

CONTRACT NO: HK/2009/05

WANCHAI DEVELOPMENT PHASE II AND CENTRAL WANCHAI BYPASS SAMPLING, FIELD MEASUREMENT AND TESTING WORK (STAGE 1)

ENVIRONMENTAL PERMIT NO. EP-356/2009, FURTHER EVIRONMENTAL PERMIT NOS. FEP-01/356/2009, FEP-02/356/2009 AND FEP-03/356/2009

MONTHLY ENVIRONMENTAL MONITORING & AUDIT REPORT

- JULY 2010 -

CLIENTS:

Civil Engineering and Development Department

and

Highways Department

PREPARED BY:

Lam Geotechnics Limited

11/F Centre Point 181-185 Gloucester Road, Wanchai, H.K.

Telephone: (852) 2882-3939 Facsimile: (852) 2882-3331 E-mail: <u>info@lamenviro.com</u> Website: <u>http://www.lamenviro.com</u>

CHECKED BY:

Raymond Dai Environmental Team Leader

DATE:

9 August 2010

ENVIRON

Ref.: AACWBIECEM00 0 0390L.10

11 August 2010

By Post and Fax (2691 2649)

AECOM Asia Company Limited 8/F, Tower 2 Grand Central Plaza 138 Shatin Rural Committee Road, Shatin, New Territories, Hong Kong

Attention: Mr. Kelvin CHENG

Dear Sir,

Re: Contract No. HK/2009/05 Wan Chai Development Phase II and C

Wan Chai Development Phase II and Central-Wan Chai Bypass – Sampling, Field Measurement and Testing Work (Stage 1) Monthly Environmental Monitoring and Audit Report (July 2010) for EP-356/2009, FEP-01/356/2009, FEP-02/356/2009 and FEP-03/356/2009

Reference is made to the Environmental Team's submission of the captioned Monthly Environmental Monitoring and Audit (EM&A) Report for July 2010 dated 9 August 2010.

Please be informed that we have no adverse comments on the captioned submission. We write to verify the captioned submission in accordance with Condition 3.4 in the captioned Environmental Permits.

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

5

David Yeung Independent Environmental Checker

c.c. HyD CEDD AECOM Lam Mr. Jones Lai Mr. Patrick Keung Mr. Francis Leong / Mr. Stephen Lai Mr. Raymond Dai by fax: 2714 5289 by fax: 2577 5040 by fax: 2691 2649 by fax: 2882 3331

Q:\Projects\AACWBIECEM00\Corr\AACWBIECEM00_0_0390L.10.doc

TABLE OF CONTENTS

EXE	ECUTIVE SUMMARY	IV
1.	INTRODUCTION	1
	 Scope of the Report Structure of the Report 	
2.	PROJECT BACKGROUND	3
	 2.1 Background 2.2 Scope of the Project and Site Description 2.3 Division of the Project Responsibility 2.4 Project Organization and Contact Personnel 	3 4
3.	STATUS OF REGULATORY COMPLIANCE	9
	3.1 Status of Environmental Licensing and Permitting under the Project	9
4.	MONITORING REQUIREMENTS	14
	 4.1 Noise Monitoring 4.2 Air Monitoring 4.3 Water Quality Monitoring 	15
5.	MONITORING RESULTS	21
	 5.1 Noise Monitoring Results 5.2 Air Monitoring Results 5.3 Water Monitoring Results 5.4 Waste Monitoring Results 	22 23
6.	COMPLIANCE AUDIT	29
	 6.1 Noise Monitoring 6.2 Air Monitoring 6.3 Water Quality Monitoring 6.4 Review of the Reasons for and the Implications of Non-compliance. 6.5 Summary of action taken in the event of and follow-up on non-compliance. 	29 29 30
7.	CUMULATIVE CONSTRUCTION IMPACT DUE TO THE CONCURRENT	PROJECTS31
8.	SITE INSPECTION	32
9.	COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION	35
10.	. CONCLUSION	

Table I Table 2.1

Table 2.2

LIST OF TABLES

Table 2.3	Contact Details of Key Personnel
Table 3.1	Summary of the current status on licences and/or permits on environmental protection pertinent to the Project
Table 3.2	Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/11
Table 3.3	Summary of submission status under FEP-01/356/2009 Condition
Table 3.4	Cumulative Summary of Valid Licences and Permits under Contract no. HK/2009/01
Table 3.5	Summary of submission status under FEP-02/356/2009 Condition
Table 3.6	Cumulative Summary of Valid Licences and Permits under Contract no. HK/2009/02
Table 3.7	Summary of submission status under FEP-03/356/2009 Condition
Table 4.1	Noise Monitoring Station
Table 4.2	Air Monitoring Station
Table 4.3	Marine Water Quality Stations for Water Quality Monitoring
Table 4.4	Marine Water Quality Monitoring Frequency and Parameters
Table 5.1	Noise Monitoring Stations for Contract no. HY/2009/11
Table 5.2	Noise Monitoring Station for Contract nos. HK/2009/01 and HK/2009/02
Table 5.3	Air Monitoring Stations for Contract no. HY/2009/11
Table 5.4	Air Monitoring Stations for Contract no. HK/2009/01
Tabla 5 5	Air Monitoring Station for Contract no. HK/2000/02

Schedule 2 Designated Projects under this Project

Details of Individual Contracts under the Project

Summary of Water Quality Monitoring Exceedances in Reporting Month

- Air Monitoring Station for Contract no. HK/2009 Table 5.5
- Table 5.6 Water Monitoring Stations for Contract no. HY/2009/11
- Table 5.7 Water Monitoring Stations for Contract no. HK/2009/01
- Table 5.8 Water Monitoring Stations for Contract no. HK/2009/02
- Table 5.9 Summary of Water Quality Monitoring Exceedances in Reporting Month
- Table 5.10 Details of Waste Disposal for Contract no. HY/2009/11
- Table 5.11 Details of Waste Disposal for Contract no. HK/2009/01
- Details of Waste Disposal for Contract no. HK/2009/02 Table 5.12
- Table 8.1 Summary of Environmental Inspections for Contract no. HY/2009/11
- Table 8.2 Summary of Environmental Inspections for Contract no. HK/2009/01
- Summary of Environmental Inspections for Contract no. HK/2009/02 Table 8.3
- Cumulative Statistics on Complaints Table 9.1
- Table 9.2 **Cumulative Statistics on Successful Prosecutions**
- Construction Activities and Recommended Mitigation Measures in Coming Table 10.1 Reporting Month
- Summary of Key Construction Activities of Individual Contract(s) to be Table 10.2 commenced in Coming Reporting Month

LIST OF FIGURES

- Project Layout Figure 2.1
- **Project Organization Chart** Figure 2.2
- Figure 4.1 Locations of Environmental Monitoring Stations

LIST OF APPENDICES

- Appendix 3.1 **Environmental Mitigation Implementation Schedule**
- Action and Limit Level Appendix 4.1 Appendix 4.2 **Copies of Calibration Certificates**
- Appendix 5.1 Monitoring Schedule for Reporting Month and Coming month
- Noise Monitoring Results and Graphical Presentations Appendix 5.2
- Water Quality Monitoring Results and Graphical Presentations Appendix 5.3
- Event Action Plans Appendix 6.1
- Appendix 6.2 Summary for Notification of Exceedance

Lam Geotechnics Limited

Appendix 9.1Complaint LogAppendix 10.1Construction Programme of Individual Contracts

EXECUTIVE SUMMARY

i. This is the Environmental Monitoring and Audit (EM&A) Monthly Report – July 2010 for Contract No. HK/2009/05 –Wanchai Development Phase II and Central Wanchai Bypass -Sampling, Field Measurement and Testing Work (Stage 1). This report presents the environmental monitoring findings and information recorded during the period 28th June 2010 to 27th July 2010. The cut-off date of reporting is at 27th of each reporting month.

Construction Activities for the Reported Period

- ii. During this reporting period, the major work activities for Contract no. HY/2009/11 included:
 - Construction of Rock Mound,
 - Floating Out of Caisson Seawall,
 - Installation of Caisson Seawall,
 - Dredging works, and
 - Laying of geo-textile
- iii. The dredging works for Contract no. HK/2009/01 was commenced on 23 July 2010. The major work activities in this reporting periods included:
 - Erection of interim Engineer's Principal Office at works area WA2
 - Hoarding erection at Wan Chai HKCEC VIP Drop-off Area and Tsim Sha Tsui Salisbury Area;
 - The flat top barge is continued to carry out Marine S.I. within fairway area
 - Marine S.I. at east side of HKCEC;
 - Fabrications of submarine pipelines;
 - Silt screens installation are completed for HKCEC Phase 1, Government Buildings, China Resources, Great Eagle & Harbour Centre, Telecom House, Shui On, HKAPA, Sheung Wan & Kowloon South Pumping Station and HKCEC Extension (Pumping Station P6);
 - Routine maintenance and clearance works for silt screens;
 - Erection of temporary platform for pipe pile installation;
 - Fabrication of 3 nos. of mud barges for dredging within HKCEC water channel and delivered on site. Application of respective license;
 - Fabrication of crane barges are in progress and expect to deliver to site on mid Aug 10; and
 - Wheel washing facility will be provided at the north entrance to the water channel
- iv. The dredging works for Contract no. HK/2009/02 was commenced on 5 July 2010. The major work activities in this reporting periods included:
 - Site Clearance;
 - Hoarding Erection;
 - Breaking and Excavation at WSD Pumping Station;
 - Demolition Footbridge Staircase at WSD Pumping Station;
 - Construction of Salt Water Intake Culvert at Pet Garden;
 - Road Modification Works;
 - Construction of Cooling Mains Along Public Road;
 - Construction of Temporary Seawall;

- Dredging for WCR 1; and
- Equipments Procurement for TKO 137

Noise Monitoring

- v. Noise monitoring during day time and evening time were conducted at the City Garden and Causeway Bay Community Centre on a weekly basis in the reporting period. Two limit level exceedances were recorded at M4a on 20 and 27 July 2010 during restricted hours. Investigation found that is not project related exceedances. Reviewed the past monitoring results and observation at Station M4a, Victoria Centre (Station ID: M4b) is proposed as alternative noise monitoring station from August 2010.
- vi. Noise monitoring during day time was conducted at the M1a Harbour Road Sports Centre in this reporting month. Due to the marine works undertaken in evening time from 12 July 2010, noise monitoring during evening time was conducted from 13 July 2010. Three limit level exceedances were recorded in reporting month. It is concluded as not related to the Project works. However, baseline noise level at M1 is needed to be reviewed in next reporting month.

Air Quality Monitoring

vii. As no filling works was carried out in reporting month, no air quality monitoring was undertaken during the reporting month.

Water Quality Monitoring

viii. Water quality monitoring at 17 monitoring stations were conducted three days per week during the reporting period. The action and limit level exceedances of water quality monitoring are summarized in *Table I*. Investigations were found that the exceedances are not related to the Project works. The details of the exceedances can be referred to Section 5.3 and 6.3 of the report.

			Mid-flood			Mid-ebb							
	Water Monitoring	D	0	Turb	oidity	s	S	D	0	Turt	bidity	S	S
Contract no.		AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
HY/2009/11	WSD9	0	2	0	0	0	1	1	3	0	0	0	1
	WSD10	0	2	0	0	2	1	0	5	0	0	1	0
	WSD15	1	1	0	0	1	3	2	4	0	0	1	0
	WSD17	0	1	0	0	0	1	0	5	1	0	0	1
	C8	2	0	1	0	4	2	1	1	0	2	5	3
	С9	1	0	0	0	4	1	2	0	2	0	3	1
HK/2009/01	WSD19	1	1	1	0	0	2	2	2	0	0	0	0
	WSD20	1	1	0	0	0	2	2	1	0	0	1	0
	WSD7	0	1	0	0	0	0	0	3	0	0	0	0
	C1	0	0	0	0	0	0	0	0	0	0	0	0

Table I Summary of Water Quality Monitoring Exceedances in Reporting Month

			Mid-flood			Mid-ebb							
	Water Monitoring	D	0	Turb	oidity	s	S	D	DO Turbidity		s	s	
Contract no.	•	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
	C2	0	1	0	0	1	0	3	0	0	0	0	1
	Сз	1	0	0	0	1	0	3	0	0	0	1	0
	C4e	1	0	0	0	1	0	2	0	0	0	0	0
	C4w	1	0	0	0	0	0	2	0	0	0	1	0
HK/2009/02	C5e	1	0	0	0	2	1	1	0	0	0	1	0
	C5w	1	0	0	0	2	1	0	0	0	0	1	0
	WSD21	0	1	0	0	0	1	1	0	0	0	0	1
Total		11	11	2	0	18	16	22	24	3	2	15	8

Complaints, Notifications of Summons and Successful Prosecutions

ix. No complaint, notification of summons and prosecution was recorded in reporting month.

Site Inspections and Audit

x. The Environmental Team (ET) conducted weekly site inspections for Contract nos. HY/2009/11, HK/2009/01 and HK/2009/02 in this reporting period. Major observations and recommendations made during the audit sessions were rectified by the Contractors. No nonconformance was identified during the site inspections.

Future Key Issues

xi. In coming reporting month, the principal work activities of individual contracts are anticipated as follows:

Contract no. HY/2009/11- North Point Reclamation

- Construction of Rock Mound,
- Floating Out of Caisson Seawall,
- Installation of Caisson Seawall,
- Dredging works,
- Laying of geo-textile,
- Drainage Works and
- Seawall Block Installation

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at</u> <u>HKCEC</u>

- WA2 interim Engineer's Principal Office;
- Sewerage pipelines for interim Engineer's Principal Office at works area WA1 & WA2;
- Tree transplantation at Tsim Sha Tsui and Wan Chai HKCEC VIP Drop-off Area;
- Vibrocore for Marine G.I. near Wan Chai West Pier shall be completed on early Aug 10;
- Dredging works at Victoria Habour;

- Fabrication of submarine pipelines and on-land section pipelines shall be completed and first batch of delivery;
- Silt screen installation for the existing cooling water intakes;
- Trial pit Stage 1 at Zone A1 along Convention Avenue shall be completed and trial pit for other stages at the Convention Avenue;
- Modification of existing combine service inspection chamber at HKCEC (Area B1);
- Trial pit at Zone B1-1 near HKCEC VIP Drop-off area shall be completed and pipe laying works;
- Routine maintenance and clearance works for silt screens;
- Temporary piled staging for pipe pile P1; and
- Installation of trial bored pile staging platform

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> <u>WanChai East</u>

- Site Clearance;
- Hoarding Erection;
- Pre-bored H-piles, ELS and excavation at WSD Pumping Station;
- Construction of Salt Water Intake Culvert at Pet Garden;
- Road Modification Works;
- Construction of Cooling Mains Along Public Road;
- Construction of Temporary Seawall;
- Dredging for WCR 1;
- Tree Transplanting; and
- Equipments Procurement for TKO 137

1. INTRODUCTION

1.1 Scope of the Report

- 1.1.1. Lam Geotechnics Limited (LGL) has been appointed to work as the Environmental Team (ET) for Contractor No. HK/2009/05 Wan Chai Development Phase II and Central –Wan Chai Bypass Sampling, Field Measurement and Testing Work (Stage 1) to implement the Environmental Monitoring and Audit (EM&A) programme as stipulated in the EM&A Manual of the approved Environmental Impact Assessment (EIA) Report for Wan Chai Development phase II and Central-Wan Chai Bypass (Register No.: AEIAR-125/2008) and in the EM&A Manual of the approved EIA Report for Central-Wan Chai Bypass and Island Eastern Corridor Link (Register No. AEIAR-014/2001).
- 1.1.2. This report presents the environmental monitoring and auditing work carried out in accordance to the Section 10.3 of EM&A Manual and "*Environmental Monitoring and Audit Requirements*" under Particular Specification Section 27.
- 1.1.3. This report documents the finding of EM&A works during the period 28th June to 27th July 2010. The cut-off date of reporting is at 27th of each reporting month.

1.2 Structure of the Report

- **Section 1** *Introduction* details the scope and structure of the report.
- Section 2 *Project Background* summarizes background and scope of the project, site description, project organization and contact details of key personnel during the reporting period.
- Section 3 Status of Regulatory Compliance summarizes the status of valid Environmental Permits / Licenses during the reporting period.
- Section 4 *Monitoring Requirements* summarizes all monitoring parameters, monitoring methodology and equipment, monitoring locations, monitoring frequency, criteria and respective event and action plan and monitoring programmes.
- **Section 5** *Monitoring Results* summarizes the monitoring results obtained in the reporting period.
- Section 6 Compliance Audit summarizes the auditing of monitoring results, all exceedances environmental parameters.
- Section 7 *Cumulative Construction Impact due to the Concurrent Projects* summarizes the relevant cumulative construction impact due to the concurrent activities of the concurrent Projects.

- **Section 8** *Site Inspection* summarizes the findings of weekly site inspections undertaken within the reporting period, with a review of any relevant follow-up actions within the reporting period.
- Section 9 Complaints, Notification of summons and Prosecution summarizes the cumulative statistics on complaints, notification of summons and prosecution
- Section 10 Conclusion

2. PROJECT BACKGROUND

2.1 Background

- 2.1.1. "Wan Chai Development phase II and Central-Wan Chai Bypass" and "Central-Wan Chai Bypass and Island Eastern Corridor Link" (hereafter called "the Project") are Designed Project (DP) under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO). The Environmental Impact Assessment (EIA) Reports for Central-Wan Chai Bypass and Island Eastern Corridor Link (Register No. AEIAR-041/2001) and Wan Chai Development phase II and Central-Wan Chai Bypass (Register No.: AEIAR-125/2008) have been approved on 31 August 2001 and 11 December 2008 respectively.
- 2.1.2. The key purpose of Wan Chai Development Phase II (WDII) is to provide land at Wan Chai North and North Point for construction of the Central-Wan Chai Bypass and Island Eastern Corridor Link (CWB). Land formed under the project will be developed as a world-class waterfront promenade joining that at the new Central waterfront for public enjoyment.
- 2.1.3. There is a compelling and present need for the CWB to provide relief to the very congested east-west Connaught Road Central/Harcourt Road / Gloucester Road Corridor (the Corridor) which is currently operating beyond its capacity. The CWB will provide relief to the existing congestion along the Corridor and cater for the anticipated growth of traffic on Hong Kong Island. Without the CWB and its access roads, there will not be sufficient capacity to serve the heavy traffic demands at both strategic and local levels.

2.2 Scope of the Project and Site Description

- 2.2.1. The Project is located mainly in Wan Chai North, Causeway Bay and North Point, and is demarcated by Gloucester Road and Victoria Park Road to the south, Fenwick Pier Street to the west and Tong Shui Road Interchange to the east, as shown in *Figure 2.1*.
- 2.2.2. The study area encompasses existing developments along the Wan Chai, Causeway Bay and North Point shorelines. Major land uses include the Hong Kong Convention & Exhibition Centre (HKCEC) Extension, the Wan Chai Ferry Pier, the ex-Wan Chai Public Cargo Working Area (ex-PCWA), the Royal Hong Kong Yacht Club (RHKYC), the Police Officers' Club, the Causeway Bay Typhoon Shelter (CBTS) and commercial and residential developments.
- 2.2.3. The scope of the Project comprises:
 - Land formation for key transport infrastructure and facilities, including the Trunk Road (i.e. CWB) and the associated slip roads for connection to the Trunk Road and for through traffic from Central to Wan Chai and Causeway Bay. The land formed for the above transport infrastructure will provide opportunities for the development of an attractive waterfront promenade for the enjoyment of the public
 - Reprovisioning / protection of the existing facilities and structures affected by the land formation works mentioned above

- Extension, modification, reprovisioning or protection of existing storm water drainage outfalls, sewerage outfalls and watermains affected by the revised land use and land formation works mentioned above
- Upgrading of hinterland storm water drainage system and sewerage system, which would be rendered insufficient by the land formation works mentioned above
- Provision of the ground level roads, flyovers, footbridges, necessary transport facilities and the associated utility services
- Construction of the new waterfront promenade, landscape works and the associated utility services
- The Trunk Road (i.e. CWB) within the study area and the associated slip roads for connection to the Trunk Road.
- 2.2.4. The project also contains various Schedule 2 DPs that, under the EIAO, require Environmental Permits (EPs) to be granted by the DEP before they may be either constructed or operated. *Table 2.1* summarises the five individual DPs under this Project. *Figure 2.1* shows the locations of these Schedule 2 DPs.

ltem	Designated Project	EIAO Reference	Reason for inclusion					
DP1	Central-Wanchai Bypass (CWB) including its road tunnel and slip roads	Schedule 2, Part I, A.1 and A.7	Trunk road and road tunnel more than 800 m in length					
DP2	Road P2 and other roads which are classified as primary/district distributor roads	Schedule 2, Part I, A.1	Primary / district distributor roads					
DP3	Reclamation works including associated dredging works	Schedule 2, Part I, C.1 and C.12	Reclamation more than 5 ha in size and a dredging operation less than 100 m from a seawater intake point					
DP5	Wan Chai East Sewage Outfall	Schedule 2, Part I, F.5 and F.6	Submarine sewage pipelines with a total diameter more than 1,200 mm and include a submarine sewage outfall					
DP6	Dredging for the Cross- harbour Water Mains from Wan Chai to Tsim Sha Tsui	Schedule 2, Part I, C.12	A dredging operation less than 100 m from a seawater intake point					

Table 2.1 Schedule 2 Designated Projects under this Project

2.3 Division of the Project Responsibility

2.3.1. Due to the multi-contract nature of the Project, there are a number of contracts sub-dividing the whole works area into different work areas to be commenced. Contractors of individual contracts will be required by the EP holder to apply Further Environmental Permits (FEP) such that the impact monitoring stations are sub-divided accordingly to facilitate the implementation of EM&A programme and to streamline the EM&A reporting for individual FEP holders correspondingly.

2.3.2. In the reporting month, the dredging works for Contracts no. HK/2009/01 and HK/2009/02 were commenced on 23 July and 5 July 2010 respectively. The details of individual contracts are summarized in *Table2.2*.

Contract No.	Contract Title	Associated DP(s)	Construction Commencement Date			
HK/2009/01	Wan Chai Development Phase II – Central –Wanchai Bypass at Hong Kong	DP3, DP6	23 July 2010			
	Convention and Exhibition Centre	DP1, DP2	Pending			
HK/2009/02	Wan Chai Development Phase II -	DP3, DP5	5 July 2010			
	Central – Wan Chai Bypass at WanChai East	DP1	Pending			
HY/2009/11	Wan Chai Development Phase II and Central - Wan Chai Bypass - North Point Reclamation	DP3	17 March 2010			

 Table 2.2
 Details of Individual Contracts under the Project

2.4 Project Organization and Contact Personnel

- 2.4.1. Civil Engineering and Development Department and Highways Department are the overall project controllers for the Wan Chai Development Phase II and Central-Wan Chai Bypass respectively. For the construction phase of the Project, Project Engineer, Contractor(s), Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
- 2.4.2. The proposed project organization and lines of communication with respect to environmental protection works are shown in <u>*Figure 2.2*</u>. Key personnel and contact particulars are summarized in *Table 2.3*:

Party	Role	Post	Name	Contact No.	Contact Fax
AECOM	Engineer for WDII	Principle Resident Engineer	Mr. Frankie Fan	2607 7801	2687 2322
	Engineer for CWB	Chief Resident Engineer	Mr. David Kwan	3916 1818	3529 2829
China Harbour-	Contractor under Contract	Project Director	Mr. Cho Yu Fun	3157 1086	3157 1085
CRBC Joint Venture	no. HY/2009/11	Project Manager	Mr. Gregory Wong	3157 1086	
		Site Agent	Mr. Daniel Cheung	3157 1086	
		Environmental Officer	Mr. C. M. Wong	3157 1086	
Chun Wo –	Contractor	Site Agent	Paul Yu	9456 9819	2634 1626
Leader Joint Venture	under Contract no. HK/2009/01	Operation Manager	Ho Wing Tai	9306 1356	
		Construction Manager	David Wong	9653 8635	
		Construction Manager	Wilson Lau	5183 1270	
		Construction Manager	Alex Tsang	9194 9383	
		Environmental Officer (Compliance Manager)	Ho Wing Tai	9306 1356	
		Environmental Engineer	Ken Yang	9262 6791	
Chun Wo – CRGL Joint	Contractor under Contract	Project Manager	Mr. Chan Sing Cho	3658 3002	2827 9996
Venture	no. HK/2009/02	Site Agent	Mr. Anthony Wu	3658 3004	
		Environmental Officer (Compliance Manager)	Mr. Barry Leung	3658 3031	
		Environmental Engineer	Ms. Flora Ng	3658-3064	
ENVIRON Hong Kong Limited	Independent Environmental Checker (IEC)	Independent Environmental Checker (IEC)	Mr. David Yeung	3743 0788	3548 6988
Lam Geotechnics Limited	Environmental Team (ET)	Environmental Team Leader (ETL)	Mr. Raymond Dai	2882 3939	2882 3331

Table 2.3 Contact Details of Key Personnel

- 2.4.3. For Contract no. HY/2009/11, the principal work activities in this reporting month included:
 - Construction of Rock Mound,

- Floating Out of Caisson Seawall,
- Installation of Caisson Seawall,
- Dredging works, and
- Laying of geo-textile
- 2.4.4. For Contract no. HK/2009/01, the principal work activities in this reporting month included:
 - Erection of interim Engineer's Principal Office at works area WA2;
 - Hoarding erection at Wan Chai HKCEC VIP Drop-off Area and Tsim Sha Tsui Salisbury Area;
 - The flat top barge is continued to carry out Marine S.I. within fairway area;
 - Marine S.I. at east side of HKCEC;
 - Fabrications of submarine pipelines;
 - Silt screens installation are completed for HKCEC Phase 1, Government Buildings, China Resources, Great Eagle & Harbour Centre, Telecom House, Shui On, HKAPA, Sheung Wan & Kowloon South Pumping Station and HKCEC Extension (Pumping Station P6);
 - Routine maintenance and clearance works for silt screens;
 - Erection of temporary platform for pipe pile installation;
 - Fabrication of 3 nos. of mud barges for dredging within HKCEC water channel and delivered on site. Application of respective license;
 - Fabrication of crane barges are in progress and expect to deliver to site on mid Aug 10; and
 - Wheel washing facility will be provided at the north entrance to the water channel
- 2.4.5. For Contract no. HK/2009/02, the principal work activities in this reporting month included:
 - Site Clearance;
 - Hoarding Erection;
 - Breaking and Excavation at WSD Pumping Station;
 - Demolition Footbridge Staircase at WSD Pumping Station;
 - Construction of Salt Water Intake Culvert at Pet Garden;
 - Road Modification Works;
 - Construction of Cooling Mains Along Public Road;
 - Construction of Temporary Seawall;
 - Dredging for WCR 1; and
 - Equipments Procurement for TKO 137
- 2.4.6. In coming reporting month, the principal work activities of individual contracts are anticipated as follows:

Contract no. HY/2009/11- North Point Reclamation

- Construction of Rock Mound,
- Floating Out of Caisson Seawall,
- Installation of Caisson Seawall,
- Dredging works,

Lam Geotechnics Limited

- Laying of geo-textile,
- Drainage Works and
- Seawall Block Installation

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at</u> <u>HKCEC</u>

- WA2 interim Engineer's Principal Office;
- Sewerage pipelines for interim Engineer's Principal Office at works area WA1 & WA2;
- Tree transplantation at Tsim Sha Tsui and Wan Chai HKCEC VIP Drop-off Area;
- Vibrocore for Marine G.I. near Wan Chai West Pier shall be completed on early Aug 10;
- Dredging works at Victoria Habour;
- Fabrication of submarine pipelines and on-land section pipelines shall be completed and first batch of delivery;
- Silt screen installation for the existing cooling water intakes;
- Trial pit Stage 1 at Zone A1 along Convention Avenue shall be completed and trial pit for other stages at the Convention Avenue;
- Modification of existing combine service inspection chamber at HKCEC (Area B1);
- Trial pit at Zone B1-1 near HKCEC VIP Drop-off area shall be completed and pipe laying works;
- Routine maintenance and clearance works for silt screens;
- Temporary piled staging for pipe pile P1; and
- Installation of trial bored pile staging platform

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> <u>WanChai East</u>

- Site Clearance;
- Hoarding Erection;
- Pre-bored H-piles, ELS and excavation at WSD Pumping Station;
- Construction of Salt Water Intake Culvert at Pet Garden;
- Road Modification Works;
- Construction of Cooling Mains Along Public Road;
- Construction of Temporary Seawall;
- Dredging for WCR 1;
- Tree Transplanting; and
- Equipments Procurement for TKO 137

3. STATUS OF REGULATORY COMPLIANCE

3.1 Status of Environmental Licensing and Permitting under the Project

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in *Table 3.1*.

Permits and/or Licences	Reference No.	Issued Date	Status
Environmental Permit	EP-356/2009	30 Jul 2009	Valid
Environmental Permit	EP-364/2009	17 Aug 2009	Valid
Environmental Permit	EP-376/2009	13 Nov 2010	Valid
Further Environmental Permit	FEP-01/356/2009	18 Feb 2010	Valid
Further Environmental Permit	FEP-02/356/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-03/356/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-01/364/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-02/364/2009	21 Apr 2010	Valid
Further Environmental Permit	FEP-03/364/2009	12 July 2010	Valid

Table 3.1 Summary of the current status on licences and/or permits on environmental protection pertinent to the Project

3.1.2. Due to the multi-contract nature of the Project, the status of permits and/or licences under the individual contract(s) are presented as below:

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

3.1.3. Summary of the current status on licences and/or permits on environmental protection pertinent and submission under FEP-01/356/2009 for contract no. HY/2009/11 are shown in *Table 3.2* and *Table 3.3*.

Table 3.2	Cumulative Summary of Valid Licences and Permits under Contract no.
	HY/2009/11

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-01/356/2009	18 Feb 2010	N/A	Valid
Notification of Works Under APCO	314911	9 Mar 2010	N/A	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0119-10	17 Feb 2010	22 Feb 2010 to 22 Aug 2010	Superseded

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
	GW-RS0371-10	7 May 2010	10 May 2010 to 31 Oct 2010	Valid (Replaced CNP no. GW-RS0119- 10)
	GW-RS0437-10	20 May 2010	28 May 2010 to 27 Nov 2010	Superseded
	GW-RS0534-10	22 Jun 2010	29 Jun 2010 to 28 Dec 2010	Valid (Replaced CNP no. GW-RS0437- 10)
Billing Account under Waste Disposal Ordinance	7010037	13 Jan 2010	N/A	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/10-067	10 Mar 2010	10 Mar 2010 to 9 Sep 2010	Valid
Dumping Permit (Type 1 – Open Sea Disposal (Dedicate Sites) &	EP/MD/11-014	4 Jun 2010	10 Jun to 9 Jul 2010	Expired
Type 2 – Confined Marine Disposal)	EP/MD/11-033	9 Jul 2010	10 Jul to 9 Aug 2010	Valid

Table 3.3 Summary of submission status under FEP-01/356/2009 Condition

EP Condition	Submission	Date of Submission
Condition 2.6	Management Organization of Main Construction Companies	18 Dec 2009
Condition 2.7	Submission of works schedule and location plan	8 Feb 2010
Condition 2.8	Silt Curtain Deployment Plan	25 Feb 2010
Condition 2.9	Silt Screen Deployment Plan	25 Feb 2010
Condition 2.10	Coral Translocation Plan	20 Nov 2009
Condition 2.16	Noise Management Plan	1 Mar 2010
Condition 2.17	Landscape Plan	12 May 2010

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at</u> <u>HKCEC</u>

3.1.4. Summary of the current status on licences and/or permits on environmental protection pertinent and submission under FEP-02/356/2009 for contract no. HK/2009/01 are shown in *Table 3.4* and *Table 3.5*.

Table 3.4	Cumulative Summary of Valid Licences and Permits under Contract no.
	HK/2009/01

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-02/356/2009	24 Mar 2010	N/A	Valid
Further Environmental Permit	FEP-02/364/2009	21 Apr 2010	N/A	Valid
Notification of Works Under APCO	313088	6 Jan 2010	N/A	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0313-10	16 Apr 2010	16 Apr 2010 to 14 Sep 2010	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0328-10	22 Apr 2010	22 Apr 2010 to 15 Oct 2010	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0333-10	21 Apr 2010	21 Apr 2010 to 14 Sep 2010	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0336-10	21 Apr 2010	21 Apr 2010 to 14 Sep 2010	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0554-10	25 Jun 2010	28 Jun 2010 to 30 Sep 2010	Valid
Discharge Licence	WT00006220- 2010	18 Mar 2010	31 Mar 2015	Valid
Registration as a Waste Producer	7010069	21 Jan 2010	N/A	Valid
Registration as a Chemical Waste Producer	WPN5213-134- C3585-01	21 Jan 2010	N/A	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/10-060	30 Apr 2010	4 May to 3 Nov 2010	Valid
Dumping Permit (Type 1 – Open Sea Disposal (Dedicate Sites) &	EP/MD/11-010	28 May 2010	1 Jun to 30 Jun 2010	Expired
Type 2 – Confined Marine Disposal)	EP/MD/11-027	29 Jun 2010	1 Jul to 31 Jul 2010	Valid

Table 3.5	Summary of	submission statu	ıs under FEP	-02/356/2009 Condition
-----------	------------	------------------	--------------	------------------------

EP Condition	Submission	Date of Submission
Condition 2.6	Management Organization of Main Construction Companies	13 Apr 2010
Condition 2.7	Works Schedule and Location Plan	8 Apr 2010
Condition 2.8	Silt Curtain Deployment Plan	19 Apr 2010
Condition 2.9	Silt Screen Deployment Plan	19 Apr 2010
Condition 2.17	Noise Management Plan	23 Apr 2010

EP Condition	Submission	Date of Submission
Condition 2.18	Landscape Plan (Erection of Decorative Screen Hoarding along Construction Site around Hong Kong Exhibition and Convention Centre)	15 May 2010

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> <u>WanChai East</u>

3.1.5. Summary of the current status on licences and/or permits on environmental protection pertinent and submission under FEP-03/356/2009 for contract no. HK/2009/02 are shown in *Table 3.6* and *Table 3.7*.

Table 3.6Cumulative Summary of Valid Licences and Permits under Contract no.HK/2009/02

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-03/356/2009	24 Mar 2010	N/A	Valid
	FEP-01/364/2009	24 Mar 2010	N/A	Valid
Notification of Works Under APCO	313962	2 Feb 2010	N/A	Valid
Construction Noise Permit (CNP) for piling equipment	PP-RS0016-10	14 Apr 2010	1 Jun 2010 to 30 Nov 2010	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0132-10	22 Feb 2010	01 Apr to 30 Sep 2010	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0325-10	16 Apr 2010	30 Apr to 31 Jul 2010	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0327-10	16 Apr 2010	30 Apr to 30 Sep 2010	Valid
	WT00006249- 2010	22 Mar 2010	31 Mar 2015	Valid
Discharge Licence	WT00006436- 2010	15 Apr 2010	30 Apr 2015	Valid
	WT00006673- 2010	14 May 2010	31 Mar 2015	Valid
	WT00006757- 2010	28 May 2010	31 May 2015	Valid
Billing Account under Waste Disposal Ordinance	7010255	10 Feb 2010	N/A	Valid
Registration as Chemical Waste Producer	WPN5213-135- C3593-01	10 Mar 2010	N/A	Valid

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/10-069	6 May 2010	6 May to 5 Nov 2010	Valid
Dumping Permit (Type 1 – Open Sea Disposal (Dedicate Sites) &	EP/MD/11-013	4 June 2010	6 June to 5 Jul 2010	Expired
Type 2 – Confined Marine disposal)	EP/MD/11-035	6 July 2010	6 July to 5 Aug 2010	Valid

Table 3.7 Summary of submission status under FEP-03/356/2009 Condition

EP Condition	Submission	Date of Submission
Condition 2.6	Management Organization of Main Construction Companies	10 April 2010
Condition 2.7	Works Schedule and Location Plans	8 April 2010
		25 May 2010
		20 April 2010
Condition 2.8	Silt Curtain Deployment Plan	25 May 2010
		14 June 2010
Condition 2.9	Silt Screen Deployment Plan	21 April 2010
Condition 2.17	Noise Management Plan	6 May 2010
Condition 2.18	Landscape Plan (Decorative Screen Hoarding)	11 May 2010
	Landscape Plan (Control of Night-time Lighting)	2 June 2010
Figure 1b	Updated General Layout	22 May 2010

3.1.6. Implementation status of the recommended mitigation measures during this reporting period is presented in *Appendix 3.1*.

4. Monitoring Requirements

4.1 Noise Monitoring

NOISE MONITORING STATIONS

4.1.1. The noise monitoring stations for the Project are listed and shown in *Table 4.1* and *Figure* 4.1. <u>Appendix 4.1</u> shows the established Action/Limit Levels for the monitoring works.

Station	Description
M1a	Harbour Road Sports Centre
M2b	Noon Gun Area
M3a	Tung Lo Wan Fire Station
M4a	Causeway Bay Community Centre
M5b	City Garden
M6	HK Baptist Church Henrietta Secondary School

 Table 4.1
 Noise Monitoring Station

4.1.2. Reviewed the past monitoring results and observation at Station M4a, the monitoring location at Causeway Bay Community Centre is facing and closed to the Island Eastern Corridor. Traffic noise is the major noise source obtained in the monitoring that cannot be reflected the fact of the construction noise from the construction site. Victoria Centre (Station ID: M4b) is proposed as alternative noise monitoring station, which is more appropriate and representative as noise monitoring station for monitoring the construction noise arising from the near construction site.

NOISE MONITORING PARAMETERS, FREQUENCY AND DURATION

- 4.1.3. The construction noise level shall be measured in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}). L_{eq (30 minutes)} shall be used as the monitoring parameter for the time period between 0700 and 1900 hours on normal weekdays. For all other time periods, L_{eq (5 minutes)} shall be employed for comparison with the Noise Control Ordinance (NCO) criteria. Supplementary information for data auditing, statistical results such as L10 and L90 shall also be obtained for reference.
- 4.1.4. Noise monitoring shall be carried out at all the designated monitoring stations. The monitoring frequency shall depend on the scale of the construction activities. The following is an initial guide on the regular monitoring frequency for each station on a weekly basis when noise generating activities are underway:
 - one set of measurements between 0700 and 1900 hours on normal weekdays.
- 4.1.5. If construction works are extended to include works during the hours of 1900 0700 as well as public holidays and Sundays, additional weekly impact monitoring shall be carried out

during respective restricted hours periods. Applicable permits under NCO shall be obtained by the Contractor.

MONITORING EQUIPMENT

- 4.1.6. As referred to in the Technical Memorandum [™] issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration level from before and after the noise measurement agree to within 1.0 dB.
- 4.1.7. Noise measurements shall not be made in fog, rain, wind with a steady speed exceeding 5 m/s or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 4.1.8. The sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency before deployment to the site and during each site visit. Measurements may be accepted as valid only if the calibration level from before and after the noise measurement agree to within 1.0 dB.

4.2 Air Monitoring

AIR QUALITY MONITORING STATIONS

4.2.1. The air monitoring stations for the Project are listed and shown in *Table 4.2* and *Figure 4.1*. *Appendix 4.1* shows the established Action/Limit Levels for the monitoring works.

Station ID	Monitoring Location	Description
CMA1b	Oil Street Community Liaison Centre	North Point
CMA2a	Causeway Bay Community Centre	Causeway Bay
СМАЗа	Future CWB site office at Wanchai Waterfront Promenade	Causeway Bay
CMA4a	Society for the Prevention of Cruelty to Animals	Wan Chai
CMA5a	Children Playgrounds opposite to Pedestrian Plaza	Wan Chai
CMA6a	Future AECOM site office at Work Area	Wan Chai

Table 4.2 Air Monitoring Station

AIR MONITORING PARAMETERS, FREQUENCY AND DURATION

4.2.2. One-hour and 24-hour TSP levels should be measured to indicate the impacts of construction dust on air quality. The 24-hour TSP levels shall be measured by following the standard high

volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.

- 4.2.3. All relevant data including temperature, pressure, weather conditions, elapsed-time meter reading for the start and stop of the sampler, identification and weight of the filter paper, and any other local atmospheric factors affecting or affected by site conditions, etc., shall be recorded down in detail.
- 4.2.4. For regular impact monitoring, the sampling frequency of at least once in every six-days, shall be strictly observed at all the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six-days should be undertaken when the highest dust impact occurs.

SAMPLING PROCEDURE AND MONITORING EQUIPMENT

- 4.2.5. High volume samplers (HVSs) in compliance with the following specifications shall be used for carrying out the 1-hour and 24-hour TSP monitoring:
 - 0.6 1.7 m3 per minute adjustable flow range;
 - equipped with a timing / control device with +/- 5 minutes accuracy for 24 hours operation;
 - installed with elapsed-time meter with +/- 2 minutes accuracy for 24 hours operation;
 - capable of providing a minimum exposed area of 406 cm2;
 - flow control accuracy: +/- 2.5% deviation over 24-hour sampling period;
 - equipped with a shelter to protect the filter and sampler;
 - incorporated with an electronic mass flow rate controller or other equivalent devices;
 - equipped with a flow recorder for continuous monitoring;
 - provided with a peaked roof inlet;
 - incorporated with a manometer;
 - able to hold and seal the filter paper to the sampler housing at horizontal position;
 - easily changeable filter; and
 - capable of operating continuously for a 24-hour period.
- 4.2.6. Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at bi-monthly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually. The concern parties such as IEC shall properly document the calibration data for future reference. All the data should be converted into standard temperature and pressure condition.

LABORATORY MEASUREMENT / ANALYSIS

4.2.7. A clean laboratory with constant temperature and humidity control, and equipped with necessary measuring and conditioning instruments to handle the dust samples collected, shall be available for sample analysis, and equipment calibration and maintenance. The laboratory should be HOKLAS accredited.

- 4.2.8. Filter paper of size 8" x 10" shall be labeled before sampling. It shall be a clean filter paper with no pinholes, and shall be conditioned in a humidity-controlled chamber for over 24-hours and be pre-weighed before use for the sampling.
- 4.2.9. After sampling, the filter paper loaded with dust shall be kept in a clean and tightly sealed plastic bag. The filter paper shall then be returned to the laboratory for reconditioning in the humidity controlled chamber followed by accurate weighing by an electronic balance with readout down to 0.1 mg. The balance shall be regularly calibrated against a traceable standard.
- 4.2.10. All the collected samples shall be kept in a good condition for 6 months before disposal.

4.3 Water Quality Monitoring

4.3.1. The EIA Report has identified that the key water quality impact would be associated with the dredging works during the construction phase. Marine water quality monitoring for dissolved oxygen (DO), suspended solid (SS) and turbidity is therefore recommended to be carried out at selected WSD flushing water intakes. The impact monitoring should be carried out during the proposed dredging works to ensure the compliance with the water quality standards.

Water Quality Monitoring Stations

4.3.2. It is proposed to monitor the water quality at 9 WSD salt water intakes and 12 cooling water intakes along the seafront of the Victoria Harbour. The proposed water quality monitoring stations of the Project are shown in *Table 4.3* and *Figure 4.1*. *Appendix 4.1* shows the established Action/Limit Levels for the monitoring works.

Station Ref.	Location	Easting	Northing
WSD Salt Water	Intake		
WSD7	Kowloon South	834150.0	818300.3
WSD9	Tai Wan	837921.0	818330.0
WSD10	Cha Kwo Ling	841900.9	817700.1
WSD15	Sai Wan Ho	841110.4	816450.1
WSD17	Quarry Bay	839790.3	817032.2
WSD19	Sheung Wan	833415.0	816771.0
WSD20	Kennedy Town	830750.6	816030.3
WSD21	Wan Chai	836220.8	815940.1
RW1	Wan Chai (Reprovision)	836188.8	815911.1
Cooling Water I	ntake		
C1	HKCEC Extension	835885.6	816223.0
C2	Telecom House	835647.9	815864.4
C3	HKCEC Phase I	835836.2	815910.0

 Table 4.3 Marine Water Quality Stations for Water Quality Monitoring

Station Ref.	Location	Easting	Northing
C4e	Wan Chai Tower and Great Eagle Centre (Eastern)	835932.8	815888.2
C4w	Wan Chai Tower and Great Eagle Centre (Western)	835629.8	815889.2
C5e	Sun Hung Kai Centre (Eastern)	836250.1	815932.2
C5w	Sun Hung Kai Centre (Western)	836248.1	815933.2
C6	World Trade Centre	837009.6	815999.3
C7	Windsor House	837193.7	816150.0
C8	City Garden	837970.6	816957.3
C9	Provident Garden	838355.0	817116.6
RC1	Proposed HKAPA Extension	835487.7	815987.7
RC5	Sun Hung Kai Centre (Reprovision)	836291.4	816029.7
RC7	Windsor House (Temporary Dilution)	837245.2	816156.6

WATER QUALITY PARAMETERS

- 4.3.3. Monitoring of dissolved oxygen (DO), turbidity and suspended solids (SS) shall be carried out at WSD flushing water intakes and cooling water intakes. DO and Turbidity are measured insitu while SS is determined in laboratory.
- 4.3.4. In association with the water quality parameters, other relevant data shall also be measured, such as monitoring location/position, time, sampling depth, water temperature, pH, salinity, dissolved oxygen (DO) saturation, weather conditions, sea conditions, tidal stage, and any special phenomena and work underway at the construction site etc.

SAMPLING PROCEDURES AND MONITORING EQUIPMENT

4.3.5. The interval between two sets of monitoring should not be less than 36 hours except where there are exceedances of Action and/or Limit Levels, in which case the monitoring frequency will be increased. *Table 4.4* shows the proposed monitoring frequency and water quality parameters. Duplicate in-situ measurements and water sampling should be carried out in each sampling event. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.

Activities	Monitoring Frequency ¹	Parameters ²								
During the 4-week baseline monitoring period	Three days per week, at mid- flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity								
During marine construction works	Three days per week, at mid- flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity								
After completion of marine construction works	Three days per week, at mid- flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity								

 Table 4.4 Marine Water Quality Monitoring Frequency and Parameters

Notes:

- 1. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.
- 2. Turbidity should be measured in situ whereas SS should be determined by laboratory.

DISSOLVED OXYGEN AND TEMPERATURE MEASURING EQUIPMENT

- 4.3.6. The instrument should be a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and use a DC power source. It should be capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/l and 0-200% saturation
 - a temperature of 0-45 degree Celsius
- 4.3.7. It should have a membrane electrode with automatic temperature compensation complete with a cable. Sufficient stocks of spare electrodes and cables should be available for replacement where necessary. (e.g. YSI model 59 meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).
- 4.3.8. Should salinity compensation not be build-in in the DO equipment, in-situ salinity shall be measured to calibrate the DO equipment prior to each DO measurement.

TURBIDITY MEASUREMENT INSTRUMENT

4.3.9. The instrument should be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment should use a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU and be complete with a cable (e.g. Hach model 2100P or an approved similar instrument).

SAMPLER

4.3.10. A water sampler comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, and can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (e.g. Kahlsico Water Sampler or an approved similar instrument).

SAMPLE CONTAINER AND STORAGE

4.3.11. Water samples for suspended solids measurement should be collected in high-density polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. as soon as possible after collection for analysis.

WATER DEPTH DETECTOR

4.3.12. A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station. This unit can either be handheld or affixed to the bottom of the workboat, if the same vessel is to be used throughout the monitoring programme.

<u>SALINITY</u>

4.3.13. A portable salinometer capable of measuring salinity in the range of 0-40 ppt shall be provided for measuring salinity of the water at each of monitoring location.

MONITORING POSITION EQUIPMENT

4.3.14. A hand-held or boat-fixed type digital Global Positioning System (GPS) with way point bearing indication or other equivalent instrument of similar accuracy shall be provided and used during monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

CALIBRATION OF IN-SITU INSTRUMENTS

- 4.3.15. All in-situ monitoring instrument shall be checked, calibrated and certified by a laboratory accredited under HOKLAS or equivalent before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
- 4.3.16. For the on site calibration of field equipment by the ET, the BS 127:1993, "Guide to Field and on-site test methods for the analysis of waters" should be observed.
- 4.3.17. Sufficient stocks of spare parts should be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 4.3.18. Current calibration certificates of equipments are presented in Appendix 4.2.

LABORATORY MEASUREMENT / ANALYSIS

4.3.19. Analysis of suspended solids has been carried out in a HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd. Water samples of about 1L shall be collected at the monitoring stations for carrying out the laboratory SS determination. The SS determination work shall start within 24 hours after collection of the water samples. The SS determination shall follow APHA 19ed or equivalent methods subject to the approval of IEC and EPD.

5. MONITORING RESULTS

- 5.0.1. The environmental monitoring will be implemented based on the division of works areas of each designed project managed under different contracts with separate FEP applied by individual contractors. Overall layout showing work areas of various contracts, latest status of work commencement and monitoring stations is shown in *Figure 2.1* and *Figure 4.1*. The monitoring results are presented in according to the Individual Contract(s).
- 5.0.2. In the reporting month, the concurrent contracts are as follows:
 - Contract no. HY/2009/11 Central Wan Chai Bypass North Point Reclamation;
 - Contract no. HK/2009/01 Wan Chai Development Phase II Central-Wan Chai Bypass at Hong Kong Convention and Exhibition Centre; and
 - Contract no. HK/2009/02 Wan Chai Development Phase II Central-Wan Chai Bypass at Wan Chai East
- 5.0.3. The environment monitoring schedules for reporting month and coming month are presented in *Appendix 5.1*.

5.1 Noise Monitoring Results

Contract no. HY/2009/11 – Central – Wanchai Bypass, North Point Reclamation

5.1.1. The proposed division of noise monitoring stations for Contract no. HY/2009/11 are summarized in *Table 5.1* below:

Station	Description							
M4a	Causeway Bay Community Centre							
M5b	City Garden							

 Table 5.1
 Noise Monitoring Stations for Contract no.
 HY/2009/11

- 5.1.2. Day time and evening period noise monitoring was conducted at the City Garden and Causeway Bay Community Centre in the reporting month.
- 5.1.3. Noise monitoring results measured in this reporting period are reviewed and summarized. Details of noise monitoring results and graphical presentation can be referred in <u>Appendix</u> <u>5.2</u>.
- 5.1.4. Two limit level exceedances were recorded at M4a on 20 and 27 July 2010 during restricted hours. The traffic noise from Island Eastern Corridor was the major noise source contributed in the exceeded noise levels. The work undertaken was complied with the conditions under valid Construction Noise Permit no. GW-RS0371-10 during the measurement. At such, it was considered as not project related exceedances.

5.1.5. Reviewed the past monitoring results and observation at Station M4a, the monitoring location at Causeway Bay Community Centre is facing and closed to the Island Eastern Corridor. Traffic noise is the major noise source obtained in the monitoring that cannot be reflected the fact of the construction noise from the construction site. Victoria Centre (Station ID: M4b) is proposed as alternative noise monitoring station from August 2010.

Contract no. HK/2009/01 - Wan Chai Development Phase II – Central –Wanchai Bypass at HKCEC and Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at WanChai East

5.1.6. The commencement of marine construction works for Contract no. HK/2009/01 and HK/2009/02 were commenced in July 2010. The proposed division of noise monitoring stations are summarized in *Table 5.2* below.

Table 5.2 Noise Monitoring Station for Contract nos. HK/2009/01 and HK/2009/02

Station	Description				
M1a	Harbour Road Sports Centre				

- 5.1.7. Day time and evening period noise monitoring was conducted at the Harbour Road Sport Centre in the reporting month. Due to the marine works undertaken in evening time from 12 July 2010, noise monitoring during evening time was conducted from 13 July 2010.
- 5.1.8. Three limit level exceedances were recorded during construction works at evening time for Contract no. HK/ 2009/02 in reporting month. Major noise source was contributed from Tonnochy Road and water sport competition at Wan Chai Training Pool. The dredging work was complied with the conditions under valid Construction Noise Permit no. GW-RS0132-10 during the measurement. It is concluded as not related to the Project works. However, baseline noise level at M1 is 60.1 dB(A) which is needed to be reviewed.

5.2 Air Monitoring Results

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

- 5.2.1. The major construction activities of Contract no. HY/2009/11 was dredging works in the reporting month. No major dust impact is anticipated to be caused by the dredging works. Therefore, no air monitoring was conducted in the reporting month.
- 5.2.2. Air monitoring will be commenced from the filling work for Contract no. HY/2009/11. The proposed division of air monitoring stations are summarized in *Table 5.3* below.

Station	Description					
CMA1b	Oil Street Community Liaison Centre					
CMA2a	Causeway Bay Community Centre					

 Table 5.3
 Air Monitoring Stations for Contract no. HY/2009/11

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at</u> <u>HKCEC</u>

5.2.3. Air monitoring will be commenced from the filling work for Contract no. HK/2009/01. The proposed division of air monitoring stations are summarized in *Table 5.4* below.

 Table 5.4
 Air Monitoring Stations for Contract no. HK/2009/01

Station	Description						
CMA5a	Children Playgrounds opposite to Pedestrian Plaza						
CMA6a	Future AECOM site office at Work Area 1						

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> WanChai East

5.2.4. Air monitoring will be commenced from the filling work for Contract no. HK/2009/02. The proposed division of air monitoring stations are summarized in *Table 5.5* below.

Table 5.5 Air Monitoring Station for Contract no. HK/2009/02

Station	Description
CMA4a	Society for the Prevention of Cruelty to Animals

5.3 Water Monitoring Results

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

5.3.1. The proposed division of water monitoring stations for Contract no. HY/2009/11 are summarized in *Table 5.6* below:

 Table 5.6
 Water Monitoring Stations for Contract no. HY/2009/11

Station Ref.	Location	Easting	Northing						
WSD Salt Water Intake									
WSD9	Tai Wan	837921.0	818330.0						
WSD10	Cha Kwo Ling	841900.9	817700.1						
WSD15	Sai Wan Ho	841110.4	816450.1						
WSD17	Quarry Bay	839790.3	817032.2						
Cooling Water Inta	ke								
C8	City Garden	837970.6	816957.3						
C9	Provident Garden	838355.0	817116.6						

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at</u> <u>HKCEC</u>

5.3.2. Due to the commencement of dredging work for Contact no. HK/2009/02, water monitoring stations for Contract no. HK/2009/01 were commenced on 8 July 2010. Installations of silt

screen and silt curtain were completed in the reporting month. The proposed division of water monitoring stations are summarized in *Table 5.7* below.

Station Ref.	Location	Easting	Northing						
WSD Salt Water Intake									
WSD7	Kowloon South	834150.0	818300.3						
WSD19	Sheung Wan	833415.0	816771.0						
WSD20	Kennedy Town	830750.6 816030.3							
Cooling Water Inta	ke								
C1	HKCEC Extension	835885.6	816223.0						
C2	Telecom House	835647.9	815864.4						
C3	HKCEC Phase I	835836.2	815910.0						
C4e	Wan Chai Tower and Great Eagle Centre (Eastern)	835932.8	815888.2						
C4w	Wan Chai Tower and Great Eagle Centre (Western)	835629.8	815889.2						

 Table 5.7
 Water Monitoring Stations for Contract no. HK/2009/01

Remarks:

The water monitoring stations for the dredging works under Contract No. HK/2009/01 should also include WSD9, WSD17, WSD 21 and C5 if water quality monitoring at these locations have not been carried out by others. Similarly, the water monitoring stations for the dredging works under Contract No. HK/2009/02 should also include WSD7, WSD9, WSD17, WSD 19, C1, C2, C3 and C4 if water quality monitoring at these locations have not been carried out by others.

<u>Contract no. HK/2009/02 - Wan Chai Development Wan Chai Development Phase II –</u> <u>Central – Wan Chai Bypass at WanChai East</u>

5.3.3. Water monitoring for Contract no. HK/2009/02 was commenced on 8 July 2010. Installations of silt screen and silt curtain were completed in the reporting month. The proposed division of water monitoring stations are summarized in *Table 5.8* below.

	-						
Station Ref.	Location	Easting	Northing				
WSD Salt Water Intake							
WSD21	Wan Chai	836220.8	815940.1				
Cooling Water Intal	ke						
C5e	Sun Hung Kai Centre (Eastern)	836250.1	815932.2				
C5w	Sun Hung Kai Centre (Western)	836248.1	815933.2				
Pomorko:		•	•				

Table 5.8Water Monitoring Stations for Contract no. HK/2009/02

Remarks:

The water monitoring stations for the dredging works under Contract No. HK/2009/01 should also include WSD9, WSD17, WSD 21 and C5 if water quality monitoring at these locations have not been carried out by others. Similarly, the water monitoring stations for the dredging works under Contract No. HK/2009/02 should also include WSD7, WSD9, WSD17, WSD 19,

C1, C2, C3 and C4 if water quality monitoring at these locations have not been carried out by others.

- 5.3.4. The access to WSD7 is needed to via the gates that are locked and under the control of LCSD between 1800hrs and 0800hrs from 10 July 2010. Due to no access permission obtained from LCSD in this reporting month, water monitoring cannot be conducted at WSD7 on 10/7/2010 at mid-flood, 14/7/2010 at mid-flood and mid-ebb, 18/7/2010 at mid-flood and 19/7/2010 at mid-ebb. LCSD has been liaised to request obtaining the access permission in the reporting month.
- 5.3.5. Due to the construction and maintenance works of the silt screen cover at C4e and C4w conducted by Chun Wo & Leader JV on 14/7/2010, no water monitoring was conducted at these stations during the mid-ebb.
- 5.3.6. Due to the amber rainstorm warning on 28 June 2010 mid-ebb and 28 July 2010 mid-flood, strong Wind Signal No. 3 announced on 21/7/2010, no water monitoring was conducted in these days.
- 5.3.7. Water monitoring results measured in this reporting period are reviewed and summarized. Details of water quality monitoring results and graphical presentation can be referred in <u>Appendix 5.3</u>.

				Mid-	flood			Mid-ebb					
	Water Monitoring	D	0	Turk	bidity	s	S	D	0	Turk	bidity	s	S
Contract no.	0	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
HY/2009/11	WSD9	0	2	0	0	0	1	1	3	0	0	0	1
	WSD10	0	2	0	0	2	1	0	5	0	0	1	0
	WSD15	1	1	0	0	1	3	2	4	0	0	1	0
	WSD17	0	1	0	0	0	1	0	5	1	0	0	1
	C8	2	0	1	0	4	2	1	1	0	2	5	3
	С9	1	0	0	0	4	1	2	0	2	0	3	1
HK/2009/01	WSD19	1	1	1	0	0	2	2	2	0	0	0	0
	WSD20	1	1	0	0	0	2	2	1	0	0	1	0
	WSD7	0	1	0	0	0	0	0	3	0	0	0	0
	C1	0	0	0	0	0	0	0	0	0	0	0	0
	C2	0	1	0	0	1	0	3	0	0	0	0	1
	СЗ	1	0	0	0	1	0	3	0	0	0	1	0
	C4e	1	0	0	0	1	0	2	0	0	0	0	0
	C4w	1	0	0	0	0	0	2	0	0	0	1	0
HK/2009/02	C5e	1	0	0	0	2	1	1	0	0	0	1	0
	C5w	1	0	0	0	2	1	0	0	0	0	1	0
	WSD21	0	1	0	0	0	1	1	0	0	0	0	1

Table 5.9 Summary of Water Quality Monitoring Exceedances in Reporting Month

		Mid-flood			Mid-ebb								
Motor Monitoring		DO		Turbidity		SS		DO		Turbidity		SS	
Contract no.	Water Monitoring Station	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
Total		11	11	2	0	18	16	22	24	3	2	15	8

5.4 Waste Monitoring Results

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

5.4.1. Non-inert C&D waste and marine sediment were disposed of in the reporting month. Details of the waste flow table are summarized in *Table 5.10*.

Waste Type	Quantity this month, m ³	Cumulative Quantity- to-Date, m ³	Disposal / Dumping Grounds		
Inert C&D materials disposed	NIL	NIL	N/A		
Inert C&D materials recycled	NIL	NIL	N/A		
Non-inert C&D materials disposed	0	4.72	SENT Landfill		
Non-inert C&D materials recycled	NIL	NIL	N/A		
Chemical waste disposed	N/A	N/A	N/A		
Marine Sediment (Type 1 – Open Sea Disposal)	7,500	70,000	South of Cheung Chau		
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal)	19,500	74,500	East of Sha Chau		

Table 5.10 Details of Waste Disposal for Contract no. HY/2009/11

- 5.4.2. As further checked and reviewed the cumulative quantity of marine sediment (Type 1 Open Sea Disposal (Dedicate Sites) & Type 2 Confined Marine Disposal), the quantity and cumulative quantity in May 2010 shall be 3,000m³ and 46,500m³. Thus, the cumulative quantity is 74,500 in this reporting month.
- 5.4.3. There were marine sediments Type 1 Open Sea Disposal and Type 1 Open Sea Disposal (Dedicate Sites) & Type 2 Confined Marine Disposal marine sediment disposed in the reporting month. The maximum dredging rate in North Point Shoreline Zone is 1,500m³ per day in the reporting month, which is complied with the criteria listed in Table 5.10 of EIA Report Register No. AEIAR-125/2008.

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at HKCEC</u>

5.4.4. Inert and non- inert C&D waste were disposed of for the site preparation works in this reporting month. Details of the waste flow table are summarized in *Table 5.11*.

Waste Type	Quantity this month, m ³	Cumulative Quantity- to-Date, m ³	Disposal / Dumping Grounds	
Inert C&D materials disposed	49.19	49.19	TKO134	
Inert C&D materials recycled	NIL	NIL	N/A	
Non-inert C&D materials disposed	9.04	21.96	SENT Landfill	
Non-inert C&D materials recycled	2.89	2.89	N/A	
Chemical waste disposed	0.29	0.29	N/A	
Marine Sediment (Type 1 – Open Sea Disposal)	4131	4131	South of Cheung Chau	
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal)	NIL	NIL	N/A	

 Table 5.11 Details of Waste Disposal for Contract no. HK/2009/01

- 5.4.5. The Contractor clarified the cumulative quantity shall be 12.92m³ non-inert C&D material disposed in last reporting month. Thus, the sum of cumulative of non-inert C&D material is 21.96m³ in this reporting month.
- 5.4.6. There were marine sediments Type 1 Open Sea Disposal disposed in the reporting month. The maximum dredging rate is 7,00m³ per day in the reporting month, which is complied with the criteria listed in Table 5.10 of EIA Report Register No. AEIAR-125/2008.

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> <u>WanChai East</u>

5.4.7. Inert and non- inert C&D waste were disposed of for the site preparation works in this reporting month. Details of the waste flow table are summarized in *Table 5.12.*

Waste Type	Quantity this month, m ³	Cumulative Quantity- to-Date, m ³	Disposal / Dumping Grounds
Inert C&D materials disposed	465	650	TKO137
Inert C&D materials recycled	NIL	NIL	N/A
Non-inert C&D materials disposed	1	24	SENT Landfill

 Table 5.12 Details of Waste Disposal for Contract no. HK/2009/02

Waste Type	Quantity this month, m ³	Cumulative Quantity- to-Date, m ³	Disposal / Dumping Grounds
Non-inert C&D materials recycled	NIL	NIL	N/A
Chemical waste disposed	NIL	NIL	N/A
Marine Sediment (Type 1 – Open Sea Disposal)	NIL	NIL	N/A
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal)	19458	19458	East of Sha Chau

5.4.8. There were marine sediments Type 1 – Open Sea Disposal disposed in the reporting month. The maximum dredging rate is 1,490m³ per day in the reporting month, which is complied with the criteria listed in Table 5.10 of EIA Report Register No. AEIAR-125/2008.

6. Compliance Audit

6.0.1. The Event Action Plan for construction noise, air quality and water quality are presented in *Appendix 6.1*.

6.1 Noise Monitoring

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

6.1.1. Two limit level exceedances were recorded at M4a on 20 and 27 July 2010 during restricted hours. The traffic noise from Island Eastern Corridor was the major noise source contributed in the exceeded noise levels. The work undertaken was complied with the conditions under valid Construction Noise Permit no. GW-RS0371-10 during the measurement. At such, it was considered as not project related exceedances.

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at WanChai East</u>

6.1.2. Three limit level exceedances during evening time were recorded in reporting month. Major noise source was contributed from Tonnochy Road and water sport competition at Wan Chai Training Pool. The dredging work was complied with the conditions under valid Construction Noise Permit no. GW-RS0132-10 during the measurement. It is concluded as not related to the Project works. However, baseline noise level at M1 is 60.1dB(A) which is needed to be reviewed in next reporting month.

6.2 Air Monitoring

6.2.1. No air monitoring was conducted in this reporting period.

6.3 Water Quality Monitoring

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

6.3.1. Rerferring to the exceedances recorded in *Table 5.9*, the action and limit level exceedances of turbidity and suspended solid were recorded at C8 and C9. The turbid water quality was observed inside the silt screen while no abnormal observation during the onsite monitoring. Investigation was found that the numerous unknown outfalls from the nearby coastal area enclosed by the silt screen at C8 and C9. It causes the potential for accumulation and trapping of pollutants behind the silt screens and may lead to potential water quality deterioration at the seawater intake points. It was concluded as natural variation and no projected related exceedances.

- 6.3.2. Occasional SS exceedances were occurred at Stations WSD9, WSD10, WSD15 and WSD17. Investigation was found that the exceedances were due to the natural variation and not related to the Project works.
- 6.3.3. Frequent action and limit level exceedances of dissolved oxygen were recorded at Stations WSD9, WSD10, WSD15, WSD17, C8 and C9 stations in the reporting month. The data were compared and reviewed that dissolved oxygen concentrations at the nearest and furthest monitoring stations to the marine works area were low. It was concluded as natural variation and no projected related exceedances. It was concluded that the exceedances were due to natural variation and not related to the Project works.

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at HKCEC</u>

6.3.4. Since the dredging works was commencement on 23 July 2010, the exceedances recorded at the monitoring stations relevant to Contract no. HK/2009/01 were considered not related to the Project works. No exceedance was recorded after the commencement of the dredging work.

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> <u>WanChai East</u>

- 6.3.5. Action and limit level exceedances of dissolved oxygen were recorded at Stations C5e, C5w and WSD21 in the reporting month. The data were compared and reviewed that dissolved oxygen concentrations at the nearest and furthest monitoring stations to the marine works area were low. It was concluded that the exceedances were due to natural variation and not related to the Project works.
- 6.3.6. Investigation for the SS and dissolved oxygen exceedances recorded at relevant monitoring found that the condition of silt screen and silt curtain are in proper condition and daily dredging rate are complied with EP condition, the exceedances were considered as natural variation and not related to the Project.
- 6.3.7. Summary for notification of exceedances can be referred to *Appendix 6.2*.

6.4 Review of the Reasons for and the Implications of Non-compliance

- 6.4.1. There was no non-compliance from the site audits in the reporting period. The observations and recommendations made in each individual site audit session were presented in Section 8.
- 6.4.2. No project-related non-compliance from monitoring was recorded in the reporting month.

6.5 Summary of action taken in the event of and follow-up on non-compliance

6.5.1. There was no particular action taken since no project-related non-compliance was recorded from the site audits and environmental monitoring in the reporting period.

am

7. Cumulative Construction Impact due to the Concurrent Projects

- 7.0.1. According to Condition 3.4 of the EP-356/2009, this section addresses the relevant cumulative construction impact due to the concurrent activities of the current projects including the Central Reclamation Phase III, Central-Wan Chai Baypass and Island Eastern Corridor Link projects.
- 7.0.2. From the Monthly EM&A report (June 2010) of Central Reclamation Phase III (CRIII) the key works in July 2010 are as follows:
 - Type A filling in FRAW and FRAE above +2.5mPD
 - General filling works above +2.5mPD in IRAE
 - Surcharging in FRAW and FRAE
 - Construction of cantilever slab at caisson
 - Pile cap construction at Culvert F
 - Sheet piling, excavation, structural works and backfilling for Culvert F
 - Construction of storm and foul drainage and gullies in hinterlands for Road P2, Road D7, and Road D9
 - Construction of watermains at Road D7
 - Road P2 Underpass ramp structures
 - Precasting for retaining wall (offsite)
 - Installation of cooling water mains for Tamar Development Project
 - Installation of cooling mains discharge pipes in FRAE
 - Diaphragm wall and barrettes for CWB Works
 - Excavation to formation level at CWB works
 - Construction of CWB structure
 - Disposal of material off-site to Government fill banks
- 7.0.3. According to the construction programme of Central-Wan Chai Baypass and Island Eastern Corridor Link projects, the major construction activity under Wan Chai Development Phase II was the dredging works at North Point Reclamation Stage 1(NPR1), Wan Chai Reclamation Stage 1(WCR1) and Hong Kong Convention and Exhibition Centre Stage 1(HKCEC1) in the reporting month. The major environmental impact was water quality impact at North Point and Wan Chai. No major construction activities were undertaken in the Central-Wan Chai Baypass and Island Eastern Corridor Link projects.
- 7.0.4. The major environmental impacts generated from the Central Reclamation Phase III were located along the coastline of Central and Admiralty while dredging works at NPR1, WCR1 and HKCEC1 were in operation in this reporting month. The dredging works was just commenced at WCR1 and HKCEC1 in this reporting month. Beside, water quality mitigation measures were properly in place for the dredging works in this reporting month. No project related exceedance were recorded. Thus, it is evaluated that the cumulative construction impact from the concurrent projects including Wan Chai Development Phase II and Central Reclamation Phase III was insignificant.

8. Environmental Site Audit

- 8.0.1. During this reporting month, weekly environmental site audits were conducted for Contracts no. HY/2009/11, HK/2009/01 and HK/2009/02. No non-conformance was identified during the site audits.
- 8.0.2. Five site inspections for Contract no. HY/2009/11 were carried out during this reporting period. The results of these inspections and outcomes are summarized in *Table 8.1*.

ltem	Date	Observations	Action taken by Contractor	
100629_01	29-Jun-10	screen at Quarry Bay (view from the boat) due to dislocation of the floating material.	Keep regular maintaining the silt screen.	Complete as observed on 6-Jul- 10
100629_02	29-Jun-10	A gap was found at the centre of silt screen at City garden (view from the boat) due to dislocation of the floating material.		Complete as observed on 6-Jul- 10
100629_03	29-Jun-10	A gap was found at the centre of connection of silt curtain for dredging works (RHS, view from the dredging boat and the barge), dislocation of silt curtain (LHS of the square silt screen, view from the dredging boat).	Keep regular maintaining the silt screen.	Complete as observed on 6-Jul- 10
100706_01	6-Jul-10	It is recommenced the Grab can be held for a while before transport the soil to the barge, the slurry will be concentrated in the area of silt curtain.	Review the practices and procedure of the dredging works	Complete as observed on 14-Jul- 10
100714_01	14-Jul-10	Silt screen at C8 and C9 are needed to maintain and repair as soon as possible.	Keep regular maintaining the silt screen.	Complete as observed on 20-Jul- 10
100714_02	14-Jul-10	Outer layer of silt curtain should be repaired properly and maintained in a good condition.	Keep regular maintaining the silt curtain.	Complete as observed on 20-Jul- 10
100714_03	14-Jul-10	It is reminded to inspect and maintain the silt screen at WSD17 in a good condition.	Maintenance works was conducted as observed on 27 Jul 2010.	Complete as observed on 2-Aug- 10
100720_01	20-Jul-10	A gap was found at the RHS of the joint silt screen at Sai Wan Ho (view from the boat). It's recommended the contractor to maintain it.	Keep regular maintaining the silt screen.	Complete as observed on 27-Jul- 10
100720_02	20-Jul-10	Two gaps were found at both side of the Joint of silt screen at Quarry Bay, RHS floatation was found damaged (view from the boat). It's recommended the contractor to maintain them.	observed on 14 and 20 July 2010.	Completion as observed on 27-Jul- 10
100727_01	27-Jul-10	It's recommenced the contractor to clean the refuse inside the silt screen at Quarry Bay.	Keep regular maintaining the silt screen.	Complete as observed on 2-Aug- 10

 Table 8.1
 Summary of Environmental Inspections for Contract no. HY/2009/11

8.0.3. Five site inspections for Contract no. HK/2009/01 were carried out during this reporting period. The results of these inspections and outcomes are summarized in Table 8.2.

ltem	Date	Observations	Action taken by Contractor	Outcome
100630_01	30-Jun-10	Concrete debris was placed at parapet near Expo-drive. Contractor was reminded to cover it with tarpaulin sheet.	Cleared up the concrete debris.	Complete as observed on 7-Jul- 10
100630_02	30-Jun-10	It is reminded to provide sedimentation tanks at the site area.	Sedimentation tanks were placed in the site area.	Complete as observed on 7-Jul- 10
100707_01	7-Jul-10	Dust should be cleared frequently to ensure that dust will not be carried by the track.	Regular maintain the site tidiness.	Complete as observed on 14-Ju 10
100707_02	7-Jul-10	C & D waste should be separately collected in a certain area. It's reminded the contractor to reuse the waste.	Designed area is provided for the sorting material	Complete as observed on 14-Jul 10
100707_03	7-Jul-10	Drainage system and proper settlement tank should be proposed on the construction site.	Review the drainage system	Complete as observed on 14-Ju 10
100707_04	7-Jul-10	Protection measures should be implemented for tree protection.	Relocate the material away from the tree	Complete as observed on 14-Ju 10
100707_05	7-Jul-10	Chemical waste container should be covered.	Covered the chemical container	Complete as observed on 14-Ju 10
100707_06	7-Jul-10	Silt screen should be fixed tightly to ensure its function is properly.	Keep regular maintaining the silt screen.	Complete as observed on 14-Ju 10
100707_07	7-Jul-10	It's recommended that the status of the silt curtain should be checked daily and maintenance should be conducted immediately.	Keep regular maintaining the silt curtain.	Outstanding as observed on 14-Jul 10
100714_01	14-Jul-10	The edge of the silt curtains were found loosen. It's needed to	Keep regular maintaining the silt curtain.	Complete as observed on 22-Jul 10
100722_01	22-Jul-10	Skip was found uncovered. It's recommenced the Contractor to cover it after disposal	Cover has been provided.	Complete as observed on 26-Ju 10
100726_01	26-Jul-10	Silt curtain near the western bridge was observed floating. Contractor shall inspect and maintain the condition silt curtain in proper condition.	Keep regular maintaining the silt curtain.	Complete as observed on 3-aug 10
100726_02	26-Jul-10	Stockpile was placed closed to the hoarding at the site near HKCEC. Sand bags shall be provided along the hoarding.		Complete as observed on 3-Aug 10
100726_03	26-Jul-10	Mini-excavator located the site near HKCEC shall be regular checked and maintained to avoid oil leakage.	Regular check and main the plant and equipment	Complete as observed on 3-Aug 10

8.0.4. Five site inspections for Contract no. HK/2009/02 were carried out during this reporting period. The results of these inspections and outcomes are summarized in *Table 8.3*.

Item	Data	Observations	Action taken by	Outcome
	Date		Contractor	
100702_01	2-Jul-10	Chemical containers and oil drums should be placed under drip tray.	drip tray	Complete as observed on 8-Jul- 10
100702_02	2-Jul-10	It is necessary to review all sedimentation tanks to ensure the function of the tanks properly.	Reviewed the function of sedimentation tank	Complete as observed on 8-Jul- 10
100702_03	2-Jul-10	pumping station.	Reviewed and erected the proper temporary noise barrier	Complete as observed on 8-Jul- 10
100702_04	2-Jul-10	Temporary drainage system and wheel washing system at WSD water pumping station should be reviewed as soon as possible.	Reviewed the drainage system	Complete as observed on 8-Jul- 10
100708_01	8-Jul-10	Worn sand bags along the seawall are needed to replace.	Replaced new sand bags	observed on 15-Jul- 10
100708_02	8-Jul-10	Floating refuse is needed to clear regularly.	Keep clearance of floating refuse	Complete as observed on 15-Jul- 10
100708_03	8-Jul-10	Drip tray should be provided under the oil drum at WSD water pumping station.		Complete as observed on 15-Jul- 10
100715_01	15-Jul-10	Chemical waste storage cabinet should be locked up.	Keep locking the chemical storage cabinet.	Complete as observed on 22-Jul- 10
100722_01	22-Jul-10	Recycle bin covers shall be fully sealed.	Covered the recycle bin	Complete as observed on 26-Jul- 10
100722_02	22-Jul-10	Skip should be covered after use.	Keep covered the skip	Complete as observed on 26-Jul- 10
100722_03	22-Jul-10	Sedimentation tank should be enhanced.	Follow-up action is needed.	Outstanding as observed on 26- Jul-10
100726_01	26-Jul-10	Catch pit located at WSD water pumping station shall be blocked to avoid the surface runoff discharge offsite.	Blockage the catch pit	Complete as observed on 5-Aug- 10
100726_02	26-Jul-10	Sedimentation tank located at the end of pet garden shall be improved the capacity and effectiveness as soon as possible.	Follow-up action is needed.	No inspect on 5- Aug-10. Follow-up action is needed in the next inspection.
100726_03	26-Jul-10	Silt curtain shall be closed during the dredging works undertaken.	Follow-up action is needed.	No dredging works undertaken on 5- Aug-10. Follow-up action is needed in the next inspection
100726_04	26-Jul-10	Drainage system at WSD water pumping station shall be improved to ensure no runoff discharge without proper treatment.	Improved the drainage system	Complete as observed on 5-Aug- 10

Table 8.3 Summary of Environmental Inspections for Contract no. HK/2009/02

am

9. COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION

- 9.0.1. No complaint was received in the reporting month. In the last reporting month, the complaint log no. 100615 recorded on 15 June 2010 was subsequently considered as an enquiry. RSS clarified that the above issue was logged as an enquiry rather than a complaint in Highway Department's record. The details of cumulative complaint log and updated summary of complaints are presented in *Appendix 9.1*.
- 9.0.2. Cumulative statistic on complaints and successful prosecutions are summarized in *Table 9.1* and *Table 9.2* respectively.

Reporting Period	No. of Complaints	
July 2010	0	
Project-to-Date	3	

Table 9.1 Cumulative Statistics on Complaints

Table 9.2 Cumulative Statistics on Successful Prosecution

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this month (Offence Date)	Cumulative No. Project-to-Date
Air	-	0	0
Noise	-	0	0
Water	-	0	0
Waste	-	0	0
Total	-	0	0

10. CONCLUSION

- 10.0.1. The EM&A programme was carried out in accordance with the EM&A Manual requirements, minor alterations to the programme proposed were made in response to changing circumstances.
- 10.0.2. The scheduled construction activities and the recommended mitigation measures for the coming month are listed in *Table 10.1*.

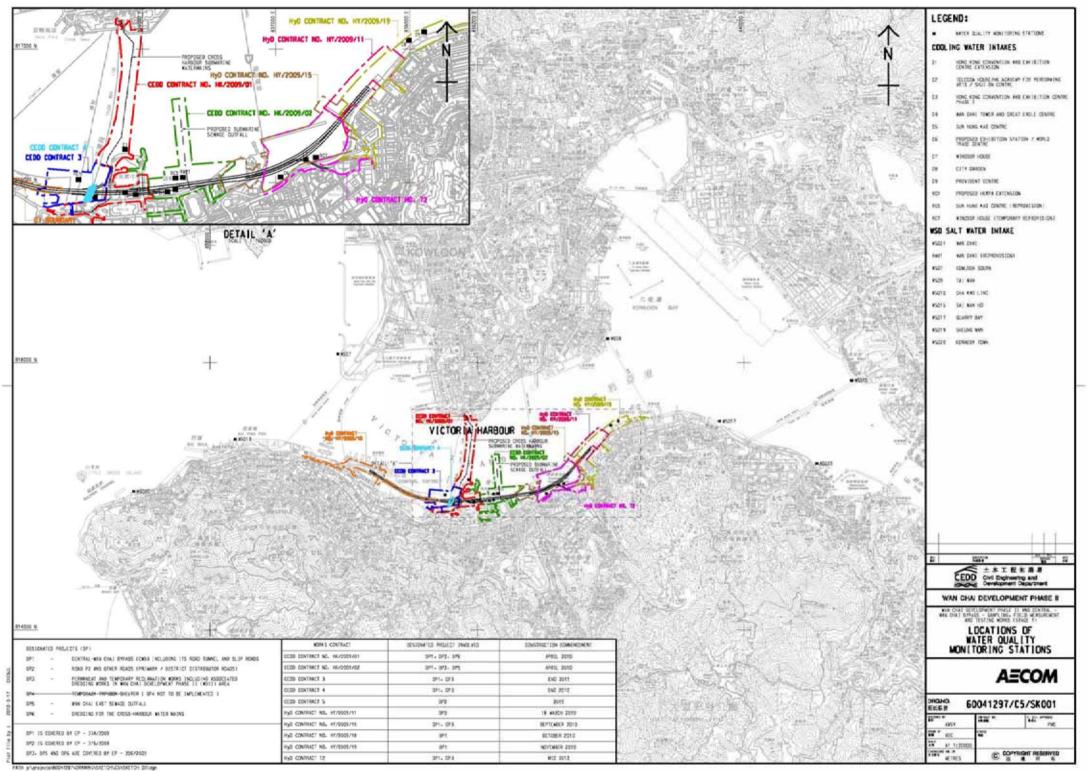
Contract No.	Key Construction Works	Recommended Mitigation Measures
HY/2009/11	Construction of Rock Mound,	To avoid concurrent noisy operation
	Floating Out of Caisson Seawall,	• To locate the plant and equipments
	Installation of Caisson Seawall,	far away to the noise sensitive receivers
	Dredging works,	Daily visual inspection of silt screen
	Laying of geo-textile,	and silt curtain to ensure its operation properly
	Drainage Works and	 Daily clearance of floating debris
	Seawall Block Installation	behind the silt screen

 Table 10.1 Construction Activities and Recommended Mitigation Measures in Coming Reporting Month

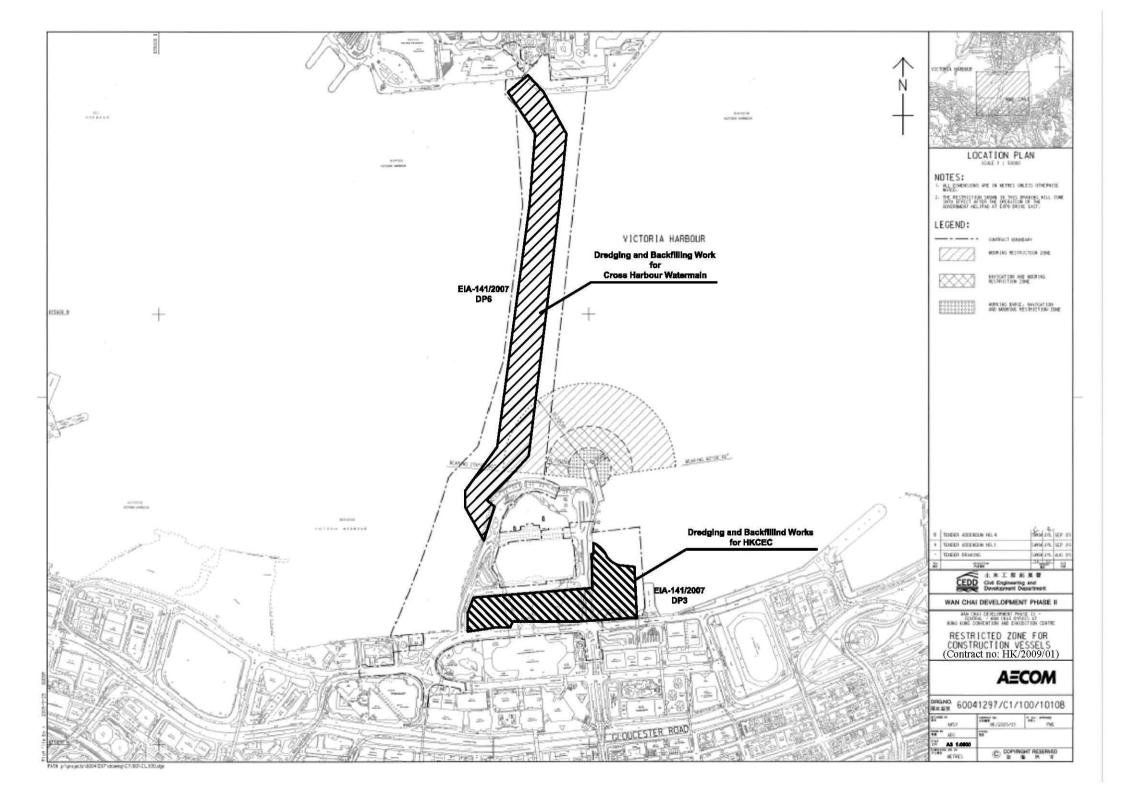
10.0.3. In the coming month, the Contracts HK/2009/01 and HK/2009/02 are anticipated to be commenced on site are summarized in *Table 10.2*. The construction programmes of individual contracts are provided in <u>Appendix 10.1</u>.

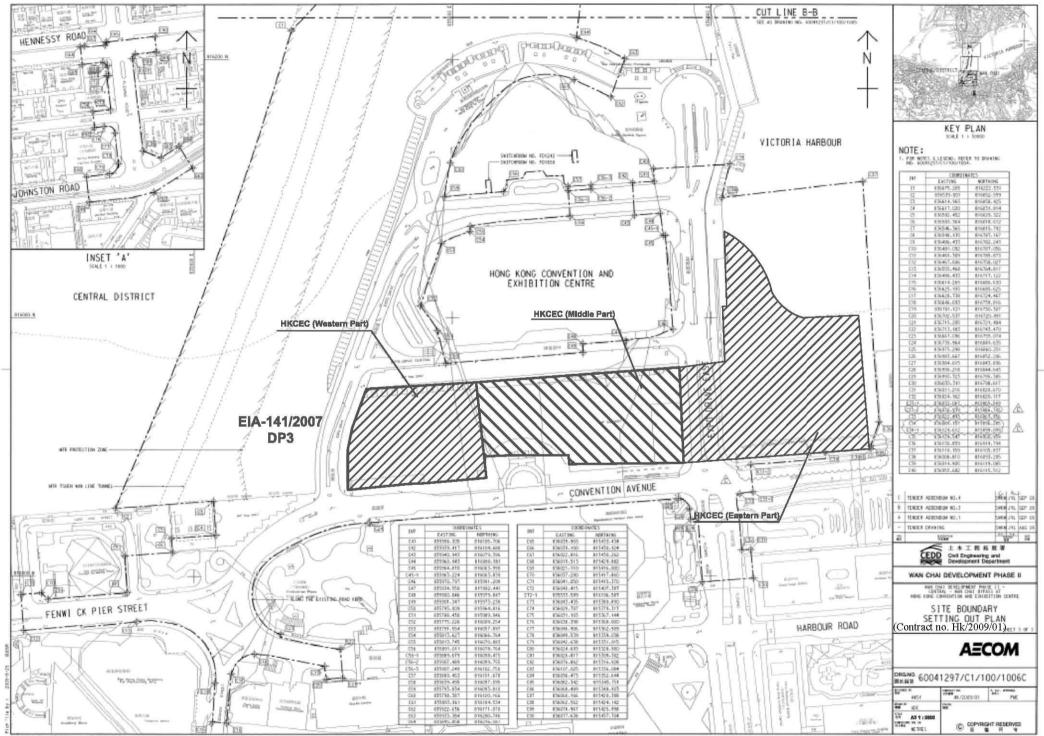
Table 10.2 Summary of Key Construction Activities of Individual Contract(s) to be
commenced in Coming Reporting Month

Contract No.	Key Construction Activities	Recommended Mitigation Measures
HK/2009/01	 WA2 interim Engineer's Principal Office; Sewerage pipelines for interim Engineer's Principal Office at works area WA1 & WA2; Tree transplantation at Tsim Sha Tsui and Wan Chai HKCEC VIP Drop-off Area; Vibrocore for Marine G.I. near Wan Chai West Pier shall be completed on early Aug 10; Dredging works at Victoria Habour; Fabrication of submarine pipelines and on-land section pipelines shall be completed and first batch of delivery; Silt screen installation for the existing cooling water intakes; Trial pit Stage 1 at Zone A1 along Convention Avenue shall be 	 To conform the installation and setting as in the silt screen deployment plan Frequency spray water on the dry dusty road and on the surface of concrete breaking To cover the dusty material or stockpile by impervious sheet To space out noisy equipment and position as far as possible from sensitive receiver. To well maintain the mechanical equipments / machineries to avoid abnormal noise nuisance. Machines and plant that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum

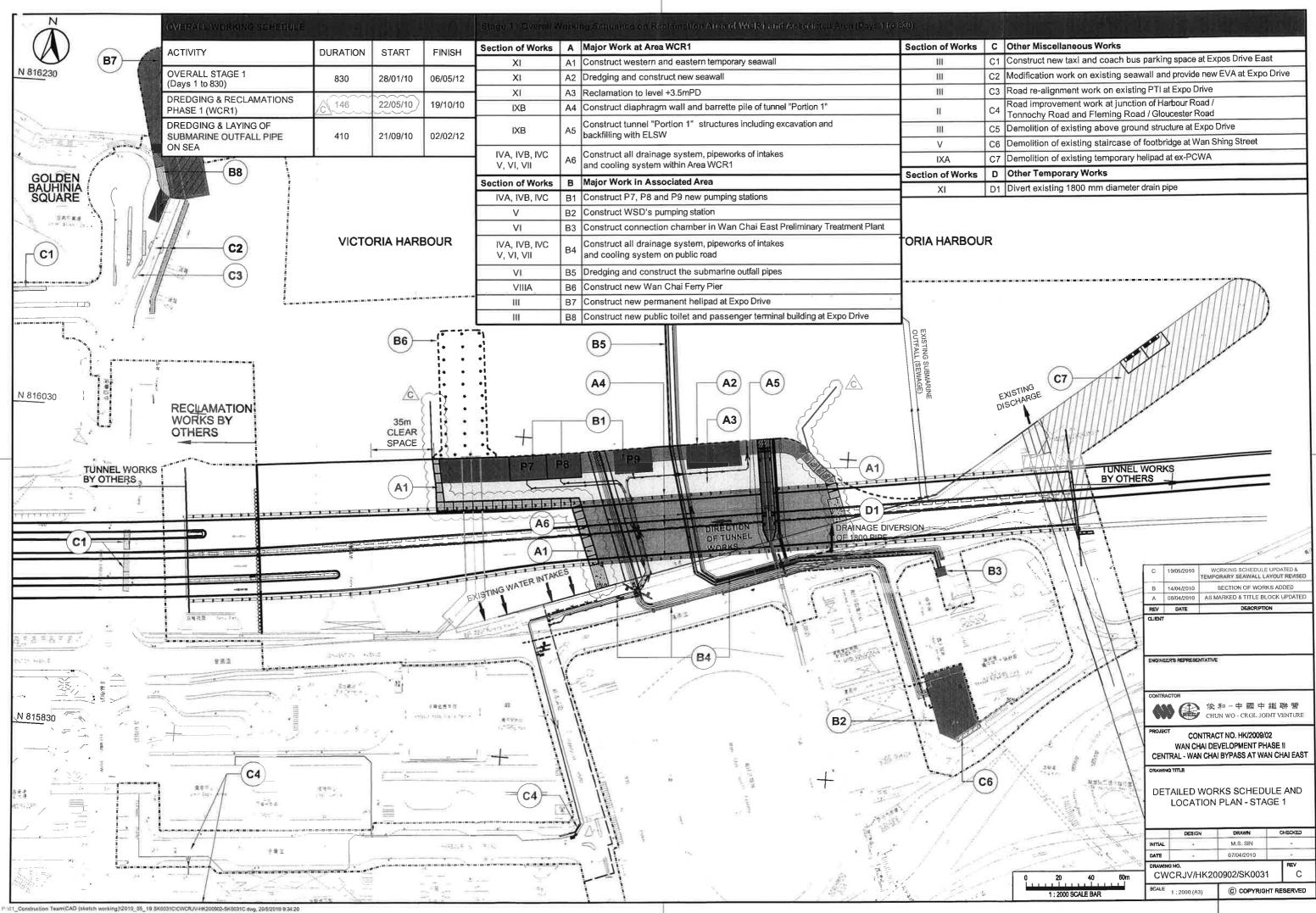


Contract No.	Key Construction Activities	Recommended Mitigation Measures
	completed and trial pit for other stages at the Convention Avenue;	
	 Modification of existing combine service inspection chamber at HKCEC (Area B1); 	
	 Trial pit at Zone B1-1 near HKCEC VIP Drop-off area shall be completed and pipe laying works; 	
	 Routine maintenance and clearance works for silt screens; 	
	 Temporary piled staging for pipe pile P1; and 	
	 Installation of trial bored pile staging platform 	
HK/2009/02	Site Clearance;Hoarding Erection;	To cover the dusty material or stockpile by impervious sheet;
	 Pre-bored H-piles, ELS and excavation at WSD Pumping Station; 	• Frequency spray water on the dry dusty road and on the surface of
	 Construction of Salt Water Intake Culvert at Pet Garden; 	concrete breaking
	 Road Modification Works; 	To well maintain the mechanical equipments / machineries to avoid
	 Construction of Cooling Mains Along Public Road; 	abnormal noise nuisance and dark smoke emission
	 Construction of Temporary Seawall; Dredging for WCR 1; Trop Tropplanting; and 	To conform the installation and setting as in the silt screen and silt curtain deployment plan
	 Tree Transplanting; and Equipments Procurement for TKO 137 	Movable noise barrier shall be deployed for demolition works




Figure 2.1

Project Layout



FATH prigrations/600482875/training/CATE/PCL.0085.494

С	Other Miscellaneous Works
C1	Construct new taxi and coach bus parking space at Expos Drive East
C2	Modification work on existing seawall and provide new EVA at Expo Drive
C3	Road re-alignment work on existing PTI at Expo Drive
C4	Road improvement work at junction of Harbour Road / Tonnochy Road and Fleming Road / Gloucester Road
C5	Demolition of existing above ground structure at Expo Drive
C6	Demolition of existing staircase of footbridge at Wan Shing Street
C7	Demolition of existing temporary helipad at ex-PCWA
D	Other Temporary Works
D1	Divert existing 1800 mm diameter drain pipe

Figure 2.2

Project Organization Chart

Project Organization Chart

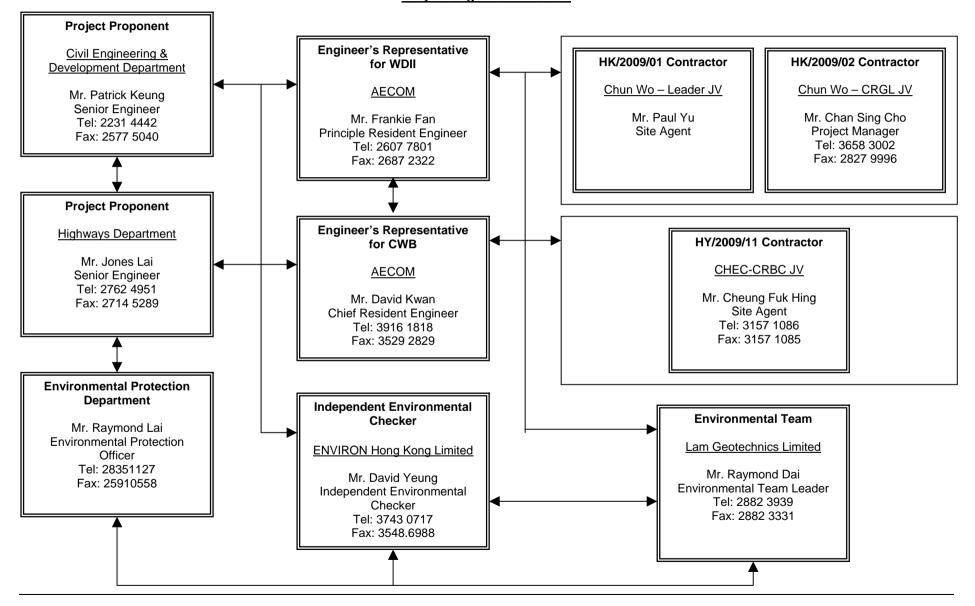
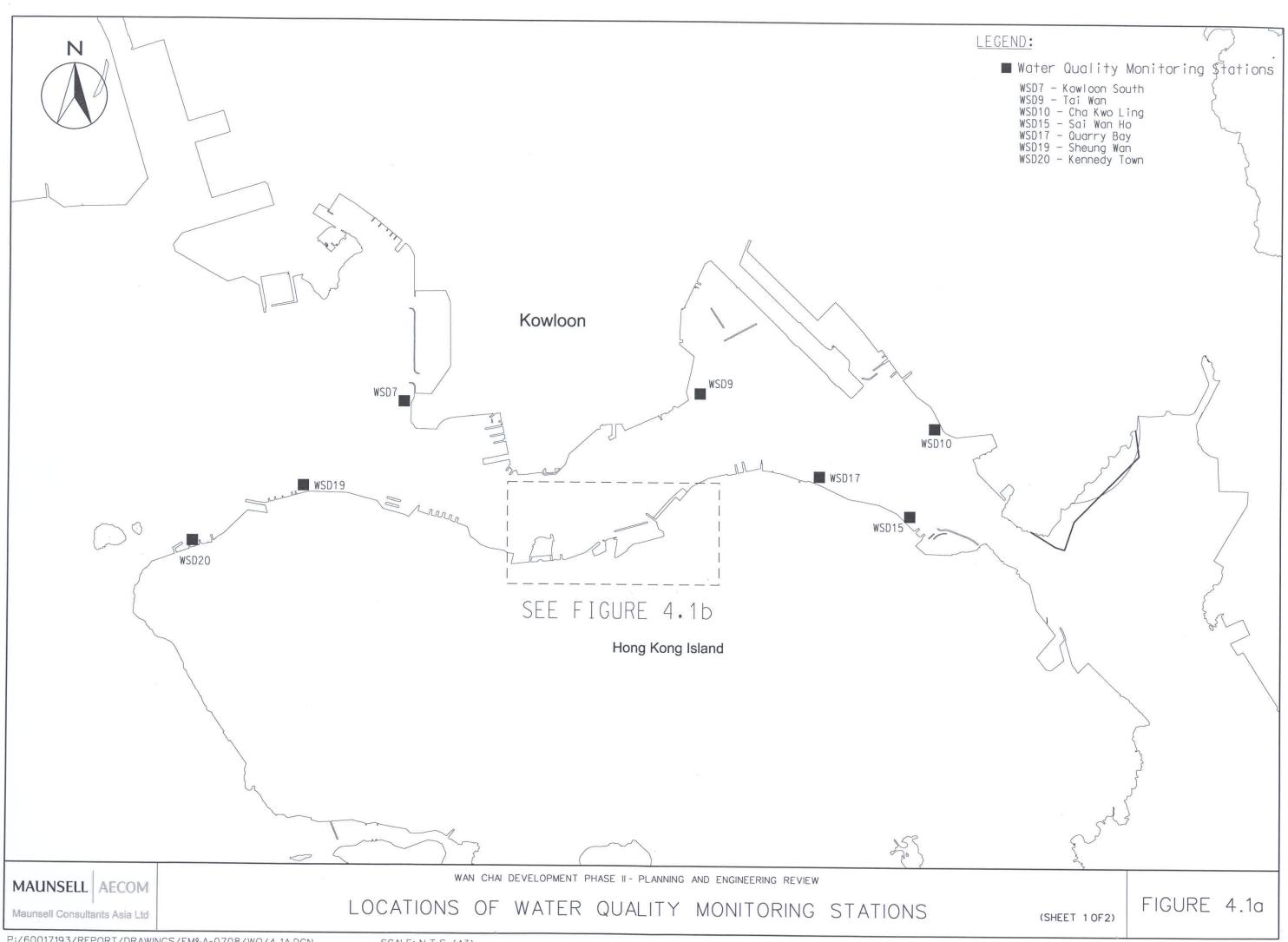
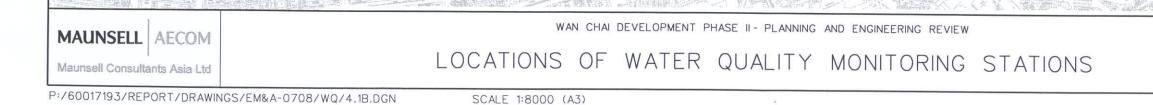



Figure 4.1

Locations of Monitoring Stations

P:/60017193/REPORT/DRAWINGS/EM&A-0708/WQ/4.1A.DGN

RC1


C2

WATER QUALITY MONITORING STATIONS C1 HONG KONG CONVENTION AND EXHIBITION CENTRE EXTENSION C2 TELECOM HOUSE/HK ACADEMY FOR PERFORMING/ SHUI ON CENTRE C3 HONG KONG CONVENTION AND EXHIBITION CENTRE PHASE I C4 WAN CHAI TOWER AND GREAT EAGLE CENTRE C5 SUN HUNG KAI CENTRE C6 PROPOSED EXHIBITION STATION / WORLD TRADE CENTRE C7 WINDSOR HOUSE C8 CITY GARDEN C9 PROVIDENT CENTRE RC1 PROPOSED HKAPA EXTENSION RC5 SUN HUNG KAI CENTRE (REPROVISION) RC7 WINDSOR HOUSE (TEMPORARY REPROVISION) WSD21 WAN CHAI RW1 WAN CHAI (REPROVISION)

1000

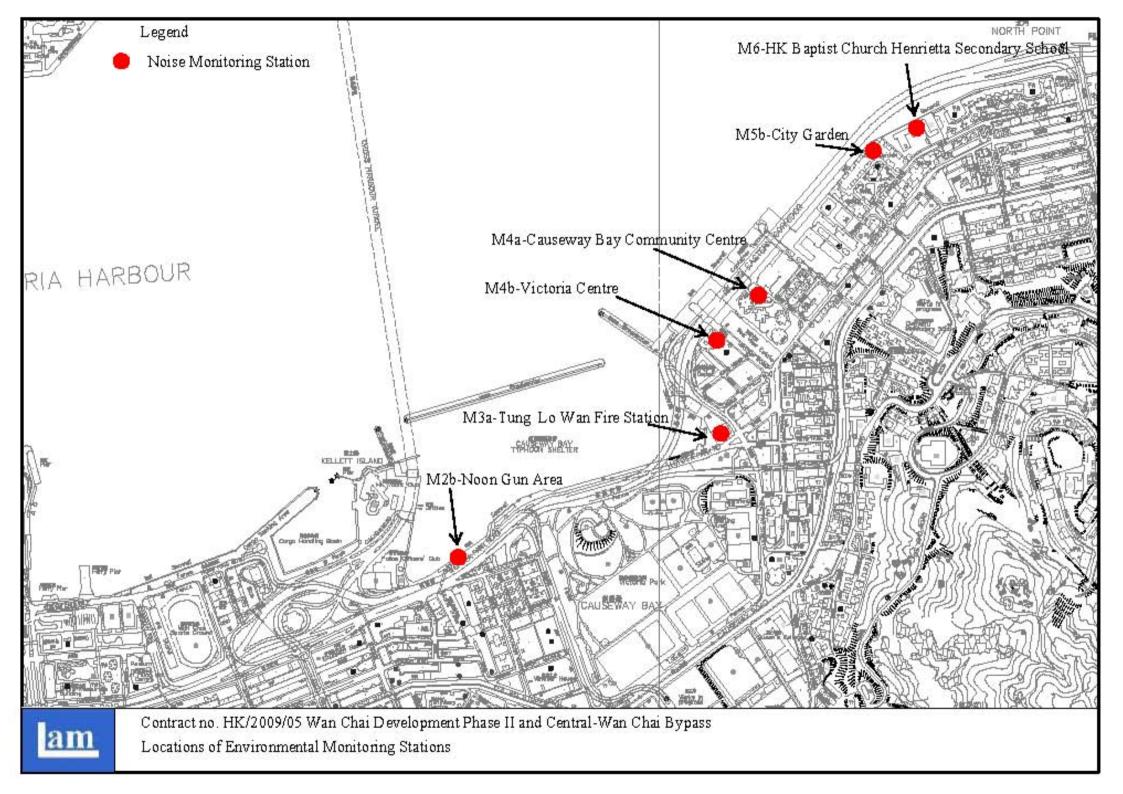
C3

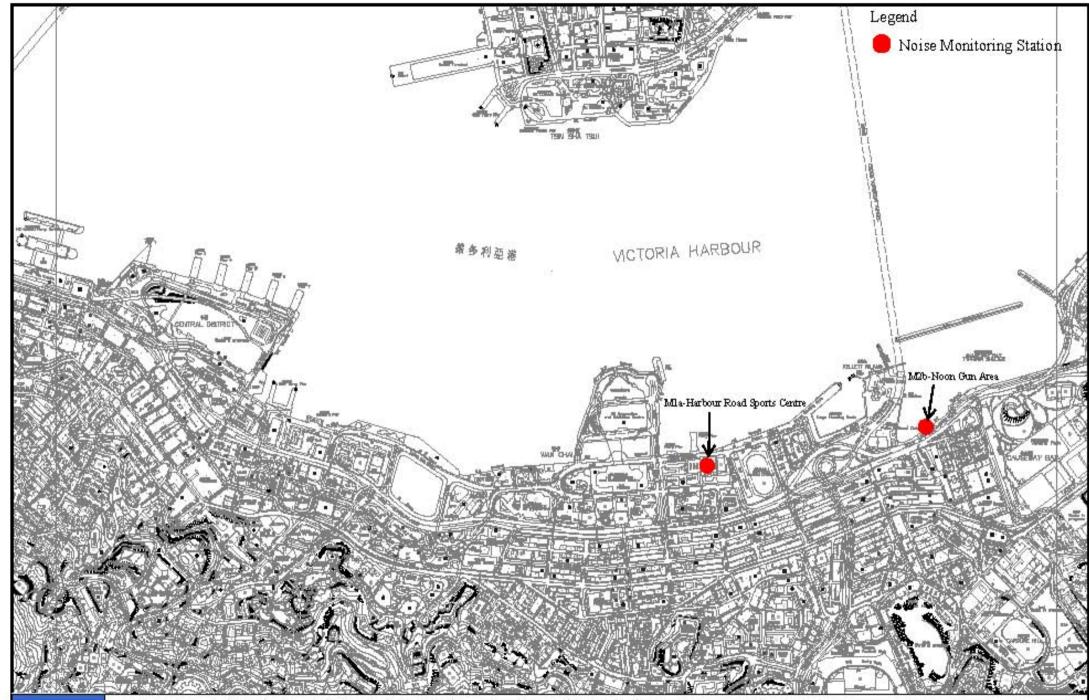
C4e,C4w

RW21 RC5

C5e,C5w

1.00

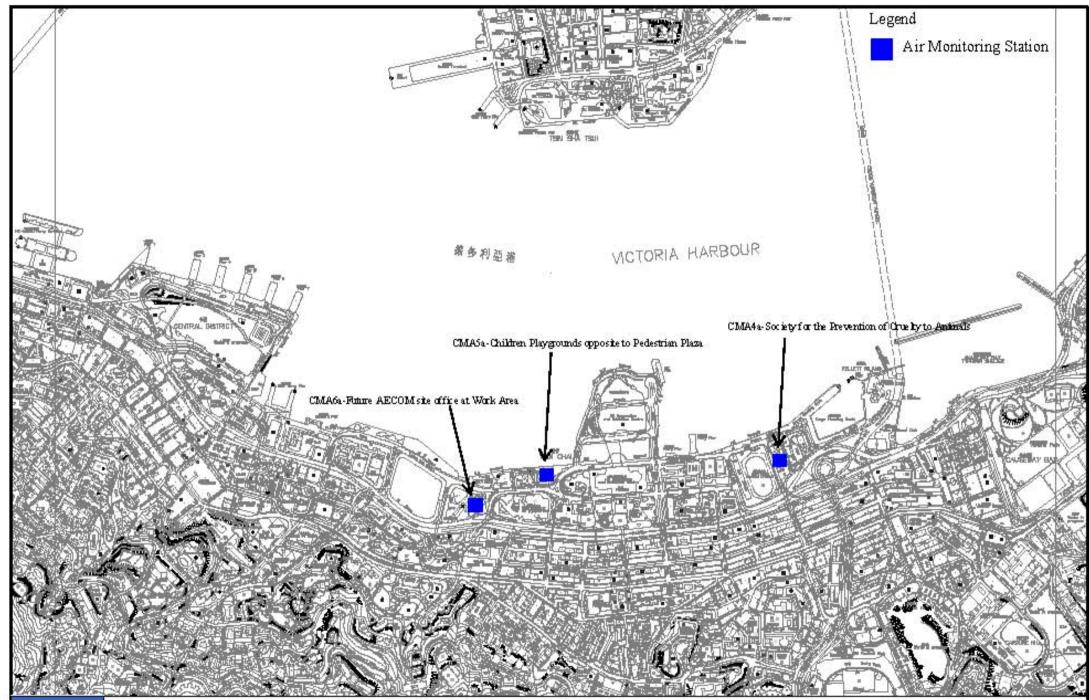

WSD21



RC7

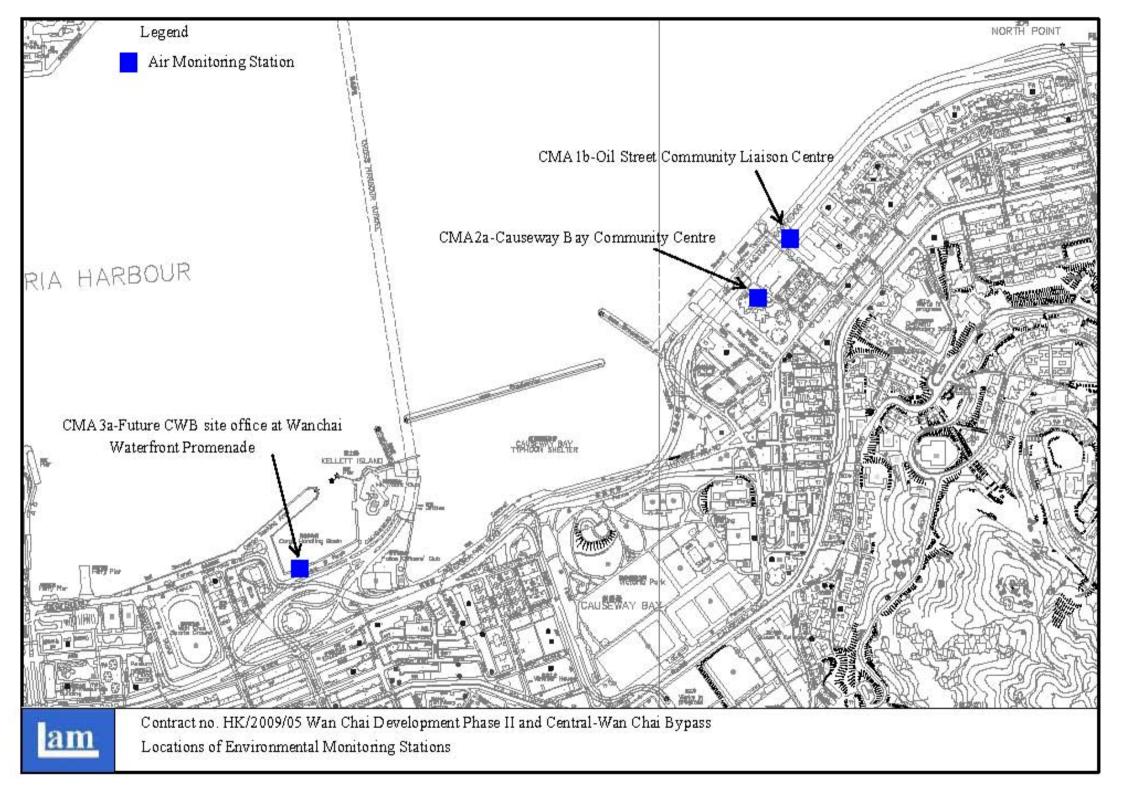
C7 🗖 📕

C6



Contract no. HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass

Locations of Environmental Monitoring Stations


am

Contract no. HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass

Locations of Environmental Monitoring Stations

am

Environmental Mitigation Implementation Schedule

Environmental Mitigation Implementation Schedule

Implementation Schedule for Air Quality Control

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	n Implementation Stages*			ion	Relevant Legislation
		Docation / Thing	Agent	Des	С	0	Dec	and Guidelines
Constructio								
For the Wh			-					1
S3.6.5	Four times a day watering of the work site with active operations.	Work site / during construction	Contractor		V			EIAO-TM
S3.8.1	 Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimise cumulative dust impacts. Strictly limit the truck speed on site to below 10 km per hour and water spraying to keep the haul roads in wet condition; Watering during excavation and material handling; Provision of vehicle wheel and body washing facilities at the exit points of the site, combined with cleaning of public roads where necessary; and Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. 	Work site / during construction	Contractor		V			

Appendix 3.1

Contract No: HK/2009/05

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	Implementation Stages*			Relevant Legislation
LITI	Environmental Protection Weasares / Mitigation Weasares	Location / Thining	Agent	Des	Des C O Dec	and Guidelines		
S3.5.6	For the dredging activities carried out in the vicinity of Police Officers' Club, the dredging operation will be restricted to only 1 small close grab dredger to minimise the odour impact during the dredging activity. The dredging rate should be reduced as much as practicable for the area in close proximity to the Police Officers' Club. The sediments contain highly contaminated mud which may be disposed with the use of geosynthetic containers (details shall refer to Section 6), grab dredger has to be used for filling up the geosynthetic containers on barges. the dredging rate for the removal of the sediments at the south-west corner of the typhoon shelter shall be slowed down or restricted to specific non-popular hours in weekdays when it is necessary during construction.	Corner of CBTS/implementation of harbour-front enhancement	CEDD <u></u>		√			EIAO-TM
S3.8.8	Carry out dredging at the corner of CBTS to remove the sediment and clean the slime attached on the CBTS shoreline seawall	Corner of CBTS & CBTS shoreline seawall/implementation of harbour-front enhancement	CEDD ²		V			EIAO-TM
Operation I For the What								

² CEDD will identify an implementation agent.

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
2001000		Liotation / Timing	Agent	Des	С	0	Dec	and Guidelines
S3.10.2	Monthly (from July to September) monitoring of odour impacts, for a period of 5 years, is proposed during the operational phase of the Project to ascertain the effectiveness of the Enhancement Package over time, and to monitor any on- going odour impacts at the ASRs.	Planned ASRs (CBTS Breakwater)/First 5-year period of operation phase	CEDD ¹			V		EIAO-TM
For DP1 -	CWB (Within the Project Boundary)							
S3.6.53 -	The design parameters of the East and Central Ventilation	East and Central	HyD					
S3.6.54	Buildings as set in Tables 3.10 and 3.11	Ventilation Buildings / During operation of the Trunk Road						
\$3.10.2	Air quality monitoring for the operation performance of the East Ventilation Building and associated East Vent Shaft will be conducted.	East Vent Shaft / During operation of the East Ventilation Building and associated East Vent Shaft	HyD			V		EIAO-TM

• Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Appendix 3.1

Contract No: HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

Monthly EM&A Report

Table A13.2 Implementation Schedule for Noise Control

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Stages*					Relevant Legislation
		Lookiton, Thing	Agent	Des	С	0	Dec	and Guidelines
Constructio	n Phase							
For the Wh	ole Proiect							

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	on	Relevant Legislatio		
			Agent	Des	С	0	Dec	and Guidelines
S4.9.4	 Good Site Practice: Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program. 	Work Sites / During Construction	Contractor		V			EIAO-TM, NCO
	 Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program. 							
	• Mobile plant, if any, shall be sited as far away from NSRs as possible.							
	 Machines and plant (such as trucks) that may be in intermittent use shall be shut down between works periods or shall be throttled down to a minimum. 							
	 Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. 							
	• Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from on- site construction activities.							
DD1	CWB (Within the Project Boundary)							

Contract No: HK/2009/05

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Iı	nplem Sta	entati ges*	on	Relevant Legislation
			Agent	Des	С	0	Dec	and Guidelines
S4.8.3 – S4.8.5	 Use of quiet powered mechanical equipment, movable noise barrier and temporary noise barrier for the following tasks: Slip road 8 tunnel Construction of diaphragm wall and substructures of the tunnel approach ramp Excavation Construction of slabs Backfill Demolition and construction of substructures for the IEC Demolition works of existing piers and crossheads of the marine section of the existing IEC Use of PME grouping for the following tasks: At-grade road construction Substructure for IECL connection 	Work Sites / During Construction	Contractor		~			EIAO-TM, NCO
For DP2 –	WDII Major Roads (Road P2)							
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment, movable noise barrier and temporary noise barrier for the following tasks: • Temporary road diversion • Resurfacing • At-grade roadwork	Work Sites / During Construction	Contractor		V			EIAO-TM, NCO
For DP3 -	Reclamation Works							
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment for the following task: Filling behind seawall Seawall construction	Work Sites / During Construction	Contractor		V			EIAO-TM, NCO

Contract No: HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
	8	8	Agent	Des	С	0	Dec	and Guidelines
For DP5 –	Wan Chai East Sewage Outfall							
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment for the following tasks: • Submarine pipelines (marine section)	Work Sites / During Construction	Contractor		V			EIAO-TM, NCO
	Use of quiet powered mechanical equipment and movable noise barrier for the following tasks:Installation of a new pipeline (land section)							
For DP6 -	Cross-Harbour Water Mains from Wan Chai to Tsim Sha Tsui							
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment for the following tasks: • Submarine pipelines (marine section) •	Work Sites / During Construction	Contractor		V			EIAO-TM, NCO

Appendix 3.1

Contract No: HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation
			Agent	Des	С	0	Dec	and Guidelines
1								
Operation I	Phase							
-	CWB (Within the Project Boundary)							

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	Implementation Stages*		ion	Relevant Legislation
		Look ton / Thing	Agent	Des	С	0	Dec	and Guidelines
\$4.8.14- \$4.8.18	 For Existing NSRs about 235m length of noise semi-enclosure with transparent panel covering the westbound slip road from the IEC about 230m length of noise semi-enclosure with transparent panel covering the main carriageways (eastbound and westbound) of the CWB and IEC about 135m length of 5.5m high cantilevered noise barrier with 3m cantilever inclined at 45° with transparent panel on the eastbound slip road to the IEC about 95m length of 5.5m high cantilevered noise barrier with 1m cantilever inclined at 45° with transparent panel on the eastbound slip road to the IEC about 350m length of 3.5m high vertical noise barrier with transparent panel on the eastbound slip road to the IEC about 350m length of 3.5m high vertical noise barrier with transparent panel on the eastbound slip road to the IEC low noise road surfacing for the trunk road (except tunnel section and beneath the landscaped deck at the eastern portal area) with speed limit of 70 km/hour For Future/Planned NSRs about 265m length of noise semi-enclosure with transparent panel covering the westbound slip road from the IEC 	Near North Point / Before commencement of operation of road project In between the Electric Centre (next to City Garden) and CDA(1) site / Before occupation of Planned NSRs in CDA and CDA(1) sites.	HyD	1	√ #	V		EIAO-TM

Contract No: HK/2009/05

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation
			Agent	Des	С	0	Dec	and Guidelines
	• The openable windows of the temple, if any, should be	Near Causeway Bay Fire	Project					
	orientated so as to avoid direct line of sight to the existing	Station / During detailed	Proponent for					
	Victoria Park Road as far as practicable.	design of the re-	the					
		provisioned Tin Hau	re-provisioned					
		Temple	Tin Hau Temple					

* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

[#] Only the steel frame for this section of noise semi-enclosure would be erected in advance during the construction of the westbound slip road.

Table A13.3 Implementation Schedule for Water Quality Control

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	In	•	entati ges*	on	Relevant Legislation
	Livitoninentai Procedon Measares / Mitigation Measares	Timing	Agent	Des	С	0	Dec	and Guidelines
Constructio	on Phase							
	Reclamation Works, DP5 (Wan Chai East Sewage Outfall), DP6 (Cross-Harbo	our Water Mains	from Wan Chai to T	Tsim Sh	a Tsu	i), DP	1 - CW	B (within the Project
Boundary) S5.8	A phased reclamation approach is planned for the WDII. Containment of fill within each of the reclamation phases by seawalls is proposed, with the seawall constructed first (above high water mark) with filling carried out behind the completed seawalls. Any gaps that may need to be provided for marine access will be shielded by silt curtains to control sediment plume dispersion away from the site. Filling for seawall construction should be carried out behind the silt curtain	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
S5.8	 Dredging shall be carried out by closed grab dredger for the following works: Seawall construction in all the reclamation areas; Construction of the CWB Tunnel Construction of the proposed WSD water mains; and Construction of the proposed Wan Chai East sewage outfall pipelines. 	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
S5.8, Figure 5.3	 Dredging for the Wan Chai East sewage outfall pipelines shall not be carried out concurrently with the following activities: Dredging along the proposed cross-harbour water mains; Dredging along the seawall in the Wan Chai Reclamation (WCR) zone (area between HKCEC Extension and PCWA). 	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO

Appendix 3.1

Contract No: HK/2009/05

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures				Location /	Implementation	In		entati ges*	Relevant Legislation		
						Timing	Agent	Des	С	0	Dec	and Guidelines
S5.8	typhoon shelter shall not be fully enclosed.				Work site / During the construction period	Contractor		V			EIAO-TM, WPCO	
\$5.8	within the tempo impermeable barrie and extending dow the HKCEC1 con discharge flows fre contractor will m	As a mitigation measure, to avoid the accumulation of water borne pollutants within the temporary embayment between CRIII and HKCEC1, an mpermeable barrier, suspended from a floating boom on the water surface ind extending down to the seabed, will be erected by the contractor before he HKCEC1 commences. The barrier will channel the stormwater lischarge flows from Culvert L to the outside of the embayment. The ontractor will maintain this barrier until the reclamation works in KCEC2W are carried out and the new Culvert L extension is constructed.				Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
S5.8, Figure 5.3	The total dredging rates in each of the marine works zones shall not be more than the maximum production rates stated in the table below. These are the production rates without considering the effect of silt curtain.					Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
				um Dredging Rate	Maximum Dredging							
	Reclamation Area		m ³ per day	m ³ per hour (for 16 hrs per day)	Rate (m ³ per							
	Dredging along seawa											
	North Point Shoreline Z		6,000	375	42,000							
	Causeway Bay	TBW	1,500	94	10,500							
	Shoreline Zone	TCBR	6,000	375	42,000							
	PCWA Zone		5,000	313	35,000						1	

Contract No: HK/2009/05
Wan Chai Development Phase II and Central-Wan Chai Bypass -
Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures			Location / Timing	Implementation Agent	In		entati ges*	ion	Relevant Legislation
		0				Des	С	0	Dec	and Guidelines
	Wan Chai Shoreline Zone (WCR) HKCEC Shoreline Zone HKCEC Stage 1 & 3 (HKCEC) HKCEC Stage 2 Cross Harbour Water Mains Wan Chai East Submarine Sewage Pipeline Note: 1,500 m ³ per day shall be applied	6,000 375 1,500 94 6,000 375 1,500 94 1,500 94 1,500 94 1,500 94	42,000 10,500 42,000 10,500 10,500							
S5.8, Figure 5.3	seawall of WCR1. Dredging along the seawall at WCR1 1,500m ³ per day for construction of the proximity of the WSD intake), followed by western seawall (above high water mark) much as possible from further dredging ac	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO		
S5.8, Figure 5.3	For dredging within the Causeway Bay partially constructed to protect the near dredging activities. For example, at TG seawalls shall be constructed first (abo seawater intakes at the inner water would the remaining dredging activities along th	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO		
S5.8, Figure 5.3	Silt curtains shall be deployed around the closed grab dredgers during seawall dredging and seawall trench filling in the areas of HKCEC, WCR, TCBR and NP.			Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
S5.8, Figure 5.3	2009 with concurrent Bay, Sheung W dredging activities at Cooling water		an Ho, Quarry on South ong Convention	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO

Contract No: HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures		Location /	Implementation	In	ıplem Staş	entati ges*	on	Relevant Legislation
			Timing	Agent	Des	С	0	Dec	and Guidelines
	TBW, NP and Water Mains Zone Scenario 2B in late	Convention and Exhibition Centre Phase I, Telecom House / HK Academy for Performing Arts / Shun On Centre, Wan Chai Tower / Revenue Tower / Immigration Tower and Sun Hung Kai Centre WSD saltwater intakes at Sheung Wan, Wan Chai							
	2009/2010 with concurrent dredging activities at Sewage Pipelines Zone and TCBR.	Cooling water intakes for Queensway Government Offices, Excelsior Hotel, World Trade Centre and Windsor House.							
	Scenario 2C in 2011 with concurrent dredging activities at HKCEC and TCBR.	WSD saltwater intakes at Sheung Wan and Reprovisioned WSD Wan Chai saltwater intake. Cooling water intakes for MTR South, Excelsior Hotel & World Trade Centre and reprovisioned Windsor House.							
\$5.8	spillage and sealed ti	include: used, shall be designed and maintained to avoid ghtly while being lifted. For dredging of any sed watertight grabs must be used;	Work site / During the construction period	Contractor		\checkmark			ProPECC PN 1/94; WPCO (TM-DSS)
	vessels and the seabe	d so that adequate clearance is maintained between d in all tide conditions, to ensure that undue rated by turbulence from vessel movement or							
		dredgers shall be fitted with tight fitting seals to o prevent leakage of material;							
		shall not cause foam, oil, grease, scum, litter or tter to be present on the water within the site or							
	dredged material into th	noppers shall be controlled to prevent splashing of the surrounding water. Barges or hoppers shall not t will cause the overflow of materials or polluted transportation; and							

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	In		entati ges*	Relevant Legislation	
				Des	С	0	Dec	and Guidelines
	• before commencement of the reclamation works, the holder of Environmental Permit has to submit plans showing the phased construction of the reclamation, design and operation of the silt curtain.							
\$5.8	Silt screens are recommended to be deployed at the seawater intakes during the reclamation works period. Installation of silt screens at the seawater intake points may cause a potential for accumulation and trapping of pollutants, floating debris and refuse behind the silt screens and may lead to potential water quality deterioration at the seawater intake points. Major sources of pollutants and floating refuse include the runoff and storm water discharges from the nearby coastal areas. As a mitigation measure to avoid the pollutant and refuse entrapment problems and to ensure that the impact monitoring results are representative, regular maintenance of the silt screens and refuse collection shall be performed at the monitoring stations at regular intervals on a daily basis. The Contractor shall be responsible for keeping the water behind the silt screen free from floating rubbish and debris during the impact monitoring period.	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO

Contract No: HK/2009/05

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation Agent	In	nplem Stag		on	Relevant Legislation and Guidelines
		Timing		Des	С	0	Dec	
S5.8	Dredging of contaminated mud is recommended as a mitigation measures for control of operational odour impact from the Causeway Bay typhoon shelter. In recognition of the potential impacts caused by dredging activities close to the seawater intakes, only 1 small close grab dredger shall be operated within the typhoon shelter (for the dredging to mitigate odour impact) at any time to minimize the potential impact. Double silt curtains shall be deployed to fully enclose the closed grab dredger during the dredging operation. In addition, an impermeable barrier, suspended from a floating boom on the water surface and extended down to the seabed, shall be erected to isolate the adjacent intakes as much as possible from dredging activities. For example, if dredging is to be carried out at the southwest corner of the typhoon shelter, physical barriers shall be erected to west of the cooling water intake for Excelsior Hotel so that the intake would be shielded from most of the SS generated from the dredging operation to the west of the intake. For area in close proximity of the cooling water intake shuring the dredging operations. Daily monitoring of SS at the cooling water intake shall be carried out, and 24 hour monitoring of turbidity at the intakes shall be implemented during the dredging activities. If the monitoring results indicate that the dredging operation has caused significant changes in water quality conditions at the seawater intakes, appropriate actions shall be taken to stop the dredging and mitigation measures such as slowing down the dredging rate shall be implemented.	Causeway Bay typhoon shelter/Imple mentation of harbour-front enhancement.	CEDD <u>3</u>					WPCO

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation Agent	In		entati ges*	Relevant Legislation	
LIII KU	Zivitoninentai Protection Measures / Mitigation Measures	Timing		Des	С	0	Dec	and Guidelines
For the Wh	ole Project							
S5.8	Construction Runoff and Drainage	Work site	Contractor		\checkmark			ProPECC PN 1/94; WPCO (TM-DSS)
	 use of sediment traps, wheel washing facilities for vehicles leaving the site, and adequate maintenance of drainage systems to prevent flooding and overflow; 	/ During the constructi on period						wrco (114-035)
	 Permanent drainage channels shall incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities shall be based on the guidelines in Appendix A1 of ProPECC PN 1/94; 							
	 a sediment tank constructed from pre-formed individual cells of approximately 6 - 8 m3 capacity can be used for settling ground water prior to disposal; 							
	 oil interceptors shall be provided in the drainage system for the tunnels and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor shall have a bypass to prevent flushing during periods of heavy rain; 							
	 precautions and actions to be taken when a rainstorm is imminent or forecast, and during or after rainstorms. Particular attention shall be paid to the control of any silty surface runoff during storm events; 							
	 on-site drainage system shall be installed prior to the commencement of other construction activities. Sediment traps shall be installed in order to minimise the sediment loading of the effluent prior to discharge; 							
	 All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge shall be adequately designed for the controlled release of storm flows. All sediment control measures shall be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage shall be reinstated to its original condition when the construction work is finished or the temporary diversion is no longer 							

³ CEDD will identify an implementation agent.

Appendix 3.1

Contract No: HK/2009/05

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	In	•	entati ges*	Relevant Legislation	
Lint Kei	Environmental Frotection Measures / Mitigation Measures			Des	С	0	Dec	and Guidelines
	 required. All fuel tanks and store areas shall be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity. 							
	• Minimum distances of 100 m shall be maintained between the storm water discharges and the existing or planned WSD flushing water intakes during construction phase.							
S5.8	Sewage from Construction Work Force Construction work force sewage discharges on site shall be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage shall be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor shall also be responsible for waste disposal and maintenance practices.	Work site / During the construction period	Contractor		V			ProPECC PN 1/94; WPCO (TM-DSS)
S5.8	<i>Floating Debris and Refuse</i> Collection and removal of floating refuse shall be performed at regular intervals on a daily basis. The contractor shall be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish.	Work site and adjacent water / During the construction period.	Contractor		V			WPCO

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation Agent	In		entati ges*	Relevant Legislation	
		Timing		Des	С	0	Dec	and Guidelines
S5.8	Storm Water Discharges Minimum distances of 100 m shall be maintained between the existing or planned stormwater discharges and the existing or planned WSD flushing water intakes.	Work site and adjacent water / During the design and construction period.	Contractor	V	V			WPCO
Operation								
<u>DP1 – CW1</u> S5.8	8 (within the Project Boundary)	CWB/During	HyD/TD ³	V	1	V	-	WPCO
53.8	For the operation of CWB, a surface water drainage system would be provided to collect road runoff. The following operation stage mitigation measures are recommended to ensure road runoff would comply with the TM under the WPCO: • The drainage from tunnel sections shall be directed through petrol	design and operational period	нур/тр	N		N		wrcu
	interceptors to remove oil and grease before being discharged to the nearby foul water manholes.							
	• Petrol interceptors shall be regularly cleaned and maintained in good working condition.							
	• Oily contents of the petrol interceptors shall be properly handled and disposed of, in compliance with the requirements of the Waste Disposal Ordinance.							
	• Sewage arising from ancillary facilities of CWB (for examples, car park,			1				

Contract No: HK/2009/05

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation
				Des	С	0	Dec	and Guidelines
	 control room, ventilation and administration buildings and tunnel portals) shall be connected to public sewerage system. Sufficient capacity in public sewerage shall be made available to the proposed facilities. Road drainage shall also be provided with adequately designed silt trap to minimize discharge of silty runoff. The design of the operational stage mitigation measures for CWB shall take into account the guidelines published in ProPECC PN 5/93 "Drainage Plans subject to Comment by the EPD." All operational discharges from the CWB into drainage or sewerage systems are required to be licensed by EPD under the WPCO. 							

* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

³ if employ Management, Operation and Maintenance (MOM) Contract

Table A13.4 Implementation Schedule for Waste Management

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation
LITRO	Environmental Protection Measures / Mitigation Measures	Location / Thining	Agent	Des	С	0	Dec	and Guidelines
Constructio	on Phase							
For DP3 -	Reclamation Works							
	Marine Sediments	Work site / During the construction period	Contractor		V			ETWB TCW No. 34/2002
\$6.7.2	The dredged marine sediments would be loaded onto barges, transported to and disposed of at the designated disposal sites at South of Cheung Chau, East of Ninepin, East of Tung Lung Chau, South of Tsing Yi or East of Sha Chau to be allocated by the MFC depending on their level of contamination or at other disposal sites after consultation with the MFC and EPD. In accordance with the ETWB TCW No. 34/2002, the contaminated material must be dredged and transported with great care. The mitigation measures recommended in Section 5 of the EIA Report shall be incorporated. The dredged contaminated sediment must be effectively isolated from the environment upon final disposal and shall be disposed of at the Type 2 confined marine disposal contaminated mud pit.							
S6.7.3	Based on the biological screening results, the Category H (>10xLCEL) sediment which failed the biological testing would require Type 3 special disposal. The volume of Category H sediment from the Causeway Bay typhoon shelter which would require special disposal arrangements is estimated to be approximately 0.05 Mm ³ . A feasible containment method is proposed whereby the dredged sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal.							

Appendix 3.1

Contract No: HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation and Guidelines
	Zivi olimentar i occesion vienou es / viengation vienou es	Lookiton, Thing	Agent	Des	С	0	Dec	
S6.7.5	It will be the responsibility of the Contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, at least 3 months prior to the dredging contract being tendered							
S6.7.6	 During transportation and disposal of the dredged marine sediments requiring Type 1 and Type 2 disposal, the following measures shall be taken to minimise potential impacts on water quality: Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage of material. Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. 							

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Stag			on	Relevant Legislation
		B	Agent	Des	С	0	Dec	and Guidelines
	 Monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. Barges or hopper barges shall not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation. 							
\$6.6.12	<i>Floating Refuse</i> During the construction phase, the project proponent's contractor will be responsible for the collection of any refuse within their works area. Floating booms will be provided on the water surface to confine the refuse from the working barges as well as to avoid the accumulation of pollutants within temporary embayment as mentioned in Table 13.3.	Work site / During the construction period	Contractor		V			

For the Whole Project

Appendix 3.1

Contract No: HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	ıplem Staş		on	Relevant Legislation
			Agent	Des	С	0	Dec	and Guidelines
S6.7.7	 Good Site Practices Recommendations for good site practices during the construction activities include: nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site; training of site personnel in proper waste management and chemical waste handling procedures; provision of sufficient waste disposal points and regular collection for disposal; appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and a recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites). 	Work site / During the construction period	Contractor		V			Waste Disposal Ordinance (Cap.354)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	Relevant Legislation and Guidelines	
	g		Agent	Des	С	0	Dec	and Guidelines
S6.7.8	 Waste Reduction Measures Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; to encourage collection of aluminium cans, PET bottles and paper, separate labelled bins shall be provided to segregate these wastes from other general refuse generated by the work force; any unused chemicals or those with remaining functional capacity shall be recycled; use of reusable non-timber formwork, such as in casting the tunnel box sections, to reduce the amount of C&D material. prior to disposal of C&D waste, it is recommended that wood, steel and other metals shall be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; proper storage and site practices to minimise the potential for damage or contamination of construction materials; and plan and stock construction materials carefully to minimise amount of waste. 	Work site / During planning and design stage, and construction stage	Contractor	V	V			

Appendix 3.1

Contract No: HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation
21111101		Lioution / Timing	Agent	Des	С	0	Dec	and Guidelines
S6.7.10	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D material. A collection area shall be provided where wastes can be stored and loaded prior to removal from site. An enclosed and covered area is recommended to reduce the occurrence of 'wind blow' light material.	Work site / During the construction period	Contractor		V			Public Health and Municipal Services Ordinance (Cap. 132)
\$6.7.11	Chemical Wastes After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) shall be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals shall be collected by a licensed collector for disposal at the CWTF or other licensed facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work site / During the construction period	Contractor		V			Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes
\$6.7.12	Construction and Demolition Material C&D material shall be sorted on-site into inert C&D material (that is, public fill) and C&D waste. All the suitable inert C&D material shall be broken down to 250 mm in size for reuse as public fill in the WDII reclamation. C&D waste, such as wood, glass, plastic, steel and other metals shall be reused or recycled and, as a last resort, disposed of to landfill. A suitable area shall be designated to facilitate the sorting process and a temporary stockpiling area will be required for the separated materials.	Work site / During the construction period	Contractor		V			ETWB TCW No. 33/2002, 31/2004, 19/2005

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation
			Agent	Des	С	0	Dec	and Guidelines
S6.7.13	In order to monitor the disposal of public fill and C&D waste at public filling facilities and landfills, respectively, and to control fly tipping, a trip-ticket system shall be included as one of the contractual requirements and implemented by the Environmental Team undertaking the environmental monitoring and audit work. An Independent Environment Checker shall be responsible for auditing the results of the system.	Work site / During the construction period	Contractor and Independent Environmental Checker		V			ETWB TCW No. 31/2004
S6.7.14	 Bentonite Slurry The disposal of residual used bentonite slurry shall follow the good practice guidelines stated in ProPECC PN 1/94 "Construction Site Drainage" and listed as follows: If the disposal of a certain residual quantity cannot be avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis. If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewers, storm drains or the receiving waters as set out in the Technical Memorandum of Standards for Effluents Discharged into Drainage and Sewerage Systems, Inland and Coastal Waters. If the used bentonite slurry is intended to be disposed to public fill reception facilities, it will be mixed with dry soil on site before disposal. 	Work site / During the construction period	Contractor		V			ProPECC PN 1/94

* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Appendix 3.1

Contract No: HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

Monthly EM&A Report

Table A13.5 Implementation Schedule for Land Contamination

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	ion	Relevant Legislation
	Zarnomienta i occorton Accuoa co / Arnaganon Accuoa co	Liotation / Timing	Agent	Des	С	0	Dec	and Guidelines
Constructio	on Phase							-
For the Wh	ole Project							
S.12.6	• The contaminated site shall be cleaned up before commencement of site clearance and construction work at the concerned area which may disturb the ground.	A King Marine / Before commencement of construction activities at A King Marine.	Project proponent for the re- provisioned Tin Hau Temple	V				"Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repair/Dismantling Workshops" published by EPD, HKSAR EPD ProPECC Note No. 3/94
\$7.10	 During soil remediation works, the Contractor for the excavation works shall take note of the following points for excavation: Excavation profiles must be properly designed and executed; In case the soil to be excavated is situated beneath the groundwater table, it may be necessary to lower the groundwater table by installing well points or similar means; Quantities of soil to be excavated must be estimated; It maybe necessary to split quantities of soil according to soil type, degree and nature of contamination. Temporary storage of soil at intermediate depot or on-site 	A King Marine / During soil remediation works	Contractor	V				Air Pollution Control Ordinance Noise Control Ordinance Waste Disposal Ordinance Waste Disposal (Chemical Waste) (General) Regulation

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
			Agent	Des	С	0	Dec	and Guidelines
	maybe required. The storage site shall include protection facilities for leaching into the ground. eg. Liner maybe required.							
	 Supply of suitable clean backfill materials is needed after excavation. Care must be taken of existing buildings and utilities. Precautions must be taken to control of ground settlement Speed controls for vehicles shall be imposed on dusty site areas. Vehicle wheel and body washing facilities at the site's exit points shall be established and used. The following environmental mitigation measures shall be strictly followed during the operation and/or maintenance of the CS/S facilities: 							Water Pollution Control Ordinance

Appendix 3.1

Contract No: HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	Implementation Stages* es C O Dec			Relevant Legislation
EIA KU		Location / Timing	Agent	Des	С	0	Dec	and Guidelines
	 <u>Air Quality Mitigation Measures</u> The loading, unloading, handling, transfer or storage of cement shall be carried out in an enclosed system. The loading, unloading, handling, transfer or storage of other materials which may generate airborne dust emissions such as untreated soil and oversize materials sorted out from the screening plant and stabilized soil stockpiled in the designated handling area, shall be carried out in such a manner to prevent or minimise dust emissions. These materials shall be adequately wetted prior to and during the loading, unloading and handling operations. All practicable measures, including speed controls for vehicles, shall be taken to prevent or minimize the dust emission caused by vehicle movement. Tarpaulin or low permeable sheet shall be put on dusty vehicle loads transported between site locations. 							
	 Noise Mitigation Measures The mixing facilities shall be sited as far as practicable to the nearby noise sensitive receivers. Simultaneous operation of mixing facilities and other equipment shall be avoided. Mixing process and other associated material handling activities shall be properly scheduled to minimise potential cumulative noise impact on the nearby noise sensitive receivers. Construction Noise Permit shall be applied for the operation of powered mechanical equipment during restricted hours (if any). 							

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation
			Agent	Des	С	0	Dec	and Guidelines
	 <u>Water Quality Mitigation Measures</u> Stockpile of untreated soil shall be covered as far as practicable to prevent the contaminated material from leaching out. The leachate shall be discharged following the requirements of WPCO. 							
	 Waste Mitigation Measures Treated oversize materials will be used as filling material for backfilling within the site. Sorted materials of size smaller than 5 cm will be collected and transferred to the mixing plant for further decontamination treatment. Stabilized soils shall be broken into suitable size for 							
	 Stabilized softs shall be observed into surface size for backfilling or reuse on site. A high standard of housekeeping shall be maintained within the mixing plant area. If necessary, there shall be clear and separated areas for stockpiling of untreated and treated materials. 							

* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Appendix 3.1

Contract No: HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

Monthly EM&A Report

Table A13.6 Implementation Schedule for Marine Ecology

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Implementation Stages*			on	Relevant Legislation
			Agent	Des	С	0	Dec	and Guidelines
Constructio	on Phase							
For the Wh	ole Project - Schedule 3 DP							
S.9.7.2	Alternative design of the Trunk Road constructed in tunnel shall be adopted to avoid permanent reclamation in CBTS and ex-PWCA Basin.	-	CEDD/HyD	\checkmark				EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.
For DP3 –	Reclamation Works							
8.9.7.3	Translocation of those potentially affected coral colonies to the nearby suitable habitats such as Junk Bay is recommended. A detailed translocation plan (including translocation methodology, monitoring of transplanted corals, etc.) should be drafted and approval by AFCD during the detailed design stage of the Project.	Ex-PCWA Basin and along seawall next to a public pier which is about 250 m away from the CBTS	CEDD/HyD	V				EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation
				Des	С	0	Dec	and Guidelines
S.9.7.4	 During dredging and filling operations, a number of mitigation measures to control water quality shall be adopted to confine sediment plume within reclamation area and protect marine fauna in proximity to the reclamation. The mitigation measures include the following: Installation of silt curtains during dredging activities Use of tightly-closed grab dredger Reduction of dredging rate Control of grab descending speed Construction of leading edges of seawall in the early stages of the reclamation works 	Work site / during construction phase	Contractor		V			EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.
	Adoption of multiple-phase construction schedule							

Appendix 3.1

Contract No: HK/2009/05

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Stag		on	Relevant Legislation and Guidelines
LETIWI	Environmental Protection Steasares / Shitigation Steasares	Looution / Thining	Agent	Des	С	0	Dec	
S.9.7.6	To minimize potential disturbance impacts on the foraging ardeid population in the CBTS, particularly in the area near the A King Shipyard, appropriate mitigation measures shall be adopted particularly during the construction phase. The following measures are recommended:	Work site / during construction phase	Contractor		V			EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.
	• Use of Quiet Mechanical Plant during the construction phase shall be adopted wherever possible.							
	Adoption of multiple-phase construction schedule.							
	• General measures to reduce noise generated during the construction phase (see noise impact assessment) shall be effectively implemented.							
S.9.7.7	Seawalls shall be constructed in advance around the reclamation areas within the area of the CBTS to screen adjacent feeding ground from construction phase activities, reduce noise disturbance to the associated seabirds and also to restrict access to this habitat adjacent to works areas by ship traffic.	Work site / during construction phase	Contractor		V			EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.
S.9.7.8	Loss of artificial seawall habitats shall be reinstated by the construction of about 1 km vertical wave absorbing seawall along the coastlines of the new reclamation around the HKCEC and at North Point. The new seawalls are expected to provide large area of hard substrata for settlement and recruitment of intertidal fauna similar to those previously recorded from existing intertidal habitats.	Work site / during construction phase	Contractor		V			EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.

*Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Table A13.7 Implementation Schedule for Landscape and Visual

EIA Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing I	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				0	Des	С	0	Dec	
Construction	Phase								
For the Whole	e Project								
Table 10.5	CM1	Topsoil, where identified, shall be stripped and stored for re-use in the construction of the soft landscape works, where practical.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM2	Existing trees to be retained on site shall be carefully protected during construction.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM3	Trees unavoidably affected by the works shall be transplanted where practical.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM4	Compensatory tree planting shall be provided to compensate for felled trees.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM
Table 10.5	CM6	Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		V			EIAO TM
For DP1 - CV	VB (With	in the Project Boundary)							
Table 10.5	CM1	Topsoil, where identified, shall be stripped and stored for re-use in the construction of the soft landscape works, where practical.	Work site / During Construction Phase	Contractor		V			EIAO TM
Table 10.5	CM2	Existing trees to be retained on site shall be carefully protected during construction.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM3	Trees unavoidably affected by the works shall be transplanted where practical.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM4	Compensatory tree planting shall be provided to compensate for felled trees.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM

Appendix 3.1

Contract No: HK/2009/05

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Implementation Agent	In	nplem Sta	entati ges*	on	Relevant Legislation and Guidelines
					Des	С	0	Dec	
Table 10.5	CM6	Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		V			EIAO TM
For DP2 – WD	II Majo	r Roads (Road P2)				1			
Table 10.5	CM1	Topsoil, where identified, shall be stripped and stored for re-use in the construction of the soft landscape works, where practical.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM2	Existing trees to be retained on site shall be carefully protected during construction.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM3	Trees unavoidably affected by the works shall be transplanted where practical.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM4	Compensatory tree planting shall be provided to compensate for felled trees.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM
Table 10.5	CM6	Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM
For DP3 - Rec	lamatio	n Works							
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM
Table 10.5	CM6	Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		V			EIAO TM
For DP5 - Wa	n Chai I	East Sewage Outfall							
Refer to EIA- 058/2001 Table 10.13	CM2	Minimisation of works areas.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM3	Erection of decorative hoardings.	Work site / During Construction Phase	Contractor		V			EIAO TM

EIA Ref	Envir	onmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Ir		entati ges*	on	Relevant Legislation and Guidelines
				0	Des	С	0	Dec	
Refer to EIA- 058/2001 Table 10.13	CM4	Control night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM5	Minimisation of disruption to public by effective programming of the works.	Work site / During Construction Phase	Contractor		V			EIAO TM
For DP6 - Cro	ss-Harb	our Water Mains from Wan Chai to Tsim Sha Tsui			•			•	
Refer to EIA- 058/2001 Table 10.13	CM2	Minimisation of works areas.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM3	Erection of decorative hoardings.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM4	Control night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM5	Minimisation of disruption to public by effective programming of the works.	Work site / During Construction Phase	Contractor		V			EIAO TM
Operation Pha	ise				•			•	
For the Whole	Project	- Schedule 3 DP							
Table 10.6, Figure 10.5.1- 10.5.5	OM1	Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.	Work site / During Design Stage and Operation Phases	CEDD/HyD	V	V	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM2	Shrub and Climbing Plants to soften proposed structures.	Work site / During Design Stage and Operation Phases	CEDD/HyD	V	V	V		ETWB TCW 2/2004

Appendix 3.1

Monthly EM&A Report

Contract No: HK/2009/05

Wan Chai Development Phase II and Central-Wan Chai Bypass -Sampling, Field Measurement and Testing Works (Stage 1)

EIA Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Implementation Agent	Implementation Stages*			on	Relevant Legislation and Guidelines
				0	Des	С	0	Dec	•
Table 10.6,	OM3	Buffer Tree and Shrub Planting to screen proposed roads	Work site / During	CEDD/HyD/			\checkmark		ETWB TCW 2/2004
Figure 10.5.1-		and associated structures.	Design Stage and						
10.5.5			Operation Phases	4		1			
Table 10.6,	OM4	Aesthetic design of proposed waterfront promenade.	Work site / During	$CEDD^{4}$	N	V	\checkmark		ETWB TCW 2/2004
Figure 10.5.1-			Design Stage and						
10.5.5			Operation Phases						
Table 10.6,	OM5	Aesthetic streetscape design.	Work site / During	CEDD/HyD					ETWB TCW 2/2004
Figure 10.5.1-			Design Stage and						
10.5.5			Operation Phases						
Table 10.6,	OM6	Aesthetic design of roadside amenity areas.	Work site / During	CEDD/HyD	\checkmark				ETWB TCW 2/2004
Figure 10.5.1-			Design Stage and						
10.5.5			Operation Phases						
For DP1 – CW	B (Withi	in the Project Boundary)							
Table 10.6,	OM1	Aesthetic design of buildings and road-related structures,	Work site / During	HyD					ETWB TCW 2/2004
Figure 10.5.1-		including viaducts, vent buildings, subways, footbridges	Design Stage and						
10.5.5		and noise barriers and enclosure.	Operation Phases						
Table 10.6,	OM2	Shrub and Climbing Plants to soften proposed structures	Work site / During	HyD	\checkmark				ETWB TCW 2/2004
Figure 10.5.1-			Design Stage and						
10.5.5			Operation Phases						
Table 10.6,	OM3	Buffer Tree and Shrub Planting to screen proposed roads	Work site / During	HyD	\checkmark	V			ETWB TCW 2/2004
Figure 10.5.1-		and associated structures.	Design Stage and						
10.5.5			Operation Phases						
Table 10.6,	OM5	Aesthetic streetscape design.	Work site / During	HyD	N	V			ETWB TCW 2/2004
Figure 10.5.1-			Design Stage and						
10.5.5			Operation Phases						
Table 10.6,	OM6	Aesthetic design of roadside amenity areas.	Work site / During	HyD		\checkmark			ETWB TCW 2/2004
Figure 10.5.1-			Design Stage and						
10.5.5			Operation Phases						
For DP2 – WD	II Major	· Roads (Road P2)							

⁴ CEDD will identify an implementation agent

EIA Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Implementation Agent	In	nplem Sta	entati ges*	ion	Relevant Legislation and Guidelines
				_	Des	С	0	Dec	
Table 10.6, Figure 10.5.1- 10.5.5	OM1	Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.	Work site / During Design Stage and Operation Phases	CEDD/HyD		V	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM3	Buffer Tree and Shrub Planting to screen proposed roads and associated structures.	Work site / During Design Stage and Operation Phases	CEDD/HyD		V	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM5	Aesthetic streetscape design.	Work site / During Design Stage and Operation Phases	CEDD/HyD		V	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM6	Aesthetic design of roadside amenity areas	Work site / During Design Stage and Operation Phases	CEDD/HyD		V	V		ETWB TCW 2/2004
For DP3 - Rec.	lamation	n Works							
Table 10.6, Figure 10.5.1- 10.5.5	OM4	Aesthetic design of proposed waterfront promenade.	Work site / During Design Stage and Operation Phases	CEDD ⁵	V	V	V		ETWB TCW 2/2004

*Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

 $^{\rm 5}$ CEDD will identify an implementation agent

Appendix 3.1

Appendix 4.1

Action and Limit Level

Action and Limit Level

Action and Limit Level for Noise Monitoring

Time Period	Action Level	Limit Level
07:00 – 19:00 hours on normal weekdays	When one documented complaint is received.	75 dB(A) ^{Note 1}

Note 1:

- 70dB(A) and 65 dB(A) for schools during normal teaching periods and school examination periods, respectively.

- If works are to be carried out during the restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

Monitoring Location	1-hour TSP Lev	el in μ g/m ³	24-hour TSP Le	evel in μ g/m ³
	Action Level	Limit Level	Action Level	Limit Level
CMA1a Note 2	320.1	500	176.7	260
CMA2a	323.4	500	169.5	260
CMA3 Note 2	311.3	500	171.0	260
CMA4a	312.5	500	171.2	260
CMA5 Note 2	332.0	500	181.0	260
CMA6 Note 2	300.1	500	187.3	260

Action and Limit Level for Air Monitoring

Note 2:

As per facing owner's rejection in allowing the implementation of long-term air quality impact monitoring at their premises, alternative monitoring stations and justification will be proposed for IEC verification and EPD approval.

Parameter	Action Level	Limit Level	
WSD Salt Water Intakes			
SS in mg/L	13.00	14.43	
Turbidity in NTU	8.04	9.49	
DO in mg/L	3.66	3.28	
Cooling Water Intakes			
SS in mg/L	15.00	22.13	
Turbidity in NTU	9.10	10.25	
DO in mg/L	3.36	2.73	

Action and Limit Level for Water Monitoring

Appendix 4.2

Copies of Calibration Certificates

Certificate No. 96127	Page	1 of	4 Pages
Customer: Lam Environmental Services Ltd			
Address : 11/F, Centre Point, 181-185 Gloucester Road,	Wanchai, Hong Kong	÷	
Order No.: Q92434	Date of receipt	t :	24-Nov-09
Item Tested			
Description : Precision Integrating Sound Level Meter			
Manufacturer : ACO			
Model : Type 6224	Serial No.	: 3014	48
Test Conditions			
Date of Test: 26-Nov-09	Supply Voltage	e :	
Ambient Temperature: (23 ± 3)°C	Relative Humi	dity: (50 :	± 25) %
Test Specifications			
Calibration check.			
Ref. Document/Procedure: Z01.			
Test Results			
All results were within the IEC 651 Type 1 & 804 Type I Specific	cation.		
The results are shown in the attached page(s).			

Main Test equipment used:

Equipment No.	Description	Cert. No.	Due Date	Traceable to
S017	Multi-Function Generator	C081456	18-Mar-10	SCL-HKSAR
S024	Sound Level Calibrator	93758	16-Jul-10	NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

P.F. Wong This Certificate is issued by: Hong Kong Calibration Ltd.

un

Approved by : _____

Dorothy Cheuk

Date: 27-Nov-09

Unit 88, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong, Tel: 2425 8801 Fax: 2425 8546

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Certificate No. 96127

Page 2 of 4 Pages

Results :

1. SPL Accuracy

UU	JT Setting			
Level Range (dB)	Weight	Time Const.	Applied Value (dB)	UUT Reading (dB)
20 - 100	LA	Fast	94.03	94.3
		Slow		94.3
	L _C	Fast		94.3
30-120	LA	Fast	94.03	94.5
		Slow		94.5
	L _C	Fast		94.5
30 - 120	LA	Fast	113.97	114.2
		Slow		114.2
	L _C	Fast		114.2

IEC 651 Type 1 Spec. : \pm 0.7 dB Uncertainty : \pm 0.1 dB

- Level Stability : 0.0 dB IEC 651 Type 1 Spec. : ± 0.3 dB Uncertainty : ± 0.01 dB
- 3. Linearity
- 3.1 Level Linearity

UUT Range (dB)	Applied Value (dB)	UUT Rdg (dB)	Variation (dB)	IEC 651 Type 1 Spec. (Primary Indicator Range)
140	114.0	114.6	+0.1	$\pm 0.7 \text{ dB}$
130	104.0	104.7	+0.2	± 0.7 dB
120	94.0	94.5 (Ref.)		-
110	84.0	84.5	0.0	-
100	74.0	74.2	-0.3	1
90	64.0	64.0	-0.5	1
80	54.0	54.0	-0.5	

Uncertainty : ± 0.1 dB

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Certificate No. 96127

Page 3 of 4 Pages

3.2 Differential level linearity

UUT Range	Applied Value (dB)	UUT Rdg (dB)	Variation (dB)	IEC 651 Type 1 Spec.
120	84.0	84.4	-0.1	± 0.4
	94.0	94.5 (Ref.)		
[95.0	95.5	0.0	± 0.2
	104.0	104.5	0.0	± 0.3
	105.0	105.5	0.0	± 1.0

Uncertainty : ± 0.1 dB

4. Frequency Weighting

A weighting

Frequency	Attenuation (dB)	IEC 651 Type 1 Spec.
31.5 Hz	-39.0	- 39.4 dB, ± 1.5 dB
63 Hz	-25.8	- 26.2 dB, ± 1.5 dB
125 Hz	-15.7	- 16.1 dB, ±1 dB
250 Hz	-8.3	- 8.6 dB, ±1 dB
500 Hz	-3.0	- 3.2 dB, ±1 dB
1 kHz	0.0 (Ref)	$0 \text{ dB}, \pm 1 \text{ dB}$
2 kHz	+1.2	$+ 1.2 dB, \pm 1 dB$
4 kHz	+0.8	$+ 1.0 \text{ dB}, \pm 1 \text{ dB}$
8 kHz	-1.3	- 1.1 dB, +1.5 dB ~ -3 dB
16 kHz	-5.9	- 6.6 dB, + 3 dB ~ - ∞

Uncertainty : $\pm 0.1 \text{ dB}$

Certificate No. 96127

Page 4 of 4 Pages

4. Time Averaging

Applied Burst duty Factor	Applied Leq Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	40.0	40.0	(mes)
1/10	40.0	39.9	± 0.5 dB
$1/10^{2}$	40.0	40.1	
$1/10^{3}$	40.0	40.2	± 1.0 dB
$1/10^4$	40.0	40.3	

Uncertainty : $\pm 0.1 \text{ dB}$

Remark : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure : 1 010 hPa.

----- END -----

Certificate No. 96128	Page 1 of 2 Pages
Customer: Lam Environmental Services Ltd	
Address : 11/F, Centre Point, 181-185 Gloucester Roa	d, Wanchai, Hong Kong.
Order No.: Q92434	Date of receipt : 24-Nov-09
Item Tested	
Description : Sound Level Calibrator (EL469)	
Manufacturer : ACO	
Model :	Serial No. : 050213
Test Conditions	
Date of Test: 26-Nov-09	Supply Voltage :
Ambient Temperature : (23 ± 3)°C	Relative Humidity : (50 ± 25) %
Test Specifications	
Calibration check.	
Ref. Document/Procedure: F21, Z02.	
Test Results	

All results were within the IEC 942 Class 1 specification after adjustment. The results are shown in the attached page(s).

Main	Test	equ	ipment	used:
		0.40		

Equipment No.	Description	Cert. No.	Due Date	Traceable to
S014	Spectrum Analyzer	93091	18-Jun-10	NIM-PRC & SCL-HKSAR
S024	Sound Level Calibrator	93758	16-Jul-10	NIM-PRC & SCL-HKSAR
S041	Universal Counter	94005	6-Aug-10	SCL-HKSAR
S206	Sound Level Meter	93966	5-Aug-10	SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

P.F. Wong

Approved by :

27-Nov-09

Dorothy Cheuk

This Certificate is issued by: Date: Hong Kong Calibration Ltd. Unit 88, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong, Tel: 2425 8901 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Certificate No. 96128

Page 2 of 2 Pages

Results :

1. Level

	Measured	Value (dB)	
UUT Nominal Value (dB)	Before adjust.	After adjust.	IEC 942 Class 1 Spec.
94	*93.52	94.11	± 0.3 dB

The above measured values are the mean of 3 measurements. Uncertainty : $\pm 0.1 \text{ dB}$

2. Frequency

UUT Nominal Value	Measured Value		IEC 942 Class 1 Spec.
1 kHz	1.016	kHz	±2%

Uncertainty : ± 3.6 x 10⁻⁶

- Level Stability : 0.0 dB IEC 942 Class 1 Spec. : ± 0.1 dB Uncertainty : ± 0.01 dB
- Total Harmonic Distortion : < 2.9 % IEC 942 Class 1 Spec. : < 3 % Uncertainty : ± 2.3 % of reading

Remark : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure : 1010 hPa.
- 4. *Out of Specification.

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES ALS TECHNICHEM (HK) Pty Ltd

Environmental Division

CERTIFICATE OF ANALYSIS

CONTACT:	MS CHERRY MAK
CLIENT:	LAM GEOTECHNICS LIMITED
ADDRESS:	11/F., CENTRE POINT,
	181-185 GLOUCESTER ROAD,
	WAN CHAI,HONG KONG.
PROJECT:	HK_2009_05 WAN CHAI DEVELOPMENT PHASE II AND
	CENTRAL-WAN CHAI BYPASS

Batch: LABORATORY: DATE RECEIVED: DATE OF ISSUE: SAMPLE TYPE: No. of SAMPLES: 1

HK1013018 HONG KONG 15/06/2010 22/06/2010 EQUIPMENT

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung HONG KONG

Phone: Fax: Email:

852-2610 1044 852-2610 2021 hongkong@alsenviro.com

Mr Chan Kwok Fai, Godfrey Laboratory/Manager - Hong Kong

Other ALS Environmental Laboratories

Bogor

AUSTRALIA

AMERICAS

- Brisbane Melbourne Sydney Newcastle
- Hong Kong Vancouver Singapore Santiago Kuala Lumpur Amtofagasta Lima

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Abbreviations: % SPK REC denotes percentage spike recovery CHK denotes duplicate check sample LOR denotes limit of reporting LCS % REC denotes Laboratory Control Sample percentage recovery

ALS Technichem (HK) Ptu Ltd Part of the ALS Laboratory Group

Page 1 of 2

11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., H.K. Phone: 852-2610 1044 Fax: 852-2610 2021 www.alsenviro.com A Campbell Brothers Limited Company

CERTIFICATE OF ANALYSIS

Batch:	HK1013018
Date of Issue:	22/06/2010
Client:	LAM GEOTECHNICS LIMITED
Client Reference:	

Calibration of Mulitimeter

Item :	pH , Temperature , Salinity , DO
ALS Lab ID:	HK1013018 -001
Date of Calibration:	17 June,2010

Model No.: YSI Sonde 600XL Serial No.: 05C1607

Testing Results :

a i

рН	Expected Reading	Recording Reading	Testing Method:
	4.00 7.00 10.00	3.90 7.15 10.05	APHA (20th edition), 4500-H ⁺ B
	Allowing Deviation	± 0.2 unit	
Conductivity	Expected Reading	Recording Reading	Testing Method:
	146.9 uS/cm 6667 uS/cm 12890 uS/cm 58670 uS/cm	150 uS/cm 6259 uS/cm 12234 uS/cm 55608 uS/cm	APHA (20th edition), 2510B
	Allowing Deviation	± 10%	
Temperature	Expected Reading	Recording Reading	Testing Method:
	17.0 °C 24.5 °C 41.0 °C	16.9 °C 24.6 °C 40.6 °C	In-House Method
	Allowing Deviation	±2.0 ⁰ C	
Salinity	Expected Reading	Recording Reading	Testing Method:
	0 g/L 10.0 g/L 20.0 g/L 30.0 g/L	0.01 g/L 10.2 g/L 20.3 g/L 30.8 g/L	APHA (20th edition), 2520 A and B
	Allowing Deviation	± 10%	
DO	Expected Reading	Recording Reading	Testing Method:
	7.67 mg/L 5.97 mg/L 4.70 mg/L	7.70 mg/L 6.02 mg/L 4.86 mg/L	APHA (20th edition), 4500-OC & G
	Allowing Deviation	± 0.2 mg/L	

en Mr Chan Kwok Fai, Godfrey Laboratory Manager Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

ALS TECHNICHEM (HK) Pty Ltd

Environmental Division

CERTIFICATE OF ANALYSIS

CONTACT: CLIENT: ADDRESS: MS CHERRY MAK LAM GEOTECHNICS LIMITED 11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG

Batch: LABORATORY: DATE RECEIVED: DATE OF ISSUE: SAMPLE TYPE: No. of SAMPLES:

HK1010688 HONG KONG 19/05/2010 24/05/2010 EQUIPMENT 1

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd 11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung HONG KONG

Phone: Fax: Email:

852-2610 1044 852-2610 2021 hongkong@alsenviro.com

Mr Chan Kwok Fai, Godfrey

Laboratory Manager - Hong Kong

Other ALS Environmental Laboratories

Bogor

AUSTRALIA

AMERICAS

Brisbane Melbourne Sydney Newcastle Hong Kong Vancouver Singapore Santiago Kuala Lumpur Amtofagasta Lima

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Abbreviations: % SPK REC denotes percentage spike recovery CHK denotes duplicate check sample LOR denotes limit of reporting LCS % REC denotes Laboratory Control Sample percentage recovery

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

Page 1 of 2

11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., H.K. Phone: 852-2610 1044 Fax: 852-2610 2021 www.alsenviro.com A Campbell Brothers Limited Company

CERTIFICATE OF ANALYSIS

Batch:HK1010688Date of Issue:24/05/2010Client:LAM GEOTECHNICS LIMITEDClient Reference:

Calibration of Turbidimeter

Item :TURBIDIMETERALS Lab ID:HK1010688-001Date of Calibration:20 May, 2010

Testing Results :

Turbidity

Expected Reading	Recording Reading
0.00 NTU	0.34NTU
4.00 NTU	4.26 NTU
16.0 NTU	16.8 NTU
400 NTU	390 NTU
Allowing Deviation	± 10%

Testing Method:

Model No.: 2100P

Equipment No.: G05-07R002

Serial No.: 930300002705

APHA (19th edition), 2130B

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

Appendix 5.1

Monitoring Schedules for Reporting Month and Coming Reporting Month

Contract No. HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass Sampling, Field Measurement and Testing Works (Stage 1)

Environmental Monitoring Schedule July 2010

Sunday		Mono	lay	Tuesday	1	Wedne	esday	Thurs	day	Frid	ay	Satu	rday
	27-Jun		28-Jun		29-Jun		30-Jun		1-Ju		2-Jul		3-Jul
								Public Holiday					
				Noise (Day time)									
				Noise (Restricted hr)									
		Impact WQM				Impact WQM				Impact WQM			
		Mid-ebb	13:34			Mid-ebb	14:39			Mid-ebb	15:38		
		Mid-flood:	20:54			Mid-flood:	22:00			Mid-flood:	23:06		
	4-Jul		5-Jul		6-Jul		7-Jul		8-Ju		9-Jul		10-Jul
				Noise (Day time)									
				Noise (Restricted hr)									
		Impact WQM		Impact WQM				Impact WQM				Impact WQM	
		Mid-ebb	17:53	Mid-flood:	00:42			Mid-ebb	9:41			Mid-ebb	11:04
								Mid-flood:	16:55			Mid-flood:	18:32
	11-Jul		12-Jul		13-Jul		14-Jul		15-Ju		16-Jul		17-Ju
				Noise (Day time)									
				Noise (Restricted hr)									
		Impact WQM				Impact WQM				Impact WQM			
		Mid-ebb	12:42			Mid-ebb	14:16			Mid-flood:	9:12		
		Mid-flood:	19:51			Mid-flood:	21:08			Mid-ebb	15:47		
	18-Jul		19-Jul		20-Jul		21-Jul		22-Ju		23-Jul		24-Ju
				Noise (Day time)									
				Noise (Restricted hr)									
Impact WQM		Impact WQM				Impact WQM				Impact WQM			
Mid-flood		Mid-ebb	6:40			Mid-ebb	9:33			Mid-ebb	10:50		
						Mid-flood:	17:00			Mid-flood:	18:21		
	25-Jul		26-Jul		27-Jul		28-Jul		29-Ju	I	30-Jul		31-Ju
				Noise (Day time)									
				Noise (Restricted hr)									
		Impact WQM				Impact WQM				Impact WQM			
		Mid-ebb	12:38			Mid-ebb	13:42			Mid-ebb	14:41		
		Mid-flood:	19:52			Mid-flood:	20:42			Mid-flood:	21:29		
			10.02				20.12				21.20	I	

Contract No. HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass Sampling, Field Measurement and Testing Works (Stage 1)

Tentative Environmental Monitoring Schedule August 2010

Sunday		Monda	ıy	Tuesday		Wednesday		Thursda	iy	Frida	ay	Satu	day
	1-Aug		2-Aug		3-Aug	4-/	۱ug		5-Aug	1	6-Aug	1	7-Aug
				Naisa (Davidara)	D 14								
		Noise (Day time)	A.M.	Noise (Day time) Noise (Restricted hr)	P.M. 1900-2000								
Impact WQM				Noise (Restricted hr)	1900-2000		Imr	pact WQM				Impact WQM	
Mid-flood	9:36							d-ebb:	8:24			Mid-ebb:	10:02
Mid-nood Mid-ebb	9.30 15:40							d-flood:	0.24 20:48			Mid-flood:	10.02
	8-Aug		9-Aug		10-Aug	11-/		u-1100u.	20.48 12-Aug		13-Aug		14-Aug
	o-Aug		9-Aug		TU-Aug	11-4	Nug		12-Aug		13-Aug		14-Aug
		Noise (Day time)	A M	Noise (Day time)	P.M.								
			, (.ivi.	Noise (Restricted hr)	1900-2000								
		Impact WQM				Impact WQM				Impact WQM			
		Mid-ebb:	11:38			Mid-ebb: 13:12				Mid-flood:	8:14		
		Mid-flood:	18:45			Mid-flood: 19:49				Mid-ebb:	14:39		
	15-Aug		16-Aug		17-Aug	18-4	۸ug		19-Aug		20-Aug	1	21-Aug
		Noise (Day time)	A.M.	Noise (Day time)	P.M.								
				Noise (Restricted hr)	1900-2000								
Impact WQM						Impact WQM				Impact WQM			
Mid-flood	10:08					Mid-ebb: 8:18				Mid-ebb:	9:50		
Mid-ebb	16:11					Mid-flood: 20:50				Mid-flood:	17:36		
	22-Aug		23-Aug		24-Aug	25-4	Aug		26-Aug		27-Aug	1	28-Aug
		Noise (Day time)	A.M.	Noise (Day time)	P.M.								
				Noise (Restricted hr)									
		Impact WQM				Impact WQM				Impact WQM			
		Mid-ebb:	11:42			Mid-ebb: 12:46				Mid-flood:	7:28		
		Mid-flood:	18:46			Mid-flood: 19:28			0.0	Mid-ebb:	13:45		1.0
	29-Aug		30-Aug		31-Aug	1-3	Sep		2-Sep		3-Sep		4-Sep
		Noise (Day time)	Δ.Μ.	Noise (Day time)	P.M.								
		Noise (Day time)	A.IVI.	Noise (Restricted hr)	1900-2000								
		Impact WQM			1300-2000		Imr	pact WQM				Impact WQM	
		Mid-flood:	9:34					d-ebb:	6:00			Mid-ebb:	8:45
		Mid-ebb:	9.34 15:18					d-flood:	8.00 18:43			Mid-flood:	0.45 21:18
			13.10				IVIIC	u 1100u.	10.45			wiid-11000.	21.10

Contract No. HK/2009/05 Wan Chai Development Phase II and Central-Wan Chai Bypass Sampling, Field Measurement and Testing Works (Stage 1)

Environmental Monitoring Schedule

Remarks (Water)

- 1. Cut-off date is at the 27th of each reporting month.
- 2. Actual monitoring will subject to change due to any safety concern or adverse weather condition.
- 3. Water Quality Monitoring Stations corresponding to active contracts are sub-divided below:
- Contract HY/2009/11: WSD9, WSD10, WSD15, WSD17, C8, C9 (Commenced on 23 March 2010)
- Contract HY/2009/15: C6, C7 (To be commenced in Sep 2010)
- Contract HK/2009/01: WSD7, WSD19, WSD20, C1, C2, C3, C4e, C4w (Commenced on 8 July 2010)
- Contract HK/2009/02: WSD21, C5e, C5w (Commenced on 8 July 2010)

Remarks (Air)

- 1. Cut-off date is at the 27th of each reporting month.
- 2. Actual monitoring will subject to change due to any safety concern or adverse weather condition.
- 3. Air Quality Monitoring Stations corresponding to active contracts are sub-divided below:
- Contract HK/2009/01: CMA5a and CMA6a (To be commenced when filling works)
- Contract HK/2009/02: CMA4a (To be commended when filling works)
- Contract HY/2009/11: CMA1b and CMA2a (To be commenced when filling work starts)
- Contract HY/2009/15: CMA3a (Contract to be commenced in Sep 2010)

Remarks (Noise)

- 1. Cut-off date is at the 27th of each reporting month.
- 2. Actual monitoring will subject to change due to any safety concern or adverse weather condition.
- 3. Noise Quality Monitoring Stations corresponding to active contracts are sub-divided below:
- Contract HK/2009/01 and HK/2009/02: M1a (Commenced on 6 July 2010)
- Contract HY/2009/11: M4a, M5b (Commenced on 23 Mar 2010 when dredging work starts); M3a and M6 (To be commenced in mid-2010 when filling work starts)
- Contract HY/2009/15: M2b (Contract to be commenced in Sep 2010)
- 4. Day time noise will be monitored for Leq(30min) during the period between 07:00 and 19:00 for active contract(s).
- 5. Restricted hours noise (i.e. outside 07:00-19:00 of normal weekday) will be monitored for 3 nos. Leq(5min) as per the relevant Construction Noise Permit(s) in force for the following contract(s): Contracts HY/2009/11 and HK/2009/02

Appendix 5.2

Noise Monitoring Results and Graphical Presentations

Noise Monitoring Result

Day Time (0700 - 1900hrs on normal weekdays)

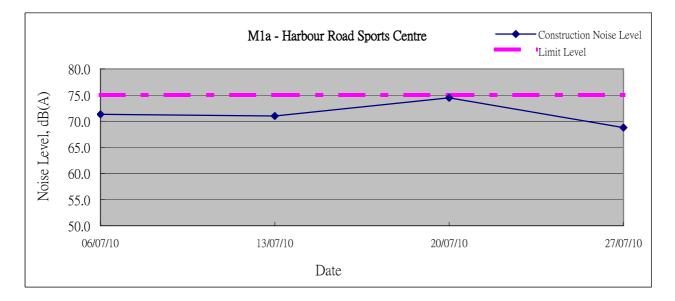
Location: M1a - Harbour Road Sports Centre

			Measurement Noise Level			Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq
					30-min)			
06/07/10	10:04	Sunny	73.4	75.6	69.0	69.2	71	75
13/07/10	09:50	Fine	73.2	75.8	68.4	69.2	71	75
20/07/10	09:45	Fine	75.6	77.8	71.8	69.2	74	75
27/07/10	10:12	Fine	72.0	74.9	68.9	69.2	69	75

Noise Monitoring Result

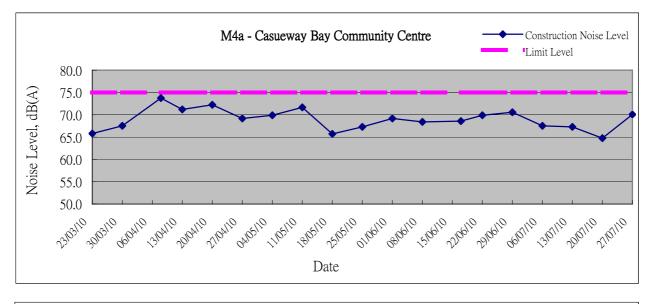
Day Time (0700 - 1900hrs on normal weekdays)

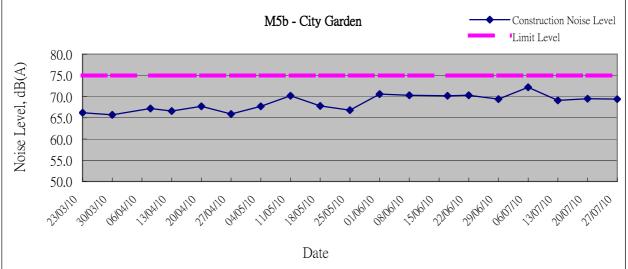
Location: M4a - Caseway Bay Community Centre


			Measur	ement Noi	se Level	Baseline Noise Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq
						Unit: dB(A), (30min)	
29/06/10	15:16	Sunny	72.7	74.5	69.7	68.6	71	75
06/07/10	14:30	Sunny	71.1	72.5	68.9	68.6	68	75
13/07/10	10:40	Fine	71.0	72.4	68.6	68.6	67	75
20/07/10	15:30	Fine	70.1	71.7	67.7	68.6	65	75
27/07/10	15:34	Cloudy	72.4	74.4	69.8	68.6	70	75

Location: M5b - City Garden

			Measure	ement Noi	se Level	Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq
						Unit: dB(A), (30min)	
29/06/10	13:27	Sunny	69.4	70.3	67.7	-	69	75
06/07/10	15:30	Sunny	72.2	72.9	71.1	-	72	75
13/07/10	13:10	Fine	69.1	69.9	68.0	-	69	75
20/07/10	13:30	Fine	69.5	71.0	66.5	-	70	75
27/07/10	13:55	Rainy	69.4	70.4	68.0	-	69	75




Graphic Presentation of Noise Monitoring Result Day Time (0700 - 1900hrs on normal weekdays)

Graphic Presentation of Noise Monitoring Result Day Time (0700 - 1900hrs on normal weekdays)

am

Noise Monitoring Result

Restricted Time (1900 - 2300 hrs on normal weekdays and 0700-2300 on holiday)

Location: M1a - Harbour Road Sports Centre

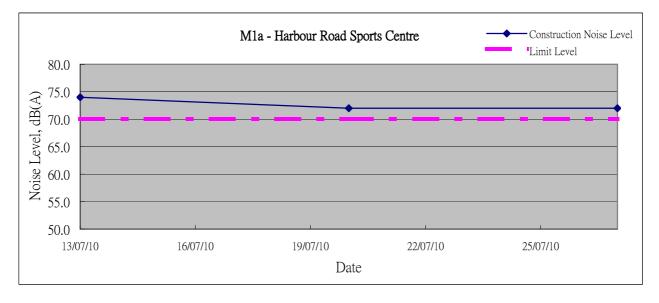
			Measure	ement Noi	se Level	Average Noise Level	Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq	Leq
						i	Jnit: dB(A), (5-min)		-
	21:14		76.1	78.8	70.9				
13/07/10	21:21	Fine	74.8	76.4	68.2	74.1	60.1	74	70
	21:28		71.5	73.9	66.5				
	21:09		71.4	73.3	68.9				
20/07/10	21:14	Fine	73.5	75.2	71.0	72.0	60.1	72	70
	21:19		71.0	72.6	67.9				
	21:08		71.9	73.7	68.3				
27/07/10	21:13	Rainy	73.9	74.3	69.5	72.4	60.1	72	70
	21:19		71.5	74.0	67.4				

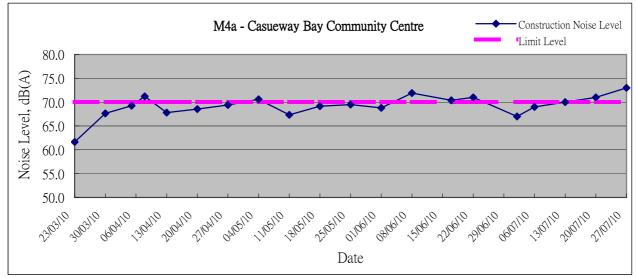
am

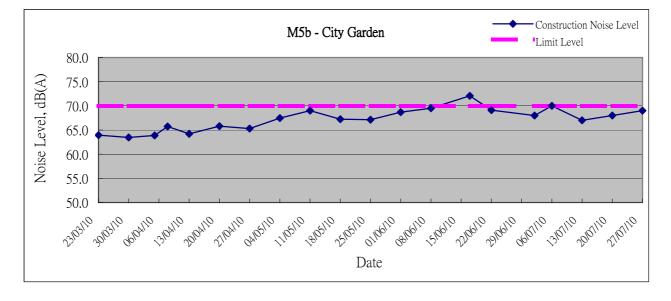
Noise Monitoring Result

Restricted Time (1900 - 2300 hrs on normal weekdays and 0700-2300 on holiday)

Location: M4a - Caseway Bay Community Centre


			Measure	ement Noi	se Level	Average Noise Level	Baseline Noise Level	Construction Noise Level	Limit Level			
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq	Leq			
				Unit: dB(A), (5-min)								
	19:10		67.1	68.6	65.1							
02/07/10	19:16	Fine	69.4	71.1	67.1	68.9	63.7	67	70			
	19:22		70.2	72.0	67.5							
	19:23		68.9	70.1	67.4							
06/07/10	19:29	Fine	70.4	72.1	69.1	69.9	63.7	69	70			
	19:37		70.4	72.5	69.9							
	19:10		71.0	72.4	68.9							
13/07/10	19:16	Fine	71.3	72.6	69.2	71.2	63.7	70	70			
	19:22		71.4	73.1	68.7							
	19:00		72.0	73.9	69.5							
20/07/10	19:05	Fine	72.1	73.5	69.8	72.0	63.7	71	70			
	19:10		71.8	73.3	69.2							
	19:05		73.5	75.2	71.4							
27/07/10	19:10	Cloudy	73.6	74.8	71.6	73.5	63.7	73	70			
	19:16		73.3	74.9	71.0							


Location: M5b - City Garden


			Measure	ement No	ise Level	Average Noise Level	Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq	Leq
						l	Jnit: dB(A), (5-min)	· ·	
	20:02		68.1	69.3	66.7				
02/07/10	20:10	Fine	69.0	70.7	66.766.0	68.1	-	68	70
	20:18		67.2	68.1	66.0				
	19:00		70.0	70.7	69.0				
06/07/10	19:06	Fine	69.7	70.1	69.3	70.0	-	70	70
	19:12		70.2	70.7	69.3				
	19:56		67.4	68.3	66.3				
13/07/10	20:02	Fine	67.0	67.7	65.9	67.3	-	67	70
	20:07		67.5	68.5	66.3				
	19:35		67.6	68.7	66.1				
20/07/10	19:40	Fine	68.5	70.4	66.1	68.1	-	68	70
	19:48		68.1	69.5	66.3				
	19:37		68.3	69.1	66.8				
27/07/10	19:44	Cloudy	68.9	69.4	67.2	68.6	-	69	70
	19:49		68.7	70.0	67.0				

Graphic Presentation of Noise Monitoring Result Restricted Time (1900 - 2300 hrs on normal weekdays and 0700-2300 on holiday)

Appendix 5.3

Water Quality Monitoring Results and Graphical Presentations

Date	Time	Weater Condition	Samplin	0 1	Wat	er Temp °C	erature		pН			Salini ppt	ty	D	O Satur %	ation		DO ma/L			Turbid NTU		Suspend	led Solids
		oonanion	n	า	Va	ilue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	
28/06/2010	21:45	Cloudy	Middle	2.0	24.97	24.99	25.0	7.58	7.58	7.6	31.16	31.16	31.2	94.0	94.3	93.1	6.45	6.46	6.41	4.13	4.01	4.05	6	5.50
20/00/2010	21:47	Cloudy	Middle	2.0	24.99	24.99	23.0	7.58	7.58	7.0	31.16	31.15	51.2	92.1	92.0	55.1	6.36	6.36	0.41	3.95	4.12	4.00	5	5.50
30/06/2010	22:17	Sunny	Middle	2.0	27.86	27.86	27.7	7.48	7.45	7.5	29.29	29.25	29.2	96.3	96.0	98.0	6.42	6.39	6.54	2.21	2.23	2.26	5	6.00
00/00/2010	22:19	Gamiy	Middle	2.0	27.47	27.47	21.1	7.47	7.46	1.0	29.13	29.13	20.2	99.9	99.6	00.0	6.69	6.67	0.04	2.28	2.32	2.20	7	0.00
02/07/2010	21:24	Fine	Middle	2.0	27.97	27.99	28.0	7.74	7.71	7.7	29.00	29.00	29.0	113.7	113.4	112.5	7.57	7.51	7.47	4.77	4.70	4.59	11	- 11.50
	21:26		Middle	2.0	28.08	28.08		7.65	7.64		28.98	28.98		111.6	111.2		7.40	7.40		4.49	4.38		12	
05/07/2010	23:15	Fine	Middle	2.0	28.68	28.70	28.5	7.89	7.88	7.8	25.45	25.45	25.5	110.1	109.9	110.5	7.39	7.38	7.44	2.08	2.62	2.07	5	4.50
	23:17		Middle	2.0	28.39	28.40		7.81	7.81		25.48	25.47		111.0	110.9		7.49	7.48		1.71	1.86		4	
08/07/2010	16:32	Sunny	Middle	2.0	29.04	29.05	29.1	7.41	7.41	7.4	26.51	26.51	26.5	83.5	83.3	83.3	5.54	5.54	5.53	1.70	1.56	1.61	7	6.00
	16:34	-	Middle	2.0	29.06	29.08		7.40	7.40		26.51	26.51		83.3	83.0		5.52	5.50		1.61	1.56		5	
10/07/2010	21:33	Sunny	Middle	2.5	24.80	24.80	24.8	7.99	7.99	8.0	32.65	32.67	32.7	42.9	42.1	41.7	2.95	2.90	2.87	4.72	5.84	4.95	11	12.50
	21:37	-	Middle	2.5	24.80	24.80		8.01	8.01		32.67	32.68		41.1	40.6		2.83	2.80		4.44	4.81		14	
12/07/2010	18:28	Sunny	Middle	2.0	26.15	26.15	26.2	7.65	7.65	7.7	29.44	29.44	29.4	86.2	86.1	86.0	6.01	6.01	5.99	2.33	2.61	2.47	15	16.00
	18:30		Middle	2.0	26.15	26.15		7.65	7.65		29.44	29.44		85.9	85.8		5.98	5.97		2.50	2.43		17	
14/07/2010	19:48	Fine	Middle	2.5	27.65	28.64	28.1	7.48	7.49	7.5	29.65	29.94	29.9	89.6	89.8	89.8	5.98	5.99	5.98	5.26	4.44	4.63	14	12.50
	19:50		Middle	2.5	27.64	28.64		7.49	7.49		29.93	29.93		89.9	89.8		5.98	5.98		4.28	4.52		11	
16/07/2010	07:38	Sunny	Middle	2.5	26.60	26.60	26.6	7.91	7.90	7.9	31.47	31.48	31.5	44.0	43.8	43.4	2.94	2.92	2.90	5.01	4.72	5.04	13	13.00
	07:41		Middle	2.5	26.60	26.60		7.91	7.92		31.50	31.52		43.0	42.8		2.87	2.85		5.23	5.20		13	<u> </u>
18/07/2010	22:16	Fine	Middle	2.5	28.08	28.08	28.1	7.03	7.02	7.0	29.99	30.00	30.0	85.6	85.6	85.0	5.57	5.51	5.50	4.14	3.96	4.02	7	8.50
	22:18		Middle	2.5	28.11	28.12		7.01	7.01		29.96	29.96		84.5	84.4		5.49	5.44		4.48	3.49		10	
21/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· -	-	-	-	-	
	-		-		-	-		-	-		-	-		-	•		-	-		-	-		-	<u> </u>
23/07/2010	16:52	Cloudy	Middle	2.5	26.83	26.82	26.8	7.28	7.28	7.3	28.92	28.92	28.9	65.7	65.6	65.5	4.46	4.46	4.45	3.13	2.87	2.81	6	5.00
	16:53		Middle	2.5	26.81	26.81		7.28	7.28		28.93	28.93		65.3	65.5		4.45	4.42		2.69	2.56		4	<u> </u>
26/07/2010	18:17	Fine	Middle	2.0	27.88	27.88	27.9	7.35	7.35	7.4	30.49	30.49	30.5	103.9	104.2	103.7	6.89	6.90	6.86	2.78	2.98	2.88	5	5.50
	18:20		Middle	2.0	27.88	27.88		7.35	7.35		30.49	30.49		103.4	103.1		6.84	6.82		2.88	2.89		6	

Water Monitoring Result at WSD10 - Cha Kwo Ling Mid-Flood Tide

Date	Time	Weater Condition	Samplin	* .	Wate	er Temp °C	erature		pH			Salini ppt	ty	D	O Satur %	ation		DO ma/L			Turbid NTU		Suspend	led Solids
		Contaition	n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	alue	Average	Value	Average
28/06/2010	21:07	Claudy	Middle	2.5	25.20	25.22	25.0	7.81	7.80	7.0	30.22	30.22	20.2	90.0	90.1	80.0	6.21	6.20	6.14	4.26	3.99	4.00	9	0.00
28/06/2010	21:10	Cloudy	Middle	2.5	25.24	25.24	25.2	7.77	7.77	7.8	30.20	30.19	30.2	88.0	87.9	89.0	6.08	6.07	6.14	3.99	3.85	4.02	7	8.00
30/06/2010	21:45	Sunny	Middle	2.0	25.90	25.90	25.8	7.48	7.47	7.4	30.94	30.94	30.9	89.0	88.7	89.9	6.07	6.02	6.16	4.39	4.35	4.15	4	3.50
30/00/2010	21:47	Sunny	Middle	2.0	25.61	25.62	23.0	7.37	7.35	7.4	30.89	30.89	30.9	90.8	91.2	69.9	6.30	6.24	0.10	3.95	3.91	4.15	3	3.50
02/07/2010	21:00	Fine	Middle	2.0	28.28	28.37	28.2	7.64	7.69	7.7	29.06	28.90	29.1	122.0	121.4	121.8	8.03	8.03	8.07	5.81	6.11	5.63	12	13.00
02/07/2010	21:02	1 ine	Middle	2.0	27.99	27.99	20.2	7.72	7.72	1.1	29.16	29.16	23.1	122.0	121.9	121.0	8.11	8.11	0.07	5.38	5.23	5.05	14	13.00
05/07/2010	22:21	Fine	Middle	2.0	28.81	28.82	28.8	7.81	7.83	7.9	25.09	25.08	25.1	135.3	135.2	132.6	9.09	9.08	8.90	2.78	2.71	2.56	2	3.50
03/07/2010	22:24	1 IIIC	Middle	2.0	28.86	28.87	20.0	7.91	7.91	7.5	25.09	25.09	23.1	129.9	129.9	132.0	8.72	8.72	0.90	2.40	2.36	2.50	5	3.30
08/07/2010	17:40	Sunny	Middle	2.0	28.34	28.39	28.4	7.86	7.85	7.8	27.46	27.44	27.4	105.7	105.5	105.0	7.05	7.05	7.00	3.40	3.10	3.16	4	4.50
00/07/2010	17:42	Sunny	Middle	2.0	28.39	28.40	20.4	7.84	7.83	7.0	27.42	27.42	27.4	104.5	104.3	105.0	6.97	6.94	7.00	3.12	3.02	5.10	5	4.50
10/07/2010	20:45	Sunnv	Middle	2.5	25.10	25.20	25.1	7.96	7.97	8.0	33.21	33.22	33.2	43.8	40.4	41.4	2.97	2.74	2.80	6.68	6.97	7.08	10	11.00
10/07/2010	20:50	Sunny	Middle	2.5	25.10	25.10	23.1	7.96	7.97	0.0	33.21	33.21	55.2	41.8	39.7	41.4	2.83	2.67	2.00	7.65	7.01	7.00	12	11.00
12/07/2010	17:03	Sunny	Middle	2.0	25.98	25.98	26.0	7.74	7.75	7.7	29.35	29.35	29.3	90.8	90.6	90.2	6.34	6.33	6.30	2.70	2.70	2.72	16	17.00
12/01/2010	17:05	Gunny	Middle	2.0	25.98	25.98	20.0	7.75	7.75	7.7	29.34	29.34	23.3	89.2	90.0	30.2	6.24	6.29	0.00	2.75	2.71	2.12	18	17.00
14/07/2010	19:18	Fine	Middle	2.5	27.88	27.88	27.9	7.48	7.48	7.5	30.18	30.18	30.2	86.6	86.6	86.3	5.74	5.73	5.72	6.77	6.97	6.82	14	14.00
14/01/2010	19:19	1 110	Middle	2.5	27.88	27.87	21.0	7.48	7.48	1.0	30.18	30.18	00.2	85.9	86.1	00.0	5.70	5.70	0.72	6.69	6.85	0.02	14	14.00
16/07/2010	08:55	Sunny	Middle	2.5	27.00	27.00	27.0	7.93	7.93	7.9	31.69	31.69	31.7	49.1	48.1	47.7	3.27	3.19	3.17	4.74	5.12	4.98	15	- 13.50
10/01/2010	08:58	Canny	Middle	2.5	27.00	27.00	2110	7.94	7.93		31.70	31.70	0	47.2	46.5		3.13	3.08	0.11	4.99	5.07		12	10.00
18/07/2010	21:54	Fine	Middle	2.5	28.41	28.42	28.4	7.06	7.06	7.1	29.88	29.88	29.9	88.6	88.7	88.4	5.71	5.73	5.72	2.27	1.94	2.16	9	8.50
10/01/2010	21:56	1 1110	Middle	2.5	28.45	28.45	2011	7.06	7.06		29.89	29.89	20.0	88.4	88.0	0011	5.72	5.72	0.12	2.12	2.32	2.10	8	0.00
21/07/2010	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-		-	-	_	-	
	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
23/07/2010	16:28	Cloudy	Middle	2.5	26.33	26.33	26.3	7.29	7.29	7.3	29.08	29.08	29.1	63.2	63.2	63.2	4.33	4.31	4.32	2.56	2.64	2.48	8	7.00
	16:30	,	Middle	2.5	26.34	26.34		7.29	7.29		29.09	29.08		63.2	63.1		4.31	4.31		2.37	2.36		6	
26/07/2010	17:21	Fine	Middle	2.0	28.14	28.14	28.1	7.39	7.39	7.4	29.09	29.09	29.1	109.3	109.3	109.2	7.26	7.26	7.26	2.60	2.92	2.77	4	4.00
	17:23		Middle	2.0	28.14	28.14	-	7.39	7.39		29.09	29.09		109.1	109.1		7.25	7.25		2.75	2.81		4	

Water Monitoring Result at WSD15 - Sai Wan Ho Mid-Flood Tide

Date	Time	Weater	Samplin	g Depth	Wate		perature		pН			Salini	ty	D	O Satura	ation		DO		
Dale		Condition	n	n	Va	°C	A	Va	-	A	Va	ppt	A	1/2	%	A		mg/L		<u> </u>
					va	lue	Average	Va	lue	Average	va	lue	Average	va	lue	Average	Va	lue	Average	-
28/06/2010	20:33	Cloudy	Middle	1.5	25.29	25.30	25.2	7.69	7.70	7.7	32.90	32.90	32.5	79.3	79.4	81.6	5.41	5.41	5.36	
28/00/2010	20:36	Cloudy	Middle	1.5	25.30	24.76	23.2	7.69	7.68	1.1	32.16	32.15	52.5	83.3	84.4	01.0	5.34	5.27	5.50	
30/06/2010	21:07	Sunny	Middle	1.5	26.13	26.14	26.0	7.49	7.48	7.5	30.79	30.79	30.5	86.0	85.6	87.6	5.84	5.83	5.93	
30/00/2010	21:09	Sunny	Middle	1.5	25.94	25.97	20.0	7.44	7.43	1.5	30.29	30.27	30.3	89.3	89.6	07.0	6.04	6.02	5.85	
03/07/2010	00:51	Fine	Middle	1.5	26.56	26.60	26.5	7.49	7.48	7.5	30.63	30.63	30.6	88.3	88.1	88.4	5.96	5.97	5.98	
03/07/2010	00:53	1 IIIe	Middle	1.5	26.51	26.51	20.5	7.44	7.44	7.5	30.62	30.63	30.0	88.7	88.5	00.4	6.00	5.98	5.90	
06/07/2010	01:55	Fine	Middle	1.0	28.12	28.12	28.1	7.78	7.78	7.8	25.26	25.25	25.2	95.8	95.7	95.7	6.50	6.50	6.50	
00/07/2010	01:57	TINE	Middle	1.0	28.09	28.11	20.1	7.81	7.81	7.0	25.20	25.19	25.2	95.6	95.7	35.7	6.49	6.50	0.00	
08/07/2010	20:29	Sunny	Middle	2.5	27.90	27.91	27.9	7.65	7.64	7.6	27.78	27.78	27.8	79.8	79.3	79.2	5.35	5.33	5.31	
00/07/2010	20:30	Gunny	Middle	2.5	27.91	27.91	21.5	7.64	7.64	7.0	27.78	27.78	27.0	78.8	78.8	13.2	5.29	5.28	5.51	
10/07/2010	17:08	Sunny	Middle	2.5	27.30	27.40	27.4	8.06	8.06	8.1	30.01	30.02	30.0	42.4	50.1	47.4	2.84	3.34	3.15	
10/07/2010	17:10	Gunny	Middle	2.5	27.40	27.30	27.4	8.06	8.06	0.1	30.01	30.01	50.0	49.8	47.4	-11-	3.26	3.16	3.15	
12/07/2010	20:02	Sunny	Middle	2.5	25.76	25.75	25.8	7.55	7.55	7.6	32.75	32.78	32.8	82.5	81.5	81.4	5.64	5.63	5.59	
12/07/2010	20:04	Gunny	Middle	2.5	25.75	25.75	23.0	7.55	7.55	7.0	32.79	32.79	52.0	80.9	80.6	01.4	5.54	5.54	5.55	
14/07/2010	21:12	Fine	Middle	2.5	27.52	27.52	27.5	7.37	7.37	7.4	32.15	32.15	32.2	79.3	79.3	79.2	5.23	5.23	5.23	
14/01/2010	21:14	1 IIIG	Middle	2.5	27.52	27.52	21.5	7.37	7.37	7.7	32.15	32.15	52.2	79.1	79.1	19.2	5.22	5.22	5.25	
																				, <u> </u>

3.95 4.05 4 5.93 3.72 4.00 3.44 3.42 4 3.52 3.32 5 5.98 3.62 6.00 7 3.82 3.83 4.18 4.20 4 6.50 4.02 3.50 3.84 3.85 3 2.35 6 2.30 5.31 2.30 5.50 2.27 2.26 5 3.25 3.11 6 3.15 3.25 6.50 3.30 3.32 7 2.41 2.56 15 5.59 2.51 14.50 2.50 2.56 14 5.96 5.56 14 5.23 5.66 13.50 5.44 5.67 13 13:10 Middle 27.40 27.40 8.09 8.09 31.96 31.96 3.51 3.50 5.04 4.97 2.5 54.6 54.3 14 Sunny 16/07/2010 27.4 8.1 32.0 54.1 3.48 4.93 14.50 13:14 Middle 2.5 27.40 27.50 8.09 8.09 31.98 31.98 53.9 53.5 3.45 4.82 4.88 15 3.47 00:01 Middle 2.5 28.38 28.38 7.08 7.08 30.24 30.24 88.5 88.4 5.73 5.72 2.24 2.33 7 19/07/2010 Fine 28.4 7.1 30.2 88.2 5.71 2.14 8.00 00:03 Middle 2.5 28.38 28.38 7.08 7.08 30.25 30.25 88.0 88.0 5.69 5.68 2.00 1.97 9 ----------------21/07/2010 ------------------------17:49 Middle 2.0 27.14 27.13 7.30 7.29 29.49 29.50 70.4 70.9 4.76 4.76 1.72 1.67 2 23/07/2010 Cloudy 27.1 7.3 29.5 70.3 4.68 1.77 2.00 17:52 Middle 27.10 27.10 7.30 7.29 29.53 70.1 69.9 1.99 2.0 29.52 4.60 4.59 1.69 <2 Middle 2.0 28.04 28.04 30.57 30.57 108.5 108.6 2.65 2.69 18:47 7.35 7.35 7.19 7.18 4 26/07/2010 Fine 28.0 7.4 30.6 108.8 7.19 2.54 4.00 2.37 109.1 109.1 7.20 2.43 18:50 Middle 2.0 28.04 28.04 7.35 7.35 30.57 30.57 7.20 4

Turbidity

NTU

4.87

4.67

Average

4.74

Value

4.76

4.66

Suspended Solids

13

16

mg/L Value Average

14.50

am Water Monitoring Result at WSD17 - Quarry Bay Mid-Flood Tide

Date	Time	Weater Condition	Samplin	ig Depth	Wate	er Temp °C	erature		pН			Salinit ppt	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspend	led Solids
		Condition	n	n	Va		Average	Va	lue	Average	Va		Average	Va		Average	Va		Average	Va	alue	Average	Value	g/∟ Average
00/00/0040	19:30		Middle	2.5	25.05	25.06		7.70	7.69		30.20	30.20		81.4	81.1		5.65	5.63		4.27	3.92		11	
28/06/2010	19:33	Cloudy	Middle	2.5	24.84	24.84	24.9	7.70	7.69	7.7	31.54	31.54	30.9	86.6	86.1	83.8	5.93	5.92	5.78	4.72	4.71	4.41	13	12.00
30/06/2010	20:40	Sunny	Middle	2.5	26.86	26.82	26.7	7.57	7.54	7.5	28.81	28.83	28.9	96.7	96.2	95.8	6.66	6.54	6.55	4.37	4.25	4.03	5	4.50
30/06/2010	20:42	Sunny	Middle	2.5	26.54	26.56	20.7	7.46	7.46	7.5	28.98	28.97	28.9	95.7	94.6	95.8	6.52	6.46	0.00	3.79	3.69	4.03	4	4.50
02/07/2010	20:01	Fine	Middle	3.5	27.30	27.29	27.1	7.67	7.65	7.7	29.49	29.49	29.3	107.4	106.8	106.5	7.20	7.18	7.18	5.27	5.36	4.93	7	7.00
02/07/2010	20:03	1 IIIE	Middle	3.5	26.97	26.98	27.1	7.66	7.65	1.1	29.15	29.14	29.5	106.2	105.7	100.5	7.19	7.15	7.10	4.43	4.64	4.93	7	7.00
06/07/2010	01:16	Fine	Middle	2.5	28.06	28.07	28.0	7.81	7.81	7.8	25.37	25.36	25.3	99.9	99.7	100.0	6.78	6.78	6.80	1.88	2.02	1.74	5	6.00
00/07/2010	01:18	TING	Middle	2.5	27.90	27.91	20.0	7.79	7.79	7.0	25.18	25.18	20.0	100.1	100.1	100.0	6.82	6.82	0.00	1.55	1.49	1.74	7	0.00
08/07/2010	20:13	Sunny	Middle	2.5	27.58	27.58	27.6	7.48	7.48	7.5	27.98	27.99	28.0	69.7	69.6	69.3	4.69	4.69	4.67	2.21	2.13	2.20	8	7.00
	20:15		Middle	2.5	27.60	27.60		7.48	7.48		27.99	27.99		69.0	69.0		4.65	4.65		2.29	2.17		6	
10/07/2010	17:28	Sunny	Middle	2.5	28.20	28.20	28.2	8.22	8.22	8.2	28.17	28.17	28.2	60.3	59.6	59.5	4.01	3.96	3.96	3.39	3.55	3.43	7	7.50
	17:31		Middle	2.5	28.20	28.20		8.20	8.20		28.19	28.20		59.3	58.9		3.94	3.91		3.35	3.43		8	
12/07/2010	19:29	Sunny	Middle	3.0	25.77	25.77	25.8	7.55	7.56	7.6	32.43	32.44	32.4	79.7	78.6	79.0	5.51	5.50	5.47	1.67	1.94	1.86	10	12.00
	19:31		Middle	3.0	25.77	25.77		7.55	7.55		32.45	32.45		78.8	78.7		5.43	5.43		1.96	1.85		14	
14/07/2010	20:57	Fine	Middle	3.0	27.63	27.64	27.6	7.32	7.33	7.3	32.43	32.43	32.4	76.4	76.3	76.2	5.02	5.02	5.01	4.52	4.24	4.56	18	16.50
	20:58		Middle	3.0	27.64	27.64		7.33	7.33		32.44	32.44		76.1	76.1		5.01	5.00		4.74	4.72		15	
16/07/2010	13:31	Sunny	Middle	2.5	27.20	27.20	27.3	7.99	7.99	8.0	31.42	31.42	31.4	49.4	48.9	48.8	3.31	3.28	3.27	4.71	5.06	4.94	11	10.00
	13:35		Middle	2.5	27.40	27.40		8.00	8.00		31.44	31.44		48.7	48.2		3.28	3.22		5.12	4.88		9	
18/07/2010	23:45	Fine	Middle	3.0	27.90	27.90	27.9	6.95	6.95	6.9	30.68	30.68	30.7	81.0	81.0	80.4	5.15	5.16	5.17	2.43	2.18	2.30	9	8.00
	23:48		Middle	3.0	27.90	27.90		6.94	6.93		30.68	30.68		78.7	80.8		5.12	5.26		2.28	2.30		7	<u> </u>
21/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	<u> </u>
23/07/2010	17:31	Cloudy	Middle	3.0	27.27	27.27	27.3	7.37	7.38	7.4	29.80	29.80	29.8	63.8	63.9	63.7	4.29	4.28	4.27	1.84	1.69	1.72	2	2.50
	17:33		Middle	3.0	27.27	27.27		7.38	7.37		29.80	29.80		63.5	63.5		4.26	4.25		1.78	1.57		3	<u> </u>
26/07/2001	19:00	Fine	Middle	3.0	27.97	27.97	28.0	7.35	7.35	7.4	30.59	30.59	30.6	99.5	99.5	99.3	6.57	6.57	6.56	3.56	3.74	3.55	5	6.00
	19:03		Middle	3.0	27.99	27.99		7.35	7.35		30.59	30.59		99.0	99.0		6.54	6.54		3.50	3.39		7	

Water Monitoring Result at C9 - Provident Garden Mid-Flood Tide

Date	Time	Weater Condition		ig Depth	Wat	er Temp °C	erature		pН			Salinit ppt	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspend	ed Solids
		Condition	r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	alue	Average	Value	Average
28/06/2010	19:12	Cloudy	Middle	1.5	25.64	25.64	25.7	7.56	7.55	7.6	27.69	27.68	27.7	81.8	81.2	80.1	5.71	5.66	5.58	8.12	8.06	8.06	13	11.50
20/00/2010	19:15	Cloudy	Middle	1.5	25.78	25.78	23.1	7.56	7.55	7.0	27.79	27.78	21.1	78.9	78.5	00.1	5.48	5.47	3.30	8.03	8.04	0.00	10	11.50
30/06/2010	20:13	Sunny	Middle	1.5	27.33	27.39	27.4	7.43	7.42	7.4	27.49	27.49	27.5	85.2	85.1	85.9	5.78	5.77	5.84	7.40	7.67	7.51	12	11.50
00,00,2010	20:16	Canny	Middle	1.5	27.44	27.46	2	7.41	7.41		27.41	27.42	2110	85.0	88.1	00.0	5.83	5.96	0.01	7.67	7.31		11	11.00
02/07/2010	23:17	Fine	Middle	2.0	27.29	27.31	27.3	7.57	7.57	7.6	28.89	28.88	28.9	98.1	98.0	97.7	6.61	6.60	6.58	7.27	6.93	6.96	14	16.00
	23:19		Middle	2.0	27.31	27.32		7.56	7.56		28.88	28.88		97.4	97.2		6.57	6.55		6.84	6.81		18	
06/07/2010	00:30	Fine	Middle	2.0	28.48	28.48	28.5	7.98	7.95	8.0	24.33	24.33	24.3	114.2	113.8	113.7	7.72	7.72	7.71	2.80	2.85	2.77	7	6.00
	00:32		Middle	2.0	28.48	28.48		7.94	7.93		24.34	24.34		113.6	113.0		7.71	7.67		2.77	2.65		5	
08/07/2010	20:01	Sunny	Middle	2.5	28.29	28.29	28.3	7.55	7.55	7.6	26.76	26.76	26.8	72.5	72.2	71.6	4.84	4.81	4.79	2.48	2.39	2.48	8	7.50
	20:03		Middle	2.5	28.28	28.28		7.55	7.55		26.77	26.77		70.8	70.7		4.76	4.75		2.53	2.53		7	
10/07/2010	16:07	Sunny	Middle	2.0	27.90	27.90	28.0	8.15	8.15	8.2	27.53	27.53	27.5	54.0	53.2	52.5	3.63	3.57	3.52	9.36	8.19	7.98	11	12.50
	16:10		Middle	2.0	28.00	28.00		8.15	8.15		27.52	27.52		51.6	51.0		3.46	3.43		7.35	7.01		14	
12/07/2010	19:11	Sunny	Middle	2.5	25.97	25.97	26.0	7.54	7.55	7.5	30.19	30.19	30.2	80.9	80.0	79.5	5.62	5.55	5.53	5.66	5.13	5.18	22	22.50
	19:12		Middle	2.5	25.97	25.97		7.54	7.55		30.19	30.20		78.6	78.4		5.47	5.46		4.84	5.07		23	
14/07/2010	20:40	Fine	Middle	2.0	27.71	27.71	27.7	7.35	7.35	7.4	30.11	30.11	30.1	72.3	72.4	72.4	4.81	4.82	4.82	5.25	5.24	5.36	16	16.00
	20:41		Middle	2.0	27.71	27.71		7.35	7.35		30.11	30.12		72.5	72.5		4.82	4.82		5.39	5.55		16	
16/07/2010	12:47	Sunny	Middle	2.0	27.40	27.40	27.5	7.93	7.93	7.9	31.32	31.32	31.2	44.4	44.0	43.8	2.97	2.95	2.94	6.24	6.51	6.35	17	17.50
	12:50		Middle	2.0	27.50	27.50 28.67		7.95	7.95		31.15 30.41	31.15 30.41		43.7	43.2		2.94	2.89		6.60	6.06		18	
18/07/2010	23:25 23:27	Fine	Middle	2.0	28.67 28.66	28.67	28.7	7.01	7.00	7.0	30.41	30.41	30.4	86.8 86.4	86.1 86.4	86.4	5.57 5.52	5.57 5.48	5.54	2.45 2.56	2.61 2.63	2.56	12	11.50
	-		-	-	-	-		-	-		-	-		- 00	- 00		-	-		-	-		-	
21/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	17:15		Middle	2.0	26.55	26.56		7.22	7.22		29.30	29.30		64.2	64.1		4.26	4.25		4.68	4.49		6	
23/07/2010	17:17	Cloudy	Middle	2.0	26.57	26.57	26.6	7.22	7.22	7.2	29.30	29.30	29.3	63.0	63.2	63.6	4.24	4.23	4.25	5.03	4.77	4.74	6	6.00
	19:26		Middle	2.0	28.25	28.25		7.23	7.23		30.19	30.19		94.4	94.0		6.18	6.18		5.89	5.44		18	
26/07/2010	19:29	Fine	Middle	2.0	28.25	28.25	28.3	7.23	7.23	7.2	30.19	30.19	30.2	94.0	93.8	94.1	6.17	6.17	6.18	5.22	5.66	5.55	16	17.00

Water Monitoring Result at C8 - City Garden Mid-Flood Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur %	ation		DO ma/L			Turbid NTU		Suspend	led Solids a/L
			r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
28/06/2010	18:55	Cloudy	Middle	1.5	25.87	25.91	25.9	7.47	7.49	7.5	27.28	27.25	27.4	81.2	80.4	81.4	5.65	5.60	5.66	7.82	7.76	7.62	14	12.50
28/06/2010	18:58	Cloudy	Middle	1.5	25.82	25.82	25.9	7.51	7.50	7.5	27.51	27.50	27.4	82.7	81.3	01.4	5.73	5.65	5.00	7.46	7.42	7.02	11	12.50
30/06/2010	20:01	Sunny	Middle	1.5	27.87	27.88	27.8	7.50	7.50	7.5	26.79	26.79	26.7	83.1	82.7	85.2	5.62	5.59	5.69	8.37	8.51	8.45	11	10.50
30/00/2010	20:03	Sulliny	Middle	1.5	27.80	27.80	27.0	7.50	7.50	7.5	26.61	26.60	20.7	86.9	87.9	03.2	5.83	5.73	5.69	8.42	8.48	0.45	10	10.50
02/07/2010	22:34	Fine	Middle	1.5	28.01	28.02	28.0	7.62	7.62	7.6	28.26	28.26	28.3	95.4	95.4	95.3	6.38	6.37	6.37	8.15	9.12	8.86	18	17.00
02/07/2010	22:36	1 IIIe	Middle	1.5	28.03	28.03	20.0	7.62	7.62	7.0	28.27	28.26	20.5	95.2	95.2	90.0	6.36	6.36	0.37	9.31	8.84	0.00	16	17.00
06/07/2010	00:00	Fine	Middle	2.0	28.45	28.46	28.5	7.78	7.78	7.8	24.16	24.15	24.1	103.5	103.3	103.3	7.02	7.01	7.02	9.89	9.59	9.73	17	18.50
00/07/2010	00:02	TINC	Middle	2.0	28.45	28.48	20.0	7.78	7.78	7.0	24.14	24.14	27.1	103.3	103.1	103.5	7.01	7.02	7.02	9.82	9.62	5.75	20	10.50
08/07/2010	20:53	Sunny	Middle	2.5	28.18	28.19	28.2	7.50	7.51	7.5	26.19	26.18	26.2	67.8	67.5	67.3	4.57	4.56	4.54	3.92	3.89	3.69	6	6.50
00/01/2010	20:54	Culliny	Middle	2.5	28.19	28.20	20.2	7.51	7.51	1.0	26.18	26.18	20.2	67.1	66.8	07.0	4.52	4.50	+.04	3.56	3.37	0.00	7	0.00
10/07/2010	16:32	Sunny	Middle	1.5	28.80	28.80	29.0	8.14	8.14	8.1	27.38	27.38	27.4	46.3	46.2	46.2	3.05	3.05	3.04	7.99	8.13	7.77	23	16.50
10/07/2010	16:35	Gunny	Middle	1.5	29.10	29.10	23.0	8.12	8.12	0.1	27.40	27.40	27.4	46.1	46.0	40.2	3.04	3.03	3.04	7.24	7.70	1.11	10	10.50
12/07/2010	19:01	Sunny	Middle	2.5	25.06	25.06	25.1	7.55	7.56	7.6	29.28	29.28	29.0	76.1	75.3	75.3	5.32	5.31	5.26	3.74	3.86	3.67	24	23.00
12/01/2010	19:03	Culliny	Middle	2.5	25.06	25.05	20.1	7.56	7.56	1.0	29.28	28.28	20.0	75.0	74.9	10.0	5.21	5.20	0.20	3.49	3.59	0.01	22	20.00
14/07/2010	20:32	Fine	Middle	2.0	27.63	27.63	27.6	7.26	7.26	7.3	30.69	30.69	30.7	63.8	63.4	63.1	4.23	4.21	4.19	6.70	6.99	7.34	30	29.50
	20:34		Middle	2.0	27.63	27.63	2.1.0	7.26	7.26		30.69	30.69	0011	62.3	62.7	0011	4.17	4.16		7.68	7.99		29	20.00
16/07/2010	12:30	Sunny	Middle	2.0	27.60	27.60	27.7	7.88	7.88	7.9	31.18	31.18	31.2	42.2	42.0	42.7	2.80	2.79	2.83	8.43	8.52	8.27	22	20.50
	12:34		Middle	2.0	27.80	27.80		7.90	7.90		31.19	31.19		43.5	42.9		2.87	2.85		7.98	8.14		19	
18/07/2010	23:12	Fine	Middle	2.0	28.42	28.43	28.4	6.95	6.95	7.0	29.63	29.63	29.6	86.6	86.0	86.4	5.60	5.60	5.58	2.15	1.94	1.99	10	10.00
	23:14		Middle	2.0	28.42	28.42	-	6.95	6.95		29.64	29.64		86.4	86.4		5.53	5.60		2.01	1.86		10	
21/07/2010	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	
	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
23/07/2010	17:08	Cloudy	Middle	2.0	27.19	27.19	27.2	6.98	6.99	7.0	28.09	28.09	28.1	53.2	51.7	51.8	3.53	3.47	3.47	5.87	5.81	5.59	14	12.50
	17:09	,	Middle	2.0	27.19	27.19		6.98	6.98		28.09	28.09		51.2	51.1	-	3.43	3.43		5.21	5.46		11	
26/07/2010	19:17	Fine	Middle	2.0	27.99	27.99	28.0	7.12	7.12	7.1	29.73	29.73	29.7	70.5	70.5	70.4	4.67	4.66	4.67	4.83	4.69	4.48	12	13.00
	19:20		Middle	2.0	28.00	28.00		7.12	7.12		29.73	29.73		70.5	70.2		4.67	4.66		4.11	4.27		14	

Water Monitoring Result at WSD19 - Sheung Wan Mid-Flood Tide

Date	Time	Weater Condition	Samplin n	· ·		°C	erature		pH -			Salini ppt	,		O Satur %		Ma	DO mg/L	-	N/-	Turbic NTU	l í	m	
	10.15						Average		lue	Average			Average		lue	Average	Va		Average		alue	Average	Value	Average
08/07/2010	18:15	Sunny	Middle	2.5	29.71	29.71	29.7	7.92	7.92	7.9	25.55	25.54	25.5	71.1	70.8	70.9	4.69	4.67	4.68	4.62	4.42	4.14	10	9.00
	18:20		Middle	2.5	29.71	29.71		7.92	7.92		25.53	25.52		70.7	70.8		4.67	4.69		3.79	3.74		8	
10/07/2010	18:50	Sunny	Middle	2.5	28.20	28.20	28.2	8.07	8.07	8.1	28.01	28.02	28.0	46.1	44.2	44.9	3.10	2.96	3.02	5.25	4.93	5.04	9	10.00
10/07/2010	18:55	Sunny	Middle	2.5	28.20	28.30	20.2	8.07	8.07	0.1	28.01	28.01	28.0	45.7	43.7	44.9	3.07	2.93	3.02	4.87	5.10	5.04	11	10.00
40/07/0040	21:21	0	Middle	2.5	27.50	27.53	07.5	7.39	7.40	7.4	29.65	29.61	00.0	90.7	90.4	00.0	6.26	6.25	0.00	3.92	3.97	0.05	11	44.00
12/07/2010	21:22	Sunny	Middle	2.5	27.53	27.53	27.5	7.42	7.42	7.4	29.60	29.60	29.6	88.6	88.8	89.6	6.14	6.14	6.20	3.63	3.88	3.85	11	11.00
11/07/0010	22:20	_	Middle	2.0	27.55	27.55	07.5	7.28	7.28	7.0	30.33	30.33		83.0	82.3		5.47	5.48		5.77	5.19	5.04	16	47.00
14/07/2010	22:21	Fine	Middle	2.0	27.54	27.54	27.5	7.28	7.28	7.3	30.34	30.34	30.3	81.9	81.9	82.3	5.46	5.46	5.47	5.16	5.10	5.31	18	17.00
16/07/2010	11:51	0	Middle	2.0	27.30	27.40	27.4	7.91	7.91	7.9	30.94	30.94	04.0	53.9	53.4	54.4	3.58	3.55	0.44	9.11	8.42	8.49	16	- 15.00
16/07/2010	11:54	Sunny	Middle	2.0	27.40	27.40	27.4	7.90	7.90	7.9	30.96	30.96	31.0	49.6	48.7	51.4	3.28	3.23	3.41	8.44	7.98	8.49	14	15.00
40/07/0040	00:25	Fine	Middle	2.0	28.36	28.36	00.4	7.06	7.06	7.1	29.18	29.18	00.0	88.5	88.5	00.5	5.76	5.76	5 70	2.17	2.70	2.37	14	11.00
19/07/2010	00:28	Fine	Middle	2.0	28.37	28.37	28.4	7.06	7.06	7.1	29.18	29.18	29.2	88.4	88.4	88.5	5.75	5.75	5.76	2.29	2.30	2.37	8	11.00
21/07/2010	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
21/07/2010	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
00/07/004.0	18:47	Olausta	Middle	2.0	27.10	27.10	07.4	7.18	7.18	7.0	29.20	29.20	00.0	64.8	64.8	04.0	4.39	4.38	4.07	2.35	2.18	0.00	3	0.50
23/07/2010	18:49	Cloudy	Middle	2.0	27.11	27.11	27.1	7.19	7.19	7.2	29.20	29.20	29.2	64.7	64.7	64.8	4.37	4.35	4.37	2.24	2.65	2.36	4	3.50
26/07/2010	20:50	Fine	Middle	2.0	28.46	28.47	20.5	7.29	7.30	7.0	29.85	29.85	20.0	106.6	106.6	100.4	6.78	6.77	6 77	3.62	3.53	2.42	6	E 50
26/07/2010	20:53	Fine	Middle	2.0	28.48	28.47	28.5	7.29	7.30	7.3	29.84	29.84	29.8	106.1	106.1	106.4	6.76	6.76	6.77	3.31	3.24	3.43	5	5.50

Water Monitoring Result at WSD20 - Kennedy Town Mid-Flood Tide

Date	Time	Weater Condition	Samplin	0 1		er Temp °C lue	erature Average	Va	pH - lue	Average	Va	Salinit ppt lue	ty Average		O Satur % lue	ation Average	Va	DO mg/L	Average	Va	Turbid NTU		Suspend mg Value	led Solids g/L Average
	20:11		Middle	1.0	29.73	29.73	Average	7.88	7.87	Average	24.29		Average	75.5	75.3	Average	5.01	5.01	Average	3.28	2.95	Average	6	Average
08/07/2010	20:12	Sunny	Middle	1.0	29.73	29.73	29.7	7.86	7.86	7.9	24.29		24.3	74.9	74.9	75.2	4.98	4.99	5.00	2.67	2.34	2.81	4	5.00
10/07/2010	19:12	Sunny	Middle	2.5	27.40	27.40	27.7	7.92	7.92	8.0	28.79	28.79	28.8	42.7	42.2	42.0	2.87	2.83	2.82	5.48	5.19	5.16	15	16.50
10/07/2010	19:17	Sunny	Middle	2.5	27.90	27.90	21.1	8.00	8.00	0.0	28.79	28.81	20.0	41.6	41.3	42.0	2.79	2.77	2.02	4.68	5.30	5.10	18	10.50
10/07/0040	21:04	0	Middle	1.5	25.54	25.55	05.5	7.58	7.58	7.0	28.98	28.98	00.0	79.7	78.9	70.0	5.61	5.58		2.10	2.13	0.00	10	44.50
12/07/2010	21:05	Sunny	Middle	1.5	25.53	25.53	25.5	7.58	7.58	7.6	28.99	28.98	29.0	77.7	77.9	78.6	5.49	5.51	5.55	2.08	2.04	2.09	13	11.50
14/07/0040	22:40	E	Middle	1.5	27.30	27.31	07.0	7.29	7.29	7.0	29.63	29.62	00.0	78.4	78.2	70.4	5.25	5.24	5.04	4.54	3.76	4.00	20	04.50
14/07/2010	22:42	Fine	Middle	1.5	27.31	27.31	27.3	7.30	7.29	7.3	29.62	29.62	29.6	77.8	77.8	78.1	5.23	5.23	5.24	3.99	3.69	4.00	23	21.50
16/07/2010	11:30	Sunnv	Middle	2.0	27.00	27.20	27.1	8.04	8.00	8.0	25.18	25.02	25.1	49.5	49.1	48.9	3.39	3.36	3.35	5.23	4.87	4.89	8	8.00
16/07/2010	11:35	Suriny	Middle	2.0	27.00	27.10	27.1	8.03	8.01	0.0	25.20	25.03	23.1	48.7	48.3	40.9	3.34	3.31	3.30	4.55	4.89	4.09	8	8.00
19/07/2010	00:43	Fine	Middle	2.0	28.28	28.28	28.3	7.09	7.09	7.1	28.79	28.79	28.8	92.8	92.7	92.4	6.04	6.04	6.02	2.34	2.29	2.27	6	7.50
19/07/2010	00:46	Fine	Middle	2.0	28.29	28.29	28.3	7.08	7.08	7.1	28.78	28.78	28.8	92.1	92.0	92.4	6.01	6.00	6.02	2.34	2.11	2.27	9	7.50
21/07/2010	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
21/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23/07/2010	18:25	Cloudy	Middle	1.5	26.65	26.66	26.7	7.30	7.30	7.3	30.11	30.11	30.1	66.0	66.0	65.9	4.42	4.42	4.41	2.90	2.57	2.65	5	4.50
23/07/2010	18:27	Cloudy	Middle	1.5	26.66	26.67	20.7	7.31	7.31	1.3	30.11	30.11	30.1	65.7	65.7	65.9	4.40	4.40	4.41	2.60	2.52	2.00	4	4.00
26/07/2010	20:59	Fine	Middle	1.5	28.28	28.28	28.3	7.27	7.27	7.3	30.15	30.15	30.2	120.1	120.2	120.2	7.82	7.86	7.83	2.54	2.34	2.39	5	5.00
20/07/2010	00:28	FILLE	Middle	1.5	28.29	28.29	20.3	7.27	7.23	1.3	30.15	30.15	30.2	120.3	120.1	120.2	7.83	7.81	1.00	2.40	2.28	2.38	5	5.00

Water Monitoring Result at WSD7 - Kowloon South Mid-Flood Tide

Date	Time	Weater Condition	Samplin n	0 1		er Temp °C lue	erature Average	Va	pH - lue	Average	Va	Salinit ppt lue			O Satur % lue	ation Average	Va	DO mg/L lue	Average	Va	Turbid NTU alue		Suspend m Value	g/L
	16:08		Middle	1.5	28.93	28.96	Average	7.56	7.55	Average	25.28		Average	88.6	88.2	Average	5.92	5.90	Average	2.04	2.02	Average	3	Average
08/07/2010	16:10	Sunny	Middle	1.5	28.96	28.97	29.0	7.53	7.52	7.5	25.26		25.3	87.8	87.6	88.1	5.82	5.86	5.88	1.93	1.89	1.97	4	3.50
	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
10/07/2010	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	• -	-	-		-	-
40/07/0040	17:45	0	Middle	1.5	25.90	25.90	05.0	7.66	7.64	7.0	28.49	28.45	00.4	86.5	86.9	00.0	6.13	6.13	0.40	2.21	2.22	0.00	12	10.50
12/07/2010	17:47	Sunny	Middle	1.5	25.88	25.86	25.9	7.63	7.62	7.6	28.42	28.41	28.4	87.0	87.0	86.9	6.13	6.13	6.13	1.98	1.89	2.08	13	12.50
14/07/2010	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
14/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-
16/07/2010	10:55	Sunny	Middle	2.0	26.90	26.90	27.1	7.91	7.91	7.9	30.84	30.84	30.8	42.7	50.9	48.9	2.85	3.37	3.24	8.13	6.87	7.18	12	12.00
16/07/2010	10:58	Sunny	Middle	2.0	27.20	27.20	27.1	7.90	7.90	7.9	30.80	30.79	30.8	53.5	48.6	46.9	3.54	3.21	3.24	6.82	6.91	7.18	12	12.00
18/07/2010	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
10/07/2010	-	-	-	-	-	-	-	-	-		-	-	-	-	-	_	-	-	_	-	-		-	
21/07/2010	-		-	-	-	-	_	-	-	_	-	-	_	-	-	_	-	-		-	-		-	
21/07/2010	-	-	-	-	-	-		-	-		-	-		-	-	_	-	-	_	-	-		-	_
23/07/2010	16:44	Cloudy	Middle	1.5	26.46	26.46	26.5	7.20	7.20	7.2	29.21	29.21	29.2	71.8	72.9	72.6	4.98	4.97	4.97	3.18	3.41	3.29	7	7.50
23/07/2010	16:46	Cioudy	Middle	1.5	26.47	26.47	20.0	7.20	7.20	1.2	29.21	29.21	23.2	72.8	72.8	12.0	4.97	4.97	4.37	3.47	3.09	5.23	8	7.50
26/07/2010	18:00	Fine	Middle	1.5	28.45	28.45	28.4	7.32	7.32	7.3	29.87	29.87	29.9	109.7	109.4	109.3	7.17	7.17	7.18	2.79	2.92	2.83	4	4.50
20/07/2010	18:03	i ille	Middle	1.5	28.43	28.44	20.4	7.32	7.32	1.5	29.87	29.87	23.5	109.1	109.1	109.5	7.18	7.18	7.10	2.72	2.87	2.00	5	4.50

Water Monitoring Result at C1 - HKCEC Extension Mid-Flood Tide

Date	Time	Weater Condition	Samplin r	g Depth n		er Temp °C lue	erature Average	Va	pH - lue	Average	Va	Salinit ppt lue	ty Average		O Satur % lue	ation Average	Va	DO mg/L	Average	Va	Turbid NTU			ed Solids g/L Average
	18:28		Middle	2.0	28.14	28.14	Average	7.60	7.58	Average	27.65	27.67	Average	70.7	70.3	Average	4.73	4.70	Average	2.66	2.71	Average	8	Average
08/07/2010	18:30	Sunny	Middle	2.0	28.14	28.11	28.1	7.57	7.57	7.6	27.67	27.67	27.7	69.9	69.9	70.2	4.68	4.67	4.70	2.40	2.35	2.53	6	7.00
	17:03		Middle	2.5	27.60	27.60		8.08	8.18		28.70	28.90		62.5	62.5		4.89	4.89		2.92	3.04		8	
10/07/2010	17:05	Sunny	Middle	2.5	27.60	27.60	27.6	8.22	8.23	8.2	28.80	28.80	28.8	62.5	62.5	62.5	4.89	4.89	4.89	2.74	2.81	2.88	8	8.00
			Middle	-																				
12/07/2010	21:40	Sunny		2.0	25.16	25.17	25.1	7.49	7.51	7.5	30.37	30.38	30.4	78.6	76.7	76.3	5.50	5.20	5.27	2.48	2.18	2.23	12	13.50
	21:41		Middle	2.0	25.13	25.13		7.52	7.51		30.41	30.41		75.2	74.6		5.19	5.18		2.18	2.08		15	
14/07/2010	22:05	Fine	Middle	2.5	27.39	27.41	27.4	7.29	7.28	7.3	30.95	30.94	30.9	80.0	79.9	79.7	5.32	5.32	5.29	4.37	3.99	4.00	11	12.00
	22:07		Middle	2.5	27.42	27.43		7.29	7.28		30.94	30.94		80.0	79.0		5.26	5.25		3.67	3.95		13	
16/07/2010	09:00	Sunnv	Middle	2.5	27.20	27.30	27.3	7.98	7.98	8.0	30.99	30.90	30.9	59.2	58.0	57.5	4.10	4.00	3.97	2.93	2.89	2.90	9	10.50
10/07/2010	09:05	Gunny	Middle	2.5	27.20	27.30	21.5	7.99	7.99	0.0	30.91	30.91	50.5	57.1	55.6	57.5	3.93	3.83	0.01	2.87	2.90	2.30	12	10.00
19/07/2010	01:08	Fine	Middle	2.5	29.73	29.72	29.7	7.28	7.28	7.3	29.10	29.10	29.1	97.3	97.3	97.3	6.20	6.20	6.20	3.33	2.83	3.06	10	9.00
19/07/2010	01:10	Fine	Middle	2.5	29.64	29.64	29.7	7.28	7.28	7.3	29.14	29.14	29.1	97.2	97.2	97.3	6.20	6.20	6.20	3.48	2.61	3.06	8	9.00
04/07/0040	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
21/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
00/07/0040	19:32	Olaud	Middle	2.5	27.18	27.18	07.4	7.36	7.37	7.0	28.84	28.84	00.0	66.1	65.7	05.0	4.28	4.26	4.07	1.78	1.83	4.05	3	0.00
23/07/2010	19:34	Cloudy	Middle	2.5	27.82	27.61	27.4	7.31	7.31	7.3	28.85	28.86	28.8	65.7	64.9	65.6	4.26	4.26	4.27	1.81	1.96	1.85	3	3.00
00/07/0010	20:26		Middle	2.5	28.44	28.45		7.34	7.34		30.36	30.36	00.4	102.2	102.3	101.0	6.54	6.55	0.54	3.39	3.23	0.00	5	
26/07/2010	20:29	Fine	Middle	2.5	28.48	28.48	28.5	7.34	7.34	7.3	30.36	30.36	30.4	101.3	101.2	101.8	6.53	6.54	6.54	3.14	3.17	3.23	7	6.00

Water Monitoring Result at C2 - TH / APA / SOC

Mid-Flood Tide

Date	Time	Weater Condition	Samplin n	0 1	Wate	er Temp °C lue	erature Average	Va	pH - lue	Average	Va	Salinit ppt lue			O Satur % lue	ation Average	Va	DO mg/L lue	Average	Va	Turbid NTU Ilue			led Solids g/L Average
	18:15		Middle	2.0	28.27	28.27		7.50	7.50		27.52	27.52		68.8	67.4		4.57	4.50		2.23	1.77		6	
08/07/2010	18:17	Sunny	Middle	2.0	28.27	28.27	28.3	7.50	7.50	7.5	27.52	27.53	27.5	66.8	66.8	67.5	4.47	4.48	4.51	1.70	2.08	1.95	8	7.00
10/07/0010	17:18		Middle	2.5	28.40	28.40		7.99	8.00		28.00	28.00		33.0	33.0		2.25	2.25	0.05	3.17	3.21	0.40	12	10.50
10/07/2010	17:20	Sunny	Middle	2.5	28.40	28.40	28.4	8.03	8.04	8.0	28.00	28.00	28.0	33.0	33.0	33.0	2.25	2.25	2.25	3.76	3.52	3.42	13	12.50
10/07/0010	22:13		Middle	2.0	25.52	25.52	05 F	7.49	7.49	7.5	30.30	30.30		76.7	74.9	=	5.28	5.26	5.40	3.26	3.02		9	
12/07/2010	22:15	Sunny	Middle	2.0	25.52	25.52	25.5	7.49	7.49	7.5	30.30	30.30	30.3	73.1	72.9	74.4	5.12	5.10	5.19	3.05	2.72	3.01	10	9.50
44/07/0040	23:04	Fire	Middle	2.0	27.58	27.57	07.0	7.24	7.24	7.2	30.80	30.80	00.0	81.9	81.4	01.0	5.44	5.41	5.00	3.57	3.20	0.45	10	11.00
14/07/2010	23:06	Fine	Middle	2.0	27.57	27.57	27.6	7.25	7.25	1.2	30.81	30.81	30.8	80.7	80.6	81.2	5.35	5.35	5.39	2.90	2.93	3.15	12	11.00
16/07/2010	10:34	Sunny	Middle	2.5	27.00	27.00	27.0	7.96	7.97	8.0	30.94	30.92	30.9	51.8	51.0	50.9	3.59	3.54	3.53	5.48	5.50	5.49	18	17.00
16/07/2010	10:37	Sunny	Middle	2.5	27.00	27.00	27.0	7.96	7.96	8.0	30.94	30.94	30.9	50.4	50.2	50.9	3.50	3.47	3.53	5.46	5.52	5.49	16	17.00
19/07/2010	01:18	Fine	Middle	2.0	28.70	28.71	28.7	7.23	7.22	7.2	29.34	29.34	29.3	98.0	97.8	97.3	6.33	6.32	6.29	2.88	3.33	3.31	8	8.00
19/07/2010	01:20	Fine	Middle	2.0	28.71	28.71	28.7	7.21	7.21	1.2	29.33	29.32	29.3	96.8	96.7	97.3	6.25	6.25	6.29	3.82	3.19	3.31	8	8.00
21/07/2010	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	-
21/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23/07/2010	19:58	Cloudy	Middle	2.0	27.63	27.63	27.6	7.18	7.17	7.2	29.19	29.19	29.2	52.8	52.8	52.6	3.50	3.50	3.50	1.63	1.53	1.53	<2	<2
23/07/2010	19:59	Cioudy	Middle	2.0	27.62	27.62	27.0	7.18	7.18	1.2	29.21	29.21	29.2	52.3	52.3	52.0	3.50	3.50	3.50	1.47	1.50	1.53	<2	<2
26/07/2010	19:49	Fine	Middle	2.0	28.45	28.45	28.5	7.27	7.27	7.3	30.13	30.13	30.1	99.4	99.8	98.9	6.30	6.30	6.29	3.66	3.25	3.25	4	3.50
20/07/2010	19:51	FILLE	Middle	2.0	28.45	28.45	20.3	7.28	7.28	1.5	30.13	30.13	30.1	98.0	98.3	90.9	6.29	6.28	0.29	3.10	2.99	3.20	3	3.50

Water Monitoring Result at C3 - HKCEC Phase I Mid-Flood Tide

Date	Time	Weater Condition	Samplin			er Temp °C lue	erature Average	Va	pH - Ilue	Average	Va	Salinit ppt lue	ty Average		O Satur % lue	ation Average	Va	DO mg/L lue	Average	Va	Turbid NTU		Suspend mg Value	
	18:44		Middle	3.0	27.89	27.89		7.51	7.49		27.39	27.39		71.5	70.3		4.80	4.73		2.40	1.90		7	
08/07/2010	18:46	Sunny	Middle	3.0	27.89	27.89	27.9	7.49	7.49	7.5	27.38	27.38	27.4	69.7	69.6	70.3	4.68	4.67	4.72	1.94	1.84	2.02	9	8.00
10/07/2010	16:50	Sunnv	Middle	3.0	27.90	27.90	27.8	7.84	7.86	7.9	28.10	28.10	28.1	42.1	42.1	41.7	2.87	2.86	2.84	4.19	4.19	4.20	16	15.00
10/07/2010	16:52	Sunny	Middle	3.0	27.60	27.60	27.0	7.89	7.90	7.5	28.10	28.10	20.1	41.2	41.2	41.7	2.81	2.81	2.04	4.29	4.14	4.20	14	13.00
12/07/2010	21:48	Sunny	Middle	2.5	25.83	25.90	25.9	7.51	7.52	7.5	30.32	30.34	30.4	80.3	79.4	78.7	5.56	5.53	5.47	5.03	5.85	5.24	8	11.00
12/07/2010	21:49	Sunny	Middle	2.5	25.89	25.87	25.9	7.52	7.52	7.5	30.36	30.38	30.4	77.7	77.4	70.7	5.42	5.38	5.47	5.11	4.96	5.24	14	11.00
14/07/2010	23:09	Fine	Middle	3.0	27.69	27.71	27.7	7.32	7.32	7.3	30.48	30.48	30.5	84.5	83.8	83.9	5.61	5.57	5.57	3.90	3.75	3.70	9	8.50
14/07/2010	23:10	FINE	Middle	3.0	27.71	27.71	21.1	7.32	7.32	7.5	30.48	30.49	30.5	83.7	83.5	03.9	5.55	5.54	5.57	3.65	3.48	3.70	8	8.50
16/07/2010	10:25	Sunnv	Middle	3.0	27.40	27.40	27.4	7.99	7.99	8.0	30.57	30.60	30.6	56.3	56.4	56.5	3.96	3.97	3.97	4.44	4.46	4.59	17	16.00
10/07/2010	10:28	Sunny	Middle	3.0	27.40	27.40	27.4	7.99	8.00	0.0	30.62	30.61	30.0	56.6	56.6	50.5	3.98	3.98	3.87	4.72	4.74	4.55	15	10.00
19/07/2010	01:28	Fine	Middle	2.5	28.96	28.95	29.0	7.32	7.31	7.3	29.30	29.30	29.3	104.0	103.9	103.6	6.69	6.68	6.67	1.95	2.06	2.02	7	8.50
19/07/2010	01:30	Fine	Middle	2.5	28.94	28.95	29.0	7.31	7.31	7.3	29.28	29.28	29.3	103.3	103.3	103.6	6.65	6.65	0.07	2.10	1.97	2.02	10	8.50
21/07/2010	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
21/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23/07/2010	19:48	Cloudy	Middle	2.0	27.35	27.35	27.3	7.18	7.18	7.2	29.01	29.01	29.0	56.2	56.2	56.1	3.77	3.79	3.77	1.95	1.81	1.86	<2	2.00
23/07/2010	19:50	Cioudy	Middle	2.0	27.34	27.34	21.3	7.19	7.19	1.2	29.01	29.01	29.0	56.1	55.9	30.1	3.77	3.76	3.11	1.89	1.80	1.00	2	2.00
26/07/2010	20:13	Fine	Middle	2.0	28.45	28.45	28.5	7.28	7.28	7.3	30.24	30.25	30.2	94.7	94.7	95.0	6.15	6.13	6.14	3.53	3.55	3.58	11	12.00
20/07/2010	20:15	Fille	Middle	2.0	28.45	28.45	20.0	7.28	7.28	1.3	30.24	30.24	30.2	95.4	95.3	93.0	6.15	6.14	6.14	3.57	3.67	3.58	13	12.00

Date	Time	Weater Condition	Samplin	<u> </u>		er Temp °C			pH -			Salinit ppt	,		O Satur %			DO mg/L			Turbid NTU	l í	Suspend	g/L
				1	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Value	Average
08/07/2010	18:54	Sunnv	Middle	1.5	28.38	28.38	28.4	7.39	7.39	7.4	28.20	28.20	28.2	62.2	62.2	62.1	4.14	4.12	4.11	1.67	1.71	1.66	5	6.00
08/07/2010	18:56	Sunny	Middle	1.5	28.37	28.37	28.4	7.40	7.40	7.4	28.21	28.21	28.2	61.9	61.9	02.1	4.07	4.11	4.11	1.57	1.68	1.00	7	6.00
10/07/2010	16:11	Sunnv	Middle	3.0	28.10	28.20	28.2	7.48	7.50	7.5	28.10	28.10	28.2	44.8	44.5	44.5	3.05	3.03	3.03	4.33	4.53	4.40	18	18.50
10/07/2010	16:13	Sunny	Middle	3.0	28.20	28.30	20.2	7.52	7.53	7.5	28.20	28.20	20.2	44.4	44.2	44.0	3.03	3.01	3.05	4.36	4.36	4.40	19	10.50
12/07/2010	22:01	Sunny	Middle	1.5	25.76	25.76	25.8	7.49	7.49	7.5	30.54	30.54	30.5	77.1	75.3	74.7	5.38	5.22	5.20	2.29	2.03	2.27	6	5.50
12/07/2010	22:03	Sunny	Middle	1.5	25.76	25.76	23.0	7.49	7.49	1.5	30.54	30.54	30.3	73.4	72.8	74.7	5.12	5.06	5.20	2.60	2.16	2.21	5	5.50
14/07/2010	23:20	Fine	Middle	2.0	27.15	27.14	27.1	7.22	7.21	7.2	31.04	31.05	31.0	76.9	76.8	76.0	5.12	5.12	5.10	3.52	3.38	3.41	8	7.50
14/07/2010	23:22	FILLE	Middle	2.0	27.14	27.14	27.1	7.21	7.20	1.2	31.05	31.05	31.0	74.4	75.9	70.0	5.07	5.07	5.10	3.51	3.21	3.41	7	7.50
16/07/2010	09:54	Sunnv	Middle	2.5	27.90	27.90	27.9	7.93	7.94	7.9	31.00	31.05	31.0	49.3	48.9	48.9	3.83	3.80	3.81	3.09	3.32	3.21	16	15.00
10/07/2010	09:57	Sunny	Middle	2.5	27.90	27.90	21.9	7.94	7.94	7.9	31.04	31.01	31.0	48.8	48.7	40.9	3.79	3.80	3.01	3.21	3.20	3.21	14	15.00
19/07/2010	01:24	Fine	Middle	2.0	28.48	28.47	28.5	7.29	7.29	7.3	29.30	29.30	29.3	102.5	102.5	102.1	6.53	6.53	6.52	3.03	3.39	3.07	8	9.00
19/07/2010	01:26	Fine	Middle	2.0	28.46	28.48	28.5	7.29	7.29	7.3	29.30	29.31	29.3	101.7	101.7	102.1	6.50	6.50	0.52	2.88	2.97	3.07	10	9.00
21/07/2010	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
21/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23/07/2010	19:45	Cloudy	Middle	2.0	27.79	27.78	27.8	7.26	7.27	7.3	29.11	29.11	29.1	56.4	56.4	56.2	3.77	3.77	3.76	1.72	1.76	1.78	<2	2.00
23/07/2010	19:47	Cioudy	Middle	2.0	27.78	27.78	21.0	7.27	7.26	1.3	29.12	29.12	29.1	56.0	56.0	30.2	3.76	3.74	3.70	1.71	1.91	1.78	2	2.00
26/07/2010	20:03	Fine	Middle	2.0	28.86	28.86	28.8	7.22	7.23	7.2	30.11	30.11	30.1	96.6	96.6	96.6	6.20	6.21	6.21	2.39	2.52	2.44	2	2.00
20/07/2010	20:05	Fille	Middle	2.0	28.80	28.80	20.0	7.23	7.23	1.2	30.11	30.11	30.1	96.6	96.6	90.0	6.21	6.21	0.21	2.25	2.60	2.44	<2	2.00

Date	Time	Weater Condition	Samplin	× ·		°C	erature Average	Va	pH - lue	Average	Va	Salinit ppt lue	ty Average		O Satur %	ation Average	Va	DO mg/L lue	Average	Va	Turbid NTU alue		Suspend mg Value	g/L
	19:01		Middle	1.5	28.37	28.37	Thorage	7.45	7.45	Thorago			Tworugo	68.8	68.8	Trolago	4.69	4.69	Tworugo	3.54	3.46	Thorage	4	rivolugo
08/07/2010	19:02	Sunny	Middle	1.5	28.37	28.37	28.4	7.45	7.45	7.5	27.62	27.62	27.6	68.3	68.5	68.6	4.57	4.57	4.63	3.36	3.32	3.42	6	5.00
10/07/2010	16:04	Cumpu	Middle	2.5	27.70	27.80	27.8	7.45	7.49	7.5	28.30	28.20	28.2	45.1	43.5	43.9	2.93	2.86	2.88	3.62	3.71	3.65	14	15.00
10/07/2010	16:06	Sunny	Middle	2.5	27.80	27.90	27.8	7.61	7.54	7.5	28.20	28.20	28.2	43.7	43.4	43.9	2.87	2.84	2.88	3.72	3.54	3.65	16	15.00
12/07/2010	21:53	Sunny	Middle	1.5	25.62	25.63	25.6	7.51	7.51	7.5	30.43	30.36	30.4	80.9	79.5	78.6	5.57	5.52	5.46	2.38	2.33	2.50	6	5.50
12/07/2010	21:55	Sunny	Middle	1.5	25.63	25.62	23.0	7.51	7.51	7.5	30.35	30.36	30.4	77.5	76.3	70.0	5.40	5.33	5.40	2.71	2.59	2.50	5	5.50
14/07/2010	23:16	Fine	Middle	2.0	28.09	28.00	28.0	7.29	7.30	7.3	30.76	30.81	30.8	80.2	80.5	80.1	5.28	5.31	5.28	3.14	3.38	3.42	13	12.50
14/07/2010	23:17	1 me	Middle	2.0	27.98	27.99	20.0	7.30	7.30	7.5	30.79	30.79	30.0	79.9	79.9	00.1	5.27	5.27	5.20	3.47	3.70	5.42	12	12.50
16/07/2010	10:01	Sunny	Middle	2.0	27.80	27.80	27.8	7.96	7.96	8.0	31.01	29.88	30.2	48.8	48.7	48.6	3.79	3.78	3.77	2.97	2.99	2.98	10	9.00
10/07/2010	10:05	Sunny	Middle	2.0	27.80	27.80	27.0	7.96	7.96	0.0	29.99	30.00	30.2	48.5	48.3	40.0	3.76	3.75	5.11	2.91	3.03	2.90	8	9.00
19/07/2010	01:22	Fine	Middle	2.0	28.78	28.80	28.8	7.25	7.25	7.2	29.06	29.07	29.1	97.8	97.6	97.5	6.30	6.29	6.29	3.27	2.60	2.81	7	6.00
13/07/2010	01:23	TING	Middle	2.0	28.86	28.87	20.0	7.24	7.24	1.2	29.08	29.08	23.1	97.3	97.3	51.5	6.28	6.28	0.20	2.90	2.45	2.01	5	0.00
21/07/2010	-		-	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-	_	-	-	_	-	
21/01/2010	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
23/07/2010	19:42	Cloudy	Middle	2.0	27.66	27.66	27.7	6.97	6.97	7.0	28.89	28.89	28.9	61.2	60.3	60.4	4.04	4.08	4.04	2.25	2.19	2.20	2	2.00
20/07/2010	19:44	Cioddy	Middle	2.0	27.65	27.65	21.1	6.96	6.97	7.0	28.90	28.90	20.9	60.0	60.0	00.4	4.02	4.02	4.04	2.17	2.18	2.20	2	2.00
26/07/2010	20:07	Fine	Middle	2.0	28.59	28.59	28.6	7.33	7.33	7.3	30.30	30.30	30.3	101.9	101.9	101.6	6.57	6.57	6.54	2.57	2.51	2.73	6	5.50
20/07/2010	20:10	1116	Middle	2.0	28.59	28.59	20.0	7.33	7.33	1.5	30.30	30.30	50.5	101.4	101.2	101.0	6.52	6.51	0.04	2.99	2.86	2.75	5	5.50

Water Monitoring Result at C5e - Sun Hung Kai Centre Mid-Flood Tide

Date	Time	Weater Condition	Samplin n	0 1		er Temp °C lue	erature Average	Va	pH - lue	Average	Va	Salinit ppt lue	ty Average		O Satur % lue	ation	Va	DO mg/L lue	Average	Va	Turbid NTU		Suspend mç Value	
	19:19		Middle	2.0	28.84	28.85		7.57	7.57		26.97	26.97		69.2	69.0		4.59	4.58		2.53	2.52		24	
08/07/2010	19:20	Sunny	Middle	2.0	28.87	28.88	28.9	7.58	7.58	7.6	26.96	26.96	27.0	68.7	68.7	68.9	4.56	4.56	4.57	2.66	2.34	2.51	20	22.00
10/07/0010	18:32	0	Middle	2.5	28.40	28.50	00.0	7.78	7.79	7.0	28.00	28.10	00.4	46.1	45.7	45.4	2.98	2.97	0.04	3.73	3.79	0.74	11	40.00
10/07/2010	18:34	Sunny	Middle	2.5	28.60	28.70	28.6	7.86	7.88	7.8	28.10	28.10	28.1	44.8	45.0	45.4	2.91	2.89	2.94	3.58	3.72	3.71	9	10.00
12/07/2010	20:30	Sunny	Middle	2.0	26.54	26.53	26.5	7.52	7.53	7.5	29.22	29.22	29.2	83.6	82.7	82.7	5.79	5.74	5.73	3.93	3.74	3.86	18	19.50
12/07/2010	20:32	Sunny	Middle	2.0	26.53	26.53	20.5	7.53	7.53	7.5	29.22	29.22	29.2	82.3	82.0	02.7	5.70	5.67	5.73	4.07	3.69	3.80	21	19.50
14/07/2010	21:38	Fine	Middle	2.0	27.47	27.47	27.5	7.29	7.28	7.3	29.41	29.41	29.4	79.8	79.6	79.5	5.33	5.33	5.32	6.37	5.33	5.63	21	22.50
14/07/2010	21:39	FILLE	Middle	2.0	27.48	27.48	21.5	7.29	7.29	7.5	29.41	29.40	29.4	79.4	79.1	79.5	5.30	5.30	5.52	5.40	5.42	5.65	24	22.50
16/07/2010	09:26	Sunny	Middle	2.5	27.10	27.10	27.1	7.96	7.96	8.0	30.01	30.05	30.0	51.1	50.8	50.6	3.94	3.91	3.88	2.94	2.72	2.74	14	13.00
10/07/2010	09:30	Sunny	Middle	2.5	27.10	27.10	27.1	7.96	7.96	0.0	30.05	30.05	30.0	50.5	50.1	50.0	3.81	3.86	5.00	2.57	2.73	2.74	12	13.00
18/07/2010	22:38	Fine	Middle	2.0	28.20	28.20	23.2	6.80	6.80	6.8	29.39	29.39	29.4	73.6	73.9	73.1	4.81	4.82	4.77	1.94	1.95	1.98	6	7.50
18/07/2010	22:40	1 IIIC	Middle	2.0	28.22	8.23	23.2	6.80	6.79	0.0	29.37	29.37	29.4	72.1	72.8	73.1	4.74	4.72	4.77	2.01	2.00	1.90	9	7.50
21/07/2010	-	_	-	-	-	-	_	-	-	_	-	-		-	-		-	-		-	-	_	-	_
21/07/2010	-	_	-	-	-	-		-	-		-	-	_	-	-	-	-	-	-	-	-		-	
23/07/2010	19:24	Cloudy	Middle	2.0	27.65	27.64	27.6	7.14	7.14	7.1	29.01	29.01	29.0	54.1	54.1	54.1	3.68	3.68	3.66	2.37	1.93	1.96	4	3.00
23/01/2010	19:25	Cioudy	Middle	2.0	27.63	27.63	21.0	7.15	7.15	/.1	29.02	29.02	23.0	53.9	54.2	JH. I	3.62	3.66	5.00	1.76	1.79	1.30	2	3.00
26/07/2010	19:43	Fine	Middle	2.0	28.26	28.26	28.3	7.25	7.24	7.2	30.06	30.06	30.1	93.4	93.2	93.2	6.16	6.15	6.15	3.72	3.61	3.68	7	8.00
20/07/2010	19:46	1 IIIC	Middle	2.0	28.26	28.26	20.5	7.25	7.25	1.2	30.05	30.05	50.1	93.0	93.0	33.2	6.14	6.13	0.15	3.72	3.65	5.00	9	0.00

Water Monitoring Result at C5w - Sun Hung Kai Centre Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth n		°C	perature		pH -			Salinit ppt	,		O Satu			DO mg/L			Turbic NTU	J	Suspend m	g/L
						lue	Average		lue	Average			Average		lue	Average	Va		Average		alue	Average	Value	Average
08/07/2010	19:14	Sunny	Middle	2.0	28.89	28.89	28.9	7.58	7.58	7.6	26.56	26.96	26.9	68.6	68.5	- 68.5	4.56	4.55	4.54	2.38	2.37	2.34	8	9.00
	19:25		Middle	2.0	28.90	28.90		7.59	7.58		26.96	26.96		68.4	68.3		4.53	4.53		2.23	2.38	-	10	
10/07/2010	18:27	Sunny	Middle	2.5	27.20	27.40	27.4	8.24	8.25	8.3	27.90	27.90	27.9	46.5	46.2	45.8	2.98	2.94	2.94	5.38	5.12	5.25	30	28.00
10/07/2010	18:28	Sunny	Middle	2.5	27.40	27.50	27.4	8.27	8.28	0.5	27.90	27.90	21.5	45.2	45.1	45.0	2.93	2.92	2.34	5.21	5.29	5.25	26	28.00
12/07/2010	20:33	0	Middle	2.0	26.63	26.64	00.0	7.53	7.53	7.5	29.18	29.18	00.0	85.8	85.3	05.0	5.93	5.90	5.00	4.12	3.90	4.04	19	18.00
12/07/2010	20:34	Sunny	Middle	2.0	26.64	26.65	26.6	7.53	7.54	7.5	29.18	29.18	29.2	85.0	85.0	85.3	5.88	5.80	5.88	3.88	4.14	4.01	17	18.00
4.4/07/004.0	21:40	_	Middle	2.0	27.70	27.70		7.36	7.36		29.49	29.49		80.7	80.7		5.39	5.38	5.04	5.84	5.23	5.00	20	04.50
14/07/2010	21:41	Fine	Middle	2.0	27.70	27.70	27.7	7.37	7.37	7.4	29.47	29.46	29.5	80.0	79.4	80.2	5.29	5.28	5.34	5.99	6.21	5.82	23	21.50
16/07/2010	09:35	0	Middle	2.0	27.40	27.40	07.4	7.99	7.99		30.12	30.13	00.1	49.9	49.6	50.2	3.84	3.82	3.87	2.99	3.01	3.02	11	11.50
16/07/2010	09:39	Sunny	Middle	2.0	27.40	27.40	27.4	7.98	7.98	8.0	30.13	30.13	30.1	50.6	50.7	50.2	3.90	3.91	3.87	3.03	3.04	3.02	12	11.50
10/07/0010	22:41		Middle	2.0	28.18	28.17		6.88	6.88		29.18	29.18		81.9	81.9		5.35	5.35	5.00	2.62	2.78	0.07	7	0.50
18/07/2010	22:42	Fine	Middle	2.0	28.17	28.17	28.2	6.87	6.87	6.9	29.18	29.18	29.2	81.4	80.7	81.5	5.29	5.28	5.32	2.63	2.63	2.67	6	6.50
04/07/0040	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
21/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
00/07/0040	19:22	Olausta	Middle	2.0	27.95	27.95	07.0	7.26	7.25	7.0	29.01	29.01	00.0	59.3	59.8	50.5	3.98	3.96	0.00	2.31	2.39	0.40	5	4.00
23/07/2010	19:23	Cloudy	Middle	2.0	27.94	27.94	27.9	7.26	7.26	7.3	29.02	29.02	29.0	59.4	59.4	- 59.5	3.96	3.95	3.96	1.86	1.90	2.12	3	4.00
20/07/2010	19:41	Fine	Middle	2.0	28.71	28.70	20.7	7.26	7.26	7.0	30.06	30.06	20.1	95.3	95.1	05.0	6.20	6.19	6.40	4.68	4.65	4.66	7	7.50
26/07/2010	19:43	Fine	Middle	2.0	28.68	28.68	28.7	7.26	7.26	7.3	30.07	30.07	30.1	94.9	94.7	95.0	6.18	6.18	6.19	4.86	4.43	4.66	8	7.50

Water Monitoring Result at WSD21 - Wan Chai Mid-Flood Tide

Date	Time	Weater Condition	Samplin r	g Depth n		°C	erature Average	Va	pH - lue	Average	Va	Salinit ppt lue	ay Average		O Satur % lue	ation Average	Va	DO mg/L lue	Average	Va	Turbid NTU alue			led Solids g/L Average
	19:31		Middle	2.5	28.03	28.03		7.54	7.54		26.75			70.8	70.1		4.76	4.72		2.65	2.55	Ŭ	9	
08/07/2010	19:32	Sunny	Middle	2.5	28.03	28.03	28.0	7.54	7.54	7.5	26.76	26.76	26.8	70.0	69.5	70.1	4.58	4.58	4.66	2.44	2.43	2.52	7	8.00
10/07/2010	18:14	Cummu	Middle	2.5	27.00	27.10	27.1	7.73	7.74	7.7	28.50	28.50	28.5	45.3	45.0	44.6	2.90	2.88	2.86	3.16	3.01	3.06	11	10.50
10/07/2010	18:16	Sunny	Middle	2.5	27.10	27.20	27.1	7.75	7.77	1.1	28.50	28.50	28.5	44.3	43.8	44.6	2.85	2.80	2.86	2.86	3.21	3.06	14	12.50
12/07/2010	20:45	Sunny	Middle	2.5	26.27	26.26	26.3	7.54	7.53	7.5	29.73	29.73	29.7	80.9	80.0	79.9	5.54	5.57	5.51	4.98	4.56	4.60	10	11.00
12/07/2010	20:46	Sunny	Middle	2.5	26.26	26.26	20.5	7.53	7.54	1.5	29.73	29.73	29.1	79.6	79.2	79.9	5.53	5.40	3.31	4.83	4.03	4.00	12	11.00
14/07/2010	21:54	Fine	Middle	2.0	27.50	27.52	27.5	7.32	7.32	7.3	30.27	30.26	30.3	76.5	76.6	76.1	5.10	5.07	5.07	6.67	6.36	6.92	25	23.50
14/07/2010	21:56	T inc	Middle	2.0	27.52	27.53	21.5	7.32	7.32	1.5	30.26	30.26	50.5	75.7	75.7	70.1	5.06	5.05	3.07	7.42	7.21	0.32	22	20.00
16/07/2010	09:16	Sunny	Middle	2.5	27.70	27.70	27.7	8.01	8.02	8.0	30.14	30.14	30.1	49.2	49.1	50.0	3.79	3.78	3.86	3.03	2.97	2.90	9	10.00
10/07/2010	09:18	Odiniy	Middle	2.5	27.70	27.70	21.1	8.02	8.02	0.0	30.15	30.15	50.1	50.9	50.8	50.0	3.93	3.92	3.00	2.72	2.87	2.30	11	10.00
18/07/2010	22:54	Fine	Middle	2.0	28.49	28.50	28.5	6.89	6.89	6.9	29.25	29.25	29.3	75.0	75.5	75.6	4.92	4.88	4.91	2.21	2.33	2.26	11	9.00
10/01/2010	22:56	T IIIC	Middle	2.0	28.50	28.50	20.0	6.89	6.90	0.5	29.25	29.25	23.5	76.0	76.0	73.0	4.92	4.93	4.51	2.21	2.28	2.20	7	5.00
21/07/2010	-	-	-	-	-	-		-	-	_	-	-		-	-	_	-	-	_	-	-	-	-	
21/01/2010	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
23/07/2010	19:16	Cloudy	Middle	2.0	27.87	27.87	27.9	7.37	7.37	7.4	29.08	29.08	29.1	60.5	60.1	60.2	4.01	4.01	4.01	1.79	1.77	1.74	5	4.00
23/07/2010	19:19	Cioudy	Middle	2.0	27.88	27.88	21.3	7.35	7.35	1.4	29.09	29.09	23.1	60.2	60.1	00.2	4.01	4.01	4.01	1.73	1.65	1.74	3	4.00
26/07/2010	19:52	Fine	Middle	2.0	28.38	28.38	28.4	7.25	7.25	7.3	30.14	30.14	30.1	98.1	97.7	97.7	6.42	6.42	6.41	4.43	4.71	4.50	7	6.50
20/01/2010	19:55		Middle	2.0	28.38	28.38	20.4	7.25	7.25	1.5	30.14	30.14	50.1	97.5	97.5	51.1	6.41	6.40	0.41	4.13	4.73	т.50	6	0.00

Image: state	Suspended S ma/L		urbidit NTU			DO ma/L		ation	O Satura %	D	у	Salinit ppt			pН		erature	er Tempe	Wate	g Depth	Samplin	Weater Condition	Time	Date
·· ·· ·· ·· ··	Value Av			Va	Average		Va	Average		Va	Average		Va	Average	- lue	Va	Average	lue	Va	ı	n	Condition		
1 1 </td <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>_</td> <td>-</td> <td>28/06/2010</td>	-		-	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	_	-	28/06/2010
30040201 722 6404 722 740 740 740 </td <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>20/00/2010</td>	-		-	-		-	-		-	-		-	-		-	-		-	-	-	-		-	20/00/2010
17.2 17.4<	4	2.65	62	2.75	2.73	2.72	2.78	40.8	40.5	41.7	29.3	29.32	29.33	7.8	7.83	7.83	27.8	27.80	27.80	2.5	Middle	Cloudy	17:18	30/06/2010
			.54	2.67	-	2.67	2.73		40.1	40.9		29.18	29.18		7.83	7.83		27.80	27.80	2.5	Middle	,	17:22	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 8	4.03	.15	3.93	4.85	4.92	4.78	74.4	74.9	74.0	29.5	29.54	29.57	7.7	7.71	7.71	29.0	29.00	29.00	2.5	Middle	Sunny	17:50	02/07/2010
0507/2010 18.30 Midd 2.0 28.4 28.4 8.2 6.2 26.9 6.8 56.4 6.8 3.87 3.89 2.4 3.01 7.4 7.4 7.6 7.6 7.6 7.6 <th7.6< th=""> 7.6</th7.6<>	8		.88	4.17		4.85	4.86		74.2	74.5		29.52	29.53		7.71	7.71		29.00	29.00	2.5	Middle		17:55	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 3	2.45	27	2.36	3.89	3.83	4.06	58.4	57.7	60.8	26.9	26.92	26.92	8.2	8.15	8.15	28.4	28.40	28.40	2.0	Middle	Sunny	18:25	05/07/2010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3		.01	2.14		3.78	3.87		56.8	58.1		26.92	26.92		8.15	8.15		28.40	28.40	2.0	Middle		18:30	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	2.59	70	2.63	6.08	6.07	6.11	91.6	91.5	92.0	27.6	27.62	27.62	6.6	6.61	6.61	28.6	28.61	28.61	2.0	Middle	Sunny	08:45	08/07/2010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	<u> </u>	.53	2.50		6.03	6.10		91.1	91.8		27.62	27.62		6.62	6.62		28.62	28.61	2.0	Middle		08:50	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 5	3.64	.65	3.67	3.27	3.29	3.28	48.9	49.0	48.9	29.1	29.15	29.15	8.0	7.97	7.96	27.9	27.80	27.90	2.5	Middle	Sunny	09:30	10/07/2010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	<u> </u>	.62	3.63		3.24	3.25		48.7	48.9		29.14	29.14		7.96	7.96		28.00	28.00	2.5	Middle		09:35	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.85	.19	3.72	3.06	3.05	3.08	46.7	46.5	47.0	32.4	32.37	32.37	7.8	7.84	7.83	27.5	27.30	27.30	1.5	Middle	Sunny	08:50	12/07/2010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	<u> </u>	.83				3.05									7.86				1.5				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	5.51			3.83			58.3			30.7			8.1			28.1					Cloudy		14/07/2010
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u> </u>																		-			-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3.53			3.59			52.8			30.9			8.1			26.1					Cloudy		16/07/2010
19/07/2010 Fine Fine Image: Constraint of the state o		<u> </u>																						
OT:59 Cloudy Middle 2.0 28.20 28.20 28.20 28.20 28.20 8.09 8.09 8.1 30.15 30.15 30.1 53.5 52.4 3.53 3.47 3.70 2.62 3.07 2.76		2.32			5.66			88.0			30.2			7.1			29.5					Fine		19/07/2010
21/07/2010 Cloudy 28.2 8.1 30.1 52.4 3.70 2.76																								
	3 2	2.76		2.62	3.70		3.53	52.4	52.6 51.5	53.5 51.8	30.1		30.15 30.14	8.1	8.09	8.09	28.2		28.20	2.0	Middle	Cloudy	07:59	21/07/2010
		<u> </u>																						
10:40 Cloudy Middle 2.0 27.40 27.40 27.40 27.50 7.86 7.86 7.86 7.96 28.52 28.52 28.52 28.57 56.4 3.87 3.86 4.17 4.35 4.27 10:42 10:42 Middle 2.0 27.50 27.50 7.88 7.88 7.88 7.9 28.57 28.57 28.57 56.8 3.90 3.90 4.17 4.35 4.27		4.27			3.91			56.8			28.5			7.9			27.5					Cloudy		23/07/2010
10:42 Middle 2.0 27.50 27.50 7.66 7.66 26.57 26.57 57.2 56.6 3.90 3.90 4.26 4.29 5 10:15 Middle 2.0 28.20 7.93 7.93 30.69 30.69 54.2 53.6 4.56 4.52 4.48 4.14 3	-																							
10:15 Cloudy Middle 2.0 28.20 28.30 7.93 7.93 7.93 7.93 30.69 30.69 30.7 4.35 4.35 4.48 4.14 4.35 4.35 26/07/2010 10:18 Middle 2.0 28.30 28.30 7.96 7.96 7.96 30.62 30.62 30.7 52.3 51.6 52.9 4.43 4.35 4.37 4.40 5		4.35			4.47			52.9			30.7			7.9			28.3					Cloudy		26/07/2010

	Time	Weater Condition	Samplin	g Depth	Wate	er Temp °C	erature		pН			Salini ppt	ty	D	O Satur %	ation		DO ma/L			Turbid NTU		Suspend	ed Solids
		Condition	n	n	Va		Average	Va	lue	Average	Va		Average	Va		Average	Va		Average	Va		Average		Average
28/06/2010	-	_	-	-	-	-	_	-	-	_	-	-		-	-		-	-	_	-	-		-	
28/00/2010	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	_	-	
30/06/2010	16:30	Cloudy	Middle	2.0	27.70	27.70	27.7	7.86	7.86	7.9	29.23	29.23	29.2	43.0	42.0	42.5	2.87	2.81	2.84	3.72	3.67	3.59	5	4.00
	16:35	cloudy	Middle	2.0	27.70	27.70	2	7.86	7.86		29.23	29.23	2012	42.7	42.3	12.0	2.85	2.82	2.0 .	3.47	3.49	0.00	3	
02/07/2010	17:02	Sunny	Middle	2.5	28.00	28.00	28.0	8.12	8.12	8.1	29.19	29.20	29.2	81.6	81.0	81.1	5.38	5.27	5.31	4.27	4.22	4.25	7	7.00
	17:07		Middle	2.5	28.00	28.00		8.12	8.12		29.20	29.24		80.9	80.7		5.32	5.28		4.27	4.22		7	
05/07/2010	19:15	Sunny	Middle	2.0	29.80	29.80	29.8	8.36	8.36	8.4	25.34	25.34	25.3	74.9	74.3	74.4	4.94	4.90	4.90	2.16	2.77	2.54	4	5.00
19	19:19	,	Middle	2.0	29.80	29.80		8.36	8.36		25.34	25.34		74.2	74.1		4.89	4.88		2.52	2.69		6	
09/07/2010	09:39	Sunny	Middle	2.0	28.02	28.02	28.0	7.21	7.21	7.2	26.91	26.91	26.9	79.5	79.3	79.5	5.35	5.34	5.35	3.10	2.94	3.06	6	6.50
09	09:44	-	Middle	2.0	28.02	28.03		7.21	7.22		26.93	26.93		79.7	79.5		5.36	5.35		3.14	3.05		7	
10/07/2010	10:35	Sunny	Middle	2.5	28.60	28.60	28.7	8.07	8.08	8.1	28.31	28.33	28.3	48.6	47.4	48.3	3.22	3.14	3.22	4.44	4.71	4.53	10	11.50
10	10:38		Middle	2.5	28.70	28.80		8.08	8.07		28.29	28.31		49.3	47.7		3.37	3.15		4.15	4.82		13	
12/07/2010	11:15	Sunny	Middle	2.0	27.40	27.40	27.4	8.03	8.03	8.0	30.80	30.80	30.8	47.5	46.9	47.0	3.15	3.11	3.12	3.27	3.59	3.26	10	9.50
	11:18		Middle	2.0	27.40	27.40		8.03	8.03		30.81	30.81		47.4	46.3		3.14	3.07		3.04	3.12		9	
14/07/2010	10:55	Cloudy	Middle	2.5	26.40	26.40	26.5	7.89	7.89	7.9	32.89	32.89	32.9	44.5	44.0	43.7	2.96	2.93	2.91	4.70	4.49	4.47	13	14.00
	10:58		Middle	2.5	26.50	26.50		7.90	7.90		32.91	32.91		43.4	42.8		2.89	2.84		4.53	4.15		15	
16/07/2010	20:00	Cloudy	Middle	1.5	26.50	26.50	26.5	7.96	7.96	8.0	30.71	30.71	30.7	46.6	46.3	51.2	3.18	3.17	3.16	4.56	4.72	4.76	11	10.00
	20:05		Middle	1.5	26.50	26.50		7.96	7.96		30.71	30.71		46.1	65.8		3.15	3.13		4.94	4.82		9	
19/07/2010	07:30	Fine	Middle	2.0	29.76	29.76	29.8	7.08	7.08	7.1	29.63	29.63	29.6	89.8	89.3	89.7	5.78	5.75	5.78	2.42	2.29	2.31	8	9.50
	07:32		Middle	2.0	29.76	29.77		7.07	7.07		29.64	29.64		89.7	89.9		5.80	5.80		2.28	2.23		11	
21/07/2010	10:50 10:55	Cloudy	Middle	2.0	27.80 27.90	27.80 27.90	27.9	8.18 8.15	8.18 8.15	8.2	30.00 30.01	30.00 30.01	30.0	56.4 52.4	55.5 52.1	54.1	3.74 3.92	3.47 3.87	3.75	3.99 4.10	4.41 4.01	4.13	7	6.50
	10:55		Middle	2.0	27.90	27.90		7.87	7.87		28.72	28.73		52.4 55.0	54.6		4.01	3.98		3.21	3.57		3	
23/07/2010	11:17	Cloudy	Middle	2.0	27.30	27.30	27.4	7.89	7.88	7.9	28.69	28.69	28.7	53.9	53.3	54.2	3.91	3.96	3.94	3.44	3.69	3.48	12	7.50
	10:50		Middle	2.0	28.30	28.30		8.00	8.00		30.80	30.80		50.1	49.4		4.27	4.22		3.44	3.13		5	
26/07/2010	10:53	Cloudy	Middle	2.5	28.60	28.60	28.5	8.00	8.01	8.0	30.89	30.89	30.8	49.2	48.9	49.4	4.27	4.19	4.22	3.47	3.13	3.23	4	4.50

Date	Time	Weater Condition	Samplin		Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur %	ation		DO ma/L			Turbid NTU		Suspend	led Solids a/L
			n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average		Average
28/06/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	. <u>-</u>	-	
	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	<u> </u>
30/06/2010	16:00	Cloudy	Middle	1.0	26.70	26.70	26.7	7.82	7.82	7.8	29.93	29.93	29.9	46.5	46.5	46.5	3.10	3.10	3.10	4.15	4.45	4.25	5	- 5.00
	16:04		Middle	1.0	26.70	26.70		7.82	7.82		29.94	29.91		46.0	47.0		3.06	3.15		4.13	4.25		5	
02/07/2010	16:36	Sunny	Middle	0.8	27.90	27.90	27.9	7.97	7.97	8.0	30.00	30.01	30.0	73.4	72.0	71.4	4.79	4.68	4.65	4.55	4.45	4.48	10	9.50
	16:40		Middle	0.8	27.90	27.70		7.97	7.97		29.98	29.98		70.5	69.6		4.60	4.52		4.33	4.57		9	
05/07/2010	14:30	Sunny	Middle	0.8	30.60	30.70	30.7	8.19	8.18	8.2	26.13	26.14	26.1	52.6	52.1	52.2	3.40	3.36	3.37	3.27	4.01	3.45	7	- 7.50
	14:34		Middle	0.8	30.80	30.80		8.19	8.20		26.14	26.14		52.0	51.9		3.35	3.35		3.52	2.99		8	
08/07/2010	10:27	Sunny	Middle	2.5	28.09	28.06	28.1	7.41	7.20	7.3	26.76	26.77	26.8	78.3	78.3	78.3	5.21	5.20	5.20	2.56	2.37	2.44	5	- 5.50
	10:30		Middle	2.5	28.09	28.06		7.36	7.19		26.76	26.76		78.1	78.6		5.19	5.21		2.39	2.42		6	
10/07/2010	11:18	Sunnv	Middle	2.0	27.60	27.60	27.6	7.97	7.97	8.0	28.78	28.78	28.8	50.4	48.1	50.0	3.39	3.23	3.36	5.98	6.66	6.52	5	- 5.50
10/01/2010	11:21	Cullity	Middle	2.0	27.60	27.60	2.10	7.96	7.96	0.0	28.82	28.81	2010	52.1	49.4	0010	3.50	3.32	0.00	6.35	7.07	0.02	6	0.00
12/07/2010	11:48	Sunny	Middle	2.5	27.20	27.20	27.3	7.97	7.97	8.0	31.32	31.33	31.3	45.2	45.0	45.1	3.00	2.98	2.99	3.17	3.54	3.42	8	8.00
12/01/2010	11:52	Cunny	Middle	2.5	27.30	27.40	21.0	7.97	7.97	0.0	31.35	31.35	01.0	45.4	44.8	-0.1	3.01	2.97	2.00	3.70	3.28	0.42	8	0.00
14/07/2010	11:25	Cloudy	Middle	2.5	26.40	26.40	26.5	7.91	7.91	7.9	32.34	32.34	32.4	45.1	44.5	44.3	3.00	2.96	2.95	3.40	3.59	3.46	6	6.50
	11:29	cicady	Middle	2.5	26.50	26.50	20.0	7.94	7.95		32.37	32.36	02.1	44.1	43.5	1110	2.93	2.89	2.00	3.72	3.14	0.10	7	0.00
16/07/2010	19:10	Cloudy	Middle	2.0	26.40	26.40	26.4	8.07	8.07	8.1	30.87	30.87	30.9	46.8	46.6	46.7	3.17	3.16	3.17	5.61	5.55	5.65	15	- 13.50
	19:15		Middle	2.0	26.40	26.40		8.07	8.07		30.88	30.88		46.9	46.5		3.18	3.16		5.74	5.70		12	
19/07/2010	04:49	Fine	Middle	2.0	29.12	29.12	29.1	7.04	7.04	7.0	30.27	30.27	30.3	83.0	83.2	82.9	5.32	5.32	5.31	2.03	2.06	2.04	6	8.00
10/01/2010	04:51		Middle	2.0	29.11	29.11	2011	7.04	7.04		30.28	30.28	0010	82.7	82.7	0210	5.31	5.30	0.01	1.95	2.10	2.01	10	0.00
21/07/2010	11:48	Cloudy	Middle	1.5	27.10	27.10	27.2	8.07	8.07	8.1	29.65	29.66	29.7	52.5	51.4	51.0	3.52	3.45	3.68	3.64	3.93	3.30	7	6.50
2.000.2010	11:53	0.000,	Middle	1.5	27.20	27.20	22	8.08	8.08		29.68	29.68	20	50.4	49.8	0.10	3.89	3.85	0.00	2.85	2.79	0.00	6	
23/07/2010	11:52	Cloudy	Middle	2.5	27.60	27.60	27.6	8.03	8.03	8.0	28.64	28.64	28.7	53.8	53.1	52.8	3.95	3.90	3.88	3.58	2.74	3.03	4	3.50
	11:55	,	Middle	2.5	27.50	27.50		8.03	8.03		28.70	28.70		52.2	52.0		3.84	3.82		2.69	3.12		3	
26/07/2010	13:30	Cloudy	Middle	2.0	29.50	29.50	29.5	7.96	7.96	8.0	30.01	30.01	30.0	54.8	54.6	54.9	4.23	4.22	4.32	2.91	3.38	2.97	3	- 3.50
20.0.72010	13:33	ciculty	Middle	2.0	29.50	29.50	20.0	7.96	7.96	0.0	30.02	30.02	00.0	55.2	55.0	0 1.0	4.56	4.25		2.76	2.84	2.01	4	0.00

Date	Time	Weater Condition	Samplin	g Depth	Wate	er Temp °C	erature		pН			Salini ppt	ty	D	O Satur %	ation		DO ma/L			Turbid NTU		Suspend	led Solids
		Condition	r	n	Va		Average	Va	- lue	Average	Va		Average	Va		Average	Va		Average	Va	lue	Average		Average
28/06/2010	-	_	-	-	-	-	_	-	-	_	-	-		-	-	_	-	-	_	-	-	_	-	
20/00/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
30/06/2010	15:30	Cloudy	Middle	2.5	27.20	27.20	27.2	7.83	7.83	7.8	30.65	30.64	30.6	44.1	43.3	43.5	2.93	2.88	2.79	5.00	4.77	4.76	8	7.00
30/00/2010	15:35	Cloudy	Middle	2.5	27.20	27.20	21.2	7.83	7.83	7.0	30.64	30.66	50.0	43.5	42.9	40.0	2.93	2.43	2.13	4.43	4.85	4.70	6	7.00
02/07/2010	16:10	Sunny	Middle	1.5	28.00	28.00	28.0	8.01	8.01	8.0	28.71	28.71	28.7	82.4	82.0	80.9	5.40	5.36	5.27	4.69	4.54	4.53	12	13.00
010112010	16:15	Canny	Middle	1.5	28.00	28.00	20.0	8.01	8.01	0.0	28.71	28.71	20	80.8	78.4	00.0	5.24	5.06	0.21	4.49	4.40		14	10.00
05/07/2010	15:10	Sunny	Middle	1.5	29.60	29.60	29.6	8.24	8.25	8.2	25.20	25.20	25.2	75.1	74.5	72.5	4.95	4.86	4.81	2.88	2.89	2.81	9	8.00
	15:13	,	Middle	1.5	29.60	29.60		8.25	8.25	_	25.21	25.21		70.4	70.0		4.77	4.65		2.71	2.75		7	
08/07/2010	10:55	Sunny	Middle	2.5	27.78	27.79	27.8	6.50	6.50	6.5	28.00	28.00	28.0	73.1	73.3	73.5	4.91	4.92	4.94	2.53	2.06	2.21	10	10.00
	10:58		Middle	2.5	27.85	27.86		6.49	6.49		28.01	28.01		73.9	73.7		4.96	4.95		2.11	2.15		10	
10/07/2010	11:42	Sunny	Middle	2.0	27.70	27.70	27.8	8.01	8.00	8.0	29.23	29.23	29.2	43.2	42.9	42.8	2.87	2.85	2.85	3.88	3.79	3.77	6	7.00
	11:45		Middle	2.0	27.80	27.80		8.00	8.00		29.25	29.25		42.6	42.6		2.83	2.83		3.39	4.01		8	<u> </u>
12/07/2010	12:16	Sunny	Middle	2.5	27.70	27.70	27.8	7.84	7.84	7.8	31.88	31.88	31.9	40.4	40.1	40.1	2.66	2.63	2.63	3.44	3.70	3.52	10	9.50
	12:20		Middle	2.5	27.80	27.80		7.85	7.85		31.92	31.93		40.3	39.6		2.65	2.59		3.59	3.36		9	<u> </u>
14/07/2010	11:55	Cloudy	Middle	2.5	26.60	26.60	26.8	7.89	7.89	7.9	32.62	32.67	32.7	44.4	44.1	44.4	2.94	2.93	2.94	8.73	8.75	8.49	22	20.50
	11:59		Middle	2.5	26.90	26.90		7.90	7.90		32.70	32.71		44.7	44.4		2.96	2.93		8.19	8.27		19	<u> </u>
16/07/2010	18:44	Cloudy	Middle	1.5	26.50	26.50	26.6	7.97	7.97	8.0	30.10	30.10	30.1	43.7	43.0	42.4	2.97	2.92	2.87	6.01	5.98	6.00	11	10.00
	18:48		Middle	1.5	26.60	26.60		7.97	7.97		30.19	30.19		41.6	41.1		2.82	2.78		5.77	6.23		9	<u> </u>
19/07/2010	04:31	Fine	Middle	2.5	29.71	29.71	29.7	7.00	7.00	7.0	30.46	30.46	30.5	78.8	78.9	78.9	5.07	5.07	5.07	2.92	3.31	3.14	5	7.00
	04:33		Middle	2.5	29.71	29.71		7.00	7.00		30.47	30.47		79.0	79.0		5.08	5.07		3.11	3.22		9	<u> </u>
21/07/2010	12:20	Cloudy	Middle	2.0	27.00	27.10	27.1	8.03	8.03	8.0	29.81	29.81	29.8	55.7	55.4	54.7	4.08	4.06	4.01	2.48	2.71	2.64	9	7.00
	12:24		Middle	2.0	27.10	27.10		8.03	8.04		29.78	29.79		54.1	53.7		3.97	3.94		2.43	2.95		5	<u> </u>
23/07/2010	12:15	Cloudy	Middle	2.5	27.40	27.40	27.5	7.98	7.98	8.0	29.48	29.48	29.5	55.0	54.5	53.4	4.01	3.97	3.90	4.52	3.94	3.96	3	3.50
	12:18		Middle	2.5	27.60	27.60		7.97	7.97		29.47	29.47		52.3	51.7		3.83	3.78		3.79	3.59		4	<u> </u>
26/07/2010	13:47	Cloudy	Middle	2.5	29.70	29.70	29.7	7.92	7.92	7.9	29.85	29.85	29.9	53.6	52.9	52.4	3.81	3.78	3.74	3.79	4.05	3.76	5	5.00
	13:50		Middle	2.5	29.70	29.70		7.92	7.92		29.88	29.88		51.7	51.4		3.69	3.67		3.61	3.59		5	

Water Monitoring Result at C9 - Provident Garden Mid-Ebb Tide

Date	Time	Weater Condition	Samplin		Wate	er Temp °C	erature		pH -			Salinit ppt	ty	D	O Satur %	ation		DO mg/L			Turbidi NTU		Suspende	ed Solids a/L
			n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Value	Average
00/00/00 4 0	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
28/06/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/06/2010	14:53	Cloudy	Middle	2.0	28.10	28.10	28.1	7.81	7.80	7.8	28.01	28.00	28.0	43.3	42.2	44.2	2.89	2.84	2.94	10.20	10.10	10.15	24	22.00
00/00/2010	14:57	Cloudy	Middle	2.0	28.10	28.10	20.1	7.83	7.82	1.0	27.98	27.99	20.0	44.8	46.4	11.2	2.94	3.08	2.04	9.99	10.30	10.10	20	22.00
02/07/2010	15:50	Sunny	Middle	2.0	28.70	28.70	28.7	8.07	8.07	8.1	28.07	28.08	28.1	74.2	73.9	73.7	4.77	4.70	4.73	6.69	6.46	6.38	15	13.50
02/01/2010	15:55	Currity	Middle	2.0	28.70	28.70	20.1	8.07	8.07	0.1	28.08	28.08	20.1	73.8	72.9	70.7	4.73	4.72	4.70	5.77	6.61	0.00	12	10.00
05/07/2010	17:49	Sunny	Middle	2.0	29.00	29.00	29.0	8.25	8.25	8.3	25.12	25.07	25.1	61.8	61.5	61.7	4.12	4.10	4.11	4.90	4.78	4.63	9	9.00
00/01/2010	17:52	Curriy	Middle	2.0	29.00	29.00	20.0	8.26	8.25	0.0	25.05	25.07	20.1	62.0	61.3	01.7	4.14	4.08	4.11	4.30	4.54	4.00	9	0.00
08/07/2010	14:10	Sunny	Middle	2.5	29.32	29.33	29.3	7.25	7.26	7.3	25.69	25.69	25.7	80.1	80.8	80.8	5.37	5.34	5.37	5.88	4.88	5.01	9	9.00
00/01/2010	14:15	Curriy	Middle	2.5	29.33	29.33	2010	7.25	7.24	110	25.69	25.69	2011	81.0	81.4	0010	5.37	5.38	0.07	4.52	4.77	0.01	9	0.00
10/07/2010	13:12	Sunny	Middle	3.0	28.20	28.20	28.4	8.10	8.10	8.1	27.53	27.41	27.5	47.4	47.1	47.5	3.15	3.14	3.15	5.71	5.52	5.21	14	15.50
10/01/2010	13:18	Currity	Middle	3.0	28.60	28.60	20.4	8.11	8.11	0.1	27.47	27.46	21.0	48.0	47.5	47.0	3.17	3.15	0.10	4.94	4.68	0.21	17	10.00
12/07/2010	13:15	Sunny	Middle	1.5	27.30	27.30	27.4	8.08	8.08	8.1	27.55	27.57	27.6	62.6	61.5	61.9	4.27	4.21	4.23	4.99	5.32	5.52	19	19.00
	13:20		Middle	1.5	27.50	27.50		8.10	8.10		27.61	27.61		62.0	61.3		4.24	4.19		5.71	6.06		19	
14/07/2010	15:30	Cloudy	Middle	2.0	29.00	29.00	29.0	8.06	8.06	8.1	28.90	28.90	28.9	56.3	56.0	55.6	3.67	3.65	3.63	7.80	7.27	7.58	15	14.50
	15:34	,	Middle	2.0	29.00	29.00		8.06	8.06	-	28.92	28.92		55.2	55.0		3.60	3.58		7.52	7.74		14	
16/07/2010	15:21	Cloudy	Middle	2.0	26.40	26.40	26.4	7.98	7.98	8.0	30.89	30.89	30.9	52.6	52.3	52.5	3.54	3.52	3.53	5.92	5.44	5.57	12	11.50
	15:25		Middle	2.0	26.40	26.40		7.99	7.99		30.83	30.83		52.7	52.2		3.55	3.52		5.27	5.64		11	
19/07/2010	04:09	Fine	Middle	2.0	29.65	29.62	29.6	7.05	7.04	7.0	30.49	30.50	30.5	83.8	84.0	83.9	5.41	5.42	5.40	1.64	1.85	1.75	12	12.00
	04:12		Middle	2.0	29.64	29.64		7.02	7.02		30.45	30.45		83.9	84.0		5.40	5.37		1.73	1.77		12	
21/07/2010	13:25	Cloudy	Middle	1.5	26.90	26.90	26.9	7.94	7.94	7.9	29.10	29.10	29.1	51.2	50.2	50.2	3.79	3.73	3.72	9.92	10.20	9.97	21	25.50
	13:29		Middle	1.5	26.90	27.00		7.94	7.94		29.09	29.09		50.0	49.3		3.71	3.66		9.95	9.81		30	
23/07/2010	11:30	Cloudy	Middle	2.5	27.20	27.20	27.2	7.94	7.94	7.9	28.75	28.75	28.8	45.9	44.0	44.2	3.48	3.47	3.41	6.56	6.35	6.39	9	10.00
	11:35	-	Middle	2.5	27.20	27.20		7.94	7.94		28.75	28.75		43.7	43.3		3.32	3.35		6.26	6.39		11	
26/07/2010	11:28	Cloudy	Middle	1.5	27.90	27.90	28.0	7.91	7.91	7.9	30.46	30.46	30.5	51.0	50.7	50.9	3.71	3.69	3.70	8.18	8.17	7.82	12	12.00
	11:31		Middle	1.5	28.00	28.00		7.91	7.91		30.46	30.46		50.7	51.2		3.69	3.72		7.39	7.52		12	

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp °C	erature		pН			Salini ppt	ty	D	O Satur %	ation		DO mg/L			Turbid NTU	ity	Suspend	ed Solids
		Condition	n	า	Va	ilue	Average	Va	lue	Average	Va	lue	Average	Va	ilue	Average	Val		Average	Va	lue	Average		Average
	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
28/06/2010	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	
30/06/2010	14:15	Cloudy	Middle	2.0	28.20	28.20	28.2	7.80	7.81	7.8	28.40	28.41	28.4	39.9	39.0	39.1	2.65	2.64	2.62	13.50	17.00	15.60	36	37.50
00,00,2010	14:20	cicady	Middle	2.0	28.20	28.20	2012	7.79	7.77	110	28.41	28.39	20.1	39.4	38.1	0011	2.62	2.56	2.02	15.90	16.00	10100	39	01.00
02/07/2010	15:30	Sunny	Middle	2.0	29.40	29.50	29.5	8.03	8.03	8.0	28.17	28.17	28.2	77.4	77.9	77.8	5.10	5.15	5.14	7.78	6.87	6.70	14	15.00
	15:34	Carriy	Middle	2.0	29.50	29.60	20.0	8.03	8.03	0.0	28.17	28.17	2012	77.8	77.9		5.14	5.15	0	6.15	5.98	0.10	16	10.00
05/07/2010	17:33	Sunny	Middle	2.0	29.30	29.20	29.2	8.26	8.26	8.3	25.07	25.03	25.0	55.3	54.5	55.1	3.66	3.61	3.65	4.91	4.13	4.57	17	16.50
	17:37	Carriy	Middle	2.0	29.20	29.20	2012	8.26	8.26	0.0	25.02	25.01	20.0	56.4	54.0	00.1	3.74	3.57	0.00	4.18	5.06		16	10.00
08/07/2010	14:00	Sunnv	Middle	2.0	29.21	29.22	29.2	7.42	7.40	7.4	25.40	25.40	25.4	85.0	84.0	84.6	5.66	5.65	5.64	5.21	5.53	4.89	9	8.50
00,0172010	14:05	Carriy	Middle	2.0	29.23	29.23	2012	7.36	7.37		25.40	25.40	20.1	84.7	84.5	0 110	5.63	5.60	0.01	4.26	4.54		8	0.00
10/07/2010	13:33	Sunny	Middle	1.5	28.70	28.80	28.8	8.09	8.09	8.1	27.11	27.11	27.2	48.6	47.8	48.0	3.21	3.16	3.17	8.74	8.05	8.33	24	23.50
10/01/2010	13:36	Curriy	Middle	1.5	28.90	28.90	20.0	8.06	8.07	0.1	27.24	27.24	21.2	48.3	47.3	40.0	3.19	3.12	0.11	8.52	7.99	0.00	23	20.00
12/07/2010	12:52	Sunny	Middle	2.0	27.10	27.10	27.2	8.10	8.10	8.1	27.41	27.44	27.4	62.0	61.3	62.5	4.24	4.20	4.27	6.09	6.25	5.99	24	21.00
12,0172010	12:55	Carriy	Middle	2.0	27.30	27.40	22	8.12	8.11	0.1.	27.46	27.46		63.6	63.0	02.0	4.34	4.31		5.82	5.78	0.00	18	2
14/07/2010	15:10	Cloudy	Middle	2.0	28.80	28.80	28.9	8.03	8.03	8.0	28.95	28.95	28.9	68.7	64.6	64.1	4.50	4.23	4.19	8.31	8.54	7.94	19	17.50
	15:15		Middle	2.0	29.00	29.00		8.05	8.05		28.92	28.93		62.1	61.0		4.06	3.97		7.47	7.43		16	
16/07/2010	15:00	Cloudy	Middle	2.0	26.80	26.90	26.9	8.04	8.04	8.0	30.33	30.33	30.3	57.5	55.3	54.1	3.89	3.65	3.63	6.71	7.44	7.27	22	22.00
	15:05		Middle	2.0	27.00	27.00		8.04	8.04		30.33	30.32		52.5	51.1		3.54	3.44		7.57	7.36		22	
19/07/2010	03:56	Fine	Middle	2.0	29.78	29.78	29.8	6.97	6.97	7.0	29.66	29.66	29.7	82.7	82.7	82.7	5.29	5.31	5.32	1.93	2.11	2.00	11	10.00
	03:58	-	Middle	2.0	29.78	29.78		6.96	6.96		29.66	29.66		82.7	82.8		5.34	5.34		1.99	1.98		9	
21/07/2010	13:01	Cloudy	Middle	1.5	26.90	26.90	26.9	7.84	7.84	7.9	29.03	29.03	29.0	45.4	44.9	44.5	4.08	404	4.01	10.70	10.10	10.30	32	45.50
	13:04		Middle	1.5	26.90	26.90		7.89	7.89		29.05	29.05		44.2	43.6		4.00	3.95		10.20	10.20		59	
23/07/2010	11:00	Cloudy	Middle	2.5	27.20	27.30	27.3	7.93	7.93	7.9	27.96	27.93	27.9	50.0	50.3	50.1	3.40	3.41	3.40	4.38	4.20	4.25	12	11.00
	11:05	,	Middle	2.5	27.30	27.30	-	7.93	7.93	-	27.93	27.93		51.1	49.1		3.47	3.32	-	4.31	4.09	-	10	
26/07/2010	11:18	Cloudy	Middle	2.0	28.30	28.30	28.4	7.90	7.90	7.9	30.17	30.17	30.2	54.0	53.8	53.4	3.89	3.88	3.85	9.91	8.20	8.27	15	15.50
	11:22	,	Middle	2.0	28.40	28.40		7.90	7.90		30.24	30.24		52.9	52.8		3.82	3.81		7.51	7.44		16	

Date	Time	Weater Condition	Samplin	<u> </u>	Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur %	ation		DO mg/L			Turbid NTU			ded Solids g/L
			n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
08/07/2010	11:50	Sunnv	Middle	2.5	29.88	29.88	29.9	6.57	6.57	6.5	25.14	25.15	25.2	83.8	83.3	83.7	5.44	5.40	5.43	3.26	3.03	2.95	4	4.50
00/01/2010	11:53	Ouriny	Middle	2.5	29.93	29.91	23.3	6.51	6.52	0.5	25.18	25.18	20.2	84.2	83.5	03.7	5.47	5.42	5.45	2.97	2.55	2.35	5	4.00
10/07/2010	12:36	Sunny	Middle	2.5	29.70	29.70	29.7	8.04	8.04	8.0	26.51	26.51	26.5	47.4	47.0	48.0	3.11	3.09	3.14	4.35	4.42	4.24	10	10.00
10/07/2010	12:40	Sunny	Middle	2.5	29.70	29.70	29.1	8.04	8.04	0.0	26.51	26.51	20.3	47.6	49.8	40.0	3.12	3.25	3.14	4.09	4.11	4.24	10	10.00
12/07/2010	10:23	Sunnv	Middle	2.5	27.70	27.70	27.7	8.00	8.00	8.0	28.47	28.47	28.5	47.7	47.0	46.5	3.20	3.16	3.12	3.52	3.06	3.32	8	7.50
12/07/2010	10:27	Sunny	Middle	2.5	27.70	27.70	21.1	8.00	8.00	0.0	28.51	28.51	20.0	45.8	45.6	40.5	3.07	3.06	5.12	3.48	3.23	3.32	7	7.50
14/07/2010	16:02	Cloudy	Middle	2.0	29.00	29.00	29.0	8.02	8.02	8.0	28.10	28.16	28.1	53.1	52.5	52.4	3.40	3.35	3.39	5.28	5.07	4.93	11	12.00
14/07/2010	16:05	Cloudy	Middle	2.0	29.00	29.00	29.0	8.03	8.03	0.0	28.12	28.12	20.1	51.7	52.2	52.4	3.39	3.42	3.39	4.59	4.77	4.93	13	12.00
16/07/2010	16:56	Cloudy	Middle	2.0	27.70	27.70	27.7	8.02	8.02	8.0	29.84	29.84	29.8	50.9	50.4	49.9	3.38	3.36	3.32	2.99	2.82	2.90	10	9.00
10/07/2010	16:59	Cloudy	Middle	2.0	27.70	27.70	21.1	8.01	8.01	0.0	29.83	29.83	29.0	49.2	49.0	49.9	3.28	3.26	3.32	2.74	3.03	2.90	8	9.00
19/07/2010	05:30	Fine	Middle	2.0	29.71	29.71	29.7	7.01	7.01	7.0	29.26	29.26	29.3	76.2	77.9	77.9	5.03	5.03	4.99	2.15	2.18	2.24	5	6.50
19/07/2010	05:32	Fine	Middle	2.0	29.73	29.73	29.7	7.01	7.01	7.0	29.26	29.26	29.3	79.1	78.2	77.9	5.00	4.89	4.99	2.29	2.33	2.24	8	0.50
21/07/2010	09:35	Cloudy	Middle	2.0	28.10	28.10	28.2	8.02	8.02	8.0	29.26	29.26	29.3	52.3	52.2	52.5	3.67	3.56	3.67	4.91	5.12	4.89	9	9.50
21/07/2010	09:39	Cloudy	Middle	2.0	28.20	28.20	20.2	8.03	8.03	0.0	29.28	29.28	29.5	53.0	52.5	52.5	3.73	3.70	3.07	4.74	4.77	4.09	10	9.50
23/07/2010	10:10	Cloudy	Middle	2.0	27.00	27.00	27.1	7.88	7.88	7.9	28.60	28.60	28.6	52.4	52.0	51.7	3.56	3.64	3.68	2.15	2.37	2.28	4	4.50
23/07/2010	10:14	Cioudy	Middle	2.0	27.10	27.10	27.1	7.87	7.87	1.9	28.62	28.62	20.0	51.4	50.9	51.7	3.78	3.75	3.00	2.28	2.32	2.20	5	4.50
26/07/2010	12:04	Cloudy	Middle	2.0	28.80	28.80	28.9	7.90	7.90	7.9	30.29	30.29	30.3	53.9	53.1	53.0	3.85	3.80	3.80	6.22	4.70	5.46	4	4.00
20/07/2010	12:08	Cloudy	Middle	2.0	28.90	28.90	20.9	7.90	7.90	1.9	30.26	30.26	30.3	52.7	52.4	53.0	3.78	3.75	3.60	4.38	6.54	J.40	4	4.00

					1																			
Date	Time	Weater Condition	Samplin	ng Depth	Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur %	ation		DO ma/L			Turbid NTU			led Solids a/L
		Condition	1	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Value	Average
08/07/2010	15:14	Sunnv	Middle	1.0	28.53	28.55	23.6	7.64	7.64	7.6	27.62	27.62	27.7	80.5	80.0	80.4	5.35	5.31	5.34	4.87	5.41	4.93	8	9.00
08/07/2010	15:18	Sunny	Middle	1.0	28.70	8.72	23.0	7.55	7.55	7.0	27.69	27.69	27.7	80.9	80.2	80.4	5.37	5.33	5.34	4.86	4.56	4.93	10	9.00
10/07/2010	12:54	Sunny	Middle	1.5	28.60	28.60	28.7	8.09	8.09	8.1	26.53	26.53	26.5	48.8	47.8	47.6	3.22	3.16	3.14	4.67	3.52	3.94	9	8.00
10/07/2010	12:57	Suriny	Middle	1.5	28.80	28.80	20.7	8.09	8.09	0.1	26.55	26.55	20.5	47.0	46.6	47.0	3.11	3.08	3.14	4.00	3.57	3.94	7	8.00
12/07/2010	09:50	Sunnv	Middle	2.5	27.80	27.90	27.9	7.77	7.78	7.8	27.20	27.22	27.2	53.3	52.7	52.9	3.58	3.54	3.56	2.75	2.64	2.66	6	6.50
12/07/2010	09:54	Suriny	Middle	2.5	27.90	27.90	27.9	7.91	7.91	7.0	27.24	27.24	21.2	53.0	52.6	52.9	3.57	3.54	3.30	2.62	2.61	2.00	7	0.50
14/07/2010	12:40	Cloudy	Middle	1.5	28.10	28.10	28.2	7.92	7.92	8.0	28.07	28.07	28.1	52.0	50.4	50.5	3.46	3.35	3.36	4.62	4.55	4.45	6	7.00
14/07/2010	12:44	Cloudy	Middle	1.5	28.30	28.30	20.2	7.98	7.98	8.0	28.04	28.04	20.1	50.0	49.5	50.5	3.32	3.29	3.30	4.29	4.34	4.45	8	7.00
16/07/2010	16:30	Cloudy	Middle	1.5	27.10	27.10	27.2	8.07	8.08	8.1	28.96	29.17	29.1	60.0	58.7	58.8	4.01	3.91	3.95	1.97	2.51	2.26	8	9.00
16/07/2010	16:35	Cloudy	Middle	1.5	27.20	27.20	21.2	8.07	8.07	0.1	29.11	29.10	29.1	59.1	57.4	56.6	4.04	3.82	3.95	2.22	2.34	2.20	10	9.00
19/07/2010	05:14	Fine	Middle	1.5	29.79	29.79	29.8	7.02	7.01	7.0	28.81	28.81	28.8	89.2	89.2	89.4	5.79	5.79	5.80	1.62	1.50	1.61	8	7.00
19/07/2010	05:16	Fille	Middle	1.5	29.79	29.79	29.8	7.01	7.01	7.0	28.80	28.80	20.0	89.3	89.9	89.4	5.80	5.82	5.80	1.49	1.82	1.01	6	7.00
21/07/2010	08:55	Cloudy	Middle	1.5	27.50	27.70	27.6	8.08	8.09	8.1	28.74	28.73	28.7	58.3	56.2	59.1	3.92	3.77	3.96	4.03	3.98	4.01	9	13.50
21/07/2010	09:00	Cloudy	Middle	1.5	27.60	27.40	27.0	8.09	8.09	0.1	28.73	28.73	20.7	60.0	62.0	59.1	4.03	4.13	3.90	4.00	4.01	4.01	18	13.50
23/07/2010	09:40	Cloudy	Middle	1.5	26.90	26.90	26.9	7.82	7.82	7.8	29.49	29.49	29.5	47.7	48.0	48.4	3.63	3.55	3.70	2.44	2.23	2.22	7	7.00
23/07/2010	09:44	Cloudy	Middle	1.5	26.90	26.90	20.9	7.84	7.84	1.0	29.48	29.48	29.0	49.0	48.7	40.4	3.81	3.80	3.70	2.15	2.05	2.22	7	7.00
26/07/2010	12:28	Cloudy	Middle	1.5	28.50	28.50	28.6	7.94	7.94	7.9	29.89	29.89	29.9	55.7	55.3	55.2	4.00	3.97	3.97	2.63	2.78	2.64	4	4.00
20/07/2010	12:31	Cloudy	Middle	1.5	28.60	28.60	20.0	7.94	7.94	1.9	29.97	29.98	29.9	55.1	54.8	55.∠	3.96	3.94	3.97	2.63	2.53	2.04	4	4.00

Date	Time	Weater Condition	Samplin	0 1		er Temp °C			pH -			Salini ppt	,		O Satur %			DO mg/L			Turbid NTU	l	m	led Solids g/L
			I	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
08/07/2010	14:35	Sunnv	Middle	1.5	30.12	30.55	30.2	7.46	7.46	7.5	24.65	24.64	24.6	98.1	98.2	98.5	6.41	6.42	6.45	2.24	1.86	1.97	4	5.00
00/01/2010	14:40	Odinity	Middle	1.5	30.13	30.15	00.2	7.46	7.46	1.0	24.65	24.64	24.0	98.7	98.8	00.0	6.48	6.48	0.40	1.86	1.90	1.07	6	0.00
10/07/2010	08:45	Sunny	Middle	2.0	29.60	29.60	29.4	7.85	7.85	7.9	27.18	27.19	27.2	48.6	48.2	48.3	3.17	3.15	3.16	2.04	2.11	2.09	6	5.00
10/07/2010	08:50	Sunny	Middle	2.0	29.20	29.20	29.4	7.90	7.90	7.5	27.20	27.19	21.2	47.9	48.3	40.5	3.14	3.16	3.10	2.32	1.89	2.09	4	5.00
12/07/2010	09:18	Sunny	Middle	1.5	28.30	28.40	28.2	7.52	7.52	7.6	27.77	27.77	27.9	44.4	44.1	43.9	2.97	2.96	2.94	3.10	2.75	2.86	5	4.50
12/07/2010	09:22	Sunny	Middle	1.5	28.00	28.00	20.2	7.75	7.75	7.0	27.93	27.93	21.5	43.6	43.3	43.9	2.92	2.90	2.94	2.71	2.88	2.00	4	4.50
14/07/2010	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
14/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16/07/2010	15:55	Sunnv	Middle	2.0	26.80	26.90	27.0	7.96	7.91	7.9	30.81	30.82	30.7	46.5	43.6	45.7	3.12	2.92	3.05	3.88	3.57	3.78	13	11.50
10/07/2010	15:58	Sunny	Middle	2.0	27.00	27.10	27.0	7.91	7.92	7.9	30.63	30.67	30.7	46.9	45.8	45.7	3.11	3.04	3.05	4.04	3.61	3.76	10	11.50
19/07/2010	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
19/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/07/2010	08:35	Cloudy	Middle	2.0	27.50	27.50	27.6	7.63	7.63	7.7	29.45	29.45	29.4	44.6	44.3	44.6	3.98	3.96	3.98	4.36	4.33	4.34	12	11.00
21/07/2010	08:39	Cloudy	Middle	2.0	27.60	27.60	27.0	7.71	7.71	1.1	29.44	29.45	29.4	44.9	44.5	44.0	4.01	3.98	3.98	4.38	4.29	4.34	10	11.00
22/07/2010	08:50	Claudu	Middle	2.0	27.20	27.20	07.0	7.35	7.35	7.4	28.88	28.88	28.0	43.9	43.6	42.0	3.98	2.94	2.00	2.06	2.01	2.02	4	4.00
23/07/2010	08:54	Cloudy	Middle	2.0	27.30	27.40	27.3	7.50	7.51	7.4	28.89	28.89	28.9	43.5	43.3	43.6	3.93	3.92	3.69	2.01	2.04	2.03	4	4.00
26/07/2040	09:35	Claude	Middle	2.0	28.30	28.30	20.2	7.26	7.26	7.0	28.72	28.73	20.0	52.6	52.8	50.0	3.80	3.83	2.07	4.00	3.63	2.70	6	E 50
26/07/2010	09:39	Cloudy	Middle	2.0	28.20	28.20	28.3	7.30	7.30	7.3	28.83	28.84	28.8	49.0	48.1	50.6	3.56	3.50	3.67	3.76	3.42	3.70	5	5.50

Date	Time	Weater Condition	Samplin	Ŭ I		er Temp °C	perature	Va	pH - Ilue	Average	Va	Salini ppt	ty Average		O Satur % lue	ation Average	Va	DO mg/L lue	Average	Va	Turbid NTU alue		m	ed Solids g/L Average
	13:40		Middle	1.5	27.60	27.20	Average	7.93	7.98	Average	23.97	24.15	Average	63.9	63.4	Average	4.42	4.42	Average	1.80	2.31	Average	value 4	Average
08/07/2010		Sunny					27.4			8.0			24.1			62.0			4.27			2.07		5.00
	13:44		Middle	1.5	27.30	27.30		7.99	7.99		24.15	24.17		61.0	59.5		4.21	4.03		2.05	2.11		6	
10/07/2010	10:30	Sunny	Middle	2.0	28.20	28.20	28.2	8.07	8.07	8.1	28.20	28.30	28.3	71.2	71.1	70.9	4.39	4.38	4.37	3.46	3.52	3.48	7	7.50
10/01/2010	10:35	Carmy	Middle	2.0	28.20	28.20	2012	8.08	8.08	0.1	28.30	28.30	2010	70.2	70.9	1010	4.33	4.36	lior	3.55	3.40	0.10	8	1.00
40/07/0040	11:05	0	Middle	2.0	27.40	26.90	00.0	8.06	8.03		28.35	28.37	00.4	61.4	66.1	67.8	4.20	4.57	4.00	2.19	2.15	0.00	5	5 50
12/07/2010	11:10	Sunny	Middle	2.0	26.19	26.80	26.8	8.06	8.07	8.1	28.37	28.32	28.4	68.7	74.8	67.8	4.72	5.15	4.66	1.97	2.04	2.09	6	5.50
	12:05		Middle	2.5	27.10	27.10		7.98	7.98		30.81	30.81		52.7	52.3		3.65	3.63		1.71	1.98		13	
14/07/2010	12:09	Cloudy	Middle	2.5	27.20	27.10	27.1	7.99	7.99	8.0	30.84	30.84	30.8	51.8	51.5	52.1	3.59	3.57	3.61	1.96	1.80	1.86	11	12.00
	14:52		Middle	2.0	27.30	27.30		7.99	7.98		30.05	30.06		60.2	58.4		4.12	4.00		2.62	2.39		10	
16/07/2010	14:55	Cloudy	Middle	2.0	27.30	27.30	27.3	7.99	7.99	8.0	30.05	30.06	30.1	59.0	57.9	58.9	4.05	3.97	4.04	2.47	2.78	2.57	11	10.50
	06:25		Middle	2.0	29.72	29.73		7.19	7.19		29.31	29.31		92.9	92.7		5.90	5.90		2.53	2.60		7	
19/07/2010	06:27	Fine	Middle	2.0	29.31	29.31	29.5	7.20	7.20	7.2	29.31	29.31	29.3	92.4	92.4	92.6	5.84	5.84	5.87	2.64	2.88	2.66	5	6.00
	12:15		Middle	2.0	27.48	27.10		7.03	7.04		29.14	29.14		76.7	76.2		5.66	5.64		2.86	2.70		11	
21/07/2010	12:20	Cloudy	Middle	2.0	27.24	27.16	27.2	7.04	7.04	7.0	29.12	29.11	29.1	75.9	75.1	76.0	5.62	5.56	5.62	2.75	2.67	2.75	9	10.00
	10:30		Middle	2.5	27.25	27.19		7.64	7.63		29.01	29.05		71.2	72.1		5.04	5.12		3.45	3.47		6	
23/07/2010	10:35	Cloudy	Middle	2.5	27.18	27.17	27.2	7.63	7.63	7.6	28.93	28.92	29.0	71.4	72.3	71.8	5.07	5.14	5.09	3.37	3.39	3.42	4	5.00
	11:15		Middle	2.5	26.93	27.02		7.43	7.43		30.32	30.28		74.3	69.2		5.00	4.70		3.72	3.50		6	
26/07/2010	11:20	Cloudy	Middle	2.5	27.04	27.04	27.0	7.42	7.43	7.4	30.29	30.31	30.3	65.9	67.8	69.3	4.65	4.72	4.77	3.56	3.48	3.57	4	5.00

Water Monitoring Result at C2 - TH / APA / SOC Mid-Ebb Tide

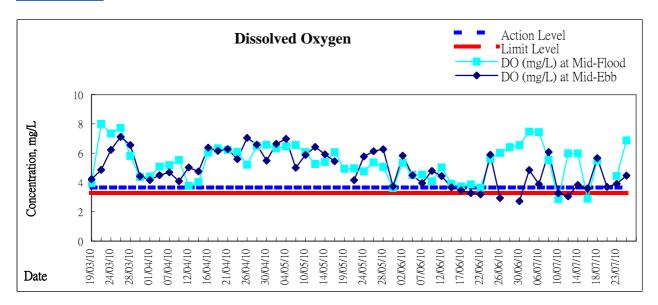
Date	Time	Weater Condition	Samplin n	* .		er Temp °C Ilue	erature Average	Va	pH - lue	Average	Va	Salini ppt	1		O Satur %	ation Average	Va	DO mg/L lue	Average	Va	Turbid NTU		Suspend mg Value	
	13:20		Middle	2.0	27.60	27.40		7.95	7.94	Ŭ	25.78	25.87		47.7	45.8		3.26	3.14		2.04	2.08	Ŭ	4	
08/07/2010	13:24	Sunny	Middle	2.0	27.20	27.00	27.3	7.93	7.93	7.9	25.95	25.96	25.9	44.9	44.6	45.8	3.09	3.07	3.14	1.94	2.05	2.03	4	4.00
	10:47		Middle	2.0	28.90	28.90		8.12	8.12		27.90	27.90		48.9	48.6		3.27	3.25		3.72	3.76		7	
10/07/2010	10:55	Sunny	Middle	2.0	28.80	28.80	28.9	8.12	8.12	8.1	27.90	27.90	27.9	48.4	48.1	48.5	3.25	3.23	3.25	3.84	3.80	3.78	7	7.00
10/07/0010	10:41		Middle	2.0	27.40	27.30	07.0	8.02	8.02		29.30	29.37	00.4	63.6	61.0		4.48	4.18	4.00	2.14	2.08	4.00	7	
12/07/2010	10:45	Sunny	Middle	2.0	27.20	27.20	27.3	8.03	8.03	8.0	29.41	29.42	29.4	68.4	66.5	64.9	4.81	5.05	4.63	1.93	1.81	1.99	5	6.00
44/07/2040	11:40	Claudu	Middle	2.0	27.40	27.40	07.4	79.40	79.40	79.4	31.57	31.57	21.0	47.7	47.1	46.8	3.29	3.25	2.02	2.89	2.27	2.48	15	12.50
14/07/2010	11:43	Cloudy	Middle	2.0	27.40	27.40	27.4	79.40	79.40	79.4	31.59	31.59	31.6	46.3	46.1	46.8	3.20	3.19	3.23	2.46	2.31	2.48	12	13.50
16/07/2010	16:32	Cloudy	Middle	1.5	27.40	27.50	27.5	8.01	8.02	8.0	30.41	30.41	30.4	53.1	52.6	52.7	3.63	3.57	3.58	4.52	4.37	4.39	9	10.00
16/07/2010	16:35	Cloudy	Middle	1.5	27.50	27.50	27.5	8.01	8.01	8.0	30.41	30.41	30.4	52.9	52.2	52.7	3.59	3.54	3.56	4.21	4.45	4.39	11	10.00
19/07/2010	06:08	Fine	Middle	2.0	29.57	29.57	29.6	7.15	7.14	7.1	29.39	29.39	29.4	84.4	85.0	84.7	5.42	5.42	5.41	2.58	2.39	2.51	8	7.00
19/07/2010	06:10	Fine	Middle	2.0	29.57	29.57	29.0	7.14	7.14	7.1	29.39	29.39	29.4	84.6	84.7	64.7	5.40	5.40	5.41	2.67	2.40	2.51	6	7.00
21/07/2010	10:20	Cloudy	Middle	2.0	27.05	27.01	27.1	7.62	7.59	7.6	29.27	29.41	29.4	76.0	74.6	74.4	5.63	5.53	5.52	3.80	3.66	3.76	30	36.00
21/07/2010	10:25	Cloudy	Middle	2.0	27.12	27.25	27.1	7.57	7.56	7.0	29.42	29.42	29.4	74.1	73.0	74.4	5.49	5.41	5.52	3.79	3.79	3.70	42	30.00
23/07/2010	10:45	Cloudy	Middle	2.5	27.14	27.15	27.1	7.34	7.35	7.3	28.53	28.53	28.5	77.9	78.4	76.0	5.57	5.63	5.50	1.89	1.86	1.90	7	7.00
23/07/2010	10:50	Cioudy	Middle	2.5	27.14	27.15	27.1	7.34	7.35	1.3	28.53	28.53	20.3	74.2	73.6	70.0	5.43	5.38	5.50	1.91	1.92	1.90	7	7.00
26/07/2010	11:00	Cloudy	Middle	2.0	27.47	27.35	27.4	7.50	7.51	7.5	29.83	29.84	29.8	62.4	61.5	60.4	4.29	4.20	4.15	3.27	2.89	3.06	6	5.00
20/07/2010	11:05	Cioudy	Middle	2.0	27.38	27.46	21.4	7.53	7.51	7.5	29.84	29.86	29.0	58.6	58.9	00.4	4.04	4.06	4.10	3.03	3.05	3.00	4	5.00

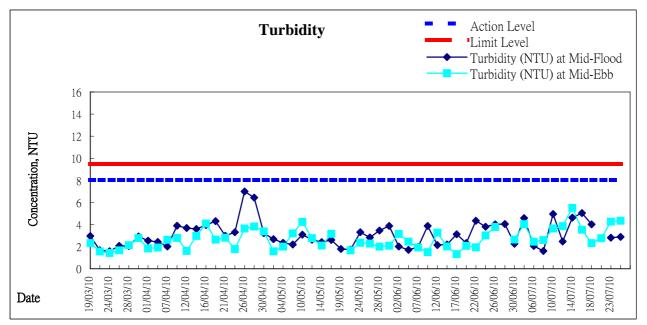
Date	Time	Weater Condition	Samplin n	Ŭ I	Wate	°C	erature Average	Va	pH - Ilue	Average	Va	Salini ppt		D Va	O Satur %	ation Average	Va	DO mg/L	Average	Va	Turbid NTU alue		mg	led Solids g/L Average
	13:59		Middle	3.0	27.60			7.92	7.93		23.82	23.87	Ŭ	43.2	42.8		3.05	3.01		2.48	2.46	Ŭ	7	
08/07/2010	14:04	Sunny	Middle	3.0	27.30	27.30	27.5	7.91	7.91	7.9	24.13	24.12	24.0	44.0	42.6	43.2	3.10	3.00	3.04	2.43	2.33	2.43	5	6.00
	12:30	_	Middle	3.0	28.40	28.50		8.19	8.17		27.90	28.00		49.1	47.8		3.30	3.20		3.28	3.14		7	
10/07/2010	12:35	Sunny	Middle	3.0	28.40	28.40	28.4	8.18	8.18	8.2	28.00	28.00	28.0	48.6	48.4	48.5	3.25	3.24	3.25	3.31	3.22	3.24	6	6.50
40/07/0040	11:28		Middle	2.5	27.90	27.70	07.0	8.05	8.06		28.75	28.79		61.0	71.4	00.5	4.20	5.06	4.05	3.46	2.15	0.40	7	
12/07/2010	11:31	Sunny	Middle	2.5	27.40	27.40	27.6	8.06	8.06	8.1	28.79	28.80	28.8	73.4	72.0	69.5	5.12	5.02	4.85	2.07	2.04	2.43	5	6.00
14/07/2010	12:23	Cloudy	Middle	3.0	26.60	26.70	26.7	7.94	7.94	7.9	31.05	31.05	31.1	48.5	47.5	48.0	3.34	3.27	3.31	2.77	2.79	2.77	14	14.50
14/07/2010	12:26	Cloudy	Middle	3.0	26.80	26.80	20.7	7.94	7.94	7.9	31.12	31.13	31.1	49.1	46.8	48.0	3.39	3.22	3.31	2.89	2.62	2.11	15	14.50
16/07/2010	16:24	Cloudy	Middle	3.0	27.70	27.70	27.8	7.98	7.89	8.0	30.70	30.72	30.7	52.4	52.0	52.1	3.60	3.58	3.60	3.77	3.79	3.79	9	10.00
10/07/2010	16:26	Cloudy	Middle	3.0	27.90	27.90	27.0	7.99	7.99	0.0	30.69	30.70	30.7	52.1	51.8	52.1	3.62	3.60	3.00	3.68	3.91	3.79	11	10.00
19/07/2010	05:55	Fine	Middle	2.0	28.96	28.97	29.0	7.21	7.22	7.2	29.23	29.23	29.2	85.9	85.9	85.9	5.38	5.37	5.38	2.08	2.36	2.26	7	7.00
19/07/2010	05:57	FILIE	Middle	2.0	28.95	28.98	29.0	7.22	7.22	1.2	29.24	29.24	29.2	85.7	86.0	65.9	5.38	5.37	5.56	2.32	2.26	2.20	7	7.00
21/07/2010	10:30	Cloudy	Middle	3.0	27.21	27.19	27.2	7.57	7.58	7.6	29.53	29.50	29.5	73.6	73.0	72.9	5.45	5.41	5.40	4.83	4.78	4.64	19	19.50
21/07/2010	10:35	Cloudy	Middle	3.0	27.18	27.15	27.2	7.58	7.57	7.0	29.53	29.52	23.5	72.8	72.0	72.5	5.40	5.34	3.40	4.53	4.43	4.04	20	13.50
23/07/2010	11:05	Cloudy	Middle	3.0	27.42	27.43	27.5	7.50	7.50	7.5	28.70	28.76	28.8	71.3	72.4	72.0	5.00	5.04	5.04	3.43	3.34	3.26	7	7.00
23/01/2010	11:10	Cioudy	Middle	3.0	27.48	27.48	21.3	7.50	7.50	1.5	28.77	28.82	20.0	72.1	72.2	12.0	5.05	5.06	5.04	3.11	3.16	5.20	7	7.00
26/07/2010	12:40	Cloudy	Middle	3.5	27.33	27.24	27.3	7.55	7.54	7.5	30.21	30.20	30.3	74.0	70.1	67.9	5.12	4.87	4.71	5.68	5.66	5.67	5	6.00
20/01/2010	12:43	Cioudy	Middle	3.5	27.20	27.26	21.5	7.51	7.51	1.5	30.40	30.29	50.5	63.4	63.9	01.5	4.40	4.43	4.71	5.74	5.61	5.07	7	0.00

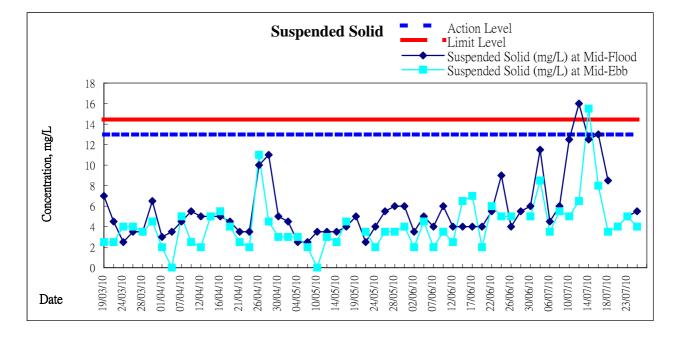
Date	Time	Weater Condition	Samplin	<u> </u>		°C	perature	Va	pH - Ilue	Avorago	Va	Salini ppt	ty Average		O Satur %	ation Average	Va	DO mg/L lue	Average	Va	Turbid NTU alue		Suspend mg Value	
	14:24		Middle	1.5	27.40	27.40	Average	7.76	7.76	Average	25.12	25.12	Average	36.9	36.5	Average	2.83	2.82	Average	2.96	3.19	Average	6 value	Average
08/07/2010		Sunny					27.4			7.8			25.1			36.7			2.83			3.05		7.00
	14:27		Middle	1.5	27.40	27.40		7.76	7.76		25.12	25.12		36.6	36.9		2.81	2.84		2.99	3.07		8	1
10/07/2010	11:05	Sunny	Middle	2.5	28.70	28.70	28.7	8.14	8.14	8.1	28.20	28.20	28.2	46.6	46.1	46.8	3.03	2.99	3.08	3.43	3.28	3.30	8	7.00
	11:10		Middle	2.5	28.70	28.80		8.13	8.13		28.20	28.20		47.5	47.0		3.16	3.12		3.14	3.34		6	
10/07/0010	11:53	0	Middle	2.0	27.30	27.10	07.0	8.06	8.06		28.06	28.19	00.0	70.2	72.8	70.0	4.97	5.11	5.40	2.23	2.22	0.01	10	0.00
12/07/2010	11:57	Sunny	Middle	2.0	27.00	27.40	27.2	8.06	8.05	8.1	28.14	28.23	28.2	74.0	72.1	72.3	5.32	5.08	5.12	2.19	2.19	2.21	8	9.00
	-		-	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
14/07/2010	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	
	15:44		Middle	1.5	27.90	27.90		8.05	8.07		30.53	30.57		55.3	55.0		3.83	3.80		4.03	4.07		12	
16/07/2010	15:47	Sunny	Middle	1.5	27.90	27.90	27.9	8.05	8.06	8.1	30.57	30.57	30.6	54.5	54.2	54.8	3.78	3.76	3.79	4.13	4.08	4.08	10	11.00
	06:01		Middle	2.0	29.22	29.22		7.27	7.27		29.45	29.45		86.4	86.4		5.45	5.45		2.00	2.47		10	
19/07/2010	06:02	Fine	Middle	2.0	29.22	29.22	29.2	7.27	7.27	7.3	29.45	29.45	29.5	86.5	86.4	86.4	5.46	5.45	5.45	2.33	2.34	2.29	10	10.00
	12:00		Middle	2.0	27.20	27.19		7.52	7.50		29.49	29.45		74.6	74.3		5.53	5.50		4.31	4.54		14	
21/07/2010	12:05	Cloudy	Middle	2.0	27.33	27.25	27.2	7.48	7.47	7.5	29.43	29.45	29.5	73.8	74.4	74.3	5.47	5.43	5.48	4.33	4.38	4.39	15	14.50
	11:20		Middle	2.5	27.32	27.33		7.47	7.47		29.00	29.01		66.0	66.5		4.65	4.69		3.25	3.17		9	
23/07/2010	11:25	Cloudy	Middle	2.5	27.24	27.25	27.3	7.47	7.47	7.5	28.99	28.98	29.0	65.1	64.4	65.5	4.62	4.57	4.63	2.99	3.15	3.14	7	8.00
	12:18		Middle	2.5	27.46	27.38		7.34	7.40		30.18	30.37		73.0	71.1		4.93	4.70		3.28	3.33		7	
26/07/2010	12:20	Cloudy	Middle	2.5	27.27	27.27	27.3	7.40	7.44	7.4	30.43	30.35	30.3	67.4	67.1	69.7	4.52	4.51	4.67	3.43	3.29	3.33	5	6.00

Date	Time	Weater Condition	Samplin n	g Depth		°C	erature		pH -			Salini ppt	,		O Satur %			DO mg/L			Turbid NTU	,	m	led Solids g/L
					Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
08/07/2010	14:14	Sunny	Middle	1.5	27.40	27.40	27.3	7.91	7.91	7.9	26.12	26.11	26.1	43.0	41.5	41.3	3.01	2.92	2.90	2.47	2.38	2.40	8	7.00
	14:20		Middle	1.5	27.10	27.10		7.91	7.91		26.04	26.03		41.3	39.5		2.89	2.77		2.46	2.28		6	
10/07/2010	11:12	Sunny	Middle	2.5	28.70	28.70	28.7	8.12	8.13	8.1	29.00	28.70	28.8	48.0	47.5	47.3	3.22	3.19	3.16	3.81	3.62	3.74	8	7.00
10/07/2010	11:15	Sunny	Middle	2.5	28.70	28.70	20.7	8.13	8.12	0.1	28.70	28.70	20.0	47.7	46.0	47.5	3.20	3.03	5.10	3.75	3.79	3.74	6	7.00
12/07/2010	11:40	Sunnv	Middle	2.0	27.10	27.00	26.8	8.05	8.02	8.0	28.76	28.72	28.7	64.3	58.5	64.2	4.52	4.06	4.50	3.08	2.72	2.73	10	9.00
12/07/2010	11:44	Suriny	Middle	2.0	26.50	26.40	20.0	8.03	8.03	0.0	28.68	28.69	20.7	65.1	68.8	04.2	4.54	4.87	4.50	2.74	2.39	2.75	8	9.00
14/07/2010	-		-	-	-	-	-	-	-		-	-	-	-	-		-	-		-	-		-	_
14/07/2010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16/07/2010	15:52	Cumpu	Middle	1.5	27.10	27.10	27.1	7.92	7.94	8.0	30.43	30.43	30.4	53.4	52.8	53.3	3.70	3.68	3.70	3.99	4.21	4.25	9	0.00
16/07/2010	15:55	Sunny	Middle	1.5	27.10	27.10	27.1	7.97	7.97	8.0	30.43	30.43	30.4	53.7	53.2	53.3	3.72	3.69	3.70	4.61	4.17	4.25	7	8.00
19/07/2010	06:02	Fine	Middle	2.0	29.18	29.18	29.2	7.14	7.14	7.1	29.50	29.51	29.5	81.7	81.7	80.8	5.15	5.15	5.09	3.20	2.99	2.00	6	E E0
19/07/2010	06:04	Fille	Middle	2.0	29.18	29.18	29.2	7.13	7.13	7.1	29.49	29.49	29.5	80.0	79.9	80.8	5.03	5.03	5.09	3.14	2.92	3.06	5	5.50
21/07/2010	10:45	Cloudy	Middle	1.5	27.29	27.31	27.2	7.51	7.46	7.5	29.56	29.54	29.6	76.4	75.0	74.6	5.78	5.67	5.66	4.55	4.51	4.55	24	19.00
21/07/2010	10:50	Cloudy	Middle	1.5	27.14	27.08	21.2	7.44	7.43	7.5	29.55	29.55	29.0	73.7	73.1	74.0	5.67	5.53	0.00	4.59	4.53	4.55	14	19.00
22/07/2010	11:28	Clouds	Middle	3.0	27.37	27.35	07.4	7.47	7.48	7.5	29.03	29.04	20.0	60.7	60.5	c0 0	4.32	4.30	4.00	2.67	2.65	0.70	7	0.00
23/07/2010	11:33	Cloudy	Middle	3.0	27.35	27.35	27.4	7.48	7.48	7.5	29.05	29.05	29.0	60.4	59.3	60.2	4.29	4.22	4.28	2.96	2.75	2.76	9	8.00
00/07/0040	12:25	Olauda	Middle	2.5	27.02	27.17	07.0	7.42	7.41	7.4	30.30	30.13	00.1	66.3	63.1	00.0	4.46	4.36	4.45	3.05	3.17	0.01	3	0.50
26/07/2010	12:28	Cloudy	Middle	2.5	27.21	27.26	27.2	7.41	7.42	7.4	30.01	30.10	30.1	69.1	68.9	66.9	4.67	4.30	4.45	3.10	3.92	3.31	4	3.50

Date	Time	Weater Condition	Samplin n	0 1		°C	erature Average	Va	pH -	Average	Va	Salini ppt	ty Average		O Satur % lue	ation Average	Va	DO mg/L lue	Average	Va	Turbid NTU Ilue		m	ed Solids g/L Average
	12:42		Middle	2.0	29.60		Average	6.44	6.30	Average	26.20		Average	84.3	83.4	Avelage	5.55	5.48	Average	6.85	5.22	Average	19	Average
08/07/2010	12:45	Sunny	Middle	2.0	29.75	29.76	29.7	6.28	6.28	6.3	26.15	26.19	26.2	82.6	82.0	83.1	5.43	5.39	5.46	4.96	5.07	5.53	18	18.50
	12:00		Middle	2.5	28.90	28.90		8.01	8.05		27.90	28.10		44.0	44.1		3.73	3.74		3.28	3.14		10	<u> </u>
10/07/2010	12:05	Sunny	Middle	2.5	28.80	28.80	28.9	8.09	8.12	8.1	28.10	28.20	28.1	42.4	43.9	43.6	3.99	3.72	3.80	3.22	3.34	3.25	10	10.00
12/07/2010	12:44	Sunnv	Middle	1.5	27.70	27.10	27.3	8.04	8.04	8.0	28.72	28.60	28.7	64.0	69.4	67.0	4.86	4.94	4.82	2.79	2.45	2.56	7	8.00
12/07/2010	12:48	Sunny	Middle	1.5	27.20	27.00	27.3	8.04	8.04	8.0	28.79	28.88	28.7	65.7	69.0	67.0	4.56	4.91	4.82	2.61	2.37	2.50	9	8.00
14/07/2010	13:07	Cloudy	Middle	2.0	27.10	27.10	27.2	7.97	7.97	8.0	30.84	30.84	30.9	46.9	46.4	46.5	3.18	3.15	3.16	3.11	2.79	2.84	10	9.50
14/07/2010	13:10	Cloudy	Middle	2.0	27.20	27.20	21.2	7.97	7.97	0.0	30.87	30.87	30.9	46.7	46.1	40.5	3.17	3.13	5.10	2.92	2.54	2.04	9	9.50
16/07/2010	15:20	Cloudy	Middle	1.0	27.10	27.20	27.2	7.93	7.92	7.9	30.48	30.47	30.5	56.2	55.3	55.5	3.84	3.77	3.79	3.88	3.75	3.93	9	8.50
10/07/2010	15:25	Cloudy	Middle	1.0	27.20	27.10	21.2	7.92	7.92	7.5	30.48	30.48	30.5	55.6	54.7	55.5	3.81	3.72	5.19	4.07	4.00	5.85	8	0.50
19/07/2010	06:35	Fine	Middle	2.0	29.61	29.61	29.6	7.19	7.19	7.2	29.47	29.47	29.5	85.3	85.2	84.9	5.43	5.42	5.41	1.86	1.70	1.75	7	6.00
19/07/2010	06:37	1 ine	Middle	2.0	29.59	29.61	29.0	7.17	7.17	1.2	29.43	29.43	29.5	84.1	85.0	04.9	5.39	5.38	5.41	1.72	1.70	1.75	5	0.00
21/07/2010	11:25	Cloudy	Middle	1.5	27.06	27.05	27.1	7.44	7.41	7.4	29.37	29.40	29.4	80.2	79.4	78.9	5.93	5.88	5.84	4.55	4.39	4.41	12	- 14.00
21/01/2010	11:30	Cloudy	Middle	1.5	27.14	27.08	27.1	7.40	7.40	1.4	29.40	29.39	20.4	78.2	77.8	10.0	5.79	5.76	0.04	4.32	4.39	-1.41	16	14.00
23/07/2010	11:50	Cloudy	Middle	2.5	27.31	27.29	27.3	7.66	7.66	7.7	28.86	28.85	28.8	68.0	68.2	67.7	4.51	4.57	4.50	4.20	4.25	4.23	6	6.50
20/01/2010	11:55	Cioudy	Middle	2.5	27.28	27.32	21.5	7.66	7.64	1.1	28.77	28.79	20.0	67.4	67.1	01.1	4.48	4.45	4.50	4.23	4.22	т.20	7	0.00
26/07/2010	11:45	Cloudy	Middle	3.0	27.14	27.16	27.1	7.55	7.56	7.5	30.06	30.01	30.1	75.3	73.6	70.3	5.15	5.04	4.81	4.64	4.44	4.46	3	4.00
20/01/2010	11:47	Cioudy	Middle	3.0	26.98	27.03	21.1	7.50	7.53	1.5	30.24	30.16	50.1	66.7	65.6	10.0	4.58	4.48	4.01	4.38	4.39	 о	5	ч.00

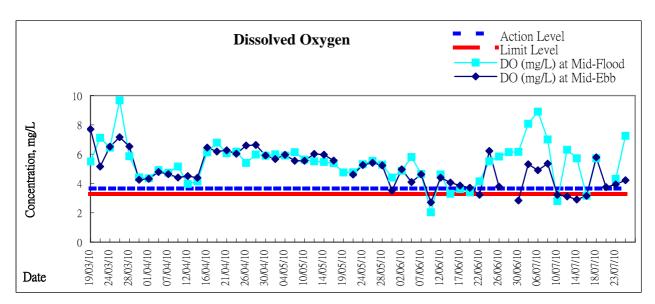


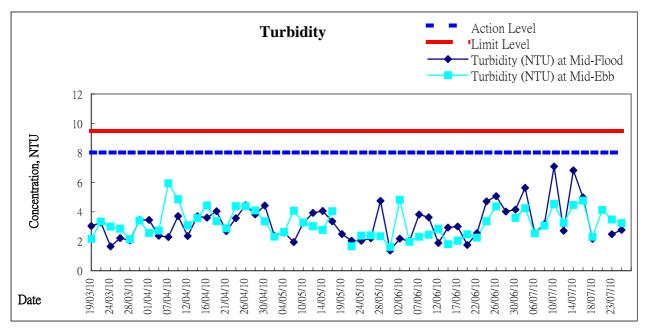

Date	Time	Weater Condition	Samplin n	* '		er Temp °C Iue	erature Average	Va	pH - Ilue	Average	Va	Salini ppt	ty Average		O Satur % lue	ation Average	Va	DO mg/L lue	Average	Va	Turbid NTU alue		Suspend mg Value	
	12:50		Middle	2.0	30.14		Average	6.43	6.45	Average	26.20		Average	81.9	81.0	Average	5.35	5.29	Average	2.47	2.29	Average	10	Average
08/07/2010		Sunny					30.1			6.5			26.2			81.0			5.29			2.36		9.50
	12:53		Middle	2.0	30.11	30.13		6.47	6.50		26.25	26.26		80.7	80.2		5.27	5.24		2.16	2.50		9	
10/07/2010	12:07	Sunnv	Middle	2.5	28.90	28.20	28.4	7.29	7.99	7.9	27.80	27.90	27.9	43.4	42.7	43.1	3.78	3.66	3.73	3.22	3.31	3.30	11	10.00
	12:12	5 2	Middle	2.5	28.10	28.50		8.24	8.11		28.00	28.00		42.4	43.8		3.69	3.79		3.43	3.22		9	
	12:58		Middle	1.5	27.40	27.30		8.04	8.04		28.21	28.30		61.5	66.3		4.31	4.58		2.60	2.80		10	
12/07/2010	13:02	Sunny	Middle	1.5	27.20	27.10	27.3	8.04	8.03	8.0	29.10	28.82	28.6	64.9	63.2	64.0	4.59	4.48	4.49	2.68	2.64	2.68	12	11.00
	13:13		Middle	2.0	27.20	27.20		7.98	7.98		30.55	30.55		53.2	53.0		3.65	3.64		1.92	2.07		12	
14/07/2010	13:16	Cloudy	Middle	2.0	27.20	27.20	27.2	7.98	7.99	8.0	30.60	30.63	30.6	53.8	53.3	53.3	3.69	3.66	3.66	2.33	1.81	2.03	10	11.00
10/07/00/0	15:30		Middle	1.0	27.30	27.30	07.4	7.94	7.95		30.44	30.44		54.0	53.6	50.0	3.69	3.68	0.00	4.12	4.17		10	10.00
16/07/2010	15:35	Cloudy	Middle	1.0	27.40	27.40	27.4	7.97	7.97	8.0	30.44	30.45	30.4	52.7	52.5	53.2	3.59	3.57	3.63	3.97	4.21	4.12	14	12.00
/	06:37		Middle	2.0	29.73	29.74		7.14	7.14		29.38	29.38		83.7	83.8		5.29	5.29		1.88	1.93		8	
19/07/2010	06:40	Fine	Middle	2.0	29.74	29.74	29.7	7.14	7.14	7.1	29.38	29.38	29.4	82.5	82.8	83.2	5.16	5.17	5.23	2.12	1.91	1.96	7	7.50
0.1/07/00.10	11:40		Middle	3.0	27.24	27.18	07.0	7.44	7.46		29.40	29.50	00.5	81.1	79.1	70.5	6.15	6.00	5.05	5.44	5.51	5.40	24	
21/07/2010	11:45	Cloudy	Middle	3.0	27.19	27.18	27.2	7.48	7.48	7.5	29.50	29.50	29.5	77.7	75.9	78.5	5.89	5.75	5.95	5.47	5.16	5.40	19	21.50
00/07/0040	12:00	Olauda	Middle	2.5	27.23	27.25	07.0	7.63	7.65	7.0	28.63	28.64	00.0	70.2	70.0	00.0	4.65	4.60	4.55	4.68	4.67	4.00	5	0.50
23/07/2010	12:05	Cloudy	Middle	2.5	27.26	27.24	27.2	7.64	7.66	7.6	28.65	28.63	28.6	68.8	68.1	69.3	4.53	4.41	4.55	4.71	4.66	4.68	14	9.50
00/07/00/0	11:51		Middle	3.0	27.16	27.20	07.0	7.52	7.51	7.5	30.22	30.12		67.5	67.3	07.0	4.71	4.79		3.72	3.64	0.00	7	
26/07/2010	11:53	Cloudy	Middle	3.0	27.32	27.19	27.2	7.53	7.52	7.5	30.19	30.18	30.2	66.9	67.4	67.3	4.63	4.69	4.71	3.65	3.71	3.68	5	6.00

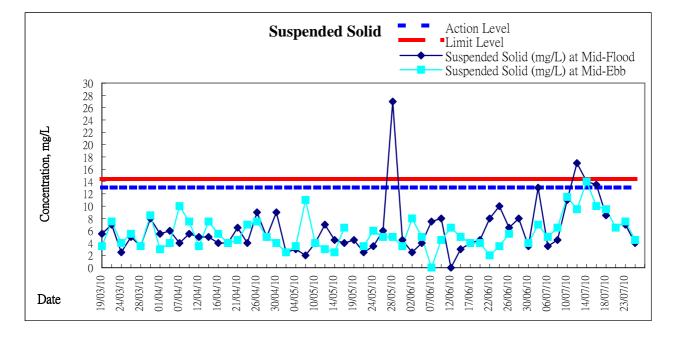


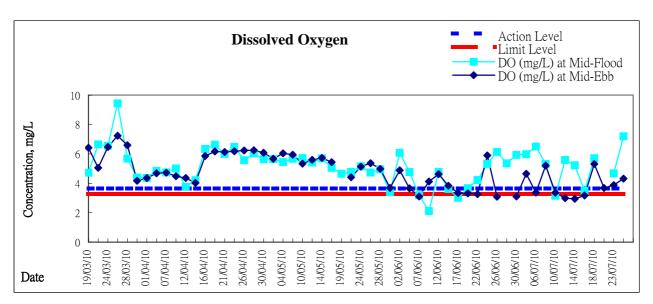
Date	Time	Weater Condition	Samplin	Ŭ I		er Temp °C	perature	Ma	pH - Ilue	Average		Salinit ppt lue	ty Average		O Satur %	ation		DO mg/L Ilue	Average	Va	Turbid NTU Ilue		, m	led Solids g/L Average
	12:14		Middle	2.5	31.33	31.33	Average	6.69	6.69	Average	26.20	26.20	Average	84.8	83.9	Average	5.35	5.28	Average	2.71	2.53	Average	9 value	Average
08/07/2010		Sunny					31.4			6.7			26.2			84.3			5.32			2.66		9.50
	12:18		Middle	2.5	31.37	31.39		6.66	6.66		26.21	26.21		84.5	84.1		5.33	5.31		2.84	2.55		10	<u> </u>
10/07/2010	11:50	Sunnv	Middle	2.0	28.20	28.20	28.3	8.25	8.24	8.2	28.10	28.20	28.3	43.2	43.8	43.4	3.77	3.79	3.77	3.82	3.97	3.77	8	7.50
10/01/2010	11:55	Carmy	Middle	2.0	28.30	28.30	2010	8.19	8.23	0.2	28.50	28.40	20.0	42.4	44.0		3.69	3.81	0	3.67	3.61	0	7	1.00
40/07/0040	12:38	0	Middle	2.0	27.10	26.80	07.0	8.03	8.03		28.27	28.83	00.0	71.1	72.9	74.5	5.07	5.14	5.00	3.71	3.41	0.00	8	
12/07/2010	12:41	Sunny	Middle	2.0	27.00	27.20	27.0	8.04	8.04	8.0	28.84	28.40	28.6	72.0	70.1	71.5	5.13	5.01	5.09	3.19	3.23	3.39	10	9.00
	12:52		Middle	2.0	27.20	27.20		7.81	7.81		20.11	20.12		48.0	46.7		3.40	3.32		3.04	2.88		13	
14/07/2010	12:57	Cloudy	Middle	2.0	27.10	27.10	27.2	7.87	7.88	7.8	19.99	20.01	20.1	45.5	44.7	46.2	3.22	3.18	3.28	3.17	3.20	3.07	12	12.50
	15:08		Middle	2.0	27.20	27.30		7.98	7.97		30.60	30.64		54.9	54.5		3.72	3.70		3.72	3.81		12	
16/07/2010	15:11	Cloudy	Middle	2.0	27.40	27.30	27.3	7.97	7.97	8.0	30.60	30.61	30.6	54.2	54.1	54.4	3.69	3.68	3.70	3.93	3.87	3.83	10	11.00
	06:15		Middle	2.0	29.28	29.23		6.96	6.96		29.31	29.32		75.0	74.7		4.85	4.80		3.08	2.25		8	
19/07/2010	06:17	Fine	Middle	2.0	29.41	29.41	29.3	6.96	6.96	7.0	29.30	29.30	29.3	73.2	73.2	74.0	4.76	4.76	4.79	2.54	2.83	2.68	5	6.50
	11:15		Middle	2.0	27.14	27.19		7.16	7.12		29.66	29.52		72.7	70.4		5.50	5.33		4.25	4.34		23	
21/07/2010	11:20	Cloudy	Middle	2.0	27.17	27.15	27.2	7.09	7.07	7.1	29.51	29.49	29.5	69.7	70.1	70.7	5.28	5.31	5.36	4.30	4.12	4.25	13	18.00
	11:40		Middle	3.0	27.21	27.23		7.57	7.57		28.70	28.78		67.1	67.5		4.51	4.47		3.94	4.10		7	
23/07/2010	11:45	Cloudy	Middle	3.0	27.26	27.19	27.2	7.56	7.57	7.6	28.71	28.73	28.7	66.4	66.8	67.0	4.39	4.40	4.44	3.89	3.96	3.97	9	8.00
	11:30		Middle	2.0	27.28	27.30		7.56	7.55		30.06	30.07		68.7	68.8		4.73	4.75		2.80	3.10		4	
26/07/2010	11:35	Cloudy	Middle	2.0	27.19	27.20	27.2	7.51	7.52	7.5	30.05	30.10	30.1	68.3	67.7	68.4	4.71	4.68	4.72	2.75	2.87	2.88	4	4.00

Graphic Presentation of Water Quality Result of WSD9 - Tai Wan

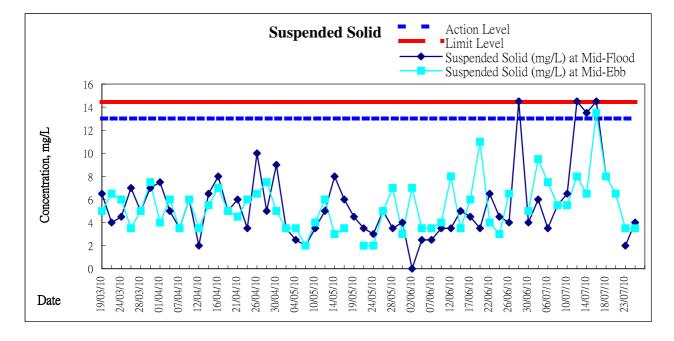


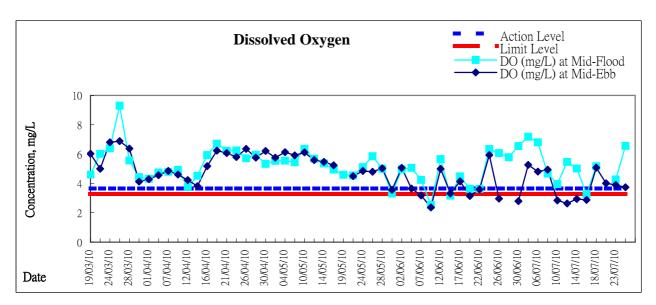


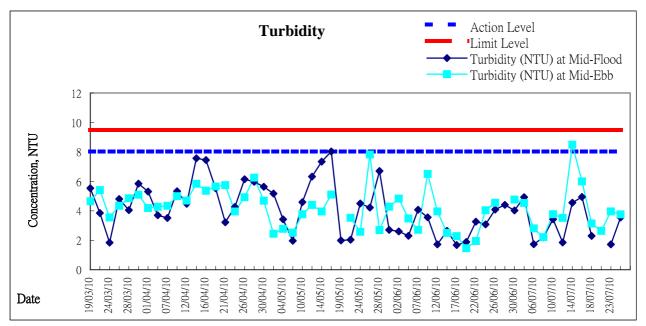


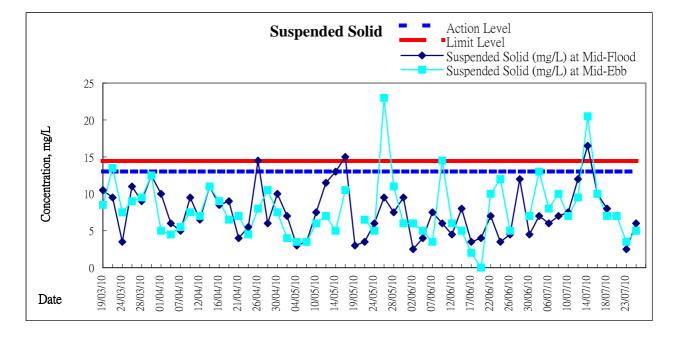

Graphic Presentation of Water Quality Result of WSD10 - Cha Kwo Ling



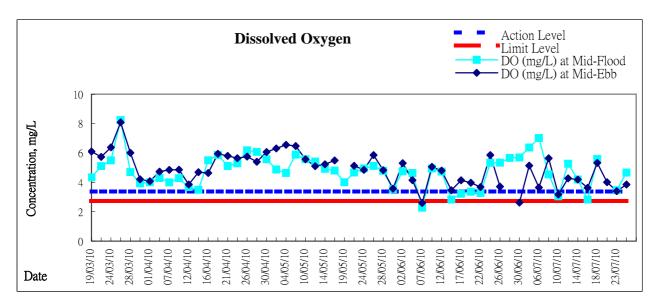


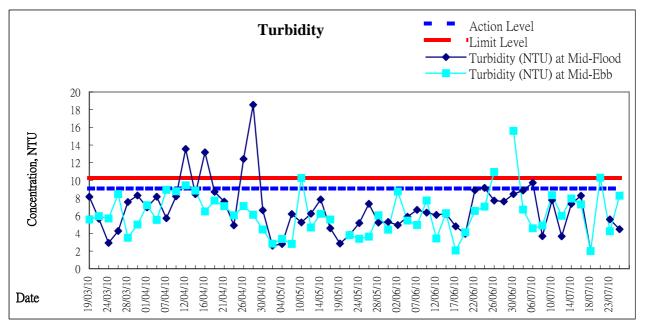


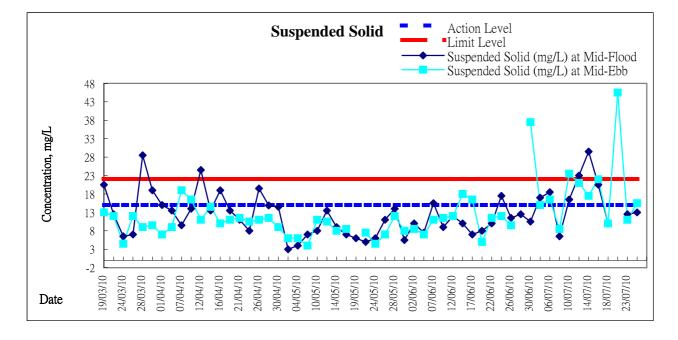


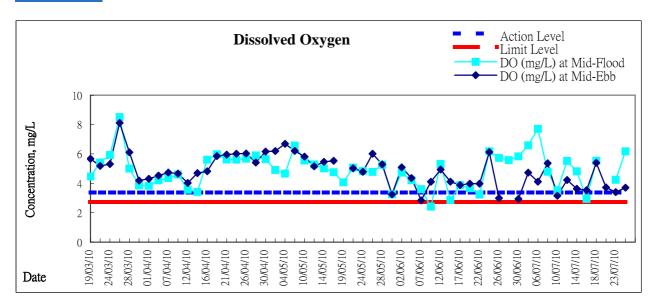


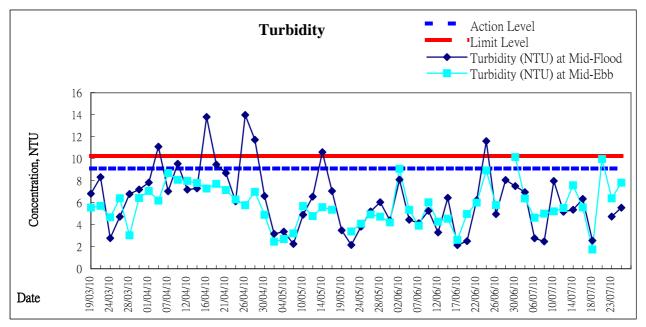
Graphic Presentation of Water Quality Result of WSD17 - Quarry Bay

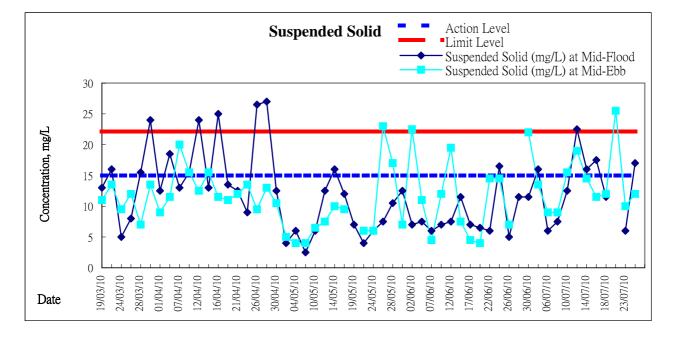


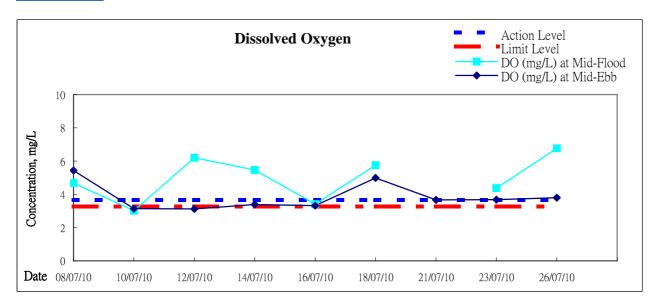


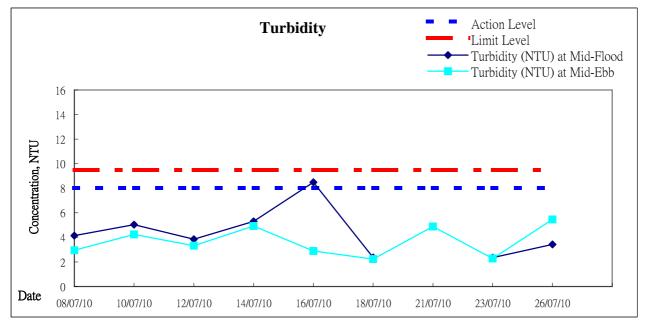


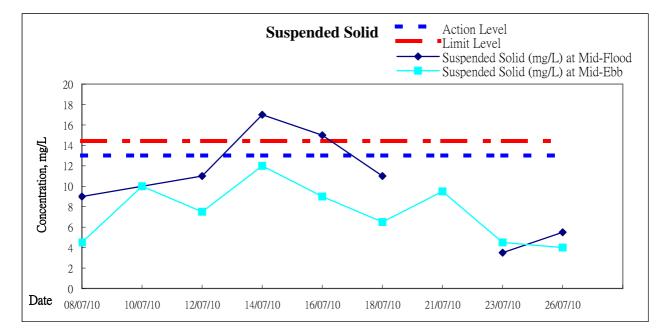

Graphic Presentation of Water Quality Result of C8 - City Garden

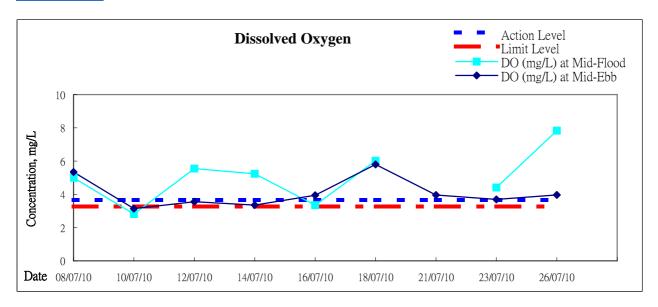


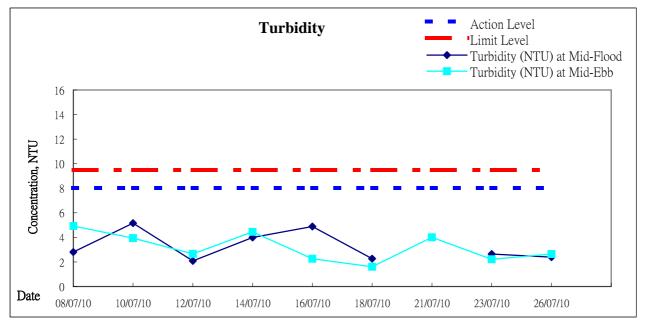


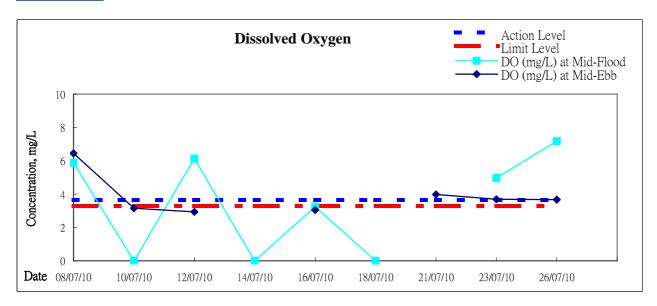

Graphic Presentation of Water Quality Result of C9 - Provident Centre

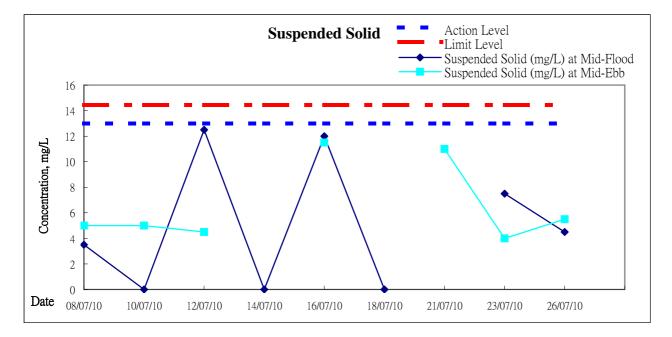


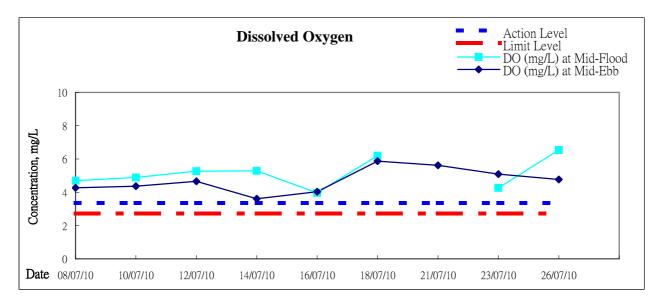


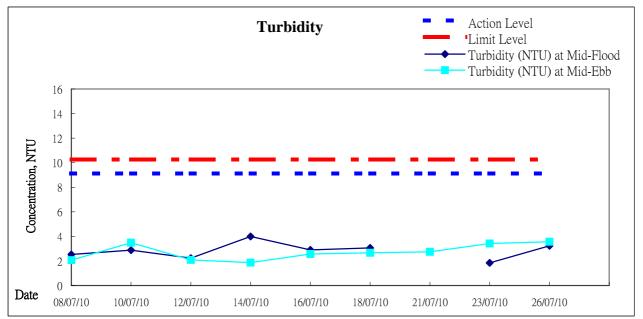

Graphic Presentation of Water Quality Result of WSD19 - Sheung Wan

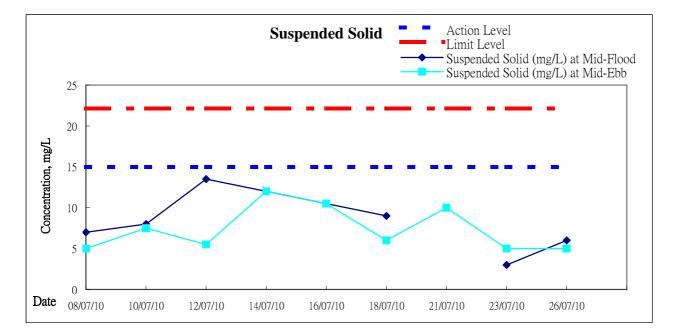


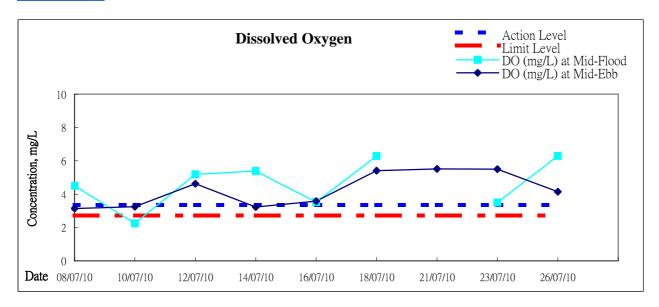

Graphic Presentation of Water Quality Result of WSD20 - Kennedy Town

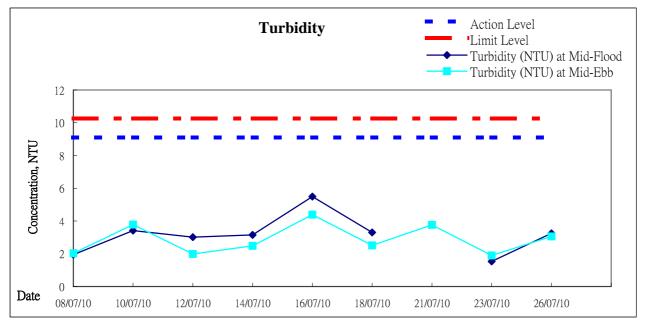


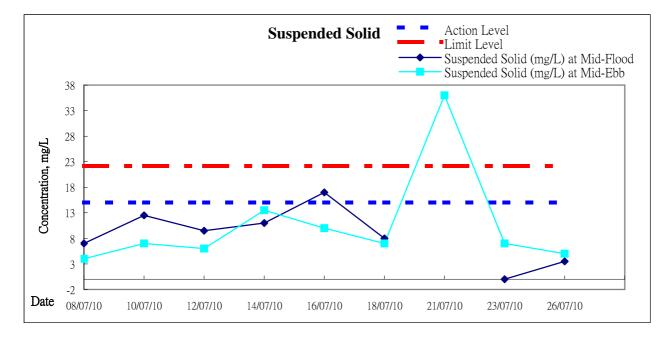

Graphic Presentation of Water Quality Result of WSD7 - Kowloon South

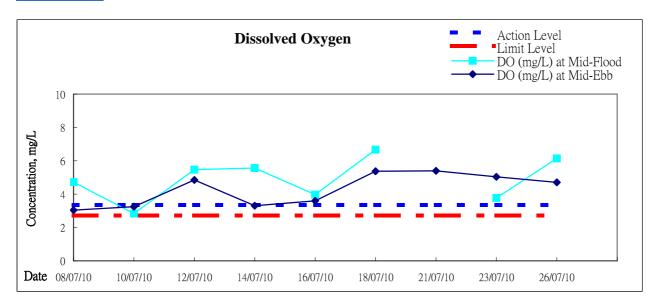


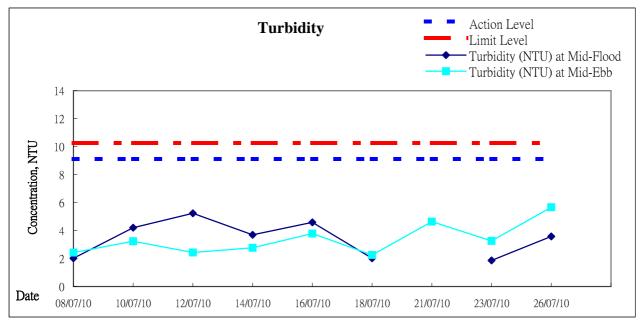


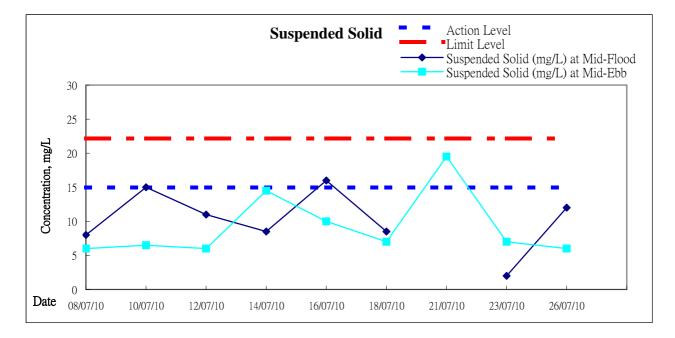

Graphic Presentation of Water Quality Result of C1 - HKCEC

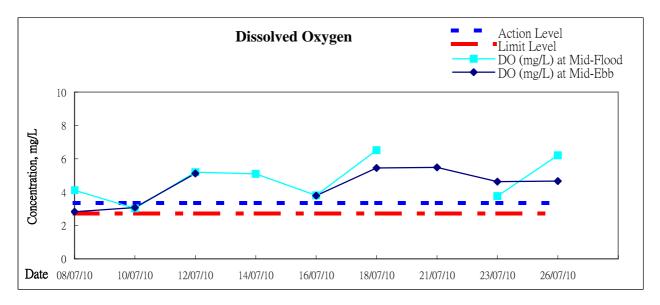


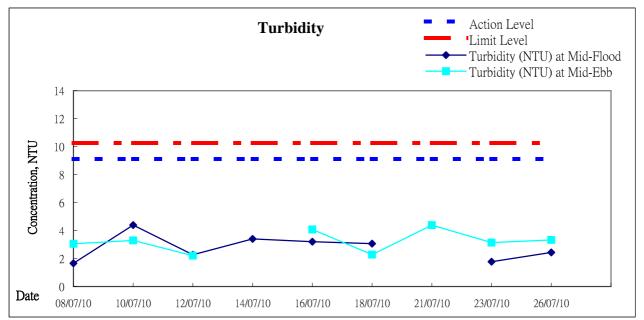


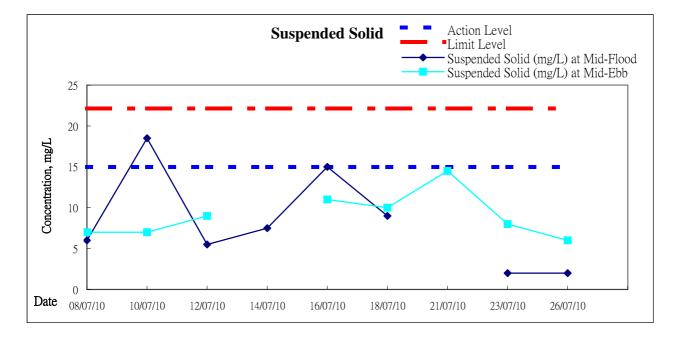

Graphic Presentation of Water Quality Result of C2 - TH / APA / SOC

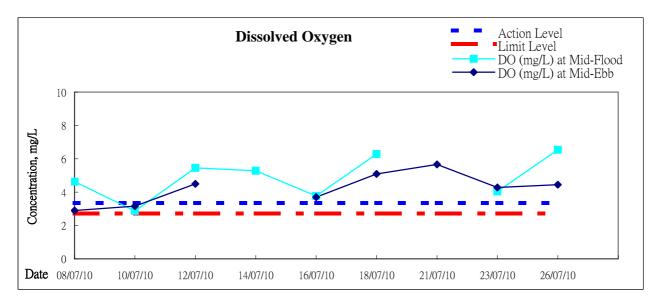


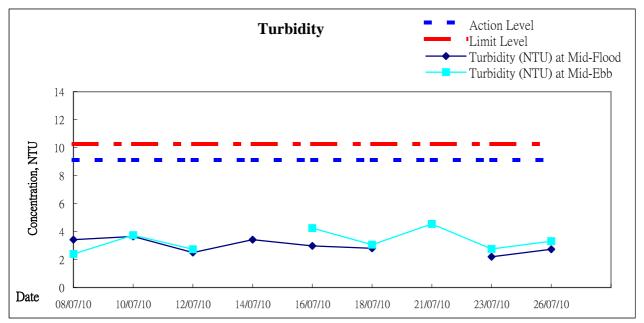


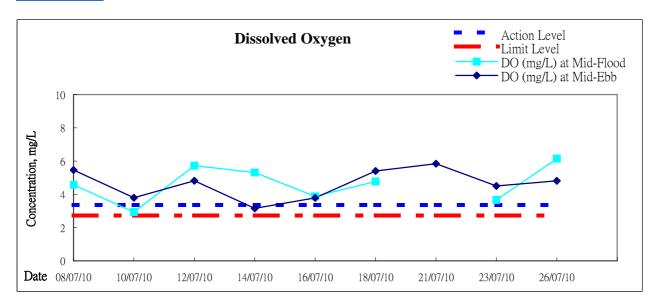

Graphic Presentation of Water Quality Result of C3 - WCT and GEC

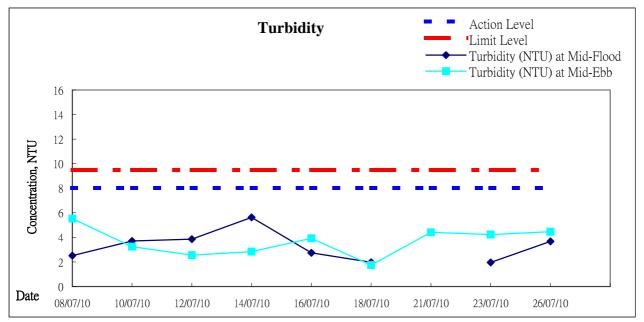





Graphic Presentation of Water Quality Result of C4e - WCT and GEC (Eastern)

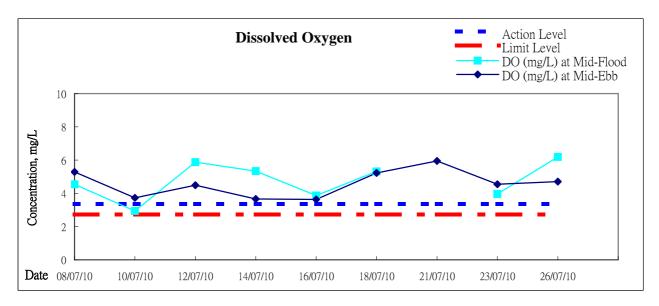


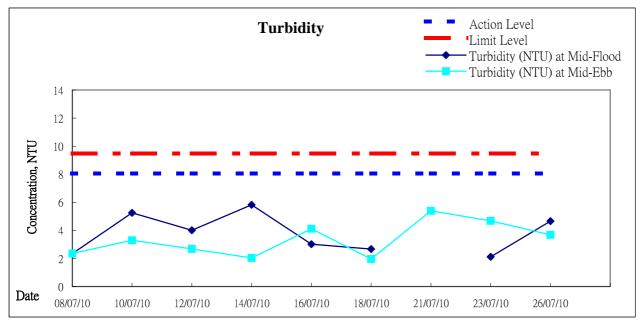

Graphic Presentation of Water Quality Result of C4w - WCT and GEC (Western)

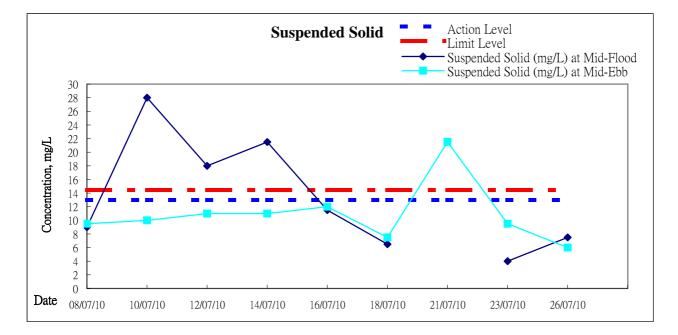




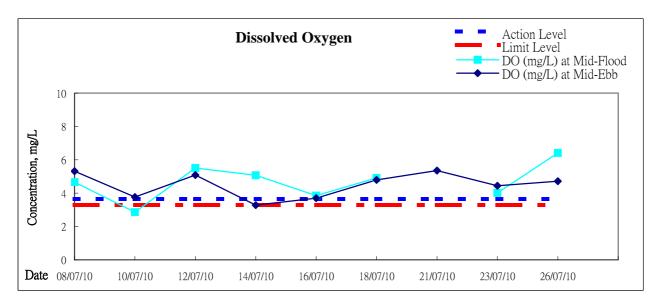
Graphic Presentation of Water Quality Result of C5e - SHKC (Eastern)

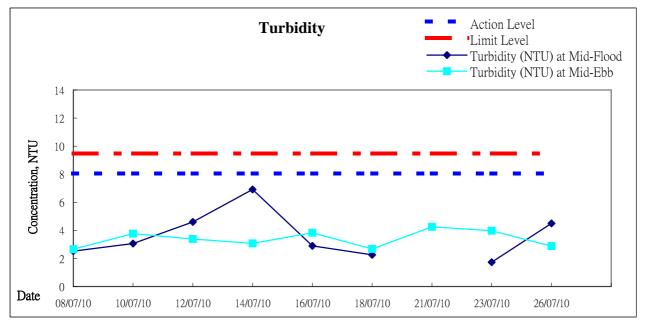


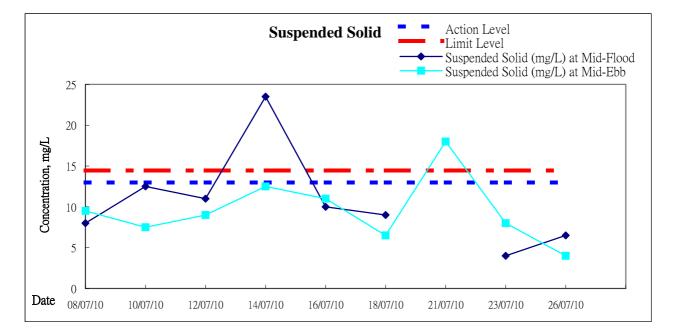




Graphic Presentation of Water Quality Result of C5w - SHKC (Western)







Graphic Presentation of Water Quality Result of WSD21 - Wan Chai

Appendix 6.1

Event Action Plans

Event/Action Plan for Construction Noise

EVENT		A	CTION	
	ET	IEC	ER	CONTRACTOR
Action Level being exceeded	 Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals. (The above actions should be taken within 2 working days after the exceedance is identified)

EVENT		AC	CTION	
	ET	IEC	ER	CONTRACTOR
Limit Level being exceeded	 Inform IEC, ER, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

Event / Action Plan for Construction Air Quality

EVENT		ACTION		-
	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Check monitoring data submitted by ET; Check Contractor's working method. (The above actions should be taken within 2 working days after the exceedance is identified) 	Notify Contractor. (The above actions should be taken within 2 working days after the exceedance is identified)	 Rectify any unacceptable practice; Amend working methods if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
2. Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
LIMIT LEVEL				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
2. Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

Event and Action Plan for Marine Water Quality

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next working day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Limit level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC, contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3working days; Implement the agreed mitigation measures; As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities. (The above actions should be taken within 1 working day after the exceedance is identified)

Appendix 6.2

Summary for Notification of Exceedance

Ref no.	Date	Tidal	Location	Parameters (Avg.)	Measured	Action Level Lir	nit Level Follow-up	
X_W42	5-Jul-10	Mid-ebb	WSD15	DO (mg/L)	3.37	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.45	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							Remarks / Other Obs:	Normal DO levels were recorded in all monitoring stations. As no
								muddy boom and low turbidity level at this station, the DO
								exceedance is considered as causing by the natural variation and
				Suspended Solid	7.5	13.00	14.43	a non-project related exceedance.
X_W43	10-Jul-10	Mid-flood	WSD9	DO (mg/L)	2.87	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	4.95	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
								muddy boom and low turbidity level at this station, the DO
								exceedance is considered as causing by the natural variation and
				Suspended Solid	12.5	13.00	14.43	a non-project related exceedance.
X_W44	10-Jul-10	Mid-flood	WSD15	DO (mg/L)	3.15	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.25	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
								muddy boom and low turbidity level at this station, the DO
								exceedance is considered as causing by the natural variation and
				Suspended Solid	6.5	13.00	14.43	a non-project related exceedance.
X_W45	10-Jul-10	Mid-ebb	WSD9	DO (mg/L)	3.27	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.64	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
								muddy boom and low turbidity level at this station, the DO
				Cupponded Colid	5.0	12.00	14.42	exceedance is considered as causing by the natural variation and
X W46	10-Jul-10	Mid-ebb	WSD10	Suspended Solid DO (mg/L)	5.0 3.22	13.00 3.66	14.43 3.28 Possible reason:	a non-project related exceedance.
A_VV46	10-Jui-10	Inid-epp	WSD10	Turbidity	4.53	8.04	9.49 Action taken / to be taken:	Natural variation or changes in ambient conditions
				TUIDIOILY	4.55	0.04	Remarks / Other Obs:	Reviewed the trend of overall results at all monitoring stations Low DO levels were recorded in overall monitoring stations. As no
							Remarks / Other Obs.	muddy boom and low turbidity level at this station, the DO
								exceedance is considered as causing by the natural variation and
				Suspended Solid	11.5	13.00	14.43	a non-project related exceedance.
X W47	10-Jul-10	Mid-ebb	WSD15	DO (mg/L)	3.36	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
7_1141	10-501-10	Wild-CDD	WODIS	Turbidity	6.52	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				Turbidity	0.02	0.04	Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
								muddy boom and low turbidity level at this station, the DO
								exceedance is considered as causing by the natural variation and
				Suspended Solid	5.5	13.00	14.43	a non-project related exceedance.
X_W48	10-Jul-10	Mid-ebb	WSD17	DO (mg/L)	2.85	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
-				Turbidity	3.77	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
								muddy boom and low turbidity level at this station, the DO
								exceedance is considered as causing by the natural variation and
				Suspended Solid	7.0	13.00	14.43	a non-project related exceedance.

Ref no.	Date	Tidal	Location	Parameters (Avg.)	Measured A	Action Level Lir	nit Level	Follow-up	
X_W49	12-Jul-10	Mid-ebb	WSD9	DO (mg/L)	3.06	3.66	3.28	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.85	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	6.5	13.00	14.43		a non-project related exceedance.
X_W50	12-Jul-10	Mid-ebb	WSD10	DO (mg/L)	3.12	3.66	3.28	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.26	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	9.5	13.00	14.43		a non-project related exceedance.
X_W51	12-Jul-10	Mid-ebb	WSD15	DO (mg/L)	2.99	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.42	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	8.0	13.00	14.43		a non-project related exceedance.
X_W52	12-Jul-10	Mid-ebb	WSD17	DO (mg/L)	2.63	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.52	8.04		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	9.5	13.00	14.43		a non-project related exceedance.
X_W53	14-Jul-10	Mid-ebb	WSD10	DO (mg/L)	2.91	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	4.47	8.04		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the
									exceedances are considered as causing by the natural variation
				Suspended Solid	14.0	13.00	14.43		and no related to Project
X_W54	14-Jul-10	Mid-ebb	WSD15	DO (mg/L)	2.95	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.46	8.04		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
						10.00			exceedance is considered as causing by the natural variation and
	44 101 40	Mist als!		Suspended Solid	6.5	13.00	14.43	Dessible second	a non-project related exceedance.
X_W55	14-Jul-10	Mid-ebb	WSD17	DO (mg/L)	2.94	3.66		Possible reason:	Natural variation or changes in ambient conditions
				To take indian		0.01		Action taken / to be taken:	Reviewed the trend of overall results at the nearest monitoring
				Turbidity	8.49	8.04	9.49		station to marine construction site
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the
				Over an deal Octivit		10.00	4.4.40		exceedances are considered as causing by the natural variation
			_	Suspended Solid	20.5	13.00	14.43		and no related to Project

Ref no.	Date	Tidal	Location	Parameters (Avg.)	Measured	Action Level	Limit Level	Follow-up	
X_W56	10-Jul-10	Mid-flood	WSD21	DO (mg/L)	2.86	3.66	3.28	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.06	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	8.0		14.43		a non-project related exceedance.
X_W57	10-Jul-10	Mid-flood	WSD19	DO (mg/L)	3.02	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	5.04	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	10.0	13.00	14.43		a non-project related exceedance.
								Possible reason:	Natural variation or changes in ambient conditions and
X_W58	10-Jul-10	Mid-flood	WSD20	DO (mg/L)	2.82	3.66	3.28		accumulation of particles from outfalls
								Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations and
									the nearest monitoring station from the marine construction site
				Turbidity	5.16	8.04	9.49		
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at the nearest monitoring
									station, the exceedances are considered as not related to Project.
				Suspended Solid	17.0	13.00	14.43		
X_W59	10-Jul-10	Mid-ebb	WSD19	DO (mg/L)	3.14	3.66	0	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	4.24	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	10.0	13.00	14.43		a non-project related exceedance.
X_W60	10-Jul-10	Mid-ebb	WSD20	DO (mg/L)	3.14	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	4.24	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	8.0		14.43		a non-project related exceedance.
X_W61	10-Jul-10	Mid-ebb	WSD7	DO (mg/L)	3.16	3.66	0	Possible reason:	Natural variation or changes in ambient conditions
1				Turbidity	2.09	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
1								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
1									muddy boom and low turbidity level at this station, the DO
1									exceedance is considered as causing by the natural variation and
			1	Suspended Solid	5.0	13.00	14.43	1	a non-project related exceedance.

Ref no.	Date	Tidal	Location	Parameters (Avg.)	Measured	Action Level	Limit Level	Follow-up	
X_W62	10-Jul-10	Mid-flood	WSD10	DO (mg/L)	2.80		3.28	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	7.08	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	11.0	13.00			a non-project related exceedance.
X_W63	30-Jun-10	Mid-ebb	WSD9	DO (mg/L)	2.72	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	2.65	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	5.0				a non-project related exceedance.
X_W64	30-Jun-10	Mid-ebb	WSD10	DO (mg/L)	2.83	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.59	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	4.0				a non-project related exceedance.
X_W65	30-Jun-10	Mid-ebb	WSD15	DO (mg/L)	3.10	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	4.25	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
				Ourse and ad Oalid	5.0	40.00			exceedance is considered as causing by the natural variation and
X MCC	00 hun 40	Ndial alata		Suspended Solid	5.0			Possible reason:	a non-project related exceedance.
X_W66	30-Jun-10	Mid-ebb	WSD17	DO (mg/L)	2.78 4.76	3.66			Natural variation or changes in ambient conditions
				Turbidity	4.76	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
									muddy boom and low turbidity level at this station, the DO
				Suspended Solid	7	13.00	14.43		exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_W67	12-Jul-10	Mid-ebb	WSD19	DO (mg/L)	3.12	3.66		Possible reason:	Natural variation or changes in ambient conditions
~_vv0/	12-Jui-10	Nilu-ebb	113019	Turbidity	3.32			Action taken / to be taken:	Reviewed the trend of DO results near monitoring stations
				Turbluity	5.52	0.04	9.43	Remarks / Other Obs:	Low DO levels were recorded near monitoring stations. As no
								Remarks / Other Obs.	muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and
				Suspended Solid	7.5	13.00	14.43		a non-project related exceedance.
X W68	12-Jul-10	Mid-ebb	WSD20	DO (mg/L)	3.56	3.66		Possible reason:	Natural variation or changes in ambient conditions
<u></u>	12-001-10	11111-000	110020	Turbidity	2.66			Action taken / to be taken:	Reviewed the trend of DO results near monitoring stations
			1		2.00	3.04	3.43	Remarks / Other Obs:	Low DO levels were recorded near monitoring stations. As no
			1					Condition of the obs.	muddy boom and low turbidity level at this station, the DO
			1						exceedance is considered as causing by the natural variation and
			1	Suspended Solid	6.5	13.00	14.43		a non-project related exceedance.
				Suspended Solid	0.0	15.00	14.43	1	

Ref no.	Date	Tidal	Location	Parameters (Avg.)	Measured	Action Level Lir	nit Level Follow-up	
X_W69	12-Jul-10	Mid-ebb	WSD7	DO (mg/L)	2.94	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	2.86	8.04	9.49 Action taken / to be taken:	Reviewed the trend of DO results near monitoring stations
					1		Remarks / Other Obs:	Low DO levels were recorded near monitoring stations. As no
								muddy boom and low turbidity level at this station, the DO
								exceedance is considered as causing by the natural variation and
				Suspended Solid	4.5	13.00	14.43	a non-project related exceedance.
X_W70	14-Jul-10	Mid-ebb	WSD21	DO (mg/L)	3.28	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.07	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
								muddy boom and low turbidity level at this station, the DO
								exceedance is considered as causing by the natural variation and
				Suspended Solid	12.5	13.00	14.43	a non-project related exceedance.
X_W71	14-Jul-10	Mid-ebb	WSD19	DO (mg/L)	3.39	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
_				Turbidity	4.93	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
								muddy boom and low turbidity level at this station, the DO
								exceedance is considered as causing by the natural variation and
				Suspended Solid	12.0	13.00	14.43	a non-project related exceedance.
X_W72	14-Jul-10	Mid-ebb	WSD20	DO (mg/L)	3.36	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
-				Turbidity	4.45	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				,			Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
								muddy boom and low turbidity level at this station, the DO
								exceedance is considered as causing by the natural variation and
				Suspended Solid	7.0	13.00	14.43	a non-project related exceedance.
X_W73	28-Jun-10	Mid-flood	WSD15	DO (mg/L)	5.36	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
_				Turbidity	4.74	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							Remarks / Other Obs:	As no SS exceedance was recorded at the nearest monitoring
								station to the marine works area, the exceedance is considered as
								causing by the natural variation and a non-project related
				Suspended Solid	14.5	13.00	14.43	exceedance.
X_W74	16-Jul-10	Mid-flood	WSD19	DO (mg/L)	3.41	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	8.49	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							Remarks / Other Obs:	Compared with the results with the monitoring stations near the
								site area of HK/2009/01, no exceedances od DO and turbidity was
								recored. Furthermore, no dredging works was conducted at site
								area of HK/2009/01. The exceedances are considered as not
				Suspended Solid	15.0	13.00	14.43	related to Project
X_W75	16-Jul-10	Mid-ebb	WSD19	DO (mg/L)	3.32	3.66	3.28 Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	2.90	8.04	9.49 Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							Remarks / Other Obs:	Compared with the results with the monitoring stations near the
								site area of HK/2009/01, no exceedances od DO and turbidity was
								recored. Furthermore, no dredging works was conducted at site
								area of HK/2009/01. The exceedances are considered as not
				Suspended Solid	9.0	13.00	14.43	related to Project

Ref no.	Date	Tidal	Location	Parameters (Avg.)	Measured	Action Level Lin	mit Level	Follow-up	
X_W76	16-Jul-10	Mid-flood	WSD20	DO (mg/L)	3.35	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	4.89	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							F	Remarks / Other Obs:	Compared with the results with the monitoring stations near the
									site area of HK/2009/01, no exceedances od DO and turbidity was
									recored. Furthermore, no dredging works was conducted at site
									area of HK/2009/01. The exceedances are considered as not
				Suspended Solid	8.0	13.00	14.43		related to Project
X_W77	16-Jul-10	Mid-flood	WSD7	DO (mg/L)	3.24	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	7.18	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							F	Remarks / Other Obs:	Compared with the results with the monitoring stations near the
									site area of HK/2009/01, no exceedances od DO and turbidity was
									recored. Furthermore, no dredging works was conducted at site
									area of HK/2009/01. The exceedances are considered as not
				Suspended Solid	12.0	13.00	14.43		related to Project
X_W78	16-Jul-10	Mid-ebb	WSD7	DO (mg/L)	3.05	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.78	8.04		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							F	Remarks / Other Obs:	Compared with the results with the monitoring stations near the
									site area of HK/2009/01, no exceedances od DO and turbidity was
									recored. Furthermore, no dredging works was conducted at site
									area of HK/2009/01. The exceedances are considered as not
				Suspended Solid	11.5	13.00	14.43		related to Project
X_W79	16-Jul-10	Mid-flood	WSD9	DO (mg/L)	2.95	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	5.04	8.04		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							F	Remarks / Other Obs:	Low DO levels (between 2.83 and 4.39mg/L) and relative high SS
									levels (between 10 and 20.5 mg/L) were recorded in mid-flood. As
									no muddy boom and low turbidity level at this station, the
									exceedances are considered as causing by the natural variation
				Suspended Solid	13.0	13.00	14.43		and no related to Project
X_W80	16-Jul-10	Mid-ebb	WSD9	DO (mg/L)	3.59	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	3.53	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							F	Remarks / Other Obs:	Low DO levels (between 2.87 and 3.63mg/L) were recorded in
									overall monitoring stations. As no muddy boom and low turbidity
									level at this station, the DO exceedance is considered as causing
									by the natural variation and a non-project related exceedance.
				Suspended Solid	8.0	13.00	14.43		
X_W81	16-Jul-10	Mid-ebb	WSD10	DO (mg/L)	3.16	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	4.76	8.04		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
							F	Remarks / Other Obs:	Low DO levels (between 2.87 and 3.63mg/L) were recorded in
									overall monitoring stations. As no muddy boom and low turbidity
									level at this station, the DO exceedance is considered as causing
									by the natural variation and a non-project related exceedance.
				Suspended Solid	10.0	13.00	14.43		

Ref no.	Date	Tidal	Location	Parameters (Avg.)	Measured	Action Level	Limit Level	Follow-up	
X_W82	16-Jul-10	Mid-flood	WSD15	DO (mg/L)	3.48	3.66	3.28	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	4.93	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels (between 2.83 and 4.39mg/L) and relative high SS
									levels (between 10 and 20.5 mg/L) were recorded in mid-flood. As
									no muddy boom and low turbidity level at this station, the
									exceedances are considered as causing by the natural variation
				Suspended Solid	14.5	13.00	14.43		and no related to Project
X_W83	16-Jul-10	Mid-ebb	WSD15	DO (mg/L)	3.17	3.66	3.28	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	5.65	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels (between 2.87 and 3.63mg/L) were recorded in
									overall monitoring stations. As no muddy boom and low turbidity
									level at this station, the DO exceedance is considered as causing
				Suspended Solid	13.5	13.00	14.43		by the natural variation and no related to Project
X_W84	16-Jul-10	Mid-flood	WSD17	DO (mg/L)	3.27	3.66	3.28	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	4.94	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels (between 2.83 and 4.39mg/L) were recorded at all
									monitoring stations. As no muddy boom and low turbidity level at
									this station, the DO exceedance is considered as causing by the
				Suspended Solid	10.0	13.00	14.43		natural variation and no related to Project
X_W85	16-Jul-10	Mid-ebb	WSD17	DO (mg/L)	2.87	3.66	3.28	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	6.00	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Low DO levels (between 2.87 and 3.63mg/L) were recorded in
									overall monitoring stations. As no muddy boom and low turbidity
									level at this station, the DO exceedance is considered as causing
									by the natural variation and a non-project related exceedance.
				Suspended Solid	10.0	13.00	14.43		
X_W86	12-Jul-10	Mid-flood	WSD9	DO (mg/L)	5.99	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	2.47	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Relative high SS levels (between 12 and 23mg/L) were recorded
									in mid-flood. As no muddy boom and low turbidity level at this
									station, the SS exceedance is considered as causing by the
				Suspended Solid	16.0	13.00	14.43		natural variation and not related to Project.
X_W87	12-Jul-10	Mid-flood	WSD10	DO (mg/L)	4.39	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	2.72	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Relative high SS levels (between 12 and 23mg/L) were recorded
									in mid-flood. As no muddy boom and low turbidity level at this
									station, the SS exceedance is considered as causing by the
				Suspended Solid	17.0	13.00	14.43		natural variation and not related to Project.
X_W88	12-Jul-10	Mid-flood	WSD15	DO (mg/L)	5.59	3.66		Possible reason:	Natural variation or changes in ambient conditions
1				Turbidity	2.51	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Relative high SS levels (between 12 and 23mg/L) were recorded
1									in mid-flood. As no muddy boom and low turbidity level at this
						10.55			station, the SS exceedance is considered as causing by the
				Suspended Solid	14.5	13.00	14.43		natural variation and not related to Project.

Ref no.	Date	Tidal	Location	Parameters (Avg.)			Limit Level	Follow-up	
X_W89	14-Jul-10	Mid-ebb	WSD9	DO (mg/L)	3.83	3.66	3.28	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	5.51	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	As no muddy boom and low turbidity level at this station, the
									exceedance is considered as causing by the natural variation and
				Suspended Solid	15.5	13.00	14.43		no related to Project
X_W90	14-Jul-10	Mid-flood	WSD10	DO (mg/L)	4.39			Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	6.82	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Relative high SS levels (between 12.5 and 29.5mg/L) were
									recorded in mid-flood. As no muddy boom and low turbidity level
									at this station, the exceedance is considered as causing by the
				Suspended Solid	14.0		14.43		natural variation and a non-project related exceedance.
X_W91	14-Jul-10	Mid-flood	WSD15	DO (mg/L)	5.23	3.66	0	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	5.66	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Relative high SS levels (between 12.5 and 29.5mg/L) were
									recorded in mid-flood. As no muddy boom and low turbidity level
									at this station, the exceedance is considered as causing by the
X 14/00	44.1.1.40		1400.47	Suspended Solid	13.5		14.43		natural variation and no related to Project
X_W92	14-Jul-10	Mid-flood	WSD17	DO (mg/L)	5.01	3.66		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity	4.56	8.04	9.49	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
								Remarks / Other Obs:	Relative high SS levels (between 12.5 and 29.5mg/L) were
									recorded in mid-flood. As no muddy boom and low turbidity level
				Suspended Solid	16.5	13.00	14.43		at this station, the exceedance is considered as causing by the natural variation and no related to Project
X W93	16-Jul-10	Mid-flood	WSD10	DO (mg/L)	3.17	3.66		Possible reason:	Natural variation or changes in ambient conditions
X_W95	10-301-10	Mid-1000	W3D10	Turbidity	4.98			Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				Turbluity	4.30	0.04	5.45	Remarks / Other Obs:	Low DO levels (between 2.83 and 4.39mg/L) and relative high SS
								Remarks / Other Obs.	levels (between 10 and 20.5 mg/L) were recorded in mid-flood. As
									no muddy boom and low turbidity level at this station, the
									exceedances are considered as causing by the natural variation
				Suspended Solid	13.5	13.00	14.43		and no related to Project
								Possible reason:	Natural variation or changes in ambient conditions and
X W94	14-Jul-10	Mid-flood	WSD19	DO (mg/L)	5.47	3.66	3.28		accumulation of particles from outfalls
								Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring
				Turbidity	5.31	8.04	9.49		result
								Remarks / Other Obs:	As no dredging works was conducted at site area of HK/2009/01
									and no exceedance was recorded in the next consecutive
									monitoring, the exceedance is considered as not related to Project
		1		Suspended Solid	17.0	13.00	14.43		

Ref no.	Date	Tidal	Location	Parameters (Avg.)	Measured	Action Level	Limit Level	Follow-up	
								Possible reason:	Natural variation or changes in ambient conditions and
X_W95	14-Jul-10	Mid-flood	WSD20	DO (mg/L)	5.24	3.66	3.28		accumulation of particles from outfalls
								Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring
				Turbidity	4.00	8.04	9.49		result
								Remarks / Other Obs:	As no dredging works was conducted at site area of HK/2009/01
									and no exceedance was recorded in the next consecutive
									monitoring, the exceedance is considered as not related to Project
				Suspended Solid	21.5	13.00	14.43		
								Possible reason:	Natural variation or changes in ambient conditions and
X_W96	14-Jul-10	Mid-flood	WSD21	DO (mg/L)	5.07	3.66	3.28		accumulation of particles from outfalls
				T 1 1 10	0.00			Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring
				Turbidity	6.92	8.04	9.49	Remarks / Other Obs:	result
								Remarks / Other Obs:	As no dredging works was conducted at site area of HK/2009/01 and no exceedance was recorded in the next consecutive
									monitoring, the exceedance is considered as not related to Project
				Suspended Solid	23.5	13.00	14.43		monitoring, the exceedance is considered as not related to Project
				Suspended Solid	23.3	15.00		Possible reason:	Natural variation due to the rainstorm and typhoon signal no.1
X W97	21-Jul-10	Mid-ebb	WSD21	DO (mg/L)	5.36	3.66			during the monitoring
<u></u>	21 001 10			00 (mg/L)	0.00	0.00		Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring
				Turbidity	4.25	8.04	9.49		result
								Remarks / Other Obs:	No marine works was conducted during monitoring; No
									exceedance was recorded in the next consecutive monitoring. It is
				Suspended Solid	18.0	13.00	14.43		considered as not related to the Project.
								Possible reason:	Natural variation due to the rainstorm and typhoon signal no.1
X_W98	21-Jul-10	Mid-ebb	WSD20	DO (mg/L)	3.96	3.66	3.28		during the monitoring
								Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring
				Turbidity	4.01	8.04	9.49]	result
								Remarks / Other Obs:	No marine works was conducted during monitoring; No
									exceedance was recorded in the next consecutive monitoring. It is
				Suspended Solid	14.0	13.00	14.43		considered as not related to the Project.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up action	
X_10C048	30-Jun-10	Mid-ebb	C8	DO (mg/L)	2.62	3.36	2.73	Possible reason:	Accumulation of unknown local discharge enclosed by silt screen
				Turbidity (NTU)	15.60	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results in this monitoring
				SS (mg/L)	38	15.00	22.13	Remarks / Other Obs:	Relevant high SS level was recorded at C8 only. Turbid water
									inside the silt screen was observed during monitoring. It seems that the local discharge was accumulated and trapped inside the silt screen and concluded as no project-related exceedance.
X_10C049	30-Jun-10	Mid-ebb	C9	DO (mg/L)	2.94	3.36	2.73	Possible reason:	Accumulation of unknown local discharge enclosed by silt screen
				Turbidity (NTU)	10.15	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results in this monitoring
				SS (mg/L)	22	15.00	22.13	Remarks / Other Obs:	Relevant high SS level was recorded at C8 only. Turbid water inside the silt screen was observed during monitoring. It seems
									that the local discharge was accumulated and trapped inside the silt screen and concluded as no project-related exceedance.
X_10C050	6-Jul-10	Mid-flood	C8	DO (mg/L)	7.02	3.36	2.73	Possible reason:	Accumulation of unknown local discharge enclosed by silt screen
				Turbidity (NTU)	9.73	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results in this monitoring
				SS (mg/L)	19.00	15.00	22.13	Remarks / Other Obs:	Relevant high SS level was recorded at C8 only. Turbid water inside the silt screen was observed during monitoring. It seems that the local discharge was accumulated and trapped inside the silt screen and concluded as no project-related exceedance.
X_10C051	10-Jul-10	Mid-flood	C8	DO (mg/L)	3.04	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions and accumulation of unknown local discharge near the intake
				Turbidity (NTU)	7.77	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	17.00	15.00	22.13	Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no muddy boom was observed during the monitoring, the exceedances are considered as causing by the natural variation and not related to Project.
X_10C052	10-Jul-10	Mid-ebb	C8	DO (mg/L)	3.17	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions and accumulation of unknown local discharge near the intake
				Turbidity (NTU)	8.33	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	23.50	15.00	22.13	Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no muddy boom was observed during the monitoring, the exceedances are considered as causing by the natural variation and not related to Project.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Level		Follow-up action	
X_10C053	8-Jul-10	Mid-ebb	C2	DO (mg/L) Turbidity (NTU) SS (mg/L)	3.14 2.03 4.00	3.36 9.10 15.00	10.25	Possible reason: Action taken / to be taken: Remarks / Other Obs:	Natural variation or changes in ambient conditions Reviewed the trend of overall results at all monitoring stations Low DO levels were recorded in monitoring stations near HKCEC. As no muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and
X_10C054	8-Jul-10	Mid-ebb	C3	DO (mg/L) Turbidity (NTU) SS (mg/L)	3.04 2.43 6.00	3.36 9.10 15.00	10.25	Possible reason: Action taken / to be taken: Remarks / Other Obs:	a non-project related exceedance. Natural variation or changes in ambient conditions Reviewed the trend of overall results at all monitoring stations Low DO levels were recorded in monitoring stations near HKCEC. As no muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_10C055	8-Jul-10	Mid-ebb	C4e	DO (mg/L) Turbidity (NTU) SS (mg/L)	2.83 3.05 7.00	3.36 9.10 15.00	10.25	Possible reason: Action taken / to be taken: Remarks / Other Obs:	Natural variation or changes in ambient conditions Reviewed the trend of overall results at all monitoring stations Low DO levels were recorded in monitoring stations near HKCEC. As no muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_10C056	8-Jul-10	Mid-ebb	C4w	DO (mg/L) Turbidity (NTU) SS (mg/L)	2.90 2.40 7.00	3.36 9.10 15.00	10.25	Possible reason: Action taken / to be taken: Remarks / Other Obs:	Natural variation or changes in ambient conditions Reviewed the trend of overall results at all monitoring stations Low DO levels were recorded in monitoring stations near HKCEC. As no muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_10C057	10-Jul-10	Mid-flood	C2	DO (mg/L) Turbidity (NTU) SS (mg/L)	2.25 3.42 12.50	3.36 9.10 15.00	10.25	Possible reason: Action taken / to be taken: Remarks / Other Obs:	Natural variation or changes in ambient conditions Reviewed the trend of overall results at all monitoring stations Low DO levels were recorded in overall monitoring stations. As no muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_10C058	10-Jul-10	Mid-flood	C3	DO (mg/L) Turbidity (NTU) SS (mg/L)	2.84 4.20 15.00	3.36 9.10 15.00	10.25	Possible reason: Action taken / to be taken: Remarks / Other Obs:	Natural variation or changes in ambient conditions Reviewed the trend of overall results at all monitoring stations Low DO levels were recorded in overall monitoring stations. As no muddy boom and low turbidity level at this station, the exceedances are considered as causing by the natural variation and a non-project related exceedance.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up action	
X_10C059	10-Jul-10	Mid-flood	C4e	DO (mg/L)	3.03	3.36	2.73	Possible reason:	Low DO levels were recorded in overall monitoring stations. As no muddy boom and low turbidity level at the nearest monitoring station, the exceedances are considered as not related to Project.
_				Turbidity (NTU)	4.40	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	18.50	15.00	22.13	Remarks / Other Obs:	No dredging works was conducted at site area of HK/2009/01 and low DO levels were recorded in overall monitoring stations. As no muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_10C060	10-Jul-10	Mid-flood	C 4w	DO (mg/L)	2.88	3.36	2.72	Possible reason:	Natural variation or changes in ambient conditions
A_10C000	10-Jul-10	1000	C4W	Turbidity (NTU)	3.65	9.10	-	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	15.00	15.00		Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
				55 (mg/∟)	13.00	13.00	22.13	Remarks / Other Obs.	muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_10C061	10-Jul-10	Mid-flood	C5e	DO (mg/L)	2.94	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions and accumulation of unknown local discharge near the intake
_				Turbidity (NTU)	3.71	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations and contractor's dredging works and mitigation measures
				SS (mg/L)	10.00	15.00	22.13	Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no muddy boom and low turbidity level at this station, the exceedances are considered as causing by the natural variation and a non-project related exceedance.
X_10C062	10-Jul-10	Mid-flood	C5w	DO (mg/L)	2.94	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions and accumulation of unknown local discharge near the intake
				Turbidity (NTU)	5.25	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	28.00	15.00		Remarks / Other Obs:	Compared with the monitoring station next to C5w, relative low SS level and no exceedance was recorded at C5e. As no muddy boom and low turbidity level during monitoring, the exceedances are considered as not related project.
X_10C063	10-Jul-10	Mid-ebb	C2	DO (mg/L)	3.25	3.36		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity (NTU)	3.78	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	7.00	15.00	22.13	Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and
X_10C064	10-Jul-10	Mid-ebb	C3	DO (mg/L)	3.25	3.36	0.70	Possible reason:	a non-project related exceedance. Natural variation or changes in ambient conditions
A_100004	10-301-10	ada-pilvi	03	Turbidity (NTU)	3.25 3.24	3.36 9.10		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	6.50	9.10		Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
				55 (mg/L)	0.30	15.00	22.13		muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and a non-project related exceedance.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up action	
X_10C065	10-Jul-10	Mid-ebb	C4e	DO (mg/L)	3.08	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity (NTU)	3.30	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	7.00	15.00		Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_10C066	10-Jul-10	Mid-ebb	C4w	DO (mg/L)	3.16	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions
			•	Turbidity (NTU)	3.74	9.10		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	7.00	15.00		Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no muddy boom and low turbidity level at this station, the DO
									exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_10C067	14-Jul-10	Mid-ebb	C2	DO (mg/L)	3.23	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions
				Turbidity (NTU)	2.48	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	13.50	15.00	22.13	Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and
			0.0	50 (")				0	a non-project related exceedance.
X_10C068	14-Jul-10	Mid-ebb	C3	DO (mg/L)	3.31	3.36		Possible reason:	Natural variation or changes in ambient conditions
				Turbidity (NTU)	2.77	9.10		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	14.50	15.00	22.13	Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_10C069	14-Jul-10	Mid-ebb	C5e	DO (mg/L)	3.16	3.36	2 73	Possible reason:	Natural variation or changes in ambient conditions
<u></u>	i i oui i o		000	Turbidity (NTU)	2.84	9.10		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	9.50	15.00		Remarks / Other Obs:	Low DO levels were recorded in overall monitoring stations. As no
				00 (mg/2)	0.00	10.00	22.10		muddy boom and low turbidity level at this station, the DO exceedance is considered as causing by the natural variation and
									a non-project related exceedance.
X_10C070	2-Jul-10	Mid-flood	C8	DO (mg/L)	6.37	3.36	2.73	Possible reason:	Accumulation of unknown local discharge enclosed by silt screen
				Turbidity (NTU)	8.86	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results in this tide
				SS (mg/L)	17.00	15.00	22.13	Remarks / Other Obs:	Turbid water inside the silt screen was observed during monitoring. It seems that the local discharge was accumulated
									and trapped inside the silt screen and concluded as no project- related exceedance.
X_10C071	2-Jul-10	Mid-flood	C9	DO (mg/L)	6.58	3.36	2.73	Possible reason:	Accumulation of unknown local discharge enclosed by silt screen
_	1			Turbidity (NTU)	6.96	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results in this tide
	1			SS (mg/L)	16.00	15.00	22.13	Remarks / Other Obs:	Turbid water inside the silt screen was observed during
				- \ 0 7					monitoring. It seems that the local discharge was accumulated and trapped inside the silt screen and concluded as no project- related exceedance.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Level		Follow-up action	
	5-Jul-10	Mid-ebb	C8	DO (mg/L)	3.65	3.36	2.73	Possible reason:	Accumulation of unknown local discharge enclosed by silt screen
X_10C073					4 57	0.40	40.05	Aster taken (take taken)	Devices of the transfer energy in a solite in this tide
				Turbidity (NTU)	4.57	9.10		Action taken / to be taken:	Reviewed the trend of overall results in this tide
				SS (mg/L)	16.50	15.00	22.13	Remarks / Other Obs:	Relevant high SS level was recorded at C8 only. Turbid water
									inside the silt screen was observed during monitoring. It seems
									that the local discharge was accumulated and trapped inside the
V 400074	0.1.1.40	Mark flags at	05.		4.57	0.00	0.70	Describle as a second	silt screen and concluded as no project-related exceedance.
X_10C074	8-Jul-10	Mid-flood	Coe	DO (mg/L)	4.57	3.36 9.10		Possible reason:	Accumulation of unknown local discharge near the intake
				Turbidity (NTU) SS (mg/L)	2.51	9.10		Action taken / to be taken: Remarks / Other Obs:	Reviewed the trend of overall results in this tide
				55 (mg/L)	22.00	15.00	22.13	Remarks / Other Obs.	Compared with the monitoring station next to C5e, low SS level and no exceedance was recorded at C5w. It is considered as
									causing by the local discharge and no project related exceedance
X_10C075	8-Jul-10	Mid-ebb	C5e	DO (mg/L)	5.46	3.36	2.73	Possible reason:	Accumulation of unknown local discharge near the intake
				Turbidity (NTU)	5.53	9.10		Action taken / to be taken:	Reviewed the trend of overall results in this tide
				SS (mg/L)	18.50	15.00	22.13	Remarks / Other Obs:	Compared with the monitoring station next to C5e, low SS level
									and no exceedance was recorded at C5w. It is considered as
									causing by the local discharge and no project related exceedance
	40 14 40	Mid fleed	<u></u>	DO (m m/l.)	0.00	0.00	0.70	Dessible messare	Noticel constant on share and in problems and distance and
X_10C076	16-Jul-10	Mid-flood	60	DO (mg/L)	2.83	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions and
X_10C076				Turbidity (NTU)	8.27	9.10	10.25	Action taken / to be taken:	accumulation of unknown local discharge near the intake Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	20.50	15.00		Remarks / Other Obs:	Low DO levels (between 2.83 and 4.39mg/L) and relative high SS
				33 (IIIg/L)	20.50	15.00	22.13	Remarks / Other Obs.	levels (between 10 and 20.5 mg/L) were recorded in mid-flood. As
									no muddy boom and low turbidity level at this station, the
									exceedances are considered as causing by the natural variation
									and not related to Project.
	16-Jul-10	Mid-ebb	C8	DO (mg/L)	3.63	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions and
X_10C077									accumulation of unknown local discharge near the intake
				Turbidity (NTU)	7.27	9.10		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	22.00	15.00	22.13	Remarks / Other Obs:	Low DO levels (between 2.87 and 3.63mg/L) were recorded in
									overall monitoring stations. As no muddy boom and low turbidity
									level at this station, the SS exceedance is considered as causing
									by the natural variation and not related to Project.
	16-Jul-10	Mid-flood	C9	DO (mg/L)	2.94	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions and
X_10C078						_			accumulation of unknown local discharge near the intake
				Turbidity (NTU)	6.35	9.10		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	17.50	15.00	22.13	Remarks / Other Obs:	Low DO levels (between 2.83 and 4.39mg/L) and relative high SS
									levels (between 10 and 20.5 mg/L) were recorded in mid-flood. No
									SS exceedance was recorded in next consecutive monitoring. As
									no muddy boom and low turbidity level at this station, the
									exceedances are considered as not related to project.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Level		Follow-up action	
X_10C079	10-Jul-10	Mid-ebb	C9	DO (mg/L)	3.15	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions and accumulation of unknown local discharge near the intake
				Turbidity (NTU)	5.12	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	15.50	15.00	22.13	Remarks / Other Obs:	No SS exceedance was recorded in next consecutive monitoring. As no muddy boom and low turbidity level at this station, the exceedances are considered as not related to project.
X_10C080	12-Jul-10	Mid-flood	C8	DO (mg/L)	5.26	3.36	2.73	Possible reason:	Accumulation of unknown local discharge near the intake
				Turbidity (NTU)	3.67	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	23.00	15.00	-	Remarks / Other Obs:	Relative high SS levels (between 12 and 23mg/L) were recorded in mid-flood. As no muddy boom was observed during the monitoring, the SS exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_10C081	12-Jul-10	Mid-ebb	C8	DO (mg/L)	4.27	3.36	-	Possible reason:	Accumulation of unknown local discharge near the intake
				Turbidity (NTU)	5.99	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	21.00	15.00	22.13	Remarks / Other Obs:	Relative high SS levels (between 12 and 23mg/L) were recorded in mid-flood. As no muddy boom was observed during the monitoring, the SS exceedance is considered as causing by the natural variation and a non-project related exceedance.
X_10C082	12-Jul-10	Mid-flood	C9	DO (mg/L)	5.53	3.36	2.73	Possible reason:	Accumulation of unknown local discharge near the intake
				Turbidity (NTU)	5.18	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	22.50	15.00	22.13	Remarks / Other Obs:	Relative high SS levels (between 12 and 23mg/L) were recorded in mid-flood. As no muddy boom was observed during the monitoring, the SS exceedance is considered as causing by the natural variation and not related to Project.
X_10C083	12-Jul-10	Mid-ebb	C9	DO (mg/L)	4.23	3.36	2.73	Possible reason:	Accumulation of unknown local discharge near the intake
				Turbidity (NTU)	5.52	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	19.00	15.00		Remarks / Other Obs:	Relative high SS levels (between 12 and 23mg/L) were recorded in mid-flood. As no muddy boom was observed during the monitoring, the SS exceedance is considered as causing by the natural variation and not related to Project.
X_10C084	14-Jul-10	Mid-flood	C8	DO (mg/L)	4.82	3.36	2.73	Possible reason:	Accumulation of unknown local discharge near the intake
				Turbidity (NTU)	5.36	9.10		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	29.50	15.00	22.13	Remarks / Other Obs:	Relative high SS levels (between 12.5 and 29.5mg/L) were recorded in mid-flood. As no muddy boom was observed during the monitoring, the SS exceedance is considered as causing by the natural variation and not related to Project.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up action	
X_10C085	14-Jul-10	Mid-ebb	C8	DO (mg/L)	3.63	3.36	2.73	Possible reason:	Accumulation of unknown local discharge near the intake
				Turbidity (NTU)	7.58	9.10	10.25	Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	17.50	15.00	22.13	Remarks / Other Obs:	As no muddy boom was observed during the monitoring, the SS
									exceedance is considered as causing by the natural variation and
									not related to Project.
X_10C086	14-Jul-10	Mid-flood	C9	DO (mg/L)	4.19	3.36	-	Possible reason:	Accumulation of unknown local discharge near the intake
				Turbidity (NTU)	7.34	9.10		Action taken / to be taken:	Reviewed the trend of overall results at all monitoring stations
				SS (mg/L)	16.00	15.00	22.13	Remarks / Other Obs:	Relative high SS levels (between 12.5 and 29.5mg/L) were
									recorded in mid-flood. As no muddy boom was observed during
									the monitoring, the SS exceedance is considered as causing by
X 400007	40.1.1.40		0.5	DO (#)	5 70		0.70		the natural variation and not related to Project.
X_10C087	12-Jul-10	Mid-flood	C5e	DO (mg/L)	5.73	3.36	-	Possible reason:	Accumulation of particles from outfalls
				Turbidity (NTU)	3.86	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring
									result
				SS (mg/L)	19.50	15.00	22.13	Remarks / Other Obs:	Silt screen and silt curtain is in a good condition; No exceedance
									was recorded in the next consecutive monitoring. It is considered
X 400000	10 10 40	Middlead	05	$DO(m\pi/l)$	4.00	2.00	0.70	Dessible research	as not related to the Project.
X_10C088	12-Jul-10	Mid-flood	C5W	DO (mg/L)	4.82	3.36		Possible reason:	Accumulation of particles from outfalls
				Turbidity (NTU)	2.56	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring result
				SS (mg/L)	18.00	15.00	22.13	Remarks / Other Obs:	Silt screen and silt curtain is in a good condition; No exceedance
									was recorded in the next consecutive monitoring. It is considered
									as not related to the Project.
X_10C089	14-Jul-10	Mid-flood	C5e	DO (mg/L)	5.32	3.36	2.73	Possible reason:	Accumulation of particles from outfalls
				Turbidity (NTU)	5.63	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring
									result
				SS (mg/L)	22.50	15.00	22.13	Remarks / Other Obs:	Silt screen and silt curtain is in a good condition; No exceedance
									was recorded in the next consecutive monitoring. It is considered
									as not related to the Project.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up action	
X_10C090	14-Jul-10	Mid-flood	C5w	DO (mg/L)	5.34	3.36		Possible reason:	Accumulation of particles from outfalls
				Turbidity (NTU)	5.82	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring result
				SS (mg/L)	21.50	15.00	22.13	Remarks / Other Obs:	Silt screen and silt curtain is in a good condition; No exceedance was recorded in the next consecutive monitoring. It is considered as not related to the Project.
X_10C091	16-Jul-10	Mid-flood	C2	DO (mg/L)	3.53	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions and accumulation of particles from outfalls
				Turbidity (NTU)	5.49	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring result
				SS (mg/L)	17.00	15.00	22.13	Remarks / Other Obs:	No dredging works was conducted at site area of HK/2009/01. As no muddy boom and low turbidity level at this station, the exceedance is considered as not related to Project
X_10C092	16-Jul-10	Mid-flood	C3	DO (mg/L)	3.97	3.36	2.73	Possible reason:	Natural variation or changes in ambient conditions and accumulation of particles from outfalls
				Turbidity (NTU)	4.59	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring result
				SS (mg/L)	16.00	15.00	22.13	Remarks / Other Obs:	No dredging works was conducted at site area of HK/2009/01. As no muddy boom and low turbidity level at this station, the exceedance is considered as not related to Project
X_10C093	21-Jul-10	Mid-ebb	C8	DO (mg/L)	4.01	3.36	2.73	Possible reason:	Accumulation of particles from outfalls and surface runoff due to the black rainstorm warning
				Turbidity (NTU)	10.30	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring result
				SS (mg/L)	45.50	15.00	22.13	Remarks / Other Obs:	Silt screen and silt curtain is in a proper condition; No exceedance was recorded in the next consecutive monitoring. It is considered as not related to the Project.
X_10C094	21-Jul-10	Mid-ebb	C9	DO (mg/L)	3.72	3.36	2.73	Possible reason:	Accumulation of particles from outfalls and surface runoff due to the black rainstorm warning
				Turbidity (NTU)	9.97	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring result
				SS (mg/L)	25.50	15.00		Remarks / Other Obs:	Silt screen and silt curtain is in a proper condition; No exceedance was recorded in the next consecutive monitoring. It is considered as not related to the Project.
X_10C095	21-Jul-10	Mid-ebb	C2	DO (mg/L)	5.52	3.36	2.73	Possible reason:	Natural variation due to the rainstorm and typhoon signal no.1 during the monitoring
				Turbidity (NTU)	3.76	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring result
				SS (mg/L)	36.00	15.00	22.13	Remarks / Other Obs:	No marine works was conducted during monitoring; No exceedance was recorded in the next consecutive monitoring. It is considered as not related to the Project.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up action	
X_10C096	21-Jul-10	Mid-ebb	C3	DO (mg/L)	5.40	3.36	2.73	Possible reason:	Natural variation due to the rainstorm and typhoon signal no.1 during the monitoring
				Turbidity (NTU)	4.64	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring result
				SS (mg/L)	19.50	15.00	22.13	Remarks / Other Obs:	No marine works was conducted during monitoring; No exceedance was recorded in the next consecutive monitoring. It is considered as not related to the Project.
X_10C097	21-Jul-10	Mid-ebb	C4w	DO (mg/L)	5.66	3.36	2.73	Possible reason:	Natural variation due to the rainstorm and typhoon signal no.1 during the monitoring
				Turbidity (NTU)	4.55	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring result
				SS (mg/L)	19.00	15.00	22.13	Remarks / Other Obs:	No marine works was conducted during monitoring; No exceedance was recorded in the next consecutive monitoring. It is considered as not related to the Project.
X_10C098	21-Jul-10	Mid-ebb	C5w	DO (mg/L)	5.95	3.36	2.73	Possible reason:	Natural variation due to the rainstorm and typhoon signal no.1 during the monitoring
				Turbidity (NTU)	5.40	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring result
				SS (mg/L)	21.50	15.00	22.13	Remarks / Other Obs:	No marine works was conducted during monitoring; No exceedance was recorded in the next consecutive monitoring. It is considered as not related to the Project.
X_10C099	26-Jul-10	Mid-ebb	C8	DO (mg/L)	3.85	3.36	2.73	Possible reason:	Accumulation of unknown local discharge near the intake
				Turbidity (NTU)	8.27	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and next consecutive monitoring result
				SS (mg/L)	15.50	15.00	-	Remarks / Other Obs:	No exceedance was recorded in the next monitoring. It seems that the local discharge was accumulated and trapped inside the silt screen and concluded as no project-related exceedance.
X_10C100	26-Jul-10	Mid-flood	C9	DO (mg/L)	6.18	3.36	2.73	Possible reason:	Accumulation of unknown local discharge near the intake
				Turbidity (NTU)	5.55	9.10	10.25	Action taken / to be taken:	Reviewed the Contractor works and the trend of monitoring results
				SS (mg/L)	17.00	15.00	22.13	Remarks / Other Obs:	No exceedance was recorded at the nearest monitoring station to the marine works area. It seems that the local discharge was accumulated and trapped inside the silt screen and concluded as no project-related exceedance.

Remarks:

Action Level - Value highlight in blue colour Limit Level - Value highlight in red colour

Appendix 9.1

Complaint Log

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Ou	tcome	Status
100321a	21/3/2010	ICC Case no. 1-224618029, Ms. Tsang	Location near Tin Hau	Complaint regarding the loud noise and dark smoke in the course of dredging works on 21 March 2010 (Sunday).	1)	A valid Construction Noise Permit no. GW-RS0119- 10 was granted from EPD since 18 th Feb. 2010 for the dredging works which carry out at area for North Point Reclamation.	Closed
					2)	Officer from Marine Department, Police and EPD's officer attended the scene for inspection and investigation.	
					3)	The Contractor (CHEC-CRBC JV) strictly comply all the conditions in CNP and take all mitigation measures in order to minimize the potential impacts to surrounding sensitive receivers. A formal letter was issued out by CHEC-CRBC JV and to explain the status of the recent construction activities.	
					4)	No limit level exceedance was recorded on the noise measurement during day time and evening time noise measurement on 23 March 2010. Additional restrict hours noise monitoring at Causeway Bay Community and City Garden was conducted on 5 April 2010 (Public Holiday). No limit level exceedance was recorded in the monitoring.	
					5)	No further complaints were received from Mr. Tsang in the reporting month. The complaint is considered closed.	
100321b	21/3/2010	Unknown	breakwater of the	A public complaint and enquiry regarding loud noises emanated from dredging activities on 21/3/2010 (Sunday) until 2220 hours and between 1920-1946 hours in the evening of 22 March 2010(Monday).	1)	A valid Construction Noise Permit no. GW-RS0119- 10 was granted from EPD since 18 th Feb. 2010 for the dredging works at area for North Point Reclamation during general holidays including Sunday between 0700-2300 hours and any day not being a general holiday between 1900-2300hours. It is complied with the condition of CNP.	Closed
					2)	Officer from Marine Department, Polic and EPD's officer attended the scene for inspection and investigation.	
					3)	No limit level exceedance was recorded on the noise measurement during day time and evening time noise measurement on 23 March 2010. Additional restrict	

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Ou	tcome	Status
						hours noise monitoring at Causeway Bay Community and City Garden was conducted on 5 April 2010 (Public Holiday). No limit level exceedance was recorded in the monitoring.	
					4)	No further complaints were received in the reporting month. The complaint is considered closed.	
100504	4/5/2010	Public complainant received by ICC (ICC case: 1- 233384048)	Watson Road	Complaint on the noise nuisance due to the large scale of dredging machine (face to Island East Corridor) in particular the hours 1900 to 0800 and request	,	Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0119-10 for their dredging works. Contractor has implemented mitigation measures to reduce the working hour not later than 2230.	Closed
				to reduce the noise level.	2)	According to RSS 's record, no more daytime and night time dredging since the departure of the split hopper barge from the workplace on 29 April 2010 at 1900 hrs to 5 May 2010.	
					3)	No further complaints were received in the reporting month. The complaint is considered closed.	

Appendix 10.1

Construction Programme of Individual Contracts

Contract no. HY/2009/11

D Activity Name Otility etailed Works Programme ver.2 updated 21Ju PReLIMINARIES PROJECT COMMENCEMENT POSSESSION OF SITE COMPLETION SECTION OF WORKS GENERAL SUBMISSION TEMPORARY AND CONTRACTOR DESIGN PRE-CAST CAISSON SEAWALL PRE-CAST CAISSON SEAWALL PRE-CAST SEAWALL BLOCK Overall Construction SECTION 1 OF WORKS (290 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS LANDING STEPS FENDERS AND R UBBER STEPS SECTION 1 A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 1 A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SECTION 1 A OF WORKS (240 DAYS) GEOTECHNICAL INSTRUMENTATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V	Original Remaining Start 019 333 07-Dec-0 619 333 07-Dec-0 619 333 07-Dec-0 74 0 07-Dec-0 77 0 18-Dec-0 578 368 16-Jan-1 285 39 07-Dec-0 316 183 07-Dec-0 316 183 07-Dec-0 316 183 07-Dec-0 316 183 01-Mer-1 535 393 18-Mer-1 408 281 16-Mar-1 14 0 20-Feb-1 12 12 07-Oct-1 12 07 07-Oct-1 9 0 02-Oct-1 156 29 20-Feb-1 166 29 20-Feb-1 186 06-Mar-1 2 0 20-Feb-1 186 06-Mar-1 21 21 21-Mari0	DA 17-Aug-11 DA 15-Dec-06 A DA 16-Jan-10 A A 17-Aug-11 ZA 28-Aug-10 DA 18-Aug-10 DA 18-Aug-10 DA 19-Jan-11 DA 19-Jan-11 DA 17-Aug-11 DA 27-Apr-11 DA 21-Qa-10 DA 15-Apr-10A DA 15-Apr-10A DA 06-Qa-10 21-Qa-18 20-Sep-10 12-Qa-10 12-Qa-10 DA 18-Aug-10 DA 18-Aug-10	Total Float 8 8 8 -72 00 8 61 103 -8 -8 41 103 -8 103 -8 103 -8 107 4	Dec ,	Jan Fob	Mar	Apr I	May Jun				Nov			Feb Mar	Apr	2011 May Jun	Jul	Aug 	Sep
PRELIMINARIES PROJECT COMMENCEMENT POSSESSION OF SITE COMPLETION SECTION OF WORKS GENERAL SUBMISSION TEMPORARY AND CONTRACTOR DESIGN PRE-CAST CANSON SE AWALL PRE-CAST CANSON SE AWALL PRE-CAST CANSON SE AWALL PRE-CAST SE AWALL BLOCK OVerail Construction SECTION 1 OF WORKS (290 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS LANDING STEPS FENDERS AND R UBBER STEPS SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS DRAINAGE WORKS CORINGS SECTION 2 OF WORKS (470 DAYS)	619 333 07-Dec0 34 0 07-Dec0 17 0 18-Dec0 578 308 16-Jan-11 265 39 07-Dec0 316 183 01-Jan-0 320 29.21-Dec0 316 316 183 01-Jan-1 535 303 15-Mar-1 408 201 16-Mar-1 121 02-Feb-1 12 122 12 07-Occ-10 12 12 12 12 12 12 02-Feb-1 12 9 9 02-Oct-10 12 12 12 02-Feb-1 12 12 02 02-Feb-1 12 136 29 02-Feb-1 12 12 02 02-Feb-1 12 02 126 02 16-Mar-1 16 02 126 02 16-Mar-1 16 06-Aug-1	DA 17-Aug-11 DA 15-Dec-06 A DA 16-Jan-10 A A 17-Aug-11 ZA 28-Aug-10 DA 18-Aug-10 DA 18-Aug-10 DA 19-Jan-11 DA 19-Jan-11 DA 17-Aug-11 DA 27-Apr-11 DA 21-Qa-10 DA 15-Apr-10A DA 15-Apr-10A DA 06-Qa-10 21-Qa-18 20-Sep-10 12-Qa-10 12-Qa-10 DA 18-Aug-10 DA 18-Aug-10	44 103 -8 -8	-	,						F-1								-	
PROJECT COMMENCEMENT POSSESSION OF SITE COMPLETION SECTION OF WORKS GENERAL SUBMISSION TEMPORARY AND CONTRACTOR DESIGN PRE-CAST CASSON SEAWALL PRE-CAST SEAWALL PRE-CAST SEAWALL BLOCK Overall Construction SECTION 1 OF WORKS (290 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS LANDING STEPS FENDERS AND RUBBER STEPS SECTION 1 A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	34 0 07-Dec-0 17 0 18-Dec-0 578 366 16-an-1 265 39 07-Dec-0 230 29 21-Dec-0 316 133 01-Mar-1 535 393 15-Mar-1 408 281 16-Mar-1 214 03 20-Feb-1 169 78 30-Mar-1 12 12 16-Sep-1 12 12 16-Sep-1 9 9 02-Oct-10 156 20 16-Mar-1 156 20 16-Mar-1 156 20 16-Mar-1 8 8 08-Aug-1 21 21 21-Ja-Ja-10 367 266 20-Feb-1	0A 18-Dac-09 A 0A 04-Jan-10 A vA 07-Aug-11 0A 28-Aug-10 0A 18-Aug-10 0A 19-Aug-11 0A 19-Aug-11 0A 17-Aug-11 0A 27-Apr-11 0A 27-Apr-11 0A 27-Apr-11 0A 15-Apr-10 A 0B 0B-Oct-10 21-Oct-10 21-Oct-10 0A 15-Apr-10 A 0B Oct-00-10 21-Oct-10 23-OsFep-10 0A 18-Aug-10 0A 18-Aug-10 0A 18-Aug-10 0A 18-Aug-10	44 103 -8 -8																- -	
POSSESSION OF SITE COMPLETION SECTION OF WORKS GENERAL SUBMISSION TEMPORARY AND CONTRACTOR DESIGN PRE-CAST CAUSION SEAWALL PRE-CAST CAUSION SEAWALL PRE-CAST CAUSION SEAWALL PRE-CAST CAUSION SEAWALL Overall Construction SECTION 1 OF WORKS (290 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	17 0 18-Dac-0 578 368 16-Jan-1 265 30 77-Dac-0 230 29 21-Dac-0 316 183 01-Mar-1 408 281 16-Mar-1 14 0 20-Fab-1 16 78 30-Mar-1 12 12 07-Cot-1 12 12 07-Cot-1 9 9 02-Cot-1 16 29 20-Fab-1 16 29 20-Fab-1 17 0-Other 16 18 0-20-Fab-1 12 19 9 02-Cot-1 12 02-Fab-1 12 156 29 20-Fab-1 168 8 06-Aug-1 21 21 21-Auhr0 22 21 21-Auhr0 387 266 20-Fab-1	DA 04-Jan-10 A A 17-Aug-11 A 28-Aug-10 DA 18-Aug-10 DA 18-Aug-10 DA 19-Jan-11 DA 17-Aug-11 DA 27-Apr-11 DA 27-Apr-11 DA 27-Apr-10 DA 15-Apr-10 A DA 06-Oct-10 DA 05-Apr-10 A DA 06-Oct-10 DD 30-Sep-10 12-Oct-10 30-Sep-10 12-Oct-10 30-Aug-10 DA 18-Aug-10 DA 18-Aug-10 DA 18-Aug-10	44 103 -8 -8																	
COMPLETION SECTION OF WORKS GENERAL SUBMISSION TEMPORARY AND CONTRACTOR DESIGN PRE-CAST CAISSON SEAVALL PRE-CAST CAISSON SEAVALL Overall Construction SECTION 1 OF WORKS (290 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAVALLS AND RECLAMATION WORKS DRAINAGE WORKS LANDING STEPS FENDERS AND RUBBER STEPS SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAVALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	578 369 16-Jan-11 265 39 07-Dec0 316 133 01-Marc 535 393 15-Mar-1 535 393 15-Mar-1 408 281 16-Mar-1 14 0 20-Feb-1 169 78 36-Mar-1 12 12 07-Occ-1 19 9 02-Ocb-1 156 29 20-Feb-1 12 0 20-Gcd-1 169 9 02-Ocb-1 12 0 20-Feb-1 12 0 20-Feb-1 156 29 20-Feb-1 12 0 20-Feb-1 136 06-Mar-1 8 16 02-Feb-1 12 12 12 20-Feb-1	A 17-Aug-11 A 28-Aug-10 A 28-Aug-10 A 18-Aug-10 DA 19-Jan-11 DA 17-Aug-11 DA 17-Aug-11 DA 27-Aug-10 DA 27-Oct-10 DA 06-Oct-10 21-Oct-10 30-Sep-10 21-Oct-10 12-Oct-10 DA 06-Oct-10 21-Oct-10 30-Sep-10 12-Oct-10 12-Oct-10 DA 18-Aug-10 DA 18-Aug-10	44 103 -8 -8																	
GENERAL SUBMISSION TEMPORARY AND CONTRACTOR DESIGN PRE-CAST CAISSON SEAWALL PRE-CAST SEAWALL BLOCK Overall Construction SECTION 1 OF WORKS (290 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS LANDING STEPS FENDERS AND RUBBER STEPS SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINIS DRAINAGE WORKS COPINIS	265 39 07-bes-0 230 29 21-bes-0 236 183 01-Mar-1 535 333 15-Mar-1 536 20-Feb-1 408 20-Feb-1 14 0 20-Feb-1 16 169 78 30-Mar-1 12 12 12 07-Oct-1 12 12 07-Oct-1 156 29 9 9 02-Oct-1 156 20 Feb-1 156 20 16-Mar-1 12 0.20-Feb-1 12 0.20-Feb-1 156 20 16-Mar-1 12 0.20-Feb-1 12 0.20-Feb-1 158 20 16-Mar-1 16 8 8 0-Mar-1 21	A 28-Aug-10 9A 18-Aug-10 9A 18-Aug-10 9A 19-Jan-11 9A 17-Aug-11 9A 27-Apr-11 9A 21-Oct-10 9A 15-Apr-10A 9A 06-Oct-10 21-Oct-10 21-Oct-10 22-Oct-10 20-S8p-10 12-Oct-10 12-Oct-10 9A 18-Aug-10 9A 18-Aug-10 9A 18-Aug-10	44 103 -8 -8																-	
TEMPORARY AND CONTRACTOR DESIGN PRE-CAST CAISSON SEAWALL PRE-CAST CAISSON SEAWALL PRE-CAST CAISSON SEAWALL OVerall Construction SECTION 1 OF WORKS (290 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS LANDING STEPS FENDERS AND RUBBER STEPS SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	230 29 21-bee0 316 183 01-Mart 535 303 15-Mart 408 281 16-Mart 214 93 20-Feb-1 169 76 30-Mart 122 12 07-Gott 12 12 07-Gott 166 29 20-Feb-1 17 12 02-Gott 186 20 16-Mart 18 02-Gott 16 20 12 02-Gott 186 02 16-Mart 8 06-Mart 12 12 02 16-Mart 136 03 16-Mart 8 06-Mart 16 21 21 21-Mart 387 266 20-Feb-1	A 18-Aug-10 A 19-Jan-11 A 17-Aug-11 DA 27-Apr-11 DA 27-Apr-11 DA 27-Apr-11 DA 27-Apr-11 DA 21-Oct-10 DA 06-Oct-10 DA 06-Oct-10 D-Oct-10 30-Sep-10 12-Oct-10 30-Sep-10 DA 18-Aug-10 DA 18-Aug-10 DA 18-Aug-10	44 103 -8 -8			V	-													
PRE-CAST CAISSON SEAWALL PRE-CAST CAISSON SEAWALL Dverall Construction SECTION 1 OF WORKS (290 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS LANDING STEPS FENDERS AND REULAWATION WORKS GEOTECHNICAL INSTRUMENTATION AND MONITORING V SERVIALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	316 133 01-Mar-1 535 333 15-Mar-1 408 281 16-Mar-1 214 33 20-Feb-1 14 0.20-Feb-1 12 169 76.30-Mar-1 12 12 12 07-Oct-1 12 12 12 16-Soci-1 9 9.20-Feb-1 156 29 20-Feb-1 156 29 20-Feb-1 16 16-Mar-1 156 29 20-Feb-1 16 16-Mar-1 166 20 10-Mar-1 16 16-Mar-1 8 8 06-Mar-1 21 21-Mar-1 367 266 20-Feb-1 367 266	DA 19-Jan-11 DA 17-Jug-11 DA 27-Jug-11 DA 27-Jug-11 DA 27-Jug-11 DA 27-Oct-10 DA 15-Apr-10A DA 06-Oct-10 21-Oct-10 21-Oct-10 21-Oct-10 21-Oct-10 DA 06-Oct-10 21-Oct-10 12-Oct-10 DA 18-Aug-10 DA 18-Aug-10 DA 14-Aug-10	44 103 -8 -8											••••					 7	
PRE-CAST SEAWALL BLOCK Overall Construction SECTION 1 OF WORKS (290 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS LANDING STEPS FENDERS AND RUBBER STEPS SECTION 1 A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION MOMITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	535 339 15-Mar-1 408 281 16-Mar-1 214 33 20-Feb-1 14 0 20-Feb-1 159 78 30-Mar-1 12 12 07-Oct 1 12 12 07-Oct 1 15 29 9-9-0 156 29 20-Feb-1 156 20 16-Mar-1 8 8 06-Aug-1 21 21 21-2-1-Mar-1 367 266 20-Feb-1	A 17-Aug-11 DA 27-Apr-11 DA 27-Apr-11 DA 21-Oct-10 DA 15-Apr-10 A DA 06-Oct-10 21-Oct-10 21-Oct-10 DA 05-Apr-10 A D 30-Step-10 12-Oct-10 12-Oct-10 DA 18-Aug-10 DA 18-Aug-10 D 14-Aug-10	44 103 -8 -8																	
SECTION 1 OF WORKS (290 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS LANDING STEPS SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	214 93 20-Feb-1 14 0 20-Feb-1 199 78 30-Mer-1 12 12 12 12 12 12 16-Sep-1 9 9 02-Oct-1 156 29 20-Feb-1 12 0 20-Feb-1 156 20 16-Mar-1 8 8 06-Aug-1 156 20 16-Mar-1 8 8 06-Aug-1 21 21 21-Jul-10 387 266 20-Feb-1	DA 21-Oct-10 0A 15-Apr-10 A 0B 06-Oct-10 21-Oct-10 21-Oct-10 0 30-Sep-10 12-Oct-10 12-Oct-10 0A 16-Apr-10 0A 16-Apr-10 0A 16-Apr-10 0A 18-Apr-10 0A 14-Apr-10	44 103 -8 -8			+	-													
GEOTECHNICAL INSTRUMENTATION AND MONITORING V SERWALLS AND RECLAMATION WORKS DRAINAGE WORKS LANDING STEPS FENDERS AND RUBBER STEPS SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINCS SECTION 2 OF WORKS (470 DAYS)	14 0 20-Feb-1 169 26 30-Mar-1 12 12 07-Oct-1 12 12 16-Sep-1 9 9 02-Oct-1 156 29 20-Feb-1 158 20 16-Mar-1 6 8 06-Aug-1 21 21-22-1 21-3-Mar-1 8 8 06-Aug-1 387 266 20-Feb-1	DA 15-Apr-10 Å DA 06-Od-10 21-Od-10 30-Step-10 12-Od-10 12-Od-10 12-Od-10 12-Od-10 DA 18-Aug-10 DA 18-Aug-10 DA 18-Aug-10	44 103 -8 -8			-	-			@ - CICI,										
SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS LANDING STEPS FENDERS AND RUBBER STEPS SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	169 78 30-Mar-1 12 12 07-0x-1 12 12 16-5x-1 9 9 02-0x-1 156 29 20-Feb-1 156 20 16-Mar-1 8 8 06-Aug-1 21 21 21 21 367 26 20-Feb-1	A 06-Oct-10 21-Oct-10 30-Sep-10 12-Oct-10 12-Oct-10 0 30-Sep-10 12-Oct-10 0 0A 18-Aug-10 0A 09-Apr-10 A 0A 18-Aug-10 0A 18-Aug-10 0A 14-Aug-10	-8 -8		٦	-	-		<mark></mark>											
DRAINAGE WORKS LANDING STEPS FENDERS AND R UBBER STEPS SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SERWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	12 12 07-0c-1 12 12 16-Sept 9 9 02-0c-1 156 29 20-Feb-1 12 0 20-Feb-1 166 29 20-Feb-1 17 0 20-Feb-1 186 20 16-Mar-1 8 8 06-Mag-1 21 21-21-21 21-3a-10 387 266 20-Feb-1	21-Oct-10 30-Sap-10 12-Oct-10 OA 18-Aug-10 0A 09-Apr-10 A 0A 18-Aug-10 0 14-Aug-10	-8 -8			+				سر فرواها ی										
LANDING STEPS FENDERS AND RUBBER STEPS SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING Y SERVIALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	12 12 16-Sep-1 9 9 02-Oct+1 156 22-0-Feb-1 12 0.20-Feb-1 156 20 16-Mar-1 8 8 06-Aug-1 21 21 21-Jul-10 387 266 20-Feb-1	30-30-Sep-10 12-Oct-10 0A 18-Aug-10 0A 09-Apr-10 A 0A 18-Aug-10 0A 18-Aug-10	-8 -8					1												
FENDERS AND RUBBER STEPS SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL NISTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	9 9:02-0ct-ft 156 29:20-Feb-1 12 0:20-Feb-1 156 20:16-Mart 156 20:16-Mart 156 20:16-Mart 156 20:16-Mart 156 20:16-Mart 157 21:12-12 21 21:21:12-14 387 266:20-Feb-1	12-Oct-10 DA 18-Aug-10 DA 09-Apr-10 A DA 18-Aug-10 DA 14-Aug-10										1								
SECTION 1A OF WORKS (230 DAYS) GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINOS SECTION 2 OF WORKS (470 DAYS)	156 29 20-Feb-1 12 0 20-Feb-1 156 20 16-Mar-1 156 20 16-Mar-1 8 8 06-Aug-1 21 21 21-21-24 387 266 20-Feb-1	DA 18-Aug-10 DA 09-Apr-10 A DA 18-Aug-10 DA 14-Aug-10	177																	
GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	12 0 20-Fab-1 156 20 16-Mar-1 8 8 06-Aug-1 21 21 21-Jul-10 387 266 20-Feb-1	09-Apr-10 A 0A 18-Aug-10 0 14-Aug-10	4	:							_									
SEAVALLS AND RECLAMATION WORKS DRAINAGE WORKS COPINOS SECTION 2 OF WORKS (470 DAYS)	156 20 16-Mar-1 8 8 06-Aug-1 21 21 21-Jul-10 387 266 20-Feb-1) A 18-Aug-10) 14-Aug-10	4				-			·										
DRAINAGE WORKS COPINGS SECTION 2 OF WORKS (470 DAYS)	8 8 06-Aug-1 21 21 21-Jul-10 387 266 20-Feb-1) 14-Aug-10					•													
COPINGS SECTION 2 OF WORKS (470 DAYS)	21 21-Jul-10 387 266 20-Feb-1		146																	
		13-Aug-10	10																	
) A 12-Apr-11	-11								_	-								
	22 0 20-Feb-1)A 27-Mar-10 A																		
SEAWALLS AND RECLAMATION WORKS	249 175 15-Apr-1		35				-					÷ •	_	_						
DRAINAGE WORKS	218 218 07-Sep-1		-11																	
LANDING STEPS	18 18 07-Jan-1		41											-	_					
FENDERS AND RUBBER STEPS	6 07-Feb-1 514 393 20-Feb-1		41									1			•					
ECTION 3 OF WORKS (600 DAYS)	42 0 20-Feb-1		-8																_	
GEOTECHNICAL INSTRUMENTATION AND MONITORING V SEAWALLS AND RECLAMATION WORKS	42 0 20-Feb-1 374 374 25-Jun-1		11																	
DRAINAGE WORKS	381 381 02-Aug-1		-8						· · · · · ·											
COMMUNITY LIAISON CENTRE	90 0 01-Mar-1					—								-					_	
PERMANENT RELOCATION OF NAVIGATION LIGHT	12 12 16-Jul-11	29-Jul-11	9																	
SECTION 4 OF WORKS (110 DAYS)	90 0 02-Jan-10	A 20-Apr-10 A																		
WORKS IN PORTION NPR4	74 0 02-Jan-1	A 20-Apr-10 A		-		-														
WORKS IN PORTION NPR4A AND NPR4B	34 0 31-Jan-1				·															
ECTION 5 OF WORKS (30 DAYS)	23 0 07-Dec-0	9A 16-Jan-10 A	-		•															
WORKS IN PORTION NPR5A	23 0 07-Dec-0		-		•															
ECTION 6 OF WORKS (120 DAYS)	112 0 21-Jan-10				-															
WORKS IN PORTIONS NPR5B,NPR5C,NPR5D AND NPR5E	112 0 21-Jan-1	A 30-Apr-10 A			-															
	ritical Remaining V lilestone	/ork	Summary	/				Page 1	of 1	TA	SK filte	er: All A	ctivitie	6				imavera		

Contract No. HK/2009/01

Contract Title : Wan Chai Development Phase II - Central - Wan Chai Bypass at HKCEC

Working Programme for Marine Works (Dredging and Backfilling)

ACTIVITY	START	FINISH	2010	2011	2012	2013
Submissions before Works Common commit			Feb Ma Api Ma Jun Jul Au Sep Oct No De	Jan Feb Ma Api Ma Jun Jul Au Sep Oct No Dec	Jan Feb Ma Api Ma Jun Jul Au Sep Oct No Dec	Jan Feb Ma Apa Ma Jun Jul Au Sep Oct No Dec
Submissions before Works Commencement						
Submit silt curtain deployment plan	31/3/10	31/3/10	•			
Submit silt screen deployment plan	31/3/10	31/3/10	•			
Submit measures to mitigate noise impact	31/3/10	31/3/10	•			
Cross Harbour Watermains from WCN to TST (DP6)						
Trench dredging for marine watermains installation	29/4/10	28/10/10				
Backfilling for watermain	28/1/11	14/12/11				
Reclamation Works at HKCEC Water Channel (DP3)						
Dredging at HKCEC Water Channel (Western Part)	1/6/10	1/8/10				
Backfilling to +3.5mPD (Western Part)	17/8/10	6/2/11				
Dredging at HKCEC Water Channel (Middle Part)	2/8/10	6/1/11				
Backfilling to +3.5mPD (Middle Part)	21/2/11	1/6/11				
Dredging at HKCEC Water Channel (Eastern Part)	1/12/12	31/12/12				
Backfilling to +3.5mPD (Eastern Part)	16/1/13	30/4/13				

009/02-Marine & Reclamation Works htract Commencement neral Submission & obtain approval for marine GI Stage 1 Marine GI for reclamation Engineer's Design review for Dredging of WCR1, WCR2 & WCR4 Relocation of New Star Ferry Pier Demolition of Existing Star Ferry Pier Stage 2 Marine GI for Reclamation	2008 d 0 d 1879 d 21 d 30 d 30 d 0 d 100 d	Thu 28/1/10 Thu 28/1/10 Mon 22/2/10 Mon 22/2/10 Mon 15/3/10 Mon 22/3/10 Tue 18/3/14		21Q31Q41Q11Q21Q31Q41Q11Q	2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q
ntract Commencement neral Submission & obtain approval for marine GI Stage 1 Marine GI for reclamation Engineer's Design review for Dredging of WCR1, WCR2 & WCR4 Relocation of New Star Ferry Pier Demolition of Existing Star Ferry Pier	0 d 1879 d 21 d 30 d 30 d 0 d	Thu 28/1/10 Mon 22/2/10 Mon 22/2/10 Mon 15/3/10 Mon 22/3/10	* *		
neral Submission & obtain approval for marine GI Stage 1 Marine GI for reclamation Engineer's Design review for Dredging of WCR1, WCR2 & WCR4 Relocation of New Star Ferry Pier Demolition of Existing Star Ferry Pier	1879 d 21 d 30 d 30 d 0 d	Mon 22/2/10 Mon 22/2/10 Mon 15/3/10 Mon 22/3/10	5 9 9		
Submission & obtain approval for marine GI Stage 1 Marine GI for reclamation Engineer's Design review for Dredging of WCR1, WCR2 & WCR4 Relocation of New Star Ferry Pier Demolition of Existing Star Ferry Pier	21 d 30 d 30 d 0 d	Mon 22/2/10 Mon 15/3/10 Mon 22/3/10	9 9		
Stage 1 Marine GI for reclamation Engineer's Design review for Dredging of WCR1, WCR2 & WCR4 Relocation of New Star Ferry Pier Demolition of Existing Star Ferry Pier	30 d 30 d 0 d	Mon 15/3/10 Mon 22/3/10	8		
Engineer's Design review for Dredging of WCR1, WCR2 & WCR4 Relocation of New Star Ferry Pier Demolition of Existing Star Ferry Pier	30 d 0 d	Mon 22/3/10			
Relocation of New Star Ferry Pier Demolition of Existing Star Ferry Pier	0 d		100		
Demolition of Existing Star Ferry Pier					*
	100.0	Tue 18/3/14			-
	14 d	Tue 18/3/14			
Engineer's Design review for Dredging of WCR3	21 d	Tue 25/3/14			
					-
		and the set to be a strength of the set of t	1		
		and the second sec			
	100000				
			1.		
			1		
				-	
	10.000			-	
				-	
가장 같은 것은 것은 것은 것을 알 수 있는 것을 알 수 있는 것을 하는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 하는 것을 수 있는 것을 하는 것을 하는 것을 하는 것을 수 있는 것 같이 않는 것 같이 없다. 것 같이 것 같이 않는 것 않는 것 않는 것 같이 않는 것 않는					÷
			1		1
		and the second se			
		and the second se	-		
		the second se			-
					-
			1		
	Complete Diversion of Hung Hing Road Traffic Back to Original Excavate & remove top of d-wall for permanet seawall construction Imarine Outfall Dredging, Laying and Backfilling of Submarine Outfall Pipe at Sea Ise 1 - WCR1 Mobilization of plants Seabed dredging Bedding Filling and Permanent seawall (precast cassion) Bulk reclamation Ise 2 - WCR2 Mobilization of plants Temp seawall and Seabed dredging Bulk reclamation Ise 3 - TWCR4 & WCR4 Mobilization of plants Temp Seawall and Seabed dredging Bulk & temp reclamation Ise 4 - WCR3 Mobilization of plants Seabed dredging for Permanent Seawall Backfill and permanent seawall (precast cassion) Bulk reclamation Ise 5 - Construct Permanent Seawall Blocks along curved coastline & Remove TWCR4 Mobilization of plants Dredging and Filling for permanent seawall construction Construction of Permanent Seawall Blocks for curved coastline Remove temp seawall and reinstate the location of TWCR4	Excavate & remove top of d-wall for permanet seawall construction50 dDomarine Outfall500 dDredging, Laying and Backfilling of Submarine Outfall Pipe at Sea500 dIsse 1 - WCR1158 dMobilization of plants1 dSeabed dredging63 dBedding Filling and Permanent seawall (precast cassion)60 dBulk reclamation37 dase 2 - WCR2149 dMobilization of plants1 dTemp seawall and Seabed dredging77 dBulk reclamation73 dase 3 - TWCR4 & WCR498 dMobilization of plants1 dCemp Seawall and Seabed dredging75 dBulk kerelamation24 dMobilization of plants1 dCemp Seawall and Seabed dredging75 dBulk kerelamation24 dBulk kere preclamation24 dBulk catamation24 dBulk catamation24 dBulk bulk ization of plants1 dConstruct Permanent Seawall Blocks along curved coastline & Remove TWCR4105 dBulk reclamation74 dBulk reclamation50 dConstruction of Permanent Seawall Blocks for curved coastline & Seaware TWCR4105 d<	Excavate & remove top of d-wall for permanet seawall construction50 dWed 25/2/15smarine Outfall500 dTue 21/9/10Dredging, Laying and Backfilling of Submarine Outfall Pipe at Sea500 dTue 21/9/10sse 1 - WCR1158 dWed 21/4/10Mobilization of plants1 dWed 21/4/10Seabed dredging63 dWed 21/4/10Bedding Filling and Permanent seawall (precast cassion)60 dTue 22/6/10Bulk reclamation37 dFri 20/8/10sse 2 - WCR2149 dThu 1/3/12Mobilization of plants1 dThu 1/3/12Temp seawall and Seabed dredging77 dThu 1/3/12Bulk reclamation73 dWed 16/5/12sse 3 - TWCR4 & WCR498 dSat 28/4/12Mobilization of plants1 dSat 28/4/12Temp Seawall and Seabed dredging75 dSat 28/4/12Bulk reclamation75 dSat 28/4/12Seabed 4redging Or Permanent Seawall1 dTue 18/3/14Mobilization of plants1 dTue 18/3/14Bulk & temp reclamation24 dWed 11/7/12sse 4 - WCR3294 dTue 18/3/14Mobilization of plants1 dTue 8/3/14Mobilization of plants1 dWed 15/1/15 <td>Excavate & remove top of d-wall for permanet seawall construction50 dWed 25/2/15smarine Outfall500 dTue 21/9/10Dredging, Laying and Backfilling of Submarine Outfall Pipe at Sea500 dTue 21/9/10Sea t - WCR1158 dWed 21/4/10Mobilization of plants1 dWed 21/4/10Bedding Filling and Permanent seawall (precast cassion)60 dTue 22/6/10Bulk reclamation37 dFri 20/8/10sea 2 - WCR2149 dThu 1/3/12Mobilization of plants1 dThu 1/3/12Temp seawall and Seabed dredging77 dThu 1/3/12Bulk reclamation77 dThu 1/3/12sea 3 - TWCR4 & WCR498 dSat 28/4/12Mobilization of plants1 dSat 28/4/12sea 4 - WCR375 dSat 28/4/12Bulk & temp reclamation75 dSat 28/4/12sea 4 - WCR3294 dTue 18/3/14Mobilization of plants1 dTue 18/3/14Seabed dredging for Permanent Seawall10 dTue 18/3/14Bulk k temp reclamation74 dFri 24/10/14sea 5 - Construct Permanent Seawall Blocks along curved coastline & Remove TWCR4105 dWed 15/4/15Mobilization of plants1 dWed 15/4/15Dredging and Filling for permanent seawall construction50 dWed 15/4/15Construction of plants1 dWed 15/4/15Construction of plants50 dWed 15/4/15</td> <td>Excavate & remove top of d-wall for permanet seawall construction50 dWed 25/2/15smarine Outfall500 dTue 21/9/10Dredging, Lying and Backfilling of Submarine Outfall Pipe at Sea500 dTue 21/9/10sea 1 - WCR1158 dWed 21/4/10Mobilization of plants1 dWed 21/4/10Bedding Filling and Permanent seawall (precast cassion)60 dTue 22/6/10Bulk reclamation37 dFri 20/8/10Bulk reclamation77 dThu 1/3/12Mobilization of plants1 dThu 1/3/12Temp seawall and Seabed dredging77 dThu 1/3/12Bulk reclamation78 dSat 28/4/12Mobilization of plants1 dSat 28/4/12Temp Seawall and Seabed dredging77 dThu 1/3/12Bulk & temp reclamation24 dWed 11/7/12Sea - WCR3294 dTue 18/3/14Mobilization of plants1 dState 4 - WCR3294 dBulk & temp reclamation24 dSeabed dredging for Permanent Seawall112 dBulk reclamation74 dSeabed dredging for Permanent Seawall108 dBulk reclamation74 dSeabed dredging for Permanent Seawall (precast cassion)108 dBulk reclamation74 dSeabed dredging for Permanent Seawall Blocks along curved coastline & Remove TWCR4Mobilization of plants10 dBulk reclamation76 dSee Construct Permanent Seawall Blocks for curved coastlineBulk reclamation76 dSee</td>	Excavate & remove top of d-wall for permanet seawall construction50 dWed 25/2/15smarine Outfall500 dTue 21/9/10Dredging, Laying and Backfilling of Submarine Outfall Pipe at Sea500 dTue 21/9/10Sea t - WCR1158 dWed 21/4/10Mobilization of plants1 dWed 21/4/10Bedding Filling and Permanent seawall (precast cassion)60 dTue 22/6/10Bulk reclamation37 dFri 20/8/10sea 2 - WCR2149 dThu 1/3/12Mobilization of plants1 dThu 1/3/12Temp seawall and Seabed dredging77 dThu 1/3/12Bulk reclamation77 dThu 1/3/12sea 3 - TWCR4 & WCR498 dSat 28/4/12Mobilization of plants1 dSat 28/4/12sea 4 - WCR375 dSat 28/4/12Bulk & temp reclamation75 dSat 28/4/12sea 4 - WCR3294 dTue 18/3/14Mobilization of plants1 dTue 18/3/14Seabed dredging for Permanent Seawall10 dTue 18/3/14Bulk k temp reclamation74 dFri 24/10/14sea 5 - Construct Permanent Seawall Blocks along curved coastline & Remove TWCR4105 dWed 15/4/15Mobilization of plants1 dWed 15/4/15Dredging and Filling for permanent seawall construction50 dWed 15/4/15Construction of plants1 dWed 15/4/15Construction of plants50 dWed 15/4/15	Excavate & remove top of d-wall for permanet seawall construction50 dWed 25/2/15smarine Outfall500 dTue 21/9/10Dredging, Lying and Backfilling of Submarine Outfall Pipe at Sea500 dTue 21/9/10sea 1 - WCR1158 dWed 21/4/10Mobilization of plants1 dWed 21/4/10Bedding Filling and Permanent seawall (precast cassion)60 dTue 22/6/10Bulk reclamation37 dFri 20/8/10Bulk reclamation77 dThu 1/3/12Mobilization of plants1 dThu 1/3/12Temp seawall and Seabed dredging77 dThu 1/3/12Bulk reclamation78 dSat 28/4/12Mobilization of plants1 dSat 28/4/12Temp Seawall and Seabed dredging77 dThu 1/3/12Bulk & temp reclamation24 dWed 11/7/12Sea - WCR3294 dTue 18/3/14Mobilization of plants1 dState 4 - WCR3294 dBulk & temp reclamation24 dSeabed dredging for Permanent Seawall112 dBulk reclamation74 dSeabed dredging for Permanent Seawall108 dBulk reclamation74 dSeabed dredging for Permanent Seawall (precast cassion)108 dBulk reclamation74 dSeabed dredging for Permanent Seawall Blocks along curved coastline & Remove TWCR4Mobilization of plants10 dBulk reclamation76 dSee Construct Permanent Seawall Blocks for curved coastlineBulk reclamation76 dSee