Civil Engineering and Development Department

EP-344/2009 – New Sewage Pumping Stations Serving KTD and EP-337/2009 – New Distributor Roads Serving the Planned KTD

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Monthly EM&A Report

January 2014

(Version 2.0)

Approved By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
	Introduction	1
	Environmental Monitoring Works	2
	Environmental Licenses and Permits	
	Key Information in the Reporting Month	
	Future Key Issues	
	Status of Compliance with Environmental Permits Conditions	4
1.	INTRODUCTION	5
	Background	5
	Project Organizations	
	Construction Activities undertaken during the Reporting Month	6
	Summary of EM&A Requirements	7
2.	AIR QUALITY	8
	Monitoring Requirements	8
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	9
	Monitoring Methodology and QA/QC Procedure	
	Results and Observations	11
3.	NOISE	13
	Monitoring Requirements	13
	Monitoring Locations	
	Monitoring Equipment	
	Monitoring Parameters, Frequency and Duration	13
	Monitoring Methodology and QA/QC Procedures	
	Maintenance and Calibration	
	Results and Observations	14
4.	COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	16
5.	LANDSCAPE OF VISUAL	18
	Monitoring Requirements	18
	Results and Observations.	
6.	ENVIRONMENTAL AUDIT	
	Site Audits	
	Review of Environmental Monitoring Procedures	
	Status of Environmental Licensing and Permitting	
	Status of Waste Management	
	Implementation Status of Environmental Mitigation Measures	
	Summary of Mitigation Measures Implemented	
	Implementation Status of Event Action Plans	
	Summary of Complaint, Warning, Notification of any Summons and Successful Pro	
		21

7.	FUTURE KEY ISSUES	22
	Key Issues for the Coming Month	22
	Monitoring Schedule for the Next Month	23
8.	CONCLUSIONS AND RECOMMENDATIONS	24
	Conclusions	24
	Recommendations	24
	Effectiveness of Environmental Management	25

LIST OF TABLES

2101 01 111					
Table I	Air Quality and Noise Monitoring Stations for this Project				
Table II	Non-compliance Recorded for the Project in the Reporting Month				
Table III	Summary Table for Key Information in the Reporting Month				
Table IV	Summary Table for Required Submission under EP No. EP-337/2009				
Table V	Summary Table for Required Submission under EP No. EP-344/2009				
Table 1.1	Key Project Contacts				
Table 1.2	Construction Programme Showing the Inter-Relationship with Environmental				
	Protection/Mitigation Measures				
Table 2.1	Locations for Air Quality Monitoring				
Table 2.2	Air Quality Monitoring Equipment				
Table 2.3	Impact Dust Monitoring Parameters, Frequency and Duration				
Table 3.1	Noise Monitoring Stations				
Table 3.2	Noise Monitoring Equipment				
Table 3.3	Noise Monitoring Parameters, Frequency and Duration				
Table 3.4	Baseline Noise Level and Noise Limit Level for Monitoring Stations				
Table 4.1	Comparison of 1-hr TSP data with EIA predictions				
Table 4.2	Comparison of 24-hr TSP data with EIA predictions				
Table 4.3	Comparison of Noise Monitoring Data with EIA predictions				
Table 6.1	Summary of Environmental Licensing and Permit Status				
Table 6.2	Observations and Recommendations of Site Inspections				
Table 8.1	Examples of Mitigation Measures for Environmental Recommendations				
LIST OF FIG	GURES				
Figure 1	Layout Plan of the Project Site				
Figure 2	Locations of Air Quality Monitoring Stations				
Figure 3	Locations of Construction Noise Monitoring Stations				
Figure 4	Locations of Wind Anemometer				
Figure 5	Management Structure				
LIST OF AP	LIST OF APPENDICES				
A	Action and Limit Levels for Air Quality and Noise				
В	Copies of Calibration Certificates				
~					

A	Action and Limit Levels for Air Quality and Noise
В	Copies of Calibration Certificates
C	Weather Information
D	Environmental Monitoring Schedules
E	1-hour TSP Monitoring Results and Graphical Presentations
F	24-hour TSP Monitoring Results and Graphical Presentations
G	Noise Monitoring Results and Graphical Presentations
H	Summary of Exceedance
I	Site Audit Summary
J	Event Action Plans
K	Environmental Mitigation Implementation Schedule (EMIS)
L	Summaries of Environmental Complaint, Warning, Summon and Notification of
	Successful Prosecution
M	Summary of Waste Generation and Disposal Records
N	Construction Programme

EXECUTIVE SUMMARY

Introduction

- 1. This is the 2nd Monthly Environmental Monitoring and Audit Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises the construction of Schedule 2 designated projects Road D2 & Sewage Pumping Station PS2 and NPS which forms a part of the works under two Environmental Permits (EP), EP-337/2009 and EP-344/2009. The title of the designated projects under Environmental Permit No.: EP-344/2009 is "New sewage pumping stations serving Kai Tak Development" and under Environmental Permit No.: EP-337/2009 is "New distributor roads serving the planned Kai Tak Development". This report documents the findings of EM&A Works conducted from 1 31 January 2014.
- 2. With reference to the same principle of EIA report of the Project, air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in Table I (see Figure 2 and 3 for their locations).

Table I – Air Quality and Noise Monitoring Stations for this Project

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations
Air Quality Monitoring Stations		
AM2 - Lee Kau Yan Memorial School	Yes	N/A
AM3 – Sky Tower	No	AM3(A) – Holy Trinity Bradbury Centre
AM4 – Grand Waterfront	No	AM4(A) – EMSE Workshop
AM5 – CCC Kei To Secondary School	No	AM5(A) – Po Leung Kuk Ngan Po Ling College
AM6 – Site 1B4 (Planned)		N/A
Noise Monitoring Stations		
M6 – Holy Carpenter Primary School	Yes	N/A
M7 – CCC Kei To Secondary School	Yes	N/A
M8 – Po Leung Kuk Ngan Po Ling College	Yes	N/A
M9 – Site 1B1 (Planned) M10 – Site 1B4 (Planned)	N/A	

3. According to the Environmental Monitoring and Audit Manual (EM&A Manual) of the Kai Tak Development (KTD) Schedule 3 Environmental Impact Assessment (EIA) Report, the impact monitoring at the designated monitoring stations as required in KTD EM&A Manual under the EP, have been conducted in Contract No. KLN/2010/04 – Environmental Monitoring Works for Kai Tak Development under Schedule 3 of KTD, which is on-going starting from December

2010. The impact monitoring data under Contract No. KLN/2010/04 will be adopted for the Project. Therefore, this report presents the air quality and noise monitoring works extracted from Contract No. KLN/2010/04.

- 4. The major site activities undertaken in the reporting month included:
 - Daily Clearance;
 - Drainage work in L19 Road;
 - Excavation for twin cell and single cell box culvert; and
 - Excavation and sheet piling for PS2.

Environmental Monitoring Works

- 5. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 6. Summary of the non-compliance in the reporting month for the Project is tabulated in Table II.

Table II Non-compliance Record for the Project in the Reporting Month

Parameter	No. of Project-rela	Action Taken	
1 at atticted	Action Level	Limit Level	Action Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

1-hour & 24-hour TSP Monitoring

7. All 1-hour & 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8. All construction noise monitoring was conducted as scheduled in the reporting month. One Limit Level exceedance was recorded at monitoring station M8 - Po Leung Kok Ngan Po Ling College on 6 January 2014.

Environmental Licenses and Permits

- 9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, Environmental Permits No. EP-344/2009 and EP-337/2009 were issued on 23 April 2009.
- 10. Registration of Chemical Waste Producer (N/A).
- 11. Water Discharge License (N/A).
- 12. Construction Noise Permit (License No.: PP-RE0056-13).

Key Information in the Reporting Month

13. Summary of key information in the reporting month is tabulated in Table III.

Table III Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues

- 14. The future key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site; and
 - Review and implementation of temporary drainage system for the surface runoff.

Status of Compliance with Environmental Permits Conditions

15. The status of required submission related to this Project under the Environmental Permits No. EP-337/2009 and EP-344/2009 are summarized in the following tables:

Table IV Summary Table for Required Submission under EP No. EP-337/2009

EP Conditions	Submission	Submission Date	Remark
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Road D2
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03
2.4	Design Drawing(s) of the Project	28 October 2013	For Road D2
2.11	Landscape Mitigation Plan(s) for distributors road(s)	7 January 2014	For Road D2
2.12	As-built drawing(s) for the distributor road(s)	To be submitted at least one week before the commencement of operation of distributor road(
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	
3.3 Monthly EM&A Report No.1 6 February 2014 Report for		Monthly EM&A Report for Contract No. KL/2012/03	

Table V Summary Table for Required Submission under EP No. EP-344/2009

EP Conditions	Submission	Submission Date	Remark
	2 0.0.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2 0.000.000	
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Pumping Station PS2 and NPS
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03
2.4	Design Drawing(s) of the Project	28 October 2013	For Pumping Station PS2 and NPS
2.11	Landscape Mitigation Plan(s) for sewage pumping station(s)	7 January 2014	For Pumping Station PS2 and NPS
2.12	As-built drawing(s) for the sewage pumping station (s)	To be submitted at least one week before the commencement of operation of distributor road(
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	
3.3	Monthly EM&A Report No.1	6 February 2014	Monthly EM&A Report for Contract No. KL/2012/03

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 4 Infrastructure at Former North Apron Area is one of the construction stages of KTD. It contains various Schedule 2 DPs including new distributor roads serving the planned KTD and new sewage pumping stations serving the planned KTD. The general layout of the Project is shown in **Figure 1.**
- 1.2 Two Environmental Permits (EPs) No. EP-344/2009 and EP-337/2009 were also issued on 23 April 2009 for new sewage pumping stations serving the planned KTD and new distributor roads serving the planned KTD respectively to Civil Engineering and Development Department as the Permit Holder.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and identify possible mitigation measures associated with the works. An EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Cinotech Consultants Limited (Cinotech) was commissioned by Kwan On Construction Co., Ltd. (the Contractor) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2012/03 Stage 4 Infrastructure at Former North Apron Area. The construction work under KL/2012/03 comprises the construction of Road D2 & Sewage Pumping Station PS2 and PS NPS which forms a part of the works under two EPs (EP-337/2009 and EP-344/2009).
- 1.5 The construction commencement of this Contract was on 1st December 2013 for Road D2, Sewage Pumping Station PS2 and PS NPS. This is the 2nd Monthly EM&A report summarizing the EM&A works for the Project from 1 31 January 2014.

Project Organizations

- 1.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) AECOM.
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) Hyder Consultants Ltd. (Hyder).
 - Contractor –Kwan On Construction Co., Ltd. (Kwan On).

1.7 The key contacts of the Project are shown in **Table 1.1 and Figure 5**.

Table 1.1 Key Project Contacts

Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. K Y SHIN	Engineer	2301 1461	2301 1277
AECOM	Engineer's	Mr. Vincent Lee	SRE	27980771	3013 8864
7 ILCOW	Representative	Mr. Mickey Lee	RE		
	Cinotech Environmental Team	Dr. Priscilla Choy	Environmental	2151 2089	
			Team Leader	2131 2009	
Cinotech		Ms. Ivy Tam	Project Coordinator		3107 1388
	1 Caiii		and Audit Team	2151 2090	
			Leader		
	Independent	Mr. Fan Cheong	Independent		
Hyder	Environmental	Tsang	Environmental	2911 2744	
	Checker		Checker		
Kwan On	Contractor	Mr. Terry Yu	Project Manager		

Construction Activities undertaken during the Reporting Month

- 1.8 The site activities undertaken in the reporting month included:
 - Daily Clearance;
 - Drainage work in L19 Road;
 - Excavation for twin cell and single cell box culvert; and
 - Excavation and sheet piling for PS2.
- 1.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures are presented in Table 1.2.

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Construction Works	Major Environmental Impact	Control Measures
As mentioned in Section 1.8	Noise, dust impact, water quality and waste generation	Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; On-site waste sorting and implementation of trip ticket system; Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Use of quiet plant and well-maintained construction plant; Provide movable noise barrier; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; Provide sufficient mitigation measures as recommended in Approved EIA Report/Lease requirement.

Summary of EM&A Requirements

- 1.10 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
- All monitoring parameters;
- Action and Limit levels for all environmental parameters;
- Event Action Plans:
- Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.12 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality and noise levels and audit works for the Project from 1-31 January 2014.

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the EPs, 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix** A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Five designated monitoring stations were selected for air quality monitoring programme. Impact dust monitoring was conducted at four of the air quality monitoring stations (AM2, AM3(A), AM4(A) and AM5(A)). Table 2.1 describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Table 2.1 Locations for Air Quality Monitoring

Monitoring Stations	Locations	Location of Measurement
AM2 Lee Kau Yan Memorial School		Rooftop (about 8/F) Area
AM3(A) Holy Trinity Bradbury Centre		Rooftop (about 8/F) Area
AM4(A) EMSD Workshops		Rooftop (about 6/F) Area
AM5(A)	Po Leung Kuk Ngan Po Ling College	Rooftop (about 10/F) Area
#AM6	PA 15	Site 1B4 (Planned)

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

2.3 Table 2.2 summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix B**.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	G25A	1
1-hour TSP Dust Meter	Laser Dust Monitor – Model LD-3, LD-3B	6
HVS Sampler	GMWS 2310 c/w of TSP sampling inlet	4
Wind Anemometer	Davis Weather Monitor II, Model no. 7440	1

Monitoring Parameters, Frequency and Duration

2.4 Table 2.3 summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 2.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Set POWER to "ON" and make sure that the battery level was not flash or in low level.
 - Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
 - Push the knob at MEASURE position.
 - Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
 - Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
 - Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

- 2.6 The following maintenance/calibration was required for the direct dust meters:
 - Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.7 High volume (HVS) samplers (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of

a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For TSP sampling, fiberglass filters have a collection efficiency of > 99% for particles of 0.3μm diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).

- 2.16 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using G25A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

- 2.19 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.20 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21 The air temperature, precipitation and the relative humidity data was obtained from Hong Kong Observatory where the wind speed and wind direction were recorded by the installed Wind Anemometer set at rooftop (about 8/F) Lee Kau Yan Memorial School. The location is shown in **Figure 4**. This weather information for the reporting month is summarized in **Appendix C.**
- 2.22 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.23 The summary of exceedance record in reporting month is shown in **Appendix H**. No exceedance was recorded for the air quality monitoring.
- 2.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations are as follows:

Station	Major Dust Source
AM2 – Lee Kau Yan Memorial School	Road Traffic Dust
	Exposed site area and open stockpiles
	Site vehicle movement
AM3(A) – Holy Trinity Bradbury	Road Traffic Dust
Centre	Exposed site area
	Excavation works
	Site vehicle movement
AM4(A) – EMSD Workshops	Recycling Company
	Site vehicle movement
AM5(A) – Po Leung Kuk Ngan Po	Road Traffic Dust
Ling College	Excavation works at the site (Contract No.:
	1/WSD/08(K)) facing Po Leung Kuk Ngan Po
	Ling College

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays.

Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Five designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at three designated monitoring stations (M6, M7 and M8). **Figure 3** shows the locations of these stations.

Table 3.1 Noise Monitoring Stations

Monitoring Stations	Locations	Location of Measurement
M6	Holy Carpenter Primary School	Rooftop (about 7/F) Area
M7	CCC Kei To Secondary School	Rooftop (about 8/F) Area
M8	Po Leung Kuk Ngan Po Ling College	Staircase Area (about 9/F)
#M9	Site 1B1 (Planned)	-
#M10	Site 1B4 (Planned)	-

Remarks: # The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at the building.

Monitoring Equipment

Table 3.2 summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2 Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVAN 955 & 957	5
Calibrator	SVAN 30A	2
Cantilator	B&K4231	2

Monitoring Parameters, Frequency and Duration

3.4 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

 Table 3.3
 Noise Monitoring Parameters, Frequency and Duration

Stations Parameter Period Frequency Measurement

M6 M7 M8	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Façade
----------------	---	---	------------------	--------

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weighting
time weighting
Fast
time measurement
30 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

- 3.8 All construction noise monitoring was conducted as scheduled in the reporting month. One Limit Level exceedance was recorded at monitoring station M8 Po Leung Kok Ngan Po Ling College on 6 January 2014. The summary of exceedance record in reporting month is shown in **Appendix H**.
- 3.9 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.4**.
- 3.10 Noise monitoring results and graphical presentations are shown in **Appendix G**.
- 3.11 The major noise source identified at the designated noise monitoring stations are as follows:

Monitoring Stations	Locations	Major Noise Source
M6	Holy Carpenter Primary School	Road and marine traffic Noise
M7	CCC Kei To Secondary School	Road and marine traffic Noise
M8	Po Leung Kuk Ngan Po Ling College	Excavation works at the site (Contract No.: 1/WSD/08(K)) facing Po Leung Kuk Ngan Po Ling College Noise generated from other buildings construction site nearby

Table 3.4 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A)	Noise Limit Level,dB (A)
M6	63.9 (at 0700 – 1900 hrs on normal weekdays)	
M7	68.7 (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on normal weekdays)
M8	61.9 (at 0700 – 1900 hrs on normal weekdays)	

^(*) Noise Limit Level is 65 dB(A) during school examination periods.

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 The EM&A data was compared with the EIA predictions as summarized in 4.1 to 4.3.

Table 4.1 Comparison of 1-hr TSP data with EIA predictions

Station	Predicted 1-hr TSP conc.			
	Scenario1 Scenario2 Reporting Month (Mid 2009 to (Mid 2013 to (January 2014), µg/m3			0
	Mid 2013), μg/m3	Late 2016), μg/m3	Average	Range
AM2 – Lee Kau Yan	290	312	213.6	112.2 – 341.7
Memorial School				
AM3(A) - Holy	217	247	212.9	134.0 – 326.3
Trinity Bradbury				
Centre (Alternative				
station for Sky Tower)				
AM4(A) - EMSD	246	258	202.9	127.2 - 269.4
Workshops				
(Alternative station for				
Grand Waterfront)				
AM5(A) – Po Leung	159	221	202.4	121.1 - 274.6
Kuk Ngan Po Ling				
College (Alternative				
station for CCC Kei				
To Secondary School)				

Table 4.2 Comparison of 24-hr TSP data with EIA predictions

Station	Predicted 24-hr TSP conc.			
	Scenario1 (Mid 2009 to	Scenario2 (Mid 2013 to	•	ng Month 2014), μg/m3
	Mid 2013), μg/m3	Late 2016), μg/m3	Average	Range
AM2 – Lee Kau Yan Memorial School	145	169	112.4	71.0 – 129.4
AM3(A) - Holy Trinity Bradbury Centre (Alternative station for Sky Tower)	106	138	105.2	66.5 – 131.5
AM4(A) – EMSD Workshops (Alternative station for Grand Waterfront)	143	152	128.6	97.5 – 146.9
AM5(A) – Po Leung Kuk Ngan Po Ling College (Alternative station for CCC Kei To Secondary School)	103	128	71.8	32.4 – 112.3

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (L _{eq (30min)} dB(A))	Reporting Month (January 2014), L _{eq (30min)} dB(A)
M6 - Holy Carpenter Primary School	47 – 86	59.4 – 64.6
M7 - CCC Kei To Secondary School	45 – 68	60.4 – 65.4
M8 - Po Leung Kuk Ngan Po Ling College	44 – 70	55.5 – 69.2

- 4.2 The averages of 1-hour TSP concentrations in all stations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3 The averages of 24-hour TSP concentrations in all stations in the reporting month were below to the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.4 The noise monitoring results in the reporting month was also within the range of predicted mitigated construction noise levels in the EIA report

5. LANDSCAPE OF VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's operation during the construction period on a weekly basis, and to report on the contractor's compliance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 Should non-compliance of the landscape and visual impact occur, action in accordance with the action plan presented in **Appendix J** shall be performed.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 3rd, 8th, 17th, 24th, 29th January 2014 in the reporting month. IEC site inspections were conducted on 8th January 2014. No non-compliance was observed during the site audits.

Review of Environmental Monitoring Procedures

6.3 The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- 1. The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- 2. Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Status of Environmental Licensing and Permitting

6.4 All permits/licenses obtained for the Project are summarized in Table 6.1.

Permit No.	Valid Period		- Details	Status	
	From To Details		Details		
Environmental Permit (EP)					
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	Valid	
EP-344/2009	23/04/09	N/A	Construction of a new sewage pumping station serving the planned Kai Tak development with installed capacity of		
Effluent Discharge License					

Permit No.	Valid Period		Details	Status	
	From	To	Details	Status	
Registration of Chemical Waste Producer					
Construction Noise Permit (CNP)					
PP-RE0056-13	10/12/13	08/03/14	Construction Noise Permit for the carrying out of percussive piling.	Valid	

Status of Waste Management

- 6.5 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.
- 6.6 In respect of the dump truck cover, the Contractor is advised to take record photos and inspection to ensure that all dump trucks have fully covered the skip before leaving the site.

Implementation Status of Environmental Mitigation Measures

6.7 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 6.2.

Table 6.2 Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality			
Air Quality	29 Jan 14	To properly cover the stockpile of dusty material at the storage area.	Rectification/improvement was observed during the follow-up audit session.
Noise			
Waste/Chemical Management	8 Jan 14	Provide drip tray to chemical container at Pumping Station PS2.	Rectification/improvement was observed during the follow-up audit session.
Landscape and Visual			
Permits /Licences			

Summary of Mitigation Measures Implemented

6.8 The monthly IEC audit was carried out on 8th January 2014, the observations were recorded and they are presented as follows:

Follow up of last observation:

1. A small, empty metal can of chemical or paint was found within the fenced tree near the Contractor's site office. The Contractor has removed the metal after the site inspection. (Closed)

Observations:

2. An empty oil container was found at Portion 1. The Contractor was reminded to store the

container with drip tray underneath, or remove it from the site.

6.9 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.10 The Event Action Plans for air quality, noise and landscape and visual are presented in **Appendix J**.

1-hr TSP Monitoring

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.12 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.13 One Limit Level exceedance was recorded at monitoring station M8 - Po Leung Kok Ngan Po Ling College on 6 January 2014.

Landscape and visual

6.14 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.15 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in **Appendix L**.

7. FUTURE KEY ISSUES

- 7.1 Major site activities undertaken for the coming two months include:
 - Daily Clearance;
 - Drainage work in L19 Road;
 - Excavation and sheet piling for PS2; and
 - Excavation for twin cell and single cell box culvert.
- 7.2 The tentative construction program for the Project is provided in **Appendix N**.

Key Issues for the Coming Month

- 7.3 Key environmental issues in the coming month include:
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site; and
 - Review and implementation of temporary drainage system for the surface runoff.
- 7.4 The tentative program of major site activities and the impact prediction and control measures for the coming two months, i.e. February and March 2014 are summarized as follows:

Construction Works	Major Impact	Control Measures
	Prediction	
	Air quality impact	a) Frequent watering of haul road and unpaved/exposed
	(dust)	areas;
		b) Frequent watering or covering stockpiles with tarpaulin or similar means; and
		c) Watering of any earth moving activities.
	Water quality	d) Diversion of the collected effluent to de-silting facilities
	impact (surface	for
	run-off)	treatment prior to discharge to public storm water drains;
		e) Provision of adequate de-silting facilities for treating
		surface run-off and other collected effluents prior to
As mentioned in		discharge;
Section 7.1		f) Provision of perimeter protection such as sealing of
		hoarding footings to avoid run-off from entering the
		existing storm water drainage system via public road; and
		g) Provision of measures to prevent discharge into the
		stream.
	Noise Impact	h) Scheduling of noisy construction activities if necessary to
		avoid persistent noisy operation;
		i) Controlling the number of plants use on site;
		j) Regular maintenance of machines; and
		k) Use of acoustic barriers if necessary.

Monitoring Schedule for the Next Month

7.5 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works were performed in the reporting month and all monitoring results were checked and reviewed.

1-hr TSP Monitoring

8.2 All 1-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hr TSP Monitoring

8.3 All 24-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

8.4 All construction noise monitoring was conducted as scheduled in the reporting month. One Limit Level exceedance was recorded at monitoring station M8 - Po Leung Kok Ngan Po Ling College on 6 January 2014.

Landscape and visual

8.5 No non-compliance was recorded in the reporting month.

Complaint and Prosecution

8.6 No environmental complaints and environmental prosecution were received in the reporting month.

Recommendations

8.7 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To mitigate the dust generation by adequate water spraying in dry days.

Noise Impact

- To inspect the noise sources inside the site.
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers in an appropriate location.

Water Impact

- To prevent any surface runoff discharge into any stream course.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.

Waste/Chemical Management

- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation);
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To provide proper storage area or drip trays for oil containers/ equipment on site.
- To avoid improper handling or storage of oil drum on site.

Landscape and Visual

- To protect the existing trees to be retained.
- To transplant the trees unavoidably affected by the works.
- To control of night-time lighting.
- To provide decorative screen hoarding.
- To complete landscape works at site area as early as possible.

Effectiveness of Environmental Management

- 8.8 The above recommendations and the recommended mitigation measures in the EM&A Manual were carried out by the Contractor during construction. No non-compliance was recorded during the environmental site inspections as shown in **Appendix I**.
- 8.9 The effectiveness of the selected above recommendations is given in **Table 8.1** below.

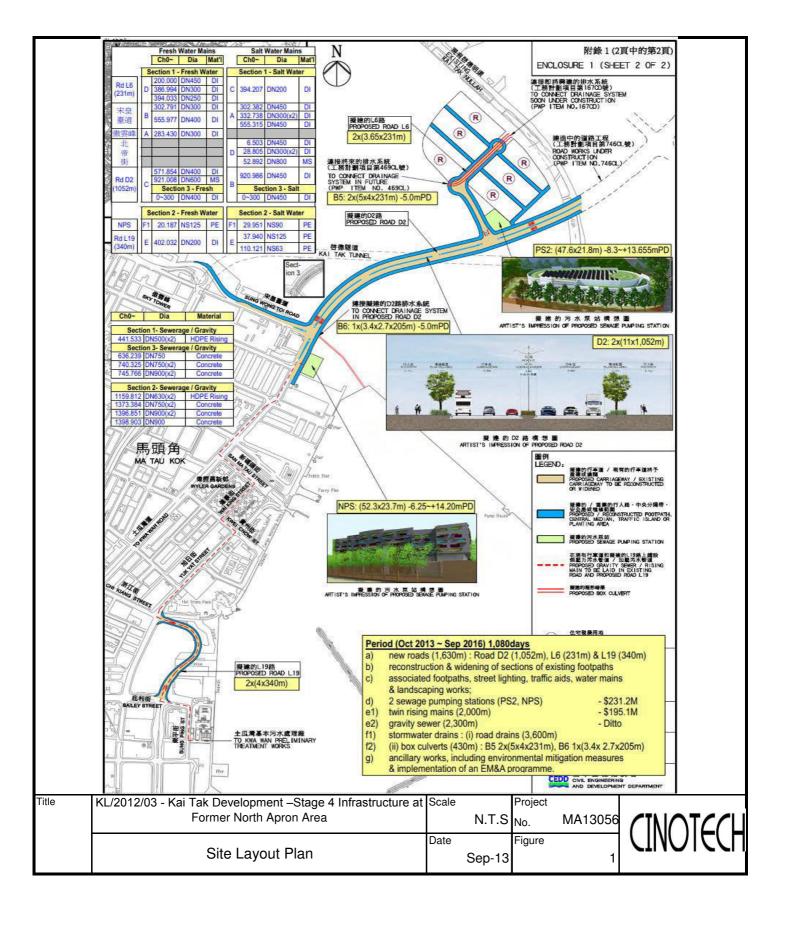
Table 8.1 Examples of Mitigation Measures for Environmental Recommendations

To prevent any surface runoff discharge into any stream course.

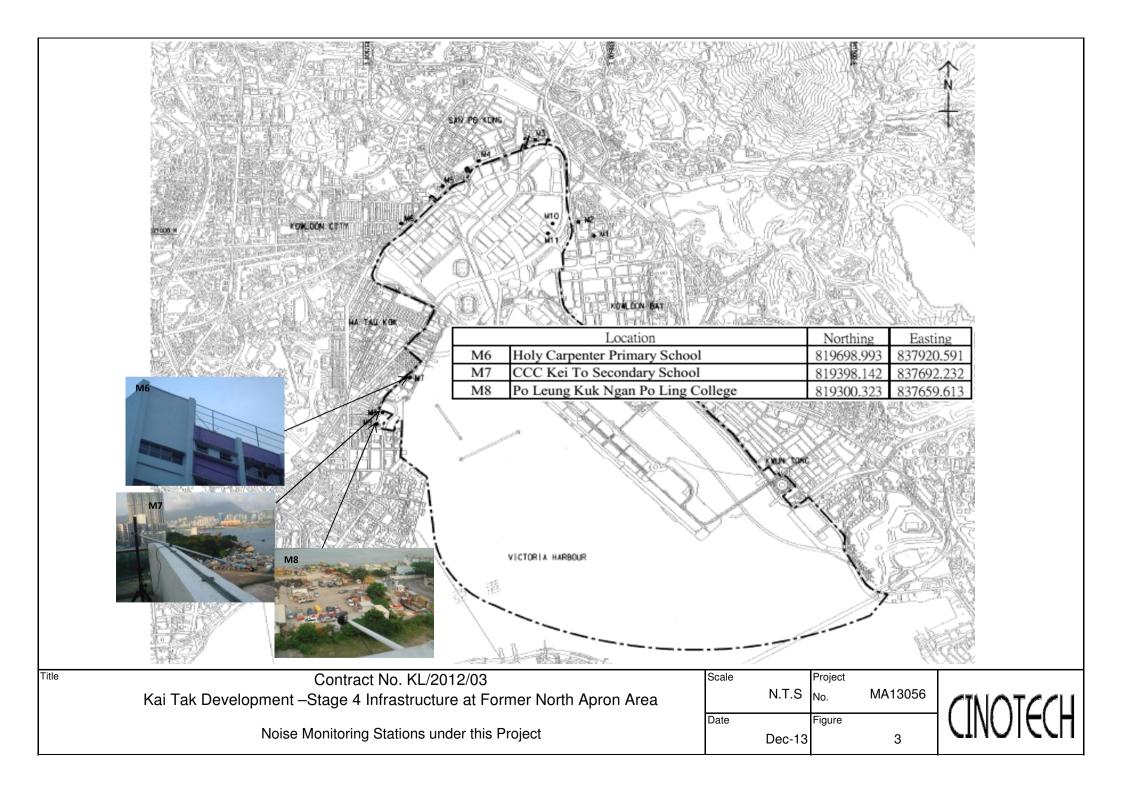
Follow-up measure(s) after identification of wastewater discharges from site;

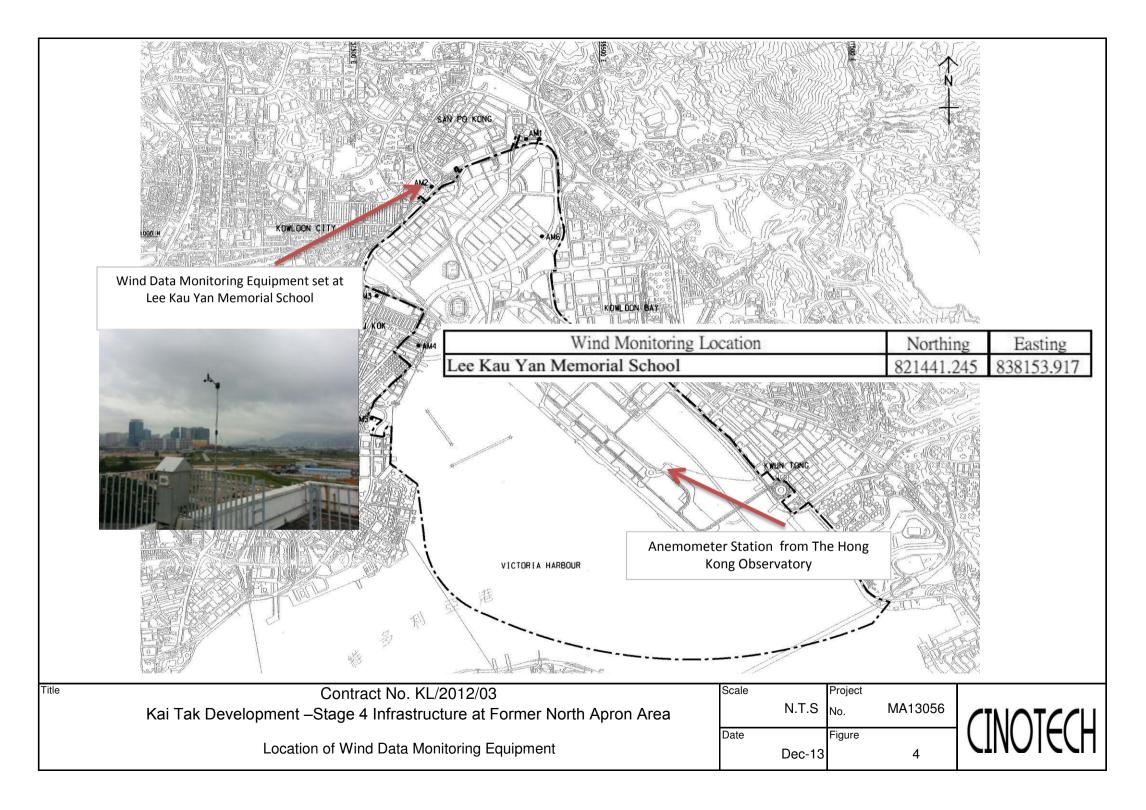
To avoid any discharge or accidental spillage of chemical waste or oil directly from the site

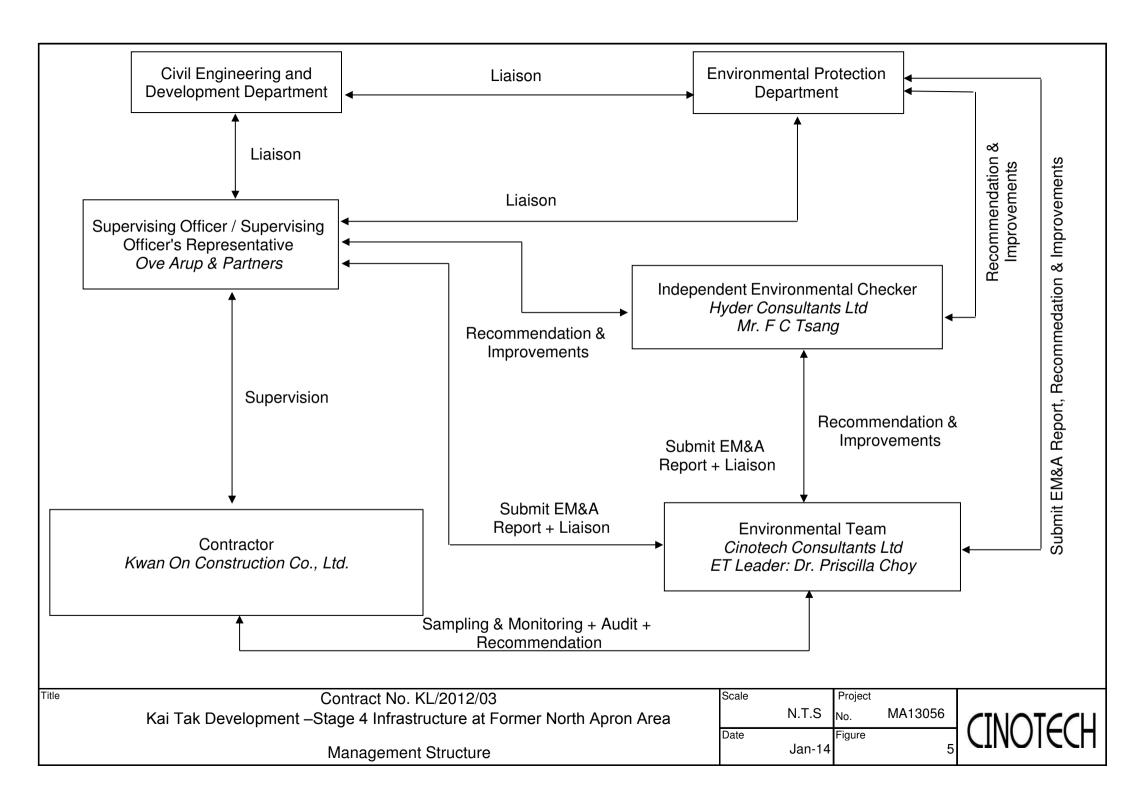
To avoid improper handling or storage of oil drum on site



To protect the existing trees to be retained




To control of night-time lighting


FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AM2	346	
AM3(A)	351	500
AM4(A)	371	500
AM5(A)	345	

Table A-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AM2	157	
AM3(A)	167	260
AM4(A)	187	260
AM5(A)	156	

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No.	MA0040/59/0020
Station	AM2 - Lee Kau	Yan Memorial So	chool	Operator:	:WK		
Date:	7-Nov-13			Next Due Date:	:6-Jan-	14	
Equipment No.:	A-01-59			Serial No.	2354		
			Ambient	Condition			
Temperature, Ta (K) 296.7		Pressure, Pa	ı (mmHg)		766		
	7		fice Transfer St	andard Inform	nation		
	Equipment No.: A-04-05		Slope, mc	0.0592	Intercep		-0.0283
Last Calibr	ation Date:	26-Dec-12			$bc = [\Delta H x (Pa/76)]$		· ·
Next Calibr	ation Date:	25-Dec-13		$Qstd = \{ [\Delta H] \}$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc} .	/ mc
Miles (Waller of Colors of State		•					
			Calibration of	TSP Sampler			
Calibration		Orf	ice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa/7	(60) x (298/Ta)] ^{1/2} Y-
11	11.8	3.	46	58.86	7.9		2.83
2	9.7	3.	13	53.41	6.7		2.60
3	7.8	2.	81	47.94	5.3		2.32
4	5.4	2.	34	39.97	3.4		1.86
5	3.2	1.	80	30.88	2.0		1.42
Slope , mw = Correlation c		0.9 9	89	Intercept, bw :	-0.169	7	
TI Correlation (Coefficient < 0.99	u, check and reca					
Posses dis TOD Di			Set Point C	alculation			
	eld Calibration C	,					
From the Regres	sion Equation, the	e "Y" value accor	ding to				
		mw x O	$std + bw = [\Delta W]$	x (Pa/760) x (2	98/Ta)l ^{1/2}		
					,,		
Therefore, S	et Point; W = (m	$w \times Qstd + bw)^2$	x (760/Pa)x(Γa / 298) =	4.11		
Remarks:		••					
	1 -		L	}			1 1 -
Conducted by: Checked by:	Luk. Tang	Signature: _	Kw	21	•	Date: Date:	7/11/13 7 November 2012

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

						File No	MA0040/59/0021
Station	AM2 - Lee Kau	Yan Memorial Sc	hool	Operator:	WK		
Date:	6-Jan-14		Next Due Date:		5-Mar-14		
Equipment No.:	A-01-59		Serial No.		. 2354		
			Ambient	Condition			
Temperature, Ta (K) 288.7		Pressure, Pa			766.8		
Tomporter	10, 14 (11)	200.,		. (8)			
		Or	fice Transfer Sta	andard Inform	ation		
Equipme	ent No.:	A-04-04	Slope, mc	0.0588	Intercep	t, bc	-0.0461
Last Calibra	ation Date:	30-Sep-13			$c = [\Delta H x (Pa/76)]$		-
Next Calibr	ation Date:	29-Sep-14		$\mathbf{Qstd} = \{ [\Delta \mathbf{H}] \}$	x (Pa/760) x (298	/Ta)] ^{1/2} -be} /	mc
	-	•					
			Calibration of	TSP Sampler			
0.111		Orf	ice			HVS	
Calibration Point	ΔH (orifice), in. of water	[ΔH x (Pa/760)) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil		50) x (298/Ta)] ^{1/2} Y- axis
1	12.0	3	.54	60.91	7.9		2.87
2	9.8	3	.19	55.12	6.4		2.58
3	7.6	2	.81	48.63	4.9		2.26
4	5.4	2	.37	41.11	3.3		1.85
. 5	3.3	1	.85	32.31	2.0		1.44
By Linear Regi Slope , mw = Correlation o	0.0502	. 0.99		Intercept, bw	-0.190)6	
	Coefficient < 0.99			•			
			Set Point (Calculation			
From the TSP F	ield Calibration C	urve, take Qstd =					
	ssion Equation, th	· · · · · ·					
•	•		-		10		
		mw x Ç	$Qstd + bw = [\Delta W]$	x (Pa/760) x (2	.98/Ta)]'' ⁴		
Therefore, S	et Point; W = (m	$(w \times Qstd + bw)^2$	x (760 / Pa) x (Ta / 298)=	3.72	<u>.</u>	
				5.00.1.00.0			
Remarks:							
				<u> </u>			
Conducted by:	IN Jama	Signature:	V	-m. /		Date:	61 /116
Checked by:	WILL COME	Signature:		~	-	Date:	6 January Nat

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA0040/49/0019 Station AM3(A) - Holy Trinity Bradbury Centre Operator: _____ WK Date: 7-Nov-13 Next Due Date: 6-Jan-14 Equipment No.: _ A-01-49 Serial No. 1793 **Ambient Condition** Temperature, Ta (K) 296.5 Pressure, Pa (mmHg) 766.2 Orifice Transfer Standard Information 0.0592 Equipment No.: A-04-05 Slope, mc Intercept, bc -0.0283 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 26-Dec-12 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 25-Dec-13 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), ΔW [\Delta W x (Pa/760) x (298/Ta)]1/2 Qstd (CFM) **Point** [\Delta H x (Pa/760) x (298/Ta)]\(^{1/2}\) in. of water (HVS), in. of oil X - axis Y-axis 3.52 1 12,2 59.87 2,92 8.4 2 9.8 3.15 53.71 6.9 2.64 3 7.3 2.72 46.42 5.3 2.32 4 5.1 2.27 38.88 3.4 1.86 3.1 1.77 30.42 2.0 1.42 By Linear Regression of Y on X Slope, mw = 0.0513Intercept, bw : -0.1220 Correlation coefficient* = 0.9983 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Date:

Date:

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET File No. MA0040/49/0020 Operator: WK Station AM3(A) - Holy Trinity Bradbury Centre Next Due Date: 5-Mar-14 6-Jan-14 Date: Serial No. 1793 Equipment No.: A-01-49 **Ambient Condition** Temperature, Ta (K) 288.6 Pressure, Pa (mmHg) 767 Orifice Transfer Standard Information A-04-04 0.0588 Intercept, bc Slope, mc -0.0461 Equipment No.: mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 30-Sep-13 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 29-Sep-14 Calibration of TSP Sampler Orfice Calibration $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ ΔH (orifice), Qstd (CFM) ΔW Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in, of water X - axis (HVS), in. of oil Y-axis 12.4 3.59 61.92 8.3 2.94 1 54.85 6.4 2.58 2 9.7 3.18 48.64 5.1 3 7.6 2.81 2.31 4 5.2 2.33 40.37 3.2 1.83 5 31.35 2.0 1.44 3.1 1.80 By Linear Regression of Y on X Slope, mw = ___ 0.0496 Intercept, bw : -0.1320 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks:

Conducted by: <u>Wk, 7AMA</u> Signature: Signature: Date: Date:

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA0040/62/0019 Station AM4(A) - EMSD Workshops Operator: WK Date: 7-Nov-13 Next Due Date: 6-Jan-14 Equipment No.: A-01-62 Serial No. 2351 **Ambient Condition** Temperature, Ta (K) 300 Pressure, Pa (mmHg) 763.9 Orifice Transfer Standard Information A-04-05 Slope, mc 0.0592 Equipment No.: Intercept, bc -0.0283 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 26-Dec-12 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 25-Dec-13 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), $\Delta \mathbf{W}$ [ΔW x (Pa/760) x (298/Ta)]^{1/2} Qstd (CFM) Point [ΔH x (Pa/760) x (298/Ta)]^{1/2} in, of water X - axis (HVS), in. of oil Y-axis 12.2 3.49 59.43 8.3 2.88 2 9.8 3.13 53.32 6.4 2.53 3 7.5 2.74 46.70 5.0 2.23 4 5.3 2.30 39.34 3.3 1.82 3.1 1.76 30.20 1.9 1.38 By Linear Regression of Y on X Slope, mw = 0.0512 Intercept, bw: -0.1795 Correlation coefficient* = 0.9994 *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Conducted by: Wk. 7ang Date: Checked by: ____(Д~ Date:

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA0040/62/0020 Operator: WK Station AM4(A) - EMSD Workshops Next Due Date: 5-Mar-14 Date: 6-Jan-14 Serial No. 2351 Equipment No.: A-01-62 Ambient Condition 766.3 289.2 Pressure, Pa (mmHg) Temperature, Ta (K) Orifice Transfer Standard Information A-04-04 Slope, mc 0.0588 Intercept, bc -0.0461 Equipment No.: mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 30-Sep-13 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 29-Sep-14 Calibration of TSP Sampler Orfice Calibration [ΔW x (Pa/760) x (298/Ta)]^{1/2} ΔH (orifice), Ostd (CFM) ΔW Point [\Delta H x (Pa/760) x (298/Ta)]1/2 in, of water X - axis (HVS), in. of oil Y-axis 2.95 12.2 3.56 61.33 8.4 55.33 6.5 2.60 2 9.9 3.21 48.57 5.1 2.30 3 7.6 2.81 2.37 41.07 1.85 4 5.4 3.3 3.2 1.82 31.79 2.0 1.44 5 By Linear Regression of Y on X Slope, mw = 0.0513 Intercept, bw : -0.2139 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Conducted by: White Signature: Kun Signature: Date: 6/1/4
Date: 6 Jenuary 2014

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

Station	AMS(A) Dal	anna Valanta en D	. 11 . 6 11			File No.	MA0040/60/0020
Date:		eung Kuk Ngan P			: <u>WK</u>		•
	7-Nov-13		Next Due Date:				
Equipment No.:	A-01-60			Serial No	. 2358	<u> </u>	•
			Ambient	Condition			
Temperatu	Temperature, Ta (K) 298.8		Pressure, Pa	a (mmHg)		764.1	
The residence of the second se	- 1. N						
		Or	ifice Transfer St	andard Inforn	nation		
Equipme	ent No.:	A-04-05	Slope, mc	0.0592	Intercep		-0.0283
Last Calibra	ation Date:	26-Dec-12		mc x Qstd + l	$bc = [\Delta H \times (Pa/7)]$	50) x (298/Ta)] ^{1/2}
Next Calibr	ation Date:	25-Dec-13		$Qstd = \{ \Delta H$	x (Pa/760) x (298	/Ta)] ^{1/2} -bc}	/ me
		Ort	Calibration of	TSP Sampler			
Calibration	ΔH (orifice),			Qstd (CFM)	ΔW	HVS	(0) (000/m)31/2
Point	in. of water	[ΔH x (Pa/760)) x (298/Ta)] ^{1/2}	X - axis	(HVS), in. of oil		(60) x (298/Ta)] ^{1/2} Y-
1	11.9	3	.45	58.83	7.7		2.78
2	9.3	3	.05	52.06	6.1		2.47
3	7.5	2	.74	46.80	5.0		2.24
4	5,4	2	.33	39.78	3.3		1.82
5	3.3	1	.82	31.21	2.1		1.45
By Linear Regr Slope , mw = Correlation co	0.0490	C - 0.99		Intercept, bw :	-0.088	37	,
	_	00, check and reca		•			
			Sat Ballet				
From the TSP Fig	eld Calibration C	curve, take Qstd =		Calculation			
		e "Y" value accor					
		mw x Q	$std + bw = [\Delta W]$	x (Pa/760) x (2	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (m	$w \times Qstd + bw)^2$	x (760/Pa)x(7	Ta / 298) =	4.06		
Remarks:							
Telliaixs.				-			
Conducted by:	luk Jang	Signature:	Kin	10vi		Date:	7/4/3
Checked by:	()	Signature:	Z.			Date: _	7/11/13 7 November 2013

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

CINOTECH

						File No	MA0040/60/0021
Station	AM5(A) - Po Lo	eung Kuk Ngan P	o Ling College	_ Operator:	WK		
Date:	6-Jan-14			Next Due Date:	5-Mar-	14	
Equipment No.:	A-01-60			Serial No.	2358		
			Ambient	Condition			
Temperatur	re. Ta (K)	289	Pressure, P			766.5	
***************************************			,	3/	1		
		Or	ifice Transfer St	andard Inform	nation		
Equipme	nt No.:	A-04-04	Slope, mc	0.0588	Intercept	t, bc	-0.0461
Last Calibra	tion Date:	30-Sep-13		mc x Qstd + l	$\mathbf{bc} = [\Delta \mathbf{H} \times (\mathbf{Pa}/76)]$	0) x (298/Ta)	J ^{1/2}
Next Calibra	ation Date:	29-Sep-14			x (Pa/760) x (298		
		•					
			Calibration o	f TSP Sampler			
Calibration		Ori	ice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa/76	50) x (298/Ta)] ^{1/2} Y axis
1	12,2	3	.56	61.36	7.6		2.81
2	9.6	3	.16	54.52	6.2		2.54
3	7.5	2	.79	48.28	4.9		2.26
4	5.2	2	.33	40.33	3.2		1.82
					1		
5	3.1		.80	31.32	1.9		1.41
5 By Linear Regro Slope , mw =	ession of Y on >	<u> </u>			-0.076	56	1.41
5 By Linear Regro Slope , mw = _ Correlation co	ession of Y on A 0.0476 oefficient* =	- 0.9	987			66	1.41
5 By Linear Regro Slope , mw = _ Correlation co	ession of Y on A 0.0476 oefficient* =	<u> </u>	987			66	1.41
5 By Linear Regro Slope , mw = _ Correlation co	ession of Y on A 0.0476 oefficient* =	- 0.9	987 Ilibrate.	Intercept, bw	-0.076	56	1.41
5 By Linear Regree Slope, mw = Correlation co *If Correlation C	ession of Y on X 0.0476 pefficient* = Coefficient < 0.99	0.9 00, check and reca	987 slibrate. Set Point		-0.076	6	1.41
5 By Linear Regree Slope, mw = Correlation Correlatio	ession of Y on X 0.0476 oefficient* = Coefficient < 0.99	0.90, check and reca	987 alibrate. Set Point of 43 CFM	Intercept, bw	-0.076	66	1.41
5 By Linear Regree Slope, mw = Correlation Correlatio	ession of Y on X 0.0476 oefficient* = Coefficient < 0.99	0.90, check and recall the control of the control o	987 Alibrate. Set Point of 43 CFM rding to	Intercept, bw	-0.076	6	1.41
5 By Linear Regree Slope, mw = Correlation Correlatio	ession of Y on X 0.0476 oefficient* = Coefficient < 0.99	0.90, check and recall the control of the control o	987 alibrate. Set Point of 43 CFM	Intercept, bw	-0.076	66	1.41
By Linear Regression Correlation Correlati	ession of Y on X 0.0476 cefficient* = Coefficient < 0.99 eld Calibration Calibration, the	O.9: Ourve, take Qstd = 12 or "Y" value according with the control of the t	987 Alibrate. Set Point of 43 CFM rding to Qstd + bw = [ΔW	Intercept, bw	-0.076		1.41
By Linear Regression Correlation Correlati	ession of Y on X 0.0476 cefficient* = Coefficient < 0.99 eld Calibration Calibration, the	0.90, check and recall the control of the control o	987 Alibrate. Set Point of 43 CFM rding to Qstd + bw = [ΔW	Intercept, bw	-0.076		1.41
By Linear Regression Correlation Correlati	ession of Y on X 0.0476 cefficient* = Coefficient < 0.99 eld Calibration Calibration, the	O.9: Ourve, take Qstd = 12 or "Y" value according with the control of the t	987 Alibrate. Set Point of 43 CFM rding to Qstd + bw = [ΔW	Intercept, bw	-0.076		1.41
By Linear Regression Correlation Correlati	ession of Y on X 0.0476 cefficient* = Coefficient < 0.99 eld Calibration Calibration, the	O.9: Ourve, take Qstd = 12 or "Y" value according with the control of the t	987 Alibrate. Set Point of 43 CFM rding to Qstd + bw = [ΔW	Intercept, bw	-0.076		1.41
By Linear Regree Slope, mw = Correlation Co *If Correlation Co From the TSP Fig. From the Regress Therefore, Se	ession of Y on X 0.0476 cefficient* = Coefficient < 0.99 eld Calibration Calibration, the	O.9: Ourve, take Qstd = 12 or "Y" value according with the control of the t	987 Alibrate. Set Point of 43 CFM rding to Qstd + bw = [ΔW	Intercept, bw	-0.076		1.41
By Linear Regression Correlation Correlati	ession of Y on X 0.0476 cefficient* = Coefficient < 0.99 eld Calibration Calibration, the	O.9: Ourve, take Qstd = 12 or "Y" value according with the control of the t	987 Alibrate. Set Point of 43 CFM rding to Qstd + bw = [ΔW	Intercept, bw	-0.076		1.41
By Linear Regree Slope, mw = Correlation Co *If Correlation Co From the TSP Fig. From the Regress Therefore, Se	ession of Y on X 0.0476 cefficient* = Coefficient < 0.99 eld Calibration Calibration, the	O.9: Ourve, take Qstd = 12 or "Y" value according with the control of the t	987 Alibrate. Set Point of the state of th	Intercept, bw Calculation (x (Pa/760) x (2) Ta / 298) =	-0.076		1.41
By Linear Regree Slope, mw = Correlation Co *If Correlation Co From the TSP Fig. From the Regress Therefore, Se	ession of Y on X 0.0476 cefficient* = Coefficient < 0.99 eld Calibration Calibration, the	O.9: Ourve, take Qstd = 12 or "Y" value according with the control of the t	987 Alibrate. Set Point of the state of th	Intercept, bw	-0.076		6/1/14

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong.

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Description Calibration Orifice

0993 Serial No.

Model No.

Date

TE-5025A

30 September 2013

Manufacturer

TISCH

Temperature, Ta (K)

300.8

Pressure, Pa (mmHg)

759.3

Plate	Diff.Vol (m³)	Diff.Time (min)	Diff.Hg (mm)	Diff.H₂O (in.)
1	1.00	1.4103	3.4	2.00
2	1.00	0.9980	6.8	4.00
3	1.00	0.8970	8.5	5.00
4	1.00	0.8540	9.4	5.50
5	1.00	0.7060	13.6	8.00

DATA TABULATION

Vstd	(X axis)	(Y axis)
	Qstd	
0.9853	0.6986	1.4069
0.9808	0.9828	1.9897
0.9786	1.0910	2.2245
0.9775	1.1446	2.3331
0.9720	1.3768	2.8138

Y axis= SQRT[H₂O(Pa/760)(298/Ta)] **Qstd Slope (m) = 2.07768** Intercept (b) = -0.04613

Coefficient (r) = 0.99997

Va	(X axis)	(Y axis)
	Qa	
0.9955	0.7059	0.8901
0.9910	0.9930	1.2589
0.9888	1.1023	1.4074
0.9876	1.1565	1.4761
0.9821	1.3911	1.7803

Y axis= SQRT[H2O(Ta/Pa)]

Qa Slope (m) = 1.30101Intercept (b) = -0.02919

Coefficient (r) = 0.99997

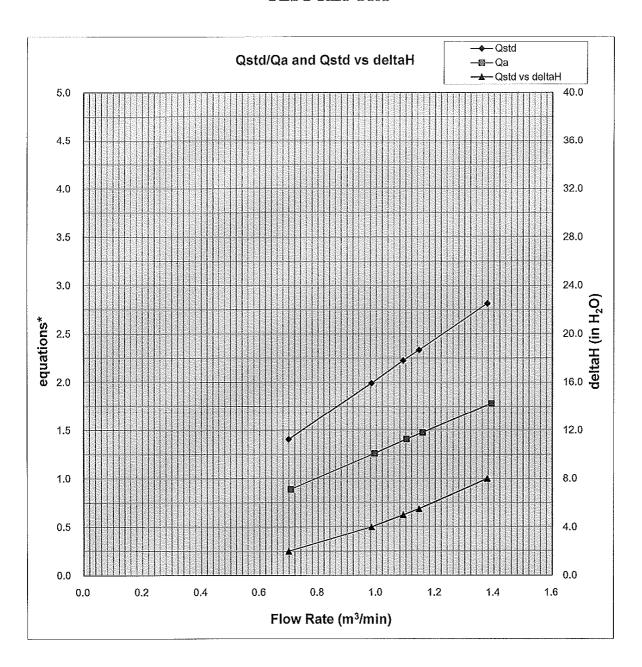
CALCULATIONS

Vstd=Diff. Vol[(Pa-Diff.Hg)/760](298/Ta) Qstd=Vstd/Time Va=Diff.Vol[(Pa-Diff.Hg)/Pa] Qa=Va/Time

For subsequent flow rate calculations:

 $Qstd=I/m{[SQRT(H_2O(Pa/760)(298/Ta))]-b}$

Qa=I/m{[SQRT H₂O(Ta/Pa)]-b}


PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Y-axis equations:

Qstd series: SQRT[\(\triangle H(Pa/Pstd)(Tstd/Ta))]

Qa series: SQRT[∆H(Ta/Pa)]

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park,

18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131019A

Date of Issue: 2013-10-19

Date Received: 2013-10-19 Date Tested: 2013-10-19

Date Completed: 2013-10-19

Next Due Date: 2014-04-18

ATTN:

Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Weather Monitor II

Manufacturer

: Davis Instruments

Model No.

: 7440

Serial No.

: MC20813A11

Test conditions:

Room Temperature

: 20 degree Celsius

Relative Humidity

: 53%

Test Specifications:

- 1. Performance check of anemometer
- 2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131231/1 Date of Issue: 2014-01-02 Date Received: 2013-12-31 Date Tested: 2013-12-31

2014-01-02 Date Completed:

Next Due Date:

2014-03-01

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata Model No. : LD-3 Serial No. : 251634 $: 0.001 \text{ mg/m}^3$ Sensitivity (K) 1 CPM Sen. Adjustment Scale Setting : 550 CPM Equipment No. : A-02-01

Test Conditions:

Room Temperature : 18 degree Celsius

Relative Humidity : 50%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 0.0031

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131231/2
Date of Issue: 2014-01-02
Date Received: 2013-12-31
Date Tested: 2014-01-02
Date Completed: 2014-01-02

Next Due Date:

2014-03-01

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 853944

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 685 CPM

Equipment No. : A-02-04

Test Conditions:

Room Temperature : 18 degree Celsius

Relative Humidity : 50%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 0.0031

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131223/1 Date of Issue: 2013-12-23 Date Received: 2013-12-20 Date Tested: 2013-12-20 Date Completed: 2013-12-23 Next Due Date: 2014-02-22

1 of 1

Page: ATTN: Mr. WK Tang

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

: Sibata Manufacturer Model No. : LD-3B Serial No. : 954253 $: 0.001 \text{ mg/m}^3$ Sensitivity (K) 1 CPM Sen. Adjustment Scale Setting : 772 CPM : A-02-05 Equipment No.

Test Conditions:

Room Temperature : 18 degree Celsius

Relative Humidity : 62%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	0.0030

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/131231/3
Date of Issue: 2014-01-02
Date Received: 2013-12-31
Date Tested: 2013-12-31
Date Completed: 2014-01-02

Date Completed: 2014-01-02 Next Due Date: 2014-03-01

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 014750

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 790 CPM

Equipment No. : A-02-06

Test Conditions:

Room Temperature : 18 degree Celsius

Relative Humidity : 50%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 0.0033

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/140103/1
Date of Issue: 2014-01-06
Date Received: 2014-01-03
Date Tested: 2014-01-03
Date Completed: 2014-01-06
Next Due Date: 2014-03-05

Page:

1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3B

Serial No. : 095039

Sensitivity (K) 1 CPM : 0.001 mg/m³

Sen. Adjustment Scale Setting : 764 CPM

Equipment No. : A-02-08

Test Conditions:

Room Temperature : 19 degree Celsius

Relative Humidity : 53%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF) 0.0030

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

P'ATRICK TSE Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/140103/2
Date of Issue: 2014-01-06
Date Received: 2014-01-03
Date Tested: 2014-01-03
Date Completed: 2014-01-06
Next Due Date: 2014-03-05

ATTN:

Mr. W. K. Tang

Page:

1 of 1

Certificate of Calibration

Item for Calibration:

Description

: Laser Dust Monitor

Manufacturer

: Sibata

Model No.

: LD-3B

Serial No.

: 095050

Sensitivity (K) 1 CPM

 $: 0.001 \text{ mg/m}^3$

Sen. Adjustment Scale Setting

: 577 CPM

Equipment No.

: A-02-09

Test Conditions:

Room Temperature

: 19 degree Celsius

Relative Humidity

: 53%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)

0.0034

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130919/1 Date of Issue: 2013-09-21 Date Received: 2013-09-19

Date Tested: 2013-09-21 Date Completed: 2013-09-21

Next Due Date: 2014-09-20

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 955 : 12553

Serial No. Microphone No.

: 35222

Equipment No.

: N-08-02

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 C/N/130830/2

 Date of Issue:
 2013-08-31

 Date Received:
 2013-08-30

 Date Tested:
 2013-08-30

 Date Completed:
 2013-08-31

 Next Due Date:
 2014-08-30

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 21459

Microphone No. Equipment No.

: 43676 : N-08-08

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 69%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/130830/3
Date of Issue: 2013-08-31
Date Received: 2013-08-30
Date Tested: 2013-08-30
Date Completed: 2013-08-31
Next Due Date: 2014-08-30

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK
Model No. : SVAN 957
Serial No. : 21460
Microphone No. : 43679
Equipment No. : N-08-09

Test conditions:

Room Temperatre : 21 degree Celsius

Relative Humidity : 69%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB		
94	94.0		
114	114.0		

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/131129/1 Date of Issue: 2013-11-30 Date Received: 2013-11-29 Date Tested: 2013-11-29 Date Completed: 2013-11-30 Next Due Date: 2014-11-29

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: 'SVANTEK' Integrating Sound Level Meter

Manufacturer

: SVANTEK

Model No.

: SVAN 957

Serial No.

: 23853 : 48530

Microphone No. Equipment No.

: N-08-10

Test conditions:

Room Temperatre

: 19 degree Celsius

Relative Humidity

: 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

ATTN:

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/131129/3 Date of Issue: 2013-11-30 Date Received: 2013-11-29 Date Tested: 2013-11-29 Date Completed: 2013-11-30

Next Due Date: 2014-11-29

1 of 1

Mr. W.K. Tang Page:

Certificate of Calibration

Item for calibration:

Description : 'SVANTEK' Integrating Sound Level Meter

Manufacturer : SVANTEK Model No. : SVAN 957 Serial No. : 23851 Microphone No. : 48532

Equipment No. : N-08-12

Test conditions:

Room Temperatre : 19 degree Celsius

Relative Humidity : 57%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB	
94	94.0	
114	114.0	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

· ·	
Test Report No.:	C/N/131004/1
Date of Issue:	2013-10-05
Date Received:	2013-10-04
Date Tested:	2013-10-04
Date Completed:	2013-10-05
Next Due Date:	2014-10-04

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer Model No.

: SVANTEK : SV30A

Serial No.

: 24803

Equipment No.

: N-09-03

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 57%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/131004/3
Date of Issue: 2013-10-05
Date Received: 2013-10-04
Date Tested: 2013-10-04
Date Completed: 2013-10-05
Next Due Date: 2014-10-04

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer Model No.

: SVANTEK : SV30A

Serial No.

: 24780

Equipment No.

: N-09-05

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 57%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

 Test Report No.:
 C/N/131108/1

 Date of Issue:
 2013-11-09

 Date Received:
 2013-11-08

 Date Tested:
 2013-11-08

 Date Completed:
 2013-11-09

 Next Due Date:
 2014-11-08

ATTN:

Mr. W.K. Tang

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No. Serial No. : 4231

Project No.

: 2326353 : C13

Project No. Equipment No.

: N-02-01

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 52 %

Methodology:

The sound calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

	A CONTRACTOR OF THE PROPERTY O
Test Report No.:	C/N/130830/4
Date of Issue:	2012-08-31
Date Received:	2013-08-30
Date Tested:	2013-08-30
Date Completed:	2013-08-31
Nevt Due Date:	2014-08-30

ATTN:

Mr. W.K. Tang

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

: 20 degree Celsius

Relative Humidity

: 64%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
1 January 2014	13.0 – 18.9	37 – 70	0
2 January 2014	14.4 – 19.3	61 – 88	0
3 January 2014	17.2 – 22.5	56 – 77	0
4 January 2014	16.8 – 21.8	40 – 66	0
5 January 2014	14.5 – 18.7	45 – 79	0
6 January 2014	14.8 – 18.5	61 – 83	0
7 January 2014	16.5 – 19.1	70 – 90	Trace
8 January 2014	16.1 – 21.0	65 – 95	Trace
9 January 2014	14.3 – 16.6	64 – 73	0
10 January 2014	14.4 – 16.2	72 – 81	Trace
11 January 2014	14.1 – 18.8	63 – 86	0
12 January 2014	15.1 – 21.5	60 – 87	0
13 January 2014	11.8 – 16.2	60 – 74	Trace
14 January 2014	10.6 – 16.8	57 – 75	0
15 January 2014	11.2 – 16.1	47 – 74	0
16 January 2014	11.8 – 16.7	57 – 84	0
17 January 2014	12.7 – 18.9	55 – 91	0
18 January 2014	13.5 – 19.7	32 – 80	0
19 January 2014	13.2 – 16.7	54 – 81	0

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20 January 2014	13.4 – 20.5	32 – 77	0
21 January 2014	12.9 – 17.6	27 – 41	0
22 January 2014	10.3 – 17.0	31 – 64	0
23 January 2014	11.6 – 15.8	54 – 82	0
24 January 2014	12.9 – 18.5	65 – 85	0
25 January 2014	16.5 – 21.4	65 – 83	0
26 January 2014	16.3 – 24.4	54 – 84	0
27 January 2014	15.0 – 18.9	59 – 85	0
28 January 2014	14.8 – 20.3	54 – 86	0
29 January 2014	15.6 – 21.2	55 – 81	0
30 January 2014	15.9 – 22.9	63 – 90	0
31 January 2014	16.4 – 22.8	56 – 90	0

^{*} The above information was extracted from the daily weather summary by Hong Kong Observatory.

Date	Time	Wind Speed m/s	Direction
1-Jan-2014	00:00	0.8	W
1-Jan-2014	01:00	0.9	NNE
1-Jan-2014	02:00	0.8	WNW
1-Jan-2014	03:00	1.1	NNE
1-Jan-2014	04:00	0.5	NW
1-Jan-2014	05:00	0.6	WNW
1-Jan-2014	06:00	0.7	SSE
1-Jan-2014	07:00	0.9	SSE
1-Jan-2014	08:00	1	W
1-Jan-2014	09:00	1.4	NNE
1-Jan-2014	10:00	1.6	W
1-Jan-2014	11:00	2	ENE
1-Jan-2014	12:00	2.3	ENE
1-Jan-2014	13:00	2.6	ENE
1-Jan-2014	14:00	2.4	ENE
1-Jan-2014	15:00	2.1	ENE
1-Jan-2014	16:00	2	WNW
1-Jan-2014	17:00	1.7	NE
1-Jan-2014	18:00	1.4	NE
1-Jan-2014	19:00	1.4	ESE
1-Jan-2014	20:00	1.2	ENE
1-Jan-2014	21:00	1.3	ENE
1-Jan-2014	22:00	1.3	NE
1-Jan-2014	23:00	1.3	ESE
2-Jan-2014	00:00	1.2	S
2-Jan-2014	01:00	1.2	NE
2-Jan-2014	02:00	1.2	ENE
2-Jan-2014	03:00	1	ENE
2-Jan-2014	04:00	0.9	SE
2-Jan-2014	05:00	0.9	SE
2-Jan-2014	06:00	0.9	NE
2-Jan-2014	07:00	1	NE
2-Jan-2014	08:00	1	ENE
2-Jan-2014	09:00	1.4	ENE
2-Jan-2014	10:00	2	Е
2-Jan-2014	11:00	2.2	SSE

2-Jan-2014	12:00	2.3	ENE
2-Jan-2014	13:00	2.3	NE
2-Jan-2014	14:00	2.2	SSE
2-Jan-2014	15:00	2.1	NE
2-Jan-2014	16:00	2	ENE
2-Jan-2014	17:00	2	NE
2-Jan-2014	18:00	1.5	NE
2-Jan-2014	19:00	1.2	NNE
2-Jan-2014	20:00	1.2	SE
2-Jan-2014	21:00	1.4	NE
2-Jan-2014	22:00	1	WSW
2-Jan-2014	23:00	1.1	E
3-Jan-2014	00:00	1.1	NE
3-Jan-2014	01:00	1.2	SSE
3-Jan-2014	02:00	1.3	NE
3-Jan-2014	03:00	1.4	SSE
3-Jan-2014	04:00	1.4	ENE
3-Jan-2014	05:00	1.2	SSE
3-Jan-2014	06:00	0.9	N
3-Jan-2014	07:00	0.9	SSE
3-Jan-2014	08:00	1.2	SSE
3-Jan-2014	09:00	1.7	NE
3-Jan-2014	10:00	2	ENE
3-Jan-2014	11:00	2.1	ESE
3-Jan-2014	12:00	2.4	W
3-Jan-2014	13:00	2.6	SSW
3-Jan-2014	14:00	2.3	WSW
3-Jan-2014	15:00	2.2	WNW
3-Jan-2014	16:00	2.2	SW
3-Jan-2014	17:00	2.2	WNW
3-Jan-2014	18:00	1.9	WNW
3-Jan-2014	19:00	1.4	SW
3-Jan-2014	20:00	1.2	WNW
3-Jan-2014	21:00	1.1	WNW
3-Jan-2014	22:00	1.2	NNE
3-Jan-2014	23:00	1.3	NE
4-Jan-2014	00:00	2.1	NNE
	•		

4-Jan-2014	01:00	2	NE
4-Jan-2014	02:00	2.1	NNE
4-Jan-2014	03:00	2.1	NNE
4-Jan-2014	04:00	1.3	W
4-Jan-2014	05:00	1.5	NE
4-Jan-2014	06:00	1.5	WNW
4-Jan-2014	07:00	1.8	SW
4-Jan-2014	08:00	2.1	WSW
4-Jan-2014	09:00	2.5	WNW
4-Jan-2014	10:00	3	W
4-Jan-2014	11:00	2.6	ENE
4-Jan-2014	12:00	2.5	ENE
4-Jan-2014	13:00	3	ENE
4-Jan-2014	14:00	2.6	ENE
4-Jan-2014	15:00	2.9	NE
4-Jan-2014	16:00	2.7	ENE
4-Jan-2014	17:00	3	N
4-Jan-2014	18:00	2.5	SSE
4-Jan-2014	19:00	2.3	SSE
4-Jan-2014	20:00	2.2	SSE
4-Jan-2014	21:00	1.6	NW
4-Jan-2014	22:00	2.5	W
4-Jan-2014	23:00	2.2	SW
5-Jan-2014	00:00	2.4	NE
5-Jan-2014	01:00	2.3	ENE
5-Jan-2014	02:00	2	ENE
5-Jan-2014	03:00	1.8	SE
5-Jan-2014	04:00	1.9	W
5-Jan-2014	05:00	1.7	W
5-Jan-2014	06:00	1.5	SSW
5-Jan-2014	07:00	1.5	SSW
5-Jan-2014	08:00	2.2	WNW
5-Jan-2014	09:00	2.6	W
5-Jan-2014	10:00	3.1	SW
5-Jan-2014	11:00	2.9	W
5-Jan-2014	12:00	3.2	SW
5-Jan-2014	13:00	3.1	WNW
L	1		

5-Jan-2014	14:00	3.2	NNW
5-Jan-2014	15:00	3.2	E
5-Jan-2014	16:00	2.6	SSE
5-Jan-2014	17:00	2.8	S
5-Jan-2014	18:00	2.6	NW
5-Jan-2014	19:00	1.7	NE
5-Jan-2014	20:00	2	SW
5-Jan-2014	21:00	2	SE
5-Jan-2014	22:00	1.8	SW
5-Jan-2014	23:00	2.4	NNE
6-Jan-2014	00:00	2.4	WSW
6-Jan-2014	01:00	2.3	SW
6-Jan-2014	02:00	2.1	W
6-Jan-2014	03:00	1.8	ENE
6-Jan-2014	04:00	1.9	W
6-Jan-2014	05:00	1.7	NE
6-Jan-2014	06:00	1.4	NNE
6-Jan-2014	07:00	1.3	NE
6-Jan-2014	08:00	1.6	SW
6-Jan-2014	09:00	1.9	NE
6-Jan-2014	10:00	2.5	SW
6-Jan-2014	11:00	2.3	WSW
6-Jan-2014	12:00	2.5	ENE
6-Jan-2014	13:00	2.7	NE
6-Jan-2014	14:00	2.3	WSW
6-Jan-2014	15:00	2.4	WSW
6-Jan-2014	16:00	2.3	ENE
6-Jan-2014	17:00	2.8	W
6-Jan-2014	18:00	2.2	W
6-Jan-2014	19:00	1.8	ENE
6-Jan-2014	20:00	1.6	ENE
6-Jan-2014	21:00	1.9	WNW
6-Jan-2014	22:00	1.8	WSW
6-Jan-2014	23:00	1.9	W
7-Jan-2014	00:00	2.2	WSW
7-Jan-2014	01:00	2.4	WSW
7-Jan-2014	02:00	2.5	WSW
L	1	I	1

7-Jan-2014	03:00	2	WSW
7-Jan-2014	04:00	1.8	WNW
7-Jan-2014	05:00	1.7	WSW
7-Jan-2014	06:00	1.8	SSW
7-Jan-2014	07:00	1.4	W
7-Jan-2014	08:00	1.3	WSW
7-Jan-2014	09:00	1.4	WNW
7-Jan-2014	10:00	1.9	WSW
7-Jan-2014	11:00	2	W
7-Jan-2014	12:00	1.7	WNW
7-Jan-2014	13:00	1.5	WNW
7-Jan-2014	14:00	1.4	WNW
7-Jan-2014	15:00	2.1	WSW
7-Jan-2014	16:00	1.8	WSW
7-Jan-2014	17:00	1.5	WSW
7-Jan-2014	18:00	1.4	SSW
7-Jan-2014	19:00	1.3	WSW
7-Jan-2014	20:00	1.2	WNW
7-Jan-2014	21:00	1.5	WSW
7-Jan-2014	22:00	1.9	SSW
7-Jan-2014	23:00	1.7	NW
8-Jan-2014	00:00	1.4	SW
8-Jan-2014	01:00	1.6	SW
8-Jan-2014	02:00	1.5	N
8-Jan-2014	03:00	1.4	N
8-Jan-2014	04:00	1.5	W
8-Jan-2014	05:00	1.5	ENE
8-Jan-2014	06:00	1.4	WNW
8-Jan-2014	07:00	1.4	WSW
8-Jan-2014	08:00	1.5	W
8-Jan-2014	09:00	2	W
8-Jan-2014	10:00	2.2	W
8-Jan-2014	11:00	2.3	WSW
8-Jan-2014	12:00	2.6	WSW
8-Jan-2014	13:00	2.6	WSW
8-Jan-2014	14:00	2.5	W
8-Jan-2014	15:00	2.5	W
l .	1	·	<u> </u>

8-Jan-2014	16:00	2.3	SSW
8-Jan-2014	17:00	2.1	W
8-Jan-2014	18:00	1.6	W
8-Jan-2014	19:00	1.5	E
8-Jan-2014	20:00	1.4	E
8-Jan-2014	21:00	1.6	W
8-Jan-2014	22:00	1.8	SSW
8-Jan-2014	23:00	1.7	W
9-Jan-2014	00:00	1.4	ENE
9-Jan-2014	01:00	1.3	SW
9-Jan-2014	02:00	1.5	WSW
9-Jan-2014	03:00	1.9	W
9-Jan-2014	04:00	1.9	WNW
9-Jan-2014	05:00	1.5	NE
9-Jan-2014	06:00	1.7	S
9-Jan-2014	07:00	1.5	SW
9-Jan-2014	08:00	2	SW
9-Jan-2014	09:00	1.7	WSW
9-Jan-2014	10:00	2.4	SW
9-Jan-2014	11:00	2.6	WNW
9-Jan-2014	12:00	2.3	W
9-Jan-2014	13:00	2.3	W
9-Jan-2014	14:00	2.1	WSW
9-Jan-2014	15:00	2.1	W
9-Jan-2014	16:00	2.1	NNE
9-Jan-2014	17:00	1.8	NE
9-Jan-2014	18:00	1.6	NE
9-Jan-2014	19:00	1.6	NNE
9-Jan-2014	20:00	1.6	N
9-Jan-2014	21:00	1.2	SW
9-Jan-2014	22:00	1	SW
9-Jan-2014	23:00	0.9	SW
10-Jan-2014	00:00	1	SSW
10-Jan-2014	01:00	1.1	S
10-Jan-2014	02:00	1.1	WNW
10-Jan-2014	03:00	0.9	NE
10-Jan-2014	04:00	1.1	NE

10-Jan-2014	05:00	0.9	NNE
10-Jan-2014	06:00	1.1	NNE
10-Jan-2014	07:00	0.9	NE
10-Jan-2014	08:00	1.1	ENE
10-Jan-2014	09:00	1.4	NE
10-Jan-2014	10:00	1.4	NE
10-Jan-2014	11:00	1.6	WSW
10-Jan-2014	12:00	2	WSW
10-Jan-2014	13:00	1.9	E
10-Jan-2014	14:00	1.8	NE
10-Jan-2014	15:00	1.8	NNE
10-Jan-2014	16:00	1.7	SE
10-Jan-2014	17:00	1.6	ESE
10-Jan-2014	18:00	1.6	SE
10-Jan-2014	19:00	1.3	SE
10-Jan-2014	20:00	0.9	SE
10-Jan-2014	21:00	0.8	SE
10-Jan-2014	22:00	0.9	SSW
10-Jan-2014	23:00	0.9	Е
11-Jan-2014	00:00	0.9	NNE
11-Jan-2014	01:00	1	NNW
11-Jan-2014	02:00	1	NNW
11-Jan-2014	03:00	1.1	ESE
11-Jan-2014	04:00	1.1	E
11-Jan-2014	05:00	1	ESE
11-Jan-2014	06:00	0.8	ESE
11-Jan-2014	07:00	0.9	SE
11-Jan-2014	08:00	1.3	SE
11-Jan-2014	09:00	1.5	SSE
11-Jan-2014	10:00	1.6	SSE
11-Jan-2014	11:00	1.5	SSE
11-Jan-2014	12:00	1.7	ESE
11-Jan-2014	13:00	1.9	SSE
11-Jan-2014	14:00	2.6	SSE
11-Jan-2014	15:00	2.3	ENE
11-Jan-2014	16:00	2.1	NE
11-Jan-2014	17:00	1.8	WSW
·	•	•	•

11-Jan-2014	18:00	1.5	SW
11-Jan-2014	19:00	1.3	W
11-Jan-2014	20:00	1.2	SW
11-Jan-2014	21:00	1.3	E
11-Jan-2014	22:00	1.1	SE
11-Jan-2014	23:00	1.1	SE
12-Jan-2014	00:00	1.1	N
12-Jan-2014	01:00	1.1	N
12-Jan-2014	02:00	1	Е
12-Jan-2014	03:00	1.1	NE
12-Jan-2014	04:00	1	NNE
12-Jan-2014	05:00	1.1	S
12-Jan-2014	06:00	1.1	S
12-Jan-2014	07:00	1	NNE
12-Jan-2014	08:00	1.1	NE
12-Jan-2014	09:00	1.4	NE
12-Jan-2014	10:00	1.6	NE
12-Jan-2014	11:00	1.9	NNE
12-Jan-2014	12:00	1.9	ENE
12-Jan-2014	13:00	1.9	NNE
12-Jan-2014	14:00	2.1	ESE
12-Jan-2014	15:00	2	SSE
12-Jan-2014	16:00	1.9	SSE
12-Jan-2014	17:00	1.4	Е
12-Jan-2014	18:00	1.4	Е
12-Jan-2014	19:00	1.1	SE
12-Jan-2014	20:00	1	SE
12-Jan-2014	21:00	0.9	ESE
12-Jan-2014	22:00	0.9	SSE
12-Jan-2014	23:00	0.9	ESE
13-Jan-2014	00:00	0.9	ESE
13-Jan-2014	01:00	1	SE
13-Jan-2014	02:00	1	SSE
13-Jan-2014	03:00	1.3	SSE
13-Jan-2014	04:00	1.3	ESE
13-Jan-2014	05:00	1.1	ESE
13-Jan-2014	06:00	0.9	SSE
L	1	l	I

40 1 0011	27.00	<u> </u>	225
13-Jan-2014	07:00	1	SSE
13-Jan-2014	08:00	1.4	SSE
13-Jan-2014	09:00	1.5	SSE
13-Jan-2014	10:00	1.8	ESE
13-Jan-2014	11:00	2.4	SSE
13-Jan-2014	12:00	2.4	ESE
13-Jan-2014	13:00	2	ESE
13-Jan-2014	14:00	2.1	NE
13-Jan-2014	15:00	2	SE
13-Jan-2014	16:00	1.8	ESE
13-Jan-2014	17:00	1.9	SE
13-Jan-2014	18:00	1.5	S
13-Jan-2014	19:00	1.6	W
13-Jan-2014	20:00	1.5	ESE
13-Jan-2014	21:00	1.4	NE
13-Jan-2014	22:00	1.3	NE
13-Jan-2014	23:00	1.3	NE
14-Jan-2014	00:00	1.3	Е
14-Jan-2014	01:00	1.2	SSW
14-Jan-2014	02:00	1.2	W
14-Jan-2014	03:00	1.3	W
14-Jan-2014	04:00	1.5	WNW
14-Jan-2014	05:00	1.4	SSW
14-Jan-2014	06:00	1.6	NNW
14-Jan-2014	07:00	1.5	NNE
14-Jan-2014	08:00	1.5	N
14-Jan-2014	09:00	1.7	NW
14-Jan-2014	10:00	2	SW
14-Jan-2014	11:00	2.3	SW
14-Jan-2014	12:00	2.3	W
14-Jan-2014	13:00	2	WNW
14-Jan-2014	14:00	2	WNW
14-Jan-2014	15:00	2	SSW
14-Jan-2014	16:00	2	SSW
14-Jan-2014	17:00	1.8	W
14-Jan-2014	18:00	1.5	ESE
14-Jan-2014	19:00	1.5	W

14-Jan-2014	20:00	1.5	SW
14-Jan-2014	21:00	1.5	N
14-Jan-2014	22:00	1.5	NNE
14-Jan-2014	23:00	1.3	E
15-Jan-2014	00:00	1.5	E
15-Jan-2014	01:00	1.3	NE
15-Jan-2014	02:00	1.5	NE
15-Jan-2014	03:00	1.4	E
15-Jan-2014	04:00	1.5	NE
15-Jan-2014	05:00	1.4	ENE
15-Jan-2014	06:00	1.2	ENE
15-Jan-2014	07:00	1.2	ENE
15-Jan-2014	08:00	1.1	ENE
15-Jan-2014	09:00	1.6	NE
15-Jan-2014	10:00	1.4	WSW
15-Jan-2014	11:00	1.7	W
15-Jan-2014	12:00	1.7	W
15-Jan-2014	13:00	1.6	ESE
15-Jan-2014	14:00	1.7	ENE
15-Jan-2014	15:00	1.7	NW
15-Jan-2014	16:00	1.7	Е
15-Jan-2014	17:00	1.5	ESE
15-Jan-2014	18:00	1.5	Е
15-Jan-2014	19:00	1.2	NW
15-Jan-2014	20:00	1.2	ESE
15-Jan-2014	21:00	1.4	NNW
15-Jan-2014	22:00	1.3	WSW
15-Jan-2014	23:00	1.2	SSE
16-Jan-2014	00:00	1	NNE
16-Jan-2014	01:00	0.9	ENE
16-Jan-2014	02:00	0.8	ESE
16-Jan-2014	03:00	0.9	ESE
16-Jan-2014	04:00	0.8	NE
16-Jan-2014	05:00	0.8	ENE
16-Jan-2014	06:00	0.7	ENE
16-Jan-2014	07:00	1	ESE
16-Jan-2014	08:00	1.4	NE

16-Jan-2014	09:00	1.8	ENE
16-Jan-2014	10:00	1.8	ENE
16-Jan-2014	11:00	2.1	NNE
16-Jan-2014	12:00	2.1	NE
16-Jan-2014	13:00	2.1	ENE
16-Jan-2014	14:00	2.4	WNW
16-Jan-2014	15:00	2.2	W
16-Jan-2014	16:00	2	W
16-Jan-2014	17:00	2	WSW
16-Jan-2014	18:00	1.6	W
16-Jan-2014	19:00	1.3	W
16-Jan-2014	20:00	0.8	W
16-Jan-2014	21:00	0.9	ESE
16-Jan-2014	22:00	0.9	ESE
16-Jan-2014	23:00	0.5	SSE
17-Jan-2014	00:00	0.9	SSE
17-Jan-2014	01:00	1.2	NE
17-Jan-2014	02:00	1.1	ENE
17-Jan-2014	03:00	1.1	NW
17-Jan-2014	04:00	1	NW
17-Jan-2014	05:00	1.1	N
17-Jan-2014	06:00	1.3	N
17-Jan-2014	07:00	1.2	ESE
17-Jan-2014	08:00	1.5	ESE
17-Jan-2014	09:00	1.7	SE
17-Jan-2014	10:00	1.6	SW
17-Jan-2014	11:00	1.9	E
17-Jan-2014	12:00	1.8	S
17-Jan-2014	13:00	1.9	NW
17-Jan-2014	14:00	1.5	ESE
17-Jan-2014	15:00	1.2	WSW
17-Jan-2014	16:00	1.4	NW
17-Jan-2014	17:00	1.4	NE
17-Jan-2014	18:00	1.3	WSW
17-Jan-2014	19:00	1.2	NNW
17-Jan-2014	20:00	1.1	NNW
17-Jan-2014	21:00	1.3	NNW

47 1 0044	20.00	4.0	MOM
+	22:00	1.3	WSW
+	23:00	1.2	SE
	00:00	1	N
	01:00	0.9	S
18-Jan-2014	02:00	0.9	SE
18-Jan-2014	03:00	1.4	SE
18-Jan-2014	04:00	1.4	S
18-Jan-2014	05:00	1.4	N
18-Jan-2014	06:00	1.3	Е
18-Jan-2014	07:00	1.4	NW
18-Jan-2014	08:00	1.8	NE
18-Jan-2014	09:00	2	SW
18-Jan-2014	10:00	2.3	W
18-Jan-2014	11:00	2.4	NE
18-Jan-2014	12:00	2.3	NE
18-Jan-2014	13:00	2.2	NE
18-Jan-2014	14:00	2.2	ENE
18-Jan-2014	15:00	2	NE
18-Jan-2014	16:00	2	NE
18-Jan-2014	17:00	1.8	NE
18-Jan-2014	18:00	1.4	NNE
18-Jan-2014	19:00	1.2	NNE
18-Jan-2014	20:00	0.8	SSE
18-Jan-2014	21:00	0.8	NE
18-Jan-2014	22:00	0.9	ENE
18-Jan-2014	23:00	1.2	NNE
19-Jan-2014 (00:00	1.6	ESE
19-Jan-2014	01:00	1.4	Е
19-Jan-2014 (02:00	1.3	ESE
19-Jan-2014	03:00	1.2	Е
19-Jan-2014	04:00	1.4	Е
19-Jan-2014	05:00	1.3	NNE
19-Jan-2014	06:00	1.3	W
19-Jan-2014	07:00	1.5	S
19-Jan-2014	08:00	1.4	WSW
19-Jan-2014 (09:00	1.5	SW
19-Jan-2014	10:00	1.4	SW

19-Jan-2014	11:00	1.4	S
19-Jan-2014	12:00	1.6	WNW
19-Jan-2014	13:00	1.6	WNW
19-Jan-2014	14:00	1.8	SW
19-Jan-2014	15:00	1.8	SSW
19-Jan-2014	16:00	1.7	SSW
19-Jan-2014	17:00	1.7	S
19-Jan-2014	18:00	1.7	SSW
19-Jan-2014	19:00	1.4	WNW
19-Jan-2014	20:00	1	WNW
19-Jan-2014	21:00	1	NW
19-Jan-2014	22:00	1.4	WNW
19-Jan-2014	23:00	1.4	WNW
20-Jan-2014	00:00	1.7	NE
20-Jan-2014	01:00	1.8	NE
20-Jan-2014	02:00	1.8	NE
20-Jan-2014	03:00	1.5	ENE
20-Jan-2014	04:00	1.5	ESE
20-Jan-2014	05:00	1.6	NNE
20-Jan-2014	06:00	1.7	ENE
20-Jan-2014	07:00	1.5	NE
20-Jan-2014	08:00	1.8	ESE
20-Jan-2014	09:00	1.9	ENE
20-Jan-2014	10:00	2	ESE
20-Jan-2014	11:00	2.6	ESE
20-Jan-2014	12:00	2.8	NE
20-Jan-2014	13:00	2.7	NE
20-Jan-2014	14:00	2.8	ENE
20-Jan-2014	15:00	2.7	ENE
20-Jan-2014	16:00	2.6	NE
20-Jan-2014	17:00	2.5	NNE
20-Jan-2014	18:00	2.5	NNE
20-Jan-2014	19:00	2.4	NNE
20-Jan-2014	20:00	2.2	N
20-Jan-2014	21:00	2.2	NNE
20-Jan-2014	22:00	2.2	N
20-Jan-2014	23:00	2	NE
l			l .

21-Jan-2014	00:00	2	NE
21-Jan-2014	01:00	1.8	SE
21-Jan-2014	02:00	1.7	SE
21-Jan-2014	03:00	2	ESE
21-Jan-2014	04:00	2	SSE
21-Jan-2014	05:00	2.1	SSE
21-Jan-2014	06:00	2.3	SSE
21-Jan-2014	07:00	2	SSE
21-Jan-2014	08:00	2.3	NE
21-Jan-2014	09:00	2.8	ESE
21-Jan-2014	10:00	2.3	NE
21-Jan-2014	11:00	2.6	NE
21-Jan-2014	12:00	2.9	NE
21-Jan-2014	13:00	2.9	NNE
21-Jan-2014	14:00	3	NE
21-Jan-2014	15:00	2.9	NE
21-Jan-2014	16:00	2.7	NE
21-Jan-2014	17:00	2.8	NE
21-Jan-2014	18:00	2.7	NE
21-Jan-2014	19:00	2.2	NE
21-Jan-2014	20:00	2.1	NE
21-Jan-2014	21:00	2	ENE
21-Jan-2014	22:00	2.2	NE
21-Jan-2014	23:00	2.3	NNE
22-Jan-2014	00:00	2.5	NNE
22-Jan-2014	01:00	2.4	N
22-Jan-2014	02:00	2.1	NNE
22-Jan-2014	03:00	1.8	SE
22-Jan-2014	04:00	1.9	ESE
22-Jan-2014	05:00	1.6	ESE
22-Jan-2014	06:00	0.9	ESE
22-Jan-2014	07:00	1.5	NNE
22-Jan-2014	08:00	1.7	NE
22-Jan-2014	09:00	2.1	ESE
22-Jan-2014	10:00	2.1	NE
22-Jan-2014	11:00	2	ESE
22-Jan-2014	12:00	2.1	ESE
-			•

22-Jan-2014	12:00	0.0	ГСГ
	13:00	2.3	ESE
22-Jan-2014	14:00	2	NNE
22-Jan-2014	15:00	1.7	ENE
22-Jan-2014	16:00	1.9	ENE
22-Jan-2014	17:00	2.1	ENE
22-Jan-2014	18:00	1.5	ENE
22-Jan-2014	19:00	1.2	WSW
22-Jan-2014	20:00	1.2	W
22-Jan-2014	21:00	1.6	SW
22-Jan-2014	22:00	1.3	SW
22-Jan-2014	23:00	1.4	SW
23-Jan-2014	00:00	1.9	SSW
23-Jan-2014	01:00	1.8	W
23-Jan-2014	02:00	1.9	SW
23-Jan-2014	03:00	1.8	W
23-Jan-2014	04:00	1.6	W
23-Jan-2014	05:00	1.6	WNW
23-Jan-2014	06:00	2.1	SW
23-Jan-2014	07:00	2.1	WSW
23-Jan-2014	08:00	1.6	WSW
23-Jan-2014	09:00	1.4	SW
23-Jan-2014	10:00	2	SSW
23-Jan-2014	11:00	2	SSW
23-Jan-2014	12:00	2	SSW
23-Jan-2014	13:00	2.3	SSW
23-Jan-2014	14:00	2.4	WSW
23-Jan-2014	15:00	2.3	W
23-Jan-2014	16:00	2.3	WNW
23-Jan-2014	17:00	2	WNW
23-Jan-2014	18:00	2	WSW
23-Jan-2014	19:00	1.8	SW
23-Jan-2014	20:00	1.6	W
23-Jan-2014	21:00	1.2	W
23-Jan-2014	22:00	1.3	WNW
23-Jan-2014	23:00	1.3	WNW
24-Jan-2014	00:00	1.2	WNW
24-Jan-2014	01:00	1.3	WNW

24-Jan-2014	02:00	1.5	WNW
24-Jan-2014	03:00	1.5	SSW
24-Jan-2014	04:00	1.6	SSW
24-Jan-2014	05:00	1.6	WNW
24-Jan-2014	06:00	1.1	WNW
24-Jan-2014	07:00	0.8	WNW
24-Jan-2014	08:00	1.1	WSW
24-Jan-2014	09:00	1.3	WSW
24-Jan-2014	10:00	1.4	SSW
24-Jan-2014	11:00	1.7	SW
24-Jan-2014	12:00	1.6	SW
24-Jan-2014	13:00	1.9	WNW
24-Jan-2014	14:00	2.1	WNW
24-Jan-2014	15:00	1.9	WNW
24-Jan-2014	16:00	1.8	WSW
24-Jan-2014	17:00	2	SSW
24-Jan-2014	18:00	1.6	SSW
24-Jan-2014	19:00	1.6	WSW
24-Jan-2014	20:00	1.4	WSW
24-Jan-2014	21:00	2.1	WNW
24-Jan-2014	22:00	1.5	WSW
24-Jan-2014	23:00	1.4	WSW
25-Jan-2014	00:00	1.4	W
25-Jan-2014	01:00	1.3	SW
25-Jan-2014	02:00	1.2	WSW
25-Jan-2014	03:00	1.1	WSW
25-Jan-2014	04:00	1.2	SW
25-Jan-2014	05:00	1.2	SW
25-Jan-2014	06:00	1.4	SW
25-Jan-2014	07:00	1.4	SW
25-Jan-2014	08:00	1.8	SW
25-Jan-2014	09:00	1.5	SSW
25-Jan-2014	10:00	1.7	WNW
25-Jan-2014	11:00	2	SW
25-Jan-2014	12:00	2.4	SSW
25-Jan-2014	13:00	2.4	SSW
25-Jan-2014	14:00	2.2	SSW
L	<u> </u>		

25-Jan-2014	15:00	2	W
25-Jan-2014	16:00	1.7	WNW
25-Jan-2014	17:00	1.6	WNW
25-Jan-2014	18:00	1.3	WSW
25-Jan-2014	19:00	1	WSW
25-Jan-2014	20:00	0.9	WSW
25-Jan-2014	21:00	0.8	WNW
25-Jan-2014	22:00	0.9	SSW
25-Jan-2014	23:00	1	SW
26-Jan-2014	00:00	0.9	WSW
26-Jan-2014	01:00	0.9	WSW
26-Jan-2014	02:00	0.8	S
26-Jan-2014	03:00	0.9	S
26-Jan-2014	04:00	0.6	WSW
26-Jan-2014	05:00	0.8	W
26-Jan-2014	06:00	0.7	SW
26-Jan-2014	07:00	0.8	WSW
26-Jan-2014	08:00	1.1	WSW
26-Jan-2014	09:00	1.3	SW
26-Jan-2014	10:00	1.7	SSW
26-Jan-2014	11:00	1.9	WSW
26-Jan-2014	12:00	2	WSW
26-Jan-2014	13:00	2	WSW
26-Jan-2014	14:00	2	WNW
26-Jan-2014	15:00	2	SSW
26-Jan-2014	16:00	1.7	SW
26-Jan-2014	17:00	1.3	WSW
26-Jan-2014	18:00	1	SSW
26-Jan-2014	19:00	1	SW
26-Jan-2014	20:00	0.8	SW
26-Jan-2014	21:00	1	W
26-Jan-2014	22:00	1.3	SSW
26-Jan-2014	23:00	1.2	WSW
27-Jan-2014	00:00	1.2	SW
27-Jan-2014	01:00	1.1	SSW
27-Jan-2014	02:00	1.2	WSW
27-Jan-2014	03:00	1.2	WSW

27-Jan-2014	04:00	1.3	WSW
27-Jan-2014	05:00	1.4	SW
27-Jan-2014	06:00	1.2	SW
27-Jan-2014	07:00	1.1	NE
27-Jan-2014	08:00	1.1	W
27-Jan-2014	09:00	1.4	WSW
27-Jan-2014	10:00	1.6	WSW
27-Jan-2014	11:00	1.6	SW
27-Jan-2014	12:00	1.8	SSE
27-Jan-2014	13:00	2	SSE
27-Jan-2014	14:00	1.6	SSW
27-Jan-2014	15:00	1.7	SW
27-Jan-2014	16:00	1.8	SW
27-Jan-2014	17:00	1.6	SSW
27-Jan-2014	18:00	1.3	SSW
27-Jan-2014	19:00	1.1	SW
27-Jan-2014	20:00	1.5	WSW
27-Jan-2014	21:00	1.4	SW
27-Jan-2014	22:00	1.4	SSW
27-Jan-2014	23:00	1.4	SSW
28-Jan-2014	00:00	1.4	SW
28-Jan-2014	01:00	1.4	SSW
28-Jan-2014	02:00	1.3	SW
28-Jan-2014	03:00	1.4	SSW
28-Jan-2014	04:00	1.2	SW
28-Jan-2014	05:00	1.1	SW
28-Jan-2014	06:00	1	SW
28-Jan-2014	07:00	1.2	SSW
28-Jan-2014	08:00	1	WSW
28-Jan-2014	09:00	1.1	W
28-Jan-2014	10:00	1.1	W
28-Jan-2014	11:00	0.9	WNW
28-Jan-2014	12:00	1.1	SSW
28-Jan-2014	13:00	1.3	W
28-Jan-2014	14:00	1.2	SSW
28-Jan-2014	15:00	1.4	NE
28-Jan-2014	16:00	1.5	N

28-Jan-2014	17:00	1.5	SW
28-Jan-2014	18:00	1.3	W
28-Jan-2014	19:00	1.1	WNW
28-Jan-2014	20:00	1.1	W
28-Jan-2014	21:00	1.2	W
28-Jan-2014	22:00	1	W
28-Jan-2014	23:00	1.2	WSW
29-Jan-2014	00:00	1.6	SW
29-Jan-2014	01:00	1.7	SSW
29-Jan-2014	02:00	1.4	WSW
29-Jan-2014	03:00	1.3	WSW
29-Jan-2014	04:00	1.3	W
29-Jan-2014	05:00	1.1	WSW
29-Jan-2014	06:00	1	WSW
29-Jan-2014	07:00	1	ENE
29-Jan-2014	08:00	0.9	SSW
29-Jan-2014	09:00	1	SW
29-Jan-2014	10:00	1.2	SW
29-Jan-2014	11:00	1.3	WSW
29-Jan-2014	12:00	1.3	W
29-Jan-2014	13:00	1.4	WNW
29-Jan-2014	14:00	1.4	W
29-Jan-2014	15:00	1.4	W
29-Jan-2014	16:00	1.8	WSW
29-Jan-2014	17:00	1.8	WSW
29-Jan-2014	18:00	1.8	ESE
29-Jan-2014	19:00	1.8	SW
29-Jan-2014	20:00	1.7	WNW
29-Jan-2014	21:00	1.8	WNW
29-Jan-2014	22:00	1.7	W
29-Jan-2014	23:00	1.5	W
30-Jan-2014	00:00	1.4	SSW
30-Jan-2014	01:00	1.7	SW
30-Jan-2014	02:00	1.5	SW
30-Jan-2014	03:00	1.6	SW
30-Jan-2014	04:00	1.6	SW
30-Jan-2014	05:00	1.6	ENE

30-Jan-2014	06:00	1.1	ENE
30-Jan-2014	07:00	0.9	ENE
30-Jan-2014	08:00	1.2	SSE
30-Jan-2014	09:00	1.3	SSE
30-Jan-2014	10:00	1.3	NNE
30-Jan-2014	11:00	1.2	W
30-Jan-2014	12:00	1.4	W
30-Jan-2014	13:00	1.4	ESE
30-Jan-2014	14:00	1.4	E
30-Jan-2014	15:00	1.4	SSE
30-Jan-2014	16:00	1.4	ENE
30-Jan-2014	17:00	1.2	NW
30-Jan-2014	18:00	1.1	E
30-Jan-2014	19:00	1.2	NE
30-Jan-2014	20:00	1.2	SW
30-Jan-2014	21:00	1.5	SSW
30-Jan-2014	22:00	1.5	ESE
30-Jan-2014	23:00	1.5	W
31-Jan-2014	00:00	1.7	SSW
31-Jan-2014	01:00	1.6	ESE
31-Jan-2014	02:00	1.6	ESE
31-Jan-2014	03:00	1.6	SSE
31-Jan-2014	04:00	1.8	SSE
31-Jan-2014	05:00	2.1	NE
31-Jan-2014	06:00	1.9	SE
31-Jan-2014	07:00	1.9	SE
31-Jan-2014	08:00	1.7	SSE
31-Jan-2014	09:00	1.8	SSE
31-Jan-2014	10:00	2	SW
31-Jan-2014	11:00	1.7	SW
31-Jan-2014	12:00	2.1	SSW
31-Jan-2014	13:00	1.7	ESE
31-Jan-2014	14:00	1.9	SW
31-Jan-2014	15:00	1.9	SW
31-Jan-2014	16:00	1.5	SSW
31-Jan-2014	17:00	1.4	ESE
31-Jan-2014	18:00	1.5	SW

31-Jan-2014	19:00	1.8	Е
31-Jan-2014	20:00	1.7	ESE
31-Jan-2014	21:00	1.8	Е
31-Jan-2014	22:00	1.6	Е
31-Jan-2014	23:00	1.4	Е

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KL/2012/03

Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for January 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	Ţ.	j	1-Jan		3-Jan	4-Jan
					Noise (M6 and M7)	24 hr TSP
5.7		7.1	0.1	0.1	10.1	11.7
5-Jan	6-Jan 1 hr TSP X3 Noise (M8)	7-Jan	8-Jan	9-Jan	10-Jan 1 hr TSP X3	11-Jan
				Noise (M6 and M7) 24 hr TSP		
12-Jan	13-Jan	14-Jan	15-Jan	16-Jan	17-Jan	18-Jan
		Noise (M6 and M7)	24 hr TSP	1 hr TSP X3 Noise (M8)		
19-Jan	20-Jan	21-Jan	22-Jan	23-Jan	24-Jan	25-Jan
	24 hr TSP	1 hr TSP X3 Noise (M8)	Noise (M6 and M7)		24 hr TSP	
26-Jan	27-Jan	28-Jan	29-Jan	30-Jan	31-Jan	
	1 hr TSP X3 Noise (M8)	Noise (M6 and M7)	24 hr TSP	1 hr TSP X3		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM2 - Lee Kau Yan Memorial School AM3(A) - Holy Trinity Bradbury Centre

AM4(A) - EMSD Workshops

AM5(A) - Po Leung Kuk Ngan Po Ling College

Noise Monitoring Station

M6 - Holy Carpenter Primary School M7 - CCC Kei To Secondary School M8 - Po Leung Kuk Ngan Po Ling College

Contract No. KL/2012/03

Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for February 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Feb
2-Feb	3-Feb	4-Feb	5-Feb	6-Feb	7-Feb	8-Feb
2-1-60	3-1-00	4-100	J-100	0-1-00	7-100	0-100
			1 hr TSP X3			
			Noise (M8)			
					Noise (M6 and M7)	
		24 hr TSP			24 hr TSP	
9-Feb	10-Feb	11-Feb	12-Feb	13-Feb	14-Feb	15-Feb
	1.1. TOD V2				11 TOD V2	
	1 hr TSP X3 Noise (M8)				1 hr TSP X3	
	Noise (Mo)			Noise		
				(M6 and M7)		
				24 hr TSP		
16-Feb	17-Feb	18-Feb	19-Feb	20-Feb	21-Feb	22-Feb
10 105	17100	10 100	17100	20100	21100	22 100
				1 hr TSP X3		
				Noise (M8)		
		Noise				
		(M6 and M7)	24 hr TSP			
			24 III 101			
23-Feb	24-Feb	25-Feb	26-Feb	27-Feb	28-Feb	
		11 TCD V2				
		1 hr TSP X3 Noise (M8)				
		Ivoise (ivio)		Noise		
				(M6 and M7)		
	24 hr TSP					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM2 - Lee Kau Yan Memorial School AM3(A) - Holy Trinity Bradbury Centre

AM4(A) - EMSD Workshops

AM5(A) - Po Leung Kuk Ngan Po Ling College

Noise Monitoring Station

M6 - Holy Carpenter Primary School M7 - CCC Kei To Secondary School

M8 - Po Leung Kuk Ngan Po Ling College

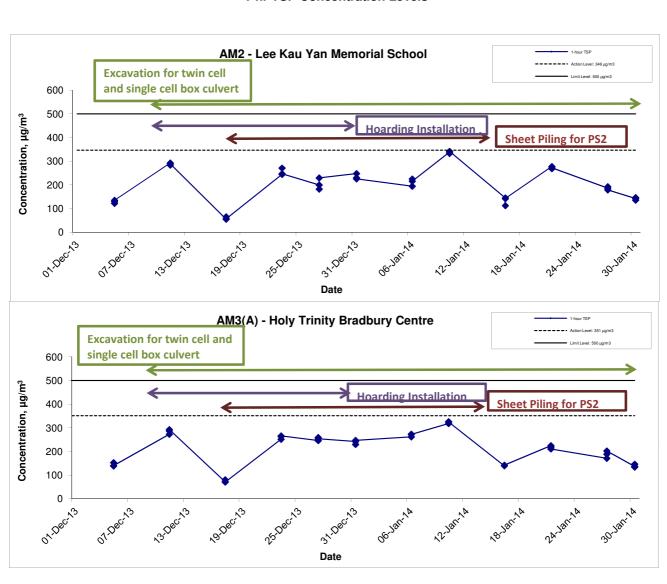
APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix E - 1-hour TSP Monitoring Results

Location AM2 -			
Date	Time	Weather	Particulate Concentration (μg/m³)
6-Jan-14	13:00	Sunny	194.4
6-Jan-14	14:00	Sunny	224.6
6-Jan-14	15:00	Sunny	215.3
10-Jan-14	13:00	Cloudy	338.5
10-Jan-14	14:00	Cloudy	332.6
10-Jan-14	15:00	Cloudy	341.7
16-Jan-14	13:00	Sunny	145.0
16-Jan-14	14:00	Sunny	112.2
16-Jan-14	15:00	Sunny	141.9
21-Jan-14	13:00	Sunny	277.5
21-Jan-14	14:00	Sunny	268.3
21-Jan-14	15:00	Sunny	271.9
27-Jan-14	9:00	Sunny	186.1
27-Jan-14	10:00	Sunny	192.2
27-Jan-14	11:00	Sunny	178.9
30-Jan-14	13:00	Sunny	142.1
30-Jan-14	14:00	Sunny	146.5
30-Jan-14	15:00	Sunny	135.7
		Average	213.6
		Maximum	341.7
		Minimum	112.2

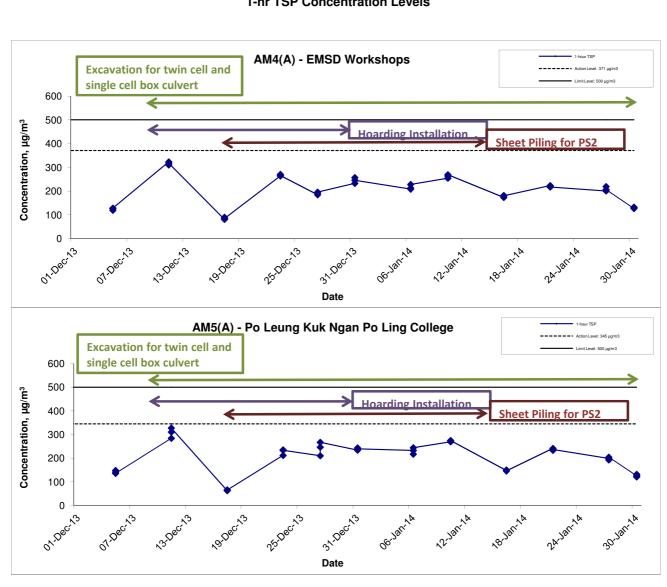
cation AM3(A)) - Holy Trinit	y Bradbury Centre	
Date	Time	Weather	Particulate Concentration (μg/m³)
6-Jan-14	13:00	Sunny	261.6
6-Jan-14	14:00	Sunny	273.1
6-Jan-14	15:00	Sunny	271.7
10-Jan-14	9:00	Cloudy	318.0
10-Jan-14	10:00	Cloudy	326.3
10-Jan-14	11:00	Cloudy	324.8
16-Jan-14	13:10	Sunny	139.8
16-Jan-14	14:10	Sunny	141.0
16-Jan-14	15:10	Sunny	142.3
21-Jan-14	13:00	Sunny	224.5
21-Jan-14	14:00	Sunny	218.9
21-Jan-14	15:00	Sunny	210.8
27-Jan-14	13:00	Sunny	171.1
27-Jan-14	14:00	Sunny	188.6
27-Jan-14	15:00	Sunny	202.1
30-Jan-14	13:00	Sunny	137.1
30-Jan-14	14:00	Sunny	146.6
30-Jan-14	15:00	Sunny	134.0
		Average	212.9
		Maximum	326.3
		Minimum	134.0

MA13056/App E - 1hr TSP Cinotech


Appendix E - 1-hour TSP Monitoring Results

Location AM4(A) - EMSD Workshops						
Date	Time	Weather	Particulate Concentration (μg/m³)			
6-Jan-14	9:00	Sunny	208.6			
6-Jan-14	10:00	Sunny	213.2			
6-Jan-14	11:00	Sunny	228.0			
10-Jan-14	13:00	Cloudy	254.2			
10-Jan-14	14:00	Cloudy	263.9			
10-Jan-14	15:00	Cloudy	269.4			
16-Jan-14	9:00	Sunny	173.5			
16-Jan-14	10:00	Sunny	181.8			
16-Jan-14	11:00	Sunny	180.7			
21-Jan-14	8:30	Sunny	223.4			
21-Jan-14	9:30	Sunny	219.6			
21-Jan-14	10:30	Sunny	217.4			
27-Jan-14	8:59	Sunny	200.9			
27-Jan-14	9:59	Sunny	219.7			
27-Jan-14	10:59	Sunny	206.9			
30-Jan-14	8:40	Sunny	127.2			
30-Jan-14	9:40	Sunny	132.5			
30-Jan-14	10:40	Sunny	131.7			
		Average	202.9			
		Maximum	269.4			
		Minimum	127.2			

Location AM5(A	Location AM5(A) - Po Leung Kuk Ngan Po Ling College						
Date	Time	Weather	Particulate Concentration (μg/m³)				
6-Jan-14	9:00	Sunny	232.6				
6-Jan-14	10:00	Sunny	217.2				
6-Jan-14	11:00	Sunny	244.4				
10-Jan-14	9:00	Cloudy	269.1				
10-Jan-14	10:00	Cloudy	273.8				
10-Jan-14	11:00	Cloudy	274.6				
16-Jan-14	9:00	Sunny	148.2				
16-Jan-14	10:00	Sunny	150.4				
16-Jan-14	11:00	Sunny	146.4				
21-Jan-14	8:45	Sunny	241.8				
21-Jan-14	9:45	Sunny	233.6				
21-Jan-14	10:45	Sunny	236.5				
27-Jan-14	13:04	Sunny	199.0				
27-Jan-14	14:04	Sunny	192.8				
27-Jan-14	15:04	Sunny	204.4				
30-Jan-14	9:00	Sunny	125.7				
30-Jan-14	10:00	Sunny	132.0				
30-Jan-14	11:00	Sunny	121.1				
		Average	202.4				
		Maximum	274.6				
		Minimum	121.1				


MA13056/App E - 1hr TSP Cinotech

1-hr TSP Concentration Levels

Title Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area	Scale		Project No.	MA13056	CINOTECH
Graphical Presentation of 1-hour TSP Monitoring Results	Date	Jan 14	Append	ix E	CINOICCI

1-hr TSP Concentration Levels

Title Contract No. KL/2012/03
Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Graphical Presentation of 1-hour TSP Monitoring Results

Scale N.T.S No. MA13056

Date Jan 14 Appendix E

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

Location AM2 - Lee Kau Yan Memorial School

Start Date	Weather	Air	Air Atmospheric		Filter Weight (g)		culate Elapse Time		Sampling	Flow Rate (m³/min.)		Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
4-Jan-14	Sunny	290.1	767.5	3.7331	3.9583	0.2252	12652.7	12676.7	24.0	1.23	1.23	1.23	1769.6	127.3
9-Jan-14	Cloudy	286.9	770.9	3.7439	3.9713	0.2274	12676.7	12700.7	24.0	1.22	1.22	1.22	1757.5	129.4
15-Jan-14	Sunny	284.9	773.0	3.7063	3.9168	0.2105	12700.7	12724.7	24.0	1.23	1.23	1.23	1765.3	119.2
20-Jan-14	Sunny	287.3	772.0	3.6249	3.8292	0.2043	12724.7	12748.7	24.0	1.22	1.22	1.22	1757.5	116.2
24-Jan-14	Sunny	286.9	768.4	3.8204	4.0156	0.1952	12748.7	12772.7	24.0	1.22	1.22	1.22	1754.9	111.2
29-Jan-14	Sunny	287.7	769.0	3.8468	3.9712	0.1244	12772.7	12796.7	24.0	1.22	1.22	1.22	1753.3	71.0
													Min	71.0
													Max	129.4
													Average	112.4

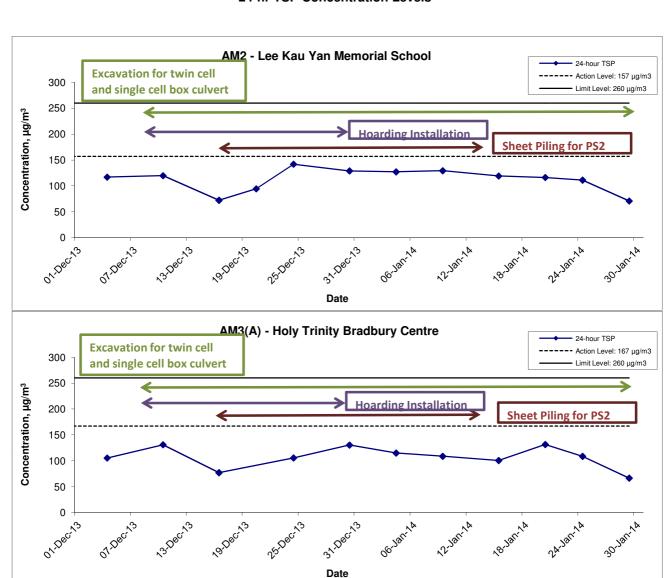
Location AM3(A) - Holy Trinity Bradbury Centre

Start Date	Weather	Air	Atmospheric	Filter W	Filter Weight (g)		ulate Elapse Time		Sampling	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
4-Jan-14	Sunny	290.1	767.5	3.6422	3.8464	0.2042	7282.8	7306.8	24.0	1.23	1.23	1.23	1774.6	115.1
9-Jan-14	Cloudy	286.9	770.9	3.5954	3.7861	0.1907	7306.8	7330.8	24.0	1.22	1.22	1.22	1752.4	108.8
15-Jan-14	Sunny	284.9	773.0	3.7507	3.9277	0.1770	7330.8	7354.8	24.0	1.22	1.22	1.22	1760.4	100.5
20-Jan-14	Sunny	287.3	772.0	3.6120	3.8425	0.2305	7354.8	7378.8	24.0	1.22	1.22	1.22	1752.4	131.5
24-Jan-14	Sunny	286.9	768.4	3.7736	3.9637	0.1901	7378.8	7402.8	24.0	1.22	1.21	1.22	1749.7	108.6
29-Jan-14	Sunny	287.7	769.0	3.8572	3.9735	0.1163	7402.8	7426.8	24.0	1.21	1.21	1.21	1748.1	66.5
													Min	66.5
													Max	131.5
													Average	105.2

MA13056/App F - 24hr TSP

Appendix F - 24-hour TSP Monitoring Results

Location AM4(A) - EMSD Workshops


Start Date	Weather	Air	Atmospheric	Filter W	'eight (g)	ht (g) Particulate Elapse Time Samp		Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.	
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	$(\mu g/m^3)$
4-Jan-14	Sunny	290.1	767.5	3.6123	3.8438	0.2315	3525.6	3549.6	24.0	1.24	1.24	1.24	1784.3	129.7
9-Jan-14	Cloudy	286.9	770.9	3.6154	3.8598	0.2444	3549.6	3573.6	24.0	1.22	1.22	1.22	1759.4	138.9
15-Jan-14	Sunny	284.9	773.0	3.7446	3.9791	0.2345	3573.6	3597.6	24.0	1.23	1.23	1.23	1767.1	132.7
20-Jan-14	Sunny	287.3	772.0	3.8872	4.1457	0.2585	3597.6	3621.6	24.0	1.22	1.22	1.22	1759.4	146.9
24-Jan-14	Sunny	286.9	768.4	3.8376	4.0588	0.2212	3621.6	3645.6	24.0	1.22	1.22	1.22	1756.8	125.9
29-Jan-14	Sunny	287.7	769.0	3.7306	3.9017	0.1711	3645.6	3669.6	24.0	1.22	1.22	1.22	1755.2	97.5
													Min	97.5
													Max	146.9
													Average	128.6

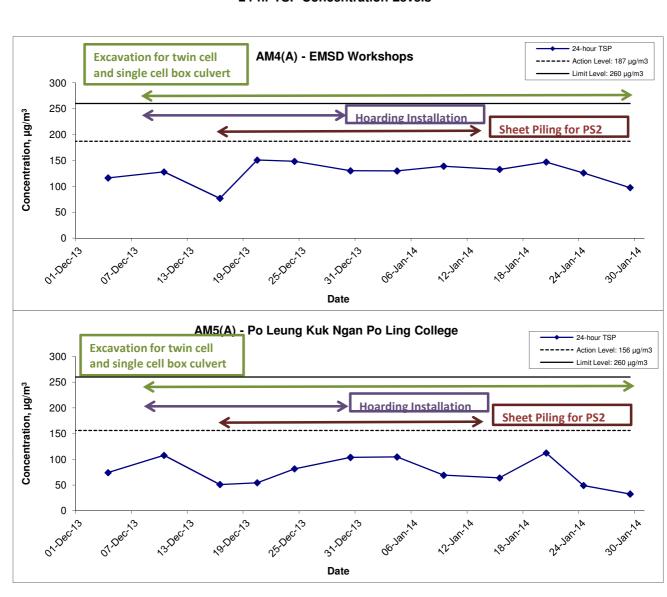
Location AM5(A) - Po Leung Kuk Ngan Po Ling College

Start Date	Weather	Air	Atmospheric	Filter Weight (g)		Particulate	rticulate Elapse Time		Sampling	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
4-Jan-14	Sunny	290.1	767.5	3.5979	3.7848	0.1869	2558.5	2582.5	24.0	1.24	1.24	1.24	1788.9	104.5
9-Jan-14	Cloudy	286.9	770.9	3.6155	3.7368	0.1213	2582.5	2606.5	24.0	1.22	1.22	1.22	1755.9	69.1
15-Jan-14	Sunny	284.9	773.0	3.6764	3.7888	0.1124	2606.5	2630.5	24.0	1.23	1.22	1.23	1764.1	63.7
20-Jan-14	Sunny	287.3	772.0	3.7478	3.945	0.1972	2630.5	2654.5	24.0	1.22	1.22	1.22	1755.9	112.3
24-Jan-14	Sunny	286.9	768.4	3.8205	3.9065	0.0860	2654.5	2678.5	24.0	1.22	1.22	1.22	1753.1	49.1
29-Jan-14	Sunny	287.7	769.0	3.7386	3.7954	0.0568	2678.5	2702.5	24.0	1.22	1.22	1.22	1751.4	32.4
													Min	32.4
													Max	112.3
													Average	71.8

MA13056/App F - 24hr TSP

24-hr TSP Concentration Levels

Title Contract No. KL/2012/03
Kai Tak Development –Stage 4 Infrastructure at Former
North Apron Area
Graphical Presentation of 24-hour TSP Monitoring Results


Scale Project
N.T.S No. MA13056

Date Appendix

Jan 14

24-hr TSP Concentration Levels

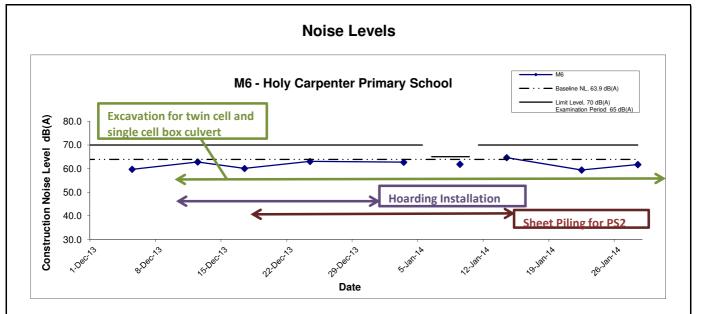
Title Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

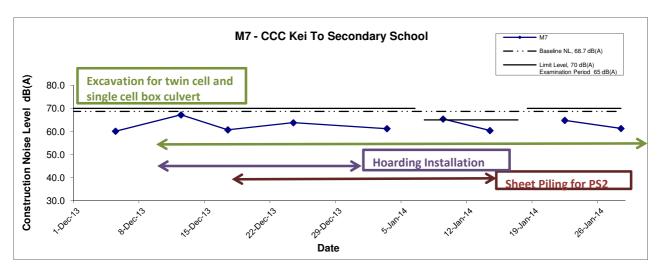
Graphical Presentation of 24-hour TSP Monitoring Results

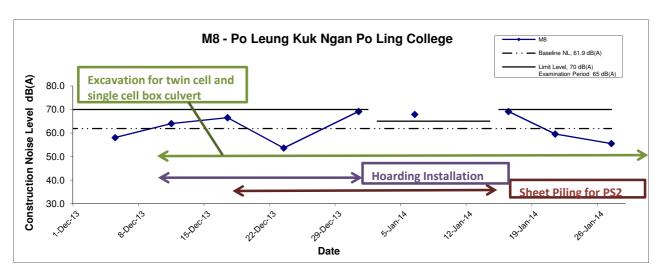
Scale Project
N.T.S No. MA13056

Date Appendix F

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix G - Noise Monitoring Results


Location M6 -	Location M6 - Holy Carpenter Primary School											
			Unit: dB (A) (30-min)									
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level					
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
3-Jan-14	14:30	Sunny	62.7	65.3	59.4		62.7 Measured ≤ Baseline					
9-Jan-14	10:25	Sunny	66.0	68.2	63.1		61.8					
14-Jan-14	14:00	Sunny	67.3	69.0	62.0	63.9	64.6					
22-Jan-14	14:45	Sunny	59.4	62.4	54.9		59.4 Measured ≤ Baseline					
28-Jan-14	10:46	Sunny	61.7	65.3	54.5		61.7 Measured ≤ Baseline					


Location M7 -	Location M7 - CCC Kei To Secondary School											
			Unit: dB (A) (30-min)									
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level					
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
3-Jan-14	15:25	Sunny	61.2	62.7	58.5		61.2 Measured ≤ Baseline					
9-Jan-14	09:30	Sunny	65.4	67.1	62.4		65.4 Measured ≤ Baseline					
14-Jan-14	14:50	Sunny	60.4	62.3	57.8	68.7	60.4 Measured ≤ Baseline					
22-Jan-14	15:23	Sunny	64.8	66.9	61.4		64.8 Measured ≤ Baseline					
28-Jan-14	11:28	Sunny	61.3	63.8	58.4		61.3 Measured ≤ Baseline					

Location M8 - Po Leung Kuk Ngan Po Ling College												
				Unit: dB (A) (30-min)								
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level					
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}					
6-Jan-14	11:27	Sunny	68.9	70.9	63.9		67.9					
16-Jan-14	09:10	Sunny	69.9	71.8	66.2	61.9	69.2					
21-Jan-14	10:00	Sunny	63.9	65.9	60.8	01.9	59.6					
27-Jan-14	14:12	Sunny	62.8	65.3	61.4		55.5					

MA13056/App G - Noise Cinotech

Remarks: The construction noise levels in the Tables in Appendix G were adopted for plotting the graphs

Title Contract No. KL/2012/03
Kai Tak Development –Stage 4 Infrastructure at Former
North Apron Area
Graphical Presentation of Construction Noise Monitoring
Results

N.T.S MA13056

Date Jan 14 Appendix G

APPENDIX H SUMMARY OF EXCEEDANCE

Contract No. KL/2012/03 Kai Tak Development -Stage 4 Infrastructure at Former North Apron Area

Appendix H – Summary of Exceedance

Exceedance Report for Contract No. KL/2012/03

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (One Limit Level exceedance was recorded at monitoring station M8 - Po Leung Kok Ngan Po Ling College on 6 January 2014.)

Cause of Exceedance

The exceedance was considered non-related to the Project works:

- During the noise monitoring conducted at 11:27 a.m., mobile excavators were found operating in the open ground outside of the work areas of this Project as shown in Photo 1.
- According to field staffs' observation, major noise source identified was the loading and unloading works from the mobile excavator as shown in Photo 2.
- As the major noise source was located outside the work areas of this Project, the exceedance recorded at Station M8 - Po Leung Kuk Ngan Po Ling College was considered to be non-Project related.

Photo 1 (Construction works conducting outside KTD Project Area.)

Contract No. KL/2012/03 Kai Tak Development -Stage 4 Infrastructure at Former North Apron Area

Appendix H – Summary of Exceedance

ET's conclusions/recommendations for mitigation

No further mitigation measures would be required.

(C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	140103	
Date	3 January 2014	
Time	15:00 – 16:00	

Ref. No.	Non-Compliance	Related Item No.
_	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.:131227), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung	1/2~	3 January 2014
Checked by	Dr. Priscilla Choy	1~5-7	3 January 2014

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	140108	
Date	8 January 2014	
Time	9:30 – 10:45	

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	Follow-up on previous audit section (Ref. No.:140103), no environmental deficiency was identified during site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung	1)	8 January 2014
Checked by	Dr. Priscilla Choy	WI	8 January 2014
		NT.	o variatily

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	140117
Date	17 January 2014
Time	16:00 – 17:00

D-C M-	No. Consultance	Related Item No.
Ref. No.	Non-Compliance None identified	item no.
-	None identified	Related
Ref. No.	Remarks/Observations	Item No.
10111101	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.:140108), no environmental deficiency was identified during site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung	12	17 January 2014
Checked by	Dr. Priscilla Choy	WI	17 January 2014

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	140124
Date	24 January 2014
Time	14:00 – 15:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	_
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	.
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
·	H. Others	
	• Follow-up on previous audit section (Ref. No.:140117), no environmental deficiency was identified during site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung		24 January 2014
Checked by	Dr. Priscilla Choy	WI	24 January 2014

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Checklist Reference Number	140129	
Date	29 January 2014	
Time	14:00 - 15:00	-

D.C.N.	Non Compliance	Related Item No.
Ref. No.	Non-Compliance None identified	Heim 140.
-	None identified	D-1-4-3
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.:140124), no environmental deficiency was identified during site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung	m	29 January 2014
Checked by	Dr. Priscilla Choy	WI	29 January 2014

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	140103	
Date	3 January 2014	
Time	15:00 – 16:00	

D.C.N.	No. Complement	Related Item No.
Ref. No.	Non-Compliance	Hem Ivo.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.:131227), no environmental deficiency was identified during site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung	M	3 January 2014
Checked by	Dr. Priscilla Choy	WZ	3 January 2014

1

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	140108
Date	8 January 2014
Time	9:30 - 10:45

D 0 17		Related Item No.
Ref. No.	Non-Compliance	Hein Ivo.
-	None identified	
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
140108-R01	Provide drip tray to chemical container at Pumping Station PS2.	E 9
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.:140103), no environmental deficiency was identified during site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung	10	8 January 2014
Checked by	Dr. Priscilla Choy	WK	8 January 2014

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	140117
Date	17 January 2014
Time	16:00 – 17:00

Ref. No.	Non-Compliance	Related Item No.
	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.:140108), all identified environmental deficiency was observed improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Johnny Fung		17 January 2014
Checked by	Dr. Priscilla Choy	IWI	17 January 2014

Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	140124
Date	24 January 2014
Time	14:00 – 15:00

D 4 11		Related
Ref. No.	Non-Compliance	Item No.
_	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	<u> </u>	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	<u> </u>	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
···	H. Others	
	• Follow-up on previous audit section (Ref. No.:140117), no environmental deficiency was	
	identified during site inspection.	

	Name	Signature	Date
Recorded by	Johnny Fung		24 January 2014
Checked by	Dr. Priscilla Choy	WZ	24 January 2014

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Checklist Reference Number	140129
Date	29 January 2014
Time	14:00 – 15:00

D C N	N. C. II	Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
140129-R01	To properly cover the stockpile of dusty material at the storage area.	C7
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	<u></u>
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit section (Ref. No.:140124), no environmental deficiency was identified during site inspection.	

	Name	, Signature	Date
Recorded by	Johnny Fung		29 January 2014
Checked by	Dr. Priscilla Choy	WIT	29 January 2014

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION				
	ET	IEC	ER	CONTRACTOR	
Action Level being	1. Identify source and investigate the	Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;	
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if	
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.	
	3. Repeat measurement to confirm finding.	method.			
Action Level being	1. Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	1. Discuss with ET and IEC on proper	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;	
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial	
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three	
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;	
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;	
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.	
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of		
	6. If exceedance continues, arrange		remedial measures;		
	meeting with IEC and ER;		5. Conduct meeting with ET and		
	7. If exceedance stops, cease additional		IEC if exceedance continues.		
	monitoring.				
Limit Level being	1. Identify source and investigate the	Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid	
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;	
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper	
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;	
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial	
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three	

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	1. Check monitoring data submitted	Confirm receipt of notification	Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation		
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;		
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation		
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.		
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be		
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after		
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)		
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;			
	check mitigation effectiveness.	(The above actions should be	4. Supervise the			
	(The above actions should be taken	taken within 2 working days after	implementation of remedial			
	within 2 working days after the	the exceedance is identified)	measures.			
	exceedance is identified)		(The above actions should be			
			taken within 2 working days			
			after the exceedance is			
			identified)			
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to		
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;		
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial		
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3		
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;		
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed		
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;		

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
		identified)	

Event/Action Plan for Landscape and Visual

EVENT			ACTION	
ACTION LEVEL	ET	IEC	ER	CONTRACTOR
Design Check	Check final design conforms to	Check report. Recommend remedial design if	Undertake remedial design if necessary	
	the requirements of EP and prepare report.	remedial design if necessary		
Non-conformity on one occasion	1. Identify Source 2. Inform IEC and ER 3. Discuss remedial actions with IEC, ER and Contractor 4. Monitor remedial actions until rectification has been completed	 Check report Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise ER on effectiveness of proposed remedial measures. Check implementation of remedial measures. 	Notify Contractor Ensure remedial measures are properly implemented	Amend working methods Rectify damage and undertake any necessary replacement
Repeated Non-conformity	Identify Source Inform IEC and	Check monitoring report	Notify Contractor Ensure remedial measures are properly	 Amend working methods Rectify damage and

ER	2. Check Contractor's	implemented	undertake any necessary
2. Increase	working method		replacement
monitoring	3. Discuss with ET and		
frequency	Contractor on possible		
3. Discuss remedial	remedial measures		
actions with IEC,	4. Advise ER on		
ER and Contractor	effectiveness of		
4. Monitor remedial	proposed remedial		
actions until	measures		
rectification has	5. Supervise		
been completed	implementation of		
5. If non-conformity	remedial measures.		
stops, cease			
additional			
monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Appendix K - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

Types of Impacts	Mitigation Measures	Status
	8 times daily watering of the work site with active dust emitting activities.	٨
	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	
	 Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. 	٨
	 Misting for the dusty material should be carried out before being loaded into the vehicle. 	^
Construction Dust	 Any vehicle with an open load carrying area should have properly fitted side and tail boards. 	٨
Construction Dust	 Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin. 	٨
	 The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation. 	٨
	The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	^
	 Vehicle washing facilities should be provided at every 	٨

vehicle exit point.	
 The area where vehicle washing takes place and the 	
section of the road between the washing facilities and	^
the exit point should be paved with concrete,	
bituminous materials or hardcores.	
 Every main haul road should be scaled with concrete 	
and kept clear of dusty materials or sprayed with water	^
so as to maintain the entire road surface wet.	
 Every stock of more than 20 bags of cement should be 	
covered entirely by impervious sheeting placed in an	٨
area sheltered on the top and the three sides.	
 Every vehicle should be washed to remove any dusty 	^
materials from its body and wheels before leaving the	
construction sites.	

	Use of quiet PME, movable barriers barrier for Asphalt Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump	٨
Construction Noise	 Good Site Practice: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	^ N/A(1)
	Scheduling of Construction Works during School Examination Period	۸
	(i) Provision of low noise surfacing in a section of Road L2; and	N/A
	(ii) Provision of structural fins	N/A

(i) Avoid the sensitive façade of class room facing Road L2 and L4; and	N/A
(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A
(i) Provision of low noise surfacing in a section of Road L4 before occupation of Site 1I1; and	N/A
(ii) Setback of building about 5m from site boundary.	N/A
Setback of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
 (i) avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and 	N/A
(ii) for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not provide the facades with openable window.	N/A
avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height	N/A
of the residential block(s) located at less than 55m away from To Kwa Wan Road to no more than 25m above ground.	N/A
(i) avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic noise impacts from the slip road	N/A

All the ventilation fans installed in the below will be provided with silencers or acoustics treatment. (i) SPS (ii) ESS (iii) Tunnel Ventilation Shaft (iv) EFTS depot	N/A N/A N/A N/A
Installation of retractable roof or other equivalent measures	N/A

	The following mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including: Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply;	N/A
	 Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps; 	N/A
	 An alarm should be installed to signal emergency high water level in the wet well at all SPSs; and For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through 	N/A
	telemetry system should be provided so that swift actions could be taken in case of malfunction of unmanned facilities.	N/A
Construction Water Quality		
		^

Land-based Construction	
Construction Runoff	
Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate mitigation measures which include: use of sediment traps adequate maintenance of drainage systems to prevent flooding and overflow	^ ^
Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	^

Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m³ capacity, are recommended as a general mitigation Λ measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped. Open stockpiles of construction materials (for examples, Λ aggregates, sand and fill material) of more than 50 m³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system. Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.

Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events. Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain. All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately Λ designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains. Drainage It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea

All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the	^
largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.	
Sewage Effluent	
Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	^
Stormwater Discharges	
Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes	N/A
_	Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices. Stormwater Discharges Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges

Debris and Litter	
In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur	^
materials. litter or wastes to marine waters does not occur	
Construction Works at or in Close Proximity of Storm Culvert or Seafront	
The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	^
The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm culvert / nullah.	^
Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works.	۸
Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	۸
Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	۸
Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	۸

Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should	
be provided along the edge of the waterfront within the work sites to intercept the runoff.	^
Construction effluent, site run-off and sewage should be properly collected and/or treated.	٨
Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	^
Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of construction materials.	^
Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	۸
Supervisory staff should be assigned to station on site to closely supervise and monitor the works	٨
Marine water quality monitoring and audit programme shall be implemented for the proposed sediment treatment operation.	۸

1	Cood Site Practices	1
	Good Site Practices	
	It is not anticipated that adverse waste management	
	related impacts would arise, provided that good site	
	practices are adhered to. Recommendations for good site	
	practices during construction activities include:	
	 Nomination of an approved person, such as a site 	
	manager, to be responsible for good site practices,	
	arrangements for collection and effective disposal	^
	to an appropriate facility, of all wastes generated at	
	the site	
	Training of site personnel in proper waste	
	management and chemical waste handling	^
	procedures	
	 Provision of sufficient waste disposal points and 	
	regular collection for disposal	
	 Appropriate measures to minimise windblown litter 	^
	and dust during transportation of waste by either	
	covering trucks or by transporting wastes in	^
	enclosed containers	
	 A recording system for the amount of wastes 	
	generated, recycled and disposed of (including the	^
	disposal sites)	^
	disposal sites)	

Waste Reduction Measures Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: • Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals • Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal • Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from	^
 other general refuse generated by the work force Any unused chemicals or those with remaining functional capacity should be recycled Proper storage and site practices to minimise the potential for damage or contamination of construction materials 	^

 Construction and Demolition Material	
Construction and Demolition Material	
Mitigation measures and good site practices should be	
incorporated into contract document to control potential	
environmental impact from handling and transportation of	
C&D material. The mitigation measures include:	
Where it is unavoidable to have transient	^
stockpiles of C&D material within the Project work	
site pending collection for disposal, the transient	
stockpiles should be located away from waterfront	
or storm drains as far as possible	
Open stockpiles of construction materials or construction wastes on-site should be covered with	٨
tarpaulin or similar fabric	,
Skip hoist for material transport should be totally	
enclosed by impervious sheeting	
Every vehicle should be washed to remove any	٨
dusty materials from its body and wheels before	
leaving a construction site	^
The area where vehicle washing takes place and	
the section of the road between the washing	
facilities and the exit point should be paved with	^
concrete, bituminous materials or hardcores	
 The load of dusty materials carried by vehicle 	
leaving a construction site should be covered	^
entirely by clean impervious sheeting to ensure	
dust materials do not leak from the vehicle	
 All dusty materials should be sprayed with water 	
prior to any loading, unloading or transfer	^
operation so as to maintain the dusty materials wet	
The height from which excavated materials are	^
dropped should be controlled to a minimum	
practical height to limit fugitive dust generation from unloading	
from unloading	

When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. Independent Environmental Checker should be responsible for auditing the results of the system. Chemical Waste After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation General Refuse General refuse should be stored in enclosed bins or Λ compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D Effective collection and storage methods material. (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour

nuisance or pest and vermin problem

	CM1 All existing trees should be carefully protected during construction.	*
	CM2 Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	N/A
Landscape and Visual	CM3 Control of night-time lighting.	۸
	CM4 Erection of decorative screen hoarding.	۸

Remarks:	^ Compliance of mitigation measure;	X Non-compliance of mitigation measure;
	N/A Not Applicable at this stage; N/A(1) Not observed;	•Non-compliance but rectified by the contractor;
	* Recommendation was made during site audit but improved/rectified by the contractor.	

APPENDIX L
SUMMARIES OF ENVIRONMENTAL
COMPLAINT, WARNING, SUMMON
AND NOTIFICATION OF SUCCESSFUL
PROSECUTION

Contract No. KL/2012/03

Kai Tak Development -Stage 4 Infrastructure at Former North Apron Area

Reporting Month: January 2014

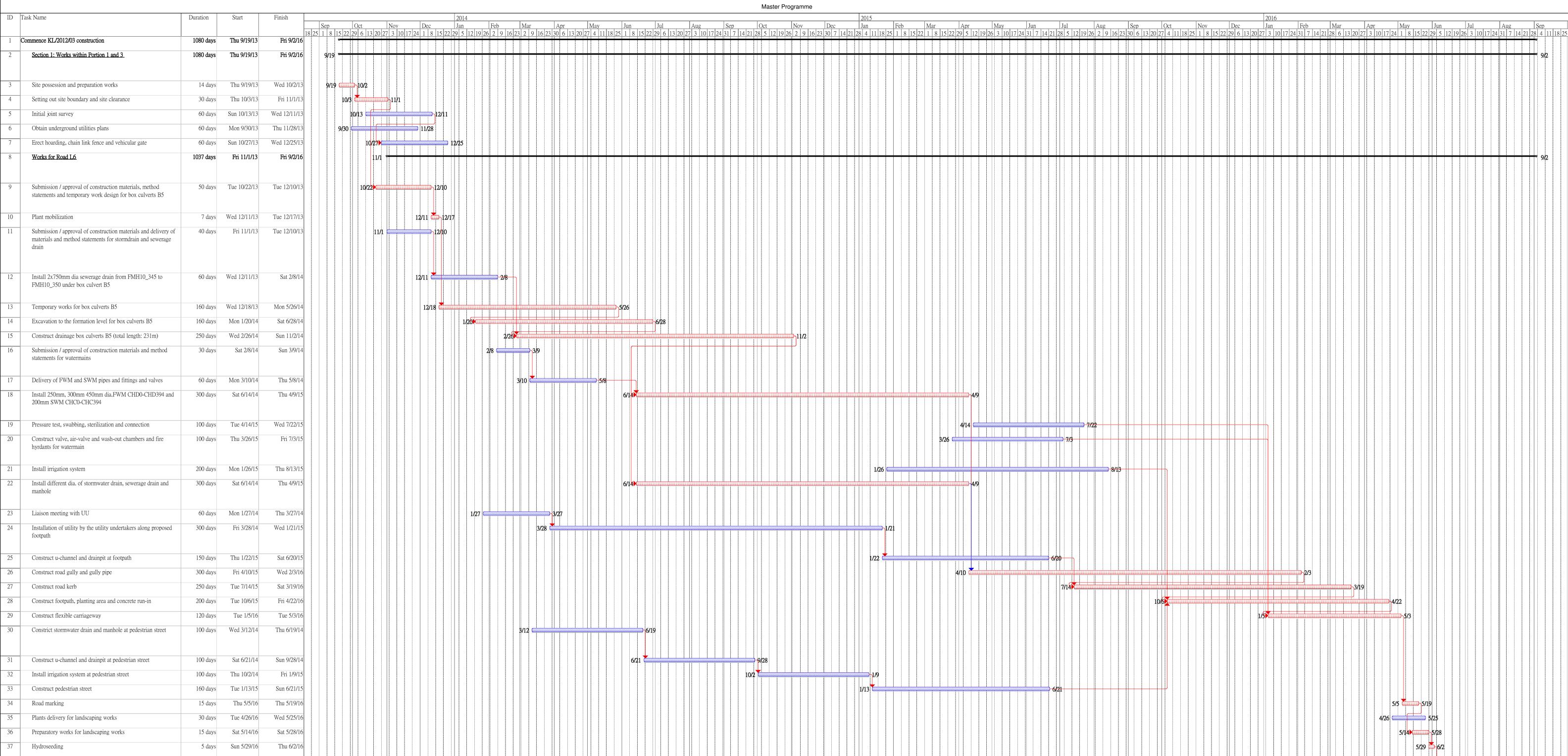
Contract No. KL/2012/03

Log Ref.	Location	Received Date	Details of Complaint/warning/summon and prosecution	Investigation/Mitigation Action	Status
N/A	N/A	N/A	N/A	N/A	N/A

Remarks: No environmental complaint/warning/summon and prosecution were received in the reporting period.

APPENDIX M WASTE GENERATED QUANTITY

Monthly Summary Waste Flow Table


(PS Clause 1.86)

Name of Department:	CEDD	Contract No.:	KL/2012/03

Monthly Summary Waste Flow Table for Jan 2014 (year)

		Actual	Quantities of Iner	t C&D Materials G	enerated Monthly		Actual Quantities of C&D Wastes Generated Monthly											
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse							
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)							
Sep	0	0	0	0	0	0	0	0	0	0	0							
Oct	0.011	0	0	0	0	0	0	0	0	0	0.011							
Nov	0.177	0	0	0	0	0	0	0	0	0	0.177							
Dec	0.176	0	0	0	0	0	0	0	0	0	0.176							
Sub-Total	0.364	0	0	0	0	0	0	0	0	0	0.364							
Jan	0	0	0	0	0	0	0	0	0	0	0							
Feb																		
Mar																		
Apr																		
May																		
Jun																		
Total	0.364	0	0	0	0	0	0	0	0	0	0.364							

APPENDIX N CONSTRUCTION PROGRAMME

Commencement Date: 19 September 2013 Completion Date: 2 September 2016

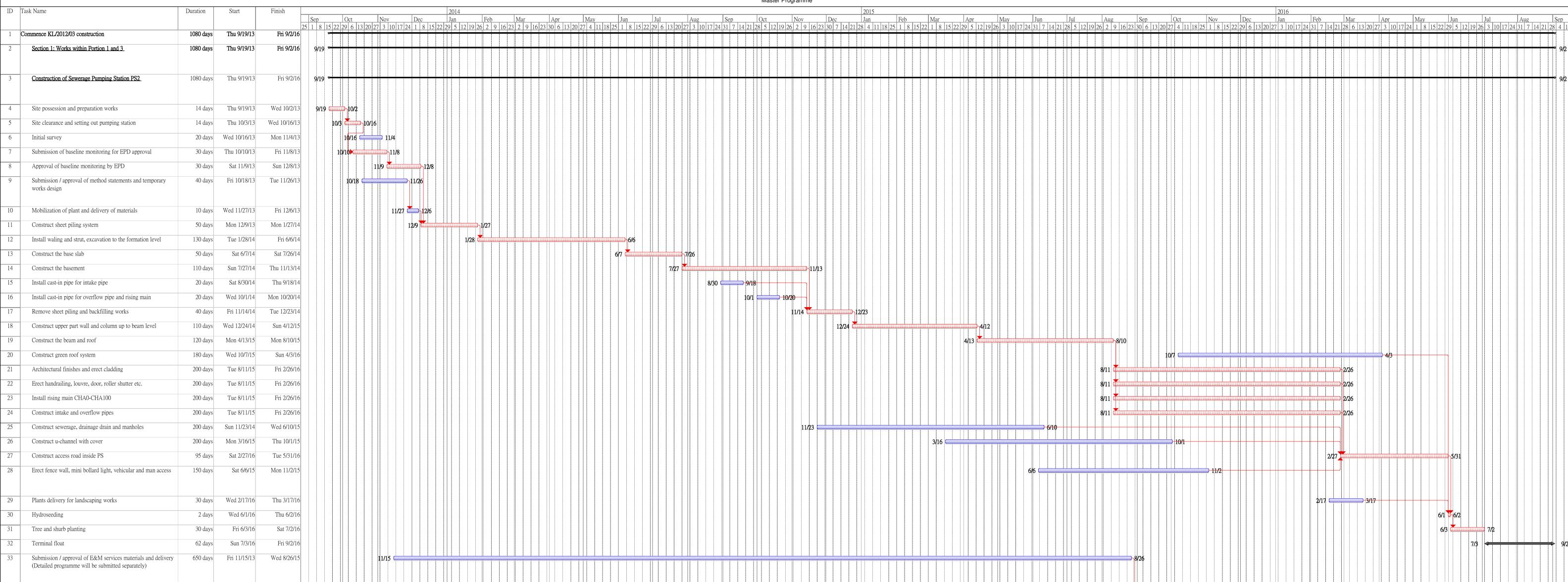
Tree and shurb planting

Terminal float

Critical tasks Working days

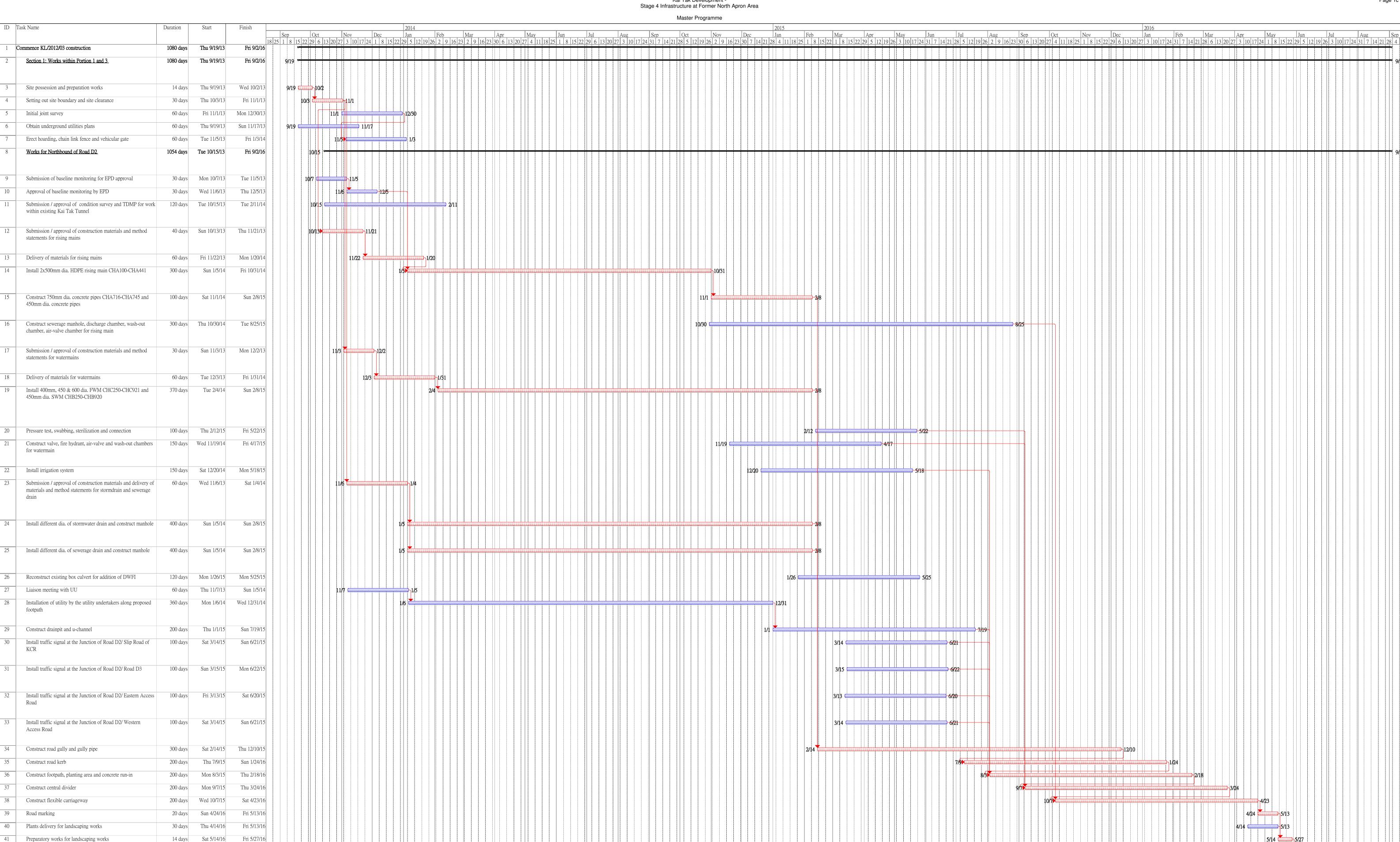
Fri 6/3/16

Sun 7/3/16


30 days

62 days

Sat 7/2/16


Fri 9/2/16

Master Programme

E&M building service installation. (Detailed programme will be 250 days Thu 8/27/15 Mon 5/2/16

submitted separately)

Critical tasks Working days Commencement Date: 19 September 2013 Completion Date: 2 September 2016

Tree and shurb planting

Terminal float

Sat 5/28/16

Fri 6/3/16

Sun 7/3/16

Thu 6/2/16

Sat 7/2/16

Fri 9/2/16

6 days

30 days

62 days

Kwan On Construction Co. Ltd. KL/2012/03 Kai Tak Development Stage 4 Infrastructure at Former North Apron Area Master Programme ID Task Name Duration Start Finish Commence KL/2012/03 construction 1445 days Thu 9/19/13 Sat 9/2/17 1080 days Fri 9/2/16 Section 1: Works within Portion 1 and 3 Thu 9/19/13 Widening of Existing Footpaths at Sung Wong Toi Road and 1080 days Thu 9/19/13 Fri 9/2/16 To Kwa Wan Road 21 days Thu 9/19/13 Site possession and preparation works Wed 10/9/13 Setting out site boundary and site clearance Fri 11/8/13 25 days Tue 11/12/13 Fri 12/6/13 Initial joint survey Sun 11/17/13 Obtain underground utilities plans 60 days Thu 9/19/13 Thu 12/5/13 Sun 2/2/14 Erect hoarding, chain link fence and vehicular gate 60 days Tue 4/29/14 Apply XP for roadworks 210 days Wed 10/2/13 Approval of TTA drawings 90 days | Mon 11/18/13 Sat 2/15/14 Tue 1/7/14 Liaison meeting with UU Installation of utility by the utility undertakers along proposed 340 days Wed 1/8/14 Sat 12/13/14 footpath, XP to be applied by UU 30 days Wed 1/29/14 Thu 2/27/14 Submission / approval of construction materials and method statements for watermains Delivery of materials for watermains Fri 2/28/14 Mon 4/28/14 Install 300mm dia. fresh water main CHA0-CHA283 Sat 11/15/14 Wed 4/30/14 5/20 Install 300mm dia. fresh water main CHB0-CHB555 200 days Tue 5/20/14 Fri 12/5/14 Install 450mm dia. salt water main CHA0-CHA555 Sun 6/15/14 Wed 12/31/14 Install 800mm dia. salt water main CHD0-CHD52 Wed 1/28/15 11/12 Pressure test, swabbing, sterilization and connection Thu 2/19/15 100 days Fri 10/10/14 Sat 1/17/15 Construct valve, fire hydrant, air-valve and wash-out chambers for watermain Fri 3/13/15 Install irrigation system 120 days Fri 11/14/14 Construct u-channel, drainpit and stormwater drain 150 days Fri 10/24/14 250 days Sun 12/14/14 Construct road gully and gully pipe Thu 8/20/15 Mon 8/31/15 Application and install traffic signal at the Junction of Sung 150 days Sat 4/4/15 Wong Toi Road / To Kwa Wan Road Application and install traffic signal at the Junction along Sung 150 days Sun 4/5/15 Wong Toi Road Fri 11/27/15 Construct road kerb and new footpath Thu 4/2/15 Construct carriageway at the existing footpath 270 days Sat 3/26/16 Erect traffic sign 100 days Re-surface existing carriageway 60 days Sun 3/27/16 Wed 5/25/16 Road marking Fri 5/13/16 5/4 5/13 Tue 5/24/16 30 days Mon 4/25/16 Plants delivery for landscaping works Thu 5/26/16 Preparatory works for landscaping works 14 days Wed 6/8/16 Thu 6/9/16 Sun 6/12/16 Hydroseeding Tree and shurb planting 20 days Mon 6/13/16 Sat 7/2/16 Terminal float Sun 7/3/16 Fri 9/2/16 Construction of Box Culverts B6 978 days Mon 9/30/13 Fri 6/3/16 15 days Mon 9/30/13 Mon 10/14/13 Site possession and preparation works 9/30 ______10/14 60 days Tue 10/15/13 Fri 12/13/13 10/15 Submission / approval of construction materials and method statements for box culverts B6 Plant mobilization 14 days Sat 12/14/13 Fri 12/27/13 12/14 12/27 12/28 🌉 Construct temporary works and excavation to the formation 500 days Sat 12/28/13 Mon 5/11/15 level for box culverts B6 Construct drainage box culverts B6 500 days Wed 6/4/14 Precast box culvert preparation works 100 days Tue 6/16/15 Modification of seawall 100 days Sat 10/17/15 Sun 1/24/16 Soil backfilling works 160 days Mon 1/25/16 Sat 7/2/16

Critical tasks Working days Commencement Date: 19 September 2013 Completion Date: 2 September 2016

Terminal float

Demolition of Kowloon East DWFI pumping station

Demolish Kowloon East DWFI pumping station (To be carried

Submission / approval of method statements

out after completion of NPS)

Establishment works for Section 1

Section 1A

62 days

Sun 7/3/16

120 days Sun 2/28/16 Sun 6/26/16

60 days Tue 12/22/15

120 days Sun 2/28/16

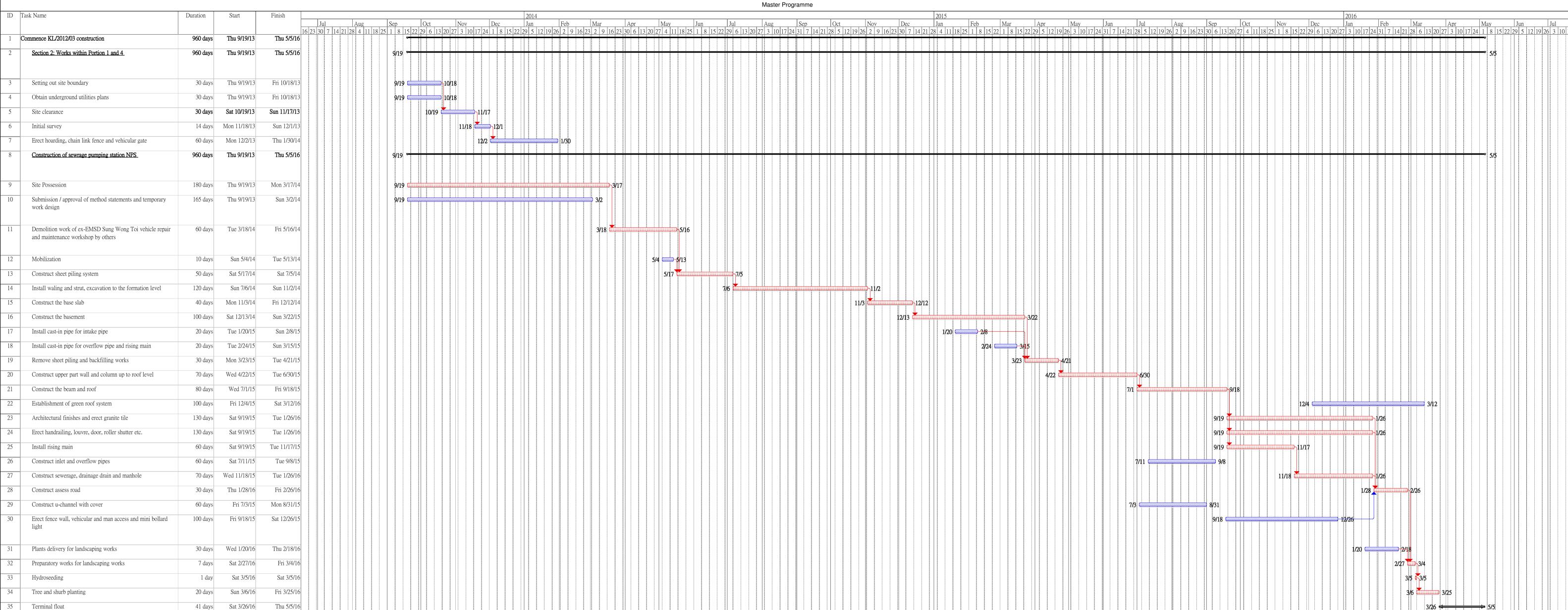
1445 days Thu 9/19/13

1445 days Thu 9/19/13

Fri 9/2/16

Fri 2/19/16

Sun 6/26/16


Sat 9/2/17

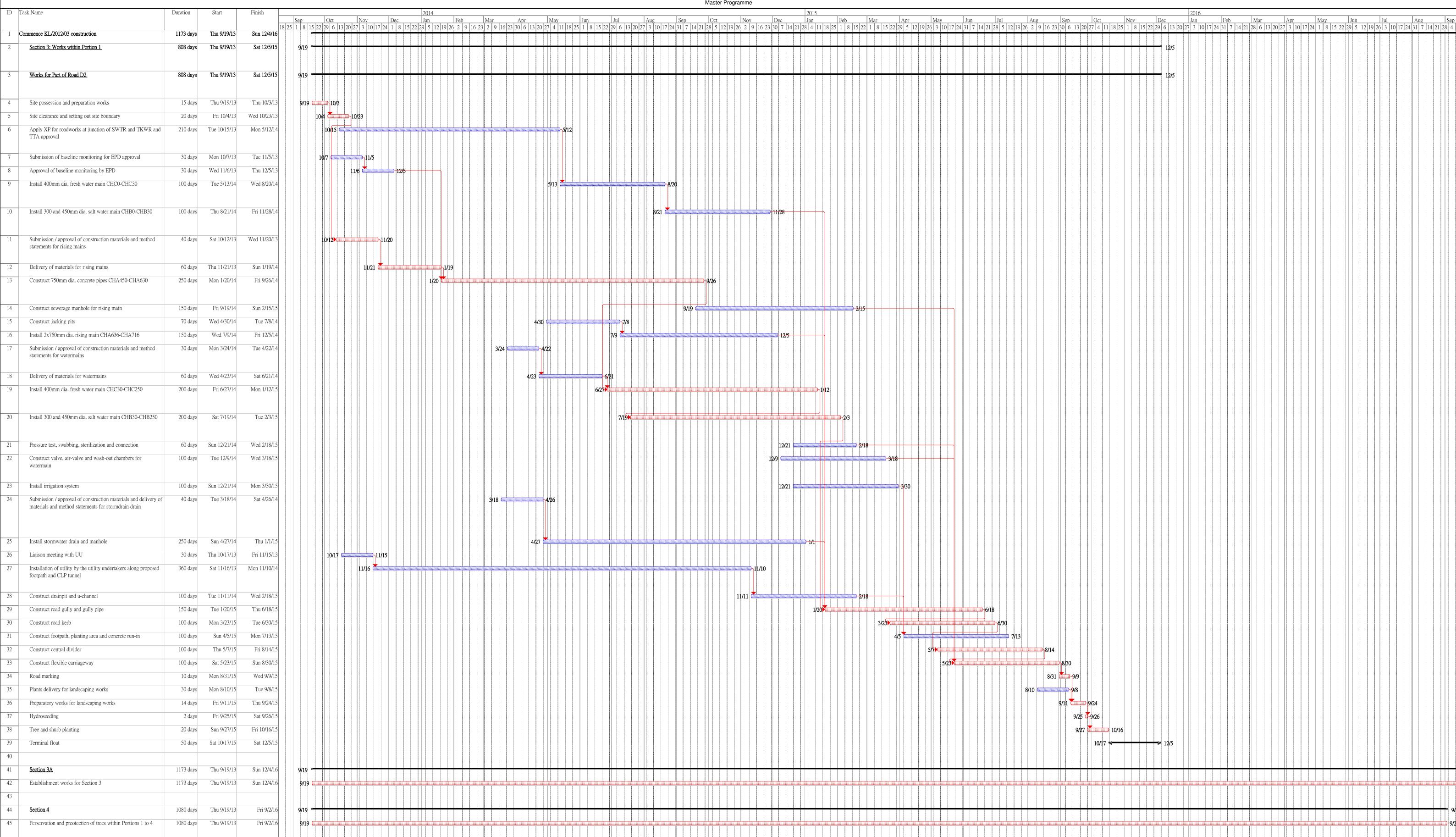
Sat 9/2/17

Master Programme

ID Task Name	Duration	Start	Finish					2014						Master Program	mme			2015										2016					
				Jul Aug 16 23 30 7 14 21 28 4 11	Sep 11 18 25 1 8 15 22	Oct No. 2 29 6 13 20 27 2	Dec Dec 10 17 24 1 8 15	Jan 22 29 5 12 10 26	Feb Ma	ar Apr 9 16 23 30 6	May 13 20 27 4 11	Jun 18 25 1 8 1	Jul 15 22 29 6 13 20 27	Aug Se	'ep Oct 7 14 21 28 5	t Nc	ov Dec 9 16 23 30 7	Jan 14 21 28 4 11 18 25	Feb Mar 1 8 15 22 1 8	Apr 15 22 29 5 12	May 19 26 3 10 17 2	Jun 24 31 7 14 21	Jul 4 28 5 12 19 26 7	Aug Sep 2 9 16 23 30 6	Oct	Nov	Dec 15 22 29 6 13 2	Jan 20 27 3 10 17	Feb 24 31 7 14 21 2	Mar 28 6 13 20 27	Apr M. 3 10 17 24 1	May Jun Jun	Jul
1 Commence KL/2012/03 construction		Thu 9/19/13	Fri 5/5/17	7/17		- 1.5 LU L/ 1.	1 0 1.	12 12 13 2	10 23 2	0 00 00		1 0		(20)11/24/31	21/21/20/3	2012	JUC (24) DA	7 111 10 23	2 22 24 1 8	12 12 12	10 1/ .	, 14 21	12/12/20	0 00 00 00	20/2/14/1.	1 8	(12 ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	10 1/	, 14 21	2 20 21	11/24/1	J 12 (1) J 12	10 1
2 Section 2: Works within Portion 1 and 4	960 days	Thu 9/19/13	Thu 5/5/16	716	9/19																											5/5	
3 Setting out site boundary			Fri 10/18/13		9/19 📖																												
4 Obtain underground utilities plans			Fri 10/18/13		9/19	10/18																											
5 Site clearance		Sat 10/19/13					11/17																										
6 Initial survey 7 Freet hoording chain link fance and vehicular gate			Sun 12/1/13				1/18																										
7 Erect hoarding, chain link fence and vehicular gate 8 Installation of riging main along To Kwa Wan Pood			Tue 12/31/13				12/2	12/31																									
8 Installation of rising main along To Kwa Wan Road	899 days	Thu 9/19/13	Sat 3/5/16	710	9/19																									3/5			
0 A 11		0.11	- TV7																														
9 Application of XP and TTA for approval Submission / approval of method statement, temporary works			Wed 4/16/14			10/19					4/16																						
Submission / approval of method statement, temporary works design and delivery of materials to site	100 days	Sat 12/28/13	Sun 4/6/14	"14"			12	/28		4/	##O																						
		thi																															
Inspection pits for determining the alignment of rising mains	60 days	Thu 4/17/14	Sun 6/15/14	714						4/17			0-6/15																				
12		3.5																															
12 Allow for utilities diversion works by the UU 13 Construct isolaing pits at different locations (Locations will be			Thu 8/14/14									6/16		8/14																			
Construct jacking pits at different locations (Locations will be subject to TMLG requirements. Detailed programme will be	300 days	Sun 6/29/14	Fri 4/24/15	(0.14)									6/29								4/24												
submitted after approval of TTA)			i																														
14																																	
Install 2x630mm HDPE rising main CHB0-CHB1050 (Alignment will be subject to TMLG requirements. Detailed	500 days	Mon 9/1/14	Wed 1/13/16	410										9/1													<u> </u>	1/13	5				
programme will be submitted after approval of TTA)			i																														
·			i																														
Construct sewerage manhole, discharge chamber, wash-out chamber, air-valve chamber for rising main	300 days	Mon 5/11/15	Sat 3/5/16	716																	5/11									3/5			
16 Terminal float	61 days	Sun 3/6/16	Thu 5/5/16	7/16																									3/6	5		5/5	
17																																	
18 Construction of Road L19		Thu 9/19/13	Sat 3/5/16		9/19																									3/5			
19 Application of XP and TTA for approval			Wed 4/16/14		9/19						4/16																						
20 Submission / approval of construction materials and method statements for rising mains	30 days	Wed 10/16/13	Thu 11/14/13	V13		10/16	11/14																										
21 Delivery of materials for rising mains		Fri 11/15/13					/15	1/13																									
22 Install 2x630mm HDPE rising main CHB1089-CHB1159	170 days	Tue 1/14/14	Wed 7/2/14	714				1/14					7/2																				
23 Install 2x750mm dia. concrete pipes CHB1159-CHB1300	170 days	Tue 1/14/14	Wed 7/2/14	714				1/14					7/2																				
			i																														
24 Install 600mm and 750 dia. stormwater drain		Thu 7/3/14											7/3					1/18															
25 Install 300mm dia. sewerage drain	200 days												7/3					1/18															
26 Install 200mm dia. fresh water main CHE0-CHE402		Thu 7/3/14											7/3					1/18															
27 Install NS125 & NS63 salt water main CHE0-CHE100 28 Pressure test swabbing sterilization and connection													7/3					1/18															
Pressure test, swabbing, sterilization and connection Construct sewerage manhole, discharge chamber, wash-out																			3/9			6/16											
Construct sewerage manhole, discharge chamber, wash-out chamber, air-valve chamber for rising main	160 days	Thu 12/18/14	rue 5/26/15														12/					≥ 5/2 6											
	300 .	Thu 4/15"	Circ.																														
30 Install 2x630mm HDPE rising main CHB1050-CHB1089 by trenchless method	200 days	Thu 4/17/14	sun 11/2/14	# A T						4/17						1	11/2																
	150	Mon 11/2	Mr- ·																														
Install 2x750mm and 2x900mm dia. concrete pipes CHB1300-CHB1398	150 days	Mon 11/3/14	wed 4/1/15													11/3				4/1													
	20 :	Cat 12 -	<u> </u>																														
32 Liaison meeting with UU 33 Installation of utility by the utility undertakers along proposed			Sun 1/5/14 Thu 7/24/14				12/7																										
Installation of utility by the utility undertakers along proposed footpath	200 days	Mon 1/6/14	1 nu 7/24/14	"A T				1/6					7/	f ⁺																			
	160	E.: 7/05	Wedian																														
34 Utilities diversion works by the UU 35 Construct road gully and gully pipe		Fri 7/25/14											7/25					12/31)/8								
35 Construct road gully and gully pipe 36 Construct road kerb			Tue 9/8/15 Thu 9/17/15																	4/2		6/10		9	710								
36 Construct road kerb 37 Construct footpath, planting area and concrete run-in		Wed 6/10/15 Sat 7/25/15																				O TO	77.4-		ا 7/17 ا			y 11					
Construct footpath, planting area and concrete run-in Construct central refuge		Sat 7/25/15 Tue 7/28/15																					7/25					4 11					
Construct central refuge Construct flexible carriageway																							//28			11/4							
Construct flexible carriageway Road marking		Thu 11/5/15 Mon 2/1/16																								±1/3			2/2 2/1 2/10				
40 Road marking 41 Relocate existing directional sign		Mon 2/1/16 Thu 10/29/15	Wed 2/10/16 Fri 2/5/16																							10/29			2/1 2/10 2/5				
41 Relocate existing directional sign 42 Plants delivery for landscaping works		Thu 10/29/15 Mon 1/4/16	Fri 2/5/16 Tue 2/2/16																							10/29		1/4					
42 Plants delivery for landscaping works 43 Preparatory works for landscaping works		Mon 1/4/16 Wed 2/3/16																											2/2				
43 Preparatory works for landscaping works 44 Hydroseeding			Tue 2/16/16 Thu 2/18/16																										2/3 2/16 2/17 2/18				
44 Hydroseeding45 Tree and shurb planting		Wed 2/17/16 Fri 2/19/16	Thu 2/18/16 Sat 3/5/16																										2/17 4 2/18 2/19				
Tree and shurb planting Terminal float			Sat 3/5/16 Thu 5/5/16																										413			> 5/5	
47	or days	Jul 10/10																															
47 Section 2A Section 2A	1325 dave	Thu 9/19/13	Fri 5/5/17	<u>-17</u>	0/10																												
49 Establishment works for Section 2		Thu 9/19/13 Thu 9/19/13	Fri 5/5/17		9/10																												
	udys cac				¥117					<u></u>																					 <u> </u>	<u> </u>	

Critical tasks Working days Commencement Date: 19 September 2013 Completion Date: 5 May 2016

Submission / approval of E&M services materials and delivery


E&M building service installation. (Details programme will be 180 days Tue 9/22/15 Sat 3/19/16

(Detailed programme will be submitted separately)

submitted separately)

570 days Sat 3/1/14 Mon 9/21/15

Master Programme

Stage 4 Infrastructure at Former North Apron Area

Master Programme

Commence KL/2012/03 construction 1345 days Thu 9/19/13 Thu 5/25/17 Section 5: Portion 1 (Subject to Excision) 980 days Thu 9/19/13 Wed 5/25/16 980 days Thu 9/19/13 Works for Part of Road D2 (Footpath only) Wed 5/25/16 Mon 10/14/13 15 days Mon 9/30/13 9/30 🚃 Site possession and preparation works ₽_10/14 Awaiting for the notification of commencement of works by the Interface works meeting with CLP 30 days Tue 10/15/13 Wed 11/13/13 Construct of CLP tunnel by CLP CH67 to CH250 (Exact 444 days Thu 11/14/13 Sat 1/31/15 duration will be agreed with CLP) Construct of CLP tunnel by CLP CH527 to CH585 (Exact 383 days Thu 11/14/13 Mon 12/1/14 duration will be agreed with CLP) Construct of CLP tunnel by CLP CH385 to CH527(Exact 395 days Thu 10/2/14 Sat 10/31/15 duration will be agreed with CLP) Construct of CLP tunnel by CLP CH250 to CH385 (Exact 321 days Thu 11/14/13 Tue 9/30/14 duration will be agreed with CLP) Construct of CLP tunnel by CLP CH0 to CH67 Exact duration 275 days Sat 1/31/15 Sun 11/1/15 will be agreed with CLP) Construct of CLP tunnel by CLP CH585 to CH724 (Exact 365 days Wed 1/1/14 Wed 12/31/14 duration will be agreed with CLP) Installation of utility by the utility undertakers along proposed 350 days Fri 1/2/15 Thu 12/17/15 footpath (Exact duration will be agreed with UU) 340 days Thu 3/5/15 Sun 2/7/16 Construct drainpit and u-channel Thu 1/21/16 Sat 3/28/15 Install stormwater drain, sewerage drain and manholes Install FWM and SWM and chambers 300 days Thu 4/2/15 Tue 1/26/16 Install irrigation system Wed 4/1/15 Mon 1/25/16 300 days Tue 1/26/16 Install fire hydrant Tue 12/8/15 Sun 4/17/16 Install street lighting 70 days Mon 2/8/16 Mon 2/8/16 Sun 4/17/16 Construct footpath, planting area and concrete run-in 70 days Plants delivery for landscaping works Sun 4/10/16 Preparatory works for landscaping works 14 days Mon 4/18/16 Sun 5/1/16 Mon 5/2/16 Tue 5/3/16 Hydroseeding Tree and shurb planting Wed 5/4/16 Wed 5/25/16 Section 5A: (Subject to Excision) 1345 days Thu 9/19/13 Thu 5/25/17 Establishment works for Section 5 1345 days Thu 9/19/13 Thu 5/25/17 Section 7A: Portion 1 (Subject to Excision) 800 days Thu 9/19/13 Fri 11/27/15 Fri 12/27/13 Awaiting for the notification of commencement of works by the l Construct one 500mm dia., two 1000mm dia. District Cooling 350 days Sat 12/28/13 System (DCS) chilled water pipes and four 1400mm dia. seawater pipes 350 days Thu 3/6/14 Wed 2/18/15 Construct two DCS chilled water pipes tee to the building lots. The diameter of DCS chilled water pipes are 200mm, 500mm and 800mm subject to various locations 200 days Sat 9/13/14 Tue 3/31/15 Construct valve chambers, instrumentation chambers, access manhole, thrust blocks, insulation provision for the DCS chilled Construct the leakage detection system for DCS chilled water 150 days Sun 11/9/14 Tue 4/7/15 Construct the cable ducts and associated draw pits for the 150 days Wed 11/26/14 Fri 4/24/15 communication system Interfacing works with EMSD 1020EM12A Contractor for 300 days Wed 1/1/14 Mon 10/27/14 connection of the proposed four seawater pipes and three chilled water pipes in Section C to their construction of seawater pipes and chilled water pipes Testing and commissioning of the works Fri 3/6/15 Sat 6/13/15 Install FWM and SWM and chambers 200 days Sat 12/27/14 Tue 7/14/15 Thu 6/25/15 Pressure test, swabbing, sterilization and connection 70 days Wed 9/2/15 Tue 9/15/15 Construct valve, fire hydrant, air-valve and wash-out chambers f 80 days Sun 6/28/15 Mon 7/27/15 Fri 1/9/15 Install stormwater drain, sewerage drain and construct manhole 200 days Fri 5/29/15 Sun 10/25/15 150 days Construct road gully and gully pipe Construct road kerb 100 days Thu 7/23/15 Fri 10/30/15 Tue 11/17/15 Construct flexible carriageway 100 days Mon 8/10/15 10 days Wed 11/18/15 Fri 11/27/15 Road marking

Critical tasks Working days Cate:

Commencement Date: Completion Date:

ID Task Name

Start

Duration