Civil Engineering and Development Department

EP-344/2009 – New Sewage Pumping Stations Serving KTD and EP-337/2009 – New Distributor Roads Serving the Planned KTD

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Monthly EM&A Report

December 2013

(Version 2.0)

Approved By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
	Introduction	
	Environmental Monitoring Works	
	Environmental Licenses and Permits	
	Key Information in the Reporting Month	
	Future Key Issues	
	Status of Compliance with Environmental Permits Conditions	
1.	INTRODUCTION	5
	Background	5
	Project Organizations	5
	Construction Activities undertaken during the Reporting Month	
	Summary of EM&A Requirements	7
2.	AIR QUALITY	7
	Monitoring Requirements	7
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	8
	Monitoring Methodology and QA/QC Procedure	
	Results and Observations	10
3.	NOISE	12
	Monitoring Requirements	12
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	
	Monitoring Methodology and QA/QC Procedures	
	Maintenance and Calibration	
	Results and Observations	
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	15
5.	LANDSCAPE OF VISUAL	17
	Monitoring Requirements	17
	Results and Observations	
6.	ENVIRONMENTAL AUDIT	18
	Site Audits	18
	Review of Environmental Monitoring Procedures	
	Status of Environmental Licensing and Permitting	
	Status of Waste Management	19
	Implementation Status of Environmental Mitigation Measures	
	Summary of Mitigation Measures Implemented	
	Implementation Status of Event Action Plans	
	Summary of Complaint, Warning, Notification of any Summons and Successful Pro	

7.	FUTURE KEY ISSUES	21
	Key Issues for the Coming Month	21
	Monitoring Schedule for the Next Month	22
8.	CONCLUSIONS AND RECOMMENDATIONS	23
	Conclusions	23
	Recommendations	23
	Effectiveness of Environmental Management	24

LIST OF TABLES

Table I	Air Quality and Noise Monitoring Stations for this Project
Table II	Non-compliance Recorded for the Project in the Reporting Month
Table III	Summary Table for Key Information in the Reporting Month
Table IV	Summary Table for Required Submission under EP No. EP-337/2009
Table V	Summary Table for Required Submission under EP No. EP-344/2009
Table 1.1	Key Project Contacts
Table 1.2	Construction Programme Showing the Inter-Relationship with Environmental
	Protection/Mitigation Measures
Table 2.1	Locations for Air Quality Monitoring
Table 2.2	Air Quality Monitoring Equipment
Table 2.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 3.1	Noise Monitoring Stations
Table 3.2	Noise Monitoring Equipment
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 4.1	Comparison of 1-hr TSP data with EIA predictions
Table 4.2	Comparison of 24-hr TSP data with EIA predictions
Table 4.3	Comparison of Noise Monitoring Data with EIA predictions
Table 6.1	Summary of Environmental Licensing and Permit Status
Table 6.2	Observations and Recommendations of Site Inspections
Table 8.1	Examples of Mitigation Measures for Environmental Recommendations
LIST OF FIG	GURES
Figure 1	Layout Plan of the Project Site
Figure 2	Locations of Air Quality Monitoring Stations
Figure 3	Locations of An Quanty Monitoring Stations Locations of Construction Noise Monitoring Stations
Figure 4	Locations of Wind Anemometer
Figure 5	Management Structure
8	
LIST OF AP	PENDICES
A	Action and Limit Levels for Air Quality and Noise
В	Copies of Calibration Certificates
C	Weather Information
D	Environmental Monitoring Schedules
E	1-hour TSP Monitoring Results, Graphical Presentations
F	24-hour TSP Monitoring Results, Graphical Presentations
G	Noise Monitoring Results and Graphical Presentations
Н	Summary of Exceedance
I	Site Audit Summary
J	Event Action Plans
K	Environmental Mitigation Implementation Schedule (EMIS)
L	Summaries of Environmental Complaint, Warning, Summon and Notification of
	Successful Prosecution
M	Summary of Waste Generation and Disposal Records
N	Construction Programme
O	Environmental Requirement in Contract Documents

EXECUTIVE SUMMARY

Introduction

- 1. This is the 1st Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises the construction of Schedule 2 designated projects Road D2 & Sewage Pumping Station PS2 and NPS which forms a part of the works under two Environmental Permits (EP), EP-337/2009 and EP-344/2009. The title of the designated projects under Environmental Permit No.: EP-344/2009 is "New sewage pumping stations serving Kai Tak Development" and under Environmental Permit No.: EP-337/2009 is "New distributor roads serving the planned Kai Tak Development". This report documents the findings of EM&A Works conducted from 1 31 December 2013.
- 2. With reference to the same principle of EIA report of the Project, air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in Table I (see Figure 2 and 3 for their locations).

Table I – Air Quality and Noise Monitoring Stations for this Project

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations
Air Quality Monitoring Stations		
AM2 - Lee Kau Yan Memorial School	Yes	N/A
AM3 – Sky Tower	No	AM3(A) – Holy Trinity Bradbury Centre
AM4 – Grand Waterfront	No	AM4(A) – EMSE Workshop
AM5 – CCC Kei To Secondary School	No	AM5(A) – Po Leung Kuk Ngan Po Ling College
AM6 – Site 1B4 (Planned)		N/A
Noise Monitoring Stations		
M6 – Holy Carpenter Primary School	Yes	N/A
M7 – CCC Kei To Secondary School	Yes	N/A
M8 – Po Leung Kuk Ngan Po Ling College	Yes	N/A
M9 – Site 1B1 (Planned) M10 – Site 1B4 (Planned)	N/A	

3. According to the Environmental Monitoring and Audit Manual (EM&A Manual) of the Kai Tak Development (KTD) Schedule 3 Environmental Impact Assessment (EIA) Report, the impact monitoring at the designated monitoring stations as required in KTD EM&A Manual under the EP, have been conducted in Contract No. KLN/2010/04 – Environmental Monitoring Works for Kai Tak Development under Schedule 3 of KTD, which is on-going starting from December

2010. The impact monitoring data under Contract No. KLN/2010/04 will be adopted for the Project. Therefore, this report presents the air quality and noise monitoring works extracted from Contract No. KLN/2010/04.

- 4. The major site activities undertaken in the reporting month included:
 - Daily Clearance;
 - Hoarding Installation;
 - Erection of Site Office;
 - Excavation for twin cell and single cell box culvert; and
 - Excavation and sheet piling for PS2.

Environmental Monitoring Works

- 5. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 6. Summary of the non-compliance in the reporting month for the Project is tabulated in Table II.

Table II Non-compliance Record for the Project in the Reporting Month

Parameter	No. of Project-rela	ted Exceedance	Action Taken
Parameter	Action Level	Limit Level	Action Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

1-hour & 24-hour TSP Monitoring

7. All 1-hour & 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, Environmental Permits No. EP-344/2009 and EP-337/2009 were issued on 23 April 2009.
- 10. Registration of Chemical Waste Producer (N/A).
- 11. Water Discharge License (N/A).
- 12. Construction Noise Permit (License No.: PP-RE0056-13).

Key Information in the Reporting Month

13. Summary of key information in the reporting month is tabulated in Table III.

Table III Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues

- 14. The future key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site; and
 - Review and implementation of temporary drainage system for the surface runoff.

Status of Compliance with Environmental Permits Conditions

15. The status of required submission related to this Project under the Environmental Permits No. EP-337/2009 and EP-344/2009 are summarized in the following tables:

Table IV Summary Table for Required Submission under EP No. EP-337/2009

EP Conditions	Submission	Submission Date	Remark
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Road D2
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03
2.4	Design Drawing(s) of the Project	28 October 2013	For Road D2
2.11	Landscape Mitigation Plan(s) for distributors road(s)	7 January 2014	For Road D2
2.12	As-built drawing(s) for the distributor road(s)	To be submitted at least one week before the commencement of operation of distributor roads	
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	
3.3	Monthly EM&A Report	N/A	Monthly EM&A Report for Contract No. KL/2012/03

Table V Summary Table for Required Submission under EP No. EP-344/2009

EP Conditions	Submission	Submission Date	Remark
	2000-1000-100	2 0.000.000	
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Pumping Station PS2 and NPS
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03
2.4	Design Drawing(s) of the Project	28 October 2013	For Pumping Station PS2 and NPS
2.11	Landscape Mitigation Plan(s) for sewage pumping station(s)	7 January 2014	For Pumping Station PS2 and NPS
2.12	As-built drawing(s) for the sewage pumping station (s)	To be submitted at least one week before the commencement of operation of distributor road(
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	
3.3	Monthly EM&A Report	N/A	Monthly EM&A Report for Contract No. KL/2012/03

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 4 Infrastructure at Former North Apron Area is one of the construction stages of KTD. It contains various Schedule 2 DPs including new distributor roads serving the planned KTD and new sewage pumping stations serving the planned KTD. The general layout of the Project is shown in **Figure 1.**
- 1.2 Two Environmental Permits (EPs) No. EP-344/2009 and EP-337/2009 were also issued on 23 April 2009 for new sewage pumping stations serving the planned KTD and new distributor roads serving the planned KTD respectively to Civil Engineering and Development Department as the Permit Holder.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. An EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Cinotech Consultants Limited (Cinotech) was commissioned by Kwan On Construction Co., Ltd. (the Contractor) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2012/03 Stage 4 Infrastructure at Former North Apron Area. The construction work under KL/2012/03 comprises the construction of Road D2 & Sewage Pumping Station PS2 and PS NPS which forms a part of the works under two EPs (EP-337/2009 and EP-344/2009).
- 1.5 The construction commencement of this Contract was on 1st December 2013 for Road D2, Sewage Pumping Station PS2 and PS NPS. This is the 1st Monthly EM&A report summarizing the EM&A works for the Project from 1 31 December 2013.

Project Organizations

- 1.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) AECOM.
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) Hyder Consultants Ltd. (Hyder).
 - Contractor Kwan On Construction Co., Ltd. (Kwan On).

1.7 The key contacts of the Project are shown in **Table 1.1 and Figure 5**.

Table 1.1 Key Project Contacts

Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. K Y SHIN	Engineer	2301 1461	2301 1277
AECOM	Engineer's	Mr. Vincent Lee	SRE	27980771	3013 8864
ALCOM	Representative	Mr. Mickey Lee	RE		
		Dr. Priscilla Choy	Environmental	2151 2089	
	Environmental		Team Leader	2131 2009	
Cinotech	Team	Ms. Ivy Tam	Project Coordinator		3107 1388
	1 Calli		and Audit Team	2151 2090	
			Leader		
	Independent	Mr. Fan Cheong	Independent		
Hyder	Environmental	Tsang	Environmental	2911 2744	
	Checker		Checker		
Kwan On	Contractor	Mr. Terry Yu	Project Manager		

Construction Activities undertaken during the Reporting Month

- 1.8 The site activities undertaken in the reporting month included:
 - Daily Clearance;
 - Hoarding Installation;
 - Erection of Site Office;
 - Excavation for twin cell and single cell box culvert; and
 - Excavation and sheet piling for PS2.
- 1.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in Table 1.2.

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Section 1.8	Noise, dust impact, water quality and waste generation	Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system; Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.

Summary of EM&A Requirements

- 1.10 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
- All monitoring parameters;
- Action and Limit levels for all environmental parameters;
- Event Action Plans:
- Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project from 1-31 December 2013.

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the EPs, 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix** A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Five designated monitoring stations were selected for air quality monitoring programme. Impact dust monitoring was conducted at four of the air quality monitoring stations (AM2, AM3(A), AM4(A) and AM5(A)). Table 2.1 describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 2.1 Locations for Air Quality Monitoring

Monitoring Stations	Monitoring Stations Locations Location of Measurement	
AM2	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
AM3(A)	Holy Trinity Bradbury Centre	Rooftop (about 8/F) Area
AM4(A)	EMSD Workshops	Rooftop (about 6/F) Area
AM5(A)	Po Leung Kuk Ngan Po Ling College Rooftop (about 10	
#AM6	PA 15	Site 1B4 (Planned)

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

2.3 Table 2.2 summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix B**.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	G25A	1
1-hour TSP Dust Meter	Laser Dust Monitor – Model LD-3, LD-3B	7
HVS Sampler	GMWS 2310 c/w of TSP sampling inlet	4
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters, Frequency and Duration

2.4 Table 2.3 summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 2.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Set POWER to "ON" and make sure that the battery level was not flash or in low level.
 - Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
 - Push the knob at MEASURE position.
 - Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
 - Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
 - Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 2.6 The following maintenance/calibration was required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.7 High volume (HVS) samplers (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of

a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For TSP sampling, fiberglass filters have a collection efficiency of > 99% for particles of 0.3μm diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).

- 2.16 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using G25A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 2.19 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.20 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer set at rooftop (about 8/F) Lee Kau Yan Memorial School. The location is shown in **Figure 4**. This weather information for the reporting month is summarized in **Appendix C.**
- 2.22 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.23 The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the air quality monitoring.
- 2.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Station	Major Dust Source
AM2 – Lee Kau Yan Memorial School	Road Traffic Dust
	Exposed site area and open stockpiles
	Site vehicle movement
AM3(A) – Holy Trinity Bradbury	Road Traffic Dust
Centre	Exposed site area
	Excavation works
	Site vehicle movement
AM4(A) – EMSD Workshops	Recycling Company
	Site vehicle movement
AM5(A) – Po Leung Kuk Ngan Po	Road Traffic Dust
Ling College	Excavation works at the site (Contract No.:
	1/WSD/08(K)) facing Po Leung Kuk Ngan Po
	Ling College
	Dust generation from other building construction
	site nearby

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays.

Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Five designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at three designated monitoring stations (M6, M7 and M8). **Figure 3** shows the locations of these stations.

Table 3.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
M6	Holy Carpenter Primary School	Rooftop (about 7/F) Area
M7	CCC Kei To Secondary School	Rooftop (about 8/F) Area
M8	Po Leung Kuk Ngan Po Ling College	Staircase Area (about 9/F)
#M9	Site 1B1 (Planned)	-
#M10	Site 1B4 (Planned)	-

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

Table 3.2 summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2 Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVAN 955 & 957	8
Calibrator	SVAN 30A	3
Canorator	B&K4231	2

Monitoring Parameters, Frequency and Duration

3.4 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring	Parameter	Period	Frequency	Measurement
Stations				

M6 M7 M8	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Façade
----------------	---	---	------------------	--------

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting
time weighting
Fast
time measurement
30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 3.8 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. The summary of exceedance record in reporting month is shown in **Appendix H**.
- 3.9 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.4**.
- 3.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 3.11 The major noise source identified at the designated noise monitoring stations are as follows:

Monitoring Stations	Locations	Major Noise Source
M6	Holy Carpenter Primary School	Road and marine traffic Noise
M7	CCC Kei To Secondary School	Road and marine traffic Noise
M8	Po Leung Kuk Ngan Po Ling College	Excavation works at the site (Contract No.: 1/WSD/08(K)) facing Po Leung Kuk Ngan Po Ling College Noise generated from other buildings construction site nearby

Table 3.4 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A)	Noise Limit Level,dB (A)
M6	63.9 (at 0700 – 1900 hrs on normal weekdays)	
M7	68.7 (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on normal weekdays)
M8	61.9 (at 0700 – 1900 hrs on normal weekdays)	

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 The EM&A data was compared with the EIA predictions as summarized in 4.1 to 4.3.

Table 4.1 Comparison of 1-hr TSP data with EIA predictions

Station	Predicted 1-hr TSP conc.			
	Scenario1 (Mid 2009 to	Scenario2 (Mid 2013 to	Reporting Month (December 13), µg/m3	
	Mid 2013), μg/m3	Late 2016), μg/m3	Average	Range
AM2 – Lee Kau Yan	290	312	194.6	55.0 – 292.1
Memorial School				
AM3(A) - Holy	217	247	209.2	70.9 – 292.6
Trinity Bradbury				
Centre (Alternative				
station for Sky Tower)				
AM4(A) - EMSD	246	258	205.1	81.4 - 323.2
Workshops				
(Alternative station for				
Grand Waterfront)				
AM5(A) – Po Leung	159	221	203.6	62.9 - 327.3
Kuk Ngan Po Ling				
College (Alternative				
station for CCC Kei				
To Secondary School)				

Table 4.2 Comparison of 24-hr TSP data with EIA predictions

Station	Predicted 24-hr TSP conc.				
	Scenario1 (Mid 2009 to	Scenario2 (Mid 2013 to	Reporting Month (December 13), µg/m3		
	Mid 2013), μg/m3	Late 2016), μg/m3	Average	Range	
AM2 – Lee Kau Yan Memorial School	145	169	112.4	72.3 – 141.9	
AM3(A) - Holy Trinity Bradbury Centre (Alternative station for Sky Tower)	106	138	104.1	75.3 – 131.0	
AM4(A) – EMSD Workshops (Alternative station for Grand Waterfront)	143	152	124.9	76.7 – 150.7	
AM5(A) – Po Leung Kuk Ngan Po Ling College (Alternative station for CCC Kei To Secondary School)	103	128	78.6	50.9 – 107.6	

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (L _{eq (30min)} dB(A))	Reporting Month (Dec 13), $L_{eq~(30min)}~dB(A)$
M6 - Holy Carpenter Primary School	47 – 86	59.7 – 63.0
M7 - CCC Kei To Secondary School	45 – 68	60.1 – 67.2
M8 - Po Leung Kuk Ngan Po Ling College	44 – 70	53.6 – 69.2

- 4.2 The averages of 1-hour TSP concentrations in all stations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3 The averages of 24-hour TSP concentrations in all stations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.4 The noise monitoring results in the reporting month was also within the range of predicted mitigated construction noise levels in the EIA report

5. LANDSCAPE OF VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix J** shall be performed.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 5th, 10th, 20th and 27th December 2013 in the reporting month. IEC site inspections were conducted on 10th December 2013. No non-compliance was observed during the site audits.

Review of Environmental Monitoring Procedures

6.3 The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- 1. The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- 2. Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Status of Environmental Licensing and Permitting

6.4 All permits/licenses obtained for the Project are summarized in Table 6.1.

Permit No.	Valid l	Period	Details	Status
remut No.	From	To	Details	
Environmental Per	mit (EP)			
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	Valid
EP-344/2009	23/04/09	N/A	Construction of a new sewage pumping station serving the planned Kai Tak development with installed capacity of more than 2,000 m³ per day and a boundary of which is less than 150m from an existing or planned residential area or educational institution.	Valid
Effluent Discharge License				

Permit No.	Valid Period		Details	Status		
	From	To	Details	Status		
Registration of Chemical Waste Producer						
Construction Noise Permit (CNP)						
PP-RE0056-13	10/12/13	08/03/14	Construction Noise Permit for the	Valid		
			carrying out of percussive piling.			

Status of Waste Management

- 6.5 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.
- 6.6 In respect of the dump truck cover, the Contractor is advised to take record photos and inspection to ensure that all dump trucks have fully covered the skip before leaving the site.

Implementation Status of Environmental Mitigation Measures

6.7 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 6.2.

Table 6.2 Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up	
Water Quality				
Air Quality				
Noise		-		
Waste/Chemical Management				
Landscape and Visual	10 Dec 13	Properly remove the chemical container within the tree protection area near the site office.	Rectification/improvement was observed during the follow-up audit session.	
Permits /Licences				

Summary of Mitigation Measures Implemented

6.8 The monthly IEC audit was carried out on 10th December 2013, the observations were recorded and they are presented as follows:

Observations:

 A small, empty metal can of chemical or paint was found within the fenced tree near the Contractor's site office. The Contractor was reminded to keep the fenced area clear of construction materials and wastes.

Follow up of last observation:

• Not applicable.

6.9 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.10 The Event Action Plans for air quality, noise and landscape and visual are presented in **Appendix J**.

1-hr TSP Monitoring

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.12 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.13 No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.14 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.15 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix L**.

7. FUTURE KEY ISSUES

- 7.1 Major site activities undertaken for the coming two months include:
 - Daily Clearance;
 - Drainage work in L19 Road;
 - Excavation and sheet piling for PS2; and
 - Excavation for twin cell and single cell box culvert.
- 7.2 The tentative construction program for the Project is provided in **Appendix N**.

Key Issues for the Coming Month

- 7.3 Key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site; and
 - Review and implementation of temporary drainage system for the surface runoff.
- 7.4 The tentative program of major site activities and the impact prediction and control measures for the coming two months, i.e. January and February 2014 are summarized as follows:

Construction Works	Major Impact	Control Measures
	Prediction	
	Air quality impact	a) Frequent watering of haul road and unpaved/exposed
	(dust)	areas;
		b) Frequent watering or covering stockpiles with tarpaulin or similar means; and
		c) Watering of any earth moving activities.
	Water quality	d) Diversion of the collected effluent to de-silting facilities
	impact (surface	for
	run-off)	treatment prior to discharge to public storm water drains;
		e) Provision of adequate de-silting facilities for treating
		surface run-off and other collected effluents prior to
As mentioned in		discharge;
Section 7.1		f) Provision of perimeter protection such as sealing of
		hoarding footings to avoid run-off from entering the
		existing storm water drainage system via public road; and
		g) Provision of measures to prevent discharge into the
		stream.
	Noise Impact	h) Scheduling of noisy construction activities if necessary to
		avoid persistent noisy operation;
		i) Controlling the number of plants use on site;
		j) Regular maintenance of machines; and
		k) Use of acoustic barriers if necessary.

Monitoring Schedule for the Next Month

7.5 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.

1-hr TSP Monitoring

8.2 All 1-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hr TSP Monitoring

8.3 All 24-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8.4 All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Landscape and visual

8.5 No non-compliance was recorded in the reporting month.

Complaint and Prosecution

8.6 No environmental complaints and environmental prosecution were received in the reporting month.

Recommendations

8.7 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To mitigate the dust generation by adequate water spraying in dry days.

Noise Impact

- To inspect the noise sources inside the site.
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers in an appropriate location.

Water Impact

• To prevent any surface runoff discharge into any stream course.

- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.

Waste/Chemical Management

- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation);
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To provide proper storage area or drip trays for oil containers/ equipment on site.
- To avoid improper handling or storage of oil drum on site.

Landscape and Visual

- To protect the existing trees to be retained.
- To transplant the trees unavoidably affected by the works.
- To control of night-time lighting.
- To provide decorative screen hoarding.
- To complete landscape works at site area as early as possible.

Effectiveness of Environmental Management

- 8.8 The above recommendations and the recommended mitigation measures in the EM&A Manual were carried out by the Contractor during construction. No non-compliance was recorded during the environmental site inspections as shown in **Appendix I**.
- 8.9 No Action/Limit Level exceedance was recorded for the environmental monitoring works performed in this reporting month.
- 8.10 The effectiveness of the selected above recommendations is given in **Table 8.1** below.

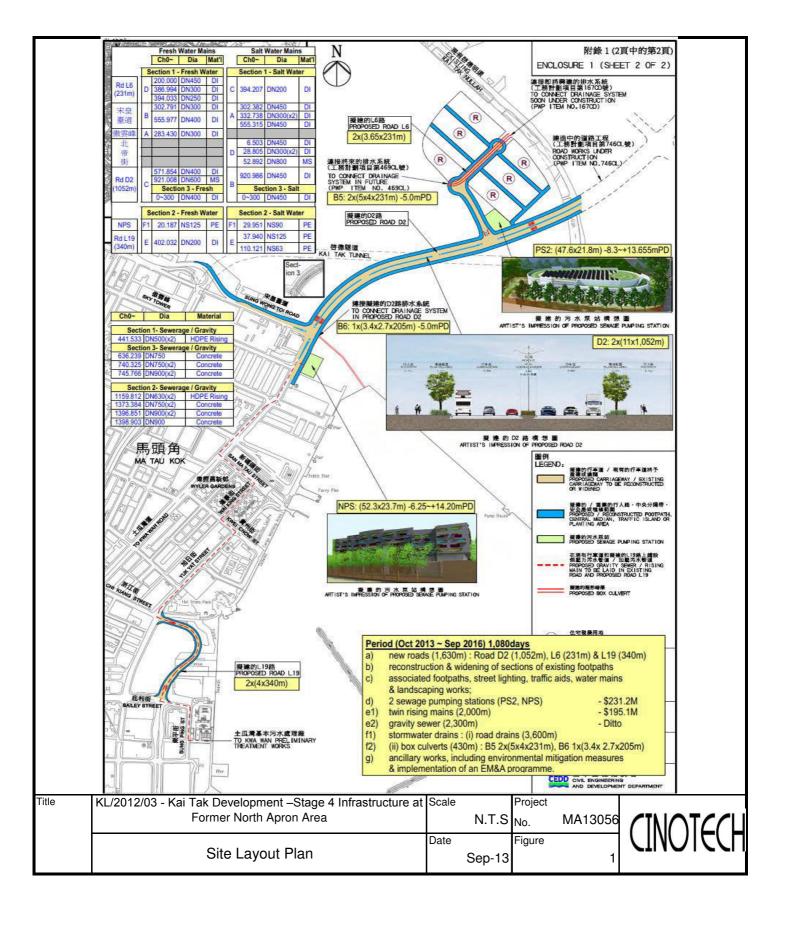
Table 8.1 Examples of Mitigation Measures for Environmental Recommendations

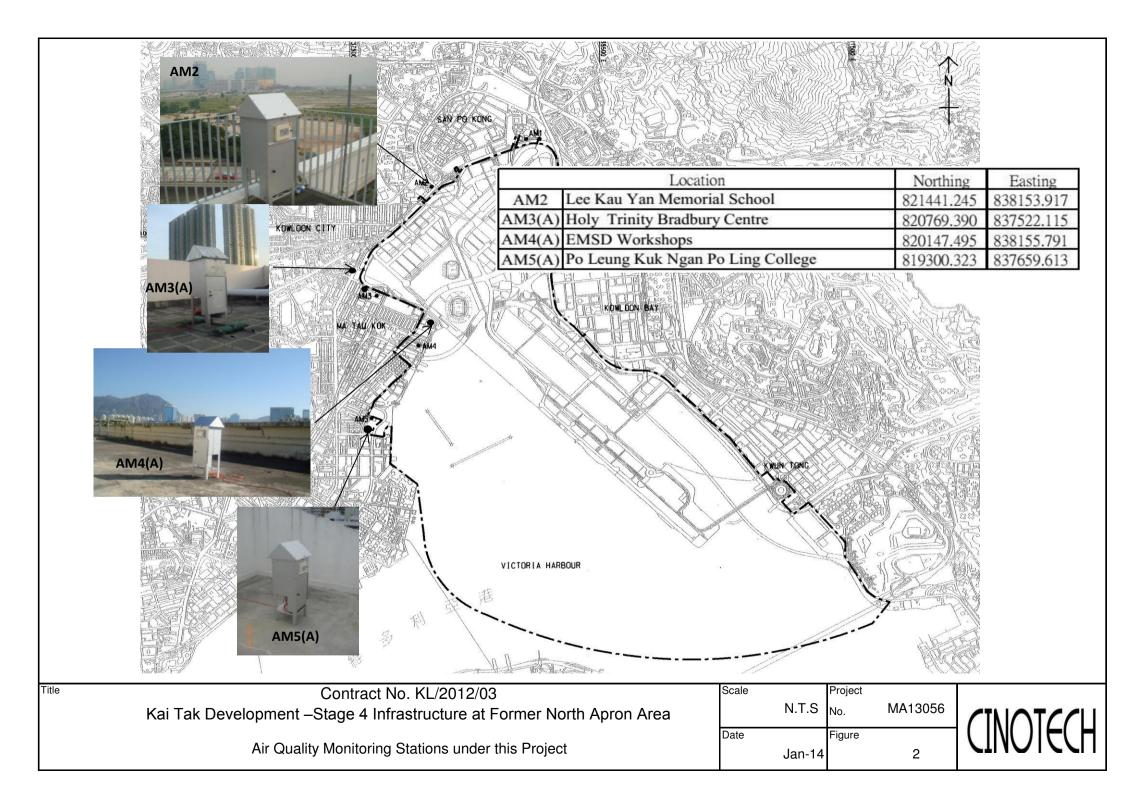
To prevent any surface runoff discharge into any stream course.

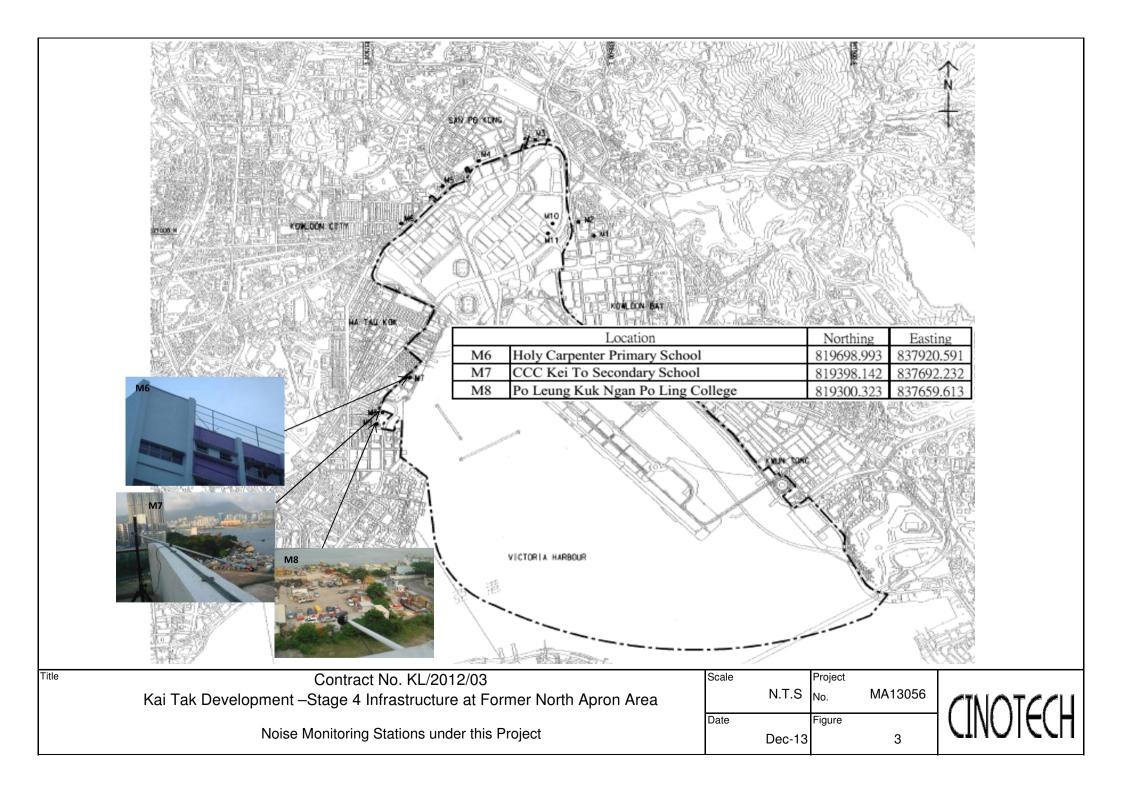
Follow-up measure(s) after identification of wastewater discharges from site;

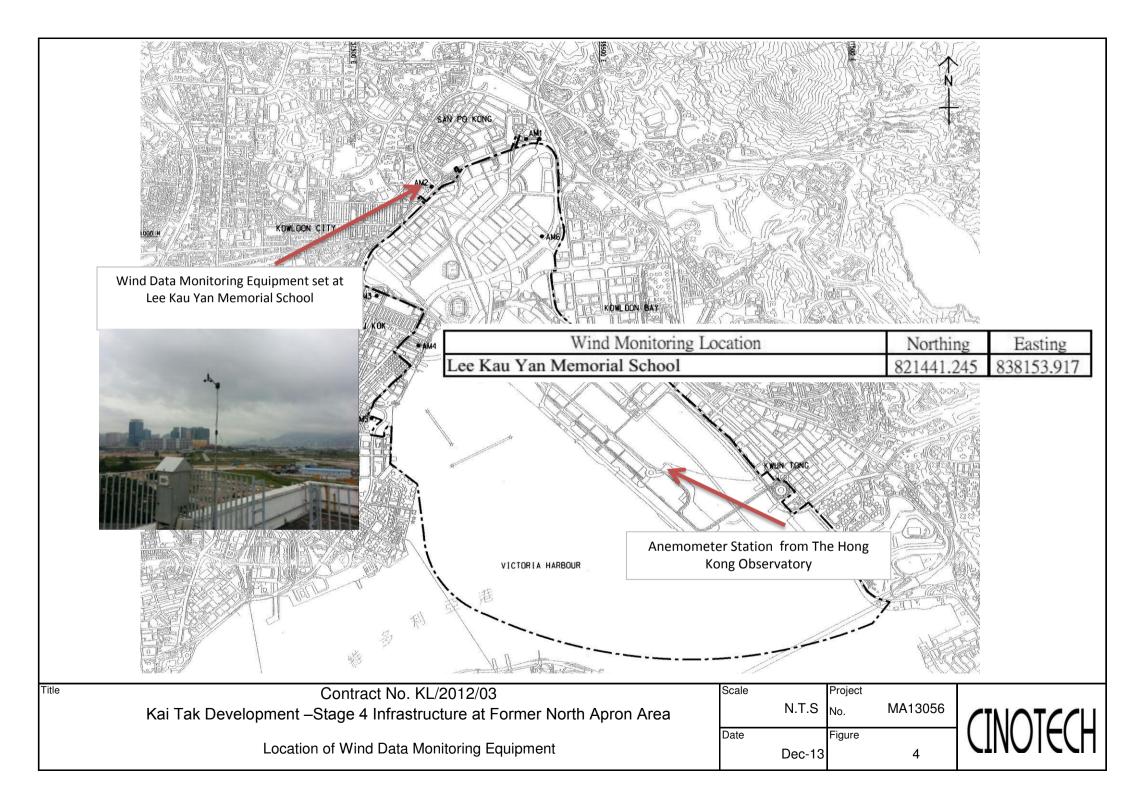
To avoid any discharge or accidental spillage of chemical waste or oil directly from the site

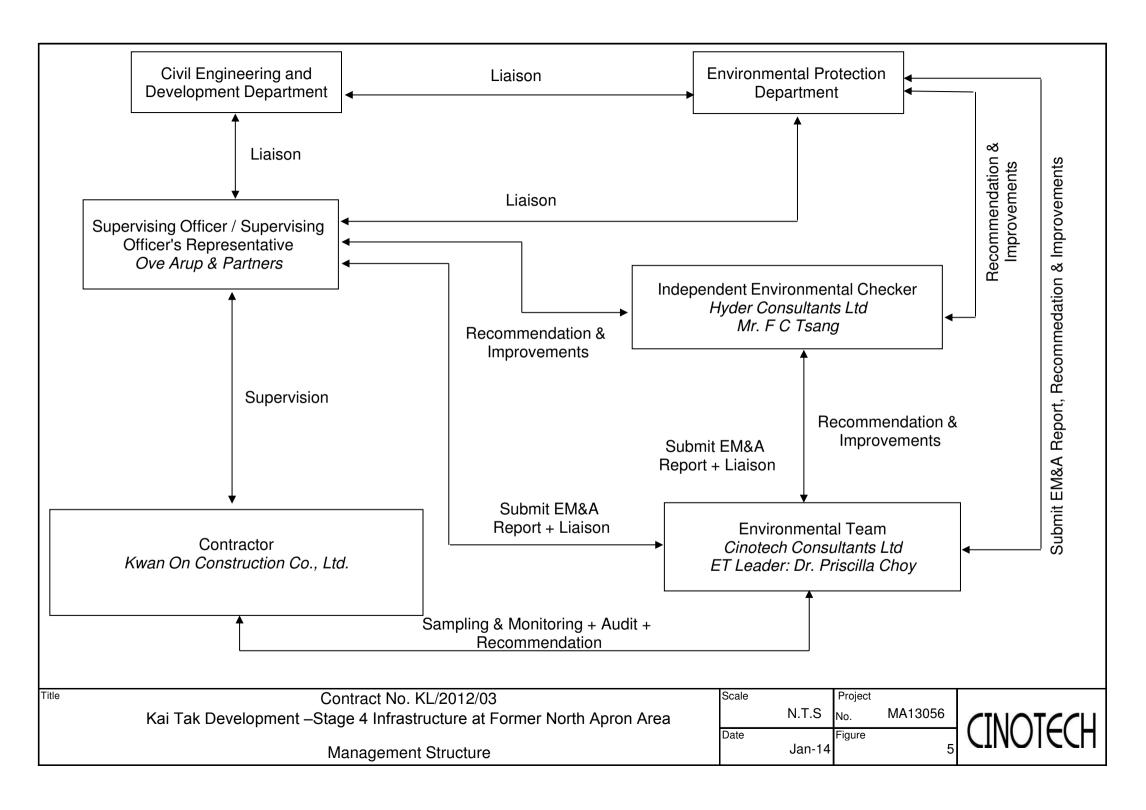
To avoid improper handling or storage of oil drum on site




To protect the existing trees to be retained




To control of night-time lighting


FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AM2	346	
AM3(A)	351	500
AM4(A)	371	500
AM5(A)	345	

Table A-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AM2	157	
AM3(A)	167	260
AM4(A)	187	260
AM5(A)	156	

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	MA0040/59/0020
Station	AM2 - Lee Kau	Yan Memorial So	chool	Operator:	:WK		
Date:	7-Nov-13	Next Due Dat		Next Due Date:	:6-Jan-	14	
Equipment No.:	A-01-59	A-01-59		Serial No.	2354		
			Ambient	Condition			
Temperatu	ire, Ta (K)	296.7	Pressure, Pa	ı (mmHg)		766	
	7		fice Transfer St	andard Inform	nation		
Equipme		A-04-05	Slope, mc	0.0592	Intercep		-0.0283
Last Calibr	ation Date:	26-Dec-12			$bc = [\Delta H x (Pa/76)]$		· ·
Next Calibr	ation Date:	25-Dec-13		$Qstd = \{ [\Delta H] \}$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} .	/ mc
Miles (Waller of Colors of State		•					
			Calibration of	TSP Sampler			
Calibration		Orf	ice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa/7	(60) x (298/Ta)] ^{1/2} Y-
11	11.8	3.	46	58.86	7.9		2.83
2	9.7	3.	13	53.41	6.7		2.60
3	7.8	2.	81	47.94	5.3		2.32
4	5.4	2.	34	39.97	3.4		1.86
5	3.2	1.	80	30.88	2.0		1.42
Slope , mw = Correlation c		0.9 9	89	Intercept, bw :	-0.169	7	
TI Correlation (Coefficient < 0.99	u, check and reca					
Posses dis TOD Di			Set Point C	alculation			
	eld Calibration C	,					
From the Regres	sion Equation, the	e "Y" value accor	ding to				
		mw x O	$std + bw = [\Delta W]$	x (Pa/760) x (2	98/Ta)l ^{1/2}		
					,,		
Therefore, S	et Point; W = (m	$w \times Qstd + bw)^2$	x (760/Pa)x(Γa / 298) =	4.11		
Remarks:		••					
	1 -		L	}			1 1 -
Conducted by: Checked by:	Luk. Tang	Signature: _	Kw	21	•	Date: Date:	7/11/13 7 November 2012

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA0040/49/0019 Station AM3(A) - Holy Trinity Bradbury Centre Operator: _____ WK Date: 7-Nov-13 Next Due Date: 6-Jan-14 Equipment No.: _ A-01-49 Serial No. 1793 **Ambient Condition** Temperature, Ta (K) 296.5 Pressure, Pa (mmHg) 766.2 Orifice Transfer Standard Information 0.0592 Equipment No.: A-04-05 Slope, mc Intercept, bc -0.0283 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 26-Dec-12 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 25-Dec-13 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), ΔW [\Delta W x (Pa/760) x (298/Ta)]1/2 Qstd (CFM) **Point** [\Delta H x (Pa/760) x (298/Ta)]\(^{1/2}\) in. of water (HVS), in. of oil X - axis Y-axis 3.52 1 12,2 59.87 2,92 8.4 2 9.8 3.15 53.71 6.9 2.64 3 7.3 2.72 46.42 5.3 2.32 4 5.1 2.27 38.88 3.4 1.86 3.1 1.77 30.42 2.0 1.42 By Linear Regression of Y on X Slope, mw = 0.0513Intercept, bw : -0.1220 Correlation coefficient* = 0.9983 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Date:

Date:

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA0040/62/0019 Station AM4(A) - EMSD Workshops Operator: WK Date: 7-Nov-13 Next Due Date: 6-Jan-14 Equipment No.: A-01-62 Serial No. 2351 **Ambient Condition** Temperature, Ta (K) 300 Pressure, Pa (mmHg) 763.9 Orifice Transfer Standard Information A-04-05 Slope, mc 0.0592 Equipment No.: Intercept, bc -0.0283 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 26-Dec-12 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 25-Dec-13 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), $\Delta \mathbf{W}$ [ΔW x (Pa/760) x (298/Ta)]^{1/2} Qstd (CFM) Point [ΔH x (Pa/760) x (298/Ta)]^{1/2} in, of water X - axis (HVS), in. of oil Y-axis 12.2 3.49 59.43 8.3 2.88 2 9.8 3.13 53.32 6.4 2.53 3 7.5 2.74 46.70 5.0 2.23 4 5.3 2.30 39.34 3.3 1.82 3.1 1.76 30.20 1.9 1.38 By Linear Regression of Y on X Slope, mw = 0.0512 Intercept, bw: -0.1795 Correlation coefficient* = 0.9994 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Conducted by: Wk. 7ang Date: Checked by: ____(Д~ Date:

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

Station	AMS(A) Dat	anna Valanta en D	. 11 . 6 11			File No.	MA0040/60/0020
Date:		eung Kuk Ngan P			: <u>WK</u>		•
	7-Nov-13			Next Due Date			
Equipment No.:	A-01-60			Serial No	. 2358	<u> </u>	•
			Ambient	Condition			
Temperatu	re, Ta (K)	298.8	Pressure, Pa	a (mmHg)		764.1	
The second secon	- 1. N						
		Or	ifice Transfer St	andard Inforn	nation		
Equipme	ent No.:	A-04-05	Slope, mc	0.0592			-0.0283
Last Calibra	ation Date:	26-Dec-12		mc x Qstd + 1	$bc = [\Delta H \times (Pa/7)]$	50) x (298/Ta)] ^{1/2}
Next Calibr	ation Date:	25-Dec-13		$Qstd = \{ \Delta H$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc}	/ me
		Ort	Calibration of	TSP Sampler			
Calibration	ΔH (orifice),			Qstd (CFM)	ΔW	HVS	(0) (000/m)31/2
Point	in. of water	[ΔH x (Pa/760)) x (298/Ta)] ^{1/2}	X - axis	(HVS), in. of oil		(60) x (298/Ta)] ^{1/2} Y-
1	11.9	3	.45	58.83	7.7		2.78
2	9.3	3	.05	52.06	6.1		2.47
3	7.5	2	.74	46.80	5.0		2.24
4	5,4	2	.33	39.78	3.3		1.82
5	3.3	1	.82	31.21	2.1		1.45
By Linear Regr Slope , mw = Correlation co	0.0490	C - 0.99		Intercept, bw :	-0.088	37	,
	_	00, check and reca		•			
			Sat Ballet				
From the TSP Fig	eld Calibration C	curve, take Qstd =		Calculation			
		e "Y" value accor					
		mw x Q	$std + bw = [\Delta W]$	x (Pa/760) x (2	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (m	$w \times Qstd + bw)^2$	x (760/Pa)x(7	Ta / 298) =	4.06		
Remarks:							
Telliaixs.				-			
Conducted by:	luk Jang	Signature:	Kin	10vi		Date:	7/4/3
Checked by:	()	Signature:	Z.			Date: _	7/11/13 7 November 2013

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Description Calibration Orifice

0993 Serial No.

Model No.

Date

TE-5025A

30 September 2013

Manufacturer

TISCH

Temperature, Ta (K)

300.8

Pressure, Pa (mmHg)

759.3

Plate	Diff.Vol (m³)	Diff.Time (min)	Diff.Hg (mm)	Diff.H ₂ O (in.)
1	1.00	1.4103	3.4	2.00
2	1.00	0.9980	6.8	4.00
3	1.00	0.8970	8.5	5.00
4	1.00	0.8540	9.4	5.50
5	1.00	0.7060	13.6	8.00

DATA TABULATION

Vstd	(X axis)	(Y axis)
	Qstd	
0.9853	0.6986	1.4069
0.9808	0.9828	1.9897
0.9786	1.0910	2.2245
0.9775	1.1446	2.3331
0.9720	1.3768	2.8138

Y axis= SQRT[H₂O(Pa/760)(298/Ta)] **Qstd Slope (m) = 2.07768** Intercept (b) = -0.04613

Coefficient (r) = 0.99997

Va	(X axis)	(Y axis)
	Qa	
0.9955	0.7059	0.8901
0.9910	0.9930	1.2589
0.9888	1.1023	1.4074
0.9876	1.1565	1.4761
0.9821	1.3911	1.7803

Y axis= SQRT[H2O(Ta/Pa)]

Qa Slope (m) = 1.30101Intercept (b) = -0.02919

Coefficient (r) = 0.99997

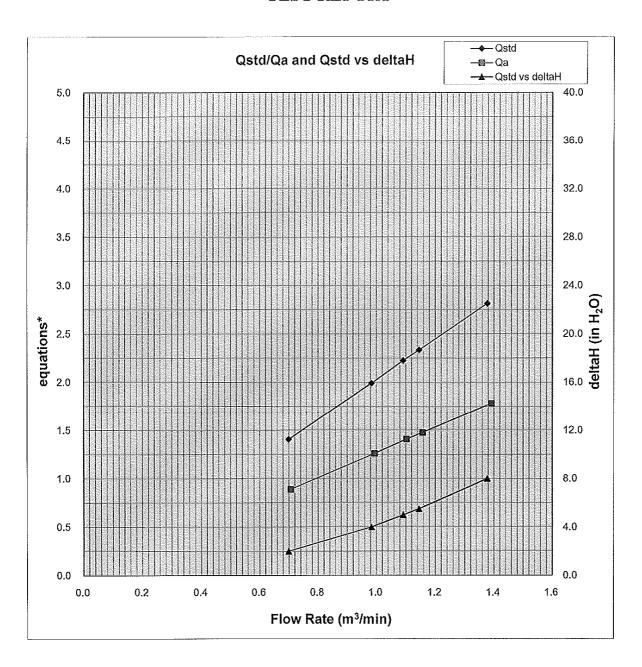
CALCULATIONS

Vstd=Diff. Vol[(Pa-Diff.Hg)/760](298/Ta) Qstd=Vstd/Time Va=Diff.Vol[(Pa-Diff.Hg)/Pa] Qa=Va/Time

For subsequent flow rate calculations:

 $Qstd=I/m{[SQRT(H_2O(Pa/760)(298/Ta))]-b}$

Qa=I/m{[SQRT H₂O(Ta/Pa)]-b}


PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Y-axis equations:

Qstd series: SQRT[\(\triangle H(Pa/Pstd)(Tstd/Ta))]

Qa series: SQRT[∆H(Ta/Pa)]

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park,

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131019A

Date of Issue: 2013-10-19

Date Received: 2013-10-19 Date Tested: 2013-10-19

Date Completed: 2013-10-19

Next Due Date: 2014-04-18

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Weather Monitor II

Manufacturer

: Davis Instruments

Model No.

: 7440

Serial No.

: MC20813A11

Test conditions:

Room Temperature

: 20 degree Celsius

Relative Humidity

: 53%

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131101/1
Date of Issue: 2013-11-04
Date Received: 2013-11-01

Date Tested: 2013-11-01
Date Completed: 2013-11-04

Next Due Date:

2014-01-03

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Laser Dust Monitor

Manufacturer

: Sibata

Model No.

: LD-3

Serial No.

: 251634

Sensitivity (K) 1 CPM

 $: 0.001 \text{ mg/m}^3$

Sen. Adjustment Scale Setting

: 550 CPM

Equipment No.

: A-02-01

Test Conditions:

Room Temperature

: 19 degree Celsius

Relative Humidity

: 54%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

0.0035

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131101/2
Date of Issue: 2013-11-04
Date Received: 2013-11-01
Date Tested: 2013-11-01
Date Completed: 2013-11-04

Next Due Date:

2014-01-03

ATTN:

Mr. W. K. Tang

Page: 1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 853944

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 685 CPM

Equipment No. : A-02-04

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 54%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 0.0034

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131018/1 Date of Issue: 2013-10-21 Date Received: 2013-10-18 Date Tested: 2013-10-18 Date Completed: 2013-10-21

Next Due Date:

2013-12-20

ATTN:

Mr. WK Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

: Sibata Manufacturer : LD-3B Model No. : 954253 Serial No. $: 0.001 \text{ mg/m}^3$ Sensitivity (K) 1 CPM : 772 CPM Sen. Adjustment Scale Setting : A-02-05

Equipment No.

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 60%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0031

*************************	· ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ ቀ

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131223/1
Date of Issue: 2013-12-23
Date Received: 2013-12-20
Date Tested: 2013-12-20
Date Completed: 2013-12-23
Next Due Date: 2014-02-22

Page:

1 of 1

ATTN:

Mr. WK Tang

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 954253

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 772 CPM

Equipment No. : A-02-05

Test Conditions:

Room Temperature : 18 degree Celsius

Relative Humidity : 62%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0030
*********	************

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131101/3
Date of Issue: 2013-11-04
Date Received: 2013-11-01
Date Tested: 2013-11-01
Date Completed: 2013-11-04
Next Due Date: 2014-01-03

Page:

: 1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 014750

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 790 CPM

Equipment No. : A-02-06

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 54%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0034

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131104/1
Date of Issue: 2013-11-05
Date Received: 2013-11-04
Date Tested: 2013-11-04

Date Completed: 2013-11-05 Next Due Date: 2014-01-04

1 of 1

ATTN: Mr. W. K. Tang Page:

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer: SibataModel No.: LD-3BSerial No.: 095039Sensitivity (K) 1 CPM: 0.001 mg/m³

Sen. Adjustment Scale Setting : 764 CPM Equipment No. : A-02-08

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 54%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 0.0033

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131104/2
Date of Issue: 2013-11-05
Date Received: 2013-11-04
Date Tested: 2013-11-04
Date Completed: 2013-11-05
Next Due Date: 2014-01-04

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 095050

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 577 CPM

Equipment No. : A-02-09

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 54%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0032
*********	**********

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131104/3
Date of Issue: 2013-11-05
Date Received: 2013-11-04
Date Tested: 2013-11-04
Date Completed: 2013-11-05
Next Due Date: 2014-01-04

ATTN:

Mr. W. K. Tang

Page: 1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 095029

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 551 CPM

Equipment No. : A-02-10

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 54%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0032	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130919/1
Date of Issue: 2013-09-21
Date Received: 2013-09-19
Date Tested: 2013-09-21
Date Completed: 2013-09-21
Next Due Date: 2014-09-20

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer Model No.

: SVANTEK : SVAN 955

Serial No.

: 12553 : 35222

Microphone No. Equipment No.

: N-08-02

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Luvoratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130919/2
Date of Issue: 2013-09-21
Date Received: 2013-09-21
Date Tested: 2013-09-21
Date Completed: 2013-09-21

Next Due Date: Page:

2014-09-20

1 of 1

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No. Serial No. : SVAN 955 : 12563

Microphone No.

: 34377

Equipment No.

: N-08-03

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130104 Date of Issue: 2013-01-05 Date Received: 2013-01-04 Date Tested: 2013-01-04

Date Completed: 2013-01-05 Next Due Date: 2014-01-04

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No. Serial No.

: SVAN 955 : 14303

Microphone No.

: 35222

Equipment No.

: N-08-05

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 59%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

1) This report supersedes the one dated 2012/01/21 with certificate number C/N/120120/1.

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130824/1 Date of Issue: 2013-08-25 Date Received: 2013-08-24 Date Tested: 2013-08-24

Date Completed: 2013-08-25

Next Due Date:

2014-08-24

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 955 :21139

Serial No. Microphone No.

: 43690

Equipment No.

: N-08-06

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 65%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 C/N/130830/1

 Date of Issue:
 2013-08-31

 Date Received:
 2013-08-30

 Date Tested:
 2013-08-30

 Date Completed:
 2013-08-31

 Next Due Date:
 2014-08-30

ATTN:

Mr. W.K. Tang

Page: 1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 957
Serial No. : 21455
Microphone No. : 43730
Equipment No. : N-08-07

Test conditions:

Room Temperatre : 21 degree Celsius

Relative Humidity : 69%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130830/2 Date of Issue: 2013-08-31 Date Received: 2013-08-30 Date Tested: 2013-08-30 Date Completed: 2013-08-31 Next Due Date: 2014-08-30

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK Model No. : SVAN 957 Serial No. : 21459 Microphone No. : 43676 Equipment No. : N-08-08

Test conditions:

: 21 degree Celsius Room Temperatre

Relative Humidity : 69%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130830/3
Date of Issue: 2013-08-31
Date Received: 2013-08-30
Date Tested: 2013-08-30
Date Completed: 2013-08-31
Next Due Date: 2014-08-30

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 957
Serial No. : 21460

Microphone No. : 43679 Equipment No. : N-08-09

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 69%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/131129/1
Date of Issue: 2013-11-30
Date Received: 2013-11-29
Date Tested: 2013-11-29
Date Completed: 2013-11-30
Next Due Date: 2014-11-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 23853

Microphone No.

: 48530

Equipment No.

: N-08-10

Test conditions:

Room Temperatre

: 19 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/131004/1
Date of Issue:	2013-10-05
Date Received:	2013-10-04
Date Tested:	2013-10-04
Date Completed:	2013-10-05
Next Due Date:	2014-10-04

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 57%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/131004/2
Date of Issue:	2013-10-05
Date Received:	2013-10-04
Date Tested:	2013-10-04
Date Completed:	2013-10-05
Next Due Date:	2014-10-04

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24791

Equipment No.

: N-09-04

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 57%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/N/131004/3
Date of Issue:	2013-10-05
Date Received:	2013-10-04
Date Tested:	2013-10-04
Date Completed:	2013-10-05
Next Due Date:	2014-10-04

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: SVANTEK

Model No.

: SV30A

Serial No.

: 24780

Serial No.

27700

Equipment No.

: N-09-05

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 57%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/131108/1
Date of Issue: 2013-11-09
Date Received: 2013-11-08
Date Tested: 2013-11-08
Date Completed: 2013-11-09
Next Due Date: 2014-11-08

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No. Serial No.

: 4231 : 2326353

Project No.

: C13

Equipment No.

: N-02-01

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 52 %

Methodology:

The sound calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

or tested.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

C/N/130830/4 Test Report No.: Date of Issue: 2012-08-31 Date Received: 2013-08-30 Date Tested: 2013-08-30 Date Completed: 2013-08-31 Next Due Date: 2014-08-30

ATTN:

Mr. W.K. Tang

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 64%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 December 2013	14.3 – 20.7	33 – 63	0
2 December 2013	14.6 – 21.4	38 – 71	0
3 December 2013	17.3 – 21.5	45 – 80	0
4 December 2013	16.2 – 22.8	38 – 76	0
5 December 2013	15.8 – 21.4	36 – 57	0
6 December 2013	15.7 – 21.4	33 – 63	0
7 December 2013	16.6 – 22.1	54 – 80	0
8 December 2013	18.2 – 21.4	64 – 85	Trace
9 December 2013	19.8 – 24.9	50 – 78	0
10 December 2013	18.4 – 21.7	55 – 80	0
11 December 2013	17.8 – 20.6	55 – 83	0
12 December 2013	16.6 – 19.3	55 – 72	Trace
13 December 2013	17.9 – 20.7	70 – 81	Trace
14 December 2013	17.2 – 20.5	75 – 99	13.0
15 December 2013	16.5 – 17.6	93 – 99	22.7
16 December 2013	12.2 – 17.2	88 – 99	24.8
17 December 2013	11.4 – 13.1	88 – 99	27.9
18 December 2013	9.2 – 13.4	58 – 86	0
19 December 2013	9.5 – 15.0	53 – 74	0

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 December 2013	11.3 – 16.4	54 – 71	0
21 December 2013	13.1 – 16.0	55 – 71	0
22 December 2013	11.3 – 16.0	52 – 69	0
23 December 2013	11.3 – 17.9	45 – 74	0
24 December 2013	12.2 – 17.9	48 – 71	0
25 December 2013	13.4 – 17.6	49 – 67	0
26 December 2013	12.5 – 17.3	35 – 57	0
27 December 2013	11.3 – 15.5	35 – 50	0
28 December 2013	9.9 – 14.6	38 – 55	0
29 December 2013	9.3 – 15.3	36 – 66	0
30 December 2013	10.7 – 16.3	36 – 64	0
31 December 2013	12.5 – 18.1	35 – 65	0

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

II. Mean Wind Speed and Wind Direction

Date	Time	Wind Speed m/s	Direction
1-Dec-2013	00:00	2.3	NNE
1-Dec-2013	01:00	2.2	NE
1-Dec-2013	02:00	2.1	NE
1-Dec-2013	03:00	2	NE
1-Dec-2013	04:00	1.9	ENE
1-Dec-2013	05:00	2	NNE
1-Dec-2013	06:00	1.8	NNE
1-Dec-2013	07:00	2.1	ENE
1-Dec-2013	08:00	1.9	NE
1-Dec-2013	09:00	1.9	ENE
1-Dec-2013	10:00	2.1	NNE
1-Dec-2013	11:00	2.1	Е
1-Dec-2013	12:00	2.3	ENE
1-Dec-2013	13:00	2.5	ENE
1-Dec-2013	14:00	2.6	ENE
1-Dec-2013	15:00	2.6	ENE
1-Dec-2013	16:00	2.4	NNE
1-Dec-2013	17:00	2.7	NE
1-Dec-2013	18:00	2.2	WSW
1-Dec-2013	19:00	2.1	SW
1-Dec-2013	20:00	2	SE
1-Dec-2013	21:00	1.9	ESE
1-Dec-2013	22:00	2.2	NE
1-Dec-2013	23:00	2.1	ENE
2-Dec-2013	00:00	1.9	N
2-Dec-2013	01:00	1.8	ENE
2-Dec-2013	02:00	1.9	NE
2-Dec-2013	03:00	1.6	NNE
2-Dec-2013	04:00	1.6	NNE
2-Dec-2013	05:00	1.6	NNE
2-Dec-2013	06:00	1.6	NE
2-Dec-2013	07:00	1.6	NNE
2-Dec-2013	08:00	2	NNE
2-Dec-2013	09:00	1.9	NNE
2-Dec-2013	10:00	2.4	NE
2-Dec-2013	11:00	2.6	ENE

II. Mean Wind Speed and Wind Direction

2-Dec-2013	12:00	2.7	ENE
2-Dec-2013	13:00	2.4	NE
2-Dec-2013	14:00	2.6	ESE
2-Dec-2013	15:00	2.8	WSW
2-Dec-2013	16:00	2.5	NE
2-Dec-2013	17:00	2.2	NNE
2-Dec-2013	18:00	2.3	ESE
2-Dec-2013	19:00	2.1	NNE
2-Dec-2013	20:00	2.1	ESE
2-Dec-2013	21:00	2.2	ENE
2-Dec-2013	22:00	2.2	SSE
2-Dec-2013	23:00	2.2	ESE
3-Dec-2013	00:00	2.3	E
3-Dec-2013	01:00	2	NE
3-Dec-2013	02:00	2	NE
3-Dec-2013	03:00	1.8	WNW
3-Dec-2013	04:00	1.7	NW
3-Dec-2013	05:00	1.6	ESE
3-Dec-2013	06:00	1.3	WNW
3-Dec-2013	07:00	1.4	WSW
3-Dec-2013	08:00	1.6	SW
3-Dec-2013	09:00	2.1	WSW
3-Dec-2013	10:00	2.4	WSW
3-Dec-2013	11:00	2.2	SW
3-Dec-2013	12:00	2.2	SSE
3-Dec-2013	13:00	2.2	ESE
3-Dec-2013	14:00	2.1	WNW
3-Dec-2013	15:00	2.2	SE
3-Dec-2013	16:00	2.2	W
3-Dec-2013	17:00	2.5	SSW
3-Dec-2013	18:00	2.2	SSW
3-Dec-2013	19:00	1.9	W
3-Dec-2013	20:00	2	SSE
3-Dec-2013	21:00	2.2	NNE
3-Dec-2013	22:00	2	NE
3-Dec-2013	23:00	2.2	SE
4-Dec-2013	00:00	2.2	NNE

4-Dec-2013	01:00	2.3	NNE
4-Dec-2013	02:00	2.1	NNE
4-Dec-2013	03:00	1.8	NNE
4-Dec-2013	04:00	1.9	SE
4-Dec-2013	05:00	1.8	SE
4-Dec-2013	06:00	1.7	SE
4-Dec-2013	07:00	1.5	SE
4-Dec-2013	08:00	1.6	SSE
4-Dec-2013	09:00	1.7	SSE
4-Dec-2013	10:00	2.1	SE
4-Dec-2013	11:00	2.2	SSE
4-Dec-2013	12:00	2.1	SSE
4-Dec-2013	13:00	2.4	ESE
4-Dec-2013	14:00	2	Е
4-Dec-2013	15:00	2.1	ENE
4-Dec-2013	16:00	1.9	NE
4-Dec-2013	17:00	2	ENE
4-Dec-2013	18:00	1.8	SW
4-Dec-2013	19:00	1.6	WSW
4-Dec-2013	20:00	1.8	WSW
4-Dec-2013	21:00	1.7	SW
4-Dec-2013	22:00	1.9	W
4-Dec-2013	23:00	2.2	NNE
5-Dec-2013	00:00	1.9	NNE
5-Dec-2013	01:00	1.9	ESE
5-Dec-2013	02:00	1.9	N
5-Dec-2013	03:00	1.9	N
5-Dec-2013	04:00	2	SE
5-Dec-2013	05:00	1.8	SE
5-Dec-2013	06:00	1.5	SE
5-Dec-2013	07:00	1.5	ESE
5-Dec-2013	08:00	1.7	ESE
5-Dec-2013	09:00	1.9	ESE
5-Dec-2013	10:00	2.1	ESE
5-Dec-2013	11:00	2.1	ESE
5-Dec-2013	12:00	2.3	ESE
5-Dec-2013	13:00	2.3	SE
L			

5-Dec-2013	14:00	2.1	E
5-Dec-2013	15:00	2.2	SSE
5-Dec-2013	16:00	2.2	SSE
5-Dec-2013	17:00	2.3	SSE
5-Dec-2013	18:00	2	NNE
5-Dec-2013	19:00	2	SSW
5-Dec-2013	20:00	2	W
5-Dec-2013	21:00	2	SSW
5-Dec-2013	22:00	2	NW
5-Dec-2013	23:00	1.7	8
6-Dec-2013	00:00	1.8	ESE
6-Dec-2013	01:00	1.8	WSW
6-Dec-2013	02:00	1.8	NE
6-Dec-2013	03:00	1.9	NE
6-Dec-2013	04:00	1.8	ENE
6-Dec-2013	05:00	1.8	NE
6-Dec-2013	06:00	1.5	NNE
6-Dec-2013	07:00	1.6	NE
6-Dec-2013	08:00	1.8	NE
6-Dec-2013	09:00	2.2	SE
6-Dec-2013	10:00	2.4	E
6-Dec-2013	11:00	2.6	ENE
6-Dec-2013	12:00	2.6	SE
6-Dec-2013	13:00	2.6	SE
6-Dec-2013	14:00	2.6	ESE
6-Dec-2013	15:00	2.6	NE
6-Dec-2013	16:00	2.6	ESE
6-Dec-2013	17:00	2.2	ESE
6-Dec-2013	18:00	1.9	E
6-Dec-2013	19:00	1.8	ESE
6-Dec-2013	20:00	1.9	ESE
6-Dec-2013	21:00	1.7	ESE
6-Dec-2013	22:00	1.6	ENE
6-Dec-2013	23:00	1.4	N
7-Dec-2013	00:00	1.6	ESE
7-Dec-2013	01:00	1.7	ESE
7-Dec-2013	02:00	1.5	ESE

7-Dec-2013	03:00	1.4	ESE
7-Dec-2013	04:00	1.4	SE
7-Dec-2013	05:00	1.4	SE
7-Dec-2013	06:00	1.3	SE
7-Dec-2013	07:00	1.3	SE
7-Dec-2013	08:00	1.6	SSE
7-Dec-2013	09:00	1.6	SE
7-Dec-2013	10:00	1.7	ESE
7-Dec-2013	11:00	1.8	SSE
7-Dec-2013	12:00	2	ESE
7-Dec-2013	13:00	1.9	SSE
7-Dec-2013	14:00	1.9	NE
7-Dec-2013	15:00	2.1	ESE
7-Dec-2013	16:00	2.1	ESE
7-Dec-2013	17:00	1.9	ESE
7-Dec-2013	18:00	1.7	SE
7-Dec-2013	19:00	1.6	NE
7-Dec-2013	20:00	1.4	E
7-Dec-2013	21:00	1.3	NNE
7-Dec-2013	22:00	1.4	NE
7-Dec-2013	23:00	1.2	ENE
8-Dec-2013	00:00	1.2	ENE
8-Dec-2013	01:00	1.1	ESE
8-Dec-2013	02:00	1.1	E
8-Dec-2013	03:00	1.1	NE
8-Dec-2013	04:00	1	SSW
8-Dec-2013	05:00	1	W
8-Dec-2013	06:00	0.8	NNE
8-Dec-2013	07:00	0.9	WSW
8-Dec-2013	08:00	1.1	NNE
8-Dec-2013	09:00	1.5	SSE
8-Dec-2013	10:00	1.9	ENE
8-Dec-2013	11:00	1.8	NNE
8-Dec-2013	12:00	1.9	NE
8-Dec-2013	13:00	1.9	SE
8-Dec-2013	14:00	2.2	W
8-Dec-2013	15:00	2.2	NE

8-Dec-2013	16:00	1.8	N
8-Dec-2013	17:00	1.6	ENE
8-Dec-2013	18:00	1.5	ENE
8-Dec-2013	19:00	1.2	WNW
8-Dec-2013	20:00	1.2	SSE
8-Dec-2013	21:00	1.4	SSE
8-Dec-2013	22:00	1.3	SSE
8-Dec-2013	23:00	1.2	W
9-Dec-2013	00:00	1.4	ENE
9-Dec-2013	01:00	1.3	ENE
9-Dec-2013	02:00	1.3	NE
9-Dec-2013	03:00	1.4	N
9-Dec-2013	04:00	1.4	ESE
9-Dec-2013	05:00	1.2	SSE
9-Dec-2013	06:00	1.1	NE
9-Dec-2013	07:00	1	NE
9-Dec-2013	08:00	1	ENE
9-Dec-2013	09:00	1.3	NE
9-Dec-2013	10:00	1.5	ENE
9-Dec-2013	11:00	1.8	ESE
9-Dec-2013	12:00	1.8	SSE
9-Dec-2013	13:00	1.8	NE
9-Dec-2013	14:00	1.7	ESE
9-Dec-2013	15:00	1.9	E
9-Dec-2013	16:00	1.7	E
9-Dec-2013	17:00	1.6	SE
9-Dec-2013	18:00	1.4	SSE
9-Dec-2013	19:00	1.1	E
9-Dec-2013	20:00	1.1	ESE
9-Dec-2013	21:00	1.2	ESE
9-Dec-2013	22:00	1.2	SSE
9-Dec-2013	23:00	1.1	SSE
10-Dec-2013	00:00	1.9	S
10-Dec-2013	01:00	2	ESE
10-Dec-2013	02:00	2.1	SE
10-Dec-2013	03:00	2.2	SE
10-Dec-2013	04:00	2	SSE

10-Dec-2013	05:00	1.9	S
10-Dec-2013	06:00	2	SSE
10-Dec-2013	07:00	1.6	ESE
10-Dec-2013	08:00	1.9	Е
10-Dec-2013	09:00	2.2	SSE
10-Dec-2013	10:00	2	SE
10-Dec-2013	11:00	2.4	SSE
10-Dec-2013	12:00	2.6	SE
10-Dec-2013	13:00	2.6	SE
10-Dec-2013	14:00	2.5	E
10-Dec-2013	15:00	2.4	SSE
10-Dec-2013	16:00	2.5	SE
10-Dec-2013	17:00	2.3	SSE
10-Dec-2013	18:00	1.9	E
10-Dec-2013	19:00	1.8	E
10-Dec-2013	20:00	2	NNW
10-Dec-2013	21:00	1.5	NE
10-Dec-2013	22:00	1.6	SSE
10-Dec-2013	23:00	1.7	NNE
11-Dec-2013	00:00	1.6	ENE
11-Dec-2013	01:00	1.7	SSE
11-Dec-2013	02:00	1.8	SSE
11-Dec-2013	03:00	1.6	SSE
11-Dec-2013	04:00	1.6	ESE
11-Dec-2013	05:00	1.6	ENE
11-Dec-2013	06:00	1.6	ENE
11-Dec-2013	07:00	1.6	E
11-Dec-2013	08:00	1.6	E
11-Dec-2013	09:00	2	ENE
11-Dec-2013	10:00	2.2	Е
11-Dec-2013	11:00	2.2	NE
11-Dec-2013	12:00	2.6	NNE
11-Dec-2013	13:00	2.5	NE
11-Dec-2013	14:00	2.6	SSE
11-Dec-2013	15:00	2.5	SSE
11-Dec-2013	16:00	2.3	SSE
11-Dec-2013	17:00	2.1	ESE
·	•		

11-Dec-2013	18:00	1.7	ENE
11-Dec-2013	19:00	1.6	NE
11-Dec-2013	20:00	1.6	SE
11-Dec-2013	21:00	1.3	NE
11-Dec-2013	22:00	1.3	SSE
11-Dec-2013	23:00	1.2	SE
12-Dec-2013	00:00	1.8	ESE
12-Dec-2013	01:00	1.5	NE
12-Dec-2013	02:00	1.5	SSE
12-Dec-2013	03:00	1.6	SSE
12-Dec-2013	04:00	1.6	SE
12-Dec-2013	05:00	1.3	SSW
12-Dec-2013	06:00	1.2	SW
12-Dec-2013	07:00	1.2	E
12-Dec-2013	08:00	1.1	E
12-Dec-2013	09:00	1.6	E
12-Dec-2013	10:00	1.8	W
12-Dec-2013	11:00	2.2	ENE
12-Dec-2013	12:00	2.1	WNW
12-Dec-2013	13:00	2.3	WNW
12-Dec-2013	14:00	2.1	Е
12-Dec-2013	15:00	1.7	WNW
12-Dec-2013	16:00	1.7	W
12-Dec-2013	17:00	1.7	SSE
12-Dec-2013	18:00	1.8	ENE
12-Dec-2013	19:00	1.5	WNW
12-Dec-2013	20:00	1.4	N
12-Dec-2013	21:00	1.2	NE
12-Dec-2013	22:00	1.3	ENE
12-Dec-2013	23:00	1.4	ENE
13-Dec-2013	00:00	1.5	SE
13-Dec-2013	01:00	1.3	ESE
13-Dec-2013	02:00	1.1	SSE
13-Dec-2013	03:00	1.1	SSE
13-Dec-2013	04:00	1.2	NE
13-Dec-2013	05:00	1.2	SW
13-Dec-2013	06:00	0.9	SW

			· · · ·
13-Dec-2013	07:00	1.1	W
13-Dec-2013	08:00	1.5	W
13-Dec-2013	09:00	2.1	SW
13-Dec-2013	10:00	2.3	ENE
13-Dec-2013	11:00	2.5	WSW
13-Dec-2013	12:00	2.8	WSW
13-Dec-2013	13:00	2.8	NE
13-Dec-2013	14:00	2.8	ENE
13-Dec-2013	15:00	2.7	NNE
13-Dec-2013	16:00	2.5	NNE
13-Dec-2013	17:00	2.4	NE
13-Dec-2013	18:00	1.9	NNE
13-Dec-2013	19:00	1.6	N
13-Dec-2013	20:00	1.4	ENE
13-Dec-2013	21:00	1.7	W
13-Dec-2013	22:00	1.6	W
13-Dec-2013	23:00	1.4	WSW
14-Dec-2013	00:00	1.1	W
14-Dec-2013	01:00	1.2	NE
14-Dec-2013	02:00	1.1	NW
14-Dec-2013	03:00	1.2	S
14-Dec-2013	04:00	1.2	W
14-Dec-2013	05:00	1.2	W
14-Dec-2013	06:00	1.5	ENE
14-Dec-2013	07:00	1.6	WSW
14-Dec-2013	08:00	1.5	ENE
14-Dec-2013	09:00	1.8	NE
14-Dec-2013	10:00	1.9	WNW
14-Dec-2013	11:00	2	WNW
14-Dec-2013	12:00	1.9	WNW
14-Dec-2013	13:00	2.1	S
14-Dec-2013	14:00	1.9	N
14-Dec-2013	15:00	1.9	SSE
14-Dec-2013	16:00	1.9	N
14-Dec-2013	17:00	1.6	NE
14-Dec-2013	18:00	1.4	WSW
14-Dec-2013	19:00	1.1	W
		1	i

14-Dec-2013	20:00	0.9	WNW
14-Dec-2013	21:00	1.4	W
14-Dec-2013	22:00	1.4	WNW
14-Dec-2013	23:00	1.2	W
15-Dec-2013	00:00	1.2	W
15-Dec-2013	01:00	1.2	W
15-Dec-2013	02:00	1.1	WSW
15-Dec-2013	03:00	1.4	WNW
15-Dec-2013	04:00	1.3	W
15-Dec-2013	05:00	1.2	WNW
15-Dec-2013	06:00	1.1	NW
15-Dec-2013	07:00	1.3	WNW
15-Dec-2013	08:00	1.4	WSW
15-Dec-2013	09:00	1.6	WNW
15-Dec-2013	10:00	2.1	WNW
15-Dec-2013	11:00	1.9	NNE
15-Dec-2013	12:00	2	N
15-Dec-2013	13:00	2.3	W
15-Dec-2013	14:00	2.2	W
15-Dec-2013	15:00	2.4	SSW
15-Dec-2013	16:00	2.2	SW
15-Dec-2013	17:00	1.9	WSW
15-Dec-2013	18:00	1.6	N
15-Dec-2013	19:00	1.4	WNW
15-Dec-2013	20:00	1.2	W
15-Dec-2013	21:00	1.2	SE
15-Dec-2013	22:00	1.2	SW
15-Dec-2013	23:00	1.2	WNW
16-Dec-2013	00:00	1.2	NNE
16-Dec-2013	01:00	1.1	S
16-Dec-2013	02:00	1	W
16-Dec-2013	03:00	1.1	WSW
16-Dec-2013	04:00	1.3	NNE
16-Dec-2013	05:00	1.1	NNE
16-Dec-2013	06:00	1.2	WNW
16-Dec-2013	07:00	1.2	NE
16-Dec-2013	08:00	1.2	Е

16-Dec-2013	09:00	1.6	SSW
16-Dec-2013	10:00	1.6	W
16-Dec-2013	11:00	1.7	ENE
16-Dec-2013	12:00	2	N
16-Dec-2013	13:00	2	SW
16-Dec-2013	14:00	2	WSW
16-Dec-2013	15:00	2.1	W
16-Dec-2013	16:00	2	ENE
16-Dec-2013	17:00	1.9	W
16-Dec-2013	18:00	1.8	W
16-Dec-2013	19:00	1.4	NE
16-Dec-2013	20:00	1.3	ENE
16-Dec-2013	21:00	1	N
16-Dec-2013	22:00	0.9	NE
16-Dec-2013	23:00	1	ENE
17-Dec-2013	00:00	1.3	W
17-Dec-2013	01:00	1.2	N
17-Dec-2013	02:00	1.1	NE
17-Dec-2013	03:00	1	NNE
17-Dec-2013	04:00	0.9	W
17-Dec-2013	05:00	0.9	SSE
17-Dec-2013	06:00	1	ENE
17-Dec-2013	07:00	0.9	ENE
17-Dec-2013	08:00	1.2	SW
17-Dec-2013	09:00	1.6	SSW
17-Dec-2013	10:00	1.9	SE
17-Dec-2013	11:00	2.2	W
17-Dec-2013	12:00	2.3	WSW
17-Dec-2013	13:00	2.4	S
17-Dec-2013	14:00	2.5	ESE
17-Dec-2013	15:00	2.4	E
17-Dec-2013	16:00	2.2	NW
17-Dec-2013	17:00	1.9	SSW
17-Dec-2013	18:00	1.7	NE
17-Dec-2013	19:00	1.6	SE
17-Dec-2013	20:00	1.4	ENE
17-Dec-2013	21:00	1.3	ENE
	1		1

17-Dec-2013			1	
18-Dec-2013 00:00 1.2 E 18-Dec-2013 01:00 1.3 NE 18-Dec-2013 02:00 1 NE 18-Dec-2013 03:00 1 SW 18-Dec-2013 04:00 1.1 SW 18-Dec-2013 05:00 1.1 ESE 18-Dec-2013 06:00 1 NE 18-Dec-2013 07:00 1.1 WNW 18-Dec-2013 08:00 1.4 WNW 18-Dec-2013 09:00 1.8 WSW 18-Dec-2013 10:00 2 NE 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-20	17-Dec-2013	22:00	1.4	WSW
18-Dec-2013 01:00 1.3 NE 18-Dec-2013 02:00 1 NE 18-Dec-2013 03:00 1 SW 18-Dec-2013 04:00 1.1 SW 18-Dec-2013 05:00 1.1 ESE 18-Dec-2013 06:00 1 NE 18-Dec-2013 07:00 1.1 WNW 18-Dec-2013 08:00 1.4 WNW 18-Dec-2013 09:00 1.8 WSW 18-Dec-2013 10:00 2 NE 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 19:00 1.7 E 18-Dec-20	17-Dec-2013	23:00	1.2	WNW
18-Dec-2013 02:00 1 NE 18-Dec-2013 03:00 1 SW 18-Dec-2013 04:00 1.1 SW 18-Dec-2013 05:00 1.1 ESE 18-Dec-2013 06:00 1 NE 18-Dec-2013 06:00 1.1 WNW 18-Dec-2013 07:00 1.1 WNW 18-Dec-2013 08:00 1.4 WNW 18-Dec-2013 09:00 1.8 WSW 18-Dec-2013 10:00 2 NE 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 19:00 1.7 E 18-Dec-	18-Dec-2013	00:00	1.2	E
18-Dec-2013 03:00 1 SW 18-Dec-2013 04:00 1.1 SW 18-Dec-2013 05:00 1.1 ESE 18-Dec-2013 06:00 1 NE 18-Dec-2013 07:00 1.1 WNW 18-Dec-2013 08:00 1.4 WNW 18-Dec-2013 09:00 1.8 WSW 18-Dec-2013 10:00 2 NE 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 19:00 1.7 E 18-Dec-2013 21:00 1.5 N 18-Dec	18-Dec-2013	01:00	1.3	NE
18-Dec-2013 04:00 1.1 SW 18-Dec-2013 05:00 1.1 ESE 18-Dec-2013 06:00 1 NE 18-Dec-2013 07:00 1.1 WNW 18-Dec-2013 08:00 1.4 WNW 18-Dec-2013 10:00 2 NE 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 20:00 1.5 N 18-De	18-Dec-2013	02:00	1	NE
18-Dec-2013 05:00 1.1 ESE 18-Dec-2013 06:00 1 NE 18-Dec-2013 07:00 1.1 WNW 18-Dec-2013 08:00 1.4 WNW 18-Dec-2013 09:00 1.8 WSW 18-Dec-2013 10:00 2 NE 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 20:00 1.5 N 18-Dec-2013 20:00 1.5 NE 19-Dec-2013 00:00 1.5 NE 19-De	18-Dec-2013	03:00	1	SW
18-Dec-2013 06:00 1 NE 18-Dec-2013 07:00 1.1 WNW 18-Dec-2013 08:00 1.4 WNW 18-Dec-2013 09:00 1.8 WSW 18-Dec-2013 10:00 2 NE 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2	18-Dec-2013	04:00	1.1	SW
18-Dec-2013 07:00 1.1 WNW 18-Dec-2013 08:00 1.4 WNW 18-Dec-2013 09:00 1.8 WSW 18-Dec-2013 10:00 2 NE 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 20:00 1.5 N 18-Dec-2013 20:00 1.5 NE 19-Dec-2013 20:00 1.5 NE 19-Dec-2013 00:00 1.5 NW 19-Dec-	18-Dec-2013	05:00	1.1	ESE
18-Dec-2013 08:00 1.4 WNW 18-Dec-2013 09:00 1.8 WSW 18-Dec-2013 10:00 2 NE 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 00:00 1.5 NE 19-Dec	18-Dec-2013	06:00	1	NE
18-Dec-2013 09:00 1.8 WSW 18-Dec-2013 10:00 2 NE 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 20:00 1.5 N 18-Dec-2013 22:00 1.5 N 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 00:00 1.5 NW 19-Dec-2	18-Dec-2013	07:00	1.1	WNW
18-Dec-2013 10:00 2 NE 18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 22:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 00:00 1.5 NW 19-Dec-2013 00:00 1.5 NW 19-Dec-	18-Dec-2013	08:00	1.4	WNW
18-Dec-2013 11:00 2.3 SW 18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 00:00 1.5 NE 19-Dec-2013 00:00 1.5 NW 19-Dec-2013 00:00 1.5 NE 19-De	18-Dec-2013	09:00	1.8	WSW
18-Dec-2013 12:00 2.7 SSE 18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 00:00 1.5 NW 19-Dec-2013 00:00 1.5 NW 19-Dec-2013 00:00 1.5 NE 19-Dec-2013 00:00 1.5 WNW 19-D	18-Dec-2013	10:00	2	NE
18-Dec-2013 13:00 2.6 SW 18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 NE 19-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 NE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2	18-Dec-2013	11:00	2.3	SW
18-Dec-2013 14:00 2.5 S 18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 02:00 1.5 NE 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 07:00 1.5 SW 19-Dec-	18-Dec-2013	12:00	2.7	SSE
18-Dec-2013 15:00 2.4 ESE 18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 02:00 1.5 NE 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 NE 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 09:00 2.2 NE	18-Dec-2013	13:00	2.6	SW
18-Dec-2013 16:00 2.3 SSW 18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	18-Dec-2013	14:00	2.5	S
18-Dec-2013 17:00 2.1 WSW 18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 02:00 1.5 NE 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	18-Dec-2013	15:00	2.4	ESE
18-Dec-2013 18:00 2 E 18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 02:00 1.5 NW 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	18-Dec-2013	16:00	2.3	SSW
18-Dec-2013 19:00 1.7 E 18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 02:00 1.5 NE 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	18-Dec-2013	17:00	2.1	WSW
18-Dec-2013 20:00 1.6 WNW 18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 02:00 1.5 NE 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	18-Dec-2013	18:00	2	E
18-Dec-2013 21:00 1.5 N 18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 02:00 1.5 NW 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	18-Dec-2013	19:00	1.7	E
18-Dec-2013 22:00 1.5 ESE 18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 02:00 1.5 NW 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	18-Dec-2013	20:00	1.6	WNW
18-Dec-2013 23:00 1.5 NE 19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 02:00 1.5 NW 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	18-Dec-2013	21:00	1.5	N
19-Dec-2013 00:00 1.6 WSW 19-Dec-2013 01:00 1.4 NW 19-Dec-2013 02:00 1.5 NW 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	18-Dec-2013	22:00	1.5	ESE
19-Dec-2013 01:00 1.4 NW 19-Dec-2013 02:00 1.5 NW 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	18-Dec-2013	23:00	1.5	NE
19-Dec-2013 02:00 1.5 NW 19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	19-Dec-2013	00:00	1.6	WSW
19-Dec-2013 03:00 1.5 NE 19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	19-Dec-2013	01:00	1.4	NW
19-Dec-2013 04:00 1.5 ENE 19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	19-Dec-2013	02:00	1.5	NW
19-Dec-2013 05:00 1.5 WNW 19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	19-Dec-2013	03:00	1.5	NE
19-Dec-2013 06:00 1.2 W 19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	19-Dec-2013	04:00	1.5	ENE
19-Dec-2013 07:00 1.5 SW 19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	19-Dec-2013	05:00	1.5	WNW
19-Dec-2013 08:00 1.7 NE 19-Dec-2013 09:00 2.2 NE	19-Dec-2013	06:00	1.2	W
19-Dec-2013 09:00 2.2 NE	19-Dec-2013	07:00	1.5	SW
	19-Dec-2013	08:00	1.7	NE
19-Dec-2013 10:00 2.3 NNE	19-Dec-2013	09:00	2.2	NE
	19-Dec-2013	10:00	2.3	NNE

			<u> </u>
19-Dec-2013	11:00	2.4	N
19-Dec-2013	12:00	2.2	Ш
19-Dec-2013	13:00	1.9	NE
19-Dec-2013	14:00	1.8	ESE
19-Dec-2013	15:00	1.9	ESE
19-Dec-2013	16:00	1.9	SE
19-Dec-2013	17:00	1.7	WSW
19-Dec-2013	18:00	1.4	S
19-Dec-2013	19:00	1.5	W
19-Dec-2013	20:00	1.5	NNE
19-Dec-2013	21:00	1.5	NE
19-Dec-2013	22:00	1.3	SSE
19-Dec-2013	23:00	1.4	ENE
20-Dec-2013	00:00	1.4	SE
20-Dec-2013	01:00	1.3	ESE
20-Dec-2013	02:00	1.4	SE
20-Dec-2013	03:00	1.2	ENE
20-Dec-2013	04:00	1.2	NNE
20-Dec-2013	05:00	1.1	SW
20-Dec-2013	06:00	1.2	SE
20-Dec-2013	07:00	1.2	SE
20-Dec-2013	08:00	1.2	SE
20-Dec-2013	09:00	1.5	NNE
20-Dec-2013	10:00	2	NNE
20-Dec-2013	11:00	2.2	WNW
20-Dec-2013	12:00	2.3	ESE
20-Dec-2013	13:00	2.3	WNW
20-Dec-2013	14:00	2.3	NNE
20-Dec-2013	15:00	2.2	NW
20-Dec-2013	16:00	2.3	N
20-Dec-2013	17:00	2.2	NE
20-Dec-2013	18:00	2	ENE
20-Dec-2013	19:00	1.7	NE
20-Dec-2013	20:00	1.5	Е
20-Dec-2013	21:00	1.4	SSE
20-Dec-2013	22:00	1.5	SSE
20-Dec-2013	23:00	1.5	WNW

21-Dec-2013	00:00	1.5	WNW
21-Dec-2013	01:00	1.3	SE
21-Dec-2013	02:00	1.3	SSE
21-Dec-2013	03:00	1.5	ESE
21-Dec-2013	04:00	1.5	SSE
21-Dec-2013	05:00	1.6	SSE
21-Dec-2013	06:00	1.3	SE
21-Dec-2013	07:00	1.2	WNW
21-Dec-2013	08:00	1.4	NE
21-Dec-2013	09:00	1.6	NE
21-Dec-2013	10:00	1.7	NE
21-Dec-2013	11:00	2.1	WNW
21-Dec-2013	12:00	2.2	WNW
21-Dec-2013	13:00	2.5	WSW
21-Dec-2013	14:00	2.3	N
21-Dec-2013	15:00	2.2	WNW
21-Dec-2013	16:00	2.1	ENE
21-Dec-2013	17:00	2	ESE
21-Dec-2013	18:00	1.7	W
21-Dec-2013	19:00	1.6	WNW
21-Dec-2013	20:00	1.7	S
21-Dec-2013	21:00	1.8	N
21-Dec-2013	22:00	1.6	ENE
21-Dec-2013	23:00	1.7	ENE
22-Dec-2013	00:00	1.7	SSE
22-Dec-2013	01:00	1.9	ENE
22-Dec-2013	02:00	1.7	SSE
22-Dec-2013	03:00	1.7	WSW
22-Dec-2013 22-Dec-2013	03:00 04:00	1.7 1.5	WSW WNW
22-Dec-2013	04:00	1.5	WNW
22-Dec-2013 22-Dec-2013	04:00 05:00	1.5 1.5	WNW
22-Dec-2013 22-Dec-2013 22-Dec-2013	04:00 05:00 06:00	1.5 1.5 1.4	WNW WNW NE
22-Dec-2013 22-Dec-2013 22-Dec-2013 22-Dec-2013	04:00 05:00 06:00 07:00	1.5 1.5 1.4 1.3	WNW WNW NE SSE
22-Dec-2013 22-Dec-2013 22-Dec-2013 22-Dec-2013 22-Dec-2013	04:00 05:00 06:00 07:00 08:00	1.5 1.5 1.4 1.3 1.5	WNW WNW NE SSE W
22-Dec-2013 22-Dec-2013 22-Dec-2013 22-Dec-2013 22-Dec-2013 22-Dec-2013	04:00 05:00 06:00 07:00 08:00 09:00	1.5 1.5 1.4 1.3 1.5	WNW WNW NE SSE W SW

<u></u>	T	<u></u>		
22-Dec-2013	13:00	2.2	NNE	
22-Dec-2013	14:00	2.3	ESE	
22-Dec-2013	15:00	2.1	W	
22-Dec-2013	16:00	2.2	NE	
22-Dec-2013	17:00	1.9	SSE	
22-Dec-2013	18:00	1.5	ENE	
22-Dec-2013	19:00	1.3	NE	
22-Dec-2013	20:00	1.5	NNE	
22-Dec-2013	21:00	1.7	SE	
22-Dec-2013	22:00	1.5	NNE	
22-Dec-2013	23:00	1.5	WSW	
23-Dec-2013	00:00	1.3	N	
23-Dec-2013	01:00	1.4	SW	
23-Dec-2013	02:00	1.2	N	
23-Dec-2013	03:00	1.1	N	
23-Dec-2013	04:00	1.2	ENE	
23-Dec-2013	05:00	1.2	WSW	
23-Dec-2013	06:00	1.1	WNW	
23-Dec-2013	07:00	1.6	ESE	
23-Dec-2013	08:00	1.8	ENE	
23-Dec-2013	09:00	2.1	NNE	
23-Dec-2013	10:00	2.3	ENE	
23-Dec-2013	11:00	2.2	ENE	
23-Dec-2013	12:00	2.2	W	
23-Dec-2013	13:00	2.5	N	
23-Dec-2013	14:00	2.3	NE	
23-Dec-2013	15:00	2.2	WNW	
23-Dec-2013	16:00	2.3	SW	
23-Dec-2013	17:00	2.2	SSE	
23-Dec-2013	18:00	1.9	ESE	
23-Dec-2013	19:00	1.8	WSW	
23-Dec-2013	20:00	1.6	W	
23-Dec-2013	21:00	1.6	SE	
23-Dec-2013	22:00	1.5	E	
23-Dec-2013	23:00	1.6	WSW	
24-Dec-2013	00:00	1.8	WSW	
24-Dec-2013	01:00	1.9	ENE	
	•	•	•	

24-Dec-2013	02:00	1.8	WSW	
24-Dec-2013	03:00	1.8	SSE	
24-Dec-2013	04:00	1.9	NNE	
24-Dec-2013	05:00	2.5	ENE	
24-Dec-2013	06:00	2.3	NE	
24-Dec-2013	07:00	2.1	SE	
24-Dec-2013	08:00	2.2	NE	
24-Dec-2013	09:00	2.6	ESE	
24-Dec-2013	10:00	2.4	SSW	
24-Dec-2013	11:00	2.5	W	
24-Dec-2013	12:00	2.6	NW	
24-Dec-2013	13:00	2.9	ENE	
24-Dec-2013	14:00	2.9	ENE	
24-Dec-2013	15:00	2.4	SE	
24-Dec-2013	16:00	2.4	SE	
24-Dec-2013	17:00	2.2	WSW	
24-Dec-2013	18:00	1.9	WSW	
24-Dec-2013	19:00	1.8	SSE	
24-Dec-2013	20:00	1.7	SE	
24-Dec-2013	21:00	2	S	
24-Dec-2013	22:00	1.9	NNE	
24-Dec-2013	23:00	2.1	ESE	
25-Dec-2013	00:00	2	SSE	
25-Dec-2013	01:00	1.9	ENE	
25-Dec-2013	02:00	1.9	NE	
25-Dec-2013	03:00	1.8	E	
25-Dec-2013	04:00	1.6	E	
25-Dec-2013	05:00	1.7	NNE	
25-Dec-2013	06:00	1.6	NNE	
25-Dec-2013	07:00	1.2	Е	
25-Dec-2013	08:00	1.3	Е	
25-Dec-2013	09:00	1.8	Е	
25-Dec-2013	10:00	2.4	SW	
25-Dec-2013	11:00	2.5	S	
25-Dec-2013	12:00	2.6	SSE	
25-Dec-2013	13:00	2.7	ESE	
25-Dec-2013	14:00	2.9	NE	
<u> </u>				

25-Dec-2013	15:00	2.7	ESE	
25-Dec-2013	16:00	2.6	SE	
25-Dec-2013	17:00	2	ENE	
25-Dec-2013	18:00	1.8	SE	
25-Dec-2013	19:00	1.6	WNW	
25-Dec-2013	20:00	1.6	ESE	
25-Dec-2013	21:00	1.4	NW	
25-Dec-2013	22:00	1.4	S	
25-Dec-2013	23:00	1.5	NW	
26-Dec-2013	00:00	1.3	NE	
26-Dec-2013	01:00	1.2	N	
26-Dec-2013	02:00	1.1	NNE	
26-Dec-2013	03:00	1.1	NE	
26-Dec-2013	04:00	1	NE	
26-Dec-2013	05:00	0.8	SW	
26-Dec-2013	06:00	0.8	WNW	
26-Dec-2013	07:00	0.9	WSW	
26-Dec-2013	08:00	1.4	WSW	
26-Dec-2013	09:00	1.6	WSW	
26-Dec-2013	10:00	1.7	W	
26-Dec-2013	11:00	1.9	SW	
26-Dec-2013	12:00	2.3	ENE	
26-Dec-2013	13:00	2.5	SSE	
26-Dec-2013	14:00	2.1	SSE	
26-Dec-2013	15:00	2	NE	
26-Dec-2013	16:00	2.1	NE	
26-Dec-2013	17:00	1.8	NNE	
26-Dec-2013	18:00	1.4	NNE	
26-Dec-2013	19:00	1.4	S	
26-Dec-2013	20:00	1.2	WNW	
26-Dec-2013	21:00	1.6	SSW	
26-Dec-2013	22:00	1.3	NNE	
26-Dec-2013	23:00	1.4	ENE	
27-Dec-2013	00:00	1.4	Е	
27-Dec-2013	01:00	1.2	NNW	
27-Dec-2013	02:00	1.4	ESE	
27-Dec-2013	03:00	1.4	SE	
	1	1	i e	

27-Dec-2013	04:00	1.2	SSW	
27-Dec-2013	05:00	1.1	SSE	
27-Dec-2013	06:00	1.1	S	
27-Dec-2013	07:00	1.1	SW	
27-Dec-2013	08:00	1.3	NE	
27-Dec-2013	09:00	1.7	WSW	
27-Dec-2013	10:00	1.8	SSW	
27-Dec-2013	11:00	2	S	
27-Dec-2013	12:00	2.4	W	
27-Dec-2013	13:00	2.3	WSW	
27-Dec-2013	14:00	2.2	W	
27-Dec-2013	15:00	2	NE	
27-Dec-2013	16:00	1.8	NNE	
27-Dec-2013	17:00	1.6	ESE	
27-Dec-2013	18:00	1.3	ESE	
27-Dec-2013	19:00	1.1	NNE	
27-Dec-2013	20:00	1	NE	
27-Dec-2013	21:00	1.1	ENE	
27-Dec-2013	22:00	1.1	SE	
27-Dec-2013	23:00	1.2	SSE	
28-Dec-2013	00:00	1.2	SE	
28-Dec-2013	01:00	1.2	SSE	
28-Dec-2013	02:00	1.2	SSE	
28-Dec-2013	03:00	1.3	NE	
28-Dec-2013	04:00	1.2	NE	
28-Dec-2013	05:00	1.3	ESE	
28-Dec-2013	06:00	1.2	NE	
28-Dec-2013	07:00	1.3	SSE	
28-Dec-2013	08:00	1.5	ENE	
28-Dec-2013	09:00	1.7	ENE	
28-Dec-2013	10:00	2	ESE	
28-Dec-2013	11:00	2.1	SSW	
28-Dec-2013	12:00	2.3	NNE	
28-Dec-2013	13:00	2.4	ENE	
28-Dec-2013	14:00	2.3	NNE	
28-Dec-2013	15:00	2.4	SW	
28-Dec-2013	16:00	2.3	WNW	
_				

28-Dec-2013	17:00	2.3	SW	
28-Dec-2013	18:00	1.8	NE	
28-Dec-2013	19:00	1.6	NE	
28-Dec-2013	20:00	1.4	NE	
28-Dec-2013	21:00	1.2	NW	
28-Dec-2013	22:00	1.5	NW	
28-Dec-2013	23:00	1.4	S	
29-Dec-2013	00:00	1.5	NNW	
29-Dec-2013	01:00	1.7	NW	
29-Dec-2013	02:00	1.8	S	
29-Dec-2013	03:00	1.9	NE	
29-Dec-2013	04:00	1.8	NW	
29-Dec-2013	05:00	2	NNW	
29-Dec-2013	06:00	2	W	
29-Dec-2013	07:00	2	WNW	
29-Dec-2013	08:00	2.1	WNW	
29-Dec-2013	09:00	2.5	W	
29-Dec-2013	10:00	2.9	WSW	
29-Dec-2013	11:00	3	WNW	
29-Dec-2013	12:00	3.2	ENE	
29-Dec-2013	13:00	3	ENE	
29-Dec-2013	14:00	2.8	ESE	
29-Dec-2013	15:00	2.7	NE	
29-Dec-2013	16:00	2.6	NNE	
29-Dec-2013	17:00	2.7	NE	
29-Dec-2013	18:00	2.2	ENE	
29-Dec-2013	19:00	2.2	NE	
29-Dec-2013	20:00	2.1	NNE	
29-Dec-2013	21:00	1.9	SE	
29-Dec-2013	22:00	2.2	S	
29-Dec-2013	23:00	2	S	
30-Dec-2013	00:00	1.9	SSE	
30-Dec-2013	01:00	2.1	SW	
30-Dec-2013	02:00	1.9	ENE	
30-Dec-2013	03:00	1.9	ENE	
30-Dec-2013	04:00	2.1	SSE	
30-Dec-2013	05:00	2.2	ENE	

20 Dec 2012	06:00		l N	
30-Dec-2013	06:00	2	N NE	
30-Dec-2013	07:00	1.8	NE -	
30-Dec-2013	08:00	2.2	E	
30-Dec-2013	09:00	2.4	SSW	
30-Dec-2013	10:00	2.7	E	
30-Dec-2013	11:00	3.1	SSE	
30-Dec-2013	12:00	2.9	SSW	
30-Dec-2013	13:00	2.9	SSE	
30-Dec-2013	14:00	2.7	SW	
30-Dec-2013	15:00	3	NE	
30-Dec-2013	16:00	2.6	E	
30-Dec-2013	17:00	2.4	NNE	
30-Dec-2013	18:00	2	S	
30-Dec-2013	19:00	1.9	WNW	
30-Dec-2013	20:00	1.9	WSW	
30-Dec-2013	21:00	1.9	W	
30-Dec-2013	22:00	1.8	ESE	
30-Dec-2013	23:00	2.1	E	
31-Dec-2013	00:00	2.2	SSE	
31-Dec-2013	01:00	2.5	ENE	
31-Dec-2013	02:00	2.3	ENE	
31-Dec-2013	03:00	2.2	SSE	
31-Dec-2013	04:00	2.2	S	
31-Dec-2013	05:00	2.2	ESE	
31-Dec-2013	06:00	2	ENE	
31-Dec-2013	07:00	2.1	ESE	
31-Dec-2013	08:00	2	SSE	
31-Dec-2013	09:00	2.3	SE	
31-Dec-2013	10:00	2.4	ENE	
31-Dec-2013	11:00	2.6	S	
31-Dec-2013	12:00	2.4	WSW	
31-Dec-2013	13:00	2.3	ENE	
31-Dec-2013	14:00	2.5	NW	
31-Dec-2013	15:00	2.7	W	
31-Dec-2013	16:00	2.6	NE NE	
31-Dec-2013	17:00	2.4	W	
31-Dec-2013	18:00	2.2	N	
	1 3.00		. •	

31-Dec-2013	19:00	2	NNE
31-Dec-2013	20:00	1.9	WNW
31-Dec-2013	21:00	1.8	WSW
31-Dec-2013	22:00	1.9	ENE
31-Dec-2013	23:00	1.7	NE

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KL/2012/03

Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for December 2013

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
2-Dec	3-Dec	4-Dec	5-Dec	6-Dec	7-Dec
		24 hr TSP	1 hr TSP X3 Noise (M8) Noise (M6 and M7)		
9-Dec	10-Dec	11-Dec	12-Dec	13-Dec	14-Dec
	24 hr TSP	1 hr TSP X3 Noise (M8)	Noise (M6 and M7)		
16-Dec	17-Dec	18-Dec	19-Dec	20-Dec	21-Dec
24 hr TSP	1 hr TSP X3 Noise (M8) Noise (M6 and M7)			24 hr TSP	
23-Dec	24-Dec	25-Dec	26-Dec	27-Dec	28-Dec
1 hr TSP X3 Noise (M8)	Noise (M6 and M7) 24 hr TSP			1 hr TSP X3	
30-Dec	31-Dec				
24 hr TSP	1 hr TSP X3 Noise (M8)				
	2-Dec 9-Dec 16-Dec 24 hr TSP 23-Dec 1 hr TSP X3 Noise (M8)	2-Dec 3-Dec 10-Dec 9-Dec 10-Dec 10-Dec 17-Dec 17-Dec 17-Dec 1 hr TSP X3 Noise (M8) Noise (M6 and M7) 24 hr TSP 23-Dec 24-Dec 1 hr TSP X3 Noise (M8) Noise (M6 and M7) 24 hr TSP 30-Dec 31-Dec 1 hr TSP X3 Noise (M8)	2-Dec 3-Dec 4-Dec 4-Dec 24 hr TSP 9-Dec 10-Dec 11-Dec 11-Dec 11-Dec 11-Dec 11-Dec 11-Dec 18-Dec 18-Dec 14-Dec 18-Dec 18-Dec 18-Dec 11-Dec 18-Dec 11-Dec 18-Dec 11-Dec 18-Dec 11-Dec 18-Dec 18-Dec 11-Dec 18-Dec 18-D	2-Dec 3-Dec 10-Dec 11-Dec 12-Dec 19-Dec 16-Dec 16-Dec 17-Dec 18-Dec 19-Dec 16-Dec 17-Dec 18-Dec 19-Dec 14-Dec 19-Dec 14-Dec 18-Dec 19-Dec 14-Dec 18-Dec 19-Dec 14-TSP 23-Noise (M6 and M7) 24-hr TSP 23-Dec 24-Dec 25-Dec 26-Dec 14-r TSP 23-Noise (M8) Noise (M8)	2-Dec 3-Dec 6-Dec 6-Dec 1 hr TSP X3 Noise (M8) Noise (M

Air Quality Monitoring Station

AM2 - Lee Kau Yan Memorial School AM3(A) - Holy Trinity Bradbury Centre

AM4(A) - EMSD Workshops

AM5(A) - Po Leung Kuk Ngan Po Ling College

Noise Monitoring Station

M6 - Holy Carpenter Primary School M7 - CCC Kei To Secondary School

M8 - Po Leung Kuk Ngan Po Ling College

Contract No. KL/2012/03

Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for January 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-J	an 2	Jan 3-Jan	4-Jan
					Noise (M6 and M7)	24 hr TSP
5-Jan	6-Jan	7-Jan	8	an 9	Jan 10-Jan	11-Jan
	1 hr TSP X3 Noise (M8)			Noise (M6 and M7) 24 hr TSP	1 hr TSP X3	
12-Jan	13-Jan	14-Jan	15	an 16	Jan 17-Jan	18-Jan
		Noise (M6 and M7)	24 hr TSP	1 hr TSP X3 Noise (M8)		
19-Jan	20-Jan	21-Jan	22	an 23	Jan 24-Jan	25-Jan
	24 hr TSP	1 hr TSP X3 Noise (M8)	Noise (M6 and M7)		24 hr TSP	
26-Jan	27-Jan	28-Jan	29	an 30	Jan 31-Jan	
	1 hr TSP X3 Noise (M8)	Noise (M6 and M7)	24 hr TSP	1 hr TSP X3		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM2 - Lee Kau Yan Memorial School AM3(A) - Holy Trinity Bradbury Centre

AM4(A) - EMSD Workshops

AM5(A) - Po Leung Kuk Ngan Po Ling College

Noise Monitoring Station

M6 - Holy Carpenter Primary School M7 - CCC Kei To Secondary School M8 - Po Leung Kuk Ngan Po Ling College

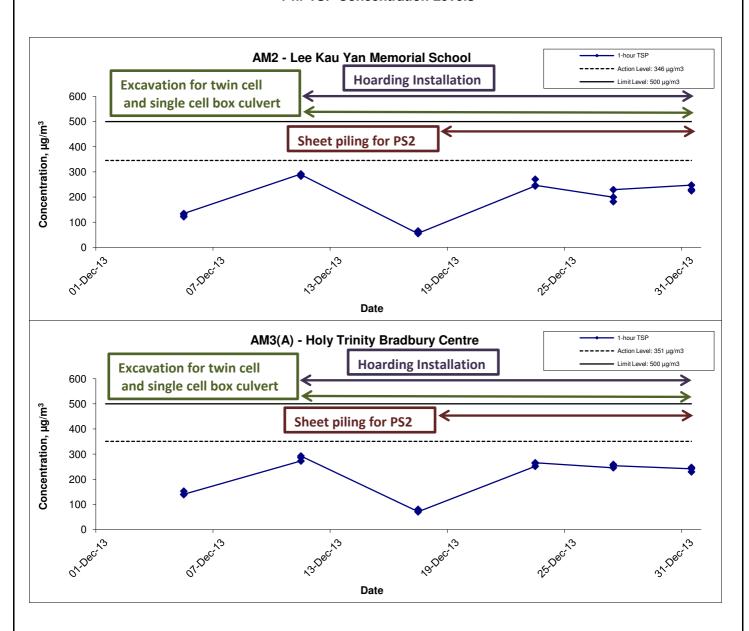
APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix E - 1-hour TSP Monitoring Results

Location AM2 - Lee Kau Yan Memorial School					
Date	Time	Weather	Particulate Concentration (μg/m³)		
5-Dec-13	9:00	Sunny	129.4		
5-Dec-13	10:00	Sunny	122.1		
5-Dec-13	11:00	Sunny	134.6		
11-Dec-13	13:15	Cloudy	292.1		
11-Dec-13	14:15	Cloudy	283.2		
11-Dec-13	15:15	Cloudy	289.2		
17-Dec-13	13:30	Cloudy	55.0		
17-Dec-13	14:30	Cloudy	65.3		
17-Dec-13	15:30	Cloudy	56.4		
23-Dec-13	13:00	Sunny	244.1		
23-Dec-13	14:00	Sunny	270.9		
23-Dec-13	15:00	Sunny	246.7		
27-Dec-13	13:00	Fine	199.9		
27-Dec-13	14:00	Fine	181.9		
27-Dec-13	15:00	Fine	229.5		
31-Dec-13	13:00	Sunny	247.6		
31-Dec-13	14:00	Sunny	229.7		
31-Dec-13	15:00	Sunny	225.1		
		Average	194.6		
		Maximum	292.1		
		Minimum	55.0		

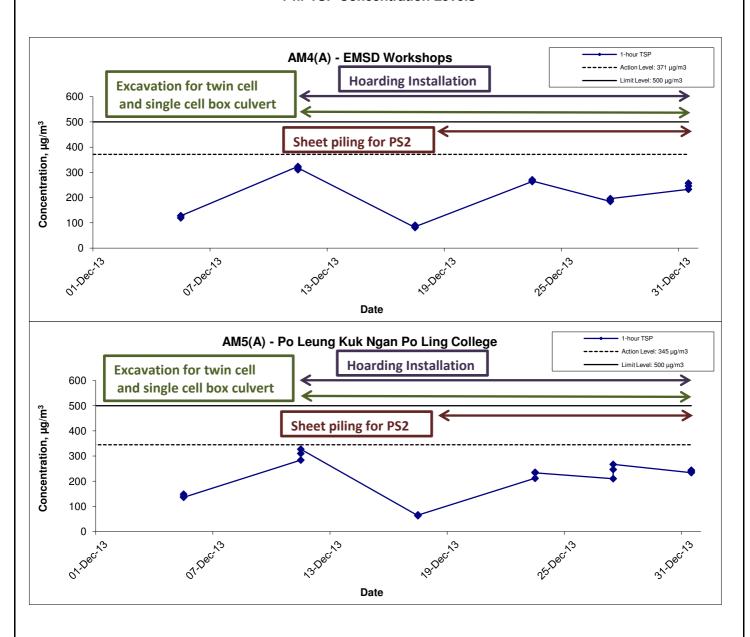
ocation AM3(A) - Holy Trinity Bradbury Centre				
Date	Time	Weather	Particulate Concentration (μg/m³)	
5-Dec-13	13:15	Sunny	139.0	
5-Dec-13	14:15	Sunny	152.8	
5-Dec-13	15:15	Sunny	140.3	
11-Dec-13	9:00	Cloudy	272.7	
11-Dec-13	10:00	Cloudy	286.6	
11-Dec-13	11:00	Cloudy	292.6	
17-Dec-13	8:45	Rainy	71.7	
17-Dec-13	9:45	Rainy	80.6	
17-Dec-13	10:45	Rainy	70.9	
23-Dec-13	9:00	Sunny	251.8	
23-Dec-13	10:00	Sunny	263.4	
23-Dec-13	11:00	Sunny	265.7	
27-Dec-13	13:00	Fine	246.0	
27-Dec-13	14:00	Fine	259.1	
27-Dec-13	15:00	Fine	254.0	
31-Dec-13	13:00	Sunny	242.1	
31-Dec-13	14:00	Sunny	229.7	
31-Dec-13	15:00	Sunny	247.2	
		Average	209.2	
		Maximum	292.6	
		Minimum	70.9	

MA13056/App E - 1hr TSP Cinotech


Appendix E - 1-hour TSP Monitoring Results

Location AM4(A)	Location AM4(A) - EMSD Workshops					
Date	Time	Weather	Particulate Concentration (μg/m³)			
5-Dec-13	8:55	Sunny	119.7			
5-Dec-13	9:55	Sunny	127.5			
5-Dec-13	10:55	Sunny	128.3			
11-Dec-13	8:20	Cloudy	323.2			
11-Dec-13	9:20	Cloudy	310.4			
11-Dec-13	10:20	Cloudy	317.6			
17-Dec-13	9:00	Rainy	81.4			
17-Dec-13	10:00	Rainy	90.3			
17-Dec-13	11:00	Rainy	84.7			
23-Dec-13	9:00	Sunny	263.7			
23-Dec-13	10:00	Sunny	270.7			
23-Dec-13	11:00	Sunny	265.7			
27-Dec-13	9:00	Fine	184.9			
27-Dec-13	10:00	Fine	191.5			
27-Dec-13	11:00	Fine	196.0			
31-Dec-13	13:00	Sunny	232.9			
31-Dec-13	14:00	Sunny	257.2			
31-Dec-13	15:00	Sunny	246.0			
		Average	205.1			
		Maximum	323.2			
		Minimum	81.4			

Location AM5(A) - Po Leung Kuk Ngan Po Ling College										
Date	Time	Weather	Particulate Concentration (μg/m³)							
5-Dec-13	9:00	Sunny	148.5							
5-Dec-13	10:00	Sunny	141.3							
5-Dec-13	11:00	Sunny	136.1							
11-Dec-13	8:35	Cloudy	284.0							
11-Dec-13	9:35	Cloudy	310.4							
11-Dec-13	10:35	Cloudy	327.3							
17-Dec-13	9:00	Rainy	62.9							
17-Dec-13	10:00	Rainy	66.3							
17-Dec-13	11:00	Rainy	65.0							
23-Dec-13	9:00	Sunny	211.6							
23-Dec-13	10:00	Sunny	235.6							
23-Dec-13	11:00	Sunny	233.6							
27-Dec-13	13:08	Fine	210.2							
27-Dec-13	14:08	Fine	246.6							
27-Dec-13	15:08	Fine	267.1							
31-Dec-13	9:00	Sunny	234.2							
31-Dec-13	10:00	Sunny	243.8							
31-Dec-13	11:00	Sunny	239.6							
		Average	203.6							
		Maximum	327.3							
		Minimum	62.9							


MA13056/App E - 1hr TSP Cinotech

1-hr TSP Concentration Levels

Title Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area	Scale	N.T.S	Project No.	MA13056	CINOTECH
Graphical Presentation of 1-hour TSP Monitoring Results	Date	Dec 13	Appendi	x E	CINOICCI

1-hr TSP Concentration Levels

Title	Contract No. KL/2012/03
	Kai Tak Development -Stage 4 Infrastructure at Former
	North Apron Area
	Graphical Presentation of 1-hour TSP Monitoring Results

Scale	N.T.S	Project No.	MA13056
Date	Dec 13	Appendi	x E

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

Location AM2 - Lee Kau Yan Memorial School

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	(m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
4-Dec-13	Sunny	290.4	767.5	3.6288	3.8359	0.2071	12508.7	12532.7	24.0	1.23	1.23	1.23	1768.7	117.1
10-Dec-13	Sunny	290.3	764.9	3.6420	3.8537	0.2117	12532.7	12556.7	24.0	1.23	1.23	1.23	1766.3	119.9
16-Dec-13	Rainy	284.4	764.9	3.6038	3.7327	0.1289	12556.7	12580.7	24.0	1.24	1.24	1.24	1783.2	72.3
20-Dec-13	Sunny	284.3	771.2	3.5670	3.7362	0.1692	12580.7	12604.7	24.0	1.24	1.24	1.24	1790.2	94.5
24-Dec-13	Sunny	284.9	771.5	3.7131	3.9670	0.2539	12604.7	12628.7	24.0	1.24	1.24	1.24	1788.7	141.9
30-Dec-13	Sunny	283.3	771.2	3.6858	3.9170	0.2312	12628.7	12652.7	24.0	1.25	1.24	1.25	1793.1	128.9
													Min	72.3
													Max	141.9
													Average	112.4

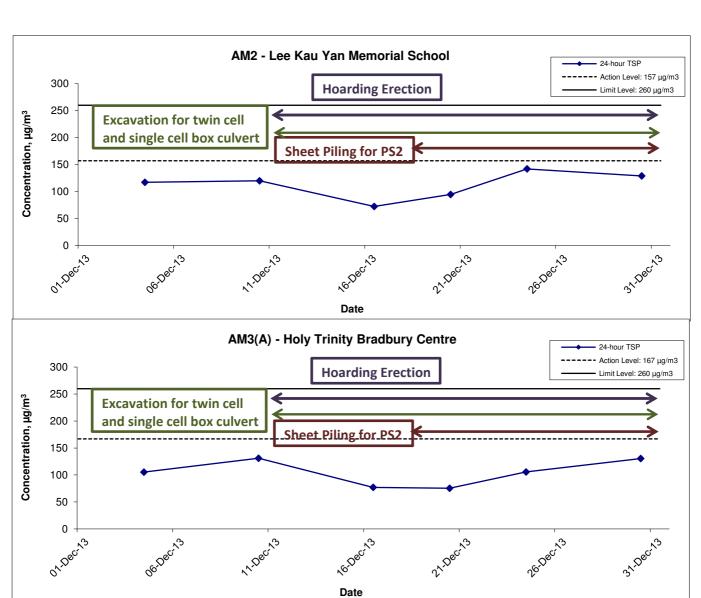
Location AM3(A) - Holy Trinity Bradbury Centre

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
4-Dec-13	Sunny	290.4	767.5	3.6445	3.8312	0.1867	7138.8	7162.8	24.0	1.23	1.23	1.23	1773.8	105.3
10-Dec-13	Sunny	290.3	764.9	3.7433	3.9753	0.2320	7162.8	7186.8	24.0	1.23	1.23	1.23	1771.3	131.0
16-Dec-13	Rainy	284.4	764.9	3.6154	3.7532	0.1378	7186.8	7210.8	24.0	1.24	1.24	1.24	1788.5	77.0
20-Dec-13	Sunny	284.3	771.2	3.6149	3.7502	0.1353	7210.8	7234.8	24.0	1.25	1.25	1.25	1795.8	75.3
24-Dec-13	Sunny	284.9	771.5	3.7224	3.9118	0.1894	7234.8	7258.8	24.0	1.25	1.25	1.25	1794.3	105.6
30-Dec-13	Sunny	283.3	771.2	3.6942	3.9289	0.2347	7258.8	7282.8	24.0	1.25	1.25	1.25	1798.8	130.5
													Min	75.3
													Max	131.0
													Average	104.1

MA13056/App F - 24hr TSP

Appendix F - 24-hour TSP Monitoring Results

Location AM4(A) - EMSD Workshops

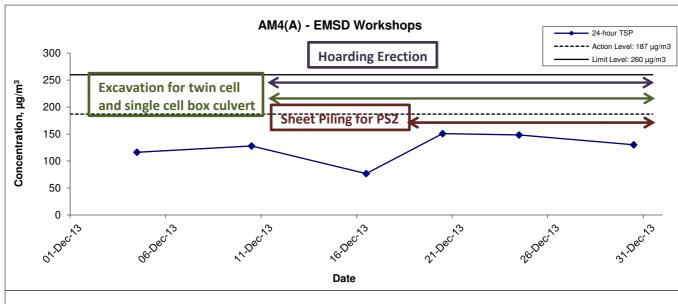

Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g)		Elapse	e Time	Sampling	Flow Rate	(m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
4-Dec-13	Sunny	290.4	767.5	3.6175	3.8248	0.2073	3381.6	3405.6	24.0	1.24	1.24	1.24	1783.5	116.2
10-Dec-13	Sunny	290.3	764.9	3.7510	3.9786	0.2276	3405.6	3429.6	24.0	1.24	1.24	1.24	1781.0	127.8
16-Dec-13	Rainy	284.4	764.9	3.6184	3.7563	0.1379	3429.6	3453.6	24.0	1.25	1.25	1.25	1797.9	76.7
20-Dec-13	Sunny	284.3	771.2	3.6253	3.8973	0.2720	3453.6	3477.6	24.0	1.25	1.25	1.25	1805.0	150.7
24-Dec-13	Sunny	284.9	771.5	3.7260	3.9933	0.2673	3477.6	3501.6	24.0	1.25	1.25	1.25	1803.5	148.2
30-Dec-13	Sunny	283.3	771.2	3.6754	3.9104	0.2350	3501.6	3525.6	24.0	1.26	1.26	1.26	1807.9	130.0
													Min	76.7
													Max	150.7
													Average	124.9

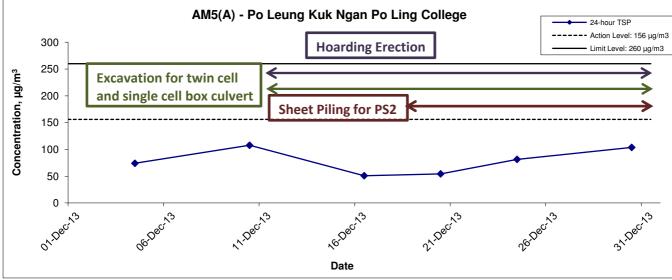
Location AM5(A) - Po Leung Kuk Ngan Po Ling College

Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g)		Elaps	Elapse Time		Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(μg/m ³)
4-Dec-13	Sunny	290.4	767.5	3.6279	3.7602	0.1323	2414.5	2438.5	24.0	1.24	1.24	1.24	1788.0	74.0
10-Dec-13	Sunny	290.3	764.9	3.7368	3.929	0.1922	2438.5	2462.5	24.0	1.24	1.24	1.24	1785.5	107.6
16-Dec-13	Rainy	284.4	764.9	3.5973	3.689	0.0917	2462.5	2486.5	24.0	1.25	1.25	1.25	1803.1	50.9
20-Dec-13	Sunny	284.3	771.2	3.6397	3.738	0.0983	2486.5	2510.5	24.0	1.26	1.26	1.26	1810.5	54.3
24-Dec-13	Sunny	284.9	771.5	3.6511	3.7983	0.1472	2510.5	2534.5	24.0	1.26	1.26	1.26	1809.0	81.4
30-Dec-13	Sunny	283.3	771.2	3.6986	3.8866	0.1880	2534.5	2558.5	24.0	1.26	1.26	1.26	1813.6	103.7
													Min	50.9
													Max	107.6
													Average	78.6

MA13056/App F - 24hr TSP

24-hr TSP Concentration Levels


Contract No. KL/2012/03
Kai Tak Development –Stage 4 Infrastructure at Former
North Apron Area
Graphical Presentation of 24-hour TSP Monitoring Results

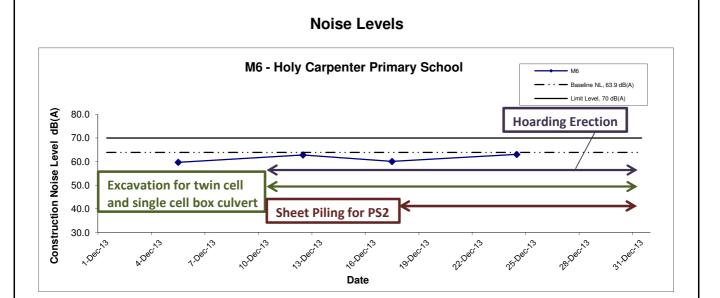

Title

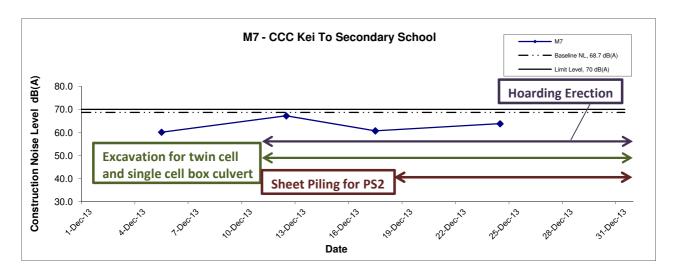
Scale	N.T.S	Project No.	MA13043
Date		Append	ix
	Dec 13		F

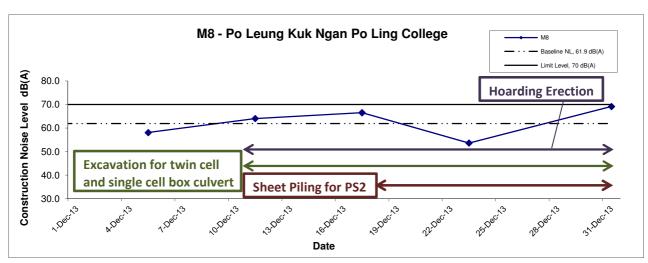
24-hr TSP Concentration Levels

Title Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area	Scale		Project No. MA13043	CINOTECH
Graphical Presentation of 24-hour TSP Monitoring Results	Date	Dec 13	Appendix F	CINOICCI

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix G - Noise Monitoring Results


Location M6 -	Holy Carpe	nter Primary S	School									
					Unit: dB (A) (30-min)							
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level					
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
5-Dec-13	09:27	Sunny	65.3	67.1	63.2		59.7					
12-Dec-13	13:09	Cloudy	62.8	63.4	59.5	63.9	62.8 Measured ≤ Baseline					
17-Dec-13	09:00	Cloudy	65.4	68.3	60.2	63.9	60.1					
24-Dec-13	10:00	Sunny	66.5	68.0	64.5		63.0					


Location M7 - CCC Kei To Secondary School							
			Unit: dB (A) (30-min)				
Date	Time	Weather	Measured Noise Level			Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
5-Dec-13	10:13	Sunny	60.1	62.8	59.3	68.7	60.1 Measured ≤ Baseline
12-Dec-13	14:00	Cloudy	67.2	69.6	57.9		67.2 Measured ≤ Baseline
17-Dec-13	09:41	Cloudy	60.7	63.4	59.5		60.7 Measured ≤ Baseline
24-Dec-13	09:15	Sunny	63.8	65.9	58.7		63.8 Measured ≤ Baseline

Location M8 - Po Leung Kuk Ngan Po Ling College							
			Unit: dB (A) (30-min)				
Date	Time	Weather	Measured Noise Level			Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
5-Dec-13	09:55	Sunny	63.4	65.4	60.7		58.1
11-Dec-13	09:30	Cloudy	66.1	68.4	62.5		64.0
17-Dec-13	11:00	Cloudy	67.8	70.4	63.9	61.9	66.5
23-Dec-13	09:00	Sunny	62.5	64.1	59.2		53.6
31-Dec-13	09:00	Sunny	69.9	72.4	67.1		69.2

MA13056/App G - Noise Cinotech

Remarks: The construction noise levels in the Tables in Appendix G were adopted for plotting the graphs

Title	Contract No. KL/2012/03					
	Kai Tak Development –Stage 4 Infrastructure at Former					
	North Apron Area					
	Graphical Presentation of Construction Noise Monitoring					
	Results					

1		•		
Scale		Project		
		No.	MA13056	
	N.T.S			
Date		Append	ix	
	Dec 13		G	

APPENDIX H SUMMARY OF EXCEEDANCE

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Appendix H – Summary of Exceedance

Exceedance Report for Contract No. KL/2012/03

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	131205	
Date	5 December 2013	
Time	09:30 - 10:15	-

		Related
Ref. No.	Non-Compliance	Item No
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• N/A	

	Name	Signature	Date
Recorded by	Ivy Tam	lup	5 December 2013
Checked by	Dr. Priscilla Choy	WI	5 December 2013

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	131205
Date	5 December 2013
Time	09:30 - 10:15

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• N/A	

	Name	Signature	Date
Recorded by	Ivy Tam	luf	5 December 2013
Checked by	Dr. Priscilla Choy	WI	5 December 2013

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	131210
Date	10 December 2013
Time	09:30 – 10:30

Ref. No.	New Compliance	Related Item No.
Kei. Ivo.	Non-Compliance None identified	Remino.
Ref. No.	Remarks/Observations	Related Item No.
1401.1101	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	,
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	-
131210-R01	Properly remove the chemical container within the tree protection area near the site office.	F1
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.:131205), no environmental deficiency was identified during site inspection	

	Name	Signature	Date
Recorded by	Johnny Fung	12	10 December 2013
Checked by	Dr. Priscilla Choy	WI	10 December 2013

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	131210
Date	10 December 2013
Time	09:30 – 10:30

Ref. No.	New Compliance	Related Item No.
Kel. No.	Non-Compliance None identified	Hemilto.
-	None identified	Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
131210-R01	Properly remove the chemical container within the tree protection area near the site office.	F1
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit section (Ref. No.:131205), no environmental deficiency was identified during site inspection	

	Name	Signature	Date
Recorded by	Johnny Fung	18	10 December 2013
Checked by	Dr. Priscilla Choy	WF	10 December 2013

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	131220
Date	20 December 2013
Time	11:00 – 12:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.:131210), all environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung		20 December 2013
Checked by	Dr. Priscilla Choy	NI	20 December 2013

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	131220
Date	20 December 2013
Time	11:00 – 12:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	•
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	 Follow-up on previous audit section (Ref. No.:131210), all environmental deficiency was observed improved/rectified by the Contractor. 	

	Name	Signature	Date
Recorded by	Johnny Fung		20 December 2013
Checked by	Dr. Priscilla Choy	WZ	20 December 2013

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	131227
Date	27 December 2013
Time	15:00 – 16:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
31227-R01	To display the environmental permit at the site entrance at Portion 1 (Gate 7).	G 1
	H. Others	
	• Follow-up on previous audit section (Ref. No.:131220), no environmental deficiency was identified during site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung	19~	27 December 2013
Checked by	Dr. Priscilla Choy	WI	27 December 2013

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	131227
Date	27 December 2013
Time	15:00 – 16:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.:131220), no environmental deficiency was identified during site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung		27 December 2013
Checked by	Dr. Priscilla Choy	WI	27 December 2013

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Action Level being	1. Identify source and investigate the	Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.
	3. Repeat measurement to confirm finding.	method.		
Action Level being	1. Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	1. Discuss with ET and IEC on proper
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of	
	6. If exceedance continues, arrange		remedial measures;	
	meeting with IEC and ER;		5. Conduct meeting with ET and	
	7. If exceedance stops, cease additional		IEC if exceedance continues.	
	monitoring.			
Limit Level being	1. Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	1. Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation	
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;	
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation	
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.	
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be	
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after	
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)	
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;		
	check mitigation effectiveness.	(The above actions should be	4. Supervise the		
	(The above actions should be taken	taken within 2 working days after	implementation of remedial		
	within 2 working days after the	the exceedance is identified)	measures.		
	exceedance is identified)		(The above actions should be		
			taken within 2 working days		
			after the exceedance is		
			identified)		
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to	
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;	
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial	
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3	
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;	
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed	
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;	

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT			ACTION	
ACTION LEVEL	ET	IEC	ER	CONTRACTOR
Design Check	Check final design conforms to	Check report. Recommend	Undertake remedial design if necessary	
	the requirements of EP and prepare report.	remedial design if necessary		
Non-conformity on one occasion	1. Identify Source 2. Inform IEC and ER 3. Discuss remedial actions with IEC, ER and Contractor 4. Monitor remedial actions until rectification has been completed	 Check report Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise ER on effectiveness of proposed remedial measures. Check implementation of remedial measures. 	Notify Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake any necessary replacement
Repeated Non-conformity	Identify Source Inform IEC and	Check monitoring report	Notify Contractor Ensure remedial measures are properly	 Amend working methods Rectify damage and

ER	2. Check Contractor's	implemented	undertake any necessary
2. Increase	working method		replacement
monitoring	3. Discuss with ET and		
frequency	Contractor on possible		
3. Discuss remedial	remedial measures		
actions with IEC,	4. Advise ER on		
ER and Contractor	effectiveness of		
4. Monitor remedial	proposed remedial		
actions until	measures		
rectification has	5. Supervise		
been completed	implementation of		
5. If non-conformity	remedial measures.		
stops, cease			
additional			
monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Appendix K - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

Mitigation Measures	Status
8 times daily watering of the work site with active dust emitting activities.	٨
Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	
 Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. 	^
 Misting for the dusty material should be carried out before being loaded into the vehicle. Any vehicle with an open load carrying area should 	۸
have properly fitted side and tail boards.	^
be loaded from a level higher than the side and tail boards and should be dampened and covered by a	^
 The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if 	^
 The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. On- site unpaved roads should be compacted and kept free 	^
 Vehicle washing facilities should be provided at every 	۸
	8 times daily watering of the work site with active dust emitting activities. Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts. • Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. • Misting for the dusty material should be carried out before being loaded into the vehicle. • Any vehicle with an open load carrying area should have properly fitted side and tail boards. • Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin. • The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation. • The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.

vehicle exit point. The area where vehicle washing takes place and the section of the road between the washing facilities and the sexit point should be payed with constant.	۸
 the exit point should be paved with concrete, bituminous materials or hardcores. Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water 	٨
 so as to maintain the entire road surface wet. Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides. 	٨
 Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites. 	^

	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump	٨
Construction Noise	 Good Site Practice: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	^
	Scheduling of Construction Works during School Examination Period (i) Provision of low noise surfacing in a section of Road	^ N/A
	L2; and (ii) Provision of structural fins	N/A

	i) Avoid the sensitive façade of class room facing Road 2 and L4; and	N/A
	ii) Provision of low noise surfacing in a section of Road L2	N/A
) Provision of low noise surfacing in a section of Road L4 efore occupation of Site 1I1; and	N/A
(1	ii) Setback of building about 5m from site boundary.	N/A
	Setback of building about 35m to the northwest direction t 1L3 and 5m at Site 1L2.	N/A
	 avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and 	N/A
	i) for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not provide the facades with openable window.	N/A
	i) avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height	N/A
	of the residential block(s) located at less than 55m away from To Kwa Wan Road to no more than 25m above ground. avoid any sensitive facades with openable window	N/A
	facing the slip road connecting Prince Edward Road East and San Po Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic noise impacts from the slip road	N/A

All the ventilation fans installed in the below will be provided with silencers or acoustics treatment. (i) SPS (ii) ESS (iii) Tunnel Ventilation Shaft (iv) EFTS depot	N/A N/A N/A N/A
Installation of retractable roof or other equivalent measures	N/A

	The following mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including: Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply;	N/A
	 Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps; 	N/A
	 An alarm should be installed to signal emergency high water level in the wet well at all SPSs; and For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through 	N/A
	telemetry system should be provided so that swift actions could be taken in case of malfunction of unmanned facilities.	N/A
Construction Water Quality		
		٨

Land-based Construction	
Construction Runoff	
Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include: use of sediment traps adequate maintenance of drainage systems to prevent flooding and overflow	^ ^
Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance	^
deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	

Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m³ capacity, are recommended as a general mitigation Λ measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped. Open stockpiles of construction materials (for examples, Λ aggregates, sand and fill material) of more than 50 m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system. Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.

Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events. Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain. All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately Λ designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains. Drainage It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea

storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	
All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	^
Sewage Effluent	
Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	^
Stormwater Discharges	
Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes	N/A
	work has finished or the temporary diversion is no longer required. All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ. Sewage Effluent Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices. Stormwater Discharges Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges

Debris and Litter	
In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid	۸
materials. litter or wastes to marine waters does not occur	
Construction Works at or in Close Proximity of Storm Culvert or Seafront	
The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	^
The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm culvert / nullah.	^
Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works.	۸
Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	۸
Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	^
Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	۸

Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should	
be provided along the edge of the waterfront within the work sites to intercept the runoff.	۸
Construction effluent, site run-off and sewage should be properly collected and/or treated.	^
Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	^
Silt curtain may be installed around the construction	
activities at the seafront to minimize the potential impacts due to accidental spillage of construction materials.	^
Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	^
Supervisory staff should be assigned to station on site to closely supervise and monitor the works	٨
Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	۸

	Good Site Practices	
i r	It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations for good site practices during construction activities include: Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal	٨
	to an appropriate facility, of all wastes generated at the site Training of site personnel in proper waste management and chemical waste handling procedures	۸
	 Provision of sufficient waste disposal points and regular collection for disposal 	^
	Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers	۸
	 A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites) 	۸

Waste Reduction Measures Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals Segregation and storage of different types of waste in different containers, skips or stockpiles to	^
 enhance reuse or recycling of materials and their proper disposal Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the work force Any unused chemicals or those with remaining functional capacity should be recycled Proper storage and site practices to minimise the potential for damage or contamination of construction materials 	^

0000	trustian and Damalitian Material	
	struction and Demolition Material	
	ation measures and good site practices should be	
	porated into contract document to control potential	
	onmental impact from handling and transportation of	
	material. The mitigation measures include:	
•	Where it is unavoidable to have transient	٨
	stockpiles of C&D material within the Project work	
	site pending collection for disposal, the transient	
	stockpiles should be located away from waterfront	
	or storm drains as far as possible	
	Open stockpiles of construction materials or	
	construction wastes on-site should be covered with	۸
60	tarpaulin or similar fabric	
	Skip hoist for material transport should be totally	
	enclosed by impervious sheeting	٨
•	Every vehicle should be washed to remove any	
	dusty materials from its body and wheels before	٨
	leaving a construction site The area where vehicle washing takes place and	
•	the section of the road between the washing	
	facilities and the exit point should be paved with	^
	concrete, bituminous materials or hardcores	
-	The load of dusty materials carried by vehicle	
	leaving a construction site should be covered	
	entirely by clean impervious sheeting to ensure	^
	dust materials do not leak from the vehicle	
<u> </u>	All dusty materials should be sprayed with water	
	prior to any loading, unloading or transfer	
	operation so as to maintain the dusty materials wet	^
	The height from which excavated materials are	
	dropped should be controlled to a minimum	^
	practical height to limit fugitive dust generation	
	from unloading	

When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. Independent Environmental Checker should be responsible for auditing the results of the system. Chemical Waste After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation General Refuse General refuse should be stored in enclosed bins or Λ compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D Effective collection and storage methods material. (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour

nuisance or pest and vermin problem

	CM1 All existing trees should be carefully protected during construction.	*
	CM2 Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	N/A
Landscape and Visual	CM3 Control of night-time lighting.	^
	CM4 Erection of decorative screen hoarding.	^

Remarks:	^ Compliance of mitigation measure;	X Non-compliance of mitigation measure;
	N/A Not Applicable at this stage; N/A(1) Not observed;	•Non-compliance but rectified by the contractor;
	* Recommendation was made during site audit but improved/rectified by the contractor.	

APPENDIX L
SUMMARIES OF ENVIRONMENTAL
COMPLAINT, WARNING, SUMMON
AND NOTIFICATION OF SUCCESSFUL
PROSECUTION

Contract No. KL/2012/03

Kai Tak Development -Stage 4 Infrastructure at Former North Apron Area

Reporting Month: December 2013

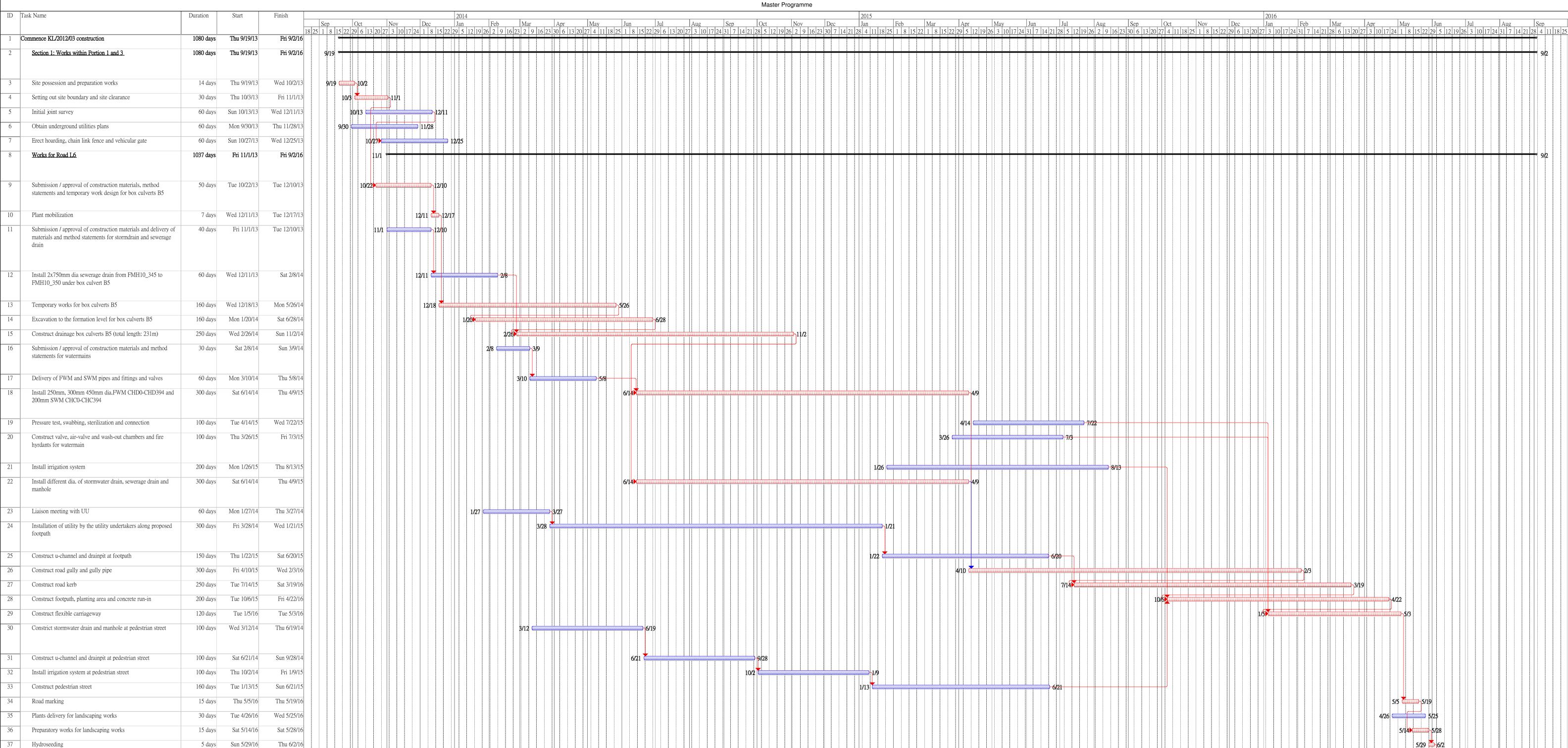
Contract No. KL/2012/03

Log Ref.	Location	Received Date	Details of Complaint/warning/summon and prosecution	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A	N/A

Remarks: No environmental complaint/warning/summon and prosecution were received in the reporting period.

APPENDIX M WASTE GENERATED QUANTITY

Monthly Summary Waste Flow Table


(PS Clause 1.86)

Name of Department:	CEDD	Contract No.:	KL/2012/03

Monthly Summary Waste Flow Table for Dec 2013 (year)

	Total Quantity Generated	Actual Quantities of Inert C&D Materials Generated Monthly				Actual Quantities of C&D Wastes Generated Monthly					
Month		Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
Sep	0	0	0	0	0	0	0	0	0	0	0
Oct	0.011	0	0	0	0	0	0	0	0	0	0.011
Nov	0.177	0	0	0	0	0	0	0	0	0	0.177
Dec	0.176	0	0	0	0	0	0	0	0	0	0.176
Sub-Total	0.364	0	0	0	0	0	0	0	0	0	0.364
Jan											
Feb											
Mar											
Apr											
May											
Jun											
Total	0.364	0	0	0	0	0	0	0	0	0	0.364

APPENDIX N CONSTRUCTION PROGRAMME

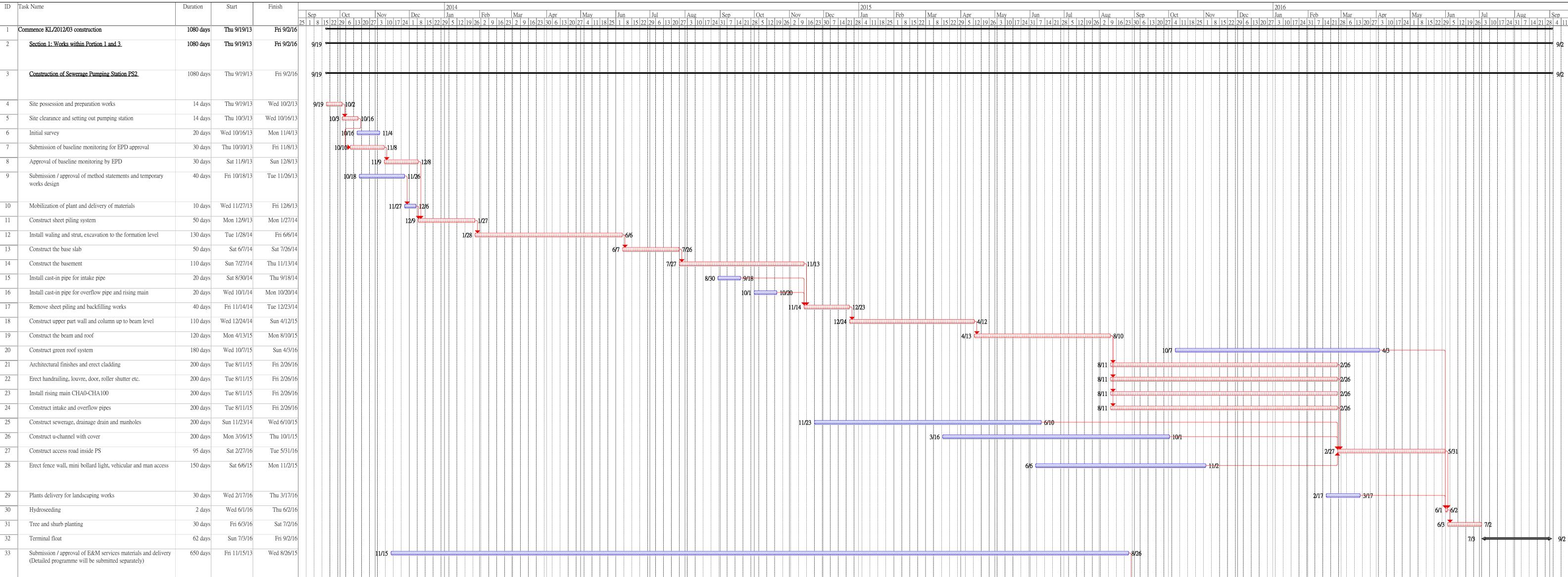
Commencement Date: 19 September 2013 Completion Date: 2 September 2016

Tree and shurb planting

Terminal float

Sat 7/2/16

Fri 9/2/16


30 days

62 days

Fri 6/3/16

Sun 7/3/16

Master Programme

E&M building service installation. (Detailed programme will be 250 days Thu 8/27/15 Mon 5/2/16

submitted separately)

Master Programme ID Task Name Duration Start Commence KL/2012/03 construction Fri 9/2/16 1080 days Thu 9/19/13 Section 1: Works within Portion 1 and 3 1080 days Thu 9/19/13 Fri 9/2/16 9/19 🕮 10/2 Site possession and preparation works 14 days Thu 9/19/13 Wed 10/2/13 30 days Thu 10/3/13 Setting out site boundary and site clearance Fri 11/1/13 Fri 11/1/13 Mon 12/30/13 Initial joint survey 60 days Thu 9/19/13 Sun 11/17/13 Obtain underground utilities plans Erect hoarding, chain link fence and vehicular gate Fri 1/3/14 60 days 1054 days Tue 10/15/13 Works for Northbound of Road D2 Fri 9/2/16 Submission of baseline monitoring for EPD approval 30 days Mon 10/7/13 Tue 11/5/13 Approval of baseline monitoring by EPD 30 days Wed 11/6/13 Thu 12/5/13 Submission / approval of condition survey and TDMP for work 120 days Tue 10/15/13 Tue 2/11/14 within existing Kai Tak Tunnel Submission / approval of construction materials and method 40 days Sun 10/13/13 Thu 11/21/13 statements for rising mains 60 days Fri 11/22/13 Mon 1/20/14 Delivery of materials for rising mains 11/22 💆 Install 2x500mm dia. HDPE rising main CHA100-CHA441 300 days Sun 1/5/14 Fri 10/31/14 Construct 750mm dia. concrete pipes CHA716-CHA745 and 100 days Sat 11/1/14 Sun 2/8/15 450mm dia. concrete pipes Construct sewerage manhole, discharge chamber, wash-out 300 days Thu 10/30/14 Tue 8/25/15 chamber, air-valve chamber for rising main Submission / approval of construction materials and method 30 days Sun 11/3/13 Mon 12/2/13 statements for watermains Delivery of materials for watermains 60 days Tue 12/3/13 Fri 1/31/14 Install 400mm, 450 & 600 dia. FWM CHC250-CHC921 and 370 days Tue 2/4/14 450mm dia. SWM CHB250-CHB920 Fri 5/22/15 Pressure test, swabbing, sterilization and connection 100 days Thu 2/12/15 Construct valve, fire hydrant, air-valve and wash-out chambers 150 days Wed 11/19/14 Fri 4/17/15 for watermain 150 days Sat 12/20/14 Mon 5/18/15 Install irrigation system Submission / approval of construction materials and delivery of 60 days Wed 11/6/13 materials and method statements for stormdrain and sewerage Install different dia. of stormwater drain and construct manhole 400 days Sun 1/5/14 Install different dia. of sewerage drain and construct manhole 400 days Sun 1/5/14 Sun 2/8/15 Reconstruct existing box culvert for addition of DWFI 120 days Mon 1/26/15 Mon 5/25/15 Sun 1/5/14 Liaison meeting with UU Installation of utility by the utility undertakers along proposed 360 days Mon 1/6/14 Wed 12/31/14 Construct drainpit and u-channel 200 days Thu 1/1/15 Sun 7/19/15 Install traffic signal at the Junction of Road D2/ Slip Road of 100 days Sat 3/14/15 Sun 6/21/15

100 days Sun 3/15/15 Mon 6/22/15 Install traffic signal at the Junction of Road D2/ Road D3 Install traffic signal at the Junction of Road D2/ Eastern Access 100 days Fri 3/13/15 Sat 6/20/15 Install traffic signal at the Junction of Road D2/ Western 100 days Sat 3/14/15 Sun 6/21/15 Access Road Construct road gully and gully pipe 300 days Sat 2/14/15 Thu 12/10/15 Construct road kerb Thu 7/9/15 Sun 1/24/16 200 days Construct footpath, planting area and concrete run-in Mon 8/3/15 Thu 2/18/16 200 days Mon 9/7/15 Thu 3/24/16 Construct central divider Construct flexible carriageway Sat 4/23/16 20 days Sun 4/24/16 Fri 5/13/16 Road marking Fri 5/13/16 Plants delivery for landscaping works 30 days Thu 4/14/16 Fri 5/27/16 Preparatory works for landscaping works Sat 5/14/16 Sat 5/28/16 Thu 6/2/16 6 days Tree and shurb planting Fri 6/3/16 Sat 7/2/16 30 days Terminal float 62 days Sun 7/3/16 Fri 9/2/16 Critical tasks Working days Commencement Date: 19 September 2013 Completion Date: 2 September 2016

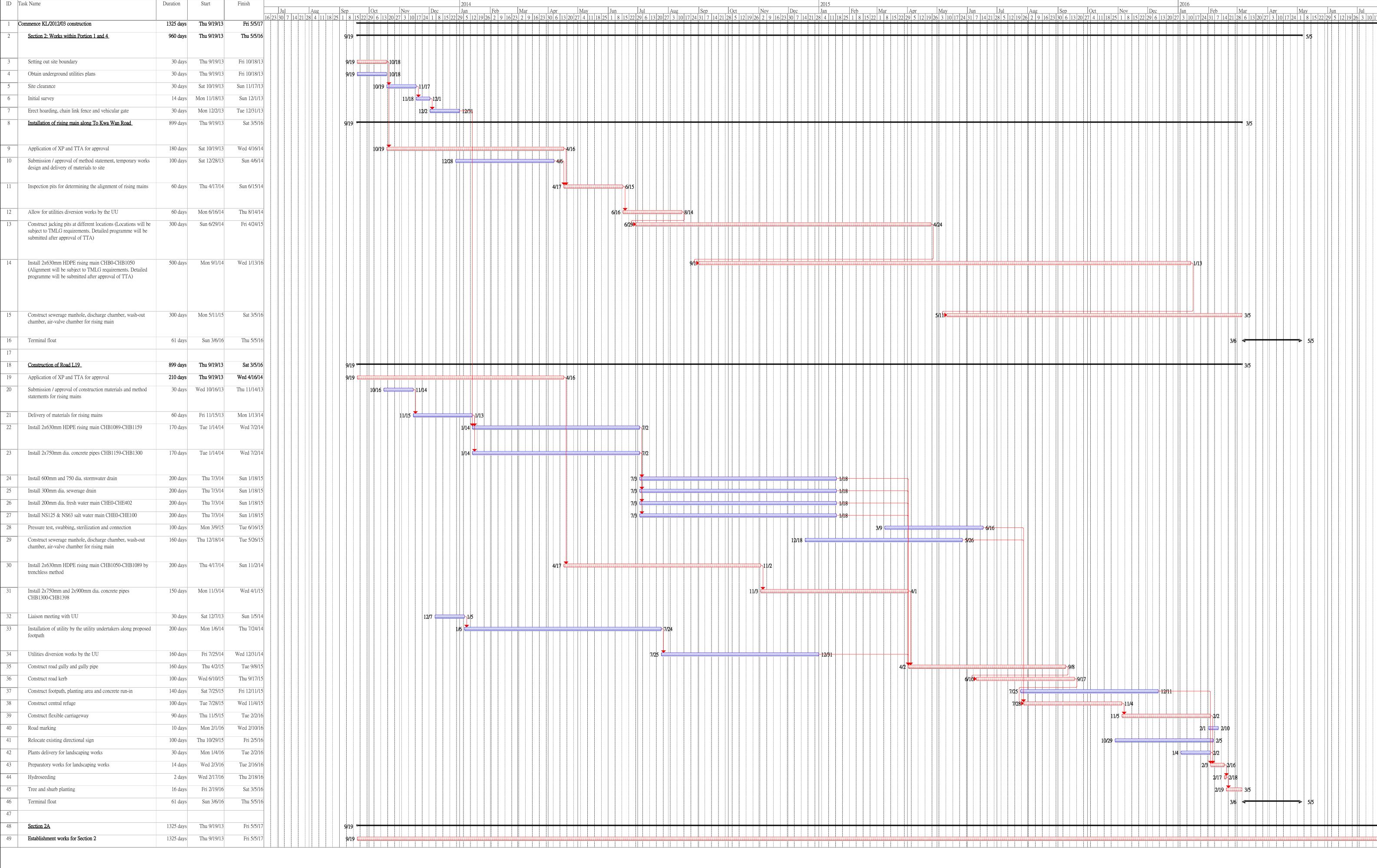
Master Programme ID Task Name Duration Start Commence KL/2012/03 construction Sat 9/2/17 1445 days Thu 9/19/13 1080 days Fri 9/2/16 Section 1: Works within Portion 1 and 3 Thu 9/19/13 Widening of Existing Footpaths at Sung Wong Toi Road and 1080 days Thu 9/19/13 Fri 9/2/16 To Kwa Wan Road 21 days Thu 9/19/13 Wed 10/9/13 Site possession and preparation works Setting out site boundary and site clearance Fri 11/8/13 25 days Tue 11/12/13 Fri 12/6/13 Initial joint survey Sun 11/17/13 Obtain underground utilities plans 60 days Thu 9/19/13 Erect hoarding, chain link fence and vehicular gate Thu 12/5/13 Sun 2/2/14 60 days 210 days Wed 10/2/13 Tue 4/29/14 Apply XP for roadworks Approval of TTA drawings Sat 2/15/14 90 days | Mon 11/18/13 Tue 1/7/14 Liaison meeting with UU Installation of utility by the utility undertakers along proposed 340 days Wed 1/8/14 Sat 12/13/14 footpath, XP to be applied by UU 30 days Wed 1/29/14 Thu 2/27/14 Submission / approval of construction materials and method statements for watermains Delivery of materials for watermains Fri 2/28/14 Mon 4/28/14 Wed 4/30/14 Install 300mm dia. fresh water main CHA0-CHA283 Sat 11/15/14 5/20 Tue 5/20/14 Install 300mm dia. fresh water main CHB0-CHB555 200 days Fri 12/5/14 Wed 12/31/14 Install 450mm dia. salt water main CHA0-CHA555 Sun 6/15/14 Wed 1/28/15 Install 800mm dia. salt water main CHD0-CHD52 Pressure test, swabbing, sterilization and connection Thu 2/19/15 100 days Fri 10/10/14 Sat 1/17/15 Construct valve, fire hydrant, air-valve and wash-out chambers for watermain Fri 3/13/15 Install irrigation system 120 days Fri 11/14/14 Construct u-channel, drainpit and stormwater drain Sun 3/22/15 250 days Sun 12/14/14 Construct road gully and gully pipe Thu 8/20/15 Application and install traffic signal at the Junction of Sung Mon 8/31/15 150 days Sat 4/4/15 Wong Toi Road / To Kwa Wan Road Application and install traffic signal at the Junction along Sung 150 days Sun 4/5/15 Wong Toi Road Thu 4/2/15 Fri 11/27/15 Construct road kerb and new footpath Construct carriageway at the existing footpath 270 days Sat 3/26/16 Erect traffic sign 100 days Re-surface existing carriageway 60 days Sun 3/27/16 Wed 5/25/16 Road marking Wed 5/4/16 Fri 5/13/16 5/4 5/13 Tue 5/24/16 Plants delivery for landscaping works 30 days Mon 4/25/16 Thu 5/26/16 Preparatory works for landscaping works 14 days Wed 6/8/16 Thu 6/9/16 Sun 6/12/16 Hydroseeding Tree and shurb planting 20 days Mon 6/13/16 Sat 7/2/16 Terminal float Sun 7/3/16 Fri 9/2/16 Construction of Box Culverts B6 978 days Mon 9/30/13 Fri 6/3/16 15 days Mon 9/30/13 Mon 10/14/13 Site possession and preparation works 9/30 ______10/14 10/15 60 days Tue 10/15/13 Fri 12/13/13 Submission / approval of construction materials and method statements for box culverts B6 Plant mobilization 14 days Sat 12/14/13 Fri 12/27/13 12/14 12/27 12/28 🎹 Construct temporary works and excavation to the formation 500 days Sat 12/28/13 Mon 5/11/15 level for box culverts B6 Construct drainage box culverts B6 500 days Wed 6/4/14 Precast box culvert preparation works 100 days Tue 6/16/15 Wed 9/23/15 Modification of seawall 100 days Sat 10/17/15 Sun 1/24/16 Soil backfilling works 160 days Mon 1/25/16 Sat 7/2/16 Terminal float 62 days Sun 7/3/16 Fri 9/2/16 Demolition of Kowloon East DWFI pumping station 120 days Sun 2/28/16 Sun 6/26/16 Submission / approval of method statements 60 days Tue 12/22/15 Fri 2/19/16 Demolish Kowloon East DWFI pumping station (To be carried 120 days Sun 2/28/16 Sun 6/26/16

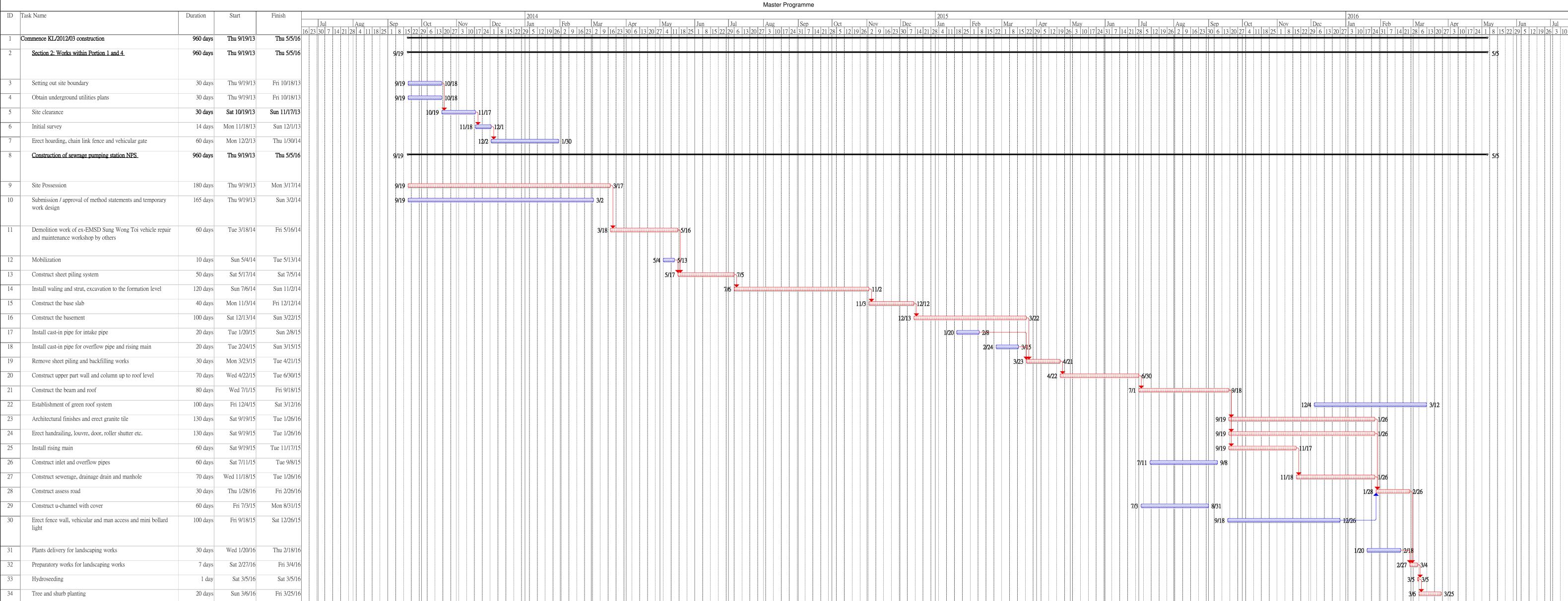
Critical tasks Working days Commencement Date: 19 September 2013 Completion Date: 2 September 2016

out after completion of NPS)

Establishment works for Section 1

Section 1A


1445 days Thu 9/19/13


1445 days Thu 9/19/13

Sat 9/2/17

Sat 9/2/17

Master Programme

Commencement Date: 19 September 2013 Completion Date: 5 May 2016

Terminal float

submitted separately)

Submission / approval of E&M services materials and delivery

E&M building service installation. (Details programme will be 180 days Tue 9/22/15 Sat 3/19/16

(Detailed programme will be submitted separately)

41 days Sat 3/26/16

570 days Sat 3/1/14 Mon 9/21/15

Thu 5/5/16

KL/2012/03 Kai Tak Development -Stage 4 Infrastructure at Former North Apron Area Master Programme ID Task Name Duration Start Commence KL/2012/03 construction 1173 days Thu 9/19/13 Sun 12/4/16 Section 3: Works within Portion 1 808 days Thu 9/19/13 Sat 12/5/15 Works for Part of Road D2 808 days Thu 9/19/13 Sat 12/5/15 Site possession and preparation works 15 days Thu 9/19/13 Thu 10/3/13 Fri 10/4/13 Wed 10/23/13 Site clearance and setting out site boundary Apply XP for roadworks at junction of SWTR and TKWR and 210 days Tue 10/15/13 Mon 5/12/14 TTA approval Submission of baseline monitoring for EPD approval 30 days Mon 10/7/13 Tue 11/5/13 Approval of baseline monitoring by EPD 30 days Wed 11/6/13 Thu 12/5/13 Install 400mm dia. fresh water main CHC0-CHC30 100 days Tue 5/13/14 Wed 8/20/14 Install 300 and 450mm dia. salt water main CHB0-CHB30 100 days Thu 8/21/14 Fri 11/28/14 Submission / approval of construction materials and method 40 days Sat 10/12/13 Wed 11/20/13 statements for rising mains Delivery of materials for rising mains 60 days Thu 11/21/13 Sun 1/19/14 Construct 750mm dia. concrete pipes CHA450-CHA630 250 days Mon 1/20/14 Construct sewerage manhole for rising main Fri 9/19/14 Sun 2/15/15 70 days Wed 4/30/14 Tue 7/8/14 Construct jacking pits Install 2x750mm dia. rising main CHA636-CHA716 Wed 7/9/14 Fri 12/5/14 Submission / approval of construction materials and method 30 days Mon 3/24/14 statements for watermains Delivery of materials for watermains 60 days Wed 4/23/14 Sat 6/21/14 Install 400mm dia. fresh water main CHC30-CHC250 200 days Fri 6/27/14 Mon 1/12/15 Install 300 and 450mm dia. salt water main CHB30-CHB250 200 days Sat 7/19/14 Tue 2/3/15 Pressure test, swabbing, sterilization and connection 60 days Sun 12/21/14 Wed 2/18/15 Construct valve, air-valve and wash-out chambers for 100 days Tue 12/9/14 Wed 3/18/15 watermain Install irrigation system 100 days Sun 12/21/14 Mon 3/30/15 Submission / approval of construction materials and delivery of 40 days Tue 3/18/14 Sat 4/26/14 materials and method statements for stormdrain drain Install stormwater drain and manhole 250 days Sun 4/27/14 Thu 1/1/15 Fri 11/15/13 Liaison meeting with UU 30 days Thu 10/17/13 Installation of utility by the utility undertakers along proposed 360 days Sat 11/16/13 Mon 11/10/14 11/16 footpath and CLP tunnel Construct drainpit and u-channel 100 days Tue 11/11/14 Wed 2/18/15 11/11 150 days Tue 1/20/15 Thu 6/18/15 Construct road gully and gully pipe Construct road kerb 100 days Mon 3/23/15 Tue 6/30/15 Construct footpath, planting area and concrete run-in Sun 4/5/15 Mon 7/13/15

Commencement Date: 19 September 2013 Completion Date: 5 December 2015

Master Programme ID Task Name Duration Start Commence KL/2012/03 construction Thu 5/25/17 1345 days Thu 9/19/13 Section 5: Portion 1 (Subject to Excision) 980 days Thu 9/19/13 Wed 5/25/16 Works for Part of Road D2 (Footpath only) 980 days Thu 9/19/13 Wed 5/25/16 Mon 10/14/13 15 days Mon 9/30/13 9/30 🚎 Site possession and preparation works <u>ነ</u>10/14 Awaiting for the notification of commencement of works by the Interface works meeting with CLP 30 days Tue 10/15/13 Wed 11/13/13 Construct of CLP tunnel by CLP CH67 to CH250 (Exact 444 days Thu 11/14/13 Sat 1/31/15 duration will be agreed with CLP) Construct of CLP tunnel by CLP CH527 to CH585 (Exact 383 days Thu 11/14/13 Mon 12/1/14 duration will be agreed with CLP) Construct of CLP tunnel by CLP CH385 to CH527(Exact 395 days Thu 10/2/14 Sat 10/31/15 duration will be agreed with CLP) Construct of CLP tunnel by CLP CH250 to CH385 (Exact 321 days Thu 11/14/13 Tue 9/30/14 duration will be agreed with CLP) Construct of CLP tunnel by CLP CH0 to CH67 Exact duration 275 days Sat 1/31/15 Sun 11/1/15 will be agreed with CLP) Construct of CLP tunnel by CLP CH585 to CH724 (Exact 365 days Wed 1/1/14 Wed 12/31/14 duration will be agreed with CLP) Installation of utility by the utility undertakers along proposed 350 days Fri 1/2/15 Thu 12/17/15 footpath (Exact duration will be agreed with UU) Thu 3/5/15 Sun 2/7/16 Construct drainpit and u-channel 340 days Thu 1/21/16 Sat 3/28/15 Install stormwater drain, sewerage drain and manholes Install FWM and SWM and chambers 300 days Thu 4/2/15 Tue 1/26/16 Wed 4/1/15 Mon 1/25/16 Install irrigation system 300 days Tue 12/8/15 Tue 1/26/16 Install fire hydrant Sun 4/17/16 Install street lighting Mon 2/8/16 Sun 4/17/16 Mon 2/8/16 Construct footpath, planting area and concrete run-in 70 days Plants delivery for landscaping works Sun 4/10/16 14 days Mon 4/18/16 Preparatory works for landscaping works Sun 5/1/16 Mon 5/2/16 Tue 5/3/16 Hydroseeding Tree and shurb planting Wed 5/4/16 Wed 5/25/16 Section 5A: (Subject to Excision) 1345 days Thu 9/19/13 Thu 5/25/17 Establishment works for Section 5 1345 days Thu 9/19/13 Thu 5/25/17 Section 7A: Portion 1 (Subject to Excision) 800 days Thu 9/19/13 Fri 11/27/15 Awaiting for the notification of commencement of works by the l Fri 12/27/13 Construct one 500mm dia., two 1000mm dia. District Cooling 350 days Sat 12/28/13 Fri 12/12/14 System (DCS) chilled water pipes and four 1400mm dia. seawater pipes Construct two DCS chilled water pipes tee to the building lots. 350 days Thu 3/6/14 Wed 2/18/15 The diameter of DCS chilled water pipes are 200mm, 500mm and 800mm subject to various locations 200 days Sat 9/13/14 Tue 3/31/15 Construct valve chambers, instrumentation chambers, access manhole, thrust blocks, insulation provision for the DCS chilled Construct the leakage detection system for DCS chilled water 150 days Sun 11/9/14 Tue 4/7/15 Construct the cable ducts and associated draw pits for the 150 days Wed 11/26/14 Fri 4/24/15 communication system

Critical tasks Working days

300 days Wed 1/1/14 Mon 10/27/14

Fri 3/6/15

Fri 1/9/15

Fri 5/29/15

10 days Wed 11/18/15 Fri 11/27/15

200 days Sat 12/27/14

70 days Thu 6/25/15

80 days Sun 6/28/15

100 days Thu 7/23/15

100 days Mon 8/10/15

200 days

150 days

Sat 6/13/15

Tue 7/14/15

Wed 9/2/15 Tue 9/15/15

Mon 7/27/15

Sun 10/25/15

Tue 11/17/15

Interfacing works with EMSD 1020EM12A Contractor for

and chilled water pipes

Testing and commissioning of the works

Pressure test, swabbing, sterilization and connection

Install FWM and SWM and chambers

Construct road gully and gully pipe

Construct flexible carriageway

Construct road kerb

Road marking

connection of the proposed four seawater pipes and three chilled water pipes in Section C to their construction of seawater pipes

Construct valve, fire hydrant, air-valve and wash-out chambers f

Install stormwater drain, sewerage drain and construct manhole

Commencement Date: Completion Date:

APPENDIX O ENVIRONMENTAL REQUIREMENT IN CONTRACT DOCUMENTS

SECTION 25

ENVIRONMENTAL PROTECTION

GENERAL

General requirements

25.01 The following is added after GS Clause 25.01(5)

(6) Any stoppage or reduction in output resulting from compliance with this clause and any other provisions in Section 25, including those provisions inserted, supplemented or modified by PS Section 25 shall not entitle the Contractor to any extension of time for completion or to any additional costs whatsoever.

Add the following clauses after GS Clause 25.01

Environmental 25.01A permit

- (1) PS2 and PS NPS Sewage Pumping Stations are classified as a Schedule 2 Part I designated project under the Environmental Impact Assessment Ordinance (Cap.499) (EIAO) and thus its construction and operation shall be governed by an Environmental Permit (EP). For the purpose of this Contract, "Environmental Permit" means any environmental permit issued by the Director of Environmental Protection in respect of the Works or project which the Works form a part thereof under the EIAO including any further environmental permit or variation of the environmental permit.
- (2) In accordance with GCC Clause 32, the Contractor shall conform in all respects with the conditions of the EP-344/2009 or the latest version of this EP. The relevant environmental permit No. EP-344/2009 "PS2 and PS NPS Sewage Pumping Stations" under the permit holder of Civil Engineering and Development Department is attached in PS Appendix 25A.
- (3) Road D2 is classified as a Schedule 2 Part I designated project under the Environmental Impact Assessment Ordinance (Cap.499) (EIAO) and thus its construction and operation shall be governed by an Environmental Permit (EP). For the purpose of this Contract, "Environmental Permit" means any environmental permit issued by the Director of Environmental Protection in respect of the Works or project which the Works form a part thereof under the EIAO including any further environmental permit or variation of the environmental permit.

- (4) In accordance with GCC Clause 32, the Contractor shall conform in all respects with the conditions of the EP-337/2009 or the latest version of this EP. The relevant environmental permit No. EP-337/2009 "Road D2" under the permit holder of Civil Engineering and Development Department is attached in PS Appendix 25B.
- (5) The Contractor shall be responsible for displaying a copy of the most updated Environmental Permits at each of the locations within the Site as stipulated under the Environmental Permit and as directed by the Engineer.
- (6) Any submission including without limitation, schedules, reports, drawings and documents prepared by the Contractor and any application made by the Contractor for the purpose of satisfying the requirements and obligations under or arising out of the EPs, this PS Section and other relevant provisions of the PS shall be submitted through the Engineer to the Director of Environmental Protection (DEP). The Contractor shall deliver his submissions or applications to the Engineer in a timely manner so as to enable the Engineer to make timely onward submission of the same to the Director of Environmental Protection.
- (7) It is unnecessary for the Contractor to apply for and hold the environmental permits since he may rely on the Environmental Permits obtained by the Employer. Should for any reason the Contractor choose to apply for and hold the environmental permit(s) he shall do so at his own risk and cost and it shall not form the basis of any claim for extension of time.
- (8) In addition, the Contractor shall provide and carry out pollution control measures for the Works in accordance with this PS Section. The requirements and conditions of the Environmental Permits shall take precedence in the event of any conflict with the conditions stated in this PS Section and other relevant provisions of the PS. The conditions stated in this PS Section and other relevant provisions of the PS shall not supersede or nullify any requirements and conditions of the Environmental Permits. This PS Section provides additional requirements deemed to be necessary for the good environmental management of the Project and to minimize adverse environmental impacts.

- (9) The Contractor shall be deemed to have noticed that the environmental protection requirements under this PS section and other relevant provisions of the PS may not be exhaustive for full compliance of the conditions of the EPs. The Contractor shall refer to the following Report:
 - (i) Project Profile and EIA report for PS2 and PS NPS Sewage Pumping Stations (AEIAR-130/2009).
 - (ii) Project Profile and EIA report for Road D2 (AEIAR-130/2009).

The Engineer may during the course of execution of this Contract, instruct the Contractor to perform any further environmental protection measures and monitoring as he considered reasonable at the own cost of the Contractor.

- (10) According to Condition 1.11 of the EPs, the Contractor shall notify EPD in writing the commencement date of construction of the Works no later than one month prior to the commencement of construction of the Works. The Contractor shall notify EPD in writing immediately if there is any change of the commencement date of the construction.
- (11) The Contractor shall fulfil all conditions and requirements specified in the EP Nos. EP-344/2009 and EP-337/2009 at his own cost that are summarised but not limited to the following:
 - (a) establish an Environmental Team (ET)
 - (b) employ an Independent Environmental Checker (IEC)
 - (c) implement measures for mitigating odour impact
 - (d) implement measures for mitigating noise impact
 - (e) implement measures for mitigating water quality impact
 - (f) implement measures for mitigating land contamination impact
 - (g) implement measures for mitigating landscaping and visual impact

- (h) submit baseline monitoring report and monthly EM&A reports
- (12) The Contractor shall submit four hard copies and one electronic copy of the baseline monitoring report to the Engineer for comment and approval. The report shall be certified by the ET Leader and verified by the IEC as complying with the relevant requirements as set out in sections 1, 3, 15 & 16 of the EM&A manual of the approved EIA report (Register No. AEIAR-130/2009). The approved EIA report and EM&A manual can be retrieved from EPD's web site http://www.epd.gov.hk/eia/english/register/aeiara/kt.html.
- (13)The Contractor shall submit four hard copies and one electronic copy of the monthly EM&A Reports to the Engineer within one week after the end of the reporting month. The monthly EM&A Reports shall include a non-compliance summary of all with recommendations in the EIA Report or EPs. The reports shall be certified by the ET Leader and verified by the IEC as complying with the relevant requirements as set out in sections 1, 3, 15 & 16 of the EM&A manual of the approved EIA report (Register No. AEIAR-130/2009). The approved EIA report and EM&A manual can be retrieved from EPD's web site http://www.epd.gov.hk/eia/english/register/aeiara/kt.ht ml.

The following is added after GS Clause 25.08:-

Surface runoff 25.08A

(1) The design of sand/silt removal facilities should be based on the guidelines provided in ProPECC PN 1/94. All sand/silt removal facilities, drainages and manholes should be maintained and deposited silt and grit should be removed regularly to ensure proper and efficient operation at all times and particularly during rainstorms.

AECOM Asia Co. Ltd. PS25/4 2013

The following is added after GS Clause 25.09:-

Construction works in close proximity of inland water or seafront 25.09A

- (1) The Contractor shall adopt the practices outlined in ETWB TC (Works) No. 5/2005 "Protection of natural streams/rivers from adverse impacts arising from construction works" when the construction works located at or near any river channels, natural streams or seafront.
- (2) Construction works such as soil excavation should be programmed in dry season where the flow in the storm culvert/river channel/stream is low.
- (3) Intercepting channels should be provided to prevent storm runoff from washing across exposed soil surfaces. Temporary sewage system should be designed to prevent wastewater from entering the inland water and inshore water.
- (4) Any works site inside the storm water curses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the storm water quality.
- (5) Final surfaces after excavation shall be compacted and the surface protection shall be carried out as soon as practical after the final surfaces are formed to prevent erosion caused by rainstorms.

Accidental 25.09B spillage

- (1) Oil and fuels should only be used and stored in designated areas which have pollution prevention facilities. All fuel tanks and storage areas should be sited on sealed areas in order to prevent spillage of fuels and solvents to the nearby watercourses and coastal water. All waste oils and fuels should be collected in designated tanks prior to disposal.
- (2) Maintenance of vehicles and equipments involving activities with potential for leakage and spillage should only be undertaken within the areas which appropriately equipped to control these discharges.

AECOM Asia Co. Ltd. PS25/5 2013

GS Clause 25.13 is renamed as 25.13(1) and add the following after Clause 25.13(1):-

Construction noise 25.13 permit

- (2) The Contractor's attention is drawn to the need of considering the cumulative effects of concurrent construction works in the area in his applications to the relevant authorities. The submission shall include, but are not limited to, the following:
 - (a) the locations of sensitive receivers;
 - (b) a plant inventory for each major construction activity;
 - (c) documentary proof of the sound power levels for each item in the plant inventory;
 - (d) cumulative effects of concurrent works in the vicinity;
 - (e) predicted noise levels at the sensitive receivers; and
 - (f) proposed noise mitigation measures if the predicted noise levels exceed the statutory noise limits; adequate details should be included to demonstrate the practicability of any proposed mitigations measures for the plants.

Dust suppression 25.15 The following is added after Clause 25.15(13):-

- (14) Weigh hoppers shall be vented to suitable filters.
- (15) The filter bags in the cement silo dust collector must be thoroughly shaken after cement is blown into the silo to ensure adequate dust collection for subsequent loading.
- (16) For dry mix bathing, the process should be done in total by enclosure with the exhaust attached on to a fabric filter.
- (17) All cement and concrete trucks are to be effectively washed down after loading and prior to leaving the works.

- (18) The Contractor shall not install any furnace, boiler or other plant or equipment or use any fuel that might in any circumstance produce smoke or any other air pollution without the prior consent of the Engineer. Unless specifically instructed by the Engineer, the Contractor shall not light fires on site for the burning of debris or any other matter.
- (19) The Contractor shall ensure that the portion of any temporary access road leading only to the Site that is within 30m of a discernible or designated vehicle entrance or exit shall be kept clear of dusty materials.

Add the following clauses after GS Clause 25.20:-

Asbestos related 25.20A works

- (1) The Contractor shall comply with provisions of the Waste Disposal Ordinance, Cap. 354 relating to the disposal of asbestos waste. In particular, the Contractor shall register with the Environmental Protection Department as a registered waste producer under the Waste Disposal (Chemical Waste) (General) Regulation.
- (2) In accordance with Section 21 of the Waste Disposal (Chemical Waste) (General) Regulation, the Contractor shall engage the service of a licensed waste collector to collect the asbestos cement waste for disposal if the Contractor is not a licensed waste collector.
- (3) Notwithstanding the provisions in the above subclauses, the Contractor shall comply with all Ordinances and Safety Regulations in working with asbestos materials.

GS Clause 25.22 is deleted and replaced by the following:-

Reduced use of 25.22 timber in temporary works

- (1) Hardwood shall not be used for the following items of Temporary Works:
 - (a) Hoardings, in both the framing and the paneling.
 - (b) Falsework, which is defined as a temporary structure used to support formwork and a permanent structure until the permanent structure is self-supporting.

AECOM Asia Co. Ltd. PS25/7 2013

- (c) Trench support, which is defined as the shoring, strutting and propping used to support temporary openings below surface ground level.
- (d) Formwork, which is defined as the mould against which concrete is cast and which gives the shape and finish to the concrete surface and which may be permanent or temporary.
- (e) Project signboard and all its components.
- (2) The Contractor shall propose alternatives to hardwood for approval of the Engineer.

The following is added after GS Clause 25.25

Construction waste disposal charging scheme

25.25A

- (1) In addition to the Trip Ticket System, the Contractor shall fully comply with the Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 354N) to implement the Construction Waste Disposal Charging Scheme (Charging Scheme).
- (2) The Contractor shall be responsible to open a billing account solely for the contract with the Environmental Protection Department and pay the charges through the account. Application for the billing account shall be made within 21 days after the contract is awarded. Failing this will be an offence under the law.

Baseline and 25.36 impact monitoring

The Contractor shall carry out baseline monitoring (1) below at the monitoring locations and numbers to be agreed by the Engineer for at least 14 consecutive days prior to the commissioning of the construction works. The purpose of the baseline monitoring is to ambient conditions establish prior commencement of the works and to demonstrate the suitability of the monitoring stations. A schedule on the baseline monitoring and the method statement shall be submitted to the Engineer for approval within 7 days after the commencement of the Contract. During the baseline monitoring, there should not be any construction activities in the vicinity of the monitoring stations.

AECOM Asia Co. Ltd. PS25/8 2013

Noise Monitoring

- (a) Within two weeks of the commencement of the Contract, the Contractor shall provide an approved integrating sound level meter in compliance with the International Electrotechnical Commission **Publications** 651:1979 (Type 1) and 804:1985 (Type 1) and the manufacturer's recommended sound level calibrator for the exclusive use of the Engineer at all times. The Contractor shall maintain the equipment in proper working order and provide a substitute when the equipment are out of order or otherwise not available. Contractor shall keep the equipment verified by the manufacturers at suitable intervals, to ensure that the equipment perform the same level of accuracies as stated in the manufacture's specifications, so that at any time of taking measurements, the equipment shall have been verified at least once within the proceeding two years.
- (b) Baseline noise monitoring shall be carried out prior to the commencement of the construction works. The baseline monitoring shall be carried out daily for a period of at least two weeks. A schedule on the baseline monitoring shall be sent to the Contractor and Engineer before the monitoring starts.
- (c) Impact monitoring shall be carried out at all the designated monitoring stations agreed by the Engineer. The monitoring frequency shall depend on the scale of the construction activities. The following is an initial guide on the regular monitoring frequency for each station on a per week basis when noise generating activities are underway.
 - (i) one set of measurements between 0700-1900 hours on normal weekdays;
 - (ii) measurements between 1900-2300 hours;
 - (iii) measurements between 2300-0700 hours of next day; and
 - (iv) measurements between 0700-1900 hours on holidays.

For the measurements (ii), (iii) and (iv) above, as an indication, one set of measurements shall at least include 3 consecutive Leq (5 min) results and shall only be carried out when there are construction activities scheduled during those periods. The frequency and scope of monitoring shall be determined by the CNP application and the Noise Control Authority. Applicable permits under NCO shall be obtained by the Contractor.

(d) If a school exists near the construction activity, noise monitoring shall be carried out at the monitoring stations for the schools during the school examination periods. The Contractor shall liaise with the school's personnel and the Examination Authority to ascertain the exact dates and times of all examination periods during the course of the contract.

In case of non-compliance with the construction noise criteria, more frequent monitoring, as specified in the Action Plan in sub-clause (e) below, shall be carried out. This additional monitoring shall be continued until the recorded noise levels are rectified or demonstrated to be unrelated to the construction activities.

- (e) The Action and Limit levels for construction noise are defined in Appendix 25C. Should non-compliance of the criteria occurs, action in accordance with the Action Plan in Appendix 25C shall be carried out.
- (2) In exceptional cases, when insufficient baseline monitoring data or questionable results are obtained, the Contractor shall liaise with the Engineer to agree on an appropriate set of data to be used as a baseline reference and submit this to the Engineer approval.
- (3) The Contractor shall take note to the established baseline measurement that would be used as compliance levels for monitoring and control the environmental impacts of construction activities during the construction period.

(4) The Contractor shall be responsible to carry out additional baseline monitoring as per the Engineer's request from time to time during the construction period.

- End of PS Section 25 -

PS Appendix 1AE

Water Quality Monitoring (PS Clause 1.90)

Monitoring 1AEA1 schedule

The Contractor shall conduct water quality monitoring (WQM) activities at 12 designated monitoring stations for 24 months. The exact schedule of the monitoring work shall be determined by the Engineer's Representative. Extra WQM activities might be required whenever instructed by the Engineer. For any reason that the tentative schedule cannot be fulfilled, the Contractor shall seek agreement with the Engineer in advance.

Details of 1AEA2 works

Details of the additional WQM are as follows:

- Water sampling at 12 designated monitoring stations at Kai Tak Approach Channel and other areas as instructed by the Engineer.
- In-situ measurement of dissolved oxygen (DO), ORP, water depth and water temperature
- Laboratory testing of E. Coli
- Result analysis and report submission

Sampling 1AEA3 frequency and methods

- (a) During each monitoring activity, sampling shall be taken at two tide conditions (mid-flood and mid-ebb).
- (b) During each sampling occasion, measurements shall be taken at three water depths, namely, 1m below water surface, mid-depth and 1m above sea bed, except where the water depth is less than 6m, in which case the mid-depth station may be omitted. In case that the water depth is less than 3m, only the mid-depth station will be monitored.
- (c) At each monitoring location, duplicate samples shall be collected at each water depth. Sufficient volume of each water sample shall be collected for analysis to achieve the required detection limit. Apart from the depth specified in **(b)**, *in-situ* measurement for DO shall also be taken at 0.5m depth intervals at all the marine water quality monitoring stations.
- (d) The water quality monitoring programme and schedule should be agreed with the Consultant's Representative at least one week before the monitoring. The Consultant's Representative should be immediately notified of any change of schedule.

Monitoring 1AEA4 parameters

The parameters for the WQM include *in-situ* measurements for DO, water temperature and laboratory analysis of *E. coli*.

Other relevant data shall also be recorded, including monitoring location / position, time, water depth, water temperature, sampling depth, tidal stages, weather conditions and any special phenomena or work underway nearby.

Dissolved Oxygen and Temperature Measuring Equipment

Marine water 1AEA5 quality monitoring equipment

- (a) The instrument shall be a portable and weatherproof DO measuring instrument complete with cable and sensor, and use a DC power source. The equipment shall be capable of measuring:
 - (i) a DO level in the range of 0 20 mg L-1 and 0 200% saturation; and
 - (ii) a temperature of 0-45 degree Celsius.
- (b) It shall have a membrane electrode with automatic temperature compensation complete with a cable (for example, YSI model 59 meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument). Sufficient stocks of spare electrodes and cables shall be available for replacement where necessary.
- (c) Should salinity compensation not be built-in to the DO equipment, in-situ salinity should be measured to calibrate the DO equipment prior to each DO measurement.

Sampler

(d) A water sampler is required. It should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler shall have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (for example, Kahlsico Water Sampler or an approved similar instrument).

Water Depth Detector

(e) A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

<u>ORP</u>

(f) A redox meter calibrated to ISO9002 standards shall be used to measure the ORP and it shall be readable to 1mV in the reporting limit. The testing method shall follow APHA 20e 2580 B.

Sample Containers and Storage

(g) Water samples for SS shall be stored in high density polythene bottles, packed in ice (cooled to 4°C without being frozen) and delivered to the laboratory and analysed as soon as possible after collection. Sufficient volume of samples shall be collected to achieve the detection limit.

Monitoring Position Equipment

(h) A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication or other equipment instrument of similar accuracy, should be provided and used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements. DGPS or the equivalent instrument, calibrated at appropriate checkpoint (e.g. Quarry Bay Survey Nail at Easting 840683.49, Northing 816709.55) shall be provided and used to ensure the monitoring station is at the correct position before taking measurement and water samples.

Calibration of In-Situ Instruments

- (i) All *in-situ* monitoring instruments should be checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use and subsequently re-calibrated at three monthly intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter should be carried out before measurement at each monitoring location.
- (j) For the on site calibration of field equipment, the BS 127:1993, Guide to Field and On-Site Test Methods for the Analysis of Water shall be observed.
- (k) Sufficient stocks of spare parts shall be maintained for replacements when necessary. Backup monitoring equipment should also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.

Laboratory 1AEA6
measurement /
analysis for
marine water
quality
samples

- (a) Water samples collected at the monitoring stations shall be analyzed at the laboratory for Ecoli. Sufficient water samples of not less than 2 litre should be collected at the monitoring stations for carrying out the laboratory determinations.
- (b) The testing method of *E. Coli* shall in accordance to the Wat. Sci. Tech. Vol.35, No. 11-12, pp 409-413. The lowest detection limit of *E. Coli* testing shall be 1 CFU per 100ml.

AECOM Asia Co. Ltd. PSA1AE/3 2013

- (c) The testing of all parameters should be HOKLAS accredited (or if not, approved by the Consultant) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results.
- (d) Detailed testing methods, pre-treatment procedures, instrument use, Quality Assurance/ Quality Control (QA/QC) details (such as blank, spike recovery, number of duplicate samples per batch, etc.), detection limits and accuracy shall be in accordance with the requirement of HOKLAS or international accredited scheme and, if required, submitted to the Consultant for approval prior to the commencement of the monitoring programme. The QA/QC results shall be reported.
- (e) Additional duplicate samples may be required by the Consultant for inter laboratory calibration. The Contractor shall be responsible for sampling and testing of the duplicate additional samples if required. Remaining samples after analysis should be kept by the laboratory for 3 months in case repeat analysis is required. If in-house or non-standard methods are proposed, details of the method verification may also be required to be submitted to the Consultant. In any circumstance, the sample testing should have comprehensive quality assurance and quality control programmes. The laboratory shall demonstrate the programmes to the Consultant when requested.

Decontamination Procedures

QA/QC 1AEA7 requirements

(a) Water sampling equipment used during the course of the monitoring programme shall be decontaminated by manual washing and rinsed with clean seawater/distilled water after each sampling event. All disposable equipment shall be discarded after sampling.

Sample Management & Supervision

(b) Water samples shall be dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples shall be stored in a cool box and kept at less than 4oC but without frozen. All water samples shall be handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.

Quality Control Measures for Sample Testing

- (c) The samples testing shall be performed by HOKLAS-accredited laboratories. The following quality control programme shall be performed by the laboratories for each batch of samples:
 - (i) Method blank;
 - (ii) Sample duplicate;

AECOM Asia Co. Ltd. PSA1AE/4 2013

- (iii) Sample spike; and
- (iv) Quality control samples.
- (d) Detailed testing methods, pre-treatment procedures, instrument use, QA/QC details (such as blank, spike recovery, number of duplicate samples per batch, etc.), detection limits and accuracy shall be in accordance with the requirement of HOKLAS or international accredited scheme. The laboratories shall provide the QA/QC results in the laboratory analysis report.

Reporting on 1AEA8 monitoring data

Monitoring data (in both hard and soft copies) shall be prepared and submitted to the Consultant on a monthly basis. The monitoring data shall be submitted within 1 week of completion of every monitoring. The Contractor shall also submit the monitoring report within 14 days after the completion of every monitoring. The monitoring report shall include, but not be limited to the followings:

- Drawing showing locations of the monitoring stations
- Monitoring results together with the following information:
 - Monitoring methodology
 - Name of the laboratory and types of equipment used and calibration details
 - Parameters monitored
 - Monitoring data, time, frequency and duration
 - Quality assurance/ quality control results and detection limits
- Interpretation of the monitoring results includes but not limit to statistical analysis of the monitoring data, graphic presentation of the trend of monitoring data. Details of influencing factors shall be provided whenever anomalies were found.

Sampling 1AEA9 locations

Locations of the designated water sampling monitoring stations are summarised below. The exact locations shall be determined on site by the Consultant's Representative.

Station	Easting	Northing		
AC1	838736.55	820147.04		
AC2	838807.83	820218.32		
AC3	838952.22	819920.71		
AC4	839030.88	819988.82		
AC5	839214.12	819690.85		
AC6	839278.27	819755.00		
AC7	839418.24	819545.62		
KT1	840260.66	819010.57		
KTN	838776.18	820399.67		
JVBC	839165.73	819940.86		