
6-Mar-2019	14:00	0.9	NE
6-Mar-2019	15:00	0.9	NE
6-Mar-2019	16:00	1.8	E
6-Mar-2019	17:00	1.3	E
6-Mar-2019	18:00	0.9	SSE
6-Mar-2019	19:00	0.9	E
6-Mar-2019	20:00	1.3	E
6-Mar-2019	21:00	0.9	S
6-Mar-2019	22:00	0.4	S
6-Mar-2019	23:00	0.9	E
7-Mar-2019	00:00	0.9	NE
7-Mar-2019	01:00	0.9	SW
7-Mar-2019	02:00	0.9	S

7-Mar-2019	03:00	0.9	WSW
7-Mar-2019	04:00	0.9	E
7-Mar-2019	05:00	1.3	E
7-Mar-2019	06:00	0.9	SSW
7-Mar-2019	07:00	1.8	WSW
7-Mar-2019	08:00	1.8	WSW
7-Mar-2019	09:00	1.3	SW
7-Mar-2019	10:00	1.8	SW
7-Mar-2019	11:00	1.8	SW
7-Mar-2019	12:00	1.3	SSW
7-Mar-2019	13:00	0.9	SW
7-Mar-2019	14:00	0.4	S
7-Mar-2019	15:00	0.9	WSW
7-Mar-2019	16:00	0.9	NE
7-Mar-2019	17:00	0.9	WSW
7-Mar-2019	18:00	0.4	NE
7-Mar-2019	19:00	0.9	NE
7-Mar-2019	20:00	1.8	ENE
7-Mar-2019	21:00	1.8	ENE
8-Mar-2019	01:00	1.3	E
8-Mar-2019	02:00	0.9	SW
8-Mar-2019	03:00	0.9	ENE
8-Mar-2019	04:00	0.9	WSW
8-Mar-2019	05:00	0.9	SW
8-Mar-2019	06:00	0.4	ENE
8-Mar-2019	07:00	1.3	ENE
8-Mar-2019	08:00	1.3	NE
8-Mar-2019	09:00	1.8	E
8-Mar-2019	10:00	1.8	ENE
8-Mar-2019	11:00	1.8	ENE
8-Mar-2019	12:00	1.3	ENE
8-Mar-2019	13:00	1.3	ENE
8-Mar-2019	14:00	1.8	E
8-Mar-2019	15:00	1.3	E
8-Mar-2019	16:00	0.9	ESE
8-Mar-2019	17:00	1.3	ENE
8-Mar-2019	18:00	1.8	ENE

	1		
8-Mar-2019	19:00	1.3	E
8-Mar-2019	20:00	1.3	E
8-Mar-2019	21:00	1.8	E
8-Mar-2019	22:00	1.8	E
8-Mar-2019	23:00	1.8	ENE
9-Mar-2019	00:00	1.8	E
9-Mar-2019	01:00	1.8	E
9-Mar-2019	02:00	1.3	E
9-Mar-2019	03:00	1.8	E
9-Mar-2019	04:00	1.8	E
9-Mar-2019	05:00	2.2	E
9-Mar-2019	06:00	2.2	E
9-Mar-2019	07:00	2.2	E
9-Mar-2019	08:00	3.1	E
9-Mar-2019	09:00	2.2	E
9-Mar-2019	10:00	3.1	E
9-Mar-2019	11:00	3.1	E
9-Mar-2019	12:00	1.8	E
9-Mar-2019	13:00	0.9	S
9-Mar-2019	14:00	0.9	E
9-Mar-2019	15:00	1.8	E
9-Mar-2019	16:00	1.8	E
9-Mar-2019	17:00	1.3	E
9-Mar-2019	18:00	2.2	E
9-Mar-2019	19:00	1.8	WSW
9-Mar-2019	20:00	0.4	WSW
9-Mar-2019	21:00	0.4	E
9-Mar-2019	22:00	0.4	WSW
9-Mar-2019	23:00	0.4	WSW
10-Mar-2019	00:00	0.9	Ν
10-Mar-2019	01:00	0.9	WSW
10-Mar-2019	03:00	0.9	WSW
10-Mar-2019	04:00	0.4	SW
10-Mar-2019	05:00	0.9	WSW
10-Mar-2019	06:00	0.9	SSW
10-Mar-2019	07:00	0.9	WSW
10-Mar-2019	08:00	0.4	WSW

[I		1
10-Mar-2019	09:00	0.9	WSW
10-Mar-2019	10:00	1.3	WSW
10-Mar-2019	11:00	0.9	E
10-Mar-2019	12:00	1.3	SW
10-Mar-2019	13:00	0.4	S
10-Mar-2019	14:00	1.3	WSW
10-Mar-2019	15:00	1.8	WSW
10-Mar-2019	16:00	1.3	SW
10-Mar-2019	17:00	1.3	SW
10-Mar-2019	18:00	1.3	WSW
10-Mar-2019	19:00	1.3	SSW
10-Mar-2019	20:00	1.3	WSW
10-Mar-2019	21:00	1.8	WSW
10-Mar-2019	22:00	1.8	WSW
10-Mar-2019	23:00	0.9	SSW
11-Mar-2019	00:00	1.3	WSW
11-Mar-2019	01:00	0.9	WSW
11-Mar-2019	02:00	0.9	WSW
11-Mar-2019	03:00	1.3	WSW
11-Mar-2019	04:00	1.3	WSW
11-Mar-2019	05:00	1.3	WSW
11-Mar-2019	06:00	0.9	WSW
11-Mar-2019	07:00	0.9	SSW
11-Mar-2019	08:00	0.4	E
11-Mar-2019	09:00	0.9	WSW
11-Mar-2019	10:00	1.3	WSW
11-Mar-2019	11:00	1.8	WSW
11-Mar-2019	12:00	0.9	WSW
11-Mar-2019	13:00	1.3	WSW
11-Mar-2019	14:00	1.8	WSW
11-Mar-2019	15:00	1.3	E
11-Mar-2019	16:00	2.2	E
11-Mar-2019	17:00	4.0	E
11-Mar-2019	18:00	3.1	E
11-Mar-2019	19:00	2.2	E
11-Mar-2019	20:00	1.3	E
11-Mar-2019	21:00	0.9	E

11-Mar-2019	22:00	0.4	NNE
11-Mar-2019	23:00	0.0	NE
12-Mar-2019	00:00	0.4	ENE
12-Mar-2019	01:00	0.4	SSW
12-Mar-2019	02:00	0.9	WSW
12-Mar-2019	03:00	0.4	WSW
12-Mar-2019	04:00	0.0	SSE
12-Mar-2019	05:00	0.0	SSE
12-Mar-2019	06:00	0.0	SSE
12-Mar-2019	07:00	0.0	SSE
12-Mar-2019	08:00	0.0	
12-Mar-2019	09:00	0.0	ENE
12-Mar-2019	10:00	0.4	E
12-Mar-2019	11:00	0.4	S
12-Mar-2019	12:00	1.3	E
12-Mar-2019	13:00	0.9	ENE
12-Mar-2019	14:00	1.3	NE
12-Mar-2019	15:00	1.8	NE
12-Mar-2019	16:00	2.7	E
12-Mar-2019	17:00	1.3	E
12-Mar-2019	18:00	1.3	ENE
12-Mar-2019	19:00	1.3	E
12-Mar-2019	20:00	1.3	E
12-Mar-2019	21:00	1.3	E
12-Mar-2019	22:00	0.9	E
12-Mar-2019	23:00	0.9	E
13-Mar-2019	00:00	0.9	E
13-Mar-2019	01:00	0.9	E
13-Mar-2019	02:00	0.9	SW
13-Mar-2019	03:00	0.0	WSW
13-Mar-2019	04:00	0.4	S
13-Mar-2019	05:00	0.4	S
13-Mar-2019	06:00	0.4	SSW
13-Mar-2019	07:00	1.8	E
13-Mar-2019	08:00	0.9	SSE
13-Mar-2019	09:00	0.9	E
13-Mar-2019	10:00	1.3	SSW

13-Mar-2019	11:00	1.8	E
13-Mar-2019	12:00	1.8	ENE
13-Mar-2019	13:00	1.8	E
13-Mar-2019	14:00	1.8	E
13-Mar-2019	15:00	1.3	NE
13-Mar-2019	16:00	0.9	NE
13-Mar-2019	17:00	0.9	ENE
13-Mar-2019	18:00	1.3	E
13-Mar-2019	19:00	1.8	NE
13-Mar-2019	20:00	1.3	E
13-Mar-2019	21:00	1.3	E
13-Mar-2019	22:00	1.3	E
13-Mar-2019	23:00	0.9	NE
14-Mar-2019	00:00	0.9	SSE
14-Mar-2019	01:00	0.9	E
14-Mar-2019	02:00	1.8	E
14-Mar-2019	03:00	1.8	E
14-Mar-2019	04:00	1.8	E
14-Mar-2019	05:00	1.8	NE
14-Mar-2019	06:00	1.3	E
14-Mar-2019	07:00	1.3	E
14-Mar-2019	08:00	0.9	ENE
14-Mar-2019	09:00	0.9	NE
14-Mar-2019	10:00	0.9	ENE
14-Mar-2019	11:00	1.8	NE
14-Mar-2019	12:00	1.8	NE
14-Mar-2019	13:00	1.8	E
14-Mar-2019	14:00	1.3	E
14-Mar-2019	15:00	1.3	S
14-Mar-2019	16:00	0.9	E
14-Mar-2019	17:00	0.4	WSW
14-Mar-2019	18:00	0.4	ENE
14-Mar-2019	19:00	0.9	WSW
14-Mar-2019	20:00	0.9	WSW
14-Mar-2019	21:00	0.9	SW
14-Mar-2019	22:00	1.3	SW
14-Mar-2019	23:00	0.9	WSW

15-Mar-2019	00:00	1.3	WSW
15-Mar-2019	01:00	0.4	WSW
15-Mar-2019	02:00	1.3	WSW
15-Mar-2019	03:00	0.4	SSW
15-Mar-2019	04:00	1.3	SW
15-Mar-2019	05:00	1.3	WSW
15-Mar-2019	06:00	0.9	SSW
15-Mar-2019	07:00	0.9	WSW
15-Mar-2019	08:00	0.9	S
15-Mar-2019	09:00	1.3	SW
15-Mar-2019	10:00	1.3	SW
15-Mar-2019	11:00	1.3	SSW
15-Mar-2019	12:00	0.9	SSW
15-Mar-2019	13:00	1.3	SSW
15-Mar-2019	14:00	1.3	SW
15-Mar-2019	15:00	0.9	SSW
15-Mar-2019	16:00	0.9	S
15-Mar-2019	17:00	0.9	SSW
15-Mar-2019	18:00	0.9	SSW
15-Mar-2019	19:00	0.9	SW
15-Mar-2019	20:00	0.9	SSW
15-Mar-2019	21:00	0.9	SW
15-Mar-2019	22:00	1.3	SSW
15-Mar-2019	23:00	0.9	SW
16-Mar-2019	00:00	0.9	SW
16-Mar-2019	01:00	1.3	SW
16-Mar-2019	02:00	0.9	SW
16-Mar-2019	03:00	0.9	SW
16-Mar-2019	04:00	0.9	WSW
16-Mar-2019	05:00	0.9	NE
16-Mar-2019	06:00	0.9	NE
16-Mar-2019	07:00	0.9	E
16-Mar-2019	08:00	0.9	E
16-Mar-2019	09:00	0.9	NE
16-Mar-2019	10:00	1.8	NE
16-Mar-2019	11:00	2.2	NE
16-Mar-2019	12:00	2.2	NE

16-Mar-2019	13:00	1.8	N 100
10 Mar 2010		1.0	NE
16-Mar-2019	14:00	1.8	NE
16-Mar-2019	15:00	1.8	NE
16-Mar-2019	16:00	2.2	NE
16-Mar-2019	17:00	2.2	NE
16-Mar-2019	18:00	1.8	NE
16-Mar-2019	19:00	1.3	ENE
16-Mar-2019	20:00	1.3	NE
16-Mar-2019	21:00	1.8	NE
16-Mar-2019	22:00	1.3	NE
16-Mar-2019	23:00	1.3	E
17-Mar-2019	00:00	0.9	NE
17-Mar-2019	01:00	0.9	NE
17-Mar-2019	02:00	0.9	ENE
17-Mar-2019	03:00	0.9	NE
17-Mar-2019	04:00	0.9	NE
17-Mar-2019	05:00	0.9	E
17-Mar-2019	06:00	0.9	NE
17-Mar-2019	07:00	0.9	NE
17-Mar-2019	08:00	0.9	NE
17-Mar-2019	09:00	1.3	NE
17-Mar-2019	10:00	1.3	E
17-Mar-2019	11:00	2.2	E
17-Mar-2019	12:00	2.2	E
17-Mar-2019	13:00	1.3	E
17-Mar-2019	14:00	1.3	E
17-Mar-2019	15:00	1.8	ENE
17-Mar-2019	16:00	1.8	E
17-Mar-2019	17:00	0.9	ENE
17-Mar-2019	18:00	0.9	SW
17-Mar-2019	19:00	0.9	S
17-Mar-2019	20:00	0.9	ENE
17-Mar-2019	21:00	1.3	E
17-Mar-2019	22:00	1.3	E
17-Mar-2019	23:00	0.9	NE
18-Mar-2019	00:00	0.9	NE
18-Mar-2019	01:00	0.9	ENE

18-Mar-2019	02:00	0.4	SSW
18-Mar-2019	03:00	0.4	NE
18-Mar-2019	04:00	0.9	NE
18-Mar-2019	05:00	1.3	E
18-Mar-2019	06:00	1.8	E
18-Mar-2019	07:00	1.8	E
18-Mar-2019	08:00	0.9	E
18-Mar-2019	09:00	1.8	E
18-Mar-2019	10:00	1.8	E
18-Mar-2019	11:00	1.3	E
18-Mar-2019	12:00	1.3	NE
18-Mar-2019	13:00	1.3	E
18-Mar-2019	14:00	1.8	E
18-Mar-2019	15:00	2.2	E
18-Mar-2019	16:00	3.6	E
18-Mar-2019	17:00	3.6	E
18-Mar-2019	18:00	2.7	E
18-Mar-2019	19:00	2.7	E
18-Mar-2019	20:00	2.7	E
18-Mar-2019	21:00	0.9	E
18-Mar-2019	22:00	0.4	E
18-Mar-2019	23:00	0.4	E
19-Mar-2019	00:00	0.4	E
19-Mar-2019	01:00	0.4	S
19-Mar-2019	02:00	0.4	SSE
19-Mar-2019	03:00	0.0	ESE
19-Mar-2019	04:00	0.4	SE
19-Mar-2019	05:00	0.0	ENE
19-Mar-2019	06:00	0.4	ENE
19-Mar-2019	07:00	0.0	ENE
19-Mar-2019	08:00	0.0	ENE
19-Mar-2019	09:00	0.0	ESE
19-Mar-2019	10:00	0.9	E
19-Mar-2019	11:00	1.3	E
19-Mar-2019	12:00	1.3	E
19-Mar-2019	13:00	1.3	NE
19-Mar-2019	14:00	3.1	E

19-Mar-201915:003.6E19-Mar-201916:002.2E19-Mar-201917:002.7E19-Mar-201918:002.7E19-Mar-201919:003.1E19-Mar-201920:003.1E19-Mar-201920:003.1E19-Mar-201920:001.8E19-Mar-201922:001.8E19-Mar-201923:001.3E20-Mar-201901:001.3E20-Mar-201902:001.8E20-Mar-201901:001.3E20-Mar-201902:001.8E20-Mar-201903:002.2E20-Mar-201904:001.8E20-Mar-201904:001.8E20-Mar-201904:001.8E20-Mar-201904:001.8E20-Mar-201904:001.8E20-Mar-201904:001.8E	
19-Mar-201917:002.7E19-Mar-201918:002.7E19-Mar-201919:003.1E19-Mar-201920:003.1E19-Mar-201921:001.8E19-Mar-201922:001.8E19-Mar-201923:001.3E20-Mar-201901:001.3E20-Mar-201901:001.3E20-Mar-201901:001.8E20-Mar-201901:001.8E20-Mar-201902:001.8E20-Mar-201904:001.8E	
19-Mar-201918:002.7E19-Mar-201919:003.1E19-Mar-201920:003.1E19-Mar-201921:001.8E19-Mar-201922:001.8E19-Mar-201923:001.3E20-Mar-201900:001.3E20-Mar-201901:001.3E20-Mar-201901:001.8E20-Mar-201902:001.8E20-Mar-201904:001.8E	
19-Mar-201919:003.1E19-Mar-201920:003.1E19-Mar-201921:001.8E19-Mar-201922:001.8E19-Mar-201923:001.3E20-Mar-201900:001.3E20-Mar-201901:001.3E20-Mar-201901:001.8E20-Mar-201902:001.8E20-Mar-201902:001.8E20-Mar-201903:002.2E20-Mar-201904:001.8E	
19-Mar-201920:003.1E19-Mar-201921:001.8E19-Mar-201922:001.8E19-Mar-201923:001.3E20-Mar-201900:001.3E20-Mar-201901:001.3E20-Mar-201902:001.8E20-Mar-201902:001.8E20-Mar-201903:002.2E20-Mar-201904:001.8E	
19-Mar-201921:001.8E19-Mar-201922:001.8E19-Mar-201923:001.3E20-Mar-201900:001.3E20-Mar-201901:001.3E20-Mar-201902:001.8E20-Mar-201902:001.8E20-Mar-201903:002.2E20-Mar-201904:001.8E	
19-Mar-201922:001.8E19-Mar-201923:001.3E20-Mar-201900:001.3E20-Mar-201901:001.3E20-Mar-201902:001.8E20-Mar-201903:002.2E20-Mar-201904:001.8E	
19-Mar-201923:001.3E20-Mar-201900:001.3E20-Mar-201901:001.3E20-Mar-201902:001.8E20-Mar-201903:002.2E20-Mar-201904:001.8E	
20-Mar-2019 00:00 1.3 E 20-Mar-2019 01:00 1.3 E 20-Mar-2019 02:00 1.8 E 20-Mar-2019 03:00 2.2 E 20-Mar-2019 04:00 1.8 E	
20-Mar-2019 01:00 1.3 E 20-Mar-2019 02:00 1.8 E 20-Mar-2019 03:00 2.2 E 20-Mar-2019 04:00 1.8 E	
20-Mar-201902:001.8E20-Mar-201903:002.2E20-Mar-201904:001.8E	
20-Mar-2019 03:00 2.2 E 20-Mar-2019 04:00 1.8 E	
20-Mar-2019 04:00 1.8 E	
20-Mar-2019 05:00 0.9 NF	
20-Mar-2019 06:00 0.4 E	
20-Mar-2019 07:00 0.9 NE	
20-Mar-2019 08:00 0.9 NE	
20-Mar-2019 09:00 1.3 E	
20-Mar-2019 10:00 1.3 NE	
20-Mar-2019 11:00 0.9 E	
20-Mar-2019 12:00 1.3 E	
20-Mar-2019 13:00 2.2 E	
20-Mar-2019 14:00 3.1 E	
20-Mar-2019 15:00 3.6 E	
20-Mar-2019 16:00 2.7 E	
20-Mar-2019 17:00 3.1 E	
20-Mar-2019 18:00 2.7 E	
20-Mar-2019 19:00 2.7 E	
20-Mar-2019 20:00 2.2 E	
20-Mar-2019 21:00 0.9 E	
20-Mar-2019 22:00 0.9 E	
20-Mar-2019 23:00 0.9 E	
21-Mar-2019 00:00 0.4 E	
21-Mar-2019 01:00 0.4 E	
21-Mar-2019 02:00 0.4 E	
21-Mar-2019 03:00 0.4 ESE	=

21-Mar-201904:000.4ESI21-Mar-201905:000.4NE21-Mar-201906:000.4NE21-Mar-201907:000.4NE21-Mar-201908:000.4ENI21-Mar-201909:000.9E21-Mar-201910:000.9E21-Mar-201911:001.8E21-Mar-201911:001.8E21-Mar-201912:001.8E21-Mar-201913:001.3E21-Mar-201914:003.1E	E
21-Mar-2019 06:00 0.4 NE 21-Mar-2019 07:00 0.4 NE 21-Mar-2019 08:00 0.4 ENI 21-Mar-2019 09:00 0.9 E 21-Mar-2019 10:00 0.9 E 21-Mar-2019 11:00 1.8 E 21-Mar-2019 12:00 1.8 E	E
21-Mar-2019 07:00 0.4 NE 21-Mar-2019 08:00 0.4 ENI 21-Mar-2019 09:00 0.9 E 21-Mar-2019 10:00 0.9 E 21-Mar-2019 10:00 0.9 E 21-Mar-2019 11:00 1.8 E 21-Mar-2019 12:00 1.8 E 21-Mar-2019 13:00 1.3 E	E
21-Mar-2019 08:00 0.4 ENI 21-Mar-2019 09:00 0.9 E 21-Mar-2019 10:00 0.9 E 21-Mar-2019 10:00 0.9 E 21-Mar-2019 11:00 1.8 E 21-Mar-2019 12:00 1.8 E 21-Mar-2019 13:00 1.3 E	E
21-Mar-2019 09:00 0.9 E 21-Mar-2019 10:00 0.9 E 21-Mar-2019 11:00 1.8 E 21-Mar-2019 12:00 1.8 E 21-Mar-2019 12:00 1.8 E 21-Mar-2019 13:00 1.3 E	
21-Mar-201910:000.9E21-Mar-201911:001.8E21-Mar-201912:001.8E21-Mar-201913:001.3E	
21-Mar-201911:001.8E21-Mar-201912:001.8E21-Mar-201913:001.3E	
21-Mar-2019 12:00 1.8 E 21-Mar-2019 13:00 1.3 E	
21-Mar-2019 13:00 1.3 E	
21-Mar-2019 14:00 3.1 E	
21-Mar-2019 15:00 1.3 E	
21-Mar-2019 16:00 1.3 WSV	W
21-Mar-2019 17:00 1.3 ESI	E
21-Mar-2019 18:00 3.1 E	
21-Mar-2019 19:00 2.7 E	
21-Mar-2019 20:00 2.7 E	
21-Mar-2019 21:00 2.2 E	
21-Mar-2019 22:00 2.7 E	
21-Mar-2019 23:00 2.2 E	
22-Mar-2019 00:00 1.8 E	
22-Mar-2019 01:00 1.8 E	
22-Mar-2019 02:00 1.3 E	
22-Mar-2019 03:00 0.4 SE	
22-Mar-2019 04:00 0.4 E	
22-Mar-2019 05:00 0.9 WSV	W
22-Mar-2019 06:00 0.4 WSV	W
22-Mar-2019 07:00 0.4 WSV	W
22-Mar-2019 08:00 0.9 NE	I
22-Mar-2019 09:00 0.9 NE	
22-Mar-2019 10:00 1.3 E	
22-Mar-2019 11:00 1.3 E	
22-Mar-2019 12:00 1.3 E	
22-Mar-2019 13:00 1.8 E	
22-Mar-2019 14:00 2.2 E	
22-Mar-2019 15:00 2.2 E	
22-Mar-2019 16:00 2.7 E	

22-Mar-2019	17:00	3.1	E
22-Mar-2019	18:00	3.1	E
22-Mar-2019	19:00	2.7	E
22-Mar-2019	20:00	1.8	E
22-Mar-2019	21:00	0.4	SE
22-Mar-2019	22:00	0.9	SW
22-Mar-2019	23:00	1.3	WSW
23-Mar-2019	00:00	0.9	WSW
23-Mar-2019	01:00	0.9	WSW
23-Mar-2019	02:00	1.3	SW
23-Mar-2019	03:00	0.9	NE
23-Mar-2019	04:00	1.8	E
23-Mar-2019	05:00	1.3	NE
23-Mar-2019	06:00	0.4	NE
23-Mar-2019	07:00	0.9	NE
23-Mar-2019	08:00	1.3	NE
23-Mar-2019	09:00	1.3	NE
23-Mar-2019	10:00	1.3	ENE
23-Mar-2019	11:00	1.3	NE
23-Mar-2019	12:00	1.8	ENE
23-Mar-2019	13:00	1.3	NE
23-Mar-2019	14:00	1.8	ENE
23-Mar-2019	15:00	1.8	NE
23-Mar-2019	16:00	1.8	NE
23-Mar-2019	17:00	1.8	NE
23-Mar-2019	18:00	1.3	NE
23-Mar-2019	19:00	1.3	NE
23-Mar-2019	20:00	1.3	ENE
23-Mar-2019	21:00	1.3	E
23-Mar-2019	22:00	1.3	E
23-Mar-2019	23:00	1.3	NE
24-Mar-2019	00:00	1.3	NE
24-Mar-2019	01:00	1.3	NE
24-Mar-2019	02:00	0.9	SW
24-Mar-2019	03:00	2.7	E
24-Mar-2019	04:00	1.3	E
24-Mar-2019	05:00	1.3	Е

24-Mar-2019	06:00	0.4	S
24-Mar-2019	07:00	1.3	E
		0.9	
24-Mar-2019	08:00		SSE
24-Mar-2019	09:00	0.9	WSW
24-Mar-2019	10:00	1.3	WSW
24-Mar-2019	11:00	0.9	WSW
24-Mar-2019	12:00	0.9	SSW
24-Mar-2019	13:00	1.3	WSW
24-Mar-2019	14:00	2.2	WSW
24-Mar-2019	15:00	1.3	WSW
24-Mar-2019	16:00	0.9	E
24-Mar-2019	17:00	1.8	E
24-Mar-2019	18:00	1.8	E
24-Mar-2019	19:00	0.9	E
24-Mar-2019	20:00	0.9	SSE
24-Mar-2019	21:00	0.9	S
24-Mar-2019	22:00	0.4	SSE
24-Mar-2019	23:00	1.3	E
25-Mar-2019	00:00	1.3	E
25-Mar-2019	01:00	0.9	E
25-Mar-2019	02:00	1.3	E
25-Mar-2019	03:00	0.4	ENE
25-Mar-2019	04:00	0.0	ENE
25-Mar-2019	05:00	0.4	ENE
25-Mar-2019	06:00	0.4	ENE
25-Mar-2019	07:00	0.4	SE
25-Mar-2019	08:00	0.9	E
25-Mar-2019	09:00	1.3	E
25-Mar-2019	10:00	1.8	E
25-Mar-2019	11:00	1.3	ENE
25-Mar-2019	12:00	1.8	E
25-Mar-2019	13:00	2.2	E
25-Mar-2019	14:00	1.8	NE
25-Mar-2019	15:00	1.3	NE
25-Mar-2019	16:00	1.8	NE
25-Mar-2019	17:00	1.8	E
25-Mar-2019	18:00	1.3	NE

25-Mar-2019 19:00 1.3 NE 25-Mar-2019 20:00 1.3 NE 25-Mar-2019 21:00 1.3 NE 25-Mar-2019 22:00 0.9 NE 25-Mar-2019 23:00 0.4 S 26-Mar-2019 00:00 1.3 NE 26-Mar-2019 01:00 0.9 NE 26-Mar-2019 02:00 0.9 NE 26-Mar-2019 03:00 1.3 S 26-Mar-2019 04:00 2.2 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 10:00 1.8 E 26-Mar-2019 11:00 1.8 E 26-Mar-2019 13:00 2.2 E 26-Mar-2019				1
25-Mar-2019 21:00 1.3 NE 25-Mar-2019 22:00 0.9 NE 25-Mar-2019 23:00 0.4 S 26-Mar-2019 00:00 1.3 NE 26-Mar-2019 01:00 0.9 NE 26-Mar-2019 02:00 0.9 NE 26-Mar-2019 03:00 1.3 S 26-Mar-2019 04:00 2.2 E 26-Mar-2019 05:00 2.2 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 11:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 13:00 2.2 E 26-Mar-2019	25-Mar-2019	19:00	1.3	NE
25-Mar-2019 22:00 0.9 NE 25-Mar-2019 23:00 0.4 S 26-Mar-2019 00:00 1.3 NE 26-Mar-2019 01:00 0.9 NE 26-Mar-2019 02:00 0.9 NE 26-Mar-2019 03:00 1.3 S 26-Mar-2019 04:00 2.2 E 26-Mar-2019 05:00 2.2 E 26-Mar-2019 05:00 2.2 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 11:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 15:00 2.7 E 26-Mar-2019	25-Mar-2019	20:00	1.3	NE
25-Mar-2019 23:00 0.4 S 26-Mar-2019 00:00 1.3 NE 26-Mar-2019 01:00 0.9 NE 26-Mar-2019 02:00 0.9 NE 26-Mar-2019 03:00 1.3 S 26-Mar-2019 03:00 1.3 S 26-Mar-2019 04:00 2.2 E 26-Mar-2019 05:00 2.2 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 11:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 14:00 2.2 E 26-Mar-2019 15:00 2.7 E 26-Mar-2019	25-Mar-2019	21:00	1.3	NE
26-Mar-2019 00:00 1.3 NE 26-Mar-2019 01:00 0.9 NE 26-Mar-2019 02:00 0.9 NE 26-Mar-2019 03:00 1.3 S 26-Mar-2019 03:00 1.3 S 26-Mar-2019 04:00 2.2 E 26-Mar-2019 05:00 2.2 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 10:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 13:00 2.2 E 26-Mar-2019 14:00 2.2 E 26-Mar-2019 15:00 2.7 E 26-Mar-2019	25-Mar-2019	22:00	0.9	NE
26-Mar-2019 01:00 0.9 NE 26-Mar-2019 02:00 0.9 NE 26-Mar-2019 03:00 1.3 S 26-Mar-2019 04:00 2.2 E 26-Mar-2019 05:00 2.2 E 26-Mar-2019 05:00 2.2 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 10:00 1.8 E 26-Mar-2019 11:00 1.8 E 26-Mar-2019 13:00 2.2 E 26-Mar-2019 14:00 2.2 E 26-Mar-2019 15:00 2.7 E 26-Mar-2019 16:00 1.8 E 26-Mar-2019	25-Mar-2019	23:00	0.4	S
26-Mar-2019 02:00 0.9 NE 26-Mar-2019 03:00 1.3 S 26-Mar-2019 04:00 2.2 E 26-Mar-2019 05:00 2.2 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 11:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 13:00 2.2 E 26-Mar-2019 14:00 2.2 E 26-Mar-2019 15:00 2.7 E 26-Mar-2019 15:00 1.3 NE 26-Mar-2019 16:00 1.8 E 26-Mar-2019	26-Mar-2019	00:00	1.3	NE
26-Mar-2019 03:00 1.3 S 26-Mar-2019 04:00 2.2 E 26-Mar-2019 05:00 2.2 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 11:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 13:00 2.2 E 26-Mar-2019 14:00 2.2 E 26-Mar-2019 15:00 2.7 E 26-Mar-2019 16:00 1.8 E 26-Mar-2019 17:00 1.3 NE 26-Mar-2019 19:00 1.8 E 26-Mar-2019	26-Mar-2019	01:00	0.9	NE
26-Mar-2019 04:00 2.2 E 26-Mar-2019 05:00 2.2 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 09:00 1.3 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 11:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 13:00 2.2 E 26-Mar-2019 14:00 2.2 E 26-Mar-2019 15:00 2.7 E 26-Mar-2019 16:00 1.8 E 26-Mar-2019 17:00 1.3 NE 26-Mar-2019 19:00 1.8 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019	26-Mar-2019	02:00	0.9	NE
26-Mar-2019 05:00 2.2 E 26-Mar-2019 06:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 09:00 1.3 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 11:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 13:00 2.2 E 26-Mar-2019 14:00 2.2 E 26-Mar-2019 16:00 1.8 E 26-Mar-2019 17:00 1.3 NE 26-Mar-2019 18:00 1.8 E 26-Mar-2019 19:00 1.3 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019	26-Mar-2019	03:00	1.3	S
26-Mar-2019 06:00 1.3 E 26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 11:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 13:00 2.2 E 26-Mar-2019 14:00 2.2 E 26-Mar-2019 15:00 2.7 E 26-Mar-2019 16:00 1.8 E 26-Mar-2019 17:00 1.3 NE 26-Mar-2019 18:00 1.8 E 26-Mar-2019 19:00 1.8 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019	26-Mar-2019	04:00	2.2	E
26-Mar-2019 07:00 1.3 E 26-Mar-2019 08:00 1.3 E 26-Mar-2019 09:00 2.2 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 10:00 1.3 E 26-Mar-2019 11:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 13:00 2.2 E 26-Mar-2019 14:00 2.2 E 26-Mar-2019 15:00 2.7 E 26-Mar-2019 16:00 1.8 E 26-Mar-2019 16:00 1.8 E 26-Mar-2019 17:00 1.3 NE 26-Mar-2019 19:00 1.8 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019	26-Mar-2019	05:00	2.2	E
26-Mar-201908:001.3E26-Mar-201909:002.2E26-Mar-201910:001.3E26-Mar-201911:001.8E26-Mar-201912:001.8E26-Mar-201913:002.2E26-Mar-201913:002.2E26-Mar-201914:002.2E26-Mar-201915:002.7E26-Mar-201916:001.8E26-Mar-201917:001.3NE26-Mar-201917:001.3E26-Mar-201919:001.8E26-Mar-201919:001.8E26-Mar-201920:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201910:001.8E27-Mar-201901:001.8E	26-Mar-2019	06:00	1.3	E
26-Mar-201909:002.2E26-Mar-201910:001.3E26-Mar-201911:001.8E26-Mar-201912:001.8E26-Mar-201913:002.2E26-Mar-201913:002.2E26-Mar-201914:002.2E26-Mar-201915:002.7E26-Mar-201916:001.8E26-Mar-201917:001.3NE26-Mar-201919:001.8E26-Mar-201919:001.8E26-Mar-201920:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E27-Mar-201901:001.8E27-Mar-201901:001.8E	26-Mar-2019	07:00	1.3	E
26-Mar-201910:001.3E26-Mar-201911:001.8E26-Mar-201912:001.8E26-Mar-201913:002.2E26-Mar-201914:002.2E26-Mar-201915:002.7E26-Mar-201916:001.8E26-Mar-201917:001.3NE26-Mar-201917:001.3E26-Mar-201919:001.8E26-Mar-201919:001.8E26-Mar-201919:001.8E26-Mar-201920:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E27-Mar-201900:001.8E27-Mar-201901:001.8E	26-Mar-2019	08:00	1.3	E
26-Mar-2019 11:00 1.8 E 26-Mar-2019 12:00 1.8 E 26-Mar-2019 13:00 2.2 E 26-Mar-2019 14:00 2.2 E 26-Mar-2019 14:00 2.2 E 26-Mar-2019 15:00 2.7 E 26-Mar-2019 16:00 1.8 E 26-Mar-2019 16:00 1.8 E 26-Mar-2019 16:00 1.8 E 26-Mar-2019 17:00 1.3 NE 26-Mar-2019 19:00 1.8 E 26-Mar-2019 19:00 1.8 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 23:00 1.8 E 27-Mar-2019 00:00 1.8 E 27-Mar-2019 01:00 1.8 E	26-Mar-2019	09:00	2.2	E
26-Mar-201912:001.8E26-Mar-201913:002.2E26-Mar-201914:002.2E26-Mar-201915:002.7E26-Mar-201916:001.8E26-Mar-201917:001.3NE26-Mar-201918:001.8E26-Mar-201919:001.8E26-Mar-201919:001.8E26-Mar-201920:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201901:001.8E27-Mar-201901:001.8E27-Mar-201901:001.8E	26-Mar-2019	10:00	1.3	E
26-Mar-201913:002.2E26-Mar-201914:002.2E26-Mar-201915:002.7E26-Mar-201916:001.8E26-Mar-201917:001.3NE26-Mar-201917:001.3E26-Mar-201919:001.8E26-Mar-201919:001.8E26-Mar-201919:001.8E26-Mar-201920:001.3E26-Mar-201921:001.3E26-Mar-201922:002.2E26-Mar-201923:001.8E27-Mar-201900:001.8E27-Mar-201901:001.8E	26-Mar-2019	11:00	1.8	E
26-Mar-201914:002.2E26-Mar-201915:002.7E26-Mar-201916:001.8E26-Mar-201917:001.3NE26-Mar-201918:001.8E26-Mar-201919:001.8E26-Mar-201920:001.3E26-Mar-201920:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201921:001.3E26-Mar-201901:001.8E27-Mar-201901:001.8E27-Mar-201901:001.8E	26-Mar-2019	12:00	1.8	E
26-Mar-201915:002.7E26-Mar-201916:001.8E26-Mar-201917:001.3NE26-Mar-201918:001.8E26-Mar-201919:001.8E26-Mar-201920:001.3E26-Mar-201920:001.3E26-Mar-201921:001.3E26-Mar-201922:002.2E26-Mar-201923:001.8E27-Mar-201900:001.8E27-Mar-201901:001.8E	26-Mar-2019	13:00	2.2	E
26-Mar-2019 16:00 1.8 E 26-Mar-2019 17:00 1.3 NE 26-Mar-2019 18:00 1.8 E 26-Mar-2019 19:00 1.8 E 26-Mar-2019 19:00 1.8 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 22:00 2.2 E 26-Mar-2019 23:00 1.8 E 27-Mar-2019 00:00 1.8 E 27-Mar-2019 01:00 1.8 E	26-Mar-2019	14:00	2.2	E
26-Mar-2019 17:00 1.3 NE 26-Mar-2019 18:00 1.8 E 26-Mar-2019 19:00 1.8 E 26-Mar-2019 19:00 1.8 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 01:00 1.8 E 27-Mar-2019 00:00 1.8 E 27-Mar-2019 01:00 1.8 E	26-Mar-2019	15:00	2.7	E
26-Mar-2019 18:00 1.8 E 26-Mar-2019 19:00 1.8 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 22:00 2.2 E 26-Mar-2019 23:00 1.8 E 27-Mar-2019 00:00 1.8 E 27-Mar-2019 01:00 1.8 E	26-Mar-2019	16:00	1.8	E
26-Mar-2019 19:00 1.8 E 26-Mar-2019 20:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 22:00 2.2 E 26-Mar-2019 23:00 1.8 E 27-Mar-2019 00:00 1.8 E 27-Mar-2019 01:00 1.8 E	26-Mar-2019	17:00	1.3	NE
26-Mar-2019 20:00 1.3 E 26-Mar-2019 21:00 1.3 E 26-Mar-2019 22:00 2.2 E 26-Mar-2019 23:00 1.8 E 27-Mar-2019 00:00 1.8 E 27-Mar-2019 01:00 1.8 E	26-Mar-2019	18:00	1.8	E
26-Mar-2019 21:00 1.3 E 26-Mar-2019 22:00 2.2 E 26-Mar-2019 23:00 1.8 E 27-Mar-2019 00:00 1.8 E 27-Mar-2019 01:00 1.8 E	26-Mar-2019	19:00	1.8	E
26-Mar-2019 22:00 2.2 E 26-Mar-2019 23:00 1.8 E 27-Mar-2019 00:00 1.8 E 27-Mar-2019 01:00 1.8 E	26-Mar-2019	20:00	1.3	E
26-Mar-2019 23:00 1.8 E 27-Mar-2019 00:00 1.8 E 27-Mar-2019 01:00 1.8 E	26-Mar-2019	21:00	1.3	E
27-Mar-2019 00:00 1.8 E 27-Mar-2019 01:00 1.8 E	26-Mar-2019	22:00	2.2	E
27-Mar-2019 01:00 1.8 E	26-Mar-2019	23:00	1.8	E
	27-Mar-2019	00:00	1.8	E
	27-Mar-2019	01:00	1.8	E
27-Mar-2019 02:00 0.9 NE	27-Mar-2019	02:00	0.9	NE
27-Mar-2019 03:00 0.9 E	27-Mar-2019	03:00	0.9	Е
27-Mar-2019 04:00 0.4 E	27-Mar-2019	04:00	0.4	E
27-Mar-2019 05:00 0.9 ENE	27-Mar-2019	05:00	0.9	ENE
27-Mar-2019 06:00 0.4 ENE	27-Mar-2019	06:00	0.4	ENE
	27-Mar-2019	07:00	0.4	Е

27-Mar-2019 08:00 0.4 E 27-Mar-2019 09:00 0.9 E 27-Mar-2019 10:00 0.9 E 27-Mar-2019 11:00 2.2 E 27-Mar-2019 12:00 3.1 E 27-Mar-2019 13:00 2.7 E 27-Mar-2019 15:00 2.2 E 27-Mar-2019 16:00 1.3 E 27-Mar-2019 16:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 18:00 2.2 WSW 27-Mar-2019 19:00 0.9 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 20:00 0.4 ENE 27-Mar-2019 20:00 1.3 WSW 28-Mar-2019 00:00 1.3 WSW 28-Mar-2019 00:00 0.4 WSW 28-Mar-20			1	
27-Mar-2019 10:00 0.9 E 27-Mar-2019 11:00 2.2 E 27-Mar-2019 12:00 3.1 E 27-Mar-2019 13:00 2.7 E 27-Mar-2019 14:00 2.7 E 27-Mar-2019 15:00 2.2 E 27-Mar-2019 16:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 18:00 2.2 WSW 27-Mar-2019 19:00 0.9 WSW 27-Mar-2019 20:00 1.3 WSW 28-Mar-2019 00:00 1.8 WSW 28-Mar-2019 00:00 1.3 WSW 28-Mar-	27-Mar-2019	08:00	0.4	E
27-Mar-2019 11:00 2.2 E 27-Mar-2019 12:00 3.1 E 27-Mar-2019 13:00 2.7 E 27-Mar-2019 14:00 2.7 E 27-Mar-2019 15:00 2.2 E 27-Mar-2019 16:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 18:00 2.2 WSW 27-Mar-2019 19:00 0.9 WSW 27-Mar-2019 12:00 0.9 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 21:00 0.4 ENE 27-Mar-2019 0:00 1.3 WSW 28-Mar-2019 0:00 1.3 WSW 28-Mar-2019 0:00 0.4 WSW 28-Mar	27-Mar-2019	09:00	0.9	E
27-Mar-2019 12:00 3.1 E 27-Mar-2019 13:00 2.7 E 27-Mar-2019 14:00 2.7 E 27-Mar-2019 15:00 2.2 E 27-Mar-2019 16:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 19:00 0.9 WSW 27-Mar-2019 19:00 0.9 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 20:00 0.4 ENE 27-Mar-2019 21:00 0.4 ENE 27-Mar-2019 21:00 0.4 ENE 27-Mar-2019 02:00 1.3 WSW 28-Mar-2019 00:00 0.4 ENE 27-Mar-2019 03:00 0.4 WSW 28-	27-Mar-2019	10:00	0.9	E
27-Mar-2019 13:00 2.7 E 27-Mar-2019 14:00 2.7 E 27-Mar-2019 15:00 2.2 E 27-Mar-2019 16:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 18:00 2.2 WSW 27-Mar-2019 19:00 0.9 WSW 27-Mar-2019 19:00 0.9 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 21:00 0.9 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 21:00 0.4 ENE 27-Mar-2019 21:00 0.4 ENE 27-Mar-2019 02:00 1.3 WSW 28-Mar-2019 00:00 1.3 WSW 28-Mar-2019 01:00 1.3 WSW 28-Mar-2019 06:00 0.4 WSW 2	27-Mar-2019	11:00	2.2	E
27-Mar-2019 14:00 2.7 E 27-Mar-2019 15:00 2.2 E 27-Mar-2019 16:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 18:00 2.2 WSW 27-Mar-2019 19:00 0.9 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 21:00 0.9 WSW 27-Mar-2019 21:00 0.4 ENE 27-Mar-2019 23:00 2.2 WSW 28-Mar-2019 00:00 1.8 WSW 28-Mar-2019 01:00 1.3 WSW 28-Mar-2019 02:00 1.3 WSW 28-Mar-2019 03:00 0.4 WSW 28-Mar-2019 04:00 0.0 W 28-Mar-2019 05:00 0.9 WSW 28-Mar-2019 06:00 0.4 WSW 2	27-Mar-2019	12:00	3.1	E
27-Mar-2019 15:00 2.2 E 27-Mar-2019 16:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 18:00 2.2 WSW 27-Mar-2019 18:00 0.9 WSW 27-Mar-2019 19:00 0.9 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 21:00 0.9 WSW 27-Mar-2019 22:00 0.4 ENE 27-Mar-2019 23:00 2.2 WSW 28-Mar-2019 00:00 1.8 WSW 28-Mar-2019 01:00 1.3 WSW 28-Mar-2019 02:00 1.3 WSW 28-Mar-2019 03:00 0.4 WSW 28-Mar-2019 05:00 0.9 WSW 28-Mar-2019 06:00 0.4 WSW 28-Mar-2019 07:00 1.3 WSW 28-Mar-2019 07:00 1.3 WSW	27-Mar-2019	13:00	2.7	E
27-Mar-2019 16:00 1.3 E 27-Mar-2019 17:00 1.3 E 27-Mar-2019 18:00 2.2 WSW 27-Mar-2019 19:00 0.9 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 21:00 0.9 WSW 27-Mar-2019 22:00 0.4 ENE 27-Mar-2019 23:00 2.2 WSW 28-Mar-2019 00:00 1.8 WSW 28-Mar-2019 01:00 1.3 WSW 28-Mar-2019 02:00 1.3 WSW 28-Mar-2019 03:00 0.4 WSW 28-Mar-2019 04:00 0.0 W 28-Mar-2019 06:00 0.4 WSW 28-Mar-2019 07:00 1.3 WSW 28-Mar-2019 08:00 1.3 WSW 28-Mar-2019 09:00 1.8 WSW	27-Mar-2019	14:00	2.7	E
27-Mar-201917:001.3E27-Mar-201918:002.2WSW27-Mar-201919:000.9WSW27-Mar-201920:001.3WSW27-Mar-201921:000.9WSW27-Mar-201922:000.4ENE27-Mar-201923:002.2WSW28-Mar-201900:001.8WSW28-Mar-201901:001.3WSW28-Mar-201902:001.3WSW28-Mar-201903:000.4WSW28-Mar-201903:000.4WSW28-Mar-201904:000.0W28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201901:001.3WSW28-Mar-201901:001.3WSW28-Mar-201910:001.3WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201913:001.3WSW28-Mar-201914:001.8WSW28-Mar-201914:001.8SSW28-Mar-201915:001.8SSW	27-Mar-2019	15:00	2.2	E
27-Mar-201918:002.2WSW27-Mar-201919:000.9WSW27-Mar-201920:001.3WSW27-Mar-201921:000.9WSW27-Mar-201922:000.4ENE27-Mar-201923:002.2WSW28-Mar-201900:001.8WSW28-Mar-201901:001.3WSW28-Mar-201902:001.3WSW28-Mar-201903:000.4WSW28-Mar-201904:000.0W28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201905:000.9WSW28-Mar-201901:001.3WSW28-Mar-201901:001.3WSW28-Mar-201901:001.3WSW28-Mar-201910:001.3WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8SSW28-Mar-201911:001.8SSW28-Mar-201915:001.8SSW	27-Mar-2019	16:00	1.3	E
27-Mar-201919:000.9WSW27-Mar-201920:001.3WSW27-Mar-201921:000.9WSW27-Mar-201922:000.4ENE27-Mar-201923:002.2WSW28-Mar-201900:001.8WSW28-Mar-201901:001.3WSW28-Mar-201902:001.3WSW28-Mar-201903:000.4WSW28-Mar-201903:000.4WSW28-Mar-201903:000.4WSW28-Mar-201904:000.0W28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201901:001.3WSW28-Mar-201901:001.3WSW28-Mar-201910:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201913:001.3WSW28-Mar-201913:001.8WSW28-Mar-201913:001.8SSW28-Mar-201914:001.8SSW	27-Mar-2019	17:00	1.3	E
27-Mar-2019 20:00 1.3 WSW 27-Mar-2019 21:00 0.9 WSW 27-Mar-2019 22:00 0.4 ENE 27-Mar-2019 23:00 2.2 WSW 28-Mar-2019 00:00 1.8 WSW 28-Mar-2019 01:00 1.3 WSW 28-Mar-2019 02:00 1.3 WSW 28-Mar-2019 02:00 1.3 WSW 28-Mar-2019 03:00 0.4 WSW 28-Mar-2019 03:00 0.4 WSW 28-Mar-2019 04:00 0.0 W 28-Mar-2019 05:00 0.9 WSW 28-Mar-2019 06:00 0.4 WSW 28-Mar-2019 07:00 1.3 WSW 28-Mar-2019 07:00 1.3 WSW 28-Mar-2019 09:00 1.8 WSW 28-Mar-2019 10:00 1.8 WSW 28-Mar-2019 12:00 1.8 WSW	27-Mar-2019	18:00	2.2	WSW
27-Mar-201921:000.9WSW27-Mar-201922:000.4ENE27-Mar-201923:002.2WSW28-Mar-201900:001.8WSW28-Mar-201901:001.3WSW28-Mar-201902:001.3WSW28-Mar-201903:000.4WSW28-Mar-201903:000.4WSW28-Mar-201903:000.4WSW28-Mar-201904:000.0W28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201901:001.3WSW28-Mar-201901:001.3WSW28-Mar-201910:001.3WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201913:001.3WSW28-Mar-201913:001.8SSW	27-Mar-2019	19:00	0.9	WSW
27-Mar-201922:000.4ENE27-Mar-201923:002.2WSW28-Mar-201900:001.8WSW28-Mar-201901:001.3WSW28-Mar-201902:001.3WSW28-Mar-201903:000.4WSW28-Mar-201903:000.4WSW28-Mar-201904:000.0W28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201907:001.3WSW28-Mar-201901:001.3WSW28-Mar-201910:001.3WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201912:001.8WSW28-Mar-201913:001.3WSW28-Mar-201915:001.8SSW	27-Mar-2019	20:00	1.3	WSW
27-Mar-201923:002.2WSW28-Mar-201900:001.8WSW28-Mar-201901:001.3WSW28-Mar-201902:001.3WSW28-Mar-201903:000.4WSW28-Mar-201904:000.0W28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201907:001.3WSW28-Mar-201910:001.3WSW28-Mar-201910:001.3WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201913:001.3WSW28-Mar-201913:001.8SSW28-Mar-201914:001.8SSW	27-Mar-2019	21:00	0.9	WSW
28-Mar-201900:001.8WSW28-Mar-201901:001.3WSW28-Mar-201902:001.3WSW28-Mar-201903:000.4WSW28-Mar-201904:000.0W28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201906:000.4WSW28-Mar-201906:000.4WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201909:001.3WSW28-Mar-201910:001.3WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201912:001.8WSW28-Mar-201913:001.3WSW28-Mar-201914:001.8SSW28-Mar-201915:001.8SSW	27-Mar-2019	22:00	0.4	ENE
28-Mar-201901:001.3WSW28-Mar-201902:001.3WSW28-Mar-201903:000.4WSW28-Mar-201904:000.0W28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201907:001.3WSW28-Mar-201909:001.3WSW28-Mar-201910:001.3WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201913:001.3WSW28-Mar-201914:001.8WSW28-Mar-201914:001.8SSW	27-Mar-2019	23:00	2.2	WSW
28-Mar-201902:001.3WSW28-Mar-201903:000.4WSW28-Mar-201904:000.0W28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201907:001.3WSW28-Mar-201908:001.3WSW28-Mar-201909:001.8WSW28-Mar-201910:001.3WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8SSW28-Mar-201914:001.8SSW	28-Mar-2019	00:00	1.8	WSW
28-Mar-201903:000.4WSW28-Mar-201904:000.0W28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201907:001.3WSW28-Mar-201909:001.8WSW28-Mar-201910:001.3WSW28-Mar-201910:001.3WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201912:001.8WSW28-Mar-201913:001.3WSW28-Mar-201914:001.8WSW28-Mar-201914:001.8SSW	28-Mar-2019	01:00	1.3	WSW
28-Mar-201904:000.0W28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201908:001.3WSW28-Mar-201909:001.8WSW28-Mar-201910:001.3WSW28-Mar-201910:001.3WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201912:001.8WSW28-Mar-201913:001.3WSW28-Mar-201914:001.8SSW28-Mar-201915:001.8SSW	28-Mar-2019	02:00	1.3	WSW
28-Mar-201905:000.9WSW28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201908:001.3WSW28-Mar-201909:001.8WSW28-Mar-201910:001.3WSW28-Mar-201910:001.3WSW28-Mar-201911:001.3WSW28-Mar-201911:001.8WSW28-Mar-201912:001.8WSW28-Mar-201913:001.3WSW28-Mar-201913:001.8SSW28-Mar-201914:001.8SSW	28-Mar-2019	03:00	0.4	WSW
28-Mar-201906:000.4WSW28-Mar-201907:001.3WSW28-Mar-201908:001.3WSW28-Mar-201909:001.8WSW28-Mar-201910:001.3WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201911:001.8WSW28-Mar-201912:001.8WSW28-Mar-201913:001.3WSW28-Mar-201914:001.8SSW28-Mar-201915:001.8SSW	28-Mar-2019	04:00	0.0	W
28-Mar-2019 07:00 1.3 WSW 28-Mar-2019 08:00 1.3 WSW 28-Mar-2019 09:00 1.8 WSW 28-Mar-2019 10:00 1.3 WSW 28-Mar-2019 10:00 1.3 WSW 28-Mar-2019 11:00 1.8 WSW 28-Mar-2019 11:00 1.8 WSW 28-Mar-2019 12:00 1.8 WSW 28-Mar-2019 12:00 1.8 WSW 28-Mar-2019 13:00 1.3 WSW 28-Mar-2019 13:00 1.8 WSW 28-Mar-2019 14:00 1.8 WSW 28-Mar-2019 15:00 1.8 SSW	28-Mar-2019	05:00	0.9	WSW
28-Mar-2019 08:00 1.3 WSW 28-Mar-2019 09:00 1.8 WSW 28-Mar-2019 10:00 1.3 WSW 28-Mar-2019 10:00 1.3 WSW 28-Mar-2019 11:00 1.8 WSW 28-Mar-2019 11:00 1.8 WSW 28-Mar-2019 12:00 1.8 WSW 28-Mar-2019 12:00 1.8 WSW 28-Mar-2019 13:00 1.3 WSW 28-Mar-2019 13:00 1.3 SSW 28-Mar-2019 14:00 1.8 SSW 28-Mar-2019 15:00 1.8 SSW	28-Mar-2019	06:00	0.4	WSW
28-Mar-2019 09:00 1.8 WSW 28-Mar-2019 10:00 1.3 WSW 28-Mar-2019 11:00 1.8 WSW 28-Mar-2019 11:00 1.8 WSW 28-Mar-2019 12:00 1.8 WSW 28-Mar-2019 12:00 1.8 WSW 28-Mar-2019 13:00 1.3 WSW 28-Mar-2019 13:00 1.8 WSW 28-Mar-2019 14:00 1.8 WSW 28-Mar-2019 15:00 1.8 SSW	28-Mar-2019	07:00	1.3	WSW
28-Mar-2019 10:00 1.3 WSW 28-Mar-2019 11:00 1.8 WSW 28-Mar-2019 12:00 1.8 WSW 28-Mar-2019 12:00 1.8 WSW 28-Mar-2019 13:00 1.3 WSW 28-Mar-2019 13:00 1.3 WSW 28-Mar-2019 14:00 1.8 WSW 28-Mar-2019 15:00 1.8 SSW	28-Mar-2019	08:00	1.3	WSW
28-Mar-2019 11:00 1.8 WSW 28-Mar-2019 12:00 1.8 WSW 28-Mar-2019 13:00 1.3 WSW 28-Mar-2019 14:00 1.8 WSW 28-Mar-2019 14:00 1.8 WSW 28-Mar-2019 15:00 1.8 SSW	28-Mar-2019	09:00	1.8	WSW
28-Mar-2019 12:00 1.8 WSW 28-Mar-2019 13:00 1.3 WSW 28-Mar-2019 14:00 1.8 WSW 28-Mar-2019 14:00 1.8 SSW	28-Mar-2019	10:00	1.3	WSW
28-Mar-2019 13:00 1.3 WSW 28-Mar-2019 14:00 1.8 WSW 28-Mar-2019 15:00 1.8 SSW	28-Mar-2019	11:00	1.8	WSW
28-Mar-2019 14:00 1.8 WSW 28-Mar-2019 15:00 1.8 SSW	28-Mar-2019	12:00	1.8	WSW
28-Mar-2019 15:00 1.8 SSW	28-Mar-2019	13:00	1.3	WSW
	28-Mar-2019	14:00	1.8	WSW
28-Mar-2019 16:00 0.9 WSW	28-Mar-2019	15:00	1.8	SSW
	28-Mar-2019	16:00	0.9	WSW
28-Mar-2019 17:00 1.3 SW	28-Mar-2019	17:00	1.3	SW
28-Mar-2019 18:00 1.3 WSW	28-Mar-2019	18:00	1.3	WSW
28-Mar-2019 19:00 1.3 WSW	28-Mar-2019	19:00	1.3	WSW
28-Mar-2019 20:00 0.4 M/SM/	28-Mar-2019	20:00	0.4	WSW

28-Mar-2019	21:00	0.9	WSW
28-Mar-2019	22:00	0.4	WSW
28-Mar-2019	23:00	0.4	WSW
29-Mar-2019	00:00	0.9	W
29-Mar-2019	01:00	0.0	W
29-Mar-2019	02:00	0.4	ENE
29-Mar-2019	03:00	0.4	W
29-Mar-2019	04:00	0.4	NE
29-Mar-2019	05:00	0.0	WSW
29-Mar-2019	06:00	0.4	E
29-Mar-2019	07:00	0.4	E
29-Mar-2019	08:00	0.0	E
29-Mar-2019	09:00	0.4	ESE
29-Mar-2019	10:00	1.3	E
29-Mar-2019	11:00	1.3	NE
29-Mar-2019	12:00	1.3	E
29-Mar-2019	13:00	0.9	E
29-Mar-2019	14:00	1.3	NE
29-Mar-2019	15:00	1.3	NE
29-Mar-2019	16:00	1.8	E
29-Mar-2019	17:00	1.8	NE
29-Mar-2019	18:00	1.3	E
29-Mar-2019	19:00	0.9	NE
29-Mar-2019	20:00	1.3	NE
29-Mar-2019	21:00	1.3	NE
29-Mar-2019	22:00	0.9	NE
29-Mar-2019	23:00	0.9	E
30-Mar-2019	00:00	1.3	E
30-Mar-2019	01:00	1.3	Е
30-Mar-2019	02:00	1.3	E
30-Mar-2019	03:00	0.9	NE
30-Mar-2019	04:00	0.4	NE
30-Mar-2019	05:00	1.3	E
30-Mar-2019	06:00	1.3	NE
30-Mar-2019	07:00	1.8	E
30-Mar-2019	08:00	1.3	E
30-Mar-2019	09:00	1.8	ENE

30-Mar-201910:001.8NE30-Mar-201911:001.8E30-Mar-201912:002.2NE30-Mar-201913:002.2NE30-Mar-201914:002.2ENE30-Mar-201915:001.8ENE30-Mar-201916:001.8NE30-Mar-201917:001.8ENE30-Mar-201917:001.8ENE30-Mar-201917:001.8ENE30-Mar-201919:001.3ENE30-Mar-201919:001.3ENE30-Mar-201920:001.8NE30-Mar-201921:001.8NE30-Mar-201921:001.8NE30-Mar-201921:001.3E30-Mar-201901:001.3ENE31-Mar-201901:001.3ENE31-Mar-201902:001.3NE31-Mar-201902:001.3ENE31-Mar-201904:001.3ENE31-Mar-201904:001.3ENE	
30-Mar-201912:002.2NE30-Mar-201913:002.2NE30-Mar-201914:002.2ENE30-Mar-201915:001.8ENE30-Mar-201916:001.8NE30-Mar-201917:001.8ENE30-Mar-201917:001.8ENE30-Mar-201919:001.3ENE30-Mar-201919:001.3ENE30-Mar-201920:001.8NE30-Mar-201921:001.8NE30-Mar-201921:001.8NE30-Mar-201921:001.8NE30-Mar-201901:001.3ENE31-Mar-201901:001.3ENE31-Mar-201901:001.3NE31-Mar-201902:001.3NE31-Mar-201903:002.2NE	
30-Mar-201913:002.2NE30-Mar-201914:002.2ENE30-Mar-201915:001.8ENE30-Mar-201916:001.8NE30-Mar-201917:001.8ENE30-Mar-201917:001.3ENE30-Mar-201919:001.3ENE30-Mar-201919:001.3ENE30-Mar-201920:001.8NE30-Mar-201921:001.8NE30-Mar-201922:001.3E30-Mar-201900:001.3ENE31-Mar-201901:001.8ENE31-Mar-201902:001.3NE31-Mar-201902:001.3NE31-Mar-201903:002.2NE	
30-Mar-201914:002.2ENE30-Mar-201915:001.8ENE30-Mar-201916:001.8NE30-Mar-201917:001.8ENE30-Mar-201917:001.3ENE30-Mar-201919:001.3ENE30-Mar-201920:001.8NE30-Mar-201920:001.8NE30-Mar-201921:001.8NE30-Mar-201922:001.3E30-Mar-201900:001.3ENE31-Mar-201901:001.8ENE31-Mar-201902:001.3NE31-Mar-201903:002.2NE	
30-Mar-201915:001.8ENE30-Mar-201916:001.8NE30-Mar-201917:001.8ENE30-Mar-201918:001.3ENE30-Mar-201919:001.3ENE30-Mar-201920:001.8NE30-Mar-201920:001.8NE30-Mar-201921:001.8NE30-Mar-201921:001.8NE30-Mar-201922:001.3E30-Mar-201900:001.3ENE31-Mar-201901:001.8ENE31-Mar-201902:001.3NE31-Mar-201903:002.2NE	
30-Mar-2019 16:00 1.8 NE 30-Mar-2019 17:00 1.8 ENE 30-Mar-2019 18:00 1.3 ENE 30-Mar-2019 19:00 1.3 ENE 30-Mar-2019 19:00 1.3 ENE 30-Mar-2019 20:00 1.8 NE 30-Mar-2019 21:00 1.8 NE 30-Mar-2019 21:00 1.3 E 30-Mar-2019 22:00 1.3 E 30-Mar-2019 23:00 1.3 E 31-Mar-2019 00:00 1.3 ENE 31-Mar-2019 01:00 1.8 ENE 31-Mar-2019 02:00 1.3 NE 31-Mar-2019 02:00 1.3 NE 31-Mar-2019 02:00 1.3 NE 31-Mar-2019 03:00 2.2 NE	
30-Mar-201917:001.8ENE30-Mar-201918:001.3ENE30-Mar-201919:001.3ENE30-Mar-201920:001.8NE30-Mar-201921:001.8NE30-Mar-201922:001.3E30-Mar-201922:001.3E30-Mar-201900:001.3ENE31-Mar-201901:001.8ENE31-Mar-201902:001.3NE31-Mar-201902:001.3NE31-Mar-201902:001.3NE31-Mar-201902:001.3NE31-Mar-201903:002.2NE	
30-Mar-201918:001.3ENE30-Mar-201919:001.3ENE30-Mar-201920:001.8NE30-Mar-201921:001.8NE30-Mar-201922:001.3E30-Mar-201923:001.3ENE31-Mar-201900:001.3ENE31-Mar-201901:001.8ENE31-Mar-201902:001.3NE31-Mar-201902:001.3NE31-Mar-201902:001.3NE31-Mar-201903:002.2NE	
30-Mar-201919:001.3ENE30-Mar-201920:001.8NE30-Mar-201921:001.8NE30-Mar-201922:001.3E30-Mar-201923:001.3ENE31-Mar-201900:001.3ENE31-Mar-201901:001.8ENE31-Mar-201902:001.3NE31-Mar-201902:001.3NE31-Mar-201902:001.3NE31-Mar-201903:002.2NE	
30-Mar-2019 20:00 1.8 NE 30-Mar-2019 21:00 1.8 NE 30-Mar-2019 22:00 1.3 E 30-Mar-2019 23:00 1.3 ENE 31-Mar-2019 00:00 1.3 ENE 31-Mar-2019 01:00 1.8 ENE 31-Mar-2019 02:00 1.3 NE 31-Mar-2019 02:00 1.8 ENE 31-Mar-2019 02:00 1.8 ENE	
30-Mar-2019 21:00 1.8 NE 30-Mar-2019 22:00 1.3 E 30-Mar-2019 23:00 1.3 ENE 31-Mar-2019 00:00 1.3 ENE 31-Mar-2019 01:00 1.8 ENE 31-Mar-2019 01:00 1.8 ENE 31-Mar-2019 02:00 1.3 NE 31-Mar-2019 02:00 1.8 ENE	
30-Mar-2019 22:00 1.3 E 30-Mar-2019 23:00 1.3 ENE 31-Mar-2019 00:00 1.3 ENE 31-Mar-2019 01:00 1.8 ENE 31-Mar-2019 02:00 1.3 NE 31-Mar-2019 02:00 1.8 ENE	
30-Mar-2019 23:00 1.3 ENE 31-Mar-2019 00:00 1.3 ENE 31-Mar-2019 01:00 1.8 ENE 31-Mar-2019 02:00 1.3 NE 31-Mar-2019 02:00 1.3 NE 31-Mar-2019 02:00 1.3 NE	
31-Mar-2019 00:00 1.3 ENE 31-Mar-2019 01:00 1.8 ENE 31-Mar-2019 02:00 1.3 NE 31-Mar-2019 02:00 1.3 NE 31-Mar-2019 03:00 2.2 NE	
31-Mar-2019 01:00 1.8 ENE 31-Mar-2019 02:00 1.3 NE 31-Mar-2019 03:00 2.2 NE	
31-Mar-2019 02:00 1.3 NE 31-Mar-2019 03:00 2.2 NE	
31-Mar-2019 03:00 2.2 NE	1
31-Mar-2019 04:00 1.3 ENE	
31-Mar-2019 05:00 1.3 ENE	
31-Mar-2019 06:00 1.3 NE	
31-Mar-2019 07:00 1.3 NNE	
31-Mar-2019 08:00 1.3 NNE	
31-Mar-2019 09:00 1.3 E	
31-Mar-2019 10:00 1.3 ENE	
31-Mar-2019 11:00 1.3 NE	
31-Mar-2019 12:00 1.8 ENE	
31-Mar-2019 13:00 1.8 NE	
31-Mar-2019 14:00 1.3 NE	
31-Mar-2019 15:00 1.3 NNE	
31-Mar-2019 16:00 1.3 NNE	
31-Mar-2019 17:00 1.3 NNE	
31-Mar-2019 18:00 0.9 ENE	
31-Mar-2019 19:00 1.3 ENE	
31-Mar-2019 20:00 1.3 NE	
31-Mar-2019 21:00 1.3 NE	
31-Mar-2019 22:00 0.9 NE	

31-Mar-2019 23:00	0.9	NE
-------------------	-----	----

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for March 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
~~~~,					1-Mar	2-Mar
3-Mar	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar	9-Mar
		1 hr TSP X3				
		AM4(C), AM5				
		Noise	1 hr TSP X3			
		M6(A) M7, M8(A), M9	AM2, AM3(A)			
		24-hr TSP				
		AM2(A),AM3(B)				
		AM4(C),AM5				
10-Mar	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar	16-Mar
					1 hr TSP X3	
	1 hr TSP X3				AM4(C), AM5	
	AM4(C), AM5	1 hr TSP X3			Noise	
		AM2, AM3(A)			M6(A) M7, M8(A), M9	
	24-hr TSP				24-hr TSP	24-hr TSP
	AM2(A),AM3(B)				AM3(B), AM5	AM2(A)
	AM4(C),AM5					
17-Mar	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar	23-Mar
				1 hr TSP X3		
				AM5		
	1 hr TSP X3			Noise	1 hr TSP X3	
	AM2, AM3(A)			M6(A) M7, M8(A), M9	AM2, AM3(A)	
				24-hr TSP	24-hr TSP	
				AM3(B), AM5	AM2(A)	
24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar	30-Mar
			1 hr TSP X3			
			AM5			
			Noise	1 hr TSP X3		
			M6(A) M7, M8(A), M9	AM2, AM3(A)		
			24-hr TSP	24-hr TSP		
			AM3(B), AM5	AM2(A)		
31-Mar						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

1-hr TSP monitoring at AM4(C) on 21 and 27 March was cancelled.

24-hr TSP monitoringat AM4(C) on 15, 21 and 27 March was cancelled due to power failure.

#### Air Quality Monitoring Station

AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School AM3(A) - Holy Trinity Bradbury Centre AM3(B) - Hong Kong Family Planning Association AM4(C) - New Pumping Station under Contract KL/2012/03 AM5 - CCC Kei To Secondary School

#### Noise Monitoring Station

M6(A) - Oblate Primary School M7 - CCC Kei To Secondary School M8(A) - Po Leung Kuk Ngan Po Ling College (Site Boundary) M9 - Tak Long Estate

#### Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for April 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Apr	2-Apr	3-Apr	4-Apr	5-Apr	6-Apr
		1 hr TSP X3				
		AM4(C), AM5				
		Noise	1 hr TSP X3			
		M6(A) M7, M8(A), M9	AM2, AM3(A)			
		24-hr TSP	24-hr TSP			
		AM3(B), AM5	AM2(A)			
7-Apr	8-Apr	9-Apr	10-Apr	11-Apr	12-Apr 1 hr TSP X3	13-Apr
					AM4(C), AM5	
	1 hr TSP X3	1 hr TSP X3			Noise	
	AM4(C), AM5	AM2, AM3(A)			M6(A) M7, M8(A), M9	
	24-hr TSP	24-hr TSP			24-hr TSP	
	AM3(B), AM5	AM2(A)			AM3(B),AM4(C), AM5	
	74415(D), 74415	1002(11)			/1005(B),/1004(C), /1005	
14-Apr	15-Apr	16-Apr	17-Apr	18-Apr	19-Apr	20-Apr
				1 hr TSP X3		
				AM4(C), AM5		
	1 hr TSP X3		1 hr TSP X3	Noise		
	AM2, AM3(A)		AM2, AM3(A)	M6(A) M7, M8(A), M9		
	24-hr TSP		24-hr TSP	24-hr TSP		
	AM2(A)		AM2(A),AM4(C)	AM3(B), AM5		
21-Apr	22-Apr	23-Apr	24-Apr	25-Apr	26-Apr	27-Apr
		20 1 101	1 hr TSP X3	201101	201101	271191
			AM4(C), AM5			
		1 hr TSP X3	Noise			
		AM2, AM3(A)	M6(A) M7, M8(A), M9			
		24-hr TSP	24-hr TSP			
		AM2(A),AM4(C)	AM3(B), AM5			
28-Apr	29-Apr	30-Apr				
		1 hr TSP X3				
		AM4(C), AM5				
	1 hr TSP X3	Noise				
	AM2, AM3(A)	M6(A) M7, M8(A), M9				
	24-hr TSP	24-hr TSP				
	AM2(A),AM4(C)	AM3(B), AM5				

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

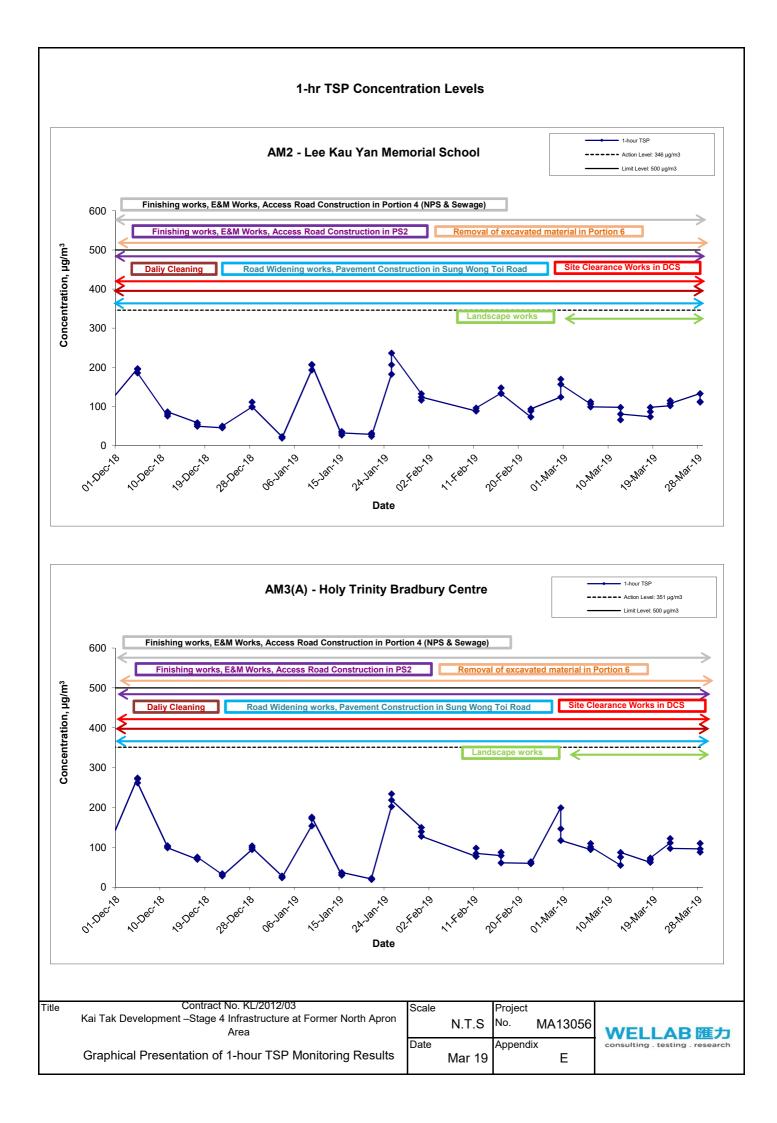
#### Air Quality Monitoring Station

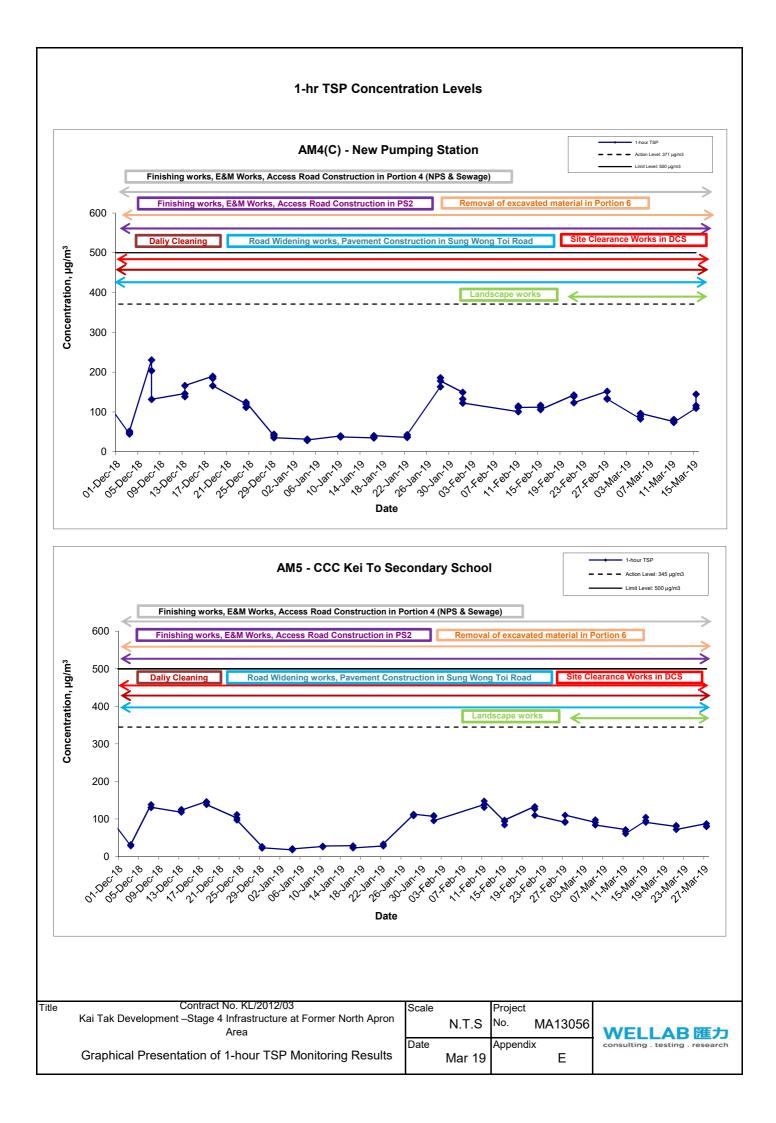
AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School AM3(A) - Holy Trinity Bradbury Centre AM3(B) - Hong Kong Family Planning Association AM4(C) - New Pumping Station under Contract KL/2012/03 AM5 - CCC Kei To Secondary School

#### Noise Monitoring Station

M6(A) - Oblate Primary School M7 - CCC Kei To Secondary School M8(A) - Po Leung Kuk Ngan Po Ling College (Site Boundary) M9 - Tak Long Estate

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION


Date	Time	Weather	Particulate Concentration ( µg/m3)
6-Mar-19	9:00	Cloudy	106.1
6-Mar-19	10:00	Cloudy	111.9
6-Mar-19	11:00	Cloudy	98.7
12-Mar-19	14:00	Sunny	97.5
12-Mar-19	15:00	Sunny	65.6
12-Mar-19	16:00	Sunny	80.3
18-Mar-19	13:00	Cloudy	73.5
18-Mar-19	14:00	Cloudy	86.6
18-Mar-19	15:00	Cloudy	97.3
22-Mar-19	13:00	Cloudy	101.7
22-Mar-19	14:00	Cloudy	114.8
22-Mar-19	15:00	Cloudy	107.4
28-Mar-19	8:50	Fine	132.8
28-Mar-19	9:50	Fine	111.2
28-Mar-19	10:50	Fine	112.4
		Average	99.9
		Maximum	132.8
		Minimum	65.6
ocation AM3(A	A) - Holy Trin	ity Bradury Centre	8
Date	Time		
	Time	Weather	Particulate Concentration ( µg/m3)
6-Mar-19	13:00	Cloudy	Particulate Concentration(µg/m3) 94.2
6-Mar-19 6-Mar-19			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	13:00	Cloudy	94.2
6-Mar-19	13:00 14:00	Cloudy Cloudy	94.2 109.4
6-Mar-19 6-Mar-19	13:00 14:00 15:00	Cloudy Cloudy Cloudy	94.2 109.4 101.0
6-Mar-19 6-Mar-19 12-Mar-19	13:00 14:00 15:00 9:00	Cloudy Cloudy Cloudy Sunny	94.2 109.4 101.0 55.0
6-Mar-19 6-Mar-19 12-Mar-19 12-Mar-19	13:00 14:00 15:00 9:00 10:00	Cloudy Cloudy Cloudy Sunny Sunny	94.2 109.4 101.0 55.0 75.4
6-Mar-19 6-Mar-19 12-Mar-19 12-Mar-19 12-Mar-19	13:00 14:00 15:00 9:00 10:00 11:00	Cloudy Cloudy Cloudy Sunny Sunny Sunny	94.2 109.4 101.0 55.0 75.4 87.1
6-Mar-19 6-Mar-19 12-Mar-19 12-Mar-19 12-Mar-19 18-Mar-19	13:00 14:00 15:00 9:00 10:00 11:00 9:00	Cloudy Cloudy Cloudy Sunny Sunny Sunny Cloudy	94.2 109.4 101.0 55.0 75.4 87.1 62.0
6-Mar-19 6-Mar-19 12-Mar-19 12-Mar-19 12-Mar-19 18-Mar-19 18-Mar-19	13:00 14:00 15:00 9:00 10:00 11:00 9:00 10:00	Cloudy Cloudy Cloudy Sunny Sunny Sunny Cloudy Cloudy	94.2 109.4 101.0 55.0 75.4 87.1 62.0 68.8
6-Mar-19 6-Mar-19 12-Mar-19 12-Mar-19 12-Mar-19 18-Mar-19 18-Mar-19 18-Mar-19	13:00 14:00 15:00 9:00 10:00 11:00 9:00 10:00 11:00 9:00 10:00	Cloudy Cloudy Cloudy Sunny Sunny Sunny Cloudy Cloudy Cloudy	94.2 109.4 101.0 55.0 75.4 87.1 62.0 68.8 73.2
6-Mar-19 6-Mar-19 12-Mar-19 12-Mar-19 12-Mar-19 18-Mar-19 18-Mar-19 18-Mar-19 22-Mar-19	13:00 14:00 15:00 9:00 10:00 11:00 9:00 10:00 11:00 9:00	Cloudy Cloudy Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy	94.2 109.4 101.0 55.0 75.4 87.1 62.0 68.8 73.2 111.3
6-Mar-19 6-Mar-19 12-Mar-19 12-Mar-19 12-Mar-19 18-Mar-19 18-Mar-19 22-Mar-19 22-Mar-19	13:00 14:00 15:00 9:00 10:00 11:00 9:00 10:00 11:00 9:00 10:00	Cloudy Cloudy Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy	94.2 109.4 101.0 55.0 75.4 87.1 62.0 68.8 73.2 111.3 121.9
6-Mar-19 6-Mar-19 12-Mar-19 12-Mar-19 18-Mar-19 18-Mar-19 18-Mar-19 22-Mar-19 22-Mar-19 22-Mar-19	13:00 14:00 15:00 9:00 10:00 11:00 9:00 10:00 11:00 9:00 10:00 11:00	Cloudy Cloudy Cloudy Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy	94.2 109.4 101.0 55.0 75.4 87.1 62.0 68.8 73.2 111.3 121.9 97.1
6-Mar-19 6-Mar-19 12-Mar-19 12-Mar-19 18-Mar-19 18-Mar-19 18-Mar-19 22-Mar-19 22-Mar-19 22-Mar-19 28-Mar-19	13:00 14:00 15:00 9:00 10:00 11:00 9:00 10:00 11:00 9:00 10:00 11:00 11:00 13:00	Cloudy Cloudy Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Fine	94.2 109.4 101.0 55.0 75.4 87.1 62.0 68.8 73.2 111.3 121.9 97.1 95.8
6-Mar-19 6-Mar-19 12-Mar-19 12-Mar-19 12-Mar-19 18-Mar-19 18-Mar-19 22-Mar-19 22-Mar-19 22-Mar-19 28-Mar-19 28-Mar-19	13:00           14:00           15:00           9:00           10:00           11:00           9:00           10:00           11:00           9:00           10:00           11:00           9:00           10:00           11:00           9:00           10:00           11:00           13:00           14:00	Cloudy Cloudy Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Fine Fine	109.4           101.0           55.0           75.4           87.1           62.0           68.8           73.2           111.3           121.9           97.1           95.8           87.8


## Appendix E - 1-hour TSP Monitoring Results

Location AM4(0	C) - New Pur	nping Station	
Date	Time	Weather	Particulate Concentration ( µg/m3)
5-Mar-19	9:00	Cloudy	82.6
5-Mar-19	10:00	Cloudy	89.8
5-Mar-19	11:00	Cloudy	96.3
11-Mar-19	9:00	Cloudy	75.7
11-Mar-19	10:00	Cloudy	81.0
11-Mar-19	11:00	Cloudy	73.5
15-Mar-19	9:00	Cloudy	109.7
15-Mar-19	10:00	Cloudy	116.1
15-Mar-19	11:00	Cloudy	144.3
		Average	96.6
		Maximum	144.3
		Minimum	73.5

## Appendix E - 1-hour TSP Monitoring Results

Date	Time	Weather	Particulate Concentration ( µg/m3)
5-Mar-19	14:00	Cloudy	91.1
5-Mar-19	14.00		98.2
		Cloudy	
5-Mar-19	16:00	Cloudy	83.9
11-Mar-19	13:00	Cloudy	71.9
11-Mar-19	14:00	Cloudy	66.8
11-Mar-19	15:00	Cloudy	61.0
15-Mar-19	13:15	Cloudy	95.7
15-Mar-19	14:15	Cloudy	104.8
15-Mar-19	15:15	Cloudy	91.2
21-Mar-19	9:00	Fine	80.3
21-Mar-19	10:00	Fine	83.0
21-Mar-19	11:00	Fine	72.2
27-Mar-19	13:00	Cloudy	87.7
27-Mar-19	14:00	Cloudy	79.6
27-Mar-19	15:00	Cloudy	81.8
		Average	83.3
	ſ	Maximum	104.8
		Minimum	61.0





APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

#### Appendix F - 24-hour TSP Monitoring Results

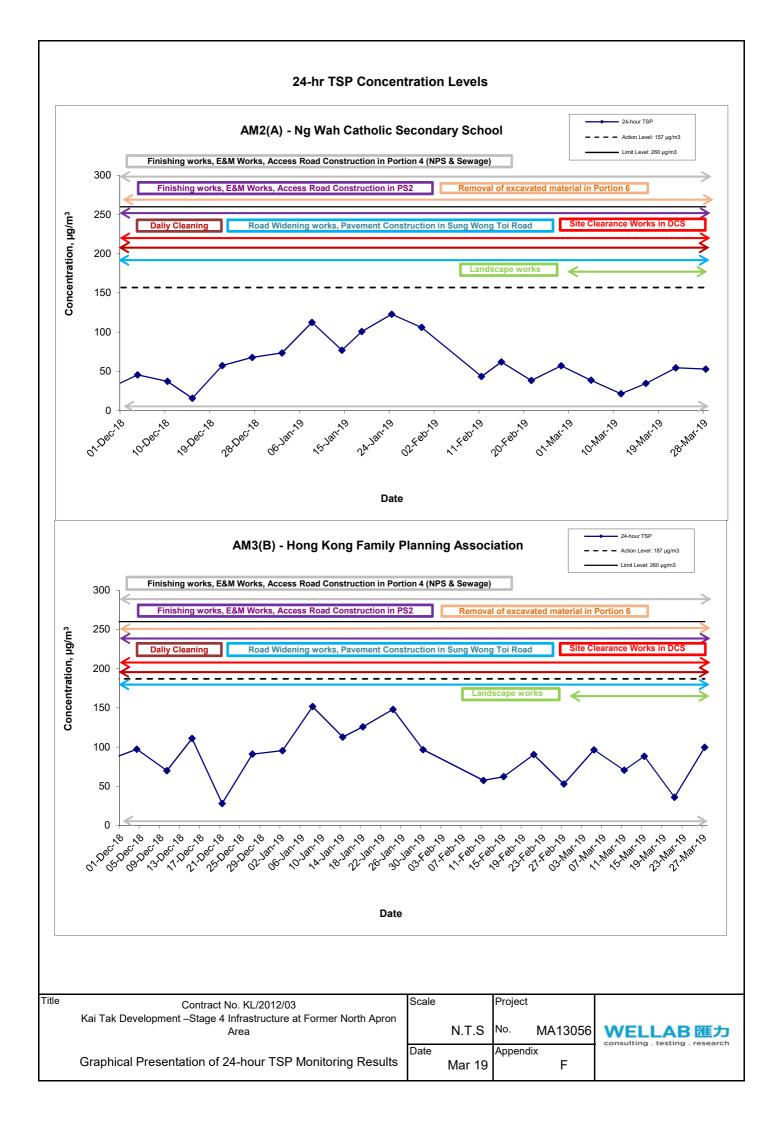
#### Location AM2(A) - Ng Wah Catholic Secondary School

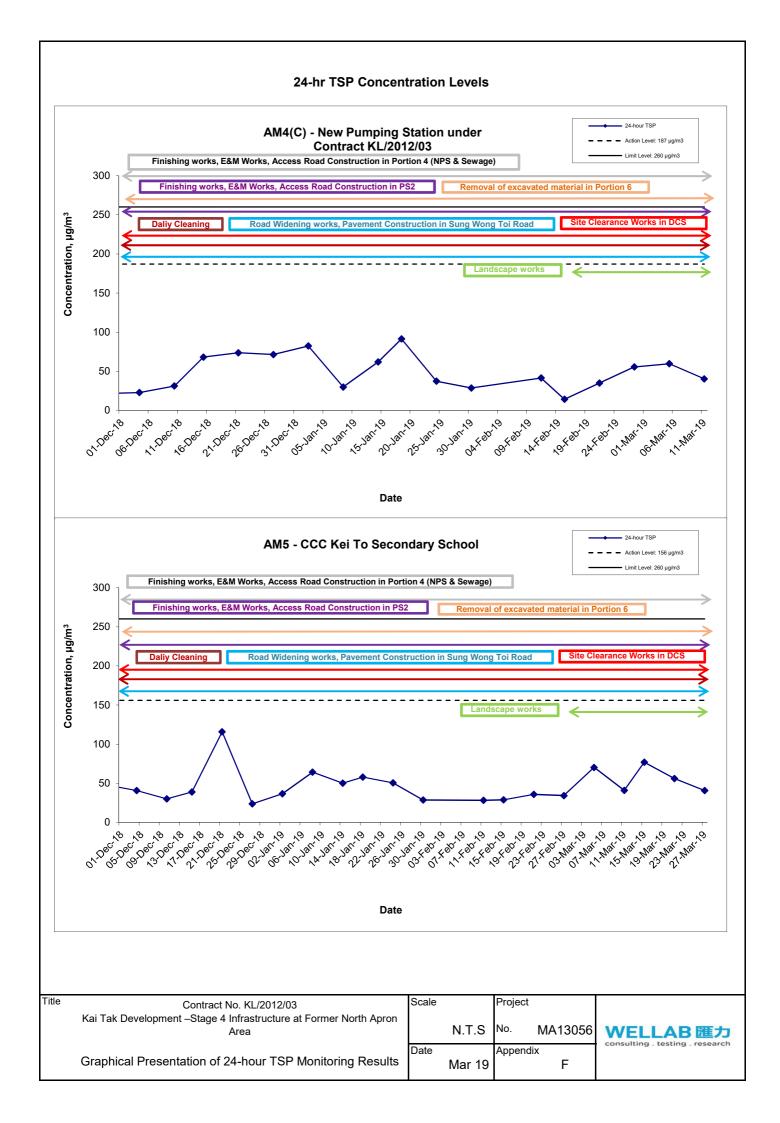
Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	(µg/m ³ )
5-Mar-19	Cloudy	299.3	760.4	3.1433	3.2099	0.0666	3854.4	3878.4	24.0	1.19	1.19	1.19	1719.2	38.7
11-Mar-19	Cloudy	289.9	765.2	3.5118	3.5496	0.0378	3902.4	3926.4	24.0	1.22	1.22	1.22	1753.0	21.6
16-Mar-19	Cloudy	294.1	768.5	3.1232	3.1838	0.0606	3950.4	3974.4	24.0	1.21	1.21	1.21	1744.0	34.7
22-Mar-19	Cloudy	298.9	762.5	3.5265	3.6204	0.0939	3998.4	4022.4	24.0	1.20	1.20	1.20	1722.8	54.5
28-Mar-19	Sunny	297.7	763.4	3.5947	3.6860	0.0913	4022.4	4046.4	24.0	1.20	1.20	1.20	1727.4	52.9
													Min	21.6
													Max	54.5
													Average	40.5

#### Location AM3(B) - Hong Kong Family Planning Association

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	(µg/m ³ )
5-Mar-19	Cloudy	298.3	759.9	2.9910	3.1564	0.1654	1893.1	1917.1	24.0	1.19	1.19	1.19	1715.8	96.4
11-Mar-19	Cloudy	291.1	765.2	3.5098	3.6325	0.1227	1917.1	1941.1	24.0	1.21	1.21	1.21	1743.0	70.4
15-Mar-19	Cloudy	291.5	767.6	3.4849	3.6388	0.1539	1941.3	1965.3	24.0	1.21	1.21	1.21	1744.5	88.2
21-Mar-19	Cloudy	299.9	760.5	3.4787	3.5403	0.0616	1965.3	1989.3	24.0	1.19	1.19	1.19	1711.9	36.0
27-Mar-19	Sunny	296.5	766.8	3.4713	3.6435	0.1722	1989.3	2013.3	24.0	1.20	1.20	1.20	1728.9	99.6
													Min	36.0
													Max	99.6
													Average	78.1

#### Location AM4(C) - New Pumping Station under Contract KL/2012/03


Start Date	Weather	Air	Atmospheric	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	$(\mu g/m^3)$
5-Mar-19	Cloudy	298.9	760.1	3.1453	3.2480	0.1027	2249.1	2273.1	24.0	1.19	1.19	1.19	1719.4	59.7
11-Mar-19	Cloudy	291.7	764.6	3.4902	3.5607	0.0705	2273.1	2297.1	24.0	1.21	1.21	1.21	1747.5	40.3
													Min	40.3
													Max	59.7
													Average	50.0


#### Location AM5 - CCC Kei To Secondary School

Start Date	Weather	Air	Atmospheric	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³ )	$(\mu g/m^3)$
5-Mar-19	Cloudy	299.3	760.4	3.1564	3.2771	0.1207	2378.0	2402.0	24.0	1.19	1.19	1.19	1718.8	70.2
11-Mar-19	Cloudy	293.3	763.5	3.4754	3.5465	0.0711	2402.0	2426.0	24.0	1.21	1.21	1.21	1740.0	40.9
15-Mar-19	Cloudy	290.9	767.0	3.5475	3.6821	0.1346	2449.2	2473.2	24.0	1.22	1.22	1.22	1751.2	76.9
21-Mar-19	Cloudy	299.4	762.0	3.4652	3.5616	0.0964	2473.2	2497.2	24.0	1.19	1.19	1.19	1720.4	56.0
27-Mar-19	Sunny	294.1	767.1	3.6009	3.6716	0.0707	2497.4	2521.4	24.0	1.21	1.21	1.21	1741.7	40.6
													Min	40.6

 Max
 76.9

 Average
 56.9





APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

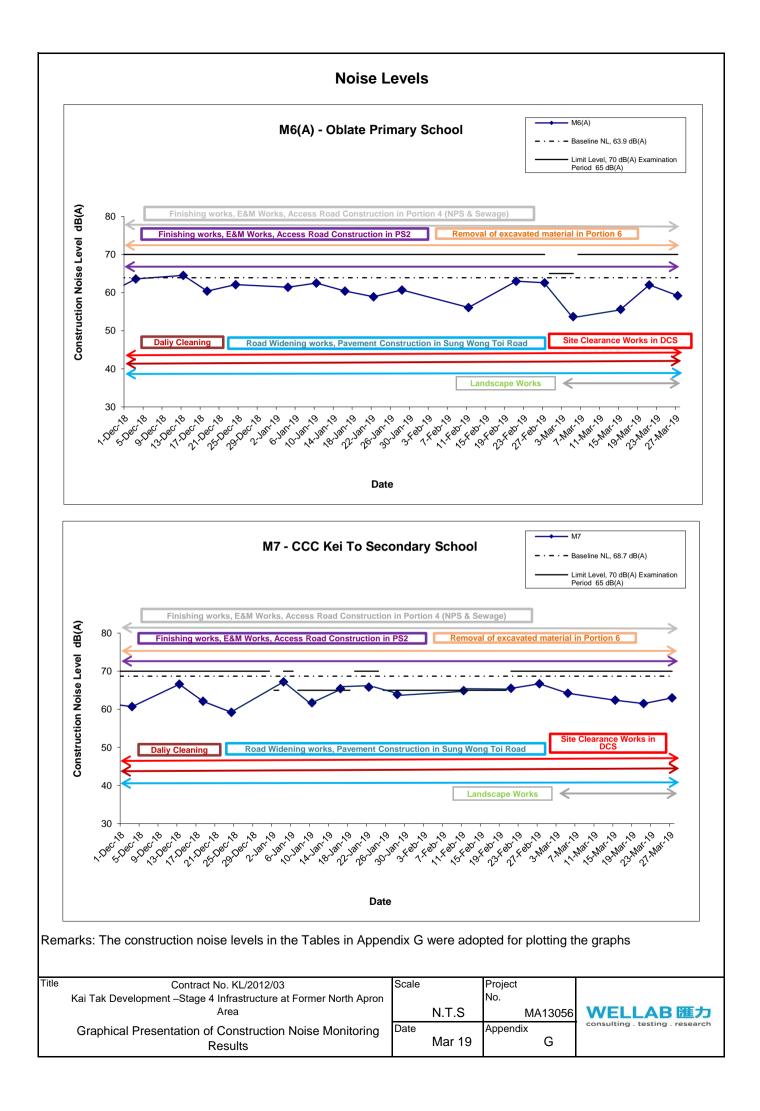
#### Appendix G - Noise Monitoring Results

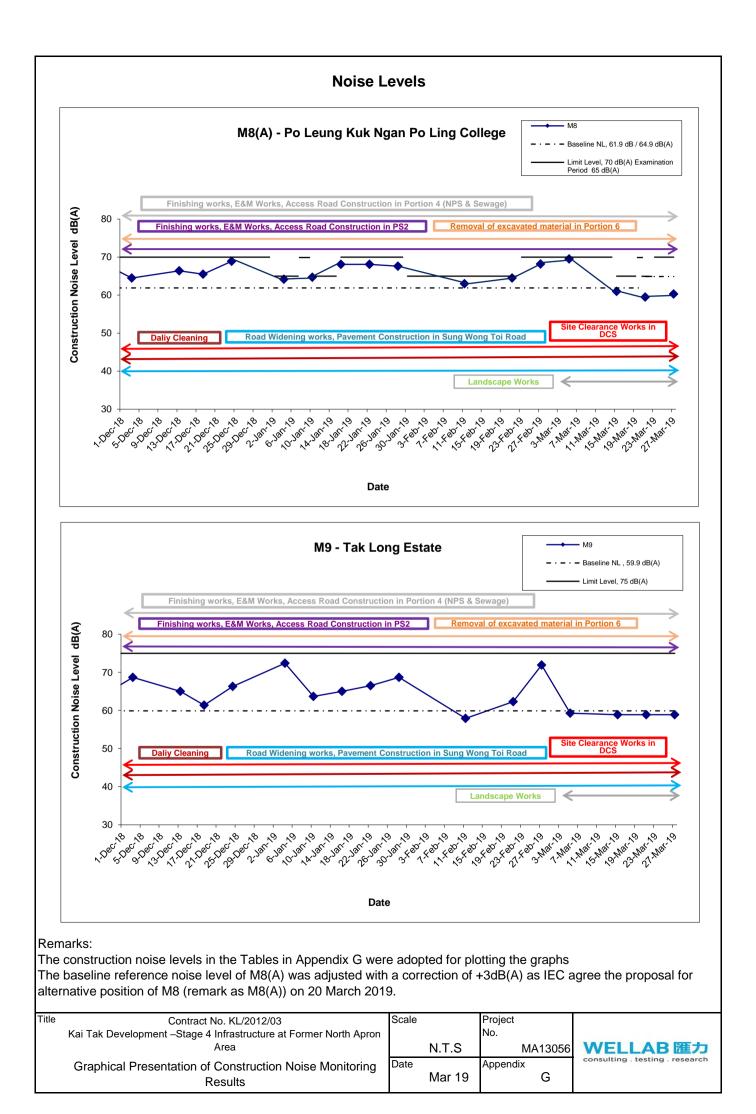
Location M6(A) - Oblate Primary School											
				Unit: dB (A) (30-min)							
Date	Time Weather		Mea	sured Noise	Level	Baseline Level	Construction Noise Level				
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}				
5-Mar-19	13:00	Cloudy	64.3	65.6	58.5		53.7				
15-Mar-19	14:40	Cloudy	64.5	65.8	59.3	c2 0	55.6				
21-Mar-19	13:00	Cloudy	62.0	63.9	59.0	63.9	62.0 Measured $\leq$ Baseline				
27-Mar-19	15:00	Cloudy	59.2	61.0	53.4		59.2 Measured $\leq$ Baseline				

#### Location M7 - CCC Kei To Secondary School

Economic IIII	See hai te sesenaal y concer										
			Unit: dB (A) (30-min)								
Date	Time	Weather	Mea	sured Noise	Level	Baseline Level	Construction Noise Level				
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}				
5-Mar-19	14:35	Cloudy	64.2	66.7	60.3		64.2 Measured $\leq$ Baseline				
15-Mar-19	13:00	Cloudy	62.4	63.5	55.2	68.7	62.4 Measured $\leq$ Baseline				
21-Mar-19	10:15	Cloudy	61.5	64.5	57.0	00.7	61.5 Measured $\leq$ Baseline				
27-Mar-19	13:05	Cloudy	63.0	65.4	59.4		63.0 Measured $\leq$ Baseline				

#### Location M8(A) - Po Leung Kuk Ngan Po Ling College


		Weather	Unit: dB (A) (30-min)							
Date	Time		Meas	sured Noise	Level	Baseline Level	Construction Noise Level			
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}			
5-Mar-19	13:45	Cloudy	70.2	73.5	64.8	61.9	69.5			
15-Mar-19	13:45	Cloudy	64.5	67.8	61.2	01.9	61.0			


Location M8(A) - Po Leung Kuk Ngan Po Ling College							
			Unit: dB (A) (30-min)				
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
21-Mar-19	11:25	Cloudy	66.0	67.7	61.2	64.9	59.5
27-Mar-19	14:00	Cloudy	66.2	69.5	62.1	04.9	60.3

Location M9 - Tak Long Estate							
					Uni	t: dB (A) (30-min)	
Date	Time	Weather	Mea	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
5-Mar-19	15:00	Cloudy	59.3	61.2	57.3		59.3 Measured $\leq$ Baseline
15-Mar-19	10:00	Cloudy	58.9	61.1	57.1	59.9	58.9 Measured $\leq$ Baseline
21-Mar-19	15:00	Cloudy	58.9	60.6	56.8	59.9	58.9 Measured $\leq$ Baseline
27-Mar-19	16:00	Cloudy	58.9	62.1	53.2		58.9 Measured $\leq$ Baseline

The baseline reference noise level of M8(A) was adjusted with a correction of +3dB(A) as IEC agree the proposal for alternative position of M8 (remark as M8(A)) on 20 March 2019.

٦





APPENDIX H SUMMARY OF EXCEEDANCE

## Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

## **Appendix H – Summary of Exceedance**

Exceedance Report for Contract No. KL/2012/03

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

#### Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	190301	
Date	1 March 2019	
Time	15:00-17:00	

.

		Related
Ref. No.	Non-Compliance	Item No
bel	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	No environmental deficiency was identified during previous audit session.	

	Name	Signature	Date
Recorded by	Eric Chan	2-1	4 March 2019
Checked by	Dr. Priscilla Choy	LIZ-	4 March 2019

Checklist Reference Number	190308
Date	8 March 2019
Time	10:00-12:00

Ref. No.	Non-Compliance	Related Item No
ACI, 140,	None identified	
		Related
Ref. No.	Remarks/Observations	Item No
Kei. No.		nem NC
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
· · ·	No environmental deficiency was identified during site inspection.	
	H. Others	
	No environmental deficiency was identified during previous audit session.	

	Name	Signature	Date
Recorded by	Eric Chan	1-1	11 March 2019
Checked by	Dr. Priscilla Choy	WI	11 March 2019
-	•		

Checklist Reference Number	190312
Date	12 March 2019
Time	10:00-12:00

		Related
Ref. No.	Non-Compliance	Item No
-	None identified	_
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• No environmental deficiency was identified during previous audit session.	

	Name	Signature	Date
Recorded by	Eric Chan	1-P	14 March 2019
Checked by	Dr. Priscilla Choy	NZ	14 March 2019

Checklist Reference Number	190320	
Date	20 March 2019	
Time	14:00-16:00	

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	No environmental deficiency was identified during previous audit session.	

Name	Signature	Date
Eric Chan	r	21 March 2019
Dr. Priscilla Choy	hit	21 March 2019
	Eric Chan	Eric Chan

Checklist Reference Number	190329
Date	29 March 2019
Time	09:00-11:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
•	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	No environmental deficiency was identified during previous audit session.	

	Name	Signature	Date
Recorded by	Eric Chan	Zp	1 April 2019
Checked by	Dr. Priscilla Choy	NI	1 April 2019

### Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	190301
Date	1 March 2019
Time	15:00-17:00

		Related
Ref. No.	Non-Compliance	Item No
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
· · ·	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• No environmental deficiency was identified during previous audit session.	

	Name	Signature	Date
Recorded by	Eric Chan	T-P	4 March 2019
Checked by	Dr. Priscilla Choy	WZ	4 March 2019
Checked by			4 Water 2019

### Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	190308	
Date	8 March 2019	
Time	10:00-12:00	

<b>D.</b> 4 M.	New Cherry Press	Related
Ref. No.	Non-Compliance	Item No
-	None identified	-
DAN		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	• No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
190308-R01	· General refuse should be collected and drapssed properly;	Eliii
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	• No environmental deficiency was identified during site inspection.	
	H. Others	
	• No environmental deficiency was identified during previous audit session.	

	Name	Signature	Date
Recorded by	Eric Chan	7-1	11 March 2019
Checked by	Dr. Priscilla Choy	WZ	11 March 2019
			<b>L</b>

Checklist Reference Number	190312	
Date	12 March 2019	
Time	10:00-12:00	

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	-
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.190308), the environment deficiency was observed to be rectified by the contractor.	

	Name	Signature	Date
Recorded by	Eric Chan	Zp	14 March 2019
Checked by	Dr. Priscilla Choy	WIL	14 March 2019

Checklist Reference Number	190320
Date	20 March 2019
Time	14:00-16:00

		Related
Ref. No.	Non-Compliance	Item No
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• No environmental deficiency was identified during previous site inspection.	

	Name	Signature	Date
Recorded by	Eric Chan	1P	21 March 2019
Checked by	Dr. Priscilla Choy	NI	21 March 2019

## Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	190329	
Date	29 March 2019	
Time	09:00-11:00	

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
190329-R01	General refuse/construction waste on the roof of PS2 should be disposed properly.	Eliii
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	No environmental deficiency was identified during previous site inspection.	

	Name	Signature	Date
Recorded by	Eric Chan	2-1	1 April 2019
Checked by	Dr. Priscilla Choy	NI	I April 2019
			<b>I</b>

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;	
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if	
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.	
	3. Repeat measurement to confirm finding.	method.			
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Discuss with ET and IEC on proper	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;	
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial	
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three	
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;	
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;	
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.	
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of		
	6. If exceedance continues, arrange		remedial measures;		
	meeting with IEC and ER;		5. Conduct meeting with ET and		
	7. If exceedance stops, cease additional		IEC if exceedance continues.		
	monitoring.				
Limit Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;	
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper	
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;	
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial	
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three	

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation	
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;	
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation	
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.	
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be	
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after	
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)	
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;		
	check mitigation effectiveness.	(The above actions should be	4. Supervise the		
	(The above actions should be taken	taken within 2 working days after	implementation of remedial		
	within 2 working days after the	the exceedance is identified)	measures.		
	exceedance is identified)		(The above actions should be		
			taken within 2 working days		
			after the exceedance is		
			identified)		
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to	
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;	
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial	
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3	
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;	
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed	
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;	

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
 		identified)	

Event/Action Plan for Landscape and Visual

EVENT	ACTION				
ACTION LEVEL	ET	IEC	ER	CONTRACTOR	
Design Check	1. Check final design conforms to the requirements of EP and prepare report.	<ol> <li>Check report.</li> <li>Recommend remedial design if necessary</li> </ol>	1. Undertake remedial design if necessary		
Non-conformity on one occasion	<ol> <li>Identify Source</li> <li>Inform IEC and</li> <li>ER</li> <li>Discuss remedial actions with IEC,</li> <li>ER and Contractor</li> <li>Monitor remedial actions until rectification has</li> <li>been completed</li> </ol>	<ol> <li>Check report</li> <li>Check Contractor's working method</li> <li>Discuss with ET and Contractor on possible remedial measures</li> <li>Advise ER on effectiveness of proposed remedial measures.</li> <li>Check implementation of remedial measures.</li> </ol>	<ol> <li>Notify Contractor</li> <li>Ensure remedial measures are properly implemented</li> </ol>	<ol> <li>Amend working methods</li> <li>Rectify damage and undertake any necessary replacement</li> </ol>	
Repeated Non-conformity	1. Identify Source Inform IEC and	1. Check monitoring report	<ol> <li>Notify Contractor</li> <li>Ensure remedial measures are properly</li> </ol>	<ol> <li>Amend working methods</li> <li>Rectify damage and</li> </ol>	

ER	2. Check Contractor's	implemented	undertake any necessary
2. Increase	working method		replacement
monitoring	3. Discuss with ET and		
frequency	Contractor on possible		
3. Discuss remedial	remedial measures		
actions with IEC,	4. Advise ER on		
ER and Contractor	effectiveness of		
4. Monitor remedial	proposed remedial		
actions until	measures		
rectification has	5. Supervise		
been completed	implementation of		
5. If non-conformity	remedial measures.		
stops, cease			
additional			
monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

# Appendix K - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

Types of Impacts	Mitigation Measures									
	8 times daily watering of the work site with active dust emitting activities. Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	^								
	<ul> <li>Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission.</li> <li>Misting for the dusty material should be carried out</li> </ul>	^								
	<ul> <li>Misting for the dusty material should be carried out before being loaded into the vehicle.</li> <li>Any vehicle with an open load carrying area should</li> </ul>	^								
	<ul> <li>have properly fitted side and tail boards.</li> <li>Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a</li> </ul>	^								
	<ul> <li>clean tarpaulin.</li> <li>The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation.</li> </ul>	^								
Construction Dust	<ul> <li>The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. On- site unpaved roads should be compacted and kept free of lose materials.</li> </ul>	^								
	<ul> <li>Vehicle washing facilities should be provided at every vehicle exit point.</li> <li>The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete,</li> </ul>	^								
	<ul> <li>bituminous materials or hardcores.</li> <li>Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet.</li> </ul>	^								
	<ul> <li>Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides.</li> <li>Every vehicle should be washed to remove any dusty</li> </ul>									
	materials from its body and wheels before leaving the construction sites.	^								

	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump	^
Construction Noise	<ul> <li>Good Site Practice:</li> <li>Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program.</li> <li>Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program.</li> <li>Mobile plant, if any, should be sited as far away from NSRs as possible.</li> <li>Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum.</li> <li>Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.</li> <li>Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities.</li> <li>Scheduling of Construction Works during School Examination Period</li> <li>(i) Provision of low noise surfacing in a section of Road L2; and</li> </ul>	^ N/A(1) ^ ^ ^ ^ N/A
TOBE		
	(ii) Provision of structural fins	N/A
	<ul> <li>(i) Avoid the sensitive façade of class room facing Road L2 and L4; and</li> </ul>	N/A
	(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A
	(i) Provision of low noise surfacing in a section of Road L4 before occupation of Site 1I1; and	N/A
	(ii) Setback of building about 5m from site boundary.	N/A
	Setback of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
	<ul> <li>avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and</li> </ul>	N/A
	(ii) for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not provide the facades with openable window.	N/A

	(i) avoid any sensitive facades with openable window	<b>N</b> T / A						
	<ul> <li>avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or</li> </ul>	N/A						
	<ul> <li>(ii) provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height of the residential block(s) located at less than 55m</li> </ul>	N/A						
	<ul> <li>away from To Kwa Wan Road to no more than 25m above ground.</li> <li>avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic noise impacts from the slip road</li> </ul>	N/A						
	All the ventilation fans installed in the below will be provided with silencers or acoustics treatment. (i) SPS (ii) ESS (iii) Tunnel Ventilation Shaft	N/A N/A N/A N/A						
	(iii) Tunnel Ventilation Shaft (iv) EFTS depot							
	Installation of retractable roof or other equivalent measures	N/A						
	The following mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including:							
	<ul> <li>Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply;</li> </ul>	N/A						
	<ul> <li>Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps;</li> </ul>	N/A						
	<ul> <li>An alarm should be installed to signal emergency high</li> </ul>	N/A						
Construction Water	<ul> <li>water level in the wet well at all SPSs; and</li> <li>For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should be provided so that swift actions could be taken in case of malfunction of unmanned facilities.</li> </ul>	N/A						
Quality	Land-based Construction							
	Construction Runoff							
	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate	^						
	<ul> <li>mitigation measures which include:</li> <li>use of sediment traps</li> <li>adequate maintenance of drainage systems to prevent flooding and overflow</li> </ul>	^						

Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely,

Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m³ capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.

exposed slope surfaces should be covered by tarpaulin or

other means.

Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.

Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.

Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.

Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain. ۸

٨

Λ

٨

Λ

۸

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.

#### Drainage

It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.

All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.

All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.

#### Sewage Effluent

Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.

#### Stormwater Discharges

Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes

N/A

Λ

۸

Λ

Λ

Λ

Debris and Litter	
In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials. litter or wastes to marine waters does not occur	^
Construction Works at or in Close Proximity of Storm Culvert or Seafront	
The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	^
The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm culvert / nullah.	۸
Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works.	^
Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	^
Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	^
Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	۸
Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	۸
Construction effluent, site run-off and sewage should be properly collected and/or treated.	^
Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	^
Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of construction materials.	^
Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	^
V 6	

	Supervisory staff should be assigned to station on site to closely supervise and monitor the works	^
	Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	۸
	<ul> <li>Good Site Practices</li> <li>It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations for good site practices during construction activities include:</li> <li>Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site</li> <li>Training of site personnel in proper waste management and chemical waste handling procedures</li> <li>Provision of sufficient waste disposal points and regular collection for disposal</li> <li>Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers</li> <li>A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites)</li> </ul>	
Construction Waste Management	<ul> <li>Waste Reduction Measures</li> <li>Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: <ul> <li>Sort C&amp;D waste from demolition of the remaining structures to recover recyclable portions such as metals</li> <li>Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal</li> <li>Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the work force</li> <li>Any unused chemicals or those with remaining functional capacity should be recycled</li> <li>Proper storage and site practices to minimise the potential for damage or contamination of construction materials</li> </ul> </li> </ul>	

	1
Construction and Demolition Material	
Mitigation measures and good site practices should be incorporated into contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include:	
<ul> <li>Where it is unavoidable to have transient stockpiles of C&amp;D material within the Project work site pending collection for disposal, the transient stockpiles should be located away from waterfront or storm drains as far as possible</li> </ul>	۸
<ul> <li>Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric</li> </ul>	٨
<ul> <li>Skip hoist for material transport should be totally enclosed by impervious sheeting</li> </ul>	۸
<ul> <li>Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site</li> </ul>	٨
<ul> <li>The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores</li> </ul>	٨
<ul> <li>The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle</li> </ul>	٨
<ul> <li>All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet</li> <li>The height from which excavated materials are</li> </ul>	۸
<ul> <li>The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading</li> </ul>	٨
When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	٨
Chemical Waste	
After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation	٨
 K-8	

	General Refuse	
	General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem	#
	CM1 All existing trees should be carefully protected during construction.	^
Landscape and Visual	CM2 Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	N/A
	CM3 Control of night-time lighting.	^
	CM4 Erection of decorative screen hoarding.	٨

Remarks:	<ul> <li>Compliance of mitigation measure;</li> </ul>
	X Non-compliance of mitigation measure;
	N/A Not Applicable at this stage;
	N/A(1) Not observed;
	• Non-compliance but rectified by the contractor;
	* Recommendation was made during site audit but improved/rectified by the contractor.
	# Recommendation was made during site audit and to be improved / rectified by the contractor.

APPENDIX L SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

# Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

## **Reporting Month**: March 2019

Log Ref.	Received Date	Details of Warning / Summons and Successful Prosecutions	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A

#### Warnings / Summons and Successful Prosecutions received in the reporting month

**Remarks**: No warning/summon and prosecution were received in the reporting period.

#### **Complaint Log**

EPD Complaint Ref No.	Date of Complaint	Complaint Details	Investigation / Mitigation Action						
N/A	N/A	N/A	N/A	N/A					

APPENDIX M GENERATED WASTE QUANTITY

# APPENDIX IV Monthly Summary Waste Flow Table

(PS Clause 1.86)

Name of Department: CEDD

Contract No. : KL/2012/03

# Monthly Summary Waste Flow Table for March 2019 (year) (in tons)

		Total Quantity Generated	Actual	Quantities of Ir	nert C&D Mater	ials Generated N	Ionthly	Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Disposal Loads		Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse	
	(No.s)	(in tons)	0	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	
2013 (Oct - Dec) Sub-Total	108	463.69	0	0	0	0	0	0	0	0	0	463.69	
2014 (Jan – Dec) Sub-Total	24	16925.7	0	0	16798.93	83.66	1804.27	0	0	0	0	43.11	
2015 (Jan – Dec) Sub-Total	284	81859.97	0	0	38291.91	43457.21	19920	0	0	0	0	310.26	
2016 (Jan – Dec) Sub-Total	3369	50762.64	0	0	0	49894.67	4020	0	0	0	0	867.95	
2017 (Jan – Dec) Sub-Total	2737	39615.16	0	0	0	38996.26	0	0	0	0	0	603.11	
2018 (Jan – Dec) Sub-Total	566	7483.57	0	0	0	6803.57	0	0	0	0	0	680	
Jan-19	27	237.51	0	0	0	0	0	0	0	0	0	237.51	
Feb-19	8	23.03	0	0	0	0	0	0	0	0	0	23.03	
Mar-19	22	55.8	0	0	0	0	0	0	0	0	0	55.8	
Apr-19													
May-19													
Jun-19													
Total	7145	197427.07	0	0	55090.84	139235.4	25744.27	0	0	0	0	3284.46	

APPENDIX N CONSTRUCTION PROGRAMME

									20	19							
			Febru	lary				arch	1		Ar	oril		May			
		7	14	21	28	7	14	21	31	7	14	21	30	7	14	21	31
	Sung Wong Tai Road Plumbing and Drainage Base course Asphalt laying Road Marking Planting Resurfacing Temp. Traffic Arrangement																
	Scraping and asphalt laying Pump Station NPS and PS2 NPS : FSI Scada system test Three days test Recycle wood installation Painting Window Glass installation External lighting & CCTV Planting Made good defects																
3	PS2 : FSI Scada system test Benching Three days test Fall arrest system Cladding Fence wall External lighting & CCTV Planting																
	Landscaping (Patch up) Road L6 footpath																

## FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix B

Monthly EM&A Report For Contract No. KL/2014/01 Kai Tak Development - Stage 2 Infrastructure works for Developments at Southern Part of the Former Runway

## **Civil Engineering and Development Department**

EP-337/2009 & EP-445/2013/A

# Contract No. KL/2014/01

#### Kai Tak Development – Stage 2 Infrastructure works for Developments at Southern Part of the Former Runway

Monthly EM&A Report March 2019

(Version 1.0)

Approved By
(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

#### CINOTECH CONSULTANTS LTD Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk



Ka Shing management consultant Limited Carbon Audit (Kith)





Our ref: 10-4-2019 10-4-2019

By email: clive.cheng@aecom-ktd.com and By hand

Supervising Officer Representative Aecom Asia Co Ltd. 8/F Grand Central Plaza Tower 2 138 Shatin Rural Committee Road Sha Tin, N.T. Hong Kong (Attn: Mr. Cheng Chi Hung)

Dear Mr. Cheng,

Re: Contract No. KL/2014/01 (Environmental Permit Nos. EP-337/2009 and EP-445/2013/A) Kai Tak Development –Stage 2 Infrastructure Works for Developments at Southern Part of the Former Runway <u>Monthly EM&A report for March 2019</u>

Reference is made to the Environmental Team's submission of the draft Monthly EM&A Report (version 1.0) for March 2019 provided to Independent Environmental Checker (IEC) via email dated on 8 th April 2019 for review and comment.

Please be informed that IEC has no adverse comment on the captioned submission. IEC writes to verify the captioned submission in accordance with Specific Condition 2.2 of the Environmental Permit No. 337/2009 and 445/2013/A.

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully,

For and on behalf of

c.c.

Ka Shing Management Consultant Limited

Dr. C.F. Ng

Independent Environmental Checker

CEDD Mr. CHU Chi Hong, Keith AECOM Mr. Anthony Lok CEC-CCC Mr. Eric Fong Cinotech Mr K.S Lee (By email: keithchchu@cedd.gov.hk)(By email: anthony.lok@aecom-ktd.com)(By email: eric-cs-fong@continental-engineering.com)(By email: ks.lee@cinotech.com.hk)

Unit 2, 13/F Kai Yue Commercial Building, 2C Argyle St, Mong Kok, Kowloon 九龍旺角亞皆老街 2C 號啟如商業大厦 13 樓 2 室 Tel: (852) 2618 2166 Fax: (852) 2120 7752 Web Site: www.ka-shing.net 電話: (852) 2618 2166 傳真: (852) 2120 7752 網站: www.ka-shing.net



# TABLE OF CONTENTS

	EXECUTIVE SUMMARY	
	Environmental Monitoring Works	
	Environmental Licenses and Permits	
	Key Information in the Reporting Month	2
	Future Key Issues	2
1.	INTRODUCTION	3
	Background	3
	Project Organizations	
	Construction Activities undertaken during the Reporting Month	4
	Summary of EM&A Requirements	5
2.	AIR QUALITY	6
	Monitoring Requirements	6
	Observations	
3.	NOISE	7
	Monitoring Requirements	7
	Observations	
4.	LANDSCAPE AND VISUAL	8
	Monitoring Requirements	8
	Results and Observations	
5.	ENVIRONMENTAL AUDIT	9
	Site Audits	9
	Status of Environmental Licensing and Permitting	
	Status of Waste Management.	
	Implementation Status of Environmental Mitigation Measures	
	Summary of Mitigation Measures Implemented	
	Implementation Status of Event Action Plans	
	Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution	
		11
6.	FUTURE KEY ISSUES	12
7.	CONCLUSIONS AND RECOMMENDATIONS	14
	Conclusions	14
	Recommendations	

# LIST OF TABLES

- Table INon-compliance Recorded for the Project in the Reporting Month
- Table IISummary Table for Key Information in the Reporting Month
- Table 1.1Key Project Contacts
- Table 1.2Construction Programme Showing the Inter-Relationship with Environmental<br/>Protection/Mitigation Measures
- Table 5.1Summary of Environmental Licensing and Permit Status
- Table 5.2Observations and Recommendations of Site Inspections

# LIST OF FIGURES

Figure 1 Site Layout Plan

## LIST OF APPENDICES

- A Action and Limit Levels
- B Summary of Exceedance
- C Site Audit Summary
- D Event Action Plans
- E Environmental Mitigation Implementation Schedule (EMIS)
- F Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution
- G Waste Generated Quantity

## **EXECUTIVE SUMMARY**

### Introduction

- This is the 36th Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2014/01 - Kai Tak Development – Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway" (Hereafter referred to as "the Project"). This contract work comprises two Schedule 2 designated projects (DP), namely the new distributor road D4 (part) and roads D3A & D4A serving the planned KTD. The DPs are part of the designated projects under Environmental Permits (EP) No.: EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") and EP-445/2013/A ("Kai Tak Development – Roads D3A & D4A") respectively. This report documents the findings of EM&A Works conducted from 1-31 March 2019.
- 2. With reference to the same principle of EIA report of the Project, no air quality monitoring station within 500m and noise monitoring station within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, no relevant air quality and noise monitoring location are required for monitoring under the Project. The monitoring works for recommended monitoring stations in EM&A Manual of the DPs are conducted by Kai Tak Development (KTD) Schedule 3 Project.
- 3. The major site activities undertaken in the reporting month included:
  - TTA implementation, junction improvement works at Shing Fung Road and Wang Chiu Road / Kai Cheung Road;
  - Construction of box culvert and underpass;
  - Construction of utilities trough at Kai Tak Bridge;
  - Construction of pile caps, noise barrier footings and outfalls;
  - Laying of sewer, drainage and pavement;
  - Erection of noise barrier steel structure and panels
  - Construction of Architectural features on Open Space

## **Environmental Monitoring Works**

- 4. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 5. Summary of the non-compliance in the reporting month for the Project is tabulated in Table I.

 Table I
 Non-compliance Recorded for the Project in the Reporting Month

Parameter	No. of Project-rela	ted Exceedance	Action Taken
	Action Level	Limit Level	ACTION TAKEN
Noise	0	0	N/A

Environmental Monitoring for Air Quality and Construction Noise

6. No monitoring for air quality and construction noise is required. No Action/Limit Level exceedance was recorded.

### **Environmental Licenses and Permits**

- 7. Licenses/Permits granted to the Project include the Environmental Permits (EP) for the Project, EP-337/2009 issued on 23 April 2009 and EP-445/2013 issued on 3 May 2013 (Amended Environmental Permit (No.: EP-445/2013/A) issued on 13 August 2014).
- 8. Billing Account for Disposal of Construction Waste (A/C No. 7024073)
- 9. Registration of Chemical Waste Producer (License: 5213-247-C4004-01).
- 10. Water Discharge License (License: WT00023634-2016).
- 11. Construction Noise Permits (Permit: GW-RE0646-18, GW-RE0186-19)

## Key Information in the Reporting Month

12. Summary of key information in the reporting month is tabulated in Table II.

Table II Summary Table for Key mormation in the Keporting worth						
Event	Event Details		Action Taken	Status	Remark	
	Number	Nature				
Complaint received	0		N/A	N/A		
Reporting Changes	0		N/A	N/A		
Notifications of any summons & prosecutions received	0		N/A	N/A		

 Table II
 Summary Table for Key Information in the Reporting Month

#### **Future Key Issues**

13. The future key environmental issues in the coming month include:

- Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- Water spraying for dust generating activity and on haul road;
- Proper storage of construction materials on site;
- Storage of chemicals/fuel and chemical waste/waste oil on site;
- Accumulation of general and construction waste on site;
- Noise from operation of the equipment, especially for excavation activities and machinery on-site;
- Wastewater and runoff discharge from site;
- Regular removal of silt, mud and sand along u-channels and sedimentation tanks; and
- Review and implementation of temporary drainage system for the surface runoff.

## 1. INTRODUCTION

#### Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 2 Infrastructure Works for Developments for Southern Part of the Former Runway is one of the construction stages of KTD. It contains two Schedule 2 DPs including new distributor roads serving the planned KTD and KTD Roads D3A & D4A. The general layout of the Project is shown in **Figure 1.**
- 1.2 One Environmental Permit (EP) No.: EP-337/2009 was issued on 23 April 2009 for new distributor roads serving the planned KTD and one Environmental Permit No.: EP-445/2013 was issued on 3 May 2013 for Kai Tak Development Roads D3A & D4A to Civil Engineering and Development Department (CEDD) as the Permit Holder. Pursuant to Section 13 of the EIAO, the Director of Environmental Protection Department amended the Environmental Permit No.: EP-445/2013 based on the Application No. VEP-449/2014 and the Environmental Permit (No.: EP-445/2013/A) was issued on 13 August 2014.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. EIA Reports (Register No. AEIAR-130/2009 and AEIAR-170/2013) were approved by the Environmental Protection Department (EPD) on 4 March 2009 and 3 May 2013 respectively.
- 1.4 Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2014/01 Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway. The construction work under KL/2014/01 comprises the construction of part of the Road D4 under the EP (EP-337/2009) and the construction of Roads D3A & D4A under the EP (EP-445/2013/A).
- 1.5 Cinotech Consultants Limited was commissioned by Civil Engineering and Development Department (CEDD) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The construction commencement of this Contract is on 13 April 2016. This is the  $36^{th}$  Monthly EM&A report summarizing the EM&A works for the Project from 1 31 March 2019.
- 1.6 All project information since the commencement of work under EPs including Monthly EM&A Reports is made available to the public via internet access at the website: http://www.kl201401.com/

3

#### **Project Organizations**

- 1.7 Different parties with different levels of involvement in the project organization include:
  - Project Proponent Civil Engineering and Development Department (CEDD).
  - The Supervising Officer and the Supervising Officer's Representative (SO) AECOM Asia Co. Ltd. (AECOM).
  - Environmental Team (ET) Cinotech Consultants Limited (CCL).
  - Independent Environmental Checker (IEC) Ka Shing Management Consultant Ltd. (KSMC).
  - Contractor Continental Engineering Corp. and Chit Cheung Construction Co. Ltd. Joint Venture (CCJV).

Table 1.1 Key Project Contacts					
Party	Role	<b>Contact Person</b>	Position	Phone No.	Fax No.
CEDD	Project	Mr. Keith Chu	Senior Engineer	3579 2450	3579
CLDD	Proponent	Ms. Adonia Yung	Engineer	3579 2124	4516
AECOM	Supervising Officer	Mr. Clive Cheng	CRE	3746 1801	2798 0783
	Environmental Team	Mr. K S Lee	Environmental Team Leader	2151 2091	3107
Cinotech		Ms. Betty Choi	Audit Team Leader	2151 2072	1388
KSMC	Independent Environmental Checker	Dr. C. F. Ng	IEC	2618 2166	2120 7752
CCJV	Contractor	Mr. Dennis Ho	Environmental Officer	2960 1398	2960 1399

1.8 The key contacts of the Project are shown in **Table 1.1**.

# Table 1.1 Key Project Contacts

## Construction Activities undertaken during the Reporting Month

- 1.9 The site activities undertaken in the reporting month included:
  - TTA implementation, junction improvement works at Shing Fung Road and Wang Chiu Road / Kai Cheung Road;
  - Construction of box culvert and underpass;
  - Construction of utilities trough at Kai Tak Bridge;
  - Construction of pile caps, noise barrier footings and outfalls;
  - Laying of sewer, drainage and pavement;
  - Erection of noise barrier steel structure and panels
  - Construction of Architectural features on Open Space
- 1.10 The construction programme showing the inter-relationship with environmental protection/mitigation measures is presented in Table 1.2.

Construction Works	Major Environmental Impact	<b>Control Measures</b>
As mentioned in Section 1.8	Noise, dust impact, water quality and waste generation	Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system; Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide mitigation measure to temporary use of chemicals; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.

### Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

## Summary of EM&A Requirements

- 1.11 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
- All monitoring parameters;
- Action and Limit levels for all environmental parameters;
- Event Action Plans;
- Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.12 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 5 of this report.

## 2. AIR QUALITY

### **Monitoring Requirements**

- 2.1 With reference to the same principle of EIA report of the Project, air quality monitoring station should be provided at the Air Sensitive Receivers (ASR) within 500 m from the boundary of this Project. Since the opening of the Centre of Excellence in Paediatrics (Children's Hospital) on 18 December 2019, the hospital is considered as the only relevant monitoring location and therefore the monitoring is required.
- 2.2 As the monitoring works for the hospital is covered by the Contract KL/2014/03 (Kai Tak Development Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway) at the monitoring station (KTD1a), the corresponding monitoring results for March 2019 should be accessed in the EM&A report for the reporting month. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

#### Observations

- 2.3 No monitoring for air quality is required for this report.
- 2.4 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of air quality mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix C.**

## 3. NOISE

## **Monitoring Requirements**

- 3.1 With reference to the same principle of EIA report of the Project, construction noise monitoring station should be provided at the Noise Sensitive Receivers (NSR) within 300 m from the boundary of this Project. Since the opening of the Centre of Excellence in Paediatrics (Children's Hospital) on 18 December 2019, the hospital is considered as the only relevant monitoring location and therefore the monitoring is required.
- 3.2 As the monitoring works for the hospital is covered by the Contract KL/2014/03 (Kai Tak Development Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway) at the monitoring station (KTD1a), the corresponding monitoring results for March 2019 should be accessed in the EM&A report for the reporting month. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

## Observations

- 3.3 No monitoring for construction noise is required for this report. No Action/Limit Level exceedance was recorded. The summary of exceedance record in reporting month is shown in **Appendix B**.
- 3.4 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of construction noise mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix C**.

## 4. LANDSCAPE AND VISUAL

#### **Monitoring Requirements**

4.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

#### **Results and Observations**

- 4.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix C**.
- 4.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 4.4 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix D** shall be performed.

## 5. ENVIRONMENTAL AUDIT

## Site Audits

- 5.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix C**.
- 5.2 Site audits were conducted by representatives of the Contractor, Supervising Officer and ET on 6, 13, 20 and 27 March 2019 in the reporting month. IEC joint site inspection was conducted on 27 March 2019. No non-compliance was observed during the site audits.

## Status of Environmental Licensing and Permitting

5.3 All permits/licenses obtained for the Project are summarized in Table 5.1.

Donmit No.	Valid Period		Details	Status	
Permit No. From To		То	Details	Status	
<b>Environmental Per</b>	mit (EP)				
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	Valid	
EP-445/2013/A	13/08/14	N/A	Construction of Kai Tak Development roads D3A and D4A	Valid	
Effluent Discharge Li	icense				
WT00023634-2016		31/03/21	Wastewater from the construction site including effluent treated by screen and sedimentation tank	Valid	
<b>Registration of Chem</b>	ical Waste P	roducer			
5213-247-C4004-01		N/A	Chemical Waste Types: Surplus paint, waste contaminated by paint, diesel, waste contaminated by diesel, spent lubricating oil and waste, soil contaminated by lubricating oil.	Valid	
Construction Noise Permit (CNP)					
GW-RE0646-18	17/12/18	16/03/19	Construction Noise Permit for the use of powered mechanical equipment for		
GW-RE0186-19	16/03/19	15/06/19	carrying out construction work other than percussive pilling and performing prescribed construction work.		

 Table 5.1
 Summary of Environmental Licensing and Permit Status

## **Status of Waste Management**

- 5.4 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix G**.
- 5.5 In respect of the dump truck cover, the Contractor is reminded to take record photos and

inspection to ensure that all dump trucks have fully covered the skip before leaving the site.

### **Implementation Status of Environmental Mitigation Measures**

5.6 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 5.2.

Parameters	Date	<b>Observations</b> and	Follow-up	
		Recommendations		
Water	27 February 2019	<u>Reminder:</u> Ponding within landscape deck at Urban Room B should be checked regularly.	The condition was observed to be improved/rectified by the contractor during the audit session on 6 March 2019.	
Quality	13 March 2019	<u>Reminder:</u> Ponding on the deck level should be cleared regularly after heavy rainfall.	The condition was observed to be improved/rectified by the contractor during the audit session on 20 March 2019.	
Air Orality	20 March 2019	<u>Reminder:</u> The stockpile should be completely covered by impervious materials.	The condition was observed to be improved/rectified by the contractor during the audit session on 27 March 2019.	
Air Quality	20 March 2019	<u>Reminder:</u> Proper labels should be displayed on NRMMs.	The condition was observed to be improved/rectified by the contractor during the audit session on 27 March 2019.	
Noise				
Waste/ Chemical Management	27 February 2019	<u>Reminder:</u> The accumulation of general refuse near site office and T junction should be avoided.	The condition was observed to be improved/rectified by the contractor during the audit session on 6 March 2019.	
Landscape and Visual				
Permits/ Licences				

 Table 5.2
 Observations and Recommendations of Site Inspections

# Summary of Mitigation Measures Implemented

5.7 An updated summary of the EMIS is provided in **Appendix E**.

# **Implementation Status of Event Action Plans**

5.8 The Event Action Plans for noise and landscape and visual are presented in Appendix D. No Event Action Plan for air quality is considered necessary.

# Construction Noise

5.9 No Action/Limit Level exceedance was recorded in the reporting month.

#### Landscape and visual

5.10 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

5.11 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix F**.

### 6. FUTURE KEY ISSUES

- 6.1 Major site activities undertaken for the coming two months include:
  - TTA implementation, junction improvement works at Shing Fung Road and Wang Chiu Road / Kai Cheung Road;
  - Construction of box culvert and underpass;
  - Construction of utilities trough at Kai Tak Bridge;
  - Construction of pile caps, noise barrier footings and steel structure, outfalls, deck structure and columns;
  - Laying of sewer, drainage and pavement;
  - Erection of noise barrier steel structure and panels
  - 6.2 Key environmental issues in the coming month include:
    - Wastewater and runoff discharge from site;
    - Regular removal of silt, mud and sand along u-channels and sedimentation tanks;
    - Review and implementation of temporary drainage system for the surface runoff;
    - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
    - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
    - Water spraying for dust generating activity and on haul road;
    - Proper storage of construction materials on site;
    - Storage of chemicals/fuel and chemical waste/waste oil on site;
    - Accumulation of general and construction waste on site
- 6.3 The tentative program of major site activities and the impact prediction and control measures for the coming two months, i.e. April and May 2019 are summarized as follows:

Construction Works	Major Impact	Control Measures
	Prediction	
	Air quality impact (dust)	<ul> <li>a) Frequent watering of haul road and unpaved/exposed areas;</li> <li>b) Frequent watering or covering stockpiles with tarpaulin or similar means; and</li> <li>c) Watering of any earth moving activities.</li> </ul>
As mentioned in Section 7.1	Water quality impact (surface run-off)	<ul> <li>a) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains;</li> <li>b) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge;</li> <li>c) Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and</li> <li>d) Provision of measures to prevent discharge into the stream.</li> </ul>

Construction Works	Major Impact Prediction	Control Measures
	Noise Impact	<ul> <li>a) Scheduling of noisy construction activities if necessary to avoid persistent noisy operation;</li> <li>b) Controlling the number of plants use on site;</li> <li>c) Regular maintenance of machines; and</li> <li>d) Use of acoustic barriers if necessary.</li> </ul>

## 7. CONCLUSIONS AND RECOMMENDATIONS

### Conclusions

7.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 to 31 March 2019.

Air Quality and Construction Noise

7.2 No regular monitoring air quality and noise monitoring is required for the Project. No Action/Limit Level exceedance was recorded.

Landscape and visual

7.3 No non-compliance was recorded in the reporting month.

#### **Complaint and Prosecution**

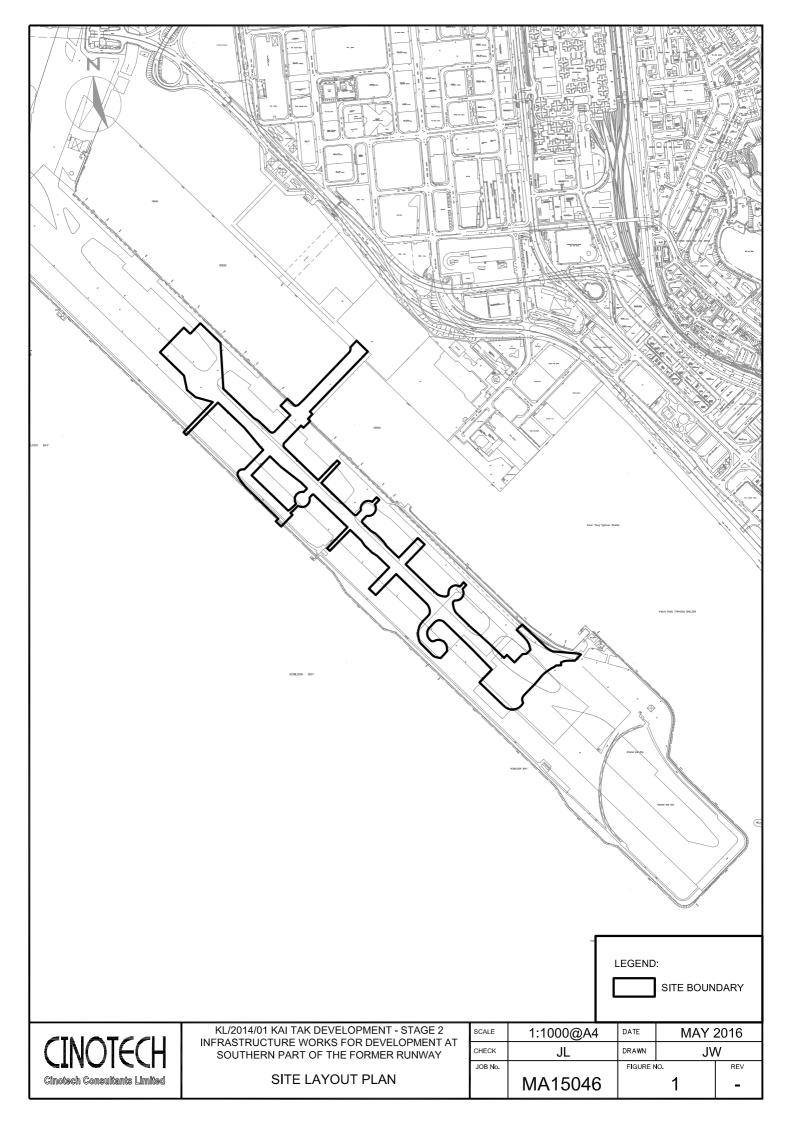
- 7.4 No environmental complaints and environmental prosecution were received in the reporting month.
- 7.5 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

#### Recommendations

7.6 According to the environmental audit performed in the reporting month, the following recommendations were made:

#### Air Quality

• To properly cover the dusty stockpile to prevent dust generation.


#### Water Quality

• To avoid ponding within landscape deck.

#### *Waste/ chemical management*

• To avoid the accumulation of general refuse.

FIGURES



APPENDIX A ACTION AND LIMIT LEVELS

# **Appendix A - Action and Limit Levels**

Monitoring Station	Parameter	Action Level (μg/ m ³ )	$      Limit \ Level^{(1)(2)} \\ (\mu g/\ m^3) $
KTD1a	24-hr TSP	177	260
KTD1a*	1-hr TSP	285	500

#### Table A-1 Action and Limit Levels for Air Quality Monitoring

* 1-hr TSP monitoring should be required in case of complaints.

Table A-2	Action and Limit Levels for Construction Noise Monitoring	
I abit A-2	Action and Limit Levels for Construction Noise Monitoring	

Time Period	Action Level	Limit Level ⁽¹⁾⁽²⁾
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: (1) If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

(2) No regular noise impact monitoring station for this Contract. It is subject to the noise sensitive receiver(s) and additional monitoring work.

(*) 70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods respectively.

APPENDIX B SUMMARY OF EXCEEDANCE

# Contract No. KL/2014/01 Kai Tak Development –Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway

# **Appendix B – Summary of Exceedance**

### Exceedance Record for Contract No. KL/2014/01

Reporting Month: March 2019

#### (A) Exceedance Record for Construction Noise

(NIL in the reporting month)

#### (B) Exceedance Record for Landscape and Visual

(NIL in the reporting month)

APPENDIX C SITE AUDIT SUMMARY

# Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	190306
Date	6 March 2019 (Wednesday)
Time	14:00 - 16:00

		Related
Ref. No.	Non-Compliance	Item No
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.:190227): All environmental deficiencies identified in the previous site audit were rectified/improved by the Contractor.	

	Name	Signature	Date
Recorded by	Jeffrey Lo	67.	7 March 2019
Checked by	Karina Chan	2 alla	7 March 2019

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	190313
Date	13 March 2019 (Wednesday)
Time	14:00 - 16:00

Ref. No.	Non Compliance	Related Item No.
Aci. No.	Non-Compliance           None identified	Item No.
-		-
~		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
R-01	Ponding on the deck level should be cleared regularly after heavy rainfall.	B8
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.:190306): No major environmental deficiency was observed during site inspection.	

	Name	Signature	Date
Recorded by	Jeffrey Lo	G.	14 March 2019
Checked by	Jennifer Mok	9m	14 March 2019

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	190320
Date	20 March 2019 (Wednesday)
Time	14:00 – 16:15

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
R-01	The stockpile should be completely covered by impervious materials.	C7
R-02	Proper labels should be displayed on NRMMs.	C19
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.:190313): All environmental deficiencies identified in the previous audit were rectified/improved by the Contractor	

	Name	Signature	Date
Recorded by	Jeffrey Lo	GT.	20 March 2019
Checked by	Karina Chan	2	20 March 2019

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	190327
Date	27 March 2019 (Wednesday)
Time	14:30 - 16:00

		Related
Ref. No.	Non-Compliance	Item No
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.:190320): All environmental deficiencies identified in the previous audit were rectified/improved by the Contractor	

	Name	Signature	Date
Recorded by	Jeffrey Lo	GJ.	28 March 2019
Checked by	Karina Chan	Jelle	28 March 2019

APPENDIX D EVENT ACTION PLANS

# **Appendix D - Event Action Plans**

Event/Action Plan for Construction Noise

EVENT	ACTION			A TO A REAL PROPERTY OF A
	ET	IEC	ER	CONTRACTOR
Action Level being exceeded	<ol> <li>Notify ER, IEC and Contractor;</li> <li>Carry out investigation;</li> <li>Report the results of investigation to the IEC, ER and Contractor;</li> <li>Discuss with the IEC and Contractor on remedial measures required;</li> <li>Increase monitoring frequency to check mitigation effectiveness.</li> <li>(The above actions should be taken within 2 working days after the exceedance is identified)</li> </ol>	<ol> <li>Review the investigation results submitted by the ET;</li> <li>Review the proposed remedial measures by the Contractor and advise the ER accordingly;</li> <li>Advise the ER on the effectiveness of the proposed remedial measures.</li> <li>(The above actions should be taken within 2 working days after the exceedance is identified)</li> </ol>	<ol> <li>Confirm receipt of notification of failure in writing;</li> <li>Notify Contractor;</li> <li>In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented;</li> <li>Supervise the implementation of remedial measures.</li> <li>(The above actions should be taken within 2 working days after the exceedance is identified)</li> </ol>	<ol> <li>Submit noise mitigation proposals to IEC and ER;</li> <li>Implement noise mitigation proposals.</li> <li>(The above actions should be taken within 2 working days after the exceedance is identified)</li> </ol>
Limit Level being exceeded	<ol> <li>Inform IEC, ER, Contractor and EPD;</li> <li>Repeat measurements to confirm findings;</li> <li>Increase monitoring frequency;</li> <li>Identify source and investigate the cause of exceedance;</li> <li>Carry out analysis of Contractor's working procedures;</li> <li>Discuss with the IEC, Contractor and ER on remedial measures required;</li> <li>Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results;</li> <li>If exceedance stops, cease additional monitoring.</li> <li>The above actions should be taken within 2 working days after the exceedance is identified)</li> </ol>	<ol> <li>Discuss amongst ER, ET, and Contractor on the potential remedial actions;</li> <li>Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly.</li> <li>(The above actions should be taken within 2 working days after the exceedance is identified)</li> </ol>	<ol> <li>Confirm receipt of notification of failure in writing;</li> <li>Notify Contractor;</li> <li>In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented;</li> <li>Supervise the implementation of remedial measures;</li> <li>If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated.</li> <li>(The above actions should be taken within 2 working days after the exceedance is identified)</li> </ol>	<ol> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposals for remedial actions to IEC and ER within 3 working days of notification;</li> <li>Implement the agreed proposals;</li> <li>Submit further proposal if problem still not under control;</li> <li>Stop the relevant portion of works as instructed by the ER until the exceedance is abated.</li> <li>(The above actions should be taken within 2 working days after the exceedance is identified)</li> </ol>

# **Appendix D - Event Action Plans**

# Event/Action Plan for Landscape and Visual

EVENT ACTION		ACTION					
LEVEL	ET	IEC	ER	CONTRACTOR			
Design Check	<ul> <li>Check final design conforms to the requirements of EP and prepare report.</li> </ul>	<ul> <li>Check report.</li> <li>Recommend remedial design if necessary</li> </ul>	<ul> <li>Undertake remedial design if necessary</li> </ul>				
Non- conformity on one occasion	<ul> <li>Identify Source</li> <li>Inform IEC and ER</li> <li>Discuss remedial actions with IEC, ER and Contractor</li> <li>Monitor remedial actions until rectification has been completed</li> </ul>	<ul> <li>Check report</li> <li>Check Contractor's working method</li> <li>Discuss with ET and Contractor on possible remedial measures</li> <li>Advise ER on effectiveness of proposed remedial measures.</li> <li>Check implementatio n of remedial measures.</li> </ul>	<ul> <li>Notify Contractor</li> <li>Ensure remedial measures are properly implemented</li> </ul>	<ul> <li>Amend working methods</li> <li>Rectify damage and undertake any necessary replacement</li> </ul>			
Repeated Non- conformity	<ul> <li>Identify Source</li> <li>Inform IEC and ER</li> <li>Increase monitoring frequency</li> <li>Discuss remedial actions with IEC, ER and Contractor</li> <li>Monitor remedial actions until rectification has been completed</li> <li>If non- conformity stops, cease additional monitoring</li> </ul>	<ul> <li>Check monitoring report</li> <li>Check Contractor's working method</li> <li>Discuss with ET and Contractor on possible remedial measures</li> <li>Advise ER on effectiveness of proposed remedial measures</li> <li>Supervise implementatio n of remedial measures.</li> </ul>	<ul> <li>Notify Contractor</li> <li>Ensure remedial measures are properly implemented</li> </ul>	<ul> <li>Amend working methods</li> <li>Rectify damage and undertake any necessary replacement</li> </ul>			

APPENDIX E ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	Mitigation Measures	Status			
Construction Air Qu	Construction Air Quality				
S3.2	8 times daily watering of the work site with active dust emitting activities.	٨			
(AEIAR-130/2009)					
S4.8	Control measures stipulated in the approved KTD Schedule 3 EIA Report should be	٨			
(AEIAR-170/2013)	strictly followed.				
S3.2	Implementation of dust suppression measures stipulated in Air Pollution Control				
(AEIAR-130/2009)	(Construction Dust) Regulation. The following mitigation measures, good site practices				
and	and a comprehensive dust monitoring and audit programme are recommended to				
S4.8	minimize cumulative dust impacts.				
(AEIAR-170/2013)	• Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission.	*			
	<ul> <li>Misting for the dusty material should be carried out before being loaded into the vehicle.</li> </ul>	^			
	• Any vehicle with an open load carrying area should have properly fitted side and tail boards.	٨			
	• Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	^			
	• The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation.	^			
	• The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	^			
	• Vehicle washing facilities should be provided at every vehicle exit point.	^			

# Appendix E - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

EIA Ref.	Mitigation Measures	Status
	<ul> <li>The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.</li> <li>Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet.</li> <li>Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides; and</li> <li>Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.</li> </ul>	∧ ∧ ∧
Construction Noise		
S3.3 (AEIAR-130/2009)	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump.	^
S3.3 (AEIAR-130/2009)	Good Site Practice:	
(AEIAK-130/2009)	• Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program.	^
	• Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program.	٨
	<ul> <li>Mobile plant, if any, should be sited as far away from NSRs as possible.</li> </ul>	^
	<ul> <li>Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum.</li> </ul>	٨
	<ul> <li>Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.</li> </ul>	٨
	• Material stockpiles and other structures should be effectively utilized, wherever	^

EIA Ref.	Mitigation Measures	Status
	practicable, in screening noise from on-site construction activities.	
S3.3 (AEIAR-130/2009)	Scheduling of Construction Works during School Examination Period	N/A
S3.8 (AEIAR-170/2013)	Provision of a landscaped deck along Roads D3A & D4A.	N/A
S3.8 (AEIAR-170/2013)	<ul> <li>Provision of about 1090 m length of vertical noise barrier (connected to the deck) at Roads D3A &amp; D4A;</li> <li>Provision of about 60 m length of overhang vertical noise barrier (connected to the deck) at Road D4A; and</li> <li>Provision of staircases with noise barriers next to Sites 4A1 and 4B1</li> <li>It should be noted that the exact length of the mitigation measures would be subject to minor refinement during the detailed design stage.</li> </ul>	N/A N/A N/A
S3.8 (AEIAR-170/2013)	Non-noise sensitive use areas within Sites 4A1 and 4B1.	N/A
S3.8 (AEIAR-170/2013)	Avoid sensitive façade with openable window facing Road D3A.	N/A
<b>Construction Water</b>	Quality	
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	<ul> <li><u>Construction Runoff</u></li> <li>Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include:         <ul> <li>use of sediment traps</li> <li>adequate maintenance of drainage systems to prevent flooding and overflow</li> </ul> </li> </ul>	∧ ∧

EIA Ref.	Mitigation Measures	Status
	Construction site should be provided with adequately designed perimeter channel and pre- treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	Λ
	Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.	٨
S5.8 (AEIAR-170/2013)	Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary.	٨
	Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they should be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	*
S3.4 (AEIAR-130/2009)	Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m ³ capacity, are recommended as a general mitigation measure	٨

EIA Ref.	Mitigation Measures	Status
	which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	^
(12211) (17072010)	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	٨
S3.4 (AEIAR-130/2009)	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.	^
	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	٨
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting	^

EIA Ref.	Mitigation Measures	Status
	from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	
S5.8 (AEIAR-170/2013)	Boring and Drilling Water Water used in ground boring and drilling for site investigation or rock / soil anchoring should as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater should be discharged into storm drains via silt removal facilities.	٨
	Acid Cleaning, Etching and Pickling Wastewater Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be neutralized to within the pH range of 6 to 10 before discharging into foul sewers	^
S3.4	Drainage	
(AEIAR-130/2009)	It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.	٨
S3.4 (AEIAR-130/2009)	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	^

EIA Ref.	Mitigation Measures	Status
S3.4 (AEIAR-130/2009)	All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	Λ
S5.8 (AEIAR-170/2013)	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distance of 100 m should be maintained between the discharge points of construction site effluent and the existing seawater intakes and the planned WSR mentioned in S5.3.1 as appropriate. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO licence which is under the ambit of regional office (RO) of EPD.	Λ
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	Sewage EffluentConstruction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	٨
S5.8	Notices should be posted at conspicuous locations to remind the workers not to discharge	^

EIA Ref.	Mitigation Measures	Status
(AEIAR-170/2013)	any sewage or wastewater into the surrounding environment. Regular environmental audit of the construction site will provide an effective control of any malpractices and can encourage continual improvement of environmental performance on site. It is anticipated that sewage generation during the construction phase of the project would not cause water pollution problem after undertaking all required measures.	
S3.4 (AEIAR-130/2009) and S5.8 (AEIAR-170/2013)	Stormwater Discharges Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes.	٨
	Debris and Litter In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur.	٨
S5.8 (AEIAR-170/2013)	Accidental Spillage Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation, should be observed and complied with for control of chemical wastes. Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.	^

EIA Ref.	Mitigation Measures	Status
	<ul> <li>Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows:</li> <li>Suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport.</li> <li>Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents.</li> <li>Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.</li> </ul>	Λ Λ Λ
<b>Construction Waste</b>	Management	
S6.7 (AEIAR-170/2013)	Prepare a Waste Management Plan, which becomes a part of the Environmental Management Plan, in accordance with the requirements stipulated in ETWB TC(W) No. 19/2005, approved by the Engineer/Supervising Officer of the Project based on current practices on construction sites.	٨
S3.5 (AEIAR-130/2009) and S6.7 (AEIAR-170/2013)	<ul> <li>Good Site Practices</li> <li>It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations for good site practices during construction activities include:</li> <li>Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training of site personnel in proper waste management and chemical waste handling procedures</li> </ul>	Λ
	Provision of sufficient waste disposal points and regular collection for disposal	٨

EIA Ref.	Mitigation Measures	Status
	• Appropriate measures to minimise windblown litter and dust during transportation of	^
	waste by either covering trucks or by transporting wastes in enclosed containers	
	<ul> <li>A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites)</li> </ul>	٨
	<ul> <li>Regular cleaning and maintenance systems, sumps and oil interceptors</li> </ul>	٨
	<ul> <li>Separation of chemical wastes for special handling and appropriate treatment</li> </ul>	^
	Waste Reduction Measures	
	Good management and control can prevent the generation of a significant amount of	
	waste. Waste reduction is best achieved at the planning and design stage, as well as by	
	ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	
	• Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals	٨
	<ul> <li>Segregation and storage of different types of waste in different containers, skips or</li> </ul>	Λ
	stockpiles to enhance reuse or recycling of materials and their proper disposal	
	• Encourage collection of aluminium cans, PET bottles and paper by providing separate	^
	labelled bins to enable these wastes to be segregated from other general refuse generated by the work force	
	<ul> <li>Any unused chemicals or those with remaining functional capacity should be recycled</li> </ul>	Λ
	• Proper storage and site practices to minimise the potential for damage or contamination of construction materials	٨
	• Plan and stock construction materials carefully to minimize amount of waste	٨
	<ul> <li>generated and avoid unnecessary generation of waste</li> <li>Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycle.</li> </ul>	^

EIA Ref.	Mitigation Measures	Status
S3.5 (AEIAR-130/2009)	Construction and Demolition Materials Mitigation measures and good site practices should be incorporated in the contract document to control potential environmental impact from handling and transportation of	
	<ul> <li>C&amp;D material. The mitigation measures include:</li> <li>Where it is unavoidable to have transient stockpiles of C&amp;D material within the Project work site pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible.</li> </ul>	٨
	<ul> <li>Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric.</li> </ul>	٨
	• Skip hoist for material transport should be totally enclosed by impervious sheeting.	^
	• Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site.	٨
	• The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.	^
	• The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle.	^
	<ul> <li>All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet.</li> </ul>	٨
	• The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.	٨
	When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of	^
	the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket	

EIA Ref.	Mitigation Measures	Status
	System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirement sand implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	
S3.5 (AEIAR-130/2009)	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem	*
Construction Lands	cape and Visual	I
S3.8.12	• Minimized construction area and contractor's temporary works areas.	٨
(AEIAR-130/2009)	• All existing trees should be carefully protected during construction.	^
and S7.9 (AEIAR-170/2013)	• Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	٨
	• Control of night-time lighting.	^
	<ul> <li>Erection of decorative screen hoarding.</li> </ul>	٨
	<ul> <li>Reduction of construction period to practical minimum.</li> </ul>	٨
	<ul> <li>Limitation of / Ensuring no run-off into surrounding landscape and adjacent seawater areas.</li> </ul>	٨
	• Temporary or advance landscape should be provided along the temporary access roads to the Cruise Terminal until such time as road D3 is open.	^

Remarks:	EIA Report (AEIAR-130/2009) – Kai Tak Development			
	EIA Report (AEIAR-170/2013) – Kai Tak Development – Roads D3A & D4A			
	Compliance of mitigation measure;	X Non-compliance of mitigation measure;		
	<ul><li>N/A Not Applicable at this stage;</li><li>N/A(1) Not observed;</li></ul>	• Non-compliance but rectified by the contractor;		
	* Recommendation was made during site audit but improved/rectified by the contractor.	# Recommendation was made during site audit but not yet improved/rectified by the contractor.		

APPENDIX F SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

# Contract No. KL/2014/01 Kai Tak Development –Stage 2 Infrastructure Works for Developments at the Southern Part of the Former Runway

Appendix F – Summary of environmental complaint, warning, summon and notification of successful prosecution

**Reporting Month**: March 2019

#### Contract No. KL/2014/01

Log Ref.	Location	Received Date	Details of Complaint/warning/summon and prosecution	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A	N/A

**Remarks**: No environmental complaint/warning/summon and prosecution were received in the reporting period.

APPENDIX G WASTE GENERATED QUANTITY

		Actual Quan	tities of Inert C&		Actual Qua	ntities of C&D V	Wastes Generate	d Monthly			
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in tonne)
Jan	3289.57	0	0	0	3289.57	0	0	0	0	0	269.42
Feb	21.88	0	0	0	21.88	0	0	0	0	0	145.98
Mar	10.18	0	0	0	10.18	0	0	0	0	0	394.09
Apr											
May											
June											
Sub-total	3321.63	0	0	0	3321.63	0	0	0	0	0	809.49
July											
Aug											
Sept											
Oct											
Nov											
Dec											
Total	3321.63	0	0	0	3321.63	0	0	0	0	0	809.49

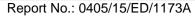
#### Monthly Summary Waste Flow Table for 2019

## FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix C


Monthly EM&A Report For Contract No. KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

#### FUGRO TECHNICAL SERVICES LIMITED Tel

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 : +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com





#### **MONTHLY EM&A REPORT**

March 2019

- Client **Civil Engineering and Development** : Department, HKSAR KLN/2015/07 Contract No. 5 **Contract Name :** Environmental Monitoring Works for Contract KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway **Report No.** 0405/15/ED/1173A 2 EP-337/2009 New Distributor Roads Serving the Planned Kai Tak **Development Area** EP-339/2009/A Decommissioning of the Remaining Parts (Ex-GFS Building, Radar Station and Hong Kong Aviation Club) of the former Kai Tak Airport
- Trunk Road T2 EP-451/2013

Prepared by Toby K. H. Wan ÷

**Reviewed by** 2

Certified by

Alfred Y. S. Lam

÷

Colin K. L. Yung **Environmental Team Leader Fugro Technical Services Limited** 

A Fugro Group Company



Ref.: CEDKTDS3EM00_0_0380L.19

11 April 2019

By Post and Email

Hyder-Meinhardt Joint Venture 17/F, Two Harbour Square, 180 Wai Yip Street, Kwun Tong Kowloon, Hong Kong

Attention: Mr. Wong W. K., Chris

Dear Mr. Wong,

#### Re: Contract No. KL/2014/03 – Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway <u>Monthly EM&A Report for March 2019</u>

Reference is made to the Environmental Team's submission of the Monthly EM&A Report for March 2019 (Report No. 0405/15/ED/1173A) we received by e-mail on 11 April 2019.

Please be informed that we have no adverse comment on the captioned report. We hereby verify the captioned submission according to Condition 3.3 of EP-337/2009, Condition 3.3 of EP-339/2009/A and Condition 3.4 of EP-451/2013.

Thank you for your attention. Please do not hesitate to contact us should you have any queries.

Yours sincerely, For and on behalf of Ramboll Hong Kong Limited

H & Reof

F. C. Tsang Independent Environmental Checker

c.c. CEDD Fugro CRBC Attn.: Ms. Amy Chu Attn.: Mr. Colin K. L. Yung Attn.: Mr. Dickey Yau Fax: 2369 4980 By email Fax: 2283 1689

Q:\Projects\CEDKTDS3EM00\02_Proj_Mgt\02_Corr\CEDKTDS3EM00_0_0380L.19.docx

Ramboll Hong Kong Limited 英環香港有限公司

21/F, BEA Harbour View Centre, 56 Gloucester Road, Wan Chai, Hong Kong Tel: 852.3465 2888 Fax: 852.3465 2899 www.ramboll.com



### TABLE OF CONTENTS

EXE(	CUTIVE SUMMARY	1
1.	INTRODUCTION	2
2.	AIR QUALITY	5
3.	NOISE	10
4.	LANDSCAPE AND VISUAL	14
5.	WASTE MANAGEMENT	15
6.	SITE INSPECTION	16
7.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	17
8.	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	18
9.	FUTURE KEY ISSUES	19
10.	CONCLUSIONS	20

#### FIGURES

Figure 1	Project General Layout
Figure 2	Air and Noise Monitoring Locations

#### LIST OF APPENDICES

Appendix A	Construction Programme
------------	------------------------

- Appendix B Project Organization Chart
- Appendix C Action and Limit Levels for Air Quality and Noise
- Appendix D Calibration Certificates of Monitoring Equipment
- Appendix E Environmental Monitoring Schedules
- Appendix F Air Quality Monitoring Data
- Appendix G Noise Monitoring Data
- Appendix H Event Action Plans
- Appendix I Waste Flow Table
- Appendix J Environmental Mitigation Implementation Schedule (EMIS)
- Appendix K Weather and Meteorological Conditions during Reporting Month
- Appendix L Cumulative statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions
- Appendix M Summary of Site Audit in the Reporting Month
- Appendix N Outstanding Issues and Deficiencies



#### EXECUTIVE SUMMARY

- i. The Civil Engineering and Development Department HKSAR has appointed Fugro Technical Services Limited (FTS) to undertake the Environmental Team services for the Project and implement the EM&A works.
- ii. This Monthly EM&A report presents the environmental monitoring and audit works for the period between 1 March and 31 March 2019. As informed by the Contractor, major activities in the reporting month were:
  - Excavation and laying of drainage pipe and manhole;
  - Excavation and ELS construction.
  - · Construction of SUS structure; and
  - · Construction of District Cooling System.

#### **Breaches of the Action and Limit Levels**

- iii. No Action / Limit Level exceedance was recorded for 24-hr TSP at KTD1a, KTD2b and KER1b in the reporting month.
- iv. A Limit Level exceedance was recorded. Exceedance was recorded for construction noise Limit Level at KTD2b on 22 March 2019. No Action / Limit Level exceedance was recorded for construction noise at KTD1a and KER1b in the reporting month.

#### Complaint, Notification of Summons and Successful Prosecution

v. No environmental complaint, notification of summons and successful prosecution were received in the reporting month.

#### **Reporting Changes**

vi. There was no reporting change in the reporting month.

#### Future Key Issues

vii. The key issues to be considered in the coming reporting month include:

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality, waste management and landscape and visual impacts.



#### 1. INTRODUCTION

#### 1.1 Background

- 1.1.1 The Kai Tak Development is located in the south-eastern part of Kowloon Peninsula of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling.
- 1.1.2 Contract No. KL/2014/03 is the works package to construct an approximately 420m long supporting underground structure (SUS) underneath Shing Cheong Road and Cheung Yip Street. The EM&A programme under this Contract is governed by three EPs (EP-337/2009, EP-339/2009/A and EP-451/2013) and two EM&A Manuals (AEIAR-130/2009 and AEIAR-174/2013). The Works to be executed under this Contract and corresponding EPs include but not be limited to the following main items:

#### EP-451/2013 – Trunk Road T2

(i) Construction of approximately 420m long supporting underground structure (SUS) including diaphragm walls, barrettes, piled foundation, top and bottom slabs, end wall and adits underneath Shing Cheong Road and Cheung Yip Street;

#### EP-337/2009 – New Distributor Roads Serving the Planned Kai Tak Development

- (ii) Widening and re-alignment of Cheung Yip Street of approximately 330m long and associated footpaths;
- (iii) Demolition, reconstruction and widening of Shing Cheong Road of approximately 410m long and associated footpaths;
- (iv) Construction of drainage outfall and modification of existing seawall;
- (v) Construction of ancillary works including surface drainage, sewerage, water, fire fighting, street lighting, street furniture, road marking, road signage, utilities and services, irrigation and landscape works.

# EP-339/2009/A – Decommissioning of the Remaining Parts (Ex-GFS Building, Radar Station and Hong Kong Aviation Club) of the former Kai Tak Airport

(vi) Demolition of RADAR Tower and guard house;

#### Other works not covered by any EP

- (vii) Construction of two subways between Phase II of New Acute Hospital (Site A) and Hong Kong Children's Hospital (Site C), and between Phase I of New Acute Hospital (Site B) and Site C;
- (viii) Construction of District Cooling System (DCS) along Cheung Yip Street and Shing Cheong Road
- 1.1.3 The location and boundary of the site is shown in **Figure 1**.
- 1.1.4 This Monthly EM&A report is required under EP-337/2009 Condition 3.3, EP-339/2009/A Condition 3.3 and EP-451/2013 Condition 3.4. It is to report the results and findings of the EM&A programme required in the EM&A Manuals.
- 1.1.5 This is the 37th monthly EM&A Report which summarize the impact monitoring results and audit findings for the Project within the period between 1 March and 31 March 2019.



#### 1.2 **Project Organization**

- 1.2.1 The project proponent was the Civil Engineering and Development Department, HKSAR (CEDD). Hyder Meinhardt Joint Venture (HMJV) was commissioned by CEDD as the Engineer for the Project. Ramboll Hong Kong Limited was commissioned as the Independent Environmental Checker (IEC). China Road and Bridge Corporation (Hong Kong) (CRBC) was appointed as the main contractor for the construction works under the contract KL/2014/03. Fugro Technical Services Limited (FTS) was appointed as the Environmental Team (ET) by CEDD to implement the EM&A programme for the Project.
- 1.2.2 The organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarized in **Table 1.1**.

Party	Position	Name	Telephone	Fax
Project Proponent (CEDD)	Co-ordinator	Ms. Amy Chu	3106 3172	2369 4980
Engineer's Representative (HMJV)	Chief Resident Engineer	Mr. W. K., Chris Wong	3742 3803	3742 3899
IEC (Ramboll Hong Kong Limited)	Independent Environmental Checker	Mr. F. C. Tsang	3465 2851	3465 2899
Main Contractor (CRBC)	Site Agent	Mr. Yau Kwok Kiu, Dickey	5699 4503	2283 1689
	Environmental Officer	Mr. Kola Lam	55454625	2283 1689
ET (FTS) Environmental Team Leader		Mr. Colin Yung	3565 4114	3565 4160

 Table 1.1
 Contact Information of Key Personnel

### **1.3** Construction Programme and Activities

- 1.3.1 The construction of the Project commenced in February 2016 and is expected to complete in 2020. The construction programme is shown in **Appendix A**.
- 1.3.2 A summary of the major construction activities undertaken in the reporting month were:
  - Excavation and laying of drainage pipe and manhole;
  - Excavation and ELS construction.
  - · Construction of SUS structure; and
  - Construction of District Cooling System.

# 1.4 Inter-relationship with the environmental protection/ mitigation measures with the construction programme

1.4.1 According to the construction activities in the construction programme mentioned in Section 1.3.2, the following environmental protection/ mitigation measures including Air Quality Impact, Construction Noise Impact, Water Quality Impact, Chemical and Waste Management, Landscape and Visual Impact shall be implemented:

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



- · Sufficient watering of the works site with the active dust emitting activities;
- · Limitation of the speed for vehicles on unpaved site roads;
- Properly cover or enclosure of the stockpiles and dusty materials;
- · Good site practices on loading dusty materials;
- · Providing sufficient vehicles washing facilities at every vehicle exit point;
- · Good maintenance to the plant and equipment;
- · Use of quieter plant and Quality Powered Mechanical Equipment (QPME);
- Use of acoustic fabric and noise barrier;
- Using the approved Non-road Mobile Machineries (NRMMs);
- Proper storage and handling of chemical;
- Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge;
- Onsite waste sorting and implementation of trip ticket system;
- Training of the site personnel in proper waste management and chemical waste handling procedures;
- · Proper storage of the construction materials;
- · Erection of decorative screen hoarding;
- · Strictly following the Environmental Permits and Licenses;
- Provide sufficient mitigation measures as recommended in Approved EIA Reports

### 1.5 Status of Environmental Licences, Notifications and Permits

1.5.1 A summary of the relevant environmental licenses, permits and/or notifications on environmental protection for this Contract is presented in **Table 1.2**.

Environmental License / Permit / Notification	Reference Number	Valid From	Valid Till
Environmental Permit	EP-337/2009 EP-339/2009/A EP-451/2013	23 April 2009 18 June 2009 19 September 2013	Not Applicable Not Applicable Not Applicable
Notification pursuant to Air Pollution (Construction Dust) Regulation	395601	4 December 2015	Not Applicable
Billing Account for Waste Disposal	A/C No.: 7023814	22 December 2015	Not Applicable
Billing Account for Waste Disposal (Vessel)	A/C No.: 7027469	13 February 2019	18 May 2019
Construction Noise Permit	GW-RE0866-18	4 January 2019	3 June 2019
Construction Noise Permit	GW-RE0036-19	21 January 2019	11 July 2019
Wastewater Discharge License	WT00023125-2015	6 January 2016	31 January 2021
Chemical Waste Producer License	5213-247-C1232-12	23 November 2015	Not Applicable

### Table 1.2 Relevant Environmental Licenses, Permits and/or Notifications



#### 2. AIR QUALITY

#### 2.1 Monitoring Requirement

In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out at least once every 6 days. In case of complaints, 1-hour TSP monitoring should be carried out at least 3 times per 6 days when the highest dust impacts are likely to occur. The Action and Limit Levels of the air quality monitoring are given in **Appendix C**.

#### 2.2 Monitoring Equipment

The 24-hour TSP air quality monitoring was performed using High Volume Air Samplers (HVS) located at each of the designated monitoring station. Portable TSP Monitors would be used in case of complaints for 1-hour TSP monitoring.

**Table 2.1** summarizes the equipment used in air quality monitoring.

Item	Location	Brand	Model Equipment		Serial Number		
			TE-5170 (TSP)	High Volume Sampler			
			TE-300-310X	- Mass Flow Controller	2037		
1	KER1b	Tisch	TE-5005X	- Blower Motor Assembly	3482		
			TE-5007X	- Mechanical Timer	4488		
			TE-5009X	- Continuous Flow Recorder	4371		
			TE-5170 (TSP)	High Volume Sampler			
		Tisch	TE-300-310X	- Mass Flow Controller	2524		
2	KTD1a		TE-5005X	- Blower Motor Assembly	4037		
			TE-5007X	- Mechanical Timer	5160		
			TE-5009X	- Continuous Flow Recorder	4377		
			TE-5170 (TSP)	High Volume Sampler			
			TE-300-310X	- Mass Flow Controller	2618		
3	KTD2b	Tisch	TE-5005X	- Blower Motor Assembly	3838		
			G3031	- Mechanical Timer	2251		
			G1051	- Continuous Flow Recorder	2307		
4		Tisch	TE-5025A	TE-5025A HVS Sampler Calibrator			
5		*Sibata	Model LD-3B	Sibata Portable TSP Monitors	NA		

Table 2.1 Air Quality Monitoring Equipment

Note:

No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted.

#### 2.3 Monitoring Methodology

2.3.1 24-hour TSP air quality monitoring

**HVS Installation** 

The following guidelines were adopted during the installation of HVS:

- Sufficient support is provided to secure the samplers against gusty wind.
- No two samplers are placed less than 2 meters apart.



- The distance between the sampler and an obstacle, such as buildings, is at least twice the height that the obstacle protrudes above the sampler.
- A minimum of 2 meters of separation from walls, parapets and penthouses is required for rooftop samples.
- A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
- No furnaces or incineration flues are nearby.
- Airflow around the samplers is unrestricted.
- The samplers are more than 20 meters from the drip line.
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.

### Filters Preparation

Fiberglass filters (provided by the HOKLAS accredited laboratory) shall be used (Note: these filters have a collection efficiency of larger than 99% for particles of 0.3  $\mu$ m diameter). A HOKLAS accredited laboratory (ALS Technichem (HK) Pty Ltd.) is responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for monitoring team.

All filters are equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature is around 25°C and not variable by more than  $\pm 3$ °C; the relative humidity (RH) is < 50% and not variable by more than  $\pm 5$ %. A convenient working RH is 40%.

#### Operating / Analytical Procedures

Operating / analytical procedures for the air quality monitoring are highlighted as follows:

- Prior to the commencement of the dust sampling, the flow rate of the HVS are properly set (between 0.6 m³/min and 1.7 m³/min) in accordance with the EM&A manual. The flow rate shall be indicated on the flow rate chart.
- The power supply shall be checked to ensure the samplers worked properly.
- On sampling, the samplers shall be operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
- The filter holding frame is then removed by loosening the four nuts and carefully a weighted and conditioned filter is centered with the stamped number upwards, on a supporting screen.
- The filter shall be aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame is tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The shelter lid shall be closed and secured with the aluminum strip.
- The timer is then programmed. Information shall be recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After sampling, the filter shall be removed and sent to laboratory for weighing. The elapsed time is also recorded.
- Before weighing, all filters are equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results are returned to MCL for further analysis of TSP concentrations collected by each filter.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.



#### 2.3.2 1-hour TSP air quality monitoring

#### **Operating / Analytical Procedures**

The measuring procedures of the 1-hr dust meter are in accordance with the Manufacturer's instruction Manual as follows:

- Pull up the air sampling inlet cover
- Change the Mode 0 to BG once
- Push Start/Stop switch once
- Turn the knob to SENSI.ADJ and press it
- Push Start/Stop switch once
- Return the knob to the position MEASURE slowly
- Push the timer set switch to set measuring time
- Remove the cap and make a measurement

#### 2.4 Maintenance / Calibration

2.4.1 24-hour TSP air quality monitoring

The following maintenance / calibration are required for the HVS:

- The high volume motors and their accessories are properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking are made to ensure that the equipments and necessary power supply are in good working condition.
- All HVS shall be calibrated (five point calibration) using Calibration Kit upon installation and thereafter in every 3 months.
- A copy of the calibration certificates for the HVS and calibrator are provided in Appendix D.
- 2.4.2 1-hour TSP air quality monitoring

The portable TSP monitor should be calibrated at 1 year intervals

#### 2.5 Monitoring Locations

- 2.5.1 According to the EM&A Manual, three air quality monitoring locations, namely KTD1, KTD2 and KER1, are covered by this Contract within the South Apron Area of Former Kai Tak Airport. The other two air quality monitoring locations, which are identified in Cha Kwo Ling area, are farther than 500m away from the site boundary and thus not covered by this Contract. The monitoring works in Cha Kwo Ling area are covered by other Contract(s) respectively.
- 2.5.2 According to the approved alternative baseline air quality and noise monitoring locations (EPD reference: () in EP2/K19/A/21 pt.5), the original monitoring locations (KTD1, KTD2 and KER1) are proposed to be replaced by alternative monitoring locations (KTD1a, KTD2a and KER1a) for air quality monitoring.
- 2.5.3 According to the approved relocation of monitoring location KER1a (EPD reference: () in EP2/K19/A/21 pt.5), the monitoring location KER1a are proposed to be relocated by alternative monitoring locations KER1b for air quality monitoring.



- According to the approved relocation of monitoring location KTD2a (EPD reference: () in 2.5.4 EP2/K19/A/21 pt.6), the monitoring location KTD2a are proposed to be relocated by alternative monitoring locations KTD2b for air quality monitoring.
- 2.5.5 The most updated locations are summarized in Table 2.2 and shown in Figure 2.

Monitoring Station	Location			
KTD1a	Centre of Excellence in Paediatrics (Children's Hospital)			
KTD2b	G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital)			
KER1b	Site Boundary at Cheung Yip Street			

Table 2.2 Location of Air Quality Monitoring Station

#### 2.6 **Results and Observations**

- The schedule of air quality monitoring in reporting month is provided in Appendix E. 2.6.1
- 2.6.2 No Action / Limit Level exceedance was recorded for 24-hr TSP at KTD1a, KTD2b and KER1b in the reporting month.
- 2.6.3 No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted in the reporting month.
- 2.6.4 During the reporting month, major dust sources including loading and unloading of C&D wastes, vehicles movement were observed in the site. Non-project related construction activities at the nearby construction site and road traffic along Shing Cheong Road, Cheung Yip Street and the Kwun Tong By-pass were observed. The above factors may affect the monitoring results.
- 2.6.5 The weather conditions during the monitoring are provided in **Appendix K**.
- 2.6.6 The monitoring data of 24-hr TSP are summarized in Table 2.3. Detailed monitoring data are presented in Appendix F.

Table 2.3	2.3 Summary of 24-hr TSP Monitoring Results					
Parameter	MonitoringAverageRangeAction LevelLimitStation(μg/m³)(μg/m³)(μg/m³)(μg/m³)					
24-hr TSP	KTD1a	81	52-114	177		
in µg/m ³	KTD2b	91	68-124	157	260	
	KER1b	85	48-130	172		

able 2.3 Summai	y of 24-hr TSP Monitoring	Results
-----------------	---------------------------	---------

2.6.7 The Event and Action Plan for air quality is given in **Appendix H**.

#### 2.7 Comparison of 24-hr TSP Monitoring Results with EIA Predictions

2.7.1 The monitoring data of 24-hr TSP was compared with the EIA predictions as summarized in Table 2.4.



Table 2.4	Comparison of 24-hr TSP data with EIA predictions

Monitoring Station	Receiver Reference	Predicted Maximum 24-hour TSP Concentration (μg/m ³ )	24-hour TSP concentration in March 2019 (μg/m³)	Average 24-hour TSP concentration in March 2019 (μg/m³)
KTD1a	KTD3	126	52-114	81
KTD2b	-	-	68-124	91
KER1b	KTD6	169	48-130	85

#### Note:

For KTD2b, there was no receiver reference in the EIA report, EIAR-174/2013.

Predicted Maximum TSP Concentration extracted from Table 4.14 of EIA Report, EIAR-174/2013.

2.7.2 The 24-hour TSP monitoring results at KTD1a and KER1b were below the Predicted Maximum 24-hr TSP concentration in the approved Environmental Impact Assessment (EIA) Report and no Action / Limit Level exceedance was recorded in the reporting period.



#### 3. NOISE

#### 3.1 Monitoring Requirement

3.1.1 In accordance with the approved EM&A Manuals, Leq (30min) monitoring is conducted for at least once a week during the construction phase between 0700 and 1900 on normal weekdays at the designated monitoring locations.

#### 3.2 Monitoring Equipment

- 3.2.1 The sound level meter used in noise monitoring will comply with the International Electrotechnical Commission Publication (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications as referred to in the Technical Memorandum issued under the Noise Control Ordinance (NCO).
- 3.2.2 Sound level calibrator will be used for the on-site calibration of the meter. This calibrator complies with the IEC Publication 942 (1988) Class 1 and ANSI S1.40 1984. Noise measurements were only accepted to be valid if the calibration levels from before and after the measurement agree to within 1.0dB.
- 3.2.3 Measurements shall be recorded to the nearest 0.1dB. Sound level meters are programmed to measure A-weighted equivalent continuous sound pressure level at 30-minute intervals between 0700 and 1900 on normal weekdays at least once a week when construction activities are underway.

Table 3.1 summarizes the noise monitoring equipment model being used for this project.

Item	Brand	Model	Equipment	Serial Number
1	Casella	CEL-63X Series	Integrating Sound Level Meter	1488269
2	Casella	CEL-63X Series	Integrating Sound Level Meter	1488306
3	Casella	CEL-120/1	Calibrator	4358250
4	Casella	CEL-120/1	Calibrator	4358251
5	Benetech	GM816	Wind Speed Anemometer	13372555
6	Testo	05600480	Wind Speed Anemometer	61003846

Table 3.1 Noise Monitoring Equipment

#### 3.3 Monitoring Parameters and Frequency

**Table 3.2** presents the noise monitoring parameters and frequencies.

#### Table 3.2 Monitoring Parameters and Frequencies of Noise Monitoring

Parameter	Frequency and Period
LAeq (30min)	At each station at 0700-1900 hours on normal weekdays at a frequency
L10 and L90 will be recorded for reference	of once a week

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.



#### 3.4 Monitoring Methodology

- 3.4.1 The monitoring procedures are as follows:
  - The monitoring station is set at a point 1m from the exterior of the sensitive receivers building façade and set at a position 1.2m above the ground.
  - The battery condition is checked to ensure good functioning of the meter.
  - Parameters such as frequency weighting, the time weighting and the measurement time are set as follows:
    - frequency weighting : A
    - time weighting : Fast
    - measurement time : Weekly 30 minutes between 0700-1900 on normal weekdays
  - Prior to and after noise measurement, the meter shall be calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement will be considered invalid and repeat of noise measurement is required after re-calibration or repair of the equipment.
  - Noise monitoring should be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.
  - Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
  - At the end of the monitoring period, the Leq, L10 and L90 are recorded. In addition, site conditions and noise sources are recorded on a standard record sheet.

#### 3.5 Maintenance / Calibration

- 3.5.1 Maintenance and Calibration procedures are as follows:
  - The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.
  - The sound level meter and calibrator should be calibrated annually by a HOKLAS laboratory.
  - Relevant calibration certificates are provided in Appendix D.

#### 3.6 Monitoring Locations

- 3.6.1 According to the EM&A Manual, three noise monitoring locations, namely KTD1, KTD2 and KER1, are covered by this Contract within the South Apron Area of Former Kai Tak Airport. The other two noise monitoring locations, which are identified in Cha Kwo Ling area, are farther than 300m away from the site boundary and thus not covered by this Contract. The monitoring works in Cha Kwo Ling area are covered by other Contract(s) respectively.
- 3.6.2 According to the approved alternative baseline air quality and noise monitoring locations (EPD reference: () in EP2/K19/A/21 pt.5), the original monitoring locations (KTD1, KTD2 and KER1) are proposed to be replaced by alternative monitoring locations (KTD1a, KTD2a and KER1a) for noise monitoring.
- 3.6.3 According to the approved relocation of monitoring location KER1a (EPD reference: () in EP2/K19/A/21 pt.5), the monitoring location KER1a are proposed to be relocated by alternative monitoring locations KER1b for noise monitoring.



- 3.6.4 According to the approved relocation of monitoring location KTD2a (EPD reference: () in EP2/K19/A/21 pt.6), the monitoring location KTD2a are proposed to be relocated by alternative monitoring locations KTD2b for noise monitoring.
- 3.6.5 The most updated locations are summarized in **Table 3.3** and shown in **Figure 2**.

Monitoring Station	Location		
KTD1a	Centre of Excellence in Paediatrics (Children's Hospital)		
KTD2b	G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital)		
KER1b	Site Boundary at Cheung Yip Street		

 Table 3.3
 Location of Noise Monitoring Station

### 3.7 Results and Observations

- 3.7.1 The schedule of noise monitoring in reporting month is provided in **Appendix E**.
- 3.7.2 During the monitoring month, at KTD1a, project related construction activities and road traffic along Shing Cheong Road were observed in the surroundings. At KTD2b, road traffic along the Kwun Tong By-pass and non-project related construction activities at the nearby construction site was observed. At KER1b, road traffic along Cheung Yip Street was observed. Major noise sources including noise emission from plant & PME and some other construction activities, travel of vehicles, loading and unloading of C&D waste were observed in the site. The above factors may affect the monitoring results.
- 3.7.3 No raining and wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation. The weather conditions during the monitoring month are provided in **Appendix K**.
- 3.7.4 The noise monitoring data are summarized in **Table 3.4**. Detailed monitoring data are presented in **Appendix G**.

Time Period	Leq _(30min) dB(A) (Range) Noise Monitoring Stations		Action Level	Limit Level	
	KTD1a	KTD2b	KER1b		
0700-1900 hrs on normal weekdays	69-74	73-79	69-74	When one documented complaint is received	75 dB(A)

 Table 3.4
 Summary of Noise Impact Monitoring Results

Note:

KTD1a: Façade Measurement

KTD2b & KER1b: Free-field measurement (+3dB(A) correction has been applied)

- 3.7.5 A Limit Level exceedance was recorded. Exceedance was recorded for construction noise Limit Level at KTD2b on 22 March 2019. No Action / Limit Level exceedance was recorded for construction noise at KTD1a and KER1b in the reporting month.
- 3.7.6 On 22 March 2019, at KTD2b non-project related construction works were carried out during noise monitoring, noise was generated by the reverse circulation drill works from construction



site of New Acute Hospital next to the monitoring location KTD2b, also vehicle noise source from Construction site of New Acute Hospital was observed during noise monitoring. Thus, it is considered that this exceedance is not project related. No exceedance is recorded in the following monitoring conducted on 28 March 2019.

- 3.7.7 The Action and Limit Levels for noise impact monitoring have been set and are presented in **Appendix C**.
- 3.7.8 The Event and Action Plan for noise is given in **Appendix H**.

### 3.8 Comparison of Noise Monitoring Results with EIA Predictions

3.8.1 The noise monitoring data was compared with the EIA predictions as summarized in **Table 3.5**.

Monitoring Station	Receiver Reference	Maximum Predicted Mitigated Construction Noise Level, dB(A)	Maximum Leq _(30min) dB(A) In March 2019
KTD1a	KTD1	74	74
KTD2b	KTD2	75	79
KER1b	KER1	75	74

 Table 3.5
 Comparison of Noise Monitoring data with EIA predictions

Note:

Maximum Predicted Mitigated Construction Noise Level extracted from Table 5.13 of EIA Report, EIAR-174/2013.

- 3.8.2 The impact noise monitoring results of location KTD1a and KER1b in the reporting month did not exceed the Maximum Predicted Mitigated Construction Noise Level in the approved Environmental Impact Assessment (EIA) Report and no Action / Limit Level exceedance was recorded in the reporting period.
- 3.8.3 The discrepancy between the noise monitoring results and EIA Prediction in KTD2b is considered due to noise source from reverse circulation drill works and the vehicle from construction site of New Acute Hospital near the monitoring location.



#### 4. LANDSCAPE AND VISUAL

#### 4.1 Audit Requirements

- 4.1.1 As per the Trunk Road T2 EM&A Manual, the landscape and visual mitigation measures during the construction phase shall be audited by a Registered Landscape Architect, as a member of the Environmental Team, at least once every two weeks to ensure compliance with the intended aims of the measures.
- 4.1.2 According to the Kai Tak Development EM&A Manual, measures to mitigate landscape and visual impacts during construction should be checked to ensure compliance with the intended aims of the measures. The progress of the engineering works shall be regularly reviewed onsite to identify the earliest practical opportunities for the landscape works to be undertaken. The ET shall report on the Contractor's compliance on a weekly basis.

#### 4.2 Results and Observations

- 4.2.1 To monitor and audit the implementation of landscape and visual mitigation measures, four weekly Landscape and Visual Site audits were carried out on 6, 13, 20 and 27 March 2019 and two of them 13 and 27 March 2019 were carried out by a Registered Landscape Architect. The weekly Landscape and Visual Impact reports were counter-signed by IEC as according to the requirement of EM&A Manual (AEIAR-130/2009).
- 4.2.2 Should non-compliance of the landscape and visual impact occur, action in accordance to the event action plan presented in **Appendix H** shall be carried out.



#### 5. WASTE MANAGEMENT

#### 5.1 Audit Requirements

- 5.1.1 The effective management of waste arising during the construction phase will be monitored through the site audit programme. Regular audits and site inspections should be carried out to ensure that the recommended good site practices and other mitigation measures are implemented by the Contractor.
- 5.1.2 The audit should look at all aspects of on-site waste management practices including the waste generation, storage, recycling, transport and disposal. The aims of waste audit are:
  - to ensure the waste arising from the works are handled, stored, collected, transferred and disposed of in an environmentally acceptable manner;
  - verify the implementation status and evaluate the effectiveness of the mitigation measures; and
  - to encourage the reuse and recycling of material.

#### 5.2 Results and Observations

- 5.2.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.2.2 The amount of wastes generated by the site activities in the reporting month is shown in **Appendix I**.



#### 6. SITE INSPECTION

#### 6.1 Site Inspection

- 6.1.1 Site inspections were carried out weekly to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix J**.
- 6.1.2 In the reporting month, four site inspections were carried out on 6, 13, 20 and 27 March 2019. Two of them, held on 6 and 13 March 2019 was the joint inspections with the IEC, ER, the Contractor and the ET.
- 6.1.3 No outstanding issues were reported during the reporting month. Details of observations recorded during the site inspections are summarized in **Appendix M**.
- 6.1.4 All the follow-up actions requested by Contractor's ET and IEC during the site inspections were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting month.



#### 7. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

#### 7.1 Environmental Exceedance

- 7.1.1 No Action / Limit Level exceedance was recorded for 24-hr TSP at KTD1a, KTD2b and KER1b in the reporting month.
- 7.1.2 A Limit Level exceedance was recorded. Exceedance was recorded for construction noise Limit Level at KTD2b on 22 March 2019. No Action / Limit Level exceedance was recorded for construction noise at KTD1a and KER1b in the reporting month.

#### 7.2 Complaints, Notification of Summons and Prosecution

- 7.2.1 No environmental complaint, notification of summons and successful prosecution were received in the reporting month.
- 7.2.2 Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in **Appendix L.**



#### 8. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

#### 8.1 Implementation Status

8.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and the EM&A Manuals. The implementation status of the mitigation measures during the reporting month is summarized in **Appendix J**. Status of required submission under the EP during the reporting period is summarized in **Table 8.1**.

EP Condition	Submission	Submission Date
EP-337/2009		
Condition 2.3	Management Organization of Main Construction Companies	18/12/2015
Condition 2.4	Design Drawing of the Project	18/12/2015
Condition 2.11	Landscape Mitigation Plan(s)	18/12/2015
Condition 3.3	Monthly EM&A Report (February 2019)	13/03/2019
EP-339/2009/A		
Condition 2.4	Management Organization of Main Construction Companies	18/12/2015
Condition 2.5	Design Drawing of the Project	18/12/2015
Condition 3.3	Monthly EM&A Report (February 2019)	13/03/2019
EP-451/2013		
Condition 2.3	Management Organization of Main Construction Companies	18/12/2015
Condition 2.4	Design Drawing of the Project	18/12/2015
Condition 2.5	Landscape Mitigation Plan(s)	18/12/2015
Condition 2.10	Supplementary Contamination Assessment Report	18/12/2015
Condition 3.3	Baseline Monitoring Report	12/02/2016
Condition 3.4	Monthly EM&A Report (February 2019)	13/03/2019

 Table 8.1
 Status of Required Submission under Environmental Permit

FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre, Tel : +852 2450 8233 Fax

5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



#### 9. FUTURE KEY ISSUES

#### 9.1 **Construction Programme for the Next Two Months**

- Installation of sheet pile for drainage works;
- Excavation and laying of drainage pipe and manhole; •
- Construction of road base and road pavement; •
- Construction of SUS structure: .
- Construction of socketed H-Pile:
- Excavation and ELS construction; and .
- Construction of District Cooling System.

#### 9.2 Key Issues for the Coming Month

9.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality, waste management and landscape and visual impact.

#### 9.3 Monitoring Schedules for the Next Three Months

9.3.1 The tentative schedules for environmental monitoring in the coming three months are provided in Appendix E.



### 10. CONCLUSIONS

- 10.1.1 No Action / Limit Level exceedance was recorded for 24-hr TSP at KTD1a, KTD2b and KER1b in the reporting month.
- 10.1.2 A Limit Level exceedance was recorded. Exceedance was recorded for construction noise Limit Level at KTD2b on 22 March 2019. No Action / Limit Level exceedance was recorded for construction noise at KTD1a and KER1b in the reporting month.
- 10.1.3 On 22 March 2019, at KTD2b non-project related construction works were carried out during noise monitoring, noise was generated by the reverse circulation drill works from construction site of New Acute Hospital next to the monitoring location KTD2b, also vehicle noise source from Construction site of New Acute Hospital was observed during noise monitoring. Thus, it is considered that this exceedance is not project related. No exceedance is recorded in the following monitoring conducted on 28 March 2019.
- 10.1.4 No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted in the reporting month.
- 10.1.5 Four environmental site inspections were carried out in the reporting month. Recommendations on mitigation measures on air quality, waste management and landscape and visual impact were given to the Contractor for remediating the deficiencies identified during the site inspections.
- 10.1.6 Four weekly Landscape and Visual Site audits were carried out on 6, 13, 20 and 27 March 2019 and two of them 13 and 27 March 2019 were carried out by a Registered Landscape Architect in the reporting month. The weekly Landscape and Visual Impact reports were counter-signed by IEC as according to the requirement of EM&A Manual (AEIAR-130/2009).
- 10.1.7 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

#### **10.2** Comment and Recommendations

- 10.2.1 The recommended environmental mitigation measures, as proposed in the EIA reports and EM&A Manuals shall be effectively implemented to minimize the potential environmental impacts from the Project. The EM&A programme would effectively monitor the environmental impacts generated from the construction activities and ensure the proper implementation of mitigation measures.
- 10.2.2 According to the environmental audit performed in the reporting month, the following recommendations were made:

#### Air Quality Impact

- Every main haul road should be kept clear of dusty materials.
- Open stockpiles should be avoided or covered.

Construction Noise Impact

• No specific observation was identified in the reporting month.

Water Quality Impact

• No specific observation was identified in the reporting month.

#### FUGRO TECHNICAL SERVICES LIMITED Fugro Development Centre, Tel : +852 2450 8233 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., : +852 2450 6138 Fax

E-mail : matlab@fugro.com Website : www.fugro.com



### Chemical and Waste Management

All wastes generated at the site should be collected and cleaned up regularly.

Land Contamination

Hong Kong.

No specific observation was identified in the reporting month.

Landscape and Visual Impact

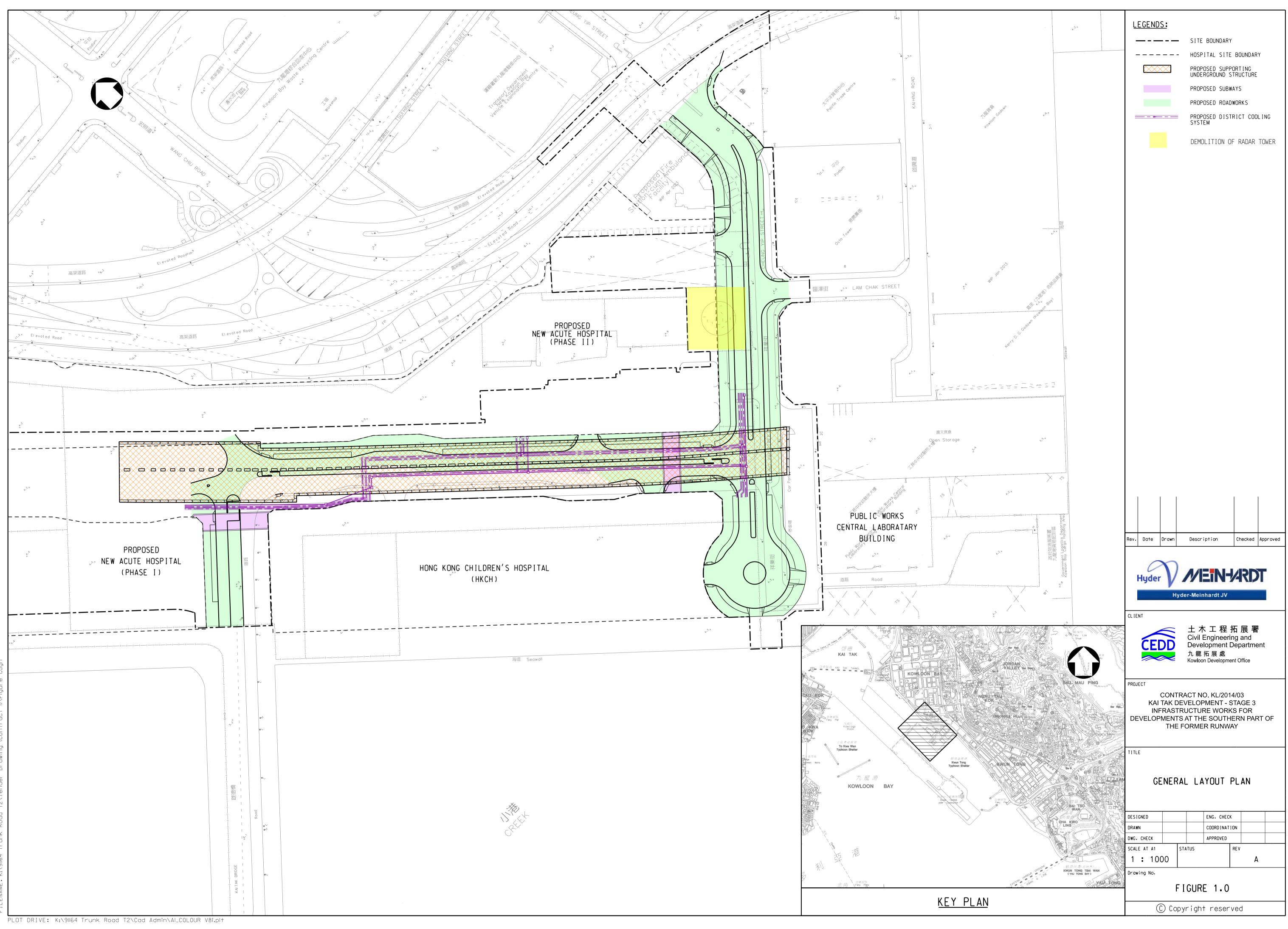
Open stockpiles should be avoided or covered.

#### **General Condition**

No specific observation was identified in the reporting month.

Permit / Licenses

No specific observation was identified in the reporting month.


Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

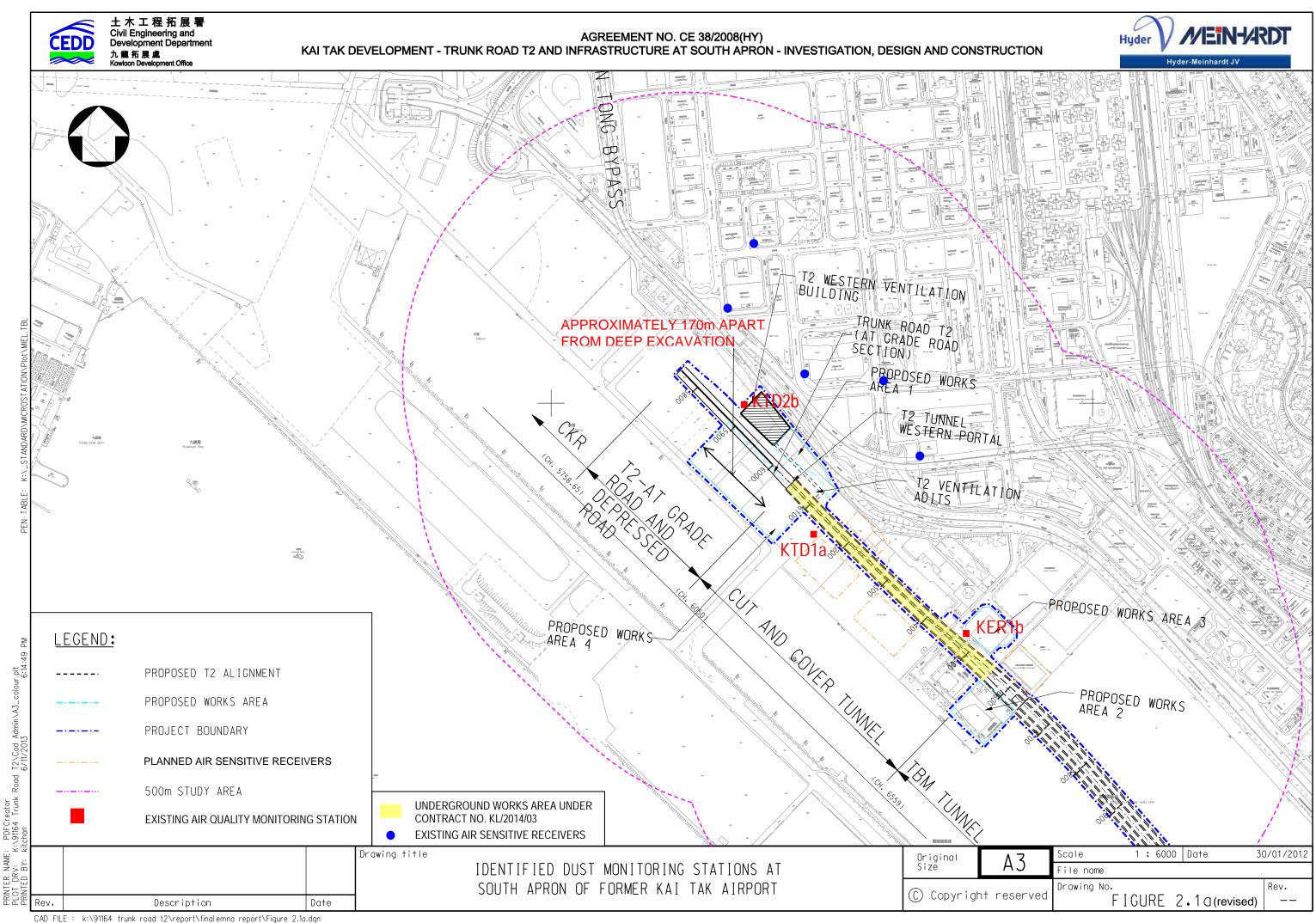
Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Figure 1

**Project General Layout** 




NTED BY: kitchan 18/2/2015 13:00:43 .ENAME: K:\91164 Trunk Road T2\Tender Drawing (Contract 1)\

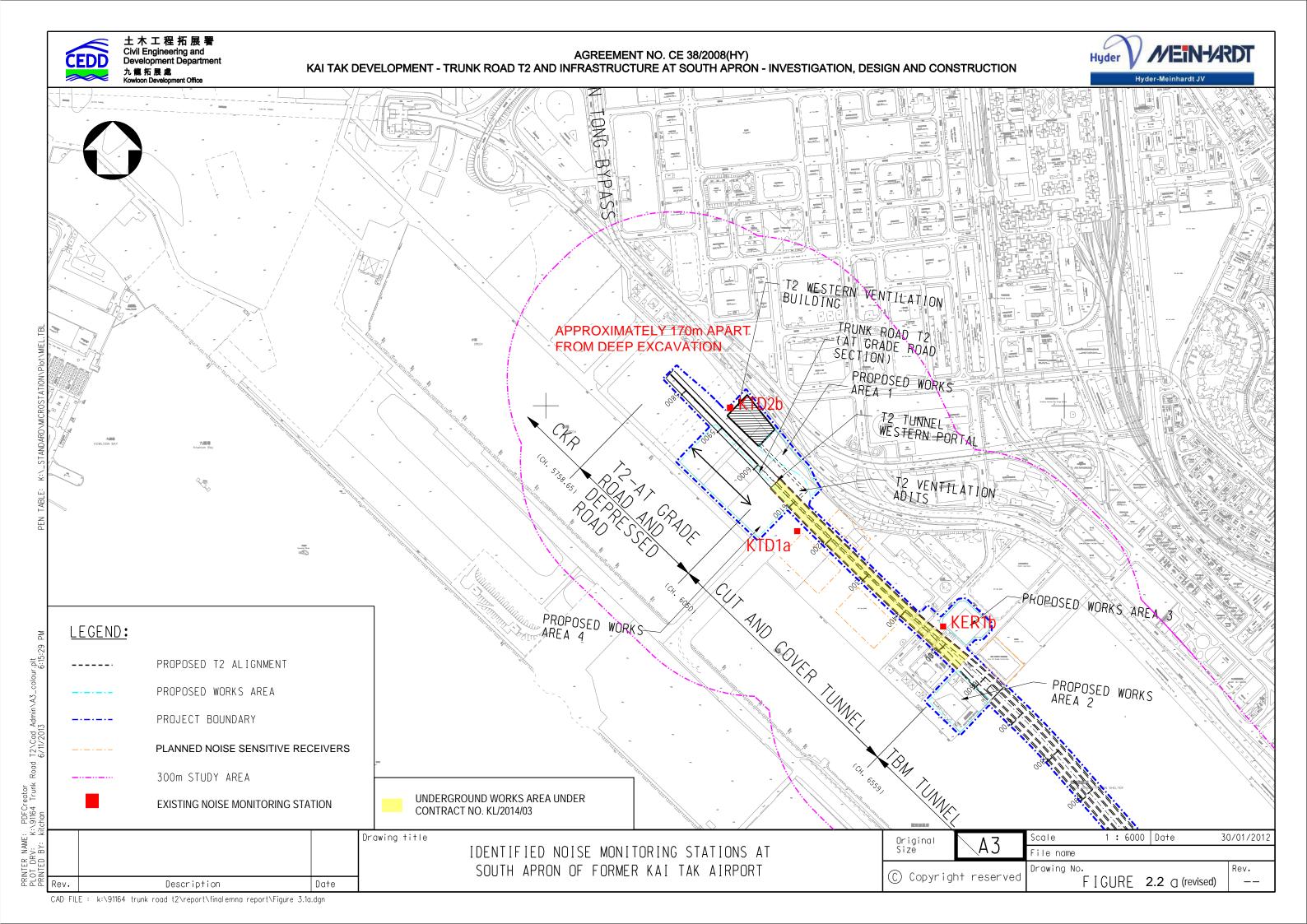

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Figure 2

Air and Noise Monitoring Locations





Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix A

**Construction Programme** 

KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former

1	Hyder - Mein	hardt JV									
Activity ID		Activity Name		Rem Dur	Start	Finish		Februa 44		March 45	
KL/20	014/03-Sta	ge 3 Infrastru	cture Works for Developments at the Southern Part of the F	ormer	Runway		27 03	10	17	<u>24 03 10 17 24</u>	4 31
Projec	et Key Dat	es									
Proje	ct Comple	tion Date									
K-PK	-PCD-1000	Section 1-Remaind	er of the Works (i.e. all Works except Works included in other Section of the Work)	0		09-Mar-19*				◆ Section 1-Remainder	r of the W
K-PK	-PCD-1300	Section 3 - Constru	ction of District Cooling System (DCS)	0		08-Mar-19*				<ul> <li>Section 3 - Constructi</li> </ul>	on of Dis
K-PK	-PCD-1400	Section 4A - Const	ruction of Subway A	0		28-Feb-19*				<ul> <li>Section 4A - Construction of Su</li> </ul>	bway A
K-PK	-PCD-1500	Section 4B - Const	ruction of Subway B	0		28-Feb-19*				<ul> <li>Section 4B - Construction of Su</li> </ul>	ibway B
Site H	Handover I	Date									
K-PK	-SHD-1400	Portion D		0		28-Feb-19*				<ul> <li>Portion D</li> </ul>	
K-PK	-SHD-1500	Portion E		0		28-Feb-19*				◆ Portion E	
K-PK	-SHD-1600	Portion F		0		28-Feb-19*				<ul> <li>Portion F</li> </ul>	
K-PK	-SHD-1900	Portion K		0		28-Feb-19*				<ul> <li>Portion K</li> </ul>	
K-PK	-SHD-2000	Portion M		0		31-Mar-19*					♦ Po
K-PK	-SHD-2100	Portion N		0		30-Mar-19*					♦ Port
K-PK	-SHD-2200	Portion O		0		28-Feb-19*				<ul> <li>Portion O</li> </ul>	
K-PK	-SHD-2500	Portion R		0		28-Feb-19*				<ul> <li>Portion R</li> </ul>	
Gene	ral Submis	ssion									
Temp	porary Util	ity Diversion Wo	rks								
Temp	oorary Divers	sion for Watermain	Works								
Layi	ng Proposed	(Fresh) Watermain									
K-F	PA-TUD-2152	2 Removal of Tempo	rary Support to Utilities at Zone 1	25	30-Mar-19	24-Apr-19					
Temp	oorary Divers	sion for CLP Cable	ut CH6+560								
K-P/	A-TUD-4100	Removal of Tempo	rary Support to Utilities at Zone 4	15	26-Mar-19	09-Apr-19				•	
Temp	porary Tra	ffic Management									
Temp	o Traffic Arra	ingement Schemes									
K-P/	A-TTA-8950	Submission and app	proval of TTA schemes-TTA stage 4 for re-construction of Shing Cheong Road	30	31-Dec-18 A	29-Mar-19					📕 Subn
Impl	ementation o	f Temporary Traffic	Arrangement								
K-P/	A-TTA-4400	TTA stage 4 - Road	diversion for Handover of Portion N	0		30-Mar-19					♦ TT/
Mate	rials Procu	rement (Major	Materials)								
Wate	er Works										
K-PA	-MP-1050	Manufacturing & d	elivery to site	35	20-Aug-18 A	03-Apr-19					



Actual Work

Project ID :39 3MRP Mar - May 19 Layout : KL201403 3MRP Page 1 of 6

Page 1 of 6

r Rur	nway		CED		土木工程 Civil Enginee Developmeni 九龍拓展處 Kowloon Develop	ring and Department	
	April				May	- And the little	ne
	46	21 2	0	05	47	10	48
81 (	)7 14	21 2	5	05	12	19	26 2
	.e. all Works ex			····			
works (1	.e. all works ex	cept work	s includ	ied i	n other Se	ction of the	e work)
istrict Co	ooling System (I	DCS)					
	Joining Bysterin (I	505)					
							••••••
ortion M	[						
rtion N							
							••••••
		Remov	al of T	emp	orary Supp	port to Util	ities at 2
	Removal of Te	emporary S	unnort	to II	tilities at "	Zone A	
	Kenioval of 10	suppliary S	upport	10 0	tillities at a		
							••••••
							••••••
mission	and approval of	f TTA sche	mes-TT	A st	age 4 for 1	e-construc	tion of
A stage	4 - Road divers	sion for Har	ndover	of Po	ortion N		
Manu	facturing & deli	very to site					
		3 Month	s Rollir	ıg Pi	rogramme		
	Date	Revisi			hecked	Appro	oved
	28-Feb-19	Mar 19 - N	lay 19				
						T	

ng Programme	
Checked	Approved
	Checked

## KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former

ctivity ID	Activity Name	Rem	Start	Finish			Febru 44	ary			Mar 45			+
		Dur			27	03	44	17	24	4 03	4:	5   17	24	3
Prelimiaries														
K-DR-PRE-1800	) Submission of time-lapsed photographs and video	223	20-Feb-16 A	08-Oct-19										
Barge Loading	g Facilities													
K-DR-PRE-148	5 Demolition of the barging point	13	28-Feb-19	14-Mar-19							Í 💻	Demolitio	on of the	barg
Instrumentatio	on and Monitoring													
Tilt Monitorin	ng Tile Plates													
K-IM-TMT-1000	0 Tilt Monitoring near PWCL	62	25-Apr-16 A	30-Apr-19										
Section 1 of the	e Works-Remainder of the Works													
Roadwork and	d Drainage Works													
Road D4-3 (Cl	hing Shung Road)													
Zone 2 R & D V	Works (Stage 1) CH410-CH340			_										
SCR1045	Proposed drainage (westbound) SMH14-13 to M111c	11	14-Jan-19 A	12-Mar-19							Proj	posed di	rainage (v	vestl
SCR1050	Lay 300mm dia. salt watermain (westbound)	9	19-Jan-19 A	09-Mar-19							Lay 30			iterm
SCR1060	Gully Construction	11	15-Feb-19 A	12-Mar-19							Gul	lly Const	truction	
SCR1085	Laying of New Utilities at Roundabout	13	15-Feb-19 A	16-Mar-19			1						-	
SCR1135	Sewerage (from FMH24-1F - FMH24-1B - FMH24-1C)	15	11-Feb-19 A	16-Mar-19								Sewer	age (fron	ı FM
SCR1137	Sewerage connection	11	11-Mar-19	22-Mar-19									Sewerag	e co
SCR1139	Lay fresh watermain (eastbound)	0	26-Dec-18 A	28-Feb-19 A						Lay fresh	n waterma	in (eastb	oound)	
SCR1160	Proposed drainage M110c to M110 (eastbound)	0	12-Feb-19 A	20-Feb-19 A					Propos	ed drainage	M110c t	o M110	(eastbou	nd)
SCR1170	Gully Construction	0	21-Feb-19 A	28-Feb-19 A						Gully Co	nstruction			
SCR1180	Laying of New Utilities at Roundabout	13	25-Feb-19 A	14-Mar-19									f New Ut	
SCR1182	Backfill to level approx. +4.5 mPD	13	25-Feb-19 A	16-Mar-19								Backfi	ill to leve	l app
SCR1190	Trim formation, lay subbase and kerb	12	25-Feb-19 A	18-Mar-19								Trin	n formatio	on, la
SCR1200	Lay bituminous pavement	11	19-Mar-19	30-Mar-19								_		Lay
Shing Fung Rod	ad R & D Works (Stage 1)													
SCR1250	Subway B construction (Bay 4)	0		20-Feb-19 A				۲	Subwa	y B constru	ction (Ba	y 4)		
SCR1260	DCS at Zone 2 Bay 1 (CH20 - CH35)	6	15-Nov-18 A	06-Mar-19						Ť	DCS at Zo	ne 2 Ba	y 1 (CH2	0 - 0
SCR1262	Backfill to level approx. +3.0 mPD	5	21-Feb-19 A	07-Mar-19							Backfill t	to level a	approx. +	3.0 r
SCR1265	Sewerage (FMH-B to FMH-D)	13	15-Feb-19 A	16-Mar-19								Sewer	age (FMI	H <mark>+</mark> B f
SCR1280	DN350x3 Rising main (from Subway B - connection point)	5	12-Mar-19	16-Mar-19								DN35	0x3 Risir	ig ma
SCR1290	Preparation for sewerage and rising mains connection	12	22-Feb-19 A	22-Mar-19									Preparat	tion f



# 中國路德工程有限責任公司

Critical Activity Non-Critical Activity Remaining Level of Effort Actual Work

Milestone

•

3 MRP Mar 2019 - May 2019

Page 2 of 6

Project ID :39 3MRP Mar - May 19 Layout : KL201403 3MRP Page 2 of 6

r Rur	ıway		CED	Der	il Enginee	Department	l
	April	1		1501	May		ne
31 (	46 07   14	21	28	05	47	19	48 26 2
		_					[
ging poir	1L						
			Tilt M	onitorir	ig near 1	PWCL	
bound) S	SMH14-13 to N	1111c					
nain (we	estbound)						
nani (we	stoound)						
ition of I	Roundabout						
ittes at i	Coundabout						
1H24-1H	F - FMH24-1B	FMH24	-1C)				
·····;•··							
onnection	n						
				•••••			
es at Roi	undabout						
prox. +4	.5 mPD						
-							
ay subba	ase and kerb						
v hitumi	nous pavement						
.y ontaini							
				•••••			
CH35)							
mPD							
mPD							
to FMH	-D)						
ain (f	n Cub D						
	n Subway B 🕞						
for sewe	erage and rising	mains co	nnection				
		3 Mon	ths Rollir	g Prog	ramme		
	Date	Revi			cked	Appr	oved
	28-Feb-19	Mar 19 -	May 19				

	3 Months Rolling Programme									
Date	Revision	Checked	Approved							
28-Feb-19	Mar 19 - May 19									

## KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former

vity ID	Activity Name	Rem	Start	Finish		Feb			March	
		Dur			27 0	4 03   10	4	24	45 03 10 17 24	3
SCR1295	Lay fresh and salt watermains	15	02-Mar-19	19-Mar-19					Lay fresh a	
SCR1300	Proposed drainage (westbound) SMH14-13 to SMH14-14	6	11-Mar-19	16-Mar-19					Proposed drain	nage (
SCR1303	Lay new UU at roundabout	8	14-Mar-19	22-Mar-19					Lay new	w UU
SCR1310	Backfill to formation	4	18-Mar-19	21-Mar-19					Backfill	to for
SCR1320	Trim formation, lay subbase and kerb	8	15-Mar-19	23-Mar-19					Trim f	forma
SCR1330	Lay bituminous pavement	6	25-Mar-19	30-Mar-19						La
SCR1340	Shift traffic away from Portion N and Handover portion N	0	30-Mar-19							♦ Shi
Zone 1 & 2 an	d Shing Fung Road R & D Works (Stage 2) CH410-CH340									
SCR1350	Removal of temporary decking and temporary road pavement	11	01-Apr-19	13-Apr-19						
SCR1360	Additional DCS CH -6 to 0	44	01-Apr-19	28-May-19						
SCR1380	Lay salt watermains	27	15-Apr-19	21-May-19						
SCR1390	Salt watermain connection	17	22-May-19	12-Jun-19						
SCR1400	Lay fresh watermains	44	15-Apr-19	12-Jun-19						
SCR1420	Proposed drainage M112 to M118 and gullies	20	01-Apr-19	27-Apr-19						
SCR1430	Lay new UU at roundabout	22	29-Apr-19	25-May-19						
SCR1440	Trim formation, lay subbase and kerb	27	29-Apr-19	01-Jun-19						
Zone 3 R & D	Works (Stage 1) CH340 to CH270 - For shifting of gate no. 1			]						
SCR1660	Lay 300mm dia. salt watermain (westbound)	0	13-Feb-19 A	18-Feb-19 A			La	y 300n	m dia. salt watermain (westbound)	
SCR1670	Lay new UU across Gate 1	3	04-Feb-19 A	02-Mar-19					Lay new UU across Gate 1	
SCR1680	Proposed drainage M110 to M109 (eastbound)	0	04-Feb-19 A	19-Feb-19 A			Pr	oposed	drainage M110 to M109 (eastbound	d)
SCR1685	Backfilling to Formation	0	20-Feb-19 A	23-Feb-19 A					kfilling to Formation	
SCR1690	Proposed drainage M109d to M109c (eastbound)	0	21-Feb-19 A	25-Feb-19 A					oposed drainage M109d to M109c (	
SCR1695	Gully Construction	0	23-Feb-19 A	26-Feb-19 A				<b>—</b> (	Gully Construction	
SCR1700	Lay 600mm dia. fresh watermain (eastbound)	0	23-Feb-19 A	28-Feb-19 A					Lay 600mm dia. fresh watermain (	eastb
SCR1702	Trim formation, lay subbase and kerb	6	28-Feb-19 A	09-Mar-19					Trim formation, lay sub	1
SCR1705	Lay bituminous pavement	9	11-Mar-19	20-Mar-19					Lay bitum	:
SCR1710	Permanent pavement and preparation works for road shifting	3	21-Mar-19	23-Mar-19					Perma	inent
Zone 3 R & D	Works (Stage 2) CH270 to 190									
SCR1820	Backfill to level approx. +4.5 mPD to formation level	7	02-Feb-19 A	07-Mar-19					Backfill to level approx.	
SCR1830	Trim formation, lay subbase and kerb	12	08-Mar-19	21-Mar-19					Trim for	matio
SCR1840	Lay bituminous pavement	12	22-Mar-19	04-Apr-19						



# 中國路檔工程有限責任公司 CHINA ROAD AND BRIDGE CORPORATION

Critical Activity Non-Critical Activity Remaining Level of Effort Actual Work

Milestone

•

3 MRP Mar 2019 - May 2019

Page 3 of 6

Project ID :39 3MRP Mar - May 19 Layout : KL201403 3MRP Page 3 of 6

r Rur	iway	CED		土木工程 Civil Engineer Development 九龍拓展處	ing and Department
	April		~	Kowloon Developm May	ne
31   C alt water	46 07 14 mains	21 28	05	47	48 19 26 2
(westbou	ind) SMH14-13	to SMH14-14			
J at roun	dabout				
rmation					
ation, lay	subbase and k	erb			
iy bitumi	nous pavement				
ift traffic	e away from Po	rtion N and Hando	ver	portion N	
	Removal	of temporary decl	cing	and tempor	rary road pavemer
					Addi
					Lay salt wate
		Proposed	drai	nage M112	to M118 and gull
					Lay new
oound)					
oound)					
e and ker					
s pavem					
pavemen	nt and preparati	on works for road	shi	fting	
	formation level				
	bbase and kert				
Lay	bituminous pave	ement			
		0.14 //			
		3 Months Rollin			A
	Date	Revision		Checked	Approved
	28-Feb-19	Mar 19 - May 19			

ID	Meinhardt JV	Rem	Start	Finish			Febru					March		
		Dur			27	03	44	17	24		03   1	45 10   17	7 24	31
SCR1850	Diversion of Gate No.2 Access Road to HKCH for removal of temporary bridge No.2	1	06-Apr-19	06-Apr-19		•							<b>i</b>	
CR1860	Carry out and complete remaining works	135	08-Apr-19	27-Sep-19										
Cone 4 SUS		ii												
CR1890	Backfill to level approx2.3 mPD for DCS	0	14-Jan-19 A	21-Feb-19 A				B	Backf				PD for DC	:
CR1900	Backfill to level approx. +1.0 mPD for drainage and sewerage	18	22-Feb-19 A	20-Mar-19									Backfill	to level
one 4 R & D	Works													
SCR1980	Construction of DCS Valve Pit	25	10-Aug-18 A	28-Mar-19										Constr
CR1990	ELS for DCS (Outside of SUS)	48	11-Mar-19	10-May-19										
CR2000	Form wall opening for DCS CYS Section	16	11-Mar-19	28-Mar-19										Form
CR2010	Zone 4 DCS Works (CH270 - CH330 & CYS Section)	61	11-Mar-19	27-May-19							-			
CR2020	Storm drainage M107 to M105/M204 to M201	40	13-Mar-19	03-May-19										
CR2030	Storm drainage M202a to M202/M106c to M106 and gullies	12	04-May-19	18-May-19										
CR2040	Sewerage FMH23-4 to FMH23-3 and FMH23-1 to FMH23-2	43	13-Mar-19	07-May-19										
CR2042	Utility Laying by HGC, TGT, PCCW, HKBN, CT, PCCW, Wharf T&T, Towngas, CLP, ect	24	12-Apr-19	15-May-19										
CR2050	Lay fresh and salt watermains	46	20-Mar-19	18-May-19								I		
CR2060	Backfill to level approx. +4.5 mPD to formation level	17	03-May-19	23-May-19										
CR2070	Trim formation, lay subbase and kerb	16	24-May-19	13-Jun-19										
CR2090	Removal of temporary access bridge No.2 to HKCH	16	08-Apr-19	29-Apr-19										
CR2092	Backfill to level approx. +3 mPD to formation level	4	30-Apr-19	04-May-19										
CR2095	Remaining Fresh and Salt Watermain	22	06-May-19	01-Jun-19										
CR2099	Remaining DCS on Subway A (CH285-CH315)	15	13-Apr-19	04-May-19										
CR2100	Remaining DCS under temporary bridge No.2 (CH270-CH285)	10	06-May-19	17-May-19								,		
CR2105	Remaining storm drainage (both gate 2 and subway A)	15	08-May-19	25-May-19								,		
SCR2130	Backfill to level approx. +4.0 mPD (formation level)	5	27-May-19	01-Jun-19										
oad D4-4 (0	Cheung Yip Street)													
CH100 to CH	150 Cheung Yip Street Cul de Sac													
Cheung Yip S	treet Cul de Sac				1									
SCR2620	Storm drainage M103 to M105/M104 to M201/M104a to M104	4	07-Jan-19 A	04-Mar-19							Storm dr	ainage M	1103 to M1	05/M1
SCR2635	Lay fresh and salt watermains (the other half of cul de sac)	20	03-Apr-19	30-Apr-19	1									•
SCR2640	Trim formation, lay subbase and kerb (the other half of cul de sac)	22	02-May-19	28-May-19	1									



Project ID :39 3MRP Mar - May 19 Layout : KL201403 3MRP Page 4 of 6

r Rur	nway		CED		土木工程 Civil Enginee Development 九龍拓展處	ring and Department	
	April			2	Kowloon Developn	nent Office	Ine
	46				47		48
1 ( Di	07 14 version of Gate	21 21 21 21 21 21 21 21 21 21 21 21 21 2	28   Cess Roa	05 ad to	HKCH fo	19 r removal	26 2 of temp
• 2.		110.2110			111101110		or tomp
-							
el appro	x. +1.0 mPD fo	r drainage	and sev	vera	ge		
truction	of DCS Valve I	Pit					
					ELS for I	DCS (Out	side of S
						(000	
wall op	ening for DCS	CYS Sect	ion				
							Zone 4
							Zone ²
			Sto	orm o	drainage M	107 to M	105/M2
					-		
						Storm dra	ainage N
				Se	ewerage FN	MH23-4 t	FMH2
					-		
					Uti	lity Layin	g by HG
						Lay fresh	and cal
						Laynesi	i and sai
						Ba	ckfill to
						<u></u>	
			Remova	al of	temporary	access b	ridge No
			B	ack	fill to level	approx	-3 mPD
			R	ema	ining DCS	on Subwa	ay A (CF
						Remaining	DCS
							5 DC5 u
							Remaini
							<u> </u>
						ļ	
104 to N	/201/M104a to	M104					
			Lavfr	esh :	and salt wa	termains	(the othe
							(ine our
							Trim
					rogramme		]
	Date	Revis			Checked	Appro	oved
	28-Feb-19	Mar 19 - I	viay 19	-			
				L		I	

## KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former

Hyder - Mein ity ID	Activity Name	Rem	Start	Finish			Februa	ry			March		
		Dur			27	03	44	17	24	03	45	17 24	1 31
Part 2											I	•	
Sewerage Works	5												
SCR3650	Excavation of Sewerage Pipe and FMH23-16A to FMH23-17 (Part 3)	10	25-Feb-19 A	11-Mar-19							Excava	ation of Sew	erage Pij
SCR3660	Laying Sewerage Pipe and Construction of FMH23-17 (Part 3)	18	12-Mar-19	01-Apr-19									La
SCR3670	Backfilling Sewerage Pipe and FMH23-17 (Part 3)	5	02-Apr-19	08-Apr-19									
Road Works													
SCR3700	Temporary Road Diversion for Construction of Intersection of Lam Chek Street	3	09-Apr-19	11-Apr-19									
SCR3710	Construction of Intersection of Lam Chek Street	16	12-Apr-19	04-May-19									
SCR3720	Temporary Road Construction for Manhole M205 to M206	5	06-May-19	10-May-19									
Part 3													
Laying of Draina	ge Pipe and Construction of Manhole												
SCR3680	Excavation of Drainage Pipe and Manhole (M205 to M206)	6	11-May-19	18-May-19									
SCR3690	Laying Drainage Pipe and Construction Manhole	15	20-May-19	06-Jun-19									
Section 1A of the	e Works -Construction of Supporting Underground Structure												
	from CH6+467 to 6+568 in Zone 4												
	Construction of SUS Structure at Zone 4												
Bay 11 to 13 (Top													
		10	21.14 10	01 4 10									D
A2760	Demolition of Dwall (120mL)	12	21-Mar-19	01-Apr-19									
Bay 14 (Top Slab)													
A2860	Backfilling Works to S1 (3370m3) @400m3 (H)	0	20-Jan-19 A	19-Feb-19 A				Ba	ckfillu	ng Works to	S1 (3370)	m3)@400i	n3 (H)
A2870	Demolition of Dwall (100mL)	30	01-Apr-19	30-Apr-19									
Miscellaneous V	Vorks												
K-1A-MWS-1000	Miscellaneous works - Removal of SUS Flasework, Formwork and dismantling of struts inside SUS	5	03-Jan-19 A	14-Mar-19							Mis	scellaneous	works - 1
K-1A-MWS-1005	Miscellaneous works - Construction of mass concrete and other remaining works	35	15-Jan-19 A	13-Apr-19									
K-1A-MWS-1010	Miscellaneous works - SUS structure Defect works and Remedial works	90	16-Feb-19 A	12-Jul-19									
Section 3 of the	Works- Construction of District Cooling System (Subject to Excision)												
Construction of	District Cooling System												
Construction of	DCS Works at Zone 2												
SCR2775	Installation of DCS at Zone 2 Bay 1 (CH20 - CH35)	0	15-Nov-18 A	27-Feb-19 A					····· 1	Installation	of DCS at	Zone 2 Bay	/ 1 (CH2)
SCR2780	Additional DCS CH -6 to 0	44	01-Apr-19	28-May-19									



中國路橋工程有限責任公司 CHINA ROAD AND BRIDGE CORPORATION Milestone
 Critical Activity
 Non-Critical Activity
 Remaining Level of Effort
 Actual Work

3 MRP Mar 2019 - May 2019

Page 5 of 6

Project ID :39 3MRP Mar - May 19 Layout : KL201403 3MRP Page 5 of 6

r Rur	nway			CED		土木工 Civil Engin Developme 九龍拓展 Kowloon Devel	eering an ent Depar 處	d tment	
April						May	opristin Ulifo		ne
31 (	46 07 1	4	21	28	05	47	19	26	48 2
					00	12	13	20	<u> </u>
Pipe and	FMH23	16A to	FMH2	3-17 (Par	t 3)				
-									
Laying S	sewerage	Pipe a	ina Cons	struction of	DI FN	ин23-17	(Part 3	)	
	Backfill	ing Sew	verage P	Pipe and F	MH	23-17 (P	art 3)		•••••
•••••	Temp	oorary	Road Di	version fo	or Co	onstructio	n of In	tersection	n of
	····						61		
					onsi	truction o	1 inters	ection of	Lar
						Tempo	rary Ro	ad Cons	truct
							E	watio-	f D.
							Exca	avation o	I Dr.
	·····	,							
Demolit	ion of Dy	vall (12	20mL)						
				Demo	litio	n of Dwa	11 (100	mL)	
								, ,	
- Remov	al of SU	S Flase	work, F	ormwork	and	dismantli	ing of s	truts insi	de S
	M	iscellar	neous wo	orks - Cor	nstru	ction of r	mass co	oncrete a	nd of
	-		-	-	-				
20 - CH	35)								
								A	Addi
			2 140	othe Dollin		rogramm	0		
	Dat	te		nths Rollii vision	-	rogramm Checked	1	Approved	
	28-Feb-			- May 19	$\vdash$	LIGONEU	+		
	I								

Hyder - Meinhardt JV		KL/2014/03 Kai Tak Development - Stage 3	8 Infras	tructure W	/orks for [	Development	ts at the S	outhern Part of the Forn	ner
Activity ID	Activity Name		Rem Dur	Start	Finish		bruary 44	March 45	-
SCR2790	Zone 3 DCS (3 x 90	00) (DP4 to DP5)		18-Dec-18 A	02-Mar-19	27 03 1	0   17   3	24         03         10         17         24           Zone 3 DCS (3 x 900) (DP4 to I	<mark>31</mark> DP5)
<b>Construction</b> of	f DCS Works at Zo	one 4							
SCR2321	Construction of DCS		14	10-Aug-18 A	15-Mar-19			Construction of D	OCS Va
SCR2323	ELS for DCS (Outs	ide of SUS)	48	11-Mar-19	10-May-19				
SCR2325	Form wall opening	for DCS CYS Section	16	11-Mar-19	28-Mar-19			F	orm w
SCR2328	Zone 4 DCS Works	(CH315 - CH336 & CYS Section)	81	11-Mar-19	21-Jun-19				
SCR2329	Zone 4 DCS Works	s (CH270 - CH315)	25	13-Apr-19	17-May-19				
Section 4A of th	e Works-Constru	ction of Subway A (Subject to Excision)							·····
Bay 1 to Bay 3									
SCR1942	ELS for Subway A	Bay 1 (east of D-wall)	0	23-Jan-19 A	18-Feb-19 A		ELS for	Subway A Bay 1 (east of D-wall)	
SCR1950	Breaking through of	f D-wall at EB	0	23-Jan-19 A	25-Feb-19 A			Breaking through of D-wall at EB	
SCR1952	Base slab of bay 1		6	27-Feb-19 A	06-Mar-19			Base slab of bay 1	
SCR1955	Wall and top slab of	f bay 1,2 & 3	18	02-Mar-19	22-Mar-19			Wall and	top sl
SCR1963	ELS for Subway A	Bay 3 (Stage 2 - remaining works)	0	19-Jan-19 A	25-Feb-19 A			ELS for Subway A Bay 3 (Stage 2 - rem	aining
SCR1965	Breaking through of	f D-wall at WB	7	28-Jan-19 A	07-Mar-19			Breaking through of D-wall	l at Wl
SCR1967	Base slab of bay 5		6	08-Mar-19	14-Mar-19			Base slab of bay 5	
SCR1971	Wall and top slab of	f bay 4 and bay 5	14	15-Mar-19	30-Mar-19				Wall
SCR1973	Waterproofing work	xs	5	01-Apr-19	06-Apr-19				
SCR1975	Backfilling works f	rom Bay 1 to Bay 5	5	08-Apr-19	12-Apr-19				÷
SCR1978	Miscellaneous work	ks of Subway A (internal remedial works)	70	13-Apr-19	12-Jul-19				
Section 4B of th	e Works- Constru	action of Subway B (Subject to Excision)							
Bay 3 & 4									
K-4B-BAY-3370	Backfilling Works (	Bay4)	0	15-Feb-19 A	20-Feb-19 A		Back	fi ling Works (Bay 4)	
K-4B-BAY-3380	Miscellaneous work	cs of Subway B (internal remedial works)	53	21-Feb-19 A	06-May-19				
Section 5 of the	Works-Completio	on of All Landscape Softworks							
K-05-LCS-1000	Procurement of plan	nt species	90	28-Feb-19	28-May-19				
Section 7 of the	Works-Preservat	ion and Protection of Existing Trees							+
K-07-001-1000	Section 7 of the Wo	rks-Preservation and Protection of Existing Trees	236	04-Jan-16 A	21-Oct-19				
Sections Comple	etion Date								······
K-PK-SCC-2400	Completion of Secti	ion 4B-Construction of Subway B	0		06-May-19				+
4						1			<u>i</u>



中國路檔工程有限責任公司 CHINA ROAD AND BRIDGE CORPORATION

Milestone • Critical Activity Non-Critical Activity Remaining Level of Effort Actual Work

3 MRP Mar 2019 - May 2019 Page 6 of 6

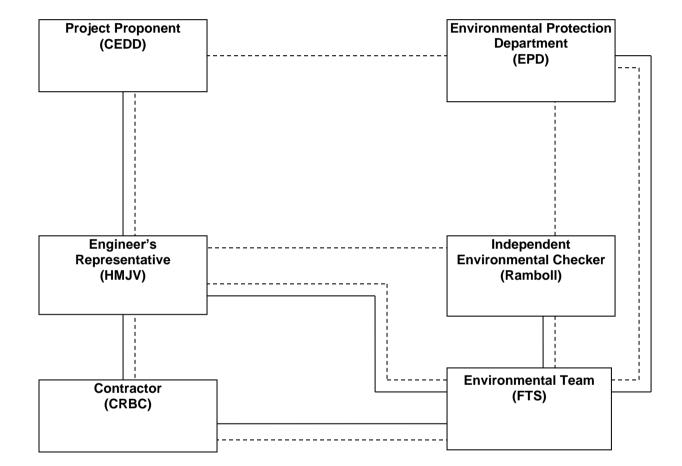
Project ID :39 3MRP Mar - May 19 Layout : KL201403 3MRP Page 6 of 6

r Runway	Ē		土木工程拓展署 Civil Engineering and Development Departme	22
			九龍拓展處	inc.
April		~~~	Kowloon Development Office May	ne
46			47	48
81 07 14 2 5)	1 28	05	12 19	26 2
)				
Valve Pit				•••••
			ELS for DCS (O	utside of S
wall opening for DCS CY	'S Section			
			Zone 4 I	DCS Work
				•••••
slab of bay 1,2 & 3				
5 7				
ing works)				
WB				
all and top slab of bay 4 a	nd bay 5			
Waterproofing work				
waterproofing work	5			
Backfilling v	vorks from	Bay 1 to	n Bay 5	
Dackinning	VOIKS HOIH	Dayio	o Day 5	
		M	iscellaneous works	of Subwag
				Proci
				Proci
		♦ Ca	mpletion of Sectior	14B-Cons
			1	2 0 - 10

3 Months Rolling Programme							
Date	Revision	Checked	Approved				
28-Feb-19	Mar 19 - May 19						

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com




Appendix B

**Project Organization Chart** 

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com





Legend:						
	Line of Reporting					
	Line of Communication					

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix C

Action and Limit Levels for Air Quality and Noise

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



#### Action and Limit Levels for 24-hr TSP and 1-hr TSP

Parameter	Monitoring Station	Action Level (µg/m³)	Limit Level (µg/ m³)
	KTD1a	177	
24-hr TSP	KTD2b	157	260
(µg/m³)	KER1b	172	
*1 br TOD	KTD1a	285	
*1-hr TSP (µg/m³)	KTD2b	279	500
	KER1b	295	

Note:

1-hr TSP monitoring should be required in case of complaints.

#### Action and Limit Levels for Construction Noise, Leq (30min), dB(A)

Time Period	Location	Action	Limit
0700-1900 hrs on normal weekdays	KTD1a KTD2b KER1b	When one documented complaint is received	75 dB(A)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix D

**Calibration Certificates of Monitoring Equipment** 

Party of the local data		<b>C</b> rent		7			D	ALIBRATION UE DATE: ber 17, 2019
VII	61	2	cate g				ntion	
		and the second second	Calibration			ion		
Cal. Date:	October 1	7,2018	Rootsi	meter S/N:	438320	Ta:	294	°К
<b>Operator:</b>	Jim Tisch					Pa:	755.7	mm Hg
Calibration	Model #:	TE-5025A	Calik	prator S/N:	2154			
		1						
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔH	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4590	3.2	2.00	1
	2		4	1	1.0410	6.4	4.00	4
	3		6	1	0.9310	7.9	5.00	4
	5		10	1	0.8840	8.8 12.7	5.50	-
	J	5	101	1	0.7520	12.7	8.00	1
			C	Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$	)( <u>Tstd</u> )		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-axi	is)	Va	(x-axis)	(y-axis)	
	1.0035	0.6878	1.419	97	0.9958	0.6825	0.8821	]
	0.9993	0.9599	2.007		0.9915	0.9525	1.2475	4
	0.9973	1.0712	2.244		0.9895	1.0629	1.3948	
	0.9961	1.1268	2.354		0.9884	1.1180	1.4628	
	0.9909	1.3536 m=	2.839 2.130		0.9832	1.3432	1.7642 1.33386	
	QSTD	b=	-0.041		QA		-0.02601	
	QJID	r=	0.999		QA	r=	0.99996	
						-		1
	Vc+d-	AVOI/(Pa AD)	/Pstd)(Tstd/Ta	Calculation			0)/0-)	
	the second se	$\Delta vol((Pa-\Delta P))$ Vstd/ $\Delta$ Time	/rstu/(istu/la	')		ΔVol((Pa-ΔF Va/ΔTime	//rd)	
	43tu-	, stay a mile	For subseque	ent flow rat				
		// [ /				11	<u> </u>	
	Qstd=	1/m(( _\ΔH(·	Pa <u>Tstd</u> Pstd Ta	))-ь)	Qa=	1/m (( √ΔH	(Та/Ра))-b)	
_		Conditions		-				
Tstd:	298.15					RECAI	IBRATION	
Pstd:	Statement of the second se	mm Hg Kev			US EPA reco	mmends ar	nual recalibratio	on per 1998
H: calibrate		ter reading (in	n H2O)				legulations Part	
		eter reading (					Reference Meth	
		perature (°K)					ended Particulat	
a. actual ha	rometric p	ressure (mm	Hg)				re, 9.2.17, page	
: intercept		and the second se	and the second					

sch Environmental, Inc.

45 South Miami Avenue

illage of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

### MATERIALAB CONSULTANTS LIMITED

Tel Fax

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

: (852)-24508238 : (852)-24508032 : mcl@fugro.com.hk Email



Project : Env	ironmantal M	onitoring Wo	rks For Con	tract No. KL	V/2015/07		Date of	Calibration:	29-Dec-18
Location : KT	D2b						Next Calib	oration Date:	28-Mar-19
Brand:	Т	Tisch .						Technician:	Felix Fong
Model:	Т	E-5170		S/N:	3838				
		7. 5.		COND	ITIONS				
	Se	a Level Press	sure (hPa):	1026.1	Corr	ected Pressu	re (mm Hg):	770	
		Temper	rature (°C):	16		Tem	perature (K):	289	
				CALIBRATI	ON ORIFICE				
		Make:		Tisch		Qstd Slope:		2.13015	
		Model:		TE-5025A	Q	std Intercept:		-0.04186	
	Calibra	ation Date:		17-Oct-18		Expiry Date:		17-Oct-19	
	S	5/N:		2154					
				CALIBR	ATIONS				
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	1	IC		LINEAR	Geo
Tidle No.	(in)	(in)	(in)	(m ³ /min)	(chart)	(corrected)		REGRESSIC	N
18	11.00	-3.50	14.500	1.845	54.00	55.15	Slope =	25.5771	
13	10.50	-1.00	11.500	1.646	48.00	49.02	Intercept =	7.2498	
10	8.00	0.00	8.000	1.376	40.00	40.85	Corr. coeff.:	0.9932	
7	6.50	1.50	5.000	1.092	36.00	36.77			
5	5.50	2.50	3.000	0.850	28.00	28.60			
Calculations	Constant and some series								
	qrt(H2O(Pa/F		))-b]			FLO	W RATE CI	HART	
	a/Pstd)(Tstd/T	[a)]			60.00		<u> </u>		
Qstd = standa		and the			00.00				4
	d chart respo	nse			50.00			1	
= actual cha n = calibrato								/	
	Qstd slope	nt			ê 40.00			6	
	emperature du		on (dea K)		(C) 40.00 30.00 20.00		4		
	ressure durin				od 30.00	-	/		_
$\Gamma$ std = 298 de		goundation	(initial)		Re		*		
Pstd = 760 m	-				10.00 Hay				_
	ent calculati	ion of sampl	er flow:		alC				
and the second second second second	98/Tav)(Pav/				Actual 10.00	-			
m = sampler slope					4				
b = sampler intercept					0.00	1			
= chart res					0	.000 0.50	1.000	1.500	2.000
	/erage tempe	rature				Ston	ard Flow Rate	(m ³ /min)	
av = daily av	erage pressu	ure				Otani	and i low i vale	(in many	

()

CHOI KAM HO **Project Consultant** 

Report Date: 1st January, 2019

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

### MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk



Project : Env	vironmantal N	Ionitoring Wo	rks For Cor	ntract No. KL	N/2015/07		Date of	Calibration:	29-Dec-18
Location : KT	TD1a						Next Calib	ration Date:	28-Mar-19
Brand:		Tisch						Technician:	Felix Fong
Model:		TE-5170		S/N:	4037				
				COND	TIONS				
	Se	a Level Press	sure (hPa):	1026.1	Con	rected Pressu	ure (mm Hg):	770	
		Temper	rature (°C):	16		Tem	perature (K):	289	
				CALIBRATI	ON ORIFIC	E			
		Make:		Tisch		Qstd Slope	:	2.13015	
		Model:		TE-5025A	G	std Intercept	:	-0.04186	
	Calibr	ration Date:		17-Oct-18		Expiry Date	:	17-Oct-19	
	5	S/N:		2154					
		Sec. 1		CALIBR	ATIONS				
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	1	IC	1	LINEAR	5
	(in)	(in)	(in)	(m ³ /min)	(chart)	(corrected)	) F	REGRESSI	NC
18	10.00	-3.00	13.000	1.749	58.00	59.27	Slope =	27.2293	
13	9.50	-1.50	11.000	1.611	52.00			10.3971	
10	8.50	0.00	8.500	1.418	48.00	49.05	Corr. coeff.:	0.9942	
7	6.80	1.20	5.600	1.155	40.00	40.87			
5	5.20	2.10	3.100	0.864	34.00	34.74			
Calculations		D							i
		Pstd)(Tstd/Ta	i))-D]			FLC	W RATE CH	ART	
	a/Pstd)(Tstd/ lard flow rate				70.00	-			_
	ed chart respo								
I = actual cha		01136			60.00	-		2	-
	or Qstd slope				~ ~ ~ ~			1	
	or Qstd interce				Q 50.00	-		/	-
		luring calibrati	ion (dea K)		(C) 50.00 40.00 20.00		-		
		ng calibration			odso		/		
Tstd = 298 d					- 30.00				_
Pstd = 760 m					Char				
For subsequ	uent calculat	tion of sampl	er flow:		20.00	-			
	298/Tav)(Pav				Actual Chart 00.07 00.01				
m = sampler slope					10.00				
b = sampler intercept					0.00				
= chart res	sponse				0	.000 0.50	0 1.000	1.500 2	.000
Tav = daily a	verage temp	erature				Stand	lard Flow Rate (	(m³/min)	
Pav = daily a	verage press	sure							

CHOI KAM HO Project Consultant

Report Date: 1st January, 2019

### MATERIALAB CONSULTANTS LIMITED

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : (852)-24508238 Fax : (852)-24508032 Email : mcl@fugro.com.hk MateriaLab

		lonitoring Wo	rks For Cor	ntract No. KL	N/2015/07			Calibration: 29-Dec-18
Location : KE		lisch						ration Date: 28-Mar-19
Brand:				C/NI-	2402			Technician: Felix Fong
Model:		E-5170		S/N:	3482			
				COND	TIONS			
	Se	a Level Press	ure (hPa):	1026.1	Corre	ected Pressu	re (mm Hg):	770
		Temper	ature (°C):	16		Temp	perature (K):	289
				CALIBRATI	ON ORIFICE			
		Make:		Tisch		Qstd Slope:		2.13015
		Model:		TE-5025A	Q	std Intercept:		-0.04186
	Calibr	ation Date:		17-Oct-18		Expiry Date:		17-Oct-19
	5	5/N:		2154				
1				43	55			
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	1	IC		LINEAR
Flate NO.	(in)	(in)	(in)	(m ³ /min)	(chart)	(corrected)	F	REGRESSION
18	10.50	-3.20	13.700	1.795	56.00	57.22	Slope =	21.6783
13	9.00	-1.60	10.600	1.581	50.00	51.09	Intercept =	17.4679
10	8.40	0.20	8.200	1.393	46.00	47.01	Corr. coeff.=	0.9967
7	6.60	1.80	4.800	1.071	40.00	40.87	0.000	
5	5.40	2.20	3.200	0.878	36.00	36.79		
Calculations								1
		Pstd)(Tstd/Ta	))-b]			FLO	W RATE CH	ART
	a/Pstd)(Tstd/	Ta)]			70.00			
	ard flow rate				70.00			
	d chart respo	onse			60.00			-
= actual cha								/
	or Qstd slope				Q 50.00			
		ept luring calibrat	ion (dog K)		(O) 50.00 40.00 30.00		1	
		ng calibration			lods		-	
$Fa = actuar \mu$ Tstd = 298 d		ig calibration	(mm rig)		a 30.00			
Pstd = 760 m					hart			
		tion of sampl	er flow		Actual Charl 00.05 10.00			
					10.00			
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope					< 10.00			
b = sampler					0.00	-		
= chart res					0.	.000 0.50	00 1.000	1.500 2.000
	verage tempe	erature				01	land Elaw Data	(m3/min)
	verage press					Stand	dard Flow Rate	(mymin)

СНОІ КАМ НО

Project Consultant

Report Date: 1st January, 2019



# Certificate of Conformity and Calibration

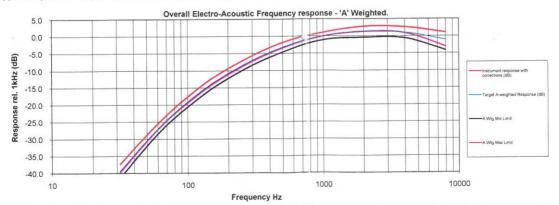
Instrument Model:-	CEL-633A			
Serial Number Firmware revision	1488269 V006-03			
<u>Microphone Type:-</u> Serial Number	<b>CEL-251</b> 2869		nplifier Type:- I Number	CEL-495 004065
Instrument Class/Type:-	1			
Applicable standards:-				
IEC 61672: 2002 / EN 60651 (Ele IEC 60651 1979 (Sound Level Me			ns For Sound Level M	leters)
Note:- The test sequences performe Standard - IEC61672. The combination electro-acoustic performance to all app Standards - IEC60651 and IEC60804.	n of tests perfor plicable standar	med are considered to cor	nfirm the products	l meter
1000 001101101	30 °с 58 %RH	Test Engineer:- Date of Issue:-	Chris Taylor September 7, 20	18



#### Declaration of conformity:-

This test certificate confirms that the instrument specified above has been successfully tested to comply with the manufacturer's published specifications. Tests are performed using equipment traceable to national standards in accordance with Casella's ISO 9001:2008 quality procedures. This product is certified as being compliant to the requirements of the CE Directive.

Test Summary:-	
Colf Congreted Naise Test	


Self Generated Noise Test	All Tests Pass
Electrical Signal Test Of Frequency Weightings	All Tests Pass
Frequency & Time Weightings At 1 kHz	All Tests Pass
Level Linearity On The Reference Level Range	All Tests Pass
Toneburst Response Test	All Tests Pass
C-peak Sound Levels	All Tests Pass
Overload Indication	All Tests Pass
Acoustic Tests	All Tests Pass

#### Combined Electro-Acoustic Frequency Response - A Weighted

1003 mBar

Combined Electro-Acoustic Frequency Response - A Weighted (IEC 61672-3:2006)

The following A-Weighted frequency response graph shows this instruments overall frequency response based upon the application of multi-frequency pressure field calibrations. The microphones Pressure to Free field correction coefficients are applied to pressure response. Reference level taken at 1kHz.



#### Casella UK

Regent House, Wolseley Road, Kempston, Bedford MK42 7JY United Kingdom

# 415 Lawrence Bell Drive, Unit 4 Buffalo, NY 14221, USA

Casella USA

Tel: +44 (0) 1234 844100 Fax: +44(0) 1234 841490 E-mail: info@casellasolutions.com

# Toll Free (800) 366-2966 Tel: +1 (716) 276 3040 E-mail: info@casellausa.com

Ideal Industries India Pvt.Ltd. 229-230, Spazedge, Tower -B Sohna Road, Sector-47, Gurgaon-122001, Haryana , India Tel: +91 124 4495100 E-mail: casella.sales@ideal-industries.in

Casella India

#### Casella China

Ideal Industries China Room 305, Building 1, No.1279, Chuanqiao Rd, Pudong New District, Shanghai, China

Tel: +86-21-31263188 Fax: +86-21-61605906 Email: info@casellasolutions.cn

#### Casella Australia

Ideal Industries (Aust) PTY. LTD Unit 17, 35 Dunlop Rd, Mulgrave Vic. 3170, Australia.

#### Email: australia@casellasolutions.com

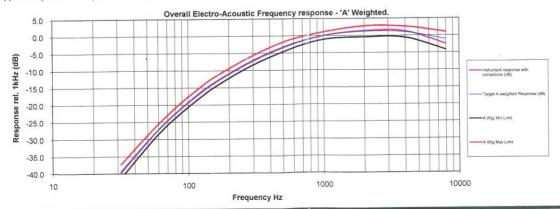
Tested to CEL-63X test sheet TP444 revision 01-00



# Certificate of Conformity and Calibration

Instrument Model:-	CEL-633A		
Serial Number Firmware revision	1488306 ∨006-03		
<u>Microphone Type:-</u> Serial Number	<b>CEL-251</b> 2874	<u>Preamplifier Type:-</u> Serial Number	CEL-495 003930
Instrument Class/Type:-	1		
Applicable standards:-			
IEC 61672: 2002 / EN 60651 (Ele IEC 60651 1979 (Sound Level M	ctroacoustics - Sound Level eters), ANSI S1.4: 1983 (Sp	Meters) ecifications For Sound Level N	/leters)
Note:- The test sequences perform Standard - IEC61672. The combinatio electro-acoustic performance to all ap Standards - IEC60651 and IEC60804	n of tests performed are conside plicable standards including sup	ered to confirm the products	el meter
Test conditions.	31 °C     Test Engine       51 %RH     Date of Issue       00 mBar	- · · ·	018

#### Declaration of conformity:-


This test certificate confirms that the instrument specified above has been successfully tested to comply with the manufacturer's published specifications. Tests are performed using equipment traceable to national standards in accordance with Casella's ISO 9001:2008 quality procedures. This product is certified as being compliant to the requirements of the CE Directive.

Test Summary:-	
Self Generated Noise Test	All Tests Pass
Electrical Signal Test Of Frequency Weightings	All Tests Pass
Frequency & Time Weightings At 1 kHz	All Tests Pass
Level Linearity On The Reference Level Range	All Tests Pass
Toneburst Response Test	All Tests Pass
C-peak Sound Levels	All Tests Pass
Overload Indication	All Tests Pass
Acoustic Tests	All Tests Pass

#### Combined Electro-Acoustic Frequency Response - A Weighted

Combined Electro-Acoustic Frequency Response - A Weighted (IEC 61672-3:2006)

The following A-Weighted frequency response graph shows this instruments overall frequency response based upon the application of multi-frequency pressure field calibrations. The microphones Pressure to Free field correction coefficients are applied to pressure response. Reference level taken at 1kHz.



Casella UK	Casella USA
Regent House, Wolseley Road, Kempston, Bedford	415 Lawrence Bell Drive, Unit 4 Buffalo, NY 14221, USA
MK42 7JY	

United Kingdom Tel: +44 (0) 1234 844100 Fax: +44(0) 1234 841490 E-mail: info@casellasolutions.com

# Toll Free (800) 366-2966 Tel: +1 (716) 276 3040 E-mail: info@casellausa.com

# Casella India

Ideal Industries India Pvt.Ltd. 229-230, Spazedge, Tower -B Sohna Road, Sector-47, Gurgaon-122001, Haryana , India Tel: +91 124 4495100 E-mail: casella.sales@ideal-industries.in

#### Casella China

Ideal Industries China Room 305, Building 1, No.1279, Chuanqiao Rd, Pudong New District, Shanghai, China

Tel: +86-21-31263188 Fax: +86-21-61605906 Email: info@casellasolutions.cn

#### Casella Australia

Ideal Industries (Aust) PTY. LTD Unit 17, 35 Dunlop Rd, Mulgrave Vic, 3170, Australia.

Email: australia@casellasolutions.com

Tested to CEL-63X test sheet TP444 revision 01-00

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Page 1 of 1

Report no.: 183057CA185248

# **CALIBRATION CERTIFICATE OF SOUND CALIBRATOR**

#### **Client Supplied Information**

Client : MateriaLab Consultants Ltd.

**Project : Calibration Services** 

#### Details of Unit Under Test, UUT

Description	:	Sound Calibrator
Manufacturer	:	Casella (Model CEL-120/1)
Serial No.	•	4358250
Equipment ID	:	N/A
Next Calibration Date	:	02-Jul-2019
Specification Limit	:	EN 60942: 2003 Type 1

#### Laboratory Information

Description	:	Reference Sound level	meter		
Equipment ID.	:	R-119-1			
Date of Calibrati	ion	: 03-Jul-2018	Ambient Temperature :	22	°C
Calibration Location : Calibration Laborator			ry of FTS		
Method Used	:	By direct comparison			

#### **Calibration Results :**

Parameters (Setting of UUT)	eters (Setting of UUT) Mean Value (error of measurement)	
94dB	0.0 dB	
114dB	0.1 dB	±0.4dB

#### **Remarks**:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.

Checked by : William	Date : 10 - 7 - 2018 Certified by : Date : Date :
CA-R-297 (22/07/2009)	Chan Chun Wai (Manager)

** End of Report **

١

This report shall not be reproduced except in full with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Page 1 of 1

Report no.: 183057CA185228(1)

# CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

#### **Client Supplied Information**

Client : MateriaLab Consultants Ltd.

**Project : Calibration Services** 

#### Details of Unit Under Test, UUT

Description	:	Sound Calibrator
Manufacturer	:	Casella (Model CEL-120/1)
Serial No.	:	4358251
Equipment ID	:	N/A
Next Calibration Date	:	25-Jun-2019
Specification Limit	•	EN 60942: 2003 Type 1

#### Laboratory Information

Description	:	Reference Sound lev	Reference Sound level meter		
Equipment ID.	:	R-119-1			
Date of Calibra	tion	: 26-Jun-2018	Ambient Temperature :	22	°C
Calibration Location : Calibration Laboratory of MateriaLab					
Method Used	d : By direct comparison				

#### **Calibration Results :**

Parameters (Setting of UUT)	s (Setting of UUT) Mean Value (error of measurement)	
94dB	-0.1 dB	±0.4dB
114dB	-0.1 dB	10.400

#### **Remarks**:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.

Checked by: 10. Ucam Date: 28-6-20()	Certified by: Date:
CA-R-297 (22/07/2009)	Chan Chun Wai (Manager)

** End of Report **

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Report No. : 183057CA185180(1)

# CALIBRATION CERTIFICATE OF ANEMOMETER

#### **Client Supplied Information**

Client : MateriaLab Consultants Ltd.

Project : Calibration Services

#### **Details of Unit Under Test, UUT**

Description	:	Anemometer
Manufacturer	:	Benetech
Model No.	:	GM816
Serial No.	:	13372555
Equipment ID.	:	N/A
Next Calibration Date	:	08-Jun-2019

#### Laboratory Information

Details of Reference Equipment -

Description :	Reference Anemometer			
Equipment ID.:	R-101-4			
Date of Calibration :	09-Jun-2018	Ambient Temperature	:	22 °C
Calibration Location :	Calibration Laboratory of	FTS		
Method Used : By dire	ect Comparison			

#### **Calibration Results :**

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
1.96	2.2	0.2
4.04	4.1	0.1
6.05	6.2	0.2
8.02	7.9	-0.1
10.06	9.7	-0.4

#### Remark :

1. The equipment being used in this calibration is traceable to recognized National Standards.

Checked by : / Milliam	Date :	12-6-2018	Certified by :	his	Date :	13.6.2018-
CA-R-297 (22/07/2009)			Chan	Chun Wai (Mar	nager)	

** End of Report **

This report shall not be reproduced except in full with prior written approval from the Company.

Page 1 of 1

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Page 1 of 1

Report No. : 182933CA185214(2)

# CALIBRATION CERTIFICATE OF ANEMOMETER

#### **Client Supplied Information**

Client : Materialab Consultants Ltd.

Address: Room 723 & 725, 7F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project : **Calibration Services** 

#### **Details of Unit Under Test, UUT**

Description	: Comfort	Level Probe				
Manufacturer	: Testo					
	Me	ter	Probe			
Model No.	: 48	80	409			
Serial No.	: 6100	3846 (	03216409			
Equipment ID	: N/A					
Next Calibration Due Date	: 22-Aug-2	019				
Laboratory Information						
Details of Reference Equipment	-					
Description : Refere	ence Anemom	eter				
Equipment ID. : R-101	-4					
Date of Calibration : 23-Au	ıg-2018	Ambient	Temperature	•	20± 2	°C
Calibration Location : Calibra	ation Laborato	ry of FTS				
Method Used : By direct Con	nparison					

#### **Calibration Results :**

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
1.05	1.06	0.01
3.02	3.06	0.04
5.04	5.07	0.03

#### **Remarks**:

- 1. The equipment being used in this calibration is traceable to recognized National Standards.
- 2. The reported readings in this calibration are an average from 10 trials.

Checked by : Milliam	Date: 31-8-2018	Certified by :_	K J. Loung	_ Date : 31- 8-7018
CA-R-297 (22/07/2009)			vok Tai (Assistant	

** End of Report **

This report shall not be reproduced except in full with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix E

**Environmental Monitoring Schedule** 

Tel

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



#### **Project:** KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

# Impact Monitoring Schedule (March 2019)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
					1	2
3	4	5 TSP Monitoring Noise Monitoring	6	7	8	9
10	11 TSP Monitoring Noise Monitoring	12	13	14	15	16 TSP Monitoring Noise Monitoring
17	18	19	20	21	22 TSP Monitoring Noise Monitoring	23
24	25	26	27	28 TSP Monitoring Noise Monitoring	29	30
31						

Remarks

1. Monitoring Locations - KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital), KER1b: Site Boundary at Cheung Yip Street

2. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)

3. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours.

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



# Project: <u>KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the</u> <u>Southern Part of the Former Runway</u>

# Impact Monitoring Schedule (April 2019)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
	1	2	3 TSP Monitoring Noise Monitoring	4	5	6
7	8	9 TSP Monitoring Noise Monitoring	10	11	12	13
14	15 TSP Monitoring Noise Monitoring	16	17	18 TSP Monitoring Noise Monitoring	19	20
21	22	23	24 TSP Monitoring Noise Monitoring	25	26	27
28	29	30 TSP Monitoring Noise Monitoring				

#### Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition

2. Monitoring Locations – KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital), KER1b: Site Boundary at Cheung Yip Street

3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)

4. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours.

Fugro Development Centre, 5 Lok Yi Street. Tai Lam. Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



#### **Project:** KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

# Impact Monitoring Schedule (May 2019)

Tel

Sun	Mon	Tue	Wed	Thur	Fri	Sat
			1	2	3	4
5	6 TSP Monitoring Noise Monitoring	7	8	9	10	11 TSP Monitoring Noise Monitoring
12	13	14	15	16	17 TSP Monitoring Noise Monitoring	18
19	20	21	22	23 TSP Monitoring Noise Monitoring	24	25
26	27	28	29 TSP Monitoring Noise Monitoring	30	31	

#### Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition

2. Monitoring Locations - KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital), KER1b: Site Boundary at Cheung Yip Street

3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)

4. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours.

Tel

Fugro Development Centre, 5 Lok Yi Street. Tai Lam. Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



#### **Project:** KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

# Impact Monitoring Schedule (June 2019)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
						1
2	3	4 TSP Monitoring Noise Monitoring	5	6	7	8
9	10 TSP Monitoring Noise Monitoring	11	12	13	14	15 TSP Monitoring Noise Monitoring
16	17	18	19	20	21 TSP Monitoring Noise Monitoring	22
23	24	25	26	27 TSP Monitoring Noise Monitoring	28	29
30						

#### Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition

2. Monitoring Locations - KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital), KER1b: Site Boundary at Cheung Yip Street

3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)

4. Noise Monitoring: Leg (30 min) between 0700 and 1900 hours.

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix F

Air Quality Monitoring Data

#### 24-hour TSP Monitoring Result for Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

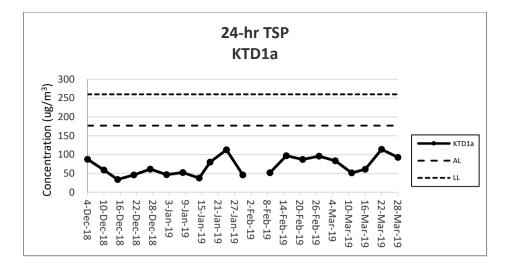
Start Date	Weather Condition	Air Temperature (K)	Atmospheric Pressure, Pa	Filter W	eight (g)	Particulate weight (g)	Sampling Time(hrs)	Flow (m ³ /r		Average flow (m ³ /min.)	Total volume (m ³⁾	Conc. (ug/m ³ )	Action Level	Limit Level
	Condition	(13)	(mmHg)	Initial	Final	weight (g)	11116(1113)	Initial	Final	(m /mn.)	(m ·	(ug/m)	$(ug/m^3)$	(ug/m ³ )
5-Mar-19	Fine	295.2	759.1	2.6720	2.8151	0.1431	24	1.19	1.18	1.19	1707.7	84		
11-Mar-19	Fine	295.6	761.2	2.6898	2.7780	0.0882	24	1.19	1.18	1.19	1708.4	52		
16-Mar-19	Fine	293.2	765.1	2.6312	2.7357	0.1045	24	1.20	1.18	1.19	1714.6	61	177	260
22-Mar-19	Cloudy	298.8	759.1	2.6842	2.9313	0.2471	24	1.50	1.51	1.50	2166.6	114		
28-Mar-19	Fine	297.4	759.5	2.6812	2.8910	0.2098	24	1.57	1.57	1.57	2262.7	93		
											Min	52		
											Max	114		
											Average	81		

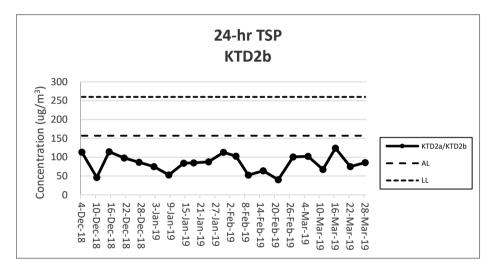
#### KTD1a - Centre of Excellence in Paediatrics (Children's Hospital)

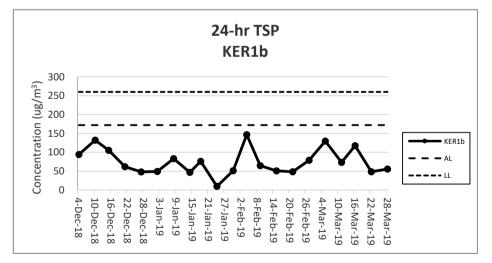
#### KTD 2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital)

Start Date	Weather Condition	Air Temperature (K)	Atmospheric Pressure, Pa	Filter W	eight (g)	Particulate weight (g)	Sampling Time(hrs)	Flow (m ³ /ı	Rate min.)	Average flow (m ³ /min.)	Total volume (m ³⁾	Conc. (ug/m ³ )	Action Level	Limit Level
	Contaition	(14)	(mmHg)	Initial	Final	weight (g)	11116(1113)	Initial	Final	(111 /11111.)	(m )	(ug/m)	$(ug/m^3)$	$(ug/m^3)$
5-Mar-19	Fine	295.2	759.1	2.6812	2.8588	0.1776	24	1.21	1.20	1.20	1733.9	102		
11-Mar-19	Fine	295.6	761.2	2.6752	2.7924	0.1172	24	1.21	1.20	1.20	1734.7	68		
16-Mar-19	Fine	293.2	765.1	2.6651	2.9339	0.2688	24	1.51	1.49	1.50	2167.0	124	157	260
22-Mar-19	Cloudy	298.8	759.1	2.6250	2.7705	0.1455	24	1.34	1.35	1.35	1938.7	75		
28-Mar-19	Fine	297.4	759.5	2.6708	2.8194	0.1486	24	1.20	1.20	1.20	1730.2	86		
											Min	68		

Max 124 91 Average


#### KER1b - Site Boundary at Cheung Yip Street


Start Date	Weather Condition	Air Temperature (K)	Pressure, Pa	Filter W	eight (g)	Particulate weight (g)	Sampling Time(hrs)	Flow (m ³ /i	Rate min.)	Average flow (m ³ /min.)	Total volume (m ³⁾	Conc.	Action Level	Limit Level
	Condition	(13)	(mmHg)	Initial	Final	weight (g)	11110(1113)	Initial	Final	(111 /11111.)	(m)	(ug/m³)	$(ug/m^3)$	$(ug/m^3)$
5-Mar-19	Fine	295.2	759.1	2.6750	2.8584	0.1834	24	0.98	0.98	0.98	1412.4	130		
11-Mar-19	Fine	295.6	761.2	2.6823	2.7856	0.1033	24	0.98	0.98	0.98	1413.0	73		
16-Mar-19	Fine	293.2	765.1	2.6398	2.8484	0.2086	24	1.24	1.23	1.23	1777.0	117	172	260
22-Mar-19	Cloudy	298.8	759.1	2.6728	2.7539	0.0811	24	1.16	1.16	1.16	1673.7	48		
28-Mar-19	Fine	297.4	759.5	2.6975	2.7905	0.0930	24	1.16	1.16	1.16	1676.4	55		
											Min	48		
											Max	130		
											Average	85	]	


Note:

Underline: Exceedance of Action Level

Underline and Bold: Exceedance of Limit Level Impact air monitoring was not conducted at KTD1a due to the site was closed on 4 February 2019.







#### Note:

- 1) The major activities being carried out on site during the reporting period can be referred to Section 1.3.2.
- 2) The weather conditions during the reporting period can be referred to Appendix K.
- 3) Any other factors which might affect the monitoing results can be referred to Section 2.6.4.
- 4) QA/QC results, calibration results and detection limits can be referred to Appendix D.
- 5) Impact air monitoring was not conducted at KTD1a due to the site was closed on 4 February 2019.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix G

**Noise Monitoring Data** 

# Noise Impact Monitoring Result for

Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

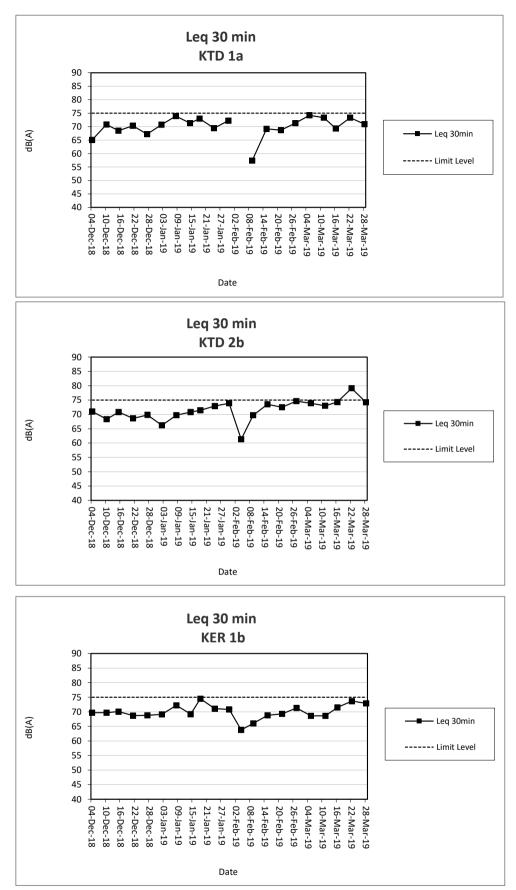
Date	Start Time	Leq 30min dB(A)	L10 dB(A)	L90 dB(A)	Wind Speed (m/s)	Weather
05-Mar-19	8:57	74	76	73	0.2	Fine
11-Mar-19	9:17	73	75	72	0.2	Fine
16-Mar-19	11:06	69	72	66	1.0	Fine
22-Mar-19	9:17	73	77	67	0.2	Cloudy
28-Mar-19	9:34	71	74	69	0.3	Fine
	Max	74				
	Min	69				
	Limit Level	75				

#### KTD 1a: Centre of Excellence in Paediatrics (Children's Hospital)

#### KTD 2b: G/IC Zone next to Kwun Tong Bypass (Next to the site of the New Acute Hospital)

	0 T	Leq 30min	L10	L90	Wind Speed	<b>W</b> 4
Date	Start Time	dB(A)	dB(A)	dB(A)	(m/s)	Weather
05-Mar-19	9:41	74	76	73	0.3	Fine
11-Mar-19	9:59	73	74	71	0.1	Fine
16-Mar-19	10:18	74	77	72	2.0	Fine
22-Mar-19	10:02	79	80	78	0.3	Cloudy
28-Mar-19	10:45	74	79	73	0.2	Fine
	Max	79				
	Min	73				
	Limit Level	75				

#### KER 1b: Site Boundary at Cheung Yip Street


		Leq 30min	L10	L90	Wind Speed	
Date	Start Time	dB(A)	dB(A)	dB(A)	(m/s)	Weather
05-Mar-19	10:42	69	72	68	0.2	Fine
11-Mar-19	10:42	69	70	64	0.3	Fine
16-Mar-19	9:38	72	74	67	0.8	Fine
22-Mar-19	8:30	74	76	72	0.3	Cloudy
28-Mar-19	8:30	73	74	72	0.4	Fine
	Max	74				
	Min	69				
	Limit Level	75				

Note:

KTD1a: Façade Measurement

KTD2b & KER1b: Free-field measurement (+3dB(A) correction has been applied)

No raining or wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation.



Note:

1) The major activities being carried out on site during the reporting period can be referred to Section 1.3.2.

2) The weather conditions during the reporting period can be referred to Appendix K.

3) Any other factors which might affect the monitoing results can be referred to Section 3.7.2.

4) QA/QC results, calibration results and detection limits can be referred to Appendix D.

5) Impact noise monitoring was not conducted at KTD1a due to the site was closed on 4 February 2019.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix H

**Events and Action Plan** 

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



# Event and Action Plan for Construction Dust Monitoring

EVENT		ACT		
Action Level	ET	IEC	ER	Contractor
Exceedance for one sample.	<ol> <li>Identify sources, investigate the causes of complaint and propose remedial measures.</li> <li>Inform IEC and ER.</li> <li>Repeat measurement to confirm finding:</li> </ol>	<ol> <li>Check monitoring data submitted by the ET.</li> <li>Check the Contractor's working methods.</li> </ol>	1. Notify the Contractor.	<ol> <li>Rectify any unacceptable practices.</li> <li>Amend working methods agreed with the ER as appropriate.</li> </ol>
Exceedance for two or more consecutive samples.	<ul> <li>to confirm finding;.</li> <li>4. Increase monitoring frequency</li> <li>1.Identify sources.</li> <li>2.Inform the IEC and ER.</li> <li>3. Advise the ER on the effectiveness of the proposed remedial measures;</li> <li>4. Repeat measurements to confirm findings.</li> <li>5. Increase monitoring frequency to daily.</li> <li>6. Discuss with the IEC, ER and Contractor on remedial action required.</li> <li>7. If exceedance continues, arrange meeting with the IEC, Contractor and ER.</li> <li>8. If exceedance stops,</li> </ul>	<ol> <li>Check monitoring data submitted by the ET.</li> <li>Check the Contractor's working methods.</li> <li>Discuss with the ET, ER and Contractor on possible remedial measures if required.</li> <li>Advise the ER on the effectiveness of proposed remedial measures if required.</li> </ol>	<ol> <li>Notify the Contractor.</li> <li>Ensure remedial measures properly implemented.</li> </ol>	<ol> <li>Submit proposals for remedial action to the ER within 3 working days of notification.</li> <li>Implement the agreed proposals.</li> <li>Amend proposal as appropriate</li> </ol>
Limit Level Exceedance for one sample.	<ol> <li>monitoring.</li> <li>Identify sources, investigate causes of exceedance and proposed remedial measures.</li> <li>Inform the IEC, ER, and Contractor.</li> <li>Repeat measurement to confirm finding.</li> <li>Increase monitoring frequency to daily.</li> <li>Assess effectiveness of the Contractor's remedial action and</li> </ol>	<ol> <li>Check monitoring data submitted by the ET.</li> <li>Check the Contractor's working methods.</li> <li>Discuss with the ET, ER and Contractor on possible remedial measures.</li> <li>Advise the ER and ET on the effectiveness of the proposed remedial measures.</li> <li>Supervise the</li> </ol>	<ol> <li>Confirm receipt of the notification of exceedance in writing.</li> <li>Notify the Contractor.</li> <li>Ensure remedial measures are properly implemented.</li> </ol>	<ol> <li>Take immediate action to avoid further exceedance.</li> <li>Submit proposals for remedial action to the ER and copy to the ET and IEC within 3 working days of notification.</li> <li>Implement the agreed proposals.</li> <li>Amend proposal as appropriate.</li> </ol>
Exceedance for two or more consecutive samples	<ol> <li>Iserie dia action and keep the IEC and ER informed of the results</li> <li>Notify the IEC, ER and Contractor.</li> <li>Identify sources.</li> <li>Repeat measurements to confirm findings.</li> <li>Increase monitoring frequency to daily.</li> <li>Carry out analysis of the Contractor's working procedures with the ER to determine the possible mitigation to be implemented.</li> <li>Arrange meeting with the IEC and ER to discuss the remedial</li> </ol>	<ol> <li>Supervise the implementation of remedial measures.</li> <li>Discuss amongst the ER, ET and Contractor on the potential remedial action.</li> <li>Review the Contractor's remedial action whenever necessary to assure their effectiveness and advise the ER and ET accordingly.</li> <li>Supervise the implementation of remedial measures.</li> </ol>	<ol> <li>Confirm receipt of the notification of exceedance in writing.</li> <li>Notify the Contractor.</li> <li>In consultation with the IEC and ET, agree with the Contractor on the remedial measures to be implemented.</li> <li>Ensure remedial measures are properly implemented.</li> <li>If exceedance continues, consider</li> </ol>	<ol> <li>Take immediate action to avoid further exceedance.</li> <li>Submit proposals for remedial action to the ER and copy to the IEC and ET within 3 working days of notification.</li> <li>Implement the agreed proposals.</li> <li>Resubmit proposals if problems still not under control.</li> <li>Stop the relevant portion of works as determined by the ER</li> </ol>

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



EVENT		ACT	ION	
EVENI	ET	IEC	ER	Contractor
	action to be taken. 7. Assess the effectiveness of the Contractor's remedial action and keep the IEC, EPD and ER informed of the results. 8. If exceedance stops, cease additional monitoring		what portion of works is responsible and instruct the Contractor to stop that portion of works until the exceedance is abated.	until the exceedance is abated.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



# **Event and Action Plan for Noise Impact**

EVENT		ACT	ΓΙΟΝ	
EVENT	ET	IEC	ER	Contractor
Action Level	<ol> <li>Notify the IEC, ER and Contractor.</li> <li>Carry out investigation.</li> <li>Report the results of investigation to the IEC and Contractor.</li> <li>Discuss jointly with the ER and Contractor and formulate remedial measures.</li> <li>Increase the monitoring frequency to check the mitigation effectiveness</li> </ol>	<ol> <li>Review the monitoring data submitted by the ET.</li> <li>Review the construction methods and proposed redial measures by the Contractor, and advise the ET and ER if the proposed remedial measures would be sufficient</li> </ol>	<ol> <li>Notify the Contractor.</li> <li>Require the Contractor to propose remedial measures for implementation if required.</li> </ol>	<ol> <li>Submit noise mitigation proposals to the ER and copy to the IEC and ET.</li> <li>Implement noise mitigation proposals.</li> </ol>
Limit Level	<ol> <li>Notify the IEC, ER and Contractor.</li> <li>Identify sources.</li> <li>Repeat measurements to confirm findings.</li> <li>Carry out analysis of the Contractor's working procedures with the ER and Contractor to determine possible mitigations to be implemented.</li> <li>Record the causes and action taken for the exceedances.</li> <li>Increase the monitoring frequency.</li> <li>Assess the effectiveness of the Contractor's remedial action with the ER and keep the IEC informed of the results.</li> <li>If exceedance stops, cease additional monitoring</li> </ol>	<ol> <li>Discuss amongst the ER, ET and Contractor on the potential remedial action.</li> <li>Review the Contractor's remedial action whenever necessary to assure their effectiveness and advise the ER accordingly.</li> <li>Supervise the implementation of remedial measures.</li> </ol>	<ol> <li>Confirm receipt of notification of exceedance in writing.</li> <li>Notify the Contractor.</li> <li>Require the Contractor to propose remedial measures for the analysed noise problems.</li> <li>Ensure remedial measures are properly implemented.</li> <li>If exceedance continues, consider what portion of work is responsible and instruct the Contractor to stop that portion of works until the exceedance is abated.</li> </ol>	<ol> <li>Take immediate action to avoid further exceedance.</li> <li>Submit proposals for remedial action to the ER and copy to the ET and IEC within 3 working days of notification.</li> <li>Implement the agreed proposals.</li> <li>Resubmit proposals if problems still not under control.</li> <li>Stop the relevant portion of works as determined by the ER until the exceedance is abated.</li> </ol>

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



# Event and Action Plan for Landscape and Visual Impact

EVENT		ACT	ION	
EVENT	ET	IEC	ER	Contractor
Non-conformity on one occasion	<ol> <li>Identify Source</li> <li>Inform the IEC and the ER</li> <li>Discuss remedial actions with the IEC, the ER and the Contractor</li> <li>Monitor remedial actions until rectification has been completed</li> </ol>	<ol> <li>Check report</li> <li>Check the Contractor's working method</li> <li>Discuss with the ET and the Contractor on possible remedial measures</li> <li>Advise the ER on effectiveness of proposed remedial measures.</li> <li>Check implementation of remedial measures.</li> </ol>	<ol> <li>Notify Contractor</li> <li>Ensure remedial measures are properly implemented</li> </ol>	<ol> <li>Amend working methods</li> <li>Rectify damage and undertake any necessary replacement</li> </ol>
Repeated Non- conformity	<ol> <li>Identify Source</li> <li>Inform the IEC and the ER</li> <li>Increase monitoring frequency</li> <li>Discuss remedial actions with the IEC, the ER and the Contractor</li> <li>Monitor remedial actions until rectification has been completed</li> <li>If exceedance stops, cease additional monitoring</li> </ol>	<ol> <li>Check monitoring report</li> <li>Check the Contractor's working method</li> <li>Discuss with the ET and the Contractor on possible remedial measures</li> <li>Advise the ER on effectiveness of proposed remedial measures</li> <li>Supervise implementation of remedial measures.</li> </ol>	<ol> <li>Notify the Contractor</li> <li>Ensure remedial measures are properly implemented</li> </ol>	<ol> <li>Amend working methods</li> <li>Rectify damage and undertake any necessary replacement</li> </ol>

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix I

Waste Flow Table

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



Waste Flow	Table for Ye	ar 2016									
		Actual Quant	tities of Inert C&I	D Materials Gene	erated Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly				
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³ )
2016 Jan	0.159	0.101	0.058	Nil	Nil	Nil	Nil	0.023	0.00002	0.0158	0.0335
2016 Feb	0.291	0.050	0.241	Nil	Nil	Nil	1.34	0.023	0.00002	0.0158	0.0335
2016 Mar	2.7389	0.0407	0.0662	Nil	2.632	Nil	5.92	0.023	0.00002	0.0158	0.0571
2016 Apr	4.1718	0.0578	0.462	Nil	3.652	Nil	12.5	0.023	0.00002	0.0158	0.0426
2016 May	3.592	Nil	0.299	Nil	3.293	Nil	5.23	0.023	0.00002	0.0158	0.0621
2016 June	4.6035	Nil	0.8555	Nil	3.748	Nil	Nil	0.023	0.00002	0.0158	0.0619
2016 July	6.155	0.153	0.015	Nil	5.987	Nil	7.84	0.023	0.00002	0.0158	0.0433
2016 Aug	5.1155	Nil	Nil	Nil	5.1155	Nil	19.93	0.023	Nil	Nil	0.0147
2016 Sept	7.2267	Nil	Nil	Nil	7.2267	Nil	33.65	0.023	Nil	Nil	0.0103
2016 Oct	4.6448	Nil	Nil	Nil	4.6448	Nil	13.30	0.023	Nil	Nil	0.0385
2016 Nov	6.1626	Nil	Nil	Nil	6.1626	Nil	27.06	0.023	Nil	Nil	0.0192
2016 Dec	6.3522	Nil	Nil	Nil	6.3522	Nil	13.30	0.023	Nil	Nil	0.0121
Total	51.213	0.4025	1.9967	Nil	48.8138	Nil	140.07	0.276	0.00014	0.1106	0.4288

Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill - Imported Fill

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



Waste Flow	/ Table for Ye	ear 2017									
		Actual Quantities of Inert C&D Materials Generated Monthly						Actual Quantities of Non-inert C&D Wastes Generated Monthly			
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000m ³ )	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³ )
2017 Jan	4.2300	Nil	Nil	Nil	4.2300	Nil	0.015	0.023	Nil	Nil	0.0109
2017 Feb	3.2128	Nil	Nil	Nil	3.2128	Nil	0.015	0.023	Nil	Nil	0.0096
2017 Mar	9.4759	Nil	Nil	Nil	9.4759	Nil	0.034	0.023	Nil	Nil	0.0162
2017 Apr	4.8827	Nil	Nil	Nil	4.8827	Nil	0.016	0.023	Nil	Nil	0.0062
2017 May	3.0366	Nil	Nil	Nil	3.0366	Nil	0.022	0.023	Nil	Nil	0.0282
2017 Jun	2.5656	Nil	Nil	Nil	2.5656	Nil	41.25	Nil	Nil	Nil	0.0357
2017 Jul	5.5267	Nil	0.7851	Nil	4.7416	Nil	4.01	0.4515	Nil	0.25	0.0364
2017 Aug	11.4734	Nil	0.0276	Nil	11.4458	Nil	7.4	Nil	Nil	Nil	0.0196
2017 Sep	23.9373	Nil	2.6167	Nil	21.3206	Nil	3.52	Nil	Nil	Nil	0.0333
2017 Oct	17.8261	Nil	0.4069	Nil	17.4192	Nil	Nil	Nil	Nil	Nil	0.0156
2017 Nov	5.8834	Nil	0.6664	Nil	5.217	Nil	Nil	Nil	Nil	Nil	0.023
2017 Dec	21.3554	Nil	0.4763	Nil	20.8791	Nil	29.13	Nil	Nil	Nil	0.022
Total	113.4059	Nil	4.9790	Nil	108.4269	Nil	85.412	0.5665	Nil	0.25	0.2567

#### Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill – Imported Fill

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



Waste Flow	/ Table for Ye	ar 2018									
		Actual Quan	tities of Inert C&I	D Materials Gene	erated Monthly	Actual Quantities of Non-inert C&D Wastes Generated Monthly					
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³ )	(in '000m³)	(in '000m³)	(in '000m ³ )	(in '000m³)	(in '000m ³ )	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³ )
2018 Jan	10.2340	Nil	Nil	Nil	10.2340	Nil	32.39	Nil	Nil	Nil	0.0161
2018 Feb	6.5256	Nil	Nil	Nil	6.5256	Nil	Nil	Nil	Nil	Nil	0.0235
2018 Mar	28.1995	Nil	Nil	Nil	28.1995	Nil	54.54	Nil	Nil	Nil	0.0190
2018 Apr	11.2165	Nil	Nil	Nil	11.2165	Nil	Nil	Nil	Nil	Nil	0.0270
2018 May	5.6011	Nil	Nil	Nil	5.6011	Nil	Nil	Nil	Nil	Nil	0.0140
2018 Jun	5.8072	Nil	Nil	Nil	5.8072	Nil	93.3	Nil	Nil	Nil	0.0235
2018 Jul	7.4206	Nil	Nil	Nil	7.4206	Nil	Nil	Nil	Nil	Nil	0.0383
2018 Aug	2.0815	Nil	Nil	Nil	2.0815	Nil	Nil	Nil	Nil	Nil	0.0665
2018 Sep	0.3710	Nil	Nil	Nil	0.3710	Nil	Nil	Nil	Nil	Nil	0.0436
2018 Oct	0.9087	Nil	Nil	Nil	0.9620	0.0533	Nil	Nil	Nil	Nil	0.0444
2018 Nov	0.7291	Nil	Nil	Nil	0.7733	0.0589	Nil	Nil	Nil	Nil	0.0225
2018 Dec	-0.0931	Nil	Nil	Nil	0.3860	0.4791	Nil	Nil	Nil	Nil	0.0228
Total	79.0017	Nil	Nil	Nil	79.5783	0.5913	180.23	Nil	Nil	Nil	0.3614

Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill – Imported Fill

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



		Actual Quantities of Inert C&D Materials Generated Monthly						Quantities of Non-i	inert C&D Wast	es Generated N	Ionthly
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³ )	(in '000m³)	(in '000m³)	(in '000m ³ )	(in '000m³)	(in '000m ³ )	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³ )
2019 Jan	0.2485	Nil	Nil	Nil	0.7063	0.45774	Nil	Nil	Nil	Nil	0.0100
2019 Feb	0.2790	Nil	Nil	Nil	0.2790	Nil	Nil	Nil	Nil	Nil	0.0076
2019 Mar	0.7376	Nil	Nil	Nil	0.7376	Nil	Nil	Nil	Nil	Nil	0.0929
2019 Apr											
2019 May											
2019 Jun											
2019 Jul											
2019 Aug											
2019 Sep											
2019 Oct											
2019 Nov											
2019 Dec											
Total	1.2651	0	0	0	1.7229	0.45774	0	0	0	0	0.1106

Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill – Imported Fill

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix J

**Environmental Mitigation Implementation Schedule (EMIS)** 

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
Air Quality Measur	res				
New Distributor Ro	oads Serving the Pla	anned KTD			
AEIAR-130/2009 S3.2	AEIAR 130/2009 EM&A Manual S2.2	8 times daily watering of the work site with active dust emitting activities.	Contractor	All relevant worksites	Implemented
Decommissioning	of the Radar Statior	n of the former Kai Tak Airport			
AEIAR-130/2009 S5.2.19	AEIAR 130/2009 EM&A Manual S4.2.4	The excavation area should be limited to as small in size as possible and backfilled with clean and/or treated soil shortly after excavation work. The exposed excavated area should be covered by the tarpaulin during night time. The top layer soils should be sprayed with fine misting of water immediately before the excavation.	Contractor	All relevant worksites	Not Applicable
Trunk Road T2	I				I
AEIAR-174/2013 S4.9.2.1	AEIAR-174/2013 EM&A Manual S2.3.1.1	Watering of the construction areas 12 times per day to reduce dust emissions by 91.7%, with reference to the "Control of Open Fugitive Dust Sources" (USEPA AP-42). The amount of water to be applied would be 0.91L/m2 for the respective watering frequency.	Contractor	All relevant worksites	Implemented
		Dust enclosures with watering would be provided along the loading ramps and conveyor belts for unloading the C&D materials to the barge for dust suppression.	Contractor	All relevant worksites	Not Applicable
		8 km per hour is the recommended limit of the speed for vehicles on unpaved site roads.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009	AEIAR 130/2009	Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should	Contractor	All relevant	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status																			
S3.2, S5.2.19,	S3.2, S5.2.19, EM&A Manual AEIAR-174/2013 S2.2, S4.2, AEIAR	be fully covered by impermeable sheeting to reduce dust emission.		worksites																				
S4.9.2.2	174/2013 EM&A Manual S2.3.1.2	Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs.	Contractor	All relevant worksites	Implemented																			
		Misting for the dusty material should be carried out before being loaded into the vehicle. Any vehicle with an open load carrying area should have properly fitted side and tail boards.	Contractor	All relevant worksites	Implemented																			
					Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	Contractor	All relevant worksites	Implemented																
		Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations; The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation.	Contractor	All relevant worksites	Implemented																			
		The vehicles should be restricted to maximum speed of 10 km per hour. Confined haulage and delivery vehicle to designated roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	Contractor	All relevant worksites	Implemented																			
																					Vehicle washing facilities should be provided at every vehicle exit point. Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.	Contractor	All relevant worksites	Implemented
		The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.																						
		Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet.	Contractor	All relevant worksites	Implemented																			
		Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.	Contractor	All relevant worksites	Implemented																			

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed.	Contractor	All relevant worksites	Implemented
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system.	Contractor	All relevant worksites	Implemented
		Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.	Contractor	All relevant worksites	Implemented
		Open stockpiles shall be avoided or covered. Prevent placing dusty material storage piles near ASRs.	Contractor	All relevant worksites	Implemented
		Routing of vehicles and position of construction plant should be at the maximum possible distance from ASRs.	Contractor	All relevant worksites	Implemented
		Dark smoke			
		Dark smoke emission shall be control in accordance with the Air Pollution Control (Smoke) Regulation and ETWB TCW 19/2005.	Contractor	All relevant worksites	Implemented
		Plant and equipment should be well maintained to prevent dark smoke emission.	Contractor	All relevant worksites	Implemented
Noise Measures		·			
Trunk Road T2					
AEIAR-174/2013 \$5.9.2.1	AEIAR-174/2013 EM&A Manual S3.4.1.1	The use of quieter plant, including Quality Powered Mechanical Equipment (QPME) is specified for the list of equipment: • Concrete lorry mixer • Dump Truck, 5.5 tonne < gross vehicle weight <= 38 tonne • Generator, Super Silenced, 70 dB(A) at 7m	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		<ul> <li>Poker, vibratory, Hand-held (electric)</li> <li>Water Pump, Submersible (Electric)</li> <li>Mobile Crane - KOBELCO CKS900</li> <li>Excavator, wheeled/tracked - HYUNDAI R80CR-9</li> </ul>			
		Use of temporary or fixed noise barriers with a surface density of at least 10kg/m ² to screen noise from movable and stationary plant.	Contractor	All relevant worksites	Implemented
		Use of enclosures with covers at top and three sides and a surface density of at least 10kg/m ² to screen noise from generally static noisy plant such as air compressors.	Contractor	All relevant worksites	Implemented
		Use of acoustic fabric for the silent piling system, drill rigs, rock drills etc.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009 S3.3, S5.3.10, AEIAR-174/2013	AEIAR 130/2009 EM&A Manual	Only well-maintained plant should be operated on-site and plant shall be serviced regularly during the construction/ decommissioning program.	Contractor	All relevant worksites	Implemented
S5.9.2.1	S2.3, S4.3.2, AEIAR-174/2013 EM&A Manual S3.4.1.1	Silencers or mufflers on construction equipment should be utilized and shall be properly maintained during the construction/ decommissioning program.	Contractor	All relevant worksites	Implemented
	33.4.1.1	Mobile plant, if any, should be sited as far away from NSRs as possible.	Contractor	All relevant worksites	Implemented
		Machines and plant (such as trucks) that may be in intermittent use shall be shut down between works periods or should be throttled down to a minimum.	Contractor	All relevant worksites	Implemented
		Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.	Contractor	All relevant worksites	Implemented
		Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction/ decommissioning activities.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Use of site hoarding as a noise barrier to screen noise at low level NSRs.	Contractor	All relevant worksites	Implemented
		For the use of hand held percussive breakers (with mass of above 10kg) and portable air compressors (supply air at 500 kPa or above), the noise level of such PME shall comply with a stringent noise emission standard and a noise emission label shall be obtained from the DEP before use at any time in construction site.	Contractor	All relevant worksites	Implemented
		Quiet powered mechanical equipment (PME) shall be used for the construction of the Project.	Contractor	All relevant worksites	Implemented
		Full enclosures shall be used to screen noise from relatively static PMEs (including air compressor, bar bender, concrete pump, generator and water pump) from sensitive receiver(s).	Contractor	All relevant worksites	Implemented
		Movable cantilevered noise barriers shall be used to screen noise from mobile PMEs (including asphalt paver, breaker, excavator and hand-held breaker) from sensitive receiver(s). These movable cantilevered noise barriers shall be located close to the mobile PMEs and shall be moved/adjusted iteratively in step with each movement of the corresponding mobile PMEs in order to maximize their noise reduction effects.	Contractor	All relevant worksites	Implemented
		Only approved or exempted Non-road Mobile Machineries (NRMMs) including regulated machines and non-road vechicles with proper labels are allowed to be used in specified activities on-site.	Contractor	All relevant worksites	Implemented
Water Quality Mea	<u>isures</u>				
Trunk Road T2					
		Accidental Spillage			
AEIAR-174/2013 S6.4.8.5	AEIAR-174/2013 EM&A Manual S4.2.1.1	All bentonite slurry should be stored in a container that resistant to corrosion, maintained in good conditions and securely closed; The container should be labelled in English and Chinese and note that the container is for storage of bentonite slurry only.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		The storage container should be placed on an area of impermeable flooring and bunded with capacity to accommodate 110% of the volume of the container size or 20% by volume stored in the area and enclosed with at least 3 sides.	Contractor	All relevant worksites	Implemented
		The storage container should be sufficiently covered to prevent rainfall entering the container or bunded area (water collected within the bund must be tested and disposed of as chemical waste, if necessary). An emergency clean up kit shall be readily available where bentonite fluid will be stored or used.	Contractor	All relevant worksites	Implemented
		The handling and disposal of bentonite slurries should be undertaken in accordance within ProPECC PN 1/94. Surplus bentonite slurries used in construction works shall be reconditioned and reused wherever practicable. Residual bentonite slurry shall be disposed of from the site as soon as possible as stipulated in Clause 8.56 of the General Specification for Civil Engineering Works. The Contractor should explore alternative disposal outlets for the residual bentonite slurry to be disposed to a public filling area and liquid bentonite slurry, if mixed with inert fill material, to be disposed to a public filling area) and disposal at landfill should be the last resort.	Contractor	All relevant worksites	Implemented
AEIAR-174/2013 S6.4.8.8	AEIAR-174/2013 EM&A Manual S4.2.1.1	In order to protect against impacts to the surrounding marine waters of the KTTS and Victoria Harbour in the event of an accidental spillage of fuel or oil, the Contractor will be required to prepare a spill response plan to the satisfaction of AFCD, EPD, FSD, Police, TD and WSD to define procedures for the control, containment and clean-up of any spillage that could occur on the construction site.	Contractor	All relevant worksites	Implemented
		Dredging, Reclamation and Filling			
		No dredging, reclamation or filling in the marine environment shall be carried out.	Contractor	All relevant worksites	Implemented
Decommissioning	of the Radar Station	n of the former Kai Tak Airport			
		Building Demolition			

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
AEIAR-130/2009 \$5.4	AEIAR 130/2009 EM&A Manual S4.4	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion.	Contractor	All relevant worksites	Not Applicable
	54.4	There is a need to apply to EPD for a discharge licence under the WPCO for discharging effluent from the construction site. The discharge quality is required to meet the requirements specified in the discharge licence. All the runoff, wastewater or extracted groundwater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. It is anticipated that the wastewater generated from the works areas would be of small quantity. Monitoring of the treated effluent quality from the works areas should be carried out in accordance with the WPCO license which is under the ambit of regional office (RO) of EPD.	Contractor	All relevant worksites	Not Applicable
		General Construction Works			
		Construction Runoff			
AEIAR- 130/2009 S3.4, S5.4/ AEIAR- 174/2013 S6.4.8.1	AEIAR 130/2009 EM&A Manual S2.4, S4.4/ AEIAR 174/2013 EM&A Manual S4.2.1.1	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include the use of sediment traps and adequate maintenance of drainage systems to prevent flooding and overflow.	Contractor	All relevant worksites	Implemented
		Construction site should be provided with adequately designed perimeter channel and pre- treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	Contractor	All relevant worksites	Implemented
		Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.			
		Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	Contractor	All relevant worksites	Implemented
		Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	Contractor	All relevant worksites	Implemented
		Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	Contractor	All relevant worksites	Implemented
		Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.	Contractor	All relevant worksites	Implemented
		Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	Contractor	All relevant worksites	Implemented
		An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Drainage			
		It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.	Contractor	All relevant worksites	Implemented
		All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	Contractor	All relevant worksites	Implemented
		Stormwater Discharges			
		Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes.	Contractor	All relevant worksites	Implemented
		Sewage Effluent			
		Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	Contractor	All relevant worksites	Implemented
		Debris and Litter			
		In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur. Debris and refuse generated on-site should be collected, handled and disposed of	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		properly to avoid entering into the adjacent harbour waters. Stockpiles of cement and other construction materials should be kept covered when not being used.			
		Accidental Spillage			
		Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to the nearby harbour waters, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ. The bund should be drained of rainwater after a rain event.	Contractor	All relevant worksites	Implemented
		Waste Management Measures			
		Waste Management Plan			
AEIAR-174/2013 S11.4.8.1	AEIAR-174/2013 EM&A Manual S9.2.1.2	Contractor should be requested to submit an outline Waste Management Plan (WMP) prior to the commencement of construction work, in accordance with the ETWB TC(W) No.19/2005 so as to provide an overall framework of waste management and reduction.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009 S3.5, S5.5	AEIAR 130/2009 EM&A Manual S2.5, S4.5	Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.	Contractor	All relevant worksites	Implemented
		Training of site personnel in proper waste management and chemical waste handling procedures.	Contractor	All relevant worksites	Implemented
		Provision of sufficient waste disposal points and regular collection for disposal.	Contractor	All relevant worksites	Implemented
		Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	Contractor	All relevant worksites	Implemented
		Waste Reduction Measures			
		Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals.	Contractor	All relevant worksites	Implemented
		Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.	Contractor	All relevant worksites	Implemented
		Encourage collection of aluminum cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the work force.	Contractor	All relevant worksites	Implemented
		Any unused chemicals or those with remaining functional capacity should be recycled.	Contractor	All relevant worksites	Implemented
		Proper storage and site practices to minimize the potential for damage or contamination of construction materials.	Contractor	All relevant worksites	Implemented
		Construction and Demolition Materials			
		Where it is unavoidable to have transient stockpiles of C&D material within the work site pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible.	Contractor	All relevant worksites	Implemented
		Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric.	Contractor	All relevant worksites	Implemented
		Skip hoist for material transport should be totally enclosed by impervious sheeting.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site.	Contractor	All relevant worksites	Implemented
		The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.	Contractor	All relevant worksites	Implemented
		The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle.	Contractor	All relevant worksites	Implemented
		All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet.	Contractor	All relevant worksites	Implemented
		The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.	Contractor	All relevant worksites	Implemented
		When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Contractor	All relevant worksites	Implemented
		Chemical Waste			
		After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		General Refuse			
		General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem.	Contractor	All relevant worksites	Implemented
Land Contamination	on Measures				
		For any excavation works conducted at Radar Station			
		As the risk due to dermal contact with groundwater by site workers is uncertain, it is recommended that personnel protective equipment (PPE) be used by site workers as a mitigation measure.	Contractor	All relevant worksites	Not Applicable
Landscape and Vi	sual Impact				
		New Distributor Roads Serving the Planned KTD			
		Construction Phase			
		All existing trees should be carefully protected during construction.	Contractor	All relevant worksites	Not Applicable
		Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	Contractor	All relevant worksites	Not Applicable
		Control of night-time lighting.	Contractor	All relevant worksites	Not Applicable

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Erection of decorative screen hoarding.	Contractor	All relevant worksites	Implemented
		Trunk Road T2			
		Construction Phase			
AEIAR-174/2013 S9.9.1.1	AEIAR-174/2013 EM&A Manual S7.2.1.2	All works shall be carefully designed to minimize impacts on existing landscape resources and visually sensitive receivers. Existing trees within works area shall be retained and protected.	Contractor	All relevant worksites	Not Applicable
	57.2.1.2	Existing trees of good quality and condition that are unavoidably affected by the works should be transplanted.	Contractor	All relevant worksites	Not Applicable
		Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance.	Contractor	All relevant worksites	Implemented
		Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance.	Contractor	All relevant worksites	Implemented
		Erection of decorative screen hoarding should be designed to be compatible with the existing urban context.	Contractor	All relevant worksites	Implemented
		All lighting in construction site shall be carefully controlled to minimize light pollution and night- time glare to nearby residences and GIC user. The contractor shall consider other security measures, which shall minimize the visual impacts.	Contractor	All relevant worksites	Not Applicable
General Condition					
		The Permit Holder shall display conspicuously a copy of this Permit on the Project site(s) at all vehicular site entrances/exits or at a convenient location for public's information at all times. The Permit Holder shall ensure that the most updated information about the Permit, including any amended Permit, is displayed at such locations. If the Permit Holder surrenders a part or the whole of the Permit, the notice he sends to the Director shall also be displayed at the same	Contractor	All relevant worksites	Implemented

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. 
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com



EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		locations as the original Permit. The suspended, varied or cancelled Permit shall be removed from display at the Project site(s).			

Implementation status: Implemented / Partially Implemented / Not Implemented / Not Applicable

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix K

Weather and Meteorological Conditions during Reporting Month

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



	Mean		Air Temperature			Total
Date	Pressure (hPa)	Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	Relative Humidity (%)	Rainfall (mm)
	-	-	March 2019	-	-	-
1	1016.1	22.4	20.8	19.6	89	0.4
2	1012.7	23.9	21.5	19.9	87	Trace
3	1011.3	23.5	21.5	20.0	87	6.3
4	1013.7	22.6	20.9	19.3	82	10.2
5	1012.1	26.7	22.2	17.7	88	30.3
6	1013.2	22.0	20.5	19.6	92	45.5
7	1015.8	20.5	17.9	15.5	93	29.6
8	1016.0	17.4	16.5	15.1	92	11.5
9	1012.2	18.7	17.8	17.0	95	14.5
10	1013.6	18.5	17.7	17.0	87	4.6
11	1014.9	22.6	18.4	15.5	81	7.6
12	1016.4	24.2	20.1	17.4	77	0.0
13	1017.8	22.9	20.8	19.1	71	0.0
14	1018.3	21.5	20.4	19.8	83	6.4
15	1020.6	20.0	18.7	17.3	81	0.4
16	1020.0	22.8	20.2	18.8	65	0.0
17	1018.9	22.7	20.9	19.7	77	0.0
18	1016.8	24.7	21.7	19.7	82	0.0
19	1014.8	27.4	23.4	20.7	84	0.0
20	1013.0	25.0	23.5	22.1	88	0.0
21	1011.4	27.2	25.3	23.4	81	0.0
22	1012.0	27.5	25.8	24.8	84	Trace
23	1017.1	25.0	20.0	17.4	89	3.3
24	1018.0	18.2	17.5	16.6	88	0.3
25	1016.8	23.3	20.5	17.9	85	1.0
29	1010.5	26.5	24.4	23.1	86	6.9
30	1013.3	24.0	23.1	22.5	86	Trace
31	1016.8	22.9	21.4	20.2	85	7.7

Source: Hong Kong Observatory

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix L

# Cumulative statistics on Environmental Complaints, Notifications of Summons and Successful Prosecution

Tuen Mun, N.T., Hong Kong.

: +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



#### **Environmental Complaints Log**

Reference No.	Date of Complaint Received	Received From	Received By	Nature of Complaint	Date of Investigation	Outcome	Date of Reply
20161207_complaint_c	7 Dec 2016	EPD	Andy Choy (CRBC)	Air	13 Feb 2017	Project- related	13 Feb 2017
20170209_complaint_c	9 Feb 2017	EPD	Andy Choy (CRBC)	Air	22 Feb2017	Not Project- related	7 Mar 2017
20170502_complaint_c	2 May 2017	CEDD	Andy Choy (CRBC)	Noise	4 May 2017	Not Valid	22 May 2017
20170716_complaint_a	16 July 2017	CEDD	HMJV	Water Quality	4 Aug 2017	Not Project- related	4 Aug 2017
20180530_complaint	30 May 2018	EPD	CRBC	Air	9 June 2018	Not Valid	20 June 2018

#### **Cumulative Statistics on Complaints**

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	3	0	3
Noise	1	0	1
Water	1	0	1
Waste	0	0	0
Total	0	0	0

#### Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix M

Summary of Site Audit in the Reporting Month

# FUGRO TECHNICAL SERVICES LIMITEDFugro Development Centre,<br/>5 Lok Yi Street, Tai Lam,<br/>Tuen Mun, N.T.,<br/>Hong Kong.Tel<br/>Fax: +852 2450 8233<br/>FaxFax: +852 2450 6138<br/>E-mail<br/>: matlab@fugro.com<br/>Website : www.fugro.com



## Summary of Site Audit in the Reporting Month

Parameters	Date	Observations and Recommendations	Follow-up				
Air Quality	13 March 2019	Reminder: Every main haul road should be kept clear of dusty materials. (Portion I)	NA				
	27 March 2019	Reminder: Open stockpiles should be avoided or covered. (Zone 4)	NA				
Noise		NA					
Water Quality	NA						
Chemical and Waste Management	Reminder: All wastes generated at the site should be collected and cleaned regularly. (Zone 1)		NA				
Land Contamination	NA						
Landscape and Visual Impact	27 March 2019	Reminder: Open stockpiles should be avoided or covered. (Zone 4)	NA				
General Condition	NA						

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix N

**Outstanding Issues and Deficiencies** 



#### Summary of Outstanding Issues and Deficiencies in the Reporting Month

Parameters	Outstanding Issues	Deficiencies
Air Quality	NA	
Noise	NA	
Water Quality	NA	
Chemical and Waste Management	NA	Any items of deficiencies can be referred to <b>Appendix M</b> .
Land Contamination	NA	
Landscape and Visual Impact	NA	
General Condition	NA	
Others	NA	

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com



Appendix D

Monthly EM&A Report For Contract No. KL/2015/02 Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area

# **Civil Engineering and Development Department**

#### EP-337/2009 – New Distributor Roads Serving the Planned KTD

#### Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area

Monthly EM&A Report

March 2019

(version 1.0)

Approved By	
	(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: <u>info@cinotech.com.hk</u>







 Date
 9 April 2019

 Our Ref.
 MCL/ED/0193/2019/C

Cinotech Consultants Limited Rm 1710, Technology Park, 18 On Lai Street, Shatin, New Territories, Hong Kong

**BY EMAIL** 

Attn.: Mr. K.S Lee

Dear Sir,

#### Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Verification of Monthly EM&A Report for March 2019

We refer to your emails dated 8 April 2019 regarding the Monthly EM&A Report for March 2019 for the captioned project prepared by the ET.

We have no further comment and hereby verify the Report in accordance with Clause 3.3 of Environmental Permit no. EP-337/2009.

Should you require further information, please do not hesitate to contact Mr. Wingo So at 3565 4374 or the undersigned on 3565 4114.

Assuring you of our best attention at all times.

Yours faithfully, For and on behalf of FUGRO TECHNICAL SERVICES LIMITED

Colin K. L. Yung Independent Environmental Checker

CY/ws

c.c. CEDD -

AECOM –

Attn.: Mr. Ricky Chan Attn.: Mr. Jeremy Yuen Attn.: Mr. Vincent Lee Attn.: Mr. Teddy Shih



# **TABLE OF CONTENTS**

EX	ECUTIVE SUMMARY	1
	Introduction Environmental Monitoring Works Environmental Licenses and Permits Key Information in the Reporting Month Future Key Issues	1 2 2
1.	INTRODUCTION	4
	Background Project Organizations Construction Activities undertaken during the Reporting Month Summary of EM&A Requirements	4 5
2.	AIR QUALITY	7
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and QA/QC Procedure Results and Observations	7 7 8 8
3.	NOISE	12
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and QA/QC Procedures Maintenance and Calibration Results and Observations	12 12 12 13 13
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	15
5.	LANDSCAPE AND VISUAL	16
	Monitoring Requirements Results and Observations	16
6.	ENVIRONMENTAL AUDIT	17
	Site Audits Review of Environmental Monitoring Procedures	17 17 18 18 18 18
7.	FUTURE KEY ISSUES	20
	Monitoring Schedule for Next Month	21
8.	CONCLUSIONS AND RECOMMENDATIONS	22
	ConclusionsRecommendations	

# LIST OF TABLES

- Table IAir Quality and Noise Monitoring Stations for this Project
- Table IINon-compliance Recorded for the Project in the Reporting Month
- Table III
   Summary Table for Key Information in the Reporting Month
- Table 1.1Key Project Contacts
- Table 1.2Construction Programme Showing the Inter-Relationship with Environmental<br/>Protection/Mitigation Measures
- Table 2.1Locations for Air Quality Monitoring
- Table 2.2Air Quality Monitoring Equipment
- Table 2.3
   Impact Dust Monitoring Parameters, Frequency and Duration
- Table 2.4
   Summary Table of Air Quality Monitoring Results during the reporting month
- Table 3.1Noise Monitoring Stations
- Table 3.2Noise Monitoring Equipment
- Table 3.3
   Noise Monitoring Parameters, Frequency and Duration
- Table 3.4Major Noise Source identified at the Designated Noise Monitoring Stations
- Table 3.5
   Baseline Noise Level and Noise Limit Level for Monitoring Stations
- Table 4.1Comparison of 1-hr TSP data with EIA predictions
- Table 4.2Comparison of 24-hr TSP data with EIA predictions
- Table 4.3
   Comparison of Noise Monitoring Data with EIA predictions
- Table 6.1
   Summary of Environmental Licensing and Permit Status
- Table 6.2Observations and Recommendations of Site Inspections

#### LIST OF FIGURES

- Figure 1 Site Layout Plan
- Figure 2 Location of Air Quality Monitoring Stations
- Figure 3 Location of Noise Monitoring Stations
- Figure 4 Location of Wind Data Monitoring Equipment

#### LIST OF APPENDICES

- A Action and Limit Levels for Air Quality and Noise
- B Copies of Calibration Certificates
- C Weather Information
- D Environmental Monitoring Schedules
- E 1-hour TSP Monitoring Results and Graphical Presentations
- F 24-hour TSP Monitoring Results and Graphical Presentations
- G Noise Monitoring Results and Graphical Presentations
- H Summary of Exceedance
- I Site Audit Summary
- J Event Action Plans
- K Environmental Mitigation Implementation Schedule (EMIS)
- L Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution
- M Summary of Waste Generation and Disposal Records
- N Construction Programme

# EXECUTIVE SUMMARY

#### Introduction

- 1. This is the 27th Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2015/02 Kai Tak Development Stage 5A Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises one Schedule 2 designated project (DP), namely the new distributor road D1 serving the planned KTD. The DP is part of the designated project under Environmental Permit (EP) No.: EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") respectively. This report documents the findings of EM&A Works conducted during March 2019.
- 2. With reference to the same principle of EIA report of the Project, air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in **Table I** (see **Figure 2 and 3** for their locations).

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations				
Air Quality Monitoring Stations	Air Quality Monitoring Stations					
	Yes (1-hour TSP)	N/A				
AM2 - Lee Kau Yan Memorial School	No (24-hour TSP)	AM2(A) – Ng Wah Catholic Secondary School				
Noise Monitoring Stations						
M3 - Cognitio College	Yes	N/A				
M4 - Lee Kau Yan Memorial School	Yes	N/A				
M5 – Nam Yuen	No	M5(C) - Mercy Grace's Home				

#### Table I – Air Quality and Noise Monitoring Stations for this Project

- 3. The major site activities undertaken in the reporting month included: Excavate with ELS works for subway construction at PERE
  - Structural works and backfilling works for subway construction at PERE
  - Backfilling works for subway SW6 from CH0 to CH45 and Staircase ST3
  - Erection of underpinning frame at the existing Bridge K72
  - Sheet piling works at SKLR playground (Stage 4)
  - Construction of chain-link fence for land sale sites
  - Filling work for slip road S15
  - Drainage works at slip road S15
  - DCS Works in Road D1, road L7, Portion 6, Portion 1

• Water mains laying works in Portion 4

# **Environmental Monitoring Works**

- 4. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 5. Summary of the non-compliance in the reporting month for the Project is tabulated in **Table II**.

	No. of Project-rel		
Parameter	Action Level	Limit Level	Action Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

 Table II
 Non-compliance Recorded for the Project in the Reporting Month

1-hour & 24-hour TSP Monitoring

- 6. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 7. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

#### Construction Noise Monitoring

8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

#### **Environmental Licenses and Permits**

- 9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, EP-337/2009 issued on 23 April 2009. All valid Licenses/Permits for this Project are shown in **Table 6.1**.
- Billing Account for Construction Waste Disposal (A/C# 7026164).
- Effluent Discharge License (WT00027495-2017).
- Registration of Chemical Waste Producer (WPN5213-286-P3271-01).

# Key Information in the Reporting Month

10. Summary of key information in the reporting month is tabulated in **Table III**. MA16043\Monthly\Mrpt1903_v1.0

Cinotech

Event	Event Details		Action Taken	Status	Remark
Event	Number	Nature	Action Taken	Status	Keinai K
Complaint received			N/A	N/A	
Reporting Changes			N/A	N/A	
Notifications of any summons & prosecutions received			N/A	N/A	

#### Table III Summary Table for Key Information in the Reporting Month

# **Future Key Issues**

- 11. The future key environmental issues in the coming month include:
  - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
  - Water spraying for dust generating activity and on haul road;
  - Proper storage of construction materials on site;
  - Storage of chemicals/fuel and chemical waste/waste oil on site;
  - Accumulation of general and construction waste on site;
  - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
  - Wastewater and runoff discharge from site;
  - Regular removal of silt, mud and sand along u-channels and sedimentation tanks; and
  - Review and implementation of temporary drainage system for the surface runoff.

# 1 INTRODUCTION

## Background

- 1.1. The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 5A Infrastructure at Former North Apron Area is one of the construction stages of KTD. It contains one Schedule 2 DP including new distributor roads serving the planned KTD. The general layout of the Project is shown in **Figure 1**.
- 1.2. An Environmental Permit (EP) No. EP-337/2009 was issued on 23 April 2009 for new distributor roads serving the planned KTD to Civil Engineering and Development Department as the Permit Holder.
- 1.3. A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. An EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4. Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2015/02 – Stage 5A Infrastructure at Former North Apron Area. The construction work under KL/2015/02 comprises the construction of part of the Road D1 under the EP (EP-337/2009).
- 1.5. Cinotech Consultants Limited was commissioned by Civil Engineering and Development Department (CEDD) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The commencement date of construction of Road D1 (part) under this Contract was on 16 January 2017.

# **Project Organizations**

- 1.6. Different parties with different levels of involvement in the project organization include:
  - Project Proponent Civil Engineering and Development Department (CEDD).
  - The Engineer and the Engineer's Representative (ER) AECOM Asia Co. Ltd (AECOM).
  - Environmental Team (ET) Cinotech Consultants Limited (Cinotech).
  - Independent Environmental Checker (IEC) Fugro Technical Services Limited (FTS).
  - Contractor Peako Wo Hing Joint Venture (PWHJV).

#### 1.7. The key contacts of the Project are shown in **Table 1.1**.

Table 1.1	Key Project Contacts
I WOIV III	

Party	Role	<b>Contact Person</b>	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. CHAN Wai Kit, Ricky	Senior Engineer	2116 3753	2116 0714
AECOM	Engineer's Representative	Mr. Vincent Lee	SRE	2798 0771	2210 6110
Cinotech	Environmental Team	Mr. K.S Lee	Environmental Team Leader	2151 2091	3107 1388
Chiotech		Ms. Betty Choy	Audit Team Leader	2151 2072	
FTS	Independent Environmental Checker	Mr. Colin Yung	Independent Environmental Checker	3565 4114	2450 8032
PWHJV	Contractor	Mr. W.M. Wong	Site Agent	6386 3535	2398 8301

#### **Construction Activities undertaken during the Reporting Month**

- 1.8. The site activities undertaken in the reporting month included:
  - Structural works and backfilling works for subway construction at PERE
  - Backfilling works for subway SW6 from CH0 to CH45 and Staircase ST3
  - Erection of underpinning frame at the existing Bridge K72
  - Sheet piling works at SKLR playground (Stage 4)
  - Construction of chain-link fence for land sale sites
  - Filling work for slip road S15
  - Drainage works at slip road S15
  - DCS Works in Road D1, road L7, Portion 6, Portion 1
  - Water mains laying works in Portion 4
- 1.9. The construction programme for the Project is shown in **Appendix N**.
- 1.10. The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 1.2**.

# Table 1.2Construction Programme Showing the Inter-Relationship with<br/>Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
Refer to Section 1.8	Noise, dust impact, water quality and waste generation	<ul> <li>Sufficient watering of the works site with active dust emitting activities;</li> <li>Properly cover the stockpiles;</li> <li>On-site waste sorting and implementation of trip ticket system</li> <li>Appropriate desilting/sedimentation devices provided on site for treatment before discharge;</li> <li>Use of quiet plant and well-maintained construction plant;</li> <li>Provide movable noise barrier;</li> <li>Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall;</li> <li>Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.</li> </ul>

# Summary of EM&A Requirements

- 1.11. The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
  - All monitoring parameters;
  - Action and Limit levels for all environmental parameters;
  - Event Action Plans;
  - Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.12. The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.13. This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project during March 2019.

#### 2 **AIR QUALITY**

# **Monitoring Requirements**

2.1. According to EM&A Manual under the EP, 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. Appendix A shows the established Action/Limit Levels for the environmental monitoring works.

# **Monitoring Locations**

- 2.2. 1-hour TSP impact dust monitoring was conducted at the air quality monitoring station, AM2 - Lee Kau Yan Memorial School and 24-hour TSP impact dust monitoring were conducted at the air quality monitoring station, AM2(A) - Ng Wah Catholic Secondary School in the reporting month.
- 2.3. Table 2.1 describes the air quality monitoring locations, which are also depicted in Figure 2.

Monitoring Stations	Locations	Location of Measurement				
AM2 (1-hour TSP)	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area				
AM2(A)	Ng Wah Catholic Secondary School	Rooftop (about 8/F) Area				

Table 2.1 Locations for Air Quality Monitoring

# **Monitoring Equipment**

(24-hour TSP)

2.4. **Table 2.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in Appendix B.

Equipment	Model and Make	Quantity	
Calibrator	• TISCH TE-5025A	1	
1-hour TSP Dust Meter	Hal Technology Hal-HPC300	3	
1-noui 151 Dust Meter	• Sibata Scientific Technology LD-5R	5	
HVS Sampler	• TE-5170 c/w of TSP sampling inlet	1	
Wind Anemometer	• Davis Instruments 6152	1	

**Air Ouality Monitoring Equipment** Table 2.2

## Monitoring Parameters, Frequency and Duration

2.5. **Table 2.3** summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

## Table 2.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

# Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

#### Measuring Procedures

2.6. The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:

# (Equipment: Hal Technology; Model no. Hal-HPC300, Hal-HPC301)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

# (Equipment: Sibata Scientific Technology; Model no. LD-5R)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.

• Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

# Maintenance/Calibration

2.7. The following maintenance/calibration was required for the direct dust meters:

Check the meter at a 3-month interval and calibrate the meter at a 1-year interval throughout all stages of the air quality monitoring.

#### 24-hour TSP Monitoring

#### **Instrumentation**

2.8. High volume (HVS) samplers (Model TE-5170), completed with appropriate sampling inlets, were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

# Operating/Analytical Procedures

- 2.9. Operating/analytical procedures for the operation of HVS were as follows:
  - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
  - No two samplers were placed less than 2 meters apart.
  - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
  - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
  - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
  - No furnaces or incineration flues were nearby.
  - Airflow around the sampler was unrestricted.
  - The sampler was more than 20 meters from the drip line.
  - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.10. Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m3/min. and 1.4 m3/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.11. For TSP sampling, fiberglass filters have a collection efficiency of > 99% for particles of 0.3μm diameter were used.

- 2.12. The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.13. The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.14. The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.15. The shelter lid was closed and secured with the aluminium strip.
- 2.16. The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.17. After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time was also recorded.
- 2.18. Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than  $\pm$ 3°C; the relative humidity (RH) should be < 50% and not vary by more than  $\pm$ 5%. A convenient working RH is 40%.

# Maintenance/Calibration

- 2.19. The following maintenance/calibration was required for the HVS:
  - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
  - High volume samplers were calibrated at bi-monthly intervals using TE-5025A Calibration Kit through\hout all stages of the air quality monitoring.

#### **Results and Observations**

- 2.20. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.22. The weather information for the reporting month is summarized in Appendix C.
- 2.23. The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.24. The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the air quality monitoring.

- 2.25. According to our field observations during the monitoring, the major dust source identified at the two designated air quality monitoring stations are road traffic dust, exposed site area and open stockpiles, excavation works and site vehicle movements.
- 2.26. The summary of 1-hour and 24-hour TSP air quality monitoring results during the reporting month are shown in **Appendix E** and **Appendix F** respectively.

#### 3 NOISE

#### **Monitoring Requirements**

3.1. According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

#### **Monitoring Locations**

3.2. Three designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at three designated monitoring stations (M3, M4, and M5(C)). **Figure 3** shows the locations of these stations.

Monitoring Stations	Locations	Location of Measurement
M3	Cognitio College	Rooftop (about 6/F) Area
M4	Lee Kau Yan Memorial School	Rooftop (about 7/F) Area
M5(C)	Mercy Grace's Home	Rooftop (about 5/F) Area

#### Table 3.1Noise Monitoring Stations

#### Monitoring Equipment

3.3. **Table 3.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

#### Table 3.2Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	• SVANTEK SVAN 959 & 957	4
Calibrator	SVANTEK SV30A	r
Calibrator	• Brüel & Kjær 4231	Z

#### **Monitoring Parameters, Frequency and Duration**

3.4. **Table 3.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Monitoring Stations	Parameter	Period	Frequency	Measurement
M3 M4	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Façade
M5(C)	$L_{eq}(30 \text{ min.}) dB(A)$	nonna « contanjs		

#### Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
  - frequency weighting : A
    - time weighting : Fast
  - time measurement : 30 minutes
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq}, L₉₀ and L₁₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

#### Maintenance and Calibration

- 3.5. The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6. The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

#### **Results and Observations**

- 3.8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. The summary of exceedance record in reporting month is shown in Appendix H.
- 3.9. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.5**.
- 3.10. Noise monitoring results and graphical presentations are shown in Appendix G.
- 3.11. The major noise source identified at the designated noise monitoring stations are shown in **Table 3.4**.

Monitoring Stations	Locations	Major Noise Source
M3	Cognitio College	Traffic Noise Daily school activities
M4	Lee Kau Yan Memorial School	Traffic Noise Site vehicle movement Excavation works Piling works Daily school activities
M5(C)	Mercy Grace's Home	Traffic Noise Site vehicle movement

Table 3.4	Major Noise Source identified	at the Designated Noise	Monitoring Stations
-----------	-------------------------------	-------------------------	---------------------

Table 3.5Ba	aseline Noise	Level and	Noise Limit 1	Level for Mo	onitoring Stations
-------------	---------------	-----------	---------------	--------------	--------------------

Station	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
M3	N/A ⁽¹⁾ (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on
M4	76.7 (at 0700 – 1900 hrs on normal weekdays)	normal weekdays)
M5(C)	N/A ⁽¹⁾ (at 0700 – 1900 hrs on normal weekdays)	75 (at 0700 – 1900 hrs on normal weekdays)

(*) Noise Limit Level is 65 dB(A) during school examination periods.

Note (1): The background Noise Level was recorded during the Lunch Hour of Construction Site

(i.e. 12:00-13:00) and to be used as the referencing value for compliance checking for Noise Action and Limit Level.

Note (2): The noise level due to the construction work (CNL) was calculated by the following formula:  $CNL = 10 \log (10^{MNL/10} - 10^{BNL/10})$ 

Remarks: MNL = Measured Noise Level, BNL = Baseline Noise Level

#### 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1. The EM&A data was compared with the EIA predictions as summarized in Tables 4.1 to 4.3.

	Predicted 1-hr TSP conc.			Measured 1-hr TSP conc.	
Station	Scenario1 (Mid 2009 to Mid-	Scenario2 (Mid 2013 to Late	Reporting Month (March 2019), μg/m ³		
	2013), μg/m ³	2016), μg/m ³	Average	Range	
AM2 – Lee Kau Yan Memorial School	290	312	139	78-210	

#### Table 4.1 Comparison of 1-hr TSP data with EIA predictions

Table 4.2	Comparison of 24-	.hr TSP data	with EIA	nredictions
	Comparison of 27	In ISI uata		predictions

	Predicted 24-h	TSP conc.	Meas 24-hr TS	
Station	Scenario1 (Mid 2009 to Mid-2013),	Scenario2 (Mid 2013 to	Reportin (March 20	
	μg/m ³	Late 2016), µg/m ³	Average	Range
AM2(A) – Ng Wah Catholic Secondary School	145	169	40	27 – 73

#### Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (L _{eq (30min)} dB(A))	Reporting Month (March 2019), L _{eq (30min)} dB(A)
M3 – Cognitio Colle	ege 47 – 75	$64-80^{\ (1)}$
M4 – Lee Kau Ya Memorial School	47 - 74	65 - 70
M5(C) – Mercy Grad Home	ce's Not predicted in EIA Report	62 - 69

Remarks:

(1) Since the baseline noise level was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.

- 4.2. The average 1-hour TSP concentrations at AM2 in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3. The average 24-hour TSP concentrations at AM2(A) in the reporting month were below the prediction in the approved EIA Report.
- 4.4. The noise monitoring results in the reporting month from M3 were outside the ranges of the predicted mitigated constriction noise levels in the EIA Report. The results at M4 was within the range of the predicted mitigated construction noise levels in the EIA Report.
- 4.5. Construction noise levels at M5(C) were not predicted in EIA Report.

#### 5 LANDSCAPE AND VISUAL

#### **Monitoring Requirements**

5.1. According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

#### **Results and Observations**

- 5.2. Site audits were conducted on a weekly basis to monitor the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3. No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4. Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix J** shall be performed.

#### 6 ENVIRONMENTAL AUDIT

#### Site Audits

- 6.1. Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2. Site audits were conducted on 4, 13, 18 and 25 March 2019 in the reporting month. A joint site audit with the representative of IEC, ER, the Contractor and the ET was conducted on 13 March 2019. The details of the observations during site audit are summarized in **Table 6.2**.

#### **Review of Environmental Monitoring Procedures**

6.3. The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

#### Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

#### Noise Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

#### Status of Environmental Licensing and Permitting

6.4. All permits/licenses obtained for the Project are summarized in **Table 6.1**.

Table 6.1         Summary of Environmental Licensing and Pern
---------------------------------------------------------------

	Valid I	G4 4	
Permit No.	From	То	Status
<b>Environmental Permit (EP)</b>			
EP-337/2009	23/04/09	N/A	Valid
Effluent Discharge License			
WT00027495-2017	28/03/17	31/03/22	Valid
Billing Account for Construction W	aste Disposal		
A/C# 7026164	20/10/16	N/A	Valid
<b>Registration of Chemical Waste Pro</b>	oducer	· ·	
WPN5213-229-P3271-01	14/08/17	N/A	Valid
Construction Noise Permit (CNP)			

	Valid P	<u> </u>	
Permit No.	From	То	Status
-	-	-	-

#### **Status of Waste Management**

6.5. The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.

#### **Implementation Status of Environmental Mitigation Measures**

6.6. During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in **Table 6.2**.

Parameters	Ref No.	Date	Observations and Recommendations	Follow-up/Rectification
Water Quality	N/A	N/A		
Air Quality	N/A	N/A		
Noise	N/A	N/A		
Waste/ Chemical Management	190318- R1	18 th Mar 2019	<ul> <li>Rubbish or general waste accumulating in portion 6 should be cleaned up.</li> </ul>	<u>25th Mar 2019</u> : Contractor should clean up the rubbish in portion 6.
Landscape and Visual	N/A	N/A		
Permits/ Licenses	N/A			

 Table 6.2
 Observations and Recommendations of Site Inspections

#### **Summary of Mitigation Measures Implemented**

6.7. An updated summary of the EMIS is provided in **Appendix K**.

#### **Implementation Status of Event Action Plans**

6.8. The Event Action Plans for air quality, noise and landscape and visual are presented in **Appendix J**.

#### 1-hr TSP Monitoring

6.9. No Action/Limit Level exceedance was recorded in the reporting month.

#### 24-hr TSP Monitoring

6.1 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.10. No Action/Limit Level exceedance was recorded in the reporting month.

#### Landscape and visual

6.11. No non-compliance was recorded in the reporting month.

# Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.12. The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix L**.

#### 7 FUTURE KEY ISSUES

- 7.1. Major site activities undertaken for the coming two months include:
  - Structural works and backfilling works for subway construction at PERE
  - Backfilling works for subway SW6 from CH0 to CH45 and Staircase ST3
  - Erection of underpinning frame and demolition of the exiting wall at the existing Bridge K72
  - Sheet piling works at SKLR playground (Stage 4)
  - Implementation of stage 2 TTA at PERE
  - Drainage work and road pavement construction at slip road S15
  - Preparation for Refurbishment of bridge K72
  - Construction of chain-link fence for land sale sites
  - DCS Works in Road D1, road L7, Portion 6, Portion 1
  - Water mains laying works in road D1, L7
- 7.2. Key environmental issues in the coming month include:
  - Wastewater and runoff discharge from site;
  - Regular removal of silt, mud and sand along u-channels and sedimentation tanks;
  - Review and implementation of temporary drainage system for the surface runoff;
  - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
  - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
  - Water spraying for dust generating activity and on haul road;
  - Proper storage of construction materials on site;
  - Storage of chemicals/fuel and chemical waste/waste oil on site;
  - Accumulation of general and construction waste on site.
- 7.3. The tentative major site activities is mentioned in Section 7.1 of this report. The impact prediction and control measures for the coming two months are summarized as follows:

#### Air quality impact (dust)

- Frequent watering of haul road and unpaved/exposed areas;
- Frequent watering or covering stockpiles with tarpaulin or similar means; and
- Watering of any earth moving activities.

#### Water quality impact (surface run-off)

- Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains;
- Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge;
- Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and
- Provision of measures to prevent discharge into the stream.

Noise Impact

- Scheduling of noisy construction activities if necessary to avoid persistent noisy operation;
- Controlling the number of plants use on site;
- Regular maintenance of machines; and
- Use of acoustic barriers if necessary.

#### Monitoring Schedule for Next Month

7.4. The tentative environmental monitoring schedules for next month are shown in **Appendix D**.

#### 8 CONCLUSIONS AND RECOMMENDATIONS

#### Conclusions

8.1. Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.

#### <u>1-hr TSP Monitoring</u>

8.2. All 1-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

#### 24-hr TSP Monitoring

8.3. All 24-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

#### Construction Noise Monitoring

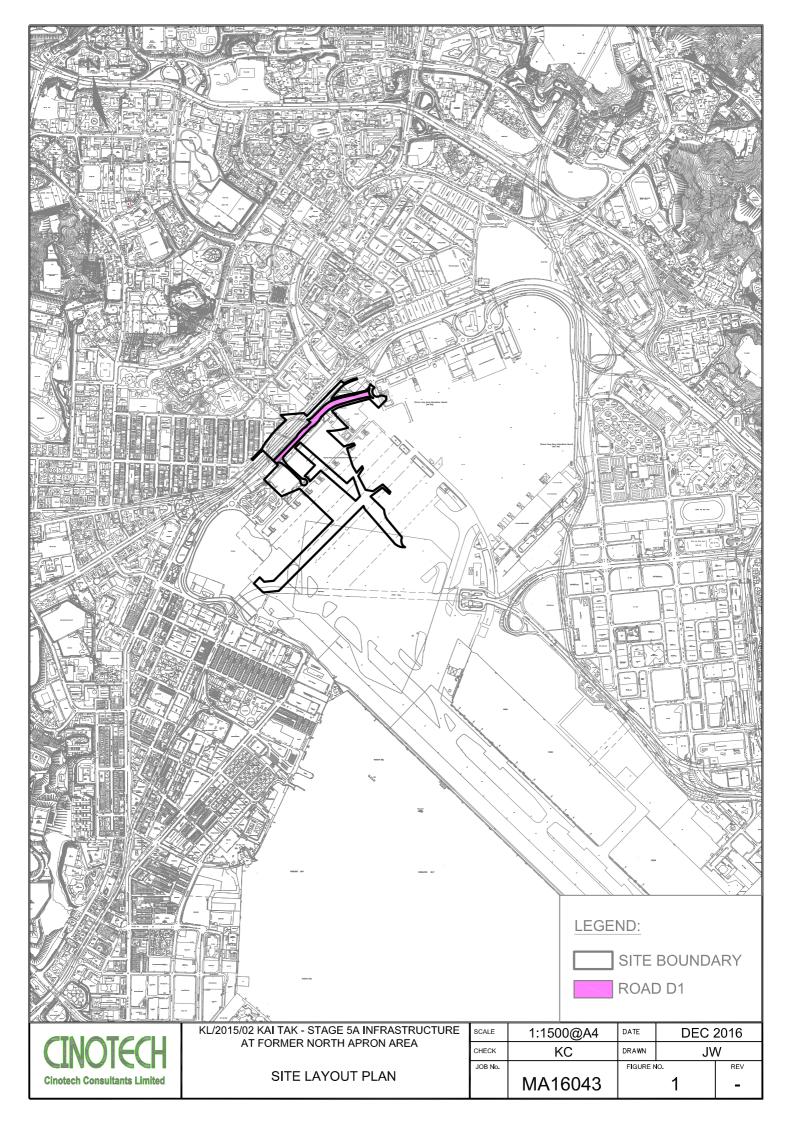
8.4. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

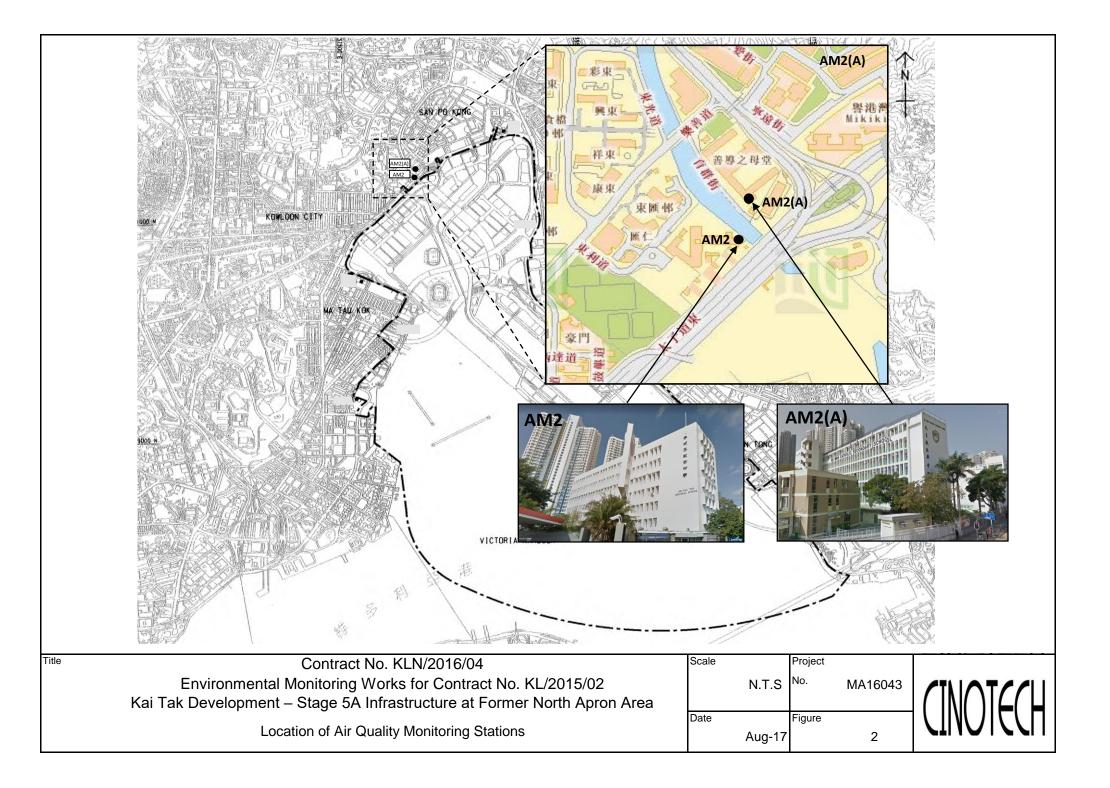
#### Landscape and visual

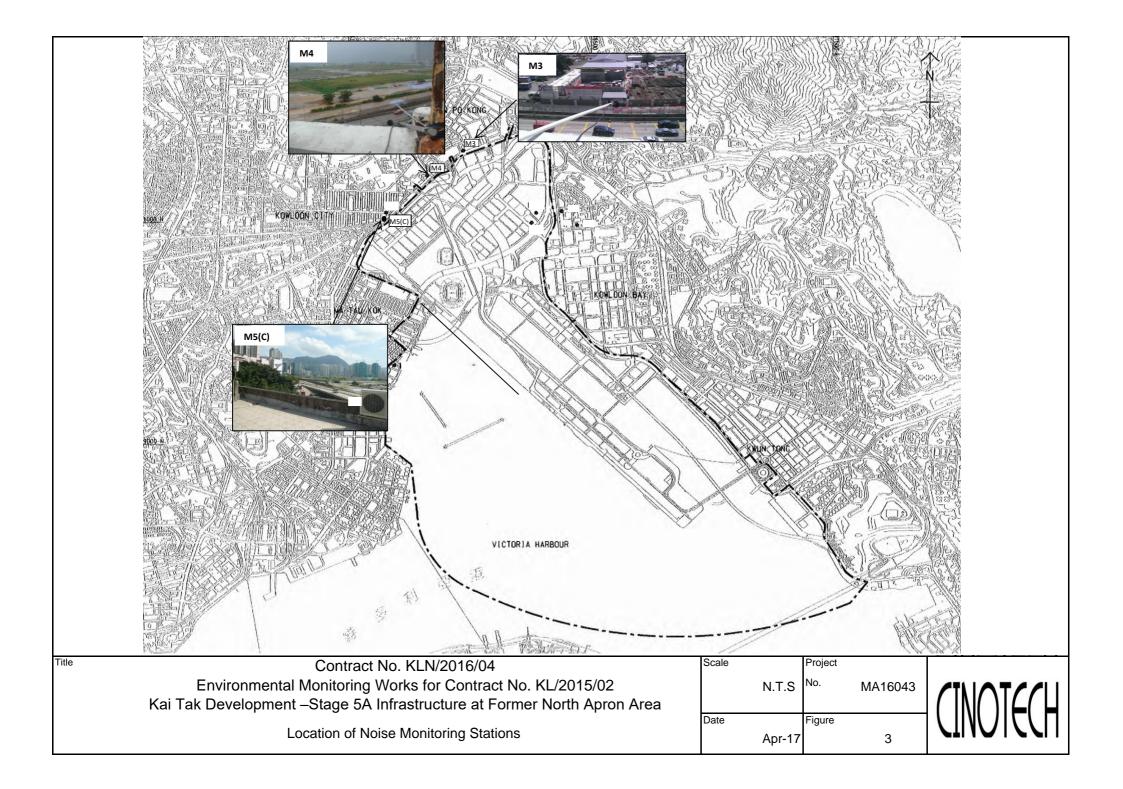
8.1 No non-compliance was recorded in the reporting month.

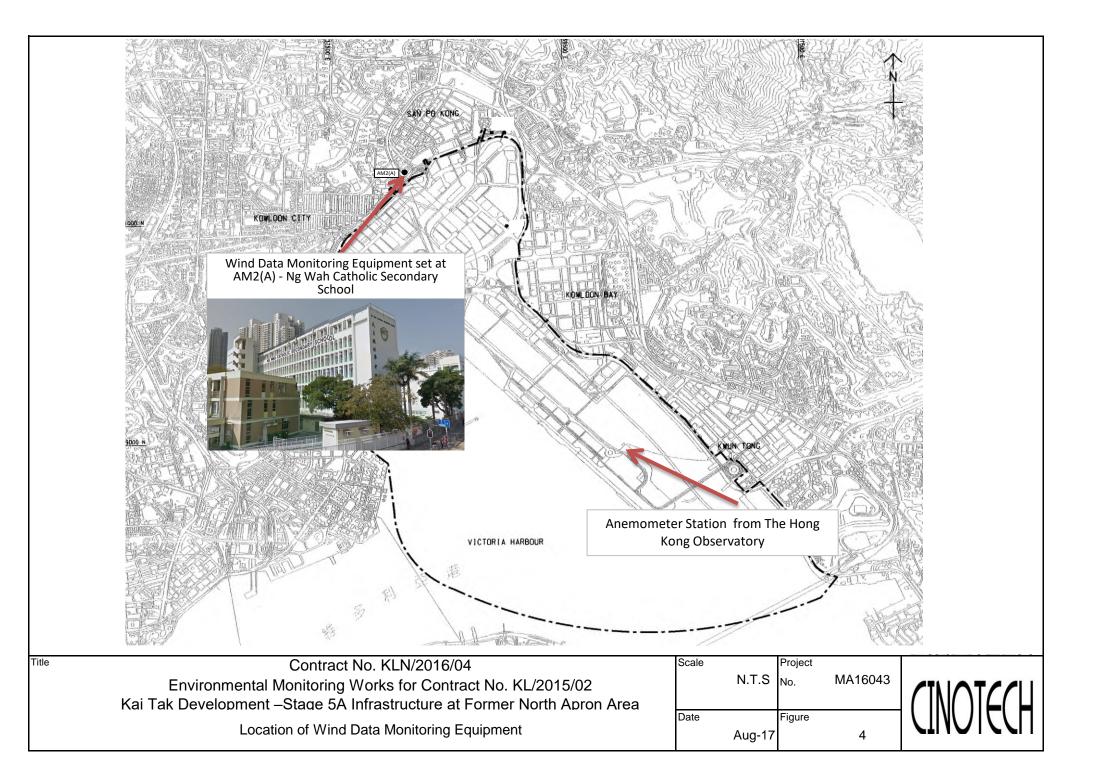
#### Complaint and Prosecution

8.2 No environmental complaint and environmental prosecution was received in the reporting month.


#### Recommendations


8.3 According to the environmental audit performed in the reporting month, the following recommendations were made:


#### Waste / Chemical Management


• The Contractor is suggested to maintain the site cleaning frequency and reminded to prevent the waste accumulation.

FIGURES









APPENDIX A ACTION AND LIMIT LEVELS FOR AIR QUALITY AND NOISE

## **Appendix A - Action and Limit Levels**

Location	Action Level, μg/m ³	Limit Level, μg/m ³
AM2	346	500

#### Table A-1Action and Limit Levels for 1-Hour TSP

#### Table A-2Action and Limit Levels for 24-Hour TSP

Location	Action Level, µg/m ³	Limit Level, µg/m ³
AM2(A)	157	260

#### Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B-1 COPIES OF CALIBRATION CERTIFCATES (AIR)

# CIN@TECH 🤳

# **<u>Cerificate of Calibration</u>**

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Handheld Particle Counter	Date of Calibration	26-Feb-19
Manufacturer:	Hal Technology	Validity of Calibration Record	25-Apr-19
Model No.:	Hal -HPC300		
Serial No.:	30117011019		
Equipment No.	: <u>SA-01-03</u>		
High Volume S	ampler No.: <u>A-01-03</u>		
Tisch Calibratio	on Orifice No.: 3607		

	Ca	alibration of 1 hr TSP	
Calibration —	Laser Dust Monito	r	HVS
Point	Mass Concentration (µg	g/m3)	Mass concentration ( $\mu g/m^3$ )
Tonit	X-axis		Y-axis
1	37.4		87.1
2	43.2		89.1
3	51.3		91.5
Average	44.0		89.2
By Linear Regress Slope , mw =	0.3153	Intercept, bw =	75.3725
	0.3153 ficient* =0.999	1	75.3725
Slope , mw = Correlation coef	0.3153 ficient* =0.999	1 et Correlation Factor	
Slope , mw = Correlation coeff	0.3153 ficient* =0.999 tration by High Volume Sampler	1 et Correlation Factor	89.2
Slope , mw = Correlation coeff Particaulate Concer Particaulate Concer	0.3153 ficient* = 0.999 tration by High Volume Sampler ntration by Dust Meter (µg/m ³ )	1 et Correlation Factor	<u>89.2</u> 44.0
Slope , mw = Correlation coeff Particaulate Concer Particaulate Concer Measureing time, (1	0.3153 ficient* = 0.999 tration by High Volume Sampler htration by Dust Meter (µg/m ³ ) min)	1 et Correlation Factor	89.2
Slope , mw = Correlation coeff Particaulate Concer Particaulate Concer Measureing time, (1 Set Correlation Fac	0.3153 ficient* = 0.999 tration by High Volume Sampler htration by Dust Meter (µg/m ³ ) min)	1 et Correlation Factor • (µg/m ³ )	<u>89.2</u> 44.0

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: _______ Wong Shing Kwai

Approved by: Henry Leung

# CIN@TECH 🤳

# **<u>Cerificate of Calibration</u>**

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	13-Feb-19
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calib	ration Record	12-Apr-19
Model No.:	LD-5R				
Serial No.:	<u>8Y2374</u>				
Equipment No.:	SA-01-04	Sensitivity	0.001 mg/m3	_	
High Volume Sa	ampler No.: <u>A-01-03</u>	Before Sensiti	vity Adjustment	652	
Tisch Calibratio	n Orifice No.: <u>3607</u>	After Sensitivi	ity Adjustment	652	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor	r		HVS	
Point	Mass Concentration (µg/	(m3)	Mas	ss concentration (µ	ıg/m ³ )
	X-axis			Y-axis	
1	74		149.3		
2	60			121.9	
3	58 64			119.4 <b>130</b>	
Average	04			130	
Ry Linear Reg	ession of Y on X				
Slope, mw =	1.9013	Inter	cept, bw =	8.5158	
Correlation co			<b>···</b>		
	Se	t Correlation F	actor		
Particaulate Con	centration by High Volume Sampler (	$(\mu g/m^3)$		130	
Particaulate Concentration by Dust Meter ( $\mu g/m^3$ )			64		
Measureing time	e, (min)			60	
Set Correlation I	Factor, SCF				
SCF = [K=Hig	h Volume Sampler / Dust Meter, (μ	ι g/m3) ]	2.0		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by: ______ Wong Shing Kwai

Approved by: Henry Leung Henry Leung

# CIN@TECH 🤳

# **<u>Cerificate of Calibration</u>**

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	13-Feb-19
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calib	ration Record	12-Apr-19
Model No.:	LD-5R				
Serial No.:	8Y2373				
Equipment No.:	SA-01-05	Sensitivity	0.001 mg/m3	_	
High Volume Sa	ampler No.: <u>A-01-03</u>	Before Sensiti	vity Adjustment	657	
Tisch Calibratio	n Orifice No.: <u>3607</u>	After Sensitivi	ity Adjustment	657	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor	r		HVS	
Point	Mass Concentration (µg/	(m3)	Ma	ss concentration (µ	ug/m ³ )
	X-axis			Y-axis	
1	74		149.3		
2	62		121.9		
3	60			119.4	
Average	65			130	
By Linger Rog	ression of Y on X				
Slope, mw =	2.1872	Inter	cept, bw =	-12.6977	,
Correlation co			cept, bw		
	Se	t Correlation F	actor		
Particaulate Con	centration by High Volume Sampler (	$(\mu g/m^3)$		130	
Particaulate Concentration by Dust Meter (µg/m ³ )			65		
Measureing time	e, (min)			60	
Set Correlation 1	Factor, SCF				
SCF = [K=Hig	h Volume Sampler / Dust Meter, ( $\mu$	ι g/m3) ]	2.0		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (Wellab Litimed)

Calibrated by:

Approved by: Henry Leung

Wong Shing Kwai

## High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET



File No. _____MA16043/13/0009

Station	AM2(A) - Ng Wah Catholie	c Secondary School			
Date:	7-Jan-19	Next Due Date:	6-Mar-19	Operator:	SK
Equipment No.:	A-01-13	Model No.:	TE-5170	Serial No.:	1352

		Ambient Condition		
Temperature, Ta (K)	291.5	Pressure, Pa (mmHg)	768.6	

	0	rifice Transfer S	tandard Informa	tion	
Serial No.	2896	Slope, mc	0.0585	Intercept, bc	-0.00045
Last Calibration Date:	13-Feb-18		-	$= [\Delta H x (Pa/760) x (298/T)]$	
Next Calibration Date:	13-Feb-19		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} \mathbf{x}] \}$	$(Pa/760) \ge (298/Ta)]^{1/2} - bc$	/ mc

		Calibration of	of TSP Sampler		
G 171		Orfice			HVS
Calibration Point	$\Delta H$ (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} <b>Y-axis</b>
1	12.8	3.64	62.16	7.9	2.86
2	10.2	3.25	55.49	6.4	2.57
3	7.8	2.84	48.53	4.9	2.25
4	4.8	2.23	38.07	3.1	1.79
5	3.1	1.79	30.59	1.9	1.40
Slope, mw =	ression of Y on X 		Intercept, bw =	0.019	7
Slope , mw = Correlation of	0.0459 coefficient* =		Intercept, bw = -	0.019	7
Slope , mw = Correlation of	0.0459 coefficient* =	0.9995 0, check and recalibrate.	Intercept, bw = 	0.019	7
Slope , mw = Correlation of Tf Correlation of	0.0459 coefficient* = Coefficient < 0.99	0.9995 0, check and recalibrate.	-	0.019	7
Slope , mw = Correlation of If Correlation of From the TSP F	0.0459 coefficient* = Coefficient < 0.99	0.9995 0, check and recalibrate. Set Point	-		7
Slope , mw = Correlation of If Correlation of From the TSP F	0.0459 coefficient* = Coefficient < 0.99	0.9995 0, check and recalibrate. Set Point burve, take Qstd = 43 CFM	Calculation		7

 Remarks:
 Conducted by: SHING - WONG Signature:
 Date:
 07 - 0(-20)9

 Checked by: Henry Leung Signature:
 Date:
 7 January 2019

## **High-Volume TSP Sampler** 5-POINT CALIBRATION DATA SHEET

293.5

Temperature, Ta (K)



760.1

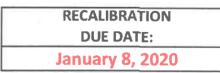
#### File No. MA16043/13/0010

Project No.	AM2(A) - Ng Wah Catholic	Secondary School				
Date:	6-Mar-19	Next Due Date:	5-May-19	Operator:	SK	
Equipment No.:	A-01-13	Model No.:	TE-5170	Serial No.	1352	
		Ambient Condit	ion			

Pressure, Pa (mmHg)

	Or	ifice Transfer Sta	ndard Informa	ation	
Serial No.	3607	Slope, mc	0.0588	Intercept, bc	-0.02422
Last Calibration Date:	8-Jan-19	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$			
Next Calibration Date:	8-Jan-20		$Qstd = \{ [\Delta H x]$	(Pa/760) x (298/Ta)] ^{1/2} -bc} /	mc

	Calibration of	TSP Sampler			
	Orfice			HVS	
$\Delta H$ (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	$\Delta W$ (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis	
11.3	3.39	58.02	7.5	2.76	
8.9	3.01	51.54	6.0	2.47	
7.2	2.70	46.40	4.8	2.21	
4.8	2.21	37.96	2.7	1.66	
3.2	1.80	31.07	1.8	1.35	
	Set Point C	alculation			
	Set Point C	alculation			
ld Calibration Cu	urve, take Qstd = 43 CFM				
ion Equation, the	e "Y" value according to				
	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$	x (Pa/760) x (29	98/Ta)] ^{1/2}		
		Ta / 298 ) =	3.86		
	11.3 8.9 7.2 4.8 3.2 ession of Y on X 0.0539 oefficient* = pefficient < 0.990 eld Calibration Cu	11.3       3.39         8.9       3.01         7.2       2.70         4.8       2.21         3.2       1.80         ession of Y on X         0.0539       0efficient* =         0.9975       0.9975         befficient < 0.990, check and recalibrate.	<td>In: of water       X = arts         11.3       3.39       58.02         8.9       3.01       51.54         7.2       2.70       46.40         4.8       2.21       37.96         3.2       1.80       31.07         ession of Y on X         0.0539       Intercept, bw = oefficient* = 0.9975         oefficient* =       0.9975         Set Point Calculation         Height Calculation         Height Calculation</td> <td>Int. of water       X - Axis       of water         11.3       3.39       58.02       7.5         8.9       3.01       51.54       6.0         7.2       2.70       46.40       4.8         4.8       2.21       37.96       2.7         3.2       1.80       31.07       1.8         ession of Y on X         0.0539       Intercept, bw :</td>	In: of water       X = arts         11.3       3.39       58.02         8.9       3.01       51.54         7.2       2.70       46.40         4.8       2.21       37.96         3.2       1.80       31.07         ession of Y on X         0.0539       Intercept, bw = oefficient* = 0.9975         oefficient* =       0.9975         Set Point Calculation         Height Calculation         Height Calculation	Int. of water       X - Axis       of water         11.3       3.39       58.02       7.5         8.9       3.01       51.54       6.0         7.2       2.70       46.40       4.8         4.8       2.21       37.96       2.7         3.2       1.80       31.07       1.8         ession of Y on X         0.0539       Intercept, bw :


			121		
Conducted by: SK	K Wong	Signature:	<u>Ab</u>	 Date:	6 March 2019
Checked by: Hen	nry Leung	Signature:	Hanghar	 Date:	6 March 2019

F:\Cinotech Solutions\Equipment\Calibration Cert\HVS\MA16043_AM2(A)_A-01-13_20190306.xls

<u>nvir</u>	~ ~ ~			T	),			UE DATE: ary 13, 201
		3	a   Calibration	Ø			ntion	
Cal. Date:	February 1	3,2018	Roots	meter S/N:	438320	Ta:	293	°К
Operator:	Jim Tisch					Pa:	763.3	mm Hg
Calibration	Model #:	TE-5025A	Calik	orator S/N:	2896			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔН	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4670	3.2	2.00	
	2	3	4	1	1.0380	6.4	4.00	
	3	5	6	1	0.9220	8.0	5.00	
	4	7	8	1	0.8840	8.8	5.50	
	5	9	10	1	0.7250	12.8	8.00	
	ļ			Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left( \frac{Pa}{Pstd} \right)}$	<u>)(Tstd</u> ) Ta)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y~ax		Va	(x-axis)	(y-axis)	
	1.0172	0.6934	1.429		0.9958	0.6788	0.8762	2.
	1.0129	0.9758	2.023		0.9916 0.9895	0.9553	1.2392 1.3854	
	1.0097	1.1422	2.370		0.9885	1,1182	1.4530	
	1.0043	1.3853	2.858	36	0.9832	1.3562	1.7524	
		m=	2.067		_	m=	1.29448	
	QSTD	b=	-0.000		QA	b=	-0.00028	
	L	r=	0.999	92		r=	0.99992	
			(- · · · · · · · · · · · · · · · · · · ·	Calculatio				
		ΔVol((Pa-ΔP) Vstd/ΔTime	/Pstd)(Tstd/Ta	3)		ΔVol((Pa-Δl Va/ΔTime	')/Pa)	
		-stay La rime	For subsequ	ent flow ra	te calculation			
	Qstd=	1/m(( √∆H(-	Pa <u>Tstd</u> Pstd Ta	))-b)	Qa=	//	(Ta/Pa))-b)	
	Standard	Conditions		- <u>( </u>		**	( )	
Tstd:	298.15	°K		[		RECA	IBRATION	
Pstd:		mm Hg				mmends a	nual recalibratio	n nor 1009
AH: calibrat	or manomet	ey er reading (iu	1H2O)				legulations Part 5	
	eter manome						Reference Meth	
Ta: actual al	bsolute temp	perature (°K)					ended Particulate	
Pa: actual b b: intercept	arometric pr	essure (mm	Hg)		the	e Atmosphe	re, 9.2.17, page 3	30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 <u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009





Certificate of Calibration

**Calibration Certification Information** Cal. Date: °К January 8, 2019 Rootsmeter S/N: 438320 Ta: 294 **Operator:** Jim Tisch Pa: 748.0 mm Hg Calibrator S/N: 3607 Calibration Model #: TE-5025A Vol. Init Vol. Final ΔVol. ΔTime ΔΡ ΔH Run (m3) (m3) (m3) (min) (mm Hg) (in H2O) 1 1 2 1 1.4340 2.00 3.2 2 3 4 1 1.0190 6.3 4.00 3 5 6 1 0.9110 7.8 5.00 4 7 8 1 0.8650 8.7 5.50 5 9 10 0.7150 1 12.6 8.00 **Data Tabulation** Ра Tstd ∫ΔH( Ta/Pa ) Δŀ Pstd 八 Vstd Ostd Ta Qa (m3) (x-axis) (y-axis) (x-axis) Va (y-axis) 0.9934 0.6927 1.4125 0.9957 0.6944 0.8866 0.9892 0.9708 1.9976 0.9916 0.9731 1.2538 0.9872 1.0837 2.2334 0.9896 1.0862 1.4018 0.9860 1.1399 2.3424 0.9884 1.1426 1.4703 0.9808 1.3718 0.9832 2.8251 1.3750 1.7732 2.07879 m= m= 1.30170 b= -0.02422 QSTD QA -0.01520 b= 0.99997 0.99997 r= r= Calculations Vstd=  $\Delta Vol((Pa-\Delta P)/Pstd)(Tstd/Ta)$ Va=  $\Delta Vol((Pa-\Delta P)/Pa)$ Qstd= Vstd/ $\Delta$ Time Qa= Va/ATime For subsequent flow rate calculations: Tstd Pa Qstd= 1/m ∆H( Ta/Pa Qa= 1/m ΔH Pstd Ta **Standard Conditions** 298.15 °K Tstd: RECALIBRATION Pstd: 760 mm Hg US EPA recommends annual recalibration per 1998 Key 40 Code of Federal Regulations Part 50 to 51, ΔH: calibrator manometer reading (in H2O) ΔP: rootsmeter manometer reading (mm Hg) Appendix B to Part 50, Reference Method for the Ta: actual absolute temperature (°K) Determination of Suspended Particulate Matter in Pa: actual barometric pressure (mm Hg) the Atmosphere, 9.2.17, page 30 b: intercept m: slope

sch Environmental, Inc. 15 South Miami Avenue

llage of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009



#### **TEST REPORT**

APPLICANT:	Cinotech Consultants Limited
	Room 1710, Technology Park,
	18 On Lai Street,
	Shatin, NT, Hong Kong

Test Report No.:	29953A
Date of Issue:	2018-10-15
Date Received:	2018-10-12
Date Tested:	2018-10-12
Date Completed:	2018-10-15
Next Due Date:	2019-04-14
Page:	1 of 2

Mr. W.K. Tang ATTN:

#### **Certificate of Calibration**

Description
Manufacturer
Model No.
Serial No.

: Weather Stations, Vantage Pro2 : Davis Instruments : 6152 : BC180522050

#### **Test conditions:**

Room Temperature **Relative Humidity** 

: 17-22 degree Celsius : 40-70 %

#### **Test Specifications:**

1. Performance check of anemometer

2. Performance check of wind direction sensor

#### Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.



#### **TEST REPORT**

Test Report No.:	29953A
Date of Issue:	2018-10-15
Date Received:	2018-10-12
Date Tested:	2018-10-12
 Date Completed:	2018-10-15
Next Due Date:	2019-04-14
Page:	2 of 2

#### **Results:**

1. Performance check of anemometer

Air Velocity, m/s		Difference D (m/s)
Instrument Reading (V1)	Reference Value (V1)	D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	Wind Direction (°)	
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45	45	0
90	90	0
135.2	135	0.2
180.1	180	0.1
225.3	225	0.3
270	270	0
315.1	315	0.1
360	360	0

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

APPENDIX B-2 COPIES OF CALIBRATION CERTIFCATES (NOISE)



1 of 1

## **TEST REPORT**

#### Test Report No.: **APPLICANT: Cinotech Consultants Limited** C/N/181221/1 Room 1710, Technology Park, Date of Issue: 2018-12-21 Date Received: 2018-12-19 18 On Lai Street, Date Tested: 2018-12-19 Shatin, NT, Hong Kong Date Completed: 2018-12-21 Next Due Date: 2019-12-20

ATTN:

#### Mr. Henry Leung

### **Certificate of Calibration**

#### Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 959
Serial No.	: 11275
Microphone No.	: 86553
Equipment No.	: N-08-01
Test conditions:	
Room Temperatre	: 22 degree Celsius
Relative Humidity	: 55%

Page:

#### **Methodology:**

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

#### **Results:**

Sound Pressure Level (1KHz)	Measured SPL	Tolerance
At 94.0 SPL	94.0	94.0 ± 0.1dB
At 114.0 SPL	114.0	114.0±0.1dB

PREPARED AND CHECKED BY: For and On Behalf of **WELLAB Ltd.** 

**PATRICK TSE** Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.



1 of 1

## **TEST REPORT**

<b>APPLICANT:</b>	<b>Cinotech Consultants Limited</b>	Test Report No.:	29501
	Room 1710, Technology Park,	Date of Issue:	2018-08-27
	18 On Lai Street,	Date Received:	2018-08-24
	Shatin, NT, Hong Kong	Date Tested:	2018-08-24
		Date Completed:	2018-08-27
		Next Due Date:	2019-08-26

ATTN:

#### Mr. W.K. Tang

#### **Certificate of Calibration**

#### Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 21455
Microphone No.	: 43730
Equipment No.	: N-08-07
	· .

Page:

#### **Test conditions:**

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

#### **Test Specifications:**

Performance checking at 94 and 114 dB

#### Methodology:

In-house method, according to manufacturer instruction manual

#### **Results:**

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

**PATRICK TSE** Laboratory Manager



1 of 1

#### **TEST REPORT**

#### **APPLICANT: Cinotech Consultants Limited** Test Report No.: 30293 Date of Issue: Room 1710, Technology Park, 2018-11-24 Date Received: 2018-11-23 18 On Lai Street, Shatin, NT, Hong Kong Date Tested: 2018-11-23 2018-11-24 Date Completed: Next Due Date: 2019-11-23

ATTN: Mr. W.K. Tang

#### **Certificate of Calibration**

#### Item for calibration:

Description Manufacturer Model No. Serial No. Microphone No. Equipment No.

#### **Test conditions:**

Room Temperatre Relative Humidity : 'SVANTEK' Integrating Sound Level Meter : SVANTEK : SVAN 957 : 23852 : 43690 : N-08-11

: 17-22 degree Celsius : 40-70%

Page:

#### **Test Specifications:**

Performance checking at 94 and 114 dB

#### **Methodology:**

In-house method, according to manufacturer instruction manual

#### **Results:**

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of **WELLAB Ltd.** 

abul

PATRICK TSE Laboratory Manager



#### **TEST REPORT**

### APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No .:	30294
Date of Issue:	2018-11-24
Date Received:	2018-11-23
Date Tested:	2018-11-23
Date Completed:	2018-11-24
Next Due Date:	2019-11-23
Page:	1 of 1

ATTN:

Mr. W.K. Tang

### **Certificate of Calibration**

#### Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 23851
Equipment No.	: N-08-12
s:	

#### **Test conditions:**

Room Temperatre	: 17-22 degree Celsius
<b>Relative Humidity</b>	: 40-70%

#### **Test Specifications:**

Performance checking at 94 and 114 dB

#### **Methodology:**

In-house method, according to manufacturer instruction manual

#### **Results:**

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager



#### **TEST REPORT APPLICANT: Cinotech Consultants Limited** Test Report No.: 30289 Date of Issue: Room 1710, Technology Park, 2018-11-04 Date Received: 2018-11-03 18 On Lai Street, Shatin, NT, Hong Kong Date Tested: 2018-11-03 Date Completed: 2018-11-04 Next Due Date: 2019-11-03 ATTN: Page: Mr. W.K. Tang 1 of 1 Item for calibration: Description : Acoustical Calibrator Manufacturer : Brüel & Kjær Model No. : 4231 Serial No. : 2326353 Equipment No. : N-02-01 **Test conditions:** Room Temperatre : 17-22 degree Celsius Relative Humidity : 40-70 %

#### **Methodology:**

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

#### **Results:**

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 \text{ dB}$
At 114 dB SPL	114.0	$114.0 \pm 0.1 \text{ dB}$

PREPARED AND CHECKED BY: For and On Behalf of **WELLAB Ltd.** 

**PATRICK TSE** Laboratory Manager



#### **TEST REPORT APPLICANT: Cinotech Consultants Limited** Test Report No.: 29817A Date of Issue: Room 1710, Technology Park, 2018-09-29 Date Received: 18 On Lai Street, 2018-09-28 Shatin, NT, Hong Kong Date Tested: 2018-09-28 Date Completed: 2018-09-29 Next Due Date: 2019-09-28 ATTN: Page: Mr. W.K. Tang 1 of 1 Item for calibration: Description : Acoustical Calibrator Manufacturer : SVANTEK Model No. : SV30A Serial No. : 10965 Equipment No. : N-09-02 **Test conditions:** Room Temperatre : 17-22 degree Celsius Relative Humidity : 40-70%

#### Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

#### **Results:**

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 \text{ dB}$
At 114 dB SPL	114.0	$114.0 \pm 0.1 \text{ dB}$

PREPARED AND CHECKED BY: For and On Behalf of **WELLAB Ltd.** 

**PATRICK TSE** Laboratory Manager

APPENDIX C WEATHER INFORMATION

I. General

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation(mm)
1-Mar-19	20.8	89	0.4
2-Mar-19	21.5	87	Trace
3-Mar-19	21.5	87	6.3
4-Mar-19	20.9	82	10.2
5-Mar-19	22.2	88	30.3
6-Mar-19	20.5	92	45.5
7-Mar-19	17.9	93	29.6
8-Mar-19	16.5	92	11.5
9-Mar-19	17.8	95	14.5
10-Mar-19	17.7	87	4.6
11-Mar-19	18.4	81	7.6
12-Mar-19	20.1	77	0
13-Mar-19	20.8	71	0
14-Mar-19	20.4	83	6.4
15-Mar-19	18.7	81	0.4
16-Mar-19	20.2	65	0
17-Mar-19	20.9	77	0
18-Mar-19	21.7	82	0
19-Mar-19	23.4	84	0
20-Mar-19	23.5	88	0
21-Mar-19	25.3	81	0
22-Mar-19	25.8	84	Trace
23-Mar-19	20	89	3.3
24-Mar-19	17.5	88	0.3
25-Mar-19	20.5	85	1
26-Mar-19	21.9	85	0
27-Mar-19	22.3	82	Trace
28-Mar-19	24.4	84	0
29-Mar-19	24.4	86	6.9
30-Mar-19	23.1	86	Trace
31-Mar-19	21.4	85	7.7

* The above information was extracted from the daily weather summary by Hong Kong Observatory.

** Trace = rainfall less than 0.05 mm.

*** The level of precipitation indicate the total amount of rainfall for each date (24 hours)

Date	Time	Wind speed(m/s)	Wind Direction
1-Mar-19	0:00	2.7	NE
1-Mar-19	1:00	4.9	ENE
1-Mar-19	2:00	4.9	ENE
1-Mar-19	3:00	5.8	NNW
1-Mar-19	4:00	6.3	NNE
1-Mar-19	5:00	5.8	NNE
1-Mar-19	6:00	4	NE
1-Mar-19	7:00	4	ENE
1-Mar-19	8:00	4.9	NE
1-Mar-19	9:00	4.9	ENE
1-Mar-19	10:00	6.3	Е
1-Mar-19	11:00	5.4	ENE
1-Mar-19	12:00	6.3	NE
1-Mar-19	13:00	7.2	ESE
1-Mar-19	14:00	5.4	ENE
1-Mar-19	15:00	4.5	ENE
1-Mar-19	16:00	4.9	ESE
1-Mar-19	17:00	6.3	N
1-Mar-19	18:00	6.3	NE
1-Mar-19	19:00	5.8	NE
1-Mar-19	20:00	5.4	ESE
1-Mar-19	21:00	6.7	Е
1-Mar-19	22:00	7.2	NE
1-Mar-19	23:00	5.4	NE
2-Mar-19	0:00	4	SE
2-Mar-19	1:00	3.6	Е
2-Mar-19	2:00	5.4	NE
2-Mar-19	3:00	4.9	NE
2-Mar-19	4:00	4.9	Е
2-Mar-19	5:00	4.5	Е
2-Mar-19	6:00	5.4	NE
2-Mar-19	7:00	5.4	NE
2-Mar-19	8:00	4.9	ENE
2-Mar-19	9:00	5.4	Е
2-Mar-19	10:00	5.8	Е

	while speed and while		
2-Mar-19	11:00	6.3	Е
2-Mar-19	12:00	7.2	Е
2-Mar-19	13:00	7.2	ESE
2-Mar-19	14:00	6.7	NNE
2-Mar-19	15:00	6.3	NNE
2-Mar-19	16:00	5.4	SSE
2-Mar-19	17:00	4.9	NNE
2-Mar-19	18:00	4	Е
2-Mar-19	19:00	4.5	NNE
2-Mar-19	20:00	3.6	ENE
2-Mar-19	21:00	4	NE
2-Mar-19	22:00	3.6	Е
2-Mar-19	23:00	3.1	Е
3-Mar-19	0:00	2.7	Е
3-Mar-19	1:00	2.7	Е
3-Mar-19	2:00	2.7	Е
3-Mar-19	3:00	1.3	SSW
3-Mar-19	4:00	1.8	ENE
3-Mar-19	5:00	0.9	ENE
3-Mar-19	6:00	1.3	ESE
3-Mar-19	7:00	1.3	SSE
3-Mar-19	8:00	8.9	SSE
3-Mar-19	9:00	6.7	WSW
3-Mar-19	10:00	6.7	SW
3-Mar-19	11:00	4.5	WSW
3-Mar-19	12:00	3.6	Е
3-Mar-19	13:00	6.3	ENE
3-Mar-19	14:00	4.9	Е
3-Mar-19	15:00	4	Е
3-Mar-19	16:00	4	NNE
3-Mar-19	17:00	4.5	Е
3-Mar-19	18:00	3.6	Е
3-Mar-19	19:00	4	Е
3-Mar-19	20:00	3.1	Е
3-Mar-19	21:00	2.2	S
3-Mar-19	22:00	2.7	Е
3-Mar-19	23:00	1.8	Е
4-Mar-19	0:00	1.8	SSE

	ind speed and with		
4-Mar-19	1:00	3.1	Ε
4-Mar-19	2:00	1.8	SSE
4-Mar-19	3:00	1.3	S
4-Mar-19	4:00	1.8	WSW
4-Mar-19	5:00	2.7	W
4-Mar-19	6:00	1.8	WSW
4-Mar-19	7:00	1.8	S
4-Mar-19	8:00	3.1	WSW
4-Mar-19	9:00	3.6	W
4-Mar-19	10:00	6.3	ENE
4-Mar-19	11:00	7.6	NE
4-Mar-19	12:00	5.8	NE
4-Mar-19	13:00	6.7	ESE
4-Mar-19	14:00	7.2	NNE
4-Mar-19	15:00	8	Ν
4-Mar-19	16:00	6.7	ENE
4-Mar-19	17:00	5.4	Е
4-Mar-19	18:00	6.7	ENE
4-Mar-19	19:00	7.2	NNE
4-Mar-19	20:00	8.9	NE
4-Mar-19	21:00	5.8	NNE
4-Mar-19	22:00	5.4	SE
4-Mar-19	23:00	8.5	ENE
5-Mar-19	0:00	7.6	NE
5-Mar-19	1:00	4.5	Е
5-Mar-19	2:00	6.3	ENE
5-Mar-19	3:00	7.6	NE
5-Mar-19	4:00	8.9	SE
5-Mar-19	5:00	9.4	NE
5-Mar-19	6:00	8	Е
5-Mar-19	7:00	5.8	Е
5-Mar-19	8:00	6.7	Е
5-Mar-19	9:00	4	ENE
5-Mar-19	10:00	5.4	ENE
5-Mar-19	11:00	5.4	ESE
5-Mar-19	12:00	7.2	ENE
5-Mar-19	13:00	7.6	Е
5-Mar-19	14:00	5.4	Е

5-Mar-19	15:00	5.8	ENE
5-Mar-19	16:00	6.3	Е
5-Mar-19	17:00	4.9	Е
5-Mar-19	18:00	5.4	ENE
5-Mar-19	19:00	3.6	Е
5-Mar-19	20:00	5.4	Ε
5-Mar-19	21:00	5.4	SE
5-Mar-19	22:00	4	Ε
5-Mar-19	23:00	4.5	Ε
6-Mar-19	0:00	5.4	Е
6-Mar-19	1:00	4	Е
6-Mar-19	2:00	4.5	NE
6-Mar-19	3:00	5.8	Е
6-Mar-19	4:00	4.9	Е
6-Mar-19	5:00	4.9	Е
6-Mar-19	6:00	5.4	Е
6-Mar-19	7:00	6.3	E
6-Mar-19	8:00	5.8	Е
6-Mar-19	9:00	5.8	Е
6-Mar-19	10:00	5.4	ENE
6-Mar-19	11:00	4.5	ESE
6-Mar-19	12:00	5.4	WSW
6-Mar-19	13:00	4.9	WSW
6-Mar-19	14:00	4.9	SW
6-Mar-19	15:00	4	WSW
6-Mar-19	16:00	6.3	ESE
6-Mar-19	17:00	4.5	Е
6-Mar-19	18:00	4	E
6-Mar-19	19:00	3.6	Е
6-Mar-19	20:00	4	Е
6-Mar-19	21:00	2.2	SSW
6-Mar-19	22:00	2.2	S
6-Mar-19	23:00	4.5	Е
7-Mar-19	0:00	5.4	ENE
7-Mar-19	1:00	3.6	WSW
7-Mar-19	2:00	4	SSW
7-Mar-19	3:00	4	WSW
7-Mar-19	4:00	4.5	Е

7-Mar-19       5:00       4.5       SE         7-Mar-19       6:00       4       WSW         7-Mar-19       7:00       5.8       W         7-Mar-19       8:00       5.8       WSW         7-Mar-19       9:00       5.4       SW         7-Mar-19       10:00       6.7       WSW         7-Mar-19       11:00       5.8       WSW         7-Mar-19       11:00       5.8       WSW         7-Mar-19       12:00       7.2       SSE         7-Mar-19       13:00       4.9       WSW         7-Mar-19       15:00       4.5       ENE         7-Mar-19       15:00       4.5       WSW         7-Mar-19       16:00       4.5       WSW         7-Mar-19       12:00       2.2       SW         7-Mar-19       19:00       4.9       NE         7-Mar-19       20:00       7.6       NE         7-Mar-19       21:00       9.4       NW         7-Mar-19       23:00       4.8       NW         8-Mar-19       0:00       5.1       ENE         8-Mar-19       2:00       4.5       ESE	r			
7-Mar-19         7:00         5.8         W           7-Mar-19         8:00         5.8         WSW           7-Mar-19         9:00         5.4         SW           7-Mar-19         10:00         6.7         WSW           7-Mar-19         11:00         5.8         WSW           7-Mar-19         12:00         7.2         SSE           7-Mar-19         13:00         4.9         WSW           7-Mar-19         15:00         4.5         ENE           7-Mar-19         16:00         4.5         WSW           7-Mar-19         17:00         3.1         WSW           7-Mar-19         18:00         2.2         SW           7-Mar-19         19:00         4.9         NE           7-Mar-19         20:00         7.6         NE           7-Mar-19         21:00         9.4         NW           7-Mar-19         23:00         4.8         NW           8-Mar-19         0:00         5.1         ENE           8-Mar-19         3:00         4.5         ESE           8-Mar-19         3:00         4.5         ESE           8-Mar-19         5:00         5.8	7-Mar-19	5:00	4.5	SE
7-Mar-19         8:00         5.8         WSW           7-Mar-19         9:00         5.4         SW           7-Mar-19         10:00         6.7         WSW           7-Mar-19         11:00         5.8         WSW           7-Mar-19         12:00         7.2         SSE           7-Mar-19         13:00         4.9         WSW           7-Mar-19         14:00         2.7         W           7-Mar-19         15:00         4.5         ENE           7-Mar-19         16:00         4.5         WSW           7-Mar-19         16:00         4.5         WSW           7-Mar-19         17:00         3.1         WSW           7-Mar-19         19:00         4.9         NE           7-Mar-19         19:00         4.9         NE           7-Mar-19         20:00         7.6         NE           7-Mar-19         20:00         7.4         NW           7-Mar-19         20:00         7.4         NW           7-Mar-19         20:00         5.1         ENE           8-Mar-19         0:00         5.1         ENE           8-Mar-19         1:00         5.4 <td></td> <td></td> <td></td> <td></td>				
7-Mar-19         9:00         5.4         SW           7-Mar-19         10:00         6.7         WSW           7-Mar-19         11:00         5.8         WSW           7-Mar-19         12:00         7.2         SSE           7-Mar-19         13:00         4.9         WSW           7-Mar-19         14:00         2.7         W           7-Mar-19         15:00         4.5         ENE           7-Mar-19         16:00         4.5         WSW           7-Mar-19         16:00         4.5         WSW           7-Mar-19         17:00         3.1         WSW           7-Mar-19         19:00         4.9         NE           7-Mar-19         20:00         7.6         NE           7-Mar-19         20:00         7.4         NW           7-Mar-19         21:00         9.4         NW           7-Mar-19         20:00         7.4         NW           7-Mar-19         20:00         7.4         NW           7-Mar-19         20:00         7.4         NW           8-Mar-19         0:00         5.1         ENE           8-Mar-19         1:00         5.4 <td></td> <td></td> <td></td> <td></td>				
7-Mar-19         10:00         6.7         WSW           7-Mar-19         11:00         5.8         WSW           7-Mar-19         12:00         7.2         SSE           7-Mar-19         13:00         4.9         WSW           7-Mar-19         14:00         2.7         W           7-Mar-19         15:00         4.5         ENE           7-Mar-19         16:00         4.5         WSW           7-Mar-19         17:00         3.1         WSW           7-Mar-19         17:00         3.1         WSW           7-Mar-19         18:00         2.2         SW           7-Mar-19         19:00         4.9         NE           7-Mar-19         20:00         7.6         NE           7-Mar-19         20:00         7.4         NW           7-Mar-19         20:00         7.4         NW           7-Mar-19         20:00         5.1         ENE           8-Mar-19         0:00         5.1         ENE           8-Mar-19         0:00         5.4         ENE           8-Mar-19         3:00         4.9         E           8-Mar-19         5:00         5.8 <td></td> <td>8:00</td> <td></td> <td>WSW</td>		8:00		WSW
7-Mar-19         11:00         5.8         WSW           7-Mar-19         12:00         7.2         SSE           7-Mar-19         13:00         4.9         WSW           7-Mar-19         14:00         2.7         W           7-Mar-19         14:00         2.7         W           7-Mar-19         15:00         4.5         ENE           7-Mar-19         16:00         4.5         WSW           7-Mar-19         17:00         3.1         WSW           7-Mar-19         17:00         3.1         WSW           7-Mar-19         19:00         4.9         NE           7-Mar-19         20:00         7.6         NE           7-Mar-19         20:00         7.4         NW           7-Mar-19         21:00         9.4         NW           7-Mar-19         23:00         4.8         NW           8-Mar-19         0:00         5.1         ENE           8-Mar-19         1:00         5.4         ENE           8-Mar-19         3:00         4.9         E           8-Mar-19         5:00         5.8         ENE           8-Mar-19         5:00         5.8	7-Mar-19	9:00	5.4	SW
7-Mar-19         12:00         7.2         SSE           7-Mar-19         13:00         4.9         WSW           7-Mar-19         14:00         2.7         W           7-Mar-19         15:00         4.5         ENE           7-Mar-19         16:00         4.5         WSW           7-Mar-19         16:00         4.5         WSW           7-Mar-19         17:00         3.1         WSW           7-Mar-19         18:00         2.2         SW           7-Mar-19         19:00         4.9         NE           7-Mar-19         20:00         7.6         NE           7-Mar-19         21:00         9.4         NW           7-Mar-19         22:00         7.4         NW           7-Mar-19         23:00         4.8         NW           8-Mar-19         0:00         5.1         ENE           8-Mar-19         1:00         5.4         ENE           8-Mar-19         3:00         4.9         E           8-Mar-19         5:00         5.8         ENE           8-Mar-19         5:00         5.8         ENE           8-Mar-19         7:00         5.8	7-Mar-19	10:00	6.7	WSW
7-Mar-19       13:00       4.9       WSW         7-Mar-19       14:00       2.7       W         7-Mar-19       15:00       4.5       ENE         7-Mar-19       16:00       4.5       WSW         7-Mar-19       16:00       4.5       WSW         7-Mar-19       17:00       3.1       WSW         7-Mar-19       18:00       2.2       SW         7-Mar-19       19:00       4.9       NE         7-Mar-19       20:00       7.6       NE         7-Mar-19       21:00       9.4       NW         7-Mar-19       21:00       9.4       NW         7-Mar-19       21:00       9.4       NW         7-Mar-19       20:00       7.4       NW         7-Mar-19       20:00       7.4       NW         7-Mar-19       20:00       5.1       ENE         8-Mar-19       0:00       5.4       ENE         8-Mar-19       1:00       5.4       ENE         8-Mar-19       3:00       4.9       E         8-Mar-19       5:00       5.8       ENE         8-Mar-19       5:00       5.8       ENE	7-Mar-19	11:00	5.8	WSW
7-Mar-1914:002.7W7-Mar-1915:004.5ENE7-Mar-1916:004.5WSW7-Mar-1917:003.1WSW7-Mar-1918:002.2SW7-Mar-1919:004.9NE7-Mar-1920:007.6NE7-Mar-1921:009.4NW7-Mar-1922:007.4NW7-Mar-1922:007.4NW7-Mar-1923:004.8NW8-Mar-190:005.1ENE8-Mar-191:005.4ENE8-Mar-193:004.9E8-Mar-193:004.9E8-Mar-195:005.8ENE8-Mar-195:005.8ENE8-Mar-195:005.8ENE8-Mar-199:007.6NE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1911:007.2NE8-Mar-1911:004.9ENE8-Mar-1911:004.9ENE8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1916:004.9ENE8-Mar-1916:004.9ENE8-Mar-1916:004.9ENE8-Mar-1916:004.9ENE	7-Mar-19	12:00	7.2	SSE
7-Mar-1915:004.5ENE7-Mar-1916:004.5WSW7-Mar-1917:003.1WSW7-Mar-1918:002.2SW7-Mar-1919:004.9NE7-Mar-1920:007.6NE7-Mar-1921:009.4NW7-Mar-1922:007.4NW7-Mar-1922:007.4NW7-Mar-1923:004.8NW8-Mar-190:005.1ENE8-Mar-191:005.4ENE8-Mar-193:004.9E8-Mar-193:004.9E8-Mar-195:005.8ENE8-Mar-195:005.8ENE8-Mar-195:005.8ENE8-Mar-197:005.8ENE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1911:004.9E8-Mar-1911:007.2NE8-Mar-1911:004.9ENE8-Mar-1911:004.9ENE8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1916:004.9ENE8-Mar-1916:004.9ENE8-Mar-1916:004.9ENE8-Mar-1916:004.9ENE	7-Mar-19	13:00	4.9	WSW
7-Mar-1916:004.5WSW7-Mar-1917:003.1WSW7-Mar-1918:002.2SW7-Mar-1919:004.9NE7-Mar-1920:007.6NE7-Mar-1921:009.4NW7-Mar-1922:007.4NW7-Mar-1923:004.8NW8-Mar-190:005.1ENE8-Mar-191:005.4ENE8-Mar-192:004.5ESE8-Mar-193:004.9E8-Mar-195:005.8ENE8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1911:006.7E8-Mar-1911:004.9E8-Mar-1911:005.8ENE8-Mar-1911:007.2NE8-Mar-1911:006.7E8-Mar-1911:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	7-Mar-19	14:00	2.7	W
7-Mar-1917:003.1WSW7-Mar-1918:002.2SW7-Mar-1919:004.9NE7-Mar-1920:007.6NE7-Mar-1921:009.4NW7-Mar-1922:007.4NW7-Mar-1923:004.8NW8-Mar-190:005.1ENE8-Mar-191:005.4ENE8-Mar-192:004.5ESE8-Mar-193:004.9E8-Mar-195:005.8ENE8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-199:007.2NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1911:006.7E8-Mar-1913:006.7E8-Mar-1913:004.9ENE8-Mar-1913:004.9ENE8-Mar-1913:006.7E8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	7-Mar-19	15:00	4.5	ENE
7-Mar-1918:002.2SW7-Mar-1919:004.9NE7-Mar-1920:007.6NE7-Mar-1921:009.4NW7-Mar-1922:007.4NW7-Mar-1923:004.8NW8-Mar-190:005.1ENE8-Mar-191:005.4ENE8-Mar-192:004.5ESE8-Mar-193:004.9E8-Mar-193:005.8ENE8-Mar-195:005.8ENE8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-199:007.2NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1911:006.7E8-Mar-1913:006.7E8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	7-Mar-19	16:00	4.5	WSW
7-Mar-1919:004.9NE7-Mar-1920:007.6NE7-Mar-1921:009.4NW7-Mar-1922:007.4NW7-Mar-1923:004.8NW8-Mar-190:005.1ENE8-Mar-191:005.4ENE8-Mar-192:004.5ESE8-Mar-193:004.9E8-Mar-195:005.8ENE8-Mar-195:005.8ESE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-197:005.8ENE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1911:006.7E8-Mar-1912:005.8ENE8-Mar-1911:007.2NE8-Mar-1911:006.7E8-Mar-1911:006.7E8-Mar-1911:004.9ENE8-Mar-1911:006.7E8-Mar-1911:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	7-Mar-19	17:00	3.1	WSW
7-Mar-1920:007.6NE7-Mar-1921:009.4NW7-Mar-1922:007.4NW7-Mar-1923:004.8NW8-Mar-190:005.1ENE8-Mar-191:005.4ENE8-Mar-192:004.5ESE8-Mar-193:004.9E8-Mar-195:005.8ENE8-Mar-195:005.8ENE8-Mar-197:005.8ENE8-Mar-197:005.8ENE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1917:007.2ESE	7-Mar-19	18:00	2.2	SW
7-Mar-1921:009.4NW7-Mar-1922:007.4NW7-Mar-1923:004.8NW8-Mar-190:005.1ENE8-Mar-191:005.4ENE8-Mar-192:004.5ESE8-Mar-193:004.9E8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-199:007.2NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1911:006.7E8-Mar-1913:006.7E8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1917:007.2ESE	7-Mar-19	19:00	4.9	NE
7-Mar-1922:007.4NW7-Mar-1923:004.8NW8-Mar-190:005.1ENE8-Mar-191:005.4ENE8-Mar-192:004.5ESE8-Mar-193:004.9E8-Mar-194:004ENE8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-197:005.8ENE8-Mar-197:005.8ENE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1916:007.2ESE	7-Mar-19	20:00	7.6	NE
7-Mar-1923:004.8NW8-Mar-190:005.1ENE8-Mar-191:005.4ENE8-Mar-192:004.5ESE8-Mar-193:004.9E8-Mar-194:004ENE8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-197:005.8ENE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1912:005.8ENE8-Mar-1913:006.7E8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1917:007.2ESE	7-Mar-19	21:00	9.4	NW
8-Mar-190:005.1ENE8-Mar-191:005.4ENE8-Mar-192:004.5ESE8-Mar-193:004.9E8-Mar-194:004ENE8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-197:005.8ENE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1912:005.8ENE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1915:004.9ENE8-Mar-1917:007.2ESE	7-Mar-19	22:00	7.4	NW
8-Mar-191:005.4ENE8-Mar-192:004.5ESE8-Mar-193:004.9E8-Mar-194:004ENE8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-197:005.8ENE8-Mar-199:007.2NE8-Mar-199:007.6NE8-Mar-1911:007.2NE8-Mar-1912:005.8ENE8-Mar-1911:007.2NE8-Mar-1912:005.8ENE8-Mar-1911:007.2NE8-Mar-1911:006.7E8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	7-Mar-19	23:00	4.8	NW
8-Mar-192:004.5ESE8-Mar-193:004.9E8-Mar-194:004ENE8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-198:007.2NE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1912:005.8ENE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	0:00	5.1	ENE
8-Mar-193:004.9E8-Mar-194:004ENE8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-198:007.2NE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1912:005.8ENE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	1:00	5.4	ENE
8-Mar-194:004ENE8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-198:007.2NE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1912:005.8NE8-Mar-1912:005.8NE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	2:00	4.5	ESE
8-Mar-195:005.8ENE8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-198:007.2NE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1911:006.7E8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	3:00	4.9	Е
8-Mar-196:005.8ESE8-Mar-197:005.8ENE8-Mar-198:007.2NE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1911:006.7E8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:007.2ESE	8-Mar-19	4:00	4	ENE
8-Mar-197:005.8ENE8-Mar-198:007.2NE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1912:005.8NE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	5:00	5.8	ENE
8-Mar-198:007.2NE8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1912:005.8NE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	6:00	5.8	ESE
8-Mar-199:007.6NE8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1912:005.8NE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	7:00	5.8	ENE
8-Mar-1910:007.6NE8-Mar-1911:007.2NE8-Mar-1912:005.8NE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	8:00	7.2	NE
8-Mar-1911:007.2NE8-Mar-1912:005.8NE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	9:00	7.6	NE
8-Mar-1912:005.8NE8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	10:00	7.6	NE
8-Mar-1913:006.7E8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	11:00	7.2	NE
8-Mar-1914:008ENE8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	12:00	5.8	NE
8-Mar-1915:004.9ENE8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	13:00	6.7	Е
8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	14:00	8	ENE
8-Mar-1916:004.9ENE8-Mar-1917:007.2ESE	8-Mar-19	15:00	4.9	ENE
	8-Mar-19	16:00	4.9	ENE
8-Mar-19 18:00 8.9 NE	8-Mar-19	17:00	7.2	ESE
	8-Mar-19	18:00	8.9	NE

	i ina speca ana i i		
8-Mar-19	19:00	6.7	ESE
8-Mar-19	20:00	5.8	NNE
8-Mar-19	21:00	7.2	Е
8-Mar-19	22:00	7.6	NE
8-Mar-19	23:00	8.5	ENE
9-Mar-19	0:00	8.9	NE
9-Mar-19	1:00	5.8	SE
9-Mar-19	2:00	8	NNE
9-Mar-19	3:00	6.3	ESE
9-Mar-19	4:00	5.8	NE
9-Mar-19	5:00	7.2	ESE
9-Mar-19	6:00	6.3	Е
9-Mar-19	7:00	7.2	ESE
9-Mar-19	8:00	8.9	SSE
9-Mar-19	9:00	6.7	SE
9-Mar-19	10:00	8.5	ESE
9-Mar-19	11:00	7.2	Е
9-Mar-19	12:00	4.9	Е
9-Mar-19	13:00	3.1	Е
9-Mar-19	14:00	4	Е
9-Mar-19	15:00	4	Е
9-Mar-19	16:00	4	Е
9-Mar-19	17:00	4	ESE
9-Mar-19	18:00	6.3	WSW
9-Mar-19	19:00	7.2	W
9-Mar-19	20:00	2.2	SSW
9-Mar-19	21:00	2.7	Е
9-Mar-19	22:00	2.2	WSW
9-Mar-19	23:00	2.7	WSW
10-Mar-19	0:00	3.1	WSW
10-Mar-19	1:00	5.8	WSW
10-Mar-19	2:00	4.9	WSW
10-Mar-19	3:00	4	WSW
10-Mar-19	4:00	4.5	W
10-Mar-19	5:00	3.6	W
10-Mar-19	6:00	4.5	W
10-Mar-19	7:00	5.4	W
10-Mar-19	8:00	3.6	W

	······································		
10-Mar-19	9:00	4.5	W
10-Mar-19	10:00	5.4	W
10-Mar-19	11:00	3.6	WSW
10-Mar-19	12:00	3.6	WSW
10-Mar-19	13:00	3.1	W
10-Mar-19	14:00	5.8	W
10-Mar-19	15:00	5.4	W
10-Mar-19	16:00	4.9	WSW
10-Mar-19	17:00	7.6	WNW
10-Mar-19	18:00	4.9	WSW
10-Mar-19	19:00	5.4	W
10-Mar-19	20:00	6.7	W
10-Mar-19	21:00	5.4	WSW
10-Mar-19	22:00	5.8	WSW
10-Mar-19	23:00	6.7	WSW
11-Mar-19	0:00	4	WSW
11-Mar-19	1:00	4.9	WSW
11-Mar-19	2:00	3.1	WSW
11-Mar-19	3:00	5.4	WSW
11-Mar-19	4:00	7.6	W
11-Mar-19	5:00	6.3	WSW
11-Mar-19	6:00	3.6	WSW
11-Mar-19	7:00	5.8	W
11-Mar-19	8:00	2.2	Е
11-Mar-19	9:00	4.5	WSW
11-Mar-19	10:00	5.4	WSW
11-Mar-19	11:00	4.5	WSW
11-Mar-19	12:00	4	W
11-Mar-19	13:00	5.4	WSW
11-Mar-19	14:00	6.7	WSW
11-Mar-19	15:00	4	WSW
11-Mar-19	16:00	5.4	Е
11-Mar-19	17:00	7.2	Е
11-Mar-19	18:00	6.7	Е
11-Mar-19	19:00	6.3	SSE
11-Mar-19	20:00	4.9	ENE
11-Mar-19	21:00	3.6	ENE
11-Mar-19	22:00	2.7	W

	I		
11-Mar-19	23:00	1.3	NE
12-Mar-19	0:00	1.8	S
12-Mar-19	1:00	1.3	SSW
12-Mar-19	2:00	1.8	WSW
12-Mar-19	3:00	1.3	WSW
12-Mar-19	4:00	0.9	SSE
12-Mar-19	5:00	0.9	SSE
12-Mar-19	6:00	0.9	SSE
12-Mar-19	7:00	1.3	SSE
12-Mar-19	8:00	0	
12-Mar-19	9:00	1.3	SW
12-Mar-19	10:00	1.8	NE
12-Mar-19	11:00	5.4	ENE
12-Mar-19	12:00	6.3	NNE
12-Mar-19	13:00	4	ENE
12-Mar-19	14:00	4.9	NE
12-Mar-19	15:00	5.8	NNE
12-Mar-19	16:00	7.6	NE
12-Mar-19	17:00	5.8	Е
12-Mar-19	18:00	5.8	NNE
12-Mar-19	19:00	6.3	NE
12-Mar-19	20:00	5.4	Е
12-Mar-19	21:00	4.5	Е
12-Mar-19	22:00	4.5	NE
12-Mar-19	23:00	4	NE
13-Mar-19	0:00	4.5	ENE
13-Mar-19	1:00	4	Е
13-Mar-19	2:00	3.1	WSW
13-Mar-19	3:00	0.9	WSW
13-Mar-19	4:00	2.2	SW
13-Mar-19	5:00	1.8	SSE
13-Mar-19	6:00	3.1	Е
13-Mar-19	7:00	4.9	Е
13-Mar-19	8:00	4.5	ENE
13-Mar-19	9:00	4.5	Е
13-Mar-19	10:00	4.5	WSW
13-Mar-19	11:00	5.8	Е
13-Mar-19	12:00	6.3	NNE

	and speed and with		
13-Mar-19	13:00	5.8	Е
13-Mar-19	14:00	6.3	NE
13-Mar-19	15:00	7.2	NE
13-Mar-19	16:00	4	NNE
13-Mar-19	17:00	4.5	NE
13-Mar-19	18:00	6.3	NE
13-Mar-19	19:00	6.7	NNW
13-Mar-19	20:00	4	Е
13-Mar-19	21:00	5.8	NE
13-Mar-19	22:00	7.6	Е
13-Mar-19	23:00	6.7	NNE
14-Mar-19	0:00	4.5	Ν
14-Mar-19	1:00	5.4	Е
14-Mar-19	2:00	7.6	NNE
14-Mar-19	3:00	6.7	Ν
14-Mar-19	4:00	7.6	SSE
14-Mar-19	5:00	6.7	NNE
14-Mar-19	6:00	6.3	NE
14-Mar-19	7:00	7.6	NE
14-Mar-19	8:00	5.8	ENE
14-Mar-19	9:00	5.8	Ν
14-Mar-19	10:00	4.9	SW
14-Mar-19	11:00	8	Е
14-Mar-19	12:00	8	ENE
14-Mar-19	13:00	6.3	ENE
14-Mar-19	14:00	5.4	S
14-Mar-19	15:00	4	WSW
14-Mar-19	16:00	3.6	Е
14-Mar-19	17:00	1.8	SW
14-Mar-19	18:00	2.2	SW
14-Mar-19	19:00	3.6	WSW
14-Mar-19	20:00	3.6	WSW
14-Mar-19	21:00	3.6	W
14-Mar-19	22:00	3.6	SW
14-Mar-19	23:00	5.8	W
15-Mar-19	0:00	4	S
15-Mar-19	1:00	4	SW
15-Mar-19	2:00	6.3	WSW

15-Mar-19	3:00	4	S
15-Mar-19	4:00	4.9	WSW
15-Mar-19	5:00	5.4	WSW
15-Mar-19	6:00	7.6	WSW
15-Mar-19	7:00	6.7	WSW
15-Mar-19	8:00	7.2	WSW
15-Mar-19	9:00	8	WSW
15-Mar-19	10:00	8	WSW
15-Mar-19	11:00	6.3	WSW
15-Mar-19	12:00	4.5	WSW
15-Mar-19	13:00	5.8	WSW
15-Mar-19	14:00	4.5	SW
15-Mar-19	15:00	4.5	SW
15-Mar-19	16:00	4.9	SW
15-Mar-19	17:00	4.9	S
15-Mar-19	18:00	6.3	WSW
15-Mar-19	19:00	4.9	WSW
15-Mar-19	20:00	4.9	WSW
15-Mar-19	21:00	4	WSW
15-Mar-19	22:00	3.6	WSW
15-Mar-19	23:00	4.5	WSW
16-Mar-19	0:00	4	WSW
16-Mar-19	1:00	4	SW
16-Mar-19	2:00	3.6	WSW
16-Mar-19	3:00	4	WSW
16-Mar-19	4:00	3.6	WSW
16-Mar-19	5:00	3.6	ENE
16-Mar-19	6:00	4.9	NNE
16-Mar-19	7:00	4	Е
16-Mar-19	8:00	4	NE
16-Mar-19	9:00	6.3	ENE
16-Mar-19	10:00	11.2	NNE
16-Mar-19	11:00	7.2	NNE
16-Mar-19	12:00	8.9	NE
16-Mar-19	13:00	8	S
16-Mar-19	14:00	6.3	NE
16-Mar-19	15:00	8	NE
16-Mar-19	16:00	9.8	Ν

	······································		
16-Mar-19	17:00	9.8	NNE
16-Mar-19	18:00	6.3	NE
16-Mar-19	19:00	5.8	NE
16-Mar-19	20:00	5.8	NE
16-Mar-19	21:00	7.6	NNE
16-Mar-19	22:00	5.8	Е
16-Mar-19	23:00	7.2	Е
17-Mar-19	0:00	5.8	ESE
17-Mar-19	1:00	4	NE
17-Mar-19	2:00	5.8	NE
17-Mar-19	3:00	4.9	NNE
17-Mar-19	4:00	5.4	NE
17-Mar-19	5:00	4.9	NE
17-Mar-19	6:00	4.5	NE
17-Mar-19	7:00	6.7	NE
17-Mar-19	8:00	6.3	ESE
17-Mar-19	9:00	7.2	ENE
17-Mar-19	10:00	4.9	NE
17-Mar-19	11:00	9.4	ESE
17-Mar-19	12:00	7.2	ESE
17-Mar-19	13:00	5.8	Е
17-Mar-19	14:00	5.4	ENE
17-Mar-19	15:00	8.5	NNE
17-Mar-19	16:00	7.6	NE
17-Mar-19	17:00	5.4	NE
17-Mar-19	18:00	3.6	WSW
17-Mar-19	19:00	3.1	ENE
17-Mar-19	20:00	3.6	ESE
17-Mar-19	21:00	4.9	ESE
17-Mar-19	22:00	4.5	NE
17-Mar-19	23:00	4	ENE
18-Mar-19	0:00	4.5	Е
18-Mar-19	1:00	5.4	Е
18-Mar-19	2:00	5.4	NNE
18-Mar-19	3:00	4	S
18-Mar-19	4:00	5.4	NE
18-Mar-19	5:00	6.3	NE
18-Mar-19	6:00	5.8	ESE

	······································		
18-Mar-19	7:00	5.4	NE
18-Mar-19	8:00	4	ENE
18-Mar-19	9:00	5.4	Е
18-Mar-19	10:00	5.8	ENE
18-Mar-19	11:00	4.9	Е
18-Mar-19	12:00	6.3	ENE
18-Mar-19	13:00	4.5	Е
18-Mar-19	14:00	5.8	Е
18-Mar-19	15:00	4.9	Е
18-Mar-19	16:00	6.3	Е
18-Mar-19	17:00	5.8	Е
18-Mar-19	18:00	5.8	Е
18-Mar-19	19:00	4.9	Е
18-Mar-19	20:00	4.9	Е
18-Mar-19	21:00	3.1	ENE
18-Mar-19	22:00	2.7	Е
18-Mar-19	23:00	1.8	Е
19-Mar-19	0:00	2.2	ENE
19-Mar-19	1:00	1.3	SSE
19-Mar-19	2:00	1.3	SSE
19-Mar-19	3:00	1.3	SSE
19-Mar-19	4:00	1.3	ESE
19-Mar-19	5:00	0.9	ENE
19-Mar-19	6:00	1.8	ENE
19-Mar-19	7:00	0.9	ENE
19-Mar-19	8:00	0.9	ENE
19-Mar-19	9:00	0.9	Е
19-Mar-19	10:00	1.8	Е
19-Mar-19	11:00	3.1	Е
19-Mar-19	12:00	3.1	Е
19-Mar-19	13:00	3.6	Е
19-Mar-19	14:00	7.2	Е
19-Mar-19	15:00	7.2	Е
19-Mar-19	16:00	7.2	Е
19-Mar-19	17:00	6.7	ENE
19-Mar-19	18:00	6.7	ENE
19-Mar-19	19:00	6.3	ESE
19-Mar-19	20:00	6.3	Е

19-Mar-19         21:00         5.4         ENE           19-Mar-19         22:00         4.5         E           20-Mar-19         0:00         3.6         E           20-Mar-19         0:00         3.6         E           20-Mar-19         1:00         4.9         NNE           20-Mar-19         3:00         6.7         E           20-Mar-19         3:00         6.7         E           20-Mar-19         5:00         4.5         E           20-Mar-19         6:00         4         NE           20-Mar-19         6:00         4         NE           20-Mar-19         6:00         4         NE           20-Mar-19         6:00         4         NE           20-Mar-19         6:00         4.9         NE           20-Mar-19         9:00         4.9         NE           20-Mar-19         11:00         4.5         E           20-Mar-19         11:00         4.5         E           20-Mar-19         11:00         5.8         NE           20-Mar-19         15:00         6.7         E           20-Mar-19         15:00         5.8 <td< th=""><th></th><th>·</th><th></th><th></th></td<>		·		
19-Mar-19         23:00         4.5         E           20-Mar-19         0:00         3.6         E           20-Mar-19         1:00         4.9         NNE           20-Mar-19         2:00         5.4         E           20-Mar-19         3:00         6.7         E           20-Mar-19         4:00         5.8         E           20-Mar-19         5:00         4.5         E           20-Mar-19         6:00         4         NE           20-Mar-19         6:00         4.9         NE           20-Mar-19         8:00         3.6         NNE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         10:00         4         NE           20-Mar-19         11:00         4.5         E           20-Mar-19         12:00         4.9         E           20-Mar-19         13:00         5.8         NE           20-Mar-19         14:00         6.3         E           20-Mar-19         15:00         6.7         E           20-Mar-19         16:00         5.8         E           20-Mar-19         16:00         3.1	19-Mar-19	21:00	5.4	ENE
20-Mar-19         0:00         3.6         E           20-Mar-19         1:00         4.9         NNE           20-Mar-19         2:00         5.4         E           20-Mar-19         3:00         6.7         E           20-Mar-19         4:00         5.8         E           20-Mar-19         5:00         4.5         E           20-Mar-19         6:00         4         NE           20-Mar-19         6:00         4.9         NE           20-Mar-19         7:00         4.9         NE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         10:00         4         NE           20-Mar-19         11:00         4.5         E           20-Mar-19         12:00         4.9         E           20-Mar-19         13:00         5.8         NE           20-Mar-19         14:00         6.3         E           20-Mar-19         16:00         5.8         E           20-Mar-19         16:00         5.8         E           20-Mar-19         17:00         4.9         E           20-Mar-19         20:00         3.1	19-Mar-19	22:00	4.5	Е
20-Mar-19         1:00         4.9         NNE           20-Mar-19         2:00         5.4         E           20-Mar-19         3:00         6.7         E           20-Mar-19         4:00         5.8         E           20-Mar-19         5:00         4.5         E           20-Mar-19         6:00         4         NE           20-Mar-19         6:00         4.9         NE           20-Mar-19         7:00         4.9         NE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         10:00         4         NE           20-Mar-19         11:00         4.5         E           20-Mar-19         11:00         4.5         E           20-Mar-19         13:00         5.8         NE           20-Mar-19         15:00         6.7         E           20-Mar-19         16:00         5.8         E           20-Mar-19         16:00         5.8         E           20-Mar-19         19:00         4.9         E           20-Mar-19         20:00         3.1	19-Mar-19	23:00	4.5	Е
20-Mar-19         2:00         5.4         E           20-Mar-19         3:00         6.7         E           20-Mar-19         4:00         5.8         E           20-Mar-19         5:00         4.5         E           20-Mar-19         6:00         4         NE           20-Mar-19         6:00         4.9         NE           20-Mar-19         7:00         4.9         NE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         10:00         4         NE           20-Mar-19         11:00         4.5         E           20-Mar-19         11:00         4.5         E           20-Mar-19         13:00         5.8         NE           20-Mar-19         14:00         6.3         E           20-Mar-19         15:00         6.7         E           20-Mar-19         16:00         5.8         E           20-Mar-19         16:00         5.8         E           20-Mar-19         19:00         4.9         E           20-Mar-19         20:00         3.1	20-Mar-19	0:00	3.6	Е
20-Mar-19         3:00         6.7         E           20-Mar-19         4:00         5.8         E           20-Mar-19         5:00         4.5         E           20-Mar-19         6:00         4         NE           20-Mar-19         7:00         4.9         NE           20-Mar-19         8:00         3.6         NNE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         10:00         4         NE           20-Mar-19         11:00         4.5         E           20-Mar-19         11:00         4.5         E           20-Mar-19         12:00         4.9         E           20-Mar-19         13:00         5.8         NE           20-Mar-19         14:00         6.3         E           20-Mar-19         16:00         5.8         E           20-Mar-19         16:00         4.9         E           20-Mar-19         17:00         4.9         E           20-Mar-19         19:00         4.5         E           20-Mar-19         20:00         3.1         ESE           20-Mar-19         20:00         3.1	20-Mar-19	1:00	4.9	NNE
20-Mar-19         4:00         5.8         E           20-Mar-19         5:00         4.5         E           20-Mar-19         6:00         4         NE           20-Mar-19         7:00         4.9         NE           20-Mar-19         8:00         3.6         NNE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         10:00         4         NE           20-Mar-19         11:00         4.5         E           20-Mar-19         11:00         4.5         E           20-Mar-19         12:00         4.9         E           20-Mar-19         13:00         5.8         NE           20-Mar-19         14:00         6.3         E           20-Mar-19         16:00         5.8         E           20-Mar-19         16:00         5.8         E           20-Mar-19         17:00         4.9         E           20-Mar-19         19:00         4.5         E           20-Mar-19         20:00         3.1         ESE           20-Mar-19         20:00         3.1         ESE           20-Mar-19         20:00         1.8	20-Mar-19	2:00	5.4	Е
20-Mar-19         5:00         4.5         E           20-Mar-19         6:00         4         NE           20-Mar-19         7:00         4.9         NE           20-Mar-19         8:00         3.6         NNE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         10:00         4         NE           20-Mar-19         11:00         4.5         E           20-Mar-19         11:00         4.5         E           20-Mar-19         12:00         4.9         E           20-Mar-19         13:00         5.8         NE           20-Mar-19         14:00         6.3         E           20-Mar-19         15:00         6.7         E           20-Mar-19         16:00         5.8         E           20-Mar-19         17:00         4.9         E           20-Mar-19         16:00         5.8         E           20-Mar-19         17:00         4.9         E           20-Mar-19         12:00         3.1         ESE           20-Mar-19         20:00         3.1         ESE           20-Mar-19         20:00         1.8	20-Mar-19	3:00	6.7	Е
20-Mar-19         6:00         4         NE           20-Mar-19         7:00         4.9         NE           20-Mar-19         8:00         3.6         NNE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         10:00         4         NE           20-Mar-19         10:00         4.9         ENE           20-Mar-19         11:00         4.5         E           20-Mar-19         12:00         4.9         E           20-Mar-19         13:00         5.8         NE           20-Mar-19         15:00         6.7         E           20-Mar-19         15:00         6.7         E           20-Mar-19         16:00         5.8         E           20-Mar-19         17:00         4.9         E           20-Mar-19         17:00         4.9         E           20-Mar-19         17:00         4.9         E           20-Mar-19         18:00         4.9         E           20-Mar-19         20:00         3.1         ESE           20-Mar-19         21:00         3.1         ESE           20-Mar-19         21:00         1.8 </td <td>20-Mar-19</td> <td>4:00</td> <td>5.8</td> <td>Е</td>	20-Mar-19	4:00	5.8	Е
20-Mar-19         7:00         4.9         NE           20-Mar-19         8:00         3.6         NNE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         10:00         4         NE           20-Mar-19         11:00         4.5         E           20-Mar-19         11:00         4.5         E           20-Mar-19         12:00         4.9         E           20-Mar-19         13:00         5.8         NE           20-Mar-19         13:00         6.3         E           20-Mar-19         15:00         6.7         E           20-Mar-19         16:00         5.8         E           20-Mar-19         17:00         4.9         E           20-Mar-19         19:00         4.5         E           20-Mar-19         19:00         4.5         E           20-Mar-19         20:00         3.1         ESE           20-Mar-19         21:00         3.1         ESE           20-Mar-19         21:00         3.1         ESE           20-Mar-19         20:00         1.8         E           21-Mar-19         0:00         1.8<	20-Mar-19	5:00	4.5	Е
20-Mar-19         8:00         3.6         NNE           20-Mar-19         9:00         4.9         ENE           20-Mar-19         10:00         4         NE           20-Mar-19         11:00         4.5         E           20-Mar-19         12:00         4.9         E           20-Mar-19         13:00         5.8         NE           20-Mar-19         13:00         6.3         E           20-Mar-19         15:00         6.7         E           20-Mar-19         16:00         5.8         E           20-Mar-19         17:00         4.9         E           20-Mar-19         16:00         5.8         E           20-Mar-19         17:00         4.9         E           20-Mar-19         19:00         4.5         E           20-Mar-19         19:00         4.5         E           20-Mar-19         20:00         3.1         ESE           20-Mar-19         21:00         3.1         ESE           20-Mar-19         21:00         3.1         E           21-Mar-19         0:00         1.8         E           21-Mar-19         0:00         1.8 <td>20-Mar-19</td> <td>6:00</td> <td>4</td> <td>NE</td>	20-Mar-19	6:00	4	NE
20-Mar-19         9:00         4.9         ENE           20-Mar-19         10:00         4         NE           20-Mar-19         11:00         4.5         E           20-Mar-19         12:00         4.9         E           20-Mar-19         13:00         5.8         NE           20-Mar-19         13:00         6.3         E           20-Mar-19         14:00         6.3         E           20-Mar-19         15:00         6.7         E           20-Mar-19         16:00         5.8         E           20-Mar-19         17:00         4.9         E           20-Mar-19         17:00         4.9         E           20-Mar-19         19:00         4.5         E           20-Mar-19         19:00         4.5         E           20-Mar-19         20:00         3.1         ESE           20-Mar-19         21:00         3.1         ESE           20-Mar-19         23:00         3.1         E           21-Mar-19         0:00         1.8         E           21-Mar-19         1:00         1.8         E           21-Mar-19         3:00         1.8	20-Mar-19	7:00	4.9	NE
20-Mar-1910:004NE20-Mar-1911:004.5E20-Mar-1912:004.9E20-Mar-1913:005.8NE20-Mar-1914:006.3E20-Mar-1915:006.7E20-Mar-1915:006.7E20-Mar-1916:005.8E20-Mar-1917:004.9E20-Mar-1919:004.5E20-Mar-1919:004.5E20-Mar-1920:003.1ESE20-Mar-1921:003.1ESE20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-193:001.8E21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8ENE21-Mar-198:001.3ENE21-Mar-199:001.8ENE	20-Mar-19	8:00	3.6	NNE
20-Mar-1911:004.5E20-Mar-1912:004.9E20-Mar-1913:005.8NE20-Mar-1914:006.3E20-Mar-1915:006.7E20-Mar-1916:005.8E20-Mar-1917:004.9E20-Mar-1919:004.5E20-Mar-1919:004.5E20-Mar-1920:004.9ENE20-Mar-1921:003.1ESE20-Mar-1922:003.1E20-Mar-1922:003.1E20-Mar-1923:001.8E21-Mar-190:001.8E21-Mar-193:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-198:001.3ENE21-Mar-199:001.8ENE	20-Mar-19	9:00	4.9	ENE
20-Mar-1912:004.9E20-Mar-1913:005.8NE20-Mar-1914:006.3E20-Mar-1915:006.7E20-Mar-1916:005.8E20-Mar-1917:004.9E20-Mar-1918:004.9E20-Mar-1919:004.5E20-Mar-1920:004.9ENE20-Mar-1920:004.9ENE20-Mar-1920:003.1ESE20-Mar-1921:003.1ESE20-Mar-1922:003.1E21-Mar-190:001.8E21-Mar-193:001.8E21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-198:001.3ENE21-Mar-199:001.8ENE	20-Mar-19	10:00	4	NE
20-Mar-1913:005.8NE20-Mar-1914:006.3E20-Mar-1915:006.7E20-Mar-1916:005.8E20-Mar-1917:004.9E20-Mar-1918:004.9E20-Mar-1919:004.5E20-Mar-1920:004.9ENE20-Mar-1921:003.1ESE20-Mar-1922:003.1ESE20-Mar-1922:003.1E20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-193:001.8E21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8ENE21-Mar-199:001.8ENE	20-Mar-19	11:00	4.5	Е
20-Mar-1914:006.3E20-Mar-1915:006.7E20-Mar-1916:005.8E20-Mar-1917:004.9E20-Mar-1918:004.9E20-Mar-1919:004.5E20-Mar-1920:004.9ENE20-Mar-1920:004.9ENE20-Mar-1921:003.1ESE20-Mar-1922:003.1ESE20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-193:001.8E21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-199:001.8ENE21-Mar-197:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8ENE	20-Mar-19	12:00	4.9	Е
20-Mar-1915:006.7E20-Mar-1916:005.8E20-Mar-1917:004.9E20-Mar-1918:004.9E20-Mar-1919:004.5E20-Mar-1920:004.9ENE20-Mar-1920:004.9ENE20-Mar-1921:003.1ESE20-Mar-1922:003.1ESE20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-193:001.8E21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8ENE21-Mar-199:001.8ENE	20-Mar-19	13:00	5.8	NE
20-Mar-1916:005.8E20-Mar-1917:004.9E20-Mar-1918:004.9E20-Mar-1919:004.5E20-Mar-1920:004.9ENE20-Mar-1920:003.1ESE20-Mar-1921:003.1ESE20-Mar-1922:003.1E20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-191:001.8E21-Mar-193:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8ENE21-Mar-199:001.8ENE	20-Mar-19	14:00	6.3	Е
20-Mar-1917:004.9E20-Mar-1918:004.9E20-Mar-1919:004.5E20-Mar-1920:004.9ENE20-Mar-1921:003.1ESE20-Mar-1921:003.1ESE20-Mar-1922:003.1E20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-191:001.8E21-Mar-193:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8ENE21-Mar-197:001.8ENE21-Mar-199:001.3ENE	20-Mar-19	15:00	6.7	Е
20-Mar-1918:004.9E20-Mar-1919:004.5E20-Mar-1920:004.9ENE20-Mar-1921:003.1ESE20-Mar-1922:003.1ESE20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-191:001.8E21-Mar-193:001.8ENE21-Mar-193:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8ENE21-Mar-199:001.8ENE	20-Mar-19	16:00	5.8	Е
20-Mar-1919:004.5E20-Mar-1920:004.9ENE20-Mar-1921:003.1ESE20-Mar-1922:003.1ESE20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-191:001.8E21-Mar-193:001.8E21-Mar-193:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8ENE21-Mar-197:001.8ENE21-Mar-199:001.3ENE	20-Mar-19	17:00	4.9	Е
20-Mar-1920:004.9ENE20-Mar-1921:003.1ESE20-Mar-1922:003.1ESE20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-191:001.8E21-Mar-192:001.8E21-Mar-193:001.8ENE21-Mar-194:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-198:001.3ENE21-Mar-199:001.8ENE	20-Mar-19	18:00	4.9	Е
20-Mar-1921:003.1ESE20-Mar-1922:003.1ESE20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-191:001.8E21-Mar-192:001.8E21-Mar-193:001.8ENE21-Mar-193:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-198:001.3ENE21-Mar-199:001.8ENE	20-Mar-19	19:00	4.5	Е
20-Mar-1922:003.1ESE20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-191:001.8E21-Mar-192:001.8E21-Mar-193:001.8ENE21-Mar-193:001.8ENE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8NE21-Mar-199:001.3ENE	20-Mar-19	20:00	4.9	ENE
20-Mar-1923:003.1E21-Mar-190:001.8E21-Mar-191:001.8E21-Mar-192:001.8E21-Mar-193:001.8ENE21-Mar-194:001.8ESE21-Mar-195:001.8ENE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8NE21-Mar-1991.3ENE	20-Mar-19	21:00	3.1	ESE
21-Mar-190:001.8E21-Mar-191:001.8E21-Mar-192:001.8E21-Mar-193:001.8ENE21-Mar-194:001.8ESE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8NE21-Mar-1991.3ENE21-Mar-191.001.3ENE	20-Mar-19	22:00	3.1	ESE
21-Mar-191:001.8E21-Mar-192:001.8E21-Mar-193:001.8ENE21-Mar-194:001.8ESE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8NE21-Mar-19901.8ENE	20-Mar-19	23:00	3.1	Е
21-Mar-192:001.8E21-Mar-193:001.8ENE21-Mar-194:001.8ESE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8NE21-Mar-198:001.3ENE21-Mar-199:001.8ENE	21-Mar-19	0:00	1.8	Е
21-Mar-193:001.8ENE21-Mar-194:001.8ESE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8NE21-Mar-198:001.3ENE21-Mar-199:001.8ENE	21-Mar-19	1:00	1.8	Е
21-Mar-194:001.8ESE21-Mar-195:001.8ENE21-Mar-196:002.2NNE21-Mar-197:001.8NE21-Mar-198:001.3ENE21-Mar-199:001.8ENE	21-Mar-19	2:00	1.8	Е
21-Mar-19       5:00       1.8       ENE         21-Mar-19       6:00       2.2       NNE         21-Mar-19       7:00       1.8       NE         21-Mar-19       8:00       1.3       ENE         21-Mar-19       9:00       1.8       ENE	21-Mar-19	3:00	1.8	ENE
21-Mar-196:002.2NNE21-Mar-197:001.8NE21-Mar-198:001.3ENE21-Mar-199:001.8ENE	21-Mar-19	4:00	1.8	ESE
21-Mar-19       7:00       1.8       NE         21-Mar-19       8:00       1.3       ENE         21-Mar-19       9:00       1.8       ENE	21-Mar-19	5:00	1.8	ENE
21-Mar-19         8:00         1.3         ENE           21-Mar-19         9:00         1.8         ENE	21-Mar-19	6:00	2.2	NNE
21-Mar-19 9:00 1.8 ENE	21-Mar-19	7:00	1.8	NE
	21-Mar-19	8:00	1.3	ENE
21-Mar-19 10:00 3.6 E	21-Mar-19	9:00	1.8	ENE
	21-Mar-19	10:00	3.6	E

21-Mar-19         11:00         4         E           21-Mar-19         12:00         5.4         E           21-Mar-19         13:00         4.9         E           21-Mar-19         14:00         6.7         ENE           21-Mar-19         15:00         4.9         E           21-Mar-19         15:00         4.9         E           21-Mar-19         15:00         5.8         SW           21-Mar-19         16:00         5.8         E           21-Mar-19         17:00         5.8         E           21-Mar-19         19:00         5.4         E           21-Mar-19         20:00         5.4         NE           21-Mar-19         20:00         5.4         E           21-Mar-19         20:00         6.3         E           21-Mar-19         23:00         6.3         E           22-Mar-19         0:00         4.9         E           22-Mar-19         1:00         4.9         E           22-Mar-19         3:00         2.7         E           22-Mar-19         5:00         3.6         WSW           22-Mar-19         6:00         3.1				
21-Mar-1913:00 $4.9$ E $21$ -Mar-1914:00 $6.7$ ENE $21$ -Mar-1915:00 $4.9$ E $21$ -Mar-1916:00 $5.8$ SW $21$ -Mar-1917:00 $5.8$ E $21$ -Mar-1918:00 $6.7$ E $21$ -Mar-1919:00 $5.4$ E $21$ -Mar-1920:00 $5.4$ NE $21$ -Mar-1921:00 $5.4$ E $21$ -Mar-1922:00 $6.3$ E $21$ -Mar-1923:00 $6.3$ E $22$ -Mar-190:00 $4.9$ E $22$ -Mar-191:00 $4.9$ ENE $22$ -Mar-19 $3:00$ $2.7$ E $22$ -Mar-19 $3:00$ $2.7$ E $22$ -Mar-19 $5:00$ $3.6$ WSW $22$ -Mar-19 $5:00$ $3.6$ WSW $22$ -Mar-19 $9:00$ $3.1$ W $22$ -Mar-19 $1:00$ $4.5$ E $22$ -Mar-19 $1:00$ $4.5$ E $22$ -Mar-19 $1:00$ $4.9$ E $22$ -Mar-19 $1:00$ $4.9$ E $22$ -Mar-19 $1:00$ $3.6$ E $22$ -Mar-19 $1:00$ $4.5$ E $22$ -Mar-19 $1:00$ $4.5$ E $22$ -Mar-19 $1:00$ $4.9$ E $22$ -Mar-19 $1:00$ $4.9$ E $22$ -Mar-19 $1:00$ $4.9$ E $22$ -Mar-19 $1:00$ $4.5$ E $22$ -Mar-19 $1:00$ $4.9$ E <t< th=""><th>21-Mar-19</th><th>11:00</th><th>4</th><th>Е</th></t<>	21-Mar-19	11:00	4	Е
21-Mar-19         14:00         6.7         ENE           21-Mar-19         15:00         4.9         E           21-Mar-19         16:00         5.8         SW           21-Mar-19         17:00         5.8         E           21-Mar-19         18:00         6.7         E           21-Mar-19         19:00         5.4         E           21-Mar-19         20:00         5.4         NE           21-Mar-19         21:00         5.4         E           21-Mar-19         21:00         6.3         E           21-Mar-19         23:00         6.3         E           22-Mar-19         0:00         4.9         E           22-Mar-19         1:00         4.9         E           22-Mar-19         3:00         2.7         E           22-Mar-19         4:00         2.7         E           22-Mar-19         5:00         3.6         WSW           22-Mar-19         5:00         3.6         WSW           22-Mar-19         9:00         3.1         E           22-Mar-19         10:00         3.6         E           22-Mar-19         10:00         3.6	21-Mar-19	12:00	5.4	Е
21-Mar-19         15:00         4.9         E           21-Mar-19         16:00         5.8         SW           21-Mar-19         17:00         5.8         E           21-Mar-19         18:00         6.7         E           21-Mar-19         19:00         5.4         E           21-Mar-19         20:00         5.4         NE           21-Mar-19         21:00         5.4         E           21-Mar-19         21:00         6.3         E           21-Mar-19         23:00         6.3         E           22-Mar-19         0:00         4.9         E           22-Mar-19         1:00         4.9         ENE           22-Mar-19         3:00         2.7         E           22-Mar-19         5:00         3.6         WSW           22-Mar-19         5:00         3.6         WSW           22-Mar-19         6:00         3.1         W           22-Mar-19         9:00         3.1         E           22-Mar-19         9:00         3.1         E           22-Mar-19         10:00         3.6         E           22-Mar-19         10:00         3.6	21-Mar-19	13:00	4.9	Е
21-Mar-19         16:00         5.8         SW           21-Mar-19         17:00         5.8         E           21-Mar-19         18:00         6.7         E           21-Mar-19         19:00         5.4         E           21-Mar-19         20:00         5.4         NE           21-Mar-19         21:00         5.4         E           21-Mar-19         21:00         6.3         E           21-Mar-19         23:00         6.3         E           22-Mar-19         0:00         4.9         E           22-Mar-19         0:00         4.9         ENE           22-Mar-19         1:00         4.9         ENE           22-Mar-19         3:00         2.7         E           22-Mar-19         5:00         3.6         WSW           22-Mar-19         5:00         3.6         WSW           22-Mar-19         6:00         3.1         W           22-Mar-19         9:00         3.1         E           22-Mar-19         10:00         3.6         E           22-Mar-19         10:00         3.6         E           22-Mar-19         10:00         3.6	21-Mar-19	14:00	6.7	ENE
21-Mar-19 $17:00$ $5.8$ E $21$ -Mar-19 $18:00$ $6.7$ E $21$ -Mar-19 $19:00$ $5.4$ E $21$ -Mar-19 $20:00$ $5.4$ NE $21$ -Mar-19 $21:00$ $5.4$ E $21$ -Mar-19 $21:00$ $5.4$ E $21$ -Mar-19 $22:00$ $6.3$ E $21$ -Mar-19 $22:00$ $6.3$ E $21$ -Mar-19 $23:00$ $6.3$ E $22$ -Mar-19 $0:00$ $4.9$ ENE $22$ -Mar-19 $1:00$ $4.9$ ENE $22$ -Mar-19 $3:00$ $2.7$ E $22$ -Mar-19 $3:00$ $2.7$ E $22$ -Mar-19 $5:00$ $3.6$ WSW $22$ -Mar-19 $5:00$ $3.6$ WSW $22$ -Mar-19 $6:00$ $3.1$ W $22$ -Mar-19 $7:00$ $1.8$ NNE $22$ -Mar-19 $9:00$ $3.1$ E $22$ -Mar-19 $10:00$ $3.6$ E $22$ -Mar-19 $11:00$ $3.6$ E $22$ -Mar-19 $11:00$ $4.5$ E $22$ -Mar-19 $15:00$ $4.9$ E $22$ -Mar-19 $15:00$ $4.9$ E $22$ -Mar-19 $16:00$ $5.8$ E $22$ -Mar-19 $19:00$ $5.4$ E $22$ -Mar-19 $19:00$ $5.4$ E $22$ -Mar-19 $19:00$ $4.6$ WSW	21-Mar-19	15:00	4.9	Е
21-Mar-19         18:00         6.7         E           21-Mar-19         19:00         5.4         E           21-Mar-19         20:00         5.4         NE           21-Mar-19         21:00         5.4         E           21-Mar-19         21:00         5.4         E           21-Mar-19         22:00         6.3         E           21-Mar-19         23:00         6.3         E           22-Mar-19         0:00         4.9         E           22-Mar-19         1:00         4.9         ENE           22-Mar-19         3:00         2.7         E           22-Mar-19         3:00         2.7         E           22-Mar-19         5:00         3.6         WSW           22-Mar-19         5:00         3.1         W           22-Mar-19         7:00         1.8         NNE           22-Mar-19         9:00         3.1         E           22-Mar-19         10:00         3.6         E           22-Mar-19         10:00         3.6         E           22-Mar-19         13:00         4         E           22-Mar-19         14:00         4.9	21-Mar-19	16:00	5.8	SW
21-Mar-1919:005.4E $21$ -Mar-1920:005.4NE $21$ -Mar-1921:005.4E $21$ -Mar-1922:006.3E $21$ -Mar-1923:006.3E $22$ -Mar-190:004.9E $22$ -Mar-191:004.9ENE $22$ -Mar-192:004ENE $22$ -Mar-193:002.7E $22$ -Mar-194:002.7E $22$ -Mar-195:003.6WSW $22$ -Mar-195:003.6WSW $22$ -Mar-197:001.8NNE $22$ -Mar-198:004E $22$ -Mar-199:003.1E $22$ -Mar-1910:003.6E $22$ -Mar-1911:003.6E $22$ -Mar-1911:003.6E $22$ -Mar-1911:003.6E $22$ -Mar-1911:004.5E $22$ -Mar-1913:004E $22$ -Mar-1915:004.9E $22$ -Mar-1915:004.9E $22$ -Mar-1916:005.8E $22$ -Mar-1919:005.4E $22$ -Mar-1919:005.4E $22$ -Mar-1912:004E $22$ -Mar-1912:004E $22$ -Mar-1912:005.4E $22$ -Mar-1912:005.4E $22$ -Mar-1912:005.4E $22$ -Mar-1912:	21-Mar-19	17:00	5.8	Е
21-Mar-19         20:00         5.4         NE           21-Mar-19         21:00         5.4         E           21-Mar-19         22:00         6.3         E           21-Mar-19         23:00         6.3         E           22-Mar-19         0:00         4.9         E           22-Mar-19         1:00         4.9         ENE           22-Mar-19         2:00         4         ENE           22-Mar-19         3:00         2.7         E           22-Mar-19         4:00         2.7         E           22-Mar-19         5:00         3.6         WSW           22-Mar-19         5:00         3.6         WSW           22-Mar-19         5:00         3.1         W           22-Mar-19         7:00         1.8         NNE           22-Mar-19         9:00         3.1         E           22-Mar-19         10:00         3.6         E           22-Mar-19         10:00         3.6         E           22-Mar-19         11:00         3.6         E           22-Mar-19         12:00         4.5         E           22-Mar-19         13:00         4	21-Mar-19	18:00	6.7	Е
21-Mar-1921:005.4E21-Mar-1922:006.3E21-Mar-1923:006.3E22-Mar-190:004.9E22-Mar-191:004.9ENE22-Mar-192:004ENE22-Mar-193:002.7E22-Mar-195:003.6WSW22-Mar-196:003.1W22-Mar-197:001.8NNE22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1910:003.6E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1911:003.6E22-Mar-1913:004E22-Mar-1915:004.9E22-Mar-1915:004.9E22-Mar-1915:005.8E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1917:005.8E22-Mar-1912:004E22-Mar-1912:004E22-Mar-1912:004E22-Mar-1912:005.8E22-Mar-1912:005.4E22-Mar-1919:005.4E22-Mar-1921:003.6WSW	21-Mar-19	19:00	5.4	Е
21-Mar-1922:006.3E21-Mar-1923:006.3E22-Mar-190:004.9E22-Mar-191:004.9ENE22-Mar-192:004ENE22-Mar-193:002.7E22-Mar-194:002.7E22-Mar-195:003.6WSW22-Mar-196:003.1W22-Mar-197:001.8NNE22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1911:003.6E22-Mar-1911:004.5E22-Mar-1911:004.5E22-Mar-1911:004.5E22-Mar-1911:005.8E22-Mar-1915:004.9E22-Mar-1915:004.9E22-Mar-1912:005.8E22-Mar-1912:005.8E22-Mar-1912:005.4E22-Mar-1912:005.4E22-Mar-1912:003.6WSW	21-Mar-19	20:00	5.4	NE
21-Mar-1923:006.3E22-Mar-190:004.9E22-Mar-191:004.9ENE22-Mar-192:004ENE22-Mar-193:002.7E22-Mar-194:002.7E22-Mar-195:003.6WSW22-Mar-196:003.1W22-Mar-197:001.8NNE22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1911:003.6E22-Mar-1911:003.6E22-Mar-1911:003.6E22-Mar-1911:004.5E22-Mar-1913:004E22-Mar-1915:004.9E22-Mar-1915:005.8E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1912:004.4E22-Mar-1912:004.9E22-Mar-1912:005.4E22-Mar-1912:005.4E22-Mar-1912:003.6WSW	21-Mar-19	21:00	5.4	Е
22-Mar-190:004.9E22-Mar-191:004.9ENE22-Mar-192:004ENE22-Mar-193:002.7E22-Mar-194:002.7E22-Mar-195:003.6WSW22-Mar-196:003.1W22-Mar-197:001.8NNE22-Mar-198:004E22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1911:003.6E22-Mar-1912:004.5E22-Mar-1914:004.9NE22-Mar-1915:004.9E22-Mar-1915:005.8E22-Mar-1917:005.8E22-Mar-1917:005.8E22-Mar-1912:004.4E22-Mar-1912:004.5E22-Mar-1912:005.8E22-Mar-1912:005.8E22-Mar-1912:005.4E22-Mar-1912:005.4E22-Mar-1912:003.6WSW	21-Mar-19	22:00	6.3	Е
22-Mar-191:004.9ENE22-Mar-192:004ENE22-Mar-193:002.7E22-Mar-194:002.7E22-Mar-195:003.6WSW22-Mar-195:003.1W22-Mar-197:001.8NNE22-Mar-198:004E22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1912:004.5E22-Mar-1913:004E22-Mar-1914:004.9NE22-Mar-1915:005.8E22-Mar-1918:006.3ENE22-Mar-1918:006.3ENE22-Mar-1912:003.6WSW	21-Mar-19	23:00	6.3	Е
22-Mar-192:004ENE22-Mar-193:002.7E22-Mar-194:002.7E22-Mar-195:003.6WSW22-Mar-196:003.1W22-Mar-197:001.8NNE22-Mar-198:004E22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1911:004.5E22-Mar-1912:004.5E22-Mar-1915:004.9E22-Mar-1915:005.8E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1912:004.4E22-Mar-1912:005.8E22-Mar-1912:005.8E22-Mar-1912:005.4E22-Mar-1912:005.4E22-Mar-1912:005.4E22-Mar-1912:003.6WSW	22-Mar-19	0:00	4.9	Е
22-Mar-193:002.7E22-Mar-194:002.7E22-Mar-195:003.6WSW22-Mar-196:003.1W22-Mar-197:001.8NNE22-Mar-198:004E22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1911:004.5E22-Mar-1913:004E22-Mar-1914:004.9NE22-Mar-1915:004.9E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1919:004E22-Mar-1919:005.4E22-Mar-1919:005.4E22-Mar-1919:005.4E22-Mar-1921:003.6WSW	22-Mar-19	1:00	4.9	ENE
22-Mar-194:002.7E22-Mar-195:003.6WSW22-Mar-196:003.1W22-Mar-197:001.8NNE22-Mar-198:004E22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1911:004.5E22-Mar-1912:004.5E22-Mar-1913:004E22-Mar-1915:004.9NE22-Mar-1915:005.8E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	2:00	4	ENE
22-Mar-195:003.6WSW22-Mar-196:003.1W22-Mar-197:001.8NNE22-Mar-198:004E22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1911:004.5E22-Mar-1912:004.5E22-Mar-1913:004E22-Mar-1915:004.9NE22-Mar-1915:005.8E22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	3:00	2.7	Е
22-Mar-196:003.1W22-Mar-197:001.8NNE22-Mar-198:004E22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1912:004.5E22-Mar-1913:004E22-Mar-1913:004.9NE22-Mar-1915:004.9E22-Mar-1915:005.8E22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1920:004E22-Mar-1919:005.4E22-Mar-1919:005.4E22-Mar-1921:003.6WSW	22-Mar-19	4:00	2.7	Е
22-Mar-197:001.8NNE22-Mar-198:004E22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1912:004.5E22-Mar-1913:004E22-Mar-1913:004.9NE22-Mar-1915:004.9E22-Mar-1915:005.8E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	5:00	3.6	WSW
22-Mar-198:004E22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1912:004.5E22-Mar-1913:004E22-Mar-1914:004.9NE22-Mar-1915:004.9E22-Mar-1915:005.8E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	6:00	3.1	W
22-Mar-199:003.1E22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1912:004.5E22-Mar-1913:004E22-Mar-1914:004.9NE22-Mar-1915:004.9E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1919:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	7:00	1.8	NNE
22-Mar-1910:003.6E22-Mar-1911:003.6E22-Mar-1912:004.5E22-Mar-1913:004E22-Mar-1914:004.9NE22-Mar-1915:004.9E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1917:005.4E22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	8:00	4	Е
22-Mar-1911:003.6E22-Mar-1912:004.5E22-Mar-1913:004E22-Mar-1914:004.9NE22-Mar-1915:004.9E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1919:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1920:003.6WSW	22-Mar-19	9:00	3.1	Е
22-Mar-1912:004.5E22-Mar-1913:004E22-Mar-1914:004.9NE22-Mar-1915:004.9E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1920:003.6WSW	22-Mar-19	10:00	3.6	Е
22-Mar-1913:004E22-Mar-1914:004.9NE22-Mar-1915:004.9E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	11:00	3.6	Е
22-Mar-1914:004.9NE22-Mar-1915:004.9E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	12:00	4.5	Е
22-Mar-1915:004.9E22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	13:00	4	Е
22-Mar-1916:005.8E22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	14:00	4.9	NE
22-Mar-1917:005.8E22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	15:00	4.9	Е
22-Mar-1918:006.3ENE22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	16:00	5.8	Е
22-Mar-1919:005.4E22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	17:00	5.8	Е
22-Mar-1920:004E22-Mar-1921:003.6WSW	22-Mar-19	18:00	6.3	ENE
22-Mar-19 21:00 3.6 WSW	22-Mar-19	19:00	5.4	Е
	22-Mar-19	20:00	4	Е
22-Mar-19 22:00 4.9 W	22-Mar-19	21:00	3.6	WSW
	22-Mar-19	22:00	4.9	W
22-Mar-19 23:00 5.8 WSW	22-Mar-19	23:00	5.8	WSW
23-Mar-19 0:00 4 WSW	23-Mar-19	0:00	4	WSW

23-Mar-19	1:00	6.7	WSW
23-Mar-19	2:00	4	WSW
23-Mar-19	3:00	4.9	E
23-Mar-19	4:00	11.2	N
23-Mar-19	5:00	5.4	NNE
23-Mar-19	6:00	3.1	WNW
23-Mar-19	7:00	5.4	NE
23-Mar-19	8:00	6.7	NE
23-Mar-19	9:00	7.2	NNE
23-Mar-19	10:00	6.3	NE
23-Mar-19	11:00	7.2	NE
23-Mar-19	12:00	8	N
23-Mar-19	13:00	5.8	Е
23-Mar-19	14:00	8	NE
23-Mar-19	15:00	6.7	SSE
23-Mar-19	16:00	7.2	ENE
23-Mar-19	17:00	8.5	NE
23-Mar-19	18:00	4.9	NNE
23-Mar-19	19:00	4.9	NNE
23-Mar-19	20:00	6.7	ENE
23-Mar-19	21:00	5.8	NNE
23-Mar-19	22:00	5.8	NE
23-Mar-19	23:00	5.8	NE
24-Mar-19	0:00	5.4	Е
24-Mar-19	1:00	6.3	ENE
24-Mar-19	2:00	3.6	SSW
24-Mar-19	3:00	7.6	Е
24-Mar-19	4:00	5.4	E
24-Mar-19	5:00	5.4	Е
24-Mar-19	6:00	1.8	SSW
24-Mar-19	7:00	4.5	Е
24-Mar-19	8:00	2.7	Е
24-Mar-19	9:00	4	WSW
24-Mar-19	10:00	4.5	WSW
24-Mar-19	11:00	4.5	WSW
24-Mar-19	12:00	4.9	S
24-Mar-19	13:00	5.8	W
24-Mar-19	14:00	6.7	SW

24-Mar-19         15:00         4.9         W           24-Mar-19         16:00         4         WSW           24-Mar-19         17:00         4         E           24-Mar-19         18:00         3.6         E           24-Mar-19         19:00         3.1         E           24-Mar-19         20:00         3.1         SSE           24-Mar-19         21:00         3.6         ENE           24-Mar-19         22:00         2.2         SSE           24-Mar-19         23:00         3.6         E           25-Mar-19         20:00         3.6         E           25-Mar-19         10:00         3.1         E           25-Mar-19         1:00         3.1         E           25-Mar-19         3:00         1.3         SSE           25-Mar-19         5:00         1.3         E           25-Mar-19         6:00         1.8         ENE           25-Mar-19         8:00         3.6         E           25-Mar-19         9:00         4         N           25-Mar-19         10:00         6.3         E           25-Mar-19         10:00         6.3		· ma speca ana · · m		
24-Mar-19         17:00         4         E           24-Mar-19         18:00         3.6         E           24-Mar-19         19:00         3.1         E           24-Mar-19         20:00         3.1         SSE           24-Mar-19         21:00         3.6         ENE           24-Mar-19         21:00         3.6         E           24-Mar-19         22:00         2.2         SSE           24-Mar-19         23:00         3.6         E           25-Mar-19         0:00         3.6         E           25-Mar-19         1:00         3.1         E           25-Mar-19         3:00         1.3         SSE           25-Mar-19         6:00         1.8         ENE           25-Mar-19         6:00         1.8         ENE           25-Mar-19         6:00         1.3         E           25-Mar-19         7:00         1.3         E           25-Mar-19         8:00         3.6         E           25-Mar-19         10:00         6.3         E           25-Mar-19         10:00         6.3         E           25-Mar-19         13:00         6.7	24-Mar-19	15:00	4.9	W
24-Mar-19         18:00         3.6         E           24-Mar-19         19:00         3.1         E           24-Mar-19         20:00         3.1         SSE           24-Mar-19         21:00         3.6         ENE           24-Mar-19         21:00         3.6         ENE           24-Mar-19         22:00         2.2         SSE           24-Mar-19         23:00         3.6         E           25-Mar-19         0:00         3.6         E           25-Mar-19         1:00         3.1         E           25-Mar-19         3:00         1.3         SSE           25-Mar-19         4:00         1.8         ENE           25-Mar-19         6:00         1.3         E           25-Mar-19         6:00         1.3         E           25-Mar-19         6:00         1.3         E           25-Mar-19         8:00         3.6         E           25-Mar-19         9:00         4         N           25-Mar-19         10:00         6.3         E           25-Mar-19         10:00         6.3         E           25-Mar-19         13:00         6.7	24-Mar-19	16:00	4	WSW
24-Mar-19         19:00         3.1         E           24-Mar-19         20:00         3.1         SSE           24-Mar-19         21:00         3.6         ENE           24-Mar-19         22:00         2.2         SSE           24-Mar-19         23:00         3.6         E           25-Mar-19         0:00         3.6         E           25-Mar-19         0:00         3.6         E           25-Mar-19         1:00         3.1         E           25-Mar-19         2:00         3.6         E           25-Mar-19         3:00         1.3         SSE           25-Mar-19         4:00         1.8         ENE           25-Mar-19         6:00         1.3         E           25-Mar-19         6:00         1.3         E           25-Mar-19         7:00         1.3         E           25-Mar-19         8:00         3.6         E           25-Mar-19         9:00         4         N           25-Mar-19         10:00         6.3         E           25-Mar-19         11:00         6.3         E           25-Mar-19         13:00         6.7	24-Mar-19	17:00	4	E
24-Mar-19         20:00         3.1         SSE           24-Mar-19         21:00         3.6         ENE           24-Mar-19         22:00         2.2         SSE           24-Mar-19         23:00         3.6         E           25-Mar-19         0:00         3.6         E           25-Mar-19         1:00         3.1         E           25-Mar-19         2:00         3.6         E           25-Mar-19         2:00         3.6         E           25-Mar-19         3:00         1.3         SSE           25-Mar-19         5:00         1.3         ENE           25-Mar-19         5:00         1.3         E           25-Mar-19         6:00         1.8         ENE           25-Mar-19         7:00         1.3         E           25-Mar-19         10:00         6.3         E           25-Mar-19         10:00         6.3         E           25-Mar-19         12:00         5.8         E           25-Mar-19         13:00         6.7         NE           25-Mar-19         15:00         7.6         NE           25-Mar-19         16:00         6.3 <td>24-Mar-19</td> <td>18:00</td> <td>3.6</td> <td>Е</td>	24-Mar-19	18:00	3.6	Е
24-Mar-19         21:00         3.6         ENE           24-Mar-19         22:00         2.2         SSE           24-Mar-19         23:00         3.6         E           25-Mar-19         0:00         3.6         E           25-Mar-19         1:00         3.1         E           25-Mar-19         2:00         3.6         E           25-Mar-19         3:00         1.3         SSE           25-Mar-19         5:00         1.3         ENE           25-Mar-19         6:00         1.8         ENE           25-Mar-19         6:00         1.3         E           25-Mar-19         7:00         1.3         E           25-Mar-19         9:00         4         N           25-Mar-19         10:00         6.3         E           25-Mar-19         11:00         6.3         ENE           25-Mar-19         13:00         6.7         NE           25-Mar-19         13:00         6.7         NE           25-Mar-19         16:00         6.3         E           25-Mar-19         16:00         6.3         E           25-Mar-19         16:00         5.8	24-Mar-19	19:00	3.1	Е
24-Mar-19         22:00         2.2         SSE           24-Mar-19         23:00         3.6         E           25-Mar-19         0:00         3.6         E           25-Mar-19         1:00         3.1         E           25-Mar-19         2:00         3.6         E           25-Mar-19         2:00         3.6         E           25-Mar-19         3:00         1.3         SSE           25-Mar-19         4:00         1.8         ENE           25-Mar-19         5:00         1.3         E           25-Mar-19         6:00         1.8         ENE           25-Mar-19         7:00         1.3         E           25-Mar-19         9:00         4         N           25-Mar-19         10:00         6.3         E           25-Mar-19         11:00         6.3         E           25-Mar-19         13:00         6.7         NE           25-Mar-19         13:00         6.7         NE           25-Mar-19         15:00         7.6         NE           25-Mar-19         16:00         6.3         E           25-Mar-19         19:00         5.8	24-Mar-19	20:00	3.1	SSE
24-Mar-19         23:00         3.6         E           25-Mar-19         0:00         3.6         E           25-Mar-19         1:00         3.1         E           25-Mar-19         2:00         3.6         E           25-Mar-19         2:00         3.6         E           25-Mar-19         3:00         1.3         SSE           25-Mar-19         4:00         1.8         ENE           25-Mar-19         5:00         1.3         E           25-Mar-19         6:00         1.8         ENE           25-Mar-19         6:00         1.3         E           25-Mar-19         7:00         1.3         E           25-Mar-19         9:00         4         N           25-Mar-19         10:00         6.3         E           25-Mar-19         11:00         6.3         ENE           25-Mar-19         13:00         6.7         NE           25-Mar-19         14:00         6.7         NE           25-Mar-19         15:00         7.6         NE           25-Mar-19         16:00         6.3         E           25-Mar-19         19:00         5.4	24-Mar-19	21:00	3.6	ENE
25-Mar-19         0:00         3.6         E           25-Mar-19         1:00         3.1         E           25-Mar-19         2:00         3.6         E           25-Mar-19         3:00         1.3         SSE           25-Mar-19         4:00         1.8         ENE           25-Mar-19         5:00         1.3         ENE           25-Mar-19         5:00         1.3         ENE           25-Mar-19         6:00         1.8         ENE           25-Mar-19         6:00         1.3         E           25-Mar-19         7:00         1.3         E           25-Mar-19         8:00         3.6         E           25-Mar-19         9:00         4         N           25-Mar-19         10:00         6.3         E           25-Mar-19         11:00         6.3         ENE           25-Mar-19         13:00         6.7         NE           25-Mar-19         14:00         6.7         NE           25-Mar-19         15:00         7.6         NE           25-Mar-19         16:00         6.3         E           25-Mar-19         19:00         5.4	24-Mar-19	22:00	2.2	SSE
25-Mar-19         1:00         3.1         E           25-Mar-19         2:00         3.6         E           25-Mar-19         3:00         1.3         SSE           25-Mar-19         4:00         1.8         ENE           25-Mar-19         5:00         1.3         ENE           25-Mar-19         5:00         1.3         ENE           25-Mar-19         6:00         1.8         ENE           25-Mar-19         6:00         1.3         E           25-Mar-19         7:00         1.3         E           25-Mar-19         7:00         3.6         E           25-Mar-19         9:00         4         N           25-Mar-19         10:00         6.3         E           25-Mar-19         12:00         5.8         E           25-Mar-19         13:00         6.7         NE           25-Mar-19         14:00         6.7         NE           25-Mar-19         15:00         7.6         NE           25-Mar-19         16:00         6.3         E           25-Mar-19         19:00         5.8         NNE           25-Mar-19         19:00         5.4	24-Mar-19	23:00	3.6	Е
25-Mar-192:003.6E25-Mar-193:001.3SSE25-Mar-194:001.8ENE25-Mar-195:001.3ENE25-Mar-196:001.8ENE25-Mar-197:001.3E25-Mar-197:001.3E25-Mar-199:004N25-Mar-199:004N25-Mar-1910:006.3E25-Mar-1911:006.3ENE25-Mar-1911:006.3ENE25-Mar-1911:006.7NE25-Mar-1913:006.7NE25-Mar-1915:007.6NE25-Mar-1915:007.6NE25-Mar-1916:006.3E25-Mar-1912:005.8NNE25-Mar-1912:005.4NE25-Mar-1919:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:005.8NE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-191:006.3NE26-Mar-191:006.3NE26-Mar-191:004.9ENE26-Mar-192:004.9ENE26-Mar-193:004.9ENE26-Mar-193:004.9ENE <td>25-Mar-19</td> <td>0:00</td> <td>3.6</td> <td>Е</td>	25-Mar-19	0:00	3.6	Е
25-Mar-193:001.3SSE25-Mar-194:001.8ENE25-Mar-195:001.3ENE25-Mar-196:001.8ENE25-Mar-197:001.3E25-Mar-198:003.6E25-Mar-199:004N25-Mar-199:006.3E25-Mar-1910:006.3E25-Mar-1911:006.3E25-Mar-1912:005.8E25-Mar-1913:006.7NE25-Mar-1915:007.6NE25-Mar-1915:007.6NE25-Mar-1916:006.3E25-Mar-1915:007.6NE25-Mar-1912:005.8NNE25-Mar-1912:005.8NE25-Mar-1912:004.9E25-Mar-1919:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:005.8NE26-Mar-191:006.3NE26-Mar-191:006.3NE26-Mar-191:004.9ENE26-Mar-193:004.9ENE26-Mar-193:004.9ENE	25-Mar-19	1:00	3.1	Е
25-Mar-194:001.8ENE25-Mar-195:001.3ENE25-Mar-196:001.8ENE25-Mar-197:001.3E25-Mar-198:003.6E25-Mar-199:004N25-Mar-1910:006.3E25-Mar-1911:006.3E25-Mar-1911:006.3E25-Mar-1911:006.7NE25-Mar-1912:005.8E25-Mar-1913:006.7NE25-Mar-1915:007.6NE25-Mar-1915:007.6NE25-Mar-1915:006.3E25-Mar-1910:006.3E25-Mar-1910:006.3NE25-Mar-1912:005.8NNE25-Mar-1912:005.4NE25-Mar-1921:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:005.4NE25-Mar-1921:005.4ENE25-Mar-1921:004.9NE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-191:004.9ENE26-Mar-193:004.9E	25-Mar-19	2:00	3.6	Е
25-Mar-195:001.3ENE25-Mar-196:001.8ENE25-Mar-197:001.3E25-Mar-197:001.3E25-Mar-198:003.6E25-Mar-199:004N25-Mar-1910:006.3E25-Mar-1911:006.3ENE25-Mar-1911:006.3ENE25-Mar-1912:005.8E25-Mar-1913:006.7NE25-Mar-1915:007.6NE25-Mar-1915:007.6NE25-Mar-1916:006.3E25-Mar-1917:006.3E25-Mar-1918:004.9E25-Mar-1920:005.4NNE25-Mar-1921:005.4ENE25-Mar-1921:004.9NE25-Mar-1921:004.9NE25-Mar-1921:004.9NE25-Mar-1921:004.9NE25-Mar-1921:004.9E26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-193:004.9E	25-Mar-19	3:00	1.3	SSE
25-Mar-196:001.8ENE25-Mar-197:001.3E25-Mar-198:003.6E25-Mar-199:004N25-Mar-1910:006.3E25-Mar-1911:006.3ENE25-Mar-1912:005.8E25-Mar-1913:006.7NE25-Mar-1914:006.7NE25-Mar-1915:007.6NE25-Mar-1915:007.6NE25-Mar-1916:006.3E25-Mar-1917:006.3E25-Mar-1912:005.8NNE25-Mar-1912:005.8NNE25-Mar-1912:004.9E25-Mar-1919:005.4NE25-Mar-1921:005.4NE25-Mar-1922:004.9NE25-Mar-1921:005.8NE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-191:004.9E26-Mar-193:004.9E	25-Mar-19	4:00	1.8	ENE
25-Mar-197:001.3E25-Mar-198:003.6E25-Mar-199:004N25-Mar-1910:006.3E25-Mar-1911:006.3ENE25-Mar-1911:006.3ENE25-Mar-1912:005.8E25-Mar-1913:006.7NE25-Mar-1914:006.7NE25-Mar-1915:007.6NE25-Mar-1916:006.3E25-Mar-1917:006.3E25-Mar-1918:004.9E25-Mar-1919:005.8NNE25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1922:004.9NE25-Mar-1921:005.8NE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-191:004.9E26-Mar-193:004.9E26-Mar-193:004.9E	25-Mar-19	5:00	1.3	ENE
25-Mar-198:003.6E25-Mar-199:004N25-Mar-1910:006.3E25-Mar-1911:006.3ENE25-Mar-1912:005.8E25-Mar-1913:006.7NE25-Mar-1914:006.7NE25-Mar-1915:007.6NE25-Mar-1916:006.3E25-Mar-1917:006.3E25-Mar-1917:005.8NNE25-Mar-1912:005.4NE25-Mar-1921:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:005.4NNE25-Mar-1921:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:004.9NE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-193:004.9E	25-Mar-19	6:00	1.8	ENE
25-Mar-199:004N25-Mar-1910:006.3E25-Mar-1911:006.3ENE25-Mar-1912:005.8E25-Mar-1913:006.7NE25-Mar-1914:006.7NE25-Mar-1915:007.6NE25-Mar-1916:006.3E25-Mar-1916:006.3E25-Mar-1917:006.3E25-Mar-1917:005.8NNE25-Mar-1912:005.4NE25-Mar-1921:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:005.4ENE25-Mar-1921:004.9NE25-Mar-1923:004NNE26-Mar-191:006.3NE26-Mar-191:004.9ENE26-Mar-193:004.9E	25-Mar-19	7:00	1.3	Е
25-Mar-1910:006.3E25-Mar-1911:006.3ENE25-Mar-1912:005.8E25-Mar-1913:006.7NE25-Mar-1914:006.7NE25-Mar-1915:007.6NE25-Mar-1916:006.3NE25-Mar-1917:006.3E25-Mar-1917:005.8NNE25-Mar-1919:005.8NNE25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1922:004.9NE25-Mar-1923:004NNE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9E26-Mar-193:004.9E	25-Mar-19	8:00	3.6	Е
25-Mar-1911:006.3ENE25-Mar-1912:005.8E25-Mar-1913:006.7NE25-Mar-1914:006.7NE25-Mar-1915:007.6NE25-Mar-1915:006.3NE25-Mar-1916:006.3E25-Mar-1917:006.3E25-Mar-1918:004.9E25-Mar-1919:005.8NNE25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1922:004.9NE25-Mar-1923:004NNE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9ENE26-Mar-193:004.9E	25-Mar-19	9:00	4	Ν
25-Mar-1912:005.8E25-Mar-1913:006.7NE25-Mar-1914:006.7NE25-Mar-1915:007.6NE25-Mar-1916:006.3NE25-Mar-1917:006.3E25-Mar-1918:004.9E25-Mar-1919:005.8NNE25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1922:004.9NE25-Mar-1923:004NNE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9E	25-Mar-19	10:00	6.3	Е
25-Mar-1913:006.7NE25-Mar-1914:006.7NE25-Mar-1915:007.6NE25-Mar-1916:006.3NE25-Mar-1917:006.3E25-Mar-1918:004.9E25-Mar-1919:005.8NNE25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1921:005.4ENE25-Mar-1922:004.9NE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9E	25-Mar-19	11:00	6.3	ENE
25-Mar-1914:006.7NE25-Mar-1915:007.6NE25-Mar-1916:006.3NE25-Mar-1917:006.3E25-Mar-1918:004.9E25-Mar-1919:005.8NNE25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1921:005.4NE25-Mar-1922:004.9NE25-Mar-1923:004NNE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9E	25-Mar-19	12:00	5.8	Е
25-Mar-1915:007.6NE25-Mar-1916:006.3NE25-Mar-1917:006.3E25-Mar-1918:004.9E25-Mar-1919:005.8NNE25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1922:004.9NE25-Mar-1922:004.9NE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-193:004.9ENE26-Mar-193:004.9ENE26-Mar-192:004.9ENE26-Mar-193:004.9E	25-Mar-19	13:00	6.7	NE
25-Mar-1916:006.3NE25-Mar-1917:006.3E25-Mar-1918:004.9E25-Mar-1919:005.8NNE25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1922:004.9NE25-Mar-1923:004NNE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9ENE26-Mar-193:004.9ENE	25-Mar-19	14:00	6.7	NE
25-Mar-1917:006.3E25-Mar-1918:004.9E25-Mar-1919:005.8NNE25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1922:004.9NE25-Mar-1923:004NNE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-193:004.9ENE26-Mar-192:004.9ENE26-Mar-191:006.3NE26-Mar-191:006.3ENE26-Mar-191:006.3ENE26-Mar-192:004.9ENE26-Mar-192:004.9ENE26-Mar-193:004.9ENE	25-Mar-19	15:00	7.6	NE
25-Mar-1918:004.9E25-Mar-1919:005.8NNE25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1922:004.9NE25-Mar-1923:004NNE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9E	25-Mar-19	16:00	6.3	NE
25-Mar-1919:005.8NNE25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1922:004.9NE25-Mar-1923:004NNE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9E	25-Mar-19	17:00	6.3	Е
25-Mar-1920:005.4NE25-Mar-1921:005.4ENE25-Mar-1922:004.9NE25-Mar-1923:004NNE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9E	25-Mar-19	18:00	4.9	Е
25-Mar-1921:005.4ENE25-Mar-1922:004.9NE25-Mar-1923:004NNE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9E	25-Mar-19	19:00	5.8	NNE
25-Mar-1922:004.9NE25-Mar-1923:004NNE26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9E	25-Mar-19	20:00	5.4	NE
25-Mar-19         23:00         4         NNE           26-Mar-19         0:00         5.8         NE           26-Mar-19         1:00         6.3         NE           26-Mar-19         2:00         4.9         ENE           26-Mar-19         3:00         4.9         E	25-Mar-19	21:00	5.4	ENE
26-Mar-190:005.8NE26-Mar-191:006.3NE26-Mar-192:004.9ENE26-Mar-193:004.9E	25-Mar-19	22:00	4.9	NE
26-Mar-19         1:00         6.3         NE           26-Mar-19         2:00         4.9         ENE           26-Mar-19         3:00         4.9         E	25-Mar-19	23:00	4	NNE
26-Mar-19         2:00         4.9         ENE           26-Mar-19         3:00         4.9         E	26-Mar-19	0:00	5.8	NE
26-Mar-19 3:00 4.9 E	26-Mar-19	1:00	6.3	NE
	26-Mar-19	2:00	4.9	ENE
26-Mar-19         4:00         4.9         E	26-Mar-19	3:00	4.9	Е
	26-Mar-19	4:00	4.9	Е

	ina speca ana ita		
26-Mar-19	5:00	5.4	Е
26-Mar-19	6:00	5.4	Е
26-Mar-19	7:00	4.9	NE
26-Mar-19	8:00	4.9	NE
26-Mar-19	9:00	6.3	Е
26-Mar-19	10:00	5.8	ENE
26-Mar-19	11:00	6.3	NE
26-Mar-19	12:00	5.4	Е
26-Mar-19	13:00	5.4	NNE
26-Mar-19	14:00	5.4	Е
26-Mar-19	15:00	5.8	Е
26-Mar-19	16:00	4.9	Е
26-Mar-19	17:00	5.4	Ν
26-Mar-19	18:00	5.4	ENE
26-Mar-19	19:00	5.8	Е
26-Mar-19	20:00	5.4	SSE
26-Mar-19	21:00	4.5	Е
26-Mar-19	22:00	4.5	Е
26-Mar-19	23:00	4	Е
27-Mar-19	0:00	4	Е
27-Mar-19	1:00	3.6	Е
27-Mar-19	2:00	4	ENE
27-Mar-19	3:00	2.7	Е
27-Mar-19	4:00	2.2	Е
27-Mar-19	5:00	3.1	Е
27-Mar-19	6:00	1.3	ENE
27-Mar-19	7:00	1.8	Е
27-Mar-19	8:00	2.2	Е
27-Mar-19	9:00	3.1	Е
27-Mar-19	10:00	3.1	Е
27-Mar-19	11:00	4.5	Е
27-Mar-19	12:00	5.8	Е
27-Mar-19	13:00	4.9	Е
27-Mar-19	14:00	4.9	Е
27-Mar-19	15:00	4.9	NE
27-Mar-19	16:00	4	Е
27-Mar-19	17:00	4	Е
27-Mar-19	18:00	5.8	WSW

гг	L		
27-Mar-19	19:00	4.9	WSW
27-Mar-19	20:00	4.9	SW
27-Mar-19	21:00	4	WSW
27-Mar-19	22:00	3.1	WSW
27-Mar-19	23:00	4.5	SW
28-Mar-19	0:00	4.5	SW
28-Mar-19	1:00	4	WSW
28-Mar-19	2:00	4	WSW
28-Mar-19	3:00	2.7	WSW
28-Mar-19	4:00	1.3	W
28-Mar-19	5:00	4.9	WSW
28-Mar-19	6:00	2.2	SW
28-Mar-19	7:00	4	W
28-Mar-19	8:00	4.5	SW
28-Mar-19	9:00	4	WSW
28-Mar-19	10:00	3.6	WSW
28-Mar-19	11:00	4.9	W
28-Mar-19	12:00	4.5	SW
28-Mar-19	13:00	6.3	SW
28-Mar-19	14:00	7.6	WSW
28-Mar-19	15:00	5.8	ENE
28-Mar-19	16:00	4.5	SW
28-Mar-19	17:00	4.9	ENE
28-Mar-19	18:00	4.5	WSW
28-Mar-19	19:00	5.8	WSW
28-Mar-19	20:00	3.6	WSW
28-Mar-19	21:00	5.8	WSW
28-Mar-19	22:00	3.1	W
28-Mar-19	23:00	1.8	W
29-Mar-19	0:00	3.1	WSW
29-Mar-19	1:00	1.3	W
29-Mar-19	2:00	1.3	ENE
29-Mar-19	3:00	1.3	W
29-Mar-19	4:00	1.3	NE
29-Mar-19	5:00	1.8	SW
29-Mar-19	6:00	1.3	WSW
29-Mar-19	7:00	1.3	Е
29-Mar-19	8:00	0.9	Е

	······································			
29-Mar-19	9:00	1.3	ESE	
29-Mar-19	10:00	5.8	Е	
29-Mar-19	11:00	6.7	Ν	
29-Mar-19	12:00	5.8	Е	
29-Mar-19	13:00	4.9	NE	
29-Mar-19	14:00	7.6	Е	
29-Mar-19	15:00	5.4	NNE	
29-Mar-19	16:00	5.8	NE	
29-Mar-19	17:00	6.7	NE	
29-Mar-19	18:00	5.4	NE	
29-Mar-19	19:00	6.3	NE	
29-Mar-19	20:00	6.3	NNE	
29-Mar-19	21:00	7.2	ENE	
29-Mar-19	22:00	4.5	NE	
29-Mar-19	23:00	4.9	NE	
30-Mar-19	0:00	5.8	NE	
30-Mar-19	1:00	4.5	Е	
30-Mar-19	2:00	4.9	Е	
30-Mar-19	3:00	5.4	Е	
30-Mar-19	4:00	2.7	NNE	
30-Mar-19	5:00	5.4	NE	
30-Mar-19	6:00	6.7	NE	
30-Mar-19	7:00	7.2	Е	
30-Mar-19	8:00	8.5	NNE	
30-Mar-19	9:00	8	NE	
30-Mar-19	10:00	7.2	ENE	
30-Mar-19	11:00	7.2	Ν	
30-Mar-19	12:00	7.6	NE	
30-Mar-19	13:00	8.9	NNE	
30-Mar-19	14:00	8.5	NE	
30-Mar-19	15:00	8	NE	
30-Mar-19	16:00	6.7	ENE	
30-Mar-19	17:00	8	NNE	
30-Mar-19	18:00	7.2	SE	
30-Mar-19	19:00	5.4	ENE	
30-Mar-19	20:00	6.3	NE	
30-Mar-19	21:00	7.6	NNE	
30-Mar-19	22:00	6.3	NNE	

	Ĩ		
30-Mar-19	23:00	5.4	NNE
31-Mar-19	0:00	4.5	NE
31-Mar-19	1:00	6.7	Е
31-Mar-19	2:00	8.9	ENE
31-Mar-19	3:00	8.5	NNE
31-Mar-19	4:00	6.3	NE
31-Mar-19	5:00	4.9	NE
31-Mar-19	6:00	6.7	N
31-Mar-19	7:00	5.8	NE
31-Mar-19	8:00	7.2	NE
31-Mar-19	9:00	5.8	NNE
31-Mar-19	10:00	7.2	N
31-Mar-19	11:00	7.2	NE
31-Mar-19	12:00	6.7	ENE
31-Mar-19	13:00	6.7	NNE
31-Mar-19	14:00	7.2	N
31-Mar-19	15:00	6.7	NNE
31-Mar-19	16:00	5.4	NNE
31-Mar-19	17:00	5.4	Е
31-Mar-19	18:00	5.8	NNE
31-Mar-19	19:00	6.3	NNE
31-Mar-19	20:00	6.7	NE
31-Mar-19	21:00	4.9	N
31-Mar-19	22:00	6.3	NNE
31-Mar-19	23:00	4.5	NE

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

#### Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for March 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Mar	2-Mar
3-Mar	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar	9-Mar
5-141	1-hr TSP x 3 [AM2]	5-11141	0-141	/-14141	0-14141	<i>9-1</i> <b>1</b> 111
	24-hr TSP [AM2(A)]	Noise [M3, M4 & M5(C)]			1-hr TSP x 3 [AM2]	24-hr TSP [AM2(A)]
10-Mar	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar	16-Mar
				1-hr TSP x 3 [AM2]	24-hr TSP [AM2(A)]	
	Noise [M3, M4 & M5(C)]			[]		
17.36	10.14	10.14	20.14	21.14	22.14	22.14
17-Mar	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar	23-Mar
				24-hr TSP [AM2(A)]		
			1-hr TSP x 3 [AM2]			
				Noise [M3, M4* & M5(C)]		
24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar	30-Mar
		1 h., TCD ., 2 [A M2]	24-hr TSP [AM2(A)]			
		1-hr TSP x 3 [AM2]				
			Noise [M3, M4 & M5(C)]			
31-Mar						

* The noise level limit is 65dB(A) during the exam period Air Quality Monitoring Station

AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School

#### **Noise Monitoring Station**

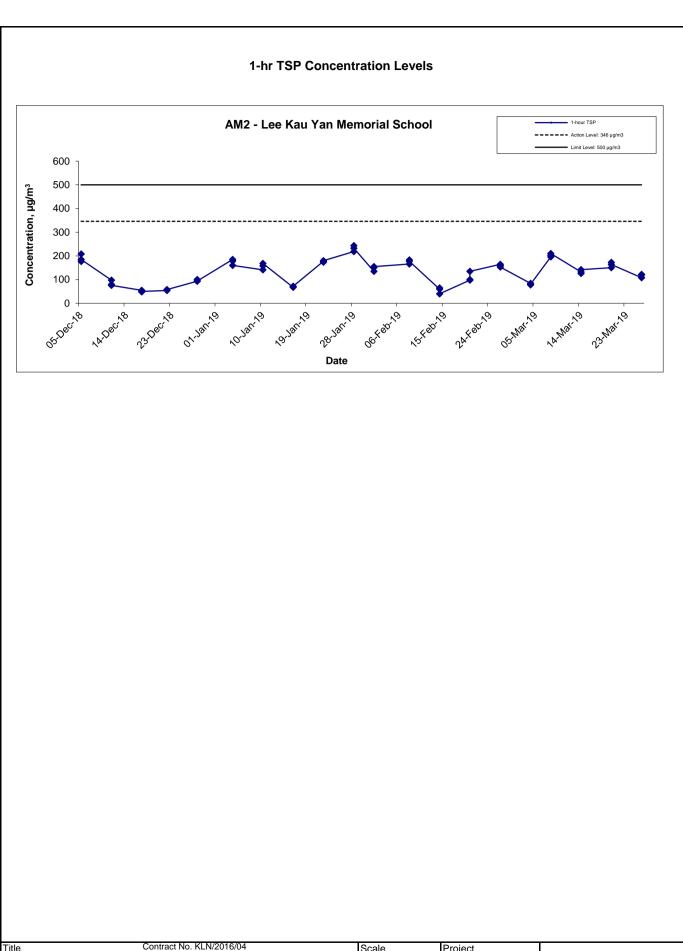
M3 - Cognitio College M4 - Lee Kau Yan Memorial School M5(C) - Mercy Grace's Home

#### Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for April 2019

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Apr		3-Apr	4-Apr	5-Apr	6-Apr
		1-hr TSP x 3 [AM2]				
		24-hr TSP [AM2(A)]	Noise [M3, M4 & M5(C)]			
7-Apr	8-Apr	9-Apr	10-Apr	11-Apr	12-Apr	13-Apr
	1-hr TSP x 3 [AM2]	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	Î		•
	24-hr TSP [AM2(A)]	Noise [M3, M4 & M5(C)]			1-hr TSP x 3 [AM2]	24-hr TSP [AM2(A)]
14-Apr	15-Apr	16-Apr	17-Apr	18-Apr	19-Apr	20-Apr
<b>^</b>	· · ·	· ·	•	1-hr TSP x 3 [AM2]	•	·
	Noise [M3, M4 & M5(C)]			24-hr TSP [AM2(A)]		
21-Apr	22-Apr	23-Apr	24-Apr	25-Apr	26-Apr	27-Apr
· · · ·	1	1	1-hr TSP x 3 [AM2]	1	1	1
			24-hr TSP [AM2(A)]	Noise [M3*, M4 & M5(C)]		
28-Apr	29-Apr	30-Apr	1-May	2-May	3-May	4-May
	<b>^</b>	1-hr TSP x 3 [AM2]		· ·	· ·	
		24-hr TSP [AM2(A)]		Noise [M3, M4 & M5(C)]		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

* The noise level limit is 65dB(A) during the exam period


#### Air Quality Monitoring Station

#### **Noise Monitoring Station**

AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School M3 - Cognitio College M4 - Lee Kau Yan Memorial School M5(C) - Mercy Grace's Home

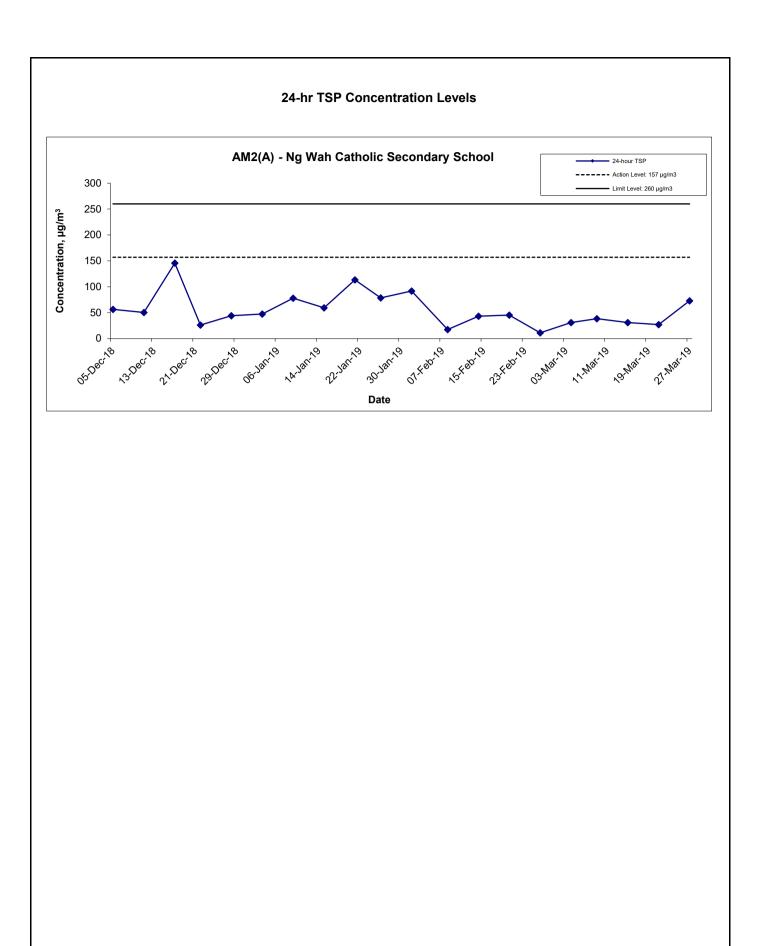
APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Location AM2 -	Lee Kau Ya	n Memorial S	chool
Date	Time	Weather	Particulate Concentration ( µg/m3)
4-Mar-19	13:30	Sunny	84
4-Mar-19	14:30	Sunny	78
4-Mar-19	15:30	Sunny	80
8-Mar-19	13:00	Rainy	196
8-Mar-19	14:00	Rainy	202
8-Mar-19	15:00	Rainy	210
14-Mar-19	9:00	Cloudy	132
14-Mar-19	10:00	Cloudy	126
14-Mar-19	11:00	Cloudy	142
20-Mar-19	10:00	Fine	150
20-Mar-19	11:00	Fine	173
20-Mar-19	13:00	Fine	164
26-Mar-19	14:45	Fine	108.0
26-Mar-19	15:45	Fine	120.0
26-Mar-19	16:45	Fine	122.0
		Average	139.1
		Maximum	210.0
		Minimum	78.0



itle	Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area	Scale		Project No.	MA16043	CINOTECH
	Graphical Presentation of 1-hour TSP Monitoring Results	Date	Mar 19	Append	ix E	

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION


## Appendix F - 24-hour TSP Monitoring Results in March 2019

Start Date	Weather	Air Temp.	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. Flow	Total vol.	Conc.
Start Date	Condition	(K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time (hrs.)	Initial	Final	(m3/min)	(m3)	(µg/m3)
4-Mar-19	Sunny	759.9	759.9	2.9901	3.0438	0.0537	3830.4	3854.4	24.0	1.20	1.20	1.20	1732.4	31
9-Mar-19	Sunny	759.9	759.9	2.9826	3.0496	0.0670	3902.4	3926.4	24.0	1.22	1.22	1.22	1755.6	38
15-Mar-19	Sunny	765.5	765.5	2.9779	3.0317	0.0538	3926.4	3950.4	24.0	1.22	1.22	1.22	1756.7	31
21-Mar-19	Sunny	759.0	759.0	3.5069	3.5535	0.0466	3974.4	3998.4	24.0	1.21	1.20	1.20	1735.2	27
27-Mar-19	Sunny	761.4	761.4	3.4813	3.6088	0.1275	4022.4	4046.4	24.0	1.21	1.22	1.21	1749.5	73
													Min	27
													Max	73

Location AM2(A) - Ng Wah Catholic Secondary School

Average

40



Title	Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02	Scale		Project No.	MA16043	CINCTCC
	Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area				100 10	CINOTECH
	Graphical Presentation of 24-hour TSP Monitoring Results	Date	Mar 19	Append	F	

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

# Appendix G - Noise Monitoring Results

					L	Init: dB (A) (30-min)		
Date	Time	Weather	Meas	sured Noise	Level	Background Noise	Cor	struction Noise Level
			L _{eq}	L ₁₀	L ₉₀	L _{eq}		L _{eq}
5-Mar-19	13:05	Cloudy	73	74	71	71	68	
11-Mar-19	13:00	Sunny	80	82	78	80	64	
21-Mar-19	13:05	Sunny	80	81	78	80	66	
27-Mar-19	13:05	Sunny	80	81	78	80	80	Measured ≦ Baseline
ocation M4 ·	- Lee Kau Ya	an Memorial S	chool		L	Init: dB (A) (30-min)		
Date	Time	Weather	Meas	struction Noise Level				
			L _{eq}	L ₁₀	L 90	L _{eq}		L _{ea}

11-Mar-19       14:33       Sunny       77       80       77       77       68         21-Mar-19       14:40       Sunny       77       78       75       65       65         27-Mar-19       15:00       Sunny       77       79       75       69       69         Location M5(C) - Mercy Grace's Home         Unit: dB (A) (30-min)         Date       Unit: dB (A) (30-min)         Date       Measured Noise Level       Background Noise       Construction				∟ eq	<b>└</b> 10	∟ ₉₀	∟ _{eq}		L eq
21-Mar-19         14;40         Sunny         77         78         75         77         65           27-Mar-19         15:00         Sunny         77         79         75         69         69           Location M5(C) - Mercy Grace's Home           Date         Time         Weather         Measured Noise Level         Background Noise         Construction	5-Mar-19	14:40	Sunny	70	71	69		70	Measured ≦ Baseline
21-Mar-19         14;40         Sunny         77         78         75         65           27-Mar-19         15:00         Sunny         77         79         75         69           Location M5(C) - Mercy Grace's Home           Date         Time         Weather         Measured Noise Level         Background Noise         Construction	11-Mar-19	14:33	Sunny	77	80	77	77	68	
Location M5(C) - Mercy Grace's Home         Unit: dB (A) (30-min)         Date       Time       Weather         Measured Noise Level       Background Noise       Construction	21-Mar-19	14;40	Sunny	77	78	75	11	65	
Unit: dB (A) (30-min)       Date     Time     Weather     Measured Noise Level     Background Noise     Constructio	27-Mar-19	15:00	Sunny	77	79	75		69	
Date Time Weather Measured Noise Level Background Noise Constructio			race s nome						
	i	<i>,</i>	Frace S Home						
	Dete	<i>·</i>		Meas	ured Noise			Con	struction Noise Level
	Date	<i>·</i>		Meas	ured Noise			Con	struction Noise Level
5-Mar-19 15:20 Sunny 78 79 76 77 66	Date	<i>·</i>		Meas L _{eq}	sured Noise L ₁₀			Con	struction Noise Level L _{eq}

67

75

76

69

77

78

62

69

62

71

79

79

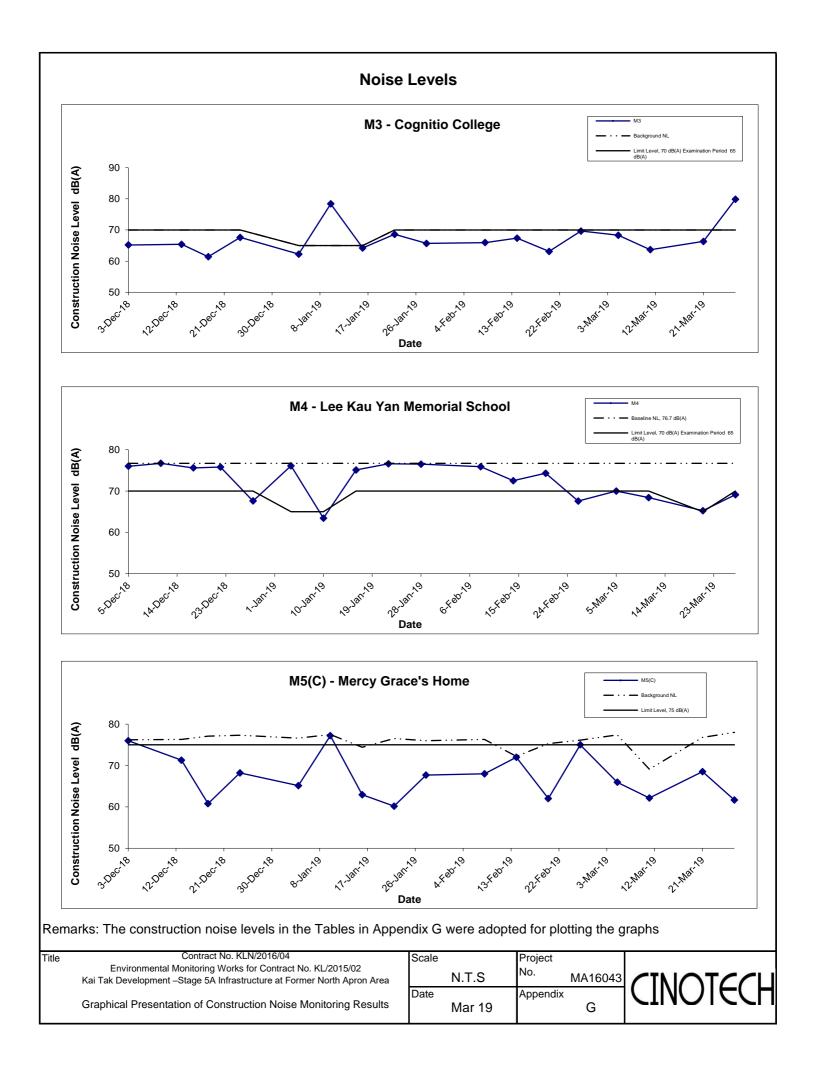
27-Mar-1916:00Sunny*All data has been presented as nearest integers

13:00

15:50

Sunny

Sunny


70

77

78

11-Mar-19

21-Mar-19



APPENDIX H SUMMARY OF EXCEEDANCE

## **Appendix H – Summary of Exceedance**

Exceedance Report for Contract No. KL/2015/02

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

#### Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	190304
Date	04 March 2019
Time	14:00 - 15:00

		Related Item No.
Ref. No.	Non-Compliance	
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	- Following up on the previous site audit : All environmental deficiencies were rectified/improved by the Contractor	

	Name	Signature	Date
Recorded by	Karina Chan	John	04 March 2019
Checked by	Mr. K.S Lee		04 March 2019

#### Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	190313
Date	13 March 2019
Time	09:30 - 11:00

		Related Item No.
Ref. No.	Non-Compliance	
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	• No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	- Following up on the previous site audit : All environmental deficiencies were rectified/improved by the Contractor	

	Name	Signature	Date
Recorded by	Tommy Lam	200	13 March 2019
Checked by	Karina Chan	2.IC	13 March 2019

۲

Ł

ηł h

# Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	190318	
Date	18 March 2019	
Time	14:10-15:22	

		Related Item No.
Ref. No.	Non-Compliance	
-	None identified	-
		Related Item No.
Ref. No.	Remarks/Observations	
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
190318-R1	• Rubbish or general waste accumulating in portion 6, should be cleaned up.	E1
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	- Following up on the previous site audit : All environmental deficiencies were rectified/improved by the Contractor	

	Name	Signature	Date
Recorded by	Tommy Lam	- And	18 March 2019
Checked by	Karina Chan	Zell	18 March 2019

#### Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	190325
Date	25 March 2019
Time	14:15 - 15:15

		Related Item No.
Ref. No.	Non-Compliance	
-	None identified	-
D 4 M		Related Item No.
Ref. No.	Remarks/Observations	- Contraction of a state of a state of
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
190318-R1	- Following up on the previous site audit: Contractor should clean up the rubbish in portion 6.	E1

	Name	Signature	Date
Recorded by	Tommy Lam	Sm	25 March 2019
Checked by	Karina Chan	Vella	25 March 2019

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.
	3. Repeat measurement to confirm finding.	method.		
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Discuss with ET and IEC on proper
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of	
	6. If exceedance continues, arrange		remedial measures;	
	meeting with IEC and ER;		5. Conduct meeting with ET and	
	7. If exceedance stops, cease additional		IEC if exceedance continues.	
	monitoring.			
Limit Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation		
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;		
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation		
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.		
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be		
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after		
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)		
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;			
	check mitigation effectiveness.	(The above actions should be	4. Supervise the			
	(The above actions should be taken	taken within 2 working days after	implementation of remedial			
	within 2 working days after the	the exceedance is identified)	measures.			
	exceedance is identified)		(The above actions should be			
			taken within 2 working days			
			after the exceedance is			
			identified)			
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to		
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;		
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial		
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3		
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;		
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed		
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;		

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT			ACTION	
ACTION LEVEL	ET	IEC	ER	CONTRACTOR
Design Check	<ol> <li>Check final design conforms to the requirements of EP and prepare report.</li> </ol>	<ol> <li>Check report.</li> <li>Recommend remedial design if necessary</li> </ol>	1. Undertake remedial design if necessary	
Non-conformity on one occasion	<ol> <li>Identify Source</li> <li>Inform IEC and ER</li> <li>Discuss remedial actions with IEC, ER and Contractor</li> <li>Monitor remedial actions until rectification has been completed</li> </ol>	<ol> <li>Check report</li> <li>Check Contractor's working method</li> <li>Discuss with ET and Contractor on possible remedial measures</li> <li>Advise ER on effectiveness of proposed remedial measures.</li> <li>Check implementation of remedial measures.</li> </ol>	<ol> <li>Notify Contractor</li> <li>Ensure remedial measures are properly implemented</li> </ol>	<ol> <li>Amend working methods</li> <li>Rectify damage and undertake any necessary replacement</li> </ol>
Repeated Non-conformity	1. Identify Source Inform IEC and	1. Check monitoring report	<ol> <li>Notify Contractor</li> <li>Ensure remedial measures are properly</li> </ol>	<ol> <li>Amend working methods</li> <li>Rectify damage and</li> </ol>

ER	2. Check Contractor's	implemented	undertake any necessary
2. Increase	working method		replacement
monitoring	3. Discuss with ET and		
frequency	Contractor on possible		
3. Discuss remedial	remedial measures		
actions with IEC,	4. Advise ER on		
ER and Contractor	effectiveness of		
4. Monitor remedial	proposed remedial		
actions until	measures		
rectification has	5. Supervise		
been completed	implementation of		
5. If non-conformity	remedial measures.		
stops, cease			
additional			
monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	Recommended Mitigation Measures	Implementation
		Status
Construct	ion Air Quality	
S6.5	8 times daily watering of the work site with active dust emitting activities.	^
S6.8	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation	
	measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	
	• Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to	
	reduce dust emission.	*
	• Misting for the dusty material should be carried out before being loaded into the vehicle. Any vehicle with an open load carrying area should	
	have properly fitted side and tail boards.	Λ
	• Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened	
	and covered by a clean tarpaulin.	^
	• The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should	
	also be dampened if necessary before transportation.	*
	• The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways	
	insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	^
	Vehicle washing facilities should be provided at every vehicle exit point.	Λ
	• The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with	Λ
	concrete, bituminous materials or hardcores.	Λ
	• Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road	
	surface wet.	*
	• Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the	
	three sides.	Λ
	• Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.	
		^

S6.8	•	DWFI compound for JVBC:	N/A
		A DWFI compound is proposed at the downstream of JVC to contain pollution in drainage systems entering the KTAC and KTTS by	
		interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the	
		compounds to prevent any accumulation of sediment within the downstream section of JVBC and hence fully mitigate the potential odour	
		emissions from the headspace of JVBC near the existing discharge locations. The odour generating operations within the proposed desilting	
		compound will be fully enclosed and the odorous air will be collected and treated by high efficiency deodorizers before discharge to the	
		atmosphere.	
	•	Desilting compound for KTN:	N/A
		Two desilting compounds are proposed for KTN (at Site 1D6 and Site 1P1) to contain pollution in drainage systems entering the KTAC and	
		KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the	
		compounds to prevent any accumulation of sediment within the downstream section of KTN and hence fully mitigate the potential odour	
		emissions from the headspace of KTN near the existing discharge locations. The odour generating operations within the proposed desilting	
		compound will be fully enclosed and the odorous air will be collected and treated by high efficiency deodorizers before discharge to the	
		atmosphere.	
	•	Decking or reconstruction of KTN within apron area:	N/A
		It is proposed to deck the KTN or reconstruct the KTN within the former Apron area into Kai Tak River from the south of Road D1 to the	
		north of Road D2 along the existing alignment of KTN. The Kai Tak River will compose of a number of channels flowing with nonodorous	
		fresh water and THEES effluent. The channel flowing with THEES effluent will be designed with the width of water surface of not more	
		than 16m.	
	•	Localised maintenance dredging:	N/A
		Localised maintenance dredging should be conducted to provide water depth of not less than 3.5m over the whole of KTAC and KTTS. With	
		reference to the water depth data recorded during the odour survey, only some of the areas in the northern part of KTAC (i.e. to the north of	
		taxiway bridge) including the area near the northern edge of KTAC, the area near western bank of KTAC, and the area near the JVC	
		discharge have water depths shallower than 3.5m. The area involved would be about 40% of the northern KTAC and the dredging depth	
		required would be from about 2.7m to less than 1m. The maintenance dredging to be carried out prior to the occupation of any new	
		development in the immediate vicinity of KTAC to avoid potential localized odour impacts at the future ASRs during the maintenance	

	dredging operation.	
	Improvement of water circulation in KTAC and KTTS:	N/A
	600m gap opening at the northern part of the former Kai Tak runway, the water circulation in KTAC and KTTS would be substantially	
	improved. Together with the improvement in water circulation, the DO level in KTAC and KTTS would also be increased.	
	<u>In-situ sediment treatment by bioremediation:</u>	
	Bioremediation would be applied to the entire KTAC and KTTS.	N/A
Construc	ction Noise	
S7.8	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar	٨
	Bender, Concrete Pump, Generator and Water Pump.	
S7.9	Good Site Practice:	
	• Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program.	Λ
	• Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program.	Λ
	• Mobile plant, if any, should be sited as far away from NSRs as possible.	
	• Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down	٨
	to a minimum.	٨
	• Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the	
	nearby NSRs.	٨
	• Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction	
	activities.	٨
S7.9	Scheduling of Construction Works during School Examination Period	٨
S7.8	(i) Provision of low noise surfacing in a section of Road L2; and	N/A
	(ii) Provision of structural fins	N/A
S7.8	(i) Avoid the sensitive façade of class room facing Road L2 and L4; and	N/A
	(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A

S7.8	(i)	Provision of low noise surfacing in a section of Road L4 before occupation of Site 111; and	N/A
	(ii)	Setback of building about 5m from site boundary.	N/A
S7.8	Setbac	k of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
S7.8	(i)	avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and Avoid the sensitive façade of	N/A
		class room facing Road L2 and L4; and	
	(ii)	for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not	N/A
		provide the facades with openable window.	
S7.8	(i)	avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or	N/A
	(ii)	provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height of the residential block(s) located at	N/A
		less than 55m away from To Kwa Wan Road to no more than 25m above ground	
S7.8	(i)	avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po Kong or other	^
		alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic	
		noise impacts from the slip road	
S7.8	All the	e ventilation fans installed in the below will be provided with silencers or acoustics treatment.	
	(i)	SPS	N/A
	(ii)	ESS	N/A
	(iii)	Tunnel Ventilation Shaft	N/A
	(iv)	EFTS depot	N/A
S7.8	Installa	ation of retractable roof or other equivalent measures	N/A
Constru	ction Wa	ter Quality	
S8.8	The fo	llowing mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including:	
	•	Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply;	N/A
	•	Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps;	N/A
	•	An alarm should be installed to signal emergency high water level in the wet well at all SPSs; and	
	•	For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should be provided	N/A
		so that swift actions could be taken in case of malfunction of unmanned facilities	N/A

S8.8	Construction Phase	
50.0		
	Marine-based Construction	
	Capital and Maintenance Dredging for Cruise Terminal	
	Mitigation measures for construction of the proposed cruise terminal should follow those recommended in the approved EIA for CT Dredging.	N/A
S8.8	Fireboat Berth, Runway Opening and Road T2	
	Silt curtains should be deployed around the close grab dredger to minimize release of sediment and other contaminants for any dredging and filling	N/A
	activities in open water.	
S8.8	Dredging at and near the seawall area for construction of the public landing steps cum fireboat berth should be carried out at a maximum production	N/A
	rate of 1,000m ³ per day using one grab dredger.	
S8.8	The proposed construction method for runway opening should adopt an approach where the existing seawall at the runway will not be removed until	N/A
	completion of all excavation and dredging works for demolition of the runway. Thus, excavation of bulk fill and majority of the dredging works will	
	be carried out behind the existing seawall, and the sediment plume can be effectively contained within the works area. As there is likely some	
	accumulation of sediments alongside the runway, there will be a need to dredge the existing seabed after completion of all the demolition works.	
	Dredging alongside the 600m opening should be carried out at a maximum production rate of 2,000m ³ per day using one grab dredger.	
8.8	Dredging for Road T2 should be conducted at a maximum rate of 8,000m ³ per day (using four grab dredgers) whereas the sand filling should be	N/A
	conducted at a maximum rate of 2,000m3 per day (using two grab dredgers).	
8.8	Silt screens shall be applied to seawater intakes at WSD seawater intake.	N/A

Land-based Construction	
Construction Runoff	
Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff	
related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures	
which include:	
• use of sediment traps	Λ
adequate maintenance of drainage systems to prevent flooding and overflow	Λ
Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed	Λ
earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of	
earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely,	
exposed slope surfaces should be covered by tarpaulin or other means.	
Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The	^
boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches	
should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should	
incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the	
guidelines in Appendix A1 of ProPECC PN 1/94.	
Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m ³ capacity, are recommended as a	*
general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle	
multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	
Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or	٨
similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any	
drainage system.	
Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction	^
materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	
Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to	٨
be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty	
	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff         related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures         which include:         use of sediment traps         adequate maintenance of drainage systems to prevent flooding and overflow         Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed         earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of         earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely,         exposed slope surfaces should be covered by tarpaulin or other means.         Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The         boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches         should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should         incorporate sediment tasks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m ³ capacity, are recommended as a         general mitigation measure which can be used for settling surface runoff prior to di

Appendix K – Summary	y of Implementation	Schedule of Mitigation	Measures for	Construction Phase
11 .		ð		

	surface runoff during storm events.	
S8.8	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water	N/A(1)
	drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	
S8.8	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on	^
	roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt	
	settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and	
	exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking	
	of soil and silty water to public roads and drains.	
S8.8	Drainage	
	It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps	Λ
	should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge	
	of effluent from the site into the sea	
S8.8	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled	Λ
	release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all	
	times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction	
	work has finished or the temporary diversion is no longer required.	
S8.8	All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the	Λ
	storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	
S8.8	Sewage Effluent	
	Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The	٨
	construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers	
	of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The	
	Contractor should also be responsible for waste disposal and maintenance practices.	

S8.8	Stormwater Discharges	
30.0	Stormwater Discharges	
	Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater	٨
	intakes	
S8.8	Debris and Litter	
50.0		
	In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of	٨
	contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur	
S8.8	Construction Works at or in Close Proximity of Storm Culvert or Seafront	
	The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	٨
S8.8	The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm	٨
	culvert / nullah.	
S8.8	Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be	٨
	located well away from any water courses during carrying out of the construction works	
S8.8	Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	٨
S8.8	Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	^
S8.8	Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	^
S8.8	Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts.	٨
	Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	
S8.8	Construction effluent, site run-off and sewage should be properly collected and/or treated.	٨
S8.8	Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at	N/A
	bottom and properly supported props to prevent adverse impact on the storm water quality.	
S8.8	Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of	N/A
	construction materials.	
S8.8	Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	N/A

S8.8	Supervisory staff should be assigned to station on site to closely supervise and monitor the works	^
S8.8	Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	N/A
Constru	action Waste Management	
S9.5	Good Site Practices	
	It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations	
	for good site practices during the dredging activities include:	
	• Nomination of an approved person, such as a site manager, be responsible for good site practices, arrangements for collection and effective	^
	disposal to an appropriate facility, of all wastes generated at the site.	
	Training of site personnel in proper waste management and chemical waste handling procedures.	^
	Provision of sufficient waste disposal points and regular collection for disposal.	^
	• Appropriate measure to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting	^
	wastes in enclosed containers.	
	• A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	^
S9.5	Waste Reduction Measures	
	Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and	
	design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	
	Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals	
	• Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and	^
	their proper disposal	^
	• Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated	
	from other general refuse generated by the work force	^
	Any unused chemicals or those with remaining functional capacity should be recycled	
	Proper storage and site practices to minimise the potential for damage or contamination of construction materials	^

S9.5	Dredged Marine Sediment	
	The basic requirements and procedures for dredged mud disposal are specified under the ETWB TCW No. 34/2002. The management of the	N/A
	dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is required under the Dumping at Sea	
	Ordinance and is the responsibility of the Director of Environmental Protection (DEP)	
S9.5	The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC depending on	N/A
	their level of contamination. Sediment classified as Category L would be suitable for Type 1 - Open Sea Disposal. Contaminated sediment would	
	require either Type 1 – Open Sea Disposal (Dedicated Sites), Type 2 - Confined Marine Disposal, or Type 3 – Special Treatment / Disposal and must	
	be dredged and transported with great care in accordance with ETWB TCW No. 34/2002. Subject to the final allocation of the disposal sites by	
	MFC, the dredged contaminated sediment must be effectively isolated from the environment and disposed properly at the designated disposal site	
S9.5	It will be the responsibility of the contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged	
	have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report	
	to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works should apply for allocation of marine disposal sites	
	and all necessary permits from relevant authorities for the disposal of dredged sediment. During transportation and disposal of the dredged marine	
	sediments requiring Type 1, Type 2, or Type 3 disposal, the following measures should be taken to minimise potential impacts on water quality:	
	• Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the	
	decks and exposed fittings of barges and hopper dredgers before the vessel is moved	N/A
	Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport	
	barges or vessels should be equipped with automatic selfmonitoring devices as required under the Dumping at Sea Ordinance and as	N/A
	specified by the DEP	
	• Barges or hopper barges should not be filled to a level that would cause the overflow of materials or sediment laden water during loading or	
	transportation	N/A
S9.5	Construction and Demolition Material	
	Mitigation measures and good site practices should be incorporated into contract document to control potential environmental impact from handling	
	and transportation of C&D material. The mitigation measures include:	
	• Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the	٨

	transient stockpiles should be located away from waterfront or storm drains as far as possible	
	• Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric	^
	• Skip hoist for material transport should be totally enclosed by impervious sheeting	^
	• Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site	Λ
	• The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with	^
	concrete, bituminous materials or hardcores	
	• The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure	^
	dust materials do not leak from the vehicle	
	• All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials	^
	wet	
	• The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation	^
	from unloading	
	When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less	^
	than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material	
	at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket	
	System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an	
	Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for	
	auditing the results of the system.	
S9.5	Chemical Waste	
	After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on	^
	the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or	
	other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation	

S9.5	General l	Refuse	
	the contr	refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by actor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed red area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing	*
	or leaching	ng into the marine environment, or creating odour nuisance or pest and vermin problem	
Constru	ction Land	scape and Visual	
S13.9	CM1	All existing trees should be carefully protected during construction.	^
	CM2	Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to	^
		relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees	
		should be agreed prior to commencement of the work.	
	CM3	Control of night-time lighting.	N/A(1)
	CM4	Erection of decorative screen hoarding.	^

#### Remarks:

^	Compliance of mitigation measure
*	Recommendations were made during site audits but improved/rectified by the Contractor
#	Recommendations were made during site audits but has not yet been improved/rectified by the Contractor
•	Non-compliance but rectified by the Contractor
X	Non-compliance of mitigation measure
N/A	Not Applicable at this stage
N/A(1)	Not observed

APPENDIX L SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

## Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

EPD Complaint Ref No.	Location	Received Date	Details of Complaint	Investigation/Mitigation Action	Status
17-34438	Dakota Drive and Olympic Avenue	23 October 2017	The complainant concerned about the dust emission when vehicle running on the dry surface outside Dakota Drive and Olympic Avenue. In addition, vehicles were not clear enough before leaving the construction site.	<ul> <li>In accordance with the information gathered in the investigation, construction activities were conducted with proper mitigation measures to minimize the dust impact arise from the construction site to the vicinity of this Project.</li> <li>Regular water spraying was provided to haul roads and unpaved areas within the site areas to reduce the dust impact arise from the construction site to the vicinity of this Project. The Contractor had also ensured vehicles and plants were wheel washed to be cleaned of mud and debris before leaving the construction site area. Therefore, the complaint is considered as non-project related.</li> <li>The following recommendations were made to further enhance the mitigation measures:</li> <li>Where practicable, to provide sheltered area on the top and three sides for stockpiles of dusty materials, or perform frequent water spraying so as to maintain the entire surface wet;</li> <li>Frequent checking and repair the gaps or broken tarpaulin sheets; and</li> <li>To provide a hard-surfaced road between any cleaning facility and the public Road</li> </ul>	Closed

**Complaint Log** 

**Remarks**: No complaint was received in the reporting month.

#### Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

# Log Ref.Received DateDetails of Warning / Summons and Successful ProsecutionsInvestigation/Mitigation ActionStatusN/AN/AN/AN/AN/A

Warnings / Summons and Successful Prosecutions received

Remarks: No warning/summon and prosecution was received in the reporting month.

APPENDIX M SUMMARY OF WASTE GENERATION AND DISPOSAL RECORDS

Department:	CEDD
Contract No.:	KL/2015/02
Project :	Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area



#### Monthly Summary Waste Flow Table for 2019

					-	-			А	s at 1 April 201	19
	Quantities of Inert C & D Materials Generated Monthly							uantities of C a	& D Wastes Ger	nerated Month	ly
Month	Total Quantity Generated	Hard Rock and Large Broken	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)
Jan	0	0	0	0	0	0	0	0	0	0	0.154
Feb	0	0	0	0	0	0	0	0	0	0	0.035
Mar	0	0	0	0	0	0	0	0	0	0	0.035
Apr	-	-	-	-	-	-	-	-	-	-	-
May	-	-	-	-	-	-	-	-	-	-	-
June	-	-	-	-	-	-	-	-	-	-	-
Sub-total	66.537	0	0	0	66.537	0	0	0	0	0	1.456
July	-	-	-	-	-	-	-	-	-	-	-
Aug	-	-	-	-	-	-	-	-	-	-	-
Sept	-	-	-	-	-	-	-	-	-	-	-
Oct	-	-	-	-	-	-	-	-	-	-	-
Nov	-	-	-	-	-	-	-	-	-	-	-
Dec	-	-	-	-	-	-	-	-	-	-	-
Total	66.537	0	0	0	66.537	0	0	0	0	0	1.456

Forecast of Total Quantities of C&D Materials to be Generated from the Contract*										
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)
63000	0	0	0	67	0	0	0	0	0	2

Notes: (1) The performance targets are given in PS clause 6(14).

(2) The waste flow table shall also include C & D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging material.

(4) The Contractor shall also submit the latest forcast of the total amount of C&D materials exected to be generated from the Works, together with a

breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 5,000 m³.

(5) The total general refuse generated before Jan 2019 is 1232 m³ for this project and this value accounts for the sub-total and total general refuse as shown in this (PS Cleuse 25.02A(7) refers).

APPENDIX N CONSTRUCTION PROGRAMME

#### KL/2015/02

Construction Programme

			20	016			2017									2018					2				2019					2020							
Works	Commence	Finish	9 10	0 11 12	1 2 3	4 5	6	7 8	39	10	11 12	2 1	. 2	3	4	5 6	7	8	9 10 11 12	2 :	1 2 3 4	1 5	5 6	7	8	9 1	0 11	l 12	1	2	3 4	4 5	6	7	8 9	9 10 1	11 12
Drainage, Sewerage and Waterworks	Dec-16	Sep-20																																			
District Cooling Mains	Mar-18	Sep-19																																			
Subway Construction	Dec-16	Sep-20																																			
Bridge Construction	Oct-16	Mar-20																																			
Roadworks	Feb-19	Sep-20																																			
Landscape	Jan-20	Sep-20																																			