CONTRACT NO: HK/2011/07
 WANCHAI DEVELOPMENT PHASE II AND CENTRAL
 WANCHAI BYPASS
 SAMPLING, FIELD MEASUREMENT AND TESTING WORKS (STAGE 2)

ENVIRONMENTAL PERMIT NO. EP-356/2009, FURTHER EVIRONMENTAL PERMIT NOS. FEP-01/356/2009, FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009 AND

FEP-05/356/2009

MONTHLY ENVIRONMENTAL MONITORING \& AUDIT REPORT

- MAY 2012 -

CLIENTS:

Civil Engineering and Development Department
and
Highways Department

PREPARED BY:
Lam Geotechnics Limited
11/F Centre Point
181-185 Gloucester Road, Wanchai, H.K.

Telephone: (852) 2882-3939
Facsimile: (852) 2882-3331
E-mail: info@lamenviro.com
Website: http://www.lamenviro.com

CERTIFIED BY:

DATE:
8 June 2012

AECOM Asia Company Limited
Grand Central Plaza
138 Shatin Rural Committee Road，
Shatin，New Territories，
Hong Kong

Attention：Mr．Kelvin CHENG

Dear Sir，

Re：Wan Chai Development Phase II and Central－Wan Chai Bypass Monthly Environmental Monitoring and Audit Report（May 2012）for EP－356／2009，FEP－01／356／2009，FEP－02／356／2009，FEP－03／356／2009，FEP－ 04／356／2009 and FEP－05／356／2009

Reference is made to the Environmental Team＇s submission of the captioned Monthly Environmental Monitoring and Audit（EM\＆A）Report for May 2012 dated 8 June 2012.

Please be informed that we have no adverse comment on the captioned submission．We write to verify the captioned submission in accordance with Condition 3.4 in the captioned Environmental Permits．

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries．

Yours sincerely，

David Yeung
Independent Environmental Checker

c．c．	HyD	Mr．Jones Lai	by fax： 27145289
	CEDD	Mr．Patrick Keung	by fax： 25775040
	AECOM	Mr．Francis Leong／Mr．Stephen Lai	by fax： 26912649
	Lam	Mr．Raymond Dai	by fax： 28823331

Q：IProjectsVAACWBIECEMOOICorrIAACWBIECEM00＿0＿2830L．12．doc

TABLE OF CONTENTS

EXECUTIVE SUMMARY 4

1. INTRODUCTION 13
1.1 Scope of the Report 13
1.2 Structure of the Report 13
2. PROJECT BACKGROUND 15
2.1 Background 15
2.2 Scope of the Project and Site Description 15
2.3 Division of the Project Responsibility 16
2.4 Project Organization and Contact Personnel 17
3. STATUS OF REGULATORY COMPLIANCE 25
3.1 Status of Environmental Licensing and Permitting under the Project. 25
4. MONITORING REQUIREMENTS 37
4.1 Noise Monitoring 37
4.2 Air Monitoring 38
4.3 Water Quality Monitoring 41
5. MONITORING RESULTS 46
5.1 Noise Monitoring Results 46
5.2 Real-time Noise Monitoring 48
5.3 Air Monitoring Results 48
5.4 Water Monitoring Results 50
5.5 Waste Monitoring Results 55
6. COMPLIANCE AUDIT 59
6.1 Noise Monitoring 59
6.2 Real-time noise Monitoring 59
6.3 Air Monitoring 59
6.4 Water Quality Monitoring 60
6.5 Review of the Reasons for and the Implications of Non-compliance 61
6.6 Summary of action taken in the event of and follow-up on non-compliance 61
7. CUMULATIVE CONSTRUCTION IMPACT DUE TO THE CONCURRENT PROJECTS 62
8. ENVIRONMENTAL SITE AUDIT 63
9. COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION 64
10. CONCLUSION 68

LIST OF TABLES

Table I Summary of Water Quality Monitoring Exceedances in Reporting Month
Table II Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in Reporting Month
Table 2.1 Schedule 2 Designated Projects under this Project
Table 2.2 Details of Individual Contracts under the Project
Table 2.3 Contact Details of Key Personnel
Table 3.1 Summary of the current status on licences and/or permits on environmental protection pertinent to the Project
Table 3.2 Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/11
Table 3.3 Summary of submission status under FEP-01/356/2009 Condition
Table 3.4 Cumulative Summary of Valid Licences and Permits under Contract no. HK/2009/01
Table 3.5 Summary of submission status under FEP-02/356/2009 Condition
Table 3.6 Cumulative Summary of Valid Licences and Permits under Contract no. HK/2009/02
Table 3.7 Summary of submission status under FEP-03/356/2009 Condition
Table 3.8 Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/15
Table 3.9 Summary of submission status under FEP-04/356/2009 Condition
Table 3.10 Cumulative Summary of Valid Licences and Permits under Contract no. HK/2010/06
Table 3.11 Summary of submission status under EP-356/2009 and FEP-05/356/2009 Condition
Table 3.12 Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/19
Table 4.1 Noise Monitoring Station
Table 4.2 Real Time Noise Monitoring Station
Table 4.3 Air Monitoring Station
Table 4.4 Marine Water Quality Stations for Water Quality Monitoring
Table 4.5 Marine Water Quality Monitoring Frequency and Parameters
Table 4.6 Marine Water Quality Stations for Enhanced Water Quality Monitoring
Table 4.7 Marine Water Quality Stations for Additional DO Monitoring
Table 5.1 Noise Monitoring Stations for Contract no. HY/2009/11
Table 5.2 Noise Monitoring Station for Contract nos. HK/2009/01, HK/2009/02 and HK/2010/06
Table 5.3 Noise Monitoring Station for Contract no. HY/2009/15
Table 5.4 Noise Monitoring Station for Contract no. HY/2009/19
Table 5.5 Real Time Noise Monitoring Station for Contract no. HY/2009/11 and HY/2009/19
Table 5.6 Air Monitoring Stations for Contract no. HY/2009/11
Table 5.7 Air Monitoring Stations for Contract no. HK/2009/01
Table 5.8 Air Monitoring Station for Contract no. HK/2009/02
Table 5.9 Air Monitoring Station for Contract no. HY/2009/15
Table 5.10 Air Monitoring Stations for Contract no. HY/2009/19
Table 5.11 Water Monitoring Stations for Contract no. HY/2009/11
Table 5.12 Water Monitoring Stations for Contract no. HK/2009/01
Table 5.13 Water Monitoring Stations for Contract no. HK/2009/02
Table 5.14 Water Monitoring Stations for Contract no. HK/2010/06
Table 5.15 Water Monitoring Stations for Contract no. HY/2009/15
Table 5.16 Water Monitoring Stations for Contract no. HY/2009/19
Table 5.17 Summary of Water Quality Monitoring Exceedances in Reporting Month
Table 5.18 Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in Reporting Month
Table 5.19 Details of Waste Disposal for Contract no. HK/2009/01
Table 5.20 Details of Waste Disposal for Contract no. HK/2009/02
Table 5.21 Details of Waste Disposal for Contract no. HY/2009/15
Table 5.22 Details of Waste Disposal for Contract no. HK/2010/06
Table 8.1 Summary of Environmental Inspections for Contract no. HK/2009/01

Table 8.2 Summary of Environmental Inspections for Contract no. HK/2009/02
Table 8.3 Summary of Environmental Inspections for Contract no. HY/2009/15
Table 8.4 Summary of Environmental Inspections for Contract no. HK/2010/06
Table 8.5 Summary of Environmental Inspections for Contract no. HY/2009/19
Table 9.1 Cumulative Statistics on Complaints
Table 9.2 Cumulative Statistics on Successful Prosecutions
Table 10.1 Construction Activities and Recommended Mitigation Measures in Coming Reporting Month

LIST OF FIGURES

Figure 2.1 Project Layout
Figure 2.2 Project Organization Chart
Figure 2.3 Locations of Environmental Monitoring Stations

LIST OF APPENDICES

Appendix 3.1 Environmental Mitigation Implementation Schedule
Appendix 4.1 Action and Limit Level
Appendix 4.2 Copies of Calibration Certificates
Appendix 5.1 Monitoring Schedule for Reporting Month and Coming month
Appendix 5.2 Noise Monitoring Results and Graphical Presentations
Appendix 5.3 Air Quality Monitoring Results and Graphical Presentations, and Odour Patrol Results
Appendix 5.4 Water Quality Monitoring Results and Graphical Presentations
Appendix 5.4a Additional Dissolved Oxygen Monitoring Results
Appendix 5.5 Real-time Noise Monitoring Results and Graphical Presentations
Appendix 6.1 Event Action Plans
Appendix 6.2 Summary for Notification of Exceedance
Appendix 7.1 Complaint Log
Appendix 8.1 Construction Programme of Individual Contracts

EXECUTIVE SUMMARY

i. This is the Environmental Monitoring and Audit (EM\&A) Monthly Report - May 2012 for the Project of Wan Chai Development Phase II and Central-Wanchai Bypass under Environmental Permit no. EP-356/2009 and Further Environmental permit nos. FEP-01/356/2009, FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009 and FEP-05/356/2009. This report presents the environmental monitoring findings and information recorded during the period April 2012 to May 2012. The cut-off date of reporting is at $27^{\text {th }}$ of each reporting month.

Construction Activities for the Reported Period

ii. Contract no. HY/2009/11- North Point Reclamation

- Rectifications of rock armour at Portion III
- The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19.
iii. During this reporting period, the major work activities for Contract no. HK/2009/01 included: Marine Works (at Wan Chai)
- Installation of sheet pile water channel for cooling water intake at Dome Promenade between CH 170 and CH 240
- Rockfilling for rock bund at HKCEC Water Channel from Ch220 to Ch230
- Reclamation of HKCEC3W within HKCEC Water Channel
- Rock armour protection to the seawall at Wan Chai Landfall in Zone B1-3
- Dredging from CH290 to CH410 (Stage 3) near Expo Drive East Bridge
- Preparation works for demolition of existing seawall at Expo Drive East including removal of existing staircase in the vicinity

Cross-Harbour Watermains Installation (CHA \& CHB) and Marine Works (at TST)

- Concrete coating at flange joint of cross-harbour watermains nos. A13B13/A14B14, A14B14/A15B15 and A15B15/A16B16
- Rockfilling and rock protection to cross-harbour watermains
- Trench excavation, installation of shoring system and trimming obstructions (mini-piles) for a 1000 dia. cross harbour watermains (CHB) along the pipe pile wall at TST seashore
- Trench excavation and installation of shoring system for a 1000 dia. Cross Harbour Watermains (CHA) along the pipe pile wall at TST seashore
- Removal of existing seawall at TST seashore for installation of cross harbour watermains (CHA)

Fresh Watermains, Cooling Watermains and Salt Watermains (On Land)

- Mainlaying works at Zone B1-5A, B2-1, B4-3, B4-4, B5-1A, A1-1, A1-3, A1-3A, A1-3B, A2-2, A3-3, A3-4B, A3-5B, A4-1 and A4-2A
- Mainlaying works and subsequent carriageway reinstatement in Zone B1-6 and Zone

A1-5A1

- Mainlaying works at Zone B1-5A and B2-1
- Mainlaying works at Zone A1-3 and excavation for jacking pit at Zone A1-3B
- Trench excavation for cable \& G.I. Ducting works at Zone B5-1A
- Gate valves connection works for intake and discharge cooling mains of APA at Zone A2-2
- Gate valves connection works for intake cooling mains of Government"s Offices at Zone A4-1
- Diversion of underground cables at footpath of Fenwick Pier Street at Zone A3-3
- Heading No. H7 (Mainlaying works by trenchless method)
- Excavation for jacking pit for pipe laying works by heading method along Convention Avenue at Zone A1-3A
- Heading No. H6A and No. 8
- Mainlaying and chamber construction works at the traffic island near junction of Convention Avenue and Fenwick Pier Street
- Cable ducting works along Convention Avenue
- Cable ducting works along Harbour Road
- Cable ducting works at Fenwick Street
- Trench excavation, pipe laying works and chamber construction for a 1000 dia. Watermains (CHF) at Salisbury Garden
- Trench excavation, pipe laying woks and chamber construction for a 1000 dia. Watermains CHE) at Salisbury Garden
- Pipe installation of a 1000 dia. Watermains (CHE) by trenchless method across the EVA near Salisbury Garden
iv. During this reporting period, the major work activities for Contract no. HK/2009/02 included:
- Remaining works along EVA
- E\&M installation works of P7, P8 \& P9
- Concreting of thrust blocks in P8 dry well
- Install the motor of the band screen at wet well of P8 was ongoing and P9
- The TBM breaking-in of the WSD 2nd drive
- Approximate 35 m cooling water pipe was laid at Harbour Centre, Harbour Road, Tonnochy Road and ex-pet garden.
- Combined chamber for SHK at ex-pet garden
- Approximate 10 m cable duct was laid at Harbour Road and Tonnochy Road.
- Casting of final slab at +15.71 mPD for the WSD Salt Water Pumping Station.
- HEC Switch Room of the WSD Salt Water Pumping Station
- ABWFs and E\&M installation at the TX room of the WSD Salt Water Pumping Station
- Installation and welding for 4th layer of wailings and struts for construction of intake
culvert Bay 19B at Wan Shing Street
- Dewatering at Wan Shing Street Bay 24 for opening in sheetpile cofferdam
- ELS of 3rd layer (-1.5 mPD) struts \& wailings of salt water intake landside cofferdam
- ELS of 2nd layer (+0.5mPD) struts \& wailings of salt water intake seaside cofferdam
- Remedial works of hole drilling for grouting to avoid seepage outside the salt water intake seaside cofferdam
- ELS of 3rd layer (-2.0mPD) struts \& wailings of Submarine Outfall Seaside Cofferdam
- Removal of formwork for slab and beam high portion 1A
- Concreting of pile cap low portion 2A1, sloping tie beam, tie beam between 2A1 to 2 A 2 and 2 A 1 to 1 A
- Concreting of slab and beam high portion 2A3, 2B1 and 2B2 (+3.15mPD to +3.75 mPD) at Ferry Pier
- Removal of formwork of slab and beam high portion 2B1, 2B2 and 2B3 (+4.15mPD)
- Erection of formwork for pile cap low portion 3B at Ferry Pier
- Dewatering and fixing of steel water tank for construction of pile cap at portion 3A and 3C2 at Ferry Pier
- Approximate 5 m DN800 MS pipe installation near Gate 1 at ex-pet garden
- Piping diversion at WCR2
- Excavation works and utilities diversion at Box Culvert O
- Permanent precast beam and central beam for Box Culvert O diversion
v. During this reporting period, the major work activities for Contract no. HY/2009/15 included:
- Dredging for seawall foundation at TS2
vi. During this reporting period, the major work activities for Contract no. HK/2010/06 included:
- Excavation of bored piles
- Concreting of bored piles
- Coring Works
- Sheet Piles
- Construction of Pre-cast Unit in China
vii. During this reporting period, the major work activities for Contract no. HY/2009/19 included:
- Marine bored piling

Noise Monitoring

viii. Noise monitoring during daytime and restricted hour were conducted at the stations M1a, M2b, M3a, M4b, M5b and M6 on a weekly basis in the reporting month.
ix. No action level and two limit level exceedances were recorded at M6 on 30 April and 16 May 2012. The limit level exceedances were considered as non-project related.

Real-time Noise Monitoring

x. Real-time noise monitoring at FEHD Hong Kong Transport Section Whitefield Depot and Oil Street Community Centre have been commenced on 5 October 2010 for the filling works of Contract no. HY/2009/11. No project-related exceedance was recorded in the reporting month.

Air Quality Monitoring

xi. Due to extension of site boundary by contractor of HY/2009/19, location of air monitoring station CMA1b - Oil Street Community Liaison Centre has been finely adjusted on 21 April 2012.
xii. Due to lack of electricity supply, the $24-\mathrm{hr}$ TSP monitoring at the following stations were rescheduled:
CMA1b: from 8 May 2012 to 9 May 2012
CMA5a: from 8 May and 25 May 2012 to 9 May 2012 and 26 May 2012
CMA6a: from 8 May and 25 May 2012 to 9 May 2012 and 26 May 2012
xiii. Air quality monitoring has been conducted at stations CMA1b, CMA2a, CMA3a, CMA4a, CMA5a and CMA6a. No exceedance was recorded in the reporting month.

Water Quality Monitoring

xiv. WDII/RSS advised that the dredging works for submarine pipeline at Victoria Harbour had been completed in January 2012. Therefore, the concurrent dredging activities at Sewage Pipeline Zone and reclamation shoreline zone TCBR under the EP-356/2009 scenario 2B no longer exist. As such, with reference to Table 5.39 of the EIA Report for Wan Chai Development Phase II and Central-Wan Chai Bypass, the application of silt screen for cooling water intakes for Queensway Government Offices was suspended and the others were remains unchanged.
xv. Based on the joint inspection on 4 Jan 2012 for the NPR area, the 4-week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8, C9 to confirm no water deterioration with respect to NPR was commenced since 7 Jan 2012 and was completed on 6 Feb 2012 water quality monitoring.
xvi. Water quality monitoring at WSD10 and WSD15 will be temporary suspended while water quality monitoring at WSD9 and WSD17 was implemented with respect to HK/2009/02 from 8 Feb 12 onwards;
xvii. Water quality monitoring at C8 and C9 have been implemented with respect to HY/2009/19 since the marine bore piling work started on 28 Jan 12.
xviii. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Centre (C9) between 9 January 2012 to 30 July 2012 which caused to the inaccessibility of sampling either land and marine since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 since 10 March 2012 to the closest accessible point prior to the completion of the external façade refurbishment work.
xix. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.
xx. Due to the dredging works for Cross Harbour Water Mains from Wan Chai to Tsim Sha TsuiDP6 was completed on 26 March 2012, the temporary suspension of impact water quality monitoring at WSD7 and WSD20 after 27 April 2012 for the water quality monitoring at WSD7 and WSD20 have been monitored for 4-week period after the completion of DP6 to confirm no water deterioration.
xxi. Water quality monitoring at 14 monitoring stations was conducted three days per week during the reporting period. The action and limit level exceedances of water quality monitoring are summarized in Table I.

Table I Summary of Water Quality Monitoring Exceedances in Reporting Month

Contract no.	Water Monitoring Station	Mid-flood						Mid-ebb					
		DO		Turbidity		SS		DO		Turbidity		SS	
		AL	LL	AL	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	AL	LL	AL	LL	AL	LL	AL	LL
HY/2009/11 Monitoring finished on 6 Feb 2012	WSD9	0	0	0	0	0	0	0	0	0	0	0	0
	WSD10	0	0	0	0	0	0	0	0	0	0	0	0
	WSD15	0	0	0	0	0	0	0	0	0	0	0	0
	WSD17	0	0	0	0	0	0	0	0	0	0	0	0
	C8	0	0	0	0	0	0	0	0	0	0	0	0
	C9	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/01	WSD19	0	0	0	0	0	0	0	0	0	0	0	0
	C1	0	0	0	0	0	0	0	0	0	0	0	0
	C3	0	0	0	0	0	0	0	0	0	0	0	0
	C4e	0	0	0	0	0	0	0	0	0	0	0	0
	C4w	0	0	0	0	0	0	0	0	0	0	0	0
Monitoring finished on 27 April 2012	WSD20	0	0	0	0	0	0	0	0	0	0	0	0
	WSD7	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{gathered} H K / 2009 / 01 \\ \& H K / 2010 / 06 \end{gathered}$	C2	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/02	C5e	0	0	0	0	0	0	0	0	0	0	0	1
	C5w	0	0	0	0	0	0	0	0	0	0	0	0
Monitoring started on 8 Feb 2012	WSD21	0	0	0	0	0	1	0	0	0	0	0	1
	WSD9	0	0	0	0	0	0	0	0	0	0	0	0
	WSD17	0	0	0	0	0	0	0	0	0	0	0	0
HY/2009/15	C7	0	0	0	0	0	0	0	0	0	0	0	0
HY/2009/19 Monitoring started on 28 Jan 2012	C8	0	0	0	0	0	0	0	0	0	0	0	0
	C9	0	0	0	0	0	0	0	0	0	0	0	0
Total		0	0	0	0	0	1	0	0	0	0	0	2

Remarks: - The cessation of seawater intake operation for C6 was confirmed on 17 May 2011, the water monitoring at C6 was then terminated since 17 May 2011.

- WSD9 and WSD17 were implemented with respect to HK/2009/02 from 8 Feb 2012.
- 4-week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8 and C9 were completed on 6 Feb 2012.
- C8 and C9 were implemented with respect to HY/2009/19 from 28 Jan 2012.
- WSD7 and WSD20 water quality monitoring were temporarily suspended from 27 Apr 2012.
xxii. Investigations were found that the exceedances were not related to the Project works. The details of the recorded exceedances can be referred to the Section 6.4.
xxiii. Enhanced DO monitoring at 4 monitoring stations in Causeway Bay Typhoon Shelter and Ex-Public Cargo Works Area was conducted three days per week during the reporting period. The action and limit level exceedances of water quality monitoring are summarized in Table II.

Table II Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in Reporting Month

Contract no.	Water Monitoring Station	Mid-flood		Mid-ebb	
		DO		DO	
		AL	LL	AL	LL
HY/2009/15	C6	0	0	1	0
	C7	1	0	0	0
	Ex-WPCWA SW	0	0	0	0
	Ex-WPCWA SE	0	0	2	0
Total		1	0	3	0

xxiv. There were four action level exceedances of enhanced dissolved oxygen in this reporting month. Investigation found that the exceedances are not related to the Project works. The details of the recorded exceedances can be referred to the Section 6.4.
xxv. In response to the Condition 2.18 of the Environmental Permit no. EP-356/2009 requiring that a silt curtain / impermeable barrier system be installed to channel water discharge flow from Culvert L to locations outside the embayment area, a proposed replacement of the requirement with additional dissolved oxygen monitoring has been conducted at three monitoring stations, namely A, B and C between the eastern seawall of Central Reclamation Phase III and the HKCEC Extension since November 2011 under EP-356/2009 so that DO level between the eastern seawall of Central Reclamation Phase II and the HKCEC extension could be continuously monitored.

Complaints, Notifications of Summons and Successful Prosecutions

xxvi. There was no complaint received in this reporting month.

Site Inspections and Audit

xxvii. The Environmental Team (ET) conducted weekly site inspections for Contract nos. HK/2009/01, HK/2009/02, HY/2009/15 HK/2010/06 and HY/2009/19 under EP no. EP-356/2009 in the reporting month. Major observations and recommendations made during
the audit sessions were rectified by the Contractors. No non-conformance was identified during the site inspections.

Future Key Issues

xxviii. In coming reporting month, the principal work activities of individual contracts are anticipated as follows:

Contract no. HY/2009/11- North Point Reclamation

- The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011.

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC

Marine Works

- Reclamation works and installation of sheet pile water channel (from CH 170 to CH260)
- Rockfilling within HKCEC Water Channel (from CH220 to CH230)
- Installation of sheet pile water channel for cooling water intake at Dome Promenade between CH170 and CH240
- Dredging from CH290 to CH410 (Stage 3) near Expo Drive East Bridge
- Installation pipe pile wall for modification of vertical seawall near Expo Drive East would be commenced upon completion of existing staircase demolition and removal of covered walkway.
- Rockfilling at northeast of Area 9 and Area7 near Expo Drive East Bridge

Cross-Harbour Watermains Installation (CHA \& CHB)

- Trench excavation and installation of shoring system for installation of cross harbour watermains (CHA \& CHB) along the pipe pile wall at TST seashore
- Installation of cross-harbour watermains nos. A18/B18
- Trust block construction, concrete coating for flange joint and Rockfilling protection works for cross-harbour watermains in Victoria Harbour

Fresh Watermains, Cooling Watermains and Salt Watermains (On Land)

- Works would be continued at Zone B1-5A, B2-1, B4-3, B4-4, B5-1A, A1-1, A1-3A, A1-3B, A1-3, A2-2, A3-3, A3-4B, A3-5B, A4-1 and A4-2A
- Mainlaying and road reinstatement works at Zone B4-4 and B1-5A
- Trench excavation at Zone B4-1A and the road reinstatement works at Zone B4-4
- Jacking pit construction at Zone A1-3B. Heading No. H6B (toward western direction) and Heading No. H6C (toward eastern direction)
- Mainlaying works at Zone A2-2. Valve connections for both cooling mains intake pipe and discharge pipe of APA and Shui On Centre
- Heading No. H6A (toward eastern direction)
- Heading No. H10 across the run-out of Renaissance Harbour View Hotel and mainlaying works at Zone A4-2A
- Mainlaying works at traffic island near junction between Convention Avenue and Fenwick Pier Street
- Heading Nos. H7 (Mainlaying works by trenchless method)
- Cable ducting works at Zone GA (across Harbour Road)
- Cable ducting works at Zone GS (across Harbour Road)
- Cable ducting works at Zone GH (along Harbour Road)

Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at WanChai East

- Continue steel platforms (Wet Well) installation at +2.2mPD for P7, P8 \& P9 Pumping Stations.
- Continue pipe jacking of WSD 2nd last drive.
- Continue pipe laying works along Harbour Road and Tonnochy Road.
- Complete the steel bridge erection crossing landside cofferdam of Salt Water Intake Culvert for cooling mains installation.
- Continue 800MS pipe installation inside Ex-pet Garden.
- Continue ABWFs \& E\&M works of WSD Salt Water Pumping Station.
- Continue pipeline jacking of salt water intake culverts B.
- Continue ELS works of landside cofferdam for the construction of Bay 6-10 salt water intake culverts.
- Continue ELS works of seaside cofferdams for salt water intake culvert, submarine outfall and Box Culvert N1.
- Complete breaking the thrust wall aside the Jacking Pit.
- Commence HDPE pipe Outfall A \& B launching from Jacking Pit at WCR1 area.
- Continue substructure works for the New Ferry Pier at Portions 1A, 2A, 2B, 2C \& 3C.
- Complete the installation of precast slab Panel between Grid B-F/9-15 of the New Ferry Pier.
- Complete backfilling rockfills for the installed submarine outfall pipes and diffuser section.
- Continue reclamation works at WCR2 area.
- Completed remaining SHK piping diversion at WCR2 area.
- Side Beam remedial works and reinstatement of carriageway for Box Culvert O diversion.
- Continue excavation works, bulkhead wall construction and seawall opening for Box

Culvert O diversion.

Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)

- Dredging for seawall foundation at TS2
- Seawall formation at TS2
- Removal of temporary reclamation at TS1

Contract no. HK/2010/06 - Wan Chai Development Phase II - Central - Wan Chai Bypass over MTR Tsuen Wan Line

- Pile head breaking works
- Sheet Piles
- Construction of Pre-cast Unit in China

Contract no. HY/2009/19- Wan Chai Bypass Tunnal (North Point Section) and Island Eastern Corridor Link

- Marine bored piling

1. Introduction

1.1 Scope of the Report

1.1.1. Lam Geotechnics Limited (LGL) has been appointed to work as the Environmental Team (ET) under Environmental Permit no. EP-356/2009 and Further Environmental permit nos. FEP-01/356/2009, FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009 and FEP-05/356/2009 to implement the Environmental Monitoring and Audit (EM\&A) programme as stipulated in the EM\&A Manual of the approved Environmental Impact Assessment (EIA) Report for Wan Chai Development phase II and Central-Wan Chai Bypass (Register No.: AEIAR-125/2008) and in the EM\&A Manual of the approved EIA Report for Central-Wan Chai Bypass and Island Eastern Corridor Link (Register No. AEIAR-014/2001).
1.1.2. This report presents the environmental monitoring and auditing work carried out in accordance to the Section 10.3 of EM\&A Manual and "Environmental Monitoring and Audit Requirements" under Particular Specification Section 27.
1.1.3. This report documents the finding of EM\&A works for Environmental Permit no. EP-356/2009, Further Environmental Permit no. FEP-01/356/2009, FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009 and FEP-05/356/2009 and during the period of April to May. The cut-off date of reporting is at $27^{\text {th }}$ of each reporting month.

1.2 Structure of the Report

Section 1 Introduction - details the scope and structure of the report.

Section 2 Project Background - summarizes background and scope of the project, site description, project organization and contact details of key personnel during the reporting period.

Section 3 Status of Regulatory Compliance - summarizes the status of valid Environmental Permits / Licenses during the reporting period.

Section 4 Monitoring Requirements - summarizes all monitoring parameters, monitoring methodology and equipment, monitoring locations, monitoring frequency, criteria and respective event and action plan and monitoring programmes.

Section 5 Monitoring Results - summarizes the monitoring results obtained in the reporting period.

Section 6 Compliance Audit - summarizes the auditing of monitoring results, all exceedances environmental parameters.

Section 7 Cumulative Construction Impact due to the Concurrent Projects summarizes the relevant cumulative construction impact due to the concurrent activities of the concurrent Projects.

Section 8 Site Inspection - summarizes the findings of weekly site inspections undertaken within the reporting period, with a review of any relevant follow-up actions within the reporting period.

Section 9 Complaints, Notification of summons and Prosecution - summarizes the cumulative statistics on complaints, notification of summons and prosecution

Section 10 Conclusion

2. Project Background

2.1 Background

2.1.1. "Wan Chai Development phase II and Central-Wan Chai Bypass" and "Central-Wan Chai Bypass and Island Eastern Corridor Link" (hereafter called "the Project") are Designed Project (DP) under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO). The Environmental Impact Assessment (EIA) Reports for Central-Wan Chai Bypass and Island Eastern Corridor Link (Register No. AEIAR-041/2001) and Wan Chai Development phase II and Central-Wan Chai Bypass (Register No.: AEIAR-125/2008) have been approved on 31 August 2001 and 11 December 2008 respectively.
2.1.2. The key purpose of Wan Chai Development Phase II (WDII) is to provide land at Wan Chai North and North Point for construction of the Central-Wan Chai Bypass and Island Eastern Corridor Link (CWB). Land formed under the project will be developed as a world-class waterfront promenade joining that at the new Central waterfront for public enjoyment.
2.1.3. There is a compelling and present need for the CWB to provide relief to the very congested east-west Connaught Road Central/Harcourt Road / Gloucester Road Corridor (the Corridor) which is currently operating beyond its capacity. The CWB will provide relief to the existing congestion along the Corridor and cater for the anticipated growth of traffic on Hong Kong Island. Without the CWB and its access roads, there will not be sufficient capacity to serve the heavy traffic demands at both strategic and local levels.

2.2 Scope of the Project and Site Description

2.2.1. The Project is located mainly in Wan Chai North, Causeway Bay and North Point, and is demarcated by Gloucester Road and Victoria Park Road to the south, Fenwick Pier Street to the west and Tong Shui Road Interchange to the east, as shown in Figure 2.1.
2.2.2. The study area encompasses existing developments along the Wan Chai, Causeway Bay and North Point shorelines. Major land uses include the Hong Kong Convention \& Exhibition Centre (HKCEC) Extension, the Wan Chai Ferry Pier, the ex-Wan Chai Public Cargo Working Area (ex-PCWA), the Royal Hong Kong Yacht Club (RHKYC), the Police Officers' Club, the Causeway Bay Typhoon Shelter (CBTS) and commercial and residential developments.
2.2.3. The scope of the Project comprises:

- Land formation for key transport infrastructure and facilities, including the Trunk Road (i.e. CWB) and the associated slip roads for connection to the Trunk Road and for through traffic from Central to Wan Chai and Causeway Bay. The land formed for the above transport infrastructure will provide opportunities for the development of an attractive waterfront promenade for the enjoyment of the public
- Reprovisioning / protection of the existing facilities and structures affected by the land formation works mentioned above
- Extension, modification, reprovisioning or protection of existing storm water drainage outfalls, sewerage outfalls and watermains affected by the revised land use and land formation works mentioned above
- Upgrading of hinterland storm water drainage system and sewerage system, which would be rendered insufficient by the land formation works mentioned above
- Provision of the ground level roads, flyovers, footbridges, necessary transport facilities and the associated utility services
- Construction of the new waterfront promenade, landscape works and the associated utility services
- The Trunk Road (i.e. CWB) within the study area and the associated slip roads for connection to the Trunk Road.
2.2.4. The project also contains various Schedule 2 DPs that, under the EIAO, require Environmental Permits (EPs) to be granted by the DEP before they may be either constructed or operated. Table 2.1 summarises the five individual DPs under this Project. Figure 2.1 shows the locations of these Schedule 2 DPs.

Table 2.1 Schedule 2 Designated Projects under this Project

Item	Designated Project	EIAO Reference	Reason for inclusion
DP1	Central-Wanchai Bypass (CWB) including its road tunnel and slip roads	Schedule 2, Part I, A.1 and A.7	Trunk road and road tunnel more than 800 m in length
DP2	Road P2 and other roads which are classified as primary/district distributor roads	Schedule 2, Part I, A.1	Primary / district distributor roads
DP3	Reclamation works including associated dredging works	Schedule 2, Part I, C.1 and C.12	Reclamation more than 5 ha in size and a dredging operation less than 100 m from a seawater intake point
DP5	Wan Chai East Sewage Outfall	Schedule 2, Part I, F.5 and F.6	Submarine sewage pipelines with a total diameter more than 1,200 mm and include a submarine sewage outfall
DP6	Dredging for the Cross-harbour Water Mains from Wan Chai to Tsim Sha Tsui	Schedule 2, Part I, C.12	A dredging operation less than 100 m from a seawater intake point

2.3 Division of the Project Responsibility

2.3.1. Due to the multi-contract nature of the Project, there are a number of contracts sub-dividing the whole works area into different work areas to be commenced. Contractors of individual contracts will be required by the EP holder to apply Further Environmental Permits (FEP) such that the impact monitoring stations are sub-divided accordingly to facilitate the implementation of EM\&A programme and to streamline the EM\&A reporting for individual FEP holders correspondingly.
2.3.2. The details of individual contracts are summarized in Table 2.2.

Table 2.2 Details of Individual Contracts under the Project

Contract No.	Contract Title	Associated DP(s)	Construction Commencement Date
	Wan Chai Development Phase II - Central -Wanchai Bypass at Hong Kong Convention and Exhibition Centre	DP3, DP6	23 July 2010
	DP1, DP2	25 August 2011	
HK/2009/02	Wan Chai Development Phase II - Central - Wan Chai Bypass at WanChai East	DP3, DP5	DP1 July 2010
HY/2009/11	Wan Chai Development Phase II and Central - Wan Chai Bypass - North Point Reclamation	DP3	26 April 2011
HY/2009/15	Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)	DP3	17 March 2010 (Under application of surrender)
	DP1	10 November 2010	
HK/2010/06	Wan Chai Development Phase II-Central-Wan Chai Bypass over MTR	DP3	13 July 2011
Tsuen Wan Line			

2.4 Project Organization and Contact Personnel

2.4.1. Civil Engineering and Development Department and Highways Department are the overall project controllers for the Wan Chai Development Phase II and Central-Wan Chai Bypass respectively. For the construction phase of the Project, Project Engineer, Contractor(s), Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
2.4.2. The proposed project organization and lines of communication with respect to environmental protection works are shown in Figure 2.2. Key personnel and contact particulars are summarized in Table 2.3:

Table 2.3 Contact Details of Key Personnel

Party	Role	Post	Name	Contact No.	Contact Fax
AECOM	Engineer's Representative for WDII	Principal Resident Engineer	Mr. Frankie Fan	25871778	25871877
	Engineer's Representative for CWB	Principal Resident Engineer	Mr. Peter Poon	39228332	35292829
China Harbour-	Contractor under Contract no.	Project Director	Mr. Cho Yu Fun	31571086	31571085

Party	Role	Post	Name	Contact No.	Contact Fax
$\begin{aligned} & \hline \text { CRBC } \\ & \text { Joint } \\ & \text { Venture } \end{aligned}$	HY/2009/11	Project Manager	Mr. Gregory Wong	31571086	
		Site Agent	Mr. Daniel Cheung	31571086	
		Environmental Officer	Mr. C. M. Wong	31571086	
Chun Wo - Leader Joint Venture	Contractor under Contract no. HK/2009/01	Project Director	Mr. PL Yue	91242471	26341626
		Site Agent	Mr. Paul Yu	94569819	
		Operation Manager	Mr. Lau Yee Ching	94663918	
		Construction Manager	Mr. Wyman Wong	96272467	
		Construction Manager	Mr. Jack Chu	97753008	
		Construction Manager	Mr. KK Yuen Mr. Andy Yu	$\begin{aligned} & 94981213 \\ & 96484896 \end{aligned}$	
		Environmental Officer (Compliance Manager)	Mr. Andy Mak	91032370	
Chun Wo - CRGL Joint Venture	Contractor under Contract no. HK/2009/02	Site Agent	Mr. Chan Sing Cho	36583002	28279996
		 Environmental Manager	Mr. C.P. Ho	36583000	
		Environmental Officer	Ms. Flora Ng	36583064	
China State Constructi on Engineerin $\mathrm{g}(\mathrm{HK}) \mathrm{Ltd}$.	Contractor under Contract no. HY/2009/15	Project Director	Chan Wai Hung	28237813	28655229
		Site Manager	P J Fan	35576368	25662192
		Contractor's Representativ e	Mr. David Lau	35576337	25662192
		Head of Construction Manager	Roger Cheung	35576371	25662192
		Senior Construction Manager	Gene Cheung	35576395	25662192
		Environmental Officer	Mr. Daniel Sin	35576347	25662192
Gammon -Leader JV	Contractor under Contract no. HK/2010/06	Project Manager	Mr. Paul Lui	90957922	25292880
		Site Agent	Mr. Keith Tse	25292068	

Party	Role	Post	Name	Contact No.	Contact Fax
		Environmental Officer	Mr. Lee Wai Man	94816024	
Chun Wo - CRGL - MBEC_ Joint Venture	Contractor under Contract no. HY/2009/19	Project Manager	Mr. Rayland Lee	37588879	25708013
		Site Agent	Mr. Cheung Kit Cheung	69091555	
		Environmental Engineer	Mr. Simon Wong	92814346	
		Environmental Manager / Environmental Officer	Mr. M.H. Isa	98840810	
		Construction Manager (Marine)	William Luk	96101101	
		Construction Manager (Land)	Patrick Cheung	96433012	
ENVIRON Hong Kong Limited	Independent Environmental Checker (IEC)	Independent Environmental Checker (IEC)	Mr. David Yeung	37430788	35486988
Lam Geotechni cs Limited	Environmental Team (ET)	Environmental Team Leader (ETL)	Mr. Raymond Dai	28823939	28823331

2.4.3. For Contract no. $\mathrm{HY} / 2009 / 11$, the principal work activities in this reporting month included:

- Rectifications of rock armour at Portion III
- The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011.
2.4.4. For Contract no. HK/2009/01, the principal work activities in this reporting month included:

Marine Works (at Wan Chai)

- Installation of sheet pile water channel for cooling water intake at Dome Promenade between CH170 and CH240
- Rockfilling for rock bund at HKCEC Water Channel from Ch220 to Ch230
- Reclamation of HKCEC3W within HKCEC Water Channel
- Rock armour protection to the seawall at Wan Chai Landfall in Zone B1-3
- Dredging from CH290 to CH410 (Stage 3) near Expo Drive East Bridge
- Preparation works for demolition of existing seawall at Expo Drive East including removal of existing staircase in the vicinity

Cross-Harbour Watermains Installation (CHA \& CHB) and Marine Works (at TST)

- Concrete coating at flange joint of cross-harbour watermains nos. A13B13/A14B14, A14B14/A15B15 and A15B15/A16B16
- Rockfilling and rock protection to cross-harbour watermains
- Trench excavation, installation of shoring system and trimming obstructions (mini-piles) for a 1000 dia. cross harbour watermains (CHB) along the pipe pile wall at TST seashore
- Trench excavation and installation of shoring system for a 1000 dia. Cross Harbour Watermains (CHA) along the pipe pile wall at TST seashore
- Removal of existing seawall at TST seashore for installation of cross harbour watermains (CHA)

Fresh Watermains, Cooling Watermains and Salt Watermains (On Land)

- Mainlaying works at Zone B1-5A, B2-1, B4-3, B4-4, B5-1A, A1-1, A1-3, A1-3A, A1-3B, A2-2, A3-3, A3-4B, A3-5B, A4-1 and A4-2A
- Mainlaying works and subsequent carriageway reinstatement in Zone B1-6 and Zone A1-5A1
- Mainlaying works at Zone B1-5A and B2-1
- Mainlaying works at Zone A1-3 and excavation for jacking pit at Zone A1-3B
- Trench excavation for cable \& G.I. Ducting works at Zone B5-1A
- Gate valves connection works for intake and discharge cooling mains of APA at Zone A2-2
- Gate valves connection works for intake cooling mains of Government"s Offices at Zone A4-1
- Diversion of underground cables at footpath of Fenwick Pier Street at Zone A3-3
- Heading No. H7 (Mainlaying works by trenchless method)
- Excavation for jacking pit for pipe laying works by heading method along Convention Avenue at Zone A1-3A
- Heading No. H6A and No. 8
- Mainlaying and chamber construction works at the traffic island near junction of Convention Avenue and Fenwick Pier Street
- Cable ducting works along Convention Avenue
- Cable ducting works along Harbour Road
- Cable ducting works at Fenwick Street
- Trench excavation, pipe laying works and chamber construction for a 1000 dia. Watermains (CHF) at Salisbury Garden
- Trench excavation, pipe laying woks and chamber construction for a 1000 dia. Watermains CHE) at Salisbury Garden
- Pipe installation of a 1000 dia. Watermains (CHE) by trenchless method across the EVA near Salisbury Garden
2.4.5. For Contract no. HK/2009/02, the principal work activities in this reporting month included:
- Remaining works along EVA
- E\&M installation works of P7, P8 \& P9
- Concreting of thrust blocks in P8 dry well
- Install the motor of the band screen at wet well of P8 was ongoing and P9
- The TBM breaking-in of the WSD 2nd drive
- Approximate 35 m cooling water pipe was laid at Harbour Centre, Harbour Road, Tonnochy Road and ex-pet garden.
- Combined chamber for SHK at ex-pet garden
- Approximate 10 m cable duct was laid at Harbour Road and Tonnochy Road.
- Casting of final slab at +15.71 mPD for the WSD Salt Water Pumping Station.
- HEC Switch Room of the WSD Salt Water Pumping Station
- ABWFs and E\&M installation at the TX room of the WSD Salt Water Pumping Station
- Installation and welding for 4th layer of wailings and struts for construction of intake culvert Bay 19B at Wan Shing Street
- Dewatering at Wan Shing Street Bay 24 for opening in sheetpile cofferdam
- ELS of 3rd layer (-1.5 mPD) struts \& wailings of salt water intake landside cofferdam
- ELS of 2nd layer (+0.5mPD) struts \& wailings of salt water intake seaside cofferdam
- Remedial works of hole drilling for grouting to avoid seepage outside the salt water intake seaside cofferdam
- ELS of 3rd layer (-2.0mPD) struts \& wailings of Submarine Outfall Seaside Cofferdam
- Removal of formwork for slab and beam high portion 1A
- Concreting of pile cap low portion 2A1, sloping tie beam, tie beam between 2A1 to 2 A 2 and 2 A 1 to 1 A
- Concreting of slab and beam high portion 2A3, 2B1 and 2B2 (+3.15mPD to +3.75 mPD) at Ferry Pier
- Removal of formwork of slab and beam high portion 2B1, 2B2 and 2B3 (+4.15mPD)
- Erection of formwork for pile cap low portion 3B at Ferry Pier
- Dewatering and fixing of steel water tank for construction of pile cap at portion 3A and 3C2 at Ferry Pier
- Approximate 5 m DN800 MS pipe installation near Gate 1 at ex-pet garden
- Piping diversion at WCR2
- Excavation works and utilities diversion at Box Culvert O
- Permanent precast beam and central beam for Box Culvert O diversion
2.4.6. For Contract no. HY/2009/15, the principal work activities in this reporting month included:
- Dredging for seawall foundation at TS2
2.4.7. For Contract no. HK/2010/06, the principal work activities in this reporting month included:
- Excavation of bored piles
- Concreting of bored piles
- Coring Works
- Sheet Piles
- Construction of Pre-cast Unit in China
2.4.8. For Contract no. HY/2009/19, the principal work activity in this reporting month included:
- Marine bored piling
2.4.9. In coming reporting month, the principal work activities of individual contracts are anticipated as follows:

Contract no. HY/2009/11- North Point Reclamation

- The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011.

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at
$\underline{\text { HKCEC }}$
Marine Works

- Reclamation works and installation of sheet pile water channel (from CH 170 to CH260)
- Rockfilling within HKCEC Water Channel (from CH220 to CH 230)
- Installation of sheet pile water channel for cooling water intake at Dome Promenade between CH 170 and CH 240
- Dredging from CH 290 to CH 410 (Stage 3) near Expo Drive East Bridge
- Installation pipe pile wall for modification of vertical seawall near Expo Drive East would be commenced upon completion of existing staircase demolition and removal of covered walkway.
- Rockfilling at northeast of Area 9 and Area7 near Expo Drive East Bridge

Cross-Harbour Watermains Installation (CHA \& CHB)

- Trench excavation and installation of shoring system for installation of cross harbour watermains (CHA \& CHB) along the pipe pile wall at TST seashore
- Installation of cross-harbour watermains nos. A18/B18
- Trust block construction, concrete coating for flange joint and Rockfilling protection works for cross-harbour watermains in Victoria Harbour

Fresh Watermains, Cooling Watermains and Salt Watermains (On Land)

- Works would be continued at Zone B1-5A, B2-1, B4-3, B4-4, B5-1A, A1-1, A1-3A,
- Mainlaying and road reinstatement works at Zone B4-4 and B1-5A
- Trench excavation at Zone B4-1A and the road reinstatement works at Zone B4-4
- Jacking pit construction at Zone A1-3B. Heading No. H6B (toward western direction) and Heading No. H6C (toward eastern direction)
- Mainlaying works at Zone A2-2. Valve connections for both cooling mains intake pipe and discharge pipe of APA and Shui On Centre
- Heading No. H6A (toward eastern direction)
- Heading No. H10 across the run-out of Renaissance Harbour View Hotel and mainlaying works at Zone A4-2A
- Mainlaying works at traffic island near junction between Convention Avenue and Fenwick Pier Street
- Heading Nos. H7 (Mainlaying works by trenchless method)
- Cable ducting works at Zone GA (across Harbour Road)
- Cable ducting works at Zone GS (across Harbour Road)
- Cable ducting works at Zone GH (along Harbour Road)

Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at WanChai East

- Continue steel platforms (Wet Well) installation at +2.2mPD for P7, P8 \& P9 Pumping Stations.
- Continue pipe jacking of WSD 2nd last drive.
- Continue pipe laying works along Harbour Road and Tonnochy Road.
- Complete the steel bridge erection crossing landside cofferdam of Salt Water Intake Culvert for cooling mains installation.
- Continue 800MS pipe installation inside Ex-pet Garden.
- Continue ABWFs \& E\&M works of WSD Salt Water Pumping Station.
- Continue pipeline jacking of salt water intake culverts B.
- Continue ELS works of landside cofferdam for the construction of Bay 6-10 salt water intake culverts.
- Continue ELS works of seaside cofferdams for salt water intake culvert, submarine outfall and Box Culvert N1.
- Complete breaking the thrust wall aside the Jacking Pit.
- Commence HDPE pipe Outfall A \& B launching from Jacking Pit at WCR1 area.
- Continue substructure works for the New Ferry Pier at Portions 1A, 2A, 2B, 2C \& 3C.
- Complete the installation of precast slab Panel between Grid B-F/9-15 of the New Ferry Pier.
- Complete backfilling rockfills for the installed submarine outfall pipes and diffuser section.
- Continue reclamation works at WCR2 area.
- Completed remaining SHK piping diversion at WCR2 area.
- Side Beam remedial works and reinstatement of carriageway for Box Culvert O diversion.
- Continue excavation works, bulkhead wall construction and seawall opening for Box Culvert O diversion.

Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)

- Dredging for seawall foundation at TS2
- Seawall formation at TS2
- Removal of temporary reclamation at TS1

Contract no. HK/2010/06 - Wan Chai Development Phase II - Central - Wan Chai Bypass over MTR Tsuen Wan Line

- Pile head breaking works
- Sheet Piles
- Construction of Pre-cast Unit in China

Contract no. HY/2009/19 - Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

- Marine bored piling

3. Status of Regulatory Compliance

3.1 Status of Environmental Licensing and Permitting under the Project

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in Table 3.1.

Table 3.1 Summary of the current status on licences and/or permits on environmental protection pertinent to the Project

Permits and/or Licences	Reference No.	Issued Date	Status
Environmental Permit	EP-356/2009	30 Jul 2009	Valid
Environmental Permit	EP-364/2009/A	4 Aug 2010	Valid
Environmental Permit	EP-364/2009	17 Aug 2009	Superseded
Environmental Permit	EP-376/2009	13 Nov 2010	Valid
Further Environmental Permit	FEP-01/356/2009	18 Feb 2010	Under application of surrender
Further Environmental Permit	FEP-02/356/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-03/356/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-04/356/2009	22 Nov 2010	Valid
Further Environmental Permit	FEP-05/356/2009	24 Mar 2011	Valid
Further Environmental Permit	FEP-01/364/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-02/364/2009	21 Apr 2010	Valid
Further Environmental Permit	FEP-03/364/2009	12 Jul 2010	Valid
Further Environmental Permit	FEP-04/364/2009/A	14 Oct 2010	Surrendered
Further Environmental Permit	FEP-05/364/2009/A	15 Nov 2010	Valid
Further Environmental Permit	FEP-06/364/2009/A	22 Nov 2010	Valid
Further Environmental Permit	FEP-07/364/2009/A	25 Feb 2011	Valid

3.1.2. Due to the multi-contract nature of the Project, the status of permits and/or licences under the individual contract(s) are presented as below:

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation
3.1.3. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011.
3.1.4. Summary of the current status on licences and/or permits on environmental protection pertinent and submission under FEP-01/356/2009 for contract no. HY/2009/11 are shown in Table 3.2 and Table 3.3.
3.1.5. Contractor submitted a letter dated 20 July 2011 to confirm that the dredging works and dumping operation were completed.

Table 3.2 Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/11

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-01/356/2009	18 Feb 2010	N/A	Valid
Notification of Works Under APCO	331892	4 Jul. 2011	N/A	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0922-11	12 Oct 2011	1 Nov 2011 to 30 Apr 2012	Expired
Registration as a Chemical Waste Producer	WPN5213-151-C36 $31-02$	12 Oct 2010	N/A	Valid
Billing Account under Waste Disposal Ordinance	7010037	13 Jan 2010	N/A	Valid
Discharge Licence	WT00007942-2010	29 Nov 2010	30 Nov 2015	Valid

Table 3.3 Summary of submission status under FEP-01/356/2009 Condition

EP Condition	Submission	Date of Submission
Condition 2.6	Management Organization of Main Construction Companies	18 Dec 2009
Condition 2.7	Submission of works schedule and location plan	8 Feb 2010
Condition 2.8	Revised Silt Curtain Deployment Plan (Rev. 3)	4 Dec 2010
Condition 2.9	Silt Screen Deployment Plan (Rev. 6)	18 May 2011
Condition 2.10	Coral Translocation Plan	20 Nov 2009
Condition 2.16	Revised Noise Management Plan (Rev 5)	19 Feb 2011
Condition 2.17	Landscape Plan	12 May 2010
	Revised landscape Plan	Submission of Supplementary Information - Revised Management \& Maintenance Schedule for Submitted Revised Landscape Plan
25 Aug 2010		

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC
3.1.6. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HK/2009/01 under FEP-02/356/2009 are shown in Table 3.4 and Table 3.5.

Table 3.4 Cumulative Summary of Valid Licences and Permits under Contract no. HK/2009/01

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-02/356/2009	$\begin{aligned} & 24 \text { Mar } \\ & 2010 \end{aligned}$	N/A	Valid
	FEP-02/364/2009	$\begin{aligned} & 21 \mathrm{Apr} \\ & 2010 \end{aligned}$	N/A	Valid
Notification of Works Under APCO	313088	$\begin{aligned} & 6 \quad \text { Jan } \\ & 2010 \end{aligned}$	N/A	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0356-12	$\begin{aligned} & 03 \\ & 2012 \end{aligned} \mathrm{Apr}$	$\begin{array}{llr} 11 & \text { Apr } & 2012 \\ \text { to } & 29 & \text { Sep } \\ 2012 & \end{array}$	Valid
	GW-RS0394-12	${ }_{2012}^{16} \mathrm{Apr}$	$\begin{array}{lll} 19 & \text { Apr } & 2012 \\ \text { to } & 12 & \text { Oct } \\ 2012 & \end{array}$	Valid
	GW-RS1094-11	$\begin{aligned} & 23 \text { Nov } \\ & 2011 \end{aligned}$	$\begin{aligned} & 27 \\ & \hline \text { Nov } 2011 \\ & \text { to } 26 \\ & 2012 \end{aligned}$	Expired
	GW-RS1031-11	$\begin{aligned} & 3 \quad \text { Nov } \\ & 2011 \end{aligned}$	$\begin{array}{lcc} \hline 7 & \text { Nov } & 2011 \\ \text { to } 6 & \text { May } \\ 2012 & \end{array}$	Expired
	GW-RS1221-11	$\begin{aligned} & 30 \text { Jan } \\ & 2011 \end{aligned}$	$\begin{array}{llr} 20 & \text { Jan } & 2012 \\ \text { to } 19 & \text { Jul } \\ 2012 \end{array}$	Valid
	GW-RS1227-11	$\begin{aligned} & 30 \text { Dec } \\ & 2011 \end{aligned}$	$\begin{array}{lll} \hline 30 & \text { Dec } & 2011 \\ \text { to } 26 & \text { Jul } \\ 2012 & \end{array}$	Cancelled
	GW-RS0038-12	$\begin{aligned} & 16 \text { Jan } \\ & 2012 \end{aligned}$	$\begin{array}{llr} \hline 15 & \text { Jan } & 2012 \\ \text { to } 12 & \text { Jul } \\ 2012 & \\ \hline \end{array}$	Cancelled
	GW-RS0158-12	$\begin{aligned} & 24 \text { Feb } \\ & 2012 \end{aligned}$	$\begin{array}{lrr} \hline 24 & \text { Feb } & 2012 \\ \text { to } & 23 & \text { Aug } \\ 2012 & \end{array}$	Valid
	GW-RS0181-12	$\begin{aligned} & 24 \text { Feb } \\ & 2012 \end{aligned}$	$\begin{array}{lrr} 27 & \text { Feb } & 2012 \\ \text { to } & 23 & \text { Aug } \\ 2012 & \end{array}$	Valid
	GW-RS0213-12	$\begin{aligned} & 28 \text { Feb } \\ & 2012 \end{aligned}$	29 Feb 2012 to 27 2012 Aug 	Valid
	GW-RS0225-12	$\begin{aligned} & 2 \quad \text { Mar } \\ & 2012 \end{aligned}$	$\begin{array}{llr} \hline 14 & \text { Mar } & 2011 \\ \text { to } & 13 & \text { Sep } \\ 2012 & \end{array}$	Valid
	GW-RS0227-12	$\begin{aligned} & 2 \quad \mathrm{Mar} \\ & 2012 \end{aligned}$	$\begin{array}{lll} 16 & \text { Mar } & 2011 \\ \text { to } 15 & \text { Sep } \\ 2012 \end{array}$	Valid

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
	GW-RE0174-12	$\begin{aligned} & 5 \quad \text { Mar } \\ & 2012 \end{aligned}$	$\begin{array}{lll} 30 & \text { Mar } & 2012 \\ \text { to } & 29 & \text { Sep } \\ 2012 \end{array}$	Valid
	GW-RS0312-12	$\begin{aligned} & 28 \text { Mar } \\ & 2012 \end{aligned}$	$\begin{array}{lll} 30 & \text { Mar } & 2012 \\ \text { to } & 29 & \text { Sep } \\ 2012 \end{array}$	Valid
	GW-RS-0314-12	$\begin{aligned} & 29 \mathrm{Mar} \\ & 2012 \end{aligned}$	$\begin{array}{lll} 30 & \text { Mar } & 2012 \\ \text { to } 25 & \text { Sep } \\ 2012 & \end{array}$	Cancelled
	GW-RS0440-12	$\begin{aligned} & 26 \mathrm{Apr} \\ & 2012 \end{aligned}$	$\begin{array}{ll} 26 & \text { Apr } \\ \text { to } & 2012 \\ \text { to } 30 & \text { Apr } \\ 2012 \end{array}$	Expired
	GW-RS0459-12	$\begin{aligned} & 3 \quad \text { May } \\ & 2012 \end{aligned}$	$\begin{aligned} & 7 \text { May } 2012 \\ & \text { to } 6 \text { Nov } \\ & 2012 \end{aligned}$	Valid
	GW-RS0460-12	$\begin{aligned} & 10 \text { May } \\ & 2012 \end{aligned}$	$\begin{aligned} & 13 \text { May } 2012 \\ & \text { to } 6 \text { Nov } \\ & 2012 \end{aligned}$	Valid
	GW-RS0492-12	$\begin{aligned} & 14 \text { May } \\ & 2012 \end{aligned}$	$\begin{aligned} & 15 \text { May } 2012 \\ & \text { to } 3 \text { June } \\ & 2012 \end{aligned}$	Valid
	GW-RS0514-12	$\begin{aligned} & 14 \text { May } \\ & 2012 \end{aligned}$	$\begin{aligned} & 27 \text { May } 2012 \\ & \text { to } 26 \text { Nov } \\ & 2012 \end{aligned}$	Valid
	WT00009641-2011	$\begin{aligned} & 24 \text { Jul } \\ & 2011 \end{aligned}$	31 Jul 2016	Valid
Billing account under Waste Disposal Ordinance 7010069 21 Jan 2010 N/A Valid				

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Registration as a Chemical Waste Producer	WPN5213-134-C3585-01	$\begin{aligned} & 21 \text { Jan } \\ & 2010 \end{aligned}$	N/A	Valid
Dumping Permit (Type 1 - Open Sea Disposal)	EP/MD/12-091	$\begin{aligned} & 23 \text { Nov } \\ & 2011 \end{aligned}$	24 Nov 2011 to 23 May 2012	Expired
Dumping Permit (Type 1 - Open Sea Disposal (Dedicate Sites) \& Type 2 - Confined Marine Disposal)	EP/MD/13-009	$\begin{aligned} & 8 \text { May } \\ & 2012 \end{aligned}$	$\begin{aligned} & 10 \text { May } 2012 \\ & \text { to 09 Jun } \\ & 2012 \end{aligned}$	Valid
	EP-MD-12-147	$\begin{aligned} & 02 \mathrm{Apr} \\ & 2012 \end{aligned}$	10 Apr 2012 to 9 May 2012	Expired

Table 3.5 Summary of submission status under FEP-02/356/2009 Condition

EP Condition	Submission	Date of Submission
Condition 2.6	Management Organization of Main Construction Companies	13 Apr 2010
Condition 2.7	Works Schedule and Location Plan	8 Apr 2010
Condition 2.8	Silt Curtain Deployment Plan (Rev. 1)	19 Apr 2010
	Silt Curtain Deployment Plan (Rev. 2)	14 May 2012
	Silt Screen Deployment Plan	19 Apr 2010
and 2.9	Supplementary Document on Silt Curtain and Silt Screen Deployment Plan	19 Jul 2010
	Report on Field Testing for Silt Curtain	26 Aug 2010
	Report on Field Testing for Silt Curtain (Rev. A)	15 Nov 2010
Condition 2.12(d)	Alternative Proposal on Concurrent Dredging for Sewage Pipeline and Cross Harbour Water Mains	15 Apr 2011
	Noise Management Plan	
Condition 2.18	Landscape Plan (Erection of Decorative Screen Hoarding along Construction Site around Hong Kong Exhibition and Convention Centre)	15 May 2010

EP Condition	Submission	Date of Submission
	Landscape Plan (Night-time Lighting)	22 Oct 2010
	Landscape Plan (Rev. B)	15 Nov 2010

Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at WanChai East
3.1.7. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HK/2009/02 under FEP-03/356/2009 are shown in Table 3.6 and Table 3.7.

Table 3.6 Cumulative Summary of Valid Licences and Permits under Contract no. HK/2009/02

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-03/356/2009	24 Mar 2010	N/A	Valid
	FEP-01/364/2009	24 Mar 2010	N/A	Valid
Notification of Works Under APCO	313962	2 Feb 2010	N/A	Valid
Construction Noise Permit (CNP) for piling equipment	PP-RS0007-12	27 Mar 2012	28 Mar 2012 to 27 Sept 2012	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RE0710-11	30 Sept 2011	1 Nov 2011 to 30 Apr 2012	Expired
	GW-RS0930-11	11 Oct 2011	1 Nov 2011 to 30 Apr 2012	Expired
	GW-RS0941-11	20 Oct 2011	23 Nov 2011 to 22 May 2012	Expired
	GW-RS0955-11	14 Oct 2011	23 Nov 2011 to 22 May 2012	Expired
	GW-RS0968-11	20 Oct 2011	18 Nov 2011 to 17 May 2012	Expired
	GW-RS1028-11	3 Nov 2011	7 Dec 2011 to 6 June 2012	Expired
	GW-RS1052-11	18 Nov 2011	21 Nov 2011 to 18 May 2012	Expired
	GW-RS1111-11	28 Nov 2011	29 Nov 2011 to 28 May 2012	Valid
	GW-RS1116-11	28 Nov 2011	13 Dec 2011 to 12 Jun 2012	Valid
	GW-RS1209-11	3 Jan 2012	17 Jan 2012 to 16 July 2012	Valid
	GW-RS0037-12	19 Jan 2012	1 Feb 2012 to 31 July 2012	Valid
	GW-RS0051-12	19 Jan 2012	1 Feb 2012 to 31 July 2012	Valid

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Registration as Chemical Waste Producer (Wan Chai)	WPN5213-135-C3 $593-01$	10 Mar 2010	N/A	Valid
Registration as Chemical Waste Producer (TKO 137)	WPN5213-839-C3 $593-02$	22 Sep 2010	N/A	Valid
Dumping Permit (Type 1 - Open Sea Disposal)	EP/MD/12-082	31 Oct 2011	29 Nov 2011 to 28 May 2012	Valid
	EP/MD/13015	25 May 2012	29 May 2012 to 28 Nov 2012	Valid
	EP/MD/12-146	27 Mar 2012	4 Apr 2012 to 3 May 2012	Expired
	EP/MD/13-005	25 Apr 2012	4 May 2012 to 3 June 2012	Valid

Table 3.7 Summary of submission status under FEP-03/356/2009 Condition

EP Condition	Submission	Date of Submission
Condition 1.12	Commencement Date of Construction of Marine Works	8 April 2010
Condition 2.6	Management Organization of Main Construction Companies	10 April 2010
Condition 2.7	Works Schedule and Location Plans	8 April 2010
Condition 2.8	Silt Curtain Deployment Plan (Revision A)	20 April 2010
	Silt Curtain Deployment Plan (Revision B)	25 May 2010
	Silt Curtain Deployment Plan (Revision C)	14 Jun 2010
	Silt Curtain Deployment Plan (Revision H)	15 Feb 2011
	Silt Curtain Deployment Plan (Revision I)	17 Nov 2011
	Silt Curtain Deployment Plan (Revision J)	15 Feb 2012
	Silt Curtain Deployment Plan (Revision K)	3 May 2012
Condition 2.9	Silt Screen Deployment Plan	21 April 2010
	Supplementary Information for Existing WSD Salt Water Intakes at Quarry Bay and Sai Wan Ho	5 Oct 2010
	Silt Screen Deployment Plan (Revision B)	15 Feb 2012
	Silt Screen Deployment Plan (Revision C)	3 May 2012
Condition 2.17	Noise Management Plan	6 May 2010
Condition 2.18	Landscape Plan (Decorative Screen Hoarding)	11 May 2010
	Landscape Plan (Control of Night Time Lighting)	2 June 2010

EP Condition	Submission	Date of Submission
	Landscape Plan (Combined Version)	20 July 2011
	Landscape Plan (Combined Version)	5 Aug 2011
	Acknowledge of Submission	22 Aug 2011

Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)
3.1.8. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HY/2009/15 under EP-356/2009 are shown in Table 3.8 and Table 3.9 .

Table 3.8 Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/15

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-04/356/2009	22 Nov 2010	N/A	Valid
	FEP-06/364/2009/A	22 Nov 2010	N/A	Valid
	FEP-01/416/2011	11 Nov 2011	N/A	Valid
Notification of Works Under APCO	321822	24 Sep 2010	N/A	Valid
Construction Noise Permit (CNP) for Filling and Diaphragm Wall Works at TS4/ME4	GW-RS0249-12	10 Feb 2012	9 Mar 2012 to 31 Aug 2012	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0343-12	12 Apr 2012	13 Apr 2012 to 8 Oct 2012	Valid
	GW-RS1211-11	22 Dec 2011	$\begin{aligned} & 24 \text { Dec } 2011 \text { to } \\ & 21 \text { Jun } 2012 \end{aligned}$	Valid
	GW-RS0328-12	30 Mar 2012	$\begin{aligned} & 1 \text { Apr } 2012 \text { to } \\ & 22 \text { Sep } 2012 \end{aligned}$	Valid
	GW-RS0094-12	1 Feb 2012	3 Feb 2012 to 31 Jul 2012	Valid
Registration as a Chemical Waste Producer	WPN5213-147-C116 9-35	15 Nov 2010	N/A	Valid
Billing Account under Waste Disposal Ordinance	7011553	30 Sep 2010	$27 \text { Sep } 2010 \text { to }$ $27 \text { Jan } 2016$	Valid
	7011761	3 Apr 2012	17 Apr 2012 to 16 Jul 2012	Valid
Dumping Permit (Type 1 - Open Sea Disposal)	EP/MD/12-145	10 Apr 2012	10 Apr 2012 to 9 Oct 2012	Valid
Dumping Permit (Type 1 - Open Sea Disposal (Dedicate Sites) \& Type 2 - Confined Marine disposal)	EP/MD/12-153	13 Apr 2012	15 Apr 2012 to 14 May 2012	Expired

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Dumping Permit (Type 1 - Open Type 2 - Confined Marine disposal)	EP/MD/13-011	8 May 2012	15 May 2012 to 14 Jun 2012	Valid

Table 3.9 Summary of submission status under FEP-04/356/2009 Condition

FEP Condition	Submission	Date of Submission
Condition 2.7	Works Schedule and Location Plans	27 Oct 2010
	Amendment for Works Schedule and Location Plans	12 Nov 2010
	Silt Curtain Deployment Plan	30 Nov 2010
	Amendment for Silt Curtain Deployment Plan	24 Feb 2011
	Amendment for Silt Curtain Deployment Plan	11 May 2011
Condition 2.9	Silt Screen Deployment Plan	19 Oct 2010
	Amendment for Silt Screen Deployment Plan	18 Feb 2011
	Amendment for Silt Screen Deployment Plan	15 Jun 2011
Condition 2.21 2.18	Proposal for the Removal of Odorous Sediment and Slime	13 Jan 2011
	Amendment for Proposal for the Removal of Odorous Sediment and Slime	8 Mar 2011
	Amendment for Proposal for the Removal of Odorous Sediment and Slime	2 Aug 2011
Condition 2.23	Landscape Plan	Noise Management Plan
	Amendment for Noise Management Plan	27 Jan 2011

3.1.9. Implementation status of the recommended mitigation measures during this reporting period is presented in Appendix 3.1.

Contract no. HK/2010/06 - Wan Chai Development Phase II - Central -Wanchai Bypass over MTR Tsuen Wan Line
3.1.10. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HK/2010/06 under EP-356/2009 are shown in Table 3.10 and Table 3.11.

Table 3.10 Cumulative Summary of Valid Licences and Permits under Contract no. HK/2010/06

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-05/356/2009	24 Mar 2011	N/A	Valid
	FEP-05/364//2009	21 May 2012	-	Submitt ed
	326344	18 Jan 2011	N/A	Valid

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Construction Noise Permit (CNP) for piling equipment	PP-RS0045-11	22 Dec 2011	12 Jan to 5 Jul 2012	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0034-12	17 Jan 2012	18 Jan to 12 Jul 2012	Valid
	GW-RS0313-12	27 Mar 2012	6 Apr to 5 Oct 2012	Valid
Billing Account under Waste Disposal Ordinance	7012338	16 Feb 2011	N/A	Valid
Registration as Chemical Waste Producer	WPN5213-134-G25 $33-01$	11 Feb 2011	N/A	Valid
Water Discharge Licence	WT00010905-2011	4 November 2011	31 July 2016	Valid
Dumping Permit (Type 1 - Open Sea Disposal)	EP/MD/12-122	9 Feb 12	12 Feb 2012 to 11 Aug 2012	Valid

Table 3.11 Summary of submission status under EP-356/2009 and FEP-05/356/2009 Condition

EP Condition	Submission	Date of Submission
Condition 2.6	Management Organization of Main Construction Companies	24 October 2011
Condition 2.7	Works Schedule and Location Plans	11 March 2011
Condition 2.8	Revised Silt Curtain Deployment Plan	31 Aug 2011
Condition 2.9	Silt Screen Deployment Plan	11 April 2011
Condition 2.23	Noise Management Plan	11 March 2011

Contract no. HY/2009/19 - Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link
3.1.11. Summary of the current status on licences and/or permits on environmental protection pertinent for contract no. HY/2009/19 is shown in Table 3.12.

Table 3.12 Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/19

Permit / Licence / Notification / Approval	Reference No.	Issued Date	Valid Period / Expiry date	Status
Further Environmental Permit	FEP-07/364/2009/A	25 Feb 2011	Granted	Valid
Notification of Works Under APCO	326160	24 Jan 2011	Notified	Valid

Permit / Licence / Notification / Approval	Reference No.	Issued Date	Valid Period / Expiry date	Status
Construction Noise Permit (CNP) (For D-wall construction)	GW-RS0180-12	22-Feb-12	26-Aug-12	Valid
Construction Noise Permit (CNP) (For Bored pile construction at Portion III)	GW-RS0286-12	23-Mar-12	26-Sep-12	Cancelled
	GW-RS0507-12	22-May-12	23-Nov-12	Valid
Construction Noise Permit (CNP) (For Watson Road)	GW-RS0028-12	18-Jan-12	17-Jun-12	Valid
Discharge Licence (Land)	WT00010093-2011	$\begin{gathered} \hline 31 \text { Aug } \\ 2011 \end{gathered}$	30-Sept-16	Valid
Discharge Licence (Sea)	WT00010865-2011	$\begin{gathered} \hline 03 \text { Nov } \\ 2011 \end{gathered}$	30-Nov-16	Valid
Registration as a Waste Producer	7012306	21 Jan 2011	Registered	Valid
C\&D Waste Disposal	7012306	$\begin{gathered} \hline 10 \text { Feb } \\ 2011 \end{gathered}$	Registered	Valid
Vessel Disposal	7013285	$\begin{gathered} \hline 21 \text { July } \\ 2011 \end{gathered}$	Registered	Valid
Registration as Chemical Waste Producer	5213-151-C3654-01	$\begin{aligned} & 24 \mathrm{Mar} \\ & 201112 \end{aligned}$	Registered	Valid
Dumping Permit (Type 1 - Open Sea Disposal)	EP/MD/12-150	14-May-12	14-Nov-12	Valid
Dumping Permit (Type 2 Confined Marine Disposal)	EP/MD/12-151	11-May-12	14-Jun-12	Valid

4. Monitoring Requirements

4.1 Noise Monitoring

NOISE MONITORING STATIONS
4.1.1. The noise monitoring stations for the Project are listed and shown in Table 4.1 and Figure 4.1. Appendix 4.1 shows the established Action/Limit Levels for the monitoring works.

Table 4.1 Noise Monitoring Station

Station	Description
M1a	Harbour Road Sports Centre
M2b	Noon Gun Area
M3a	Tung Lo Wan Fire Station
M4b	Victoria Centre
M5b	City Garden
M6	HK Baptist Church Henrietta Secondary School

REAL-TIME NOISE MONITORING STATIONS
4.1.2. The real-time noise monitoring stations for the Project are listed and shown in Table 4.2 and Figure 4.1. Appendix 4.1 shows the established Action/Limit Levels for the monitoring works.

Table 4.2 Real Time Noise Monitoring Station

District	Station	Description
Tin Hau	RTN1	FEHD Hong Kong Transport Section Whitefield Depot
North Point	RTN2	Oil Street Community Liaison Centre

NOISE MONITORING PARAMETERS, FREQUENCY AND DURATION

4.1.3. The construction noise level shall be measured in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}). $\mathrm{L}_{\mathrm{eq}(30 \text { minutes })}$ shall be used as the monitoring parameter for the time period between 0700 and 1900 hours on normal weekdays. For all other time periods, $\mathrm{L}_{\mathrm{eq}(5 \text { minutes) }}$ shall be employed for comparison with the Noise Control Ordinance (NCO) criteria. Supplementary information for data auditing, statistical results such as L10 and L90 shall also be obtained for reference.
4.1.4. Noise monitoring shall be carried out at all the designated monitoring stations. The monitoring frequency shall depend on the scale of the construction activities. The following is an initial guide on the regular monitoring frequency for each station on a weekly basis when noise generating activities are underway:

- one set of measurements between 0700 and 1900 hours on normal weekdays.
4.1.5. If construction works are extended to include works during the hours of $1900-0700$ as well as public holidays and Sundays, additional weekly impact monitoring shall be carried out during
respective restricted hours periods. Applicable permits under NCO shall be obtained by the Contractor.

MONITORING EQUIPMENT

4.1.6. As referred to in the Technical Memorandum ${ }^{T M}$ issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration level from before and after the noise measurement agree to within 1.0 dB .
4.1.7. Noise measurements shall not be made in fog, rain, wind with a steady speed exceeding $5 \mathrm{~m} / \mathrm{s}$ or wind with gusts exceeding $10 \mathrm{~m} / \mathrm{s}$. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m / s.

4.2 Air Monitoring

AIR QUALITY MONITORING STATIONS
4.2.1. The air monitoring stations for the Project are listed and shown in Table 4.3 and Figure 4.1. Appendix 4.1 shows the established Action/Limit Levels for the monitoring works.

Table 4.3 Air Monitoring Station

Station ID	Monitoring Location	Description
CMA1b	Oil Street Community Liaison Centre	North Point
CMA2a	Causeway Bay Community Centre	Causeway Bay
CMA3a	CWB PRE Site Office *	Causeway Bay
CMA4a	Society for the Prevention of Cruelty to Animals	Wan Chai
CMA5a	Children Playgrounds opposite to Pedestrian Plaza	Wan Chai
CMA6a	WDII PRE Site Office *	Wan Chai

* Remarks: As per the ENPC meeting in January 2011, the monitoring stations CMA3a - Future CWB site office at Wanchai Waterfront Promenade and CMA6a - Future AECOM site office at Work Area were renamed as remark.

AIR MONITORING PARAMETERS, FREQUENCY AND DURATION

4.2.2. One-hour and 24 -hour TSP levels should be measured to indicate the impacts of construction dust on air quality. The 24 -hour TSP levels shall be measured by following the standard high volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.
4.2.3. All relevant data including temperature, pressure, weather conditions, elapsed-time meter reading for the start and stop of the sampler, identification and weight of the filter paper, and any other local atmospheric factors affecting or affected by site conditions, etc., shall be recorded down in detail.
4.2.4. For regular impact monitoring, the sampling frequency of at least once in every six-days, shall be strictly observed at all the monitoring stations for 24 -hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six-days should be undertaken when the highest dust impact occurs.

SAMPLING PROCEDURE AND MONITORING EQUIPMENT
4.2.5. High volume samplers (HVSs) in compliance with the following specifications shall be used for carrying out the 1-hour and 24-hour TSP monitoring:

- 0.6-1.7 m3 per minute adjustable flow range;
- equipped with a timing / control device with +/- 5 minutes accuracy for 24 hours operation;
- installed with elapsed-time meter with +/- 2 minutes accuracy for 24 hours operation;
- capable of providing a minimum exposed area of 406 cm 2 ;
- flow control accuracy: +/- 2.5\% deviation over 24 -hour sampling period;
- equipped with a shelter to protect the filter and sampler;
- incorporated with an electronic mass flow rate controller or other equivalent devices;
- equipped with a flow recorder for continuous monitoring;
- provided with a peaked roof inlet;
- incorporated with a manometer;
- able to hold and seal the filter paper to the sampler housing at horizontal position;
- easily changeable filter; and
- capable of operating continuously for a 24-hour period.
4.2.6. Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at bi-monthly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually. The concern parties such as IEC shall properly document the calibration data for future reference. All the data should be converted into standard temperature and pressure condition.

LABORATORY MEASUREMENT / ANALYSIS

4.2.7. A clean laboratory with constant temperature and humidity control, and equipped with necessary measuring and conditioning instruments to handle the dust samples collected, shall be available for sample analysis, and equipment calibration and maintenance. The laboratory should be HOKLAS accredited.
4.2.8. An alternative non-HOKLAS accredited laboratory was set-up for carrying out the laboratory analysis, the laboratory equipment was approved by the ER on 8 February 2011 and the measurement procedures were witnessed by the IEC. Any measurement performed by the laboratory was be demonstrated to the satisfaction of the ER and IEC. IEC shall regularly audit to the measurement performed by the laboratory to ensure the accuracy of measurement results.
4.2.9. Filter paper of size $8 " \times 10^{\prime \prime}$ shall be labelled before sampling. It shall be a clean filter paper with no pinholes, and shall be conditioned in a humidity-controlled chamber for over 24-hours and be pre-weighed before use for the sampling.
4.2.10. After sampling, the filter paper loaded with dust shall be kept in a clean and tightly sealed plastic bag. The filter paper shall then be returned to the laboratory for reconditioning in the humidity controlled chamber followed by accurate weighing by an electronic balance with readout down to 0.1 mg . The balance shall be regularly calibrated against a traceable standard.
4.2.11. All the collected samples shall be kept in a good condition for 6 months before disposal.

IMPACT MONITORING FOR ODOUR PATROL

4.2.12. Odour patrols along the shorelines of Causeway Bay Typhoon Shelter and ex-Wan Chai Public Cargo Working Area when there is temporary reclamation in Causeway Bay Typhoon Shelter and/or in the ex-Wan Chai Public Cargo Working Area, or when there is dredging of the odorous sediment and slime at the south-western corner of the Causeway Bay Typhoon Shelter. Odour patrols will be carried out at bi-weekly intervals during July, August and September by a qualified person of the ET who shall:

- be at least 16 years of age;
- be free from any respiratory illnesses; and
- not be allowed to smoke, eat, drink (except water) or use chewing gum or sweets 30 min
- before and during odour patrol
4.2.13. Odour patrol shall be conducted by independent trained personnel / competent persons patrolling and sniffing around the shore as shown in Figure 4.1 to detect any odour at the concerned hours (afternoon is preferred for higher daily temperature).
4.2.14. The qualified person will use the nose (olfactory sensor) to sniff odours at different locations. The main odour emission sources and the areas to be affected by the odour nuisance will be identified.
4.2.15. The perceived odour intensity is to be divided into 5 levels which are ranked in the descending order as follows:
- 0 - Not detected. No odour perceived or an odour so weak that it cannot be easily characterized or described;
- 1 - Slight Identifiable odour, and slight chance to have odour nuisance;
- 2 - Moderate Identifiable odour, and moderate chance to have odour nuisance;
- 3 - Strong Identifiable, likely to have odour nuisance;
- 4 - Extreme Severe odour, and unacceptable odour level.
4.2.16. The findings including odour intensity, odour nature and possible odour sources, and also the local wind speed and direction at each location will be recorded. In addition, some relevant meteorological and tidal data such as daily average temperature, and daily average humidity, on that surveyed day will be obtained from the Hong Kong Observatory Station for reference. The Action and Limit levels for odour patrol are shown in Appendix 6.1.
4.2.17. The qualified odour patrol member has individual n-butanol thresholds complied with the requirement of European Standard Method of Air Quality - Determination of Odour Concentration by Dynamic Olfactometry (EN13725) in the range of 20 to 80 ppb . The certificate for the qualified odour panel member is shown in Appendix 4.2.

4.3 Water Quality Monitoring

4.3.1. The EIA Report has identified that the key water quality impact would be associated with the dredging works during the construction phase. Marine water quality monitoring for dissolved oxygen (DO), suspended solid (SS) and turbidity is therefore recommended to be carried out at selected WSD flushing water intakes. The impact monitoring should be carried out during the proposed dredging works to ensure the compliance with the water quality standards.
4.3.2. The updated EM\&A Manual for EP-356/2009 (Version in March 2011) is approval by EPD on 29 April 2011. As such, the Action Level and Limit Level for the wet season (April - September) will be effected and applied to the water quality monitoring data from 30 April 2011.

Water Quality Monitoring Stations

4.3.3. It is proposed to monitor the water quality at 9 WSD salt water intakes and 14 cooling water intakes along the seafront of the Victoria Harbour. The proposed water quality monitoring stations of the Project are shown in Table 4.4 and Figure 4.1. Appendix 4.1 shows the established Action/Limit Levels for the monitoring works.

Table 4.4 Marine Water Quality Stations for Water Quality Monitoring

Station Ref.			Location
Easting			Northing
WSD Salt Water Intake			834150.0
WSD7	Kowloon South	837921.0	818300.3
WSD9	Tai Wan	841900.9	817700.1
WSD10	Cha Kwo Ling	841110.4	816450.1
WSD15	Sai Wan Ho	839790.3	817032.2
WSD17	Quarry Bay	833415.0	816771.0
WSD19	Sheung Wan	830750.6	816030.3
WSD20	Kennedy Town	836220.8	815940.1
WSD21	Wan Chai	836188.8	815911.1
RW1	Wan Chai (Reprovision)		
Cooling Water Intake	835885.6	816223.0	
C1	HKCEC Extension	835647.9	815864.4
C2	Telecom House	835836.2	815910.0
C3	HKCEC Phase I		

Station Ref.	Location	Easting	Northing
C4e	Great Eagle Centre	835932.8	815888.2
C4w	Wan Chai Tower	835629.8	815889.2
C5e	Sun Hung Kai Centre (Eastern)	836250.1	815932.2
C5w	Sun Hung Kai Centre (Western)	836248.1	815933.2
C6	Excelsior Hotel	837009.6	815999.3
C7	Windsor House	837193.7	816150.0
C8	City Garden	837970.6	816957.3
C9	Provident Garden	838355.0	817116.6
RC1	Proposed HKAPA Extension	835487.7	815987.7
RC5	Sun Hung Kai Centre (Reprovision)	836291.4	816029.7
RC7	Windsor House (Temporary Dilution)	837245.2	816156.6

WATER QUALITY PARAMETERS

4.3.4. Monitoring of dissolved oxygen (DO), turbidity and suspended solids (SS) shall be carried out at WSD flushing water intakes and cooling water intakes. DO and Turbidity are measured in-situ while SS is determined in laboratory.
4.3.5. In association with the water quality parameters, other relevant data shall also be measured, such as monitoring location/position, time, sampling depth, water temperature, pH , salinity, dissolved oxygen (DO) saturation, weather conditions, sea conditions, tidal stage, and any special phenomena and work underway at the construction site etc.

SAMPLING PROCEDURES AND MONITORING EQUIPMENT
4.3.6. The interval between two sets of monitoring should not be less than 36 hours except where there are exceedances of Action and/or Limit Levels, in which case the monitoring frequency will be increased. Table 4.5 shows the proposed monitoring frequency and water quality parameters. Duplicate in-situ measurements and water sampling should be carried out in each sampling event. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5 m .

Table 4.5 Marine Water Quality Monitoring Frequency and Parameters

Activities	Monitoring Frequency 1	Parameters 2
During the 4-week baseline monitoring period	Three days per week, at mid-flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity
During marine construction works	Three days per week, at mid-flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity
After completion of marine construction works	Three days per week, at mid-flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity

Notes:

1. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5 m .
2. Turbidity should be measured in situ whereas SS should be determined by laboratory.

DISSOLVED OXYGEN AND TEMPERATURE MEASURING EQUIPMENT

4.3.7. The instrument should be a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and use a DC power source. It should be capable of measuring:

- a dissolved oxygen level in the range of $0-20 \mathrm{mg} / \mathrm{l}$ and $0-200 \%$ saturation
- a temperature of 0-45 degree Celsius
4.3.8. It should have a membrane electrode with automatic temperature compensation complete with a cable. Sufficient stocks of spare electrodes and cables should be available for replacement where necessary. (e.g. YSI model 59 meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).
4.3.9. Should salinity compensation not be build-in in the DO equipment, in-situ salinity shall be measured to calibrate the DO equipment prior to each DO measurement.

TURBIDITY MEASUREMENT INSTRUMENT
4.3.10. The instrument should be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment should use a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU and be complete with a cable (e.g. Hach model 2100P or an approved similar instrument).

SAMPLER

4.3.11. A water sampler comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, and can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (e.g. Kahlsico Water Sampler or an approved similar instrument).

SAMPLE CONTAINER AND STORAGE

4.3.12. Water samples for suspended solids measurement should be collected in high-density polythene bottles, packed in ice (cooled to $4^{\circ} \mathrm{C}$ without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. as soon as possible after collection for analysis.

WATER DEPTH DETECTOR

4.3.13. A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station. This unit can either be handheld or affixed to the bottom of the workboat, if the same vessel is to be used throughout the monitoring programme.

SALINITY
4.3.14. A portable salinometer capable of measuring salinity in the range of $0-40$ ppt shall be provided for measuring salinity of the water at each of monitoring location.

MONITORING POSITION EQUIPMENT

4.3.15. A hand-held or boat-fixed type digital Global Positioning System (GPS) with waypoint bearing indication or other equivalent instrument of similar accuracy shall be provided and used during monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

CALIBRATION OF IN-SITU INSTRUMENTS

4.3.16. All in-situ monitoring instrument shall be checked, calibrated and certified by a laboratory accredited under HOKLAS or equivalent before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
4.3.17. For the on site calibration of field equipment by the ET, the BS 127:1993, "Guide to Field and on-site test methods for the analysis of waters" should be observed.
4.3.18. Sufficient stocks of spare parts should be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
4.3.19. Current calibration certificates of equipments are presented in Appendix 4.2.

LABORATORY MEASUREMENT / ANALYSIS
4.3.20. Analysis of suspended solids has been carried out in a HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd. Water samples of about 1L shall be collected at the monitoring stations for carrying out the laboratory SS determination. The SS determination work shall start within 24 hours after collection of the water samples. The SS determination shall follow APHA 19ed or equivalent methods subject to the approval of IEC and EPD.

ENHANCED WATER QUALITY MONITORING IN THE EX-WAN CHAI PUBLIC CARGO WORKING AREA AND THE CAUSEWAY BAY TYPHOON SHELTER
4.3.21. The enhanced water quality monitoring and audit programme is to avoid aggravation of odour nuisance from seawater arising from temporary reclamation in the ex-Wan Chai Public Cargo Working Area and the Causeway Bay Typhoon Shelter.
4.3.22. Dissolved oxygen monitoring at the intakes C6 and C7 in Causeway Bay Typhoon Shelter when there is temporary reclamation in Causeway Bay Typhoon Shelter and at the south-western and south-eastern corners of the ex-Wan Chai Public Cargo Working Area. The proposed water quality monitoring stations of the Project are shown in Table 4.6 and Figure

4.1.

Table 4.6 Marine Water Quality Stations for Enhanced Water Quality Monitoring

Station	Location
C6	Excelsior Hotel
C7	Windsor House
Ex-WPCWA-SW	South-western of the ex-Wan Chai Public Cargo Working Area
Ex-WPCWA-SE	South-eastern of the ex-Wan Chai Public Cargo Working Area

4.3.23. The monitoring of dissolved oxygen are to be carried out 3 days per week, at mid-flood and mid-ebb tides for 3 water depths (1m below water surface, mid-depth and 1 m above sea bed, except where the water depth less than 6 m , the mid-depth may be omitted. If the water depth be equal to or less than 3 m , only the mid-depth will be monitored).

DAILY SS MONITORING AND 24 HOURS TURBIDITY MONITORING SYSTEM

4.3.24. During dredging of the sediment at the south-western corner of the Causeway Bay Typhoon Shelter, daily monitoring of suspended solids and 24 hour monitoring of turbidity at the cooling water intakes (C6 and C7) shall be conducted.
4.3.25. The 24 hours monitoring of turbidty at the cooling water intakes (C 6 and C 7) shall be established by setting up a continuous water quality monitoring station in front of the intakes during the dredging activities. The monitoring system include the turbidity sensor and data logger which is capable of data capturing at every 5 minutes. The data sahll be downloaded daily and compared with the Action and Limit level determined during the baseline water qualtiy monitoring at the cooling water intake locations.

ADDITIONAL DISSOVLED OXYGEN MONITORING FOR CULVERT L WATER DISCHARGE FLOW

4.3.26. In response to the Condition 2.18 of the Environmental Permit no. EP-356/2009 requiring that a silt curtain / impermeable barrier system be installed to channel water discharge flow from Culvert L to locations outside the embayment area, a proposed replacement of the requirement with additional dissolved oxygen monitoring has been conducted at three monitoring stations, namely A, B and C between the eastern seawall of Central Reclamation Phase III and the HKCEC Extension since November 2011 under EP-356/2009 so that DO level between the eastern seawall of Central Reclamation Phase II and the HKCEC extension could be continuously monitored.
4.3.27. The proposed DO monitoring stations of the Project are shown in Table 4.7 and Figure 4.1.

Table 4.7 Marine Water Quality Stations for Additional DO Monitoring

Station	Easting	Northing
A	835468	815857
B	835572	815961
C	835659	816271

4.3.28. The monitoring of dissolved oxygen are to be carried out once per week, at mid-flood and mid-ebb tides for 3 water depths (1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth less than 6 m , the mid-depth may be omitted. If the water depth be equal to or less than $3 m$, only the mid-depth will be monitored).

5. Monitoring Results

5.0.1. The environmental monitoring will be implemented based on the division of works areas of each designed project managed under different contracts with separate FEP applied by individual contractors. Overall layout showing work areas of various contracts, latest status of work commencement and monitoring stations is shown in Figure 2.1 and Figure 4.1. The monitoring results are presented in according to the Individual Contract(s).
5.0.2. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011.
5.0.3. The surrender of the Further Environmental Permit for HY/2009/11 withdrew by contractor on 14 February 2012. However, there is no work was conducted by the contractor.
5.0.4. In the reporting month, the concurrent contracts are as follows:

- Contract no. HY/2009/11 Central - Wan Chai Bypass - North Point Reclamation;
- Contract no. HK/2009/01 - Wan Chai Development Phase II - Central-Wan Chai Bypass at Hong Kong Convention and Exhibition Centre; and
- Contract no. HK/2009/02 Wan Chai Development Phase II - Central-Wan Chai Bypass at Wan Chai East
- Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)
- Contract no. HK/2010/06 Wan Chai Development Phase II - Central-Wan Chai Bypass over MTR Tsuen Wan Line
- Contract no. HY/2009/19- Cental- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link
5.0.5. The environment monitoring schedules for reporting month and coming month are presented in Appendix 5.1.

5.1 Noise Monitoring Results

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation
5.1.1. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011 and the FEP-01/356/2009 was under application of surrender in this reporting period. The monitoring was temporary suspended since 5 January 2012.
5.1.2. The proposed division of noise monitoring stations for Contract no. HY/2009/11 are summarized in Table 5.1 below:

Table 5.1 Noise Monitoring Stations for Contract no. HY/2009/11

Station	Description
M4b	Victoria Centre
M5b	City Garden

5.1.3. Day time and evening period noise monitoring was conducted at the City Garden and Victoria Centre in the reporting month.
5.1.4. Noise monitoring results measured in this reporting period are reviewed and summarized. No exceedance was recorded in reporting month. Details of noise monitoring results and graphical presentation can be referred in Appendix 5.2.

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC, Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at WanChai East and Contract no. HK/2010/06 Wan Chai Development Phase II -Central-Wan Chai Bypass over MTR Tsuen Wan Line
5.1.5. The proposed division of noise monitoring stations are summarized in Table 5.2 below.

Table 5.2 Noise Monitoring Station for Contract nos. HK/2009/01, HK/2009/02 and HK/2010/06

Station	Description
M1a	Harbour Road Sports Centre

5.1.6. Daytime and evening period noise monitoring was conducted at the Harbour Road Sport Centre in the reporting month.
5.1.7. No exceedance was recorded in this reporting period. Details of noise monitoring results and graphical presentation can be referred in Appendix 5.2

Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)
5.1.8. The noise monitoring for HY/2009/15 was commenced on 10 November 2010. The proposed division of noise monitoring stations are summarized in Table 5.3 below.

Table 5.3 Noise Monitoring Station for Contract no. HY/2009/15

Station	Description
M2b	Noon Gun Area
M3a	Tung Lo Wan Fire Station

5.1.9. Noise monitoring results measured in the period of daytime and restricted hour are reviewed and summarized. No exceedance was recorded in this reporting period. Details of noise monitoring results and graphical presentation can be referred in Appendix 5.2

Contract no. HY/2009/19- Wan Chai Bypass Tunnal (North Point Section) and Island Eastern Corridor Link
5.1.10. The proposed division of noise monitoring stations are summarized in Table 5.4 below.

Table 5.4 Noise Monitoring Station for Contract no. HY/2009/19

Station	Description
M3a	Tung Lo Wan Fire Station
M4b	Victoria Centre
M5b	City Garden
M6	HK Baptist Church Henrietta Secondary School

No action level exceedance and two limit level exceedance were recorded on 30 April 2012 and 16 May 2012 at M6 - HK Baptist Church Henrietta Secondary School in the reporting month. Major traffic jam and no major work activities were observed during monitoring, the exceedances were considered as non-project related.

5.1 Real-time Noise Monitoring

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation and Contract no. HY/2009/19 - Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link
5.2.1. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011 and the FEP-01/356/2009 was under application of surrender in this reporting period.

Table 5.5 Real Time Noise Monitoring Station for Contract no. HY/2009/11 and HY/2009/19

District	Station	Description
Tin Hau	RTN1	FEHD Hong Kong Transport Section Whitefield Depot
North Point	RTN2	Oil Street Community Liaison Centre

* Real time noise monitoring results and graphical presentation during night time period are for information only.
5.2.2. Real time noise monitoring results were reviewed and no exceedance was recorded in the reporting period. Details of real time noise monitoring results and graphical presentation can be referred to Appendix 5.5.

5.2 Air Monitoring Results

5.3.1. Due to extension of site boundary by contractor of HY/2009/19, location of air monitoring station CMA1b - Oil Street Community Liaison Centre has been finely adjusted on 21 April 2012.
5.3.2. Due to lack of electricity supply, the 24 TSP monitoring at the following stations were rescheduled

CMA1b: from 8 May 2012 to 9 May 2012
CMA5a: from 8 May and 25 May 2012 to 9 May 2012 and 26 May 2012
CMA6a: from 8 May and 25 May 2012 to 9 May 2012 and 26 May 2012
Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation
5.3.3. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on

31 December 2011and the FEP-01/356/2009 was valid in this reporting period. The monitoring for the contract was temporary suspended on 6 January 2012.
5.3.4. The proposed division air monitoring stations is summarized in Table $\mathbf{5 . 6}$ below.

Table 5.6 Air Monitoring Stations for Contract no. HY/2009/11

Station	Description
CMA1b	Oil Street Community Liaison Centre
CMA2a	Causeway Bay Community Centre

5.3.5. No exceedance was recorded in the reporting month. Details of air monitoring results and graphical presentation can be referred in Appendix 5.3.

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC
5.3.6. Air monitoring was commenced on 1 April 2011 in response to the commencement of the land-filling work for Contract no. HK/2009/01. The proposed divisions of air monitoring stations are summarized in Table 5.7 below. No exceedance was recorded in the reporting month.

Table 5.7 Air Monitoring Stations for Contract no. HK/2009/01

Station	Description
CMA5a	Children Playgrounds opposite to Pedestrian Plaza
CMA6a	WDII PRE Site Office

Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at WanChai East
5.3.7. Air monitoring was commenced in mid-January 2011 for the land-filling work for Contract no. HK/2009/02. The proposed division of air monitoring stations are summarized in Table 5.8 below. No exceedance was recorded in the reporting month.

Table 5.8 Air Monitoring Station for Contract no. HK/2009/02

Station	Description
CMA4a	Society for the Prevention of Cruelty to Animals

Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)
5.3.8. Air monitoring was commenced on 15 March 2011 for the land filling work for Contract no. HY/2009/15. The proposed division of air monitoring stations are summarized in Table 5.9 below. No exceedance was recorded in the reporting month.

Table 5.9 Air Monitoring Station for Contract no. HY/2009/15

Station	Description
CMA3a	CWB PRE Site Office

Contract no. HY/2009/19- Wan Chai Bypass Tunnal (North Point Section) and Island Eastern Corridor Link

5.3.9. The proposed division of air monitoring stations are summarized in Table 5.10 below. No exceedance was recorded in the reporting month.

Table 5.10 Air Monitoring Stations for Contract no. HY/2009/19

Station	Description
CMA1b	Oil St Community Liaison Centre
CMA2a	Causeway Bay Community Centre

5.3 Water Monitoring Results.

5.4.1. WDII/RSS advised that the dredging works for submarine pipeline at Victoria Harbour had been completed in January 2012. Therefore, the concurrent dredging activities at Sewage Pipeline Zone and reclamation shoreline zone TCBR under the EP-356/2009 scenario 2B no longer exist. As such, with reference to Table 5.39 of the EIA Report for Wan Chai Development Phase II and Central-Wan Chai Bypass, the application of silt screen for cooling water intakes for Queensway Government Offices was suspended and the others remain unchanged.
5.4.2. Based on the joint inspection on 4 Jan 2012 for the NPR area, the 4 -week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8, C9 to confirm no water deterioration with respect to NPR was commenced since 7 Jan 2012 and it was completed on 6 February 2012.
5.4.3. Water quality monitoring at WSD10 and WSD15 was temporary suspended while water quality monitoring at WSD9 and WSD17 was implemented with respect to HK/2009/02 from 8 Feb 12 onwards;
5.4.4. Water quality monitoring at C8 and C9 have been implemented with respect to HY/2009/19 since the marine bore piling work started on 28 Jan 12.
5.4.5. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Centre (C9) since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 to the closest accessible point prior to the completion of the external façade refurbishment work.
5.4.6. With respect to the trial dredging at WCR2 was scheduled on 20, 22, 24, 25 March and 1,3 , 11, 13, 15, 17, 19, 20 Apr and 3 May 2012, on-going water quality monitoring results at WSD21 during this period was checked and indicated that there was no contribution due to the trial dredging operation. Enhanced review of water quality around WCR2 was also implemented and no deterioration in the water quality was observed.
5.4.7. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.
5.4.8. Due to the dredging works for Cross Harbour Water Mains from Wan Chai to Tsim Sha TsuiDP6 was completed on 26 March 2012, the temporary suspension of impact water quality monitoring at WSD7 and WSD20 after 27 April 2012 for the water quality monitoring at WSD7
and WSD20 have been monitored for 4-week period after the completion of DP6 to confirm no water deterioration.

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation
5.4.9. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011 and the FEP-01/356/2009 was valid in this reporting period.
5.4.10. The proposed division of water monitoring stations for Contract no. HY/2009/11 are summarized in Table 5.11 below:

Table 5.11 Water Monitoring Stations for Contract no. HY/2009/11

Station Ref.	Location	Easting	Northing
WSD Salt Water Intake			
WSD9	Tai Wan	837921.0	818330.0
WSD10	Cha Kwo Ling	841900.9	817700.1
WSD15	Sai Wan Ho	841110.4	816450.1
WSD17	Quarry Bay	839790.3	817032.2
Cooling Water Intake			
C8	City Garden	837970.6	816957.3
C9	Provident Garden	838355.0	817116.6

Remarks: WSD9, WSD10, WSD15, WSD17, C8 and C9 water monitoring finished on 6 Feb 2012.

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC
5.4.11. Water monitoring for Contract no. HK/2009/01 was commenced on 23 July 2010. The proposed division of water monitoring stations are summarized in Table 5.12 below.

Table 5.12 Water Monitoring Stations for Contract no. HK/2009/01

Station Ref.	Location	Easting	Northing
WSD Salt Water Intake			834150.0
WSD7	Kowloon South	833415.0	818300.3
WSD19	Sheung Wan	830750.6	816030.3
WSD20	Kennedy Town	8	
Cooling Water Intake			
C1	HKCEC Extension	835885.6	816223.0
C2	Telecom House	835647.9	815864.4
C3	HKCEC Phase I	835932.8	815910.0
C4e	Great Eagle Centre	835629.8	815889.2
C4w	Wan Chai Tower		

Remarks:

- The water monitoring stations for the dredging works under Contract No. HK/2009/01 should also include WSD9, WSD17, WSD 21 and C5 if water quality monitoring at these locations have not been carried out by
others. Similarly, the water monitoring stations for the dredging works under Contract No. HK/2009/02 should also include WSD7, WSD9, WSD17, WSD 19, C1, C2, C3 and C4 if water quality monitoring at these locations have not been carried out by others.
- WSD7 and WSD20 water quality monitoring were temporarily suspended since 27 Apr 2012.

Contract no. HK/2009/02 - Wan Chai Development Wan Chai Development Phase II Central - Wan Chai Bypass at WanChai East
5.4.12. Water monitoring for Contract no. HK/2009/02 was commenced on 8 July 2010. The proposed division of water monitoring stations are summarized in Table 5.13 below.

Table 5.13 Water Monitoring Stations for Contract no. HK/2009/02

Station Ref.	Location	Easting	Northing
WSD Salt Water Intake			
WSD21	Wan Chai	836220.8	815940.1
WSD9	Tai Wan	837921.0	818330.0
WSD17	Quarry Bay	839790.3	817032.2
Cooling Water Intake	Sun Hung Kai Centre (Eastern)	836250.1	815932.2
C5w	Sun Hung Kai Centre (Western)	836248.1	815933.2

Remarks:

- The water monitoring stations for the dredging works under Contract No. HK/2009/01 should also include WSD9, WSD17, WSD 21 and C5 if water quality monitoring at these locations have not been carried out by others. Similarly, the water monitoring stations for the dredging works under Contract No. HK/2009/02 should also include WSD7, WSD9, WSD17, WSD 19, C1, C2, C3 and C4 if water quality monitoring at these locations has not been carried out by others.
- Water quality monitoring at WSD9 and WSD 17 was implemented with respect to HK/2009/02 from 8 Feb 2012.

Contract no. HK/2010/06 - Wan Chai Development Phase II - Central -Wanchai Bypass over MTR Tsuen Wan Line
5.4.13. Water monitoring for Contract no. HK/2010/06 was commenced on 8 March 2011. The proposed division of water monitoring stations are summarized in Table 5.14 below.

Table 5.14 Water Monitoring Stations for Contract no. HK/2010/06

Station Ref.	Location	Easting	Northing
Cooling Water Intake	835647.9	815864.4	
C2	Telecom House		

Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)
5.4.14. Due to the commencement of the maintenance dredging on 10 November 2010, water quality monitoring for Contract no. HY/2009/15 was commenced on 9 November 2010. The proposed division of water monitoring stations are summarized in Table 5.15 below.

Table 5.15 Water Monitoring Stations for Contract no. HY/2009/15

Station Ref.	Location	Easting	Northing

Station Ref.	Location	Easting	Northing
Cooling Water Intake	837009.6	815999.3	
C6	Excelsior Hotel	837193.7	816150.0

Remarks: - The cessation of seawater intake operation for C6 was confirmed on 17 May 2011, the water monitoring at C6 was then terminated since 17 May 2011.

Contract no. HY/2009/19 - Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link
5.4.15. Due to the commencement of the marine bored piling on 28 Jan 2012, water quality monitoring for Contract no. HY/2009/19 was commenced on 28 Jan 2012. The proposed division of water monitoring stations are summarized in Table 5.16 below.

Table 5.16 Water Monitoring Stations for Contract no. HY/2009/19

Station Ref.	Location	Easting	Northing
Cooling Water Intake			
C8	City Garden	837970.6	816957.3
C9	Provident Garden	838355.0	817116.6

Remarks: C8 and C9 monitoring commenced on 28 Jan 2012.
5.4.16. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Center (C9) between 9 January 2012 to 30 July 2012 which caused to the inaccessibility of sampling either land and marine since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 since 10 March 2012 to the closest accessible point prior to the completion of the external façade refurbishment work.
5.4.17. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.
5.4.18. As per the meeting with the representative of Excelsior Hotel and World Trade Centre on 17 May 2011, they confirmed that the seawater intake for The Excelsior was no longer in use and replaced by the connected permanent water supply from WSD pipelines since 11 January 2011. Thus, the impact water quality monitoring for the cooling intake - C6 was terminated effective from 26 May 2011.
5.4.19. 24 hours monitoring of turbidity at the cooling water intakes at $C 7$ was conducted. With respect to the seawall collapsing at TS4 on 17 November 2011, the 24 hours turbidity monitoring and was kept in November 2011. Since the reinstating the seawall was completed on 13 January 2012 and no any water deterioration was performed, 24 hour turbidity monitoring was then suspended on 27 January 2012.
5.4.20. Water monitoring results measured in this reporting period are reviewed and summarized. Details of water quality monitoring results and graphical presentation can be referred in Appendix 5.4.

Table 5.17 Summary of Water Quality Monitoring Exceedances in Reporting Month

Contract no.	Water Monitoring Station	Mid-flood						Mid-ebb					
		DO		$\begin{gathered} \text { Turbidit } \\ y \\ \hline \end{gathered}$		SS		DO		Turbidity		SS	
		AL	LL	AL	L	AL	LL	AL	LL	AL	LL	AL	LL
HY/2009/11 Monitoring finished on 6 Feb 2012	WSD9	0	0	0	0	0	0	0	0	0	0	0	0
	WSD10	0	0	0	0	0	0	0	0	0	0	0	0
	WSD15	0	0	0	0	0	0	0	0	0	0	0	0
	WSD17	0	0	0	0	0	0	0	0	0	0	0	0
	C8	0	0	0	0	0	0	0	0	0	0	0	0
	C9	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/01	WSD19	0	0	0	0	0	0	0	0	0	0	0	0
	C1	0	0	0	0	0	0	0	0	0	0	0	0
	C3	0	0	0	0	0	0	0	0	0	0	0	0
	C4e	0	0	0	0	0	0	0	0	0	0	0	0
	C4w	0	0	0	0	0	0	0	0	0	0	0	0
Monitoring finished on 27 April 2012	WSD20	0	0	0	0	0	0	0	0	0	0	0	0
	WSD7	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{gathered} \mathrm{HK} / 2009 / 01 \\ \& \mathrm{HK} / 2010 / 06 \\ \hline \end{gathered}$	C2	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/02 Monitoring started on 8 Feb 2012	C5e	0	0	0	0	0	0	0	0	0	0	0	1
	C5w	0	0	0	0	0	0	0	0	0	0	0	0
	WSD21	0	0	0	0	0	1	0	0	0	0	0	1
	WSD9	0	0	0	0	0	0	0	0	0	0	0	0
	WSD17	0	0	0	0	0	0	0	0	0	0	0	0
HY/2009/15	C7	0	0	0	0	0	0	0	0	0	0	0	0
HY/2009/19 Monitoring started on 28 Jan 2012	C8	0	0	0	0	0	0	0	0	0	0	0	0
	C9	0	0	0	0	0	0	0	0	0	0	0	0
Total		0	0	0	0	0	1	0	0	0	0	0	2

Remarks: - The cessation of seawater intake operation for C6 was confirmed on 17 May 2011, the water monitoring at C6 was then terminated since 17 May 2011.

- WSD9 and WSD17 were implemented with respect to HK/2009/02 from 8 Feb 2012.
- 4-week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8, C9 were completed on 6 Feb 2012.
- C8 and C9 were implemented with respect to HY/2009/19 from 28 Jan 2012.
- WSD7 and WSD20 were temporarily suspended from 27 Apr 2012
5.4.21. Enhanced DO monitoring at 4 monitoring stations in Causeway Bay Typhoon Shelter and Ex-Public Cargo Works Area was conducted three days per week during the reporting period. The action and limit level exceedances of water quality monitoring are summarized in Table 5.18.

Table 5.18 Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in Reporting Month

Contract no.	Water Monitoring Station	Mid-flood		Mid-ebb	
		DO		DO	
		AL	LL	AL	LL
HY/2009/15	C6	0	0	1	0
	C7	1	0	0	0
	Ex-WPCWA SW	0	0	0	0
	Ex-WPCWA SE	0	0	2	0
Total		1	0	3	0

5.4.22. There were four action level exceedances in enhanced dissolved oxygen monitoring in this reporting period.
5.4.23. In response to the Condition 2.18 of the Environmental Permit no. EP-356/2009 requiring that a silt curtain / impermeable barrier system be installed to channel water discharge flow from Culvert L to locations outside the embayment area, a proposed replacement of the requirement with additional dissolved oxygen monitoring has been conducted at three monitoring stations, namely A, B and C between the eastern seawall of Central Reclamation Phase III and the HKCEC Extension since November 2011 under EP-356/2009 so that DO level between the eastern seawall of Central Reclamation Phase II and the HKCEC extension could be continuously monitored. Details of additional DO monitoring results can be referred in Appendix 5.4a.
5.5 Waste Monitoring Results

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation
5.5.1. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. Therefore, no C\&D waste was generated.

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC
5.5.2. Inert and non-inert C\&D waste were disposed of in this reporting month. Details of the waste flow table are summarized in Table 5.19.

Table 5.19 Details of Waste Disposal for Contract no. HK/2009/01

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C\&D materials disposed, m^{3}	474.83	22069.64	TKO137, TM38
Inert C\&D materials recycled, m^{3}	0	389.96	N/A
Non-inert C\&D $\mathrm{materials} \mathrm{disposed,}_{\mathrm{m}^{3}}$	54.16	752.4	SENT Landfill

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Non-inert C\&D materials recycled, kg	570	139884	N/A
Chemical waste disposed, kg	370	6330	N/A
*Marine Sediment (Type 1- Open Sea Disposal), m	7682 (Bulk Volume)	91164.2 (Bulk Volume)	South of Cheung Chau
* Marine Sediment (Type 1 - Open Sea Disposal (Dedicate Sites) \& Type 2- Confined Marine Disposal), m	10414 (Bulk Volume)	43018 (Bulk Volume)	East of Cha Chau
Dredged Sediment Requiring Type 3- Special Treatment / Disposal contained in Geosynthetic Containers	5	5613 (Bulk Volume)	East of Cha Chau

Remarks: Contractor clarified and updated waste flow table for the reporting month of May
5.5.3. There were marine sediments Type 1 - Open Sea Disposal (Dedicate Sites) \& Type 2 Confined Marine Disposal disposed in the reporting month. The maximum dredging rate in cross harbour water main is $493 \mathrm{~m}^{3}$ per day, which is complied with the recommended maximum dredging rate listed in Table 2 of FEP-02/356/2009.

Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at WanChai East
5.5.4. Inert and non- inert C\&D waste were disposed of in this reporting month. Details of the waste flow table are summarized in Table 5.20.

Table 5.20 Details of Waste Disposal for Contract no. HK/2009/02

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C\&D materials disposed, m^{3}	17,179	140,130	TKO137 / TM 38
Inert C\&D materials recycled, m^{3}	NIL	NIL	N/A
Non-inert C\&D materials disposed, m^{3}	35	452	SENT Landfill
Non-inert C\&D materials recycled, m^{3}	NIL	NIL	N/A
Chemical waste disposed, kg	Nil	N/186	N/A
Marine Sediment (Type 1 - Open Sea Disposal), m^{3}	NIL	154,827 (Bulk volume)	South of Cheung Chau
Marine Sediment (Type 1 - Open Sea	Nil	114464	East of Sha Chau

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Disposal (Dedicate Sites) \& Type 2- Confined Marine Disposal), m^{3}		(Bulk volume)	

Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)
5.5.5. Inert and non- inert C\&D waste were disposed of in this reporting month. Details of the waste flow table are summarized in Table 5.21

Table 5.21 Details of Waste Disposal for Contract no. HY/2009/15

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C\&D materials disposed, m^{3}	NIL	141579.2	Tuen Mun Area 38
	NIL	65216	TKO137 FB
Inert C\&D materials recycled,m^{3}	NIL	184.0	To Contract HY/2009/11
	NIL	304	ex-PCWA
	NIL	111.9	TS4
Non-inert C\&D materials disposed, m^{3}	NIL	252.2	SENT Landfill
Non-inert C\&D materials recycled, kg	NIL	299361.5	N/A
Chemical waste disposed, kg	NIL	8,200	N/A
Marine Sediment (Type 1 Open Sea Disposal), m^{3}	14,375	58,448 (Bulk Volume)	South of Cheung Chau
Marine Sediment (Type 1 Open Sea Disposal (Dedicate Sites) \& Type 2 - Confined Marine Disposal), m^{3}	12,090	186,342 (Bulk Volume)	East of Sha Chau
Marine Sediment (Type 3 Special Treatment / Disposal contained in Geosynthetic Containers)	NIL	$7,050$ (Bulk Volume)	East of Sha Chau

Contract no. HK/2010/06 - Wan Chai Development Phase II - Central - Wan Chai Bypass over MTR Tsuen Wan Line
5.5.6. Non-inert C\&D waste was recycled of in this reporting month. Details of the waste flow table are summarized in Table 5.22.

Table 5.22 Details of Waste Disposal for Contract no. HK/2010/06

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C\&D materials disposed, m^{3}	990	11027.83	TM38
Inert C\&D materials recycled,	NIL	NIL	N/A

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
m^{3}			
Non-inert C\&D materials disposed, m^{3}	NIL	NIL	N/A
Non-inert C\&D materials recycled, kg	70	1008.5	N/A
Chemical waste disposed, L	0	600	N/A
Marine Sediment (Type 1- Open Sea Disposal), m^{3}	397 (Bulk Volume)	3,694 (Bulk Volume)	South Cheung Chau
Marine Sediment (Type 1- Open Sea Disposal (Dedicate Sites) \& Type 2- Confined Marine Disposal), m^{3}	0 (Bulk Volume)	12,297 (Bulk Volume)	East Sha Chau

There were no marine sediments Type 1 - Open Sea Disposal (Dedicate Sites) \& Type 2 Confined Marine Disposal dredging from bore-piling casing in the reporting month.

Contract no. HY/2009/19 -Central- WanChai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link
5.5.7. There is no project-related waste disposal in the reporting month.

6. Compliance Audit

6.0.1. The Event Action Plan for construction noise, air quality and water quality are presented in Appendix 6.1.

6.1 Noise Monitoring

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation
6.1.1 No exceedance was recorded in the reporting month.

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC
6.1.2 No exceedance was recorded in the reporting month.

Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at WanChai East
6.1.3 No exceedance was recorded in the reporting month.

Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)
6.1.4 No exceedance was recorded in the reporting month.

Contract no. HK/2010/06 - Wan Chai Development Phase II - Central -Wanchai Bypass over MTR Tsuen Wan Line
6.1.5 No exceedance was recorded in the reporting month.

Contract no. HY/2009/19 - Central - Wanchai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link under FEP-07/364/2009/A
6.1.6 There were no action level exceedance and two limit level exceedances were recorded at M6 - HK Baptist Church Henrietta Secondary School on 30 April and 16 May 2012 in the reporting month. Investigation found that major traffic noise was contributed in the noise monitoring and not related to the Project.

6.2 Real-time noise Monitoring

6.2.1. No project-related exceedance was recorded in real-time noise monitoring in the reporting month.

6.3 Air Monitoring

6.3.1. No exceedance was recorded in 1-hr TSP and 24-hrs TSP monitoring in the reporting month.

6.4 Water Quality Monitoring

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation
6.4.1 No exceedance was recorded in the reporting month.

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC
6.4.2 No exceedance was recorded in the reporting month.

Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at WanChai East
6.4.3 There was SS exceedance at mid-flood recorded at WSD21 on 9 May 2012. Investigation found that the cleaning of screen panels at SHK and Wan Chai WSD Pumping Station was recorded on 9 May 2012 around 18:00pm. Materials from the cleaning of screen panels were unavoidably collected during monitoring. After checking with the Contractor's inspection record, the silt screen and silt curtain were in proper condition on 9 May 2012. No further exceedance was recorded in the next consecutive monitoring. These exceedances were considered no related to Project Work.
6.4.4 There was SS exceedance at mid-ebb recorded at WSD21 on 9 May 2012. After checking with Contractor, the deployed silt screen at intake and silt curtain were observed to be in proper condition for marine works during the water quality monitoring, and Contractor has provided all the necessary mitigation measures to ensure the marine water quality. This exceedance was considered not related to the Projects works.
6.4.5 There was SS exceedance at mid-ebb recorded at C5e on 30 April 2012. After checking with Contractor, the deployed silt screen at intake and silt curtain at western temporary sheet pile were observed to be in proper condition for the marine construction works during the water quality monitoring, and Contractor has provided all the necessary mitigation measures to ensure the marine water quality. This exceedance was considered not related to the Projects works.

Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)
6.4.6 There were occasionally DO exceedances at C6, C7, Ex-WPCWA SE recorded in this reporting month. After checking with Contractor, the deployed silt screen at intake and silt curtain were observed to be in proper condition for TS2 dredging during the water quality monitoring, and Contractor has provided all the necessary mitigation measures to ensure the marine water quality. These exceedances were considered not related to the Projects works.

Contract no. HK/2010/06 - Wan Chai Development Phase II - Central -Wanchai Bypass over MTR Tsuen Wan Line
6.4.7 No exceedance was recorded in this reporting month.

Contract no. HY/2009/19- Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link
6.4.8 No exceedances was recorded in this reporting month.
6.4.9 Summary for notification of exceedances can be referred to Appendix 6.2.

6.5 Review of the Reasons for and the Implications of Non-compliance

6.5.1. There was no non-compliance from the site audits in the reporting month. The observations and recommendations made in each individual site audit session were presented in Section 8.

6.6 Summary of action taken in the event of and follow-up on non-compliance

6.6.1. There was no particular action taken since no project-related non-compliance was recorded from the site audits and environmental monitoring in the reporting month.

7. Cumulative Construction Impact due to the Concurrent Projects

7.0.1. According to Condition 3.4 of the EP-356/2009, this section addresses the relevant cumulative construction impact due to the concurrent activities of the current projects including the Central Reclamation Phase III, Central-Wanchai Bypass and Island Eastern Corridor Link projects.
7.0.2. According to the Monthly EM\&A report (April 2012) of Central Reclamation Phase III (CRIII),filling works, building construction works and pipe works were performed in the April 2012 reporting month. The water quality monitoring was completed in October 2011 and no exceedance was recorded for air and noise monitoring. It can be concluded that cumulative construction impact due to the concurrent activities of the current projects with the Central Reclamation Phase III (CRIII) was insignificant.
7.0.3. According to the construction programme of Wan Chai Development Phase II, Central-Wan Chai Bypass and Island Eastern Corridor Link projects, the major construction activities at Reclamation Shoreline Sub-zones under Wan Chai Development Phase II were the dredging and filling at HKCEC3w, dredging at submarine sewage pipelines, reinstatement of seawall block construction at TCBR1W and marine bored piling at MTR Tunnel Crossing in the reporting month. The major environmental impact was water quality impact at, Causeway Bay and Wan Chai.
7.0.4. The major environmental impacts generated from the reclamation work at Central Reclamation Phase III were only located along the coastline of Central and Admiralty. As no project related exceedance was recorded in the Project, it was considered no adverse environmental impact caused by the Project works. Thus, it is evaluated the cumulative construction impact was insignificant.

8. Environmental Site Audit

8.0.1. During this reporting month, weekly environmental site audits were conducted for Contracts no. HK/2009/01, HK/2009/02, HY/2009/15, HK/2010/06 and HY/2009/19. No non-conformance was identified during the site audits.
8.0.2. Four site inspections for Contract no. HK/2009/01 were carried out on 2, 9, 17 and 23 May 2012 in reporting month. Results of these inspections and outcomes are summarized in Table 8.1.

Table 8.1 Summary of Environmental Inspections for Contract no. HK/2009/01

Item	Date	Observations	Action taken by Contractor	Outcome
120502_01	2-May-12	Direct discharge was observed in the pumping station	Discharge should be treated by sedimentation tank or geo-textile before discharge	Completion as observed on 9-May-12
120509_01	9-May-12	The exposed soil area around tree (A160) was not surrounded by sandbags (Renassiance Harbour View Hotel)	The exposed soil area around tree (A160) should be surrounded by sandbags	Completion as observed on 17-May-12
120509_02	9-May-12	The muddy water from wheel washing facilities was observed on the roadside (Water Channel)	The muddy water should be cleaned regularly and the spillage of muddy water should be prevented.	Completion as observed on 17-May-12
120509_03	9-May-12	The cement bags were not covered by tarpaulin sheet completely.(Water Channel)	The cement bags should be covered by tarpaulin sheet completely	Completion as observed on 17-May-12
120517_01	17-May-12	Drip tray was not provided for oil drums. (Water Channel, Renassiance View Hotel workfront)	Drip tray should be provided for oil drums.	Completion as observed on 23-May-12
120523_01	23-May-12	Muddy water was observed near to the roadside (Expo Drive West)	Muddy water should be cleaned	Completion as observed on 30-May-12
120523_02	23-May-12	The silt was observed on the public area (VIP area)	The silt should be cleaned.	Completion as observed on 30-May-12

8.0.3. Four site inspections for Contract no. HK/2009/02 were carried out on 3, 10, 16 and 24 May 2012 during this reporting period. The results of these inspections and outcomes are summarized in Table 8.2.

Table 8.2 Summary of Environmental Inspections for Contract no. HK/2009/02

Item	Date	Observations	Action taken by Contractor	Outcome
120503_01	3-May-12	The stagnant pool of water was observed in the U-channel, which should be cleaned	Stagnant water was removed.	Completion as observed on 10-May-12

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { Item } & \text { Date } & \text { Observations } & \begin{array}{l}\text { Action taken by } \\
\text { Contractor }\end{array} & \text { Outcome } \\
\hline \text { regularly to prevent overflow } \\
\text { (WCRI) }\end{array}
$$ \quad $$
\begin{array}{l}\text { Cement mixing plants were not } \\
\text { covered by three sides } \\
\text { enclosure completely. } \\
\text { (WSD pumping station, WCRI) }\end{array}
$$ \begin{array}{l}Cement mixing

plants should be

covered by three

sides enclosure

completely\end{array}\right]\)| Completion as |
| :--- |
| observed on |
| 120510 -01 | 10-May-12

8.0.4. Four site inspections for Contract no. HY/2009/15 were carried out on $3,8,15$ and 25 May 2012 in reporting month. The results of these inspections and outcomes are summarized in
Table 8.3.
Table 8.3 Summary of Environmental Inspections for Contract no. HY/2009/15

Item	Date	Observations	Action taken by Contractor	Outcome
120503_01	3-May-12	Oil leakage should be cleared as chemical waste (TPCWAE).	Oil leakage was cleared as chemical waste.	Completion as observed on 8-May-12
120503_02	3-May-12	Adequate drip trays should be be provided for oil drums.(TPCWAE, TS4, TS1)	Provided drip trays for oil drums.	Partial completion as observed on 15-May-12

Item	Date	Observations	Action taken by Contractor	Outcome
120508_01	8-May-12	Muddy water was observed at discharge point. Actions should be taken to prevent muddy water leaking into sea. (breakwater of TPCWAE)	Area around discharge point was cleared of mud.	Completion as observed on 15-May-12
120508_02	8-May-12	Blockage at public manholes should be cleared (Gate of TS4, outside POC)	Removal of mud inside manholes.	Completion as observed on 15-May-12
120508_03	8-May-12	Adequate drip trays should be provided for oil drums/drums.	Drip trays were provided for oil drums/drums.	Partial completion as observed on 15-May-12
120515_01	15-May-12	Oil leakage and stains should be cleared as chemical waste. (Gate of TS4, POC, TPCWAE)	Oil leakage was cleared as chemical waste.	Completion as observed on 25-May-12
120515_02	15-May-12	U-channels should be cleared of blockage (TS1, TPCWAE).	Blockage at u-channels was cleared.	Completion as observed on 25-May-12
120515_03	15-May-12	Adequate drip trays should be provided for oil drums/drums. (TS1, TPCWAE)	Drip trays were provided for oil drums/drums.	Completion as observed on 25-May-12
120515_04	15-May-12	Better protection around manholes should be provided to avoid runoff into public drainage system before treatment. (outside gate of TS4)	Sandbags were provided around the public gullies and better wheel-wash practice was adopted.	Completion as observed on 25-May-12

8.0.5. Four site inspections for Contract no. HK/2010/06 was carried out on 30 April and 7, 17 and 21 May 2012 in reporting month. The results of these inspections and outcomes are summarized in Table 8.4.

Table 8.4 Summary of Environmental Inspections for Contract no. HK/2010/06

Item	Date	Observations	Action taken by Contractor	Outcome
120507_01	7-May-12	Excavated materials was observed on the working platform. (2w)	The excavated materials should be cleaned and the tarpaulin sheet should be provided during excavation.	Completion as observed on 17-May-12
120521_01	21-May-12	Water was accumulated in the drip tray (2e)	Water inside the drip tray should be cleaned regularly and the drain hole should be plugged properly.	

8.0.6. Four site inspections for Contract no. HY/2009/19 were carried out on 2, 9, 16 and 23 May 2012 in reporting month. The results of these inspections and outcomes are summarized in Table 8.5.

Table 8.5 Summary of Environmental Inspections for Contract no. HY/2009/19

Item	Date	Observations	Action taken by Contractor	Outcome
120502_01	2-May-12	Gaps and holes on platforms should be covered or filled to avoide runoff into sea.	Covered gaps and holes with tarpaulin sheet on platforms.	Completion observed on 9-May-12
120509_01	9-May-12	Blockage at U-channel should be cleared to avoid runoff out of site area (Near Oil Street).	Cleared mud from U-channel.	Completion as observed on 16-May-12.
120516_01	16-May-12	Noise blankets should be erected during noisy operations (platform 5).	Noise blankets were provided at working platforms.	Completion as observed on $30-$ May-12
$120516 _02$	16-May-12	Muddy trail should be cleared and avoided out of site area (outside gate at Oil Street).	Cleared muddy trail ouside gate of Oil Street.	Completion as observed on 23-May-12
120523 _03	23-May-12	Grouting machine at portion III should be covered properly to avoid cement coming out of mixing area (portion III)	Extra tarpaulin was placed on all sides of grouting area.	Completion as observed on $30-M a y-12$

9. Complaints, Notification of Summons and Prosecution

9.0.1. There was no complaint received in this reporting month.
9.0.2. The details of cumulative complaint log and updated summary of complaints are presented in Appendix 9.1.
9.0.3. Cumulative statistic on complaints and successful prosecutions are summarized in Table 9.1 and Table 9.2 respectively.

Table 9.1 Cumulative Statistics on Complaints

Reporting Period	No. of Complaints
Commencement works (Mar 2010) to last reporting month	26
May 2012	0
Project-to-Date	$\mathbf{2 6}$

Table 9.2 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this month (Offence Date)	Cumulative No. Project-to-Date
Air	-	0	0
Noise	-	0	0
Water	-	0	0
Waste	-	0	0
Total	-	$\mathbf{0}$	$\mathbf{0}$

10. Conclusion

10.0.1. The EM\&A programme was carried out in accordance with the EM\&A Manual requirements, minor alterations to the programme proposed were made in response to changing circumstances.
10.0.2. WDII/RSS advised that the dredging works for submarine pipeline at Victoria Harbour had been completed in January 2012. Therefore, the concurrent dredging activities at Sewage Pipeline Zone and reclamation shoreline zone TCBR under the EP-356/2009 scenario 2B no longer exist. As such, with reference to Table 5.39 of the EIA Report for Wan Chai Development Phase II and Central-Wan Chai Bypass, the application of silt screen for cooling water intakes for Queensway Government Offices was suspended and the others were remains unchanged.
10.0.3. Water quality monitoring at WSD10 and WSD15 will be temporary suspended while water quality monitoring at WSD9 and WSD17 were implemented with respect to HK/2009/02 for the water quality monitoring scheduled on 8 Feb 12 onwards;
10.0.4. Water quality monitoring at C8 and C9 have been implemented with respect to HY/2009/19 since the marine bore piling work started on 28 January 2012.
10.0.5. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Centre (C9) between 9 January 2012 to 30 July 2012 which caused to the inaccessibility of sampling either land and marine since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 since 10 March 2012 to the closest accessible point prior to the completion of the external façade refurbishment work.
10.0.6. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.
10.0.7. With respect to the trial dredging at WCR2 was scheduled on $20,22,24,25$ March and $1,3,11$, $13,15,17,19,20$ Apr and 3 May 2012, on-going water quality monitoring results at WSD21 during this period was checked and indicated that there was no contribution due to the trial dredging operation. Enhanced review of water quality around WCR2 was also implemented and no deterioration in the water quality was observed.
10.0.8. Due to the dredging works for Cross Harbour Water Mains from Wan Chai to Tsim Sha TsuiDP6 was completed on 26 March 2012, the temporary suspension of impact water quality monitoring at WSD7 and WSD20 after 27 April 2012 for the water quality monitoring at WSD7 and WSD20 have been monitored for 4-week period after the completion of DP6 to confirm no water deterioration.
10.0.9. The scheduled construction activities and the recommended mitigation measures for the coming month are listed in Table 10.1.

Table 10.1 Construction Activities and Recommended Mitigation Measures in Coming Reporting Month

Contract No.	Key Construction Works	Recommended Mitigation Measures
HK/2009/01	Marine Works - Reclamation works and installation of sheet pile water channel (from CH170 to CH260) - Rockfilling within HKCEC Water Channel (from CH220 to CH230) - Installation of sheet pile water channel for cooling water intake at Dome Promenade between CH 170 and CH 240 - Dredging from CH290 to CH410 (Stage 3) near Expo Drive East Bridge - Installation pipe pile wall for modification of vertical seawall near Expo Drive East would be commenced upon completion of existing staircase demolition and removal of covered walkway. - Rockfilling at northeast of Area 9 and Area7 near Expo Drive East Bridge Cross-Harbour Watermains Installation (CHA \& CHB) - Trench excavation and installation of shoring system for installation of cross harbour watermains (CHA \& CHB) along the pipe pile wall at TST seashore - Installation of cross-harbour watermains nos. A18/B18 - Trust block construction, concrete coating for flange joint and Rockfilling protection works for cross-harbour watermains in Victoria Harbour Fresh Watermains, Cooling Watermains and Salt Watermains (On Land) - Works would be continued at	- To conform the installation and setting as in the silt screen deployment plan - Frequency spray water on the dry dusty road and on the surface of concrete breaking - To cover the dusty material or stockpile by impervious sheet - To space out noisy equipment and position as far as possible from sensitive receiver. - To well maintain the mechanical equipments / machineries to avoid abnormal noise nuisance. - Machines and plant that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum - Daily visual inspection of silt screen and silt curtain to ensure its operation properly

Contract No.	Key Construction Works	Recommended Mitigation Measures
	Zone B1-5A, B2-1, B4-3, B4-4, B5-1A, A1-1, A1-3A, A1-3B, A1-3, A2-2, A3-3, A3-4B, A3-5B, A4-1 and A4-2A - Mainlaying and road reinstatement works at Zone B4-4 and B1-5A - Trench excavation at Zone B4-1A and the road reinstatement works at Zone B4-4 - Jacking pit construction at Zone A1-3B. Heading No. H6B (toward western direction) and Heading No. H6C (toward eastern direction) - Mainlaying works at Zone A2-2. Valve connections for both cooling mains intake pipe and discharge pipe of APA and Shui On Centre - Heading No. H6A (toward eastern direction) - Heading No. H10 across the run-out of Renaissance Harbour View Hotel and mainlaying works at Zone A4-2A - Mainlaying works at traffic island near junction between Convention Avenue and Fenwick Pier Street - Heading Nos. H7 (Mainlaying works by trenchless method) - Cable ducting works at Zone GA (across Harbour Road) - Cable ducting works at Zone GS (across Harbour Road)	

Contract No.	Key Construction Works	Recommended Mitigation Measures
	- Cable ducting works at Zone GH (along Harbour Road)	
HK/2009/02	- Continue steel platforms (Wet Well) installation at +2.2 mPD for P7, P8 \& P9 Pumping Stations. - Continue pipe jacking of WSD 2nd last drive. - Continue pipe laying works along Harbour Road and Tonnochy Road. - Complete the steel bridge erection crossing landside cofferdam of Salt Water Intake Culvert for cooling mains installation. - Continue 800MS pipe installation inside Ex-pet Garden. - Continue ABWFs \& E\&M works of WSD Salt Water Pumping Station. - Continue pipeline jacking of salt water intake culverts B. - Continue ELS works of landside cofferdam for the construction of Bay 6 - 10 salt water intake culverts. - Continue ELS works of seaside cofferdams for salt water intake culvert, submarine outfall and Box Culvert N1. - Complete breaking the thrust wall aside the Jacking Pit. - Commence HDPE pipe Outfall A \& B launching from Jacking Pit at WCR1 area. - Continue substructure works for	- To cover the dusty material or stockpile by impervious sheet; - Frequency spray water on the dry dusty road and on the surface of concrete breaking - To well maintain the mechanical equipments / machineries to avoid abnormal noise nuisance and dark smoke emission - To conform the installation and setting as in the silt screen and silt curtain deployment plan - Movable noise barrier shall be deployed for demolition works - Daily visual inspection of silt screen and silt curtain to ensure its operation properly - Review silt screen deployment and silt curtain deployment and resubmit associate plans to EPD - Implement silt screen and silt curtain in accordance with the associated plans submitted to EPD.

Contract No.	Key Construction Works	Recommended Mitigation Measures
	the New Ferry Pier at Portions $1 A, 2 A, 2 B, 2 C \& 3 C$. - Complete the installation of precast slab Panel between Grid B-F/9-15 of the New Ferry Pier. - Complete backfilling rockfills for the installed submarine outfall pipes and diffuser section. - Continue reclamation works at WCR2 area. - Completed remaining SHK piping diversion at WCR2 area. - Side Beam remedial works and reinstatement of carriageway for Box Culvert O diversion. - Continue excavation works, bulkhead wall construction and seawall opening for Box Culvert O diversion.	
HY/2009/15	- Dredging for seawall foundation at TS2 - Seawall formation at TS2 - Removal of temporary reclamation at TS1	- Watering any dust generating activities - Checking all drip trays frequently and clear any stagnant water and mud inside it. - Noise control measures shall be provided during restricted hours.
HK/2010/06	- Pile head breaking works - Sheet Piles - Construction of Pre-cast Unit in China	- To conform the installation and setting as in the silt screen and silt curtain deployment plan - To space out noisy equipment and position as far as possible from sensitive receiver. - Daily visual inspection of silt screen and silt curtain to ensure its operation properly
HY/2009/19	- Marine Bored Piling	- To conform the installation and setting as in the silt screen and silt curtain deployment plan

Figure 2.1

Project Layout

Figure 2.2

Project Organization Chart

Project Organization Chart

Figure 2.3

Locations of Monitoring Stations

CGANDC 7: EXISTING SEAWATER INTAKE

- ODOLIR PATROC ROUTES FOR CONSTRUCTION PHASE
- - MONITORING STATION FOR DO

CG AND C 7: EXISTING SEAWATER INTAKE

Appendix 3.1

Environmental Mitigation Implementation Schedule

Environmental Mitigation Implementation Schedule

Implementation Schedule for Air Quality Control

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
Construction Phase								
For the Whole Project								
S3.6.5	Four times a day watering of the work site with active operations.	Work site / during construction	Contractor		\checkmark			EIAO-TM
S3.8.1	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimise cumulative dust impacts. - Strictly limit the truck speed on site to below 10 km per hour and water spraying to keep the haul roads in wet condition; - Watering during excavation and material handling; - Provision of vehicle wheel and body washing facilities at the exit points of the site, combined with cleaning of public roads where necessary; and - Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations.	Work site / during construction	Contractor		\checkmark			

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	

S3.5.6	For the dredging activities carried out in the vicinity of Police Officers' Club, the dredging operation will be restricted to only 1 small close grab dredger to minimise the odour impact during the dredging activity. The dredging rate should be reduced as much as practicable for the area in close proximity to the Police Officers' Club. The sediments contain highly contaminated mud which may be disposed with the use of geosynthetic containers (details shall refer to Section 6), grab dredger has to be used for filling up the geosynthetic containers on barges. the dredging rate for the removal of the sediments at the south-west corner of the typhoon shelter shall be slowed down or restricted to specific non-popular hours in weekdays when it is necessary during construction.	Corner of CBTS/implementation of harbour-front enhancement	CEDD_{-}^{1}	\checkmark		EIAO-TM
S3.8.8	Carry out dredging at the corner of CBTS to remove the sediment and clean the slime attached on the CBTS shoreline seawall	$\begin{aligned} & \text { Corner of CBTS \& CBTS } \\ & \text { shoreline } \\ & \text { seawall/implementation } \\ & \text { of harbour-front } \\ & \text { enhancement } \end{aligned}$	CEDD_{-}^{2}	\checkmark		EIAO-TM
Operation Phase						
For the Whole Project						

[^0]| EIA Ref | Environmental Protection Measures / Mitigation Measures | Location / Timing | Implementation Agent | Implementation Stages* | | | | Relevant Legislation and Guidelines |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Des | C | O | Dec | |
| S3.10.2 | Monthly (from July to September) monitoring of odour impacts, for a period of 5 years, is proposed during the operational phase of the Project to ascertain the effectiveness of the Enhancement Package over time, and to monitor any ongoing odour impacts at the ASRs. | Planned ASRs (CBTS Breakwater)/First 5-year period of operation phase | CEDD ${ }^{1}$ | | | $\sqrt{ }$ | | EIAO-TM |
| For DP1 - CWB (Within the Project Boundary) | | | | | | | | |
| $\begin{array}{ll} \text { S3.6.53 } & - \\ \text { S3.6.54 } \end{array}$ | The design parameters of the East and Central Ventilation Buildings as set in Tables 3.10 and 3.11 | East and Central Ventilation Buildings / During operation of the Trunk Road | HyD | | | $\sqrt{ }$ | | |
| S3.10.2 | Air quality monitoring for the operation performance of the East Ventilation Building and associated East Vent Shaft will be conducted. | East Vent Shaft / During operation of the East Ventilation Building and associated East Vent Shaft | HyD | | | $\sqrt{ }$ | | EIAO-TM |

- Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM\&A Report

Table A13.2 Implementation Schedule for Noise Control

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
Construction Phase								
For the W	le Project							

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	O	Dec	
S4.9.4	Good Site Practice: - Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program. - Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program. - Mobile plant, if any, shall be sited as far away from NSRs as possible. - Machines and plant (such as trucks) that may be in intermittent use shall be shut down between works periods or shall be throttled down to a minimum. - Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. - Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from onsite construction activities.	Work Sites / During Construction	Contractor		\checkmark			EIAO-TM, NCO

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM\&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
$\begin{gathered} \hline \hline \text { S4.8.3 - } \\ \text { S4.8.5 } \end{gathered}$	Use of quiet powered mechanical equipment, movable noise barrier and temporary noise barrier for the following tasks: - Slip road 8 tunnel - Construction of diaphragm wall and substructures of the tunnel approach ramp - Excavation - Construction of slabs - Backfill - Demolition and construction of substructures for the IEC - Demolition works of existing piers and crossheads of the marine section of the existing IEC Use of PME grouping for the following tasks: - At-grade road construction - Substructure for IECL connection	Work Sites / During Construction	Contractor		\checkmark			EIAO-TM, NCO
For DP2 - WDII Major Roads (Road P2)								
$\begin{gathered} \hline \text { S4.8.3 - } \\ \text { S4.8.4 } \end{gathered}$	Use of quiet powered mechanical equipment, movable noise barrier and temporary noise barrier for the following tasks: - Temporary road diversion - Resurfacing - At-grade roadwork	Work Sites / During Construction	Contractor		$\sqrt{ }$			EIAO-TM, NCO
For DP3 - Reclamation Works								
$\begin{gathered} \hline \text { S4.8.3 - } \\ \text { S4.8.4 } \end{gathered}$	Use of quiet powered mechanical equipment for the following task: - Filling behind seawall - Seawall construction	Work Sites / During Construction	Contractor		$\sqrt{ }$			EIAO-TM, NCO

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	O	Dec	
For DP5 - Wan Chai East Sewage Outfall								
$\begin{gathered} \mathrm{S} 4.8 .3- \\ \mathrm{S} 4.8 .4 \end{gathered}$	Use of quiet powered mechanical equipment for the following tasks: - Submarine pipelines (marine section) Use of quiet powered mechanical equipment and movable noise barrier for the following tasks: - Installation of a new pipeline (land section)	Work Sites / During Construction	Contractor		$\sqrt{ }$			EIAO-TM, NCO
For DP6 - Cross-Harbour Water Mains from Wan Chai to Tsim Sha Tsui								
$\begin{gathered} \mathrm{S} 4.8 .3- \\ \mathrm{S} 4.8 .4 \end{gathered}$	Use of quiet powered mechanical equipment for the following tasks: - Submarine pipelines (marine section) \bullet	Work Sites / During Construction	Contractor		$\sqrt{ }$			EIAO-TM, NCO

Appendix 3.1

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM\&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	O	Dec	
Operation Phase								
For DP1 - CWB (Within the Project Boundary)								

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
$\begin{gathered} \hline \hline \text { S4.8.14 - } \\ \text { S4.8.18 } \end{gathered}$	- For Existing NSRs - about 235 m length of noise semi-enclosure with transparent panel covering the westbound slip road from the IEC - about 230 m length of noise semi-enclosure with transparent panel covering the main carriageways (eastbound and westbound) of the CWB and IEC - about 135 m length of 5.5 m high cantilevered noise barrier with 3 m cantilever inclined at 45° with transparent panel on the eastbound slip road to the IEC - about 95 m length of 5.5 m high cantilevered noise barrier with 1 m cantilever inclined at 45° with transparent panel on the eastbound slip road to the IEC - about 350 m length of 3.5 m high vertical noise barrier with transparent panel on the eastbound slip road to the IEC - low noise road surfacing for the trunk road (except tunnel section and beneath the landscaped deck at the eastern portal area) with speed limit of $70 \mathrm{~km} /$ hour For Future/Planned NSRs - about 265 m length of noise semi-enclosure with transparent panel covering the westbound slip road from the IEC	Near North Point / Before commencement of operation of road project In between the Electric Centre (next to City Garden) and CDA(1) site / Before occupation of Planned NSRs in CDA and CDA(1) sites.	HyD	\checkmark	 	\checkmark		EIAO-TM

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	O	Dec	
	- The openable windows of the temple, if any, should be orientated so as to avoid direct line of sight to the existing Victoria Park Road as far as practicable.	Near Causeway Bay Fire Station / During detailed design of the reprovisioned Tin Hau Temple	Project Proponent for the re-provisioned Tin Hau Temple	\checkmark				

[^1]Table A13.3 Implementation Schedule for Water Quality Control

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	O	Dec	
Construction Phase								
For DP3 - Reclamation Works, DP5 (Wan Chai East Sewage Outfall), DP6 (Cross-Harbour Water Mains from Wan Chai to Tsim Sha Tsui), DP1 - CWB (within the Project Boundary)								
S5.8	A phased reclamation approach is planned for the WDII. Containment of fill within each of the reclamation phases by seawalls is proposed, with the seawall constructed first (above high water mark) with filling carried out behind the completed seawalls. Any gaps that may need to be provided for marine access will be shielded by silt curtains to control sediment plume dispersion away from the site. Filling for seawall construction should be carried out behind the silt curtain	Work site / During the construction period	Contractor		\checkmark			EIAO-TM, WPCO
S5.8	Dredging shall be carried out by closed grab dredger for the following works: - Seawall construction in all the reclamation areas; - Construction of the CWB Tunnel - Construction of the proposed WSD water mains; and - Construction of the proposed Wan Chai East sewage outfall pipelines.	Work site / During the construction period	Contractor		\checkmark			EIAO-TM, WPCO
S5.8, Figure 5.3	Dredging for the Wan Chai East sewage outfall pipelines shall not be carried out concurrently with the following activities: - Dredging along the proposed cross-harbour water mains; - Dredging along the seawall in the Wan Chai Reclamation (WCR) zone (area between HKCEC Extension and PCWA).	Work site / During the construction period	Contractor		\checkmark			EIAO-TM, WPCO

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM\&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures					Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines	
						Des		C	O	Dec			
S5.8	The water body behind the temporary reclamations within the Causeway Bay typhoon shelter shall not be fully enclosed.						Work site / During the construction period	Contractor		\checkmark			EIAO-TM, WPCO
S5.8	As a mitigation measure, to avoid the accumulation of water borne pollutants within the temporary embayment between CRIII and HKCEC1, an impermeable barrier, suspended from a floating boom on the water surface and extending down to the seabed, will be erected by the contractor before the HKCEC1 commences. The barrier will channel the stormwater discharge flows from Culvert L to the outside of the embayment. The contractor will maintain this barrier until the reclamation works in HKCEC2W are carried out and the new Culvert L extension is constructed.					Work site / During the construction period	Contractor		\checkmark			EIAO-TM, WPCO	
S5.8, Figure 5.3	The total dre than the max production ra	es in eaction n Area breaky (NPR) TBW TCBR	rine wo in the ffect of	ks zones sh able below lt curtain.	not be more These are the	Work site / During the construction period	Contractor		\checkmark			EIAO-TM, WPCO	

EIA Ref	Environmental Protection Measures / Mitigation Measures					Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines	
						Des		C	0	Dec			
	Wan Chai Shoreline Zone (WCR)		6,000	375	42,000								
	HKCEC Shoreline Zone \quad HK	CEC Stage 1 \& 3	1,500	94	10,500								
	(HKCEC) ${ }^{\text {a }}$	EEC Stage 2	6,000	375	42,000								
	Cross Harbour Water Mains		1,500	94	10,500								
	Wan Chai East Submarine Sewa	ge Pipeline	1,500	94	10,500								
	Note: $1,500 \mathrm{~m}^{3}$ per day seawall of WCR1.	shall be appl	for		the western								
S5.8, Figure 5.3	Dredging along the seawall at WCR1 shall be undertaken initially at $1,500 \mathrm{~m}^{3}$ per day for construction of the western seawall (which is in close proximity of the WSD intake), followed by partial seawall construction at the western seawall (above high water mark) to protect the adjacent intakes as much as possible from further dredging activities.					Work site During the construction period	Contractor		\checkmark			EIAO-TM, WPCO	
S5.8, Figure 5.3	For dredging within the Causeway Bay typhoon shelter, seawall shall be partially constructed to protect the nearby seawater intakes from further dredging activities. For example, at TCBR1W, the southern and eastern seawalls shall be constructed first (above high water mark) so that the seawater intakes at the inner water would be protected from the impacts from the remaining dredging activities along the northern boundary.					Work site / During the construction period	Contractor		$\sqrt{ }$			EIAO-TM, WPCO	
S5.8, Figure 5.3	Silt curtains shall be deployed around the closed grab dredgers during seawall dredging and seawall trench filling in the areas of HKCEC, WCR, TCBR and NP.					Work site / During the construction period	Contractor		\checkmark			EIAO-TM, WPCO	
S5.8, Figure 5.3	Silt screens shall be applied to seawater intakes at interim construction stages as stated below:					Work site / During the construction period	Contractor		$\sqrt{ }$			EIAO-TM, WPCO	
	Interim Construction Stage	Location of Applications											
	Scenario 2A in early 2009 with concurrent dredging activities at HKCEC, WCR, TPCWA,	WSD saltwater intakes at Sai Wan Ho, Quarry Bay, Sheung Wan, Wan Chai, Kowloon South Cooling water intakes for Hong Kong Convention and Exhibition Centre Extension, Hong Kong											

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
S5.8	Other mitigation measures include: - mechanical grabs, if used, shall be designed and maintained to avoid spillage and sealed tightly while being lifted. For dredging of any contaminated mud, closed watertight grabs must be used; - all vessels shall be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; - all hopper barges and dredgers shall be fitted with tight fitting seals to their bottom openings to prevent leakage of material; - construction activities shall not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds; - loading of barges and hoppers shall be controlled to prevent splashing of dredged material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation; and	Work site / During the construction period	Contractor		\checkmark			ProPECC PN 1/94; WPCO (TM-DSS)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	O	Dec	
	- before commencement of the reclamation works, the holder of Environmental Permit has to submit plans showing the phased construction of the reclamation, design and operation of the silt curtain.							
S5.8	Silt screens are recommended to be deployed at the seawater intakes during the reclamation works period. Installation of silt screens at the seawater intake points may cause a potential for accumulation and trapping of pollutants, floating debris and refuse behind the silt screens and may lead to potential water quality deterioration at the seawater intake points. Major sources of pollutants and floating refuse include the runoff and storm water discharges from the nearby coastal areas. As a mitigation measure to avoid the pollutant and refuse entrapment problems and to ensure that the impact monitoring results are representative, regular maintenance of the silt screens and refuse collection shall be performed at the monitoring stations at regular intervals on a daily basis. The Contractor shall be responsible for keeping the water behind the silt screen free from floating rubbish and debris during the impact monitoring period.	Work site / During the construction period	Contractor		\checkmark			EIAO-TM, WPCO

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
S5.8	Dredging of contaminated mud is recommended as a mitigation measures for control of operational odour impact from the Causeway Bay typhoon shelter. In recognition of the potential impacts caused by dredging activities close to the seawater intakes, only 1 small close grab dredger shall be operated within the typhoon shelter (for the dredging to mitigate odour impact) at any time to minimize the potential impact. Double silt curtains shall be deployed to fully enclose the closed grab dredger during the dredging operation. In addition, an impermeable barrier, suspended from a floating boom on the water surface and extended down to the seabed, shall be erected to isolate the adjacent intakes as much as possible from dredging activities. For example, if dredging is to be carried out at the southwest corner of the typhoon shelter, physical barriers shall be erected to west of the cooling water intake for Excelsior Hotel so that the intake would be shielded from most of the SS generated from the dredging operation to the west of the intake. For area in close proximity of the cooling water intake point, the dredging rate shall be reduced as much as practicable. Site audit and water quality monitoring shall be carried out at the seawater intakes during the dredging operations. Daily monitoring of SS at the cooling water intake shall be carried out, and 24 hour monitoring of turbidity at the intakes shall be implemented during the dredging activities. If the monitoring results indicate that the dredging operation has caused significant changes in water quality conditions at the seawater intakes, appropriate actions shall be taken to stop the dredging and mitigation measures such as slowing down the dredging rate shall be implemented.	Causeway Bay typhoon shelter/Imple mentation of harbour-front enhancement.	CEDD ${ }_{-}$		$\sqrt{ }$			WPCO

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	O	Dec	
For the Whole Project								
S5.8	- Construction Runoff and Drainage - use of sediment traps, wheel washing facilities for vehicles leaving the site, and adequate maintenance of drainage systems to prevent flooding and overflow; - Permanent drainage channels shall incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities shall be based on the guidelines in Appendix A1 of ProPECC PN 1/94; - a sediment tank constructed from pre-formed individual cells of approximately 6-8 m3 capacity can be used for settling ground water prior to disposal; - oil interceptors shall be provided in the drainage system for the tunnels and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor shall have a bypass to prevent flushing during periods of heavy rain; - precautions and actions to be taken when a rainstorm is imminent or forecast, and during or after rainstorms. Particular attention shall be paid to the control of any silty surface runoff during storm events; - on-site drainage system shall be installed prior to the commencement of other construction activities. Sediment traps shall be installed in order to minimise the sediment loading of the effluent prior to discharge; - All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge shall be adequately designed for the controlled release of storm flows. All sediment control measures shall be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage shall be reinstated to its original condition when the construction work is finished or the temporary diversion is no longer	- Work site / During the constructi on period	Contractor		\checkmark			ProPECC PN 1/94; WPCO (TM-DSS)

${ }^{3}$ CEDD will identify an implementation agent.

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM\&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	O	Dec	
	required. - All fuel tanks and store areas shall be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity.							
	- Minimum distances of 100 m shall be maintained between the storm water discharges and the existing or planned WSD flushing water intakes during construction phase.							
S5.8	Sewage from Construction Work Force Construction work force sewage discharges on site shall be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage shall be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor shall also be responsible for waste disposal and maintenance practices.	Work site / During the construction period	Contractor		\checkmark			ProPECC PN 1/94; WPCO (TM-DSS)
S5.8	Floating Debris and Refuse Collection and removal of floating refuse shall be performed at regular intervals on a daily basis. The contractor shall be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish.	Work site and adjacent water / During the construction period.	Contractor		\checkmark			WPCO

EIA Ref	Environmental Protection Measures / Mitigation Measures	$\begin{aligned} & \text { Location / } \\ & \text { Timing } \end{aligned}$	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
S5.8	Storm Water Discharges Minimum distances of 100 m shall be maintained between the existing or planned stormwater discharges and the existing or planned WSD flushing water intakes.	Work site and adjacent water / During the design and construction period.	Contractor	\checkmark	\checkmark			WPCO
Operation Phase								
DP1 - CWB (within the Project Boundary)								
S5.8	For the operation of CWB, a surface water drainage system would be provided to collect road runoff. The following operation stage mitigation measures are recommended to ensure road runoff would comply with the TM under the WPCO: - The drainage from tunnel sections shall be directed through petrol interceptors to remove oil and grease before being discharged to the nearby foul water manholes. - Petrol interceptors shall be regularly cleaned and maintained in good working condition. - Oily contents of the petrol interceptors shall be properly handled and disposed of, in compliance with the requirements of the Waste Disposal Ordinance. - Sewage arising from ancillary facilities of CWB (for examples, car park,	CWB/During design and operational period	$\mathrm{HyD} / \mathrm{TD}^{3}$	\checkmark		\checkmark		WPCO

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	$\begin{aligned} & \text { Location / } \\ & \text { Timing } \end{aligned}$	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
	control room, ventilation and administration buildings and tunnel portals) shall be connected to public sewerage system. Sufficient capacity in public sewerage shall be made available to the proposed facilities. - Road drainage shall also be provided with adequately designed silt trap to minimize discharge of silty runoff. - The design of the operational stage mitigation measures for CWB shall take into account the guidelines published in ProPECC PN 5/93 "Drainage Plans subject to Comment by the EPD." All operational discharges from the CWB into drainage or sewerage systems are required to be licensed by EPD under the WPCO.							

[^2]${ }^{3}$ if employ Management, Operation and Maintenance (MOM) Contract

Table A13.4 Implementation Schedule for Waste Management

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
Construction Phase								
For DP3 - Reclamation Works								
S6.7.2	Marine Sediments The dredged marine sediments would be loaded onto barges, transported to and disposed of at the designated disposal sites at South of Cheung Chau, East of Ninepin, East of Tung Lung Chau, South of Tsing Yi or East of Sha Chau to be allocated by the MFC depending on their level of contamination or at other disposal sites after consultation with the MFC and EPD. In accordance with the ETWB TCW No. 34/2002, the contaminated material must be dredged and transported with great care. The mitigation measures recommended in Section 5 of the EIA Report shall be incorporated. The dredged contaminated sediment must be effectively isolated from the environment upon final disposal and shall be disposed of at the Type 2 confined marine disposal contaminated mud pit.	Work site / During the construction period	Contractor		$\sqrt{ }$			ETWB TCW No. 34/2002
S6.7.3	Based on the biological screening results, the Category H ($>10 \times \mathrm{xLCEL}$) sediment which failed the biological testing would require Type 3 special disposal. The volume of Category H sediment from the Causeway Bay typhoon shelter which would require special disposal arrangements is estimated to be approximately $0.05 \mathrm{Mm}^{3}$. A feasible containment method is proposed whereby the dredged sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal.							

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
S6.7.5	It will be the responsibility of the Contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, at least 3 months prior to the dredging contract being tendered							
S6.7.6	During transportation and disposal of the dredged marine sediments requiring Type 1 and Type 2 disposal, the following measures shall be taken to minimise potential impacts on water quality: - Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage of material. Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.							

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
	- Monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. - Barges or hopper barges shall not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation.							
S6.6.12	Floating Refuse During the construction phase, the project proponent's contractor will be responsible for the collection of any refuse within their works area. Floating booms will be provided on the water surface to confine the refuse from the working barges as well as to avoid the accumulation of pollutants within temporary embayment as mentioned in Table 13.3.	Work site / During the construction period	Contractor		$\sqrt{ }$			

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM\&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
S6.7.7	Good Site Practices Recommendations for good site practices during the construction activities include: - nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site; - training of site personnel in proper waste management and chemical waste handling procedures; - provision of sufficient waste disposal points and regular collection for disposal; - appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; - regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and - a recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	Work site / During the construction period	Contractor		$\sqrt{ }$			Waste Disposal Ordinance (Cap.354)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
S6.7.8	Waste Reduction Measures Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; - to encourage collection of aluminium cans, PET bottles and paper, separate labelled bins shall be provided to segregate these wastes from other general refuse generated by the work force; - any unused chemicals or those with remaining functional capacity shall be recycled; - use of reusable non-timber formwork, such as in casting the tunnel box sections, to reduce the amount of C\&D material. - prior to disposal of C\&D waste, it is recommended that wood, steel and other metals shall be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; - proper storage and site practices to minimise the potential for damage or contamination of construction materials; and - plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.	Work site / During planning and design stage, and construction stage	Contractor	\checkmark	\checkmark			

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM\&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
S6.7.10	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C\&D material. A licensed waste collector shall be employed by the contractor to remove general refuse from the site, separately from C\&D material. A collection area shall be provided where wastes can be stored and loaded prior to removal from site. An enclosed and covered area is recommended to reduce the occurrence of 'wind blow' light material.	Work site / During the construction period	Contractor		\checkmark			Public Health and Municipal Services Ordinance (Cap. 132)
S6.7.11	Chemical Wastes After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) shall be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals shall be collected by a licensed collector for disposal at the CWTF or other licensed facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work site / During the construction period	Contractor		\checkmark			Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes
S6.7.12	Construction and Demolition Material C\&D material shall be sorted on-site into inert C\&D material (that is, public fill) and C\&D waste. All the suitable inert C\&D material shall be broken down to 250 mm in size for reuse as public fill in the WDII reclamation. C\&D waste, such as wood, glass, plastic, steel and other metals shall be reused or recycled and, as a last resort, disposed of to landfill. A suitable area shall be designated to facilitate the sorting process and a temporary stockpiling area will be required for the separated materials.	Work site / During the construction period	Contractor		\checkmark			ETWB TCW No. 33/2002, 31/2004, 19/2005

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
S6.7.13	In order to monitor the disposal of public fill and C\&D waste at public filling facilities and landfills, respectively, and to control fly tipping, a trip-ticket system shall be included as one of the contractual requirements and implemented by the Environmental Team undertaking the environmental monitoring and audit work. An Independent Environment Checker shall be responsible for auditing the results of the system.	Work site / During the construction period	Contractor and Independent Environmental Checker		\checkmark			ETWB TCW No. $31 / 2004$
S6.7.14	Bentonite Slurry The disposal of residual used bentonite slurry shall follow the good practice guidelines stated in ProPECC PN 1/94 "Construction Site Drainage" and listed as follows: - If the disposal of a certain residual quantity cannot be avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis. - If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewers, storm drains or the receiving waters as set out in the Technical Memorandum of Standards for Effluents Discharged into Drainage and Sewerage Systems, Inland and Coastal Waters. - If the used bentonite slurry is intended to be disposed to public fill reception facilities, it will be mixed with dry soil on site before disposal.	Work site / During the construction period	Contractor		\checkmark			ProPECC PN 1/94

* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Table A13.5 Implementation Schedule for Land Contamination

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
Construction Phase								
For the Whole Project								
S.12.6	- The contaminated site shall be cleaned up before commencement of site clearance and construction work at the concerned area which may disturb the ground.	A King Marine / Before commencement of construction activities at A King Marine.	Project proponent for the reprovisioned Tin Hau Temple	\checkmark				"Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repair/Dismantling Workshops" published by EPD, HKSAR EPD ProPECC Note No. 3/94
S7.10	During soil remediation works, the Contractor for the excavation works shall take note of the following points for excavation: - Excavation profiles must be properly designed and executed; - In case the soil to be excavated is situated beneath the groundwater table, it may be necessary to lower the groundwater table by installing well points or similar means; - Quantities of soil to be excavated must be estimated; - It maybe necessary to split quantities of soil according to soil type, degree and nature of contamination. - Temporary storage of soil at intermediate depot or on-site	A King Marine / During soil remediation works	Contractor	\checkmark				Air Pollution Control Ordinance Noise Control Ordinance Waste Disposal Ordinance Waste Disposal (Chemical Waste) (General) Regulation

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	O	Dec	
	maybe required. The storage site shall include protection facilities for leaching into the ground. eg. Liner maybe required.							
	- Supply of suitable clean backfill materials is needed after excavation. - Care must be taken of existing buildings and utilities. - Precautions must be taken to control of ground settlement - Speed controls for vehicles shall be imposed on dusty site areas. - Vehicle wheel and body washing facilities at the site's exit points shall be established and used. The following environmental mitigation measures shall be strictly followed during the operation and/or maintenance of the CS/S facilities:							Water Pollution Control Ordinance

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	O	Dec	
	Air Quality Mitigation Measures - The loading, unloading, handling, transfer or storage of cement shall be carried out in an enclosed system. - The loading, unloading, handling, transfer or storage of other materials which may generate airborne dust emissions such as untreated soil and oversize materials sorted out from the screening plant and stabilized soil stockpiled in the designated handling area, shall be carried out in such a manner to prevent or minimise dust emissions. These materials shall be adequately wetted prior to and during the loading, unloading and handling operations. - All practicable measures, including speed controls for vehicles, shall be taken to prevent or minimize the dust emission caused by vehicle movement. - Tarpaulin or low permeable sheet shall be put on dusty vehicle loads transported between site locations.							
	Noise Mitigation Measures - The mixing facilities shall be sited as far as practicable to the nearby noise sensitive receivers. - Simultaneous operation of mixing facilities and other equipment shall be avoided. - Mixing process and other associated material handling activities shall be properly scheduled to minimise potential cumulative noise impact on the nearby noise sensitive receivers. - Construction Noise Permit shall be applied for the operation of powered mechanical equipment during restricted hours (if any).							

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
	Water Quality Mitigation Measures - Stockpile of untreated soil shall be covered as far as practicable to prevent the contaminated material from leaching out. The leachate shall be discharged following the requirements of WPCO. Waste Mitigation Measures - Treated oversize materials will be used as filling material for backfilling within the site. Sorted materials of size smaller than 5 cm will be collected and transferred to the mixing plant for further decontamination treatment. - Stabilized soils shall be broken into suitable size for backfilling or reuse on site. - A high standard of housekeeping shall be maintained within the mixing plant area. - If necessary, there shall be clear and separated areas for stockpiling of untreated and treated materials.							

* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Table A13.6 Implementation Schedule for Marine Ecology

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
Construction Phase								
For the Whole Project - Schedule 3 DP								
S.9.7.2	Alternative design of the Trunk Road constructed in tunnel shall be adopted to avoid permanent reclamation in CBTS and ex-PWCA Basin.	-	CEDD/HyD	\checkmark				EIAO TM Annex 16 (Section 8.4) \& EIAO Guidance Note No. 3/2002.
For DP3-Reclamation Works								
S.9.7.3	Translocation of those potentially affected coral colonies to the nearby suitable habitats such as Junk Bay is recommended. A detailed translocation plan (including translocation methodology, monitoring of transplanted corals, etc.) should be drafted and approval by AFCD during the detailed design stage of the Project.	Ex-PCWA Basin and along seawall next to a public pier which is about 250 m away from the CBTS	CEDD/HyD	\checkmark				EIAO TM Annex 16 (Section 8.4) \& EIAO Guidance Note No. 3/2002.

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	O	Dec	
S.9.7.4	During dredging and filling operations, a number of mitigation measures to control water quality shall be adopted to confine sediment plume within reclamation area and protect marine fauna in proximity to the reclamation. The mitigation measures include the following: - Installation of silt curtains during dredging activities - Use of tightly-closed grab dredger - Reduction of dredging rate - Control of grab descending speed - Construction of leading edges of seawall in the early stages of the reclamation works	Work site / during construction phase	Contractor		\checkmark			EIAO TM Annex 16 (Section 8.4) \& EIAO Guidance Note No. 3/2002.
	- Adoption of multiple-phase construction schedule							

Appendix 3.1

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM\&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				Des	C	0	Dec	
S.9.7.6	To minimize potential disturbance impacts on the foraging ardeid population in the CBTS, particularly in the area near the A King Shipyard, appropriate mitigation measures shall be adopted particularly during the construction phase. The following measures are recommended: - Use of Quiet Mechanical Plant during the construction phase shall be adopted wherever possible. - Adoption of multiple-phase construction schedule. - General measures to reduce noise generated during the construction phase (see noise impact assessment) shall be effectively implemented.	Work site / during construction phase	Contractor		$\sqrt{ }$			EIAO TM Annex 16 (Section 8.4) \& EIAO Guidance Note No. 3/2002.
S.9.7.7	Seawalls shall be constructed in advance around the reclamation areas within the area of the CBTS to screen adjacent feeding ground from construction phase activities, reduce noise disturbance to the associated seabirds and also to restrict access to this habitat adjacent to works areas by ship traffic.	Work site / during construction phase	Contractor		$\sqrt{ }$			EIAO TM Annex 16 (Section 8.4) \& EIAO Guidance Note No. 3/2002.
S.9.7.8	Loss of artificial seawall habitats shall be reinstated by the construction of about 1 km vertical wave absorbing seawall along the coastlines of the new reclamation around the HKCEC and at North Point. The new seawalls are expected to provide large area of hard substrata for settlement and recruitment of intertidal fauna similar to those previously recorded from existing intertidal habitats.	Work site / during construction phase	Contractor		$\sqrt{ }$			EIAO TM Annex 16 (Section 8.4) \& EIAO Guidance Note No. 3/2002.

*Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Table A13.7 Implementation Schedule for Landscape and Visual

EIA Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines	
			Des		C	0	Dec			
Construction Phase										
For the Whole Project										
Table 10.5	CM1	Topsoil, where identified, shall be stripped and stored for re-use in the construction of the soft landscape works, where practical.		Work site / During Construction Phase	Contractor	\checkmark	\checkmark			EIAO TM
Table 10.5	CM2	Existing trees to be retained on site shall be carefully protected during construction.	Work site / During Construction Phase	Contractor	\checkmark	\checkmark			EIAO TM	
Table 10.5		Trees unavoidably affected by the works shall be transplanted where practical.	Work site / During Construction Phase	Contractor	\checkmark	\checkmark			EIAO TM	
Table 10.5	CM4	Compensatory tree planting shall be provided to compensate for felled trees.	Work site / During Construction Phase	Contractor	\checkmark	\checkmark			EIAO TM	
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
Table 10.5	CM6	Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
For DP1-CWB (Within the Project Boundary)										
Table 10.5	CM1	Topsoil, where identified, shall be stripped and stored for re-use in the construction of the soft landscape works, where practical.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
Table 10.5		Existing trees to be retained on site shall be carefully protected during construction.	Work site / During Construction Phase	Contractor	\checkmark	\checkmark			EIAO TM	
Table 10.5	CM3	Trees unavoidably affected by the works shall be transplanted where practical.	Work site / During Construction Phase	Contractor	\checkmark	\checkmark			EIAO TM	
Table 10.5	CM4	Compensatory tree planting shall be provided to compensate for felled trees.	Work site / During Construction Phase	Contractor	\checkmark	\checkmark			EIAO TM	
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM\&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines	
			Des		C	0	Dec			
Table 10.5		Erection of decorative screen hoarding compatible with the surrounding setting.		Work site / During Construction Phase	Contractor		\checkmark			EIAO TM
For DP2 - WDII Major Roads (Road P2)										
Table 10.5	CM1	Topsoil, where identified, shall be stripped and stored for re-use in the construction of the soft landscape works, where practical.	Work site / During Construction Phase	Contractor	\checkmark	\checkmark			EIAO TM	
Table 10.5		Existing trees to be retained on site shall be carefully protected during construction.	Work site / During Construction Phase	Contractor	\checkmark	\checkmark			EIAO TM	
Table 10.5		Trees unavoidably affected by the works shall be transplanted where practical.	Work site / During Construction Phase	Contractor	\checkmark	\checkmark			EIAO TM	
Table 10.5		Compensatory tree planting shall be provided to compensate for felled trees.	Work site / During Construction Phase	Contractor	\checkmark	\checkmark			EIAO TM	
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
Table 10.5		Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
For DP3-Reclamation Works										
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
Table 10.5		Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
For DP5 - Wan Chai East Sewage Outfall										
Refer to EIA- 058/2001 Table 10.13	CM2	Minimisation of works areas.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
Refer to EIA058/2001 Table 10.13	CM3	Erection of decorative hoardings.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	

EIA Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines	
			Des		C	O	Dec			
$\begin{aligned} & \text { Refer to EIA- } \\ & 058 / 2001 \\ & \text { Table } 10.13 \end{aligned}$	CM4	Control night-time lighting.		Work site / During Construction Phase	Contractor		\checkmark			EIAO TM
Refer to EIA058/2001 Table 10.13	CM5	Minimisation of disruption to public by effective programming of the works.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
For DP6 - Cross-Harbour Water Mains from Wan Chai to Tsim Sha Tsui										
Refer to EIA- 058/2001 Table 10.13	CM2	Minimisation of works areas.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
$\begin{aligned} & \text { Refer to EIA- } \\ & 058 / 2001 \\ & \text { Table } 10.13 \\ & \hline \end{aligned}$	CM3	Erection of decorative hoardings.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
Refer to EIA- 058/2001 Table 10.13	CM4	Control night-time lighting.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
Refer to EIA- 058/2001 Table 10.13	CM5	Minimisation of disruption to public by effective programming of the works.	Work site / During Construction Phase	Contractor		\checkmark			EIAO TM	
Operation Phase										
For the Whole Project - Schedule 3 DP										
Table 10.6, Figure 10.5.110.5.5	OM1	Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.	Work site / During Design Stage and Operation Phases	CEDD/HyD	\checkmark	\checkmark	$\sqrt{ }$		ETWB TCW 2/2004	
Table 10.6, Figure 10.5.110.5.5	OM2	Shrub and Climbing Plants to soften proposed structures.	Work site / During Design Stage and Operation Phases	CEDD/HyD	\checkmark	\checkmark	\checkmark		ETWB TCW 2/2004	

Appendix 3.1

Contract no. HK/2011/07
Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM\&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines	
			Des		C	O	Dec			
Table 10.6, Figure 10.5.110.5.5	OM3	Buffer Tree and Shrub Planting to screen proposed roads and associated structures.		Work site / During Design Stage and Operation Phases	CEDD/HyD/	\checkmark	\checkmark	\checkmark		ETWB TCW 2/2004
Table 10.6, Figure 10.5.110.5.5	OM4	Aesthetic design of proposed waterfront promenade.	Work site / During Design Stage and Operation Phases	CEDD^{4}	\checkmark	\checkmark	\checkmark		ETWB TCW 2/2004	
Table 10.6, Figure 10.5.110.5.5	OM5	Aesthetic streetscape design.	Work site / During Design Stage and Operation Phases	CEDD/HyD	\checkmark	\checkmark	\checkmark		ETWB TCW 2/2004	
Table 10.6, Figure 10.5.110.5.5	OM6	Aesthetic design of roadside amenity areas.	Work site / During Design Stage and Operation Phases	CEDD/HyD	\checkmark	\checkmark	\checkmark		ETWB TCW 2/2004	
For DP1 - CWB (Within the Project Boundary)										
Table 10.6, Figure 10.5.110.5.5	OM1	Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.	Work site / During Design Stage and Operation Phases	HyD	\checkmark	\checkmark	\checkmark		ETWB TCW 2/2004	
Table 10.6, Figure 10.5.110.5.5	OM2	Shrub and Climbing Plants to soften proposed structures	Work site / During Design Stage and Operation Phases	HyD	\checkmark	\checkmark	$\sqrt{ }$		ETWB TCW 2/2004	
Table 10.6, Figure 10.5.110.5.5	OM3	Buffer Tree and Shrub Planting to screen proposed roads and associated structures.	Work site / During Design Stage and Operation Phases	HyD	\checkmark	\checkmark	\checkmark		ETWB TCW 2/2004	
Table 10.6, Figure 10.5.110.5.5	OM5	Aesthetic streetscape design.	Work site / During Design Stage and Operation Phases	HyD	\checkmark	\checkmark	\checkmark		ETWB TCW 2/2004	
Table 10.6, Figure 10.5.110.5.5	OM6	Aesthetic design of roadside amenity areas.	Work site / During Design Stage and Operation Phases	HyD	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		ETWB TCW 2/2004	
For DP2 - WDII Major Roads (Road P2)										

[^3]| EIA Ref | Environmental Protection Measures / Mitigation Measures | | Location / Timing | Implementation Agent | Implementation Stages* | | | | Relevant Legislation and Guidelines |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Des | | C | O | Dec | |
| Table 10.6,
 Figure 10.5.110.5.5 | OM1 | Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure. | | Work site / During Design Stage and Operation Phases | CEDD/HyD | | \checkmark | \checkmark | | ETWB TCW 2/2004 |
| Table 10.6, Figure 10.5.110.5.5 | OM3 | Buffer Tree and Shrub Planting to screen proposed roads and associated structures. | Work site / During Design Stage and Operation Phases | CEDD/HyD | | \checkmark | \checkmark | | ETWB TCW 2/2004 |
| Table 10.6,
 Figure 10.5.110.5.5 | OM5 | Aesthetic streetscape design. | Work site / During Design Stage and Operation Phases | CEDD/HyD | | \checkmark | \checkmark | | ETWB TCW 2/2004 |
| Table 10.6,
 Figure 10.5.110.5 .5 | OM6 | Aesthetic design of roadside amenity areas | Work site / During Design Stage and Operation Phases | CEDD/HyD | | \checkmark | \checkmark | | ETWB TCW 2/2004 |
| For DP3 - Reclamation Works | | | | | | | | | |
| Table 10.6,
 Figure 10.5.110.5.5 | OM4 | Aesthetic design of proposed waterfront promenade. | Work site / During Design Stage and Operation Phases | CEDD ${ }^{5}$ | \checkmark | \checkmark | \checkmark | | ETWB TCW 2/2004 |

*Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

[^4]
Appendix 4.1

Action and Limit Level

Action and Limit Level

Action and Limit Level for Noise Monitoring

Time Period	Action Level	Limit Level
$07: 00-19: 00$ hours on normal weekdays	When one documented complaint is received.	$75 \mathrm{~dB}(\mathrm{~A})^{\text {Note } 1}$

Note 1:

- $\quad 70 d B(A)$ and $65 d B(A)$ for schools during normal teaching periods and school examination periods, respectively.
- If works are to be carried out during the restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

Action and Limit Level for Air Monitoring

Monitoring Location	1-hour TSP Level in $\mu \mathrm{g} / \mathrm{m}^{3}$		24-hour TSP Level in $\mu \mathrm{g} / \mathrm{m}^{3}$	
	Action Level	Limit Level	Action Level	Limit Level
CMA1b $^{\text {Note 2 }}$	320.1	500	176.7	260
CMA2a $^{\text {NAS }}$ Note 2	323.4	500	169.5	260
CMA34a $^{\text {Nol }}$	311.3	500	171.0	260
CMA4a $^{\text {CMA5a }}$ Note 2	312.5	500	171.2	260
CMA6a $^{\text {Note 2 }}$	332.0	500	181.0	260

Note 2:

- As per facing owner's rejection in allowing the implementation of long-term air quality impact monitoring at their premises, alternative monitoring stations and justification were proposed for IEC verification and EPD approval.
- The established Action and Limit Levels from the baseline air monitoring will be adopted to the alternative monitoring stations.

Action and Limit Level for Water Monitoring

Parameters	Dry Season		Wet Season		
	Action		Limit	Action	
Limit					
WSD Salt Water Intake					
SS in $\mathrm{mg} \mathrm{L}^{-1}$	13.00	14.43	16.26	19.74	
Turbidity in NTU	8.04	9.49	10.01	11.54	
DO in mg / L	3.66	3.28	3.17	2.63	
Cooling Water Intake					
SS in $\mathrm{mg} \mathrm{L}^{-1}$	15.00	22.13	18.42	27.54	
Turbidity in NTU	9.10	10.25	11.35	12.71	
DO in mg / L	3.36	2.73	3.02	2.44	

Remarks:

- Action and Limit Level for the wet season are applied after the EPD approval of Updated EM\&A Manual on 29 April 2011.

Action and Limit Levels for Odour Patrol

Parameters	Action	Limit
Odour Nuisance (from odour intensity analysis or odour patrol)	When two documented complaint are received; or	Five or more consecutive genuine documented complaints within a week;
	Odour Intensity of 2 is measured from odour intensity analysis.	or
		Odour Intensity of 3 or above is measured from odour intensity analysis.

Appendix 4.2

Copies of Calibration Certificates

Calibration Certificate

Certiticate No. $12888 \quad$ Page. 1 of 4. Pages

Customer: Lam Geotechnics Limited
Address : 11 if, Gentre Point, $161-185$ Gloucester Road, Wanchai, Hong Kong
Order No. : Q10982
Date of receipt :
25-May- 11

Them Tested

Description Precision Integratrg Sound Leve Meter
Manufacturer Rion
Model NL 14 Serial No. : 10303242

Test Conditions

Date of Test: 26 Mayil 11 Supply Voltage. : 4
Ambient Temperature: $(23 \times 3) \mathrm{C} \quad$ Relative Humdity $150 \pm 25) \%$

Test Specifications

Cabrationcheck
Ref. DocumentProcedure, Z0t

Test Results

Al resuls were with the IEC 651 Type 1 of EC 804 Type 1 specification atter adjustment The results are shown in the attached page(s)

Main Test equipnent used:

Equipment No.	Descriplion	Cert N	Traceable to
S017	Mut-Function Generator	0101623	SCLHKSAR
S024	Sound Leve Calbrat	04062	NMPRC

 for any tose or damone rasutug fom the tse of the equment

The lest results mply to the bbove Un Under test only

Calibration Certificate

CentificateNo. 12888

Reculte:

1. SI1.Accuma

LUT Selting				Applied Value (dB)	UUT Reding (dB)	
Lexeltange (0B)	Fifter	Weighil	Time Const		Betravedus	Aldersiat
40-100	OFF	L	Fast	94,00.	-	94.1
		LT	past		*950	94.1
			Slow		\pm	94.1
		Lr.	Fast		\square	94.1
61-120	Of\%	1.	Jast	94.00	*	941
- \quad -		L城	Fast		-	94.0
			Slow		-	94.0
		Lace	Mast		\pm	94.0
60-120	OPF	$1{ }_{1}$	Fast	11400	-	1140
		4ta	Tast		-	1139
			Slow.		-	1139
		Luc	list		$=$	1139

HC 651 Tye 1 Spec. 70.7 dE
Uneertany 402 dB
2. Level Smbinity, 0 aIb

1EC651 Type 1 Spec \quad O. IP
Cheerviny $\pm 0.01 \mathrm{dD}$

Calibration Certificate

3. Linearity

31 Level Lmearity

UUT Range (dB)	Applied Value (dD)	Un I Reading (dB)	Vanation (dB)	1EC 651 Type I Spee. Primary Indicator Reme)
140	114.0	113.9	-0.1	$\pm 0.7 \mathrm{~dB}$
130	1040	103.8	-0.2	
120	94.0	94.0 (Rel)	-	
110	84.0	83.9	4.1	
100	74.0	741	+0.1	
90	640	64.	+0.1	
80	54.0	543	40.3	

Uncertanty $\pm 01 \mathrm{~dB}$
3.2 Differential level linearity

UUT Range (4B)	$\begin{aligned} & \text { Applied } \\ & \text { Galue (dB) } \end{aligned}$	UUT Reading (dB)	Varition (dB)	IEC 651 Type 1 Spec.
120	84.0	840	0.0	$\pm 0.4 \mathrm{~dB}$
	94.0	94.0 (Ref.)	-	
	950	95.0	0.0	$\pm 0.2 \mathrm{~dB}$

Uncertainy $\pm 0.1 \mathrm{~dB}$

4. Frequency Weighting

A wetghing

Frequency	Attenuation (dB)	IEC 651 Type 1 Spee.
315 Hz	-390.	- $39.4 \mathrm{~dB} \pm 15 \mathrm{~dB}$
63 Hz	25.9	-26.2 dB, 415 dB
125 H2	-15.9	-161 dB $\pm 1 \mathrm{~dB}$
250 Hz	-8.4	$=8.6 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
500 Hz	-3.0	$-32 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
$1 . \mathrm{kHz}$	0.01 (Rel)	$0 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
2 kHz	113	$\pm 12 \mathrm{~dB}+1 \mathrm{~dB}$
4 kHz	+0.8	$\pm 1.0 \mathrm{~dB} \pm 1 \mathrm{~dB}$
8 kHz	-13	$-1.1 \mathrm{~dB}+15 \mathrm{~dB}-3 \mathrm{~dB}$
$16 . \mathrm{kHz}$	-71	$6.6 \mathrm{~dB}, 3 \mathrm{~dB}-\infty$

Uncerainty 401 dB

Hong Konc Calbration Lid

Calibration Certificate

Cerficate No. 12888

S. Time Ryerugro

Applict Bust duty Raclot	Appliedteg Vaue (dBy	U1/ (eadin (${ }^{\text {dB }}$)	1EC 804 Type 1 Spee.
Conlimuus	400	40.9	- 4 -
1711	40.1	39.	$\pm 0.5 \mathrm{~dB}$
110	\square	39.6	
M10	400	39.2	V1.013
$110^{\text {\% }}$	10.1	394	

Dnceranty $\pm 010 \mathrm{~B}$

Rematk I UUT Unf-Under Iest
2. The uncertant clamed Is for aconfidnee probabligy of not less than 95%
3. Atmosphenic Pressures 1 004 IPa.

4 . Ou or Specilleation

Calibration Certificate

Certificate No. 12889
Page 1 of 2 Pages
Customer : Lam Geotechnics Limited
Address : 1HF, Centre Pont 184-185 Gloucester Road, Wamchal Hong Kong.
Order No: : Q10982
Date of receipt :
25-may-11
Hem Tested
Description : Sound Level Celibretor
Manufacturer : Rion
Mode SNC73 Seral No S 10465798

Test Conditions

Date of Test : $26 \mathrm{May} 11 \quad$ Supply Voltage :
Anblent Temperatures $\quad 23 \pm 3)^{\circ} \mathrm{C}$
Relatve Humidity $(50 \pm 25) \%$

Test Specifications

Calibration check
Ref. Document/Procedure F 21,202

Test Results

All results were within the manutactuter's spechication ater adiustment,
The results are shown in the attached page(s).

Main Test equipmentused.
Equipment No Description
Cet No.
Traceable to
NM-PRC\& SCL-HKSAR
NMPRCC \& SCL-HKSAR
SCL-HKSAR
SCL-HKSAR

S206 Sound Level Meter 04462
SCLHKSAR

 for any hoss ar damage resulthg fom the use of the aquement.

The test resuls apoly to the aboue Unt-hnder-Test poly

Hong Rmu Oambation Lid

Calibration Certificate

Centicate No. 12889
Resulty:

1. LevelAecuracy (at 1 kH)

ULT Nominal Volue	Mesured Value		Vrresjee.
	Berore Mdiust	Aler Adjus	
94 de	6ss 20 dB	92,94 18	4118

$$
\text { Vneertinty }=02 \mathrm{~dB}
$$

2. Frequency Accuracy

Lle M Nominal Value	Measured Value	Mris Spec.
1 kHz	0.994 kHz	+2\%

$$
\text { Oneertanty }+01 \text { : }
$$

3. Lexal stability 0.0 dB

Uncertainy $\pm 0.01 \mathrm{~dB}$
4. Tual Hamone Distortion $50 \leq \%$

MIf: Spec.re3:
Uncorainty $~ \& ~ 23 \% 601 r e a d i n g$

Remar II, LUT Unt Undertest
2. The uncertanty ciained is lor a canfidence probabity of not lese than 950

3 The above measured values are the math of 3 measurnent
4. Amosolertc Presstre 1004 hPa
8. Oni al Specifiction

Calibration Certificate

Certificate No. $13813 \quad$ Page 1 of 4 Pages

Customer : Lam Geotechnics Limited
Address : 11/F, Centre Point, 181-185 Gloucester Road, Wanchai, Hong Kong
Order No. : Q11569 Date of receipt : 7-Jul-11
Item Tested
Description : Sound Level Meter
Manufacturer : B\&K
Model : 2250 Serial No. : 2722310

Test Conditions

Date of Test: 8-Jul-11
Supply Voltage :-
Ambient Temperature: $(23 \pm 3)^{\circ} \mathrm{C}$
Relative Humidity : $(50 \pm 25) \%$

Test Specifications

Calibration check
Ref. Document/Procedure: Z01.

Test Results

All results were within the IEC 651 Type 1, IEC 804 Type 1 \& IEC 1260 Class 1 specification.
The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	Description	Cert. No.	Traceable to
S017A	Mult-Function Generator	07279	SCL-HKSAR
S024	Sound Level Calibrator	04062	NIM-PRC \& SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibtation and shock during transportation, overloading, mis-hendling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceabie to International System of Units (S).
The test results apply to the above Unit-Under-Test only
Calibrated by :

This Cattificale is issued by;
Approved by :

Date: $\quad 8$-Jul-11

Hong Kong Cafibrat|on Lid.
Unit 8B, 24/F. Well Fung Industrial Contre, No. 58-76, Ta Chuen Pha Street, Kwai Chung, NT, Hong Kon Tel: 24258801 Fax. 24255646

The copyright of thts certlicate is owned by Hong Kong Calibration Lid.. II may not be reproduced except in futh

Calibration Certificate

Certificate No. 13813

Results:

1. SPL

UUT Setting				Applied Value (dB)	UUT Reading (dB)
Range	Freq. Wgt.	Time Const.	Center Freq		
20-140	A (SPL)	Fast	--	94.0	93.8
		Slow	--		93.8
	C (SPL)	Fast	--	94.0	93.9
	A (SPL)	Fast	--	114.0	113.7
		Slow	--		113.7
	C (SPL)	Fast	--	114.0	113.7
	-	1/1-Oct/Fast	1 kHz	94.0	93.8
				114.0	113.7
	--	1/3-Oct/Fast	1 kHz	94.0	93.8
				114.0	113.7

IEC 651 Type 1 Spec. : $\pm 0.7 \mathrm{~dB}$
Uncertainty : $\pm 0.2 \mathrm{~dB}$
2. Level Stability $: 0.0 \mathrm{~dB}$

IEC 651 Type 1 Spec. $: \pm 0.3 \mathrm{~dB}$
Uncertainty : $\pm 0.01 \mathrm{~dB}$
3. Linearity

Differential level linearity

UUT Range (dB)	Applied Value (dB)	UUT Rdg (dB)	Vaniation (dB)	IEC 651 Type 1 Spec.
120	84.0	83.8	0.0	$\pm 0.4 \mathrm{~dB}$
	94.0	93.8 (Ref)	--	
	95.0	94.8	0.0	$\pm 0.2 \mathrm{~dB}$

Uncertainty : $\pm 0.1 \mathrm{~dB}$

Calibration Certificate

Certificate No. 13813

4. Frequency Weighting

A weighting

Frequency	Attenuation (dB)	IEC 651 Type 1 Spec.
31.5 Hz	-39.9	$-39.4 \mathrm{~dB}, \pm 1.5 \mathrm{~dB}$
63 Hz	-26.6	$-26.2 \mathrm{~dB}, \pm 1.5 \mathrm{~dB}$
125 Hz	-16.5	$-16.1 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
250 Hz	-9.0	$-8.6 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
500 Hz	-3.5	$-3.2 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
1 kHz	0.0 (Ref)	$0 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
2 kHz	+1.4	$+1.2 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
4 kHz	+1.2	$+1.0 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
8 kHz	-1.2	$-1.1 \mathrm{~dB},+1.5 \mathrm{~dB} \sim-3 \mathrm{~dB}$
16 kHz	-5.8	$-6.6 \mathrm{~dB},+3 \mathrm{~dB} \sim-\infty$

Uncertainty $: \pm 0.1 \mathrm{~dB}$

5. Time Averaging

Applied Burst duty Factor	Applied Leq Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	40.0	-	-
$1 / 10$	40.0	40.0	$\pm 0.5 \mathrm{~dB}$
$1 / 10^{2}$	40.0	39.9	
$1 / 10^{3}$	40.0	40.0	$\pm 1.0 \mathrm{~dB}$
$1 / 10^{4}$	40.0	40.0	

Uncertainty : $\pm 0.1 \mathrm{~dB}$

Calibration Certificate

6. Filter Characteristics

6.1 1/1 - Octave Filter

Frequency		Attenuation (dB)
125 Hz	-64.2	<-61
250 Hz	-44.9	<-42
500 Hz	-21.0	<-17.5
707 Hz	-3.8	$-2 \sim-5$
$1 \mathrm{kHz}(\mathrm{Ref})$	-	--
1.414 kHz	-3.5	$-2 \sim-5$
2 kHz	-20.8	<-17.5
4	kHz	-55.9
8	-85.7	<-42
kHz		-61

Uncertainty : $\pm 0.25 \mathrm{~dB}$
6.2 1/3-Octave Filter

Frequency		Attenuation (dB)
326	-63.6	<-61
530	Hz	-47.9
772	Hz	-23.5
891	-3.7	<-42
1	HHz	--17.5
1.122 kHz	-3.6	$+0.3 \sim-5.0$
1.296 kHz	-23.4	--
1.887 kHz	-48.1	$+0.3 \sim-5.0$
3.070 kHz	-69.8	<-17.5

Uncertainty : $\pm 0.25 \mathrm{~dB}$

Remarks : 1. UUT : Unit-Under-Test
2. The uncertainty claimed is for a confidence probability of not less than 95%.
3. Atmospheric pressure : 1000 hPa .
\qquad

Calibration Certificate

Test Results

All results were within the IEC 651 Type 1, IEC 804 Type $1 \&$ IEC 1260 Class 1 specification.
The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	Description	Cert. No.	Traceable to
S017	Mutit-Function Generator	C101623	SCL-HKSAR
S024	Sound Level Calibrator	04062	NIM-PRC \& SCL-HKSAR

[^5]

Hong Kong Calibration Lid
Unit 8e, 24iF, Well Fung hodustial Centre, No. 58-76, Ta Chuen Pite Street,Kwai Chtng, NT, itong Kong Tet: 24253801 Fax: 24255646

Calibration Certificate

Results :

1. SPL

UUT Setting				Applied Value (dB)	UUT Reading (dB)
Range	Freq, Wgt.	Time Const.	Center Freq.		
20-140	A (SPL)	Fast	---	94.0	-93.9
		Slow	--		93.9
	C (SPL)	Fast	--	94.0	93.9
	A (SPL)	Fast	--	114.0	113.8
		Slow	--		113.8
	C (SPL)	Fast	--	114.0	113.8
	-	1/1-Oct/Fast	1 kHz	94.0	93.8
				114.0	113.7
	--	1/3-Oct/Fast	1 kHz	94.0	93.7
				114.0	113.6

IEC 651 Type 1 Spec. : $\pm 0.7 \mathrm{~dB}$
Uncertainty : $\pm 0.1 \mathrm{~dB}$
2. Level Stability : 0.0 dB

IEC 651 Type 1 Spec. $: \pm 0.3 \mathrm{~dB}$
Uncertainty $: \pm 0.01 \mathrm{~dB}$
3. Linearity

Differential level linearity

UUT Range (dB)	Applied Value (dB)	UUT Rdg (dB)	Variation (dB)	IEC 651 Type 1 Spec.
$20 \sim 140$	84.0	83.9	0.0	$\pm 0.4 \mathrm{~dB}$
	94.0	93.9 (Ref)	--	
	95.0	95.0	+0.1	$\pm 0.2 \mathrm{~dB}$

Uncertainty : $\pm 0.1 \mathrm{~dB}$

Calibration Certificate

Certificate No． 13784
Page 3 of 4 Pages

4．Frequency Weighting
A weighting

Frequency	Attenuation（dB）	IEC 651 Type 1 Spec．
31.5 Hz	-39.8	$-39.4 \mathrm{~dB}, \pm 1.5 \mathrm{~dB}$
63 Hz	-26.5	$-26.2 \mathrm{~dB}, \pm 1.5 \mathrm{~dB}$
125 Hz	-16.5	$-16.1 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
250 Hz	-9.0	$-8.6 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
500 Hz	-3.5	$-3.2 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
1 kHz	0.0 （Ref）	$0 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
2 kHz	+1.1	$+1.2 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
4 kHz	+1.1	$+1.0 \mathrm{~dB}, \pm 1 \mathrm{~dB}$
8 kHz	-1.3	$-1 . \mathrm{dB},+1.5 \mathrm{~dB} \sim-3 \mathrm{~dB}$
16 kHz	-5.9	$-6.6 \mathrm{~dB},+3 \mathrm{~dB} \sim-\infty$

Uncertainty ：$\pm 0.1 \mathrm{~dB}$

5．Tixue Averaging

Applied Burst duty Factor	Applied Leq Value（dB）	UUT Reading（dB）	IEC 804 Type 1 Spec．
continuous	40.0	--	--
$1 / 10$	40.0	40.1	$\pm 0.5 \mathrm{~dB}$
$1 / 10^{2}$	40.0	40.0	
$1 / 10^{3}$	40.0	40.0	$\pm 1.0 \mathrm{~dB}$
$1 / 10^{4}$	40.0	40.0	

[^6]
Calibration Certificate

Certificate No. 13784

6. Filter Characteristics

6.1 1/1 - Octave Filter

Frequency		Attenuation (dB)
125 Hz	-64.2	<-61
250 Hz	-44.9	<-42
500 Hz	-21.1	<-17.5
707 Hz	-3.8	$-2 \sim-5$
$1 \mathrm{kHz}(\mathrm{Ref})$	--	-
1.414 kHz	-3.6	$-2 \sim-5$
2 kHz	-20.9	<-17.5
4 kHz	-56.0	<-42
8	kHz	-86.0

Uncertainty : $\pm 0.25 \mathrm{~dB}$
6.2 1/3-Octave Filter

Frequency		Attenuation (dB)
326 Hz	-64.9	IEC 1260 Class 1 Spec. (dB)
530 Hz	-48.1	<-61
772 Hz	-23.6	<-42
891	Hz	-3.9
1	$\mathrm{kHz}(\mathrm{Ref})$	-
1.122 kHz	-3.9	$+0.3 \sim-5.0$
1.296 kHz	-23.7	-
1.887 kHz	-48.8	$+0.3 \sim-5.0$
3.070 kHz	-70.4	<-17.5

Uncertainty : $\pm 0.25 \mathrm{~dB}$

Remarks : 1. UUT : Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.
3. Atmospheric pressure : 996 hPa .
\qquad

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT
CLIENT: LAM GEOTECHNICS LIMITED
ADDRESS: 11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG

WORK ORDER:
LABORATORY:
HK1205547
DATE RECEIVED: 28/02/2012
DATE OF ISSUE: 05/03/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.
Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test: Dissolved Oxygen, pH, Salinity and Temperature
Description: YSI Pro Plus multimeter
Brand Name:
Model No.: YSI Professional Plus
Serial No.: 11 H 100476
Equipment No.: --
Date of Calibration: 05 March, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.
Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd
11/F Chung Shun Knitting Centre 1-3 Wing Yip Street
Kwai Chung
HONG KONG

Phone: 852-2610 1044
Fax: 852-2610 2021
Email: hongkong@alsglobal.com

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.
Page 1 of 2

Address 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHoNe +852 26101044 FAX +85226102021
ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:
Date of Issue:
Client:

Description:
Brand Name:
Model No.:
Serial No.:
Equipment No.:
Date of Calibration:
Parameters:
Dissolved Oxygen

HK1205547
05/03/2012
LAM GEOTECHNICS LIMITED

YSI Pro Plus multimeter
YSI
YSI Professional Plus
11H100476
--
05 March, 2012 Date of next Calibration: 05 June, 2012

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
6.72	6.65	-0.07
7.29	7.20	-0.09
8.75	8.64	-0.11
	Tolerance Limit ($\pm \mathrm{mg} / \mathrm{L})$	0.20

pH Value
Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.99	-0.01
7.0	7.01	0.01
10.0	9.98	-0.02
	Tolerance Limit (\pm unit)	0.20

Salinity
Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (\%)
10.0		
	20.94	-0.6
30.0	29.93	0.1
	Tolerance Limit ($\pm \%)$	-0.2
		10.0

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading $\left({ }^{\circ} \mathrm{C}\right)$	Displayed Reading $\left({ }^{\circ} \mathrm{C}\right)$	Tolerance $\left({ }^{\circ} \mathrm{C}\right)$
12.0	11.5	-0.5
22.0	21.3	-0.7
31.0	30.3	-0.7
	Tolerance Limit $\left({ }^{\circ} \mathrm{C}\right)$	2.0

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MS CHERRY MAK
CLIENT:	LAM GEOTECHNICS LIMITED
ADDRESS:	$11 /$ F., CENTRE POINT,
	$181-185$ GLOUCESTER ROAD,
	WAN CHAI, HONG KONG
PROJECT:	--

WORK ORDER: HK1204240
LABORATORY: HONG KONG
DATE RECEIVED: 13/02/2012
DATE OF ISSUE: 17/02/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.
Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Turbidity
Description:	Turbidimeter
Brand Name:	HACH
Model No.:	2100 P
Serial No.:	000032935
Equipment No.:	--
Date of Calibration:	16 February, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.
Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd
11/F Chung Shun Knitting Centre
1-3 Wing Yip Street
Kwai Chung
HONG KONG

Phone: 852-2610 1044
Fax: 852-2610 2021
Email: hongkong@alsglobal.com

[^7]
REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:
Date of Issue: Client:

HK1204240
17/02/2012
LAM GEOTECHNICS LIMITED

Description:
Brand Name:
Model No.:
Serial No.:
Equipment No.:
Date of Calibration:
Turbidimeter
HACH
2100P
000032935

Parameters:
Turbidity
Method Ref: APHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (\%)
0		
4	0.34	--
40	4.30	7.5
80	42.6	6.5
400	84.9	6.1
800	415	3.8
	857	7.1
	Tolerance Limit ($\pm \%)$	10.0

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MS CHERRY MAK
CLIENT:	LAM GEOTECHNICS LIMITED
ADDRESS:	$11 /$ F., CENTRE POINT,
	$181-185$ GLOUCESTER ROAD,
	WAN CHAI, HONG KONG
PROJECT:	--

WORK ORDER: HK1207574
LABORATORY: HONG KONG
DATE RECEIVED: 20/03/2012
DATE OF ISSUE: 24/03/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.
Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Turbidity
Description:	Turbidimeter
Brand Name:	HACH
Model No.:	2100 Q
Serial No.:	11080 C 011942
Equipment No.:	--
Date of Calibration:	21 March, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.
Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd
11/F Chung Shun Knitting Centre
1-3 Wing Yip Street
Kwai Chung
HONG KONG
Phone: 852-2610 1044
Fax: 852-2610 2021
Email: hongkong@alsglobal.com

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.
Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:
Date of Issue: Client:

HK1207574
24/03/2012
LAM GEOTECHNICS LIMITED

CLS
ALS

Description:
Brand Name:
Model No.:
Serial No.:
Equipment No.:
Date of Calibration:

Turbidimeter
HACH
2100Q
11080C011942
21 March, 2012

Date of next Calibration:
21 June, 2012

Parameters:

Turbidity
Method Ref: APHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (\%)
0		
4	0.14	--
40	4.24	6.0
80	41.9	4.8
400	87.1	8.9
800	431	7.8
	861	7.6
	Tolerance Limit ($\pm \%)$	10.0

AIR POLLUTIOH MONITORING EQUIPMENT:
ORIEICE TRANSFER STANDARD GERTIFICATION WORKSEEET TE-5025A

DATA TABUIATTON

CALCULATTONS

```
Vstd Diff, voL[(Pa-Diff: Hg)/760](298/Ta)
Qsta = vsta/Time
Va = Diff Vol [(Pa-Diff Tg)/pa]
Qa = Va/Time
```

For subsequent flow tate ealoutations:
Gstd $=1 / \mathrm{m}(\mathrm{SQRT}(H 20(\mathrm{~Pa} / 760)(298 / \mathrm{Ta}) \mathrm{I}-\mathrm{D})$
Qa $=1 / \mathrm{m}\{[\operatorname{SQRT} \mathrm{H} 2 \mathrm{O}(\mathrm{Ta} / \mathrm{Pa}\}-\mathrm{b}\}$

TISEH ENVIROGENTAZ. SNC.
145 SOUTH MAMA AVE.
Ylleage of cleves, oH 45002
5 3 3.467.9000
877.253 .7610 YOL FREE

AR POLLUTION MONITOREMG EOUIPMENY

* y-axis equations:

Qstd series:

$$
\sqrt{\Delta H\left(\frac{P a}{P s t d}\right)\left(\frac{T s t d}{T a}\right)}
$$

Qa series: $\quad \sqrt{\left(\Delta H\left(T \& / P_{a}\right)\right)}$

Calibration Data for High Volume Sampler (TSP Sampler)

Location	$:$	CMA5a
Equipment no.	$:$	EL380

| Calbration Date $:$ | 17-Apr-12 |
| :--- | :--- | :--- |
| Calbration Due Dat $:$ | $17-J u n-12$ |

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition						
Temperature, T_{a}	298	Kelvin	Pressure, P_{a}	1015	mmHg	

Orifice Transfer Standard Information					
Equipment No.	EL086	Slope, m_{c}	2.01593	Intercept, bc	-0.03978
Last Calibration Date	11-Jul-11	$\begin{gathered} \left(H \times P_{a} / 1013.3 \times 298 / T_{a}\right)^{1 / 2} \\ =m_{c} \times Q_{s t d}+b_{c} \end{gathered}$			
Next Calibration Date	11-Jul-12				

Calibration of RSP						
Calibration Point		meter ches of (down)	eading water) (difference)	$\begin{gathered} \mathbf{Q}_{\text {std }} \\ \left(\mathrm{m}^{3} / \mathrm{min} .\right) \\ \text { X-axis } \end{gathered}$	Continuous Flow Recorder, w (CFM)	$\begin{gathered} \text { IC } \\ \left(\mathrm{W}\left(\mathrm{P}_{\mathrm{a}} / 1013.3 \times 298 / \mathrm{T}_{\mathrm{a}}\right)^{1 / 2} / 35.31\right) \\ \mathrm{Y} \text {-axis } \end{gathered}$
1	6.1	6.1	12.2	1.7538	57	57.0478
2	4.9	4.9	9.8	1.5739	52	52.0436
3	3.7	3.7	7.4	1.3703	45	45.0377
4	2.4	2.4	4.8	1.1074	35	35.0293
5	1.5	1.5	3.0	0.8796	27	27.0226
By Linear Regression of Y on X						
Slope, m $\quad 34.9050$					Intercept, b =	3.4321
Correlation Coefficient		=	0.9989			
Calibration Accepted		$=$	Yes/No**			

* if Correlation Coefficient < 0.990, check and recalibration again.
** Delete as appropriate.

Remarks : \qquad

Calibrated by	$:$	Sam Lam	Checked by	Derek Lo
Date	$:$	Date	$:$17-Apr-12	

Calibration Data for High Volume Sampler (TSP Sampler)

Location	$:$	CMA4a
Equipment no.	$:$	EL390

| Calbration Date $:$ | 17-Apr-12 |
| :--- | :--- | :--- |
| Calbration Due Da1 $:$ | $17-J u n-12$ |

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition						
Temperature, T_{a}	528	Kelvin	Pressure, P_{a}	1015	mmHg	

Orifice Transfer Standard Information					
Equipment No.	EL086	Slope, m_{c}	2.01593	Intercept, bc	-0.03978
Last Calibration Date	11-Jul-11	$\begin{gathered} \left(H \times P_{a} / 1013.3 \times 298 / T_{a}\right)^{1 / 2} \\ =m_{c} \times Q_{s t d}+b_{c} \end{gathered}$			
Next Calibration Date	11-Jul-12				

Calibration of RSP						
Calibration Point		meter R ches of (down)	eading water) (difference)	$\begin{gathered} \mathbf{Q}_{\text {std }} \\ \left(\mathrm{m}^{3} / \mathrm{min} .\right) \\ \text { X-axis } \end{gathered}$	Continuous Flow Recorder, W (CFM)	IC $\left(\mathrm{W}\left(\mathrm{P}_{\mathrm{a}} / 1013.3 \times 298 / \mathrm{T}_{\mathrm{a}}\right)^{1 / 2} / 35.31\right)$ Y-axis
1	6.0	6.0	12.0	1.3118	60	45.1135
2	4.9	4.9	9.8	1.1873	53	39.8502
3	3.6	3.6	7.2	1.0205	44	33.0832
4	2.4	2.4	4.8	0.8369	35	26.3162
5	1.4	1.4	2.8	0.6438	27	20.3011
By Linear Regression of Y on X						
	ope, m	$=$	37.30		cept, $\mathrm{b}=$	-4.3719
Correlatio	fficient*	$=$	0.99			
Calibration Accepted		$=$	Yes/No**			

* if Correlation Coefficient < 0.990, check and recalibration again.
** Delete as appropriate.

Remarks : \qquad

Calibrated by	$:$	Sam Lam	Checked by	Derek Lo
Date	$:$	Date	$:$17-Apr-12	

Calibration Data for High Volume Sampler (TSP Sampler)

Location	$:$	CMA3a
Equipment no.	$:$	EL888

| Calbration Date $:$ | 17-Apr-12 |
| :--- | :--- | :--- |
| Calbration Due Dat $:$ | 17-Jun-12 |

CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Temperature, $\mathbf{T}_{\mathbf{a}}$ | 298 | Kelvin | Pressure, \mathbf{P}_{a} | 1015 | mmHg |

Orifice Transfer Standard Information					
Equipment No.	EL086	Slope, m_{c}	2.01593	Intercept, bc	-0.03978
Last Calibration Date	11-Jul-11	$\left(H \times P a / 1013.3 \times 298 / T_{a}\right)^{1 / 2}$			
Next Calibration Date	11-Jul-12	$=m_{c} \times Q_{s t d}+b$			

Calibration of RSP						
Calibration Point	Manometer Reading H (inches of water)			$\begin{gathered} \mathbf{Q}_{\text {std }} \\ \left(\mathrm{m}^{3} / \mathrm{min} .\right) \\ \text { X-axis } \end{gathered}$	Continuous Flow Recorder, w (CFM)	$\begin{gathered} \text { IC } \\ \left(W\left(\mathrm{P}_{\mathrm{a}} / 1013.3 \times 298 / \mathrm{T}_{\mathrm{a}}\right)^{1 / 2} / 35.31\right) \\ \mathrm{Y} \text {-axis } \end{gathered}$
1	5.8	5.8	11.6	1.7106	47	47.0394
2	4.6	4.6	9.2	1.5256	41	41.0344
3	3.7	3.7	7.4	1.3703	35	35.0293
4	2.4	2.4	4.8	1.1074	24	24.0201
5	1.5	1.5	3.0	0.8796	14	14.0117
By Linear Regression of Y on X						
Slope, m $\quad=\quad 40.1015$					Intercept, b =	20.6552
Correlation Coefficient*		$=$	0.9985			
Calibration Accepted		$=$	Yes/No**			

* if Correlation Coefficient < 0.990, check and recalibration again.
** Delete as appropriate.

Remarks : \qquad

Calibrated by	$:$	Sam Lam	Checked by	Derek Lo
Date	$:$	Date	$:$17-Apr-12	

Calibration Data for High Volume Sampler (TSP Sampler)

Location	$:$	CMA2a
Equipment no.	$:$	EL449

| Calbration Date $:$ | 17-Apr-12 |
| :--- | :--- | :--- |
| Calbration Due Dat $:$ | 17-Jun-12 |

CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Temperature, $\mathbf{T}_{\mathbf{a}}$ | 298 | Kelvin | Pressure, \mathbf{P}_{a} | 1015 | mmHg |

Orifice Transfer Standard Information					
Equipment No.	EL086	Slope, m_{c}	2.01593	Intercept, bc	-0.03978
Last Calibration Date	$11-J u l-11$	$\left(H \times P_{a} / 1013.3 \times 298 / T_{a}\right)^{1 / 2}$			
Next Calibration Date	$11-J u l-12$	$=m_{c} \times Q_{s t d}+b_{c}$			

Calibration of RSP						
Calibration Point	Manometer Reading H (inches of water)			$\begin{gathered} \mathbf{Q}_{\text {std }} \\ \left(\mathrm{m}^{3} / \mathrm{min} .\right) \\ \text { X-axis } \end{gathered}$	Continuous Flow Recorder, w (CFM)	$\begin{gathered} \text { IC } \\ \left(W\left(\mathrm{P}_{\mathrm{a}} / 1013.3 \times 298 / \mathrm{T}_{\mathrm{a}}\right)^{1 / 2} / 35.31\right) \\ \mathrm{Y} \text {-axis } \end{gathered}$
1	6.2	6.2	12.4	1.7680	52	52.0436
2	5.1	5.1	10.2	1.6053	44	44.0369
3	4.0	4.0	8.0	1.4239	37	37.0310
4	2.5	2.5	5.0	1.1299	26	26.0218
5	1.5	1.5	3.0	0.8796	14	14.0117
By Linear Regression of Y on X						
Slope, m $\quad=\quad 41.6997$					Intercept, b =	22.1386
Correlation Coefficient*		$=$	0.9988			
Calibration Accepted		$=$	Yes/No**			

* if Correlation Coefficient < 0.990, check and recalibration again.
** Delete as appropriate.

Remarks : \qquad

Calibrated by	$:$	Sam Lam	Checked by	Derek Lo
Date	$:$	Date	$:$17-Apr-12	

Calibration Data for High Volume Sampler (TSP Sampler)

Location	$:$	CMA6a
Equipment no.	$:$	EL448

| Calbration Date $:$ | 17-Apr-12 |
| :--- | :--- | :--- |
| Calbration Due Dat $:$ | $17-J u n-12$ |

CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Temperature, $\mathbf{T}_{\mathbf{a}}$ | 298 | Kelvin | Pressure, \mathbf{P}_{a} | 1015 | mmHg |

Orifice Transfer Standard Information					
Equipment No.	EL086	Slope, m_{c}	2.01593	Intercept, bc	-0.03978
Last Calibration Date	11-Jul-11	$\left(H \times P a / 1013.3 \times 298 / T_{a}\right)^{1 / 2}$			
Next Calibration Date	11-Jul-12	$=m_{c} \times Q_{s t d}+b$			

* if Correlation Coefficient < 0.990, check and recalibration again.
** Delete as appropriate.

Remarks : \qquad

Calibrated by	$:$	Sam Lam	Checked by	Derek Lo
Date	$:$	Date	$:$17-Apr-12	

Appendix 5.1

Monitoring Schedules for Reporting Month and Coming Reporting Month

Contract No. HK/2011/07
Wan Chai Development Phase II and Central-Wan Chai Bypass Sampling, Field Measurement and Testing Works (Stage2)

Tentative Environmental Monitoring Schedule
May 2012

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
29-Apr	 Noise Monitoring Impact WQM Mid-ebb: $19: 17$		24hr TSP Impact WQM Mid-flood: $15: 09$ Mid-ebb: $21: 27$	1hr TSP $\times 3$ 3-May	 4-May Impact WQM Mid-ebb: $10: 47$ Mid-flood: $17: 14$	5-May
6-May	 7-May Impact WQM Mid-ebb: $13: 01$ Mid-flood: $19: 58$	$8-M a y$ 24hr TSP Noise Monitoring	 1hr TSP $\times 3$ 24 hr TSP (CMA1b, CMA5a, CMA6a) Impact WQM Mid-ebb: $14: 41$ Mid-flood: $21: 52$	10-May	 11-May Impact WQM Mid-ebb: $16: 33$ Mid-flood: $23: 58$	24hr TSP 12-May
$13 \text { May }$	24 hr TSP 14-May Impact WQM Mid-ebb: $19: 44$	1hr TSP x 3 15-May Impact WQM Mid-flood: $2: 45$	16-May Noise Monitoring	 17-May Impact WQM Mid-ebb: $10: 30$ Mid-flood: $16: 39$	18-May	24hr TSP 19-May Impact WQM Mid-ebb: $11: 36$ Mid-flood: $18: 09$
20-May	1 hr TSP $\times 3$ 21-May Impact WQM Mid-ebb: $12: 36$ Mid-flood: $19: 25$	Noise Monitoring 22-May	23-May Impact WQM Mid-ebb: $13: 33$ Mid-flood: $20: 40$	24-May	24hr TSP 25-May Impact WQM Mid-ebb: $14: 31$ Mid-flood: $22: 11$	1 hr TSP x 3 24 hr TSP (CMA5a, CMA6a)
27-May						

Contract No. HK/2011/07

Wan Chai Development Phase II and Central-Wan Chai Bypass Sampling, Field Measurement and Testing Works (Stage2)

Tentative Environmental Monitoring Schedule June 2012

Remarks (Water)

1. Cut-off date is at the 27th of each reporting month.
2. Actual monitoring will subject to change due to any safety concern or adverse weather condition.
3. Water Quality Monitoring Stations corresponding to active contracts are sub-divided below:

- Contract HY/2009/11: WSD9, WSD10, WSD15, WSD17, C8, C9 (completed on 6 Feb 2012)
- Contract HY/2009/15: C6 and C7 (Commenced on 9 Nov 2010)
- Contract HK/2009/01: WSD7, WSD19, WSD20, C1, C2, C3, C4e, C4w (Commenced on 8 July 2010); Contract HK/2010/06 share station C2 from 23 Mar 2011

WSD7 and WSD20 were temporary suspended since 27 April 2012

- Contract HK/2009/02: WSD21, C5e, C5w (Commenced on 8 July 2010)

WSD9 and WSD17 (Commenced on 8 Feb 2012)

- Contract HY/2009/19: C8 and C9 (Commenced on 28 Jan 2012)

Remarks (Air)

1. Cut-off date is at the 27 th of each reporting month.
2. Actual monitoring will subject to change due to any safety concern or adverse weather condition
3. Air Quality Monitoring Stations corresponding to active contracts are sub-divided below:

- Contract HK/2009/01: CMA5a(Commenced and reported in Apr 2011)
- Contract HK/2009/02: CMA4a (Commenced and reported in Feb 2011)
- Contract HY/2009/17: CMA1b and CMA2a (Commenced on 17 Jun 2010)
- Contract HY/2009/19: CMA1b and CMA2a (Commenced on 17 Jun 2010, To be reported in Monthly report on 11 Aug 2010) and CMA2a (Commenced on 12 May 2010, To be reported in Monthly report o Due to the changing of land ownership at Oil Street Community Liaison Centre from Contractor to FEHD, the air quality monitoring at CMA1b was suspended on 18 September 2011. T installation of HVS at temporary FEHD depot was obtained from the premises owner on early November 2011 and TSP monitoring at CMA1b was resumed on 14 November 2011.
- Contract HY/2009/15: CMA3a (Commenced and reported on 15 Mar 2011)

Remarks (Noise)

1. Cut-off date is at the 27 th of each reporting month.
2. Actual monitoring will subject to change due to any safety concern or adverse weather condition.
3. Noise Quality Monitoring Stations corresponding to active contracts are sub-divided below:

- Contract HK/2009/01 and HK/2009/02: M1a (Commenced on 30 Mar 2010, To be reported in Monthly report on 6 July 2010)
- Contract HY/2009/19: M4b, M5b (Commenced on 23 Mar 2010 when dredging work starts), M6(Commenced on 10 May 2010) and M3a (Commenced on 10 May 2010, To be reported in Monthly report or
- Contract HY/2009/15: M2b(Commenced and reported on 10 Nov 2010) and M3a (Commenced on 10 May 2010, To be reported in Monthly report on 10 Nov 2010)

4. Day time noise will be monitored for Leq(30 min) during the period between 07:00 and 19:00 for active contract(s).

Appendix 5.2

Noise Monitoring Results and Graphical Presentations

Noise Monitoring Result

Day Time (0700-1900hrs on normal weekdays)

Location: M1a - Harbour Road Sports Centre

Date	Time	Weather	Measurement Noise Level			Baseline Level	Construction Noise Level	Limit Level
			Leq	L10	L90	Leq	Leq	Leq
			Unit: dB(A), (30-min)					
30/04/12	16:37	Fine	73.9	76.4	70.2	72	69	75
08/05/12	10:06	Fine	72.6	75.6	67.6	72	62	75
16/05/12	09:45	Rainy	74.4	76.8	70.4	72	70	75
22/05/12	11:20	Sunny	72.5	75.2	67.8	72	61	75

Location: M2b-Noon-day gun area

Date	Time	Weather	Measurement Noise Level			Baseline Level	Construction Noise Level	Limit Level
			Leq	L10	L90	Leq	Leq	Leq
			Unit: dB(A), (30-min)					
30/04/12	08:00	Fine	68.3	69.7	66.6	68	60	75
08/05/12	10:59	Fine	70.4	71.8	68.6	68	67	75
16/05/12	13:50	Fine	69.6	70.9	67.9	68	65	75
22/05/12	13:25	Sunny	69.8	71.2	68.1	68	66	75

Location: M3a - Tung Lo Wan Fire Station

Date	Time	Weather	Measurement Noise Level			Baseline Level	Construction Noise Level	Limit Level
			Leq	L10	L90	Leq	Leq	Leq
			Unit: dB(A), (30-min)					
30/04/12	08:58	Fine	69.0	72.2	64.2	69	56	75
08/05/12	13:38	Fine	68.0	70.3	64.4	69	68	75
16/05/12	14:42	Fine	66.5	68.4	64.2	69	67	75
22/05/12	14:08	Sunny	69.2	69.6	64.5	69	59	75

Location: M4b - Victoria Centre

Date	Time	Weather	Measurement Noise Level			Baseline Noise Level	Construction Noise Level	Limit Level
			Leq	L10	L90	Leq	Leq	Leq
			Unit: $\mathrm{dB}(\mathrm{A})$, (30min)					
30/04/12	09:41	Fine	70.0	71.5	67.6	67	67	75
08/05/12	13:00	Fine	71.5	73.4	65.5	67	69	75
16/05/12	08:20	Cloudy	68.3	69.6	66.4	67	61	75
22/05/12	15:00	Sunny	70.5	72.4	68.1	67	68	75

Location: M5b-City Garden

Date	Time	Weather	Measurement Noise Level			Baseline Level	Construction Noise Level	Limit Level
			Leq	L10	L90	Leq	Leq	Leq
			Unit: dB(A), (30min)					
30/04/12	13:00	Fine	71.2	72.3	69.7	68	68	75
08/05/12	14:30	Fine	71.7	73.0	70.2	68	69	75
16/05/12	16:50	Fine	72.1	72.8	71.0	68	70	75
22/05/12	16:45	Sunny	73.4	75.1	71.9	68	72	75

Location: M6-HK Baptist Church Henrietta Secondary School

Date	Time	Weather	Measurement Noise Level			Baseline Level	Construction Noise Level	Limit Level
			Leq	L10	L90	Leq	Leq	Leq
			Unit: dB(A), (30-min)					
30/04/12	11:05	Fine	74.2	75.5	72.7	71	72	70
08/05/12	15:28	Fine	73.3	74.7	71.4	71	70	70
16/05/12	15:37	Fine	73.7	76.0	72.9	71	71	70
22/05/12	15:55	Sunny	73.5	75.0	70.1	71	70	70

Graphic Presentation of Noise Monitoring Result
Day Time (0700-1900hrs on normal weekdays)

Graphic Presentation of Noise Monitoring Result
Day Time (0700-1900hrs on normal weekdays)

Appendix 5.3

Air Quality Monitoring Results and Graphical Presentations, and odour Patrol Results

Report on 24-hour TSP monitoring

Action Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 176.7
Limit Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 260

Date	Sampling Time	Weather Condition	Filter paper no.	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m^{3}	$\begin{gathered} \text { TSP Level, } \\ \mu \mathrm{g} / \mathrm{m}^{3} \end{gathered}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, $\mathrm{Q}_{\text {sf }}$	Average		
30-Apr-12	8:00	Cloudy	002494	2.7612	2.8830	915.34	939.34	24.00	1.04	0.95	1.00	1437	85
2-May-12	8:00	Cloudy	002492	2.7220	2.8412	939.34	963.34	24.00	1.09	1.04	1.07	1535	78
9-May-12	8:00	Sunny	002772	2.8114	2.8998	969.48	993.48	24.00	1.09	1.09	1.09	1570	56
14-May-12	8:00	Sunny	002791	2.7703	2.8632	993.48	1017.48	24.00	1.14	1.14	1.14	1637	57
19-May-12	8:00	Cloudy	002842	2.7807	2.9469	1040.77	1064.77	24.00	1.14	1.14	1.14	1640	101
25-May-12	8:00	Cloudy	002910	2.7735	2.9336	1067.77	1091.77	24.00	1.14	1.14	1.14	1638	98

* Due to lack of electricity supply, the 24 hr-TSP nas rescheduled form 8 May 2012 to 9 May 2012

Report on 1-hour TSP monitoring
Action Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 320.1
Limit Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 500

Date	Sampling Time	Weather Condition	Filter paper no.	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m^{3}	$\begin{gathered} \text { TSP Level, } \\ \mu \mathrm{g} / \mathrm{m}^{3} \end{gathered}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, $\mathrm{Q}_{\text {sf }}$	Average		
3-May-12	13:00	Cloudy	002586	2.7377	2.7459	963.34	964.47	1.13	1.13	1.13	1.13	77	107
3-May-12	14:25	Cloudy	002674	2.7720	2.7826	964.47	965.47	1.00	1.04	1.04	1.04	63	169
3-May-12	15:30	Cloudy	002675	2.7923	2.8007	965.47	966.48	1.01	1.04	1.09	1.07	65	130
9-May-12	9:30	Sunny	002676	2.7832	2.8045	966.48	967.48	1.00	1.09	1.14	1.11	67	319
9-May-12	10:40	Sunny	002317	2.7808	2.7898	967.48	968.48	1.00	1.09	1.14	1.11	67	135
9-May-12	13:00	Sunny	002393	2.8022	2.8114	968.48	969.48	1.00	1.09	1.14	1.11	67	138
15-May-12	8:23	Cloudy	002811	2.7361	2.7441	1017.48	1018.48	1.00	1.09	1.09	1.09	65	122
15-May-12	9:35	Cloudy	002848	2.7758	2.7815	1018.48	1019.48	1.00	1.14	1.09	1.11	67	85
15-May-12	11:00	Cloudy	002843	2.7973	2.8031	1019.48	1020.48	1.00	1.14	1.11	1.13	68	86
21-May-12	10:00	Cloudy	002421	2.7348	2.7432	1064.77	1065.77	1.00	1.09	1.00	1.05	63	134
21-May-12	15:00	Cloudy	002892	2.7795	2.7867	1065.77	1066.77	1.00	1.00	1.14	1.07	64	112
21-May-12	16:25	Cloudy	002915	2.7832	2.7958	1066.77	1067.77	1.00	1.19	1.14	1.16	70	181
26-May-12	8:28	Cloudy	002905	2.7894	2.7998	1091.77	1092.77	1.00	1.11	1.09	1.10	66	157
26-May-12	9:33	Cloudy	002903	2.7809	2.7921	1092.77	1093.77	1.00	1.09	1.05	1.07	64	175
26-May-12	10:45	Cloudy	002591	2.7402	2.7536	1093.77	1094.77	1.00	1.18	1.09	1.14	68	196

Report on 24-hour TSP monitoring
Action Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 169.5
Limit Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 260

Date	Sampling Time	Weather Condition	Filter paper no.	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m^{3}	TSP Level, $\mu \mathrm{g} / \mathrm{m}^{3}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, Q_{sf}	Average		
2-May-12	8:00	Cloudy	002493	2.7242	2.8822	10684.32	10708.32	24.00	1.42	1.42	1.42	2045	77
8-May-12	8:00	Sunny	002325	2.7848	2.9039	10711.32	10735.32	24.00	1.42	1.40	1.41	2030	59
14-May-12	8:00	Cloudy	002792	2.7606	2.8902	10738.32	10762.32	24.00	1.40	1.40	1.40	2015	64
19-May-12	8:00	Cloudy	002844	2.7920	2.8840	10765.32	10789.32	24.00	1.40	1.40	1.40	2017	46
25-May-12	8:00	Cloudy	002891	2.7746	2.8891	10792.32	10816.32	24.00	1.40	1.40	1.40	2016	57

Report on 1-hour TSP monitoring
Action Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 323.4
Limit Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 500

Date	Sampling Time	Weather Condition	Filter paper no.	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m^{3}	TSP Level, $\mu \mathrm{g} / \mathrm{m}^{3}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, $\mathrm{Q}_{\text {sf }}$	Average		
3-May-12	8:51	Cloudy	002490	2.7671	2.7816	10708.32	10709.32	1.00	1.40	1.42	1.41	85	172
3-May-12	9:50	Cloudy	002488	2.7397	2.7566	10709.32	10710.32	1.00	1.37	1.40	1.39	83	203
3-May-12	11:00	Cloudy	002486	2.7167	2.7325	10710.32	10711.32	1.00	1.42	1.42	1.42	85	185
9-May-12	9:15	Sunny	002319	2.8073	2.8178	10735.32	10736.32	1.00	1.38	1.35	1.36	82	128
9-May-12	10:20	Sunny	002318	2.8132	2.8242	10736.32	10737.32	1.00	1.35	1.40	1.38	83	133
9-May-12	13:00	Sunny	002316	2.7946	2.8018	10737.32	10738.32	1.00	1.42	1.42	1.42	85	84
15-May-12	8:19	Cloudy	002812	2.7393	2.7509	10762.32	10763.32	1.00	1.35	1.35	1.35	81	143
15-May-12	9:30	Cloudy	002849	2.7615	2.7686	10763.32	10764.32	1.00	1.40	1.40	1.40	84	85
15-May-12	10:50	Cloudy	002845	2.7920	2.7948	10764.32	10765.32	1.00	1.38	1.35	1.37	82	34
21-May-12	9:40	Cloudy	002420	2.7463	2.7507	10789.32	10790.32	1.00	1.36	1.38	1.37	82	54
21-May-12	15:30	Cloudy	002834	2.7911	2.7992	10790.32	10791.32	1.00	1.31	1.33	1.32	79	102
21-May-12	16:25	Cloudy	002916	2.7771	2.7854	10791.32	10792.32	1.00	1.43	1.43	1.43	86	97
26-May-12	8:18	Cloudy	002966	2.7605	2.7698	10816.32	10817.32	1.00	1.40	1.40	1.40	84	111
26-May-12	9:20	Cloudy	002904	2.7742	2.7833	10817.32	10818.32	1.00	1.40	1.40	1.40	84	108
26-May-12	10:30	Cloudy	002902	2.7891	2.8037	10818.32	10819.32	1.00	1.40	1.40	1.40	84	174

Report on 24-hour TSP monitoring
Action Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 171
Limit Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 260

Date	Sampling Time	Weather Condition	Filter paper no.	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m	TSP Level, $\mu \mathrm{g} / \mathrm{m}^{3}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, Q_{sf}	Average		
2-May-12	8:00	Cloudy	002714	2.7910	2.9350	11378.96	11402.85	23.89	1.56	1.56	1.56	2234	64
8-May-12	8:00	Sunny	002711	2.7855	2.8733	11405.85	11429.85	24.00	1.51	1.51	1.51	2178	40
14-May-12	8:00	Cloudy	002576	2.7286	2.8199	11433.85	11457.85	24.00	1.51	1.51	1.51	2179	42
19-May-12	8:00	Cloudy	002728	2.8088	2.9303	11460.85	11484.85	24.00	1.49	1.49	1.49	2147	57
25-May-12	8:00	Cloudy	002722	2.8075	3.1862	11487.85	11511.85	24.00	1.56	1.56	1.56	2248	168

Report on 1-hour TSP monitoring
Action Level ($\mathrm{\mu g} / \mathrm{m} 3$) - 311.3
Limit Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 500

Date	Sampling Time	Weather Condition	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Filter paper } \\ \text { no. } \end{array} \\ \hline \end{array}$	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m^{3}	TSP Level, $\mu \mathrm{g} / \mathrm{m}^{3}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, $\mathrm{Q}_{\text {sf }}$	Average		
3-May-12	9:56	Cloudy	002581	2.7454	2.7575	11402.85	11403.85	1.00	1.46	1.46	1.46	88	138
3-May-12	13:35	Cloudy	002710	2.8015	2.8117	11403.85	11404.85	1.00	1.49	1.49	1.49	89	114
3-May-12	14:50	Cloudy	002708	2.7966	2.8102	11404.85	11405.85	1.00	1.53	1.53	1.53	92	148
9-May-12	10:22	Sunny	002428	2.6953	2.7060	11430.85	11431.85	1.00	1.42	1.42	1.42	85	126
9-May-12	11:30	Sunny	002417	2.7297	2.7365	11431.85	11432.85	1.00	1.46	1.46	1.46	88	77
9-May-12	13:15	Sunny	002632	2.7932	2.8024	11432.85	11433.85	1.00	1.46	1.46	1.46	88	105
15-May-12	13:00	Cloudy	002743	2.7728	2.7808	11457.85	11458.85	1.00	1.49	1.51	1.50	90	89
15-May-12	14:30	Cloudy	002731	2.8140	2.8208	11458.85	11459.85	1.00	1.42	1.49	1.45	87	78
15-May-12	15:32	Cloudy	002730	2.8084	2.8145	11459.85	11460.85	1.00	1.47	1.47	1.47	88	69
21-May-12	8:30	Cloudy	002726	2.8128	2.8273	11484.85	11485.85	1.00	1.54	1.54	1.54	92	157
21-May-12	9:33	Cloudy	002724	2.8093	2.8195	11485.85	11486.85	1.00	1.47	1.47	1.47	88	116
21-May-12	10:42	Cloudy	002705	2.7830	2.7942	11486.85	11487.85	1.00	1.47	1.47	1.47	88	127
26-May-12	10:42	Cloudy	002721	2.7957	2.8162	11511.85	11512.85	1.00	1.54	1.54	1.54	92	222
26-May-12	13:00	Cloudy	002712	2.7806	2.7942	11512.85	11513.85	1.00	1.54	1.54	1.54	92	147
26-May-12	14:02	Cloudy	002715	2.7823	2.7924	11513.85	11514.85	1.00	1.56	1.51	1.54	92	109

Report on 24-hour TSP monitoring
Action Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 171.2
Limit Level $(\mu \mathrm{g} / \mathrm{m} 3)$ - 260

Date	Sampling Time	Weather Condition	Filter paper no.	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m^{3}	$\begin{gathered} \hline \text { TSP Level, } \\ \mu \mathrm{g} / \mathrm{m}^{3} \end{gathered}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, $\mathrm{Q}_{\text {sf }}$	Average		
2-May-12	8:00	Cloudy	002690	2.7646	2.8640	14905.10	14929.11	24.01	1.14	1.09	1.11	1601	62
8-May-12	8:00	Sunny	002706	2.7916	2.8497	14932.11	14956.10	23.99	1.11	1.09	1.10	1583	37
14-May-12	8:00	Cloudy	002631	2.8043	2.8667	14959.14	14983.14	24.00	1.04	1.04	1.04	1493	42
19-May-12	8:00	Cloudy	002727	2.8195	2.9018	14986.14	15010.14	24.00	1.04	1.14	1.09	1569	52
25-May-12	8:00	Cloudy	002635	2.7700	2.8833	15013.14	15037.14	24.00	1.14	1.14	1.14	1641	69

Report on 1-hour TSP monitoring
Action Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 312.5
Limit Level $(\mu \mathrm{g} / \mathrm{m} 3)$ - 500

Date	Sampling Time	Weather Condition	Filter paper no.	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m^{3}	$\begin{gathered} \text { TSP Level, } \\ \mu \mathrm{g} / \mathrm{m}^{3} \end{gathered}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, $\mathrm{Q}_{\text {sf }}$	Average		
3-May-12	10:25	Cloudy	002672	2.7696	2.7780	14929.11	14930.11	1.00	1.14	1.09	1.11	67	126
3-May-12	13:45	Cloudy	002709	2.7921	2.8053	14930.11	14931.11	1.00	1.14	1.19	1.16	70	189
3-May-12	15:00	Cloudy	002707	2.7954	2.8061	14931.11	14932.11	1.00	1.14	1.09	1.11	67	160
9-May-12	9:00	Sunny	002681	2.7969	2.8017	14956.11	14957.11	1.00	0.99	0.99	0.99	59	81
9-May-12	10:11	Sunny	002782	2.8111	2.8159	14957.11	14958.11	1.00	1.04	1.09	1.06	64	75
9-May-12	13:00	Sunny	002462	2.7400	2.7445	14958.11	14959.11	1.00	0.93	0.93	0.93	56	80
15-May-12	13:00	Cloudy	002742	2.7620	2.7705	14983.14	14984.14	1.00	0.99	1.09	1.04	62	137
15-May-12	14:40	Cloudy	002733	2.7967	2.8056	14984.14	14985.14	1.00	0.99	1.04	1.01	61	147
15-May-12	15:42	Cloudy	002729	2.8149	2.8245	14985.14	14986.14	1.00	1.09	1.09	1.09	65	147
21-May-12	8:45	Cloudy	002725	2.7920	2.7969	15010.14	15011.14	1.00	1.19	1.22	1.21	72	68
21-May-12	9:48	Cloudy	002704	2.7848	2.7903	15011.14	15012.14	1.00	1.14	1.14	1.14	69	80
21-May-12	10:53	Cloudy	002703	2.7706	2.7763	15012.14	15013.14	1.00	1.14	1.14	1.14	69	83
26-May-12	10:59	Cloudy	002720	2.7975	2.8081	15037.14	15038.14	1.00	1.09	1.14	1.11	67	158
26-May-12	13:15	Cloudy	002719	2.7990	2.8104	15038.14	15039.14	1.00	1.19	1.22	1.20	72	158
26-May-12	14:20	Cloudy	002718	2.7992	2.8087	15039.14	15040.14	1.00	1.19	1.17	1.18	71	134

Location: CMA5a - Children Garden opposite to Pedestrian Plaza
Report on 24-hour TSP monitoring
Action Level ($\mu \mathrm{g} / \mathrm{m} 3$) - 181
Limit Level $(\mu \mathrm{g} / \mathrm{m} 3)$ - 260

Date	Sampling Time	Weather Condition	Filter paper no.	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m^{3}	TSP Level, $\mu \mathrm{g} / \mathrm{m}^{3}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, $\mathrm{Q}_{\text {sf }}$	Average		
2-May-12	8:00	Cloudy	002806	2.7488	2.9107	15883.47	15907.47	24.00	1.43	1.46	1.45	2084	78
9-May-12	8:00	Sunny	002701	2.7704	2.8686	15916.95	15940.94	23.99	1.13	1.19	1.16	1673	59
14-May-12	8:00	Sunny	002582	2.7600	2.9251	15940.94	15964.94	24.00	1.46	1.46	1.46	2107	78
19-May-12	8:00	Rainy	002788	2.7990	2.9329	15967.94	15991.94	24.00	1.44	1.44	1.44	2072	65
26-May-12	13:00	Cloudy	002958	2.7703	2.9286	16003.43	16027.43	24.00	1.44	1.44	1.44	2070	76

Due to lack of electricity supply, the 24 hr-TSP was rescheduled form 8 and 25 May 2012 to 9 and 26 May 2012
Report on 1-hour TSP monitoring
Action Level ($\mu \mathrm{g} / \mathrm{m} 3$) 332
Limit Level $(\mu \mathrm{g} / \mathrm{m} 3)$ - 500

Date	Sampling Time	Weather Condition	Filter paper no.	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m^{3}	TSP Level, $\mu \mathrm{g} / \mathrm{m}^{3}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, $\mathrm{Q}_{\text {sf }}$	Average		
3-May-12	9:38	Cloudy	002679	2.7866	2.7990	15907.47	15908.47	1.00	1.35	1.24	1.30	78	159
3-May-12	10:38	Cloudy	002580	2.7603	2.7712	15908.47	15909.47	1.00	1.43	1.43	1.43	86	127
3-May-12	13:30	Cloudy	002760	2.7538	2.7629	15909.47	15910.47	1.00	1.46	1.46	1.46	88	104
9-May-12	8:10	Sunny	002695	2.7671	2.7725	15913.94	15914.94	1.00	1.46	1.46	1.46	88	62
9-May-12	9:15	Sunny	002696	2.7631	2.7699	15914.94	15915.94	1.00	1.46	1.46	1.46	88	78
9-May-12	10:20	Sunny	002702	2.7810	2.7872	15915.95	15916.95	1.00	1.46	1.46	1.46	88	71
15-May-12	8:30	Cloudy	002700	2.7662	2.7820	15964.94	15965.94	1.00	1.46	1.46	1.46	88	180
15-May-12	9:33	Cloudy	002784	2.7992	2.8093	15965.94	15966.94	1.00	1.46	1.46	1.46	88	115
15-May-12	10:40	Cloudy	002786	2.7947	2.8017	15966.94	15967.94	1.00	1.46	1.46	1.46	88	80
21-May-12	8:40	Cloudy	002840	2.7773	2.7820	15991.70	15992.70	1.00	1.47	1.47	1.47	88	53
21-May-12	10:50	Cloudy	002835	2.7753	2.7836	15992.70	15993.70	1.00	1.41	1.44	1.43	86	97
21-May-12	13:00	Cloudy	002831	2.7897	2.7985	15993.70	15994.70	1.00	1.47	1.47	1.47	88	100
26-May-12	8:45	Cloudy	002953	2.7732	2.7862	16000.43	16001.43	1.00	1.47	1.47	1.47	88	148
26-May-12	9:48	Cloudy	002955	2.7803	2.7895	16001.43	16002.43	1.00	1.30	1.30	1.30	78	118
26-May-12	10:50	Cloudy	002957	2.7934	2.8044	16002.43	16003.43	1.00	1.47	1.47	1.47	88	125

Report on 24-hour TSP monitoring
Action Level - $187.3 \quad \mu \mathrm{~g} / \mathrm{m} 3$
Limit Level - $260 \quad \mu \mathrm{~g} / \mathrm{m} 3$

Date	Sampling Time	Weather Condition	Filter paper no.	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m^{3}	TSP Level, $\mu \mathrm{g} / \mathrm{m}^{3}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, $\mathrm{Q}_{\text {sf }}$	Average		
2-May-12	8:00	Cloudy	002808	2.7180	2.8180	14208.77	14232.78	24.01	1.32	1.34	1.33	1919	52
9-May-12	8:00	Sunny	002732	2.8078	2.8714	14238.79	14262.79	24.00	1.49	1.52	1.51	2170	29
14-May-12	8:00	Sunny	002583	2.7621	2.8317	14262.79	14286.79	24.00	1.52	1.52	1.52	2189	32
19-May-12	8:00	Cloudy	002866	2.7699	2.8482	14289.79	14313.79	24.00	1.50	1.50	1.50	2157	36
26-May-1	13:00	Cloudy	002959	2.7661	2.8553	14319.79	14343.7	24.00	1.22	1.22	1.22	1763	51

* Due to lack of electricity supply, the 24 hr-TSP was rescheduled form 8 and 25 May 2012 to 9 and 26 May 2012

Report on 1-hour TSP monitoring
Action Level $-300.1 \mu \mathrm{~g} / \mathrm{m}^{3}$
Limit Level - $500 \mu \mathrm{~g} / \mathrm{m} 3$

Date	Sampling Time	Weather Condition	Filter paper no.	Filter Weight, g		Elapse Time, hr		Sampling Time, hr	Flow Rate, $\mathrm{m}^{3} / \mathrm{min}$			Total Volume, m^{3}	TSP Level, $\mu \mathrm{g} / \mathrm{m}^{3}$
				Initial	Final	Initial	Final		Initial, $\mathrm{Q}_{\text {si }}$	Final, $\mathrm{Q}_{\text {sf }}$	Average		
3-May-12	9:00	Cloudy	002680	2.7933	2.8041	14232.78	14233.78	1.00	1.27	1.27	1.27	76	142
3-May-12	10:00	Cloudy	002673	2.7728	2.7817	14233.78	14234.78	1.00	1.27	1.27	1.27	76	117
3-May-12	13:10	Cloudy	002324	2.8048	2.8125	14234.78	14235.78	1.00	1.37	1.39	1.38	83	93
9-May-12	8:35	Sunny	002759	2.7286	2.7379	14235.79	14236.79	1.00	1.22	1.22	1.22	73	127
9-May-12	9:40	Sunny	002697	2.7697	2.7725	14236.79	14237.79	1.00	1.22	1.22	1.22	73	38
9-May-12	10:45	Sunny	002698	2.7597	2.7635	14237.79	14238.79	1.00	1.22	1.22	1.22	73	52
15-May-12	8:40	Cloudy	002783	2.8025	2.8090	14286.79	14287.79	1.00	1.52	1.52	1.52	91	71
15-May-12	9:43	Cloudy	002785	2.7968	2.8016	14287.79	14288.79	1.00	1.52	1.52	1.52	91	53
15-May-12	10:50	Cloudy	002787	2.8132	2.8173	14288.79	14289.79	1.00	1.52	1.52	1.52	91	45
21-May-12	8:27	Cloudy	002841	2.7743	2.7783	14313.79	14314.79	1.00	1.52	1.52	1.52	91	44
21-May-12	9:34	Cloudy	002838	2.7804	2.7830	14314.79	14315.79	1.00	1.47	1.50	1.49	89	29
21-May-12	10:38	Cloudy	002836	2.7613	2.7651	14315.79	14316.79	1.00	1.47	1.47	1.47	88	43
26-May-12	8:00	Cloudy	002833	2.7819	2.7990	14316.79	14317.79	1.00	1.22	1.22	1.22	73	233
26-May-12	9:10	Cloudy	002954	2.7622	2.7691	14317.79	14318.79	1.00	1.22	1.22	1.22	73	94
26-May-12	10:30	Cloudy	002956	2.7849	2.7934	14318.79	14319.79	1.00	1.22	1.22	1.22	73	116

Graphic Presentation of 1 hour TSP Result

Graphic Presentation of 1 hour TSP Result

Graphic Presentation of 24 hour TSP Result

Graphic Presentation of $\mathbf{2 4}$ hour TSP Result

Appendix 5.4

Water Quality Monitoring Results and Graphical Presentations

aM Water Monitoring Result at WSD9 - Tai Wan Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$						ppt			\%			mg/L			Value ${ }^{\text {NT }}$				
							Average			Average		ue	Average			Average			Average			Average	Value	Average
1/5/2012	3:06	Cloudy	Middle	2.5	25.13	25.13	25.17	7.80	7.80	7.79	29.95	29.95	29.94	80.4	80.1	80.3	5.59	5.57	5.58	0.82	0.73	0.77	3	3.00
	3:07		Middle	2.5	25.21	25.21		7.78	7.78		29.93	29.93		80.3	80.4		5.58	5.58		0.77	0.74		3	
2/5/2012	15:30	Cloudy	Middle	2.5	27.20	27.20	27.25	8.21	8.21	8.21	28.57	28.57	28.58	89.8	89.3	89.6	6.07	5.97	6.03	0.86	0.92	0.79	3	3.50
	15:32		Middle	2.5	27.30	27.30		8.20	8.20		28.58	28.58		90.3	89.0		6.09	6.00		0.84	0.52		4	
4/5/2012	17:00	Fine	Middle	2.5	26.40	26.40	26.40	8.35	8.35	8.36	28.47	28.47	28.48	96.8	96.5	96.3	6.63	6.61	6.59	1.16	1.27	1.21	2	2.00
	17:02		Middle	2.5	26.40	26.40		8.36	8.36		28.48	28.48		95.8	95.9		6.56	6.56		1.31	1.11		2	
7/5/2012	22:42	Fine	Middle	2.5	25.40	25.40	25.40	8.37	8.37	8.37	30.44	30.44	30.44	91.9	92.9	92.0	6.35	6.42	6.37	0.55	0.49	0.43	3	2.50
	22:43		Middle	2.5	25.40	25.40		8.37	8.37		30.44	30.44		92.2	91.1		6.39	6.30		0.34	0.33		2	
9/5/2012	20:45	Fine	Middle	2.5	27.20	27.20	27.20	8.35	8.35	8.36	28.44	28.44	28.44	93.5	93.5	94.3	6.26	6.26	6.32	0.65	0.80	0.78	3	3.50
	20:46		Middle	2.5	27.20	27.20		8.37	8.37		28.44	28.44		94.8	95.5		6.35	6.39		1.00	0.66		4	
11/5/2012	22:27	Cloudy	Middle	2.0	25.20	25.20	25.20	8.06	8.06	8.06	29.63	29.63	29.63	90.4	89.6	89.7	6.28	6.22	6.23	1.15	1.01	1.09	2	2.50
	22:28		Middle	2.0	25.20	25.20		8.06	8.06		29.63	29.63		89.8	89.1		6.24	6.18		1.00	1.20		3	
15/5/2012	3:25	Cloudy	Middle	2.5	26.80	26.80	26.80	7.98	7.98	7.98	28.35	28.35	28.35	86.6	86.5	86.1	5.89	5.87	5.85	0.35	0.45	0.45	5	6.00
	3:26		Middle	2.5	26.80	26.80		7.98	7.98		28.35	28.35		84.7	86.5		5.75	5.87		0.51	0.48		7	
17/5/2012	16:30	Fine	Middle	3.0	26.80	26.80	26.85	8.02	8.02	8.01	28.26	28.26	28.26	85.2	84.9	85.0	5.81	5.78	5.79	0.68	0.82	0.80	3	3.00
	16:32		Middle	3.0	26.90	26.90		8.00	8.00		28.26	28.26		84.7	85.1		5.77	5.80		0.82	0.89		3	
19/5/2012	17:26	Cloudy	Middle	2.5	27.00	27.00	27.00	7.88	7.88	7.88	28.16	28.16	28.16	79.1	80.7	79.8	5.41	5.49	5.42	1.04	0.94	1.04	6	5.00
	17:27		Middle	2.5	27.00	27.00		7.88	7.88		28.16	28.16		80.0	79.3		5.38	5.39		0.90	1.27		4	
21/5/2012	18:55	Cloudy	Middle	2.5	26.00	26.00	26.00	7.98	7.98	7.98	28.56	28.56	28.57	78.2	79.3	78.8	5.39	5.47	5.43	1.42	1.31	1.32	3	3.00
	18:56		Middle	2.5	26.00	26.00		7.98	7.98		28.57	28.57		79.2	78.5		5.46	5.41		1.20	1.33		3	
23/5/2012	19:07	Fine	Middle	2.0	26.10	26.10	26.10	8.08	8.08	8.08	29.55	29.55	29.55	84.8	85.5	85.3	5.82	5.87	5.86	2.50	2.17	2.28	4	5.00
	19:08		Middle	2.0	26.10	26.10		8.08	8.08		29.55	29.55		85.5	85.5		5.87	5.87		2.25	2.21		6	
25/5/2012	21:54	Fine	Middle	2.0	27.10	27.10	27.10	8.02	8.02	8.02	29.09	29.09	29.09	73.6	74.0	73.9	4.94	4.97	4.96	1.70	1.65	1.77	4	4.00
	21:55		Middle	2.0	27.10	27.10		8.02	8.02		29.09	29.09		74.3	73.8		4.99	4.95		1.91	1.83		4	

[^8]
\&M. Water Monitoring Result at WSD17 - Quarry Bay Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$						ppt			\%			mg/L			Value			mg / L	
							Average			Average		lue	Average			Average			Average			Average	Value	Average
1/5/2012	0:26	Cloudy	Middle	2.0	24.91	24.91	24.94	7.87	7.87	7.85	29.79	29.79	29.79	84.0	84.2	84.1	5.87	5.88	5.87	0.96	0.86	0.89	5	4.00
	0:27		Middle	2.0	24.97	24.97		7.83	7.83		29.78	29.78		84.0	84.1		5.87	5.87		0.91	0.84		3	
2/5/2012	14:56	Cloudy	Middle	2.5	27.20	27.20	27.25	8.24	8.24	8.24	28.56	28.56	28.56	89.6	88.1	89.1	6.12	6.02	6.08	0.91	0.95	0.95	2	2.50
	14:58		Middle	2.5	27.30	27.30		8.23	8.23		28.56	28.56		89.9	88.6		6.14	6.04		1.07	0.88		3	
4/5/2012	15:25	Fine	Middle	2.0	27.00	27.00	27.05	8.45	8.45	8.44	27.14	27.14	27.15	110.1	110.4	110.4	7.49	7.56	7.55	0.72	0.79	0.73	5	4.50
	15:28		Middle	2.0	27.10	27.10		8.43	8.43		27.15	27.15		110.3	110.7		7.55	7.58		0.61	0.79		4	
7/5/2012	19:55	Fine	Middle	2.5	25.50	25.50	25.50	8.36	8.36	8.36	30.44	30.44	30.44	90.6	90.8	90.7	6.22	6.23	6.22	0.87	1.14	0.98	4	4.50
	19:56		Middle	2.5	25.50	25.50		8.36	8.36		30.44	30.44		91.1	90.1		6.25	6.17		0.91	0.98		5	
9/5/2012	23:03	Fine	Middle	2.5	27.30	27.30	27.40	8.32	8.32	8.32	30.23	30.23	30.23	91.6	92.5	91.9	6.09	6.15	6.11	1.42	1.24	1.19	2	3.00
	23:04		Middle	2.5	27.50	27.50		8.32	8.32		30.23	30.23		92.1	91.2		6.12	6.06		1.14	0.95		4	
11/5/2012	0:40	Cloudy	Middle	2.5	24.80	24.80	24.80	8.24	8.24	8.24	29.33	29.33	29.33	89.1	90.8	89.6	6.24	6.36	6.28	0.61	0.95	0.80	3	3.00
	0:41		Middle	2.5	24.80	24.80		8.24	8.22		29.33	29.33		89.4	89.0		6.26	6.24		0.92	0.70		3	
15/5/2012	0:38	Cloudy	Middle	2.5	26.40	26.40	26.40	7.97	7.97	7.97	28.00	28.00	28.00	85.6	85.2	84.7	5.85	5.83	5.80	0.50	0.54	0.61	3	3.00
	0:39		Middle	2.5	26.40	26.40		7.97	7.97		28.00	28.00		84.1	84.0		5.75	5.75		0.75	0.65		3	
17/5/2012	15:00	Fine	Middle	3.5	27.50	27.50	27.60	7.94	7.94	7.94	28.53	28.53	28.53	74.0	73.9	74.2	4.97	4.98	4.99	1.55	1.63	1.54	<2	<2
	15:02		Middle	3.5	27.70	27.70		7.93	7.93		28.53	28.53		74.6	74.3		5.01	4.99		1.51	1.47		<2	
19/5/2012	19:05	Cloudy	Middle	3.0	26.50	26.50	26.50	8.03	8.03	8.03	28.94	28.94	28.94	81.5	81.0	80.6	5.56	5.53	5.50	1.04	1.02	0.98	7	6.50
	19:06		Middle	3.0	26.50	26.50		8.03	8.03		28.94	28.94		80.0	80.0		5.46	5.46		0.95	0.90		6	
21/5/2012	21:28	Cloudy	Middle	3.0	25.90	25.90	25.90	8.11	8.11	8.11	29.45	29.45	29.45	81.3	80.7	80.9	5.59	5.55	5.56	1.98	1.87	1.98	4	3.50
	21:29		Middle	3.0	25.90	25.90		8.11	8.11		29.45	29.45		80.5	81.1		5.53	5.57		2.04	2.03		3	
23/5/2012	22:20	Fine	Middle	3.0	26.20	26.20	26.20	8.11	8.11	8.12	29.79	29.79	29.79	79.2	79.3	79.1	5.41	5.42	5.41	2.08	2.49	2.39	5	4.50
	22:21		Middle	3.0	26.20	26.20		8.13	8.13		29.79	29.79		79.2	78.8		5.41	5.39		2.55	2.44		4	
25/5/2012	0:27	Fine	Middle	3.0	27.20	27.20	27.20	8.12	8.12	8.12	29.76	29.76	29.76	70.8	70.8	70.9	4.77	4.77	4.78	1.81	2.01	1.97	6	6.00
	0:28		Middle	3.0	27.20	27.20		8.12	8.12		29.76	29.76		70.9	70.9		4.78	4.78		2.18	1.86		6	

Remarks:
ingle underline denotes exceedance over Action leve
Double underline denotes exceedance over Limit level

\& W Water Monitoring Result at C9 - Provident Centre Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg/L			NTU			mg / L	
							Average			Average		ue	Average			Average		ue	Average			Average	Value	Average
1/5/2012	0:08	Cloudy	Middle	1.5	25.36	25.36	25.36	7.95	7.95	7.95	29.09	29.09	29.09	87.0	86.7	86.8	6.05	6.04	6.04	4.38	4.44	4.43	6	6.00
	0:09		Middle	1.5	25.36	25.36		7.94	7.94		29.08	29.08		86.8	86.8		6.04	6.04		4.55	4.34		6	
2/5/2012	14:25	Cloudy	Middle	2.0	27.00	27.00	27.05	8.25	8.25	8.25	28.66	28.66	28.66	90.2	89.9	89.9	6.18	6.16	6.16	1.10	1.07	0.98	3	2.50
	14:26		Middle	2.0	27.10	27.10		8.25	8.25		28.66	28.66		90.1	89.3		6.17	6.11		0.93	0.82		2	
4/5/2012	15:10	Fine	Middle	2.0	26.70	26.70	26.75	7.54	7.54	7.54	26.12	26.12	26.13	80.6	80.5	80.5	5.58	5.57	5.58	3.36	3.39	3.31	7	6.50
	15:13		Middle	2.0	26.80	26.80		7.53	7.53		26.13	26.13		80.7	80.3		5.59	5.56		3.21	3.29		6	
7/5/2012	19:31	Fine	Middle	1.5	25.30	25.30	25.30	8.30	8.30	8.30	29.61	29.61	29.61	87.7	89.6	89.1	6.08	6.21	6.18	4.40	4.62	4.49	7	6.50
	19:32		Middle	1.5	25.30	25.30		8.30	8.30		29.61	29.61		89.9	89.3		6.23	6.19		4.82	4.13		6	
9/5/2012	22:42	Fine	Middle	2.0	27.40	27.40	27.40	8.28	8.28	8.28	28.02	28.02	28.02	93.0	93.8	92.9	6.25	6.31	6.25	2.78	2.72	2.73	4	3.50
	22:43		Middle	2.0	27.40	27.40		8.28	8.28		28.02	28.02		92.4	92.4		6.21	6.21		2.75	2.66		3	
11/5/2012	0:21	Cloudy	Middle	2.0	24.90	24.90	24.90	8.00	8.00	8.00	29.42	29.42	29.42	85.4	85.9	85.3	5.97	6.01	5.97	1.56	1.22	1.31	<2	<2
	0:22		Middle	2.0	24.90	24.90		8.00	8.00		29.42	29.42		85.0	85.0		5.94	5.94		1.18	1.26		<2	
15/5/2012	0:19	Cloudy	Middle	1.5	26.80	26.80	26.80	7.94	7.94	7.94	27.53	27.53	27.53	86.1	85.4	85.2	5.87	5.83	5.82	2.99	2.92	2.90	6	6.00
	0:20		Middle	1.5	26.80	26.80		7.94	7.94		27.53	27.53		85.0	84.3		5.81	5.75		2.81	2.87		6	
17/5/2012	14:37	Fine	Middle	2.5	26.20	26.20	26.25	8.36	8.36	8.36	28.53	28.53	28.54	73.0	72.9	72.9	5.03	5.02	5.02	4.27	4.31	4.28	<2	<2
	14:40		Middle	2.5	26.30	26.30		8.35	8.35		28.54	28.54		72.8	72.9		5.01	5.02		4.19	4.34		<2	
19/5/2012	20:45	Cloudy	Middle	2.0	26.20	26.20	26.20	8.00	8.00	8.00	28.67	28.67	28.67	80.8	81.0	80.5	5.55	5.56	5.53	2.75	2.55	2.49	7	6.00
	20:46		Middle	2.0	26.20	26.20		8.00	8.00		28.67	28.67		81.0	79.3		5.56	5.45		2.39	2.28		5	
21/5/2012	21:08	Cloudy	Middle	2.0	26.00	26.00	26.00	8.02	8.02	8.02	29.18	29.18	29.18	80.2	80.3	80.4	5.52	5.52	5.53	3.84	3.48	3.55	7	7.00
	21:09		Middle	2.0	26.00	26.00		8.01	8.01		29.18	29.18		80.4	80.7		5.53	5.55		3.39	3.50		7	
23/5/2012	21:58	Fine	Middle	2.0	26.20	26.20	26.20	8.02	8.02	8.02	29.30	29.30	29.30	78.2	78.7	78.6	5.35	5.39	5.39	3.90	4.06	3.89	6	6.50
	21:59		Middle	2.0	26.20	26.20		8.02	8.02		29.30	29.30		78.8	78.8		5.40	5.40		3.81	3.77		7	
25/5/2012	0:00	Fine	Middle	2.0	26.80	26.80	26.80	7.95	7.95	7.95	29.05	29.05	29.05	66.6	67.2	67.2	4.51	4.56	4.55	2.42	2.57	2.63	5	5.00
	0:01		Middle	2.0	26.80	26.80		7.95	7.95		29.05	29.05		67.5	67.4		4.57	4.57		2.81	2.73		5	

Remarks:
Single underline denotes exceedance over Action leve
Double underline denotes exceedance over Limit leve

\&M Water Monitoring Result at C8 - City Garden Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m					- -			ppt			\%			mg/L			NTU			mg / L	
							Average			Average		lue	Average			Average			Average			Average	Value	Average
1/5/2012	23:55	Cloudy	Middle	1.5	24.99	24.99	25.00	7.81	7.81	7.81	28.54	28.54	28.54	79.8	80.1	79.9	5.60	5.63	5.61	2.46	2.52	2.53	4	4.50
	23:56		Middle	1.5	25.00	25.00		7.81	7.81		28.54	28.53		79.9	79.9		5.61	5.61		2.70	2.42		5	
2/5/2012	14:13	Cloudy	Middle	2.0	26.80	26.80	26.90	8.24	8.24	8.24	28.59	28.59	28.59	89.5	86.2	88.4	6.14	5.91	6.06	1.44	1.36	1.34	4	4.00
	14:15		Middle	2.0	27.00	27.00		8.24	8.24		28.59	28.59		89.4	88.5		6.12	6.05		1.26	1.29		4	
4/5/2012	15:19	Fine	Middle	2.0	26.30	26.30	26.30	7.37	7.37	7.37	26.25	26.25	26.26	75.1	75.0	75.2	5.23	5.22	5.24	3.19	3.15	3.06	5	5.50
	15:22		Middle	2.0	26.30	26.30		7.36	7.36		26.26	26.26		75.5	75.3		5.26	5.24		2.99	2.90		6	
7/5/2012	19:17	Fine	Middle	1.5	25.60	25.60	25.60	8.30	8.30	8.30	29.39	29.39	29.39	88.6	89.5	88.6	6.11	6.17	6.11	3.80	3.88	3.68	8	7.00
	19:18		Middle	1.5	25.60	25.60		8.29	8.29		29.39	29.39		88.1	88.1		6.07	6.07		3.69	3.33		6	
9/5/2012	22:33	Fine	Middle	2.0	26.90	26.90	26.90	8.29	8.29	8.29	28.28	28.28	28.28	92.8	92.3	92.4	6.28	6.24	6.25	1.30	1.26	1.18	2	2.00
	22:34		Middle	2.0	26.90	26.90		8.29	8.29		28.28	28.28		91.8	92.8		6.21	6.27		1.08	1.07		2	
11/5/2012	0:04	Cloudy	Middle	2.0	24.90	24.90	24.95	7.89	7.89	7.90	29.60	29.60	29.60	73.8	74.7	74.7	5.16	5.22	5.22	1.10	1.13	1.12	3	3.00
	0:05		Middle	2.0	25.00	25.00		7.90	7.90		29.60	29.60		74.7	75.6		5.22	5.28		1.14	1.12		3	
15/5/2012	0:05	Cloudy	Middle	1.5	26.70	26.70	26.70	7.94	7.94	7.94	27.30	27.30	27.30	81.7	82.9	82.2	5.59	5.67	5.63	0.72	0.70	0.66	3	3.00
	0:06		Middle	1.5	26.70	26.70		7.94	7.94		27.30	27.30		82.8	81.5		5.67	5.57		0.61	0.62		3	
17/5/2012	14:45	Fine	Middle	2.5	26.20	26.20	26.25	8.29	8.29	8.29	28.72	28.72	28.73	72.0	71.7	71.6	4.95	4.93	4.92	3.49	3.40	3.44	3	3.00
	14:48		Middle	2.5	26.30	26.30		8.28	8.28		28.73	28.73		71.2	71.4		4.89	4.91		3.31	3.54		3	
19/5/2012	20:32	Cloudy	Middle	2.0	26.30	26.30	26.30	7.94	7.94	7.94	28.56	28.56	28.56	74.8	76.3	75.1	5.15	5.24	5.16	2.45	2.30	2.45	6	6.50
	20:33		Middle	2.0	26.30	26.30		7.94	7.94		28.56	28.56		74.3	75.0		5.10	5.16		2.34	2.69		7	
21/5/2012	20:54	Cloudy	Middle	2.0	26.10	26.10	26.10	8.00	8.00	8.00	28.87	28.87	28.87	68.6	69.2	69.1	4.71	4.76	4.75	3.00	2.84	2.80	4	3.50
	20:55		Middle	2.0	26.10	26.10		8.00	8.00		28.87	28.87		69.3	69.3		4.76	4.76		2.78	2.57		3	
23/5/2012	21:40	Fine	Middle	2.0	26.30	26.30	26.30	7.98	7.98	7.98	29.17	29.17	29.17	67.2	68.3	67.4	4.60	4.68	4.61	4.00	3.92	3.91	4	4.50
	21:41		Middle	2.0	26.30	26.30		7.98	7.98		29.17	29.17		67.8	66.3		4.62	4.54		3.85	3.85		5	
25/5/2012	23:50	Fine	Middle	2.0	27.00	27.00	27.00	8.00	8.00	8.00	29.08	29.08	29.08	63.2	64.0	63.5	4.27	4.32	4.29	3.29	3.61	3.37	5	5.50
	23:51		Middle	2.0	27.00	27.00		8.00	8.00		29.08	29.08		63.5	63.2		4.29	4.27		3.35	3.24		6	

Remarks
Single underine denotes exceedance over Action level
Double underline denotes exceedance over Limit leve

Iam wate Monitiong Resultat cr - Wrissos fouse Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$						ppt			\%			mg/L			Value			mg / L	
							Average			Average		aue	Average			Average		lue	Average			Average	Value	Average
1/5/2012	23:35	Cloudy	Middle	1.5	24.75	24.75	24.75	7.80	7.80	7.80	29.19	29.19	29.19	73.7	73.9	73.9	5.18	5.19	5.19	1.01	1.10	1.12	3	3.50
	23:36		Middle	1.5	24.75	24.75		7.80	7.79		29.19	29.19		73.8	74.2		5.18	5.20		1.15	1.22		4	
2/5/2012	13:56	Cloudy	Middle	1.5	28.00	28.00	28.05	8.11	8.11	8.12	28.40	28.40	28.40	77.0	75.8	76.8	5.20	5.12	5.18	0.77	0.61	0.65	3	3.50
	13:57		Middle	1.5	28.10	28.10		8.12	8.12		28.40	28.40		77.7	76.6		5.24	5.17		0.58	0.64		4	
4/5/2012	15:35	Fine	Middle	1.5	26.60	26.60	26.60	7.33	7.33	7.34	26.95	26.95	26.96	53.7	53.6	53.3	3.73	3.72	3.70	2.50	2.60	2.50	7	6.50
	15:38		Middle	1.5	26.60	26.60		7.34	7.34		26.97	26.97		53.3	52.6		3.69	3.66		2.45	2.46		6	
7/5/2012	18:37	Fine	Middle	1.5	25.40	25.40	25.40	8.15	8.15	8.15	28.28	28.28	28.28	75.5	75.6	75.0	5.25	5.26	5.21	0.93	0.82	0.86	5	4.50
	18:38		Middle	1.5	25.40	25.40		8.15	8.15		28.28	28.28		74.2	74.6		5.14	5.17		0.93	0.76		4	
9/5/2012	22:10	Fine	Middle	1.5	27.30	27.30	27.30	8.19	8.19	8.19	26.52	26.52	26.52	84.4	84.5	84.2	5.76	5.76	5.74	1.69	1.24	1.33	5	4.50
	22:11		Middle	1.5	27.30	27.30		8.19	8.19		26.52	26.52		83.8	83.9		5.71	5.72		1.20	1.17		4	
11/5/2012	23:51	Cloudy	Middle	1.5	25.30	25.30	25.30	7.79	7.79	7.79	27.83	27.83	27.83	72.9	72.9	72.4	5.12	5.12	5.08	0.51	0.38	0.48	<2	<2
	23:52		Middle	1.5	25.30	25.30		7.79	7.79		27.83	27.83		72.1	71.5		5.06	5.02		0.53	0.49		<2	
15/5/2012	23:48	Cloudy	Middle	1.0	26.60	26.60	26.60	7.81	7.81	7.81	27.10	27.10	27.10	71.0	71.2	70.8	4.88	4.89	4.87	0.59	0.50	0.47	3	3.00
	23:49		Middle	1.0	26.60	26.60		7.81	7.81		27.10	27.10		70.7	70.4		4.86	4.84		0.41	0.38		3	
17/5/2012	15:05	Fine	Middle	1.5	27.40	27.40	27.45	8.02	8.02	8.03	27.76	27.76	27.77	46.6	47.1	47.4	3.15	3.18	3.20	4.49	4.59	4.40	<2	<2
	15:08		Middle	1.5	27.50	27.50		8.03	8.03		27.78	27.78		47.7	48.3		3.22	3.26		4.15	4.35		<2	
19/5/2012	20:18	Cloudy	Middle	1.5	26.00	26.00	26.00	7.74	7.74	7.74	26.77	26.77	26.77	60.2	60.0	60.0	4.20	4.18	4.19	0.67	0.72	0.68	<2	<2
	20:19		Middle	1.5	26.00	26.00		7.74	7.74		26.76	26.76		59.4	60.2		4.19	4.20		0.65	0.66		<2	
21/5/2012	20:27	Cloudy	Middle	1.5	26.10	26.10	26.10	7.75	7.75	7.75	27.07	27.07	27.07	63.5	63.7	63.6	4.41	4.43	4.42	0.38	0.50	0.38	6	6.50
	20:28		Middle	1.5	26.10	26.10		7.74	7.74		27.07	27.07		63.7	63.3		4.42	4.40		0.33	0.31		7	
23/5/2012	21:07	Fine	Middle	1.5	26.20	26.20	26.15	7.82	7.82	7.82	28.38	28.38	28.38	57.4	59.0	58.9	3.96	4.07	4.07	0.30	0.25	0.28	<2	<2
	21:08		Middle	1.5	26.10	26.10		7.82	7.82		28.38	28.38		59.7	59.5		4.12	4.11		0.29	0.26		<2	
25/5/2012	23:35	Fine	Middle	1.5	26.90	26.90	26.90	7.72	7.72	7.72	28.11	28.11	28.11	50.5	51.3	51.2	3.44	3.49	3.49	0.23	0.20	0.19	<2	<2
	23:36		Middle	1.5	26.90	26.90		7.72	7.72		28.11	28.11		51.5	51.5		3.51	3.51		0.18	0.13		<2	

Remarks
Single underline denotes exceedance over Action leve
Double underline denotes exceedance over Limit level

a. Water Monitoring Result at C1-HKCEC Extension Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$						ppt			\%			mg / L			Value			mg / L	
							Average			Average		lue	Average			Average			Average			Average	Value	Average
1/5/2012	0:29	Cloudy	Middle	1.5	25.00	25.00	25.05	7.78	7.78	7.79	27.90	27.90	27.90	86.8	86.5	86.1	6.10	6.03	6.02	1.01	1.08	1.06	<2	<2
	0:31		Middle	1.5	25.10	25.10		7.79	7.79		27.90	27.90		85.5	85.6		5.97	5.99		1.11	1.03		<2	
2/5/2012	16:25	Cloudy	Middle	2.0	27.00	27.00	27.00	7.80	7.80	7.81	26.76	26.76	26.77	84.2	82.8	83.9	5.79	5.69	5.77	3.56	3.78	3.68	<2	<2
	16:27		Middle	2.0	27.00	27.00		7.81	7.81		26.77	26.77		83.3	85.4		5.72	5.86		3.67	3.72		<2	
4/5/2012	16:28	Fine	Middle	2.5	26.40	26.40	26.45	7.50	7.50	7.51	27.26	27.26	27.26	71.8	71.9	71.8	4.96	4.97	4.96	4.93	4.87	5.00	6	6.50
	16:30		Middle	2.5	26.50	26.50		7.52	7.52		27.25	27.25		71.6	71.7		4.94	4.95		5.09	5.12		7	
7/5/2012	19:12	Fine	Middle	1.5	25.40	25.40	25.45	8.39	8.39	8.40	28.50	28.50	28.55	92.6	92.5	92.3	7.54	7.54	7.52	3.19	3.22	3.18	4	4.00
	19:14		Middle	1.5	25.50	25.50		8.40	8.40		28.60	28.60		92.2	92.0		7.51	7.49		3.11	3.21		4	
9/5/2012	21:42	Fine	Middle	2.0	27.10	27.10	27.05	8.31	8.31	8.31	27.29	27.29	27.30	90.6	89.9	90.5	6.29	6.25	6.29	3.43	3.15	3.27	3	3.50
	21:44		Middle	2.0	27.00	27.00		8.31	8.31		27.30	27.30		90.4	91.0		6.26	6.34		3.18	3.32		4	
11/5/2012	23:56	Cloudy	Middle	2.0	25.00	25.00	25.00	8.26	8.26	8.27	30.68	30.68	23.93	82.4	82.0	81.8	5.73	5.70	5.68	3.55	3.42	3.50	4	3.50
	23:58		Middle	2.0	25.00	25.00		8.27	8.27		3.67	30.67		81.3	81.6		5.64	5.66		3.51	3.52		3	
15/5/2012	23:10	Cloudy	Middle	1.5	26.70	26.70	26.70	7.81	7.81	7.82	28.51	28.51	28.51	92.6	93.0	92.7	6.33	6.37	6.35	2.04	2.21	2.27	4	4.00
	23:12		Middle	1.5	26.70	26.70		7.82	7.82		28.50	28.50		92.5	92.8		6.33	6.35		2.43	2.40		4	
17/5/2012	15:53	Fine	Middle	2.5	26.70	26.70	26.70	8.22	8.22	8.23	29.07	29.07	29.08	80.1	80.2	80.3	5.45	5.46	5.47	7.32	7.41	7.57	3	3.00
	15:56		Middle	2.5	26.70	26.70		8.23	8.23		29.08	29.08		80.3	80.4		5.47	5.48		7.89	7.66		3	
19/5/2012	19:50	Cloudy	Middle	2.0	26.10	26.10	26.15	8.29	8.29	26.97	28.58	28.58	28.59	71.7	72.0	71.6	5.08	5.10	5.09	2.35	2.61	2.42	5	4.50
	19:52		Middle	2.0	26.20	26.20		8.30	83.00		28.60	28.60		70.9	71.6		5.09	5.09		2.30	2.40		4	
21/5/2012	17:35	Cloudy	Middle	2.0	26.40	26.40	26.40	8.30	8.30	8.31	29.40	29.40	29.41	71.6	72.2	72.1	4.88	4.93	4.92	2.96	2.74	2.86	5	5.50
	17:37		Middle	2.0	26.40	26.40		8.32	8.32		29.41	29.41		73.0	71.7		4.98	4.89		2.84	2.88		6	
23/5/2012	21:29	Fine	Middle	1.5	25.80	25.80	25.80	7.98	7.98	7.99	30.48	30.48	30.49	80.8	80.1	80.6	5.55	5.50	5.54	4.98	4.96	4.96	4	5.00
	21:31		Middle	1.5	25.80	25.80		7.99	7.99		30.49	30.49		80.9	80.6		5.56	5.54		4.99	4.91		6	
25/5/2012	22:15	Fine	Middle	2.0	26.50	26.50	26.45	8.15	8.15	8.16	29.78	29.78	29.79	56.9	57.1	57.2	3.90	3.93	3.93	2.32	2.08	2.24	4	4.50
	22:17		Middle	2.0	26.40	26.40		8.16	8.16		29.79	29.79		57.4	57.4		3.94	3.96		2.33	2.21		5	

Remarks:
Single underiine denotes exceedance over Action leval
Double underline denotes exceedance over Limit leve

Iam wate Monitiong Resultat cc 2 - TH/ APa / soc Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$			- -			ppt			\%			mg/L			NTU			mg / L	
							Average			Average		Iue	Average			Average			Average			Average	Value	Average
1/5/2012	23:04	Cloudy	Middle	1.0	25.20	25.20	25.15	7.78	7.78	7.78	28.81	28.81	28.82	84.0	84.1	83.8	5.86	5.87	5.85	1.65	1.72	1.71	<2	<2
	23:06		Middle	1.0	25.10	25.10		7.77	7.77		28.82	28.82		83.5	83.5		5.85	5.83		1.67	1.81		<2	
2/5/2012	14:42	Cloudy	Middle	1.5	27.30	27.30	27.35	7.59	7.59	7.60	25.06	25.06	25.07	91.2	91.7	91.1	6.23	6.26	6.22	1.95	1.82	1.86	<2	<2
	14:44		Middle	1.5	27.40	27.40		7.60	7.60		25.07	25.07		90.9	90.5		6.20	6.17		1.77	1.91		<2	
4/5/2012	17:30	Fine	Middle	2.0	27.10	27.10	27.15	7.82	7.82	7.83	26.83	26.83	26.83	79.3	79.8	79.7	5.42	5.45	5.44	2.49	2.58	2.51	4	4.50
	17:33		Middle	2.0	27.20	27.20		7.83	7.83		26.82	26.82		79.7	79.9		5.44	5.46		2.46	2.51		5	
7/5/2012	17:32	Fine	Middle	1.5	26.90	26.90	26.95	8.38	8.38	8.38	28.30	28.30	28.25	96.6	96.3	96.3	7.68	7.65	7.65	3.42	2.99	3.11	5	4.50
	17:34		Middle	1.5	27.00	27.00		8.37	8.37		28.20	28.20		96.2	96.1		7.64	7.63		3.01	3.03		4	
9/5/2012	22:00	Fine	Middle	1.5	27.20	27.20	27.25	8.42	8.42	8.43	27.38	27.38	27.39	98.0	97.3	97.8	6.65	6.60	6.63	6.21	6.48	6.41	14	14.00
	22:02		Middle	1.5	27.30	27.30		8.43	8.43		27.39	27.39		97.9	98.0		6.64	6.64		6.61	6.32		14	
11/5/2012	0:15	Cloudy	Middle	1.5	26.20	26.20	26.25	8.23	8.23	8.24	30.37	30.37	30.38	85.4	84.0	84.5	5.83	5.74	5.77	4.01	4.13	4.10	<2	<2
	0:17		Middle	1.5	26.30	26.30		8.24	8.24		30.38	30.38		83.9	84.6		5.73	5.78		4.21	4.04		<2	
15/5/2012	0:45	Cloudy	Middle	1.0	26.60	26.60	26.55	8.12	8.12	8.13	29.02	29.02	29.03	89.0	88.8	88.9	6.10	6.08	6.09	4.44	4.24	4.30	13	13.50
	0:47		Middle	1.0	26.50	26.50		8.13	8.13		29.03	29.03		88.7	88.9		6.07	6.10		4.11	4.41		14	
17/5/2012	17:16	Fine	Middle	2.0	27.40	27.40	27.35	8.18	8.18	8.18	29.31	29.31	29.32	73.1	73.2	73.4	4.91	4.92	4.93	5.54	5.42	5.28	4	4.00
	17:19		Middle	2.0	27.30	27.30		8.17	8.17		29.32	29.32		73.3	73.8		4.93	4.97		5.24	4.91		4	
19/5/2012	18:00	Cloudy	Middle	1.5	26.20	26.20	26.15	8.23	8.23	8.22	28.94	28.94	28.96	67.9	67.6	67.6	4.67	4.66	4.66	2.38	2.64	2.62	4	4.50
	18:02		Middle	1.5	26.10	26.10		8.21	8.21		28.97	28.97		67.6	67.4		4.65	4.64		2.76	2.68		5	
21/5/2012	16:12	Cloudy	Middle	1.0	26.50	26.50	26.45	8.18	8.18	8.18	29.39	29.39	29.40	70.4	70.7	71.1	4.79	4.81	4.84	4.64	4.48	4.55	5	4.50
	16:14		Middle	1.0	26.40	26.40		8.17	8.17		29.40	29.40		71.7	71.5		4.88	4.86		4.82	4.25		4	
23/5/2012	19:40	Fine	Middle	1.0	26.10	26.10	26.15	7.99	7.99	7.99	30.20	30.20	30.21	73.9	73.8	74.1	5.06	5.05	5.07	4.20	4.38	4.34	6	6.50
	19:42		Middle	1.0	26.20	26.20		7.98	7.98		30.21	30.21		73.9	74.7		5.06	5.11		4.63	4.16		7	
25/5/2012	20:54	Fine	Middle	1.0	26.40	26.40	26.45	8.38	8.38	8.39	29.64	29.64	29.64	56.1	56.0	56.2	3.82	3.81	3.82	3.37	3.41	3.39	7	7.00
	20:56		Middle	1.0	26.50	26.50		8.39	8.39		29.63	29.63		56.5	56.0		3.85	3.81		3.66	3.12		7	

Remarks
Single underline denotes exceedance over Action level
Double underline denotes exceedance over Limit leve

a.m Water Monitoring Result at C3 - HKCEC Phase Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$						ppt			\%			mg / L			Value			mg / L	
							Average			Average		lue	Average			Average			Average			Average	Value	Average
1/5/2012	23:39	Cloudy	Middle	2.0	26.10	26.10	26.10	7.69	7.69	7.70	28.86	28.86	28.87	51.9	51.8	51.8	3.63	3.62	3.62	3.62	3.66	3.56	9	8.00
	23:41		Middle	2.0	26.10	26.10		7.70	7.70		28.87	28.87		51.6	52.0		3.60	3.64		3.43	3.51		7	
2/5/2012	15:27	Cloudy	Middle	2.5	26.50	26.50	26.50	7.70	7.70	7.70	26.71	26.71	26.72	65.2	64.6	65.1	4.49	4.45	4.48	2.21	2.15	2.21	7	7.00
	15:29		Middle	2.5	26.50	26.50		7.70	7.70		26.72	26.72		64.9	65.7		4.47	4.52		2.37	2.11		7	
4/5/2012	17:14	Fine	Middle	3.0	26.40	26.40	26.45	7.30	7.30	7.31	27.19	27.19	27.20	63.5	63.0	62.9	4.37	4.34	4.33	5.47	6.01	5.84	6	6.00
	17:17		Middle	3.0	26.50	26.50		7.31	7.31		27.20	27.20		62.6	62.3		4.32	4.30		5.85	6.04		6	
7/5/2012	18:11	Fine	Middle	2.5	26.00	26.00	26.05	8.32	8.32	8.33	28.30	28.30	28.35	80.6	80.3	79.9	6.50	6.49	6.46	1.99	1.78	1.89	3	3.00
	18:13		Middle	2.5	26.10	26.10		8.33	8.33		28.40	28.40		79.7	79.1		6.44	6.39		1.88	1.91		3	
9/5/2012	20:32	Fine	Middle	2.5	27.30	27.30	27.30	8.25	8.25	8.26	28.16	28.16	28.17	73.7	74.5	74.0	4.98	5.04	5.01	4.35	4.65	4.56	14	13.50
	20:34		Middle	2.5	27.30	27.30		8.26	8.26		28.17	28.17		74.6	73.3		5.05	4.96		4.66	4.58		13	
11/5/2012	22:37	Cloudy	Middle	2.5	25.40	25.40	25.40	8.24	8.24	8.24	30.14	30.14	30.15	63.6	66.3	65.1	4.39	4.58	4.50	3.93	3.95	3.84	4	4.00
	22:39		Middle	2.5	25.40	25.40		8.23	8.23		30.15	30.15		65.5	64.9		4.53	4.49		3.67	3.82		4	
15/5/2012	0:32	Cloudy	Middle	2.5	26.70	26.70	26.75	8.29	8.29	8.30	26.99	26.99	27.00	72.0	71.8	72.6	4.87	4.86	4.90	3.93	3.99	3.83	4	4.50
	0:34		Middle	2.5	26.80	26.80		8.30	8.30		27.00	27.00		73.1	73.3		4.92	4.93		3.62	3.77		5	
17/5/2012	16:56	Fine	Middle	3.0	27.30	27.30	27.25	8.21	8.21	8.22	28.97	28.97	28.97	60.0	60.3	61.0	4.65	4.67	4.42	5.36	5.68	5.46	5	5.50
	16:59		Middle	3.0	27.20	27.20		8.22	8.22		28.96	28.96		61.5	62.2		4.15	4.20		5.49	5.30		6	
19/5/2012	18:43	Cloudy	Middle	3.0	26.30	26.30	26.30	8.34	8.34	8.34	28.64	28.64	28.64	51.3	51.9	51.6	3.52	3.56	3.55	3.09	2.83	2.98	4	4.50
	18:45		Middle	3.0	26.30	26.30		8.34	8.34		28.64	28.64		51.6	51.7		3.55	3.55		2.99	3.01		5	
21/5/2012	16:36	Cloudy	Middle	2.5	26.70	26.70	26.70	8.24	8.24	8.25	29.35	29.35	29.35	58.6	58.8	58.5	3.98	4.00	3.98	3.65	3.20	3.46	8	7.00
	16:38		Middle	2.5	26.70	26.70		8.25	8.25		29.34	29.34		58.8	57.8		3.99	3.93		3.53	3.46		6	
23/5/2012	20:31	Fine	Middle	2.5	26.50	26.50	26.45	8.02	8.02	8.02	29.93	29.93	29.94	57.7	58.4	57.6	3.93	3.98	3.93	5.80	5.99	5.87	6	6.00
	20:33		Middle	2.5	26.40	26.40		8.02	8.02		29.94	29.94		57.9	56.5		3.94	3.85		5.88	5.79		6	
25/5/2012	21:28	Fine	Middle	2.5	26.60	26.60	26.65	8.32	8.32	8.33	29.20	29.20	29.21	57.1	57.0	57.0	3.91	3.90	3.90	3.96	4.01	4.00	8	7.50
	21:30		Middle	2.5	26.70	26.70		8.33	8.33		29.21	29.21		56.8	57.0		3.89	3.91		4.04	3.99		7	

Remarks
Single underine denotes exceedance over Action lev
Double underline denotes exceedance over Limit leve

\&1M Water Monitoring Result at C4e - wCT / GEC Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$						ppt			\%			mg / L			Value				
							Average			Average		lue	Average			Average			Average			Average	Value	Average
1/5/2012	23:28	Cloudy	Middle	1.0	25.10	25.10	25.10	7.54	7.54	7.55	27.73	27.73	27.74	49.9	50.1	50.2	3.50	3.51	3.52	4.12	4.14	4.16	3	4.00
	23:30		Middle	1.0	25.10	25.10		7.55	7.55		27.74	27.74		50.2	50.5		3.52	3.53		4.18	4.20		5	
2/5/2012	15:08	Cloudy	Middle	1.5	27.00	27.00	27.00	7.77	7.77	7.78	26.50	26.50	26.51	69.0	69.1	69.5	4.73	4.73	4.76	1.94	1.74	1.83	4	4.00
	15:10		Middle	1.5	27.00	27.00		7.78	7.78		26.51	26.51		70.2	69.6		4.81	4.76		1.72	1.91		4	
4/5/2012	17:02	Fine	Middle	1.5	26.80	26.80	26.85	7.44	7.49	7.45	27.22	27.22	27.23	64.9	64.8	64.8	4.45	4.44	4.44	6.39	6.51	6.53	5	4.50
	17:05		Middle	1.5	26.90	26.90		7.43	7.43		27.23	27.23		64.7	64.9		4.43	4.45		6.54	6.68		4	
7/5/2012	17:54	Fine	Middle	1.5	26.30	26.30	26.35	8.36	8.36	8.37	28.10	28.10	28.15	91.7	91.3	91.2	7.36	7.34	7.33	3.17	3.22	3.13	4	3.50
	17:56		Middle	1.5	26.40	26.40		8.37	8.37		28.20	28.20		91.0	90.8		7.31	7.29		3.03	3.11		3	
9/5/2012	20:12	Fine	Middle	1.5	27.30	27.30	27.30	8.34	8.34	8.35	27.51	27.51	27.52	85.8	86.2	85.9	5.83	5.85	5.84	3.66	3.62	3.58	5	5.00
	20:14		Middle	1.5	27.30	27.30		8.35	8.35		27.52	27.52		86.0	85.6		5.84	5.82		3.55	3.50		5	
11/5/2012	22:15	Cloudy	Middle	1.5	25.50	25.50	25.45	8.11	8.11	8.12	29.64	29.64	29.65	65.6	66.8	66.4	4.62	4.63	4.62	4.88	4.98	4.86	<2	<2
	22:17		Middle	1.5	25.40	25.40		8.12	8.12		29.65	29.65		66.5	66.7		4.61	4.63		4.76	4.81		<2	
15/5/2012	0:07	Cloudy	Middle	1.0	26.80	26.80	26.80	8.43	8.43	8.43	26.95	26.95	26.96	54.1	55.7	55.5	3.71	3.82	3.81	4.27	4.33	4.21	4	4.50
	0:09		Middle	1.0	26.80	26.80		8.42	8.42		26.96	26.96		55.4	56.9		3.80	3.91		4.01	4.22		5	
17/5/2012	16:42	Fine	Middle	1.0	27.30	27.30	27.35	8.19	8.19	8.19	28.98	28.98	28.99	58.3	59.1	59.4	3.94	3.99	4.01	5.22	5.49	5.35	5	4.50
	16:45		Middle	1.0	27.40	27.40		8.18	8.18		28.99	28.99		60.0	60.3		4.04	4.07		5.39	5.28		4	
19/5/2012	18:21	Cloudy	Middle	1.5	26.10	26.10	26.15	8.12	8.12	8.12	28.54	28.54	28.53	59.6	59.5	59.9	4.10	4.10	4.12	4.43	4.71	4.50	5	4.50
	18:22		Middle	1.5	26.20	26.20		8.12	8.12		28.52	28.52		60.5	59.8		4.17	4.12		4.27	4.60		4	
21/5/2012	16:22	Cloudy	Middle	1.5	26.90	26.90	26.85	8.25	8.25	8.25	29.24	29.24	29.25	56.5	58.0	57.4	3.83	3.93	3.89	5.62	5.72	5.63	9	9.00
	16:24		Middle	1.5	26.80	26.80		8.25	8.25		29.25	29.25		57.8	57.2		3.91	3.87		5.75	5.41		9	
23/5/2012	20:05	Fine	Middle	1.0	26.50	26.50	26.50	8.02	8.02	8.02	30.01	30.01	30.02	60.0	60.5	60.5	4.08	4.12	4.12	3.59	3.89	3.80	3	4.00
	20:07		Middle	1.0	26.50	26.50		8.01	8.01		30.02	30.02		60.4	61.2		4.11	4.17		3.88	3.83		5	
25/5/2012	21:10	Fine	Middle	1.0	26.90	26.90	26.85	8.18	8.18	8.19	29.42	29.42	29.43	55.9	55.8	55.8	3.80	3.79	3.79	2.01	1.93	1.99	4	3.50
	21:12		Middle	1.0	26.80	26.80		8.19	8.19		29.43	29.43		55.9	55.7		3.81	3.77		1.99	2.04		3	

Remarks:

Single underline denotes exceedance over Action level
Double underline denotes exceedance over Limit leve

am water monitiong Resutulatcaw- wcr $/$ GEC Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m					- -			ppt			\%			mg/L			NTU			mg / L	
							Average	Value	Average															
1/5/2012	23:32	Cloudy	Middle	1.5	25.10	25.10	25.10	7.56	7.56	7.57	28.78	28.78	28.79	50.3	50.4	50.8	3.52	3.52	3.55	1.24	1.26	1.25	<2	<2
	23:34		Middle	1.5	25.10	25.10		7.57	7.57		28.79	28.79		51.1	51.3		3.58	3.59		1.31	1.19		<2	
2/5/2012	15:20	Cloudy	Middle	1.5	26.40	26.40	26.40	7.68	7.68	7.69	26.65	26.65	26.66	52.3	53.4	53.2	3.62	3.69	3.68	0.21	0.44	0.42	4	3.50
	15:22		Middle	1.5	26.40	26.40		7.69	7.69		26.66	26.66		52.1	55.0		3.60	3.80		0.48	0.56		3	
4/5/2012	17:07	Fine	Middle	1.5	26.50	26.50	26.55	7.25	7.25	7.25	26.81	26.81	26.81	64.3	64.0	63.7	4.45	4.42	4.40	1.89	1.53	1.64	<2	<2
	17:10		Middle	1.5	26.60	26.60		7.24	7.24		26.80	26.80		63.3	63.1		4.37	4.36		1.49	1.65		<2	
7/5/2012	18:03	Fine	Middle	1.5	26.00	26.00	26.05	8.38	8.38	8.39	28.10	28.10	28.15	91.1	91.0	90.9	7.35	7.32	7.32	4.93	4.99	4.95	9	9.00
	18:05		Middle	1.5	26.10	26.10		8.39	8.39		28.20	28.20		90.8	90.7		7.31	7.31		4.91	4.95		9	
9/5/2012	20:21	Fine	Middle	1.5	27.30	27.30	27.30	8.31	8.31	8.32	26.92	26.92	26.93	81.8	81.4	81.3	6.00	5.96	5.96	4.74	4.81	4.78	6	5.00
	20:23		Middle	1.5	27.30	27.30		8.32	8.32		26.93	26.93		81.0	81.0		5.93	5.94		4.66	4.92		4	
11/5/2012	22:25	Cloudy	Middle	1.5	25.50	25.50	25.45	8.08	8.08	8.09	29.86	29.86	29.87	60.9	60.8	61.0	4.22	4.21	4.23	1.56	1.52	1.46	<2	<2
	22:27		Middle	1.5	25.40	25.40		8.09	8.09		29.87	29.87		61.1	61.3		4.23	4.24		1.36	1.41		<2	
15/5/2012	0:24	Cloudy	Middle	1.5	26.70	26.70	26.75	8.32	8.32	8.33	26.99	26.99	26.99	60.5	61.6	61.4	4.15	4.23	4.21	3.04	3.03	3.13	3	3.00
	0:26		Middle	1.5	26.80	26.80		8.33	8.33		26.98	26.98		61.3	62.1		4.20	4.26		3.21	3.22		3	
17/5/2012	16:47	Fine	Middle	1.0	27.20	27.20	27.25	8.28	8.28	8.29	28.96	28.96	29.22	61.7	62.0	62.2	4.17	4.19	4.21	5.88	6.13	6.26	6	6.00
	16:50		Middle	1.0	27.30	27.30		8.29	8.29		29.97	28.97		62.4	62.8		4.22	4.24		6.34	6.69		6	
19/5/2012	18:29	Cloudy	Middle	1.5	26.20	26.20	26.20	8.32	8.32	8.32	28.38	28.38	28.39	49.2	48.9	48.7	3.38	3.36	3.35	2.39	2.40	2.32	4	4.00
	18:31		Middle	1.5	26.20	26.20		8.32	8.32		28.39	28.39		48.2	48.5		3.31	3.34		2.13	2.36		4	
21/5/2012	16:28	Cloudy	Middle	1.5	26.60	26.60	26.65	8.31	8.31	8.32	29.33	29.33	29.34	61.5	62.0	62.1	4.19	4.23	4.22	4.48	4.82	4.48	6	6.00
	16:30		Middle	1.5	26.70	26.70		8.32	8.32		29.34	29.34		62.8	61.9		4.25	4.22		4.29	4.34		6	
23/5/2012	20:15	Fine	Middle	1.5	26.50	26.50	26.50	7.99	7.99	7.99	30.09	30.09	30.10	52.7	53.2	53.5	3.59	3.62	3.64	4.83	4.35	4.56	2	3.00
	20:17		Middle	1.5	26.50	26.50		7.98	7.98		30.10	30.10		54.0	54.1		3.67	3.68		4.55	4.50		4	
25/5/2012	21:20	Fine	Middle	1.5	26.80	26.80	26.80	8.20	8.20	8.20	29.38	29.38	29.38	56.3	56.5	56.4	3.84	3.85	3.85	2.78	2.69	2.74	4	5.00
	21:22		Middle	1.5	26.80	26.80		8.20	8.20		29.38	29.38		56.2	56.6		3.84	3.87		2.81	2.68		6	

Remarks:
Single underine denotes exceedance over Action level
Double underline denotes exceedance over Limit level

aM Water Monitoring Result at C5e - Sun Hung Kai Centre Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$						ppt			\%			mg / L			Value			mg / L	
							Average			Average		lue	Average			Average			Average			Average	Value	Average
1/5/2012	0:14	Cloudy	Middle	1.5	25.10	25.10	25.05	7.75	7.75	7.75	28.60	28.60	28.59	67.6	67.5	67.7	4.73	4.72	4.74	4.99	4.87	4.78	7	6.50
	0:16		Middle	1.5	25.00	25.00		7.75	7.75		28.58	28.58		67.8	67.9		4.75	4.76		4.56	4.71		6	
2/5/2012	17:00	Cloudy	Middle	1.5	26.70	26.70	26.70	7.79	7.79	7.80	26.68	26.68	26.69	77.6	76.6	76.9	5.37	5.30	5.32	3.81	3.77	3.78	3	4.00
	17:02		Middle	1.5	26.70	26.70		7.80	7.80		26.69	26.69		76.2	77.0		5.27	5.33		3.73	3.79		5	
4/5/2012	16:50	Fine	Middle	1.5	26.50	26.50	26.55	7.54	7.54	7.54	27.18	27.18	27.18	75.0	75.1	75.1	5.17	5.18	5.17	4.55	4.81	4.67	4	4.00
	16:53		Middle	1.5	26.60	26.60		7.53	7.53		27.17	27.17		74.8	75.3		5.15	5.19		4.62	4.71		4	
7/5/2012	18:46	Fine	Middle	1.5	25.60	25.60	25.65	8.43	8.43	8.43	28.10	28.10	28.15	93.0	92.7	92.1	7.56	7.53	7.48	3.55	3.14	3.31	4	3.50
	18:48		Middle	1.5	25.70	25.70		8.43	8.43		28.20	28.20		91.3	91.3		7.42	7.41		3.31	3.22		3	
9/5/2012	21:22	Fine	Middle	1.5	27.10	27.10	27.05	8.19	8.19	8.19	27.21	27.21	27.22	86.0	86.1	86.1	5.85	5.86	5.85	3.79	3.77	3.77	6	6.00
	21:24		Middle	1.5	27.00	27.00		8.18	8.18		27.22	27.22		85.9	86.2		5.83	5.86		3.62	3.89		6	
11/5/2012	21:38	Cloudy	Middle	1.5	25.40	25.40	25.45	8.22	8.22	8.22	30.19	30.19	30.19	79.3	79.0	78.8	5.47	5.45	5.44	4.04	4.07	4.11	3	3.50
	21:40		Middle	1.5	25.50	25.50		8.21	8.21		30.18	30.18		78.7	78.3		5.43	5.41		4.11	4.23		4	
15/5/2012	23:52	Cloudy	Middle	1.0	26.80	26.80	26.85	8.13	8.13	8.13	29.21	29.21	29.22	78.0	77.9	78.2	5.27	5.26	5.29	4.01	4.41	4.25	3	3.00
	23:54		Middle	1.0	26.90	26.90		8.13	8.13		29.22	29.22		78.2	78.5		5.29	5.32		4.40	4.18		3	
17/5/2012	16:25	Fine	Middle	1.0	27.30	27.30	27.35	8.22	8.22	8.23	28.61	28.61	28.62	68.5	68.8	69.1	4.63	4.66	4.67	3.52	3.51	3.48	3	4.00
	16:28		Middle	1.0	27.40	27.40		8.23	8.23		28.62	28.62		69.3	69.6		4.68	4.70		3.39	3.49		5	
19/5/2012	19:28	Cloudy	Middle	1.5	26.30	26.30	26.30	8.33	8.33	8.34	27.57	27.57	27.58	55.0	54.7	54.9	3.80	3.77	3.79	3.56	4.01	3.80	5	4.00
	19:30		Middle	1.5	26.30	26.30		8.34	8.34		27.59	27.59		54.6	55.1		3.77	3.80		4.09	3.52		3	
21/5/2012	17:03	Cloudy	Middle	1.5	26.70	26.70	26.70	7.97	7.97	7.98	27.29	27.29	27.30	61.6	61.9	61.9	4.23	4.25	4.25	4.41	4.39	4.32	4	4.50
	17:05		Middle	1.5	26.70	26.70		7.98	7.98		27.30	27.30		62.0	62.1		4.26	4.27		4.20	4.28		5	
23/5/2012	21:13	Fine	Middle	1.5	27.00	27.00	27.05	7.96	7.96	7.96	29.94	29.94	29.94	66.3	67.3	65.5	4.44	4.50	4.39	3.30	3.05	3.17	5	4.00
	21:15		Middle	1.5	27.10	27.10		7.95	7.95		29.93	29.93		63.3	65.0		4.24	4.36		3.18	3.13		3	
25/5/2012	21:49	Fine	Middle	1.5	27.60	27.60	27.55	7.81	7.81	7.81	29.68	29.68	29.68	46.8	46.9	47.1	3.13	3.14	3.15	2.67	2.42	2.50	5	4.50
	21:51		Middle	1.5	27.50	27.50		7.80	7.80		29.68	29.68		47.4	47.2		3.17	3.16		2.51	2.41		4	

Remarks
ingle underine denotes exceedance over Action level
Double underline denotes exceedance over Limit level

\&11 Water Monitoring Result at C5w - Sun Hung Kai Centre Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m								ppt			\%			mg / L			Value			mg / L	
							Average			Average		ue	Average			Average			Average			Average	Value	Average
1/5/2012	0:18	Cloudy	Middle	1.5	25.10	25.10	25.10	7.78	7.78	7.79	28.65	28.65	28.66	67.3	68.0	67.8	4.70	4.79	4.77	4.34	4.21	4.32	7	5.50
	0:20		Middle	1.5	25.10	25.10		7.79	7.79		28.66	28.66		68.1	67.9		4.80	4.79		4.31	4.40		4	
2/5/2012	17:04	Cloudy	Middle	1.5	26.30	26.30	26.30	7.76	7.76	7.77	26.59	26.59	26.60	79.0	76.6	77.1	5.49	5.33	5.36	1.68	1.59	1.56	5	3.50
	17:06		Middle	1.5	26.30	26.30		7.77	7.77		26.60	26.60		76.5	76.1		5.34	5.29		1.41	1.55		2	
4/5/2012	16:56	Fine	Middle	1.5	26.10	26.10	26.15	7.30	7.30	7.31	27.33	27.33	27.34	74.7	75.1	74.9	5.17	5.20	5.19	4.76	4.56	4.47	9	9.50
	16:59		Middle	1.5	26.20	26.20		7.31	7.31		27.34	27.34		75.3	74.4		5.22	5.15		4.25	4.30		10	
7/5/2012	18:52	Fine	Middle	1.5	25.40	25.40	25.45	8.42	8.42	8.43	28.30	28.30	28.25	89.7	89.5	89.5	7.28	7.27	7.26	2.12	2.33	2.31	4	4.00
	18:54		Middle	1.5	25.50	25.50		8.43	8.43		28.20	28.20		89.4	89.2		7.26	7.24		2.38	2.41		4	
9/5/2012	21:28	Fine	Middle	1.5	27.00	27.00	27.00	8.22	8.22	8.22	27.42	27.42	27.43	82.3	81.9	82.1	6.05	6.01	6.02	4.62	4.75	4.46	5	5.00
	21:30		Middle	1.5	27.00	27.00		8.22	8.22		27.43	27.43		81.9	82.1		6.00	6.03		4.22	4.24		5	
11/5/2012	21:34	Cloudy	Middle	1.5	25.50	25.50	25.50	8.24	8.24	8.24	30.28	30.28	30.29	77.3	75.8	76.8	5.33	5.23	5.30	3.34	3.31	3.42	3	3.50
	21:36		Middle	1.5	25.50	25.50		8.24	8.24		30.29	30.29		76.7	77.4		5.29	5.34		3.55	3.49		4	
15/5/2012	23:48	Cloudy	Middle	1.0	26.70	26.70	26.75	8.15	8.15	8.16	29.34	29.34	29.35	76.5	76.4	76.7	5.15	5.14	5.17	4.21	4.12	4.10	5	6.00
	23:50		Middle	1.0	26.80	26.80		8.16	8.16		29.35	29.35		76.7	77.1		5.17	5.20		4.03	4.04		7	
17/5/2012	16:30	Fine	Middle	1.0	27.20	27.20	27.15	8.18	8.18	8.18	28.81	28.81	28.82	67.1	66.5	67.1	4.53	4.45	4.52	2.61	2.52	2.65	7	6.50
	16:33		Middle	1.0	27.10	27.10		8.18	8.18		28.82	28.82		67.3	67.5		4.55	4.56		2.84	2.64		6	
19/5/2012	19:21	Cloudy	Middle	1.5	26.30	26.30	26.35	8.37	8.37	8.37	26.05	26.05	26.05	62.8	62.7	62.8	4.36	4.37	4.37	5.95	5.76	5.80	8	7.50
	19:23		Middle	1.5	26.40	26.40		8.36	8.36		26.05	26.05		62.7	63.0		4.37	4.39		5.64	5.84		7	
21/5/2012	17:09	Cloudy	Middle	1.5	26.80	26.80	26.80	8.28	8.28	8.28	27.62	27.62	27.62	62.1	61.5	62.2	4.26	4.21	4.26	2.61	2.53	2.48	3	3.50
	17:11		Middle	1.5	26.80	26.80		8.28	8.28		27.62	27.62		62.0	63.1		4.25	4.33		2.41	2.35		4	
23/5/2012	21:17	Fine	Middle	1.5	27.10	27.10	27.05	7.88	7.88	7.89	29.77	29.77	29.78	69.9	67.7	69.1	4.69	4.53	4.63	2.93	2.99	3.07	3	4.00
	21:19		Middle	1.5	27.00	27.00		7.89	7.89		29.78	29.78		68.8	69.8		4.61	4.68		3.01	3.33		5	
25/5/2012	21:57	Fine	Middle	1.5	27.50	27.50	27.45	7.92	7.92	7.93	29.54	29.54	29.55	47.7	50.2	49.4	3.19	3.35	3.30	3.01	3.03	3.10	4	3.50
	21:59		Middle	1.5	27.40	27.40		7.93	7.93		29.55	29.55		50.0	49.8		3.33	3.32		3.14	3.22		3	

Single underline denotes exceedance over Action level
Double underline denotes exceedance over Limit leve

dM1 Water Monitoring Result at WSD21 - Wan Chai Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg/L			NTU			mg / L	
							Average			Average		ue	Average			Average		ue	Average			Average	Value	Average
1/5/2012	23:59	Cloudy	Middle	1.5	25.30	25.30	25.35	7.76	7.76	7.77	28.87	28.87	28.89	77.0	77.1	76.9	5.37	5.38	5.35	3.32	3.41	3.32	10	9.50
	0:01		Middle	1.5	25.40	25.40		7.77	7.77		28.90	28.90		76.6	76.8		5.32	5.34		3.21	3.32		9	
2/5/2012	15:52	Cloudy	Middle	1.5	28.10	28.10	28.15	7.74	7.74	7.74	26.82	26.82	26.83	76.6	76.2	76.0	5.13	5.10	5.08	3.03	3.14	3.01	5	5.00
	15:54		Middle	1.5	28.20	28.20		7.73	7.73		26.83	26.83		75.8	75.2		5.07	5.03		3.06	2.82		5	
4/5/2012	16:38	Fine	Middle	2.0	26.80	26.80	26.85	7.63	7.63	7.63	27.44	27.44	27.44	71.2	71.0	71.3	4.87	4.86	4.88	6.73	6.47	6.50	6	6.50
	16:41		Middle	2.0	26.90	26.90		7.62	7.62		27.43	27.43		71.5	71.6		4.89	4.90		6.30	6.50		7	
7/5/2012	18:30	Fine	Middle	1.5	26.00	26.00	26.00	8.27	8.27	8.28	25.60	25.60	25.65	89.1	88.7	88.5	7.18	7.17	7.14	5.33	5.23	5.35	6	6.00
	18:32		Middle	1.5	26.00	26.00		8.28	8.28		25.70	25.70		88.3	87.9		7.12	7.10		5.34	5.50		6	
9/5/2012	20:59	Fine	Middle	2.0	26.90	26.90	26.85	8.42	8.42	8.42	27.56	27.56	27.56	93.6	91.1	92.2	6.44	6.20	6.33	7.98	7.66	7.83	44	$\underline{42.50}$
	21:02		Middle	2.0	26.80	26.80		8.41	8.41		27.55	27.55		90.7	93.4		6.29	6.39		7.92	7.74		41	
11/5/2012	23:13	Cloudy	Middle	1.5	25.40	25.40	25.35	8.31	8.31	8.31	30.29	30.29	30.29	80.9	81.4	81.0	5.59	5.62	5.60	7.55	7.56	7.58	5	5.50
	23:15		Middle	1.5	25.30	25.30		8.30	8.30		30.28	30.28		81.0	80.8		5.60	5.58		7.49	7.71		6	
15/5/2012	23:37	Cloudy	Middle	1.5	26.60	26.60	26.60	8.15	8.15	8.16	29.40	29.40	29.41	84.6	85.1	84.9	5.73	5.77	5.76	5.03	5.51	5.37	6	6.00
	23:39		Middle	1.5	26.60	26.60		8.16	8.16		29.41	29.41		84.8	85.0		5.75	5.77		5.22	5.73		6	
17/5/2012	16:10	Fine	Middle	2.0	27.20	27.20	27.15	8.17	8.17	8.17	29.04	29.04	29.04	69.6	69.6	69.8	4.65	4.69	4.70	3.35	3.18	2.92	<2	<2
	16:13		Middle	2.0	27.10	27.10		8.16	8.16		29.03	29.03		69.7	70.3		4.70	4.74		2.57	2.58		<2	
19/5/2012	19:03	Cloudy	Middle	1.5	26.70	26.70	26.65	8.34	8.34	8.35	28.98	28.98	28.99	58.8	58.9	58.5	3.99	4.01	3.99	3.93	3.69	3.74	9	8.00
	19:05		Middle	1.5	26.60	26.60		8.35	8.35		28.99	28.99		58.1	58.3		3.96	3.98		3.73	3.61		7	
21/5/2012	16:50	Cloudy	Middle	1.5	28.00	28.00	28.05	8.27	8.27	8.27	29.53	29.53	29.54	62.3	62.2	62.6	4.15	4.14	4.17	4.34	4.52	4.49	4	5.00
	16:52		Middle	1.5	28.10	28.10		8.26	8.26		29.54	29.54		62.6	63.3		4.16	4.21		4.44	4.67		6	
23/5/2012	20:49	Fine	Middle	1.5	27.30	27.30	27.30	7.90	7.90	7.90	30.28	30.28	30.29	75.6	74.6	75.9	5.08	5.01	5.10	7.77	7.56	7.71	9	8.00
	20:51		Middle	1.5	27.30	27.30		7.90	7.90		30.29	30.29		77.6	75.9		5.21	5.10		7.78	7.71		7	
25/5/2012	21:40	Fine	Middle	1.5	27.40	27.40	27.35	8.05	8.05	8.05	29.64	29.64	29.65	49.3	49.2	49.1	3.30	3.30	3.29	1.98	1.82	1.93	5	4.50
	21:42		Middle	1.5	27.30	27.30		8.04	8.04		29.65	29.65		49.0	49.0		3.28	3.29		1.91	2.01		4	

Remarks:
Single underline denotes exceedance over Action leve
Double underline denotes exceedance over Limit leve

\&M Water Monitoring Result at WSD19 - Sheung Wan Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			$\frac{\text { Suspended Solids }}{\mathrm{mg} / \mathrm{L}}$	
			m		C						ppt			\%			mg/L			Value				
							Average			Average		lue	Average			Average			Average			Average	Value mg / L Average	
1/5/2012	1:15	Cloudy	Middle	1.5	25.16	25.16	25.17	7.91	7.91	7.91	28.52	28.52	28.51	85.7	85.7	85.6	6.00	6.00	5.99	0.60	0.88	0.74	3	3.50
	1:16		Middle	1.5	25.17	25.17		7.91	7.90		28.50	28.50		85.7	85.2		6.00	5.96		0.75	0.72		4	
2/5/2012	12:10	Cloudy	Middle	2.0	27.60	27.60	27.70	8.23	8.23	8.23	28.55	28.55	28.55	90.1	88.8	89.4	6.15	6.05	6.09	1.76	0.91	1.04	3	3.50
	12:12		Middle	2.0	27.80	27.80		8.23	8.23		28.54	28.54		90.4	88.3		6.16	6.01		0.76	0.73		4	
4/5/2012	18:05	Fine	Middle	2.0	26.60	26.60	26.65	8.34	8.34	8.34	27.56	27.56	27.56	90.5	90.9	90.7	6.21	6.24	6.23	2.74	2.51	2.70	5	5.00
	18:07		Middle	2.0	26.70	26.70		8.33	8.33		27.56	27.56		90.3	91.1		6.20	6.25		2.63	2.93		5	
7/5/2012	20:46	Fine	Middle	2.0	25.30	25.30	25.30	8.32	8.32	8.32	29.24	29.24	29.24	91.8	91.5	91.9	6.36	6.34	6.36	1.55	1.62	1.64	6	5.50
	20:47		Middle	2.0	25.30	25.30		8.32	8.32		29.24	29.24		92.8	91.4		6.40	6.34		1.68	1.69		5	
9/5/2012	0:46	Fine	Middle	2.0	26.80	26.80	26.80	8.29	8.29	8.29	27.96	27.96	27.96	89.4	90.2	89.4	6.10	6.12	6.09	1.19	1.00	0.99	3	3.50
	0:47		Middle	2.0	26.80	26.80		8.29	8.29		27.96	27.96		89.4	88.7		6.10	6.05		0.92	0.86		4	
11/5/2012	1:30	Cloudy	Middle	2.0	24.80	24.80	24.80	8.03	8.03	8.02	29.44	29.44	29.45	80.5	81.3	80.8	5.64	5.69	5.66	1.93	1.90	1.79	3	4.00
	1:31		Middle	2.0	24.80	24.80		8.00	8.00		29.45	29.45		80.3	81.2		5.63	5.68		1.66	1.65		5	
15/5/2012	1:27	Cloudy	Middle	2.0	26.70	26.70	26.70	7.98	7.98	7.98	27.23	27.23	27.23	85.0	86.0	85.7	5.80	5.88	5.85	0.25	0.28	0.40	5	5.50
	1:28		Middle	2.0	26.70	26.70		7.98	7.98		27.23	27.23		86.0	85.6		5.88	5.85		0.57	0.50		6	
17/5/2012	18:40	Fine	Middle	3.0	26.40	26.40	26.35	7.99	7.99	7.98	28.35	28.35	28.35	65.9	67.5	67.1	4.50	4.61	4.58	1.84	1.82	1.77	2	2.00
	18:42		Middle	3.0	26.30	26.30		7.97	7.97		28.35	28.35		67.8	67.1		4.63	4.58		1.95	1.47		2	
19/5/2012	21:15	Cloudy	Middle	2.0	26.10	26.10	26.10	8.08	8.08	8.08	27.97	27.97	27.97	78.3	79.4	78.7	5.40	5.48	5.43	1.05	2.05	1.59	6	5.00
	21:16		Middle	2.0	26.10	26.10		8.08	8.08		27.97	27.97		78.4	78.5		5.41	5.41		1.58	1.67		4	
21/5/2012	22:20	Cloudy	Middle	2.0	25.70	25.70	25.70	7.94	7.94	7.94	28.88	28.88	28.88	71.9	72.7	72.3	4.98	5.02	5.00	2.14	2.43	2.28	3	3.50
	22:21		Middle	2.0	25.70	25.70		7.94	7.94		28.88	28.88		72.3	72.1		5.01	4.99		2.05	2.51		4	
23/5/2012	20:16	Fine	Middle	2.0	26.10	26.10	26.10	8.00	8.00	8.00	29.13	29.13	29.13	78.4	78.0	77.7	5.40	5.39	5.36	2.86	2.87	2.92	5	6.00
	20:17		Middle	2.0	26.10	26.10		8.00	8.00		29.13	29.13		77.0	77.4		5.30	5.33		3.04	2.91		7	
25/5/2012	1:14	Fine	Middle	2.0	27.00	27.00	27.00	7.91	7.91	7.91	28.84	28.84	28.84	64.2	64.0	64.1	4.35	4.33	4.34	2.13	1.93	1.91	6	6.50
	1:15		Middle	2.0	27.00	27.00		7.91	7.91		28.84	28.84		64.1	64.2		4.34	4.34		1.90	1.69		7	

Remarks:
Single underline denotes exceedance over Action leve
Double underline denotes exceedance over Limit leve

\&M. Water Monitoring Result at WSD17 - Quarry Bay Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		C						ppt			\%			mg/L			Value ${ }^{\text {NTU }}$				
							Average			Average		lue	Average		ue	Average			Average			Average	Value	Average
1/5/2012	0:26	Cloudy	Middle	2.0	24.91	24.91	24.94	7.87	7.87	7.85	29.79	29.79	29.79	84.0	84.2	84.1	5.87	5.88	5.87	0.96	0.86	0.89	5	4.00
	0:27		Middle	2.0	24.97	24.97		7.83	7.83		29.78	29.78		84.0	84.1		5.87	5.87		0.91	0.84		3	
2/5/2012	14:56	Cloudy	Middle	2.5	27.20	27.20	27.25	8.24	8.24	8.24	28.56	28.56	28.56	89.6	88.1	89.1	6.12	6.02	6.08	0.91	0.95	0.95	2	2.50
	14:58		Middle	2.5	27.30	27.30		8.23	8.23		28.56	28.56		89.9	88.6		6.14	6.04		1.07	0.88		3	
4/5/2012	15:25	Fine	Middle	2.0	27.00	27.00	27.05	8.45	8.45	8.44	27.14	27.14	27.15	110.1	110.4	110.4	7.49	7.56	7.55	0.72	0.79	0.73	5	4.50
	15:28		Middle	2.0	27.10	27.10		8.43	8.43		27.15	27.15		110.3	110.7		7.55	7.58		0.61	0.79		4	
7/5/2012	19:55	Fine	Middle	2.5	25.50	25.50	25.50	8.36	8.36	8.36	30.44	30.44	30.44	90.6	90.8	90.7	6.22	6.23	6.22	0.87	1.14	0.98	4	4.50
	19:56		Middle	2.5	25.50	25.50		8.36	8.36		30.44	30.44		91.1	90.1		6.25	6.17		0.91	0.98		5	
9/5/2012	23:03	Fine	Middle	2.5	27.30	27.30	27.40	8.32	8.32	8.32	30.23	30.23	30.23	91.6	92.5	91.9	6.09	6.15	6.11	1.42	1.24	1.19	2	3.00
	23:04		Middle	2.5	27.50	27.50		8.32	8.32		30.23	30.23		92.1	91.2		6.12	6.06		1.14	0.95		4	
11/5/2012	0:40	Cloudy	Middle	2.5	24.80	24.80	24.80	8.24	8.24	8.24	29.33	29.33	29.33	89.1	90.8	89.6	6.24	6.36	6.28	0.61	0.95	0.80	3	3.00
	0:41		Middle	2.5	24.80	24.80		8.24	8.22		29.33	29.33		89.4	89.0		6.26	6.24		0.92	0.70		3	
15/5/2012	0:38	Cloudy	Middle	2.5	26.40	26.40	26.40	7.97	7.97	7.97	28.00	28.00	28.00	85.6	85.2	84.7	5.85	5.83	5.80	0.50	0.54	0.61	3	3.00
	0:39		Middle	2.5	26.40	26.40		7.97	7.97		28.00	28.00		84.1	84.0		5.75	5.75		0.75	0.65		3	
17/5/2012	15:00	Fine	Middle	3.5	27.50	27.50	27.60	7.94	7.94	7.94	28.53	28.53	28.53	74.0	73.9	74.2	4.97	4.98	4.99	1.55	1.63	1.54	<2	<2
	15:02		Middle	3.5	27.70	27.70		7.93	7.93		28.53	28.53		74.6	74.3		5.01	4.99		1.51	1.47		<2	
19/5/2012	19:05	Cloudy	Middle	3.0	26.50	26.50	26.50	8.03	8.03	8.03	28.94	28.94	28.94	81.5	81.0	80.6	5.56	5.53	5.50	1.04	1.02	0.98	7	6.50
	19:06		Middle	3.0	26.50	26.50		8.03	8.03		28.94	28.94		80.0	80.0		5.46	5.46		0.95	0.90		6	
21/5/2012	21:28	Cloudy	Middle	3.0	25.90	25.90	25.90	8.11	8.11	8.11	29.45	29.45	29.45	81.3	80.7	80.9	5.59	5.55	5.56	1.98	1.87	1.98	4	3.50
	21:29		Middle	3.0	25.90	25.90		8.11	8.11		29.45	29.45		80.5	81.1		5.53	5.57		2.04	2.03		3	
23/5/2012	22:20	Fine	Middle	3.0	26.20	26.20	26.20	8.11	8.11	8.12	29.79	29.79	29.79	79.2	79.3	79.1	5.41	5.42	5.41	2.08	2.49	2.39	5	4.50
	22:21		Middle	3.0	26.20	26.20		8.13	8.13		29.79	29.79		79.2	78.8		5.41	5.39		2.55	2.44		4	
25/5/2012	0:27	Fine	Middle	3.0	27.20	27.20	27.20	8.12	8.12	8.12	29.76	29.76	29.76	70.8	70.8	70.9	4.77	4.77	4.78	1.81	2.01	1.97	6	6.00
	0:28		Middle	3.0	27.20	27.20		8.12	8.12		29.76	29.76		70.9	70.9		4.78	4.78		2.18	1.86		6	

Remarks:

Single underine denotes exceedance over Action leve
Double underline denotes exceedance over Limit leve

d. Water Monitoring Result at WSD9 - Tai Wan
 Mid-Ebb Tide

	Time	Weater	Sampl	Depth	Wa	r Temp	erature		pH			Salinit			Satu	ation		DO			Turbi		Suspen	d Solids
Date						${ }^{\text {c }}$			-			ppt			\%			mg/			NT			
							Average			Average		ue	Average			Average			Average			Average	Value	Average
30/4/2012	17:33	Cloudy	Middle	2.0	25.17	25.17	25.17	7.48	7.48	7.48	30.68	30.68	30.68	81.4	81.3	81.3	5.63	5.63	5.63	0.72	0.67	0.68	3	3.00
	17:34		Middle	2.0	25.17	25.17		7.48	7.48		30.68	30.68		81.3	81.2		5.63	5.62		0.64	0.69		3	
2/5/2012	21:05	Cloudy	Middle	2.0	25.92	25.92	25.92	7.66	7.66	7.66	28.02	28.02	28.02	83.6	83.5	83.5	5.80	5.80	5.79	0.65	0.46	0.51	2	2.00
	21:06		Middle	2.0	25.92	25.92		7.66	7.66		28.02	28.02		83.5	83.3		5.79	5.78		0.59	0.34		<2	
4/5/2012	9:20	Fine	Middle	2.0	25.60	25.60	25.60	7.68	7.68	7.67	28.96	28.96	28.97	92.6	92.6	92.3	6.41	6.41	6.39	1.35	1.37	1.37	6	5.50
	9:22		Middle	2.0	25.60	25.60		7.66	7.66		28.97	28.97		92.0	91.9		6.37	6.37		1.45	1.31		5	
7/5/2012	10:35	Fine	Middle	3.0	25.80	25.80	25.75	8.52	8.52	8.53	30.20	30.20	30.20	101.3	101.2	101.3	8.14	8.13	8.14	0.16	0.20	0.17	3	3.50
	10:37		Middle	3.0	25.70	25.70		8.53	8.53		30.20	30.20		101.5	101.2		8.15	8.14		0.12	0.18		4	
9/5/2012	15:20	Fine	Middle	2.5	27.50	27.50	27.50	8.40	8.40	8.40	29.10	29.10	29.10	106.2	106.6	106.6	8.33	8.36	8.35	0.64	0.49	0.53	<2	<2
	15:22		Middle	2.5	27.50	27.50		8.40	8.40		29.10	29.10		106.7	106.8		8.36	8.36		0.48	0.49		<2	
11/5/2012	16:43	Cloudy	Middle	3.0	26.00	26.00	26.00	8.08	8.08	8.08	29.63	29.63	29.63	93.7	93.2	93.6	6.54	6.51	6.53	1.64	1.66	1.68	<2	<2
	16:45		Middle	3.0	26.00	26.00		8.07	8.07		29.63	29.63		93.4	93.9		6.52	6.55		1.74	1.67		<2	
14/5/2012	19:15	Cloudy	Middle	2.0	26.90	26.90	26.90	8.06	8.06	8.06	28.70	28.70	28.70	91.3	93.0	91.6	6.16	6.28	6.18	0.44	0.24	0.33	3	3.00
	19:16		Middle	2.0	26.90	26.90		8.06	8.06		28.70	28.70		91.8	90.1		6.20	6.08		0.37	0.28		3	
17/5/2012	8:40	Cloudy	Middle	3.0	26.30	26.30	26.30	7.90	7.90	7.90	28.89	28.89	28.89	79.1	79.6	79.5	5.43	5.46	5.45	1.68	1.49	1.58	<2	<2
	8:42		Middle	3.0	26.30	26.30		7.89	7.89		28.89	28.89		79.6	79.6		5.46	5.46		1.57	1.57		<2	
19/5/2012	9:00	Fine	Middle	3.0	26.60	26.60	20.65	8.15	8.15	8.15	29.08	29.08	29.08	82.8	82.6	82.8	5.63	5.62	5.63	1.43	1.18	1.30	2	2.00
	9:02		Middle	3.0	26.70	2.70		8.15	8.15		29.08	29.08		82.9	82.7		5.64	5.62		1.26	1.34		2	
21/5/2012	10:05	Fine	Middle	3.0	26.00	26.00	26.10	8.10	8.10	8.10	29.23	29.23	29.24	79.0	79.3	79.3	5.43	5.44	5.45	1.47	1.45	1.42	7	6.50
	10:07		Middle	3.0	26.20	26.20		8.09	8.09		29.24	29.24		79.4	79.5		5.45	5.46		1.43	1.32		6	
23/5/2012	13:10	Fine	Middle	2.5	26.50	26.50	26.45	8.16	8.16	8.16	29.74	29.74	29.75	67.6	67.9	68.0	4.61	4.63	4.64	1.39	1.49	1.45	2	2.00
	13:12		Middle	2.5	26.40	26.40		8.15	8.15		29.76	29.76		68.1	68.3		4.64	4.66		1.52	1.39		2	
25/5/2012	15:00	Fine	Middle	2.0	27.50	27.50	27.50	8.11	8.11	8.10	29.36	29.36	29.37	70.7	71.2	71.2	4.74	4.77	4.77	1.46	1.24	1.29	3	3.00
	15:03		Middle	2.0	27.50	27.50		8.09	8.09		29.37	29.37		71.3	71.4		4.78	4.79		1.22	1.22		3	

Remarks:
Single underline denotes exceedance over Action level
Double underline denotes exceedance over Limit level

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$			- -			ppt			\%			mg/L			Value			mg / L	
							Average	Value	Average															
30/4/2012	20:07	Cloudy	Middle	2	24.73	24.73	24.76	7.65	7.65	7.65	30.39	30.39	30.39	85.3	85.2	85.2	5.95	5.95	5.95	0.93	0.75	0.80	2	2.00
	20:08		Middle	2	24.78	24.78		7.65	7.65		30.39	30.39		85.0	85.2		5.93	5.95		0.70	0.81		2	
2/5/2012	23:25	Cloudy	Middle	2	25.73	25.73	25.73	7.70	7.70	7.70	27.79	27.79	27.79	86.4	86.2	86.3	6.02	6.01	6.01	0.80	0.71	0.72	2	2.50
	23:26		Middle	2	25.73	25.73		7.70	7.70		27.79	27.79		86.2	86.2		6.01	6.01		0.76	0.61		3	
4/5/2012	10:45	Fine	Middle	2	26.30	26.30	26.30	7.53	7.53	7.53	28.71	28.72	28.72	81.0	80.9	80.8	5.56	5.55	5.54	1.29	1.14	1.23	3	3.00
	10:47		Middle	2	26.30	26.30		7.52	7.52		28.72	28.72		80.7	80.7		5.53	5.53		1.39	1.08		3	
7/5/2012	12:00	Fine	Middle	3	26.30	26.30	26.30	8.48	8.48	8.48	30.00	30.00	30.00	99.6	99.7	99.7	8.02	8.03	8.03	2.53	2.51	2.58	4	3.50
	12:02		Middle	3	26.30	26.30		8.48	8.48		30.00	30.00		99.8	99.8		8.04	8.04		2.78	2.48		3	
9/5/2012	12:30	Fine	Middle	3	27.10	27.10	27.10	8.38	8.38	8.38	27.90	27.90	27.90	94.7	94.8	94.8	7.49	7.49	7.49	2.93	2.80	2.84	2	2.00
	12:32		Middle	3	27.10	27.10		8.38	8.38		27.90	27.90		94.9	94.6		7.49	7.47		2.78	2.84		2	
11/5/2012	15:05	Cloudy	Middle	4	24.90	24.90	24.95	8.06	8.06	8.06	29.52	29.52	29.52	91.7	91.6	91.4	6.40	6.39	6.38	1.06	1.01	1.06	4	3.50
	15:07		Middle	4	25.00	25.00		8.06	8.06		29.51	29.51		91.1	91.2		6.35	6.36		1.11	1.07		3	
14/5/2012	21:21	Cloudy	Middle	2	26.40	26.40	26.40	8.01	8.01	8.01	28.37	28.37	28.37	82.0	82.9	82.4	5.60	5.66	5.62	0.36	0.41	0.39	3	3.00
	21:22		Middle	2	26.40	26.40		8.01	8.01		28.37	28.37		81.6	83.0		5.57	5.64		0.42	0.36		3	
17/5/2012	10:23	Cloudy	Middle	3	26.40	26.40	26.45	7.89	7.89	7.89	28.59	28.59	28.59	72.7	72.9	73.0	4.98	5.00	5.00	1.25	1.23	1.24	<2	<2
	10:25		Middle	3	26.50	26.50		7.88	7.88		28.59	28.59		73.2	73.0		5.02	5.00		1.24	1.24		<2	
19/5/2012	10:25	Fine	Middle	4	26.60	26.60	26.65	8.07	8.07	8.07	28.81	28.81	28.81	81.4	81.6	81.6	5.55	5.56	5.56	0.41	0.24	0.41	4	4.00
	10:27		Middle	4	26.70	26.70		8.06	8.06		28.81	28.81		81.8	81.4		5.58	5.54		0.55	0.45		4	
21/5/2012	11:27	Fine	Middle	3	26.50	26.50	26.50	8.04	8.04	8.04	29.15	29.15	29.15	73.1	74.0	74.0	4.99	5.05	5.05	2.41	2.65	2.48	6	5.00
	11:29		Middle	3	26.50	26.50		8.03	8.03		29.15	29.15		74.4	74.6		5.08	5.09		2.48	2.36		4	
23/5/2012	10:49	Fine	Middle	3	26.20	26.20	26.15	8.21	8.21	8.21	29.79	29.79	29.79	73.0	73.3	73.2	5.00	5.02	5.01	4.47	4.67	4.67	8	7.00
	10:51		Middle	3	26.10	26.10		8.20	8.20		29.79	29.79		73.3	73.3		5.01	5.02		4.58	4.96		6	
25/5/2012	13:30	Fine	Middle	2	27.70	27.70	27.70	8.14	8.14	8.14	29.22	29.22	29.22	75.9	75.8	75.6	5.06	5.06	5.04	2.03	2.05	2.03	6	5.00
	13:33		Middle	2	27.70	27.70		8.14	8.14		29.22	29.22		75.3	75.2		5.03	5.02		2.04	2.01		4	

Remarks:
Single underline denotes exceedance over Action level
Double underline denotes exceedance over Limit level

\&11 Water Monitoring Result at C9 - Provident Centre
 Mid-Ebb Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids mg / L	
			m		${ }^{\circ} \mathrm{C}$			- -			ppt			\%			mg / L			NTU				
							Average			Average		ue	Average			Average			Average			Average	Value ${ }^{\text {mg/L }}$ Average	
30/4/2012	19:45	Cloudy	Middle	2	25.02	25.02	25.03	7.59	7.59	7.59	29.54	29.54	29.54	90.5	90.1	90.2	6.31	6.28	6.29	2.94	3.00	2.97	7	7.00
	19:46		Middle	2	25.04	25.04		7.59	7.59		29.54	29.54		90.1	90.1		6.29	6.28		2.72	3.20		7	
2/5/2012	22:42	Cloudy	Middle	2	26.06	26.06	26.06	7.74	7.74	7.72	25.86	25.86	25.86	88.8	88.8	88.8	6.22	6.22	6.22	0.90	0.86	0.84	3	3.00
	22:43		Middle	2	26.05	26.05		7.70	7.70		25.86	25.86		88.8	88.8		6.22	6.22		0.83	0.78		3	
4/5/2012	12:25	Fine	Middle	3	25.60	25.60	25.50	8.43	8.43	8.43	26.59	26.59	26.60	105.3	104.5	104.8	7.40	7.34	7.37	5.24	5.65	5.76	4	3.50
	12:28		Middle	3	25.40	25.40		8.42	8.42		26.60	26.60		105.0	104.4		7.38	7.34		6.09	6.06		3	
7/5/2012	14:00	Fine	Middle	3	26.10	26.10	26.05	8.41	8.41	8.42	28.70	28.70	28.70	97.5	97.7	97.5	7.86	7.87	7.86	1.89	1.90	1.86	6	6.00
	14:02		Middle	3	26.00	26.00		8.42	8.42		28.70	28.70		97.4	97.3		7.85	7.85		1.79	1.84		6	
9/5/2012	14:15	Fine	Middle	2	25.80	25.80	25.85	8.45	8.45	8.44	28.37	28.37	28.38	106.9	105.3	105.9	7.42	7.29	7.35	1.87	2.15	2.04	7	7.00
	14:18		Middle	2	25.90	25.90		8.43	8.43		28.38	28.38		105.4	105.8		7.32	7.35		2.11	2.04		7	
11/5/2012	14:43	Cloudy	Middle	3	25.50	25.50	25.55	8.10	8.10	8.10	29.53	29.53	29.53	93.6	93.4	93.4	6.46	6.45	6.45	1.41	1.11	1.40	3	2.50
	14:45		Middle	3	25.60	25.60		8.09	8.09		29.52	29.52		93.3	93.1		6.45	6.42		1.47	1.62		2	
14/5/2012	21:01	Cloudy	Middle	2	26.80	26.80	26.85	8.02	8.02	8.02	27.63	27.63	27.65	87.9	87.8	87.9	6.01	5.99	6.01	1.78	1.70	1.73	8	7.50
	21:02		Middle	2	26.90	26.90		8.01	8.01		27.66	27.66		87.8	88.2		6.00	6.02		1.76	1.66		7	
17/5/2012	12:00	Cloudy	Middle	3	26.10	26.10	26.15	8.24	8.24	8.24	28.97	28.97	28.98	66.8	66.7	66.3	4.59	4.58	4.56	4.41	4.27	4.38	3	3.00
	12:03		Middle	3	26.20	26.20		8.23	8.23		28.98	28.98		66.3	65.5		4.54	4.51		4.49	4.36		3	
19/5/2012	12:30	Fine	Middle	3	26.90	26.90	26.95	8.01	8.01	8.01	28.26	28.26	28.25	73.2	73.5	73.7	4.97	5.00	5.01	1.83	1.63	1.75	9	8.00
	12:32		Middle	3	27.00	27.00		8.00	8.00		28.24	28.24		74.3	73.7		5.04	5.01		1.82	1.72		7	
21/5/2012	13:30	Fine	Middle	3	27.10	27.10	27.10	8.05	8.05	8.05	29.15	29.15	29.15	80.5	80.6	80.6	5.44	5.45	5.45	2.93	3.02	2.89	4	4.50
	13:32		Middle	3	27.10	27.10		8.04	8.04		29.15	29.15		80.6	80.7		5.45	5.46		2.82	2.79		5	
23/5/2012	10:39	Fine	Middle	3	26.40	26.40	26.40	8.30	8.30	8.31	30.47	30.47	30.49	78.9	78.6	78.7	5.35	5.34	5.34	6.52	6.21	6.45	8	7.50
	10:42		Middle	3	26.40	26.40		8.31	8.31		30.50	30.50		78.8	78.6		5.34	5.33		6.62	6.44		7	
25/5/2012	13:00	Fine	Middle	2	27.40	27.40	27.45	8.07	8.07	8.06	29.16	29.16	29.16	70.7	70.7	70.8	4.75	4.75	4.75	2.41	2.25	2.23	6	5.50
	13:02		Middle	2	27.50	27.50		8.05	8.05		29.16	29.16		70.8	70.9		4.76	4.75		2.10	2.17		5	

Remarks:
Single underine denotes exceedance over Action leve
Double underline denotes exceedance over Limit level

	Time	Weater	Sampl	epth	Wa	T Temp	erature		pH			Salinit			Satu	ation		DO			Turbi		Suspen	d Solids
Date						${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg/			NTU			
							Average		ue	Average	Value	Average												
	19:32	Cloudy	Middle	2	25.01	25.01	25.03	7.58	7.58	7.58	29.36	29.36	29.36	87.7	87.7	87.7	6.13	6.13	6.13	3.04	2.72	2.87	6	6.00
	19:33		Middle	2	25.04	25.04		7.58	7.58		29.36	29.36		88.0	87.5		6.14	6.11		2.77	2.93		6	
	22:55	Cloudy	Middle	2	26.15	26.15	26.16	7.80	7.80	7.80	25.75	25.75	25.76	89.4	89.6	89.5	6.24	6.26	6.26	1.06	1.04	1.11	2	2.50
	22:56		Middle	2	26.17	26.17		7.80	7.80		25.76	25.76		89.3	89.8		6.24	6.28		1.27	1.08		3	
4/5/2012	12:35	Fine	Middle	2	25.70	25.70	25.75	8.44	8.44	8.44	26.54	26.54	26.54	101.4	100.5	101.0	7.13	7.06	7.10	5.40	5.70	5.82	4	4.50
	12:38		Middle	2	25.80	25.80		8.43	8.43		26.53	26.53		101.0	101.2		7.09	7.11		6.08	6.10		5	
7/5/2012	13:43	Fine	Middle	2	26.10	26.10	26.15	8.30	8.30	8.30	27.60	27.60	27.60	89.9	89.7	89.6	7.23	7.21	7.22	6.69	6.02	6.44	7	7.50
	13:46		Middle	2	26.20	26.20		8.30	8.30		27.60	27.60		89.5	89.4		7.21	7.21		6.48	6.57		8	
9/5/2012	14:25	Fine	Middle	3	25.70	25.70	25.75	8.42	8.42	8.42	28.36	28.36	28.37	103.5	103.7	103.7	7.24	7.22	7.22	3.37	3.57	3.50	7	7.50
	14:28		Middle	3	25.80	25.80		8.41	8.41		28.38	28.38		103.0	104.5		7.16	7.26		3.67	3.39		8	
11/5/2012	14:25	Cloudy	Middle	2	25.50	25.50	25.55	7.99	7.99	7.99	28.73	28.73	28.73	88.6	88.4	88.2	6.14	6.12	6.11	2.10	2.29	2.19	4	3.50
	14:27		Middle	2	25.60	25.60		7.99	7.99		28.72	28.72		88.0	87.9		6.09	6.08		2.31	2.04		3	
14/5/2012	20:49	Cloudy	Middle	2	26.70	26.70	26.70	7.96	7.96	7.96	27.62	27.62	27.62	83.9	84.0	83.9	5.74	5.74	5.74	2.38	2.36	2.31	4	4.00
	20:50		Middle	2	26.70	26.70		7.96	7.96		27.62	27.62		83.8	83.8		5.73	5.73		2.27	2.23		4	
17/5/2012	12:10	Cloudy	Middle	2	26.10	26.10	26.15	8.19	8.19	8.19	28.93	28.93	28.93	66.5	66.1	66.3	4.57	4.54	4.56	3.20	2.98	3.07	3	2.50
	12:13		Middle	2	26.20	26.20		8.18	8.18		28.92	28.92		66.4	66.3		4.56	4.55		3.07	3.02		2	
19/5/2012	12:17	Fine	Middle	2	27.00	27.00	27.05	8.00	8.00	7.99	27.73	27.73	27.74	69.8	70.3	69.9	4.74	4.78	4.75	3.21	3.09	3.13	6	5.50
	12:19		Middle	2	27.10	27.10		7.98	7.98		27.74	27.74		70.0	69.6		4.76	4.73		3.09	3.12		5	
	13:15	Fine	Middle	2	27.00	27.00	27.05	8.07	8.07	8.07	27.90	27.90	27.90	72.1	70.5	71.1	4.90	4.79	4.83	4.72	4.74	4.89	5	5.50
	13:17		Middle	2	27.10	27.10		8.06	8.06		27.90	27.90		70.8	71.0		4.81	4.83		5.17	4.94		6	
	10:47	Fine	Middle	3	26.40	26.40	26.35	8.15	8.15	8.16	30.67	30.67	30.68	67.4	66.7	68.3	4.57	4.52	4.61	7.83	7.87	7.75	8	8.00
	10:50		Middle	3	26.30	26.30		8.16	8.16		30.68	30.68		68.5	70.5		4.64	4.71		7.72	7.58		8	
25/5/2012	12:45	Fine	Middle	2	27.80	27.80	27.80	8.04	8.04	8.04	28.17	28.17	28.18	66.5	66.3	66.3	4.46	4.44	4.44	3.92	3.73	3.68	5	4.00
	12:47		Middle	2	27.80	27.80		8.03	8.03		28.18	28.18		66.2	66.1		4.44	4.43		3.40	3.65		3	

Remarks:
Single underline denotes exceedance over Action level
Double underline denotes exceedance over Limit level

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		C			-			ppt			\%			mg / L			NTU				
							Average			Average		ue	Average			Average			Average		ue	Average	Value	Average
30/4/2012	19:09	Cloudy	Middle	1	24.86	24.86	24.86	7.53	7.53	7.53	29.07	29.07	29.07	76.2	76.3	76.2	5.35	5.36	5.35	0.39	0.36	0.39	3	3.00
	19:10		Middle	1	24.86	24.86		7.53	7.53		29.07	29.07		76.3	76.1		5.35	5.34		0.44	0.35		3	
2/5/2012	22:15	Cloudy	Middle	2	26.13	26.13	26.13	7.42	7.41	7.42	25.96	25.96	25.96	71.3	71.5	71.5	4.99	5.00	5.00	0.58	0.56	0.61	2	2.00
	22:16		Middle	2	26.13	26.13		7.42	7.42		25.96	25.96		71.6	71.6		5.00	5.00		0.62	0.66		2	
4/5/2012	12:10	Fine	Middle	2	27.20	27.20	27.15	8.07	8.07	8.07	26.53	26.53	26.52	61.6	62.4	63.1	4.20	4.25	4.29	3.88	4.03	4.06	<2	<2
	12:13		Middle	2	27.10	27.10		8.06	8.06		26.51	26.51		63.9	64.4		4.33	4.38		4.12	4.20		<2	
7/5/2012	13:24	Fine	Middle	2	26.20	26.20	26.15	8.31	8.31	8.31	27.10	27.10	27.05	85.5	85.2	85.1	6.91	6.88	6.87	1.86	1.92	1.88	3	3.50
	13:26		Middle	2	26.10	26.10		8.31	8.31		27.00	27.00		85.0	84.6		6.86	6.83		1.86	1.87		4	
9/5/2012	14:40	Fine	Middle	2	29.40	29.40	29.35	8.46	8.46	8.46	26.75	26.75	26.76	67.0	65.5	64.3	4.45	4.35	4.27	3.02	3.07	3.01	2	2.50
	14:43		Middle	2	29.30	29.30		8.45	8.45		26.76	26.76		63.0	61.5		4.19	4.09		2.94	2.99		3	
11/5/2012	14:00	Cloudy	Middle	2	26.80	26.80	26.85	7.94	7.94	7.94	27.25	27.25	27.25	77.6	77.9	77.8	5.32	5.35	5.34	0.76	0.76	0.81	3	3.00
	14:02		Middle	2	26.90	26.90		7.93	7.93		27.25	27.25		77.7	78.1		5.33	5.36		0.79	0.92		3	
14/5/2012	20:22	Cloudy	Middle	1	27.00	27.00	27.00	7.81	7.81	7.81	27.19	27.19	27.19	76.2	76.0	75.9	5.20	5.19	5.18	0.50	0.46	0.51	10	10.50
	20:23		Middle	1	27.00	27.00		7.81	7.81		27.19	27.19		75.5	75.8		5.15	5.17		0.52	0.54		11	
17/5/2012	11:50	Cloudy	Middle	2	27.20	27.20	27.25	7.81	7.81	7.82	27.69	27.69	27.70	48.8	49.9	49.8	3.31	3.39	3.38	1.21	1.31	1.32	<2	<2
	11:53		Middle	2	27.30	27.30		7.82	7.82		27.70	27.70		50.1	50.3		3.41	3.42		1.41	1.33		<2	
19/5/2012	11:59	Fine	Middle	2	26.80	26.80	26.90	7.84	7.84	7.83	26.88	26.88	26.88	69.4	69.7	69.5	4.75	4.76	4.75	1.38	1.60	1.58	3	3.00
	12:01		Middle	2	27.00	27.00		7.82	7.82		26.88	26.88		69.7	69.3		4.76	4.74		1.73	1.62		3	
21/5/2012	12:56	Fine	Middle	2	26.70	26.70	26.75	8.09	8.09	8.09	26.43	26.43	26.43	64.1	63.9	63.7	4.41	4.40	4.38	1.90	1.94	1.92	3	3.00
	12:58		Middle	2	26.80	26.80		8.08	8.08		26.42	26.42		63.5	63.2		4.37	4.35		1.89	1.95		3	
23/5/2012	11:10	Fine	Middle	2	26.20	26.20	26.25	8.20	8.20	8.21	29.59	29.59	29.60	56.7	56.9	56.9	3.88	3.90	3.89	3.30	3.33	3.34	<2	<2
	11:13		Middle	2	26.30	26.30		8.21	8.21		29.60	29.60		57.5	56.4		3.93	3.86		3.49	3.23		<2	
25/5/2012	12:25	Fine	Middle	2	27.40	27.40	27.45	7.86	7.86	7.86	28.07	28.07	28.08	57.0	56.6	56.9	3.85	3.82	3.84	0.98	0.96	0.97	<2	<2
	12:27		Middle	2	27.50	27.50		7.85	7.85		28.09	28.09		56.9	56.9		3.84	3.84		1.02	0.92		<2	

Remarks:
Single underine denotes exceedance over Action level
Double underline denotes exceedance over Limit level

611 Water Monitoring Result at C1-HKCEC
 Mid-Ebb Tide

Date	Time	Weater	$\frac{\text { Sampling Depth }}{\text { m }}$		Wa	r Tem	erature		pH			Salinit			Satu	ation		DO			Turbi		Suspen	d Solids
						C			-			ppt			\%			mg			NTU			
							Average			Average		ue	Average			Average			Average			Average	Value	Average
30/4/2012	20:58	Cloudy	Middle	1.5	25.00	25.00	25.00	7.81	7.81	7.81	28.41	28.41	28.42	83.5	83.4	83.6	5.87	5.86	5.88	1.38	1.25	1.24	3	3.50
	21:00		Middle	1.5	25.00	25.00		7.81	7.81		28.42	28.42		83.7	83.9		5.89	5.91		1.21	1.12		4	
2/5/2012	20:59	Cloudy	Middle	1.5	26.10	26.10	26.10	7.82	7.82	7.83	25.17	25.17	25.17	88.2	88.5	87.7	6.18	6.20	6.14	2.91	3.34	3.13	2	2.50
	21:01		Middle	1.5	26.10	26.10		7.83	7.83		25.17	25.17		88.3	85.7		6.18	6.00		3.31	2.97		3	
4/5/2012	11:25	Fine	Middle	2.0	26.10	26.10	26.15	8.41	8.41	8.42	26.29	26.29	26.30	102.4	102.1	102.5	7.12	7.30	7.18	2.40	2.29	2.51	3	3.00
	11:28		Middle	2.0	26.20	26.20		8.42	8.42		26.30	26.30		102.9	102.7		7.15	7.14		2.80	2.56		3	
7/5/2012	11:16	Fine	Middle	2.5	25.00	25.00	25.05	8.30	8.30	8.31	29.54	29.54	29.54	89.3	88.1	88.8	6.23	6.14	6.19	1.81	1.85	1.78	3	3.00
	11:18		Middle	2.5	25.10	25.10		8.31	8.31		29.54	29.54		89.9	87.9		6.26	6.13		1.66	1.78		3	
9/5/2012	15:33	Fine	Middle	2.5	27.00	27.00	27.05	8.47	8.47	8.48	27.56	27.56	27.56	80.3	79.3	78.7	5.48	5.41	5.37	2.60	2.61	2.61	8	7.50
	15:35		Middle	2.5	27.10	27.10		8.48	8.48		27.55	27.55		78.0	77.3		5.32	5.27		2.64	2.60		7	
11/5/2012	16:45	Cloudy	Middle	2.0	25.40	25.40	25.35	8.37	8.37	8.36	29.64	29.64	29.65	97.1	97.3	97.2	6.73	6.74	6.74	1.49	1.43	1.34	<2	<2
	16:48		Middle	2.0	25.30	25.30		8.35	8.35		29.65	29.65		97.1	97.4		6.72	6.75		1.19	1.26		<2	
14/5/2012	21:15	Cloudy	Middle	1.5	26.80	26.80	26.85	7.30	7.30	7.31	28.54	28.54	28.54	95.3	93.4	93.5	6.49	6.36	6.39	1.96	1.87	1.92	5	4.50
	21:17		Middle	1.5	26.90	26.90		7.31	7.31		28.54	28.54		92.6	92.8		6.34	6.35		1.91	1.92		4	
17/5/2012	10:45	Cloudy	Middle	2.5	26.70	26.70	26.75	9.19	9.19	9.19	28.75	28.75	28.76	87.4	87.2	87.5	5.95	5.94	5.96	2.63	2.71	2.66	<2	<2
	10:48		Middle	2.5	26.80	26.80		9.18	9.18		28.76	28.76		87.6	87.8		5.97	5.98		2.76	2.54		<2	
19/5/2012	13:05	Fine	Middle	2.5	27.30	27.30	27.35	8.22	8.22	8.23	28.95	28.95	28.96	83.3	83.8	84.2	5.58	5.62	5.63	1.69	1.56	1.71	4	3.50
	13:08		Middle	2.5	27.40	27.40		8.23	8.23		28.97	28.97		84.6	84.9		5.65	5.67		1.74	1.85		3	
21/5/2012	14:15	Fine	Middle	2.0	26.60	26.60	26.55	8.78	8.78	8.79	29.45	29.45	29.46	78.2	77.4	78.9	5.33	5.27	5.37	3.60	3.68	3.52	5	4.00
	14:18		Middle	2.0	26.50	26.50		8.79	8.79		29.46	29.46		79.5	80.4		5.41	5.48		3.47	3.32		3	
23/5/2012	12:00	Fine	Middle	2.5	26.20	26.20	26.25	7.84	7.84	7.84	30.63	30.63	30.63	77.3	77.1	77.2	5.27	5.26	5.27	7.25	7.21	7.40	4	4.50
	12:03		Middle	2.5	26.30	26.30		7.83	7.83		30.62	30.62		76.9	77.3		5.25	5.28		7.56	7.58		5	
25/5/2012	16:50	Fine	Middle	2.5	27.00	27.00	27.01	7.61	7.61	7.62	29.17	29.17	29.17	74.3	73.9	74.1	5.02	5.00	5.01	6.16	5.86	5.84	3	2.50
	16:53		Middle	2.5	27.01	27.01		7.62	7.62		29.16	29.16		74.2	74.1		5.02	5.01		5.74	5.58		2	

Remarks:
Single underline denotes exceedance over Action level
Double underline denotes exceedance over Limit level

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids	
			m		${ }^{\circ} \mathrm{C}$			- - -			ppt			\%			Value ${ }^{\text {mg/ }}$		NTU					
							Average			Average		ue	Average			Average			Average	Value		Average	Value	Average
30/4/2012	19:05	Cloudy	Middle	1.0	25.40	25.40	25.40	7.70	7.70	7.70	28.82	28.82	28.82	85.7	85.8	85.5	5.97	5.98	5.97	3.66	3.45	3.50	4	4.00
	19:07		Middle	1.0	25.40	25.40		7.70	7.70		28.82	28.82		85.4	85.2		5.96	5.95		3.68	3.22		4	
2/5/2012	21:30	Cloudy	Middle	1.0	26.00	26.00	26.00	7.83	7.83	7.83	25.25	25.25	25.25	88.2	88.4	88.7	6.19	6.20	6.22	3.01	2.99	3.01	3	3.50
	21:32		Middle	1.0	26.00	26.00		7.83	7.83		25.24	25.24		89.0	89.0		6.24	6.25		3.04	2.99		4	
4/5/2012	10:15	Fine	Middle	1.5	26.00	26.00	26.05	8.27	8.27	8.27	27.62	27.62	27.63	84.6	85.3	85.4	5.89	5.91	5.94	1.92	1.87	1.85	4	4.50
	10:18		Middle	1.5	26.10	26.10		8.26	8.26		27.63	27.63		85.8	86.0		5.97	5.99		1.84	1.78		5	
7/5/2012	10:55	Fine	Middle	1.5	25.30	25.30	25.35	8.24	8.24	8.25	29.87	29.87	29.88	82.0	80.9	81.7	5.68	5.60	5.65	1.70	1.74	1.73	3	3.00
	10:57		Middle	1.5	25.40	25.40		8.26	8.26		29.88	29.88		82.4	81.3		5.70	5.63		1.85	1.63		3	
9/5/2012	16:53	Fine	Middle	1.5	27.40	27.40	27.35	8.39	8.39	8.40	28.31	28.31	28.31	101.7	102.1	101.9	6.84	6.87	6.85	2.52	2.48	2.60	4	3.50
	16:58		Middle	1.5	27.30	27.30		8.40	8.40		28.30	28.30		102.0	101.8		6.85	6.82		2.96	2.44		3	
11/5/2012	15:17	Cloudy	Middle	1.0	25.20	25.20	25.15	8.23	8.23	8.23	30.62	30.62	30.62	81.3	82.1	82.3	5.64	5.69	5.70	2.52	2.53	2.47	3	3.00
	15:20		Middle	1.0	25.10	25.10		8.22	8.22		30.61	30.61		82.6	83.1		5.72	5.75		2.34	2.49		3	
14/5/2012	19:32	Cloudy	Middle	1.0	26.60	26.60	26.65	8.17	8.17	8.18	28.93	28.93	28.93	88.2	88.5	87.7	6.02	6.04	5.98	5.29	5.55	5.59	6	5.50
	19:34		Middle	1.0	26.70	26.70		8.18	8.18		28.93	28.93		87.6	86.3		5.98	5.89		5.72	5.81		5	
17/5/2012	9:37	Cloudy	Middle	1.5	26.20	26.20	26.15	8.09	8.09	8.10	29.33	29.33	29.34	62.1	62.3	62.5	4.25	4.27	4.28	3.69	3.39	3.60	<2	<2
	9:40		Middle	1.5	26.10	26.10		8.10	8.10		29.34	29.34		62.6	62.9		4.29	4.31		3.81	3.52		<2	
19/5/2012	11:25	Fine	Middle	1.5	26.30	26.30	26.35	8.20	8.20	8.21	29.27	29.27	29.28	74.0	74.1	74.2	5.06	5.07	5.26	2.01	1.95	2.11	3	3.00
	11:28		Middle	1.5	26.40	26.40		8.21	8.21		29.28	29.28		74.2	74.4		5.80	5.09		2.27	2.21		3	
21/5/2012	12:25	Fine	Middle	1.5	26.20	26.20	26.15	8.06	8.06	8.07	30.15	30.15	30.15	70.6	70.8	70.8	4.82	4.83	4.84	7.31	6.93	6.76	6	6.00
	12:28		Middle	1.5	26.10	26.10		8.07	8.07		30.14	30.14		70.9	71.0		4.84	4.85		6.46	6.33		6	
23/5/2012	13:40	Fine	Middle	2.0	26.50	26.50	26.45	7.62	7.62	7.63	30.59	30.59	30.59	75.2	75.1	75.3	5.09	5.08	5.10	4.98	4.89	4.83	4	3.50
	13:43		Middle	2.0	26.40	26.40		7.63	7.63		30.58	30.58		75.3	75.6		5.10	5.12		4.77	4.68		3	
25/5/2012	14:20	Fine	Middle	1.0	26.85	26.85	26.84	8.19	8.19	8.19	29.50	29.50	29.51	91.5	86.9	86.9	6.20	5.88	5.88	6.17	6.08	6.22	4	4.00
	14:23		Middle	1.0	26.83	26.83		8.18	8.18		29.51	29.51		85.7	83.3		5.80	5.62		6.27	6.36		4	

[^9]| Date | Time | Weater Condition | Sampling Depth | | Water Temperature | | | pH | | | Salinity | | | DO Saturation | | | DO | | | Turbidity | | | Suspended Solids | |
| :---: |
| | | | m | | ${ }^{\text {C }}$ | | | - | | | ppt | | | \% | | | mg/L | | | NTU | | | mg / L | |
| | | | | | | | Average | | | Average | | ue | Average | | | Average | | | Average | | ue | Average | Value | Average |
| 30/4/2012 | 19:50 | Cloudy | Middle | 2.0 | 25.30 | 25.30 | 25.30 | 7.68 | 7.68 | 7.69 | 29.48 | 29.48 | 29.48 | 62.2 | 60.6 | 61.4 | 4.35 | 4.22 | 4.28 | 3.88 | 3.62 | 3.79 | 4 | 4.00 |
| | 19:52 | | Middle | 2.0 | 25.30 | 25.30 | | 7.69 | 7.69 | | 29.48 | 29.48 | | 60.8 | 61.8 | | 4.25 | 4.30 | | 3.90 | 3.77 | | 4 | |
| 2/5/2012 | 19:50 | Cloudy | Middle | 2.5 | 26.40 | 26.40 | 26.40 | 7.72 | 7.72 | 7.73 | 27.21 | 27.21 | 27.21 | 64.4 | 66.7 | 65.7 | 4.45 | 4.61 | 4.54 | 2.73 | 3.00 | 2.86 | 3 | 3.00 |
| | 19:52 | | Middle | 2.5 | 26.40 | 26.40 | | 7.73 | 7.73 | | 27.21 | 27.21 | | 66.6 | 65.0 | | 4.60 | 4.49 | | 2.85 | 2.86 | | 3 | |
| 4/5/2012 | 10:45 | Fine | Middle | 2.5 | 26.00 | 26.00 | 26.05 | 8.17 | 8.17 | 8.17 | 28.14 | 28.14 | 28.14 | 72.3 | 73.4 | 73.5 | 5.00 | 5.09 | 5.08 | 2.41 | 2.29 | 2.20 | <2 | <2 |
| | 10:48 | | Middle | 2.5 | 26.10 | 26.10 | | 8.16 | 8.16 | | 28.13 | 28.13 | | 74.1 | 74.0 | | 5.12 | 5.11 | | 2.13 | 1.97 | | <2 | |
| 7/5/2012 | 12:34 | Fine | Middle | 2.5 | 25.00 | 25.00 | 25.00 | 8.25 | 8.25 | 8.25 | 29.75 | 29.75 | 29.75 | 73.9 | 72.0 | 73.3 | 5.16 | 5.02 | 5.11 | 2.54 | 2.56 | 2.50 | 4 | 4.00 |
| | 12:36 | | Middle | 2.5 | 25.00 | 25.00 | | 8.25 | 8.25 | | 29.75 | 29.75 | | 74.2 | 73.1 | | 5.17 | 5.10 | | 2.43 | 2.48 | | 4 | |
| 9/5/2012 | 16:35 | Fine | Middle | 2.5 | 27.00 | 27.00 | 27.05 | 8.29 | 8.29 | 8.28 | 28.71 | 28.71 | 28.72 | 76.4 | 76.7 | 76.6 | 5.17 | 5.18 | 5.18 | 8.14 | 8.23 | 8.25 | 7 | 6.50 |
| | 16:38 | | Middle | 2.5 | 27.10 | 27.10 | | 8.27 | 8.27 | | 28.72 | 28.72 | | 76.7 | 76.4 | | 5.19 | 5.17 | | 8.61 | 8.01 | | 6 | |
| 11/5/2012 | 15:52 | Cloudy | Middle | 2.5 | 25.40 | 25.40 | 25.35 | 8.37 | 8.37 | 8.38 | 30.36 | 30.36 | 30.36 | 77.4 | 77.5 | 78.1 | 5.32 | 5.33 | 5.38 | 2.55 | 2.42 | 2.74 | 4 | 3.00 |
| | 15:55 | | Middle | 2.5 | 25.30 | 25.30 | | 8.38 | 8.38 | | 30.35 | 30.35 | | 78.5 | 79.0 | | 5.42 | 5.46 | | 2.97 | 3.00 | | 2 | |
| 14/5/2012 | 20:10 | Cloudy | Middle | 2.0 | 26.80 | 26.80 | 26.80 | 8.09 | 8.09 | 8.10 | 29.59 | 29.59 | 29.60 | 72.2 | 71.9 | 71.8 | 4.89 | 4.87 | 4.86 | 4.86 | 5.00 | 4.91 | 7 | 6.50 |
| | 20:12 | | Middle | 2.0 | 26.80 | 26.80 | | 8.10 | 8.10 | | 29.60 | 29.60 | | 71.0 | 72.1 | | 4.81 | 4.88 | | 4.87 | 4.92 | | 6 | |
| 17/5/2012 | 10:03 | Cloudy | Middle | 2.5 | 26.50 | 26.50 | 26.45 | 7.70 | 7.70 | 7.71 | 29.39 | 29.39 | 29.39 | 56.9 | 57.3 | 57.5 | 3.87 | 3.90 | 3.91 | 3.98 | 3.82 | 3.57 | 3 | 4.00 |
| | 10:06 | | Middle | 2.5 | 26.40 | 26.40 | | 7.71 | 7.71 | | 29.38 | 29.38 | | 57.6 | 58.2 | | 3.92 | 3.96 | | 3.34 | 3.15 | | 5 | |
| 19/5/2012 | 11:55 | Fine | Middle | 2.5 | 25.90 | 25.90 | 25.95 | 8.23 | 8.23 | 8.24 | 29.34 | 29.34 | 29.34 | 67.1 | 67.6 | 67.8 | 4.62 | 4.66 | 4.67 | 4.87 | 4.79 | 4.51 | 6 | 6.50 |
| | 11:58 | | Middle | 2.5 | 26.00 | 26.00 | | 8.24 | 8.24 | | 29.33 | 29.33 | | 67.8 | 68.5 | | 4.67 | 4.72 | | 4.29 | 4.09 | | 7 | |
| 21/5/2012 | 13:05 | Fine | Middle | 2.5 | 25.80 | 25.80 | 25.85 | 8.23 | 8.23 | 8.23 | 29.76 | 29.76 | 29.77 | 58.2 | 58.6 | 58.5 | 4.01 | 4.04 | 4.03 | 2.76 | 2.54 | 2.48 | 4 | 4.50 |
| | 13:08 | | Middle | 2.5 | 25.90 | 25.90 | | 8.22 | 8.22 | | 29.77 | 29.77 | | 58.7 | 58.5 | | 4.05 | 4.03 | | 2.39 | 2.22 | | 5 | |
| 23/5/2012 | 12:55 | Fine | Middle | 3.0 | 26.30 | 26.30 | 26.35 | 7.54 | 7.54 | 7.54 | 30.40 | 30.00 | 30.31 | 65.0 | 65.4 | 65.6 | 4.44 | 4.46 | 4.46 | 3.14 | 2.99 | 3.01 | <2 | <2 |
| | 12:58 | | Middle | 3.0 | 26.40 | 26.40 | | 7.53 | 7.53 | | 30.41 | 30.41 | | 65.5 | 66.3 | | 4.42 | 4.53 | | 2.98 | 2.94 | | <2 | |
| 25/5/2012 | 14:57 | Fine | Middle | 3.0 | 26.93 | 26.93 | 26.93 | 7.44 | 7.44 | 7.45 | 29.74 | 29.74 | 29.74 | 64.0 | 64.5 | 63.8 | 4.32 | 4.35 | 4.31 | 8.41 | 8.25 | 8.45 | 4 | 4.00 |
| | 15:00 | | Middle | 3.0 | 26.92 | 26.92 | | 7.45 | 7.45 | | 29.73 | 29.73 | | 62.8 | 64.0 | | 4.24 | 4.31 | | 8.23 | 8.89 | | 4 | |

Remarks:
Single underine denotes exceedance over Action level
Double underline denotes exceedance over Limit level

d. Water Monitoring Result at C4e - wCT / GEC
 Mid-Ebb Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids mg / L	
			m		${ }^{\circ}$			- -			ppt			\%			mg / L			NTU				
							Average			Average		lue	Average			Average			Average		ue	Average	Value ${ }^{\text {mg/L }}$ Average	
30/4/2012	19:29	Cloudy	Middle	1.0	25.20	25.20	25.20	7.75	7.75	7.76	28.92	28.92	28.93	59.2	61.3	60.7	4.13	4.27	4.23	4.09	3.83	3.89	5	5.00
	19:31		Middle	1.0	25.20	25.20		7.76	7.76		28.93	28.93		61.5	60.7		4.28	4.22		3.74	3.91		5	
2/5/2012	19:15	Cloudy	Middle	1.5	26.30	26.30	26.30	7.76	7.76	7.77	27.15	27.15	27.16	71.1	70.3	71.2	4.92	4.87	4.93	2.98	2.98	3.03	6	6.00
	19:17		Middle	1.5	26.30	26.30		7.77	7.77		27.16	27.16		71.5	71.9		4.94	4.97		3.19	2.97		6	
4/5/2012	10:30	Fine	Middle	1.5	26.00	26.00	26.05	8.14	8.14	8.14	27.43	27.43	27.43	65.3	66.5	66.5	4.52	4.60	4.61	2.20	2.26	2.11	2	2.00
	10:33		Middle	1.5	26.10	26.10		8.13	8.13		27.42	27.42		66.4	67.9		4.60	4.70		1.97	1.99		2	
7/5/2012	12:10	Fine	Middle	2.0	25.50	25.50	25.50	8.22	8.22	8.22	29.28	29.28	29.29	73.9	73.2	73.3	5.12	5.07	5.08	1.52	1.54	1.58	4	4.00
	12:12		Middle	2.0	25.50	25.50		8.22	8.22		29.29	29.29		73.6	72.5		5.10	5.04		1.67	1.59		4	
9/5/2012	16:25	Fine	Middle	1.5	27.50	27.50	27.50	8.32	8.32	8.33	28.48	28.48	28.48	87.9	88.3	88.3	5.90	5.93	5.93	3.35	3.67	3.50	6	6.00
	16:28		Middle	1.5	27.50	27.50		8.34	8.34		28.47	28.47		89.0	88.1		5.97	5.90		3.63	3.34		6	
11/5/2012	15:30	Cloudy	Middle	1.0	25.70	25.70	25.65	8.26	8.26	8.27	30.32	30.32	30.32	69.6	69.4	69.4	4.78	4.77	4.77	2.58	2.64	2.83	2	2.00
	15:33		Middle	1.0	25.60	25.60		8.27	8.27		30.31	30.31		69.5	69.2		4.78	4.76		2.95	3.16		2	
14/5/2012	19:50	Cloudy	Middle	1.5	26.70	26.70	26.70	8.08	8.08	8.09	29.49	29.49	29.49	57.0	56.9	57.3	3.87	3.86	3.89	2.36	2.38	2.29	6	5.00
	19:52		Middle	1.5	26.70	26.70		8.09	8.09		29.49	29.49		57.4	57.9		3.90	3.93		2.19	2.21		4	
17/5/2012	9:50	Cloudy	Middle	1.5	26.60	26.60	26.65	8.14	8.14	8.14	29.31	29.31	29.31	57.9	58.5	58.5	3.95	3.98	3.98	3.78	3.67	3.78	2	2.00
	9:53		Middle	1.5	26.70	26.70		8.13	8.13		29.30	29.30		58.6	58.8		3.99	4.01		3.91	3.76		2	
19/5/2012	11:40	Fine	Middle	1.0	26.20	26.20	26.25	8.03	8.03	8.03	29.29	29.29	29.30	67.0	67.2	67.3	4.58	4.59	4.60	3.08	2.94	2.93	5	5.00
	11:43		Middle	1.0	26.30	26.30		8.02	8.02		29.30	29.30		67.3	67.5		4.60	4.62		2.90	2.80		5	
21/5/2012	12:45	Fine	Middle	1.5	26.40	26.40	26.35	8.92	8.92	8.93	29.78	29.78	29.78	59.6	60.0	60.1	4.06	4.09	4.10	4.38	4.15	4.05	3	3.50
	12:48		Middle	1.5	26.30	26.30		8.93	8.93		29.77	29.77		60.4	60.3		4.12	4.11		3.99	3.68		4	
23/5/2012	12:49	Fine	Middle	1.5	26.60	26.60	26.65	7.98	7.98	7.99	30.50	30.50	30.51	69.2	69.4	69.8	4.69	4.70	4.73	3.58	3.54	3.55	3	2.50
	12:52		Middle	1.5	26.70	26.70		7.99	7.99		30.51	30.51		71.1	69.3		4.82	4.71		3.49	3.59		2	
25/5/2012	14:38	Fine	Middle	1.5	27.01	27.01	27.02	7.54	7.54	7.54	29.61	29.61	29.62	76.6	75.7	75.7	5.18	5.11	5.11	4.64	4.74	4.70	3	3.50
	14:41		Middle	1.5	27.02	27.02		7.53	7.53		29.62	29.62		75.3	75.0		5.09	5.06		4.87	4.54		4	

Remarks:
Single underline denotes exceedance over Action level
Double underline denotes exceedance over Limit level

\& W. Water Monitoring Result at C4w - WCT / GEC
 Mid-Ebb Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids mg / L	
			m		${ }^{\circ} \mathrm{C}$						ppt			\%			mg / L			Value				
							Average			Average		lue	Average			Average		ue	Average			Average	Value mg / L Average	
30/4/2012	19:39	Cloudy	Middle	1.5	25.00	25.00	25.05	7.58	7.58	7.59	29.41	29.41	29.41	60.3	61.0	61.3	4.21	4.26	4.28	1.94	2.12	1.92	6	6.50
	19:41		Middle	1.5	25.10	25.10		7.59	7.59		29.40	29.40		61.6	62.2		4.29	4.34		1.82	1.78		7	
2/5/2012	19:21	Cloudy	Middle	1.5	26.10	26.10	26.15	7.54	7.54	7.55	26.73	26.73	26.74	48.9	52.1	51.0	3.40	3.62	3.55	0.48	0.37	0.41	3	3.50
	19:23		Middle	1.5	26.20	26.20		7.55	7.55		26.74	26.74		52.2	50.9		3.63	3.54		0.46	0.34		4	
4/5/2012	10:38	Fine	Middle	1.5	25.70	25.70	25.65	8.05	8.05	8.05	27.37	27.37	27.37	57.3	59.4	59.5	3.99	4.13	4.14	0.68	0.62	0.62	<2	<2
	10:41		Middle	1.5	25.60	25.60		8.04	8.04		27.36	27.36		60.3	61.0		4.19	4.24		0.60	0.57		<2	
7/5/2012	12:20	Fine	Middle	2.0	24.80	24.80	24.85	8.12	8.12	8.12	29.22	29.22	29.22	57.7	58.7	58.5	4.05	4.12	4.10	0.80	0.81	0.83	4	3.50
	12:21		Middle	2.0	24.90	24.90		8.11	8.11		29.22	29.22		58.1	59.3		4.08	4.15		0.87	0.84		3	
9/5/2012	16:31	Fine	Middle	1.0	27.00	27.00	27.05	8.32	8.32	8.32	28.57	28.57	28.57	83.5	83.8	83.9	5.65	5.67	5.67	5.54	5.43	5.16	10	10.00
	16:34		Middle	1.0	27.10	27.10		8.31	8.31		28.56	28.56		84.0	84.2		5.68	5.69		4.80	4.87		10	
11/5/2012	15:40	Cloudy	Middle	1.0	25.60	25.60	25.65	8.30	8.30	8.31	30.46	30.46	30.47	72.2	72.4	73.1	4.97	4.99	5.04	2.91	2.77	2.75	3	3.00
	15:43		Middle	1.0	25.70	25.70		8.31	8.31		30.47	30.47		73.3	74.5		5.05	5.16		2.86	2.47		3	
14/5/2012	20:03	Cloudy	Middle	1.5	26.60	26.60	26.65	8.12	8.12	8.13	29.22	29.22	29.23	60.3	61.3	61.2	4.10	4.21	4.17	2.82	3.01	2.97	5	4.00
	20:05		Middle	1.5	26.70	26.70		8.13	8.13		29.23	29.23		61.7	61.3		4.19	4.17		2.99	3.04		3	
17/5/2012	9:55	Cloudy	Middle	1.5	26.60	26.60	26.65	8.24	8.24	8.24	29.28	29.28	29.29	53.2	53.6	53.5	3.62	3.65	3.64	3.08	2.88	2.98	3	3.50
	9:58		Middle	1.5	26.70	26.70		8.23	8.23		29.29	29.29		53.4	53.8		3.63	3.66		2.95	3.01		4	
19/5/2012	11:45	Fine	Middle	1.0	25.90	25.90	25.85	8.04	8.04	8.04	29.50	29.50	29.50	46.1	46.7	47.0	3.18	3.22	3.24	1.00	1.01	0.92	2	2.00
	11:48		Middle	1.0	25.80	25.80		8.03	8.03		29.50	29.50		47.3	47.8		3.26	3.29		0.86	0.82		2	
21/5/2012	12:55	Fine	Middle	1.0	26.30	26.30	26.35	8.42	8.42	8.43	29.81	29.81	29.82	58.6	58.9	59.0	4.00	4.02	4.03	3.16	2.76	2.92	4	3.50
	12:58		Middle	1.0	26.40	26.40		8.43	8.43		29.82	29.82		59.1	59.5		4.04	4.07		2.89	2.85		3	
23/5/2012	12:43	Fine	Middle	2.0	26.70	26.70	26.70	7.45	7.45	7.47	30.46	30.46	30.47	68.4	67.7	68.3	4.62	4.57	4.61	5.14	5.10	5.02	3	2.50
	12:46		Middle	2.0	26.70	26.70		7.49	7.49		30.47	30.47		69.0	68.1		4.66	4.60		4.96	4.86		2	
25/5/2012	14:45	Fine	Middle	1.5	27.05	27.05	27.06	7.54	7.54	7.54	29.61	29.61	29.62	65.5	65.2	65.1	4.41	4.40	4.39	5.97	6.31	6.16	8	8.00
	14:48		Middle	1.5	27.06	27.06		7.53	7.53		29.62	29.62		64.9	64.7		4.37	4.36		6.42	5.93		8	

Remarks:
Single underine denotes exceedance over Action level
Double underline denotes exceedance over Limit level

81 Water Monitoring Result at C5e - Sun Hung Kai Centre Mid-Ebb Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids mg / L	
			m		${ }^{\circ} \mathrm{C}$						ppt			\%			mg / L			Value				
							Average			Average		lue	Average			Average		ue	Average			Average	Value mg / L Average	
30/4/2012	20:30	Cloudy	Middle	1.5	25.60	25.60	25.65	7.78	7.78	7.78	29.16	29.16	29.16	70.3	71.7	71.1	4.86	4.96	4.92	4.68	4.66	4.69	33	$\underline{\underline{32.00}}$
	20:32		Middle	1.5	25.70	25.70		7.78	7.78		29.16	29.16		71.5	70.7		4.95	4.90		4.81	4.60		31	
2/5/2012	20:37	Cloudy	Middle	1.0	26.40	26.40	26.45	7.75	7.75	7.74	27.03	27.03	27.03	69.7	68.5	68.5	4.82	4.73	4.73	3.03	3.21	3.38	10	10.50
	20:39		Middle	1.0	26.50	26.50		7.73	7.73		27.02	27.02		68.9	67.0		4.76	4.62		3.57	3.70		11	
4/5/2012	11:00	Fine	Middle	1.0	26.30	26.30	26.25	8.24	8.24	8.24	28.20	28.20	28.21	76.1	76.8	76.8	5.22	5.27	5.27	2.81	3.02	3.11	3	2.50
	11:03		Middle	1.0	26.20	26.20		8.23	8.23		28.21	28.21		77.1	77.2		5.29	5.30		3.29	3.31		2	
7/5/2012	11:45	Fine	Middle	2.0	25.80	25.80	25.85	8.28	8.28	8.28	29.70	29.70	29.71	78.6	77.5	78.3	5.41	5.33	5.39	2.26	2.12	2.28	2	2.00
	11:46		Middle	2.0	25.90	25.90		8.27	8.27		29.71	29.71		79.1	77.9		5.44	5.36		2.34	2.39		2	
9/5/2012	16:00	Fine	Middle	1.5	28.20	28.20	28.25	8.45	8.45	8.45	28.81	28.81	28.82	76.9	74.0	73.4	5.40	5.25	5.20	4.03	4.05	4.10	2	3.00
	16:03		Middle	1.5	28.30	28.30		8.44	8.44		28.82	28.82		72.3	70.2		5.10	5.03		4.16	4.17		4	
11/5/2012	16:22	Cloudy	Middle	1.0	25.50	25.50	25.55	8.28	8.28	8.28	30.29	30.29	30.29	78.2	78.0	78.4	5.39	5.38	5.41	2.22	2.34	2.38	3	3.50
	16:25		Middle	1.0	25.60	25.60		8.27	8.27		30.29	30.29		78.5	78.9		5.43	5.44		2.50	2.44		4	
14/5/2012	21:00	Cloudy	Middle	1.5	27.00	27.00	26.95	8.12	8.12	8.13	29.35	29.35	29.36	77.7	77.8	77.2	5.24	5.25	5.21	2.99	2.98	3.10	4	3.50
	21:02		Middle	1.5	26.90	26.90		8.13	8.13		29.36	29.36		76.7	76.4		5.17	5.16		3.12	3.29		3	
17/5/2012	10:27	Cloudy	Middle	1.5	26.90	26.90	26.85	8.22	8.22	8.23	28.62	28.62	28.63	65.6	65.9	66.1	4.46	4.48	4.49	4.48	4.60	4.60	3	4.00
	10:30		Middle	1.5	26.80	26.80		8.23	8.23		28.63	28.63		66.3	66.5		4.50	4.52		4.66	4.67		5	
19/5/2012	12:25	Fine	Middle	1.0	27.50	27.50	27.55	8.49	8.49	8.49	29.15	29.15	29.15	67.8	68.3	68.5	4.51	4.56	4.57	2.49	2.52	2.57	5	4.00
	12:28		Middle	1.0	27.60	27.60		8.48	8.48		29.14	29.14		68.6	69.2		4.58	4.62		2.62	2.63		3	
21/5/2012	13:45	Fine	Middle	1.0	27.00	27.00	27.05	8.15	8.15	8.15	28.47	28.47	28.48	72.8	73.4	73.6	4.95	4.99	5.00	4.64	4.58	4.48	6	5.00
	13:48		Middle	1.0	27.10	27.10		8.14	8.14		28.48	28.48		73.8	74.2		5.02	5.04		4.49	4.22		4	
23/5/2012	12:25	Fine	Middle	1.5	27.20	27.20	27.15	8.48	8.48	8.49	29.70	29.70	29.71	73.5	73.3	73.5	4.93	4.92	4.93	4.03	3.85	3.73	3	3.00
	12:28		Middle	1.5	27.10	27.10		8.49	8.49		29.71	29.71		73.4	73.9		4.92	4.96		3.65	3.39		3	
25/5/2012	15:57	Fine	Middle	1.0	29.35	29.35	29.34	7.04	7.04	7.04	29.36	29.36	29.36	55.7	58.5	56.3	3.64	3.82	3.68	4.81	4.84	4.75	4	3.50
	16:00		Middle	1.0	29.33	29.33		7.03	7.03		29.35	29.35		56.4	54.5		3.68	3.58		4.56	4.79		3	

[^10]| Date | Time | Weater Condition | Sampling Depth | | Water Temperature | | | pH | | | Salinity | | | DO Saturation | | | DO | | | Turbidity | | | Suspended Solids | |
| :---: |
| | | | m | | | | | - - | | | ppt | | | \% | | | mg / L | | | NTU | | | | |
| | | | | | | | Average | | | Average | | ue | Average | | | Average | | ue | Average | | | Average | Value ${ }^{\text {mg/L }}$ Average | |
| 30/4/2012 | 20:36 | Cloudy | Middle | 1.5 | 25.60 | 25.60 | 25.60 | 7.79 | 7.79 | 7.80 | 29.20 | 29.20 | 29.21 | 71.6 | 70.8 | 71.1 | 4.96 | 4.90 | 4.92 | 5.10 | 5.21 | 5.38 | 14 | 14.50 |
| | 20:38 | | Middle | 1.5 | 25.60 | 25.60 | | 7.80 | 7.80 | | 29.21 | 29.21 | | 70.5 | 71.4 | | 4.87 | 4.94 | | 5.65 | 5.55 | | 15 | |
| 2/5/2012 | 20:25 | Cloudy | Middle | 1.0 | 26.60 | 26.60 | 26.55 | 7.73 | 7.73 | 7.74 | 26.42 | 26.42 | 26.43 | 70.2 | 70.4 | 70.6 | 4.85 | 4.87 | 4.88 | 4.61 | 4.73 | 4.58 | 4 | 5.00 |
| | 20:27 | | Middle | 1.0 | 26.50 | 26.50 | | 7.74 | 7.74 | | 26.43 | 26.43 | | 70.9 | 71.0 | | 4.90 | 4.91 | | 4.55 | 4.44 | | 6 | |
| 4/5/2012 | 11:06 | Fine | Middle | 1.0 | 26.30 | 26.30 | 26.25 | 8.21 | 8.21 | 8.21 | 28.32 | 28.32 | 28.32 | 77.5 | 78.3 | 78.3 | 5.31 | 5.37 | 5.37 | 1.93 | 2.21 | 2.08 | <2 | <2 |
| | 11:09 | | Middle | 1.0 | 26.20 | 26.20 | | 8.20 | 8.20 | | 28.31 | 28.31 | | 78.7 | 78.8 | | 5.39 | 5.40 | | 2.10 | 2.07 | | <2 | |
| 7/5/2012 | 11:54 | Fine | Middle | 2.0 | 25.60 | 25.60 | 25.70 | 8.26 | 8.26 | 8.26 | 29.83 | 29.83 | 29.81 | 78.4 | 76.4 | 77.7 | 5.39 | 5.25 | 5.34 | 1.82 | 1.83 | 1.86 | 5 | 4.50 |
| | 11:55 | | Middle | 2.0 | 25.80 | 25.80 | | 8.26 | 8.26 | | 29.79 | 29.79 | | 78.8 | 77.1 | | 5.41 | 5.29 | | 1.94 | 1.85 | | 4 | |
| 9/5/2012 | 16:05 | Fine | Middle | 1.5 | 27.30 | 27.30 | 27.35 | 8.39 | 8.39 | 8.40 | 28.81 | 28.81 | 28.82 | 88.7 | 87.4 | 88.8 | 5.95 | 5.87 | 5.96 | 2.50 | 2.31 | 2.53 | 6 | 5.50 |
| | 16:08 | | Middle | 1.5 | 27.40 | 27.40 | | 8.40 | 8.40 | | 28.83 | 28.83 | | 89.4 | 89.8 | | 5.99 | 6.02 | | 2.66 | 2.64 | | 5 | |
| 11/5/2012 | 16:31 | Cloudy | Middle | 1.0 | 25.70 | 25.70 | 25.65 | 8.26 | 8.26 | 8.27 | 30.23 | 30.23 | 30.24 | 73.9 | 74.1 | 74.2 | 5.08 | 5.10 | 5.11 | 1.52 | 1.40 | 1.42 | <2 | <2 |
| | 16:33 | | Middle | 1.0 | 25.60 | 25.60 | | 8.27 | 8.27 | | 30.24 | 30.24 | | 74.3 | 74.6 | | 5.12 | 5.13 | | 1.43 | 1.34 | | <2 | |
| 14/5/2012 | 20:52 | Cloudy | Middle | 1.5 | 26.90 | 26.90 | 26.85 | 8.13 | 8.13 | 8.14 | 29.41 | 29.41 | 29.41 | 73.9 | 74.4 | 74.1 | 4.99 | 5.02 | 5.00 | 4.02 | 4.04 | 4.07 | 5 | 4.50 |
| | 20:54 | | Middle | 1.5 | 26.80 | 26.80 | | 8.14 | 8.14 | | 29.40 | 29.40 | | 74.4 | 73.6 | | 5.02 | 4.96 | | 4.11 | 4.09 | | 4 | |
| 17/5/2012 | 10:33 | Cloudy | Middle | 1.5 | 26.90 | 26.90 | 26.85 | 8.20 | 8.20 | 8.21 | 28.82 | 28.82 | 28.83 | 66.4 | 66.7 | 67.1 | 4.51 | 4.53 | 4.56 | 3.16 | 3.31 | 3.36 | <2 | <2 |
| | 10:36 | | Middle | 1.5 | 26.80 | 26.80 | | 8.21 | 8.21 | | 28.83 | 28.83 | | 67.5 | 67.8 | | 4.59 | 4.61 | | 3.43 | 3.54 | | <2 | |
| 19/5/2012 | 12:33 | Fine | Middle | 1.0 | 27.30 | 27.30 | 27.35 | 8.29 | 8.29 | 8.29 | 29.47 | 29.47 | 29.48 | 74.7 | 75.8 | 76.0 | 5.00 | 5.08 | 5.09 | 6.26 | 5.84 | 5.97 | 15 | 14.50 |
| | 12:36 | | Middle | 1.0 | 27.40 | 27.40 | | 8.28 | 8.28 | | 29.48 | 29.48 | | 76.6 | 76.8 | | 5.13 | 5.14 | | 5.75 | 6.01 | | 14 | |
| 21/5/2012 | 13:50 | Fine | Middle | 1.0 | 27.10 | 27.10 | 27.15 | 8.16 | 8.16 | 8.17 | 28.75 | 28.75 | 28.76 | 74.0 | 74.8 | 74.8 | 5.01 | 5.06 | 5.06 | 4.62 | 4.45 | 4.53 | 5 | 4.50 |
| | 13:53 | | Middle | 1.0 | 27.20 | 27.20 | | 8.17 | 8.17 | | 28.76 | 28.76 | | 75.0 | 75.2 | | 5.08 | 5.09 | | 4.64 | 4.39 | | 4 | |
| 23/5/2012 | 12:19 | Fine | Middle | 1.5 | 26.90 | 26.90 | 26.85 | 8.43 | 8.43 | 8.43 | 30.00 | 30.00 | 30.01 | 70.8 | 71.8 | 74.0 | 4.77 | 4.86 | 5.00 | 4.66 | 4.80 | 4.69 | 3 | 3.00 |
| | 12:21 | | Middle | 1.5 | 26.80 | 26.80 | | 8.42 | 8.42 | | 30.01 | 30.01 | | 76.1 | 77.3 | | 5.14 | 5.22 | | 4.71 | 4.59 | | 3 | |
| 25/5/2012 | 16:05 | Fine | Middle | 1.5 | 29.50 | 29.50 | 29.51 | 7.04 | 7.04 | 7.04 | 28.76 | 28.76 | 28.76 | 50.9 | 50.0 | 50.8 | 3.31 | 3.26 | 3.31 | 5.56 | 5.15 | 5.42 | 4 | 4.00 |
| | 16:08 | | Middle | 1.5 | 29.51 | 29.51 | | 7.03 | 7.03 | | 28.75 | 28.75 | | 50.9 | 51.3 | | 3.32 | 3.34 | | 5.57 | 5.38 | | 4 | |

Remarks:
Single underline denotes exceedance over Action level
Double underline denotes exceedance over Limit level

dM1 Water Monitoring Result at WSD 21 - Wan Chai
 Mid-Ebb Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO						Suspended Solids	
			m					- -			ppt			\%			mg / L			Value ${ }^{\text {NT }}$		Turbidity NTU		
							Average			Average		lue	Average			Average			Average			Average	Value	Average
30/4/2012	20:20	Cloudy	Middle	1.5	25.90	25.90	25.85	7.76	7.76	7.76	29.27	29.27	29.27	76.8	76.4	76.4	5.28	5.26	5.26	3.35	3.21	3.28	6	5.00
	20:22		Middle	1.5	25.80	25.80		7.75	7.75		29.27	29.27		76.3	75.9		5.26	5.22		3.10	3.44		4	
2/5/2012	20:12	Cloudy	Middle	1.0	27.00	27.00	27.05	7.72	7.72	7.72	27.33	27.33	27.34	72.2	72.4	72.3	4.93	4.95	4.95	2.58	2.50	2.54	3	2.50
	20:14		Middle	1.0	27.10	27.10		7.71	7.71		27.34	27.34		72.1	72.6		4.93	4.97		2.51	2.55		2	
4/5/2012	10:50	Fine	Middle	2.0	26.00	26.00	25.95	8.22	8.22	8.22	28.41	28.41	28.42	79.1	80.2	80.3	5.45	5.64	5.55	2.84	3.24	3.13	3	2.50
	10:53		Middle	2.0	25.90	25.90		8.21	8.21		28.42	28.42		80.7	81.0		5.55	5.57		3.16	3.28		2	
7/5/2012	11:34	Fine	Middle	2.0	25.40	25.40	25.45	8.28	8.28	8.28	30.07	30.07	30.07	76.1	74.1	75.5	5.26	5.12	5.21	3.11	3.46	3.30	3	3.00
	11:36		Middle	2.0	25.50	25.50		8.28	8.28		30.07	30.07		76.5	75.2		5.28	5.19		3.40	3.24		3	
9/5/2012	15:55	Fine	Middle	2.0	28.00	28.00	28.05	8.38	8.38	8.38	28.80	28.80	28.79	93.0	93.4	93.4	6.17	6.20	6.20	5.89	5.75	5.29	33	33.50
	15:58		Middle	2.0	28.10	28.10		8.37	8.37		28.78	28.78		93.5	93.6		6.21	6.22		4.93	4.57		34	
11/5/2012	16:08	Cloudy	Middle	1.5	25.60	25.60	25.55	8.31	8.31	8.32	30.50	30.50	30.50	76.2	76.4	76.6	5.24	5.25	5.27	2.18	2.15	2.16	2	2.00
	16:11		Middle	1.5	25.50	25.50		8.32	8.32		30.50	30.50		76.8	77.0		5.28	5.29		2.10	2.20		2	
14/5/2012	20:36	Cloudy	Middle	1.5	26.90	26.90	26.85	8.14	8.14	8.15	29.39	29.39	29.39	80.8	82.1	82.9	5.46	5.47	5.58	3.64	3.33	3.51	4	4.00
	20:38		Middle	1.5	26.80	26.80		8.15	8.15		29.38	29.38		83.9	84.6		5.67	5.72		3.63	3.42		4	
17/5/2012	10:13	Cloudy	Middle	2.0	26.90	26.90	26.85	8.68	8.68	8.68	29.59	29.59	29.60	57.2	57.4	57.9	3.86	3.88	3.91	5.45	5.55	5.30	3	3.00
	10:16		Middle	2.0	26.80	26.80		8.67	8.67		29.60	29.60		57.8	59.0		3.92	3.98		5.06	5.12		3	
19/5/2012	12:18	Fine	Middle	1.5	27.00	27.00	27.05	8.15	8.15	8.16	29.68	29.68	29.69	59.2	59.3	59.7	3.99	4.00	4.03	2.77	3.08	2.99	9	8.50
	12:21		Middle	1.5	27.10	27.10		8.16	8.16		29.69	29.69		59.9	60.5		4.04	4.08		3.01	3.09		8	
21/5/2012	13:32	Fine	Middle	1.5	27.70	27.70	27.75	8.15	8.15	8.16	29.75	29.75	29.76	57.1	57.4	57.5	3.81	3.83	3.84	5.29	4.98	5.03	4	5.00
	13:35		Middle	1.5	27.80	27.80		8.16	8.16		29.77	29.77		57.7	57.8		3.85	3.86		4.88	4.97		6	
23/5/2012	12:12	Fine	Middle	2.0	27.40	27.40	27.35	7.83	7.83	7.84	30.40	30.40	30.41	64.4	64.0	65.5	4.25	4.23	4.36	4.44	4.15	4.27	3	3.00
	12:15		Middle	2.0	27.30	27.30		7.84	7.84		30.41	30.41		66.3	67.4		4.44	4.51		4.21	4.29		3	
25/5/2012	15:40	Fine	Middle	1.5	29.14	29.14	29.14	7.27	7.27	7.28	29.53	29.53	29.54	55.7	56.8	55.8	3.50	3.70	3.53	5.83	5.40	5.82	4	3.50
	15:43		Middle	1.5	29.13	29.13		7.28	7.28		29.54	29.54		55.3	55.2		3.46	3.45		6.20	5.83		3	

Remarks:
Single underine denotes exceedance over Action level
Double underline denotes exceedance over Limit level

\&11 Water Monitoring Result at WSD19 - Sheung Wan
 Mid-Ebb Tide

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO			Turbidity			Suspended Solids mg / L	
			m		${ }^{\circ}$			- -			ppt			\%			mg / L			NTU				
							Average		ue	Average	Value	Average												
30/4/2012	21:16	Cloudy	Middle	1.5	25.21	25.21	25.21	7.59	7.59	7.59	29.02	29.02	29.02	83.3	83.3	83.3	5.82	5.82	5.81	2.17	2.19	2.16	6	6.50
	21:17		Middle	1.5	25.21	25.21		7.59	7.59		29.02	29.02		83.2	83.2		5.81	5.80		2.04	2.23		7	
2/5/2012	0:08	Cloudy	Middle	1.5	26.29	26.29	26.29	7.68	7.68	7.68	25.76	25.76	25.76	77.5	77.2	77.3	5.41	5.39	5.39	0.68	0.59	0.62	4	4.00
	0:09		Middle	1.5	26.29	26.29		7.68	7.68		25.75	25.75		77.0	77.3		5.37	5.40		0.54	0.66		4	
4/5/2012	11:25	Fine	Middle	2.0	26.60	26.60	26.65	7.53	7.53	7.52	25.41	25.41	25.41	86.5	86.6	86.7	6.02	6.02	6.03	2.11	1.72	1.97	5	5.00
	11:27		Middle	2.0	26.70	26.70		7.50	7.50		25.40	25.40		86.7	86.9		6.03	6.04		2.09	1.95		5	
7/5/2012	12:25	Fine	Middle	2.5	26.40	26.40	26.40	8.42	8.42	8.43	27.80	27.80	27.80	97.4	97.3	97.4	7.82	7.81	7.82	1.58	1.80	1.73	6	6.00
	12:27		Middle	2.5	26.40	26.40		8.43	8.43		27.80	27.80		97.4	97.5		7.81	7.82		1.81	1.74		6	
9/5/2012	11:40	Fine	Middle	2.0	27.80	27.80	27.85	8.40	8.40	8.39	27.60	27.60	27.60	97.3	97.0	97.2	7.57	7.55	7.56	2.44	2.42	2.48	2	2.00
	11:42		Middle	2.0	27.90	27.90		8.38	8.38		27.60	27.60		97.3	97.1		7.56	7.55		2.60	2.47		2	
11/5/2012	13:00	Cloudy	Middle	3.0	26.10	26.10	26.15	7.88	7.88	7.89	28.70	28.70	28.70	83.6	83.8	83.7	5.76	5.77	5.76	1.51	1.79	1.54	3	2.50
	13:02		Middle	3.0	26.20	26.20		7.89	7.89		28.69	28.69		83.8	83.4		5.77	5.74		1.48	1.39		2	
14/5/2012	22:10	Cloudy	Middle	1.5	26.90	26.90	26.90	8.06	8.06	8.06	27.35	27.35	27.35	88.5	88.6	88.2	6.05	6.05	6.02	1.00	1.10	1.11	4	4.00
	22:11		Middle	1.5	26.90	26.90		8.06	8.06		27.35	27.35		87.6	87.9		5.99	6.00		1.08	1.27		4	
17/5/2012	11:00	Cloudy	Middle	2.5	26.80	26.80	26.80	7.96	7.96	7.95	27.35	27.35	27.36	74.9	75.4	75.4	5.13	5.17	5.17	1.61	1.65	1.69	<2	<2
	11:02		Middle	2.5	26.80	26.80		7.94	7.94		27.36	27.36		75.5	75.7		5.18	5.19		1.79	1.70		<2	
19/5/2012	11:00	Fine	Middle	3.0	27.00	27.00	27.05	8.08	8.08	8.07	27.77	27.77	27.77	75.8	76.0	75.9	5.16	5.18	5.17	1.66	1.57	1.56	3	4.00
	11:02		Middle	3.0	27.10	27.10		8.06	8.06		27.77	27.77		76.2	75.4		5.19	5.14		1.47	1.52		5	
21/5/2012	12:03	Fine	Middle	2.5	26.60	26.60	26.65	7.94	7.94	7.94	28.26	28.26	28.27	69.8	69.7	69.8	4.77	4.77	4.78	2.73	2.52	2.63	6	5.50
	12:05		Middle	2.5	26.70	26.70		7.93	7.93		28.27	28.27		69.9	69.9		4.78	4.78		2.86	2.42		5	
23/5/2012	9:58	Fine	Middle	3.0	25.80	25.80	25.75	7.87	7.87	7.87	29.34	29.34	29.35	66.7	66.8	67.1	4.60	4.61	4.63	4.10	3.94	4.06	6	6.50
	10:00		Middle	3.0	25.70	25.70		7.87	7.87		29.36	29.36		67.6	67.3		4.67	4.65		4.12	4.09		7	
25/5/2012	11:40	Fine	Middle	2.5	27.60	27.60	27.60	7.89	7.89	7.90	29.09	29.09	29.10	64.3	64.8	65.0	4.30	4.33	4.34	5.22	5.07	5.10	8	8.00
	11:42		Middle	2.5	27.60	27.60		7.90	7.90		29.10	29.10		65.3	65.6		4.36	4.38		5.01	5.10		8	

Remarks:
Single underline denotes exceedance over Action leve
Double underline denotes exceedance over Limit level

Graphic Presentation of Water Quality Result of WSD17 - Quarry Bay

Graphic Presentation of Water Quality Result of C8 - City Garden

Graphic Presentation of Water Quality Result of C5w - SHKC (Western)

Graphic Presentation of Water Quality Result of WSD21 - Wan Chai

Graphic Presentation of Water Quality Result of C7 - Windsor House

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO						
			m		Value ${ }^{\circ} \mathrm{C}$			Value						Value				mg					
					Average	Average	Value		Average	Average	Value		Average										
1/5/2012	-	Cloudy	Surface	-			-			-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23:28		Middle	1.5	24.83	24.83	24.8	7.72	7.71	7.7	28.92	28.92	28.9	67.6	67.2	67.4	4.76	4.73	4.75				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
2/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	13:50		Middle	1.5	28.60	28.60	28.6	8.13	8.13	8.1	29.43	29.43	29.4	59.8	60.3	60.1	4.20	4.23	4.22				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
4/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	15:43		Middle	1.5	25.90	25.90	25.9	7.27	7.27	7.3	26.45	26.45	26.5	63.3	63.6	63.5	4.42	4.44	4.43				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
7/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	18:57		Middle	1.5	25.30	25.30	25.3	8.21	8.21	8.2	28.43	28.43	28.4	77.5	77.4	77.5	5.41	5.40	5.41				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
9/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	22:16		Middle	1.5	27.60	27.60	27.6	8.28	8.28	8.3	26.83	26.83	26.8	88.4	88.2	88.3	6.00	5.99	6.00				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
11/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	23:40		Middle	1.5	25.20	25.20	25.2	8.06	8.06	8.1	28.01	28.02	28.0	82.4	82.2	82.3	5.79	5.77	5.78				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
15/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	23:38		Middle	1.0	26.70	26.70	26.7	7.86	7.86	7.9	27.16	27.16	27.2	83.5	83.2	83.4	5.72	5.69	5.71				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
17/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	15:11		Middle	1.5	26.40	26.40	26.4	8.14	8.14	8.1	28.11	28.11	28.1	40.8	40.4	40.6	2.81	2.78	2.80				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
19/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	20:23		Middle	1.5	26.00	26.00	26.0	7.83	7.83	7.8	27.24	27.24	27.2	73.5	74.7	74.1	5.09	5.17	5.13				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
21/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	20:35		Middle	1.5	26.20	26.20	26.2	8.01	8.01	8.0	27.17	27.17	27.2	67.2	67.1	67.2	4.66	4.66	4.66				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
23/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	21:19		Middle	1.5	26.20	26.20	26.2	8.07	8.07	8.1	28.44	28.44	28.4	69.0	69.4	69.2	4.75	4.78	4.77				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
25/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	23:25		Middle	1.5	27.00	27.00	27.0	8.06	8.06	8.1	28.38	28.38	28.4	64.6	64.1	64.4	4.38	4.35	4.37				
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO		
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg/L		
						lue	Average			Average		lue	Average			Average			Average
1/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23:35		Middle	1.5	24.75	24.75	24.8	7.80	7.80	7.8	29.19	29.19	29.2	73.7	73.9	73.8	5.18	5.19	5.19
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13:56		Middle	1.5	27.70	27.70	27.7	8.12	8.12	8.1	28.39	28.39	28.4	73.8	71.6	72.7	5.00	4.85	4.93
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15:35		Middle	1.5	26.67	26.67	26.7	7.33	7.33	7.3	26.97	26.97	27.0	53.7	53.6	53.7	3.73	3.72	3.73
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	18:37		Middle	1.5	25.40	25.40	25.4	8.15	8.15	8.2	28.28	28.28	28.3	75.5	75.6	75.6	5.25	5.26	5.26
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	22:10		Middle	1.5	27.30	27.30	27.3	8.19	8.19	8.2	26.52	26.52	26.5	84.4	84.5	84.5	5.76	5.76	5.76
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23:51		Middle	1.5	25.30	25.30	25.3	7.79	7.79	7.8	27.83	27.83	27.8	72.9	72.9	72.9	5.12	5.12	5.12
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23:48		Middle	1.0	26.60	26.60	26.6	7.81	7.81	7.8	27.10	27.10	27.1	71.0	71.2	71.1	4.88	4.89	4.89
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15:05		Middle	1.5	27.40	27.40	27.4	8.03	8.03	8.0	27.76	27.76	27.8	46.6	47.1	46.9	3.15	3.18	3.17
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20:18		Middle	1.5	26.00	26.00	26.0	7.74	7.74	7.7	26.77	26.77	26.8	60.2	60.2	60.2	4.20	4.18	4.19
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20:27		Middle	1.5	26.10	26.10	26.1	7.75	7.75	7.8	27.07	27.07	27.1	63.5	63.7	63.6	4.41	4.43	4.42
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	21:07		Middle	1.5	26.20	26.20	26.2	7.82	7.82	7.8	28.38	28.38	28.4	57.4	59.0	58.2	3.96	4.07	4.02
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23:35		Middle	1.5	26.90	26.90	26.9	7.72	7.72	7.7	28.11	28.11	28.1	50.5	51.3	50.9	3.44	3.49	3.47
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO		
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg/L		
					Value		Average												
1/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23:24		Middle	1.5	25.23	25.23	25.2	7.87	7.87	7.9	29.33	29.33	29.3	84.3	84.5	84.4	5.89	5.91	5.90
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13:30		Middle	1.5	26.30	26.30	26.3	8.37	8.37	8.4	26.40	26.40	26.4	97.6	97.3	97.5	6.85	6.84	6.85
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15:51		Middle	1.5	26.33	26.33	26.3	7.45	7.45	7.5	26.15	26.15	26.2	87.0	87.3	87.2	6.07	6.08	6.08
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	18:23		Middle	1.0	25.60	25.60	25.6	8.33	8.33	8.3	28.39	28.39	28.4	95.3	95.0	95.2	6.63	6.62	6.63
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	22:01		Middle	1.5	27.80	27.80	27.8	8.37	8.37	8.4	26.94	26.94	26.9	93.7	93.9	93.8	6.34	6.35	6.35
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23:25		Middle	1.5	25.00	25.00	25.0	7.97	7.97	8.0	28.52	28.52	28.5	85.2	85.0	85.1	5.99	5.98	5.99
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2:30		Middle	1.5	26.40	26.40	26.4	7.92	7.92	7.9	27.26	27.26	27.3	81.4	81.4	81.4	5.61	5.61	5.61
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/5/2012	15:21	Cloudy	Surface	1.0	26.50	26.50	26.5	8.28	8.28	8.3	28.99	28.99	29.0	71.3	70.1	70.7	4.88	4.80	4.84
	15:22		Middle	2.0	26.40	26.40	26.4	8.27	8.27	8.3	29.01	29.01	29.0	69.5	69.8	69.7	4.76	4.78	4.77
	15:23		Bottom	3.0	26.40	26.40	26.4	8.27	8.27	8.3	28.99	28.99	29.0	69.2	68.7	69.0	4.73	4.70	4.72
19/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	19:55		Middle	1.5	26.30	26.30	26.3	7.93	7.93	7.9	27.49	27.49	27.5	80.3	80.4	80.4	5.54	5.55	5.55
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20:16		Middle	1.5	26.40	26.40	26.4	7.90	7.90	7.9	28.48	28.48	28.5	77.3	77.8	77.6	5.30	5.34	5.32
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	21:50		Middle	1.5	26.20	26.20	26.2	7.96	7.96	8.0	28.34	28.34	28.3	73.9	74.5	74.2	5.09	5.14	5.12
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23:10		Middle	1.5	27.00	27.00	27.0	7.94	7.94	7.9	28.43	28.43	28.4	68.0	68.2	68.1	4.62	4.63	4.63
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO		
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg / L		
							Average												
1/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23:20		Middle	1.5	25.16	25.16	25.2	8.00	8.00	8.0	29.42	29.42	29.4	82.1	82.2	82.2	5.73	5.73	5.73
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13:35		Middle	1.5	26.80	26.80	26.8	8.31	8.31	8.3	26.33	26.33	26.3	87.6	88.5	88.1	6.15	6.20	6.18
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15:53		Middle	1.5	26.17	26.17	26.2	7.40	7.40	7.4	26.10	26.10	26.1	84.6	85.0	84.8	5.91	5.93	5.92
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	18:13		Middle	1.0	26.10	26.10	26.1	8.32	8.32	8.3	28.29	28.29	28.3	95.7	96.1	95.9	6.60	6.32	6.46
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	21:55		Middle	1.5	27.70	27.70	27.7	8.36	8.36	8.4	26.94	26.94	26.9	94.7	94.8	94.8	6.40	6.40	6.40
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23:18		Middle	1.5	25.20	25.20	25.2	7.98	7.98	8.0	28.59	28.59	28.6	82.1	82.6	82.4	5.75	5.78	5.77
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2:24		Middle	1.5	26.40	26.40	26.4	8.07	8.05	8.1	27.47	27.47	27.5	82.2	82.3	82.3	5.65	5.65	5.65
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/5/2012	15:26	Cloudy	Surface	1.0	26.50	26.50	26.5	8.28	8.28	8.3	28.69	28.69	28.7	72.3	71.7	72.0	4.95	4.91	4.93
	15:27		Middle	2.0	26.50	26.50	26.5	8.28	8.28	8.3	28.86	28.86	28.9	70.8	72.7	71.8	4.84	4.97	4.91
	15:28		Bottom	3.0	26.40	26.40	26.4	8.25	8.25	8.3	28.97	28.97	29.0	66.0	65.9	66.0	4.51	4.50	4.51
19/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	19:50		Middle	1.5	26.30	26.30	26.3	8.03	8.03	8.0	27.53	27.53	27.5	77.5	78.8	78.2	5.35	5.44	5.40
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20:10		Middle	1.5	26.50	26.50	26.5	7.97	7.97	8.0	28.50	28.50	28.5	76.1	76.8	76.5	5.21	5.25	5.23
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	21:45		Middle	1.5	26.20	26.20	26.2	8.00	8.00	8.0	28.96	28.96	29.0	76.8	77.1	77.0	5.28	5.30	5.29
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	23:05		Middle	1.5	27.00	27.00	27.0	8.02	8.02	8.0	28.47	28.47	28.5	67.4	67.1	67.3	4.56	4.53	4.55
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Date	Time	Weater Condition	Sampling Depth		Water Temperature${ }^{\circ} \mathrm{C}$			pH			Salinity			DO Saturation			DO		
			m						-			ppt			\%			mg	
					Value		Average												
30/4/2012	-	Cloudy	Surface	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
	19:04		Middle	1	25.01	25.01	25.0	7.53	7.53	7.5	29.66	29.66	29.7	78.2	78.0	78.1	5.46	5.43	5.45
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	22:23		Middle	2	25.99	25.99	26.0	7.49	7.49	7.5	26.02	26.02	26.0	70.6	70.5	70.6	4.94	4.94	4.94
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:05		Middle	2	25.50	25.50	25.5	8.18	8.18	8.2	26.86	26.86	26.9	62.0	61.7	61.9	4.36	4.34	4.35
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13:14		Middle	2	26.00	26.00	26.0	8.21	8.21	8.2	28.20	28.20	28.2	85.9	85.2	85.6	6.93	6.89	6.91
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	14:50		Middle	2	25.90	25.90	25.9	8.40	8.40	8.4	28.18	28.18	28.2	86.4	86.8	86.6	6.00	6.02	6.01
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13:58		Middle	1	25.60	25.60	25.6	8.00	8.00	8.0	27.58	27.58	27.6	83.9	83.7	83.8	5.86	5.85	5.86
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
14/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20:30		Middle	1	26.70	26.70	26.7	8.00	8.00	8.0	27.34	27.34	27.3	79.7	79.7	79.7	5.46	5.46	5.46
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:30		Middle	2	26.10	26.10	26.1	8.60	8.60	8.6	28.67	28.67	28.7	43.5	42.7	43.1	3.00	2.94	2.97
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:45		Middle	2	25.60	25.60	25.6	7.93	7.93	7.9	27.84	27.84	27.8	39.1	40.1	39.6	2.73	2.81	2.77
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:44		Middle	2	26.30	26.30	26.3	7.88	7.88	7.9	27.16	27.16	27.2	36.1	35.3	35.7	2.50	2.44	2.47
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23/5/2012	11:17	Cloudy	Surface	1	26.30	26.30	26.3	7.94	7.94	7.9	29.76	29.76	29.8	54.0	53.9	54.0	3.68	3.67	3.68
	11:18		Middle	3	26.30	26.30	26.3	7.93	7.93	7.9	29.86	29.86	29.9	54.3	54.1	54.2	3.70	3.69	3.70
	11:19		Bottom	4	26.30	26.30	26.3	7.94	7.94	7.9	29.97	29.97	30.0	53.9	53.6	53.8	3.68	3.65	3.67
25/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:17		Middle	2	26.60	26.60	26.6	8.03	8.03	8.0	28.51	28.51	28.5	57.3	57.3	57.3	3.93	3.93	3.93
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO		
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg/L		
					Value		Average												
30/4/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	19:09		Middle	1	24.86	24.86	24.9	7.53	7.53	7.5	29.07	29.07	29.1	76.2	76.3	76.3	5.35	5.36	5.36
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	22:15		Middle	2	26.13	26.13	26.1	7.42	7.41	7.4	25.96	25.96	26.0	71.3	71.5	71.4	4.99	5.00	5.00
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:10		Middle	2	27.20	27.20	27.2	8.07	8.07	8.1	26.53	26.53	26.5	61.6	62.4	62.0	4.20	4.25	4.23
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13:20		Middle	2	26.20	26.20	26.2	8.31	8.31	8.3	27.10	27.10	27.1	85.5	85.2	85.4	6.91	6.88	6.90
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	14:40		Middle	2	29.40	29.40	29.4	8.46	8.46	8.5	26.75	26.75	26.8	67.0	65.5	66.3	4.45	4.35	4.40
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	14:00		Middle	2	26.80	26.80	26.8	7.94	7.94	7.9	27.25	27.25	27.3	77.6	77.9	77.8	5.32	5.35	5.34
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
14/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20:22		Middle	1	27.00	27.00	27.0	7.81	7.81	7.8	27.19	27.19	27.2	76.2	76.0	76.1	5.20	5.19	5.20
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:37		Middle	2	27.20	27.20	27.2	7.81	7.81	7.8	27.69	27.69	27.7	48.8	49.9	49.4	3.31	3.39	3.35
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:59		Middle	2	26.80	26.80	26.8	7.84	7.84	7.8	26.88	26.88	26.9	69.4	69.7	69.6	4.75	4.76	4.76
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:56		Middle	2	26.70	26.70	26.7	8.09	8.09	8.1	26.43	26.43	26.4	64.1	63.9	64.0	4.41	4.40	4.41
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:10		Middle	2	26.20	26.20	26.2	8.20	8.20	8.2	29.59	29.59	29.6	56.7	56.9	56.8	3.88	3.90	3.89
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:25		Middle	2	27.40	27.40	27.4	7.86	7.86	7.9	28.07	28.07	28.1	57.0	56.6	56.8	3.85	3.82	3.84
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Date	Time	Weater Condition	Sampling Depth		Water Temperature${ }^{\circ} \mathrm{C}$			pH			Salinity			DO Saturation			DO		
			m					-			ppt			\%			mg / L		
					Value		Average												
30/4/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	18:50		Middle	1.0	24.35	24.35	24.4	7.59	7.59	7.6	29.18	29.18	29.2	75.5	75.0	75.3	5.34	5.30	5.32
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	22:00		Middle	1.0	26.18	26.18	26.2	7.66	7.66	7.7	26.04	26.04	26.0	89.1	89.1	89.1	6.24	6.24	6.24
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:55		Middle	1.5	25.50	25.50	25.5	8.36	8.36	8.4	27.46	27.46	27.5	93.8	92.9	93.4	6.58	6.52	6.55
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:54		Middle	1.5	26.70	26.70	26.7	8.25	8.25	8.3	28.10	28.10	28.1	97.5	97.3	97.4	7.88	7.87	7.88
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15:00		Middle	1.5	25.60	25.60	25.6	8.67	8.67	8.7	28.97	28.97	29.0	96.4	95.1	95.8	6.69	6.60	6.65
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/5/2012	13:38	Cloudy	Surface	1.0	25.30	25.30	25.3	8.04	8.04	8.0	28.72	28.72	28.7	83.0	82.7	82.9	5.80	5.78	5.79
	13:40		Middle	2.0	25.20	25.20	25.2	8.03	8.03	8.0	28.82	28.82	28.8	81.2	80.6	80.9	5.69	5.64	5.67
	13:42		Bottom	3.0	25.00	25.00	25.0	8.00	8.00	8.0	29.12	29.12	29.1	70.7	70.4	70.6	4.96	4.95	4.96
14/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20:10		Middle	1.0	26.70	26.70	26.7	7.98	7.98	8.0	28.18	28.18	28.2	87.2	86.1	86.7	5.95	5.87	5.91
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:20		Middle	1.5	26.20	26.20	26.2	9.12	9.12	9.1	29.29	29.29	29.3	59.3	58.4	58.9	4.08	4.02	4.05
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:22		Middle	1.5	25.40	25.40	25.4	7.96	7.96	8.0	28.83	28.82	28.8	48.8	49.3	49.1	3.40	3.44	3.42
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:30		Middle	1.5	26.00	26.00	26.0	8.01	8.01	8.0	28.47	28.47	28.5	48.5	48.3	48.4	3.34	3.33	3.34
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23/5/2012	11:23	Cloudy	Surface	1.0	26.30	26.30	26.3	7.60	7.60	7.6	30.54	30.54	30.5	62.3	61.1	61.7	4.21	4.15	4.18
	11:24		Middle	3.0	26.30	26.30	26.3	7.62	7.62	7.6	30.56	30.56	30.6	61.0	62.2	61.6	4.14	4.23	4.19
	11:25		Bottom	5.0	26.30	26.30	26.3	7.70	7.70	7.7	30.58	30.58	30.6	60.9	60.2	60.6	4.13	4.09	4.11
25/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:09		Middle	1.5	26.40	26.40	26.4	8.00	8.00	8.0	29.00	29.00	29.0	57.1	57.1	57.1	3.90	3.90	3.90
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO		
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg/L		
					Value		Average												
30/4/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	18:45		Middle	1.0	25.12	25.12	25.1	7.60	7.60	7.6	29.91	29.91	29.9	79.5	79.5	79.5	5.51	5.51	5.51
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	21:55		Middle	1.0	26.09	26.09	26.1	7.67	7.67	7.7	26.15	26.15	26.2	88.9	88.8	88.9	6.21	6.21	6.21
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:58		Middle	1.5	25.60	25.60	25.6	8.36	8.36	8.4	27.31	27.31	27.3	95.9	95.3	95.6	6.71	6.67	6.69
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13:00		Middle	1.5	25.80	25.80	25.8	8.33	8.33	8.3	28.20	28.20	28.2	96.4	96.2	96.3	7.86	7.82	7.84
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15:03		Middle	1.5	25.50	25.50	25.5	8.40	8.40	8.4	28.98	28.98	29.0	93.9	93.6	93.8	6.52	6.50	6.51
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/5/2012	13:45	Cloudy	Surface	1.0	25.20	25.20	25.2	8.00	8.00	8.0	28.78	28.78	28.8	75.4	76.2	75.8	5.28	5.34	5.31
	13:47		Middle	2.0	25.00	25.00	25.0	7.98	7.98	8.0	28.42	28.42	28.4	74.1	74.3	74.2	5.19	5.21	5.20
	13:49		Bottom	3.0	24.90	24.90	24.9	7.98	7.98	8.0	28.99	28.99	29.0	71.3	71.4	71.4	5.00	5.01	5.01
14/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20:05		Middle	1.0	26.70	26.70	26.7	8.06	8.06	8.1	28.30	28.30	28.3	84.5	85.7	85.1	5.76	5.84	5.80
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/5/2012	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:25		Middle	1.5	26.20	26.20	26.2	9.50	9.50	9.5	28.30	28.30	28.3	56.5	56.4	56.5	3.88	3.87	3.88
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:28		Middle	1.5	25.50	25.50	25.5	7.91	7.91	7.9	28.83	28.83	28.8	52.0	52.1	52.1	3.62	3.63	3.63
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:35		Middle	1.5	26.10	26.10	26.1	7.97	7.97	8.0	28.90	28.90	28.9	54.5	54.5	54.5	3.75	3.75	3.75
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23/5/2012	11:28	Cloudy	Surface	1.0	26.20	26.20	26.2	7.26	7.26	7.3	30.46	30.46	30.5	62.8	63.1	63.0	4.27	4.29	4.28
	11:29		Middle	3.0	26.30	26.30	26.3	7.27	7.27	7.3	30.48	30.48	30.5	63.7	64.0	63.9	4.33	4.35	4.34
	11:30		Bottom	5.0	26.30	26.30	26.3	7.31	7.31	7.3	30.49	30.49	30.5	62.7	62.8	62.8	4.25	4.27	4.26
25/5/2012	-	Fine	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:07		Middle	1.5	26.40	26.40	26.4	7.97	7.97	8.0	29.05	29.05	29.1	56.5	56.5	56.5	3.86	3.86	3.86
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

am

Graphic Presentation of Enhanced Water Monitoring Results (DO) at C6-Excelsior Hotel

am

Graphic Presentation of Enhanced Water Monitoring Results (DO) at C7-Windsor House

am

Graphic Presentation of Enhanced Water Monitoring Results (DO) at Ex-WPCWA SW

- South-western corners of ex-Public Cargo Works Area

Graphic Presentation of Enhanced Water Monitoring Results (DO) at Ex-WPCWA SE

- South-eastern corners of ex-Public Cargo Works Area

Appendix 5.4a

Additional Dissolved Oxygen Monitoring Results

Location: Station A
Coordinate: 835468E, 815857N

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO		
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg/L		
					Value		Average												
04-May-12	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	16:21		Middle	1.5	26.05	26.05	26.05	7.48	7.48	7.48	25.49	25.49	25.49	68.6	69.0	68.80	4.82	6.84	5.83
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
09-May-12	18:55	Sunny	Surface	1.0	26.20	26.20	26.20	8.46	8.46	8.46	27.42	27.42	27.42	113.1	112.9	113.00	7.84	7.82	7.83
	-		Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	18:56		Bottom	3.0	26.10	26.10	26.10	8.46	8.46	8.46	27.50	27.50	27.50	112.7	113.1	112.90	7.82	7.85	7.84
17-May-12	15:48	Cloudy	Surface	1.0	26.40	26.40	26.40	8.23	8.23	8.23	28.08	28.08	28.08	65.3	66.1	65.70	4.49	4.55	4.52
	-		Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15:49		Bottom	4.0	26.20	26.20	26.20	8.24	8.24	8.24	29.51	29.51	29.51	52.7	52.6	52.65	3.63	3.62	3.63
23-May-12	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	17:35		Middle	1.5	26.90	26.90	26.90	7.97	7.97	7.97	27.83	27.83	27.83	73.1	72.4	72.75	4.96	4.80	4.88
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Remarks:
Single underline denotes exceedance over Action Level.
Double underline denotes exceedance over Limit Level.

Location: Station B
Coordinate: 835572E, 815961N

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO		
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg/L		
							Average												
04-May-12	16:12	Cloudy	Surface	1.0	25.91	25.91	25.91	7.48	7.48	7.48	25.82	25.82	25.82	67.8	68.5	68.15	4.76	4.81	4.79
	16:13		Middle	5.0	25.24	25.24	25.24	7.35	7.35	7.35	27.05	27.05	27.05	62.6	62.5	62.55	4.42	4.41	4.42
	16:14		Bottom	9.0	24.28	24.28	24.28	7.14	7.14	7.14	30.05	30.05	30.05	55.3	54.6	54.95	3.90	3.85	3.88
09-May-12	18:45	Sunny	Surface	1.0	25.90	25.90	25.90	8.46	8.46	8.46	27.39	27.39	27.39	115.2	115.4	115.30	8.02	8.03	8.03
	18:46		Middle	5.5	25.80	25.80	25.80	8.45	8.45	8.45	27.50	27.50	27.50	110.9	113.4	112.15	7.80	7.90	7.85
	18:47		Bottom	10.0	25.80	25.80	25.80	8.42	8.42	8.42	27.84	27.84	27.84	92.2	90.4	91.30	6.42	6.30	6.36
17-May-12	15:43	Cloudy	Surface	1.0	26.40	26.40	26.40	8.29	8.29	8.29	28.58	28.58	28.58	74.3	75.6	74.95	5.10	5.19	5.15
	15:44		Middle	5.5	26.20	26.20	26.20	8.28	8.28	8.28	28.89	28.89	28.89	71.0	70.8	70.90	4.88	4.87	4.88
	15:45		Bottom	10.0	25.90	25.90	25.90	8.21	8.21	8.21	30.08	30.08	30.08	51.7	51.2	51.45	3.56	3.53	3.55
23-May-12	17:40	Cloudy	Surface	1.0	26.40	26.40	26.40	7.97	7.97	7.97	29.91	29.91	29.91	76.8	77.1	76.95	5.23	5.24	5.24
	17:41		Middle	5.0	26.40	26.40	26.40	7.99	7.99	7.99	29.96	29.96	29.96	76.1	75.6	75.85	5.18	5.14	5.16
	17:42		Bottom	9.0	26.50	26.50	26.50	8.00	8.00	8.00	30.17	30.17	30.17	73.5	74.1	73.80	4.99	5.03	5.01

Remarks:
Single underline denotes exceedance over Action Level.
Double underline denotes exceedance over Limit Level.

Location: Station C
Coordinate: 835659E, 816271N

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO		
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg / L		
							Average												
04-May-12	16:00	Cloudy	Surface	1.0	26.36	26.36	26.36	7.48	7.48	7.48	26.20	26.20	26.20	72.5	72.4	72.45	5.04	5.03	5.04
	16:02		Middle	6.5	25.40	25.40	25.40	7.32	7.32	7.32	27.44	27.44	27.44	65.2	65.1	65.15	4.57	4.56	4.57
	16:04		Bottom	12.0	25.01	25.01	25.01	7.24	7.24	7.24	27.71	27.71	27.71	66.4	66.5	66.45	4.28	4.27	4.28
09-May-12	18:35	Sunny	Surface	1.0	25.80	25.80	25.80	8.62	8.62	8.62	26.90	26.90	26.90	120.0	119.4	119.70	8.40	8.35	8.38
	18:36		Middle	6.5	25.70	25.70	25.70	8.48	8.48	8.48	27.32	27.32	27.32	115.7	116.9	116.30	8.08	8.17	8.13
	18:37		Bottom	12.0	25.70	25.70	25.70	8.44	8.44	8.44	27.73	27.73	27.73	109.4	109.8	109.60	7.63	7.66	7.65
17-May-12	15:36	Cloudy	Surface	1.0	26.50	26.50	26.50	8.33	8.33	8.33	28.66	28.66	28.66	80.1	80.0	80.05	5.50	5.47	5.49
	15:37		Middle	7.0	26.00	26.00	26.00	8.24	8.24	8.24	29.73	29.73	29.73	59.2	59.0	59.10	4.08	4.05	4.07
	15:38		Bottom	13.0	25.50	25.50	25.50	8.22	8.22	8.22	30.38	30.38	30.38	52.5	52.4	52.45	3.62	3.61	3.62
23-May-12	17:47	Cloudy	Surface	1.0	26.30	26.30	26.30	7.98	7.98	7.98	29.93	29.93	29.93	73.8	74.2	74.00	5.03	5.06	5.05
	17:48		Middle	6.5	26.40	26.40	26.40	8.00	8.00	8.00	30.20	30.20	30.20	72.1	72.2	72.15	4.90	4.91	4.91
	17:49		Bottom	12.0	26.30	26.30	26.30	8.00	8.00	8.00	30.34	30.34	30.34	65.4	64.3	64.85	4.44	4.37	4.41

Remarks:
Single underline denotes exceedance over Action Level.
Double underline denotes exceedance over Limit Level.

Location: Station A
Coordinate: 835468E, 815857N

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO		
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg / L		
					Value		Average												
04-May-12	-	Cloudy	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:50		Middle	1.5	25.50	25.50	25.50	8.30	8.30	8.30	26.98	26.98	26.98	90.8	91.1	90.95	6.38	6.40	6.39
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
09-May-12	-	Sunny	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15:25		Middle	1.5	26.30	26.30	26.30	8.40	8.40	8.40	28.08	28.08	28.08	100.1	102.4	101.25	6.91	7.05	6.98
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17-May-12	11:10	Cloudy	Surface	1.0	26.20	26.20	26.20	9.44	9.44	9.44	28.97	28.97	28.97	59.6	59.8	59.70	4.09	4.10	4.10
	-		Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:12		Bottom	4.0	26.20	26.20	26.20	9.38	9.38	9.38	29.13	29.13	29.13	58.9	57.1	58.00	4.02	3.91	3.97
23-May-12	11:53	Cloudy	Surface	1.0	26.30	26.30	26.30	7.35	7.35	7.35	30.18	30.18	30.18	63.6	64.1	63.85	4.33	4.36	4.35
	-		Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:54		Bottom	4.0	26.30	26.30	26.30	7.36	7.36	7.36	30.48	30.48	30.48	59.5	58.4	58.95	4.04	3.93	3.99

Remarks:
Single underline denotes exceedance over Action Level.
Double underline denotes exceedance over Limit Level.

Location: Station B
Coordinate: 835572E, 815961N

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO		
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg / L		
					Value		Average												
04-May-12	11:45	Cloudy	Surface	1.0	25.60	25.60	25.60	8.40	8.40	8.40	26.57	26.57	26.57	104.2	103.6	103.90	7.33	7.29	7.31
	11:46		Middle	5.0	25.40	25.40	25.40	8.30	8.30	8.30	26.97	26.97	26.97	98.3	97.5	97.90	6.91	6.86	6.89
	11:47		Bottom	9.0	25.40	25.40	25.40	8.33	8.33	8.33	27.66	27.66	27.66	87.5	87.0	87.25	6.14	6.11	6.13
09-May-12	15:20	Sunny	Surface	1.0	25.90	25.90	25.90	8.45	8.45	8.45	28.27	28.27	28.27	110.7	110.8	110.75	7.67	7.69	7.68
	15:21		Middle	5.0	25.80	25.80	25.80	8.47	8.47	8.47	28.31	28.31	28.31	108.2	108.9	108.55	7.53	7.55	7.54
	15:22		Bottom	9.0	24.70	24.70	24.70	8.37	8.37	8.37	30.01	30.01	30.01	83.0	82.0	82.50	5.81	5.74	5.78
17-May-12	11:05	Cloudy	Surface	1.0	26.20	26.20	26.20	9.88	9.88	9.88	29.06	29.06	29.06	71.1	71.2	71.15	4.88	4.89	4.89
	11:06		Middle	5.0	26.10	26.10	26.10	9.86	9.86	9.86	29.05	29.05	29.05	71.0	70.7	70.85	4.87	4.86	4.87
	11:07		Bottom	9.0	26.10	26.10	26.10	9.85	9.85	9.85	28.85	28.85	28.85	60.4	60.8	60.60	4.16	4.20	4.18
23-May-12	11:46	Cloudy	Surface	1.0	26.50	26.50	26.50	7.23	7.23	7.23	30.49	30.49	30.49	69.0	69.1	69.05	4.67	4.68	4.68
	11:47		Middle	6.0	26.40	26.40	26.40	7.33	7.33	7.33	30.55	30.55	30.55	71.3	71.7	71.50	4.84	4.87	4.86
	11:48		Bottom	11.0	26.30	26.30	26.30	7.32	7.32	7.32	30.48	30.48	30.48	59.4	61.4	60.40	4.04	4.18	4.11

Remarks:
Single underline denotes exceedance over Action Level.
Double underline denotes exceedance over Limit Level.

Location: Station C
Coordinate: 835659E, 816271N

Date	Time	Weater Condition	Sampling Depth		Water Temperature			pH			Salinity			DO Saturation			DO		
			m		${ }^{\circ} \mathrm{C}$			-			ppt			\%			mg / L		
					Value		Average												
04-May-12	11:35	Cloudy	Surface	1.0	25.60	25.60	25.60	8.40	8.40	8.40	26.20	26.20	26.20	108.7	109.5	109.10	7.66	7.72	7.69
	11:38		Middle	7.0	25.50	25.50	25.50	8.38	8.38	8.38	26.85	26.85	26.85	99.5	98.7	99.10	7.00	6.95	6.98
	11:41		Bottom	13.0	25.10	25.10	25.10	8.32	8.32	8.32	27.50	27.50	27.50	90.4	90.0	90.20	6.37	6.34	6.36
09-May-12	15:10	Sunny	Surface	1.0	25.80	25.80	25.80	8.57	8.57	8.57	27.97	27.97	27.97	113.3	112.7	113.00	7.89	7.84	7.87
	15:11		Middle	6.5	25.20	25.20	25.20	8.48	8.48	8.48	28.94	28.94	28.94	96.9	97.6	97.25	6.77	6.83	6.80
	15:12		Bottom	12.0	25.10	25.10	25.10	8.40	8.40	8.40	27.25	27.25	27.25	94.1	95.4	94.75	6.58	6.67	6.63
17-May-12	11:00	Cloudy	Surface	1.0	26.10	26.10	26.10	9.13	9.13	9.13	28.94	28.94	28.94	76.5	78.5	77.50	5.29	5.40	5.35
	11:01		Middle	6.5	26.00	26.00	26.00	9.06	9.06	9.06	29.12	29.12	29.12	71.1	70.7	70.90	4.89	4.87	4.88
	11:02		Bottom	12.0	25.50	25.50	25.50	8.98	8.98	8.98	30.35	30.35	30.35	66.9	66.8	66.85	4.61	4.60	4.61
23-May-12	11:39	Cloudy	Surface	1.0	26.50	26.50	26.50	7.29	7.29	7.29	30.57	30.57	30.57	75.4	75.7	75.55	5.10	5.13	5.12
	11:40		Middle	7.5	26.30	26.30	26.30	7.28	7.28	7.28	30.63	30.63	30.63	78.2	77.7	77.95	5.30	5.27	5.29
	11:41		Bottom	14.0	26.40	26.40	26.40	7.27	7.27	7.27	30.58	30.58	30.58	77.3	77.7	77.50	5.26	5.30	5.28

Remarks:
Single underline denotes exceedance over Action Level.
Double underline denotes exceedance over Limit Level.

Appendix 5.5

Real-time Noise Monitoring Results and Graphical Presentations

Real-time Noise Data RTN1 (FEHD Hong Kong Transport Section Whitefield Depot) | Normal Day 07:00-19:00 | |
| :--- | :--- |
| 30/4/2012 7:01 | 62.5 | $\begin{array}{ll}30 / 4 / 2012 & 7: 31 \\ 64.3\end{array}$ $\begin{array}{ll}30 / 4 / 2012 & 7: 31 \\ 30 / 4.3 \\ 3012 & 6: 01 \\ 64.7\end{array}$ $\begin{array}{ll}30 / 4 / 2012 ~ 8: 01 & 64.7 \\ 30 / 4 / 2012 & 8: 31 \\ 66.4\end{array}$ 30/4/2012 9:01 66.4 $\begin{array}{ll}30 / 4 / 2012 & 9: 31 \\ 307.1 \\ 30 / 4 / 2012 & 10.01 \\ 66.8\end{array}$ 30/4/2012 10:01 66.8 30/4/2012 10:31 66.0 30/4/2012 11:01 66.6 30/4/2012 11:31 66.8 30/4/2012 12:01 63.4 30/4/2012 12:31 62.7 30/4/2012 13:01 64.5 30/4/2012 13:31 66.7 30/4/2012 14:01 66.0 30/4/2012 14:31 66.2 30/4/2012 15:01 66 30/4/2012 15:31 66.3 30/4/2012 16:01 67.1 30/4/2012 16:31 67.3 30/4/2012 17.01 66.8 30/4/2012 17:31 65.2 30/4/2012 18:01 63.3 30/4/2012 18:31 63.3 $\begin{array}{ll}\text { 2/5/2012 7:01 } & 61.5 \\ \text { 2/5/2012 7:31 } & 64.2\end{array}$ 2/5/2012 8:01 2/5/2012 8:31 2/5/2012 9:01 2/5/2012 9:31 2/5/2012 10:31 2/5/2012 11:01 2/5/2012 11:31 2/5/2012 12:01 2/5/2012 12:01 2/5/2012 13:31 2/5/2012 14:01 2/5/2012 14:31 2/5/2012 15:01 2/5/2012 16:01 2/5/2012 16:01 2/5/2012 16:31 2/5/2012 17:01 2/5/2012 18:01 2/5/2012 18:31 3/5/2012 7:01 3/5/2012 7:31 3/5/2012 8:01 3/5/2012 8:31 3/5/2012 9:01 3/5/2012 9:31 3/5/2012 10:01 3/5/2012 10:31 3/5/2012 11:01 3/5/2012 12:01 3/5/2012 12:31 3/5/2012 13:01 3/5/2012 14:01 $3 / 5 / 2012$ 14:01 3/5/2012 14:31 $3 / 5 / 2012$ 15:01

$3 / 5 / 2012$ 15:31 3/5/2012 16:01 3/5/2012 16:31 3/5/2012 17:01 3/5/2012 17:31 3/5/2012 18:01 3/5/2012 18:31 4/5/2012 7:01 4/5/2012 7:31
4/5/2012 8:01 4/5/2012 8:31 4/5/2012 9:01 4/5/2012 10:01 4/5/2012 10:31 4/5/2012 11:01 4/5/2012 11:31 4/5/2012 12:01 4/5/2012 12:01 4/5/2012 13:31 4/5/2012 14:01 4/5/2012 15:01 4/5/2012 15:31 4/5/2012 16:01 4/5/2012 16:31 4/5/2012 17:01 4/5/2012 17:31 4/5/2012 18:01 4/5/2012 18:31 5/5/2012 7:01 5/5/2012 8:01 5/5/2012 8:31 5/5/2012 9:01 5/5/2012 10:01 5/5/2012 10:31 5/5/2012 10:31 5/5/2012 11:31 5/5/2012 12:01 5/5/2012 12:31 5/5/2012 13:01

$5 / 5 / 2012$	$13: 31$
$5 / 5 / 2012$	$14: 01$

$5 / 5 / 2012$
$5 / 5: 3012$ 15:01
$5 / 5 / 2012$

67.1 $\begin{array}{ll}5 / 5 / 2012 \text { 13:31 } & 79.8 \\ 5 / 5 / 2012 \text { 14:31 } & 75.0 \\ 5 / 5 / 2012 \text { 15:01 } & 77.9\end{array}$ $\begin{array}{ll}5 / 5 / 201214: 01 & 79.8 \\ 5 / 5 / 2012 & 15: 01 \\ 67.9 \\ 5 / 5 / 2012 & 675: 31\end{array}$ $\begin{array}{ll}5 / 5 / 2012 & 15: 31 \\ 72.3 \\ 5 / 5 / 2012 & 76: 01\end{array}$ $\begin{array}{lll}5 / 5 / 2012 & 16: 01 & 66.8 \\ 5 / 5 / 2012 & 16: 31 & 65.7\end{array}$ $\begin{array}{ll}5 / 5 / 2012 & 16: 01 \\ 5 / 5 / 2012 & 17: 31 \\ 5 / 5 / 2012 & 65.7 \\ 57.31 & 65.4\end{array}$ \begin{tabular}{|ll}
$11 / 5 / 2012$ \& $8: 31$

$11 / 5 / 2012$ \& 64.5

$11 / 01$ \& 65.3

 $\begin{array}{ll}11 / 5 / 2012 \text { 9:01 } & 65.3 \\ 11 / 5 / 20129: 31 & 64.6\end{array}$

$11 / 5 / 2012$ \& $9: 31$

\hline $11 / 5 / 2012$ \& 64.6

$10: 01$ \& 64.6
\end{tabular} $\begin{array}{ll}11 / 5 / 2012 & 10: 01 \\ 11 / 5 / 2012 & 64.6 \\ 10: 31 & 63.8\end{array}$ $\begin{array}{ll}11 / 5 / 2012 & 10: 31 \\ 11 / 5 / 2012 & 63.8 \\ 11: 01 & 65.2\end{array}$ 11/5/2012 11:31 64.0 $\begin{array}{lll}11 / 5 / 2012 & 12: 01 & 63.9 \\ 11 / 5 / 2012 & 12.31 & 62.6\end{array}$ $\begin{array}{lll}11 / 5 / 2012 & 12: 31 & 62.6 \\ 11 / 5 / 2012 & 13: 01 & 63.0\end{array}$ $\begin{array}{lll}11 / 5 / 2012 & 13: 01 & 63.0 \\ 11 / 5 / 2012 & 13: 31 & 64.0\end{array}$ $\begin{array}{lll}11 / 5 / 2012 & 13: 31 & 64.0 \\ 11 / 5 / 2012 & 14: 01 & 64.4\end{array}$ $\begin{array}{lll}11 / 5 / 2012 & 14: 01 & 64.4 \\ 11 / 5 / 2012 & 14: 31 & 61.8\end{array}$ $\begin{array}{lll}11 / 5 / 2012 & 14: 31 & 61.8 \\ 11 / 5 / 2012 & 15: 01 & 63.5\end{array}$ $\begin{array}{ll}11 / 5 / 2012 & 15: 31 \\ 63.3 \\ 11 / 5 / 2012 & 16: 01\end{array}$ $\begin{array}{ll}11 / 5 / 2012 & 16: 01 \\ 11 / 5 / 2012 & 64.4\end{array}$ 11/5/2012 17:01 65.1 $\begin{array}{ll}11 / 5 / 2012 & 17: 31 \\ 64.7 \\ 11 / 5 / 2012 & 18: 01 \\ 63.5\end{array}$ $\begin{array}{ll}11 / / 2 / 2012 & 18: 01 \\ 11 / 5 / 2012 & 63.5 \\ 18: 31 & 62.4\end{array}$ 12/5/2012 7:01 64.9 12/5/2012 7:31 65.1 $\begin{array}{ll}12 / 5 / 2012 \text { 8:01 } & 64.5 \\ 12 / 5 / 2012 \text { 8:31 } & 65.1\end{array}$ $\begin{array}{ll}12 / 5 / 2012 & 9: 01 \\ 66.0 \\ 12 / 5 / 2012 & 9.31 \\ 63.8\end{array}$ $\begin{array}{ll}12 / 5 / 2012 & 9: 31 \\ 63.8 \\ 12 / 5 / 2012 & 10: 01 \\ 64.7\end{array}$ 12/5/2012 10:31 64.0 $\begin{array}{lll}12 / 5 / 2012 & 11: 01 & 69.4 \\ 12 / 5 / 2012 & 11: 31 & 68.6\end{array}$ 12/5/2012 12:01 63.8 12/5/2012 12:31 62.5 $\begin{array}{lll}12 / 5 / 2012 & 13: 01 & 63.5 \\ 12 / 5 / 2012 & 13: 31 & 69.7\end{array}$ 12/5/2012 14:01 70.3 $\begin{array}{ll}12 / 5 / 2012 & 14: 31 \\ 65.4 \\ 12 / 5 / 2012 & 15: 01 \\ 72.3\end{array}$ 12/5/2012 15:31 68.0 12/5/2012 16:01 64.4 12/5/2012 16:31 66.0 12/5/2012 17:01 67.9 $\begin{array}{lll}12 / 5 / 2012 & 17: 31 & 65.8 \\ 12 / 5 / 2012 & 18: 01 & 63.9\end{array}$ $\begin{array}{ll}12 / 5 / 2012 & 18: 01 \\ 125 / 5 / 2012 & 18: 31 \\ 64.2\end{array}$ $\begin{array}{ll}12 / 5 / 2012 & 18.31 \\ 14 / 5 / 2012 & 64.01 \\ 64.2\end{array}$ 14/5/2012 7:31 65.6 14/5/2012 8:01 $\begin{array}{ll}14 / 5 / 2012 \text { 8:31 } & 66.4 \\ 14 / 5 / 20129: 01 & 64.8\end{array}$ 14/5/2012 9:31 63.7 14/5/2012 10:01 64.6 $\begin{array}{lll}14 / 5 / 2012 & 10: 31 & 64.0 \\ 14 / 5 / 2012 & 11: 01 & 69.5\end{array}$ 14/5/2012 11:31 67.8 14/5/2012 12:01 63.0 $\begin{array}{lll}14 / 5 / 2012 & 12: 31 & 62.2 \\ 14 / 5 / 2012 & 13: 01 & 62.1\end{array}$ 14/5/2012 13:31 68.9 14/5/2012 14:01 71.2 14/5/2012 14:31 65.1 $\begin{array}{ll}14 / 5 / 2012 & 15: 01 \\ 71.9 \\ 14 / 5 / 2012 & 15: 31 \\ 67.6\end{array}$ $\begin{array}{lll}14 / 5 / 2012 & 15: 31 & 67.6 \\ 14 / 5 / 2012 & 16: 01 & 63.5\end{array}$ $\begin{array}{lll}14 / 5 / 2012 & 16: 01 & 63.5 \\ 14 / 5 / 2012 & 16: 31 & 66.3\end{array}$ 14/5/2012 17:01 68.2 14/5/2012 17:31 65.5 $\begin{array}{lll}14 / 5 / 2012 & 18: 01 & 62.5 \\ 14 / 5 / 2012 & 18: 31 & 629\end{array}$ $\begin{array}{lll}14 / 5 / 2012 & 18: 31 & 62.9 \\ 15 / 5 / 2012 & 7: 01 & 62.7\end{array}$ $\begin{array}{ll}15 / 5 / 2012 ~ 7: 31 & 62.1\end{array}$ 15/5/2012 8:01 15/5/2012 8:31 15/5/2012 9:01 65.6 15/5/2012 9:31 65.5 $\begin{array}{ll}15 / 5 / 2012 & 10: 01 \\ 66.4 \\ 15 / 5 / 2012 & 10: 31 \\ 67.0\end{array}$ 15/5/2012 11:01 67.5 15/5/2012 11:31 66.8 15/5/2012 12:01 63.9 $\begin{array}{lll}15 / 5 / 2012 & 12: 31 & 64.1 \\ \text { 15/5/2012 13:01 } & 64.0\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 13.01 & 64.0 \\ 15 / 5012 & 13: 31 & 66.9\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 13: 31 & 66.9 \\ 15 / 5 / 2012 & 14: 01 & 68.2\end{array}$ 15/5/2012 14:31 64.4 15/5/2012 15:01 67.9 $\begin{array}{lll}15 / 5 / 2012 & 15: 31 & 66.1 \\ 15 / 5 / 2012 & 16: 01 & 63.9\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 16: 31 & 66.1\end{array}$ 15/5/2012 17:01 67.2 15/5/2012 17:31 64.9 15/5/2012 18:01 64.1 15/5/2012 18:31 62.6 16/5/2012 7:01 63.4 16/5/2012 7:31 63.7 16/5/2012 8:01 16/5/2012 8:31 16/5/2012 9:01 $\begin{array}{ll}16 / 5 / 2012 & 10: 01 \\ 64.6\end{array}$ 16/5/2012 10:31 64.5 16/5/2012 11:01 66.6 16/5/2012 11:31 65.6 16/5/2012 12:01 64.1 $\begin{array}{ll}16 / 5 / 2012 & 12: 31 \\ 63.2 \\ 16 / 5 / 2012 & 13: 01 \\ 64.0\end{array}$ $\begin{array}{ll}16 / 5 / 2012 & 13: 31 \\ 66.6\end{array}$ 16/5/2012 14:01 66.8 $\begin{array}{lll}16 / 5 / 2012 & 14: 31 & 64.2 \\ 16 / 5 / 2012 & 15: 01 & 67.8\end{array}$

16/5/2012 15:31 65.1 16/5/2012 16:01 64.3 16/5/2012 16:31 65.0 16/5/2012 17:01 66.2 16/5/2012 17:31 65.4 $\begin{array}{ll}16 / 5 / 2012 & 18: 01 \\ 16 / 5 / 2012 & 64.0 \\ 18.31 & 63.5\end{array}$ 17/5/2012 18:31 63.5 $\begin{array}{ll}17 / 5 / 20127: 01 & 63.2 \\ 17 / 5 / 20127: 31 & 64.4\end{array}$ $\begin{array}{ll}17 / 5 / 2012 ~ 7: 31 & 64.4 \\ 17 / 5 / 2012 \text { 8:01 } & 64.8\end{array}$ $\begin{array}{ll}17 / 5 / 20128: 31 & 65.8\end{array}$ 17/5/2012 9:01 66.7 $\begin{array}{ll}17 / 5 / 2012 & 9: 31 \\ 67.3 \\ 17 / 5 / 2012 & 10: 01 \\ 67.7\end{array}$ 17/5/2012 10:31 68.0 17/5/2012 11:01 68.5 17/5/2012 11:31 67.9 17/5/2012 12:01 64.0 17/5/2012 12:31 65.2 $\begin{array}{lll}17 / 5 / 2012 & 13: 01 & 70.3\end{array}$ $\begin{array}{llll}17 / 5 / 2012 & 13: 31 & 71.9\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 14: 01 & 67.4\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 14: 31 & 70.9\end{array}$ $\begin{array}{llll}17 / 5 / 2012 & 15: 01 & 67.7\end{array}$ 17/5/2012 15:31 69.0 $\begin{array}{lll}17 / 5 / 2012 & 16: 01 & 66.7\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 16: 01 & 66.7 \\ 17 / 5 / 2012 & 16: 31 & 67.3\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 16: 31 & 67.3 \\ 17 / 5 / 2012 & 17: 01 & 67.9\end{array}$ 17/5/2012 17:31 65.8 17/5/2012 18:01 66.3 $\begin{array}{lll}17 / 5 / 2012 & 18: 31 & 64.9 \\ 18 / 5 / 2012 & 7: 01 & 64.0\end{array}$ 18/5/2012 7:01 64.0 18/5/2012 7:31 64.9 $\begin{array}{ll}18 / 5 / 2012 \text { 8:01 } & 64.7 \\ 18 / 5 / 20128: 31 & 65.9\end{array}$ $\begin{array}{ll}18 / 5 / 2012 \text { 8:31 } & 65.9 \\ 18 / 5 / 20129: 01 & 65.6\end{array}$ 18/5/2012 9:31 65.1 18/5/2012 10:01 66.1 18/5/2012 10:31 65.5 18/5/2012 11:01 68.2 $\begin{array}{lll}18 / 5 / 2012 & 11: 31 & 67.7\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 12: 01 & 64.5\end{array}$ $\begin{array}{ll}18 / 5 / 2012 & 12: 31 \\ 184.0\end{array}$ $\begin{array}{ll}18 / 5 / 2012 & 12: 31 \\ 64.0 \\ 18 / 5 / 2012 & 13: 01 \\ 64.3\end{array}$ $\begin{array}{ll}18 / 5 / 2012 & 13: 01 \\ 18 / 5 / 2012 & 13: 31 \\ 68.2\end{array}$ $\begin{array}{ll}18 / 5 / 2012 & 13.31 \\ 18 / 5 / 2012 & 14: 01 \\ 74.9\end{array}$ 18/5/2012 14:31 70.2 $\begin{array}{lll}18 / 5 / 2012 & 15: 01 & 70.2 \\ 18 / 5 / 2012 & 15: 31 & 69.1\end{array}$ $\begin{array}{ll}18 / 5 / 2012 & 15: 31 \\ 69.1 \\ 18 / 5 / 2012 & 16: 01 \\ 65.3\end{array}$ 18/5/2012 16:01 65.3 18/5/2012 16:31 66.2 18/5/2012 17:01 67.0 18/5/2012 17:31 65.5 18/5/2012 18:01 64.2 $\begin{array}{ll}18 / 5 / 2012 & 18: 31 \\ 64.5 \\ 19 / 5 / 2012 & 7: 01 \\ 63.3\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 7: 01 \\ 63.3 \\ 19 / 5 / 20127: 31 & 64.0\end{array}$ $\begin{array}{ll}19 / 5 / 2012 \text { 7:31 } & 64.0 \\ \text { 19/5/2012 8:01 } & 64.4\end{array}$ 19/5/2012 8:31 66.0 19/5/2012 9:01 66.3 $\begin{array}{ll}19 / 5 / 2012 & 9: 31 \\ 66.4\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 10: 01 \\ 66.4 \\ 19 / 5 / 2012 & 10: 31 \\ 67.0\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 10: 31 & 67.0 \\ 19 / 5 / 2012 & 11: 01 & 66.8\end{array}$ $\begin{array}{lll}19 / 5 / 2 / 2012 & 11: 01 & 66.8 \\ 19 / 5 / 2012 & 11: 31 & 66.7\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 11: 31 & 66.7 \\ 19 / 5 / 2012 & 12: 01 & 63.9\end{array}$ $\begin{array}{lll}19 / 5 / 2 / 2012 & 12: 01 & 63.9 \\ 19 / 5 / 2012 & 12: 31 & 63.7\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 12: 31 & 63.7 \\ 19 / 5 / 2012 & 13: 01 & 70.2\end{array}$ $\begin{array}{lll}19 / 5 / 5 / 2012 & 13: 01 & 70.2 \\ 19 / 5 / 2012 & 13: 31 & 72.2\end{array}$ $\begin{array}{ll}19 / 5 / 201213: 31 & 72.2 \\ 19 / 5 / 2012 & 14: 01 \\ 67.2\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 14: 01 & 67.2 \\ 19 / 5 / 2012 & 14: 31 & 70.4\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 14: 31 \\ 70.4\end{array}$ 19/5/2012 15:01 66.6 19/5/2012 15:31 68.1 $\begin{array}{lll}19 / 5 / 2012 & 16: 01 & 66.5 \\ 19 / 5 / 2012 & 16: 31 & 66.2\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 16: 31 & 66.2 \\ 19 / 5 / 2012 & 17: 01 & 67.5\end{array}$ 19/5/2012 17:31 67.0 19/5/2012 18:01 66.5 $\begin{array}{lll}19 / 5 / 2012 & 18: 31 & 64.5\end{array}$ $\begin{array}{ll}\text { 21/5/2012 7:01 } & 63.0 \\ \text { 21/5/2012 7:31 } & 64.5\end{array}$ $\begin{array}{ll}21 / 5 / 2012 \text { 8:01 } & 65.5\end{array}$ 21/5/2012 8:31 67. $\begin{array}{ll}\text { 21/5/2012 8:31 } & 67.3 \\ \text { 21/5/2012 9:01 } & 68.2\end{array}$ $\begin{array}{ll}21 / 5 / 012 \text { 9:01 } & 68.2 \\ \text { 21/5/2012 9:31 } & 68.3\end{array}$ $\begin{array}{lll}21 / 5 / 2012 & 10: 01 & 68.6\end{array}$ 21/5/2012 10:31 69.1 21/5/2012 11:31 68.9 21/5/2012 11:31 68.4 21/5/2012 12:01 64.2 21/5/2012 12:31 64.5 $\begin{array}{lll}21 / 5 / 2012 & 13: 01 & 66.5 \\ 21 / 5 / 2012 & 13: 31 & 70.6\end{array}$ $\begin{array}{lll}21 / 5 / 2012 & 14: 01 & 69.9\end{array}$ 21/5/2012 14:31 68.7 21/5/2012 15:01 68.7 $\begin{array}{lll}21 / 5 / 2012 & 15: 31 & 68.4 \\ 21 / 5 / 2012 & 16.01 & 69.5\end{array}$ $\begin{array}{lll}21 / 5 / 2012 & 16: 01 & 69.5 \\ 21 / 5 / 2012 & 16: 31 & 71.6\end{array}$ 21/5/2012 17:01 69.9 21/5/2012 17:31 67.5 21/5/2012 18:01 70.7 21/5/2012 18:31 70.7 22/5/2012 7:01 $\quad 63.2$ $\begin{array}{ll}22 / 5 / 2012 & 7: 31 \\ 68.2\end{array}$ $\begin{array}{ll}22 / 5 / 2012 \text { 7:31 } & 68.2 \\ 22 / 5 / 2012 \text { 8:01 } & 65.9\end{array}$ $\begin{array}{ll}22 / 5 / 2012 \text { 8:31 } & 66.7 \\ 22 / 5 / 20129: 01 & 66.8\end{array}$ $\begin{array}{ll}22 / 5 / 2012 \text { 9:01 } & 66.8 \\ \text { 22/5/2012 9:31 } & 66.7\end{array}$ |22/5/2012 10:01 68.2

22/5/2012 10:31	67.6	26/5/2012 17:31	67.0
22/5/2012 11:01	67.4	26/5/2012 18:01	66.2
22/5/2012 11:31	72.8	26/5/2012 18:31	66.9
22/5/2012 12:01	65.3		
22/5/2012 12:31	66.1	Normal Day 19:0	0-23:00
22/5/2012 13:01	66.0	Sunday \& Holida	07:00-2
22/5/2012 13:31	66.6		
22/5/2012 14:01	76.9	28/4/2012 7:01	61.1
22/5/2012 14:31	71.8	28/4/2012 7:06	60.8
22/5/2012 15:01	66.3	28/4/2012 7:11	61.5
22/5/2012 15:31	71.5	28/4/2012 7:16	62.2
22/5/2012 16:01	66.9	28/4/2012 7:21	62.2
22/5/2012 16:31	68.8	28/4/2012 7:26	62.4
22/5/2012 17:01	66.1	28/4/2012 7:31	63.2
22/5/2012 17:31	67.2	28/4/2012 7:36	60.6
22/5/2012 18:01	64.3	28/4/2012 7:41	62.5
22/5/2012 18:31	64.1	28/4/2012 7:46	62.2
23/5/2012 7:01	69.3	28/4/2012 7:51	61.7
23/5/2012 7:31	64.7	28/4/2012 7:56	62.4
23/5/2012 8:01	64.9	28/4/2012 8:01	61.9
23/5/2012 8:31	67.0	28/4/2012 8:06	62.3
23/5/2012 9:01	67.7	28/4/2012 8:11	62.3
23/5/2012 9:31	66.4	28/4/2012 8:16	64.3
23/5/2012 10:01	69.0	28/4/2012 8:21	63.6
23/5/2012 10:31	67.5	28/4/2012 8:26	64.2
23/5/2012 11:01	67.1	28/4/2012 8:31	63.9
23/5/2012 11:31	67.7	28/4/2012 8:36	64.5
23/5/2012 12:01	67.3	28/4/2012 8:41	64.2
23/5/2012 12:31	66.4	28/4/2012 8:46	63.9
23/5/2012 13:01	65.1	28/4/2012 8:51	65.8
23/5/2012 13:31	67.9	28/4/2012 8:56	66.0
23/5/2012 14:01	68.2	28/4/2012 9:01	64.9
23/5/2012 14:31	68.0	28/4/2012 9:06	65.3
23/5/2012 15:01	68.7	28/4/2012 9:11	64.6
23/5/2012 15:31	67.6	28/4/2012 9:16	64.5
23/5/2012 16:01	68.6	28/4/2012 9:21	64.5
23/5/2012 16:31	66.3	28/4/2012 9:26	64.0
23/5/2012 17:01	67.3	28/4/2012 9:31	63.9
23/5/2012 17:31	67.0	28/4/2012 9:36	63.8
23/5/2012 18:01	64.9	28/4/2012 9:41	64.4
23/5/2012 18:31	65.2	28/4/2012 9:46	64.0
24/5/2012 7:01	62.8	28/4/2012 9:51	63.4
24/5/2012 7:31	63.5	28/4/2012 10:01	64.6
24/5/2012 8:01	64.7	28/4/2012 10:06	64.7
24/5/2012 8:31	67.1	28/4/2012 10:11	64.7
24/5/2012 9:01	67.1	28/4/2012 10:16	64.8
24/5/2012 9:31	68.0	28/4/2012 10:21	65.0
24/5/2012 10:01	68.3	28/4/2012 10:26	66.2
24/5/2012 10:31	70.9	28/4/2012 10:31	65.0
24/5/2012 11:01	69.3	28/4/2012 10:36	64.9
24/5/2012 11:31	68.4	28/4/2012 10:41	64.7
24/5/2012 12:01	64.2	28/4/2012 10:46	64.9
24/5/2012 12:31	62.9	28/4/2012 10:51	65.4
24/5/2012 13:01	65.6	28/4/2012 10:56	64.0
24/5/2012 13:31	69.9	28/4/2012 11:01	64.3
24/5/2012 14:01	72.5	28/4/2012 11:06	64.3
24/5/2012 14:31	70.0	28/4/2012 11:11	64.9
24/5/2012 15:01	67.7	28/4/2012 11:16	64.8
24/5/2012 15:31	69.2	28/4/2012 11:21	64.1
24/5/2012 16:01	68.0	28/4/2012 11:26	63.3
24/5/2012 16:31	68.8	28/4/2012 11:31	64.9
24/5/2012 17:01	67.9	28/4/2012 11:36	64.1
24/5/2012 17:31	67.1	28/4/2012 11:41	63.9
24/5/2012 18:01	67.4	28/4/2012 11:46	63.6
24/5/2012 18:31	67.1	28/4/2012 11:51	64.5
25/5/2012 7:01	65.8	28/4/2012 11:56	64.2
25/5/2012 7:31	64.4	28/4/2012 12:01	63.4
25/5/2012 8:01	64.8	28/4/2012 12:06	63.1
25/5/2012 8:31	66.5	28/4/2012 12:11	63.7
25/5/2012 9:01	66.8	28/4/2012 12:16	64.1
25/5/2012 9:31	66.8	28/4/2012 12:21	63.7
25/5/2012 10:01	67.9	28/4/2012 12:26	63.6
25/5/2012 10:31	68.4	28/4/2012 12:31	63.2
25/5/2012 11:01	68.3	28/4/2012 12:36	64.6
25/5/2012 11:31	67.9	28/4/2012 12:41	64.0
25/5/2012 12:01	65.2	28/4/2012 12:46	62.8
25/5/2012 12:31	64.8	28/4/2012 12:51	62.8
25/5/2012 13:01	67.1	28/4/2012 12:56	62.7
25/5/2012 13:31	69.8	28/4/2012 13:01	63.0
25/5/2012 14:01	71.8	28/4/2012 13:06	63.1
25/5/2012 14:31	69.9	28/4/2012 13:11	63.5
25/5/2012 15:01	68.7	28/4/2012 13:16	64.2
25/5/2012 15:31	68.8	28/4/2012 13:21	64.4
25/5/2012 16:01	67.3	28/4/2012 13:26	65.2
25/5/2012 16:31	67.3	28/4/2012 13:31	63.4
25/5/2012 17:01	67.5	28/4/2012 13:36	63.6
25/5/2012 17:31	66.4	28/4/2012 13:41	64.1
25/5/2012 18:01	65.9	28/4/2012 13:46	64.0
25/5/2012 18:31	65.5	28/4/2012 13:51	64.4
26/5/2012 7:01	66.1	28/4/2012 13:56	64.0
26/5/2012 7:31	64.3	28/4/2012 14:01	63.7
26/5/2012 8:01	64.9	28/4/2012 14:06	63.8
26/5/2012 8:31	67.0	28/4/2012 14:11	64.5
26/5/2012 9:01	67.5	28/4/2012 14:16	63.9
26/5/2012 9:31	67.4	28/4/2012 14:21	64.6
26/5/2012 10:01	68.4	28/4/2012 14:26	63.3
26/5/2012 10:31	69.2	28/4/2012 14:31	63.0
26/5/2012 11:01	68.5	28/4/2012 14:36	63.7
26/5/2012 11:31	68.4	28/4/2012 14:41	63.0
26/5/2012 12:01	65.4	28/4/2012 14:46	64.2
26/5/2012 12:31	64.8	28/4/2012 14:51	63.0
26/5/2012 13:01	66.1	28/4/2012 14:56	63.3
26/5/2012 13:31	69.6	28/4/2012 15:01	63.9
26/5/2012 14:01	66.2	28/4/2012 15:06	63.7
26/5/2012 14:31	66.4	28/4/2012 15:11	66.0
26/5/2012 15:01	66.0	28/4/2012 15:16	64.3
26/5/2012 15:31	65.6	28/4/2012 15:21	64.0
26/5/2012 16:01	65.3	28/4/2012 15:26	64.0
$\begin{aligned} & \text { 26/5/2012 16:31 } \\ & \text { 26/5/2012 17:01 } \end{aligned}$	65.9 66.0	28/4/2012 15:31	63.5 66.2

Real-time Noise Data 28/4/2012 15:41 63.2 $\begin{array}{ll}28 / 4 / 201215: 46 & 63.8 \\ 28 / 4 / 2012 & 15: 51 \\ 62.8\end{array}$ $\begin{array}{ll}28 / 4 / 2012 & 15: 51 \\ 62.8 \\ 28 / 4 / 2012 & 15: 56 \\ 63.4\end{array}$ $\begin{array}{ll}28 / 4 / 201215: 56 & 63.4 \\ 28 / 4 / 2012 & 16: 01 \\ 62.7\end{array}$ $\begin{array}{lll}28 / 4 / 2012 & 16: 01 & 62.7 \\ 28 / 4 / 2012 & 16: 06 & 63.5\end{array}$ 28/4/2012 16:06 63.5 $\begin{array}{ll}28 / 4 / 2012 & 16: 11 \\ 63.5 \\ 28 / 4 / 2012 & 16: 16 \\ 63.7\end{array}$ 28/4/2012 16:16 63.7 $\begin{array}{lll}28 / 4 / 2012 & 16: 21 & 63.3 \\ 28 / 4 / 2012 & 16: 26 & 63.6\end{array}$ 28/4/2012 16:26 63.6 28/4/2012 16:31 62.8 28/4/2012 16:36 62.9 28/4/2012 16:41 65.7 28/4/2012 16:46 61.9 28/4/2012 16:51 62.8 28/4/2012 16:56 63.6 28/4/2012 17:01 64.0 28/4/2012 17:06 63.5 28/4/2012 17:11 63.4 28/4/2012 17:16 63.9 28/4/2012 17:21 63.9 28/4/2012 17.26 63.9 28/4/2012 17:31 63.0 28/4/2012 17:36 63.4 28/4/2012 17:41 62.9 28/4/2012 17:46 62.5 $\begin{array}{ll}28 / 4 / 2012 & 17: 51 \\ 28 / 4 / 2012 & 62.9\end{array}$ 28/4/2012 17:56 62.7 28/4/2012 18:01 63.3 28/4/2012 18:06 61.8 28/4/2012 18:11 62.1 28/4/2012 18:16 62.1 28/4/2012 18:21 62.0 28/4/2012 18:26 61.4 28/4/2012 18:31 61.2 28/4/2012 18:36 60.6 28/4/2012 18:41 61.3 28/4/2012 18:46 61.3 28/4/2012 18:51 62.0 28/4/2012 18:56 61.8 $\begin{array}{lll}28 / 4 / 2012 & 19: 01 & 61.7\end{array}$ 28/4/2012 19:06 62.3 28/4/2012 19:11 61.7 28/4/2012 19:16 62.2 28/4/2012 19:21 62.9 28/4/2012 19:26 62.5 28/4/2012 19:31 62.5 28/4/2012 19:36 62.6 $\begin{array}{lll}28 / 4 / 2012 & 19: 41 & 63.1 \\ 28 / 4 / 2012 & 19: 46 & 63.1\end{array}$ 28/4/2012 19:46 63.1 28/4/2012 19:51 63.1 28/4/2012 19:56 62.2 28/4/2012 20:01 62.7 28/4/2012 20:06 63.3 28/4/2012 20:11 64.6 28/4/2012 20:16 61.7 28/4/2012 20:21 61.9 28/4/2012 20:26 61.3 28/4/2012 20:31 61.8 28/4/2012 20:36 61.9 28/4/2012 20:41 63.0 28/4/2012 20:46 63.8 28/4/2012 20:51 61.5 28/4/2012 20:56 61.9 28/4/2012 21:01 60.9 28/4/2012 21:06 61.8 28/4/2012 21:11 61.8 28/4/2012 21:16 61.5 28/4/2012 21:21 61.7 28/4/2012 21:26 62.0 28/4/2012 21:31 61.8 28/4/2012 21:36 62.0 28/4/2012 21:41 61.6 28/4/2012 21:46 62.7 28/4/2012 21:51 62.7 28/4/2012 21:56 62.5 28/4/2012 22:01 61.9 28/4/2012 22:06 62.9 28/4/2012 22:11 62.5 28/4/2012 22:16 62.4 28/4/2012 22:26 61.9 $\begin{array}{ll}\text { 28/4/2012 } 22: 26 & 61.9 \\ \text { 28/4/2012 22:31 } & 61.2\end{array}$ 28/4/2012 22:36 63.1 28/4/2012 22:41 61.9 28/4/2012 22:46 61.2 28/4/2012 22:51 62.1 28/4/2012 22:56 61.6 $\begin{array}{ll}\text { 29/4/2012 7:01 } & 62.5 \\ \text { 29/4/2012 7:06 } & 64.5\end{array}$ 29/4/2012 7:06 64.5 29/4/2012 7:11 65.8 29/4/2012 7:16 65.1 29/4/2012 7:21 62.8 29/4/2012 7:26 62.8 29/4/2012 7:31 61.3 29/4/2012 7:36 61.5 29/4/2012 7:46 62.4 29/4/2012 7:51 60.2 29/4/2012 7:56 61.3 29/4/2012 8:01 29/4/2012 8:06 29/4/2012 8:11
29/4/2012 8:16 29/4/2012 8.21 29/4/2012 8:21 29/4/2012 8:26 29/4/2012 8:36 29/4/2012 8:41 29/4/2012 8:46
|29/4/2012 8:51
|29/4/2012 8:51 29/4/2012 9:01 29/4/2012 9:06 29/4/2012 9:11 29/4/2012 9:21

62.2 2.2 | $29 / 4 / 2012$ | $18: 01$ | 63.1 |
| :--- | :--- | :--- |
| $29 / 4 / 2012$ | $18: 06$ | 63.2 | $\begin{array}{ll}29 / 4 / 2012 & 18: 06 \\ 63.2 \\ \text { 29/4/2012 18:11 } & 62.0\end{array}$

1/5/2012 7:11 1/5/2012 7:11
1/5/2012 7:16
63.5
63.5 $1 / 5 / 2012$ 7:16
1/5/2012 7:21 $1 / 5 / 20127: 21$
$1 / 5 / 20127: 26$ 1/5/2012 7:26 1/5/2012 7:31 $1 / 5 / 2012$ 7:36
1/5/2012 7:41 1/5/2012 7:41 $1 / 5 / 20127: 4$
$1 / 5 / 20127: 5$ 1/5/2012 7:56 1/5/2012 8:01 1/5/2012 8:06 1/5/2012 8:11 1/5/2012 8:16 1/5/2012 8:21 1/5/2012 8:26 1/5/2012 8:36 1/5/2012 8:41 1/5/2012 8:46 1/5/2012 8:5 1/5/2012 9:01 $1 / 5 / 20129: 01$
$1 / 5 / 20129: 06$ 1/5/2012 9.11 1/5/2012 9:16 $1 / 5 / 20129: 21$
$1 / 5 / 20129.26$ 1/5/2012 9:31 1/5/2012 9:36 1/5/2012 9:41 1/5/2012 9:46 1/5/2012 9:51 1/5/2012 9:56 1/5/2012 10:01 1/5/2012 10:06 1/5/2012 10:11 1/5/2012 10:16 1/5/2012 10:26 1/5/2012 10:31 1/5/2012 10:36 1/5/2012 10:36 $1 / 5 / 2012$ 10:41
$1 / 5 / 2012$ 10:46 1/5/2012 10:46 1/5/2012 10:56 1/5/2012 11:01 1/5/2012 11:06 1/5/2012 11:11 1/5/2012 11:21 1/5/2012 11:26 1/5/2012 11:31 1/5/2012 11:36 1/5/2012 11:46 1/5/2012 11:51 1/5/2012 12:01 1/5/2012 12:06 1/5/2012 12:11 $1 / 5 / 201212: 16$
$1 / 5 / 2012$ 12:21 $1 / 5 / 2012$ 12:21
$1 / 5 / 2012$ 12:26 1/5/2012 12:26 1/5/2012 12:31
12:36 1/5/2012 12:41 1/5/2012 12:46 1/5/2012 12:56 1/5/2012 13:01 1/5/2012 13:06 1/5/2012 13:11 1/5/2012 13:16 1/5/2012 13:21
1/5/2012 13:26 $1 / 5 / 2012$ 13:26
$1 / 5 / 2012$ 13:31 1/5/2012 13:36 $1 / 5 / 201213: 41$
$1 / 5 / 2012$ 13:46 1/5/2012 13:51 1/5/2012 13:56 1/5/2012 14:01 1/5/2012 14:06 1/5/2012 14:11 1/5/2012 14:21 1/5/2012 14:26 1/5/2012 14:31 1/5/2012 14:41 1/5/2012 14:46 1/5/2012 14:51 1/5/2012 14:56 1/5/2012 15:01 1/5/2012 15:06 1/5/2012 15:11 1/5/2012 15:16 1/5/2012 15:21 1/5/2012 15:31 1/5/2012 15:36 1/5/2012 15:41 1/5/2012 15:46 1/5/2012 15:51 1/5/2012 15:56 1/5/2012 16:01 1/5/2012 16:06
1/5/2012 16:11 1/5/2012 16:16

$\text { 16:21 } 012$	
15/2012 16:26	64.6
1/5/2012 16:31	
15/2012 16:36	70.9
1/5/2012 16:41	
1/5/2012 16:46	
1/5/2012 16:51	65.3
1/5/2012 16:56	65.1
5/2012 17:01	65.4
1/5/2012 17:06	65.1
1/5/2012 17:11	
1/5/2012 17:16	66.5
1/5/2012 17:21	
1/5/2012 17:26	
1/5/2012 17:31	65.0
1/5/2012 17:36	9.7
1/5/2012 17:41	4.9
1/5/2012 17:46	63.5
1/5/2012 17:51	
1/5/2012 17:56	66.5
1/5/2012 18:01	
1/5/2012 18:06	
1/5/2012 18:11	66.7
1/5/2012 18:16	
1/5/2012 18:21	66.
1/5/2012 18:26	65.9
1/5/2012 18:31	
1/5/2012 18:36	65.7
1/5/2012 18:41	
1/5/2012 18:46	65.5
1/5/2012 18:51	65.7
1/5/2012 18:56	
1/5/2012 19:01	66.5
1/5/2012 19:06	65.8
1/5/2012 19:11	
1/5/2012 19:16	65
1/5/2012 19:21	
1/5/2012 19:26	
1/5/2012 19:31	65.1
1/5/2012 19:36	
1/5/2012 19:41	65.4
1/5/2012 19:46	
1/5/2012 19:51	64.3
1/5/2012 19:56	
1/5/2012 20:01	
1/5/2012 20:06	64.2
1/5/2012 20:11	64.7
1/5/2012 20:16	64.7
1/5/2012 20:21	
1/5/2012 20:26	
1/5/2012 20:31	64.9
1/5/2012 20:36	2
1/5/2012 20:41	64
1/5/2012 20:46	64
1/5/2012 20:51	
1/5/2012 20:56	65.0
1/5/2012 21:01	
1/5/2012 21:06	64.8
1/5/2012 21:11	64
1/5/2012 21:16	
1/5/2012 21:21	4.4
1/5/2012 21:26	
1/5/2012 21:31	
1/5/2012 21:36	64.1
1/5/2012 21:41	
1/5/2012 21:46	64.2
1/5/2012 21:51	
1/5/2012 21:56	
1/5/2012 22:01	64.3
1/5/2012 22:06	64.0
1/5/2012 22:11	
1/5/2012 22:16	65
1/5/2012 22:21	
1/5/2012 22:26	64.1
1/5/2012 22:31	4.0
1/5/2012 22:36	
1/5/2012 22:41	64.0
1/5/2012 22:46	3.5
1/5/2012 22:51	63.8
1/5/2012 22:56	63.4
2/5/2012 19:01	
2/5/2012 19:06	66.0
2/5/2012 19:11	66.3
2/5/2012 19:16	70.3
2/5/2012 19:21	66.4
2/5/2012 19:26	71.2
2/5/2012 19:31	70.7
2/5/2012 19:36	66.8
2/5/2012 19:41	,
2/5/2012 19:46	64.5
2/5/2012 19:51	62.6
2/5/2012 19:56	62.0
2/5/2012 20:01	62.4
2/5/2012 20:06	63.0
2/5/2012 20:11	64.1
2/5/2012 20:16	64.5
2/5/2012 20:21	63.9
2/5/2012 20:26	64.3
2/5/2012 20:31	64.
2/5/2012 20:36	64.0
2/5/2012 20:41	64.9
2/5/2012 20:46	65.
2/5/2012 20:51	65.8
2/5/2012 20:56	64.8
2/5/2012 21:01	65.3
2/5/2012 21:06	65.6
2/5/2012 21:11	65.6
2/5/2012 21:16	66.0
21	65

/2012 21:31	64.8
2/5/2012 21:36	65.6
2/5/2012 21:41	64.9
2/5/2012 21:46	64.2
2/5/2012 21:51	64.4
2/5/2012 21:56	64.6
2/5/2012 22:01	64.6
2/5/2012 22:06	64.5
215/2012 22:11	63.7
2/5/2012 22:16	64.0
2/5/2012 22:21	64.2
215/2012 22:26	65
2/5/2012 22:31	64.3
2/5/2012 22:36	64
2/5/2012 22:41	64.4
2/5/2012 22:46	64.4
2/5/2012 22:51	64.
2/5/2012 22:56	65.3
3/5/2012 19:01	61.8
3/5/2012 19:06	62.1
3/5/2012 19:11	62.5
3/5/2012 19:16	62
3/5/2012 19:21	63.5
3/5/2012 19:26	62.5
3/5/2012 19:31	62.7
3/5/2012 19:36	62.8
3/5/2012 19:41	62.4
3/5/2012 19:46	62.3
3/5/2012 19:51	62.1
3/5/2012 19:56	63.8
3/5/2012 20:01	62.7
3/5/2012 20:06	61.5
3/5/2012 20:11	61.8
3/5/2012 20:16	61.2
3/5/2012 20:21	61.8
3/5/2012 20:26	62.0
3/5/2012 20:31	61.8
3/5/2012 20:36	61.7
3/5/2012 20:41	62.3
3/5/2012 20:46	63.1
3/5/2012 20:51	62.4
3/5/2012 20:56	62.8
3/5/2012 21:01	61.5
3/5/2012 21:06	61.7
3/5/2012 21:11	61.8
3/5/2012 21:16	61.9
3/5/2012 21:21	61.8
3/5/2012 21:26	61.7
3/5/2012 21:31	61.8
3/5/2012 21:36	62.0
3/5/2012 21:41	61.5
3/5/2012 21:46	. 9
3/5/2012 21:51	61.8
3/5/2012 21:56	61.5
3/5/2012 22:01	61.6
3/5/2012 22:06	62.0
3/5/2012 22:11	62.3
3/5/2012 22:16	.
3/5/2012 22:21	62.0
3/5/2012 22:26	61.8
3/5/2012 22:31	. 6
3/5/2012 22:36	61.6
3/5/2012 22:41	62.0
3/5/2012 22:46	61.6
3/5/2012 22:51	61.3
3/5/2012 22:56	. 8
4/5/2012 19:01	67.1
4/5/2012 19:06	66.8
4/5/2012 19:11	66.7
4/5/2012 19:16	66.9
4/5/2012 19:21	. 8
4/5/2012 19:26	66.9
4/5/2012 19:31	66.7
4/5/2012 19:36	67.0
4/5/2012 19:41	67.1
4/5/2012 19:46	66.8
4/5/2012 19:51	67.6
4/5/2012 19:56	66.5
4/5/2012 20:01	66.8
4/5/2012 20:06	67.0
4/5/2012 20:11	67.0
4/5/2012 20:16	67.3
4/5/2012 20:21	66.6
4/5/2012 20:26	65.9
4/5/2012 20:31	65.6
4/5/2012 20:36	65.6
4/5/2012 20:41	65.8
4/5/2012 20:46	65.5
4/5/2012 20:51	65.5
4/5/2012 20:56	65.5
4/5/2012 21:01	65.3
4/5/2012 21:06	65.8
4/5/2012 21:11	65.4
4/5/2012 21:16	64.9
4/5/2012 21:21	65.9
4/5/2012 21:26	65.2
4/5/2012 21:31	65.3
4/5/2012 21:36	64.7
4/5/2012 21:41	65.6
4/5/2012 21:46	67.5
4/5/2012 21:51	67.5
4/5/2012 21:56	67.4
4/5/2012 22:01	66.9
4/5/2012 22:06	66.9
4/5/2012 22:11	67.3
4/5/2012 22:16	66.9
4/5/2012 22:21	68.2
4/5/2012 22:26	68.2
4/5/2012 22:31	67.3

Real-time Noise Data		RTN1 (FEHD Hong Kong Transport Section Whitefield Depot)			
4/5/2012 22:41	66.8	6/5/2012 11:51	64.2	\|6/5/2012 21:01	61.6
4/5/2012 22:46	66.7	6/5/2012 11:56	63.5	6/5/2012 21:06	. 8
4/5/2012 22:51	66.3	6/5/2012 12:01	62.4	6/5/2012 21:11	61.8
4/5/2012 22:56	66.3	6/5/2012 12:06	61.9	6/5/2012 21:16	62.1
5/5/2012 19:01	63.2	6/5/2012 12:11	62.6	6/5/2012 21:21	62.5
5/5/2012 19:06	63.0	6/5/2012 12:16	62.3	6/5/2012 21:26	62.0
5/5/2012 19:11	63.3	6/5/2012 12:21	63.0	6/5/2012 21:31	61.8
5/5/2012 19:16	62.8	6/5/2012 12:26	63.0	6/5/2012 21:36	62.1
5/5/2012 19:21	62.6	6/5/2012 12:31	63.6	6/5/2012 21:41	62.6
5/5/2012 19:26	62.6	6/5/2012 12:36	62.4	6/5/2012 21:46	61.3
5/5/2012 19:31	63.2	6/5/2012 12:41	62.2	6/5/2012 21:51	61.6
5/5/2012 19:36	63.9	6/5/2012 12:46	62.7	6/5/2012 21:56	63.3
5/5/2012 19:41	63.9	6/5/2012 12:51	62.7	6/5/2012 22:01	61.9
5/5/2012 19:46	63.4	6/5/2012 12:56	62.6	6/5/2012 22:06	61.9
5/5/2012 19:51	65.5	6/5/2012 13:01	63.7	6/5/2012 22:11	62.6
5/5/2012 19:56	63.3	6/5/2012 13:06	63.4	6/5/2012 22:16	62.4
5/5/2012 20:01	63.2	6/5/2012 13:11	63.4	6/5/2012 22:21	62.0
5/5/2012 20:06	63.3	6/5/2012 13:16	63.9	6/5/2012 22:26	62.2
5/5/2012 20:11	63.3	6/5/2012 13:21	63.8	6/5/2012 22:31	62.5
5/5/2012 20:16	63.7	6/5/2012 13:26	64.2	6/5/2012 22:36	61.8
5/5/2012 20:21	63.2	6/5/2012 13:31	63.2	6/5/2012 22:41	62.0
5/5/2012 20:26	62.6	6/5/2012 13:36	63.2	6/5/2012 22:46	61.4
5/5/2012 20:31	62.8	6/5/2012 13:41	62.7	6/5/2012 22:51	61.6
5/5/2012 20:36	62.7	6/5/2012 13:46	62.7	6/5/2012 22:56	61.3
5/5/2012 20:41	63.5	6/5/2012 13:51	63.2	7/5/2012 19:01	62.4
5/5/2012 20:46	63.0	6/5/2012 13:56	62.1	7/5/2012 19:06	62.6
5/5/2012 20:51	63.7	6/5/2012 14:01	62.8	7/5/2012 19:11	62.5
5/5/2012 20:56	63.7	6/5/2012 14:06	62.6	7/5/2012 19:16	62.7
5/5/2012 21:01	63.1	6/5/2012 14:11	65.3	7/5/2012 19:21	62.7
5/5/2012 21:06	63.2	6/5/2012 14:16	63.3	7/5/2012 19:26	63.9
5/5/2012 21:11	64.0	6/5/2012 14:21	63.5	7/5/2012 19:31	64.1
5/5/2012 21:16	63.1	6/5/2012 14:26	63.4	7/5/2012 19:36	64.0
5/5/2012 21:21	63.1	6/5/2012 14:31	63.3	7/5/2012 19:41	64.2
5/5/2012 21:26	63.2	6/5/2012 14:36	63.8	7/5/2012 19:46	64.2
5/5/2012 21:31	62.9	6/5/2012 14:41	63.1	7/5/2012 19:51	63.4
5/5/2012 21:36	62.3	6/5/2012 14:46	63.8	7/5/2012 19:56	63.9
5/5/2012 21:41	65.1	6/5/2012 14:51	64.1	7/5/2012 20:01	63.6
5/5/2012 21:46	62.5	6/5/2012 14:56	64.1	7/5/2012 20:06	63.9
5/5/2012 21:51	62.4	6/5/2012 15:01	63.9	7/5/2012 20:11	63.8
5/5/2012 21:56	62.5	6/5/2012 15:06	65.0	7/5/2012 20:16	63.8
5/5/2012 22:01	62.5	6/5/2012 15:11	65.1	7/5/2012 20:21	63.3
5/5/2012 22:06	61.8	6/5/2012 15:16	66.9	7/5/2012 20:26	63.4
5/5/2012 22:11	62.0	6/5/2012 15:21	65.2	7/5/2012 20:31	63.0
5/5/2012 22:16	62.5	6/5/2012 15:26	63.7	7/5/2012 20:36	63.1
5/5/2012 22:21	62.1	6/5/2012 15:31	65.8	7/5/2012 20:41	62.8
5/5/2012 22:26	62.1	6/5/2012 15:36	64.2	7/5/2012 20:46	62.1
5/5/2012 22:31	62.4	6/5/2012 15:41	63.4	7/5/2012 20:51	62.2
5/5/2012 22:36	65.6	6/5/2012 15:46	63.5	7/5/2012 20:56	62.0
5/5/2012 22:41	61.9	6/5/2012 15:51	63.8	7/5/2012 21:01	62.2
5/5/2012 22:46	62.1	6/5/2012 15:56	63.3	7/5/2012 21:06	62.1
5/5/2012 22:51	62.5	6/5/2012 16:01	63.3	7/5/2012 21:11	62.0
5/5/2012 22:56	61.8	6/5/2012 16:06	64.0	7/5/2012 21:16	62.3
6/5/2012 7:01	61.5	6/5/2012 16:11	63.6	7/5/2012 21:21	62.0
6/5/2012 7:06	61.0	6/5/2012 16:16	63.4	7/5/2012 21:26	62.2
6/5/2012 7:11	60.7	6/5/2012 16:21	63.5	7/5/2012 21:31	62.1
6/5/2012 7:16	60.5	6/5/2012 16:26	64.1	7/5/2012 21:36	62.2
6/5/2012 7:21	61.6	6/5/2012 16:31	63.7	7/5/2012 21:41	62.5
6/5/2012 7:26	65.4	6/5/2012 16:36	64.3	7/5/2012 21:46	62.3
6/5/2012 7:31	62.2	6/5/2012 16:41	63.5	7/5/2012 21:51	63.3
6/5/2012 7:36	62.9	6/5/2012 16:46	63.3	7/5/2012 21:56	62.8
6/5/2012 7:41	61.5	6/5/2012 16:51	63.7	7/5/2012 22:01	63.0
6/5/2012 7:46	60.8	6/5/2012 16:56	64.7	7/5/2012 22:06	62.6
6/5/2012 7:51	61.9	6/5/2012 17:01	63.5	7/5/2012 22:11	62.4
6/5/2012 7:56	62.0	6/5/2012 17:06	63.7	7/5/2012 22:16	62.5
6/5/2012 8:01	62.8	6/5/2012 17:11	63.5	7/5/2012 22:21	63.3
6/5/2012 8:06	64.3	6/5/2012 17:16	63.8	7/5/2012 22:26	62.3
6/5/2012 8:11	63.2	6/5/2012 17:21	65.1	7/5/2012 22:31	61.9
6/5/2012 8:16	62.8	6/5/2012 17:26	63.7	7/5/2012 22:36	62.1
6/5/2012 8:21	63.2	6/5/2012 17:31	63.8	7/5/2012 22:41	62.4
6/5/2012 8:26	63.3	6/5/2012 17:36	63.8	7/5/2012 22:46	62.1
6/5/2012 8:31	64.1	6/5/2012 17:41	63.6	7/5/2012 22:51	61.6
6/5/2012 8:36	65.1	6/5/2012 17:46	63.0	7/5/2012 22:56	61.6
6/5/2012 8:41	64.7	6/5/2012 17:51	62.7	8/5/2012 19:01	64.6
6/5/2012 8:46	64.2	6/5/2012 17:56	62.6	8/5/2012 19:06	63.7
6/5/2012 8:51	65.3	6/5/2012 18:01	63.1	8/5/2012 19:11	63.3
6/5/2012 8:56	64.4	6/5/2012 18:06	63.0	8/5/2012 19:16	63.5
6/5/2012 9:01	63.8	6/5/2012 18:11	62.9	8/5/2012 19:21	63.9
6/5/2012 9:06	64.0	6/5/2012 18:16	63.1	8/5/2012 19:26	63.3
6/5/2012 9:11	63.2	6/5/2012 18:21	63.0	8/5/2012 19:31	63.6
6/5/2012 9:16	64.0	6/5/2012 18:26	62.9	8/5/2012 19:36	64.1
6/5/2012 9:21	64.0	6/5/2012 18:31	63.6	8/5/2012 19:41	64.1
6/5/2012 9:26	63.7	6/5/2012 18:36	62.9	8/5/2012 19:46	64.3
6/5/2012 9:31	64.6	6/5/2012 18:41	61.5	8/5/2012 19:51	64.4
6/5/2012 9:36	64.1	6/5/2012 18:46	61.8	8/5/2012 19:56	64.3
6/5/2012 9:41	63.9	6/5/2012 18:51	61.7	8/5/2012 20:01	64.5
6/5/2012 9:46	65.0	6/5/2012 18:56	62.8	8/5/2012 20:06	63.6
6/5/2012 9:51	64.8	6/5/2012 19:01	62.8	8/5/2012 20:11	64.1
6/5/2012 9:56	63.4	6/5/2012 19:06	64.1	8/5/2012 20:16	64.2
6/5/2012 10:01	64.0	6/5/2012 19:11	62.5	8/5/2012 20:21	63.7
6/5/2012 10:06	63.7	6/5/2012 19:16	62.7	8/5/2012 20:26	64.3
6/5/2012 10:11	63.8	6/5/2012 19:21	62.7	8/5/2012 20:31	64.1
6/5/2012 10:16	63.0	6/5/2012 19:26	62.4	8/5/2012 20:36	63.8
6/5/2012 10:21	64.7	6/5/2012 19:31	62.5	8/5/2012 20:41	64.3
6/5/2012 10:26	63.3	6/5/2012 19:36	62.9	8/5/2012 20:46	63.2
6/5/2012 10:31	63.9	6/5/2012 19:41	62.7	8/5/2012 20:51	64.3
6/5/2012 10:36	64.4	6/5/2012 19:46	61.8	8/5/2012 20:56	63.7
6/5/2012 10:41	63.7	6/5/2012 19:51	62.1	8/5/2012 21:01	64.0
6/5/2012 10:46	64.1	6/5/2012 19:56	62.3	8/5/2012 21:06	62.3
6/5/2012 10:51	63.7	6/5/2012 20:01	62.3	8/5/2012 21:11	63.1
6/5/2012 10:56	64.4	6/5/2012 20:06	62.4	8/5/2012 21:16	62.9
6/5/2012 11:01	64.5	6/5/2012 20:11	62.1	8/5/2012 21:21	62.9
6/5/2012 11:06	64.2	6/5/2012 20:16	62.0	8/5/2012 21:26	63.3
6/5/2012 11:11	64.2	6/5/2012 20:21	63.1	8/5/2012 21:31	63.1
6/5/2012 11:16	63.6	6/5/2012 20:26	62.4	8/5/2012 21:36	63.9
6/5/2012 11:21	64.2	6/5/2012 20:31	61.3	8/5/2012 21:41	64.1
6/5/2012 11:26	63.4	6/5/2012 20:36	62.2	8/5/2012 21:46	64.2
6/5/2012 11:31	63.4	6/5/2012 20:41	62.2	8/5/2012 21:51	63.7
6/5/2012 11:36	63.1	6/5/2012 20:46	62.7	8/5/2012 21:56	64.2
$\begin{aligned} & \text { 6/5/2012 11:41 } \\ & \text { 6/5/2012 11:46 } \end{aligned}$	62.9 62.9	6/5/2012 20:51	62.2 61.5	\| 8/5/2012 22:01	64.4 63.9

8/5/2012 22:11	. 1	\|11/5/2012 19:21	64.4	3/5/2012 8:31	64.1
8/5/2012 22:16	64.5	11/5/2012 19:26	64.5	13/5/2012 8:36	64.0
8/5/2012 22:21	63.8	11/5/2012 19:31	64.2	13/5/2012 8:41	63.8
8/5/2012 22:26	63.8	11/5/2012 19:36	63.9	13/5/2012 8:46	64.1
8/5/2012 22:31	64.3	11/5/2012 19:41	63.3	13/5/2012 8:51	64.8
8/5/2012 22:36	64.0	11/5/2012 19:46	63.8	13/5/2012 8:56	64.6
8/5/2012 22:41	64.2	11/5/2012 19:51	63.6	13/5/2012 9:01	64.9
8/5/2012 22:46	64.5	11/5/2012 19:56	63.7	13/5/2012 9:06	. 5
8/5/2012 22:51	63.5	11/5/2012 20:01	63.3	13/5/2012 9:11	64.5
8/5/2012 22:56	63.6	11/5/2012 20:06	63.7	13/5/2012 9:16	64.5
9/5/2012 19:01	62.8	11/5/2012 20:11	64.0	13/5/2012 9:21	65.2
9/5/2012 19:06	64.5	11/5/2012 20:16	64.1	13/5/2012 9:26	65.0
9/5/2012 19:11	63.2	11/5/2012 20:21	63.2	13/5/2012 9:31	65.3
9/5/2012 19:16	63.3	11/5/2012 20:26	63.9	13/5/2012 9:36	65.0
9/5/2012 19:21	62.3	11/5/2012 20:31	64.1	13/5/2012 9:41	65.3
9/5/2012 19:26	65.2	11/5/2012 20:36	63.9	13/5/2012 9:46	65.5
9/5/2012 19:31	65.1	11/5/2012 20:41	63.3	13/5/2012 9:51	65.0
9/5/2012 19:36	65.6	11/5/2012 20:46	63.5	13/5/2012 9:56	65.2
9/5/2012 19:41	64.0	11/5/2012 20:51	63.8	13/5/2012 10:01	64.9
9/5/2012 19:46	65.9	11/5/2012 20:56	63.5	13/5/2012 10:06	64.7
9/5/2012 19:51	65.5	11/5/2012 21:01	63.3	13/5/2012 10:11	64.4
9/5/2012 19:56	65.6	11/5/2012 21:06	64.2	13/5/2012 10:16	8
9/5/2012 20:01	66.3	11/5/2012 21:11	64.1	13/5/2012 10:2	64.9
9/5/2012 20:06	65.3	11/5/2012 21:16	64.1	13/5/2012 10:26	64.2
9/5/2012 20:11	64.5	11/5/2012 21:21	63.1	13/5/2012 10:31	64.5
9/5/2012 20:16	63.9	11/5/2012 21:26	63.1	13/5/2012 10:36	64.7
9/5/2012 20:21	65.7	11/5/2012 21:31	63.2	13/5/2012 10:41	64.4
9/5/2012 20:26	66.1	11/5/2012 21:36	63.5	13/5/2012 10:46	64.4
9/5/2012 20:31	64.3	11/5/2012 21:41	63.3	13/5/2012 10:51	. 6
9/5/2012 20:36	65.3	11/5/2012 21:46	63.3	13/5/2012 10:56	63.6
9/5/2012 20:41	64.1	11/5/2012 21:51	63.4	13/5/2012 11:01	63.5
9/5/2012 20:46	65.2	11/5/2012 21:56	63.3	13/5/2012 11:06	63.3
9/5/2012 20:51	63.5	11/5/2012 22:01	63.5	13/5/2012 11:11	63.9
9/5/2012 20:56	64.2	11/5/2012 22:06	63.3	13/5/2012 11:16	. 1
9/5/2012 21:01	66.3	11/5/2012 22:11	63.5	13/5/2012 11:21	62.6
9/5/2012 21:06	66.0	11/5/2012 22:16	63.2	13/5/2012 11:26	64.7
9/5/2012 21:11	63.1	11/5/2012 22:21	63.5	13/5/2012 11:31	63.9
9/5/2012 21:16	64.9	11/5/2012 22:26	62.9	13/5/2012 11:36	63.3
9/5/2012 21:21	64.6	11/5/2012 22:31	63.1	13/5/2012 11:41	63.8
9/5/2012 21:26	65.9	11/5/2012 22:36	62.8	13/5/2012 11:46	64.8
9/5/2012 21:31	62.7	11/5/2012 22:41	62.9	13/5/2012 11:51	65.4
9/5/2012 21:36	64.2	11/5/2012 22:46	63.0	13/5/2012 11:56	64.7
9/5/2012 21:41	65.2	11/5/2012 22:51	62.7	13/5/2012 12:01	64.8
9/5/2012 21:46	64.0	11/5/2012 22:56	62.9	13/5/2012 12:06	64.5
9/5/2012 21:51	65.6	12/5/2012 19:01	63.8	13/5/2012 12:11	65.6
9/5/2012 21:56	64.0	12/5/2012 19:06	63.9	13/5/2012 12:16	65.0
9/5/2012 22:01	63.0	12/5/2012 19:11	64.4	13/5/2012 12:21	64.7
9/5/2012 22:06	64.2	12/5/2012 19:16	64.0	13/5/2012 12:26	64.7
9/5/2012 22:11	64.6	12/5/2012 19:21	63.7	13/5/2012 12:31	64.6
9/5/2012 22:16	64.5	12/5/2012 19:26	63.3	13/5/2012 12:36	64.6
9/5/2012 22:21	63.9	12/5/2012 19:31	63.8	13/5/2012 12:41	63.7
9/5/2012 22:26	63.9	12/5/2012 19:36	63.9	13/5/2012 12:46	64.7
9/5/2012 22:31	63.1	12/5/2012 19:41	63.8	13/5/2012 12:51	64.1
9/5/2012 22:36	63.8	12/5/2012 19:46	63.6	13/5/2012 12:56	63.9
9/5/2012 22:41	63.9	12/5/2012 19:51	64.2	13/5/2012 13:01	63.3
9/5/2012 22:46	63.9	12/5/2012 19:56	64.6	13/5/2012 13:06	63.2
9/5/2012 22:51	65.0	12/5/2012 20:01	63.8	13/5/2012 13:11	63.6
9/5/2012 22:56	64.7	12/5/2012 20:06	64.7	13/5/2012 13:16	65.5
10/5/2012 19:01	63.9	12/5/2012 20:11	67.3	13/5/2012 13:21	65.6
10/5/2012 19:06	64.4	12/5/2012 20:16	64.6	13/5/2012 13:26	66.1
10/5/2012 19:11	64.8	12/5/2012 20:21	64.6	13/5/2012 13:31	63.6
10/5/2012 19:16	63.6	12/5/2012 20:26	64.1	13/5/2012 13:36	64.0
10/5/2012 19:21	64.4	12/5/2012 20:31	64.7	13/5/2012 13:41	63.1
10/5/2012 19:26	64.0	12/5/2012 20:36	64.4	13/5/2012 13:46	63.4
10/5/2012 19:31	64.4	12/5/2012 20:41	64.7	13/5/2012 13:51	62.8
10/5/2012 19:36	65.3	12/5/2012 20:46	64.0	13/5/2012 13:56	62.5
10/5/2012 19:41	64.8	12/5/2012 20:51	64.3	13/5/2012 14:01	63.1
10/5/2012 19:46	64.0	12/5/2012 20:56	64.2	13/5/2012 14:06	62.7
10/5/2012 19:51	64.1	12/5/2012 21:01	64.3	13/5/2012 14:11	62.8
10/5/2012 19:56	64.4	12/5/2012 21:06	63.9	13/5/2012 14:16	63.5
10/5/2012 20:01	66.0	12/5/2012 21:11	63.9	13/5/2012 14:21	63.3
10/5/2012 20:06	64.0	12/5/2012 21:16	64.0	13/5/2012 14:26	64.0
10/5/2012 20:11	65.3	12/5/2012 21:21	64.4	13/5/2012 14:31	63.3
10/5/2012 20:16	63.4	12/5/2012 21:26	64.3	13/5/2012 14:36	64.1
10/5/2012 20:21	64.0	12/5/2012 21:31	63.6	13/5/2012 14:41	3.4
10/5/2012 20:26	63.9	12/5/2012 21:36	65.2	13/5/2012 14:46	62.5
10/5/2012 20:31	63.7	12/5/2012 21:41	64.4	13/5/2012 14:51	63.6
10/5/2012 20:36	64.3	12/5/2012 21:46	64.3	13/5/2012 14:56	64.1
10/5/2012 20:41	64.0	12/5/2012 21:51	64.0	13/5/2012 15:01	64.7
10/5/2012 20:46	63.8	12/5/2012 21:56	63.6	13/5/2012 15:06	64.6
10/5/2012 20:51	63.2	12/5/2012 22:01	64.2	13/5/2012 15:11	64.5
10/5/2012 20:56	63.5	12/5/2012 22:06	63.7	13/5/2012 15:16	65.0
10/5/2012 21:01	63.3	12/5/2012 22:11	63.5	13/5/2012 15:21	64.3
10/5/2012 21:06	63.1	12/5/2012 22:16	63.9	13/5/2012 15:26	64.9
10/5/2012 21:11	63.3	12/5/2012 22:21	64.0	13/5/2012 15:31	64.3
10/5/2012 21:16	64.3	12/5/2012 22:26	64.2	13/5/2012 15:36	64.1
10/5/2012 21:21	63.3	12/5/2012 22:31	63.8	13/5/2012 15:41	64.5
10/5/2012 21:26	63.6	12/5/2012 22:36	64.2	13/5/2012 15:46	64.5
10/5/2012 21:31	63.6	12/5/2012 22:41	64.5	13/5/2012 15:51	64.8
10/5/2012 21:36	63.6	12/5/2012 22:46	63.7	13/5/2012 15:56	64.1
10/5/2012 21:41	63.9	12/5/2012 22:51	63.7	13/5/2012 16:01	64.2
10/5/2012 21:46	63.6	12/5/2012 22:56	63.9	13/5/2012 16:06	64.1
10/5/2012 21:51	63.6	13/5/2012 7:01	62.7	13/5/2012 16:11	64.7
10/5/2012 21:56	64.0	13/5/2012 7:06	62.2	13/5/2012 16:16	64.5
10/5/2012 22:01	63.3	13/5/2012 7:11	64.2	13/5/2012 16:21	64.4
10/5/2012 22:06	63.4	13/5/2012 7:16	62.2	13/5/2012 16:26	64.8
10/5/2012 22:11	63.4	13/5/2012 7:21	64.0	13/5/2012 16:31	64.5
10/5/2012 22:16	64.0	13/5/2012 7:26	62.5	13/5/2012 16:36	65.2
10/5/2012 22:21	63.4	13/5/2012 7:31	62.1	13/5/2012 16:41	64.9
10/5/2012 22:26	63.7	13/5/2012 7:36	63.0	13/5/2012 16:46	64.9
10/5/2012 22:31	63.3	13/5/2012 7:41	63.1	13/5/2012 16:51	64.9
10/5/2012 22:36	62.9	13/5/2012 7:46	62.8	13/5/2012 16:56	64.7
10/5/2012 22:41	63.9	13/5/2012 7:51	62.7	13/5/2012 17:01	65.2
10/5/2012 22:46	63.3	13/5/2012 7:56	63.2	13/5/2012 17:06	64.4
10/5/2012 22:51	63.3	13/5/2012 8:01	63.0	13/5/2012 17:11	64.5
10/5/2012 22:56	63.4	13/5/2012 8:06	62.8	13/5/2012 17:16	64.6
11/5/2012 19:01	64.2	13/5/2012 8:11	63.6	13/5/2012 17:21	64.1
11/5/2012 19:06	64.2	13/5/2012 8:16	63.4	13/5/2012 17:26	64.4
$\left\lvert\, \begin{aligned} & \text { 11/5/2012 19:11 } \\ & \text { 11/5/2012 19:16 }\end{aligned}\right.$	64.0 64.4	13/5/2012 8:21	63.8 63.7	$\|$13/5/2012 17:31 $13 / 5 / 2012$ $17: 36$	64.9

Real-time Noise Data 13/5/2012 17:41 64.4 13/5/2012 17:46 64.6 13/5/2012 17:51 64.9 13/5/2012 17:56 65.3 13/5/2012 18:01 64.9 13/5/2012 18:06 65.2 13/5/2012 18:11 64.5 13/5/2012 18:16 65.3 13/5/2012 18:21 64.9 13/5/2012 18:26 64.8 13/5/2012 18:31 64.4 13/5/2012 18:36 64.9 13/5/2012 18:41 64.5 13/5/2012 18:46 64.8 13/5/2012 18:51 64.8 13/5/2012 18:56 64.9 13/5/2012 19:01 64.6 13/5/2012 19:06 64.6 13/5/2012 19:11 64.6 13/5/2012 19:16 64.5 13/5/2012 19:21 64.9 13/5/2012 19:26 64.7 13/5/2012 19:31 64.3 13/5/2012 19.36 64.3 13/5/2012 19:41 65 13/5/2012 19:46 64.4 13/5/2012 19:51 64.5 13/5/2012 19:56 64.3 13/5/2012 20:01 65.6 13/5/2012 20:06 64.3 13/5/2012 20:11 63.3 13/5/2012 20:16 64.0 13/5/2012 20:21 65.1 13/5/2012 20:26 65.1 13/5/2012 20:31 63.8 13/5/2012 20:36 64.0 13/5/2012 20:41 63.4 13/5/2012 20:46 63.5 13/5/2012 20:51 63.6 13/5/2012 20:56 63.6 13/5/2012 21:01 64.1 13/5/2012 21:06 64.1 13/5/2012 21:11 63.7 13/5/2012 21:16 64.1 13/5/2012 21:21 64.1 13/5/2012 21:26 63.9 13/5/2012 21:31 63.9 13/5/2012 21:36 63.7 13/5/2012 21:41 63.6 13/5/2012 21:46 63.6 13/5/2012 21:51 64.2 13/5/2012 21:56 63.8 13/5/2012 22:01 63.3 13/5/2012 22:06 64.1 $\begin{array}{ll}13 / 5 / 2012 & 22: 11 \\ 64.4\end{array}$ $\begin{array}{ll}13 / 5 / 2012 & 22: 16 \\ 63.5\end{array}$ 13/5/2012 22.2163 .9 13/5/2012 22.31 64 13/5/2012 22:36 65.1 13/5/2012 22:41 63.0 13/5/2012 22:46 63.4 13/5/2012 22.5164 .1 13/5/2012 22:56 63.5 14/5/2012 19:01 63.7 14/5/2012 19:06 62.4 14/5/2012 19:11 63.5 14/5/2012 19:16 65.0 14/5/2012 19:21 64.0 14/5/2012 19:26 64.6 14/5/2012 19:31 64.4 14/5/2012 19:36 65.2 14/5/2012 19:41 65.6 14/5/2012 19:46 63.9 14/5/2012 19:51 64.8 14/5/2012 19:56 65.4 14/5/2012 20:01 64.8 14/5/2012 20:06 65.5 14/5/2012 20:11 63.5 14/5/2012 20:16 63.9 14/5/2012 20:21 64.3 14/5/2012 20:26 64.4 14/5/2012 20:31 65.0 14/5/2012 20:36 65.1 14/5/2012 20:41 64.5 14/5/2012 20:46 63.2 14/5/2012 20:51 64.9 14/5/2012 20:56 66.0 14/5/2012 21.06 65.0 14/5/2012 21.11 14/5/2012 21:16 64.2 14/5/2012 21:21 62.6 14/5/2012 21:26 63.4 14/5/2012 21:31 65.3 14/5/2012 21:36 62.6 14/5/2012 21:41 64.4 14/5/2012 21:46 65.5 14/5/2012 21:51 64.5 14/5/2012 21:56 64 $\begin{array}{lll}14 / 5 / 2012 & 22: 01 & 64.1 \\ 14 / 5 / 2012 & 22.06 & 63.8\end{array}$ 14/5/2012 22:11 63.8 14/5/2012 22:16 64.2 14/5/2012 $22.21 \quad 63.4$ 14/5/2012 22:26 64.5 14/5/2012 22:31 63.1 14/5/2012 22:36 62.6 14/5/2012 22:41 64.2 14/5/2012 22:46 63.6

$14 / 5 / 2012$	$22: 51$	63.9			
$14 / 5 / 2012$	22.56	63.8	$\begin{array}{lll}14 / 5 / 2012 & 22: 56 & 63.8\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 19: 01 & 63.7 \\ 15 / 5 / 2012 & 19: 06 & 64.0\end{array}$ 15/5/2012 19:06 64.0 $\begin{array}{lll}15 / 5 / 2012 & 19: 06 & 64.0 \\ 15 / 5 / 2012 & 19: 16 & 64.1\end{array}$ 15/5/2012 19:21 63.9 15/5/2012 19:26 64.6 15/5/2012 19:31 64.5 15/5/2012 19:36 65.0 15/5/2012 19:41 64.5 15/5/2012 19:46 64.5 15/5/2012 19:51 64.6 15/5/2012 19:56 64.8 $\begin{array}{lll}15 / 5 / 2012 & 20: 01 & 65.3 \\ 15 / 5 / 2012 & 20: 06 & 64.7\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 20: 06 & 64.7 \\ 15 / 5 / 2012 & 20: 11 & 64.4\end{array}$ $\begin{array}{ll}15 / 5 / 2012 & 20: 06 \\ 15 / 5 / 2012 & 20: 16 \\ 63.8\end{array}$ 15/5/2012 20:21 64.4 15/5/2012 20:26 64.7 $\begin{array}{lll}15 / 5 / 2012 & 20: 31 & 64.3\end{array}$ 15/5/2012 20:36 64.7 $\begin{array}{lll}15 / 5 / 2012 & 20: 41 & 64.0 \\ 15 / 5 / 2012 & 20: 46 & 64.0\end{array}$ $\begin{array}{ll}15 / 5 / 2012 & 20: 41 \\ 15 / 5 / 2012 & 20: 46 \\ 64.0 \\ 15 / 5 / 2012 & 20: 51 \\ 153 / 5\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 20: 46 & 64.0 \\ 15 / 5 / 2012 & 20: 56 & 64.4\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 21: 01 & 64.6 \\ 15 / 5 / 212 & 21.06 & 64.7\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 21: 06 & 64.7 \\ 15 / 5 / 2012 & 21: 11 & 63.8\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 21: 11 & 63.8 \\ 15 / 5 / 2012 & 21.16 & 64.4\end{array}$ 15/5/2012 21:16 64.4 15/5/2012 21:21 63.4 15/5/2012 21:26 64.1 15/5/2012 21:31 63.8 $\begin{array}{lll}15 / 5 / 2012 & 21: 36 & 63.5 \\ 15 / 5 / 2012 & 21: 41 & 64.2\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 21: 41 & 64.2 \\ 15 / 5 / 2012 & 21: 46 & 64.2\end{array}$	$15 / 5 / 2012$	$21: 46$
:---	:---				
64.2					
$15 / 5 / 2012$	$21: 51$	$\begin{array}{lll}15 / 5 / 2012 & 21: 56 & 63.9\end{array}$ 15/5/2012 22:01 63.5 15/5/2012 22:06 63.7 15/5/2012 22:11 63.9 $\begin{array}{lll}15 / 5 / 2012 & 22: 11 & 63.9 \\ 15 / 5 / 2012 & 22: 16 & 64.0 \\ 15 & 63.5\end{array}$ $\begin{array}{ll}15 / 5 / 2012 & 22: 16 \\ 15 / 5 / 2012 & 62: 21 \\ \text { 22:26 } & 63.8\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 22: 21 & 63.5 \\ 15 / 5 / 2012 & 22: 31 & 63.1\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 22: 31 & 63.1 \\ 15 / 5 / 2012 & 22: 36 & 63.1\end{array}$ 15/5/2012 22:41 63.8 $\begin{array}{lll}15 / 5 / 2012 & 22: 46 & 63.5 \\ 15 / 5 / 2012 & 22: 51 & 63.8\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 22: 51 & 63.8 \\ 15 / 5 / 2012 & 22: 56 & 63.8\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 22: 56 & 63.8 \\ 16 / 5 / 2012 & 19: 01 & 64.1\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 19: 01 & 64.1 \\ 16 / 5 / 2012 & 19: 06 & 64.1\end{array}$ 16/5/2012 19:06 64.1 $\begin{array}{ll}16 / 5 / 2012 & 19: 16 \\ 63.9\end{array}$ 16/5/2012 19:21 64.1 16/5/2012 19:26 63.8 $\begin{array}{lll}16 / 5 / 2012 & 19: 31 & 64.0 \\ 16 / 5 / 2012 & 19: 36 & 64.3\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 19: 41 & 64.1\end{array}$ 16/5/2012 19:46 63.9 16/5/2012 19:51 64.1 16/5/2012 19:56 64.3 16/5/2012 $20.01 \quad 64.5$ 16/5/2012 20:06 64.0 16/5/2012 20:11 65.3 16/5/2012 20:16 64.1 $\begin{array}{lll}16 / 5 / 2012 & 20: 16 & 64.1 \\ 16 / 5 / 2012 & 20: 21 & 63.9\end{array}$ 16/5/2012 20:31 64.2 16/5/2012 20:36 64.1 16/5/2012 20:41 64.1 16/5/2012 20:46 63.6 16/5/2012 20:51 63.9 16/5/2012 20:56 63.7 $\begin{array}{lll}16 / 5 / 2012 & 21: 01 & 63.8 \\ 16 / 5 / 2012 & 21.06 & 63.4\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 21: 06 & 63.4 \\ 16 / 5 / 2012 & 21: 11 & 63.6\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 21: 11 & 63.6 \\ 16 / 5 / 2012 & 21: 16 & 63.9\end{array}$ 16/5/2012 21:21 63.4 16/5/2012 21:26 63.6 16/5/2012 21:31 63.4 16/5/2012 21:36 64.1 $\begin{array}{lll}16 / 5 / 2012 & 21: 36 & 64.9 \\ 16 / 5 / 2012 & 21: 46 & 63.9\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 21: 46 & 63.9 \\ 16 / 5 / 2012 & 21: 51 & 63.7\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 21: 46 & 63.9 \\ 16 / 5 / 2012 & 21: 56 & 63.8\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 21: 56 & 63.8 \\ 16 / 5 / 2012 & 22: 01 & 63.9\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 22: 06 & 63.6\end{array}$ 16/5/2012 22:11 63.6 16/5/2012 22:16 63.9 $\begin{array}{lll}16 / 5 / 2012 & 22: 21 & 63.7 \\ 16 / 5 / 2012 & 22.26 & 63.7\end{array}$ 16/5/2012 22:26 63.7 $\begin{array}{lll}16 / 5 / 2012 & 22: 31 & 63.6 \\ 16 / 5 / 2012 & 22: 36 & 63.5\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 22: 36 & 63.5 \\ 16 / 5 / 2012 & 22: 41 & 63.9\end{array}$ 16/5/2012 22:46 63.7 16/5/2012 22:51 63.3 16/5/2012 22:56 63.5 17/5/2012 19:01 63.3 17/5/2012 19:06 64.1 17/5/2012 19:11 63.9 17/5/2012 19:16 66.1 17/5/2012 19:21 64.0 17/5/2012 19:26 67.2 17/5/2012 19:31 66.9 17/5/2012 19:36 65.1 17/5/2012 19:41 63.6 $\begin{array}{lll}17 / 5 / 2012 & 19: 46 & 64.4 \\ 17 / 5 / 2012 & 19: 51 & 63.6\end{array}$	llll 1 17/5/2012 $19: 56 \quad 64.0$		

17/5/2012 20:01 64.0 \begin{tabular}{|lll}
$17 / 5 / 2012$ \& $20: 01$ \& 64.0

$17 / 5 / 2012$ \& $20: 06$ \& 63.6

 $\begin{array}{lll}17 / 5 / 2012 & 20: 06 & 63.6 \\ 17 / 5 / 2012 & 20: 11 & 63.7\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 20: 11 & 63.7 \\ 17 / 5 / 2012 & 20: 16 & 63.5\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 20: 21 & 63.9\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 20: 21 & 63.9 \\ 17 / 5 / 2012 & 20: 26 & 64.2\end{array}$ 17/5/2012 20:26 64.2 $\begin{array}{lll}17 / 5 / 2012 & 20: 31 & 63.5\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 20: 36 & 63.7 \\ 17 / 5 / 2012 & 20: 41 & 63.6\end{array}$ 17/5/2012 20:41 63.6 17/5/2012 20:46 64.2 17/5/2012 20:51 63.7 17/5/2012 20:56 63.6 17/5/2012 21:01 64.3 17/5/2012 21:06 64.3 17/5/2012 21:11 63.4 17/5/2012 21:16 64.1 17/5/2012 21:21 63.6 $\begin{array}{lll}17 / 5 / 2012 & 21: 26 & 63.9 \\ 17 / 5 / 2012 & 21: 31 & 63.0\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 21: 36 \\ 63.7\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 21: 41 \\ 63.8\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 21: 41 & 63.8 \\ 17 / 5 / 2012 & 21: 46 & 63.2\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 21: 46 & 63.2 \\ 17 / 5 / 2012 & 21 \cdot 51 & 64.0\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 21: 51 & 64.0 \\ 17 / 5 / 2012 & 21: 56 & 63.4\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 21: 56 & 63.4 \\ 17 / 5 / 2012 & 22: 01 & 63.2\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 22: 06 & 63.4\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 22: 06 & 63.4 \\ 17 / 5 / 2012 & 22: 11 & 63.4\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 22: 16 & 63.6\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 22: 16 \\ 63.6 \\ 17 / 5 / 2012 & 22: 21 \\ 63.4\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 22: 21 & 63.4 \\ 17 / 5 / 2012 & 22: 26 & 63.5\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 22: 26 & 63.5 \\ 17 / 5 / 2012 & 22: 31 & 62.8\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 22: 31 & 62.8 \\ 17 / 5 / 2012 & 22: 36 & 63.0\end{array}$ 17/5/2012 22:41 63.3 17/5/2012 22:46 63.2 $\begin{array}{lll}17 / 5 / 2012 & 22: 51 & 63.5 \\ 17 / 5 / 2012 & 22.56 & 63.7\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 22: 56 & 63.7\end{array}$ 18/5/2012 19:06 64.4 18/5/2012 19:11 64.7 18/5/2012 19:16 64.9 18/5/2012 19:21 64.6 18/5/2012 $19: 26 \quad 64.7$ $\begin{array}{lll}18 / 5 / 2012 & 19: 26 & 64.7 \\ 18 / 5 / 2012 & 19: 31 & 64.8\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 19: 31 & 64.8 \\ 18 / 5 / 2012 & 19: 36 & 65.2\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 19: 36 & 65.2 \\ 18 / 5 / 2012 & 19: 41 & 65.3\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 19: 36 & 65.2 \\ 18 / 5 / 2012 & 19: 46 & 64.7\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 19: 46 & 64.7 \\ \text { 18/5/2012 } & 19: 51 & 65.7\end{array}$ 18/5/2012 19:56 65.1 18/5/2012 20:01 64.9 $\begin{array}{lll}18 / 5 / 2012 & 20: 06 & 65.3 \\ 18 / 5 / 2012 & 20: 11 & 65.7\end{array}$ $\begin{array}{ll}18 / 5 / 2012 & 20: 16 \\ 65.1\end{array}$ $\begin{array}{ll}18 / 5 / 2012 & 20: 21 \\ 64.9\end{array}$ 18/5/2012 20:26 64.4 18/5/2012 20:31 64.7 $\begin{array}{lll}18 / 5 / 2012 & 20: 36 & 64.6 \\ 18 / 5 / 2012 & 20: 41 & 64.7\end{array}$ 18/5/2012 20:41 64.7 $\begin{array}{lll}18 / 5 / 2012 & 20: 51 & 64.7\end{array}$ 18/5/2012 20:56 65.0 18/5/2012 21:01 64.5 18/5/2012 21:06 64.6 $\begin{array}{ll}18 / 5 / 2012 & 21: 11 \\ 64.5\end{array}$ 18/5/2012 21:16 64.1 18/5/2012 21:21 64.2 18/5/2012 21:26 64.1 18/5/2012 21:31 64.4 $\begin{array}{lll}18 / 5 / 2012 & 21: 36 & 63.9 \\ 18 / 5 / 2012 & 21: 41 & 64.9\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 21: 41 & 64.9 \\ 18 / 5 / 2012 & 21: 46 & 65.3\end{array}$ 18/5/2012 21:51 65.0 18/5/2012 21:56 64.9 18/5/2012 22:01 64.7 18/5/2012 22:06 64.4 $\begin{array}{lll}18 / 5 / 2012 & 22: 11 & 64.6 \\ 18 / 5 / 2012 & 22.16 & 64.7\end{array}$ 18/5/2012 22:16 64.7 18/5/2012 22:26 65.4 18/5/2012 22:31 64.6 18/5/2012 22:36 65.1 18/5/2012 22:41 64.7 18/5/2012 22:46 64.3 18/5/2012 22:51 64.3 $\begin{array}{lll}18 / 5 / 2012 & 22: 51 & 64.3 \\ 18 / 5 / 2012 & 22: 56 & 64.3\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 22: 56 & 64.3 \\ 19 / 5 / 2012 & 19: 01 & 61.8\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 19: 01 \\ 61.8 \\ \text { 19/5/2012 19:06 } & 61.4\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 19: 06 \\ 61.4 \\ 19 / 5 / 2012 & 19: 11 \\ 61.3\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 19: 11 & 61.3 \\ 19 / 5 / 2012 & 19: 16 & 61.7\end{array}$

$19 / 5 / 2012$ \& $19: 16$

\hline $19 / 5 / 2012$ \& $19: 21$

62.4
\end{tabular} 19/5/2012 19:26 62.6 19/5/2012 19:31 62.3 19/5/2012 19:36 62.7 19/5/2012 19:41 62.1 19/5/2012 19:46 61.2 19/5/2012 19:51 61.3 19/5/2012 19:56 62.0 $\begin{array}{lll}19 / 5 / 2012 & 20: 01 & 62.3 \\ 19 / 5 / 2012 & 20.06 & 62.7\end{array}$ 19/5/2012 20:06 62.7 $\begin{array}{lll}19 / 5 / 2012 & 20: 11 & 64.3 \\ 19 / 5 / 2012 & 20: 16 & 63.0\end{array}$ 19/5/2012 20:21 62.6 19/5/2012 20:26 62.4 19/5/2012 20:31 63.0 $\begin{array}{ll}19 / 5 / 2012 & 20: 36 \\ 62.7\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 20: 36 & 62.7 \\ 19 / 5 / 2012 & 20: 41 & 63.3\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 20: 41 & 63.3 \\ 19 / 5 / 2012 & 20: 46 & 62.2\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 20: 46 & 62.2 \\ 19 / 5 / 2012 & 20: 51 & 62.9\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 20: 51 \\ 62.9 \\ 19 / 5 / 2012 & 20: 56 \\ 62.2\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 20: 56 \\ 62.2 \\ 19 / 5 / 2012 & 21: 01 \\ 62.3\end{array}$ 19/5/2012 21:06 62.1

19/5/2012 21:11 63.3 19/5/2012 21:16 62.5 19/5/2012 21:21 62.3 19/5/2012 21:26 62.6 19/5/2012 21:31 62.7 19/5/2012 21:36 63.3 19/5/2012 21:41 62.3 19/5/2012 21:46 62.4 19/5/2012 21:51 62.6 19/5/2012 21:56 63.0 19/5/2012 22:01 62.3 19/5/2012 22:06 62.9 19/5/2012 22:11 62.4 19/5/2012 22:16 62.8 19/5/2012 22:21 62.3 19/5/2012 22:26 62.8 19/5/2012 22:31 63.1 19/5/2012 22:36 62.8 19/5/2012 22:41 62.6 $\begin{array}{lll}19 / 5 / 2012 & 22: 46 & 62.3\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 22: 51 & 62.0\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 22: 51 \\ 62.0 \\ \text { 19/5/2012 22:56 } & 62.4\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 22: 56 \\ 62.4 \\ 20 / 5 / 2012 & 7: 01 \\ 61.0\end{array}$ $\begin{array}{ll}\text { 20/5/2012 7:01 } & 61.0 \\ 20 / 5 / 20127: 06 & 61.5\end{array}$ $\begin{array}{ll}20 / 5 / 2012 & 7: 06 \\ 61.5 \\ 20 / 5 / 2012 & 7: 11 \\ 61.3\end{array}$ $\begin{array}{ll}20 / 5 / 2012 \text { 7:16 } & 61.1\end{array}$ 20/5/2012 7:21 61.7 20/5/2012 7:26 62.3 20/5/2012 7:31 61. $\begin{array}{ll}\text { 20/5/2012 7:36 } & 62 . \\ \text { 20/5/2012 7:41 } & 62.2\end{array}$ 20/5/2012 7:46 $\quad 62.3$ 20/5/2012 7:51 62. 20/5/2012 7:56
20/5/2012 8:01 20/5/2012 8:06 20/5/2012 8:11 20/5/2012 8:16 20/5/2012 8:21 20/5/2012 8:31 20/5/2012 8:31 20/5/2012 8:36 20/5/2012 8:46 20/5/2012 8:51 20/5/2012 8:56 20/5/2012 9:01 20/5/2012 9:06 20/5/2012 9:16 20/5/2012 9:21 20/5/2012 9:26 20/5/2012 9:31 20/5/2012 9:36 20/5/2012 9:41 20/5/2012 9:46 20/5/2012 9:51 $\begin{array}{ll}20 / 5 / 2012 \text { 9:56 } & 64.0 \\ 20 / 5 / 2012 \text { 10:01 } & 64.0\end{array}$ 20/5/2012 10:06 63.5 20/5/2012 10:11 64.5 20/5/2012 10:16 64.2 20/5/2012 10:21 64.0 20/5/2012 10:26 64.2 $\begin{array}{ll}20 / 5 / 2012 & 10: 36 \\ 64.5\end{array}$ 20/5/2012 10:36 64.5 $\begin{array}{lll}20 / 5 / 2012 & 10: 46 & 64.2\end{array}$ 20/5/2012 10:51 64.5 20/5/2012 10:56 64.1 20/5/2012 11:01 65.0 $\begin{array}{lll}20 / 5 / 2012 & 11: 06 & 64.3 \\ 20 / 5 / 2012 & 11 \cdot 11 & 64.8\end{array}$ $\begin{array}{ll}20 / 5 / 2012 & 11: 11 \\ 64.8 \\ 20 / 5 / 2012 & 11: 16 \\ 63.0\end{array}$ $\begin{array}{ll}20 / 5 / 2012 & 11: 16 \\ 63.0 \\ 20 / 5 / 2012 & 11: 21 \\ 64.4\end{array}$ $\begin{array}{lll}20 / 5 / 2012 & 11: 21 & 64.4 \\ 20 / 5 / 2012 & 11: 26 & 63.6\end{array}$ $\begin{array}{lll}20 / 5 / 2012 & 11: 26 & 63.6 \\ 20 / 5 / 2012 & 11: 31 & 64.5\end{array}$ 20/5/2012 11:36 64.9 20/5/2012 11:41 64.6 $\begin{array}{ll}20 / 5 / 2012 & 11: 51 \\ 64.5\end{array}$ 20/5/2012 11:56 63.5 $\begin{array}{lll}20 / 5 / 2012 & 12: 01 & 63.7\end{array}$ $\begin{array}{lll}20 / 5 / 2012 & 12: 01 & 63.7 \\ 20 / 5 / 2012 & 12: 06 & 63.3\end{array}$ $\begin{array}{lll}20 / 5 / 2012 & 12: 06 & 63.3 \\ \text { 20/5/2012 } & 12: 11 & 62.7\end{array}$ $\begin{array}{lll}20 / 5 / 2012 & 12: 11 & 62.7 \\ 20 / 5 / 2012 & 12: 16 & 62.8\end{array}$ $\begin{array}{ll}\text { 20/5/2012 12:21 } & 63.1\end{array}$ $\begin{array}{lll}\text { 20/5/2012 } & 12: 21 & 63.1 \\ \text { 20/5/2012 } & 12: 26 & 63.7\end{array}$ $\begin{array}{lll}20 / 5 / 2012 & 12: 26 & 63.7 \\ 20 / 5012 & 12: 31 & 63.5\end{array}$ 20/5/2012 12:36 63.6

Real-time Noise Data 23/5/2012 20:41 65.2 23/5/2012 20:46 65.1 23/5/2012 20:51 64.9 23/5/2012 20:56 65.1 23/5/2012 21:01 64.5 23/5/2012 21:06 65.1 23/5/2012 21:11 65.2 23/5/2012 21:16 64.6 23/5/2012 21:21 64.4 23/5/2012 21:26 65.0 23/5/2012 21:31 64.6 23/5/2012 21:36 64.3 23/5/2012 21:41 65.1 23/5/2012 21:46 64.5 23/5/2012 21:51 64.3 23/5/2012 21:56 64.9 23/5/2012 22:01 64.3 23/5/2012 22:06 64.6 23/5/2012 22:11 64.6 23/5/2012 22:16 64.8 23/5/2012 22:21 64.8 23/5/2012 22:26 65.4 23/5/2012 22.31 64.5 23/5/2012 22.36 64.5 23/5/2012 $22.41 \quad 64.2$ 23/5/2012 22:46 64.2 23/5/2012 22:51 64.1 23/5/2012 22:56 64.1 24/5/2012 19:01 63.3 24/5/2012 19:06 63.3 24/5/2012 19:11 63.1 24/5/2012 19:16 63.4 24/5/2012 19:21 63.4 24/5/2012 19:26 63.3 24/5/2012 19:31 63.4 24/5/2012 19:36 64.2 24/5/2012 19:41 63.9 24/5/2012 19:46 63.5 24/5/2012 19:51 64.2 24/5/2012 19:56 64.5 24/5/2012 20:01 64.5 24/5/2012 20:06 64.2 24/5/2012 20:11 64.5 24/5/2012 20:16 64.0 24/5/2012 20:21 63.9 24/5/2012 20:26 63.8 24/5/2012 20:31 64.2 24/5/2012 20:36 64.1 24/5/2012 20:41 64.1 24/5/2012 20:46 64.0 24/5/2012 20:51 64.1 24/5/2012 20:56 64.0 24/5/2012 21:01 63.5 24/5/2012 21:06 63.6 24/5/2012 21:11 64.4 24/5/2012 21:16 63.5 24/5/2012 21:21 63.6 24/5/2012 21:26 63.9 24/5/2012 21:31 63.5 24/5/2012 21:36 63.8 24/5/2012 21:41 63.9 24/5/2012 21:46 64.8 24/5/2012 21:51 63.6 24/5/2012 21:56 63.9 24/5/2012 22.0163 .6 24/5/2012 22:06 63.7 24/5/2012 22:11 63.6 24/5/2012 22:16 63.6 24/5/2012 22:21 63.5 24/5/2012 22.26 63.9 24/5/2012 22:31 63.5 24/5/2012 22:36 63.5 24/5/2012 22:41 63.4 24/5/2012 22:46 63.2 24/5/2012 22:51 63.4 25/5/2012 19:01 64.1 25/5/2012 19:01 64.0 25/5/2012 19:11 64.1 25/5/2012 19:16 64.9 25/5/2012 19:21 64.1 25/5/2012 19:26 65.0 25/5/2012 19:31 65.0 25/5/2012 19:36 64.8 25/5/2012 19:41 64.6 25/5/2012 19:46 64.4 25/5/2012 19:51 64.8 25/5/2012 19:56 64.7 25/5/2012 20:01 64.7 25/5/2012 20:06 64.7 25/5/2012 20:11 64.9 25/5/2012 20:16 64.6 25/5/2012 20:21 64.5 25/5/2012 20:26 64.3 25/5/2012 20:31 64.4 25/5/2012 20:36 64.4 25/5/2012 20:41 64.4 25/5/2012 20:46 64.4 25/5/2012 20:56 64.5 25/5/2012 21:01 64.2 25/5/2012 21:06 64.4 25/5/2012 21:11 64.4 25/5/2012 21:16 64.1 25/5/2012 21:21 64.0 25/5/2012 21:26 64.3 25/5/2012 21.31 63.9 25/5/2012 21.36 63.9 25/5/2012 21:41 64.4 25/5/2012 21:46 64.5

|25/5/2012 21:51 64.2 25/5/2012 21:56 64.3 25/5/2012 22:01 64.0 25/5/2012 22:06 64.1 25/5/2012 22:11 64.1 25/5/2012 22:16 64.2 25/5/2012 22:21 64.3 25/5/2012 22:26 64.6 $\begin{array}{lll}\text { 25/5/2012 } 22: 31 & 63.9 \\ \text { 25/5/2012 } 22.36 & 64.1\end{array}$ $\begin{array}{lll}25 / 5 / 2012 & 22: 36 & 64.1 \\ 25 / 5 / 2012 & 22.41 & 63.9\end{array}$ 25/5/2012 22:41 63.9 25/5/2012 22:46 63.8 $\begin{array}{lll}25 / 5 / 2012 & 22: 51 & 63.8 \\ 25 / 5 / 2012 & 22.56 & 63.8\end{array}$ \begin{tabular}{ll}
$25 / 5 / 2012$ \& $22: 56$

63.8

$26 / 5 / 2012$ \& 19.01

\hline

 $\begin{array}{lll}26 / 5 / 2012 & 19: 01 & 63.4 \\ 26 / 5 / 2012 & 19: 06 & 63.9\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 19: 06 & 63.9 \\ 26 / 5 / 2012 & 19: 11 & 64.5\end{array}$ $\begin{array}{ll}26 / 5 / 2012 & 19: 16 \\ 64.0\end{array}$ 26/5/2012 19:21 63.3 $\begin{array}{lll}26 / 5 / 2012 & 19.21 & 63.3 \\ 26 / 5012 & 19: 26 & 64.6 \\ 26 / 5 / 2012 & 19.31 & 63.7\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 19: 31 & 63.7 \\ 26 / 5 / 2012 & 19: 36 & 62.9\end{array}$ $\begin{array}{ll}26 / 5 / 2012 & 19: 36 \\ 62.9 \\ 26 / 5 / 2012 & 19: 41 \\ 63.9\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 19: 41 & 63.9 \\ 26 / 5 / 2012 & 19: 46 & 63.7\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 19: 46 & 63.7 \\ 26 / 5 / 2012 & 19: 51 & 63.8\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 19.51 & 63.8 \\ 26 / 5 / 2012 & 19: 56 & 63.1\end{array}$ 26/5/2012 20:01 $\begin{array}{lll}26 / 5 / 2012 & 20: 06 & 63.1 \\ 26 / 5 / 2012 & 20: 11 & 62.5\end{array}$ 26/5/2012 20:16 62.8 $\begin{array}{lll}26 / 5 / 2012 & 20: 21 & 63.0 \\ 26 / 5 / 2012 & 20: 26 & 62.2\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 20: 26 & 62.2 \\ 26 / 5 / 2012 & 20: 31 & 62.5\end{array}$ 26/5/2012 20:36 63.5 26/5/2012 20:41 63.1 26/5/2012 20:46 $\begin{array}{lll}26 / 5 / 2012 & 20: 51 & 63.2 \\ 26 / 5 / 2012 & 20: 56 & 62.5\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 20: 56 & 62.5 \\ 26 / 5 / 2012 & 21: 01 & 62.4\end{array}$ 26/5/2012 21:06 62.0 26/5/2012 21:11 62.3 26/5/2012 21:16 62.7 $\begin{array}{lll}26 / 5 / 2012 & 21: 21 & 61.9 \\ 26 / 5 / 2012 & 21: 26 & 61.5\end{array}$ $\begin{array}{lll}\text { 26/5/2012 } 21: 26 & 61.5 \\ 26 / 5 / 2012 & 21: 31 & 61.6\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 21: 31 & 61.6 \\ 26 / 5 / 2012 & 21: 36 & 62.7\end{array}$ 26/5/2012 21:41 62.3 $\begin{array}{lll}26 / 5 / 2012 & 21: 46 & 61.8 \\ 26 / 5 / 2012 & 21: 51 & 62.1\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 21: 51 & 62.1 \\ 26 / 5 / 2012 & 21: 56 & 62.0\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 21: 56 & 62.0 \\ 26 / 5 / 2012 & 22: 01 & 62.8\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 22: 01 & 62.8 \\ 26 / 5 / 2012 & 22: 06 & 61.9\end{array}$ $\begin{array}{ll}26 / 5 / 2012 & 22: 11 \\ 62.1\end{array}$ $\begin{array}{ll}26 / 5 / 2012 & 22: 16 \\ 62.2 \\ 26 / 5 / 2012 & 22.21 \\ 62.5\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 22: 21 & 62.5 \\ 26 / 5 / 2012 & 22.26 & 62.4\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 22: 26 & 62.4 \\ 26 / 5 / 2012 & 22.31 & 61.7\end{array}$ $\begin{array}{lll}\text { 26/5/2012 22:31 } & 61.7 \\ \text { 26/5/2012 22:36 } & 61.9\end{array}$ 26/5/2012 22:41 62.6 $\begin{array}{ll}26 / 5 / 2012 & 22: 46 \\ 61.8 \\ 26 / 5 / 2012 & 22.51 \\ 62.2\end{array}$ $\begin{array}{ll}26 / 2012 & 22: 51 \\ 62.2 \\ 26 / 5 / 2012 & 22: 56 \\ 62.5\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 22: 56 & 62.5 \\ 27 / 5 / 2012 & 7: 01 & 60.4\end{array}$ $\begin{array}{ll}27 / 5 / 2012 & 7.01 \\ 27: 06 & 61.6\end{array}$ $\begin{array}{ll}\text { 27/5/2012 7:11 } & 61.1 \\ 27 / 5 / 20127: 16 & 61.6\end{array}$ $\begin{array}{ll}27 / 5 / 2012 & 7: 16 \\ 27 / 5 / 2012 & 61.6 \\ 7: 21 & 63.1\end{array}$ 27/5/2012 7:26 $\quad 63.2$ $\begin{array}{ll}\text { 27/5/2012 7:31 } & 61.3 \\ 27 / 5 / 2012 \text { 7:36 } & 61.0\end{array}$

$27 / 5 / 2012$ \& $7: 41$

\hline \& 61.6

27/5/2012 7:46 \& 62.0

$27 / 5 / 2012$ \& $7: 51$

\hline 61.2

 $\begin{array}{ll}27 / 5 / 2012 ~ 7: 51 & 61.2 \\ 27 / 5 / 2012 & 7: 56 \\ 61.6\end{array}$ $\begin{array}{ll}27 / 5 / 20128: 01 & 61.5 \\ 27 / 5 / 20128: 06 & 61.9\end{array}$ $\begin{array}{ll}27 / 5 / 2012 \text { 8:06 } & 61.9 \\ 27 / 5 / 2012 \text { 8:11 } & 61.7\end{array}$ $\begin{array}{ll}27 / 5 / 2012 \text { 8:16 } & 62.3 \\ 27 / 5 / 20128: 21 & 63.6\end{array}$ 27/5/2012 8:26 $\begin{array}{ll}27 / 5 / 2012 & 8: 31 \\ 27 / 5 / 2012 & 63.5 \\ 27 & 63.8\end{array}$ $\begin{array}{ll}27 / 5 / 20128: 36 & 63.8 \\ 27 / 5 / 2012 & 8: 41 \\ 63.9\end{array}$ $\begin{array}{ll}27 / 5 / 2012 & 8: 46 \\ 27 / 5 / 23.8 \\ 27 & 61515\end{array}$ $\begin{array}{ll}27 / 5 / 2012 \text { 8:51 } & 64.2 \\ 27 / 5 / 2012 \text { 8:56 } & 64.3\end{array}$ 27/5/2012 9:01 $\begin{array}{ll}27 / 5 / 2012 \text { 9:06 } & 64.1 \\ 27 / 5 / 20129: 11 & 64.0\end{array}$ 27/5/2012 9:16 6 27/5/2012 9:21 27/5/2012 9:26 27/5/2012 9:31 6 27/5/2012 9:36 64.3 $\begin{array}{ll}27 / 5 / 2012 & 9: 41 \\ \text { 27/5/2012 9:46 } & 64.9\end{array}$ 27/5/2012 9:51 65.0 $\begin{array}{lll}\text { 27/5/2012 9:56 } & 65.3 \\ 27 / 5 / 2012 & 10: 01 & 64.8\end{array}$ 27/5/2012 10:06 65.1 27/5/2012 10:11 65.0 27/5/2012 10:16 64.3 27/5/2012 10:21 65.5 27/5/2012 10:26 64.9

$27 / 5 / 2012$ \& $10: 26$ \& 64.9

$27 / 5 / 2012$ \& $10: 31$ \& 64.3

\hline $27 / 5 / 2012$ \& $10: 41$ \& 64.2

$27 / 5 / 2012$ \& $10: 31$

27/5/2012 \& $10: 36$

\hline 1041 \& 64.2

$27 / 5 / 2012$ \& $10: 4$
\end{tabular} 27/5/2012 10:46 64.4 $\begin{array}{lll}27 / 5 / 2012 & 10: 51 & 63.8 \\ 27 / 5 / 2012 & 10: 56 & 63.4\end{array}$

27/5/2012 11:01 63.6 $\begin{array}{lll}27 / 5 / 2012 & 11: 01 & 63.6 \\ 27 / 5 / 2012 & 11 \cdot 06 & 63.2\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 11: 06 & 63.2 \\ \text { 27/5/2012 } 11: 11 & 63.9\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 11: 11 & 63.9 \\ 27 / 5 / 2012 & 11: 16 & 64.0\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 11: 16 & 64.0 \\ 27 / 5 / 2012 & 11: 21 & 63.9\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 11: 21 & 63.9 \\ 27 / 5 / 2012 & 11: 26 & 64.7\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 11: 26 & 64.7 \\ \text { 27/5/2012 } 11: 31 & 64.3\end{array}$ 27/5/2012 11:36 64.3 27/5/2012 11:41 64.2 27/5/2012 11:46 63.6 $\begin{array}{lll}27 / 5 / 2012 & 11: 51 & 63.8 \\ 27 / 5 / 2012 & 11: 56 & 63.5\end{array}$ $\begin{array}{lll}\text { 27/5/2012 } & 11: 56 & 63.5 \\ 27 / 5 / 2012 & 12: 01 & 63.9\end{array}$ $\begin{array}{lll}\text { 27/5/2012 } & 12: 01 & 63.9 \\ 27 / 5 / 2012 & 12: 06 & 65.1\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 12: 11 & 63.6\end{array}$ 27/5/2012 12:16 63.4 27/5/2012 12:21 63.5 27/5/2012 12:26 64.1 $\begin{array}{lll}\text { 27/5/2012 } & 12: 36 & 63.9\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 12: 41 & 63.9\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 12: 41 & 63.9 \\ \text { 27/5/2012 } & 12: 46 & 63.7\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 12: 46 & 63.7 \\ 27 / 5 / 2012 & 12: 51 & 63.7\end{array}$ $\begin{array}{llll}27 / 5 / 2012 & 12: 51 & 63.7 \\ 27 / 5 / 2012 & 12.56 & 64.4\end{array}$ $\begin{array}{lll}\text { 27/5/2012 } & 13: 01 & 63.9\end{array}$ $\begin{array}{lll}\text { 27/5/2012 } & 13: 06 & 62.8\end{array}$ $\begin{array}{lll}\text { 27/5/2012 } & 13: 06 & 62.8 \\ \text { 27/5/2012 } & 13: 11 & 63.5\end{array}$ 27/5/2012 13:16 64.2 27/5/2012 13:21 64.9 27/5/2012 13:26 63.9 $\begin{array}{lll}\text { 27/5/2012 } & 13: 31 & 65.0 \\ 27 / 5 / 2012 & 13: 36 & 63.6\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 13: 36 & 63.6 \\ 27 / 5 / 2012 & 13: 41 & 63.4\end{array}$ $\begin{array}{lll}277 / 5 / 2012 & 13: 46 & 64.1\end{array}$ 27/5/2012 13:51 65.9 27/5/2012 13:56 63.1 27/5/2012 14:01 64.4 $\begin{array}{lll}27 / 5 / 2012 & 14: 06 & 64.2 \\ 27 / 5 / 2012 & 14: 11 & 64.0\end{array}$ 27/5/2012 14:16 64.1 27/5/2012 14:21 64.4 27/5/2012 14:26 64.2 $\begin{array}{lll}27 / 5 / 2012 & 14: 31 & 64.6\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 14: 31 & 64.6 \\ \text { 27/5/2012 } 14: 36 & 64.7\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 14: 36 & 64.7 \\ 27 / 5 / 2012 & 14: 41 & 65.0\end{array}$ 27/5/2012 14:46 64.2 $\begin{array}{lll}27 / 5 / 2012 & 14: 56 & 63.7\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 14: 56 & 63.7 \\ 27 / 5 / 2012 & 15: 01 & 63.9\end{array}$ 27/5/2012 15:06 63.7 27/5/2012 15:11 63.6 27/5/2012 15:16 63.7 27/5/2012 15:21 65.7 27/5/2012 15:26 64.3 $\begin{array}{lll}27 / 5 / 2012 & 15: 31 & 64.0 \\ 27 / 5 / 2012 & 15: 36 & 63.4\end{array}$ 27/5/2012 15:36 63.4 27/5/2012 15:41 63.6 $\begin{array}{lll}27 / 5 / 2012 & 15: 51 & 63.5\end{array}$ 27/5/2012 15:56 63.8 27/5/2012 16:01 63.4 27/5/2012 16:06 64.2 27/5/2012 16:11 64.9 $\begin{array}{lll}27 / 5 / 2012 & 16.11 & 64.9 \\ 27 / 5 / 2012 & 16: 16 & 64.5\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 16: 16 & 64.5 \\ 27 / 5 / 2012 & 16: 21 & 65.4\end{array}$ 27/5/2012 16:26 64.1 27/5/2012 16:31 65.1 $\begin{array}{lll}277 / 5 / 2012 & 16: 36 & 64.2 \\ 27 / 5 / 2012 & 16: 41 & 64.3\end{array}$ 27/5/2012 16:46 63.6 27/5/2012 16:51 63.9 27/5/2012 16:56 64.1 27/5/2012 17:01 64.2 27/5/2012 17:06 64.2 27/5/2012 17:11 64.2 27/5/2012 17:16 64.9 $\begin{array}{lll}27 / 5 / 2012 & 17: 21 & 63.9\end{array}$ 27/5/2012 17:26 63.8 27/5/2012 17:31 63.5 $\begin{array}{lll}27 / 5 / 2012 & 17: 41 & 63.5\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 17: 46 & 63.4\end{array}$ 27/5/2012 17:51 63.0 $\begin{array}{ll}27 / 5 / 2012 & 17: 51 \\ 23.0 \\ 27 / 5 / 2012 & 17: 56 \\ 63.2\end{array}$ 27/5/2012 17:56 63.2 27/5/2012 18:01 62.6 $\begin{array}{lll}27 / 5 / 2012 & 18: 11 & 63.5\end{array}$ 27/5/2012 18:16 63.5 27/5/2012 18:21 64.3 27/5/2012 18:26 63.3 $\begin{array}{ll}27 / 5 / 2012 & 18: 31 \\ 62.7\end{array}$ 27/5/2012 18:36 63.0 27/5/2012 18:41 62.7 27/5/2012 18:46 62.9 27/5/2012 18:51 62.9 27/5/2012 18:56 62.2 27/5/2012 19:01 62.6 27/5/2012 19:06 62.5 27/5/2012 19:11 63.2 27/5/2012 19:16 63.5 27/5/2012 19:26 63.0 27/5/2012 19:31 62.5 $\begin{array}{lll}27 / 5 / 2012 & 19: 36 & 63.0\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 19: 36 & 63.0 \\ 27 / 5 / 2012 & 19: 41 & 62.1\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 19: 41 & 62.1 \\ 27 / 5 / 2012 & 19: 46 & 62.4\end{array}$ $\begin{array}{lll}\text { 27/5/2012 } & 19: 46 & 62.4 \\ \text { 27/5/2012 } & 19: 51 & 62.0\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 19: 51 & 62.0 \\ 27 / 5 / 2012 & 19: 56 & 61.8\end{array}$ $\begin{array}{lll}27 / 5 / 012 & 19: 56 & 61.8 \\ \text { 27/5/2012 20:01 } & 62.1\end{array}$ |27/5/2012 20:06 62.8

27/5/2012 20:11	62.2	28/4/2012 6:01	59.6
27/5/2012 20:16	62.1	28/4/2012 6:06	59.7
27/5/2012 20:21	65.9	28/4/2012 6:11	60.1
27/5/2012 20:26	63.4	28/4/2012 6:16	5
27/5/2012 20:31	62.8	28/4/2012 6:21	5
27/5/2012 20:36	62.1	28/4/2012 6:26	1
27/5/2012 20:41	61.4	28/4/2012 6:31	60.5
27/5/2012 20:46	62.6	28/4/2012 6:36	61.0
27/5/2012 20:51	61.8	28/4/2012 6:41	61.1
27/5/2012 20:56	61.6	28/4/2012 6:46	61.6
27/5/2012 21:01	62.0	28/4/2012 6:51	61.0
27/5/2012 21:06	61.9	28/4/2012 6:56	
27/5/2012 21:11	62.3	28/4/2012 23:01	64.3
27/5/2012 21:16	61.6	28/4/2012 23:06	62.0
27/5/2012 21:21	61.8	28/4/2012 23:11	61.5
27/5/2012 21:26	61.9	28/4/2012 23:16	62.0
27/5/2012 21:31	61.6	28/4/2012 23:21	
27/5/2012 21:36	62.2	28/4/2012 23:26	62.0
27/5/2012 21:41	62.5	28/4/2012 23:31	61.6
27/5/2012 21:46	62.1	28/4/2012 23:36	
27/5/2012 21:51	61.4	28/4/2012 23:4	61.3
27/5/2012 21:56	61.6	28/4/2012 23:46	61.6
27/5/2012 22:01	61.2	28/4/2012 23:51	61.8
27/5/2012 22:06	61.6	28/4/2012 23:56	61.8
27/5/2012 22:11	61.6	29/4/2012 0:01	
27/5/2012 22:16	61.4	29/4/2012 0:06	
27/5/2012 22:21	61.6	29/4/2012 0:11	62.0
27/5/2012 22:26	61.4	29/4/2012 0:16	61.1
27/5/2012 22:31	61.6	29/4/2012 0:21	61.
27/5/2012 22:36	61.4	29/4/2012 0:26	
27/5/2012 22:41	62.1	29/4/2012 0:31	62.6
27/5/2012 22:46	61.5	29/4/2012 0:36	61.0
27/5/2012 22:51	61.1	29/4/2012 0:41	
27/5/2012 22:56	61.8	29/4/2012 0:46	60.2
		29/4/2012 0:51	60.3
		29/4/2012 0:56	
Night-time 23:00	07:00	29/4/2012 1:01	4
		29/4/2012 1:06	
28/4/2012 0:01	62.7	29/4/2012 1:11	9
28/4/2012 0:06	62.6	29/4/2012 1:16	. 9
28/4/2012 0:11	63.7	29/4/2012 1:21	
28/4/2012 0:16	62.5	29/4/2012 1:26	60.0
28/4/2012 0:21	62.9	29/4/2012 1:31	60.4
28/4/2012 0:26	62.5	29/4/2012 1:36	
28/4/2012 0:31	62.2	29/4/2012 1:41	59.4
28/4/2012 0:36	61.3	29/4/2012 1:46	59.5
28/4/2012 0:41	61.7	29/4/2012 1:51	59.2
28/4/2012 0:46	61.9	29/4/2012 1:56	59.7
28/4/2012 0:51	61.4	29/4/2012 2:01	\%
28/4/2012 0:56	61.4	29/4/2012 2:06	. 0
28/4/2012 1:01	61.5	29/4/2012 2:11	59.0
28/4/2012 1:06	65.4	29/4/2012 2:16	59.
28/4/2012 1:11	64.8	29/4/2012 2:21	59.3
28/4/2012 1:16	63.3	29/4/2012 2:26	59.0
28/4/2012 1:21	62.7	29/4/2012 2:31	
28/4/2012 1:26	64.8	29/4/2012 2:36	60.6
28/4/2012 1:31	63.0	29/4/2012 2:41	58.7
28/4/2012 1:36	63.1	29/4/2012 2:46	58.9
28/4/2012 1:41	63.8	29/4/2012 2:51	1
28/4/2012 1:46	66.1	29/4/2012 2:56	
28/4/2012 1:51	61.8	29/4/2012 3:01	58.1
28/4/2012 1:56	62.2	29/4/2012 3:06	57.9
28/4/2012 2:01	65.0	29/4/2012 3:11	57.9
28/4/2012 2:06	61.8	29/4/2012 3:16	57.8
28/4/2012 2:11	62.0	29/4/2012 3:21	58.3
28/4/2012 2:16	63.4	29/4/2012 3:26	
28/4/2012 2:21	61.9	29/4/2012 3:31	58.8
28/4/2012 2:26	61.3	29/4/2012 3:36	
28/4/2012 2:31	61.9	29/4/2012 3:41	
28/4/2012 2:36	62.3	29/4/2012 3:46	58.
28/4/2012 2:41	61.1	29/4/2012 3:51	58.3
28/4/2012 2:46	61.3	29/4/2012 3:56	58.1
28/4/2012 2:51	63.0	29/4/2012 4:01	57.5
28/4/2012 2:56	65.7	29/4/2012 4:06	
28/4/2012 3:01	60.7	29/4/2012 4:11	. 7
28/4/2012 3:06	61.7	29/4/2012 4:16	6
28/4/2012 3:11	61.0	29/4/2012 4:21	58.2
28/4/2012 3:16	60.4	29/4/2012 4:26	
28/4/2012 3:21	60.5	29/4/2012 4:31	58
28/4/2012 3:26	62.6	29/4/2012 4:36	58.
28/4/2012 3:31	61.5	29/4/2012 4:41	.9
28/4/2012 3:36	63.0	29/4/2012 4:46	
28/4/2012 3:41	59.9	29/4/2012 4:51	57.7
28/4/2012 3:46	60.3	29/4/2012 4:56	60.0
28/4/2012 3:51	61.6	29/4/2012 5:01	57.9
28/4/2012 3:56	63.2	29/4/2012 5:06	58.1
28/4/2012 4:01	59.3	29/4/2012 5:11	58.3
28/4/2012 4:06	61.0	29/4/2012 5:16	58.6
28/4/2012 4:11	60.8	29/4/2012 5:21	57.8
28/4/2012 4:16	59.2	29/4/2012 5:26	
28/4/2012 4:21	59.0	29/4/2012 5:31	57
28/4/2012 4:26	58.8	29/4/2012 5:36	57.
28/4/2012 4:31	59.3	29/4/2012 5:41	58.5
28/4/2012 4:36	58.5	29/4/2012 5:46	58.8
28/4/2012 4:41	61.0	29/4/2012 5:51	58.2
28/4/2012 4:46	59.8	29/4/2012 5:56	58.3
28/4/2012 4:51	59.0	29/4/2012 6:01	58.2
28/4/2012 4:56	58.8	29/4/2012 6:06	57.8
28/4/2012 5:01	59.3	29/4/2012 6:11	58.9
28/4/2012 5:06	59.1	29/4/2012 6:16	59.1
28/4/2012 5:11	62.3	29/4/2012 6:21	58.
28/4/2012 5:16	59.0	29/4/2012 6:26	58.
28/4/2012 5:21	58.9	29/4/2012 6:31	59.0
28/4/2012 5:26	58.3	29/4/2012 6:36	59.8
28/4/2012 5:31	59.4	29/4/2012 6:41	60
28/4/2012 5:36	60.1	29/4/2012 6:46	60.6
28/4/2012 5:41	59.6	29/4/2012 6:51	60.
28/4/2012 5:46	58.9	29/4/2012 6:56	61.6
$\begin{aligned} & 28 / 4 / 20125: 51 \\ & 28 / 4 / 20125: 56 \end{aligned}$	$\begin{aligned} & 59.5 \\ & 59.2 \end{aligned}$	29/4/2012 23:01	

59.6

28/4/2012 6:01 | $29 / 4 / 2012$ | $23: 11$ |
| :--- | :--- |
| 60.9 | |
| $29 / 4 / 2012$ | $23: 16$ |
| 61.1 | | 29/4/2012 23:21 61.4 $\begin{array}{ll}\text { 29/4/2012 } 23: 21 & 61.4 \\ \text { 29/2012 } & 60.3\end{array}$ $\begin{array}{lll}\text { 29/4/2012 } 23: 26 & 60.3 \\ 29 / 4 / 2012 & 23.31 & 60.6\end{array}$ 29/4/2012 23:31 60.6 29/4/2012 23:36 60.6 29/4/2012 23:41 61.0 29/4/2012 23:46 60.6 29/4/2012 23:51 60.8 29/4/2012 23:56 60.4 30/4/2012 0:01 60.3 30/4/2012 0:06 61.0 30/4/2012 0:11 30/4/2012 0:16 30/4/2012 0:21 30/4/2012 0:26 30/4/2012 0:31 30/4/2012 0:36 30/4/2012 0:41 30/4/2012 0:51 $30 / 4 / 2012$ 0:51

$30 / 4 / 20120: 56$ $30 / 4 / 2012$ 1.56 $30 / 4 / 20121$ 1:01 30/4/2012 1:06 30/4/2012 1:16 30/4/2012 1:21 30/4/2012 1:26 30/4/2012 1:31 30/4/2012 1:36 30/4/2012 1:41 30/4/2012 1:46 30/4/2012 1:51 30/4/2012 1:56 30/4/2012 2:01 30/4/2012 2:06 30/4/2012 2:11 30/4/2012 2:21 30/4/2012 2:26 30/4/2012 2:31 $30 / 4 / 2012$ 2:36
$30 / 4 / 2012$ 2:41 $30 / 4 / 20122.46$ 30/4/2012 2:51 30/4/2012 2:56 $30 / 4 / 2012$ 3:06 30/4/2012 3:06 30/4/2012 3:11 30/4/2012 3:21 30/4/2012 3:26 30/4/2012 3:31 30/4/2012 3:36 $30 / 4 / 2012$ 3:41
$30 / 4 / 2012$ 3:46 30/4/2012 3:51 30/4/2012 3:56 30/4/2012 4:01 30/4/2012 4:11 30/4/2012 4:16 30/4/2012 4:21 30/4/2012 4:26 30/4/2012 4:31 $30 / 4 / 2012$ 4:41 30/4/2012 4:46 30/4/2012 4:51 30/4/2012 4:56 30/4/2012 5:01 30/4/2012 5:06 30/4/2012 5:11 30/4/2012 5:21 30/4/2012 5:26 30/4/2012 5:31 30/4/2012 5:41 30/4/2012 5:46 30/4/2012 5:51 30/4/2012 5:56 $30 / 4 / 2012$ 6:01
$30 / 4 / 2012$ 6:06 30/4/2012 6:11 30/4/2012 6:16 30/4/2012 6:21 30/4/2012 6:31 $30 / 4 / 2012$ 6:31
$30 / 4 / 2012$ 6:36 30/4/2012 6:41 30/4/2012 6:46 30/4/2012 6:51 $\begin{array}{ll}30 / 4 / 2012 \text { 6:56 } & 62.4\end{array}$ $\begin{array}{lll}30 / 4 / 2012 & 23: 01 & 61.3 \\ 30 / 4 / 2012 & 23: 06 & 61.1\end{array}$ $\begin{array}{ll}30 / 4 / 2012 & 23: 06 \\ 61.1 \\ 30 / 4 / 2012 & 23: 11 \\ 60.8\end{array}$ $\begin{array}{lll}30 / 4 / 2012 & 23: 16 & 62.4 \\ 30 / 4 / 2012 & 23: 21 & 61.7\end{array}$ 30/4/2012 23:26 62.2

Real-time Noise	Data	1 (FEHD Hong K	ng Tra	ction Whitefield	epot						
1/5/2012 0:21	62.9	2/5/2012 1:31	59.2	\|3/5/2012 2:41	57.3	\|4/5/2012 3:51	58.5	\|5/5/2012 5:01	59.2	\|6/5/2012 6:11	0.2
1/5/2012 0:26	63.1	2/5/2012 1:36	59.7	3/5/2012 2:46	57.4	4/5/2012 3:56	58.9	5/5/2012 5:06	58.3	6/5/2012 6:16	60.3
1/5/2012 0:31	62.7	2/5/2012 1:41	59.1	3/5/2012 2:51	57.3	4/5/2012 4:01	59.2	5/5/2012 5:11	58.2	6/5/2012 6:21	65.3
1/5/2012 0:36	63.1	2/5/2012 1:46	58.8	3/5/2012 2:56	57.1	4/5/2012 4:06	58.2	5/5/2012 5:16	61.0	6/5/2012 6:26	61.3
1/5/2012 0:41	62.8	2/5/2012 1:51	59.0	3/5/2012 3:01	57.0	4/5/2012 4:11	58.5	5/5/2012 5:21	59.1	6/5/2012 6:31	62.0
1/5/2012 0:46	62.6	2/5/2012 1:56	58.6	3/5/2012 3:06	56.5	4/5/2012 4:16	57.6	5/5/2012 5:26	59.2	6/5/2012 6:36	60.8
1/5/2012 0:51	62.5	2/5/2012 2:01	58.8	3/5/2012 3:11	57.6	4/5/2012 4:21	59.2	5/5/2012 5:31	59.3	6/5/2012 6:41	61.2
1/5/2012 0:56	62.7	2/5/2012 2:06	59.4	3/5/2012 3:16	64.3	4/5/2012 4:26	58.1	5/5/2012 5:36	59.5	6/5/2012 6:46	5 0
1/5/2012 1:01	62.4	2/5/2012 2:11	59.0	3/5/2012 3:21	57.3	4/5/2012 4:31	59.0	5/5/2012 5:41	59.8	6/5/2012 6:51	64.2
1/5/2012 1:06	62.7	2/5/2012 2:16	57.5	3/5/2012 3:26	57.7	4/5/2012 4:36	58.2	5/5/2012 5:46	59.9	6/5/2012 6:56	60.7
1/5/2012 1:11	61.8	2/5/2012 2:21	59.2	3/5/2012 3:31	57.5	4/5/2012 4:41	59.4	5/5/2012 5:51	60.6	6/5/2012 23:01	61.6
1/5/2012 1:16	63.0	2/5/2012 2:26	58.8	3/5/2012 3:36	58.3	4/5/2012 4:46	59.8	5/5/2012 5:56	59.0	6/5/2012 23:06	62.1
1/5/2012 1:21	62.6	2/5/2012 2:31	58.1	3/5/2012 3:41	57.6	4/5/2012 4:51	59.9	5/5/2012 6:01	59.9	6/5/2012 23:11	61.5
1/5/2012 1:26	61.9	2/5/2012 2:36	59.0	3/5/2012 3:46	57.2	4/5/2012 4:56	58.4	5/5/2012 6:06	60.4	6/5/2012 23:16	61.6
1/5/2012 1:31	61.6	2/5/2012 2:41	58.3	3/5/2012 3:51	56.6	4/5/2012 5:01	58.1	5/5/2012 6:11	60.6	6/5/2012 23:21	61.1
1/5/2012 1:36	61.2	2/5/2012 2:46	57.9	3/5/2012 3:56	58.1	4/5/2012 5:06	58.8	5/5/2012 6:16	60.6	6/5/2012 23:26	61.8
1/5/2012 1:41	61.1	2/5/2012 2:51	57.6	3/5/2012 4:01	56.7	4/5/2012 5:11	59.1	5/5/2012 6:21	61.1	6/5/2012 23:31	61.2
1/5/2012 1:46	61.0	2/5/2012 2:56	57.4	3/5/2012 4:06	58.1	4/5/2012 5:16	58.1	5/5/2012 6:26	61.7	6/5/2012 23:36	60.9
1/5/2012 1:51	60.5	2/5/2012 3:01	57.8	3/5/2012 4:11	57.0	4/5/2012 5:21	59.1	5/5/2012 6:31	61.4	6/5/2012 23:41	61.3
1/5/2012 1:56	60.6	2/5/2012 3:06	59.6	3/5/2012 4:16	57.3	4/5/2012 5:26	59.7	5/5/2012 6:36	62.6	6/5/2012 23:46	61.5
1/5/2012 2:01	61.2	2/5/2012 3:11	57.7	3/5/2012 4:21	57.8	4/5/2012 5:31	59.7	5/5/2012 6:41	62.1	6/5/2012 23:51	60.3
1/5/2012 2:06	59.9	2/5/2012 3:16	56.9	3/5/2012 4:26	57.5	4/5/2012 5:36	60.1	5/5/2012 6:46	61.5	6/5/2012 23:56	61.2
1/5/2012 2:11	60.6	2/5/2012 3:21	57.0	3/5/2012 4:31	58.1	4/5/2012 5:41	61.5	5/5/2012 6:51	61.9	7/5/2012 0:01	60.7
1/5/2012 2:16	61.3	2/5/2012 3:26	56.9	3/5/2012 4:36	57.4	4/5/2012 5:46	60.5	5/5/2012 6:56	62.5	7/5/2012 0:06	61.2
1/5/2012 2:21	60.5	2/5/2012 3:31	58.2	3/5/2012 4:41	57.8	4/5/2012 5:51	62.0	5/5/2012 23:01	62.0	7/5/2012 0:11	59.9
1/5/2012 2:26	61.1	2/5/2012 3:36	57.6	3/5/2012 4:46	57.4	4/5/2012 5:56	61.4	5/5/2012 23:06	62.1	7/5/2012 0:16	60.8
1/5/2012 2:31	60.5	2/5/2012 3:41	58.0	3/5/2012 4:51	57.6	4/5/2012 6:01	62.7	5/5/2012 23:11	62.5	7/5/2012 0:21	60.5
1/5/2012 2:36	59.7	2/5/2012 3:46	57.8	3/5/2012 4:56	57.7	4/5/2012 6:06	61.9	5/5/2012 23:16	64.0	7/5/2012 0:26	59.8
1/5/2012 2:41	60.4	2/5/2012 3:51	57.7	3/5/2012 5:01	57.8	4/5/2012 6:11	61.7	5/5/2012 23:21	62.0	7/5/2012 0:31	60.1
1/5/2012 2:46	60.7	2/5/2012 3:56	56.8	3/5/2012 5:06	57.0	4/5/2012 6:16	62.3	5/5/2012 23:26	61.9	715/2012 0:36	60.8
1/5/2012 2:51	60.1	2/5/2012 4:01	56.6	3/5/2012 5:11	58.1	4/5/2012 6:21	63.0	5/5/2012 23:31	63.1	7/5/2012 0:41	60.0
1/5/2012 2:56	59.3	2/5/2012 4:06	58.2	3/5/2012 5:16	58.4	4/5/2012 6:26	63.1	5/5/2012 23:36	62.8	7/5/2012 0:46	58.5
1/5/2012 3:01	60.6	2/5/2012 4:11	56.7	3/5/2012 5:21	58.3	4/5/2012 6:31	63.5	5/5/2012 23:41	61.2	7/5/2012 0:51	59.1
1/5/2012 3:06	59.9	2/5/2012 4:16	57.5	3/5/2012 5:26	58.7	4/5/2012 6:36	63.4	5/5/2012 23:46	62.2	7/5/2012 0:56	59.0
1/5/2012 3:11	59.7	2/5/2012 4:21	56.9	3/5/2012 5:31	58.5	4/5/2012 6:41	64.0	5/5/2012 23:51	62.3	7/5/2012 1:01	59.3
1/5/2012 3:16	59.7	2/5/2012 4:26	57.5	3/5/2012 5:36	58.8	4/5/2012 6:46	64.5	5/5/2012 23:56	61.9	715/2012 1:06	58.5
1/5/2012 3:21	59.8	2/5/2012 4:31	57.2	3/5/2012 5:41	58.3	4/5/2012 6:51	64.8	6/5/2012 0:01	61.6	7/5/2012 1:11	59.1
1/5/2012 3:26	59.5	2/5/2012 4:36	57.0	3/5/2012 5:46	59.5	4/5/2012 6:56	65.1	6/5/2012 0:06	62.5	7/5/2012 1:16	59.5
1/5/2012 3:31	60.5	2/5/2012 4:41	57.2	3/5/2012 5:51	59.9	4/5/2012 23:01	66.4	6/5/2012 0:11	61.9	7/5/2012 1:21	58.7
1/5/2012 3:36	59.0	2/5/2012 4:46	57.6	3/5/2012 5:56	60.8	4/5/2012 23:06	65.9	6/5/2012 0:16	61.5	7/5/2012 1:26	58.3
1/5/2012 3:41	58.4	2/5/2012 4:51	57.1	3/5/2012 6:01	60.5	4/5/2012 23:11	65.3	6/5/2012 0:21	61.4	7/5/2012 1:31	58.5
1/5/2012 3:46	59.3	2/5/2012 4:56	58.3	3/5/2012 6:06	60.4	4/5/2012 23:16	66.0	6/5/2012 0:26	61.0	7/5/2012 1:36	57.8
1/5/2012 3:51	60.2	2/5/2012 5:01	57.9	3/5/2012 6:11	60.1	4/5/2012 23:21	66.0	6/5/2012 0:31	61.9	7/5/2012 1:41	58.5
1/5/2012 3:56	58.7	2/5/2012 5:06	57.8	3/5/2012 6:16	60.3	4/5/2012 23:26	65.8	6/5/2012 0:36	63.2	7/5/2012 1:46	58.1
1/5/2012 4:01	60.0	2/5/2012 5:11	57.0	3/5/2012 6:21	61.2	4/5/2012 23:31	65.8	6/5/2012 0:41	61.0	7/5/2012 1:51	58.4
1/5/2012 4:06	58.9	2/5/2012 5:16	58.5	3/5/2012 6:26	61.3	4/5/2012 23:36	65.4	6/5/2012 0:46	61.2	715/2012 1:56	57.7
1/5/2012 4:11	58.6	2/5/2012 5:21	56.7	3/5/2012 6:31	61.7	4/5/2012 23:41	65.1	6/5/2012 0:51	60.4	7/5/2012 2:01	57.8
1/5/2012 4:16	59.7	2/5/2012 5:26	57.4	3/5/2012 6:36	61.2	4/5/2012 23:46	65.9	6/5/2012 0:56	60.7	715/2012 2:06	56.9
1/5/2012 4:21	59.0	2/5/2012 5:31	58.7	3/5/2012 6:41	61.8	4/5/2012 23:51	65.3	6/5/2012 1:01	60.3	7/5/2012 2:11	58.0
1/5/2012 4:26	59.3	2/5/2012 5:36	58.0	3/5/2012 6:46	62.7	4/5/2012 23:56	65.6	6/5/2012 1:06	60.5	7/5/2012 2:16	58.4
1/5/2012 4:31	58.7	2/5/2012 5:41	59.8	3/5/2012 6:51	62.6	5/5/2012 0:01	62.0	6/5/2012 1:11	60.1	715/2012 2:21	57.6
1/5/2012 4:36	59.7	2/5/2012 5:46	58.6	3/5/2012 6:56	62.8	5/5/2012 0:06	62.5	6/5/2012 1:16	60.3	715/2012 2:26	56.9
1/5/2012 4:41	58.1	2/5/2012 5:51	59.3	3/5/2012 23:01	61.0	5/5/2012 0:11	62.9	6/5/2012 1:21	60.6	7/5/2012 2:31	57.1
1/5/2012 4:46	58.3	2/5/2012 5:56	58.3	3/5/2012 23:06	62.0	5/5/2012 0:16	62.4	6/5/2012 1:26	60.0	715/2012 2:36	58.0
1/5/2012 4:51	58.5	2/5/2012 6:01	58.9	3/5/2012 23:11	61.4	5/5/2012 0:21	62.4	6/5/2012 1:31	60.4	7/5/2012 2:41	57.7
1/5/2012 4:56	59.4	2/5/2012 6:06	58.9	3/5/2012 23:16	62.2	5/5/2012 0:26	61.9	6/5/2012 1:36	60.1	715/2012 2:46	56.4
1/5/2012 5:01	58.4	2/5/2012 6:11	60.5	3/5/2012 23:21	64.9	5/5/2012 0:31	61.5	6/5/2012 1:41	59.5	715/2012 2:51	57.0
1/5/2012 5:06	58.3	2/5/2012 6:16	59.9	3/5/2012 23:26	64.7	5/5/2012 0:36	61.3	6/5/2012 1:46	59.7	715/2012 2:56	57.3
1/5/2012 5:11	59.4	2/5/2012 6:21	59.7	3/5/2012 23:31	63.0	5/5/2012 0:41	61.5	6/5/2012 1:51	59.5	715/2012 3:01	56.5
1/5/2012 5:16	58.9	2/5/2012 6:26	60.3	3/5/2012 23:36	62.9	5/5/2012 0:46	61.6	6/5/2012 1:56	59.4	715/2012 3:06	57.6
1/5/2012 5:21	58.7	2/5/2012 6:31	59.9	3/5/2012 23:41	64.8	5/5/2012 0:51	61.0	6/5/2012 2:01	59.5	7/5/2012 3:11	57.2
1/5/2012 5:26	58.7	2/5/2012 6:36	60.9	3/5/2012 23:46	64.6	5/5/2012 0:56	61.2	6/5/2012 2:06	59.6	7/5/2012 3:16	56.4
1/5/2012 5:31	59.4	2/5/2012 6:41	61.5	3/5/2012 23:51	62.5	5/5/2012 1:01	62.3	6/5/2012 2:11	60.1	715/2012 3:21	56.7
1/5/2012 5:36	59.5	2/5/2012 6:46	61.4	3/5/2012 23:56	62.8	5/5/2012 1:06	60.5	6/5/2012 2:16	59.4	715/2012 3:26	56.3
1/5/2012 5:41	58.8	2/5/2012 6:51	61.8	4/5/2012 0:01	62.8	5/5/2012 1:11	60.9	6/5/2012 2:21	59.5	715/2012 3:31	55.8
1/5/2012 5:46	59.8	2/5/2012 6:56	61.5	4/5/2012 0:06	62.6	5/5/2012 1:16	62.3	6/5/2012 2:26	60.0	715/2012 3:36	57.6
1/5/2012 5:51	60.0	2/5/2012 23:01	64.5	4/5/2012 0:11	62.7	5/5/2012 1:21	61.1	6/5/2012 2:31	59.7	7/5/2012 3:41	58.0
1/5/2012 5:56	59.7	2/5/2012 23:06	64.2	4/5/2012 0:16	62.2	5/5/2012 1:26	62.0	6/5/2012 2:36	61.3	715/2012 3:46	57.2
1/5/2012 6:01	59.1	2/5/2012 23:11	64.4	4/5/2012 0:21	62.8	5/5/2012 1:31	61.7	6/5/2012 2:41	60.4	7/5/2012 3:51	57.5
1/5/2012 6:06	60.5	2/5/2012 23:16	64.1	4/5/2012 0:26	62.9	5/5/2012 1:36	61.2	6/5/2012 2:46	59.9	715/2012 3:56	56.6
1/5/2012 6:11	59.0	2/5/2012 23:21	64.6	4/5/2012 0:31	62.0	5/5/2012 1:41	60.7	6/5/2012 2:51	59.6	7/5/2012 4:01	56.4
1/5/2012 6:16	60.3	2/5/2012 23:26	64.0	4/5/2012 0:36	62.4	5/5/2012 1:46	59.6	6/5/2012 2:56	60.1	7/5/2012 4:06	56.4
1/5/2012 6:21	59.7	2/5/2012 23:31	63.7	4/5/2012 0:41	62.0	5/5/2012 1:51	59.4	6/5/2012 3:01	60.1	7/5/2012 4:11	56.3
1/5/2012 6:26	59.7	2/5/2012 23:36	64.3	4/5/2012 0:46	61.7	5/5/2012 1:56	59.4	6/5/2012 3:06	59.6	7/5/2012 4:16	57.3
1/5/2012 6:31	60.6	2/5/2012 23:41	63.0	4/5/2012 0:51	60.7	5/5/2012 2:01	59.4	6/5/2012 3:11	59.6	715/2012 4:21	56.7
1/5/2012 6:36	62.0	2/5/2012 23:46	63.4	4/5/2012 0:56	61.1	5/5/2012 2:06	59.4	6/5/2012 3:16	59.4	7/5/2012 4:26	57.4
1/5/2012 6:41	60.9	2/5/2012 23:51	63.3	4/5/2012 1:01	62.2	5/5/2012 2:11	59.4	6/5/2012 3:21	58.6	7/5/2012 4:31	56.5
1/5/2012 6:46	61.2	2/5/2012 23:56	63.1	4/5/2012 1:06	60.1	5/5/2012 2:16	59.3	6/5/2012 3:26	59.6	715/2012 4:36	57.0
1/5/2012 6:51	62.1	3/5/2012 0:01	61.9	4/5/2012 1:11	59.6	5/5/2012 2:21	59.6	6/5/2012 3:31	59.4	7/5/2012 4:41	56.9
1/5/2012 6:56	62.1	3/5/2012 0:06	61.1	4/5/2012 1:16	60.7	5/5/2012 2:26	59.6	6/5/2012 3:36	58.7	7/5/2012 4:46	57.2
1/5/2012 23:01	64.0	3/5/2012 0:11	62.1	4/5/2012 1:21	60.3	5/5/2012 2:31	59.7	6/5/2012 3:41	59.3	7/5/2012 4:51	56.8
1/5/2012 23:06	64.3	3/5/2012 0:16	61.1	4/5/2012 1:26	60.0	5/5/2012 2:36	59.3	6/5/2012 3:46	58.8	7/5/2012 4:56	57.6
1/5/2012 23:11	63.8	3/5/2012 0:21	60.3	4/5/2012 1:31	60.7	5/5/2012 2:41	59.5	6/5/2012 3:51	61.1	7/5/2012 5:01	57.7
1/5/2012 23:16	64.0	3/5/2012 0:26	60.7	4/5/2012 1:36	59.7	5/5/2012 2:46	59.0	6/5/2012 3:56	58.5	715/2012 5:06	57.3
1/5/2012 23:21	63.6	3/5/2012 0:31	60.1	4/5/2012 1:41	60.5	5/5/2012 2:51	59.1	6/5/2012 4:01	58.4	715/2012 5:11	57.9
1/5/2012 23:26	64.4	3/5/2012 0:36	59.6	4/5/2012 1:46	60.2	5/5/2012 2:56	59.0	6/5/2012 4:06	59.0	7/5/2012 5:16	58.1
1/5/2012 23:31	63.6	3/5/2012 0:41	59.7	4/5/2012 1:51	60.5	5/5/2012 3:01	59.1	6/5/2012 4:11	59.1	715/2012 5:21	58.2
1/5/2012 23:36	63.3	3/5/2012 0:46	59.8	4/5/2012 1:56	59.9	5/5/2012 3:06	58.6	6/5/2012 4:16	58.6	715/2012 5:26	59.0
1/5/2012 23:41	63.6	3/5/2012 0:51	59.4	4/5/2012 2:01	60.3	5/5/2012 3:11	58.6	6/5/2012 4:21	58.4	715/2012 5:31	58.8
1/5/2012 23:46	63.6	3/5/2012 0:56	59.3	4/5/2012 2:06	59.4	5/5/2012 3:16	58.9	6/5/2012 4:26	60.1	715/2012 5:36	59.1
1/5/2012 23:51	63.6	3/5/2012 1:01	59.2	4/5/2012 2:11	58.9	5/5/2012 3:21	58.7	6/5/2012 4:31	58.9	715/2012 5:41	59.5
1/5/2012 23:56	63.4	3/5/2012 1:06	59.9	4/5/2012 2:16	59.5	5/5/2012 3:26	58.9	6/5/2012 4:36	59.9	7/5/2012 5:46	59.6
2/5/2012 0:01	61.1	3/5/2012 1:11	59.6	4/5/2012 2:21	59.0	5/5/2012 3:31	58.9	6/5/2012 4:41	58.3	7/5/2012 5:51	59.7
2/5/2012 0:06	61.8	3/5/2012 1:16	58.7	4/5/2012 2:26	59.7	5/5/2012 3:36	59.2	6/5/2012 4:46	58.5	7/5/2012 5:56	59.4
2/5/2012 0:11	61.1	3/5/2012 1:21	58.7	4/5/2012 2:31	59.8	5/5/2012 3:41	58.0	6/5/2012 4:51	58.6	715/2012 6:01	60.2
2/5/2012 0:16	60.7	3/5/2012 1:26	59.5	4/5/2012 2:36	59.1	5/5/2012 3:46	58.8	6/5/2012 4:56	59.2	715/2012 6:06	59.9
2/5/2012 0:21	61.0	3/5/2012 1:31	58.7	4/5/2012 2:41	59.5	5/5/2012 3:51	58.5	6/5/2012 5:01	58.7	7/5/2012 6:11	62.0
2/5/2012 0:26	61.3	3/5/2012 1:36	58.3	4/5/2012 2:46	59.5	5/5/2012 3:56	57.9	6/5/2012 5:06	59.1	7/5/2012 6:16	61.4
2/5/2012 0:31	60.6	3/5/2012 1:41	58.5	4/5/2012 2:51	59.0	5/5/2012 4:01	57.6	6/5/2012 5:11	58.6	715/2012 6:21	61.2
2/5/2012 0:36	60.5	3/5/2012 1:46	58.3	4/5/2012 2:56	59.2	5/5/2012 4:06	58.5	6/5/2012 5:16	59.3	7/5/2012 6:26	64.0
2/5/2012 0:41	60.5	3/5/2012 1:51	58.0	4/5/2012 3:01	59.2	5/5/2012 4:11	58.5	6/5/2012 5:21	58.9	7/5/2012 6:31	61.9
2/5/2012 0:46	60.2	3/5/2012 1:56	57.9	4/5/2012 3:06	58.3	5/5/2012 4:16	58.6	6/5/2012 5:26	59.1	7/5/2012 6:36	62.3
2/5/2012 0:51	59.7	3/5/2012 2:01	58.4	4/5/2012 3:11	59.5	5/5/2012 4:21	58.3	6/5/2012 5:31	59.1	7/5/2012 6:41	63.3
2/5/2012 0:56	59.8	3/5/2012 2:06	57.3	4/5/2012 3:16	57.9	5/5/2012 4:26	58.1	6/5/2012 5:36	59.5	7/5/2012 6:46	63.3
2/5/2012 1:01	60.4	3/5/2012 2:11	58.3	4/5/2012 3:21	58.2	5/5/2012 4:31	58.6	6/5/2012 5:41	59.6	7/5/2012 6:51	62.8
2/5/2012 1:06	59.6	3/5/2012 2:16	58.4	4/5/2012 3:26	58.4	5/5/2012 4:36	58.2	6/5/2012 5:46	59.4	715/2012 6:56	63.4
2/5/2012 1:11	59.6	3/5/2012 2:21	57.2	4/5/2012 3:31	59.7	5/5/2012 4:41	57.4	6/5/2012 5:51	59.3	7/5/2012 23:01	61.5
2/5/2012 1:16	58.9	3/5/2012 2:26	57.2	4/5/2012 3:36	59.6	5/5/2012 4:46	58.0	6/5/2012 5:56	59.5	7/5/2012 23:06	61.4
2/5/2012 1:21	59.3	3/5/2012 2:31	57.6	4/5/2012 3:41	59.5	5/5/2012 4:51	58.2	6/5/2012 6:01	59.4	7/5/2012 23:11	61.5
2/5/2012 1:26	58.7	3/5/2012 2:36	57.5	4/5/2012 3:46	59.7	5/5/2012 4:56	58.6	6/5/2012 6:06	60.3	17/5/2012 23:16	62.1

21/5/2012 5:21 58.3 21/5/2012 5:26 $\quad 58.8$ 21/5/2012 5:31 $\quad 59.2$ 21/5/2012 5:36 59.2 21/5/20125.41 59.2 21/5/2012 5:51 21/5/2012 5:56 21/5/2012 6:01 21/5/2012 6:06 21/5/2012 6:11 21/5/2012 6:16 60.9 21/5/2012 6:21 61.1 21/5/2012 6:26 61.7 21/5/2012 6:31 21/5/2012 6:36
$21 / 5 / 2012$ 6:41 21/5/2012 6:46 21/5/2012 6:51 $\begin{array}{ll}21 / 5 / 20126: 56 & 63.4\end{array}$ 21/5/2012 23:01 61.9 21/5/2012 23:06 62.2 21/5/2012 $23: 11 \quad 62.8$ 21/5/2012 23.1661 .4 21/5/2012 23:21 61.7 21/5/2012 23:26 61.7 21/5/2012 23:31 61.7 21/5/2012 23:36 61.8 21/5/2012 23:41 61.4 21/5/2012 23:46 60.9 21/5/2012 23:51 61.2 21/5/2012 23:56 61.6 22/5/2012 0:01 60.9 22/5/2012 0:06 61.6 $\begin{array}{ll}22 / 5 / 2012 & 0: 11 \\ 61.5 \\ 22 / 5 / 2012 & 0: 16 \\ 60.9\end{array}$ 22/5/2012 0:21 61.1 22/5/2012 0:26 61.5 22/5/2012 0:31 60.1 22/5/2012 0:36 22/5/2012 0:41 22/5/2012 0:46 22/5/2012 0:51 22/5/2012 0:56 22/5/2012 1:01 22/5/2012 1:06 22/5/2012 1:11 22/5/2012 1:161 22/5/2012 1:26 22/5/2012 1:31 22/5/2012 1:36 22/5/2012 1:41 22/5/2012 1:46 22/5/2012 1:51 22/5/2012 2:01 22/5/2012 2:06 22/5/2012 2:11 $\quad 59.1$ 22/5/2012 2:16 58.2 22/5/2012 2:21 22/5/2012 2:26 22/5/2012 2:31 22/5/2012 2:36 22/5/2012 2:41 22/5/2012 2:46 22/5/2012 2:56 22/5/2012 3:01 22/5/2012 3:06 22/5/2012 3:11 22/5/2012 3:16 22/5/2012 3:21 22/5/2012 3:26 $\begin{array}{ll}22 / 5 / 20123: 31 & 57.9\end{array}$ 22/5/2012 3:36 58.7 $\begin{array}{ll}\text { 22/5/2012 3:41 } & 58.5 \\ \text { 22/5/2012 3:46 } & 58.3\end{array}$ 22/5/2012 3:51 58.4 22/5/2012 3:56 22/5/2012 4:01 22/5/2012 4:11 22/5/2012 4:16 22/5/2012 4:21 22/5/2012 4:26 22/5/2012 4:31 22/5/2012 4:36 22/5/2012 4:46 22/5/2012 4:51 22/5/2012 4:56 22/5/2012 5:01 22/5/2012 5:06 22/5/2012 5:11 22/5/2012 5:16 22/5/2012 5:26 22/5/2012 5:31 22/5/2012 5:36 22/5/2012 5:46 22/5/2012 5:51 22/5/2012 5:56 22/5/2012 6:01 22/5/2012 6:06 22/5/2012 6:11 22/5/2012 6:16 22/5/2012 6:21 22/5/2012 6:26

22/5/2012 6:31	61.4	23/5/2012 23:41	63.1
22/5/2012 6:36	62.4	23/5/2012 23:46	63.1
22/5/2012 6:41	62.9	23/5/2012 23:51	62.9
22/5/2012 6:46	64.4	23/5/2012 23:56	62.8
22/5/2012 6:51	63.0	24/5/2012 0:01	61.0
22/5/2012 6:56	63.0	24/5/2012 0:06	61.0
22/5/2012 23:01	64.1	24/5/2012 0:11	61.4
22/5/2012 23:06	63.2	24/5/2012 0:16	60.6
22/5/2012 23:11	63.6	24/5/2012 0:21	60.9
22/5/2012 23:16	63.8	24/5/2012 0:26	62.3
22/5/2012 23:21	63.9	24/5/2012 0:31	60.0
22/5/2012 23:26	63.4	24/5/2012 0:36	60.6
22/5/2012 23:31	63.6	24/5/2012 0:41	60.7
22/5/2012 23:36	63.5	24/5/2012 0:46	60.5
22/5/2012 23:41	63.3	24/5/2012 0:51	60.0
22/5/2012 23:46	63.3	24/5/2012 0:56	58.8
22/5/2012 23:51	62.9	24/5/2012 1:01	58.9
22/5/2012 23:56	62.9	24/5/2012 1:06	59.7
23/5/2012 0:01	63.0	24/5/2012 1:11	58.7
23/5/2012 0:06	62.6	24/5/2012 1:16	59.4
23/5/2012 0:11	62.8	24/5/2012 1:21	58.1
23/5/2012 0:16	62.8	24/5/2012 1:26	58.6
23/5/2012 0:21	62.9	24/5/2012 1:31	59.1
23/5/2012 0:26	62.8	24/5/2012 1:36	58.9
23/5/2012 0:31	62.4	24/5/2012 1:41	58.7
23/5/2012 0:36	63.8	24/5/2012 1:46	58.7
23/5/2012 0:41	62.1	24/5/2012 1:51	58.6
23/5/2012 0:46	62.3	24/5/2012 1:56	58.5
23/5/2012 0:51	62.2	24/5/2012 2:01	58.9
23/5/2012 0:56	62.0	24/5/2012 2:06	58
23/5/2012 1:01	62.4	24/5/2012 2:11	58.5
23/5/2012 1:06	61.2	24/5/2012 2:16	58.2
23/5/2012 1:11	61.2	24/5/2012 2:21	57.5
23/5/2012 1:16	62.5	24/5/2012 2:26	57.4
23/5/2012 1:21	61.7	24/5/2012 2:31	58.3
23/5/2012 1:26	61.6	24/5/2012 2:36	57.7
23/5/2012 1:31	61.2	24/5/2012 2:41	58.5
23/5/2012 1:36	61.5	24/5/2012 2:46	7.2
23/5/2012 1:41	60.0	24/5/2012 2:51	57.9
23/5/2012 1:46	60.4	24/5/2012 2:56	58.1
23/5/2012 1:51	59.8	24/5/2012 3:01	56.4
23/5/2012 1:56	60.8	24/5/2012 3:06	56.7
23/5/2012 2:01	60.2	24/5/2012 3:11	57.8
23/5/2012 2:06	60.4	24/5/2012 3:16	57.1
23/5/2012 2:11	59.5	24/5/2012 3:21	58.4
23/5/2012 2:16	59.5	24/5/2012 3:26	56.7
23/5/2012 2:21	59.3	24/5/2012 3:31	56.9
23/5/2012 2:26	59.2	24/5/2012 3:36	57.4
23/5/2012 2:31	59.4	24/5/2012 3:41	57.6
23/5/2012 2:36	60.0	24/5/2012 3:46	57.5
23/5/2012 2:41	59.5	24/5/2012 3:51	57.2
23/5/2012 2:46	60.0	24/5/2012 3:56	56.7
23/5/2012 2:51	59.2	24/5/2012 4:01	57.8
23/5/2012 2:56	59.2	24/5/2012 4:06	57.6
23/5/2012 3:01	59.4	24/5/2012 4:11	57.7
23/5/2012 3:06	58.6	24/5/2012 4:16	57.2
23/5/2012 3:11	58.8	24/5/2012 4:21	57.6
23/5/2012 3:16	59.1	24/5/2012 4:26	57.3
23/5/2012 3:21	59.1	24/5/2012 4:31	56.6
23/5/2012 3:26	59.7	24/5/2012 4:36	56.8
23/5/2012 3:31	58.3	24/5/2012 4:41	58.6
23/5/2012 3:36	57.8	24/5/2012 4:46	57.5
23/5/2012 3:41	58.2	24/5/2012 4:51	57.9
23/5/2012 3:46	59.6	24/5/2012 4:56	57.3
23/5/2012 3:51	58.7	24/5/2012 5:01	58.1
23/5/2012 3:56	59.1	24/5/2012 5:06	57.3
23/5/2012 4:01	58.7	24/5/2012 5:11	57.6
23/5/2012 4:06	59.4	24/5/2012 5:16	58.0
23/5/2012 4:11	57.9	24/5/2012 5:21	58.3
23/5/2012 4:16	59.2	24/5/2012 5:26	58.1
23/5/2012 4:21	59.4	24/5/2012 5:31	58.6
23/5/2012 4:26	59.0	24/5/2012 5:36	58.3
23/5/2012 4:31	58.6	24/5/2012 5:41	59.3
23/5/2012 4:36	58.4	24/5/2012 5:46	59.5
23/5/2012 4:41	59.2	24/5/2012 5:51	59.5
23/5/2012 4:46	58.1	24/5/2012 5:56	59.5
23/5/2012 4:51	68.5	24/5/2012 6:01	59.8
23/5/2012 4:56	63.8	24/5/2012 6:06	60.1
23/5/2012 5:01	60.2	24/5/2012 6:11	60.9
23/5/2012 5:06	58.4	24/5/2012 6:16	60.5
23/5/2012 5:11	58.7	24/5/2012 6:21	60.6
23/5/2012 5:16	59.0	24/5/2012 6:26	61.2
23/5/2012 5:21	58.9	24/5/2012 6:31	61.5
23/5/2012 5:26	59.7	24/5/2012 6:36	62.1
23/5/2012 5:31	59.6	24/5/2012 6:41	62.6
23/5/2012 5:36	59.9	24/5/2012 6:46	63.3
23/5/2012 5:41	59.9	24/5/2012 6:51	62.5
23/5/2012 5:46	60.4	24/5/2012 6:56	63.0
23/5/2012 5:51	60.7	24/5/2012 23:01	63.4
23/5/2012 5:56	60.9	24/5/2012 23:06	63.0
23/5/2012 6:01	61.9	24/5/2012 23:11	63.3
23/5/2012 6:06	60.3	24/5/2012 23:16	62.8
23/5/2012 6:11	60.3	24/5/2012 23:21	62.9
23/5/2012 6:16	61.9	24/5/2012 23:26	62.6
23/5/2012 6:21	62.6	24/5/2012 23:31	62.7
23/5/2012 6:26	62.2	24/5/2012 23:36	62.8
23/5/2012 6:31	62.5	24/5/2012 23:41	62.4
23/5/2012 6:36	62.9	24/5/2012 23:46	62.3
23/5/2012 6:41	63.4	24/5/2012 23:51	62.3
23/5/2012 6:46	64.4	24/5/2012 23:56	62.5
23/5/2012 6:51	63.5	25/5/2012 0:01	62.1
23/5/2012 6:56	64.8	25/5/2012 0:06	62.1
23/5/2012 23:01	64.6	25/5/2012 0:11	62.2
23/5/2012 23:06	63.5	25/5/2012 0:16	61.8
23/5/2012 23:11	64.2	25/5/2012 0:21	61.9
23/5/2012 23:16	63.4	25/5/2012 0:26	62.2
23/5/2012 23:21	63.7	25/5/2012 0:31	61.4
23/5/2012 23:26	63.3	25/5/2012 0:36	62.1
$\begin{aligned} & 23 / 5 / 2012 \text { 23:31 } \\ & 23 / 5 / 2012 \text { 23:36 } \end{aligned}$	63.3 63.4	25/5/2012 0:41	61.4

26/5/2012 2:01	
26/5/2012 2:06	
6/5/2012 2:11	
26/5/2012 2:16	58.9
6/5/2012 2:21	
6/5/2012 2:26	
26/5/2012 2:31	
26/5/2012 2:36	
6/5/2012 2:41	
26/5/2012 2:46	58.4
26/5/2012 2:51	
26/5/2012 2:56	
26/5/2012 3:01	
26/5/2012 3:06	
26/5/2012 3:11	57.9
26/5/2012 3:16	
26/5/2012 3:21	
26/5/2012 3:26	
26/5/2012 3:31	
26/5/2012 3:36	57.7
26/5/2012 3:41	
26/5/2012 3:46	
26/5/2012 3:51	57.9
5/2012 3:56	
26/5/2012 4:01	58.0
26/5/2012 4:06	
26/5/2012 4:11	
26/5/2012 4:16	57.9
26/5/2012 4:21	
26/5/2012 4:26	
26/5/2012 4:31	
26/5/2012 4:36	
26/5/2012 4:41	58.4
26/5/2012 4:46	
26/5/2012 4:51	
26/5/2012 4:56	60
26/5/2012 5:01	
26/5/2012 5:06	
26/5/2012 5:11	
26/5/2012 5:16	
26/5/2012 5:21	58.6
26/5/2012 5:26	
26/5/2012 5:31	59.2
26/5/2012 5:36	
26/5/2012 5:41	
26/5/2012 5:46	59.8
26/5/2012 5:51	
26/5/2012 5:56	
26/5/2012 6:01	
26/5/2012 6:06	
26/5/2012 6:11	60.7
26/5/2012 6:16	
26/5/2012 6:21	61.6
26/5/2012 6:26	
26/5/2012 6:31	
26/5/2012 6:36	62.6
26/5/2012 6:41	
26/5/2012 6:46	
26/5/2012 6:51	63.1
26/5/2012 6:56	
26/5/2012 23:01	61.6
26/5/2012 23:06	
26/5/2012 23:11	
26/5/2012 23:16	61.9
26/5/2012 23:21	
26/5/2012 23:26	61.3
26/5/2012 23:31	61
26/5/2012 23:36	
26/5/2012 23:41	61.0
26/5/2012 23:46	
26/5/2012 23:51	
26/5/2012 23:56	61.2
27/5/2012 0:01	
27/5/2012 0:06	61.0
27/5/2012 0:11	
27/5/2012 0:16	
27/5/2012 0:21	61.1
27/5/2012 0:26	61.0
27/5/2012 0:31	60.7
27/5/2012 0:36	60.0
27/5/2012 0:41	60.3
27/5/2012 0:46	60.1
27/5/2012 0:51	
27/5/2012 0:56	60.6
27/5/2012 1:01	59.9
27/5/2012 1:06	60.3
27/5/2012 1:11	59.5
27/5/2012 1:16	60.1
27/5/2012 1:21	59.0
27/5/2012 1:26	59.4
27/5/2012 1:31	60.0
27/5/2012 1:36	59.
27/5/2012 1:41	59.9
27/5/2012 1:46	60.0
27/5/2012 1:51	59.7
27/5/2012 1:56	59
27/5/2012 2:01	59.
27/5/2012 2:06	59.1
27/5/2012 2:11	59.
27/5/2012 2:16	59.5
27/5/2012 2:21	59.
27/5/2012 2:26	59.6
27/5/2012 2:31	59.8
27/5/2012 2:36	59
27/5/2012 2:41	60.8
27/5/2012 2:46	
27/5/2012 2:51	59
27/5/2012 2:56	59.2
$\text { 3:01 } 2012$	

25/5/2012 0:51 60 25/5/2012 0:56
60.9
60.6 25/5/2012 1:01 25/5/2012 1:06 25/5/2012 1:11 25/5/2012 1:16 25/5/2012 1:26 25/5/2012 1.31 25/5/2012 1:36 25/5/2012 1:46 25/5/2012 1:51 25/5/2012 1:56 25/5/2012 2:06 25/5/2012 2:11 25/5/2012 2:16 25/5/2012 2:21 25/5/2012 2:26
25/5/2012 2:31 25/5/2012 2:31 25/5/2012 2:41 25/5/2012 2:46
$25 / 5 / 20122: 51$ 25/5/2012 2:56 25/5/2012 3:01 25/5/2012 3:11 25/5/2012 3:16 25/5/2012 3:26 25/5/2012 3:31 25/5/2012 3:36 25/5/2012 3:46
25/2012 25/5/2012 3:51 25/5/2012 3:56 25/5/2012 4:06 25/5/2012 4:11 25/5/2012 4:21 25/5/2012 4:26 25/5/2012 4:31 25/5/2012 4:36 25/5/2012 4:46 25/5/2012 4:51 25/5/2012 4.56 25/5/2012 4:56 25/5/2012 5:06 25/5/2012 5:11 25/5/2012 5:16 25/5/2012 5:21 25/5/2012 5:31 25/5/2012 5:36 25/5/2012 5:41 25/5/2012 5:46 25/5/2012 5:56 25/5/2012 6:01 25/5/2012 6:06 25/5/2012 6:11 25/5/2012 6:21 25/5/2012 6:26 25/5/2012 6:36 25/5/2012 6:41 25/5/2012 6:46 25/5/2012 6:51 25/5/2012 23:0 25/5/2012 23:11 $\begin{array}{lll}25 / 5 / 2012 & 23: 16 & 63.6 \\ 25 / 5 / 2012 & 23: 21 & 63.8\end{array}$ $\begin{array}{ll}25 / 5 / 2012 & 23: 26 \\ 63.4 \\ \text { 25 }\end{array}$ $\begin{array}{lll}25 / 5 / 2012 & 23: 31 & 63 \\ 25 / 5 / 2012 & 23: 36 & 63,\end{array}$ $\begin{array}{ll}25 / 5 / 2012 & 23: 41 \\ 63.1\end{array}$ $\begin{array}{lll}25 / 5 / 2012 & 23: 46 & 63.2\end{array}$ $\begin{array}{lll}25 / 5 / 2012 & 23: 51 & 62.9 \\ 25 / 5 / 2012 & 23.56 & 63.0\end{array}$ $\begin{array}{lll}25 / 5 / 2012 & 23: 56 & 63.0 \\ 26 / 5 / 2012 & 0.01 & 62.1\end{array}$ 26/5/2012 0:06 61.9 26/5/2012 0:11 26/5/2012 0:16 26/5/2012 0:21 26/5/2012 0:26 26/5/2012 0:31 26/5/2012 0:36 26/5/2012 0:41 26/5/2012 0:46 26/5/2012 0:56 26/5/2012 1:01 26/5/2012 1:06 26/5/2012 1:16 26/5/2012 1:21 26/5/2012 1:26 26/5/2012 1:31 26/5/2012 1:36 26/5/2012 1:41 26/5/2012 1:51 26/5/2012 1:56 59.3

[^11]Real-time Noise Data RTN2 (Oil Street Community Liaison Centre)

Normal Day 07:00	0-19:00	\|5/5/2012 13:31	64.9	11/5/2012 8:31	64.9	\|16/5/2012 15:31	65.9	22/5/2012 10:31	71.5	\|26/5/2012 17:31	68.1
30/4/2012 7:01	63.9	5/5/2012 14:01	66.0	11/5/2012 9:01	64.8	16/5/2012 16:01	66.4	22/5/2012 11:01	71.8	26/5/2012 18:01	64.8
30/4/2012 7:31	64.8	5/5/2012 14:31	66.8	11/5/2012 9:31	66.2	16/5/2012 16:31	66.2	22/5/2012 11:31	71.1	26/5/2012 18:31	72.9
30/4/2012 8:01	67.1	5/5/2012 15:01	64.6	11/5/2012 10:01	65.1	16/5/2012 17:01	67.4	22/5/2012 12:01	69.1		
30/4/2012 8:31	68.4	5/5/2012 15:31	62.8	11/5/2012 10:31	65.8	16/5/2012 17:31	67.6	22/5/2012 12:31	70.2	Normal Day 19:00	0-23:00
30/4/2012 9:01	68.6	5/5/2012 16:01	63.3	11/5/2012 11:01	64.8	16/5/2012 18:01	66.3	22/5/2012 13:01	70.1	Sunday \& Holiday	07:00
30/4/2012 9:31	67.4	5/5/2012 16:31	64.4	11/5/2012 11:31	65.0	16/5/2012 18:31	66.0	22/5/2012 13:31	67.1	28/4/2012 7:01	63.4
30/4/2012 10:01	67.0	5/5/2012 17:01	66.0	11/5/2012 12:01	62.8	1715/2012 7:01	63.6	22/5/2012 14:01	71.3	28/4/2012 7:06	62.4
30/4/2012 10:31	67.6	5/5/2012 17:31	69.8	11/5/2012 12:31	61.5	17/5/2012 7:31	63.9	22/5/2012 14:31	66.2	28/4/2012 7:11	63.0
30/4/2012 11:01	66.7	5/5/2012 18:01	68.1	11/5/2012 13:01	65.4	17/5/2012 8:01	63.8	22/5/2012 15:01	67.2	28/4/2012 7:16	62.4
30/4/2012 11:31	66.8	5/5/2012 18:31	67.6	11/5/2012 13:31	64.8	17/5/2012 8:31	66.6	22/5/2012 15:31	67.0	28/4/2012 7:21	63.3
30/4/2012 12:01	63.5	7/5/2012 7:01	63.0	11/5/2012 14:01	63.1	17/5/2012 9:01	67.5	22/5/2012 16:01	67.9	28/4/2012 7:26	63.0
30/4/2012 12:31	65.6	7/5/2012 7:31	62.9	11/5/2012 14:31	63.3	17/5/2012 9:31	67.3	22/5/2012 16:31	67.9	28/4/2012 7:31	64.3
30/4/2012 13:01	70.6	7/5/2012 8:01	65.1	11/5/2012 15:01	62.9	17/5/2012 10:01	66.8	22/5/2012 17:01	68.2	28/4/2012 7:36	62.5
30/4/2012 13:31	65.8	7/5/2012 8:31	64.6	11/5/2012 15:31	64.3	17/5/2012 10:31	66.5	22/5/2012 17:31	67.4	28/4/2012 7:41	63.8
30/4/2012 14:01	66.8	7/5/2012 9:01	67.8	11/5/2012 16:01	70.6	17/5/2012 11:01	66.6	22/5/2012 18:01	69.0	28/4/2012 7:46	63.4
30/4/2012 14:31	68.4	7/5/2012 9:31	64.7	11/5/2012 16:31	65.1	17/5/2012 11:31	67.4	22/5/2012 18:31	69.4	28/4/2012 7:51	64.4
30/4/2012 15:01	66.8	7/5/2012 10:01	69.6	11/5/2012 17:01	64.7	17/5/2012 12:01	64.6	23/5/2012 7:01	57.5	28/4/2012 7:56	65.5
30/4/2012 15:31	67.5	7/5/2012 10:31	68.7	11/5/2012 17:31	65.6	17/5/2012 12:31	65.1	23/5/2012 7:31	59.9	28/4/2012 8:01	63.4
30/4/2012 16:01	68.5	7/5/2012 11:01	69.0	11/5/2012 18:01	65.0	17/5/2012 13:01	65.1	23/5/2012 8:01	60.5	28/4/2012 8:06	63.7
30/4/2012 16:31	68.5	7/5/2012 11:31	66.5	11/5/2012 18:31	61.8	17/5/2012 13:31	68.3	23/5/2012 8:31	62.5	28/4/2012 8:11	63.7
30/4/2012 17:01	66.8	7/5/2012 12:01	66.7	12/5/2012 7:01	62.1	17/5/2012 14:01	69.4	23/5/2012 9:01	64.6	28/4/2012 8:16	66.1
30/4/2012 17:31	66.1	7/5/2012 12:31	65.0	12/5/2012 7:31	65.9	17/5/2012 14:31	69.2	23/5/2012 9:31	66.4	28/4/2012 8:21	64.9
30/4/2012 18:01	65.2	7/5/2012 13:01	64.2	12/5/2012 8:01	64.0	17/5/2012 15:01	68.7	23/5/2012 10:01	68.7	28/4/2012 8:26	64.9
30/4/2012 18:31	65.0	7/5/2012 13:31	69.3	12/5/2012 8:31	64.6	17/5/2012 15:31	69.7	23/5/2012 10:31	67.2	28/4/2012 8:31	65.3
2/5/2012 7:01	63.0	7/5/2012 14:01	68.6	12/5/2012 9:01	65.0	17/5/2012 16:01	68.5	23/5/2012 11:01	68.6	28/4/2012 8:36	66.7
2/5/2012 7:31	63.3	7/5/2012 14:31	66.6	12/5/2012 9:31	68.0	17/5/2012 16:31	68.6	23/5/2012 11:31	69.2	28/4/2012 8:41	66.3
2/5/2012 8:01	65.1	7/5/2012 15:01	67.2	12/5/2012 10:01	65.9	17/5/2012 17:01	69.5	23/5/2012 12:01	68.8	28/4/2012 8:46	66.0
2/5/2012 8:31	65.0	7/5/2012 15:31	68.0	12/5/2012 10:31	65.1	17/5/2012 17:31	69.1	23/5/2012 12:31	69.0	28/4/2012 8:51	68.4
2/5/2012 9:01	67.2	7/5/2012 16:01	68.4	12/5/2012 11:01	64.5	17/5/2012 18:01	66.1	23/5/2012 13:01	69.1	28/4/2012 8:56	69.7
2/5/2012 9:31	66.9	7/5/2012 16:31	69.0	12/5/2012 11:31	64.8	17/5/2012 18:31	64.5	23/5/2012 13:31	68.5	28/4/2012 9:01	67.4
2/5/2012 10:01	66.7	7/5/2012 17:01	71.0	12/5/2012 12:01	65.0	18/5/2012 7:01	63.7	23/5/2012 14:01	67.5	28/4/2012 9:06	66.8
2/5/2012 10:31	65.9	7/5/2012 17:31	68.3	12/5/2012 12:31	66.2	18/5/2012 7:31	62.4	23/5/2012 14:31	69.5	28/4/2012 9:11	65.7
2/5/2012 11:01	68.9	7/5/2012 18:01	63.4	12/5/2012 13:01	66.3	18/5/2012 8:01	65.1	23/5/2012 15:01	72.5	28/4/2012 9:16	66.0
2/5/2012 11:31	66.8	7/5/2012 18:31	63.5	12/5/2012 13:31	66.9	18/5/2012 8:31	71.2	23/5/2012 15:31	72.7	28/4/2012 9:21	65.1
2/5/2012 12:01	64.0	8/5/2012 7:01	62.8	12/5/2012 14:01	66.5	18/5/2012 9:01	69.1	23/5/2012 16:01	68.3	28/4/2012 9:26	65.2
2/5/2012 12:31	64.3	8/5/2012 7:31	61.9	12/5/2012 14:31	64.5	18/5/2012 9:31	75.5	23/5/2012 16:31	71.5	28/4/2012 9:31	64.4
2/5/2012 13:01	63.7	8/5/2012 8:01	63.0	12/5/2012 15:01	68.6	18/5/2012 10:01	71.5	23/5/2012 17:01	69.7	28/4/2012 9:36	65.4
2/5/2012 13:31	66.6	8/5/2012 8:31	67.3	12/5/2012 15:31	65.9	18/5/2012 10:31	69.7	23/5/2012 17:31	69.1	28/4/2012 9:41	65.5
2/5/2012 14:01	66.6	8/5/2012 9:01	64.4	12/5/2012 16:01	67.1	18/5/2012 11:01	74.2	23/5/2012 18:01	70.0	28/4/2012 9:46	66.8
2/5/2012 14:31	67.0	8/5/2012 9:31	64.3	12/5/2012 16:31	67.2	18/5/2012 11:31	68.8	23/5/2012 18:31	67.3	28/4/2012 9:51	66.7
2/5/2012 15:01	69.7	8/5/2012 10:01	64.2	12/5/2012 17:01	67.6	18/5/2012 12:01	64.6	24/5/2012 7:01	64.4	28/4/2012 10:01	66.7
2/5/2012 15:31	66.7	8/5/2012 10:31	67.1	12/5/2012 17:31	65.7	18/5/2012 12:31	64.5	24/5/2012 7:31	64.7	28/4/2012 10:06	66.6
2/5/2012 16:01	66.6	8/5/2012 11:01	65.9	12/5/2012 18:01	63.4	18/5/2012 13:01	64.1	24/5/2012 8:01	63.3	28/4/2012 10:11	65.9
2/5/2012 16:31	67.0	8/5/2012 11:31	67.9	12/5/2012 18:31	64.3	18/5/2012 13:31	71.4	24/5/2012 8:31	64.8	28/4/2012 10:16	65.2
2/5/2012 17:01	66.2	8/5/2012 12:01	65.1	14/5/2012 7:01	58.1	18/5/2012 14:01	70.7	24/5/2012 9:01	64.1	28/4/2012 10:21	65.9
2/5/2012 17:31	66.1	8/5/2012 12:31	64.3	14/5/2012 7:31	57.2	18/5/2012 14:31	71.8	24/5/2012 9:31	65.0	28/4/2012 10:26	66.8
2/5/2012 18:01	65.4	8/5/2012 13:01	62.8	14/5/2012 8:01	59.9	18/5/2012 15:01	71.5	24/5/2012 10:01	64.2	28/4/2012 10:31	66.8
2/5/2012 18:31	64.8	8/5/2012 13:31	62.0	14/5/2012 8:31	64.9	18/5/2012 15:31	71.6	24/5/2012 10:31	64.3	28/4/2012 10:36	65.0
3/5/2012 7:01	63.3	8/5/2012 14:01	64.6	14/5/2012 9:01	59.6	18/5/2012 16:01	71.4	24/5/2012 11:01	64.4	28/4/2012 10:41	66.3
3/5/2012 7:31	62.7	8/5/2012 14:31	65.6	14/5/2012 9:31	60.4	18/5/2012 16:31	73.4	24/5/2012 11:31	67.4	28/4/2012 10:46	66.2
3/5/2012 8:01	64.5	8/5/2012 15:01	67.6	14/5/2012 10:01	63.9	18/5/2012 17:01	72.6	24/5/2012 12:01	67.4	28/4/2012 10:51	66.2
3/5/2012 8:31	67.2	8/5/2012 15:31	66.4	14/5/2012 10:31	61.9	18/5/2012 17:31	72.3	24/5/2012 12:31	65.9	28/4/2012 10:56	64.7
3/5/2012 9:01	67.4	8/5/2012 16:01	66.2	14/5/2012 11:01	62.6	18/5/2012 18:01	66.9	24/5/2012 13:01	64.3	28/4/2012 11:01	64.7
3/5/2012 9:31	68.2	8/5/2012 16:31	64.9	14/5/2012 11:31	66.0	18/5/2012 18:31	64.2	24/5/2012 13:31	64.6	28/4/2012 11:06	63.7
3/5/2012 10:01	66.4	8/5/2012 17:01	65.9	14/5/2012 12:01	65.0	19/5/2012 7:01	64.1	24/5/2012 14:01	65.6	28/4/2012 11:11	65.5
3/5/2012 10:31	66.8	8/5/2012 17:31	65.9	14/5/2012 12:31	63.8	19/5/2012 7:31	65.6	24/5/2012 14:31	66.1	28/4/2012 11:16	66.7
3/5/2012 11:01	65.9	8/5/2012 18:01	67.2	14/5/2012 13:01	65.3	19/5/2012 8:01	66.1	24/5/2012 15:01	66.1	28/4/2012 11:21	66.3
3/5/2012 11:31	66.6	8/5/2012 18:31	68.0	14/5/2012 13:31	67.9	19/5/2012 8:31	69.7	24/5/2012 15:31	65.8	28/4/2012 11:26	66.9
3/5/2012 12:01	65.2	9/5/2012 7:01	61.3	14/5/2012 14:01	64.4	19/5/2012 9:01	76.2	24/5/2012 16:01	70.1	28/4/2012 11:31	68.0
3/5/2012 12:31	64.4	9/5/2012 7:31	62.8	14/5/2012 14:31	61.8	19/5/2012 9:31	73.3	24/5/2012 16:31	75.1	28/4/2012 11:36	67.8
3/5/2012 13:01	65.9	9/5/2012 8:01	63.7	14/5/2012 15:01	63.5	19/5/2012 10:01	72.5	24/5/2012 17:01	70.1	28/4/2012 11:41	64.2
3/5/2012 13:31	67.7	9/5/2012 8:31	65.2	14/5/2012 15:31	62.9	19/5/2012 10:31	73.3	24/5/2012 17:31	75.9	28/4/2012 11:46	64.8
3/5/2012 14:01	67.7	9/5/2012 9:01	63.3	14/5/2012 16:01	65.8	19/5/2012 11:01	73.1	24/5/2012 18:01	65.8	28/4/2012 11:51	66.9
3/5/2012 14:31	66.3	9/5/2012 9:31	64.9	14/5/2012 16:31	68.7	19/5/2012 11:31	69.9	24/5/2012 18:31	65.4	28/4/2012 11:56	65.2
3/5/2012 15:01	67.4	9/5/2012 10:01	67.7	14/5/2012 17:01	67.0	19/5/2012 12:01	65.8	25/5/2012 7:01	63.4	28/4/2012 12:01	64.1
3/5/2012 15:31	68.1	9/5/2012 10:31	67.9	14/5/2012 17:31	66.3	19/5/2012 12:31	67.0	25/5/2012 7:31	61.9	28/4/2012 12:06	63.4
3/5/2012 16:01	66.5	9/5/2012 11:01	68.5	14/5/2012 18:01	65.8	19/5/2012 13:01	65.2	25/5/2012 8:01	64.4	28/4/2012 12:11	63.9
3/5/2012 16:31	68.3	9/5/2012 11:31	67.0	14/5/2012 18:31	66.1	19/5/2012 13:31	68.3	25/5/2012 8:31	73.0	28/4/2012 12:16	65.1
3/5/2012 17:01	67.1	9/5/2012 12:01	66.1	15/5/2012 7:01	63.8	19/5/2012 14:01	75.3	25/5/2012 9:01	74.7	28/4/2012 12:21	64.7
3/5/2012 17:31	67.1	9/5/2012 12:31	64.2	15/5/2012 7:31	64.8	19/5/2012 14:31	73.6	25/5/2012 9:31	71.9	28/4/2012 12:26	65.5
3/5/2012 18:01	67.8	9/5/2012 13:01	64.6	15/5/2012 8:01	63.0	19/5/2012 15:01	74.6	25/5/2012 10:01	73.3	28/4/2012 12:31	65.7
3/5/2012 18:31	65.3	9/5/2012 13:31	66.3	15/5/2012 8:31	65.9	19/5/2012 15:31	76.4	25/5/2012 10:31	74.5	28/4/2012 12:36	65.4
4/5/2012 7:01	64.6	9/5/2012 14:01	64.8	15/5/2012 9:01	68.6	19/5/2012 16:01	70.9	25/5/2012 11:01	75.4	28/4/2012 12:41	64.7
4/5/2012 7:31	64.8	9/5/2012 14:31	64.6	15/5/2012 9:31	67.9	19/5/2012 16:31	74.9	25/5/2012 11:31	74.7	28/4/2012 12:46	64.2
4/5/2012 8:01	64.2	9/5/2012 15:01	65.4	15/5/2012 10:01	66.1	19/5/2012 17:01	69.0	25/5/2012 12:01	64.4	28/4/2012 12:51	63.2
4/5/2012 8:31	68.3	9/5/2012 15:31	65.8	15/5/2012 10:31	65.9	19/5/2012 17:31	70.2	25/5/2012 12:31	63.2	28/4/2012 12:56	63.2
4/5/2012 9:01	67.6	9/5/2012 16:01	66.1	15/5/2012 11:01	67.1	19/5/2012 18:01	64.4	25/5/2012 13:01	65.6	28/4/2012 13:01	63.3
4/5/2012 9:31	66.3	9/5/2012 16:31	67.8	15/5/2012 11:31	68.9	19/5/2012 18:31	63.2	25/5/2012 13:31	73.8	28/4/2012 13:06	63.2
4/5/2012 10:01	67.6	9/5/2012 17:01	69.4	15/5/2012 12:01	63.8	21/5/2012 7:01	63.9	25/5/2012 14:01	68.5	28/4/2012 13:11	63.8
4/5/2012 10:31	67.2	9/5/2012 17:31	68.9	15/5/2012 12:31	64.4	21/5/2012 7:31	63.1	25/5/2012 14:31	71.5	28/4/2012 13:16	64.7
4/5/2012 11:01	66.8	9/5/2012 18:01	66.0	15/5/2012 13:01	64.0	21/5/2012 8:01	66.3	25/5/2012 15:01	72.2	28/4/2012 13:21	64.5
4/5/2012 11:31	67.2	9/5/2012 18:31	65.7	15/5/2012 13:31	67.7	21/5/2012 8:31	67.8	25/5/2012 15:31	73.6	28/4/2012 13:26	65.5
4/5/2012 12:01	64.4	10/5/2012 7:01	63.8	15/5/2012 14:01	68.0	21/5/2012 9:01	68.5	25/5/2012 16:01	72.3	28/4/2012 13:31	64.6
4/5/2012 12:31	65.7	10/5/2012 7:31	64.8	15/5/2012 14:31	68.6	21/5/2012 9:31	70.6	25/5/2012 16:31	72.6	28/4/2012 13:36	64.6
4/5/2012 13:01	65.2	10/5/2012 8:01	63.0	15/5/2012 15:01	63.9	21/5/2012 10:01	74.7	25/5/2012 17:01	74.7	28/4/2012 13:41	64.8
4/5/2012 13:31	67.4	10/5/2012 8:31	65.9	15/5/2012 15:31	66.3	21/5/2012 10:31	71.2	25/5/2012 17:31	71.3	28/4/2012 13:46	65.0
4/5/2012 14:01	66.8	10/5/2012 9:01	68.6	15/5/2012 16:01	67.3	21/5/2012 11:01	70.6	25/5/2012 18:01	65.6	28/4/2012 13:51	65.2
4/5/2012 14:31	67.6	10/5/2012 9:31	67.9	15/5/2012 16:31	65.0	21/5/2012 11:31	69.0	25/5/2012 18:31	63.4	28/4/2012 13:56	65.7
4/5/2012 15:01	62.2	10/5/2012 10:01	66.1	15/5/2012 17:01	67.5	21/5/2012 12:01	65.5	26/5/2012 7:01	62.9	28/4/2012 14:01	65.5
4/5/2012 15:31	71.0	10/5/2012 10:31	65.9	15/5/2012 17:31	66.9	21/5/2012 12:31	64.3	26/5/2012 7:31	63.2	28/4/2012 14:06	65.6
4/5/2012 16:01	66.3	10/5/2012 11:01	67.1	15/5/2012 18:01	65.9	21/5/2012 13:01	68.8	26/5/2012 8:01	66.3	28/4/2012 14:11	66.0
4/5/2012 16:31	64.7	10/5/2012 11:31	68.9	15/5/2012 18:31	66.0	21/5/2012 13:31	69.6	26/5/2012 8:31	68.2	28/4/2012 14:16	66.0
4/5/2012 17:01	63.7	10/5/2012 12:01	63.8	16/5/2012 7:01	62.7	21/5/2012 14:01	69.7	26/5/2012 9:01	67.7	28/4/2012 14:21	66.2
4/5/2012 17:31	66.1	10/5/2012 12:31	64.4	16/5/2012 7:31	62.9	21/5/2012 14:31	72.5	26/5/2012 9:31	68.8	28/4/2012 14:26	64.9
4/5/2012 18:01	66.8	10/5/2012 13:01	64.0	16/5/2012 8:01	63.2	21/5/2012 15:01	69.4	26/5/2012 10:01	68.9	28/4/2012 14:31	64.6
4/5/2012 18:31	67.2	10/5/2012 13:31	67.7	16/5/2012 8:31	63.9	21/5/2012 15:31	69.1	26/5/2012 10:31	68.6	28/4/2012 14:36	64.5
5/5/2012 7:01	60.4	10/5/2012 14:01	68.0	16/5/2012 9:01	66.3	21/5/2012 16:01	69.8	26/5/2012 11:01	72.5	28/4/2012 14:41	64.4
5/5/2012 7:31	58.4	10/5/2012 14:31	68.6	16/5/2012 9:31	66.6	21/5/2012 16:31	73.9	26/5/2012 11:31	73.4	28/4/2012 14:46	67.8
5/5/2012 8:01	58.4	10/5/2012 15:01	63.9	16/5/2012 10:01	66.8	21/5/2012 17:01	68.7	26/5/2012 12:01	67.4	28/4/2012 14:51	66.5
5/5/2012 8:31	58.2	10/5/2012 15:31	66.3	16/5/2012 10:31	65.9	21/5/2012 17:31	70.0	26/5/2012 12:31	69.8	28/4/2012 14:56	63.6
5/5/2012 9:01	59.4	10/5/2012 16:01	67.3	16/5/2012 11:01	66.5	21/5/2012 18:01	70.0	26/5/2012 13:01	66.5	28/4/2012 15:01	67.8
5/5/2012 9:31	64.1	10/5/2012 16:31	65.0	16/5/2012 11:31	66.5	21/5/2012 18:31	66.4	26/5/2012 13:31	69.4	28/4/2012 15:06	66.9
5/5/2012 10:01	61.7	10/5/2012 17:01	64.9	16/5/2012 12:01	65.0	22/5/2012 7:01	63.8	26/5/2012 14:01	73.6	28/4/2012 15:11	65.2
5/5/2012 10:31	62.5	10/5/2012 17:31	65.8	16/5/2012 12:31	65.6	22/5/2012 7:31	64.7	26/5/2012 14:31	71.2	28/4/2012 15:16	66.5
5/5/2012 11:01	63.6	10/5/2012 18:01	67.5	16/5/2012 13:01	64.9	22/5/2012 8:01	65.2	26/5/2012 15:01	72.2	28/4/2012 15:21	65.1
5/5/2012 11:31	64.1	10/5/2012 18:31	67.4	16/5/2012 13:31	67.2	22/5/2012 8:31	68.8	26/5/2012 15:31	73.1	28/4/2012 15:26	65.2
5/5/2012 12:01	64.1	11/5/2012 7:01	60.8	16/5/2012 14:01	67.0	2215/2012 9:01	71.3	26/5/2012 16:01	69.9	28/4/2012 15:31	65.6
5/5/2012 12:31	66.4	11/5/2012 7:31	61.5	16/5/2012 14:31	66.9	22/5/2012 9:31	72.4	26/5/2012 16:31	71.0	28/4/2012 15:36	65.4
5/5/2012 13:01	65.8	11/5/2012 8:01	63.1	16/5/2012 15:01	65.4	\| 22/5/2012 10:01	71.0	26/5/2012 17:01	68.6	\| 28/4/2012 15:41	65.1

28/4/2012 15:46 64.8 $\begin{array}{lll}28 / 4 / 2012 & 15: 51 & 64.4 \\ \text { 28/4/2012 } 15: 56 & 63.9\end{array}$ $\begin{array}{ll}28 / 4 / 2012 & 15: 56 \\ 63.9 \\ 28 / 4 / 2012 & 16: 01 \\ 63.2\end{array}$ 28/4/2012 16:01 63.2 28/4/2012 16:06 64.4 $\begin{array}{lll}\text { 28/4/2012 16:11 } & 64.1 \\ \text { 28/4/2012 } & 16: 16 & 65.3\end{array}$ $\begin{array}{ll}28 / 4 / 2012 & 16: 16 \\ 65.3 \\ 28 / 4 / 2012 & 16.21 \\ 65.5\end{array}$ 28/4/2012 16:21 65.5 $\begin{array}{ll}28 / 4 / 2012 & 16: 26 \\ 66.0 \\ 28 / 4 / 2012 & 16: 31 \\ 64.4\end{array}$ 28/4/2012 16:31 64.4 28/4/2012 16:36 65.4 28/4/2012 16:41 66.5 28/4/2012 16:46 64.0 28/4/2012 16:51 64.3 28/4/2012 16:56 65.2 28/4/2012 17:01 66.7 28/4/2012 17:06 65.2 28/4/2012 17:11 66.1 28/4/2012 17:16 64.2 28/4/2012 17:21 65.2 28/4/2012 17:26 66.3 28/4/2012 17.31 66.6 28/4/2012 17:36 65.1 28/4/2012 17:41 64.0 28/4/2012 17:51 64.4 28/4/2012 17:56 64.0 28/4/2012 18:01 65.5 28/4/2012 18:06 64.4 28/4/2012 18:11 68.2 28/4/2012 18:16 66.6 28/4/2012 18:21 63.7 28/4/2012 18:26 63.6 28/4/2012 18:31 62.6 28/4/2012 18:36 62.0 28/4/2012 18:41 61.6 28/4/2012 18:46 62.6 28/4/2012 18:51 62.8 28/4/2012 18:56 62.7 28/4/2012 19:01 64.9 28/4/2012 19:06 62.6 28/4/2012 19:11 62.1 28/4/2012 19:16 62.3 28/4/2012 19.21 63.0 28/4/2012 19:26 62.6 28/4/2012 19:31 62.3 28/4/2012 19:36 62.8 28/4/2012 19:41 63.8 28/4/2012 19:46 65.9 28/4/2012 19:51 62.9 28/4/2012 19:56 62.4 28/4/2012 20:01 62.1 28/4/2012 20:06 62.9 28/4/2012 20:11 64.3 28/4/2012 20:16 61.5 28/4/2012 20:21 61.7 28/4/2012 20:26 61.3 28/4/2012 20:31 61.8 28/4/2012 20:36 61.9 28/4/2012 20:41 62.8 28/4/2012 20:46 63.8 $\begin{array}{ll}\text { 28/4/2012 20:51 } & 61.2 \\ \text { 28/4/2012 20:56 } & 62.3\end{array}$ 28/4/2012 20:56 62.3 $\begin{array}{lll}\text { 28/4/2012 21:01 } & 60.9 \\ \text { 28/4/2012 21:06 } & 61.8\end{array}$ 28/4/2012 21:06 61.8 28/4/2012 21.16 61.4 28/4/2012 21:16 61.4 28/4/2012 21:21 61.8 28/4/2012 21:31 62.0 28/4/2012 21:31 61.5 28/4/2012 21:36 62.2 28/4/2012 21:41 61.7 28/4/2012 21:46 63.2 28/4/2012 21:56 61.9 28/4/2012 22:01 62.0 28/4/2012 22:06 62.5 $\begin{array}{lll}\text { 28/4/2012 22:11 } & 62.0 \\ \text { 28/2012 22:16 } & 62.6\end{array}$ 28/4/2012 22:21 61.6 28/4/2012 22:26 62.0 28/4/2012 22:31 61.6 28/4/2012 22:36 63.4 28/4/2012 22.41 62.8 28/4/2012 22:46 629 28/4/2012 22.51 64.2 28/4/2012 22:56 63.7 29/4/2012 7:01 64.1 29/4/2012 7:06 67.5 29/4/2012 7:11 67.7 29/4/2012 7:16 69.1 29/4/2012 7:21 65.4 29/4/2012 7:26 64.7 29/4/2012 7:31 $\quad 63.8$ 29/4/2012 7:36 63.4 $\begin{array}{ll}\text { 29/4/2012 7:41 } & 63.0 \\ \text { 29/4/2012 7:46 } & 64.0\end{array}$ 29/4/2012 7:51 $\quad 61.9$ 29/4/2012 7:56 62.9 29/4/2012 8:01 29/4/2012 8:06 29/4/2012 8:16 29/4/2012 8:21 29/4/2012 8:26 29/4/2012 8:31 29/4/2012 8:36 29/4/2012 8:41 29/4/2012 8:46 9/4/2012 8:51
|29/4/2012 8:56 63.7 29/4/2012 9:01 29/4/2012 9:06 29/4/2012 9:11 29/4/2012 9:16 29/4/2012 9:26 29/4/2012 9:31 29/4/2012 9:36 29/4/2012 9:46 29/4/2012 9:51 29/4/2012 9:56 29/4/2012 10:01
29/4/2012 10:06 $\begin{array}{lll}29 / 4 / 2012 & 10: 06 & 64.1 \\ \text { 29/4/2012 10:11 } & 64.1\end{array}$ 29/4/2012 10:16 64.1 $\begin{array}{lll}29 / 4 / 2012 & 10: 21 & 64.8 \\ 29 / 4 / 2012 & 10.26 & 64.5\end{array}$ 29/4/2012 10:31 64.5 $\begin{array}{lll}29 / 4 / 2012 & 10: 31 & 64.5 \\ \text { 29/4/2012 10:36 } & 64.8\end{array}$ 29/4/2012 10:41 64.6 $\begin{array}{lll}29 / 4 / 2012 & 10: 46 & 64.0 \\ 29 / 4 / 2012 & 10: 51 & 64.0\end{array}$ 29/4/2012 10:51 29/4/2012 11:01 29/4/2012 11:06 64.2 $\begin{array}{ll}29 / 4 / 2012 & 11: 11 \\ 63.9 \\ 29 / 4 / 2012 & 11: 16 \\ 64.0\end{array}$ $\begin{array}{ll}29 / 4 / 2012 & 11: 16 \\ 64.0 \\ 29 / 4 / 2012 & 11.21 \\ 64.2\end{array}$ $\begin{array}{llll}29 / 4 / 2012 & 11: 21 & 64.2 \\ 29 / 4 / 2012 & 11 \cdot 26 & 64.1\end{array}$ $\begin{array}{lll}\text { 29/4/2012 } & 11: 26 & 64.1 \\ 29 / 4 / 2012 & 11: 31 & 64.7\end{array}$ $\begin{array}{lll}29 / 4 / 2012 & 11: 31 & 64 \\ \text { 29/4/2012 11:36 } & 65\end{array}$ 29/4/2012 11:41 29/4/2012 11:51 $\begin{array}{lll}29 / 4 / 2012 & 11: 56 & 72.1 \\ 29 / 4 / 2012 & 12.01 & 68.7\end{array}$ 29/4/2012 12:01 $\begin{array}{lll}29 / 4 / 2012 & 12: 11 & 63.8 \\ 29 / 4 / 2012 & 12.16 & 63.8\end{array}$ $\begin{array}{lll}\text { 29/4/2012 } & 12: 16 & 63.8 \\ \text { 29/4/2012 } & 12: 21 & 64.2\end{array}$ $\begin{array}{lll}\text { 29/4/2012 } & 12: 21 & 64.2 \\ \text { 29/4/2012 } & 12: 26 & 65.7\end{array}$ $\begin{array}{lll}29 / 4 / 2012 & 12: 31 & 64.0 \\ 29 / 4 / 2012 & 12.36 & 63.6\end{array}$ 29/4/2012 12:36 $\begin{array}{lll}\text { 29/4/2012 } & 12: 41 & 63.8 \\ 29 / 4 / 2012 & 12: 46 & 64.0\end{array}$ 29/4/2012 12:51 64.4 29/4/2012 12:56 63.6 29/4/2012 13:01 64.1 $\begin{array}{lll}29 / 4 / 2012 & 13: 06 & 64.0 \\ \text { 29/4/2012 } & 13: 11 & 64.6\end{array}$ 29/4/2012 13:16 63.8 29/4/2012 13:21 63.8 $\begin{array}{lll}\text { 29/4/2012 } & 13: 26 & 64.0 \\ 29 / 4 / 2012 & 13: 31 & 64.9\end{array}$ $\begin{array}{lll}29 / 4 / 2012 & 13: 31 & 64.9 \\ 29 / 4 / 2012 & 13: 36 & 64.3\end{array}$ $\begin{array}{lll}29 / 4 / 2012 & 13: 36 & 64.3 \\ \text { 29/4/2012 13:41 } & 64.1\end{array}$ 29/4/2012 13:46 63.4 29/4/2012 13:51 63.6 29/4/2012 13:56 63.5 29/4/2012 14:01 64.2 29/4/2012 14:06 64.1 29/4/2012 14:11 65.9 $\begin{array}{lll}29 / 4 / 4 / 2012 & 14: 16 & 67.0 \\ 29 / 4 / 2012 & 14: 21 & 65\end{array}$ $\begin{array}{lll}29 / 4 / 2012 & 14: 26 & 63.9\end{array}$ 29/4/2012 14:31 63 $\begin{array}{lll}29 / 4 / 2012 & 14: 36 & 63.5 \\ 29 / 4 / 2012 & 14: 41 & 63.9\end{array}$ $\begin{array}{lll}29 / 4 / 2012 & 14: 46 & 63.9\end{array}$ 29/4/2012 14:46 63.5 $\begin{array}{lll}29 / 4 / 2012 & 14: 56 & 63.5\end{array}$ 29/4/2012 15:01 64.2 29/4/2012 15:06 63.7 29/4/2012 15:11 63.7 29/4/2012 15:16 64.8 29/4/2012 15:21 66.4 29/4/2012 15:26 64.1 29/4/2012 15:31 64.4 29/4/2012 15:36 65.3 29/4/2012 15:41 65.0 29/4/2012 15:46 66.4 29/4/2012 15:51 65.6 29/4/2012 15:56 65.6 29/4/2012 16:01 66.3 29/4/2012 16:06 63.7 $\begin{array}{lll}29 / 4 / 2012 & 16: 11 & 63.1 \\ 29 / 4 / 2012 & 16: 16 & 63.5\end{array}$ 29/4/2012 16:16 63.5 $\begin{array}{lll}\text { 29/4/2012 } & 16: 21 & 63.2 \\ \text { 29/4/2012 } & 16.26 & 63.3\end{array}$ 29/4/2012 16:26 63.3 29/4/2012 16:31 63.6 $\begin{array}{lll}29 / 4 / 2012 & 16: 36 & 65.6 \\ 29 / 4 / 2012 & 16: 41 & 67.0\end{array}$ 29/4/2012 16:46 67.1 29/4/2012 16:51 65.4 29/4/2012 16:56 64.2 29/4/2012 17:01 65.0 29/4/2012 17:06 63.2 29/4/2012 17:11 63.5 29/4/2012 17:21 62.6 29/4/2012 17:26 63.6 29/4/2012 17:31 63.0 $\begin{array}{ll}29 / 4 / 2012 & 17: 36 \\ 62.7 \\ \text { 29/4/2012 } & 17: 41 \\ 62.7\end{array}$ $\begin{array}{lll}\text { 29/4/2012 } & 17: 41 & 62.7 \\ \text { 29/4/2012 } & 17: 46 & 63.3\end{array}$ 29/4/2012 17:51 63.4 29/4/2012 17:56 64.5
|29/4/2012 $18: 06 \quad 62.9$ $\begin{array}{ll}29 / 4 / 2012 & 18: 11 \\ 62.9 \\ 29 / 4 / 2012 & 18.16 \\ 67.7\end{array}$
1/5/2012 7:16 1/5/2012 7:16 $1 / 5 / 20127: 21$
$1 / 5 / 20127 \cdot 26$
61.5 1/5/2012 7:26 1/5/2012 7:31 1/5/2012 7:36 1/5/2012 7:41 $1 / 5 / 20127: 46$
$1 / 5 / 20127.51$ 1/5/2012 7:51 1/5/2012 7:56 1/5/2012 8:01 1/5/2012 8:06 1/5/2012 8:11 1/5/2012 8:16 1/5/2012 8:21 1/5/2012 8:26 1/5/2012 8:31 1/5/2012 8:36 1/5/2012 8:41 1/5/2012 8:46 1/5/2012 8:51 $1 / 5 / 2012$ 8:56
$1 / 5 / 20129: 01$ 1/5/2012 9:06 1/5/2012 9:06 1/5/2012 9:16 1/5/2012 9:21 $1 / 5 / 20129: 26$
$1 / 5 / 20129: 31$ 1/5/2012 9:31 1/5/2012 9:36 1/5/2012 9:41 $1 / 5 / 20129: 46$
$1 / 5 / 20129951$ $1 / 5 / 20129: 51$
$1 / 5 / 20129: 56$ 1/5/2012 9:56 1/5/2012 10:01 $1 / 5 / 201210: 06$
$1 / 5 / 2012$ 10:11 1/5/2012 10:16 1/5/2012 10:21 1/5/2012 10:26 1/5/2012 10:31 $1 / 5 / 201210: 36$
$1 / 5 / 2012$ 10:41 $1 / 5 / 2012$ 10:41
1/5/2012 10:46 1/5/2012 10:51 $1 / 5 / 2012$ 10:51
1/5/2012 10:56 1/5/2012 11:01 1/5/2012 11:06 1/5/2012 11:11 1/5/2012 11:16 1/5/2012 11:26 1/5/2012 11:31 1/5/2012 11:36
1/5/2012 11:41 $1 / 5 / 201211: 41$
$1 / 5 / 2012$
$11: 46$ $1 / 5 / 201211: 46$
$1 / 5 / 2012$ 11:51 1/5/2012 11:56 1/5/2012 12:06 1/5/2012 12:11 1/5/2012 12:16 $1 / 5 / 2012$ 12:21
$1 / 5 / 2012$ 12:26 1/5/2012 12:26
1/5/2012 12:31 1/5/2012 12:31
1/5/2012 12:36 1/5/2012 12:41 1/5/2012 12:46 1/5/2012 12:51 1/5/2012 13:01 1/5/2012 13:06 1/5/2012 13:11
1/5/2012 13:16 $1 / 5 / 2012$ 13:16
$1 / 5 / 2012$ 13:21 1/5/2012 13:21 1/5/2012 13:26 1/5/2012 13:36 1/5/2012 13:41 1/5/2012 13:46 1/5/2012 13:56 1/5/2012 14:01 1/5/2012 14:06 1/5/2012 14:11 1/5/2012 14:16 1/5/2012 14:26 1/5/2012 14:31 1/5/2012 14:36 1/5/2012 14:41 $1 / 5 / 201214: 46$
$1 / 5 / 2012$
$14: 51$ 1/5/2012 14:56 1/5/2012 15:01 1/5/2012 15:06 1/5/2012 15:11 1/5/2012 15:16 1/5/2012 15:26 1/5/2012 15:31 1/5/2012 15:41 1/5/2012 15:46 1/5/2012 15:46
15:51 1/5/2012 15:51 1/5/2012 15:56 1/5/2012 16:01 1/5/2012 16:11 1/5/2012 16:16 1/5/2012 16:21

201216	
1/5/2012 16:31	63.
1/5/2012 16:36	65
5/2012 16:4	
1/5/2012 16:46	63.7
1/5/2012 16:51	
1/5/2012 16:56	63.6
1/5/2012 17:01	62.4
1/5/2012 17:06	
1/5/2012 17:11	62.
1/5/2012 17:16	,
1/5/2012 17:21	
1/5/2012 17:26	67.3
1/5/2012 17:31	2.3
1/5/2012 17:36	62
1/5/2012 17:41	62.
1/5/2012 17:46	
1/5/2012 17:51	62.7
1/5/2012 17:56	3.2
1/5/2012 18:01	63.8
1/5/2012 18:06	65
1/5/2012 18:11	
1/5/2012 18:16	63.
1/5/2012 18:21	
1/5/2012 18:26	62.2
1/5/2012 18:31	6
1/5/2012 18:36	
1/5/2012 18:41	63.7
1/5/2012 18:46	. 6
1/5/2012 18:51	
1/5/2012 18:56	62.8
1/5/2012 19:01	
1/5/2012 19:06	65.9
1/5/2012 19:11	1
1/5/2012 19:16	
1/5/2012 19:21	61.6
1/5/2012 19:26	
1/5/2012 19:31	62
1/5/2012 19:36	. 2
1/5/2012 19:41	
1/5/2012 19:46	62.2
1/5/2012 19:51	. 8
1/5/2012 19:56	61.
1/5/2012 20:01	61.7
1/5/2012 20:06	62.3
1/5/2012 20:11	62.1
1/5/2012 20:16	1.8
1/5/2012 20:21	61.6
1/5/2012 20:26	61.7
1/5/2012 20:31	
1/5/2012 20:36	61.4
1/5/2012 20:41	. 7
1/5/2012 20:46	.
1/5/2012 20:51	6
1/5/2012 20:56	62.6
1/5/2012 21:01	61.6
1/5/2012 21:06	1.9
1/5/2012 21:11	62.8
1/5/2012 21:16	. 4
1/5/2012 21:21	
1/5/2012 21:26	61.3
1/5/2012 21:31	62.6
1/5/2012 21:36	61.4
1/5/2012 21:41	61.5
1/5/2012 21:46	
1/5/2012 21:51	61.
1/5/2012 21:56	61.5
1/5/2012 22:01	
1/5/2012 22:06	61.3
1/5/2012 22:11	61.6
1/5/2012 22:16	61.5
1/5/2012 22:21	.
1/5/2012 22:26	
1/5/2012 22:31	61.0
1/5/2012 22:36	61.3
1/5/2012 22:41	61.3
1/5/2012 22:46	60.9
1/5/2012 22:51	
1/5/2012 22:56	60.8
2/5/2012 19:01	63.8
2/5/2012 19:06	63.8
2/5/2012 19:11	62.5
2/5/2012 19:16	63.6
2/5/2012 19:21	64.4
2/5/2012 19:26	63.1
2/5/2012 19:31	
2/5/2012 19:36	63.0
2/5/2012 19:41	62.6
2/5/2012 19:46	62.6
2/5/2012 19:51	63.2
2/5/2012 19:56	62.7
2/5/2012 20:01	62.5
2/5/2012 20:06	62.9
2/5/2012 20:11	
2/5/2012 20:16	62.3
2/5/2012 20:21	62
2/5/2012 20:26	63.6
2/5/2012 20:31	61.9
2/5/2012 20:36	62.5
2/5/2012 20:41	62.8
2/5/2012 20:46	62.1
2/5/2012 20:51	62.2
2/5/2012 20:56	61.8
2/5/2012 21:01	61.8
2/5/2012 21:06	62.1
2/5/2012 21:11	
2/5/2012 21:16	61.
2/5/2012 21:21	63.3
$\left\lvert\, \begin{aligned} & \text { 2/5/2012 21:26 } \\ & 2 / 5 / 2012 \text { 21:31 } \end{aligned}\right.$	

$5 / 20122$	61.9
2/5/2012 21:41	61.6
2/5/2012 21:46	61.4
2/5/2012 21:51	61.4
2/5/2012 21:56	61.1
2/5/2012 22:01	7
2/5/2012 22:06	61.4
2/5/2012 22:11	61.4
2/5/2012 22:16	62.
2/5/2012 22:21	60.6
2/5/2012 22:26	61.1
2/5/2012 22:31	61.5
2/5/2012 22:36	61.4
2/5/2012 22:41	61.5
2/5/2012 22:46	61.3
2/5/2012 22:51	61.0
2/5/2012 22:56	61.6
3/5/2012 19:01	64.8
3/5/2012 19:06	
3/5/2012 19:11	64.0
3/5/2012 19:16	64.4
3/5/2012 19:21	64
3/5/2012 19:26	63.5
3/5/2012 19:31	63.0
3/5/2012 19:36	62.9
3/5/2012 19:41	62.4
3/5/2012 19:46	,
3/5/2012 19:51	62.1
3/5/2012 19:56	63.2
3/5/2012 20:01	63.2
3/5/2012 20:06	62.8
3/5/2012 20:11	62.2
3/5/2012 20:16	62.3
3/5/2012 20:21	. 1
3/5/2012 20:26	62.3
3/5/2012 20:31	61.8
3/5/2012 20:36	62.0
3/5/2012 20:41	61.8
3/5/2012 20:46	63.4
3/5/2012 20:51	63.1
3/5/2012 20:56	62.1
3/5/2012 21:01	61.7
3/5/2012 21:06	62.1
3/5/2012 21:11	62.5
3/5/2012 21:16	62.0
3/5/2012 21:21	61.8
3/5/2012 21:26	. 7
3/5/2012 21:31	61.7
3/5/2012 21:36	61.9
3/5/2012 21:41	62.1
3/5/2012 21:46	62.0
3/5/2012 21:51	61.6
3/5/2012 21:56	61.7
3/5/2012 22:01	61.9
3/5/2012 22:06	61.6
3/5/2012 22:11	63.0
3/5/2012 22:16	62.0
3/5/2012 22:21	. 9
3/5/2012 22:26	61.7
3/5/2012 22:31	62.3
3/5/2012 22:36	61.3
3/5/2012 22:41	61.7
3/5/2012 22:46	61.4
3/5/2012 22:51	61.1
3/5/2012 22:56	61.4
4/5/2012 19:01	6
4/5/2012 19:06	64.8
4/5/2012 19:11	64.9
4/5/2012 19:16	64.6
4/5/2012 19:21	66.6
4/5/2012 19:26	66.9
4/5/2012 19:31	66.2
4/5/2012 19:36	65.7
4/5/2012 19:41	65.6
4/5/2012 19:46	66.3
4/5/2012 19:51	5.6
4/5/2012 19:56	65.6
4/5/2012 20:01	66.3
4/5/2012 20:06	66.0
4/5/2012 20:11	65.8
4/5/2012 20:16	65.0
4/5/2012 20:21	66.3
4/5/2012 20:26	66.5
4/5/2012 20:31	66.0
4/5/2012 20:36	66.5
4/5/2012 20:41	66.2
4/5/2012 20:46	66.0
4/5/2012 20:51	66.4
4/5/2012 20:56	66.2
4/5/2012 21:01	67.9
4/5/2012 21:06	66.5
4/5/2012 21:11	69.8
4/5/2012 21:16	66.6
4/5/2012 21:21	65.1
4/5/2012 21:26	64.9
4/5/2012 21:31	67.1
4/5/2012 21:36	65.3
4/5/2012 21:41	67.5
4/5/2012 21:46	67.6
4/5/2012 21:51	63.0
4/5/2012 21:56	64.2
4/5/2012 22:01	62.8
4/5/2012 22:06	65.2
4/5/2012 22:11	63.5
4/5/2012 22:16	64.7
4/5/2012 22:21	63.3
4/5/2012 22:26	62.4
4/5/2012 22:31	62.8
4/5/2012 22:36	64.0

4/5/2012 22:46	62.3	\|6/5/2012 11:56	65.0	6/5/2012 21:06	62.3	\|8/5/2012 22:16	61.5	\|11/5/2012 19:26	62.1	13/5/2012 8:36	63.9
4/5/2012 22:51	63.1	6/5/2012 12:01	64.0	6/5/2012 21:11	61.9	8/5/2012 22:21	62.5	11/5/2012 19:31	62.2	13/5/2012 8:41	65.0
4/5/2012 22:56	63.7	6/5/2012 12:06	65.7	6/5/2012 21:16	62.0	8/5/2012 22:26	59.6	11/5/2012 19:36	62.5	13/5/2012 8:46	64.8
5/5/2012 19:01	67.0	6/5/2012 12:11	64.8	6/5/2012 21:21	62.8	8/5/2012 22:31	60.3	11/5/2012 19:41	63.8	13/5/2012 8:51	65.1
5/5/2012 19:06	67.3	6/5/2012 12:16	63.6	6/5/2012 21:26	61.8	8/5/2012 22:36	60.3	11/5/2012 19:46	62.6	13/5/2012 8:56	64.9
5/5/2012 19:11	69.7	6/5/2012 12:21	63.3	6/5/2012 21:31	61.7	8/5/2012 22:41	61.6	11/5/2012 19:51	62.1	13/5/2012 9:01	64.
5/5/2012 19:16	66.7	6/5/2012 12:26	64.0	6/5/2012 21:36	62.1	8/5/2012 22:46	60.8	11/5/2012 19:56	61.7	13/5/2012 9:06	66.5
5/5/2012 19:21	66.1	6/5/2012 12:31	63.6	6/5/2012 21:41	61.9	8/5/2012 22:51	60.6	11/5/2012 20:01	62.5	13/5/2012 9:11	67.9
5/5/2012 19:26	65.2	6/5/2012 12:36	63.3	6/5/2012 21:46	61.6	8/5/2012 22:56	58.6	11/5/2012 20:06	62.6	13/5/2012 9:16	67.6
5/5/2012 19:31	66.1	6/5/2012 12:41	63.4	6/5/2012 21:51	63.1	9/5/2012 19:01	65.5	11/5/2012 20:11	64.1	13/5/2012 9:21	68.0
5/5/2012 19:36	66.4	6/5/2012 12:46	63.1	6/5/2012 21:56	62.0	9/5/2012 19:06	65.6	11/5/2012 20:16	63.2	13/5/2012 9:26	65
5/5/2012 19:41	64.9	6/5/2012 12:51	63.8	6/5/2012 22:01	61.3	9/5/2012 19:11	65.3	11/5/2012 20:21	62.4	13/5/2012 9:31	68.2
5/5/2012 19:46	63.7	6/5/2012 12:56	63.0	6/5/2012 22:06	61.9	9/5/2012 19:16	65.3	11/5/2012 20:26	63.5	13/5/2012 9:36	64.2
5/5/2012 19:51	64.3	6/5/2012 13:01	63.0	6/5/2012 22:11	62.4	9/5/2012 19:21	65.4	11/5/2012 20:31	61.4	13/5/2012 9:41	65.
5/5/2012 19:56	66.3	6/5/2012 13:06	62.0	6/5/2012 22:16	61.6	9/5/2012 19:26	65.6	11/5/2012 20:36	61.8	13/5/2012 9:46	65.4
5/5/2012 20:01	65.0	6/5/2012 13:11	61.4	6/5/2012 22:21	62.0	9/5/2012 19:31	65.7	11/5/2012 20:41	62.8	13/5/2012 9:51	65.
5/5/2012 20:06	65.0	6/5/2012 13:16	65.2	6/5/2012 22:26	62.2	9/5/2012 19:36	65.4	11/5/2012 20:46	61.3	13/5/2012 9:56	67.5
5/5/2012 20:11	64.8	6/5/2012 13:21	61.8	6/5/2012 22:31	61.9	9/5/2012 19:41	64.8	11/5/2012 20:51	62.4	13/5/2012 10:01	66.3
5/5/2012 20:16	67.4	6/5/2012 13:26	62.1	6/5/2012 22:36	62.8	9/5/2012 19:46	64.0	11/5/2012 20:56	61.2	13/5/2012 10:06	67
5/5/2012 20:21	66.6	6/5/2012 13:31	63.1	6/5/2012 22:41	60.9	9/5/2012 19:51	64.1	11/5/2012 21:01	61.1	13/5/2012 10:11	66.4
5/5/2012 20:26	68.7	6/5/2012 13:36	62.0	6/5/2012 22:46	61.1	9/5/2012 19:56	64.5	11/5/2012 21:06	61.7	13/5/2012 10:16	67.8
5/5/2012 20:31	66.9	6/5/2012 13:41	61.5	6/5/2012 22:51	62.0	9/5/2012 20:01	64.4	11/5/2012 21:11	61.9	13/5/2012 10:21	65.6
5/5/2012 20:36	67.2	6/5/2012 13:46	65.0	6/5/2012 22:56	61.7	9/5/2012 20:06	64.4	11/5/2012 21:16	64.2	13/5/2012 10:26	64.4
5/5/2012 20:41	66.4	6/5/2012 13:51	62.0	7/5/2012 19:01	64.0	9/5/2012 20:11	63.6	11/5/2012 21:21	61.6	13/5/2012 10:31	63.
5/5/2012 20:46	65.9	6/5/2012 13:56	61.3	7/5/2012 19:06	64.2	9/5/2012 20:16	64.2	11/5/2012 21:26	61.3	13/5/2012 10:36	63.9
5/5/2012 20:51	65.0	6/5/2012 14:01	62.6	7/5/2012 19:11	64.7	9/5/2012 20:21	64.0	11/5/2012 21:31	62.5	13/5/2012 10:41	64.1
5/5/2012 20:56	64.2	6/5/2012 14:06	63.4	7/5/2012 19:16	64.3	9/5/2012 20:26	64.1	11/5/2012 21:36	62.0	13/5/2012 10:46	63.6
5/5/2012 21:01	63.6	6/5/2012 14:11	62.2	7/5/2012 19:21	64.5	9/5/2012 20:31	65.2	11/5/2012 21:41	61.4	13/5/2012 10:51	64.5
5/5/2012 21:06	64.1	6/5/2012 14:16	65.9	7/5/2012 19:26	64.8	9/5/2012 20:36	64.5	11/5/2012 21:46	61.3	13/5/2012 10:56	64.4
5/5/2012 21:11	64.9	6/5/2012 14:21	65.0	7/5/2012 19:31	64.1	9/5/2012 20:41	64.5	11/5/2012 21:51	61.9	13/5/2012 11:01	64.2
5/5/2012 21:16	65.1	6/5/2012 14:26	65.2	7/5/2012 19:36	64.2	9/5/2012 20:46	64.4	11/5/2012 21:56	61.4	13/5/2012 11:06	65.2
5/5/2012 21:21	62.4	6/5/2012 14:31	64.2	7/5/2012 19:41	64.1	9/5/2012 20:51	64.1	11/5/2012 22:01	60.8	13/5/2012 11:11	64.3
5/5/2012 21:26	62.1	6/5/2012 14:36	64.8	7/5/2012 19:46	63.8	9/5/2012 20:56	64.6	11/5/2012 22:06	61.7	13/5/2012 11:16	64.1
5/5/2012 21:31	62.7	6/5/2012 14:41	64.4	7/5/2012 19:51	63.5	9/5/2012 21:01	64.0	11/5/2012 22:11	62.5	13/5/2012 11:21	64.9
5/5/2012 21:36	63.4	6/5/2012 14:46	65.0	7/5/2012 19:56	62.1	9/5/2012 21:06	64.5	11/5/2012 22:16	61.6	13/5/2012 11:26	65.4
5/5/2012 21:41	61.0	6/5/2012 14:51	63.0	7/5/2012 20:01	62.3	9/5/2012 21:11	64.9	11/5/2012 22:21	61.4	13/5/2012 11:31	65.1
5/5/2012 21:46	63.1	6/5/2012 14:56	64.2	7/5/2012 20:06	63.1	9/5/2012 21:16	64.9	11/5/2012 22:26	62.0	13/5/2012 11:36	64.6
5/5/2012 21:51	61.3	6/5/2012 15:01	65.2	7/5/2012 20:11	63.3	9/5/2012 21:21	64.5	11/5/2012 22:31	61.4	13/5/2012 11:41	65.8
5/5/2012 21:56	62.1	6/5/2012 15:06	64.2	7/5/2012 20:16	63.1	9/5/2012 21:26	65.0	11/5/2012 22:36	62.1	13/5/2012 11:46	64.6
5/5/2012 22:01	60.4	6/5/2012 15:11	66.7	7/5/2012 20:21	64.2	9/5/2012 21:31	64.5	11/5/2012 22:41	61.7	13/5/2012 11:51	64.8
5/5/2012 22:06	60.9	6/5/2012 15:16	66.0	7/5/2012 20:26	64.2	9/5/2012 21:36	64.8	11/5/2012 22:46	61.3	13/5/2012 11:56	65.1
5/5/2012 22:11	61.8	6/5/2012 15:21	65.3	7/5/2012 20:31	64.1	9/5/2012 21:41	64.0	11/5/2012 22:51	61.7	13/5/2012 12:01	64.7
5/5/2012 22:16	61.2	6/5/2012 15:26	64.9	7/5/2012 20:36	63.8	9/5/2012 21:46	65.3	11/5/2012 22:56	61.7	13/5/2012 12:06	64.8
5/5/2012 22:21	61.4	6/5/2012 15:31	65.2	7/5/2012 20:41	63.9	9/5/2012 21:51	64.5	12/5/2012 19:01	63.3	13/5/2012 12:11	65.1
5/5/2012 22:26	61.8	6/5/2012 15:36	65.2	7/5/2012 20:46	63.4	9/5/2012 21:56	64.2	12/5/2012 19:06	64.5	13/5/2012 12:16	65.7
5/5/2012 22:31	63.0	6/5/2012 15:41	66.2	7/5/2012 20:51	63.9	9/5/2012 22:01	64.0	12/5/2012 19:11	63.7	13/5/2012 12:21	65.5
5/5/2012 22:36	63.2	6/5/2012 15:46	64.5	7/5/2012 20:56	63.7	9/5/2012 22:06	63.8	12/5/2012 19:16	63.8	13/5/2012 12:26	65.6
5/5/2012 22:41	63.5	6/5/2012 15:51	66.4	7/5/2012 21:01	63.5	9/5/2012 22:11	64.1	12/5/2012 19:21	63.8	13/5/2012 12:31	66.3
5/5/2012 22:46	62.7	6/5/2012 15:56	63.7	7/5/2012 21:06	63.8	9/5/2012 22:16	64.5	12/5/2012 19:2	64.1	13/5/2012 12:36	66.9
5/5/2012 22:51	62.0	6/5/2012 16:01	63.1	7/5/2012 21:11	63.8	9/5/2012 22:21	64.1	12/5/2012 19:31	64.1	13/5/2012 12:41	66.9
5/5/2012 22:56	63.0	6/5/2012 16:06	62.7	7/5/2012 21:16	63.0	9/5/2012 22:26	64.1	12/5/2012 19:36	64.6	13/5/2012 12:46	64.
6/5/2012 7:01	62.1	6/5/2012 16:11	63.9	7/5/2012 21:21	63.4	9/5/2012 22:31	63.9	12/5/2012 19:41	63.8	13/5/2012 12:51	67.3
6/5/2012 7:06	62.0	6/5/2012 16:16	63.3	7/5/2012 21:26	63.6	9/5/2012 22:36	64.4	12/5/2012 19:46	64.1	13/5/2012 12:56	66.2
6/5/2012 7:11	63.5	6/5/2012 16:21	63.7	7/5/2012 21:31	63.1	9/5/2012 22:41	64.0	12/5/2012 19:51	64.9	13/5/2012 13:01	65.4
6/5/2012 7:16	62.0	6/5/2012 16:26	64.0	7/5/2012 21:36	63.2	9/5/2012 22:46	63.5	12/5/2012 19:56	64.9	13/5/2012 13:06	66.9
6/5/2012 7:21	62.7	6/5/2012 16:31	68.3	7/5/2012 21:41	63.9	9/5/2012 22:51	63.5	12/5/2012 20:01	64.7	13/5/2012 13:11	66.8
6/5/2012 7:26	61.7	6/5/2012 16:36	68.9	7/5/2012 21:46	63.1	9/5/2012 22:56	63.9	12/5/2012 20:06	64.7	13/5/2012 13:16	68.6
6/5/2012 7:31	61.9	6/5/2012 16:41	65.2	7/5/2012 21:51	63.5	10/5/2012 19:01	64.8	12/5/2012 20:11	64.7	13/5/2012 13:21	66.6
6/5/2012 7:36	62.8	6/5/2012 16:46	65.8	7/5/2012 21:56	63.4	10/5/2012 19:06	66.6	12/5/2012 20:16	65.1	13/5/2012 13:26	65.7
6/5/2012 7:41	62.9	6/5/2012 16:51	64.2	7/5/2012 22:01	63.2	10/5/2012 19:11	65.2	12/5/2012 20:21	64.2	13/5/2012 13:31	65.3
6/5/2012 7:46	62.0	6/5/2012 16:56	65.0	7/5/2012 22:06	62.3	10/5/2012 19:16	66.0	12/5/2012 20:26	64.5	13/5/2012 13:36	65.0
6/5/2012 7:51	62.7	6/5/2012 17:01	66.1	7/5/2012 22:11	63.2	10/5/2012 19:21	63.9	12/5/2012 20:31	63.7	13/5/2012 13:41	64.5
6/5/2012 7:56	63.4	6/5/2012 17:06	63.5	7/5/2012 22:16	62.8	10/5/2012 19:26	64.4	12/5/2012 20:36	64.1	13/5/2012 13:46	64.5
6/5/2012 8:01	62.9	6/5/2012 17:11	64.6	7/5/2012 22:21	62.9	10/5/2012 19:31	65.4	12/5/2012 20:41	63.8	13/5/2012 13:51	64.5
6/5/2012 8:06	62.6	6/5/2012 17:16	68.3	7/5/2012 22:26	63.1	10/5/2012 19:36	65.8	12/5/2012 20:46	64.1	13/5/2012 13:56	64.1
6/5/2012 8:11	63.0	6/5/2012 17:21	64.1	7/5/2012 22:31	62.7	10/5/2012 19:41	63.2	12/5/2012 20:51	64.5	13/5/2012 14:01	63.9
6/5/2012 8:16	62.9	6/5/2012 17:26	64.3	7/5/2012 22:36	62.9	10/5/2012 19:46	64.4	12/5/2012 20:56	65.0	13/5/2012 14:06	64.5
6/5/2012 8:21	63.8	6/5/2012 17:31	65.6	7/5/2012 22:41	63.5	10/5/2012 19:51	62.8	12/5/2012 21:01	64.9	13/5/2012 14:11	65.6
6/5/2012 8:26	63.3	6/5/2012 17:36	69.3	7/5/2012 22:46	63.2	10/5/2012 19:56	61.5	12/5/2012 21:06	65.6	13/5/2012 14:16	65.1
6/5/2012 8:31	63.4	6/5/2012 17:41	68.9	7/5/2012 22:51	63.6	10/5/2012 20:01	63.0	12/5/2012 21:11	64.9	13/5/2012 14:21	66.4
6/5/2012 8:36	63.3	6/5/2012 17:46	63.1	7/5/2012 22:56	63.2	10/5/2012 20:06	62.3	12/5/2012 21:16	64.3	13/5/2012 14:26	65.2
6/5/2012 8:41	65.8	6/5/2012 17:51	65.1	8/5/2012 19:01	67.0	10/5/2012 20:11	64.2	12/5/2012 21:21	64.7	13/5/2012 14:31	64.7
6/5/2012 8:46	65.6	6/5/2012 17:56	67.4	8/5/2012 19:06	67.2	10/5/2012 20:16	62.8	12/5/2012 21:26	64.0	13/5/2012 14:36	65.3
6/5/2012 8:51	64.5	6/5/2012 18:01	66.5	8/5/2012 19:11	63.9	10/5/2012 20:21	61.5	12/5/2012 21:31	64.7	13/5/2012 14:41	64.9
6/5/2012 8:56	63.8	6/5/2012 18:06	65.9	8/5/2012 19:16	66.1	10/5/2012 20:26	60.6	12/5/2012 21:36	63.7	13/5/2012 14:46	64.8
6/5/2012 9:01	64.3	6/5/2012 18:11	65.8	8/5/2012 19:21	65.8	10/5/2012 20:31	61.0	12/5/2012 21:41	63.5	13/5/2012 14:51	65.2
6/5/2012 9:06	64.9	6/5/2012 18:16	66.7	8/5/2012 19:26	65.9	10/5/2012 20:36	61.1	12/5/2012 21:46	63.7	13/5/2012 14:56	64.7
6/5/2012 9:11	66.2	6/5/2012 18:21	65.9	8/5/2012 19:31	64.5	10/5/2012 20:41	62.2	12/5/2012 21:51	64.0	13/5/2012 15:01	65.4
6/5/2012 9:16	65.4	6/5/2012 18:26	65.6	8/5/2012 19:36	64.4	10/5/2012 20:46	60.8	12/5/2012 21:56	64.5	13/5/2012 15:06	64.7
6/5/2012 9:21	63.8	6/5/2012 18:31	66.6	8/5/2012 19:41	66.1	10/5/2012 20:51	61.9	12/5/2012 22:01	64.1	13/5/2012 15:11	64.6
6/5/2012 9:26	64.4	6/5/2012 18:36	65.7	8/5/2012 19:46	65.8	10/5/2012 20:56	62.0	12/5/2012 22:06	64.1	13/5/2012 15:16	65.3
6/5/2012 9:31	65.1	6/5/2012 18:41	64.3	8/5/2012 19:51	64.5	10/5/2012 21:01	62.8	12/5/2012 22:11	64.0	13/5/2012 15:21	64.8
6/5/2012 9:36	65.0	6/5/2012 18:46	63.6	8/5/2012 19:56	61.9	10/5/2012 21:06	61.8	12/5/2012 22:16	64.2	13/5/2012 15:26	64.6
6/5/2012 9:41	64.5	6/5/2012 18:51	62.9	8/5/2012 20:01	62.3	10/5/2012 21:11	62.9	12/5/2012 22:21	63.7	13/5/2012 15:31	64.9
6/5/2012 9:46	66.3	6/5/2012 18:56	63.1	8/5/2012 20:06	63.8	10/5/2012 21:16	64.8	12/5/2012 22:26	63.7	13/5/2012 15:36	64.4
6/5/2012 9:51	66.9	6/5/2012 19:01	62.1	8/5/2012 20:11	63.0	10/5/2012 21:21	65.1	12/5/2012 22:31	63.3	13/5/2012 15:41	64.6
6/5/2012 9:56	66.3	6/5/2012 19:06	63.1	8/5/2012 20:16	63.2	10/5/2012 21:26	60.8	12/5/2012 22:36	62.5	13/5/2012 15:46	64.8
6/5/2012 10:01	66.4	6/5/2012 19:11	62.5	8/5/2012 20:21	61.2	10/5/2012 21:31	61.6	12/5/2012 22:41	62.6	13/5/2012 15:51	65.0
6/5/2012 10:06	64.9	6/5/2012 19:16	62.4	8/5/2012 20:26	62.9	10/5/2012 21:36	61.0	12/5/2012 22:46	63.8	13/5/2012 15:56	64.9
6/5/2012 10:11	63.4	6/5/2012 19:21	63.0	8/5/2012 20:31	61.5	10/5/2012 21:41	60.2	12/5/2012 22:51	63.7	13/5/2012 16:01	64.8
6/5/2012 10:16	64.0	6/5/2012 19:26	63.2	8/5/2012 20:36	61.2	10/5/2012 21:46	61.3	12/5/2012 22:56	64.4	13/5/2012 16:06	64.7
6/5/2012 10:21	63.8	6/5/2012 19:31	62.4	8/5/2012 20:41	62.9	10/5/2012 21:51	59.6	13/5/2012 7:01	62.8	13/5/2012 16:11	64.3
6/5/2012 10:26	63.8	6/5/2012 19:36	62.5	8/5/2012 20:46	62.8	10/5/2012 21:56	61.8	13/5/2012 7:06	63.1	13/5/2012 16:16	64.5
6/5/2012 10:31	64.2	6/5/2012 19:41	62.7	8/5/2012 20:51	62.1	10/5/2012 22:01	61.4	13/5/2012 7:11	63.8	13/5/2012 16:21	64.8
6/5/2012 10:36	63.9	6/5/2012 19:46	63.1	8/5/2012 20:56	62.9	10/5/2012 22:06	63.2	13/5/2012 7:16	63.8	13/5/2012 16:26	64.1
6/5/2012 10:41	64.7	6/5/2012 19:51	62.6	8/5/2012 21:01	61.0	10/5/2012 22:11	60.0	13/5/2012 7:21	63.3	13/5/2012 16:31	64.7
6/5/2012 10:46	63.0	6/5/2012 19:56	62.3	8/5/2012 21:06	64.8	10/5/2012 22:16	61.0	13/5/2012 7:26	63.4	13/5/2012 16:36	64.5
6/5/2012 10:51	62.8	6/5/2012 20:01	64.1	8/5/2012 21:11	63.0	10/5/2012 22:21	62.3	13/5/2012 7:31	63.3	13/5/2012 16:41	64.6
6/5/2012 10:56	62.4	6/5/2012 20:06	62.1	8/5/2012 21:16	63.2	10/5/2012 22:26	60.8	13/5/2012 7:36	62.7	13/5/2012 16:46	64.6
6/5/2012 11:01	63.8	6/5/2012 20:11	61.6	8/5/2012 21:21	64.0	10/5/2012 22:31	59.4	13/5/2012 7:41	65.4	13/5/2012 16:51	64.6
6/5/2012 11:06	63.8	6/5/2012 20:16	62.7	8/5/2012 21:26	60.5	10/5/2012 22:36	60.2	13/5/2012 7:46	65.8	13/5/2012 16:56	64.3
6/5/2012 11:11	63.1	6/5/2012 20:21	63.4	8/5/2012 21:31	62.0	10/5/2012 22:41	58.8	13/5/2012 7:51	64.0	13/5/2012 17:01	64.0
6/5/2012 11:16	63.7	6/5/2012 20:26	63.9	8/5/2012 21:36	61.0	10/5/2012 22:46	60.7	13/5/2012 7:56	64.4	13/5/2012 17:06	64.3
6/5/2012 11:21	63.3	6/5/2012 20:31	62.2	8/5/2012 21:41	60.5	10/5/2012 22:51	61.4	13/5/2012 8:01	63.8	13/5/2012 17:11	64.8
6/5/2012 11:26	65.2	6/5/2012 20:36	62.2	8/5/2012 21:46	60.2	10/5/2012 22:56	60.2	13/5/2012 8:06	64.7	13/5/2012 17:16	64.6
6/5/2012 11:31	64.6	6/5/2012 20:41	61.8	8/5/2012 21:51	60.1	11/5/2012 19:01	63.9	13/5/2012 8:11	64.3	13/5/2012 17:21	64.5
6/5/2012 11:36	63.6	6/5/2012 20:46	62.3	8/5/2012 21:56	61.5	11/5/2012 19:06	61.3	13/5/2012 8:16	63.6	13/5/2012 17:26	64.0
6/5/2012 11:41	63.7	6/5/2012 20:51	62.1	8/5/2012 22:01	60.6	11/5/2012 19:11	60.0	13/5/2012 8:21	64.9	13/5/2012 17:31	64.3
6/5/2012 11:46	64.2	6/5/2012 20:56	62.1	8/5/2012 22:06	62.1	11/5/2012 19:16	61.6	13/5/2012 8:26	64.1	13/5/2012 17:36	64.3
6/5/2012 11:51	64.5	6/5/2012 21:01	63.0	8/5/2012 22:11	60.1	11/5/2012 19:2	61.2	13/5/2012 8:31	63.9	13/5/2012 17:4	64.0

Real-time Noise Data 13/5/2012 17:46 64.6 13/5/2012 17:51 64.5 13/5/2012 17:56 64.4 13/5/2012 18:01 64.6 13/5/2012 18:06 64.5 13/5/2012 18:11 64.9 13/5/2012 18:16 64.7 13/5/2012 18:21 64.5 13/5/2012 18:26 65.6 13/5/2012 18:31 64.2 13/5/2012 18:36 65.0 13/5/2012 18:41 64.1 13/5/2012 18:46 64.2 13/5/2012 18:51 65.1 13/5/2012 18:56 64.4 13/5/2012 19:01 64.6 13/5/2012 19:06 64.6 13/5/2012 19:11 64.9 13/5/2012 19:16 66.7 13/5/2012 19:21 65.0 13/5/2012 19:26 64.7 13/5/2012 19:31 64.6 13/5/2012 19:36 65.6 13/5/2012 19:41 64.1 13/5/2012 19:46 64.4 13/5/2012 19:51 63.9 13/5/2012 19:56 63.6 13/5/2012 20:01 64.0 13/5/2012 20:06 63.1 13/5/2012 20:11 64.3 13/5/2012 20:16 63.6 13/5/2012 20:21 64.0 13/5/2012 20:26 63.4 13/5/2012 20:31 64.1 13/5/2012 20:36 63.9 13/5/2012 20:41 63.6 13/5/2012 20:46 63.5 13/5/2012 20:51 63.7 13/5/2012 20:56 64.7 13/5/2012 21:01 66.8 13/5/2012 21:06 68.9 13/5/2012 21:11 70.8 13/5/2012 21:16 70.1 13/5/2012 21:21 68.5 13/5/2012 21:26 66.7 13/5/2012 21:31 65.1 13/5/2012 21:36 64.6 13/5/2012 21:41 64.9 13/5/2012 21:46 65.4 13/5/2012 21:51 67.4 13/5/2012 21:56 66.5 13/5/2012 22:01 65.2 13/5/2012 22:06 65.1 13/5/2012 22:11 65.3 13/5/2012 22:16 65.9 $\begin{array}{ll}13 / 5 / 2012 & 22: 21 \\ 13 / 5 / 2012 & 22.26 \\ 65.3\end{array}$ 13/5/2012 22:31 64.8 13/5/2012 22:36 66.3 13/5/2012 22:41 65 13/5/2012 22:46 64.6 13/5/2012 $22.56 \quad 64.3$ 14/5/2012 19:01 65.5 14/5/2012 19:01 65.5 14/5/2012 19:06 63.8 14/5/2012 19:11 63.2 14/5/2012 19:16 66.5 14/5/2012 19:26 68.4 14/5/2012 19:31 66.1 14/5/2012 19:36 67.6 14/5/2012 19:41 64.9 $14 / 5 / 2012$ 19:46 65.0 14/5/2012 19:51 65.6 14/5/2012 19:56 63.3 14/5/2012 20:01 62.7 14/5/2012 20:06 63.3 14/5/2012 20:16 64.8 14/5/2012 20:21 62.6 14/5/2012 20:26 61.5 14/5/2012 20:31 63.1 14/5/2012 20:36 63.7 $14 / 5 / 201220.41 \quad 61.0$ $\begin{array}{ll}14 / 5 / 2012 & 20: 46 \\ 61.3 \\ 14 / 5 / 2012 & 20: 51 \\ 62.2\end{array}$ 14/5/2012 20:51 62.2 14/5/2012 20:56 61.9 14/5/2012 21:01 60.0 14/5/2012 21:11 62.2 14/5/2012 21:16 60.3 14/5/2012 21:21 60.6 14/52012 21:26 61.2 14/5/2012 21:31 62.9 14/5/2012 21:36 63.6 14/5/2012 21:41 64.1 14/5/2012 21:46 62.4 14/5/2012 21:51 62.0 14/5/2012 21:56 62.7 14/5/2012 22:01 62 14/5/2012 22:06 63.9 14/5/2012 22.1662 .1 $\begin{array}{ll}14 / 5 / 201222: 21 & 61.4\end{array}$ $\begin{array}{ll}14 / 5 / 2012 & 22: 21 \\ 61.4 \\ 14 / 2012 & 62.5\end{array}$ 14/5/2012 22:31 60.2 14/5/2012 22:31 60.2 14/5/2012 22:36 61.9 14/5/2012 22:46 60.5 14/5/2012 22:51 61.0

| 14/5/2012 22:56 59.7 15/5/2012 19:01 64.8 15/5/2012 19:06 65.3 15/5/2012 19:11 64.4 15/5/2012 19:16 65.5 $\begin{array}{lll}15 / 5 / 2012 & 19: 21 & 64.5 \\ 15 / 5 / 2012 & 19.26 & 665\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 19: 26 & 66.0 \\ 15 / 5 / 2012 & 19: 31 & 65.4\end{array}$ 15/5/2012 19:36 66.0 15/5/2012 19:41 64.2 15/5/2012 19:46 64.4 15/5/2012 19:51 64.5 15/5/2012 19:56 63.8 15/5/2012 20:01 63.8 $\begin{array}{lll}15 / 5 / 2012 & 20: 06 & 63.8 \\ 15 / 5 / 2012 & 20: 11 & 64.3\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 20: 11 & 64.3 \\ 15 / 5 / 2012 & 20: 16 & 64.3\end{array}$ 15/5/2012 20:21 63.2 15/5/2012 20:26 63.0 15/5/2012 20:31 63.5 $\begin{array}{ll}15 / 5 / 2012 & 20: 31 \\ 15 / 5 / 2012 & 60: 36 \\ 63.5\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 20: 36 & 63.5 \\ 15 / 5 / 2012 & 20: 41 & 63.1\end{array}$ \begin{tabular}{ll}
$15 / 5 / 2012$ \& $20: 41$

$15 / 5 / 2012$ \& $60: 46$

\hline 15.0

 $\begin{array}{ll}15 / 5 / 2012 & 20: 41 \\ 15 / 5 / 2012 & 20: 51 \\ 63.0 \\ 15 / 2012 & 63.3\end{array}$ $\begin{array}{ll}15 / 5 / 2012 & 20: 46 \\ 15 / 5 / 2012 & 60: 51 \\ \text { 20:56 } & 63.6\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 20: 56 & 63.6 \\ 15 / 5 / 2012 & 21: 01 & 63.3\end{array}$ 15/5/2012 21:06 63.5 $\begin{array}{lll}15 / 5 / 2012 & 21: 11 & 63.9 \\ 15 / 5 / 2012 & 21.16 & 64.0\end{array}$ 15/5/2012 21:16 64.0 15/5/2012 21:21 64.1 15/5/2012 21:26 63.1 15/5/2012 21:31 63.6 15/5/2012 21:36 63.5 $\begin{array}{lll}15 / 5 / 2012 & 21: 41 & 63.2 \\ 15 / 5 / 2012 & 21: 46 & 63.4\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 21: 46 & 63.4 \\ 15 / 5 / 2012 & 21: 51 & 62.9\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 21: 51 & 62.9 \\ 15 / 5 / 2012 & 21: 56 & 63.4\end{array}$ 15/5/2012 22:01 $\begin{array}{lll}15 / 5 / 2012 & 22: 06 & 63.7\end{array}$ 15/5/2012 22:11 62.9 $\begin{array}{lll}15 / 5 / 2012 & 22: 16 & 62.9\end{array}$ $\begin{array}{ll}15 / 5 / 2012 & 22: 11 \\ 15 / 5 / 2012 & 22: 16 \\ 62.9 & 63.0\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 22: 16 & 62.9 \\ 15 / 5 / 2012 & 22: 21 & 63.0 \\ 15 / 5 / 2012 & 2231 & 62.1\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 22: 26 & 63.0 \\ 15 / 5 / 2012 & 22: 31 & 62.1\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 22: 36 & 62.1 \\ 15 / 5 / 2012 & 22: 36 & 62.5\end{array}$ $\begin{array}{lll}15 / 5 / 2012 & 22: 36 & 62.5 \\ 15 / 5 / 2012 & 22: 41 & 62.0\end{array}$ 15/5/2012 22:46 62.4 $\begin{array}{lll}15 / 5 / 2012 & 22: 51 & 62.6 \\ 15 / 5 / 2012 & 22.56 & 62.5\end{array}$ 15/5/2012 22:56 62.5 16/5/2012 19:01 65.3 16/5/2012 19:06 65.9

$16 / 5 / 2012$ \& $19: 11$

66.7

$16 / 5 / 2012$ \& $19: 16$

\hline

 16/5/2012 19:16 66.0 16/5/2012 19:21 65.0 16/5/2012 19:26 64.8 16/5/2012 19:31 65.1 16/5/2012 19:36 65.5 $\begin{array}{lll}16 / 5 / 2012 & 19: 41 & 64.1 \\ 16 / 5 / 2012 & 19: 46 & 64.1\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 19: 51 & 63.7\end{array}$ 16/5/2012 19:56 63.8 16/5/2012 20:01 63.7 16/5/2012 20:06 63.5 16/5/2012 20:11 64.2 16/5/2012 20:16 64.7 $\begin{array}{lll}16 / 5 / 2012 & 20: 21 & 64.4 \\ 16 / 5 / 2012 & 20.26 & 65\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 20: 21 & 64.4 \\ 16 / 5 / 2012 & 20: 26 & 65.2\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 20: 31 & 64.5 \\ 16 / 5 / 2012 & 20: 36 & 64.5\end{array}$ 16/5/2012 20:36 64.5 16/5/2012 20:41 64.3 16/5/2012 20:46 63.8 $\begin{array}{lll}16 / 5 / 2012 & 20: 561 & 63.8 \\ 16 / 5 / 2012 & 20: 56 & 63.7\end{array}$ $\begin{array}{lll}16 / 5 / 2012 & 21: 01 & 64.5\end{array}$ 16/5/2012 21:06 65.5 16/5/2012 21:11 66.9 16/5/2012 21:16 66.7 16/5/2012 21:21 65.5 16/5/2012 21:26 63.9 16/5/2012 21:31 63.3 16/5/2012 21:36 63.2 16/5/2012 21:41 62.9 16/5/2012 21:46 63.5 16/5/2012 21:51 63.9 16/5/2012 21:56 63.9 16/5/2012 22:01 62.9 16/5/2012 22:06 63.1

$16 / 5 / 2012$ \& $22: 11$

63.0

$16 / 5 / 2012$ \& $22 \cdot 16$

\hline
\end{tabular} $\begin{array}{ll}16 / 5 / 2012 & 22: 16 \\ 63.2 \\ 16 / 5 / 2012 & 22.21 \\ 63.6\end{array}$ 16/5/2012 22:21 63.6 16/5/2012 22:26 63.1 16/5/2012 22:31 62.9 16/5/2012 22:36 63.7 16/5/2012 22:41 63.2 16/5/2012 22:46 63.0 16/5/2012 22:51 62.8 16/5/2012 22:56 62.9 $\begin{array}{lll}17 / 5 / 2012 & 19: 01 & 63.0\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 19: 06 & 63.5 \\ 17 / 5 / 2012 & 19: 11 & 64.0\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 19: 16 \\ 63.4\end{array}$ 17/5/2012 19:21 63.0 17/5/2012 19:26 63.9 17/5/2012 19:31 63.2 17/5/2012 19:36 64.2 17/5/2012 19:41 63.3 17/5/2012 19:46 63.3 17/5/2012 19:51 63.1 $\begin{array}{lll}17 / 5 / 2012 & 19: 56 & 64.3 \\ \text { 17/5/2012 20:01 } & 62.7\end{array}$

$17 / 5 / 2012$	$20: 06$	64.0				
$17 / 5 / 2012$	$20: 11$	63.2	$\begin{array}{lll}17 / 5 / 2012 & 20: 11 & 63.2 \\ 17 / 5 / 2012 & 20: 16 & 62.7\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 20: 16 \\ 62.7 \\ 17 / 5 / 2012 & 20: 21 \\ 61.9\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 20: 21 \\ 17 / 5 / 2012 & 60.9 \\ 17 / 5 / 26 & 62.6\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 20: 26 \\ 62.6 \\ 17 / 5 / 2012 & 20: 31 \\ 63.5\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 20: 31 & 63.5 \\ 17 / 5 / 2012 & 20: 36 & 62.7\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 20: 36 \\ 62.7 \\ \text { 17/5/2012 20:41 } & 62.3\end{array}$ 17/5/2012 20:46 62.1 17/5/2012 20:51 62.0 17/5/2012 20:56 62.2 17/5/2012 21:01 61.5 17/5/2012 21:06 63.5 $\begin{array}{lll}17 / 5 / 2012 & 21: 11 & 62.4 \\ 17 / 5 / 2012 & 21: 16 & 62.3\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 21: 16 & 62.3 \\ 17 / 5 / 2012 & 21 \cdot 21 & 621\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 21: 26 & 61.6\end{array}$ 17/5/2012 21:31 62.6 17/5/2012 21:36 62.4 17/5/2012 21:41 62.2 $\begin{array}{ll}17 / 5 / 2012 & 21: 46 \\ 61.8\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 21: 46 & 61.8 \\ 17 / 5 / 2012 & 21: 51 & 63.0\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 21: 51 \\ 63.0 \\ 17 / 5 / 2012 & 21: 56 \\ 61.9\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 21: 56 \\ 61.9 \\ 17 / 5 / 2012 & 22.01 \\ 62.3\end{array}$ $\begin{array}{lll}17 / 5 / 2012 & 22: 01 & 62.3 \\ 17 / 5 / 2012 & 22: 06 & 61.5\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 22: 06 \\ 61.5 \\ 17 / 5 / 2012 & 22: 11 \\ 62.1\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 22: 11 \\ 62.1 \\ \text { 17/5/2012 22:16 } & 61.9\end{array}$ $\begin{array}{ll}17 / 5 / 2012 & 22: 21 \\ 61.6\end{array}$ 17/5/2012 22:26 61.6 17/5/2012 22:31 62.0 17/5/2012 22:36 62.3 17/5/2012 22:41 62.1 17/5/2012 22:46 62.0 17/5/2012 22:51 62.0 17/5/2012 22:56 62.5 18/5/2012 19:01 62.9 18/5/2012 19:06 62.9 18/5/2012 19:11 63.3 $\begin{array}{lll}18 / 5 / 2012 & 19: 16 & 65.5 \\ 18 / 5 / 2012 & 19: 21 & 64.9\end{array}$ 18/5/2012 19:26 66.9 18/5/2012 19:31 65.6	$18 / 5 / 2012$	$19: 26$	66.9
:---	:---	:---				
$18 / 5 / 2012$	$19: 31$	65.6	$\begin{array}{lll}18 / 5 / 2012 & 19: 36 & 64.5 \\ 18 / 5 / 2012 & 19: 41 & 63.6\end{array}$ $\begin{array}{lll}\text { 18/5/2012 } & 19: 41 & 63.6 \\ 18 / 5 / 2012 & 19: 46 & 63.7\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 19: 46 & 63.7 \\ \text { 18/5/2012 19:51 } & 63.8\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 19: 51 & 63.8 \\ 18 / 5 / 2012 & 19: 56 & 64.4\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 19: 56 & 64.4 \\ 18 / 5 / 2012 & 20: 01 & 65.4\end{array}$ 18/5/2012 20:06 64.3 18/5/2012 20:11 65.1 18/5/2012 20:16 65.1 18/5/2012 20:21 64.6 18/5/2012 20:26 64.4 18/5/2012 20:31 64.9 18/5/2012 20:36 66.7 18/5/2012 20:41 66.5 18/5/2012 20:46 65.8 $\begin{array}{lll}18 / 5 / 2012 & 20: 51 & 65.1 \\ 18 / 5 / 2012 & 20: 56 & 64.8\end{array}$ 18/5/2012 21:01 64.5 18/5/2012 21:06 64.7 18/5/2012 21:11 64.5 $\begin{array}{lll}18 / 5 / 2012 & 21: 11 & 64.5 \\ \text { 18/5/2012 21:16 } & 64.4\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 21: 16 & 64.4 \\ 18 / 5 / 2012 & 21: 21 & 64.1\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 21: 21 & 64.1 \\ 18 / 5 / 2012 & 21: 26 & 63.9\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 21: 26 & 63.9 \\ 18 / 5 / 2012 & 21: 31 & 63.8\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 21: 31 & 63.8 \\ \text { 18/5/2012 21:36 } & 64.4\end{array}$ $\begin{array}{lll}18 / 5 / 2012 & 21: 36 & 64.4 \\ 18 / 5 / 2012 & 21: 41 & 64.4\end{array}$ 18/5/2012 21:46 66.6 18/5/2012 21:51 67.7 18/5/2012 21:56 68.1 $\begin{array}{lll}18 / 5 / 2012 & 22: 01 & 67.8 \\ 18 / 5 / 2012 & 22: 06 & 66.7\end{array}$ 18/5/2012 22:06 66.7 18/5/2012 22:11 65.6 18/5/2012 22:16 65.0 18/5/2012 22:21 64.3 18/5/2012 22:26 64.1 18/5/2012 22:31 63.9 18/5/2012 22:36 63.7 18/5/2012 22:41 64.7 18/5/2012 22:46 65.0 18/5/2012 22:51 64.4 18/5/2012 22:56 64.4 19/5/2012 19:01 62.5 19/5/2012 19:06 62.6 19/5/2012 19:11 63.4 19/5/2012 19:16 65.1 19/5/2012 19:21 62.9 19/5/2012 19:26 63.2 19/5/2012 19:31 63.2 19/5/2012 19:36 63.6 19/5/2012 19:41 63.6 19/5/2012 19:46 64.3 19/5/2012 19:51 64.7 19/5/2012 19:56 65.9 19/5/2012 20:01 65.8 19/5/2012 20:06 63.6 19/5/2012 20:11 63.9 19/5/2012 20:16 63.2 19/5/2012 20:21 63.1 19/5/2012 20:26 63.5 19/5/2012 20:31 63.1 19/5/2012 20:36 63.3 $\begin{array}{ll}19 / 5 / 2012 & 20: 41 \\ 63.5\end{array}$ 19/5/2012 20:41 63.5 $\begin{array}{ll}19 / 5 / 2012 & 20: 46 \\ 63.2 \\ 19 / 5 / 2012 & 20: 51 \\ 63.2\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 20: 51 \\ \text { 19/5/2012 20:56 } & 62.4\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 20.56 \\ 62.4 \\ 19 / 2012 & 21: 01 \\ 63.7\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 21: 06 & 64.3\end{array}$ 19/5/2012 21:11 64.			

19/5/2012 21:16 64.8 19/5/2012 21:21 63.4 19/5/2012 21:26 63.6 19/5/2012 21:31 64.1 19/5/2012 21:36 63.4 19/5/2012 21:41 62.3 19/5/2012 21:46 63.0 19/5/2012 21:51 63.2 19/5/2012 21:56 62.7 19/5/2012 22:01 62.3 19/5/2012 22:06 62.7 19/5/2012 22:11 63.1 19/5/2012 22:16 63.2 19/5/2012 22:21 62.9 19/5/2012 22:26 63.6 19/5/2012 22:31 63.4 19/5/2012 22:36 62.6 19/5/2012 22:41 62.6 19/5/2012 22:46 62.3 $\begin{array}{lll}19 / 5 / 2012 & 22: 51 & 61.9\end{array}$ $\begin{array}{lll}19 / 5 / 2012 & 22: 56 & 63.0\end{array}$ $\begin{array}{ll}19 / 5 / 2012 & 22: 56 \\ 63.0 \\ \text { 20/5/2012 7:01 } & 62.3\end{array}$ $\begin{array}{ll}\text { 20/5/2012 7:01 } & 62.3 \\ \text { 20/5/2012 7:06 } & 63.4\end{array}$ $\begin{array}{ll}\text { 20/5/2012 7:06 } & 63 / 2012 ~ 7: 11 \\ \text { 20/5 }\end{array}$ 20/5/2012 7:16 20/5/2012 7:21 20/5/2012 7:26 20/5/2012 7:31 20/5/2012 7:36 20/5/2012 7:41 20/5/2012 7:46 65 20/5/2012 7:51 64.4 20/5/2012 7:56 63. 20/5/2012 8:01 63 20/5/2012 8:06 65.7 20/5/2012 8:16 20/5/2012 8:21 67.6 20/5/2012 8:26 20/5/2012 8:31 20/5/2012 8:36 20/5/2012 8:41 20/5/2012 8:46 20/5/2012 8:51 20/5/2012 8:56 20/5/2012 9:01 20/5/2012 9:06 20/5/2012 9:16 20/5/2012 9:21 20/5/2012 9:26 20/5/2012 9:31 20/5/2012 9:36 20/5/2012 9:41 20/5/2012 9:46 20/5/2012 9:51 20/5/2012 9:56 20/5/2012 10:01 $\begin{array}{lll}20 / 5 / 2012 & 10: 06 & 67.6 \\ 20 / 5 / 2012 & 10: 11 & 66.8\end{array}$ 20/5/2012 10:16 64.2 20/5/2012 10:21 64.7 $\begin{array}{lll}20 / 5 / 2012 & 10: 26 & 65.6\end{array}$ $\begin{array}{lll}20 / 5 / 2012 & 10: 26 & 65.6 \\ \text { 20/5/2012 } 10: 31 & 63.5\end{array}$ $\begin{array}{lll}20 / 5 / 2012 & 10: 31 & 63.5 \\ 20 / 5 / 2012 & 10: 36 & 64.8\end{array}$ $\begin{array}{lll}20 / 5 / 2012 & 10: 36 & 64.8 \\ 20 / 5 / 2012 & 10: 41 & 64.0\end{array}$ $\begin{array}{ll}20 / 5 / 2012 & 10: 41 \\ 64.0 \\ 20 / 5 / 2012 & 10: 46 \\ 64.8\end{array}$ 20/5/2012 10:51 64.8 20/5/2012 10:56 64.8 $\begin{array}{lll}20 / 5 / 2012 & 11: 01 & 63.9 \\ 20 / 5 / 2012 & 11: 06 & 63 .\end{array}$ 20/5/2012 11:06 63.6 20/5/2012 11:11 63.5 20/5/2012 11:16 62.3 $\begin{array}{lll}20 / 5 / 2012 & 11: 21 & 63.6 \\ 20 / 5 / 2012 & 11: 26 & 65.6\end{array}$ $\begin{array}{ll}20 / 5 / 2012 & 11: 26 \\ 65.6 \\ 20 / 5 / 2012 & 11: 31 \\ 64.7\end{array}$ $\begin{array}{lll}20 / 5 / 2012 & 11: 31 & 64.7 \\ 20 / 5 / 2012 & 11: 36 & 64.3\end{array}$ 20/5/2012 11:41 63.6 20/5/2012 11:46 63.4 20/5/2012 11:51 63.7

$25 / 5 / 2012$	$21: 56$	62.5
$25 / 5 / 2012$	$22 \cdot 01$	61.8

25/5/2012 22:21 $\begin{array}{lll}25 / 5 / 2012 & 22: 26 & 61.4\end{array}$ $\begin{array}{lll}25 / 5 / 2012 & 22: 31 & 61.6 \\ 25 / 5 / 2012 & 22.36 & 61.4\end{array}$ 25/5/2012 22:36 61.4 $\begin{array}{lll}25 / 5 / 2012 & 22: 41 & 65.3 \\ 25 / 5 / 2012 & 22: 46 & 63.2\end{array}$ $\begin{array}{lll}25 / 5 / 2012 & 22: 46 & 63.2 \\ 25 / 5 / 2012 & 22: 51 & 62.1\end{array}$ 25/5/2012 22:56 61.9 26/5/2012 19:01 64.4 $\begin{array}{lll}26 / 5 / 2012 & 19: 06 & 64.6 \\ 26 / 5 / 2012 & 19: 11 & 64.3\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 19: 11 & 64.3 \\ 26 / 5 / 2012 & 19: 16 & 64.4\end{array}$ 26/5/2012 19:21 63.8 26/5/2012 19:26 64.2 $\begin{array}{lll}26 / 5 / 2012 & 19.26 & 64.2 \\ 26 / 5 / 2012 & 19: 31 & 63.4\end{array}$ $\begin{array}{ll}26 / 5 / 2012 & 19: 36 \\ 63.2 \\ 26 / 5 / 2012 & 19: 41 \\ 63\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 19: 41 & 63.5 \\ 26 / 5 / 2012 & 19: 46 & 63.7\end{array}$ 26/5/2012 19:51 64.1 $\begin{array}{lll}26 / 5 / 2012 & 19: 51 & 64.1 \\ 26 / 5 / 2012 & 19: 56 & 63.2\end{array}$ 26/5/2012 20:01 66.8 $\begin{array}{lll}26 / 5 / 2012 & 20: 06 & 64.0 \\ 26 / 5 / 2012 & 20: 11 & 62.6\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 20: 16 & 62.6 \\ 26 / 5 / 2012 & 20.21 & 62.6\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 20: 21 & 62.6 \\ 26 / 5 / 2012 & 20: 26 & 62.4\end{array}$ $\begin{array}{ll}26 / 5 / 2012 & 20: 31 \\ 62.7\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 20: 36 & 63.1 \\ 26 / 5 / 2012 & 20: 41 & 62.7\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 20: 41 & 62.7 \\ 26 / 5 / 2012 & 20: 46 & 62.3\end{array}$ $\begin{array}{ll}26 / 5 / 2012 & 20: 51 \\ 63.0 \\ 26 / 5 / 2012 & 20.56 \\ 62.7\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 20: 56 & 62.7 \\ 26 / 5 / 2012 & 21: 01 & 62.3\end{array}$ $\begin{array}{ll}26 / 5 / 2012 & 21: 06 \\ 61.5 \\ 26 / 5 / 2012 & 21.11 \\ 62\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 21: 11 & 62.2 \\ 26 / 5 / 2012 & 21: 16 & 63.6\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 21: 16 & 63.6 \\ 26 / 5 / 2012 & 21: 21 & 63.1\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 21: 26 & 61.4 \\ 26 / 5 / 2012 & 21: 31 & 61.1\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 21: 31 & 61.1 \\ 26 / 5 / 2012 & 21: 36 & 62.5\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 21: 36 & 62.5 \\ 26 / 5 / 2012 & 21: 41 & 61.9\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 21: 46 & 61.9 \\ 26 / 5 / 2012 & 21.51 & 625\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 21: 51 & 62.5 \\ 26 / 5 / 2012 & 21: 56 & 62.2\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 21: 56 & 62.2 \\ 26 / 5 / 2012 & 22: 01 & 63.5\end{array}$ 26/5/2012 22:06 62.6 $\begin{array}{lll}26 / 5 / 2012 & 22: 11 & 62.3 \\ 26 / 5 / 2012 & 22: 16 & 62.4\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 22: 16 & 62.4 \\ 26 / 5 / 2012 & 22: 21 & 62.0\end{array}$ $\begin{array}{lll}\text { 26/5/2012 } 22: 21 & 62.0 \\ 26 / 5 / 2012 & 22: 26 & 62.3\end{array}$ 26/5/2012 22:31 6 26/5/2012 22:36 61.7 26/5/2012 22:41 $\begin{array}{lll}26 / 5 / 2012 & 22: 51 & 62.4\end{array}$ $\begin{array}{lll}26 / 5 / 2012 & 22.51 & 62.4 \\ 26 / 5 / 2012 & 22: 56 & 62.8\end{array}$ $\begin{array}{ll}27 / 5 / 2012 ~ 7: 01 & 62.4 \\ 27 / 5 / 20127: 06 & 63.7\end{array}$ $\begin{array}{ll}\text { 27/5/2012 7:06 } & 63.7 \\ 27 / 5 / 2012 \text { 7:11 } & 62.6\end{array}$ \begin{tabular}{ll}
$27 / 5 / 2012$ \& $7: 16$

63.8

$27 / 5 / 2012$ \& 7.21

\hline

 $\begin{array}{ll}\text { 27/5/2012 7:21 } & 63.8 \\ \text { 27/5/2012 7:26 } & 64.9\end{array}$ $\begin{array}{ll}\text { 27/5/2012 7:31 } & 62.9\end{array}$ $\begin{array}{ll}\text { 27/5/2012 7:36 } & 63.2 \\ \text { 27/5/2012 7:41 } & 62.5\end{array}$ $\begin{array}{ll}27 / 5 / 20127: 46 & 62.2 \\ 27 / 5 / 20127: 51 & 62.1\end{array}$ $\begin{array}{ll}27 / 5 / 2012 & 7: 51 \\ \text { 27/5/2012 7:56 } & 62.1 \\ 27 / 5 / 2012 & 8.01\end{array}$ $\begin{array}{ll}27 / 5 / 2012 \text { 8:01 } & 62.2 \\ 27 / 5 / 20128: 06 & 62.8\end{array}$ $\begin{array}{ll}27 / 5 / 20128: 11 & 63.4 \\ 27 / 5 / 20128: 16 & 63.6\end{array}$

$27 / 5 / 20128: 16$ \& 63.6

$27 / 5 / 2012$ \& $8: 21$

$27 / 5 / 2012$ \& 6.26

\hline

 $\begin{array}{ll}27 / 5 / 2012 & 8: 26 \\ 63.5 \\ 27 / 5 / 20128: 31 & 62.6\end{array}$ 27/5/2012 8:41 63.6

$27 / 5 / 2012$ \& $8: 46$ \& 63.4 \& 27/5/2012

27:56 \& 63.7

$27 / 5 / 2012$ \& $8: 51$ \& 63.4 \& $27 / 5 / 2012$ \& $18: 01$

$27 / 5 / 2012$ \& 64.56 \& 63.4 \& $27 / 5 / 2012$ \& $18: 06$

68.7

27/5/2012 8.56 \& 63.4 \& 27/5/2012 18.06 \& 68.7

$27 / 5 / 2012$ \& $9: 01$ \& 63.1 \& $27 / 2012$

27:11 \& 64.5

$27 / 5 / 2012$ \& $9: 01$ \& 63.1 \& $27 / 5 / 2012$ \& $18: 11$

$27 / 5 / 2012$ \& $9: 06$ \& 67.2 \& $27 / 5 / 2012$ \& $18: 16$

\hline 25.3

$27 / 5 / 2012$ \& $9: 11$ \& 68.8 \& $27 / 5 / 2012$ \& 18.21

\hline

27/5/2012 9:11 \& 68.8 \& 27/5/2012 18:21 \& 65.7

$27 / 5 / 2012$ \& $9: 16$ \& 63.9 \& $27 / 5 / 2012$ \& $18: 26$

65.5

$27 / 5 / 2012$ \& $9: 21$ \& 63.7 \& $27 / 5 / 2012$ \& $18: 31$

\hline 25.9

$27 / 5 / 2012$ \& $9: 26$ \& 64.5 \& $27 / 5 / 2012$

$278: 36$ \& 64.5

27/5/2012 9:31 \& 64.7 \& $27 / 5 / 2012$ \& $18: 41$ \& 64.8

$27 / 5 / 2012$ \& $9: 36$ \& 63.8 \& $27 / 5 / 2012$ \& $18: 46$

66.2

$27 / 2012$ \& $9: 36$ \& 63.8 \& $27 / 5 / 2012$ \& $18: 46$

66.2

$27 / 5 / 2012$ \& $9: 41$ \& 64.4 \& $27 / 5 / 2012$ \& $18: 51$

65.5

$27 / 5 / 2012$ \& $9: 46$ \& 64.8 \& $27 / 5 / 2012$ \& $18: 56$

64.3

 27/5/2012 9:51 $65.1-27 / 5 / 2012$ 19:01 64.0

$27 / 5 / 2012$ \& $9: 56$ \& 65.2 \& $27 / 5 / 2012$ \& $19: 06$

63.1

$27 / 5 / 2012$ \& $10: 01$ \& 67.0 \& $27 / 5 / 2012$ \& $19: 11$

63.2

$27 / 5 / 2012$ \& $10: 01$ \& 67.0 \& $27 / 5 / 2012$

$27 / 19: 11$ \& 63.2
\end{tabular} $\begin{array}{lll}27 / 5 / 2012 & 10: 06 & 64.3 \\ \text { 27/5/2012 } & 10: 11 & 63.4\end{array}$ 27/5/2012 10:16 63.6 27/5/2012 10:21 65.6 27/5/2012 10:26 64.7 27/5/2012 10:31 63.5 27/5/2012 10:36 63.3 $\begin{array}{lll}27 / 5 / 2012 & 10: 41 & 63.0 \\ 27 / 5 / 2012 & 10: 46 & 63.3\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 10: 46 & 63.3 \\ 27 / 5 / 2012 & 10: 51 & 63.9\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 10: 51 & 63.9 \\ 27 / 5 / 2012 & 10: 56 & 64.9\end{array}$ 27/5/2012 11:01 64.4

$27 / 5 / 2012$	$11: 06$	64.0			
$27 / 5 / 2012$	$11: 11$	62.5		$27 / 5 / 2012$	$11: 11$
:---	:---				
62.5					
$27 / 5 / 2012$	$11: 16$				
23.2		$\begin{array}{ll}27 / 5 / 2012 & 11: 21 \\ 64.3 \\ 27 / 5 / 2012 & 11 \cdot 26 \\ 64.2\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 11: 26 & 64.2 \\ 27 / 5 / 2012 & 11: 31 & 63.2\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 11: 31 & 63.2 \\ 27 / 5 / 2012 & 11: 36 & 62.9\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 11: 41 & 64.3 \\ 27 / 5 / 2012 & 11: 46 & 64.0\end{array}$ 27/5/2012 11:51 65.2 $\begin{array}{lll}27 / 5 / 2012 & 11: 56 & 63.1 \\ 27 / 5 / 2012 & 12: 01 & 64.1\end{array}$ 27/5/2012 12:06 64.2 $\begin{array}{lll}27 / 5 / 2012 & 12: 11 & 63.1 \\ 27 / 5 / 2012 & 12: 16 & 63.9\end{array}$ 27/5/2012 12:21 63.8 $\begin{array}{lll}\text { 27/5/2012 } & 12: 26 & 64.1 \\ 27 / 5 / 2012 & 12.31 & 63.6\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 12: 36 & 63.3 \\ \text { 27/2012 }\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 12: 41 & 62.5\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 12: 46 & 62.8 \\ 27 / 5 / 2012 & 12.51 & 63.4\end{array}$ $\begin{array}{ll}27 / 5 / 2012 & 12: 51 \\ 63.4 \\ \text { 27/5/2012 } & 12: 56 \\ 64.2\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 12: 56 & 64.2 \\ 27 / 5 / 2012 & 13: 01 & 63.8\end{array}$ 27/5/2012 13:06 65.2 $\begin{array}{lll}\text { 27/5/2012 } 13: 11 & 64.3 \\ \text { 27/5/2012 } & 13: 16 & 64.5\end{array}$ 27/5/2012 13:21 68.4 $\begin{array}{lll}\text { 27/5/2012 } & 13: 26 & 65.6 \\ \text { 27/5/2012 } & 13: 31 & 65.8\end{array}$ $\begin{array}{llll}27 / 5 / 2012 & 13: 36 & 64.5\end{array}$ 27/5/2012 13:41 63.9 $\begin{array}{lll}27 / 5 / 2012 & 13: 46 & 64.1 \\ 27 / 5 / 2012 & 13: 51 & 63.8\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 13: 51 & 63.8 \\ 27 / 5 / 2012 & 13: 56 & 63.0\end{array}$ 27/5/2012 14:01 63.3 27/5/2012 14:06 63.3 $\begin{array}{ll}27 / 5 / 2012 & 14: 11 \\ 63.8 \\ 27 / 5 / 2012 & 14: 16 \\ 62.7\end{array}$ 27/5/2012 14:21 64.0 27/5/2012 14:26 65.3 27/5/2012 14:31 65.5 $\begin{array}{lll}27 / 5 / 2012 & 14: 31 & 65.5 \\ 27 / 5 / 2012 & 14: 36 & 65.4\end{array}$ 27/5/2012 14:41 64.3 $\begin{array}{lll}27 / 5 / 2012 & 14: 51 & 63.3\end{array}$ 27/5/2012 14:56 62.6 $\begin{array}{lll}27 / 5 / 2012 & 15: 01 & 63.0 \\ \text { 27/5/2012 15:06 } & 62.7\end{array}$ 27/5/2012 15:11 62.5 27/5/2012 15:16 62.6 $\begin{array}{lll}27 / 5 / 2012 & 15: 21 & 64.3 \\ 27 / 5 / 2012 & 15 & 26 \\ 64.7\end{array}$ $\begin{array}{lll}\text { 27/5/2012 } & 15: 26 & 64.7 \\ 27 / 5 / 2012 & 15: 31 & 66.5\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 15: 31 & 66.5 \\ 27 / 5 / 2012 & 15: 36 & 63.8\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 15: 36 & 63.8 \\ 27 / 5 / 2012 & 15: 41 & 62.7\end{array}$ 27/5/2012 15:46 62.8 27/5/2012 15:51 63.3 $\begin{array}{lll}27 / 5 / 2012 & 15: 56 & 62.6 \\ \text { 27/5/2012 16:01 } & 62.7\end{array}$ 27/5/2012 16:06 62.7 $\begin{array}{ll}27 / 5 / 2012 & 16: 11 \\ 63.9\end{array}$ 27/5/2012 16:16 63.1 27/5/2012 16:21 64.1 27/5/2012 16:26 62.9 27/5/2012 16:31 65.0 27/5/2012 16:36 63.9 27/5/2012 16:46 62.3 27/5/2012 16:51 63.2 27/5/2012 16:56 64.1 $\begin{array}{lll}\text { 27/5/2012 } & 17: 01 & 65.1 \\ 27 / 5 / 2012 & 17: 06 & 65.3\end{array}$ $\begin{array}{llll}27 / 5 / 2012 & 17: 06 & 65.3 \\ 27 / 5 / 2012 & 17: 11 & 63.3\end{array}$ $\begin{array}{lll}\text { 27/5/2012 } & 17: 11 & 63.3 \\ 27 / 5 / 2012 & 17: 16 & 62.9\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 17: 16 & 62.9 \\ 27 / 5 / 2012 & 17 \cdot 21 & 62.9\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 17: 21 & 62.9 \\ 27 / 5 / 2012 & 17: 26 & 63.6\end{array}$ 27/5/2012 17:26 63.6 27/5/2012 17:31 63.3 27/5/2012 17:36 65.8 $\begin{array}{lll}27 / 5 / 2012 & 17: 46 & 63.9\end{array}$ 27/5/2012 17:51 64.3 27/5/2012 18:06 68.7 $\begin{array}{lll}27 / 5 / 2012 & 18: 31 & 65.9 \\ 27 / 5 / 2012 & 18: 36 & 64.5\end{array}$ 27/5/2012 19:16 62.9 $\begin{array}{ll}\text { 27/5/2012 19:21 } & 61.8 \\ \text { 27/5/2012 19:26 } & 62.3\end{array}$ 27/5/2012 19:31 62.7 $\begin{array}{lll}27 / 5 / 2012 & 19: 36 & 62.7\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 19: 36 & 62.7 \\ 27 / 5 / 2012 & 19: 41 & 63.1\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 19: 41 & 63.1 \\ 27 / 5 / 2012 & 19: 46 & 62.3\end{array}$ $\begin{array}{ll}27 / 5 / 2012 & 19: 46 \\ \text { 27/5/2012 19:51 } & 62.3\end{array}$ $\begin{array}{ll}27 / 5 / 2012 & 19: 51 \\ 62.3 \\ 27 / 5 / 2012 & 19: 56 \\ 62.1\end{array}$ $\begin{array}{lll}\text { 27/5/2012 19:56 } & 62.1 \\ \text { 27/5/2012 20:01 } & 62.4\end{array}$ 27/5/2012 20:06 62.4	27/5/2012 20:11 61.6		

27/5/2012 20:16	61.4	28/4/2012 6:16	,
27/5/2012 20:21	64.9	28/4/2012 6:21	61.2
27/5/2012 20:26	61.6	28/4/2012 6:26	62.5
27/5/2012 20:31	61.9	28/4/2012 6:31	. 2
27/5/2012 20:36	61.3	28/4/2012 6:36	61.6
27/5/2012 20:41	61.2	28/4/2012 6:41	62.3
27/5/2012 20:46	62.6	28/4/2012 6:46	62.8
27/5/2012 20:51	61.8	28/4/2012 6:51	62.6
27/5/2012 20:56	61.4	28/4/2012 6:56	9
27/5/2012 21:01	61.5	28/4/2012 23:01	. 5
27/5/2012 21:06	61.7	28/4/2012 23:06	2
27/5/2012 21:11	61.9	28/4/2012 23:11	0
27/5/2012 21:16	61.2	28/4/2012 23:16	63.7
27/5/2012 21:21	61.4	28/4/2012 23:21	. 2
27/5/2012 21:26	61.6	28/4/2012 23:26	2
27/5/2012 21:31	61.4	28/4/2012 23:31	62.5
27/5/2012 21:36	61.4	28/4/2012 23:36	
27/5/2012 21:41	63.4	28/4/2012 23:4	62.9
27/5/2012 21:46	62.9	28/4/2012 23:46	.
27/5/2012 21:51	61.8	28/4/2012 23:51	1
27/5/2012 21:56	62.8	28/4/2012 23:56	62.8
27/5/2012 22:01	61.9	29/4/2012 0:01	
27/5/2012 22:06	62.9	29/4/2012 0:06	. 8
27/5/2012 22:11	62.4	29/4/2012 0:11	62.8
27/5/2012 22:16	62.0	29/4/2012 0:16	62.5
27/5/2012 22:21	62.4	29/4/2012 0:21	62.2
27/5/2012 22:26	62.3	29/4/2012 0:26	
27/5/2012 22:31	62.8	29/4/2012 0:31	63.5
27/5/2012 22:36	64.6	29/4/2012 0:36	1
27/5/2012 22:41	64.5	29/4/2012 0:41	
27/5/2012 22:46	62.2	29/4/2012 0:46	. 6
27/5/2012 22:51	63.3	29/4/2012 0:51	61.6
27/5/2012 22:56	63.2	29/4/2012 0:56	61.3
		29/4/2012 1:01	61.6
Night time: 23:00	-07:00	29/4/2012 1:06	. 5
28/4/2012 0:01	64.7	29/4/2012 1:11	61.5
28/4/2012 0:06	65.0	29/4/2012 1:16	4
28/4/2012 0:11	65.8	29/4/2012 1:21	3.0
28/4/2012 0:16	65.1	29/4/2012 1:26	. 2
28/4/2012 0:21	65.3	29/4/2012 1:31	62.2
28/4/2012 0:26	64.4	29/4/2012 1:36	61.0
28/4/2012 0:31	64.2	29/4/2012 1:41	. 0
28/4/2012 0:36	63.2	29/4/2012 1:46	. 8
28/4/2012 0:41	63.7	29/4/2012 1:51	. 4
28/4/2012 0:46	64.0	29/4/2012 1:56	. 9
28/4/2012 0:51	63.7	29/4/2012 2:01	60.2
28/4/2012 0:56	64.3	29/4/2012 2:06	. 2
28/4/2012 1:01	64.3	29/4/2012 2:11	仡
28/4/2012 1:06	67.5	29/4/2012 2:16	. 5
28/4/2012 1:11	68.2	29/4/2012 2:21	. 6
28/4/2012 1:16	65.7	29/4/2012 2:26	. 1
28/4/2012 1:21	65.3	29/4/2012 2:31	. 4
28/4/2012 1:26	66.2	29/4/2012 2:36	68.0
28/4/2012 1:31	65.9	29/4/2012 2:41	. 1
28/4/2012 1:36	65.3	29/4/2012 2:46	. 2
28/4/2012 1:41	66.5	29/4/2012 2:51	59.7
28/4/2012 1:46	67.6	29/4/2012 2:56	60.3
28/4/2012 1:51	64.4	29/4/2012 3:01	58.9
28/4/2012 1:56	64.5	29/4/2012 3:06	
28/4/2012 2:01	65.6	29/4/2012 3:11	59.2
28/4/2012 2:06	64.3	29/4/2012 3:16	59.0
28/4/2012 2:11	64.6	29/4/2012 3:21	. 6
28/4/2012 2:16	65.3	29/4/2012 3:26	. 3
28/4/2012 2:21	63.9	29/4/2012 3:31	
28/4/2012 2:26	64.2	29/4/2012 3:36	
28/4/2012 2:31	66.4	29/4/2012 3:41	59.6
28/4/2012 2:36	64.6	29/4/2012 3:46	. 5
28/4/2012 2:41	64.0	29/4/2012 3:51	. 5
28/4/2012 2:46	63.8	29/4/2012 3:56	
28/4/2012 2:51	64.4	29/4/2012 4:01	59.2
28/4/2012 2:56	65.4	29/4/2012 4:06	60.1
28/4/2012 3:01	62.7	29/4/2012 4:11	59.1
28/4/2012 3:06	63.3	29/4/2012 4:16	. 8
28/4/2012 3:11	62.5	29/4/2012 4:21	60.5
28/4/2012 3:16	62.6	29/4/2012 4:26	60.5
28/4/2012 3:21	62.4	29/4/2012 4:31	60.7
28/4/2012 3:26	63.3	29/4/2012 4:36	59.8
28/4/2012 3:31	62.8	29/4/2012 4:41	9.3
28/4/2012 3:36	63.1	29/4/2012 4:46	59.1
28/4/2012 3:41	61.8	29/4/2012 4:51	59.8
28/4/2012 3:46	62.1	29/4/2012 4:56	60.7
28/4/2012 3:51	62.0	29/4/2012 5:01	59.4
28/4/2012 3:56	62.5	29/4/2012 5:06	9.2
28/4/2012 4:01	60.9	29/4/2012 5:11	60.1
28/4/2012 4:06	62.1	29/4/2012 5:16	60.2
28/4/2012 4:11	61.4	29/4/2012 5:21	59.5
28/4/2012 4:16	60.7	29/4/2012 5:26	58.3
28/4/2012 4:21	60.6	29/4/2012 5:31	
28/4/2012 4:26	60.9	29/4/2012 5:36	59.2
28/4/2012 4:31	61.1	29/4/2012 5:41	60.5
28/4/2012 4:36	59.8	29/4/2012 5:46	60.1
28/4/2012 4:41	61.6	29/4/2012 5:51	60.4
28/4/2012 4:46	61.0	29/4/2012 5:56	59.0
28/4/2012 4:51	60.6	29/4/2012 6:01	59.6
28/4/2012 4:56	60.4	29/4/2012 6:06	58.8
28/4/2012 5:01	60.6	29/4/2012 6:11	59.9
28/4/2012 5:06	60.5	29/4/2012 6:16	60.2
28/4/2012 5:11	63.3	29/4/2012 6:21	60.2
28/4/2012 5:16	64.2	29/4/2012 6:26	59.7
28/4/2012 5:21	59.5	29/4/2012 6:31	60.2
28/4/2012 5:26	59.3	29/4/2012 6:36	60.4
28/4/2012 5:31	61.2	29/4/2012 6:41	60.7
28/4/2012 5:36	63.6	29/4/2012 6:46	61.8
28/4/2012 5:41	61.7	29/4/2012 6:51	62.7
28/4/2012 5:46	60.3	29/4/2012 6:56	63.6
28/4/2012 5:51	61.0	29/4/2012 23:01	61.2
28/4/2012 5:56	60.5	29/4/2012 23:06	60.8
28/4/2012 6:01	61.1	29/4/2012 23:11	61.7
$\begin{aligned} & \text { 28/4/2012 6:06 } \\ & \text { 28/4/2012 6:11 } \end{aligned}$	60.6 61.3	\|29/4/2012 23:16	61.7

29/4/2012 23:26	60.4
29/4/2012 23:31	62.6
29/4/2012 23:36	61.1
29/4/2012 23:41	61.4
29/4/2012 23:46	60.6
29/4/2012 23:51	60.6
29/4/2012 23:56	60.6
30/4/2012 0:01	60.1
30/4/2012 0:06	2
30/4/2012 0:11	60.5
30/4/2012 0:16	61.1
30/4/2012 0:21	59.9
30/4/2012 0:26	59.8
30/4/2012 0:31	60.1
30/4/2012 0:36	59.7
30/4/2012 0:41	59.2
30/4/2012 0:46	58.2
30/4/2012 0:51	59.6
30/4/2012 0:56	59.1
30/4/2012 1:01	58.8
30/4/2012 1:06	6
30/4/2012 1:11	8
30/4/2012 1:16	57.9
30/4/2012 1:21	58.8
30/4/2012 1:26	58.3
30/4/2012 1:31	61.8
30/4/2012 1:36	9 2
30/4/2012 1:41	57.1
30/4/2012 1:46	58.3
30/4/2012 1:51	57.9
30/4/2012 1:56	57.7
30/4/2012 2:01	59.6
30/4/2012 2:06	56.3
30/4/2012 2:11	57.0
30/4/2012 2:16	57.5
30/4/2012 2:21	59.1
30/4/2012 2:26	58.9
30/4/2012 2:31	57.6
30/4/2012 2:36	62.8
30/4/2012 2:41	64.3
30/4/2012 2:46	57.7
30/4/2012 2:51	57.0
30/4/2012 2:56	56.2
30/4/2012 3:01	55.9
30/4/2012 3:06	57.9
30/4/2012 3:11	56.0
30/4/2012 3:16	56.5
30/4/2012 3:21	55.5
30/4/2012 3:26	56.3
30/4/2012 3:31	58.6
30/4/2012 3:36	56.9
30/4/2012 3:41	55.8
30/4/2012 3:46	56.4
30/4/2012 3:51	56.6
30/4/2012 3:56	57.1
30/4/2012 4:01	57.2
30/4/2012 4:06	57.3
30/4/2012 4:11	56.5
30/4/2012 4:16	56.2
30/4/2012 4:21	55.5
30/4/2012 4:26	56.4
30/4/2012 4:31	56.5
30/4/2012 4:36	56.4
30/4/2012 4:41	56.2
30/4/2012 4:46	56.2
30/4/2012 4:51	55.9
30/4/2012 4:56	56.9
30/4/2012 5:01	56.9
30/4/2012 5:06	56.3
30/4/2012 5:11	56.3
30/4/2012 5:16	57.6
30/4/2012 5:21	58.5
30/4/2012 5:26	59.6
30/4/2012 5:31	59.6
30/4/2012 5:36	59.8
30/4/2012 5:41	59.7
30/4/2012 5:46	59.9
30/4/2012 5:51	59.2
30/4/2012 5:56	59.9
30/4/2012 6:01	59.2
30/4/2012 6:06	60.1
30/4/2012 6:11	59.3
30/4/2012 6:16	60.0
30/4/2012 6:21	60.4
30/4/2012 6:26	61.4
30/4/2012 6:31	61.0
30/4/2012 6:36	61.7
30/4/2012 6:41	61.8
30/4/2012 6:46	62.6
30/4/2012 6:51	63.5
30/4/2012 6:56	63.8
30/4/2012 23:01	62.1
30/4/2012 23:06	62.1
30/4/2012 23:11	61.8
30/4/2012 23:16	62.7
30/4/2012 23:21	62.6
30/4/2012 23:26	62.7
30/4/2012 23:31	62.0
30/4/2012 23:36	61.9
30/4/2012 23:41	61.8
30/4/2012 23:46	61.8
30/4/2012 23:51	61.8
30/4/2012 23:56	61.6
1/5/2012 0:01	62.2
1/5/2012 0:06	62.8
1/5/2012 0:11	61.3
1/5/2012 0:16	60.9
1/5/2012 0:21	61.6
$\left\lvert\, \begin{aligned} & 1 / 5 / 2012 \\ & 1 / 5 / 2012 \\ & \text { 0:26 }\end{aligned}\right.$	62.1

Real-time Noise Data RTN2 (Oil Street Community Liaison Centre)

1/5/2012 0:36	61.0	\|215/2012 1:46	56.8	\|3/5/2012 2:56	57.0	\|4/5/2012 4:06	56.7	\|5/5/2012 5:16	58.8	\|6/5/2012 6:26	61.1
1/5/2012 0:41	60.8	2/5/2012 1:51	57.2	3/5/2012 3:01	56.8	4/5/2012 4:11	57.8	5/5/2012 5:21	59.6	6/5/2012 6:31	61.9
1/5/2012 0:46	61.3	2/5/2012 1:56	57.0	3/5/2012 3:06	56.3	4/5/2012 4:16	60.2	5/5/2012 5:26	59.4	6/5/2012 6:36	1
1/5/2012 0:51	60.2	2/5/2012 2:01	56.6	3/5/2012 3:11	56.7	4/5/2012 4:21	57.9	5/5/2012 5:31	58.0	6/5/2012 6:41	61.6
1/5/2012 0:56	60.6	2/5/2012 2:06	56.4	3/5/2012 3:16	57.7	4/5/2012 4:26	57.5	5/5/2012 5:36	58.9	6/5/2012 6:46	64.8
1/5/2012 1:01	60.3	215/2012 2:11	56.4	3/5/2012 3:21	55.7	4/5/2012 4:31	58.4	5/5/2012 5:41	58.2	6/5/2012 6:51	64.0
1/5/2012 1:06	60.9	2/5/2012 2:16	55.6	3/5/2012 3:26	56.4	4/5/2012 4:36	57.8	5/5/2012 5:46	58.1	6/5/2012 6:56	61.6
1/5/2012 1:11	61.2	2/5/2012 2:21	56.0	3/5/2012 3:31	57.0	4/5/2012 4:41	56.9	5/5/2012 5:51	58.2	6/5/2012 23:01	1
1/5/2012 1:16	60.4	2/5/2012 2:26	56.8	3/5/2012 3:36	57.5	4/5/2012 4:46	57.4	5/5/2012 5:56	58.3	6/5/2012 23:06	61.8
1/5/2012 1:21	61.0	2/5/2012 2:31	56.7	3/5/2012 3:41	56.8	4/5/2012 4:51	57.2	5/5/2012 6:01	58.5	6/5/2012 23:11	61.4
1/5/2012 1:26	60.1	2/5/2012 2:36	55.1	3/5/2012 3:46	56.4	4/5/2012 4:56	58.6	5/5/2012 6:06	57.8	6/5/2012 23:16	61.2
1/5/2012 1:31	60.5	2/5/2012 2:41	56.8	3/5/2012 3:51	55.4	4/5/2012 5:01	58.0	5/5/2012 6:11	57.9	6/5/2012 23:21	61.1
1/5/2012 1:36	61.1	2/5/2012 2:46	56.2	3/5/2012 3:56	57.2	4/5/2012 5:06	59.3	5/5/2012 6:16	58.3	6/5/2012 23:26	60.8
1/5/2012 1:41	59.7	2/5/2012 2:51	56.3	3/5/2012 4:01	57.0	4/5/2012 5:11	58.7	5/5/2012 6:21	58.0	6/5/2012 23:31	61.5
1/5/2012 1:46	59.9	2/5/2012 2:56	55.3	3/5/2012 4:06	57.3	4/5/2012 5:16	59.2	5/5/2012 6:26	58.4	6/5/2012 23:36	60.5
1/5/2012 1:51	59.6	2/5/2012 3:01	55.4	3/5/2012 4:11	55.4	4/5/2012 5:21	59.7	5/5/2012 6:31	57.5	6/5/2012 23:41	60.0
1/5/2012 1:56	59.6	2/5/2012 3:06	55.2	3/5/2012 4:16	56.0	4/5/2012 5:26	59.3	5/5/2012 6:36	57.6	6/5/2012 23:46	60.5
1/5/2012 2:01	59.6	2/5/2012 3:11	55.0	3/5/2012 4:21	56.6	4/5/2012 5:31	59.7	5/5/2012 6:41	58.1	6/5/2012 23:51	60.5
1/5/2012 2:06	60.3	2/5/2012 3:16	56.6	3/5/2012 4:26	56.2	4/5/2012 5:36	60.0	5/5/2012 6:46	58.5	6/5/2012 23:56	60.0
1/5/2012 2:11	59.3	2/5/2012 3:21	55.4	3/5/2012 4:31	57.0	4/5/2012 5:41	59.7	5/5/2012 6:51	57.4	7/5/2012 0:01	60.7
1/5/2012 2:16	60.7	2/5/2012 3:26	56.3	3/5/2012 4:36	57.1	4/5/2012 5:46	60.3	5/5/2012 6:56	57.3	7/5/2012 0:06	60.8
1/5/2012 2:21	58.8	2/5/2012 3:31	56.2	3/5/2012 4:41	57.4	4/5/2012 5:51	60.6	5/5/2012 23:01	63.4	7/5/2012 0:11	60.6
1/5/2012 2:26	62.2	2/5/2012 3:36	56.8	3/5/2012 4:46	57.0	4/5/2012 5:56	59.7	5/5/2012 23:06	62.8	7/5/2012 0:16	60.7
1/5/2012 2:31	60.3	2/5/2012 3:41	55.2	3/5/2012 4:51	56.9	4/5/2012 6:01	60.2	5/5/2012 23:11	62.0	7/5/2012 0:21	59.9
1/5/2012 2:36	60.5	2/5/2012 3:46	55.7	3/5/2012 4:56	57.7	4/5/2012 6:06	60.9	5/5/2012 23:16	62.0	7/5/2012 0:26	59.9
1/5/2012 2:41	59.3	2/5/2012 3:51	55.1	3/5/2012 5:01	56.7	4/5/2012 6:11	62.0	5/5/2012 23:21	62.5	7/5/2012 0:31	60.2
1/5/2012 2:46	60.7	2/5/2012 3:56	54.6	3/5/2012 5:06	55.9	4/5/2012 6:16	61.2	5/5/2012 23:26	62.3	7/5/2012 0:36	58.8
1/5/2012 2:51	60.5	2/5/2012 4:01	59.8	3/5/2012 5:11	57.0	4/5/2012 6:21	61.7	5/5/2012 23:31	61.7	7/5/2012 0:41	58.5
1/5/2012 2:56	59.0	2/5/2012 4:06	56.8	3/5/2012 5:16	57.1	4/5/2012 6:26	62.8	5/5/2012 23:36	61.3	7/5/2012 0:46	58.1
1/5/2012 3:01	59.4	2/5/2012 4:11	58.1	3/5/2012 5:21	57.2	4/5/2012 6:31	62.3	5/5/2012 23:41	61.7	7/5/2012 0:51	58.5
1/5/2012 3:06	59.6	2/5/2012 4:16	58.1	3/5/2012 5:26	58.2	4/5/2012 6:36	64.3	5/5/2012 23:46	61.6	7/5/2012 0:56	58.0
1/5/2012 3:11	59.7	2/5/2012 4:21	57.9	3/5/2012 5:31	59.4	4/5/2012 6:41	63.4	5/5/2012 23:51	61.6	7/5/2012 1:01	58.0
1/5/2012 3:16	59.3	2/5/2012 4:26	57.5	3/5/2012 5:36	58.6	4/5/2012 6:46	63.5	5/5/2012 23:56	61.6	7/5/2012 1:06	58.2
1/5/2012 3:21	59.5	2/5/2012 4:31	57.3	3/5/2012 5:41	57.7	4/5/2012 6:51	64.9	6/5/2012 0:01	61.2	7/5/2012 1:11	58.7
1/5/2012 3:26	58.7	2/5/2012 4:36	56.1	3/5/2012 5:46	62.1	4/5/2012 6:56	64.6	6/5/2012 0:06	61.5	7/5/2012 1:16	58.1
1/5/2012 3:31	58.9	2/5/2012 4:41	56.2	3/5/2012 5:51	60.5	4/5/2012 23:01	63.7	6/5/2012 0:11	61.5	7/5/2012 1:21	58.0
1/5/2012 3:36	60.1	2/5/2012 4:46	57.8	3/5/2012 5:56	59.9	4/5/2012 23:06	63.5	6/5/2012 0:16	63.2	7/5/2012 1:26	58.0
1/5/2012 3:41	58.5	2/5/2012 4:51	56.5	3/5/2012 6:01	58.6	4/5/2012 23:11	62.9	6/5/2012 0:21	61.0	7/5/2012 1:31	56.4
1/5/2012 3:46	65.8	2/5/2012 4:56	57.1	3/5/2012 6:06	59.9	4/5/2012 23:16	63.4	6/5/2012 0:26	60.9	7/5/2012 1:36	57.8
1/5/2012 3:51	58.3	2/5/2012 5:01	57.0	3/5/2012 6:11	59.9	4/5/2012 23:21	62.6	6/5/2012 0:31	61.6	7/5/2012 1:41	56.0
1/5/2012 3:56	58.7	2/5/2012 5:06	57.2	3/5/2012 6:16	59.8	4/5/2012 23:26	61.9	6/5/2012 0:36	61.5	7/5/2012 1:46	57.4
1/5/2012 4:01	58.7	2/5/2012 5:11	56.8	3/5/2012 6:21	60.6	4/5/2012 23:31	61.6	6/5/2012 0:41	60.9	7/5/2012 1:51	56.6
1/5/2012 4:06	57.7	2/5/2012 5:16	56.4	3/5/2012 6:26	61.8	4/5/2012 23:36	61.3	6/5/2012 0:46	60.6	7/5/2012 1:56	57.5
1/5/2012 4:11	58.4	2/5/2012 5:21	56.8	3/5/2012 6:31	64.4	4/5/2012 23:41	61.9	6/5/2012 0:51	61.0	7/5/2012 2:01	57.0
1/5/2012 4:16	58.1	2/5/2012 5:26	58.2	3/5/2012 6:36	61.4	4/5/2012 23:46	61.6	6/5/2012 0:56	60.0	7/5/2012 2:06	58.1
1/5/2012 4:21	58.3	2/5/2012 5:31	58.8	3/5/2012 6:41	61.4	4/5/2012 23:51	60.6	6/5/2012 1:01	63.0	7/5/2012 2:11	56.9
1/5/2012 4:26	57.7	2/5/2012 5:36	58.3	3/5/2012 6:46	63.2	4/5/2012 23:56	61.3	6/5/2012 1:06	62.7	7/5/2012 2:16	56.3
1/5/2012 4:31	57.8	2/5/2012 5:41	58.6	3/5/2012 6:51	62.8	5/5/2012 0:01	61.9	6/5/2012 1:11	61.4	7/5/2012 2:21	57.1
1/5/2012 4:36	61.6	2/5/2012 5:46	59.3	3/5/2012 6:56	62.1	5/5/2012 0:06	61.8	6/5/2012 1:16	61.6	715/2012 2:26	55.7
1/5/2012 4:41	58.6	2/5/2012 5:51	60.1	3/5/2012 23:01	61.2	5/5/2012 0:11	62.6	6/5/2012 1:21	61.2	7/5/2012 2:31	57.2
1/5/2012 4:46	57.4	2/5/2012 5:56	58.6	3/5/2012 23:06	62.8	5/5/2012 0:16	61.6	6/5/2012 1:26	61.4	715/2012 2:36	57.4
1/5/2012 4:51	57.7	2/5/2012 6:01	59.0	3/5/2012 23:11	61.1	5/5/2012 0:21	61.9	6/5/2012 1:31	60.6	7/5/2012 2:41	57.2
1/5/2012 4:56	58.1	2/5/2012 6:06	59.5	3/5/2012 23:16	61.3	5/5/2012 0:26	61.6	6/5/2012 1:36	61.1	715/2012 2:46	56.0
1/5/2012 5:01	58.8	2/5/2012 6:11	60.3	3/5/2012 23:21	61.3	5/5/2012 0:31	61.6	6/5/2012 1:41	60.9	7/5/2012 2:51	55.6
1/5/2012 5:06	59.0	2/5/2012 6:16	60.5	3/5/2012 23:26	61.5	5/5/2012 0:36	61.4	6/5/2012 1:46	60.6	7/5/2012 2:56	55.9
1/5/2012 5:11	58.4	2/5/2012 6:21	60.6	3/5/2012 23:31	61.0	5/5/2012 0:41	61.8	6/5/2012 1:51	61.0	7/5/2012 3:01	56.7
1/5/2012 5:16	59.2	2/5/2012 6:26	61.4	3/5/2012 23:36	61.1	5/5/2012 0:46	62.1	6/5/2012 1:56	60.5	7/5/2012 3:06	55.9
1/5/2012 5:21	59.1	2/5/2012 6:31	62.2	3/5/2012 23:41	61.1	5/5/2012 0:51	61.7	6/5/2012 2:01	60.6	7/5/2012 3:11	54.7
1/5/2012 5:26	59.9	2/5/2012 6:36	62.0	3/5/2012 23:46	60.6	5/5/2012 0:56	61.1	6/5/2012 2:06	60.8	7/5/2012 3:16	55.8
1/5/2012 5:31	60.1	2/5/2012 6:41	62.1	3/5/2012 23:51	60.6	5/5/2012 1:01	61.6	6/5/2012 2:11	59.8	7/5/2012 3:21	56.0
1/5/2012 5:36	60.5	2/5/2012 6:46	63.0	3/5/2012 23:56	61.5	5/5/2012 1:06	61.9	6/5/2012 2:16	60.4	7/5/2012 3:26	55.4
1/5/2012 5:41	60.4	2/5/2012 6:51	62.8	4/5/2012 0:01	62.5	5/5/2012 1:11	62.2	6/5/2012 2:21	59.8	7/5/2012 3:31	55.9
1/5/2012 5:46	61.3	2/5/2012 6:56	62.7	4/5/2012 0:06	61.3	5/5/2012 1:16	61.8	6/5/2012 2:26	60.0	7/5/2012 3:36	56.4
1/5/2012 5:51	60.9	2/5/2012 23:01	62.0	4/5/2012 0:11	60.2	5/5/2012 1:21	61.6	6/5/2012 2:31	60.5	7/5/2012 3:41	56.9
1/5/2012 5:56	60.3	2/5/2012 23:06	61.9	4/5/2012 0:16	60.4	5/5/2012 1:26	61.7	6/5/2012 2:36	59.7	7/5/2012 3:46	56.4
1/5/2012 6:01	60.4	2/5/2012 23:11	60.9	4/5/2012 0:21	60.3	5/5/2012 1:31	62.2	6/5/2012 2:41	59.6	7/5/2012 3:51	56.8
1/5/2012 6:06	60.3	2/5/2012 23:16	62.2	4/5/2012 0:26	60.0	5/5/2012 1:36	61.8	6/5/2012 2:46	59.9	7/5/2012 3:56	55.3
1/5/2012 6:11	60.5	2/5/2012 23:21	62.1	4/5/2012 0:31	60.1	5/5/2012 1:41	62.2	6/5/2012 2:51	59.7	7/5/2012 4:01	55.2
1/5/2012 6:16	63.1	2/5/2012 23:26	61.0	4/5/2012 0:36	60.2	5/5/2012 1:46	62.2	6/5/2012 2:56	59.6	7/5/2012 4:06	55.4
1/5/2012 6:21	62.4	2/5/2012 23:31	60.9	4/5/2012 0:41	59.5	5/5/2012 1:51	61.4	6/5/2012 3:01	59.0	7/5/2012 4:11	56.2
1/5/2012 6:26	61.8	2/5/2012 23:36	61.0	4/5/2012 0:46	59.6	5/5/2012 1:56	61.9	6/5/2012 3:06	60.1	7/5/2012 4:16	56.2
1/5/2012 6:31	61.2	2/5/2012 23:41	60.8	4/5/2012 0:51	59.6	5/5/2012 2:01	61.2	6/5/2012 3:11	59.6	7/5/2012 4:21	56.2
1/5/2012 6:36	60.9	2/5/2012 23:46	60.8	4/5/2012 0:56	59.0	5/5/2012 2:06	62.2	6/5/2012 3:16	59.7	7/5/2012 4:26	55.8
1/5/2012 6:41	61.0	2/5/2012 23:51	60.8	4/5/2012 1:01	58.2	5/5/2012 2:11	61.7	6/5/2012 3:21	59.0	7/5/2012 4:31	55.8
1/5/2012 6:46	61.6	2/5/2012 23:56	60.9	4/5/2012 1:06	59.0	5/5/2012 2:16	61.6	6/5/2012 3:26	59.6	715/2012 4:36	55.8
1/5/2012 6:51	63.3	3/5/2012 0:01	62.7	4/5/2012 1:11	58.5	5/5/2012 2:21	61.3	6/5/2012 3:31	59.3	7/5/2012 4:41	57.3
1/5/2012 6:56	62.5	3/5/2012 0:06	61.1	4/5/2012 1:16	58.6	5/5/2012 2:26	61.1	6/5/2012 3:36	59.8	7/5/2012 4:46	56.5
1/5/2012 23:01	60.8	3/5/2012 0:11	62.2	4/5/2012 1:21	59.1	5/5/2012 2:31	61.3	6/5/2012 3:41	60.0	7/5/2012 4:51	56.8
1/5/2012 23:06	61.1	3/5/2012 0:16	61.0	4/5/2012 1:26	58.2	5/5/2012 2:36	60.8	6/5/2012 3:46	59.4	7/5/2012 4:56	57.7
1/5/2012 23:11	62.0	3/5/2012 0:21	64.0	4/5/2012 1:31	57.7	5/5/2012 2:41	61.4	6/5/2012 3:51	59.5	7/5/2012 5:01	66.1
1/5/2012 23:16	61.2	3/5/2012 0:26	61.2	4/5/2012 1:36	58.6	5/5/2012 2:46	61.6	6/5/2012 3:56	59.6	7/5/2012 5:06	57.5
1/5/2012 23:21	61.2	3/5/2012 0:31	60.9	4/5/2012 1:41	57.6	5/5/2012 2:51	61.1	6/5/2012 4:01	59.6	7/5/2012 5:11	56.3
1/5/2012 23:26	60.5	3/5/2012 0:36	59.2	4/5/2012 1:46	57.6	5/5/2012 2:56	60.8	6/5/2012 4:06	58.9	7/5/2012 5:16	57.5
1/5/2012 23:31	60.7	3/5/2012 0:41	59.3	4/5/2012 1:51	57.7	5/5/2012 3:01	60.6	6/5/2012 4:11	59.6	7/5/2012 5:21	58.1
1/5/2012 23:36	60.7	3/5/2012 0:46	59.4	4/5/2012 1:56	57.5	5/5/2012 3:06	60.7	6/5/2012 4:16	59.0	7/5/2012 5:26	57.9
1/5/2012 23:41	60.5	3/5/2012 0:51	58.4	4/5/2012 2:01	57.6	5/5/2012 3:11	61.7	6/5/2012 4:21	58.8	7/5/2012 5:31	60.3
1/5/2012 23:46	60.4	3/5/2012 0:56	59.0	4/5/2012 2:06	57.8	5/5/2012 3:16	61.5	6/5/2012 4:26	59.3	715/2012 5:36	58.1
1/5/2012 23:51	60.0	3/5/2012 1:01	58.7	4/5/2012 2:11	56.9	5/5/2012 3:21	61.4	6/5/2012 4:31	59.3	7/5/2012 5:41	59.3
1/5/2012 23:56	60.2	3/5/2012 1:06	59.4	4/5/2012 2:16	56.9	5/5/2012 3:26	60.7	6/5/2012 4:36	59.5	7/5/2012 5:46	64.1
215/2012 0:01	59.9	3/5/2012 1:11	59.2	4/5/2012 2:21	56.5	5/5/2012 3:31	60.9	6/5/2012 4:41	58.4	7/5/2012 5:51	58.7
2/5/2012 0:06	59.8	3/5/2012 1:16	61.7	4/5/2012 2:26	56.4	5/5/2012 3:36	61.1	6/5/2012 4:46	59.0	715/2012 5:56	58.5
2/5/2012 0:11	60.5	3/5/2012 1:21	59.5	4/5/2012 2:31	56.4	5/5/2012 3:41	60.6	6/5/2012 4:51	58.5	715/2012 6:01	59.2
2/5/2012 0:16	60.0	3/5/2012 1:26	68.0	4/5/2012 2:36	56.2	5/5/2012 3:46	61.8	6/5/2012 4:56	59.1	7/5/2012 6:06	61.3
2/5/2012 0:21	59.8	3/5/2012 1:31	68.6	4/5/2012 2:41	56.1	5/5/2012 3:51	60.3	6/5/2012 5:01	59.9	7/5/2012 6:11	59.7
2/5/2012 0:26	60.1	3/5/2012 1:36	60.2	4/5/2012 2:46	57.3	5/5/2012 3:56	60.8	6/5/2012 5:06	58.9	7/5/2012 6:16	59.9
2/5/2012 0:31	59.6	3/5/2012 1:41	58.1	4/5/2012 2:51	57.1	5/5/2012 4:01	60.6	6/5/2012 5:11	59.0	715/2012 6:21	66.1
2/5/2012 0:36	59.3	3/5/2012 1:46	57.2	4/5/2012 2:56	57.8	5/5/2012 4:06	60.9	6/5/2012 5:16	59.3	7/5/2012 6:26	61.7
2/5/2012 0:41	59.3	3/5/2012 1:51	57.5	4/5/2012 3:01	58.1	5/5/2012 4:11	60.8	6/5/2012 5:21	59.7	7/5/2012 6:31	62.9
2/5/2012 0:46	59.0	3/5/2012 1:56	56.8	4/5/2012 3:06	58.0	5/5/2012 4:16	60.4	6/5/2012 5:26	59.7	7/5/2012 6:36	61.7
2/5/2012 0:51	59.1	3/5/2012 2:01	57.6	4/5/2012 3:11	58.0	5/5/2012 4:21	59.1	6/5/2012 5:31	63.6	7/5/2012 6:41	61.9
2/5/2012 0:56	59.3	3/5/2012 2:06	56.1	4/5/2012 3:16	57.8	5/5/2012 4:26	60.4	6/5/2012 5:36	61.7	7/5/2012 6:46	61.4
2/5/2012 1:01	58.2	3/5/2012 2:11	57.3	4/5/2012 3:21	57.1	5/5/2012 4:31	59.8	6/5/2012 5:41	58.9	7/5/2012 6:51	61.8
2/5/2012 1:06	58.5	3/5/2012 2:16	57.6	4/5/2012 3:26	58.3	5/5/2012 4:36	59.4	6/5/2012 5:46	61.9	7/5/2012 6:56	62.8
2/5/2012 1:11	57.4	3/5/2012 2:21	56.0	4/5/2012 3:31	56.6	5/5/2012 4:41	59.9	6/5/2012 5:51	60.9	7/5/2012 23:01	62.7
2/5/2012 1:16	57.8	3/5/2012 2:26	56.7	4/5/2012 3:36	58.8	5/5/2012 4:46	58.9	6/5/2012 5:56	60.5	7/5/2012 23:06	63.1
2/5/2012 1:21	57.5	3/5/2012 2:31	56.5	4/5/2012 3:41	57.8	5/5/2012 4:51	59.1	6/5/2012 6:01	60.7	7/5/2012 23:11	62.6
2/5/2012 1:26	58.1	3/5/2012 2:36	57.0	4/5/2012 3:46	58.4	5/5/2012 4:56	60.4	6/5/2012 6:06	60.6	7/5/2012 23:16	62.8
2/5/2012 1:31	57.6	3/5/2012 2:41	56.5	4/5/2012 3:51	58.5	5/5/2012 5:01	59.0	6/5/2012 6:11	60.5	7/5/2012 23:21	62.1
2/5/2012 1:36	57.1	3/5/2012 2:46	57.1	4/5/2012 3:56	58.3	5/5/2012 5:06	59.9	6/5/2012 6:16	61.0	7/5/2012 23:26	62.9
2/5/2012 1:41	56.6	3/5/2012 2:51	58.1	4/5/2012 4:01	56.7	5/5/2012 5:11	59.6	6/5/2012 6:21	61.1	17/5/2012 23:31	62.6

Real-time Noise Data RTN2 (Oil Street Community Liaison Centre)

7/5/2012 23:36	62.3	\|9/5/2012 0:46	58.8	\|10/5/2012 1:56	60.4	\|11/5/2012 3:06	55.2	\|12/5/2012 4:16	57.7	13/5/2012 5:26	61.2
7/5/2012 23:41	62.9	9/5/2012 0:51	57.8	10/5/2012 2:01	60.0	11/5/2012 3:11	54.1	12/5/2012 4:21	57.7	13/5/2012 5:31	60.8
7/5/2012 23:46	60.3	9/5/2012 0:56	56.7	10/5/2012 2:06	59.3	11/5/2012 3:16	54.1	12/5/2012 4:26	57.6	13/5/2012 5:36	61.1
7/5/2012 23:51	62.2	9/5/2012 1:01	57.6	10/5/2012 2:11	60.1	11/5/2012 3:21	54.8	12/5/2012 4:31	58.0	13/5/2012 5:41	61.5
7/5/2012 23:56	62.0	9/5/2012 1:06	57.4	10/5/2012 2:16	59.8	11/5/2012 3:26	54.5	12/5/2012 4:36	57.0	13/5/2012 5:46	61.8
8/5/2012 0:01	61.1	9/5/2012 1:11	57.0	10/5/2012 2:21	59.7	11/5/2012 3:31	52.8	12/5/2012 4:41	57.5	13/5/2012 5:51	61.7
8/5/2012 0:06	62.2	9/5/2012 1:16	58.1	10/5/2012 2:26	59.3	11/5/2012 3:36	53.3	12/5/2012 4:46	57.7	13/5/2012 5:56	61.9
8/5/2012 0:11	61.8	9/5/2012 1:21	56.3	10/5/2012 2:31	59.7	11/5/2012 3:41	54.5	12/5/2012 4:51	56.8	13/5/2012 6:01	61.5
8/5/2012 0:16	61.8	9/5/2012 1:26	56.9	10/5/2012 2:36	60.5	11/5/2012 3:46	54.3	12/5/2012 4:56	57.8	13/5/2012 6:06	62.2
8/5/2012 0:21	61.5	9/5/2012 1:31	55.0	10/5/2012 2:41	59.8	11/5/2012 3:51	55.6	12/5/2012 5:01	57.9	13/5/2012 6:11	62.4
8/5/2012 0:26	62.1	9/5/2012 1:36	56.2	10/5/2012 2:46	59.5	11/5/2012 3:56	55.8	12/5/2012 5:06	57.4	13/5/2012 6:16	63.0
8/5/2012 0:31	61.6	9/5/2012 1:41	54.7	10/5/2012 2:51	59.5	11/5/2012 4:01	55.1	12/5/2012 5:11	58.0	13/5/2012 6:21	63.1
8/5/2012 0:36	62.5	9/5/2012 1:46	55.8	10/5/2012 2:56	59.5	11/5/2012 4:06	56.2	12/5/2012 5:16	57.9	13/5/2012 6:26	63.3
8/5/2012 0:41	61.0	9/5/2012 1:51	56.7	10/5/2012 3:01	59.5	11/5/2012 4:11	57.0	12/5/2012 5:21	62.3	13/5/2012 6:31	62.5
8/5/2012 0:46	60.6	9/5/2012 1:56	56.2	10/5/2012 3:06	59.4	11/5/2012 4:16	55.7	12/5/2012 5:26	61.3	13/5/2012 6:36	62.4
8/5/2012 0:51	60.5	9/5/2012 2:01	55.2	10/5/2012 3:11	58.4	11/5/2012 4:21	55.3	12/5/2012 5:31	63.7	13/5/2012 6:41	62.8
8/5/2012 0:56	60.4	9/5/2012 2:06	55.8	10/5/2012 3:16	59.5	11/5/2012 4:26	57.0	12/5/2012 5:36	66.3	13/5/2012 6:46	62.9
8/5/2012 1:01	60.0	9/5/2012 2:11	57.0	10/5/2012 3:21	59.1	11/5/2012 4:31	55.5	12/5/2012 5:41	63.1	13/5/2012 6:51	62.5
8/5/2012 1:06	60.2	9/5/2012 2:16	56.1	10/5/2012 3:26	59.0	11/5/2012 4:36	55.6	12/5/2012 5:46	63.5	13/5/2012 6:56	62.6
8/5/2012 1:11	59.4	9/5/2012 2:21	53.0	10/5/2012 3:31	60.4	11/5/2012 4:41	56.3	12/5/2012 5:51	60.7	13/5/2012 23:01	64.5
8/5/2012 1:16	60.5	9/5/2012 2:26	56.2	10/5/2012 3:36	60.1	11/5/2012 4:46	56.9	12/5/2012 5:56	58.9	13/5/2012 23:06	63.9
8/5/2012 1:21	59.0	9/5/2012 2:31	57.0	10/5/2012 3:41	59.1	11/5/2012 4:51	58.5	12/5/2012 6:01	60.4	13/5/2012 23:11	63.0
8/5/2012 1:26	59.7	9/5/2012 2:36	54.6	10/5/2012 3:46	59.7	11/5/2012 4:56	55.2	12/5/2012 6:06	64.2	13/5/2012 23:1	64.6
8/5/2012 1:31	60.1	9/5/2012 2:41	54.3	10/5/2012 3:51	59.8	11/5/2012 5:01	56.3	1215/2012 6:11	60.1	13/5/2012 23:21	64.5
8/5/2012 1:36	58.9	9/5/2012 2:46	55.0	10/5/2012 $3: 56$	58.3	11/5/2012 5:06	56.7	12/5/2012 6:16	60.4	13/5/2012 23:26	63.8
8/5/2012 1:41	59.4	9/5/2012 2:51	54.8	10/5/2012 4:01	59.4	11/5/2012 5:11	56.6	12/5/2012 6:21	64.9	13/5/2012 23:31	63.5
8/5/2012 1:46	63.1	9/5/2012 2:56	54.4	10/5/2012 4:06	59.2	11/5/2012 5:16	55.4	12/5/2012 6:26	62.3	13/5/2012 23:36	63.4
8/5/2012 1:51	58.1	9/5/2012 3:01	53.8	10/5/2012 4:11	58.6	11/5/2012 5:21	56.6	12/5/2012 6:31	60.7	13/5/2012 23:41	64.5
8/5/2012 1:56	59.2	9/5/2012 3:06	55.1	10/5/2012 4:16	58.2	11/5/2012 5:26	55.8	12/5/2012 6:36	61.0	13/5/2012 23:46	63.7
8/5/2012 2:01	58.9	9/5/2012 3:11	53.7	10/5/2012 4:21	60.0	11/5/2012 5:31	60.7	12/5/2012 6:41	63.1	13/5/2012 23:51	63.1
8/5/2012 2:06	58.5	9/5/2012 3:16	54.5	10/5/2012 4:26	60.8	11/5/2012 5:36	56.1	12/5/2012 6:46	61.3	13/5/2012 23:56	62.9
8/5/2012 2:11	58.2	9/5/2012 3:21	54.5	10/5/2012 4:31	59.5	11/5/2012 5:41	59.1	12/5/2012 6:51	63.4	14/5/2012 0:01	60.9
8/5/2012 2:16	59.2	9/5/2012 3:26	53.4	10/5/2012 4:36	58.8	11/5/2012 5:46	58.1	12/5/2012 6:56	62.4	14/5/2012 0:06	61.1
8/5/2012 2:21	57.9	9/5/2012 3:31	54.2	10/5/2012 4:41	59.2	11/5/2012 5:51	58.4	12/5/2012 23:01	64.3	14/5/2012 0:11	61.9
8/5/2012 2:26	57.3	9/5/2012 3:36	52.3	10/5/2012 4:46	58.6	11/5/2012 5:56	60.4	12/5/2012 23:06	64.0	14/5/2012 0:16	61.3
8/5/2012 2:31	57.9	9/5/2012 3:41	54.5	10/5/2012 4:51	58.8	11/5/2012 6:01	57.8	12/5/2012 23:11	63.6	14/5/2012 0:21	61.4
8/5/2012 2:36	57.9	9/5/2012 3:46	55.8	10/5/2012 4:56	60.0	11/5/2012 6:06	59.9	12/5/2012 23:16	63.3	14/5/2012 0:26	60.4
8/5/2012 2:41	58.2	9/5/2012 3:51	54.8	10/5/2012 5:01	59.2	11/5/2012 6:11	60.1	12/5/2012 23:21	64.2	14/5/2012 0:31	61.8
8/5/2012 2:46	57.0	9/5/2012 3:56	58.1	10/5/2012 5:06	59.6	11/5/2012 6:16	59.8	12/5/2012 23:26	64.1	14/5/2012 0:36	61.8
8/5/2012 2:51	56.8	9/5/2012 4:01	54.7	10/5/2012 5:11	59.2	11/5/2012 6:21	60.6	12/5/2012 23:31	63.6	14/5/2012 0:41	60.3
8/5/2012 2:56	58.4	9/5/2012 4:06	53.9	10/5/2012 5:16	59.6	11/5/2012 6:26	59.3	12/5/2012 23:36	63.8	14/5/2012 0:46	61.0
8/5/2012 3:01	56.7	9/5/2012 4:11	54.7	10/5/2012 5:21	59.5	11/5/2012 6:31	61.1	12/5/2012 23:41	63.9	14/5/2012 0:51	60.8
8/5/2012 3:06	57.1	9/5/2012 4:16	54.7	10/5/2012 5:26	61.1	11/5/2012 6:36	60.5	12/5/2012 23:46	63.6	14/5/2012 0:56	61.0
8/5/2012 3:11	56.5	9/5/2012 4:21	55.4	10/5/2012 5:31	60.4	11/5/2012 6:41	60.5	12/5/2012 23:51	62.8	14/5/2012 1:01	59.6
8/5/2012 3:16	58.4	9/5/2012 4:26	56.7	10/5/2012 5:36	60.9	11/5/2012 6:46	63.2	12/5/2012 23:56	63.2	14/5/2012 1:06	62.8
8/5/2012 3:21	57.5	9/5/2012 4:31	55.1	10/5/2012 5:41	61.8	11/5/2012 6:51	62.1	13/5/2012 0:01	63.5	14/5/2012 1:11	62.1
8/5/2012 3:26	56.6	9/5/2012 4:36	55.6	10/5/2012 5:46	61.5	11/5/2012 6:56	62.1	13/5/2012 0:06	62.4	14/5/2012 1:16	61.5
8/5/2012 3:31	56.5	9/5/2012 4:41	57.4	10/5/2012 5:51	62.3	11/5/2012 23:01	62.3	13/5/2012 0:11	62.9	14/5/2012 1:21	60.2
8/5/2012 3:36	57.5	9/5/2012 4:46	56.6	10/5/2012 5:56	60.9	11/5/2012 23:06	61.0	13/5/2012 0:16	62.0	14/5/2012 1:26	60.4
8/5/2012 3:41	57.5	9/5/2012 4:51	57.9	10/5/2012 6:01	63.7	11/5/2012 23:11	61.4	13/5/2012 0:21	62.6	14/5/2012 1:31	62.0
8/5/2012 3:46	56.7	9/5/2012 4:56	55.2	10/5/2012 6:06	62.5	11/5/2012 23:16	60.9	13/5/2012 0:26	62.3	14/5/2012 1:36	61.1
8/5/2012 3:51	57.8	9/5/2012 5:01	55.9	10/5/2012 6:11	62.3	11/5/2012 23:21	61.0	13/5/2012 0:31	61.7	14/5/2012 1:41	62.3
8/5/2012 3:56	57.1	9/5/2012 5:06	57.0	10/5/2012 6:16	63.4	11/5/2012 23:26	61.3	13/5/2012 0:36	62.2	14/5/2012 1:46	61.7
8/5/2012 4:01	56.3	9/5/2012 5:11	55.2	10/5/2012 6:21	63.6	11/5/2012 23:31	60.5	13/5/2012 0:41	61.8	14/5/2012 1:51	61.0
8/5/2012 4:06	58.0	9/5/2012 5:16	55.6	10/5/2012 6:26	63.2	11/5/2012 23:36	61.3	13/5/2012 0:46	61.2	14/5/2012 1:56	61.6
8/5/2012 4:11	57.9	9/5/2012 5:21	57.2	10/5/2012 6:31	63.6	11/5/2012 23:41	60.6	13/5/2012 0:51	62.2	14/5/2012 2:01	59.4
8/5/2012 4:16	57.8	9/5/2012 5:26	56.8	10/5/2012 6:36	63.8	11/5/2012 23:46	60.7	13/5/2012 0:56	61.7	14/5/2012 2:06	60.6
8/5/2012 4:21	57.6	9/5/2012 5:31	59.8	10/5/2012 6:41	64.5	11/5/2012 23:51	60.3	13/5/2012 1:01	61.0	14/5/2012 2:11	60.6
8/5/2012 4:26	57.5	9/5/2012 5:36	55.8	10/5/2012 6:46	64.7	11/5/2012 23:56	60.5	13/5/2012 1:06	60.8	14/5/2012 2:16	62.6
8/5/2012 4:31	57.3	9/5/2012 5:41	58.6	10/5/2012 6:51	64.8	12/5/2012 0:01	61.0	13/5/2012 1:11	61.7	14/5/2012 2:21	61.7
8/5/2012 4:36	57.0	9/5/2012 5:46	59.6	10/5/2012 6:56	65.5	12/5/2012 0:06	59.8	13/5/2012 1:16	61.4	14/5/2012 2:26	59.8
8/5/2012 4:41	58.5	9/5/2012 5:51	58.5	10/5/2012 23:01	62.7	12/5/2012 0:11	61.6	13/5/2012 1:21	61.1	14/5/2012 2:31	60.9
8/5/2012 4:46	57.2	9/5/2012 5:56	60.0	10/5/2012 23:06	59.5	12/5/2012 0:16	60.4	13/5/2012 1:26	61.2	14/5/2012 2:36	60.4
8/5/2012 4:51	57.9	9/5/2012 6:01	58.0	10/5/2012 23:11	61.5	12/5/2012 0:21	60.3	13/5/2012 1:31	61.8	14/5/2012 2:41	62.6
8/5/2012 4:56	57.6	9/5/2012 6:06	60.2	10/5/2012 23:16	59.1	12/5/2012 0:26	59.8	13/5/2012 1:36	61.8	14/5/2012 2:46	61.3
8/5/2012 5:01	57.7	9/5/2012 6:11	57.6	10/5/2012 23:21	60.8	12/5/2012 0:31	59.5	13/5/2012 1:41	61.5	14/5/2012 2:51	60.4
8/5/2012 5:06	57.1	9/5/2012 6:16	60.5	10/5/2012 23:26	60.8	12/5/2012 0:36	60.3	13/5/2012 1:46	60.7	14/5/2012 2:56	59.7
8/5/2012 5:11	57.3	9/5/2012 6:21	60.2	10/5/2012 23:31	59.5	12/5/2012 0:41	59.5	13/5/2012 1:51	61.6	14/5/2012 3:01	58.5
8/5/2012 5:16	57.6	9/5/2012 6:26	61.2	10/5/2012 23:36	58.7	12/5/2012 0:46	59.8	13/5/2012 1:56	60.8	14/5/2012 3:06	59.9
8/5/2012 5:21	58.4	9/5/2012 6:31	61.2	10/5/2012 23:41	59.3	12/5/2012 0:51	59.5	13/5/2012 2:01	61.0	14/5/2012 3:11	61.0
8/5/2012 5:26	58.0	9/5/2012 6:36	60.1	10/5/2012 23:46	60.6	12/5/2012 0:56	59.3	13/5/2012 2:06	61.6	14/5/2012 3:16	60.0
8/5/2012 5:31	58.5	9/5/2012 6:41	59.2	10/5/2012 23:51	59.7	12/5/2012 1:01	58.8	13/5/2012 2:11	61.0	14/5/2012 3:21	58.3
8/5/2012 5:36	62.0	9/5/2012 6:46	61.5	10/5/2012 23:56	58.1	12/5/2012 1:06	59.3	13/5/2012 2:16	60.8	14/5/2012 3:26	60.7
8/5/2012 5:41	59.8	9/5/2012 6:51	60.3	11/5/2012 0:01	59.1	12/5/2012 1:11	58.9	13/5/2012 2:21	61.1	14/5/2012 3:31	59.9
8/5/2012 5:46	59.6	9/5/2012 6:56	61.1	11/5/2012 0:06	59.3	12/5/2012 1:16	59.3	13/5/2012 2:26	60.7	14/5/2012 3:36	58.3
8/5/2012 5:51	60.3	9/5/2012 23:01	64.5	11/5/2012 0:11	59.8	12/5/2012 1:21	58.9	13/5/2012 2:31	60.9	14/5/2012 3:41	58.1
8/5/2012 5:56	63.6	9/5/2012 23:06	63.5	11/5/2012 0:16	59.5	12/5/2012 1:26	58.7	13/5/2012 2:36	60.3	14/5/2012 3:46	58.8
8/5/2012 6:01	60.1	9/5/2012 23:11	63.8	11/5/2012 0:21	58.1	12/5/2012 1:31	59.0	13/5/2012 2:41	60.1	14/5/2012 3:51	58.4
8/5/2012 6:06	60.4	9/5/2012 23:16	64.4	11/5/2012 0:26	60.5	12/5/2012 1:36	59.0	13/5/2012 2:46	60.0	14/5/2012 3:56	60.4
8/5/2012 6:11	61.4	9/5/2012 23:21	63.5	11/5/2012 0:31	58.4	12/5/2012 1:41	58.9	13/5/2012 2:51	61.0	14/5/2012 4:01	58.0
8/5/2012 6:16	61.7	9/5/2012 23:26	63.3	11/5/2012 0:36	58.4	12/5/2012 1:46	58.5	13/5/2012 2:56	60.9	14/5/2012 4:06	59.6
8/5/2012 6:21	65.7	9/5/2012 23:31	63.5	11/5/2012 0:41	56.9	12/5/2012 1:51	59.0	13/5/2012 3:01	60.3	14/5/2012 4:11	60.4
8/5/2012 6:26	61.9	9/5/2012 23:36	63.4	11/5/2012 0:46	59.4	12/5/2012 1:56	58.6	13/5/2012 3:06	61.8	14/5/2012 4:16	58.1
8/5/2012 6:31	61.9	9/5/2012 23:41	63.2	11/5/2012 0:51	58.3	12/5/2012 2:01	58.2	13/5/2012 3:11	60.3	14/5/2012 4:21	58.6
8/5/2012 6:36	61.9	9/5/2012 23:46	62.5	11/5/2012 0:56	57.6	12/5/2012 2:06	58.5	13/5/2012 3:16	61.0	14/5/2012 4:26	58.4
8/5/2012 6:41	62.7	9/5/2012 23:51	63.4	11/5/2012 1:01	57.4	12/5/2012 2:11	58.1	13/5/2012 3:21	60.0	14/5/2012 4:31	59.0
8/5/2012 6:46	62.5	9/5/2012 23:56	62.4	11/5/2012 1:06	57.6	12/5/2012 2:16	58.4	13/5/2012 3:26	60.8	14/5/2012 4:36	57.9
8/5/2012 6:51	62.9	10/5/2012 0:01	62.9	11/5/2012 1:11	56.1	12/5/2012 2:21	58.0	13/5/2012 3:31	60.5	14/5/2012 4:41	58.3
8/5/2012 6:56	62.8	10/5/2012 0:06	62.6	11/5/2012 1:16	57.1	12/5/2012 2:26	58.4	13/5/2012 3:36	62.6	14/5/2012 4:46	56.9
8/5/2012 23:01	61.1	10/5/2012 0:11	63.2	11/5/2012 1:21	55.8	12/5/2012 2:31	58.5	13/5/2012 3:41	60.3	14/5/2012 4:51	57.5
8/5/2012 23:06	59.8	10/5/2012 0:16	63.3	11/5/2012 1:26	56.2	12/5/2012 2:36	57.8	13/5/2012 3:46	61.4	14/5/2012 4:56	58.6
8/5/2012 23:11	60.0	10/5/2012 0:21	62.5	11/5/2012 1:31	56.4	12/5/2012 2:41	57.9	13/5/2012 3:51	60.2	14/5/2012 5:01	58.6
8/5/2012 23:16	59.7	10/5/2012 0:26	63.8	11/5/2012 1:36	57.4	12/5/2012 2:46	58.5	13/5/2012 3:56	59.7	14/5/2012 5:06	57.2
8/5/2012 23:21	59.6	10/5/2012 0:31	62.1	11/5/2012 1:41	54.8	12/5/2012 2:51	57.2	13/5/2012 4:01	60.9	14/5/2012 5:11	57.9
8/5/2012 23:26	61.2	10/5/2012 0:36	62.6	11/5/2012 1:46	55.3	12/5/2012 2:56	58.6	13/5/2012 4:06	60.5	14/5/2012 5:16	57.0
8/5/2012 23:31	59.5	10/5/2012 0:41	61.9	11/5/2012 1:51	54.8	1215/2012 3:01	58.1	13/5/2012 4:11	59.8	14/5/2012 5:21	57.8
8/5/2012 23:36	56.8	10/5/2012 0:46	62.4	11/5/2012 1:56	56.1	12/5/2012 3:06	57.6	13/5/2012 4:16	60.6	14/5/2012 5:26	58.0
8/5/2012 23:41	58.4	10/5/2012 0:51	61.3	11/5/2012 2:01	54.1	12/5/2012 3:11	57.4	13/5/2012 4:21	60.4	14/5/2012 5:31	57.9
8/5/2012 23:46	60.2	10/5/2012 0:56	61.4	11/5/2012 2:06	55.7	12/5/2012 3:16	56.5	13/5/2012 4:26	60.5	14/5/2012 5:36	57.6
8/5/2012 23:51	60.0	10/5/2012 1:01	61.6	11/5/2012 2:11	55.4	12/5/2012 3:21	56.7	13/5/2012 4:31	60.5	14/5/2012 5:41	57.7
8/5/2012 23:56	59.4	10/5/2012 1:06	60.3	11/5/2012 2:16	54.5	12/5/2012 3:26	57.9	13/5/2012 4:36	59.9	14/5/2012 5:46	59.0
9/5/2012 0:01	59.2	10/5/2012 1:11	61.4	11/5/2012 2:21	52.5	12/5/2012 3:31	56.7	13/5/2012 4:41	60.5	14/5/2012 5:51	58.1
9/5/2012 0:06	58.3	10/5/2012 1:16	60.7	11/5/2012 2:26	54.1	1215/2012 3:36	57.7	13/5/2012 4:46	61.0	14/5/2012 5:56	57.7
9/5/2012 0:11	59.9	10/5/2012 1:21	60.9	11/5/2012 2:31	56.6	12/5/2012 3:41	57.1	13/5/2012 4:51	60.6	14/5/2012 6:01	61.3
9/5/2012 0:16	60.4	10/5/2012 1:26	61.1	11/5/2012 2:36	55.1	12/5/2012 3:46	59.5	13/5/2012 4:56	60.9	14/5/2012 6:06	56.4
9/5/2012 0:21	58.3	10/5/2012 1:31	60.5	11/5/2012 2:41	55.7	12/5/2012 3:51	57.1	13/5/2012 5:01	60.9	14/5/2012 6:11	57.3
9/5/2012 0:26	58.4	10/5/2012 1:36	60.3	11/5/2012 2:46	55.2	12/5/2012 3:56	57.3	13/5/2012 5:06	61.0	14/5/2012 6:16	57.5
9/5/2012 0:31	57.6	10/5/2012 1:41	61.4	11/5/2012 2:51	54.2	12/5/2012 4:01	56.6	13/5/2012 5:11	61.3	14/5/2012 6:21	57.5
9/5/2012 0:36	57.8	10/5/2012 1:46	60.3	11/5/2012 2:56	55.8	12/5/2012 4:06	56.9	13/5/2012 5:16	61.9	14/5/2012 6:26	58.7
9/5/2012 0:41	58.9	10/5/2012 1:51	60.1	11/5/2012 3:01	56.3	12/5/2012 4:11	56.6	13/5/2012 5:21	61.4	14/5/2012 6:31	59.5

Real-time Noise Data RTN2 (Oil Street Community Liaison Centre)

21/5/2012 5:36	61.7	\|22/5/2012 6:46	63.4	\|23/5/2012 23:56	61.9	\|25/5/2012 1:06	58.4	26/5/2012 2:16	57.7	\|27/5/2012 3:26	58.5
21/5/2012 5:41	60.7	22/5/2012 6:51	63.3	24/5/2012 0:01	62.1	25/5/2012 1:11	58.1	26/5/2012 2:21	58.7	27/5/2012 3:31	57.9
21/5/2012 5:46	59.3	22/5/2012 6:56	63.3	24/5/2012 0:06	62.1	25/5/2012 1:16	58.0	26/5/2012 2:26	59.0	27/5/2012 3:36	58.2
21/5/2012 5:51	60.9	22/5/2012 23:01	61.8	24/5/2012 0:11	61.7	25/5/2012 1:21	58.7	26/5/2012 2:31	57.8	27/5/2012 3:41	58.9
21/5/2012 5:56	60.2	22/5/2012 23:06	61.7	24/5/2012 0:16	61.9	25/5/2012 1:26	58.8	26/5/2012 2:36	58.1	27/5/2012 3:46	58.1
21/5/2012 6:01	62.4	22/5/2012 23:11	62.6	24/5/2012 0:21	61.3	25/5/2012 1:31	57.8	26/5/2012 2:41	59.2	27/5/2012 3:51	58.0
21/5/2012 6:06	60.9	22/5/2012 23:16	61.5	24/5/2012 0:26	62.1	25/5/2012 1:36	57.7	26/5/2012 2:46	58.4	27/5/2012 3:56	58.4
21/5/2012 6:11	61.4	22/5/2012 23:21	62.2	24/5/2012 0:31	62.3	25/5/2012 1:41	57.3	26/5/2012 2:51	57.8	27/5/2012 4:01	58.4
21/5/2012 6:16	61.4	22/5/2012 23:26	63.4	24/5/2012 0:36	61.3	25/5/2012 1:46	57.6	26/5/2012 2:56	58.8	27/5/2012 4:06	57
21/5/2012 6:21	62.0	22/5/2012 23:31	61.6	24/5/2012 0:41	60.7	25/5/2012 1:51	57.7	26/5/2012 3:01	57.7	27/5/2012 4:11	58.2
21/5/2012 6:26	63.0	22/5/2012 23:36	61.2	24/5/2012 0:46	62.5	25/5/2012 1:56	57.3	26/5/2012 3:06	57.9	27/5/2012 4:16	59.4
21/5/2012 6:31	63.7	22/5/2012 23:41	63.4	24/5/2012 0:51	61.2	25/5/2012 2:01	57.0	26/5/2012 3:11	57.7	27/5/2012 4:21	59.4
21/5/2012 6:36	63.3	22/5/2012 23:46	66.5	24/5/2012 0:56	61.1	25/5/2012 2:06	58.1	26/5/2012 3:16	57.4	27/5/2012 4:26	58.0
21/5/2012 6:41	64.1	22/5/2012 23:51	64.9	24/5/2012 1:01	60.6	25/5/2012 2:11	56.9	26/5/2012 3:21	57.1	27/5/2012 4:31	58.0
21/5/2012 6:46	64.0	22/5/2012 23:56	63.9	24/5/2012 1:06	60.9	25/5/2012 2:16	56.7	26/5/2012 3:26	57.2	27/5/2012 4:36	58.9
21/5/2012 6:51	64.0	23/5/2012 0:01	64.0	24/5/2012 1:11	60.6	25/5/2012 2:21	55.9	26/5/2012 3:31	57.8	27/5/2012 4:41	58.9
21/5/2012 6:56	65.4	23/5/2012 0:06	63.8	24/5/2012 1:16	60.1	25/5/2012 2:26	55.9	26/5/2012 3:36	58.9	27/5/2012 4:46	57.
21/5/2012 23:01	61.5	23/5/2012 0:11	63.4	24/5/2012 1:21	60.2	25/5/2012 2:31	56.0	26/5/2012 3:41	62.1	27/5/2012 4:51	61.2
21/5/2012 23:06	62.1	23/5/2012 0:16	63.6	24/5/2012 1:26	59.7	25/5/2012 2:36	55.9	26/5/2012 3:46	57.1	27/5/2012 4:56	67.4
21/5/2012 23:11	62.6	23/5/2012 0:21	63.3	24/5/2012 1:31	61.8	25/5/2012 2:41	56.4	26/5/2012 3:51	57.2	27/5/2012 5:01	59.9
21/5/2012 23:16	61.3	23/5/2012 0:26	63.5	24/5/2012 1:36	59.3	25/5/2012 2:46	58.2	26/5/2012 3:56	57.0	27/5/2012 5:06	58.7
21/5/2012 23:21	60.8	23/5/2012 0:31	65.5	24/5/2012 1:41	59.3	25/5/2012 2:51	56.5	26/5/2012 4:01	56.7	27/5/2012 5:11	58.1
21/5/2012 23:26	61.1	23/5/2012 0:36	64.8	24/5/2012 1:46	59.3	25/5/2012 2:56	56.0	26/5/2012 4:06	57.3	27/5/2012 5:16	58.1
21/5/2012 23:31	61.5	23/5/2012 0:41	64.5	24/5/2012 1:51	58.3	25/5/2012 3:01	59.4	26/5/2012 4:11	56.8	27/5/2012 5:21	60.6
21/5/2012 23:36	61.8	23/5/2012 0:46	64.0	24/5/2012 1:56	59.7	25/5/2012 3:06	57.2	26/5/2012 4:16	59.0	27/5/2012 5:26	59.9
21/5/2012 23:41	60.9	23/5/2012 0:51	63.7	24/5/2012 2:01	59.8	25/5/2012 3:11	58.5	26/5/2012 4:21	59.2	27/5/2012 5:31	59.7
21/5/2012 23:46	60.3	23/5/2012 0:56	63.5	24/5/2012 2:06	59.7	25/5/2012 3:16	57.2	26/5/2012 4:26	59.1	27/5/2012 5:36	58.5
21/5/2012 23:51	60.6	23/5/2012 1:01	63.6	24/5/2012 2:11	58.6	25/5/2012 3:21	55.3	26/5/2012 4:31	57.4	27/5/2012 5:41	62.1
21/5/2012 23:56	60.8	23/5/2012 1:06	63.2	24/5/2012 2:16	59.1	25/5/2012 3:26	56.4	26/5/2012 4:36	57.1	27/5/2012 5:46	62.3
22/5/2012 0:01	60.7	23/5/2012 1:11	63.3	24/5/2012 2:21	58.6	25/5/2012 3:31	56.0	26/5/2012 4:41	57.9	27/5/2012 5:51	59.1
22/5/2012 0:06	60.5	23/5/2012 1:16	62.5	24/5/2012 2:26	59.0	25/5/2012 3:36	56.3	26/5/2012 4:46	66.3	27/5/2012 5:56	59.4
22/5/2012 0:11	60.9	23/5/2012 1:21	62.7	24/5/2012 2:31	58.2	25/5/2012 3:41	56.9	26/5/2012 4:51	56.8	27/5/2012 6:01	59.9
22/5/2012 0:16	60.5	23/5/2012 1:26	62.3	24/5/2012 2:36	58.1	25/5/2012 3:46	54.9	26/5/2012 4:56	56.6	27/5/2012 6:06	60.4
22/5/2012 0:21	61.0	23/5/2012 1:31	62.8	24/5/2012 2:41	58.2	25/5/2012 3:51	56.2	26/5/2012 5:01	58.2	27/5/2012 6:11	60.1
22/5/2012 0:26	60.7	23/5/2012 1:36	62.4	24/5/2012 2:46	57.6	25/5/2012 3:56	56.1	26/5/2012 5:06	57.8	27/5/2012 6:16	60.7
22/5/2012 0:31	59.7	23/5/2012 1:41	62.4	24/5/2012 2:51	58.6	25/5/2012 4:01	55.5	26/5/2012 5:11	57.8	27/5/2012 6:21	61.4
22/5/2012 0:36	59.1	23/5/2012 1:46	62.7	24/5/2012 2:56	58.5	25/5/2012 4:06	56.1	26/5/2012 5:16	66.4	27/5/2012 6:26	59.9
22/5/2012 0:41	59.4	23/5/2012 1:51	62.7	24/5/2012 3:01	57.4	25/5/2012 4:11	56.7	26/5/2012 5:21	58.7	27/5/2012 6:31	60.4
22/5/2012 0:46	59.5	23/5/2012 1:56	62.6	24/5/2012 3:06	57.8	25/5/2012 4:16	55.6	26/5/2012 5:26	58.9	27/5/2012 6:36	61.9
22/5/2012 0:51	60.1	23/5/2012 2:01	62.4	24/5/2012 3:11	57.7	25/5/2012 4:21	56.2	26/5/2012 5:31	57.8	27/5/2012 6:41	63.0
22/5/2012 0:56	59.9	23/5/2012 2:06	62.3	24/5/2012 3:16	57.7	25/5/2012 4:26	58.8	26/5/2012 5:36	58.1	27/5/2012 6:46	62.4
22/5/2012 1:01	58.7	23/5/2012 2:11	62.3	24/5/2012 3:21	57.6	25/5/2012 4:31	58.6	26/5/2012 5:41	59.8	27/5/2012 6:51	61.7
22/5/2012 1:06	58.9	23/5/2012 2:16	62.5	24/5/2012 3:26	58.5	25/5/2012 4:36	57.5	26/5/2012 5:46	59.2	27/5/2012 6:56	61.7
22/5/2012 1:11	59.2	23/5/2012 2:21	62.7	24/5/2012 3:31	57.8	25/5/2012 4:41	57.9	26/5/2012 5:51	60.2	27/5/2012 23:01	63.2
22/5/2012 1:16	58.9	23/5/2012 2:26	61.2	24/5/2012 3:36	58.1	25/5/2012 4:46	56.5	26/5/2012 5:56	59.7	27/5/2012 23:06	62.9
22/5/2012 1:21	59.2	23/5/2012 2:31	60.5	24/5/2012 3:41	58.8	25/5/2012 4:51	56.2	26/5/2012 6:01	60.2	27/5/2012 23:11	62.9
22/5/2012 1:26	58.2	23/5/2012 2:36	61.4	24/5/2012 3:46	58.0	25/5/2012 4:56	56.5	26/5/2012 6:06	59.2	27/5/2012 23:16	62.8
22/5/2012 1:31	57.6	23/5/2012 2:41	60.3	24/5/2012 3:51	57.6	25/5/2012 5:01	59.0	26/5/2012 6:11	60.3	27/5/2012 23:21	63.6
22/5/2012 1:36	58.2	23/5/2012 2:46	60.7	24/5/2012 3:56	57.4	25/5/2012 5:06	57.4	26/5/2012 6:16	59.9	27/5/2012 23:26	63.1
22/5/2012 1:41	58.4	23/5/2012 2:51	60.3	24/5/2012 4:01	58.6	25/5/2012 5:11	57.2	26/5/2012 6:21	60.5	27/5/2012 23:31	61.7
22/5/2012 1:46	57.3	23/5/2012 2:56	60.6	24/5/2012 4:06	59.2	25/5/2012 5:16	57.0	26/5/2012 6:26	59.5	27/5/2012 23:36	62.0
22/5/2012 1:51	58.9	23/5/2012 3:01	60.6	24/5/2012 4:11	59.3	25/5/2012 5:21	61.1	26/5/2012 6:31	60.9	27/5/2012 23:41	
22/5/2012 1:56	57.6	23/5/2012 3:06	59.8	24/5/2012 4:16	58.9	25/5/2012 5:26	62.9	26/5/2012 6:36	60.5	27/5/2012 23:46	
22/5/2012 2:01	58.2	23/5/2012 3:11	60.7	24/5/2012 4:21	58.6	25/5/2012 5:31	59.5	26/5/2012 6:41	61.1	27/5/2012 23:51	
22/5/2012 2:06	57.0	23/5/2012 3:16	60.1	24/5/2012 4:26	58.2	25/5/2012 5:36	61.1	26/5/2012 6:46	65.7	27/5/2012 23:56	
22/5/2012 2:11	58.4	23/5/2012 3:21	59.8	24/5/2012 4:31	59.1	25/5/2012 5:41	60.7	26/5/2012 6:51	66.2		
22/5/2012 2:16	57.1	23/5/2012 3:26	59.1	24/5/2012 4:36	58.9	25/5/2012 5:46	59.1	26/5/2012 6:56	62.1		
22/5/2012 2:21	56.9	23/5/2012 3:31	59.6	24/5/2012 4:41	59.5	25/5/2012 5:51	59.6	26/5/2012 23:01	62.4	*Exceedance rec	orded
22/5/2012 2:26	56.9	23/5/2012 3:36	59.9	24/5/2012 4:46	59.1	25/5/2012 5:56	60.0	26/5/2012 23:06	62.0	monitoring compl	
22/5/2012 2:31	56.8	23/5/2012 3:41	59.5	24/5/2012 4:51	59.5	25/5/2012 6:01	59.0	26/5/2012 23:11	61.9	with NCO.	
22/5/2012 2:36	56.9	23/5/2012 3:46	59.0	24/5/2012 4:56	59.0	25/5/2012 6:06	61.4	26/5/2012 23:16	61.6		
22/5/2012 2:41	57.4	23/5/2012 3:51	59.1	24/5/2012 5:01	59.3	25/5/2012 6:11	60.0	26/5/2012 23:21	63.7		
22/5/2012 2:46	56.0	23/5/2012 $3: 56$	59.2	24/5/2012 5:06	58.3	25/5/2012 6:16	60.1	26/5/2012 23:26	61.3		
22/5/2012 2:51	57.1	23/5/2012 4:01	59.0	24/5/2012 5:11	59.3	25/5/2012 6:21	60.5	26/5/2012 23:31	60.9		
22/5/2012 2:56	56.0	23/5/2012 4:06	58.7	24/5/2012 5:16	58.7	25/5/2012 6:26	60.7	26/5/2012 23:36	61.1		
22/5/2012 3:01	56.1	23/5/2012 4:11	58.5	24/5/2012 5:21	59.0	25/5/2012 6:31	61.2	26/5/2012 23:41	61.5		
22/5/2012 3:06	56.3	23/5/2012 4:16	58.8	24/5/2012 5:26	59.0	25/5/2012 6:36	61.7	26/5/2012 23:46	62.5		
22/5/2012 3:11	58.9	23/5/2012 4:21	58.7	24/5/2012 5:31	59.0	25/5/2012 6:41	63.2	26/5/2012 23:51	61.6		
22/5/2012 3:16	56.8	23/5/2012 4:26	58.0	24/5/2012 5:36	59.2	25/5/2012 6:46	63.1	26/5/2012 23:56	61.5		
22/5/2012 3:21	56.2	23/5/2012 4:31	58.2	24/5/2012 5:41	59.0	25/5/2012 6:51	62.3	27/5/2012 0:01	61.2		
22/5/2012 3:26	56.0	23/5/2012 4:36	58.3	24/5/2012 5:46	59.0	25/5/2012 6:56	62.4	27/5/2012 0:06	61.0		
22/5/2012 3:31	56.5	23/5/2012 4:41	58.2	24/5/2012 5:51	59.0	25/5/2012 23:01	61.3	27/5/2012 0:11	60.7		
22/5/2012 3:36	56.9	23/5/2012 4:46	58.1	24/5/2012 5:56	59.0	25/5/2012 23:06	61.5	27/5/2012 0:16	60.9		
22/5/2012 3:41	56.3	23/5/2012 4:51	58.3	24/5/2012 6:01	59.2	25/5/2012 23:11	62.0	27/5/2012 0:21	61.1		
22/5/2012 3:46	56.8	23/5/2012 4:56	56.8	24/5/2012 6:06	59.0	25/5/2012 23:16	62.1	27/5/2012 0:26	60.9		
22/5/2012 3:51	57.2	23/5/2012 5:01	58.2	24/5/2012 6:11	59.2	25/5/2012 23:21	62.4	27/5/2012 0:31	61.2		
22/5/2012 3:56	56.6	23/5/2012 5:06	57.6	24/5/2012 6:16	61.0	25/5/2012 23:26	61.4	27/5/2012 0:36	60.2		
22/5/2012 4:01	56.4	23/5/2012 5:11	57.5	24/5/2012 6:21	64.2	25/5/2012 23:31	61.2	27/5/2012 0:41	60.9		
22/5/2012 4:06	56.8	23/5/2012 5:16	57.4	24/5/2012 6:26	61.0	25/5/2012 23:36	61.2	27/5/2012 0:46	60.5		
22/5/2012 4:11	57.3	23/5/2012 5:21	56.9	24/5/2012 6:31	61.6	25/5/2012 23:41	60.9	27/5/2012 0:51	60.5		
22/5/2012 4:16	56.8	23/5/2012 5:26	58.6	24/5/2012 6:36	62.3	25/5/2012 23:46	61.3	27/5/2012 0:56	60.5		
22/5/2012 4:21	56.5	23/5/2012 5:31	57.6	24/5/2012 6:41	61.5	25/5/2012 23:51	61.1	27/5/2012 1:01	60.4		
22/5/2012 4:26	56.8	23/5/2012 5:36	58.2	24/5/2012 6:46	63.4	25/5/2012 23:56	60.7	27/5/2012 1:06	60.6		
22/5/2012 4:31	56.8	23/5/2012 5:41	58.5	24/5/2012 6:51	65.1	26/5/2012 0:01	61.0	27/5/2012 1:11	60.6		
22/5/2012 4:36	56.6	23/5/2012 5:46	58.8	24/5/2012 6:56	64.8	26/5/2012 0:06	60.6	27/5/2012 1:16	60.1		
22/5/2012 4:41	56.3	23/5/2012 5:51	56.7	24/5/2012 23:01	62.8	26/5/2012 0:11	60.8	27/5/2012 1:21	59.3		
22/5/2012 4:46	57.5	23/5/2012 5:56	57.4	24/5/2012 23:06	60.9	26/5/2012 0:16	61.2	27/5/2012 1:26	59.8		
22/5/2012 4:51	57.7	23/5/2012 6:01	56.4	24/5/2012 23:11	62.7	26/5/2012 0:21	60.2	27/5/2012 1:31	60.3		
22/5/2012 4:56	58.2	23/5/2012 6:06	58.0	24/5/2012 23:16	60.8	26/5/2012 0:26	60.9	27/5/2012 1:36	59.8		
22/5/2012 5:01	59.9	23/5/2012 6:11	57.7	24/5/2012 23:21	60.7	26/5/2012 0:31	61.1	27/5/2012 1:41	60.1		
22/5/2012 5:06	60.7	23/5/2012 6:16	57.0	24/5/2012 23:26	60.8	26/5/2012 0:36	60.1	27/5/2012 1:46	60.1		
22/5/2012 5:11	58.1	23/5/2012 6:21	56.7	24/5/2012 23:31	60.7	26/5/2012 0:41	60.4	27/5/2012 1:51	59.7		
22/5/2012 5:16	58.5	23/5/2012 6:26	57.5	24/5/2012 23:36	60.5	26/5/2012 0:46	59.9	27/5/2012 1:56	59.2		
22/5/2012 5:21	58.8	23/5/2012 6:31	57.6	24/5/2012 23:41	61.1	26/5/2012 0:51	60.0	27/5/2012 2:01	59.2		
22/5/2012 5:26	59.8	23/5/2012 6:36	57.7	24/5/2012 23:46	60.6	26/5/2012 0:56	60.4	27/5/2012 2:06	59.0		
22/5/2012 5:31	62.0	23/5/2012 6:41	58.2	24/5/2012 23:51	60.4	26/5/2012 1:01	59.3	27/5/2012 2:11	59.2		
22/5/2012 5:36	58.8	23/5/2012 6:46	57.2	24/5/2012 23:56	60.5	26/5/2012 1:06	59.9	27/5/2012 2:16	59.4		
22/5/2012 5:41	60.1	23/5/2012 6:51	58.1	25/5/2012 0:01	60.4	26/5/2012 1:11	59.8	27/5/2012 2:21	59.5		
22/5/2012 5:46	60.7	23/5/2012 6:56	57.6	25/5/2012 0:06	60.5	26/5/2012 1:16	60.0	27/5/2012 2:26	59.6		
22/5/2012 5:51	59.5	23/5/2012 23:01	62.5	25/5/2012 0:11	60.3	26/5/2012 1:21	59.2	27/5/2012 2:31	59.7		
22/5/2012 5:56	59.0	23/5/2012 23:06	62.5	25/5/2012 0:16	60.0	26/5/2012 1:26	59.3	27/5/2012 2:36	60.4		
22/5/2012 6:01	59.7	23/5/2012 23:11	62.3	25/5/2012 0:21	60.3	26/5/2012 1:31	59.4	27/5/2012 2:41	59.7		
22/5/2012 6:06	60.4	23/5/2012 23:16	62.2	25/5/2012 0:26	60.4	26/5/2012 1:36	59.0	27/5/2012 2:46	59.4		
22/5/2012 6:11	60.1	23/5/2012 23:21	61.9	25/5/2012 0:31	60.4	26/5/2012 1:41	59.5	27/5/2012 2:51	58.7		
22/5/2012 6:16	60.5	23/5/2012 23:26	62.3	25/5/2012 0:36	59.9	26/5/2012 1:46	59.4	27/5/2012 2:56	58.9		
22/5/2012 6:21	60.6	23/5/2012 23:31	62.3	25/5/2012 0:41	59.5	26/5/2012 1:51	59.1	27/5/2012 3:01	59.0		
22/5/2012 6:26	61.5	23/5/2012 23:36	62.1	25/5/2012 0:46	58.2	26/5/2012 1:56	58.7	27/5/2012 3:06	58.6		
22/5/2012 6:31	61.4	23/5/2012 23:41	62.5	25/5/2012 0:51	58.8	26/5/2012 2:01	59.1	27/5/2012 3:11	58.3		
$\begin{aligned} & \text { 22/5/2012 6:36 } \\ & \text { 22/5/2012 6:41 } \end{aligned}$	62.5 62.7	23/5/2012 23:46	61.8 63.0	$\left\lvert\, \begin{aligned} & \text { 25/5/2012 0:56 } \\ & \text { 25/5/2012 1:01 }\end{aligned}\right.$	59.5 58.8	26/5/2012 2:06	59.5 58.6	$\left\lvert\, \begin{aligned} & \text { 27/5/2012 3:16 } \\ & \text { 27/5/2012 3:21 }\end{aligned}\right.$	$\begin{aligned} & 58.3 \\ & 58.6 \end{aligned}$		

Graphic Presentation of Real Time Noise Monitoring Result (Food and Environmental Hygiene Department Depot)
Day Time (0700-1900 hrs on normal weekdays)

Restricted hours (1900-2300) on normal weekdays and 0700-2300 hrs on public holidays)

Graphic Presentation of Real Time Noise Monitoring Result (Oil Street Community Liaison Centre)
Day Time (0700-1900 hrs on normal weekdays)

Restricted hours (1900-2300) on normal weekdays and 0700-2300 hrs on public holidays)

Night Time (2300-0700hrs)

Appendix 6.1

Event Action Plans

Event/Action Plan for Construction Noise

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Action Level being exceeded	1. Notify ER, IEC and Contractor; 2. Carry out investigation; 3. Report the results of investigation to the IEC, ER and Contractor; 4. Discuss with the IEC and Contractor on remedial measures required; 5. Increase monitoring frequency to check mitigation effectiveness. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Review the investigation results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the ER accordingly; 3. Advise the ER on the effectiveness of the proposed remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Submit noise mitigation proposals to IEC and ER; 2. Implement noise mitigation proposals. (The above actions should be taken within 2 working days after the exceedance is identified)

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Limit Level being exceeded	1. Inform IEC, ER, Contractor and EPD; 2. Repeat measurements to confirm findings; 3. Increase monitoring frequency; 4. 4. Identify source and investigate the cause of exceedance; 5. 5. Carry out analysis of Contractor's working procedures; 6. 6. Discuss with the IEC, Contractor and ER on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures; 5. If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC and ER within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

Event / Action Plan for Construction Air Quality

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	1. Identify source, investigate the causes of exceedance and propose remedial measures; 2. Inform IEC and ER; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Check monitoring data submitted by ET; 2. Check Contractor's working method. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Notify Contractor. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Rectify any unacceptable practice; 2. Amend working methods if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
2. Exceedance for two or more consecutive samples	1. Identify source; Inform IEC and ER; 3. Advise the $E R$ on the effectiveness of the proposed remedial measures; 4. Repeat measurements to confirm findings; 5. Increase monitoring frequency to daily; 6. Discuss with IEC and Contractor on remedial actions required; 7. If exceedance continues, arrange meeting with IEC and ER; 8. If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the ET on the effectiveness of the proposed remedial measures; 5. Supervise Implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Submit proposals for remedial to ER within 3 working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
LIMIT LEVEL				
1. Exceedance for one sample	1. Identify source, investigate the causes of exceedance and propose remedial measures; 2. Inform ER, Contractor and EPD; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily; 5. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Check monitoring data submitted by ET ; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the $E R$ on the effectiveness of the proposed remedial measures; 5. Supervise implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
2. Exceedance for two or more consecutive samples	1. Notify IEC, ER, Contractor and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Discuss amongst $E R, E T$, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

Event and Action Plan for Marine Water Quality

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next working day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Limit level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC, contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3working days; Implement the agreed mitigation measures; As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities. (The above actions should be taken within 1 working day after the exceedance is identified)

Event and Action Plan for Odour Patrol

Event	ACTION	
	Person-in-charge of Odour Monitoring	Implementation Agent Identified by CEDD
Action Level		
Exceedance of Action Level	1. Identify source/reason of exceedance; 2. Repeat odour patrol to confirm finding.	1. Carry out investigation to identify the source/reason of exceedance; 2. Rectify any unacceptable practice 3. Implement more mitigation measures if necessary; 4. Inform EPD or MD if exceedance is considered to be caused by expedient connections or floating debris.
Limit Level		
Exceedance of Limit Level	1. Identify source / reason of exceedance; 2. Repeat odour patrol to confirm findings; 3. Increase odour patrol frequency; 4. If exceedance stops, cease additional odour patrol.	1. Carry out investigation to identify the source/reason of exceedance. Investigation shall be completed within 2 weeks; 2. Rectify any unacceptable practice; 3. Formulate remedial actions; 4. Ensure remedial actions properly implemented; 5. If exceedance continues, consider what more/enhanced mitigation measures shall be implemented; 6. Inform EPD or MD if exceedance is considered to be caused by expedient connections or floating debris.

Appendix 6.2

Summary for Notification of Exceedance

Ref no.	Date	Tidal	Location	Parameters (Avg.)	Measured	Action Level	Limit Level	Follow-up	
X_W320	9-May-12	Mid-flood	WSD21	DO (mg/L)	6.33	3.17	2.63	Possible reason:	Possible inrelation to cleaning of screen panels at SHK and Wan Chai WSD Pumping Station was recorded on 9 May 2012.
				Turbidity	7.83	10.01	11.54	Action taken / to be taken:	Checking with contractor's works on 9 May, the marine works below were undertaken: - Formwork erection and reinforcement fixing inside water tanks in Reprovisioned Wan Chai Ferry Pier - Cleaning of screen panels at SHK and Wan Chai WSD Pumping station at around 18:00pm - Filling Gap at 'Well A' and welding decking on 'Well C' for SHK and Wan Chai WSD Pumping station Reviewing the results at the monitoring stations nearer than WSD 21, no exceedance was recorded. Checking with the contractor's inspection record, the silt screen and silt curtain were in proper condition on 9 May.
				Suspended Solid	42.50	16.26	19.74	Remarks / Other Obs:	The exceedances was possibly due to cleaning of screen panels at the pumping station. Materials from the cleaning of screen panels was unavoidably collected during monitoring. No further exceedance was recorded in the next consecutive monitoring. The exceedance was considered as not project related.
X_W321	9-May-12	Mid-Ebb	WSD21	DO (mg/L)	6.20	3.17	2.63	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station
				Turbidity	5.29	10.01	11.54	Action taken / to be taken:	Checking with contractor's works on 9 May, the marine works below were undertaken: - Formwork erection and reinforcement fixing inside water tanks in Reprovisioned Wan Chai Ferry Pier - Filling Gap at 'Well A' and welding decking on 'Well C' for SHK and Wan Chai WSD Pumping station Reviewing the results at the monitoring stations nearer than WSD 21, no exceedance was recorded. Checking with the contractor's inspection record, the silt screen and silt curtain were in proper condition on 9 May.
				Suspended Solid	33.50	16.26	19.74	Remarks / Other Obs:	In view that the water quality at monitoring stations located nearest the marine work site were well below the Action level and the silt screen was in proper condition, the exceedance was considered not project related.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up action	
X_10C386	30-Apr-12	Mid- Ebb	C5e	DO (mg/L)	4.92	3.02	2.44	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station
				Turbidity	4.69	11.35	12.71	Action taken / to be taken:	Checking the works conducted near the monitoring station, there were marine activites conducted on 30 Apr below undertaken:
									1. Formwork erection and reinforcement fixing inside water tanks in Reprovisioned Wan Chai Ferry Pier 2. Installation of steel pipe and plate for reclamation at WCR-2.
									Reviewing the results at the monitoring stations nearer than C5e, no exceedance was recorded Checking with the contractor's inspection record, the silt screen and silt curtain were in proper condition on 30 April.
				Suspended Solid	32.00	18.42	27.54	Remarks / Other Obs:	In view that the water quality at monitoring stations located nearest the marine work site were well below the Action level and the silt screen was in proper condition, the exceedance was considered not project related.

Ref no.	Date	Tidal	Location	Depth	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up action	
X_10D37	17-May-12	Mid- Flood	C7	Middle	DO (mg/L)	3.17	3.31	2.57	Possible reason: Action taken / to be taken: Remarks / Other Obs:	Possible in relation to the low flow near the intake Immediate repeated measurements had conducted to confirm the exceedances. No odour nuisance was detected during the DO monitoring. Checked with Contractor works, there were marine activties conducted on 17 May 2012 below: - Barge mooring at TS1 - Dredging at TS2 Checking with the Contractor's daily records, silt screen at C7 was in proper condition in their daily inspection. The silt curtain was also observed in proper condition during site inspection on 15 May 2012. In view that there was no odour was detected during monitoring, it was considered not related to Project works.
X_10D38	19-May-12	Mid- Ebb	Ex-WPCWA SE	Middle	DO (mg/L)	3.42	3.55		Possible reason: Action taken / to be taken: Remarks / Other Obs:	Possible in relation to the low flow and low water depth during ebb tide Immediate repeated measurements had conducted to confirm the exceedances. No odour nuisance was detected during the DO monitoring. Checked with Contractor works, there was conducted below marine works on that day: -Barge tugging at TCWAE and ME4 - Dredging at TS2 Checking with the Contractor's daily records, silt curtain at TS4 was in proper condition in their daily inspection. The silt curtain was also observed in proper condition during site inspection on 15 May 2012. In view that there was no odour was detected during monitoring, it was considered not related to Project works.
X_10D39	21-May-12	Mid- Ebb	C6	Middle	DO (mg/L)	2.47	2.6		Possible reason: Action taken / to be taken: Remarks / Other Obs:	Possible in relation to the low flow and low water depth Immediate repeated measurements had conducted to confirm the exceedances. No odour nuisance was detected during the DO monitoring. Checked with Contractor works, there was conducted below marine works on that day: - Barge mooring at TS1 and ME4 - Dredging at TS2 Checking with the Contractor's dredging daily record, silt curtain at TS4 and silt screen at C 6 were in proper condition in their daily inspection. In addition, the silt curtain was also observed in proper condition during site inspection on 25 May 2012 In view that there was no odour was detected during monitoring, it was considered not related to Project works.
X_10D40	21-May-12	Mid- Ebb	Ex-WPCWA SE	Middle	DO (mg/L)	3.34	3.55		Possible reason: Action taken / to be taken: Remarks / Other Obs:	Possible in relation to the low flow and low water depth during ebb tide Immediate repeated measurements had conducted to confirm the exceedances. No odour nuisance was detected during the DO monitoring. Checked with Contractor works, there was conducted below marine works on that day: -Barge tugging at TCWAE -Dredging at TS2 Checking with the Contractor's daily records, silt curtain at TS4 was in proper condition in their daily inspection. The silt curtain was also observed in proper condition during site inspection on 25 May 2012. In view that there was no odour was detected during monitoring, it was considered not related to Project works.

[^12]| Ref. No. | Date | Time | Location | Construction Noise Level | Unit | Action Level | Limit Level | Follow-up action | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X 10N090 | 30-Apr-12 | 11:05 | M6 - HK baptist Church henrietta Secondary Schoo | 72 | Leq(30-min) | when one
 documented
 complaint
 was received. | $\underline{70}$ | Possible reason:
 Action taken / to be taken:
 Remarks / Other Obs: | No construction activity and traffic nearby was observed during monitoring. Traffic noise contributed as a major noise source during monitoring.
 Reviewed the trend of noise measurement results and analysis of contractor's working procedure. Review the basline noise level at this monitoring station.
 No construction work for Contract no. HY/2009/19 was conducted during the measurement; it is concluded that the exceedance was not due to the Project but to traffic noise nearby. |
| X 10N092 | 16-May-12 | 15:37 | M6 - HK baptist Church henrietta Secondary School | 71 | Leq(30-min) | when one
 documented
 complaint
 was received. | 70 | Possible reason:
 Action taken / to be taken:
 Remarks / Other Obs: | No construction activity and traffic nearby was observed during monitoring. Traffic noise contributed as a major noise source during monitoring.
 Reviewed the trend of noise measurement results and analysis of contractor's working procedure. Review the basline noise level at this monitoring station.
 No construction work for Contract no. HY/2009/19 was conducted during the measurement; it is concluded that the exceedance was not due to the Project but to traffic noise nearby. |

Appendix 7.1

Complaint Log

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
100321a	21/3/2010	ICC Case no. 1-224618029, Ms. Tsang	Location near Tin Hau	Complaint regarding the loud noise and dark smoke in the course of dredging works on 21 March 2010 (Sunday).	1) A valid Construction Noise Permit no. GW-RSO119-10 was granted from EPD since $18^{\text {th }}$ Feb. 2010 for the dredging works which carry out at area for North Point Reclamation. 2) Officer from Marine Department, Police and EPD's officer attended the scene for inspection and investigation. 3) The Contractor (CHEC-CRBC JV) strictly comply all the conditions in CNP and take all mitigation measures in order to minimize the potential impacts to surrounding sensitive receivers. A formal letter was issued out by CHEC-CRBC JV and to explain the status of the recent construction activities. 4) No limit level exceedance was recorded on the noise measurement during day time and evening time noise measurement on 23 March 2010. Additional restrict hours noise monitoring at Causeway Bay Community and City Garden was conducted on 5 April 2010 (Public Holiday). No limit level exceedance was recorded in the monitoring. 5) No further complaints were received from Mr. Tsang in the reporting month. The complaint is considered closed.	Closed
100321b	21/3/2010	Unknown	Near the eastern breakwater of the Causeway Bay Typhoon Shelter	A public complaint and enquiry regarding loud noises emanated from dredging activities on 21/3/2010 (Sunday) until 2220 hours and between 1920-1946 hours in the evening of 22 March 2010(Monday).	1) A valid Construction Noise Permit no. GW-RSO119-10 was granted from EPD since $18^{\text {th }}$ Feb. 2010 for the dredging works at area for North Point Reclamation during general holidays including Sunday between 0700-2300 hours and any day not being a general holiday between $1900-2300$ hours. It is complied with the condition of CNP. 2) Officer from Marine Department, Police and EPD's officer attended the scene for inspection and investigation. 3) No limit level exceedance was recorded on the noise measurement during day time and evening time noise measurement on 23 March 2010. Additional restrict hours noise monitoring at Causeway Bay Community and City Garden was conducted on 5 April 2010 (Public Holiday). No limit level exceedance was recorded in the monitoring. 4) No further complaints were received in the reporting month. The complaint is considered closed.	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome		Status
100504	4/5/2010	Public complainant received by ICC (ICC case: 1233384048)	Watson Road	Complaint on the noise nuisance due to the large scale of dredging machine (face to Island East Corridor) in particular the hours 1900 to 0800 and request to reduce the noise level.	1)	Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0119-10 for their dredging works. Contractor has implemented mitigation measures to reduce the working hour not later than 2230. According to RSS 's record, no more daytime and night time dredging since the departure of the split hopper barge from the workplace on 29 April 2010 at 1900 hrs to 5 May 2010. No further complaints were received in the reporting month. The complaint is considered closed.	Closed
100731	31/7/2010	Mr. Lee received by ICC (CC Case: 1-250702681)	Oil Street to Watson Road	Complaint on the noise nuisance due to the dredging works. Three construction plants were operated concurrently.	1)	Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0371-10 for their dredging works. There was only 1 grab dredger operated by Contractor within NPR project site area for dredging works. No noise exceedance was recorded at noise monitoring station at Victoria Centre on 27 July and 3 August 2010 during daytime and evening time period. It is considered as invalid from the EP and CNP point of view.	Closed
100812	12/8/2010	Mr. Wong, Harbour Heights (Management) Ltd.	Harbour Heights	Management office received their resident complained on the noise nuisance from the dredging works at the marine works area adjacent to the Harbour Height during the period from 0700 to 2200.	1)	Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0371-10 for their dredging works. Contractor has implemented mitigation measures to reduce the working hour not later than 2230. No noise exceedance was recorded at noise monitoring station at Victoria Centre on 10 and 17 August 2010 during daytime and evening time period. It is considered as invalid complaint. No further complaints were received in the reporting month. The complaint is considered closed.	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
101108	8/11/2010	Mr. Nip received by ICC (CC Case)	Sai Wan Ho	Visual concern around the seaside silt screen outside the WSD freshwater intake pump at Sai Wan Ho (Monitoring station ref no.. WSD15)	1) Contractor for HY/2009/11has been regular checked of condition and removal of trapped rubbish before the dismantling of the floating silt screen to be replaced by wall mount silt screen. 2) Follow-up action had been immediately carried out to check and clear the floating refuse around the seaside silt screen after receipt of the complaint. 3) Removal of seaside silt screen outside the WSD freshwater intake (WSD15) by contractor HY/2009/11 was checked and confirmed dated 9 November 2010. Silt screen has been deployed into the existing steel frame at WSD15 for the protection of WSD salt water intake.	Closed
101110	10/11/2010	Mr. Wong, Harbour Heights (Management) Ltd.	Harbour Heights	Management office received their resident complained on the noise nuisance from the power mechanical equipment during the 0700 to 2200 hrs	1) Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0870-10 for their dredging works during evening time. Contractor has implemented mitigation measures to reduce the working hour not later than 2230. 2) No noise exceedance was recorded at noise monitoring station at Victoria Centre on 4 and 10 November 2010 during daytime and evening time period. 3) It is considered as invalid complaint. No further complaints were received in the reporting month. The complaint is considered closed.	Closed
101203	$\begin{aligned} & \text { 3/12/2010, } \\ & \text { 01:45a.m. } \end{aligned}$	The resident of Block 11, City Garden by ICC referral from Marine Department	North Point	Bad odour was generated from the dredging plant off North Point	1) The first investigation was carried out by Marine Department patrol in the morning on 3 Dec 2010 at around 10:00 and revealed that a few working barges were anchoring in the vicinity without carrying out dredging work. 2) A further specific investigation inspection on contractor's backhoe barge in the vicinity of City Garden was jointly conducted with Engineer Representatives (AECOM/RSS), and ET on 8 Dec 2010 at 11:30. No bad odour was noted during the investigation. 3) Routine dredging operation of the backhoe barge was performed during the jointed investigation inspection and it was revealed that no bad odour was attributed by the dredged materials inspected.	Closed
101206	6/12/2010	Ms Lui, the resident of 27/F, Block 10, City	City Garden, North	Two barges were generating noise at 22:00 on 6 December 2010 in which the noise from	1) ET confirmed the following information with resident site staff on the complaint: - It was referred to the filling operation at North Point	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
		Garden by ICC (ICC case: 1 - 266039336)		filling operation was louder than the traffic noise \& visual impact was generated due to the spotlight pointing directly to the complainant flat, suspected the filling operation was part of Wanchai Development Phase II; Complainant also raised the same complaint to District Councillor, Mr. Hui on 7 Dec 2010 regarding the night-time noise and suspected earlier start of work at 06:30. Complaint also requested for limiting the plant operating hours from 09:0021:00.	Reclamation of Central Wan Chai Bypass site area instead of part of Wanchai Development Phase II; - Two derrick barges were in operation at the time of complaint for placing 400 rockfill onto the excavation trench and for levelling the formation level to receive the pre-cast caisson seawall; - Flood light on the control mast of derrick barge have no lighting shields for the prevention of glare of flood lights; - No starting work on 7 Dec 2010 at 0630hours. 2) PME used in restricted hours were checked and confirmed compliant with valid CNP no. GW-RS0870-10. The noise level recorded on 6 Dec 2010 was complied with the noise criteria during restricted hour; 3) It was found that the occasional noise nuisance might be caused by the hitting or scratching onto the rock surface during loading down the grab onto the Grade 400 rockfill; 4) The absence of the lighting shields at flood light results in visual glare to the complainant at night-time. 5) Contractor was advised to minimize the finishing time of placing Grade 400 rockfill at 2100 hrs and switch off all unnecessary flood lights apart from the light for the safety and security purpose; 6) No further complaint was received after implementation of proposed measures	
110415	15/04/2011	The resident, Mr Law at Victoria Centre by ICC (ICC\#1281451236)	North Point	A dust generation and a concern of mosquitoes breeding complaint in which suspected the filling operation was part of North Point Reclamation.	1) The concerned stockpile was a working stockpile under Contract HY/209/15 and was covered at night time after work. 2) Water spraying on the haul road and potential dust generating material at least 4 times a day was conducted by contractor that complies with the requirement. 3) It is considered invalid but preventive actions can be taken because the stockpile is relatively large and easily visible by complainant. 4) It was recommended that increasing the frequency of water spraying shall be conducted to all potential dust generating materials and activities. Besides, Contractor should consider to cover the idle part of the stockpile 5) The concern of mosquitoes breeding is out the scope of EM\&A, the follow-up action is not reported in this monthly EM\&A report.	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
110419	19/04/2011	Ms Chiu at Victoria Centre at Victoria Centre by ICC (ICC\# 1272874759)	North Point	The episode of night noise on 19/4/11 and 20/4/11 at 2:50 am and the noise lasted for 30 minutes per night.	1) According to the RSS's record, there was no construction works undertaken under the EP-356/2009 during the concern time period. 2) There was no abnormal real-time noise monitoring data recorded in RTN1 - FEHD Hong Kong Transport Section Whitefield Depot which is next to the Victoria Centre. 3) It is considered as invalid complaint under this Project.	Closed
110617	9/06/2011	Mr. Law from Victoria Centre Management Office	North Point	An odour nuisance suspected generating from the discharge point - Channel T at Watson Road in part of the site area was related to CWB under Contract no. HY/2009/11	1) The complaint was received by ET on 13 Jun 2011. During the weekly site inspection on 7 and 17 June 2011, there was no any odour impact detected in the site area. 2) According to the site record, there was muddy water discharged from the unknown source at upstream of Channel T during heavy rainstorm. No any site surface runoff to the Channel T and out of site boundary was observed in the inspection. 3) In order to prevent muddy water washing out to the water body under heavy rainstorm, a silt curtain was installed at the outfall of the channel by Contractor. ET confirmed with the Resident Site Staff that a silt curtain was installed at the outfall of the channel to prevent muddy water washing out to the water body under heavy rainstorm. Besides, regular cleaning of refuse in the channel has been conducted by Contractor. 4) A further site investigation on 28 June 2011 revealed that no odour nuisance was detected at the upstream of the Channel T and no source of odour nuisance was identified at site. As such, it was concluded that the source of odour nuisance was not related to the Project works. 5) Although no source of odour nuisance was identified at site, the muddy water and dirt from the unknown source at upstream of Channel T may cause a potential smell during low tide and low water flow. Contractor was reminded to remove the silt curtain at the channel on non-rainy day so as to avoid the accumulation of the sediment and dirt in the water channel.	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
110709	09/07/2011	Mr. Au from City Garden Management Office	North Point	A complaint letter to Contractor HY/2009/11 was raised by Cayley Property Management Limit on 9 July 2011 regarding a series of pump breakdown events at seawater intake of City Garden on 4, 6, 7 and 8 July 2011. A lot of rubbish such as plastic bags, nylon bags, nylonwire mesh was observed sucking from the seawater intake at the seawater front of Block 7 of City Garden affecting the operation of seawater pump plant.	1) Contractor conducted formation works for installation of caisson seawall at C27, C28, C29 and C30 on 4, 6, 7 and 8 July 2011 and no dredging work was conducted during this time period 2) Water mitigation measures of an 80 m long silt curtain at the site boundary in front of City Garden Relocation of silt curtain and silt curtain at the outfall of the channel were provided and maintained to accommodate the site works. All vessels are equipped with rubbish collection facilities and disposed the rubbish regularly. Also, daily cleaning actions had been taken by contractor to minimize floating refuse within the site boundary. 3) Moreover, it has been reported several times that discharged from outfall pipeline outside the site boundary near the intake of the pump maybe considered as another source of rubbish generation. 4) Referring to the record provided by Cayley Property Management Limit, the trapped rubbish was unlikely generated from the construction works. It was considered that complaint is invalid and not related to project.	Closed
110710	09/07/2011	Complainant by ICC (ICC no. 1301520309	North Point	It was received at 00:56 on 10 July 2011. There was complained a derrick barge unloading rockfill material off the shore facing the Harbour Grant HK Hotel causing noise nuisance.	1) ET confirmed with the Resident Site Staff that the complaint was referred to Contract HY/2009/15 for the loading and unloading of fill material at two barges operation in the sea at around 300 m adjacent to Island Eastern Corridor (Oil Street Chainage) where is outside the Site of HY/2009/15 in the period of around 19:45 on 9 July to 1:00 on 10 July 2011. 2) The material loading and unloading operation processed in restricted hours was checked without a valid CNP. It was found that the operation was due to an unexpected water leakage of the hopper barge and considered an incident. 3) According to the incident report provided from RSS on 20 July 2011, around 7:30 pm the barge S22 was inclined slightly and slightly water leakage might occur. Due to marine safety concern, the hopper barge would open the hopper to release the contained materials in order to reduce the weight and stabilize the barge. In consider of slight water leakage, the operator decided to use the nearby Derrick Barge ST32 to help for unload the general fill materials first and the unloading operation was started at around 7:45pm, and end at around 1:00 am. Contractor was reminder to provide frequent check of vessel condition	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
				Central-Wanchai Bypass at noon rather than in morning at 7am.	monitoring station at Victoria Centre on 25 July and 4 August 2011 during daytime while breaking and excavation works were undertaken during monitoring. 4) In conclusion, it was related to the construction works under Contract HY/2009/15 and mitigation measure was provided. No further complaint from complainant was received after proposed the mitigation measure.	
110727b	27/07/2011	Ms. Chiu by ICC no.1-304615409	North Point	Noise nuisance from the excavation works for the Highways Department adjacent to the Victoria Centre was conducted from 7am	1) It was referred by AECOM to ET on 28 July 2011 2) With reference to the construction noise monitoring at Vitoria Centre, no exceedance was recorded on 25 July and 4 and 10 August 2011 during daytime while breaking and excavation works were undertaken during monitoring. 3) As a mitigation measure to minimize the noise nuisance in the vicinity of the residents, rock breaking activities will be started at 8am.	
	08/08/2011				4) However, complainant did not satisfy with the response on the noise nuisance from the rock-breaking during morning in front of Victoria Centre and then further complaint via 1823 on 7 August 2011. 5) Highways contacted the complainant on 15 August 2011 that the noisy rock breaking operation had been completed. Remarks: There will be counted as two complaints in this complaint log.	Closed
110810	10/08/2011	$\begin{array}{\|lcr\|} \hline \text { Mr. } & \text { Yip } & \text { by } \\ \text { no. ICC } & 1 & - \\ 306740207 & \\ \hline \end{array}$	North Point	Muddy water was discharged from work site to the seafront near Oil Street during heavy rain. The environmental protection measures were not good enough and are needed to rectify.	1) It was referred by AECOM to ET on 17 August 2011. 2) Confirmed with RE, Muddy water was caused by a heap of earth being washed to the sea by heavy rain. The heap of earth was referred as a small stockpile placed close to the seafront in front of Oil Street within the site area under handover transition period from contract HY/2009/11 to contract HY/2009/19. The necessary mitigation measures to protect the small stockpile against rainfall were missing at the time of complaint. 3) Due to the missing of mitigation measures to protect the small stockpile during handover transition period, loose material was washed into the harbour when heavy rain came. Muddy water was formed and dispersed in the sea that caused the water quality and visual concern to the public. The complaint was considered as valid. 4) Contractors were advised to relocate the loose materials	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
					away from the coastline as far as practicable. Any loose material placed which needed to be placed near the coastline shall be properly compacted or covered as appropriate. To avoid any further environmental deficiency, Contractors shall ensure all necessary environmental mitigation measures will not be missing during site area handover.	
110826	26/08/2011		Wan Chai	Construction noise and vibration nuisance generated from the works at Convention Avenue and inside the HKCEC1 reclamation area.	1) Confirmed with the Resident Site Staff that the construction works were referred to the Contractor HK/2009/01. 2) The Excavator mounted breaker at Convention Avenue and Drilling rig at HKCEC1 reclamation area were the dominant construction noise source during this period. 3) The drilling rig at HKCEC1 reclamation area and excavator mounted breaker at Convention Avenue were then temporary suspended after received the complaint. 4) Investigation revealed that the erected noise barrier (4m cantilevered movable noise barrier for the drilling rig and 1 m movable noise barrier for the excavator mounted breaker) were not located close to the plants to provide adequate noise screening. 5) Contractor was advised to avoid concurrent operation of construction plants at site. Further enhancement of movable noise barriers at HKCEC1 and providing noise enclosure for the excavator mounted breaker at Convention Avenue are needed. 6) Further site investigation and checking on 31 August and 7 September 2011 revealed that the implemented noise mitigation measures were in proper and minimize the noise impact.	Closed
110826A	26/08/2011	A complaint letter from Mr. Au of Cayley Property of City Garden	North Point	Harbor front adjacent to their cooling water intake suction which caused 3 times of system breakdown of the sea water pump on 9, 22 and 25 August 2011.	1) It was referred by AECOM to ET on 29 August 2011. Confirmed with the Resident Site Staff that the - construction works were referred to the Contractors HY/2009/11 and HY/2009/19. - The pump is located on the site area of HY/2009/19 - A temporary garbage defender was installed on 23 July 2011 by HY/2009/11 and the shape of the defender was adjusted on 8 August 2011 in order to excluse the outfall. - An ad hoc inspection of the effectiveness of garbage defender was conducted with RSS (CWB project	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
					team), contractor of HY/200911 and HY/2009/19 and IECon 29 August 2011. Inspection report of it was submitted to RSS on 19 September 2011. - Daily cleaning near the water intake was conducted twice a day by contractor HY/2009/19. - In response to City Garden request, the contractors have set up the temporary garbage defender in function and collect the floating refuses, but cannot eliminate all refuses, in particular the refuse coming from the seabed 2) According to the complaint letter from Cayley Property, the outcomes of the preventive measures were not complying wih their expectation. 3) During on-site inspection, floating refuses observed occasionally outside the garbage defender. No conclusion could be made for the source of these floating refuses. On the other hand, some of the refuses were observed floating behind the garbage defender during investigation. 4) All daily cleaning actions had been taken by contractor to minimize floating refuse inside the construction site. 5) It was noted that the cooling water intake was accessible to the public. As such, fish breeding and fishing activities were observed even though a notice has already hoisted. Also, tripping of rubbish by the passers-by could result in a lot of rubbish accumulated around the intake point. 6) Referring to the record provided by CPML, there were a lot of nylon/ plastic bags and nylon wire mesh that matched those rubbishes generated from the public activities. 7) Contractors have fulfilled the requirement of site cleanness and no exceedance was recorded during Water Quality Monitoring. It is consider the cause of this complaint is not related to project and environmental issue in this project as well. No more complaint received after ad-hoc inspection	
111014	14/10/2011	The complainant, Ms. Tam complained via hotline 1823	Wan Chai	The polluted fumes and exhaust from the excavation by sub-contractor of CEDD on pedestrian way outside no. 25 Harbour Road (in front of the Harbour Centre)	1) RSS notified ET to carry out investigation on 17 October 2011. 2) ET confirmed with the Resident Site Staff that the location of the excavator was within site area of Contract no. HK/2009/02 undertaking the water cooling main reprovision works along the Harbour Road. The plants including the excavator have been checked before using	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
					at the site. However, the polluted fumes and exhausted from the excavator was caused due to insufficient maintenance of the plant after using at site. 3) After receiving the complaint, the excavator was then removal off-site for checking and maintenance works on 17 October 2011. 4) Contractor was reminded to enhance regular checking and maintenance to all plants at site. 5) RSS has replied to the complainant on the arrangement of the measures taken on 17 October 2011. Complainant was satisfied with the response and follow-up action taken by the Contractor.	
111104	04/11/2011	Mr. Liu from LCSD complained via Contractor Complaint Hotline	Wan Chai	Complain about a tree near the site of pipe installation works outside Wan Chai Swimming Pool at Harbour Road, the status is not healthy and roof ball of two trees inside the site near Renaissance Hong Kong Harbour View Hotel at Convention Avenue were half cut.	1) ET confirmed with the Resident Site Staff that - A tree near the site of pipe installation works outside Wan Chai Swimming Pool at Harbour Road is the Tree no. TA1122 under Contract no. HK/2009/02. Leaves of a branch of this tree were shrivelled. - Two trees inside the site near Renaissance Hong Kong Harbour View Hotel at Convention Avenue are the tree nos. A160 and A161 under Contract no. HK/2009/01. Part of roof ball of these two trees was covered by the metal plate. 2) Independent Tree Specialists for these two inspected the trees. Contractor HK/2009/01 has taken the measure as recommend downgrading the soil level around the trunk base. Reinstating of the ground works will be conducted in mid-December 2011. For the tree no. TA1122 under Contract no. HK/2009/02, the brown leaves were removed and fenced the tree with orange net is provided to prevent damage of tree trunk by construction works. The distance between the tree and the edge of the trench is kept approximate 2 m . Two Contractors were reminded to carry out regular watering to the trees within their site area.	Waiting RSS respond
111106	06/11/2011	Police officer	Wan Chai	Construction noise generated from the site at about 6:30 a.m on 6 November 2011 and require to stop the machine operation	1) According to the information reported by Contractor, one BC cutter and hoist were operated for Diaphragm Wall construction of Shatin-Central Link to inspect bentonite pipes and ensure no damages and all the joints are tightened in good position. Then, the subcontractor for Diaphragm wall, SAMBO Korean foreman stopped the engine of the BC cutter immediately. The police officer recorded the details and HKID number of the foreman and then left. Due to the different language communication between the police officer and the Korean foreman, no	Keep in view for three months from the date of complaint recevied

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
					CNP was checked by the police officer. 2) ET confirmed with the Resident Site Staff that same issue was also raised out by RSS at about 7:00a.m on the same day. Besides, it was confirmed that there is no valid Construction Noise Permit for the conducted construction works in the period between 2300 and 0700. 3) Due to insufficient communication between Contractor HK/2009/01 and their Korean Sub-contractor, Korean Sub-contractor had not notified to Contractor before carrying out the inspection of the BC cutter, hoists and bentonite pipes at about 6:00a.m to ensure no damages and all the pipe joints should be tightened and in good position. 4) Contractor was advised to enhance the communication between Contractor and sub-contractor and provide sufficient environmental training to all foreman and operators on restricted hour operation. Futhermore, Construction Noise Permit should be checked and in place for the construction works during restricted hour 5) This complaint was considered in relation to the conducted construction works during restricted hours without valid Construction Noise Permit. No more construction works were conducted during night time period. The construction works will be conducted in accordance with the time period stated in valid CNP. This complaint will be kept in view of any follow-up action from the relevant government activities.	
120405	05/04/2012	N/A	North Point	A complaint regarding excessive noise from construction sites of CBTS was observed daily before 7:30am except on public holidays, and the noise source was mainly from piling works. The complainant requested that construction works should start after 8:30am to avoid nuisance to nearby residents and a speedy follow-up and reply.	1) RSS notified ET on 5 April 2012. 2) ET confirmed with the Resident Site Staff that no piling works were performed during the concerned period. 3) After reviewing the results of noise monitoring (M2b and M3a), no exceedance was recorded during daytime period and the noise level was below $75 \mathrm{~dB}(\mathrm{~A})$. Site inspection for HY/2009/15 was conducted on 10 April 2012. The condition of noise mitigation measures around CBTS was found satisfactory. RSS confirmed that no pilings were performed during the concerned period. The major works included drilling, diaphragm wall construction and excavations. 4) HyD made a reply to the complainant on 16 April 2012 via 1823. HyD replied that the current works at CBTS were drilling, diaphragm wall construction and deep excavations. In order to minimize the noise generated	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome
				Status from temporary noise barriers and provided noise blankets on ten plants. RSS would continue to work with the Contractor on the effectiveness of the environmental mitigation measures implemented on site. No further complaint was received after the response.	

Appendix 8.1

Construction Programme of Individual Contracts

Contract No. HK/2009/01

Contract Title : Wan Chai Development Phase II - Central - Wan Chai Bypass at HKCEC

Working Programme for Marine Works (Dredging and Backfilling)

			2010	2011	2012	2013
Activity	START	FINISH	Felmatapal			
Submissons before Works Commencement						
Submit silt curtain deployment plan	31/3/10	31/3/10	-			
Submit silt screen deployment plan	31/3/10	31/3/10	-			
Submit measures to mitigate noise impact	31/3/10	31/3/10	-			
Cross Harbour Watermains from WCN to TST (DP6)						
Trench dredging for marine watermains installation	29/4/10	28/10/10				
Backfilling for watermain	281/11	14/12/11				
Reclamation Works at HKCEC Water Channel (DP3)						
Dredging at HKCEC Water Channel (Western Part)	1/6/10	1/8/10				
Backfilling to +3.5 mPD (Westem Part)	17/8/10	6/2/11				
Dredging at HKCEC Water Channel (Middle Part)	2/8/10	6/1/11				
Backfilling to +3.5 mPD (Middle Part)	21/2/11	1/6/11				
Dredging at HKCEC Water Channel (Eastem Part)	1/12/12	31/12/12				
Backfilling to 3.5 mPD (Eastem Part)	16/1/13	30/4/13				

Early Bar	EP02	CHINA STATE CONSTRUCTION ENGG LTD	Sheet 1 of 1	Prepred based on IWP Rev. 0
Progress Bar Critical Activity		CONTRACT NO, HY/2009/15: CENTRAL WAN CHAI BYPASS-TUNNEL (CBTS SECTION)		Date Prepared: 28 Oct 2010
?Primavera Systems, Inc.				

(Page
3MRP - MAR 2012 to JUN 2012
Page 7 of 7

[^0]: ${ }^{1}$ CEDD will identify an implementation agent.
 ${ }^{2}$ CEDD will identify an implementation agent.

[^1]: * Des - Design, C - Construction, O - Operation, and Dec - Decommissioning
 \# Only the steel frame for this section of noise semi-enclosure would be erected in advance during the construction of the westbound slip road.

[^2]: * Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

[^3]: ${ }^{4}$ CEDD will identify an implementation agent

[^4]: ${ }^{5}$ CEDD will identify an implementation agent

[^5]: The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not indude allowance for the equipment long term drif, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Catibration Lid. shall not be liable for any loss or damage resulting from the use of the equipment.

 The test equipment used for cafibration are traceable to Intemational System of Units (SI).
 The test results apply to the above Unit-Under-Test only

[^6]: Uncertainty $: \pm 0.1 \mathrm{~dB}$

[^7]: This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

[^8]: Remarks:
 Single underline denotes exceedance over Action leve
 Double underline denotes exceedance over Limit level

[^9]: Remarks
 Single underline denotes exceedance over Action leve
 Double underline denotes exceedance over Limit level

[^10]: Remarks:
 Single underline denotes exceedance over Action level
 Double underline denotes exceedance over Limit level

[^11]: |27/5/2012 3:11
 58.9
 58.9
 59.1 27/5/2012 3:16
 27/5/2012 3:21 27/2012 3:21
 27/5/2012 3:26 27/5/2012 3:26
 27/5/2012 3:31 27/5/2012 3:31
 27/5/2012 3:36 27/5/2012 3:36
 27/5/2012 3:41 27/5/2012 3:46 27/5/2012 3:51 27/5/2012 3:56 27/5/2012 4:01 27/5/2012 4:06 27/5/2012 4:11 27/5/2012 4:16 27/5/2012 4:21 27/5/2012 4:26 27/5/2012 4:31 27/5/2012 4:36 27/5/2012 4:41 27/5/2012 4:46 27/5/2012 4:56 27/5/2012 5:01 27/5/2012 5:06 27/5/2012 5:11 27/5/2012 5:16 27/5/2012 5:21 27/5/2012 5:31 27/5/2012 5:31 27/5/2012 5:36 27/5/2012 5:41 27/5/2012 5:46
 $27 / 5 / 2012$ 5:51 27/5/2012 5:51 27/5/2012 5:56 27/5/2012 6:01 27/5/2012 6:06 27/5/2012 6:11 27/5/2012 6:16 27/5/2012 6:21 27/5/2012 6:26 27/5/2012 6:31 27/5/2012 6:36
 6:41 $\begin{array}{ll}27 / 5 / 20126: 41 & 60.6 \\ 27 / 5 / 2012 \text { 6:46 } & 61.0\end{array}$ 27/5/2012 6:51 27/5/2012 6:56 $\begin{array}{ll}27 / 5 / 2012 & 23: 01 \\ 61.8 \\ \text { 27/5/2012 23:06 } & 61.0\end{array}$ 27/5/2012 23:11 60.9 $\begin{array}{ll}27 / 5 / 2012 & 23: 16 \\ 61.5 \\ 27 / 5 / 2012 & 23: 21 \\ 61.5\end{array}$ 27/5/2012 23:26 61.9 $\begin{array}{ll}\text { 27/5/2012 23:31 } & 61.1 \\ \text { 27/5/2012 23:36 } & 60.9\end{array}$ $\begin{array}{ll}\text { 27/5/2012 23:36 } & 60.9 \\ \text { 27/5/2012 23:41 } & 60.8\end{array}$ $\begin{array}{lll}27 / 5 / 2012 & 23: 46 & 61.1 \\ 27 / 5 / 2012 & 23: 51 & 60.8\end{array}$ 27/5/2012 23:56 63.0
 *Exceedance recorded during with NCO

[^12]: Limit Level - Value highlight in red colour

