BY HAND

The Environmental Impact Assessment Ordinance Register Office **Environmental Protection Department** 27/F., Southorn Centre 130 Hennessy Road Wan Chai Hong Kong

Level 5 Festival Walk 80 Tat Chee Avenue Kowloon Tong Kowloon Hong Kong t+852 3767 5800 f+852 3767 5922

www.arup.com

For the attention of Ms HO Yuen Han, Marlene

16 June 2014

Dear Madam

Contract No. HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill

Submission under Environmental Permit (EP-352/2009/C - Condition 4.4) Monthly EM&A Report – May 2014

On behalf of HyD/HZMB Project Management Office (the Permit Holder) of the captioned Environmental Permit (EP), I submit herewith three hard copies and one electronic copy of Monthly EM&A Report for May 2014 as per Condition 4.4 of EP-352/2009/C.

I confirm that this submission package has been certified by Environmental Team Leader and verified by Independent Environmental Checker.

Yours faithfully

Michael Chan

CRE / Supervising Officer's Representative

HyD/HZMBHKPMO cc

- Mr K Y Yung

w/e - CD only

EPD **AFCD** - Ms Connie Wong

w/e - one hard copy

ENPO

- Mr C P Lam - Mr Y H Hui

w/e - one hard copy w/e - one hard copy and one CD

IEC

- Mr Antony Wong

w/o - By fax only

Arup

- Mr Eric Chan

w/e - CD only

Response required

: No, thank you

Date required

Attachments

: Yes

MC/DS/KY/et

Ref.: HYDHZMBEEM00_0_2006L.14 ARUP Level 5, Festival Walk 80 Tat Chee Avenue Kowloon Tong, Kowloon 16 June 2014 By Fax (3767 5922) and By Post

Attention: Mr. Colin Meadows / Mr. Michael Chan

Dear Sirs,

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,
and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2011/09 HZMB Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill Revised Monthly EM&A Report for May 2014 (EP-352/2009/C)

Reference is made to the revised Monthly EM&A Report No. 16 (May 2014) Version 2.0 certified by the Environmental Team Leader (ETL) and emailed to us on 13 June 2014.

We are pleased to verify the captioned Revised Monthly EM&A Report No. 16 (May 2014) in accordance with Condition 4.4 of EP-352/2009/C.

The ETL shall be aware that the verification to the captioned report does not release the ETL of any of his obligations to comply with the EM&A Manual and the approved monitoring methodologies.

Thank you for your kind attention. Please do not hesitate to contact the undersigned or the ENPO Leader, Mr. Y H Hui, should you have any queries.

Yours sincerely,

Antony Wong

Independent Environmental Checker

Hong Kong Link Road

c.c. HyD – Mr. Matthew Fung (By Fax: 3188 6614) HyD – Mr. Y K Lam (By Fax: 3188 6614) ARUP – Mr. Eric Chan (By Fax: 2268 3970) Cinotech – Dr. H F Chan (By Fax: 3107 1388) DCVJV – Mr. Chu Chung Sing (By Fax: 3121 6688)

Internal: DY, YH, CL, ENPO Site

T:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_2006L.14.doc

Dragages -China Harbour-VSL JV

Contract HY/2011/09

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Monthly EM&A Report

May 2014 (Version 2.0)

Certified By

Dr. H.F. Chan

Environmental Team Leader

(Date: 12 June 2014)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

Introduction			Page
Environmental Monitoring and Audit Progress 1	EX	KECUTIVE SUMMARY	1
Environmental Monitoring and Audit Progress 1	Int	roduction	1
Future Key Issues			
1 INTRODUCTION 5 Purpose of the report 5 Structure of the report 5 2 CONTRACT INFORMATION 7 Background 7 Construction Programme 9 Summary of Construction Works Undertaken During Reporting Month 9 Status of Environmental Licences, Notification and Permits 12 3 AIR QUALITY MONITORING 14 Monitoring Requirements. 14 Monitoring Location 14 Monitoring Equipment 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 15 Preparating/Analytical Procedures 15 Results and Observations 16 <td></td> <td></td> <td></td>			
Purpose of the report 5 Structure of the report 5 2 CONTRACT INFORMATION 7 Background 7 Construction Programme 9 Summary of Construction Works Undertaken During Reporting Month 9 Status of Environmental Licences, Notification and Permits 12 3 AIR QUALITY MONITORING 14 Monitoring Requirements 14 Monitoring Equipment 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 15 HVS Installation 15 If Pilters Preparation 15 Operating/Analytical Procedures 15 Results and Observations 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Equipment 18 Monitoring Parameters, Frequency and Duration 18 Monitoring Parameters, Frequency and Duration 19	Fu	ture Key Issues	3
Structure of the report. 5 2 CONTRACT INFORMATION 7 Background 7 Construction Programme 9 Summary of Construction Works Undertaken During Reporting Month 9 Status of Environmental Licences, Notification and Permits. 12 3 AIR QUALITY MONITORING 14 Monitoring Requirements. 14 Monitoring Equipment 14 Monitoring Equipment 14 Monitoring Methodology and QA/QC Procedure 15 Instrumentation 16 Instrumentation 17	1	INTRODUCTION	5
Structure of the report. 5 2 CONTRACT INFORMATION 7 Background 7 Construction Programme 9 Summary of Construction Works Undertaken During Reporting Month 9 Status of Environmental Licences, Notification and Permits. 12 3 AIR QUALITY MONITORING 14 Monitoring Requirements. 14 Monitoring Equipment 14 Monitoring Equipment 14 Monitoring Methodology and QA/QC Procedure 15 Instrumentation 16 Instrumentation 17	Pu	rpose of the report	5
Background 7 Contract Organisation. 8 Construction Programme. 9 Summary of Construction Works Undertaken During Reporting Month 9 Status of Environmental Licences, Notification and Permits. 12 3 AIR QUALITY MONITORING 14 Monitoring Requirements. 14 Monitoring Location. 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Wethodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 16 Event and Action Plan 17 4		1	
Contract Organisation. 8 Construction Programme. 9 Summary of Construction Works Undertaken During Reporting Month. 9 Status of Environmental Licences, Notification and Permits. 12 3 AIR QUALITY MONITORING. 14 Monitoring Requirements. 14 Monitoring Location. 14 Monitoring Equipment 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure. 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 <	2	CONTRACT INFORMATION	7
Contract Organisation. 8 Construction Programme. 9 Summary of Construction Works Undertaken During Reporting Month. 9 Status of Environmental Licences, Notification and Permits. 12 3 AIR QUALITY MONITORING. 14 Monitoring Requirements. 14 Monitoring Location. 14 Monitoring Equipment 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure. 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 <	Ra	ckground	7
Construction Programme 9 Summary of Construction Works Undertaken During Reporting Month 9 Status of Environmental Licences, Notification and Permits 12 3 AIR QUALITY MONITORING 14 Monitoring Requirements 14 Monitoring Location 14 Monitoring Equipment 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 16 Instrumentation 16 Instrumentation 17 Instrumentation 18 Instrumentatio		•	
Summary of Construction Works Undertaken During Reporting Month 9 Status of Environmental Licences, Notification and Permits 12 3 AIR QUALITY MONITORING 14 Monitoring Requirements 14 Monitoring Location 14 Monitoring Equipment 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 15 Operating/Analytical Procedures 15 Is preparation 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Equipment 18 Monitoring Methodology and QA/QC Procedures 19 Manitenance and Calibration		S .	
Status of Environmental Licences, Notification and Permits. 12 3 AIR QUALITY MONITORING 14 Monitoring Requirements. 14 Monitoring Equipment 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 16 Instrumentation 16 Instrumentation 17 Instrumentation 18 Monitoring Requirements 18 Monitoring Methodology and QA/QC Procedures 19 Instrumentation 21 Monitoring Requirements 21 Monitoring Requirements </td <td></td> <td></td> <td></td>			
Monitoring Requirements 14 Monitoring Equipment 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 15 HVS Installation 15 Filters Preparation 15 Operating/Analytical Procedures 15 Results and Observations 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Location 18 Monitoring Equipment 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Equipment 22 Monitoring Equipment 22 Monitoring Parameters, Frequency 24 Monitoring Methodology 24 Monitoring Methodology 24 Monitoring Methodology 24 </td <td></td> <td></td> <td></td>			
Monitoring Requirements 14 Monitoring Equipment 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 15 HVS Installation 15 Filters Preparation 15 Operating/Analytical Procedures 15 Results and Observations 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Location 18 Monitoring Equipment 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Equipment 22 Monitoring Equipment 22 Monitoring Parameters, Frequency 24 Monitoring Methodology 24 Monitoring Methodology 24 Monitoring Methodology 24 </td <td>3</td> <td>AIR QUALITY MONITORING</td> <td>14</td>	3	AIR QUALITY MONITORING	14
Monitoring Location 14 Monitoring Equipment 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 16 Instrumentation 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Equipment 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 M	M		
Monitoring Equipment 14 Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 15 Instrumentation 15 Instrumentation 15 ItVS Installation 15 Filters Preparation 15 Operating/Analytical Procedures 15 Results and Observations 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Location 18 Monitoring Equipment 18 Monitoring Wethodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Requirements 21 Monitoring Equipment 22 Monitoring Parameters, Frequency 24 Monitoring Methodology 24 Monitoring Methodology 24 <tr< td=""><td></td><td></td><td></td></tr<>			
Monitoring Parameters, Frequency and Duration 14 Monitoring Methodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 15 Operating/Analytical Procedures 15 Results and Observations 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Equipment 18 Monitoring Parameters, Frequency and Duration 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Requirements 21 Monitoring Equipment 22 Monitoring Parameters, Frequency 24 Monitoring Methodology 24		_	
Monitoring Methodology and QA/QC Procedure 15 1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 15 HVS Installation 15 Filters Preparation 15 Operating/Analytical Procedures 15 Results and Observations 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Location 18 Monitoring Parameters, Frequency and Duration 18 Monitoring Parameters, Frequency and Duration 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Requirements 21 Monitoring Equipment 22 Monitoring Parameters, Frequency 24 Monitoring Methodology 24 Instrumentation 24 Operating/Analytical Procedures 24		<u> </u>	
1-hour and 24-hour TSP Air Quality Monitoring 15 Instrumentation 15 HVS Installation 15 Filters Preparation 15 Operating/Analytical Procedures 15 Results and Observations 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Location 18 Monitoring Parameters, Frequency and Duration 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Locations 21 Monitoring Equipment 22 Monitoring Parameters, Frequency 24 Monitoring Methodology 24 Instrumentation 24 Operating/Analytical Procedures 24			
Instrumentation 15 HVS Installation 15 Filters Preparation 15 Operating/Analytical Procedures 15 Results and Observations 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Location 18 Monitoring Equipment 18 Monitoring Parameters, Frequency and Duration 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Requirements 21 Monitoring Equipment 22 Monitoring Parameters, Frequency 24 Monitoring Methodology 24 Instrumentation 24 Operating/Analytical Procedures 24			
Filters Preparation 15 Operating/Analytical Procedures 15 Results and Observations 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Location 18 Monitoring Equipment 18 Monitoring Parameters, Frequency and Duration 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Requirements 21 Monitoring Equipment 22 Monitoring Methodology 24 Monitoring Methodology 24 Instrumentation 24 Operating/Analytical Procedures 24			
Operating/Analytical Procedures 15 Results and Observations 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Location 18 Monitoring Equipment 18 Monitoring Parameters, Frequency and Duration 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Requirements 21 Monitoring Equipment 22 Monitoring Methodology 24 Monitoring Methodology 24 Instrumentation 24 Operating/Analytical Procedures 24	HV	VS Installation	15
Results and Observations 16 Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Equipment 18 Monitoring Parameters, Frequency and Duration 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Requirements 21 Monitoring Equipment 22 Monitoring Parameters, Frequency 24 Monitoring Methodology 24 Instrumentation 24 Operating/Analytical Procedures 24	Fil	lters Preparation	15
Event and Action Plan 17 4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Equipment 18 Monitoring Parameters, Frequency and Duration 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Requirements 21 Monitoring Equipment 22 Monitoring Parameters, Frequency 24 Monitoring Methodology 24 Instrumentation 24 Operating/Analytical Procedures 24			
4 NOISE MONITORING 18 Monitoring Requirements 18 Monitoring Location 18 Monitoring Equipment 18 Monitoring Parameters, Frequency and Duration 18 Monitoring Methodology and QA/QC Procedures 19 Maintenance and Calibration 19 Results and Observations 19 Event and Action Plan 20 5 WATER QUALITY MONITORING 21 Monitoring Requirements 21 Monitoring Equipment 22 Monitoring Parameters, Frequency 24 Monitoring Methodology 24 Instrumentation 24 Operating/Analytical Procedures 24			
Monitoring Requirements18Monitoring Location18Monitoring Equipment18Monitoring Parameters, Frequency and Duration18Monitoring Methodology and QA/QC Procedures19Maintenance and Calibration19Results and Observations19Event and Action Plan205 WATER QUALITY MONITORING21Monitoring Requirements21Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24	Ev	ent and Action Plan	17
Monitoring Location18Monitoring Equipment18Monitoring Parameters, Frequency and Duration18Monitoring Methodology and QA/QC Procedures19Maintenance and Calibration19Results and Observations19Event and Action Plan205 WATER QUALITY MONITORING21Monitoring Requirements21Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24	4	NOISE MONITORING	18
Monitoring Equipment18Monitoring Parameters, Frequency and Duration18Monitoring Methodology and QA/QC Procedures19Maintenance and Calibration19Results and Observations19Event and Action Plan205 WATER QUALITY MONITORING21Monitoring Requirements21Monitoring Locations21Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24	Mo	onitoring Requirements	18
Monitoring Parameters, Frequency and Duration18Monitoring Methodology and QA/QC Procedures19Maintenance and Calibration19Results and Observations19Event and Action Plan205 WATER QUALITY MONITORING21Monitoring Requirements21Monitoring Locations21Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24	Mo	onitoring Location	18
Monitoring Methodology and QA/QC Procedures19Maintenance and Calibration19Results and Observations19Event and Action Plan205 WATER QUALITY MONITORING21Monitoring Requirements21Monitoring Locations21Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24			
Maintenance and Calibration19Results and Observations19Event and Action Plan205 WATER QUALITY MONITORING21Monitoring Requirements21Monitoring Locations21Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24			
Results and Observations19Event and Action Plan205 WATER QUALITY MONITORING21Monitoring Requirements21Monitoring Locations21Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24	Mo	onitoring Methodology and QA/QC Procedures	19
Event and Action Plan205 WATER QUALITY MONITORING21Monitoring Requirements21Monitoring Locations21Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24			
5 WATER QUALITY MONITORING21Monitoring Requirements21Monitoring Locations21Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24			
Monitoring Requirements21Monitoring Locations21Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24	EV		
Monitoring Locations21Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24	5	WATER QUALITY MONITORING	21
Monitoring Equipment22Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24			
Monitoring Parameters, Frequency24Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24			
Monitoring Methodology24Instrumentation24Operating/Analytical Procedures24			
Instrumentation24Operating/Analytical Procedures24			
Operating/Analytical Procedures 24			

QA.	I/QC Requirements	25
_	intenance and Calibration	
Re	sults and Observations	26
Ev	ent and Action Plan	27
6	DOLPHIN-RELATED MONITORING	28
Mo	onitoring Requirements	28
DC	DLPHIN MONITORING (LINE-TRANSECT VESSEL SURVEY)	28
Mo	onitoring Requirements	28
	onitoring Location	
	onitoring Frequency	
Mo	onitoring Day	29
Mo	onitoring Results	29
ΑĽ	DITIONAL LAND-BASED DOLPHIN BEHAVIOUR AND MOVEMENT	
M	ONITORING	30
7	ENVIRONMENTAL SITE INSPECTION	31
Sit	e Audits	31
	vice on the Solid and Liquid Waste Management Status	
8	ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)	34
Su	mmary of Exceedances	34
Su	mmary of Environmental Complaint	34
Su	mmary of Notification of Summons and Successful Prosecution	34
9	FUTURE KEY ISSUES	35
Ke	y Issues in the Coming Month	35
Mo	onitoring Schedule for the Next Month	36
	nstruction Programme for the Next Month	
10	CONCLUSIONS AND RECOMMENDATIONS	37
Co	nclusions	37
	commendations	38

LIST OF TABLES

Table I	Summary Table for Monitoring Activities in the Reporting Month
Table II	Summary Table for Events Recorded in the Reporting Month
Table 2.1	Key Contacts of the Contract
Table 2.2	Status of Environmental Licences, Notification and Permits
Table 3.1	Location for Air Quality Monitoring Locations
Table 3.2	Air Quality Monitoring Equipment
Table 3.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 3.4	Summary Table of 1-hour TSP Monitoring Results during the Reporting Month
Table 3.5	Summary Table of 24-hour TSP Monitoring Results during the Reporting
	Month
Table 3.6	Observation at Dust Monitoring Stations
Table 4.1	Location for Noise Monitoring Locations
Table 4.2	Noise Monitoring Equipment
Table 4.3	Noise Monitoring Parameters, Frequency and Duration
Table 4.4	Summary Table of Noise Monitoring Results during the Reporting Month
Table 4.5	Observation at Noise Monitoring Stations
Table 5.1	Location for Marine Water Quality Monitoring Locations
Table 5.2	Water Quality Monitoring Equipment
Table 5.3	Water Quality Monitoring Parameters and Frequency
Table 5.4	Methods for Laboratory Analysis for Water Samples
Table 5.5	Summary of Water Quality Exceedances
Table 6.1	Co-ordinates of transect lines in WL survey area
Table 6.2	Dolphin encounter rates (sightings per 100 km of survey effort) in May's
	surveys
Table 6.3	Progress Record of Additional Land-based Dolphin Behaviour and Movement
	Monitoring in May 2014
Table 7.1	Observations and Recommendations of Site Audit

LIST OF FIGURE

Site Layout Plan
Project Organisation for Environmental Works
Locations of Air Quality, Noise and Wind Monitoring Stations
Locations of Water Quality Monitoring Stations

LIST OF APPENDICES

Appendix B Action and Limit Levels Appendix C Copies of Calibration Certificates Appendix D Environmental Monitoring Schedules
11
Appendix D. Environmental Monitoring Schedules
repending beneating beneaties
Appendix E 1-hour TSP Monitoring Results
Appendix F 24-hour TSP Monitoring Results
Appendix G Noise Monitoring Results
Appendix H Water Quality Monitoring Results
Appendix I Dolphin Monitoring Report (Line Transect)
Appendix J Wind Data
Appendix K Event Action Plans
Appendix L Summary of Exceedance
Appendix M Site Audit Summary
Appendix N Updated Environmental Mitigation Implementation Schedule
Appendix O Waste Generation in the Reporting Month
Appendix P Complaint Log

EXECUTIVE SUMMARY

Introduction

1. This is the 16th monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the project "Contract No. HY/2011/09 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill" (hereinafter called the "Contract"). This report documents the findings of EM&A Works conducted in May 2014.

Environmental Monitoring and Audit Progress

2. A summary of the monitoring activities in this reporting month is listed in **Table I** below:

 Table I
 Summary Table for Monitoring Activities in the Reporting Month

Parameter(s)	Date(s)
1-hr TSP Monitoring	5 th , 9 th , 15 th , 21 st , 27 th and 30 th May 2014.
24-hr TSP Monitoring	5 th , 9 th , 15 th , 21 st , 27 th and 30 th May 2014.
Noise Monitoring	7 th , 16 th , 22 nd and 28 th May 2014
Water Quality Monitoring	2 nd , 5 th , 7 th , 10 th , 12 th , 14 th , 16 th , 19 th , 21 st , 23 rd , 26 th , 28 th and 30 th May 2014
Dolphin Monitoring (Line-transect Vessel Surveys)	7 th and 20 th May 2014
Additional Land-based Dolphin Behaviour and Movement Monitoring	19 th and 27 th May 2014
Environmental Site Inspection	7 th , 13 th , 20 th and 30 th May 2014
Archaeological Site Inspection	(1) N/A

Remark: (1) No archaeological site inspection was conducted in the reporting month.

Breaches of Action and Limit Levels

3. Summary of the environmental exceedances of the reporting month is tabulated in **Table II**.

Table II Summary Table for Events Recorded in the Reporting Month

Environmental Monitoring	Parameter	No. of Exceedance Action Limit		related Constr Activitie Con Action	ceedance I to the ruction es of this tract Limit
		Level	Level	Level	Level
A in Ovality	1-hr TSP	0	0	0	0
Air Quality	24-hr TSP	0	0	0	0
Noise	$L_{eq(30 min)}$	0	0	0	0
	Dissolved Oxygen (DO) (Surface & Middle)	0	0	0	0
Water Quality	Dissolved Oxygen (DO) (Bottom)	0	0	0	0
water Quanty	Turbidity	6	1	0	0
	Suspended Solids (SS)	5	1	0	0

1-hour TSP Monitoring

4. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

5. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise

6. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Water Quality

7. All water quality monitoring was conducted as scheduled in the reporting month. There are five Action Level and one Limit Level exceedances for suspended solids were recorded. In addition, there are six Action Level and one Limit Level exceedances for

turbidity were recorded. No Action/Limit Level exceedance for dissolved oxygen was recorded.

8. According to the investigation, no pollution discharge was observed from the site. In addition, some of the exceeded results were similar or within the ranges baseline monitoring results and sediment plume which is considered due to the movement of vessel was observed. Therefore, the exceedances are considered not due to the Contract.

Complaint Log

9. Three environmental complaints were received in the reporting month.

Notification of Summons and Successful Prosecutions

10. No notification of summons and successful prosecution was received in the reporting month.

Reporting Changes

11. This report has been developed in compliance with the reporting requirements for the subsequent monthly EM&A Report as required by the EM&A Manual for Hong Kong Link Road (EM&A Manual).

Future Key Issues

12. Major site activities for the coming reporting month will include:

WA4

- Fabrication of rebar cages
- Fabrication of temporary piling platforms

WA7

- Fabrication of rebar cages
- Loading and Unloading of rebar materials

Marine Viaduct (P0 to P80)

- Construction of the temporary jetty
- Installation of temporary casings, piling jackets, temporary piles, platform and permanent casings
- Dismantling of piling jacket
- Piling platform removal works
- Pile excavation by Reverse Circulation Drill (RCD) method method
- Pile excavation by Kelly method
- Inter-face coring test, full depth coring test, sonic test, friction test
- and load test
- Predrilling works
- Operation of floating concrete batching plants
- Trimming of pile head
- Grouting works
- Concreting for pile cap

- Driving of sheet piling
- Trial water cracking and trial shaft grouting
- Installation of recast shells and waterproofing works
- Advanced concrete breaking works inside the permanent steel casing
- Steel fixing to the column and formwork installation
- Kingpost installation for precast cap and associated steel welding works

Land Viaduct (P81 to P114)

- Land piling and concreting works
- Rebar threading for coupler
- Backfilling
- Tree transplant and maintenance works
- Installation of portal beam
- Excavation works and Earth Lateral Support (ELS)
- Pouring of pile cap and pile head breaking
- Formation works
- Pours of column
- Erection of side formwork for the portal and kickers
- Road diversion works
- Pre-drilling works, pile cap, column and portal construction
- Side formwork and wing slab soffit formwork
- Waling of ELS and backfill
- Steel fixing for bottom mat and side bars
- Carriageway diversion
- Tendon ducts
- Falsework erection
- Temporary carriageway for diversion at P82 & P83

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Dragages -China Harbour-VSL JV (hereinafter called "the Contractor") as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Contract No. HY/2011/09 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill" (hereinafter called the "Contract") in accordance with EP Conditions 2.1.

Purpose of the report

1.2 This is the 16th EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme in May 2014.

Structure of the report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** purpose and structure of the report.
 - Section 2: **Contract Information** summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.
 - Section 3: **Air Quality Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 4: **Noise Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: **Water Quality Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 6: **Dolphin-Related Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations and monitoring results.
 - Section 7: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting month.
 - Section 8: **Environmental Non-conformance** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.
 - Section 9: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.

Section 10: Conclusions and Recommendation

Monthly EM&A Report – May 2014

2 CONTRACT INFORMATION

Background

- 2.1 The proposed Hong Kong Zhuhai Macao Bridge Hong Kong Link Road (HKLR) is 12km long connecting the Hong Kong-Zhuhai-Macao Bridge (HZMB) at the HKSAR Boundary with the Hong Kong Boundary Crossing Facilities (HKBCF) situated at the north eastern waters of the Hong Kong International Airport, opening a new and direct connection route between Hong Kong, Macao and the Western Pearl River Delta.
- 2.2 The HKLR comprises a 9.4km long viaduct section from the HKSAR boundary to Scenic Hill on the Airport Island; a 1km tunnel section to the reclamation formed along the east coast of the Airport Island and a 1.6km long at-grade road section on the reclamation connecting to the HKBCF. The tunnel section of HKLR will pass under Scenic Hill, Airport Road and Airport Railway to minimize the environmental and visual impacts to Tung Chung residents.
- 2.3 An application (No ESB-110/2003) for an Environmental Impact Assessment (EIA) Study Brief under Section 5(1) of the Environmental Impact Assessment Ordinance (EIAO) was submitted by Highways Department (the Project Proponent) on 8 October 2003 with a Project Profile (No. No. PP-201/2003) for the Hong Kong Zhuhai Macao Bridge Hong Kong Section and North Lantau Highway Connection. The Hong Kong Zhuhai Macao Bridge Hong Kong Section and North Lantau Highway Connection has subsequently been renamed as HKLR. EPD issued an EIA Study Brief (No: ESB-110/2003) in November 2003 to the Project Proponent to carry out an EIA study.
- 2.4 An EIA Study (Reg. No. AEIAR-144/2009) has been undertaken to provide information on nature and extent of environmental impacts arising from the construction and operation of HKLR. The Environmental Permit was issued on 4 November 2009 (Permit No. EP-352/2009). Pursuant to Section 13 of the EIAO, the Director of Environmental Protection amends the Environmental Permit (No. EP-352/2009) based on the Application No. VEP-339/2011 and the environmental Permit (Permit No. EP-352/2009/A) was issued on 9 November 2011 for HKLR to the Highways Department as the Permit Holder. Subsequently, the Director of Environmental Protection amends the Environmental Permits (No. EP-352/2009/A and EP-352/2009/B) based on the Application No. VEP-409/2013 and VEP-411/2013 respectively. The environmental Permit (Permit No. EP-352/2009/C) was then issued on 5 September 2013.
- 2.5 **Figure 1a-d** shows the layout of the Contract and the scope of the Contract works comprises the following major items:
 - a dual 3-lane carriageway in the form of viaduct from the HKSAR boundary (connecting with the HZMB Main Bridge) to the Scenic Hill (connecting with the tunnel under separate Contract No. HY/2011/03), of approximately 9.4km in length with a hard shoulder for each bound of carriageway and a utilities trough on the outer edge of each bound of viaducts;
 - a grade-separated turnaround facility located near San Shek Wan, composed of sliproads in the form of viaduct with single-lane carriageway bifurcated from the HKLR mainline with an elevated junction above the mainline;
 - provision of ancillary facilities including, but not limited to, meteorological enhancement measures including the provisioning of anemometers and

- modification of the wind profiler station at hillside of Sha Lo Wan, provisioning of a compensatory marine radar, and provisioning of security systems; and
- associated civil, structural, geotechnical, marine, environmental protection, landscaping, drainage and highways electrical and mechanical (E&M) works, street lightings, traffic aids and sign gantries, marine navigational aids, ship impact protection system, water mains and fire hydrants, lightning protection system, structural health monitoring and maintenance management system (SHM&MMS), supervisory control and data acquisition (SCADA) system, as well as operation and maintenance provisions of viaducts, provisioning of facilities for installation of traffic control and surveillance system (TCSS), provisioning of facilities for installation of telecommunication cables/equipments and reprovisioning works of affected existing facilities/utilities.

Contract Organisation

- 2.6 Different parties with different levels of involvement in the Contract organization include:
 - Supervising Officer's Representative (SOR) Ove Arup & Partners Hong Kong Limited (ARUP)
 - Contractor Dragages China Harbour-VSL JV (DCVJV)
 - Environmental Team (ET) Cinotech Consultants Ltd. (Cinotech)
- 2.7 The proposed project organization and lines of communication with respect to the onsite environmental management structure are shown in **Figure 2**. The key personnel contact names and numbers are summarized in **Table 2.1.**

Table 2.1 Key Contacts of the Contract

Party	Party Position Position		Phone No.	Fax No.
SOR	CRE	Mr. Michael Chan	3767 5803	2767 5022
(ARUP)		Mr. Colin Meadows	3767 5801	3767 5922
ENPO/IEC	Environmental Project Office Leader	Mr. Y. H Hui	3465 2888	3465 2899
(Environ)	Independent Environmental Checker	Mr. Antony Wong	3465 2888	3465 2899
	Deputy Project Director	Mr. W.K Poon	3121 6638	2121 ((00
Contractor (DCVJV)	Environmental Officer	Mr. CHU Chung Sing	3121 6672	3121 6688
(20101)	24-hour Hotline		6898 6161	
ET (Cinotech)	Environmental Team Leader	Dr. H.F Chan	2151 2088	3107 1388

2.8 ENVIRON Hong Kong Ltd. (Environ) is employed by the Highways Department as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

Construction Programme

2.9 A copy of Contractor's construction programme is provided in **Appendix A**.

Summary of Construction Works Undertaken During Reporting Month

2.10 The major site activities undertaken in the reporting month included:

<u>Land Viaduct (P85 to Abutment at Scenic Hill Tunnel (SHT)) & Marine Viaduct (P81 - P84)</u>

- (a) Drainage and water main diversion and backfill in Portion C was completed.
- (b) Last three piles at P106L, P107L & P108R in Portion C were completed.
- (c) Pile construction is in progress at grid line P84 and P90. 8 piles concreted in this reporting period.
- (d) Total 57 pours for column were completed with 8 pours in this reporting period; 21 columns was completed to top level (12 gridlines P103 to P105, P109 to P113 + P106L, P107L & L108R).
- (e) Construction of the temporary carriageway for road diversion at P82 & P83 is in progress.
- (f) Piling platform erection at P83 in progress.
- (g) Piling platform erection at P90 was completed and platform at P91 is in progress.
- (h) Portal P111 side formwork erection is in progress.
- (i) Portal P113 falsework erection was completed; soffit formwork is in progress.
- (j) Portal P105 formwork erection and bearing installation was completed; steel fixing is in progress.
- (k) Portal P112 was concreted on 24 May 2014.
- (l) Dismantling of falsework system for Portal P110 is in progress.

Marine Viaduct (P0 to P84)

RCD Method:

- (a) Construction of temporary platform for piling works at P68 is in progress.
- (b) Piling jackets were installed at P13, P15, P24, P25, P26 & P79.
- (c) Piling jackets were dismantled at P27, P58, P60, P64, P76 & P77.
- (d) Pile excavations and casing installation are in progress at P13, P15, P24, P26, P29, P58, P60, P69, P76 & P77 with 16 nos. piles concreted in the reporting period.
- (e) Inter-face coring tests were carried out at P14, P53, P55, P70, P72 & P77.
- (f) Full depth coring tests was carried at P53, P54 & P56.

- (g) Sonic tests were carried out at P53, P54, P55, P70, P72 & P77.
- (h) Grouting works were carried out at P52, P70 & P72.

Kelly Method:

- (i) Installation of temporary piles were carried out at P11, P12 & P21.
- (j) Installation of platforms were carried out at P11 & P21.
- (k) Installation of permanent casing were carried out at P4 & P21.
- (l) Piling platform removal and temporary pile extraction were carried out at P18, P35, P39, P41 & P42.
- (m) Pile excavation by Kelly method are in progress at P4, P16, P17 & P33 with 4 piles concreted in the reporting period.
- (n) Inter-face core test were carried out at P18 & P34.
- (o) No Full depth coring test was conducted in this reporting period.
- (p) Sonic tests were carried out at P19, P34, P35, P36 & P37.

Pilecap Construction:

- (a) 8 precast cap shells were installed at P40, P45, P42 & P49.
- (b) No Stage 1 concreting was done in this reporting period.
- (c) Stage 1 rebar fixing has commenced at P40.
- (d) Stage 2 concreting was completed at P44.
- (e) Stage 2 re-bar fixing at P43.
- (f) Kingpost installation and associated steel welding works for precast shell installation are in progress at P38, P39, P40, P42, P45, P49, P50 & P51.
- (g) Concrete trimming and advanced trimming (inside casing) works were carried out at P19, P20(F1), P37, P38, P39, P40, P41, P42, P45, P49, P50 & P51.
- (h) Works with cofferdam:
 - P71L: Installation of waling strut at 2nd layer was completed and excavation is in progress.
 - P71R: Installation of shear pin (84 nos.) was completed. Installation of waling strut at 1st layer is in progress.
 - P72R: Installation of temporary working platform was completed. Installation of sheet-pile is in progress
 - P73L: Driving of sheet piling was completed and installation of access platform is in progress. Installation of waling strut at 2nd layer is in progress

- P73R: Installation of shear pin (38 nos.) was completed. Temporary working platform shall be removed

Column Construction

- (a) P48, P46 L&R: 1st lift columns were cast in this reporting period.
- (b) P47 L&R: 2nd lift columns were cast in this reporting period.
- (c) Column insert installation, mobilization and temporary works were carried out at P44 & P43.

Deck Erection

- (a) Preparatory works for segment erection:
 - Lifting Frame fabrication continues in Dongguan.
 - Modification works to the Segment Unloading Frame (SUF) continues at Portion \mathcal{C}
 - Pouring of the footing for the Segment Unloading Frame at the Southeast Quay was completed.
 - Delivery and assembly of Launching Gantry 2 (LG2) continues at River Trade Terminal (RTT).
 - Delivery and assembly of Lifting Frames 2 (LF2) commenced at RTT.

Precast Segment

- (a) Progress of the precast concrete segment casting yard:
 - Mould assembly for 1 no. Type B, 10 nos. Type A (including 2 no. Segments on Pier (SOP)'s), 2 nos. Type D, 4 nos. Type E, 2 no. Type CH2, 2 no. Type CH3, 1 no. CH4 and 1 no. CP (long span SOP) were assembled. Other Type CH and Type CP mould fabrication continues at the casting yard.
 - Rebar jigs fabrication and installation with 30 out of 30 nos. completed (6 in Line No. 1, 18 in Line No. 2, and 6 in Line No. 6 completed).
 - A total of 129 segments were cast in this reporting period and up to end of the reporting period total 524 segments cast.

Precast Concrete Shell Casting

(a) Summary of precast shell cast in the precast yard:

Type of Shell	Number of Precast Shell Cast in this reporting period	Cumulative No. of Precast Shell Completed (up to 28th of each month)
CP1	5	27
CP2	2	3

Monthly EM&A Report – May 2014

CP4	0	2
-----	---	---

Status of Environmental Licences, Notification and Permits

2.11 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Contract is presented in **Table 2.2**.

 Table 2.2
 Status of Environmental Licences, Notification and Permits

D ://T: N	Valid Period		G		
Permit / License No.	From	To	Status		
Environmental Permit (EP)					
EP-352/2009/C	05/09/2013	N/A	Valid		
Consruction Noise Permit (CNP)	•				
WA7: GW-RW0960-13	14/01/2014 (23:00)	13/06/2014 (07:00)	Valid		
WA4: GW-RW0006-14	19/01/2014(19:00)	18/07/2014 (23:00)	Valid		
WA4B : GW-RW0008-14	10/01/2014(23:00)	09/07/2014(07:00)	Valid		
<u>WA7:</u> GW-RW0097-14	28/02/2014(19:00)	27/08/2014(23:00)	Valid		
<u>P0-P68:</u> GW-RS0122-14	18/02/2014(23:00)	13/08/2014(07:00)	Valid		
<u>P0-P68:</u> GW-RS0123-14	18/02/2014(19:00)	12/08/2014(23:00)	Valid		
<u>Portion A:</u> GW-RS0130-14	23/02/2014(19:00)	22/08/2014(23:00)	Valid		
P101-P113: GW-RS0121-14	27/02/2014(00:00)	01/05/2014(06:30)	Valid		
<u>P69-P70:</u> GW-RS0172-14	16/03/2014(19:00)	15/09/2014(23:00)	Valid		
P81-P114: GW-RS0187-14	11/03/2014(19:00)	10/09/2014(23:00)	Valid		
<u>P75-P80:</u> GW-RS0264-14	01/04/2014 (19:00)	27/07/2014 (07:00)	Valid		
<u>P81-P82:</u> GW-RS0344-14	11/04/2014(00:00)	10/10/2014 (24:00)	Valid		
P71-P74: GW-RS0395-14	29/04/2014(19:00)	28/10/2014 (23:00)	Valid		
<u>P101-P113:</u> GW-RS0391-14	01/05/2014(19:00)	30/09/2014 (06:30)	Valid		
Notification pursuant to Air Pollut		ction Dust) Regulation			
345773	04/06/2012	N/A	Receipt acknowledged by EPD		
Billing Account for Construction \	Vaste Disposal				
A/C# 7015341	11/06/2012	N/A	Valid		
(Construction Site)					
A/C# 7015341	17/02/2014	31/05/2014	Valid		
(Vessel Disposal)					
Registration of Chemical Waste Pr	roducer				
WPN 5213-951-D2499-01	18/07/2012	N/A	Valid		
Effluent Discharge License under	Water Pollution Cont	rol Ordinance			
WA6A(DCVJV site office): WT00014053-2012	12/09/2012	30/09/2017	Valid		
WA6B (SOR site office): WT00014447-2012	30/10/2012	31/10/2017	Valid		
<u>WA3:</u> WT00015118-2013	30/01/2013	31/01/2018	Valid		
Portion C: WT00015356-2013	22/02/2013	28/02/2018	Valid		
Portion A: WT00016076-2013	21/05/2013	31/05/2018	Valid		
WA4B: WT00014750-2012	12/08/2013	31/08/2018	Valid		

Doumit / License No	Valid Period		Status		
Permit / License No.	From	То	Status		
WA7: WT00015722-2013	16/01/2013	31/01/2019	Valid		
<u>P0 - P80:</u> WT00018203-2014	30/01/2013	31/01/2019	Valid		
<u>P114:</u> WT00018631-2014	31/03/2014	31/03/2019	Valid		
Marine Dumping Permit	Marine Dumping Permit				
Dumping of Phase 1, 2a, 2b, 2c and 2d (Type 1-Open Sea Disposal) marine sediment EP/MD/14-125	05/02/2014	04/08/2014	Valid		
Dumping of Phase 1, 2a, 2b, 2c and 2d (Type 1D and Type 2) marine sediment EP/MD/15-009	09/05/2014	08/06/2014	Valid		

3 AIR QUALITY MONITORING

Monitoring Requirements

- 3.1 In accordance with the EM&A Manual, impact 1-hour TSP and 24-hour TSP monitoring were conducted to monitor the air quality for the Contract. **Appendix B** shows the established Action/Limit Levels for the air quality monitoring works.
- 3.2 Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was conducted for at least once every 6 days at 2 air quality monitoring stations.

Monitoring Location

3.3 Impact air quality monitoring was conducted at the 2 monitoring stations under the Contract, as shown in **Figure 3**. **Table 3.1** describes the locations of the air quality monitoring stations.

Table 3.1 Location for Air Quality Monitoring Locations

Monitoring Stations	Location
AMS1	Sha Lo Wan
AMS4	San Tau

Monitoring Equipment

3.4 **Table 3.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix C**.

Table 3.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
HVS Sampler	TISCH Model: TE-5170	2
Calibrator	TISCH Model: TE-5025A	1
Wind Anemometer	DAVIS Model: Vantage PRO2 6152CUK	1

Monitoring Parameters, Frequency and Duration

3.5 **Table 3.3** summarizes the monitoring parameters and frequencies of impact dust monitoring during the course of the Contract activities. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 3.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

Monitoring Methodology and QA/QC Procedure

1-hour and 24-hour TSP Air Quality Monitoring

Instrumentation

3.6 High Volume Samplers (HVS) completed with appropriate sampling inlets were employed for air quality monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

HVS Installation

- 3.7 The following guidelines were adopted during the installation of HVS:
 - Sufficient support was provided to secure the sampler against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The samplers were more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
 - Permission must be obtained to set up the samples and to obtain access to the monitoring stations; and
 - A secured supply of electricity is needed to operate the samplers.

Filters Preparation

- 3.8 Filter paper of size 8" X 10" was used. A HOKLAS accredited laboratory, ETS Testconsult Limited (ETS), was responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for Cinotech's monitoring team.
- 3.9 All filters, which were prepared by ETS, were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- 3.10 ETS has comprehensive quality assurance and quality control programmes.

Operating/Analytical Procedures

3.11 Operating/analytical procedures for the air quality monitoring were highlighted as follows:

- Prior to the commencement of the dust sampling, the flow rate of the HVS was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- The power supply was checked to ensure the sampler worked properly.
- On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
- The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
- The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and secured with the aluminum strip.
- The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After sampling, the filter was removed and sent to the ETS for weighing. The elapsed time was also recorded.
- Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results were returned to Cinotech for further analysis of TSP concentrations collected by each filter.

Maintenance/Calibration

- 3.12 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - All HVS were calibrated (five point calibration) using Calibration Kit prior to the commencement of the baseline monitoring and thereafter at bi-monthly intervals.

Results and Observations

3.13 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in **Table 3.4** and 3.5 respectively. Detailed monitoring results and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.

Table 3.4 Summary Table of 1-hour TSP Monitoring Results during the Reporting Month

	1 0			
Monitoring	Concentration (μg/m3)		Action	Limit Level, µg/m³
Station	Average	Range	Level, μg/m ³	μg/m
AMS1	32	14 - 89	381	500
AMS4	27	14 - 104	352	300

Table 3.5 Summary Table of 24-hour TSP Monitoring Results during the Reporting Month

Monitoring Station	Concentration (μg/m3)		Action	Limit Level, µg/m³
Station	Average	Range	Level, μg/m ³	μg/m
AMS1	22	13 - 35	170	260
AMS4	29	10 - 65	171	200

- 3.14 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedances were recorded.
- 3.15 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedances were recorded.
- 3.16 According to our field observations, the major dust source identified at the designated air quality monitoring stations in the reporting month are as follows:

Table 3.6 Observation at Dust Monitoring Stations

Monitoring Station	Major Dust Source
AMS1	Exhaust from marine traffic
AMS4	N/A

- 3.17 The wind speed and wind direction were recorded by the installed Wind Anemometer set at AMS4. The location is shown in **Figure 3**.
- 3.18 The wind data for the reporting month is summarized in **Appendix J**.

Event and Action Plan

3.19 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

4 NOISE MONITORING

Monitoring Requirements

4.1 In accordance with EM&A Manual, two noise monitoring stations, namely NMS1 and NMS4 were selected for impact monitoring for the Contract. Impact noise monitoring was conducted for at least once per week during the construction phase of the Contract. **Appendix B** shows the established Action and Limit Levels for the noise monitoring works.

Monitoring Location

4.2 Impact noise monitoring was conducted at the 2 monitoring stations under the Contract, as shown in **Figure 3**. **Table 4.1** describes the locations of the air quality monitoring stations.

Table 4.1 Location for Noise Monitoring Locations

Monitoring Stations	Location
NMS1	Sha Lo Wan
NMS4	San Tau

Monitoring Equipment

4.3 **Table 4.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix C**.

Table 4.2 Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVAN 957	1
Calibrator	SV 30A	1

Monitoring Parameters, Frequency and Duration

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 4.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameter	Period	Frequency
NMS1 NMS4	$\begin{array}{c} L_{10}(30 \text{ min.}) \text{ dB(A)} \\ L_{90}(30 \text{ min.}) \text{ dB(A)} \\ L_{eq}(30 \text{ min.}) \text{ dB(A)} \text{ (as} \\ \text{six consecutive } L_{eq, 5 \text{min}} \\ \text{readings)} \end{array}$	0700-1900 hrs on normal weekdays	Once per week

Monitoring Methodology and QA/QC Procedures

- The microphone head of the sound level meter was positioned 1m exterior of the noise sensitive facade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weightingtime weightingFast

time measurement : $L_{eq}(30 \text{ min.}) \text{ dB(A)}$ (as six consecutive $L_{eq, 5min}$ readings) during non-restricted hours (i.e. 0700-1900 hrs on normal weekdays)

- Prior to and after each noise measurement, the meter was calibrated using a
 Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before
 and after measurement was more than 1.0 dB, the measurement would be
 considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.
- During the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

Maintenance and Calibration

- 4.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 4.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 4.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

4.8 The noise monitoring results are summarized in **Table 4.4**. Detailed monitoring results and graphical presentations of noise monitoring are shown in **Appendices G**.

Monthly EM&A Report – May 2014

Table 4.4 Summary Table of Noise Monitoring Results during the Reporting Month

Manitanina Station	Noise Level, I	I imit I aval	
Monitoring Station	Average	Range	Limit Level
NMS1	71	65 – 74	75 dB(A)
NMS4	61	59 – 63	/3 ub(A)

Remark: +3dB(A) Façade correction included

- 4.9 All noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 4.10 According to our field observations, the major noise source identified at the designated noise monitoring stations in the reporting month are as follows:

Table 4.5 Observation at Noise Monitoring Stations

Monitoring Station	Major Noise Source	
NMS1	Air traffic & marine traffic noise	
NMS4	Air traffic & marine traffic noise	

Event and Action Plan

4.11 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

5 WATER QUALITY MONITORING

Monitoring Requirements

- 5.1 According to EM&A Manual, impact water quality monitoring shall be carried out three days per week during the construction period. The interval between two sets of monitoring will not be less than 36 hours.
- 5.2 Replicate in-situ measurements and samples collected from each independent sampling event shall be collected to ensure a robust statistically interpretable database.
- 5.3 Impact water quality monitoring was conducted two times per monitoring day during mid ebb (within ± 1.75 hours of the predicted time) and mid flood tides (within ± 1.75 hours of the predicted time) at three depths (i.e. 1m below surface, mid-depth and 1m above seabed, except where the water depth less than 6m, mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station was monitored) Dissolved oxygen, Suspended solids (SS), turbidity, pH, salinity and temperature were monitored in accordance with the requirements set out in the EM&A Manual.
- 5.4 The proposal for changing Action and Limit Levels for water quality monitoring was submitted to EPD on 15 March 2013. No objection was received from EPD according to the letter (ref. (10) in Ax(3) to EP2/G/A/129pt.4) dated 25 March 2013. Therefore, the updated Action and Limit Levels for water quality monitoring was used for comparison starting from 25 March 2013.
- 5.5 **Appendix B** shows the established Action/Limit Levels for the water quality monitoring works.

Monitoring Locations

5.6 Impact water quality monitoring was conducted at 14 monitoring stations under the Contract which are summarized in **Table 5.1**. The monitoring station is also shown in **Figure 4**.

Table 5.1 Location for Marine Water Quality Monitoring Locations

Manitaring Stations	Coordinates		
Monitoring Stations	Easting	Northing	
IS1	803474	815060	
IS2	804851	815715	
IS3	806502	815743	
IS4	807008	816986	
CS1	801784	812711	
CS2	805849	818780	
SR1	803126	812379	
SR2	807856	816953	
SR3	810525	816456	
SR6	805837	821818	
ST1	802677	816006	
ST2	804055	818840	

Manitaring Stations	Coordinates			
Monitoring Stations	Easting	Northing		
ST3	800667	810126		
SRA	809872	817152		

Monitoring Equipment

Instrumentation

5.7 A multi-parameter meters (Model YSI 6820-C-M) were used to measure DO, turbidity, salinity, pH and temperature.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.8 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 5.9 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.10 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.11 Salinity compensation was built-in in the DO equipment.

Turbidity

5.12 Turbidity was measured in situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not less than 25m in length. The meter was calibrated in order to establish the relationship between NTU units and the levels of suspended solids. The turbidity measurement was carried out on split water sample collected from the same depths of suspended solids samples.

Sampler

5.13 A water sampler, consisting of a transparent PVC or glass cylinder of a capacity of not less than two litres which can be effectively sealed with cups at both ends was used. The water sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler was at the selected water depth.

Water Depth Detector

5.14 A portable, battery-operated echo sounder was used for the determination of water depth

at each designated monitoring station.

<u>pH</u>

5.15 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Salinity

5.16 A portable salinometer capable of recording salinity within the range of 0-40 ppt was used for salinity measurements.

Monitoring Position Equipment

5.17 A hand held Differential Global Positioning System (DGPS) was used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

Sample Container and Storage

5.18 Following collection, water samples for laboratory analysis were stored in high density polythene bottles (250ml/1L) with no preservatives added, packed in ice (cooled to 4°C without being frozen) and kept in dark during both on-site temporary storage and shipment to the testing laboratory. The samples were delivered to the laboratory as soon as possible and the laboratory determination works were started within 24 hours after collection of the water samples. Sufficient volume of samples was collected to achieve the detection limit.

Calibration of In Situ Instruments

- 5.19 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring event.
- 5.20 For the on site calibration of field equipment (Multi-parameter Water Quality System), the BS 1427:2009, "Guide to on-site test methods for the analysis of waters" was observed.
- 5.21 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment was under maintenance, calibration, etc.
- 5.22 The equipment used for impact water quality monitoring is shown in **Table 5.2** and copies of the calibration certificates are shown in **Appendix C**. All the monitoring

equipment complied with the requirements set out in the EM&A Manual.

Table 5.2 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty
Sonar Water Depth Detector	Garmin Fishfinder 140	2
Monitoring Position Equipment	KODEN DGPS	2
Wolltoring Fosition Equipment	(KGP913MKIID, GA-08 & BA-03)	
Multi-parameter Water Quality	YSI 6820-C-M	
System		
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	2

Monitoring Parameters, Frequency

5.23 **Table 5.3** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring. The water quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 5.3 Water Quality Monitoring Parameters and Frequency

	The state of the s						
Monitoring Stations	Parameters, unit	Depth	Frequency				
IS1, IS2, IS3 IS4, CS1, CS2, SR1, SR2, SR3, SR6, ST1, ST2, ST3, SRA	 Temperature(°C) pH(pH unit) turbidity (NTU) water depth (m) salinity (ppt) dissolved oxygen (DO) (mg/L and % of saturation) suspended solids (SS) (mg/L) 	 3 water depths: 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted. 	Impact monitoring: 3 days per week, at mid-flood and mid-ebb tides during the construction period of the Contract				

5.24 Monitoring location/position, time, water depth, sampling depth, pH, salinity, DO saturation, water temperature, tidal stages, weather conditions and any special phenomena or work underway nearby were recorded.

Monitoring Methodology

Instrumentation

5.25 A multi-parameter meters (Model YSI 6820-C-M) were used to measure DO, turbidity, salinity, pH and temperature.

Operating/Analytical Procedures

5.26 The monitoring stations were accessed by the guide of a hand-held Differential Global Positioning System (DGPS) during water quality monitoring in accordance with the EM&A Manual. The depth of the monitoring location was measured using depth meter

in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment were lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements were carried out accordingly.

- 5.27 At each measurement, two consecutive measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature were taken. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 5.28 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples at three depths (1 m below water surface, middepth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible. In addition, field information as described in Section 5.23 was also recorded.

Laboratory Analytical Methods

5.29 The testing of all parameters was conducted by CMA Testing and Certification Laboratories (HOKLAS Registration No.004) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method, reporting limit and detection limit are provided in **Table 5.4**.

Table 5.4 Methods for Laboratory Analysis for Water Samples

Tubic cti	victious for Eusoi	acory rimary sis for that const	umpres
Determinant	Instrumentation	Analytical Method	Detection Limit
Suspended Solid (SS)	Weighing	APHA 21e 2540D	0.5 mg/L

QA/QC Requirements

Decontamination Procedures

5.30 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

5.31 All sampling bottles were labelled with the sample I.D (including the indication of sampling station and tidal stage e.g. IS1_me_a), laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.

5.32 The laboratory determination works were started within 24 hours after collection of the water samples.

Quality Control Measures for Sample Testing

- 5.33 The samples testing were performed by CMA Testing and Certification Laboratories.
- 5.34 The following quality control programme was performed by the CMA Testing and Certification Laboratories for every batch of 20 samples:
 - ♦ One set of quality control (QC) samples.

Maintenance and Calibration

5.35 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme.

Results and Observations

- 5.36 The monitoring results and graphical presentation of water quality at the monitoring stations is shown in **Appendix H.**
- 5.37 The summary of exceedance record in reporting month is shown in **Appendix L** and summarized in the **Table 5.5**.

Section between HKSAR Boundary and Scenic Hill Monthly EM&A Report – May 2014

 Table 5.5
 Summary of Water Quality Exceedances

Station	Exceedance Level	DO (Surface Middle)	e &	DO(Bot	tom)	Turbidity		SS		Total Number of Exceedances	
		Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood
IS1	Action Level					16/05/2014	16/05/2014		16/05/2014	1	1
	Limit Level						16/05/2014			0	1
IS2	Action Level Limit Level						16/05/2014			0	0
IS3	Action Level						16/05/2014		14/05/2014 16/05/2014	0	3
	Limit Level								26/05/2014	0	1
IS4	Action Level Limit Level									0	0
SR1	Action Level								14/05/2014	0	1
	Limit Level									0	0
SR2	Action Level								14/05/2014	0	1
ļ	Limit Level					ļ				0	0
SR3	Action Level Limit Level									0	0
							1.6/05/2014			-	-
SR6	Action Level Limit Level	<u> </u>					16/05/2014			0	0
	Action Level									0	0
ST1	Limit Level									0	0
	Action Level						16/05/2014			0	1
ST2	Limit Level						2, 22, 22 .			0	0
C/T/2	Action Level						16/05/2014			0	1
ST3	Limit Level									0	0
CD A	Action Level									0	0
SRA	Limit Level									0	0
Total	Action Level	0	0	0	0	1	5	0	5		
Total	Limit Level	0	0	0	0	0	1	0	1		

- 5.38 All water quality monitoring was conducted as scheduled in the reporting month. There are five Action Level and one Limit Level exceedances for suspended solids were recorded. In addition, there are six Action Level and one Limit Level exceedances for turbidity were recorded. No Action/Limit Level exceedance for dissolved oxygen was recorded.
- 5.39 According to the investigation, no pollution discharge was observed from the site. In addition, some of the exceeded results were similar or within the ranges baseline monitoring results and sediment plume which is considered due to the movement of vessel was observed. Therefore, the exceedances are considered not due to the Contract.

Event and Action Plan

5.40 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

6 DOLPHIN-RELATED MONITORING

Monitoring Requirements

- 6.1 According to Section 10 of the EM&A Manual, four kinds of ecological monitoring works are required during the construction phase, namely dolphin monitoring, construction-phase underwater noise monitoring, dolphin behavior monitoring and land-based dolphin behavior and movement monitoring. The 30 days of construction-phase underwater noise monitoring, dolphin behavior monitoring and land-based dolphin behavior and movement monitoring were completed in July 2013.
- 6.2 The monitoring work shall be undertaken by suitably qualified specialist(s), (i.e. dolphin specialist and bio-acoustician), who shall have sufficient (at least 5-10 years) relevant post-graduate experience and publication in the respective aspects. They should be approved by Agriculture, Fisheries and Conservation Department (AFCD) and Environmental Protection Department (EPD).

Dolphin Monitoring (Line-transect Vessel Survey)

Monitoring Requirements

- 6.3 According to EM&A Manual Section 10.3.2, a dolphin monitoring programme should be set up to verify the predictions of impacts and to ensure that there are no unforeseen impacts on the dolphin population during construction phase.
- 6.4 Following the requirement in the EM&A Manual Section 10.4.1, the dolphin monitoring should adopt line-transect vessel survey method, and cover the following line-transect survey areas as in AFCD annual marine mammal monitoring programme.

Monitoring Location

6.5 For this contract, dolphin monitoring will be carried out in the West Lantau (WL) along the line transect as depicted in **Figure 1** of **Appendix I**. The co-ordinates of all transect lines are shown in **Table 6.1**.

Table 6.1 Co-ordinates of transect lines in WL survey area

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	803750	818500	7	Start Point	800200	810450
1	End Point	803750	815500	7	End Point	801400	810450
2	Start Point	803750	815500	8	Start Point	801300	809450
2	End Point	802940	815500	8	End Point	799750	809450
3	Start Point	802550	814500	9	Start Point	799400	808450
3	End Point	803700	814500	9	End Point	801430	808450
4	Start Point	803120	813600	10	Start Point	801500	807450
4	End Point	801640	813600	10	End Point	799600	807450

	2
Monthly EM&A	Report – May 2014

	Line No.	Easting	Northing	Line No.		Easting	Northing
5	Start Point	801100	812450	11	Start Point	800300	806500
5	End Point	802900	812450	11	End Point	801750	806500
6	Start Point	802400	811500	12	Start Point	801760	805450
6	End Point	800660	811500	12	End Point	800700	805450

Monitoring Frequency

6.6 Dolphin transect survey was carried out at least twice a month (i.e. complete all the transect lines of West Lantau survey area twice per month) throughout the construction period.

Monitoring Day

6.7 Dolphin monitoring was carried out on 7th and 20th May 2014. The dolphin monitoring schedule for the reporting period is shown in **Appendix D**.

Monitoring Results

- 6.8 From these surveys, a total of 64.16 km of survey effort was collected, with 72.9% of the total survey effort being conducted under favorable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) Out of the 64.16 km of survey effort, the total survey effort conducted on primary lines (the vertical lines perpendicular to the coastlines) was 43.05 km.
- 6.9 3 groups of 15 Chinese White Dolphins were sighted from primary lines. Dolphins groups were scattered in the waters between the HKLR09 alignment and Fan Lau with no apparent concentration of sightings. Only one of the dolphin sightings was made in the vicinity of the HKLR09 alignment, while the rest were sighted far away from the bridge alignment.
- 6.10 Dolphin encounter rates deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) are shown in **Table 6.2**.

Table 6.2 Dolphin encounter rates (sightings per 100 km of survey effort) in May's surveys

		Encounter rate (STG)	Encounter rate (ANI)		
		(no. of on-effort dolphin	(no. of dolphins from all on-		
		sightings per 100 km of	effort sightings per 100 km of		
		survey effort)	survey effort)		
		Primary Lines Only	Primary Lines Only		
WL	Set 1: May 7 th	9.2	32.3		
WL	Set 2: May 20 th	10.5	83.8		

6.11 The average group size of Chinese White Dolphins was 7.6 individuals per group during May's surveys, which was much higher to the ones in previous months of monitoring surveys. Out of the five dolphin groups, two groups were composed of 10 or more animals, while only one group was composed of only 1-2 animals.

- 6.12 During this month of dolphin monitoring, marine construction activities have continued under this contract. However, no adverse impact on Chinese white dolphins was noticeable from general observations.
- 6.13 Evaluation of impacts on dolphins due to construction work will be conducted in the quarterly EM&A report.
- 6.14 Detailed monitoring methodology and results can be found in **Appendix I**.

Additional Land-based Dolphin Behaviour and Movement Monitoring

6.15 Additional land-based dolphin behavior and movement monitoring was conducted on 19th and 27th May 2014 in the reporting month. The progress of the monitoring is summarized in the **Table 6.3**.

Table 6.3 Progress Record of Additional Land-based Dolphin Behaviour and Movement Monitoring in May 2014

Date	Time	Weather		Number of	Number of
		Beaufort	Visibility	Staff	Dolphin Sighting
2014/5/19	09:43 - 15:07	2-4	1	3	2
2014/5/27	09:04 - 14:32	1-3	1.5-2.5	3	1

6.16 Detailed monitoring methodology and results will be provided in a separate report after the completion of full set of additional land-based dolphin behavior and movement monitoring.

7 ENVIRONMENTAL SITE INSPECTION

Site Audits

- 7.1 Site audits were carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Contract site. The summaries of site audits are attached in **Appendix M**.
- 7.2 Site audits were conducted on 7th, 13th, 20th and 30th May 2014 by ET after the commencement of construction works for the Contract. A joint site audit with the representative with IEC, ER, the Contractor and the ET was carried out on 30th May 2014. The details of observations during site audit can refer to **Table 7.1**.
- 7.3 According to EP condition 4.7 and EM&A Manual, periodic monitoring (every three months) of construction works shall be conducted to ensure the avoidance of any impacts on Sha Lo Wan (West) Archaeological Site. Access to Sha Lo Wan (West) Archaeological site for works areas and storage of construction equipment is not allowed. The 5th inspection to the Sha Lo Wan (West) Archaeological Site was conducted on 21st March 2014 and next inspection will be conducted in June 2014. Implementation Status of Environmental Mitigation Measures
- 7.4 According to the EIA Study Report, Environmental Permit and the EM&A Manual, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the EMIS is provided in **Appendix N**.
- 7.5 Regular marine travel route for marine vessels were implemented properly in accordance with the submitted plan and relevant records were kept properly.
- 7.6 Acoustic decoupling measures for the stationary equipment (generators, winch generators and air compressors) mounted on boards were adopted according to the submitted Acoustic Decoupling Measures Plan.
- 7.7 Dolphin exclusion zone and dolphin watching plan according to EM&A Manual, Section 10.2.12 and EP Condition 3.5 was implemented by DCVJV's trained dolphin watcher.
- 7.8 Spill kits and booms are ready on site for the event of accidental spillage of oil or other hazardous chemicals from construction activities including vessels operating for the Contract.
- 7.9 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 7.1**.

Observations and Recommendations of Site Audit Table 7.1

			Recommendations of Site Audit	
Parameters	Date	Observations and Recommendations	Follow-up Partification/improvement	
	07/05/2014	Silt curtain has observed damage and not deployed properly at near P106 and P107. The Contractor was reminded to replace the damage silt curtain as soon as possible.	Rectification/improvement was observed during the follow-up audit session on 20 May 2014.	
	13/05/2014	Clear the deposited soil at the public road at near P107. (Portion C)	Rectification/improvement was observed during the follow-up audit session on 20 May 2014.	
Water Quality	13/05/2014	Properly deploy the silt curtain to ensure it function effectively at P106, P107, P98 and P101.	Rectification/improvement was observed during the follow-up audit session on 20 May 2014.	
	13/05/2014	Clear the floating wastes within the silt curtain at P101.	Rectification/improvement was observed during the follow-up audit session on 20 May 2014.	
	20/05/2014	To check the silt curtain and avoid the gap at the silt curtain at P68.	Rectification/improvement was observed during the follow-up audit session on 30 May 2014.	
	20/05/2014	Clear the deposited waste materials at the platform at P73.	Rectification/improvement was observed during the follow-up audit session on 30 May 2014.	
Ecology	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾	
	07/05/2014	Clear the soil at the public road at Portion C.	Rectification/improvement was observed during the follow-up audit session on 20 May 2014.	
Air Quality	13/05/2014	Clear the deposited soil at the public road at near P107. (Portion C)	Rectification/improvement was observed during the follow-up audit session on 20 May 2014.	
	30/05/2014	Dust generation was observed from the trimming works at P45. The Contractor was reminded to provide sufficient dust mitigation measures properly.	Rectification/improvement was observed during the follow-up audit session on 3 June 2014.	
	13/05/2014	Provide noise emission labels for the hand-held breaker at P94.	Rectification/improvement was observed during the follow-up audit session on 20 May 2014.	
Noise	30/05/2014	To close the panel of air compressor at P45.	Rectification/improvement was observed during the follow-up audit session on 3 June 2014.	
	30/05/2014	To check and provide noise emission label for the hand-held breakers at P45.	Rectification/improvement was observed during the follow-up audit session on 3 June 2014.	
Waste / Chemical Management	07/05/2014	Clear the oil spillage at the site entrance of Portion C.	Rectification/improvement was observed during the follow-up audit session on 13 May 2014.	
	07/05/2014	To remove the construction materials and provide fencing for protecting the trees at	Rectification/improvement was observed during the	

Parameters	Date	Observations and Recommendations	Follow-up
		Portion A and C.	follow-up audit session on 20 May 2014.
	13/05/2014	To seal the hole of drip tray and review the size of drip tray for placing the oil pump at near P108 (Portion C).	Rectification/improvement was observed during the follow-up audit session on 20 May 2014.
	13/05/2014	Clear the accumulated waste at the waste skip at near P107. (Portion C)	Rectification/improvement was observed during the follow-up audit session on 20 May 2014.
	13/05/2014	To remove the construction materials at near the tree and provide tree protection zone at P105 and P106.	Rectification/improvement was observed during the follow-up audit session on 20 May 2014.
	20/05/2014	Clear the accumulated wastes at barge of P47.	Rectification/improvement was observed during the follow-up audit session on 30 May 2014.
	30/05/2014	Clear the waste materials at the platform at P72.	Rectification/improvement was observed during the follow-up audit session on 3 June 2014.
Landscape & Visual Impact	$N/A^{(1)}$	N/A ⁽¹⁾	N/A ⁽¹⁾
Permits/Licences	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Other	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Cultural Heritage (Sha Lo Wan (West) Archaeological		N/A ⁽²⁾	N/A ⁽²⁾
Site)			

Remark: N/A⁽¹⁾ No major environmental deficiency was identified during the site inspection in the reporting month.

N/A⁽²⁾ No archaeological site inspection was conducted in the reporting month.

Advice on the Solid and Liquid Waste Management Status

- 7.10 According to the Contractor, 18,257m³ inert C&D materials were generated during the reporting month.
- 7.11 The Contractor was advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in approved waste management plan shall be fully implemented.
- 7.12 The amount of wastes generated by the activities of the Contract during the reporting month is shown in **Appendix O**.

8 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)

Summary of Exceedances

- 8.1 Summary of exceedance is provided in **Appendix L**.
- 8.2 No Action/Limit Level exceedance was recorded for air quality and construction noise.
- 8.3 All water quality monitoring was conducted as scheduled in the reporting month. There are five Action Level and one Limit Level exceedances for suspended solids were recorded. In addition, there are six Action Level and one Limit Level exceedances for turbidity were recorded. No Action/Limit Level exceedance for dissolved oxygen was recorded.
- 8.4 According to the investigation, no pollution discharge was observed from the site. In addition, some of the exceeded results were similar or within the ranges baseline monitoring results and sediment plume which is considered due to the movement of vessel was observed. Therefore, the exceedances are considered not due to the Contract.

Summary of Environmental Complaint

8.5 Three environmental related complaints were received in the reporting month. The Complaint Log is attached in **Appendix P**.

Summary of Notification of Summons and Successful Prosecution

8.6 There was no prosecution or notification of summons received since the Contract commencement.

9 FUTURE KEY ISSUES

Key Issues in the Coming Month

9.1 Major site activities for the coming reporting month will include:

WA4

- Fabrication of rebar cages
- Fabrication of temporary piling platforms

WA7

- Fabrication of rebar cages
- Loading and Unloading of rebar materials

Marine Viaduct (P0 to P80)

- Construction of the temporary jetty
- Installation of temporary casings, piling jackets, temporary piles, platform and permanent casings
- Dismantling of piling jacket
- Piling platform removal works
- Pile excavation by Reverse Circulation Drill (RCD) method method
- Pile excavation by Kelly method
- Inter-face coring test, full depth coring test, sonic test, friction test
- and load test
- Predrilling works
- Operation of floating concrete batching plants
- Trimming of pile head
- Grouting works
- Concreting for pile cap
- Driving of sheet piling
- Trial water cracking and trial shaft grouting
- Installation of recast shells and waterproofing works
- Advanced concrete breaking works inside the permanent steel casing
- Steel fixing to the column and formwork installation
- Kingpost installation for precast cap and associated steel welding works

Land Viaduct (P81 to P114)

- Land piling and concreting works
- Rebar threading for coupler
- Backfilling
- Tree transplant and maintenance works
- Installation of portal beam
- Excavation works and Earth Lateral Support (ELS)
- Pouring of pile cap and pile head breaking
- Formation works
- Pours of column
- Erection of side formwork for the portal and kickers
- Road diversion works

- Pre-drilling works, pile cap, column and portal construction
- Side formwork and wing slab soffit formwork
- Waling of ELS and backfill
- Steel fixing for bottom mat and side bars
- Carriageway diversion
- Tendon ducts
- Falsework erection
- Temporary carriageway for diversion at P82 & P83

Monitoring Schedule for the Next Month

9.2 The tentative environmental monitoring schedule for the next month is shown in **Appendix D**.

Construction Programme for the Next Month

9.3 A tentative construction programme is provided in **Appendix A**.

10 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 10.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken in May 2014 in accordance with EM&A Manual.
- 10.2 No Action/Limit Level exceedance was recorded for air quality and construction noise.
- 10.3 For water quality monitoring, there are five Action Level and one Limit Level exceedances for suspended solids were recorded. In addition, there are six Action Level and one Limit Level exceedances for turbidity were also recorded. No Action/Limit Level exceedance for dissolved oxygen was recorded.
- 10.4 According to the investigation, no pollution discharge was observed from the site. In addition, some of the exceeded results were similar or within the ranges baseline monitoring results and sediment plume which is considered due to the movement of vessel was observed. Therefore, the exceedances are considered not due to the Contract.
- 10.5 Dolphin transect survey was carried out on 7th and 20th May 2014. No adverse impact on Chinese White Dolphins was noticeable from general observations.
- 10.6 Two days of additional Land-based Dolphin Behaviour and Movement Monitoring were conducted on 19th and 27th May 2014.
- 10.7 Environmental site inspection was conducted on 7th, 13th, 20th and 30th May 2014 by ET in the reporting month. All deficiencies identified during the site inspection have already rectified / improved during the follow-up audit session.
- 10.8 No inspection to the Sha Lo Wan (West) Archaeological Site was conducted in the reporting month.
- 10.9 There were three environmental complaints, no notification of summons and successful prosecution received.
- 10.10 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

10.11 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

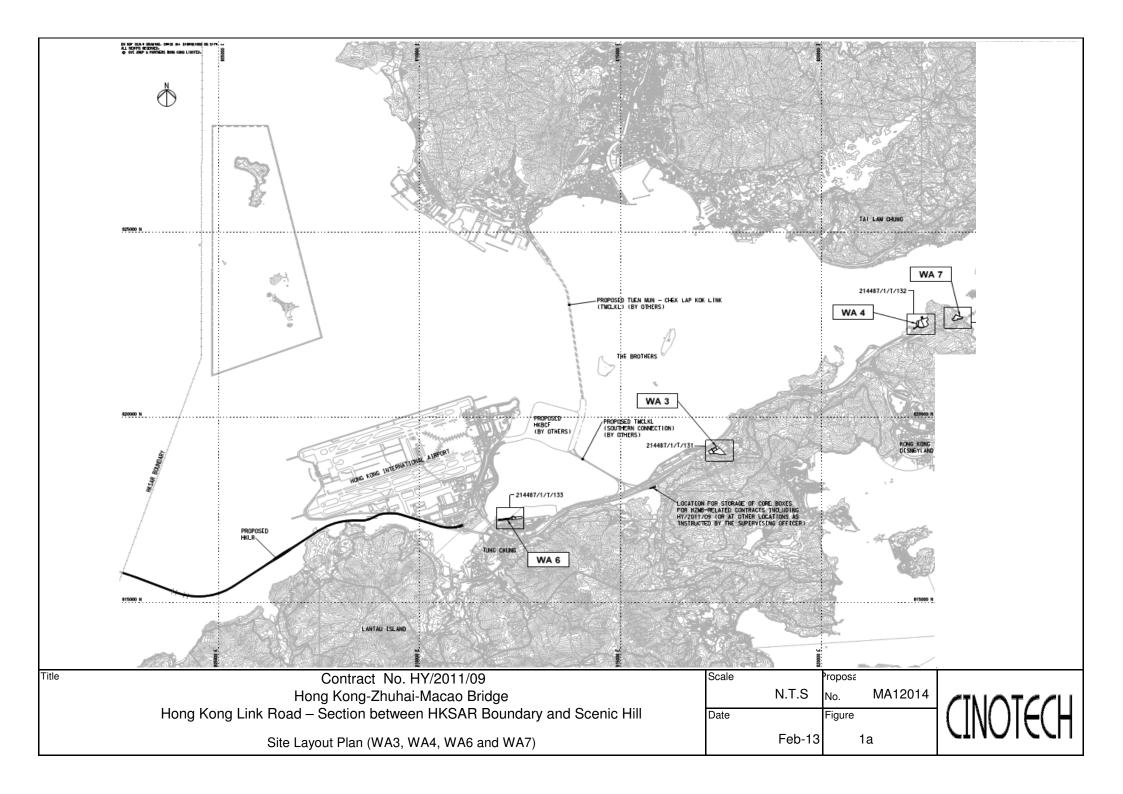
- To regularly maintain the quality of machinery and vehicles on site.
- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To provide hoarding along the entire length of that portion of the site boundary.

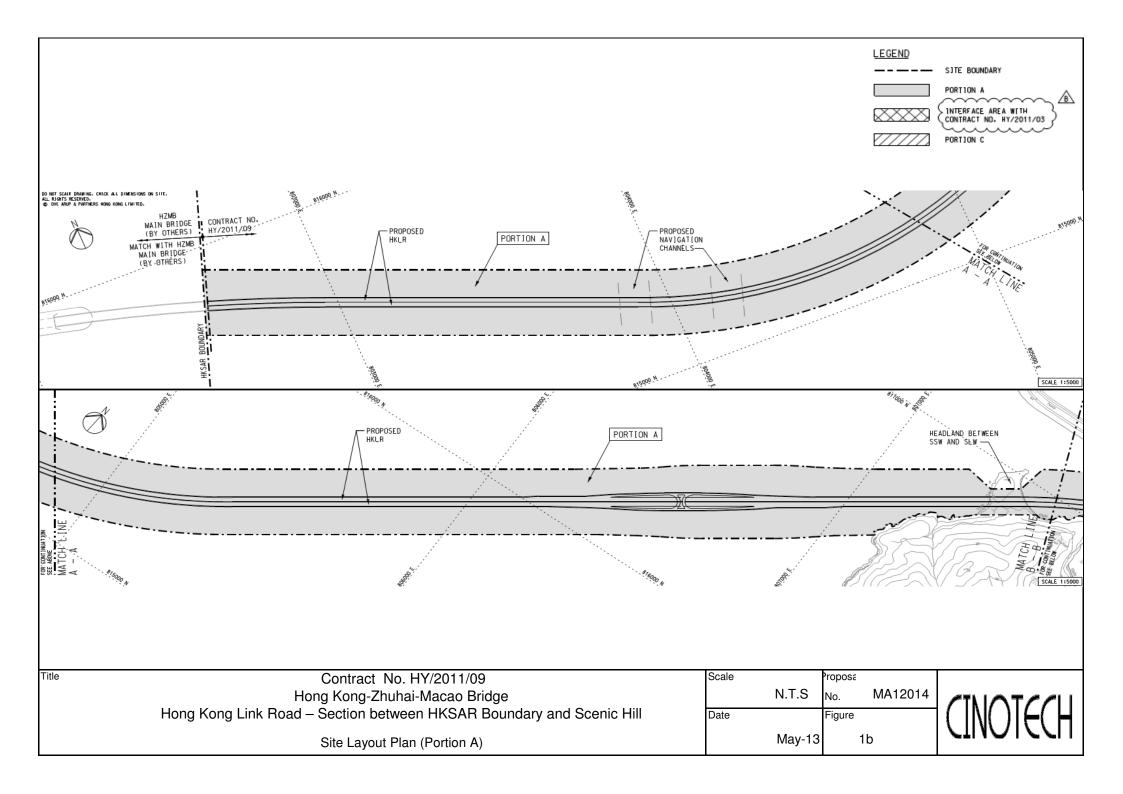
Noise Impact

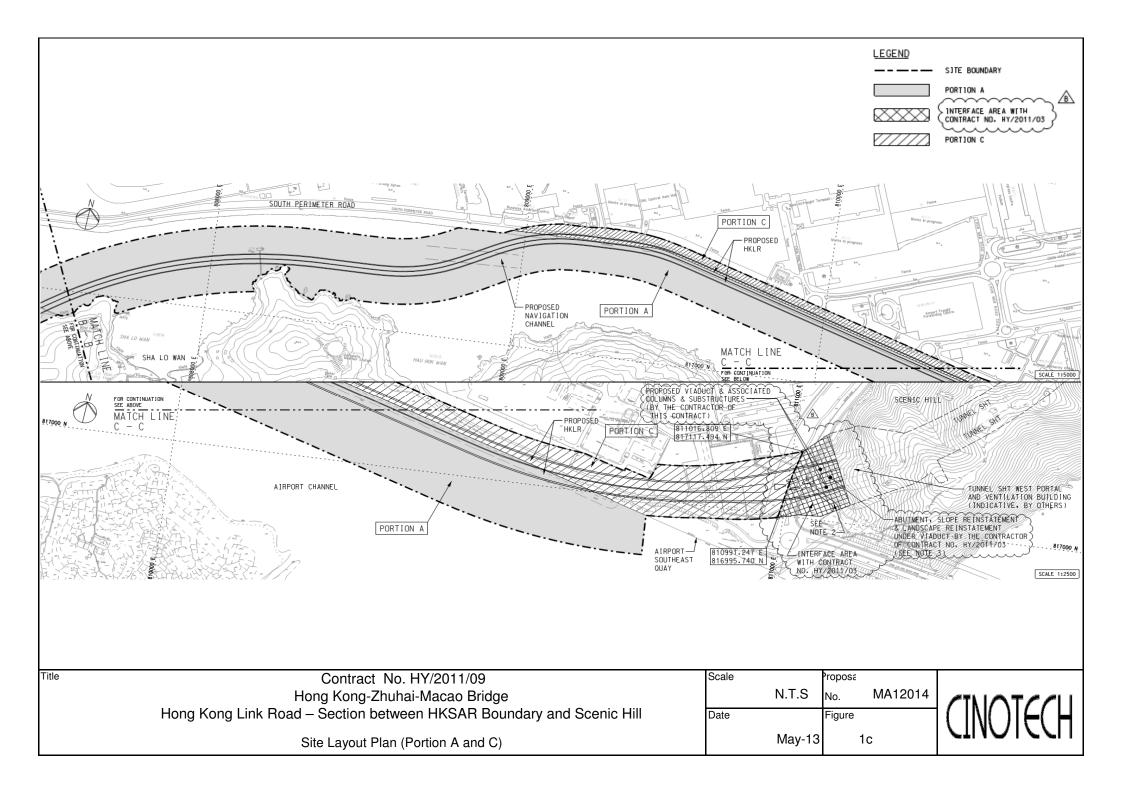
- To inspect the noise sources inside the site.
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers, if necessary.

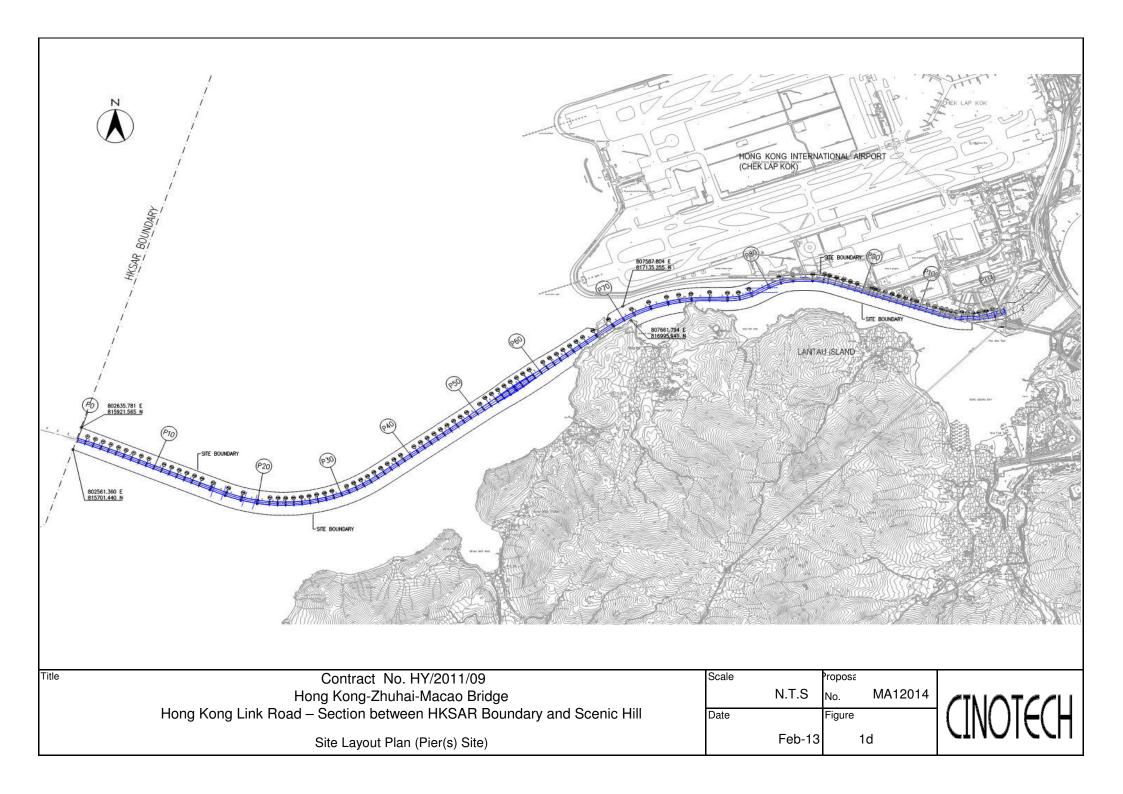
Water Impact

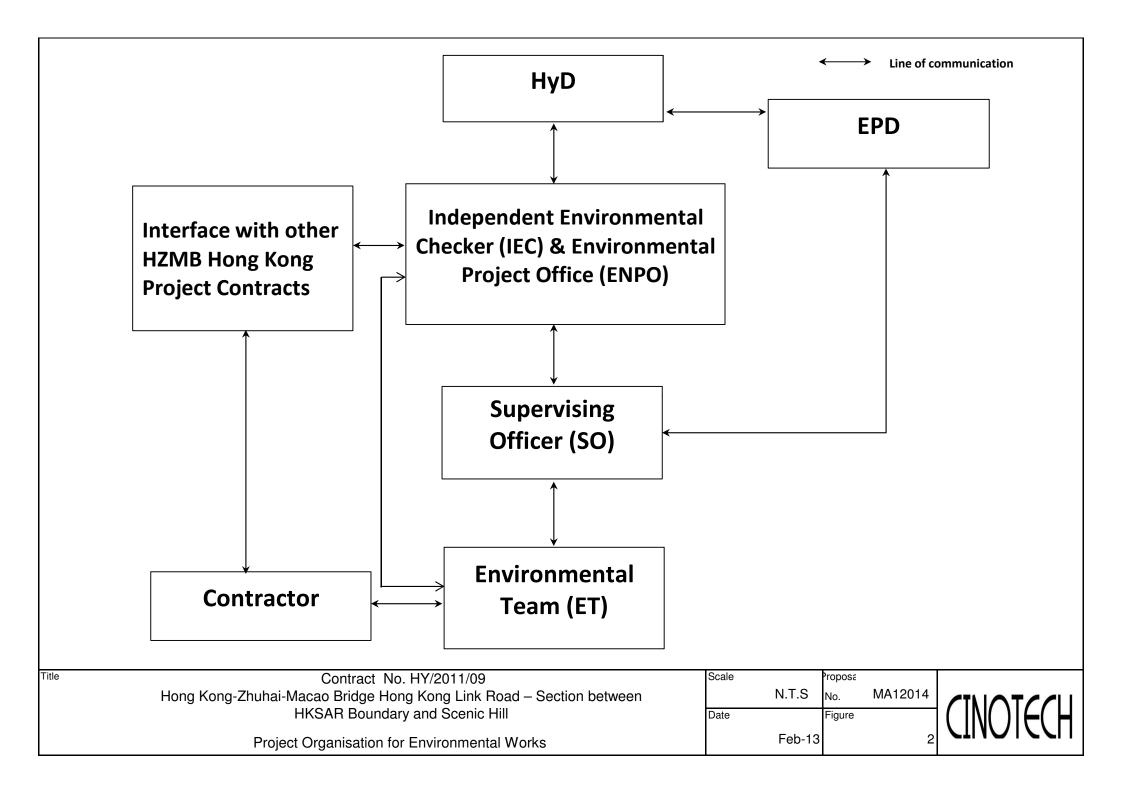
- To prevent any surface runoff discharge into any stream course and sea.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.
- To avoid accumulation of stagnant and ponding water on site.

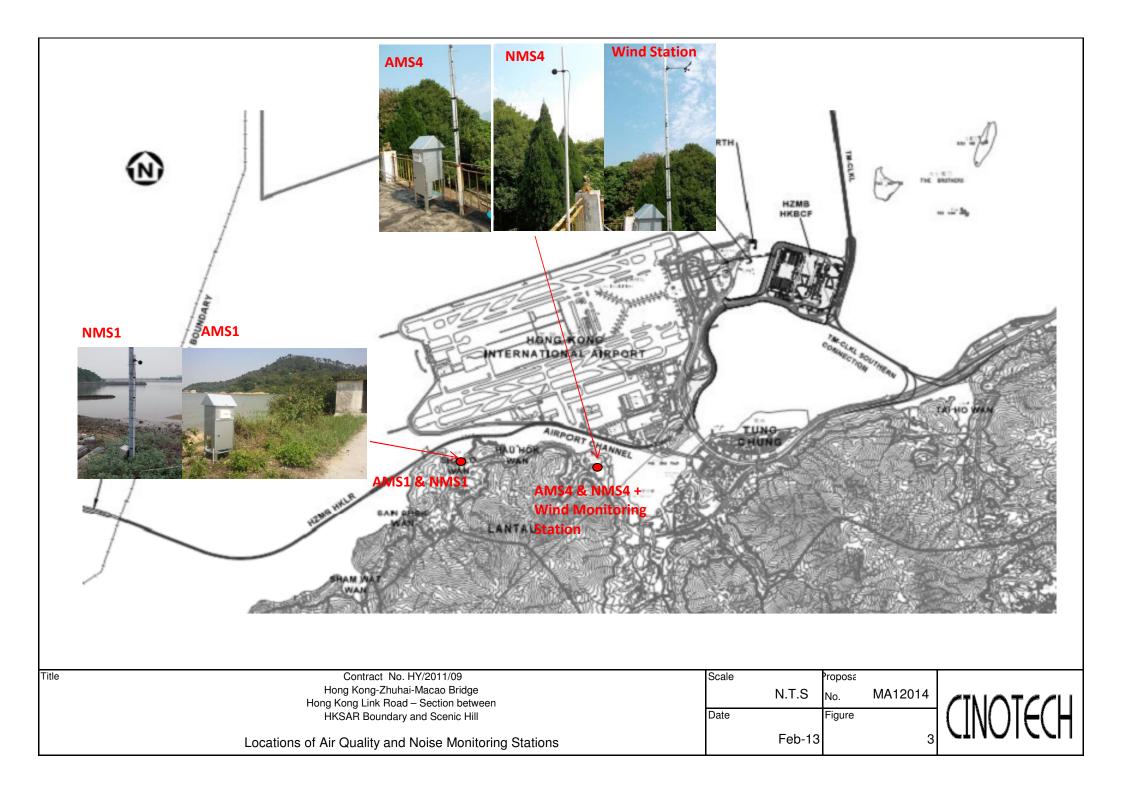

Ecology Impact

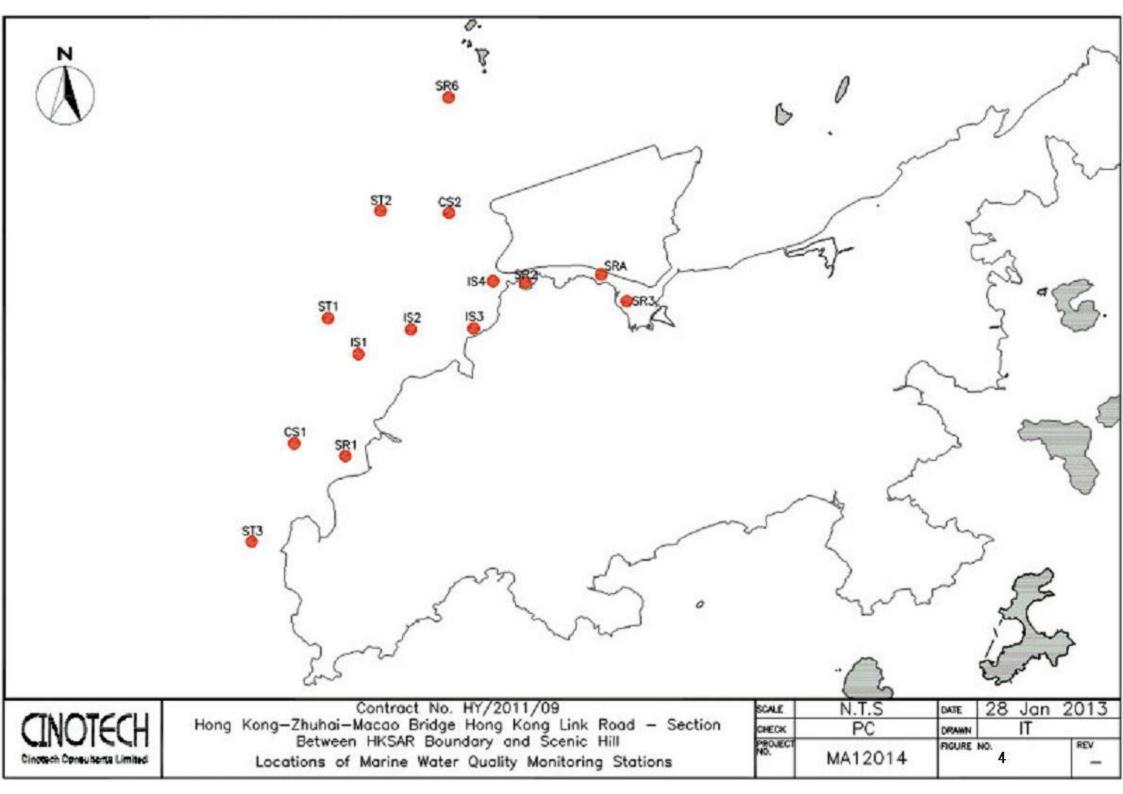

- To implement Spill Response Plan in the event of accidental spillage of or other hazardous chemicals.
- To implement Dolphin Exclusion Zone during the installation of bored pile casing located in the waters to the west of Airport.
- To implement Dolphin Watching Plan after the bored piling casing is installed.
- To ensure the acoustically-decoupled measures were implemented for air compressors and other noisy equipment mounted on construction vessels according to acoustic decoupling measures plan.

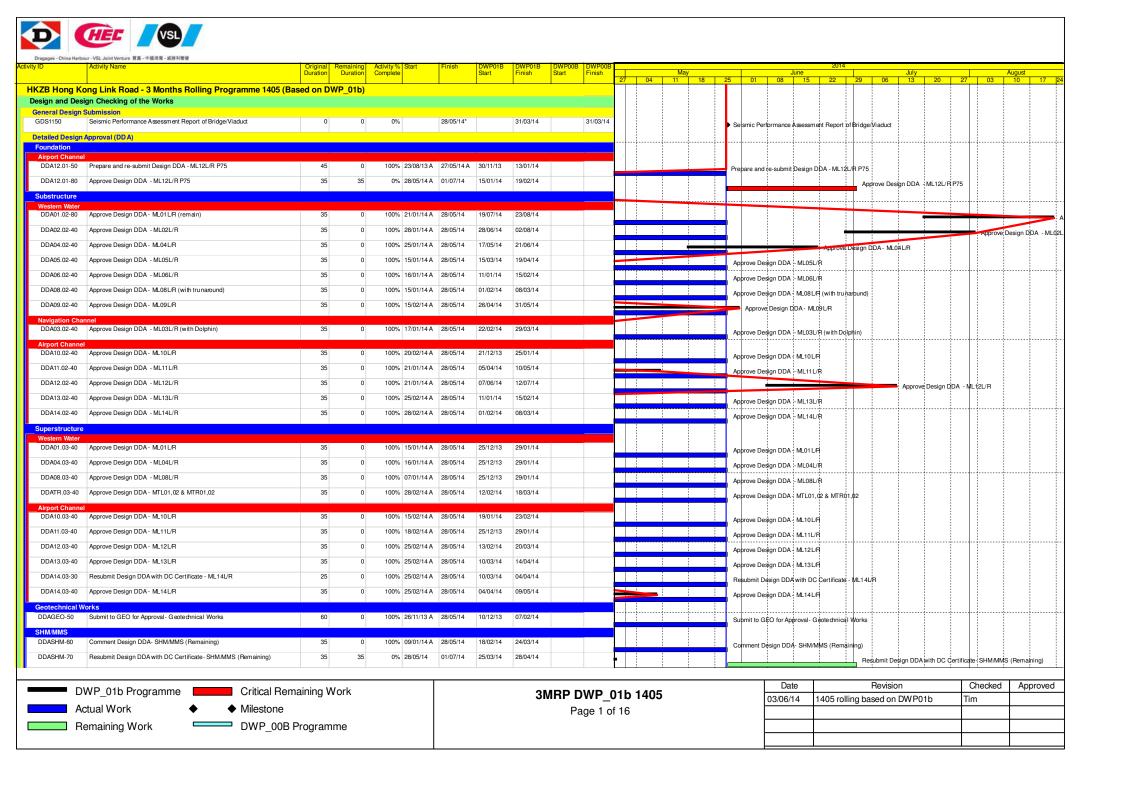

Waste/Chemical Management

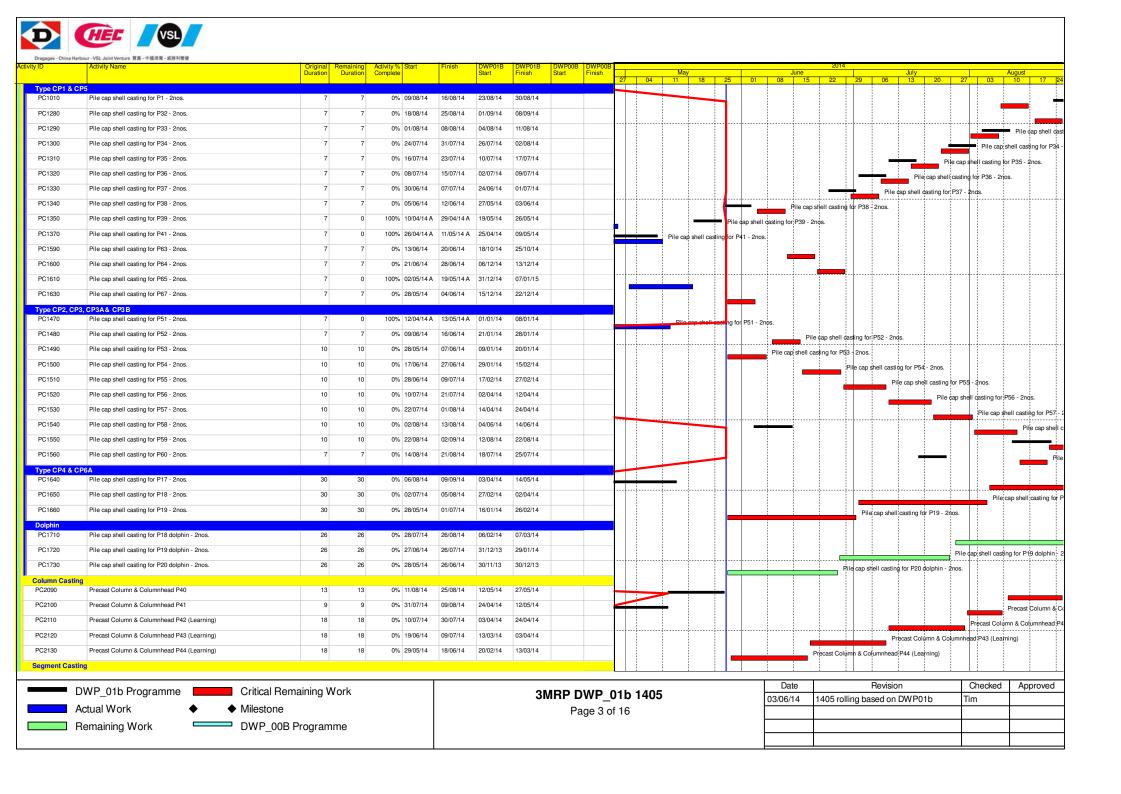

- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation);
- To carry out inspection of dump truck at site exit to ensure inert and non-inert C&D materials are properly segregated before removing off site.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To avoid improper handling or storage of oil drum on site.

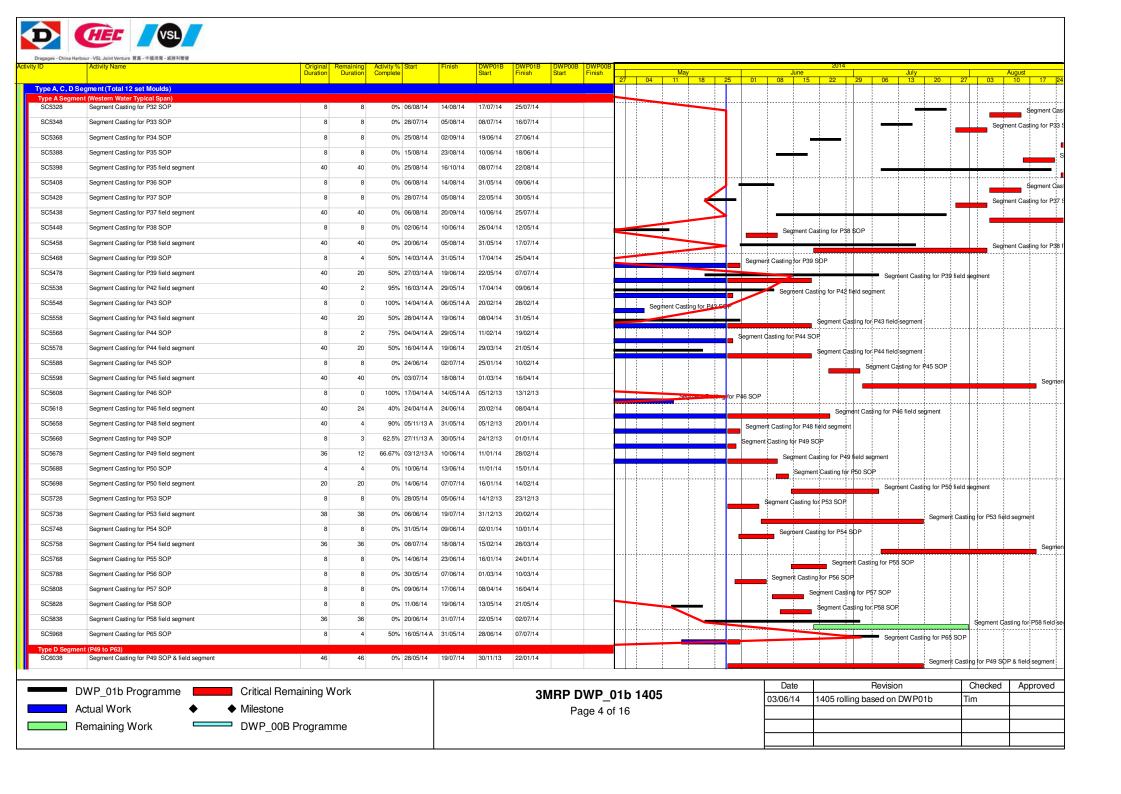

FIGURE(S)

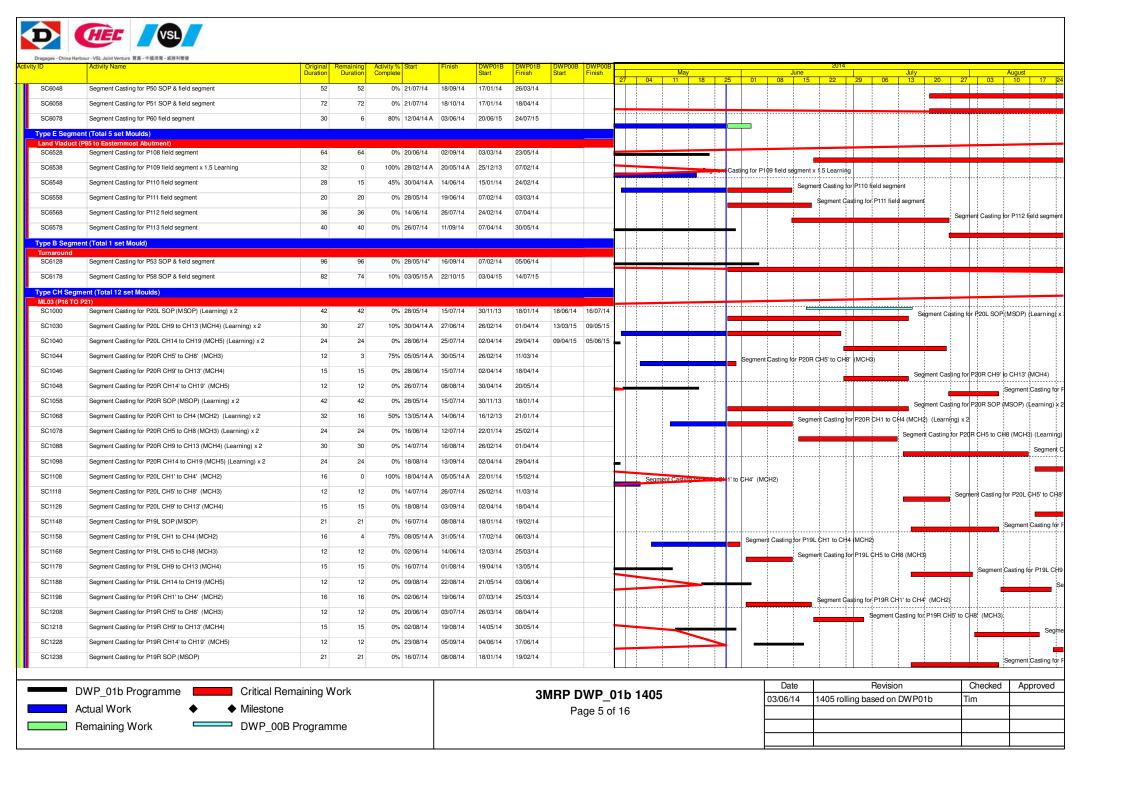


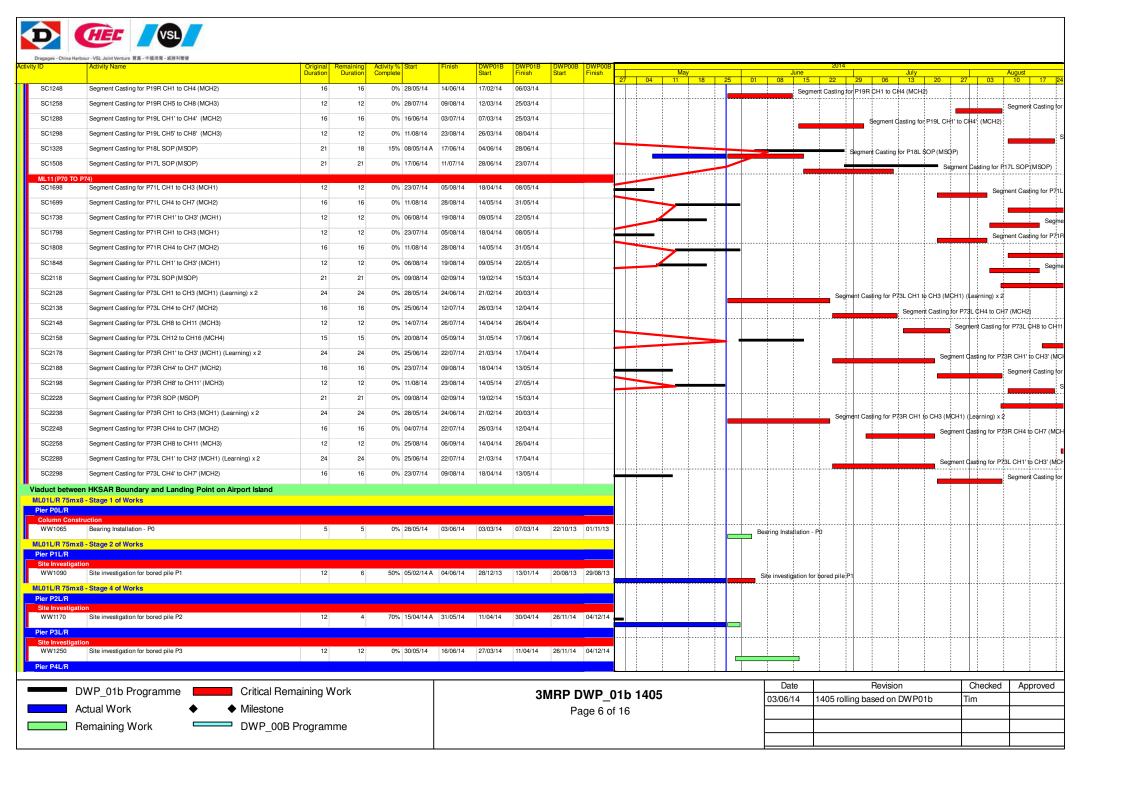


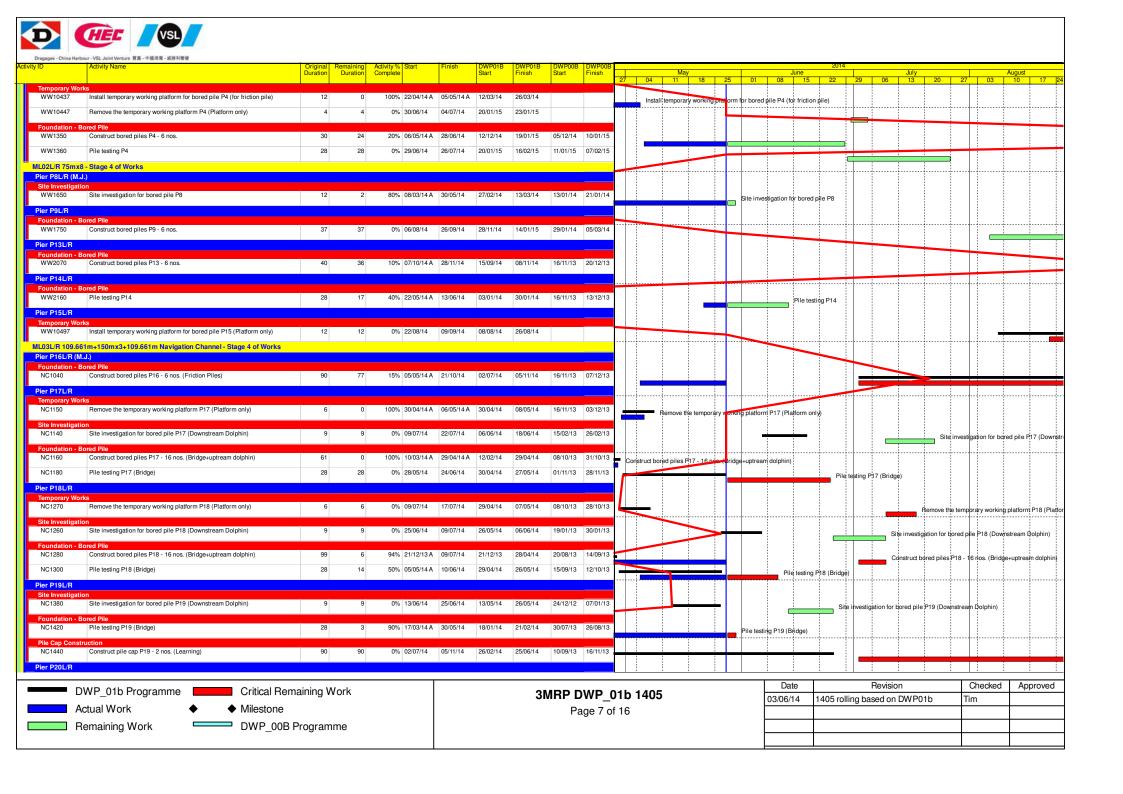


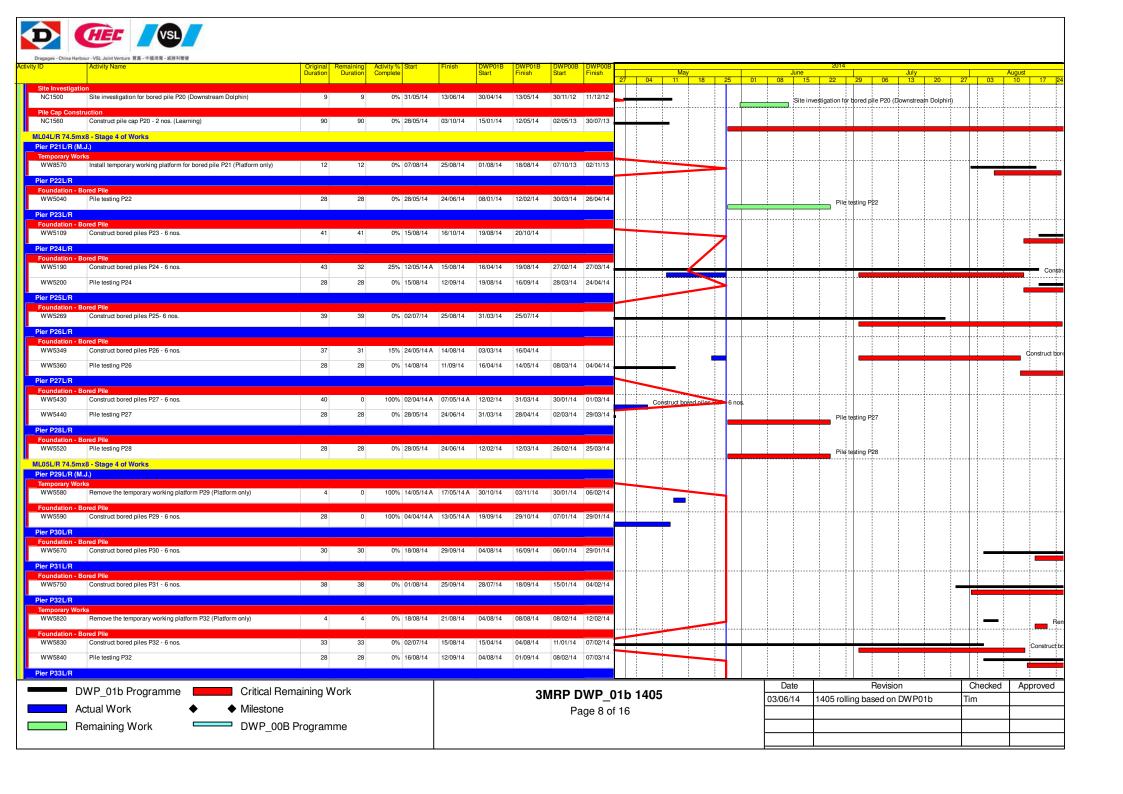


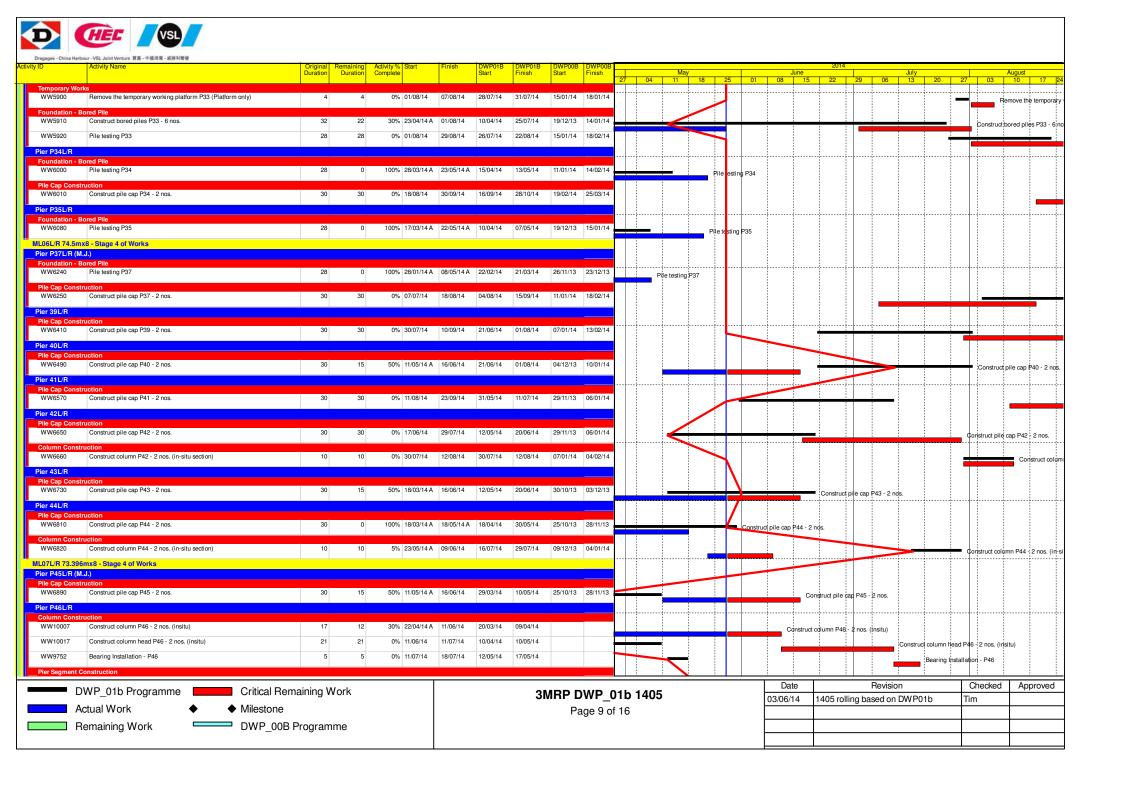


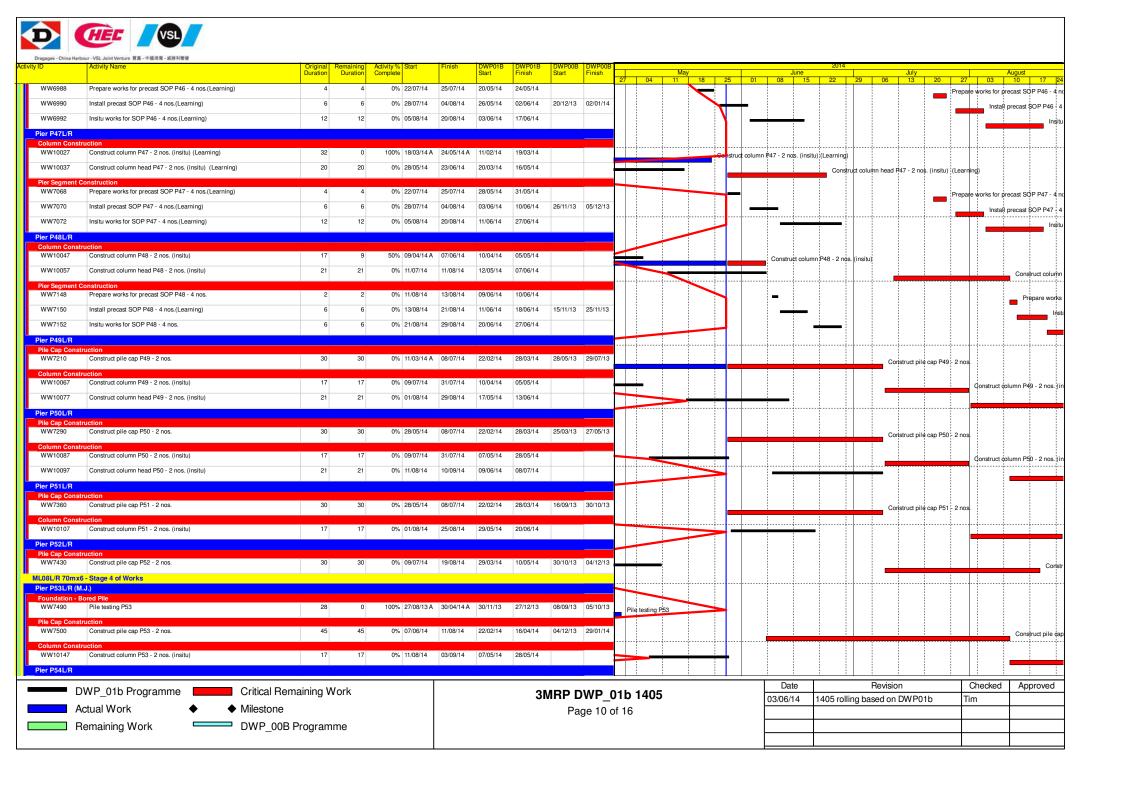

APPENDIX A CONSTRUCTION PROGRAMME

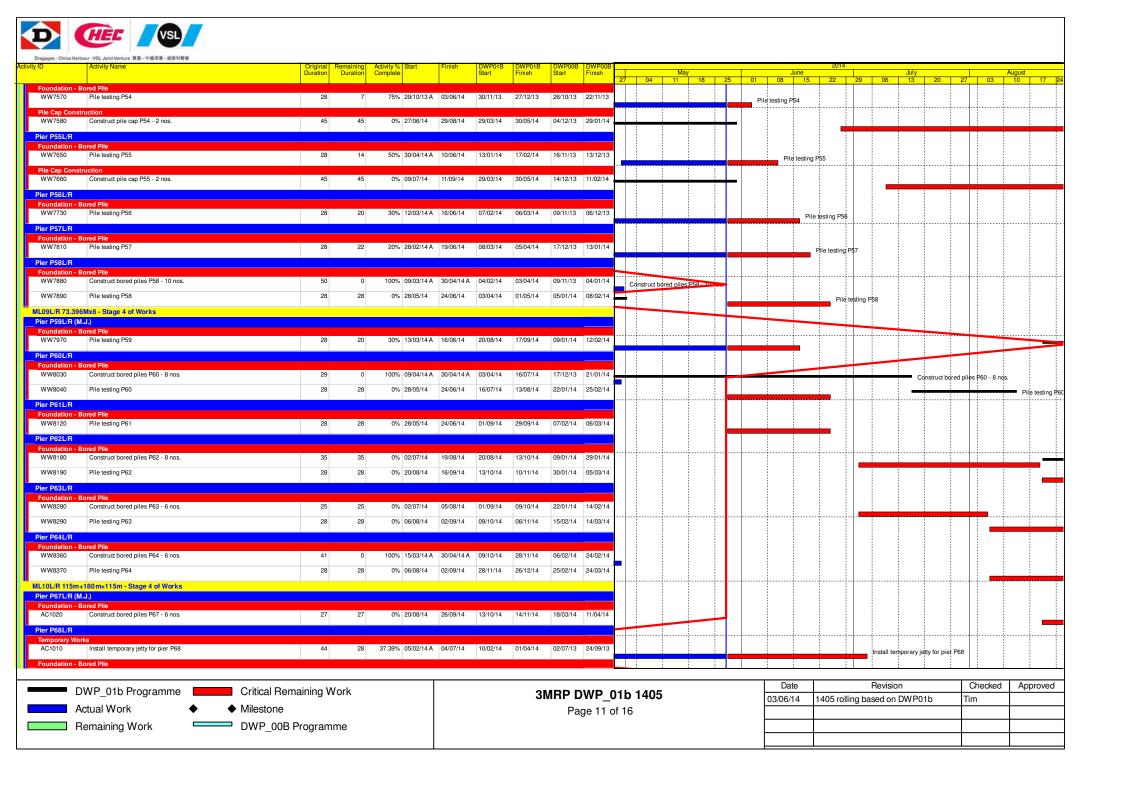


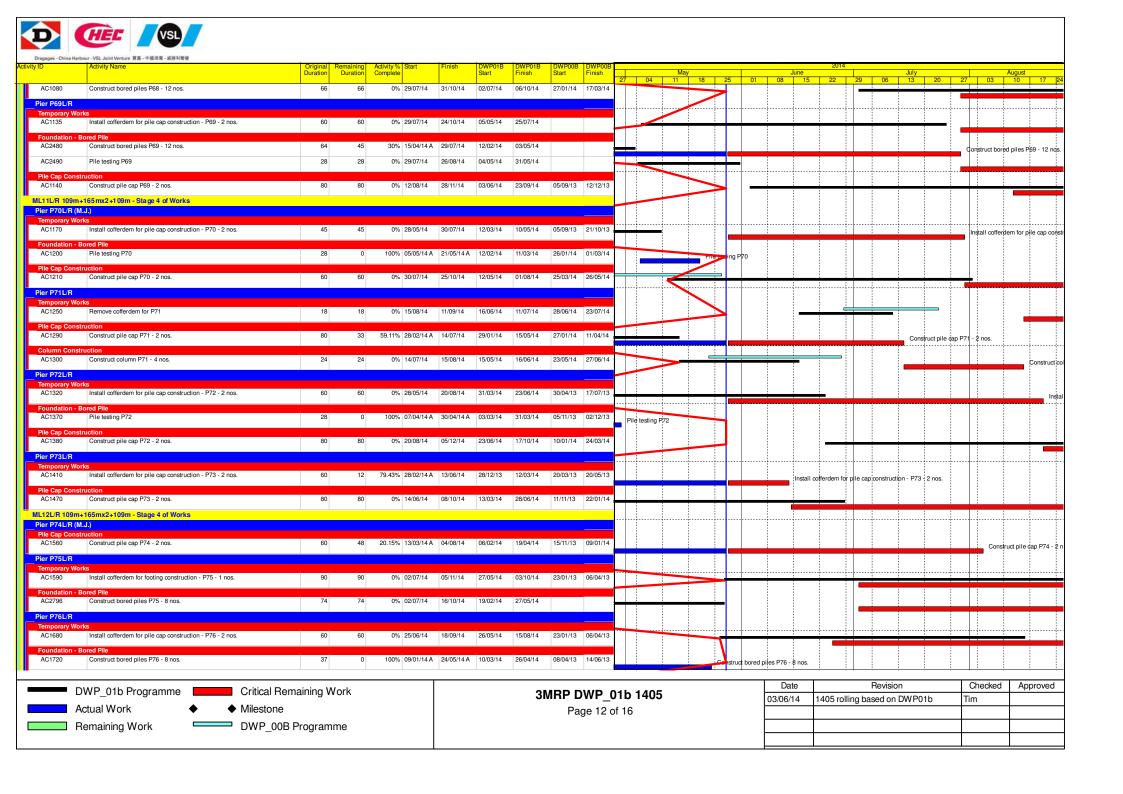


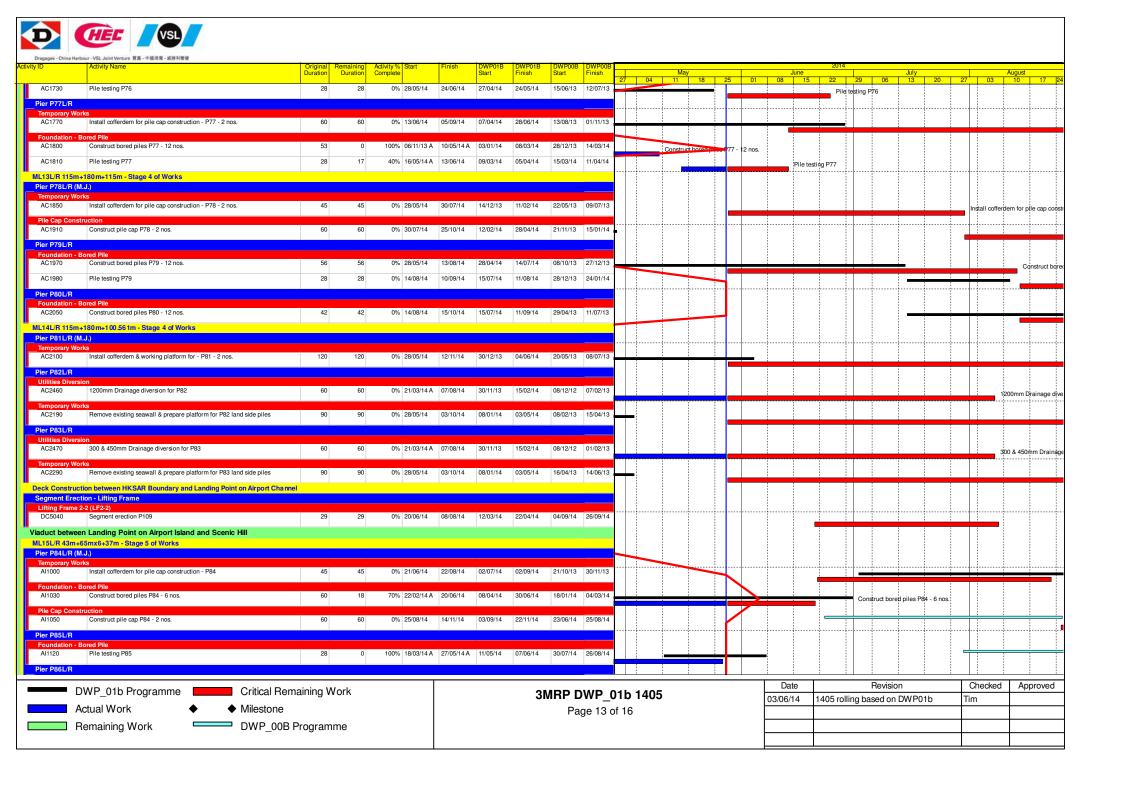


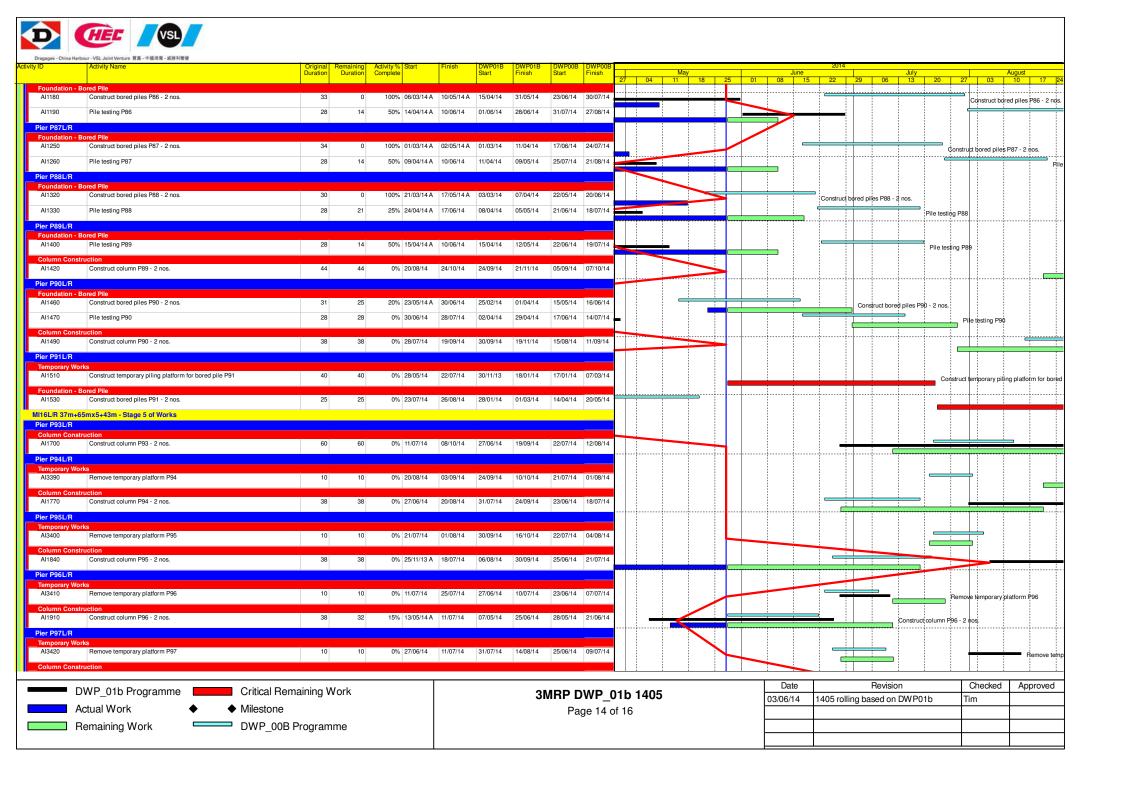


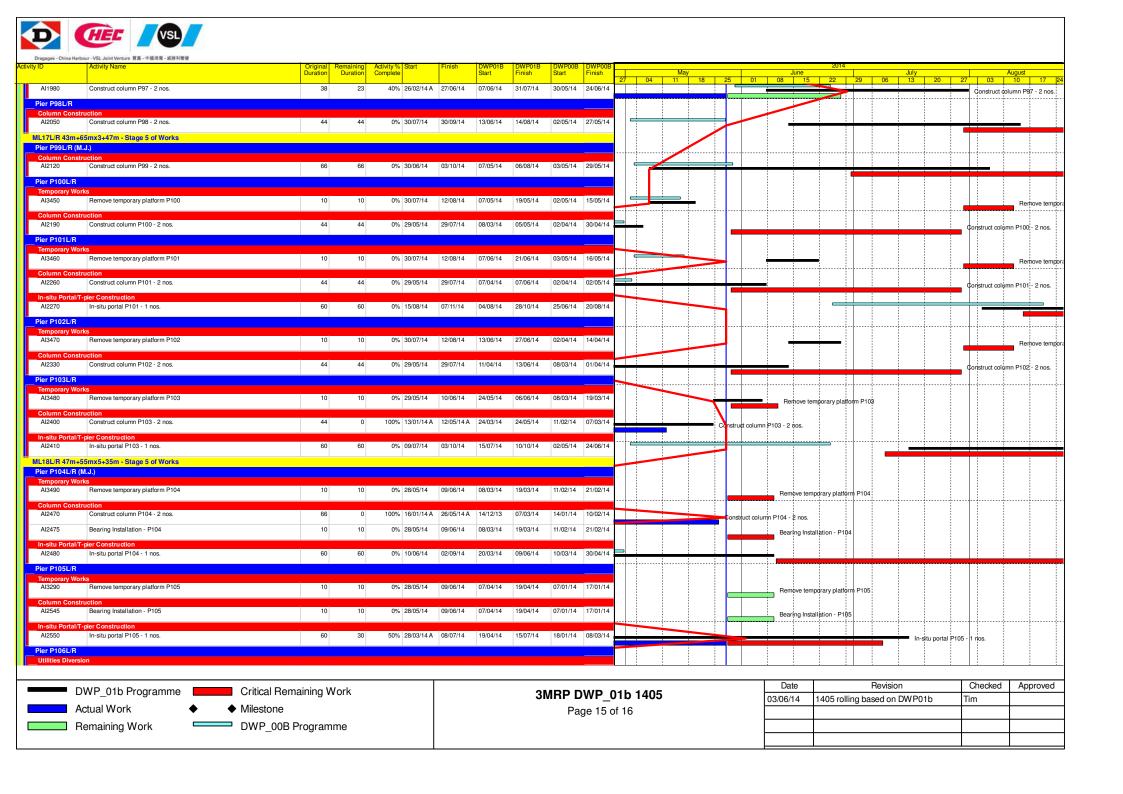


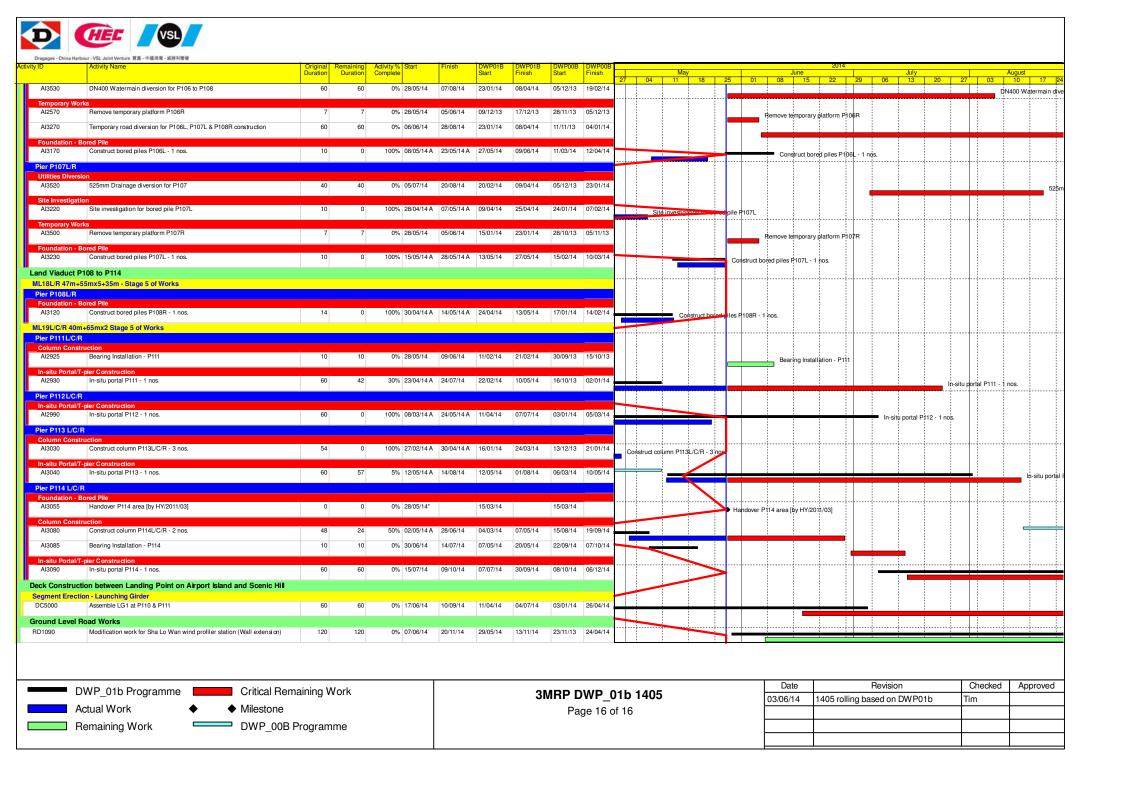












APPENDIX B ACTION AND LIMIT LEVELS

Appendix B - Action and Limit Levels

Table B-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AMS1	381	500
AMS4	352	300

Table B-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AMS1	170	260
AMS4	171	260

Table B-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) *

Noted: If works are to be carried during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

^(*) reduce to 70 dB(A) for schools and 65 dB(A) during school examination periods.

Table B-4 Action and Limit Levels for Water Quality

Parameter (unit)	Water Depth	Action Level	Limit Level
Dissolved Oxygen (mg/L) (surface,	Surface and Middle	<u>5.0</u>	4.2 except 5 for FCZ
middle, bottom)	Bottom	<u>4.7</u>	3.6
Turbidity (NTU)	Depth average	27.5 and 120% of upstream control station's turbidity at the same tide of the same day	47.0 and 130% of turbidity at the upstream control station at the same tide of same day
Suspended Solids (mg/L)	Depth average	23.5 and 120% of upstream control station's SS at the same tide of the same day	34.4 and 130% of SS at the upstream control station at the same tide of same day and 10mg/L for WSD Seawater Intakes

Note

- (1) Depth-averaged is calculated by taking the arithmetic means of reading of all three depths
- (2) For DO, non-compliance of the water quality limit occurs when monitoring result is lower that the limit.
- (3) For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- (4) All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.
- (5) The 1%-ile of baseline data for dissolved oxygen (surface and middle) and dissolved oxygen (bottom) are 4.2mg/L and 3.6mg/L respectively.

APPENDIX C COPIES OF CALIBRATION CERTIFCATES

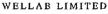
File No. MA12014/67/0008

Project No.	AMS 1 - Sha Lo	Wan		Operator:	WK	THE NO. NIA12014/07/0008
Date:	31-Mar-14			-	30-May	
Equipment No.:	A-01-67				3218	
			Ambient C	Condition	1	
Temperatu	re, Ta (K)	292.8	Pressure, Pa	(mmHg)		760.6
		Ori	fice Transfer Sta	ndard Inform	ation	
Equipme	ent No.:	A-04-04	Slope, mc	0.0588	Intercept	t, bc -0.0461
Last Calibra		30-Sep-13			$c = [\Delta H \times (Pa/760)]$	
Next Calibra	ation Date:	29-Sep-14			(Pa/760) x (298/7	
		•				
			Calibration of	TSP Sampler		
Calibration		Or	fice			HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	$[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Y-axis
1	11.8	3	3.47	59.74	6.9	2.65
2	9.8	2	.16	54.52	5.5	2.37
3	7.6	2	2.78	48.10	4.5	2.14
4	4.6	2	.16	37.60	2.8	1.69
5	3.1		.78	31.00	1,8	1.35
By Linear Regr Slope, mw = Correlation co	0.0439 pefficient* =	0.9	986	Intercept, bw =	0.012	7
*If Correlation C	coefficient < 0.99	0, check and rec	alibrate.			
			Set Point Ca	lculation		
From the TSP Fig	eld Calibration C	urve, take Qstd	= 43 CFM			
From the Regress	sion Equation, the	e "Y" value acco	ording to			
		mw x Q	$std + bw = [\Delta W x]$	(Pa/760) x (29	98/Ta)] ^{1/2}	
Therefore, Se	t Point; W = (mv	v x Qstd + bw) ²	x (760 / Pa) x (7	ra / 298) =	3.54	
Remarks:						
Conducted by: _ Checked by: _	111	Signature: _ Signature: _	Kwan			Date: 31/3/14 Date: 31 March 2014

CINOTECH

File No. MA12014/74/0008 Project No. AMS 4 - San Tau Operator: WK Date: 31-Mar-14 Next Due Date: 30-May-14 Equipment No.: A-01-74 Serial No. 2202 **Ambient Condition** Temperature, Ta (K) 293 Pressure, Pa (mmHg) 760.2 Orifice Transfer Standard Information A-04-04 Equipment No.: Slope, mc 0.0588 Intercept, be -0.0461 Last Calibration Date: 30-Sep-13 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Next Calibration Date: Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ 29-Sep-14 Calibration of TSP Sampler Orfice HVS Calibration ΔH (orifice), Ostd (CFM) $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Point ΔW $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis (HVS), in. of oil Y-axis 11.9 1 3.48 59.96 8.2 2.89 9.5 3.11 53.65 6.5 2.57 3 7.4 2.74 47.45 5.2 2.30 4 4.3 2.09 36.35 3.1 1.78 5 3.1 1.78 30.99 2.3 1.53 By Linear Regression of Y on X Slope, mw = 0.0467Intercept, bw : 0.0805 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.29 Remarks: Checked by: 12 Signature: Signature: Date:

CINOTECH


File No. MA12014/67/0009

Project No.	AMS 1 - Sha Lo	Wan		Operator:	WK	THE ITO. MITTEET WORKS
-			Next Due Date:		•	14
Equipment No.:					3218	
			Ambient C	Ambient Condition		
Temperatu	re, Ta (K)	302.6	Pressure, Pa	(mmHg)		757.5
		0-1	fice Transfer Sta			
Equipme	ont No.	A-04-04	Slope, mc	0.0588	Intercept	t, bc -0.0461
				•,	$c = \Delta H \times (Pa/760)$	
Last Calibra		30-Sep-13			(Pa/760) x (298/I	
Next Calibr	ation Date: 1	29-Sep-14		Qstu — ξ[Δt1 x	(1 ai 700) X (276)	1 a) -bc
			Calibration of	TSP Sampler		
Calibration		Or	fice			HVS
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	11.8		3.40	58.66	6.9	2.60
2	9.7		3.09	53.26	5.6	2.34
3	7.4	2	2.70	46.62	4.5	2.10
4	5.0	2	2.22	38.46	2.8	1.66
5	3.3		1.80	31.39	1.8	1.33
By Linear Regi Slope, mw =	ression of Y on X 0.0467	_		Intercept, bw	-0.127	9
Correlation c	oefficient* = _	0.9	985	_		
*If Correlation (Coefficient < 0.99	00, check and red	calibrate.			
Prove the TCD E	ield Calibration (Sumra tolso Octd		alculation		4.1 (1.1 (4.4) (1.1 (4.1) 4.1) 4.4 (1.1) 4.4 (1.1) 4.4 (1.1) 4.4 (1.1) 4.4 (1.1) 4.4 (1.1) 4.4 (1.1)
	ssion Equation, th					
rioni me Regies	ssion Equation, ti	ic i vaiucacc	orumg to			
		mw x Q	$std + bw = [\Delta W]$	x (Pa/760) x (2	98/Ta)] ^{1/2}	
Thorofora C	ot Doint: W = (m	w v Ootd 4 bw)	² v (760 / Pa) v (Ta / 208) =	2.61	
Therefore, Set Point; W = $(\text{mw x Qstd} + \text{bw})^2 \times (760 / \text{Pa}) \times (\text{Ta}/298) = 3.61$						
Remarks:					· · · · · · · · · · · · · · · · · · ·	·
	10.		L	.		
	Conducted by: Wh Tang Signature: Kwan Date: 19/5/2014					
Checked by:	<u></u>	Signature:		N-	-	Date: 29 May doly
				1/		J

File No. MA12014/74/0009

Project No.	AMS 4 - San Ta	au	u Operator		WK		-
Date:	29-May-14		Nex		28-Jul-14		
Equipment No.:	A-01-74			Serial No.	2202		_
Ambient Condition							
Temperatu	re, Ta (K)	302.9	Pressure, Pa	(mmHg)		757.1	
* * * * * * * * * * * * * * * * * * * *			e	. 1 1 T 6			
Equipme	nut No.	A-04-04	fice Transfer Star Slope, mc	0.0588	Intercept	<u> </u>	-0.0461
Last Calibra					$c = [\Delta H \times (Pa/760)]$		
Next Calibra		30-Sep-13 29-Sep-14			(Ра/760) x (298/]		
Next Callon	ation Date.	23-9ch-1-4		Ser fienty	(1 ai 700) x (250)	cay ₁ be ₃	me
			Calibration of	TSP Sampler			
o 111		Or	fice			HVS	
Calibration Point	ΔH (orifice), in. of water		0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa	a/760) x (298/Ta)] ^{1/2} Y-axis
1	11.8		3.40	58.62	8.1		2.82
2	9.7		3.08	53,22	6.7		2.56
3	7.5		2.71	46.89	5.3		2.28
4	4.3		2.05	35.70	3.1		1.74
5	3.2		1.77	30.90	2.1		1.43
Slope, mw =	By Linear Regression of Y on X Slope , mw =						
			egregative extremely to the first	alculation			
From the TSP F	ield Calibration	tara analysis and the second		aculation	-		
From the Regres							
Trom the Region	ssion Equation, t		_				
		mw x Q	$std + bw = [\Delta W x]$	(Pa/760) x (2)	98/Ta)] ^{1/2}		
Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) = 4.36$							
Damantra							
Remarks:							
Conducted by: Wh Tang Signature: Kwai Date: 29/5/2014 Checked by: Jana Signature: Date: 29/5/2014							

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Description Calibration Orifice

0993

Serial No.

TE-5025A Model No.

Date

30 September 2013

Manufacturer

TISCH

Temperature, Ta (K)

300.8

Pressure, Pa (mmHg)

759.3

Plate	Diff.Vol (m ³)	Diff.Time (min)	Diff.Hg (mm)	Diff.H ₂ O (in.)
1	1.00	1.4103	3.4	2.00
2	1.00	0.9980	6.8	4.00
3	1.00	0.8970	8.5	5.00
4	1.00	0.8540	9.4	5.50
5	1.00	0.7060	13.6	8.00

DATA TABULATION

Vstd	(X axis)	(Y axis)
	Qstd	
0.9853	0.6986	1.4069
0.9808	0.9828	1.9897
0.9786	1.0910	2.2245
0.9775	1.1446	2.3331
0.9720	1.3768	2.8138

Y axis= SQRT[H₂O(Pa/760)(298/Ta)]

Qstd Slope (m) = 2.07768

Intercept (b) = -0.04613

Coefficient (r) = 0.99997

Va	(X axis)	(Y axis)
	Qa	
0.9955	0.7059	0.8901
0.9910	0.9930	1.2589
0.9888	1.1023	1.4074
0.9876	1.1565	1.4761
0.9821	1.3911	1.7803

Y axis= SQRT[H₂O(Ta/Pa)]

Qa Slope (m) = 1.30101

Intercept (b) = -0.02919

Coefficient (r) = 0.99997

CALCULATIONS

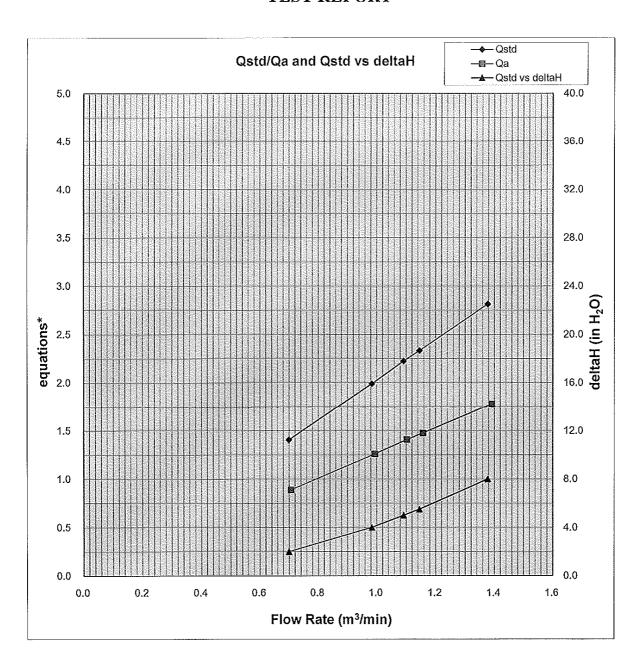
Vstd=Diff. Vol[(Pa-Diff.Hg)/760](298/Ta) Qstd=Vstd/Time Va=Diff.Vol[(Pa-Diff.Hg)/Pa] Qa=Va/Time

For subsequent flow rate calculations:

Qstd=I/m{[SQRT(H2O(Pa/760)(298/Ta))]-b}

Qa=I/m{[SQRT H2O(Ta/Pa)]-b}

PREPARED AND CHECKED BY:


For and On Behalf of WELLAB Ltd.

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrat or tested.

TEST REPORT

Y-axis equations:

Qstd series: SQRT[\(\triangle H(Pa/Pstd)(Tstd/Ta))]

Qa series: SQRT[∆H(Ta/Pa)]

Calibration Certificate

Certificate No. 400247

1 of 2 Pages Page

Customer: Dragages - China Habour - VSL Joint Venture

Address: 3/F., Island Place Tower, 510 King's Road, North Point, H. K.

Order No.: Q40131

Date of receipt

10-Jan-14

Item Tested

Description: Weather Stations, Vantage Pro2

Manufacturer: Davis

Model

: 6152 CUK

Serial No.

: AK130520007

Test Conditions

Date of Test: 14-Jan-14

Supply Voltage

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z04.

Test Results

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S155

Std. Anemometer

NSC201331006

NIM-PRC

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by

This Certificate is issued by:

Hong Kong Calibration Ltd.

Date: 14-Jan-14

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Calibration Certificate

Certificate No. 400247

Page 2 of 2 Pages

Results:

1. Wind Speed

Applied Value (m/s)	UUT Reading (m/s)
2.4	2.2
5.2	5.4
7.5	7.6
10.2	10.3
15.0	15.2
19.0	19.2

Uncertainty: $\pm (2 \% + 0.2 \text{ m/s})$

2. Wind Direction

Reference Value	UUT Indication
N (0°)	N (0°)
NE (45°)	NE (45°)
E (90°)	E (90°)
SE (135°)	SE (135°)
S (180°)	S (180°)
SW (225°)	SW (225°)
W (270°)	W (270°)
NW (315°)	NW (315°)

Remark: 1. UUT: Unit-Under-Test

- 2. Atmospheric Pressure: 1 009 hPa
- 3. Before the calibration of the Wind Direction function, the Arrow Head was adjusted to the magnetic NORTH direction while the monitor indicated N. The customer is reminded to do the alignment again after installation.

----- END -----

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C140308

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC14-0070)

Date of Receipt / 收件日期: 10 January 2014

Description / 儀器名稱

Sound & Vibration Analyser

Manufacturer / 製造商

Svantek

Model No. / 型號

SVAN957

Serial No. / 編號

21455

Supplied By / 委託者

Dragages - China Harbour - VSL Joint Venture

3/F, Island Place Tower, 510 King's Road,

North Point, Hong Kong

TEST CONDITIONS/測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST/測試日期

15 January 2014

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

K \emptyset Lee Project Engineer

Certified By 核證

K M Wu

Date of Issue

17 January 2014

簽發日期 Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可潮源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 松元率書

Certificate No.:

C140308

證書編號

校正證書

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration using the Svantek Acoustic Calibrator SV30A, S/N: 24780 was performed before the test.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281 40 MHz Arbitrary Waveform Generator

Multifunction Acoustic Calibrator

C140016

DC130171

5. Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

	UUT Setting				d Value	UUT	IEC 61672
Range	Mode	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	A	Fast	114.00	1	113.9	± 1.1

6.1.2 Linearity

UUT Setting				Applie	d Value	UUT
Range	Mode	Frequency	Time	Level	Freq.	Reading
_		Weighting	Weighting	(dB)	(kHz)	(dB)
HIGH	SPL	A	Fast	114.00	1	113,9 (Ref.)
				104.00		103.8
				94.00		93.8

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

6.2 Time Weighting

	UUT Setting				d Value	UUT	IEC 61672
Range	Mode	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	A	Fast	114.00	1	113.9	Ref.
			Slow			113.9	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C140308

證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

UUT Setting			Applied Value		UUT	IEC 61672	
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
HIGH	SPL	A	Fast	114.00	63 Hz	87.7	-26.2 ± 1.5
	·				125 Hz	97.7	-16.1 ± 1.5
				•	250 Hz	105.2	-8.6 ± 1.4
					500 Hz	110.7	-3.2 ± 1.4
					1 kHz	113.9	Ref.
					2 kHz	115.1	$+1.2 \pm 1.6$
					4 kHz	115.0	$+1.0 \pm 1.6$
					8 kHz	112.9	-1.1 (+2.1; -3.1)
					12.5 kHz	109.7	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

UUT Setting				Applied Value		UUT	IEC 61672
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
HIGH	SPL	C	Fast	114.00	63 Hz	113.1	-0.8 ± 1.5
					125 Hz	113.8	-0.2 ± 1.5
					250 Hz	113.9	0.0 ± 1.4
					500 Hz	113.9	0.0 ± 1.4
					1 kHz	113.9	Ref.
					2 kHz	113.8	-0.2 ± 1.6
					4 kHz	113.2	-0.8 ± 1.6
					8 kHz	111.0	-3.0 (+2.1; -3.1)
					12.5 kHz	107.7	-6.2 (+6.0 ; -∞)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可潮源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C140308

證書編號

Remarks: - UUT Microphone Model No.: ACO 7502H & S/N: 43730

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value: 114 dB: 63 Hz - 125 Hz $: \pm 0.45 \text{ dB}$

250 Hz - 500 Hz : $\pm 0.40 \text{ dB}$ $: \pm 0.30 \text{ dB}$ 1 kHz 2 kHz - 4 kHz $: \pm 0.45 \text{ dB}$ $: \pm 0.55 \text{ dB}$ 8 kHz

 $: \pm 0.80 \text{ dB}$ 12.5 kHz

: ± 0.10 dB (Ref. 94 dB) : 1 kHz

 $: \pm 0.10 \text{ dB (Ref. 94 dB)}$ 104 dB : 1 kHz

94 dB : 1 kHz $: \pm 0.20 \text{ dB}$

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可潮源至國際原準。局部複印本證書需先獲本實驗所書面批准。

E-mail/電郵: callab@suncreation.com

Fax/傳真: 2744 8986

⁻ The uncertainties are for a confidence probability of not less than 95 %.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C140307

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC14-0070)

Date of Receipt / 收件日期: 10 January 2014

Description / 儀器名稱

Acoustic Calibrator

Manufacturer / 製造商

Svantek

Model No. / 型號

SV30A

Serial No. / 編號

24780

Supplied By / 委託者

Dragages - China Harbour - VSL Joint Venture

3/F, Island Place Tower, 510 King's Road,

North Point, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

15 January 2014

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

K C/Lee Project Engineer

Certified By 核證

KM Wu

Date of Issue 簽發日期

17 January 2014

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先復本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C140307

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID

CL130 CL281

TST150A

Description

Universal Counter
Multifunction Acoustic Calibrator

Measuring Amplifier

Certificate No.

C133632

DC130171 C120886

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

Count Doloities			
UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.2	± 0.3	± 0.2
114 dB, 1 kHz	114.2		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.999 99	$1 \text{ kHz} \pm 0.02 \%$	± 0.01

Remark: - The uncertainties are for a confidence probability of not less than 95 %.

Note:

Tel/電話: 2927 2606

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Fax/傳真: 2744 8986

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所戴校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

CASTCO TESTING CENTRE LTD.

TEST REPORT

Chemical Analysis of Water

Accuracy check of YSI Sondes Environmental Monitoring System

Date of issue: 10-02-2014

Page 1 of 1 pages

Castco LRN: EN0140207-21

Sample details as supplied by customer

Customer: Dragages-China Harbour-VSL Joint Venture

Customer Ref. No.: --

Address: Tung Chung Waterfront Road, adjacent to Tung Chung New Development Pier

Job Title: Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road - Section between HKSAR Boundary and Scenic Hill

Contract No.: HY/2011/09

Laboratory Test Result

Instrument Name: Sonde Environmental Monitoring System

Manufacturer: YSI Model No.: YSI 6820 Serial No.: 02D0293AA Instrument No.: W.03.02 Date of Calibration: 7-2-2014 Date of Next Calibration: 7-5-2014

pH Value Check (pH Probe: Model: 6589, L/N: 12C)

Expected Reading (pH Unit)	Sonde Reading (pH Unit)	Tolerance (pH Unit)	Tolerance Limit (pH Unit)	Method Refrence
4.00	4.12	+0.12		
7.02	7.01	-0.01	± 0.2	APHA 21e, 4500-H ⁺ B
10.06	10.01	-0.05		,

Turbidity Check (Turbidity Sensor: Model: 6136, S/N: 11J100475)

	Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
Γ	4.00	4.2	+5.0		
1	10.00	10.0	0		
	20.00	19.7	-1.5	± 10	APHA 21e, 2130B
	50.00	49.5	-1		· ·
	100.00	100.3	+0.3		

Conductivity Performance Check (Conductivity Sensor: Model: 6560, L/N: 12B100106)

Expected Reading (µS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
1412 at 25 °C	1420 at 25 °C	+0.6	± 10	APHA 21e, 2510B

Salinity Performance Check (Salinity Sensor: Model: 6560, L/N: 12B100106)

Expected Reading (ppt)	Sonde Reading (ppt)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
33	33.77	+2.3	± 10	APHA 19e, 2520B

Dissolved Oxygen Check (Dissolved Oxygen Sensor: Model: 6562, L/N: 08C100810)

DO from Winkler Titration (mg/L)	Sonde Reading (mg/L)	Tolerance (mg/L)	Tolerance Limit (mg/L)	Method Refrence
8.63	8.67	+0.04	± 0.20	APHA 21e, 4500-O C&G
5.23	5.11	-0.12	± 0.20	Al 11A 210, 4300-0 Cac

Water Level Meter Check

Γ	Expected Reading (m)	Sonde Reading (m)	Tolerance (m)	Tolerance Limit (m)	Method Refrence
Γ	1.03	1.037	+0.01	± 0.05	YSI Sondes Procedure Manual

Temperature Check

Expected Reading (°C)	Sonde Reading (°C)	Tolerance (°C)	Tolerance Limit (°C)	Method Refrence
25.0	23.3	-1.7	± 2.0	Telarc Technical Guide No.3 1986

Checked by:

TO KA CHEUK

End of Report

LEE STEPHEN SHU HANG

Senior Chemist Form No. ENV SONDE_T1 dd 22/02/2013

Technical Director

香港粉嶺安居街33號 香港粉嶺安全街29A號

33, On Kui Street, Fanling, Hong Kong. 29A, On Chuen Street, Fanling, Hong Kong. E-mail: castco@netvigator.com Website: www.castco.com.hk

Certified by:

Tel: 2677 2138 Fax: 2677 0351

CASTCO TESTING CENTRE LTD.

TEST REPORT

Chemical Analysis of Water

Accuracy check of YSI Sondes Environmental Monitoring System

Date of issue: 10-02-2014

Page 1 of 1 pages

Castco LRN: EN0140207-22

Sample details as supplied by customer

Customer: Dragages-China Harbour-VSL Joint Venture

Customer Ref. No.: --

Address: Tung Chung Waterfront Road, adjacent to Tung Chung New Development Pier

Job Title: Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road - Section between HKSAR Boundary and Scenic Hill

Contract No.: HY/2011/09

Laboratory Test Result

Instrument Name: Sonde Environmental Monitoring System

Manufacturer: YSI Model No.: YSI 6820 Serial No.: 12B100804 Instrument No.: W.03.13
Date of Calibration: 7-2-2014
Date of Next Calibration: 7-5-2014

pH Value Check (pH Probe: Model: 6589, L/N: 12C)

Expected Reading (pH Unit)	Sonde Reading (pH Unit)	Tolerance (pH Unit)	Tolerance Limit (pH Unit)	Method Refrence
4.00	4.02	+0.02		
7.02	7.00	-0.02	± 0.2	APHA 21e, 4500-H ⁺ B
10.06	9.98	-0.08	1/44/82 58	, , , , , , ,

Turbidity Check (Turbidity Sensor: Model: 6136, S/N: 12B100645)

Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
4.00	4.2	+5		
10.00	10.3	+3		
20.00	20.3	+1.5	± 10	APHA 21e, 2130B
50.00	51.2	+2.4		,
100.00	102.0	+2		

Conductivity Performance Check (Conductivity Sensor: Model: 6560, L/N: 12B100055)

Expected Reading (μS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
1412 at 25 °C	1453 at 25 °C	+2.9	± 10	APHA 21e, 2510B

Salinity Performance Check (Salinity Sensor: Model: 6560, L/N: 12B100055)

Expected Reading (ppt)	Sonde Reading (ppt)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
33	32.69	-0.9	± 10	APHA 19e, 2520B

Dissolved Oxygen Check (Dissolved Oxygen Sensor: Model: 6562, L/N: 12A100930)

DO from Winkler Titration (mg/L)	Sonde Reading (mg/L)	Tolerance (mg/L)	Tolerance Limit (mg/L)	Method Refrence
8.63	8.64	+0.01	1.0.20	ADUA 21 - 4500 O CCC
5.23	5.23	0.00	± 0.20	APHA 21e, 4500-O C&G

Water Level Meter Check

Expected Reading (m)	Sonde Reading (m)	Tolerance (m)	Tolerance Limit (m)	Method Refrence
1.03	1.034	0.00	± 0.05	YSI Sondes Procedure Manual

Temperature Check

Expected Reading (°C)	Sonde Reading (°C)	Tolerance (°C)	Tolerance Limit (°C)	Method Refrence
25.0	24.1	-0.9	± 2.0	Telarc Technical Guide No.3 1986

Checked by:

TO KA CHEUK

Certified by:

LEE STEPHEN SHU HANG

Ph.D. Technical Director

Senior Chemist Form No. ENV SONDE T1 dd 22/02/2013 End of Report

E-mail: castco@netvigator.com Website: www.castco.com.hk

香港粉嶺安居街33號 33, On Kui Street, Fanling, Hong Kong. 香港粉嶺安全街29A號 29A, On Chuen Street, Fanling, Hong Kong.

Tel: 2677 2138 Fax: 2677 0351

CASTCO TESTING CENTRE LTD.

TEST REPORT

Chemical Analysis of Water

Accuracy check of YSI Sondes Environmental Monitoring System

Date of issue: 12-05-2014

Page 1 of 1 pages

Castco LRN: EN0140507-12

Sample details as supplied by customer

Customer: Dragages-China Harbour-VSL Joint Venture

Customer Ref. No.: --

Address: Tung Chung Waterfront Road, adjacent to Tung Chung New Development Pier

Job Title: Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road - Section between HKSAR Boundary and Scenic Hill

Contract No.: HY/2011/09

Laboratory Test Result

Instrument Name: Sonde Environmental Monitoring System

Manufacturer: YSI Model No.: YSI 6820 Serial No.: 02D0293AA Instrument No.: W.03.02

Date of Calibration: 07-05-2014 Date of Next Calibration: 07-08-2014

pH Value Check (pH Probe: Model: 6589, L/N: 12C)

pri value check (pri riobe.	1viouci. 0505, Liii. 120)			
Expected Reading (pH Unit)	Sonde Reading (pH Unit)	Tolerance (pH Unit)	Tolerance Limit (pH Unit)	Method Refrence
4.00	3.98	-0.02		
7.02	6.94	-0.08	± 0.2	APHA 21e, 4500-H ⁺ B
10.06	9.93	-0.13		2 11 10 10 2

Turbidity Check (Turbidity Sensor: Model: 6136, S/N: 11J100475)

Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
4.00	4.1	+2.5		
10.00	10.2	+2.0		
20.00	20.9	+4.5	± 10	APHA 21e, 2130B
50.00	51.7	+3.4		50 E
100.00	102.4	+2.4		

Conductivity Performance Check (Conductivity Sensor: Model: 6560, L/N: 12B100106)

Expected Reading (µS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
1412 at 25 °C	1398 at 25 °C	-1.0	± 10	APHA 21e, 2510B

Salinity Performance Check (Salinity Sensor: Model: 6560, L/N: 12B100106)

Expected Reading (ppt)	Sonde Reading (ppt)	eading (ppt) Tolerance (%) Tolerance Limit (%)		Method Refrence	
33	33.3	+0.9	± 10	APHA 19e, 2520B	

Dissolved Oxygen Check (Dissolved Oxygen Sensor: Model: 6562, L/N: 08C100810)

DO from Winkler Titration (mg/L)	Sonde Reading (mg/L)	Tolerance (mg/L)	Tolerance Limit (mg/L)	Method Refrence
8.52 4.71	8.55 4.68	+0.03 -0.03	± 0.20	APHA 21e, 4500-O C&G

Water Level Meter Check

Expected Reading (m)	ed Reading (m) Sonde Reading (m)		Tolerance Limit (m)	Method Refrence	
1.03	1.03	0.00	± 0.05	YSI Sondes Procedure Manual	

Temperature Check

Expected Reading (°C)	Sonde Reading (°ℂ)	Tolerance (°C)	Tolerance Limit (℃)	Method Refrence
25.0	23.5	-1.5 ± 2.0		Telarc Technical Guide No.3 1986

Checked by:

Certified by:

LEE STEPHEN SHU HANG

End of Report

Ph.D. Technical Director

Tel: 2677 2138

Fax: 2677 0351

Form No. ENV SONDE_T1 dd 22/02/2013

香港粉嶺安居街33號 33, On Kui Street, Fanling, Hong Kong. 29A, On Chuen Street, Fanling, Hong Kong. 香港粉嶺安全街29A號

E-mail: castco@netvigator.com Website: www.castco.com.hk

CASTCO TESTING CENTRE LTD.

TEST REPORT

Chemical Analysis of Water

Accuracy check of YSI Sondes Environmental Monitoring System

Date of issue: 12-05-2014

Page 1 of 1 pages

Castco LRN: EN0140507-11

Sample details as supplied by customer

Customer: Dragages-China Harbour-VSL Joint Venture

Customer Ref. No.: --

Address: Tung Chung Waterfront Road, adjacent to Tung Chung New Development Pier

Job Title: Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road - Section between HKSAR Boundary and Scenic Hill

Contract No.: HY/2011/09

Laboratory Test Result

Instrument Name: Sonde Environmental Monitoring System

Manufacturer: YSI Model No.: YSI 6820 Serial No.: 12B100804 Instrument No.: W.03.13

Date of Calibration: 07-05-2014 Date of Next Calibration: 07-08-2014

pH Value Check (pH Probe: Model: 6589, L/N: 12C)

pri value cheek (pri riobe	1 (Wodel: 0505, E/W. 120)		-		
Expected Reading (pH Unit)	Sonde Reading (pH Unit)	Tolerance (pH Unit)	Tolerance Limit (pH Unit)	Method Refrence	
4.00	4.12	+0.12			
7.02	6.95	-0.07	± 0.2	APHA 21e, 4500-H ⁺ B	
10.06	9.90	-0.16		And the second s	

Turbidity Check (Turbidity Sensor: Model: 6136, S/N: 12B100645)

Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
4.00	3.7	-7.5		
10.00	9.7	-0.3		
20.00	19.3	-3.5	± 10	APHA 21e, 2130B
50.00	49.7	-0.6		
100.00	99.2	-0.8		

Conductivity Performance Check (Conductivity Sensor: Model: 6560, L/N: 12B100055)

Expected Reading (µS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
1412 at 25 °C	1503 at 25 °C	+6.4	± 10	APHA 21e, 2510B

Salinity Performance Check (Salinity Sensor: Model: 6560, L/N: 12B100055)

Expected Reading (ppt)	Sonde Reading (ppt)	Tolerance (%)	Tolerance Limit (%)	Method Refrence
33	31.93	-3.2	± 10	APHA 19e, 2520B

Dissolved Organ Check (Dissolved Organ Sensor: Model: 6562, L/N: 124 100020)

Dissolved Oxygen Check (Dis	ssorved Oxygen Sensor; Mo	del: 0502, L/N: 12A10	10930)		
DO from Winkler Titration	Vinkler Titration Sonde Reading (mg/L)		Tolerance Limit (mg/L)	Method Refrence	
(mg/L)	Solide Reading (Ing/L)	Tolerance (mg/L)	Tolerance Ellint (mg/L)	Wichiod Refrence	
8.52	8.64	+0.12	± 0.20	APHA 21e, 4500-O C&G	
4.71	4.78	+0.07	± 0.20	AFRA 216, 4500-0 C&0	

Water Level Meter Check

Expected Reading (m)	n) Sonde Reading (m)	Tolerance (m)	Tolerance Limit (m)	Method Refrence	
1.03	1.06	+0.03	± 0.05	YSI Sondes Procedure Manua	

Temperature Check

Expected Reading (°C)	Sonde Reading (°C)	Tolerance (°C)	Tolerance Limit (°℃)	Method Refrence	
25.0	24.5	-0.5 ± 2.0		Telarc Technical Guide	

Checked by:

TO KA CHEUK Senior Chemist

Certified by:

LEE STEPHEN SHU HANG

End of Report

Technical Director

Form No. ENV SONDE T1 dd 22/02/2013

香港粉嶺安居街33號 香港粉嶺安全街29A號 E-mail: castco@netvigator.com Website: www.castco.com.hk

33, On Kui Street, Fanling, Hong Kong. 29A, On Chuen Street, Fanling, Hong Kong. Tel: 2677 2138 Fax: 2677 0351

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Impact Air Quality and Noise Monitoring Schedule in May 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-May	2-May	3-May
4-May	5-May	6-May	7-May	8-May	9-May	10-May
7-1/1ay	3-iviay	0-1/1ay	/-iviay	0-1v1ay	y-iviay	10-11149
	24 hr TSP		Noise		24 hr TSP	
	1 hr TSP X 3				1 hr TSP X 3	
11-May	12-May	13-May	14-May	15-May	16-May	17-May
				24 b., TCD	NI-i	
				24 hr TSP 1 hr TSP X 3	Noise	
				1 III 13F X 3		
18-May	19-May	20-May	21-May	22-May	23-May	24-May
		•	•	_		
			24 hr TSP	Noise		
			1 hr TSP X 3			
25-May	26-May	27-May	28-May	29-May	30-May	31-May
25-Iviay	Z0-May	27-May	28-IVIAY	29-May	50-May	31-May
		24 hr TSP	Noise		24 hr TSP	
		1 hr TSP X 3	- 10-0-		1 hr TSP X 3	

Air Quality Monitoring Stations

AMS1 - Sha Lo Wan AMS4 - San Tau Noise Monitoring Stations

NMS1 - Sha Lo Wan NMS4 - San Tau

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Impact Air Quality and Noise Monitoring Schedule in June 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jun	2-Jun	3-Jun	4-Jun	5-Jun	6-Jun	7-Jun
				24 hr TSP 1 hr TSP X 3	Noise	
8-Jun	9-Jun	10-Jun	11-Jun	12-Jun	13-Jun	14-Jun
			24 hr TSP 1 hr TSP X 3	Noise		
15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	20-Jun	21-Jun
		24 hr TSP 1 hr TSP X 3	Noise			
22-Jun	23-Jun	24-Jun	25-Jun	26-Jun	27-Jun	28-Jun
	24 hr TSP 1 hr TSP X 3	Noise			24 hr TSP 1 hr TSP X 3	
29-Jun	30-Jun					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Stations

AMS1 - Sha Lo Wan AMS4 - San Tau **Noise Monitoring Stations**

NMS1 - Sha Lo Wan NMS4 - San Tau

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Impact Water Quality Monitoring Schedule in May 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
·	·	•	•	1-May	2-May	3-May
					Water Quality Monitoring	
					water Quanty Monitoring	
					Mid-Flood 08:01	
					Mid-Ebb 14:41	
4-May	5-May	6-May	7-May	8-May	9-May	10-May
1 Hauj	5 11luy	o may	7 11149	o may) may	10 1/14
	Water Quality Monitoring		Water Quality Monitoring			Water Quality Monitoring
	Mid-Flood 09:23		Mid-Flood 08:08			Mid-Ebb 10:11
	Mid-Ebb 16:37		Mid-Ebb 18:26			Mid-Flood 16:00
11-May	12-May	13-May	14-May	15-May	16-May	17-May
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	N. C. I. T. I		10.1		25.171 1 25.11	
	Mid-Ebb 11:20 Mid-Flood 17:44		Mid-Ebb 12:31 Mid-Flood 19:14		Mid-Flood 07:11 Mid-Ebb 13:47	
	17.44		17.14		13.47	
18-May	19-May	20-May	21-May	22-May	23-May	24-May
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	water quanty monitoring		water quarry monitoring		muor quarry momentum	
	Mid-Flood 09:17		Mid-Flood 11:25		Mid-Ebb 08:58	
	Mid-Ebb 16:01		Mid-Ebb 18:01		Mid-Flood 14:22	
25-May	26-May	27-May	28-May	29-May	30-May	31-May
		_,			2 * * * * * * * * * * * * * * * * * * *	01 1134)
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	Mid-Ebb 11:18		Mid-Ebb 12:33		Mid-Ebb 13:47	
	Mid-Flood 17:43		Mid-Flood 19:18		Mid-Flood 20:40	

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Impact Water Quality Monitoring Schedule in June 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jun	2-Jun		4-Jun	5-Jun	6-Jun	
		Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring
		Mid-Flood 09:10 Mid-Ebb 16:09		Mid-Flood 10:55 Mid-Ebb 17:37		Mid-Ebb 08:25 Mid-Flood 13:50
8-Jun	9-Jun	10-Jun	11-Jun	12-Jun	13-Jun	14-Jun
	Water Quality Monitoring Mid-Ebb 10:07 Mid-Flood 16:31		Water Quality Monitoring Mid-Ebb 10:27 Mid-Flood 18:17		Water Quality Monitoring Mid-Ebb 12:49 Mid-Flood 19:53	
15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	20-Jun	21-Jun
	Water Quality Monitoring Mid-Flood 08:23 Mid-Ebb 15:05		Water Quality Monitoring Mid-Flood 10:15 Mid-Ebb 16:45		Water Quality Monitoring Mid-Flood 12:39 Mid-Ebb 18:48	
22-Jun	23-Jun	24-Jun	25-Jun	26-Jun	27-Jun	28-Jun
	Water Quality Monitoring Mid-Ebb 10:16 Mid-Flood 16:45		Water Quality Monitoring Mid-Ebb 11:38 Mid-Flood 18:30		Water Quality Monitoring Mid-Ebb 12:55 Mid-Flood 19:49	
29-Jun	30-Jun					
	Water Quality Monitoring Mid-Flood 07:49 Mid-Ebb 14:37					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Construction-Phase Dolphin Monitoring in West Lantau (Line Transect Vessel Survey) in May 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		,	j	1-May	2-May	3-May
4-May	5-May	6-May	7-May	8-May	9-May	10-May
			Line Transect Vessel Survey			
11-May	12-May	13-May	14-May	15-May	16-May	17-May
18-May	19-May	20-May	21-May	22-May	23-May	24-May
		Line Transect Vessel Survey				
25-May	26-May	27-May	28-May	29-May	30-May	31-May

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Construction-Phase Dolphin Monitoring in West Lantau (Line Transect Vessel Survey) in June 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jun	2-Jun	3-Jun	4-Jun	5-Jun	6-Jun	7-Jun
					Line Transect Vessel Survey	
8-Jun	9-Jun	10-Jun	11-Jun	12-Jun	13-Jun	14-Jun
0-9411	Line Transect Vessel Survey					
15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	20-Jun	21-Jun
22-Jun	23-Jun	24-Jun	25-Jun	26-Jun	27-Jun	28-Jun
29-Jun	30-Jun					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Additional Land-based Dolphin Behaviour and Movement Monitoring in May 2014

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
-		-		1-May	2-May	3-May
4-May	5-May	6-May	7-May	8-May	9-May	10-May
11-May	12-May	13-May	14-May	15-May	16-May	17-May
10 M	10.14	20.14	21.14	22.14	22.14	24.14
18-May	19-May	20-May	21-May	22-May	23-May	24-May
	Additional Land-based Dolphin Behaviour and Movement					
	Monitoring					
25-May	26-May	27-May	28-May	29-May	30-May	31-May
23-May	20-1v1ay	27-iviay	20-Way	29-iviay	30-1v1ay	31-Way
		A 1170 1 1 1 D . 1 . 1				
		Additional Land-based Dolphin Behaviour and Movement				
		Monitoring				

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Additional Land-based Dolphin Behaviour and Movement Monitoring in June 2014

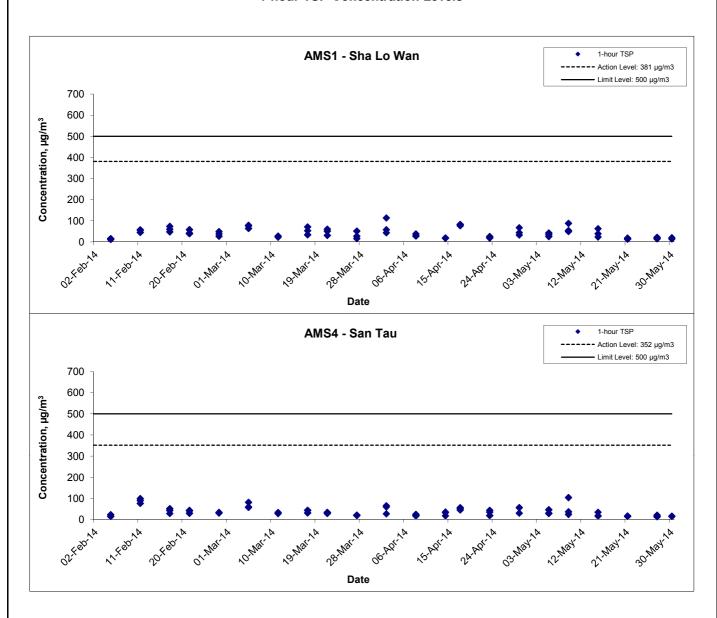
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jun	2-Jun	3-Jun	4-Jun	5-Jun	6-Jun	7-Jun
		Additional Land-based Dolphin Behaviour and Movement Monitoring			Additional Land-based Dolphin Behaviour and Movement Monitoring	
8-Jun	9-Jun	10-Jun	11-Jun	12-Jun	13-Jun	14-Jun
15-Jun	16-Jun	17-Jun	18-Jun	19-Jun	20-Jun	21-Jun
22-Jun	23-Jun	24-Jun	25-Jun	26-Jun	27-Jun	28-Jun
29-Jun	30-Jun					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix E - 1-hour TSP Monitoring Results

Location AMS1 - Sha Lo Wan


Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
5-May-14	08:45	Cloudy	294.4	763.4	2.7539	2.7570	0.0031	3347.1	3348.1	1.0	1.21	1.21	1.21	72.5	43
5-May-14	09:48	Cloudy	294.6	763.3	2.7489	2.7508	0.0019	3348.1	3349.1	1.0	1.21	1.21	1.21	72.4	26
5-May-14	10:55	Cloudy	294.7	763.1	2.7413	2.7438	0.0025	3349.1	3350.1	1.0	1.21	1.21	1.21	72.4	35
9-May-14	08:45	Rainy	294.5	760.1	2.7365	2.7429	0.0064	3374.1	3375.1	1.0	1.21	1.20	1.21	72.3	89
9-May-14	09:55	Rainy	294.7	759.9	2.7328	2.7364	0.0036	3375.1	3376.1	1.0	1.20	1.20	1.20	72.3	50
9-May-14	10:58	Rainy	294.9	759.7	2.7346	2.7385	0.0039	3376.1	3377.1	1.0	1.20	1.20	1.20	72.2	54
15-May-14	13:48	Sunny	302.3	755.2	2.7356	2.7401	0.0045	3401.1	3402.1	1.0	1.19	1.19	1.19	71.1	63
15-May-14	14:50	Sunny	302.5	755.0	2.7461	2.7478	0.0017	3402.1	3403.1	1.0	1.19	1.18	1.18	71.1	24
15-May-14	15:59	Sunny	302.7	754.8	2.7505	2.7533	0.0028	3403.1	3404.1	1.0	1.18	1.18	1.18	71.1	39
21-May-14	14:15	Sunny	300.2	756.6	2.7765	2.7778	0.0013	3428.1	3429.1	1.0	1.19	1.19	1.19	71.4	18
21-May-14	15:16	Sunny	300.4	756.4	2.7711	2.7721	0.0010	3429.1	3430.1	1.0	1.19	1.19	1.19	71.4	14
21-May-14	16:17	Sunny	300.6	756.2	2.7375	2.7388	0.0013	3430.1	3431.1	1.0	1.19	1.19	1.19	71.4	18
27-May-14	14:51	Sunny	304.9	758.7	2.7914	2.7925	0.0011	3455.1	3456.1	1.0	1.18	1.18	1.18	71.0	15
27-May-14	15:53	Sunny	305.3	758.5	2.7989	2.8003	0.0014	3456.1	3457.1	1.0	1.18	1.18	1.18	70.9	20
27-May-14	16:55	Sunny	305.5	758.3	2.7663	2.7679	0.0016	3457.1	3458.1	1.0	1.18	1.18	1.18	70.9	23
30-May-14	08:51	Sunny	303.2	758.3	2.7619	2.7630	0.0011	3482.1	3483.1	1.0	1.22	1.22	1.22	73.0	15
30-May-14	09:53	Sunny	303.5	758.1	2.7678	2.7693	0.0015	3483.1	3484.1	1.0	1.22	1.22	1.22	72.9	21
30-May-14	10:55	Sunny	303.6	757.9	2.7789	2.7800	0.0011	3484.1	3485.1	1.0	1.22	1.21	1.22	72.9	15
														Min	14
														Max	89
														Average	32

Location AMS4 - San Tau

Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
5-May-14	13:00	Cloudy	294.7	763.1	2.7605	2.7639	0.0034	2945.0	2946.0	1.0	1.22	1.22	1.22	73.0	47
5-May-14	14:03	Cloudy	294.9	762.9	2.7358	2.7380	0.0022	2946.0	2947.0	1.0	1.22	1.22	1.22	73.0	30
5-May-14	15:05	Cloudy	295.1	762.7	2.7656	2.7677	0.0021	2947.0	2948.0	1.0	1.22	1.22	1.22	73.0	29
9-May-14	13:00	Rainy	294.1	759.2	2.7431	2.7507	0.0076	2972.0	2973.0	1.0	1.22	1.22	1.22	72.9	104
9-May-14	14:04	Rainy	294.3	759.0	2.7491	2.7518	0.0027	2973.0	2974.0	1.0	1.22	1.21	1.21	72.9	37
9-May-14	15:09	Rainy	294.5	758.8	2.7470	2.7488	0.0018	2974.0	2975.0	1.0	1.21	1.21	1.21	72.9	25
15-May-14	08:50	Sunny	301.9	756.5	2.7449	2.7474	0.0025	2999.0	3000.0	1.0	1.20	1.20	1.20	71.8	35
15-May-14	09:53	Sunny	302.1	756.5	2.7527	2.7540	0.0013	3000.0	3001.0	1.0	1.20	1.20	1.20	71.8	18
15-May-14	10:56	Sunny	302.3	756.3	2.7389	2.7401	0.0012	3001.0	3002.0	1.0	1.20	1.20	1.20	71.7	17
21-May-14	14:01	Sunny	300.3	756.8	2.7749	2.7761	0.0012	3026.0	3027.0	1.0	1.20	1.20	1.20	72.0	17
21-May-14	15:02	Sunny	300.4	756.6	2.7868	2.7879	0.0011	3027.0	3028.0	1.0	1.20	1.20	1.20	72.0	15
21-May-14	16:04	Sunny	300.6	756.4	2.7781	2.7793	0.0012	3028.0	3029.0	1.0	1.20	1.20	1.20	72.0	17
27-May-14	14:20	Sunny	304.2	759.3	2.7697	2.7707	0.0010	3053.0	3054.0	1.0	1.19	1.19	1.19	71.7	14
27-May-14	15:23	Sunny	304.4	759.1	2.7862	2.7872	0.0010	3054.0	3055.0	1.0	1.19	1.19	1.19	71.6	14
27-May-14	16:30	Sunny	304.6	758.9	2.7902	2.7917	0.0015	3055.0	3056.0	1.0	1.19	1.19	1.19	71.6	21
30-May-14	13:00	Sunny	305.4	757.5	2.7812	2.7824	0.0012	3080.0	3081.0	1.0	1.22	1.22	1.22	73.1	16
30-May-14	14:03	Sunny	305.6	757.3	2.7714	2.7725	0.0011	3081.0	3082.0	1.0	1.22	1.22	1.22	73.0	15
30-May-14	15:05	Sunny	305.7	757.1	2.7769	2.7780	0.0011	3082.0	3083.0	1.0	1.22	1.22	1.22	73.0	15
														Min	14
														Max	104
														Average	27

App E - 1hr TSP Cinotech

1-hour TSP Concentration Levels

Title Contract No. HY/2011/09
Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road –
Section between HKSAR Boundary and Scenic Hill
Graphical Presentation of 1-hour TSP Monitoring Results

Scale
N.T.S
No. MA12014

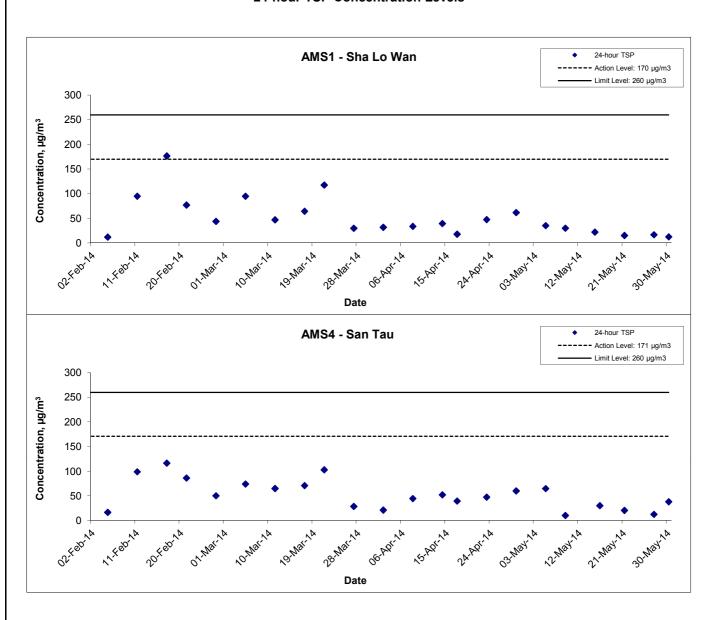
Date
May 14

Appendix
E

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

Location AMS1 - Sha Lo Wan


Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	(µg/m ³)
5-May-14	12:05	Rainy	295.0	762.9	2.7418	2.8032	0.0614	3350.1	3374.1	24.0	1.21	1.21	1.21	1737.2	35
9-May-14	14:05	Rainy	295.4	759.3	2.7396	2.7918	0.0522	3377.1	3401.1	24.0	1.20	1.20	1.20	1729.5	30
15-May-14	17:05	Sunny	303.0	754.4	2.7361	2.7739	0.0378	3404.1	3428.1	24.0	1.18	1.18	1.18	1704.1	22
21-May-14	17:20	Cloudy	300.7	756.1	2.7651	2.7913	0.0262	3431.1	3455.1	24.0	1.19	1.19	1.19	1712.7	15
27-May-14	17:58	Sunny	305.6	758.3	2.7868	2.8155	0.0287	3458.1	3482.1	24.0	1.18	1.18	1.18	1701.4	17
30-May-14	11:58	Sunny	303.8	757.7	2.7748	2.7968	0.0220	3485.1	3509.1	24.0	1.21	1.21	1.21	1749.0	13
														Min	13
														Max	35
														Average	22

Location AMS4 - San Tau

Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	/eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
5-May-14	16:10	Rainy	295.4	762.5	2.7646	2.8781	0.1135	2948.0	2972.0	24.0	1.22	1.22	1.22	1750.4	65
9-May-14	16:15	Rainy	294.7	758.6	2.7324	2.7504	0.0180	2975.0	2999.0	24.0	1.21	1.21	1.21	1747.7	10
16-May-14	13:00	Sunny	302.5	755.9	2.7562	2.8082	0.0520	3002.0	3026.0	24.0	1.20	1.19	1.20	1720.9	30
21-May-14	17:07	Cloudy	300.8	756.2	2.7725	2.8082	0.0357	3029.0	3053.0	24.0	1.20	1.20	1.20	1726.5	21
27-May-14	17:35	Sunny	304.7	758.7	2.7832	2.8048	0.0216	3056.0	3080.0	24.0	1.19	1.19	1.19	1717.7	13
30-May-14	16:10	Sunny	305.8	756.9	2.7444	2.8113	0.0669	3083.0	3107.0	24.0	1.22	1.22	1.22	1751.6	38
														Min	10
														Max	65
														Average	29

App F - 24hr TSP Cinotech

24-hour TSP Concentration Levels

Title	Contract No. HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill	Scale	N.T.S	Project No.	MA12014	CINOTECH
	Graphical Presentation of 24-hour TSP Monitoring Results	Date	May 14	Appendix	F	CINOIECU

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix G - Noise Monitoring Results

Location NMS	1 - Sha Lo W	an						
Dete)A/a adla a u	Time	Un	it: dB (A) (5-n	nin)	Average	Baseline Level	Construction Noise Level
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}	L _{eq}
		14:41	69.7	72.4	68.5			
		14:46	70.2	73.6	69.5			
7 Mov 14	Cloudy	14:51	70.4	73.4	69.2	71		71 Magazirad / Limit Laval
7-May-14	Cloudy	14:56	69.8	73.2	68.5	/ ·		71 Measured ≤ Limit Level
		15:01	70.7	73.5	70.1			
		15:06	72.2	75.4	71.3			
		08:32	70.3	73.8	69.5			
		08:37	71.6	73.9	70.3			
16 May 14	Cummi	08:42	72.1	74.2	71.0	71		71 Magazirad / Limit Lavel
16-May-14	Sunny	08:47	70.2	72.7	69.8	/ 1		71 Measured ≦ Limit Level
		08:52	71.1	72.4	69.5			
		08:57	72.4	75.1	69.8		66.9	
		10:45	64.7	66.9	48.4		00.9	
		10:50	65.0	67.7	48.5	1		
22 May 14	Claudy	10:55	64.5	67.2	48.5	65		CF Management / Limit Laurel
22-May-14	Cloudy	11:00	64.5	67.4	48.2	00		65 Measured ≤ Limit Level
		11:05	65.6	68.0	48.5			
		11:10	65.2	67.5	48.6			
		16:04	74.2	77.1	72.3			
		16:09	73.2	75.7	71.2			
00 May 44	0	16:14	73.8	74.9	71.1	7.4		74.14
28-May-14	Sunny	16:19	74.6	76.5	72.4	74		74 Measured ≤ Limit Level
		16:24	73.1	75.6	70.8			
		16:29	72.6	75.1	70.5			

Remark: * +3dB(A) Façade correction included

,	344 (1	- :	Un	it: dB (A) (5-n	nin)	Average	Baseline Level	Construction Noise Level
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}	L _{eq}
		15:37	58.4	60.2	57.1			
		15:42	59.1	61.7	58.0			
7 Mov 14	Cloudy	15:47	58.6	61.4	57.7	59		FO Magazirad / Limit Lave
7-May-14	Cloudy	15:52	58.9	61.6	57.2	59		59 Measured ≤ Limit Leve
		15:57	60.1	62.5	58.2			
		16:02	60.2	61.8	58.1			
		14:51	61.2	63.3	60.1			
		14:56	59.2	62.3	58.1			
16 Mov 14	Sunny	15:01	59.0	62.0	56.8	60		60 Magazirad / Limit Lau
16-May-14	Suring	15:06	60.2	62.4	58.9	60		60 Measured ≤ Limit Leve
		15:11	61.3	64.9	59.3			
		15:16	60.7	62.8	59.6		56.0	
		13:20	61.7	63.5	50.6		50.0	
		13:25	62.0	63.7	51.6			
22 May 14	Claudy	13:30	63.4	65.0	50.9	63		CO Management of Limit Law
22-May-14	Cloudy	13:35	62.2	63.9	51.1	03		63 Measured ≤ Limit Leve
		13:40	63.5	65.2	51.0			
		13:45	62.5	64.5	51.1			
		14:20	60.1	63.4	58.7			
		14:25	61.2	64.5	59.7			
20 May 14	Cummu	14:30	59.4	63.8	58.8	60		CO Management & Limit Lauri
28-May-14	Sunny	14:35	60.1	62.4	59.4	60		60 Measured ≤ Limit Leve
		14:40	60.0	62.6	59.3			
		14:45	60.7	62.9	59.6			

Remark: * +3dB(A) Façade correction included

App G - Noise Cinotech

Noise Levels NMS1 NMS 1 - Sha Lo Wan Baseline NL, 66.9 dB(A) - Limit Level, 75 dB(A) 80 Construction Noise Level dB(A) 75 70 65 60 55 50 Salkalkaly 45 and A Mar A ", "Agr. A < 3/2 Kept / A n Pory JOFOOT A Con Legan ner Mary new Mary A mar Mar A war Maria war 15 Mar 1 A word Maria rui ratina ru Adrya way Most a inot Not A " S. ROLVA Printy a May na ", May, a 1.150 Wah, w 2d May A of February N. Mar. A or bor bor b Date NMS4 NMS 4 - San Tau · · - Baseline NL, 56.0 dB(A) Limit Level, 75 dB(A) 80 Construction Noise Level dB(A) 75 70 65 60 55

", boly

2. ADT. 14

Date

run'i Adria run or Apr. 1 A M1. A91.14 ry rand My Agria

w. Adr. A

Title Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill **Graphical Presentation of Construction Noise Monitoring** Results

50

45

Skedra Skedra of kepty

(ag kag kag k

Solven ing in

war in a rate of the second

ar, a ar, a ar, a

mar. Mar. A inidi, in 21, 1A indistration of the state of th mor Maria

> Scale Project No. N.T.S MA12014 Date Appendix G May 14

Thorney Ly

or not not not not not n

APPENDIX H
WATER QUALITY MONITORING
RESULTS AND GRAPHICAL
PRESENTATION

Water Quality Monitoring Results at CS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ı	ρΗ	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.9	23.9	7.9 7.9	7.9	31.6 31.6	31.6	77.0 83.8	80.4	5.4 5.9	5.7		1.5 1.6	1.6		5.1 2.2	3.7	
2-May-14	Fine	Calm	14:10	Middle	6.5	23.6 23.6	23.6	7.9 7.9	7.9	32.8 32.8	32.8	80.0 80.3	80.2	5.6 5.6	5.6	5.7	3.6 3.5	3.6	7.4	3.2 4.3	3.8	3.7
				Bottom	12	23.6 23.6	23.6	7.9 7.9	7.9	33.3 33.3	33.3	79.4 80.0	79.7	5.6 5.6	5.6	5.6	18.3 15.6	17.0		4.6 2.6	3.6	
				Surface	1	22.1	22.1	8.1	8.1	29.1	28.9	115.4	113.6	8.5	8.4		1.3	1.3		4.2	4.8	
5-May-14	Rainy	Moderate	15:29	Middle	7	22.1	21.8	8.1	8.2	28.6 33.3	33.3	111.8	110.3	8.3 8.0	8.0	8.2	2.8	2.8	3.4	3.5	3.3	4.9
	·			Bottom	13	21.8	21.8	8.2 8.2	8.2	33.3 33.6	33.7	110.3 108.5	108.7	7.8	7.9	7.9	6.0	6.1		9.4	6.7	
		<u> </u>	<u> </u>	Surface	1	21.8 23.3	23.3	7.8	7.8	33.7 28.2	28.4	108.9 110.7	109.5	7.9 8.0	7.9		6.1 1.8	1.8		4.0 5.1	3.8	
7-May-14	Cloudy	Moderate	17:41	Middle	7	23.3 23.6	23.6	7.8 7.8	7.8	28.5 31.5	31.6	108.3 110.6	109.5	7.8 7.8	7.8	7.9	1.8 3.1	3.2	2.8	2.5 2.6	3.8	4.3
7-May-14	Cloudy	Moderate	17.41	Bottom	13	23.6 23.6	23.6	7.8 7.8	7.8	31.7 31.7	31.8	108.3 108.6	109.3	7.7 7.7	7.6	7.6	3.2 3.3	3.3	2.0	4.9 7.0	5.2	4.5
						23.6 22.0		7.8 7.7		31.8 31.2	30.8	104.8 83.8	82.5	7.4 6.1		7.0	3.2 5.6			3.4 5.5		
				Surface	1	21.5 22.1	21.8	7.7	7.7	30.4 31.2		81.2 83.7		6.0 6.1	6.1	6.1	5.8 5.8	5.7		3.4 5.8	4.5	
10-May-14	Rainy	Moderate	10:59	Middle	5	21.7 21.7	21.9	7.7	7.7	30.7 28.7	31.0	81.2 84.6	82.5	6.0	6.1		5.8 3.6	5.8	5.1	8.5 5.4	7.2	5.6
				Bottom	9	21.7	21.7	7.7	7.7	29.3 15.4	29.0	80.7 91.2	82.7	6.0 7.0	6.2	6.2	3.7	3.7		4.5	5.0	
				Surface	1	24.1	24.1	7.7	7.7	15.1	15.3	89.6 88.5	90.4	6.9 6.6	7.0	6.8	4.9	4.9		2.7	2.8	
12-May-14	Rainy	Moderate	12:19	Middle	6.5	23.6	23.6	7.7	7.7	23.5	23.5	89.0	88.8	6.6	6.6		4.8	4.7	6.6	11.3 7.8	8.4	6.3
				Bottom	12	23.4 23.5	23.5	7.8 7.8	7.8	29.8 28.1	29.0	87.4 87.1	87.3	6.3 6.3	6.3	6.3	10.0 10.6	10.3		7.3	7.6	
				Surface	1	23.8 23.7	23.8	7.4 7.4	7.4	16.4 16.6	16.5	96.9 95.4	96.2	7.5 7.3	7.4	7.4	4.1 5.1	4.6		5.0 5.7	5.4	
14-May-14	Cloudy	Moderate	12:49	Middle	6	22.6 22.7	22.7	7.4 7.4	7.4	23.5 23.3	23.4	96.3 95.2	95.8	7.3 7.2	7.3		7.9 6.6	7.3	6.7	6.2 8.2	7.2	5.5
				Bottom	11	22.1 22.1	22.1	7.4 7.4	7.4	26.9 27.0	27.0	91.8 89.9	90.9	6.9 6.7	6.8	6.8	8.2 8.1	8.2		5.0 2.5	3.8	
				Surface	1	24.9 24.9	24.9	7.6 7.5	7.6	20.2 20.4	20.3	86.5 84.4	85.5	6.4 6.2	6.3	6.3	5.5 5.4	5.5		5.3 6.1	5.7	
16-May-14	Cloudy	Rough	13:33	Middle	6	24.1 23.8	24.0	7.6 7.5	7.6	25.3 26.3	25.8	85.1 83.6	84.4	6.2 6.1	6.2	0.0	6.7 6.8	6.8	13.0	5.2 6.7	6.0	15.7
				Bottom	11	23.4 23.3	23.4	7.6 7.6	7.6	30.1 29.2	29.7	80.1 78.3	79.2	5.7 5.7	5.7	5.7	27.2 26.0	26.6		37.6 33.2	35.4	
				Surface	1	25.0 26.0	25.5	7.8 7.5	7.7	20.3 20.0	20.2	90.5 91.6	91.1	6.7 6.6	6.7	6.6	15.6 14.6	15.1		7.6 8.7	8.2	
19-May-14	Fine	Calm	15:43	Middle	5	26.2 26.0	26.1	7.5 7.6	7.6	24.3 24.3	24.3	92.6 91.0	91.8	6.5 6.4	6.5	6.6	10.8	10.6	11.5	10.6 13.3	12.0	9.6
				Bottom	9	25.9 26.1	26.0	7.5 7.6	7.6	26.1 26.3	26.2	87.5 86.3	86.9	6.1 6.0	6.1	6.1	8.6 8.8	8.7	•	8.8 8.2	8.5	

Water Quality Monitoring Results at CS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5 24.5	24.5	7.1 7.1	7.1	14.9 15.0	15.0	95.8 94.4	95.1	7.3 7.2	7.3	6.6	2.8 2.7	2.8		5.7 4.6	5.2	
21-May-14	Rainy	Rough	16:35	Middle	6	23.3 23.2	23.3	7.3 7.4	7.4	23.3 23.6	23.5	78.6 77.3	78.0	5.9 5.8	5.9	0.0	4.1 4.4	4.3	5.7	4.6 7.8	6.2	5.4
				Bottom	11	22.2 22.2	22.2	7.5 7.5	7.5	31.9 32.0	32.0	70.6 70.3	70.5	5.1 5.1	5.1	5.1	9.7 10.1	9.9		5.2 4.6	4.9	
				Surface	1	25.5 25.5	25.5	7.5 7.5	7.5	12.0 12.2	12.1	88.4 89.8	89.1	6.8 6.9	6.9	6.9	4.0 3.7	3.9		3.5 4.1	3.8	
23-May-14	Rainy	Calm	09:08	Middle	7	25.4 25.4	25.4	7.6 7.6	7.6	13.8 13.9	13.9	87.7 89.6	88.7	6.7 6.8	6.8	0.5	8.3 8.1	8.2	8.5	5.4 6.1	5.8	5.1
				Bottom	13	24.7 24.8	24.8	7.6 7.6	7.6	22.4 21.9	22.2	78.5 80.3	79.4	5.7 5.9	5.8	5.8	13.6 12.9	13.3		6.8 4.6	5.7	
				Surface	1	28.0 28.0	28.0	7.5 7.5	7.5	14.8 14.8	14.8	94.0 93.4	93.7	6.8 6.7	6.8	6.3	3.8 3.9	3.9		3.1 3.5	3.3	
26-May-14	Sunny	Calm	11:50	Middle	6.5	25.9 26.0	26.0	7.6 7.6	7.6	25.2 25.2	25.2	80.2 82.6	81.4	5.7 5.8	5.8	0.5	3.6 3.6	3.6	8.3	4.0 6.1	5.1	4.3
				Bottom	12	24.7 24.8	24.8	7.6 7.6	7.6	34.9 34.0	34.5	78.8 77.2	78.0	5.4 5.3	5.4	5.4	16.4 18.2	17.3		5.4 3.3	4.4	
				Surface	1	24.9 25.5	25.2	7.2 7.2	7.2	19.5 18.7	19.1	98.9 99.2	99.1	7.3 7.3	7.3	7.0	3.4 3.3	3.4		3.4 3.3	3.4	
28-May-14	Sunny	Calm	13:06	Middle	6.5	24.3 24.4	24.4	7.2 7.2	7.2	22.1 22.0	22.1	88.2 90.0	89.1	6.5 6.6	6.6	7.0	5.7 5.9	5.8	7.1	3.0 1.9	2.5	3.0
				Bottom	12	24.0 24.0	24.0	7.2 7.3	7.3	30.0 29.8	29.9	86.1 85.9	86.0	6.1 6.1	6.1	6.1	11.5 12.4	12.0		3.7 2.4	3.1	
				Surface	1	27.2 27.2	27.2	7.8 7.8	7.8	19.5 19.5	19.5	84.0 84.0	84.0	6.0 6.0	6.0	5.9	1.8 1.8	1.8		2.4 2.9	2.7	
30-May-14	Sunny	Calm	13:10	Middle	6.5	26.3 26.3	26.3	7.8 7.8	7.8	25.0 25.1	25.1	80.9 80.9	80.9	5.7 5.7	5.7	5.8	1.9 2.0	2.0	1.9	3.1 6.6	4.9	4.0
				Bottom	12	26.0 27.1	26.6	7.7 7.8	7.8	29.4 29.6	29.5	78.7 83.9	81.3	5.4 5.7	5.6	5.6	1.9 2.0	2.0		4.6 4.2	4.4	

Water Quality Monitoring Results at CS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.6	23.6	7.9	7.9	29.8	29.9	80.7	81.0	5.8	5.8		1.9	1.9		11.7	10.6	
				Surface		23.6	23.0	7.9	7.9	29.9	29.9	81.3	01.0	5.8	5.0	6.0	1.9	1.9		9.4	10.0	
2-May-14	Fine	Calm	08:50	Middle	6.5	23.6	23.6	7.9	7.9	31.1	31.2	85.4	85.4	6.1	6.1	0.0	5.1	5.2	6.3	7.5	8.9	8.8
2 May 14	1 1110	Cairri	00.00	Mildale	0.0	23.6	20.0	7.9	7.0	31.2	01.2	85.3	00.4	6.1	0.1		5.2	0.2	0.0	10.3	0.0	0.0
				Bottom	12	23.6	23.6	7.9	7.9	31.7	31.7	84.1	84.0	6.0	6.0	6.0	13.0	11.9		10.6	6.8	
						23.6		7.9		31.6		83.9		5.9		***	10.8			2.9		
				Surface	1	22.0	22.1	8.1	8.1	27.4	27.6	93.4	93.3	7.0	7.0		2.1	2.1		3.5	3.0	
						22.1		8.1		27.8		93.1		6.9		6.9	2.0			2.4		
5-May-14	Rainy	Moderate	10:02	Middle	7	21.8	21.8	8.2	8.2	33.1	33.2	93.9	93.7	6.8	6.8		4.2	4.2	5.6	2.9	3.2	3.4
						21.8 21.8		8.2 8.2	-	33.3 33.3		93.5 88.2		6.8 6.4			4.2 10.5		4	3.5 4.5		
				Bottom	13	21.8	21.8	8.2	8.2	33.4	33.4	86.8	87.5	6.3	6.4	6.4	10.5	10.5		3.3	3.9	
+						23.5	 	7.9	1	29.8		101.4		7.3			1.4	1		4.0		
				Surface	1	23.6	23.6	7.9	7.9	31.0	30.4	101.4	101.3	7.3	7.3		1.6	1.5		5.5	4.8	
						23.5		7.9		32.3		100.2		7.1		7.2	3.2			3.3		
7-May-14	Cloudy	Moderate	08:07	Middle	6.5	23.5	23.5	7.9	7.9	32.3	32.3	99.3	99.8	7.0	7.1		3.3	3.3	3.3	3.9	3.6	5.3
						23.6		7.9		32.6		96.8		6.8			4.7			6.7		
				Bottom	12	23.6	23.6	7.9	7.9	32.7	32.7	95.9	96.4	6.7	6.8	6.8	5.3	5.0		8.2	7.5	
				Curfoss	1	21.7	21.7	7.6	7.6	16.8	16.8	91.7	86.0	7.3	6.9		4.7	4.7		3.3	2.4	
				Surface	1	21.7	21.7	7.5	7.6	16.8	10.0	80.2	00.0	6.4	0.9	6.5	4.7	4.7		3.5	3.4	
10-May-14	Rainy	Moderate	15:23	Middle	5	21.6	21.6	7.7	7.7	22.5	23.4	83.3	79.9	6.4	6.1	0.5	4.1	4.4	5.6	3.2	3.8	3.5
10-Way-14	ixaiiiy	Moderate	13.23	Middle	3	21.6	21.0	7.7	7.7	24.2	25.4	76.4	13.5	5.8	0.1		4.7	4.4	3.0	4.3	3.0	3.3
				Bottom	9	21.7	21.7	7.7	7.7	28.6	26.3	81.2	78.3	6.1	6.0	6.0	7.6	7.7		3.6	3.3	
				Dottom	ŭ	21.7	21.7	7.7	7.7	23.9	20.0	75.3	10.0	5.8	0.0	0.0	7.8	1.7		2.9	0.0	
				Surface	1	25.6	25.4	7.5	7.6	12.8	13.9	88.3	88.3	6.7	6.7		5.4	5.4		4.3	4.0	
						25.2		7.6		14.9		88.2		6.7		6.5	5.4			3.6		
12-May-14	Rainy	Moderate	16:47	Middle	6	23.7	23.7	7.7 7.7	7.7	24.0	23.6	86.0	84.4	6.4	6.3		9.7	9.2	10.7	7.3	7.2	7.1
						23.7 23.6		7.7		23.1 24.8		82.8 84.1		6.1 6.2			8.7 16.9	1		7.0 10.2		
				Bottom	11	23.7	23.7	7.7	7.7	23.9	24.4	82.9	83.5	6.1	6.2	6.2	17.8	17.4		10.2	10.1	
+						24.5	 	7.4	1	14.9		98.9		7.6			4.8	1		6.5		
				Surface	1	24.5	24.5	7.4	7.4	14.9	14.9	98.1	98.5	7.5	7.6		5.0	4.9		6.5	6.5	
						23.3		7.3		20.1		90.1		6.9		7.2	16.5			5.0		
14-May-14	Cloudy	Moderate	18:12	Middle	6	22.8	23.1	7.4	7.4	22.7	21.4	88.9	89.5	6.7	6.8		16.0	16.3	13.5	5.7	5.4	5.6
						22.5		7.3		24.0	24.2	85.2		6.4			19.5	40.4		5.5		
				Bottom	11	22.4	22.5	7.4	7.4	24.0	24.0	84.6	84.9	6.4	6.4	6.4	19.3	19.4		4.3	4.9	
				Curfoss	1	24.2	24.2	7.7	7.7	17.0	16.8	76.9	76.6	5.9	5.9		4.2	4.3		6.8	F 2	
				Surface		24.1	24.2	7.7	7.7	16.6	10.0	76.3	70.0	5.8	5.9	5.9	4.4	4.3		3.5	5.2	
16-May-14	Cloudy	Rough	08:09	Middle	7	23.7	23.8	7.8	7.8	26.2	25.7	80.7	80.6	5.9	5.9	5.5	10.7	11.0	21.6	7.9	6.0	10.4
10 May 14	Oloudy	rtougn	00.00	Wildaio		23.8	20.0	7.7	7.0	25.1	20.7	80.5	00.0	5.9	0.0		11.2	11.0	21.0	4.0	0.0	10.1
				Bottom	13	23.0	23.0	7.8	7.8	30.3	30.3	76.5	76.8	5.5	5.6	5.6	47.9	49.5		21.4	20.0	
						23.0		7.7		30.3		77.0		5.6	***		51.1			18.6		
				Surface	1	25.6	25.5	7.8	7.8	16.5	16.3	95.5	93.7	7.1	7.0		15.9	16.0		6.9	6.0	
						25.4		7.8	ļ	16.0	<u> </u>	91.8		6.9		7.1	16.0		1	5.0		
19-May-14	Fine	Calm	10:08	Middle	5	25.4 25.6	25.5	7.8 7.8	7.8	22.1 22.0	22.1	95.8 102.9	99.4	6.9 7.4	7.2		12.5 12.9	12.7	14.0	5.5 4.5	5.0	5.6
						25.6		7.8		25.0	<u> </u>	97.3		6.9			14.6		1	5.8		
				Bottom	9	25.4	25.5	7.8	7.8	22.4	23.7	99.2	98.3	7.2	7.1	7.1	12.0	13.3		5.6	5.7	
		<u> </u>	<u> </u>	<u> </u>	<u> </u>	20.0	<u> </u>	1.0	<u> </u>	44.4	<u> </u>	33.2	<u> </u>	1.4	<u> </u>	<u> </u>	12.0	<u> </u>	<u> </u>	J.0	<u> </u>	<u> </u>

Water Quality Monitoring Results at CS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Борг	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.7 23.7	23.7	7.3 7.3	7.3	13.5 13.1	13.3	92.0 91.7	91.9	7.2 7.2	7.2	6.7	3.6 3.5	3.6		4.5 4.4	4.5	
21-May-14	Rainy	Rough	12:22	Middle	6.5	23.1 23.2	23.2	7.2 7.3	7.3	25.2 23.2	24.2	82.5 80.1	81.3	6.1 6.0	6.1	0.7	5.6 6.6	6.1	6.4	4.1 5.5	4.8	4.5
				Bottom	12	22.7 22.7	22.7	7.2 7.3	7.3	29.0 28.4	28.7	80.2 77.8	79.0	5.9 5.7	5.8	5.8	8.9 10.0	9.5		3.0 5.3	4.2	
				Surface	1	25.6 25.6	25.6	7.5 7.5	7.5	10.3 10.2	10.3	99.4 100.3	99.9	7.7 7.7	7.7	7.7	4.4 4.0	4.2		6.5 5.8	6.2	
23-May-14	Rainy	Calm	14:18	Middle	6.5	25.5 25.4	25.5	7.5 7.5	7.5	13.9 14.2	14.1	99.8 99.0	99.4	7.6 7.5	7.6	7.7	4.2 4.4	4.3	7.3	10.4 9.1	9.8	6.9
				Bottom	12	23.9 23.9	23.9	7.6 7.6	7.6	30.3 26.8	28.6	98.6 94.4	96.5	7.0 6.8	6.9	6.9	13.8 12.9	13.4		4.6 4.8	4.7	
				Surface	1	28.3 28.3	28.3	7.7 7.7	7.7	15.9 15.8	15.9	96.7 97.1	96.9	6.9 6.9	6.9	6.7	4.1 4.1	4.1		5.9 8.4	7.2	
26-May-14	Fine	Calm	16:58	Middle	6	27.7 27.7	27.7	7.6 7.6	7.6	17.3 17.9	17.6	91.0 89.8	90.4	6.5 6.4	6.5	0.7	5.4 6.5	6.0	6.4	6.8 6.5	6.7	7.4
				Bottom	11	25.5 25.5	25.5	7.5 7.5	7.5	27.9 27.9	27.9	79.0 78.7	78.9	5.5 5.5	5.5	5.5	9.1 9.2	9.2		7.8 8.8	8.3	
				Surface	1	25.3 25.4	25.4	7.2 7.3	7.3	16.6 16.1	16.4	92.7 92.5	92.6	6.9 6.9	6.9	6.5	3.8 3.6	3.7		4.4 4.1	4.3	
28-May-14	Fine	Calm	17:50	Middle	6	24.7 24.7	24.7	7.3 7.3	7.3	20.1 21.9	21.0	82.3 83.0	82.7	6.1 6.1	6.1	0.5	6.0 5.9	6.0	6.7	5.0 3.6	4.3	3.9
				Bottom	11	24.7 24.7	24.7	7.3 7.3	7.3	29.9 29.5	29.7	87.7 89.2	88.5	6.1 6.3	6.2	6.2	9.8 11.2	10.5		3.3 3.0	3.2	
				Surface	1	28.1 28.1	28.1	7.8 7.8	7.8	16.9 16.5	16.7	101.4 96.6	99.0	7.2 6.9	7.1	7.0	8.4 8.1	8.3		3.7 2.7	3.2	
30-May-14	Fine	Calm	19:25	Middle	6	28.0 28.0	28.0	7.8 7.8	7.8	27.4 28.1	27.8	103.8 100.9	102.4	7.0 6.8	6.9	7.0	7.8 7.7	7.8	8.3	2.0 1.7	1.9	2.7
				Bottom	11	28.0 28.0	28.0	7.8 7.8	7.8	29.0 27.6	28.3	98.0 95.6	96.8	6.5 6.4	6.5	6.5	8.8 8.7	8.8		2.9 3.2	3.1	

Water Quality Monitoring Results at CS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Donti	h (m)	Tempera	ature (°C)	ŗ	рН	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Dait	Condition	Condition**	Time	Depti	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.3	24.4	7.8	7.8	29.4	29.2	91.2	90.8	6.7	6.7		1.6	1.8		4.5	5.3	
				Odridoc		24.4	2-11	7.8	7.0	29.0	20.2	90.4	00.0	6.6	0.7	6.6	1.9	1.0		6.0	0.0	
2-May-14	Fine	Calm	14:20	Middle	4	24.0	24.0	7.8	7.8	30.9	30.9	88.9	88.5	6.5	6.5	0.0	2.8	3.0	3.0	6.2	5.3	5.6
,						24.0		7.8		30.9		88.0		6.4			3.1			4.4		
				Bottom	7	23.7 23.7	23.7	7.8 7.8	7.8	31.8 31.9	31.9	86.3 85.5	85.9	6.3 6.3	6.3	6.3	4.1 4.3	4.2		7.2 5.3	6.3	
\longrightarrow						22.2		8.1		26.2		95.1		7.1			2.0			2.7		
				Surface	1	22.2	22.2	8.1	8.1	26.1	26.2	96.4	95.8	7.1	7.2		1.7	1.9		2.8	2.8	
5 M. 44	Б.:		45.04			22.0	20.0	8.1	0.4	31.9	04.0	94.7	00.5	6.9	7.0	7.1	4.4			5.0	0.5	
5-May-14	Rainy	Moderate	15:31	Middle	4	22.0	22.0	8.1	8.1	31.9	31.9	98.2	96.5	7.1	7.0		4.3	4.4	3.7	1.9	3.5	3.0
				Bottom	7	21.9	21.9	8.2	8.2	32.8	32.7	93.6	95.9	6.8	7.0	7.0	4.7	4.8		2.2	2.6	
				Dottom	,	21.9	21.5	8.2	0.2	32.6	0Z.1	98.2	33.3	7.1	7.0	7.0	4.9	7.0		2.9	2.0	
				Surface	1	23.3	23.3	7.8	7.8	27.1	27.1	91.5	91.2	6.7	6.7		3.9	3.9		3.1	3.1	
						23.3		7.8		27.1		90.8		6.6		6.6	3.8			3.0		
7-May-14	Cloudy	Moderate	17:12	Middle	4	23.4 23.4	23.4	7.9 7.9	7.9	28.9 29.0	29.0	89.2 88.7	89.0	6.4 6.4	6.4		4.4 4.6	4.5	4.7	5.0 5.3	5.2	4.4
						23.5		7.9		30.1		87.1		6.2			5.6			6.1		
				Bottom	7	23.5	23.5	7.9	7.9	30.4	30.3	86.9	87.0	6.2	6.2	6.2	5.5	5.6		3.5	4.8	
-				0 (4	21.5	04.5	7.7		18.5	18.5	89.9	00.0	7.1			3.2	0.0		3.9	0.5	
				Surface	1	21.5	21.5	7.7	7.7	18.4	18.5	90.0	90.0	7.1	7.1	6.6	3.3	3.3		9.0	6.5	
10-May-14	Rainy	Moderate	09:56	Middle	4.5	21.4	21.4	7.6	7.6	20.9	20.9	76.0	76.2	6.0	6.0	0.0	4.7	4.8	5.6	6.0	4.8	5.1
10-iviay-14	rtairiy	Woderate	03.50	Middle	4.0	21.4	21.4	7.6	7.0	20.9	20.5	76.4	70.2	6.0	0.0		4.8	7.0	5.0	3.6	7.0	5.1
				Bottom	8	21.4	21.4	7.7	7.8	24.6	24.6	73.5	73.0	5.6	5.6	5.6	8.2	8.7		4.5	4.1	
\longrightarrow						21.4 24.1		7.8 7.6		24.6 18.3		72.5 95.3		5.6 7.2			9.1			3.7 5.5		
				Surface	1	24.1	24.1	7.6	7.7	18.3	18.3	95.3 96.3	95.8	7.2	7.3		4.0	4.4		4.5	5.0	
						23.6		7.7	<u> </u>	23.5		91.9		6.8		7.1	5.1			6.0		
12-May-14	Rainy	Moderate	11:15	Middle	3.5	23.6	23.6	7.7	7.7	23.5	23.5	92.9	92.4	6.9	6.9		5.2	5.2	8.4	6.4	6.2	5.5
				Bottom	6	23.4	23.5	7.8	7.8	29.8	29.0	91.3	90.0	6.6	6.5	6.5	15.0	15.6		5.4	5.4	
				Dottom	U	23.5	20.0	7.8	7.0	28.1	29.0	88.7	30.0	6.4	0.5	0.5	16.1	13.0		5.4	3.4	
				Surface	1	23.5	23.5	7.2	7.2	19.1	19.1	98.0	97.4	7.5	7.5		3.7	4.1		6.1	5.8	
						23.5		7.2		19.1		96.8		7.4		7.4	4.4			5.5		
14-May-14	Cloudy	Moderate	11:52	Middle	3	23.3 23.3	23.3	7.2 7.2	7.2	19.7 19.7	19.7	94.7 94.7	94.7	7.2 7.2	7.2		4.2 4.5	4.4	4.6	5.6	5.0	5.2
						22.1		7.2	1	25.4		94.7		6.9			5.3			5.0		
				Bottom	5	22.1	22.1	7.2	7.2	25.3	25.4	91.9	92.0	6.9	6.9	6.9	5.5	5.4		4.4	4.7	
						25.8		7.6		19.1		97.5		7.1			5.0			4.2		
				Surface	1	25.8	25.8	7.6	7.6	19.1	19.1	97.0	97.3	7.1	7.1	6.9	5.3	5.2		5.6	4.9	
16-May-14	Cloudy	Rough	13:13	Middle	4	25.3	25.3	7.6	7.6	21.2	21.3	91.3	91.1	6.7	6.7	0.9	6.8	7.2	16.5	7.2	7.5	6.6
10-iviay-14	Oloudy	rtougn	10.10	Middle		25.2	20.0	7.6	7.0	21.4	21.0	90.9	31.1	6.6	0.7		7.5	7.2	10.5	7.8	7.5	0.0
				Bottom	7	24.2	24.2	7.7	7.7	27.4	27.4	88.1	87.8	6.3	6.3	6.3	36.5	37.2		8.4	7.4	
						24.2		7.7	1	27.3		87.5		6.3			37.8			6.4		
				Surface	1	27.5 27.5	27.5	7.5 7.5	7.5	13.7 13.7	13.7	110.1 108.6	109.4	8.1 8.0	8.1		4.8 5.6	5.2		4.5 4.8	4.7	
						26.9		7.5	1	17.2		107.6		7.8		8.0	4.5			7.0		
19-May-14	Fine	Calm	15:24	Middle	3.5	26.9	26.9	7.5	7.6	16.6	16.9	107.6	107.1	7.8	7.8		3.9	4.2	4.6	5.3	6.2	5.5
				D-# · · ·		25.0	05.4	7.6	7-	25.2	04.0	110.2	400.0	7.9	7.0	7.0	4.7	4.		5.0		1
		1		Bottom	6	25.1	25.1	7.7	7.7	24.5	24.9	106.9	108.6	7.7	7.8	7.8	4.1	4.4	l	6.4	5.7	

Water Quality Monitoring Results at CS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Борг	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5 24.5	24.5	7.3 7.3	7.3	17.2 17.2	17.2	81.1 80.8	81.0	6.2 6.2	6.2	6.1	6.8 6.7	6.8		7.9 5.1	6.5	
21-May-14	Rainy	Rough	16:25	Middle	3.5	24.5 24.5	24.5	7.3 7.3	7.3	19.9 20.3	20.1	79.0 79.1	79.1	6.0 6.0	6.0	0.1	6.8 7.1	7.0	7.0	5.0 5.9	5.5	6.0
				Bottom	6	23.7 23.7	23.7	7.3 7.3	7.3	31.9 31.8	31.9	77.4 77.4	77.4	5.9 5.9	5.9	5.9	7.1 7.2	7.2		6.4 5.5	6.0	
				Surface	1	24.1 24.1	24.1	7.5 7.5	7.5	10.8 10.8	10.8	88.7 88.7	88.7	7.0 7.0	7.0	6.9	3.5 3.5	3.5		6.3 6.8	6.6	
23-May-14	Rainy	Calm	08:07	Middle	3	23.8 23.8	23.8	7.5 7.5	7.5	17.0 17.0	17.0	88.2 88.2	88.2	6.8 6.8	6.8	0.5	3.7 3.7	3.7	6.8	6.8 3.9	5.4	5.5
				Bottom	5	22.3 22.3	22.3	7.5 7.5	7.5	31.2 31.2	31.2	79.3 79.3	79.3	5.8 5.8	5.8	5.8	13.3 13.3	13.3		5.0 4.1	4.6	
				Surface	1	26.9 27.0	27.0	7.9 7.7	7.8	17.0 17.0	17.0	92.8 92.4	92.6	6.7 6.7	6.7	6.7	5.2 4.6	4.9		4.6 5.8	5.2	
26-May-14	Sunny	Calm	11:10	Middle	3.5	25.3 25.8	25.6	7.7 7.6	7.7	22.6 22.6	22.6	90.5 91.4	91.0	6.6 6.6	6.6	0.7	5.4 5.5	5.5	6.2	4.8 3.5	4.2	4.8
				Bottom	6	24.7 24.6	24.7	7.7 7.6	7.7	29.4 29.5	29.5	91.9 91.3	91.6	6.5 6.4	6.5	6.5	8.1 8.4	8.3		4.5 5.4	5.0	
				Surface	1	27.6 27.7	27.7	7.5 7.5	7.5	12.1 11.8	12.0	122.8 122.6	122.7	9.1 9.0	9.1	8.5	2.2 2.2	2.2		2.7 2.8	2.8	
28-May-14	Sunny	Calm	11:48	Middle	4	26.0 26.0	26.0	7.4 7.4	7.4	20.0 19.8	19.9	107.2 106.0	106.6	7.8 7.7	7.8	0.5	2.2 2.4	2.3	4.6	3.4 6.0	4.7	3.7
				Bottom	7	24.8 24.9	24.9	7.4 7.4	7.4	29.5 29.3	29.4	77.9 76.4	77.2	5.5 5.4	5.5	5.5	9.5 8.8	9.2		4.0 2.9	3.5	
				Surface	1	28.0 28.2	28.1	7.3 7.2	7.3	19.6 19.4	19.5	119.8 117.2	118.5	8.4 8.2	8.3	8.0	1.5 1.5	1.5		2.4 7.4	4.9	
30-May-14	Sunny	Calm	12:56	Middle	3.5	26.6 26.6	26.6	7.3 7.2	7.3	23.4 23.4	23.4	109.1 106.8	108.0	7.7 7.5	7.6	0.0	1.1 1.1	1.1	1.9	4.2 4.7	4.5	4.6
				Bottom	6	25.4 25.4	25.4	7.3 7.3	7.3	30.5 30.5	30.5	88.5 86.6	87.6	6.1 6.0	6.1	6.1	3.0 3.2	3.1		4.4 4.4	4.4	

Water Quality Monitoring Results at CS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	1	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.8 23.8	23.8	7.9 7.9	7.9	25.2 25.2	25.2	91.7 91.8	91.8	7.0 7.0	7.0		3.8 3.7	3.8		4.6 5.4	5.0	
2-May-14	Fine	Calm	07:40	Middle	4	23.7 23.7	23.7	8.0 8.0	8.0	29.4 29.3	29.4	97.7 98.1	97.9	7.2 7.3	7.3	7.2	4.4 4.5	4.5	5.6	6.8 5.7	6.3	5.0
				Bottom	7	23.7	23.7	8.0 8.0	8.0	31.2 31.2	31.2	100.9	101.2	7.4 7.5	7.5	7.5	8.7 8.4	8.6		3.6 3.5	3.6	
				Surface	1	22.2	22.2	8.0	8.0	22.7	22.8	94.1	94.4	7.2	7.2		2.9	3.0		3.5	3.4	
5-May-14	Rainy	Moderate	09:41	Middle	4	22.2	22.1	8.0	8.1	22.9 27.4	26.8	94.6 99.6	98.9	7.2	7.4	7.3	2.5	2.7	4.9	3.3	3.2	3.7
	,			Bottom	7	22.1	22.0	8.1 8.2	8.2	26.2 31.4	31.4	98.1 99.0	99.8	7.4	7.3	7.3	9.2	9.0		5.0	4.4	
						22.0		8.2		31.3		100.6	1	7.3			8.8	1		3.7		
				Surface	1	23.3 23.3	23.3	7.8 7.8	7.8	27.3 27.2	27.3	95.2 94.6	94.9	6.9 6.9	6.9	6.8	2.6 2.5	2.6		3.5 1.7	2.6	
7-May-14	Cloudy	Moderate	07:30	Middle	4	23.5 23.5	23.5	7.9 7.9	7.9	29.0 29.1	29.1	92.8 92.5	92.7	6.7 6.7	6.7		3.4 3.5	3.5	4.7	3.4 3.5	3.5	3.8
				Bottom	7	23.6 23.6	23.6	7.9 7.9	7.9	31.1 30.9	31.0	91.0 90.4	90.7	6.5 6.4	6.5	6.5	8.3 7.7	8.0		5.3 5.4	5.4	
				Surface	1	21.6 21.6	21.6	7.6 7.6	7.6	18.6 18.6	18.6	76.1 75.7	75.9	6.0 6.0	6.0	5.8	3.5 3.2	3.4		3.5 3.8	3.7	
10-May-14	Rainy	Moderate	16:17	Middle	3.5	21.6 21.6	21.6	7.6 7.6	7.6	20.6 20.4	20.5	72.1 71.2	71.7	5.6 5.6	5.6	3.0	3.2 3.4	3.3	4.7	5.1 3.0	4.1	4.2
				Bottom	6	21.5 21.5	21.5	7.7 7.7	7.7	28.6 27.8	28.2	69.5 68.3	68.9	5.2 5.1	5.2	5.2	7.2 7.6	7.4		5.0 4.3	4.7	
				Surface	1	25.1 24.9	25.0	7.5 7.5	7.5	19.2 19.2	19.2	92.0 90.9	91.5	6.8 6.8	6.8		4.2 4.4	4.3		4.4 4.3	4.4	
12-May-14	Rainy	Moderate	16:30	Middle	4	23.6 23.6	23.6	7.7 7.7	7.7	26.5 26.5	26.5	88.2 90.0	89.1	6.4 6.6	6.5	6.7	5.8 6.2	6.0	8.8	4.4 3.8	4.1	4.3
				Bottom	7	23.4 23.4	23.4	7.7	7.7	30.1 30.1	30.1	85.3	85.6	6.1 6.2	6.2	6.2	16.2	16.2		4.3 4.6	4.5	
				Surface	1	23.0	23.0	6.8	6.8	15.8	15.8	85.9 89.6	89.6	7.0	7.0		7.9	7.9		5.2	4.4	
14-May-14	Cloudy	Moderate	18:00	Middle	3.5	23.0 22.9	22.9	6.8 6.9	6.9	15.8 16.5	16.6	89.6 82.2	81.7	7.0 6.4	6.4	6.7	7.9 9.7	9.8	11.3	3.6	3.2	6.1
	o.ouu,	moderate	10.00	Bottom	6	22.9 22.6	22.6	6.9 7.0	7.0	16.6 19.5	19.5	81.2 75.2	75.3	6.3 5.8	5.8	5.8	9.9 16.0	16.2		3.1 12.4	10.8	0
					1	22.6 25.1	25.1	7.0 7.4	7.5	19.5 16.7	16.7	75.3 77.6	77.8	5.8 5.8	5.8	0.0	16.4 10.9	10.7		9.2 8.1		
16 May 11	Claudy	Daugh	06:47	Surface	4	25.1 24.7	24.7	7.5 7.6	7.5	16.7 23.1	23.2	77.9 81.5	81.5	5.8 5.9	5.8	5.9	10.5 44.5	46.0	40.0	4.8 44.3	6.5 45.0	20.0
16-May-14	Cloudy	Rough	00:47	Middle		24.7 24.7		7.6 7.6		23.3		81.4 81.8		5.9 6.0			47.5 63.6		40.0	45.7 65.4		38.8
				Bottom	7	24.7 25.9	24.7	7.6	7.6	23.5	23.6	81.8 113.1	81.8	6.0	6.0	6.0	62.7	63.2		64.3	64.9	
				Surface	1	25.9	25.9	7.3	7.3	12.8	12.8	108.5	110.8	8.2	8.4	8.1	4.4	4.6		4.6	4.9	
19-May-14	Fine	Calm	09:05	Middle	3.5	25.7 25.7	25.7	7.2 7.3	7.3	13.8 15.2	14.5	105.4 101.8	103.6	8.0 7.6	7.8		6.4 6.8	6.6	6.8	6.5 6.1	6.3	7.5
				Bottom	6	25.3 25.2	25.3	7.5 7.5	7.5	20.5 22.5	21.5	105.4 104.1	104.8	7.7 7.5	7.6	7.6	8.9 9.2	9.1		11.6 11.2	11.4	

Water Quality Monitoring Results at CS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.8 24.8	24.8	7.0 7.0	7.0	12.7 12.7	12.7	106.2 106.2	106.2	8.2 8.2	8.2	7.8	5.2 5.1	5.2		4.7 8.2	6.5	
21-May-14	Rainy	Rough	10:39	Middle	3.5	24.8 24.8	24.8	7.0 7.0	7.0	15.4 15.8	15.6	97.3 96.2	96.8	7.4 7.3	7.4	7.0	4.4 4.4	4.4	5.7	4.6 5.4	5.0	5.7
				Bottom	6	24.0 24.0	24.0	7.4 7.4	7.4	27.4 27.3	27.4	100.6 100.6	100.6	7.2 7.2	7.2	7.2	7.6 7.4	7.5		5.2 6.1	5.7	
				Surface	1	25.3 25.3	25.3	8.0 8.0	8.0	15.4 15.4	15.4	102.9 102.9	102.9	7.8 7.8	7.8	7.8	3.4 3.4	3.4		5.0 5.8	5.4	
23-May-14	Rainy	Calm	12:54	Middle	3.5	25.0 25.0	25.0	8.0 8.0	8.0	23.0 23.0	23.0	106.4 106.4	106.4	7.7 7.7	7.7	7.0	3.9 3.9	3.9	4.0	5.4 5.3	5.4	5.6
				Bottom	6	23.5 23.5	23.5	8.0 8.0	8.0	30.7 30.7	30.7	107.6 107.4	107.5	7.7 7.7	7.7	7.7	4.6 4.5	4.6		6.2 5.6	5.9	
				Surface	1	25.2 24.7	25.0	7.9 8.0	8.0	17.3 17.3	17.3	88.8 87.8	88.3	6.6 6.6	6.6	6.5	3.6 3.6	3.6		10.1 11.7	10.9	
26-May-14	Fine	Calm	16:55	Middle	3.5	24.6 24.7	24.7	7.9 8.0	8.0	23.6 23.7	23.7	87.0 86.9	87.0	6.3 6.3	6.3	0.5	5.4 5.8	5.6	6.4	12.7 9.0	10.9	11.0
				Bottom	6	27.2 27.0	27.1	8.0 8.0	8.0	27.8 27.7	27.8	89.5 89.1	89.3	6.1 6.1	6.1	6.1	9.4 10.3	9.9		10.0 12.2	11.1	
				Surface	1	27.4 27.4	27.4	7.4 7.4	7.4	12.9 13.0	13.0	108.1 106.5	107.3	8.0 7.8	7.9	7.2	4.9 5.5	5.2		9.9 5.4	7.7	
28-May-14	Fine	Calm	17:52	Middle	4	26.6 26.7	26.7	7.4 7.4	7.4	17.4 17.3	17.4	89.5 88.6	89.1	6.5 6.5	6.5	7.2	6.8 6.7	6.8	10.8	7.3 7.4	7.4	7.7
				Bottom	7	26.0 26.0	26.0	7.5 7.5	7.5	22.7 22.6	22.7	92.6 92.2	92.4	6.6 6.6	6.6	6.6	18.7 22.2	20.5		7.8 7.9	7.9	
				Surface	1	27.7 28.1	27.9	7.6 7.6	7.6	20.0 18.9	19.5	102.7 104.3	103.5	7.2 7.3	7.3	7.2	2.3 2.3	2.3		2.4 1.7	2.1	
30-May-14	Fine	Calm	19:14	Middle	3.5	26.7 26.7	26.7	7.6 7.6	7.6	23.6 23.2	23.4	99.2 100.5	99.9	7.0 7.1	7.1	1.2	2.4 2.1	2.3	2.7	2.5 1.9	2.2	3.3
				Bottom	6	25.8 25.9	25.9	7.6 7.6	7.6	28.2 28.4	28.3	80.3 80.8	80.6	5.6 5.6	5.6	5.6	3.8 3.2	3.5		6.8 4.2	5.5	

Water Quality Monitoring Results at IS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.3 24.3	24.3	8.0 7.9	8.0	31.1 31.2	31.2	108.5 108.5	108.5	7.9 7.9	7.9		2.1 2.3	2.2		6.4 6.2	6.3	
2-May-14	Fine	Calm	15:17	Middle	5	24.1 24.1	24.1	8.0 7.9	8.0	31.5 31.5	31.5	109.2 109.6	109.4	7.9 8.0	8.0	8.0	3.6 3.1	3.4	6.5	5.0 4.6	4.8	5.7
				Bottom	9	23.7	23.7	7.9 7.9	7.9	32.4 32.4	32.4	107.0 106.6	106.8	7.8 7.8	7.8	7.8	13.9 13.8	13.9		4.7 7.5	6.1	
				Surface	1	22.0	22.1	8.2	8.2	28.8	28.8	82.8	83.4	6.1	6.2		2.6	2.4		3.8	3.3	
5-May-14	Rainy	Moderate	16:23	Middle	5.5	22.1 21.8 21.9	21.9	8.1 8.2 8.2	8.2	28.8 33.0 32.9	33.0	83.9 81.5 85.6	83.6	6.2 5.9 6.2	6.1	6.2	3.2 3.3	3.3	3.1	2.8 3.6 2.5	3.1	3.5
				Bottom	10	21.8	21.8	8.2	8.2	33.3	33.3	81.6	83.7	5.9 6.2	6.1	6.1	3.6	3.7		2.5 2.6 5.4	4.0	
				Surface	1	21.8	23.2	7.9	7.9	27.8	27.8	85.7 109.3	109.2	8.0	8.0		3.7 4.1	4.1		5.6	6.2	
7-May-14	Cloudy	Moderate	18:20	Middle	5	23.2	23.5	7.9	7.9	27.7 30.7	30.7	109.1	109.7	7.8	7.8	7.9	3.7	3.7	4.2	6.8 4.6	3.4	4.3
				Bottom	9	23.5 23.5 23.5	23.5	7.9 7.9 7.9	7.9	30.6 31.5 31.4	31.5	109.8 108.9 108.6	108.8	7.8 7.7 7.7	7.7	7.7	3.6 4.8 4.8	4.8		2.1 2.2 4.6	3.4	
				Surface	1	21.6 21.6	21.6	7.7 7.7	7.7	19.7 19.5	19.6	90.1 88.3	89.2	7.1 6.9	7.0		2.9 3.2	3.1		1.9 2.2	2.1	
10-May-14	Rainy	Moderate	11:03	Middle	4.5	21.4 21.4	21.4	7.7 7.7	7.7	25.7 25.9	25.8	82.9 82.6	82.8	6.3 6.3	6.3	6.7	4.3 4.1	4.2	5.3	1.9	2.9	2.9
				Bottom	8	21.4	21.4	7.8 7.8	7.8	27.7 25.2	26.5	73.8 72.7	73.3	5.6 5.6	5.6	5.6	8.2 8.9	8.6		3.0	3.6	
				Surface	1	24.0	24.2	7.7	7.7	19.4	19.0	99.0	98.5	7.5	7.5		4.3	4.2		7.8	6.9	
12-May-14	Rainy	Moderate	12:18	Middle	5	24.3	23.5	7.6	7.7	18.5 28.0	28.0	98.0	91.2	7.4 6.6	6.6	7.1	6.2	6.1	8.7	7.0	6.4	6.7
	,			Bottom	9	23.5 23.5	23.5	7.7 7.8	7.8	28.0 26.1	26.1	91.5 87.7	87.7	6.6 6.4	6.4	6.4	6.0 15.2	15.7		5.8 7.1	6.8	
				Surface	1	23.5 22.9	22.9	7.8	7.3	26.1 22.2	22.2	87.7 87.8	87.8	6.4	6.6		16.1 6.6	6.6		6.4 8.0	7.5	
14-May-14	Cloudy	Moderate	12:41	Middle	4	22.9 22.9	22.9	7.3 7.3	7.3	22.2 22.3	22.3	87.8 87.7	87.6	6.6 6.6	6.6	6.6	6.6	6.5	7.2	7.0	7.6	7.4
	o.ouuy	moderate		Bottom	7	22.9 22.8	22.8	7.3 7.3	7.3	22.3 23.7	23.8	87.4 85.6	85.9	6.6 6.4	6.5	6.5	6.4 8.4	8.6		8.0 6.3	7.2	
				Surface	1	22.7 25.4	25.5	7.3	7.7	23.9 22.8	22.8	78.4	78.2	6.5 5.7	5.7	0.0	7.7	7.8		8.0 11.0	9.7	
16-May-14	Cloudy	Rough	14:05	Middle	5	25.5 24.6	24.6	7.7 7.7	7.7	22.7 26.0	26.1	78.0 75.0	74.9	5.6 5.4	5.4	5.6	7.9 31.2	31.7	37.4	8.3 33.1	31.4	20.7
,				Bottom	9	24.6	24.3	7.7	7.7	26.2	27.7	74.7	73.0	5.4 5.2	5.2	5.2	32.1 71.6	72.8		29.7 33.6	21.1	
				Surface	1	24.3	26.6	7.7	7.7	27.6 19.2	19.2	72.9 96.8	96.7	7.0	7.0		73.9 6.2	6.0		13.2	11.4	
19-May-14	Fine	Calm	16:22	Middle	5	26.5 25.7	25.7	7.7	7.7	19.2 22.1	22.1	96.6 93.3	93.1	7.0 6.7	6.7	6.9	5.8 4.8	5.0	9.8	9.5	10.6	9.7
				Bottom	9	25.7 24.6	24.6	7.7	7.7	22.1	28.6	92.9	88.9	6.7	6.3	6.3	5.2 18.0	18.3		7.8	7.2	
					-	24.6	-	7.7	<u> </u>	28.3		87.7		6.2			18.5			7.3		<u> </u>

Water Quality Monitoring Results at IS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Борг	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5 24.5	24.5	7.3 7.3	7.3	21.0 21.0	21.0	81.7 82.0	81.9	6.2 6.2	6.2	6.2	6.3 6.5	6.4		6.0 5.2	5.6	
21-May-14	Rainy	Rough	17:19	Middle	5	24.5 24.5	24.5	7.3 7.3	7.3	21.6 21.6	21.6	80.6 81.0	80.8	6.1 6.2	6.2	0.2	6.2 6.3	6.3	6.4	4.8 4.0	4.4	5.0
				Bottom	9	24.5 24.5	24.5	7.3 7.3	7.3	23.7 23.7	23.7	78.6 78.6	78.6	6.0 6.0	6.0	6.0	6.5 6.6	6.6		4.9 5.0	5.0	
				Surface	1	23.9 23.9	23.9	7.6 7.6	7.6	13.7 13.6	13.7	92.2 92.2	92.2	7.2 7.2	7.2	7.0	3.5 3.6	3.6		7.4 7.6	7.5	
23-May-14	Rainy	Calm	09:15	Middle	4	23.7 23.7	23.7	7.6 7.6	7.6	16.6 16.5	16.6	88.5 88.5	88.5	6.8 6.8	6.8	7.0	3.6 3.6	3.6	3.5	9.0 3.7	6.4	5.9
				Bottom	7	23.5 23.5	23.5	7.5 7.5	7.5	19.4 19.3	19.4	84.0 83.3	83.7	6.4 6.3	6.4	6.4	3.3 3.3	3.3		4.0 3.8	3.9	
				Surface	1	26.5 25.6	26.1	7.7 7.8	7.8	18.7 18.6	18.7	86.5 85.0	85.8	6.3 6.3	6.3	6.3	5.6 5.5	5.6		3.0 3.0	3.0	
26-May-14	Sunny	Calm	11:46	Middle	5.5	27.1 27.6	27.4	7.7 7.9	7.8	22.9 22.9	22.9	88.2 88.7	88.5	6.2 6.2	6.2	0.5	6.8 7.0	6.9	7.4	3.2 2.7	3.0	3.9
				Bottom	10	25.9 25.8	25.9	7.8 7.8	7.8	24.4 24.4	24.4	85.2 85.1	85.2	6.0 6.0	6.0	6.0	9.8 9.7	9.8		5.4 5.8	5.6	
				Surface	1	26.7 26.8	26.8	7.6 7.6	7.6	16.0 15.8	15.9	91.7 91.1	91.4	6.7 6.7	6.7	6.3	2.0 2.3	2.2		3.4 3.0	3.2	
28-May-14	Sunny	Calm	12:56	Middle	5	25.9 25.9	25.9	7.6 7.6	7.6	22.3 21.9	22.1	82.0 80.8	81.4	5.9 5.8	5.9	0.5	1.8 2.0	1.9	5.8	1.8 4.3	3.1	3.6
				Bottom	9	25.2 25.2	25.2	7.6 7.6	7.6	27.9 28.1	28.0	83.2 80.8	82.0	5.9 5.7	5.8	5.8	12.8 13.9	13.4		5.2 3.9	4.6	
				Surface	1	27.7 27.6	27.7	7.9 7.9	7.9	18.0 18.5	18.3	115.9 113.5	114.7	8.3 8.1	8.2	7.5	2.5 2.5	2.5		6.6 3.5	5.1	
30-May-14	Sunny	Calm	13:33	Middle	6	25.8 26.2	26.0	7.9 7.8	7.9	28.7 26.3	27.5	98.1 97.3	97.7	6.8 6.8	6.8	7.5	4.7 5.7	5.2	6.0	4.7 6.2	5.5	5.0
				Bottom	11	25.3 25.5	25.4	7.9 7.8	7.9	31.1 30.1	30.6	84.5 82.2	83.4	5.8 5.7	5.8	5.8	10.8 9.5	10.2		4.2 4.5	4.4	

Water Quality Monitoring Results at IS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.6	23.6	7.8	7.8	30.2	30.3	86.6	86.6	6.4	6.4		2.7	2.7		3.7	3.9	
2-May-14	Fine	Calm	08:33	Middle	5	23.6	23.7	7.8	7.9	30.3	31.8	86.5 88.9	89.0	6.4	6.5	6.5	2.6	2.8	5.9	4.1	3.9	4.0
	-			Bottom	9	23.7 23.6	23.6	7.9 7.9	7.9	31.8 32.1	32.1	89.1 89.8	89.9	6.5 6.6	6.6	6.6	2.8 11.1	12.3		3.5 4.8	4.1	
						23.6 22.1		7.9 8.1		32.1 24.8		89.9 95.8		6.6 7.2		0.0	13.4 2.3			3.3 4.0		
5-May-14	Rainy	Moderate	10:28	Surface Middle	5	22.1 22.0	22.1	8.0 8.2	8.1	24.8 31.5	24.8 31.4	97.1 97.7	96.5 99.1	7.3 7.1	7.3	7.3	2.3 6.4	2.3 6.6	5.8	3.3 4.4	3.7	3.4
o may 11		modorate	10.20	Bottom	9	22.0 21.9 21.9	21.9	8.2 8.2 8.2	8.2	31.3 31.8 31.8	31.8	100.5 96.9 99.7	98.3	7.3 7.1 7.3	7.2	7.2	6.8 8.4 8.8	8.6		3.0 2.7 2.6	2.7	
				Surface	1	23.3 23.3	23.3	7.9 7.9	7.9	28.4 28.3	28.4	103.3 103.2	103.3	7.5 7.5	7.5		1.4 1.4	1.4		5.2 9.5	7.4	
7-May-14	Cloudy	Moderate	08:37	Middle	5	23.5 23.5	23.5	7.9 7.9	7.9	30.8 30.8	30.8	103.7 104.0	103.9	7.4 7.4	7.4	7.5	1.2 1.2	1.2	1.6	2.0	2.1	5.0
				Bottom	9	23.6 23.6	23.6	7.9 7.9	7.9	31.5 31.6	31.6	103.5 103.4	103.5	7.3 7.3	7.3	7.3	2.0 2.1	2.1		4.7 6.2	5.5	
				Surface	1	21.7 21.8	21.8	7.7 7.7	7.7	21.3 21.5	21.4	78.5 78.4	78.5	6.1 6.1	6.1	5.7	4.2	4.3	=	3.7 3.7	3.7	
10-May-14	Rainy	Moderate	15:04	Middle	3	21.9 21.9 21.8	21.9	7.7 7.7 7.7	7.7	23.8 23.4 24.5	23.6	69.2 69.4 68.0	69.3	5.3 5.3 5.2	5.3		2.9 2.9 3.8	2.9	3.6	5.2 3.5 4.0	4.4	3.9
				Bottom	5	21.7	21.8	7.7	7.7	24.4	24.5	68.2	68.1	5.2	5.2	5.2	3.3	3.6		3.4	3.7	
				Surface	1	23.6 23.7	23.7	7.7 7.7	7.7	16.5 16.5	16.5	86.9 87.5	87.2	6.7 6.7	6.7	6.6	5.6 5.4	5.5	-	4.0 5.9	5.0	
12-May-14	Rainy	Moderate	17:37	Middle	5	23.4 23.6	23.5	7.7 7.7 7.5	7.7	24.7 24.6	24.7	87.7 88.6 87.7	88.2	6.5 6.5	6.5		7.2 7.7 18.1	7.5	10.4	3.0 5.2 4.3	4.1	4.5
				Bottom	9	25.6 25.2 23.7	25.4	7.6 7.2	7.6	24.8 24.8 17.0	24.8	85.9 92.2	86.8	6.2 6.1 7.1	6.2	6.2	18.0	18.1		4.7 6.0	4.5	I
				Surface	1	23.7 23.5	23.7	7.2 7.2 7.1	7.2	17.0 17.0 17.4	17.0	92.2 90.7	92.2	7.1 7.1 7.0	7.1	7.1	7.0	7.0		8.2 7.4	7.1	
14-May-14	Cloudy	Moderate	18:49	Middle	4.5	23.5 23.5	23.5	7.1 7.1	7.1	17.4 17.4	17.4	90.7 88.7	90.7	7.0 6.8	7.0	0.0	9.2 9.9	9.2	8.7	8.0 6.0	7.7 6.7	7.2
				Bottom Surface	8	23.5 25.2	25.3	7.1 7.6	7.1	17.4 18.0	17.4 17.9	88.4 75.2	88.6 75.0	6.8 5.6	6.8 5.6	6.8	9.8 5.0	4.8		7.4 3.4	4.1	
16-May-14	Cloudy	Rough	07:37	Middle	5	25.3 24.0	24.0	7.6 7.7	7.8	17.8 29.8	29.9	74.8 73.9	73.7	5.6 5.3	5.3	5.5	4.6	47.1	47.6	4.8	39.1	29.4
	Í	Ü		Bottom	9	24.0 23.9 23.9	23.9	7.8 7.8 7.8	7.8	29.9 30.6 30.6	30.6	73.5 72.4 72.5	72.5	5.2 5.1 5.1	5.1	5.1	50.9 89.5 92.0	90.8	-	34.6 44.7 45.5	45.1	
				Surface	1	25.7 25.7	25.7	7.5 7.5	7.5	16.7 15.4	16.1	93.2 90.3	91.8	6.9 6.8	6.9	0.0	5.5 5.5	5.5		4.9 5.8	5.4	
19-May-14	Fine	Calm	09:46	Middle	5.5	24.7 24.7	24.7	7.7 7.7	7.7	27.6 27.6	27.6	93.3 91.5	92.4	6.6 6.5	6.6	6.8	17.2 18.9	18.1	17.3	8.6 6.8	7.7	6.5
				Bottom	10	24.6 24.6	24.6	7.7 7.7	7.7	28.2 28.2	28.2	90.9 90.1	90.5	6.5 6.4	6.5	6.5	27.8 28.7	28.3		5.7 7.3	6.5	

Water Quality Monitoring Results at IS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition*	Time	Борі	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.8 24.8	24.8	7.3 7.3	7.3	16.5 16.5	16.5	97.5 97.5	97.5	7.4 7.4	7.4	7.3	4.3 4.3	4.3		4.6 4.1	4.4	
21-May-14	Rainy	Rough	11:37	Middle	4.5	24.8 24.8	24.8	7.3 7.3	7.3	17.1 17.1	17.1	93.9 93.9	93.9	7.1 7.1	7.1	7.0	4.5 4.7	4.6	4.5	5.2 3.8	4.5	4.5
				Bottom	8	24.8 24.8	24.8	7.3 7.3	7.3	19.2 19.2	19.2	89.5 89.5	89.5	6.7 6.7	6.7	6.7	4.7 4.7	4.7		5.1 3.8	4.5	
				Surface	1	25.1 25.1	25.1	8.1 8.1	8.1	19.0 18.9	19.0	95.2 95.1	95.2	7.1 7.1	7.1	7.1	3.5 3.5	3.5		5.0 5.0	5.0	
23-May-14	Rainy	Calm	13:44	Middle	4.5	24.9 24.9	24.9	8.1 8.1	8.1	22.5 22.5	22.5	96.4 96.3	96.4	7.0 7.0	7.0	7.1	4.2 4.2	4.2	4.0	5.2 6.0	5.6	5.2
				Bottom	8	24.7 24.7	24.7	8.1 8.1	8.1	25.9 25.8	25.9	97.4 97.4	97.4	7.0 7.0	7.0	7.0	4.4 4.1	4.3		5.3 4.8	5.1	
				Surface	1	24.9 26.8	25.9	7.4 7.5	7.5	18.7 18.6	18.7	87.1 89.9	88.5	6.5 6.5	6.5	6.5	5.9 5.9	5.9		5.9 4.1	5.0	
26-May-14	Fine	Calm	17:24	Middle	5	27.1 26.8	27.0	7.3 7.6	7.5	23.2 23.2	23.2	91.2 90.7	91.0	6.4 6.4	6.4	0.5	6.9 6.8	6.9	7.5	5.6 10.0	7.8	6.7
				Bottom	9	26.9 26.8	26.9	7.5 7.6	7.6	24.4 24.3	24.4	89.6 89.1	89.4	6.2 6.2	6.2	6.2	9.7 9.7	9.7		6.2 8.1	7.2	
				Surface	1	28.0 28.0	28.0	7.6 7.6	7.6	10.7 10.9	10.8	87.6 87.3	87.5	6.5 6.4	6.5	5.9	4.5 4.7	4.6		4.3 4.7	4.5	
28-May-14	Fine	Calm	18:56	Middle	5	26.6 26.8	26.7	7.5 7.6	7.6	18.3 16.4	17.4	73.7 71.3	72.5	5.3 5.2	5.3	0.0	6.3 6.1	6.2	5.7	4.6 4.5	4.6	5.0
				Bottom	9	26.7 26.7	26.7	7.6 7.6	7.6	19.1 19.1	19.1	85.4 85.5	85.5	6.2 6.2	6.2	6.2	6.2 6.1	6.2		6.2 5.5	5.9	
				Surface	1	27.8 27.8	27.8	7.9 7.9	7.9	17.7 17.7	17.7	110.0 108.4	109.2	7.8 7.7	7.8	7.1	3.8 4.5	4.2		3.2 4.0	3.6	
30-May-14	Fine	Calm	19:52	Middle	5	26.3 26.2	26.3	7.8 7.8	7.8	25.9 26.1	26.0	89.6 90.2	89.9	6.3 6.3	6.3	7.1	3.6 3.7	3.7	5.6	5.0 4.9	5.0	4.1
				Bottom	9	25.5 25.7	25.6	7.9 7.8	7.9	29.1 28.9	29.0	73.0 73.0	73.0	5.1 5.1	5.1	5.1	9.2 8.5	8.9		3.4 4.0	3.7	

Water Quality Monitoring Results at IS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ţ	рН	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	•	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.1	24.1	7.9	7.9	30.9	31.0	108.9	108.8	7.9	7.9		5.2	5.2		5.4	5.6	
				Juliace		24.1	24.1	7.9	7.9	31.0	31.0	108.7	100.0	7.9	1.5	8.0	5.2	5.2		5.8	3.0	
2-May-14	Fine	Calm	15:27	Middle	3	23.7	23.7	7.9	7.9	32.2	32.2	109.8	109.6	8.0	8.0	0.0	6.4	6.9	9.1	5.8	5.5	5.9
2 May 14	1 1110	Guini	10.27	Mildale	Ŭ	23.7	20.7	7.9	7.0	32.2	02.2	109.4	100.0	8.0	0.0		7.3	0.0	0.1	5.1	0.0	0.0
				Bottom	5	23.7	23.7	7.9	7.9	32.2	32.2	108.3	108.2	7.9	7.9	7.9	15.9	15.3		5.2	6.6	
					,	23.7		7.9		32.2		108.1		7.9			14.7			8.0		
				Surface	1	22.0	22.1	8.2	8.2	30.1	30.0	82.3	82.4	6.0	6.1		2.7	2.8		3.6	4.3	
						22.1		8.2		29.9		82.5		6.1	***	6.1	2.9			4.9		
5-May-14	Rainy	Moderate	16:29	Middle	4	21.9	22.0	8.2	8.2	32.4	32.3	81.8	82.8	5.9	6.0		4.4	4.5	4.3	6.1	5.0	4.3
	-					22.0		8.2		32.2		83.8		6.1			4.6			3.9		
				Bottom	7	21.9 21.9	21.9	8.2 8.2	8.2	32.7 32.7	32.7	80.6 84.6	82.6	5.8 6.1	6.0	6.0	5.8 5.4	5.6		3.8 3.4	3.6	
<u> </u>						23.2	l					108.1					4.3	1				
				Surface	1	23.2	23.2	7.9 7.9	7.9	27.5 27.5	27.5	108.1	108.1	7.9 7.9	7.9		4.3	4.3		4.3 5.7	5.0	
						23.5		7.9		30.3		108.6		7.8		7.9	4.4			5.8		
7-May-14	Cloudy	Moderate	18:34	Middle	3	23.5	23.5	7.9	7.9	30.2	30.3	108.6	108.6	7.8	7.8		4.4	4.4	4.7	2.3	4.1	4.8
						23.5		7.9		31.3		108.5		7.7			5.2			2.5		
				Bottom	5	23.5	23.5	7.9	7.9	31.3	31.3	108.6	108.6	7.7	7.7	7.7	5.3	5.3		8.3	5.4	
						22.0		7.7		22.2		84.0		6.5			4.3	1		6.4		
				Surface	1	22.0	22.0	7.7	7.7	23.2	22.7	83.8	83.9	6.4	6.5		4.4	4.4		4.8	5.6	
40.14	D		44.44		0.5	21.7	04.7	7.7		24.4	04.0	77.8	77.0	5.9		6.2	7.1	0.0		6.4	5.0	
10-May-14	Rainy	Moderate	11:14	Middle	3.5	21.7	21.7	7.7	7.7	23.9	24.2	77.3	77.6	5.9	5.9		6.0	6.6	8.1	5.4	5.9	6.4
				Bottom	6	21.4	21.5	7.7	7.7	27.2	25.8	75.6	75.1	5.7	5.7	5.7	13.3	13.4		6.3	7.6	
				DULLUITI	U	21.5	21.5	7.7	1.1	24.3	25.6	74.5	73.1	5.7	5.7	5.7	13.5	13.4		8.8	7.0	
				Surface	1	24.0	24.2	7.7	7.7	19.4	19.0	98.3	97.1	7.4	7.3		4.0	4.0		4.8	5.0	
				Ouriacc		24.3	24.2	7.6	7.7	18.5	13.0	95.9	37.1	7.2	7.5	7.1	3.9	4.0		5.2	5.0	
12-May-14	Rainy	Moderate	12:30	Middle	3.5	23.5	23.5	7.7	7.7	28.1	28.1	93.7	93.3	6.8	6.8		6.1	6.4	9.1	6.2	5.6	5.8
,	,					23.5		7.7		28.1		92.8		6.7			6.6			5.0		
				Bottom	6	23.5	23.5	7.8	7.8	26.1	26.1	89.1	88.8	6.5	6.5	6.5	17.4	17.0		5.4	6.9	
						23.5		7.8		26.1		88.4		6.5			16.6			8.4		
				Surface	1	23.4	23.4	7.3	7.3	20.7	20.7	81.9	81.9	6.2	6.2		5.1	5.2		5.0	4.7	
						23.4 23.1		7.3		20.7 21.6		81.9 82.5		6.2 6.2		6.2	5.2 5.7			4.3 5.8		
14-May-14	Cloudy	Moderate	12:51	Middle	3	23.1	23.1	7.3	7.3	21.6	21.6	82.5	82.5	6.2	6.2		5.7	5.8	5.8	5.8	5.8	6.1
						22.9		7.3		22.2		82.8		6.3			6.5			6.8		
				Bottom	5	22.9	22.9	7.3	7.3	22.2	22.2	82.8	82.8	6.3	6.3	6.3	6.3	6.4		8.8	7.8	
						25.6		7.7		21.5		75.7		5.5			5.2			7.7		
				Surface	1	25.6	25.6	7.7	7.7	21.5	21.5	75.7	75.7	5.5	5.5	- 4	5.4	5.3		8.8	8.3	
40 M=44	01	Darrah	44.47	NAC-Jalla	_	24.4	24.4	7.7	7.7	26.9	20.0	73.6	70.0	5.3	5 0	5.4	20.9	20.4	25.0	6.9	7.0	40.0
16-May-14	Cloudy	Rough	14:17	Middle	3	24.4	24.4	7.7	7.7	26.8	26.9	72.8	73.2	5.2	5.3		23.8	22.4	25.9	8.6	7.8	19.9
				Bottom	5	24.3	24.3	7.7	7.7	27.5	27.6	71.1	71.3	5.1	5.1	5.1	49.5	49.9		44.4	43.6	
				DULLUITI	3	24.3	24.3	7.7	1.1	27.6	27.0	71.4	71.3	5.1	5.1	5.1	50.2	49.9		42.7	43.0	
				Surface	1	27.0	27.0	7.7	7.7	17.9	18.0	98.0	96.6	7.1	7.0		5.6	5.4		7.2	7.8	
				Juliuoc		27.0	27.0	7.7	7	18.0	10.0	95.1	00.0	6.9	7.0	6.9	5.2	U. 1		8.4	7.0	
19-May-14	Fine	Calm	16:30	Middle	3	26.1	26.4	7.7	7.7	20.7	19.8	95.2	94.3	6.9	6.8		4.7	4.7	7.2	6.9	7.0	7.3
.,	-				-	26.7	-	7.7		18.9		93.4		6.7			4.6			7.0		
				Bottom	5	24.7	25.0	7.7	7.7	27.9	27.6	84.2	85.0	6.0	6.1	6.1	11.5	11.4		7.4	7.1	
						25.2	l l	7.7	1	27.3	<u> </u>	85.8		6.1			11.3	<u> </u>		6.8		<u> </u>

Water Quality Monitoring Results at IS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.7 24.7	24.7	7.3 7.3	7.3	20.0 20.0	20.0	81.1 80.6	80.9	6.2 6.1	6.2	6.1	6.8 6.7	6.8		4.7 5.2	5.0	
21-May-14	Rainy	Rough	17:31	Middle	3.5	24.6 24.6	24.6	7.3 7.3	7.3	20.3 20.4	20.4	78.2 78.7	78.5	6.0 6.0	6.0	0.1	9.3 9.3	9.3	10.9	5.7 5.1	5.4	4.8
				Bottom	6	24.4 24.4	24.4	7.3 7.3	7.3	24.7 24.8	24.8	77.5 77.3	77.4	5.9 5.9	5.9	5.9	17.1 15.9	16.5		4.3 3.9	4.1	
				Surface	1	24.0 24.0	24.0	7.6 7.6	7.6	13.3 13.3	13.3	101.5 101.5	101.5	7.9 7.9	7.9	7.6	3.3 3.5	3.4		4.4 4.0	4.2	
23-May-14	Rainy	Calm	09:23	Middle	3	23.9 23.9	23.9	7.6 7.6	7.6	14.7 14.6	14.7	93.0 93.0	93.0	7.2 7.2	7.2	7.0	3.4 3.4	3.4	3.6	6.9 5.1	6.0	5.1
				Bottom	5	23.6 23.4	23.5	7.6 7.6	7.6	24.3 23.7	24.0	93.6 93.8	93.7	6.9 7.0	7.0	7.0	3.8 4.0	3.9		4.9 5.4	5.2	
				Surface	1	25.0 24.8	24.9	7.8 7.8	7.8	18.1 18.1	18.1	80.8 80.4	80.6	6.0 6.0	6.0	6.0	5.9 5.8	5.9		5.6 4.5	5.1	
26-May-14	Sunny	Calm	11:54	Middle	3.5	26.8 26.8	26.8	7.7 7.9	7.8	22.1 22.1	22.1	85.3 85.2	85.3	6.0 6.0	6.0	0.0	6.0 6.3	6.2	7.0	4.1 3.7	3.9	4.6
				Bottom	6	25.5 25.5	25.5	7.8 7.8	7.8	25.5 25.3	25.4	84.2 84.0	84.1	6.0 6.0	6.0	6.0	9.2 8.6	8.9		4.6 5.2	4.9	
				Surface	1	27.8 27.8	27.8	7.6 7.6	7.6	13.8 13.9	13.9	90.2 89.8	90.0	6.6 6.5	6.6	6.1	2.4 2.7	2.6		4.5 9.2	6.9	
28-May-14	Sunny	Calm	13:07	Middle	3	26.2 26.2	26.2	7.6 7.6	7.6	21.0 21.1	21.1	79.0 76.7	77.9	5.7 5.5	5.6	0.1	7.3 7.4	7.4	6.9	2.8 2.8	2.8	4.5
				Bottom	5	25.2 25.2	25.2	7.6 7.6	7.6	28.2 28.1	28.2	78.2 77.2	77.7	5.5 5.4	5.5	5.5	10.1 11.0	10.6		2.9 4.7	3.8	
				Surface	1	27.7 27.8	27.8	8.0 7.9	8.0	19.0 18.5	18.8	114.8 111.9	113.4	8.1 7.9	8.0	7.4	2.5 2.5	2.5		6.2 3.0	4.6	
30-May-14	Sunny	Calm	13:43	Middle	3.5	26.4 26.6	26.5	8.0 7.9	8.0	23.5 24.0	23.8	96.2 93.9	95.1	6.8 6.6	6.7	7.4	2.3 2.3	2.3	3.0	4.2 4.3	4.3	4.6
				Bottom	6	26.1 25.8	26.0	7.9 7.9	7.9	27.3 29.7	28.5	88.0 87.0	87.5	6.1 6.0	6.1	6.1	3.8 4.3	4.1		5.3 4.5	4.9	

Water Quality Monitoring Results at IS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.7 23.7	23.7	7.8 7.8	7.8	29.6 29.7	29.7	92.2 91.9	92.1	6.8 6.8	6.8		2.9 2.9	2.9		3.9 5.9	4.9	
2-May-14	Fine	Calm	08:42	Middle	3.5	23.7 23.7 23.7	23.7	7.9 7.9	7.9	31.0 31.0	31.0	92.9 93.1	93.0	6.8 6.8	6.8	6.8	5.3 5.4	5.4	6.8	3.1 5.9	4.5	4.4
				Bottom	6	23.7 23.7 23.7	23.7	7.9 7.9	7.9	31.6 31.6	31.6	93.5 93.7	93.6	6.9 6.9	6.9	6.9	12.6 11.7	12.2		3.7 3.8	3.8	
				Surface	1	22.1	22.1	8.1	8.1	24.8	24.8	93.3	93.4	7.1	7.1		2.4	2.4		4.1	3.4	
5-May-14	Rainy	Moderate	10:38	Middle	3.5	22.1 22.1 22.0	22.1	8.1 8.1 8.1	8.1	24.7 30.0 30.0	30.0	93.4 93.6 95.5	94.6	7.1 6.9 7.0	7.0	7.1	2.4 5.1 5.3	5.2	5.3	2.6 2.9 1.9	2.4	2.9
				Bottom	6	21.9 22.0	22.0	8.2 8.2	8.2	31.7 31.7	31.7	94.2 95.6	94.9	6.9 7.0	7.0	7.0	8.4 8.2	8.3	-	2.9	3.0	
				Surface	1	23.3 23.3	23.3	7.9 7.9	7.9	27.4 27.4	27.4	103.5 103.3	103.4	7.6 7.5	7.6		1.8 1.8	1.8		6.6 3.4	5.0	
7-May-14	Cloudy	Moderate	08:49	Middle	3.5	23.5 23.5	23.5	7.9 7.9	7.9	30.3 30.4	30.4	103.2 103.4	103.3	7.4 7.4	7.4	7.5	1.5 1.5	1.5	2.2	5.0 3.5	4.3	4.5
				Bottom	6	23.6 23.6	23.6	7.9 7.9	7.9	31.6 31.6	31.6	103.3 102.6	103.0	7.3 7.3	7.3	7.3	3.1 3.3	3.2		3.8 4.8	4.3	
				Surface	1	21.7 21.7	21.7	7.7 7.7	7.7	23.3 23.3	23.3	80.6 79.5	80.1	6.2 6.1	6.2	5.9	3.8 4.1	4.0		6.1 5.5	5.8	
10-May-14	Rainy	Moderate	14:54	Middle	3	21.6 21.6	21.6	7.7 7.7	7.7	24.8 23.0	23.9	74.8 71.9	73.4	5.7 5.5	5.6		5.7 5.4	5.6	5.5	6.5 5.4	6.0	5.8
				Bottom	5	21.5 21.5	21.5	7.7 7.7	7.7	23.7 24.0	23.9	69.8 69.4	69.6	5.4 5.3	5.4	5.4	6.8 6.9	6.9		5.3 5.7	5.5	
				Surface	1	23.6 23.7	23.7	7.7 7.7	7.7	15.8 15.6	15.7	88.4 87.0	87.7	6.9 6.7	6.8	6.8	4.1 4.4	4.3		5.4 3.2	4.3	
12-May-14	Rainy	Moderate	18:08	Middle	3.5	23.4 23.6	23.5	7.7 7.7 7.5	7.7	24.6 24.8	24.7	89.5 90.4 87.4	90.0	6.6 6.7	6.7		8.2 8.5 15.2	8.4	9.5	2.9 3.1 4.7	3.0	3.8
				Bottom	6	25.6 25.2 23.4	25.4	7.6 7.0	7.6	24.8 26.9 15.9	25.9	87.0 82.4	87.2	6.2 6.2 6.4	6.2	6.2	16.2	15.7		3.6 13.2	4.2	I
				Surface	1	23.4	23.4	7.0 7.0 7.2	7.0	15.9 20.0	15.9	82.4 81.6	82.4	6.4	6.4	6.4	6.5 8.9	6.3	-	7.4 11.6	10.3	
14-May-14	Cloudy	Moderate	18:56	Middle	3.5	22.8 22.6	22.8	7.1	7.2	20.0	20.0	81.6 81.2	81.6	6.3	6.3		8.5 14.2	8.7	9.7	9.4	10.5	10.8
				Bottom Surface	6	22.6 25.4	22.6 25.4	7.2 7.6	7.2	20.9 18.5	20.9	81.2 78.0	81.2 77.6	6.2 5.8	6.2 5.8	6.2	14.2 3.8	14.2 4.0		12.4 3.6	11.6	
16-May-14	Cloudy	Rough	07:49	Middle	3.5	25.4 24.5	24.5	7.6 7.7	7.0	18.4 26.5	26.5	77.2 73.9	73.9	5.7 5.3	5.6	5.6	4.1 23.9	24.4	28.7	5.1 13.8	14.1	15.0
,a,	,			Bottom	6	24.5 24.1	24.1	7.7 7.8 7.8	7.8	26.5 29.1 29.1	29.1	73.8 72.8	72.9	5.3 5.2 5.2	5.2	5.2	24.8 55.6 59.8	57.7		14.4 25.5 27.2	26.4	
				Surface	1	24.1 25.9 25.9	25.9	7.8 7.6 7.6	7.6	15.3 15.2	15.3	72.9 96.7 93.3	95.0	7.2 7.0	7.1		9.4 9.3	9.4		17.9 10.7	14.3	
19-May-14	Fine	Calm	09:54	Middle	3.5	25.7 25.8	25.8	7.6 7.6 7.6	7.6	18.1 18.0	18.1	94.2 94.0	94.1	6.9 6.9	6.9	7.0	18.8 16.0	17.4	17.0	6.6 8.4	7.5	10.6
				Bottom	6	25.1 25.1	25.1	7.7 7.7	7.7	24.2 24.1	24.2	89.7 90.1	89.9	6.5 6.5	6.5	6.5	24.6 23.5	24.1	1	8.6 11.4	10.0	

Water Quality Monitoring Results at IS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Вори	1 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.0 25.0	25.0	7.3 7.3	7.3	15.5 15.5	15.5	99.8 99.8	99.8	7.5 7.5	7.5	7.0	4.8 4.8	4.8		3.6 4.0	3.8	
21-May-14	Rainy	Rough	11:45	Middle	3.5	24.9 24.9	24.9	7.2 7.2	7.2	15.8 15.9	15.9	86.5 86.5	86.5	6.5 6.5	6.5	7.0	4.0 3.9	4.0	4.6	5.0 4.3	4.7	4.2
				Bottom	6	24.7 24.7	24.7	7.3 7.3	7.3	20.2 20.3	20.3	79.4 78.8	79.1	5.9 5.8	5.9	5.9	4.8 5.1	5.0		3.4 4.5	4.0	
				Surface	1	25.2 25.2	25.2	8.1 8.1	8.1	18.6 18.6	18.6	94.3 94.1	94.2	7.0 7.0	7.0	7.0	6.2 6.4	6.3		6.7 4.5	5.6	
23-May-14	Rainy	Calm	13:56	Middle	3.5	25.1 25.1	25.1	8.1 8.1	8.1	20.2 20.2	20.2	94.8 94.7	94.8	7.0 7.0	7.0	7.0	6.3 6.0	6.2	6.2	5.3 4.8	5.1	5.8
				Bottom	6	24.8 24.6	24.7	8.1 8.1	8.1	31.9 30.9	31.4	100.5 99.6	100.1	7.0 7.0	7.0	7.0	6.2 6.1	6.2		5.1 8.0	6.6	
				Surface	1	26.8 27.4	27.1	7.6 7.7	7.7	18.3 18.3	18.3	85.3 86.1	85.7	6.2 6.2	6.2	6.1	5.5 5.6	5.6		8.3 7.2	7.8	
26-May-14	Fine	Calm	17:34	Middle	3	27.4 25.3	26.4	7.7 7.7	7.7	23.4 23.4	23.4	86.7 83.4	85.1	6.0 6.0	6.0	0.1	6.4 6.4	6.4	7.6	7.1 6.9	7.0	7.3
				Bottom	5	27.4 25.1	26.3	7.7 7.7	7.7	27.6 27.3	27.5	88.0 84.2	86.1	6.0 6.0	6.0	6.0	10.7 10.6	10.7		7.2 7.2	7.2	
				Surface	1	27.2 27.2	27.2	7.6 7.6	7.6	14.3 14.0	14.2	78.0 77.0	77.5	5.7 5.7	5.7	5.5	5.1 4.9	5.0		6.8 2.1	4.5	
28-May-14	Fine	Calm	19:08	Middle	3.5	26.7 26.7	26.7	7.6 7.6	7.6	17.7 17.8	17.8	72.2 70.8	71.5	5.2 5.1	5.2	5.5	6.6 6.6	6.6	7.2	5.5 7.0	6.3	5.4
				Bottom	6	25.9 26.1	26.0	7.6 7.6	7.6	23.6 23.4	23.5	80.6 79.4	80.0	5.7 5.6	5.7	5.7	10.4 9.5	10.0		4.4 6.3	5.4	
				Surface	1	27.9 28.0	28.0	8.0 8.0	8.0	18.1 17.8	18.0	109.3 106.8	108.1	7.8 7.6	7.7	7.2	2.9 3.0	3.0		5.9 2.8	4.4	
30-May-14	Fine	Calm	20:04	Middle	3.5	26.2 26.1	26.2	7.9 8.0	8.0	26.5 26.8	26.7	97.1 93.9	95.5	6.8 6.5	6.7	1.2	3.5 3.5	3.5	4.1	1.8 2.4	2.1	3.1
				Bottom	6	25.9 25.9	25.9	7.9 7.9	7.9	27.4 27.3	27.4	79.4 78.7	79.1	5.5 5.5	5.5	5.5	6.2 5.5	5.9		2.1 3.5	2.8	

Water Quality Monitoring Results at IS3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.1 24.1	24.1	7.9 7.8	7.9	31.6 31.5	31.6	77.8 78.9	78.4	5.5 5.5	5.5		5.9 6.0	6.0		6.6 6.8	6.7	
2-May-14	Fine	Calm	13:59	Middle	-	-	-	-	-		-		-		-	5.5	-	-	6.0	-	-	7.5
				Bottom	4.8	23.7 23.7	23.7	7.8 7.8	7.8	31.7 31.7	31.7	80.6 80.9	80.8	5.7 5.7	5.7	5.7	5.8 5.9	5.9		10.3 6.0	8.2	
				Surface	1	22.1 22.1	22.1	8.1 8.1	8.1	28.7 29.3	29.0	104.7 104.2	104.5	7.7 7.7	7.7		3.2 3.9	3.6		7.0 7.1	7.1	
5-May-14	Rainy	Moderate	15:59	Middle	-	-	-	-	-	-	-		-		-	7.7	-	-	5.0	-	-	5.8
				Bottom	4.8	21.9 21.9	21.9	8.1 8.2	8.2	32.5 32.6	32.6	104.0 103.2	103.6	7.5 7.5	7.5	7.5	6.1 6.6	6.4		4.7 4.1	4.4	
				Surface	1	23.4 23.4	23.4	7.9 7.9	7.9	30.6 30.6	30.6	95.8 97.2	96.5	6.8 6.9	6.9	0.0	2.6 2.6	2.6		3.8 3.5	3.7	
7-May-14	Cloudy	Moderate	18:09	Middle	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-	4.0	-	-	3.8
				Bottom	4.6	23.6 23.6	23.6	7.9 7.9	7.9	31.9 31.9	31.9	101.0 101.5	101.3	7.1 7.2	7.2	7.2	5.5 5.3	5.4		3.7 3.9	3.8	
				Surface	1	22.1 22.1	22.1	7.7 7.7	7.7	26.7 25.2	26.0	80.2 79.1	79.7	6.0 6.0	6.0	6.0	6.8 6.7	6.8		5.2 4.0	4.6	
10-May-14	Rainy	Moderate	10:43	Middle	ı	-	-	-	-	1 1	-	1 1	-	1 1	-	0.0	-	-	10.2	-	-	13.4
				Bottom	4	21.4 21.4	21.4	7.7 7.7	7.7	30.9 30.8	30.9	80.0 79.1	79.6	5.9 5.8	5.9	5.9	13.5 13.7	13.6		20.7 23.7	22.2	
				Surface	1	24.0 24.3	24.2	7.7 7.6	7.7	19.4 18.5	19.0	91.6 89.2	90.4	6.9 6.7	6.8	6.8	4.7 3.9	4.3		5.0 3.8	4.4	
12-May-14	Rainy	Moderate	12:07	Middle	1	-	-	-	-		-	1 1	-		-	0.0	-	-	5.7	-	-	7.4
				Bottom	4.4	23.5 23.5	23.5	7.7 7.7	7.7	28.1 27.8	28.0	89.7 89.4	89.6	6.5 6.5	6.5	6.5	7.5 6.5	7.0		11.7 8.8	10.3	
				Surface	1	23.4 23.4	23.4	7.2 7.2	7.2	18.9 19.0	19.0	92.5 91.2	91.9	7.1 7.0	7.1	7.1	6.8 7.5	7.2		5.4 5.2	5.3	
14-May-14	Cloudy	Moderate	12:15	Middle	1	-	-	-	-	1 1	-	1 1	-		-	7.1	-	-	12.3	-	-	6.0
				Bottom	4.2	21.8 21.8	21.8	7.3 7.3	7.3	28.5 28.5	28.5	89.7 88.7	89.2	6.7 6.6	6.7	6.7	16.7 18.0	17.4		7.7 5.7	6.7	
				Surface	1	24.5 24.5	24.5	7.7 7.7	7.7	22.8 22.7	22.8	82.4 81.0	81.7	6.0 5.9	6.0	6.0	7.7 8.0	7.9		8.0 9.0	8.5	
16-May-14	Cloudy	Rough	14:15	Middle	-	-	-	-	-	1 1	-	1 1	-	-	-	0.0	-	-	13.9	-	-	9.0
				Bottom	4.4	23.3 23.3	23.3	7.5 7.7	7.6	28.2 28.2	28.2	77.7 77.5	77.6	5.6 5.6	5.6	5.6	19.5 20.0	19.8		8.5 10.3	9.4	
				Surface	1	26.1 25.3	25.7	7.6 7.6	7.6	20.4 20.0	20.2	106.9 97.7	102.3	7.7 7.2	7.5	7.5	10.2 10.1	10.2		13.0 15.6	14.3	
19-May-14	Fine	Calm	15:51	Middle	-	-	-	-	-	- 1	-	1 1	-		-	7.0	-	-	11.1	-	-	13.4
				Bottom	4.1	25.8 25.5	25.7	7.6 7.7	7.7	23.2 23.4	23.3	104.6 95.4	100.0	7.5 6.9	7.2	7.2	11.1 12.9	12.0		12.2 12.8	12.5	

Water Quality Monitoring Results at IS3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Bate	Condition	Condition**	Time	Борг	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.2 24.2	24.2	7.2 7.3	7.3	16.6 16.9	16.8	90.1 89.2	89.7	6.9 6.8	6.9	6.9	7.1 7.5	7.3		9.8 9.6	9.7	
21-May-14	Rainy	Rough	17:13	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-		-	-	10.5	-	-	8.5
				Bottom	3.9	23.4 23.2	23.3	7.2 7.4	7.3	21.7 22.4	22.1	76.2 77.2	76.7	5.7 5.8	5.8	5.8	13.5 13.7	13.6		7.0 7.6	7.3	
				Surface	1	25.3 25.4	25.4	7.5 7.5	7.5	16.5 16.0	16.3	89.3 90.0	89.7	6.7 6.7	6.7	6.7	4.5 4.9	4.7		5.8 7.5	6.7	
23-May-14	Rainy	Calm	08:54	Middle	-	-	-	-	-	-	-	-	-		-	0.7	-	-	8.4	-	-	5.9
				Bottom	4.5	24.4 24.5	24.5	7.6 7.6	7.6	25.0 24.5	24.8	76.5 79.0	77.8	5.5 5.7	5.6	5.6	12.3 11.9	12.1		5.1 5.1	5.1	
				Surface	1	27.6 27.6	27.6	7.3 7.4	7.4	13.4 14.2	13.8	88.3 89.9	89.1	6.5 6.6	6.6	6.6	6.7 6.3	6.5		8.6 5.4	7.0	
26-May-14	Sunny	Calm	11:35	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	0.0	-	-	10.7	-	-	7.1
				Bottom	4.6	25.3 25.3	25.3	7.5 7.5	7.5	29.9 30.2	30.1	75.1 72.7	73.9	5.2 5.0	5.1	5.1	14.7 14.8	14.8		6.8 7.4	7.1	
				Surface	1	25.9 25.9	25.9	7.2 7.1	7.2	13.4 13.3	13.4	101.5 99.9	100.7	7.7 7.5	7.6	7.6	1.6 1.5	1.6		6.4 5.3	5.9	
28-May-14	Sunny	Calm	12:55	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	7.0	-	-	4.2	-	-	9.7
				Bottom	3.7	24.0 24.0	24.0	7.2 7.1	7.2	23.6 22.0	22.8	82.7 77.7	80.2	6.1 5.8	6.0	6.0	6.3 7.3	6.8		14.6 12.3	13.5	
				Surface	1	26.1 26.1	26.1	7.7 7.6	7.7	24.6 24.6	24.6	86.4 86.4	86.4	6.1 6.1	6.1	6.1	3.8 4.0	3.9		5.0 2.3	3.7	
30-May-14	Sunny	Calm	12:58	Middle	-	-	-	-	-	-	-	-	-	1 1	-	0.1	-	-	5.9	-	-	3.5
				Bottom	4.5	25.5 25.5	25.5	7.6 7.6	7.6	27.9 27.9	27.9	72.0 72.0	72.0	5.0 5.0	5.0	5.0	7.9 7.9	7.9		3.9 2.5	3.2	

Water Quality Monitoring Results at IS3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	iture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Γurbidity(NT\	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.6 23.6	23.6	7.8 7.8	7.8	28.6 28.7	28.7	85.2 81.0	83.1	6.1 5.8	6.0	6.0	3.6 3.8	3.7		4.5 5.3	4.9	
2-May-14	Fine	Calm	08:06	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	9.5	-	-	6.8
				Bottom	4.2	23.6 23.6	23.6	7.8 7.8	7.8	29.7 29.7	29.7	83.8 83.5	83.7	6.0 6.0	6.0	6.0	16.0 14.5	15.3		9.4 8.0	8.7	
				Surface	1	22.0 22.0	22.0	8.0 8.0	8.0	26.1 26.1	26.1	90.3 86.7	88.5	6.8 6.5	6.7	6.7	2.3 2.3	2.3		3.0 4.3	3.7	
5-May-14	Rainy	Moderate	09:48	Middle	-	-	-	-	-	1 1	-	-	i	1 1	-	0.7	-	-	4.1	-	-	3.8
				Bottom	4.7	22.1 22.1	22.1	8.1 8.1	8.1	30.3 30.2	30.3	87.4 84.6	86.0	6.4 6.2	6.3	6.3	6.1 5.6	5.9		3.2 4.6	3.9	
				Surface	1	23.4 23.4	23.4	7.8 7.8	7.8	28.0 27.7	27.9	98.7 96.6	97.7	7.2 7.0	7.1	7.1	2.5 2.5	2.5		3.0 3.9	3.5	
7-May-14	Cloudy	Moderate	07:54	Middle	-	-	-	-	-		-	-	-	1 1	-	7.1	-	-	4.8	-	-	4.2
				Bottom	4.8	23.6 23.6	23.6	7.9 7.9	7.9	31.2 31.6	31.4	96.8 95.9	96.4	6.9 6.8	6.9	6.9	6.9 7.0	7.0		5.4 4.1	4.8	
				Surface	1	22.0 21.9	22.0	7.7 7.7	7.7	27.2 27.2	27.2	83.4 76.5	80.0	6.2 5.7	6.0	6.0	5.3 6.2	5.8		5.8 10.8	8.3	
10-May-14	Rainy	Moderate	15:39	Middle	-	-	-	-	-		-	-	-	1 1	-		-	-	8.8	-	-	7.8
				Bottom	4.1	21.6 21.7	21.7	7.7 7.7	7.7	29.2 29.4	29.3	76.3 74.8	75.6	5.7 5.6	5.7	5.7	10.8 12.7	11.8		6.8 7.5	7.2	
				Surface	1	24.7 24.7	24.7	7.5 7.5	7.5	15.2 15.1	15.2	83.9 83.4	83.7	6.4 6.4	6.4	6.4	13.3 12.2	12.8		10.7 14.3	12.5	
12-May-14	Rainy	Moderate	17:03	Middle	-	-	-	-	-		-	-	-	1 1	-		-	-	18.5	-	-	16.4
				Bottom	4.6	24.2 24.1	24.2	7.6 7.6	7.6	17.4 17.9	17.7	82.0 81.6	81.8	6.2 6.2	6.2	6.2	23.0 25.1	24.1		22.6 17.7	20.2	
				Surface	1	23.8 23.7	23.8	7.4 7.4	7.4	18.7 18.7	18.7	89.4 89.1	89.3	6.8 6.8	6.8	6.8	11.6 11.2	11.4		28.0 19.7	23.9	
14-May-14	Cloudy	Moderate	18:24	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	16.8	-	-	24.8
				Bottom	4.3	23.2	23.2	7.4 7.4	7.4	20.9	21.0	86.1 87.0	86.6	6.5 6.6	6.6	6.6	21.0	22.1		27.7	25.7	
				Surface	1	24.3 24.3	24.3	7.7 7.7 -	7.7	18.6 18.6	18.6	74.7 74.2	74.5	5.6 5.6	5.6	5.6	26.8 26.9	26.9		24.7 27.0	25.9	
16-May-14	Cloudy	Rough	07:36	Middle	-	24.0	-	- - 7.7	-	22.1	-	74.9	-	5.6	-		34.2	-	30.3	35.2	-	29.5
				Bottom	4.3	24.1 25.6	24.1	7.6 7.3	7.7	21.9	22.0	74.8 109.2	74.9	5.6 7.9	5.6	5.6	33.0 12.4	33.6		30.9 15.7	33.1	
				Surface	1	25.6	25.6	7.6	7.5	20.3	20.4	110.9	110.1	8.1	8.0	8.0	11.3	11.9		14.8	15.3	
19-May-14	Fine	Calm	09:53	Middle	-	25.6	-	- - 7.5	-	21.3	-	98.4	-	- - 7.1	-		13.2	-	13.1	14.4	-	15.0
				Bottom	4	25.7	25.7	7.8	7.7	21.5	21.4	98.9	98.7	7.2	7.2	7.2	15.4	14.3		15.0	14.7	

Water Quality Monitoring Results at IS3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Bate	Condition	Condition**	Time	Борі	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.8 23.8	23.8	7.2 7.1	7.2	15.1 15.2	15.2	88.2 89.1	88.7	6.8 6.9	6.9	6.9	4.1 3.9	4.0		4.4 5.0	4.7	
21-May-14	Rainy	Rough	11:45	Middle	-	-	-	-	-	-	-	-	-		-		-	-	16.2	-	-	5.5
				Bottom	3.8	23.6 23.5	23.6	7.3 7.3	7.3	16.8 17.0	16.9	91.8 91.7	91.8	7.1 7.1	7.1	7.1	29.0 27.5	28.3		7.8 4.8	6.3	
				Surface	1	25.5 25.6	25.6	7.6 7.6	7.6	13.6 13.4	13.5	106.0 107.0	106.5	8.0 8.1	8.1	8.1	4.2 4.2	4.2		4.8 4.7	4.8	
23-May-14	Rainy	Calm	14:27	Middle	-	-	-	-	-	-	-	-	-	1 1	-	0.1	-	-	6.4	-	-	6.9
				Bottom	4.3	25.6 25.6	25.6	7.6 7.6	7.6	13.8 13.7	13.8	108.7 111.0	109.9	8.2 8.4	8.3	8.3	8.3 8.9	8.6		9.0 8.9	9.0	
				Surface	1	27.7 27.8	27.8	7.4 7.4	7.4	15.2 15.4	15.3	78.1 78.9	78.5	5.6 5.7	5.7	5.7	9.3 9.5	9.4		35.9 38.2	37.1	
26-May-14	Fine	Calm	17:12	Middle	-	-	-	-	-	-	-	-	-	1 1	-	5.7	-		10.6	-	-	39.8
				Bottom	4.1	26.8 26.8	26.8	7.4 7.4	7.4	18.8 18.6	18.7	76.0 74.0	75.0	5.5 5.3	5.4	5.4	11.5 11.8	11.7		35.6 49.1	42.4	
				Surface	1	25.2 25.2	25.2	7.3 7.3	7.3	17.3 17.1	17.2	97.7 95.7	96.7	7.3 7.2	7.3	7.3	2.9 3.1	3.0		4.1 4.3	4.2	
28-May-14	Fine	Calm	18:27	Middle	i	-	-	-	-	-	-	-	-	1 1	i	7.5	-		6.5	-	-	4.7
				Bottom	3.3	24.5 24.7	24.6	7.3 7.4	7.4	21.6 20.7	21.2	86.6 86.7	86.7	6.4 6.4	6.4	6.4	9.2 10.6	9.9		5.4 5.0	5.2	
			·	Surface	1	27.6 27.6	27.6	7.8 7.8	7.8	19.8 19.5	19.7	103.1 97.7	100.4	7.3 6.9	7.1	7.1	9.8 9.7	9.8		2.7 5.6	4.2	
30-May-14	Fine	Calm	20:02	Middle	-	-	-	-	-	-	-	-	-	1 1	-	7.1	-	-	10.1	-	-	4.4
				Bottom	4.5	27.6 27.6	27.6	7.8 7.8	7.8	28.0 28.1	28.1	102.6 97.8	100.2	6.9 6.6	6.8	6.8	10.2 10.3	10.3		4.8 4.3	4.6	

Water Quality Monitoring Results at IS4 - Mid-Ebb Tide

2-May-14 Fin	Fine	Condition** Calm Moderate	Time 15:36	Surface Middle Bottom	1 3	Value 23.9 23.8 23.8	Average 23.9	Value 7.9	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
			15:36	Middle	•	23.8	23.9	7.9														
			15:36	Middle	•		_0.0		7.9	31.5	31.6	105.5	105.9	7.7	7.8		6.2	6.8		8.5	9.2	
			15:36		3	220		7.9	7.0	31.6	01.0	106.2	100.0	7.8	7.0	7.8	7.4	0.0		9.8	0.2	_
							23.8	7.9	7.9	31.7	31.7	105.9	106.1	7.7	7.8	7.0	8.1	8.1	7.6	8.6	9.2	10.7
5-May-14 Rai	tainy	Moderate		Bottom		23.8		7.9		31.7		106.3		7.8			8.1			9.8	-	-
5-May-14 Rai	ainy	Moderate			5	23.7 23.7	23.7	7.9 7.9	7.9	31.7 31.7	31.7	106.8 106.4	106.6	7.8 7.8	7.8	7.8	7.7 8.1	7.9		11.7 15.8	13.8	
5-May-14 Rai	ainy	Moderate				22.0		8.2		30.9		81.4		6.0			5.7			8.3		
5-May-14 Rai	ainy	Moderate		Surface	1	22.0	22.0	8.2	8.2	31.0	31.0	82.0	81.7	6.0	6.0		5.8	5.8		8.3	8.3	
5-May-14 Rai	lainy	Moderate				21.9		8.2		32.0		81.0		5.9		6.0	6.8			9.4		1
		viouciuto	16:37	Middle	4	22.0	22.0	8.2	8.2	31.9	32.0	84.5	82.8	6.1	6.0		6.2	6.5	6.4	7.3	8.4	8.1
				D-#	7	21.9	24.0	8.2	0.0	32.2	20.0	79.8	04.0	5.8	0.0	6.0	7.5	0.0		7.8	7.5	
				Bottom	1	21.9	21.9	8.2	8.2	32.1	32.2	83.7	81.8	6.1	6.0	6.0	6.2	6.9		7.2	7.5	
				Surface	1	23.4	23.4	7.9	7.9	29.8	29.8	108.2	107.9	7.8	7.8		3.1	3.2		4.7	5.6	
				Ouriacc		23.4	25.4	7.9	7.5	29.8	25.0	107.6	107.5	7.7	7.0	7.7	3.2	0.2		6.5	0.0	_
7-May-14 Clou	oudy	Moderate	18:48	Middle	3	23.6	23.6	7.9	7.9	30.8	30.8	105.9	105.9	7.5	7.5		4.7	4.8	4.3	5.6	5.3	6.6
.,	,					23.6		7.9		30.8		105.9		7.5			4.8			5.0		-
				Bottom	5	23.6 23.6	23.6	7.9 7.9	7.9	31.1 31.1	31.1	106.2 106.3	106.3	7.5 7.5	7.5	7.5	5.0 4.9	5.0		9.7 8.0	8.9	
						22.0		7.7		22.7		82.5		6.3			5.5			4.2		
				Surface	1	22.0	22.0	7.7	7.7	22.7	22.7	83.0	82.8	6.4	6.4		5.0	5.3		6.8	5.5	
						21.4		7.7		27.4		78.2		5.9		6.2	12.5			7.6		-
10-May-14 Rai	ainy	Moderate	11:26	Middle	3	21.4	21.4	7.7	7.7	24.5	26.0	76.5	77.4	5.9	5.9		12.0	12.3	9.8	7.0	7.3	6.6
				D-#	-	21.4	24.4	7.7	7.7	25.0	00.4	75.8	75.0	5.8		- C O	11.8	11.9		7.6	7.0	
				Bottom	5	21.4	21.4	7.7	7.7	27.8	26.4	76.0	75.9	5.7	5.8	5.8	11.9	11.9		6.4	7.0	
				Surface	1	24.0	24.2	7.7	7.7	19.4	19.0	95.2	95.5	7.2	7.2		4.5	4.8		6.2	8.1	
				Ouriacc		24.3	24.2	7.6	7.7	18.5	13.0	95.8	33.3	7.2	7.2	7.0	5.1	4.0		9.9	0.1	
12-May-14 Rai	ainy	Moderate	12:42	Middle	3.5	23.5	23.5	7.7	7.7	28.1	28.1	92.6	92.1	6.7	6.7	7.0	6.8	6.7	9.5	5.0	4.6	6.6
	,					23.5		7.7		28.1		91.5		6.6	-		6.6			4.1		-
				Bottom	6	23.5 23.5	23.5	7.8 7.8	7.8	26.1 26.1	26.1	89.2 88.2	88.7	6.5 6.5	6.5	6.5	16.8 17.2	17.0		6.2 8.0	7.1	
						23.3	l	7.3	1	19.8		80.5		6.1			6.8	1		4.7		
				Surface	1	23.3	23.3	7.3	7.3	19.8	19.8	80.5	80.5	6.1	6.1		6.8	6.8		3.7	4.2	
						21.8		7.3		28.7		78.1		5.8		6.0	13.2			9.0		
14-May-14 Clou	oudy	Moderate	13:00	Middle	4.5	21.8	21.8	7.3	7.3	29.7	29.2	78.2	78.2	5.8	5.8		13.8	13.5	13.0	9.0	9.0	7.4
				Bottom	8	21.7	21.7	7.3	7.3	29.6	29.6	77.2	77.2	5.7	5.7	5.7	18.8	18.8		8.3	9.1	
				DOLLOTTI	0	21.7	21.7	7.3	7.3	29.6	29.0	77.2	11.2	5.7	5.7	5.7	18.7	10.0		9.8	9.1	
				Surface	1	26.0	26.1	7.7	7.7	21.3	21.3	74.8	74.7	5.4	5.4		7.0	7.2		10.4	10.6	
				Odridoc		26.1	20.1	7.7	· · ·	21.3	21.0	74.5	, , , ,	5.4	0.4	5.3	7.3	7.2		10.7	10.0	
16-May-14 Clou	oudy	Rough	14:29	Middle	3	24.4	24.4	7.7	7.7	27.2	27.3	71.9	71.9	5.1	5.1		17.3	17.5	14.7	18.6	18.6	15.9
	-	-				24.4 24.4	 	7.7 7.7		27.3 27.8		71.8 71.1		5.1 5.1			17.6 19.6			18.6 17.6		-
				Bottom	5	24.4	24.4	7.7	7.7	27.6	27.8	71.1	71.3	5.1 5.1	5.1	5.1	19.6	19.4		17.6	18.5	
	- 1	1				27.0		7.6		16.6		91.7		6.7			5.6		l	6.5		
				Surface	1	27.0	27.0	7.6	7.6	16.6	16.6	90.2	91.0	6.6	6.7		5.5	5.6		10.6	8.6	
10 M=44		0-1	40.44	Middle	2.5	24.9	25.0	7.7	7.7	26.5	00.0	83.9	00.0	6.0	0.0	6.4	12.7	44.0	44.0	8.8	0.7	0.0
19-May-14 Fin	ine	Calm	16:41	Middle	3.5	25.0	25.0	7.7	7.7	25.9	26.2	83.9	83.9	6.0	6.0		10.8	11.8	11.3	10.6	9.7	8.9
				Bottom	6	24.7	24.7	7.7	7.7	27.9	27.8	81.1	81.7	5.8	5.8	5.8	17.4	16.5		8.6	8.4	
				טטווטווו	U	24.7	24.1	7.7	1.1	27.7	21.0	82.2	01.7	5.8	3.0	5.0	15.5	10.5		8.1	0.4	<u> </u>

Water Quality Monitoring Results at IS4 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.7 24.7	24.7	7.3 7.3	7.3	21.5 21.6	21.6	77.4 77.4	77.4	5.9 5.9	5.9	5.9	4.3 4.3	4.3		4.5 5.7	5.1	
21-May-14	Rainy	Rough	17:43	Middle	3.5	24.7 24.7	24.7	7.3 7.3	7.3	22.3 22.4	22.4	77.3 77.3	77.3	5.9 5.9	5.9	5.5	4.3 4.6	4.5	4.7	6.4 6.3	6.4	6.2
				Bottom	6	24.7 24.7	24.7	7.3 7.3	7.3	22.6 22.6	22.6	77.1 77.0	77.1	5.9 5.9	5.9	5.9	5.4 5.2	5.3		4.4 9.6	7.0	
				Surface	1	24.1 24.1	24.1	7.7 7.7	7.7	12.1 12.1	12.1	115.7 115.7	115.7	9.1 9.1	9.1	8.5	3.4 3.4	3.4		4.6 4.5	4.6	
23-May-14	Rainy	Calm	09:40	Middle	4.5	23.4 23.3	23.4	7.7 7.7	7.7	25.2 25.0	25.1	108.2 104.9	106.6	8.0 7.8	7.9	0.5	18.7 18.6	18.7	14.2	5.4 4.1	4.8	4.4
				Bottom	8	23.1 23.0	23.1	7.7 7.7	7.7	26.8 27.8	27.3	94.4 94.4	94.4	6.9 6.9	6.9	6.9	20.9 19.9	20.4		4.1 3.4	3.8	
				Surface	1	25.5 25.2	25.4	7.8 7.9	7.9	17.6 17.6	17.6	80.9 80.4	80.7	6.0 6.0	6.0	6.0	7.2 7.4	7.3		6.4 5.0	5.7	
26-May-14	Sunny	Calm	12:04	Middle	3.5	25.2 24.7	25.0	7.8 7.9	7.9	28.0 28.3	28.2	83.7 82.8	83.3	5.9 5.9	5.9	0.0	9.5 9.8	9.7	9.4	7.0 4.9	6.0	5.5
				Bottom	6	27.7 27.5	27.6	7.9 8.0	8.0	28.9 29.2	29.1	87.4 87.2	87.3	5.9 5.9	5.9	5.9	11.5 11.1	11.3		5.9 3.6	4.8	
				Surface	1	28.0 28.0	28.0	7.6 7.6	7.6	14.6 14.6	14.6	88.5 88.1	88.3	6.4 6.4	6.4	5.9	3.3 2.7	3.0		4.5 4.0	4.3	
28-May-14	Sunny	Calm	13:18	Middle	3	25.5 25.5	25.5	7.6 7.6	7.6	26.3 27.0	26.7	76.6 75.3	76.0	5.4 5.3	5.4	5.5	9.5 8.7	9.1	7.1	8.2 5.4	6.8	5.1
				Bottom	5	25.0 25.0	25.0	7.6 7.6	7.6	29.1 29.1	29.1	72.5 72.1	72.3	5.1 5.1	5.1	5.1	9.0 9.1	9.1		4.7 3.9	4.3	
				Surface	1	27.8 27.9	27.9	7.9 7.9	7.9	17.9 17.5	17.7	101.0 100.3	100.7	7.2 7.1	7.2	7.1	3.4 3.6	3.5		4.5 4.7	4.6	
30-May-14	Sunny	Calm	14:06	Middle	3.5	25.4 25.5	25.5	7.9 7.9	7.9	30.4 30.3	30.4	100.4 102.5	101.5	6.9 7.1	7.0	7.1	6.3 6.8	6.6	7.3	11.0 9.8	10.4	9.4
				Bottom	6	25.4 25.4	25.4	7.9 7.9	7.9	30.4 30.4	30.4	82.6 84.4	83.5	5.7 5.8	5.8	5.8	12.0 11.6	11.8		13.4 12.9	13.2	

Water Quality Monitoring Results at IS4 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.7 23.7	23.7	7.8 7.8	7.8	29.2 29.1	29.2	89.4 89.0	89.2	6.6 6.6	6.6	6.7	3.8 3.9	3.9		4.0 2.7	3.4	
2-May-14	Fine	Calm	08:55	Middle	3.5	23.7 23.7	23.7	7.8 7.8	7.8	29.8 29.8	29.8	89.8 90.1	90.0	6.6 6.7	6.7	0.7	4.3 4.2	4.3	4.5	2.9 8.0	5.5	4.9
				Bottom	6	23.7 23.7	23.7	7.8 7.8	7.8	30.1 30.2	30.2	91.3 91.3	91.3	6.7 6.7	6.7	6.7	5.1 5.3	5.2		5.0 6.8	5.9	
				Surface	1	22.1 22.2	22.2	8.1 8.1	8.1	27.2 27.1	27.2	92.2 92.3	92.3	6.9 6.9	6.9		4.0 3.6	3.8		5.6 5.6	5.6	
5-May-14	Rainy	Moderate	10:46	Middle	4	22.1 22.1	22.1	8.1 8.1	8.1	27.7 27.5	27.6	91.0 92.0	91.5	6.8 6.8	6.8	6.9	5.5 5.5	5.5	4.8	4.3 5.2	4.8	5.1
				Bottom	7	22.1 22.1	22.1	8.1 8.1	8.1	28.9 28.9	28.9	89.5 92.3	90.9	6.6 6.8	6.7	6.7	5.2 5.1	5.2	-	5.6 3.9	4.8	
				Surface	1	23.5 23.5	23.5	7.9 7.9	7.9	29.9 29.9	29.9	102.1 101.7	101.9	7.3 7.3	7.3		3.9 3.9	3.9		4.3 3.7	4.0	
7-May-14	Cloudy	Moderate	09:03	Middle	3.5	23.6 23.6	23.6	7.9 7.9	7.9	31.0 31.0	31.0	100.9	100.9	7.2 7.2	7.2	7.3	5.5 5.5	5.5	5.1	4.6 5.9	5.3	4.5
				Bottom	6	23.6 23.6	23.6	7.9 7.9	7.9	31.2 31.2	31.2	101.0 101.0	101.0	7.2 7.2	7.2	7.2	6.3 5.7	6.0		5.0 3.5	4.3	
				Surface	1	21.7 21.7	21.7	7.7 7.7	7.7	23.7 23.8	23.8	81.1 81.1	81.1	6.2 6.2	6.2		13.6 13.8	13.7		13.8 14.6	14.2	
10-May-14	Rainy	Moderate	14:47	Middle	3	21.6 21.6	21.6	7.7 7.7	7.7	26.9 26.9	26.9	77.7 77.5	77.6	5.9 5.8	5.9	6.1	6.9 8.0	7.5	8.6	13.8 19.8	16.8	14.7
				Bottom	5	21.5 21.5	21.5	7.7 7.7	7.7	28.2 27.9	28.1	76.6 76.6	76.6	5.7 5.8	5.8	5.8	4.6 4.4	4.5		10.8 15.5	13.2	
				Surface	1	23.6	23.7	7.7	7.7	16.1	16.1	86.7	87.5	6.7	6.8		4.4	4.4		3.4	4.0	
12-May-14	Rainy	Moderate	18:12	Middle	4	23.7	23.5	7.7	7.7	16.1 24.5	24.5	88.3 86.8	88.1	6.8	6.5	6.7	6.6	6.7	9.3	4.5 3.7	4.5	4.3
	·			Bottom	7	23.6 25.6	25.4	7.7	7.6	24.4	24.8	89.3 87.3	87.4	6.6	6.3	6.3	6.7 16.9	16.9		5.3 4.4	4.3	
				Surface	1	25.2 23.8	23.8	7.6	7.2	24.8 17.7	17.7	87.4 86.6	86.6	6.6	6.6		16.9 8.6	8.6		4.1 15.0	15.4	
14-May-14	Cloudy	Moderate	19:04	Middle	4.5	23.8 23.8	23.8	7.2 7.2	7.2	17.7 18.7	18.7	86.6 85.9	86.1	6.6 6.5	6.5	6.6	8.6 14.0	14.0	12.8	15.8 10.2	11.1	12.4
	,			Bottom	8	23.8	23.8	7.2	7.2	18.7 18.9	18.9	86.2 85.8	85.8	6.5	6.5	6.5	14.0 15.7	15.7		12.0 11.4	10.6	
				Surface	1	23.8 25.5	25.5	7.2 7.6	7.6	18.9 17.6	17.6	85.8 77.9	77.1	6.5 5.8	5.7		15.7 4.8	5.3		9.8 7.5	7.3	
16-May-14	Cloudy	Rough	08:01	Middle	3.5	25.5 25.4	25.4	7.6 7.6	7.6	17.6 18.7	18.5	76.2 73.4	73.2	5.6 5.4	5.4	5.6	5.7 10.2	9.9	11.9	7.1	8.1	11.6
	Ť	Ŭ		Bottom	6	25.4 25.3	25.3	7.6	7.6	20.1	20.1	72.9 73.1	73.1	5.4	5.4	5.4	9.6 21.2	20.6		8.6 21.2	19.4	
				Surface	1	25.3 26.1	26.1	7.6 7.5	7.5	20.0 14.8	14.9	73.1 93.2	93.6	7.0	7.0		4.0	4.4	<u> </u>	17.6 4.1	5.2	
19-May-14	Fine	Calm	10:04	Middle	3.5	26.1 26.0	26.0	7.5 7.5	7.5	15.0 15.2	15.3	94.0 91.6	91.7	7.0 6.8	6.8	6.9	4.8	4.7	5.1	6.2	5.7	5.4
				Bottom	6	26.0 26.0	26.0	7.5 7.5	7.5	15.4 15.5	15.7	91.8 90.9	90.7	6.8 6.8	6.8	6.8	4.9 6.1	6.2	1	5.0 5.6	5.2	
				Dottom	l ,	26.0	20.0	7.5	7.5	15.8	10.7	90.5	55.7	6.7	0.0	0.0	6.3	J.2	<u> </u>	4.8	U.E	

Water Quality Monitoring Results at IS4 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ıration (%)	Disso	ved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	25.0 25.0	25.0	7.3 7.3	7.3	17.0 17.1	17.1	87.0 86.0	86.5	6.5 6.4	6.5	6.4	4.4 4.3	4.4		4.8 3.6	4.2	
21-May-14	Rainy	Rough	11:56	Middle	4.5	25.0 25.0	25.0	7.3 7.3	7.3	17.8 17.9	17.9	83.8 83.8	83.8	6.3 6.3	6.3	0.4	5.1 5.1	5.1	4.8	5.3 4.1	4.7	4.6
				Bottom	8	25.0 25.0	25.0	7.3 7.3	7.3	18.1 18.1	18.1	83.5 83.5	83.5	6.2 6.2	6.2	6.2	4.9 5.0	5.0		5.0 4.6	4.8	
				Surface	1	25.3 25.3	25.3	8.1 8.1	8.1	17.1 17.1	17.1	94.1 94.1	94.1	7.0 7.0	7.0	7.0	4.8 4.7	4.8		4.4 4.5	4.5	
23-May-14	Rainy	Calm	14:06	Middle	4.5	24.6 24.5	24.6	8.1 8.1	8.1	30.8 30.4	30.6	100.1 99.9	100.0	7.0 7.0	7.0	7.0	4.9 5.1	5.0	6.0	4.1 4.3	4.2	4.9
				Bottom	8	24.3 24.2	24.3	8.1 8.1	8.1	30.4 30.5	30.5	99.2 99.2	99.2	7.0 7.0	7.0	7.0	8.3 8.2	8.3		6.0 5.8	5.9	
				Surface	1	25.1 26.6	25.9	7.7 7.8	7.8	18.4 18.4	18.4	84.5 86.8	85.7	6.3 6.3	6.3	6.2	5.8 5.9	5.9		5.2 7.2	6.2	
26-May-14	Fine	Calm	17:42	Middle	3.5	27.4 26.4	26.9	7.6 7.8	7.7	26.5 26.3	26.4	89.0 87.7	88.4	6.1 6.1	6.1	0.2	9.8 9.8	9.8	8.7	10.5 9.2	9.9	7.9
				Bottom	6	27.4 26.4	26.9	7.7 7.8	7.8	26.4 26.4	26.4	89.1 87.4	88.3	6.1 6.1	6.1	6.1	10.4 10.4	10.4		7.4 7.5	7.5	
				Surface	1	28.1 28.1	28.1	8.0 8.0	8.0	17.5 17.4	17.5	89.2 90.3	89.8	6.3 6.4	6.4	6.9	7.2 6.8	7.0		4.2 7.9	6.1	
28-May-14	Fine	Calm	19:19	Middle	3.5	28.3 28.3	28.3	8.2 8.2	8.2	18.3 18.4	18.4	103.1 103.9	103.5	7.3 7.3	7.3	0.5	8.1 8.0	8.1	8.3	7.0 7.1	7.1	7.3
				Bottom	6	27.0 26.7	26.9	7.9 7.8	7.9	22.8 23.0	22.9	98.2 96.9	97.6	6.9 6.8	6.9	6.9	9.5 10.0	9.8		10.8 6.7	8.8	
				Surface	1	27.9 27.8	27.9	8.0 7.9	8.0	16.9 17.4	17.2	102.2 101.9	102.1	7.3 7.3	7.3	6.5	5.0 4.1	4.6		3.3 4.2	3.8	
30-May-14	Fine	Calm	20:15	Middle	3.5	25.5 25.4	25.5	7.9 7.9	7.9	29.8 30.1	30.0	82.4 81.0	81.7	5.7 5.6	5.7	0.5	11.2 11.7	11.5	10.1	8.3 5.8	7.1	7.2
				Bottom	6	25.4 25.4	25.4	7.9 7.9	7.9	30.3 30.4	30.4	84.6 83.5	84.1	5.9 5.8	5.9	5.9	14.5 13.8	14.2		6.4 15.0	10.7	

Water Quality Monitoring Results at SR1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	- - 24.0	-	- - 7.9	-	- - 31.1	-	- - 109.0	-	- - 7.7	-	7.7	2.9	-			-	
2-May-14	Fine	Calm	14:33	Middle	1.3	24.0	24.0	7.9	7.9	31.2	31.2	109.0	109.1	7.7 7.7	7.7		3.0	3.0	3.0	2.6 3.4	3.0	3.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
5-May-14	Rainy	Moderate	15:49	Surface Middle	1.4	22.0	22.0	- 8.1	- 8.1	30.5	30.6	100.8	101.0	7.4	7.4	7.4	2.9	2.9	2.9	4.5	4.0	4.0
,	,			Bottom	-	22.0	-	8.1 - -	-	30.6	-	101.2	-	7.4 - -	-	-	2.9	-		3.5	-	
				Surface	-	-	-	<u>-</u>	-	<u> </u>	-	-	-	-	-		-	-		-	-	
7-May-14	Cloudy	Moderate	17:59	Middle	1.4	23.4 23.4	23.4	7.9 7.9	7.9	29.8 29.9	29.9	104.7 103.8	104.3	7.5 7.4	7.5	7.5	1.8 1.9	1.9	1.9	3.6 3.2	3.4	3.4
				Bottom	-		-	-	-	-	-		-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-		-	-	-	5.6	-	-			-	
10-May-14	Rainy	Moderate	11:30	Middle	1.1	21.5 21.4	21.5	7.7 7.7 -	7.7	28.0 32.0	30.0	76.0 74.7	75.4	5.7 5.5	5.6		9.2 9.3	9.3	9.3	7.5 7.2	7.4	7.4
				Bottom	-	-	-		-	-	-	-	-		<u>-</u>	-	-	-		-	-	
				Surface	-	24.0	-	- - 7.7	-	22.0	-	- 88.0	-	6.5	-	6.5	5.6	-		8.8	-	
12-May-14	Rainy	Moderate	12:44	Middle Bottom	1.2	24.1	24.1	7.7	7.7	21.4	21.7	87.7	87.9	6.5	6.5		5.6	5.6	5.6	10.8	9.8	9.8
				Surface	_	-	-	-	_	-		-		-	_		-			-	_	
14-May-14	Cloudy	Moderate	12:29	Middle	1.2	23.6	23.7	7.3	7.4	16.5	16.5	96.4	96.1	7.4	7.4	7.4	7.7	7.6	7.6	7.2	7.5	7.5
·				Bottom	-	23.7	-	7.4 - -	-	16.5	-	95.7	-	7.4 -	-	-	7.5	-		7.8 - -	-	
				Surface	-	-	-	<u>-</u> - -	-	<u>-</u>	-	-	-	-	-	_		-		-	-	
16-May-14	Cloudy	Rough	13:47	Middle	1.1	24.7 24.7	24.7	7.6 7.6	7.6	21.2 21.9	21.6	83.5 83.8	83.7	6.2 6.2	6.2	6.2	7.9 8.0	8.0	8.0	6.2 6.5	6.4	6.4
				Bottom	-	-	-	- -	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.8	-	-		-	-	
19-May-14	Fine	Calm	15:25	Middle	1	25.1 25.0	25.1	7.7 7.7	7.7	21.9 22.6	22.3	93.3 93.3	93.3	6.8 6.8	6.8		19.4 17.2	18.3	18.3	8.6 11.3	10.0	10.0
				Bottom	-	-	-	-	-	<u>-</u>	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface		1 1	-	-	-	-	-	-	-	1 1	-	6.0	-	-		-	-	
21-May-14	Rainy	Rough	17:03	Middle	1.4	23.5 23.6	23.6	7.2 7.2	7.2	21.3 19.6	20.5	79.6 78.7	79.2	6.0 6.0	6.0	0.0	4.3 4.3	4.3	4.3	5.2 7.7	6.5	6.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-		-	-	
23-May-14	Rainy	Calm	09:22	Middle	1.3	25.5 25.5	25.5	7.5 7.5	7.5	12.5 12.6	12.6	92.5 92.3	92.4	7.1 7.0	7.1	7.1	3.9 4.2	4.1	4.1	4.6 6.4	5.5	5.5
				Bottom	-	1 1	-	-	-	-	-	-	-	1 1	-	•	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-		-	-	
26-May-14	Sunny	Calm	12:06	Middle	1.3	27.1 27.1	27.1	7.6 7.6	7.6	17.4 17.4	17.4	85.4 86.6	86.0	6.2 6.3	6.3	0.5	3.3 4.1	3.7	3.7	4.4 3.6	4.0	4.0
				Bottom	-	1 1	-	-	-	-	-	-	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-		-	-	
28-May-14	Sunny	Calm	13:18	Middle	1.2	25.1 25.2	25.2	7.3 7.3	7.3	15.4 15.4	15.4	94.9 95.6	95.3	7.2 7.2	7.2	7.2	6.3 7.5	6.9	6.9	4.4 7.7	6.1	6.1
				Bottom	-	1 1	-	-	-	-	-	-	-	1 1	-	1	-	-		-	-	
	-		_	Surface	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-	_	-	-	_
30-May-14	Sunny	Calm	13:23	Middle	1.4	27.1 27.1	27.1	7.8 7.8	7.8	19.6 19.5	19.6	79.4 81.4	80.4	5.7 5.8	5.8	5.0	1.7 1.7	1.7	1.7	4.8 2.4	3.6	3.6
				Bottom	-	-	-	-	-	- -	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-		-	-	
2-May-14	Fine	Calm	08:24	Middle	1.2	23.6 23.6	23.6	7.8 7.8	7.8	30.1 30.1	30.1	77.9 78.6	78.3	5.6 5.6	5.6		4.5 4.8	4.7	4.7	9.7 15.0	12.4	12.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	- - 22.1	-	- - 8.1	-	30.2	-	- - 100.5	-	- - 7.4	-	7.4	4.2	-		6.8	-	
5-May-14	Rainy	Moderate	10:28	Middle Bottom	1.4	22.1	22.1	8.1	8.1	30.2	30.2	100.4	100.5	7.4 -	7.4		4.3	4.3	4.3	5.3	6.1	6.1
				Dottom	_	-		-		-		-	_	-			-	_		-		
				Surface	-	23.6	-	7.9	-	31.7	-	- - 95.2	-	6.7	-	6.8	5.3	-		6.5	-	
7-May-14	Cloudy	Moderate	08:31	Middle	1.3	23.5	23.6	7.9	7.9	31.3	31.5	96.7	96.0	6.9	6.8		5.3 5.1	5.2	5.2	7.5	7.0	7.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
40.14	D.:		45.05	Surface	-	21.6	-	7.6	7.0	- 19.2	-	93.1	-	7.3	7.0	7.2	4.2	-	4.0	3.9	-	
10-May-14	Rainy	Moderate	15:05	Middle Bottom	1 -	21.6	21.6	7.6	7.6	19.2 -	19.2	90.1	91.6	7.1	7.2		4.2	4.2	4.2	3.6	3.8	3.8
					-	-	-	-	_	-	1	-	1	-			-			-	-	
10 May 14	Doiny	Moderate	16:28	Surface Middle	1.1	- 25.1	25.1	7.6	7.6	16.7	16.7	- 89.0	87.4	6.7	6.6	6.6	- 15.7	15.1	15.1	11.0	10.9	10.9
12-May-14	Rainy	Moderate	10.20	Bottom	-	25.1 -	25.1	7.6	7.0	16.7	10.7	85.8	07.4	6.4	-	_	14.4	15.1	15.1	10.8	10.9	10.9
				Surface	_	-	_	-		-	_	-	_	-	_		-	_		-		
14-May-14	Cloudy	Moderate	17:52	Middle	0.8	24.2	24.2	7.4	7.4	16.1	16.2	92.4	92.5	7.1	7.1	7.1	11.4	11.4	11.4	26.3	27.2	27.2
	,			Bottom	-	24.2	-	7.4	-	16.2 -	-	92.5	-	7.1	-	_	11.4	-		28.0	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
16-May-14	Cloudy	Rough	07:50	Middle	1.2	24.2 24.2	24.2	7.8 7.8	7.8	18.1 18.3	18.2	79.9 77.9	78.9	6.0 5.9	6.0	6.0	5.1 4.8	5.0	5.0	5.9 6.2	6.1	6.1
				Bottom	-		-		-		-		-		-	-		-			-	
				Surface	-	-	-	-	-	-	-	-	-		-	0.0	-	-		-	-	
19-May-14	Fine	Calm	10:24	Middle	1.1	25.1 25.1	25.1	7.7 7.7	7.7	18.0 18.1	18.1	91.4 91.3	91.4	6.8 6.8	6.8	6.8	13.7 13.5	13.6	13.6	4.0 5.4	4.7	4.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface		1 1	-	-	-	1 1	-	-	-	1 1	-	7.6	-	-		-	-	
21-May-14	Rainy	Rough	11:57	Middle	1.3	23.6 23.6	23.6	7.3 7.3	7.3	13.8 13.8	13.8	97.1 96.7	96.9	7.6 7.6	7.6	7.0	3.2 3.2	3.2	3.2	4.0 4.6	4.3	4.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
23-May-14	Rainy	Calm	14:09	Middle	1.4	25.6 25.6	25.6	7.5 7.5	7.5	11.4 11.1	11.3	100.2 100.8	100.5	7.7 7.7	7.7	7.7	4.5 4.4	4.5	4.5	10.1 8.4	9.3	9.3
				Bottom	-	1 1	-	-	-	1 1	-	-	-	1 1	-	•	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-		-	-	
26-May-14	Fine	Calm	16:49	Middle	1.1	28.0 27.8	27.9	7.6 7.6	7.6	16.8 17.1	17.0	91.5 90.3	90.9	6.5 6.5	6.5	0.5	5.5 5.2	5.4	5.4	8.4 6.5	7.5	7.5
				Bottom	-	1 1	-	-	-	1 1	-	-	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
28-May-14	Fine	Calm	18:00	Middle	1.1	25.1 25.0	25.1	7.3 7.4	7.4	14.1 14.5	14.3	84.4 82.5	83.5	6.4 6.3	6.4	0.4	4.6 4.0	4.3	4.3	4.0 4.5	4.3	4.3
				Bottom	-	1 1	-	-	-	1 1	-	-	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-		-	-	
30-May-14	Fine	Calm	19:38	Middle	1.2	28.0 28.0	28.0	7.8 7.8	7.8	18.2 18.3	18.3	102.9 97.5	100.2	7.3 6.9	7.1	7.1	3.6 3.3	3.5	3.5	6.4 3.9	5.2	5.2
				Bottom	-	1 1	-	-	-	1 1	-	-	-	1 1	-	1	-	-		-	-	

Water Quality Monitoring Results at SR2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	- - 24.0	-	- - 7.8	-	- - 31.3	-	- - 80.5	-	- - 5.7	-	5.8	- - 7.2	-		9.5	-	
2-May-14	Fine	Calm	13:53	Middle	1	24.0	24.0	7.8	7.8	31.3	31.3	82.7	81.6	5.8	5.8		7.7	7.5	7.5	6.8	8.2	8.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	<u> </u>
5.11. 44	D. C.		40.00	Surface	-	22.2	-	- 8.1	-	28.8	-	101.7	-	7.5	-	7.5	7.1	-	7.0	12.0	-	40.4
5-May-14	Rainy	Moderate	16:06	Middle Bottom	1.1	22.2	22.2	8.1	8.1	29.0	28.9	101.1	101.4	7.5 -	7.5		7.5	7.3	7.3	12.2	12.1	12.1
					-	-	-	-		-		-		-	_		-	<u> </u>		-	_	
7-May-14	Cloudy	Moderate	18:18	Surface Middle	1.3	23.6	23.6	7.9	7.9	31.4	31.4	91.9	92.8	6.5	6.6	6.6	12.5	13.6	13.6	9.8	9.7	9.7
7 May 14	Cicacy	Wioderate	10.10	Bottom	-	23.6	-	7.9 - -	-	31.4 - -	-	93.7	-	6.6	-	_	14.7	-	10.0	9.6	-	0.7
				Surface	-	-	-	<u>-</u> - -	-	-	-	-	-	-	-		-	-			-	
10-May-14	Rainy	Moderate	10:36	Middle	0.9	21.8 21.9	21.9	7.7 7.7	7.7	21.1 21.1	21.1	84.9 83.9	84.4	6.6 6.5	6.6	6.6	6.4 6.0	6.2	6.2	7.2 6.5	6.9	6.9
				Bottom	-	-	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-		-	- - 15.7	-		-		-	7.5	22.2	-		-	-	
12-May-14	Rainy	Moderate	12:01	Middle	0.8	24.1 24.0	24.1	7.7 7.7 -	7.7	15.7 15.6	15.7	97.1 96.5	96.8	7.5 7.4	7.5		24.5	23.4	23.4	6.8 6.7	6.8	6.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	- - 22.9	-	7.3	-	21.8	-	94.3	-	- - 7.2	-	7.2	- - 12.9	-		7.7	-	
14-May-14	Cloudy	Moderate	12:02	Middle	0.9	23.1	23.0	7.4 -	7.4	20.8	21.3	93.5	93.9	7.1	7.2		11.0	12.0	12.0	9.5	8.6	8.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
16-May-14	Cloudy	Rough	14:22	Surface Middle	0.7	- 24.5	24.6	7.7	7.7	23.2	23.0	- 81.1	80.7	5.9	5.9	5.9	10.7	10.6	10.6	12.0	11.0	11.0
	Sicady	7.009.1		Bottom	-	24.6	-	7.7	-	22.8	-	80.3	-	5.9 -	-	_	10.4	-		9.9	-	5
				Surface	-	-	-	<u>-</u> - -	-	-	-	-	-	-	-		-	-		-	-	
19-May-14	Fine	Calm	15:57	Middle	1.1	25.3 25.3	25.3	7.7 7.6	7.7	18.2 18.1	18.2	91.7 90.6	91.2	6.8 6.7	6.8	6.8	13.3 13.2	13.3	13.3	14.9 9.0	12.0	12.0
				Bottom	-		-		-	-	-	-	-		-	-	-	-			-	

Water Quality Monitoring Results at SR2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	iture (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-		-	-	
21-May-14	Rainy	Rough	17:22	Middle	1.3	24.8 24.9	24.9	7.2 7.2	7.2	14.8 14.7	14.8	94.2 94.0	94.1	7.2 7.2	7.2	1.2	4.6 4.1	4.4	4.4	5.5 5.1	5.3	5.3
				Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
23-May-14	Rainy	Calm	08:47	Middle	1	25.7 25.7	25.7	7.5 7.5	7.5	16.0 15.9	16.0	96.7 96.3	96.5	7.2 7.2	7.2	7.2	1.5 1.6	1.6	1.6	5.0 4.1	4.6	4.6
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
26-May-14	Sunny	Calm	11:29	Middle	1.1	27.2 27.3	27.3	7.4 7.4	7.4	16.4 16.4	16.4	88.7 88.3	88.5	6.4 6.4	6.4	0.4	4.5 4.3	4.4	4.4	4.9 4.3	4.6	4.6
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	8.2	-	-		-	-	
28-May-14	Sunny	Calm	12:50	Middle	0.9	25.9 25.7	25.8	7.1 7.2	7.2	16.3 16.9	16.6	107.7 111.3	109.5	8.0 8.3	8.2	0.2	14.5 14.5	14.5	14.5	4.7 4.2	4.5	4.5
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 1	-	1	-	-		-	-	
	_	_	_	Surface	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-	_	-	-	-
30-May-14	Sunny	Calm	12:52	Middle	1.1	28.1 28.0	28.1	7.8 7.8	7.8	17.7 17.8	17.8	85.7 85.4	85.6	6.1 6.1	6.1	0.1	2.0 2.0	2.0	2.0	5.0 6.7	5.9	5.9
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 1	-	1	-	-		-	-	

Water Quality Monitoring Results at SR2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	23.6	-	- - 7.7	-	- - 27.3	-	- - 72.1	-	- - 5.2	-	5.2	7.0	-		- - 8.6	-	
2-May-14	Fine	Calm	07:52	Middle	0.9	23.6	23.6	7.7	7.7	27.3	27.3	72.1	72.2	5.2	5.2		7.0	7.0	7.0	8.2	8.4	8.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
5-May-14	Rainy	Moderate	09:43	Surface Middle	0.9	22.1	22.1	8.0	8.0	27.2	27.3	93.3	93.2	7.0	7.0	7.0	4.4	4.6	4.6	6.9	6.7	6.7
o may 11		ouo.u.o	00.10	Bottom	-	22.1 - -	-	8.0 - -	-	27.3	-	93.0	-	6.9 -	-	-	4.7	-	0	6.4	-	0
				Surface	-	-	-	<u>-</u>	-	-	-	-	-	-	-		-	-		-	-	
7-May-14	Cloudy	Moderate	07:47	Middle	1.3	23.5 23.5	23.5	7.8 7.8	7.8	29.8 28.8	29.3	96.7 94.8	95.8	6.9 6.8	6.9	6.9	13.5 15.5	14.5	14.5	5.6 6.0	5.8	5.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-		-	-	-	-	-	1 1	-	1 1	-	6.2	-	-		-	-	
10-May-14	Rainy	Moderate	15:47	Middle	1.1	21.7 21.7	21.7	7.7 7.7	7.7	23.3 22.9	23.1	80.8 80.0	80.4	6.2 6.2	6.2		20.5 18.6	19.6	19.6	19.3 17.7	18.5	18.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	24.8	-	- - 7.7	-	- - 15.9	-	- - 89.2	-	- - 6.8	-	6.8	14.5	-		19.3	-	
12-May-14	Rainy	Moderate	17:12	Middle	0.7	24.7	24.8	7.7	7.7	15.9	15.9	89.0	89.1	6.8	6.8		17.0	15.8	15.8	18.5	18.9	18.9
				Bottom Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	_		-	-	
14-May-14	Cloudy	Moderate	18:32	Middle	0.5	23.6	23.7	7.3	7.3	22.0	22.0	88.7	88.2	6.6	6.6	6.6	18.5	18.5	18.5	29.7	32.4	32.4
14 May 14	Cloudy	Woderate	10.02	Bottom	-	23.7	-	7.3	-	21.9	-	87.7 -	-	6.6	-	-	18.5	-	10.0	35.0	-	02.4
				Surface	-	-	-	<u>-</u> - -	_	<u>-</u> -	-	-	-	-	-		-	_		-	-	
16-May-14	Cloudy	Rough	07:27	Middle	0.5	24.4 24.4	24.4	7.7 7.7	7.7	20.3	20.2	77.4 76.2	76.8	5.8 5.7	5.8	5.8	13.1 13.5	13.3	13.3	11.6 10.1	10.9	10.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.1		-		-	-	
19-May-14	Fine	Calm	09:36	Middle	0.9	25.6 25.6	25.6	7.6 7.4	7.5	19.6 19.6	19.6	97.4 95.8	96.6	7.1 7.0	7.1	•••	11.3 12.1	11.7	11.7	9.0 8.6	8.8	8.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-		-	-	
21-May-14	Rainy	Rough	11:38	Middle	1.1	23.8 23.8	23.8	7.2 7.2	7.2	16.7 16.7	16.7	90.4 88.0	89.2	6.9 6.8	6.9	0.9	17.1 15.1	16.1	16.1	10.7 11.0	10.9	10.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
23-May-14	Rainy	Calm	14:37	Middle	1.2	25.6 25.6	25.6	7.4 7.5	7.5	16.7 16.7	16.7	106.8 105.8	106.3	7.9 7.9	7.9	7.9	3.0 2.8	2.9	2.9	2.9 4.4	3.7	3.7
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-		-	6.7	-	-		-	-	
26-May-14	Fine	Calm	17:20	Middle	0.7	28.2 28.2	28.2	7.8 7.8	7.8	20.3 20.3	20.3	97.3 95.3	96.3	6.8 6.6	6.7	0.7	11.5 11.2	11.4	11.4	12.7 13.5	13.1	13.1
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-		-	9.1	-	-		-	-	
28-May-14	Fine	Calm	18:34	Middle	0.6	26.2 26.3	26.3	7.5 7.5	7.5	18.2 18.2	18.2	122.9 124.3	123.6	9.0 9.1	9.1	9.1	19.5 16.8	18.2	18.2	7.8 16.7	12.3	12.3
				Bottom	-	1 1	-	-	-	-	-	1 1	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-		-	-	
30-May-14	Fine	Calm	20:08	Middle	0.7	27.7 27.7	27.7	7.8 7.8	7.8	19.6 19.6	19.6	92.8 92.5	92.7	6.6 6.5	6.6	0.0	15.2 14.4	14.8	14.8	2.3 3.6	3.0	3.0
				Bottom	-	-	-	-	-	-	-	1 1	-	1 1	-	-	-	-		-	-	

Water Quality Monitoring Results at SR3 - Mid-Ebb Tide

	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)		Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	- - 24.4	-	- - 7.7	-	- - 28.2	-	- - 107.8	-	- - 7.7	-	7.7	5.0	-		- - 8.4	-	
2-May-14	Fine	Calm	13:40	Middle	1.1	24.4	24.4	7.7	7.7	28.2	28.2	107.6	107.7	7.7	7.7		4.7	4.9	4.9	6.8	7.6	7.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
5.14	D .:	Madanda	10.17	Surface	- 0.7	22.2	-	- - 8.1	-	- - 27.4		- - 101.8	-	7.6	-	7.5	5.9	-	5.0	6.4	-	0.5
5-May-14	Rainy	Moderate	16:17	Middle Bottom	0.7	22.3	22.3	8.1	8.1	27.4	27.4	99.3	100.6	7.4	7.5	_	5.7	5.8	5.8	6.5	6.5	6.5
				Surface		-		-		-		-		-	_		-			-		
7-May-14	Cloudy	Moderate	18:30	Middle	1.1	23.2	23.2	7.8	7.8	28.0	28.1	95.6	96.4	7.0	7.1	7.1	4.7	4.7	4.7	6.2	6.2	6.2
				Bottom	-	23.2	-	7.8 - -	-	28.1 - -	-	97.1 - -	-	7.1 - -	-	-	4.7 - -	-		6.1	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.9		-			-	
10-May-14	Rainy	Moderate	10:16	Middle	0.8	21.5 21.5	21.5	7.6 7.6	7.6	19.9 19.5	19.7	87.3 87.0	87.2	6.9 6.9	6.9	0.9	3.5 3.5	3.5	3.5	5.6 3.8	4.7	4.7
				Bottom	-	-	-	- -	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-		-	-	-		-	-	-	-	-	7.6	-	-		-	-	
12-May-14	Rainy	Moderate	11:46	Middle	1.1	23.7 23.6	23.7	7.6 7.6	7.6	13.5 13.2	13.4	96.4 95.3	95.9	7.6 7.5	7.6		9.4 8.7	9.1	9.1	7.0 9.8	8.4	8.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-		-	7.0	-		-		-		-	7.0		-			-	
14-May-14	Cloudy	Moderate	11:48	Middle	0.7	23.5 23.5	23.5	7.2 7.2	7.2	20.4	20.6	92.6 92.4	92.5	7.0 7.0	7.0		4.0 4.2	4.1	4.1	6.4	6.2	6.2
				Bottom	-	-	-	<u>-</u>	-	-	-	-	-	-	-	-		-		-	-	
10.11	01. 1	.	44.00	Surface	-	25.0	-	7.7	-	20.1	-	79.9	-	5.9	-	5.9	10.3	-	40.5	9.2	-	0.0
16-May-14	Cloudy	Rough	14:38	Middle	0.9	25.0	25.0	7.7	7.7	20.1	20.1	79.2	79.6	5.8	5.9		10.7	10.5	10.5	9.2	9.2	9.2
				Bottom Surface	-	-	-	-	-	-	<u> </u>	-	-	-	<u>-</u>	-	-	- -		-	-	
19-May-14	Fine	Calm	16:15	Middle	1.1	24.7	25.4	7.8	8.0	18.9	18.8	- 85.7	96.0	6.4	7.1	7.1	18.1	19.1	19.1	9.2	8.7	8.7
10 May-14	TIIIC	Jaiiii	10.15	Bottom	-	26.1	-	8.1	-	18.7	-	106.3	-	7.8	-	_	20.1	-	10.1	8.1	-	0.7

Water Quality Monitoring Results at SR3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.9	-	-		-	-	
21-May-14	Rainy	Rough	17:35	Middle	1.2	24.8 24.9	24.9	7.3 7.3	7.3	16.8 16.5	16.7	91.5 91.6	91.6	6.9 6.9	6.9	0.9	3.8 3.9	3.9	3.9	6.6 5.3	6.0	6.0
				Bottom	-	-	-		-	-	-	-	-		-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.8	-	-		-	-	
23-May-14	Rainy	Calm	08:31	Middle	1.2	25.8 25.8	25.8	7.5 7.5	7.5	15.0 15.2	15.1	91.2 91.4	91.3	6.8 6.8	6.8	0.0	8.3 8.4	8.4	8.4	8.4 5.4	6.9	6.9
				Bottom	-	1 1	-	1 1	-	1 1	-	1 1	-	1 1	-	-	-	=		-	-	
				Surface	-	-	-		-	-	-	-	-		-	6.5	-	-		-	-	
26-May-14	Sunny	Calm	11:06	Middle	1.2	27.7 27.7	27.7	7.7 7.7	7.7	17.7 17.7	17.7	91.1 90.3	90.7	6.5 6.4	6.5	0.5	1.9 1.9	1.9	1.9	5.2 4.1	4.7	4.7
				Bottom	-	1 1	-	1 1	-	1 1	-	1 1	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-		-	-	-	-	-		-	9.8	-	-		-	-	
28-May-14	Sunny	Calm	12:37	Middle	1.1	26.5 26.5	26.5	6.9 6.9	6.9	16.5 16.5	16.5	133.3 134.0	133.7	9.8 9.8	9.8	9.0	12.7 13.4	13.1	13.1	11.4 7.0	9.2	9.2
				Bottom	-	1 1	-	1 1	-		-	1 1	-	1 1	-	-	-	=		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	8.4	-	-		-	-	
30-May-14	Sunny	Calm	12:37	Middle	1.1	28.5 28.5	28.5	8.1 8.1	8.1	18.1 18.1	18.1	120.1 120.1	120.1	8.4 8.4	8.4	0.4	1.2 1.2	1.2	1.2	3.0 4.0	3.5	3.5
				Bottom	-	-	-	1 1	-		-	-	-	1 1	-	-	-	=		-	-	

Water Quality Monitoring Results at SR3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	23.7	-	- - 7.6	-	- - 25.9	-	- - 81.7	-	- - 6.0	-	6.0	4.3	-		- - 8.4	-	
2-May-14	Fine	Calm	07:34	Middle	0.9	23.7	23.7	7.6	7.6	25.9	25.9	80.3	81.0	5.9	6.0		4.8	4.6	4.6	6.2	7.3	7.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
5-May-14	Rainy	Moderate	09:29	Surface Middle	0.7	22.2	22.2	7.9	7.9	27.0	27.1	108.4	107.9	- 8.1	8.1	8.1	4.5	4.4	4.4	4.1	5.0	5.0
	,			Bottom	-	22.2 - -	-	7.9 - -	-	27.1 - -	-	107.4	-	8.0 - -	-	-	4.2	-		5.9 -	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
7-May-14	Cloudy	Moderate	07:34	Middle	0.9	23.1 23.1	23.1	7.7 7.7	7.7	26.4 26.5	26.5	104.7 104.5	104.6	7.7 7.7	7.7	7.7	2.7 2.7	2.7	2.7	3.1 5.8	4.5	4.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	- - 21.4	-	- - 7.7	-	24.8	-	- - 87.6	-	6.7	-	6.6	6.8	-		- - 8.6	-	
10-May-14	Rainy	Moderate	16:01	Middle	1.1	21.5	21.5	7.7	7.7	24.8	24.8	83.8	85.7	6.4	6.6		6.5	6.7	6.7	8.8	8.7	8.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
10 May 14	Doiny	Madarata	17:20	Surface	0.9	24.7	24.7	7.6	7.6	17.6	17.6	86.7	86.7	6.5	6.5	6.5	10.4	- 10.1	10.1	8.1	- 7.0	7.0
12-May-14	Rainy	Moderate	17:29	Middle Bottom	0.9	24.7	24.7	7.6	7.6	17.6	17.0	86.6	- 80.7	6.5	-	_	9.8	10.1	10.1	7.7	7.9	7.9
				Surface	-	-	-	-	_	-	-	-	-	-	-		-	-		-	-	
14-May-14	Cloudy	Moderate	18:46	Middle	0.5	23.2	23.2	7.4 7.4	7.4	22.2 22.1	22.2	83.4 82.5	83.0	6.3 6.2	6.3	6.3	10.6 11.2	10.9	10.9	14.3 10.2	12.3	12.3
				Bottom	-	-	-	- -	-	-	-	-	-	-	-	-		-			-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.9		-		-	-	
16-May-14	Cloudy	Rough	07:15	Middle	0.7	24.6 24.6	24.6	7.6 7.6	7.6	19.7 19.7	19.7	79.1 78.7	78.9	5.9 5.9	5.9	5.9	5.2 5.6	5.4	5.4	9.6 8.4	9.0	9.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	
				Surface	-	-	-	- -	-		-		-	- -	-	7.4		-			-	
19-May-14	Fine	Calm	09:17	Middle	0.8	25.8 25.8	25.8	7.4 7.4 -	7.4	20.6 20.1	20.4	101.6 100.5	101.1	7.4 7.3	7.4		9.1 8.0	8.6	8.6	7.9 7.3	7.6	7.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-		-	-	
21-May-14	Rainy	Rough	11:04	Middle	0.8	24.1 24.1	24.1	7.0 7.0	7.0	16.5 16.5	16.5	86.9 85.6	86.3	6.7 6.6	6.7	0.7	4.7 5.1	4.9	4.9	6.9 9.7	8.3	8.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-		-	-	
23-May-14	Rainy	Calm	14:53	Middle	1.3	25.6 25.6	25.6	7.6 7.6	7.6	17.0 16.9	17.0	86.5 87.1	86.8	6.4 6.5	6.5	6.5	10.1 10.1	10.1	10.1	5.5 7.1	6.3	6.3
				Bottom	-	1 1	-	-	-	-	-	-	-	1 1	-	•	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-		-	-	
26-May-14	Fine	Calm	17:33	Middle	0.7	28.3 28.3	28.3	7.9 7.9	7.9	19.7 19.8	19.8	94.4 93.0	93.7	6.6 6.5	6.6	0.0	3.3 3.2	3.3	3.3	7.3 6.0	6.7	6.7
				Bottom	-	1 1	-	-	-	-	-	-	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-		-	8.4	-	-		-	-	
28-May-14	Fine	Calm	18:47	Middle	0.8	25.6 25.6	25.6	7.5 7.6	7.6	19.4 19.4	19.4	114.4 114.5	114.5	8.4 8.4	8.4	0.4	17.5 18.2	17.9	17.9	8.4 5.8	7.1	7.1
				Bottom	-	1 1	-	-	-	-	-	-	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-		-	-	
30-May-14	Fine	Calm	20:17	Middle	0.6	27.2 27.2	27.2	7.8 7.8	7.8	19.9 19.3	19.6	86.9 88.3	87.6	6.2 6.3	6.3	0.3	3.3 3.4	3.4	3.4	3.4 4.4	3.9	3.9
				Bottom	-	-	-	-	-	-	-	-	-	1 1	-	1	-	-		-	-	

Water Quality Monitoring Results at SR6 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.3 24.3	24.3	7.8 7.8	7.8	29.5 29.8	29.7	82.9 82.9	82.9	6.1 6.1	6.1	0.4	2.1 1.9	2.0		4.1 5.5	4.8	
2-May-14	Fine	Calm	14:35	Middle	-	-	-	-	-		-		-		-	6.1	-	-	2.7	-	-	4.6
				Bottom	4	24.0 24.0	24.0	7.8 7.8	7.8	31.1 31.1	31.1	83.1 82.6	82.9	6.1 6.0	6.1	6.1	3.0 3.5	3.3		4.9 3.6	4.3	
				Surface	1	22.2 22.2	22.2	8.1 8.1	8.1	26.3 26.3	26.3	96.9 97.4	97.2	7.3 7.3	7.3		2.3 2.3	2.3		3.5 5.1	4.3	
5-May-14	Rainy	Moderate	15:43	Middle	-		-	-	-		-	- 1	-		-	7.3	-	-	3.0	-	-	3.5
				Bottom	4.5	22.0 22.0	22.0	8.1 8.1	8.1	31.8 31.8	31.8	98.3 98.8	98.6	7.1 7.2	7.2	7.2	3.6 3.5	3.6		2.1 3.3	2.7	
				Surface	1	23.3 23.3	23.3	7.9 7.9	7.9	28.1 28.1	28.1	78.9 79.1	79.0	5.7 5.7	5.7		6.0 5.6	5.8		3.3 4.8	4.1	
7-May-14	Cloudy	Moderate	17:31	Middle	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-	6.1	-	-	3.5
				Bottom	4	23.5 23.5	23.5	7.9 7.9	7.9	29.0 29.1	29.1	78.6 78.3	78.5	5.7 5.6	5.7	5.7	6.1 6.4	6.3		2.7 2.8	2.8	
				Surface	1	21.5 21.5	21.5	7.7 7.7	7.7	18.4 18.4	18.4	83.1 83.5	83.3	6.6 6.6	6.6	6.6	3.0 3.3	3.2		3.5 4.0	3.8	
10-May-14	Rainy	Moderate	10:14	Middle	-	1 1	-	-	-	1 1	-	1 1	-	1 1	-	0.0	-	-	3.7	-	-	3.8
				Bottom	4.5	21.4 21.4	21.4	7.6 7.6	7.6	23.8 22.4	23.1	66.5 65.2	65.9	5.1 5.1	5.1	5.1	3.9 4.3	4.1		3.5 4.0	3.8	
				Surface	1	24.5 24.6	24.6	7.7 7.7	7.7	16.7 16.6	16.7	96.9 95.7	96.3	7.4 7.3	7.4	7.4	4.5 4.6	4.6		5.8 6.7	6.3	
12-May-14	Rainy	Moderate	11:32	Middle	-		-	-	-		-	1 1	-		-	7.4	-	-	5.5	-	-	6.2
				Bottom	4.4	23.9 23.9	23.9	7.7 7.7	7.7	20.5 20.5	20.5	90.0 89.3	89.7	6.8 6.7	6.8	6.8	6.2 6.6	6.4		6.5 5.5	6.0	
				Surface	1	23.6 23.6	23.6	7.2 7.2	7.2	19.1 19.1	19.1	91.0 91.0	91.0	6.9 6.9	6.9	6.9	4.4 4.4	4.4		3.7 6.5	5.1	
14-May-14	Cloudy	Moderate	12:06	Middle	-	1 1	-	-	1	1 1	-	1 1	-	1 1	-	0.9	-	-	4.9	-	-	5.4
				Bottom	4.3	23.2 23.2	23.2	7.2 7.2	7.2	20.1 20.1	20.1	90.8 90.8	90.8	6.9 6.9	6.9	6.9	5.2 5.4	5.3		5.6 5.8	5.7	
				Surface	1	25.8 25.8	25.8	7.5 7.5	7.5	16.1 16.1	16.1	83.9 83.5	83.7	6.3 6.2	6.3	6.3	4.0 4.0	4.0		4.2 3.3	3.8	
16-May-14	Cloudy	Rough	13:27	Middle	-	-	-	-	-		-	-	-		-	5.5	-	-	15.6	-	-	9.6
				Bottom	4.1	24.5 24.5	24.5	7.7 7.7	7.7	24.6 24.5	24.6	80.0 80.1	80.1	5.8 5.8	5.8	5.8	27.3 27.0	27.2		15.8 14.8	15.3	
				Surface	1	27.5 27.5	27.5	7.5 7.5	7.5	13.4 13.4	13.4	106.2 104.6	105.4	7.8 7.7	7.8	7.8	5.0 5.2	5.1		6.6 5.7	6.2	
19-May-14	Fine	Calm	15:35	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.7	-	-	5.8
				Bottom	4.5	25.7 25.1	25.4	7.6 7.7	7.7	22.8 25.1	24.0	104.6 102.7	103.7	7.5 7.4	7.5	7.5	4.3 4.0	4.2		5.7 4.9	5.3	

Water Quality Monitoring Results at SR6 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5 24.5	24.5	7.3 7.3	7.3	17.2 17.2	17.2	81.1 81.2	81.2	6.2 6.2	6.2	6.2	7.4 7.5	7.5		5.4 4.3	4.9	
21-May-14	Rainy	Rough	16:37	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	,,,	-	-	7.6	-	-	4.9
				Bottom	4.2	24.5 24.5	24.5	7.3 7.3	7.3	17.3 17.3	17.3	79.8 79.6	79.7	6.1 6.1	6.1	6.1	7.5 7.7	7.6		4.3 5.2	4.8	
				Surface	1	24.1 24.1	24.1	7.6 7.6	7.6	10.2 10.2	10.2	85.3 85.3	85.3	6.8 6.8	6.8	6.8	3.8 3.8	3.8		5.6 4.4	5.0	
23-May-14	Rainy	Calm	08:25	Middle	-	-	-	-	-	-	-	-	-		-	0.6	-	-	4.0	-	-	4.5
				Bottom	4.3	23.6 23.7	23.7	7.5 7.5	7.5	16.9 16.8	16.9	82.2 78.1	80.2	6.3 6.0	6.2	6.2	4.1 4.1	4.1		4.4 3.6	4.0	
				Surface	1	27.0 25.2	26.1	7.7 7.6	7.7	19.8 19.8	19.8	95.5 88.2	91.9	6.8 6.5	6.7	6.7	3.5 3.6	3.6		4.6 6.3	5.5	
26-May-14	Sunny	Calm	11:20	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	0.7	-	-	4.8	-	-	6.2
				Bottom	4.4	25.8 24.8	25.3	7.5 7.6	7.6	22.7 22.7	22.7	90.4 88.8	89.6	6.5 6.5	6.5	6.5	5.8 6.1	6.0		7.6 6.2	6.9	
				Surface	1	27.8 27.7	27.8	7.6 7.6	7.6	11.8 12.0	11.9	116.7 117.1	116.9	8.6 8.6	8.6	8.6	2.0 2.3	2.2		6.2 1.4	3.8	
28-May-14	Sunny	Calm	12:14	Middle	-	1 1	-	-	-	-	-	-	-	1 1	-	6.0	-	-	5.8	-	-	3.0
				Bottom	4.1	24.8 24.8	24.8	7.5 7.5	7.5	29.9 29.9	29.9	74.3 72.5	73.4	5.2 5.1	5.2	5.2	9.1 9.6	9.4		1.8 2.4	2.1	
				Surface	1	28.1 27.8	28.0	7.2 7.3	7.3	19.1 19.8	19.5	108.8 107.3	108.1	7.7 7.6	7.7	7.7	1.8 1.6	1.7		3.5 4.6	4.1	
30-May-14	Sunny	Calm	13:06	Middle	-	1 1	-	-	-	-	-	-	-		-	1.1	-	-	3.8	-	-	4.2
				Bottom	4.3	26.1 26.1	26.1	7.2 7.3	7.3	26.8 26.8	26.8	97.2 95.6	96.4	6.8 6.7	6.8	6.8	5.4 6.2	5.8		4.8 3.8	4.3	

Water Quality Monitoring Results at SR6 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.9	23.9	7.8 7.8	7.8	23.8 23.9	23.9	86.3 86.1	86.2	6.6 6.6	6.6	0.0	3.6 3.7	3.7		4.5 4.9	4.7	
2-May-14	Fine	Calm	07:56	Middle	-	1 1	-	-	-		-	1 1	-	1 1	-	6.6	-	-	3.7	-	-	4.4
				Bottom	4.3	23.8 23.8	23.8	7.9 7.9	7.9	27.3 27.4	27.4	90.3 90.9	90.6	6.8 6.8	6.8	6.8	3.7 3.7	3.7		3.5 4.5	4.0	
				Surface	1	22.2 22.2	22.2	8.0 8.0	8.0	22.8 22.9	22.9	95.9 96.9	96.4	7.3 7.4	7.4	7.4	2.2 2.3	2.3		4.2 5.5	4.9	
5-May-14	Rainy	Moderate	09:54	Middle	-		-	-	-		-	-	-		-	7.4	-	-	2.4	-	-	4.7
				Bottom	4.3	22.1 22.1	22.1	8.1 8.1	8.1	28.8 27.9	28.4	98.4 99.4	98.9	7.3 7.4	7.4	7.4	2.5 2.5	2.5		3.6 5.2	4.4	
				Surface	1	23.3 23.3	23.3	7.9 7.9	7.9	28.2 28.2	28.2	78.9 78.6	78.8	5.7 5.7	5.7		2.6 2.6	2.6		2.4 2.6	2.5	
7-May-14	Cloudy	Moderate	07:49	Middle	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-	3.2	-	-	3.1
				Bottom	4.3	23.6 23.5	23.6	7.9 7.9	7.9	29.6 29.1	29.4	77.8 77.6	77.7	5.6 5.6	5.6	5.6	3.8 3.8	3.8		1.5 5.8	3.7	
				Surface	1	21.6 21.7	21.7	7.6 7.6	7.6	18.7 18.7	18.7	70.9 70.2	70.6	5.6 5.5	5.6	5.6	3.1 2.9	3.0		5.0 3.8	4.4	
10-May-14	Rainy	Moderate	15:58	Middle	-	-	-	-	-	-	-		-	-	-	5.0	-	-	3.7	-	-	4.2
				Bottom	4.4	21.5 21.6	21.6	7.6 7.6	7.6	22.8 24.8	23.8	66.7 67.8	67.3	5.2 5.2	5.2	5.2	4.5 4.0	4.3		3.6 4.2	3.9	
				Surface	1	24.7 24.7	24.7	7.5 7.5	7.5	19.1 19.0	19.1	89.1 87.3	88.2	6.7 6.5	6.6	6.6	5.1 5.2	5.2		4.0 4.3	4.2	
12-May-14	Rainy	Moderate	16:45	Middle	-	-	-	-	-		-		-	-	-	0.0	-	-	9.9	-	-	4.2
				Bottom	4.6	24.2 24.1	24.2	7.6 7.6	7.6	26.1 26.1	26.1	86.1 85.0	85.6	6.2 6.2	6.2	6.2	15.0 14.0	14.5		4.2 4.0	4.1	
				Surface	1	23.1 23.1	23.1	7.0 7.0	7.0	15.9 15.9	15.9	93.2 92.8	93.0	7.3 7.3	7.3	7.3	7.2 7.0	7.1		9.6 12.0	10.8	
14-May-14	Cloudy	Moderate	18:19	Middle	-	-	-	-	-		-		-	-	-	7.3	-	-	13.3	-	-	7.4
				Bottom	4.7	22.9 22.9	22.9	7.0 7.0	7.0	16.6 16.6	16.6	91.0 91.0	91.0	7.1 7.1	7.1	7.1	19.5 19.5	19.5		4.0 4.0	4.0	
				Surface	1	25.1 25.1	25.1	7.4 7.4	7.4	15.9 15.8	15.9	75.1 73.0	74.1	5.7 5.5	5.6	5.6	5.3 6.1	5.7		5.2 5.3	5.3	
16-May-14	Cloudy	Rough	06:58	Middle	=	1 1	-	-		1 1	-	1 1	-	1 1	-	0.0	-	-	31.8	-	-	15.2
				Bottom	4.2	24.8 24.8	24.8	7.7 7.7	7.7	23.3 23.5	23.4	77.8 79.7	78.8	5.7 5.8	5.8	5.8	56.8 58.8	57.8		24.7 25.3	25.0	
				Surface	1	25.9 25.9	25.9	7.3 7.3	7.3	12.8 12.8	12.8	105.5 104.1	104.8	8.0 7.9	8.0	8.0	4.8 4.7	4.8		5.3 5.5	5.4	
19-May-14	Fine	Calm	09:14	Middle	-	-	-	-	-	-	-	-	-	-	-	2.0	-	-	6.9	-	-	5.7
				Bottom	4.4	25.6 25.5	25.6	7.4 7.5	7.5	18.1 18.8	18.5	97.0 95.9	96.5	7.2 7.1	7.2	7.2	8.9 9.0	9.0		5.6 6.2	5.9	

Water Quality Monitoring Results at SR6 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.8 24.8	24.8	7.1 7.0	7.1	12.7 12.7	12.7	103.7 103.6	103.7	8.0 8.0	8.0	8.0	5.0 5.0	5.0		4.6 3.7	4.2	
21-May-14	Rainy	Rough	10:59	Middle	-	1 1	-	-	-	1 1	-	1 1	-	1 1	-		-	-	4.8	-	-	4.5
				Bottom	4.7	24.8 24.8	24.8	7.0 7.0	7.0	12.8 12.8	12.8	103.3 103.3	103.3	8.0 8.0	8.0	8.0	4.5 4.6	4.6		4.9 4.6	4.8	
				Surface	1	25.3 25.3	25.3	8.0 8.0	8.0	14.6 14.6	14.6	100.6 101.3	101.0	7.6 7.7	7.7	7.7	3.8 3.6	3.7		4.9 4.4	4.7	
23-May-14	Rainy	Calm	13:17	Middle	i	1 1	·	-	-	1 1	i	1 1	-	1 1	-	7.7	-	-	3.6	-	-	4.7
				Bottom	4.7	24.8 24.9	24.9	8.0 8.0	8.0	22.9 22.8	22.9	103.6 103.6	103.6	7.5 7.5	7.5	7.5	3.3 3.4	3.4		4.7 4.4	4.6	
				Surface	1	24.7 26.9	25.8	7.9 7.8	7.9	20.2 20.2	20.2	90.1 93.1	91.6	6.7 6.6	6.7	6.7	5.1 5.3	5.2		9.8 9.2	9.5	
26-May-14	Fine	Calm	17:03	Middle	i	1 1	i	-	-	1 1	-	1 1	-	1 1	-	0.7	-	-	6.8	-	-	9.8
				Bottom	4.5	24.7 26.7	25.7	7.9 7.8	7.9	23.6 23.5	23.6	90.1 93.5	91.8	6.6 6.6	6.6	6.6	8.2 8.3	8.3		9.5 10.6	10.1	
				Surface	1	27.5 27.5	27.5	7.6 7.6	7.6	13.4 13.4	13.4	99.0 99.3	99.2	7.3 7.3	7.3	7.3	5.2 4.9	5.1		5.6 4.6	5.1	
28-May-14	Fine	Calm	18:14	Middle	-		-	-	-	1 1	-	1 1	-	1 1	-	7.0	-	-	6.6	-	-	5.3
				Bottom	4.3	26.5 26.4	26.5	7.5 7.5	7.5	18.9 20.5	19.7	81.1 80.3	80.7	5.9 5.8	5.9	5.9	8.0 8.0	8.0		4.8 5.9	5.4	
				Surface	1	27.9 27.8	27.9	7.7 7.7	7.7	19.6 19.8	19.7	104.5 103.6	104.1	7.4 7.3	7.4	7.4	1.8 1.8	1.8		5.3 2.9	4.1	
30-May-14	Fine	Calm	19:22	Middle	-	-	-	-	-		-		-		-	,	-	-	5.2	-	-	3.0
				Bottom	4.2	26.5 26.3	26.4	7.7 7.7	7.7	24.3 25.0	24.7	90.0 91.5	90.8	6.3 6.4	6.4	6.4	8.8 8.2	8.5		0.9 2.7	1.8	

Water Quality Monitoring Results at SRA - Mid-Ebb Tide

Data	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	ιι (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5	24.5	7.8	7.8	29.8	29.8	88.9	89.4	6.3	6.3		4.0	3.9		6.2	5.6	
				Odridoc		24.5	24.0	7.8	7.0	29.7	20.0	89.8	00.4	6.3	0.0	6.5	3.7	0.0		4.9	0.0	
2-May-14	Fine	Calm	13:44	Middle	5	23.9	23.9	7.8	7.8	31.3	31.4	93.4	93.2	6.6	6.6		5.9	5.6	5.9	5.4	5.6	5.6
						23.9		7.8 7.8		31.4 31.6		92.9 93.1		6.6 6.6			5.2 7.8			5.7 5.7		
				Bottom	9	23.7	23.7	7.8	7.8	31.6	31.6	93.0	93.1	6.6	6.6	6.6	8.6	8.2		5.7	5.7	
				0 (22.1	00.4	8.1	0.4	28.2	00.0	102.9	400.0	7.6	7.0		3.5	0.7		6.5	5.0	
				Surface	1	22.1	22.1	8.1	8.1	28.1	28.2	101.0	102.0	7.5	7.6	7.5	3.8	3.7		3.9	5.2	
5-May-14	Rainy	Moderate	16:11	Middle	5	22.0	22.0	8.1	8.1	30.7	30.6	101.2	101.2	7.4	7.4	7.5	5.9	5.5	5.8	5.1	5.0	5.6
o may		moderate			ŭ	22.0		8.1	0	30.5	00.0	101.2		7.4			5.1	0.0	0.0	4.9	0.0	0.0
				Bottom	9	22.0 22.0	22.0	8.1 8.2	8.2	31.3 31.3	31.3	100.5 99.8	100.2	7.3 7.3	7.3	7.3	7.8 8.5	8.2		8.2 4.7	6.5	
						23.3		7.8		29.3		99.3		7.2			5.5			6.6		
				Surface	1	23.4	23.4	7.8	7.8	29.7	29.5	99.2	99.3	7.1	7.2	7.4	5.6	5.6		7.5	7.1	
7-May-14	Cloudy	Moderate	18:24	Middle	4.5	23.5	23.5	7.9	7.9	31.2	31.2	97.9	97.3	7.0	7.0	7.1	8.7	8.7	8.5	8.7	8.4	9.0
7-11/1ay-14	Cloudy	Moderate	10.24	ivildule	4.5	23.5	23.5	7.8	7.9	31.1	31.2	96.6	97.3	6.9	7.0		8.7	0.7	0.5	8.0	0.4	9.0
				Bottom	8	23.6	23.6	7.9	7.9	31.8	31.6	94.7	93.8	6.7	6.7	6.7	10.7	11.3		9.9	11.4	
-						23.6 21.5		7.9 7.6		31.4 21.1		92.9 84.2		6.6			11.9 5.0			12.8 6.2		
				Surface	1	21.5	21.6	7.6	7.6	21.1	21.1	86.9	85.6	6.6 6.8	6.7		5.0	5.1		4.9	5.6	
			40.00			21.4	24.4	7.6		24.6		75.7	=	5.8		6.4	9.8			7.0		
10-May-14	Rainy	Moderate	10:20	Middle	3.5	21.4	21.4	7.6	7.6	28.7	26.7	83.3	79.5	6.2	6.0		9.7	9.8	11.6	5.4	6.2	7.7
				Bottom	6	21.4	21.4	7.7	7.7	30.0	30.1	81.6	81.3	6.1	6.1	6.1	19.8	19.8		10.5	11.4	
				Dottom	Ů	21.4	217	7.7	7.7	30.2	00.1	81.0	01.0	6.0	0.1	0.1	19.8	10.0		12.3		
				Surface	1	24.0 24.0	24.0	7.6 7.7	7.7	15.2 14.8	15.0	101.8 100.3	101.1	7.9 7.8	7.9		8.3 8.7	8.5		11.4 9.0	10.2	
						23.5		7.7		25.9		99.3		7.0		7.6	12.5			17.0		
12-May-14	Rainy	Moderate	11:51	Middle	4	23.5	23.5	7.7	7.7	25.9	25.9	97.9	98.6	7.2	7.3		11.2	11.9	13.7	15.2	16.1	12.6
				Bottom	7	23.4	23.4	7.7	7.7	28.3	28.3	95.4	95.0	6.9	6.9	6.9	19.5	20.7		12.7	11.5	
				DOLLOITI	,	23.4	25.4	7.7	7.1	28.3	20.5	94.5	90.0	6.8	0.9	0.9	21.8	20.1		10.3	11.5	
				Surface	1	23.4	23.5	7.2	7.2	19.4	19.4	88.4	88.1	6.7	6.7		9.1	10.0		6.2	6.5	
						23.5 22.1		7.2		19.4 25.7		87.7 85.2		6.7 6.4		6.6	10.8 13.4			6.8 5.8		
14-May-14	Cloudy	Moderate	11:52	Middle	4	22.1	22.1	7.2	7.2	25.7 25.8	25.8	85.1	85.2	6.4	6.4		13.4	13.3	13.4	7.0	6.4	7.5
				- ·	_	21.8	24.0	7.3		28.4		85.3		6.4			16.9			7.5		
				Bottom	7	21.8	21.8	7.3	7.3	28.4	28.4	85.5	85.4	6.4	6.4	6.4	17.1	17.0		11.5	9.5	
				Surface	1	25.0	24.9	7.7	7.8	20.7	21.0	83.5	83.0	6.1	6.1		9.3	9.7		9.2	8.7	
				Odridoc		24.8	24.0	7.8	7.0	21.2	21.0	82.4	00.0	6.1	0.1	6.0	10.0	0.7		8.2	0.1	
16-May-14	Cloudy	Rough	14:28	Middle	4	23.6 23.7	23.7	7.8 7.8	7.8	26.4 25.2	25.8	80.0 78.3	79.2	5.8 5.7	5.8		17.5 18.6	18.1	15.8	8.2 7.2	7.7	8.0
						23.4		7.6		27.2		75.1		5.7			18.6			7.4		
				Bottom	7	23.6	23.5	7.8	7.7	26.4	26.8	75.0	75.1	5.5	5.5	5.5	20.4	19.5		7.5	7.5	
				Curfoss	1	25.0	25.1	7.6	7.7	18.7	18.6	88.2	88.1	6.6	6.6		14.3	12.0		11.1	0.0	
				Surface	ı	25.2	25.1	7.7	7.7	18.5	10.0	87.9	00.1	6.5	6.6	6.6	13.3	13.8		7.2	9.2	
19-May-14	Fine	Calm	16:06	Middle	3.5	25.1	25.1	7.6	7.7	21.0	21.4	89.4	88.7	6.6	6.5	0.0	14.0	14.2	14.4	9.3	8.6	8.6
,						25.1		7.7		21.7		88.0		6.4			14.3	ļ		7.8 7.6		
				Bottom	6	25.2 24.7	25.0	7.7 7.7	7.7	23.3 24.5	23.9	90.4 88.5	89.5	6.5 6.4	6.5	6.5	13.5 16.8	15.2		7.6 8.2	7.9	
						24.1	<u> </u>	1.1	ı	24.0	ı	00.0	1	0.4	1		10.0	1	1	0.2	ı	l

Water Quality Monitoring Results at SRA - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бор	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.2 24.4	24.3	7.2 7.2	7.2	16.2 15.5	15.9	89.2 87.9	88.6	6.8 6.7	6.8	6.4	6.5 7.1	6.8		7.3 10.0	8.7	
21-May-14	Rainy	Rough	17:27	Middle	4	23.5 23.8	23.7	7.2 7.2	7.2	20.7 18.9	19.8	79.1 76.9	78.0	6.0 5.8	5.9	0.4	13.0 12.8	12.9	13.8	17.6 5.9	11.8	9.4
				Bottom	7	23.2 22.8	23.0	7.2 7.2	7.2	23.1 27.1	25.1	71.5 71.4	71.5	5.4 5.3	5.4	5.4	20.9 22.6	21.8		8.2 6.9	7.6	
				Surface	1	25.6 25.6	25.6	7.5 7.5	7.5	15.0 16.3	15.7	96.7 95.6	96.2	7.3 7.1	7.2	6.9	5.1 5.2	5.2		6.7 6.1	6.4	
23-May-14	Rainy	Calm	08:37	Middle	4	25.0 24.7	24.9	7.5 7.6	7.6	21.0 23.2	22.1	89.3 88.4	88.9	6.6 6.4	6.5	0.5	7.5 9.0	8.3	9.4	6.6 6.9	6.8	6.1
				Bottom	7	24.3 24.3	24.3	7.6 7.6	7.6	25.9 25.8	25.9	82.1 80.3	81.2	5.9 5.8	5.9	5.9	15.5 13.8	14.7		6.9 3.5	5.2	
				Surface	1	27.0 27.2	27.1	7.5 7.5	7.5	18.6 17.8	18.2	96.7 98.0	97.4	6.9 7.0	7.0	6.3	4.2 4.6	4.4		6.9 3.8	5.4	
26-May-14	Sunny	Calm	11:11	Middle	4	25.4 25.4	25.4	7.5 7.5	7.5	28.7 28.6	28.7	79.6 80.8	80.2	5.6 5.6	5.6	0.5	10.7 10.1	10.4	9.3	6.6 7.2	6.9	7.5
				Bottom	7	24.9 24.9	24.9	7.5 7.6	7.6	32.5 32.2	32.4	77.7 77.0	77.4	5.4 5.3	5.4	5.4	12.6 13.3	13.0		11.7 8.6	10.2	
				Surface	1	25.6 25.3	25.5	6.9 6.9	6.9	16.9 17.4	17.2	108.2 105.0	106.6	8.0 7.8	7.9	7.2	6.5 7.1	6.8		9.2 6.8	8.0	
28-May-14	Sunny	Calm	12:42	Middle	4	23.8 23.7	23.8	6.9 7.0	7.0	23.8 24.5	24.2	86.2 87.0	86.6	6.4 6.4	6.4	7.2	20.9 18.3	19.6	17.6	9.0 13.2	11.1	9.7
				Bottom	7	22.8 22.9	22.9	6.9 7.0	7.0	29.7 29.3	29.5	73.5 75.1	74.3	5.3 5.5	5.4	5.4	27.5 25.3	26.4		8.8 11.2	10.0	
				Surface	1	27.7 27.6	27.7	7.8 7.8	7.8	17.9 17.9	17.9	99.8 99.1	99.5	7.1 7.1	7.1	6.7	4.0 3.8	3.9		1.8 4.0	2.9	
30-May-14	Sunny	Calm	12:42	Middle	3	26.3 26.3	26.3	7.7 7.7	7.7	23.4 23.5	23.5	88.6 88.6	88.6	6.3 6.3	6.3	0.7	4.7 5.0	4.9	6.3	3.7 5.4	4.6	3.8
				Bottom	5	25.5 25.5	25.5	7.6 7.6	7.6	27.5 27.5	27.5	74.3 74.5	74.4	5.2 5.2	5.2	5.2	10.0 10.0	10.0		3.2 4.3	3.8	

Water Quality Monitoring Results at SRA - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	1	рΗ	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.7 23.7	23.7	7.6 7.7	7.7	26.2 26.5	26.4	95.3 84.3	89.8	6.9 6.1	6.5		4.4 4.5	4.5		6.4 8.4	7.4	
2-May-14	Fine	Calm	07:41	Middle	4	23.7 23.7	23.7	7.6 7.7	7.7	26.4 26.6	26.5	90.2 84.7	87.5	6.6 6.2	6.4	6.5	4.6 5.6	5.1	7.0	5.6 7.0	6.3	6.6
				Bottom	7	23.8	23.8	7.6 7.6	7.6	26.6 26.6	26.6	88.8 88.3	88.6	6.5 6.4	6.5	6.5	12.2 10.8	11.5	-	6.0	6.2	
				Surface	1	22.0	22.1	8.0	8.0	26.9	27.1	105.0	103.6	7.9	7.8		2.7	2.7		4.4	4.6	
5-May-14	Rainy	Moderate	09:34	Middle	5	22.1 22.1	22.1	8.0 8.0	8.0	27.3 27.4	27.4	102.2 100.0	100.7	7.6 7.4	7.5	7.7	2.7 4.7	4.7	4.7	4.7	4.2	4.2
	,			Bottom	9	22.1 22.2	22.2	8.0	8.0	27.4 27.8	27.8	101.3 99.4	98.9	7.5 7.4	7.4	7.4	4.7 6.2	6.6		3.9	3.7	
				Bottom	ŭ	22.2		8.0	0.0	27.8	27.10	98.3	00.0	7.3			6.9	0.0		4.1	0	
				Surface	1	23.3 23.2	23.3	7.8 7.8	7.8	27.7 27.5	27.6	107.0 105.5	106.3	7.8 7.7	7.8	7.7	2.5 2.3	2.4		3.2 3.0	3.1	
7-May-14	Cloudy	Moderate	07:38	Middle	4	23.5 23.6	23.6	7.8 7.8	7.8	29.4 29.9	29.7	106.3 106.6	106.5	7.6 7.6	7.6		6.1 7.0	6.6	6.0	5.3 4.5	4.9	4.9
				Bottom	7	23.6 23.6	23.6	7.8 7.8	7.8	30.2 30.3	30.3	102.5 102.2	102.4	7.3 7.3	7.3	7.3	8.7 9.3	9.0		6.5 6.8	6.7	
				Surface	1	21.5 21.5	21.5	7.7 7.7	7.7	23.5 23.0	23.3	85.8 73.6	79.7	6.6 5.7	6.2	6.0	10.3 10.2	10.3		11.0 12.0	11.5	
10-May-14	Rainy	Moderate	15:54	Middle	3.5	21.4 21.5	21.5	7.7 7.7	7.7	29.6 28.0	28.8	77.5 76.4	77.0	5.8 5.7	5.8	0.0	15.5 15.4	15.5	14.5	9.0 8.3	8.7	9.9
				Bottom	6	21.4 21.4	21.4	7.7 7.7	7.7	29.6 27.9	28.8	72.4 73.2	72.8	5.4 5.5	5.5	5.5	17.8 17.7	17.8		10.2 9.0	9.6	
				Surface	1	24.7 24.7	24.7	7.6 7.6	7.6	16.8 17.0	16.9	88.1 88.7	88.4	6.7 6.7	6.7		12.9 11.9	12.4		15.2 14.0	14.6	
12-May-14	Rainy	Moderate	17:19	Middle	4.5	23.7	23.8	7.6 7.6	7.6	23.4 22.0	22.7	80.3 79.6	80.0	6.0 5.9	6.0	6.4	19.8 19.3	19.6	19.6	17.0 15.3	16.2	18.3
				Bottom	8	23.6 23.6	23.6	7.7 7.7	7.7	24.7 24.9	24.8	80.0 79.4	79.7	5.9 5.8	5.9	5.9	26.3 27.1	26.7		24.8	24.0	
				Surface	1	22.9	23.0	7.4	7.4	22.1	22.4	81.1	80.9	6.1	6.1		10.7	10.3		20.8	19.6	
14-May-14	Cloudy	Moderate	18:39	Middle	4.5	23.0 22.8	22.8	7.3 7.4	7.4	22.6 23.2	23.2	80.7 79.0	78.8	6.1 6.0	6.0	6.1	9.9 16.0	15.6	16.2	18.4 18.4	18.5	19.0
	o.ouu,	moderate	10.00	Bottom	8	22.8 22.6	22.6	7.3 7.4	7.4	23.1 23.7	24.1	78.5 77.4	77.4	5.9 5.8	5.8	5.8	15.2 21.6	22.7		18.6 19.0	18.9	
				Surface	1	22.5 24.6	24.6	7.3 7.5	7.6	24.4	20.1	77.3 79.0	77.9	5.8 5.9	5.8	0.0	9.0	8.7		18.7 12.2	11.6	
16-May-14	Claudy	Daugh	07:19	Middle	4	24.6 24.5	24.5	7.6 7.5	7.6	20.0	20.1	76.7 77.2	76.7	5.7 5.7	5.7	5.8	8.4 10.6	10.9	11.4	11.0 9.2	8.3	10.4
16-iviay-14	Cloudy	Rough	07.19			24.5 24.3		7.6 7.6		20.3		76.1 74.8		5.7 5.5			11.2 14.6		11.4	7.4 10.3		10.4
				Bottom	7	24.3 26.0	24.3	7.7 7.4	7.7	22.1 19.6	22.0	74.6 103.9	74.7	5.5 7.6	5.5	5.5	14.4 7.3	14.5		12.4 9.0	11.4	
				Surface	1	25.9 25.9	26.0	7.6 7.4	7.5	19.4 22.8	19.5	103.4	103.7	7.5 7.3	7.6	7.5	7.6 8.0	7.5		9.6	9.3	
19-May-14	Fine	Calm	09:24	Middle	3.5	25.9	25.9	7.6	7.5	22.1	22.5	103.2	102.8	7.4	7.4		8.8	8.4	8.1	10.2	10.1	9.9
				Bottom	6	25.9 25.7	25.8	7.5 7.6	7.6	23.9 23.7	23.8	108.6 101.9	105.3	7.7 7.3	7.5	7.5	8.5 8.1	8.3		10.3 10.5	10.4	

Water Quality Monitoring Results at SRA - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бор	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.0 24.0	24.0	7.1 7.2	7.2	16.4 16.3	16.4	88.9 87.2	88.1	6.8 6.7	6.8	6.3	4.9 5.0	5.0		8.0 8.0	8.0	
21-May-14	Rainy	Rough	11:10	Middle	4.5	23.5 23.6	23.6	7.1 7.2	7.2	21.6 20.9	21.3	75.0 77.8	76.4	5.6 5.9	5.8	0.0	14.1 12.6	13.4	11.3	9.2 8.6	8.9	8.4
				Bottom	8	23.0 23.1	23.1	7.2 7.1	7.2	25.3 24.5	24.9	71.8 72.8	72.3	5.3 5.4	5.4	5.4	15.7 15.2	15.5		9.0 7.8	8.4	
				Surface	1	25.6 25.6	25.6	7.5 7.6	7.6	16.9 17.1	17.0	91.6 90.9	91.3	6.8 6.7	6.8	6.7	3.3 3.4	3.4		7.2 7.8	7.5	
23-May-14	Rainy	Calm	14:45	Middle	4	25.6 25.4	25.5	7.6 7.5	7.6	18.9 22.9	20.9	90.9 90.7	90.8	6.7 6.5	6.6	0.7	4.4 4.4	4.4	5.3	4.9 5.0	5.0	5.9
				Bottom	7	24.9 24.8	24.9	7.6 7.6	7.6	24.0 24.2	24.1	90.3 88.8	89.6	6.5 6.4	6.5	6.5	7.5 8.9	8.2		4.9 5.2	5.1	
				Surface	1	28.2 28.2	28.2	7.9 7.9	7.9	20.5 20.4	20.5	98.9 96.8	97.9	6.9 6.7	6.8	6.8	5.9 5.1	5.5		13.8 8.5	11.2	
26-May-14	Fine	Calm	17:25	Middle	4	28.1 28.0	28.1	7.9 7.9	7.9	20.6 20.7	20.7	95.3 95.0	95.2	6.7 6.6	6.7	0.0	4.0 4.0	4.0	7.9	7.8 9.1	8.5	9.3
				Bottom	7	26.4 26.3	26.4	7.6 7.6	7.6	26.0 26.0	26.0	79.0 78.8	78.9	5.5 5.5	5.5	5.5	14.2 14.2	14.2		7.9 8.5	8.2	
				Surface	1	25.5 25.5	25.5	7.5 7.5	7.5	23.7 23.9	23.8	118.3 116.8	117.6	8.5 8.4	8.5	7.8	6.9 7.5	7.2		5.8 5.2	5.5	
28-May-14	Fine	Calm	18:40	Middle	3.5	24.9 25.2	25.1	7.5 7.5	7.5	25.4 24.6	25.0	97.0 98.4	97.7	7.0 7.1	7.1	7.0	12.0 11.8	11.9	15.3	5.3 6.0	5.7	4.8
				Bottom	6	24.7 25.2	25.0	7.4 7.5	7.5	30.0 28.6	29.3	93.9 94.6	94.3	6.6 6.6	6.6	6.6	27.9 25.4	26.7		2.5 3.8	3.2	
				Surface	1	27.4 27.4	27.4	7.8 7.8	7.8	19.2 19.3	19.3	87.8 87.2	87.5	6.2 6.2	6.2	6.2	4.1 3.9	4.0		4.8 5.4	5.1	
30-May-14	Fine	Calm	20:13	Middle	3.5	27.5 27.5	27.5	7.8 7.8	7.8	27.2 27.1	27.2	91.4 89.7	90.6	6.2 6.1	6.2	0.2	4.6 4.6	4.6	4.7	2.7 4.3	3.5	3.9
				Bottom	6	27.6 27.6	27.6	7.8 7.8	7.8	27.5 28.4	28.0	90.3 94.8	92.6	6.1 6.4	6.3	6.3	5.3 5.4	5.4		3.7 2.5	3.1	

Water Quality Monitoring Results at ST1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.2 24.2	24.2	7.9 7.9	7.9	31.5 31.5	31.5	93.1 93.7	93.4	6.8 6.8	6.8	0.0	4.3 4.4	4.4		2.9 5.1	4.0	
2-May-14	Fine	Calm	15:04	Middle	5	23.8 23.8	23.8	7.9 7.9	7.9	32.3 32.3	32.3	96.4 96.6	96.5	7.0 7.0	7.0	6.9	1.8 2.1	2.0	7.3	5.3 5.3	5.3	4.9
				Bottom	9	23.6 23.6	23.6	7.9 7.9	7.9	32.8 32.8	32.8	96.1 96.0	96.1	7.0 7.0	7.0	7.0	14.9 16.1	15.5		4.4 6.1	5.3	
				Surface	1	22.1 22.1	22.1	8.1 8.1	8.1	27.2 27.2	27.2	90.0 90.1	90.1	6.7 6.7	6.7		1.9	2.0		5.2 5.1	5.2	
5-May-14	Rainy	Moderate	16:07	Middle	5.5	22.0 22.0	22.0	8.2	8.2	31.9	32.1	89.1 92.0	90.6	6.5	6.6	6.7	3.9	3.9	4.8	2.7	3.3	4.8
				Bottom	10	21.8	21.8	8.1 8.2	8.2	32.3 33.1	33.1	88.0	90.2	6.7 6.4	6.6	6.6	3.9 8.7	8.6		3.9 5.6	5.9	1
				Surface	1	21.8 23.3	23.3	7.9	7.9	33.1 28.2	28.2	92.4 103.8	103.8	6.7 7.5	7.5		8.4 4.1	4.1		6.2 2.1	3.3	
7-May-14	Cloudy	Moderate	18:08	Middle	5	23.3 23.6	23.6	7.9 7.9	7.9	28.2 30.7	30.7	103.7 102.4	102.0	7.5 7.3	7.3	7.4	6.0	6.2	5.6	3.2	3.1	2.8
,ay	o.ouu,	modorato	10.00	Bottom	9	23.6 23.6	23.6	7.9 7.9	7.9	30.7 31.1	31.2	101.5 103.1	103.3	7.2 7.3	7.3	7.3	6.4	6.4	0.0	2.9	2.1	
				Surface	1	23.6 21.5	21.5	7.9 7.7	7.7	31.3 18.3	18.6	103.4 85.5	85.9	7.3 6.8	6.8	7.0	6.5 4.3	4.4		1.8 3.4	3.8	_
10-May-14	Rainy	Moderate	10:46	Middle	5	21.4 21.4	21.4	7.7 7.7	7.7	18.9 23.8	23.7	86.2 81.4	81.3	6.8 6.3	6.3	6.6	4.5 5.3	5.6	8.1	4.1	3.7	3.4
10-May-14	rtairiy	Woderate	10.40	Bottom	9	21.4 21.4	21.4	7.7 7.8	7.8	23.5 24.7	25.0	81.2 72.7	73.1	6.3 5.6	5.6	5.6	5.8 14.1	14.3	0.1	2.6	2.8	0.4
						21.4 24.1		7.8 7.7		25.2 18.2		73.5 99.7		5.6 7.6		3.0	14.5 4.5			2.6 5.8		
			40.00	Surface	1	24.5 23.6	24.3	7.7 7.7	7.7	18.7 23.5	18.5	98.4 89.7	99.1	7.4 6.7	7.5	7.1	4.2 5.8	4.4		6.5 5.9	6.2	
12-May-14	Rainy	Moderate	12:00	Middle	6	23.9 23.5	23.8	7.7	7.7	23.5 29.5	23.5	88.4 89.3	89.1	6.5 6.4	6.6		5.0 17.2	5.4	9.2	4.6 5.8	5.3	5.5
				Bottom	11	23.5	23.5	7.8	7.8	29.5	29.5	90.4	89.9	6.5 8.7	6.5	6.5	18.6	17.9		4.0	4.9	
				Surface	1	23.5 23.2	23.6	7.3 7.3	7.3	20.7	20.7	111.9 110.0	113.4	8.4 8.2	8.6	8.4	3.7 4.5	3.7		5.0	4.7	-
14-May-14	Cloudy	Moderate	12:30	Middle	4.5	23.2	23.2	7.3 7.3	7.3	24.1 26.8	24.0	110.0	110.1	8.2 8.0	8.2		4.5 5.3	4.5	4.5	6.0	5.4	5.1
				Bottom	8	22.1	22.1	7.3	7.3	26.8 21.4	26.8	107.3 106.4 82.9	106.9	8.0 6.0	8.0	8.0	5.2	5.3		5.0	5.1	<u> </u>
				Surface	1	26.2 26.2 25.5	26.2	7.8 7.8	7.8	21.4 21.5 24.1	21.5	82.9 83.6 86.1	83.3	6.0	6.0	6.1	4.3 4.1 5.7	4.2		7.2 4.6	5.9	_
16-May-14	Cloudy	Rough	13:54	Middle	5	25.5	25.5	7.8 7.8	7.8	24.1	24.1	86.9	86.5	6.2 6.2	6.2		6.0	5.9	26.2	6.3 5.1	5.7	10.7
				Bottom	9	24.3 24.3	24.3	7.7 7.7	7.7	28.0 28.0	28.0	76.6 74.8	75.7	5.5 5.3	5.4	5.4	66.3 70.8	68.6		35.4 5.7	20.6	<u> </u>
				Surface	1	26.4 26.8	26.6	7.7 7.7	7.7	19.4 18.5	19.0	102.5 98.9	100.7	7.4 7.1	7.3	7.1	5.7 6.4	6.1		7.1 8.2	7.7	
19-May-14	Fine	Calm	16:09	Middle	5	25.3 25.8	25.6	7.7 7.7	7.7	24.1 22.3	23.2	93.2 95.1	94.2	6.7 6.8	6.8		7.7 6.3	7.0	8.7	7.2 6.9	7.1	7.5
				Bottom	9	24.9 24.9	24.9	7.7 7.7	7.7	27.2 27.3	27.3	88.7 89.3	89.0	6.3 6.3	6.3	6.3	14.1 12.0	13.1		7.8 7.7	7.8	

Water Quality Monitoring Results at ST1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Борг	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5 24.5	24.5	7.3 7.3	7.3	20.5 20.5	20.5	81.1 80.8	81.0	6.2 6.2	6.2	6.1	10.9 10.7	10.8		5.2 3.0	4.1	
21-May-14	Rainy	Rough	17:08	Middle	5	24.5 24.5	24.5	7.3 7.3	7.3	21.9 22.0	22.0	79.0 79.2	79.1	6.0 6.0	6.0	0.1	10.5 10.6	10.6	10.6	4.2 5.0	4.6	4.2
				Bottom	9	24.1 24.1	24.1	7.3 7.3	7.3	28.7 28.7	28.7	77.5 77.3	77.4	5.9 5.9	5.9	5.9	10.4 10.1	10.3		4.0 3.8	3.9	
				Surface	1	23.9 23.9	23.9	7.8 7.8	7.8	10.0 10.0	10.0	90.1 90.1	90.1	7.2 7.2	7.2	7.1	5.1 5.1	5.1		5.2 5.2	5.2	
23-May-14	Rainy	Calm	09:02	Middle	4.5	23.9 23.9	23.9	7.8 7.8	7.8	12.9 12.6	12.8	87.4 87.4	87.4	6.9 6.9	6.9	***	4.6 4.4	4.5	4.5	5.3 4.4	4.9	5.4
				Bottom	8	23.5 23.5	23.5	7.8 7.8	7.8	20.5 20.4	20.5	85.3 85.2	85.3	6.4 6.4	6.4	6.4	3.9 3.9	3.9		6.2 5.7	6.0	
				Surface	1	25.3 24.7	25.0	7.6 7.6	7.6	17.2 17.2	17.2	95.2 93.2	94.2	7.1 7.0	7.1	7.0	4.7 4.8	4.8		4.4 5.5	5.0	
26-May-14	Sunny	Calm	11:38	Middle	5	25.0 24.5	24.8	7.6 7.6	7.6	22.2 22.2	22.2	94.0 93.2	93.6	6.9 6.9	6.9	7.0	5.5 5.6	5.6	6.8	3.3 5.2	4.3	4.5
				Bottom	9	24.7 26.7	25.7	7.6 7.7	7.7	25.7 25.7	25.7	94.1 96.7	95.4	6.8 6.7	6.8	6.8	9.6 10.6	10.1		4.2 3.9	4.1	
				Surface	1	27.6 27.7	27.7	7.6 7.6	7.6	11.3 11.2	11.3	101.4 99.0	100.2	7.5 7.3	7.4	6.5	3.9 3.8	3.9		5.0 4.8	4.9	
28-May-14	Sunny	Calm	12:46	Middle	5	25.7 25.7	25.7	7.5 7.5	7.5	22.4 22.1	22.3	77.5 75.3	76.4	5.6 5.4	5.5	0.5	2.9 2.8	2.9	5.6	5.3 3.6	4.5	4.3
				Bottom	9	24.8 24.9	24.9	7.6 7.6	7.6	29.9 29.5	29.7	82.8 81.4	82.1	5.8 5.7	5.8	5.8	10.2 9.5	9.9		3.6 3.4	3.5	
				Surface	1	28.7 28.8	28.8	7.9 7.9	7.9	14.6 14.5	14.6	118.0 116.7	117.4	8.4 8.3	8.4	7.5	1.9 1.9	1.9		4.3 4.7	4.5	
30-May-14	Sunny	Calm	13:25	Middle	5.5	25.7 25.7	25.7	7.8 7.8	7.8	29.2 29.0	29.1	95.4 94.4	94.9	6.6 6.5	6.6	7.5	3.2 3.2	3.2	4.4	6.0 5.1	5.6	5.3
				Bottom	10	25.2 25.2	25.2	7.8 7.9	7.9	31.7 31.4	31.6	77.9 75.9	76.9	5.4 5.2	5.3	5.3	8.3 7.9	8.1		5.6 6.0	5.8	

Water Quality Monitoring Results at ST1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	1	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.6	23.6	7.9	7.9	31.0	30.9	80.1	80.1	5.9	5.9		6.3	6.1		5.6	5.5	
				Surface		23.6	23.0	7.8	7.9	30.7	30.9	80.1	00.1	5.9	5.5	5.9	5.8	0.1		5.4	3.3	
2-May-14	Fine	Calm	08:21	Middle	5	23.6	23.6	7.9	7.9	31.2	31.3	80.2	80.1	5.9	5.9	0.0	7.8	7.8	7.8	7.5	5.6	5.8
2 May 14	1 1110	Guiii	00.21	Mildale	ŭ	23.6	20.0	7.9	7.0	31.3	01.0	80.0	00.1	5.9	0.0		7.8	7.0	7.0	3.7	0.0	0.0
				Bottom	9	23.6	23.6	7.9	7.9	31.4	31.5	80.3	80.3	5.9	5.9	5.9	9.3	9.6		4.2	6.4	
						23.6		7.9		31.5		80.2		5.9	***		9.8			8.5		
				Surface	1	22.1	22.1	8.0	8.0	23.0	23.1	102.3	101.9	7.8	7.8		3.1	3.1		2.8	2.3	
						22.1		8.0		23.1		101.4		7.7		7.8	3.1			1.8		
5-May-14	Rainy	Moderate	10:18	Middle	5	22.0	22.1	8.1	8.1	29.4	29.4	102.9	103.9	7.6	7.7		4.1	4.1	4.4	4.4	4.6	3.5
						22.1 22.0		8.1 8.2	-	29.4 31.6		104.8 104.1		7.7 7.6			4.1 6.0		4	4.8 2.8		
				Bottom	9	22.0	22.0	8.1	8.2	31.5	31.6	104.1	104.2	7.6	7.6	7.6	6.1	6.1		4.1	3.5	
						23.4	l 	7.9	1	28.4		96.5		7.0			1.6	1		3.5		
				Surface	1	23.4	23.4	7.9	7.9	28.4	28.4	96.5	96.5	7.0	7.0		1.7	1.7		2.5	3.0	
						23.6		7.9		30.5		96.3		6.9		7.0	2.7			2.7		
7-May-14	Cloudy	Moderate	08:26	Middle	5	23.6	23.6	7.9	7.9	30.5	30.5	96.2	96.3	6.9	6.9		2.8	2.8	2.6	2.6	2.7	3.0
						23.6	22.2	7.9		31.1		96.6		6.9			3.3			1.9		
				Bottom	9	23.6	23.6	7.9	7.9	31.1	31.1	96.7	96.7	6.9	6.9	6.9	3.3	3.3		4.5	3.2	
Ī				0	4	21.6	21.6	7.7	7.7	18.8	40.0	80.3	80.6	6.3	C 4		3.5	2.5		3.8	2.0	
				Surface	1	21.6	21.6	7.6	7.7	18.9	18.9	80.8	80.6	6.4	6.4	6.1	3.4	3.5		3.8	3.8	
10-May-14	Rainy	Moderate	15:23	Middle	4.5	21.5	21.5	7.6	7.6	25.2	25.2	76.3	76.3	5.8	5.8	0.1	4.7	4.9	5.3	5.1	4.7	4.3
10-May-14	Railly	Moderate	15.25	Midule	4.0	21.5	21.5	7.6	7.0	25.1	25.2	76.2	70.3	5.8	5.6		5.0	4.9	5.5	4.3	4.7	4.3
				Bottom	8	21.5	21.5	7.7	7.7	27.5	27.5	75.7	75.8	5.7	5.7	5.7	7.2	7.6		3.7	4.4	
				Dottom	Ů	21.5	21.0	7.7	7.7	27.4	27.0	75.9	10.0	5.7	0.7	0.1	7.9	7.0		5.0	7.7	
				Surface	1	25.6	25.4	7.5	7.6	15.8	15.8	91.2	90.4	6.8	6.8		4.6	4.9		3.0	3.2	
						25.2		7.6		15.8		89.5		6.7		6.7	5.2			3.4		
12-May-14	Rainy	Moderate	17:23	Middle	4.5	23.7	23.7	7.7 7.7	7.7	24.3	24.3	88.5	89.0	6.5	6.6		8.9	8.4	10.1	3.9	4.2	4.0
						23.7 23.6		7.7		24.3 24.6		89.4 84.6		6.6 6.2			7.9 17.2	1		4.4		
				Bottom	8	23.7	23.7	7.7	7.7	24.6	24.6	83.6	84.1	6.2	6.2	6.2	16.7	17.0		4.0	4.5	
						23.8	l 	7.1	1	16.0		82.5		6.4			7.9	1		5.0		
				Surface	1	23.8	23.8	7.1	7.1	16.0	16.0	82.5	82.5	6.4	6.4		7.9	7.9		7.6	6.3	
						23.5		7.1		16.6		79.3		6.1		6.3	8.4			9.8		
14-May-14	Cloudy	Moderate	18:42	Middle	5	23.5	23.5	7.1	7.1	16.7	16.7	79.3	79.3	6.1	6.1		8.3	8.4	8.7	6.8	8.3	8.1
				D. 11	_	23.1	00.4	7.1	7.4	18.2	40.0	77.2	77.0	6.0	0.0	0.0	9.5	0.7		9.4	0.7	
				Bottom	9	23.1	23.1	7.1	7.1	18.3	18.3	77.3	77.3	6.0	6.0	6.0	9.8	9.7		10.0	9.7	
				Curfoss	1	25.1	25.1	7.6	7.6	20.0	20.0	77.4	77.1	5.7	5.7		7.3	7.0		6.0	8.5	
				Surface	'	25.1	25.1	7.6	7.6	20.0	20.0	76.8	11.1	5.7	5.7	5.6	7.3	7.3		11.0	0.5	
16-May-14	Cloudy	Rough	07:23	Middle	5	24.8	24.8	7.7	7.7	23.7	23.8	76.0	76.1	5.5	5.5	5.0	9.8	10.0	16.8	18.9	20.4	16.7
10 May 14	Oloudy	rtougn	07.20	Wildaio	Ů	24.7	24.0	7.7	7.7	23.8	20.0	76.1	70.1	5.5	0.0		10.1	10.0	10.0	21.8	20.4	10.7
				Bottom	9	24.2	24.2	7.8	7.8	28.4	28.5	76.5	76.6	5.5	5.5	5.5	32.3	33.2		20.4	21.3	
						24.2		7.8		28.5		76.6		5.5			34.0			22.1		
				Surface	1	25.8	25.8	7.5	7.5	16.9	17.0	99.9	98.7	7.4	7.3		5.5	6.1		9.7	9.8	
						25.7		7.5		17.0		97.5		7.2		7.2	6.7	ļ		9.8		
19-May-14	Fine	Calm	09:36	Middle	5	25.5	25.5	7.6 7.6	7.6	20.8	21.2	97.2	96.4	7.1	7.0		14.3	14.4	15.1	10.3	12.0	10.4
						25.4 25.1		7.7		21.5 23.9	<u> </u>	95.5 95.9		6.9 6.9			14.4 23.6		1	13.6 10.5		
				Bottom	9	24.9	25.0	7.7	7.7	25.3	24.6	94.8	95.4	6.8	6.9	6.9	26.2	24.9		8.2	9.4	
		<u> </u>	<u> </u>	<u> </u>		24.3	<u> </u>	1.1	<u> </u>	20.0		₹.0	<u> </u>	0.0	<u> </u>	<u> </u>	20.2	<u> </u>	<u> </u>	0.2	<u> </u>	<u> </u>

Water Quality Monitoring Results at ST1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	:h (m)	Tempera	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.8 24.8	24.8	7.3 7.3	7.3	16.0 16.0	16.0	100.2 100.2	100.2	7.6 7.6	7.6	7.5	4.2 4.4	4.3		4.5 4.9	4.7	
21-May-14	Rainy	Rough	11:26	Middle	5	24.8 24.8	24.8	7.3 7.3	7.3	17.4 17.5	17.5	98.5 98.2	98.4	7.4 7.4	7.4	7.5	4.7 4.8	4.8	5.0	3.5 4.3	3.9	4.3
				Bottom	9	24.4 24.4	24.4	7.4 7.4	7.4	24.2 24.2	24.2	90.4 90.4	90.4	6.6 6.6	6.6	6.6	6.0 6.0	6.0		3.8 5.0	4.4	
				Surface	1	25.1 25.1	25.1	8.1 8.1	8.1	14.3 14.3	14.3	96.2 96.2	96.2	7.3 7.3	7.3	7.3	3.8 3.8	3.8		4.7 4.8	4.8	
23-May-14	Rainy	Calm	13:30	Middle	5	25.1 25.1	25.1	8.1 8.1	8.1	18.0 17.7	17.9	97.9 97.6	97.8	7.3 7.3	7.3	7.5	4.4 4.6	4.5	4.4	4.5 5.1	4.8	4.9
				Bottom	9	24.7 24.7	24.7	8.1 8.1	8.1	27.2 27.1	27.2	102.1 102.0	102.1	7.3 7.3	7.3	7.3	4.8 4.7	4.8		5.5 4.5	5.0	
				Surface	1	26.5 25.0	25.8	7.7 7.5	7.6	17.0 17.0	17.0	88.3 85.8	87.1	6.5 6.4	6.5	6.4	6.0 5.9	6.0		8.4 8.2	8.3	
26-May-14	Fine	Calm	17:17	Middle	5	26.5 25.0	25.8	7.7 7.5	7.6	21.5 21.4	21.5	87.9 85.4	86.7	6.3 6.3	6.3	0.4	6.6 7.0	6.8	7.4	8.2 10.5	9.4	8.8
				Bottom	9	25.8 24.9	25.4	7.6 7.4	7.5	25.1 25.1	25.1	86.4 85.0	85.7	6.1 6.1	6.1	6.1	9.4 9.5	9.5		7.7 9.9	8.8	
				Surface	1	27.5 27.6	27.6	7.4 7.4	7.4	11.1 11.2	11.2	79.4 78.4	78.9	5.9 5.8	5.9	5.5	7.7 7.8	7.8		6.6 6.8	6.7	
28-May-14	Fine	Calm	18:44	Middle	5	26.3 26.3	26.3	7.5 7.5	7.5	19.9 20.0	20.0	70.6 69.9	70.3	5.1 5.0	5.1	0.0	14.8 14.9	14.9	15.6	3.6 1.1	2.4	4.8
				Bottom	9	26.2 26.2	26.2	7.5 7.5	7.5	20.8 21.5	21.2	79.6 79.8	79.7	5.7 5.7	5.7	5.7	24.6 23.3	24.0		4.5 6.0	5.3	
				Surface	1	28.5 28.6	28.6	7.9 7.9	7.9	17.5 17.2	17.4	110.9 107.9	109.4	7.8 7.6	7.7	7.0	2.4 2.5	2.5		4.8 2.5	3.7	
30-May-14	Fine	Calm	19:42	Middle	5	25.6 25.6	25.6	7.9 7.8	7.9	30.0 29.9	30.0	91.8 90.5	91.2	6.3 6.3	6.3	7.0	3.1 3.8	3.5	6.4	1.8 3.6	2.7	3.1
				Bottom	9	25.1 25.1	25.1	7.9 7.8	7.9	32.0 31.9	32.0	79.2 79.2	79.2	5.5 5.5	5.5	5.5	12.0 14.4	13.2		2.0 4.0	3.0	

Water Quality Monitoring Results at ST2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	1	рН	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.7 24.7	24.7	7.9 7.8	7.9	29.5 29.4	29.5	79.7 78.5	79.1	5.8 5.7	5.8		2.6 2.7	2.7		4.1 3.5	3.8	
2-May-14	Fine	Calm	14:51	Middle	4	23.9 24.0	24.0	8.0 7.9	8.0	31.5 31.5	31.5	82.2 79.6	80.9	6.0 5.8	5.9	5.9	2.3	2.3	3.0	5.8 3.4	4.6	4.1
				Bottom	7	23.7	23.7	7.9	7.9	32.0	32.0	82.5	81.2	6.0	5.9	5.9	3.8	4.1		4.4	3.9	
				Surface	1	23.7 22.2	22.2	7.9 8.1	8.1	32.0 26.2	26.3	79.8 98.0	97.7	5.8 7.3	7.3		4.3 2.2	2.1		3.3	3.6	
5-May-14	Rainy	Moderate	15:57	Middle	4.5	22.2 22.0	22.0	8.1 8.1	8.1	26.4 31.9	31.8	97.4 99.3	99.3	7.3 7.2	7.2	7.3	3.2	3.0	3.1	3.7 2.8	3.3	3.8
	,			Bottom	8	22.0 21.9	21.9	8.1 8.1	8.2	31.6 32.5	32.6	99.2 99.4	99.4	7.2 7.2	7.2	7.2	2.7 4.1	4.2	1	3.7 4.9	4.4	
				Dottom	Ů	21.9	21.0	8.2	0.2	32.6	02.0	99.4	00.1	7.2	1.2	7.2	4.3	1.2		3.8	77	
				Surface	1	23.3 23.3	23.3	7.9 7.9	7.9	28.2 28.2	28.2	80.1 80.1	80.1	5.8 5.8	5.8	5.8	3.6 3.9	3.8		5.5 3.7	4.6	
7-May-14	Cloudy	Moderate	17:52	Middle	4	23.6 23.5	23.6	7.9 7.9	7.9	29.8 29.9	29.9	80.9 81.1	81.0	5.8 5.8	5.8	0.0	4.7 4.7	4.7	5.0	2.6 2.7	2.7	3.4
				Bottom	7	23.6 23.6	23.6	7.9 7.9	7.9	31.1 31.0	31.1	82.3 82.6	82.5	5.8 5.9	5.9	5.9	6.6 6.6	6.6		2.9 2.9	2.9	
				Surface	1	21.5 21.5	21.5	7.7 7.7	7.7	18.4 18.4	18.4	91.5 89.0	90.3	7.3 7.1	7.2	6.7	3.5 3.6	3.6		5.0 1.2	3.1	
10-May-14	Rainy	Moderate	10:29	Middle	4	21.4 21.4	21.4	7.6 7.6	7.6	20.4 20.5	20.5	79.3 77.8	78.6	6.2 6.1	6.2	0.7	3.9 4.8	4.4	4.6	3.2 0.7	2.0	3.1
				Bottom	7	21.4 21.4	21.4	7.8 7.8	7.8	24.5 25.4	25.0	71.5 71.5	71.5	5.5 5.5	5.5	5.5	5.5 5.9	5.7		5.5 3.0	4.3	
				Surface	1	24.1 24.1	24.1	7.6 7.6	7.6	18.4 18.4	18.4	95.4 97.9	96.7	7.2 7.4	7.3		4.4 5.0	4.7		4.4 6.2	5.3	
12-May-14	Rainy	Moderate	11:42	Middle	4	23.6 23.6	23.6	7.7 7.7	7.7	23.5	23.5	88.7 90.1	89.4	6.6 6.7	6.7	7.0	5.2 6.1	5.7	8.9	4.4 4.3	4.4	5.7
				Bottom	7	23.4	23.4	7.8	7.8	30.0	30.1	88.6	89.4	6.4	6.5	6.5	16.2	16.2		7.3	7.4	
				Surface	1	23.4 23.6	23.6	7.8 7.3	7.3	30.1 19.0	19.0	90.2 89.8	89.8	6.5 6.8	6.8		16.2 4.1	4.0		7.5 9.3	7.5	
14-May-14	Cloudy	Moderate	12:20	Middle	4	23.6 22.7	22.7	7.2 7.3	7.3	19.0 21.4	21.3	89.8 89.8	89.8	6.8 6.9	6.9	6.9	3.9 4.5	4.6	4.9	5.6 5.4	5.3	6.5
	o.ouu,	moderate	12.20	Bottom	7	22.7 22.2	22.2	7.3 7.3	7.3	21.2 24.9	25.0	89.8 86.2	86.2	6.9 6.5	6.5	6.5	4.7 6.1	6.1		5.2 6.4	6.6	0.0
				Surface	1	22.1 26.0	26.0	7.3 7.8	7.8	25.0 20.9	21.0	86.1 87.2	87.6	6.5 6.3	6.3	0.5	6.1 4.3	4.6		6.7 4.9	4.6	
16-May-14	Claudy	Dough	13:41	Middle	4	26.0 25.7	25.7	7.8 7.8	7.8	21.0 24.0	23.9	87.9 93.2	93.1	6.3 6.6	6.6	6.5	4.9 5.5	5.8	14.5	4.2 6.8	7.0	6.2
16-May-14	Cloudy	Rough	13.41			25.7 25.0		7.8 7.8		23.8 25.7		92.9 83.1		6.6 5.9			6.0 35.2		14.5	7.2 6.3		0.2
				Bottom	7	25.1 27.5	25.1	7.8	7.8	25.6 13.4	25.7	83.1 103.6	83.1	5.9 7.6	5.9	5.9	31.0	33.1	1	7.5	6.9	
				Surface	1	27.6	27.6	7.6	7.6	13.4	13.4	102.3	103.0	7.5	7.6	7.5	4.8	4.8		5.8	5.7	
19-May-14	Fine	Calm	15:48	Middle	4	25.4 25.3	25.4	7.7 7.7	7.7	24.5 23.9	24.2	102.2 100.0	101.1	7.3 7.2	7.3		3.7 4.0	3.9	7.2	5.5 5.1	5.3	5.1
				Bottom	7	24.7 24.7	24.7	7.7 7.7	7.7	26.8 27.3	27.1	97.2 94.8	96.0	6.9 6.7	6.8	6.8	12.3 13.4	12.9		4.5 4.2	4.4	

Water Quality Monitoring Results at ST2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5 24.5	24.5	7.3 7.3	7.3	17.2 17.2	17.2	80.7 80.7	80.7	6.1 6.1	6.1	6.1	7.0 7.0	7.0		4.8 5.0	4.9	
21-May-14	Rainy	Rough	16:53	Middle	3.5	24.5 24.5	24.5	7.3 7.3	7.3	17.2 17.2	17.2	80.3 80.3	80.3	6.1 6.1	6.1	0.1	7.4 7.3	7.4	7.4	4.4 4.7	4.6	4.5
				Bottom	6	23.7 23.7	23.7	7.3 7.3	7.3	32.4 32.4	32.4	77.9 77.8	77.9	5.9 5.9	5.9	5.9	7.8 7.8	7.8		3.7 4.4	4.1	
				Surface	1	24.1 24.1	24.1	7.6 7.6	7.6	10.1 10.1	10.1	84.3 84.3	84.3	6.7 6.7	6.7	6.6	3.8 3.7	3.8		5.8 5.4	5.6	
23-May-14	Rainy	Calm	08:44	Middle	4	23.9 23.9	23.9	7.6 7.6	7.6	14.6 14.6	14.6	84.4 82.3	83.4	6.6 6.4	6.5	0.0	3.6 3.5	3.6	4.2	3.4 4.4	3.9	4.7
				Bottom	7	23.0 23.1	23.1	7.5 7.5	7.5	19.7 19.5	19.6	71.5 70.1	70.8	5.5 5.4	5.5	5.5	5.3 5.3	5.3		3.7 5.4	4.6	
				Surface	1	24.6 26.5	25.6	7.6 7.6	7.6	16.7 16.7	16.7	84.5 87.2	85.9	6.4 6.4	6.4	6.4	5.0 5.1	5.1		4.5 5.7	5.1	
26-May-14	Sunny	Calm	11:30	Middle	4	26.6 25.3	26.0	7.7 7.6	7.7	22.0 21.9	22.0	88.9 86.6	87.8	6.3 6.3	6.3	0.4	5.9 5.8	5.9	6.2	4.0 3.5	3.8	4.2
				Bottom	7	26.6 25.3	26.0	7.7 7.6	7.7	24.9 24.8	24.9	87.5 85.6	86.6	6.1 6.1	6.1	6.1	7.7 7.5	7.6		3.7 3.5	3.6	
				Surface	1	27.8 27.8	27.8	7.7 7.7	7.7	11.8 11.9	11.9	112.7 113.3	113.0	8.3 8.3	8.3	7.6	2.6 2.3	2.5		1.8 3.6	2.7	
28-May-14	Sunny	Calm	12:34	Middle	4	26.0 26.0	26.0	7.6 7.6	7.6	20.7 19.6	20.2	93.8 91.8	92.8	6.8 6.7	6.8	7.0	2.1 2.2	2.2	5.4	2.4 3.3	2.9	2.7
				Bottom	7	24.8 24.8	24.8	7.6 7.5	7.6	30.0 30.1	30.1	85.7 84.2	85.0	6.0 5.9	6.0	6.0	11.1 12.0	11.6		2.8 2.1	2.5	
	•			Surface	1	27.9 27.9	27.9	7.4 7.5	7.5	19.6 19.5	19.6	105.6 103.9	104.8	7.4 7.3	7.4	7.1	2.1 2.0	2.1		2.9 3.6	3.3	
30-May-14	Sunny	Calm	13:17	Middle	4	26.5 26.6	26.6	7.4 7.5	7.5	25.4 23.5	24.5	94.3 94.8	94.6	6.6 6.7	6.7	7.1	1.3 1.1	1.2	2.2	6.1 4.5	5.3	3.8
				Bottom	7	25.4 25.4	25.4	7.4 7.5	7.5	30.6 30.6	30.6	78.7 80.7	79.7	5.4 5.6	5.5	5.5	3.6 3.2	3.4		2.7 2.6	2.7	

Water Quality Monitoring Results at ST2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ı	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.9 23.9	23.9	7.8 7.8	7.8	23.6 23.5	23.6	86.5 85.4	86.0	6.6 6.5	6.6	0.7	3.8 3.7	3.8		5.0 4.2	4.6	
2-May-14	Fine	Calm	08:10	Middle	4	23.8 23.8	23.8	7.9 7.9	7.9	27.4 27.5	27.5	89.9 90.4	90.2	6.7 6.8	6.8	6.7	3.4 3.1	3.3	3.7	5.8 4.8	5.3	4.7
				Bottom	7	23.7 23.7	23.7	8.0 8.0	8.0	28.6 28.4	28.5	91.7 91.6	91.7	6.8 6.8	6.8	6.8	3.9 3.9	3.9		3.8 4.7	4.3	
				Surface	1	22.2 22.2	22.2	8.0 8.0	8.0	22.8 22.8	22.8	98.3 98.5	98.4	7.5 7.5	7.5		3.1 3.0	3.1		5.8 4.6	5.2	
5-May-14	Rainy	Moderate	10:08	Middle	3.5	22.1 22.1 22.1	22.1	8.1 8.0	8.1	24.6	25.2	97.8 98.0	97.9	7.4 7.4	7.4	7.5	2.6 2.7	2.7	3.8	4.9	4.1	4.4
				Bottom	6	22.0	22.0	8.2	8.2	25.7 31.2	31.2	101.0 100.6	100.8	7.4	7.4	7.4	5.6	5.7		3.3	3.8	
				Surface	1	22.0 23.4	23.4	7.9	7.9	31.2 28.3	28.3	77.6	77.6	7.3 5.6	5.6		5.7 2.5	2.6		3.7 5.4	4.3	
7-May-14	Cloudy	Moderate	08:11	Middle	4	23.3 23.5	23.5	7.9 7.9	7.9	28.3 29.1	29.1	77.6 77.4	77.5	5.6 5.6	5.6	5.6	2.6 3.5	3.6	3.9	3.2	3.0	3.3
7 May 14	Oloudy	Woderate	00.11	Bottom	7	23.5 23.6	23.6	7.9 8.0	8.0	29.1 31.1	31.2	77.5 77.3	77.3	5.6 5.5	5.5	5.5	3.6 5.7	5.6	0.0	2.6 3.5	2.6	0.0
				Surface	1	23.6 21.7	21.7	8.0 7.6	7.6	31.2 18.7	18.7	77.3 77.5	77.2	5.5 6.1	6.1	5.5	5.4 3.4	3.5		1.7 4.4	4.8	
40 May 44	Daine	Madausta	45.40			21.7 21.5		7.6 7.6		18.7 26.1		76.9 72.6	72.9	6.1 5.5		5.9	3.6 5.6		5.0	5.1 5.9	4.9	4.7
10-May-14	Rainy	Moderate	15:40	Middle	5	21.5 21.5	21.5	7.6 7.7	7.6	26.1 27.5	26.1	73.2 72.0		5.6 5.4	5.6	F.4	5.0 6.2	5.3	5.0	3.8 2.8		4.7
				Bottom	9	21.5 25.6	21.5	7.7 7.5	7.7	27.1 16.2	27.3	71.9 90.0	72.0	5.4 6.7	5.4	5.4	6.2	6.2		5.8 3.8	4.3	
				Surface	1	25.2 23.7	25.4	7.6	7.6	16.2 24.3	16.2	88.2 88.5	89.1	6.6	6.7	6.6	5.1	4.7		4.4	4.1	
12-May-14	Rainy	Moderate	17:04	Middle	4	23.7	23.7	7.7	7.7	24.3	24.3	87.6 82.3	88.1	6.5 6.1	6.5		8.5 15.3	8.3	9.6	3.3	3.7	3.8
				Bottom	7	23.7	23.7	7.7	7.7	24.5	24.6	83.7	83.0	6.2	6.2	6.2	16.2	15.8		3.8	3.7	
				Surface	1	23.1 23.1	23.1	7.0 7.0	7.0	15.7 15.7	15.7	89.2 89.2	89.2	7.0 7.0	7.0	6.9	6.1 5.9	6.0		9.4 9.0	9.2	
14-May-14	Cloudy	Moderate	18:32	Middle	4.5	22.8 22.8	22.8	7.0 7.0	7.0	17.4 17.4	17.4	87.3 86.9	87.1	6.8 6.8	6.8		11.4 11.7	11.6	11.1	3.9 2.6	3.3	5.6
				Bottom	8	22.6 22.6	22.6	7.1 7.0	7.1	18.7 18.7	18.7	85.2 85.2	85.2	6.6 6.6	6.6	6.6	15.6 15.5	15.6		3.8 4.8	4.3	
				Surface	1	25.0 25.0	25.0	7.6 7.6	7.6	19.9 19.8	19.9	77.9 77.4	77.7	5.8 5.7	5.8	5.7	6.3 6.7	6.5		7.6 3.8	5.7	
16-May-14	Cloudy	Rough	07:12	Middle	4	24.4 24.4	24.4	7.7 7.7	7.7	25.9 25.6	25.8	77.7 77.8	77.8	5.6 5.6	5.6	· · ·	16.5 15.4	16.0	34.4	17.4 9.4	13.4	12.6
				Bottom	7	24.2 24.2	24.2	7.7 7.7	7.7	28.0 28.0	28.0	76.8 76.9	76.9	5.5 5.5	5.5	5.5	80.6 80.6	80.6		20.6 16.6	18.6	
				Surface	1	25.9 25.9	25.9	7.4 7.3	7.4	12.8 12.9	12.9	102.3 102.2	102.3	7.7 7.7	7.7	7.5	4.6 4.5	4.6		5.0 6.3	5.7	
19-May-14	Fine	Calm	09:26	Middle	4	25.5 25.4	25.5	7.5 7.5	7.5	19.0 19.5	19.3	97.4 97.8	97.6	7.2 7.2	7.2	7.5	9.5 8.2	8.9	8.9	6.8 4.9	5.9	5.7
				Bottom	7	25.2 25.0	25.1	7.6 7.6	7.6	21.5 23.7	22.6	99.7 100.7	100.2	7.3 7.3	7.3	7.3	12.8 13.3	13.1	1	6.2	5.5]

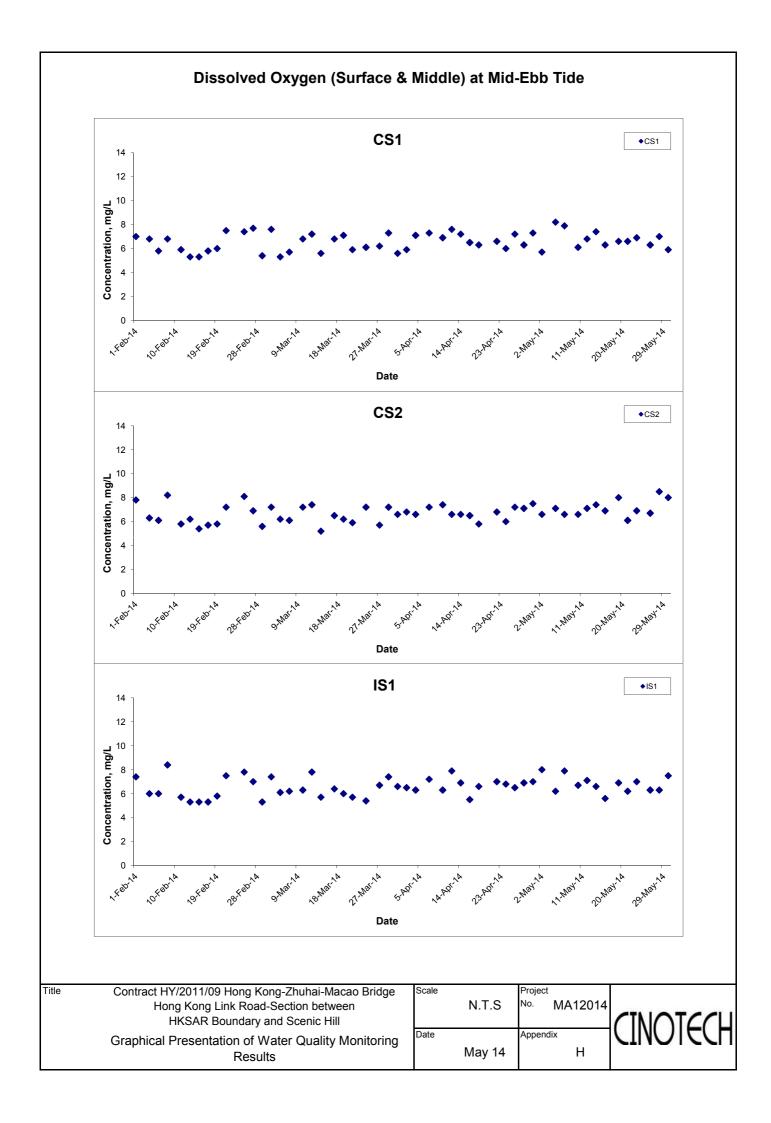
Water Quality Monitoring Results at ST2 - Mid-Flood Tide

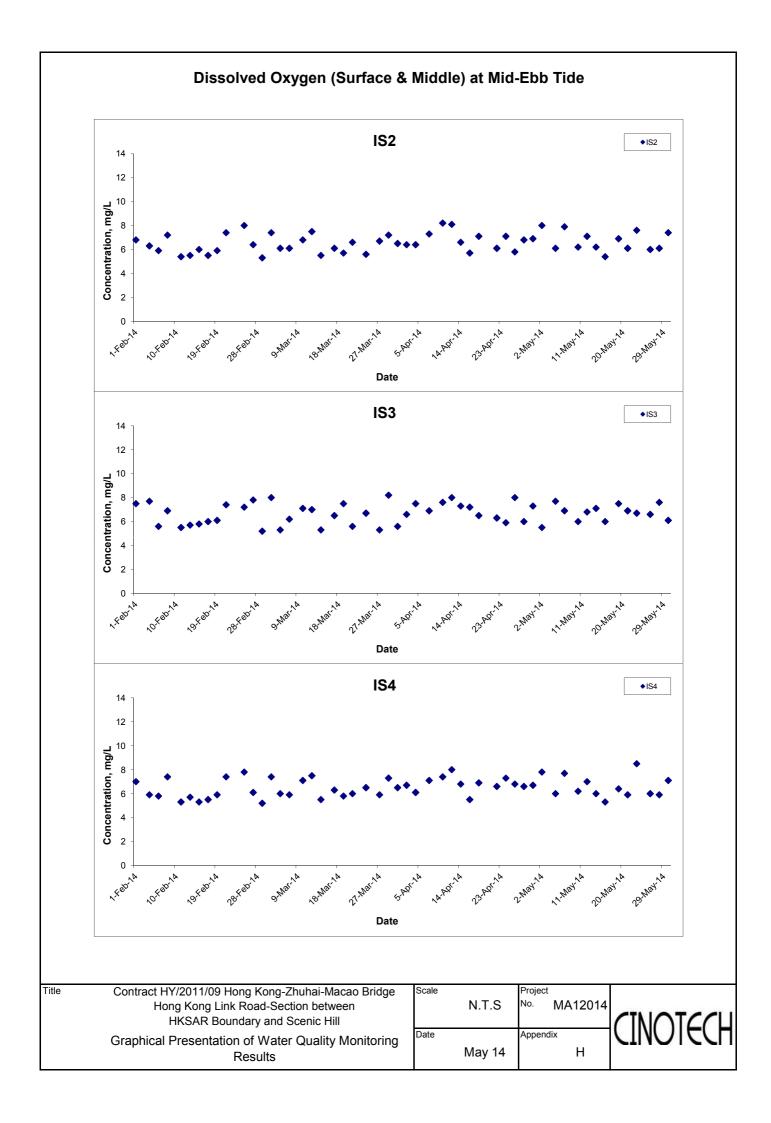
Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.8 24.8	24.8	7.0 7.0	7.0	12.7 12.7	12.7	102.3 102.6	102.5	7.9 7.9	7.9	8.0	4.5 4.6	4.6		6.6 6.5	6.6	
21-May-14	Rainy	Rough	11:10	Middle	4.5	24.8 24.8	24.8	7.0 7.0	7.0	12.7 12.7	12.7	103.1 103.1	103.1	8.0 8.0	8.0	6.0	4.5 4.3	4.4	6.0	4.8 5.1	5.0	5.0
				Bottom	8	24.0 24.0	24.0	7.4 7.4	7.4	27.9 27.9	27.9	98.7 98.5	98.6	7.1 7.1	7.1	7.1	8.8 8.9	8.9		2.7 4.3	3.5	
				Surface	1	25.3 25.3	25.3	8.0 8.0	8.0	14.5 14.5	14.5	98.7 98.7	98.7	7.5 7.5	7.5	7.5	3.9 3.5	3.7		8.2 8.3	8.3	
23-May-14	Rainy	Calm	13:24	Middle	4.5	25.1 25.1	25.1	8.0 8.0	8.0	20.1 20.1	20.1	101.5 101.4	101.5	7.5 7.5	7.5	7.5	3.8 3.7	3.8	3.9	6.9 4.2	5.6	6.0
				Bottom	8	24.2 24.3	24.3	8.0 8.0	8.0	26.1 25.8	26.0	103.0 103.1	103.1	7.4 7.5	7.5	7.5	4.2 4.1	4.2		3.9 4.3	4.1	
				Surface	1	26.6 26.5	26.6	7.7 7.7	7.7	17.0 17.0	17.0	93.1 91.6	92.4	6.8 6.7	6.8	6.6	4.6 4.5	4.6		9.6 11.6	10.6	
26-May-14	Fine	Calm	17:09	Middle	4	26.5 26.5	26.5	7.8 7.7	7.8	22.4 22.4	22.4	88.9 88.1	88.5	6.3 6.2	6.3	0.0	6.1 6.6	6.4	7.6	10.0 9.0	9.5	10.0
				Bottom	7	26.5 26.5	26.5	7.8 7.7	7.8	24.9 24.8	24.9	86.1 85.5	85.8	6.0 6.0	6.0	6.0	11.9 11.6	11.8		9.4 10.1	9.8	
				Surface	1	27.5 27.5	27.5	7.6 7.6	7.6	13.2 13.2	13.2	94.9 95.6	95.3	7.0 7.0	7.0	6.6	4.9 4.8	4.9		6.6 5.4	6.0	
28-May-14	Fine	Calm	18:33	Middle	4	26.7 26.8	26.8	7.5 7.5	7.5	17.2 16.3	16.8	84.0 82.7	83.4	6.1 6.0	6.1	0.0	6.1 6.1	6.1	7.9	5.2 6.9	6.1	7.0
				Bottom	7	26.1 26.1	26.1	7.5 7.5	7.5	21.5 21.7	21.6	90.7 89.5	90.1	6.5 6.4	6.5	6.5	12.5 13.0	12.8		10.2 7.7	9.0	
				Surface	1	27.7 27.8	27.8	7.8 7.8	7.8	20.2 20.0	20.1	103.8 103.3	103.6	7.3 7.3	7.3	7.1	2.7 2.8	2.8		3.8 2.1	3.0	
30-May-14	Fine	Calm	19:34	Middle	4	26.6 26.5	26.6	7.8 7.8	7.8	23.7 23.9	23.8	98.8 96.9	97.9	6.9 6.8	6.9	7.1	2.4 2.6	2.5	2.9	2.7 2.4	2.6	3.1
				Bottom	7	25.9 26.0	26.0	7.8 7.8	7.8	27.1 26.1	26.6	86.9 84.3	85.6	6.1 5.9	6.0	6.0	3.1 3.5	3.3		3.7 3.6	3.7	

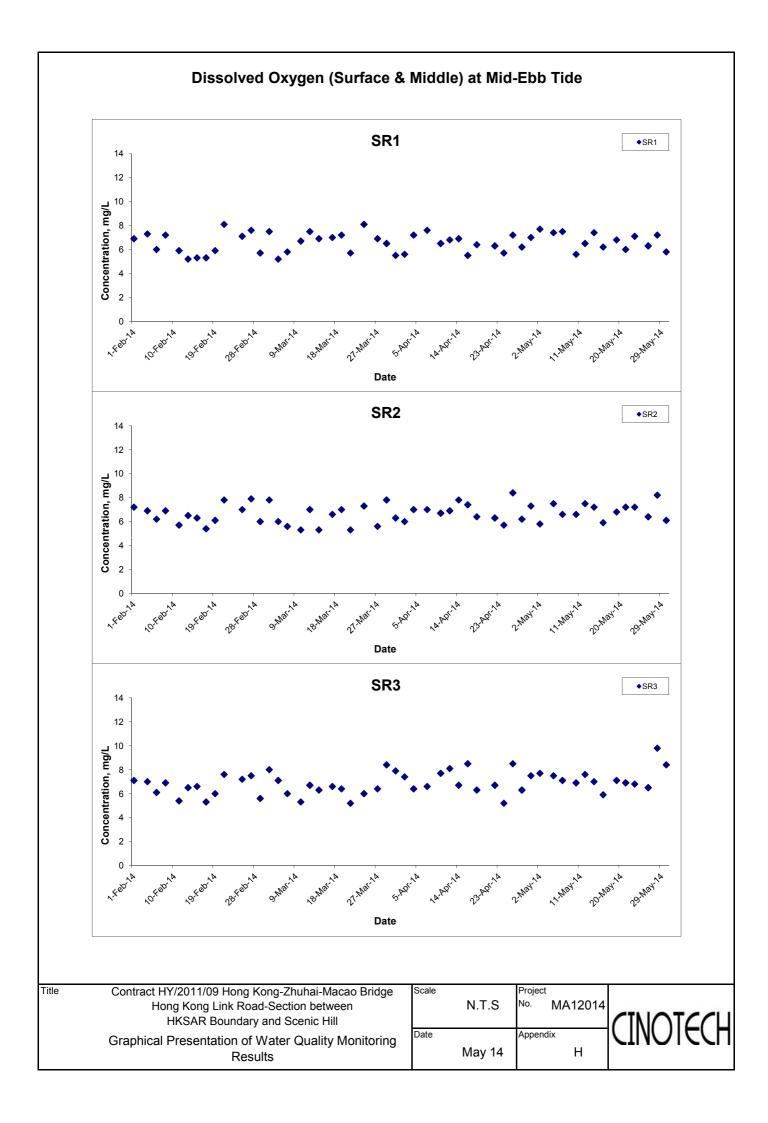
Water Quality Monitoring Results at ST3 - Mid-Ebb Tide

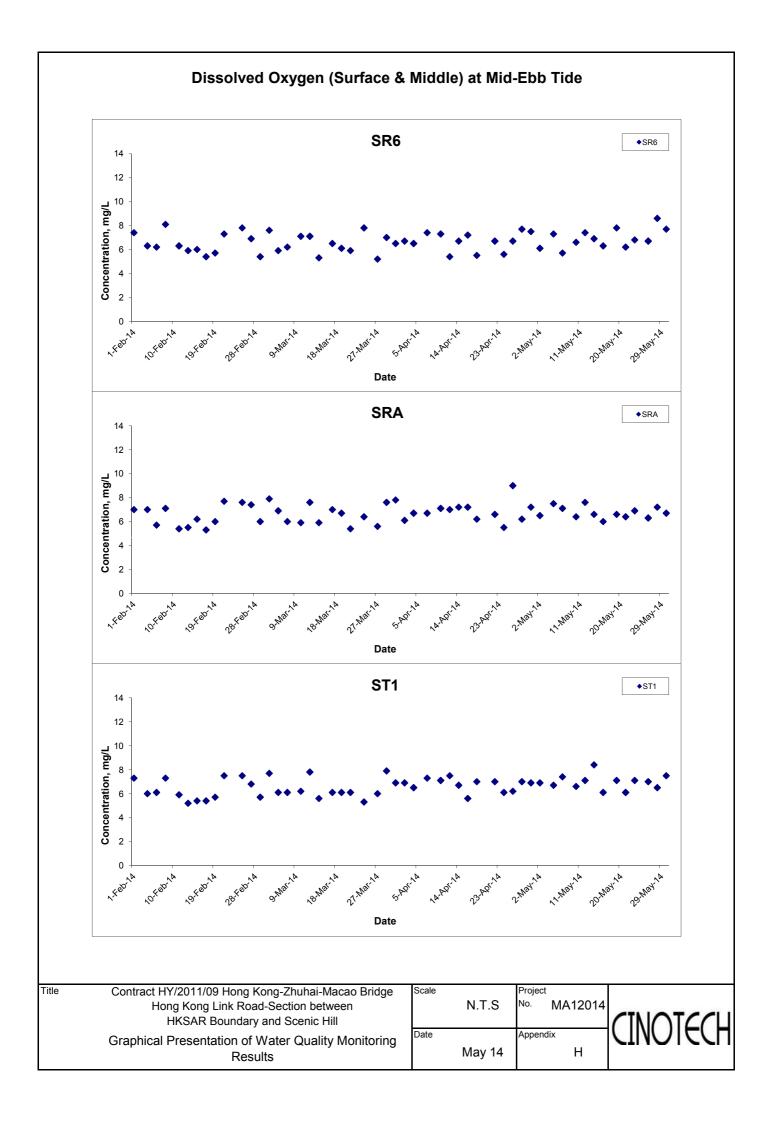
Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.6 24.3	24.5	7.9 7.9	7.9	30.7 30.9	30.8	73.8 80.2	77.0	5.2 5.6	5.4		2.9 3.0	3.0		4.3 2.7	3.5	
2-May-14	Fine	Calm	14:20	Middle	7	23.7	23.7	7.9 7.9	7.9	32.9	32.9	77.2 77.9	77.6	5.4 5.5	5.5	5.5	4.7	4.4	7.9	3.9	4.0	3.8
				Bottom	13	23.7	23.6	7.9	7.9	32.8 33.2	33.2	78.7	78.5	5.5	5.5	5.5	16.0	16.3		3.3	3.8	
				Surface	1	23.6 22.0	22.0	7.9 8.1	8.1	33.2 30.9	30.9	78.3 94.0	92.2	5.5 6.9	6.8		16.5 2.7	2.7		4.3 5.3	4.1	
5-May-14	Rainy	Moderate	15:39	Middle	7.5	22.0 21.7	21.8	8.1 8.2	8.2	30.9 33.7	33.7	90.3 90.6	90.0	6.6 6.5	6.5	6.7	3.3	3.4	3.3	2.8 4.6	4.5	3.8
o may 14	rany	Woderate	10.00	Bottom	14	21.8 21.7	21.7	8.2 8.2	8.2	33.7 34.0	34.1	89.4 89.7	89.4	6.5 6.5	6.5	6.5	3.5 3.5	3.7	0.0	2.7	2.8	0.0
				Dottom	17	21.7	21.7	8.2	0.2	34.1	04.1	89.1	00.4	6.4	0.0	0.0	3.8	0.7		2.9	2.0	
				Surface	1	23.3 23.3	23.3	7.8 7.8	7.8	26.5 27.1	26.8	103.7 102.6	103.2	7.6 7.5	7.6	7.5	1.9	1.9		2.1 4.2	3.2	
7-May-14	Cloudy	Moderate	17:50	Middle	7.5	23.6 23.6	23.6	7.9 7.9	7.9	32.3 32.2	32.3	106.5 104.1	105.3	7.5 7.3	7.4		3.7 3.4	3.6	3.5	3.4 2.8	3.1	2.9
				Bottom	14	23.6 23.6	23.6	7.9 7.9	7.9	32.6 32.6	32.6	103.1 101.1	102.1	7.3 7.1	7.2	7.2	5.3 4.7	5.0		1.8 2.9	2.4	
				Surface	1	21.6 21.5	21.6	7.7 7.7	7.7	30.7 27.6	29.2	80.8 74.0	77.4	6.0 5.6	5.8	5.7	3.7 3.7	3.7		4.7 4.8	4.8	
10-May-14	Rainy	Moderate	11:13	Middle	5.5	21.5 21.5	21.5	7.7 7.8	7.8	30.6 31.6	31.1	80.4 71.7	76.1	5.9 5.3	5.6	0.1	9.5 9.6	9.6	6.1	5.1 6.6	5.9	5.2
				Bottom	10	21.7 21.6	21.7	7.7 7.7	7.7	23.4 23.4	23.4	76.6 70.0	73.3	5.9 5.4	5.7	5.7	4.8 4.9	4.9		5.0 4.8	4.9	
				Surface	1	24.5 24.6	24.6	7.7 7.7	7.7	10.7 11.4	11.1	93.8 93.4	93.6	7.4 7.3	7.4		3.4 3.8	3.6		4.2 2.9	3.6	
12-May-14	Rainy	Moderate	12:30	Middle	7	23.9 23.9	23.9	7.7 7.7	7.7	17.5 16.7	17.1	91.3 92.1	91.7	7.0 7.1	7.1	7.3	4.4 4.5	4.5	9.0	9.8 6.6	8.2	5.4
				Bottom	13	23.5 23.5	23.5	7.8 7.8	7.8	26.1 26.2	26.2	89.8 89.3	89.6	6.6 6.5	6.6	6.6	18.6 19.2	18.9		4.5 4.4	4.5	
				Surface	1	23.3	23.3	7.4	7.4	16.8	16.8	98.7	98.2	7.7	7.7		2.7	2.7		3.2	3.0	
14-May-14	Cloudy	Moderate	12:37	Middle	6.5	23.3	23.1	7.4	7.4	16.7 18.8	18.4	97.6 96.7	96.6	7.6 7.4	7.4	7.6	3.3	3.2	6.0	1.6	2.1	2.8
	,			Bottom	12	23.2 22.4	22.6	7.4 7.3	7.4	18.0 23.2	22.0	96.5 92.2	91.7	7.4 7.0	7.0	7.0	3.0 11.3	12.1		2.5 2.6	3.2	
				Surface	1	22.8 24.9	24.9	7.4	7.8	20.8	20.8	91.1 85.2	84.9	7.0 6.3	6.3		12.8 4.5	4.7		3.7 9.4	8.8	
16-May-14	Cloudy	Rough	13:59	Middle	6.5	24.8 24.2	23.8	7.8 7.8	7.8	20.9 24.2	25.1	84.5 82.9	82.2	6.2 6.1	6.1	6.2	4.9 5.3	5.5	9.7	8.2 7.2	6.4	8.6
.5 may 14	Siduay	1 tough	10.00	Bottom	12	23.3 23.2	23.3	7.8 7.8	7.8	26.0 29.1	29.2	81.4 79.6	79.5	6.0 5.8	5.8	5.8	5.7 17.7	18.9	0.7	5.6 8.7	10.5	0.0
						23.3 25.0		7.8 7.7		29.2		79.4 92.0		5.7 6.8		3.0	20.0			12.2 11.8		
40.14	- -	0.1	450.	Surface	1	25.0 25.0	25.0	7.8 7.8	7.8	20.1 25.0	20.4	91.6 94.0	91.8	6.8 6.7	6.8	6.8	18.4 16.1	18.6	40.0	15.7 9.1	13.8	4
19-May-14	Fine	Calm	15:34	Middle	5.5	25.0 25.0	25.0	7.8 7.8	7.8	25.4 24.5	25.2	94.4	94.2	6.8	6.8		16.8	16.5	16.9	9.6	9.4	11.8
				Bottom	10	25.0	25.0	7.8	7.8	23.5	24.0	93.6	93.8	6.8	6.8	6.8	14.6	15.6		9.1	12.2	

Water Quality Monitoring Results at ST3 - Mid-Ebb Tide

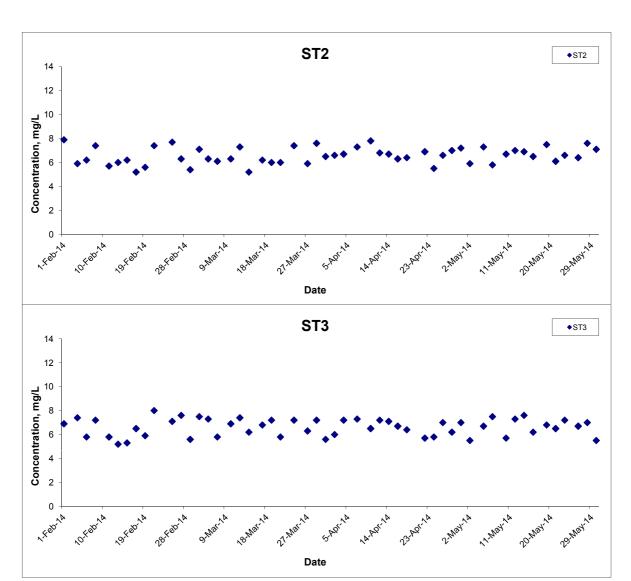

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Борг	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	24.5 24.5	24.5	7.2 7.3	7.3	15.0 15.1	15.1	93.2 92.4	92.8	7.1 7.1	7.1	6.5	2.8 2.7	2.8		6.7 3.9	5.3	
21-May-14	Rainy	Rough	16:51	Middle	6.5	22.8 22.6	22.7	7.5 7.3	7.4	27.0 29.1	28.1	79.9 79.2	79.6	5.9 5.8	5.9	0.0	7.4 7.4	7.4	6.9	5.3 3.9	4.6	4.9
				Bottom	12	22.1 22.1	22.1	7.6 7.6	7.6	32.2 32.2	32.2	68.0 66.8	67.4	4.9 4.8	4.9	4.9	10.5 10.6	10.6		5.2 4.5	4.9	
				Surface	1	25.6 25.6	25.6	7.5 7.5	7.5	11.9 12.0	12.0	95.3 95.7	95.5	7.3 7.3	7.3	7.2	4.2 4.2	4.2		4.5 4.4	4.5	
23-May-14	Rainy	Calm	09:36	Middle	7	25.4 25.4	25.4	7.6 7.6	7.6	14.5 14.1	14.3	93.7 94.0	93.9	7.1 7.1	7.1	7.2	7.0 7.8	7.4	8.6	3.9 4.1	4.0	4.3
				Bottom	13	24.4 24.7	24.6	7.6 7.6	7.6	24.7 22.8	23.8	83.6 84.9	84.3	6.1 6.2	6.2	6.2	14.0 14.3	14.2		4.5 4.5	4.5	
				Surface	1	27.9 28.0	28.0	7.6 7.6	7.6	15.1 14.8	15.0	98.3 97.8	98.1	7.1 7.1	7.1	6.7	3.7 3.9	3.8		3.7 3.2	3.5	
26-May-14	Sunny	Calm	12:14	Middle	7	26.2 26.4	26.3	7.6 7.6	7.6	22.4 21.6	22.0	87.5 88.1	87.8	6.2 6.3	6.3	0.7	2.9 2.9	2.9	6.5	3.5 4.1	3.8	4.0
				Bottom	13	25.1 25.0	25.1	7.6 7.6	7.6	29.7 32.7	31.2	81.1 79.1	80.1	5.7 5.4	5.6	5.6	11.7 14.1	12.9		5.4 3.8	4.6	
				Surface	1	25.3 25.2	25.3	7.3 7.4	7.4	19.2 19.4	19.3	98.7 94.2	96.5	7.3 7.0	7.2	7.0	4.2 4.9	4.6		2.0 4.0	3.0	
28-May-14	Sunny	Calm	13:28	Middle	7	24.4 24.5	24.5	7.4 7.4	7.4	21.6 21.3	21.5	89.0 91.2	90.1	6.6 6.7	6.7	7.0	5.9 6.6	6.3	8.0	5.1 4.9	5.0	4.4
				Bottom	13	24.1 24.2	24.2	7.4 7.4	7.4	28.9 29.2	29.1	86.9 87.0	87.0	6.2 6.2	6.2	6.2	12.3 13.6	13.0		5.7 4.6	5.2	
				Surface	1	26.4 26.4	26.4	7.8 7.8	7.8	24.7 24.7	24.7	81.1 81.1	81.1	5.7 5.7	5.7	5.5	1.2 1.2	1.2		3.6 5.0	4.3	
30-May-14	Sunny	Calm	13:38	Middle	7	25.9 26.0	26.0	7.7 7.7	7.7	26.0 25.8	25.9	74.3 74.2	74.3	5.2 5.2	5.2	5.5	1.8 1.5	1.7	1.5	0.8 4.3	2.6	4.0
				Bottom	13	27.1 26.0	26.6	7.8 7.7	7.8	28.5 28.8	28.7	85.7 75.5	80.6	5.8 5.2	5.5	5.5	1.5 1.5	1.5		3.8 6.5	5.2	

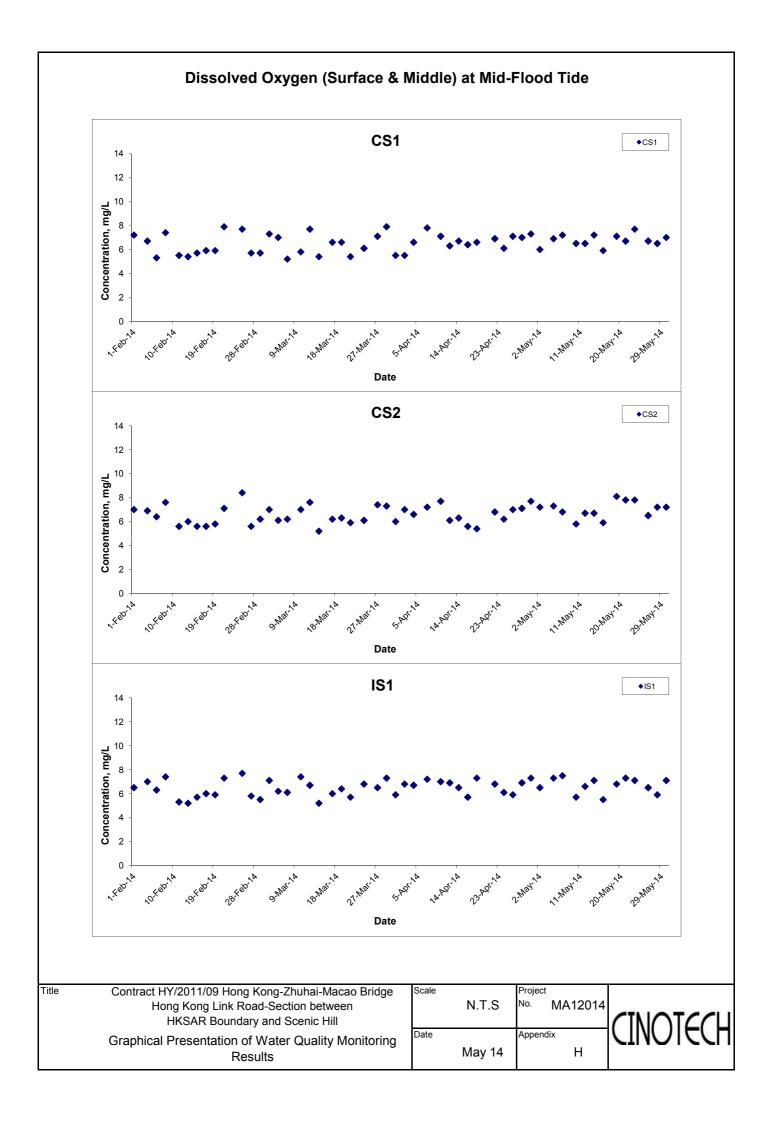

Water Quality Monitoring Results at ST3 - Mid-Flood Tide

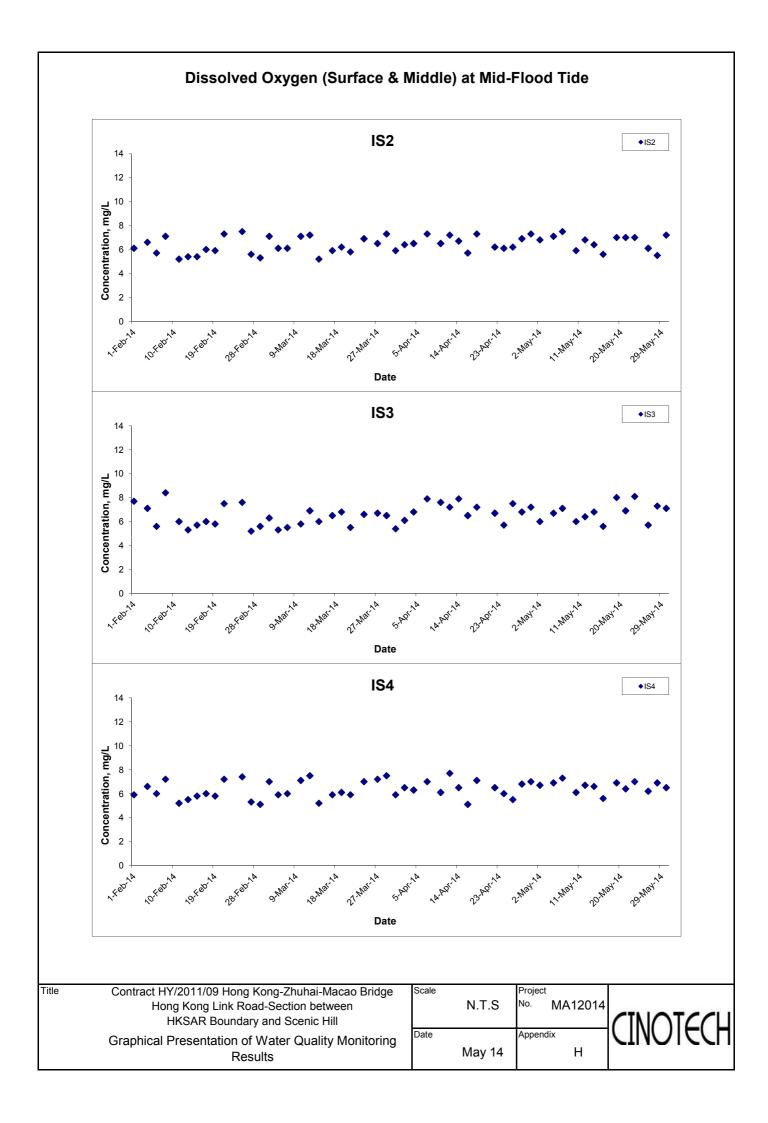

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.6	23.6	7.8	7.9	29.5	29.7	105.7	105.6	7.6	7.6		1.7	1.7		5.2	4.9	
				Curiuoc		23.6	20.0	7.9	7.0	29.8	20.7	105.5	100.0	7.5	7.0	7.4	1.7	1.7		4.5	1.0	
2-May-14	Fine	Calm	08:34	Middle	7	23.6	23.6	7.9	7.9	32.3	32.3	101.5	102.0	7.2	7.2		3.3	3.4	4.9	3.4	5.0	4.4
.,						23.6		7.9		32.3		102.4		7.2			3.5			6.5		
				Bottom	13	23.5 23.5	23.5	7.9 7.9	7.9	32.6 32.5	32.6	104.2 103.1	103.7	7.3 7.3	7.3	7.3	9.5 9.6	9.6		2.6 3.8	3.2	
						22.0		8.2		29.5		103.1		7.5			2.3			5.0		
				Surface	1	22.0	22.0	8.2	8.2	29.5	29.5	102.2	102.5	7.6	7.6		2.3	2.3		3.9	4.5	
						21.8		8.2		32.3		102.4		7.4		7.6	2.5			4.4		
5-May-14	Rainy	Moderate	10:16	Middle	7.5	21.8	21.8	8.2	8.2	32.4	32.4	102.9	102.7	7.5	7.5		2.2	2.4	6.4	4.4	4.4	4.2
				D-#	44	21.8	24.0	8.2	0.0	33.5	22.5	101.8	400.4	7.4	7.4	7.4	13.4	44.4		3.3	2.0	1
				Bottom	14	21.8	21.8	8.2	8.2	33.5	33.5	102.4	102.1	7.4	7.4	7.4	15.3	14.4		4.3	3.8	
				Surface	1	23.2	23.2	7.9	7.9	30.5	30.6	103.9	103.5	7.5	7.5		2.9	2.9		6.0	4.8	
				Ouriacc	'	23.2	20.2	7.9	7.5	30.6	30.0	103.1	100.0	7.4	7.5	7.4	2.8	2.5		3.6	4.0	
7-May-14	Cloudy	Moderate	08:19	Middle	7	23.6	23.6	7.9	7.9	32.5	32.4	102.8	102.4	7.2	7.2		2.7	2.7	3.1	5.7	5.2	4.8
	,					23.5		7.9		32.3		101.9	-	7.2			2.7			4.7		
				Bottom	13	23.6 23.6	23.6	7.9 7.9	7.9	33.1 33.1	33.1	100.6 99.2	99.9	7.1 7.0	7.1	7.1	4.0 3.4	3.7		3.8 5.0	4.4	
						21.6		7.6		19.8		89.9		7.0			4.2			2.8		
				Surface	1	21.6	21.6	7.6	7.6	19.8	19.9	84.8	87.4	6.7	6.9		3.8	4.0		4.1	3.5	
						21.5		7.7		27.2		85.0		6.4		6.6	5.1			3.6		
10-May-14	Rainy	Moderate	15:12	Middle	5.5	21.5	21.5	7.7	7.7	27.9	27.6	82.5	83.8	6.2	6.3		4.7	4.9	5.5	3.2	3.4	3.5
				D-#	40	21.4	04.4	7.7	7.7	32.5	20.0	83.2	04.0	6.1	0.0		8.4	7.6		3.4	0.7	
				Bottom	10	21.4	21.4	7.7	7.7	32.6	32.6	80.5	81.9	5.9	6.0	6.0	6.8	7.0		4.0	3.7	
				Surface	1	25.1	25.0	7.5	7.5	11.1	11.5	87.7	87.2	6.8	6.8		3.2	3.4		1.9	1.9	
				Ouriacc	'	24.9	20.0	7.5	7.5	11.8	11.5	86.7	07.2	6.7	0.0	6.7	3.6	0.4		1.9	1.5	
12-May-14	Rainy	Moderate	16:36	Middle	6.5	23.6	23.6	7.7	7.7	26.4	26.7	89.2	88.1	6.6	6.5	· · ·	6.7	6.9	7.1	2.2	2.6	2.3
	. ,					23.6		7.7		26.9		87.0		6.3			7.1			2.9		
				Bottom	12	23.4 23.4	23.4	7.7 7.7	7.7	29.7 29.5	29.6	88.7 87.3	88.0	6.4 6.3	6.4	6.4	11.1 11.0	11.1		3.1 1.9	2.5	
						23.9		7.3	1	13.0		85.8		6.7			8.5	1		5.0		
				Surface	1	23.9	23.9	7.3	7.3	12.0	12.5	84.2	85.0	6.6	6.7		8.6	8.6		5.5	5.3	
						23.3		7.3		20.3		87.6		6.7		6.7	8.8			4.7		
14-May-14	Cloudy	Moderate	18:00	Middle	6.5	23.5	23.4	7.3	7.3	18.5	19.4	86.2	86.9	6.6	6.7		7.9	8.4	10.5	5.3	5.0	5.5
				Bottom	12	21.9	22.1	7.2	7.3	28.3	27.5	82.6	82.9	6.1	6.2	6.2	14.7	14.6		5.3	6.1	1
				DOLLOTTI	12	22.2	22.1	7.3	7.3	26.6	27.5	83.2	62.9	6.2	0.2	0.2	14.5	14.0		6.8	0.1	
				Surface	1	24.2	24.2	7.6	7.6	22.7	23.1	87.6	87.7	6.5	6.5		9.8	10.4		8.3	11.7	
				Curiuoc		24.2	21.2	7.5	7.0	23.5	20.1	87.7	07.1	6.4	0.0	6.1	11.0	10.7		15.0		
16-May-14	Cloudy	Rough	07:57	Middle	6.5	22.8	23.0	7.6	7.6	31.8	30.9	78.7	78.8	5.6	5.7		28.0	28.3	30.2	18.7	18.3	22.9
	•					23.1 22.8		7.5 7.7		29.9 31.9		78.8 77.5		5.7			28.6 51.7			17.8 39.5		
				Bottom	12	22.8	22.8	7.7	7.7	31.6	31.8	77.5 76.8	77.2	5.6 5.5	5.6	5.6	52.3	52.0		39.5	38.6	
						25.5		7.8		17.5		96.7		7.2			13.4			6.8		
				Surface	1	25.5	25.5	7.8	7.8	17.5	17.5	96.3	96.5	7.2	7.2		16.3	14.9		7.9	7.4	
40.14	F 1	0.1	40.40	N 41 1 11 .		25.5	05.5	7.8	7.0	22.5	00.0	99.3	00.4	7.2	7.0	7.2	13.5	40.0	1	5.0	5.0	
19-May-14	Fine	Calm	10:16	Middle	5.5	25.5	25.5	7.7	7.8	23.0	22.8	99.5	99.4	7.2	7.2		13.7	13.6	14.2	5.6	5.3	6.6
				Bottom	10	25.5	25.3	7.8	7.8	25.4	25.8	100.9	98.5	7.2	7.0	7.0	13.3	14.1	1	5.5	7.1	1
				טטננטווו	10	25.1	20.0	7.7	1.0	26.2	20.0	96.1	90.0	6.8	7.0	7.0	14.8	14.1	<u> </u>	8.7	7.1	

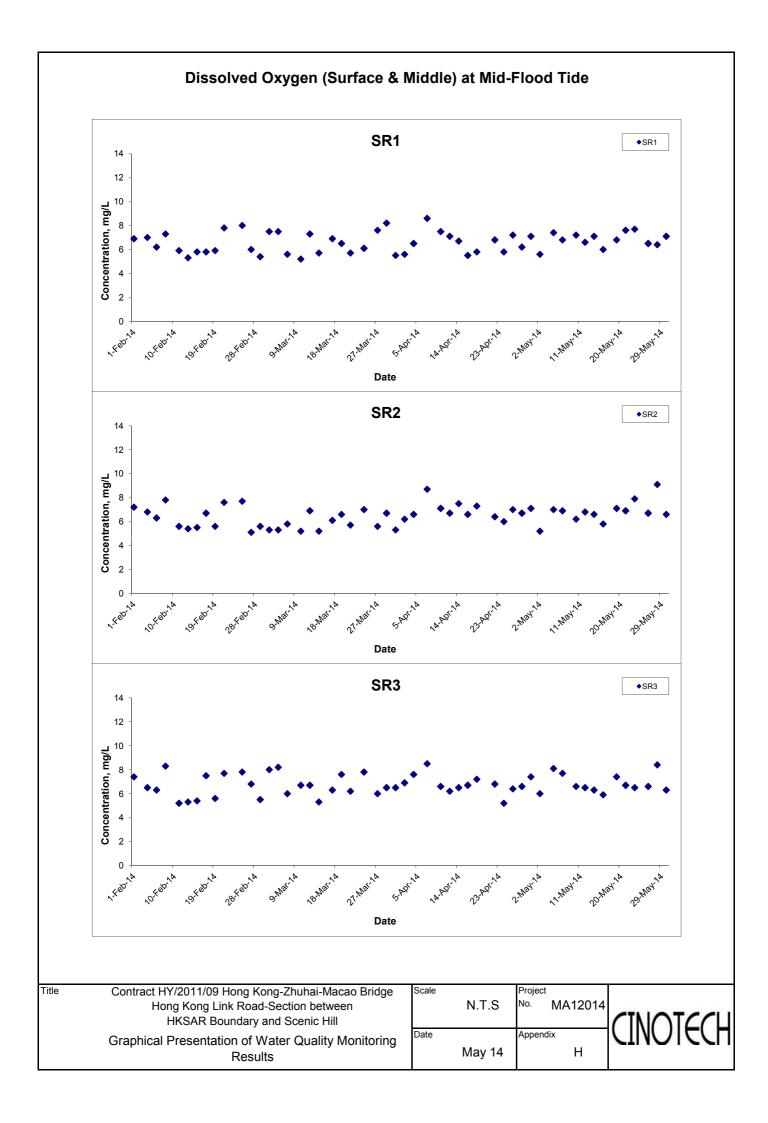

Water Quality Monitoring Results at ST3 - Mid-Flood Tide

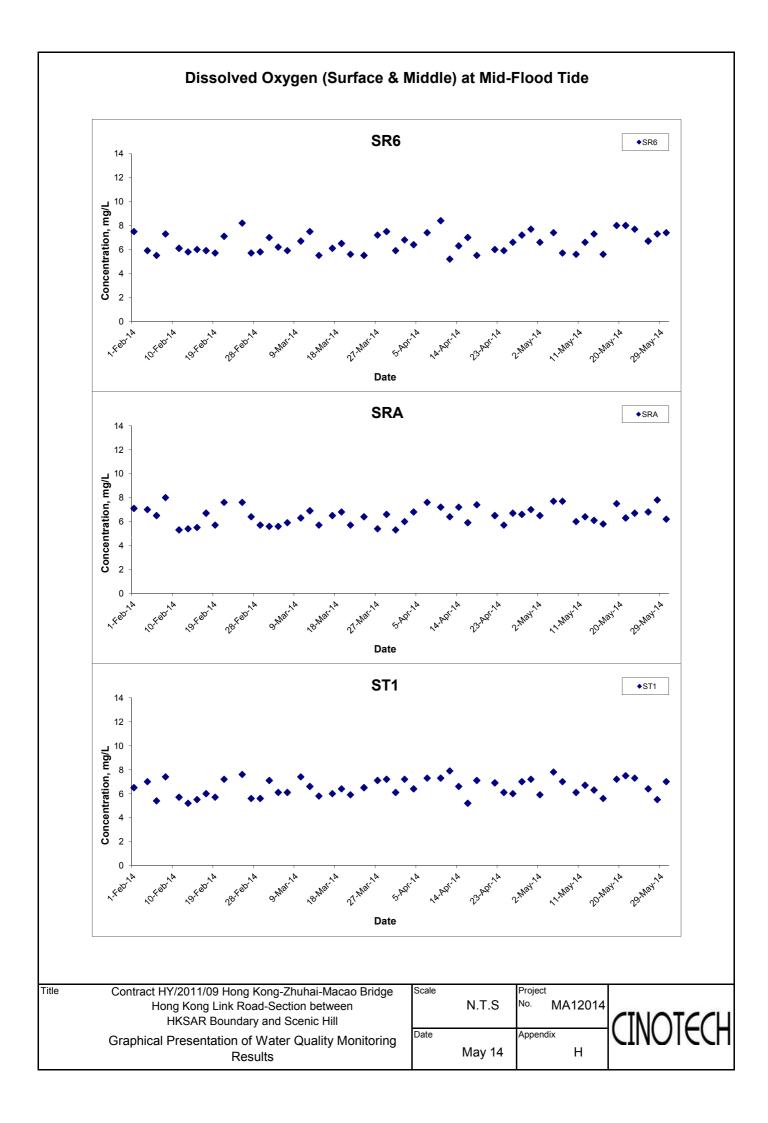
Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Вори	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	23.6 23.7	23.7	7.1 7.1	7.1	13.6 13.5	13.6	94.6 92.8	93.7	7.4 7.3	7.4	7.0	4.0 3.6	3.8		4.8 4.6	4.7	
21-May-14	Rainy	Rough	12:04	Middle	7	23.3 23.2	23.3	7.2 7.2	7.2	22.0 22.7	22.4	87.5 85.2	86.4	6.6 6.4	6.5	7.0	6.3 5.6	6.0	6.2	5.1 5.0	5.1	4.7
				Bottom	13	22.5 22.7	22.6	7.2 7.2	7.2	26.5 29.1	27.8	77.2 78.5	77.9	5.7 5.7	5.7	5.7	8.2 9.6	8.9		4.4 4.2	4.3	
				Surface	1	25.6 25.6	25.6	7.5 7.5	7.5	10.7 10.4	10.6	97.3 98.1	97.7	7.5 7.6	7.6	7.5	3.8 4.1	4.0		4.6 4.3	4.5	
23-May-14	Rainy	Calm	13:48	Middle	7	25.4 25.3	25.4	7.5 7.6	7.6	15.5 16.0	15.8	97.2 96.5	96.9	7.3 7.2	7.3	7.5	4.2 5.2	4.7	5.9	5.2 4.8	5.0	5.0
				Bottom	13	24.8 25.0	24.9	7.6 7.6	7.6	23.1 24.3	23.7	92.7 95.6	94.2	6.8 6.9	6.9	6.9	8.5 9.2	8.9		5.4 5.3	5.4	
				Surface	1	28.3 28.4	28.4	7.4 7.4	7.4	12.4 12.7	12.6	85.2 86.1	85.7	6.2 6.2	6.2	6.5	6.2 5.6	5.9		5.2 6.7	6.0	
26-May-14	Fine	Calm	16:38	Middle	6.5	28.3 28.2	28.3	7.6 7.6	7.6	15.7 16.1	15.9	93.6 92.8	93.2	6.7 6.6	6.7	0.5	5.1 5.1	5.1	6.5	5.5 5.7	5.6	6.0
				Bottom	12	25.5 25.5	25.5	7.5 7.5	7.5	27.5 27.5	27.5	80.1 80.6	80.4	5.6 5.7	5.7	5.7	8.5 8.6	8.6		5.3 7.4	6.4	
				Surface	1	25.4 25.3	25.4	7.5 7.6	7.6	16.6 16.9	16.8	90.9 90.3	90.6	6.8 6.7	6.8	6.6	4.3 4.6	4.5		5.6 3.1	4.4	
28-May-14	Fine	Calm	18:09	Middle	6.5	24.9 24.8	24.9	7.6 7.7	7.7	22.2 22.1	22.2	87.8 87.4	87.6	6.4 6.4	6.4	0.0	5.9 6.2	6.1	6.2	2.3 3.9	3.1	3.5
				Bottom	12	24.4 24.4	24.4	7.7 7.8	7.8	29.1 28.5	28.8	85.0 83.3	84.2	6.0 5.9	6.0	6.0	7.6 8.6	8.1		2.3 3.4	2.9	
				Surface	1	28.1 28.1	28.1	7.8 7.8	7.8	16.4 16.1	16.3	91.0 90.8	90.9	6.5 6.5	6.5	6.8	8.3 8.3	8.3		4.7 3.8	4.3	
30-May-14	Fine	Calm	19:14	Middle	5.5	28.1 28.1	28.1	7.8 7.8	7.8	27.4 26.8	27.1	105.8 102.9	104.4	7.1 6.9	7.0	0.0	9.2 9.2	9.2	9.2	1.8 2.7	2.3	3.1
				Bottom	10	28.1 28.1	28.1	7.8 7.8	7.8	30.4 29.8	30.1	100.6 96.8	98.7	6.6 6.4	6.5	6.5	9.9 10.0	10.0		2.8 2.6	2.7	

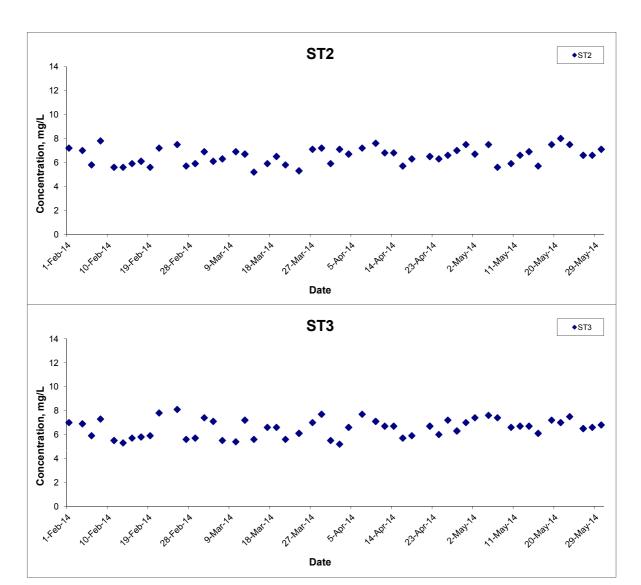



Dissolved Oxygen (Surface & Middle) at Mid-Ebb Tide

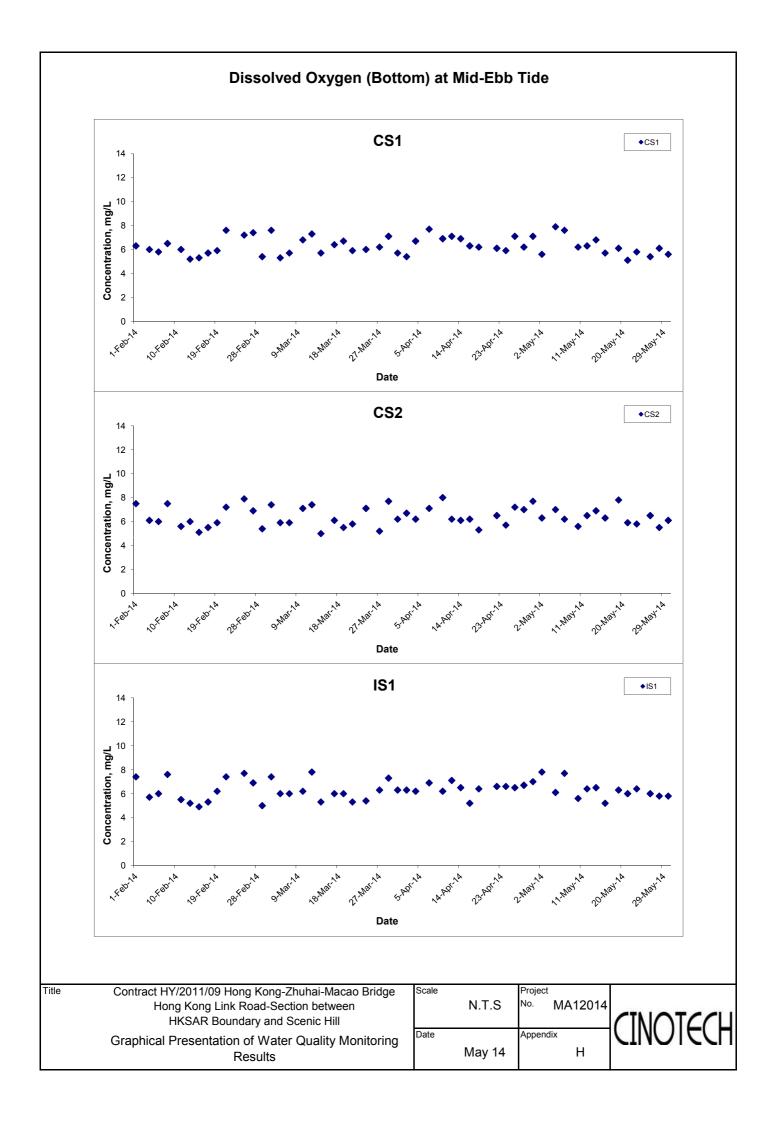


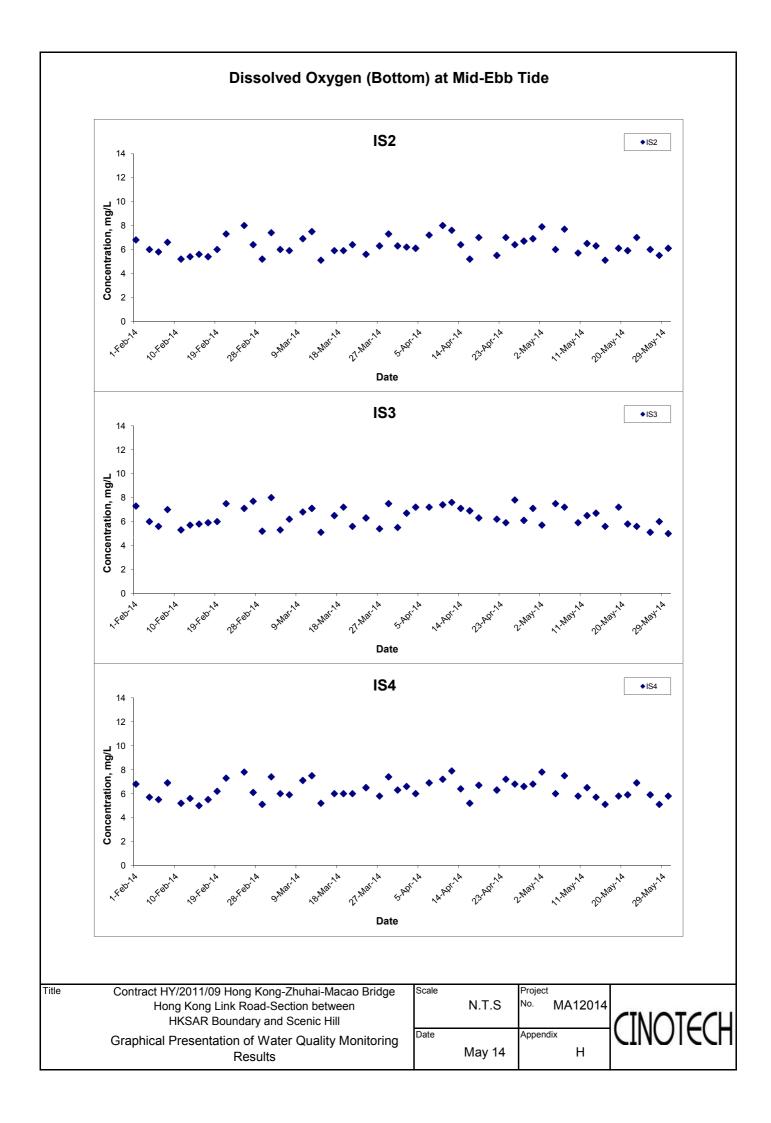

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

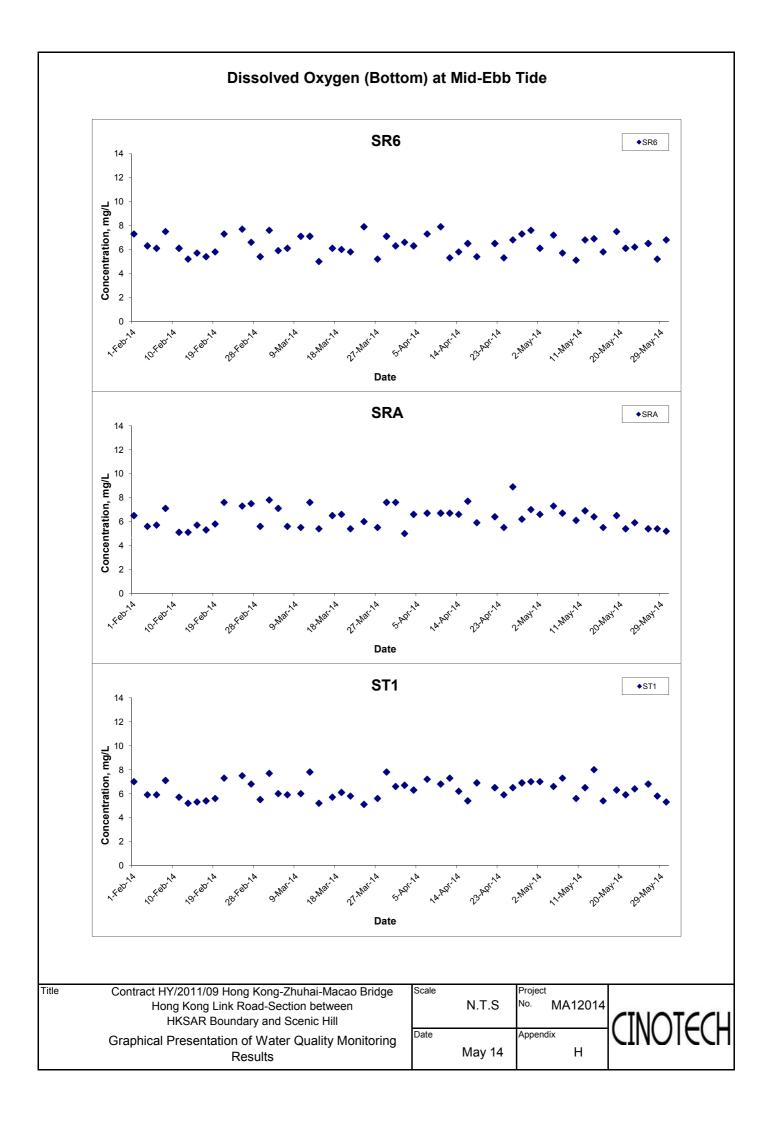

Title

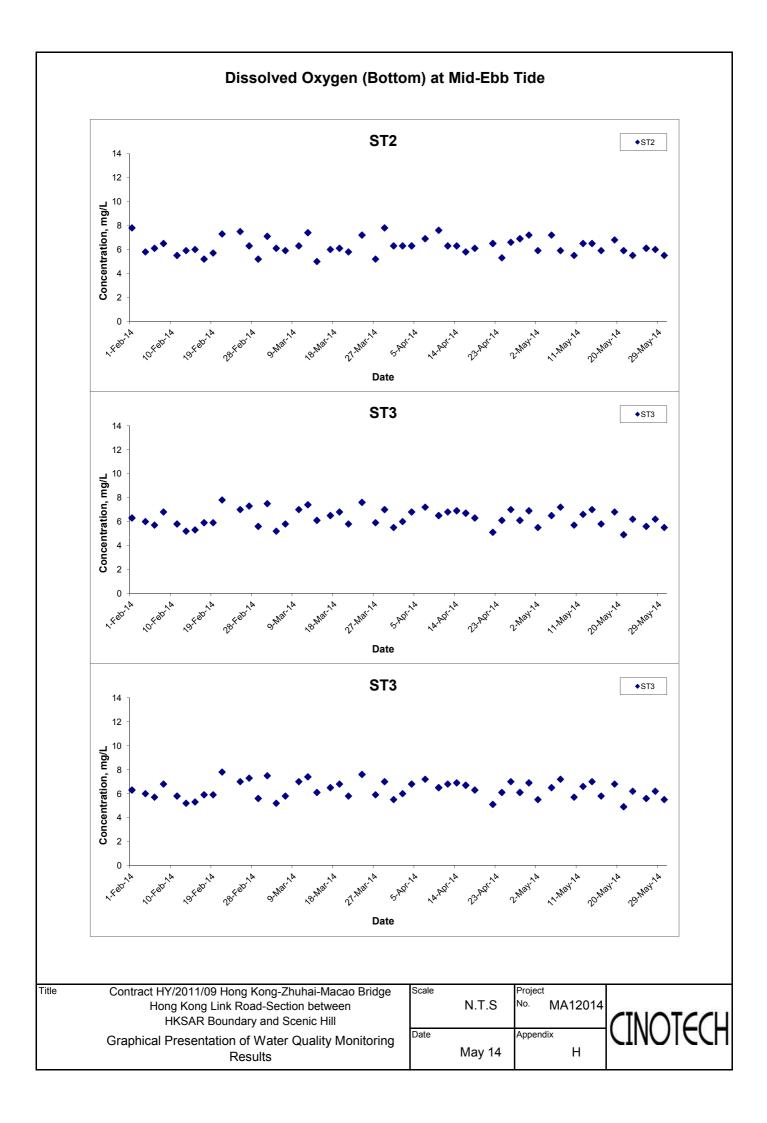


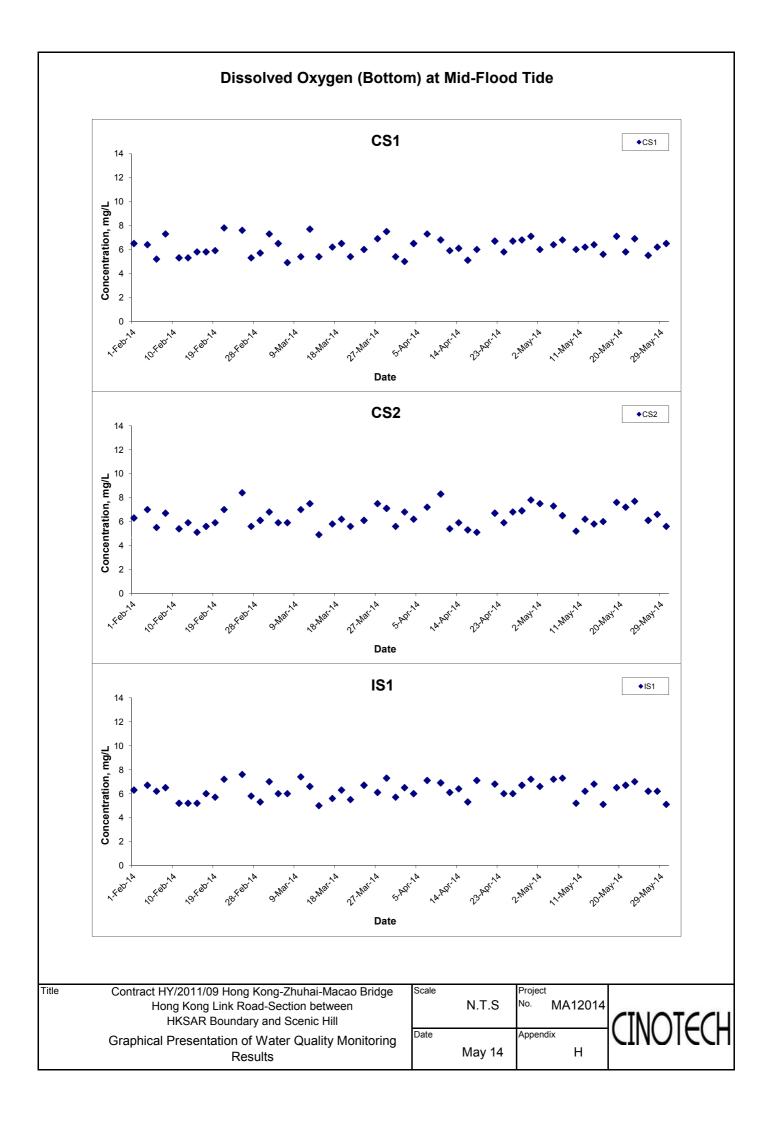
Dissolved Oxygen (Surface & Middle) at Mid-Flood Tide

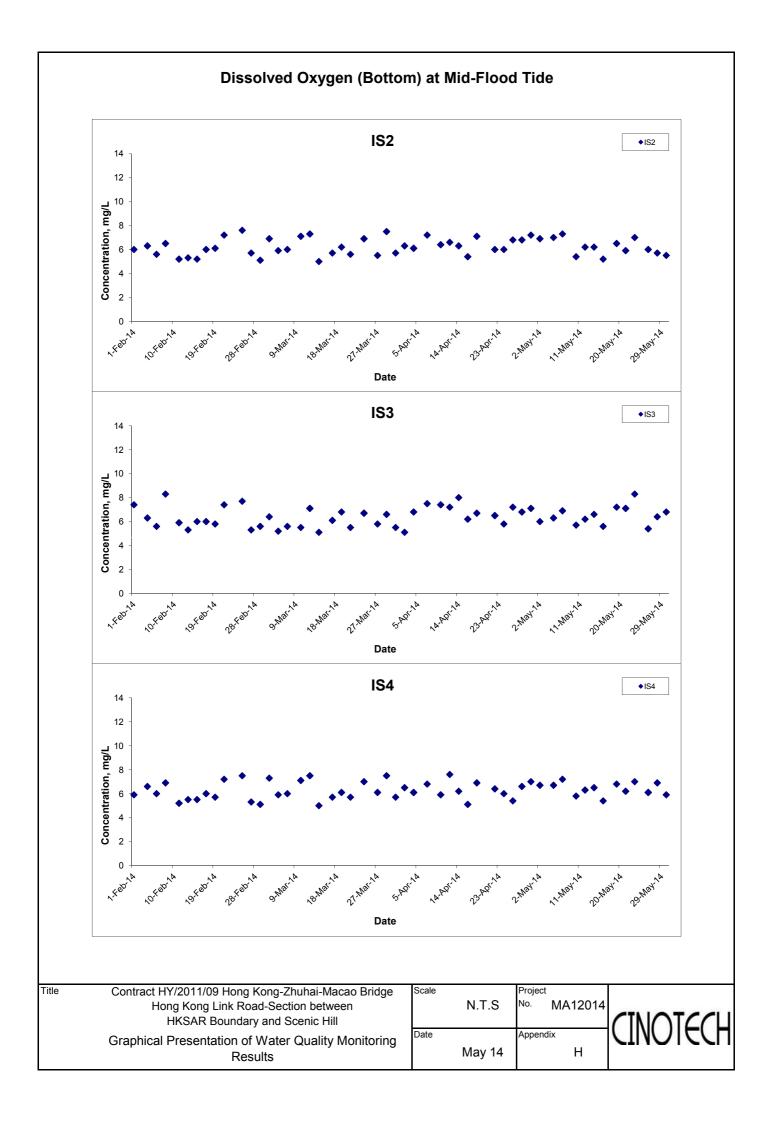

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

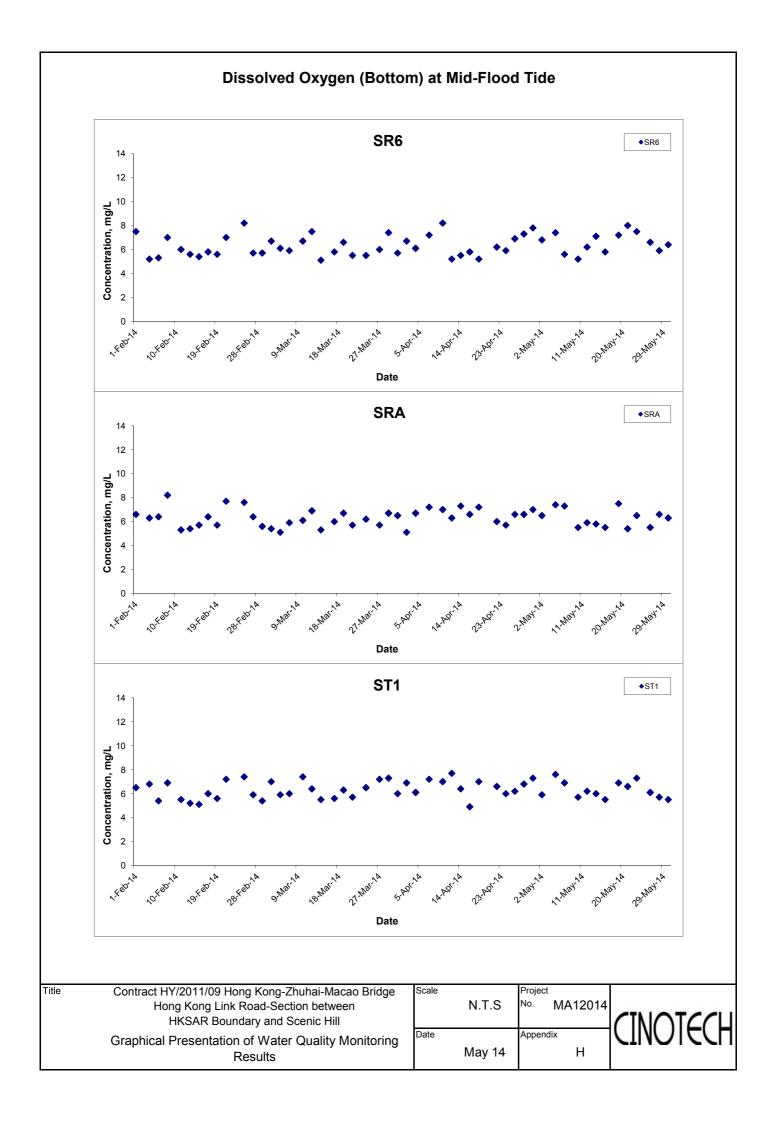

Title

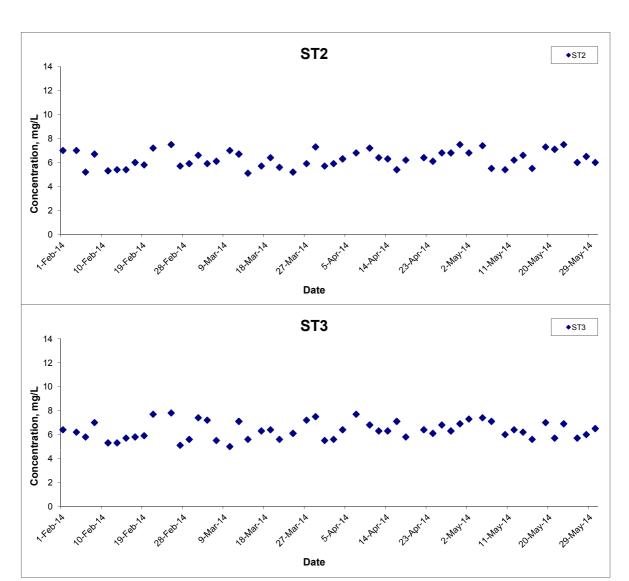

N.T.S Project
No. MA12014

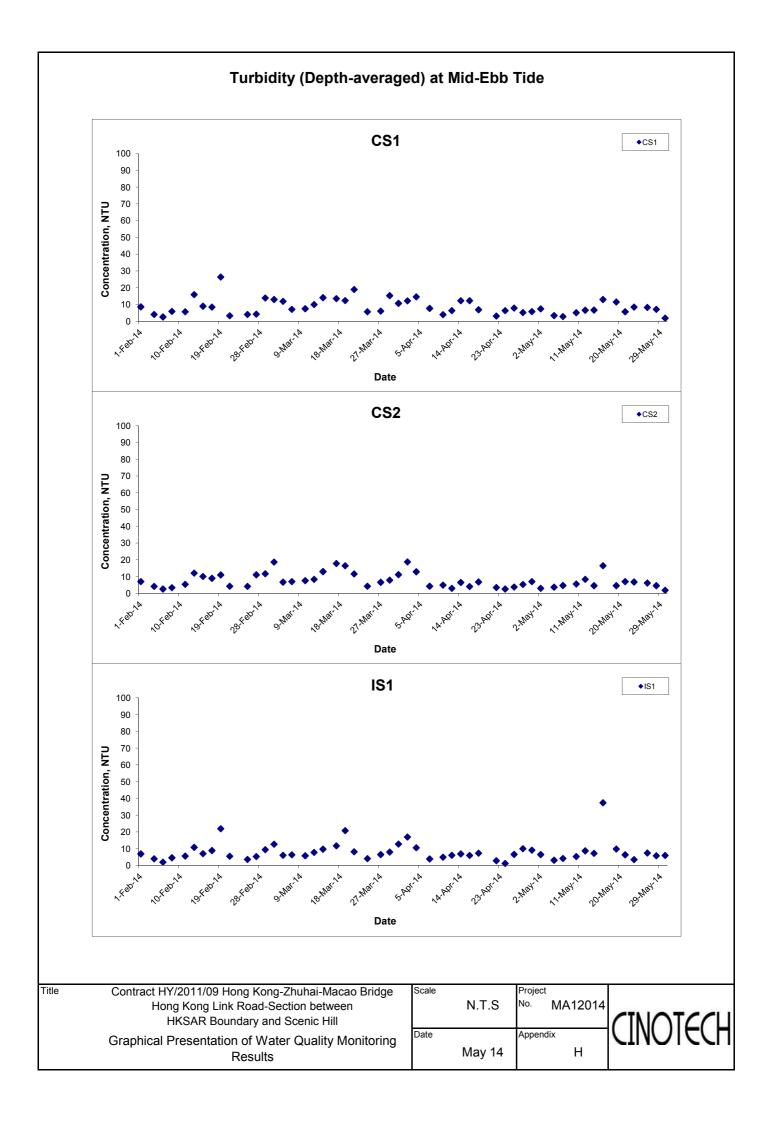

Date Appendix H

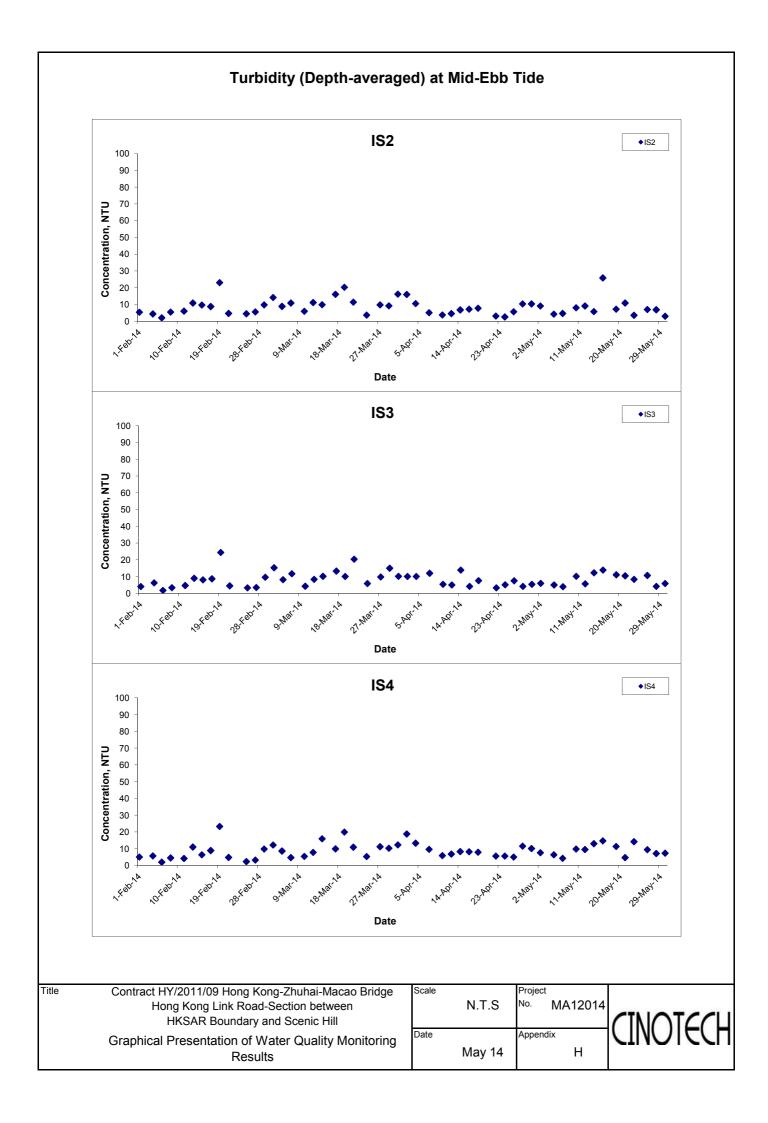


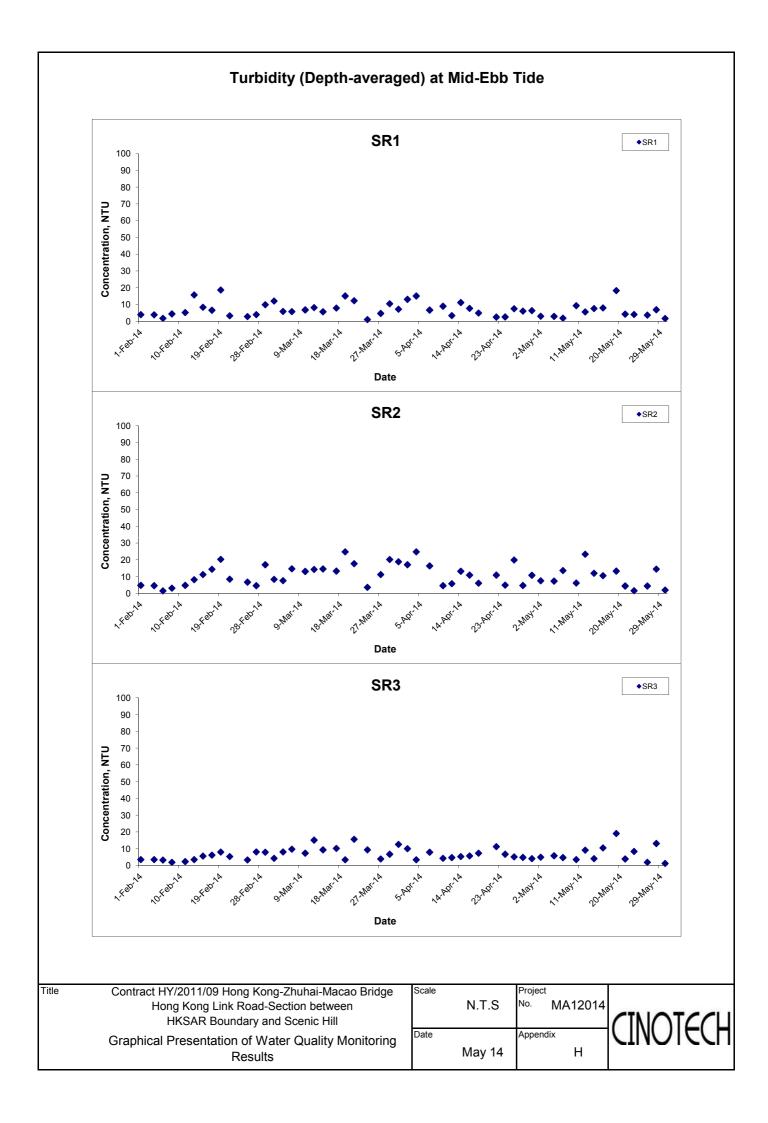


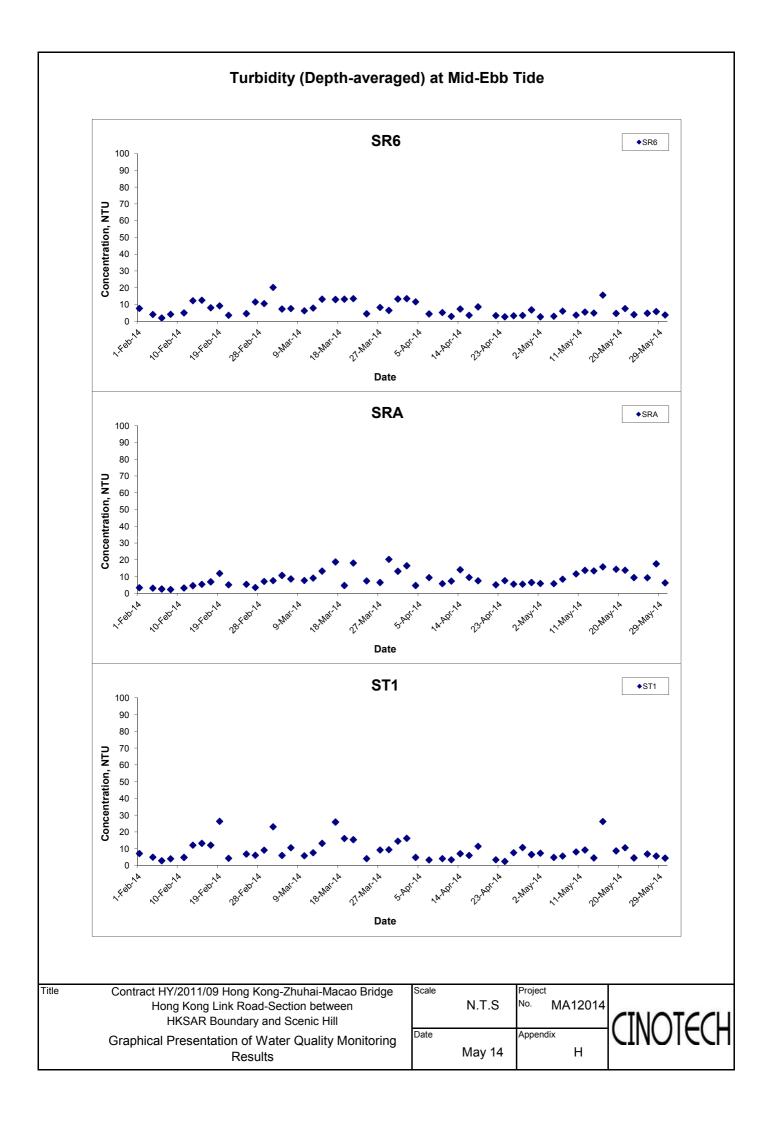


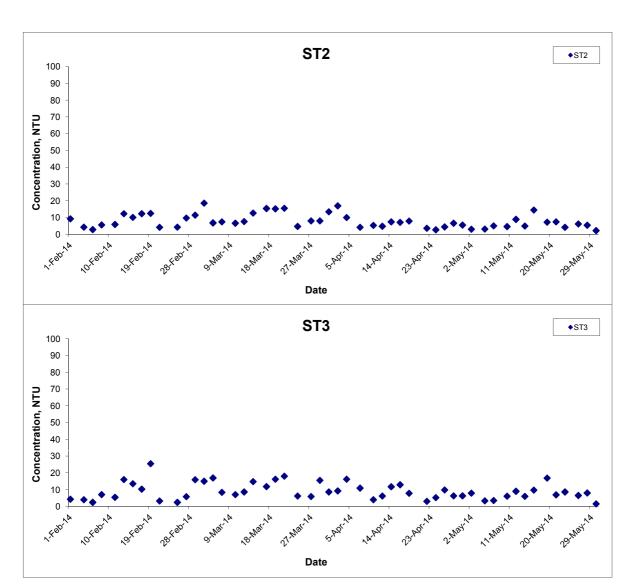



Dissolved Oxygen (Bottom) at Mid-Flood Tide




Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results


Title



Turbidity (Depth-averaged) at Mid-Ebb Tide

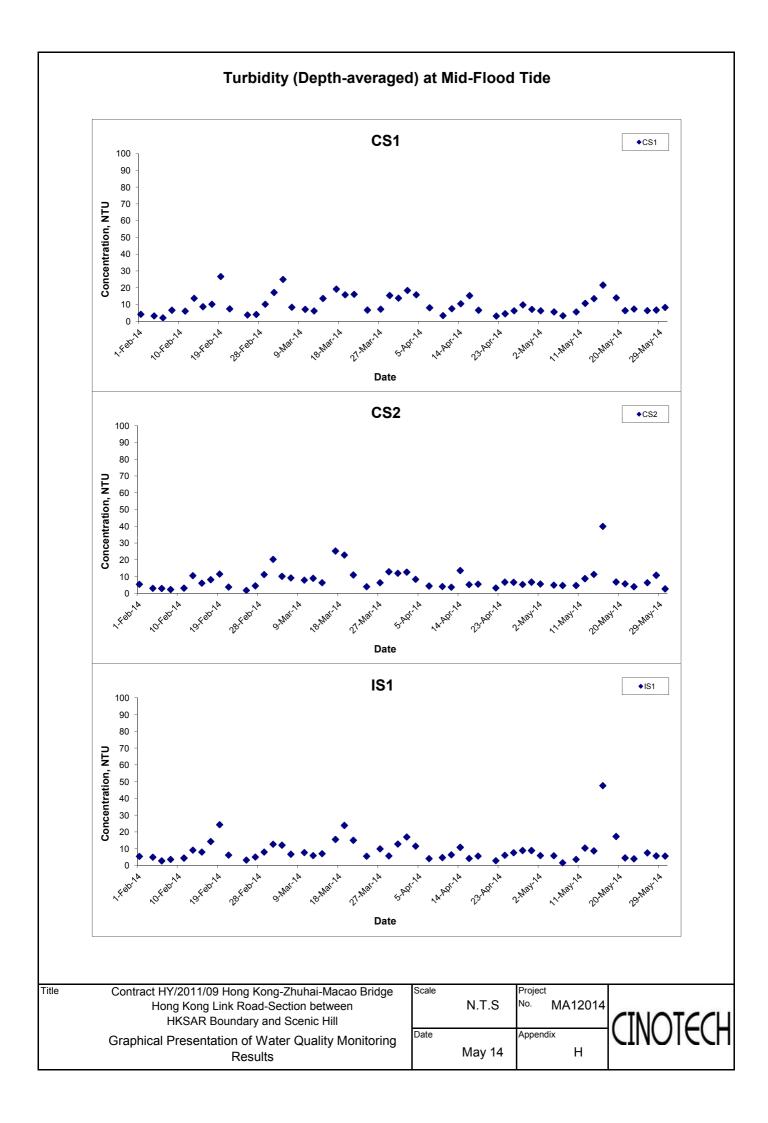
Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

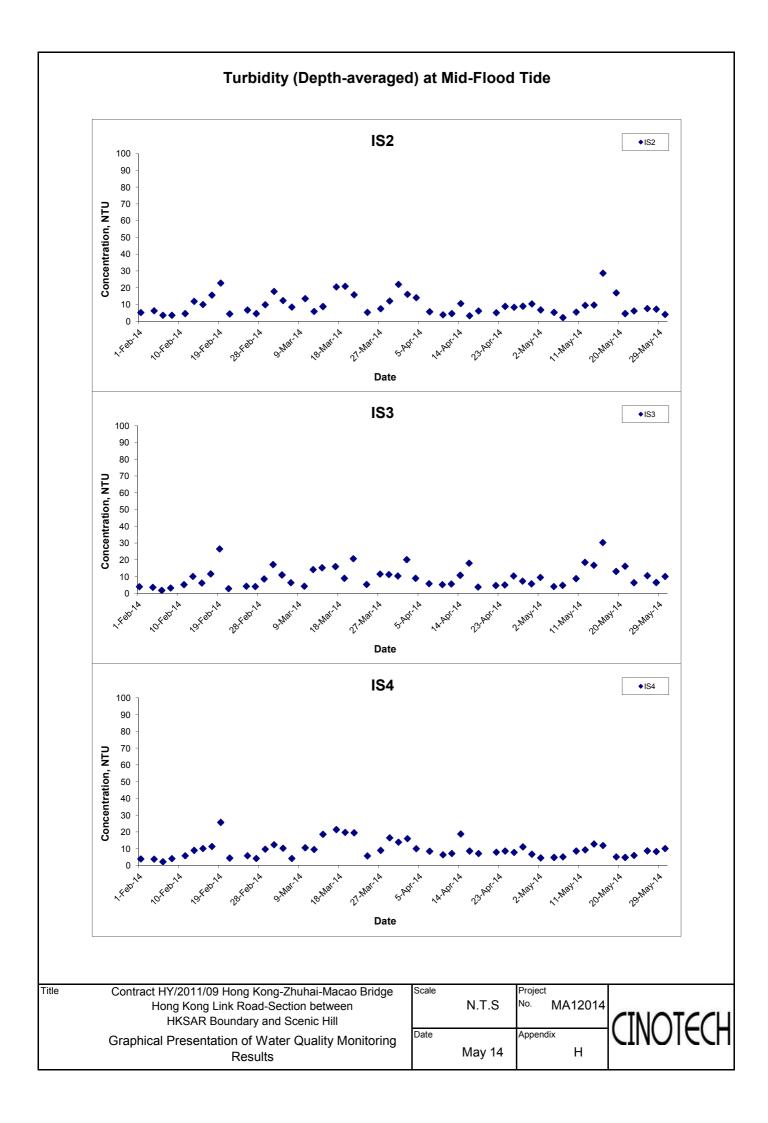
Title

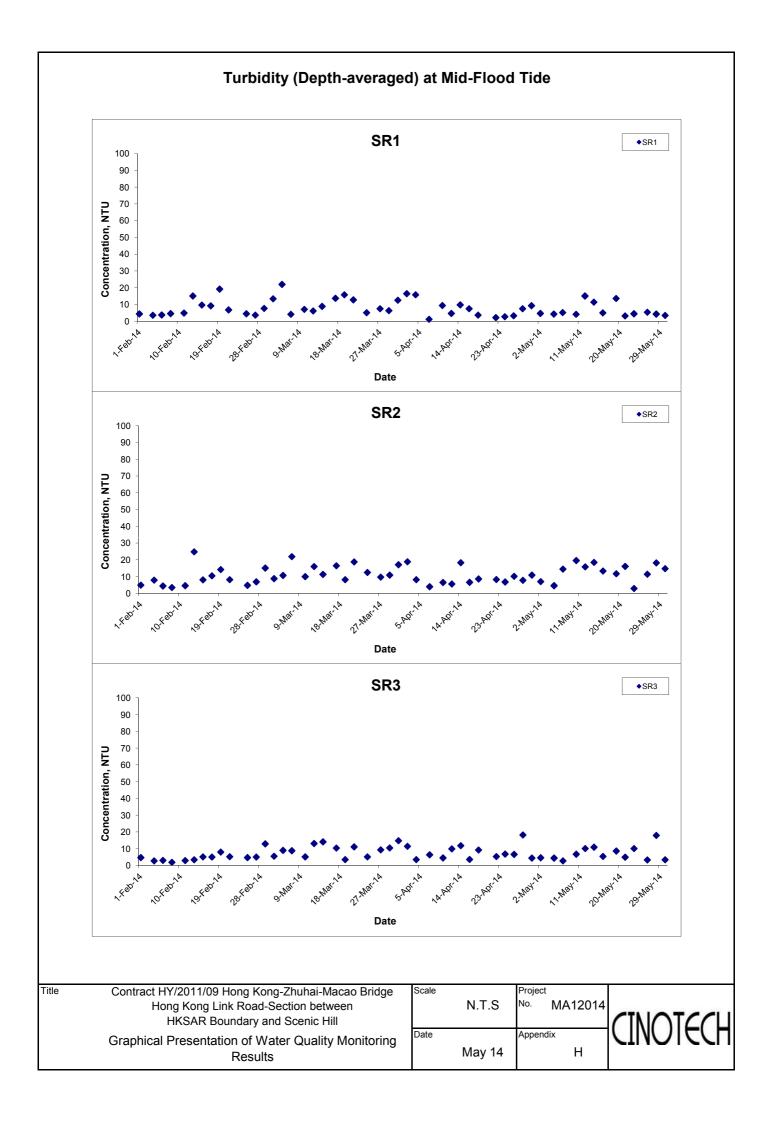
Scale

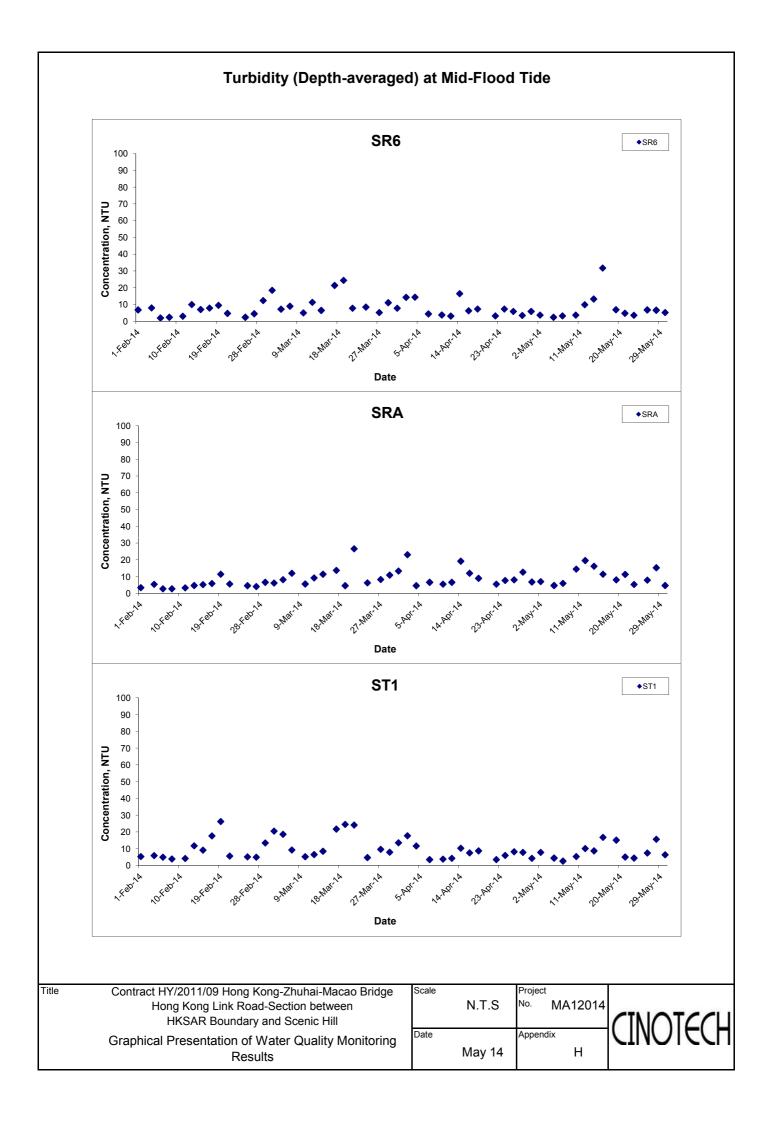
N.T.S

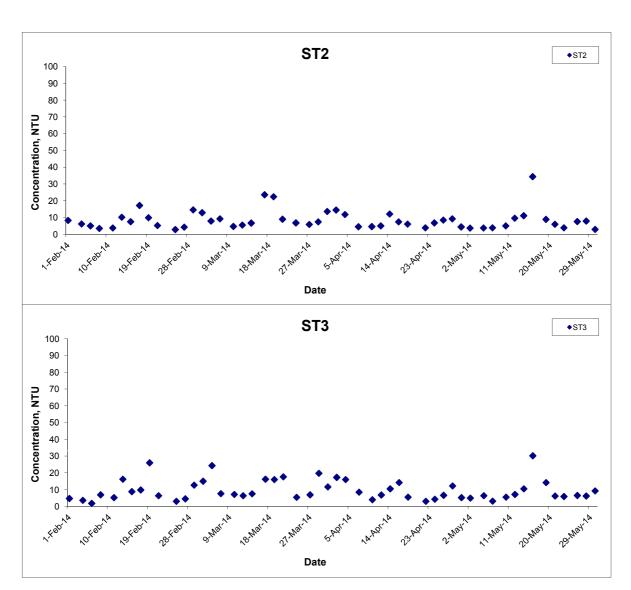
Project
No. MA12014


Date

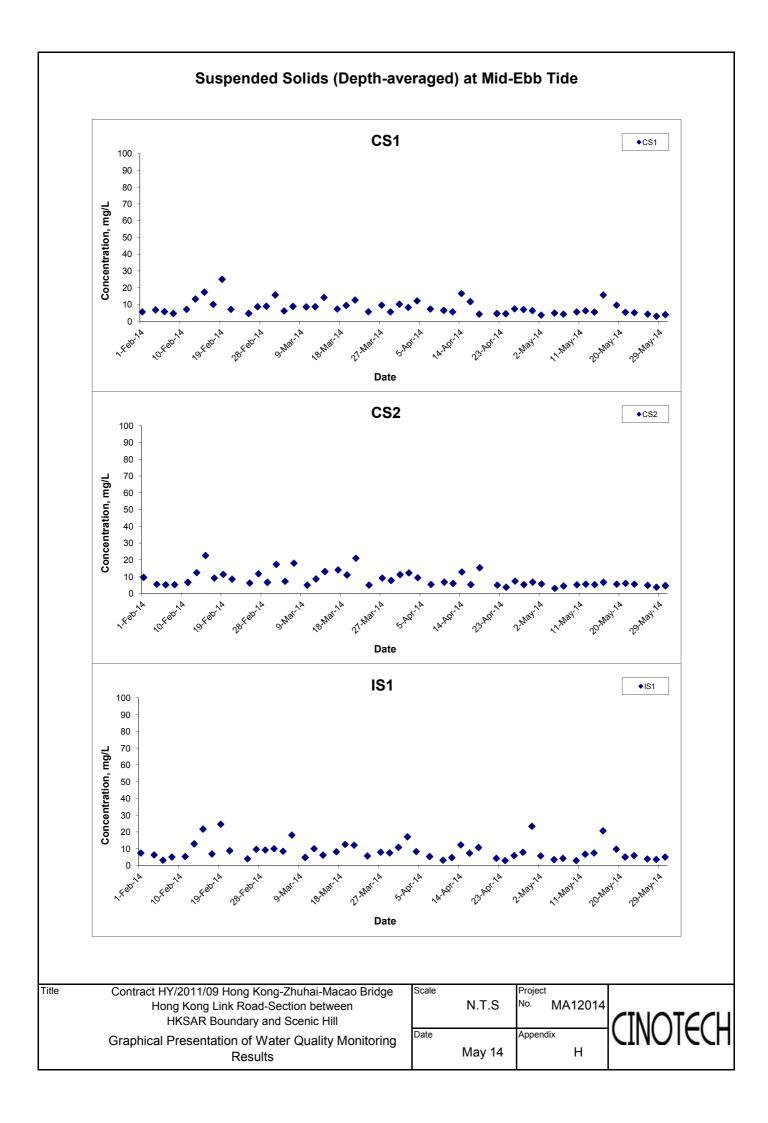

May 14

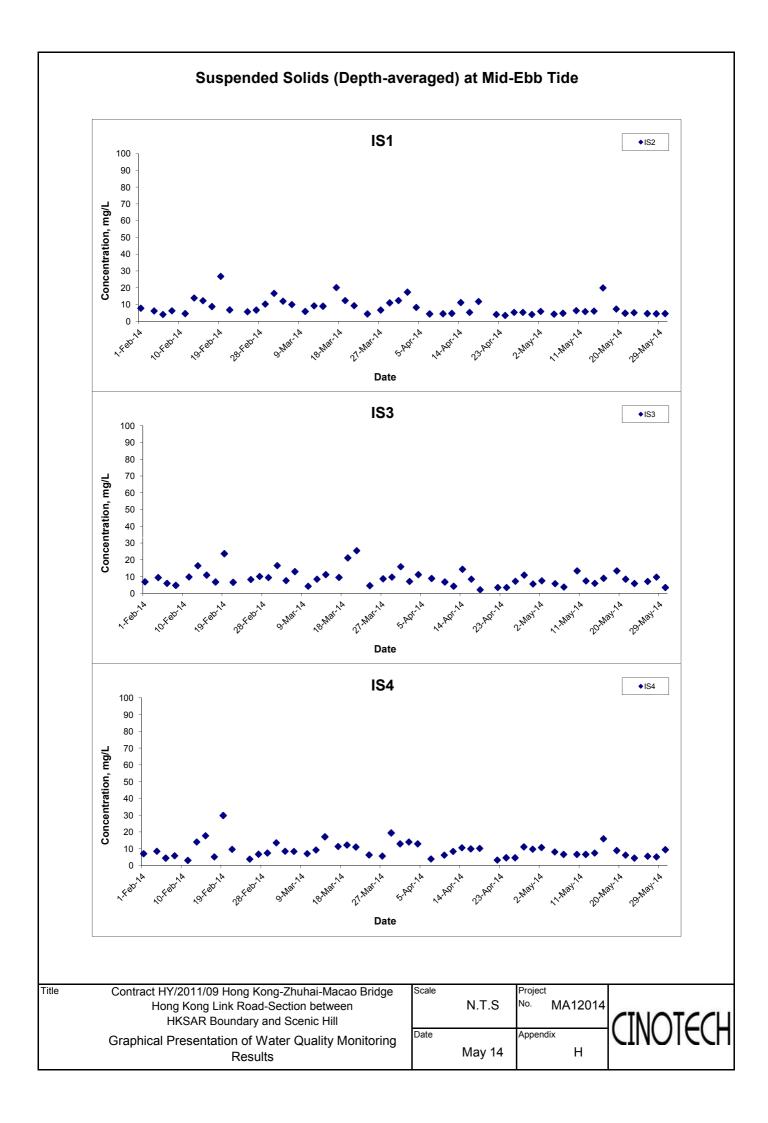

Appendix

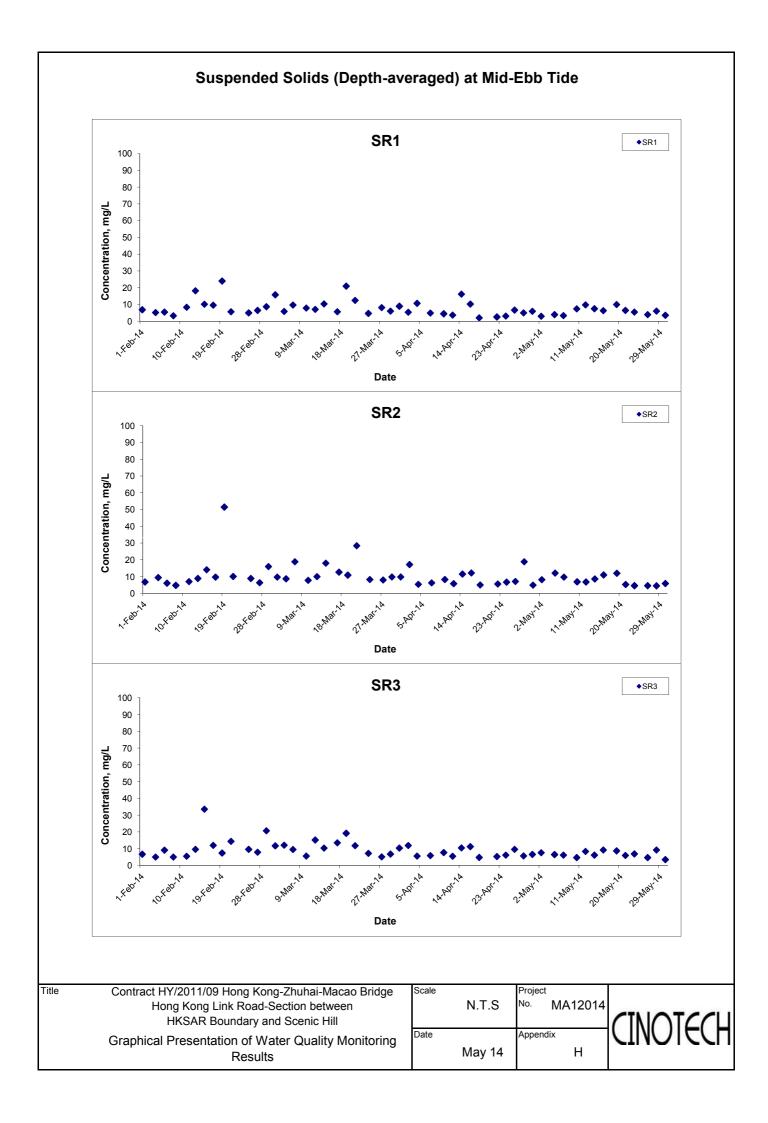

H

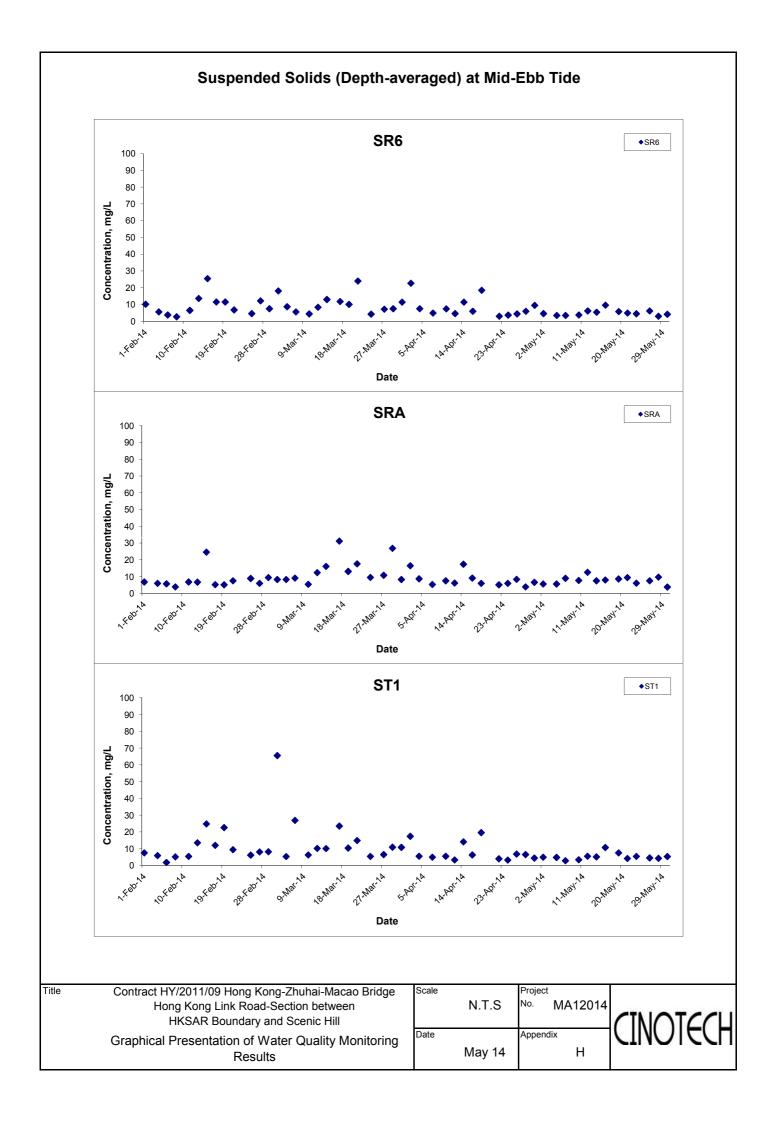


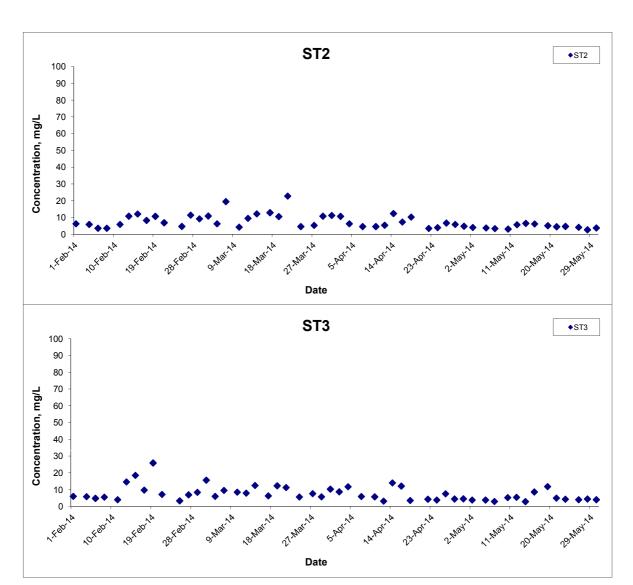
Turbidity (Depth-averaged) at Mid-Flood Tide


Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results


Title


N.T.S Project
No. MA12014


Date Appendix H



Suspended Solids (Depth-averaged) at Mid-Ebb Tide

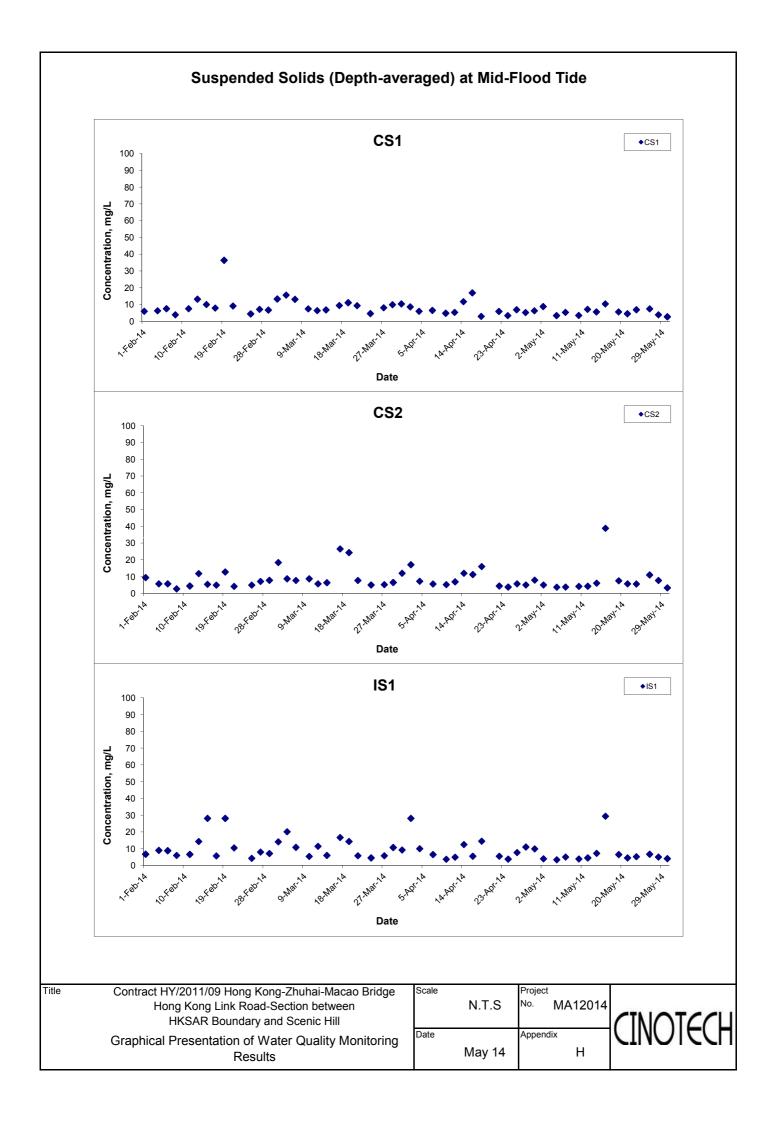
Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

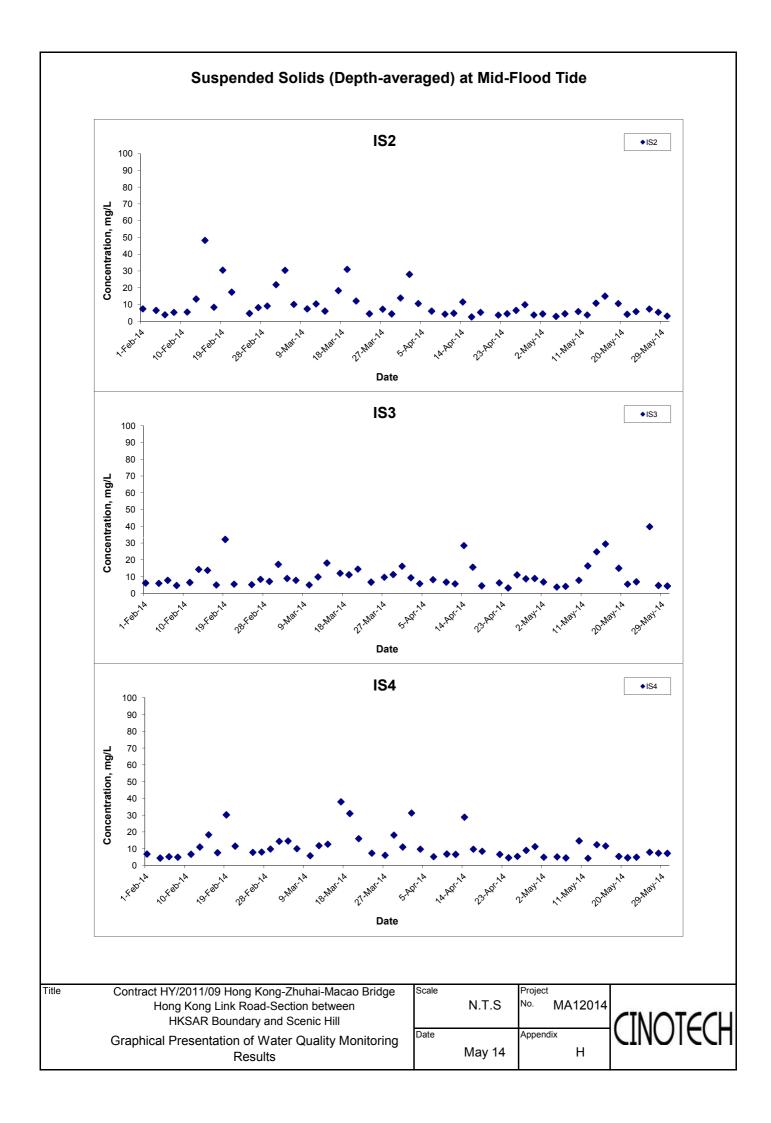
Title

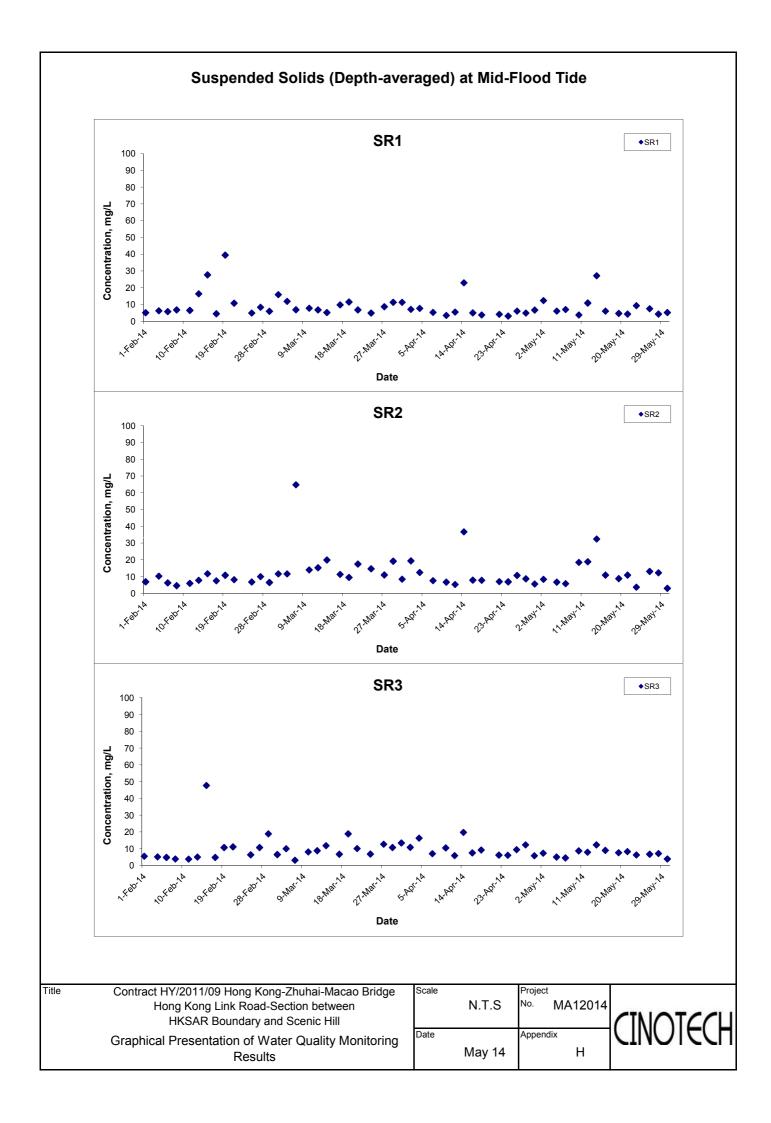
Scale

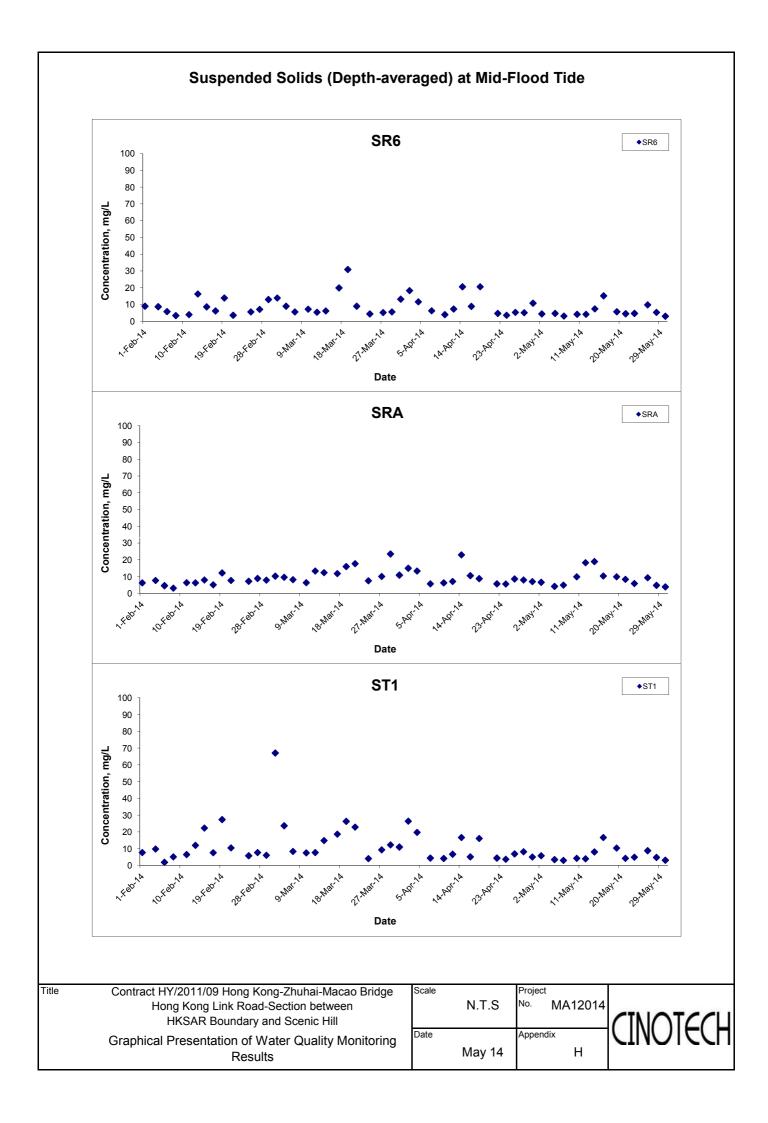
N.T.S

Project
No. MA12014


Date


May 14


Appendix


H



Suspended Solids (Depth-averaged) at Mid-Flood Tide

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

Title

 N.T.S
 Project No.
 MA12014

 Date
 Appendix
 H

APPENDIX I DOLPHIN MONITORING REPORT (LINE TRANSECT)

Contract No. HY/2011/09

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill Dolphin Monthly Monitoring

16th Monthly Progress Report (May 2014)

Submitted by

Samuel K.Y. Hung, Ph.D., Hong Kong Cetacean Research Project

23 May 2014

1. Introduction

- 1.1. The Hong Kong Link Road (HKLR) serves to connect the Hong Kong-Zhuhai-Macao Bridge (HZMB) Main Bridge at the Hong Kong Special Administrative Region (HKSAR) Boundary and the HZMB Hong Kong Boundary Crossing Facilities (HKBCF) located at the northeastern waters of the Hong Kong International Airport.
- 1.2. According to the updated Environmental Monitoring and Audit (EM&A) Manual (for HKLR), monthly line-transect vessel surveys for Chinese White Dolphin should be conducted to cover the West Lantau survey area as in AFCD annual marine mammal monitoring programme.
- 1.3. Since November 2012, Hong Kong Cetacean Research Project (HKCRP) has been commissioned by Dragages China Harbour VSL JV to conduct this 34-month dolphin monitoring study in order to collect data on Chinese White Dolphins during the construction phase (i.e. impact period) of the HKLR09 project in West Lantau (WL) survey area, and to analyze the collected survey data to monitor distribution, encounter rate, abundance, activities and occurrence of dolphin calves. Photo-identification will also be collected from individual Chinese White Dolphins to examine their individual range patterns and core area use.
- 1.4. From the monitoring results, any changes in dolphin occurrence within the study area will be examined for possible causes, and appropriate actions and additional mitigation measures will be recommended as necessary.

1.5. This report is the 16th monthly progress report under the HKLR09 construction phase dolphin monitoring programme, summarizing the results of the survey findings during the month of May 2014.

2. Monitoring Methodology

- 2.1. Vessel-based Line-transect Survey
- 2.1.1. According to the requirement of the updated EM&A manual, dolphin monitoring programme should cover all transect lines in WL survey area (see Figure 1) twice per month throughout the entire construction period. The co-ordinates of all transect lines are shown in Table 1.

Table 1. Co-ordinates of transect lines in WL survey area

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	803750	818500	7	Start Point	800200	810450
1	End Point	803750	815500	7	End Point	801400	810450
2	Start Point	803750	815500	8	Start Point	801300	809450
2	End Point	802940	815500	8	End Point	799750	809450
3	Start Point	802550	814500	9	Start Point	799400	808450
3	End Point	803700	814500	9	End Point	801430	808450
4	Start Point	803120	813600	10	Start Point	801500	807450
4	End Point	801640	813600	10	End Point	799600	807450
5	Start Point	801100	812450	11	Start Point	800300	806500
5	End Point	802900	812450	11	End Point	801750	806500
6	Start Point	802400	811500	12	Start Point	801760	805450
6	End Point	800660	811500	12	End Point	800700	805450

2.1.2. The survey team used standard line-transect methods (Buckland et al. 2001) to conduct the systematic vessel surveys, and followed the same technique of data collection that has been adopted over the last 16 years of marine

- mammal monitoring surveys in Hong Kong developed by HKCRP (see Hung 2012). For each monitoring vessel survey, a 15-m inboard vessel with an open upper deck (about 4.5 m above water surface) was used to make observations from the flying bridge area.
- 2.1.3. Two experienced observers (a data recorder and a primary observer) made up the on-effort survey team, and the survey vessel transited different transect lines at a constant speed of 13-15 km per hour. The data recorder searched with unaided eyes and filled out the datasheets, while the primary observer searched for dolphins and porpoises continuously through 7 x 50 *Fujinon* marine binoculars. Both observers searched the sea ahead of the vessel, between 270° and 90° (in relation to the bow, which is defined as 0°). One to two additional experienced observers were available on the boat to work in shift (i.e. rotate every 30 minutes) in order to minimize fatigue of the survey team members. All observers were experienced in small cetacean survey techniques and identifying local cetacean species.
- 2.1.4. During on-effort survey periods, the survey team recorded effort data including time, position (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance traveled in each series (a continuous period of search effort) with the assistance of a handheld GPS.
- 2.1.5. Data including time, position and vessel speed were also automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review.
- 2.1.6. When dolphins were sighted, the survey team would end the survey effort, and immediately record the initial sighting distance and angle of the dolphin group from the survey vessel, as well as the sighting time and position. Then the research vessel was diverted from its course to approach the animals for species identification, group size estimation, assessment of group composition, and behavioural observations. The perpendicular distance (PSD) of the dolphin group to the transect line was later calculated from the initial sighting distance and angle.
- 2.1.7. Survey effort being conducted along the parallel transect lines that were perpendicular to the coastlines (as indicated in Figure 1) was labeled as "primary" survey effort, while the survey effort being conducted along the

connecting lines between parallel lines was labeled as "secondary" survey effort. According to HKCRP long-term dolphin monitoring data, encounter rates of Chinese white dolphins deduced from effort and sighting data collected along primary and secondary lines were similar in survey areas around Lantau Island. Therefore, primary and secondary survey effort were both presented as on-effort survey effort in this report.

2.1.8. Encounter rates of Chinese white dolphins (number of on-effort sightings per 100 km of survey effort) were calculated in WL survey area in relation to the amount of survey effort conducted during each month of monitoring survey. Only data collected under Beaufort 3 or below condition would be used for encounter rate analysis. Dolphin encounter rates were calculated using primary survey effort alone, as well as the combined survey effort from both primary and secondary lines.

2.2. Photo-identification Work

- 2.2.1. When a group of Chinese White Dolphins were sighted during the line-transect survey, the survey team would end effort and approach the group slowly from the side and behind to take photographs of them. Every attempt was made to photograph every dolphin in the group, and even photograph both sides of the dolphins, since the colouration and markings on both sides may not be symmetrical.
- 2.2.2. A professional digital camera (*Canon* EOS 7D or 60D model) equipped with long telephoto lenses (100-400 mm zoom) were available on board for researchers to take sharp, close-up photographs of dolphins as they surfaced. The images were shot at the highest available resolution and stored on Compact Flash memory cards for downloading onto a computer.
- 2.2.3. All digital images taken in the field were first examined, and those containing potentially identifiable individuals were sorted out. These photographs would then be examined in greater detail, and were carefully compared to the existing Chinese White Dolphin photo-identification catalogue maintained by HKCRP since 1995.
- 2.2.4. Chinese White Dolphins can be identified by their natural markings, such as nicks, cuts, scars and deformities on their dorsal fin and body, and their unique spotting patterns were also used as secondary identifying features

(Jefferson 2000).

2.2.5. All photographs of each individual were then compiled and arranged in chronological order, with data including the date and location first identified (initial sighting), re-sightings, associated dolphins, distinctive features, and age classes entered into a computer database.

3. Monitoring Results

- 3.1. Vessel-based Line-transect Survey
- 3.1.1. During the monitoring month of May 2014, two complete sets of systematic line-transect vessel surveys were conducted on the 7th and 20th, to cover all transect lines in WL survey area twice. The survey routes of each survey day are presented in Figures 2-3.
- 3.1.2. From these surveys, a total of 64.16 km of survey effort was collected, with 72.9% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) (Appendix I). Moreover, the total survey effort conducted on primary lines (the horizontal lines perpendicular to the coastlines) was 43.05 km, while the effort on secondary lines (the lines connecting the primary lines) was 21.11 km.
- 3.1.3. During the monitoring surveys in May 2014, five groups of 38 Chinese White Dolphins were sighted, with three sightings being made on primary lines during on-effort search (Appendix II). None of the dolphin groups was associated with any operating fishing vessel.
- 3.1.4. Distribution of the five dolphin sightings made during May's surveys is shown in Figure 4. Dolphins groups were scattered in the waters between the HKLR09 alignment and Fan Lau with no apparent concentration of sightings. Only one of the dolphin sightings was made in the vicinity of the HKLR09 alignment, while the rest were sighted far away from the bridge alignment (Figure 4).
- 3.1.5. During May's surveys, encounter rates of Chinese White Dolphins deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) are shown in Tables 2 & 3.

Table 2. Dolphin encounter rates (sightings per 100 km of survey effort) per set during May's surveys in West Lantau (WL)

		Encounter rate (STG)	Encounter rate (ANI)	
		(no. of on-effort dolphin sightings	(no. of dolphins from all on-effort	
		per 100 km of survey effort)	sightings per 100 km of survey effort)	
		Primary Lines Only	Primary Lines Only	
West	Set 1: May 7 th	9.2	32.3	
Lantau	Set 2: May 20 th	10.5	83.8	

Table 3. Overall dolphin encounter rates (sightings per 100 km of survey effort) in May's surveys on primary lines only as well as both primary lines and secondary lines in West Lantau (WL)

	Encoun	ter rate (STG)	Encounter rate (ANI)		
	(no. of on-effor	t dolphin sightings per	(no. of dolphins from all on-effort		
	100 km of survey effort)		sightings per 100 km of survey effort)		
	Primary Both Primary and		Primary	Both Primary and	
	Lines Only	Secondary Lines	Lines Only	Secondary Lines	
West Lantau	9.6	10.7	48.0	81.3	

3.1.6. The average group size of Chinese White Dolphins was 7.6 individuals per group during May's surveys, which was much higher to the ones in previous months of monitoring surveys. Out of the five dolphin groups, two groups were composed of 10 or more animals, while only one group was composed of only 1-2 animals.

3.2. Photo-identification Work

- 3.2.1. A total of 22 different individual Chinese White Dolphins were identified 24 times during the May's survey, and only two individuals (CH105 and WL28) were sighted more than once (Appendices III and IV).
- 3.2.2. Notably, three individuals identified during this month of monitoring surveys were known to occur primarily in North Lantau waters in the past (i.e. NL98, NL182 and NL304). It is unclear whether they have been expanding their range use to West Lantau waters, and such possible range expansion should be continuously monitored in the upcoming surveys.
- 3.2.3. Seven females (CH105, NL98, NL304, WL28, WL98, WL118 and WL224)

were associated with their calves during their re-sightings in May's surveys.

3.3. Conclusion

- 3.3.1. During this month of dolphin monitoring, marine construction activities have continued under this contract. However, no adverse impact on Chinese white dolphins was noticeable from general observations.
- 3.3.2. Due to the monthly variation in dolphin occurrence within the study area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of this project in the quarterly EM&A report, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period (i.e. March-May 2014) and baseline monitoring period will be made.

4. References

- Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, London.
- Hung, S. K. 2012. Monitoring of marine mammals in Hong Kong waters data collection: final report (2011-12). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department of Hong Kong SAR Government, 120 pp.
- Hung, S. K. 2013. Monitoring of marine mammals in Hong Kong waters data collection: inception report (2013-14). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department of Hong Kong SAR Government.
- Jefferson, T. A. 2000. Population biology of the Indo-Pacific hump-backed dolphin in Hong Kong waters. Wildlife Monographs 144:1-65.

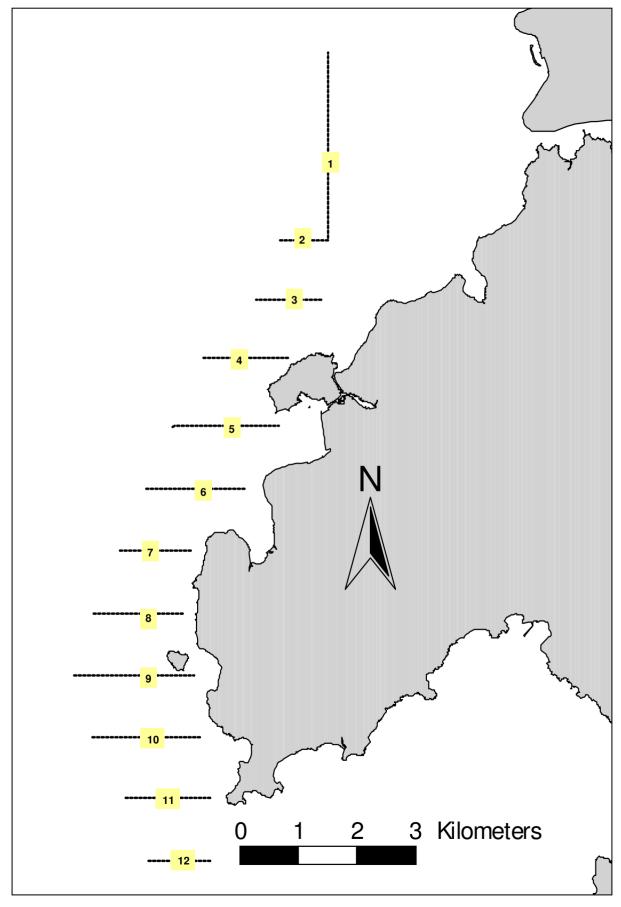


Figure 1. Transect Line Layout in West Lantau Survey Areas

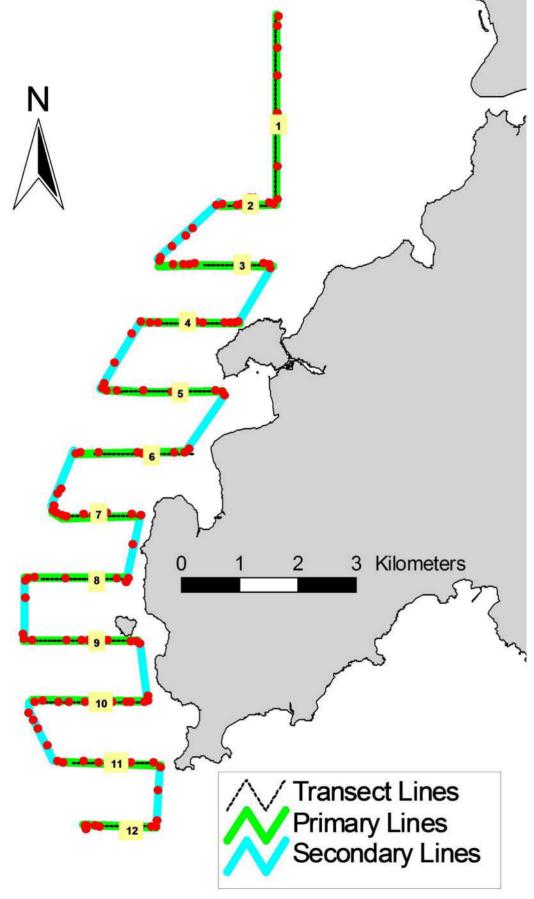


Figure 2. Survey Route on May 7th, 2014 (note: red dots represent the tracked positions of survey boat logged continuously by GPS throughout the course of the survey)

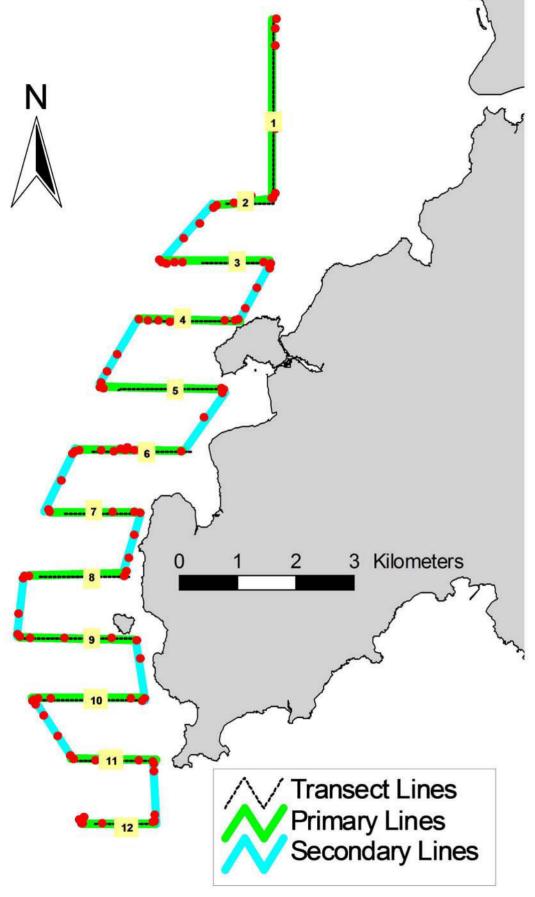


Figure 3. Survey Route on May 20th, 2014 (note: red dots represent the tracked positions of survey boat logged continuously by GPS throughout the course of the survey)

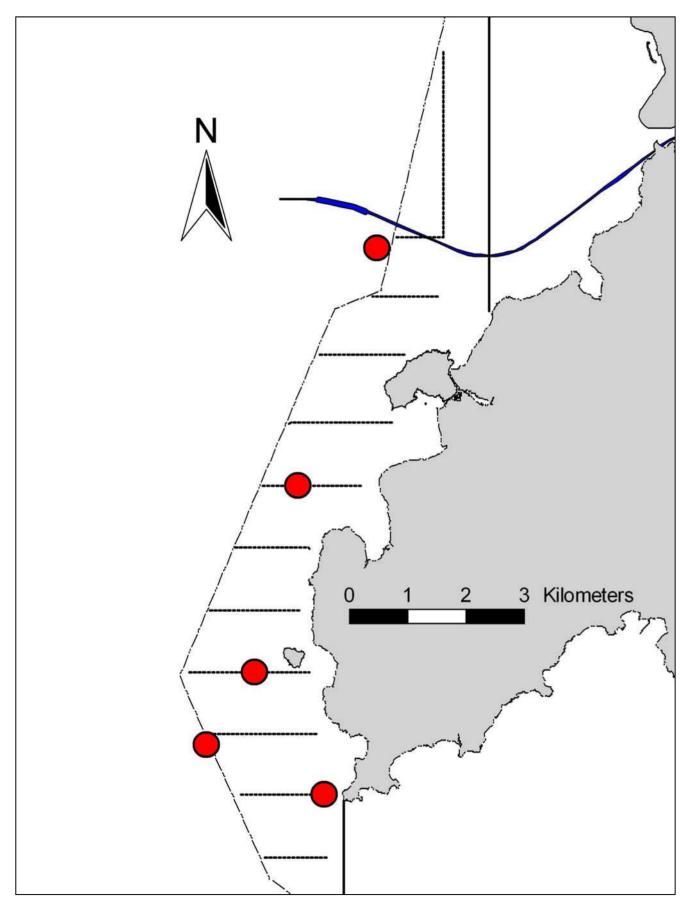


Figure 4. Distribution of Chinese White Dolphin Sighting during May 2014 HKLR09 Monitoring Surveys

Appendix I. HKLR09 Survey Effort Database (May 2014)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
7-May-14	W LANTAU	2	16.82	SPRING	STANDARD31516	HKLR	Р
7-May-14	W LANTAU	3	4.86	SPRING	STANDARD31516	HKLR	Р
7-May-14	W LANTAU	2	9.88	SPRING	STANDARD31516	HKLR	S
20-May-14	W LANTAU	3	9.55	SPRING	STANDARD31516	HKLR	Р
20-May-14	W LANTAU	4	10.43	SPRING	STANDARD31516	HKLR	Р
20-May-14	W LANTAU	5	1.39	SPRING	STANDARD31516	HKLR	Р
20-May-14	W LANTAU	3	5.66	SPRING	STANDARD31516	HKLR	S
20-May-14	W LANTAU	4	4.07	SPRING	STANDARD31516	HKLR	S
20-May-14	W LANTAU	5	1.50	SPRING	STANDARD31516	HKLR	S

Appendix II. HKLR09 Chinese White Dolphin Sighting Database (May 2014)

(Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance) D = Not Determined; BOAT ASSOC. = Fishing Boat Association, P/S: Sighting Made on Primary/Secondary Line)

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
07-May-14	1	1041	13	W LANTAU	2	0	ON	HKLR	815297	802600	SPRING	NONE	S
07-May-14	2	1248	5	W LANTAU	2	160	ON	HKLR	808436	800502	SPRING	NONE	Р
07-May-14	3	1324	10	W LANTAU	2	236	ON	HKLR	807264	799684	SPRING	NONE	S
07-May-14	4	1348	2	W LANTAU	2	131	ON	HKLR	806462	801693	SPRING	NONE	Р
20-May-14	1	1135	8	W LANTAU	3	449	ON	HKLR	811457	801241	SPRING	NONE	Р

Appendix III. Individual dolphins identified during HKLR09 monitoring surveys in May 2014

ID#	DATE	STG#	AREA
CH105	07/05/14	1	W LANTAU
	20/05/14	1	W LANTAU
NL98	07/05/14	1	W LANTAU
NL182	20/05/14	1	W LANTAU
NL304	20/05/14	1	W LANTAU
SL44	07/05/14	2	W LANTAU
WL28	07/05/14	1	W LANTAU
	20/05/14	1	W LANTAU
WL46	07/05/14	1	W LANTAU
WL62	07/05/14	4	W LANTAU
WL69	07/05/14	3	W LANTAU
WL74	07/05/14	2	W LANTAU
WL79	07/05/14	1	W LANTAU
WL91	07/05/14	2	W LANTAU
WL98	07/05/14	1	W LANTAU
WL114	07/05/14	2	W LANTAU
WL118	07/05/14	3	W LANTAU
WL132	07/05/14	4	W LANTAU
WL179	20/05/14	1	W LANTAU
WL193	07/05/14	1	W LANTAU
WL199	20/05/14	1	W LANTAU
WL208	07/05/14	3	W LANTAU
WL219	20/05/14	1	W LANTAU
WL224	07/05/14	3	W LANTAU

Appendix IV. Photographs of Identified Individual Dolphins in May 2014 (HKLR09)

Appendix IV. (cont'd)

Appendix IV. (cont'd)

APPENDIX J WIND DATA

Date	Time	Wind Speed m/s	Direction
1-May-2014	00:00	0.8	SSW
1-May-2014	01:00	0.8	WNW
1-May-2014	02:00	0.8	WNW
1-May-2014	03:00	0.8	WNW
1-May-2014	04:00	0.6	W
1-May-2014	05:00	0.6	WNW
1-May-2014	06:00	0.6	W
1-May-2014	07:00	0.7	ESE
1-May-2014	08:00	0.9	W
1-May-2014	09:00	1.1	SSW
1-May-2014	10:00	1.8	SSW
1-May-2014	11:00	2	SW
1-May-2014	12:00	2.3	WNW
1-May-2014	13:00	2.8	WNW
1-May-2014	14:00	3.2	WNW
1-May-2014	15:00	2.8	WNW
1-May-2014	16:00	2.4	WNW
1-May-2014	17:00	2.2	WNW
1-May-2014	18:00	1.7	SW
1-May-2014	19:00	1.1	SSW
1-May-2014	20:00	1.1	SW
1-May-2014	21:00	0.8	W
1-May-2014	22:00	0.8	WNW
1-May-2014	23:00	1	WSW
2-May-2014	00:00	0.9	WSW
2-May-2014	01:00	0.5	WSW
2-May-2014	02:00	0.7	SSW
2-May-2014	03:00	0.6	SW
2-May-2014	04:00	0.5	SW
2-May-2014	05:00	0.4	SW
2-May-2014	06:00	0.7	WSW
2-May-2014	07:00	0.4	WSW
2-May-2014	08:00	0.6	WSW
2-May-2014	09:00	0.9	SW
2-May-2014	10:00	1.6	WSW
2-May-2014	11:00	1.9	W
2-May-2014	12:00	2.8	SW
2-May-2014	13:00	2.8	SW
2-May-2014	14:00	2.6	WNW
2-May-2014	15:00	2.2	W
2-May-2014	16:00	1.9	W
2-May-2014	17:00	2.2	SW
2-May-2014 2-May-2014	18:00	1.5	SW
2-May-2014 2-May-2014	19:00	1.4	WNW
2-May-2014	20:00	0.7	WSW
2-May-2014	21:00	0.7	W
2-May-2014	22:00	0.5	WNW
2-May-2014	23:00	0.6	WNW
3-May-2014	00:00	0.6	W
3-May-2014	01:00	0.7	W
	02:00	0.6	WSW
3-1/12//-2/11/1	UZ.UU	0.0	V V O V V
3-May-2014			\/\/
3-May-2014 3-May-2014 3-May-2014	03:00 04:00	0.8 0.8	W

Date	Time	Wind Speed m/s	Direction
3-May-2014	06:00	0.5	WNW
3-May-2014	07:00	0.6	W
3-May-2014	08:00	1	WNW
3-May-2014	09:00	1.8	WNW
3-May-2014	10:00	2.1	W
3-May-2014	11:00	2	WNW
3-May-2014	12:00	2.1	WNW
3-May-2014	13:00	2.2	SSW
3-May-2014	14:00	2.4	SW
3-May-2014	15:00	2.5	SW
3-May-2014	16:00	2.5	SSW
3-May-2014	17:00	3	SSW
	18:00	1.6	SW
3-May-2014			
3-May-2014	19:00	1.6	WNW
3-May-2014	20:00	1.4	WNW
3-May-2014	21:00	1.5	N NA/NINA/
3-May-2014	22:00	2	WNW
3-May-2014	23:00	1.8	W
4-May-2014	00:00	1.8	WNW
4-May-2014	01:00	1.7	WNW
4-May-2014	02:00	1.4	SW
4-May-2014	03:00	1.5	WNW
4-May-2014	04:00	1.2	WNW
4-May-2014	05:00	0.9	WNW
4-May-2014	06:00	0.9	WNW
4-May-2014	07:00	0.8	WNW
4-May-2014	08:00	1.6	W
4-May-2014	09:00	2.3	W
4-May-2014	10:00	2.9	W
4-May-2014	11:00	3	WNW
4-May-2014	12:00	2.7	WNW
4-May-2014	13:00	2.2	W
4-May-2014	14:00	2.6	W
4-May-2014	15:00	2.4	WSW
4-May-2014	16:00	2.4	WNW
4-May-2014	17:00	2.1	WNW
4-May-2014	18:00	1.5	WSW
4-May-2014	19:00	1.1	SW
4-May-2014	20:00	1.1	W
4-May-2014	21:00	1.5	WSW
4-May-2014	22:00	1.8	WNW
4-May-2014 4-May-2014	23:00	1.3	W
		1.6	WNW
5-May-2014 5-May-2014	00:00 01:00		WNW
	02:00	1.6	WNW
5-May-2014			
5-May-2014	03:00	2.2	WNW
5-May-2014	04:00	2.1	SW
5-May-2014	05:00	1.9	SSW
5-May-2014	06:00	1.3	SW
5-May-2014	07:00	1.4	SW
5-May-2014	08:00	2.3	WNW
5-May-2014	09:00	2.4	SW
5-May-2014	10:00	4	WNW
5-May-2014	11:00	3.9	W

Date	Time	Wind Speed m/s	Direction
5-May-2014	12:00	4.1	WSW
5-May-2014	13:00	3.7	WSW
5-May-2014	14:00	2.9	WSW
5-May-2014	15:00	2.4	WNW
5-May-2014	16:00	2.3	SW
5-May-2014	17:00	1.7	WSW
5-May-2014	18:00	1.7	SW
5-May-2014	19:00	1.3	WNW
5-May-2014	20:00	1.4	W
5-May-2014	21:00	1.2	WSW
5-May-2014	22:00	1.3	WSW
5-May-2014	23:00	1.6	WNW
6-May-2014	00:00	2.3	W
6-May-2014	01:00	1.8	WNW
6-May-2014	02:00	1.6	S
6-May-2014	03:00	1.4	W
6-May-2014	04:00	2	WNW
6-May-2014	05:00	1.7	WNW
6-May-2014	06:00	2.2	WNW
6-May-2014	07:00	1.9	WNW
6-May-2014	08:00	2	W
6-May-2014	09:00	2.7	W
6-May-2014	10:00	2.8	W
6-May-2014	11:00	2.3	WNW
6-May-2014	12:00	2.4	WNW
6-May-2014	13:00	3	WNW
6-May-2014	14:00	3	WNW
6-May-2014	15:00	3	W
6-May-2014	16:00	2.5	W
6-May-2014	17:00	3	W
6-May-2014	18:00	2.7	SW
6-May-2014	19:00	2.1	SW
6-May-2014	20:00	1.7	S
6-May-2014	21:00	1.6	W
6-May-2014	22:00	1.3	WSW
6-May-2014	23:00	1.4	SW
7-May-2014	00:00	1.3	W
7-May-2014	01:00	1.3	WNW
7-May-2014	02:00	1	WNW
7-May-2014	03:00	1.3	WNW
7-May-2014	04:00	1.4	WNW
7-May-2014 7-May-2014	05:00	1.3	WNW
7-May-2014 7-May-2014	06:00	1.3	W
7-May-2014 7-May-2014	07:00	0.9	W
7-May-2014 7-May-2014	08:00	1.1	WSW
7-May-2014 7-May-2014	09:00	1.6	SW
7-May-2014 7-May-2014	10:00	2	WSW
7-May-2014 7-May-2014	11:00	1.8	WSW
	12:00	2.8	SW
7-May-2014			SW
7-May-2014	13:00	2.6	
7-May-2014	14:00	2.3	SW
7-May-2014	15:00	2.3	WSW
7-May-2014	16:00	2.1	SW
7-May-2014	17:00	1.9	SW

Date	Time	Wind Speed m/s	Direction
7-May-2014	18:00	1.8	SW
7-May-2014	19:00	1.8	SSW
7-May-2014	20:00	1.5	WNW
7-May-2014	21:00	1.6	W
7-May-2014	22:00	1.9	SE
7-May-2014	23:00	2.2	SSW
8-May-2014	00:00	2.4	WNW
8-May-2014	01:00	2.5	W
8-May-2014	02:00	2.2	W
8-May-2014	03:00	2.2	WNW
8-May-2014	04:00	1.4	WNW
8-May-2014	05:00	1.8	W
8-May-2014	06:00	2.1	SSW
8-May-2014	07:00	2	W
8-May-2014	08:00	1.8	W
8-May-2014	09:00	2.1	W
8-May-2014	10:00	2.5	W
8-May-2014	11:00	3.4	W
8-May-2014	12:00	3.8	W
8-May-2014	13:00	3.6	W
	14:00	3.3	W
8-May-2014 8-May-2014	15:00	3.3	W
-	16:00	2.4	S S
8-May-2014 8-May-2014	17:00	2.4	<u>S</u>
		2.1	W
8-May-2014	18:00		SSW
8-May-2014	19:00	2.1	WSW
8-May-2014	20:00		
8-May-2014	21:00	2.6	W SW
8-May-2014	22:00	2.4	
8-May-2014	23:00	2.7	SW
9-May-2014	00:00	2.7	WSW
9-May-2014	01:00	2.3	SW
9-May-2014	02:00	2.3	WSW
9-May-2014	03:00	2	SW
9-May-2014	04:00	2.5	SW
9-May-2014	05:00	2.3	WSW
9-May-2014	06:00	1.9	SW
9-May-2014	07:00	2.5	SSW
9-May-2014	08:00	2.7	SSW
9-May-2014	09:00	3	SW
9-May-2014	10:00	2.6	SW
9-May-2014	11:00	2.5	SW
9-May-2014	12:00	2.4	SSW
9-May-2014	13:00	2.3	SSW
9-May-2014	14:00	1.9	SSW
9-May-2014	15:00	2.2	NE
9-May-2014	16:00	2.4	SSW
9-May-2014	17:00	1.9	W
9-May-2014	18:00	1.4	W
9-May-2014	19:00	1.7	SSW
9-May-2014	20:00	1.6	SSW
9-May-2014	21:00	1.7	S
9-May-2014	22:00	1.8	SSW
9-May-2014	23:00	1.9	SE

Date	Time	Wind Speed m/s	Direction
10-May-2014	00:00	2.5	ESE
10-May-2014	01:00	2.1	SSE
10-May-2014	02:00	2.2	SSE
10-May-2014	03:00	2.2	SSW
10-May-2014	04:00	1.8	WNW
10-May-2014	05:00	1.6	W
10-May-2014	06:00	1.8	W
10-May-2014	07:00	2	NE
10-May-2014	08:00	2.3	W
10-May-2014	09:00	2.3	SSW
10-May-2014	10:00	2.7	SW
10-May-2014	11:00	2.5	SSW
10-May-2014	12:00	2.4	W
10-May-2014	13:00	2.1	W
10-May-2014	14:00	2.3	W
10-May-2014	15:00	2.2	W
10-May-2014	16:00	2	WSW
10-May-2014	17:00	2.1	SW
10-May-2014	18:00	1.8	SSW
10-May-2014	19:00	1.3	W
10-May-2014	20:00	1.3	W
10-May-2014	21:00	1.3	W
10-May-2014	22:00	1.5	W
10-May-2014	23:00	1.6	W
11-May-2014	00:00	1.9	N
11-May-2014	01:00	2.2	N
11-May-2014	02:00	1.8	N N
11-May-2014	03:00	1.9	NNE
11-May-2014	04:00	2.2	ENE
11-May-2014	05:00	2	WNW
11-May-2014	06:00	1.8	WNW
11-May-2014	07:00	1.9	WNW
11-May-2014	08:00	1.9	W
11-May-2014	09:00	2	W
11-May-2014	10:00	1.5	W
11-May-2014	11:00	1.9	W
11-May-2014	12:00	2.1	W
11-May-2014	13:00	2.7	W
11-May-2014	14:00	2.7	W
11-May-2014 11-May-2014	15:00	2.7	W
11-May-2014	16:00	2.4	W
11-May-2014 11-May-2014	17:00	2.4	W
•	18:00	1.5	W
11-May-2014			W
11-May-2014	19:00 20:00	1.5	W
11-May-2014			W
11-May-2014	21:00	1.1	W
11-May-2014	22:00	0.7	WSW
11-May-2014	23:00	1.2	
12-May-2014	00:00	1.1	WSW
12-May-2014	01:00	1.3	WSW
12-May-2014	02:00	1.2	W
12-May-2014	03:00	1.5	W
12-May-2014	04:00	1.2	W
12-May-2014	05:00	1.2	N

Date	Time	Wind Speed m/s	Direction
12-May-2014	06:00	1.3	W
12-May-2014	07:00	1.5	W
12-May-2014	08:00	1.5	SW
12-May-2014	09:00	1.6	SW
12-May-2014	10:00	2.1	SW
12-May-2014	11:00	2	SW
12-May-2014	12:00	2.1	SW
12-May-2014	13:00	1.6	W
12-May-2014	14:00	2.2	SW
12-May-2014	15:00	2.2	W
12-May-2014	16:00	1.6	W
12-May-2014	17:00	1.3	SSW
12-May-2014	18:00	0.9	W
12-May-2014	19:00	0.9	WNW
12-May-2014	20:00	0.8	SW
12-May-2014	21:00	0.5	WSW
12-May-2014	22:00	0.9	SW
12-May-2014	23:00	0.9	WSW
13-May-2014	00:00	0.7	W
13-May-2014	01:00	0.7	W
13-May-2014	02:00	0.7	SW
13-May-2014	03:00	0.9	W
13-May-2014	04:00	0.8	W
13-May-2014	05:00	0.8	WSW
13-May-2014	06:00	0.8	SW
13-May-2014	07:00	0.7	SSW
13-May-2014	08:00	0.9	N
13-May-2014	09:00	1.7	NNE
13-May-2014	10:00	1.6	NNE
13-May-2014	11:00	1.9	N
13-May-2014	12:00	1.8	E
13-May-2014	13:00	1.6	Ē
13-May-2014	14:00	1.5	Ē
13-May-2014	15:00	1	Ē
13-May-2014	16:00	0.8	Ē
13-May-2014	17:00	0.6	NE
13-May-2014	18:00	0.7	WSW
13-May-2014	19:00	0.5	WSW
13-May-2014	20:00	0.5	W
13-May-2014	21:00	0.6	WSW
13-May-2014	22:00	0.4	SW
13-May-2014	23:00	0.4	W
14-May-2014	00:00	0.4	W
14-May-2014	01:00	0.4	SW
14-May-2014	02:00	0.4	SW
14-May-2014	03:00	0.4	W
14-May-2014	04:00	0.6	W
14-May-2014	05:00	0.8	SW
14-May-2014	06:00	0.8	SW
·			SW
14-May-2014	07:00	1.1	NE
14-May-2014	08:00	1 1	
14-May-2014	09:00		SSE
14-May-2014	10:00	2.1	SE
14-May-2014	11:00	2.5	ENE

Date	Time	Wind Speed m/s	Direction
14-May-2014	12:00	2	N
14-May-2014	13:00	2	N
14-May-2014	14:00	2	N
14-May-2014	15:00	2.4	ENE
14-May-2014	16:00	2.4	ENE
14-May-2014	17:00	2.2	NE
14-May-2014	18:00	1.7	N
14-May-2014	19:00	1.3	NNE
14-May-2014	20:00	0.7	NE
14-May-2014	21:00	0.7	NE
14-May-2014	22:00	0.6	ENE
14-May-2014	23:00	0.5	ENE
15-May-2014	00:00	0.6	ENE
15-May-2014	01:00	0.6	E
	02:00	0.6	ENE
15-May-2014			
15-May-2014	03:00	0.8	SE
15-May-2014	04:00	0.9	ENE
15-May-2014	05:00	1	ESE
15-May-2014	06:00	0.9	SE
15-May-2014	07:00	0.9	SSE
15-May-2014	08:00	1.8	ENE
15-May-2014	09:00	2.3	ESE
15-May-2014	10:00	2.4	E
15-May-2014	11:00	2.3	S
15-May-2014	12:00	2.3	S
15-May-2014	13:00	2.3	SE
15-May-2014	14:00	1.7	SE
15-May-2014	15:00	1.5	SE
15-May-2014	16:00	1.4	SE
15-May-2014	17:00	8.0	S
15-May-2014	18:00	0.6	ESE
15-May-2014	19:00	0.4	ESE
15-May-2014	20:00	0.3	SE
15-May-2014	21:00	0.4	SE
15-May-2014	22:00	0.4	SSE
15-May-2014	23:00	0.4	SSW
16-May-2014	00:00	1	SSE
16-May-2014	01:00	1	SSE
16-May-2014	02:00	1.1	SE
16-May-2014	03:00	0.9	SSE
16-May-2014	04:00	0.9	SSE
16-May-2014	05:00	0.6	SSE
16-May-2014	06:00	0.4	SSE
16-May-2014	07:00	0.5	SSE
16-May-2014	08:00	0.6	SSE
16-May-2014	09:00	1.8	SSE
16-May-2014	10:00	2	SSE
16-May-2014	11:00	2.2	NE
16-May-2014	12:00	2.2	NE
16-May-2014	13:00	1.8	E
16-May-2014	14:00	1.6	SSW
16-May-2014	15:00	1.8	SSE
16-May-2014	16:00	1.9	SSE
16-May-2014	17:00	1.8	SE
10 May-2014	17.00	1.0	OL.

Date	Time	Wind Speed m/s	Direction
16-May-2014	18:00	1.1	E
16-May-2014	19:00	0.8	ENE
16-May-2014	20:00	0.6	WNW
16-May-2014	21:00	0.7	NW
16-May-2014	22:00	0.9	N
16-May-2014	23:00	0.6	WNW
17-May-2014	00:00	0.6	SE
17-May-2014	01:00	0.6	SSW
17-May-2014	02:00	0.7	SE
17-May-2014	03:00	0.7	E
17-May-2014	04:00	0.6	WNW
17-May-2014	05:00	0.5	NNW
17-May-2014	06:00	0.6	NW
17-May-2014	07:00	0.7	N
17-May-2014	08:00	1.1	NNW
17-May-2014	09:00	1.3	NW
17-May-2014	10:00	1.6	SW
17-May-2014	11:00	1.6	WSW
17-May-2014	12:00	2.2	SSE
17-May-2014 17-May-2014	13:00	2	SW
17-May-2014	14:00	1.6	E
17-May-2014 17-May-2014	15:00	1.4	NNE
17-May-2014	16:00	1.5	NNE
17-May-2014 17-May-2014	17:00	1.4	NNE
17-May-2014 17-May-2014	18:00	1.2	N
17-May-2014 17-May-2014	19:00	1.2	N N
17-May-2014 17-May-2014	20:00	1.1	ENE
17-May-2014 17-May-2014	21:00	1.5	S
17-May-2014 17-May-2014	22:00	1.3	SW
17-May-2014 17-May-2014		1.2	ENE
	23:00		
18-May-2014	00:00	1.6	N ENE
18-May-2014	01:00	1.4	
18-May-2014	02:00	1.4	NNE
18-May-2014	03:00	1.3	NE ENE
18-May-2014	04:00	1.7	ENE
18-May-2014	05:00	1.5	ENE
18-May-2014	06:00	1.6	NNE
18-May-2014	07:00	1.7	NNE
18-May-2014	08:00	2.2	N NE
18-May-2014	09:00	2.3	NE NE
18-May-2014	10:00	2.3	N N
18-May-2014	11:00	2.9	N N
18-May-2014	12:00	3	N
18-May-2014	13:00	2.7	NE
18-May-2014	14:00	2.7	<u>E</u>
18-May-2014	15:00	2.2	E
18-May-2014	16:00	2.3	WNW
18-May-2014	17:00	2.2	W
18-May-2014	18:00	1.5	NW
18-May-2014	19:00	1.5	NNE
18-May-2014	20:00	1.2	NNE
18-May-2014	21:00	1.3	NNE
18-May-2014	22:00	1.8	ENE
18-May-2014	23:00	1.7	ENE

Date	Time	Wind Speed m/s	Direction
19-May-2014	00:00	2	ENE
19-May-2014	01:00	2.5	ENE
19-May-2014	02:00	2.1	ENE
19-May-2014	03:00	1.9	ENE
19-May-2014	04:00	1.8	ENE
19-May-2014	05:00	2	N
19-May-2014	06:00	1.9	N
19-May-2014	07:00	2	NNE
19-May-2014	08:00	2.3	NNE
19-May-2014	09:00	2.5	ENE
19-May-2014	10:00	2.4	ENE
19-May-2014	11:00	2.8	ENE
19-May-2014	12:00	2.4	ENE
19-May-2014	13:00	2.4	ENE
19-May-2014	14:00	2.6	ENE
19-May-2014	15:00	2.4	ENE
19-May-2014	16:00	2.8	NNE
19-May-2014	17:00	3.2	NNE
19-May-2014	18:00	1.8	N
19-May-2014	19:00	1.5	N
19-May-2014	20:00	1.5	NE
19-May-2014	21:00	1	ENE
19-May-2014	22:00	1.8	Е
19-May-2014	23:00	1.8	NNE
20-May-2014	00:00	1.9	ENE
20-May-2014	01:00	2.4	ENE
20-May-2014	02:00	2.2	NNE
20-May-2014	03:00	2.2	NNE
20-May-2014	04:00	1.5	WNW
20-May-2014	05:00	1.5	W
20-May-2014	06:00	1.4	W
20-May-2014	07:00	0.9	W
20-May-2014	08:00	1.2	ESE
20-May-2014	09:00	2.2	S
20-May-2014	10:00	2.8	SSW
20-May-2014	11:00	3	W
20-May-2014	12:00	2.4	W
20-May-2014	13:00	2.5	SSW
20-May-2014	14:00	2.2	SSW
20-May-2014	15:00	2.3	SSW
20-May-2014	16:00	2	WSW
20-May-2014	17:00	1.5	W
20-May-2014	18:00	1.6	WNW
20-May-2014	19:00	1.8	ENE
20-May-2014	20:00	2	S
20-May-2014	21:00	1.6	W
20-May-2014	22:00	1.9	W
20-May-2014	23:00	2.1	SSW
21-May-2014	00:00	2.1	SW
21-May-2014	01:00	2	Е
21-May-2014	02:00	1.5	NE
21-May-2014	03:00	1.4	NE
21-May-2014	04:00	1.8	WNW
21-May-2014	05:00	1.5	W

Date	Time	Wind Speed m/s	Direction
21-May-2014	06:00	1.3	N
21-May-2014	07:00	1	ENE
21-May-2014	08:00	0.7	NE
21-May-2014	09:00	1.8	N
21-May-2014	10:00	1.9	SE
21-May-2014	11:00	1.9	SE
21-May-2014	12:00	2.3	SE
21-May-2014	13:00	2.2	SE
21-May-2014	14:00	2.7	SE
21-May-2014	15:00	2.4	SE
21-May-2014	16:00	1.7	SE
21-May-2014	17:00	1.8	N
21-May-2014	18:00	1.3	NNE
21-May-2014	19:00	0.9	NE
21-May-2014	20:00	1.2	NNE
21-May-2014	21:00	1.2	NNE
21-May-2014	22:00	1.3	NNE
21-May-2014	23:00	1.4	NNE
22-May-2014	00:00	1.5	NE
22-May-2014	01:00	1.5	NNE
22-May-2014	02:00	1.3	NE NE
22-May-2014	03:00	1.8	N N
22-May-2014	04:00	1.6	NE
22-May-2014	05:00	1.8	SW
22-May-2014	06:00	1.4	S
22-May-2014	07:00	1.4	S
22-May-2014	08:00	1.8	SE
22-May-2014	09:00	2.1	NNE
22-May-2014	10:00	2.4	SSW
22-May-2014	11:00	3.3	SSW
22-May-2014	12:00	2.5	SSW
22-May-2014	13:00	2.5	N N
22-May-2014	14:00	2.3	ENE
22-May-2014	15:00	1.9	NNE
22-May-2014	16:00	2.2	NNE
22-May-2014	17:00	2.3	NE
22-May-2014	18:00	2.3	NE NE
22-May-2014 22-May-2014	19:00	2.2	NE NE
22-May-2014 22-May-2014	20:00	2.3	NE NE
22-May-2014 22-May-2014	21:00	2.6	ENE
22-May-2014	22:00	1.9	ENE
22-May-2014 22-May-2014	23:00	1.7	ENE
23-May-2014	00:00	2.2	ENE
23-May-2014 23-May-2014	01:00	2.2	N LNL
23-May-2014 23-May-2014	02:00	2.4	N N
23-May-2014 23-May-2014	03:00	2.4	NNE
23-May-2014 23-May-2014	04:00	1.3	NNE
23-May-2014 23-May-2014	05:00	1.5	NNE
23-May-2014 23-May-2014	06:00	1.8	NE
	07:00	2	ENE
23-May-2014		2.2	NE
23-May-2014	08:00	2.2	NE NE
23-May-2014	09:00	3	
23-May-2014 23-May-2014	10:00		NE NNE
23-IVIAY-2014	11:00	3.3	NNE

Date	Time	Wind Speed m/s	Direction
23-May-2014	12:00	3.2	NE
23-May-2014	13:00	3.1	NE
23-May-2014	14:00	3	N
23-May-2014	15:00	2.4	ENE
23-May-2014	16:00	2.8	ENE
23-May-2014	17:00	2	E
23-May-2014	18:00	1.8	NNE
23-May-2014	19:00	1.6	NNE
23-May-2014	20:00	1.4	NNE
23-May-2014	21:00	1.4	NE
23-May-2014	22:00	1.2	N
23-May-2014	23:00	1.5	N
24-May-2014	00:00	1.2	WNW
24-May-2014	01:00	1.1	W
24-May-2014	02:00	1.6	W
24-May-2014	03:00	1.3	SSW
24-May-2014	04:00	2.2	WSW
24-May-2014	05:00	1.6	SW
24-May-2014	06:00	1.4	SW
24-May-2014	07:00	1.3	WNW
24-May-2014	08:00	1.5	N
24-May-2014	09:00	2.2	NNE
24-May-2014	10:00	2.9	NNE
24-May-2014	11:00	3	NE NE
24-May-2014	12:00	2.5	E
24-May-2014	13:00	2.3	E E
24-May-2014	14:00	2.2	ENE
24-May-2014	15:00	2.4	ENE
24-May-2014	16:00	2.1	E
24-May-2014	17:00	2.3	S
24-May-2014	18:00	1.9	S
24-May-2014	19:00	1.4	NNE
24-May-2014	20:00	1.3	E
24-May-2014	21:00	1.8	ENE
24-May-2014	22:00	2.2	ENE
24-May-2014	23:00	1.6	NE
25-May-2014	00:00	1.5	ESE
25-May-2014 25-May-2014	01:00	1.8	ESE
25-May-2014 25-May-2014	02:00	1.8	N LSL
25-May-2014 25-May-2014	03:00	1.5	N N
25-May-2014 25-May-2014	04:00	1.4	N N
25-May-2014 25-May-2014	05:00	1.7	NNE
25-May-2014 25-May-2014	06:00	1.9	NE
25-May-2014 25-May-2014	07:00	2.4	ENE
25-May-2014 25-May-2014	08:00	2.8	ENE
25-May-2014 25-May-2014	09:00	2.2	ENE
25-May-2014 25-May-2014	10:00	2.4	N
25-May-2014 25-May-2014	11:00	2.2	N
25-May-2014 25-May-2014	12:00	2.5	ENE
•	13:00	2.5	N EINE
25-May-2014		1.9	<u> </u>
25-May-2014	14:00		E W
25-May-2014	15:00	2.2	
25-May-2014	16:00	1.8	WSW
25-May-2014	17:00	2	S

Date	Time	Wind Speed m/s	Direction
25-May-2014	18:00	1.3	W
25-May-2014	19:00	1.1	W
25-May-2014	20:00	0.9	NNE
25-May-2014	21:00	0.8	ESE
25-May-2014	22:00	0.8	NW
25-May-2014	23:00	0.6	W
26-May-2014	00:00	0.8	WNW
26-May-2014	01:00	0.9	SSW
26-May-2014	02:00	1	SSW
26-May-2014	03:00	0.8	S
26-May-2014	04:00	0.5	S
26-May-2014	05:00	0.7	W
26-May-2014	06:00	0.7	W
26-May-2014	07:00	0.7	W
26-May-2014	08:00	0.7	SSW
26-May-2014	09:00	1.6	W
26-May-2014	10:00	2	SSE
26-May-2014	11:00	2.3	S
26-May-2014	12:00	2.8	WSW
26-May-2014	13:00	2.7	S
26-May-2014	14:00	2.7	NW
26-May-2014	15:00	3.1	SSW
26-May-2014	16:00	2.1	WSW
26-May-2014	17:00	1.6	W
26-May-2014	18:00	1.4	W
26-May-2014	19:00	1.3	W
26-May-2014	20:00	1.3	W
26-May-2014	21:00	1.5	SSW
26-May-2014	22:00	1.6	SSW
26-May-2014	23:00	2	SSW
27-May-2014	00:00	1.9	SSW
27-May-2014	01:00	1.9	SSW
27-May-2014	02:00	2	NE
27-May-2014	03:00	2.2	NE
27-May-2014	04:00	1.7	ENE
27-May-2014	05:00	1.9	NE
27-May-2014	06:00	1.6	ENE
27-May-2014	07:00	1.9	N
27-May-2014	08:00	2	ENE
27-May-2014	09:00	2.1	ENE
27-May-2014	10:00	2	ENE
27-May-2014	11:00	2.8	ENE
27-May-2014	12:00	2.1	ENE
27-May-2014	13:00	2	NE NE
27-May-2014	14:00	2.6	NE NE
27-May-2014	15:00	1.8	NE NE
27-May-2014	16:00	2.3	NE
27-May-2014	17:00	2.5	NNE
27-May-2014	18:00	2.2	NNE
27-May-2014	19:00	2	NE
27-May-2014 27-May-2014	20:00	2.2	ENE
27-May-2014 27-May-2014	21:00	2.3	N N
27-May-2014 27-May-2014	22:00	2.1	ENE
27-May-2014 27-May-2014	23:00	2.5	NE
21-111ay-2014	20.00	۷.٥	INL

Date	Time	Wind Speed m/s	Direction
28-May-2014	00:00	1.9	ENE
28-May-2014	01:00	1.8	ENE
28-May-2014	02:00	1.8	WNW
28-May-2014	03:00	2.3	WNW
28-May-2014	04:00	1.6	S
28-May-2014	05:00	1.4	Е
28-May-2014	06:00	1.7	Е
28-May-2014	07:00	1.6	Е
28-May-2014	08:00	1.8	Е
28-May-2014	09:00	2.1	N
28-May-2014	10:00	1.8	NE
28-May-2014	11:00	1.6	SSW
28-May-2014	12:00	2.3	NW
28-May-2014	13:00	2.3	NE
28-May-2014	14:00	2.1	ENE
28-May-2014	15:00	2.2	NE
28-May-2014	16:00	2.4	ENE
28-May-2014	17:00	1.9	N
28-May-2014	18:00	1.7	N
28-May-2014	19:00	1.6	WNW
28-May-2014	20:00	0.7	NE
28-May-2014	21:00	1.5	NNE
28-May-2014	22:00	1.1	NNE
28-May-2014	23:00	1.4	NE
29-May-2014	00:00	1.1	NNE
29-May-2014	01:00	1	N
29-May-2014	02:00	0.8	NE
29-May-2014	03:00	1	ENE
29-May-2014	04:00	0.5	NE
29-May-2014	05:00	0.4	NE
29-May-2014	06:00	0.8	ENE
29-May-2014	07:00	1.1	ENE
29-May-2014	08:00	2	ENE
29-May-2014	09:00	2.1	ENE
29-May-2014	10:00	2.7	WNW
29-May-2014	11:00	2.3	NNE
29-May-2014	12:00	3	NNE
29-May-2014	13:00	3	ENE
29-May-2014	14:00	2.5	NNE
29-May-2014	15:00	2.9	NNE
29-May-2014	16:00	2.8	NNE
29-May-2014	17:00	2.4	NE
29-May-2014	18:00	2.8	ENE
29-May-2014	19:00	2.5	NNE
29-May-2014	20:00	2.5	NNE
29-May-2014	21:00	2.7	NNE
29-May-2014	22:00	1.8	N
29-May-2014	23:00	1.5	NNE
30-May-2014	00:00	1.5	NE
30-May-2014	01:00	2.3	N
30-May-2014	02:00	2.4	NNE
30-May-2014	03:00	2.7	NNE
30-May-2014	04:00	2.6	NNE

Date	Time	Wind Speed m/s	Direction
30-May-2014	06:00	2	SSE
30-May-2014	07:00	2	SSE
30-May-2014	08:00	1.5	WNW
30-May-2014	09:00	1.6	WNW
30-May-2014	10:00	2.2	W
30-May-2014	11:00	2.2	WNW
30-May-2014	12:00	2.9	W
30-May-2014	13:00	2.9	W
30-May-2014	14:00	3	WSW
30-May-2014	15:00	2.6	SSW
30-May-2014	16:00	2.7	WNW
30-May-2014	17:00	2.2	W
30-May-2014	18:00	1.8	W
30-May-2014	19:00	2	W
30-May-2014	20:00	2.4	W
30-May-2014	21:00	3.4	W
30-May-2014	22:00	3	NE
30-May-2014	23:00	3.2	NNE
31-May-2014	00:00	2.9	WSW
31-May-2014	01:00	2.9	N
31-May-2014	02:00	2.4	W
31-May-2014	03:00	2.9	WSW
31-May-2014	04:00	2.9	S
31-May-2014	05:00	3	S
31-May-2014	06:00	3.3	S
31-May-2014	07:00	3.2	W
31-May-2014	08:00	2.9	WNW
31-May-2014	09:00	3	WNW
31-May-2014	10:00	3.3	WNW
31-May-2014	11:00	3.2	W
31-May-2014	12:00	3.1	W
31-May-2014	13:00	2.5	WNW
31-May-2014	14:00	2.3	WNW
31-May-2014	15:00	2.3	WNW
31-May-2014	16:00	2.3	W
31-May-2014	17:00	1.1	W
31-May-2014	18:00	1.1	W
31-May-2014	19:00	1.8	W
31-May-2014	20:00	1.6	W
31-May-2014	21:00	2	WNW
31-May-2014	22:00	1.8	W
31-May-2014	23:00	1.9	WNW

APPENDIX K EVENT ACTION PLANS

Event / Action Plan for Air Quality

TIVEN T	ACTION				
EVENT	ET	IEC	so	CONTRACTOR	
ACTION LEVE	L				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and SO; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.	
2.Exceedance for two or more consecutive samples	 Identify source; Inform IEC and SO; Advise the SO on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and SO; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor;	 Submit proposals for remedial to SO within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 	

LIMIT LEVEL				
1.Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform SO, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the SO on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2.Exceedance for two or more consecutive samples	 Notify IEC, SO, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and SO to discuss the remedial actions to 	1. Discuss amongst SO, ET, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; 3. Supervise the implementation of remedial	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the SO until the exceedance is

be taken;	measures.	5. If exceedance	abated.
 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; 8. If exceedance stops, cease additional monitoring. 		continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	

Abbreviations: ET – Environmental Team, IEC – Independent Environmental Checker, SO – Supervising Office

Event / Action Plan for Construction Noise

EVENT	ACTION					
	ET	IEC	SO CONTRACTOR			
Action Level	 Identify source, investigate the causes of exceedance and propose remedial measures; Notify IEC and Contractor; Report the results of investigation to the IEC, SO and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the SO accordingly; Supervise the implementation of remedial measures. 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures are properly implemented	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals. 		
Limit Level	 Identify source; Inform IEC, SO, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, SO and EPD 	 Discuss amongst SO, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; Supervise the implementation of 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; 		

EVENT	ACTION					
	ET	IEC	so	CONTRACTOR		
	the causes and actions taken for the exceedances; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; 8. If exceedance stops, cease additional monitoring.	remedial measures.	problem; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	5. Stop the relevant portion of works as determined by the SO until the exceedance is abated.		

Event and Action Plan for Water Quality

Event	ET Leader	IEC	SO	Contractor
Action level being exceeded by one sampling day	Repeat <i>in situ</i> measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor and SO; Check monitoring data, all plant, equipment and Contractor's working methods.	Check monitoring data submitted by ET and Contractor's working methods.	Confirm receipt of notification of non-compliance in writing; Notify Contractor.	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling days	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SO and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level;	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SO accordingly; Supervise the implementation of mitigation measures.	Discuss with IEC on the proposed mitigation measures; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures.	Inform the Supervising Officer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO; Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SO and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SO and Contractor;	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SO accordingly.	Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to review the working methods.	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO.

Event	ET Leader	IEC	so	Contractor
exceeded by two or more consecutive sampling days	or day of exceedance to confirm	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the SO accordingly; Supervise the implementation of mitigation measures.	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level.	Take immediate action to avoid further exceedance; Submit proposal of mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

APPENDIX L SUMMARY OF EXCEEDANCE

Contract No. HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill

Exceedance Report

(A) Exceedance Report for Air Quality

Environmental Monitoring	Parameter	No. of Ex	ceedance	No. of Exceedance related to the Construction Activities of this Contract	
		Action Level	Limit Level	Action Level	Limit Level
Air Ovolity	1-hr TSP	0	0	0	0
Air Quality	24-hr TSP	0	0	0	0

(B) Exceedance Report for Construction Noise (NIL in the reporting period)

(C) Exceedance Report for Water Quality

Environmental Monitoring	Parameter	No. of Ex	ceedance	No. of Exceedance related to the Construction Activities of this Contract		
		Action Level	Limit Level	Action Level	Limit Level	
	Dissolved Oxygen (DO) (Surface & Middle)	0	0	0	0	
Water Quality	Dissolved Oxygen (DO) (Bottom)	0	0	0	0	
water Quarity	Turbidity	6	1	0	0	
	Suspended Solids (SS)	5	1	0	0	

Contract No. HY/2011/09

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 14 May 2014

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Station(s)	Tide	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	Control Station(s)	Depth-average Value at Control Stations (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Depth-average Measured Value (mg/L)	Justification*	Validity (Yes/No)
IS3		(1118/2)	(118/2)		(9, 2)	(g.2)	(119, 2)	24.8	(2) and (4)	No
SR1	Mid-flood	23.5	34.4	CS1	5.6	6.7	7.3	27.2	(2), (4) and (5)	No
SR2								32.4	(2) and (4)	No

Note: **Bold Italic** means Action Level exceedance

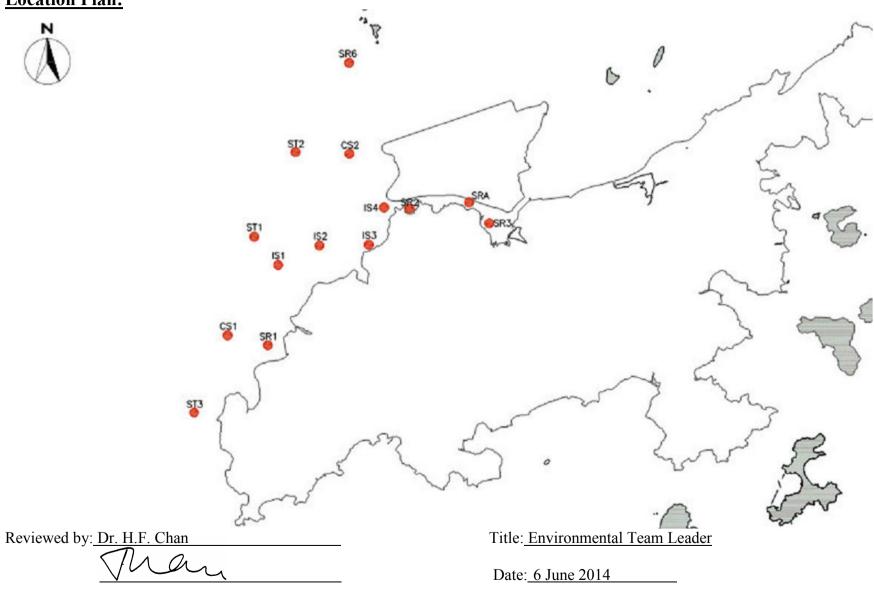
Bold Italic with underline means Limit Level exceedance

*Remarks

- (1) No major marine construction activity was conducted.
- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.
- (4) The exceeded results were similar or within the ranges baseline monitoring results. (Please refer to Table I)
- (5) Monitoring station is situated at the upstream of the construction sites.
- (6) Other(s): Please specify –

Table I – Summary of Baseline Water Quality Monitoring Results during Mid-Flood Tide

Station(s)	Suspended Solids (mg/L)					
	Min	Min Max				
IS3	7.8	28.5				
SR1	8.4	31.5				
SR2	8.5	32.5				


Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the excedances were not related to the contract works, no further action to be required.

Contract No. HY/2011/09

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Location Plan:

Contract No. HY/2011/09

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 16 May 2013

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Station(s)	Tide	Baseline Action Level (NTU)	Baseline Limit Level (NTU)	Control Station(s)	Depth-average Value at Control Stations (NTU)		130% of Control Station Limit Level (NTU)	Depth-average Measured Value (NTU)	Justification*	Validity (Yes/No)
IS1	Mid-ebb			CS2	16.5	19.8	21.5	37.4	(2) and (4)	No
IS1				47.0 CS1	21.6	25.9	28.1	<u>47.6</u>	(2) and (4)	No
IS2		27.5 47.0						28.7	(2) and (4)	No
IS3	Mid-flood		47.0					30.3	(2) and (4)	No
SR6	Wiid-1100d		CSI	21.0	23.9	20.1	31.8	(2) and (4)	No	
ST2								34.4	(2) and (4)	No
ST3								30.2	(2), (4) and (5)	No

Note:

Bold Italic means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

*Remarks

- (1) No major marine construction activity was conducted.
- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.
- (4) The exceeded results were similar or within the ranges baseline monitoring results. (Please refer to Table I and II)
- (5) Monitoring station is situated at the upstream of the construction sites.
- (6) Other(s): Please specify –

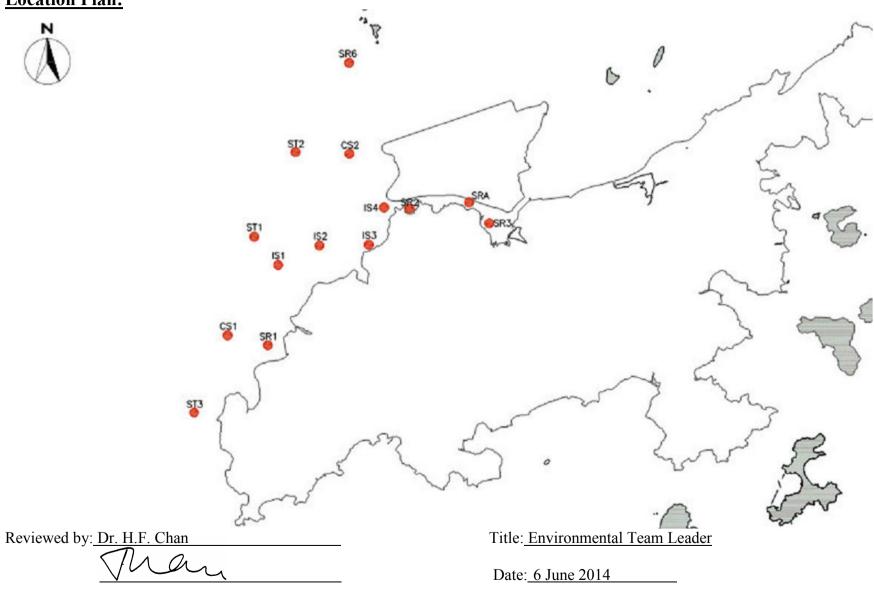
Table I – Summary of Baseline Water Quality Monitoring Results during Mid-Ebb Tide

Station(s)	Turbidity (NTU)					
	Min Max					
IS1	5.1	41.7				

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

- Notification of Environmental Quality Limit Exceedances

Table I – Summary of Baseline Water Quality Monitoring Results during Mid-Flood Tide


Station(s)	Turbidity	(NTU)
, ,	Min	Max
IS1	5.8	99.3
IS2	7.0	39.4
IS3	7.8	29.4
SR6	7.3	45.7
ST2	7.7	33.6
ST3	4.4	146.3

Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the excedences were not related to the contract works, no further action to be required.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Location Plan:

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 16 May 2014

Part A – Exceedance Summary Tables

Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Station(s)	Tide	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	Control Station(s)	Depth-average Value at Control Stations (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Depth-average Measured Value (mg/L)	Justification*	Validity (Yes/No)
IS1	Mid-flood	23.5	34.4	CS1	10.4	12.5	13.5	29.4	(2) and (4)	No
IS3	1V11u-1100u	23.3	34.4	CSI	10.4	12.3	13.3	29.5	(2) and (4)	No

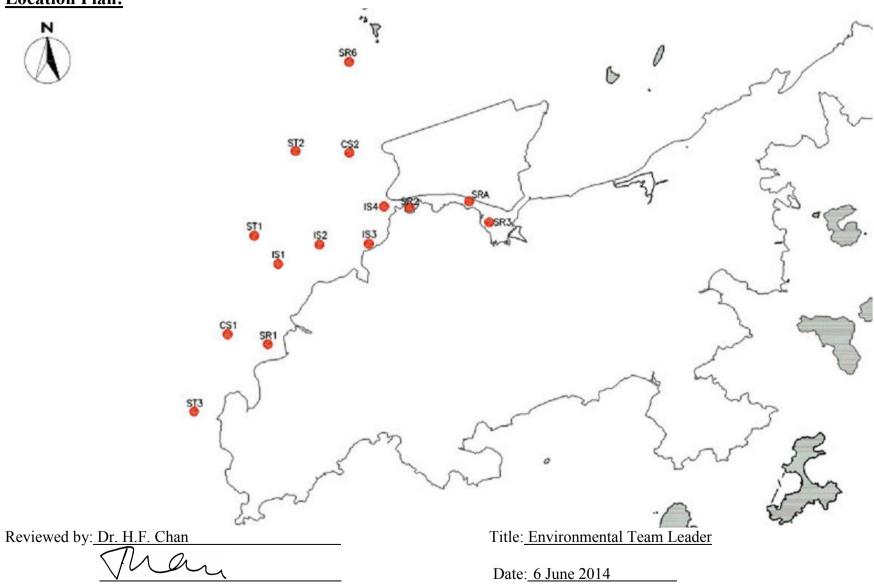
Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

*Remarks

- (1) No major marine construction activity was conducted.
- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.
- (4) The exceeded results were similar or within the ranges baseline monitoring results. (Please refer to Table I)
- (5) Monitoring station is situated at the upstream of the construction sites.
- (6) Other(s): Please specify –

Table I – Summary of Baseline Water Quality Monitoring Results during Mid-Flood Tide


Station(s)	Suspended Solids (mg/L)						
	Min	Max					
IS1	8.9	25.7					
IS3	7.8	28.5					

Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the excedances were not related to the contract works, no further action to be required.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Location Plan:

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

- Notification of Environmental Quality Limit Exceedances

Date of Water Quality Monitoring: 26 May 2014

Part A – Exceedance Summary Tables

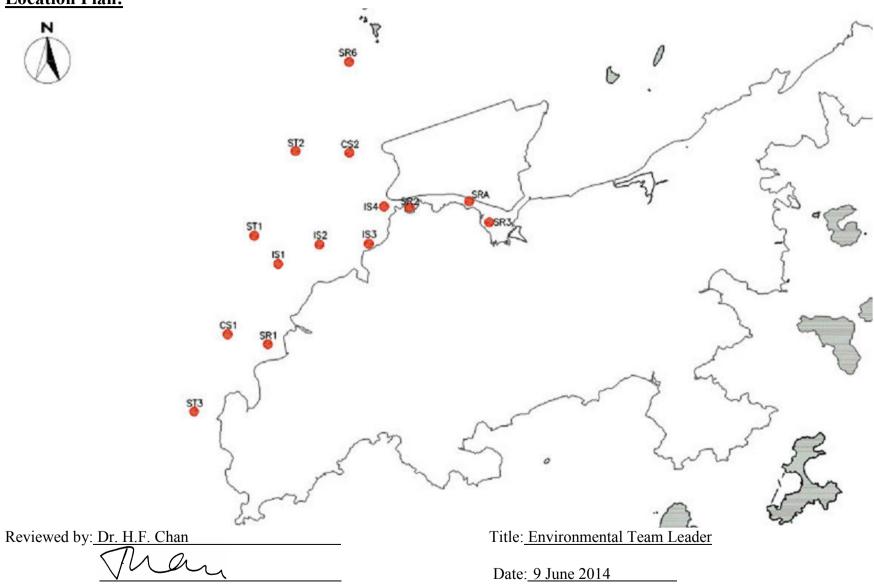
Table I: Parameter(s) – Dissolved Oxygen (DO) / Turbidity (TURB) / Suspended Solids (SS)

Station(s)	Tide	Baseline Action Level (mg/L)	Baseline Limit Level (mg/L)	Control Station(s)	Depth-average Value at Control Stations (mg/L)	120% of Control Station Action Level (mg/L)	130% of Control Station Limit Level (mg/L)	Depth-average Measured Value (mg/L)	Justification*	Validity (Yes/No)
IS3	Mid-flood	23.5	34.4	CS1	7.4	8.9	9.6	39.8	(2) and (6a)	No

Note: **Bold Italic** means Action Level exceedance

Bold Italic with underline means Limit Level exceedance

*Remarks


- (1) No major marine construction activity was conducted.
- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.
- (4) The exceeded results were similar or within the ranges baseline monitoring results.
- (5) Monitoring station is situated at the upstream of the construction sites.
- (6) Other(s): Please specify a) Sediment plume which is considered due to the movement of vessel was observed.

Part B – Conclusion: No direct evidence that the exceedances were due to the Contract, therefore the exceedances are considered due to the other external factors rather than the contract works.

Part C – Recommendation: As the excedences were not related to the contract works, no further action to be required.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill - Notification of Environmental Quality Limit Exceedances

Location Plan:

APPENDIX M SITE AUDIT SUMMARY

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	140507
Date	7 May 2014 (Wednesday)
Time	9:30-11:55

Ref. No.	Non-Compliance	Related Item No.
_	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	A. Water Quality	
140507-O01	Silt curtain has observed damage and not deployed properly at near P106 and P107. The Contractor was reminded to replace the damage silt curtain as soon as possible.	B25
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
140507-R04	Clear the soil at the public road at Portion C.	D3
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
140507-R02	Clear the oil spillage at the site entrance of Portion C.	F8
140507-R03	To remove the construction materials and provide fencing for protecting the trees at Portion A and C.	F4ii, F7
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous site audit session (Ref. No. 140429), items 140429-R01, 02, 03, 04, 06, 07 were improved/rectified by contractor during the site inspection, while item 140429-R05 requires follow-up action.	

	Name	Signature	Date
Recorded by	Ivy Tam	Tur	7 May 2014
Checked by	Dr. Priscilla Choy	T.	7 May 2014

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Environmental Observations Identified during the Environmental Site Inspection (7 May 2014)

Ref No: 140507-O01

Impact:

Water Quality(B25)

Details:

Silt curtain has observed damage and not deployed properly at near P106 and P107. The Contractor was reminded to replace the damage silt curtain as soon as possible.

Ref No: 140507-R02

Impact:

Waste / Chemical Management(F8)

Details:

Clear the oil spillage at the site entrance of Portion C.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Ref No: 140507-R03

Impact:

Waste / Chemical Management (F4ii, F7)

Details:

To remove the construction materials and provide fencing for protecting the trees at Portion A and C.

Portion C

Ref No: 140507-R04

Impact:

Air Quality(D3)

Details:

Clear the soil at the public road at Portion C.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies Identified during Previous Audit Session

Ref No: 140429-R01

Impact:

Water Quality(B21)

Details:

Clear the general refuse inside the casting at P20.

Follow Up:

The general refuse was cleared.

Ref No: 140429-R02

Impact:

Noise (E7)

Details:

Provide acoustic decoupling measure for the generator at the barge at P20.

Follow Up:

Acoustic decoupling measure was provided for the generator.

Ref No: 140429-R03

Impact:

Air Quality (D19)

Details

To check the generator which emitted heavy smoke at the barge at P20.

Follow Up:

No heavy smoke was observed from the generator.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Ref No: 140429-R04

Impact:

Waste / Chemical Management (F8)

Details:

Clear the oil leakage at the barge at P20.

Follow Up:

Oil leakage was cleared.

Ref No: 140429-R05

Impact:


Noise (E8)

Details:

Provide noise emission labels for the hand-held breaker at P39.

Follow Up:

Noise emission label was provided for the hand-held breaker.

Ref No: 140429-R06

Impact:

Air Quality (D7)

Details:

Clear the stockpile of concrete material at the boundary of platform at P39.

Follow Up:

The stockpile of concrete material was cleared.

P39

Ref No: 140429-R07

Impact:

Permit /Licences (G7)

Details:

To display the CNP, if any at P39 and P48.

Follow Up:

The CNP was displayed at P39 and P48.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary Inspection Information

Ilispection into matter	
Checklist Reference Number	140513
Date	13 May 2014 (Tuesday)
Time	9:30-11:45

		Related
Ref. No.	Non-Compliance	Item No.
_	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	A. Water Quality	
140513-R02	Clear the deposited soil at the public road at near P107. (Portion C)	B9
140513-R05	Properly deploy the silt curtain to ensure it function effectively at P106, P107, P98 and P101.	B25
140513-R06	Clear the floating wastes within the silt curtain at P101.	B21
140515 1600		
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
140513-R02	Clear the deposited soil at the public road at near P107. (Portion C)	D3
	D. Noise	770
140513-R07	Provide noise emission labels for the hand-held breaker at P94.	E8
	E. Waste / Chemical Management	
140513-R01	• To seal the hole of drip tray and review the size of drip tray for placing the oil pump at near	F9
110010	P108 (Portion C).	
140513-R03	Clear the accumulated waste at the waste skip at near P107. (Portion C)	Fli.
140513-R04	• To remove the construction materials at near the tree and provide tree protection zone at	F4ii.
	P105 and P106.	
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous site audit session (Ref. No. 140507), follow-up action is required for	
	items 140507-001, R03 and R04 which were renamed as 140513-R05, R04 and R02	
	respectively.	

•	Name	Signature	Date
Recorded by	Ivy Tam	(MX	13 May 2014
Checked by	Dr. Priscilla Choy	WI	13 May 2014

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Environmental Observations Identified during the Environmental Site Inspection (13 May 2014)

Ref No: 140513-R01

Impact:

Waste / Chemical Management(F9)

Details:

To seal the hole of drip tray and review the size of drip tray for placing the oil pump at near P108 (Portion C).

Ref No: 140513-R02

Impact:

Water Quality (B9) Air Quality (D3)

Details:

Clear the deposited soil at the public road at near P107. (Portion C)

Ref No: 140513-R03

Impact:

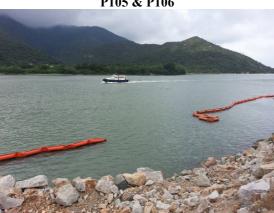
Waste / Chemical Management (F1i)

Details:

Clear the accumulated waste at the waste skip at near P107. (Portion C)

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Ref No: 140513-R04


Impact:

Waste / Chemical Management (F4ii)

To remove the construction materials at near the tree and provide tree protection zone at P105 and P106.

P105 & P106

P101

Ref No: 140513-R05

Impact:

Water Quality (B25)

Details:

Properly deploy the silt curtain to ensure it function effectively at P106, P107, P98 and P101.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Ref No: 140513-R06

Impact:

Water Quality (B21)

Details:

Clear the floating wastes within the silt curtain at P101.

Ref No: 140513-R07

Impact: Noise (E8)

Dotoilar

Provide noise emission labels for the hand-held breaker at P94.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies Identified during Previous Audit Session

Ref No: 140507-R02

Impact:

Waste / Chemical Management(F8)

Details:

Clear the oil spillage at the site entrance of Portion C.

Follow Up: The oil spillage was cleared.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	140520
	20 May 2014 (Tuesday)
Time	9:30-12:15

Def Me	Non Compliance	Related Item No.
Ref. No.	Non-Compliance None identified	Rem No.
-	None Identified	Dalatad
T. 0.77	D 1 (0)	Related
Ref. No.	Remarks/Observations	Item No.
	A. Water Quality	
140520-R02	To check the silt curtain and avoid the gap at the silt curtain at P68.	B25
140520-R03	Clear the deposited waste materials at the platform at P73.	B20
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
140520-R01	Clear the accumulated wastes at barge of P47.	Fli.
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous site audit session (Ref. No. 140513), all environmental deficiencies were improved/rectified by contractor during the site inspection.	

	Name	Signature	Date
Recorded by	Ivy Tam	lux	20 May 2014
Checked by	Dr. Priscilla Choy	WF	20 May 2014

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Environmental Observations Identified during the Environmental Site Inspection (20 May 2014)

Ref No: 140520-R01

Impact:

Waste / Chemical Management (F1i.)

Details:

Clear the accumulated wastes at barge of P47.

Ref No: 140520-R02

Impact:

Water Quality (B25)

Details:

To check the silt curtain and avoid the gap at the silt curtain at P68.

Ref No: 140520-R03

Impact:

Water Quality (B20)

Details:

Clear the deposited waste materials at the platform at P73.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies Identified during Previous Audit Session

Ref No: 140513-R01

Impact:

Waste / Chemical Management(F9)

Details

To seal the hole of drip tray and review the size of drip tray for placing the oil pump at near P108 (Portion C).

Follow Up:

The oil container was removed from site.

Ref No: 140513-R02

Impact:

Water Quality (B9) Air Quality (D3)

Details:

Clear the deposited soil at the public road at near P107. (Portion C)

Follow Up:

The public road was cleared.

Ref No: 140513-R03

Impact:

Waste / Chemical Management (F1i)

Details:

Clear the accumulated waste at the waste skip at near P107. (Portion C)

Follow Up:

The accumulated waste at the waste skip was cleared.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Ref No: 140513-R04

Impact:

Waste / Chemical Management (F4ii)

Details:

To remove the construction materials at near the tree and provide tree protection zone at P105 and P106.

Follow Up:

The construction materials were removed and tree protection zone was provided.

Ref No: 140513-R05

Impact:

Water Quality (B25)

Details:

Properly deploy the silt curtain to ensure it function effectively at P106, P107, P98 and P101.

Follow Up:

The silt curtain was properly deployed.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Ref No: 140513-R06

Impact: Water Quality (B21)

Clear the floating wastes within the silt curtain at P101.

Follow Up:

The floating wastes were cleared.

Ref No: 140513-R07

Impact:

Noise (E8)

Details:

Provide noise emission labels for the hand-held breaker

at P94.

Follow Up:

The hand-held breaker without noise emission label was removed from site.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	140530
Date	30 May 2014 (Friday)
Time	13:30-15:40

Dof No	Non Countings	Related Item No.
Ref. No.	Non-Compliance None identified	Atem 140.
_	None identified	Related
D-C M-	D	Item No.
Ref. No.	Remarks/Observations	nem no.
	A. Water Quality	
	No environmental deficiency was identified during site inspection.	
	B. Ecology	1
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
140530-O01	Dust generation was observed from the trimming works at P45. The Contractor was reminded to provide sufficient dust mitigation measures properly.	D13, 14, 15
	D. W.L.	
1.40.500 D.00	D. Noise	TO
140530-R02	• To close the panel of air compressor at P45.	E9
140530-R03	To check and provide noise emission label for the hand-held breakers at P45.	E8
	E. Waste / Chemical Management	
140530-R04	Clear the waste materials at the platform at P72.	F1iii. & F4ii.
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	Follow-up on previous site audit session (Ref. No. 140520), all environmental deficiencies were improved/rectified by contractor during the site inspection.	

	Name	Signature	Date
Recorded by	Ivy Tam	Tub	30 May 2014
Checked by	Dr. Priscilla Choy	WIT	30 May 2014

1

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Environmental Observations Identified during the Environmental Site Inspection (30 May 2014)

Ref No: 140530-O01

Impact:

Air Quality (D13, 14, 15)

Details:

Dust generation was observed from the trimming works at P45. The Contractor was reminded to provide sufficient dust mitigation measures properly.

Ref No: 140530-R02

Impact: Noise (E9)

Details:

To close the panel of air compressor at P45.

Ref No: 140530-R03

Impact: Noise (E8)

Details

To check and provide noise emission label for the hand-held breakers at P45.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Ref No: 140530-R04

Impact:

Waste / Chemical Management (F1iii. & F4ii.)

Details

Clear the waste materials at the platform at P72.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies Identified during Previous Audit Session

Ref No: 140520-R01

Impact:

Waste / Chemical Management (F1i.)

Details:

Clear the accumulated wastes at barge of P47.

Follow Up:

The accumulated wastes at barge were cleared.

Ref No: 140520-R02

Impact:

Water Quality (B25)

Details:

To check the silt curtain and avoid the gap at the silt curtain at P68.

Follow Up:

The silt curtain was re-deployed.

Ref No: 140520-R03

Impact:

Water Quality (B20)

Details

Clear the deposited waste materials at the platform at P73.

Follow Up:

The deposited waste materials were cleared.

APPENDIX N UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
Air Quali	ity						
S5.5.6.1	A1	1) The contractor shall follow the procedures and requirements given in	Good construction site	Contractor	All construction	Construction	۸
		the Air Pollution Control (Construction Dust) Regulation	practices to control the dust		sites	stage	
			impact at the nearby				
			sensitive receivers to within				
			the relevant criteria.				
S5.5.6.2	A2	2) Proper watering of exposed spoil should be undertaken throughout the	Good construction site	Contractor	All construction	Construction	
		construction phase:	practices to control the dust		sites	stage	
		Any excavated or stockpile of dusty material should be covered	impact at the nearby				
		entirely by impervious sheeting or sprayed with water to maintain	sensitive receivers to within				۸
		the entire surface wet and then removed or backfilled or reinstated	the relevant criteria.				
		where practicable within 24 hours of the excavation or unloading;					
		Any dusty materials remaining after a stockpile is removed should					۸
		be wetted with water and cleared from the surface of roads;					
		A stockpile of dusty material should not be extend beyond the					۸
		pedestrian barriers, fencing or traffic cones.					
		The load of dusty materials on a vehicle leaving a construction site					۸
		should be covered entirely by impervious sheeting to ensure that the					
		dusty materials do not leak from the vehicle;					
		Where practicable, vehicle washing facilities with high pressure					
		water jet should be provided at every discernible or designated					۸
		vehicle exit point. The area where vehicle washing takes place and					
		the road section between the washing facilities and the exit point					
		should be paved with concrete, bituminous materials or hardcores;					
S5.5.6.2	A2	When there are open excavation and reinstatement works, hoarding	Good construction site	Contractor	All construction	Construction	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		of not less than 2.4m high should be provided as far as practicable	practices to control the dust		sites	stage	
		along the site boundary with provision for public crossing. Good site	impact at the nearby				
		practice shall also be adopted by the Contractor to ensure the	sensitive receivers to within				
		conditions of the hoardings are properly maintained throughout the	the relevant criteria.				
		construction period;					
		The portion of any road leading only to construction site that is within					*
		30m of a vehicle entrance or exit should be kept clear of dusty					
		materials;					
		Surfaces where any pneumatic or power-driven drilling, cutting,					*
		polishing or other mechanical breaking operation takes place should					
		be sprayed with water or a dust suppression chemical continuously;					
		Any area that involves demolition activities should be sprayed with					
		water or a dust suppression chemical immediately prior to, during					*
		and immediately after the activities so as to maintain the entire					
		surface wet;					
		Where a scaffolding is erected around the perimeter of a building					
		under construction, effective dust screens, sheeting or netting					N/A
		should be provided to enclose the scaffolding from the ground floor					
		level of the building, or a canopy should be provided from the first					
		floor level up to the highest level of the scaffolding;					
		Any skip hoist for material transport should be totally enclosed by					۸
		impervious sheeting;					
		Every stock of more than 20 bags of cement or dry pulverised fuel					۸
		ash (PFA) should be covered entirely by impervious sheeting or					
		placed in an area sheltered on the top and the 3 sides;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
S5.5.6.2	A2	Cement or dry PFA delivered in bulk should be stored in a closed	Good construction site	Contractor	All construction	Construction	N/A
		silo fitted with an audible high level alarm which is interlocked with	practices to control the dust		sites	stage	
		the material filling line and no overfilling is allowed;	impact at the nearby				
		Loading, unloading, transfer, handling or storage of bulk cement or	sensitive receivers to within				٨
		dry PFA should be carried out in a totally enclosed system or facility,	the relevant criteria.				
		and any vent or exhaust should be fitted with an effective fabric filter					
		or equivalent air pollution control system; and					
		Exposed earth should be properly treated by compaction, turfing,					
		hydroseeding, vegetation planting or sealing with latex, vinyl,					N/A
		bitumen, shotcrete or other suitable surface stabiliser within six					
		months after the last construction activity on the construction site or					
		part of the construction site where the exposed earth lies.					
S5.5.6.3	A3	3) The Contractor should undertake proper watering on all exposed spoil	Control construction dust	Contractor	All construction	Construction stage	۸
		(with at least 8 times per day) throughout the construction phase.			sites		
S5.5.6.4	A5	5) Implement regular dust monitoring under EM&A programme during the	Monitor the 24 hr and 1hr	Contractor	Selected	Construction	٨
		construction stage.	TSP levels at the		representative	stage	
			representative dust		dust		
			monitoring stations to ensure		monitoring station		
			compliance with relevant				
			criteria throughout the				
			construction period.				
S5.5.7.1	A6	The following mitigation measures should be adopted to prevent fugitive	Monitor the 24 hr and 1hr	Contractor	Selected	Construction	
		dust emissions for concrete batching plant:	TSP levels at the		representative	stage	
		Loading, unloading, handling, transfer or storage of any dusty	representative dust		dust		N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		materials should be carried out in totally enclosed system;	monitoring stations to ensure		monitoring station		
		All dust-laden air or waste gas generated by the process operations	compliance with relevant				N/A
		should be properly extracted and vented to fabric filtering system to	criteria throughout the				
		meet the emission limits for TSP;	construction period.				
		Vents for all silos and cement/pulverised fuel ash (PFA) weighing					N/A
		scale should be fitted with fabric filtering system;					
		The materials which may generate airborne dusty emissions should					
		be wetted by water spray system;					N/A
		All receiving hoppers should be enclosed on three sides up to 3m					
		above unloading point;					N/A
		All conveyor transfer points should be totally enclosed;					N/A
		All access and route roads within the premises should be paved and					N/A
		wetted; and					
		Vehicle cleaning facilities should be provided and used by all					N/A
		concrete trucks before leaving the premises to wash off any dust on					
		the wheels and/or body.					
S5.5.2.7	A7	The following mitigation measures should be adopted to prevent	Control construction dust	Contractor	All construction	Construction	
		fugitive dust emissions at barging point:			sites	stage	
		All road surface within the barging facilities will be paved;					N/A
		Dust enclosures will be provided for the loading ramp;					N/A
		Vehicles will be required to pass through designated wheels wash					N/A
		facilities; and					
		Continuous water spray at the loading points.					N/A
Construc	ction Nois	se (Air borne)					
S6.4.10	N1	1) Use of good site practices to limit noise emissions by considering the	Control construction airborne	Contractor	All construction	Construction	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		following:	noise by means of good site		sites	stage	
		only well-maintained plant should be operated on-site and plant	practices				۸
		should be serviced regularly during the construction programme;					
		machines and plant (such as trucks, cranes) that may be in					۸
		intermittent use should be shut down between work periods or					
		should be throttled down to a minimum;					
		plant known to emit noise strongly in one direction, where possible,					۸
		be orientated so that the noise is directed away from nearby NSRs;					
		silencers or mufflers on construction equipment should be properly					۸
		fitted and maintained during the construction works;					
		mobile plant should be sited as far away from NSRs as possible and					
		practicable;					۸
		material stockpiles, mobile container site officer and other structures					
		should be effectively utilised, where practicable, to screen noise					۸
		from on-site construction activities.					
S6.4.11	N2	2) Install temporary hoarding located on the site boundaries between	Reduce the construction	Contractor	All construction	Construction	۸
		noisy construction activities and NSRs. The conditions of the hoardings	noise levels at low-level		sites	stage	
		shall be properly maintained throughout the construction period.	zone of NSRs through partial				
			screening.				
S6.4.12	N3	3) Install movable noise barriers (typically density @14kg/m²), acoustic	Screen the noisy plant items	Contractor	For plant items	Construction	*
		mat or full enclosure close to noisy plants including air compressor,	to be used at all construction		listed in Appendix	stage	
		generators, saw.	sites		6D of the EIA		
					report at all		
					construction sites		
S6.4.13	N4	4) Select "Quiet plants" which comply with the BS 5228 Part 1 or TM	Reduce the noise levels of	Contractor	For plant items	Construction	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		standards.	plant items		listed in Appendix	stage	
					6D of the EIA		
					report at all		
					construction sites		
S6.4.14	N5	5) Sequencing operation of construction plants where practicable.	Operate sequentially within	Contractor	All construction	Construction	٨
			the same work site to reduce		sites where	stage	
			the construction airborne		practicable		
			noise				
	N6	Implement a noise monitoring under EM&A programme.	Monitor the construction	Contractor	Selected	Construction	٨
			noise levels at the selected		representative	stage	
			representative locations		noise monitoring		
					station		
Waste Ma	anagemei	nt (Construction Waste)					
S8.3.8	WM1	Construction and Demolition Material	Good site practice to	Contractor	All construction	Construction	
		The following mitigation measures should be implemented in	minimize the waste		sites	stage	
		handling the waste:	generation and recycle the				
		Maintain temporary stockpiles and reuse excavated fill material for	C&D materials as far as				٨
		backfilling and reinstatement;	practicable so as to reduce				
		Carry out on-site sorting;	the amount for final disposal				٨
		Make provisions in the Contract documents to allow and promote					۸
		the use of recycled aggregates where appropriate;					
		Adopt 'Selective Demolition' technique to demolish the existing					
		structures and facilities with a view to recovering broken concrete					۸
		effectively for recycling purpose, where possible;					
		Implement a trip-ticket system for each works contract to ensure that					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		the disposal of C&D materials are properly documented and verified;					
		and					
		Implement an enhanced Waste Management Plan similar to					۸
		ETWBTC (Works) No. 19/2005 – "Environmental Management on					
		Construction Sites" to encourage on-site sorting of C&D materials					
		and to minimize their generation during the course of construction.					
		In addition, disposal of the C&D materials onto any sensitive					
		locations such as agricultural lands, etc. should be avoided. The					٨
		Contractor shall propose the final disposal sites to the Project					
		Proponent and get its approval before implementation					
S8.3.9 -	WM2	C&D Waste	Good site practice to	Contractor	All construction	Construction	
S8.3.11		Standard formwork or pre-fabrication should be used as far as	minimize the waste		sites	stage	۸
		practicable in order to minimise the arising of C&D materials. The	generation and recycle the				
		use of more durable formwork or plastic facing for the construction	C&D materials as far as				
		works should be considered. Use of wooden hoardings should not	practicable so as to reduce				
		be used, as in other projects. Metal hoarding should be used to	the amount for final disposal				
		enhance the possibility of recycling. The purchasing of construction					
		materials will be carefully planned in order to avoid over ordering					
		and wastage.					
		The Contractor should recycle as much of the C&D materials as					
		possible on-site. Public fill and C&D waste should be segregated					*
		and stored in different containers or skips to enhance reuse or					
		recycling of materials and their proper disposal. Where					
		practicable, concrete and masonry can be crushed and used as fill.					
		Steel reinforcement bar can be used by scrap steel mills. Different					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		areas of the sites should be considered for such segregation and					
		storage.					
S8.2.12-	WM3	Chemical Waste	Control the chemical waste	Contractor	All construction	Construction	
S8.3.15		Chemical waste that is produced, as defined by Schedule 1 of the	and ensure proper storage,		sites	stage	۸
		Waste Disposal (Chemical Waste) (General) Regulation, should be	handling and disposal.				
		handled in accordance with the Code of Practice on the Packaging,					
		Labelling and Storage of Chemical Wastes.					
		Containers used for the storage of chemical wastes should be					۸
		suitable for the substance they are holding, resistant to corrosion,					
		maintained in a good condition, and securely closed; have a					
		capacity of less than 450 liters unless the specification has been					
		approved by the EPD; and display a label in English and Chinese in					
		accordance with instructions prescribed in Schedule 2 of the					
		regulation.					
		The storage area for chemical wastes should be clearly labelled and					٨
		used solely for the storage of chemical waste; enclosed on at least 3					
		sides; have an impermeable floor and bunding of sufficient capacity					
		to accommodate 110% of the volume of the largest container or 20					
		% of the total volume of waste stored in that area, whichever is the					
		greatest; have adequate ventilation; covered to prevent rainfall					
		entering; and arranged so that incompatible materials are					
		adequately separated.					
		Disposal of chemical waste should be via a licensed waste collector;					
		be to a facility licensed to receive chemical waste, such as the					*
		Chemical Waste Treatment Centre which also offers a chemical					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		waste collection service and can supply the necessary storage					
		containers; or be to a reuser of the waste, under approval from the					
		EPD.					
S8.3.16	WM4	<u>Sewage</u>	Proper handling of sewage	Contractor	All construction	Construction	
		Adequate numbers of portable toilets should be provided for the	from worker to avoid odour,		sites	stage	
		workers. The portable toilets should be maintained in a state,	pest and litter impacts				۸
		which will not deter the workers from utilizing these portable toilets.					
		Night soil should be collected by licensed collectors regularly.					
S8.3.17	WM5	General Refuse	Minimize production of the	Contractor	All construction	Construction stage	
		General refuse generated on-site should be stored in enclosed	general refuse and avoid		sites		*
		bins or compaction units separately from construction and chemical	odour, pest and litter impacts				
		wastes.					
		A reputable waste collector should be employed by the Contractor to					
		remove general refuse from the site, separately from construction					٨
		and chemical wastes, on a daily basis to minimize odour, pest and					
		litter impacts. Burning of refuse on construction sites is prohibited					
		by law.					
		Aluminium cans are often recovered from the waste stream by					
		individual collectors if they are segregated and made easily					٨
		accessible. Separate labelled bins for their deposit should be					
		provided if feasible.					
		Office wastes can be reduced through the recycling of paper if					
		volumes are large enough to warrant collection. Participation in a					
		local collection scheme should be considered by the Contractor. In					٨
		addition, waste separation facilities for paper, aluminum cans,					

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref			recommended Measures &	implement the	measures	Implement the	Status
				Main Concerns to address	measures?		measures?	
			plastic bottles etc., should be provided.					
		•	Training should be provided to workers about the concepts of site					*
			cleanliness and appropriate waste management procedure,					
			including reduction, reuse and recycling of wastes.					
Water Qu	ıality (Co	nstr	ruction Phase)					
S9.11.1 –	W1	•	Mitigation during the marine works to reduce impacts to within	To control construction water	Contractor	During seawall	Construction	٨
S9.11.1.2			acceptable levels have been recommended and will comprise a	quality		dredging and	stage	
			series of measures that restrict the method and sequencing of			filling		
			dredging/backfilling, as well as protection measures. Details of the					
			measures are provided below and summarised in the Environmental					
			Mitigation Implementation Schedule in EM&A Manual.					
		•	Export for dredged spoils from NWWCZ avoiding exerting high					٨
			demand on the disposal facilities in the NWWCZ and, hence,					
			minimise potential cumulative impacts;					
		•	For the marine viaducts of HKLR, the bored piling will be undertaken					
			within a metal casing;					٨
		•	where public fill is proposed for filling below -2.5mPD, the fine					
			content in the public fill will be controlled to 25%;					N/A
		•	single layer silt curtains will be applied around all works;					٨
		•	during the first two months of dredging work for HKLR, the					
			silt-removal efficiency of the silt-curtains shall be verified by					N/A
			examining the results of water quality monitoring points. The water					
			quality monitoring points to be selected for the above shall be those					
			close to the locations of the initial period of dredging work. Details in					
			this regard shall be determined by the ENPO to be established,					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		taking account of the Contractor's proposed actual locations of his					
		initial period of dredging work.					
		silt curtain shall be fully maintained throughout the works.					*
		In addition, dredging operations should be undertaken in such a manner					
		as to minimise resuspension of sediments. Standard good dredging					
		practice measures should, therefore, be implemented including the					
		following requirements which should be written into the dredging contract.					
		trailer suction hopper dredgers shall not allow mud to overflow;					N/A
		use of Lean Material Overboard (LMOB) systems shall be					
		prohibited;					N/A
		mechanical grabs shall be designed and maintained to avoid					
		spillage and should seal tightly while being lifted;					۸
		barges and hopper dredgers shall have tight fitting seals to their					
		bottom openings to prevent leakage of material;					۸
		any pipe leakages shall be repaired quickly. Plant should not be					
		operated with leaking pipes;					۸
		loading of barges and hoppers shall be controlled to prevent					
		splashing of dredged material to the surrounding water. Barges or					۸
		hoppers shall not be filled to a level which will cause overflow of					
		materials or pollution of water during loading or transportation;					
		excess material shall be cleaned from the decks and exposed					*
		fittings of barges and hopper dredgers before the vessel is moved;					
		adequate freeboard shall be maintained on barges to reduce the					۸
		likelihood of decks being washed by wave action;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		all vessels shall be sized such that adequate clearance is					۸
		maintained between vessels and the sea bed at all states of the tide					
		to ensure that undue turbidity is not generated by turbulence from					
		vessel movement or propeller wash; and					
		the works shall not cause foam, oil, grease, litter or other					
		objectionable matter to be present in the water within and adjacent					^
		to the works site.					
S9.11.1.3	W2	Land Works	To control construction water	Contractor	During seawall	Construction stage	
		General construction activities on land should also be governed by	quality		dredging and		
		standard good working practice. Specific measures to be written into			filling		
		the works contracts should include:					
		wastewater from temporary site facilities should be controlled to					۸
		prevent direct discharge to surface or marine waters;					
		sewage effluent and discharges from on-site kitchen facilities shall					N/A
		be directed to Government sewer in accordance with the					
		requirements of the WPCO or collected for disposal offsite. The					
		use of soakaways shall be avoided;					
		storm drainage shall be directed to storm drains via adequately					
		designed sand/silt removal facilities such as sand traps, silt traps					
		and sediment basins. Channels, earth bunds or sand bag barriers					۸
		should be provided on site to properly direct stormwater to such silt					
		removal facilities. Catchpits and perimeter channels should be					
		constructed in advance of site formation works and earthworks;					
		silt removal facilities, channels and manholes shall be maintained					۸
		and any deposited silt and grit shall be removed regularly, including					

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref			recommended Measures &	implement the	measures	Implement the	Status
				Main Concerns to address	measures?		measures?	
			specifically at the onset of and after each rainstorm;					
		•	temporary access roads should be surfaced with crushed stone or					۸
			gravel;					
		•	rainwater pumped out from trenches or foundation excavations					۸
			should be discharged into storm drains via silt removal facilities;					
		•	measures should be taken to prevent the washout of construction					۸
			materials, soil, silt or debris into any drainage system;					
		•	open stockpiles of construction materials (e.g. aggregates and					۸
			sand) on site should be covered with tarpaulin or similar fabric					
			during rainstorms;					
		•	manholes (including any newly constructed ones) should always be					۸
			adequately covered and temporarily sealed so as to prevent silt,					
			construction materials or debris from getting into the drainage					
			system, and to prevent storm run-off from getting into foul sewers;					
		•	discharges of surface run-off into foul sewers must always be					۸
			prevented in order not to unduly overload the foul sewerage system;					
		•	all vehicles and plant should be cleaned before they leave the					۸
			construction site to ensure that no earth, mud or debris is deposited					
			by them on roads. A wheel washing bay should be provided at every					
			site exit;					
		•	wheel wash overflow shall be directed to silt removal facilities before					
			being discharged to the storm drain;					۸
		•	the section of construction road between the wheel washing bay and					
			the public road should be surfaced with crushed stone or coarse					۸
			gravel;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		wastewater generated from concreting, plastering, internal					٨
		decoration, cleaning work and other similar activities, shall be					
		screened to remove large objects;					
		vehicle and plant servicing areas, vehicle wash bays and lubrication					N/A
		facilities shall be located under roofed areas. The drainage in					
		these covered areas shall be connected to foul sewers via a petrol					
		interceptor in accordance with the requirements of the WPCO or					
		collected for off site disposal;					
		the contractors shall prepare an oil / chemical cleanup plan and					
		ensure that leakages or spillages are contained and cleaned up					*
		immediately;					
		waste oil should be collected and stored for recycling or disposal, in					٨
		accordance with the Waste Disposal Ordinance;					
		all fuel tanks and chemical storage areas should be provided with					
		locks and be sited on sealed areas. The storage areas should be					۸
		surrounded by bunds with a capacity equal to 110% of the storage					
		capacity of the largest tank; and					
		surface run-off from bunded areas should pass through oil/grease					
		traps prior to discharge to the stormwater system.					۸
S9.14	W3	Implement a water quality monitoring programme	Control water quality	Contractor	At identified	During	٨
					monitoring	construction period	
					location		
Ecology	(Construc	ction Phase)	1			1	
S10.7	E1	Good site practices to avoid runoff entering woodland habitats in	Avoid potential disturbance	Designer;	Scenic Hill	During	۸
		Scenic Hill	on habitat of Romer's Tree	Contractor		construction	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		Reinstate works areas in Scenic Hill	Frog in Scenic Hill				N/A
		Avoid stream modification in Scenic Hill					۸
S10.7	E2	Use closed grab in dredging works.	Minimise marine water	Contractor	Seawall,	During	۸
		Install silt curtain during the construction.	quality impacts			construction	۸
		Limit dredging and works fronts.					۸
		Good site practices					۸
		Strict enforcement of no marine dumping.					۸
		Site runoff control					۸
		Spill response plan					۸
S10.7	E3	Reprovision of replacement Artificial Reefs (of the same volume as	Mitigate water quality	Project	To be determined	Construction	N/A
		the existing ARs inside Marine Exclusion Zone)	impacts on the existing ARs	proponent		phase or operation	
						phase	
S10.7	E4	Watering to reduce dust generation; prevention of siltation of	Prevent Sedimentation from	Contractor	Land-based works	During	۸
		freshwater habitats; Site runoff should be desilted, to reduce the	Land-based works areas		areas	construction	
		potential for suspended sediments, organics and other					
		contaminants to enter streams and standing freshwater					
S10.7	E5	Good site practices, including strictly following the permitted	Prevent disturbance to	Contractor	Land-based works	During	۸
		works hours, using quieter machines where practicable, and	terrestrial fauna and habitats		areas	construction	
		avoiding excessive lightings during night time					
S10.7	E6	Dolphin Exclusion Zone;	Minimize temporary marine	Contractor	Marine works	During marine	۸
		Dolphin watching plan	habitat loss impact to			works	۸
			dolphins				
S10.7	E7	Decouple compressors and other equipment on working vessels	Minimise marine noise	Contractor	Marine works	During marine	۸
		Avoidance of percussive piling	impacts on dolphins			works	۸
		Marine underwater noise monitoring					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		Temporal suspension of drilling bored pile casing in rock during peak					N/A
		dolphin calving season in May and June					
S10.7	E8	Control vessel speed	Minimise marine traffic	Contractor	Marine traffic	During marine	۸
		Skipper training.	disturbance on dolphins			works	۸
		Predefined and regular routes for working vessels; avoid Brothers					۸
		Islands.					
S10.10	E9	Dolphin vessel monitoring	Minimise marine traffic	Contractor	North Lantau and	Prior to	۸
			disturbance on dolphins		West Lantau	construction,	
						during	
						construction, and 1	
						year after	
						operation	
Fisheries	5						
S11.7	F1	Reprovision of replacement Artificial Reefs(of the same volume as	Mitigate water quality	Project	To be determined	Construction	N/A
		the existing ARs inside Marine Exclusion Zone)	impacts on the existing ARs	proponent		phase or	
						operation	
						phase	
S11.7	F2	Reduce re-suspension of sediments	Minimise marine water	Contractor	Seawall,	During	۸
		Limit dredging and works fronts.	quality impacts			construction	۸
		Good site practices					۸
		Strict enforcement of no marine dumping					۸
		Spill response plan					۸
Landsca	Iscape & Visual (Construction Phase)						
S14.3.3.3	LV2	Mitigate both Landscape and Visual Impacts	Minimise visual &	Contractor	HKLR	Construction	
		G1. Grass-hydroseed bare soil surface and stock pile areas.	landscape impact			stage	N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		G2. Add planting strip and automatic irrigation system if appropriate					N/A
		at some portions of bridge or footbridge to screen bridge and traffic.					
		G3. For HKLR, providing aesthetic design on the viaduct, tunnel					N/A
		portals, at-grade roads (e.g. subtle colour tone and slim form for					
		viaduct, featured form of tunnel portals, roadside planting along					
		at-grade roads and landscape berm on) to beautify the HKLR					
		alignment.					
		G5. Vegetation reinstatement and upgrading to disturbed areas.					N/A
		G6. Maximize new tree, shrub and other vegetation planting to					N/A
		compensate tree felled and vegetation removed.					
		G7. Provide planting area around peripheral of and within HKLR for					N/A
		tree screening buffer effect.					
		G8. Plant salt tolerant native tree and shrubs etc along the planter					N/A
		strip at affected seawall.					
		G9. Reserve of loose natural granite rocks for re-use. Provide new					
		coastline to adopt "natural-look" by means of using armour rocks in					N/A
		the form of natural rock materials and planting strip area					
		accommodating screen buffer to enhance "natural-look" of the new					
		coastline (see Figure 14.4.2 for example).					
S14.3.3.3	LV3	Mitigate Visual Impacts					
		V1.Minimize time for construction activities during construction					٨
		period.					
		V2.Provide screen hoarding at the portion of the project site / works					٨
		areas / storage areas near VSRs who have close low-level views to					
		the Project during HKLR construction.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
EM&A							
S15.2.2	EM1	An Independent Environmental Checker needs to be employed as	Control EM&A Performance	Project	All construction	Construction	۸
		per the EM&A Manual.		Proponent	sites	stage	
S15.5 -	EM2	1) An Environmental Team needs to be employed as per the EM&A	Perform environmental	Contractor	All construction	Construction	۸
S15.6		Manual.	monitoring & auditing		sites	stage	
		2) Prepare a systematic Environmental Management Plan to ensure					۸
		effective implementation of the mitigation measures.					
		3) An environmental impact monitoring needs to be implementing by the					۸
		Environmental Team to ensure all the requirements given in the EM&A					
		Manual are fully complied with.					

Remarks:

- Compliance of mitigation measure
- * Recommendation was made during site audit but improved/rectified by the contractor

N/A Not Applicable at this stage as no such site activities were conducted in the reporting month (e.g. concrete batching plan, barging point, seawall dredging and filling, bored piling, landscaping works etc)

APPENDIX O WASTE GENERATION IN THE REPORTING MONTH

Contract No. HY/2011/09 Hong Kong - Zhuhai - Macao Bridge Hong Kong Link Road -Section between HKSAR Boundary and Scenic Hill

Appendix: C6 Monthly Summary Waste Flow Table

Name of Department: HyD Contract No.: HY/2011/09

Monthly Summary Waste Flow Table for 2014 (Year)

		Actual Quantit	ties of Inert C&I	Materials Gene	erated Monthly		Ac	ctual Quantities of	of C&D Wastes	Generated Mont	hly
Month	Total Quantity Generated ¹¹	Hard Rock and Large Broken Concrete ⁶	Reused in the Contract ^{8,9}	Reused in other Projects ^{5,8,9}	Disposed as Public Fill ⁷	Imported Fill ^{6,7,8,9}	Metals ¹²	Paper/ cardboard packaging	Plastics ³	Chemical Waste	Others, e.g. general refuse ^{8,9}
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
Jan	2.592	0.000	0.124	0.449	2.020	0.000	0.000	0.272	0.000	0.000	0.169
Feb	3.843	0.000	0.000	2.373	1.470	0.000	0.000	0.756	0.000	0.000	0.117
Mar	2.376	0.000	0.000	0.000	2.376	0.000	0.189	0.764	0.000	0.595	0.260
Apr	7.401	0.000	0.052	2.210	2.129	3.010	0.030	1.150	0.000	0.000	0.189
May	18.257	0.000	0.169	6.938	2.110	9.040	0.025	To Be Updated	0.000	0.000	0.221
Jun											
Sub-Total	34.469	0.000	0.345	11.970	10.105	12.050	0.244	2.942	0.000	0.595	0.956
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	34.469	0.000	0.345	11.970	10.105	12.050	0.244	2.942	0.000	0.595	0.956

Contract No. HY/2011/09 Hong Kong - Zhuhai - Macao Bridge Hong Kong Link Road -Section between HKSAR Boundary and Scenic Hill

	Forecast of Total Quantities of C&D Materials to be Generated from the Contract 10											
Total Quantity Generated ¹¹	Hard Rock and Large Broken Concrete ⁶	Reused in the Contract ^{8,9}	Reused in other Projects ^{5,8,9}	Disposed as Public Fill ⁷	Imported Fill ^{6,7,8,9}	Metals	Paper/ cardboard packaging	Plastics ³	Chemical Waste	Others, e.g. general refuse ^{8,9}		
(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)		
24.000	121.054	0.000	121.054	2.000	22.000	0.000	9.681	0.000	64.224	2.940		

Notes:

- (1) The performance targets are given in ER Appendix 8J Clause 14 and the EM&A Manual.
- (2) The waste flow table shall also include C&D materials to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
- (4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³. (ER Part 8 Clause 8.8.5 (d) (ii) refers).
- (5) The materials reused in other Project shall not be treated as waste under the Waste Disposal Ordinance (CAP354).
- (6) According to the EIA Appendix 8B, the density of rock (bulked) is 2.0 tonnes/m³.
- (7) According to the EIA Appendix 8B, the density of soil (bulked) is 1.8 tonnes/m³.
- (8) Assuming the loading quantities of a 30-tonne truck is 8.0m³.
- (9) Assuming the loading quantities of a 24-tonne truck is 6.5m³.
- (10) The forcast of C&D materials to be generated from the Contract is sourced from the works program in September 2013.
- (11) The volume of Total Quantity Generated means the volume of Hard Rock and Large Broken Concrete+Disposed as Public Fill+Imported Fill-Reused in the Contract-Reused in other Projects
- (12) The density of metal is 7,850 kg/m³.

APPENDIX P COMPLAINT LOG

Appendix P - Complaint Log

Log Ref.	Location	Received Date	Details of Complaint	Investigation/ Mitigation Action	Status
Com-2013-04-001	Near Tung Chung New Development Pier	8 April 2013	EPD received the complaint on 8 April 2013. The complainant complained about oil was dumped from various vessels operating for Hong Kong-Zhuhai-Macao Bridge Hong Kong (HZMB HK) Projects near Tung Chung New Development Pier over the past few months.	1) The vessels photos in the complainant's photo are not the working vessels under Contract No. HK/2011/09. 2) No oil dumped from Contract No. HK/2011/09's working vessels was observed according to ET's site inspection conducted on 9 April 2013 at near Tung Chung New Development Ferry Pier. 3) Joint site inspection (DCVJV and ARUP) was conducted on 10 April 2013 and confirmed that Contract No. HY/2011/09's vessels are not involved the complaint case. 4) DCVJV will keep remind their boat crews not discharging contaminated effluent directly into the sea.	Closed
Com-2013-05-001	WA6	2 May 2013	ARUP received the complaint on 2 May 2013. The complainant alleged the noise nuisance was generated from the Works Area WA6 at around 13:00 on 1 May 2013 (Wednesday).	The site diary report was reviewed and confirmed that no works were carried out at WA6 on 1 May 2013. In addition, no noise was heard from WA6 according to the security guard who on duty at WA6 on 1 May 2013. Based on the information provided, the complaint regarding the construction noise at WA6 is not considered justifiable.	Closed

				Monthly EM&A Report – I	viay 2014
Com-2013-05-002	WA6	18 May 2013	ARUP received the complaint on 18 May 2013. The complainant advised that the noise nuisance due to loading of metal parts at barge near the seawall of Works Area WA6 early morning (around8:45a.m) on 18 May 2013 (Saturday).	Based on the record of site activities at WA6 on 18 May 2013, 4 metal plates and 2 oxygen-acetylene set were lifted onto a derrick boat "Chiu Kee" by a crane near seawall at WA6 in the morning on that day. Such operation was commenced around 8:40a.m and completed in 10 minutes during the normal construction working hour (0700 – 1900 Monday to Saturday). However, the duration of aforesaid activities is very short and infrequent. Nevertheless, the Contractor was reminded to strengthen their site supervision and provide training for the workers regularly to increase awareness of their environmental responsibilities to minimize the noise impact to the nearby residents and the specific mitigation measures for the complaint including but not limited to:- •To place wooden planks or rubber mats on ground for loading and unloading heavy or metal objects; and •To deploy professional personnel to supervise the works.	Closed
Com-2013-05-003	Near Tung Chung New Development Pier	18 May 2013	EPD received the public complaint on 18 May 2013. This complaint was a follow-up of a previous complaint received by EPD on 8 April 2013 (Com-2013-04-001).	After receiving the complaint, additional site inspection was conducted at near Tung Chung New Development Pier on 30 May 2013 to investigate whether oil dumped was due to Contract No. HY/2011/09's vessels. During the site	Closed

				Within Ewick Report - 1	viay 2011
			The complainant complained again	inspection, three working vessels under	
			about the oil was dumped from	Contract No.HY/2011/09 was anchored	
			various vessels operating for Hong	off near Tung Chung New Development	
			Kong-Zhuhai-Macao Bridge Hong	Pier. No oil dumped from Contract No.	
			Kong (HZMB HK) Projects near	HY/2011/09's vessels were observed and	
			Tung Chung New Development	the water around the vessels was clear.	
			Pier over the past months.	The following mitigation measures have	
			_	been implemented by DCVJV:	
				• DCVJV has sent the letter to the	
				shipping agent to remind them to ensure	
				the vessels under Contract No.	
				HY/2011/09 are in good condition and	
				any oil dumped to sea should be avoided	
				to prevent water pollution.	
				• Provide training to the vessel skippers	
				for prevention of pollution from ships.	
				• DCVJV requested vessel skippers to	
				provide engine oil disposal records The	
				vessel skippers assured to us that all waste	
				lubricants were sent to waste collectors	
				regularly and no oil discharge into	
				seawater.	
			The complaint was received by	In response to the complaint, ET	
			EPD on 17 th July 2013. According	conducted two times site inspections at	
	Southeast Quay of		to the EPD's letter, the complainant	Southeast Quay at Chek Lap Kok between	
	Chek Lap Kok near		was concerned for the noise	18:45 and 20:30 hours on 23 July 2013	
Com-2013-07-001	the junction of Chek	17 July 2013	nuisance generated from the	and 20:30 to 22:30 hours on 30 July 2013.	Closed
	Lap Kok South Road	-	operation of concrete lorry mixers		
	and Scenic Road		during evening and night-time	During the inspections, the Ro-Ro barge	
			period at Southeast Quay of Chek	was observed anchored off Southeast	
			Lap Kok.	Quay at Chek Lap Kok but no concrete	

	Monthly EM&A Report – May 2014
	lorry mixer was observed throughout the inspection.
	On 23 July 2013, at about 19:35, one tug boat was observed travelling to Southeast Quay, Chek Lap Kok and left at about 19:40.
	On 30 July 2013, no tug boat and concrete lorry mixers were observed during the inspection.
	According to the Contractor, there was no concreting works for the pier sites on 23 July 2013 and therefore no loading and unloading operation at Southeast Quay at Chek Lap Kok.
	Concreting works were performed at Pier 0 on 30 July 2013. As the Contractor anticipated the arrival time of tug boat and flap-top barge at Southeast Quay will exceed 23:00 hours after the concreting
	works, they decided to arrange the tug boat and flap-top barge with concrete lorry mixers anchored off around Pier 66 after 23:00 hours. So, no loading and unloading operation at Southeast Quay at Chek Lap Kok was observed.
	Further night time site inspection was conducted on 22 August 2013 during the

				Monthly EM&A Report – May 2014
				loading and unloading operation at Southeast Quay of Chek Lap Kok, the construction works conducted under Contract No. HY/2011/09 complied with the conditions in the CNP No. GW-RS0895-13. After receiving the complaint, ET conducted the site inspection on 10 and 20
Com-2013-11-001	Chek Lap Kok (CLK) South Road	16 November 2013	The complaint was received by project customer services on 16 th November 2013 regarding the dust problem at Chek Lap Kok (CLK) South Road.	conducted the site inspection on 19 and 29 November 2013 to check the appropriate environmental protection and pollution control measures which are properly implemented by the Contractor under HY/2011/09 (DCVJV). The observation are summarized as below: • Dust generation works was conducted by the other Contractor at South East Quay • Proper watering of haul road to avoid dust generation during vehicle / plant equipment movement. • Vehicle washing facilities provided at every site exit at CLK South Road and South Perimeter Road. • No dark smoke was observed emitting from the plant equipments. Based on the information collected, the complaint of dust problem at Check Lap Kok South Road is considered not related to Contract No. HY/2011/09 as dust

				Monthly EM&A Report – I	viay 2014
Com-2014-01-001	Hong Kong-Zhuhai- Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill	3 January 2014	The complaint was received by EPD on 3 rd January 2014. According to the EPD's letter, a resident in Tai O District was concerned for the noise nuisance occasionally arising from the	suppression measures has been properly implemented by the Contractor on site to prevent dust nuisance from the construction activities. In response to the complaint, ET conducted an ad hoc night time site inspection at P0, P18 and P19 on 14 January 2014 between around 23:00 and 00:30 hours of 15 January 2014. In accordance with the site activities record and site inspections, the construction works conducted under Contract No. HY/2011/09 complied with the conditions in the CNP No. GW-RS1108-13. Nevertheless, the Contractor was advised to strictly follow the conditions of the	Closed
Com-2014-01-001	HKSAR Boundary	•		· · · · · · · · · · · · · · · · · · ·	Closed

				Monthly EM&A Report – I	<u>viay 2014</u>
				visual impacts to residents in vicinities; • To ensure the equipment are maintaining in good operation	
				 To strengthen site supervision and provide training for the workers regularly to increase awareness of their environmental responsibilities to minimize the noise impact to the nearby residents and the specific mitigation measures. 	
				After receiving the complaint, ET conducted the site inspection on 21 January 2014 to check all the plant equipments which were operated for the construction works and air quality mitigation measures.	
Com-2014-01-002	Hong Kong-Zhuhai- Macao Bridge	16 January 2014	The complaint was received by HyD's PR Team on 16 January 2014 that the complainant advised that the heavy exhaust fume affecting Tung Chung Crescent.	Based on the information collected, the complaint of heavy exhausts affecting Tung Chung Crescent is considered not related to Contract No. HY/2011/09 due to the following reason(s):-	Closed
				1) The work sites at Portion C and South East Quay at Portion A under Contract No. HY/2011/09 are approximately 800m from Tung Chung Crescent. Any unpleasant smell of exhaust fume would not be	

				Monthly EM&A Report – I	viay 201 4
Com-2014-03-001	Oil Spillage at near Sha Lo Wan	5 March 2014	The complaint was received by EPD on 5 March 2014. The complainant suspected the oil leakage from the works area of Contract No. HY/2011/09 near Sha Lo Wan	anticipated. 2) No heavy smoke was observed emitting from plants / equipment during the site inspection on 21 January 2014. 3) The vehicles and equipments were switched off while not in use. 4) All plant and equipment were well maintained and in good operating condition. 5) Air quality mitigation measures has been properly implemented by the Contractor on site to prevent dust nuisance from the construction activities. Based on ET site inspection, no oil spillage from the works area under Contract No. HY/2011/09 at near Sha Lo Wan was observed. In addition, spill kits are ready on site in order to dealing with spillage cases promptly. Nevertheless, DCVJV was also recommended the mitigation measures as below: • Provide training for the workers regularly regarding the mitigation measures on waste / chemical management. • Provide sufficient chemical spillage kit (e.g. oil absorbent) to all vessels and	Closed

				Monthly EM&A Report – I	111ay 2011
				working platform. • Regular check the condition of vessels and plant equipments to ensure no leakage of oil.	
Com-2014-03-002	Construction Noise in the vicinity of the waters outside Sha Lo Wan	11 March 2014	The complaint was received by EPD on 11 March 2014. According to the EPD's letter, the complainant was concerned for the mobile crane which operating in the vicinity of the waters outside Sha Lo Wan after 23:00.	In accordance with an ad hoc site inspection on 18 March 2014, no construction works were conducted during the restricted hours. The 1st investigation report has been submitted to EPD on 21 March 2014. The 2nd investigation report will be provided to report the investigation results after reviewing the site diary at the time of complaint. The Contractor was advised to strictly follow the conditions of the permit because any deviation from the conditions may lead to cancellation of the permit, subsequent prosecution action and the Authority's refusal to issue further permit. Nevertheless, the Contractor was reminded to take sufficient noise mitigation measures to minimize the environmental impact on the nearby community: • To space out noisy equipment and position it as far away as possible from the sensitive receivers; • To avoid concurrent uses of noisy equipment near the sensitive area; • To ensure the equipment are maintaining in good operation condition;	Under Investigation

Com-2014-04-001 Construction marine works by the company Bauer Chung Chu					Monthly EM&A Report – I	May 2014
the early morning in which the marine construction works have not been commenced. Therefore, from the above	Com-2014-04-001	works by the company Bauer Hong Kong in Tung	14 April 2014	Agriculture, Fisheries and Conservation Department (AFCD) on 14 April 2014, the complainant complained that the dead dolphin was found under a platform at construction marine works by the company Bauer Hong Kong in Tung Chung (Macau Bridge Piling	· To turned off any idle equipment on site; and · To enclose the noisy part of the machine by acoustic insulation material if feasible. · To arrange tailor-made training for the Production Team including the management and foremen to explain to them the conditions and requirements listed on the CNP. · To delegate one Engineer for ensuring that all construction activities and PMEs used are in full compliance with the CNP and legislative requirements. In accordance with the photos showing a date of 27 November 2013 (08:00 – 08:25a.m.) which provided by the complainant, the dolphin was observed has been dead for some time and shows signs of decomposition. It was difficult to determine the cause of death of the deceased dolphin based on the photographs and the dead dolphin was found a few months ago. By examining the photos, it is found that the body was beside a barge, not under a working platform. In addition, the dead dolphin was found in the early morning in which the marine construction works have not been	

 Monthly EM&A Report – May 2014
considered to be washed to the work site. However, there is no significant increase of cetacean stranding were found in Hong Kong since the commencement of Contact No. HY/2011/09.
In regard to the complaint, the following recommendations were made:
In case stranded cetaceans are found, the AFCD shall be contacted immediately and provide the following information to facilitate AFCD's investigation:
 Name and telephone number; Date and time of discovery; Location (as specific as possible); Status of the stranded animal (i.e. alive, freshly dead, slightly decomposed, rotten, mummified); Type and size of the stranded animal.
 To implement Dolphin Exclusion Zone during the installation of bored pile casing located in the waters to the west of Airport. To implement Dolphin Watching Plan after the bored piling casing is installed.

				Wonting Ewier Report	1.100 = 0 1 .
Com-2014-05-001	At the shore of Sha Lo Wan	13 May 2014	The complaint was received by EPD on 13 May 2014. According to the EPD's email, the complainant was concerned about the sand material that was excavated on the shore of Sha Lo Wan for the construction of Hong Kong - Zhuhai - Macao Bridge (HZMB) Project on 11 May 2014.	After receiving the complaint from a Sha Lo Wan's village resident, the subcontractor was instructed to stop the sand excavation and leave immediately. In addition, all sands excavated from the shore of Sha Lo Wan were returned back to the original area on 13 May 2014. Nevertheless, the Contractor was advised to arrange tailor-made training for Production Team including the management and foremen to explain to them the conditions and requirements listed on the Environmental Permit. In addition, indicative poles and flags are recommended to put within the site boundary to identify the extent of land areas in Sha Lo Wan / Sha Lo Wan (West) Archaeological site.	Closed
Com-2014-05-002	At the shore of Sha Lo Wan	27 May 2014	The complaint was received by EPD on 27 May 2014. According to the EPD's email, the complainant was concerned about the dumping rubbles along the shore area of Sha Lo Wan on 27 May 2014.	Under Investigation	
Com-2014-05-003	Pier 39 to 50	29 May 2014	ARUP received the complaint on 29 May 2013. The complainant advised that the workers disposed hundreds of kg of waste spoils	Under Investigation	

(concrete and earth) into the sea	
every day in the existing locations	
of HZMB site area.	