19/F, Fugro House – KCC2, 1 Kwai On Road, Kwai Chung, N.T., Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : fugro.com

86th CONSOLIDATED MONTHLY EM&A REPORT

December 2023

Client	:	Civil Engineering and Development Department, HKSAR
EP No.	:	EP-337/2009 – New Distributor Roads Serving the Planned Kai Tak Development Area
Contract No.	:	KLN/2016/05 – Independent Environmental Checker for Contract No. KL/2015/02 Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area
Report No.	:	0087/16/ED/1212

Prepared by :

Wingo So

Certified by 2

14/00 en

Calvin Leung Independent Environmental Checker Fugro Technical Services Limited

19/F, Fugro House – KCC2, 1 Kwai On Road, Kwai Chung, N.T., Hong Kong.

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY	I
1.	INTRODUCTION	1
2.	ENVIRONMENTAL MONITORING AND AUDIT	3
3.	SITE INSPECTION	5
4.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	6
5.	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	7
6.	FUTURE KEY ISSUES	8
7.	CONCLUSIONS	9

LIST OF APPENDICES

Appendix A Monthly EM&A Report For Contract No. KL/2015/02 Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area Fax : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : fugro.com

EXECUTIVE SUMMARY

Kwai Chung, N.T.,

Hong Kong.

i. This is the 86th Consolidated Monthly EM&A Report which summaries the EM&A works undertaken by respective contract under EP-337/2009 within the period between 1 December and 31 December 2023.

IC D D

ii. The construction activities undertaken in the reporting month are summarized as follow:

Contract No. KL/2015/02:

- Reinstatement of PERE central Divider
- Modification work of Subway SW6 staircase hand railing
- Excavation and installation work of subway ST2 ELS strut and wailing

Breaches of the Action and Limit Levels

- iii. No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- iv. No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.
- v. No Limit Level exceedance was recorded for noise monitoring in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

vi. No complaint, notification of summons or prosecution was received for Contract No. Contract No. KL/2015/02 in this reporting month .

Reporting Changes

vii. There was no reporting change in the reporting month.

Future Key Issues

viii. The potential environmental impacts for the coming month and the control measures are shown in **Table I**:

Table I Summary of Key Issues for the Coming Month and Control Measures	Table I Summary c	of Key Issues	for the Coming	Month and C	Control Measures
---	-------------------	---------------	----------------	-------------	------------------

Major Environmental Impact	Control Measures
Contract No. KL/2015/02:	
Noise, dust impact, water quality and waste generation	 <u>Air quality impact (dust)</u> Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with impervious materials or maintained wet; and Watering of any earth moving activities.
	 <u>Water quality impact (surface runoff)</u> Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge;

FUGRO TECHNICAL SERVICES LIMITED

19/F, Fugro House – KCC2, 1 Kwai On Road, Kwai Chung, N.T., Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : fugro.com

Major Environmental Impact	Control Measures
	• Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and
	 <u>Noise Impact</u> Machines and Plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; Regular maintenance of machines; and Use of movable noise barriers if necessary.
	 <u>Waste /Chemical Management</u> Avoided oil leakage from PME Provided drip tray with adequate capacity and well maintained to chemical and oil containers

II The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company. Fax :+852 2450 8032 E-mail :mcl@fugro.com Website : fugro.com

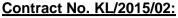
1. INTRODUCTION

1.1 Background

Kwai Chung, N.T.,

Hong Kong.

- 1.1.1 The Kai Tak Development is located in the south-eastern part of Kowloon Peninsula of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling.
- 1.1.2 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 March 2009.
- 1.1.3 The EP-337/2009 was issued on 23 April 2009 for the new distributor roads serving the planned Kai Tak Development to the following scale and slope:
 - a) Road D1 a dual 2-lane carriageway of approximately 1.3 km long.
 - b) Road D2 a dual 3-lane carriageway of approximately 1.1 km long.
 - c) Road D3 a dual 2-lane carriageway of approximately 2.3 km long.
 - d) Road D4 a dual 2-lane carriageway of approximately 0.9 km long.
- 1.1.4 The Civil Engineering and Development Department HKSAR has appointed Fugro Technical Services Limited (FTS) to undertake the role of Independent Environmental Checker (IEC) for the Contract No. KL/2015/02.
- 1.1.5 This is the 86th Consolidated Monthly EM&A Report which summaries the EM&A works undertaken by respective contract under EP-337/2009 within the period between 1 December and 31 December 2023.


Party	Position	Name	Telephone	Fax/ E-mail
Contract No. KL/2015/0	2:			
Project Proponent (CEDD)	Senior Engineer	Mr. Ricky Chan	2116 3753	2116 0714
Engineer's Representative (AECOM)	SRE	Mr. Vincent Lee	2798 0771	2210 6110
IEC (FTS)	IEC	Mr. Calvin Leung	3565 4441	2450 8032
	ET Leader	Mr. K.S Lee	2151 2091	
ET (Cinotech)	Audit Team Leader	Ms. Betty Choy	2151 2072	3107 1388
Main Contractor (PWHJV)	Deputy Site Agent	Mr. W. M. Chen	9736 4284	2398 8301

1.2 Summary of relevant Contract Information of Key Personnel

1.3 Summary of Construction Programme and Activities

- 1.3.1 The construction programme of each Contract is summarized in the appendices of the corresponding Monthly EM&A report.
- 1.3.2 The major construction activities undertaken in the reporting month are summarized as follow:

19/F, Fugro House – K 1 Kwai On Road, Kwai Chung, N.T., Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : fugro.com

- Reinstatement of PERE central Divider
- · Modification work of Subway SW6 staircase hand railing
- Excavation and installation work of subway ST2 ELS strut and wailing

1.4 Summary of Inter-relationship with the environmental protection/ mitigation measures with the construction programme

IGRO

1.4.1 The summary of inter-relationship with environmental protection/mitigation measures are presented as follow:

Major Environmental Impact	Control Measures
Contract No. KL/2015/02:	
Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles by impervious materials; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier to enclose the noisy plant; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide drip trays with adequate capacity and well maintained to chemicals Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.

1.5 Summary Status of Environmental Licences, Notifications and Permits

1.5.1 Detailed relevant environmental licenses, permits and/or notifications on environmental protection for this EP are presented in the appendices of the corresponding Monthly EM&A report.

2

19/F, Fugro House – KCC2 1 Kwai On Road, Kwai Chung, N.T., Hong Kong.

2. ENVIRONMENTAL MONITORING AND AUDIT

2.1 Results and Observations

Air Quality

- 2.1.1 The schedule of air quality monitoring in reporting month is provided in the appendices of the corresponding Monthly EM&A report.
- 2.1.2 The weather conditions during the monitoring are provided in the appendices of the corresponding Monthly EM&A report.
- 2.1.3 The monitoring data of 24-hr TSP and 1 hour TSP are summarized in **Table 2.1**. Detailed monitoring data are presented in the appendices of the corresponding Monthly EM&A report.

	Summary of 24-	Summary of 24-fill and Thour TSP Monitoring Results			
Parameter	Monitoring Station	Average (µg/m³)	Range (µg/ m³)	Action Level (µg/ m ³)	Limit Level (µg/ m ³)
Contract No.	KL/2015/02:				
1-hr TSP	AM2	56.2	43.7 – 72.2	346	500
24-hr TSP	AM2(A)	72.8	40.2 – 117.3	157	260

Table 2.1Summary of 24-hr and 1 hour TSP Monitoring Results

- 2.1.4 No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- 2.1.5 No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.
- 2.1.6 The monitoring data of 24-hr TSP was compared with the EIA predictions are presented in the appendices of the corresponding Monthly EM&A report.
- 2.1.7 The Event and Action Plan for air quality is given in the appendices of the corresponding Monthly EM&A report.

<u>Noise</u>

- 2.1.8 The schedule of noise monitoring in reporting month is provided in in the appendices of the corresponding Monthly EM&A report.
- 2.1.9 The noise monitoring data are summarized in **Table 2.2**. Detailed monitoring data are presented in the appendices of the corresponding Monthly EM&A report.

Monitoring Stations Construction Noise Level Leq (30min) dB(A) (Range)		Action Level	Limit Level dB (A)
Contract No. KL/2015/02:		When one	
M3(A)	69.3 – 77.2 #	documented	75
M4	74.9 – 76.2 #	complaint is	70*
M5(C)	61.2 – 78.5 #	received.	75

Table 2.2 Summary of Noise Impact Monitoring Results

(*) Noise Limit Level is 65 dB(A) during school examination periods.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Hong Kong.

: +852 2450 8032 E-mail : mcl@fugro.com Website : fugro.com

(#) Measured noise level ≤ background / baseline noise level, detailed data refer to the corresponding Monthly EM&A report.

- 2.1.10 The noise monitoring data was compared with the EIA predictions are presented in the appendices of the corresponding Monthly EM&A report.
- 2.1.11 No Action / Limit Level exceedance was recorded for noise monitoring in the reporting month.
- 2.1.12 The Event and Action Plan for noise is given in in the appendices of the corresponding Monthly EM&A report.

Landscape and Visual

2.1.13 Site audits were carried out on a weekly basis to monitor and audit the landscape and visual mitigation measures within the site boundaries of this Project. Detailed of observations are presented in the appendices of the corresponding Monthly EM&A report.

19/F, Fugro House – K 1 Kwai On Road, Kwai Chung, N.T., Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : fugro.com

3. SITE INSPECTION

3.1 Site Inspection

- 3.1.1 Site inspections were carried out weekly to monitor the implementation of proper environmental pollution control and mitigation measures for the Project.
- 3.1.2 Detailed of observation, recommendation of site inspections and summary of the mitigation measures implementation schedule is provided in the appendices of the corresponding Monthly EM&A Report.

5

FUGRO TECHNICAL SERVICES LIMITED 19/F, Fugro House - KCC2, Tel : +852.2

Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : fugro.com

4.1 Complaints, Notification of Summons and Prosecution

4.1.1 The summary of complaints, notification of summons and prosecution in the reporting month are shown as **Table 4.1**.

Table 4.1 Summary of Complaints, Notification of Summons and Prosecution

Event	No. of Event This Month	Remark
Contract No. KL/2015/02:		
Complaint received	0	NA
Notifications of any summons & prosecutions received	0	NA

JGRO

4.1.2 Detailed records are presented in the appendices of the corresponding Monthly EM&A report.

5. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

E-mail : mcl@fugro.com

Website : fugro.com

5.1 Implementation Status

Kwai Chung, N.T.,

Hong Kong.

5.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and the EM&A Manuals. The implementation status of the mitigation measures during the reporting month are presented in the appendices of the corresponding Monthly EM&A report.

5.2 Waste Management

5.2.1 The amount of wastes generated of this Project during the reporting month is shown in the appendices of the corresponding Monthly EM&A report.

FUGRO TECHNICAL SERVICES LIMITED

19/F, Fugro House – KCC2, 1 Kwai On Road, Kwai Chung, N.T., Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : fugro.com

6.1 Construction Programme for the Next Two Months

6.1.1 The major site activities undertaken for the coming two months are summarized in follow:

IGRO

Contract No. KL/2015/02:

- Reinstatement of PERE central Divider;
- Waterproofing of Subway SW6 staircase ST2;
- Rebar fixing and formwork erection of Staircase ST2.
- 6.1.2 The potential environmental impacts arising from the above construction activities and the control measures are shown in **Table 6.1**:

Table 6.1 Summary of Key Issues for the Coming Month and Control Measures

Major Environmental Impact	Control Measures
Contract No. KL/2015/02:	
Noise, dust impact, water quality and waste generation	 <u>Air quality impact (dust)</u> Frequent watering of haul road and unpaved/exposed areas; Frequent watering or covering stockpiles with impervious materials or maintained wet; and Watering of any earth moving activities.
	 Water quality impact (surface runoff) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and
	 <u>Noise Impact</u> Machines and Plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; Regular maintenance of machines; and Use of movable noise barriers if necessary.
	 <u>Waste /Chemical Management</u> Avoided oil leakage from PME Provided drip tray with adequate capacity and well maintained to chemical and oil containers

6.2 Monitoring Schedules for the Next Month

6.2.1 The tentative schedules for environmental monitoring in the coming month are provided in the appendices of the corresponding Monthly EM&A.

Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : fugro.com

7. CONCLUSIONS

Kwai Chung, N.T.,

Hong Kong.

- 7.1.1 No Action / Limit Level exceedance was recorded for 24-hr TSP monitoring in the reporting month.
- 7.1.2 No Action / Limit Level exceedance was recorded for 1-hr TSP monitoring in the reporting month.
- 7.1.3 No Limit Level exceedance was recorded for noise monitoring in the reporting month.
- 7.1.4 No complaint, notification of summons or prosecution was received for Contract No. Contract No. KL/2015/02 in this reporting month.
- 7.1.5 The potential environmental impacts arising from the coming two months of major construction activities and the control measures are shown in **Table 6.1**.

 FUGRO TECHNICAL SERVICES

 LIMITED

 19/F, Fugro House – KCC2,

 Tel
 : +852

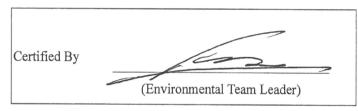
19/F, Fugro House – KCC2, 1 Kwai On Road, Kwai Chung, N.T., Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : fugro.com

Appendix A

Monthly EM&A Report For Contract No. KL/2015/02 Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Civil Engineering and Development Department


EP-337/2009 – New Distributor Roads Serving the Planned KTD

Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area

Monthly EM&A Report

December 2023

(Version 1.0)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: <u>info@cinotech.com.hk</u>

FUGRO TECHNICAL SERVICES LIMITED

19/F, Fugro House – KCC2 1 Kwai On Road, Kwai Chung New Territories, Hong Kong

Date 8 January 2024 Our Ref. MCL/ED/0009/2024/C

Cinotech Consultants Limited Rm 1710, Technology Park, 18 On Lai Street, Shatin, New Territories, Hong Kong

BY EMAIL

Attn.: Mr. K.S Lee

Dear Sir,

Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Verification of Monthly EM&A Report for December 2023

We refer to your emails dated 5 and 8 January 2024 for the captioned report prepared by the ET.

We have no further comment and hereby verify the Report in accordance with Clause 3.3 of Environmental Permit no. EP-337/2009.

Should you require further information, please do not hesitate to contact the undersigned at 3565 4441.

Assuring you of our best attention at all times.

Yours faithfully, For and on behalf of FUGRO TECHNICAL SERVICES LIMITED

Calvin Leung Independent Environmental Checker

CL/ ws

c.c. CEDD –

AECOM -

Attn.: Mr. Ricky Chan Attn.: Mr. Michael So Attn.: Mr. Vincent Lee Attn.: Mr. Teddy Shih

TABLE OF CONTENTS

Introduction 1 Environmental Licenses and Permits 2 Environmental Licenses and Permits 3 Key Information in the Reporting Month 3 Future Key Issues 3 1 INTRODUCTION # Background Project Organizations 4 Construction Activities undertaken during the Reporting Month 5 Summary of EM&A Requirements 6 2 AIR QUALITY 7 Monitoring Requirements 7 Monitoring Equipment 7 Monitoring Equipment 7 Monitoring Equipment 11 3 NOISE 12 Monitoring Requirements 12 Monitoring Locations 12 Monitoring Requirements 14 Results and Observations 14 Results and Observations 17 Monitoring Requirement		EXECUTIVE SUMMARY1
Environmental Licenses and Permits 3 Key Information in the Reporting Month 3 Future Key Issues 3 1 INTRODUCTION 4 Background 4 Project Organizations 4 Construction Activities undertaken during the Reporting Month 5 Summary of EM&A Requirements 6 2 AIR QUALITY 7 Monitoring Requirements 7 Monitoring Locations 7 Monitoring Equipment 7 Monitoring Requirements 7 Monitoring Requirements 11 3 NOISE 12 Monitoring Requirements 12 Monitoring Requirements 12 Monitoring Locations 12 Monitoring Locations 12 Monitoring Locations 12 Monitoring Could and QA/QC Procedures 13 Monitoring Methodology and QA/QC Procedures 13 Monitoring Requirements 14 Results and Observations 14 Results and Observations 14 Results and Observations 17		Introduction
Key Information in the Reporting Month 3 Future Key Issues 3 INTRODUCTION 4 Background 4 Project Organizations 4 Construction Activities undertaken during the Reporting Month 5 Summary of EM&A Requirements. 6 2 AIR QUALITY 7 Monitoring Requirements 7 Monitoring Quatimeters, Frequency and Duration 8 Monitoring Methodology and QA/QC Procedure 8 Results and Observations 11 NOISE 12 Monitoring Requirements 12 Monitoring Parameters, Frequency and Duration 13 Monitoring Parameters, Frequency and Duration 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 18 <th></th> <th></th>		
Future Key Issues 3 1 INTRODUCTION 4 Background 4 Project Organizations 4 Construction Activities undertaken during the Reporting Month 5 Summary of EM&A Requirements 6 2 AIR QUALITY 7 Monitoring Requirements 7 Monitoring Equipment 7 Monitoring Equipment, 7 Monitoring Methodology and QA/QC Procedure 8 Results and Observations 11 3 NOISE 12 Monitoring Requirements 12 Monitoring Requirements 12 Monitoring Equipment 14 Results and Observations 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 1		
1 INTRODUCTION 4 Background 4 Project Organizations 4 Construction Activities undertaken during the Reporting Month. 5 Summary of EM&A Requirements. 6 2 AIR QUALITY 7 Monitoring Requirements. 7 Monitoring Ecations. 7 Monitoring Equipment. 7 Monitoring Parameters, Frequency and Duration 8 Monitoring Methodology and QA/QC Procedure 8 Results and Observations. 11 3 NOISE 12 Monitoring Requirements. 12 Monitoring Decations. 12 Monitoring Equipment. 12 Monitoring Requirements. 12 Monitoring Bequirements. 12 Monitoring Bequirements. 13 Monitoring Parameters, Frequency and Duration 13 Monitoring Requirements. 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 <td></td> <td></td>		
Background 4 Project Organizations 4 Construction Activities undertaken during the Reporting Month 5 Summary of EM&A Requirements 6 2 AIR QUALITY 7 Monitoring Requirements 7 Monitoring Locations 7 Monitoring Locations 7 Monitoring Parameters, Frequency and Duration 8 Monitoring Methodology and QA/QC Procedure 8 Results and Observations 11 3 NOISE 12 Monitoring Requirements 12 Monitoring Locations 12 Monitoring Locations 12 Monitoring Parameters, Frequency and Duration 13 Monitoring Methodology and QA/QC Procedures 13 Monitoring Methodology and QA/QC Procedures 13 Monitoring Requirements 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENV		Future Key Issues
Project Organizations 4 Construction Activities undertaken during the Reporting Month 5 Summary of EM&A Requirements 6 2 AIR QUALITY 7 Monitoring Requirements 7 Monitoring Locations 7 Monitoring Equipment 7 Monitoring Parameters, Frequency and Duration 8 Monitoring Methodology and QA/QC Procedure 8 Results and Observations 11 3 NOISE 12 Monitoring Requirements 12 Monitoring Requirements 12 Monitoring Buetodology and QA/QC Procedures 13 Monitoring Buetodology and QA/QC Procedures 13 Monitoring Buetodology and QA/QC Procedures 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Review of Environmental Monitoring Procedures 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Monitoring Procedu	1	INTRODUCTION4
Construction Activities undertaken during the Reporting Month		Background4
Summary of EM&A Requirements 6 2 AIR QUALITY 7 Monitoring Requirements 7 Monitoring Equipment 7 Monitoring Equipment 7 Monitoring Methodology and QA/QC Procedure 8 Results and Observations 11 3 NOISE 12 Monitoring Requirements 12 Monitoring Requirements 12 Monitoring Equipment 12 Monitoring Requirements 12 Monitoring Requirements 12 Monitoring Methodology and QA/QC Procedures 13 Monitoring Methodology and QA/QC Procedures 13 Monitoring Methodology and QA/QC Procedures 13 Monitoring Methodology and QA/QC Procedures 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Moni		Project Organizations
2 AIR QUALITY 7 Monitoring Requirements 7 Monitoring Locations 7 Monitoring Equipment 7 Monitoring Parameters, Frequency and Duration 8 Monitoring Methodology and QA/QC Procedure 8 Results and Observations 11 3 NOISE 12 Monitoring Requirements 12 Monitoring Equipment 12 Monitoring Methodology and QA/QC Procedures 13 Monitoring Methodology and QA/QC Procedures 14 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 5 Site Inspections 18 8 Site of Environmental Monitoring and Permitting 18 9 Implementation Status of Environmental Mitigation Measures 19 <		
Monitoring Requirements 7 Monitoring Equipment 7 Monitoring Parameters, Frequency and Duration 8 Monitoring Methodology and QA/QC Procedure 8 Results and Observations 11 3 NOISE 12 Monitoring Requirements 12 Monitoring Equipment 12 Monitoring Parameters, Frequency and Duration 13 Monitoring Parameters, Frequency and Duration 13 Monitoring Methodology and QA/QC Procedures 13 Monitoring Methodology and QA/QC Procedures 13 Monitoring Methodology and QA/QC Procedures 13 Monitoring Requirements 14 Results and Observations 14 Results and Observations 14 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Maste Management. 19 <td></td> <td>Summary of EM&A Requirements6</td>		Summary of EM&A Requirements6
Monitoring Locations .7 Monitoring Equipment .7 Monitoring Parameters, Frequency and Duration .8 Monitoring Methodology and QA/QC Procedure .8 Results and Observations .11 3 NOISE .12 Monitoring Requirements .12 Monitoring Equipment .12 Monitoring Parameters, Frequency and Duration .13 Monitoring Parameters, Frequency and Duration .13 Monitoring Methodology and QA/QC Procedures .13 Monitoring Methodology and QA/QC Procedures .13 Monitoring Methodology and QA/QC Procedures .13 Monitoring Requirements .14 Results and Observations .14 Results and Observations .14 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS .16 5 LANDSCAPE AND VISUAL .17 Monitoring Requirements .17 Results and Observations .17 6 ENVIRONMENTAL INSPECTION .18 Status of Environmental Monitoring Procedures .18 Status of Environmental Mitigation Measures .19 Implementat	2	AIR QUALITY7
Monitoring Locations .7 Monitoring Equipment .7 Monitoring Parameters, Frequency and Duration .8 Monitoring Methodology and QA/QC Procedure .8 Results and Observations .11 3 NOISE .12 Monitoring Requirements .12 Monitoring Equipment .12 Monitoring Parameters, Frequency and Duration .13 Monitoring Parameters, Frequency and Duration .13 Monitoring Methodology and QA/QC Procedures .13 Monitoring Methodology and QA/QC Procedures .13 Monitoring Methodology and QA/QC Procedures .13 Monitoring Requirements .14 Results and Observations .14 Results and Observations .14 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS .16 5 LANDSCAPE AND VISUAL .17 Monitoring Requirements .17 Results and Observations .17 6 ENVIRONMENTAL INSPECTION .18 Status of Environmental Monitoring Procedures .18 Status of Environmental Mitigation Measures .19 Implementat		Monitoring Requirements
Monitoring Parameters, Frequency and Duration 8 Monitoring Methodology and QA/QC Procedure 8 Results and Observations 11 3 NOISE 12 Monitoring Requirements 12 Monitoring Equipment 12 Monitoring Equipment 12 Monitoring Parameters, Frequency and Duration 13 Monitoring Methodology and QA/QC Procedures 14 Results and Observations 14 Results and Observations 14 Results and Observations 17 Monitoring Requirements 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented <td< td=""><td></td><td>•</td></td<>		•
Monitoring Methodology and QA/QC Procedure		0 1 1
Results and Observations 11 3 NOISE 12 Monitoring Requirements 12 Monitoring Locations 12 Monitoring Equipment 12 Monitoring Parameters, Frequency and Duration 13 Monitoring Methodology and QA/QC Procedures 13 Maintenance and Calibration 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Implementation Status of Event Action Plans 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 17 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24		o i i
3 NOISE 12 Monitoring Requirements 12 Monitoring Locations 12 Monitoring Locations 12 Monitoring Quipment 12 Monitoring Parameters, Frequency and Duration 13 Monitoring Methodology and QA/QC Procedures 13 Maintenance and Calibration 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Mitigation Measures 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Implementation Status of Event Action Plans 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 7 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23		
Monitoring Requirements 12 Monitoring Locations 12 Monitoring Equipment 12 Monitoring Parameters, Frequency and Duration 13 Monitoring Methodology and QA/QC Procedures 13 Maintenance and Calibration 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 7 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24 <td></td> <td></td>		
Monitoring Locations 12 Monitoring Equipment 12 Monitoring Parameters, Frequency and Duration 13 Monitoring Methodology and QA/QC Procedures 13 Maintenance and Calibration 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 18 Status of Waste Management 19 Implementation Status of Event Action Plans 20 Summary of Mitigation Measures Implemented 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24	3	NOISE12
Monitoring Equipment 12 Monitoring Parameters, Frequency and Duration 13 Monitoring Methodology and QA/QC Procedures 13 Maintenance and Calibration 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 18 Status of Environmental Licensing and Permitting 19 Implementation Status of Environmental Mitigation Measures 20 Implementation Status of Environmental Mitigation of any Summons and Successful Prosecution21 21 7 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24		
Monitoring Parameters, Frequency and Duration 13 Monitoring Methodology and QA/QC Procedures 13 Maintenance and Calibration 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 21 7 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 23 8 CONCLUSIONS AND RECOMMENDATIONS 24		6
Monitoring Methodology and QA/QC Procedures 13 Maintenance and Calibration 14 Results and Observations 14 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 21 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24		• • •
Maintenance and Calibration 14 Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Implementation Status of Event Action Plans 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 17 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24		
Results and Observations 14 4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS 16 5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Implementation Status of Event Action Plans 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 17 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24		Mointening Methodology and QAVQC Procedures
5 LANDSCAPE AND VISUAL 17 Monitoring Requirements 17 Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 21 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24		
Monitoring Requirements17Results and Observations17FONTRONMENTAL INSPECTION18Site Inspections18Review of Environmental Monitoring Procedures18Status of Environmental Licensing and Permitting18Status of Waste Management19Implementation Status of Environmental Mitigation Measures19Summary of Mitigation Measures Implemented20Implementation Status of Event Action Plans20Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution2122Monitoring Schedule for Next Month23CONCLUSIONS AND RECOMMENDATIONS24Conclusions24	4	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS16
Monitoring Requirements17Results and Observations17FONTRONMENTAL INSPECTION18Site Inspections18Review of Environmental Monitoring Procedures18Status of Environmental Licensing and Permitting18Status of Waste Management19Implementation Status of Environmental Mitigation Measures19Summary of Mitigation Measures Implemented20Implementation Status of Event Action Plans20Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution2122Monitoring Schedule for Next Month23CONCLUSIONS AND RECOMMENDATIONS24Conclusions24	5	LANDSCAPE AND VISUAL
Results and Observations 17 6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Implementation Status of Event Action Plans 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution211 21 7 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24	•	
6 ENVIRONMENTAL INSPECTION 18 Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Implementation Status of Event Action Plans 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 7 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24		
Site Inspections 18 Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Implementation Status of Event Action Plans 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 21 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24	6	
Review of Environmental Monitoring Procedures 18 Status of Environmental Licensing and Permitting 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Implementation Status of Event Action Plans 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 21 7 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24	U	
Status of Environmental Licensing and Permitting 18 Status of Waste Management 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Implementation Status of Event Action Plans 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24 Conclusions 24		1
Status of Waste Management. 19 Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented. 20 Implementation Status of Event Action Plans 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 21 7 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month. 23 8 CONCLUSIONS AND RECOMMENDATIONS 24 Conclusions 24		
Implementation Status of Environmental Mitigation Measures 19 Summary of Mitigation Measures Implemented 20 Implementation Status of Event Action Plans 20 Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 20 7 FUTURE KEY ISSUES 22 Monitoring Schedule for Next Month 23 8 CONCLUSIONS AND RECOMMENDATIONS 24		
 Implementation Status of Event Action Plans		•
Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution21 7 FUTURE KEY ISSUES		Summary of Mitigation Measures Implemented20
 FUTURE KEY ISSUES		
 Monitoring Schedule for Next Month		
8 CONCLUSIONS AND RECOMMENDATIONS	7	
Conclusions24		
	8	CONCLUSIONS AND RECOMMENDATIONS24

LIST OF TABLES

- Table I
 Air Quality and Noise Monitoring Stations for this Project
- Table IINon-compliance Recorded for the Project in the Reporting Month
- Table III
 Summary Table for Key Information in the Reporting Month
- Table 1.1Key Project Contacts
- Table 1.2Construction Programme Showing the Inter-Relationship with Environmental
Protection/Mitigation Measures
- Table 2.1Locations for Air Quality Monitoring
- Table 2.2Air Quality Monitoring Equipment
- Table 2.3
 Impact Dust Monitoring Parameters, Frequency and Duration
- Table 2.4Summary Table of Air Quality Monitoring Results during the reporting month
- Table 3.1Noise Monitoring Stations
- Table 3.2Noise Monitoring Equipment
- Table 3.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 3.4
 Major Noise Source identified at the Designated Noise Monitoring Stations
- Table 3.5Baseline Noise Level and Noise Limit Level for Monitoring Stations
- Table 4.1Comparison of 1-hr TSP data with EIA predictions
- Table 4.2Comparison of 24-hr TSP data with EIA predictions
- Table 4.3
 Comparison of Noise Monitoring Data with EIA predictions
- Table 6.1Summary of Environmental Licensing and Permit Status
- Table 6.2
 Observations and Recommendations of Site Inspections

LIST OF FIGURES

- Figure 1 Site Layout Plan
- Figure 2 Location of Air Quality Monitoring Stations
- Figure 3 Location of Noise Monitoring Stations
- Figure 4 Location of Wind Data Monitoring Equipment

LIST OF APPENDICES

- A Action and Limit Levels for Air Quality and Noise
- B Copies of Calibration Certificates
- C Weather Information
- D Environmental Monitoring Schedules
- E 1-hour TSP Monitoring Results and Graphical Presentations
- F 24-hour TSP Monitoring Results and Graphical Presentations
- G Noise Monitoring Results and Graphical Presentations
- H Summary of Exceedance
- I Site Audit Summary
- J Event Action Plans
- K Environmental Mitigation Implementation Schedule (EMIS)
- L Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution
- M Summary of Waste Generation and Disposal Records
- N Construction Programme

EXECUTIVE SUMMARY

Introduction

- This is the 84th Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2015/02 - Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises one Schedule 2 designated project (DP), namely the new distributor road D1 serving the planned KTD. The DP is part of the designated project under Environmental Permit (EP) No.: EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") respectively. This report documents the findings of EM&A Works conducted during December 2023.
- 2. With reference to the same principle of EIA report of the Project, air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in **Table I** (see **Figure 2 and 3** for their locations).

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations
Air Quality Monitoring Stations		
	Yes (1-hour TSP)	N/A
AM2 - Lee Kau Yan Memorial School	No (24-hour TSP)	AM2(A) – Ng Wah Catholic
	140 (24-nour 151)	Secondary School
Noise Monitoring Stations		
M3 - Cognitio College	No	M3(A) – The Bridge connecting
M3 - Cognitio Conege	No	The Latitude
M4 - Lee Kau Yan Memorial School	Yes	N/A
M5 – Nam Yuen	No	M5(C) – Mercy Grace's Home

Table I – Air Quality and Noise Monitoring Stations for this Project

- 3. The major site activities undertaken in the reporting month included:
 - Reinstatement of PERE central Divider
 - Modification work of Subway SW6 staircase hand railing
 - Excavation and installation work of subway ST2 ELS strut and wailing

Environmental Monitoring Works

- 4. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 5. Summary of the non-compliance in the reporting month for the Project is tabulated in **Table II**.

	No. of Project-rel	No. of Project-related Exceedance	
Parameter	Action Level Limit Level		Action Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

 Table II
 Non-compliance Recorded for the Project in the Reporting Month

1-hour & 24-hour TSP Monitoring

- 6. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 7. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, EP-337/2009 issued on 23 April 2009. All valid Licenses/Permits for this Project are shown in **Table 6.1**.
 - Billing Account for Construction Waste Disposal (A/C# 7026164).
 - Effluent Discharge License (WT00041367-2022).
 - Registration of Chemical Waste Producer (WPN5213-286-P3271-01).

Key Information in the Reporting Month

10. Summary of key information in the reporting month is tabulated in **Table III**.

Event	Event	nt Details		Status	Remark
Event	Number	Nature	Action Taken	Status	Kemark
Complaint received			N/A	N/A	
Reporting Changes			N/A	N/A	
Notifications of any summons & prosecutions received			N/A	N/A	

 Table III
 Summary Table for Key Information in the Reporting Month

Future Key Issues

11. The future key environmental issues in the coming two months include:

Stagnant water on the unused and damaged water-filled barriers & uncovered containers - and manhole;

- Silt, construction materials or debris being washed through manhole into the drainage system
- Noise generated from operation of the equipment, especially for breaking activities;
- Dust generation from excavation works, stockpile storage & rock breaking activities;
- Oil leakage from equipment and mobile plants;

1 INTRODUCTION

Background

- 1.1. The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 5A Infrastructure at Former North Apron Area is one of the construction stages of KTD. It contains one Schedule 2 DP including new distributor roads serving the planned KTD. The general layout of the Project is shown in **Figure 1**.
- 1.2. An Environmental Permit (EP) No. EP-337/2009 was issued on 23 April 2009 for new distributor roads serving the planned KTD to Civil Engineering and Development Department as the Permit Holder.
- 1.3. A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. An EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4. Cinotech Consultants Limited (Cinotech) was commissioned by Civil Engineering and Development Department (CEDD) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2015/02 – Stage 5A Infrastructure at Former North Apron Area. The construction work under KL/2015/02 comprises the construction of part of the Road D1 under the EP (EP-337/2009).
- 1.5. Cinotech Consultants Limited was commissioned by Civil Engineering and Development Department (CEDD) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The commencement date of construction of Road D1 (part) under this Contract was on 16 January 2017.

Project Organizations

- 1.6. Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) AECOM Asia Co. Ltd (AECOM).
 - Environmental Team (ET) Cinotech Consultants Limited (Cinotech).
 - Independent Environmental Checker (IEC) Fugro Technical Services Limited (FTS).
 - Contractor Peako Wo Hing Joint Venture (PWHJV).

Cable 1.1 Key Project Contacts					
Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. CHAN Wai Kit, Ricky	Senior Engineer	2116 3753	2116 0714
AECOM Engineer's Representative	Mr. Vincent Lee	Senior Resident Engineer	2798 0771	2210 6110	
Cinotech	Cinetash Environmental	Mr. K.S Lee	Environmental Team Leader	2151 2091	3107 1388
Chloteen	Team	Ms. Betty Choi	Audit Team Leader	2151 2072	5107 1588
FTS Independent Environmental Checker	Mr. Calvin Leung	Independent Environmental Checker	3565 4441	2450 8032	
PWHJV	Contractor	Mr. W.M. Chen	Deputy Site Agent	9736 4284	2398 8301

1.7. The key contacts of the Project are shown in **Table 1.1**.

Construction Activities undertaken during the Reporting Month

- 1.8. The site activities undertaken in the reporting month included:
 - Reinstatement of PERE central Divider
 - Modification work of Subway SW6 staircase hand railing
 - Excavation and installation work of subway ST2 ELS strut and wailing
- 1.9. The construction programme for the Project is shown in **Appendix N**.
- 1.10. The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in **Table 1.2**.

Table 1.2	Construction Programme Showing the Inter-Relationship with
_	Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
Refer to Section 1.8	Noise, dust impact, water quality and waste generation	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles by impervious materials; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier to enclose the noisy plant; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide drip trays with adequate capacity and well maintained to chemicals Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.

Summary of EM&A Requirements

- 1.11. The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.12. The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.13. This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project during the reporting month.

2 AIR QUALITY

Monitoring Requirements

2.1. According to EM&A Manual under the EP, 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. Appendix A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

- 2.2. 1-hour TSP impact dust monitoring was conducted at the air quality monitoring station, AM2 Lee Kau Yan Memorial School and 24-hour TSP impact dust monitoring were conducted at the air quality monitoring station, AM2(A) Ng Wah Catholic Secondary School in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.3. **Table 2.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Monitoring Stations	Locations	Location of Measurement
AM2 (1-hour TSP)	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
AM2(A) (24-hour TSP)	Ng Wah Catholic Secondary School	Rooftop (about 8/F) Area

 Table 2.1
 Locations for Air Quality Monitoring

Monitoring Equipment

2.4. **Table 2.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix B**.

Table 2.2 Air Quality Monitoring Equipment				
Equipment	Model and Make	Quantity		
Calibrator	• TISCH TE-5025A	1		
1-hour TSP Dust Meter	• Sibata Scientific Technology LD-5R	2		
HVS Sampler	• TE-5170 c/w of TSP sampling inlet	1		
Wind Anemometer	Davis Instruments 6152	1		

Table 2.2Air Quality Monitoring Equipment

Monitoring Parameters, Frequency and Duration

2.5. **Table 2.3** summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 2.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

Measuring Procedures

2.6. The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:

(Equipment: Sibata Scientific Technology; Model no. LD-3B, LD-5R)

- The 1-hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display.
- Finally, push the start/stop switch to stop the measuring after 1 hour sampling.

• Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

2.7. The following maintenance/calibration was required for the direct dust meters:

Check the meter at a 3-month interval and calibrate the meter at a 1-year interval throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.8. High volume (HVS) samplers (Model TE-5170), completed with appropriate sampling inlets, were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.9. Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.10. Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between $1.1 \text{ m}^3/\text{min.}$ and $1.4 \text{ m}^3/\text{min.}$) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.

- 2.11. For TSP sampling, fiberglass filters have a collection efficiency of > 99% for particles of 0.3μm diameter were used.
- 2.12. The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.13. The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.14. The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.15. The shelter lid was closed and secured with the aluminium strip.
- 2.16. The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.17. After sampling, the filter was removed and sent to the HOKLAS laboratory (High Precision Chemical Testing Ltd.) for weighing. The elapsed time was also recorded.
- 2.18. Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than \pm 3°C; the relative humidity (RH) should be < 50% and not vary by more than \pm 5%. A convenient working RH is 40%.

Maintenance/Calibration

- 2.19. The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using TE-5025A Calibration Kit through/hout all stages of the air quality monitoring.

Results and Observations

- 2.20. All 1-hour & 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21. The weather information for the reporting month is summarized in Appendix C.
- 2.22. The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.23. The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the air quality monitoring.
- 2.24. According to our field observations during the monitoring, the major dust source identified at the two designated air quality monitoring stations are road traffic dust, exposed site area and open stockpiles, excavation works and site vehicle movements.
- 2.25. The summary of 1-hour and 24-hour TSP air quality monitoring results during the reporting month are shown in **Appendix E** and **Appendix F** respectively.

3 NOISE

Monitoring Requirements

3.1. According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2. Three designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at three designated monitoring stations (M3(A), M4, and M5(C)). **Figure 3** shows the locations of these stations.

Monitoring Stations	Locations	Location of Measurement
	The Bridge connecting The	In the middle of the foot
M3(A)	Latitide	bridge connecting The
	Latitude	Latitude
M4	Lee Kau Yan Memorial School	Rooftop (about 7/F) Area
		Ground in front of the
		building entrance facing
		Prince Edward
		Road East (noise monitoring
M5(C)	Mercy Grace's Home	is not allowed on the rooftop
		from 27 February 2020, due
		to the coronavirus
		countermeasure in Mercy
		Grace's Home)

Table 3.1Noise Monitoring Stations

Monitoring Equipment

3.3. **Table 3.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Lable 5.2 Noise Monitoring Equipment				
Equipment	Model and Make	Qty.		
Integrating Sound Level Meter	BSW Atech BSWA 308SVAN 979	3		
Calibrator	SV 30AB&K 4231	2		

Table 3.2Noise Monitoring Equipment

Monitoring Parameters, Frequency and Duration

3.4. **Table 3.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

 Table 3.3
 Noise Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameter	Period	Frequency	Measurement
M3(A)	L ₁₀ (30 min.) dB(A)	0700-1900 hrs on	Once per	
M4	L ₉₀ (30 min.) dB(A)	normal weekdays	week	Façade
M5(C)	Leq(30 min.) dB(A)	normai weekuays	WCCK	

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

_	frequency weighting	: A
_	time weighting	: Fast
	time massurement	· 30 min

- time measurement : 30 minutes
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq}, L₉₀ and L₁₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5. The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6. The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 3.8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. The summary of exceedance record in reporting month is shown in **Appendix H**.
- 3.9. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.5**.
- 3.10. Noise monitoring results and graphical presentations are shown in Appendix G.
- 3.11. The major noise source identified at the designated noise monitoring stations are shown in **Table 3.4**.

Monitoring Stations	Locations	Major Noise Source
M3(A)	The Bridge connecting The Latitude	Traffic Noise Site vehicle movement
M4	Lee Kau Yan Memorial School	Traffic Noise Site vehicle movement Excavation works Daily school activities
M5(C)	Mercy Grace's Home	Traffic Noise Site vehicle movement

 Table 3.4
 Major Noise Source identified at the Designated Noise Monitoring Stations

Table 3.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations				
Station	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)		
	N/A ⁽¹⁾	75		
M3(A)	(at 0700 – 1900 hrs on normal	(at 0700 – 1900 hrs on		
	weekdays)	normal weekdays)		
	76.7 ⁽²⁾	70(*)		
M4	(at 0700 – 1900 hrs on normal	(at 0700 – 1900 hrs on		
	weekdays)	normal weekdays)		
	N/A ⁽¹⁾	75		
M5(C)	(at 0700 – 1900 hrs on normal	(at 0700 – 1900 hrs on		
	weekdays)	normal weekdays)		

Baseline Noise I evel and Noise I imit I evel for Monitoring Stations Table 25

(*) Noise Limit Level is 65 dB(A) during school examination periods.

Note (1): The background Noise Level was recorded during the Lunch Hour of Construction Site

(i.e. 12:00-13:00) and to be used as the referencing value for compliance checking for Noise Action and Limit Level.

Note (2): The noise level due to the construction work (CNL) was calculated by the following formula: $CNL = 10 \log (10^{MNL/10} - 10^{BNL/10})$

Remarks: MNL = Measured Noise Level, BNL = Baseline Noise Level

4 COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1. The EM&A data was compared with the EIA predictions as summarized in **Tables 4.1** to **4.3**.

	Predicted 1-l	ed 1-hr TSP conc. Measur 1-hr TSP		
Station	Scenario1 (Mid 2009 to Mid-	Scenario2 (Mid 2013 to Late	Reporting Month (December 2023), μg/m ³	
	2013), μg/m ³ 2016), μg/m ³	Average	Range	
AM2 – Lee Kau Yan Memorial School	290	312	56.2	43.7 - 72.2

Table 4.1 Comparison of 1-hr TSP data with EIA predictions

Table 4.2 Comparison of 24-hr TSP data with EIA predictions

	Predicted 24-hr TSP conc.		Measured 24-hr TSP conc.	
Station	Scenario1 (Mid 2009 to Mid-2013), µg/m ³	Scenario2 (Mid 2013 to Late 2016), μg/m ³	Reporting Month (December 2023), μg/m ³	
			Average	Range
AM2(A) - Ng Wah				
Catholic Secondary	145	169	72.8	40.2 - 117.3
School				

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (Leq (30min) dB(A))	Reporting Month (December 2023), L _{eq (30min)} dB(A)
M3(A) – The Bridge connecting The Latitude	Not predicted in EIA Report	$69.3 - 77.2^{(2)}$
M4 – Lee Kau Yan Memorial School	47 – 74	$74.9 - 76.2^{(1)}$
M5(C) – Mercy Grace's Home	Not predicted in EIA Report	$61.2 - 78.5^{(2)}$

Remarks:

(1) Since the baseline noise level was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.

(2) Since the background noise level was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.

- 4.2. The average 1-hour TSP concentrations at AM2 in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3. The average 24-hour TSP concentrations at AM2(A) in the reporting month were below the prediction in the approved EIA Report.
- 4.4. The noise monitoring results in the reporting month from M4 were slightly higher than the range of the predicted mitigated constriction noise levels in the EIA Report.

4.5. Construction noise levels at M3(A) and M5(C) were not predicted in EIA Report.

5 LANDSCAPE AND VISUAL

Monitoring Requirements

5.1. According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 5.2. Site audits were conducted on a weekly basis to monitor the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3. No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4. Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix J** shall be performed.

6 ENVIRONMENTAL INSPECTION

Site Inspections

- 6.1. Site inspections were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site inspections are attached in **Appendix I**.
- 6.2. Site inspections were conducted on 04, 13, 18, & 27 December 2023 in the reporting month. A joint site inspection with the representative of IEC, ER, the Contractor and the ET was conducted on 13 December 2023. The details of the observations during site inspection are summarized in **Table 6.2**.

Review of Environmental Monitoring Procedures

6.3. The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Status of Environmental Licensing and Permitting

6.4. All permits/licenses obtained for the Project are summarized in Table 6.1.

Fable 6.1 Summary of Environmental Licensing and Permit Status						
	Valid I	Period	G ()			
Permit No.	From	То	Status			
Environmental Permit (EP)		-				
EP-337/2009	23 Apr 2009	N/A	Valid			
Effluent Discharge License	·					
WT00027495-2017	28 Mar 2017	31 Mar 2022	Expired			
WT00041367-2022	20 Jun 2022	31 Mar 2027	Valid			
Billing Account for Construction V	Vaste Disposal					
A/C# 7026164	20 Oct 2016	N/A	Valid			
Registration of Chemical Waste Pr	oducer					
WPN5213-229-P3271-01	14 Aug 2017	N/A	Valid			
Construction Noise Permit (CNP)	·					
GW-RE0915-19	08 Nov 2019	04 May 2020	Expired			
GW-RE0984-19	15 Dec 2019	24 Feb 2020	Expired			
GW-RE0083-20	01 Mar 2020	01 June 2020	Expired			
GW-RE0266-20	02 May 2020	31 Jul 2020	Expired			
GW-RE0779-21	30 Jul 2021	30 Nov 2021	Expired			
GW-RE0858-21	31 Jul 2021	30 Aug 2021	Expired			
GW-RE0636-23	06 Jun 2023	30 Jun 2023	Expired			
GW-RE0637-23	06 Jun 2023	30 Jun 2023	Expired			

Status of Waste Management

6.5. The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.

Implementation Status of Environmental Mitigation Measures

6.6. During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 6.2.

Table 6.2O	Table 6.2 Observations and Recommendations of Site Inspections						
Parameters	Date	Observations and Recommendations	Follow-up/Rectification				
Water Quality	2023/12/27	Bund should be provided to the surround area of earthworks for flood protection. / Manholes should be covered and sealed.	The Follow-up Action will be presented in the next reporting month.				
Air Quality	N/A	No environmental deficiency was identified in the reporting period.	N/A				
Noise	N/A	No environmental deficiency was identified in the reporting period.	N/A				
Waste/ Chemical Management	N/A	No environmental deficiency was identified in the reporting period.	N/A				
Landscape and Visual	N/A	No environmental deficiency was identified in the reporting period.	N/A				
Permits/ Licenses	N/A	No environmental deficiency was identified in the reporting period.	N/A				

Summary of Mitigation Measures Implemented

6.7. An updated summary of the EMIS is provided in Appendix K.

Implementation Status of Event Action Plans

6.8. The Event Action Plans for air quality, noise and landscape and visual are presented in Appendix J.

<u>1-hr TSP Monitoring</u>

6.9. No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.10 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.11. No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.12. No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.13. The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix L**.

7 FUTURE KEY ISSUES

- 7.1. Major site activities undertaken for the coming two months include:
 - Reinstatement of PERE central Divider;
 - Waterproofing of Subway SW6 staircase ST2;
 - Rebar fixing and formwork erection of Staircase ST2.
- 7.2. Key environmental issues in the coming month include:
- Stagnant water on the unused and damaged water-filled barriers & uncovered containers and manhole
 - Silt, construction materials or debris being washed through manhole into the drainage system
- Noise generated from operation of the equipment, especially for rock-breaking activities;
- Dust generation from excavation works and rock breaking activities;
- Oil leakage from equipment and mobile plants;

7.3. The tentative major site activities is mentioned in Section 7.1 of this report. The impact prediction and control measures for the coming two months are summarized as follows:

Air quality impact (dust)

- Frequent watering of haul road and unpaved/exposed areas;
- Frequent watering or covering stockpiles with impervious materials or maintained wet; and
- Watering of any earth moving activities.

Water quality impact (surface runoff)

- Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains;
- Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge;
- Provision of perimeter protection such as sealing of hoarding footings to avoid runoff from entering the existing storm water drainage system via public road; and

Noise Impact

- Machines and Plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;
- Regular maintenance of machines; and
- Use of movable noise barriers if necessary.

Waste /Chemical Management

- Avoided oil leakage from PME
- Provided drip tray with adequate capacity and well maintained to chemical and oil containers

Monitoring Schedule for Next Month

7.4. The tentative environmental monitoring schedules for next month are shown in **Appendix D**.

8 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1. Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.

<u>1-hr TSP Monitoring</u>

8.2. All 1-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hr TSP Monitoring

8.3. All 24-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8.4. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Landscape and visual

8.5. No non-compliance was recorded in the reporting month.

Complaint and Prosecution

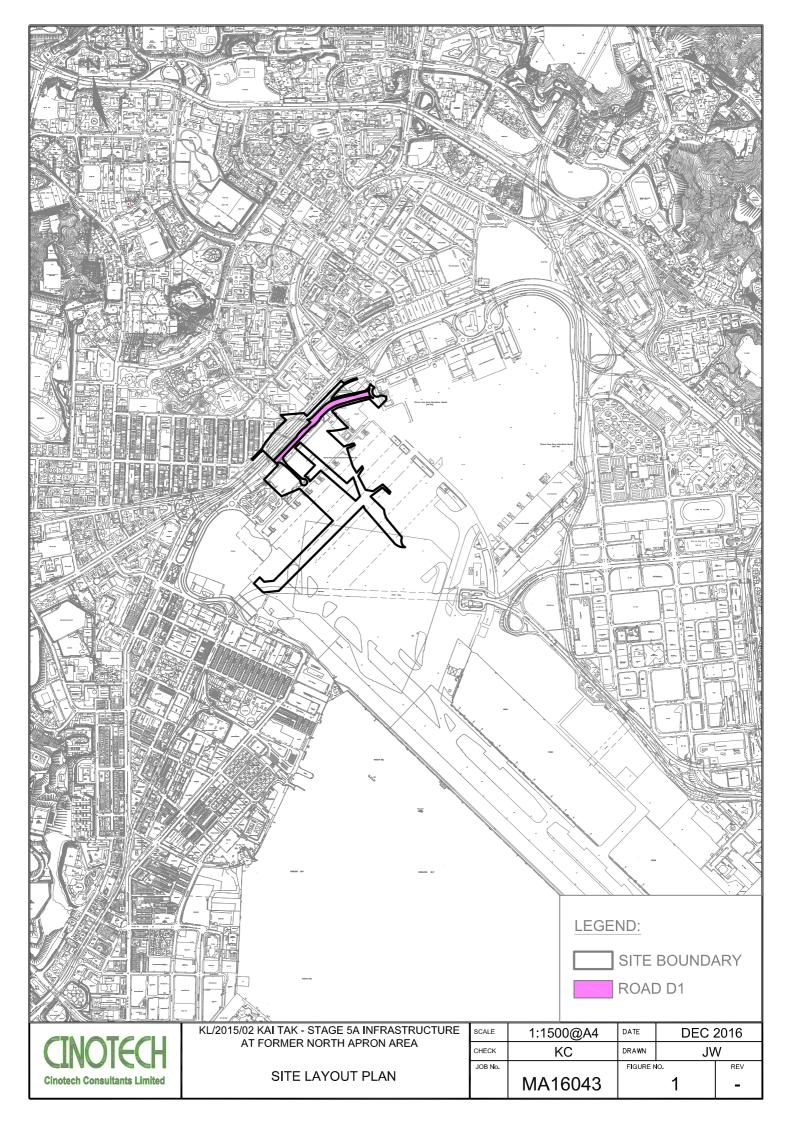
8.6. No environmental complaint and environmental prosecution was received in the reporting month.

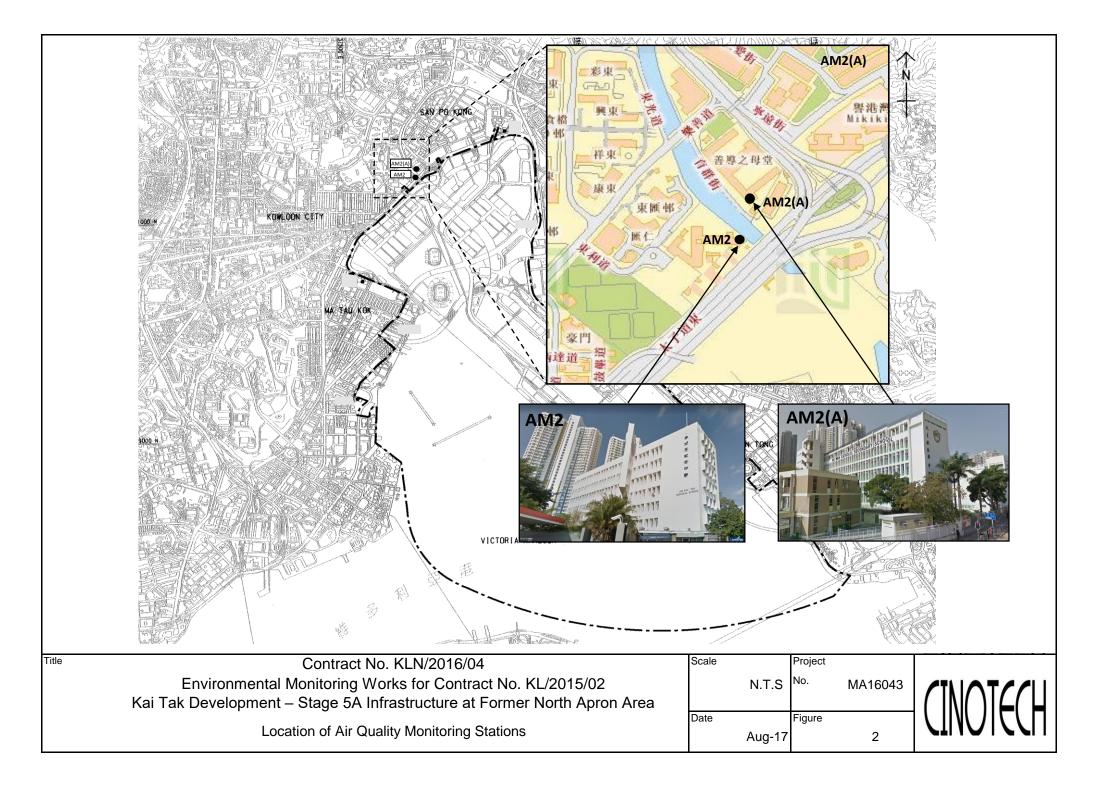
Recommendations

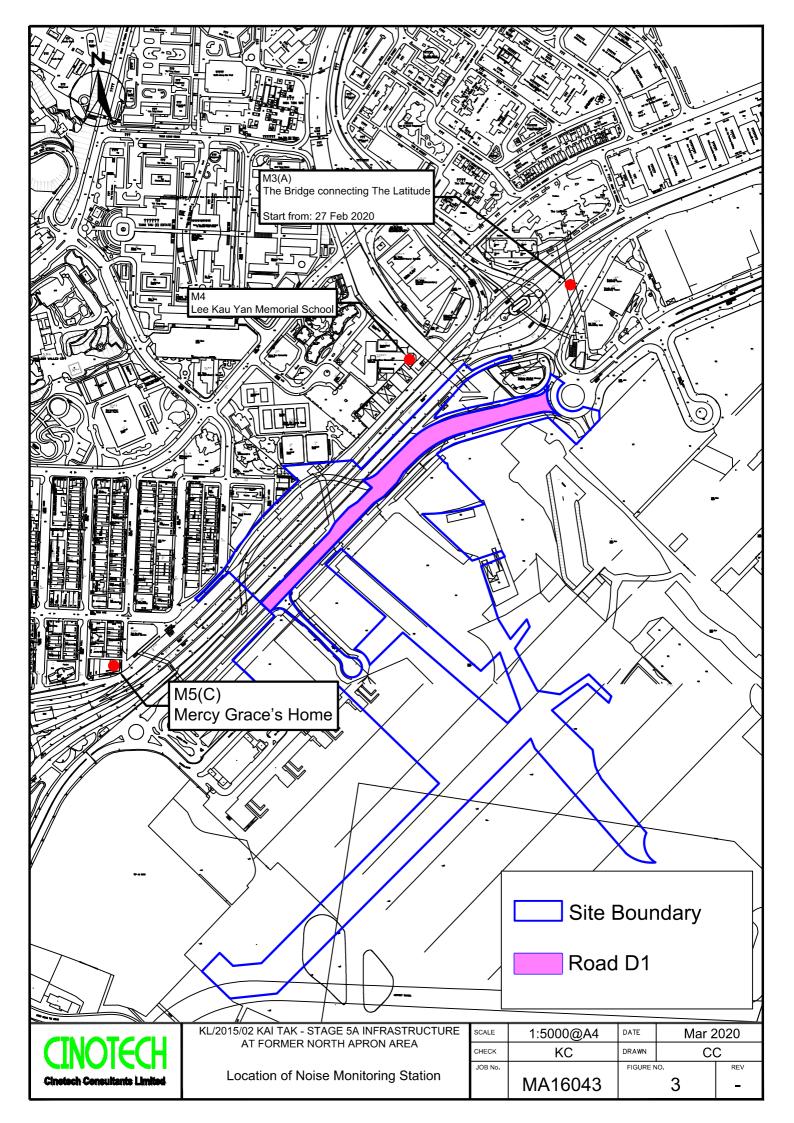
8.7. According to the environmental audit performed in the reporting month, the following recommendations were made:

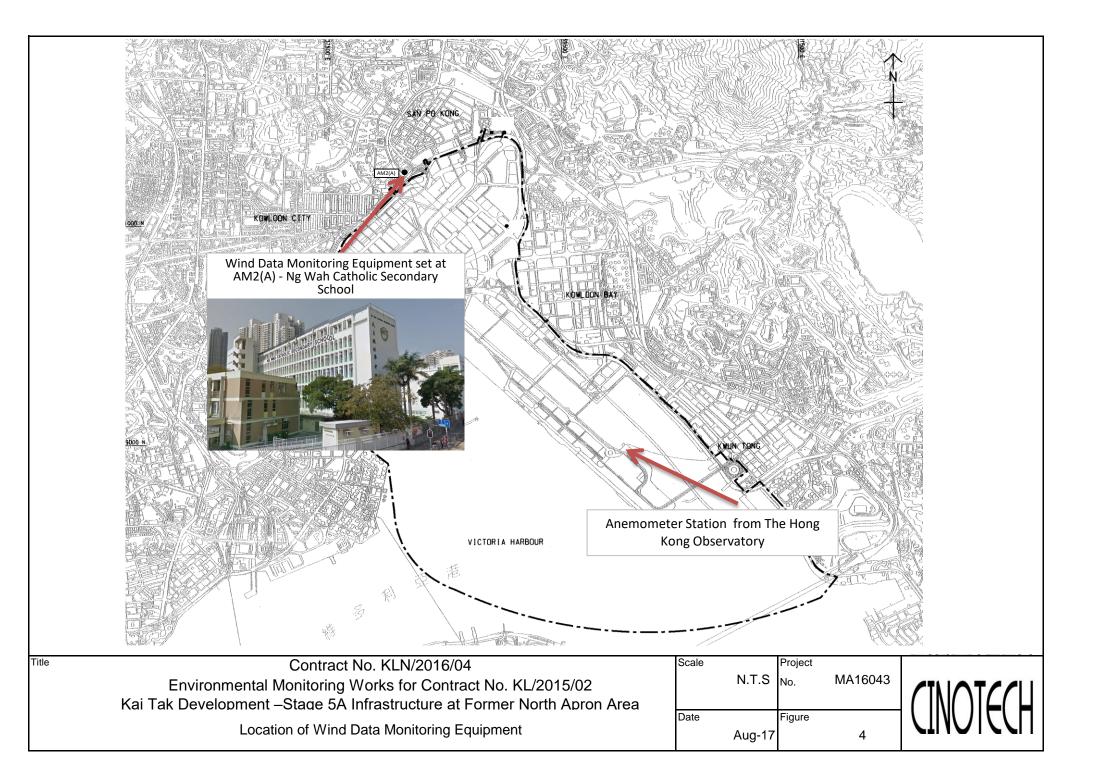
Water Impact

- To avoid accumulation of stagnant and ponding water on site.
- Bunds should be provided to surrounding areas of earthworks for flood protection.
- Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.


Air Quality


- The stockpile of dusty material should be covered by impervious materials or maintained wet.
- Water spraying should be provided during the rock-breaking activities conducted to minimize the dust generation.


Waste/Chemical Management


- Oil leakage from PME should be avoided.
- Drip tray with adequate capacity and well maintained should be provided to chemical & oil container.
- The construction/chemical material should be stored at the proper place.

FIGURES

APPENDIX A ACTION AND LIMIT LEVELS FOR AIR QUALITY AND NOISE

Appendix A - Action and Limit Levels

Location	Action Level, μg/m ³	Limit Level, μg/m ³
AM2	346	500

Table A-1Action and Limit Levels for 1-Hour TSP

Table A-2Action and Limit Levels for 24-Hour TSP

Location	ion Action Level, μg/m ³ Limit Level, μg/m ³		
AM2(A)	157	260	

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B-1 COPIES OF CALIBRATION CERTIFCATES (AIR)

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA16043/13/0039

Project No.	oject No. AM2(A) - Ng Wah Catholic Secondary School						
Date:	6-N	Jov-23	Next Due Date:	6-J	Van-24 Operator	: SK	
Equipment No.:	ipment No.: A-01-13		Model No.: TE-5170		Serial No.	. 1352	
	Ambient Condition						
Temperature, Ta (K) 300.6 Pres		Pressure, Pa	(mmHg)	761.4			
		Or	ifice Transfer Sta	ndard Informa	tion		
Serial	No.	3864	Slope, mc	0.05928	Intercept, bc	-0.03491	
Last Calibra	ation Date:	16-Jan-23	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$				

Next Calibration Date: 16-Jan-24 $Qstd = \{ [\Delta H x (Pa/760) x (298/Ta)]^{1/2} - bc \} / mc$

	Calibration of TSP Sampler						
Calibration			HVS				
Point	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	DW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis		
1	12.9	3.58	60.97	9.9	3.14		
2	10.8	3.28	55.84	7.8	2.78		
3	7.9	2.80	47.84	5.0	2.23		
4	5.2	2.27	38.92	3.0	1.73		
5	2.7	1.64	28.21	1.8	1.34		
Slope , mw = Correlation	By Linear Regression of Y on X Slope , mw =0.0557 Intercept, bw :0.3392 Correlation coefficient* =0.9914 *If Correlation Coefficient < 0.990, check and recalibrate.						
		Set Point C	alculation				
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM					
From the Regres	sion Equation, the	e "Y" value according to					
$mw \ x \ Qstd + bw = [\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =4.25							
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature:	k	N. 1 Xrong	Date: 6-Nov-23		
Checked by:	Henry I	Leung Signature:	-lem	- Xoz	Date: 6-Nov-23		

CINOTECH CONSULTANTS LIMITED

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator	Date	of Calibration	30-Nov-23	
Manufacturer:	Sibata Scientific Technology LTD.	Validity of Calib	oration Record	30-Jan-24	
Model No.:	LD-5R				
Serial No.:	972780				
Equipment No.:	SA-01-09	Sensitivity 0.001 mg/m3	_		
High Volume Sa	mpler No.: A-01-03	Before Sensitivity Adjustment	739 CPM		
Tisch Calibratio	n Orifice No.: <u>3864</u>	After Sensitivity Adjustment	739 CPM		
	Ca	libration of 1 hr TSP			
Calibration	Laser Dust Monitor	r	HVS		
Point	Mass Concentration (µg/ X-axis	/m3) Ma	Mass concentration (µg/m ³) Y-axis		
1	73.0		139.0		
2	63.0		119.0		
3	52.0		99.0		
Average	62.7		119.0		
	ression of Y on X 	Intercept, bw =	-0.2749		
	Se	t Correlation Factor			
Particaulate Con	centration by High Volume Sampler	(µg/m ³)	119.0		
Particaulate Con	centration by Dust Meter (µg/m ³)		62.7		
Measureing time	e, (min)		60.0		
Set Correlation I	Factor, SCF				

SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)]

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: _____ Kang

Technical Officer (Wong Shing Kwai)

Project Manager (Henry Leung)

1.9

CINOTECH CONSULTANTS LIMITED

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date of Calibration	30-Nov-23	
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibration Record	30-Jan-24	
Model No.:	LD-5R				
Serial No.:	972781				
Equipment No.:	SA-01-10	Sensitivity	0.001 mg/m3		
High Volume Sa	ampler No.: A-01-03	Before Sensitiv	vity Adjustment 734 CPM		
Tisch Calibratio	on Orifice No.: <u>3864</u>	After Sensitivi	ty Adjustment 734 CPM		
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor		HVS		
Point Mass Concentration (µg/m3)		Mass concentration ($\mu g/m^3$)			
	X-axis		Y-axis		
1	80.0		132.0		
2	70.0		114.0		
3	60.0		98.0		
Average	70.0		114.7		
	ression of Y on X oefficient* =0.9994		cept, bw =	33	
	Se	t Correlation F	actor		
Particaulate Cor	ncentration by High Volume Sampler ($(\mu g/m^3)$	114.7		
Particaulate Cor	ncentration by Dust Meter ($\mu g/m^3$)		70.0		
Measureing time	e, (min)		60.0		
Set Correlation	Factor, SCF				
SCF = [K=Hig	h Volume Sampler / Dust Meter, (μ	g/m3)]	1.6		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: _____

Technical Officer (Wong Shing Kwai)

Project Manager (Henry Leung)

RECALIBRATION

DUE DATE:

January 16, 2024

Certificate of Calibration

			Calibration					014
Cal. Date:	January 16	16, 2023 Rootsmeter S/N :		438320	Та:	293	℃К	
Operator:	Jim Tisch					Pa: 749.0		mm Hg
Calibration	Model #:	TE-5025A	Calib	prator S/N:	3864			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	1
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4440	3.2	2.00	1
	2	3	4	1	1.0220	6.4	4.00	
	3	5	6	1	0.9100	8.0	5.00	
	4	7	8	1	0.8710	8.8	5.50	
	5	9	10	1	0.7210	12.8	8.00	
			[Data Tabula	tion]
	Vstd	Qstd	√∆H(<u>Pa</u> Pstd)(<u>Tstd</u>) Ta)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	0.9981	0.6912	1.41	59	0.9957	0.6896	0.8845	
	0.9938	0.9724	2.00	24	0.9915	0.9701	1.2509	
	0.9917	1.0898	2.23	88	0.9893	1.0872	1.3985	
	0.9906	1.1373	2.34	80	0.9883	1.1346	1.4668	
	0.9853	1.3665	2.83		0.9829	1.3633	1.7690	
		m=	2.094			m=	1.31155	
	QSTD	b=	-0.034		QA	b=	-0.02182	
		r=	0.999	995		r=	0.99995	
				Calculatio				
)/Pstd)(Tstd/Ta	a)	$Va = \Delta Vol((Pa - \Delta P)/Pa)$			
	Qstd=	Vstd/∆Time			-	Va/∆Time		
			For subsequ	ient flow ra	te calculatio	ns:		
	Qstd=	1/m((√∆H(Pa <u>Tstd</u> Pstd Ta	-))-ь)	Qa=	1/m ((√∆H	l(Ta/Pa))-b)	
		Conditions						
Tstd						RECA	LIBRATION	
Pstd		mm Hg			US FPA rec	ommends a	nnual recalibratio	on ner 1999
AH: calibrat		Key ter reading (i	n H2O)				Regulations Part !	
		eter reading					, Reference Meth	
		perature (°K)					ended Particulat	
		ressure (mm				•	ere, 9.2.17, page	
b: intercept						c Autospite	, J.z.z/, page	
m: slope								

Certificate of Calibration - Wind Monitoring Station

Description:	Ng Wah Catholic Seconday School - Weather Stations			
Manufacturer:	Davis Instruments			
Model No.:	Davis 6152, Vantage Pro2			
Serial No.:	<u>BC180522050</u>			
Equipment No.:	<u>SA-03-03</u>			
Date of Calibration	<u>5-Oct-2023</u>			
Next Due Date	<u>5-Apr-2024</u>			

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V1)	D = V1 - V2
0.0	0.0	0.0
1.3	1.4	-0.1
2.4	2.5	-0.1
3.5	3.5	0.0

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (V1) Marine Compass Value (V1)		$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

1. Performance Wind Speed Test - The wind meter was on-site calibrated against the anemometer

2. Performance Wind Direction Test - The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by: Wong Shing Kwai
Approved by: Henry Leung

APPENDIX B-2 COPIES OF CALIBRATION CERTIFCATES (NOISE)

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00361

Issue Date : 30 Mar 2023

: HP00236 Application No. **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Integrating Sound Level Meter. Equipment No.: : N-12-04 Manufacturer: : BSWA Technology Other information : Model No. **BSWA 308** Serial No. 580238 Microphone No. 570605 Data Bacalyad 77 Mar 2022

Test Period : 28 Mar 2023 to 28 Mar 2023	
Test Requested : Performance checking for Sound Level Meter	
Test Method : The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.	
Test conditions : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%	
Test Result : Refer to the test result(s) on page 2.	

: 1. Information of the sample description provided by the Applicant. Remark

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 30 Mar 2023

Report No.:00361Application No.:HP00236

Certificate of Calibration

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.2	+ 0.2	± 1.5
114.0	114.3	+ 0.3	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00364

Issue Date : 03 Apr 2023

: HP00240 Application No. **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Integrating Sound Level Meter. Equipment No.: : N-12-05 Manufacturer: : BSWA Technology Other information : Model No. **BSWA 308** Serial No. 580287 Microphone No. 570610 ~~~~

Date Received	:	03 Apr 2023
Test Period	:	03 Apr 2023 to 03 Apr 2023
Test Requested	:	Performance checking for Sound Level Meter
Test Method	:	The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.
Test conditions	:	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%
Test Result	:	Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.2. The result(s) relate only to the items tested or calibrated.

The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 03 Apr 2023

Report No.:00364Application No.:HP00240

Certificate of Calibration

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.2	+ 0.2	± 1.5
114.0	114.2	+ 0.2	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

Issue Date : 02 May 2023

Report No.:00370Application No.:HP00242

Certificate of Calibration

Applicant

 Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street,

Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : SN-01-01

Manufacturer: : SVANTEK

Other information	:	Model No.	SVAN 979
		Serial No.	27189
		Microphone No.	25202

Date Received	:	02 May 2023
Test Period	:	02 May 2023 to 02 May 2023
Test Requested	:	Performance checking for Sound Level Meter
Test Method	:	The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.
Test conditions	:	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%
Test Result	:	Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 02 May 2023

Report No.:00370Application No.:HP00242

Certificate of Calibration

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB	
94.0	93.9	- 0.1	± 1.5	
114.0	114.0	± 0.0	± 1.5	

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C230859 證書編號

ITEM TESTED / 送檢項 目 Description / 儀器名稱 : Manufacturer / 製造商 :	(Job No. / 序引編號:IC23-0255) Acoustical Calibrator Brüel & Kjær	Date of Receipt / 收件日期 :	7 February 2023
Model No. / 型號 :	4231		
Serial No. / 編號 :	2326353		
Supplied By / 委託者 :	Cinotech Consultants Limited		
	Room 1710, Technology Park, 18 On L Shatin, N.T. Hong Kong	ai Street,	
TEST CONDITIONS / 測詞	式條件		
Temperature / 溫度 : (2	3 ± 2)°C	Relative Humidity / 相對濕度	: $(50 \pm 25)\%$
Line Voltage / 電壓 :	-		

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 18 February 2023

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed specified limits.

These limits refer to manufacturer's published tolerances as requested by the customer.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試

核證

:	mot .
	H T Wong
	Assistant Engineer

K C Lee Engineer

Certified By :

Date of Issue 簽發日期 :

20 February 2023

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C230859 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

<u>Equipment ID</u> CL130	<u>Description</u> Universal Counter	<u>Certificate No.</u> C223647
CL281	Multifunction Acoustic Calibrator	AV210017
TST150A	Measuring Amplifier	C221750

4. Test procedure : MA100N.

- 5. Results :
- 5.1 Sound Level Accuracy

112				
	UUT	Measured Value	Mfr's Limit	Uncertainty of Measured Value
	Nominal Value	(dB)	(dB)	(dB)
	94 dB, 1 kHz	93.9	± 0.2	± 0.2
	114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Limit	(Hz)
1	1.000 0	$1 \text{ kHz} \pm 0.1 \%$	± 0.1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00373

: 09 May 2023

Issue Date

Application No. : HP00247 **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Sound Level Calibrator. Equipment No.: : N-09-02 Manufacturer: : SVANTEK Other information : Model No. SV 30A Serial No. 10965 : 05 May 2023 Date Received Test Period : 08 May 2023 to 08 May 2023 : Performance checking for Sound Level Calibrator **Test Requested** Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent. **Test conditions** : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

5

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

•

:

: 09 May 2023

Issue Date

Report No.:00373Application No.:HP00247

Certificate of Calibration

Measuring equipment

Test Result

[Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
	94.0	94.2	+ 0.2	± 0.3
	114.0	114.3	+ 0.3	± 0.5

- Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

APPENDIX C WEATHER INFORMATION

Air Temperature	Mean Relative Humidity (%)	Precipitation (mm)
	(0	0
		0
		Trace
		Trace
		0
		Trace
		0
		0
		0
		Trace
		0.3
		0.3
		Trace
		Trace
		0
		0.1
		0.1
		Trace
		0
		0
		0
		0
		0.2
		0.2
		0
		0
		Trace
		Trace
		0
		Trace
		0
	Air Temperature Mean (°C) 21.5 20.0 21.4 21.9 21.7 21.5 21.0 21.4 21.9 21.7 21.8	Mean (°C) Humidity (%) 21.5 69 20.0 70 21.4 73 21.9 76 21.7 73 21.5 67 21.7 73 21.5 67 21.0 47 21.4 68 22.9 80 23.9 80 24.2 85 24.7 80 22.3 82 23.1 81 24.4 81 18.9 71 13.4 69 17.3 80 16.8 75 13.6 65 10.9 65 10.5 51 11.0 58 13.3 52 14.9 51 16.6 63 18.7 62 20.1 73 19.4 79 20.7 70

D/ m 2022 mh

December 2023					
Table II: Wind Speed and Directions					
Date	Time	Wind Speed m/s	Direction		
1-Dec-23	0:00	1.6	SSE		
1-Dec-23	1:00	1.3	SSE		
1-Dec-23	2:00	1.0	SSW		
1-Dec-23	3:00	1.3	SSW		
1-Dec-23	4:00	1.9	S		
1-Dec-23	5:00	2.3	SSW		
1-Dec-23	6:00	2.1	S		
1-Dec-23	7:00	3.2	SSW		
1-Dec-23	8:00	1.8	S		
1-Dec-23	9:00	2.8	SSW		
1-Dec-23	10:00	3.4	SSW		
1-Dec-23	11:00	3.3	S		
1-Dec-23	12:00	3.3	SSE		
1-Dec-23	13:00	3.4	S		
1-Dec-23	14:00	3.0	S		
1-Dec-23	15:00	2.6	S		
1-Dec-23	16:00	1.9	SSW		
1-Dec-23	17:00	1.9	S		
1-Dec-23	18:00	1.8	S		
1-Dec-23	19:00	1.4	S		
1-Dec-23	20:00	2.1	S		
1-Dec-23	21:00	1.9	SSW		
1-Dec-23	22:00	1.8	S		
1-Dec-23	23:00	2.2	SSW		
2-Dec-23	0:00	2.3	SSW		
2-Dec-23	1:00	1.8	S		
2-Dec-23	2:00	2.2	S		
2-Dec-23	3:00	1.8	S		
2-Dec-23	4:00	2.1	S		
2-Dec-23	5:00	1.7	SSW		
2-Dec-23	6:00	1.2	SSW		
2-Dec-23	7:00	1.8	SSW		
2-Dec-23	8:00	2.2	SSW		
2-Dec-23	9:00	1.9	S		
2-Dec-23	10:00	1.7	SSW		
2-Dec-23	11:00	1.4	SSE		
2-Dec-23	12:00	0.9	SSE		
2-Dec-23	13:00	1.0	S		
2-Dec-23	14:00	0.7	ŚW		
2-Dec-23	15:00	1.5	W		
2-Dec-23	16:00	0.4	SE		
2-Dec-23	17:00	0.5	ESE		
2-Dec-23	18:00	0.3	S		
2-Dec-23	19:00	0.3	S		
2-Dec-23	20:00	0.1	SSE		
2-Dec-23	21:00	0.3	S		
2-Dec-23	22:00	0.8	Ŵ		
2-Dec-23	23:00	0.8	W		
2-Dec-23	23.00	0.0	vv		

December 2023					
Table	Table II: Wind Speed and Directions				
Date	Time	Wind Speed m/s	Direction		
3-Dec-23	0:00	0.8	SSE		
3-Dec-23	1:00	0.3	SW		
3-Dec-23	2:00	0.0	SW		
3-Dec-23	3:00	0.2	SSE		
3-Dec-23	4:00	0.1	SE		
3-Dec-23	5:00	0.6	SSE		
3-Dec-23	6:00	0.9	S		
3-Dec-23	7:00	1.4	SSE		
3-Dec-23	8:00	1.6	SW		
3-Dec-23	9:00	1.9	S		
3-Dec-23	10:00	1.8	Š		
3-Dec-23	11:00	2.2	Š		
3-Dec-23	12:00	2.2	S		
3-Dec-23	13:00	1.5	SSW		
3-Dec-23	14:00	1.3	SSW		
3-Dec-23	15:00	1.0	SSW		
3-Dec-23	16:00	0.5	SE		
3-Dec-23	17:00	0.8	SW		
3-Dec-23	18:00	0.8	WNW		
3-Dec-23	19:00	0.7	WSW		
3-Dec-23	20:00	0.7	SSW		
3-Dec-23	21:00	0.5	S		
3-Dec-23	22:00	0.7	S		
3-Dec-23	23:00	0.6	SSE		
4-Dec-23	0:00	0.5	SSW		
4-Dec-23	1:00	0.9	S		
4-Dec-23	2:00	0.5	S		
4-Dec-23	3:00	0.5	S		
4-Dec-23	4:00	1.2	S		
4-Dec-23	5:00	1.2	SSW		
4-Dec-23	6:00	0.9	SSW		
4-Dec-23	7:00	1.4	S		
4-Dec-23	8:00	0.9	S		
4-Dec-23	9:00	0.9	S S		
4-Dec-23	10:00	0.9			
4-Dec-23	11:00	1.1	WSW		
4-Dec-23	12:00	1.4	S		
4-Dec-23	13:00	1.2	S		
4-Dec-23	14:00	0.9	SE		
4-Dec-23	15:00	0.7	SE		
4-Dec-23	16:00	0.6	SE		
4-Dec-23	17:00	0.7	S		
4-Dec-23	18:00	0.6	SSE		
4-Dec-23	19:00	0.8	S		
4-Dec-23	20:00	1.2	SSW		
4-Dec-23	21:00	0.9	S		
4-Dec-23	22:00	0.6	S		
4-Dec-23	23:00	1.6	SSE		

December 2023					
Table II: Wind Speed and Directions					
Date	Time	Wind Speed m/s	Direction		
5-Dec-23	0:00	1.5	S		
5-Dec-23	1:00	1.4	S		
5-Dec-23	2:00	1.5	S		
5-Dec-23	3:00	1.3	SSE		
5-Dec-23	4:00	1.8	S		
5-Dec-23	5:00	1.2	S		
5-Dec-23	6:00	1.3	S		
5-Dec-23	7:00	1.4	SSE		
5-Dec-23	8:00	1.3	S		
5-Dec-23	9:00	1.5	SSW		
5-Dec-23	10:00	1.3	SSE		
5-Dec-23	11:00	1.2	SSW		
5-Dec-23	12:00	1.9	SSE		
5-Dec-23	13:00	1.4	SSE		
5-Dec-23	14:00	1.0	SSE		
5-Dec-23	15:00	0.9	SSE		
5-Dec-23	16:00	0.7	SSE		
5-Dec-23	17:00	0.5	SE		
5-Dec-23	18:00	0.3	SSE		
5-Dec-23	19:00	0.3	SSW		
5-Dec-23	20:00	0.0	S		
5-Dec-23	21:00	0.0	SSE		
5-Dec-23	22:00	0.0	S		
5-Dec-23	23:00	0.3	SE		
6-Dec-23	0:00	0.1	S		
6-Dec-23	1:00	0.3	SSE		
6-Dec-23	2:00	0.2	S		
6-Dec-23	3:00	0.2	S		
6-Dec-23	4:00	0.6	SSE		
6-Dec-23	5:00	0.4	SE		
6-Dec-23	6:00	0.5	SSE		
6-Dec-23	7:00	0.8	S		
6-Dec-23	8:00	0.9	S		
6-Dec-23	9:00	0.9	S		
6-Dec-23	10:00	1.6	S		
6-Dec-23	11:00	2.0	SSE		
6-Dec-23	12:00	2.3	S		
6-Dec-23	13:00	2.6	S		
6-Dec-23	14:00	2.3	SSE		
6-Dec-23	15:00	3.0	SSE		
6-Dec-23	16:00	2.6	S		
6-Dec-23	17:00	2.7	SSE		
6-Dec-23	18:00	2.5	SSE		
6-Dec-23	19:00	2.0	S		
6-Dec-23	20:00	1.8	SSW		
6-Dec-23	21:00	1.9	SSE		
6-Dec-23	22:00	2.0	S		
6-Dec-23	23:00	0.7	S		

December 2023				
Table	II: Wind S	peed and Direction	ns	
Date	Time	Wind Speed m/s	Direction	
7-Dec-23	0:00	0.6	S	
7-Dec-23	1:00	0.9	S	
7-Dec-23	2:00	0.4	SSE	
7-Dec-23	3:00	0.3	SSE	
7-Dec-23	4:00	0.3	SSE	
7-Dec-23	5:00	0.8	SSE	
7-Dec-23	6:00	1.3	SSE	
7-Dec-23	7:00	1.0	S	
7-Dec-23	8:00	1.1	SSW	
7-Dec-23	9:00	2.7	S	
7-Dec-23	10:00	2.1	Š	
7-Dec-23	11:00	2.0	Š	
7-Dec-23	12:00	1.8	S	
7-Dec-23	13:00	1.2	S	
7-Dec-23	14:00	1.2	SSW	
7-Dec-23	15:00	0.8	S	
7-Dec-23	16:00	0.8	SSE	
7-Dec-23	17:00	0.6	SE	
7-Dec-23	18:00	0.1	SSE	
7-Dec-23	19:00	0.0	SSE	
7-Dec-23	20:00	0.0	SSE	
7-Dec-23	21:00	0.3	SSE	
7-Dec-23	22:00	0.0	SSE	
7-Dec-23	23:00	0.0	S	
8-Dec-23	0:00	0.1	S	
8-Dec-23	1:00	0.0	SSE	
8-Dec-23	2:00	0.3	SSE	
8-Dec-23	3:00	0.5	S	
8-Dec-23	4:00	0.2	SSE	
8-Dec-23	5:00	0.1	SSE	
8-Dec-23	6:00	0.4	SSE	
8-Dec-23	7:00	0.2	S	
8-Dec-23	8:00	0.2	S	
8-Dec-23	9:00	0.4	S	
8-Dec-23	10:00	0.8	SE	
8-Dec-23	11:00	0.9	SSW	
8-Dec-23	12:00	1.0	SSE	
8-Dec-23	13:00	1.2	SSE	
8-Dec-23	14:00	1.0	S	
8-Dec-23	15:00	1.1	ESE	
8-Dec-23	16:00	1.1	SW	
8-Dec-23	17:00	0.6	S	
8-Dec-23	18:00	0.7	S	
8-Dec-23	19:00	0.4	SE	
8-Dec-23	20:00	0.1	SE	
8-Dec-23	21:00	0.3	S	
8-Dec-23	22:00	0.0	SSE	
8-Dec-23	23:00	0.8	SW	

December 2023				
Та	ble II: Wi	nd Speed and Directio	ons	
Date	Time	Wind Speed m/s	Direction	
9-Dec-23	0:00	0.5	SSE	
9-Dec-23	1:00	0.5	S	
9-Dec-23	2:00	0.6	SSE	
9-Dec-23	3:00	0.2	S	
9-Dec-23	4:00	0.4	S	
9-Dec-23	5:00	0.1	S	
9-Dec-23	6:00	0.2	SSE	
9-Dec-23	7:00	0.3	SW	
9-Dec-23	8:00	0.1	SE	
9-Dec-23	9:00	0.5	ESE	
9-Dec-23	10:00	0.7	SW	
9-Dec-23	11:00	1.0	SE	
9-Dec-23	12:00	1.2	SSW	
9-Dec-23	13:00	1.4	SE	
9-Dec-23	14:00	1.0	SSE	
9-Dec-23	15:00	0.6	SSE	
9-Dec-23	16:00	1.1	SW	
9-Dec-23	17:00	0.5	SSW	
9-Dec-23	18:00	0.7	SW	
9-Dec-23	19:00	0.5	S	
9-Dec-23	20:00	0.6	SSW	
9-Dec-23	21:00	0.8	SW	
9-Dec-23	22:00	1.0	W	
9-Dec-23	23:00	0.3	S	
10-Dec-23	0:00	0.4	ESE	
10-Dec-23	1:00	0.4	SSE	
10-Dec-23	2:00	0.2	SE	
10-Dec-23	3:00	0.5	SSE	
10-Dec-23	4:00	0.0	SSE	
10-Dec-23	5:00	0.0	S	
10-Dec-23	6:00	0.0	S	
10-Dec-23	7:00	0.0	SSE	
10-Dec-23	8:00	0.0	SE	
10-Dec-23	9:00	0.5	SE	
10-Dec-23	10:00	0.9	SE	
10-Dec-23	11:00	0.9	SE	
10-Dec-23	12:00	1.0	E	
10-Dec-23	13:00	1.6	SE	
10-Dec-23	14:00	1.5	ESE	
10-Dec-23	15:00	2.0	ESE	
10-Dec-23	16:00		SE SE	
10-Dec-23	17:00	0.4		
10-Dec-23 10-Dec-23	18:00 19:00	0.6	S S	
10-Dec-23 10-Dec-23	20:00	0.0	S	
10-Dec-23 10-Dec-23	20:00	0.2	S	
10-Dec-23	21:00	0.4	SE	
10-Dec-23	22:00	0.3	SSE	
10-Dec-23	25:00	0.3	SOL	

December 2023			
Table II: Wind Speed and Directions			
Date	Time	Wind Speed m/s	Direction
11-Dec-23	0:00	0.7	WSW
11-Dec-23	1:00	0.5	SSW
11-Dec-23	2:00	0.3	S
11-Dec-23	3:00	0.4	ESE
11-Dec-23	4:00	0.4	SW
11-Dec-23	5:00	0.4	SSE
11-Dec-23	6:00	0.2	SE
11-Dec-23	7:00	0.4	SE
11-Dec-23	8:00	0.5	SSE
11-Dec-23	9:00	0.5	S
11-Dec-23	10:00	0.5	SSW
11-Dec-23	11:00	0.7	WSW
11-Dec-23	12:00	0.9	SSE
11-Dec-23	13:00	1.4	WSW
11-Dec-23	14:00	1.2	SSW
11-Dec-23	15:00	0.7	SSW
11-Dec-23	16:00	0.5	S
11-Dec-23	17:00	0.9	ESE
11-Dec-23	18:00	0.5	SE
11-Dec-23	19:00	0.3	SW
11-Dec-23	20:00	0.2	SSE
11-Dec-23	21:00	0.1	S
11-Dec-23	22:00	0.5	S
11-Dec-23	23:00	0.3	SSE
12-Dec-23	0:00	0.0	S
12-Dec-23	1:00	0.2	S
12-Dec-23	2:00	0.4	SSE
12-Dec-23	3:00	0.5	SSE
12-Dec-23	4:00	0.3	SSE
12-Dec-23	5:00	0.1	SSE
12-Dec-23	6:00	0.0	S
12-Dec-23	7:00	0.1	SSE
12-Dec-23	8:00	1.1	SSW
12-Dec-23	9:00	2.3	S
12-Dec-23	10:00	2.8	SSW
12-Dec-23	11:00	2.1	S
12-Dec-23	12:00	2.0	S
12-Dec-23	13:00	1.9	SSW
12-Dec-23	14:00	1.3	SSW
12-Dec-23	15:00	0.9	SE
12-Dec-23	16:00	0.9	SW
12-Dec-23	17:00	1.2	SW
12-Dec-23	18:00	1.2	SW
12-Dec-23	19:00	1.2	SSW
12-Dec-23	20:00	1.3	S
12-Dec-23	21:00	1.3	SSW
12-Dec-23	22:00	1.3	WSW
12-Dec-23	23:00	1.3	S

December 2023				
Та	ble II: Wi	nd Speed and Directio	ons	
Date	Time	Wind Speed m/s	Direction	
13-Dec-23	0:00	0.6	S	
13-Dec-23	1:00	1.0	SSW	
13-Dec-23	2:00	1.2	S	
13-Dec-23	3:00	1.0	SSW	
13-Dec-23	4:00	1.1	SSW	
13-Dec-23	5:00	1.0	SSW	
13-Dec-23	6:00	1.3	SSW	
13-Dec-23	7:00	1.3	SW	
13-Dec-23	8:00	1.6	SW	
13-Dec-23	9:00	1.3	WSW	
13-Dec-23	10:00	1.1	SSW	
13-Dec-23	11:00	1.7	SSW	
13-Dec-23	12:00	1.3	SSW	
13-Dec-23	13:00	1.1	SW	
13-Dec-23	14:00	1.2	SSW	
13-Dec-23	15:00	0.7	SSW	
13-Dec-23	16:00	0.8	SW	
13-Dec-23	17:00	0.7	W	
13-Dec-23	18:00	0.9	SW	
13-Dec-23	19:00	0.9	SSW	
13-Dec-23	20:00	0.7	SSW	
13-Dec-23	21:00	0.6	S	
13-Dec-23	22:00	1.0	S	
13-Dec-23	23:00	0.6	SSW	
14-Dec-23	0:00	0.8	S	
14-Dec-23	1:00	0.8	SSW	
14-Dec-23	2:00	0.5	S	
14-Dec-23	3:00	0.6	S	
14-Dec-23	4:00	0.0	SSE	
14-Dec-23	5:00	0.3	SSW	
14-Dec-23	6:00	0.3	SSW	
14-Dec-23	7:00	0.7	S	
14-Dec-23	8:00	0.4	SSE	
14-Dec-23	9:00	0.7	S S	
14-Dec-23	10:00	0.9		
14-Dec-23	11:00	0.7	SSE	
14-Dec-23	12:00	0.8	S	
14-Dec-23	13:00	0.9	SSW	
14-Dec-23	14:00	1.1	E	
14-Dec-23	15:00	0.9	ESE	
14-Dec-23	16:00	1.0	W	
14-Dec-23	17:00	0.6	SW	
14-Dec-23	18:00	0.8	SW	
14-Dec-23	19:00	0.4	SSE	
14-Dec-23	20:00	0.8	SSW	
14-Dec-23	21:00	0.5	SE	
14-Dec-23	22:00	0.6	S	
14-Dec-23	23:00	0.3	SSE	

December 2023						
Table II: Wind Speed and Directions						
Date	Time	Wind Speed m/s	Direction			
15-Dec-23	0:00	0.2	SE			
15-Dec-23	1:00	0.0	SE			
15-Dec-23	2:00	0.2	S			
15-Dec-23	3:00	0.2	SSE			
15-Dec-23	4:00	0.0	SSW			
15-Dec-23	5:00	0.1	S			
15-Dec-23	6:00	0.3	ESE			
15-Dec-23	7:00	0.4	S			
15-Dec-23	8:00	0.5	SSE			
15-Dec-23	9:00	0.5	SE			
15-Dec-23	10:00	0.9	SSW			
15-Dec-23	11:00	1.3	SE			
15-Dec-23	12:00	1.3	SE			
15-Dec-23	13:00	1.2	SE			
15-Dec-23	14:00	0.9	SE			
15-Dec-23	15:00	1.3	S			
15-Dec-23	16:00	1.0	S			
15-Dec-23	17:00	1.0	SE			
15-Dec-23	18:00	0.5	SE			
15-Dec-23	19:00	0.5	SSE			
15-Dec-23	20:00	0.6	S			
15-Dec-23	21:00	0.6	SW			
15-Dec-23	22:00	1.2	W			
15-Dec-23	23:00	0.7	SSW			
16-Dec-23	0:00	0.8	SSW			
16-Dec-23	1:00	0.7	SSE			
16-Dec-23	2:00	0.4	S			
16-Dec-23	3:00	0.4	SSE			
16-Dec-23	4:00	0.0	SSE			
16-Dec-23	5:00	0.5	SSE			
16-Dec-23	6:00	2.8	SSE			
16-Dec-23	7:00	3.2	SSW			
16-Dec-23	8:00	3.3	S			
16-Dec-23	9:00	3.4	S			
16-Dec-23	10:00	4.0	S			
16-Dec-23	11:00	4.6	S			
16-Dec-23	12:00	4.8	SSE			
16-Dec-23	13:00	4.5	SSE			
16-Dec-23	14:00	4.0	S			
16-Dec-23	15:00	3.4	S			
16-Dec-23	16:00	4.1	SSW			
16-Dec-23	17:00	3.4	S			
16-Dec-23	18:00	3.0	SSW			
16-Dec-23	19:00	3.4	SSW			
16-Dec-23	20:00	2.6	S			
16-Dec-23	21:00	3.3	S			
16-Dec-23	22:00	2.5	S			
16-Dec-23	23:00	4.1	SSW			

December 2023							
Та	Table II: Wind Speed and Directions						
Date	Time	Wind Speed m/s	Direction				
		2.7					
17-Dec-23 17-Dec-23	0:00 1:00	3.2	SSW S				
17-Dec-23	2:00	2.9 3.1	SSW S				
17-Dec-23	3:00	3.5	SSE				
17-Dec-23	4:00	2.5	SSE				
17-Dec-23	5:00	2.3	SSW				
17-Dec-23	6:00	2.5	S				
17-Dec-23 17-Dec-23	7:00 8:00	2.4	SSW				
		2.0	SSW				
17-Dec-23	9:00	2.9					
17-Dec-23	10:00		S S				
17-Dec-23	11:00	2.0 2.2					
17-Dec-23	12:00		SSW SSW				
17-Dec-23	13:00	<u> </u>	SSW SSW				
17-Dec-23	14:00 15:00	1.7	SSW SSW				
17-Dec-23		2.8	SSW				
17-Dec-23	16:00 17:00	2.8	S				
17-Dec-23 17-Dec-23		2.4					
	18:00		SSW				
17-Dec-23	19:00	1.6	S				
17-Dec-23	20:00	1.6	S				
17-Dec-23	21:00	1.8	SSW				
17-Dec-23	22:00	1.4	SSW				
17-Dec-23	23:00	<u>1.5</u> 1.3	SSW SSW				
18-Dec-23	0:00	1.5					
18-Dec-23	1:00 2:00	1.4	S SSW				
18-Dec-23 18-Dec-23	3:00	1.2	SW				
18-Dec-23	4:00	1.1	SW				
	5:00	0.7	S				
18-Dec-23 18-Dec-23		0.4	SSW				
	6:00	0.4	S				
18-Dec-23	7:00	1.2	SW				
18-Dec-23 18-Dec-23	8:00 9:00						
18-Dec-23	10:00	<u> </u>	S S				
18-Dec-23			SSW				
18-Dec-23	11:00 12:00	<u> </u>	SSW S				
18-Dec-23	12:00	1.1	S				
18-Dec-23	13:00	0.6	S				
18-Dec-23	14:00	1.1	SSE				
18-Dec-23		1.1	SSE S				
18-Dec-23	16:00 17:00	1.4	S				
		0.8	S				
18-Dec-23	18:00	0.8	S				
18-Dec-23	19:00	0.8	SSE				
18-Dec-23	20:00						
18-Dec-23	21:00	1.0	S S				
18-Dec-23	22:00	0.8	S				
18-Dec-23	23:00	1.0	2				

December 2023							
Table	Table II: Wind Speed and Directions						
Date	Time	Wind Speed m/s	Direction				
19-Dec-23	0:00	1.5	SSE				
19-Dec-23	1:00	2.2	SSE				
19-Dec-23	2:00	1.6	SSE				
19-Dec-23	3:00	1.5	SSE				
19-Dec-23	4:00	2.0	SSE				
19-Dec-23	5:00	1.7	S				
19-Dec-23	6:00	1.9	Š				
19-Dec-23	7:00	1.7	S				
19-Dec-23	8:00	2.3	SSE				
19-Dec-23	9:00	2.4	S				
19-Dec-23	10:00	2.7	SSE				
19-Dec-23	11:00	2.9	SSE				
19-Dec-23	12:00	2.6	SSE				
19-Dec-23	13:00	1.7	SSE				
19-Dec-23	14:00	2.6	S				
19-Dec-23	15:00	2.8	SSE				
19-Dec-23	16:00	2.7	SSE				
19-Dec-23	17:00	2.5	S				
19-Dec-23	18:00	2.6	SSE				
19-Dec-23	19:00	2.4	S				
19-Dec-23	20:00	3.0	S				
19-Dec-23	21:00	2.7	SSE				
19-Dec-23	22:00	2.8	SSE				
19-Dec-23	23:00	2.9	S				
20-Dec-23	0:00	2.6	S				
20-Dec-23	1:00	2.3	S				
20-Dec-23	2:00	1.9	SSW				
20-Dec-23	3:00	1.8	S				
20-Dec-23	4:00	2.5	SSW				
20-Dec-23	5:00	2.9	S				
20-Dec-23	6:00	2.1	S				
20-Dec-23	7:00	3.0	SSE				
20-Dec-23	8:00	3.3	S				
20-Dec-23	9:00	3.3	SSE				
20-Dec-23	10:00	3.2	SSE				
20-Dec-23	11:00	3.7	S				
20-Dec-23	12:00	4.0	S				
20-Dec-23	13:00	3.0	S				
20-Dec-23	14:00	3.2	S				
20-Dec-23	15:00	3.6	SSE				
20-Dec-23	16:00	3.5	SSE				
20-Dec-23	17:00	3.5	SSE				
20-Dec-23	18:00	3.5	SSE				
20-Dec-23	19:00	3.1	SSE				
20-Dec-23	20:00	2.1	SSW				
20-Dec-23	21:00	3.2	SSW				
20-Dec-23	22:00	2.6	SSW				
20-Dec-23	23:00	2.5	S				

December 2023 Table II: Wind Speed and Directions Date Time Wind Speed m/s Direction 21-Dec-23 0:00 2.9 S 21-Dec-23 1:00 2.4 S 21-Dec-23 2:00 2.7 SSE 21-Dec-23 3:00 2.9 S 21-Dec-23 3:00 2.9 S 21-Dec-23 5:00 2.4 S 21-Dec-23 7:00 2.3 S 21-Dec-23 7:00 2.3 S 21-Dec-23 10:00 2.7 S 21-Dec-23 10:00 2.9 S 21-Dec-23 12:00 2.5 S 21-Dec-23 13:00 3.5 S 21-Dec-23	
DateTimeWind Speed m/sDirection $21-\text{Dec}-23$ $0:00$ 2.9 S $21-\text{Dec}-23$ $1:00$ 2.4 S $21-\text{Dec}-23$ $2:00$ 2.7 SSE $21-\text{Dec}-23$ $3:00$ 2.9 S $21-\text{Dec}-23$ $3:00$ 2.9 S $21-\text{Dec}-23$ $4:00$ 3.6 S $21-\text{Dec}-23$ $5:00$ 2.4 S $21-\text{Dec}-23$ $6:00$ 2.5 S $21-\text{Dec}-23$ $6:00$ 2.5 S $21-\text{Dec}-23$ $9:00$ 2.6 S $21-\text{Dec}-23$ $9:00$ 2.6 S $21-\text{Dec}-23$ $10:00$ 2.7 S $21-\text{Dec}-23$ $10:00$ 2.7 S $21-\text{Dec}-23$ $12:00$ 2.5 S $21-\text{Dec}-23$ $12:00$ 2.5 S $21-\text{Dec}-23$ $12:00$ 3.5 S $21-\text{Dec}-23$ $12:00$ 3.5 S $21-\text{Dec}-23$ $12:00$ 3.5 S $21-\text{Dec}-23$ $13:00$ 3.6 S $21-\text{Dec}-23$ $15:00$ 3.9 S $21-\text{Dec}-23$ $19:00$ 3.4 S $21-\text{Dec}-23$ $20:00$ 3.0 SSW $21-\text{Dec}-23$ $21:00$ 3.5 SSW $21-$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
21-Dec-23 13:00 3.5 S 21-Dec-23 14:00 3.6 S 21-Dec-23 15:00 3.9 S 21-Dec-23 16:00 4.2 SSE 21-Dec-23 16:00 4.2 SSE 21-Dec-23 17:00 3.8 SSE 21-Dec-23 17:00 3.8 SSE 21-Dec-23 19:00 3.6 SSW 21-Dec-23 19:00 3.4 S 21-Dec-23 20:00 3.0 SSW 21-Dec-23 21:00 3.5 SSW 21-Dec-23 21:00 3.5 SSW 21-Dec-23 23:00 3.7 SSW 21-Dec-23 0:00 2.8 S 22-Dec-23 0:00 2.8 S 22-Dec-23 1:00 3.2 S 22-Dec-23 2:00 2.4 SSE	
21-Dec-2314:003.6S21-Dec-2315:003.9S21-Dec-2316:004.2SSE21-Dec-2317:003.8SSE21-Dec-2318:003.6SSW21-Dec-2319:003.4S21-Dec-2320:003.0SSW21-Dec-2321:003.5SSW21-Dec-2321:003.5SSW21-Dec-2322:003.7SSW21-Dec-2323:003.5S22-Dec-230:002.8S22-Dec-231:003.2S22-Dec-232:002.4SSE	
21-Dec-2315:003.9S21-Dec-2316:004.2SSE21-Dec-2317:003.8SSE21-Dec-2318:003.6SSW21-Dec-2319:003.4S21-Dec-2320:003.0SSW21-Dec-2321:003.5SSW21-Dec-2322:003.7SSW21-Dec-2323:003.5S22-Dec-230:002.8S22-Dec-231:003.2S22-Dec-232:002.4SSE	
21-Dec-2316:004.2SSE21-Dec-2317:003.8SSE21-Dec-2318:003.6SSW21-Dec-2319:003.4S21-Dec-2320:003.0SSW21-Dec-2321:003.5SSW21-Dec-2322:003.7SSW21-Dec-2323:003.5S21-Dec-2323:003.5S22-Dec-230:002.8S22-Dec-231:003.2S22-Dec-232:002.4SSE	
21-Dec-2317:003.8SSE21-Dec-2318:003.6SSW21-Dec-2319:003.4S21-Dec-2320:003.0SSW21-Dec-2321:003.5SSW21-Dec-2322:003.7SSW21-Dec-2323:003.5S22-Dec-230:002.8S22-Dec-231:003.2S22-Dec-232:002.4SSE	
21-Dec-2318:003.6SSW21-Dec-2319:003.4S21-Dec-2320:003.0SSW21-Dec-2321:003.5SSW21-Dec-2322:003.7SSW21-Dec-2323:003.5S22-Dec-230:002.8S22-Dec-231:003.2S22-Dec-232:002.4SSE	
21-Dec-23 19:00 3.4 S 21-Dec-23 20:00 3.0 SSW 21-Dec-23 21:00 3.5 SSW 21-Dec-23 22:00 3.7 SSW 21-Dec-23 23:00 3.5 S 21-Dec-23 23:00 3.5 S 22-Dec-23 0:00 2.8 S 22-Dec-23 1:00 3.2 S 22-Dec-23 2:00 2.4 SSE	
21-Dec-2320:003.0SSW21-Dec-2321:003.5SSW21-Dec-2322:003.7SSW21-Dec-2323:003.5S22-Dec-230:002.8S22-Dec-231:003.2S22-Dec-232:002.4SSE	
21-Dec-23 21:00 3.5 SSW 21-Dec-23 22:00 3.7 SSW 21-Dec-23 23:00 3.5 S 22-Dec-23 0:00 2.8 S 22-Dec-23 1:00 3.2 S 22-Dec-23 2:00 2.4 SSE	
21-Dec-2322:003.7SSW21-Dec-2323:003.5S22-Dec-230:002.8S22-Dec-231:003.2S22-Dec-232:002.4SSE	
21-Dec-23 23:00 3.5 S 22-Dec-23 0:00 2.8 S 22-Dec-23 1:00 3.2 S 22-Dec-23 2:00 2.4 SSE	
22-Dec-23 0:00 2.8 S 22-Dec-23 1:00 3.2 S 22-Dec-23 2:00 2.4 SSE	
22-Dec-23 1:00 3.2 S 22-Dec-23 2:00 2.4 SSE	
22-Dec-23 2:00 2.4 SSE	
22-Dec-23 3:00 3.5 S	
22-Dec-23 4:00 3.2 SSE	
22-Dec-23 5:00 2.6 SSW	
22-Dec-23 6:00 3.1 SSW	
22-Dec-23 7:00 2.6 S	
22-Dec-23 8:00 3.0 S	
22-Dec-23 9:00 2.9 S	
22-Dec-23 10:00 2.5 SSW	
22-Dec-23 11:00 2.4 S	
22-Dec-23 12:00 1.9 SSW	
22-Dec-23 13:00 1.9 SW	
22-Dec-23 14:00 1.7 S	
22-Dec-23 15:00 1.9 S	
22-Dec-23 16:00 2.0 S	
22-Dec-23 17:00 1.8 SSE	
22-Dec-23 18:00 1.5 S	
22-Dec-23 19:00 1.3 SSW	
22-Dec-23 20:00 1.1 S	
22-Dec-23 21:00 1.2 S	
22-Dec-23 22:00 1.7 S	
22-Dec-23 23:00 2.6 S	

December 2023						
Table II: Wind Speed and Directions						
Date	Time	Wind Speed m/s	Direction			
23-Dec-23	0:00	2.1	SSW			
23-Dec-23	1:00	2.3	S			
23-Dec-23	2:00	2.4	S			
23-Dec-23	3:00	3.2	SSE			
23-Dec-23	4:00	2.8	SSE			
23-Dec-23	5:00	3.3	SSE			
23-Dec-23	6:00	2.5	S			
23-Dec-23	7:00	2.5	S			
23-Dec-23	8:00	2.6	SSE			
23-Dec-23	9:00	2.3	S			
23-Dec-23	10:00	2.3	Ŝ			
23-Dec-23	11:00	2.1	S			
23-Dec-23	12:00	2.5	SSE			
23-Dec-23	13:00	2.9	SSE			
23-Dec-23	14:00	2.6	S			
23-Dec-23	15:00	2.3	SSE			
23-Dec-23	16:00	2.3	S			
23-Dec-23	17:00	2.1	SSW			
23-Dec-23	18:00	2.0	S			
23-Dec-23	19:00	2.1	S			
23-Dec-23	20:00	1.6	SSW			
23-Dec-23	21:00	2.0	SSW			
23-Dec-23	22:00	2.3	SSW			
23-Dec-23	23:00	1.7	SSW			
24-Dec-23	0:00	1.7	SSW			
24-Dec-23	1:00	1.4	S			
24-Dec-23	2:00	1.6	S			
24-Dec-23	3:00	1.1	S			
24-Dec-23	4:00	1.4	SSW			
24-Dec-23	5:00	1.1	SW			
24-Dec-23	6:00	0.6	S			
24-Dec-23	7:00	0.8	S			
24-Dec-23	8:00	1.6	SSW			
24-Dec-23	9:00	2.2	S			
24-Dec-23	10:00	2.0	SSW			
24-Dec-23	11:00	3.5	SSE			
24-Dec-23	12:00	3.0	SSE			
24-Dec-23	13:00	3.0	S			
24-Dec-23	14:00	2.4	S			
24-Dec-23	15:00	2.7	S			
24-Dec-23	16:00	2.6	SSE			
24-Dec-23	17:00	1.7	S			
24-Dec-23	18:00	2.3	S			
24-Dec-23	19:00	1.4	SSW			
24-Dec-23	20:00	1.0	S			
24-Dec-23	21:00	0.5	S			
24-Dec-23	22:00	1.4	SSE			
24-Dec-23	23:00	0.8	S			

December 2023						
Та	Table II: Wind Speed and Directions					
		-	1			
Date	Time	Wind Speed m/s	Direction			
25-Dec-23	0:00	1.3	S			
25-Dec-23	1:00	1.4	SW			
25-Dec-23	2:00	1.4	S S			
25-Dec-23	3:00	1.4				
25-Dec-23	4:00	1.2	SSW			
25-Dec-23	5:00	1.5	S			
25-Dec-23	6:00	0.9	SSW			
25-Dec-23	7:00	1.4	S			
25-Dec-23	8:00	2.0	SSW			
25-Dec-23	9:00	2.4	S			
25-Dec-23	10:00	2.1	S			
25-Dec-23	11:00	1.8	S			
25-Dec-23	12:00	2.0	S			
25-Dec-23	13:00	1.8	S			
25-Dec-23	14:00	1.6	SSE			
25-Dec-23	15:00	1.5	S			
25-Dec-23	16:00	1.1	SSE			
25-Dec-23	17:00	0.1	ESE			
25-Dec-23	18:00	0.0	SE			
25-Dec-23	19:00	0.2	SSE			
25-Dec-23	20:00	0.0	S			
25-Dec-23	21:00	0.1	SSE			
25-Dec-23	22:00	0.0	SE			
25-Dec-23	23:00	0.0	S S			
26-Dec-23	0:00	0.1				
26-Dec-23	1:00	0.1	SSE			
26-Dec-23	2:00	0.0	SSE			
26-Dec-23	3:00	0.4	SSE			
26-Dec-23	4:00	0.0	SE			
26-Dec-23	5:00	0.4	S			
26-Dec-23	6:00	0.1	SE			
26-Dec-23	7:00	0.1	S			
26-Dec-23	8:00	0.7	SSE			
26-Dec-23	9:00	1.4	SSW			
26-Dec-23	10:00	1.9	SSW			
26-Dec-23	11:00	2.0	S			
26-Dec-23	12:00	2.0	SSE			
26-Dec-23	13:00	1.3	S			
26-Dec-23	14:00	1.1	S			
26-Dec-23	15:00	0.7	SSW			
26-Dec-23	16:00	0.6	SSW			
26-Dec-23	17:00	0.5	E			
26-Dec-23	18:00	0.2	S			
26-Dec-23	19:00	0.0	SSE			
26-Dec-23	20:00	0.0	SE			
26-Dec-23	21:00	0.0	SE			
26-Dec-23	22:00	0.0	S			
26-Dec-23	23:00	0.0	SSE			

December 2023							
Table	Table II: Wind Speed and Directions						
Date	Time	Wind Speed m/s	Direction				
27-Dec-23	0:00	0.0	SE				
27-Dec-23	1:00	0.1	SSE				
27-Dec-23	2:00	0.1	SSE				
27-Dec-23	3:00	0.0	SE				
27-Dec-23	4:00	0.0	SSE				
27-Dec-23	5:00	0.0	SE				
27-Dec-23	6:00	0.0	SSE				
27-Dec-23	7:00	0.0	SE				
27-Dec-23	8:00	0.2	SSE				
27-Dec-23	9:00	0.5	SSE				
27-Dec-23	10:00	1.3	S				
27-Dec-23	11:00	1.3	SSW				
27-Dec-23	12:00	1.5	S				
27-Dec-23	13:00	1.4	S				
27-Dec-23	14:00	0.6	S				
27-Dec-23	15:00	0.9	SE				
27-Dec-23	16:00	0.6	ESE				
27-Dec-23	17:00	0.7	S				
27-Dec-23	18:00	0.2	SSE				
27-Dec-23	19:00	0.2	SE				
27-Dec-23	20:00	0.4	SSW				
27-Dec-23	21:00	0.2	S				
27-Dec-23	22:00	0.3	SE				
27-Dec-23	23:00	0.0	SE				
28-Dec-23	0:00	0.1	SE				
28-Dec-23	1:00	0.4	SSE				
28-Dec-23	2:00	0.5	S				
28-Dec-23	3:00	0.2	S				
28-Dec-23	4:00	0.3	SE				
28-Dec-23	5:00	0.1	SSE				
28-Dec-23	6:00	0.2	SSW				
28-Dec-23	7:00	0.2	S				
28-Dec-23	8:00	0.5	SSW				
28-Dec-23	9:00	0.4	S				
28-Dec-23	10:00	1.3	S				
28-Dec-23	11:00	1.4	SSW				
28-Dec-23	12:00	1.3	SSE				
28-Dec-23	13:00	1.1	SSE				
28-Dec-23	14:00	1.0	SSE				
28-Dec-23	15:00	0.8	SSE				
28-Dec-23	16:00	1.0	Е				
28-Dec-23	17:00	0.4	Е				
28-Dec-23	18:00	0.3	SSW				
28-Dec-23	19:00	0.0	ESE				
28-Dec-23	20:00	0.1	SE				
28-Dec-23	21:00	0.1	SSE				
28-Dec-23	22:00	0.0	SSW				
28-Dec-23	23:00	0.1	ESE				

December 2023				
Та	ble II: Wi	nd Speed and Directio	ons	
Date	Time	Wind Speed m/s	Direction	
29-Dec-23	0:00	0.0	SSE	
29-Dec-23	1:00	0.4	S	
29-Dec-23	2:00	0.1	Ŝ	
29-Dec-23	3:00	0.0	S	
29-Dec-23	4:00	0.0	SSE	
29-Dec-23	5:00	0.0	SW	
29-Dec-23	6:00	0.1	S	
29-Dec-23	7:00	0.0	S	
29-Dec-23	8:00	0.2	S	
29-Dec-23	9:00	0.5	S	
29-Dec-23	10:00	0.9	S	
29-Dec-23	11:00	0.9	S	
29-Dec-23	12:00	1.1	SSE	
29-Dec-23	13:00	1.1	SSE	
29-Dec-23	14:00	1.2	SE	
29-Dec-23	15:00	0.9	S	
29-Dec-23	16:00	0.8	SE	
29-Dec-23	17:00	0.8	ESE	
29-Dec-23	18:00	0.5	SSE	
29-Dec-23	19:00	0.4	S	
29-Dec-23	20:00	0.2	SE	
29-Dec-23	21:00	0.3	S	
29-Dec-23	22:00	0.2	SE	
29-Dec-23	23:00	0.2	S	
30-Dec-23	0:00	0.2	S	
30-Dec-23	1:00	0.0	SSE	
30-Dec-23	2:00	0.2	SSE	
30-Dec-23	3:00	0.2	SSE	
30-Dec-23	4:00	0.0	S	
30-Dec-23	5:00	0.2	SSE	
30-Dec-23	6:00	0.4	S	
30-Dec-23	7:00	0.3	S S	
30-Dec-23	8:00	0.3		
30-Dec-23	9:00 10:00	<u> </u>	SSW SSW	
30-Dec-23				
30-Dec-23	11:00 12:00	1.2	SSW SSE	
30-Dec-23 30-Dec-23	12:00	1.0	SSE S	
30-Dec-23	13:00	0.9	SE	
30-Dec-23	15:00	1.0	SE	
30-Dec-23	16:00	1.0	ESE	
30-Dec-23	17:00	1.0	SE	
30-Dec-23	17:00	0.9	S	
30-Dec-23	19:00	1.0	S	
30-Dec-23	20:00	0.8	S	
30-Dec-23	20:00	0.1	SE	
30-Dec-23	21:00	0.0	S	
30-Dec-23	23:00	0.0	SSE	

December 2023							
Table II: Wind Speed and Directions							
Date	Time	Fime Wind Speed m/s Direction					
31-Dec-23	0:00	0.0	S				
31-Dec-23	1:00	0.2	S				
31-Dec-23	2:00	0.0	S				
31-Dec-23	3:00	0.4	S				
31-Dec-23	4:00	0.2	S				
31-Dec-23	5:00	0.0	SSW				
31-Dec-23	6:00	0.0	SSE				
31-Dec-23	7:00	0.0	SSE				
31-Dec-23	8:00	0.1	S				
31-Dec-23	9:00	0.8	WSW				
31-Dec-23	10:00	1.5	SSE				
31-Dec-23	11:00	1.4	SSW				
31-Dec-23	12:00	1.0	S				
31-Dec-23	13:00	0.9	SSW				
31-Dec-23	14:00	1.0	S				
31-Dec-23	15:00	0.9	SE				
31-Dec-23	16:00	0.9	SSE				
31-Dec-23	17:00	0.4	ESE				
31-Dec-23	18:00	0.1	SSE				
31-Dec-23	19:00	0.0	SE				
31-Dec-23	20:00	0.2	SSE				
31-Dec-23	21:00	0.1	SE				
31-Dec-23	22:00	0.3	SSE				
31-Dec-23	23:00	0.7	S				

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for December 2023

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Dec	2-Dec
3-Dec	4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-De
		1-hr TSP x 3 [AM2]				
		Noise [M3(A), M4 &				
	24-hr TSP [AM2(A)]	M5(C)]				24-hr TSP [AM2(A)]
10-Dec	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec	16-De
	1-hr TSP x 3 [AM2]					1-hr TSP x 3 [AM2]
	Noise [M3(A), M4 &					
	M5(C)]				24-hr TSP [AM2(A)]	
17-Dec	18-Dec	19-Dec	20-Dec	21-Dec	22-Dec	23-Dec
					1-hr TSP x 3 [AM2]	
					NI-P INTO(A) NTA P	
					Noise [M3(A), M4 &	
				24-hr TSP [AM2(A)]	M5(C)]	
24-Dec	25-Dec	26-Dec	27-Dec		29-Dec	30-De
				1-hr TSP x 3 [AM2]		
				Notes IM2(A) M4 9		
				Noise [M3(A), M4 &		
			24-hr TSP [AM2(A)]	M5(C)]		
31-Dec						

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

* The noise level limit is 65dB(A) during the exam period

Air Quality Monitoring Station

Noise Monitoring Station

AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School M3(A) - The Bridge connecting The Latitude M4 - Lee Kau Yan Memorial School M5(C) - Mercy Grace's Home

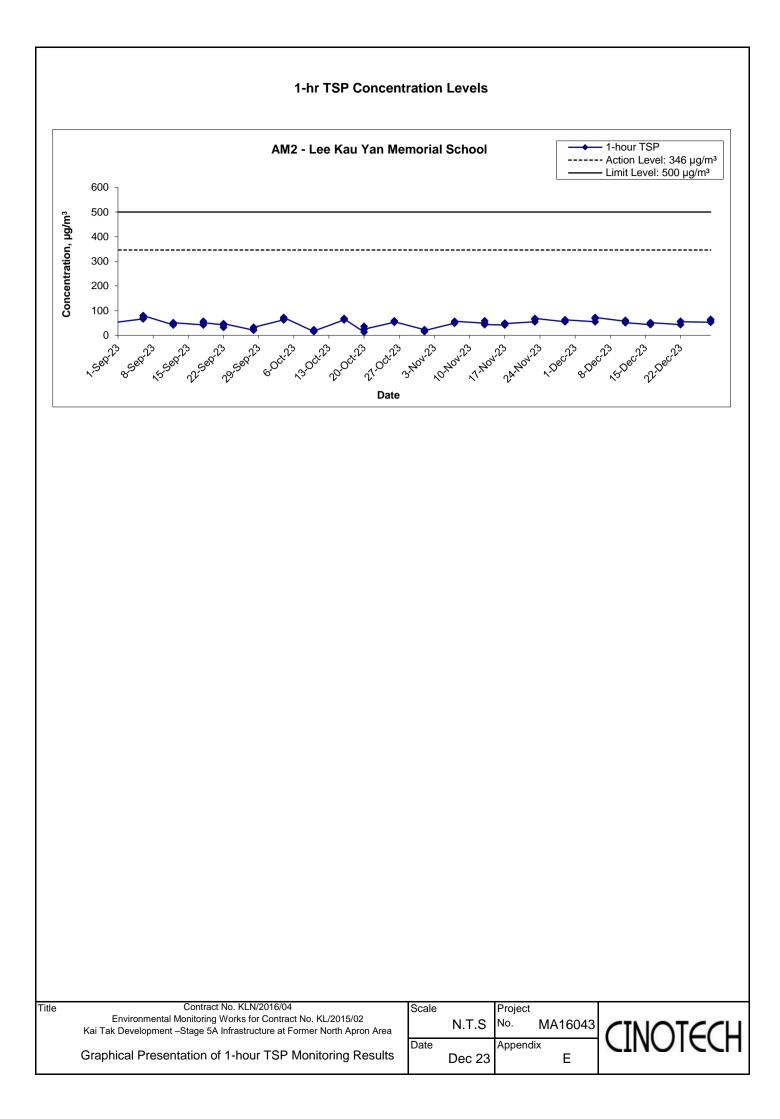
Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development –Stage 5A Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for January 2024

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Jan	2-Jan		4-Jan	5-Jan	6-Jan
			1-hr TSP x 3 [AM2]			
			Noise [M3(A), M4 &			
		24-hr TSP [AM2(A)]				
7-Jan	8-Jan	9-Jan		11-Jan	12-Jan	13-Jan
/ Juli	0 bui	1-hr TSP x 3 [AM2]	10 541	11 5411	12 5411	10 041
		Noise [M3(A), M4 &				
	24-hr TSP [AM2(A)]					24-hr TSP [AM2(A)]
14-Jan		16-Jan	17-Jan	18-Jan	19-Jan	20-Jan
	1-hr TSP x 3 [AM2]				1-hr TSP x 3 [AM2]	
	Noise [M3(A), M4 &					
	M5(C)]			24-hr TSP [AM2(A)]		
21-Jan		23-Jan	24-Jan		26-Jan	27-Jan
				1-hr TSP x 3 [AM2]		
				Noise [M3(A), M4 &		
			24-hr TSP [AM2(A)]			
28-Jan	29-Jan	30-Jan				
20-Jan	29-Jail		1-hr TSP x 3 [AM2]			
			Noise [M3(A), M4 &			
		24-hr TSP [AM2(A)]	M5(C)]			

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

* The noise level limit is 65dB(A) during the exam period

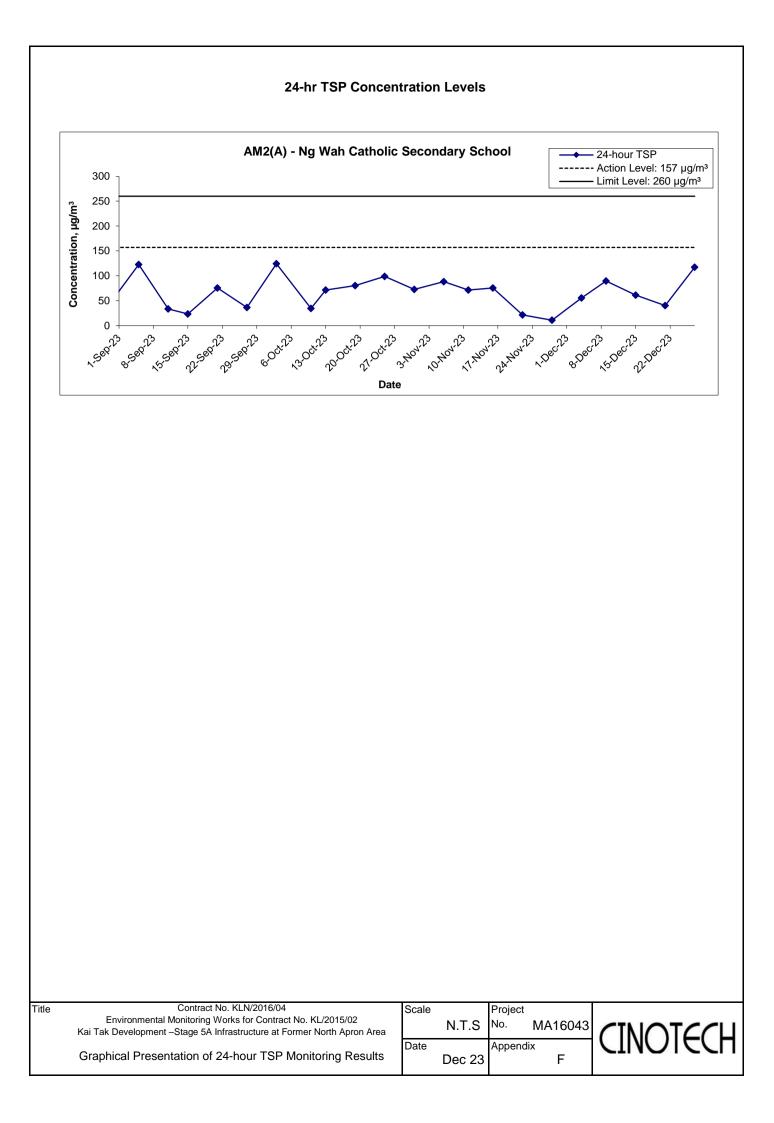
Air Quality Monitoring Station


Noise Monitoring Station

AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School M3(A) - The Bridge connecting The Latitude M4 - Lee Kau Yan Memorial School M5(C) - Mercy Grace's Home

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

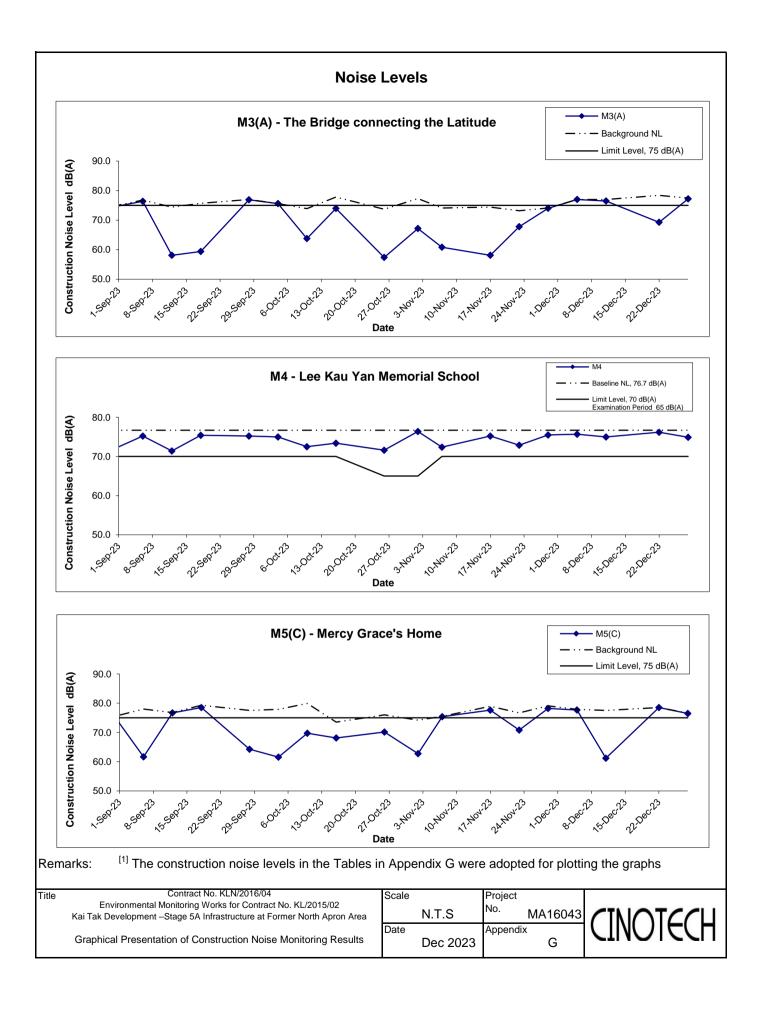
Appendix E - 1-hour TSP Monitoring Results


Location AM2 -	Location AM2 - Lee Kau Yan Memorial School							
Date	Time	Weather	Particulate Concentration (µg/m ³)					
5-Dec-23	11:15	Fine	55.1					
5-Dec-23	12:15	Fine	68.4					
5-Dec-23	13:15	Fine	72.2					
11-Dec-23	13:00	Fine	57.0					
11-Dec-23	14:00	Fine	60.8					
11-Dec-23	15:00	Fine	51.3					
16-Dec-23	11:00	Fine	43.7					
16-Dec-23	12:00	Fine	51.3					
16-Dec-23	13:00	Fine	51.3					
22-Dec-23	16:00	Fine	43.7					
22-Dec-23	17:00	Fine	57.0					
22-Dec-23	18:00	Fine	55.1					
28-Dec-23	11:00	Sunny	53.2					
28-Dec-23	12:00	Sunny	58.9					
28-Dec-23	13:00	Sunny	64.6					
		Average	56.2					
		Maximum	72.2					
		Minimum	43.7					

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

Start Date	Weather	Air Temp.	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	ə (m³/min.)	Av. Flow	Total vol.	Conc.
Start Date	Condition	(K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time (hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
4-Dec-23	Fine	294.8	763.3	3.7047	3.8027	0.0980	11608.3	11632.3	24.0	1.23	1.23	1.23	1767.9	55.4
9-Dec-23	Fine	296.4	761.7	3.3492	3.5070	0.1579	11632.3	11656.3	24.0	1.22	1.22	1.22	1762.2	89.6
15-Dec-23	Fine	294.7	764.8	3.3349	3.4435	0.1086	11656.3	11680.3	24.0	1.22	1.24	1.23	1769.9	61.3
21-Dec-23	Fine	283.7	772.5	3.3693	3.4419	0.0726	11680.3	11704.3	24.0	1.25	1.26	1.25	1806.6	40.2
27-Dec-23	Fine	292.4	768.4	3.4204	3.6291	0.2088	11704.3	11728.3	24.0	1.24	1.23	1.24	1779.2	117.3
													Min	40.2
													Max	117.3
													Average	72.8


APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix G - Noise Monitoring Results

Location M3(A) - The Bridge connecting The Latitude								
					ι	Jnit: dB (A) (30-min)		
Date	Time	Weather	Measured Noise Level Background Noise		Construction Noise Level			
			L _{eq}	L ₁₀	L ₉₀	L _{eq}		L _{eq}
5-Dec-23	11:29	Sunny	77.0	79.0	74.1	77.0	77.0	Measured ≦ Background
11-Dec-23	13:00	Fine	76.5	78.6	74.0	77.0	76.5	Measured ≤ Background
22-Dec-23	17:22	Sunny	78.9	81.0	75.6	78.4	69.3	
28-Dec-23	9:00	Sunny	77.2	79.2	74.2	77.5	77.2	Measured \leq Background

Location M4 -	Location M4 - Lee Kau Yan Memorial School									
					U	Init: dB (A) (30-min)				
Date	Time Weather		Measured Noise Level			Baseline Level	Construction Noise Level			
			L _{eq}	L ₁₀	L ₉₀	L _{eq}		L _{eq}		
5-Dec-23	9:00	Fine	75.7	77.2	73.8		75.7	Measured \leq Baseline		
11-Dec-23	14:15	Fine	75.0	76.8	73.3	76.7	75.0	Measured \leq Baseline		
22-Dec-23	16:00	Sunny	76.2	77.6	74.3	70.7	76.2	Measured \leq Baseline		
28-Dec-23	11:15	Sunny	74.9	77.1	72.2		74.9	Measured \leq Baseline		

Location M5(C) - Mercy Grace's Home									
					l	Unit: dB (A) (30-min)			
Date	Time	Weather	Measured Noise Level		evel	Background Noise	Construction Noise Level		
			L _{eq}	L ₁₀	L ₉₀	L _{eq}		L _{eq}	
5-Dec-23	14:16	Sunny	77.7	79.8	74.1	77.9	77.7	Measured ≤ Background	
11-Dec-23	15:30	Fine	77.6	79.4	74.8	77.5	61.2		
22-Dec-23	15:00	Sunny	78.5	80.7	75.2	78.5	78.5	$Measured \leq Background$	
28-Dec-23	13:02	Sunny	76.5	78.7	72.5	76.6	76.5	Measured ≦ Background	

APPENDIX H SUMMARY OF EXCEEDANCE

Appendix H – Summary of Exceedance

Exceedance Record for Contract No. KL/2015/02 Reporting Month: December 2023

- (A) Exceedance Record for Air Quality (NIL in the reporting month)
- (B) Exceedance Record for Construction Noise (NIL in the reporting month)
- (C) Exceedance Record for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Checklist Reference Number	231204
Date	04 December 2023 (Monday)
Time	14:00 - 16:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	• No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	• No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	No follow-up items are required from the previous site inspection (ref no.: 231127).	

	Name	Signature	Date
Recorded by	Charles Fung	- Chran	04 December 2023
Checked by	Colman Wong	Colman	06 December 2023

Checklist Reference Number	231213
Date	13 December 2023 (Wednesday)
Time	09:30 - 11:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	No follow-up items are required from the previous site inspection (ref no.: 231204).	

	Name	Signature	Date
Recorded by	KK Kwan	J. H. Hyman	13 December 2023
Checked by	Charles Fung	- Chran	15 December 2023

Checklist Reference Number	231218
Date	18 December 2023 (Monday)
Time	14:00 - 16:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	• No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	No follow-up items are required from the previous site inspection (ref no.: 231213).	

	Name	Signature	Date
Recorded by	Serena Ng	<	18 December 2023
Checked by	Charles Fung	- Chran	20 December 2023

Checklist Reference Number	231227
Date	27 December 2023 (Wednesday)
Time	10:00 - 11:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No
	B. Water Quality	
231227-R1	• Bund should be provided to the surround area of earthworks for flood protection. / Manholes should be covered and sealed.	B07 & B16
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	No follow-up items are required from the previous site inspection (ref no.: 231218).	

	Name	Signature	Date
Recorded by	Charles Fung	- Chran	27 December 2023
Checked by	Colman Wong	Colman	29 December 2023

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;		
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if		
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.		
	3. Repeat measurement to confirm finding.	method.				
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Discuss with ET and IEC on proper		
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;		
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial		
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three		
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;		
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;		
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.		
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of			
	6. If exceedance continues, arrange		remedial measures;			
	meeting with IEC and ER;		5. Conduct meeting with ET and			
	7. If exceedance stops, cease additional		IEC if exceedance continues.			
	monitoring.					
Limit Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid		
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;		
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper		
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;		
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial		
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three		

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation		
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;		
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation		
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.		
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be		
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after		
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)		
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;			
	check mitigation effectiveness.	(The above actions should be	4. Supervise the			
	(The above actions should be taken	taken within 2 working days after	implementation of remedial			
	within 2 working days after the	the exceedance is identified)	measures.			
	exceedance is identified)		(The above actions should be			
			taken within 2 working days			
			after the exceedance is			
			identified)			
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to		
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;		
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial		
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3		
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;		
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed		
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;		

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT			ACTION	
ACTION LEVEL	ET	IEC	ER	CONTRACTOR
Design Check	 Check final design conforms to the requirements of EP and prepare report. 	 Check report. Recommend remedial design if necessary 	1. Undertake remedial design if necessary	
Non-conformity on one occasion	 Identify Source Inform IEC and ER Discuss remedial actions with IEC, ER and Contractor Monitor remedial actions until rectification has been completed 	 Check report Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise ER on effectiveness of proposed remedial measures. Check implementation of remedial measures. 	 Notify Contractor Ensure remedial measures are properly implemented 	 Amend working methods Rectify damage and undertake any necessary replacement
Repeated Non-conformity	1. Identify Source Inform IEC and	1. Check monitoring report	 Notify Contractor Ensure remedial measures are properly 	 Amend working methods Rectify damage and

ER	2. Check Contractor's	implemented	undertake any necessary
2. Increase	working method		replacement
monitoring	3. Discuss with ET and		
frequency	Contractor on possible		
3. Discuss remedial	remedial measures		
actions with IEC,	4. Advise ER on		
ER and Contractor	effectiveness of		
4. Monitor remedial	proposed remedial		
actions until	measures		
rectification has	5. Supervise		
been completed	implementation of		
5. If non-conformity	remedial measures.		
stops, cease			
additional			
monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

sEIA Ref.	Recommended Mitigation Measures	Implementation	
		Status	
Construct	ion Air Quality		
S6.5	8 times daily watering of the work site with active dust emitting activities.	۸	
S6.8	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation	٨	
	measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.		
	• Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to	٨	
	reduce dust emission.		
	• Misting for the dusty material should be carried out before being loaded into the vehicle. Any vehicle with an open load carrying area should	٨	
	have properly fitted side and tail boards.		
	• Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened	٨	
	and covered by a clean tarpaulin.		
	• The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should	٨	
	also be dampened if necessary before transportation.		
	• The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways	٨	
	insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.		
	• Vehicle washing facilities should be provided at every vehicle exit point.	N/A(1)	
	• The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with	٨	
	concrete, bituminous materials or hardcores.		
	• Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road	٨	
	surface wet.		
	• Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the	٨	
	three sides.		
	• Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.	٨	

S6.8	•	DWFI compound for JVBC:	N/A
		A DWFI compound is proposed at the downstream of JVC to contain pollution in drainage systems entering the KTAC and KTTS by	
		interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the	
		compounds to prevent any accumulation of sediment within the downstream section of JVBC and hence fully mitigate the potential odour	
		emissions from the headspace of JVBC near the existing discharge locations. The odour generating operations within the proposed desilting	
		compound will be fully enclosed and the odorous air will be collected and treated by high efficiency deodorizers before discharge to the	
		atmosphere.	
	•	Desilting compound for KTN:	N/A
		Two desilting compounds are proposed for KTN (at Site 1D6 and Site 1P1) to contain pollution in drainage systems entering the KTAC and	
		KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the	
		compounds to prevent any accumulation of sediment within the downstream section of KTN and hence fully mitigate the potential odour	
		emissions from the headspace of KTN near the existing discharge locations. The odour generating operations within the proposed desilting	
		compound will be fully enclosed and the odorous air will be collected and treated by high efficiency deodorizers before discharge to the	
		atmosphere.	
	•	Decking or reconstruction of KTN within apron area:	N/A
		It is proposed to deck the KTN or reconstruct the KTN within the former Apron area into Kai Tak River from the south of Road D1 to the	
		north of Road D2 along the existing alignment of KTN. The Kai Tak River will compose of a number of channels flowing with nonodorous	
		fresh water and THEES effluent. The channel flowing with THEES effluent will be designed with the width of water surface of not more	
		than 16m.	
	•	Localised maintenance dredging:	N/A
		Localised maintenance dredging should be conducted to provide water depth of not less than 3.5m over the whole of KTAC and KTTS. With	
		reference to the water depth data recorded during the odour survey, only some of the areas in the northern part of KTAC (i.e. to the north of	
		taxiway bridge) including the area near the northern edge of KTAC, the area near western bank of KTAC, and the area near the JVC	
		discharge have water depths shallower than 3.5m. The area involved would be about 40% of the northern KTAC and the dredging depth	
		required would be from about 2.7m to less than 1m. The maintenance dredging to be carried out prior to the occupation of any new	
		development in the immediate vicinity of KTAC to avoid potential localized odour impacts at the future ASRs during the maintenance	

	dredging operation.			
	Improvement of water circulation in KTAC and KTTS:	N/A		
	600m gap opening at the northern part of the former Kai Tak runway, the water circulation in KTAC and KTTS would be substantially			
	improved. Together with the improvement in water circulation, the DO level in KTAC and KTTS would also be increased.			
	<u>In-situ sediment treatment by bioremediation:</u>			
	Bioremediation would be applied to the entire KTAC and KTTS.	N/A		
Construc	ction Noise			
S7.8	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar	٨		
	Bender, Concrete Pump, Generator and Water Pump.			
S7.9	Good Site Practice:			
	Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program.	٨		
	• Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program.	۸		
	• Mobile plant, if any, should be sited as far away from NSRs as possible.			
	• Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down	٨		
	to a minimum.			
	• Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the	٨		
	nearby NSRs.			
	• Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction	٨		
	activities.			
S7.9	Scheduling of Construction Works during School Examination Period	٨		
S7.8	(i) Provision of low noise surfacing in a section of Road L2; and	N/A		
	(ii) Provision of structural fins	N/A		
S7.8	(i) Avoid the sensitive façade of class room facing Road L2 and L4; and	N/A		
	(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A		

		so that swift actions could be taken in case of malfunction of unmanned facilities		
	•	For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should be provided	N/A	
	•	An alarm should be installed to signal emergency high water level in the wet well at all SPSs; and	N/A	
	•	Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps;	N/A	
	•	Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply;	N/A	
S8.8	The fo	llowing mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including:		
Constru	ction Wa	ter Quality		
S7.8	Installa	ation of retractable roof or other equivalent measures	N/A	
	(iv)	EFTS depot	N/A	
	(iii)	Tunnel Ventilation Shaft	N/A	
	(ii)	ESS	N/A	
	(i)	SPS	N/A	
S7.8	All the ventilation fans installed in the below will be provided with silencers or acoustics treatment.			
		noise impacts from the slip road		
		alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic		
S7.8	(i)	avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po Kong or other	٨	
		less than 55m away from To Kwa Wan Road to no more than 25m above ground		
	(ii)	provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height of the residential block(s) located at	N/A	
S7.8	(i)	avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or	N/A	
		provide the facades with openable window.		
	(ii)	for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not	N/A	
		class room facing Road L2 and L4; and		
S7.8	(i)	avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and Avoid the sensitive façade of	N/A	
S7.8	Setbac	k of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A	
	(ii)	Setback of building about 5m from site boundary.	N/A	
S7.8	(i)	Provision of low noise surfacing in a section of Road L4 before occupation of Site 111; and	N/A	

S8.8	Construction Phase	
	Marine-based Construction	
	Capital and Maintenance Dredging for Cruise Terminal	
	Mitigation measures for construction of the proposed cruise terminal should follow those recommended in the approved EIA for CT Dredging.	N/A
S8.8	Fireboat Berth, Runway Opening and Road T2	
	Silt curtains should be deployed around the close grab dredger to minimize release of sediment and other contaminants for any dredging and filling activities in open water.	N/A
S8.8	Dredging at and near the seawall area for construction of the public landing steps cum fireboat berth should be carried out at a maximum production	N/A
	rate of 1,000m ³ per day using one grab dredger.	
S8.8	The proposed construction method for runway opening should adopt an approach where the existing seawall at the runway will not be removed until completion of all excavation and dredging works for demolition of the runway. Thus, excavation of bulk fill and majority of the dredging works will be carried out behind the existing seawall, and the sediment plume can be effectively contained within the works area. As there is likely some accumulation of sediments alongside the runway, there will be a need to dredge the existing seabed after completion of all the demolition works.	N/A
	Dredging alongside the 600m opening should be carried out at a maximum production rate of 2,000m ³ per day using one grab dredger.	
8.8	Dredging for Road T2 should be conducted at a maximum rate of 8,000m ³ per day (using four grab dredgers) whereas the sand filling should be	N/A
	conducted at a maximum rate of 2,000m3 per day (using two grab dredgers).	
8.8	Silt screens shall be applied to seawater intakes at WSD seawater intake.	N/A

S8.8	Land-based Construction	
	Construction Runoff	
	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff	
	related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures	
	which include:	
	• use of sediment traps	٨
	adequate maintenance of drainage systems to prevent flooding and overflow	۸
S8.8	Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed	٨
	earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of	
	earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely,	
	exposed slope surfaces should be covered by tarpaulin or other means.	
S8.8	Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The	٨
	boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches	
	should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should	
	incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the	
	guidelines in Appendix A1 of ProPECC PN 1/94.	
S8.8	Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m ³ capacity, are recommended as a	٨
	general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle	
	multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	
S8.8	Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or	٨
	similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any	
	drainage system.	
S8.8	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction	#
	materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	
S8.8	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to	٨
	be taken during or after rainstorms are summarized in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty	

Appendix K – Summary of Implementation Schedule of Mitigation Measures for Co	Construction Phase
---	---------------------------

	surface runoff during storm events.	
S8.8	Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water	N/A(1)
	drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	
S8.8	All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on	٨
	roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt	
	settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and	
	exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking	
	of soil and silty water to public roads and drains.	
S8.8	Drainage	
	It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps	٨
	should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge	
	of effluent from the site into the sea	
S8.8	All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled	٨
	release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all	
	times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction	
	work has finished or the temporary diversion is no longer required.	
S8.8	All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the	٨
	storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	
S8.8	Sewage Effluent	
	Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The	٨
	construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers	
	of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The	
	Contractor should also be responsible for waste disposal and maintenance practices.	

S8.8	Stormwater Discharges	
30.0	Siormwater Discharges	
	Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater	٨
	intakes	
S8.8	Debris and Litter	
58.8	Debris and Litter	
	In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of	۸
	contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur	
S8.8	Construction Works at or in Close Proximity of Storm Culvert or Seafront	
	The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	۸
S8.8	The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm	٨
	culvert / nullah.	
S8.8	Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be	٨
	located well away from any water courses during carrying out of the construction works	
S8.8	Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	٨
S8.8	Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	٨
S8.8	Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	٨
S8.8	Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts.	٨
	Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	
S8.8	Construction effluent, site run-off and sewage should be properly collected and/or treated.	٨
S8.8	Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at	N/A
	bottom and properly supported props to prevent adverse impact on the storm water quality.	
S8.8	Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of	N/A
	construction materials.	
S8.8	Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	N/A

S8.8	Supervisory staff should be assigned to station on site to closely supervise and monitor the works	٨	
S8.8	Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	N/A	
Constru	struction Waste Management		
S9.5	Good Site Practices		
	It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations		
	for good site practices during the dredging activities include:		
	• Nomination of an approved person, such as a site manager, be responsible for good site practices, arrangements for collection and effective	٨	
	disposal to an appropriate facility, of all wastes generated at the site.		
	Training of site personnel in proper waste management and chemical waste handling procedures.	٨	
	• Provision of sufficient waste disposal points and regular collection for disposal.	٨	
	• Appropriate measure to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting	٨	
	wastes in enclosed containers.		
	• A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	٨	
S9.5 Waste Reduction Measures			
	Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and		
	design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:		
	Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals	٨	
	• Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and	٨	
	their proper disposal		
	• Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated	٨	
	from other general refuse generated by the work force		
	Any unused chemicals or those with remaining functional capacity should be recycled	٨	
	Proper storage and site practices to minimise the potential for damage or contamination of construction materials	٨	

S9.5	Dredged Marine Sediment	
	The basic requirements and procedures for dredged mud disposal are specified under the ETWB TCW No. 34/2002. The management of the	N/A
	dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is required under the Dumping at Sea	
	Ordinance and is the responsibility of the Director of Environmental Protection (DEP)	
S9.5	The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC depending on	N/A
	their level of contamination. Sediment classified as Category L would be suitable for Type 1 - Open Sea Disposal. Contaminated sediment would	
	require either Type 1 - Open Sea Disposal (Dedicated Sites), Type 2 - Confined Marine Disposal, or Type 3 - Special Treatment / Disposal and must	
	be dredged and transported with great care in accordance with ETWB TCW No. 34/2002. Subject to the final allocation of the disposal sites by	
	MFC, the dredged contaminated sediment must be effectively isolated from the environment and disposed properly at the designated disposal site	
S9.5	It will be the responsibility of the contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged	
	have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report	
	to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works should apply for allocation of marine disposal sites	
	and all necessary permits from relevant authorities for the disposal of dredged sediment. During transportation and disposal of the dredged marine	
	sediments requiring Type 1, Type 2, or Type 3 disposal, the following measures should be taken to minimise potential impacts on water quality:	
	• Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the	N/A
	decks and exposed fittings of barges and hopper dredgers before the vessel is moved	
	• Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport	N/A
	barges or vessels should be equipped with automatic selfmonitoring devices as required under the Dumping at Sea Ordinance and as	
	specified by the DEP	
	• Barges or hopper barges should not be filled to a level that would cause the overflow of materials or sediment laden water during loading or	N/A
	transportation	
S9.5	Construction and Demolition Material	
	Mitigation measures and good site practices should be incorporated into contract document to control potential environmental impact from handling	
	and transportation of C&D material. The mitigation measures include:	
	• Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the	٨

transient stockpiles should be located away from waterfront or storm drains as far as possible	
Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric	٨
• Skip hoist for material transport should be totally enclosed by impervious sheeting	٨
• Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site	٨
• The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with	۸
concrete, bituminous materials or hardcores	
• The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure	۸
dust materials do not leak from the vehicle	
• All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials	٨
wet	
• The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation	٨
from unloading	
When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less	٨
than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material	
at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket	
System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an	
Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for	
auditing the results of the system.	
Chemical Waste	
(i) After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice	٨
on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the	
CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation	
(ii) Maintenance of vehicles and equipment involving activities with potential of leakage and spillage should only be undertaken within the areas	۸
which are appropriately equipped to control these discharges.	
	 Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric Skip hoist for material transport should be totally enclosed by impervious sheeting Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should to with waste. An Independent Environmental Checker should be responsible for auditing the results of the system. (i) After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF o

S9.5	General R	efuse	
	General re the contra and cover	^	
	or leachin		
Construct	ion Lands		
S13.9	CM1 All existing trees should be carefully protected during construction.		٨
	CM2	Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to	۸
		relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees	
		should be agreed prior to commencement of the work.	
	CM3	Control of night-time lighting.	N/A(1)
	CM4	Erection of decorative screen hoarding.	۸

Remarks:

^	Compliance of mitigation measure	
*	Recommendations were made during site audits but improved/rectified by the Contractor	
#	Recommendations were made during site audits but has not yet been improved/rectified by the Contractor	
•	Non-compliance but rectified by the Contractor	
X	Non-compliance of mitigation measure	
N/A	Not Applicable at this stage	
N/A(1)	Not observed	

APPENDIX L SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

EPD Complaint Ref No.	Location	Received Date	Details of Complaint	Investigation/Mitigation Action	Status
17-34438	Dakota Drive and Olympic Avenue	23 October 2017	The complainant concerned about the dust emission when vehicle running on the dry surface outside Dakota Drive and Olympic Avenue. In addition, vehicles were not clear enough before leaving the construction site.	 In accordance with the information gathered in the investigation, construction activities were conducted with proper mitigation measures to minimize the dust impact arise from the construction site to the vicinity of this Project. Regular water spraying was provided to haul roads and unpaved areas within the site areas to reduce the dust impact arise from the construction site to the vicinity of this Project. The Contractor had also ensured vehicles and plants were wheel washed to be cleaned of mud and debris before leaving the construction site area. Therefore, the complaint is considered as non-project related. The following recommendations were made to further enhance the mitigation measures: Where practicable, to provide sheltered area on the top and three sides for stockpiles of dusty materials, or perform frequent water spraying so as to maintain the entire surface wet; Frequent checking and repair the gaps or broken tarpaulin sheets; and To provide a hard-surfaced road between any cleaning facility and the public Road 	Closed

Complaint Log

Remarks: No complaint was received in the reporting month.

Contract No. KLN/2016/04 Environmental Monitoring Works for Contract No. KL/2015/02 Kai Tak Development – Stage 5A Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Log Ref.Received DateDetails of Warning / Summons and Successful ProsecutionsInvestigation/Mitigation ActionStatusN/AN/AN/AN/AN/A

Warnings / Summons and Successful Prosecutions received

Remarks: No warning/summon and prosecution was received in the reporting month.

APPENDIX M SUMMARY OF WASTE GENERATION AND DISPOSAL RECORDS

Department:	CEDD
Contract No.:	KL/2015/02
Project :	Kai Tak Development - Stage 5A Infrastructure at Former North Apron Area

Monthly Summary Waste Flow Table for 2023

					-	-			As	at 2 January 20	024					
		Quantities o	f Inert C & D Ma	aterials Genera	Quantities of C & D Wastes Generated Monthly											
Month	Total Quantity Generated	Hard Rock and Large Broken	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g general refuse					
	(in '000m³)	(in '000m³)	(in '000m ³)	(in '000m³)	(in '000m³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³					
Jan	0.306	0	0	0	0.306	0	0	0	0	0	0.007					
Feb	0	0	0	0	0	0	0	0	0	0	0					
Mar	0.288	0	0	0	0.288	0	0	0	0	0	0.007					
Apr	0.054	0	0	0	0.054	0	0	0	0	0	0					
May	0	0	0	0	0	0	0	0	0	0	0.007					
June	0.027	0	0	0	0.027	0	0	0	0	0	0.007					
Sub-total	69.31	0	0	0.406	68.904	0	0	0	0	0	2.905					
July	0.162	0	0	0	0.162	0	0	0	0	0	0					
Aug	0.027	0	0	0	0.027	0	0	0	0	0	0					
Sept	0.198	0	0	0	0.198	0	0	0	0	0	0.007					
Oct	0.423	0	0	0	0.423	0	0	0	0	0	0					
Nov	0.027	0	0	0	0.027	0	0	0	0	0	0.007					
Dec	0	0	0	0	0	0	0	0	0	0	0.028					
Total	70.147	0	0	0.406	69.741	0	0	0	0	0	2.947					

Forecast of Total Quantities of C&D Materials to be Generated from the Contract*														
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse				
(in '000m³)	(in '000m ³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m³)				
72	0	0	1	69	0	0	0	0	0	3				

Notes: (1) The performance targets are given in PS clause 6(14).

(2) The waste flow table shall also include C & D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging material.

(4) The Contractor shall also submit the latest forcast of the total amount of C&D materials exected to be generated from the Works, together with a

braskdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or excreeding 50,00 m³. (PS Cleuse 25.02A(7) refers).

APPENDIX N CONSTRUCTION PROGRAMME

Kai Tak Development

- Stage 5A Infrastructure At Former North Apron Area

Bar Chart Programme

		202	2022 2023										2024														
	Anticipated Completion	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
Removal of Traffic Deckings at Prince Edward Road East Outer Eastbound in front of Shek Ku Lung Road Playground	29-May-23																										
- Reinstatement of Shek Ku Lung Road Playground	26-Oct-23																										
Reinstatement of Footpath of Prince Edward Road East in front of Shek Ku Lung Road Playground	27-Mar-24																										
- Reinstatement of Stage 2	30-Nov-22																										
- Reinstatement of Stage 1	15-Mar-23																										
- Structural Works for LT2 & ST2	8-Feb-24																										
- Steel Works Erection for LT2 and ST2	8-Apr-24																										
- Finishing and E&M Works for LT2 and ST2	1-Oct-24																										
- Road Works of Road D1 (Olympic Ave)	30-Dec-24																										