Civil Engineering and Development Department

EP-344/2009 – New Sewage Pumping Stations Serving KTD and EP-337/2009 – New Distributor Roads Serving the Planned KTD

Contract No. KL/2010/03 Kai Tak Development - Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities

Monthly EM&A Report

September 2012

(version 1.0)

Approved By	Chult
	(Environmental Team Leader)
REMARKS:	

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	
	Introduction	
	Environmental Monitoring Works Environmental Licenses and Permits	
	Key Information in the Reporting Month	
	Future Key Issues	
1.	INTRODUCTION	
	Background	4
	Project Organizations	
	Construction Activities undertaken during the Reporting Month	5
	Summary of EM&A Requirements	6
2.	AIR QUALITY	7
	Monitoring Requirements	7
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedure	
	Results and Observations	10
3.	NOISE	13
	Monitoring Requirements	13
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedures	
	Maintenance and Calibration	
	Results and Observations	15
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	17
5.	LANDSCAPE OF VISUAL	19
	Monitoring Requirements	
	Results and Observations	19
6.	ENVIRONMENTAL AUDIT	20
	Site Audits	
	Review of Environmental Monitoring Procedures	
	Status of Environmental Licensing and Permitting	
	Status of Waste Management	
	Implementation Status of Environmental Mitigation Measures	
	Summary of Mitigation Measures Implemented Implementation Status of Event Action Plans	
	Summary of Complaint, Warning, Notification of any Summons and Successful	
	Prosecution	
7.	FUTURE KEY ISSUES	
	Key Issues for the Coming Month	
	Monitoring Schedule for the Next Month	
	-	

8.	CONCLUSIONS AND RECOMMENDATIONS	. 26
	Conclusions	26
	Recommendations	26

LIST OF TABLES

- Table IAir Quality and Noise Monitoring Stations for this Project
- Table II
 Non-compliance Recorded for the Project in the Reporting Month
- Table III
 Summary Table for Key Information in the Reporting Month
- Table 1.1Key Project Contacts
- Table 1.2Construction Programme Showing the Inter-Relationship with Environmental
Protection/Mitigation Measures
- Table 2.1Locations for Air Quality Monitoring
- Table 2.2Air Quality Monitoring Equipment
- Table 2.3
 Impact Dust Monitoring Parameters, Frequency and Duration
- Table 2.4
 Summary Table of Air Quality Monitoring Results during the reporting month
- Table 3.1Noise Monitoring Stations
- Table 3.2Noise Monitoring Equipment
- Table 3.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 3.4Baseline Noise Level and Noise Limit Level for Monitoring Stations
- Table 3.5
 Summary Table of Noise Monitoring Results during the Reporting Month
- Table 4.1Comparison of 1-hr TSP data with EIA predictions
- Table 4.2Comparison of 24-hr TSP data with EIA predictions
- Table 4.3
 Comparison of Noise Monitoring Data with EIA predictions
- Table 6.1
 Summary of Environmental Licensing and Permit Status
- Table 6.2
 Observations and Recommendations of Site Inspections

LIST OF FIGURES

Figure 1	Layout Plan of the Project Site
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of Construction Noise Monitoring Stations
Figure 4	Locations of Wind Anemometer

LIST OF APPENDICES

- A Action and Limit Levels for Air Quality and Noise
- B Copies of Calibration Certificates
- C Weather Information
- D Environmental Monitoring Schedules
- E 1-hour TSP Monitoring Results, Graphical Presentations
- F 24-hour TSP Monitoring Results, Graphical Presentations
- G Noise Monitoring Results and Graphical Presentations
- H Summary of Exceedance
- I Site Audit Summary
- J Event Action Plans
- K Environmental Mitigation Implementation Schedule (EMIS)
- L Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution
- M Summary of Waste Generation and Disposal Records

EXECUTIVE SUMMARY

Introduction

- 1. This is the 11th Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2010/03-Kai Tak Development Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities" (Hereafter referred to as "the Project"). This contract comprises two Schedule 2 designated projects (DPs), namely the new sewage pumping station PS1A serving the planned KTD and the new distributor road D2 serving the planned KTD. The two DPs are part of the designated projects under Environmental Permit No.: EP-344/2009 ("New sewage pumping stations serving Kai Tak Development) and EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") respectively. This report documents the findings of EM&A Works conducted in September 2012.
- 2. With reference to the same principle of EIA report of the Project, air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in Table I (see Figure 2 and 3 for their locations).

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations		
Air Quality Monitoring Stations				
AM1 - Rhythm Garden	No	AM1(A) - Kai Tak Operational Base		
AM2 - Lee Kau Yan Memorial School	Yes	N/A		
AM6 – Site 1B4 (Planned)	N/A			
Noise Monitoring Stations				
M1 - Buddhist Chi King Primary School	Yes	N/A		
M2 - S.K.H. Kowloon Bay Kei Lok Primary School	Yes	N/A		
M3 - Cognitio College	Yes	M3(A) - Kai Tak Operational Base		
M4 - Lee Kau Yan Memorial School	No	N/A		
M9 – Site 1B1 (Planned) M10 – Site 1B4 (Planned)		N/A		

Table I – Air Quality and Noise Monitoring Stations for this Project

- 3. According to the Environmental Monitoring and Audit Manual (EM&A Manual) of the Kai Tak Development (KTD) Schedule 3 Environmental Impact Assessment (EIA) Report, the impact monitoring at the designated monitoring stations as required in KTD EM&A Manual under two EPs, have been conducted in Contract No. KLN/2010/04 Environmental Monitoring Works for Kai Tak Development under Schedule 3 of KTD, which is on-going starting from December 2010. The impact monitoring data under Contract No. KLN/2010/04 will be adopted for the Project. Therefore, this report presents the air quality and noise monitoring works extracted from Contract No. KLN/2010/04.
- 4. The major site activities undertaken in the reporting month included:
 - Substructure works of sewage pumping station PS1A;
 - Backfilling to BC6 at Portion D;
 - Drainage works at Road D2, Road L4 and pedestrian streets;
 - Construction of temporary drainage diversion channel at Portion N;
 - Construction of temporary diversion channel for connection of BC1 BC6;
 - Earth works for embankment of pedestrian streets and Road L5; and
 - Construction of surface channel along pedestrian streets.

Environmental Monitoring Works

- 5. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 6. Summary of the non-compliance in the reporting month for the Project is tabulated in Table II.
 Table II Non-compliance Record for the Project in the Reporting Month

Parameter	No. of Exce	eedance	Action
	Action Level	Limit Level	Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

1-hour & 24-hour TSP Monitoring

7. All 1-hour & 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise

8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, Environmental Permits No. EP-344/2009 and EP-337/2009 were issued on 23 April 2009.
- 10. Registration of Chemical Waste Producer (License: 5213-286-P1079-04).
- 11. Water Discharge License (License No.: WT00011274-2011 and WT00011276-2011).
- 12. Construction Noise Permit (License No.: GW-RE0539-12).

Key Information in the Reporting Month

13. Summary of key information in the reporting month is tabulated in Table III.

Table III Summary Table for Key Information in the Reporting Month
--

Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues

14. The future key environmental issues in the coming month include:

- Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- Watering for dust generating activity and on haul road;
- Proper storage of construction materials on site;
- Storage of chemicals/fuel and chemical waste/waste oil on site;
- Accumulation of general and construction waste on site;
- Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
- Runoff from exposed slope;
- Wastewater and runoff discharge from site;
- Regular removal of silt, mud and sand along u-channels and sedimentation tanks; and
- Review and implementation of temporary drainage system for the surface runoff.

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 2 infrastructure works at North Apron Area of Kai Tak Airport for Public Housing and Government Office Developments is one of the construction stages of KTD. It contains various Schedule 2 DPs including new distributor roads serving the planned KTD and new sewage pumping stations serving the planned KTD. The general layout of the Project is shown in **Figure 1**.
- 1.2 Two Environmental Permits (EPs) No. EP-344/2009 and EP-337/2009 were also issued on 23 April 2009 for new sewage pumping stations serving the planned KTD and new distributor roads serving the planned KTD respectively to Civil Engineering and Development Department as the Permit Holder.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. An EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Cinotech Consultants Limited (Cinotech) was commissioned by Peako Engineering Co., Ltd. (the Contractor) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2010/03 Kai Tak Development Stage 2 Infrastructure Works at North Apron Area of Kai Tak Airport for Residential Development and Government Facilities. The construction work under KL/2010/03 comprises the construction of Road D2 & Sewage Pumping Station PS1A which forms a part of the works under two EPs (EP-337/2009 and EP-344/2009).
- 1.5 Cinotech Consultants Limited was commissioned by Peako Engineering Co., Ltd. to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The construction commencement of this Contract was on 24th October 2011 for Sewage Pumping Station PS1A. This is the 11th Monthly EM&A report summarizing the EM&A works for the Project in September 2012.

Project Organizations

- 1.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) Ove Arup & Partners (ARUP).
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) EDMS Consultants Ltd. (EDMS).
 - Contractor Peako Engineering Co., Ltd. (Peako).

1.7 The key contacts of the Project are shown in Table 1.1.

Table 1.1	Key Project Contacts
	ney i reject contacts

Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. Alfred Lee	Engineer	2301 1449	2301 1277
ARUP	Engineer's Representative	Mr. Felix Chau Ms. Gloria Kwok	SRE RE	2756 8132	2756 8236
	Environmental	Dr. Priscilla Choy	Environmental Team Leader	2151 2089	
Cinotech	Team	Ms. Ivy Tam	Project Coordinator and Audit Team Leader	2151 2090	3107 1388
EDMS	Independent Environmental Checker	Mr. Adi Lee	Independent Environmental Checker	2230 7165	3007 8556
Peako	Contractor	Mr. C.P. Lam	Project Manager	27730511	

Construction Activities undertaken during the Reporting Month

- 1.8 The site activities undertaken in the reporting month included:
 - Substructure works of sewage pumping station PS1A;
 - Backfilling to BC6 at Portion D;
 - Drainage works at Road D2, Road L4 and pedestrian streets;
 - Construction of temporary drainage diversion channel at Portion N;
 - Construction of temporary diversion channel for connection of BC1 BC6;
 - Earth works for embankment of pedestrian streets and Road L5; and
 - Construction of surface channel along pedestrian streets.
- 1.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in Table 1.2.

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Section	Noise, dust impact, water quality and waste generation	Sufficient watering of the works site with active dust emitting activities Properly cover the stockpiles On-site waste sorting and

1.8	implementation of trip
	ticket system
	Appropriate
	desilting/sedimentation
	devices provided on site for
	treatment before discharge
	Use of quiet plant and well-
	maintained construction
	plant
	Provide movable noise
	barrier
	Provide sufficient
	mitigation measures as
	recommended in Approved
	EIA Report/Lease
	requirement

Summary of EM&A Requirements

- 1.10 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the two EPs.
- 1.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project in September 2012.

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the two EPs, 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Three designated monitoring stations were selected for air quality monitoring programme. Impact dust monitoring was conducted at two air quality monitoring stations, namely Kai Tak Operational Base (AM1(A)) and Lee Kau Yan Memorial School (AM2) in the reporting month. Table 2.1 describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Monitoring Stations	Locations	Location of Measurement
AM1(A)	Kai Tak Operational Base	Rooftop (about 9/F) Area
AM2	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
#AM6	PA 15	Site 1B4 (Planned)

Table 2.1Locations for Air Quality Monitoring

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

2.3 Table 2.2 summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix B**.

Table 2.2Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	G25A	1
1-hour TSP Dust Meter	Laser Dust Monitor – Model LD-3B Dust Monitor – AEROCET 531	8
HVS Sampler	GMWS 2310 c/w of TSP sampling inlet	2

Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1
-----------------	--	---

Monitoring Parameters, Frequency and Duration

2.4 Table 2.3 summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 2.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Set POWER to "ON" and make sure that the battery level was not flash or in low level.
 - Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
 - Push the knob at MEASURE position.
 - Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
 - Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
 - Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 2.6 The following maintenance/calibration was required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.7 High volume (HVS) samplers (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m^3/min . and 1.4 m^3/min .) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For TSP sampling, fiberglass filters have a collection efficiency of > 99% for particles of 0.3 μ m diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.

- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.16 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than \pm 3°C; the relative humidity (RH) should be < 50% and not vary by more than \pm 5%. A convenient working RH is 40%.

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using G25A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 2.19 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.20 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer set at rooftop (about 9/F) of Kai Tak Operational Base. The location is shown in **Figure 4**. This weather information for the reporting month is summarized in **Appendix C.**
- 2.22 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.23 The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the air quality monitoring.
- 2.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Station	Major Dust Source	
AM1(A) – Kai Tak Operational Base	Road Traffic Dust	
	Exposed site area	
	Excavation works	
	Site vehicle movement	
AM2 – Lee Kau Yan Memorial School	Road Traffic Dust	
	Exposed site area and open stockpiles	
	Excavation works	
	Site vehicle movement	
	Other construction site (Tung Tau Estate Ph.9)	
	which behind Lee Kau Yan Memorial School	

Table 2.4 Summary Table of Air Quality Monitoring Results during the reporting month

Parameter	Date	Concentration (µg/m3)	Action Level, μg/m3	Limit Level, µg/m3
AM1(A) - K	Lai Tak Operatio	onal Base		
	4-Sep-12	22.3		
	4-Sep-12	25.5		
	4-Sep-12	27.6		
	10-Sep-12	69.0		
	10-Sep-12	61.9		
	10-Sep-12	68.6		
	14-Sep-12	52.2		
	14-Sep-12	55.6		500
1-hr TSP	14-Sep-12	54.1	342 50	
1-m 15P	20-Sep-12	277.4		300
	20-Sep-12	220.5		
	20-Sep-12	180.7		
	26-Sep-12	264.1		
	26-Sep-12	295.0		
	26-Sep-12	262.5		
	28-Sep-12	125.4		
	28-Sep-12	123.5		
	28-Sep-12	114.9		
	3-Sep-12	39.8		
	8-Sep-12	45.4	159 2	
24-hr TSP	14-Sep-12	91.9		260
	20-Sep-12	80.3		
	26-Sep-12	70.3		
AM2 – Lee k	Kau Yan Memor	rial School		
	4-Sep-12	16.3		
1-hr TSP	4-Sep-12	15.2	346	500
	4-Sep-12	17.4		

	10-Sep-12	69.2		
	10-Sep-12	80.2		
	10-Sep-12	87.5		
	14-Sep-12	89.5		
	14-Sep-12	87.7		
	14-Sep-12	88.1		
	20-Sep-12	276.0		
	20-Sep-12	259.0		
	20-Sep-12	214.4		
	26-Sep-12	252.7		
	26-Sep-12	269.3		
	26-Sep-12	290.9		
	28-Sep-12	208.7		
	28-Sep-12	192.8		
	28-Sep-12	163.6		
	3-Sep-12	44.6		
	8-Sep-12	65.2		
24-hr TSP	14-Sep-12	136.5	157	260
	20-Sep-12	133.4		
	26-Sep-12	52.6		

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manual under the two EPs, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Six designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at four designated monitoring stations (M1, M2, M3, M4(A)) in the reporting month. **Figure 3** shows the locations of these stations.

Monitoring Stations	Locations	Location of Measurement
M1	Buddhist Chi King Primary School	7/F Sport Area
M2	S.K.H. Kowloon Bay Kei Lok Primary School	7/F Podium
M3(A)	Kai Tak Operational Base	Rooftop (about 9/F) Area
M4	Lee Kau Yan Memorial College	Rooftop (about 7/F) Area
#M9	Site 1B1 (Planned)	_
#M10	Site 1B4 (Planned)	_

Table 3.1	Noise Monitoring Stations
-----------	----------------------------------

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

3.3 Table 3.2 summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVAN 955 & 957	4
Calibrator	SVAN 30A	3

Monitoring Parameters, Frequency and Duration

3.4 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Monitoring Stations	Parameter	Period	Frequency	Measurement
M1 M2 M3(A) M4	$\begin{array}{c} L_{10}(30 \text{ min.}) \\ dB(A) \\ L_{90}(30 \text{ min.}) \\ dB(A) \\ L_{eq}(30 \text{ min.}) \\ dB(A) \end{array}$	0700-1900 hrs on normal weekdays	Once per week	Façade

Table 3.3	Noise Monitoring Parameters, Frequency and Duration
-----------	---

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting : A
 - time weighting : Fast
 - time measurement : 30 minutes
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 3.8 Noise monitoring at the four designated locations was conducted as scheduled in the reporting month.
- 3.9 The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the noise monitoring.
- 3.10 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in Table 3.4.
- 3.11 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 3.12 The major noise source identified at the designated noise monitoring stations are as follows:

Monitoring Stations	Locations	Major Noise Source
M1	Buddhist Chi King Primary School	Traffic Noise Site vehicle movement
M2	S.K.H. Kowloon Bay Kei Lok Primary School	
M3(A)	Kai Tak Operational Base	Traffic Noise Site vehicle movement Excavation works
M4	Lee Kau Yan Memorial School	Traffic Noise Site vehicle movement Excavation works Piling works

Station	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
M1	64.4 (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs
M2	61.3 (at 0700 – 1900 hrs on normal weekdays)	on normal weekdays)
M3(A)	65.8 (at 0700 – 1900 hrs on normal weekdays)	75 (at 0700 – 1900 hrs on normal weekdays)
M4	76.7 (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on normal weekdays)

(*) Noise Limit Level is 65 dB(A) during school examination periods.

Table 3.5 Summary Table of Noise Monitoring Results during the Reporting Month					
Date	Measured Noise Level, Leq(30min) dB (A)	Baseline Level dB (A)	Construction Noise Level ⁽¹⁾ : Leq(30min) dB (A)		
M1 - Buddhist	t Chi King Primary S	School			
6-Sep-12	60.7		60.7 Measured \leq Baseline		
11-Sep-12	70.3	64.4	69.0		
18-Sep-12	66.3	04.4	61.8		
27-Sep-12	67.1		63.8		
M2 - S.K.H. K	Kowloon Bay Kei Lo	k Primary School			
6-Sep-12	63.2		58.7		
11-Sep-12	69.4	61.3	68.7		
18-Sep-12	67.2	01.5	65.9		
27-Sep-12	67.8		66.7		
M3(A) – Kai	Tak Operational Bas	e			
4-Sep-12	66.2		55.6		
10-Sep-12	68.3	65.8	64.7		
20-Sep-12	68.5	05.0	65.2		
26-Sep-12	66.1		54.3		
M4 – Lee Kau Yan Memorial College					
4-Sep-12	67.1		67.1 Measured \leq Baseline		
10-Sep-12	73.9	76.7	73.9 Measured \leq Baseline		
20-Sep-12	67.9	/0./	67.9 Measured \leq Baseline		
26-Sep-12	68.5		68.5 Measured \leq Baseline		

(1)

The noise level due to the construction work (CNL) was calculated by the following formula:

 $CNL = 10 \log (10^{MNL/10} - 10^{BNL/10})$

Remarks: MNL = Measured Noise Level BNL = Baseline Noise Level

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 The EM&A data was compared with the EIA predictions as summarized in 4.1 to 4.3.

Table 4.1 Comparison of 1-hr TSP data with EIA predictions

Station	Predicted 1-hr TSP conc.			
	Scenario1 (Mid 2009 to Mid 2013), μg/m3	Scenario2 (Mid 2013 to Late 2016), µg/m3	Reporting Month (Sep 12), μg/m3	
AM1(A) – Kai Tak	192	298	127.8	
Operational Base				
(Alternative station for				
Rhythm Garden)				
AM2 – Lee Kau Yan	290	312	148.8	
Memorial School				

Table 4.2Comparison of 24-hr TSP data with EIA predictions

Station	Predicted 24-hr TSP conc.			
	Scenario1 (Mid 2009 to Mid 2013), μg/m3	Scenario2 (Mid 2013 to Late 2016), μg/m3	Reporting Month (Sep 12), μg/m3	
AM1(A) – Kai Tak Operational Base (Alternative station for Rhythm Garden)	121	156	65.5	
AM2 – Lee Kau Yan Memorial School	145	169	86.5	

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (L _{eq (30min)} dB(A))	Reporting Month (Sep 12), L _{eq (30min)} dB(A)
M1 - Buddhist Chi King Primary School	51 - 68	60.7 - 69.0
M2 - S.K.H. Kowloon Bay Kei Lok Primary School	51 - 70	58.7 - 68.7
M3(A) - Kai Tak Operational Base (Alternative station for Cognitio College)	47 – 75	54.3 - 65.2
M4 - Lee Kau Yan Memorial School	47 – 74	67.1 – 73.9

- 4.2 The 1-hour and 24-hour average TSP concentration in the reporting month were well below the prediction in the approved Environmental Impact Assessment (EIA) Report and no Action/Limit Level exceedance was recorded.
- 4.3 The noise monitoring results in the reporting month was also within the range of predicted mitigated construction noise levels in the EIA report.
- 4.4 The discrepancy between the EM&A data and EIA predictions is considered due to road traffic noise from Prince Edward Road East which is the major noise source during the monitoring.

5. LANDSCAPE OF VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix J** shall be performed.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 5th, 12th, 19th and 26th September 2012 in the reporting month. IEC site inspections were conducted on 19th September 2012. No non-compliance was observed during the site audits.

Review of Environmental Monitoring Procedures

6.3 The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Status of Environmental Licensing and Permitting

6.4 All permits/licenses obtained for the Project are summarized in Table 6.1.

Permit No.	Valid Period		Details	Status
rermit No.	From	To	Details	Status
Environmental Pe	rmit (EP)			
EP-344/2009	23/04/09	N/A	Construction of a new sewage pumping station serving the planned Kai Tak development with installed capacity of more than 2,000 m ³ per day and a boundary of which is less than 150m from an existing or planned residential area or educational institution.	Valid

Permit No.	Valid Period		Detaile	S4 4
Permit No.	From	To	Details	Status
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	Valid
Effluent Discharg	e License			
WT00011274- 2011	-	31/12/16	Industrial discharge (near Kai Tak Tunnel)	Valid
WT00011276- 2011	-	31/12/16	Industrial discharge (near Concorde Road)	Valid
Registration of Ch	emical Wa	ste Produce	er	
5213-286-P1079- 04	-	N/A	Chemical Waste Types: Spent lubricating oil, spent solvent and spent battery containing heavy metals	Valid
Construction Nois	e Permit (O	CNP)		
GW-RE0539-12	25/07/12	24/01/13	Construction Noise Permit for the use of powered mechanical equipment for carrying out construction work other than percussive pilling and performing prescribed construction work at Construction site of Kai Tak Development at north apron area of Kai Tak Airport near Eastern Road. Box Culvert & Sewage Pumping Station No. PS1A, Kowloon	Valid

Status of Waste Management

- 6.5 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.
- 6.6 In respect of the dump truck cover, the Contractor is advised to take record photos and inspection to ensure that all dump trucks have fully covered the skip before leaving the site.

Implementation Status of Environmental Mitigation Measures

6.7 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 6.2.

Table 6.2Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality	05/09/2012	Clear the general refuse and the stagnant water properly in the U-channel near Road D2.	

Parameters	Date	Observations and Recommendations	Follow-up
	26/09/2012	Properly remove the stagnant water at Portion N.	Rectification/improvement was observed during the follow-up audit session.
Air Quality	05/09/2012	Cover the dusty stockpile properly near Pumping Station PS1A.	Rectification/improvement was observed during the follow-up audit session.
	19/09/2012	Cover the stockpile properly near Box Culvert BC6.	Rectification/improvement was observed during the follow-up audit session.
	26/09/2012	Cover the stockpile properly near Pumping Station PS1A.	Rectification/improvement was observed during the follow-up audit session.
Waste/Chemical Management	12/09/2012	Store the chemical container in drip tray properly near Pumping Station PS1A.	Rectification/improvement was observed during the follow-up audit session.

Summary of Mitigation Measures Implemented

6.8 The monthly IEC audit was carried out on 19th September 2012 in reporting month, the observations were recorded and they are presented as follows:.

19th September 2012

Remarks:

• At Box Culvert – A stockpile of dusty material not entirely covered was observed. All dusty stockpiles should be properly and entirely covered.

Follow up of last observation:

- No bottle of lubricating oil and oil drum on bare ground was observed. Observation closed.
- Rubbish inside the drip tray next to the generator-set near box culvert has been cleared up. Observation closed.
- No bottle of chemical without proper labeling was observed. Observation closed,
- Retainer/transplanted trees properly tagged. Observation closed.
- 6.9 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.10 The Event Action Plans for air quality, noise and landscape and visual are presented in Appendix J.

<u>1-hr TSP Monitoring</u>

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.12 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.13 No Action/Limit Level exceedance was recorded for construction noise.

Landscape and visual

6.14 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.15 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix L**.

7. FUTURE KEY ISSUES

- 7.1 Major site activities undertaken for the coming two months include:
 - Structural works of pumping station PS1A;
 - Backfilling to BC6 at Portion D;
 - Construction of temporary drainage diversion channel at Concorde Road;
 - Carry out temporary drainage diversion and box culvert construction at connection of BC1 – BC6;
 - Drainage works at Road D2, Road L4 & L5 and Pedestrian streets;
 - Earth works for embankment of pedestrian streets and Road L4 & L5; and
 - Construction of Surface drainage along embankment of pedestrian streets and Road L4 & L5.

Key Issues for the Coming Month

- 7.2 Key environmental issues in the coming month include:
 - Runoff from exposed slope;
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels and sedimentation tanks;
 - Review and implementation of temporary drainage system for the surface runoff;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Watering for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site.
- 7.3 The tentative program of major site activities and the impact prediction and control measures for the coming two months, i.e. October to November 2012 are summarized as follows:

Construction Works	Major Impact Prediction	Control Measures
As mentioned in Section 7.1	Air quality impact (dust) Water quality impact (surface run-off)	 a) Frequent watering of haul road and unpaved/exposed areas; b) Frequent watering or covering stockpiles with tarpaulin or similar means; and c) Watering of any earth moving activities. d) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; e) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; f) Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and g) Provision of measures to prevent discharge into the stream.
	Noise Impact	 h) Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; i) Controlling the number of plants use on site; j) Regular maintenance of machines; and k) Use of acoustic barriers if necessary.

Monitoring Schedule for the Next Month

7.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.

<u>1-hr TSP Monitoring</u>

8.2 All 1-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hr TSP Monitoring

8.3 All 24-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8.4 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Landscape and visual

8.5 No non-compliance was recorded in the reporting month.

Complaint and Prosecution

8.6 No environmental complaints and environmental prosecution were received in the reporting month.

Recommendations

8.7 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

- To prohibit any open burning on site.
- To regularly maintain the quality of machinery and vehicles on site.
- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To provide hoarding along the entire length of that portion of the site boundary.

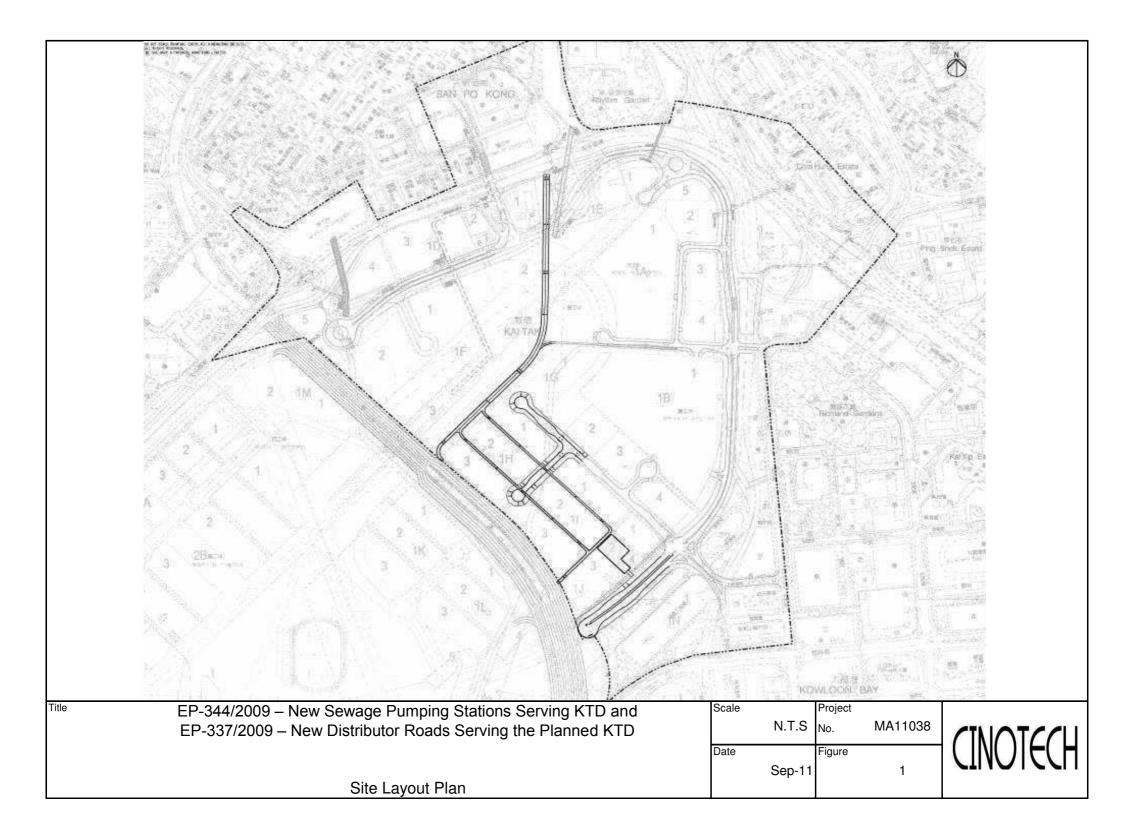
Noise Impact

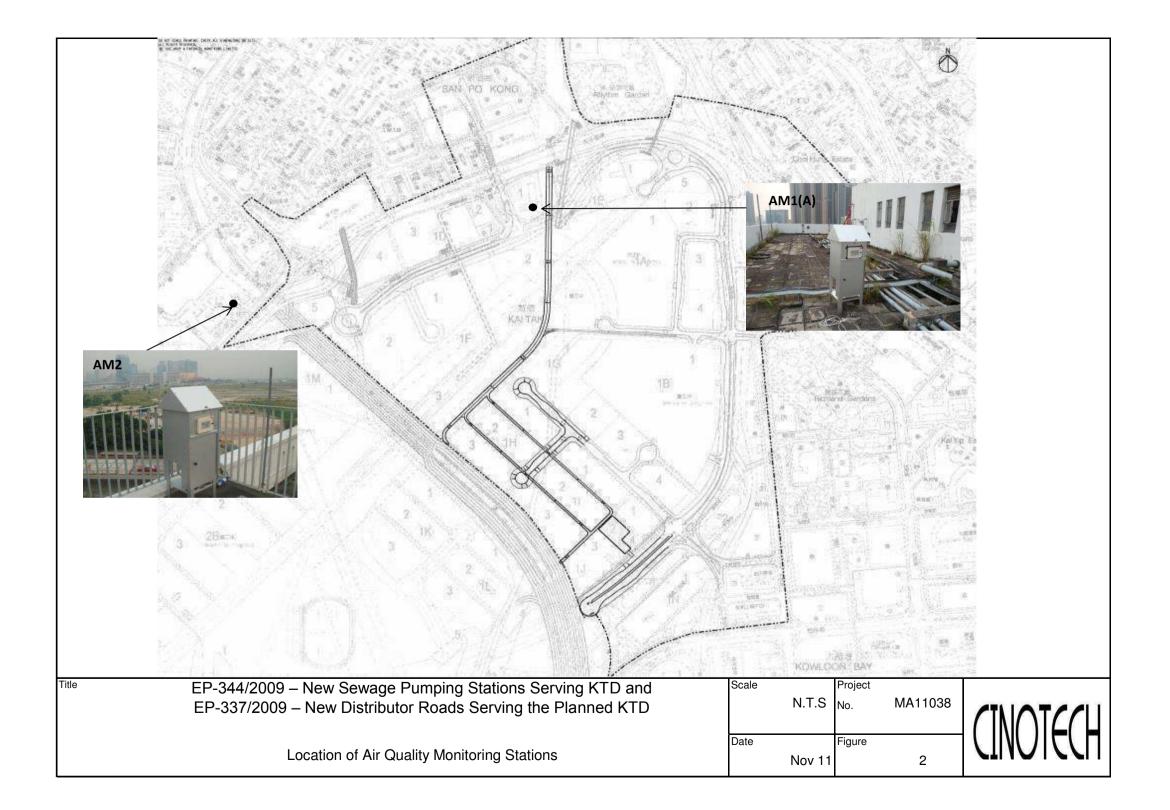
• To inspect the noise sources inside the site.

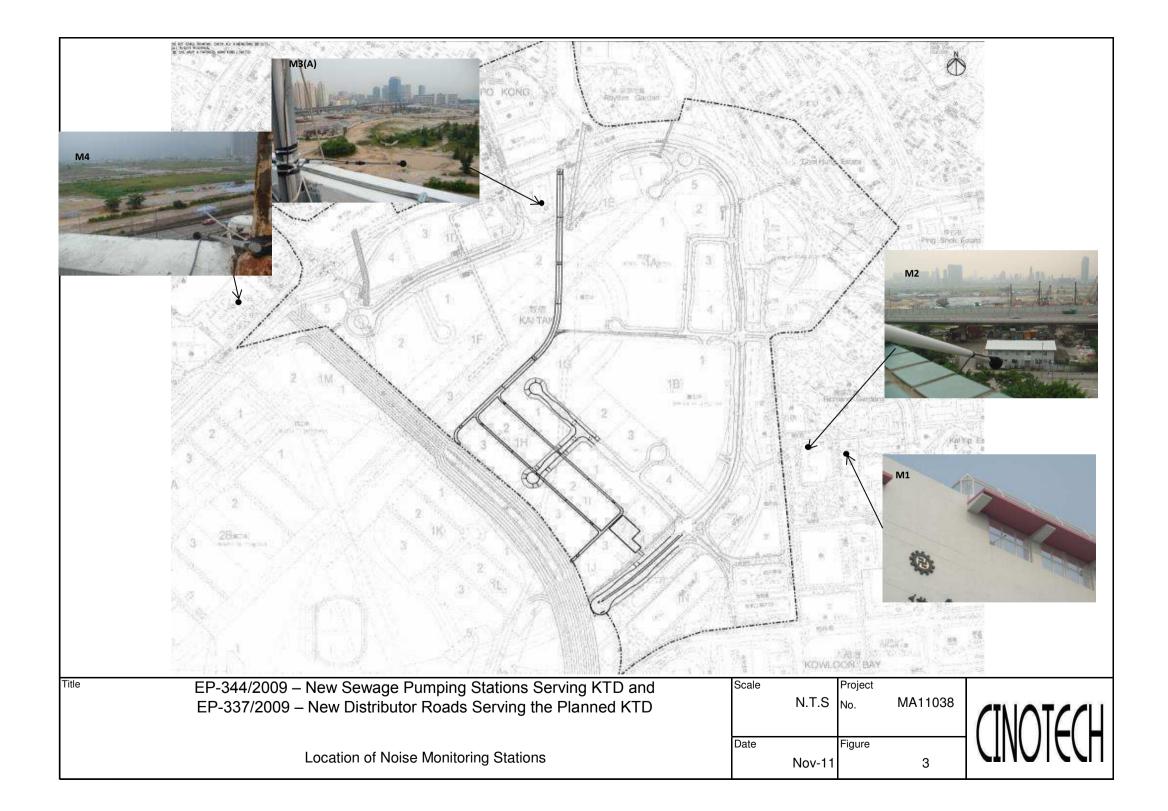
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers in an appropriate location.

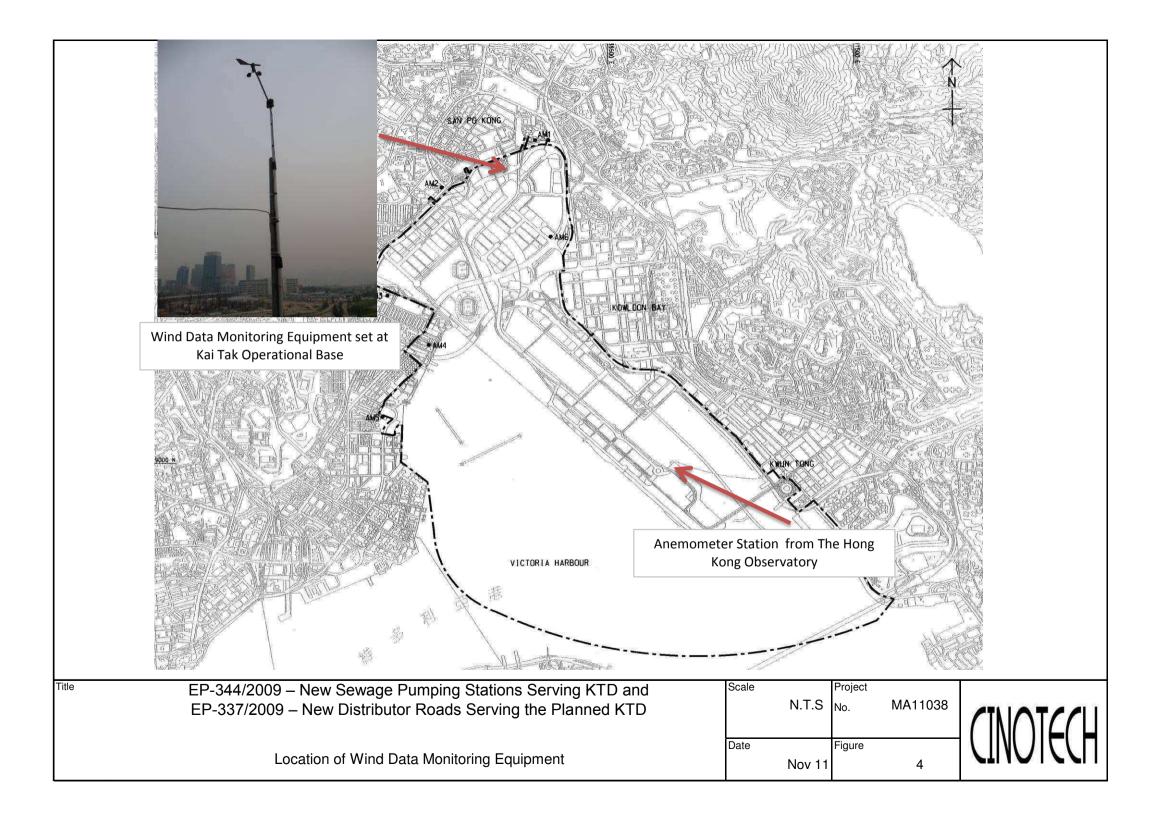
Water Impact

- To prevent any surface runoff discharge into any stream course.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.
- To avoid accumulation of stagnant and ponding water on site.


Waste/Chemical Management


- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation);
- To carry out inspection of dump truck at site exit to ensure inert and non-inert C&D materials are properly segregated before removing off site.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To avoid improper handling or storage of oil drum on site.


Landscape and Visual


- To protect the existing trees to be retained.
- To transplant the trees unavoidably affected by the works.
- To control of night-time lighting.
- To provide decorative screen hoarding.
- To complete landscape works at site area as early as possible.

FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Location	Action Level, µg/m ³	Limit Level, µg/m ³
AM1(A) – Kai Tak Operational Base	342	500
AM2 – Lee Kau Yan Memorial School	346	500

Table A-1 Action and Limit Levels for 1-Hour TSP

Table A-2Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m ³	Limit Level, µg/m ³
AM1(A) – Kai Tak Operational Base	159	260
AM2 – Lee Kau Yan Memorial School	157	260

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

CINOTECH

						File No.	MA0040/58/0012
Station	AMI(A) - Kai T	ak Operational B	ase	Operator	WK		
Date:	26-Jul-12		Next Due Date:		25-Sep-12		
Equipment No.:	quipment No.: <u>A-01-58</u>			Serial No.	2357		1
			Ambiant	Condition			
Temperatu	re Ta (K)	298.2	Pressure, Pr		line in the state of the state	757.5	
Temperada		4/0.2	11035010,11		J	151.5	
		Or	ifice Transfer St	andard Inform	ation		ballen genete
Equipme	ent No.:	A-04-01	Slope, mc	0.0568	Intercep	t, bc	-0.0432
Last Calibra	ation Date:	9-Oct-11		me x Qstd + J	bc = [ΔH x (Pa/76		1/2
Next Calibr	ation Date:	8-Oct-12		Qstd = {[∆H	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} / :	me
		•					
			Calibration of	TSP Sampler	'yna niferaethaa'		
Calibration		Ori	īce	1		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760)) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	∆W (HVS), in. of oil	[ΔW x (Pa/76	0) x (298/Ta)] ^{1/2} Y axis
1	12.2	3	.49	62.13	8.0		2.82
2	10.8	3	3.28		6.8		2.60
3	8.3	2	2.88		5.3		2.30
4	5.2	2	2.28		3.0		1.73
5	3.3	1	.81	32.68	1.9		1.38
By Linear Regr Slope , mw = Correlation co *If Correlation C	0.0491	0.99	991	Intercept, bw [:] -			
, da la kinas ap	en e	a na shakara sh	Set Point C	Calculation		nte Bana de P	nega na ang asaran.
From the TSP Fi	eld Calibration Cu	urve, take Qstd =					
From the Regress	sion Equation, the	"Y" value accor	ding to				
		mw x Q	$std + bw = [\Delta W]$	x (Pa/760) x (2	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (my	$w \ge (1 + bw)^2$	x (760 / Pa) x (1	Fa / 298) =	3.49		
Remarks:							
Conducted by: Checked by:		Signature: Signature:	Kwa	2		Date: Date:	26(7)12 26 July 2018

CINOTECH

						File No.	MA0040/58/0013
Station	AMI(A) - Kai 1	fak Operational E	lase	Operator:	WК		
Date:	26-Sep-12			- Next Due Date:	25-Nov	-12	
Equipment No.:	A-01-58			Serial No.	2357		
			-				
		neg tyr treas ar fri L	Ambient	Condition			
Temperatu	re, Ta (K)	299.6	Pressure, Pa	ı (mmHg)		760.6	
	n ne da prog	01	ifice Transfer St	andard Inform	nation		··· · · ·
Equipme	nt No.:	A-04-01	Slope, mc	0.0568	Intercep	t, bc	-0.0432
Last Calibra	tion Date:	9-Oct-11			be = [ΔH x (Pa/76		
Next Calibra	ation Date:	8-Oct-12		Qstd = {[∆H	x (Pa/760) x (298	/Ta)] ^{1/2} -bc}	/ mc
	and the second		Calibration of	TSP Sampler		11.1.1	
Calibration		Or	fice			HVS	
Point	ΔH (orifice),	[ΛΗ x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM)	ΔW		'60) x (298/Ta)] ^{1/2} Y-
	in. of water			X - axis	(HVS), in. of oil		axis
1	12.3	3	.50	62.37	7.9		2.80
2	10.8	3	.28	58.49	6.9		2.62
3	8.3	2		51.37	5.4		2.32
4	5.4	2	.32	41.58	3.2		1.78
5	3.2	1	.78	32.18	2.0		1.41
By Linear Regro Slope , mw = Correlation co	0.0469 pefficient* =	- 0.9	987	Intercept, bw [,]	-0.120	4	
*If Correlation C	oefficient < 0.99	90, check and reca	alibrate.				
						· · · ·	
			Set Point C	Calculation			
From the TSP Fie							
From the Regress	sion Equation, th	e "Y" value acco	rding to				
		mw x ($Q_{std} + bw = [\Delta W]$	x (Pa/76ft) x (2	98/Ta)l ^{1/2}		
			2stu + Dii [Ziii -	x (1 a/ / 00) x (2	JUI I I JJ		
Therefore, Se	t Point; W = (m	$(w \times Qstd + bw)^2$	x (760 / Pa) x (7	(a / 298) =	3.62		
		· · · · · · · · · · · · · · · · · · ·				· ·	
Remarks:							
-							
			1.				
Conducted by:	nk. Jana	Signature:	Yewai			Date:	26/9/12
Conducted by: <u>f</u> Checked by:	4	Signature:				Date:	26 September Det.
			()				· · _

CINOTECH

						File No.	MA0040/59/0012
Station	AM2 - Lee Kau	Yan Memorial S	chool	Operator	: WК		
Date:	26-Jul-12		_	Next Due Date	25-Sep-12		
Equipment No.:	A-01-59	A-01-59		Serial No.	. 2354		
			Amhient	Condition			
Temperatu	re. Ta (K)	299.9	Pressure, Pa			757	
			11000010,11	. (1		······
- es es su quip	dus (dec seis)	0	rifice Transfer St	andard Inforn	nation		
Equipme	ent No.:	A-04-01	Slope, mc	0.0568	Intercep	t, bc	-0.0432
Last Calibra		9-Oct-11			be = [ΔH x (Pa/76		
Next Calibra		8-Oct-12			x (Pa/760) x (298		
•	A	•					
	Au le sale n		Calibration of	TSP Sampler			Negi en el Céce
Calibratian		Or	fice			HVS	
Calibration Point	ΔH (orifice),		0) x (298/Ta)] ^{1/2}	Qstd (CFM)	ΔW	[ΔW x (Pa/76	0) x (298/Ta)] ^{1/2} Y-
	in. of water	ΔH X (Pa/70	0) x (298/1a)j	X - axis	(HVS), in. of oil		axis
1	12.4		3.50	62.44	8.6		2.92
2	9.8	:	3.11	55.59	6.5		2.54
3	8.0	:	2.81	50.30	5.2		2.27
4	4.9		2.20		3.3		1.81
5	3.2		.78	32.09	2.0		1.41
By Linear Regr Slope , mw = Correlation co *If Correlation C	0.0487 pefficient* =	- 0.9	989	Intercept, bw - -	-0.148	2	
	Carles and a star	n hill (Altennije on Alte 	Set Point C	alculation	a it ta it in the streps	dan Babbayaa	aa kanadag bag
From the TSP Fie	eld Calibration C	urve, take Qstd =	= 43 CFM				
From the Regress	sion Equation, th	e "Y" value acco	rding to				
		mw x ($\mathbf{Q}\mathbf{s}\mathbf{t}\mathbf{d} + \mathbf{b}\mathbf{w} = [\mathbf{\Delta}\mathbf{W}]$	x (Pa/760) x (2	98/Ta) ^{1/2}		
Therefore, Se	t Point; W = (m	w x Qstd + bw) ²	x (760 / Pa) x (7	(Ta / 298) =	3.82		
Remarks:							
Conducted by: Checked by:		Signature: Signature:	liwa	Δ		Date: Date:	26/7/12 6 July 2012

						File No.	MA0040/59/0013
Station	AM2 - Lee Kau	Yan Memorial S	chool	Operator	:WК		
Date:	26-Sep-12	Sep-12		Next Due Date	:25-Nov	/-12	
Equipment No.:	A-01-59			Serial No	2354		
			4 1 1 4				
Townset		200.0		Condition	T		· · · · ·
Temperati	ıre, Ta (K)	299.8	Pressure, Pa	a (mmHg)		760.2	
tan in		O	ifice Transfer St	andard Inforn	nation		
Equipm	ent No.:	A-04-01	Slope, mc	0.0568	Intercep	t, bc	-0.0432
Last Calibr	ation Date:	9-Oct-11		mc x Qstd +	bc = [ΔH x (Pa/76)] ^{1/2}
Next Calibr	ation Date:	8-Oct-12			x (Pa/760) x (298		
u nije na jezen n	the state of the s	•					
			Calibration of	TSP Sampler	na fri garga attern L		an a
Calibration		Ori	lice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil		60) x (298/Ta)] ^{1/2} Y axis
1	12.3	3	.50	62.33	8.7		2.94
2	9.8	1	,12	55.72	6.8		2.60
3	7.8	1	.78	49.79	5.1		2.25
4	5.1	1	.25	40.41	3.2		1.78
5	3.3	1	.81	32.65	2.0		1.41
Correlation c If Correlation C	Coefficient < 0.99		995 librate.				
	· ·		Set Point C	alculation			
rom the TSP Fi	eld Calibration C	urve, take Ostd =					
	sion Equation, the	-					
-	• •		-		10		
		mw x Q	std + bw = $[\Delta W]$	x (Pa/760) x (2	98/Ta)]"2		
Therefore, Se	et Point; W = (my	$w \ge (x + bw)^2$	x (760 / Pa) x (7	Ca / 298) =	3.74		
							······································
emarks:			·				
-			•				
onducted by:	Lik Jama	Signature:	Kur	ι.		Date:	7/10/02
Checked by:						Date: 0	26 Safe bach
	<u> </u>					····· <u>-</u>	
			V				

TEST REPORT

DescriptionCalibration OrificeSerial No.1536Model No.G25ADate9 October 2011

Manufacturer Temperature,Ta (K) Pressure, Pa (mmHg) Thermo Andersen 298 762.3

Plate	Diff.Vol (m ³)	Diff.Time (min)	Diff.Hg (mm)	Diff.H ₂ O (in.)
1	1.00	1.3760	3.4	2.00
2	1.00	0.9740	6.4	4.00
3	1.00	0.8730	7.9	5.00
4	1.00	0.8320	8.6	5.50
5	1.00	0.6890	12.8	8.00

DATA TABULATION

Vstd	(X axis) Qstd	(Y axis)
0.9985	0.7257	1.4163
0.9946	1.0211	2.0030
0.9926	1.1370	2.2394
0.9917	1.1919	2.3487
0.9861	1.4313	2.8326
Y axis= SQR	T[H ₂ O(Pa/760)(298/Ta)]

Qstd Slope (m) = 2.00766

Intercept (b) = $\frac{-0.04318}{-0.04318}$

Coefficient (r) = <u>0.99999</u>

Va	(X axis) Qa	(Y axis)
0.9955	0.7235	0.8842
0.9916	1.0181	1.2505
0.9896	1.1336	1.3981
0.9887	1.1884	1.4664
0.9832	1.4270	1.7685
Y axis= SQR	T[H ₂ O(Ta/Pa)]

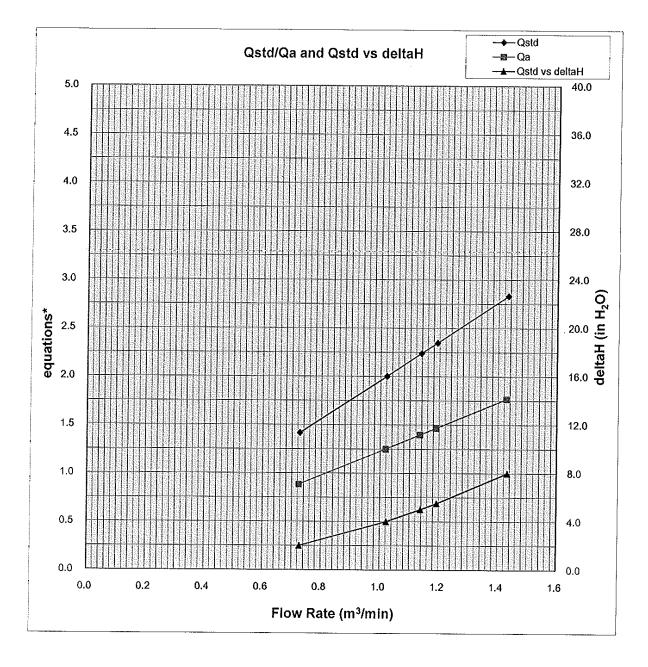
Qa Slope (m) = $\frac{1.25716}{0.02696}$ Intercept (b) = $\frac{-0.02696}{0.02696}$

Coefficient (r) = <u>0.99999</u>

CALCULATIONS

Vstd=Diff. Vol[(Pa-Diff.Hg)/760](298/Ta) Qstd=Vstd/Time Va=Diff.Vol[(Pa-Diff.Hg)/Pa] Qa=Va/Time

For subsequent flow rate calculations: Qstd=I/m{[SQRT(H₂O(Pa/760)(298/Ta))]-b} Qa=I/m{[SQRT H₂O(Ta/Pa)]-b}


> PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

atich /le

PATRICK TSE Laboratory Manager

WELLAB 匯 Testing & Research 力 WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Y-axis equations:

Qstd series: SQRT[Δ H(Pa/Pstd)(Tstd/Ta)]

Qa series:

SQRT[∆H(Ta/Pa)]

TEST REPORT Test Report No.: C/120831/1 **APPLICANT: Cinotech Consultants Limited** Room 1710, Technology Park, Date of Issue: 2012-09-03 Date Received: 2012-08-31 18 On Lai Street, Date Tested: 2012-08-31 Shatin, NT, Hong Kong Date Completed: 2012-09-03 Next Due Date: 2012-11-02 1 of 1 Page: ATTN: Mr. W. K. Tang **Certificate of Calibration Item for Calibration:** Description : Laser Dust Monitor : Sibata Manufacturer : LD-3B Model No. : 853944 Serial No. $: 0.001 \text{ mg/m}^3$ Sensitivity (K) 1 CPM : 685 CPM Sen. Adjustment Scale Setting : A-02-04 Equipment No. **Test Conditions:** : 23 degree Celsius **Room** Temperature : 66% **Relative Humidity Test Specifications & Methodology:** 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc. 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:	
Correlation Factor (CF)	0.0031

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT APPLICANT: Cinotech Consultants Limited Test Report No.: C/120813/1 Room 1710, Technology Park, Date of Issue: 2012-08-13 18 On Lai Street, Date Received: 2012-08-10 Shatin, NT, Hong Kong Date Tested: 2012-08-10 Date Completed: 2012-08-13 Next Due Date: 2012-10-12 ATTN: Mr. WK Tang Page: 1 of 1 **Certificate of Calibration** Item for Calibration: Description : Laser Dust Monitor Manufacturer : Sibata Model No. : LD-3B Serial No. : 954253 Sensitivity (K) 1 CPM $: 0.001 \text{ mg/m}^3$ Sen. Adjustment Scale Setting : 685 CPM Equipment No. : A-02-05 **Test Conditions:** Room Temperature : 23 degree Celsius Relative Humidity : 66% **Test Specifications & Methodology:** 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0032
****	****

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

	TEST I	REPOR	T	
APPLICANT:	Cinotech Consultants Lim	ited	Test Report No.:	C/120831/2
	Room 1710, Technology P	ark,	Date of Issue:	2012-09-03
	18 On Lai Street,		Date Received:	2012-08-31
	Shatin, NT, Hong Kong		Date Tested:	2012-08-31
			Date Completed:	2012-09-03
			Next Due Date:	2012-11-02
ATTN:	Mr. W. K. Tang		Page:	1 of 1
	Certificate o	of Calibr	ation	
Item for Calibra	ition:			
Description		: Laser]	Dust Monitor	
Manufacture	r	: Sibata		
Model No.		: LD-3E	3	
Serial No.		: 01475	0	
		: 0.001	mg/m ³	
5		: 790 CI	PM	
Equipment No. : A		: A-02-0)6	
Test Conditions:	:			
Room Tempe	erature	: 23 deg	ree Celsius	
Relative Hun	nidity	: 66%		
 Instruction In-house m compared with Correlation F 	ns & Methodology: and Operation Manual High nethod in according to the ins h a calibrated High Volume S actor (CF) between the Laser	truction n Sampler a	nanual: The Laser D nd the result was use	bust Monitor was d to generate the
Results:				

Correlation Factor (CF)	0.0030
	terrere

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

	TES	T REPOR	х т	ан	
APPLICANT:	Cinotech Consultants Room 1710, Technolog 18 On Lai Street, Shatin, NT, Hong Kon	gy Park,	Test Report No.: Date of Issue: Date Received: Date Tested: Date Completed: Next Due Date:	C/120907/5 2012-09-10 2012-09-07 2012-09-07 2012-09-10 2012-11-09	
ATTN:	Mr. W. K. Tang		Page:	1 of 1	
	Certifica	te of Calibr	ation		
Item for Calibra	ation:		na n		
Description		: Laser I	Dust Monitor		
Manufacture	r	: Sibata			
Model No.		: LD-3E	3		
Serial No.		: 54114	6		
		: 0.001	-		
• • •		: 625 CI	•		
			A-02-07		
Test Conditions	:				
Room Tempe	erature	: 23 deg	ree Celsius		
Relative Hun	nidity	: 65%			
 Instruction In-house m 	ns & Methodology: and Operation Manual H nethod in according to the th a calibrated High Volu	e instruction n	nanual: The Laser D	ust Monitor was	

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT Test Report No.: APPLICANT: **Cinotech Consultants Limited** C/120827/2 Room 1710, Technology Park, Date of Issue: 2012-08-27 18 On Lai Street, Date Received: 2012-08-24 Shatin, NT, Hong Kong Date Tested: 2012-08-24 Date Completed: 2012-08-27 Next Due Date: 2012-10-26 ATTN: Mr. W. K. Tang Page: 1 of 1 **Certificate of Calibration** Item for Calibration: Description : Laser Dust Monitor Manufacturer : Sibata Model No. : LD-3B Serial No. : 095039 $: 0.001 \text{ mg/m}^3$ Sensitivity (K) 1 CPM Sen. Adjustment Scale Setting : 764 CPM Equipment No. : A-02-08 **Test Conditions: Room Temperature** : 24 degree Celsius **Relative Humidity** : 68% **Test Specifications & Methodology:** 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc. 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler. **Results:**

Correlation Factor (CF) 0.0032

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

	TEST	REPOR	RT	
APPLICANT:	Cinotech Consultants Lin	nited	Test Report No.:	C/120831/3
	Room 1710, Technology P	ark,	Date of Issue:	2012-09-03
	18 On Lai Street,		Date Received:	2012-08-31
	Shatin, NT, Hong Kong		Date Tested:	2012-08-31
			Date Completed:	2012-09-03
			Next Due Date:	2012-11-02
ATTN:	Mr. W. K. Tang		Page:	1 of 1
	Certificate	of Calib	ration	
Item for Calibr	ation:			
Description		: Laser	Dust Monitor	
Manufacture	er	: Sibata	ı	
Model No.		: LD-3]	В	
Serial No.		: 09505	50	
Sensitivity (K) 1 CPM		: 0.001	mg/m ³	
Sen. Adjustment Scale Setting		: 577 C	PM	
Equipment No.		: A-02-	09	
Test Conditions	5:			
Room Temp	perature	: 23 de	gree Celsius	
Relative Hu	midity	: 66%		
1. Instruction 2. In-house a compared w	ons & Methodology: n and Operation Manual High method in according to the ir ith a calibrated High Volume Factor (CF) between the Lase	struction Sampler	manual: The Laser land the result was us	Dust Monitor was ed to generate the
Results:				

110541107	
Correlation Factor (CF)	0.0031

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

ATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/120907/2
Date of Issue:	2012-09-10
Date Received:	2012-09-07
Date Tested:	2012-09-07
Date Completed:	2012-09-10
Next Due Date:	2012-11-09
Page:	1 of 1

ATTN:

Mr. W.K. Tang

	Certificate of Calibration
Item for Calibration:	
Description	: Dust Monitor
Manufacturer	: Met One Instruments
Model No.	: AEROCET-531
Serial No.	: N6733
Flow rate	:0.1 cfm
Zero Count Test	:0 mg (The result of the 2-minute sample)
Equipment No.	: A-02-12
Test Conditions:	
Room Temperature	: 23 degree Celsius
Relative Humidity	: 65%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.093

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/120907/4
Date of Issue:	2012-09-10
Date Received:	2012-09-07
Date Tested:	2012-09-07
Date Completed:	2012-09-10
Next Due Date:	2012-11-09
Page:	1 of 1

ATTN:

Mr.W.K. Tang

Cer	tificate of Calibration
Item for Calibration:	
Description	: Dust Monitor
Manufacturer	: Met One Instruments
Model No.	: AEROCET-531
Serial No.	: N6735
Flow rate	:0.1 cfm
Zero Count Test	:0 mg (The result of the 2-minute sample)
Equipment No.	: A-02-14
Test Conditions:	
Room Temperature	: 23 degree Celsius
Relative Humidity	: 65%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

	Correlation Factor (CF)	1.070
--	-------------------------	-------

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

	r	rest repoi	RT	
APPLICANT:	Cinotech Consul	tants Limited	Test Report No.:	C/12/120501A
	Room 1710, Tech	inology Park,	Date of Issue:	2012-05-02
	18 On Lai Street,	•	Date Received:	2012-05-01
	Shatin, NT, Hong	g Kong	Date Tested:	2012-05-01
			Date Completed: Next Due Date:	2012-05-02 2012-10-31
ATTN:	Miss Mei Ling Ta	ang	Page:	1 of 2
	Cer	tificate of Calik	oration	
Item for calibra	tion:			
De	escription	: Weather Mon	itor II	
M	anufacturer	: Davis Instruments		
M	odel No.	: 7440		
Se	rial No.	: MC20813A1	1	
Test conditions:				
Ro	oom Temperature	: 22 degree Cel	sius	
Re	lative Humidity	: 52%		
Test Specificatio				
1	Performance check	of anemometer		
1.	Doufoursous a charle	of wind direction :	sensor	

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

Think

PATRICK TSE Laboratory Manager

TEST REPORT

Test Report No.:	C/12/120501A
Date of Issue:	2012-05-02
Date Received:	2012-05-01
Date Tested:	2012-05-01
Date Completed:	2012-05-02
Next Due Date:	2012-10-31
Page:	2 of 2

Results:

1. Performance check of anemometer

Air Velocity, m/s		Difference D (m/s)
Instrument Reading (V1)	Reference Value (V1)	D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0.0	0.0	0
45.0	45.0	0
90.3	90.5	-0.2
135.1	135.0	0.1
180.4	180.0	0.4
225.0	225.0	0
270.3	270.0	0.3
315.1	315.0	0.1
359.5	360.0	-0.5

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Test Report No Date of Issue: Date Received: Date Tested: Date Completed

Test Report No.:	C/N/110923/4
Date of Issue:	2011-09-24
Date Received:	2011-09-23
Date Tested:	2011-09-23
Date Completed:	2011-09-24
Next Due Date:	2012-09-23
Page:	1 of 1

ATTN:

Mr. Henry Leung

Certificate of Calibration

Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 955
Serial No.	: 12553
Microphone No.	: 35222
Equipment No.	: N-08-02
8:	

Test conditions:

Room Temperatre Relative Humidity : 23 degree Celsius : 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PATRICK TSE Laboratory Manager

TEST REPORT **APPLICANT: Cinotech Consultants Limited** Test Report No.: C/N/120921/2 Date of Issue: Room 1710, Technology Park, 2012-09-22 18 On Lai Street, Date Received: 2012-09-21 Shatin, NT, Hong Kong Date Tested: 2012-09-21 Date Completed: 2012-09-22 Next Due Date: 2013-09-21 **ATTN:** Mr. W.K. Tang Page: 1 of 1 **Certificate of Calibration** Item for calibration: Description : 'SVANTEK' Integrating Sound Level Meter Manufacturer : SVANTEK Model No. : SVAN 955 Serial No. : 12553 Microphone No. : 35222 Equipment No. : N-08-02 **Test conditions:** Room Temperatre : 24 degree Celsius **Relative Humidity** : 56% **Test Specifications:** Performance checking at 94 and 114 dB Methodology: In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PATRICK TSE Laboratory Manager

1 of 1

TEST REPORT

APPLICANT: Cinotech Consultants Limited Test Report No.: C/N/120901/2 Room 1710, Technology Park, Date of Issue: 2012-09-02 18 On Lai Street, Date Received: 2012-09-01 Shatin, NT, Hong Kong Date Tested: 2012-09-01 Date Completed: 2012-09-02 Next Due Date: 2013-09-01

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 21459
Microphone No.	: 43676
Equipment No.	: N-08-08
Test conditions:	
Room Temperatre	: 22 degree Celsius

Page:

Test Specifications:

Relative Humidity

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

: 67%

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PATRICK TSE Laboratory Manager

APPLICANT:

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT Cinotech Consultants Limited Room 1710 Technology Park

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	C/N/120901/3
Date of Issue:	2012-09-02
Date Received:	2012-09-01
Date Tested:	2012-09-01
Date Completed:	2012-09-02
Next Due Date:	2013-09-01
Page:	1 of 1

ATTN: Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 21460
Microphone No.	: 43679
Equipment No.	: N-08-09
IS:	

Test conditions:

Room Temperatre Relative Humidity : 22 degree Celsius : 67%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PATRICK TSE Laboratory Manager

ATTN:

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:	Cinotech Consultants Limited	Test Report No.:	C/N/111010/2
	Room 1710, Technology Park,	Date of Issue:	2011-10-11
	18 On Lai Street,	Date Received:	2011-10-10
	Shatin, NT, Hong Kong	Date Tested:	2011-10-10
		Date Completed:	2011-10-11
		Next Due Date:	2012-10-10

Page:

1 of 1

Mr. Henry Leung

Certificate of Calibration

Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 23851
Microphone No.	: 48532
Equipment No.	: N-08-12
Test conditions:	
Room Temperatre	: 25 degree Celsius

Relative Humidity

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

: 59%

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT Test Report No .: C/N/110923/2 **APPLICANT: Cinotech Consultants Limited** Date of Issue: Room 1710, Technology Park, 2011-09-24 Date Received: 18 On Lai Street, 2011-09-23 Date Tested: Shatin, NT, Hong Kong 2011-09-23 Date Completed: 2011-09-24 Next Due Date: 2012-09-23 1 of 1 ATTN: Mr. Henry Leung Page: Item for calibration: : Acoustical Calibrator Description Manufacturer : SVANTEK Model No. : SV30A Serial No. : 10929 Equipment No. : N-09-01 **Test conditions:**

Room Temperatre Relative Humidity : 23 degree Celsius : 59%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT				
APPLICANT:	C: Cinotech Consultants Limited		Test Report No.:	C/N/120921/1
	Room 1710, Technology	y Park,	Date of Issue:	2012-09-22
	18 On Lai Street,		Date Received:	2012-09-21
	Shatin, NT, Hong Kong		Date Tested:	2012-09-21
			Date Completed:	2012-09-22
			Next Due Date:	2013-09-21
ATTN:	Mr. W.K. Tang		Page:	1 of 1
Item for calibr	ation:			
	Description : Acoustica		l Calibrator	
	Manufacturer	: SVANTE	K	
	Model No.	: SV30A		
	Serial No.	: 10929		
Equipment No. : N-09-01				
Test conditions:				
	Room Temperatre	: 24 degree	Celsius	
	Relative Humidity	: 56%		

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

(

PATRICK TSE Laboratory Manager

TEST REPORT APPLICANT: Cinotech Consultants Limited Test Report No.: C/N/111104/1 Room 1710, Technology Park, Date of Issue: 2011-11-05 18 On Lai Street, Date Received: 2011-11-04 Shatin, NT, Hong Kong Date Tested: 2011-11-04 Date Completed: 2011-11-05 Next Due Date: 2012-11-04 ATTN: Mr. Henry Leung Page: 1 of 1 Item for calibration: Description : Acoustical Calibrator Manufacturer : SVANTEK Model No. : SV30A Serial No. : 10965 Equipment No. : N-09-02 **Test conditions:** Room Temperatre : 23 degree Celsius

Relative Humidity

: 23 degree Celsiu : 60%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	$114.0 \pm 0.1 dB$

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

atizk /le

PATRICK TSE Laboratory Manager

	TESI	REPOR	RT	
APPLICANT:	Cinotech Consultants I	imited	Test Report No.:	C/N/111008/2
	Room 1710, Technology	y Park,	Date of Issue:	2011-10-10
	18 On Lai Street,		Date Received:	2011-10-08
	Shatin, NT, Hong Kong	Ţ.	Date Tested:	2011-10-08
			Date Completed:	2011-10-10
			Next Due Date:	2012-10-09
ATTN:	Mr. Henry Leung		Page:	1 of 1
Item for calibra	ition:			
1	Description	: Acoustica	al Calibrator	
1	Manufacturer	: SVANTE	EK	
1	Model No.	: SV30A		
c	Serial No.	: 24791		

Room Temperatre Relative Humidity : 22 degree Celsius : 62%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 September 2012	26.4 - 31.4	79 – 95	11.1
2 September 2012	25.8 - 32.0	68 – 96	6.7
3 September 2012	27.4 - 32.8	64 – 86	Trace
4 September 2012	25.7 - 31.9	74 – 96	7.6
5 September 2012	25.5 - 31.6	68 – 94	0.5
6 September 2012	26.7 - 32.2	69 – 94	2.3
7 September 2012	27.5 - 30.4	78 – 95	4.7
8 September 2012	27.2 - 31.2	70 - 93	8.0
9 September 2012	27.7 – 32.7	64 – 88	Trace
10 September 2012	27.7 - 31.8	68 – 84	0
11 September 2012	27.8 - 33.6	61 – 84	Trace
12 September 2012	27.9 - 33.2	62 - 85	Trace
13 September 2012	27.2 - 32.8	64 – 84	0.7
14 September 2012	24.8 - 30.5	57 – 70	0
15 September 2012	24.2 - 28.9	59 - 73	Trace
16 September 2012	24.3 - 29.5	55 - 69	0
17 September 2012	23.6 - 30.8	39 - 62	0
18 September 2012	25.3 - 30.4	52 - 67	0
19 September 2012	26.0 - 27.7	67 – 77	0

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 September 2012	25.5 - 29.4	74 – 91	1.8
21 September 2012	26.3 - 29.4	71 – 93	1.2
22 September 2012	26.0 - 30.5	77 – 97	23.0
23 September 2012	27.0 - 30.5	76 – 90	0.9
24 September 2012	24.8 - 32.0	72 – 99	121.5
25 September 2012	24.9 - 29.4	72 – 99	22.6
26 September 2012	25.5 - 29.4	71 – 92	0.4
27 September 2012	25.2 - 31.8	49 - 78	Trace
28 September 2012	26.1 - 31.4	48 - 66	0
29 September 2012	24.9 - 31.2	50 - 71	0
30 September 2012	24.3 - 27.7	55 – 75	Trace

I. General Information

* The above information was extracted from the daily weather summary by Hong Kong Observatory.

Date	Time	Wind Speed m/s	Direction
1-Sep-2012	00:00	2	WSW
1-Sep-2012	01:00	2.1	WSW
1-Sep-2012	02:00	2.5	E
1-Sep-2012	03:00	2.6	E
1-Sep-2012	04:00	2.3	E
1-Sep-2012	05:00	2	E
1-Sep-2012	06:00	2	E
1-Sep-2012	07:00	2.2	NNE
1-Sep-2012	08:00	2.3	ENE
1-Sep-2012	09:00	2.4	ESE
1-Sep-2012	10:00	2.1	NE
1-Sep-2012	11:00	2.6	NNE
1-Sep-2012	12:00	2.6	NNE
1-Sep-2012	13:00	2.4	SSE
1-Sep-2012	14:00	2.5	NNE
1-Sep-2012	15:00	2.2	NE
1-Sep-2012	16:00	2.5	NE
1-Sep-2012	17:00	1.9	ENE
1-Sep-2012	18:00	1.8	E
1-Sep-2012	19:00	1.8	ESE
1-Sep-2012	20:00	1.9	E
1-Sep-2012	21:00	1.6	ESE
1-Sep-2012	22:00	2	ESE
1-Sep-2012	23:00	2.3	E
2-Sep-2012	00:00	2.5	ESE
2-Sep-2012	01:00	2.5	ESE
2-Sep-2012	02:00	2.7	ESE
2-Sep-2012	03:00	2.4	NW
2-Sep-2012	04:00	2.1	SW
2-Sep-2012	05:00	2	WSW
2-Sep-2012	06:00	2	WSW
2-Sep-2012	07:00	2	WSW
2-Sep-2012	08:00	1.6	SW
2-Sep-2012	09:00	1.5	SW
2-Sep-2012	10:00	1.8	WSW
2-Sep-2012	11:00	2.1	NW

2.Sep-2012 12:00 2.2 SSE 2.Sep-2012 13:00 2 SSE 2.Sep-2012 14:00 2.2 WSW 2.Sep-2012 15:00 1.8 WSW 2.Sep-2012 16:00 1.9 SE 2.Sep-2012 17:00 2.1 SE 2.Sep-2012 18:00 1.7 ESE 2.Sep-2012 19:00 1.6 E 2.Sep-2012 20:00 1.4 ENE 2.Sep-2012 21:00 2 E 3.Sep-2012 22:00 2.1 N 2.Sep-2012 23:00 2.1 E 3.Sep-2012 00:00 2.2 E 3.Sep-2012 00:00 2.3 E 3.Sep-2012 02:00 2.3 E 3.Sep-2012 03:00 2.7 ESE 3.Sep-2012 04:00 2.7 E 3.Sep-2012 06:00 2.4 N 3.Sep-2012 06:				
2-Sep-2012 14:00 2.2 WSW 2-Sep-2012 15:00 1.8 WSW 2-Sep-2012 16:00 1.9 SE 2-Sep-2012 17:00 2.1 SE 2-Sep-2012 18:00 1.7 ESE 2-Sep-2012 19:00 1.6 E 2-Sep-2012 20:00 1.4 ENE 2-Sep-2012 21:00 2 ENE 2-Sep-2012 21:00 2 ENE 2-Sep-2012 22:00 2.1 N 2-Sep-2012 23:00 2.1 E 3-Sep-2012 00:00 2.2 E 3-Sep-2012 00:00 2.3 E 3-Sep-2012 02:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 04:00 2.1 E 3-Sep-2012 04:00 2.1 E 3-Sep-2012 04:	2-Sep-2012	12:00	2.2	SSE
2-Sep-2012 15:00 1.8 WSW 2-Sep-2012 16:00 1.9 SE 2-Sep-2012 17:00 2.1 SE 2-Sep-2012 18:00 1.7 ESE 2-Sep-2012 19:00 1.6 E 2-Sep-2012 20:00 1.4 ENE 2-Sep-2012 21:00 2 ENE 2-Sep-2012 22:00 2.1 N 2-Sep-2012 22:00 2.1 N 2-Sep-2012 00:00 2.2 E 3-Sep-2012 00:00 2.3 E 3-Sep-2012 00:00 2.7 ESE 3-Sep-2012 06:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 07:00 2.1 E 3-Sep-2012 07:00 2.1 SE 3-Sep-2012 07:00	2-Sep-2012	13:00	2	SSE
2-Sep-2012 16:00 1.9 SE 2-Sep-2012 17:00 2.1 SE 2-Sep-2012 18:00 1.7 ESE 2-Sep-2012 19:00 1.6 E 2-Sep-2012 20:00 1.4 ENE 2-Sep-2012 21:00 2 ENE 2-Sep-2012 22:00 2.1 N 2-Sep-2012 22:00 2.1 N 2-Sep-2012 23:00 2.1 E 3-Sep-2012 00:00 2.2 E 3-Sep-2012 00:00 2.3 E 3-Sep-2012 02:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 06:00 2.4 SW 3-Sep-2012 06:00 2.1 E 3-Sep-2012 07:00 2 N 3-Sep-2012 08:00 2.1 E 3-Sep-2012 10:00 <td>2-Sep-2012</td> <td>14:00</td> <td>2.2</td> <td>WSW</td>	2-Sep-2012	14:00	2.2	WSW
2-Sep-2012 17:00 2.1 SE 2-Sep-2012 18:00 1.7 ESE 2-Sep-2012 19:00 1.6 E 2-Sep-2012 20:00 1.4 ENE 2-Sep-2012 21:00 2 ENE 2-Sep-2012 22:00 2.1 N 2-Sep-2012 23:00 2.1 E 3-Sep-2012 00:00 2.2 E 3-Sep-2012 00:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 05:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 08:00 2.1 E 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00<	2-Sep-2012	15:00	1.8	WSW
2-Sep-2012 18:00 1.7 ESE 2-Sep-2012 19:00 1.6 E 2-Sep-2012 20:00 1.4 ENE 2-Sep-2012 21:00 2 ENE 2-Sep-2012 22:00 2.1 N 2-Sep-2012 23:00 2.1 E 3-Sep-2012 00:00 2.2 E 3-Sep-2012 01:00 2.3 E 3-Sep-2012 02:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 06:00 2.4 SW 3-Sep-2012 07:00 2 N 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 E 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00<	2-Sep-2012	16:00	1.9	SE
2-Sep-2012 19:00 1.6 E 2-Sep-2012 20:00 1.4 ENE 2-Sep-2012 21:00 2 ENE 2-Sep-2012 22:00 2.1 N 2-Sep-2012 23:00 2.1 E 3-Sep-2012 00:00 2.2 E 3-Sep-2012 01:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 04:00 2.7 E 3-Sep-2012 06:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 </td <td>2-Sep-2012</td> <td>17:00</td> <td>2.1</td> <td>SE</td>	2-Sep-2012	17:00	2.1	SE
2-Sep-2012 20:00 1.4 ENE 2-Sep-2012 21:00 2 ENE 2-Sep-2012 22:00 2.1 N 2-Sep-2012 23:00 2.1 E 3-Sep-2012 00:00 2.2 E 3-Sep-2012 01:00 2.3 E 3-Sep-2012 02:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 05:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.7 E 3-Sep-2012 10:00 </td <td>2-Sep-2012</td> <td>18:00</td> <td>1.7</td> <td>ESE</td>	2-Sep-2012	18:00	1.7	ESE
2-Sep-2012 21:00 2 ENE 2-Sep-2012 22:00 2.1 N 2-Sep-2012 23:00 2.1 E 3-Sep-2012 00:00 2.2 E 3-Sep-2012 01:00 2.3 E 3-Sep-2012 02:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 05:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.8 E 3-Sep-2012 10:00 <td>2-Sep-2012</td> <td>19:00</td> <td>1.6</td> <td>E</td>	2-Sep-2012	19:00	1.6	E
2-Sep-2012 22:00 2.1 N 2-Sep-2012 23:00 2.1 E 3-Sep-2012 00:00 2.2 E 3-Sep-2012 01:00 2.3 E 3-Sep-2012 02:00 2.3 E 3-Sep-2012 02:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 05:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.5 NE 3-Sep-2012 15:00 </td <td>2-Sep-2012</td> <td>20:00</td> <td>1.4</td> <td>ENE</td>	2-Sep-2012	20:00	1.4	ENE
2-Sep-2012 23:00 2.1 E 3-Sep-2012 00:00 2.2 E 3-Sep-2012 01:00 2.3 E 3-Sep-2012 02:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 04:00 2.7 E 3-Sep-2012 05:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 08:00 2.1 E 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.8 E 3-Sep-2012 15:00 2.8 ESE 3-Sep-2012 15:00 2.8 ESE 3-Sep-2012 16:00<	2-Sep-2012	21:00	2	ENE
3-Sep-2012 00:00 2.2 E 3-Sep-2012 01:00 2.3 E 3-Sep-2012 02:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 04:00 2.7 E 3-Sep-2012 05:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 08:00 2.1 E 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.8 E 3-Sep-2012 15:00 2.8 ESE 3-Sep-2012 16:00 2.5 NE 3-Sep-2012 16:00<	2-Sep-2012	22:00	2.1	N
3-Sep-2012 01:00 2.3 E 3-Sep-2012 02:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 04:00 2.7 E 3-Sep-2012 05:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 06:00 2.4 N 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 E 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 11:00 2.9 ESE 3-Sep-2012 12:00 2.8 E 3-Sep-2012 13:00 2.7 E 3-Sep-2012 15:00 2.8 ESE 3-Sep-2012 14:00 3.1 E 3-Sep-2012 16:00 <td>2-Sep-2012</td> <td>23:00</td> <td>2.1</td> <td>E</td>	2-Sep-2012	23:00	2.1	E
3-Sep-2012 02:00 2.3 E 3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 05:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 07:00 2 N 3-Sep-2012 07:00 2 N 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 E 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 11:00 2.9 ESE 3-Sep-2012 12:00 2.8 E 3-Sep-2012 13:00 2.7 E 3-Sep-2012 15:00 2.8 ESE 3-Sep-2012 14:00 3.1 E 3-Sep-2012 16:00	3-Sep-2012	00:00	2.2	E
3-Sep-2012 03:00 2.7 ESE 3-Sep-2012 04:00 2.7 E 3-Sep-2012 05:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 07:00 2 N 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 E 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 11:00 2.9 ESE 3-Sep-2012 11:00 2.9 ESE 3-Sep-2012 13:00 2.7 E 3-Sep-2012 14:00 3.1 E 3-Sep-2012 16:00 2.5 NE 3-Sep-2012 16:00 2.5 NE 3-Sep-2012 19:00 1.9 ENE 3-Sep-2012 20:00	3-Sep-2012	01:00	2.3	E
3-Sep-2012 04:00 2.7 E 3-Sep-2012 05:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 07:00 2 N 3-Sep-2012 08:00 2.1 E 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 11:00 2.9 ESE 3-Sep-2012 12:00 2.8 E 3-Sep-2012 13:00 2.7 E 3-Sep-2012 15:00 2.8 ESE 3-Sep-2012 16:00 2.5 NE 3-Sep-2012 17:00 1.9 ENE 3-Sep-2012 19:00 1.9 ENE 3-Sep-2012 20:0	3-Sep-2012	02:00	2.3	E
3-Sep-2012 05:00 2.4 SW 3-Sep-2012 06:00 2.4 N 3-Sep-2012 07:00 2 N 3-Sep-2012 08:00 2.1 E 3-Sep-2012 09:00 1.9 SE 3-Sep-2012 10:00 2.1 SE 3-Sep-2012 10:00 2.9 ESE 3-Sep-2012 12:00 2.8 E 3-Sep-2012 13:00 2.7 E 3-Sep-2012 15:00 2.8 ESE 3-Sep-2012 16:00 2.5 NE 3-Sep-2012 17:00 1.9 ENE 3-Sep-2012 19:00 1.9 ENE 3-Sep-2012 20:00 1.6 E 3-Sep-2012 2	3-Sep-2012	03:00	2.7	ESE
3-Sep-201206:002.4N3-Sep-201207:002N3-Sep-201208:002.1E3-Sep-201209:001.9SE3-Sep-201210:002.1SE3-Sep-201211:002.9ESE3-Sep-201212:002.8E3-Sep-201213:002.7E3-Sep-201214:003.1E3-Sep-201215:002.8ESE3-Sep-201216:002.5NE3-Sep-201217:001.9ENE3-Sep-201219:001.6E3-Sep-201221:001.5E3-Sep-201221:001.5E3-Sep-201221:001.8E3-Sep-201221:001.7E	3-Sep-2012	04:00	2.7	E
3-Sep-201207:002N3-Sep-201208:002.1E3-Sep-201209:001.9SE3-Sep-201210:002.1SE3-Sep-201211:002.9ESE3-Sep-201212:002.8E3-Sep-201213:002.7E3-Sep-201214:003.1E3-Sep-201215:002.8ESE3-Sep-201216:002.5NE3-Sep-201217:001.9ENE3-Sep-201218:002E3-Sep-201219:001.6E3-Sep-201221:001.5E3-Sep-201221:001.5E3-Sep-201221:001.7E	3-Sep-2012	05:00	2.4	SW
3-Sep-201208:002.1E3-Sep-201209:001.9SE3-Sep-201210:002.1SE3-Sep-201211:002.9ESE3-Sep-201212:002.8E3-Sep-201213:002.7E3-Sep-201214:003.1E3-Sep-201215:002.8ESE3-Sep-201216:002.5NE3-Sep-201217:001.9ENE3-Sep-201218:002E3-Sep-201219:001.6E3-Sep-201220:001.6E3-Sep-201221:001.5E3-Sep-201221:001.7E	3-Sep-2012	06:00	2.4	N
3-Sep-201209:001.9SE3-Sep-201210:002.1SE3-Sep-201211:002.9ESE3-Sep-201212:002.8E3-Sep-201213:002.7E3-Sep-201214:003.1E3-Sep-201215:002.8ESE3-Sep-201216:002.5NE3-Sep-201217:001.9ENE3-Sep-201218:002E3-Sep-201219:001.9ENE3-Sep-201219:001.6E3-Sep-201221:001.5E3-Sep-201221:001.7E	3-Sep-2012	07:00	2	N
3-Sep-201210:002.1SE3-Sep-201211:002.9ESE3-Sep-201212:002.8E3-Sep-201213:002.7E3-Sep-201214:003.1E3-Sep-201215:002.8ESE3-Sep-201216:002.5NE3-Sep-201217:001.9ENE3-Sep-201219:001.9ENE3-Sep-201220:001.6E3-Sep-201221:001.5E3-Sep-201221:001.7E	3-Sep-2012	08:00	2.1	E
3-Sep-201211:002.9ESE3-Sep-201212:002.8E3-Sep-201213:002.7E3-Sep-201214:003.1E3-Sep-201215:002.8ESE3-Sep-201216:002.5NE3-Sep-201216:002.5NE3-Sep-201217:001.9ENE3-Sep-201218:002E3-Sep-201219:001.9ENE3-Sep-201220:001.6E3-Sep-201221:001.5E3-Sep-201222:001.8E3-Sep-201223:001.7E	3-Sep-2012	09:00	1.9	SE
3-Sep-201212:002.8E3-Sep-201213:002.7E3-Sep-201214:003.1E3-Sep-201215:002.8ESE3-Sep-201216:002.5NE3-Sep-201217:001.9ENE3-Sep-201218:002E3-Sep-201219:001.9ENE3-Sep-201219:001.6E3-Sep-201220:001.6E3-Sep-201221:001.5E3-Sep-201222:001.8E3-Sep-201223:001.7E	3-Sep-2012	10:00	2.1	SE
3-Sep-201213:002.7E3-Sep-201214:003.1E3-Sep-201215:002.8ESE3-Sep-201216:002.5NE3-Sep-201217:001.9ENE3-Sep-201218:002E3-Sep-201219:001.9ENE3-Sep-201220:001.6E3-Sep-201221:001.5E3-Sep-201222:001.8E3-Sep-201222:001.8E	3-Sep-2012	11:00	2.9	ESE
3-Sep-201214:003.1E3-Sep-201215:002.8ESE3-Sep-201216:002.5NE3-Sep-201217:001.9ENE3-Sep-201218:002E3-Sep-201219:001.9ENE3-Sep-201220:001.6E3-Sep-201221:001.5E3-Sep-201222:001.8E3-Sep-201222:001.8E	3-Sep-2012	12:00	2.8	E
3-Sep-201215:002.8ESE3-Sep-201216:002.5NE3-Sep-201217:001.9ENE3-Sep-201218:002E3-Sep-201219:001.9ENE3-Sep-201220:001.6E3-Sep-201221:001.5E3-Sep-201222:001.8E3-Sep-201222:001.8E	3-Sep-2012	13:00	2.7	E
3-Sep-2012 16:00 2.5 NE 3-Sep-2012 17:00 1.9 ENE 3-Sep-2012 18:00 2 E 3-Sep-2012 19:00 1.9 ENE 3-Sep-2012 19:00 1.9 ENE 3-Sep-2012 20:00 1.6 E 3-Sep-2012 21:00 1.5 E 3-Sep-2012 22:00 1.8 E 3-Sep-2012 23:00 1.7 E	3-Sep-2012	14:00	3.1	E
3-Sep-201217:001.9ENE3-Sep-201218:002E3-Sep-201219:001.9ENE3-Sep-201220:001.6E3-Sep-201221:001.5E3-Sep-201222:001.8E3-Sep-201223:001.7E	3-Sep-2012	15:00	2.8	ESE
3-Sep-2012 18:00 2 E 3-Sep-2012 19:00 1.9 ENE 3-Sep-2012 20:00 1.6 E 3-Sep-2012 21:00 1.5 E 3-Sep-2012 22:00 1.8 E 3-Sep-2012 23:00 1.7 E	3-Sep-2012	16:00	2.5	NE
3-Sep-2012 19:00 1.9 ENE 3-Sep-2012 20:00 1.6 E 3-Sep-2012 21:00 1.5 E 3-Sep-2012 22:00 1.8 E 3-Sep-2012 23:00 1.7 E	3-Sep-2012	17:00	1.9	ENE
3-Sep-2012 20:00 1.6 E 3-Sep-2012 21:00 1.5 E 3-Sep-2012 22:00 1.8 E 3-Sep-2012 23:00 1.7 E	3-Sep-2012	18:00	2	E
3-Sep-2012 21:00 1.5 E 3-Sep-2012 22:00 1.8 E 3-Sep-2012 23:00 1.7 E	3-Sep-2012	19:00	1.9	ENE
3-Sep-2012 22:00 1.8 E 3-Sep-2012 23:00 1.7 E	3-Sep-2012	20:00	1.6	E
3-Sep-2012 23:00 1.7 E	3-Sep-2012	21:00	1.5	E
	3-Sep-2012	22:00	1.8	E
	3-Sep-2012	23:00	1.7	E
4-Sep-2012 00:00 1.9 NNE	4-Sep-2012	00:00	1.9	NNE

4-Sep-2012	01:00	2	NNE
4-Sep-2012	02:00	2.1	NNE
4-Sep-2012	03:00	2.1	S
4-Sep-2012	04:00	2	SE
4-Sep-2012	05:00	2.5	SE
4-Sep-2012	06:00	2.4	SE
4-Sep-2012	07:00	2.5	E
4-Sep-2012	08:00	2.7	NE
4-Sep-2012	09:00	3	SSE
4-Sep-2012	10:00	3	SE
4-Sep-2012	11:00	3.2	SSE
4-Sep-2012	12:00	3.2	SE
4-Sep-2012	13:00	3.3	SE
4-Sep-2012	14:00	3.2	ESE
4-Sep-2012	15:00	3	ESE
4-Sep-2012	16:00	2.7	ENE
4-Sep-2012	17:00	2.2	ESE
4-Sep-2012	18:00	2.1	ENE
4-Sep-2012	19:00	2	ESE
4-Sep-2012	20:00	2.1	ENE
4-Sep-2012	21:00	2.4	ESE
4-Sep-2012	22:00	2.5	WNW
4-Sep-2012	23:00	2.3	W
5-Sep-2012	00:00	2.3	W
5-Sep-2012	01:00	2.3	W
5-Sep-2012	02:00	2.5	ENE
5-Sep-2012	03:00	3	ESE
5-Sep-2012	04:00	2.9	WNW
5-Sep-2012	05:00	2.7	W
5-Sep-2012	06:00	2.9	W
5-Sep-2012	07:00	2.3	W
5-Sep-2012	08:00	2.8	NE
5-Sep-2012	09:00	3.1	ENE
5-Sep-2012	10:00	3.2	NE
5-Sep-2012	11:00	2.7	SSW
5-Sep-2012	12:00	3.4	SW
5-Sep-2012	13:00	3.2	ENE

5-Sep-2012	14:00	3.5	ENE
5-Sep-2012	15:00	3.8	ENE
5-Sep-2012	16:00	3.4	NE
5-Sep-2012	17:00	3.1	WNW
5-Sep-2012	18:00	3.4	W
5-Sep-2012	19:00	2.6	WNW
5-Sep-2012	20:00	3	ENE
5-Sep-2012	21:00	2.6	W
5-Sep-2012	22:00	3	WNW
5-Sep-2012	23:00	2.9	NE
6-Sep-2012	00:00	2.9	NNE
6-Sep-2012	01:00	3	NE
6-Sep-2012	02:00	2.4	NE
6-Sep-2012	03:00	2.7	NNE
6-Sep-2012	04:00	2.4	N
6-Sep-2012	05:00	2.2	WSW
6-Sep-2012	06:00	2.1	ENE
6-Sep-2012	07:00	1.8	WNW
6-Sep-2012	08:00	2.1	W
6-Sep-2012	09:00	2.6	W
6-Sep-2012	10:00	2.8	W
6-Sep-2012	11:00	3	WSW
6-Sep-2012	12:00	2.8	S
6-Sep-2012	13:00	3.1	WNW
6-Sep-2012	14:00	2.8	WSW
6-Sep-2012	15:00	2.6	WSW
6-Sep-2012	16:00	3.1	WNW
6-Sep-2012	17:00	2.4	W
6-Sep-2012	18:00	2.5	W
6-Sep-2012	19:00	2.2	WSW
6-Sep-2012	20:00	2.1	W
6-Sep-2012	21:00	1.8	W
6-Sep-2012	22:00	1.9	WNW
6-Sep-2012	23:00	1.9	WNW
7-Sep-2012	00:00	2.4	SW
7-Sep-2012	01:00	2.2	SW
7-Sep-2012	02:00	2	WSW

7-Sep-2012	03:00	2	W
7-Sep-2012	04:00	1.8	W
7-Sep-2012	05:00	2	WSW
7-Sep-2012	06:00	1.7	W
7-Sep-2012	07:00	1.8	NNW
7-Sep-2012	08:00	2	ENE
7-Sep-2012	09:00	2.4	W
7-Sep-2012	10:00	2.6	SW
7-Sep-2012	11:00	2.8	WNW
7-Sep-2012	12:00	3	NE
7-Sep-2012	13:00	2.7	NE
7-Sep-2012	14:00	2.9	WSW
7-Sep-2012	15:00	3.1	WSW
7-Sep-2012	16:00	2.5	NE
7-Sep-2012	17:00	2.4	NW
7-Sep-2012	18:00	2.1	ENE
7-Sep-2012	19:00	1.9	NW
7-Sep-2012	20:00	1.8	SW
7-Sep-2012	21:00	2	SE
7-Sep-2012	22:00	2	SE
7-Sep-2012	23:00	1.8	SSE
8-Sep-2012	00:00	1.7	SSE
8-Sep-2012	01:00	1.9	SSW
8-Sep-2012	02:00	2	NE
8-Sep-2012	03:00	1.7	WSW
8-Sep-2012	04:00	2.1	ENE
8-Sep-2012	05:00	2.1	ESE
8-Sep-2012	06:00	2.3	SSE
8-Sep-2012	07:00	2.1	SSE
8-Sep-2012	08:00	1.8	NNE
8-Sep-2012	09:00	1.9	NE
8-Sep-2012	10:00	2.5	ENE
8-Sep-2012	11:00	2.7	NE
8-Sep-2012	12:00	2.8	ENE
8-Sep-2012	13:00	2.8	SSW
8-Sep-2012	14:00	2.6	NE
8-Sep-2012	15:00	3	NE

8-Sep-2012	16:00	2.4	SSE
8-Sep-2012	17:00	2.2	ENE
8-Sep-2012	18:00	1.9	ENE
8-Sep-2012	19:00	2	NE
8-Sep-2012	20:00	1.8	NE
8-Sep-2012	21:00	2.2	ENE
8-Sep-2012	22:00	2	NNE
8-Sep-2012	23:00	1.7	NNE
9-Sep-2012	00:00	2.1	N
9-Sep-2012	01:00	2.2	N
9-Sep-2012	02:00	2.1	NE
9-Sep-2012	03:00	2.1	NNE
9-Sep-2012	04:00	1.7	NE
9-Sep-2012	05:00	1.8	ENE
9-Sep-2012	06:00	1.5	ENE
9-Sep-2012	07:00	1.6	NNE
9-Sep-2012	08:00	2.2	NNE
9-Sep-2012	09:00	3	ENE
9-Sep-2012	10:00	2.8	ENE
9-Sep-2012	11:00	2.8	ENE
9-Sep-2012	12:00	3.2	NE
9-Sep-2012	13:00	3	WSW
9-Sep-2012	14:00	2.4	NNE
9-Sep-2012	15:00	2.7	ENE
9-Sep-2012	16:00	2.6	NE
9-Sep-2012	17:00	2.5	SSE
9-Sep-2012	18:00	2	SW
9-Sep-2012	19:00	1.7	W
9-Sep-2012	20:00	1.4	NE
9-Sep-2012	21:00	1.5	SSW
9-Sep-2012	22:00	1.5	SW
9-Sep-2012	23:00	1.7	SW
10-Sep-2012	00:00	1.7	WSW
10-Sep-2012	01:00	1.5	W
10-Sep-2012	02:00	1.5	N
10-Sep-2012	03:00	1.4	SSW
10-Sep-2012	04:00	1.2	SSW

	· · · · · · · · · · · · · · · · · · ·		
10-Sep-2012	05:00	1.4	SW
10-Sep-2012	06:00	1.3	W
10-Sep-2012	07:00	1.5	WSW
10-Sep-2012	08:00	1.3	W
10-Sep-2012	09:00	1.5	SW
10-Sep-2012	10:00	2.2	SSW
10-Sep-2012	11:00	2.5	W
10-Sep-2012	12:00	2.6	W
10-Sep-2012	13:00	2.7	ENE
10-Sep-2012	14:00	2.5	WSW
10-Sep-2012	15:00	1.9	WSW
10-Sep-2012	16:00	2.2	WNW
10-Sep-2012	17:00	2.2	E
10-Sep-2012	18:00	1.8	E
10-Sep-2012	19:00	1.4	NE
10-Sep-2012	20:00	1.4	ENE
10-Sep-2012	21:00	1.5	ENE
10-Sep-2012	22:00	1.6	ESE
10-Sep-2012	23:00	1.7	E
11-Sep-2012	00:00	1.7	SE
11-Sep-2012	01:00	1.8	SE
11-Sep-2012	02:00	1.8	NE
11-Sep-2012	03:00	1.6	NE
11-Sep-2012	04:00	1.2	NE
11-Sep-2012	05:00	1.6	NE
11-Sep-2012	06:00	1.7	NE
11-Sep-2012	07:00	1.6	NE
11-Sep-2012	08:00	1.4	NNE
11-Sep-2012	09:00	1.5	E
11-Sep-2012	10:00	1.5	E
11-Sep-2012	11:00	2	WSW
11-Sep-2012	12:00	2	SW
11-Sep-2012	13:00	2.3	W
11-Sep-2012	14:00	2.4	S
11-Sep-2012	15:00	2.2	N
11-Sep-2012	16:00	2.3	WSW
11-Sep-2012	17:00	2	SW

11 Can 0010	10.00	1 5	CIM
11-Sep-2012	18:00	1.5	SW
11-Sep-2012	19:00	1.2	WNW
11-Sep-2012	20:00	1.4	W
11-Sep-2012	21:00	1.2	W
11-Sep-2012	22:00	1.1	WSW
11-Sep-2012	23:00	1.1	NNE
12-Sep-2012	00:00	1.2	W
12-Sep-2012	01:00	1.1	W
12-Sep-2012	02:00	1.1	W
12-Sep-2012	03:00	1.1	SW
12-Sep-2012	04:00	1	SW
12-Sep-2012	05:00	1.2	SW
12-Sep-2012	06:00	1	WNW
12-Sep-2012	07:00	1	SSW
12-Sep-2012	08:00	1.6	ESE
12-Sep-2012	09:00	1.8	SW
12-Sep-2012	10:00	2.3	ENE
12-Sep-2012	11:00	2.6	NE
12-Sep-2012	12:00	2.8	ENE
12-Sep-2012	13:00	2.8	ENE
12-Sep-2012	14:00	2.5	ENE
12-Sep-2012	15:00	2.4	NE
12-Sep-2012	16:00	2.2	NE
12-Sep-2012	17:00	1.9	NE
12-Sep-2012	18:00	1.6	NE
12-Sep-2012	19:00	1.7	E
12-Sep-2012	20:00	1.5	NE
12-Sep-2012	21:00	1.3	NE
12-Sep-2012	22:00	1.2	SW
12-Sep-2012	23:00	1.7	W
13-Sep-2012	00:00	1.2	NE
13-Sep-2012	01:00	1.4	NNE
13-Sep-2012	02:00	1.2	ENE
13-Sep-2012	03:00	1.2	NE
13-Sep-2012	04:00	1.3	NNE
13-Sep-2012	05:00	1.3	ENE
13-Sep-2012	06:00	1.5	ENE

13-Sep-2012	07:00	1.6	ESE
13-Sep-2012	08:00	1.2	SSE
13-Sep-2012	09:00	1.4	W
13-Sep-2012	10:00	1.6	WNW
13-Sep-2012	11:00	2.1	SSW
13-Sep-2012	12:00	2.7	SW
13-Sep-2012	13:00	2.5	WNW
13-Sep-2012	14:00	2.8	W
13-Sep-2012	15:00	2.6	W
13-Sep-2012	16:00	2.3	WSW
13-Sep-2012	17:00	2.1	WNW
13-Sep-2012	18:00	2.1	N
13-Sep-2012	19:00	1.8	ENE
13-Sep-2012	20:00	1.4	E
13-Sep-2012	21:00	1.9	SSW
13-Sep-2012	22:00	1.8	W
13-Sep-2012	23:00	1.9	WSW
14-Sep-2012	00:00	2	W
14-Sep-2012	01:00	1.9	W
14-Sep-2012	02:00	1.9	SSW
14-Sep-2012	03:00	2	SW
14-Sep-2012	04:00	1.6	SW
14-Sep-2012	05:00	1.6	W
14-Sep-2012	06:00	1.7	SSW
14-Sep-2012	07:00	1.8	SSW
14-Sep-2012	08:00	2.1	SSW
14-Sep-2012	09:00	2	WSW
14-Sep-2012	10:00	2.1	WNW
14-Sep-2012	11:00	2.5	WNW
14-Sep-2012	12:00	2.7	ENE
14-Sep-2012	13:00	2.4	ENE
14-Sep-2012	14:00	2.5	NNE
14-Sep-2012	15:00	2.2	N
14-Sep-2012	16:00	2.1	NE
14-Sep-2012	17:00	2.1	NE
14-Sep-2012	18:00	2	WNW
14-Sep-2012	19:00	1.8	SSE

14-Sep-2012	20:00	1.7	NW
14-Sep-2012	21:00	1.8	SSW
14-Sep-2012	22:00	1.8	W
14-Sep-2012	23:00	1.7	w
•			W
15-Sep-2012	00:00	1.8	
15-Sep-2012	01:00	1.3	WNW
15-Sep-2012	02:00	1.5	W
15-Sep-2012	03:00	1.6	SSW
15-Sep-2012	04:00	1.9	WNW
15-Sep-2012	05:00	2.1	SW
15-Sep-2012	06:00	2.2	SSW
15-Sep-2012	07:00	2.1	NNE
15-Sep-2012	08:00	2	NE
15-Sep-2012	09:00	2.3	E
15-Sep-2012	10:00	2.5	WSW
15-Sep-2012	11:00	2.6	W
15-Sep-2012	12:00	2.7	ESE
15-Sep-2012	13:00	2.7	SW
15-Sep-2012	14:00	2.7	ESE
15-Sep-2012	15:00	2.6	ESE
15-Sep-2012	16:00	2.6	ESE
15-Sep-2012	17:00	2.4	W
15-Sep-2012	18:00	2.2	W
15-Sep-2012	19:00	1.7	ENE
15-Sep-2012	20:00	1.7	WNW
15-Sep-2012	21:00	1.8	W
15-Sep-2012	22:00	1.7	W
15-Sep-2012	23:00	1.8	NE
16-Sep-2012	00:00	1.6	ENE
16-Sep-2012	01:00	2.1	ENE
16-Sep-2012	02:00	1.7	NNE
16-Sep-2012	03:00	1.6	NNE
16-Sep-2012	04:00	1.6	N
16-Sep-2012	05:00	1.6	NNE
16-Sep-2012	06:00	1.3	N
16-Sep-2012	07:00	1.4	N
16-Sep-2012	08:00	1.5	N

Γ		Ι	
16-Sep-2012	09:00	1.7	N
16-Sep-2012	10:00	2.1	N
16-Sep-2012	11:00	2.1	N
16-Sep-2012	12:00	2.5	Ν
16-Sep-2012	13:00	2.7	NNW
16-Sep-2012	14:00	2.3	WSW
16-Sep-2012	15:00	2	N
16-Sep-2012	16:00	1.8	N
16-Sep-2012	17:00	2.2	Ν
16-Sep-2012	18:00	1.5	N
16-Sep-2012	19:00	1.4	N
16-Sep-2012	20:00	1.2	N
16-Sep-2012	21:00	1.7	NNE
16-Sep-2012	22:00	1.3	ENE
16-Sep-2012	23:00	1.8	W
17-Sep-2012	00:00	2	NNE
17-Sep-2012	01:00	2	W
17-Sep-2012	02:00	1.8	W
17-Sep-2012	03:00	1.9	WNW
17-Sep-2012	04:00	1.4	NNE
17-Sep-2012	05:00	1.6	NNE
17-Sep-2012	06:00	2	N
17-Sep-2012	07:00	2	NNE
17-Sep-2012	08:00	2	N
17-Sep-2012	09:00	1.8	N
17-Sep-2012	10:00	2.2	NNE
17-Sep-2012	11:00	2.6	NE
17-Sep-2012	12:00	2.8	WNW
17-Sep-2012	13:00	2.5	N
17-Sep-2012	14:00	2.2	WSW
17-Sep-2012	15:00	2.5	SW
17-Sep-2012	16:00	2.4	ENE
17-Sep-2012	17:00	1.8	NE
17-Sep-2012	18:00	1.6	ENE
17-Sep-2012	19:00	1.2	NE
17-Sep-2012	20:00	1.4	ENE
17-Sep-2012	21:00	1.5	SSW

		I	1
17-Sep-2012	22:00	1.5	W
17-Sep-2012	23:00	1.5	WSW
18-Sep-2012	00:00	1.8	WSW
18-Sep-2012	01:00	1.9	WNW
18-Sep-2012	02:00	1.7	W
18-Sep-2012	03:00	1.5	WNW
18-Sep-2012	04:00	1.2	W
18-Sep-2012	05:00	1.3	NNE
18-Sep-2012	06:00	1.2	N
18-Sep-2012	07:00	1.2	SSW
18-Sep-2012	08:00	1.6	W
18-Sep-2012	09:00	2.1	WNW
18-Sep-2012	10:00	2.6	WNW
18-Sep-2012	11:00	2.7	WSW
18-Sep-2012	12:00	3.4	WNW
18-Sep-2012	13:00	3.3	W
18-Sep-2012	14:00	3.1	W
18-Sep-2012	15:00	3.2	W
18-Sep-2012	16:00	3.2	WNW
18-Sep-2012	17:00	2.7	WNW
18-Sep-2012	18:00	2.5	SW
18-Sep-2012	19:00	2.5	WNW
18-Sep-2012	20:00	2.2	W
18-Sep-2012	21:00	1.8	W
18-Sep-2012	22:00	1.9	WSW
18-Sep-2012	23:00	2	WSW
19-Sep-2012	00:00	2.1	WSW
19-Sep-2012	01:00	2.1	SSW
19-Sep-2012	02:00	2.3	NE
19-Sep-2012	03:00	2.4	NNE
19-Sep-2012	04:00	2	ESE
19-Sep-2012	05:00	2.1	ENE
19-Sep-2012	06:00	1.6	NE
19-Sep-2012	07:00	1.5	NE
19-Sep-2012	08:00	2	N
19-Sep-2012	09:00	2	ENE
19-Sep-2012	10:00	2.1	ENE

19-Sep-2012	11:00	2.7	E
19-Sep-2012	12:00	3.1	ESE
19-Sep-2012	13:00	3.1	NE
19-Sep-2012	14:00	2.6	ESE
19-Sep-2012	15:00	2.5	ESE
19-Sep-2012	16:00	2.6	ENE
19-Sep-2012	17:00	2.6	ENE
19-Sep-2012	18:00	1.8	ENE
19-Sep-2012	19:00	1.6	NE
19-Sep-2012	20:00	1.8	NNE
19-Sep-2012	21:00	1.8	NE
19-Sep-2012	22:00	1.9	NNE
19-Sep-2012	23:00	1.7	ENE
20-Sep-2012	00:00	1.7	SSE
20-Sep-2012	01:00	1.8	NNE
20-Sep-2012	02:00	2	N
20-Sep-2012	03:00	1.5	NNE
20-Sep-2012	04:00	1.8	ENE
20-Sep-2012	05:00	1.6	E
20-Sep-2012	06:00	1.7	ENE
20-Sep-2012	07:00	1.7	NNE
20-Sep-2012	08:00	1.4	SSE
20-Sep-2012	09:00	2.2	SE
20-Sep-2012	10:00	2.4	SE
20-Sep-2012	11:00	2.9	SE
20-Sep-2012	12:00	2.5	SE
20-Sep-2012	13:00	2.8	S
20-Sep-2012	14:00	2.5	S
20-Sep-2012	15:00	2.3	SSE
20-Sep-2012	16:00	2.4	SE
20-Sep-2012	17:00	2.4	SSE
20-Sep-2012	18:00	2	S
20-Sep-2012	19:00	2	S
20-Sep-2012	20:00	1.7	S
20-Sep-2012	21:00	1.8	S
20-Sep-2012	22:00	1.5	S
20-Sep-2012	23:00	1.8	SSE

21-Sep-201200:001.8SSE21-Sep-201201:001.8SSE21-Sep-201202:002SE21-Sep-201203:002.2SSE21-Sep-201204:002.1SSE21-Sep-201205:002SSW21-Sep-201206:002.1NNE21-Sep-201206:002.1NNE21-Sep-201207:001.9NE21-Sep-201208:001.8WSW21-Sep-201209:001.9W21-Sep-201210:002.5NW21-Sep-201211:002.4N21-Sep-201213:002.6N21-Sep-201214:002.7NW21-Sep-201215:002.4WNW	
21-Sep-201202:002SE21-Sep-201203:002.2SSE21-Sep-201204:002.1SSE21-Sep-201205:002SSW21-Sep-201206:002.1NNE21-Sep-201207:001.9NE21-Sep-201208:001.8WSW21-Sep-201209:001.9W21-Sep-201210:002.5NW21-Sep-201211:002.4N21-Sep-201212:002.8N21-Sep-201213:002.6N21-Sep-201214:002.7NW21-Sep-201215:002.4WNW	
21-Sep-201203:002.2SSE21-Sep-201204:002.1SSE21-Sep-201205:002SSW21-Sep-201206:002.1NNE21-Sep-201207:001.9NE21-Sep-201208:001.8WSW21-Sep-201209:001.9W21-Sep-201210:002.5NW21-Sep-201211:002.4N21-Sep-201212:002.8N21-Sep-201213:002.6N21-Sep-201214:002.7NW21-Sep-201215:002.4WNW	
21-Sep-201204:002.1SSE21-Sep-201205:002SSW21-Sep-201206:002.1NNE21-Sep-201207:001.9NE21-Sep-201208:001.8WSW21-Sep-201209:001.9W21-Sep-201210:002.5NW21-Sep-201211:002.4N21-Sep-201212:002.8N21-Sep-201213:002.6N21-Sep-201214:002.7NW21-Sep-201215:002.4WNW	
21-Sep-201205:002SSW21-Sep-201206:002.1NNE21-Sep-201207:001.9NE21-Sep-201208:001.8WSW21-Sep-201209:001.9W21-Sep-201210:002.5NW21-Sep-201211:002.4N21-Sep-201212:002.8N21-Sep-201213:002.6N21-Sep-201214:002.7NW21-Sep-201215:002.4WNW	
21-Sep-201206:002.1NNE21-Sep-201207:001.9NE21-Sep-201208:001.8WSW21-Sep-201209:001.9W21-Sep-201210:002.5NW21-Sep-201211:002.4N21-Sep-201212:002.8N21-Sep-201213:002.6N21-Sep-201213:002.4W	
21-Sep-2012 07:00 1.9 NE 21-Sep-2012 08:00 1.8 WSW 21-Sep-2012 09:00 1.9 W 21-Sep-2012 10:00 2.5 NW 21-Sep-2012 11:00 2.4 N 21-Sep-2012 12:00 2.8 N 21-Sep-2012 13:00 2.6 N 21-Sep-2012 14:00 2.7 NW	
21-Sep-2012 08:00 1.8 WSW 21-Sep-2012 09:00 1.9 W 21-Sep-2012 10:00 2.5 NW 21-Sep-2012 11:00 2.4 N 21-Sep-2012 12:00 2.8 N 21-Sep-2012 13:00 2.6 N 21-Sep-2012 14:00 2.7 NW	
21-Sep-2012 09:00 1.9 W 21-Sep-2012 10:00 2.5 NW 21-Sep-2012 11:00 2.4 N 21-Sep-2012 12:00 2.8 N 21-Sep-2012 13:00 2.6 N 21-Sep-2012 14:00 2.7 NW 21-Sep-2012 15:00 2.4 WNW	
21-Sep-2012 10:00 2.5 NW 21-Sep-2012 11:00 2.4 N 21-Sep-2012 12:00 2.8 N 21-Sep-2012 13:00 2.6 N 21-Sep-2012 14:00 2.7 NW 21-Sep-2012 15:00 2.4 WNW	
21-Sep-2012 11:00 2.4 N 21-Sep-2012 12:00 2.8 N 21-Sep-2012 13:00 2.6 N 21-Sep-2012 14:00 2.7 NW 21-Sep-2012 15:00 2.4 WNW	
21-Sep-2012 12:00 2.8 N 21-Sep-2012 13:00 2.6 N 21-Sep-2012 14:00 2.7 NW 21-Sep-2012 15:00 2.4 WNW	
21-Sep-2012 13:00 2.6 N 21-Sep-2012 14:00 2.7 NW 21-Sep-2012 15:00 2.4 WNW	
21-Sep-2012 14:00 2.7 NW 21-Sep-2012 15:00 2.4 WNW	
21-Sep-2012 15:00 2.4 WNW	
21-Sep-2012 16:00 2.7 NNW	
21-Sep-2012 17:00 2.7 NW	
21-Sep-2012 18:00 2.4 NW	
21-Sep-2012 19:00 2.2 NW	
21-Sep-2012 20:00 2 NW	
21-Sep-2012 21:00 2.3 NNW	
21-Sep-2012 22:00 1.8 N	
21-Sep-2012 23:00 1.8 NNW	
22-Sep-2012 00:00 2.2 NNW	
22-Sep-2012 01:00 1.9 W	
22-Sep-2012 02:00 2 WSW	
22-Sep-2012 03:00 1.9 WNW	
22-Sep-2012 04:00 1.8 N	
22-Sep-2012 05:00 1.8 NNW	
22-Sep-2012 06:00 1.9 WNW	
22-Sep-2012 07:00 1.8 NW	
22-Sep-2012 08:00 2.8 NNW	
22-Sep-2012 09:00 2.8 N	
22-Sep-2012 10:00 2.5 SSW	
22-Sep-2012 11:00 3 N	
22-Sep-2012 12:00 3 ENE	

22-Sep-2012	13:00	2.6	ESE
22-Sep-2012	14:00	2.5	ESE
22-Sep-2012	15:00	3.5	SE
22-Sep-2012	16:00	3.7	ESE
22-Sep-2012	17:00	3.2	E
22-Sep-2012	18:00	2.7	ESE
22-Sep-2012	19:00	2.6	ESE
22-Sep-2012	20:00	2.4	SE
22-Sep-2012	21:00	2.4	SE
22-Sep-2012	22:00	2	SE
22-Sep-2012	23:00	2.1	SE
23-Sep-2012	00:00	2	SE
23-Sep-2012	01:00	1.8	NE
23-Sep-2012	02:00	1.7	ESE
23-Sep-2012	03:00	1.7	E
23-Sep-2012	04:00	1.5	ESE
23-Sep-2012	05:00	1.6	NE
23-Sep-2012	06:00	1.5	NE
23-Sep-2012	07:00	1.4	ENE
23-Sep-2012	08:00	1.5	ESE
23-Sep-2012	09:00	1.8	NE
23-Sep-2012	10:00	2.1	NE
23-Sep-2012	11:00	2.4	E
23-Sep-2012	12:00	2.5	E
23-Sep-2012	13:00	2.9	E
23-Sep-2012	14:00	2.5	NE
23-Sep-2012	15:00	3.3	SE
23-Sep-2012	16:00	3.2	E
23-Sep-2012	17:00	2.9	NE
23-Sep-2012	18:00	2.8	NE
23-Sep-2012	19:00	2.4	NE
23-Sep-2012	20:00	2.7	NE
23-Sep-2012	21:00	2.7	ESE
23-Sep-2012	22:00	3.2	ESE
23-Sep-2012	23:00	2.8	SE
24-Sep-2012	00:00	2.7	SE
24-Sep-2012	01:00	2.4	SE

24-Sep-2012	02:00	2.4	SE
24-Sep-2012	03:00	2.1	SE
24-Sep-2012	04:00	2	SSE
24-Sep-2012	05:00	2.1	SE
24-Sep-2012	06:00	1.7	SE
24-Sep-2012	07:00	1.8	SE
24-Sep-2012	08:00	2.2	SE
24-Sep-2012	09:00	2.7	SE
24-Sep-2012	10:00	3.3	SE
24-Sep-2012	11:00	3.4	SSE
24-Sep-2012	12:00	2.4	SE
24-Sep-2012	13:00	2.4	SE
24-Sep-2012	14:00	2.3	SE
24-Sep-2012	15:00	2.7	S
24-Sep-2012	16:00	2.5	SE
24-Sep-2012	17:00	2.5	SE
24-Sep-2012	18:00	2.7	NNW
24-Sep-2012	19:00	2.8	NE
24-Sep-2012	20:00	2.5	NE
24-Sep-2012	21:00	2.6	NE
24-Sep-2012	22:00	2.6	E
24-Sep-2012	23:00	2.8	E
25-Sep-2012	00:00	2.7	E
25-Sep-2012	01:00	2.3	NE
25-Sep-2012	02:00	2.5	NE
25-Sep-2012	03:00	2.1	NNE
25-Sep-2012	04:00	2.4	NE
25-Sep-2012	05:00	2.7	Ν
25-Sep-2012	06:00	2.5	Ν
25-Sep-2012	07:00	2.4	ESE
25-Sep-2012	08:00	2.4	NE
25-Sep-2012	09:00	3	NNE
25-Sep-2012	10:00	3.1	NNE
25-Sep-2012	11:00	3.2	NNE
25-Sep-2012	12:00	3.2	Ν
25-Sep-2012	13:00	2.7	NNE
25-Sep-2012	14:00	2.7	SE

25-Sep-2012	15:00	2.4	S
25-Sep-2012	16:00	2.5	S
25-Sep-2012	17:00	1.9	S
25-Sep-2012	18:00	1.8	S
25-Sep-2012	19:00	1.7	SSE
25-Sep-2012	20:00	2.1	S
25-Sep-2012	21:00	1.7	SSE
25-Sep-2012	22:00	1.8	SSE
25-Sep-2012	23:00	1.8	SE
26-Sep-2012	00:00	2	SSE
26-Sep-2012	01:00	1.9	S
26-Sep-2012	02:00	1.8	SSW
26-Sep-2012	03:00	1.9	NW
26-Sep-2012	04:00	1.6	Ν
26-Sep-2012	05:00	1.4	Ν
26-Sep-2012	06:00	1.1	Ν
26-Sep-2012	07:00	1.3	Ν
26-Sep-2012	08:00	1.8	Ν
26-Sep-2012	09:00	1.8	Ν
26-Sep-2012	10:00	2.1	Ν
26-Sep-2012	11:00	2.5	NW
26-Sep-2012	12:00	2.8	Ν
26-Sep-2012	13:00	3.2	NNW
26-Sep-2012	14:00	2.5	NNW
26-Sep-2012	15:00	2.4	NNW
26-Sep-2012	16:00	2.4	Ν
26-Sep-2012	17:00	1.9	Ν
26-Sep-2012	18:00	1.5	Ν
26-Sep-2012	19:00	1.5	NNW
26-Sep-2012	20:00	1.2	SE
26-Sep-2012	21:00	1.7	W
26-Sep-2012	22:00	1.5	W
26-Sep-2012	23:00	2	WNW
27-Sep-2012	00:00	2.1	WNW
27-Sep-2012	01:00	1.7	Ν
27-Sep-2012	02:00	1.7	NNW
27-Sep-2012	03:00	2	NNW

27-Sep-2012	04:00	1.8	W
27-Sep-2012	05:00	2	ENE
27-Sep-2012	06:00	1.7	SE
27-Sep-2012	07:00	1.6	ENE
27-Sep-2012	08:00	1.7	ESE
27-Sep-2012	09:00	2	WNW
27-Sep-2012	10:00	2.3	WNW
27-Sep-2012	11:00	2.6	E
27-Sep-2012	12:00	2.8	ESE
27-Sep-2012	13:00	2.8	ESE
27-Sep-2012	14:00	2.8	SE
27-Sep-2012	15:00	2.6	SSE
27-Sep-2012	16:00	2.3	SSE
27-Sep-2012	17:00	2.3	SSE
27-Sep-2012	18:00	1.8	SSE
27-Sep-2012	19:00	1.5	SE
27-Sep-2012	20:00	1.4	S
27-Sep-2012	21:00	2.5	S
27-Sep-2012	22:00	1.1	SSE
27-Sep-2012	23:00	1.6	SE
28-Sep-2012	00:00	1.6	SSE
28-Sep-2012	01:00	1.7	SE
28-Sep-2012	02:00	1.8	SSE
28-Sep-2012	03:00	1.5	SE
28-Sep-2012	04:00	1.7	SE
28-Sep-2012	05:00	1.6	SE
28-Sep-2012	06:00	1.8	SE
28-Sep-2012	07:00	2	ESE
28-Sep-2012	08:00	2.2	ESE
28-Sep-2012	09:00	2.3	SE
28-Sep-2012	10:00	2.7	S
28-Sep-2012	11:00	2.8	SSW
28-Sep-2012	12:00	2.5	SSW
28-Sep-2012	13:00	2.7	SSW
28-Sep-2012	14:00	2	SSW
28-Sep-2012	15:00	2.3	SSW
28-Sep-2012	16:00	2.3	SSW

28-Sep-2012	17:00	2.6	S
28-Sep-2012	18:00	2.3	SSE
28-Sep-2012	19:00	2	SSW
28-Sep-2012	20:00	2.8	S
28-Sep-2012	21:00	3.1	SSE
28-Sep-2012	22:00	2.9	SSE
28-Sep-2012	23:00	3	SSW
29-Sep-2012	00:00	2.9	S
29-Sep-2012	01:00	3	SSW
29-Sep-2012	02:00	2.8	S
29-Sep-2012	03:00	2.9	S
29-Sep-2012	04:00	2.7	SE
29-Sep-2012	05:00	3.2	SE
29-Sep-2012	06:00	2.7	NE
29-Sep-2012	07:00	2.6	NNE
29-Sep-2012	08:00	2.7	NNE
29-Sep-2012	09:00	2.9	NNE
29-Sep-2012	10:00	3.5	NNE
29-Sep-2012	11:00	3.5	NNE
29-Sep-2012	12:00	3.1	NNE
29-Sep-2012	13:00	3.2	NNE
29-Sep-2012	14:00	2.4	NNE
29-Sep-2012	15:00	2.7	NNE
29-Sep-2012	16:00	2.4	NNE
29-Sep-2012	17:00	2.1	NNE
29-Sep-2012	18:00	1.8	NNE
29-Sep-2012	19:00	1.5	NNE
29-Sep-2012	20:00	1.5	NNE
29-Sep-2012	21:00	1.4	NW
29-Sep-2012	22:00	1.6	WNW
29-Sep-2012	23:00	1.4	WNW
30-Sep-2012	00:00	1.2	WNW
30-Sep-2012	01:00	1.4	ESE
30-Sep-2012	02:00	1.5	ESE
30-Sep-2012	03:00	1.5	SSE
30-Sep-2012	04:00	2.2	W
30-Sep-2012	05:00	2.1	WSW

		ſ	
30-Sep-2012	06:00	1.9	SSW
30-Sep-2012	07:00	1.9	SSW
30-Sep-2012	08:00	1.9	SE
30-Sep-2012	09:00	2.4	SE
30-Sep-2012	10:00	2.2	SE
30-Sep-2012	11:00	2.5	ESE
30-Sep-2012	12:00	2.4	ESE
30-Sep-2012	13:00	2.7	SE
30-Sep-2012	14:00	2.2	SE
30-Sep-2012	15:00	2.7	S
30-Sep-2012	16:00	2.2	SSE
30-Sep-2012	17:00	2	SE
30-Sep-2012	18:00	1.8	S
30-Sep-2012	19:00	1.8	SSW
30-Sep-2012	20:00	1.7	SSW
30-Sep-2012	21:00	1.6	SSW
30-Sep-2012	22:00	1.6	W
30-Sep-2012	23:00	1.7	SSW

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KL/2010/03

Kai Tak Development - Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities **Impact Air and Noise Monitoring Schedule for September 2012**

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Sep
						1
2-Sep	3-Sep	4-Sep	5-Sep	6-Sep	7-Sep	8-Sep
		1 hr TSP X3				
		Noise (M3(A) and M4)				
				Noise		
				(M1 and M2)		
	24 hr TSP					24 hr TSP
9-Sep	10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep
	1 hr TSP X3				1 hr TSP X3	
	Noise (M3(A) and M4)					
		Noise				
		(M1 and M2)				
					24 hr TSP	
16 5	17.0	10.0	10.0	20.6	21.6	22 G
16-Sep	17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep
				1 hr TSP X3		
				Noise (M3(A) and M4)		
		Noise		(WIS(A) and WI4)		
		(M1 and M2)				
		(1011 and 1012)		24 hr TSP		
				24 11 151		
23-Sep	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep
^			1	1		1
			1 hr TSP X3		1 hr TSP X3	
			Noise (M3(A) and M4)			
				Noise		
				(M1 and M2)		
			24 hr TSP			
30-Sep						

Air Quality Monitoring Station

AM1(A) - Kai Tak Operational Base AM2 - Lee Kau Yan Memorial School

Noise Monitoring Station

M1 - Buddhist Chi King Primary School M2 - S.K.H. Kowloon Bay Kei Lok Primary School M3(A) - Kai Tak Operational Base M4 - Lee Kau Yan Memorial School

Contract No. KL/2010/03

Kai Tak Development - Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities Tentative Impact Air and Noise Monitoring Schedule for October 2012

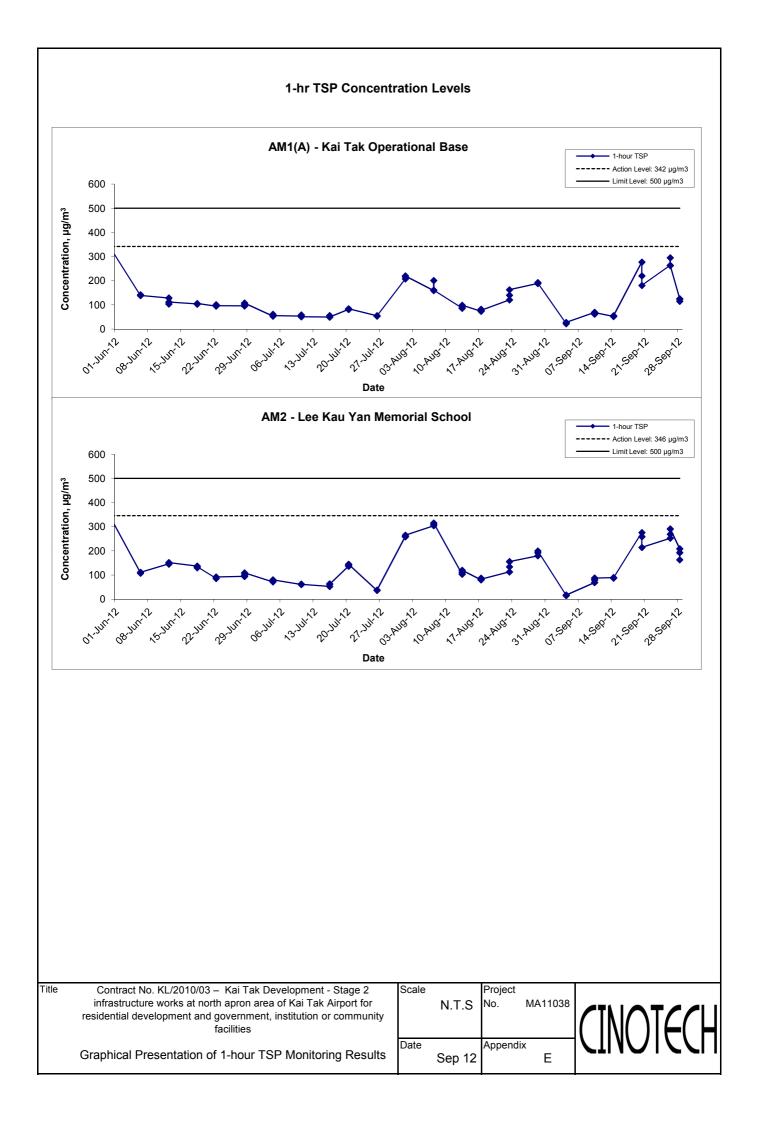
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Oct	2-Oct	3-Oct	4-Oct	5-Oct	6-Oct
		24 hr TSP	1 hr TSP X3 Noise (M3(A) and M4)		Noise (M1 and M2)	
7-Oct	8-Oct	9-Oct	10-Oct	11-Oct	12-Oct	13-Oct
	24 hr TSP	1 hr TSP X3 Noise (M3(A) and M4)		Noise (M1 and M2)		24 hr TSP
14-Oct	15-Oct	16-Oct	17-Oct	18-Oct	19-Oct	20-Oct
	1 hr TSP X3 Noise (M3(A) and M4)			Noise (M1 and M2)	1 hr TSP X3 24 hr TSP	
21-Oct	22-Oct	23-Oct	24-Oct	25-Oct	26-Oct	27-Oct
				1 hr TSP X3 Noise (M3(A) and M4) Noise (M1 and M2) 24 hr TSP		
28-Oct	29-Oct	30-Oct	31-Oct			
	due to unforman eircumstone	Noise (M1 and M2)	1 hr TSP X3 Noise (M3(A) and M4) 24 hr TSP			

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM1(A) - Kai Tak Operational Base AM2 - Lee Kau Yan Memorial School

Noise Monitoring Station


M1 - Buddhist Chi King Primary School
M2 - S.K.H. Kowloon Bay Kei Lok Primary School
M3(A) - Kai Tak Operational Base
M4 - Lee Kau Yan Memorial School

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

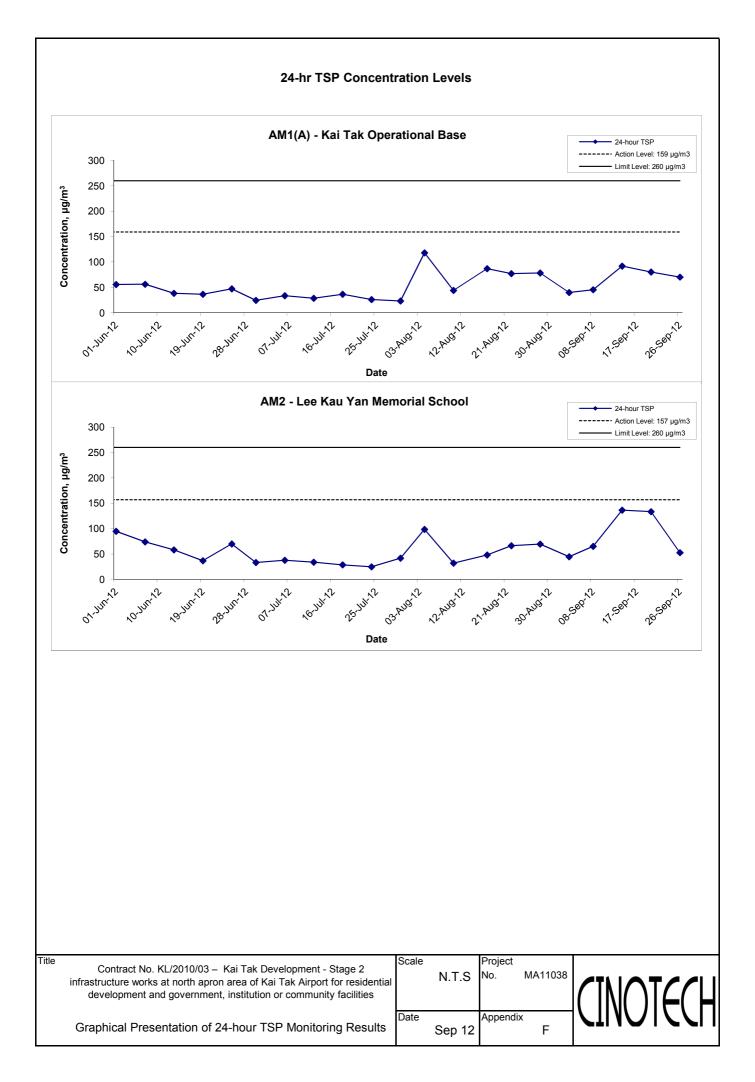
Location AM1(A) - Kai Tak C	Dperational Base	
Date	Time	Weather	Particulate Concentration (µg/m ³)
4-Sep-12	14:00	Cloudy	22.3
4-Sep-12	15:00	Cloudy	25.5
4-Sep-12	16:00	Cloudy	27.6
10-Sep-12	14:00	Sunny	69.0
10-Sep-12	15:00	Sunny	61.9
10-Sep-12	16:00	Sunny	68.6
14-Sep-12	14:10	Sunny	52.2
14-Sep-12	15:10	Sunny	55.6
14-Sep-12	16:10	Sunny	54.1
20-Sep-12	13:15	Cloudy	277.4
20-Sep-12	14:15	Cloudy	220.5
20-Sep-12	15:15	Cloudy	180.7
26-Sep-12	13:30	Cloudy	264.1
26-Sep-12	14:30	Cloudy	295.0
26-Sep-12	15:30	Cloudy	262.5
28-Sep-12	13:15	Sunny	125.4
28-Sep-12	14:15	Sunny	123.5
28-Sep-12	15:15	Sunny	114.9
		Average	127.8
		Maximum	295.0
		Minimum	22.3

Appendix E - 1-hour TSP Monitoring Results

Location AM2 -	Lee Kau Yar	n Memorial Schoo	
Date	Time	Weather	Particulate Concentration (µg/m ³)
4-Sep-12	13:00	Cloudy	16.3
4-Sep-12	14:00	Cloudy	15.2
4-Sep-12	15:00	Cloudy	17.4
10-Sep-12	13:00	Sunny	69.2
10-Sep-12	14:00	Sunny	80.2
10-Sep-12	15:00	Sunny	87.5
14-Sep-12	13:00	Sunny	89.5
14-Sep-12	14:00	Sunny	87.7
14-Sep-12	15:00	Sunny	88.1
20-Sep-12	13:00	Cloudy	276.0
20-Sep-12	14:00	Cloudy	259.0
20-Sep-12	15:00	Cloudy	214.4
26-Sep-12	13:00	Cloudy	252.7
26-Sep-12	14:00	Cloudy	269.3
26-Sep-12	15:00	Cloudy	290.9
28-Sep-12	13:00	Sunny	208.7
28-Sep-12	14:00	Sunny	192.8
28-Sep-12	15:00	Sunny	163.6
		Average	148.8
		Maximum	290.9
		Minimum	15.2

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results


Location AM1(A) - Kai Tak Operational Base

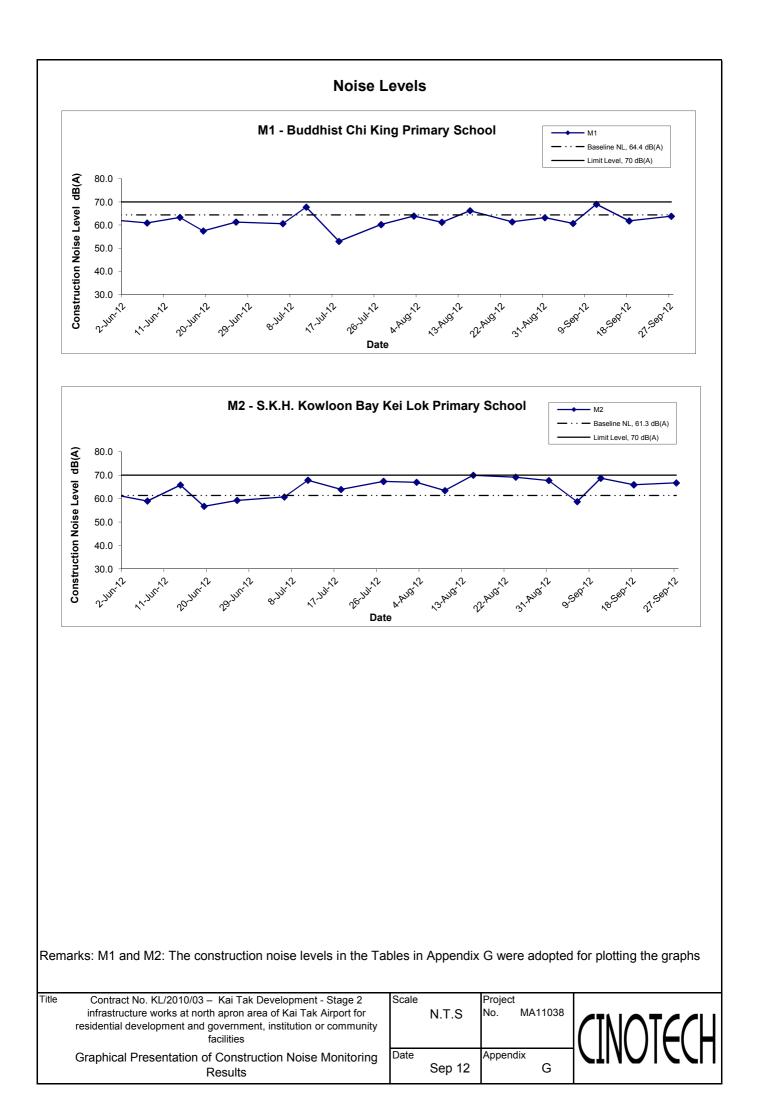
Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Sep-12	Cloudy	301.7	759.0	3.2368	3.3064	0.0696	3001.0	3025.0	24.0	1.21	1.21	1.21	1747.6	39.8
8-Sep-12	Sunny	302.1	761.9	3.2286	3.3080	0.0794	3025.0	3049.0	24.0	1.22	1.21	1.22	1749.6	45.4
14-Sep-12	Cloudy	298.7	760.1	3.2429	3.4043	0.1614	3049.0	3073.0	24.0	1.22	1.22	1.22	1756.5	91.9
20-Sep-12	Cloudy	299.9	761.8	3.1047	3.2456	0.1409	3073.0	3097.0	24.0	1.22	1.22	1.22	1755.2	80.3
26-Sep-12	Cloudy	301.2	758.6	3.1884	3.3109	0.1225	3097.0	3121.0	24.0	1.21	1.21	1.21	1743.1	70.3
													Min	39.8
													Max	91.9
													Average	65.5

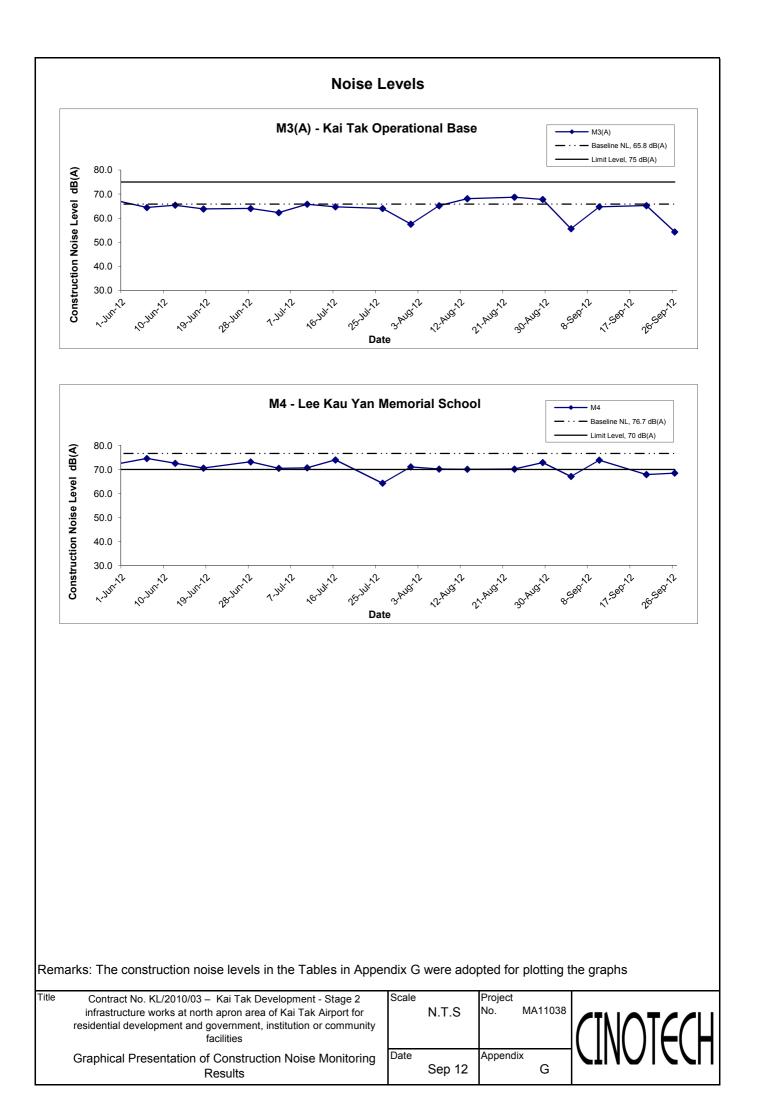
Location AM2 - Lee Kau Yan Memorial School

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
3-Sep-12	Cloudy	301.7	759.0	3.2970	3.3748	0.0778	2905.0	2929.0	24.0	1.21	1.21	1.21	1744.1	44.6
8-Sep-12	Sunny	302.1	761.9	3.2414	3.3553	0.1139	2929.0	2953.0	24.0	1.21	1.21	1.21	1746.1	65.2
14-Sep-12	Cloudy	298.7	760.1	3.2691	3.5084	0.2393	2953.0	2977.0	24.0	1.22	1.22	1.22	1753.4	136.5
20-Sep-12	Cloudy	299.9	761.8	3.0888	3.3225	0.2337	2977.0	3001.0	24.0	1.22	1.22	1.22	1752.0	133.4
26-Sep-12	Cloudy	301.2	758.6	3.1886	3.2802	0.0916	3001.0	3025.0	24.0	1.21	1.21	1.21	1739.8	52.6
													Min	44.6
													Max	400 E

Max 136.5 Average 86.5

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix G - Noise Monitoring Results


Location M1 -	Location M1 - Buddhist Chi King Primary School												
					Uni	t: dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise I	Level	Baseline Level	Construction Noise Level						
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}						
6-Sep-12	16:10	Sunny	60.7	62.7	56.4		60.7 Measured \leq Baseline						
11-Sep-12	15:00	Sunny	70.3	71.5	67.8	64.4	69.0						
18-Sep-12	16:00	Cloudy	66.3	67.1	63.0	04.4	61.8						
27-Sep-12	16:00	Sunny	67.1	69.9	60.5		63.8						

Location M2 - S.K.H. Kowloon Bay Kei Lok Primary School											
				Unit: dB (A) (30-min)							
Date	Time Weath		Meas	sured Noise	Level	Baseline Level	Construction Noise Level				
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}				
6-Sep-12	16:00	Sunny	63.2	64.9	59.5		58.7				
11-Sep-12	15:45	Sunny	69.4	70.9	65.5	61.3	68.7				
18-Sep-12	16:10	Cloudy	67.2	68.9	64.1	01.3	65.9				
27-Sep-12	16:05	Sunny	67.8	70.1	63.7		66.7				

Location M3(A	Location M3(A) - Kai Tak Operational Base											
				Unit: dB (A) (30-min)								
Date	Time	Weather	Measured Noise Level			Baseline Level	Construction Noise Level					
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}					
4-Sep-12	14:20	Cloudy	66.2	69.9	62.5		55.6					
10-Sep-12	14:15	Sunny	68.3	71.9	64.2	65.8	64.7					
20-Sep-12	15:15	Cloudy	68.5	72.9	63.6	05.0	65.2					
26-Sep-12	13:00	Cloudy	66.1	72.0	63.3		54.3					

Location M4 -	Location M4 - Lee Kau Yan Memorial School									
			Unit: dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise I	Level	Baseline Level	Construction Noise Level			
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}			
4-Sep-12	13:00	Cloudy	67.1	69.9	64.1		67.1 Measured \leq Baseline			
10-Sep-12	13:00	Sunny	73.9	74.9	68.2	76.7	73.9 Measured \leq Baseline			
20-Sep-12	13:00	Cloudy	67.9	73.5	61.1	70.7	67.9 Measured \leq Baseline			
26-Sep-12	13:00	Cloudy	68.5	73.9	64.2		68.5 Measured \leq Baseline			

APPENDIX H SUMMARY OF EXCEEDANCE

Contract No. KL/2010/03 Kai Tak Development – Stage 2 Infrastructure Works at North Apron Area of Kai Tak Airport for Residential Development and Government Facilities

Appendix H – Summary of Exceedance

Exceedance Report for Contract No. KL/2010/03

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	120905	
Date	5 September 2012	()/////////////////////////////////////
Time	09:30 - 11:00	
and the second sec		

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	A. Water Quality	
120905-R01	• Clear the general refuse and the stagnant water properly in the U-channel near Road D2.	B8
	B. Air Quality	
120905-R02	Cover the dusty stockpile properly near Pumping Station PS1A.	C7
	C. Noise	
	No environmental deficiency was identified during site inspection.	
22.0	D. Waste / Chemical Management	
120905-R01	Clear the general refuse and the stagnant water properly in the U-channel near Road D2.	Eli
	E. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	/
	F. Permits /Licences	
	No environmental deficiency was identified during site inspection.	13.00041 0
	G. Others	
	 Follow-up on previous site audit session (Ref. No. 120829), all environmental deficiencies had been rectified/improved by the Contractor. 	

1 Contraction of the	Name	Signature	Date
Recorded by	Johnny Fung	m	5 September 2012
Checked by	Dr. Priscilla Choy	NI	5 September 2012

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	120912
Date	12 September 2012
Time	11:00 - 12:00

Ref. No.	Non-Compliance	Related Item No.
Kei. 140.	None identified	item ito.
i		Related
Ref. No.	Remarks/Observations	Item No.
	A. Water Quality	Item ite.
	No environmental deficiency was identified during site inspection.	
		SOD MARKS
	B. Air Quality	
	No environmental deficiency was identified during site inspection.	
11		1
(k)	C. Noise	
-	No environmental deficiency was identified during site inspection.	
	D. Waste / Chemical Management	
120912-R01	Store the chemical container in drip tray properly near Pumping Station PS1A.	E9
	E. Visual and Landscape	dennes de seconde S
anan an	No environmental deficiency was identified during site inspection.	
	F. Permits /Licences	
	No environmental deficiency was identified during site inspection.	072 0712-088/049
	G. Others	
	 Follow-up on previous site audit session (Ref. No. 120905), all environmental deficiencies had been rectified/improved by the Contractor. 	

	Name	Signature	Date
Recorded by	Johnny Fung	Im	12 September 2012
Checked by	Dr. Priscilla Choy	IN I	12 September 2012

1

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	120919
Date	19 September 2012
Time	9:30 - 11:00

Ref. No.	Non-Compliance	Related Item No.
	None identified	51 0 16
Ref. No.	Remarks/Observations	Related Item No.
	A. Water Quality	
	No environmental deficiency was identified during site inspection.	
	B. Air Quality	
120919-R01	Cover the stockpile properly near Box Culvert BC6.	C6
	C. Nolse	
	No environmental deficiency was identified during site inspection.	
	D. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
4000410	E. Visual and Landscape	and the analysis of the
	No environmental deficiency was identified during site inspection.	
(0))(10)(0)	F. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	 Follow-up on previous site audit session (Ref. No. 120912), all environmental deficiencies had been rectified/improved by the Contractor. 	0.001600000

	Name	Signature	Date
Recorded by	Johnny Fung	izh	19 September 2012
Checked by	Dr. Priscilla Choy	WI	19 September 2012

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	120926
Date	26 September 2012
Time	9:30 - 11:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	
Ref. No.	Remarks/Observations	Related Item No.
	A. Water Quality	
120926-R02	Properly remove the stagnant water at Portion N.	B8
- 10 - 10	B. Air Quality	
120926-R01	Cover the stockpile properly near Pumping Station PS1A.	C7
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	01 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
	E. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	F. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	 Follow-up on previous site audit session (Ref. No. 120919), all environmental deficiencies had been rectified/improved by the Contractor. 	

	Name	Signature	Date
Recorded by	Johnny Fung	12	26 September 2012
Checked by	Dr. Priscilla Choy	NI	26 September 2012

•

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;	
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if	
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.	
	3. Repeat measurement to confirm finding.	method.			
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Discuss with ET and IEC on proper	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;	
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial	
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three	
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;	
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;	
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.	
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of		
	6. If exceedance continues, arrange		remedial measures;		
	meeting with IEC and ER;		5. Conduct meeting with ET and		
	7. If exceedance stops, cease additional		IEC if exceedance continues.		
	monitoring.				
Limit Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;	
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper	
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;	
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial	
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three	

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation		
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;		
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation		
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.		
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be		
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after		
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)		
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;			
	check mitigation effectiveness.	(The above actions should be	4. Supervise the			
	(The above actions should be taken	taken within 2 working days after	implementation of remedial			
	within 2 working days after the	the exceedance is identified)	measures.			
	exceedance is identified)		(The above actions should be			
			taken within 2 working days			
			after the exceedance is			
			identified)			
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to		
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;		
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial		
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3		
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;		
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed		
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;		

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT			ACTION	
ACTION LEVEL	ET	IEC	ER	CONTRACTOR
Design Check	1. Check final	1. Check report.	1. Undertake remedial design if necessary	
	design conforms to	2. Recommend		
	the requirements	remedial design if		
	of EP and prepare	necessary		
	report.			
Non-conformity on one occasion	1. Identify Source	1. Check report	1. Notify Contractor	1. Amend working methods
	2. Inform IEC and	2. Check Contractor's	2. Ensure remedial measures are properly	2. Rectify damage and
	ER	working method	implemented	undertake any necessary
	3. Discuss remedial	3. Discuss with ET and		replacement
	actions with IEC,	Contractor on possible		
	ER and Contractor	remedial measures		
	4. Monitor remedial	4. Advise ER on		
	actions until	effectiveness of		
	rectification has	proposed remedial		
	been completed	measures.		
		5. Check implementation		
		of remedial measures.		
Repeated Non-conformity	1. Identify Source	1. Check monitoring	1. Notify Contractor	1. Amend working methods
	Inform IEC and	report	2. Ensure remedial measures are properly	2. Rectify damage and

ER	2. Check Contractor's	implemented	undertake any necessary
2. Increase	working method		replacement
monitoring	3. Discuss with ET and		
frequency	Contractor on possible		
3. Discuss remedial	remedial measures		
actions with IEC,	4. Advise ER on		
ER and Contractor	effectiveness of		
4. Monitor remedial	proposed remedial		
actions until	measures		
rectification has	5. Supervise		
been completed	implementation of		
5. If non-conformity	remedial measures.		
stops, cease			
additional			
 monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Types of Impacts	Mitigation Measures	Status
	8 times daily watering of the work site with active dust emitting activities.	*
	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	
	 Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. 	*
	 Misting for the dusty material should be carried out before being loaded into the vehicle. 	*
Construction Dust	 Any vehicle with an open load carrying area should have properly fitted side and tail boards. Material having the potential to create dust should not 	^
	be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	*
	 The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation. 	*
	 The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. On- site unpaved roads should be compacted and kept free of lose materials. 	^
	 Vehicle washing facilities should be provided at every 	^

Appendix K - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

 The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, 	٨
 bituminous materials or hardcores. Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet. 	Λ
 Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides. 	*
 Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites. 	Λ
• <u>DWFI compound for JVBC</u> : a DWFI compound is proposed at the downstream of JVC to contain pollution in drainage systems entering the KTAC and KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the compounds to prevent any accumulation of sediment within the downstream section of JVBC and hence fully mitigate the potential odour emissions from the headspace of JVBC near the existing discharge locations. The odour generating operations within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high	N/A

efficiency deodorizers before discharge to the atmosphere.	
Desilting compound for KTN: Two desilting compounds are proposed for KTN (at Site 1D6 and Site 1P1) to contain pollution in drainage systems entering the KTAC and KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the compounds to prevent any accumulation of sediment within the downstream section of KTN and hence fully mitigate the potential odour emissions from the headspace of KTN near the existing discharge locations. The odour generating operations within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high efficiency deodorizers before discharge to the atmosphere.	N/A
Decking or reconstruction of KTN within apron area: it is proposed to deck the KTN or reconstruct the KTN within the former Apron area into Kai Tak River from the south of Road D1 to the north of Road D2 along the existing alignment of KTN. The Kai Tak River will compose of a number of channels flowing with non- odorous fresh water and THEES effluent. The channel flowing with THEES effluent will be designed with the width of water surface of not more than 16m.	N/A

maintenance dredging should be conducted to provide water depth of not less than 3.5m over the whole of KTAC and KTTS. With reference to the water depth data recorded during the odour survey, only some of the areas in the northern part of KTAC (i.e. to the north of taxiway bridge) including the area near the northern edge of KTAC, the area near western bank of KTAC, and the area near the JVC discharge have water depths shallower than 3.5m. The area involved would be about 40% of the northern KTAC and the dredging depth required would be from about 2.7m to less than 1m. The maintenance dredging to be carried out prior to the occupation of any new development in the immediate vicinity of KTAC to avoid potential localized odour impacts at the future ASRs during the maintenance dredging operation.	
 Improvement of water circulation in KTAC and KTTS: 600m gap opening at the northern part of the former Kai Tak runway, the water circulation in KTAC and KTTS would be substantially improved. Together with the improvement in water circulation, the DO level in KTAC and KTTS would also be increased. 	N/A
 <u>In-situ</u> sediment treatment by bioremediation: Bioremediation would be applied to the entire KTAC and KTTS. 	N/A

	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump	٨
Construction Noise	 Good Site Practice: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	^ N/A(1) ^ ^ ^
	Scheduling of Construction Works during School Examination Period (i) Provision of low noise surfacing in a section of Road L2; and	^ N/A
	(ii) Provision of structural fins	N/A

 (i) Avoid the sensitive façade of class room facing Road L2 and L4; and 	N/A
(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A
(i) Provision of low noise surfacing in a section of Road L4 before occupation of Site 111; and	N/A
(ii) Setback of building about 5m from site boundary.	N/A
Setback of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
 avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and 	N/A
 (ii) for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not provide the facades with openable window. 	N/A
 avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height 	N/A
of the residential block(s) located at less than 55m away from To Kwa Wan Road to no more than 25m above ground. (i) avoid any sensitive facades with openable window	N/A
facing the slip road connecting Prince Edward Road East and San Po Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic noise impacts from the slip road	N/A

provided wit (i) SPS (ii) ESS (iii) Tun		N/A N/A N/A N/A
Installation measures	of retractable roof or other equivalent	N/A

Construction Water Quality	 The following mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including: Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply; Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps; An alarm should be installed to signal emergency high water level in the wet well at all SPSs; and For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should be provided so that swift actions could be taken in case of malfunction of unmanned facilities. Construction Phase Marine-based Construction Mitigation measures for construction of the proposed mice terminal should be level to the provided to the proposed mice terminal should be taken in case meaneded in the states. 	N/A N/A N/A N/A
	Mitigation measures for construction of the proposed cruise terminal should follow those recommended in the approved EIA for CT Dredging.	^

 Fireboat Berth, Runway Opening and Road T2	
Silt curtains should be deployed around the close grab dredger to minimize release of sediment and other contaminants for any dredging and filling activities in open water. Dredging at and near the seawall area for construction of the public landing steps cum fireboat berth should be carried out at a maximum production rate of 1,000m ³ per day using one grab dredger.	*
The proposed construction method for runway opening should adopt an approach where the existing seawall at the runway will not be removed until completion of all excavation and dredging works for demolition of the runway. Thus, excavation of bulk fill and majority of the dredging works will be carried out behind the existing seawall, and the sediment plume can be effectively contained within the works area. As there is likely some accumulation of sediments alongside the runway, there will be a need to dredge the existing seabed after completion of all the demolition works. Dredging alongside the 600m opening should be carried out at a maximum production rate of 2,000m ³ per day using one grab dredger.	٨
Dredging for Road T2 should be conducted at a maximum rate of 8,000m ³ per day (using four grab dredgers) whereas the sand filling should be conducted at a maximum rate of 2,000m ³ per day (using two grab dredgers).	N/A (1)
Silt screens shall be applied to seawater intakes at WSD seawater intake.	^

Land-based Construction

Construction Runoff

Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include:

- use of sediment traps
- adequate maintenance of drainage systems to prevent flooding and overflow

*

*

Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.

Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.	^
Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m ³ capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	^
Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	^
Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	^

Λ
Λ
^

All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	Λ
All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	^
Sewage Effluent	
Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	Λ
Stormwater Discharges Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes	
	 provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required. All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ. Sewage Effluent Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices. Stormwater Discharges Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges

Debris and Litter	
In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials. litter or wastes to marine waters does not occur	^
Construction Works at or in Close Proximity of Storm Culvert or Seafront	
The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	^
The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm culvert / nullah.	^
Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works.	^
Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	*
Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	*
Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	^

Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	*
Construction effluent, site run-off and sewage should be properly collected and/or treated.	*
Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	*
Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of construction materials.	۸
Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	*
Supervisory staff should be assigned to station on site to closely supervise and monitor the works	۸
Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	۸

Good	Site Practices	
	not anticipated that adverse waste management	
	d impacts would arise, provided that good site	
	ces are adhered to. Recommendations for good site	
	ces during construction activities include:	
pradu	Nomination of an approved person, such as a site	
	manager, to be responsible for good site practices,	
	arrangements for collection and effective disposal	
	to an appropriate facility, of all wastes generated at	^
	the site	
	Training of site personnel in proper waste	
	management and chemical waste handling	
	procedures	*
•	Provision of sufficient waste disposal points and	
25.0	regular collection for disposal	
	Appropriate measures to minimise windblown litter	*
450	and dust during transportation of waste by either	Ť
	covering trucks or by transporting wastes in	
	enclosed containers	*
•	A recording system for the amount of wastes	
	generated, recycled and disposed of (including the	
	disposal sites)	^

Waste Reduction Measures	
Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste	
 Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals 	*
 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 	*
 Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the work force Any unused chemicals or those with remaining 	*
 functional capacity should be recycled Proper storage and site practices to minimise the potential for damage or contamination of construction materials 	۸ *
Dredged Marine Sediment	
The basic requirements and procedures for dredged mud disposal are specified under the ETWB TCW No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is required under the Dumping at Sea Ordinance and is the responsibility of the Director of Environmental Protection (DEP)	۸

at Sea Ordinance and as specified by the DEP Barges or hopper barges should not be filled to a level that would cause the overflow of materials or sediment laden water during loading or	at Sea Ordinance and as specified by the DEP Barges or hopper barges should not be filled to a level that would cause the overflow of materials or	It will be the responsibility of the contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works should apply for allocation of marine disposal sites and all necessary permits from relevant authorities for the disposal of dredged sediment. During transportation and disposal of the dredged marine sediments requiring Type 1, Type 2, or Type 3 disposal, the following measures should be taken to minimise potential impacts on water quality: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic selfmonitoring devices as required under the Dumping 	^
transportation		 at Sea Ordinance and as specified by the DEP Barges or hopper barges should not be filled to a level that would cause the overflow of materials or sediment laden water during loading or 	^

Construction and Demolition Material	
Mitigation measures and good site practices should be	
incorporated into contract document to control potential	
environmental impact from handling and transportation of	
C&D material. The mitigation measures include:	
 Where it is unavoidable to have transient stackpilles of C*D material within the Braiset work. 	
stockpiles of C&D material within the Project work	Λ
site pending collection for disposal, the transient stockpiles should be located away from waterfront	
or storm drains as far as possible	
 Open stockpiles of construction materials or construction wastes on-site should be covered with 	*
tarpaulin or similar fabric	
 Skip hoist for material transport should be totally 	
 Skip holst for material transport should be totally enclosed by impervious sheeting 	
 Every vehicle should be washed to remove any 	*
dusty materials from its body and wheels before	
leaving a construction site	^
 The area where vehicle washing takes place and 	
the section of the road between the washing	
facilities and the exit point should be paved with	Λ
concrete, bituminous materials or hardcores	
 The load of dusty materials carried by vehicle 	
leaving a construction site should be covered	^
entirely by clean impervious sheeting to ensure	
dust materials do not leak from the vehicle	
 All dusty materials should be sprayed with water 	
prior to any loading, unloading or transfer	
operation so as to maintain the dusty materials wet	*
 The height from which excavated materials are 	
dropped should be controlled to a minimum	*
practical height to limit fugitive dust generation	
from unloading	

When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.

Λ

٨

*

Chemical Waste

After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation

General Refuse

General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem

	CM1 All existing trees should be carefully protected during construction.	^
	CM2 Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	^
Landscape and Visual	CM3 Control of night-time lighting.	N/A(1)
	CM4 Erection of decorative screen hoarding.	^

Remarks:	 Compliance of mitigation measure; 	X Non-compliance of mitigation measure;
	N/A Not Applicable at this stage; N/A(1) Not observed;	•Non-compliance but rectified by the contractor;
	* Recommendation was made during site audit but improved/rectified by the contractor.	

APPENDIX L SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

Contract No. KL/2010/03 Kai Tak Development – Stage 2 Infrastructure Works at North Apron Area of Kai Tak Airport for Residential Development and Government Facilities

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Reporting Month: September 2012

Contract No. KL/2010/03

Log Ref.	Location	Received DateDetails of Complaint/warning/summon and prosecution		Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A	N/A

Remarks: No environmental complaint/warning/summon and prosecution were received in the reporting period.

APPENDIX M WASTE GENERATED QUANTITY Department: CEDD

Contract No.: KL/2010/03

Project : KAI TAK DEVELOPMENT – STAGE 2 Infrastructure Works at North Apron Area of Kai

Tak Airport for Residential Development and Government Facilities Monthly Summary Waste Flow Table

As at 30 Sep 2012

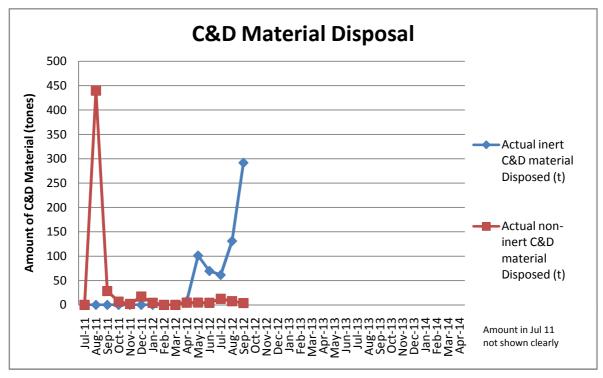
											Sep 2012	
	Total	Actual Quantities Inert C & D Materials Generated Monthly			Actual Quantities of C & D Wastes Generated Monthly							
Month	Quantity Generated	Broken Concrete (See Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	`	Chemica	ll Waste	Others, e.g. general refuse
	$(in m^3)$	(in m ³)	$(in m^3)$	$(in m^3)$	$(in m^3)$	$(in m^3)$	(in kg)	(in kg)	(in kg)	Battery(No.)	Oil(in L)	$(in m^3)$
Jul'2011	0	0	0	0	0	0	0	0	0	0	0	0
Aug'2011	91.68	0	0	0	0	0	0	0	0	0	0	91.68
Sep'2011	5.93	0	0	0	0	0	0	0	0	0	0	5.93
Oct'2011	1.38	0	0	0	0	0	0	0	0	0	0	1.38
Nov'2011	0.93	0	0	0	0	0	0	0	0	0	0	0.93
Dec'2011	3.55	0	0	0	0	0	0	0	0	0	0	3.55
Jan'2012	0.87	0	0	0	0	0	0	0	0	0	0	0.87
Feb'2012	0	0	0	0	0	0	0	0	0	0	0	0
Mar'2012	0	0	0	0	0	0	0	0	0	0	0	0
Apr'2012	4.69	0	0	0	3.75	0	0	0	0	0	0	0.94
May'2012	51.53	0	0	0	50.53	0	0	0	0	0	0	1.00
Jun'2012	36.19	0	0	0	35.27	0	0	0	0	0	0	0.92
Jul'2012	33.37	0	0	0	30.73	0	0	0	0	0	0	2.64
Aug'2012	67.15	0	0	0	65.59	0	0	0	0	0	0	1.56
Sep'2012	146.67	0	0	0	145.87	0	0	0	0	0	0	0.8
Oct'2012												
Nov'2012												
Dec'2012												
Total	443.94	0	0	0	331.74	0	0	0	0	0	0	112.20

Notes: 1 The performance targets are given in PS clause 25.20A(4)

2 The waste flow table shall also include C & D materials that are specified in the Contract to be imported for use at the Site.

3 Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging material.

4 The summary table shall be submitted to the Engineer's Representative monthly together with the Waste Flow Table


for review and monitoring in accordance with the PS Clause 25.20

Kai Tak Development - Stage 2 Infrastructure Works at North Apron Area of Kai Tak Airport for Residential Development and Government Facilities

Month No.	Month	Estimated non-inert C&D material to be Disposed(t)	Actual non-inert C&D material Disposed (t)	Estimated inert C&D material to be Disposed (t)	Actual inert C&D material Disposed (t) 0		
1	Jul-11	0	0	0			
2	Aug-11	100	440.08	0	0		
3	Sep-11	100	28.48	0	0		
4	Oct-11	100	6.61	0	0		
5	Nov-11	100	1.89	0	0		
6	Dec-11	100	17.05	0	0		
7	Jan-12	100	4.19	0	0		
8	Feb-12	100	0	0	0		
9	Mar-12	100	0	0	0		
10	Apr-12	100	4.54	0	7.49		
11	May-12	100	4.78	0	101.06		
12	Jun-12	100	4.4	0	69.53		
13	Jul-12	100	12.65	0	61.46		
14	Aug-12	100	7.49	0	131.17		
15	Sep-12	100	3.85	0	291.73		
16	Oct-12	100		0			
17	Nov-12	100		0			
18	Dec-12	100		0			
19	Jan-13	100		0			
20	Feb-13	100		0			
21	Mar-13	100		0			
22	Apr-13	100		0			
23	May-13	100		0			
24	Jun-13	100		0			
25	Jul-13	100		0			
26	Aug-13	100		0			
27	Sep-13	100		0			
28	Oct-13	100		0			
29	Nov-13	100		0			
30	Dec-13	100		0			
31	Jan-14	100		0			
32	Feb-14	100		0			
33	Mar-14	100		0			
34	Apr-14	100		0			
Accum	ulation	-	536	-	662		

Monthly Programme for Disposal of C& D Materials

Note: Non-inert C&D materials and inert C&D materials will be disposed of at NENT and TKO137FB respectively.

