Civil Engineering and Development Department

EP-344/2009 - New Sewage Pumping Stations Serving KTD EP-337/2009 - New Distributor Roads Serving the **Planned KTD**

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at **Former North Apron Area**

Monthly EM&A Report

November 2018

(Version 1.0)

Approved By	(Environmental Team Leader)
REMARKS	

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

Civil Engineering and Development Department New Territories West Development Office 25/F., Tsuen Wan Government Offices 38 Sai Lau Kok Road Tsuen Wan New Territories Your reference:

Our reference:

HKCEDD09/50/105420

Date: 13

13 December 2018

Attention: Mr Thomas Chu

BY FAX & POST (Fax no.: 2405 0456)

Dear Sirs

Agreement No.: NTW/01/2016 Cycle Tracks from Tuen Mun to Sheung Shui – Remaining Works – Independent Environmental Checker Environmental Monitoring and Audit Report (November 2018)

We refer to emails of 10 and 11 December 2018 from Cinotech Consultants Limited attaching a Monthly Environmental Monitoring and Audit Report (November 2018).

We have no further comment and hereby verify the captioned report in accordance with Clause 3.5 of the Environmental Permit no. EP-450/2013/A and Clause 3.5 of the Environmental Permit no. EP-501/2015.

Should you have any queries, please do not hesitate to contact the undersigned or our Mr Nic Lam on 2618 2831.

Yours faithfully ANEWR CONSULTING LIMITED

Independent Environmental Checker

LYMA/LHHN/CYYH/lhmh

TABLE OF CONTENTS

ECUTIVE SUMMARY	. 1
Introduction Environmental Monitoring Works Environmental Licenses and Permits Key Information in the Reporting Month Future Key Issues	. 1 . 2 . 2
INTRODUCTION	.3
Background Project Organizations Construction Activities undertaken during the Reporting Month Summary of EM&A Requirements Status of Compliance with Environmental Permits Conditions	. 3 . 4 . 5 . 7
AIR QUALITY	. 8
Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and Quality Assurance and Quality Control (QA/QC) Procedure Results, Observations and Action/Limit Level Exceedance	. 8 . 9 . 9 . 9
NOISE	13
Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and QA/QC Procedures Maintenance and Calibration Results, Observations and Action/Limit Level Exceedance	13 14 14 15 15
COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS	17
LANDSCAPE AND VISUAL	19
Monitoring Requirements Results and Observations	
ENVIRONMENTAL AUDIT	20
Site Audits Status of Environmental Licensing and Permitting Status of Waste Management Implementation Status of Environmental Mitigation Measures Summary of Mitigation Measures Implemented Implementation Status of Event Action Plans Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution	20 21 21 22 22 22 on
	Introduction

7.	FUTURE KEY ISSUES	
	Key Issues for the Coming Month	
	Monitoring Schedule for the Next Month	
8.	CONCLUSIONS AND RECOMMENDATIONS	
	Conclusions	
	Recommendations	
	Effectiveness of Environmental Management	

LIST OF TABLES

- Table I
 Breaches of Action and Limit Levels for the Project in the Reporting Month
- Table IISummary Table for Key Information in the Reporting Month
- Table 1.1Key Project Contacts
- Table 1.2Construction Programme Showing the Inter-Relationship with Environmental
Protection/Mitigation Measures
- Table 1.3Air Quality and Noise Monitoring Stations for this Project
- Table 1.4Summary Table for Required Submission under EP No. EP-337/2009
- Table 1.5Summary Table for Required Submission under EP No. EP-344/2009
- Table 2.1Locations for Air Quality Monitoring
- Table 2.2Air Quality Monitoring Equipment
- Table 2.3
 Impact Dust Monitoring Parameters, Frequency and Duration
- Table 2.4Major dust source identified at the designated air quality monitoring stations
- Table 3.1Noise Monitoring Stations
- Table 3.2Noise Monitoring Equipment
- Table 3.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 3.4
 Major noise source identified at the designated noise monitoring stations
- Table 3.5Baseline Noise Level and Noise Limit Level for Monitoring Stations
- Table 4.1Comparison of 1-hr TSP data with EIA predictions
- Table 4.2Comparison of 24-hr TSP data with EIA predictions
- Table 4.3
 Comparison of Noise Monitoring Data with EIA predictions
- Table 6.1Summary of Environmental Licensing and Permit Status
- Table 6.2Observations and Recommendations of Site Inspections for EP-337/2009
- Table 6.3Observations and Recommendations of Site Inspections for EP-344/2009
- Table 7.1Summary of the tentative program of major site activities, the impact prediction and
control measures for December 2018 and January 2018
- Table 8.1
 Examples of Mitigation Measures for Environmental Recommendations

LIST OF FIGURES

- Figure 1 Layout Plan of the Project Site
- Figure 2 Locations of Air Quality Monitoring Stations
- Figure 3 Locations of Construction Noise Monitoring Stations
- Figure 4 Locations of Wind Anemometer
- Figure 5 Management Structure

LIST OF APPENDICES

- A Action and Limit Levels for Air Quality and Noise
- B Copies of Calibration Certificates
- C Weather Information
- D Environmental Monitoring Schedules
- E 1-hour TSP Monitoring Results and Graphical Presentations
- F 24-hour TSP Monitoring Results and Graphical Presentations
- G Noise Monitoring Results and Graphical Presentations
- H Summary of Exceedance
- I Site Audit Summary
- J Event Action Plans
- K Environmental Mitigation Implementation Schedule (EMIS)
- L Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution
- M Summary of Waste Generation and Disposal Records
- N Construction Programme

EXECUTIVE SUMMARY

Introduction

- This is the 60th Monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Ltd. for "Contract No. KL/2012/03 - Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area" (Hereafter referred to as "the Project"). This contract comprises the construction of Schedule 2 Designated Projects (DP) Road D2 & Sewage Pumping Station PS2 and PS NPS which forms a part of the works under two Environmental Permits (EP), EP-337/2009 and EP-344/2009. The title of the designated projects under Environmental Permit No.: EP-344/2009 is "New sewage pumping stations serving Kai Tak Development" and under Environmental Permit No.: EP-337/2009 is "New distributor roads serving the planned Kai Tak Development". This report documents the findings of EM&A Works conducted from 1 to 30 November 2018.
- 2. The major site activities undertaken in the reporting month included:
 - Daily Cleaning;
 - Finishing works, E&M work in PS2;
 - Site clearance works in DCS;
 - Site clearance works, landscape works at Sung Wong Toi Road;
 - Finishing works and E&M works in Portion 4 (NPS & Sewerage); and
 - Removal of excavated material in Portion 6.

Environmental Monitoring Works

- 3. Environmental monitoring for the Project was performed in accordance with the EM&A Manual and the monitoring results were checked and reviewed. Site Inspections/Audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.
- 4. Summary of the breaches of action and limit levels in the reporting month for the Project is tabulated in **Table I**.

Parameter	No. of Project-rela	Action Taken	
	Action Level Limit Level		Action Taken
1-hr TSP	0	0	N/A
24-hr TSP	0	0	N/A
Noise	0	0	N/A

 Table I
 Breaches of Action and Limit Levels for the Project in the Reporting Month

1-hour & 24-hour TSP Monitoring

- 5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 6. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

- The construction noise monitoring at Station M8 Po Leung Kok Ngan Po Ling College was conducted on 5th November 2018 and cancelled on 15th November 2018. The college principal rejected our permission application on 12th November 2018.
- The noise monitoring at alternative station M8(A) Po Leung Kok Ngan Po Ling College (Site Boundary) was commenced on 21st November 2018. The proposal for alternative station will be submitted to Environmental Protection Department (EPD) for approval. No Action/Limit Level exceedance was recorded.

Environmental Licenses and Permits

- 9. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, Environmental Permits No. EP-344/2009 and EP-337/2009 were issued on 23 April 2009.
- 10. Registration of Chemical Waste Producer (Waste Producer Number: 5213-286-K2958-05).
- 11. Water Discharge License (WT00020971-2015).

Key Information in the Reporting Month

12. Summary of complaint received, reporting changes and notifications of any summons and successful prosecutions in the reporting month is tabulated in **Table II**.

Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received	0		N/A	N/A	
Reporting Changes	0		N/A	N/A	
Notifications of any summons & prosecutions received	0		N/A	N/A	

 Table II
 Summary Table for Key Information in the Reporting Month

Future Key Issues

13. The future key environmental issues in the coming month include:

- Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
- Water spraying for dust generating activity and on haul road;
- Proper storage of construction materials on site;
- Storage of chemicals/fuel and chemical waste/waste oil on site;
- Accumulation of general and construction waste on site;
- Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site; and
- Review and implementation of temporary drainage system for the surface runoff.

1. INTRODUCTION

Background

- 1.1 The Kai Tak Development (KTD) is located in the south-eastern part of Kowloon Peninsula, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling. It covers a land area of about 328 hectares. Stage 4 Infrastructure at Former North Apron Area is one of the construction stages of KTD. Schedule 2 DPs in this Project include new distributor roads serving the planned KTD and new sewage pumping stations serving the planned KTD. The general layout of the Project is shown in **Figure 1**.
- 1.2 Two Environmental Permits (EPs) No. EP-344/2009 and EP-337/2009 were also issued to the Permit Holder Civil Engineering and Development Department on 23 April 2009 for new sewage pumping stations serving the planned KTD and new distributor roads serving the planned KTD respectively.
- 1.3 A study of environmental impact assessment (EIA) was undertaken to identify the key issues of air quality, noise, water quality, waste, land contamination, cultural heritage and landscape and visual impact, and recommend possible mitigation measures associated with the works. The EIA Report (Register No. AEIAR-130/2009) was approved by the Environmental Protection Department (EPD) on 4 April 2009.
- 1.4 Cinotech Consultants Limited (Cinotech) is commissioned by Kwan On Construction Co., Ltd. (the Contractor) to undertake the role of the Environmental Team (ET) for the Contract No. KL/2012/03 Stage 4 Infrastructure at Former North Apron Area. The construction work under KL/2012/03 comprises the construction of Road D2 & Sewage Pumping Station PS2 and PS NPS which forms a part of the works under two EPs (EP-337/2009 and EP-344/2009).
- 1.5 The construction commencement of this Contract was on 1st December 2013 for Road D2, Sewage Pumping Station PS2 and PS NPS. This is the 60th Monthly EM&A report summarizing the EM&A works for the Project from 1 to 30 November 2018.

Project Organizations

- 1.6 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Civil Engineering and Development Department (CEDD).
 - The Engineer and the Engineer's Representative (ER) AECOM.
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) ANewR Consulting Limited. (ANewR).
 - Contractor Kwan On Construction Co., Ltd. (Kwan On).

1.7 The key contacts of the Project are shown in **Table 1.1** and **Figure 5**.

Table 1.1Key Project Contacts					
Party	Role	Contact Person	Position	Phone No.	Fax No.
CEDD	Project Proponent	Mr. C. K. Choi	Senior Engineer	2301 1174	2301 1277
AECOM	Engineer's Representative	Mr. W. K. Leung Mr. Jacky Pun	CRE RE	2798 0771	3013 8864
	Environmental	Dr. Priscilla Choy	Environmental Team Leader	2151 2089	
Cinotech	Team	Ms. Ivy Tam	Project Coordinator and Audit Team Leader	2151 2090	3107 1388
ANewR	Independent Environmental Checker	Mr. Adi Lee	Independent Environmental Checker	2618 2831	3007 8648
				3689 7752	3689 7726
Kwan On	Contractor	Mr. Albert Ng	Site Agent	6146 6761 (H telephone nur	

Construction Activities undertaken during the Reporting Month

- 1.8 The site activities undertaken in the reporting month included:
 - Daily Cleaning;
 - Finishing works, E&M work in PS2;
 - Site Clearance Works in DCS;
 - Site Clearance Works, Landscape Works at Sung Wong Toi Road;
 - Finishing works and E&M works in Portion 4 (NPS & Sewerage); and
 - Removal of excavated material in Portion 6.
- 1.9 The construction programme showing the inter-relationship with environmental protection/mitigation measures is presented in **Table 1.2**.

Protection/Mitigation Measures			
Construction Works	Generated Major Environmental Impact	Control Measures	
Construction of superstructure of Pumping Station PS2 and NPS;	Dust, Water Quality, Waste Management	 Sufficient watering of the works site with active dust emitting activities; Properly cover the stockpiles; Appropriate desilting/sedimentation devices provided on site for treatment before discharge; Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall; and On-site waste sorting and implementation of trip ticket system. 	
Backfilling between sewerage manholes 1K1_1 and FMH10_340 and construction of manhole FMH10_370a at L6;	Dust, Noise	 Use of quiet plant and well-maintained construction plant; and Properly cover the stockpiles; 	
Installation of precast unit and construction of in-situ portions of Box Culvert B6; Construction of jacking pits nos. 1 and 2; Installation of gas pipe at pit no. 10; Construction of washout chamber at pit no. 11;	Noise, Waste Management	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. Good management and control on construction waste reduction 	
Construction of sewerage manhole FMH 10 at Bailey Street; Widening works of Sung Wong Toi Road.	Noise	 Use of quiet plant and well-maintained construction plant; and Provide hoarding. 	
Pipe laying from manhole SMH2204 to Box Culvert B6; Laying of rising mains from PS2 to chainage CHA-18; Pipe laying from stormwater manholes SMH1962 to SMH1963 and construction of manholes SMH1953 and SMH1963 at L6; Installation of DCS;	Noise, Water Quality	 Use of quiet plant and well-maintained construction plant; and Well maintain the drainage system to prevent the spillage of wastewater during heavy rainfall. 	

Table 1.2 Construction Programme Showing the Inter-Relationship with Environmental Protection/Mitigation Measures

Summary of EM&A Requirements

- 1.10 The EM&A programme requires construction noise monitoring, air quality monitoring, landscape and visual monitoring and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental requirements and mitigation measures, as recommended in the EM&A Manual under the EP.
- 1.11 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 6 of this report.
- 1.12 This report presents the implementation of the EM&A programme for the Project from 1 to 30 November 2018.

1.13 Air quality monitoring stations within 500m and noise monitoring stations within 300m from the boundary of this Project are considered as relevant monitoring locations. In such regard, the relevant air quality and noise monitoring locations are tabulated in **Table 1.3** (see **Figure 2 and 3** for their locations).

Locations	Monitoring Stations In accordance with EM&A Manual	Alternative Monitoring Stations	
Air Quality Monitoring Stations			
AM2 - Lee Kau Yan Memorial School	Yes	AM2(A) – Ng Wah Catholic Secondary School	
AM3 – Sky Tower	No	AM3(A) – Holy Trinity Bradbury Centre	
AM4 – Grand Waterfront	No	AM4(A) – EMSD Workshop*	
AM5 – CCC Kei To Secondary School	No	N/A^	
AM6 – Site 1B4 (Planned)		N/A	
Noise Monitoring Stations			
M6 – Holy Carpenter Primary School	No	M6(A) – Oblate Primary School	
M7 – CCC Kei To Secondary School	Yes	N/A	
M8 – Po Leung Kuk Ngan Po Ling College	Yes	N/A [#]	
M9 – Tak Long Estate	Yes	N/A	
M10 – Site 1B4 (Planned)	N/A		

Table 1.3	Air Oualit	v and Noise	Monitoring	Stations	for this Project
1 4010 1.0	Ann Zum	y and 1 to ibe		Stations	ior this ridgeet

Remarks:

• "Yes" – Monitoring station is the same as that stated in EM&A Manual

No – Monitoring station is not the same as that stated in EM&A Manual. Request for carrying monitoring works at the monitoring stations stated in EM&A Manual was rejected by owner of premise. Alternative monitoring stations were proposed by the ET of Schedule 3 EIA and approved by the EPD.

 \sim N/A – No alternative monitoring station is required.

*AM4(A) – EMSD Workshop was cancelled due to unsuccessful accessibility of the facility. 1-hr TSP monitoring was conducted at AM4(B) – Ma Tau Kok Road (next to EMSD workshop) temporarily and 24-hr TSP monitoring was conducted at AM4(C) – New Pumping Station under Contract No. KL/2012/03.

^AM5(A) – Po Leung Kuk Ngan Po Ling College was cancelled because no permission was granted from the premise. Air quality monitoring was carried out at AM5 – CCC Kei To Secondary School.

- * "Noise monitoring at M8(A) Po Leung Kuk Ngan Po Ling College was cancelled because the permission to enter the premises was not granted. Noise monitoring was carried out at M8(A) Po Leung Kuk Ngan Po Ling College (Site Boundary) temporarily.
- 1.14 According to the Environmental Monitoring and Audit Manual (EM&A Manual) of the Kai Tak Development (KTD) Schedule 3 Environmental Impact Assessment (EIA) Report, the impact monitoring at the designated monitoring stations as required in KTD EM&A Manual under the EP, has been conducted in Environmental Monitoring Works for Kai Tak Development under Schedule 3 of KTD, which is on-going starting from December 2010, when the impact monitoring data under Schedule 3 of KTD were adopted for the Project.
- 1.15 Although Contract no. KLN/2013/16 under Schedule 3 of KTD has been superseded by KLN/2016/09 since early March 2017, the ET continued to adopt the impact monitoring data under Schedule 3 of KTD until appropriate new arrangement is agreed. The KLN/2016/09 impact environmental monitoring schedule is shown in Appendix D.

Status of Compliance with Environmental Permits Conditions

1.16 The status of required submission related to this Project under the Environmental Permits No. EP-337/2009 and EP-344/2009 is summarized in the **Table 1.4** and **Table 1.5** respectively:

EP Conditions	Submission	Submission Date	Remark
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Road D2
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03
2.4	Design Drawing(s) of the Project	28 October 2013	For Road D2
2.11	Landscape Mitigation Plan(s) for distributors road(s)	7 January 2014	For Road D2
2.12	As-built drawing(s) for the distributor road(s)	To be submitted at least one week before the commencement of operation of distributor road(s	
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	/
3.3	Four hard copies and one electronic copy of the Monthly EM&A Report No. 59 (October 2018)	13 November 2018	Monthly EM&A Report for Contract No. KL/2012/03

Table 1.5 Summary Table for Required Submission under EP No. EP-344/2009

EP Conditions	Submission	Submission Date	Remark
1.11	Notification of Commencement Date of Construction of Project	31 October 2013	For Pumping Station PS2 and PS NPS
2.3	Management Organization of Main Construction Companies	31 October 2013	For Contract No. KL/2012/03
2.4	Design Drawing(s) of the Project	28 October 2013	For Pumping Station PS2 and PS NPS
2.11	Landscape Mitigation Plan(s) for sewage pumping station(s)	7 January 2014	For Pumping Station PS2 and PS NPS
2.12	As-built drawing(s) for the sewage pumping station (s)	To be submitted at least one week before the commencement of operation of distributor road(
3.2	Baseline Monitoring Report	26 November 2010 (Part I) 24 December 2010 (Part II)	/
3.3	Four hard copies and one electronic copy of the Monthly EM&A Report No. 59 (October 2018)	13 November 2018	Monthly EM&A Report for Contract No. KL/2012/03

2. AIR QUALITY

Monitoring Requirements

2.1 According to EM&A Manual under the Eps, 1-hour and 24-hour Total Suspended Particulates (TSP) monitoring were conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six days shall be undertaken when the highest dust impact occurs. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Five designated monitoring stations were selected for air quality monitoring programme. Impact dust monitoring was conducted at four of the air quality monitoring stations (AM2, AM3(A), AM4(C) and AM5. **Table 2.1** describes the air quality monitoring locations, which are also depicted in **Figure 2**.

Monitoring Stations	ring Stations Location of Mea	
AM2	Lee Kau Yan Memorial School	Rooftop (about 8/F) Area
AM2(A)	Ng Wah Catholic Secondary School	Rooftop (about 8/F) Area
AM3(A)	Holy Trinity Bradbury Centre	Rooftop (about 8/F) Area
AM4(C)	New Pumping Station	Rooftop (about 6/F) Area
AM5	CCC Kei To Secondary School	Rooftop (about 10/F) Area
#AM6	PA 15	Site 1B4 (Planned)

Table 2.1Locations for Air Quality Monitoring

Remarks: # The impact monitoring at these locations will only be carried out until the sensitive receivers at the building are resided.

Monitoring Equipment

2.3 **Table 2.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates and laboratory accreditation are attached in **Appendix B**.

Equipment	Model and Make	Quantity
Calibrator	TE-5025A	1
1-hour TSP Dust Meter	Laser Dust Monitor – Model Hal-HPC300/ 301; Met One Instruments – AEROCET-831	6
HVS Sampler	TE-5170	4
Wind Anemometer	Davis Weather Monitor, Vantage Pro2	1

 Table 2.2
 Air Quality Monitoring Equipment

Monitoring Parameters, Frequency and Duration

2.4 Table 2.3 summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 2.3Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	At least three times every 6 days
24-hr TSP	At least once every 6 days

Monitoring Methodology and Quality Assurance and Quality Control (QA/QC) Procedure

1-hour TSP Monitoring

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - The 1-hour dust meter is placed at least 1.3 meters above ground.
 - Set POWER to "ON" and make sure that the battery level was not flash or in low level.
 - Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
 - Push the knob at MEASURE position.
 - Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec. to complete the background measurement.
 - Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
 - Information such as sampling date, time, count value and site condition were recorded

during the monitoring period.

Maintenance/Calibration

- 2.6 The following maintenance/calibration was required for the direct dust meters:
 - Check and calibrate the meter by High-Volume Sampler (HVS) to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.7 High volume samplers (HVS) (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The sampler was more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the 24-hour TSP sampling, the flow rate of the high volume sampler was properly set (between $1.1 \text{ m}^3/\text{min.}$ and $1.4 \text{ m}^3/\text{min.}$) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For 24-hour TSP sampling, fiberglass filters having a collection efficiency of $\ge 99\%$ for particles of 0.3µm (DOP) diameter were used.
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.

- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed so that the TSP will be sampled for 24 hours. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.16 After completion of sampling, the filter was removed and sent to Wellab Ltd., which is accredited under HOKLAS for laboratory analysis. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning temperature should be between 25°C and 30°C and not vary by more than $\pm 3^{\circ}$ C; the relative humidity (RH) should be < 50% and not vary by more than $\pm 5\%$. A convenient working RH is 40%.

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using G25A Calibration Kit throughout all stages of the air quality monitoring.
 - Orifice Transfer Standards were calibrated at yearly intervals throughout all stages of the air quality monitoring.

Results, Observations and Action/Limit Level Exceedance

- 2.19 All other 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.20 All other 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.21 This weather information for the reporting month is summarized in Appendix C.
- 2.22 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.

- 2.23 The summary of exceedance record in the reporting month is shown in **Appendix H**. No exceedance in Action/Limit Levels of 1-hour and 24-hour TSP was recorded for the air quality monitoring.
- 2.24 According to our field observations, the major dust source identified at the designated air quality monitoring stations is as follows:

stations	
Station	Major Dust Source
AM2 – Lee Kau Yan Memorial School	Road Traffic Dust
	Exposed site area and open stockpiles
	Site vehicle movement
AM2(A) – Ng Wah Catholic Secondary	Road Traffic Dust
School	Exposed site area and open stockpiles
	Excavation works
	Site vehicle movement
AM3(B) – Family Planning Association	Road Traffic Dust
of Hong Kong	Exposed site area
	Excavation works
	Site vehicle movement
AM4(C) – New Pumping Station under	Site vehicle movement
Contract No. KL/2012/03	
AM5 – CCC Kei To Secondary School	Road Traffic Dust

Table 2.4Major dust source identified at the designated air quality monitoringstations

3. NOISE

Monitoring Requirements

3.1 According to EM&A Manuals under the EP, construction noise monitoring was conducted to monitor the construction noise arising from the construction activities within KTD. The regular monitoring frequency for each monitoring station shall be on a weekly basis to conduct one set of measurements between 0700 and 1900 hours on normal weekdays. Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

- 3.2 Five designated monitoring stations were selected for noise monitoring programme. Noise monitoring was conducted at four designated monitoring stations (M6, M7, M8 and M9). Figure 3 shows the locations of these stations.
- Construction noise monitoring at Station M6 Holy Carpenter Primary School was rejected 3.3 by the premise owner on 6th October 2014. The monitoring station has been relocated at a proposed alternative noise monitoring station M6(A) - Oblate Primary School since 10th October 2014 to carry out the monitoring works.

Monitoring Stations	Locations	Location of Measurement
*M6(A)	Oblate Primary School	Rooftop (about 7/F) Area
M7	CCC Kei To Secondary School	Rooftop (about 8/F) Area
M8	Po Leung Kuk Ngan Po Ling College	Staircase Area (about 9/F)
^M8(A)	Po Leung Kuk Ngan Po Ling College (Site Boundary)	Ground Level (Microphone set higher than hoarding of site boundary)
M9	Tak Long Estate	Car Park Building (about 2/F)
#M10	Site 1B4 (Planned)	-

Table 3.1 **Noise Monitoring Stations**

Remarks:

Alternative noise monitoring station for M6 - Holy Carpenter Primary School from 10th October 2014 onwards

Noise monitoring at M8(A) – Po Leung Kuk Ngan Po Ling College was cancelled because the permission to enter the premises was not granted. Noise monitoring was carried out at M8(A) - Po Leung Kuk Ngan Po Ling College (Site Boundary) temporarily from 21st November 2018. The impact monitoring at these locations will only be carried out until existence of the sensitive receiver at

the building.

Monitoring Equipment

3.4 **Table 3.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVANTEK SVAN 957 & BSWA 801	3
Calibrator	SVANTEK SV30A & Brüel & Kjær 4231	2

Monitoring Parameters, Frequency and Duration

3.5 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Monitoring Stations	Parameter	Period	Frequency	Type of Measurement
M7 M8 M9	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Façade ^(*)
M6(A) M8(A)	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.) dB(A)	0700-1900 hrs on normal weekdays	Once per week	Free Field ^(*)

Table 3.3	Noise Monitoring Parameters, Frequency and Duratio	n
-----------	--	---

(*) Refer to bullet point 1 and 2 in the following section.

Monitoring Methodology and QA/QC Procedures

- The Sound Level Meter was set on a tripod at a point 1m from the exterior of the sensitive receivers building façade and be at a position 1.2m above the ground.
- For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels was adjusted with a correction of +3 dB(A).
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting : A
 - _ time weighting : Fast
 - time measurement : 30 minutes
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq}, L₉₀ and L₁₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.6 The microphone head of the sound level meter and calibrator was cleaned with a soft cloth at quarterly intervals.
- 3.7 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.8 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results, Observations and Action/Limit Level Exceedance

- 3.9 The construction noise monitoring at Station M8 Po Leung Kok Ngan Po Ling College was conducted on 5th November 2018 and cancelled on 15th November 2018. The college principal rejected our permission application on 12th November 2018.
- 3.10 The noise monitoring at alternative station M8(A) Po Leung Kok Ngan Po Ling College (Site Boundary) was commenced on 21st November 2018. The proposal for alternative station will be submitted to Environmental Protection Department (EPD) for approval. No Action/Limit Level exceedance was recorded.
- 3.11 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in **Table 3.4**.
- 3.12 Noise monitoring results and graphical presentations are shown in Appendix G.
- 3.13 The major noise source identified at the designated noise monitoring stations is as follows:

 Table 3.4
 Major noise source identified at the designated noise monitoring stations

Monitoring Stations	Locations	Major Noise Source
M6(A)	Oblate Primary School	Road and marine traffic Noise
M7	CCC Kei To Secondary School	Road and marine traffic Noise
M8	Po Leung Kuk Ngan Po Ling College	Excavation works at the site (Contract
M8(A)	Po Leung Kuk Ngan Po Ling College	No.: 1/WSD/14(K)) facing Po Leung Kuk
MO(A)	(Site Boundary)	Ngan Po Ling College
M9	Tak Long Estate	Road paving and asphalt paving works

Table 3.5 Baseline noise level and noise limit level for monitoring stations

Monitoring Stations	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
M6(A)	63.9 (at 0700 – 1900 hrs on normal weekdays)	
M7	68.7 (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on normal weekdays)
M8/M8(A)#	61.9 (at 0700 – 1900 hrs on normal weekdays)	
M9	59.9 (at 0700 – 1900 hrs on normal weekdays)	75 (at 0700 – 1900 hrs on normal weekdays)

(*) Noise Limit Level is 65 dB(A) during school examination periods.

(#) The Baseline Noise Level of Station M8 will be adopted for alternative Station M8(A) temporarily until the baseline checking was completed.

4. COMPARISON OF EM&A RESULTS WITH EIA PREDICTIONS

4.1 According to Section 16.1.6 (vi) of the EM&A Manual, the EM&A data were compared with the EIA predictions as summarized in **Table 4.1** to **4.3** below.

Station	Predicted 1-hr TSP conc.			
	Scenario1 (Mid 2009 to	Scenario2 (Mid 2013 to	-	ng Month 18), μg/m3
	Mid 2013), µg/m3	Late 2016), µg/m3	Average	Range
AM2 – Lee Kau Yan Memorial School	290	312	104.8	33.2 - 170.3
AM3(A) - Holy Trinity Bradbury Centre (Alternative station for Sky Tower)	217	247	104.4	26.2 - 173.3
AM4(C) – New Pumping Station	N/A	N/A	112.4	42.2 - 199.6
AM5– CCC Kei To Secondary School	159	221	96.8	28.5 - 181.8

 Table 4.1
 Comparison of 1-hr TSP data with EIA predictions

Table 4.2	Comparison of 24-hr TSP data with EIA predictions
-----------	---

Station	Predicted 24-hr TSP conc.				
	Scenario1 (Mid 2009 to	Scenario2 (Mid 2013 to	-	Reporting Month Nov 2018), μg/m3	
	Mid 2013), µg/m3	Late 2016), µg/m3	Average	Range	
AM2(A) – Ng Wah Catholic Secondary School (Alternative station for Lee Kau Yan Memorial School)	145	169	48.1	27.6 - 63.2	
AM3(B) – Family Planning Association of Hong Kong	N/A	N/A	99.4	82.6 - 116.5	
AM4(C) – New Pumping Station	N/A	N/A	75.4	21.5 - 140.5	
AM5 – CCC Kei To Secondary School	103	128	40.8	25.6 - 59.5	

.5 Comparison of Noise Monitoring Data with EIA predictions			
Stations	Predicted Mitigated Construction Noise Levels during Normal Working Hour (Leq (30min) dB(A))	Reporting Month (Nov 2018), L _{eq (30min)} dB(A)	
M6(A) - Oblate Primary School ^	N/A	59.7 - 66.3	
M7 - CCC Kei To Secondary School	45 - 68	61.7 - 68.4	
M8 - Po Leung Kuk Ngan Po Ling College M8(A) - Po Leung Kuk Ngan Po Ling College (Site Boundary)*	44 - 70	65.7 – 69.2	
M9 – Tak Long Estate	Not predicted in EIA Report	57.6 - 68.7	

Table 4.3 Comparison of Noise Monitoring Data with EIA predictions

(^) Alternative noise monitoring station for M6 – Holy Carpenter Primary School from 10^{th} October 2014 onwards.

(*) Noise monitoring at M8(A) – Po Leung Kuk Ngan Po Ling College was cancelled due to no permission was granted from the premise. Noise monitoring was carried out at M8(A) – Po Leung Kuk Ngan Po Ling College (Site Boundary) temporarily from 21st November 2018.

- 4.2 The averages of 1-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.3 The averages of 24-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.
- 4.4 The range of noise level monitoring at station M7 in the reporting month was slightly above the prediction in the approved Environmental Impact Assessment (EIA) Report. The range of noise level monitoring at stations M8/8(A) in the reporting month was slightly below the prediction in the approved Environmental Impact Assessment (EIA) Report.

5. LANDSCAPE AND VISUAL

Monitoring Requirements

5.1 According to EM&A Manual of the Kai Tak Development EIA Study, ET shall monitor and audit the contractor's activities during the construction period on a weekly basis, and to report on the contractor's performance.

Results and Observations

- 5.2 Site audits were carried out on a weekly basis to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project. The summaries of site audits are attached in **Appendix I**.
- 5.3 No non-compliance of the landscape and visual impact was recorded in the reporting month.
- 5.4 In accordance with the Action Plan presented in **Appendix J**, no corrective actions were required in the reporting month.

6. ENVIRONMENTAL AUDIT

Site Audits

- 6.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits were conducted on 2, 9, 16, 21 and 30 November 2018 in the reporting month. IEC site inspection was conducted on 21 November 2018. No non-compliance was observed during the site audits.

Status of Environmental Licensing and Permitting

6.3 All permits/licenses obtained for the Project are summarized in Table 6.1.

Permit No.	Valid Period		Details	Status	
Permit No.	From	То	Details	Status	
Environmental Perm	Environmental Permit (EP)				
EP-337/2009	23/04/09	N/A	Construction of new distributor roads serving the planned Kai Tak development.	Valid	
EP-344/2009	23/04/09	N/A	Construction of a new sewage pumping station serving the planned Kai Tak development with installed capacity of more than 2,000 m ³ per day and a boundary of which is less than 150m from an existing or planned residential area or educational institution.	Valid	
Effluent Discharge Li	Effluent Discharge License				
WT00020971-2015	22/04/15	21/04/20	Discharge License for the discharge of wastewater from the construction site including contaminated surface run-off to the communal storm water drain	Valid	
Registration of Chemical Waste Producer					
5213-286-K2958-05			Registration of chemical waste producer for chemical waste produced during construction of Stage 4 at former North Apron Area Infrastructure.	Valid	

 Table 6.1
 Summary of Environmental Licensing and Permit Status

Status of Waste Management

- 6.4 The amount of wastes generated by the major site activities of this Project during the reporting month is shown in **Appendix M**.
- 6.5 In respect of the dump truck cover, the Contractor is advised to take record photos and inspection to ensure that the skips of all dump trucks have been fully covered before leaving the site.

Implementation Status of Environmental Mitigation Measures

6.6 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 6.2.

Table 0.2 Observations and Recommendations of Site Inspections for EI -55 //2007			
Parameters	Date	Observations and Recommendations	Follow-up
Water Quality			-
Air Quality			
Noise			
Waste/Chemical Management	24 th October 2018	<u>Reminder:</u> Contractor should remove the C&D waste regularly to avoid accumulation.	The C&D waste was removed on 2^{nd} November 2018.
Landscape and Visual			
Permits /Licences			

 Table 6.2
 Observations and Recommendations of Site Inspections for EP-337/2009

Table 6.3 Observations and Recommendations of Site Inspections for EP-344/2009

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality			
Air Quality	2 nd November 2018	<u>Reminder:</u> Dusty stockpile should be covered properly to prevent dust generation.	Dusty stockpile was removed on 9 th November 2018.
	2 nd November 2018	<u>Reminder:</u> Watering should be provided regularly within dry unpaved area.	Watering was provided on 9 th November 2018.
	21 st November 2018	<u>Reminder:</u> Dusty material should be cleared within access road to prevent dust generation.	The dusty material within access road was cleared on 30 th November 2018.
	24 th October 2018	<u>Reminder:</u> Contractor should clear the dusty materials along the site boundary of NPS.	The dusty materials were removed on 2^{nd} November 2018.
	30 th November 2018	<u>Reminder:</u> Dusty stockpile should be covered by impervious sheeting properly.	This item will be followed up in next reporting month.
Noise			
Waste/Chemical Management	2 nd November 2018	<u>Reminder:</u> The chemical waste should be stored in designated area to avoid leakage.	Remarked as item 181109-R01.

Parameters	Date	Observations and Recommendations	Follow-up
	9 th November 2018	<u>Reminder:</u> The chemical waste should be stored in designated area to avoid leakage.	The chemical container was removed on 16 th November 2018.
	21 st November 2018	<u>Reminder:</u> Contractor should collect and dispose the C&D waste regularly.	C&D waste was removed on 30 th November 2018.
	21 st November 2018	<u>Reminder:</u> Chemical container should be stored properly inside drip tray to prevent leakage.	The chemical container was removed on 30 th November 2018.
Landscape and Visual			
Permits /Licences			

Summary of Mitigation Measures Implemented

6.7 The monthly IEC audit was carried out on 21 November 2018, the observations were recorded and they are presented as follows:

Follow up of last monthly audit:

• The dusty material was removed near the new pumping station walkway.

Observation(s) in the reporting month:

- Uncovered dusty material was found during site inspection near the PS2 site exit. The contractor was request to cover by using the tarpaulin and clean away the dusty material near the site exit.
- 6.8 An updated summary of the EMIS is provided in **Appendix K**.

Implementation Status of Event Action Plans

6.9 The Event Action Plans for air quality, noise and landscape and visual are presented in Appendix J.

1-hr TSP Monitoring

6.10 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

6.11 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

6.12 No Action/Limit Level exceedance was recorded in the reporting month.

Landscape and visual

6.13 No non-compliance was recorded in the reporting month.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

6.14 No environmental complaint and environmental prosecution was received in the reporting month. The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project are presented in **Appendix L**.

7. **FUTURE KEY ISSUES**

- 7.1 Major site activities undertaken for the coming two months include:
 - Daily Cleaning;
 - Finishing works, E&M work in PS2;

 - Site clearance works in DCS; Landscape work at Sung Wong Toi Road;
 - Finishing works, E&M works and Landscape works in Portion 4 (NPS & Sewerage); and
 - Removal of excavated materials in Portion 6
- The tentative construction program for the Project is provided in Appendix N. 7.2
 - Dust generation from stockpiles of dusty materials, exposed site area, excavation works and rock breaking activities;
 - Water spraying for dust generating activity and on haul road;
 - Proper storage of construction materials on site;
 - Storage of chemicals/fuel and chemical waste/waste oil on site;
 - Accumulation of general and construction waste on site;
 - Noise from operation of the equipment, especially for rock-breaking activities, piling works and machinery on-site; and
 - Review and implementation of temporary drainage system for the surface runoff.

Key Issues for the Coming Month

- 7.3 Key environmental issues in the coming month include:
- 7.4 The tentative program of major site activities and the impact prediction and environmental mitigation measures for the coming two months, i.e. December 2018 and January 2019 are summarized as follows:

Table 7.1Summary of the tentative program of major site activities, the impact prediction
and control measures for December 2018 and January 2019

Construction Works	Major Impact Prediction	Control Measures
As mentioned in Section 7.1	Air quality impact (dust) Water quality impact (surface run-off)	 a) Frequent watering of haul road and unpaved/exposed areas; b) Frequent watering or covering stockpiles with tarpaulin or similar means; and c) Watering of any earth moving activities. d) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; e) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; f) Provision of site boundary bund such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and g) Provision of measures to prevent discharge into the stream.
	Noise Impact	 h) Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; i) Controlling the number of plants use on site; j) Regular maintenance of machines; and k) Use of acoustic barriers if necessary.

Monitoring Schedule for the Next Month

7.5 The tentative environmental monitoring schedules for the next month are shown in **Appendix D**.

8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

8.1 Environmental monitoring works required under the EM&A Manual were performed in the reporting month and all monitoring results were checked and reviewed.

1-hr TSP Monitoring

8.2 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. 1-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.

24-hr TSP Monitoring

8.3 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded. 24-hour TSP concentrations in all stations in the reporting month were below the prediction in the approved Environmental Impact Assessment (EIA) Report.

Construction Noise Monitoring

- 8.4 The construction noise monitoring at Station M8 Po Leung Kok Ngan Po Ling College was conducted on 5th November 2018 and cancelled on 15th November 2018. The college principal rejected our permission application on 12th November 2018.
- 8.5 The noise monitoring at alternative station M8(A) Po Leung Kok Ngan Po Ling College (Site Boundary) was commenced on 21st November 2018. The proposal for alternative station will be submitted to Environmental Protection Department (EPD) for approval. No Action/Limit Level exceedance was recorded.
- 8.6 The range of noise level monitoring at station M7 in the reporting month was slightly above the prediction in the approved Environmental Impact Assessment (EIA) Report. The range of noise level monitoring at stations M8/8(A) in the reporting month was slightly below the prediction in the approved Environmental Impact Assessment (EIA) Report.

Complaints, Notification of any Summons and Prosecution Received

8.7 No environmental complaint and environmental prosecution was received in the reporting month. The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project are presented in **Appendix L**.

Recommendations

8.8 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To mitigate the dust generation by adequate water spraying on dry days.

Noise Impact

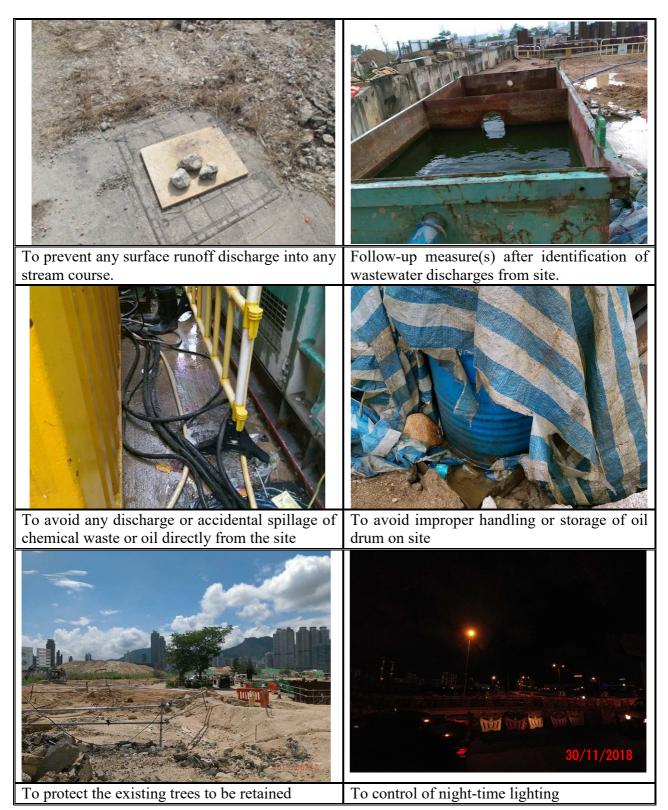
- To inspect the noise sources inside the site.
- To disperse the locations of noisy equipments and position the equipments as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers in an appropriate location.

Water Impact

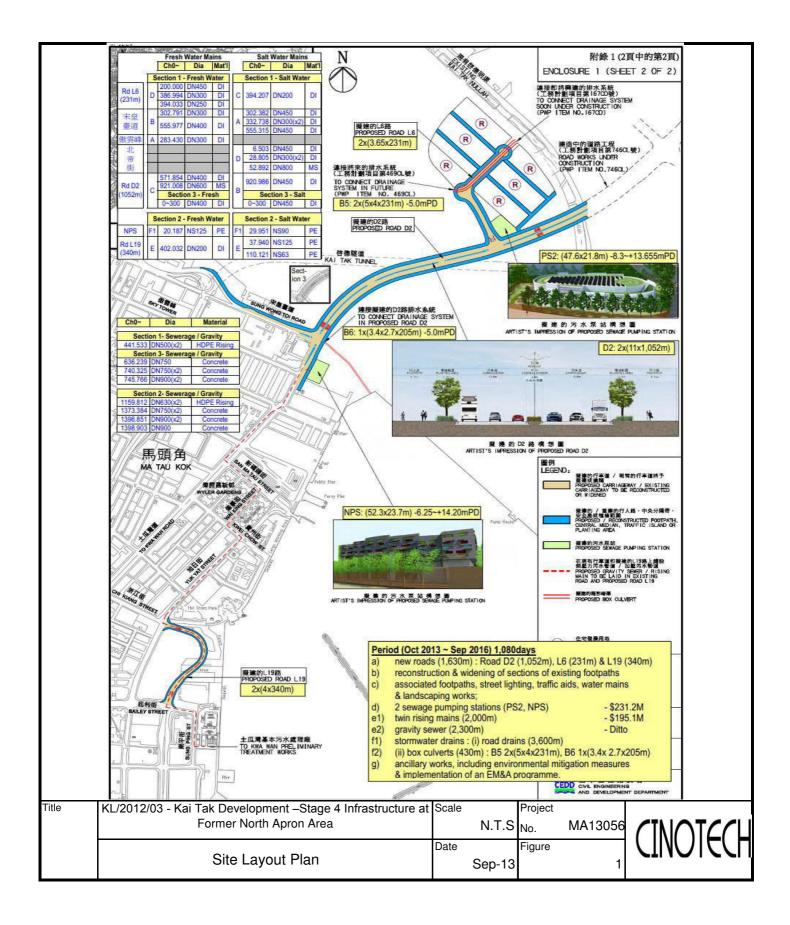
- To prevent any surface runoff discharge into any stream course.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.

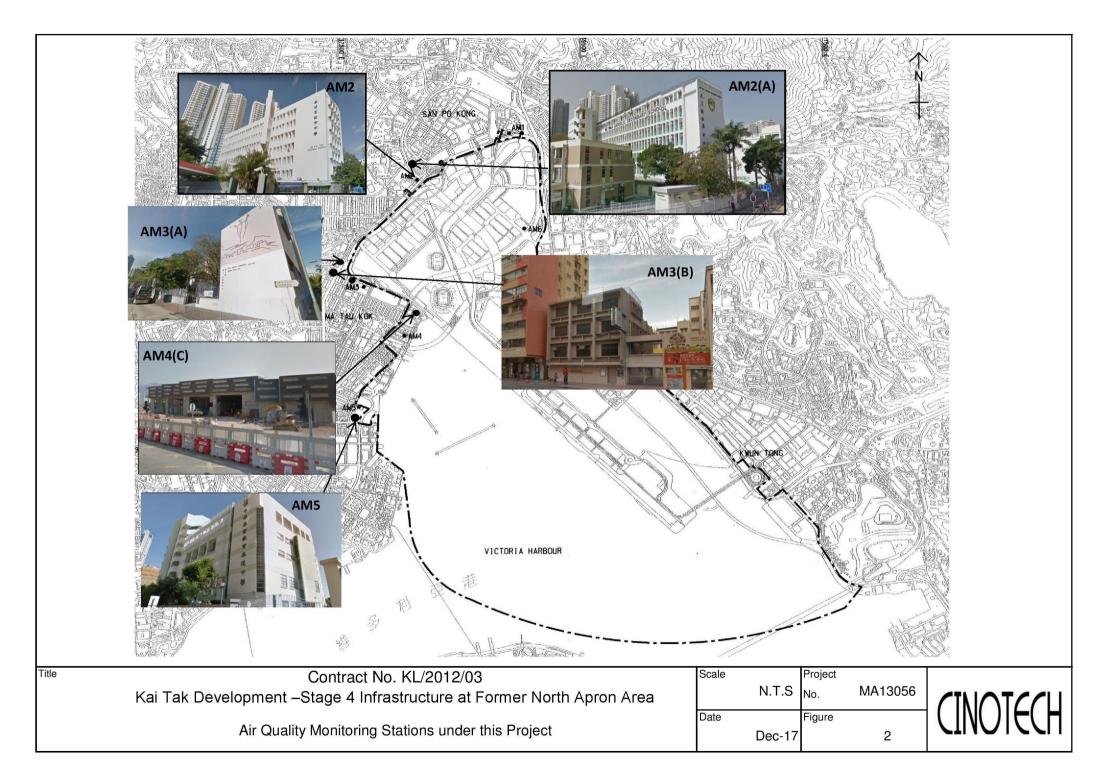
Waste/Chemical Management

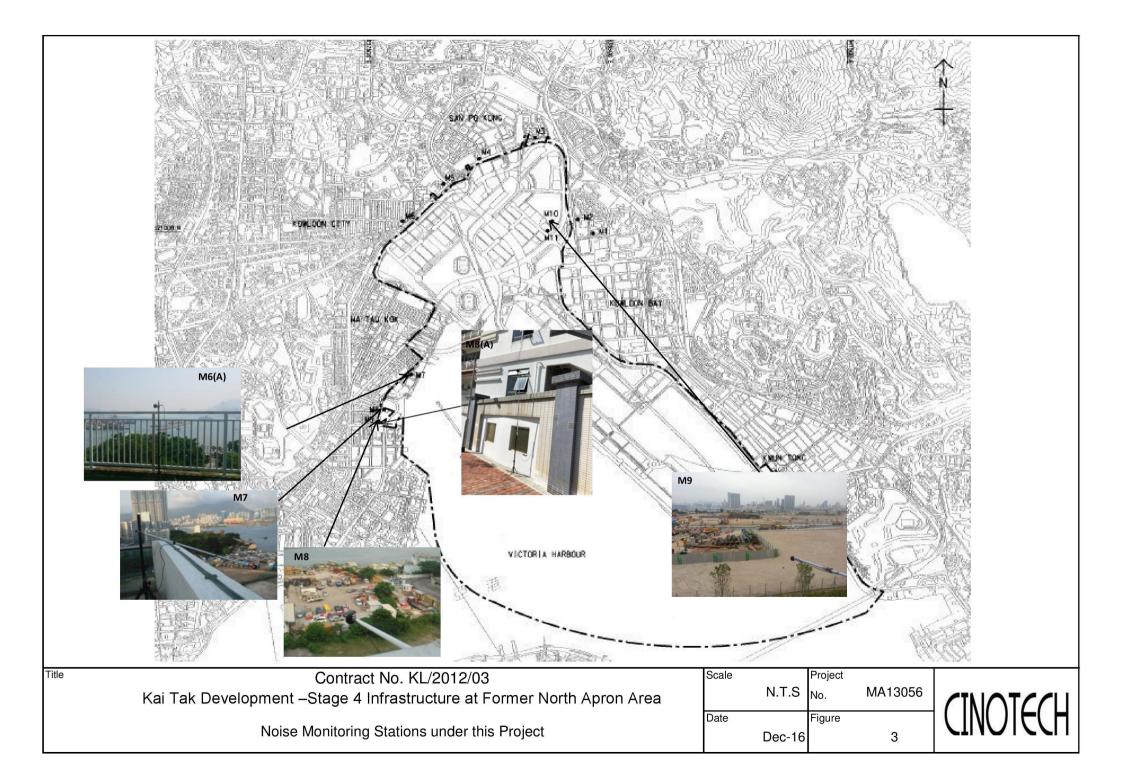
- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation);
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To provide proper storage area or drip trays for oil containers/ equipment on site.
- To avoid improper handling or storage of oil drum on site.

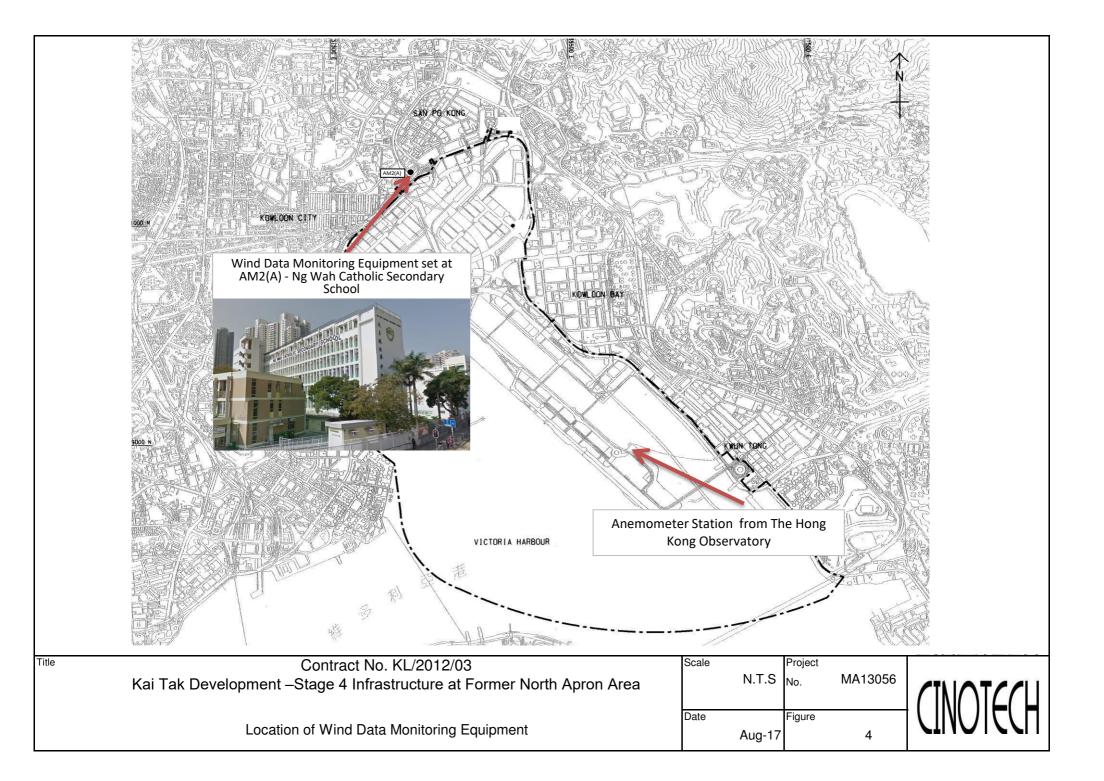

Landscape and Visual

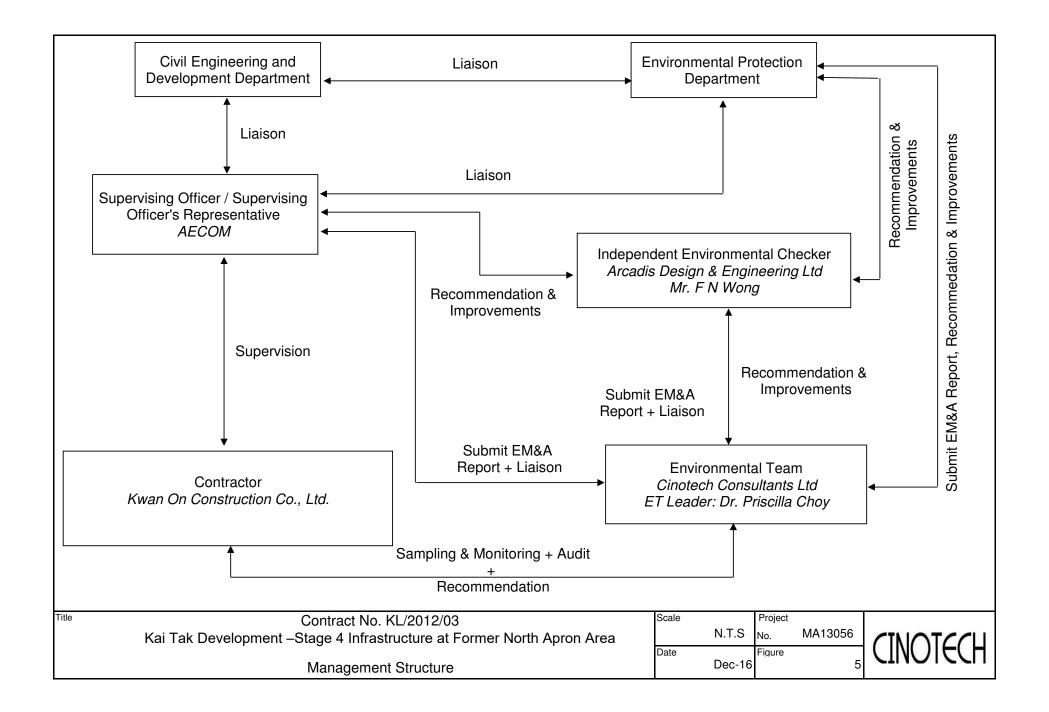
- To protect the existing trees to be retained.
- To transplant the trees unavoidably affected by the works.
- To control of night-time lighting.
- To provide decorative screen hoarding.
- To complete landscape works at site area as early as possible.


Effectiveness of Environmental Management


- 8.9 The above recommendations and the recommended mitigation measures in the EM&A Manual were carried out by the Contractor during construction. No non-compliance was recorded during the environmental site inspections as shown in **Appendix I**.
- 8.10 The effectiveness of environmental management is satisfactory as the above recommendations are met. Some of the examples of mitigation measures for the following recommendations are given in **Table 8.1** below.
 - Surface runoff discharge into any stream course is prevented;
 - Provision of sedimentation facilities after identification of wastewater discharges from site;
 - Discharge or accidental spillage of chemical waste or oil directly from the site is avoided;
 - Improper handling or storage of oil drum on site is avoided;
 - The existing trees to be retained are protected; and
 - Night-time lighting is controlled.


Table 8.1 Examples of Mitigation Measures for Environmental Recommendations




FIGURES

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Loca	ation	Action Level, μg/m ³	Limit Level, µg/m ³
Al	M2	346	
AM	3(A)	351	500
AM	4(C)	371	500
Al	M5	345	

Table A-1Action and Limit Levels for 1-Hour TSP

Table A-2	Action and Limit Levels for 24-Hour TSP

Location	Action Level, µg/m ³	Limit Level, µg/m ³
AM2(A)	157	
AM3(B)	167	260
AM4(C)	187	- 260
AM5	156	

Table A-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) 70dB(A)/65dB(A)*

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed. *70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

ATTN:

WELLAB LIMITED Rms 1214, 1502, 1516, 1701 & 1716, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Certificate of Calibration

Test Report No.:	30290
Date of Issue:	2018-11-14
Date Received:	2018-11-13
Date Tested:	2018-11-13
Date Completed:	2018-11-14
Next Due Date:	2019-01-13
Page:	1 of 1

Mr. W. K. Tang

Item for Calibration:	
Description	: Dust Monitor
Manufacturer	: Met One Instruments
Model No.	: AEROCET-831
Serial No.	: X23810
Flow rate	: 0.1 cfm
Zero Count Test	: 0 count per 1 minute
Equipment No.	: WA-01-04
Test Conditions:	
Room Temperatre	: 17-22 degree Celsius
Relative Humidity	: 40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Tisch Environmental Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Kesuits:	
Correlation Factor (CF)	1.266

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

17

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	29956
Date of Issue:	2018-10-18
Date Received:	2018-10-16
Date Tested:	2018-10-16
Date Completed:	2018-10-18
Next Due Date:	2018-12-17
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:		
Description	: Handheld Particle Counter	
Manufacturer	: Hal Technology	
Model No.	: Hal-HPC300	
Serial No.	: 3020409	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 5 minutes	
Equipment No.	: A-26-02	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.140
en e	*****

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

P'ATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	29957
Date of Issue:	2018-10-18
Date Received:	2018-10-16
Date Tested:	2018-10-16
Date Completed:	2018-10-18
Next Due Date:	2018-12-17
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:		
Description	: Handheld Particle Counter	
Manufacturer	: Hal Technology	
Model No.	: Hal-HPC300	
Serial No.	: 3020410	
Flow rate	: 0.1 cfm	
Zero Count Test	: 0 count per 5 minutes	
Equipment No.	: A-26-03	
Test Conditions:		
Room Temperatre	: 17-22 degree Celsius	
Relative Humidity	: 40-70%	

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.146

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	29952
Date of Issue:	2018-10-15
Date Received:	2018-10-12
Date Tested:	2018-10-12
Date Completed:	2018-10-15
Next Due Date:	2018-12-14
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Item for Calibration:	
Description	: Handheld Particle Counter
Manufacturer	: Hal Technology
Model No.	: Hal-HPC301
Serial No.	: 3011701019
Flow rate	: 0.1 cfm
Zero Count Test	: 0 count per 5 minutes
Equipment No.	: A-27-01
Test Conditions:	
Room Temperature	: 17-22 degree Celsius
Relative Humidity	: 40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

20044007	
Correlation Factor (CF)	1.170

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

#ATRICK TSE Laboratory Manager

2018-12-14

1 of 1

TEST REPORT

APPLICANT:	Cinotech Consultants Limited	Test Report No.:	29952A
		Date of Issue:	2018-10-15
	18 On Lai Street,	Date Received:	2018-10-12
	Shatin, NT, Hong Kong	Date Tested:	2018-10-12
		Date Completed:	2018-10-15

ATTN:

Mr. W. K. Tang

Certificate of Calibration

Next Due Date:

Page:

Item for Calibration:	
Description	: Handheld Particle Counter
Manufacturer	: Hal Technology
Model No.	: Hal-HPC301
Serial No.	: 3011701016
Flow rate	: 0.1 cfm
Zero Count Test	: 0 count per 5 minutes
Equipment No.	: A-27-03
Test Conditions:	
Room Temperature	: 17-22 degree Celsius
Relative Humidity	: 40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.146

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT: Cinotech Consultants Limited Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong

Test Report No.:	29953
Date of Issue:	2018-10-15
Date Received:	2018-10-12
Date Tested:	2018-10-12
Date Completed:	2018-10-15
Next Due Date:	2018-12-14
Page:	1 of 1

ATTN:

Mr. W. K. Tang

Certificate of Calibration Item for Calibration: Description : Handheld Particle Counter Manufacturer : Hal Technology : Hal-HPC301 Model No. Serial No. : 3011701012 Flow rate : 0.1 cfm Zero Count Test : 0 count per 5 minutes Equipment No. : A-27-07 **Test Conditions:** Room Temperature : 17-22 degree Celsius **Relative Humidity** :40-70%

Test Specifications & Methodology:

1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.

2. In-house method in according to the instruction manual: The Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Results:

Correlation Factor (CF)	1.148

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT

APPLICANT:Cinotech Consultants Limited
Room 1710, Technology Park,
18 On Lai Street,
Shatin, NT, Hong KongTest Report N
Date of Issue:
Date Received
Date Tested:

Test Report No.:	29501
Date of Issue:	2018-08-27
Date Received:	2018-08-24
Date Tested:	2018-08-24
Date Completed:	2018-08-27
Next Due Date:	2019-08-26
Page:	1 of 1

ATTN: Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 21455
Microphone No.	: 43730
Equipment No.	: N-08-07

Test conditions:

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

2019-08-12

1 of 1

TEST REPORT

APPLICANT:Cinotech Consultants Limited
Room 1710, Technology Park,
18 On Lai Street,
Shatin, NT, Hong KongTest Report No.:29500
Date of Issue:
2018-08-13Date Received:2018-08-13Date Tested:2018-08-11Date Completed:2018-08-13

ATTN: Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description	: 'SVANTEK' Integrating Sound Level Meter
Manufacturer	: SVANTEK
Model No.	: SVAN 957
Serial No.	: 21460
Microphone No.	: 43679
Equipment No.	: N-08-09
S:	

Next Due Date:

Page:

Test conditions:

Room Temperatre Relative Humidity : 17-22 degree Celsius : 40-70%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
	114.0

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT Test Report No.: C/N/171215B **Cinotech Consultants Limited APPLICANT:** Date of Issue: 2017-12-18 Room 1710, Technology Park, 2017-12-15 Date Received: 18 On Lai Street, Shatin, NT, Hong Kong Date Tested: 2017-12-15 Date Completed: 2017-12-18 Next Due Date: 2018-12-17 ATTN: Mr. W.K. Tang Page: 1 of 1 **Certificate of Calibration** Item for calibration: Description : Sound & Vibration Analyser Manufacturer : BSWA Model No. : BSWA 801 Serial No. : 35927 : N-13-03 Equipment No. **Test conditions:** Room Temperatre : 20 degree Celsius **Relative Humidity** : 64% **Test Specifications:** Performance checking at 94 and 114 dB **Methodology:** In-house method, according to manufacturer instruction manual **Results:** Reference Set Point, dB Instrument Readings, dB 94.0 94 114.0 114

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT 29816 Test Report No .: **Cinotech Consultants Limited APPLICANT:** Date of Issue: 2018-09-29 Room 1710, Technology Park, Date Received: 2018-09-28 18 On Lai Street, Date Tested: 2018-09-28 Shatin, NT, Hong Kong 2018-09-29 Date Completed: Next Due Date: 2019-09-28 1 of 1 Page: Mr. W.K. Tang **ATTN:** Item for calibration: : Acoustical Calibrator Description : SVANTEK Manufacturer Model No. : SV30A :24803 Serial No. : N-09-03 Equipment No. **Test conditions:** : 17-22 degree Celsius Room Temperatre Relative Humidity : 40-70% **Methodology:** The Sound Level Calibrator has been calibrated in accordance with the

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	$94.0 \pm 0.1 \text{ dB}$
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

TEST REPORT **Cinotech Consultants Limited** Test Report No.: 29817 **APPLICANT:** Date of Issue: 2018-09-29 Room 1710, Technology Park, Date Received: 2018-09-28 18 On Lai Street, Date Tested: Shatin, NT, Hong Kong 2018-09-28 2018-09-29 Date Completed: Next Due Date: 2019-09-28 1 of 1 ATTN: Mr. W.K. Tang Page: Item for calibration: Description : Acoustical Calibrator Manufacturer : SVANTEK Model No. : SV30A Serial No. :24780 Equipment No. : N-09-05 **Test conditions:** : 17-22 degree Celsius Room Temperatre Relative Humidity : 40-70% Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	$114.0 \pm 0.1 \text{ dB}$

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE Laboratory Manager

						File No.	MA13056/13/0008
Station	AM2(A) - Ng Wa	h Catholic Second	ary School				
Date:	12-Sep-18	_	Next Due Date	e: 11-Nov-18	_	Operator:	MH
Equipment No.:	A-01-13	-	Model No	.: <u>TE-5170</u>	-	Serial No.:	1352
			Ambien	t Condition			
Temperatu	re, Ta (K)	300.2	Pressure, P	'a (mmHg)	:	757.1	
		0	rifice Transfer S	Standard Inform	nation		
Serial	No.	2896	Slope, mc	0.0585	Intercept	, bc	-0.00045
Last Calibra							
Next Calibra	ation Date:	13-Feb-19			x (Pa/760) x (298/		
							· u
			Calibration	of TSP Sampler			
Calibration		Or	fice	-		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	12.8	3	.56	60.79	8.0		2.81
2	10.4	3	.21	54.80	6.6		2.55
3	7.7	2		47.15	5.2		2.27
4	4.9	2	.20	37.62	3.1		1.75
5	3.2	1	.78	30.40	2.0		1.41
By Linear Regro Slope , mw = _	0.0465			Intercept, bw =	0.0105	5	
Correlation co	efficient* =	0.9	981	_			
If Correlation Co	oefficient < 0.99	0, check and reca	alibrate.				
			Set Point	Calculation			
From the TSP Fie	eld Calibration C	urve, take Ostd =					· · · · · · · · · · · · · · · · · · ·
From the Regress							
0			Ū.		512		
		mw x ($Qstd + bw = [\Delta W]$	V x (Pa/760) x (2	298/Ta)] ^{1/2}		
Therefore, Se	t Point; W = (m	w x Qstd + bw) ²	x (760 / Pa) x (Ta / 298) =	4.09		

Remarks:

Conducted by: LEE MAN HELSignature:	hii	Date:	12/ 9/2018
Checked by: WK 7Ang Signature:	Kwai	Date:	12/9/2018

File No. MA13056/13/0009

Temperatur	re, Ta (K)	300	Pressure, Pa (mmHg)	766.2	
			Ambient (Condition		
Equipment No.:	A-01-13	_	Model No.:	TE-5170	Serial No.:	1352
Date:	9-Nov-18	_	Next Due Date:	8-Jan-19	Operator:	MH
Station	AM2(A) - Ng Wa	h Catholic Second	ary School			

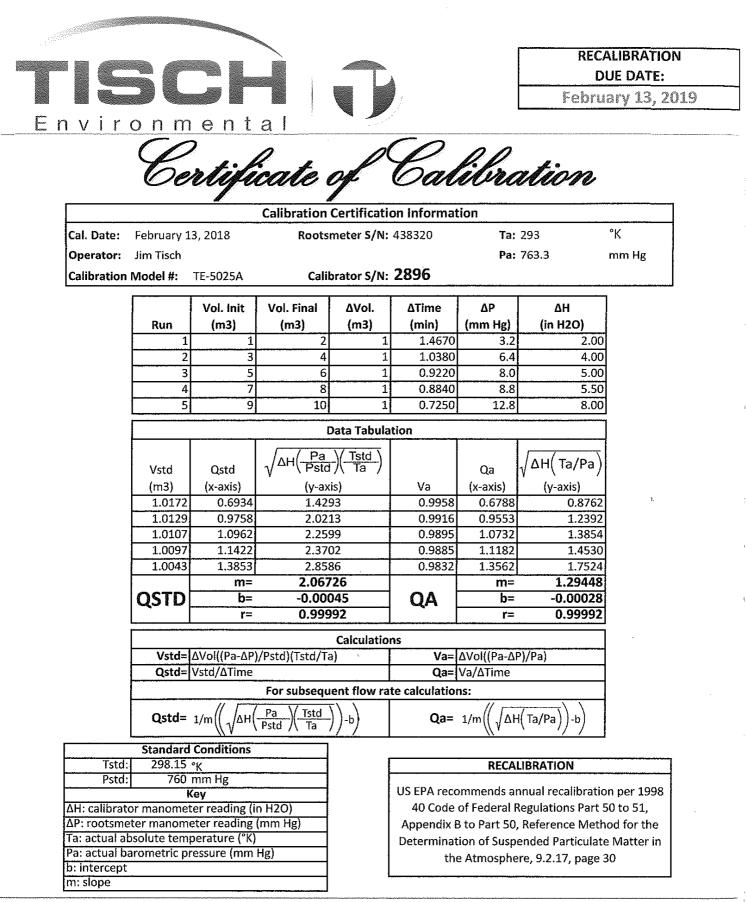
	0	rifice Transfer S	tandard Inform	ation	
Serial No.	2896	Slope, mc	0.0585	Intercept, bc	-0.00045
Last Calibration Date:	13-Feb-18		mc x Qstd + b	oc = [ΔH x (Pa/760) x (298/T	a)] ^{1/2}
Next Calibration Date:	13-Feb-19		Qstd = $\{[\Delta H]\}$	x (Pa/760) x (298/Ta)] ^{1/2} -bc}	/ me

	40,400,404,7,80,100,404 •	Calibration of	of TSP Sampler		
Calibration		Orfice			HVS
Point	∆H (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	12.2	3.50	59.73	7.9	2.81
2	10.5	3.24	55.41	6.5	2,55
3	7.8	2.79	47.76	4.8	2.19
4	4.9	2.22	37.86	3.3	1.82
5	3.3	1.82	31.07	2.1	1.45
By Linear Reg Slope , mw =	ession of Y on X 0.0458		Intercept, bw =	0.0392	2
Correlation c	oefficient* =	0.9977			
*If Correlation C	Coefficient < 0.99	0, check and recalibrate.	-		
		Set Point	Calculation		
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM			
From the Regres	sion Equation, the	e "Y" value according to			
		$\mathbf{m}\mathbf{w} \mathbf{x} \mathbf{Q}\mathbf{s}\mathbf{t}\mathbf{d} + \mathbf{b}\mathbf{w} = [\Delta \mathbf{W}]$	/ x (Pa/760) x (/	298/Ta)] ^{1/2}	
Therefore, S	et Point; W = (m	w x Qstd + bw) ² x (760 / Pa) x (Ta/298)=	4.04	
Remarks:					
Conducted by:		Signature:	<u>'À</u>		Date: <u>9-11-2018</u>
Checked by:	WK. Jang	Signature: Kul	n		Date: <u>4/1/2018</u>

Checked by: <u>W. Jana</u> Signature:

CINOTECH

						File No.	MA13056/17/0001
Station	AM3(B) - Hong	Kong Family Plan	ning Association	Operator:	MH		
Date:	2-Oct-18		. 1	Next Due Date:	1-Dec-	18	
Equipment No.:	A-01-17			Serial No.	3460		
			Ambiant	Condition			
Temperatu	re Ta (K)	301	Pressure, Pa			764.7	
Temperatu		501	11055010,10	(unin 1 <u>5)</u>	I	704.7	
		Or	ifice Transfer Sta	undard Inform	ation		
Serial	No.	2896	Slope, mc	0.0585	Intercept	t, bc	-0.00045
Last Calibra	Last Calibration Date: 13-Feb-18			mc x Qstd + b	oc = [ΔH x (Pa/76	0) x (298/Ta)]	1/2
Next Calibra	ation Date:	13-Feb-19		Qstd = $\{[\Delta H]$	x (Pa/760) x (298/	/Ta)] ^{1/2} -bc} / 1	mc
		•					
			Calibration of	TSP Sampler	NE SECTO E SE		
Calibration		Ort	ice			HVS	1/2
Point	∆H (orifice), in. of water	[ΔH x (Pa/760)) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	∆W (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	11.8	3	.43	58.59	7.5		2.73
2	9.7	3	.11	53.12	6.3		2.51
3	7.8	2	.79	47.63	5.1		2.25
4	5.3	2	.30	39.27	3.4		1.84
5	3.2	1	.79	30.51	2.1		1.45
By Linear Regro Slope , mw =	ession of Y on X 0.0464			Intercept, bw =	0.031	8	
Correlation co		0.9		intercept, bw-	0.0010	<u> </u>	
	coefficient < 0.99			-			
		•,•••••					
			Set Point C	alculation			
From the TSP Fig	eld Calibration C	urve, take Qstd =					
	sion Equation, the						
-	•				12		
		mw x Q	$p_{std} + bw = [\Delta W]$	x (Pa/760) x (2	98/Ta)] ^{1/2}		
Therefore Se	et Point: W = (my	$x = 0$ std + hw $)^2$	x (760 / Pa) x (7	Fa / 298) =	4.12		
110101010, 50		, , , Qola (01,)			T+1 <i>2</i>		
Remarks:							
			•				
)	_			
Conducted by:	,	Signature:	<u> </u>	7		Date:	2/10/2018
Checked by:	wk: Jang	Signature:	/w	m		Date:	6 [[0] 1018



File No. MA13056/62/0010

	AM4(C) -					
	New Pumping S	Station under Cor	tract KL/2012/03	Operator:	MĤ	
Date:	5-Nov-18			Next Due Date:	4-Jan-	19
Equipment No.:	A-01-62			Serial No.	2351	
			Ambient C	ondition		
Temperatur	e, Ta (K)	298.4	Pressure, Pa			765.9
, <u>, , , , , , , , , , , , , , , ,</u>	<u> </u>					
		C	rifice Transfer Star	ıdard Informati	on	
Serial	No.	2896	Slope, mc	0.0585	Intercep	, bc -0.00045
Last Calibra	tion Date:	13-Feb-18	r	nc x Qstd + bc =	= ∆H x (Pa/760)	
Next Calibra	tion Date:	13-Feb-19	(Qstd = {[∆H x (]	Pa/760) x (298/Ta	$\left \right ^{1/2} - bc\right\} / mc$
		•				
			Calibration of T	SP Sampler		
Calibration		0	Drfice			HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/	760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ge (Pa/760) \ge (298/Ta)]^{1/2}$ Y-axis
1	13.8		3.73	63.68	8.4	2,91
2	11.5		3.40	58.13	7.1	2.67
3	8.4		2.91	49.68	5.4	2.33
4	5.3		2.31	39.47	3.6	1.90
5	3.2		1.79	30.67	2.1	1.45
By Linear Regre	ession of Y on X	<u> </u>				
Slope , mw = Correlation co	0.0435 pefficient* =	0	.9990	Intercept, bw =	0.152	3
Slope , mw = Correlation co	0.0435 pefficient* =	0		Intercept, bw = 	0.152	3
Slope , mw = Correlation co	0.0435 pefficient* =	0			0.152	3
Slope , mw = Correlation co *If Correlation Co	0.0435 pefficient* = pefficient < 0.99	- 0, check and rec	alibrate. Set Point Ca		0.152	3
Slope , mw = Correlation co *If Correlation Co From the TSP Fie	0.0435 efficient* = oefficient < 0.99 eld Calibration C	0), check and rec 20, check and rec 20, check and rec	alibrate. Set Point Ca = 43 CFM		0.152	3
Slope , mw = Correlation co *If Correlation Co From the TSP Fie	0.0435 efficient* = oefficient < 0.99 eld Calibration C	00, check and rec 20, check an	alibrate. Set Point Ca = 43 CFM rding to			3
Slope , mw = Correlation co *If Correlation Co From the TSP Fie	0.0435 efficient* = oefficient < 0.99 eld Calibration C	00, check and rec 20, check an	alibrate. Set Point Ca = 43 CFM			3
Slope , mw = Correlation co *If Correlation Co From the TSP Fie From the Regress	0.0435 pefficient* = pefficient < 0.99 d Calibration C ion Equation, th	0 0, check and rec 20, check a	alibrate. Set Point Ca = 43 CFM rding to			3
Slope , mw = Correlation co *If Correlation Co From the TSP Fie From the Regress	0.0435 pefficient* = pefficient < 0.99 d Calibration C ion Equation, th	0 0, check and rec 20, check a	alibrate. Set Point Ca = 43 CFM rding to Qstd + bw = [ΔW x		(Ta)] ¹²	3
Slope , mw = Correlation co *If Correlation Co From the TSP Fie From the Regress Therefore, S	0.0435 pefficient* = pefficient < 0.99 d Calibration C ion Equation, th	0 0, check and rec 20, check a	alibrate. Set Point Ca = 43 CFM rding to Qstd + bw = [ΔW x		(Ta)] ¹²	3
Correlation co *If Correlation Co From the TSP Fie From the Regress	0.0435 pefficient* = pefficient < 0.99 d Calibration C ion Equation, th	0 0, check and rec 20, check a	alibrate. Set Point Ca = 43 CFM rding to Qstd + bw = [ΔW x		(Ta)] ¹²	3
Slope , mw = Correlation Co *If Correlation Co From the TSP Fie From the Regress Therefore, S Remarks: Conducted by: {	0.0435 pefficient* = pefficient < 0.99 Id Calibration C ion Equation, th Set Point; W = (Set Point; W = (0 0, check and rec: 2urve, take Qstd = e "Y" value acco mw x mw x Qstd + bw Signature:	alibrate. Set Point Ca = 43 CFM rding to Qstd + bw = [ΔW x		(Ta)] ^{1/2} 4.06	Date: <u>\$-11-2018</u>
Slope , mw = Correlation Co *If Correlation Co From the TSP Fie From the Regress Therefore, S Remarks:	0.0435 pefficient* = pefficient < 0.99 Id Calibration C ion Equation, th Set Point; W = (Set Point; W = (0 20, check and rec: 20 20 20 20 20 20 20 20 20 20 20 20 20	alibrate. Set Point Ca = 43 CFM rding to Qstd + bw = [ΔW x		(Ta)] ^{1/2} 4.06	

CINOTECH

						File No.	MA13056/59/0009
Station	AM5 - CCC Kei	To Secondary S	chool	_ Operator:	MH	,	
Date:	2-Oct-18		•		1-Dec-		
Equipment No.:	A-01-59			Serial No.	2354	,	
			Ambient	Condition			
Temperatu	re, Ta (K)	302.3	Pressure, Pa	•		763.2	
4					1		
고관관리관		Or	ifice Transfer St	andard Inform	ation		
Serial	No.	2896	Slope, mc	0.0585	Intercept	, bc	-0.00045
Last Calibra	Last Calibration Date: 13-Feb-18			mc x Qstd + h	oc = [ΔH x (Pa/76	0) x (298/Ta)]	1/2
Next Calibra	ation Date:	13-Feb-19		Qstd = $\{[\Delta H]$	x (Pa/760) x (298/	Ta)] ^{1/2} -bc} / 1	nc
	· · ·						
	UCANA ANA		Calibration of	TSP Sampler			
Calibration		Ori	lice	1		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	12.6	3	.53	60.35	8.2		2.85
2	10.8	3	.27	55.87	6.9		2.61
3	7.7	2	.76	47.18	4.7		2.16
4	5.3	2	.29	39.14	3.5	- · ·	1.86
5	3.4	1	.83	31.35	2.2		1.48
By Linear Regr	ession of Y on X						
Slope, mw =	0.0467			Intercept, bw :	0.0064	4	
Slope , mw = Correlation co	0.0467	0.9	983	Intercept, bw : -	0.0064	4	
Slope , mw = Correlation co	0.0467	0.9	983	Intercept, bw : -	0.0064	4	· · ·
Slope , mw = Correlation co	0.0467 Defficient* = Coefficient < 0.99	0.9	983 Ilibrate.	Intercept, bw = - Calculation		I	
Slope , mw = Correlation co *If Correlation C	0.0467 Defficient* = Coefficient < 0.99	0.9 D, check and reca	983 Ilibrate. Set Point C	-		4	
Slope , mw = Correlation Co If Correlation C	0.0467 defficient* = coefficient < 0.990	0.99 D, check and reca urve, take Qstd =	983 Ilibrate. Set Point C 43 CFM	-		4	
Slope , mw = Correlation Co If Correlation C	0.0467 pefficient* = coefficient < 0.990 eld Calibration Cu	0.9 0, check and reca urve, take Qstd = e "Y" value accor	983 Ilibrate. Set Point C 43 CFM ding to	Calculation		4	
Slope , mw = Correlation Co *If Correlation C	0.0467 pefficient* = coefficient < 0.990 eld Calibration Cu	0.9 0, check and reca urve, take Qstd = e "Y" value accor	983 Ilibrate. Set Point C 43 CFM	Calculation		4	
Slope , mw = Correlation Co If Correlation C From the TSP Fig From the Regress	0.0467 pefficient* = coefficient < 0.999 eld Calibration Cu sion Equation, the	0.9 0, check and reca urve, take Qstd = e "Y" value accor mw x Q	983 Ilibrate. 43 CFM rding to 9std + bw = [ΔW	Salculation x (Pa/760) x (2	98/Ta)] ^{1/2}		
Slope , mw = Correlation Co If Correlation C From the TSP Fig From the Regress	0.0467 pefficient* = coefficient < 0.999 eld Calibration Cu sion Equation, the	0.9 0, check and reca urve, take Qstd = e "Y" value accor mw x Q	983 Ilibrate. Set Point C 43 CFM ding to	Salculation x (Pa/760) x (2			
Slope , mw = Correlation Co If Correlation C Tom the TSP Fie From the Regress	0.0467 pefficient* = coefficient < 0.999 eld Calibration Cu sion Equation, the	0.9 0, check and reca urve, take Qstd = e "Y" value accor mw x Q	983 Ilibrate. 43 CFM rding to 9std + bw = [ΔW	Salculation x (Pa/760) x (2	98/Ta)] ^{1/2}		
Slope , mw = Correlation Co If Correlation C Tom the TSP Fie From the Regress	0.0467 pefficient* = coefficient < 0.999 eld Calibration Cu sion Equation, the	0.9 0, check and reca urve, take Qstd = e "Y" value accor mw x Q	983 Ilibrate. 43 CFM rding to 9std + bw = [ΔW	Salculation x (Pa/760) x (2	98/Ta)] ^{1/2}		
Slope , mw = Correlation Correlation Correlation Correlation Correlation Correlation Constraints for the TSP Figure From the Regress From the Regress Therefore, Second	0.0467 pefficient* = coefficient < 0.999 eld Calibration Cu sion Equation, the	0.9 0, check and reca urve, take Qstd = e "Y" value accor mw x Q	983 Ilibrate. 43 CFM rding to 9std + bw = [ΔW	Salculation x (Pa/760) x (2	98/Ta)] ^{1/2}		
Slope , mw = Correlation Correlation Correlation Correlation Correlation Correlation Control Correlation Control Correlation Control C	0.0467 pefficient* = coefficient < 0.999 eld Calibration Cu sion Equation, the	0.9 0, check and reca urve, take Qstd = e "Y" value accor mw x Q	983 Ilibrate. 43 CFM rding to 9std + bw = [ΔW	Salculation x (Pa/760) x (2	98/Ta)] ^{1/2}		
Slope , mw = Correlation Co *If Correlation C From the TSP Fig From the Regress Therefore, Se Remarks:	0.0467 pefficient* = coefficient < 0.990 eld Calibration Cu sion Equation, the et Point; W = (my	0.99 D, check and reca urve, take Qstd = e "Y" value accon mw x Q w x Qstd + bw) ²	983 Ilibrate. 43 CFM rding to 9std + bw = [ΔW	Salculation x (Pa/760) x (2	98/Ta)] ^{1/2} 4.10		
Slope , mw = Correlation Co *If Correlation Co From the TSP Fic From the Regress Therefore, Se Remarks:	0.0467 pefficient* = coefficient < 0.990 eld Calibration Cu sion Equation, the et Point; W = (my	0.99 D, check and reca urve, take Qstd = e "Y" value accon mw x Q w x Qstd + bw) ²	983 Ilibrate. 43 CFM rding to 9std + bw = [ΔW	Salculation x (Pa/760) x (2	98/Ta)] ^{1/2} 4.10		<u> 2/10/2=18</u>
Slope , mw = Correlation Co *If Correlation C *If Correlation C From the TSP Fic From the Regress Therefore, Se Remarks:	0.0467 pefficient* = coefficient < 0.990 eld Calibration Cu sion Equation, the et Point; W = (my	0.99 D, check and reca urve, take Qstd = e "Y" value accon mw x Q w x Qstd + bw) ²	983 Ilibrate. 43 CFM rding to 9std + bw = [ΔW	Salculation x (Pa/760) x (2	98/Ta)] ^{1/2} 4.10		<u>c/10/2-18</u> 2/10/2018
Slope , mw = Correlation Co *If Correlation C *If Correlation C From the TSP Fic From the Regress Therefore, Se Remarks:	0.0467 pefficient* = coefficient < 0.999 eld Calibration Cu sion Equation, the	0.99 D, check and reca urve, take Qstd = e "Y" value accon mw x Q w x Qstd + bw) ²	983 Ilibrate. 43 CFM rding to 9std + bw = [ΔW	Salculation x (Pa/760) x (2	98/Ta)] ^{1/2} 4.10		2/10/2=18 2/10/2=18

Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

APPLICANT: Cinotech Consultants Limited Test Report No.: 29680A Room 1710, Technology Park, Date of Issue: 2018-07-28 18 On Lai Street, Date Received: 2018-07-27 Shatin, NT, Hong Kong Date Tested: 2018-07-27 Date Completed: 2018-07-28 Next Due Date: 2019-01-27 ATTN: Mr. W.K. Tang Page: 1 of 2 **Certificate of Calibration** Item for calibration: Description : Weather Stations, Vantage Pro2 Manufacturer : Davis Instruments Model No. :6152 Serial No. : AR160809018 **Test conditions:** Room Temperature : 17-22 degree Celsius Relative Humidity : 40-70 %

TEST REPORT

Test Specifications:

1. Performance check of anemometer

2. Performance check of wind direction sensor

Methodology:

In-house method with reference anemometer (RS232 Integral Vane Digital Anemometer)

PREPARED AND CHECKED BY: For and On Behalf of WELLAB Ltd.

PATRICK TSE *Laboratory Manager*

TEST REPORT

Test Report No.:	29680A
Date of Issue:	2018-07-28
Date Received:	2018-07-27
Date Tested:	2018-07-27
Date Completed:	2018-07-28
Next Due Date:	2019-01-27
Page:	2 of 2

Results:

1. Performance check of anemometer

Air Velocity, m/s		Difference D (m/s)
Instrument Reading (V1) Reference Value (V1)		D = V1 - V2
2.00	2.00	0.00

2. Performance check of wind direction sensor

Wind Dire	ection (°)	Difference D (°)
Instrument Reading (W1)	Reference Value (W2)	D = W1 - W2
0	0	0
45	45	0
90.2	90	0.2
135.3	135	0.3
180	180	0
225.1	225	0.1
270.3	270	0.3
315	315	0
360	360	0

APPENDIX C WEATHER INFORMATION

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
01-Nov-18	24.6	45	-
02-Nov-18	22.4	70	0.1
03-Nov-18	21.5	86	8.3
04-Nov-18	23.7	83	Trace
05-Nov-18	24.5	79	Trace
06-Nov-18	24.7	78	-
07-Nov-18	25	77	-
08-Nov-18	25.2	75	Trace
09-Nov-18	24.5	74	-
10-Nov-18	23.9	78	Trace
11-Nov-18	23.8	79	-
12-Nov-18	24.9	77	Trace
13-Nov-18	24.3	76	Trace
14-Nov-18	23.5	76	Trace
15-Nov-18	23.2	82	Trace
16-Nov-18	23.9	85	1.1
17-Nov-18	23.5	87	0.5
18-Nov-18	23.8	84	-
19-Nov-18	23.9	75	-

I. General Information

Date	Mean Air Temperature (°C)	Mean Relative Humidity (%)	Precipitation (mm)
20-Nov-18	23.1	80	0.1
21-Nov-18	23.9	81	2.4
22-Nov-18	20.4	65	0.2
23-Nov-18	20.9	66	Trace
24-Nov-18	21.7	73	Trace
25-Nov-18	19.5	84	21
26-Nov-18	19	89	15.7
27-Nov-18	20.5	83	16.3
28-Nov-18	20.3	89	7.7
29-Nov-18	21.3	75	Trace
30-Nov-18	21.5	72	-

* The above information was extracted from the daily weather summary by Hong Kong Observatory. ** Trace = rainfall less than 0.05 mm.

*** The level of precipitation indicate the total amount of rainfall for each date (24 hours)

II. Mean Wind Speed and Wind Direction			
Date	Time	Wind Speed m/s	Direction
1-Nov-201	8 00:00	1.7	SW
1-Nov-201	8 01:00	1.7	SW
1-Nov-201	8 02:00	1.5	SSW
1-Nov-201	8 03:00	1.9	SW
1-Nov-201	8 04:00	2.0	SSW
1-Nov-201	8 05:00	2.1	SSW
1-Nov-201	8 06:00	2.1	SW
1-Nov-201	8 07:00	2.4	SW
1-Nov-201	8 08:00	2.1	SW
1-Nov-201	8 09:00	2.0	WSW
1-Nov-201	8 10:00	2.1	W
1-Nov-201	8 11:00	2.3	SW
1-Nov-201	8 12:00	2.4	SW
1-Nov-201	8 13:00	2.5	SW
1-Nov-201	8 14:00	2.2	SW
1-Nov-201	8 15:00	2.5	SW
1-Nov-201	8 16:00	2.3	WNW
1-Nov-201	8 17:00	2.3	NW
1-Nov-201	8 18:00	2.0	WNW
1-Nov-201	8 19:00	2.0	WNW
1-Nov-201	8 20:00	1.8	W
1-Nov-201	8 21:00	1.7	W
1-Nov-201	8 22:00	2.5	WSW
1-Nov-201	8 23:00	2.5	WSW
2-Nov-201	8 00:00	2.6	SW
2-Nov-201	8 01:00	2.0	SW
2-Nov-201	8 02:00	2.4	WSW
2-Nov-201	8 03:00	2.2	SW
2-Nov-201	8 04:00	2.2	SW
2-Nov-201	8 05:00	2.1	SW
2-Nov-201	8 06:00	1.8	SSW
2-Nov-201	8 07:00	1.9	SSW
2-Nov-201	8 08:00	2.1	W
2-Nov-201	8 09:00	2.3	SW
2-Nov-201	8 10:00	2.3	SW
2-Nov-201	8 11:00	2.3	NW
2-Nov-201	8 12:00	2.7	WSW

II. Mean Wind Speed and Wind Direction

II.	Mean Wind	Speed and Wind D	irection	
	2-Nov-2018	13:00	2.6	WSW
	2-Nov-2018	14:00	2.6	SW
	2-Nov-2018	15:00	2.6	SSW
	2-Nov-2018	16:00	2.2	W
	2-Nov-2018	17:00	2.2	SSW
	2-Nov-2018	18:00	2.1	W
	2-Nov-2018	19:00	1.7	WNW
	2-Nov-2018	20:00	2.0	WNW
	2-Nov-2018	21:00	2.3	WNW
	2-Nov-2018	22:00	2.4	W
	2-Nov-2018	23:00	2.4	WSW
	3-Nov-2018	00:00	2.4	WNW
	3-Nov-2018	01:00	2.3	WNW
	3-Nov-2018	02:00	2.2	WSW
	3-Nov-2018	03:00	1.9	SW
	3-Nov-2018	04:00	2.0	Ν
	3-Nov-2018	05:00	1.8	SW
	3-Nov-2018	06:00	1.5	SW
	3-Nov-2018	07:00	1.5	WNW
	3-Nov-2018	08:00	1.5	W
	3-Nov-2018	09:00	1.9	W
	3-Nov-2018	10:00	2.0	SW
	3-Nov-2018	11:00	1.9	W
	3-Nov-2018	12:00	2.3	E
	3-Nov-2018	13:00	2.7	SSE
	3-Nov-2018	14:00	2.0	SW
	3-Nov-2018	15:00	1.9	SW
	3-Nov-2018	16:00	1.7	SSW
	3-Nov-2018	17:00	2.0	NE
	3-Nov-2018	18:00	1.6	WNW
	3-Nov-2018	19:00	1.0	WNW
	3-Nov-2018	20:00	0.7	W
	3-Nov-2018	21:00	0.9	W
	3-Nov-2018	22:00	0.9	SW
	3-Nov-2018	23:00	1.1	WSW
	4-Nov-2018	00:00	1.2	SW
	4-Nov-2018	01:00	1.4	SW
	4-Nov-2018	02:00	1.5	WSW

II.	Mean Wind	Speed and Wind D	irection	
	4-Nov-2018	03:00	1.5	SSE
	4-Nov-2018	04:00	1.3	SSW
	4-Nov-2018	05:00	1.2	WSW
	4-Nov-2018	06:00	1.4	W
	4-Nov-2018	07:00	1.2	E
	4-Nov-2018	08:00	1.5	E
	4-Nov-2018	09:00	1.7	Ν
	4-Nov-2018	10:00	2.2	SSW
	4-Nov-2018	11:00	2.5	SW
	4-Nov-2018	12:00	2.3	NNE
	4-Nov-2018	13:00	2.4	SSE
	4-Nov-2018	14:00	2.2	W
	4-Nov-2018	15:00	2.4	WSW
	4-Nov-2018	16:00	2.2	Ν
	4-Nov-2018	17:00	2.1	W
	4-Nov-2018	18:00	1.9	SW
	4-Nov-2018	19:00	1.4	SW
	4-Nov-2018	20:00	1.3	WNW
	4-Nov-2018	21:00	1.4	SSW
	4-Nov-2018	22:00	1.7	E
	4-Nov-2018	23:00	1.5	ENE
	5-Nov-2018	00:00	1.1	ENE
	5-Nov-2018	01:00	1.3	NNW
	5-Nov-2018	02:00	1.3	ESE
	5-Nov-2018	03:00	1.4	ENE
	5-Nov-2018	04:00	1.8	ENE
	5-Nov-2018	05:00	1.8	E
	5-Nov-2018	06:00	1.2	E
	5-Nov-2018	07:00	1.2	ENE
	5-Nov-2018	08:00	1.5	ENE
	5-Nov-2018	09:00	1.9	E
	5-Nov-2018	10:00	1.9	ENE
	5-Nov-2018	11:00	1.9	W
	5-Nov-2018	12:00	2.2	SW
	5-Nov-2018	13:00	2.4	SSE
	5-Nov-2018	14:00	2.6	Ν
	5-Nov-2018	15:00	2.8	SSE
	5-Nov-2018	16:00	2.7	NE

II. Mean Win	d Speed and Wind D	irection	
5-Nov-2018	17:00	2.4	ENE
5-Nov-2018	18:00	1.9	ENE
5-Nov-2018	19:00	1.6	S
5-Nov-2018	20:00	1.7	S
5-Nov-2018	21:00	1.5	ESE
5-Nov-2018	22:00	1.6	E
5-Nov-2018	23:00	1.5	SW
6-Nov-2018	00:00	1.4	SW
6-Nov-2018	01:00	1.3	SSW
6-Nov-2018	02:00	1.5	SSW
6-Nov-2018	03:00	1.6	Ν
6-Nov-2018	04:00	1.6	ENE
6-Nov-2018	05:00	1.5	NE
6-Nov-2018	06:00	1.6	Ν
6-Nov-2018	07:00	1.6	Ν
6-Nov-2018	08:00	1.7	N
6-Nov-2018	09:00	2.0	Ν
6-Nov-2018	10:00	2.3	ENE
6-Nov-2018	11:00	2.7	SE
6-Nov-2018	12:00	2.6	ENE
6-Nov-2018	13:00	2.7	Ν
6-Nov-2018	14:00	2.7	ENE
6-Nov-2018	15:00	2.6	NE
6-Nov-2018	16:00	2.6	Ν
6-Nov-2018	17:00	2.3	NNE
6-Nov-2018	18:00	2.0	NE
6-Nov-2018	19:00	1.7	NE
6-Nov-2018	20:00	1.8	NE
6-Nov-2018	21:00	1.4	ENE
6-Nov-2018	22:00	1.0	ESE
6-Nov-2018	23:00	0.8	ESE
7-Nov-2018	00:00	0.8	NE
7-Nov-2018	01:00	1.0	WNW
7-Nov-2018	02:00	0.8	WSW
7-Nov-2018	03:00	0.8	WNW
7-Nov-2018	04:00	0.8	WNW
7-Nov-2018	05:00	0.8	W
7-Nov-2018	06:00	1.2	N

II. Mean Wind	Speed and Wind D	irection	
7-Nov-2018	07:00	1.3	NNE
7-Nov-2018	08:00	1.2	NNE
7-Nov-2018	09:00	1.3	SSW
7-Nov-2018	10:00	1.6	W
7-Nov-2018	11:00	1.8	WNW
7-Nov-2018	12:00	2.1	WSW
7-Nov-2018	13:00	1.8	WSW
7-Nov-2018	14:00	1.6	WSW
7-Nov-2018	15:00	1.6	SW
7-Nov-2018	16:00	1.5	WSW
7-Nov-2018	17:00	1.4	W
7-Nov-2018	18:00	1.4	W
7-Nov-2018	19:00	1.0	WNW
7-Nov-2018	20:00	0.5	WNW
7-Nov-2018	21:00	0.5	W
7-Nov-2018	22:00	0.9	WNW
7-Nov-2018	23:00	1.1	SW
8-Nov-2018	00:00	1.1	SSW
8-Nov-2018	01:00	1.0	WSW
8-Nov-2018	02:00	1.1	S
8-Nov-2018	03:00	1.0	SW
8-Nov-2018	04:00	1.2	SSW
8-Nov-2018	05:00	1.2	W
8-Nov-2018	06:00	1.2	SW
8-Nov-2018	07:00	1.2	WNW
8-Nov-2018	08:00	1.6	WNW
8-Nov-2018	09:00	2.0	WNW
8-Nov-2018	10:00	2.6	W
8-Nov-2018	11:00	2.7	N
8-Nov-2018	12:00	2.9	NNE
8-Nov-2018	13:00	2.9	N
8-Nov-2018	14:00	3.0	N
8-Nov-2018	15:00	2.9	NW
8-Nov-2018	16:00	2.9	NE
8-Nov-2018	17:00	2.5	NE
8-Nov-2018	18:00	2.0	NNE
8-Nov-2018	19:00	1.7	WNW
8-Nov-2018	20:00	1.5	WNW

II.	Mean Wind	Speed and Wind D	irection	
	8-Nov-2018	21:00	1.5	NE
	8-Nov-2018	22:00	1.3	WSW
	8-Nov-2018	23:00	1.1	SW
	9-Nov-2018	00:00	1.0	W
	9-Nov-2018	01:00	0.7	WNW
	9-Nov-2018	02:00	0.8	NE
	9-Nov-2018	03:00	1.1	NE
	9-Nov-2018	04:00	1.2	NE
	9-Nov-2018	05:00	0.9	NE
	9-Nov-2018	06:00	0.9	NNE
	9-Nov-2018	07:00	0.6	NE
	9-Nov-2018	08:00	0.7	ENE
	9-Nov-2018	09:00	1.1	WSW
	9-Nov-2018	10:00	2.0	SSW
	9-Nov-2018	11:00	2.0	NE
	9-Nov-2018	12:00	2.0	SSW
	9-Nov-2018	13:00	1.9	SSW
	9-Nov-2018	14:00	2.0	ENE
	9-Nov-2018	15:00	2.1	NNE
	9-Nov-2018	16:00	2.2	S
	9-Nov-2018	17:00	1.9	S
	9-Nov-2018	18:00	1.5	W
	9-Nov-2018	19:00	1.2	WSW
	9-Nov-2018	20:00	1.3	ENE
	9-Nov-2018	21:00	1.2	ESE
	9-Nov-2018	22:00	1.2	ENE
	9-Nov-2018	23:00	1.1	NE
	10-Nov-2018	00:00	1.0	SW
	10-Nov-2018	01:00	1.1	W
	10-Nov-2018	02:00	1.0	ENE
	10-Nov-2018	03:00	0.9	SW
	10-Nov-2018	04:00	0.8	WSW
	10-Nov-2018	05:00	0.8	W
	10-Nov-2018	06:00	0.7	WSW
	10-Nov-2018	07:00	0.8	SW
	10-Nov-2018	08:00	1.1	WSW
	10-Nov-2018	09:00	1.4	SW
	10-Nov-2018	10:00	1.8	W

II. Mean Wind	Speed and Wind D	irection	
10-Nov-2018	11:00	2.2	SW
10-Nov-2018	12:00	2.1	W
10-Nov-2018	13:00	2.4	WSW
10-Nov-2018	14:00	2.4	NNE
10-Nov-2018	15:00	1.9	SW
10-Nov-2018	16:00	2.0	SW
10-Nov-2018	17:00	2.0	ENE
10-Nov-2018	18:00	1.6	S
10-Nov-2018	19:00	1.3	WNW
10-Nov-2018	20:00	1.5	NNE
10-Nov-2018	21:00	1.3	N
10-Nov-2018	22:00	1.4	Ν
10-Nov-2018	23:00	1.5	N
11-Nov-2018	00:00	1.5	NNE
11-Nov-2018	01:00	1.6	Ν
11-Nov-2018	02:00	1.7	N
11-Nov-2018	03:00	1.6	SSE
11-Nov-2018	04:00	1.4	SSW
11-Nov-2018	05:00	1.2	SW
11-Nov-2018	06:00	1.1	WSW
11-Nov-2018	07:00	1.1	ENE
11-Nov-2018	08:00	1.0	ENE
11-Nov-2018	09:00	1.4	E
11-Nov-2018	10:00	1.6	Ν
11-Nov-2018	11:00	1.7	WNW
11-Nov-2018	12:00	2.0	W
11-Nov-2018	13:00	1.9	SSW
11-Nov-2018	14:00	1.8	SSE
11-Nov-2018	15:00	1.9	W
11-Nov-2018	16:00	2.0	W
11-Nov-2018	17:00	1.6	W
11-Nov-2018	18:00	1.5	ENE
11-Nov-2018	19:00	1.1	E
11-Nov-2018	20:00	1.1	E
11-Nov-2018	21:00	1.0	ENE
11-Nov-2018	22:00	1.2	E
11-Nov-2018	23:00	1.4	S
12-Nov-2018	00:00	1.3	S

II. Mea	an Wind	Speed and Wind D	irection	
12-Nov-	2018	01:00	1.1	S
12-Nov-	2018	02:00	1.3	WNW
12-Nov-	2018	03:00	1.2	SW
12-Nov-	2018	04:00	1.2	SW
12-Nov-	2018	05:00	1.2	WNW
12-Nov-	2018	06:00	1.2	NE
12-Nov-	2018	07:00	1.0	SSW
12-Nov-	2018	08:00	1.1	WSW
12-Nov-	2018	09:00	1.2	W
12-Nov-	2018	10:00	1.8	W
12-Nov-	2018	11:00	2.4	W
12-Nov-	2018	12:00	2.5	WSW
12-Nov-	2018	13:00	2.7	W
12-Nov-	2018	14:00	2.6	ENE
12-Nov-	2018	15:00	2.9	E
12-Nov-	2018	16:00	2.9	E
12-Nov-	2018	17:00	2.7	S
12-Nov-	2018	18:00	2.2	S
12-Nov-	2018	19:00	2.1	S
12-Nov-	2018	20:00	1.9	SSW
12-Nov-	2018	21:00	1.9	WNW
12-Nov-	2018	22:00	1.8	NE
12-Nov-	2018	23:00	1.9	ENE
13-Nov-	2018	00:00	1.5	SW
13-Nov-	2018	01:00	1.5	SW
13-Nov-	2018	02:00	1.3	SW
13-Nov-	2018	03:00	1.3	ENE
13-Nov-	2018	04:00	1.1	W
13-Nov-	2018	05:00	1.2	WNW
13-Nov-	2018	06:00	1.0	SSW
13-Nov-	2018	07:00	0.9	W
13-Nov-	2018	08:00	1.2	SSE
13-Nov-	2018	09:00	2.0	W
13-Nov-	2018	10:00	2.2	ENE
13-Nov-	2018	11:00	2.4	SW
13-Nov-	2018	12:00	2.5	SW
13-Nov-	2018	13:00	2.5	SW
13-Nov-	2018	14:00	2.2	ENE

II. Mean Wind	II. Mean Wind Speed and Wind Direction				
13-Nov-2018	15:00	2.3	ENE		
13-Nov-2018	16:00	2.2	Ν		
13-Nov-2018	17:00	2.0	ESE		
13-Nov-2018	18:00	1.6	SSE		
13-Nov-2018	19:00	1.7	NE		
13-Nov-2018	20:00	1.3	NNE		
13-Nov-2018	21:00	1.4	NNE		
13-Nov-2018	22:00	1.3	NNE		
13-Nov-2018	23:00	1.4	ENE		
14-Nov-2018	00:00	1.5	NE		
14-Nov-2018	01:00	1.6	NNE		
14-Nov-2018	02:00	1.7	E		
14-Nov-2018	03:00	1.7	E		
14-Nov-2018	04:00	1.7	E		
14-Nov-2018	05:00	1.5	SE		
14-Nov-2018	06:00	1.4	SE		
14-Nov-2018	07:00	1.4	SSE		
14-Nov-2018	08:00	1.4	SSE		
14-Nov-2018	09:00	1.9	ENE		
14-Nov-2018	10:00	2.0	ENE		
14-Nov-2018	11:00	2.4	ENE		
14-Nov-2018	12:00	2.2	S		
14-Nov-2018	13:00	2.2	ENE		
14-Nov-2018	14:00	2.0	SSE		
14-Nov-2018	15:00	2.1	SE		
14-Nov-2018	16:00	2.4	SE		
14-Nov-2018	17:00	2.6	ESE		
14-Nov-2018	18:00	2.0	ENE		
14-Nov-2018	19:00	1.9	ENE		
14-Nov-2018	20:00	2.3	ENE		
14-Nov-2018	21:00	2.3	ENE		
14-Nov-2018	22:00	2.5	NE		
14-Nov-2018	23:00	2.0	ENE		
15-Nov-2018	00:00	2.0	ENE		
15-Nov-2018	01:00	2.0	NNE		
15-Nov-2018	02:00	2.0	NNE		
15-Nov-2018	03:00	1.9	ENE		
15-Nov-2018	04:00	2.1	NE		

II. Mean Wind Speed and Wind Direction				
15-Nov-2018	05:00	2.0	NNE	
15-Nov-2018	06:00	1.8	NE	
15-Nov-2018	07:00	1.6	NE	
15-Nov-2018	08:00	1.6	ESE	
15-Nov-2018	09:00	1.4	ESE	
15-Nov-2018	10:00	1.9	NE	
15-Nov-2018	11:00	2.2	NE	
15-Nov-2018	12:00	2.3	NE	
15-Nov-2018	13:00	2.4	ENE	
15-Nov-2018	14:00	2.4	E	
15-Nov-2018	15:00	2.4	ENE	
15-Nov-2018	16:00	2.4	ENE	
15-Nov-2018	17:00	2.3	Ν	
15-Nov-2018	18:00	2.1	NE	
15-Nov-2018	19:00	1.8	ENE	
15-Nov-2018	20:00	1.5	NE	
15-Nov-2018	21:00	1.4	ENE	
15-Nov-2018	22:00	1.2	ENE	
15-Nov-2018	23:00	1.0	NW	
16-Nov-2018	00:00	1.1	S	
16-Nov-2018	01:00	1.1	E	
16-Nov-2018	02:00	1.1	Ν	
16-Nov-2018	03:00	1.2	ENE	
16-Nov-2018	04:00	1.3	E	
16-Nov-2018	05:00	1.3	ENE	
16-Nov-2018	06:00	1.1	NE	
16-Nov-2018	07:00	1.4	NNE	
16-Nov-2018	08:00	1.5	SW	
16-Nov-2018	09:00	1.9	SW	
16-Nov-2018	10:00	1.9	ENE	
16-Nov-2018	11:00	1.8	ENE	
16-Nov-2018	12:00	2.2	ENE	
16-Nov-2018	13:00	2.2	ENE	
16-Nov-2018	14:00	2.0	NE	
16-Nov-2018	15:00	2.2	ENE	
16-Nov-2018	16:00	2.1	NE	
16-Nov-2018	17:00	1.7	NE	
16-Nov-2018	18:00	1.4	ENE	

II. Mean Win	d Speed and Wind D	irection	
16-Nov-2018	19:00	1.1	ENE
16-Nov-2018	20:00	1.1	NE
16-Nov-2018	21:00	1.0	NE
16-Nov-2018	22:00	1.4	Ν
16-Nov-2018	23:00	1.1	S
17-Nov-2018	00:00	1.6	ENE
17-Nov-2018	01:00	1.7	ENE
17-Nov-2018	02:00	1.7	E
17-Nov-2018	03:00	1.5	NNE
17-Nov-2018	04:00	1.3	NE
17-Nov-2018	05:00	1.3	NE
17-Nov-2018	06:00	1.2	ENE
17-Nov-2018	07:00	1.3	ENE
17-Nov-2018	08:00	1.6	ENE
17-Nov-2018	09:00	1.9	ENE
17-Nov-2018	10:00	1.9	ENE
17-Nov-2018	11:00	2.3	ENE
17-Nov-2018	12:00	2.4	Ν
17-Nov-2018	13:00	2.5	Ν
17-Nov-2018	14:00	2.6	NNE
17-Nov-2018	15:00	3.0	Ν
17-Nov-2018	16:00	2.6	NE
17-Nov-2018	17:00	2.1	NNE
17-Nov-2018	18:00	1.6	NNE
17-Nov-2018	19:00	1.1	NNE
17-Nov-2018	20:00	1.5	NNE
17-Nov-2018	21:00	1.3	NNE
17-Nov-2018	22:00	1.6	SE
17-Nov-2018	23:00	1.3	S
18-Nov-2018	00:00	1.3	SE
18-Nov-2018	01:00	1.3	SE
18-Nov-2018	02:00	1.2	SSE
18-Nov-2018	03:00	1.6	SE
18-Nov-2018	04:00	1.5	SSE
18-Nov-2018	05:00	1.4	SSE
18-Nov-2018	06:00	1.3	ESE
18-Nov-2018	07:00	1.3	ESE
18-Nov-2018	08:00	1.7	SE

II. Mean Wind	II. Mean Wind Speed and Wind Direction				
18-Nov-2018	09:00	2.6	SSE		
18-Nov-2018	10:00	2.9	ESE		
18-Nov-2018	11:00	3.4	NNE		
18-Nov-2018	12:00	3.2	ENE		
18-Nov-2018	13:00	3.3	NE		
18-Nov-2018	14:00	3.0	E		
18-Nov-2018	15:00	3.2	E		
18-Nov-2018	16:00	3.0	Ν		
18-Nov-2018	17:00	2.5	ESE		
18-Nov-2018	18:00	2.1	NE		
18-Nov-2018	19:00	1.9	NE		
18-Nov-2018	20:00	1.7	NE		
18-Nov-2018	21:00	1.5	NNE		
18-Nov-2018	22:00	1.9	E		
18-Nov-2018	23:00	2.2	NE		
19-Nov-2018	00:00	2.1	NNE		
19-Nov-2018	01:00	2.0	ESE		
19-Nov-2018	02:00	1.9	NE		
19-Nov-2018	03:00	2.1	ENE		
19-Nov-2018	04:00	2.1	ENE		
19-Nov-2018	05:00	2.0	ENE		
19-Nov-2018	06:00	1.9	NE		
19-Nov-2018	07:00	2.3	Ν		
19-Nov-2018	08:00	2.4	ENE		
19-Nov-2018	09:00	2.7	Ν		
19-Nov-2018	10:00	3.0	ENE		
19-Nov-2018	11:00	2.6	ENE		
19-Nov-2018	12:00	3.1	E		
19-Nov-2018	13:00	2.8	ESE		
19-Nov-2018	14:00	2.5	E		
19-Nov-2018	15:00	2.5	E		
19-Nov-2018	16:00	2.3	ENE		
19-Nov-2018	17:00	2.6	NE		
19-Nov-2018	18:00	2.4	ENE		
19-Nov-2018	19:00	1.8	ENE		
19-Nov-2018	20:00	1.7	E		
19-Nov-2018	21:00	1.8	N		
19-Nov-2018	22:00	2.0	NNE		

II. Mean Wind	l Speed and Wind D	irection	
19-Nov-2018	23:00	1.9	NE
20-Nov-2018	00:00	2.0	NE
20-Nov-2018	01:00	2.1	ENE
20-Nov-2018	02:00	2.1	ENE
20-Nov-2018	03:00	1.9	NE
20-Nov-2018	04:00	2.0	ENE
20-Nov-2018	05:00	1.9	NE
20-Nov-2018	06:00	1.8	SSE
20-Nov-2018	07:00	1.9	ENE
20-Nov-2018	08:00	2.3	ESE
20-Nov-2018	09:00	2.4	NNE
20-Nov-2018	10:00	3.1	ENE
20-Nov-2018	11:00	3.3	NNE
20-Nov-2018	12:00	3.2	Ν
20-Nov-2018	13:00	3.4	NE
20-Nov-2018	14:00	3.4	Ν
20-Nov-2018	15:00	3.2	ENE
20-Nov-2018	16:00	2.9	ENE
20-Nov-2018	17:00	2.5	SSE
20-Nov-2018	18:00	2.3	ENE
20-Nov-2018	19:00	2.3	ENE
20-Nov-2018	20:00	2.0	ENE
20-Nov-2018	21:00	2.0	ENE
20-Nov-2018	22:00	1.9	NNE
20-Nov-2018	23:00	2.1	NE
21-Nov-2018	00:00	1.9	ENE
21-Nov-2018	01:00	2.0	ENE
21-Nov-2018	02:00	1.8	NE
21-Nov-2018	03:00	2.2	ENE
21-Nov-2018	04:00	2.1	NNE
21-Nov-2018	05:00	2.0	NNE
21-Nov-2018	06:00	2.6	NNE
21-Nov-2018	07:00	2.6	ENE
21-Nov-2018	08:00	2.8	ENE
21-Nov-2018	09:00	2.9	ESE
21-Nov-2018	10:00	3.2	NE
21-Nov-2018	11:00	3.7	SE
21-Nov-2018	12:00	3.5	ESE

II. Mean V	II. Mean Wind Speed and Wind Direction				
21-Nov-2018	3 13:00	3.5	ENE		
21-Nov-2018	3 14:00	3.5	ENE		
21-Nov-2018	3 15:00	3.7	NE		
21-Nov-2018	3 16:00	3.8	NNE		
21-Nov-2018	3 17:00	3.2	ENE		
21-Nov-2018	3 18:00	3.7	E		
21-Nov-2018	3 19:00	2.9	ESE		
21-Nov-2018	3 20:00	2.6	ENE		
21-Nov-2018	3 21:00	2.6	ENE		
21-Nov-2018	3 22:00	2.2	ESE		
21-Nov-2018	3 23:00	1.5	Ν		
22-Nov-2018	3 00:00	1.6	ESE		
22-Nov-2018	3 01:00	1.7	Ν		
22-Nov-2018	3 02:00	1.6	N		
22-Nov-2018	3 03:00	1.4	NNE		
22-Nov-2018	3 04:00	1.6	SE		
22-Nov-2018	3 05:00	1.9	ESE		
22-Nov-2018	3 06:00	1.7	SE		
22-Nov-2018	3 07:00	2.1	ENE		
22-Nov-2018	8 08:00	2.4	ENE		
22-Nov-2018	3 09:00	2.4	ESE		
22-Nov-2018	3 10:00	2.4	ENE		
22-Nov-2018	3 11:00	2.4	NNE		
22-Nov-2018	3 12:00	2.5	SSE		
22-Nov-2018	3 13:00	2.6	ENE		
22-Nov-2018	3 14:00	2.7	NNE		
22-Nov-2018	3 15:00	2.6	NE		
22-Nov-2018	3 16:00	2.7	NE		
22-Nov-2018	3 17:00	2.5	SE		
22-Nov-2018	3 18:00	2.1	NE		
22-Nov-2018	3 19:00	1.8	NE		
22-Nov-2018	3 20:00	1.6	ENE		
22-Nov-2018	3 21:00	1.6	NE		
22-Nov-2018	3 22:00	1.5	ENE		
22-Nov-2018	3 23:00	1.6	SE		
23-Nov-2018	3 00:00	1.6	ENE		
23-Nov-2018	3 01:00	1.9	ENE		
23-Nov-2018	3 02:00	1.7	NE		

II. Mean Wind	Speed and Wind D	irection	
23-Nov-2018	03:00	1.7	ENE
23-Nov-2018	04:00	1.7	ENE
23-Nov-2018	05:00	1.9	NE
23-Nov-2018	06:00	2.0	NE
23-Nov-2018	07:00	1.2	NE
23-Nov-2018	08:00	1.4	NE
23-Nov-2018	09:00	1.5	NE
23-Nov-2018	10:00	2.0	ENE
23-Nov-2018	11:00	2.5	ENE
23-Nov-2018	12:00	2.5	ESE
23-Nov-2018	13:00	2.2	NE
23-Nov-2018	14:00	2.3	ENE
23-Nov-2018	15:00	2.4	ENE
23-Nov-2018	16:00	2.2	NNE
23-Nov-2018	17:00	1.7	ENE
23-Nov-2018	18:00	1.7	ENE
23-Nov-2018	19:00	1.5	NE
23-Nov-2018	20:00	1.4	NE
23-Nov-2018	21:00	1.4	ENE
23-Nov-2018	22:00	1.2	E
23-Nov-2018	23:00	1.1	ESE
24-Nov-2018	00:00	1.2	NE
24-Nov-2018	01:00	1.5	ENE
24-Nov-2018	02:00	1.4	ENE
24-Nov-2018	03:00	1.4	NE
24-Nov-2018	04:00	1.4	NE
24-Nov-2018	05:00	1.5	NNE
24-Nov-2018	06:00	1.0	NE
24-Nov-2018	07:00	1.3	NNE
24-Nov-2018	08:00	1.0	NNE
24-Nov-2018	09:00	1.7	ENE
24-Nov-2018	10:00	2.2	SSE
24-Nov-2018	11:00	2.4	NNE
24-Nov-2018	12:00	2.3	ENE
24-Nov-2018	13:00	2.4	N
24-Nov-2018	14:00	2.3	NNE
24-Nov-2018	15:00	2.1	NE
24-Nov-2018	16:00	2.0	SSE

II. Mean Wind	Speed and Wind D	irection	
24-Nov-2018	17:00	2.0	NNE
24-Nov-2018	18:00	1.4	ESE
24-Nov-2018	19:00	1.3	ENE
24-Nov-2018	20:00	1.2	S
24-Nov-2018	21:00	1.2	NNE
24-Nov-2018	22:00	1.1	SSE
24-Nov-2018	23:00	1.2	NE
25-Nov-2018	00:00	1.2	NNE
25-Nov-2018	01:00	1.0	N
25-Nov-2018	02:00	0.8	NE
25-Nov-2018	03:00	0.8	ENE
25-Nov-2018	04:00	0.6	ENE
25-Nov-2018	05:00	0.7	NE
25-Nov-2018	06:00	0.7	NNE
25-Nov-2018	07:00	0.8	NNE
25-Nov-2018	08:00	1.0	W
25-Nov-2018	09:00	1.4	WNW
25-Nov-2018	10:00	1.8	WNW
25-Nov-2018	11:00	1.9	SE
25-Nov-2018	12:00	1.9	SE
25-Nov-2018	13:00	1.8	SE
25-Nov-2018	14:00	2.0	SE
25-Nov-2018	15:00	2.1	ESE
25-Nov-2018	16:00	1.7	E
25-Nov-2018	17:00	1.6	E
25-Nov-2018	18:00	1.0	NE
25-Nov-2018	19:00	0.7	SSE
25-Nov-2018	20:00	0.9	SSE
25-Nov-2018	21:00	0.7	ENE
25-Nov-2018	22:00	1.1	NE
25-Nov-2018	23:00	1.2	NNE
26-Nov-2018	00:00	1.2	ESE
26-Nov-2018	01:00	0.8	NNE
26-Nov-2018	02:00	1.1	NNE
26-Nov-2018	03:00	0.9	NE
26-Nov-2018	04:00	1.1	E
26-Nov-2018	05:00	1.2	ENE
26-Nov-2018	06:00	1.0	NE

II. Mean Wind	l Speed and Wind D	irection	
26-Nov-2018	07:00	1.1	NE
26-Nov-2018	08:00	1.4	ENE
26-Nov-2018	09:00	1.5	NE
26-Nov-2018	10:00	1.7	Ν
26-Nov-2018	11:00	1.7	SSE
26-Nov-2018	12:00	2.7	ENE
26-Nov-2018	13:00	2.8	SW
26-Nov-2018	14:00	2.4	SW
26-Nov-2018	15:00	2.0	SE
26-Nov-2018	16:00	2.3	ENE
26-Nov-2018	17:00	2.0	ENE
26-Nov-2018	18:00	1.2	NNE
26-Nov-2018	19:00	1.2	E
26-Nov-2018	20:00	0.8	ENE
26-Nov-2018	21:00	1.2	ENE
26-Nov-2018	22:00	1.0	W
26-Nov-2018	23:00	1.1	W
27-Nov-2018	00:00	1.0	W
27-Nov-2018	01:00	0.6	E
27-Nov-2018	02:00	0.9	ENE
27-Nov-2018	03:00	0.9	N
27-Nov-2018	04:00	1.0	N
27-Nov-2018	05:00	1.1	ENE
27-Nov-2018	06:00	1.0	NE
27-Nov-2018	07:00	0.9	ENE
27-Nov-2018	08:00	0.9	ENE
27-Nov-2018	09:00	1.4	ENE
27-Nov-2018	10:00	1.3	ENE
27-Nov-2018	11:00	2.0	ENE
27-Nov-2018	12:00	2.1	ENE
27-Nov-2018	13:00	2.4	ENE
27-Nov-2018	14:00	2.2	ENE
27-Nov-2018	15:00	2.2	NE
27-Nov-2018	16:00	2.1	NE
27-Nov-2018	17:00	2.0	ENE
27-Nov-2018	18:00	1.9	E
27-Nov-2018	19:00	1.8	E
27-Nov-2018	20:00	1.8	NE

II. Mean Wind	Speed and Wind D	irection	
27-Nov-2018	21:00	1.7	NNE
27-Nov-2018	22:00	1.8	Ν
27-Nov-2018	23:00	1.7	ENE
28-Nov-2018	00:00	1.7	ESE
28-Nov-2018	01:00	1.4	ENE
28-Nov-2018	02:00	1.4	ESE
28-Nov-2018	03:00	1.5	E
28-Nov-2018	04:00	1.3	ENE
28-Nov-2018	05:00	1.4	ENE
28-Nov-2018	06:00	1.6	ENE
28-Nov-2018	07:00	1.5	NNW
28-Nov-2018	08:00	1.6	NE
28-Nov-2018	09:00	1.9	ENE
28-Nov-2018	10:00	2.0	ENE
28-Nov-2018	11:00	2.0	NNE
28-Nov-2018	12:00	2.4	NNE
28-Nov-2018	13:00	2.2	NNE
28-Nov-2018	14:00	2.1	ENE
28-Nov-2018	15:00	1.9	NE
28-Nov-2018	16:00	2.0	NE
28-Nov-2018	17:00	2.1	NE
28-Nov-2018	18:00	1.6	Ν
28-Nov-2018	19:00	1.3	Ν
28-Nov-2018	20:00	1.1	E
28-Nov-2018	21:00	1.3	NE
28-Nov-2018	22:00	1.1	ESE
28-Nov-2018	23:00	1.4	NNE
29-Nov-2018	00:00	1.8	NNE
29-Nov-2018	01:00	2.2	NNE
29-Nov-2018	02:00	2.5	N
29-Nov-2018	03:00	2.3	NE
29-Nov-2018	04:00	2.3	NE
29-Nov-2018	05:00	2.2	NE
29-Nov-2018	06:00	2.2	NE
29-Nov-2018	07:00	2.2	N
29-Nov-2018	08:00	2.2	NE
29-Nov-2018	09:00	2.3	NNE
29-Nov-2018	10:00	2.4	NNE

II. Mean Wind Speed and Wind Direction				
29-Nov-2018	11:00	2.5	Ν	
29-Nov-2018	12:00	2.7	Ν	
29-Nov-2018	13:00	2.5	Ν	
29-Nov-2018	14:00	2.5	Ν	
29-Nov-2018	15:00	2.4	NE	
29-Nov-2018	16:00	2.3	NE	
29-Nov-2018	17:00	2.2	NE	
29-Nov-2018	18:00	1.8	NE	
29-Nov-2018	19:00	1.7	NNE	
29-Nov-2018	20:00	1.6	Ν	
29-Nov-2018	21:00	1.6	Ν	
29-Nov-2018	22:00	1.6	NNE	
29-Nov-2018	23:00	1.7	ENE	
30-Nov-2018	00:00	1.6	ENE	
30-Nov-2018	01:00	1.3	ENE	
30-Nov-2018	02:00	1.5	Ν	
30-Nov-2018	03:00	1.8	Ν	
30-Nov-2018	04:00	1.7	NE	
30-Nov-2018	05:00	1.7	NE	
30-Nov-2018	06:00	1.6	NE	
30-Nov-2018	07:00	1.8	Ν	
30-Nov-2018	08:00	1.8	NNE	
30-Nov-2018	09:00	1.9	NNE	
30-Nov-2018	10:00	1.9	Ν	
30-Nov-2018	11:00	2.2	Ν	
30-Nov-2018	12:00	2.3	NE	
30-Nov-2018	13:00	2.3	Ν	
30-Nov-2018	14:00	2.3	ENE	
30-Nov-2018	15:00	2.4	E	
30-Nov-2018	16:00	1.9	E	
30-Nov-2018	17:00	2.0	NE	
30-Nov-2018	18:00	1.9	NE	
30-Nov-2018	19:00	1.7	ENE	
30-Nov-2018	20:00	1.9	ENE	
30-Nov-2018	21:00	1.4	ENE	
30-Nov-2018	22:00	1.4	ENE	
30-Nov-2018	23:00	1.8	NE	

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area Impact Air and Noise Monitoring Schedule for November 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Nov	2-Nov	3-Nov
				1 hr TSP X3 AM2, AM3(A)		
4-Nov	5-Nov	6-Nov	7-Nov	8-Nov	9-Nov	10-Nov
	1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8, M9	24-hr TSP AM2(A),AM3(B) AM4(C),AM5	1 hr TSP X3 AM2, AM3(A)		1 hr TSP X3 AM4(C), AM5	
11-Nov	12-Nov	13-Nov	14-Nov	15-Nov	16-Nov	17-Nov
	24-hr TSP AM2(A),AM3(B) AM4(C),AM5	1 hr TSP X3 AM2, AM3(A)		1 hr TSP X3 AM4(C), AM5 Noise M6(A), M7, M9	24-hr TSP AM2(A),AM3(B) AM4(C),AM5	
18-Nov	19-Nov	20-Nov	21-Nov	22-Nov	23-Nov	24-Nov
	1 hr TSP X3 AM2, AM3(A)		1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M9	24-hr TSP AM2(A),AM3(B) AM4(C),AM5	1 hr TSP X3 AM2, AM3(A)	
25-Nov	26-Nov	27-Nov	28-Nov	29-Nov	30-Nov	
		1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M9	24-hr TSP AM2(A),AM3(B) AM4(C),AM5	1 hr TSP X3 AM2, AM3(A)		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School AM3(A) - Holy Trinity Bradbury Centre AM3(B) - Hong Kong Family Planning Association AM4(C) - New Pumping Station under Contract KL/2012/03 AM5 - CCC Kei To Secondary School

Noise Monitoring Station

M6(A) - Oblate Primary School M7 - CCC Kei To Secondary School M8 - Po Leung Kuk Ngan Po Ling College M8(A) - Po Leung Kuk Ngan Po Ling College (Site Boundary) M9 - Tak Long Estate

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area Tentative Impact Air and Noise Monitoring Schedule for December 2018

Image: Constraint of the second sec	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
I hr TSP X3 AM4(C), AM5 Moise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM5I hr TSP X3 AM2, AM3(A)I hr TSP X3 AM2, AM3(A)9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec24-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM5 Noise24-hr TSP AM4(C), AM5(B) AM4(C), AM5(B)1hr TSP X3 AM4(C), AM5(B) AM4(C), AM516-Dec17-Dec18-Dec19-Dec20-Dec21-Dec1 hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM523-Dec24-Dec25-Dec26-Dec27-Dec23-Dec24-Dec25-Dec26-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM524-hr TSP AM2(A), AM3(A)						,	1-Dec
I hr TSP X3 AM4(C), AM5 Moise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM5I hr TSP X3 AM2, AM3(A)I hr TSP X3 AM2, AM3(A)9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec24-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM5 Noise24-hr TSP AM4(C), AM5(B) AM4(C), AM5(B)1hr TSP X3 AM4(C), AM5(B) AM4(C), AM516-Dec17-Dec18-Dec19-Dec20-Dec21-Dec1 hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM523-Dec24-Dec25-Dec26-Dec27-Dec23-Dec24-Dec25-Dec26-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM524-hr TSP AM2(A), AM3(A)							
I hr TSP X3 AM4(C), AM5 Moise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM5I hr TSP X3 AM2, AM3(A)I hr TSP X3 AM2, AM3(A)9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec24-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM5 Noise24-hr TSP AM4(C), AM5(B) AM4(C), AM5(B)1hr TSP X3 AM4(C), AM5(B) AM4(C), AM516-Dec17-Dec18-Dec19-Dec20-Dec21-Dec1 hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM523-Dec24-Dec25-Dec26-Dec27-Dec23-Dec24-Dec25-Dec26-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM524-hr TSP AM2(A), AM3(A)							
I hr TSP X3 AM4(C), AM5 Moise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM5I hr TSP X3 AM2, AM3(A)I hr TSP X3 AM2, AM3(A)9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec24-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM5 Noise24-hr TSP AM4(C), AM5(B) AM4(C), AM5(B)1hr TSP X3 AM4(C), AM5(B) AM4(C), AM516-Dec17-Dec18-Dec19-Dec20-Dec21-Dec1 hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM523-Dec24-Dec25-Dec26-Dec27-Dec23-Dec24-Dec25-Dec26-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM524-hr TSP AM2(A), AM3(A)							
I hr TSP X3 AM4(C), AM5 Moise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM5I hr TSP X3 AM2, AM3(A)I hr TSP X3 AM2, AM3(A)9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec24-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM5 Noise24-hr TSP AM4(C), AM5(B) AM4(C), AM5(B)1hr TSP X3 AM4(C), AM5(B) AM4(C), AM516-Dec17-Dec18-Dec19-Dec20-Dec21-Dec1 hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM523-Dec24-Dec25-Dec26-Dec27-Dec23-Dec24-Dec25-Dec26-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM524-hr TSP AM2(A), AM3(A)							
I hr TSP X3 AM4(C), AM5 Moise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM5I hr TSP X3 AM2, AM3(A)I hr TSP X3 AM2, AM3(A)9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec24-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM5 Noise24-hr TSP AM4(C), AM5(B) AM4(C), AM5(B)1hr TSP X3 AM4(C), AM5(B) AM4(C), AM516-Dec17-Dec18-Dec19-Dec20-Dec21-Dec1 hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM523-Dec24-Dec25-Dec26-Dec27-Dec23-Dec24-Dec25-Dec26-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM524-hr TSP AM2(A), AM3(A)							
I hr TSP X3 AM4(C), AM5 Moise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM5I hr TSP X3 AM2, AM3(A)I hr TSP X3 AM2, AM3(A)9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec24-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM5 Noise24-hr TSP AM4(C), AM5(B) AM4(C), AM5(B)1hr TSP X3 AM4(C), AM5(B) AM4(C), AM516-Dec17-Dec18-Dec19-Dec20-Dec21-Dec1 hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM523-Dec24-Dec25-Dec26-Dec27-Dec23-Dec24-Dec25-Dec26-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM524-hr TSP AM2(A), AM3(A)							
I hr TSP X3 AM4(C), AM5 Moise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM5I hr TSP X3 AM2, AM3(A)I hr TSP X3 AM2, AM3(A)9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec9-Dec10-Dec11-Dec12-Dec13-Dec14-Dec24-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM5 Noise24-hr TSP AM4(C), AM5(B) AM4(C), AM5(B)1hr TSP X3 AM4(C), AM5(B) AM4(C), AM516-Dec17-Dec18-Dec19-Dec20-Dec21-Dec1 hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM51hr TSP X3 AM4(C), AM523-Dec24-Dec25-Dec26-Dec27-Dec23-Dec24-Dec25-Dec26-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M924-hr TSP AM2(A), AM3(B) AM4(C), AM524-hr TSP AM2(A), AM3(A)							
AM4(C), AM5 Noise M6(A) M7, M8(A), M9AM2 ALA ALA AM3(B) AM4(C), AM5AM2, AM3(A)AM4(C), AM5 AM2 AM3(B) AM4(C), AM5 AM4(C), AM5AM4(C), AM5 AM4(C), AM5 AM4(C)	2-Dec	3-Dec	4-Dec	5-Dec	6-Dec	7-Dec	8-Dec
AM4(C), AM5 Noise M6(A) M7, M8(A), M9AM2 ALA ALA AM3(B) AM4(C), AM5AM2, AM3(A)AM4(C), AM5 AM2 AM3(B) AM4(C), AM5 AM4(C), AM5AM4(C), AM5 AM4(C), AM5 AM4(C)							
Noise M6(A) M7, M8(A), M924-br TSP AM2(A),AM3(B) AM4(C),AM3Image: Constraint of the constrai							
M6(A) M7, M8(A), M924-hr TSP AM2(A),AM3(B) AM4(C),AM5Image: Constraint of the second s				AM2, AM3(A)		AM4(C), AM5	
AM2(A),AM3(B) AM4(C),AM5AM2(A),AM3(B) AM4(C),AM5ImmodelImmodelImmodel9-Det10-Det11-Det12-Det13-Det14-Det15-Det9-Det1hr TSP X3 AM2, AM3(A)1hr TSP X3 AM2, AM3(A)Ihr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M91hr TSP X3 AM2(A),AM3(B) AM4(C),AM51hr TSP X3 AM2(A),AM3(B) AM4(C),AM5 Noise M6(A) M7, M8(A), M91hr TSP X3 AM2(A),AM3(B) AM4(C),AM5 AM2(A),AM3(B) AM4(C),AM5 Noise M6(A) M7, M8(A),M91hr TSP X3 AM2,AM3(A)1hr TSP X3 AM2,AM3(A)23-Det24-Det25-Det26-Det27-Det28-Det29-Det1hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A),M91hr TSP X3 AM4(C),AM3(B) AM4(C),AM3(B) AM4(C),AM3(B) AM4(C),AM3(B)1hr TSP X3 AM4(C),AM3(B) AM4(C),AM3(B)1hr TSP X3 AM4(C),AM3(B) AM4(C),AM3(B)1hr TSP X3 AM4(C),AM3(B)							
Image: mode with the second		M6(A) M7, M8(A), M9					
9-Dec 10-bcc 11-bcc 12-bcc 13-bcc 14-bcc 15-bcc 24-hr TSP AM2, AM3(A) AM2, AM3(A) AM4(C), AM5 AM4(C), AM5 AM4(C), AM5 AM4(C), AM5 AM2, AM3(B) AM4(C), AM5 AM2, AM3(A) AM4(C), AM5<							
1hr TSP X3 AM2(A),AM3(B) AM4(C),AM5 AM2(A),AM3(B)1hr TSP X3 AM2,AM3(A)1hr TSP X3 AM2(A),AM3(B) AM4(C),AM5 M6(A) M7, M8(A),M91hr TSP X3 AM2,AM3(B) AM4(C),AM3(B) AM4(C),AM3(B)1hr TSP X3 AM2,AM3(A)1hr TSP X3 AM2,AM3(A)1hr TSP X3 AM4(C),AM5 Noise M6(A) M7, M8(A),M91hr TSP X3 AM2,AM3(B) AM4(C),AM3(B) AM4(C),AM3(B) AM4(C),AM3(B) AM4(C),AM3(B)1hr TSP X3 AM2,AM3(A)1hr TSP X3 AM2,AM3(A)1hr TSP X3 AM2,AM3(A)1hr TSP X3 AM4(C),AM3(B) AM4(C),AM3(B) AM4(C),AM3(B) AM4(C),AM3(B) AM4(C),AM3(B)1hr TSP X3 AM2,AM3(A)1hr TSP X3 AM2,AM3(A)23-Dec24-Dec25-Dec26-Dec27-Dec28-Dec29-Dec24-Dr TSP AM2(A), M7, M8(A), M924-Dec27-Dec28-Dec29-Dec24-Dr TSP AM2(A), M7, M8(A), M924-Dec24-Dec29-Dec29-Dec24-Dr TSP AM2(A), M7, M8(A), M924-Dec24-Dec29-Dec29-Dec24-Dr TSP AM2(A), M7, M8(A), M924-Dec24-Dec29-Dec29-Dec24-Dr TSP AM2(A), M7, M8(A), M924-Dec24-Dr TSP AM2(A), AM3(B) AM4(C), AM51hr TSP X3 AM2(A)1hr TSP X3 AM4(C), AM5							
AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M9AM4(C), AM5 Noise M6(A) M7, M8(A), M9Auter TSP AM2(A), AM3(B) AM4(C), AM5 AM4(C), AM5 <b< th=""><th>9-Dec</th><th>10-Dec</th><th>11-Dec</th><th>12-Dec</th><th>13-Dec</th><th>14-Dec</th><th>15-Dec</th></b<>	9-Dec	10-Dec	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec
AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M9AM4(C), AM5 Noise M6(A) M7, M8(A), M9Auter TSP AM2(A), AM3(B) AM4(C), AM5 AM4(C), AM5 <b< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></b<>							
24-hr TSP AM2(A),AM3(B) AM4(C),AM51124-hr TSP AM2(A),AM3(B) AM4(C),AM516-bec17-bec18-bec19-bec20-bec21-bec22-bec1 hr TSP X3 AM2, AM3(A)1 hr TSP X3 AM4(C), AM51 hr TSP X3 AM4(C), AM511 hr TSP X3 AM4(C), AM51 hr TSP X3 AM4(C), AM5							
24-hr TSP AM2(A),AM3(B) AM4(C),AM3(B)M6(A) M7, M8(A), M924-hr TSP AM2(A),AM3(B) AM4(C),AM3(B) AM4(C),AM3(B)16-Dec17-Dec18-Dec19-Dec20-Dec21-Dec22-Dec16-Dec1hr TSP X3 AM2, AM3(A)1hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M91hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M91hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M91hr TSP X3 AM4(C), AM5 AM4(C), A			AM2, AM3(A)				
AM2(A),AM3(B) AM4(C),AM5AM2(A),AM3(B) AM4(C),AM5AM2(A),AM3(B) AM4(C),AM516-Dec17-Dec18-Dec19-Dec20-Dec21-Dec22-Dec1 hr TSP X3 AM2, AM3(A)1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M91 hr TSP X3 AM4(C), AM5 M6(A) M7, M8(A), M91 hr TSP X3 AM4(C), AM5 AM4(C), AM5 <br< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></br<>							
AM4(C),AM5Image: Constraint of the constr					M6(A) M7, M8(A), M9		
16-Dec 17-Dec 18-Dec 19-Dec 20-Dec 21-Dec 22-Dec 1 hr TSP X3 AM2, AM3(A) 1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M9 1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M9 1 hr TSP X3 AM4(C), AM5 Noise 1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M9 1 hr TSP X3 AM4(C), AM5(B) AM4(C), AM5(B) AM4(C), AM5 1 hr TSP X3 AM4(C), AM5(B) AM4(C), AM5(B) AM4(C), AM5 1 hr TSP X3 AM4(C), AM5(B) AM4(C), AM5 1 hr TSP X3 AM4(C), AM5(B) AM4(C), AM5(B) AM4(C), AM5 1 hr TSP X3 AM4(C), AM5 1 hr TSP X3 AM4(C)							
1 hr TSP X3 AM2, AM3(A)1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M91 hr TSP X3 AM4(C), AM51 hr TSP X3 AM2(A), AM3(B) AM4(C), AM523-Dec24-Dec25-Dec26-Dec27-Dec28-Dec29-Dec23-Dec24-Dec25-Dec26-Dec27-Dec28-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M91 hr TSP X3 AM4(C), AM5 AM4(C), AM51 hr TSP X3 AM4(C), AM5(A)1 hr TSP X3 AM4(C), AM5(A)							
AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M9AM4(C), AM5 AM2AM2, AM3(A)AM2, AM3(A)23-Dec24-Dec26-Dec27-Dec28-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M9I hr TSP X3 AM4(C), AM5 AM4(C), AM51 hr TSP X3 AM4(C), AM5 AM4(C), AM51 hr TSP X3 AM4(C), AM51 hr TSP X3 AM4(C), AM5	16-Dec	17-Dec	18-Dec	19-Dec	20-Dec	21-Dec	22-Dec
AM2, AM3(A)AM4(C), AM5 Noise M6(A) M7, M8(A), M9AM4(C), AM5 AM2AM2, AM3(A)AM2, AM3(A)23-Dec24-Dec26-Dec27-Dec28-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M9I hr TSP X3 AM4(C), AM5 AM4(C), AM51 hr TSP X3 AM4(C), AM5 AM4(C), AM51 hr TSP X3 AM4(C), AM51 hr TSP X3 AM4(C), AM5		1 k., TOD V2	1 b., TOD V2				1 h., TOD V2
Noise M6(A) M7, M8(A), M9Noise M6(A) M7, M8(A), M924-hr TSP AM2(A),AM3(B) AM4(C),AM523-Dec24-Dec25-Dec26-Dec27-Dec28-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M91 hr CSP X3 AM4(C), AM5 AM4(C), AM5 AM4(C), AM5 AM4(C), AM5 AM4(C), AM5 AM4(C), AM5 AM4(C), AM5 AM4(C), AM51 hr TSP X3 AM4(C), AM5 AM4(C), AM5 AM4(C), AM5 AM4(C), AM5							
M6(A) M7, M8(A), M9M6(A) M7, M8(A), M9M7<		AM2, AM3(A)					AM2, AM3(A)
AM2(A),AM3(B) AM4(C),AM5AM2(A),AM3(B) AM4(C),AM523-Dec24-Dec25-Dec26-Dec27-Dec28-Dec29-Dec1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M91 hr CSP X3 AM4(C), AM51 hr TSP X3 AM4(C), AM5 AM4(C), AM51 hr TSP X3 AM4(C), AM5 AM4(C), AM51 hr TSP X3 AM4(C), AM5						24 h- TSD	
Image: space with the space with th			M6(A) M7, M8(A), M9				
23-Dec 24-Dec 25-Dec 26-Dec 27-Dec 28-Dec 29-Dec I hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M9 AM4(C), AM5 M6(A) M7, M8(A), M9 I hr TSP X3 AM4(C), AM3(B) AM4(C), AM3(B) AM4(C), AM5 I hr TSP X3 AM2, AM3(A) I hr TSP X3 AM4(C), AM5							
1 hr TSP X3 AM4(C), AM5 Noise M6(A) M7, M8(A), M91 hr TSP X3 AM4(C), AM51 hr TSP X3 AM4(C), AM524-hr TSP AM2(A),AM3(B) AM4(C), AM524-hr TSP AM2(A),AM3(B) AM4(C), AM51 hr TSP X3 AM4(C), AM5	23 Dog	24 Dec	25 Dec	26 Dog	27 Dec		20 Dec
AM4(C), AM5 Noise M6(A) M7, M8(A), M9 M6(A) M7, M8(A), M9 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7	25-Dec	24-Dec	25-Dec	20-Dec	27-Dec	28-Dec	29-Dec
AM4(C), AM5 Noise M6(A) M7, M8(A), M9 M6(A) M7, M8(A), M9 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7		1 hr TSP X3				1 hr TSP X3	1 hr TSP X3
Noise 24-hr TSP M6(A) M7, M8(A), M9 AM2(A),AM3(B) AM4(C),AM5 AM4(C),AM5							
M6(A) M7, M8(A), M9 M6(A) M7, M8(A), M9 AM2(A), AM3(B) AM4(C), AM5						,	
AM2(A),AM3(B) AM4(C),AM5					24-hr TSP		
AM4(C),AM5							
	30-Dec	31-Dec					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

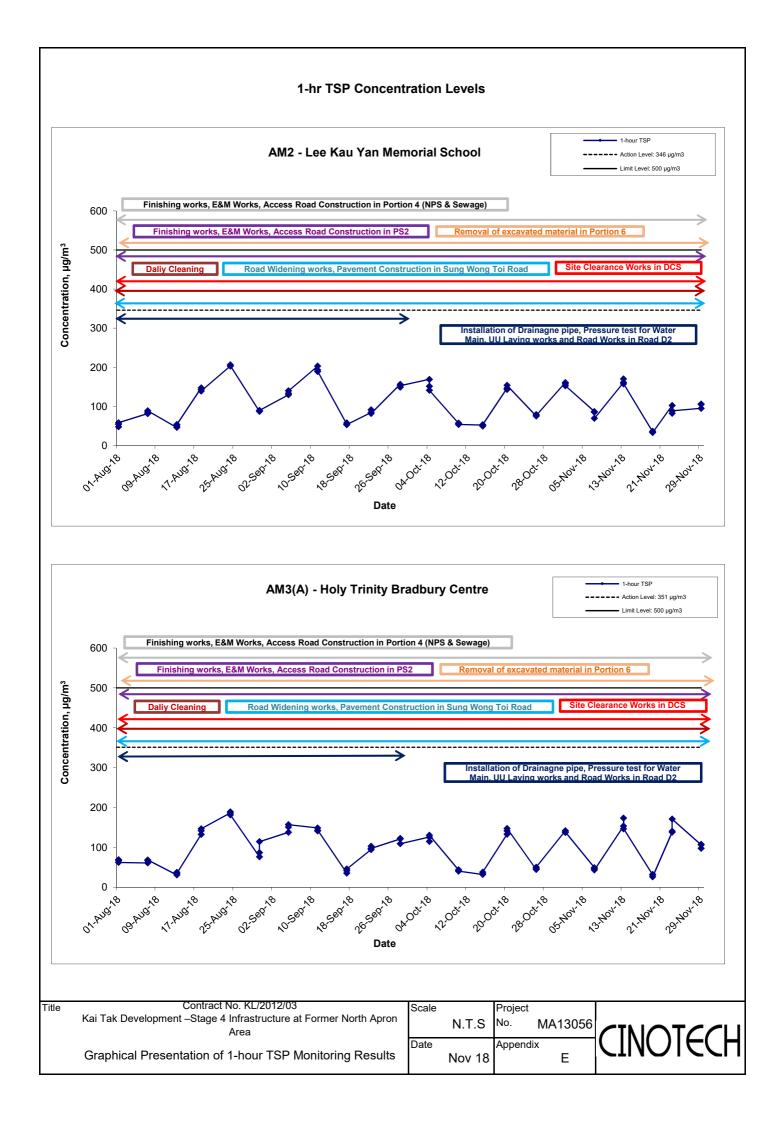
Air Quality Monitoring Station

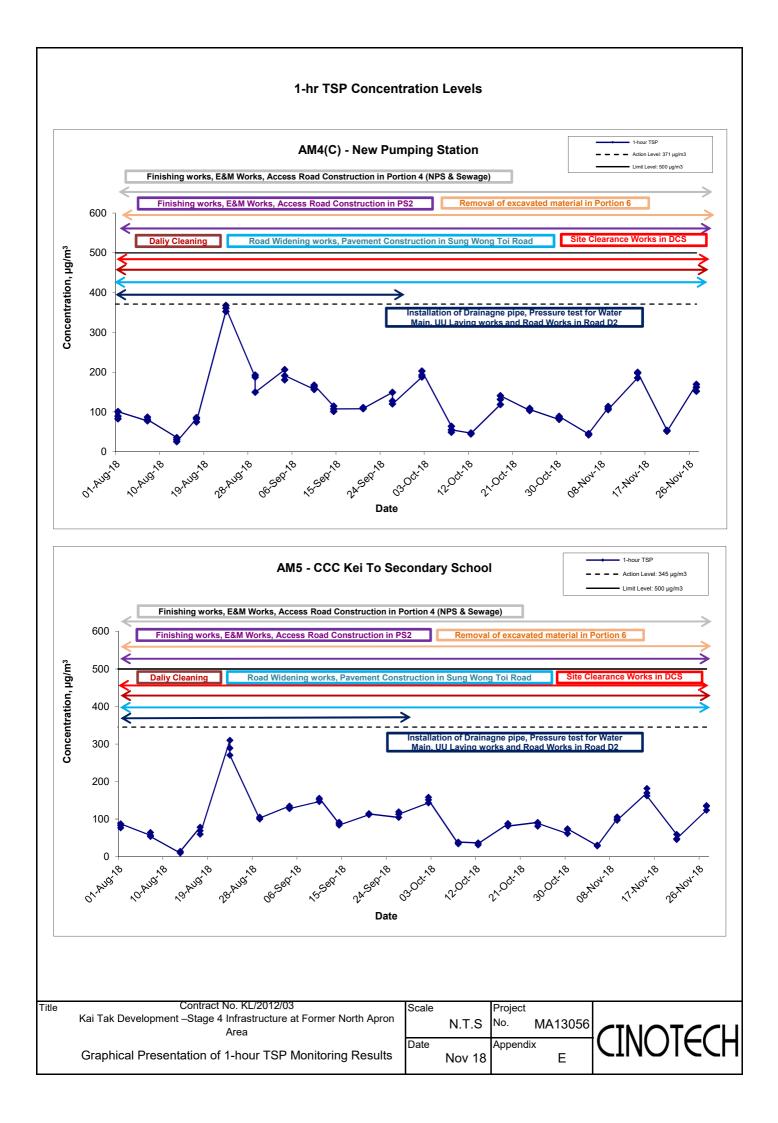
AM2 - Lee Kau Yan Memorial School AM2(A) - Ng Wah Catholic Secondary School AM3(A) - Holy Trinity Bradbury Centre AM3(B) - Hong Kong Family Planning Association AM4(C) - New Pumping Station under Contract KL/2012/03 AM5 - CCC Kei To Secondary School

Noise Monitoring Station

M6(A) - Oblate Primary School M7 - CCC Kei To Secondary School M8(A) - Po Leung Kuk Ngan Po Ling College (Site Boundary) M9 - Tak Long Estate

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION


Location AM2 -	Lee Kau Yar	n Memorial Schoo	
Date	Time	Weather	Particulate Concentration (µg/m3)
1-Nov-18	13:00	Sunny	161.0
1-Nov-18	14:00	Sunny	157.5
1-Nov-18	15:00	Sunny	152.9
7-Nov-18	13:00	Sunny	86.9
7-Nov-18	14:00	Sunny	85.3
7-Nov-18	15:00	Sunny	69.5
13-Nov-18	13:00	Sunny	161.4
13-Nov-18	14:00	Sunny	170.3
13-Nov-18	15:00	Sunny	157.8
19-Nov-18	13:00	Sunny	34.4
19-Nov-18	14:00	Sunny	36.7
19-Nov-18	15:00	Sunny	33.2
23-Nov-18	9:00	Sunny	102.5
23-Nov-18	10:00	Sunny	82.3
23-Nov-18	11:00	Sunny	88.6
29-Nov-18	9:00	Cloudy	95.0
29-Nov-18	10:00	Cloudy	106.3
29-Nov-18	11:00	Cloudy	105.1
		Average	104.8
		Maximum	170.3
		Minimum	33.2


Appendix E - 1-hour TSP Monitoring Results

Location AM3(A) - Holy Trin	ity Bradury Centre	9
Date	Time	Weather	Particulate Concentration (µg/m3)
1-Nov-18	9:00	Sunny	141.5
1-Nov-18	10:00	Sunny	137.4
1-Nov-18	11:00	Sunny	138.5
7-Nov-18	9:00	Sunny	49.0
7-Nov-18	10:00	Sunny	46.7
7-Nov-18	11:00	Sunny	43.3
13-Nov-18	9:00	Sunny	153.4
13-Nov-18	10:00	Sunny	173.3
13-Nov-18	11:00	Sunny	146.5
19-Nov-18	9:00	Sunny	30.8
19-Nov-18	10:00	Sunny	31.9
19-Nov-18	11:00	Sunny	26.2
23-Nov-18	13:00	Sunny	138.0
23-Nov-18	14:00	Sunny	140.5
23-Nov-18	15:00	Sunny	170.9
29-Nov-18	13:00	Cloudy	106.3
29-Nov-18	14:00	Cloudy	107.6
29-Nov-18	15:00	Cloudy	97.5
		Average	104.4
		Maximum	173.3
		Minimum	26.2

Appendix E - 1-hour TSP Monitoring Results

Location AM4(C	,		
Date	Time	Weather	Particulate Concentration (µg/m3)
5-Nov-18	9:00	Sunny	44.5
5-Nov-18	10:00	Sunny	42.2
5-Nov-18	11:00	Sunny	45.6
9-Nov-18	9:00	Sunny	109.6
9-Nov-18	10:00	Sunny	114.0
9-Nov-18	11:00	Sunny	105.7
15-Nov-18	9:00	Cloudy	185.4
15-Nov-18	10:00	Cloudy	197.7
15-Nov-18	11:00	Cloudy	199.6
21-Nov-18	13:00	Sunny	53.9
21-Nov-18	14:00	Sunny	52.7
21-Nov-18	15:00	Sunny	51.6
27-Nov-18	13:00	Cloudy	169.5
27-Nov-18	14:00	Cloudy	152.2
27-Nov-18	15:00	Cloudy	162.0
		Average	112.4
		Maximum	199.6
			199.6 42.2
ocation AM5 - C	CC Kei To S	Maximum	
ocation AM5 - C	CC Kei To S	Maximum Minimum	
		Maximum Minimum Secondary School Weather	42.2
Date	Time	Maximum Minimum Secondary School Weather Sunny	42.2 Particulate Concentration (μg/m3)
Date 5-Nov-18	Time 13:00	Maximum Minimum Secondary School Weather Sunny Sunny	42.2 Particulate Concentration (μg/m3) 29.6
Date 5-Nov-18 5-Nov-18 5-Nov-18	Time 13:00 14:00	Maximum Minimum Secondary School Weather Sunny Sunny Sunny	42.2 Particulate Concentration (μg/m3) 29.6 30.8
Date 5-Nov-18 5-Nov-18	Time 13:00 14:00 15:00	Maximum Minimum Secondary School Weather Sunny Sunny	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5
Date 5-Nov-18 5-Nov-18 5-Nov-18 9-Nov-18	Time 13:00 14:00 15:00 14:00	Maximum Minimum Secondary School Weather Sunny Sunny Sunny Sunny	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1
Date 5-Nov-18 5-Nov-18 5-Nov-18 9-Nov-18 9-Nov-18	Time 13:00 14:00 15:00 14:00 15:00	Maximum Minimum Gecondary School Weather Sunny Sunny Sunny Sunny Sunny Sunny	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1 105.7
Date 5-Nov-18 5-Nov-18 5-Nov-18 9-Nov-18 9-Nov-18 9-Nov-18	Time 13:00 14:00 15:00 14:00 15:00 16:00	Maximum Minimum Gecondary School Weather Sunny Sunny Sunny Sunny Sunny Sunny Sunny	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1 105.7 96.9
Date 5-Nov-18 5-Nov-18 5-Nov-18 9-Nov-18 9-Nov-18 9-Nov-18 15-Nov-18	Time 13:00 14:00 15:00 14:00 15:00 16:00 13:00	Maximum Minimum Secondary School Weather Sunny Sunny Sunny Sunny Sunny Cloudy	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1 105.7 96.9 169.8
Date 5-Nov-18 5-Nov-18 5-Nov-18 9-Nov-18 9-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18	Time 13:00 14:00 15:00 14:00 15:00 16:00 13:00 14:00	Maximum Minimum Secondary School Weather Sunny Sunny Sunny Sunny Sunny Cloudy Cloudy	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1 105.7 96.9 169.8 181.8
Date 5-Nov-18 5-Nov-18 9-Nov-18 9-Nov-18 9-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18	Time 13:00 14:00 15:00 14:00 15:00 16:00 13:00 14:00 15:00	Maximum Minimum Gecondary School Weather Sunny Sunny Sunny Sunny Sunny Cloudy Cloudy Cloudy	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1 105.7 96.9 169.8 181.8 162.1
Date 5-Nov-18 5-Nov-18 9-Nov-18 9-Nov-18 9-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 21-Nov-18	Time 13:00 14:00 15:00 14:00 15:00 16:00 13:00 14:00 15:00 9:00	Maximum Minimum Gecondary School Weather Sunny Sunny Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy Sunny	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1 105.7 96.9 169.8 181.8 162.1 59.3
Date 5-Nov-18 5-Nov-18 9-Nov-18 9-Nov-18 9-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 21-Nov-18 21-Nov-18	Time 13:00 14:00 15:00 14:00 15:00 16:00 13:00 14:00 15:00 9:00 10:00	Maximum Minimum Secondary School Weather Sunny Sunny Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy Sunny	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1 105.7 96.9 169.8 181.8 162.1 59.3 45.6
Date 5-Nov-18 5-Nov-18 9-Nov-18 9-Nov-18 9-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 21-Nov-18 21-Nov-18 21-Nov-18	Time 13:00 14:00 15:00 14:00 15:00 13:00 14:00 15:00 9:00 10:00 11:00	Maximum Minimum Gecondary School Weather Sunny Sunny Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy Sunny Sunny Cloudy Sunny Sunny Sunny Cloudy	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1 105.7 96.9 169.8 181.8 162.1 59.3 45.6 47.9
Date 5-Nov-18 5-Nov-18 9-Nov-18 9-Nov-18 9-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 21-Nov-18 21-Nov-18 21-Nov-18 21-Nov-18 27-Nov-18 27-Nov-18	Time 13:00 14:00 15:00 14:00 15:00 16:00 13:00 14:00 15:00 9:00 10:00 11:00 9:00	Maximum Minimum Secondary School Weather Sunny Sunny Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy Sunny Sunny Sunny Sunny Sunny	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1 105.7 96.9 169.8 181.8 162.1 59.3 45.6 47.9 123.6
Date 5-Nov-18 5-Nov-18 9-Nov-18 9-Nov-18 9-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 21-Nov-18 21-Nov-18 21-Nov-18 21-Nov-18 21-Nov-18	Time 13:00 14:00 15:00 14:00 15:00 16:00 13:00 14:00 15:00 9:00 10:00 10:00	Maximum Minimum Gecondary School Weather Sunny Sunny Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy Sunny Sunny Sunny Cloudy Sunny Sunny Cloudy Cloudy Cloudy Cloudy	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1 105.7 96.9 169.8 181.8 162.1 59.3 45.6 47.9 123.6 134.3
Date 5-Nov-18 5-Nov-18 9-Nov-18 9-Nov-18 9-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 15-Nov-18 21-Nov-18 21-Nov-18 21-Nov-18 21-Nov-18 21-Nov-18 27-Nov-18	Time 13:00 14:00 15:00 14:00 15:00 16:00 13:00 14:00 15:00 9:00 10:00 10:00	Maximum Minimum Gecondary School Weather Sunny Sunny Sunny Sunny Sunny Cloudy Cloudy Cloudy Cloudy Sunny Sunny Cloudy Cloudy Sunny Sunny Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy	42.2 Particulate Concentration (μg/m3) 29.6 30.8 28.5 100.1 105.7 96.9 169.8 181.8 162.1 59.3 45.6 47.9 123.6 134.3 136.1

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

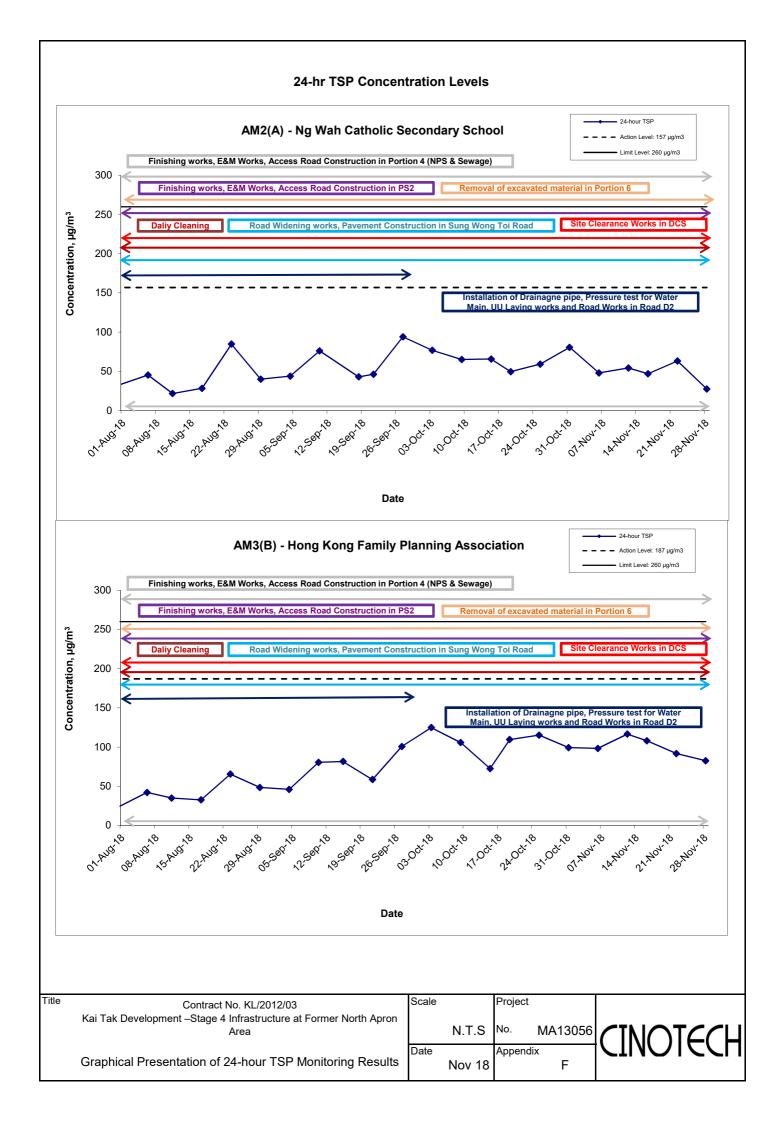
Appendix F - 24-hour TSP Monitoring Results

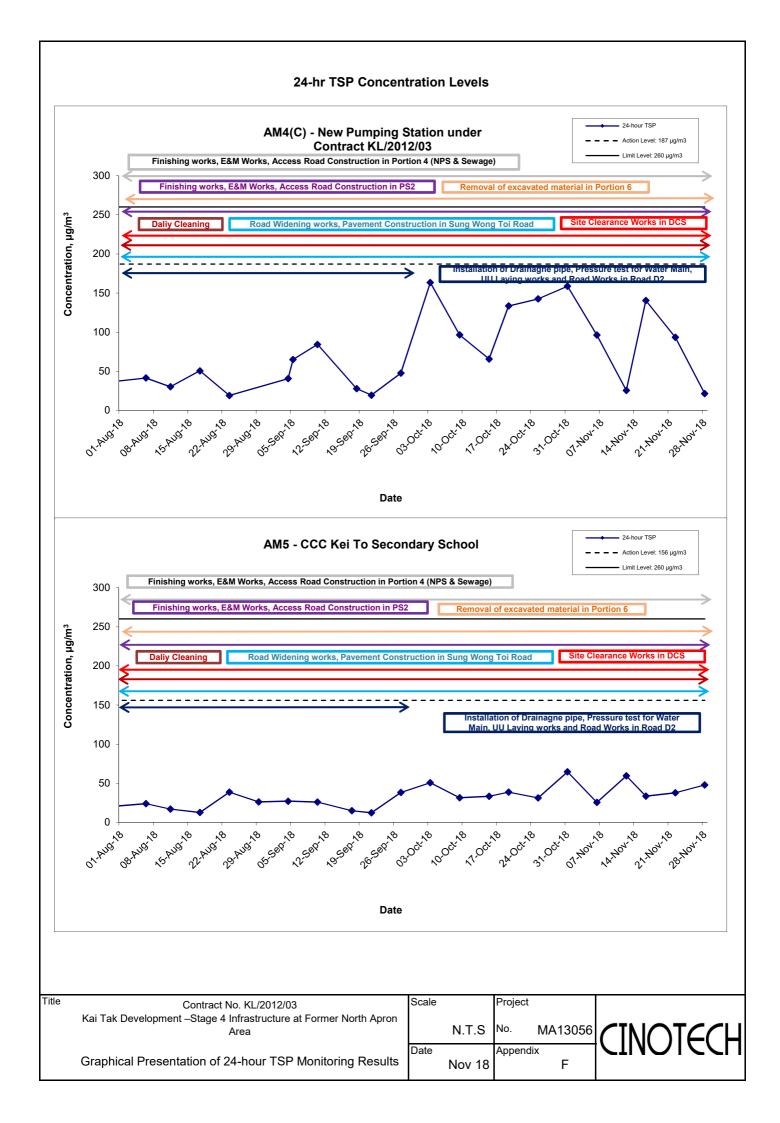
Location AM2(A) - Ng Wah Catholic Secondary School

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
6-Nov-18	Cloudy	297.9	766.7	2.9869	3.0722	0.0853	3000.2	3024.2	24.0	1.23	1.23	1.23	1773.5	48.1
12-Nov-18	Cloudy	298.3	764.1	3.0122	3.1073	0.0951	3048.2	3072.2	24.0	1.21	1.21	1.21	1748.6	54.4
16-Nov-18	Sunny	296.4	764.9	3.2148	3.2973	0.0825	3096.2	3120.2	24.0	1.22	1.22	1.22	1755.2	47.0
22-Nov-18	Sunny	293.4	767.8	3.2186	3.3304	0.1118	3144.2	3168.2	24.0	1.23	1.23	1.23	1767.8	63.2
28-Nov-18	Cloudy	293.3	767.1	2.9426	2.9914	0.0488	3192.2	3216.2	24.0	1.23	1.23	1.23	1767.2	27.6
													Min	27.6
													Max	63.2
													Average	48.1

Location AM3(B) - Hong Kong Family Planning Association

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
6-Nov-18	Sunny	297.7	766.3	3.0248	3.1977	0.1729	1385.7	1409.7	24.0	1.22	1.22	1.22	1758.7	98.3
12-Nov-18	Cloudy	298.8	764.4	2.9684	3.1727	0.2043	1409.7	1433.7	24.0	1.22	1.22	1.22	1753.2	116.5
16-Nov-18	Cloudy	296.6	765.2	3.2366	3.4269	0.1903	1433.7	1457.7	24.0	1.22	1.22	1.22	1760.7	108.1
22-Nov-18	Cloudy	293.5	767.3	2.9665	3.1291	0.1626	1461.1	1485.1	24.0	1.23	1.23	1.23	1772.6	91.7
28-Nov-18	Sunny	293.7	767.7	2.9546	3.1010	0.1464	1485.1	1509.1	24.0	1.23	1.23	1.23	1772.5	82.6
													Min	82.6
													Max	116.5
													Average	99.4


Location AM4(C) - New Pumping Station under Contract KL/2012/03


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
6-Nov-18	Sunny	297.6	766.5	3.0027	3.1725	0.1698	1769.1	1793.1	24.0	1.23	1.22	1.22	1763.6	96.3
12-Nov-18	Cloudy	298.4	764.6	2.9743	3.0191	0.0448	1793.1	1817.1	24.0	1.22	1.22	1.22	1758.7	25.5
16-Nov-18	Cloudy	296.5	765.3	3.2499	3.4980	0.2481	1817.1	1841.1	24.0	1.23	1.23	1.23	1765.7	140.5
22-Nov-18	Cloudy	294.0	767.1	2.9893	3.1552	0.1659	1841.1	1865.1	24.0	1.23	1.23	1.23	1776.0	93.4
28-Nov-18	Cloudy	293.4	767.3	2.9471	2.9853	0.0382	1865.1	1889.1	24.0	1.24	1.23	1.23	1778.2	21.5
													Min	21.5
													Max	140.5
													Average	75.4

Location AM5 - CCC Kei To Secondary School

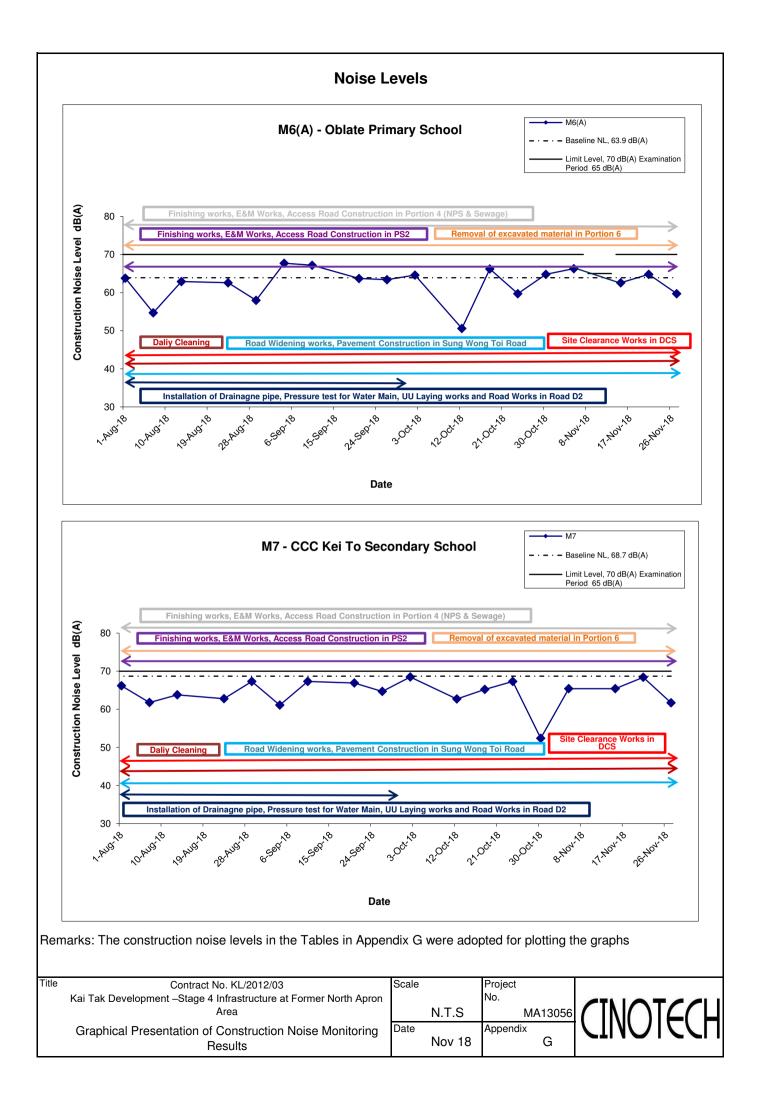
Start Date	Weather	Air	Atmospheric	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
6-Nov-18	Sunny	297.7	765.9	2.9920	3.0373	0.0453	1898.0	1922.0	24.0	1.23	1.23	1.23	1769.1	25.6
12-Nov-18	Cloudy	299.0	764.7	2.9690	3.0739	0.1049	1922.0	1946.0	24.0	1.23	1.22	1.22	1763.9	59.5
16-Nov-18	Cloudy	296.2	765.0	3.2381	3.2974	0.0593	1946.0	1970.0	24.0	1.23	1.23	1.23	1772.5	33.5
22-Nov-18	Cloudy	293.7	767.6	2.9828	3.0502	0.0674	1970.0	1994.0	24.0	1.24	1.24	1.24	1783.1	37.8
28-Nov-18	Sunny	293.8	767.4	2.9588	3.0440	0.0852	1994.0	2018.0	24.0	1.24	1.24	1.24	1782.6	47.8
													Min	25.6
													Max	59.5

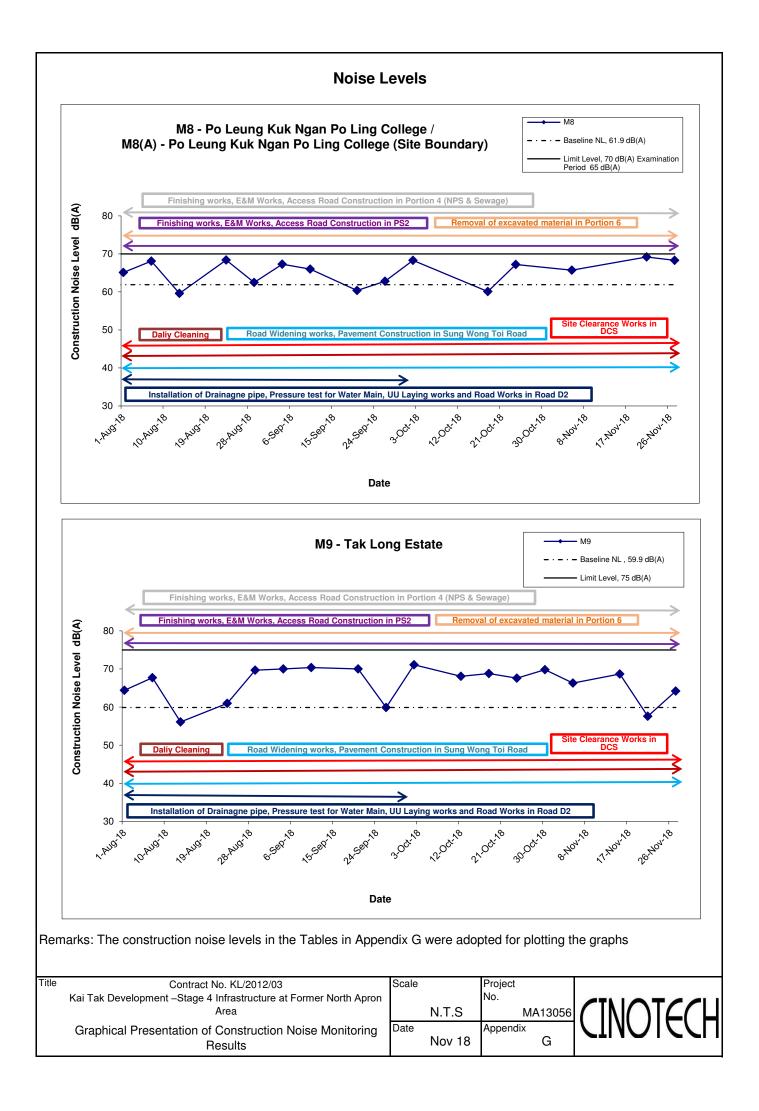
Average 40.8

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix G - Noise Monitoring Results

Location M6(Location M6(A) - Oblate Primary School											
					Uni	t: dB (A) (30-min)						
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level					
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}					
5-Nov-18	14:00	Sunny	68.3	69.2	64.1		66.3					
15-Nov-18	14:00	Cloudy	62.6	65.9	58.5	63.9	62.6 Measured \leq Baseline					
21-Nov-18	10:00	Sunny	67.4	70.4	65.3	03.9	64.8					
27-Nov-18	11:00	Cloudy	65.3	68.1	60.9		59.7					


Location M7 - CCC Kei To Secondary School


			Unit: dB (A) (30-min)							
Date	Time	Weather	Mea	sured Noise	Level	Baseline Level	Construction Noise Level			
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}			
5-Nov-18	13:05	Sunny	65.4	68.3	58.2		65.4 Measured \leq Baseline			
15-Nov-18	13:05	Cloudy	65.4	67.2	60.3	68.7	65.4 Measured \leq Baseline			
21-Nov-18	09:10	Sunny	68.4	71.4	64.2	00.7	68.4 Measured \leq Baseline			
27-Nov-18	09:00	Cloudy	61.7	63.8	58.6		61.7 Measured \leq Baseline			

Location M8 -	Location M8 - Po Leung Kuk Ngan Po Ling College / M8(A) - Po Leung Kuk Ngan Po Ling College (Site Boundary)												
	Unit: dB (A) (30-min)												
Date	Time	Weather	Measured Noise Level Baseline Level Construction Noise Level										
			L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}						
5-Nov-18	14:45	Sunny	67.2	69.4	63.1		65.7						
21-Nov-18	11:30	Sunny	69.9	72.0	63.9	61.9	69.2						
27-Nov-18	10:00	Cloudy	69.2	72.5	62.8		68.3						

Location M9 - Tak Long Estate							
			Unit: dB (A) (30-min)				
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
5-Nov-18	10:30	Sunny	67.2	70.2	63.1		66.3
15-Nov-18	16:30	Cloudy	69.2	71.3	65.4	59.9	68.7
21-Nov-18	14:00	Sunny	61.9	64.6	58.3	59.9	57.6
27-Nov-18	14:00	Cloudy	65.6	68.2	61.9		64.2

٦

APPENDIX H SUMMARY OF EXCEEDANCE

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Appendix H – Summary of Exceedance

Exceedance Report for Contract No. KL/2012/03

- (A) Exceedance Report for Air Quality (NIL in the reporting month)
- (B) Exceedance Report for Construction Noise (NIL in the reporting month)
- (C) Exceedance Report for Landscape and Visual (NIL in the reporting month)

APPENDIX I SITE AUDIT SUMMARY

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	181102	
Date	2 November 2018	
Time	10:00-11:30	

		Related
Ref. No.	Non-Compliance	Item No
	None identified	
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	-
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 181024), the environmental deficiency was observed to be improved/rectified by the Contractor	

-7 /	
1	2 November 2018
NI	2 November 2018
	WF

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	181109	
Date	9 November 2018	
Time	10:00-11:30	

Ref. No.	Non-Compliance	Related Item No.
-	None identified	
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	<u></u>
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 181102), no environmental deficiency was observed during site inspection.	

	Name	Signature	Date
Recorded by	Tommy Cheng	F	14 November 2018
Checked by	Dr. Priscila Choy	NI	14 November 2018

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	181116
Date	16 November 2018
Time	10:00-12:00

		Related
Ref. No.	Non-Compliance	Item No
	None identified	
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	·
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 181109), the environmental deficiency was observed to be improved/rectified by Contractor.	

	Name	Signature	Date
Recorded by	Tommy Cheng	Trad	19 November 2018
Checked by	Dr. Priscilla Choy	NL	19 November 2018

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	181121
Date	21 November 2018
Time	14:00-15:30

Ref. No.	Non-Compliance	Related Item No
	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	·
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 181116), no environmental deficiency was observed during site inspection.	

	Name	Signature	Date
Recorded by	Tommy Cheng		23 November 2018
Checked by	Dr. Priscila Choy	WI	23 November 2018

,

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	181130
Date	30 November 2018
Time	10:00-12:00

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 181121), no environmental deficiency was observed during site inspection.	

	Name	Signature	Date
Recorded by	Tommy Cheng		30 November 2018
Checked by	Dr. Priscila Choy	NÃ	30 November 2018
)	

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	181102
Date	2 November 2018
Time	10:00-11:30

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
181102-R01	Dusty stockpile should be covered properly to prevent dust generation.	C 7
181102-R02	Watering spray should be provided regularly within dry unpaved area.	C 6
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
181102-R03	The chemical waste should be stored in designated area to avoid leakage.	E 2i
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 181024), the environmental deficiency was observed to be improved/rectified by the Contractor.	

	Name	Signature	Date
Recorded by	Tommy Cheng	7	2 November 2018
Checked by	Dr. Priscilla Choy	NZ	2 November 2018
		<u></u>	

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	181109
Date	9 November 2018
Time	10:00-11:30

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
181109-R01	The chemical waste should be stored in designated area to avoid leakage.	E 2i
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 181102), the item no. 181102-R03 was remarked as item no.181109-R01 for further following up.	

	Name	Signature	Date
Recorded by	Tommy Cheng	-The	14 November 2018
Checked by	Dr. Priscilla Choy	WI	14 November 2018

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-337/2009 - New Distributor Roads serving the Planned Kai Tak Development

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	181116
Date	16 November 2018
Time	10:00-12:00

		Related
Ref. No.	Non-Compliance	Item No
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
-	H. Others	
	• Follow-up on previous audit session (Ref. No.: 181109), no environmental deficiency was observed during site inspection.	

	Name	Signature	Date
Recorded by	Tommy Cheng	7	19 November 2018
Checked by	Dr. Priscila Choy	NI	19 November 2018

Contract No. KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area EP-344/2009 - New Sewage Pumping Stations serving Kai Tak Development

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	181121
Date	21 November 2018
Time	14:00-15:30

.

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
181121-R03	• Dusty material should be cleared within access road to prevent dust generation.	C 3
	D. Noise	
	No environmental deficiency was identified during site inspection.	
·····	E. Waste / Chemical Management	
181121-R01	Contractor should collect and dispose the C&D waste regularly.	E 1i
181121-R03	• Chemical container should be stored properly inside drip tray to prevent leakage.	E 2i
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 181116), the environmental deficiency was observed to be improved/rectified by Contractor.	

	Name	Signature	Date
Recorded by	Tommy Cheng	Frank	23 November 2018
Checked by	Dr. Priscilla Choy	NI.	23 November 2018

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	181130
Date	30 November 2018
Time	10:00-12:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
181130-R01	Dusty stockpile should be covered by impervious sheeting properly.	<u>C 7</u>
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Visual and Landscape	
	No environmental deficiency was identified during site inspection.	
	G. Permits /Licences	
	No environmental deficiency was identified during site inspection.	
	H. Others	
	• Follow-up on previous audit session (Ref. No.: 181121), all environmental deficiencies were observed to be improved/rectified by Contractor.	

	Name	Signature	Date
Recorded by	Tommy Cheng	The	30 November 2018
Checked by	Dr. Priscilla Choy	NÃ	30 November 2018
· · · · · · · · · · · · · · · · · · ·	****	· · · · · · · · · · · · · · · · · · ·	

APPENDIX J EVENT ACTION PLANS

Event/Action Plan for Air Quality

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Notify Contractor.	1. Rectify any unacceptable practice;		
exceeded by	causes of exceedance;	by ET;		2. Amend working methods if		
one sampling	2. Inform Contactor, IEC and ER;	2. Check Contractor's working		appropriate.		
	3. Repeat measurement to confirm finding.	method.				
Action Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Discuss with ET and IEC on proper		
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	remedial actions;		
two or more	2. Inform Contractor, IEC and ER;	2. Check Contractor's working	2. Notify Contractor;	2. Submit proposals for remedial		
consecutive	3. Increase monitoring frequency to daily;	method;	3. In consolidation with the IEC,	actions to ER and IEC within three		
sampling	4. Discuss with IEC and Contractor on	3. Discuss with ET and Contractor on	agree with the Contractor on the	working days of notification;		
	remedial actions required;	possible remedial measures;	remedial measures to be	3. Implement the agreed proposals;		
	5. Assess the effectiveness of	4. Advise the ER on the effectiveness	implemented;	4. Amend proposal if appropriate.		
	Contractor's remedial actions;	of the proposed remedial measures.	4. Supervise implementation of			
	6. If exceedance continues, arrange		remedial measures;			
	meeting with IEC and ER;		5. Conduct meeting with ET and			
	7. If exceedance stops, cease additional		IEC if exceedance continues.			
	monitoring.					
Limit Level being	1. Identify source and investigate the	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid		
exceeded by	causes of exceedance;	by ET;	of exceedance in writing;	further exceedance;		
one sampling	2. Inform Contractor, IEC, ER, and EPD;	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET and IEC on proper		
	3. Repeat measurement to confirm finding;	method;	3. In consolidation with the IEC,	remedial actions;		
	4. Assess effectiveness of	3. Discuss with ET and Contractor on	agree with the Contractor on the	3. Submit proposals for remedial		
	Contractor's remedial actions and keep	possible remedial measures;	remedial measures to be	actions to ER and IEC within three		

	EPD, IEC and ER informed of	4. Advise the ER on the	implemented;	working days of notification;
	the results.	effectiveness of the proposed	4. Supervise implementation of	4. Implement the agreed proposals.
		remedial measures.	remedial measures;	
			5. Conduct meeting with ET and	
			IEC if exceedance continues.	
Limit Level being	1. Notify IEC, ER, Contractor and	1. Check monitoring data submitted	1. Confirm receipt of notification	1. Take immediate action to avoid
exceeded by	EPD;	by ET;	of exceedance in writing;	further exceedance;
two or more	2. Repeat measurement to confirm	2. Check Contractor's working	2. Notify Contractor;	2. Discuss with ET, ER and IEC on
consecutive	findings;	method;	3. In consolidation with the IEC,	proper remedial actions;
sampling	3. Carry out analysis of Contractor's	3. Discuss amongst ER, ET, and	agree with the Contractor on the	3. Submit proposals for remedial
	working procedures to identify source and	Contractor on the potential remedial	remedial measures to be	actions to IEC within three working
	investigate the causes of exceedance;	actions;	implemented;	days of notification;
	4. Increase monitoring frequency to	4. Review Contractor's remedial	4. Supervise implementation of	4. Implement the agreed proposals;
	daily;	actions whenever necessary to	remedial measures;	5. Submit further remedial actions if
	5. Arrange meeting with IEC, ER	assure their effectiveness and	5. If exceedance continues,	problem still not under control;
	and Contractor to discuss the	advise the ER accordingly.	consider stopping the Contractor	6. Stop the relevant portion of works
	remedial actions to be taken;		to continue working on that	as instructed by the ER until the
	6. Assess effectiveness of		portion of work which causes the	exceedance is abated.
	Contractor's remedial actions and		exceedance until the	
	keep EPD, IEC and ER informed		exceedance is abated.	
	of the results;			
	7. If exceedance stops, cease additional			
	monitoring.			

Event/Action Plan for Construction Noise

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level	1. Notify ER, IEC and Contractor;	1. Review the investigation	1. Confirm receipt of	1. Submit noise mitigation		
being	2. Carry out investigation;	results submitted by the ET;	notification of failure in	proposals to IEC and ER;		
exceeded	3. Report the results of investigation	2. Review the proposed remedial	writing;	2. Implement noise mitigation		
	to the IEC, ER and Contractor;	measures by the Contractor and	2. Notify Contractor;	proposals.		
	4. Discuss with the IEC and	advise the ER accordingly;	3. In consolidation with the	(The above actions should be		
	Contractor on remedial measures	3. Advise the ER on the	IEC, agree with the	taken within 2 working days after		
	required;	effectiveness of the proposed	Contractor on the remedial	the exceedance is identified)		
	5. Increase monitoring frequency to	remedial measures.	measures to be implemented;			
	check mitigation effectiveness.	(The above actions should be	4. Supervise the			
	(The above actions should be taken	taken within 2 working days after	implementation of remedial			
	within 2 working days after the	the exceedance is identified)	measures.			
	exceedance is identified)		(The above actions should be			
			taken within 2 working days			
			after the exceedance is			
			identified)			
Limit Level	1. Inform IEC, ER, Contractor and	1. Discuss amongst ER, ET, and	1. Confirm receipt of	1. Take immediate action to		
being	EPD;	Contractor on the potential	notification of failure in	avoid further exceedance;		
exceeded	2. Repeat measurements to confirm	remedial actions;	writing;	2. Submit proposals for remedial		
	findings;	2. Review Contractor's remedial	2. Notify Contractor;	actions to IEC and ER within 3		
	3. Increase monitoring frequency;	actions whenever necessary to	3. In consolidation with the	working days of notification;		
	4. Identify source and investigate the	assure their effectiveness and	IEC, agree with the	3. Implement the agreed		
	cause of exceedance;	advise the ER accordingly.	Contractor on the remedial	proposals;		

5. Carry out analysis of Contractor's	(The above actions should be	measures to be implemented;	4. Submit further proposal if
working procedures;	taken within 2 working days after	4. Supervise the	problem still not under control;
6. Discuss with the IEC, Contractor	the exceedance is identified)	implementation of remedial	5. Stop the relevant portion of
and ER on remedial measures		measures;	works as instructed by the ER
required;		5. If exceedance continues,	until the exceedance is abated.
7. Assess effectiveness of		consider stopping the	(The above actions should be
Contractor's remedial actions and		Contractor to continue	taken within 2 working days after
keep IEC, EPD and ER informed of		working on that portion of	the exceedance is identified)
the results;		work which causes the	
8. If exceedance stops, cease		exceedance until the	
additional monitoring.		exceedance is abated.	
(The above actions should be taken		(The above actions should be	
within 2 working days after the		taken within 2 working days	
exceedance is identified)		after the exceedance is	
 		identified)	

Event/Action Plan for Landscape and Visual

EVENT			ACTION	
ACTION LEVEL	ET	IEC	ER	CONTRACTOR
Design Check	1. Check final design conforms to the requirements of EP and prepare report.	 Check report. Recommend remedial design if necessary 	1. Undertake remedial design if necessary	
Non-conformity on one occasion	 Identify Source Inform IEC and ER Discuss remedial actions with IEC, ER and Contractor Monitor remedial actions until rectification has been completed 	 Check report Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise ER on effectiveness of proposed remedial measures. Check implementation of remedial measures. 	 Notify Contractor Ensure remedial measures are properly implemented 	 Amend working methods Rectify damage and undertake any necessary replacement
Repeated Non-conformity	1. Identify Source Inform IEC and	1. Check monitoring report	 Notify Contractor Ensure remedial measures are properly 	 Amend working methods Rectify damage and

ER	2. Check Contractor's	implemented	undertake any necessary
2. Increase	working method		replacement
monitoring	3. Discuss with ET and		
frequency	Contractor on possible		
3. Discuss remedial	remedial measures		
actions with IEC,	4. Advise ER on		
ER and Contractor	effectiveness of		
4. Monitor remedial	proposed remedial		
actions until	measures		
rectification has	5. Supervise		
been completed	implementation of		
5. If non-conformity	remedial measures.		
stops, cease			
additional			
monitoring			

APPENDIX K ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Appendix K - Summary of Implementation Schedule of Mitigation Measures for Construction Phase

Types of Impacts	Mitigation Measures	Status
1	8 times daily watering of the work site with active dust emitting activities. Implementation of dust suppression measures stipulated	*
	in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimize cumulative dust impacts.	
	 Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be fully covered by impermeable sheeting to reduce dust emission. 	*
	 Misting for the dusty material should be carried out before being loaded into the vehicle. 	^
	 Any vehicle with an open load carrying area should have properly fitted side and tail boards. Material having the potential to create dust should not 	^
	be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	^
	 The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation. 	^
Construction Dust	 The vehicles should be restricted to maximum speed of 10 km per hour and confined haulage and delivery vehicle to designated roadways insider the site. On- site unpaved roads should be compacted and kept free of lose materials. 	^
	 Vehicle washing facilities should be provided at every vehicle exit point. 	^
	 The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores. 	^
	 Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet. 	^
	 Every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the three sides. 	^
	 Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites. 	^

	Use of quiet PME, movable barriers barrier for Asphalt	
	Paver, Breaker, Excavator and Hand-held breaker and full enclosure for Air Compressor, Bar Bender, Concrete Pump, Generator and Water Pump	^
	 Good Site Practice: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. Scheduling of Construction Works during School Examination Period (i) Provision of low noise surfacing in a section of Road 	^ N/A(1) ^ ^ ^
Construction	 (i) Provision of low noise surfacing in a section of Road L2; and 	N/A
Noise		
	(ii) Provision of structural fins	N/A
	(i) Avoid the sensitive façade of class room facing Road L2 and L4; and	N/A
	(ii) Provision of low noise surfacing in a section of Road L2 & L4	N/A
	 (i) Provision of low noise surfacing in a section of Road L4 before occupation of Site 111; and 	N/A
	(ii) Setback of building about 5m from site boundary.	N/A
	Setback of building about 35m to the northwest direction at 1L3 and 5m at Site 1L2.	N/A
	 avoid any sensitive façades with openable window facing the existing Kowloon City Road network; and 	N/A
	(ii) for the sensitive facades facing the To Kwa Wan direction, either setback the facades by about 5m to the northeast direction or do not provide the facades with openable window.	N/A

	 avoid any sensitive facades with openable window facing the existing To Kwa Wan Road or 	N/A
	(ii) provision of 17.5m high noise tolerant building fronting To Kwa Wan Road and restrict the height of the residential block(s) located at less than 55m away from To Kwa Wan Road to no more than	N/A
	 (i) 25m above dround. avoid any sensitive facades with openable window facing the slip road connecting Prince Edward Road East and San Po Kong or other alternative mitigation measures and at-source mitigation measures for the surrounding new local roads to minimise the potential traffic noise impacts from the slip road 	N/A
	All the ventilation fans installed in the below will be provided with silencers or acoustics treatment.	
	(i) SPS	N/A
	(ii) ESS	N/A N/A
	(iii) Tunnel Ventilation Shaft	N/A N/A
	(iv) EFTS depot	
	Installation of retractable roof or other equivalent measures	N/A
	The following mitigation measures are proposed to be incorporated in the design of the SPS at KTD, including:	
	 Dual power supply or emergency generator should be provided at all the SPSs to secure electrical power supply; 	N/A
	 Standby pumps should be provided at all SPSs to ensure smooth operation of the SPS during maintenance of the duty pumps; 	N/A
	 An alarm should be installed to signal emergency high water level in the wet well at all SPSs; and 	N/A
Construction Water	 For all unmanned SPSs, a remote monitor system connecting SPSs with the control station through telemetry system should be provided so that swift actions could be taken in case of malfunction of unmanned facilities. 	N/A
Quality	Land-based Construction	
	Construction Runoff	
	Exposed soil areas should be minimised to reduce the potential for increased siltation, contamination of runoff, and erosion. Construction runoff related impacts associated with the above ground construction activities can be readily controlled through the use of appropriate	^
	mitigation measures which include:	^
	 use of sediment traps adequate maintenance of drainage systems to prevent flooding and overflow 	^

Construction site should be provided with adequately designed perimeter channel and pre-treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	٨
Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.	Λ
Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m ³ capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	٨
Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	٨
Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	٨
Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.	۸
Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	Λ

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.

Drainage

It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.

All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.

All fuel tanks and storage areas should be provided with locks and be located on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ.

Sewage Effluent

Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.

Stormwater Discharges

Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes

N/A

Λ

۸

Λ

Λ

Λ

Debris and Litter	
In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials. litter or wastes to marine waters does not occur	^
Construction Works at or in Close Proximity of Storm Culvert or Seafront	
The proposed works should preferably be carried out within the dry season where the flow in the drainage channel /storm culvert/ nullah is low.	^
The use of less or smaller construction plants may be specified to reduce the disturbance to the bottom sediment at the drainage channel /storm culvert / nullah.	٨
Temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works.	^
Stockpiling of construction materials and dusty materials should be covered and located away from any water courses.	^
Construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers.	^
Construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable.	٨
Mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff.	^
Construction effluent, site run-off and sewage should be properly collected and/or treated.	~
Any works site inside the storm water courses should be temporarily isolated, such as by placing of sandbags or silt curtains with lead edge at bottom and properly supported props to prevent adverse impact on the storm water quality.	^
Silt curtain may be installed around the construction activities at the seafront to minimize the potential impacts due to accidental spillage of construction materials.	^
Proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/drainage channel/sea.	^
 Tr (

Supervisory staff should be assigned to station on site to	^
closely supervise and monitor the works	
Marine water quality monitoring and audit programme	^
shall be implemented for the proposed sediment	
treatment operation.	
Good Site Practices	
It is not anticipated that adverse waste management	
related impacts would arise, provided that good site	
practices are adhered to. Recommendations for good site	
practices during construction activities include:	
 Nomination of an approved person, such as a site 	
manager, to be responsible for good site practices,	^
arrangements for collection and effective disposal	
to an appropriate facility, of all wastes generated at	
the site	
 Training of site personnel in proper waste 	^
management and chemical waste handling	
procedures	
 Provision of sufficient waste disposal points and 	^
regular collection for disposal	
 Appropriate measures to minimise windblown litter 	^
and dust during transportation of waste by either	
covering trucks or by transporting wastes in	
enclosed containers	
 A recording system for the amount of wastes 	^
generated, recycled and disposed of (including the	
disposal sites)	
Waste Reduction Measures	
Good management and control can prevent the	
generation of a significant amount of waste. Waste	
reduction is best achieved at the planning and design	
stage, as well as by ensuring the implementation of good	
site practices. Recommendations to achieve waste	
reduction include:	
 Sort C&D waste from demolition of the remaining 	^
structures to recover recyclable portions such as	
metals	
 Segregation and storage of different types of 	^
waste in different containers, skips or stockpiles to	
enhance reuse or recycling of materials and their	
proper disposal	
 Encourage collection of aluminium cans, PET 	<u>^</u>
bottles and paper by providing separate labelled	^
bins to enable these wastes to be segregated from	
other general refuse generated by the work force	
 Any unused chemicals or those with remaining functional consolity should be regulad 	^
functional capacity should be recycled	
 Proper storage and site practices to minimise the potential for damage or contamination of 	^
potential for damage or contamination of construction materials	
construction materials	
 K-7	

Construction and Demolition Material	
Mitigation measures and good site practices should be incorporated into contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include:	
 Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles should be located away from waterfront or storm drains as far as possible 	٨
 Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric 	*
 Skip hoist for material transport should be totally enclosed by impervious sheeting 	^
 Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site 	٨
 The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores 	۸
 The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle 	۸
 All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet 	*
 The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading 	٨
When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	٨
Chemical Waste	
After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation	*
 K-8	

	General Refuse	
	General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem	*
	CM1 All existing trees should be carefully protected during construction.	^
Landscape and Visual	CM2 Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	N/A
	CM3 Control of night-time lighting.	^
	CM4 Erection of decorative screen hoarding.	^

Remarks:	 Compliance of mitigation measure;
	X Non-compliance of mitigation measure;
	N/A Not Applicable at this stage;
	N/A(1) Not observed;
	• Non-compliance but rectified by the contractor;
	* Recommendation was made during site audit but improved/rectified by the contractor.

APPENDIX L SUMMARIES OF ENVIRONMENTAL COMPLAINT, WARNING, SUMMON AND NOTIFICATION OF SUCCESSFUL PROSECUTION

Contract No. KL/2012/03 Kai Tak Development –Stage 4 Infrastructure at Former North Apron Area

Appendix L – Summary of environmental complaint, warning, summon and notification of successful prosecution

Reporting Month: November 2018

Log Ref.	Received Date	Details of Warning / Summons and Successful Prosecutions	Investigation/Mitigation Action					
N/A	N/A	N/A	N/A	N/A				

Warnings / Summons and Successful Prosecutions received in the reporting month

Remarks: No warning/summon and prosecution were received in the reporting period.

Complaint Log

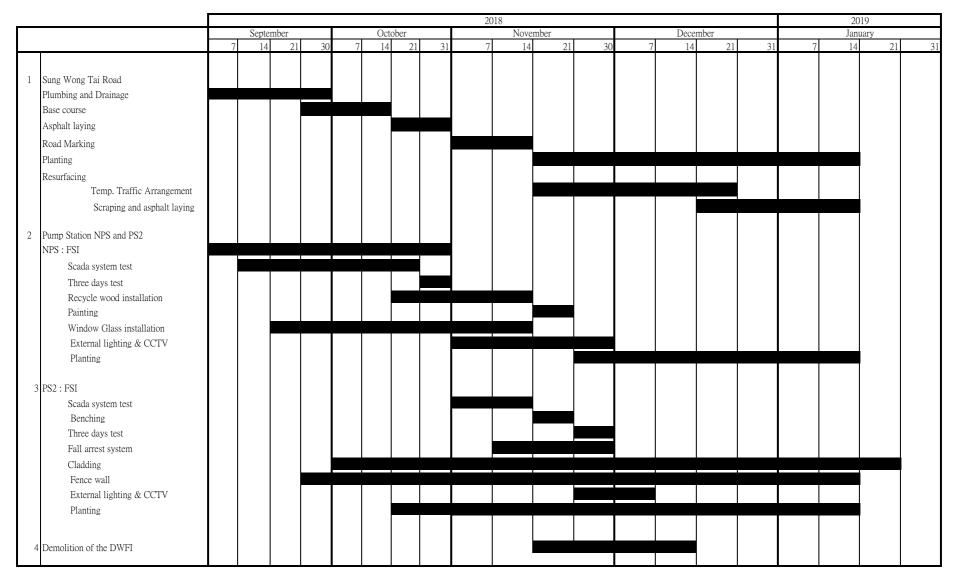
EPD Complaint Ref No.	aint Date of Complaint Details To. Complaint		Investigation / Mitigation Action				
N/A	N/A	N/A	N/A	N/A			

APPENDIX M GENERATED WASTE QUANTITY

APPENDIX IV Monthly Summary Waste Flow Table

(PS Clause 1.86)

Name of Department: CEDD


Contract No. : KL/2012/03

Monthly Summary Waste Flow Table for November 2018 (year) (in tons)

			Actual Quantities of Inert C&D Materials Generated Monthly					Actual Quantities of C&D Wastes Generated Monthly				
Month	Total Disposal Loads Total Quantity Generated	Hard Rock & Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemicals Waste	Others, e.g. general refuse	
	(No.s)	(in tons)	0	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)	(in tons)
2013 (Oct - Dec) Sub-Total	108	463.69	0	0	0	0	0	0	0	0	0	463.69
2014 (Jan – Dec) Sub-Total	24	16925.7	0	0	16798.93	83.66	1804.27	0	0	0	0	43.11
2015 (Jan – Dec) Sub-Total	284	81859.97	0	0	38291.91	43457.21	19920	0	0	0	0	310.26
2016 (Jan – Dec) Sub-Total	3369	50762.64	0	0	0	49894.67	4020	0	0	0	0	867.95
2017 (Jan – Dec) Sub-Total	2737	39615.16	0	0	0	38996.26	0	0	0	0	0	603.11
Jan-18	48	575.23	0	0	0	497.91	0	0	0	0	0	77.32
Feb-18	10	81.78	0	0	0	30.34	0	0	0	0	0	51.44
Mar-18	59	869.93	0	0	0	817.87	0	0	0	0	0	52.06
Apr-18	14	136.71	0	0	0	91.67	0	0	0	0	0	45.04
May-18	327	5176.05	0	0	0	5125.76	0	0	0	0	0	50.29
Jun-18	14	141.28	0	0	0	104.01	0	0	0	0	0	37.27
Jul-18	22	188.88	0	0	0	121.23	0	0	0	0	0	67.65
Aug-18	15	94.82	0	0	0	14.78	0	0	0	0	0	80.04
Sep-18	5	25.46	0	0	0	0	0	0	0	0	0	25.46
Oct-18	9	37.96	0	0	0	0	0	0	0	0	0	37.96
Nov-18	24	70.64	0	0	0	0	0	0	0	0	0	70.64
Dec-18												
Total	7069	197025.9	0	0	55090.84	139235.4	25744.27	0	0	0	0	2883.29

APPENDIX N CONSTRUCTION PROGRAMME

Contract No.: KL/2012/03 Kai Tak Development - Stage 4 Infrastructure at Former North Apron Area Construction Programme

