Civil Engineering and Development Department

EP-344/2009 - New Sewage Pumping Stations Serving KTD and EP-337/2009 - New Distributor Roads Serving the Planned KTD

Contract No. KL/2010/03

Kai Tak Development - Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities

Monthly EM&A Report

November 2013

(Version 1.0)

Approved By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: <u>info@cinotech.com.hk</u>

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	
	Introduction	
	Environmental Monitoring Works	
	Environmental Licenses and Permits	
	Key Information in the Reporting Month	
	Future Key Issues	3
1.	INTRODUCTION	4
	Background	4
	Project Organizations	4
	Construction Activities undertaken during the Reporting Month	
	Summary of EM&A Requirements	6
2.	AIR QUALITY	7
	Monitoring Requirements	7
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	8
	Monitoring Methodology and QA/QC Procedure	8
	Results and Observations	10
3.	NOISE	13
	Monitoring Requirements	13
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedures	14
	Maintenance and Calibration	
	Results and Observations	14
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	17
5.	LANDSCAPE OF VISUAL	19
•		
	Monitoring Requirements	
6.	ENVIRONMENTAL AUDIT	20
	Site Audits	
	Review of Environmental Monitoring Procedures	
	Status of Environmental Licensing and Permitting	
	Status of Waste Management	
	Implementation Status of Environmental Mitigation Measures	
	Summary of Mitigation Measures Implemented	
	Implementation Status of Event Action Plans	23
	Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution	23
7.	FUTURE KEY ISSUES	
-	Key Issues for the Coming Month	
	Monitoring Schedule for the Next Month	24 25

8.	CONCLUSIONS AND RECOMMENDATIONS	. 26
	Conclusions.	. 26
	Recommendations	. 26

LIST OF TABLES

Table I	Air Quality and Noise Monitoring Stations for this Project
Table II	Non-compliance Recorded for the Project in the Reporting Month
Table III	Summary Table for Key Information in the Reporting Month
Table 1.1	Key Project Contacts
Table 1.2	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 2.1	Locations for Air Quality Monitoring
Table 2.2	Air Quality Monitoring Equipment
Table 2.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 2.4	Summary Table of Air Quality Monitoring Results during the reporting month
Table 3.1	Noise Monitoring Stations
Table 3.2	Noise Monitoring Equipment
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 3.5	Summary Table of Noise Monitoring Results during the Reporting Month
Table 4.1	Comparison of 1-hr TSP data with EIA predictions
Table 4.2	Comparison of 24-hr TSP data with EIA predictions
Table 4.3	Comparison of Noise Monitoring Data with EIA predictions
Table 6.1	Summary of Environmental Licensing and Permit Status
Table 6.2	Observations and Recommendations of Site Inspections

LIST OF FIGURES

Figure 1	Layout Plan of the Project Site
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of Construction Noise Monitoring Stations
Figure 4	Locations of Wind Anemometer

LIST OF APPENDICES

A	Action and Limit Levels for Air Quality and Noise
В	Copies of Calibration Certificates
C	Weather Information
D	Environmental Monitoring Schedules
E	1-hour TSP Monitoring Results, Graphical Presentations
F	24-hour TSP Monitoring Results, Graphical Presentations
G	Noise Monitoring Results and Graphical Presentations
Н	Summary of Exceedance
I	Site Audit Summary
J	Event Action Plans
K	Environmental Mitigation Implementation Schedule (EMIS)
L	Summaries of Environmental Complaint, Warning, Summon and Notification
	of Successful Prosecution
M	Summary of Waste Generation and Disposal Records

EXECUTIVE SUMMARY

Introduction

- 1. This is the 25th Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2010/03-Kai Tak Development Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities" (Hereafter referred to as "the Project"). This contract comprises two Schedule 2 designated projects (DPs), namely the new sewage pumping station PS1A serving the planned KTD and the new distributor road D2 serving the planned KTD. The two DPs are part of the designated projects under Environmental Permit No.: EP-344/2009 ("New sewage pumping stations serving Kai Tak Development) and EP-337/2009 ("New distributor roads serving the planned Kai Tak Development") respectively. This report documents the findings of EM&A Works conducted in November 2013.
- 2. With reference to the same principle of EIA report of the Project, air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in Table I (see Figure 2 and 3 for their locations).

Table I – Air Quality and Noise Monitoring Stations for this Project

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations	
Air Quality Monitoring Stations			
AM1 - Rhythm Garden	No	AM1(B) - Contractor Site Office (KL/2012/02)*	
AM2 - Lee Kau Yan Memorial School	Yes	N/A	
AM6 – Site 1B4 (Planned)	N/A		
Noise Monitoring Stations			
M1 - Buddhist Chi King Primary School	Yes	N/A	
M2 - S.K.H. Kowloon Bay Kei Lok Primary School	Yes	N/A	
M3 - Cognitio College	Yes	N/A	
M4 - Lee Kau Yan Memorial School	Yes	N/A	
M9 – Site 1B1 (Planned) M10 – Site 1B4 (Planned)	N/A		

Remark:* The Contractor Site Office of KL/2012/02 occupied the same location of previous KL/2008/09 site office of and therefore the location of monitoring station AM1(B) is remain unchanged.

3. According to the Environmental Monitoring and Audit Manual (EM&A Manual) of the Kai Tak Development (KTD) Schedule 3 Environmental Impact Assessment (EIA) Report, the impact

monitoring at the designated monitoring stations as required in KTD EM&A Manual under two EPs, have been conducted in Contract No. KLN/2010/04 – Environmental Monitoring Works for Kai Tak Development under Schedule 3 of KTD, which is on-going starting from December 2010. The impact monitoring data under Contract No. KLN/2010/04 will be adopted for the Project. Therefore, this report presents the air quality and noise monitoring works extracted from Contract No. KLN/2010/04.

- 4. The major site activities undertaken in the reporting month included:
 - Finishing works of pumping station PS1A;
 - Drainage works at Road L4, Road L5 & pedestrian streets;
 - Fence wall construction and laying of Rising Mains at pumping station PS1A;
 - Construct the temporary drainage channel at Concorde Road;
 - Construction of Box Culvert at Portions A, B & N;
 - Water supply pipeworks at Road D2 and L4; and
 - Fencing works along pedestrian streets.

Environmental Monitoring Works

- 5. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 6. Summary of the non-compliance in the reporting month for the Project is tabulated in Table II.

Table II Non-compliance Record for the Project in the Reporting Month

Parameter	No. of Project-related Exceedance		Action Taken
1 at afficted	Action Level	Limit Level	Action Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

1-hour & 24-hour TSP Monitoring

7. All 1-hour & 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, Environmental Permits No. EP-344/2009 and EP-337/2009 were issued on 23 April 2009.

- 10. Registration of Chemical Waste Producer (License: 5213-286-P1079-04).
- 11. Water Discharge License (License No.: WT00011274-2011 and WT00011276-2011).
- 12. Construction Noise Permit (License No.: GW-RE0865-13).

Key Information in the Reporting Month

13. Summary of key information in the reporting month is tabulated in Table III.

Table III Summary Table for Key Information in the Reporting Month

	Two is the potential to				
Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues

- 14. The future key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
 - Wastewater and runoff discharge from site;
 - Regular removal of silt, mud and sand along u-channels and sedimentation tanks; and
 - Review and implementation of temporary drainage system for the surface runoff.

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 2 infrastructure works at North Apron Area of Kai Tak Airport for Public Housing and Government Office Developments is one of the construction stages of KTD. It contains various Schedule 2 DPs including new distributor roads serving the planned KTD and new sewage pumping stations serving the planned KTD. The general layout of the Project is shown in **Figure 1.**
- 1.2 Two Environmental Permits (EPs) No. EP-344/2009 and EP-337/2009 were also issued on 23 April 2009 for new sewage pumping stations serving the planned KTD and new distributor roads serving the planned KTD respectively to Civil Engineering and Development Department as the Permit Holder.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. An EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Cinotech Consultants Limited (Cinotech) was commissioned by Peako Engineering Co., Ltd. (the Contractor) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2010/03 Kai Tak Development Stage 2 Infrastructure Works at North Apron Area of Kai Tak Airport for Residential Development and Government Facilities. The construction work under KL/2010/03 comprises the construction of Road D2 & Sewage Pumping Station PS1A which forms a part of the works under two EPs (EP-337/2009 and EP-344/2009).
- 1.5 Cinotech Consultants Limited was commissioned by Peako Engineering Co., Ltd. to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The construction commencement of this Contract was on 24th October 2011 for Sewage Pumping Station PS1A. This is the 25th Monthly EM&A report summarizing the EM&A works for the Project in November 2013.

Project Organizations

- 1.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) Ove Arup & Partners (ARUP).
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) EDMS Consultants Ltd. (EDMS).
 - Contractor Peako Engineering Co., Ltd. (Peako).

•

1.7 The key contacts of the Project are shown in **Table 1.1**.

Table 1.1 Key Project Contacts

Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. Alfred Lee	Engineer	2301 1449	2301 1277
ARUP	Engineer's	Mr. Keith Cheung	SRE	2756 8132	2756 8236
AKUF	Representative	Ms. Gloria Kwok	RE		
	Environmental	Dr. Priscilla Choy	Environmental Team Leader	2151 2089	
Cinotech	Team	Ms. Ivy Tam	Project Coordinator and Audit Team Leader	2151 2090	3107 1388
EDMS	Independent Environmental Checker	Mr. Adi Lee	Independent Environmental Checker	2230 7165	3007 8556
Peako	Contractor	Mr. C.P. Lam	Project Manager	27730511	

Construction Activities undertaken during the Reporting Month

- 1.8 The site activities undertaken in the reporting month included:
 - Finishing works of pumping station PS1A;
 - Drainage works at Road L4, Road L5 & pedestrian streets;
 - Fence wall construction and laying of Rising Mains at pumping station PS1A;
 - Construct the temporary drainage channel at Concorde Road;
 - Construction of Box Culvert at Portions A, B & N;
 - Water supply pipeworks at Road D2 and L4; and
 - Fencing works along pedestrian streets.
- 1.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in Table 1.2.

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

1 Total Culon Miligation Measures				
Construction Works	Major Environmental Impact	Control Measures		
As mentioned in Section 1.8	Noise, dust impact, water quality and waste generation	Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.		

Summary of EM&A Requirements

- 1.10 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the two EPs.
- 1.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project in November 2013.

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the two EPs, 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix** A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Three designated monitoring stations were selected for air quality monitoring programme. Impact dust monitoring was conducted at two air quality monitoring stations, Contractor Site Office (KL/2012/02) AM1(B) ⁽¹⁾, Lee Kau Yan Memorial School (AM2) in the reporting month. **Table 2.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 2.1 Locations for Air Quality Monitoring

Monitoring Stations	Locations	Location of Measurement
AM1(B)	Contractor Site Office (KL/2012/02) ⁽¹⁾	Ground Floor Area
AM2	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
#AM6	PA 15	Site 1B4 (Planned)

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Note 1: The Contractor Site Office of KL/2012/02 occupied the same location of previous KL/2008/09 site office of and therefore the location of monitoring station AM1(B) is remain unchanged.

Monitoring Equipment

2.3 Table 2.2 summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix B**.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	G25A	1
1-hour TSP Dust Meter	Laser Dust Monitor – Model LD-3, LD-3B	5
HVS Sampler	GMWS 2310 c/w of TSP sampling inlet	2
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters, Frequency and Duration

2.4 **Table 2.3** summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

 Table 2.3
 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Set POWER to "ON" and make sure that the battery level was not flash or in low level.
 - Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
 - Push the knob at MEASURE position.
 - Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
 - Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
 - Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 2.6 The following maintenance/calibration was required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

Monthly EM&A Report – November 2013

2.7 High volume (HVS) samplers (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For TSP sampling, fiberglass filters have a collection efficiency of > 99% for particles of $0.3\mu m$ diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.14 The shelter lid was closed and secured with the aluminum strip.

- 2.15 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.16 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using G25A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 2.19 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.20 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer set at Lee Kau Yan Memorial School from 26 April 2013. The location is shown in **Figure 4**. This weather information for the reporting month is summarized in **Appendix C.**
- 2.22 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.23 The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the air quality monitoring.
- 2.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Station	Major Dust Source
AM1(B) – Contractor Site Office (KL/2012/02)	Road Traffic Dust
	Exposed site area and open stockpiles
	Site vehicle movement
AM2 – Lee Kau Yan Memorial School	Road Traffic Dust
	Exposed site area and open stockpiles
	Excavation works
	Site vehicle movement

2.25 **Table 2.4** shows the summary of air quality monitoring results during the reporting month.

Table 2.4 Summary Table of Air Quality Monitoring Results during the reporting month

Parameter	Date	Concentration (µg/m3)	Action Level, µg/m3	Limit Level, µg/m3	
AM1(B) – Contractor Si	te Office (KL/2012	/02)			
	1-Nov-13	111.7			
	1-Nov-13	123.4			
	1-Nov-13	115.6			
	7-Nov-13	275.6			
	7-Nov-13	299.8			
	7-Nov-13	273.5			
	13-Nov-13	94.0			
	13-Nov-13	96.4			
1.1 TCD	13-Nov-13	99.2	240	500	
1-hr TSP	19-Nov-13	214.6	342	500	
	19-Nov-13	229.2			
	19-Nov-13	230.9			
	25-Nov-13	254.7			
	25-Nov-13	242.6			
	25-Nov-13	269.2			
	29-Nov-13	92.8			
	29-Nov-13	93.3			
	29-Nov-13	97.9			
	6-Nov-13	107.1			
	12-Nov-13	59.2			
24-hr TSP	18-Nov-13	123.4	159	260	
	22-Nov-13	71.2			
	28-Nov-13	75.8			
AM2 – Lee Kau Yan Memorial School					
	1-Nov-13	109.8			
1-hr TSP	1-Nov-13	116.6	346 500		
	1-Nov-13	119.8		500	
	7-Nov-13	237.3		500	
	7-Nov-13	227.5			
	7-Nov-13	223.6			

	13-Nov-13	60.9		
	13-Nov-13	62.8		
	13-Nov-13	65.7		
	19-Nov-13	190.6		
	19-Nov-13	218.9		
	19-Nov-13	234.0		
	25-Nov-13	117.0		
	25-Nov-13	111.5		
	25-Nov-13	112.8		
	29-Nov-13	239.8		
	29-Nov-13	222.7		
	29-Nov-13	226.7		
	6-Nov-13	115.3		
	12-Nov-13	77.9		
24-hr TSP	18-Nov-13	121.6	157	260
	22-Nov-13	116.1		
	28-Nov-13	103.6		

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manuals under the two EPs, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Six designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at four designated monitoring stations (M1, M2, M3, M4(A)) in the reporting month. **Figure 3** shows the locations of these stations.

Table 3.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
M1	Buddhist Chi King Primary School	7/F Sport Area
M2	S.K.H. Kowloon Bay Kei Lok Primary School	7/F Podium
M3	Cognitio College	Rooftop (about 6/F) Area
M4	M4 Lee Kau Yan Memorial College	
#M9	#M9 Site 1B1 (Planned)	
#M10	Site 1B4 (Planned)	-

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

Table 3.2 summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2 Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVAN 955 & 957	7
Calibrator	SVAN 30A	4
Candiator	B&K4231	2

Monitoring Parameters, Frequency and Duration

3.4 **Table 3.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameter	Period	Frequency	Measurement
M1 M2 M3 M4	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Façade

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weightingtime weightingFast

time measurement : 30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 3.8 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. The summary of exceedance record in reporting month is shown in **Appendix H**.
- 3.9 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.4**.

- 3.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 3.11 The major noise source identified at the designated noise monitoring stations are as follows:

Monitoring Stations	Locations	Major Noise Source
M1	Buddhist Chi King Primary School	Traffic Noise
M2	S.K.H. Kowloon Bay Kei Lok Primary School	Site vehicle movement
M3	Cognitio College	Traffic Noise Daily school activities
M4	Lee Kau Yan Memorial School	Traffic Noise Site vehicle movement Excavation works Piling works Daily school activities

Table 3.4 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A)	Noise Limit Level,dB (A)
M1	64.4 (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on
M2	61.3 (at 0700 – 1900 hrs on normal weekdays)	normal weekdays)
M3	76.3 ⁽¹⁾ /78.6 ⁽²⁾ (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on normal weekdays)
M4	76.7 (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on normal weekdays)

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

Table 3.5 Summary Table of Noise Monitoring Results during the Reporting Month

Date	Measured Noise Level, Leq(30min) dB (A)	Baseline Level dB (A)	Construction Noise Level (1): Leq(30min) dB (A)
M1 - Buddhist	Chi King Primary Scho	ol	
4-Nov-13	4-Nov-13 65.7		59.8
12-Nov-13	65.4		58.5
19-Nov-13	66.5	64.4	62.3
26-Nov-13	66.4		62.1

Note (1): The alternative monitoring plan was approved by the EPD on 21^{st} June 2013 to relocate the Noise Monitoring Stations from M3(A) - Kai Tak Operational Base (closed in mid of Year 2013) to M3 - Cognitio College with adopting the baseline noise level recorded at Rhythm Garden (i.e. 76.3dB(A)) as both locations were affected by comparative traffic amount from Edward Road East.

^{(2):} Since the request to conduct the noise monitoring at the Rooftop was approved by Cognitio College, a baseline noise review report was submitted under Schedule 3 EIA Project – Tak Tai Development (KLN/2010/04) for M3 and was approved by EPD on 23rd August 2013. (Baseline Level was found to be 78.6dB(A) at Rooftop of Cognitio College)

for residential development and government, institution or community facilities

Monthly EM&A Report – November 2013

M2 - S.K.H. Kowloon Bay Kei Lok Primary School				
4-Nov-13	70.4		69.8	
12-Nov-13	68.5	61.2	67.6	
19-Nov-13	67.1	61.3	65.8	
26-Nov-13	67.7		66.6	
M3 - Cognitio	College			
		Background Noise ⁽²⁾		
7-Nov-13	77.3	77.4	77.3 Measured ≦Background	
13-Nov-13	79.4	79.0	68.8	
19-Nov-13	79.9	79.7	66.4	
25-Nov-13	79.2	78.9	67.4	
M4 – Lee Kau	Yan Memorial College			
7-Nov-13	75.0		75.0 Measured ≦ Baseline	
13-Nov-13	74.9	767	74.9 Measured ≦ Baseline	
19-Nov-13	77.1	76.7	66.5	
25-Nov-13	74.9		74.9 Measured ≦ Baseline	

Note (1) The noise level due to the construction work (CNL) was calculated by the following formula:

 $CNL = 10 \log (10^{MNL/10} - 10^{BNL/10})$

Remarks: MNL = Measured Noise Level BNL = Baseline Noise Level

(2): Since the Background Noise Level recorded during the Lunch Hour of Construction Site (i.e. 12:00-13:00) on the same day of impact noise monitoring was considered more appropriate for compliance checking for Noise Action and Limit Level than the baseline noise level obtained during the baseline review in July 2013. The measurement of Background Noise Level at M3 was then commenced from 9 September 2013 to provide a referencing value for compliance checking for Noise Action and Limit Level.

Monthly EM&A Report – November 2013

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 The EM&A data was compared with the EIA predictions as summarized in **Tables 4.1 to 4.3**.

Table 4.1 Comparison of 1-hr TSP data with EIA predictions

Station	Predicted 1-hr TSP conc.			
	Scenario1 (Mid Scenario2 (Mid 2009 to Mid 2013 to Late 2013), μg/m3 2016), μg/m3		Reporting Month (Nov 13), µg/m3	
AM1(B) – Contractor Site Office of KL/2008/09	192	298	179	
AM 2 – Lee Kau Yan Memorial School	290	312	161	

Table 4.2 Comparison of 24-hr TSP data with EIA predictions

Station	Predicted 24-hr TSP conc.		
	Scenario1 (Mid 2009 to Mid 2013), µg/m3	Scenario2 (Mid 2013 to Late 2016), µg/m3	Reporting Month (Nov 13), µg/m3
AM1(B) – Contractor Site Office of KL/2008/09	121	156	87
AM2 – Lee Kau Yan Memorial School	145	169	107

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (L _{eq (30min)} dB(A))	Reporting Month (Nov 13), $L_{eq~(30min)}~dB(A)$
M1 - Buddhist Chi King Primary School	51 – 68	58.5 – 62.3
M2 - S.K.H. Kowloon Bay Kei Lok Primary School	51 – 70	65.8 – 69.8
M3 - Cognitio College	47 – 75	66.4 – 77.3*
M4 - Lee Kau Yan Memorial School	47 – 74	$66.5 - 75.0^{(1)}$

Remark:* Since the background noise level recorded during 12:00 to 13:00 was higher than those recorded during the construction period, the recorded noise levels were considered non-valid exceedance of Noise Limit Level.

Note 1: Baseline level at noise monitoring M4 was 76.7 dB(A) and the recorded noise levels were considered non-valid exceedance of Noise Limit Level.

- 4.2 The 1-hour TSP concentrations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3 The 24-hour TSP concentrations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.4 The noise monitoring results in the reporting month at monitoring stations M3 and M4 were slightly higher than those predicted mitigated construction noise level in the EIA report and the discrepancy was considered to be contributed from the major noise sources during the monitoring; i.e. the background road traffic noise and noise generated from the school activities.

5. LANDSCAPE OF VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix J** shall be performed.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 6th, 13th, 20th and 27th November 2013 in the reporting month. IEC site inspections were conducted on 20th November 2013. No non-compliance was observed during the site audits.

Review of Environmental Monitoring Procedures

6.3 The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Status of Environmental Licensing and Permitting

6.4 All permits/licenses obtained for the Project are summarized in Table 6.1.

Permit No.	Valid	Period	- Details Statu	
From From		To	Details	Status
Environmental Peri	Environmental Permit (EP)			
EP-344/2009	23/04/09	N/A	Construction of a new sewage pumping station serving the planned Kai Tak development with installed capacity of more than 2,000 m³ per day and a boundary of which is less than 150m from an existing or planned residential area or educational institution.	Valid

Monthly	EM&A	Report –	Novem	ber 2013

Permit No.		Period	Details	Status	
Periiit No.	From To		Details	Status	
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.		
Effluent Discharge Li	cense				
WT00011274-2011	-	31/12/16	6 Industrial discharge (near Kai Tak Tunnel) Valid		
WT00011276-2011	-	31/12/16	Industrial discharge (near Concorde Road)	Valid	
Registration of Chem	ical Waste F	Producer			
5213-286-P1079-04	-	N/A	Chemical Waste Types: Spent lubricating oil, spent solvent and spent battery containing heavy metals	Valid	
Construction Noise P	ermit (CNP))			
GW-RE0865-13	22/08/13	21/02/14	Construction Noise Permit for the use of powered mechanical equipment for carrying out construction work other than percussive pilling and performing prescribed construction work at Construction site of Kai Tak Development at north apron area of Kai Tak Airport near Eastern Road. Box Culvert & Sewage Pumping Station No. PS1A, Kowloon		

Status of Waste Management

- 6.5 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.
- 6.6 In respect of the dump truck cover, the Contractor is advised to take record photos and inspection to ensure that all dump trucks have fully covered the skip before leaving the site.

Implementation Status of Environmental Mitigation Measures

6.7 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 6.2.

 Table 6.2
 Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality	6/11/13	Properly clear the stagnant water at site area of Pumping Station PS1A and in the drip tray at Portion A.	Rectification/improvement was observed during the follow-up audit session.
6/11/13 Air Quality		Water spraying should be provided during concrete breaking to reduce dust generation at Portion H (Road L5 & L4).	Rectification/improvement was observed during the follow-up audit session.
	13/11/13	Properly clear the empty cement bags at Pumping Station PS1A.	Rectification/improvement was observed during the

Parameters	Date	Observations and Recommendations	Follow-up
			follow-up audit session.
	13/11/13	The dusty materials should be covered by impervious materials to prevent the dust emission at Pumping Station PS1A, Road D2 and KTOB.	Rectification/improvement was observed during the follow-up audit session.
	20/11/13	To provide adequate water spraying for Portion A to enhance dust suppression in dry days.	Rectification/improvement was observed during the follow-up audit session.
	27/11/13	Stockpile next to pumping station and at Road L5 should be covered with impervious sheet to reduce dust generation.	Rectification/improvement was observed during the follow-up audit session.
Noise			
	6/11/13	The hydraulic excavator should be kept in a good condition to prevent the oil leakage at Portion H (Road L5).	Rectification/improvement was observed during the follow-up audit session.
	6/11/13	The chemical containers should be provided with drip tray and added labels at Portion H (Road L5) and Portion A.	Rectification/improvement was observed during the follow-up audit session.
Waste/Chemical Management	13/11/13	Properly clear the empty cement bags at Pumping Station PS1A.	Rectification/improvement was observed during the follow-up audit session.
	13/11/13	The chemical containers should be provided with the drip tray and added labels at Pumping Station PS1A and KTOB.	Rectification/improvement was observed during the follow-up audit session.
	20/11/13	Proper sorting should be provided for construction waste next to pumping station PS1A and to properly dispose of the general refuse in site.	Rectification/improvement was observed during the audit session on 27 Nov 2013.
	20/11/13	To contain oil drum in Portion A to prevent oil leakage.	Rectification/improvement was observed during the audit session on 27 Nov 2013.
	27/11/13	Proper sorting should be provided for construction waste next to pumping station PS1A and to properly dispose of the general refuse in site.	Rectification/improvement was observed during the follow-up audit session.
	27/11/13	To contain oil drum in Portion A to prevent oil leakage.	Rectification/improvement was observed during the follow-up audit session.
Landscape and Visual			
Permits /Licences			

Summary of Mitigation Measures Implemented

6.8 The monthly IEC audit was carried out on 20th November 2013, the observations were recorded and they are presented as follows:

Observations:

• Pumping Station PS1A and opposite to Operational Base – Dry unpaved haul roads and areas was observed. Although the contractor has arranged water spraying immediately, the contractor was still reminded that in increase the frequency of water spraying whenever necessary during dry season.

- Opposite to Operational Base An oil drum next to a generator-set next to site entrance was observed. The contractor should provide drip tray to the oil drum.
- Pumping Station PS1A Some general refuse on bare ground was found. The contractor should provide adequate rubbish bin(s) or bag(s) for workers to disposal of general refuse.
- Pumping Station PS1A Construction wastes including timber, steel and foam board without proper sorting and accumulated on-site were observed. The contractor should sort different types of construction wastes properly and frequently clear up accumulated construction waste on-site.

Follow up of last site inspection:

- Dusty stockpiles were properly covered. Observation closed.
- Dry unpaved haul roads and areas were still observed. See first Observation item of this inspection.
- The plastic drum of suspected chemicals was removed. Observation closed.
- 6.9 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.10 The Event Action Plans for air quality, noise and landscape and visual are presented in **Appendix J**.

1-hr TSP Monitoring

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.12 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.13 No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.14 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.15 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix L**.

7. FUTURE KEY ISSUES

- 7.1 Major site activities undertaken for the coming two months include:
 - Finishing works and E&M works of pumping station PS1A;
 - Fence wall and surface drainage construction at pumping station PS1A;
 - Drainage works at Road L4, Road L5 & pedestrian streets;
 - Trimming formation along pedestrian streets;
 - Water supply pipeworks at Roads L4;
 - Kerb bedding works and fencing works along pedestrian streets; and
 - Construction of Box Culvert at Portions A, B & N.

Key Issues for the Coming Month

- 7.2 Key environmental issues in the coming month include:
 - Review and implementation of temporary drainage system for the surface runoff;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site;
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - To properly sort the construction waste;
 - Dust generation should be mitigated by adequate water spraying, especially in dry days;
 - Watering for dust generating activity and on haul road;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site.
- 7.3 The tentative program of major site activities and the impact prediction and control measures for the coming two months, i.e. December 2013 and January 2014 are summarized as follows:

Construction Works	Major Impact	Control Measures
	Prediction	
	Air quality impact	a) Frequent watering of haul road and unpaved/exposed
	(dust)	areas;
		b) Frequent watering or covering stockpiles with tarpaulin or
		similar means; and
		c) Watering of any earth moving activities.
	Water quality	d) Diversion of the collected effluent to de-silting facilities
	impact (surface	for treatment prior to discharge to public storm water drains;
	run-off)	e) Provision of adequate de-silting facilities for treating
		surface run-off and other collected effluents prior to
		discharge;
As mentioned in		f) Provision of perimeter protection such as sealing of
Section 7.1		hoarding footings to avoid run-off from entering the
		existing storm water drainage system via public road; and
		g) Provision of measures to prevent discharge into the
		stream.
	Noise Impact	h) Scheduling of noisy construction activities if necessary to
		avoid persistent noisy operation;
		i) Controlling the number of plants use on site;
		j) Regular maintenance of machines; and
		k) Use of acoustic barriers if necessary.

Monitoring Schedule for the Next Month

7.4 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.

1-hr TSP Monitoring

8.2 All 1-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hr TSP Monitoring

8.3 All 24-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8.4 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Landscape and visual

8.5 No non-compliance was recorded in the reporting month.

Complaint and Prosecution

8.6 No environmental complaints and environmental prosecution were received in the reporting month.

Recommendations

8.7 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

- To regularly maintain the quality of machinery and vehicles on site.
- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To provide hoarding along the entire length of that portion of the site boundary.
- To mitigate the dust generation by adequate water spraying in dry days.

Noise Impact

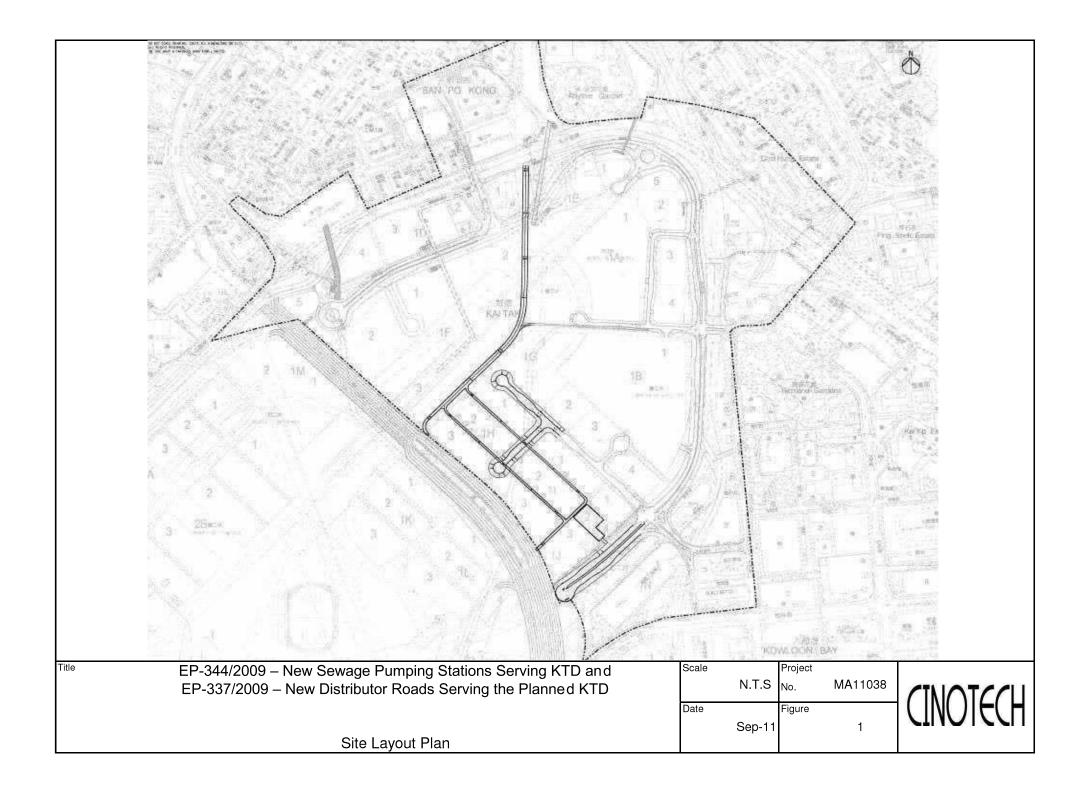
- To inspect the noise sources inside the site.
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise

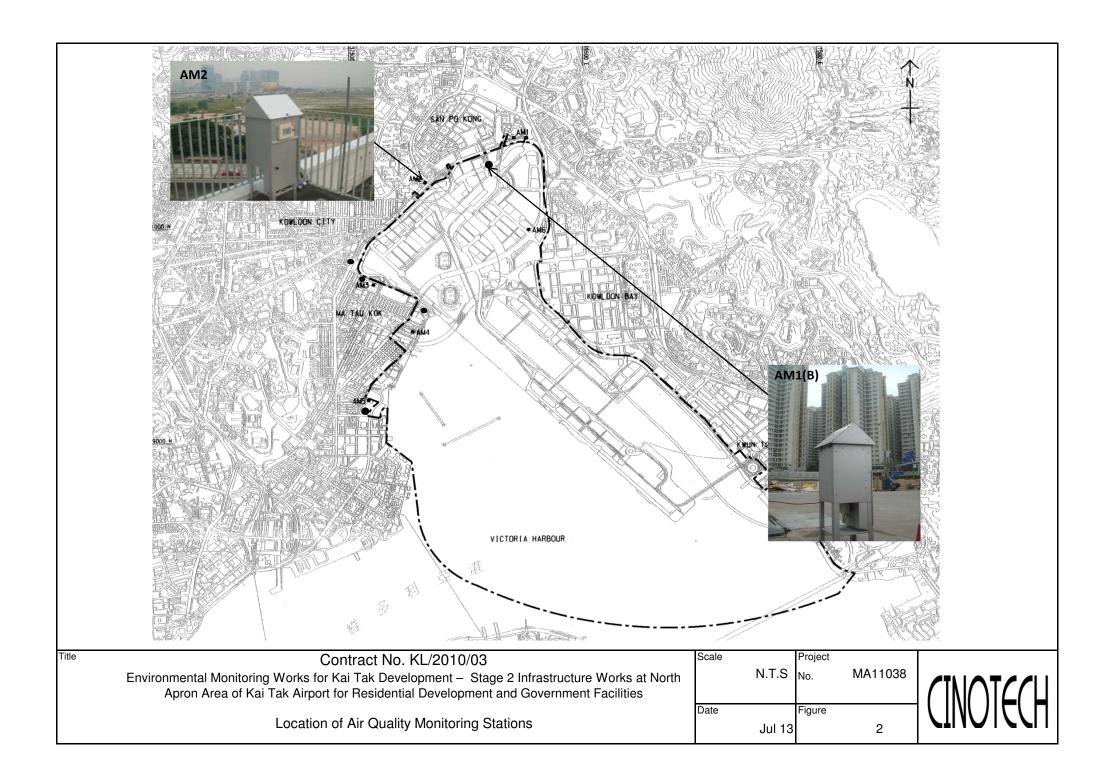
sensitive receivers in an appropriate location.

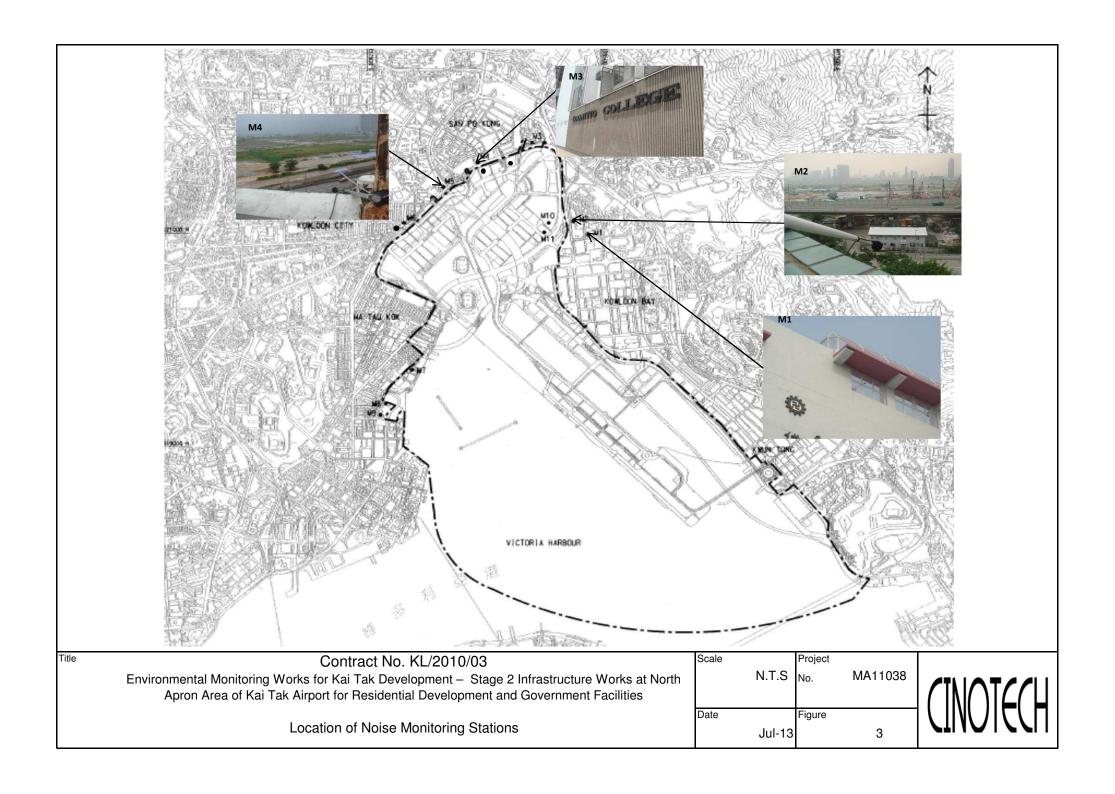
• To well maintain the mechanical equipment/ machineries to avoid abnormal noise nuisance.

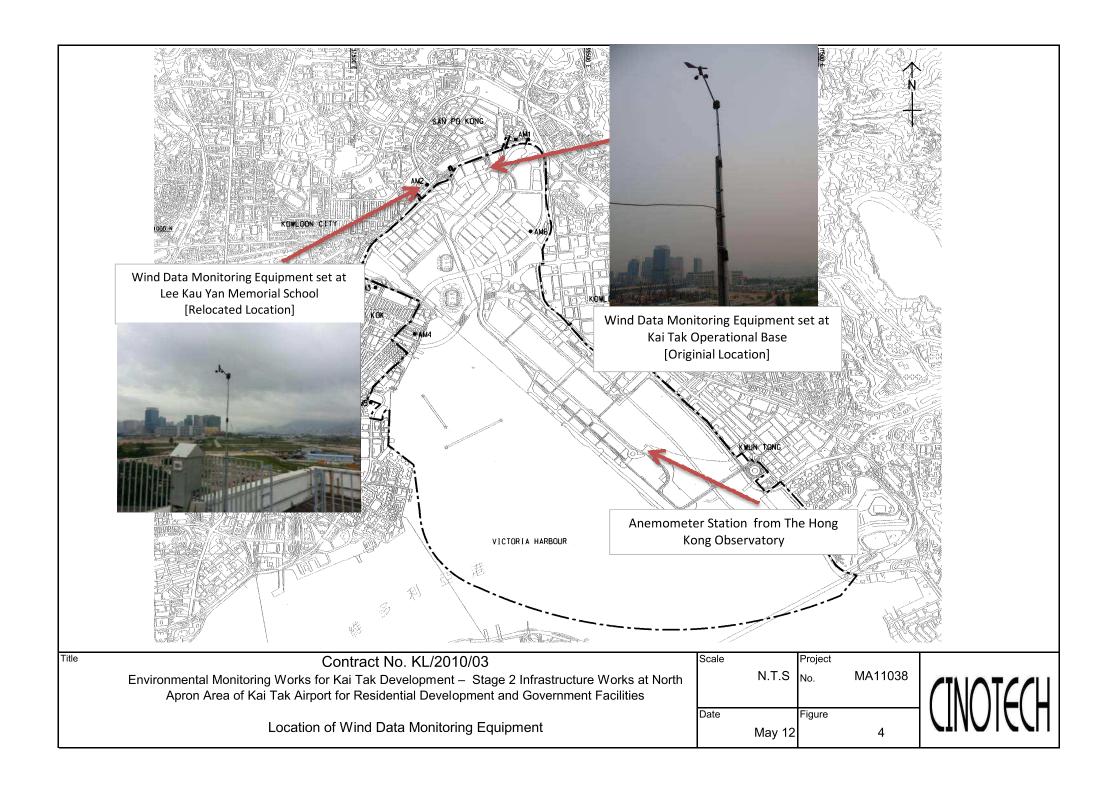
Water Impact

- To prevent any surface runoff discharge into any stream course.
- To review and implement temporary drainage system.
- To clear the silt and sediment in the sedimentation tanks.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.


Waste/Chemical Management


- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation);
- To carry out inspection of dump truck at site exit to ensure inert and non-inert C&D materials are properly segregated before removing off site.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To provide proper storage area or drip trays for oil containers/ equipment on site.
- To avoid improper handling or storage of oil drum on site.
- To keep machines and equipments in good condition to avoid oil leakage.


Landscape and Visual


- To protect the existing trees to be retained.
- To transplant the trees unavoidably affected by the works.
- To control of night-time lighting.
- To provide decorative screen hoarding.
- To complete landscape works at site area as early as possible.

FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AM1(B)	342	500
AM2	346	500

Table A-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AM1(B)	159	260
AM2	157	260

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

						File No	MA0040/58/0020
Station	AM1(B) - Outsi	de RLJV site offi	ce (KL/2008/09)	Operator:	WK		
Date:	28-Oct-13		1	Next Due Date:	27-Dec	-13	
Equipment No.:	A-01-58			Serial No.	2357		
		1 124 214 3		~ 1111		· ·	
	m (II)	200 =	Ambient			765.1	
Temperatu	ire, Ta (K)	298.5	Pressure, Pa	(mmHg)		765.4	
		Or	ifice Transfer Sta	andard Inform	ation		
Equipme	ent No.:	A-04-05	Slope, mc	0.0592	Intercep		-0.0283
Last Calibr		26-Dec-12	• • •	me x Qstd + l	$c = [\Delta H \times (Pa/76)]$		1/2
Next Calibr		25-Dec-13			x (Pa/760) x (298		
		•	-				
			Calibration of	TSP Sampler			
Calibration		Ori	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil		50) x (298/Ta)] ^{1/2} Y- axis
1	11.9	3	.46	58.91	8.0		2.84
2	9.7	3	.12	53.23	6.5		2.56
3	7.8	2	.80	47.78	4.9		2.22
4	5.3	2	.31	39.47	3.2		1.79
5	3.4	1	.85	31.71	2.1		1.45
Slope, mw =		-		Intercept, bw	-0.213	30	
	coefficient* = _		986	-			
*If Correlation (Coefficient < 0.99	00, check and rec	alibrate.				
			Set Point C	Calculation			
From the TSP F	ield Calibration C	Curve, take Qstd =					
	ssion Equation, th	•					
J	•		_				
		mw x ($Qstd + bw = [\Delta W]$	x (Pa/760) x (2	298/Ta)] ^{1/2}		
Therefore S	Set Point: W = (m	ny v Oetd + bw Y	x(760/Pa)x(Ta / 208) =	4.00	1	
incretore, o	octionit, was in	iw x Qsia + ow)	X(70071a)X(147270)	4.00	·	
Remarks:							
	ا م		L	. 1			01. 1
Checked by:	wk Tang	Signature:	Kwo	<u>~ / </u>		Date:	2811012013 190 Weber 2012

						File No	MA0040/59/0019
Station	AM2 - Lee Kau	Yan Memorial Sc	hool	Operator:	WK		
Date:	13-Sep-13		Next Due Date: _		12-Nov	-13	
Equipment No.:				Serial No.			
			Ambient	Condition			
Temperatu	ire, Ta (K)	302.1	Pressure, Pa	a (mmHg)		760.3	
		Or	ifice Transfer St	andard Inform	ation		
Equipm	ent No.:	A-04-05	Slope, mc	0.0592	Intercept		-0.0283
	ration Date:	26-Dec-12		mc x Qstd + l	oc = [ΔH x (Pa/76	0) x (298/Ta))]1/2
Next Calib	ration Date:	25-Dec-13		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} :$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} /	me
			Calibration of	f TSP Sampler			
		Ori				HVS	
Calibration Point	ΔH (orifice),)) x (298/Ta)] ^{1/2}	Qstd (CFM)	ΔW	[ΔW x (Pa/7	60) x (298/Ta)] ^{1/2} Y
1 OHR	in. of water	[ΔH X (Pa//60), x (298/18)]	X - axis	(HVS), in. of oil		axis
1	11.7	3	.40	57.88	7.8		2.77
2	9.6	3	.08	52.47	6.5		2.53
3	7.9	2	.79	47.64	5.2		2.27
4	5.1	2	.24	38.37	3.4		1.83
5	3.3	1	.80	30.96	2.0		1.40
Slope, mw =	ression of Y on X 0.0507 coefficient* =		992	Intercept, bw	-0.142	26	
*If Correlation	Coefficient < 0.99	90, check and reca	alibrate.				
			Set Point (Calculation			
From the TSP F	ield Calibration C	Curve, take Ostd =					
	ession Equation, th	-					
			_				
		mw x ($Qstd + bw = [\Delta W]$	x (Pa/760) x (2	298/Ta)] ^{1/2}		
	a	0.41.1.1.2	. (#60 (P-) (T- /000 \	4.00		
Therefore,	Set Point; W = (n	iw x Qstd + bw)	x (760 / Pa) x (Ta / 298) =	4.20		
D							
Remarks:							
0 1 : 11	11.0	0!	L	}		Dotos	12/0/2018
Conducted by:	WK. lava	Signature:	/(W	2 	-	Date:	12 12 1/017
Checked by	/:/.	Signature:		$\mathcal{A}\mathcal{A}$	_	Date:	13 September &

						File No.	MA0040/59/0020
Station	AM2 - Lee Kau	Yan Memorial So	chool	Operator	:WK		
Date:	7-Nov-13			Next Due Date:	:6-Jan-	14	
Equipment No.:	A-01-59			Serial No.	. 2354		
				424			
			Ambient	Condition			
Temperatu	ıre, Ta (K)	296.7	Pressure, Pa	a (mmHg)		766	
		Or	ifice Transfer St	andard Inforn	iation		
Equipm	ent No.:	A-04-05	Slope, mc	0.0592	Intercep		-0.0283
Last Calibr	ation Date:	26-Dec-12		me x Qstd + J	bc = [ΔH x (Pa/76	60) x (298/Ta))] ^{1/2}
Next Calibr	ation Date:	25-Dec-13		$\mathbf{Qstd} = \{ [\Delta \mathbf{H}$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} /	me
		•					
			Calibration of	TSP Sampler			
Calibration		Orf	ice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa/7	60) x (298/Ta)] ^{1/2} Y- axis
11	11.8	3.	.46	58.86	7.9		2.83
2	9.7	3.	.13	53.41	6.7		2.60
3	7.8	2.	.81	47.94	5.3		2.32
4	5,4	2.	.34	39.97	3.4		1.86
5	3.2	1.	.80	30.88	2.0		1.42
By Linear Regr Slope, mw = Correlation o	cession of Y on X 0.0514 coefficient* =	C - 0.99		Intercept, bw	-0.169	7	
		0, check and reca	librate.	•			
			Set Point C	Calculation			
From the TSP Fi	ield Calibration C	urve, take Qstd =					
		e "Y" value accor					
S	1 , .						
		mw x Q	$std + bw = [\Delta W]$	x (Pa/760) x (2	98/Ta)] ^{1/2}		
Therefore, S	et Point; W = (m	$w \times Qstd + bw)^2$	x (760/Pa)x(Га / 298) =	4.11		
						.,,	
Remarks:							
Conducted by:	Lik Tang	Signature:	Kw	2		Date:	7/11/13
Checked by:	A	Signature:				Date:	7 November dol

File No. MA0040/49/0018 Station AM3(A) - Holy Trinity Bradbury Centre WK Operator: Date: 13-Sep-13 Next Due Date: 12-Nov-13 Equipment No.: A-01-49 Serial No. 1793 Ambient Condition 301.9 Temperature, Ta (K) Pressure, Pa (mmHg) 760.6 Orifice Transfer Standard Information 0.0592 A-04-05 Equipment No.: Slope, mc Intercept, bc -0.0283 me x Qstd + be = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 26-Dec-12 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} - bc \} / mc$ Next Calibration Date: 25-Dec-13 Calibration of TSP Sampler Orfice Calibration $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ ΔH (orifice), Ostd (CFM) ΔW Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis (HVS), in. of oil Y-axis 12.5 8.5 2.90 3.51 59.84 2 9.7 3.10 52.77 6.8 2.59 3 7.6 2.74 46.76 5.2 2.27 4 5.2 2.27 38.76 3.4 1.83 5 3.3 1.81 30.98 2.0 1.41 By Linear Regression of Y on X Intercept, bw:_____ -0.1954 Slope, mw = 0.0523Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.26 Remarks: Conducted by: Wh. Tana Signature: Kindon Signature: Date: Date:

File No. MA0040/49/0019 Station AM3(A) - Holy Trinity Bradbury Centre Operator: _____ WK Date: 7-Nov-13 Next Due Date: 6-Jan-14 Equipment No.: A-01-49 1793 Serial No. **Ambient Condition** Temperature, Ta (K) 296.5 Pressure, Pa (mmHg) 766.2 Orifice Transfer Standard Information 0.0592 Equipment No.: A-04-05 Slope, mc Intercept, bc -0.0283 mc x Qstd + be = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 26-Dec-12 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 25-Dec-13 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), [\Delta W x (Pa/760) x (298/Ta)]1/2 Qstd (CFM) ΔW **Point** $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water (HVS), in. of oil X - axis Y-axis 3.52 1 12,2 59.87 2,92 8.4 2 9.8 3.15 53.71 6.9 2.64 3 7.3 2.72 46.42 5.3 2.32 4 5.1 2.27 38.88 3.4 1.86 3.1 1.77 30.42 2.0 1.42 By Linear Regression of Y on X Slope, mw = 0.0513Intercept, bw : -0.1220 Correlation coefficient* = 0.9983 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Date:

Date:

File No. MA0040/62/0018 WK Station AM4(A) - EMSD Workshops Operator: Next Due Date: 12-Nov-13 13-Sep-13 Date: Serial No. 2351 Equipment No.: A-01-62 **Ambient Condition** 759.8 Temperature, Ta (K) 302.5 Pressure, Pa (mmHg) Orifice Transfer Standard Information Slope, mc A-04-05 0.0592 Intercept, bc -0.0283 Equipment No.: mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 26-Dec-12 Ostd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ 25-Dec-13 Next Calibration Date: Calibration of TSP Sampler HVS Orfice Calibration $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ ΔH (orifice), Qstd (CFM) ΔW $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Point in, of water X - axis (HVS), in. of oil Y-axis 2.88 12.5 59.75 8.4 3.51 1 9.7 3.09 52.69 6.5 2.53 2 2.24 2.74 46.69 5.1 7.6 3 1.80 38.70 3.3 2.26 4 5.2 30.93 2.0 1.40 1.80 5 3.3 By Linear Regression of Y on X Slope, mw = 0.0513 Intercept, bw : -0.1782 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.18 Remarks:

Conducted by: WK Tang Signature: Date: Date:

File No. MA0040/62/0019 Station AM4(A) - EMSD Workshops Operator: WK Date: 7-Nov-13 Next Due Date: 6-Jan-14 Equipment No.: A-01-62 Serial No. 2351 **Ambient Condition** Temperature, Ta (K) 300 Pressure, Pa (mmHg) 763.9 Orifice Transfer Standard Information A-04-05 Slope, mc 0.0592 Intercept, bc Equipment No.: -0.0283 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 26-Dec-12 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 25-Dec-13 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), $\Delta \mathbf{W}$ $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) Point [ΔH x (Pa/760) x (298/Ta)]^{1/2} in, of water X - axis (HVS), in. of oil Y-axis 12.2 3.49 59.43 8.3 2.88 2 9.8 3.13 53.32 6.4 2.53 3 7.5 2.74 46.70 5.0 2,23 5.3 2.30 39.34 3.3 1.82 3.1 1.76 30.20 1.9 1.38 By Linear Regression of Y on X Slope, mw = 0.0512 Intercept, bw: -0.1795 Correlation coefficient* = 0.9994 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Conducted by: WK 7ang Date: Checked by: ____(Д→ Date:

Station							
	AM5(A) - Po Le	ung Kuk Ngan Po	Ling College	Operator:	WK		
Date:	13-Sep-13		ſ	Next Due Date:	12-Nov-	-13	
Equipment No.:	A-01-60			Serial No.	2358		
		As a first of the first of the	Ambient	Condition			
Temperatur	re, Ta (K)	302.3	Pressure, Pa	(mmHg)		760	

		Or	ifice Transfer Sta	ındard Inform	ation		
Equipme	ent No.:	A-04-05	Slope, mc	0.0592	Intercept		-0.0283
Last Calibra	tion Date:	26-Dec-12		mc x Qstd + l	$\mathbf{e} = [\Delta \mathbf{H} \times (\mathbf{Pa}/76)]$	0) x (298/Ta)]	1/2
Next Calibra	ation Date:	25-Dec-13		$Qstd = \{ [\Delta H :$	x (Pa/760) x (298/	Ta)] ^{1/2} -bc} / r	ne
		•					
			Calibration of	TSP Sampler			
0.111. (1		Orf				HVS	
Calibration Point	ΔH (orifice),)) x (298/Ta)] ^{1/2}	Qstd (CFM)	ΔW		0) x (298/Ta)] ^{1/2} Y-
1 Onit	in. of water	[ZH X (PW/60) x (290/18)]	X - axis	(HVS), in. of oil		axis
1	11.8	3	.41	58.09	7.8		2.77
2	9.9	3	.12	53.25	6.2		2.47
3	7.6	2	.74	46.71	4.9		2.20
4	5.4	2	.31	39.45	3.2		1.78
5	3.2	1	.78	30.48	1.8		1.33
Dr. I in any Dagu	acaton of V on V	•					
Slope , mw = Correlation co	0.0518 oefficient* = _	0.9	990	Intercept, bw	-0,250	5	
Correlation co	0.0518 oefficient* = _	<u>-</u>	990	Intercept, bw : -	-0.250	5	
Slope , mw = Correlation co	0.0518 oefficient* = _	0.9	990 alibrate.	Intercept, bw	Street and the street and the street and	5	
Slope , mw = Correlation co *If Correlation C	0.0518 oefficient* = _ Coefficient < 0.99	0.9	990 Alibrate. Set Point C	<u>-</u>	Street and the street and the street and	5	
Slope, mw = Correlation C *If Correlation C	0.0518 oefficient* = Coefficient < 0.99	0.90, check and reca	990 Alibrate. Set Point C	<u>-</u>	Street and the street and the street and	<u>5</u>	
Slope , mw = Correlation Ce *If Correlation Ce From the TSP Fig.	0.0518 oefficient* = Coefficient < 0.99	0.900, check and recards Curve, take Qstd = 1000 well according to 1000 with the control of the	990 Alibrate. Set Point C 43 CFM rding to	Calculation		5	
Slope, mw = Correlation C *If Correlation C	0.0518 oefficient* = Coefficient < 0.99	0.900, check and recards Curve, take Qstd = 1000 well according to 1000 with the control of the	990 Alibrate. Set Point C	Calculation		5	
Slope, mw = Correlation C *If Correlation C From the TSP Fig. From the Regress	0.0518 oefficient* =Coefficient < 0.99 eld Calibration Calibration, the	0.9 00, check and recall curve, take Qstd = e "Y" value acco	Set Point C 43 CFM rding to Qstd + bw = [ΔW	Calculation x (Pa/760) x (2	.98/Ta)] ^{1/2}		
Slope, mw = Correlation C *If Correlation C From the TSP Fie	0.0518 oefficient* =Coefficient < 0.99 eld Calibration Calibration, the	0.9 00, check and recall curve, take Qstd = e "Y" value acco	990 Alibrate. Set Point C 43 CFM rding to	Calculation x (Pa/760) x (2			
Slope, mw = Correlation C *If Correlation C From the TSP Fie	0.0518 oefficient* =Coefficient < 0.99 eld Calibration Calibration, the	0.9 00, check and recall curve, take Qstd = e "Y" value acco	Set Point C 43 CFM rding to Qstd + bw = [ΔW	Calculation x (Pa/760) x (2	.98/Ta)] ^{1/2}		
Slope, mw = Correlation C *If Correlation C From the TSP Fig. From the Regress	0.0518 oefficient* =Coefficient < 0.99 eld Calibration Calibration, the	0.9 00, check and recall curve, take Qstd = e "Y" value acco	Set Point C 43 CFM rding to Qstd + bw = [ΔW	Calculation x (Pa/760) x (2	.98/Ta)] ^{1/2}		
Slope, mw = Correlation C *If Correlation C From the TSP Fire From the Regress Therefore, So	0.0518 oefficient* =Coefficient < 0.99 eld Calibration Calibration, the	0.9 00, check and recall curve, take Qstd = e "Y" value acco	Set Point C 43 CFM rding to Qstd + bw = [ΔW	Calculation x (Pa/760) x (2	.98/Ta)] ^{1/2}		
Slope, mw = Correlation C *If Correlation C From the TSP Fie	0.0518 oefficient* =Coefficient < 0.99 eld Calibration Calibration, the	0.9 00, check and recall curve, take Qstd = e "Y" value acco	Set Point C 43 CFM rding to Qstd + bw = [ΔW	Calculation x (Pa/760) x (2	.98/Ta)] ^{1/2}		
Slope, mw = Correlation C *If Correlation C From the TSP Fire From the Regress Therefore, So	0.0518 oefficient* =Coefficient < 0.99 eld Calibration Calibration, the	0.9 00, check and recall curve, take Qstd = e "Y" value acco	Set Point C 43 CFM rding to Qstd + bw = [ΔW	Calculation x (Pa/760) x (2	.98/Ta)] ^{1/2}		
Slope, mw = Correlation C *If Correlation C From the TSP Fire From the Regress Therefore, So	0.0518 oefficient* =Coefficient < 0.99 eld Calibration Calibration, the content of the cont	0.9 00, check and recall curve, take Qstd = e "Y" value acco	Set Point C = 43 CFM rding to Qstd + bw = $[\Delta W]$ [x (760/Pa)x(]	Calculation x (Pa/760) x (2	.98/Ta)] ^{1/2}		131912013

						File No	MA0040/60/0020
Station		eung Kuk Ngan F	o Ling College	_ Operator	:WK		
Date:	7-Nov-13		-	Next Due Date	:6-Jan-	-14	
Equipment No.:	A-01-60		-	Serial No	2358	}	
N. 25. S. 18. 17. 17. 18. 18. 18. 18.		·					
to Expensión de la New 2 NAME de la C			Ambient	Condition			
Temperatu	ıre, Ta (K)	298.8	Pressure, P	a (mmHg)		764.1	
		4					
		Oı	rifice Transfer St	andard Inforn	nation		
Equipm	ent No.:	A-04-05	Slope, mc	0.0592	Intercep	t, bc	-0.0283
Last Calibr	ation Date:	26-Dec-12		mc x Qstd +]	$bc = [\Delta H x (Pa/76)]$	50) x (298/Ta)]1/2
Next Calibi	ration Date:	25-Dec-13		$Qstd = \{ \Delta H$	x (Pa/760) x (298	[/Ta)] ^{1/2} -bc} /	me
·							
			Calibration of	TSP Sampler			
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil		60) x (298/Ta)] ^{1/2} Y-
1	11.9	3	.45	58.83	7.7		2.78
2	9.3	3	.05	52.06	6.1		2.47
3	7.5	2	.74	46.80	5.0		2.24
4	5.4	2	.33	39.78	3.3		1.82
5	3.3	1	.82	31.21	2.1		1.45
By Linear Regr Slope, mw = Correlation c	0.0490 oefficient* =		985	Intercept, bw :	-0.088	37	***************************************
			Set Point C	Palaulotion			
From the TSP Fi	eld Calibration (Curve, take Qstd =		atculation			Marie Marie Marie Care
		ie "Y" value accor					
Trom the regres	sion Equation, u	ie i vaiue accor	ding to				
		mw x Q	$\mathbf{pstd} + \mathbf{bw} = \mathbf{\Delta W}$	x (Pa/760) x (2	98/Ta)] ^{1/2}		
			_	` , `	<i>,</i> ,		
Therefore, Se	et Point; $W = (m$	$(\mathbf{w} \times \mathbf{Q} + \mathbf{b} \times \mathbf{w})^2$	x (760/Pa)x(7	Га / 298) =	4.06		
						• • • • • • • • • • • • • • • • • • • •	
Damata							
Remarks:							
Oandnate tt	IN Jawa.	a	12				. 1 1 2
Conducted by: Checked by:	Mr my	Signature:	MIN	16vi		Date:	7/(1/13 7 November 2013

TISCH ENVIROMENTAL, INC.
145 SOUTH MIAMI AVE.
VILLAGE OF CLEVES, OH 45002
513.467.9000
877.263.7610 TOLL FREE
513.467.9009 FAX
WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - De Operator		Rootsmeter Orifice I.I		438320 2323	Ta (K) - Pa (mm) -	295 - 753.11
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4440 1.0240 0.9120 0.8720 0.7200	3.2 6.4 8.0 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9967 0.9925 0.9903 0.9893 0.9840	0.6902 0.9693 1.0858 1.1345 1.3666	1.4149 2.0010 2.2372 2.3464 2.8299		0.9957 0.9915 0.9893 0.9883 0.9830	0.6896 0.9683 1.0847 1.1334 1.3652	0.8851 1.2517 1.3995 1.4678 1.7702
	t (b) = ent (r) =	2.09107 -0.02838 0.99996		Qa slope intercept coefficie	t (b) = ent (r) =	1.30939 -0.01775 0.99996
v axis =	SORT[H20(F	2a/760)(298/	ra)]	v axis =	SORT[H2O(T	a/Pall

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

2200, 22....

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech C

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/130831/1

Date of Issue: 2013-09-02 Date Received: 2013-08-31

Date Tested: 2013-08-31

Date Completed: 2013-09-02

Next Due Date: 2013-11-01

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Laser Dust Monitor

Manufacturer

: Sibata : LD-3

Model No.

. 1.11.7-3

Serial No.

: 251634

Sensitivity (K) 1 CPM

 $: 0.001 \text{ mg/m}^3$

Sen. Adjustment Scale Setting

: 550 CPM : A-02-01

Equipment No.

Test Conditions:

Room Temperature

: 20 degree Celsius

Relative Humidity

: 58%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

0.0036

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131101/1 Date of Issue: 2013-11-04 Date Received: 2013-11-01 Date Tested: 2013-11-01 Date Completed: 2013-11-04 Next Due Date: 2014-01-03

Page:

1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata : LD-3 Model No. Serial No. : 251634 $: 0.001 \text{ mg/m}^3$ Sensitivity (K) 1 CPM : 550 CPM Sen. Adjustment Scale Setting : A-02-01

Equipment No.

Test Conditions:

: 19 degree Celsius Room Temperature

: 54% Relative Humidity

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

0.0035 Correlation Factor (CF) ********************

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131101/3
Date of Issue: 2013-11-04
Date Received: 2013-11-01
Date Tested: 2013-11-01
Date Completed: 2013-11-04
Next Due Date: 2014-01-03

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 014750

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 790 CPM

Equipment No. : A-02-06

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 54%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0034

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/130906/1
Date of Issue: 2013-09-08
Date Received: 2013-09-06
Date Tested: 2013-09-06
Date Completed: 2013-09-08
Next Due Date: 2013-11-07

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 095039

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 764 CPM

Equipment No. : A-02-08

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 58%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

,	
Correlation Factor (CF)	0.0032

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131104/1 Date of Issue: 2013-11-05

Date Received: 2013-11-04

Date Tested: 2013-11-04

Date Completed: 2013-11-05

Next Due Date: 2014-01-04

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

: Laser Dust Monitor Description

Manufacturer : Sibata Model No. : LD-3B Serial No. : 095039

 $: 0.001 \text{ mg/m}^3$ Sensitivity (K) 1 CPM Sen. Adjustment Scale Setting : 764 CPM

Equipment No.

: A-02-08

Test Conditions:

: 19 degree Celsius Room Temperature

Relative Humidity : 54%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 0.0033

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/130906/2 Date of Issue: 2013-09-08 Date Received: 2013-09-06 Date Tested: 2013-09-06 Date Completed: 2013-09-08 Next Due Date: 2013-11-07

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

: Laser Dust Monitor Description

: Sibata Manufacturer : LD-3B Model No. Serial No. : 095050 $: 0.001 \text{ mg/m}^3$ Sensitivity (K) 1 CPM : 577 CPM Sen. Adjustment Scale Setting : A-02-09 Equipment No.

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 58%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0031

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131104/2
Date of Issue: 2013-11-05
Date Received: 2013-11-04
Date Tested: 2013-11-04
Date Completed: 2013-11-05
Next Due Date: 2014-01-04

ATTN: Mr. W. K. Tang

Page: 1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 095050

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 577 CPM

Equipment No. : A-02-09

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 54%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0032

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131104/3
Date of Issue: 2013-11-05
Date Received: 2013-11-04
Date Tested: 2013-11-04
Date Completed: 2013-11-05

Next Due Date: 2014-01-04

Page:

1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 095029

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 551 CPM

Equipment No. : A-02-10

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 54%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

l	Correlation Factor (CF)	0.0032

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 C/N/130919/1

 Date of Issue:
 2013-09-21

 Date Received:
 2013-09-19

 Date Tested:
 2013-09-21

 Date Completed:
 2013-09-21

 Next Due Date:
 2014-09-20

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No.

: SVANTEK : SVAN 955

Serial No.
Microphone No.

: 12553 : 35222

Equipment No.

: N-08-02

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130104
Date of Issue: 2013-01-05

Date Received: 2013-01-04

Date Tested: 2013-01-04

Date Completed: 2013-01-05

Next Due Date: 2014-01-04

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 955

Serial No.

: 14303

Microphone No.

: 35222

Microphone No. Equipment No.

: N-08-05

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 59%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

Remark: 1)This report supersedes the one dated 2012/01/21 with certificate number C/N/120120/1.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130824/1
Date of Issue: 2013-08-25
Date Received: 2013-08-24

Date Tested: 2013-08-24

Date Tested: 2013-08-24

Date Completed: 2013-08-25

Next Due Date: 2014-08-24

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 955

Serial No.

: 21139

Microphone No.

: 43690

Equipment No.

: N-08-06

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 65%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130830/1 Date of Issue: 2013-08-31 Date Received: 2013-08-30 Date Tested: 2013-08-30 Date Completed: 2013-08-31 Next Due Date: 2014-08-30

ATTN:

Mr. W.K. Tang

Page: 1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK Model No. : SVAN 957 Serial No. : 21455 : 43730 Microphone No. Equipment No. : N-08-07

Test conditions:

: 21 degree Celsius Room Temperatre

Relative Humidity : 69%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130830/2
Date of Issue: 2013-08-31
Date Received: 2013-08-30
Date Tested: 2013-08-30
Date Completed: 2013-08-31
Next Due Date: 2014-08-30

ATTN:

Mr. W.K. Tang

Page: 1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 957
Serial No. : 21459
Microphone No. : 43676
Equipment No. : N-08-08

Test conditions:

Room Temperatre : 21 degree Celsius

Relative Humidity : 69%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 C/N/130830/3

 Date of Issue:
 2013-08-31

 Date Received:
 2013-08-30

 Date Tested:
 2013-08-30

 Date Completed:
 2013-08-31

 Next Due Date:
 2014-08-30

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No. Microphone No.

: 21460 : 43679

Equipment No.

: N-08-09

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 69%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/121204/1
Date of Issue: 2012-12-05
Date Received: 2012-12-04
Date Tested: 2012-12-04
Date Completed: 2012-12-05
Next Due Date: 2013-12-04

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 23853

Microphone No. Equipment No.

: 48530 : N-08-10

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 60%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/130919/3
Date of Issue:	2013-09-21
Date Received:	2013-09-19
Date Tested:	2013-09-21
Date Completed:	2013-09-21
Next Due Date:	2014-09-20

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer Model No.

: SVANTEK : SV30A

Serial No.

: 10929

Equipment No.

: N-09-01

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 57%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park,

18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/131004/1
Date of Issue: 2013-10-05
Date Received: 2013-10-04
Date Tested: 2013-10-04
Date Completed: 2013-10-05
Next Due Date: 2014-10-04

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer Model No.

: SVANTEK

Model No. Serial No.

: SV30A : 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 57%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/131004/2 Date of Issue: 2013-10-05 Date Received: 2013-10-04 Date Tested: 2013-10-04 2013-10-05 Date Completed: Next Due Date: 2014-10-04

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A : 24791

Serial No.

Equipment No.

: N-09-04

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 57%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Cons

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/131004/3
Date of Issue: 2013-10-05
Date Received: 2013-10-04
Date Tested: 2013-10-04
Date Completed: 2013-10-05

ATTN:

Mr. W.K. Tang

Page:

Next Due Date:

1 of 1

2014-10-04

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24780

Equipment No.

: N-09-05

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 57%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.


Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/131108/1
Date of Issue:	2013-11-09
Date Received:	2013-11-08
Date Tested:	2013-11-08
Date Completed:	2013-11-09
Next Due Date:	2014-11-08

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2326353

Project No.

: C13

Equipment No.

: N-02-01

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 52 %

Methodology:

The sound calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/130830/4
Date of Issue:	2012-08-31
Date Received:	2013-08-30
Date Tested:	2013-08-30
Date Completed:	2013-08-31
Next Due Date:	2014-08-30

ATTN:

Mr. W.K. Tang

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 64%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX C WEATHER INFORMATION

APPENDIX C – WEATHER CONDITIONS DURING THE MONITORING PERIOD

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 November 2013	22.6 – 29.5	46 – 80	0
2 November 2013	24.9 – 27.5	60 – 70	Trace
3 November 2013	23.5 – 27.6	65 – 86	0.4
4 November 2013	21.5 – 24.3	77 – 99	12.2
5 November 2013	20.9 – 24.2	79 – 98	3.6
6 November 2013	22.6 – 27.4	67 – 89	Trace
7 November 2013	23.0 – 26.7	65 – 90	0
8 November 2013	22.8 – 26.9	60 – 86	Trace
9 November 2013	22.9 – 27.7	62 – 86	Trace
10 November 2013	23.7 – 26.4	77 – 96	7.6
11 November 2013	23.0 – 25.3	82 – 87	Trace
12 November 2013	21.1 – 23.1	86 – 98	33.4
13 November 2013	19.7 – 21.4	84 – 100	3.9
14 November 2013	19.6 – 23.6	68 – 88	Trace
15 November 2013	18.8 – 24.7	62 – 83	0
16 November 2013	19.2 – 23.9	59 – 79	0
17 November 2013	18.8 – 23.8	50 – 66	0
18 November 2013	18.5 – 23.6	37 – 71	0
19 November 2013	18.7 – 21.3	56 – 77	0

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 November 2013	19.3 – 21.4	65 – 77	Trace
21 November 2013	17.6 – 22.6	55 – 79	0.5
22 November 2013	19.5 – 22.8	66 – 91	0.7
23 November 2013	20.6 – 23.0	66 – 86	Trace
24 November 2013	20.4 – 25.8	72 – 96	15.2
25 November 2013	16.7 – 22.3	40 – 80	0
26 November 2013	17.7 – 21.3	59 – 80	0
27 November 2013	16.0 – 23.2	68 – 88	0.5
28 November 2013	12.8 – 17.8	43 – 96	5.1
29 November 2013	12.9 – 17.2	29 – 50	0
30 November 2013	13.1 – 19.2	43 – 66	0

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

Date	Time	Wind Speed m/s	Direction
1-Nov-2013	00:00	2	ESE
1-Nov-2013	01:00	2.1	SSW
1-Nov-2013	02:00	2.1	S
1-Nov-2013	03:00	2	SSE
1-Nov-2013	04:00	1.7	S
1-Nov-2013	05:00	1.5	SSW
1-Nov-2013	06:00	1.5	SE
1-Nov-2013	07:00	1.5	SSE
1-Nov-2013	08:00	1.6	SSE
1-Nov-2013	09:00	1.5	SSW
1-Nov-2013	10:00	1.8	SSW
1-Nov-2013	11:00	2.2	S
1-Nov-2013	12:00	2.4	SSW
1-Nov-2013	13:00	2.2	S
1-Nov-2013	14:00	2.3	NNE
1-Nov-2013	15:00	2.2	NNE
1-Nov-2013	16:00	2.2	NNE
1-Nov-2013	17:00	2.1	NNE
1-Nov-2013	18:00	2	NNE
1-Nov-2013	19:00	2.2	WSW
1-Nov-2013	20:00	2.1	WSW
1-Nov-2013	21:00	2	W
1-Nov-2013	22:00	2.2	E
1-Nov-2013	23:00	2.4	NE
2-Nov-2013	00:00	2.3	NE
2-Nov-2013	01:00	2.1	E
2-Nov-2013	02:00	2.2	NE
2-Nov-2013	03:00	1.9	NNE
2-Nov-2013	04:00	1.8	NE
2-Nov-2013	05:00	1.6	W
2-Nov-2013	06:00	1.5	NE
2-Nov-2013	07:00	1.5	ENE
2-Nov-2013	08:00	1.4	N
2-Nov-2013	09:00	1.5	NNE
2-Nov-2013	10:00	1.7	SSW
2-Nov-2013	11:00	1.8	S

Γ	T	T	
2-Nov-2013	12:00	1.8	SSW
2-Nov-2013	13:00	1.7	N
2-Nov-2013	14:00	1.6	N
2-Nov-2013	15:00	1.4	NNE
2-Nov-2013	16:00	1.3	W
2-Nov-2013	17:00	1.4	WSW
2-Nov-2013	18:00	1.3	W
2-Nov-2013	19:00	1.2	SSW
2-Nov-2013	20:00	1.3	SW
2-Nov-2013	21:00	1.6	WNW
2-Nov-2013	22:00	1.7	SSW
2-Nov-2013	23:00	1.8	SW
3-Nov-2013	00:00	1.9	W
3-Nov-2013	01:00	1.8	W
3-Nov-2013	02:00	1.8	SW
3-Nov-2013	03:00	1.9	NE
3-Nov-2013	04:00	1.7	W
3-Nov-2013	05:00	1.6	W
3-Nov-2013	06:00	1.5	WNW
3-Nov-2013	07:00	1.3	WNW
3-Nov-2013	08:00	1.5	W
3-Nov-2013	09:00	1.6	WNW
3-Nov-2013	10:00	1.8	SW
3-Nov-2013	11:00	2	WNW
3-Nov-2013	12:00	2	WNW
3-Nov-2013	13:00	2.1	SE
3-Nov-2013	14:00	2	SE
3-Nov-2013	15:00	1.9	SE
3-Nov-2013	16:00	1.8	ENE
3-Nov-2013	17:00	1.7	SSW
3-Nov-2013	18:00	1.7	SSW
3-Nov-2013	19:00	1.6	SE
3-Nov-2013	20:00	1.3	SSE
3-Nov-2013	21:00	1.3	ESE
3-Nov-2013	22:00	1.4	SE
3-Nov-2013	23:00	1.5	ESE
4-Nov-2013	00:00	1.7	ESE
	•		

	1	T	ı
4-Nov-2013	01:00	1.6	ENE
4-Nov-2013	02:00	1.6	SE
4-Nov-2013	03:00	1.7	ESE
4-Nov-2013	04:00	1.5	ENE
4-Nov-2013	05:00	1.7	WSW
4-Nov-2013	06:00	1.7	SW
4-Nov-2013	07:00	1.7	WSW
4-Nov-2013	08:00	1.8	W
4-Nov-2013	09:00	1.9	WSW
4-Nov-2013	10:00	2	WNW
4-Nov-2013	11:00	2.1	W
4-Nov-2013	12:00	2.2	W
4-Nov-2013	13:00	2.2	WNW
4-Nov-2013	14:00	2.2	WNW
4-Nov-2013	15:00	2.3	WNW
4-Nov-2013	16:00	2.1	ENE
4-Nov-2013	17:00	1.7	ENE
4-Nov-2013	18:00	1.6	ENE
4-Nov-2013	19:00	1.4	NE
4-Nov-2013	20:00	1.6	ENE
4-Nov-2013	21:00	1.6	ENE
4-Nov-2013	22:00	1.5	NE
4-Nov-2013	23:00	1.5	ENE
5-Nov-2013	00:00	1.2	ESE
5-Nov-2013	01:00	1.3	Е
5-Nov-2013	02:00	1.2	ESE
5-Nov-2013	03:00	1	ENE
5-Nov-2013	04:00	1.1	NE
5-Nov-2013	05:00	1.2	SE
5-Nov-2013	06:00	1.3	Е
5-Nov-2013	07:00	1.4	S
5-Nov-2013	08:00	1.4	S
5-Nov-2013	09:00	1.8	S
5-Nov-2013	10:00	1.9	S
5-Nov-2013	11:00	1.9	S
5-Nov-2013	12:00	1.9	S
5-Nov-2013	13:00	1.8	SE

	1	Г	
5-Nov-2013	14:00	1.9	SE
5-Nov-2013	15:00	1.8	E
5-Nov-2013	16:00	1.7	SE
5-Nov-2013	17:00	1.5	N
5-Nov-2013	18:00	1.4	N
5-Nov-2013	19:00	1.2	N
5-Nov-2013	20:00	1.3	SSW
5-Nov-2013	21:00	1.3	W
5-Nov-2013	22:00	1.3	WSW
5-Nov-2013	23:00	1.2	WNW
6-Nov-2013	00:00	1.1	SSW
6-Nov-2013	01:00	1.3	WNW
6-Nov-2013	02:00	1.2	W
6-Nov-2013	03:00	1.2	SW
6-Nov-2013	04:00	1.2	W
6-Nov-2013	05:00	1.3	SW
6-Nov-2013	06:00	1.2	SW
6-Nov-2013	07:00	1.3	ESE
6-Nov-2013	08:00	1.4	NE
6-Nov-2013	09:00	1.6	ENE
6-Nov-2013	10:00	1.8	NNE
6-Nov-2013	11:00	1.9	NE
6-Nov-2013	12:00	1.9	NE
6-Nov-2013	13:00	1.9	NE
6-Nov-2013	14:00	1.9	Ν
6-Nov-2013	15:00	1.6	NE
6-Nov-2013	16:00	1.6	NE
6-Nov-2013	17:00	1.6	NNE
6-Nov-2013	18:00	1.5	NE
6-Nov-2013	19:00	1.3	NE
6-Nov-2013	20:00	1.3	NE
6-Nov-2013	21:00	1.3	NE
6-Nov-2013	22:00	1.3	ENE
6-Nov-2013	23:00	1.3	E
7-Nov-2013	00:00	1.1	NNE
7-Nov-2013	01:00	1	ENE
7-Nov-2013	02:00	1.2	ENE
		· · · · · · · · · · · · · · · · · · ·	

7-Nov-2013		T		
7-Nov-2013 05:00 1.3 ESE 7-Nov-2013 06:00 1.2 ENE 7-Nov-2013 07:00 1.3 NNE 7-Nov-2013 08:00 1.4 W 7-Nov-2013 09:00 1.5 WSW 7-Nov-2013 10:00 1.7 NW 7-Nov-2013 11:00 1.6 SW 7-Nov-2013 12:00 1.8 SW 7-Nov-2013 12:00 1.8 SW 7-Nov-2013 12:00 1.6 E 7-Nov-2013 13:00 1.7 S 7-Nov-2013 15:00 1.6 E 7-Nov-2013 15:00 1.6 NE 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 E 8-Nov-2013	7-Nov-2013	03:00	1.3	ENE
7-Nov-2013 06:00 1.2 ENE 7-Nov-2013 07:00 1.3 NNE 7-Nov-2013 08:00 1.4 W 7-Nov-2013 09:00 1.5 WSW 7-Nov-2013 10:00 1.7 NW 7-Nov-2013 11:00 1.6 SW 7-Nov-2013 12:00 1.8 SW 7-Nov-2013 13:00 1.7 S 7-Nov-2013 14:00 1.6 E 7-Nov-2013 15:00 1.6 NE 7-Nov-2013 16:00 1.3 N 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 21:00 1.3 NE 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013	7-Nov-2013	04:00	1.2	E
7-Nov-2013 07:00 1.3 NNE 7-Nov-2013 08:00 1.4 W 7-Nov-2013 09:00 1.5 WSW 7-Nov-2013 10:00 1.7 NW 7-Nov-2013 11:00 1.6 SW 7-Nov-2013 12:00 1.8 SW 7-Nov-2013 13:00 1.7 S 7-Nov-2013 14:00 1.6 E 7-Nov-2013 15:00 1.6 NE 7-Nov-2013 16:00 1.3 N 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 23:00 1.3 ESE 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013	7-Nov-2013	05:00	1.3	ESE
7-Nov-2013 08:00 1.4 W 7-Nov-2013 09:00 1.5 WSW 7-Nov-2013 10:00 1.7 NW 7-Nov-2013 11:00 1.6 SW 7-Nov-2013 12:00 1.8 SW 7-Nov-2013 13:00 1.7 S 7-Nov-2013 14:00 1.6 E 7-Nov-2013 15:00 1.6 NE 7-Nov-2013 16:00 1.3 N 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 ENE 8-Nov-2013	7-Nov-2013	06:00	1.2	ENE
7-Nov-2013 09:00 1.5 WSW 7-Nov-2013 10:00 1.7 NW 7-Nov-2013 11:00 1.6 SW 7-Nov-2013 12:00 1.8 SW 7-Nov-2013 13:00 1.7 S 7-Nov-2013 14:00 1.6 E 7-Nov-2013 15:00 1.6 NE 7-Nov-2013 16:00 1.3 N 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 20:00 1.3 ESE 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 00:00 1.3 ENE 8-Nov-2013	7-Nov-2013	07:00	1.3	NNE
7-Nov-2013 10:00 1.7 NW 7-Nov-2013 11:00 1.6 SW 7-Nov-2013 12:00 1.8 SW 7-Nov-2013 13:00 1.7 S 7-Nov-2013 14:00 1.6 E 7-Nov-2013 15:00 1.6 NE 7-Nov-2013 16:00 1.3 N 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 ESE 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 00:00 1.3 ENE 8-Nov-2013 00:00 1.3 ENE 8-Nov-2013	7-Nov-2013	08:00	1.4	W
7-Nov-2013 11:00 1.6 SW 7-Nov-2013 12:00 1.8 SW 7-Nov-2013 13:00 1.7 S 7-Nov-2013 14:00 1.6 E 7-Nov-2013 15:00 1.6 NE 7-Nov-2013 16:00 1.3 N 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 E 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 00:00 1.3 ENE 8-Nov-2013 00:00 1.3 ENE 8-Nov-2013 00:00 1.3 ENE 8-Nov-2013	7-Nov-2013	09:00	1.5	WSW
7-Nov-2013 12:00 1.8 SW 7-Nov-2013 13:00 1.7 S 7-Nov-2013 14:00 1.6 E 7-Nov-2013 15:00 1.6 NE 7-Nov-2013 16:00 1.3 N 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 ES 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 00:00 1.3 ENE 8-Nov-2013 00:00 1.3 ENE 8-Nov-2013 00:00 1.3 ENE 8-Nov-2013 00:00 1.5 NE 8-Nov-2013	7-Nov-2013	10:00	1.7	NW
7-Nov-2013 13:00 1.7 S 7-Nov-2013 14:00 1.6 E 7-Nov-2013 15:00 1.6 NE 7-Nov-2013 16:00 1.3 N 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 18:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 ESE 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 ENE 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 06:00 1.5 N 8-Nov-2013	7-Nov-2013	11:00	1.6	SW
7-Nov-2013 14:00 1.6 E 7-Nov-2013 15:00 1.6 NE 7-Nov-2013 16:00 1.3 N 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 18:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 E 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 ENE 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 06:00 1.7 E 8-Nov-2013	7-Nov-2013	12:00	1.8	SW
7-Nov-2013 15:00 1.6 NE 7-Nov-2013 16:00 1.3 N 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 18:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 22:00 1.3 E 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 ENE 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 10:00 2 E 8-Nov-2013	7-Nov-2013	13:00	1.7	S
7-Nov-2013 16:00 1.3 N 7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 18:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 ESE 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 ENE 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013	7-Nov-2013	14:00	1.6	Е
7-Nov-2013 17:00 1.3 ENE 7-Nov-2013 18:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 ESE 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 ENE 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013	7-Nov-2013	15:00	1.6	NE
7-Nov-2013 18:00 1.3 ENE 7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 E 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 W 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 <	7-Nov-2013	16:00	1.3	N
7-Nov-2013 19:00 1.4 NNE 7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 E 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 W 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 <td< td=""><td>7-Nov-2013</td><td>17:00</td><td>1.3</td><td>ENE</td></td<>	7-Nov-2013	17:00	1.3	ENE
7-Nov-2013 20:00 1.2 NNE 7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 E 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 W 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	7-Nov-2013	18:00	1.3	ENE
7-Nov-2013 21:00 1.3 NE 7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 E 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 W 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	7-Nov-2013	19:00	1.4	NNE
7-Nov-2013 22:00 1.3 NNE 7-Nov-2013 23:00 1.3 E 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 W 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 08:00 1.8 SSE 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	7-Nov-2013	20:00	1.2	NNE
7-Nov-2013 23:00 1.3 E 8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 W 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 08:00 1.8 SSE 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	7-Nov-2013	21:00	1.3	NE
8-Nov-2013 00:00 1.3 ESE 8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 W 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 08:00 1.8 SSE 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	7-Nov-2013	22:00	1.3	NNE
8-Nov-2013 01:00 1.3 ESE 8-Nov-2013 02:00 1.3 W 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 08:00 1.8 SSE 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	7-Nov-2013	23:00	1.3	E
8-Nov-2013 02:00 1.3 W 8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 08:00 1.8 SSE 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	00:00	1.3	ESE
8-Nov-2013 03:00 1.3 ENE 8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 08:00 1.8 SSE 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	01:00	1.3	ESE
8-Nov-2013 04:00 1.3 ENE 8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 08:00 1.8 SSE 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	02:00	1.3	W
8-Nov-2013 05:00 1.5 NE 8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 08:00 1.8 SSE 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	03:00	1.3	ENE
8-Nov-2013 06:00 1.5 N 8-Nov-2013 07:00 1.7 E 8-Nov-2013 08:00 1.8 SSE 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	04:00	1.3	ENE
8-Nov-2013 07:00 1.7 E 8-Nov-2013 08:00 1.8 SSE 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	05:00	1.5	NE
8-Nov-2013 08:00 1.8 SSE 8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	06:00	1.5	N
8-Nov-2013 09:00 2 E 8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	07:00	1.7	E
8-Nov-2013 10:00 2 SE 8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	08:00	1.8	SSE
8-Nov-2013 11:00 2.2 NE 8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	09:00	2	Е
8-Nov-2013 12:00 2.3 ENE 8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	10:00	2	SE
8-Nov-2013 13:00 2.4 E 8-Nov-2013 14:00 2.2 E	8-Nov-2013	11:00	2.2	NE
8-Nov-2013 14:00 2.2 E	8-Nov-2013	12:00	2.3	ENE
	8-Nov-2013	13:00	2.4	Е
8-Nov-2013 15:00 2.2 SW	8-Nov-2013	14:00	2.2	Е
	8-Nov-2013	15:00	2.2	SW

8-Nov-2013		1	Т	
8-Nov-2013	8-Nov-2013	16:00	2.1	SSW
8-Nov-2013 19:00 1.7 NNE 8-Nov-2013 20:00 1.6 NNE 8-Nov-2013 21:00 1.5 WSW 8-Nov-2013 22:00 1.2 SW 8-Nov-2013 23:00 1.2 SW 9-Nov-2013 00:00 1.2 W 9-Nov-2013 01:00 1.3 W 9-Nov-2013 02:00 1.2 SW 9-Nov-2013 03:00 1.3 NE 9-Nov-2013 04:00 1.1 NE 9-Nov-2013 05:00 1.2 NE 9-Nov-2013 06:00 1.2 ENE 9-Nov-2013 07:00 1.5 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 <td< td=""><td>8-Nov-2013</td><td>17:00</td><td>1.9</td><td>SSW</td></td<>	8-Nov-2013	17:00	1.9	SSW
8-Nov-2013 20:00 1.6 NNE 8-Nov-2013 21:00 1.5 WSW 8-Nov-2013 22:00 1.2 SW 8-Nov-2013 23:00 1.2 SW 9-Nov-2013 00:00 1.2 W 9-Nov-2013 01:00 1.3 W 9-Nov-2013 02:00 1.2 SW 9-Nov-2013 03:00 1.3 NE 9-Nov-2013 04:00 1.1 NE 9-Nov-2013 05:00 1.2 NE 9-Nov-2013 06:00 1.2 ENE 9-Nov-2013 07:00 1.5 NE 9-Nov-2013 07:00 1.5 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 15:00 1.7 NE 9-Nov-2013	8-Nov-2013	18:00	1.7	NNE
8-Nov-2013 21:00 1.5 WSW 8-Nov-2013 22:00 1.2 SW 8-Nov-2013 23:00 1.2 SW 9-Nov-2013 00:00 1.2 W 9-Nov-2013 01:00 1.3 W 9-Nov-2013 02:00 1.2 SW 9-Nov-2013 03:00 1.3 NE 9-Nov-2013 04:00 1.1 NE 9-Nov-2013 05:00 1.2 NE 9-Nov-2013 06:00 1.2 ENE 9-Nov-2013 07:00 1.5 NE 9-Nov-2013 08:00 1.6 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 1	8-Nov-2013	19:00	1.7	NNE
8-Nov-2013 22:00 1.2 SW 8-Nov-2013 23:00 1.2 SW 9-Nov-2013 00:00 1.2 W 9-Nov-2013 01:00 1.3 W 9-Nov-2013 02:00 1.2 SW 9-Nov-2013 03:00 1.3 NE 9-Nov-2013 04:00 1.1 NE 9-Nov-2013 05:00 1.2 NE 9-Nov-2013 06:00 1.2 ENE 9-Nov-2013 07:00 1.5 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 15:00 1.7 NE 9-Nov-2013 15:0	8-Nov-2013	20:00	1.6	NNE
8-Nov-2013 23:00 1.2 SW 9-Nov-2013 00:00 1.2 W 9-Nov-2013 01:00 1.3 W 9-Nov-2013 02:00 1.2 SW 9-Nov-2013 03:00 1.3 NE 9-Nov-2013 04:00 1.1 NE 9-Nov-2013 05:00 1.2 NE 9-Nov-2013 06:00 1.2 ENE 9-Nov-2013 07:00 1.5 NE 9-Nov-2013 08:00 1.6 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 1	8-Nov-2013	21:00	1.5	WSW
9-Nov-2013 00:00 1.2 W 9-Nov-2013 01:00 1.3 W 9-Nov-2013 02:00 1.2 SW 9-Nov-2013 03:00 1.3 NE 9-Nov-2013 04:00 1.1 NE 9-Nov-2013 05:00 1.2 NE 9-Nov-2013 06:00 1.2 ENE 9-Nov-2013 07:00 1.5 NE 9-Nov-2013 08:00 1.6 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 13:00 2 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 15:00 1.1 ESE 10-Nov-2013 15:00 1.1 ESE 10-Nov-2013 15:00 1.1 ESE 10-Nov-2013 15:00 1.1 ENE	8-Nov-2013	22:00	1.2	SW
9-Nov-2013	8-Nov-2013	23:00	1.2	SW
9-Nov-2013 02:00 1.2 SW 9-Nov-2013 03:00 1.3 NE 9-Nov-2013 04:00 1.1 NE 9-Nov-2013 05:00 1.2 NE 9-Nov-2013 06:00 1.2 ENE 9-Nov-2013 07:00 1.5 NE 9-Nov-2013 08:00 1.6 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 13:00 1.8 N 9-Nov-2013 13:00 2 E 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 15:00 1.7 SE 9-Nov-2013 16:00 1.7 SE 9-Nov-2013 16:00 1.7 SE 9-Nov-2013 16:00 1.7 SE 9-Nov-2013 16:00 1.7 SE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 SSW 9-Nov-2013 19:00 1.1 SSW 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE	9-Nov-2013	00:00	1.2	W
9-Nov-2013	9-Nov-2013	01:00	1.3	W
9-Nov-2013	9-Nov-2013	02:00	1.2	SW
9-Nov-2013 05:00 1.2 NE 9-Nov-2013 06:00 1.2 ENE 9-Nov-2013 07:00 1.5 NE 9-Nov-2013 08:00 1.6 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 0	9-Nov-2013	03:00	1.3	NE
9-Nov-2013 06:00 1.2 ENE 9-Nov-2013 07:00 1.5 NE 9-Nov-2013 08:00 1.6 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SSW 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 20:00 1.1 ESE 10-Nov-2013 20:00 1.1 ENE 10-Nov-2013 <t< td=""><td>9-Nov-2013</td><td>04:00</td><td>1.1</td><td>NE</td></t<>	9-Nov-2013	04:00	1.1	NE
9-Nov-2013 07:00 1.5 NE 9-Nov-2013 08:00 1.6 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 SE 10-Nov-2013 0	9-Nov-2013	05:00	1.2	NE
9-Nov-2013 08:00 1.6 NE 9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 19:00 1.1 SW 9-Nov-2013 19:00 1.1 SSW 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 23:00 1.1 ENE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 ENE 10-Nov-2013 02:00 1 E 10-Nov-2013	9-Nov-2013	06:00	1.2	ENE
9-Nov-2013 09:00 1.7 NE 9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E	9-Nov-2013	07:00	1.5	NE
9-Nov-2013 10:00 1.9 NE 9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 SE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E	9-Nov-2013	08:00	1.6	NE
9-Nov-2013 11:00 2 E 9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 SE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	09:00	1.7	NE
9-Nov-2013 12:00 2.1 E 9-Nov-2013 13:00 2 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SSW 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 SE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	10:00	1.9	NE
9-Nov-2013 13:00 2 E 9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SSW 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	11:00	2	Е
9-Nov-2013 14:00 1.8 N 9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	12:00	2.1	Е
9-Nov-2013 15:00 1.7 ENE 9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	13:00	2	Е
9-Nov-2013 16:00 1.7 NE 9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SSW 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	14:00	1.8	N
9-Nov-2013 17:00 1.6 E 9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SE 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	15:00	1.7	ENE
9-Nov-2013 18:00 1.4 SW 9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SSW 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	16:00	1.7	NE
9-Nov-2013 19:00 1.1 WSW 9-Nov-2013 20:00 1.1 SSW 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	17:00	1.6	Е
9-Nov-2013 20:00 1.1 SSW 9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	18:00	1.4	SW
9-Nov-2013 21:00 1.1 SE 9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	19:00	1.1	WSW
9-Nov-2013 22:00 1.2 SE 9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	20:00	1.1	SSW
9-Nov-2013 23:00 1.1 ESE 10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	21:00	1.1	SE
10-Nov-2013 00:00 1.1 ENE 10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	22:00	1.2	SE
10-Nov-2013 01:00 1.1 SE 10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	9-Nov-2013	23:00	1.1	ESE
10-Nov-2013 02:00 1 E 10-Nov-2013 03:00 1 E	10-Nov-2013	00:00	1.1	ENE
10-Nov-2013 03:00 1 E	10-Nov-2013	01:00	1.1	SE
	10-Nov-2013	02:00	1	E
10-Nov-2013 04:00 1 ESE	10-Nov-2013	03:00	1	E
	10-Nov-2013	04:00	1	ESE

11-Nov-2013 11-Nov-2013	16:00 17:00	1.6 1.5	N WNW
11-Nov-2013	15:00	1.7	NNE
11-Nov-2013	14:00	1.8	SSE
11-Nov-2013	13:00	1.9	E
11-Nov-2013	12:00	2	ENE
11-Nov-2013	11:00	2	ENE
11-Nov-2013	10:00	1.9	ENE
11-Nov-2013	09:00	1.7	ENE
11-Nov-2013	08:00	1.4	ENE
11-Nov-2013	07:00	1.4	ENE
11-Nov-2013	06:00	1.5	ESE
11-Nov-2013	05:00	1.3	NE
11-Nov-2013	04:00	1.2	NE
11-Nov-2013	03:00	1.2	ENE
11-Nov-2013	02:00	1.2	E
11-Nov-2013	01:00	1.2	SE
11-Nov-2013	00:00	1.4	ENE
10-Nov-2013	23:00	1.3	NNE
10-Nov-2013	22:00	1.3	NE
10-Nov-2013	21:00	1.3	SSW
10-Nov-2013	20:00	1.3	SE
10-Nov-2013	19:00	1.2	SW
10-Nov-2013	18:00	1.3	N
10-Nov-2013	17:00	1.5	NE
10-Nov-2013	16:00	1.8	NE
10-Nov-2013	15:00	1.8	SE
10-Nov-2013	14:00	1.9	NE
10-Nov-2013	13:00	1.9	SE
10-Nov-2013	12:00	1.9	NE
10-Nov-2013	11:00	2.1	SSW
10-Nov-2013	10:00	2	ESE
10-Nov-2013	09:00	1.8	NE
10-Nov-2013	08:00	1.5	SSW
10-Nov-2013	07:00	1.3	ESE
10-Nov-2013	06:00	1.3	ESE
10-Nov-2013	05:00	1.1	ESE

	T	T	
11-Nov-2013	18:00	1.4	NNE
11-Nov-2013	19:00	1.3	NNE
11-Nov-2013	20:00	1.3	NW
11-Nov-2013	21:00	1.3	ESE
11-Nov-2013	22:00	1.3	SW
11-Nov-2013	23:00	1.3	SSE
12-Nov-2013	00:00	1.3	WSW
12-Nov-2013	01:00	1.2	SSW
12-Nov-2013	02:00	1.2	SSW
12-Nov-2013	03:00	1.1	W
12-Nov-2013	04:00	1.1	WSW
12-Nov-2013	05:00	1.1	W
12-Nov-2013	06:00	1.1	NE
12-Nov-2013	07:00	1.2	ENE
12-Nov-2013	08:00	1.3	ESE
12-Nov-2013	09:00	1.5	ESE
12-Nov-2013	10:00	1.8	SW
12-Nov-2013	11:00	1.9	ENE
12-Nov-2013	12:00	1.9	SE
12-Nov-2013	13:00	1.9	ESE
12-Nov-2013	14:00	1.9	ENE
12-Nov-2013	15:00	1.9	WNW
12-Nov-2013	16:00	1.9	SE
12-Nov-2013	17:00	1.7	SW
12-Nov-2013	18:00	1.6	SSW
12-Nov-2013	19:00	1.5	SW
12-Nov-2013	20:00	1.4	W
12-Nov-2013	21:00	1.2	ESE
12-Nov-2013	22:00	1.3	ENE
12-Nov-2013	23:00	1.5	NE
13-Nov-2013	00:00	1.2	ENE
13-Nov-2013	01:00	1.2	NE
13-Nov-2013	02:00	1.2	NE
13-Nov-2013	03:00	1.2	NNE
13-Nov-2013	04:00	1.3	NE
13-Nov-2013	05:00	1.3	NNE
13-Nov-2013	06:00	1.3	NE
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

<u> </u>	T	<u> </u>	<u> </u>
13-Nov-2013	07:00	1.3	NE
13-Nov-2013	08:00	1.3	NNE
13-Nov-2013	09:00	1.5	NE
13-Nov-2013	10:00	1.6	NNE
13-Nov-2013	11:00	1.8	ENE
13-Nov-2013	12:00	1.9	N
13-Nov-2013	13:00	1.9	ENE
13-Nov-2013	14:00	2.1	E
13-Nov-2013	15:00	2.2	SE
13-Nov-2013	16:00	2.2	W
13-Nov-2013	17:00	2	WNW
13-Nov-2013	18:00	1.9	NE
13-Nov-2013	19:00	1.7	N
13-Nov-2013	20:00	1.5	N
13-Nov-2013	21:00	1.6	WSW
13-Nov-2013	22:00	1.6	ESE
13-Nov-2013	23:00	1.5	WNW
14-Nov-2013	00:00	1.5	WNW
14-Nov-2013	01:00	1.6	ENE
14-Nov-2013	02:00	1.6	SE
14-Nov-2013	03:00	1.8	SSW
14-Nov-2013	04:00	1.5	ENE
14-Nov-2013	05:00	1.5	ENE
14-Nov-2013	06:00	1.4	ENE
14-Nov-2013	07:00	1.4	ENE
14-Nov-2013	08:00	1.4	Е
14-Nov-2013	09:00	1.6	NE
14-Nov-2013	10:00	1.7	Е
14-Nov-2013	11:00	1.9	NE
14-Nov-2013	12:00	2	Е
14-Nov-2013	13:00	1.9	SSE
14-Nov-2013	14:00	1.9	NNE
14-Nov-2013	15:00	1.9	NNE
14-Nov-2013	16:00	1.9	SW
14-Nov-2013	17:00	2	SW
14-Nov-2013	18:00	1.8	NE
14-Nov-2013	19:00	1.8	ENE
	•		

	T	Т	
14-Nov-2013	20:00	1.7	ENE
14-Nov-2013	21:00	1.8	NE
14-Nov-2013	22:00	1.8	ENE
14-Nov-2013	23:00	1.7	NE
15-Nov-2013	00:00	1.6	ESE
15-Nov-2013	01:00	1.5	NE
15-Nov-2013	02:00	1.6	ENE
15-Nov-2013	03:00	1.4	N
15-Nov-2013	04:00	1.5	ENE
15-Nov-2013	05:00	1.7	NE
15-Nov-2013	06:00	1.6	ENE
15-Nov-2013	07:00	1.6	SSE
15-Nov-2013	08:00	1.5	SE
15-Nov-2013	09:00	1.5	SSE
15-Nov-2013	10:00	1.6	S
15-Nov-2013	11:00	1.6	ENE
15-Nov-2013	12:00	1.8	NNE
15-Nov-2013	13:00	1.8	NNE
15-Nov-2013	14:00	2	NE
15-Nov-2013	15:00	2	ENE
15-Nov-2013	16:00	1.9	ENE
15-Nov-2013	17:00	1.7	NNE
15-Nov-2013	18:00	1.8	NNE
15-Nov-2013	19:00	1.9	NNE
15-Nov-2013	20:00	1.9	ESE
15-Nov-2013	21:00	1.9	SSE
15-Nov-2013	22:00	1.8	N
15-Nov-2013	23:00	1.8	NE
16-Nov-2013	00:00	1.6	N
16-Nov-2013	01:00	1.3	NNE
16-Nov-2013	02:00	1.2	NE
16-Nov-2013	03:00	1.1	ENE
16-Nov-2013	04:00	1.3	NNE
16-Nov-2013	05:00	1.5	WNW
16-Nov-2013	06:00	1.6	WNW
16-Nov-2013	07:00	1.6	ENE
16-Nov-2013	08:00	1.6	ENE

16 Nov 2012	00:00	1.6	NIT
16-Nov-2013	09:00	1.6	NE
16-Nov-2013	10:00	1.8	ENE
16-Nov-2013	11:00	1.8	W
16-Nov-2013	12:00	1.9	WNW
16-Nov-2013	13:00	1.9	W
16-Nov-2013	14:00	1.8	SW
16-Nov-2013	15:00	1.7	SW
16-Nov-2013	16:00	1.7	W
16-Nov-2013	17:00	1.6	SE
16-Nov-2013	18:00	1.7	ENE
16-Nov-2013	19:00	1.6	NE
16-Nov-2013	20:00	1.4	SW
16-Nov-2013	21:00	1.6	ENE
16-Nov-2013	22:00	1.5	ENE
16-Nov-2013	23:00	1.3	N
17-Nov-2013	00:00	1.3	NE
17-Nov-2013	01:00	1.3	NNE
17-Nov-2013	02:00	1.3	NE
17-Nov-2013	03:00	1.4	N
17-Nov-2013	04:00	1.3	Е
17-Nov-2013	05:00	1.4	ENE
17-Nov-2013	06:00	1.3	NE
17-Nov-2013	07:00	1.5	NE
17-Nov-2013	08:00	1.7	ENE
17-Nov-2013	09:00	1.8	NE
17-Nov-2013	10:00	1.9	NE
17-Nov-2013	11:00	1.8	NE
17-Nov-2013	12:00	1.7	ENE
17-Nov-2013	13:00	2	NE
17-Nov-2013	14:00	1.9	ENE
17-Nov-2013	15:00	2.3	ENE
17-Nov-2013	16:00	2.2	NE
17-Nov-2013	17:00	2.1	E
17-Nov-2013	18:00	2.2	NE
17-Nov-2013	19:00	2.1	ENE
17-Nov-2013	20:00	2	ENE
17-Nov-2013	21:00	2	ENE
	l .		

	T		T	
17-Nov-2013	22:00	1.8	ESE	
17-Nov-2013	23:00	1.7	NE	
18-Nov-2013	00:00	1.4	ENE	
18-Nov-2013	01:00	1.5	ENE	
18-Nov-2013	02:00	1.5	ENE	
18-Nov-2013	03:00	1.6	NE	
18-Nov-2013	04:00	1.9	NNE	
18-Nov-2013	05:00	1.8	ENE	
18-Nov-2013	06:00	1.9	ENE	
18-Nov-2013	07:00	1.9	SSE	
18-Nov-2013	08:00	1.9	NNE	
18-Nov-2013	09:00	2	ENE	
18-Nov-2013	10:00	1.9	NNE	
18-Nov-2013	11:00	1.6	SSE	
18-Nov-2013	12:00	1.6	NNE	
18-Nov-2013	13:00	1.7	ENE	
18-Nov-2013	14:00	2	NE	
18-Nov-2013	15:00	1.9	1.9 ENE	
18-Nov-2013	16:00	1.8	E	
18-Nov-2013	17:00	1.7	1.7 ESE	
18-Nov-2013	18:00	1.5	ENE	
18-Nov-2013	19:00	1.4	NE	
18-Nov-2013	20:00	1.4 ENE		
18-Nov-2013	21:00	1.3	NNE	
18-Nov-2013	22:00	1.4	NE	
18-Nov-2013	23:00	1.5	N	
19-Nov-2013	00:00	1.3	NNE	
19-Nov-2013	01:00	1.4	SSE	
19-Nov-2013	02:00	1.6	ENE	
19-Nov-2013	03:00	1.6	ESE	
19-Nov-2013	04:00	1.7	ESE	
19-Nov-2013	05:00	1.8	ESE	
19-Nov-2013	06:00	1.9 ENE		
19-Nov-2013	07:00	2 NE		
19-Nov-2013	08:00	1.9 NNE		
19-Nov-2013	09:00	1.8	NNE	
19-Nov-2013	10:00	1.9	NE	

19-Nov-2013	11:00	1.9	NE	
19-Nov-2013	12:00	1.7	NE	
19-Nov-2013	13:00	1.7	ESE	
19-Nov-2013	14:00	1.8	NE	
19-Nov-2013	15:00	1.9	ENE	
19-Nov-2013	16:00	1.9	E	
19-Nov-2013	17:00	1.9	ENE	
19-Nov-2013	18:00	1.9	S	
19-Nov-2013	19:00	1.9	N	
19-Nov-2013	20:00	1.7	NNE	
19-Nov-2013	21:00	1.7	N	
19-Nov-2013	22:00	1.7	N	
19-Nov-2013	23:00	1.7	N	
20-Nov-2013	00:00	1.6	N	
20-Nov-2013	01:00	1.3	N	
20-Nov-2013	02:00	1.4	NNE	
20-Nov-2013	03:00	1.6	NNE	
20-Nov-2013	04:00	1.7	NNE	
20-Nov-2013	05:00	1.5	N	
20-Nov-2013	06:00	1.4	ESE	
20-Nov-2013	07:00	1.4	NNE	
20-Nov-2013	08:00	1.4	ENE	
20-Nov-2013	09:00	1.6	ESE	
20-Nov-2013	10:00	1.6	SSE	
20-Nov-2013	11:00	1.6	ESE	
20-Nov-2013	12:00	1.5	ESE	
20-Nov-2013	13:00	1.6	SE	
20-Nov-2013	14:00	1.7	ENE	
20-Nov-2013	15:00	1.6	E	
20-Nov-2013	16:00	1.5	SE	
20-Nov-2013	17:00	1.3	ENE	
20-Nov-2013	18:00	1.2	NNE	
20-Nov-2013	19:00	1.1	1.1 ENE	
20-Nov-2013	20:00	0.9 SE		
20-Nov-2013	21:00	1.1	1.1 ESE	
20-Nov-2013	22:00	1	NNW	
20-Nov-2013	23:00	1	E	

21-Nov-2013					
21-Nov-2013 02:00 0.9 ENE 21-Nov-2013 03:00 1.1 SSW 21-Nov-2013 04:00 1.1 S 21-Nov-2013 05:00 1.2 SE 21-Nov-2013 06:00 1.7 SE 21-Nov-2013 07:00 1.7 S 21-Nov-2013 08:00 1.7 SW 21-Nov-2013 09:00 1.7 SW 21-Nov-2013 10:00 2.1 SE 21-Nov-2013 11:00 2.3 ESE 21-Nov-2013 12:00 2.4 NE 21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 ESE 21-Nov-2013 16:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 21:00 1.8 SW 21-N	21-Nov-2013	00:00	1	N	
21-Nov-2013 03:00 1.1 SSW 21-Nov-2013 04:00 1.1 S 21-Nov-2013 05:00 1.2 SE 21-Nov-2013 06:00 1.7 SE 21-Nov-2013 07:00 1.7 S 21-Nov-2013 08:00 1.7 SW 21-Nov-2013 10:00 2.1 SE 21-Nov-2013 11:00 2.3 ESE 21-Nov-2013 12:00 2.4 NE 21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 ESE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 18:00 2.2 WSW 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 21:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-	21-Nov-2013	01:00	0.9	NNE	
21-Nov-2013 04:00 1.1 S 21-Nov-2013 05:00 1.2 SE 21-Nov-2013 06:00 1.7 SE 21-Nov-2013 07:00 1.7 S 21-Nov-2013 08:00 1.7 SW 21-Nov-2013 10:00 2.1 SE 21-Nov-2013 11:00 2.3 ESE 21-Nov-2013 12:00 2.4 NE 21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 ESE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-	21-Nov-2013	02:00	0.9	ENE	
21-Nov-2013 05:00 1.2 SE 21-Nov-2013 06:00 1.7 SE 21-Nov-2013 07:00 1.7 S 21-Nov-2013 08:00 1.7 ESE 21-Nov-2013 10:00 2.1 SE 21-Nov-2013 11:00 2.3 ESE 21-Nov-2013 12:00 2.4 NE 21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 ESE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 ESE 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 21:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 00:00 1.8 NNE <t< td=""><td>21-Nov-2013</td><td>03:00</td><td>1.1</td><td>SSW</td></t<>	21-Nov-2013	03:00	1.1	SSW	
21-Nov-2013 06:00 1.7 SE 21-Nov-2013 07:00 1.7 S 21-Nov-2013 08:00 1.7 ESE 21-Nov-2013 10:00 2.1 SE 21-Nov-2013 11:00 2.3 ESE 21-Nov-2013 12:00 2.4 NE 21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 ESE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.2 WSW 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW <	21-Nov-2013	04:00	1.1	S	
21-Nov-2013 07:00 1.7 S 21-Nov-2013 08:00 1.7 ESE 21-Nov-2013 10:00 2.1 SE 21-Nov-2013 11:00 2.3 ESE 21-Nov-2013 12:00 2.4 NE 21-Nov-2013 12:00 2.4 N 21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 NE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 20:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 22:00 1.7 WNW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 00:00 1.6 ESE 2	21-Nov-2013	05:00	1.2	SE	
21-Nov-2013 08:00 1.7 ESE 21-Nov-2013 09:00 1.7 SW 21-Nov-2013 10:00 2.1 SE 21-Nov-2013 11:00 2.3 ESE 21-Nov-2013 12:00 2.4 NE 21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 ESE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 20:00 1.8 WNW 21-Nov-2013 20:00 1.8 WNW 21-Nov-2013 20:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 00:00 1.5 ENE <	21-Nov-2013	06:00	1.7	SE	
21-Nov-2013 09:00 1.7 SW 21-Nov-2013 10:00 2.1 SE 21-Nov-2013 11:00 2.3 ESE 21-Nov-2013 12:00 2.4 NE 21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 NE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 18:00 2.2 NE 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE <td< td=""><td>21-Nov-2013</td><td>07:00</td><td>1.7</td><td>S</td></td<>	21-Nov-2013	07:00	1.7	S	
21-Nov-2013 10:00 2.1 SE 21-Nov-2013 11:00 2.3 ESE 21-Nov-2013 12:00 2.4 NE 21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 NE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SE <	21-Nov-2013	08:00	1.7	ESE	
21-Nov-2013 11:00 2.3 ESE 21-Nov-2013 12:00 2.4 NE 21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 NE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 00:00 1.5 ENE 22-Nov-2013 00:00 1.5 SE 22-Nov-2013 00:00 1.5 SE <t< td=""><td>21-Nov-2013</td><td>09:00</td><td>1.7</td><td>SW</td></t<>	21-Nov-2013	09:00	1.7	SW	
21-Nov-2013 12:00 2.4 NE 21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 NE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 18:00 2.2 NE 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 02:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.5 SE 22-Nov-2013 04:00 1.5 SE 22-Nov-2013 06:00 1.5 SE	21-Nov-2013	10:00	2.1	SE	
21-Nov-2013 13:00 2.4 N 21-Nov-2013 14:00 2.3 NE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 18:00 2.2 NE 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 00:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW <	21-Nov-2013	11:00	2.3	ESE	
21-Nov-2013 14:00 2.3 NE 21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 18:00 2.2 NE 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 WNW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE	21-Nov-2013	12:00	2.4	NE	
21-Nov-2013 15:00 2.3 ESE 21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 18:00 2.2 NE 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SE	21-Nov-2013	13:00	2.4	N	
21-Nov-2013 16:00 2.3 S 21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 18:00 2.2 NE 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SE 22-Nov-2013 10:00 2.5 S <td< td=""><td>21-Nov-2013</td><td>14:00</td><td>2.3</td><td colspan="2">NE</td></td<>	21-Nov-2013	14:00	2.3	NE	
21-Nov-2013 17:00 2.2 WSW 21-Nov-2013 18:00 2.2 NE 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 10:00 2.5 S <td< td=""><td>21-Nov-2013</td><td>15:00</td><td>2.3</td><td colspan="2">ESE</td></td<>	21-Nov-2013	15:00	2.3	ESE	
21-Nov-2013 18:00 2.2 NE 21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 10:00 2.5 S <t< td=""><td>21-Nov-2013</td><td>16:00</td><td>2.3</td><td colspan="2">S</td></t<>	21-Nov-2013	16:00	2.3	S	
21-Nov-2013 19:00 1.9 SSE 21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SSE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 10:00 2.5 S 22-Nov-2013 10:00 2.5 S	21-Nov-2013	17:00	2.2	WSW	
21-Nov-2013 20:00 1.8 SW 21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SSE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	21-Nov-2013	18:00	2.2	NE	
21-Nov-2013 21:00 1.8 WNW 21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SSE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	21-Nov-2013	19:00	1.9	SSE	
21-Nov-2013 22:00 1.7 WNW 21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SSE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	21-Nov-2013	20:00	1.8	SW	
21-Nov-2013 23:00 1.6 WSW 22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.5 S 22-Nov-2013 11:00 2.8 NE	21-Nov-2013	21:00	1.8	WNW	
22-Nov-2013 00:00 1.8 NNE 22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SSE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	21-Nov-2013	22:00	1.7	WNW	
22-Nov-2013 01:00 1.5 ENE 22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SSE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	21-Nov-2013	23:00	1.6	WSW	
22-Nov-2013 02:00 1.6 ESE 22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SSE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	22-Nov-2013	00:00	1.8	NNE	
22-Nov-2013 03:00 1.6 ESE 22-Nov-2013 04:00 1.5 SSE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	22-Nov-2013	01:00	1.5	ENE	
22-Nov-2013 04:00 1.5 SSE 22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	22-Nov-2013	02:00	1.6	ESE	
22-Nov-2013 05:00 1.5 SE 22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	22-Nov-2013	03:00	1.6	ESE	
22-Nov-2013 06:00 1.5 ESE 22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	22-Nov-2013	04:00	1.5	SSE	
22-Nov-2013 07:00 1.6 WNW 22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	22-Nov-2013	05:00	1.5	SE	
22-Nov-2013 08:00 2.4 NE 22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	22-Nov-2013	06:00	1.5	ESE	
22-Nov-2013 09:00 2.4 SSE 22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	22-Nov-2013	07:00	1.6	WNW	
22-Nov-2013 10:00 2.5 S 22-Nov-2013 11:00 2.8 NE	22-Nov-2013	08:00	2.4	NE	
22-Nov-2013 11:00 2.8 NE	22-Nov-2013	09:00	2.4 SSE		
	22-Nov-2013	10:00	2.5	S	
22-Nov-2013 12:00 2.7 NNE	22-Nov-2013	11:00	2.8	NE	
	22-Nov-2013	12:00	2.7	NNE	

	<u></u>	Т	T	
22-Nov-2013	13:00	2.7	NE	
22-Nov-2013	14:00	2.5	W	
22-Nov-2013	15:00	3	ESE	
22-Nov-2013	16:00	3.2	SE	
22-Nov-2013	17:00	2.9	SE	
22-Nov-2013	18:00	2.3	ENE	
22-Nov-2013	19:00	2.1	SE	
22-Nov-2013	20:00	2.2	E	
22-Nov-2013	21:00	2.3	E	
22-Nov-2013	22:00	1.7	SE	
22-Nov-2013	23:00	1.8	NNW	
23-Nov-2013	00:00	1.8	SSE	
23-Nov-2013	01:00	1.7	E	
23-Nov-2013	02:00	1.6	N	
23-Nov-2013	03:00	1.5	W	
23-Nov-2013	04:00	1.5	SSW	
23-Nov-2013	05:00	1.6	SW	
23-Nov-2013	06:00	1.6	SSE	
23-Nov-2013	07:00	1.4	SW	
23-Nov-2013	08:00	1.6	SW	
23-Nov-2013	09:00	1.8	WSW	
23-Nov-2013	10:00	1.9	W	
23-Nov-2013	11:00	2.1	WNW	
23-Nov-2013	12:00	2.1	WSW	
23-Nov-2013	13:00	2.3	WNW	
23-Nov-2013	14:00	2.1	SW	
23-Nov-2013	15:00	2.3	SSW	
23-Nov-2013	16:00	2.4	NNE	
23-Nov-2013	17:00	2.3	NW	
23-Nov-2013	18:00	2.2	WNW	
23-Nov-2013	19:00	2	WSW	
23-Nov-2013	20:00	2.1	WSW	
23-Nov-2013	21:00	2	WSW	
23-Nov-2013	22:00	2.1	WSW	
23-Nov-2013	23:00	1.9	SW	
24-Nov-2013	00:00	2	WSW	
24-Nov-2013	01:00	1.9	WNW	
			•	

04 Nov 2012	02:00	1.0	WNW	
24-Nov-2013	02:00	1.9		
24-Nov-2013	03:00	1.9	WSW	
24-Nov-2013	04:00	1.8	W	
24-Nov-2013	05:00	1.8	W	
24-Nov-2013	06:00	1.6	W	
24-Nov-2013	07:00	1.6	W	
24-Nov-2013	08:00	1.8	W	
24-Nov-2013	09:00	2	W	
24-Nov-2013	10:00	2.4	WNW	
24-Nov-2013	11:00	2.4	NW	
24-Nov-2013	12:00	2.2	SW	
24-Nov-2013	13:00	2.2	WSW	
24-Nov-2013	14:00	2.1	W	
24-Nov-2013	15:00	2.2	W	
24-Nov-2013	16:00	2	NE	
24-Nov-2013	17:00	2	W	
24-Nov-2013	18:00	1.9	W	
24-Nov-2013	19:00	1.9	ESE	
24-Nov-2013	20:00	1.8	WNW	
24-Nov-2013	21:00	1.8	WNW	
24-Nov-2013	22:00	1.8	NNE	
24-Nov-2013	23:00	1.9	ESE	
25-Nov-2013	00:00	1.8	WNW	
25-Nov-2013	01:00	1.7	W	
25-Nov-2013	02:00	1.7	SW	
25-Nov-2013	03:00	1.4	W	
25-Nov-2013	04:00	1.6	WNW	
25-Nov-2013	05:00	1.6	WSW	
25-Nov-2013	06:00	1.5	W	
25-Nov-2013	07:00	1.6	W	
25-Nov-2013	08:00	1.7	W	
25-Nov-2013	09:00	1.9	WSW	
25-Nov-2013	10:00	2	W	
25-Nov-2013	11:00	2.2	WNW	
25-Nov-2013	12:00	2.1	W	
25-Nov-2013	13:00	2	W	
25-Nov-2013	14:00	1.9	WSW	
	1			

25-Nov-2013	05 Nr. 0040	45.00		100	
25-Nov-2013 17:00 1.7 NNE 25-Nov-2013 18:00 1.5 WNW 25-Nov-2013 19:00 1.6 ENE 25-Nov-2013 20:00 1.6 W 25-Nov-2013 21:00 1.4 E 25-Nov-2013 22:00 1.6 SW 25-Nov-2013 23:00 1.6 SW 25-Nov-2013 23:00 1.6 SW 26-Nov-2013 00:00 1.6 SSW 26-Nov-2013 01:00 1.5 ENE 26-Nov-2013 02:00 1.5 ENE 26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 04:00 1.3 ESE 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.7 W <t< td=""><td>25-Nov-2013</td><td>15:00</td><td>2</td><td>W</td></t<>	25-Nov-2013	15:00	2	W	
25-Nov-2013 18:00 1.5 WNW 25-Nov-2013 19:00 1.6 ENE 25-Nov-2013 20:00 1.6 W 25-Nov-2013 21:00 1.4 E 25-Nov-2013 22:00 1.6 SW 25-Nov-2013 23:00 1.6 SW 26-Nov-2013 00:00 1.6 SSW 26-Nov-2013 01:00 1.5 ENE 26-Nov-2013 02:00 1.5 ENE 26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 04:00 1.3 N 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 W 26-Nov-2013 12:00 1.7 W 26-					
25-Nov-2013 19:00 1.6 ENE 25-Nov-2013 20:00 1.6 W 25-Nov-2013 21:00 1.4 E 25-Nov-2013 22:00 1.6 SW 25-Nov-2013 23:00 1.6 SW 26-Nov-2013 00:00 1.6 SSW 26-Nov-2013 01:00 1.5 ENE 26-Nov-2013 02:00 1.5 ENE 26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 04:00 1.3 N 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 13:00 1.9 ESE <td< td=""><td></td><td></td><td></td><td></td></td<>					
25-Nov-2013 20:00 1.6 W 25-Nov-2013 21:00 1.4 E 25-Nov-2013 22:00 1.6 SW 25-Nov-2013 23:00 1.6 SW 26-Nov-2013 00:00 1.6 SSW 26-Nov-2013 01:00 1.5 ENE 26-Nov-2013 02:00 1.5 ENE 26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 04:00 1.3 N 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 W 26-Nov-2013 12:00 1.7 W 26-Nov-2013 15:00 1.6 ESE 26-No					
25-Nov-2013 21:00 1.4 E 25-Nov-2013 22:00 1.6 SW 25-Nov-2013 23:00 1.6 SW 26-Nov-2013 00:00 1.6 SSW 26-Nov-2013 01:00 1.5 ENE 26-Nov-2013 02:00 1.5 ENE 26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 04:00 1.3 N 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 08:00 1.7 ESE 26-Nov-2013 10:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 12:00 1.7 W 26-Nov-2013 12:00 1.7 W 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 15:00 1.6 ESE 2	25-Nov-2013	19:00	1.6		
25-Nov-2013 22:00 1.6 SW 25-Nov-2013 23:00 1.6 S 26-Nov-2013 00:00 1.5 ENE 26-Nov-2013 02:00 1.5 ENE 26-Nov-2013 02:00 1.5 ENE 26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 04:00 1.3 N 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 08:00 1.7 ESE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 15:00 1.6 ESE	25-Nov-2013	20:00	1.6	W	
25-Nov-2013 23:00 1.6 S 26-Nov-2013 00:00 1.6 SSW 26-Nov-2013 01:00 1.5 ENE 26-Nov-2013 02:00 1.5 ENE 26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 04:00 1.3 N 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 08:00 1.7 ESE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 15:00 1.6 ESE <td< td=""><td>25-Nov-2013</td><td>21:00</td><td>1.4</td><td>E</td></td<>	25-Nov-2013	21:00	1.4	E	
26-Nov-2013 00:00 1.6 SSW 26-Nov-2013 01:00 1.5 ENE 26-Nov-2013 02:00 1.5 ENE 26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 04:00 1.3 N 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 08:00 1.7 ESE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 19:00 1.5 S <td< td=""><td>25-Nov-2013</td><td>22:00</td><td>1.6</td><td>SW</td></td<>	25-Nov-2013	22:00	1.6	SW	
26-Nov-2013 01:00 1.5 ENE 26-Nov-2013 02:00 1.5 ENE 26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 04:00 1.3 N 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 08:00 1.7 ESE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 19:00 1.3 NE 26	25-Nov-2013	23:00	1.6	S	
26-Nov-2013 02:00 1.5 ENE 26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 04:00 1.3 N 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 17:00 1.5 S 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26	26-Nov-2013	00:00	1.6	SSW	
26-Nov-2013 03:00 1.6 SSE 26-Nov-2013 04:00 1.3 N 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 08:00 1.7 ESE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 20:00 1.2 NNW 26	26-Nov-2013	01:00	1.5	ENE	
26-Nov-2013 04:00 1.3 N 26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 08:00 1.7 ESE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 17:00 1.5 S 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 2	26-Nov-2013	02:00	1.5	ENE	
26-Nov-2013 05:00 1.3 ESE 26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 08:00 1.7 ESE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 18:00 1.2 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26	26-Nov-2013	03:00	1.6	SSE	
26-Nov-2013 06:00 1.2 ENE 26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 08:00 1.7 ESE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 18:00 1.2 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27	26-Nov-2013	04:00	1.3	N	
26-Nov-2013 07:00 1.5 SSE 26-Nov-2013 08:00 1.7 ESE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27	26-Nov-2013	05:00	1.3	ESE	
26-Nov-2013 08:00 1.7 ESE 26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 19:00 1.2 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	06:00	1.2	ENE	
26-Nov-2013 09:00 1.8 ESE 26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 18:00 1.2 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	07:00	1.5	SSE	
26-Nov-2013 10:00 1.8 E 26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	08:00	1.7	ESE	
26-Nov-2013 11:00 1.7 WNW 26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 18:00 1.2 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	09:00	1.8	ESE	
26-Nov-2013 12:00 1.7 W 26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 18:00 1.2 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	10:00	1.8	Е	
26-Nov-2013 13:00 1.9 ESE 26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 18:00 1.2 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	11:00	1.7	WNW	
26-Nov-2013 14:00 1.8 E 26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 18:00 1.2 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	12:00	1.7	W	
26-Nov-2013 15:00 1.6 ESE 26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 18:00 1.2 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	13:00	1.9	ESE	
26-Nov-2013 16:00 1.7 W 26-Nov-2013 17:00 1.5 S 26-Nov-2013 18:00 1.2 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	14:00	1.8	E	
26-Nov-2013 17:00 1.5 S 26-Nov-2013 18:00 1.2 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	15:00	1.6	ESE	
26-Nov-2013 18:00 1.2 NE 26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	16:00	1.7	W	
26-Nov-2013 19:00 1.3 NE 26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	17:00	1.5	S	
26-Nov-2013 20:00 1.2 NNW 26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	18:00	1.2	NE	
26-Nov-2013 21:00 1.5 ENE 26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	19:00	1.3	NE	
26-Nov-2013 22:00 1.4 NE 26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	20:00	1.2	NNW	
26-Nov-2013 23:00 1.5 WSW 27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	21:00	1.5	ENE	
27-Nov-2013 00:00 1.4 WNW 27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	22:00	1.4	NE	
27-Nov-2013 01:00 1.3 W 27-Nov-2013 02:00 1.4 SW	26-Nov-2013	23:00	1.5	WSW	
27-Nov-2013 02:00 1.4 SW	27-Nov-2013	00:00	1.4	.4 WNW	
	27-Nov-2013	01:00	1.3	W	
27-Nov-2013 03:00 1.4 SSW	27-Nov-2013	02:00	1.4	SW	
	27-Nov-2013	03:00	1.4	SSW	

	T	Т	T	
27-Nov-2013	04:00	1.3	NE	
27-Nov-2013	05:00	1.3	SSW	
27-Nov-2013	06:00	1.3	S	
27-Nov-2013	07:00	1.2	ESE	
27-Nov-2013	08:00	1.2	SSE	
27-Nov-2013	09:00	1.4	ESE	
27-Nov-2013	10:00	1.4	ENE	
27-Nov-2013	11:00	1.6	ESE	
27-Nov-2013	12:00	1.7	SE	
27-Nov-2013	13:00	1.5	SSE	
27-Nov-2013	14:00	1.7	S	
27-Nov-2013	15:00	1.6	SE	
27-Nov-2013	16:00	1.5	SSE	
27-Nov-2013	17:00	1.5	N	
27-Nov-2013	18:00	1.3	Е	
27-Nov-2013	19:00	1.2	SSE	
27-Nov-2013	20:00	1.2	SSE	
27-Nov-2013	21:00	1.6	SSE	
27-Nov-2013	22:00	1.4	SE	
27-Nov-2013	23:00	1.7	SSE	
28-Nov-2013	00:00	1.7	SSE	
28-Nov-2013	01:00	1.7	Е	
28-Nov-2013	02:00	1.8	Е	
28-Nov-2013	03:00	1.5	Е	
28-Nov-2013	04:00	1.5	SSE	
28-Nov-2013	05:00	1.2	WNW	
28-Nov-2013	06:00	1.2	NW	
28-Nov-2013	07:00	1.3	WNW	
28-Nov-2013	08:00	1.4	NW	
28-Nov-2013	09:00	1.5	NW	
28-Nov-2013	10:00	1.9	NNW	
28-Nov-2013	11:00	1.9	WNW	
28-Nov-2013	12:00	2.1	NNE	
28-Nov-2013	13:00	2.1	WSW	
28-Nov-2013	14:00	1.8	WNW	
28-Nov-2013	15:00	1.8	ESE	
28-Nov-2013	16:00	1.8	ESE	
	•			

28-Nov-2013	17:00	1.9	WNW	
28-Nov-2013	18:00	1.7	SE	
28-Nov-2013	19:00	1.4	ENE	
28-Nov-2013	20:00	1.4	NW	
28-Nov-2013	21:00	1.6	SW	
28-Nov-2013	22:00	1.5	WNW	
28-Nov-2013	23:00	1.6	NNW	
29-Nov-2013	00:00	1.8	NNW	
29-Nov-2013	01:00	1.9	W	
29-Nov-2013	02:00	1.8	WNW	
29-Nov-2013	03:00	1.9	WNW	
29-Nov-2013	04:00	1.7	NW	
29-Nov-2013	05:00	1.8	NNW	
29-Nov-2013	06:00	1.8	NW	
29-Nov-2013	07:00	1.7	NW	
29-Nov-2013	08:00	1.8	NW	
29-Nov-2013	09:00	1.8	NNE	
29-Nov-2013	10:00	2.2	NNE	
29-Nov-2013	11:00	2.2	NW	
29-Nov-2013	12:00	2.2	NW	
29-Nov-2013	13:00	2.2	NNE	
29-Nov-2013	14:00	2	WNW	
29-Nov-2013	15:00	2	NW	
29-Nov-2013	16:00	2	NW	
29-Nov-2013	17:00	1.9	NW	
29-Nov-2013	18:00	1.7	NW	
29-Nov-2013	19:00	1.5	WNW	
29-Nov-2013	20:00	1.5	NW	
29-Nov-2013	21:00	1.5	NNW	
29-Nov-2013	22:00	1.6	NW	
29-Nov-2013	23:00	1.5	WNW	
30-Nov-2013	00:00	1.3	NW	
30-Nov-2013	01:00	1.3	NW	
30-Nov-2013	02:00	1.3	NW	
30-Nov-2013	03:00	1.3	NNW	
30-Nov-2013	04:00	1.6	SE	
30-Nov-2013	05:00	1.4	ESE	
		l	l .	

30-Nov-2013	06:00	1.5	WNW	
30-Nov-2013	07:00	1.4 SSE		
30-Nov-2013	08:00	1.4	S	
30-Nov-2013	09:00	1.4	S	
30-Nov-2013	10:00	1.4	SW	
30-Nov-2013	11:00	1.5	WNW	
30-Nov-2013	12:00	1.5	NW	
30-Nov-2013	13:00	1.6	NW	
30-Nov-2013	14:00	1.5	NNW	
30-Nov-2013	15:00	1.6	NNW	
30-Nov-2013	16:00	1.8	NNW	
30-Nov-2013	17:00	1.8	SE	
30-Nov-2013	18:00	1.8	SE	
30-Nov-2013	19:00	1.8	ESE	
30-Nov-2013	20:00	1.9	S	
30-Nov-2013	21:00	1.9	SE	
30-Nov-2013	22:00	1.9 S		
30-Nov-2013	23:00	1.8	S	

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KL/2010/03

Kai Tak Development - Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities Tentative Impact Air and Noise Monitoring Schedule for December 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Dec	2-Dec	3-Dec	4-Dec	5-Dec	6-Dec	7-Dec
				1 hr TSP X3 Noise (M1, M2, M3 and M4)		
			24 hr TSP			
8-Dec	9-Dec	10-Dec	11-Dec	12-Dec	13-Dec	14-Dec
			1 hr TSP X3 Noise (M3, M4)	Noise (M1, M2)		
		24 hr TSP				
15-Dec	16-Dec	17-Dec	18-Dec	19-Dec	20-Dec	21-Dec
	24 hr TSP	1 hr TSP X3 Noise (M1, M2, M3 and M4)			24 hr TSP	
22-Dec	23-Dec	24-Dec	25-Dec	26-Dec	27-Dec	28-Dec
	1 hr TSP X3 Noise (M3, M4)	Noise (M1, M2) 24 hr TSP			1 hr TSP X3	
29-Dec	30-Dec	31-Dec				
	24 hr TSP	1 hr TSP X3 Noise (M3, M4)				

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM1(B) -Boundary of KTD/Outside Contractor's site office of Contract KL/2008/09 AM2 - Lee Kau Yan Memorial School

Noise Monitoring Station

M1 - Buddhist Chi King Primary School

M2 - S.K.H. Kowloon Bay Kei Lok Primary School

M3 - Cognitio College

M4 - Lee Kau Yan Memorial School

Contract No. KL/2010/03

Kai Tak Development - Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities Impact Air and Noise Monitoring Schedule for November 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			-		1-Nov	2-Nov
					1 hr TSP X3	
3-Nov	4-Nov	5-Nov	6-Nov	7-Nov	8-Nov	9-Nov
				1 L. TCD V2		
				1 hr TSP X3 Noise (M3, M4)		
	Noise (M1, M2)			110136 (1113, 1114)		
	, , ,					
			24 hr TSP			
10.37		10.33	10.77		15.33	
10-Nov	11-Nov	12-Nov	13-Nov	14-Nov	15-Nov	16-Nov
			1 hr TSP X3			
			Noise (M3, M4)			
			, , ,			
		Noise (M1, M2)				
		24 hr TSP				
17-Nov	18-Nov	19-Nov	20-Nov	21-Nov	22-Nov	23-Nov
17-1404	16-1107	19-1NOV	20-1107	21-NOV	22-1NOV	25-1100
		1 hr TSP X3				
		Noise (M1, M2, M3 and M4)				
	24 hr TSP					
					24 hr TSP	
24-Nov	25-Nov	26-Nov	27-Nov	28-Nov	29-Nov	30-Nov
24-1107	23-1101	20-1404	27-1101	20-1101	25-1101	30 1107
					1 hr TSP X3	
	1 hr TSP X3	Noise (M1, M2)		24 hr TSP		
	Noise (M3, M4)					

Air Quality Monitoring Station

AM1(B) -Boundary of KTD/Outside Contractor's site office of Contract KL/2008/09 AM2 - Lee Kau Yan Memorial School

Noise Monitoring Station

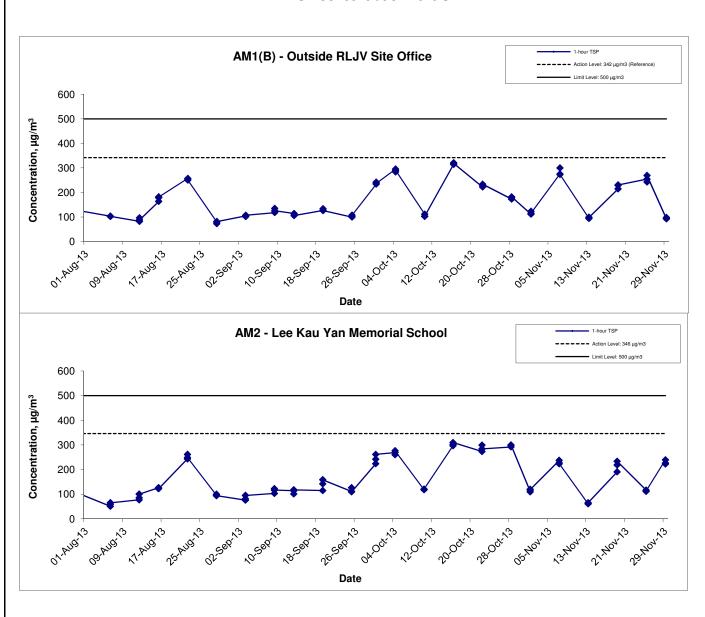
M1 - Buddhist Chi King Primary School

M2 - S.K.H. Kowloon Bay Kei Lok Primary School

M3 - Cognitio College

M4 - Lee Kau Yan Memorial School

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix E - 1-hour TSP Monitoring Results

Location AM1(B) - Outside F	RLJV Site Office	
Date	Time	Weather	Particulate Concentration (μg/m³)
1-Nov-13	9:00	Sunny	111.7
1-Nov-13	10:00	Sunny	123.4
1-Nov-13	11:00	Sunny	115.6
7-Nov-13	8:30	Sunny	275.6
7-Nov-13	9:30	Sunny	299.8
7-Nov-13	10:30	Sunny	273.5
13-Nov-13	13:00	Cloudy	94.0
13-Nov-13	14:00	Cloudy	96.4
13-Nov-13	15:00	Cloudy	99.2
19-Nov-13	13:09	Cloudy	214.6
19-Nov-13	14:09	Cloudy	229.2
19-Nov-13	15:09	Cloudy	230.9
25-Nov-13	9:00	Sunny	254.7
25-Nov-13	10:00	Sunny	242.6
25-Nov-13	11:00	Sunny	269.2
29-Nov-13	9:00	Sunny	92.8
29-Nov-13	10:00	Sunny	93.3
29-Nov-13	11:00	Sunny	97.9
		Average	178.6
		Maximum	299.8
		Minimum	92.8

Location AM2 -	Lee Kau Yar	n Memorial School	
Date	Time	Weather	Particulate Concentration (μg/m³)
1-Nov-13	13:00	Sunny	109.8
1-Nov-13	14:00	Sunny	116.6
1-Nov-13	15:00	Sunny	119.8
7-Nov-13	13:00	Sunny	237.3
7-Nov-13	14:00	Sunny	227.5
7-Nov-13	15:00	Sunny	223.6
13-Nov-13	9:00	Cloudy	60.9
13-Nov-13	10:00	Cloudy	62.8
13-Nov-13	11:00	Cloudy	65.7
19-Nov-13	13:00	Fine	190.6
19-Nov-13	14:00	Fine	218.9
19-Nov-13	15:00	Fine	234.0
25-Nov-13	13:00	Sunny	117.0
25-Nov-13	14:00	Sunny	111.5
25-Nov-13	15:00	Sunny	112.8
29-Nov-13	9:00	Sunny	239.8
29-Nov-13	10:00	Sunny	222.7
29-Nov-13	11:00	Sunny	226.7
		Average	161.0
		Maximum	239.8
		Minimum	60.9

MA11038/App E - 1hr TSP Cinotech

1-hr TSP Concentration Levels

Title Contract No. KL/2010/03
Kai Tak Development - Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities

Graphical Presentation of 1-hour TSP Monitoring Results

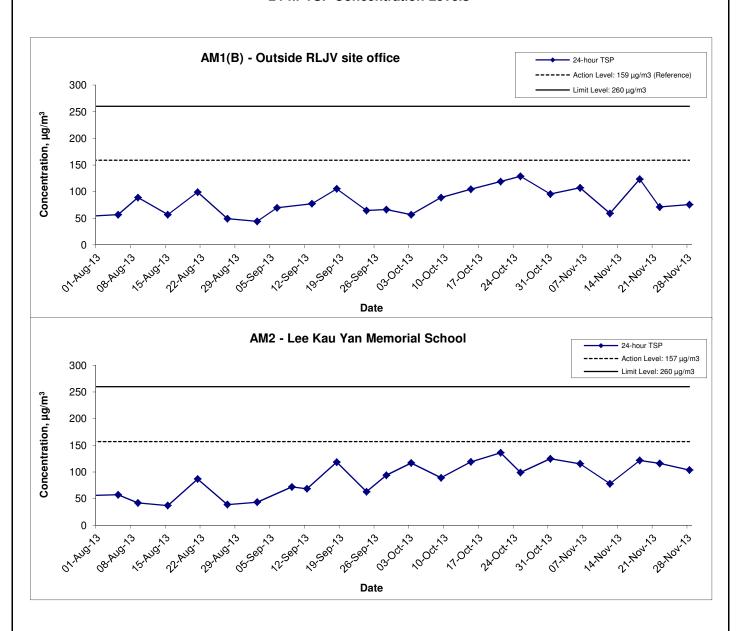
Scale Project
N.T.S No. MA11038

Date Nov 13

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

Location AM1(B) - Outside RLJV site office


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	(m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(μg/m ³)
6-Nov-13	Sunny	296.0	767.2	3.6179	3.8065	0.1886	2356.8	2380.8	24.0	1.22	1.22	1.22	1760.5	107.1
12-Nov-13	Cloudy	294.9	763.1	3.6331	3.7373	0.1042	2380.8	2404.8	24.0	1.22	1.22	1.22	1759.3	59.2
18-Nov-13	Cloudy	294.6	769.0	3.7345	3.9524	0.2179	2404.8	2428.8	24.0	1.23	1.23	1.23	1766.2	123.4
22-Nov-13	Sunny	292.3	767.9	3.7470	3.8731	0.1261	2428.8	2452.8	24.0	1.23	1.23	1.23	1771.3	71.2
28-Nov-13	Sunny	286.1	771.3	3.7461	3.8819	0.1358	2452.8	2476.8	24.0	1.24	1.24	1.24	1792.2	75.8
													Min	59.2
													Max	123.4
													Average	87.3

Location AM2 - Lee Kau Yan Memorial School

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
6-Nov-13	Sunny	296.0	767.2	3.6239	3.8285	0.2046	12388.7	12412.7	24.0	1.23	1.23	1.23	1775.2	115.3
12-Nov-13	Cloudy	294.9	763.1	3.6210	3.7575	0.1365	12412.7	12436.7	24.0	1.22	1.22	1.22	1751.6	77.9
18-Nov-13	Cloudy	294.6	769.0	3.7368	3.9507	0.2139	12436.7	12460.7	24.0	1.22	1.22	1.22	1758.6	121.6
22-Nov-13	Sunny	292.3	767.9	3.7168	3.9215	0.2047	12460.7	12484.7	24.0	1.23	1.22	1.22	1763.9	116.1
28-Nov-13	Sunny	286.1	771.3	3.7552	3.9402	0.1850	12484.7	12508.7	24.0	1.24	1.24	1.24	1785.1	103.6
													Min	77.9
													Max	121.6
													Average	106.9

MA11038/App F - 24hr TSP

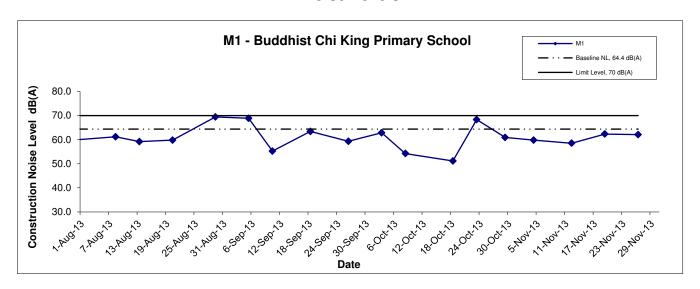
24-hr TSP Concentration Levels

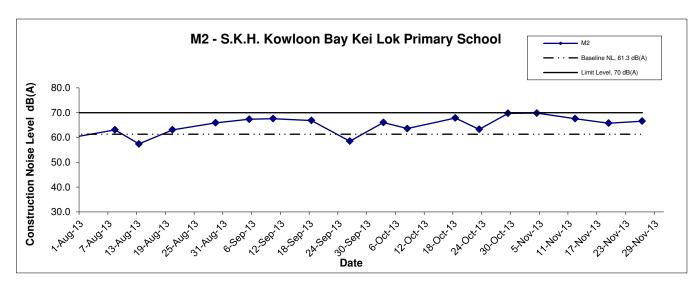
Title	Contract No. KL/2010/03 Kai Tak Development - Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities	Scale	N.T.S	Project No. MA11038	CINOTCCII
	Graphical Presentation of 24-hour TSP Monitoring Results	Date	Nov 13	Appendix F	CINOIECH

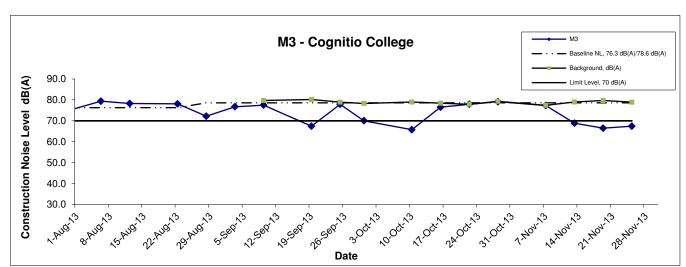
APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix G - Noise Monitoring Results

Location M1 -	Location M1 - Buddhist Chi King Primary School												
Unit: dB (A) (30-min)													
Date	Date Time		Meas	sured Noise	Level	Baseline Level	Construction Noise Level						
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}						
4-Nov-13	10:20	Cloudy	65.7	67.4	63.8		59.8						
12-Nov-13	13:15	Cloudy	65.4	68.2	60.7	64.4	58.5						
19-Nov-13	13:40	Cloudy	66.5	69.7	62.0	04.4	62.3						
26-Nov-13	14:50	Cloudy	66.4	68.7	62.3		62.1						


Location M2 -	Location M2 - S.K.H. Kowloon Bay Kei Lok Primary School												
Unit: dB (A) (30-min)													
Date	Time Weather		Meas	sured Noise	Level	Baseline Level	Construction Noise Level						
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}						
4-Nov-13	11:00	Cloudy	70.4	73.7	72.5		69.8						
12-Nov-13	14:00	Cloudy	68.5	70.6	65.4	61.3	67.6						
19-Nov-13	13:00	Cloudy	67.1	68.9	65.4	01.3	65.8						
26-Nov-13	14:10	Cloudy	67.7	69.2	65.3		66.6						


Location M3 -	Location M3 - Cognitio College												
Unit: dB (A) (30-min)													
Date	Date Time Weather		Measured Noise Level			Background Noise	Construction Noise Level						
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}						
7-Nov-13	14:15	Sunny	77.3	80.2	76.5	77.4	77.3 Measured ≤ vBackground						
13-Nov-13	15:05	Cloudy	79.4	80.9	77.3	79.0	68.8						
19-Nov-13	14:47	Cloudy	79.9	81.6	78.0	79.7	66.4						
25-Nov-13	15:00	Sunny	79.2	81.8	77.1	78.9	67.4						

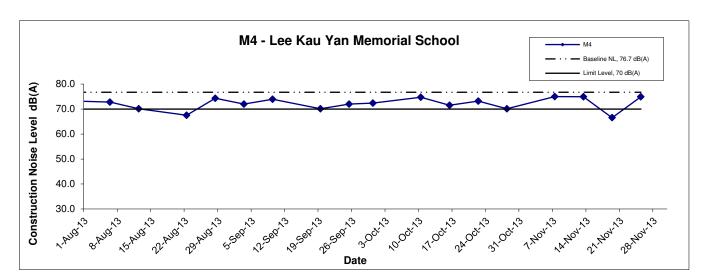

Location M4 -	Location M4 - Lee Kau Yan Memorial School												
			Unit: dB (A) (30-min)										
Date	Date Time	Weather	Meas	sured Noise I	_evel	Baseline Level	Construction Noise Level						
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}						
7-Nov-13	15:30	Sunny	75.0	76.7	72.3		75.0 Measured \leq Baseline						
13-Nov-13	09:05	Cloudy	74.9	76.3	73.1	76.7	74.9 Measured \leq Baseline						
19-Nov-13	14:00	Cloudy	77.1	79.5	74.2	76.7	66.5						
25-Nov-13	13:05	Sunny	74.9	76.7	73.1		74.9 Measured \leq Baseline						

MA11038/App G - Noise Cinotech

Noise Levels

Remark: Updated baseline level 78.6dB(A) at Rooftop of Cognitio College was approved by EPD on 23 August 2013 and the measurement of Background Noise at M3 was started from 9 September 2013 for compliance checking of Noise Action/Limit Level.

Title Contract No. KL/2010/03
Kai Tak Development - Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities


Graphical Presentation of Construction Noise Monitoring Results

Scale Project
No. MA11038

Date
Nov 13

Appendix
G

Noise Levels

Title

Contract No. KL/2010/03

Kai Tak Development - Stage 2 infrastructure works at north apron area of Kai Tak Airport for residential development and government, institution or community facilities

Graphical Presentation of Construction Noise Monitoring

Graphical Presentation of Construction Noise Monitoring Results

Scale Project
No. MA11038

Date Nov 13 Appendix
G

APPENDIX H SUMMARY OF EXCEEDANCE

Contract No. KL/2010/03

Kai Tak Development – Stage 2 Infrastructure Works at North Apron Area of Kai Tak Airport for Residential Development and Government Facilities

Appendix H – Summary of Exceedance

Exceedance Report for Contract No. KL/2010/03

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual

(NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Infrastructure Works at North Apron Area of Kai Tak Airport for Residential Development and Government Facilities, Kai Tak Development – Stage 2

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	131106
Date	6 November 2013
Time	09:30 – 11:45

Ref. No.	New Compliance	Related Item No.
Rei. No.	Non-Compliance None identified	-
_	Ivone factioned	Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
131106-R04	Properly clear the stagnant water at site area of Pumping Station PS1A and in the drip tray at Portion A.	В 8
	C. Air Quality	
131106-O02	Water spraying should be provided during concrete breaking to reduce dust generation at Portion H (Road L5 & L4).	C 13
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
131106-O01	• The hydraulic excavator should be kept in a good condition to prevent the oil leakage at Portion H (Road L5).	E 8
131106-R03	The chemical containers should be provided with drip tray and added labels at portion H (Road L5) and Portion A.	E 9
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
······································	H. Others	
	Follow-up on previous site audit session (Ref. No. 131030), all environmental deficiencies have been rectified/improved by the Contractor.	

	Name	Signature	Date
Recorded by	Janet Wai	JKT=	6 November 2013
Checked by	Dr. Priscilla Choy	WI	6 November 2013

Infrastructure Works at North Apron Area of Kai Tak Airport for Residential Development and Government Facilities, Kai Tak Development – Stage 2

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	131113
Date	13 November 2013
Time	09:30 – 11:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
131113-R01	Properly clear the empty cement bags at Pumping Station PS1A.	C 7
131113-R03	The dusty materials should be covered by impervious materials to prevent the dust emission at Pumping Station PS1A, Road D2 and KTOB.	C 7
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
131113-R01	Properly clear the empty cement bags at Pumping Station PS1A.	E 2ii
131113-R02	The chemical containers should be provided with the drip tray and added labels at Pumping Station PS1A and KTOB.	E 9
	TO VII I A V and a cons	
	F. Visual and Landscape No environmental deficiency was identified during site inspection.	
*****	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous site audit session (Ref. No. 131106), all environmental deficiencies have been rectified/improved by the Contractor.	

	Name	Signature	Date
Recorded by	Janet Wai	JE - CAL	13 November 2013
Checked by	Dr. Priscilla Choy	WI	13 November 2013

Infrastructure Works at North Apron Area of Kai Tak Airport for Residential Development and Government Facilities, Kai Tak Development – Stage 2

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	131120
Date	20 November 2013
Time	14:00 – 16:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	_
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	***************************************
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
131120-O01	To provide adequate water spraying for Portion A to enhance dust suppression in dry days.	C 6
	D. Noise	
	No environmental deficiency was identified during site inspection.	
· · · · · · · · · · · · · · · · · · ·	E. Waste / Chemical Management	
131120-R02	Proper sorting should be provided for construction waste next to pumping station PS1A and to properly dispose of the general refuse in site.	E Iiii
131120-R03	To contain oil drum in Portion A to prevent oil leakage.	E 9
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous site audit session (Ref. No. 131113), all environmental deficiencies have been rectified/improved by the Contractor.	

	Name	Signature	Date
Recorded by	Gary Lau	Cyl	25 November 2013
Checked by	Dr. Priscilla Choy	WI	25 November 2013

Infrastructure Works at North Apron Area of Kai Tak Airport for Residential Development and Government Facilities, Kai Tak Development – Stage 2

Weekly Site Inspection Record Summary oInspection Information

Checklist Reference Number	131127	
Date	27 November 2013	
Time	09:40 – 11:15	

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
131120-O01	Stockpile next to pumping station and at Road L5 should be covered with impervious sheet to reduce dust generation.	C 7
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
131127-R02	Proper sorting should be provided for construction waste next to pumping station PS1A and to properly dispose of the general refuse in site.	E 1iii
131127-R03	To contain oil drum in Portion A to prevent oil leakage.	E 9
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous site audit session (Ref. No. 131120), item 131120-R02 and R03 were found outstanding and will be followed up in the next site inspection	

	Name	Signature	Date
Recorded by	Gary Lau	in	27 November 2013
Checked by	Dr. Priscilla Choy	Wit	27 November 2013

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Action Level being	1. Identify source and investigate the	Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;	
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if	
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.	
	3. Repeat measurement to confirm finding.	method.			
Action Level being	1. Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	1. Discuss with ET and IEC on proper	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;	
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial	
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three	
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;	
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;	
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.	
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of		
	6. If exceedance continues, arrange		remedial measures;		
	meeting with IEC and ER;		5. Conduct meeting with ET and		
	7. If exceedance stops, cease additional		IEC if exceedance continues.		
	monitoring.				
Limit Level being	1. Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;	
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper	
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;	
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial	
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three	

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation	
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;	
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation	
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.	
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be	
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after	
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)	
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;		
	check mitigation effectiveness.	(The above actions should be	4. Supervise the		
	(The above actions should be taken	taken within 2 working days after	implementation of remedial		
	within 2 working days after the	the exceedance is identified)	measures.		
	exceedance is identified)		(The above actions should be		
			taken within 2 working days		
			after the exceedance is		
			identified)		
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	Confirm receipt of	1. Take immediate action to	
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;	
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial	
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3	
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;	
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed	
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;	

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT	ACTION				
ACTION LEVEL	ET	IEC	ER	CONTRACTOR	
Design Check	1. Check final	1. Check report.	Undertake remedial design if necessary		
	design conforms to	2. Recommend			
	the requirements	remedial design if			
	of EP and prepare	necessary			
	report.				
Non-conformity on one occasion	1. Identify Source	1. Check report	Notify Contractor	Amend working methods	
	2. Inform IEC and	2. Check Contractor's	2. Ensure remedial measures are properly	2. Rectify damage and	
	ER	working method	implemented	undertake any necessary	
	3. Discuss remedial	3. Discuss with ET and		replacement	
	actions with IEC,	Contractor on possible			
	ER and Contractor	remedial measures			
	4. Monitor remedial	4. Advise ER on			
	actions until	effectiveness of			
	rectification has	proposed remedial			
	been completed	measures.			
		5. Check implementation			
		of remedial measures.			
Repeated Non-conformity	1. Identify Source	1. Check monitoring	1. Notify Contractor	Amend working methods	
	Inform IEC and	report	2. Ensure remedial measures are properly	2. Rectify damage and	

ER	2. Check Contractor's	implemented	undertake any necessary
2. Increase	working method		replacement
monitoring	3. Discuss with ET and		
frequency	Contractor on possible		
3. Discuss remedial	remedial measures		
actions with IEC,	4. Advise ER on		
ER and Contractor	effectiveness of		
4. Monitor remedial	proposed remedial		
actions until	measures		
rectification has	5. Supervise		
been completed	implementation of		
5. If non-conformity	remedial measures.		
stops, cease			
additional			
monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Appendix K - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

Types of Impacts	Mitigation Measures	Status
	8 times daily watering of the work site with active dust emitting activities.	*
	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	
	 Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. 	*
	 Misting for the dusty material should be carried out before being loaded into the vehicle. 	*
Construction Dust	 Any vehicle with an open load carrying area should have properly fitted side and tail boards. 	^
Construction Dust	 Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin. 	^
	 The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation. 	^
	 The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. On- site unpaved roads should be compacted and kept free of lose materials. 	^
	Vehicle washing facilities should be provided at every	^

l l	vehicle exit point.	
	 The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores. 	٨
	 Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet. 	^
	 Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides. 	^
	 Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites. 	^
	• DWFI compound for JVBC: a DWFI compound is proposed at the downstream of JVC to contain pollution in drainage systems entering the KTAC and KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the compounds to prevent any accumulation of sediment within the downstream section of JVBC and hence fully mitigate the potential odour emissions from the headspace of JVBC near the existing discharge locations. The odour generating operations within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high.	N/A

efficiency deodorizers before discharge to the atmosphere.	
Desilting compound for KTN: Two desilting compounds are proposed for KTN (at Site 1D6 and Site 1P1) to contain pollution in drainage systems entering the KTAC and KTTS by interception facilities until the ultimate removal of the pollution sources. Tidal barriers and desiliting facilities will form part of the compounds to prevent any accumulation of sediment within the downstream section of KTN and hence fully mitigate the potential odour emissions from the headspace of KTN near the existing discharge locations. The odour generating operations within the proposed desilting compound will be fully enclosed and the odorous air will be collected and treated by high efficiency deodorizers before discharge to the atmosphere.	N/A
Decking or reconstruction of KTN within apron area: it is proposed to deck the KTN or reconstruct the KTN within the former Apron area into Kai Tak River from the south of Road D1 to the north of Road D2 along the existing alignment of KTN. The Kai Tak River will compose of a number of channels flowing with non-odorous fresh water and THEES effluent. The channel flowing with THEES effluent will be designed with the width of water surface of not more than 16m.	N/A

ASRs during the maintenance dredging operation. Improvement of water circulation in KTAC and KTTS: 600m gap opening at the northern part of the former Kai Tak runway, the water circulation in KTAC and KTTS would be substantially improved. Together with the improvement in water circulation, the DO level in KTAC and KTTS would also be increased. In-situ sediment treatment by bioremediation: Bioremediation would be applied to the entire KTAC and KTTS.		Improvement of water circulation in KTAC and KTTS: 600m gap opening at the northern part of the former Kai Tak runway, the water circulation in KTAC and KTTS would be substantially improved. Together with the improvement in water circulation, the DO level in KTAC and KTTS would also be increased. In-situ sediment treatment by bioremediation: Bioremediation would be applied to the entire KTAC	
--	--	---	--

	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump	^
	 Good Site Practice: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program. Mobile plant, if any, should be sited as far away from 	N/A(1)
Construction Noise	 Nobile plant, if any, should be sted as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	^ ^
	Scheduling of Construction Works during School Examination Period	٨
	(i) Provision of low noise surfacing in a section of Road L2; and	N/A
	(ii) Provision of structural fins	N/A

(i) Avoid the sensitive façade of class room facing Road L2 and L4; and	N/A
(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A
(i) Provision of low noise surfacing in a section of Road L4 before occupation of Site 1I1; and	N/A
(ii) Setback of building about 5m from site boundary.	N/A
Setback of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
 (i) avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and 	N/A
(ii) for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not provide the facades with openable window.	N/A
avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height	N/A
of the residential block(s) located at less than 55m away from To Kwa Wan Road to no more than 25m above ground. (i) avoid any sensitive facades with openable window	N/A
facing the slip road connecting Prince Edward Road East and San Po Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic noise impacts from the slip road	N/A

All the ventilation fans installed in the below will be provided with silencers or acoustics treatment. (i) SPS (ii) ESS (iii) Tunnel Ventilation Shaft (iv) EFTS depot	N/A N/A N/A N/A
Installation of retractable roof or other equivalent measures	N/A

	 The following mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including: Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply; Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps; An alarm should be installed to signal emergency high 	N/A N/A
	 water level in the wet well at all SPSs; and For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should be provided so that swift actions could be taken in case of malfunction of unmanned facilities. 	N/A N/A
Construction Water Quality	Construction Phase Marine-based Construction	
	Capital and Maintenance Dredging for Cruise Terminal	
	Mitigation measures for construction of the proposed cruise terminal should follow those recommended in the approved EIA for CT Dredging.	۸

Fireboat Berth, Runway Opening and Road T2	
Silt curtains should be deployed around the close grab dredger to minimize release of sediment and other contaminants for any dredging and filling activities in open	٨
water. Dredging at and near the seawall area for construction of the public landing steps cum fireboat berth should be carried out at a maximum production rate of 1,000m ³ per day using one grab dredger.	۸
The proposed construction method for runway opening should adopt an approach where the existing seawall at the runway will not be removed until completion of all excavation and dredging works for demolition of the runway. Thus, excavation of bulk fill and majority of the dredging works will be carried out behind the existing seawall, and the sediment plume can be effectively contained within the works area. As there is likely some accumulation of sediments alongside the runway, there will be a need to dredge the existing seabed after completion of all the demolition works. Dredging alongside the 600m opening should be carried out at a maximum production rate of 2,000m ³ per day using one grab dredger.	
Dredging for Road T2 should be conducted at a maximum rate of 8,000m ³ per day (using four grab dredgers) whereas the sand filling should be conducted at a maximum rate of 2,000m ³ per day (using two grab dredgers).	N/A (1)
Silt screens shall be applied to seawater intakes at WSD seawater intake.	۸

Land-based Construction	
Construction Runoff	
Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include: use of sediment traps adequate maintenance of drainage systems to prevent	^
flooding and overflow	
Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	

Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks Λ have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped. Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m³ Λ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system. Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so Λ as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.

Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events. Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and Λ grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain. All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be Λ provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains. Drainage It is recommended that on-site drainage system should be installed prior to the commencement of other construction Λ activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.

All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required. All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ. Sewage Effluent Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices. Stormwater Discharges Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges Λ and the existing or planned seawater intakes

Debris and Litter	
In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur	^
Construction Works at or in Close Proximity of Storm Culvert or Seafront	
The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	٨
The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm culvert / nullah.	۸
Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works.	۸
Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	۸
Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	٨
Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	^

Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	٨
Construction effluent, site run-off and sewage should be properly collected and/or treated.	*
Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	^
Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of construction materials.	^
Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	^
Supervisory staff should be assigned to station on site to closely supervise and monitor the works	٨
Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	^

10.240.00.001	Site Practices not anticipated that adverse waste management	
relate pract	ed impacts would arise, provided that good site ices are adhered to. Recommendations for good site	
• Pract	ices during construction activities include: Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site	^
	Training of site personnel in proper waste management and chemical waste handling procedures	٨
● 100 miles	Provision of sufficient waste disposal points and regular collection for disposal Appropriate measures to minimise windblown litter	٨
3.3	and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers	٨
•	A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites)	٨

Waste Reduction Measures	
Good management and control can prevent the	
generation of a significant amount of waste. Waste	
reduction is best achieved at the planning and design	
stage, as well as by ensuring the implementation of good	
site practices. Recommendations to achieve waste	
reduction include:	
 Sort C&D waste from demolition of the remaining 	*
structures to recover recyclable portions such as	
metals	
 Segregation and storage of different types of 	^
waste in different containers, skips or stockpiles to	, A
enhance reuse or recycling of materials and their	
proper disposal	
Encourage collection of aluminium cans, PET	
bottles and paper by providing separate labelled	^
bins to enable these wastes to be segregated from	
other general refuse generated by the work force	
Any unused chemicals or those with remaining	^
functional capacity should be recycled	^
Proper storage and site practices to minimise the	
potential for damage or contamination of	^
construction materials	
Construction materials	
Dredged Marine Sediment	
The basic requirements and procedures for dredged mud	^
disposal are specified under the ETWB TCW No. 34/2002.	
The management of the dredging, use and disposal of	
marine mud is monitored by the MFC, while the licensing	
of marine dumping is required under the Dumping at Sea	
Ordinance and is the responsibility of the Director of	
Environmental Protection (DEP)	
Environmental Froteolion (DEF)	

The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC depending on their level of contamination. Sediment classified as Category L would be suitable for Type 1 - Open Sea Disposal. Contaminated sediment would require either Type 1 - Open Sea Disposal (Dedicated Sites), Type 2 - Confined Marine Disposal, or Type 3 - Special Treatment / Disposal and must be dredged and transported with great care in accordance with ETWB TCW No. 34/2002. Subject to the final allocation of the disposal sites by MFC, the dredged contaminated sediment must be effectively isolated from the environment and disposed properly at the designated disposal site	

It will be the responsibility of the contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works should apply for allocation of marine disposal sites and all necessary permits from relevant authorities for the disposal of dredged sediment. During transportation and disposal of the dredged marine sediments requiring Type 1, Type 2, or Type 3 disposal, the following measures should be taken to minimise potential impacts on water quality: · Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved · Monitoring of the barge loading should be conducted to ensure that loss of material does not Λ take place during transportation. Transport barges or vessels should be equipped with automatic selfmonitoring devices as required under the Dumping at Sea Ordinance and as specified by the DEP · Barges or hopper barges should not be filled to a Λ level that would cause the overflow of materials or sediment laden water during loading or transportation

Mitigation measures and good site practices should be	
incorporated into contract document to control potential	
environmental impact from handling and transportation of	
C&D material. The mitigation measures include:	
Where it is unavoidable to have transient	
stockpiles of C&D material within the Project work	^
site pending collection for disposal, the transient	
stockpiles should be located away from waterfront	
or storm drains as far as possible	
 Open stockpiles of construction materials or construction wastes on-site should be covered with 	^
	^
tarpaulin or similar fabric	
Skip hoist for material transport should be totally	
enclosed by impervious sheeting	^
Every vehicle should be washed to remove any	
dusty materials from its body and wheels before	^
leaving a construction site	
The area where vehicle washing takes place and	
the section of the road between the washing	_
facilities and the exit point should be paved with	
concrete, bituminous materials or hardcores	
 The load of dusty materials carried by vehicle 	
leaving a construction site should be covered	^
entirely by clean impervious sheeting to ensure	
dust materials do not leak from the vehicle	
 All dusty materials should be sprayed with water 	
prior to any loading, unloading or transfer	^
operation so as to maintain the dusty materials wet	
The height from which excavated materials are	_
dropped should be controlled to a minimum	
practical height to limit fugitive dust generation	
from unloading	

When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.

Chemical Waste

After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation

Λ

General Refuse

General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem

CM1 All existing trees should be carefully protected during construction.	٨
CM2 Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	^
CM3 Control of night-time lighting.	N/A(1)
CM4 Erection of decorative screen hoarding.	^
	CM2 Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work. CM3 Control of night-time lighting.

Remarks:	^ Compliance of mitigation measure;	X Non-compliance of mitigation measure;
	N/A Not Applicable at this stage; N/A(1) Not observed;	•Non-compliance but rectified by the contractor;
	* Recommendation was made during site audit but improved/rectified by the contractor.	

APPENDIX L
SUMMARIES OF ENVIRONMENTAL
COMPLAINT, WARNING, SUMMON
AND NOTIFICATION OF SUCCESSFUL
PROSECUTION

Kai Tak Development – Stage 2 Infrastructure Works at North Apron Area of Kai Tak Airport for Residential Development and Government Facilities

Reporting Month: November 2013

Contract No. KL/2010/03

Log Ref.		Location	Received Date	Details of Complaint/warning/summon and prosecution	Investigation/Mitigation Action	Status
	N/A	N/A	N/A	N/A	N/A	N/A

Remarks: No environmental complaint/warning/summon and prosecution were received in the reporting period.

APPENDIX M WASTE GENERATED QUANTITY

Department: CEDD Contract No.: KL/2010/03

Project: KAI TAK DEVELOPMENT – STAGE 2 Infrastructure Works at North Apron Area of Kai

Tak Airport for Residential Development and Government Facilities

Monthly Summary Waste Flow Table for 2013

As at 10 December 2013

	Total	Actual Quantities Inert C & D Materials Generated Monthly					Actual Quantities of C & D Wastes Generated Monthly					
Month	Quantity Generated	Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	`	Chemica	l Waste	Others, e.g. general refuse
	(in m³)	(in m³)	(in m³)	(in m³)	(in m³)	(in m³)	(in kg)	(in kg)	(in kg)	Battery(No.)	Oil(in L)	(in m³)
Accumulated (Jul 11-Dec	2966.89	4750	2250	0	352.73	0	0	0	0	0	0	114.16
Jan'2013	135.69	300	200	0	35.28	0	0	0	0	0	0	0.41
Feb'2013	78.88	300	250	0	28.49	0	0	0	0	0	0	0.39
Mar'2013	300	300	0	0	0	0	0	0	0	0	0	0
Apr'2013	504.17	800	300	0	4.17	0	0	0	0	0	0	0
May'2013	50.72	50	0	0	0	0	0	0	0	0	0	0.72
Jun'2013	281.16	280	0	0	0	0	0	0	0	0	0	1.16
Sub-total (Jan 13-Jun 13)	1350.62	2030	750	0	67.94	0	0	0	0	0	0	2.68
Jul'2013	16.44	0	0	0	16.44	0	0	0	0	0	0	0
Aug'2013	47.5	20	0	0	19.79	0	0	0	0	0	0	7.71
Sep'2013	205.44	400	200	0	0	0	0	0	0	0	0	5.44
Oct'2013	108.41	150	80	0	27.87	0	0	0	0	0	0	10.54
Nov'2013	22.35	10	0	0	7.85	0	0	0	0	0	0	4.5
Dec'2013												
Total												

	Forecast of Total Quantities of C&D Materials to be Generated from the Contract*											
,	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ Cardboard packaging	`	Chemica	l Waste	Others, e.g. general refuse
	(in m³)	(in m³)	(in m³)	(in m³)	(in m³)	(in m³)	(in kg)	(in kg)	(in kg)	Battery(No.)	Oil(in L)	(in m³)
	4650	7000	3300	0	700	0	0	0	0	0	0	250

Notes:

- 1 The performance targets are given in PS clause 25.20A(4)
- 2 The waste flow table shall also include C & D materials that are specified in the Contract to be imported for use at the Site.
- 3 Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging material.
- 4 The summary table shall be submitted to the Engineer's Representative monthly together with the Waste Flow Table for review and monitoring in accordance with the PS Clause 25.20A(4)