

Lam Geotechnics Limited

CONTRACT NO: HK/2011/07

WANCHAI DEVELOPMENT PHASE II AND CENTRAL WANCHAI BYPASS SAMPLING, FIELD MEASUREMENT AND TESTING WORKS (STAGE 2)

ENVIRONMENTAL PERMIT NO. EP-356/2009, FURTHER EVIRONMENTAL PERMIT NOS. FEP-01/356/2009, FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009 AND FEP-05/356/2009

MONTHLY ENVIRONMENTAL MONITORING & AUDIT REPORT

- AUGUST 2012 -

CLIENTS:

Civil Engineering and Development Department

and

Highways Department

PREPARED BY:

Lam Geotechnics Limited

11/F Centre Point 181-185 Gloucester Road, Wanchai, H.K.

Telephone: (852) 2882-3939 Facsimile: (852) 2882-3331 E-mail: <u>info@lamenviro.com</u> Website: <u>http://www.lamenviro.com</u>

CERTIFIED BY:

Raymond Dai Environmental Team Leader

DATE:

1 September 2012

ENVIRON

Ref.: AACWBIECEM00 0 3156L.12

11 September 2012

AECOM Asia Company Limited 8/F, Tower 2 Grand Central Plaza 138 Shatin Rural Committee Road, Shatin, New Territories, Hong Kong

By Post and Fax (2691 2649)

Attention: Mr. Kelvin CHENG

Dear Sir,

Re: Wan Chai Development Phase II and Central-Wan Chai Bypass Monthly Environmental Monitoring and Audit Report (August 2012) for EP-356/2009, FEP-01/356/2009, FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009 and FEP-05/356/2009

Reference is made to the Environmental Team's submission of the captioned Monthly Environmental Monitoring and Audit (EM&A) Report for August 2012 dated 11 September 2012.

Please be informed that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 3.4 in the captioned Environmental Permits.

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

David Yeung Independent Environmental Checker

c.c. HyD CEDD AECOM Lam

Mr. Jones Lai Mr. Patrick Keung Mr. Francis Leong / Mr. Stephen Lai Mr. Raymond Dai

by fax: 2714 5289 by fax: 2577 5040 by fax: 2691 2649 by fax: 2882 3331

Q:\Projects\AACWBIECEM00\Corr\AACWBIECEM00_0_3156L.12.doc

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY	4
1.	INTRODUCTION	12
	1.1 Scope of the Report 1.2 Structure of the Report	
2.	PROJECT BACKGROUND	15
	 Background Scope of the Project and Site Description Division of the Project Responsibility Project Organization and Contact Personnel 	15 16
3.	STATUS OF REGULATORY COMPLIANCE	25
	3.1 Status of Environmental Licensing and Permitting under the Project	25
4.	MONITORING REQUIREMENTS	37
	 4.1 Noise Monitoring 4.2 Air Monitoring 4.3 Water Quality Monitoring 	38
5.	MONITORING RESULTS	46
	 5.1 Noise Monitoring Results 5.2 Real-time Noise Monitoring 5.3 Air Monitoring Results 5.4 Water Monitoring Results 5.5 Waste Monitoring Results 	48 48 50
6.	COMPLIANCE AUDIT	60
	 Noise Monitoring Real-time noise Monitoring Air Monitoring Air Monitoring Water Quality Monitoring Review of the Reasons for and the Implications of Non-compliance Summary of action taken in the event of and follow-up on non-compliance 	60 60 61 62
7.	CUMULATIVE CONSTRUCTION IMPACT DUE TO THE CONCURRENT PROJECTS	64
8.	ENVIRONMENTAL SITE AUDIT	65
9.	COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION	66
10.	CONCLUSION	72

LIST OF TABLES

Table I	Summary of Water Quality Monitoring Exceedances in Reporting Month
Table II	Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in Reporting Month
Table 2.1	Schedule 2 Designated Projects under this Project
Table 2.2	Details of Individual Contracts under the Project
Table 2.3	Contact Details of Key Personnel
Table 3.1	Summary of the current status on licences and/or permits on environmental
	protection pertinent to the Project
Table 3.2	Cumulative Summary of Valid Licences and Permits under Contract no.
	HY/2009/11
Table 3.3	Summary of submission status under FEP-01/356/2009 Condition
Table 3.4	Cumulative Summary of Valid Licences and Permits under Contract no.
	HK/2009/01
Table 3.5	Summary of submission status under FEP-02/356/2009 Condition
Table 3.6	Cumulative Summary of Valid Licences and Permits under Contract no.
	HK/2009/02
Table 3.7	Summary of submission status under FEP-03/356/2009 Condition
Table 3.8	Cumulative Summary of Valid Licences and Permits under Contract no.
	HY/2009/15
Table 3.9	Summary of submission status under FEP-04/356/2009 Condition
Table 3.10	Cumulative Summary of Valid Licences and Permits under Contract no.
	HK/2010/06
Table 3.11	Summary of submission status under EP-356/2009 and FEP-05/356/2009 Condition
Table 3.12	Cumulative Summary of Valid Licences and Permits under Contract no.
	HY/2009/19
Table 4.1	Noise Monitoring Station
Table 4.2	Real Time Noise Monitoring Station
Table 4.3	Air Monitoring Station
Table 4.4	Marine Water Quality Stations for Water Quality Monitoring
Table 4.5	Marine Water Quality Monitoring Frequency and Parameters
Table 4.6	Marine Water Quality Stations for Enhanced Water Quality Monitoring
Table 4.7	Marine Water Quality Stations for Additional DO Monitoring
Table 5.1	Noise Monitoring Stations for Contract no. HY/2009/11
Table 5.2	Noise Monitoring Station for Contract nos. HK/2009/01, HK/2009/02 and HK/2010/06
Table 5.3	Noise Monitoring Station for Contract no. HY/2009/15
Table 5.4	Noise Monitoring Station for Contract no. HY/2009/19
Table 5.5	Real Time Noise Monitoring Station for Contract no. HY/2009/11 and HY/2009/19
Table 5.6	Air Monitoring Stations for Contract no. HY/2009/11
Table 5.7	Air Monitoring Stations for Contract no. HK/2009/01
Table 5.8	Air Monitoring Station for Contract no. HK/2009/02
Table 5.9	Air Monitoring Station for Contract no. HY/2009/15
Table 5.10	Air Monitoring Stations for Contract no. HY/2009/19
Table 5.11	Water Monitoring Stations for Contract no. HY/2009/11
Table 5.12	Water Monitoring Stations for Contract no. HK/2009/01
Table 5.13	Water Monitoring Stations for Contract no. HK/2009/02
Table 5.14	Water Monitoring Stations for Contract no. HK/2010/06
Table 5.15	Water Monitoring Stations for Contract no. HY/2009/15
Table 5.16	Water Monitoring Stations for Contract no. HY/2009/19
Table 5.17	Summary of Water Quality Monitoring Exceedances in Reporting Month
Table 5.18	Summary of Water Quarty monitoring Exceedances in Reporting Month Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in Reporting
1 anit J. 10	Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in Reporting Month
Table 5.19	Details of Waste Disposal for Contract no. HK/2009/01
Table 5.20	Details of Waste Disposal for Contract no. HK/2009/02
Table 5.21	Details of Waste Disposal for Contract no. HY/2009/15
Table 5.22	Details of Waste Disposal for Contract no. HK/2010/06
Table 5.22	Details of Waste Disposal for Contract no. HY/2009/19
1 4010 0.20	

2

- Table 8.1Summary of Environmental Inspections for Contract no. HK/2009/01
- Table 8.2Summary of Environmental Inspections for Contract no. HK/2009/02
- Table 8.3Summary of Environmental Inspections for Contract no. HY/2009/15Table 8.4Summary of Environmental Inspections for Contract no. HK/2010/06
- Table 8.4
 Summary of Environmental Inspections for Contract no. HK/2010/06

 Table 8.5
 Summary of Environmental Inspections for Contract no. HY/2009/19
- Table 9.1
 Cumulative Statistics on Complaints
- Table 9.2 Cumulative Statistics on Successful Prosecutions
- Table 10.1
 Construction Activities and Recommended Mitigation Measures in Coming Reporting Month

LIST OF FIGURES

- Figure 2.1 Project Layout
- Figure 2.2 Project Organization Chart
- Figure 2.3 Locations of Environmental Monitoring Stations

LIST OF APPENDICES

- Appendix 3.1 Environmental Mitigation Implementation Schedule
- Appendix 4.1 Action and Limit Level
- Appendix 4.2 Copies of Calibration Certificates
- Appendix 5.1 Monitoring Schedule for Reporting Month and Coming month
- Appendix 5.2 Noise Monitoring Results and Graphical Presentations
- Appendix 5.3 Air Quality Monitoring Results and Graphical Presentations, and Odour Patrol Results
- Appendix 5.4 Water Quality Monitoring Results and Graphical Presentations
- Appendix 5.4a Additional Dissolved Oxygen Monitoring Results
- Appendix 5.5 Real-time Noise Monitoring Results and Graphical Presentations
- Appendix 6.1 Event Action Plans
- Appendix 6.2 Summary for Notification of Exceedance
- Appendix 7.1 Complaint Log
- Appendix 8.1 Construction Programme of Individual Contracts

Lam Geotechnics Limited

EXECUTIVE SUMMARY

i. This is the Environmental Monitoring and Audit (EM&A) Monthly Report – August 2012 for the Project of Wan Chai Development Phase II and Central-Wanchai Bypass under Environmental Permit no. EP-356/2009 and Further Environmental permit nos. FEP-01/356/2009, FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009 and FEP-05/356/2009. This report presents the environmental monitoring findings and information recorded during the period July 2012 to August 2012. The cut-off date of reporting is at 27th of each reporting month.

Construction Activities for the Reported Period

- ii. Contract no. HY/2009/11- North Point Reclamation
 - The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19.
- iii. During this reporting period, the major work activities for Contract no. HK/2009/01 included:

Marine Works (at Wan Chai)

- Rockfilling for rock bund across HKCEC Water Channel from Ch220 to Ch230
- Reclamation of HKCEC3W within HKCEC Water Channel
- Installation of pipe pile wall for demolition of existing seawall at Expo Drive East
- Demolition of Wan Chai West Ferry Pier

Cross-Harbour Watermains Installation (CHA & CHB) and Marine Works (at TST)

- Rockfilling and rock protection to cross-harbour watermains
- Installation of cross-harbour watermains No. A18 & B18

Fresh Watermains, Cooling Watermains and Salt Watermains (On Land)

- Mainlaying works at Zone B1-5A, B2-1, B3-1, B4-3, B4-1A, B5-1(Switch Room), B5-3(Switch Room), A1-1, A1-2, A1-3B, A2-2, A3-2A, A3-4B, A3-5B and A4-2A
- The reinstatement of one carriageway at Zone B2-1 Mainlaying Works at Zone B3-1
 of Expo Drive Central
- Breakup of concrete surround and trimming of 1 no. existing intake and 2 no. existing discharge pipe at Zone A1-1 and A1-2
- Pipe laying works at Heading No. H7
- Heading No. H6c (Mainlaying works by trenchless method)
- Mainlaying and chamber construction works at the traffic island near junction of Convention Avenue and Fenwick Pier Street
- Mainlaying works at Zone A3-2A of Fenwick Pier Street
- Mainlaying works at Expo Drive East in Zone C1-10
- Mainlaying Works for a 1000 dia. Watermains (CHE) at Salisbury Garden

- Reinstatement Works at Salisbury Garden
- Pipe Laying works including 9 nos. cooling mains across E/D section within HKCEC
 Water Channel
- Pipe Laying works including 9 nos. cooling mains across SCL section within HKCEC Water Channel
- Pipe Laying works including 9 nos. cooling mains and 2no. cross harbour watermains at North Bank of HKCEC Water Channel
- iv. During this reporting period, the major work activities for Contract no. HK/2009/02 included:
 - Modification work of PTI and bus station at Expo Drive East
 - Self-testing of the individual pumping systems for cooling mains work
 - Wet well was handed over to E & M for penstock leakage testing
 - Reinstatement at Tonnochy Road Harbour Road junction
 - Cooling mains installation at west of Gate 1 inside ex-pet garden and the steel fixing and casting of the damaged thrust box
 - Cabling works along Harbour Road and Great Eagle Centre / Harbour Centre area
 - Waterproofing membrane at roof level at WSD Salt Water Pumping Station.
 - E&M works at WSD Salt Water Pumping Station
 - Wall shaft and roof slab casting of salt water intake culvert at Wan Shing Street Bay 20 and steel fixing of 19B
 - Removing the strut & waling for road reinstatement near Bay 24 and backfilling of salt water intake culvert at Wan Shing Street
 - Sheetpiling at Bay 11 and the grouting work
 - Pile cap steel fixing of Bay 6 in salt water intake landside cofferdam
 - Concreting the salt water intake culvert of Bay 4 and Bay 7 at WCR1 and concreting the base slab of Bay 8
 - Concreting pile cap of IC1 and the construction of pile cap IC2 in salt water intake seaside cofferdam.
 - Excavation and breaking up the rock down to 3rd layer of strut and waling installation of the outfall launching shaft and then the 2nd layer waling
 - Cutting the opening of sheetpiles and coring of thrust wall between Launching Pit and Jacking Pit
 - Excavation the fill material to expose HDPE pipe end by divers inside the outfall seaside cofferdam
 - Cutting casing of pre-bored H-pile to cut-off level for pile cap at Bay 4 and Bay 5 of Box Culvert N1 northern cofferdam
 - Excavation to formation level and making good of blinding layer for pile cap at Bay 4 and Bay 5 of Box Culvert N1 northern cofferdam
 - Concreting the base slab of Box Culvert N1 Bay 2 and Bay 3 on UU bridge

- Dismantling of steel panel & H-beam of water tank at zone 2B and the dismantling work of water tank in zone 3B and 3C at Ferry Pier.
- Concreting the columns at New Ferry Pier GL 6-7 / B-F level 1 to level 2 and erection formwork and falsework at GL 8-15 / B-F
- Steel fixing the slab at New Ferry Pier GL 1-8 level 1 and GL 9 -15 level 2
- Rockfilling and placing bagged concrete for the seawall block area at WCR2
- Reclamation of WCR2
- TDMP for Box Culvert "O" Diversion at Bay 12-13
- Bulkhead wall at Box Culvert "O" Bay 17
- Water pressure test and sterilization test for 150MS freshwater pipe at Box Culvert "O" prior to the diversion of captioned water pipe.
- Trial pit excavation and preparation works for Hung Hing Road Diversion
- v. During this reporting period, the major work activities for Contract no. HY/2009/15 included:
 - Removal of temporary reclamation at TS1
 - Underwater cutting of temporary diaphragm walls at TS1
 - Dredging for seawall foundation at TS2
 - Seawall trench works at TS2
- vi. During this reporting period, the major work activities for Contract no. HK/2010/06 included:
 - Pile head breaking
 - Sonic tube trimming
- vii. During this reporting period, the major work activities for Contract no. HY/2009/19 included:
 - Marine bored piling
 - Construction works for Box Culvert T

Noise Monitoring

- viii. Noise monitoring during daytime and restricted hour were conducted at the stations M1a, M2b, M3a, M4b, M5b and M6 on a weekly basis in the reporting month.
- ix. Due to the equipment repair, the noise monitoring at M4b and M6 were rescheduled from 23 August 2012 to 24 August 2012
- X. One limit level exceedance was recorded at M6 on 24 August 2012. The limit level exceedance was considered as non-project related.
 Real-time Noise Monitoring
- Real-time noise monitoring at FEHD Hong Kong Transport Section Whitefield Depot and Oil Street Community Centre have been commenced on 5 October 2010 for the filling works of Contract no. HY/2009/11.
- xii. Real-time noise monitoring at FEHD Hong Kong Transport Section Whitefield Depot commenced external wall renovation since 1 June 2012

xiii. Exceedances were recorded at RTN2- Oil Street Community Liaison Centre, between 0700 and 1900 hours throughout the reporting month. Investigations found that no major noisy activities by the Contractor HY/2009/19 were being performed. The major noise impact was arising from the demolition works near Oil Street Community Liaison Center. As such, the exceedances were concluded as not project related.

Air Quality Monitoring

- xiv. Due to extension of site boundary by contractor of HY/2009/19, location of air monitoring station CMA1b – Oil Street Community Liaison Centre has been finely adjusted on 21 April 2012.
- xv. Due to lack of electricity supply, the 24-hr TSP monitoring at the following stations were rescheduled:

CMA1b: from 27 Jul and 20 August 2012 to 31 Jul and 21 August 2012 CMA2a: from 27 Jul and 8 August 2012 to 28 Jul and 10 August 2012 CMA5a: from 20 August 2012 to 21 August 2012 CMA6a: from 8 August 2012 to 9 August 2012

- xvi. Due to adverse weather condition, the 1-hr TSP monitoring at the following stations were rescheduled:
 CMA2a: from 9 August 2012 to 11 August 2012
- xvii. Air quality monitoring has been conducted at stations CMA1b, CMA2a, CMA3a, CMA4a, CMA5a and CMA6a. No exceedance was recorded in the reporting month.
- xviii. The odour patrol along the odour route with 7 sniffing locations was conducted by a qualified odour patrol member on 13 and 23 August 2012 at the concerned hours (afternoon for higher daily temperature). No exceedance was recorded in this reporting period. <u>Water Quality Monitoring</u>
- xix. Due to the adverse weather condition (e.g. Amber Rainstorm signal or Strong wind signal No.3 or above) were hoisted on 11 and 17 August 2012, water quality monitoring at ebb tide were cancelled.
- xx. WDII/RSS advised that the dredging works for submarine pipeline at Victoria Harbour had been completed in January 2012. Therefore, the concurrent dredging activities at Sewage Pipeline Zone and reclamation shoreline zone TCBR under the EP-356/2009 scenario 2B no longer exist. As such, with reference to Table 5.39 of the EIA Report for Wan Chai Development Phase II and Central-Wan Chai Bypass, the application of silt screen for cooling water intakes for Queensway Government Offices was suspended and the others were remains unchanged.
- xxi. Based on the joint inspection on 4 Jan 2012 for the NPR area, the 4-week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8, C9 to confirm no water deterioration with respect to NPR was commenced since 7 Jan 2012 and was completed on 6 Feb 2012 water quality monitoring.
- Water quality monitoring at WSD10 and WSD15 will be temporary suspended while water quality monitoring at WSD9 and WSD17 was implemented with respect to HK/2009/02 from 8 Feb 12 onwards;
- xxiii. Water quality monitoring at C8 and C9 have been implemented with respect to HY/2009/19 since the marine bore piling work started on 28 Jan 12.

Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Monthly EM&A Report (August 2012)

Lam Geotechnics Limited

am

- xxiv. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Centre (C9) between 9 January 2012 to 30 July 2012 which caused to the inaccessibility of sampling either land and marine since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 since 10 March 2012 to the closest accessible point prior to the completion of the external façade refurbishment work.
- xxv. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.
- xxvi. Due to the dredging works for Cross Harbour Water Mains from Wan Chai to Tsim Sha Tsui-DP6 was completed on 26 March 2012, the temporary suspension of impact water quality monitoring at WSD7 and WSD20 after 27 April 2012 for the water quality monitoring at WSD7 and WSD20 have been monitored for 4-week period after the completion of DP6 to confirm no water deterioration.
- xxvii. During the weekly site inspection for HY/2009/15 on 10 July 2012 and further inspection on 11 July 2012, it was found that the seawall blocks on the south side of TCBR1E (TS1) have been removed before all dredging works have been completed. The contractor has immediately surrounded the seawall gap with silt curtains and stopped the relevant dredging works on 12 July 2012. No action or limit level exceedance was found during the water quality monitoring on 9 or 11 July 2012. The contractor has promised to provide double layer silt curtains and geotextile to act as temporary seawall and covered the sloping seawall with geotextile, and would provide a full incident report. A self water quality monitoring was conducted on 15 July 2012 to indicate the effectiveness of the double silt curtain layers and would perform each time during dredging operations. The results from the self water quality monitoring showed that the suspended solids, turbidity and dissolved oxygen level outside the double silt curtain layers.
- xxviii. Water quality monitoring at 14 monitoring stations was conducted three days per week during the reporting period. The action and limit level exceedances of water quality monitoring are summarized in *Table I*.

			Mid-flood				Mid-ebb						
Contract no.	Water Monitoring Station	D	0	Turt y	oidit '	S	S	D	0	Turb	oidity	S	S
		AL	LL	AL	L	AL	LL	AL	LL	AL	LL	AL	LL
HY/2009/11	WSD9	0	0	0	0	0	0	0	0	0	0	0	0
Monitoring finished on 6 Feb 2012	WSD10	0	0	0	0	0	0	0	0	0	0	0	0
	WSD15	0	0	0	0	0	0	0	0	0	0	0	0
	WSD17	0	0	0	0	0	0	0	0	0	0	0	0
	C8	0	0	0	0	0	0	0	0	0	0	0	0
	C9	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/01	WSD19	0	0	0	0	1	0	0	0	0	0	0	0
	C1	0	0	0	0	0	0	0	0	0	0	0	0

		Mid-flood				Mid-ebb							
Contract no.	Water Monitoring	DO		Turbidit v		SS		DO		Turbidity		SS	
	Station	AL	LL	AL	L	AL	LL	AL	LL	AL	LL	AL	LL
	C3	0	0	0	0	1	0	0	0	0	0	0	0
	C4e	0	0	0	0	0	0	0	0	0	0	0	0
	C4w	1	0	0	0	0	0	0	0	0	0	0	0
Monitoring finished on	WSD20	0	0	0	0	0	0	0	0	0	0	0	0
27 April 2012	WSD7	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/01 & HK/2010/06	C2	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/02	C5e	0	0	0	0	0	0	0	0	0	0	0	0
	C5w	0	0	0	0	0	0	0	0	0	1	0	1
Monitoring started on	WSD21	0	0	0	0	2	0	1	0	0	0	0	0
8 Feb 2012	WSD9	0	0	0	0	0	0	0	0	0	0	0	0
	WSD17	0	0	0	0	0	0	0	0	0	0	0	0
HY/2009/15	C7	1	0	0	0	0	0	0	0	0	0	0	0
HY/2009/19	C8	0	0	0	0	0	0	0	0	0	1	1	1
Monitoring started on 28 Jan 2012	C9	0	0	0	0	0	0	0	0	0	0	0	0
Total	Total		0	0	0	4	0	1	0	0	2	2	2

Remarks: - The cessation of seawater intake operation for C6 was confirmed on 17 May 2011, the water monitoring at C6 was then terminated since 17 May 2011.

- WSD9 and WSD17 were implemented with respect to HK/2009/02 from 8 Feb 2012.
- 4-week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8 and C9 were completed on 6 Feb 2012.
- C8 and C9 were implemented with respect to HY/2009/19 from 28 Jan 2012.
- WSD7 and WSD20 water quality monitoring were temporarily suspended from 27 Apr 2012.
- xxix. Investigations were found that the exceedances were not related to the Project works. The details of the recorded exceedances can be referred to the Section 6.4.
- xxx. Enhanced DO monitoring at 4 monitoring stations in Causeway Bay Typhoon Shelter and Ex-Public Cargo Works Area was conducted three days per week during the reporting period. The action and limit level exceedances of water quality monitoring are summarized in *Table II*.

Table II	Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in
Reportin	g Month

		Mid-f	lood	Mid-ebb		
Contract no.	Water Monitoring DO DO		DO		0	
		AL	LL	AL	LL	
HY/2009/15	C6	0	0	0	0	
	C7	2	0	0	0	

		Mid-f	lood	Mid-ebb		
Contract no.	Water Monitoring Station	D	0	DO		
		AL LL		AL	LL	
	Ex-WPCWA SW	0	0	0	4	
	Ex-WPCWA SE	5	0	4	3	
Total		7	0	4	7	

- xxxi. There were 11 action level exceedances and 7 limit level exceedances of enhanced dissolved oxygen recorded in this reporting month. Investigation found that the exceedances are not related to the Project works. The details of the recorded exceedances can be referred to the Section 6.4.
- xxxii. In response to the Condition 2.18 of the Environmental Permit no. EP-356/2009 requiring that a silt curtain / impermeable barrier system be installed to channel water discharge flow from Culvert L to locations outside the embayment area, a proposed replacement of the requirement with additional dissolved oxygen monitoring has been conducted at three monitoring stations, namely A, B and C between the eastern seawall of Central Reclamation Phase III and the HKCEC Extension since November 2011 under EP-356/2009 so that DO level between the eastern seawall of Central Reclamation Phase II and the HKCEC extension could be continuously monitored.

Complaints, Notifications of Summons and Successful Prosecutions

xxxiii. There was one complaint received in this reporting month.

Site Inspections and Audit

- xxxiv. The Environmental Team (ET) conducted weekly site inspections for Contract nos. HK/2009/01, HK/2009/02, HY/2009/15 HK/2010/06 and HY/2009/19 under EP no. EP-356/2009 in the reporting month. Major observations and recommendations made during the audit sessions were rectified by the Contractors. No non-conformance was identified during the site inspections.
- xxxv. During the monitoring stations inspection for HK/2009/02 in July 2012, turbid appearance was occasionally observed the well for WSD intake pumping station as a result of the silty water seepage during reclamation work at WCR2. The contractor was reminded that the water quality inside the well should be ensured with adequate freshwater circulation and sufficient inspection to avoid any gaps and leakage into well.

Future Key Issues

xxxvi. In coming reporting month, the principal work activities of individual contracts are anticipated as follows:

Contract no. HY/2009/11- North Point Reclamation

• The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to

contractor HY/2009/19 on 31 December 2011.

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at</u> HKCEC

Marine Works

- Reclamation works within HKCEC Water Channel (from CH170 to CH220)
- Rockfilling for formation of rock bund within HKCEC Water Channel (from CH220 to CH230)
- Installation pipe pile wall for modification of vertical seawall near Expo Drive East
- Rockfilling at northeast of Area 9 and Area7 near Expo Drive East Bridge
- Demolition of Wan Chai West Ferry Pier
- Cross-Harbour Watermains Installation (CHA & CHB) Trust block construction, concrete coating for flange joint and rockfilling protection works for cross-harbour watermains in Victoria Harbour
- Reinstatement works at TST seashore including removal of silt screen and dismantling of jack-up barge

Fresh Watermains, Cooling Watermains and Salt Watermains (On Land)

- Zone B1-5A, B2-1, B4-1A, B4-3, B5-1, B5-3, A1-1, A1-2, A1-3B, A2-2, A3-2A, A3-4B, A3-5B, A4-2A
- Mainlaying works and G.I. ducting works at Zone B1-5A, B4-1A and B4-3
- Mainlaying works at Zone B3-1
- Mainlaying works across the run-out of Renaissance Harbour View Hotel by open-cut method
- Mainlaying works at Convention Avenue in Zone A1-1, A1-2 and Zone A2-2 and the next TTA workfront for cross harbour watermains at Zone A1-2 CHWM)
- Mainlaying works at traffic island near junction between Convention Avenue and Fenwick Pier Street
- Pipe laying works at Zone A3-2A would be completed and heading no. H1
- Mainlaying works at Zone A3-5B of Fenwick Pier Street and A3-4B
- No. H6C excavation works.
- Pipe laying works for cross harbour watermains within HKCEC water channel

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> <u>WanChai East</u>

- Complete PTI modification works after completion of New Public Toilet in East Island
 at Expo Drive East.
- Complete the initial testing of P7, P8 and P9 pumping station.
- Complete all cooling mains and cabling works for P7, P8 & P9 Pumping Stations permanent power-on and signal control.

- 800MS pipe installation inside Ex-pet Garden.
- ABWFs & E&M works of WSD Salt Water Pumping Station.
- Conduct Fire Service Inspection of WSD Salt Water Pumping Station
- Complete the finishing works of WSD Salt Water Pumping Station.
- Complete WSD intake A and Intake B in-situ concrete work.
- Construction of Bay 1b 2, Bay 6 8 salt water intake culverts at WCR1 area.
- Continue construction salt water intake culverts Bay 9 11 to formation level at WCR1 area.
- Commence salt water intake culvert at transition bays inside jacking pit and receiving pit.
- Continue remaining drainage works and reinstatement works along Wan Shing Street.
- Commence HDPE piping on UU Bridge and inside launching pit.
- Construction for Box Culvert N1 at WCR1 area.
- Complete concreting works for the Level 2 at the New Ferry Pier.
- Reclamation works at WCR2 area.
- Commence drainage work to suit TWCR4 construction.
- Diversion of uncharted drainage works at Box culvert "O".
- Continue trial excavation and preparation works for Hung Hing Road Diversion

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon</u> <u>Shelter Section)</u>

- TZ1 reclamation works
- Seawall trench works at TS2
- Formation of temporary seawall at TS2
- Dredging at TS2

<u>Contract no. HK/2010/06 - Wan Chai Development Phase II – Central – Wan Chai Bypass</u> over MTR Tsuen Wan Line

- Pile head breaking
- Sonic tube trimming

Contract no. HY/2009/19- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

- Construction works for Box Culvert T
- Marine Piling

Lam Geotechnics Limited

1. Introduction

1.1 Scope of the Report

- 1.1.1. Lam Geotechnics Limited (LGL) has been appointed to work as the Environmental Team (ET) under Environmental Permit no. EP-356/2009 and Further Environmental permit nos. FEP-01/356/2009, FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009 and FEP-05/356/2009 to implement the Environmental Monitoring and Audit (EM&A) programme as stipulated in the EM&A Manual of the approved Environmental Impact Assessment (EIA) Report for Wan Chai Development phase II and Central-Wan Chai Bypass (Register No.: AEIAR-125/2008) and in the EM&A Manual of the approved EIA Report for Central-Wan Chai Bypass and Island Eastern Corridor Link (Register No. AEIAR-014/2001).
- 1.1.2. This report presents the environmental monitoring and auditing work carried out in accordance to the Section 10.3 of EM&A Manual and "*Environmental Monitoring and Audit Requirements*" under Particular Specification Section 27.
- 1.1.3. This report documents the finding of EM&A works for Environmental Permit no. EP-356/2009, Further Environmental Permit no. FEP-01/356/2009, FEP-02/356/2009, FEP-03/356/2009, FEP-04/356/2009 and FEP-05/356/2009 and during the period of July to August. The cut-off date of reporting is at 27th of each reporting month.

1.2 Structure of the Report

- **Section 1** *Introduction* details the scope and structure of the report.
- Section 2 *Project Background* summarizes background and scope of the project, site description, project organization and contact details of key personnel during the reporting period.
- Section 3 Status of Regulatory Compliance summarizes the status of valid Environmental Permits / Licenses during the reporting period.
- Section 4 *Monitoring Requirements* summarizes all monitoring parameters, monitoring methodology and equipment, monitoring locations, monitoring frequency, criteria and respective event and action plan and monitoring programmes.
- **Section 5** *Monitoring Results* summarizes the monitoring results obtained in the reporting period.
- Section 6 Compliance Audit summarizes the auditing of monitoring results, all exceedances environmental parameters.
- Section 7 *Cumulative Construction Impact due to the Concurrent Projects* summarizes the relevant cumulative construction impact due to the concurrent activities of the concurrent Projects.

- **Section 8** *Site Inspection* summarizes the findings of weekly site inspections undertaken within the reporting period, with a review of any relevant follow-up actions within the reporting period.
- Section 9 Complaints, Notification of summons and Prosecution summarizes the cumulative statistics on complaints, notification of summons and prosecution
- Section 10 Conclusion

2. Project Background

2.1 Background

- 2.1.1. "Wan Chai Development phase II and Central-Wan Chai Bypass" and "Central-Wan Chai Bypass and Island Eastern Corridor Link" (hereafter called "the Project") are Designed Project (DP) under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO). The Environmental Impact Assessment (EIA) Reports for Central-Wan Chai Bypass and Island Eastern Corridor Link (Register No. AEIAR-041/2001) and Wan Chai Development phase II and Central-Wan Chai Bypass (Register No.: AEIAR-125/2008) have been approved on 31 August 2001 and 11 December 2008 respectively.
- 2.1.2. The key purpose of Wan Chai Development Phase II (WDII) is to provide land at Wan Chai North and North Point for construction of the Central-Wan Chai Bypass and Island Eastern Corridor Link (CWB). Land formed under the project will be developed as a world-class waterfront promenade joining that at the new Central waterfront for public enjoyment.
- 2.1.3. There is a compelling and present need for the CWB to provide relief to the very congested east-west Connaught Road Central/Harcourt Road / Gloucester Road Corridor (the Corridor) which is currently operating beyond its capacity. The CWB will provide relief to the existing congestion along the Corridor and cater for the anticipated growth of traffic on Hong Kong Island. Without the CWB and its access roads, there will not be sufficient capacity to serve the heavy traffic demands at both strategic and local levels.

2.2 Scope of the Project and Site Description

- 2.2.1. The Project is located mainly in Wan Chai North, Causeway Bay and North Point, and is demarcated by Gloucester Road and Victoria Park Road to the south, Fenwick Pier Street to the west and Tong Shui Road Interchange to the east, as shown in *Figure 2.1*.
- 2.2.2. The study area encompasses existing developments along the Wan Chai, Causeway Bay and North Point shorelines. Major land uses include the Hong Kong Convention & Exhibition Centre (HKCEC) Extension, the Wan Chai Ferry Pier, the ex-Wan Chai Public Cargo Working Area (ex-PCWA), the Royal Hong Kong Yacht Club (RHKYC), the Police Officers' Club, the Causeway Bay Typhoon Shelter (CBTS) and commercial and residential developments.
- 2.2.3. The scope of the Project comprises:
 - Land formation for key transport infrastructure and facilities, including the Trunk Road (i.e. CWB) and the associated slip roads for connection to the Trunk Road and for through traffic from Central to Wan Chai and Causeway Bay. The land formed for the above transport infrastructure will provide opportunities for the development of an attractive waterfront promenade for the enjoyment of the public
 - Reprovisioning / protection of the existing facilities and structures affected by the land formation works mentioned above
 - Extension, modification, reprovisioning or protection of existing storm water drainage outfalls, sewerage outfalls and watermains affected by the revised land use and land formation works mentioned above

- Upgrading of hinterland storm water drainage system and sewerage system, which would be rendered insufficient by the land formation works mentioned above
- Provision of the ground level roads, flyovers, footbridges, necessary transport facilities and the associated utility services
- Construction of the new waterfront promenade, landscape works and the associated utility services
- The Trunk Road (i.e. CWB) within the study area and the associated slip roads for connection to the Trunk Road.
- 2.2.4. The project also contains various Schedule 2 DPs that, under the EIAO, require Environmental Permits (EPs) to be granted by the DEP before they may be either constructed or operated. *Table 2.1* summarises the five individual DPs under this Project. <u>Figure 2.1</u> shows the locations of these Schedule 2 DPs.

Item	Designated Project	EIAO Reference	Reason for inclusion
DP1	Central-Wanchai Bypass (CWB) including its road tunnel and slip roads	Schedule 2, Part I, A.1 and A.7	Trunk road and road tunnel more than 800 m in length
DP2	Road P2 and other roads which are classified as primary/district distributor roads	Schedule 2, Part I, A.1	Primary / district distributor roads
DP3	Reclamation works including associated dredging works	Schedule 2, Part I, C.1 and C.12	Reclamation more than 5 ha in size and a dredging operation less than 100 m from a seawater intake point
DP5	Wan Chai East Sewage Outfall	Schedule 2, Part I, F.5 and F.6	Submarine sewage pipelines with a total diameter more than 1,200 mm and include a submarine sewage outfall
DP6	Dredging for the Cross-harbour Water Mains from Wan Chai to Tsim Sha Tsui	Schedule 2, Part I, C.12	A dredging operation less than 100 m from a seawater intake point

 Table 2.1
 Schedule 2 Designated Projects under this Project

2.3 Division of the Project Responsibility

- 2.3.1. Due to the multi-contract nature of the Project, there are a number of contracts sub-dividing the whole works area into different work areas to be commenced. Contractors of individual contracts will be required by the EP holder to apply Further Environmental Permits (FEP) such that the impact monitoring stations are sub-divided accordingly to facilitate the implementation of EM&A programme and to streamline the EM&A reporting for individual FEP holders correspondingly.
- 2.3.2. The details of individual contracts are summarized in *Table 2.2*.

Contract No.	Contract Title	Associated DP(s)	Construction Commencement Date	
HK/2009/01	Wan Chai Development Phase II – Central –Wanchai Bypass at Hong	DP3, DP6	23 July 2010	
	Kong Convention and Exhibition Centre	DP1, DP2	25 August 2011	
HK/2009/02	Wan Chai Development Phase II –	DP3, DP5	5 July 2010	
	Central – Wan Chai Bypass at WanChai East	DP1	26 April 2011	
HY/2009/11	HY/2009/11 Wan Chai Development Phase II and Central – Wan Chai Bypass – North Point Reclamation		17 March 2010 (Under application of surrender)	
HY/2009/15	Central-Wanchai Bypass – Tunnel	DP3	10 November 2010	
	(Causeway Bay Typhoon Shelter Section)	DP1	13 July 2011	
HK/2010/06	Wan Chai Development Phase II-Central-Wan Chai Bypass over MTR Tsuen Wan Line	DP3	22 March 2011	
04/HY/2006	Reconstruction of Bus Terminus near Man Yiu Street and Man Kwong Street	DP1	September 2010	
HY/2009/17	Central - Wan Chai Bypass (CWB) at FEHD Whitfield Depot - Advanced piling works.	DP1	5 October 2010	
HY/2009/18	Central - Wan Chai Bypass (CWB) – Central Interchange	DP1	21 April 2011	
HY/2009/19	Central - Wanchai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link	DP1	24 March 2011	

T-11-00	D - (- 11 -		A		de Destand
l able 2.2	Details	of Individual	Contracts	unaer	the Project

2.4 **Project Organization and Contact Personnel**

- 2.4.1. Civil Engineering and Development Department and Highways Department are the overall project controllers for the Wan Chai Development Phase II and Central-Wan Chai Bypass respectively. For the construction phase of the Project, Project Engineer, Contractor(s), Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
- 2.4.2. The proposed project organization and lines of communication with respect to environmental protection works are shown in *Figure 2.2.* Key personnel and contact particulars are summarized in *Table 2.3*:

Party	Role	Post	Name	Contact No.	Contact Fax
AECOM	Engineer's Representative for WDII	Principal Resident Engineer	Mr. Frankie Fan	2587 1778	2587 1877
	Engineer's Representative for CWB	Principal Resident Engineer	Mr. Peter Poon	3922 8332	3529 2829
China Harbour-	Contractor under Contract no.	Project Director	Mr. Cho Yu Fun	3157 1086	3157 1085

Table 2.3 Contact Details of Key Personnel

Party	Role	Post	Name	Contact No.	Contact Fax
CRBC Joint	HY/2009/11	Project Manager	Mr. Gregory Wong	3157 1086	
Venture		Site Agent	Mr. Daniel Cheung	3157 1086	
		Environmental Officer	Mr. C. M. Wong	3157 1086	
Chun Wo – Leader	Contractor under Contract no.	Project Director	Mr. PL Yue	2162 9909	2587 1878
Joint Venture	HK/2009/01	Site Agent	Mr. Paul Yu	9456 9819	
		Sub-Agent	Mr Terry Wong	9757 9846	
		Construction Manager	Mr. Wyman Wong	9627 2467	
		Construction Manager	Mr. Jack Chu	9775 3008	
		Construction Manager	Mr. KK Yuen	9498 1213	
		Environmental Officer (Compliance Manager)	Mr. Andy Mak	9103 2370	
CRGL Contract no.	Contractor under Contract no. HK/2009/02	Site Agent	Mr. Chan Sing Cho	3658 3002	2827 9996
Venture	1102003/02	Quality & Environmental Manager (Environmenta I Officer)	Mr. C.P. Ho	3658 3000	
China State	Contractor under Contract no.	Project Director	Chan Wai Hung	2823 7813	2865 5229
Constructi on Engineerin g (HK) Ltd.	HY/2009/15	Site Manager	P J Fan	3557 6368	2566 2192
		Contractor's Representativ e	Mr. David Lau	3557 6358	
		Head of Construction Manager	Roger Cheung	3557 6371	
		Senior Construction Manager	Gene Cheung	3557 6395	
		Environmental Officer	Mr. Daniel Sin	3557 6347	
Gammon -Leader JV	Contractor under Contract no.	Project Manager	Mr. Paul Lui	9095 7922	2529 2880
	HK/2010/06	Site Agent	Mr. Keith Tse	2529 2068]

Party	Role	Post	Name	Contact No.	Contact Fax
		Environmental Officer	Mr. Lee Wai Man	9481 6024	
Chun Wo - CRGL -	Contractor under Contract no.	Project Manager	Mr. Rayland Lee	3758 8879	2570 8013
MBEC_ Joint Venture		Site Agent	Mr. Cheung Kit Cheung	6909 1555	
		Environmental Engineer	Mr. Calvin Leung	9286 9208	
		Environmental Manager / Environmental Officer	Mr. M.H. Isa	9884 0810	
		Construction Manager (Land)	Patrick Cheung	9643 3012	
		Construction Manager (Land)	Eric Fong	6191 9337	
		Operation Manager (Land)	Yung Kwok Wah	9834 1010	
ENVIRON Hong Kong Limited	Independent Environmental Checker (IEC)	Independent Environmental Checker (IEC)	Mr. David Yeung	3743 0788	3548 6988
Lam Geotechni cs Limited	Environmental Team (ET)	Environmental Team Leader (ETL)	Mr. Raymond Dai	2882 3939	2882 3331

2.4.3. For Contract no. HY/2009/11, the principal work activities in this reporting month included:

- The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011.
- 2.4.4. For Contract no. HK/2009/01, the principal work activities in this reporting month included:

Marine Works (at Wan Chai)

- Rockfilling for rock bund across HKCEC Water Channel from Ch220 to Ch230
- Reclamation of HKCEC3W within HKCEC Water Channel
- Installation of pipe pile wall for demolition of existing seawall at Expo Drive East
- Demolition of Wan Chai West Ferry Pier

Cross-Harbour Watermains Installation (CHA & CHB) and Marine Works (at TST)

- Rockfilling and rock protection to cross-harbour watermains
- Installation of cross-harbour watermains No. A18 & B18

Fresh Watermains, Cooling Watermains and Salt Watermains (On Land)

- Mainlaying works at Zone B1-5A, B2-1, B3-1, B4-3, B4-1A, B5-1(Switch Room),
 - B5-3(Switch Room), A1-1, A1-2, A1-3B, A2-2, A3-2A, A3-4B, A3-5B and A4-2A
- The reinstatement of one carriageway at Zone B2-1 Mainlaying Works at Zone B3-1 of Expo Drive Central
- Breakup of concrete surround and trimming of 1 no. existing intake and 2 no. existing discharge pipe at Zone A1-1 and A1-2
- Pipe laying works at Heading No. H7
- Heading No. H6c (Mainlaying works by trenchless method)
- Mainlaying and chamber construction works at the traffic island near junction of Convention Avenue and Fenwick Pier Street
- Mainlaying works at Zone A3-2A of Fenwick Pier Street
- Mainlaying works at Expo Drive East in Zone C1-10
- Mainlaying Works for a 1000 dia. Watermains (CHE) at Salisbury Garden
- Reinstatement Works at Salisbury Garden
- Pipe Laying works including 9 nos. cooling mains across E/D section within HKCEC Water Channel
- Pipe Laying works including 9 nos. cooling mains across SCL section within HKCEC Water Channel
- Pipe Laying works including 9 nos. cooling mains and 2no. cross harbour watermains at North Bank of HKCEC Water Channel
- 2.4.5. For Contract no. HK/2009/02, the principal work activities in this reporting month included:
 - Modification work of PTI and bus station at Expo Drive East
 - Self-testing of the individual pumping systems for cooling mains work
 - Wet well was handed over to E & M for penstock leakage testing
 - Reinstatement at Tonnochy Road Harbour Road junction
 - Cooling mains installation at west of Gate 1 inside ex-pet garden and the steel fixing and casting of the damaged thrust box
 - Cabling works along Harbour Road and Great Eagle Centre / Harbour Centre area
 - Waterproofing membrane at roof level at WSD Salt Water Pumping Station.
 - E&M works at WSD Salt Water Pumping Station
 - Wall shaft and roof slab casting of salt water intake culvert at Wan Shing Street Bay 20 and steel fixing of 19B
 - Removing the strut & waling for road reinstatement near Bay 24 and backfilling of salt water intake culvert at Wan Shing Street
 - Sheetpiling at Bay 11 and the grouting work
 - Pile cap steel fixing of Bay 6 in salt water intake landside cofferdam
 - Concreting the salt water intake culvert of Bay 4 and Bay 7 at WCR1 and concreting

the base slab of Bay 8

- Concreting pile cap of IC1 and the construction of pile cap IC2 in salt water intake seaside cofferdam.
- Excavation and breaking up the rock down to 3rd layer of strut and waling installation of the outfall launching shaft and then the 2nd layer waling
- Cutting the opening of sheetpiles and coring of thrust wall between Launching Pit and Jacking Pit
- Excavation the fill material to expose HDPE pipe end by divers inside the outfall seaside cofferdam
- Cutting casing of pre-bored H-pile to cut-off level for pile cap at Bay 4 and Bay 5 of Box Culvert N1 northern cofferdam
- Excavation to formation level and making good of blinding layer for pile cap at Bay 4 and Bay 5 of Box Culvert N1 northern cofferdam
- Concreting the base slab of Box Culvert N1 Bay 2 and Bay 3 on UU bridge
- Dismantling of steel panel & H-beam of water tank at zone 2B and the dismantling work of water tank in zone 3B and 3C at Ferry Pier.
- Concreting the columns at New Ferry Pier GL 6-7 / B-F level 1 to level 2 and erection formwork and falsework at GL 8-15 / B-F
- Steel fixing the slab at New Ferry Pier GL 1-8 level 1 and GL 9 -15 level 2
- Rockfilling and placing bagged concrete for the seawall block area at WCR2
- Reclamation of WCR2
- TDMP for Box Culvert "O" Diversion at Bay 12-13
- Bulkhead wall at Box Culvert "O" Bay 17
- Water pressure test and sterilization test for 150MS freshwater pipe at Box Culvert "O" prior to the diversion of captioned water pipe.
- Trial pit excavation and preparation works for Hung Hing Road Diversion
- 2.4.6. For Contract no. HY/2009/15, the principal work activities in this reporting month included:
 - Removal of temporary reclamation at TS1
 - Underwater cutting of temporary diaphragm walls at TS1
 - Dredging for seawall foundation at TS2
 - Seawall trench works at TS2
- 2.4.7. For Contract no. HK/2010/06, the principal work activities in this reporting month included:
 - Pile head breaking
 - Sonic tube trimming
- 2.4.8. For Contract no. HY/2009/19, the principal work activity in this reporting month included:
 - Construction works for Box Culvert T
 - Marine Piling

2.4.9. In coming reporting month, the principal work activities of individual contracts are anticipated as follows:

Contract no. HY/2009/11- North Point Reclamation

 The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011.

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at</u> <u>HKCEC</u>

Marine Works

- Reclamation works within HKCEC Water Channel (from CH170 to CH220)
- Rockfilling for formation of rock bund within HKCEC Water Channel (from CH220 to CH230)
- Installation pipe pile wall for modification of vertical seawall near Expo Drive East
- Rockfilling at northeast of Area 9 and Area7 near Expo Drive East Bridge
- Demolition of Wan Chai West Ferry Pier
- Cross-Harbour Watermains Installation (CHA & CHB) Trust block construction, concrete coating for flange joint and rockfilling protection works for cross-harbour watermains in Victoria Harbour
- Reinstatement works at TST seashore including removal of silt screen and dismantling of jack-up barge

Fresh Watermains, Cooling Watermains and Salt Watermains (On Land)

- Zone B1-5A, B2-1, B4-1A, B4-3, B5-1, B5-3, A1-1, A1-2, A1-3B, A2-2, A3-2A, A3-4B, A3-5B, A4-2A
- Mainlaying works and G.I. ducting works at Zone B1-5A, B4-1A and B4-3
- Mainlaying works at Zone B3-1
- Mainlaying works across the run-out of Renaissance Harbour View Hotel by open-cut method
- Mainlaying works at Convention Avenue in Zone A1-1, A1-2 and Zone A2-2 and the next TTA workfront for cross harbour watermains at Zone A1-2 CHWM)
- Mainlaying works at traffic island near junction between Convention Avenue and Fenwick Pier Street
- Pipe laying works at Zone A3-2A would be completed and heading no. H1
- Mainlaying works at Zone A3-5B of Fenwick Pier Street and A3-4B
- No. H6C excavation works.
- Pipe laying works for cross harbour watermains within HKCEC water channel

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> <u>WanChai East</u>

- Complete PTI modification works after completion of New Public Toilet in East Island
 at Expo Drive East.
- Complete the initial testing of P7, P8 and P9 pumping station.
- Complete all cooling mains and cabling works for P7, P8 & P9 Pumping Stations permanent power-on and signal control.
- 800MS pipe installation inside Ex-pet Garden.
- ABWFs & E&M works of WSD Salt Water Pumping Station.
- Conduct Fire Service Inspection of WSD Salt Water Pumping Station
- Complete the finishing works of WSD Salt Water Pumping Station.
- Complete WSD intake A and Intake B in-situ concrete work.
- Construction of Bay 1b 2, Bay 6 8 salt water intake culverts at WCR1 area.
- Continue construction salt water intake culverts Bay 9 11 to formation level at WCR1 area.
- Commence salt water intake culvert at transition bays inside jacking pit and receiving pit.
- Continue remaining drainage works and reinstatement works along Wan Shing Street.
- Commence HDPE piping on UU Bridge and inside launching pit.
- Construction for Box Culvert N1 at WCR1 area.
- Complete concreting works for the Level 2 at the New Ferry Pier.
- Reclamation works at WCR2 area.
- Commence drainage work to suit TWCR4 construction.
- Diversion of uncharted drainage works at Box culvert "O".
- Continue trial excavation and preparation works for Hung Hing Road Diversion

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon</u> <u>Shelter Section)</u>

- TZ1 reclamation works
- Seawall trench works at TS2
- Formation of temporary seawall at TS2
- Dredging at TS2

<u>Contract no. HK/2010/06 - Wan Chai Development Phase II – Central – Wan Chai Bypass</u> over MTR Tsuen Wan Line

- Pile head breaking
- Sonic tube trimming

Contract no. HY/2009/19 – Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

- Construction works for Box Culvert T
- Marine Piling

3. Status of Regulatory Compliance

3.1 Status of Environmental Licensing and Permitting under the Project

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in *Table 3.1*.

Table 3.1 Summary of the current status on licences and/or permits on environmental
protection pertinent to the Project

Permits and/or Licences	Reference No.	Issued Date	Status
Environmental Permit	EP-356/2009	30 Jul 2009	Valid
Environmental Permit	EP-364/2009/A	4 Aug 2010	Valid
Environmental Permit	EP-364/2009	17 Aug 2009	Superseded
Environmental Permit	EP-376/2009	13 Nov 2010	Valid
Further Environmental Permit	FEP-01/356/2009	18 Feb 2010	Under application of surrender
Further Environmental Permit	FEP-02/356/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-03/356/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-04/356/2009	22 Nov 2010	Valid
Further Environmental Permit	FEP-05/356/2009	24 Mar 2011	Valid
Further Environmental Permit	FEP-01/364/2009	24 Mar 2010	Valid
Further Environmental Permit	FEP-02/364/2009	21 Apr 2010	Valid
Further Environmental Permit	FEP-03/364/2009	12 Jul 2010	Valid
Further Environmental Permit	FEP-04/364/2009/A	14 Oct 2010	Surrendered
Further Environmental Permit	FEP-05/364/2009/A	15 Nov 2010	Valid
Further Environmental Permit	FEP-06/364/2009/A	22 Nov 2010	Valid
Further Environmental Permit	FEP-07/364/2009/A	25 Feb 2011	Valid
Further Environmental Permit	FEP-08/364/2009/A	15 Jun 2012	Valid

3.1.2. Due to the multi-contract nature of the Project, the status of permits and/or licences under the individual contract(s) are presented as below:

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

3.1.3. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011.

- 3.1.4. Summary of the current status on licences and/or permits on environmental protection pertinent and submission under FEP-01/356/2009 for contract no. HY/2009/11 are shown in *Table 3.2* and *Table 3.3*.
- 3.1.5. Contractor submitted a letter dated 20 July 2011 to confirm that the dredging works and dumping operation were completed.

Table 3.2 Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/11

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-01/356/2009	18 Feb 2010	N/A	Valid
Notification of Works Under APCO	331892	4 Jul. 2011	N/A	Valid
Registration as a Chemical Waste Producer	WPN5213-151-C36 31-02	12 Oct 2010	N/A	Valid
Billing Account under Waste Disposal Ordinance	7010037	13 Jan 2010	N/A	Valid
Discharge Licence	WT00007942-2010	29 Nov 2010	30 Nov 2015	Valid

Table 3.3 Summary of submission status under FEP-01/356/2009 Condition

EP Condition	Submission	Date of Submission
Condition 2.6	Management Organization of Main Construction Companies	18 Dec 2009
Condition 2.7	Submission of works schedule and location plan	8 Feb 2010
Condition 2.8	Revised Silt Curtain Deployment Plan (Rev. 3)	4 Dec 2010
Condition 2.9	Silt Screen Deployment Plan (Rev. 6)	18 May 2011
Condition 2.10	Coral Translocation Plan	20 Nov 2009
Condition 2.16	Revised Noise Management Plan (Rev 5)	19 Feb 2011
Condition 2.17	Landscape Plan	12 May 2010
	Revised landscape Plan	30 Jun 2010
	Submission of Supplementary Information - Revised Management & Maintenance Schedule for Submitted Revised Landscape Plan	25 Aug 2010

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at HKCEC</u>

3.1.6. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HK/2009/01 under FEP-02/356/2009 are shown in *Table 3.4* and *Table 3.5*.

Table 3.4 Cumulative Summary of Valid Licences and Permits under Contract no. *HK*/2009/01

Permits and/or Licences	Reference No.	Issued	Valid Period/	Status
		Date	Expiry Date	
Further Environmental Permit	FEP-02/356/2009	24 Mar 2010	N/A	Valid
	FEP-02/364/2009	21 Apr 2010	N/A	Valid
Notification of Works Under APCO	313088	6 Jan 2010	N/A	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0356-12	03 Apr 2012	11 Apr 2012 to 29 Sep 2012	Valid
	GW-RS0394-12	16 Apr 2012	19 Apr 2012 to 12 Oct 2012	Valid
	GW-RS0806-12	3 Aug 2012	4 Aug 2012 to 03 Feb 2013	Valid
	GW-RS0855-12	16 Aug 2012	17 Aug 2012 to 9 Feb 2013	Valid
	GW-RS0862-12	20 Aug 2012	28 Aug 2012 to 27 Feb 2013	Valid
	GW-RS0823-12	3 Aug 2012	3 Aug 2012 to 02 Feb 2013	Valid
	GW-RS0852-12	16 Aug 2012	16 Aug 2012 to 01 Feb 2013	Valid
	GW-RS0158-12	24 Feb 2012	24 Feb 2012 to 23 Aug 2012	Expired
	GW-RS0181-12	24 Feb 2012	27 Feb 2012 to 23 Aug 2012	Expired
	GW-RS0213-12	28 Feb 2012	29 Feb 2012 to 27 Aug 2012	Expired
	GW-RS0225-12	14 Mar 2012	13 Sep 2012	Valid

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
	GW-RS0227-12	2 Mar 2012	16 Mar 2011 to 15 Sep 2012	Valid
	GW-RE0174-12	5 Mar 2012	30 Mar 2012 to 29 Sep 2012	Valid
	GW-RS0312-12	28 Mar 2012	30 Mar 2012 to 29 Sep 2012	Valid
	GW-RS0545-12	24 May 2012	26 May 2012 to 25 Nov 2012	Valid
	GW-RS0546-12	25 May 2012	26 May 2012 to 25 Nov 2012	Valid
	GW-RS0460-12	10 May 2012	13 May 2012 to 6 Nov 2012	Valid
	GW-RS0514-12	14 May 2012	27 May 2012 to 26 Nov 2012	Valid
	GW-RS0731-12	5 Jul 2012	05 Jul 2012 to 01 Jan 2013	Cancelled
	GW-RS0760-12	18 Jul 2012	20 Jul 2012 to 19 Jan 2013	Valid
	GW-RS0771-12	23 Jul 2012	23 Jul 2012 to 31 Aug 2012	Valid
Discharge Licence	WT00006220-2010	18 Mar 2010	31 Mar 2015	Valid
	WT00009641-2011	24 Jul 2011	31 Jul 2016	Valid
Billing account under Waste Disposal Ordinance	7010069	21 Jan 2010	N/A	Valid
Registration as a Chemical Waste Producer	WPN5213-134-C3585-01	21 Jan 2010	N/A	Valid

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/13-004	23 May 2012	24 May 2012 to 23 Nov 2012	Valid
Permit for Dumping at Sea - Dredged Sediment Requiring Type 3 – Special Treatment / Disposal contained in Geosynthetic Containers	EP/MD/13-030	3 Jul 2012	6 Jul 2012 to 5 Aug 2012	Expired

Table 3.5 Summary of submission status under FEP-02/356/2009 Condition

EP Condition	Submission	Date of Submission
Condition 2.6	Management Organization of Main Construction Companies	13 Apr 2010
Condition 2.7	Works Schedule and Location Plan	8 Apr 2010
Condition 2.8	Silt Curtain Deployment Plan (Rev. 5)	23 Aug 2012
Condition 2.8	Silt Curtain Deployment Plan (Rev. 4)	12 Jul 2012
Condition 2.9	Silt Screen Deployment Plan	19 Apr 2010
	Supplementary Document on Silt Curtain and Silt Screen Deployment Plan	19 Jul 2010
Conditions 2.8 and 2.9	Report on Field Testing for Silt Curtain	26 Aug 2010
	Report on Field Testing for Silt Curtain (Rev. A)	15 Nov 2010
Condition 2.12(d)	Alternative Proposal on Concurrent Dredging for Sewage Pipeline and Cross Harbour Water Mains	15 Apr 2011
Condition 2.17	Noise Management Plan	23 Apr 2010
Condition 2.18	Landscape Plan (Erection of Decorative Screen Hoarding along Construction Site around Hong Kong Exhibition and Convention Centre)	15 May 2010
	Landscape Plan (Night-time Lighting)	22 Oct 2010
	Landscape Plan (Rev. B)	15 Nov 2010

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> <u>WanChai East</u>

3.1.7. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HK/2009/02 under FEP-03/356/2009 are shown in *Table 3.6* and *Table 3.7*.

Table 3.6 Cumulative Summary of Valid Licences and Permits under Contract no. *HK*/2009/02

HK/2009/02	D ())			
Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-03/356/2009	24 Mar 2010	N/A	Valid
	FEP-01/364/2009	24 Mar 2010	N/A	Valid
Notification of Works Under APCO	313962	2 Feb 2010	N/A	Valid
Construction Noise Permit (CNP) for piling equipment	PP-RS0007-12	27 Mar 2012	28 Mar 2012 to 27 Sept 2012	Cancelled
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0671-12	25 June 2012	17 Jul 2012 to 16 Jan 2013	Valid
	GW-RS0730-12	9 July 2012	10 Jul 2012 to 8 Jan 2013	Valid
	GW-RS0736-12	9 July 2012	9 Jul 2012 to 8 Jan 2013	Valid
	GW-RS0870-12	21 Aug 2012	16 Sept 2012 to 31 Dec 2012	Valid
	GW-RS0037-12	19 Jan 2012	1 Feb 2012 to 31 July 2012	Expired
	GW-RS0051-12	19 Jan 2012	1 Feb 2012 to 31 July 2012	Cancelled
	GW-RS0105-12	3 Feb 2012	10 Feb 2012 to 9 Aug 2012	Cancelled
	GW-RS0153-12	17 Feb 2012	21 Feb 2012 to 20 Aug 2012	Cancelled
	GW-RS0255-12	14 Mar 2012	17 Mar 2012 to 15 Sept 2012	Valid
	GW-RE0283-12	5 Apr 2012	1 May 2012 to 30 Nov 2012	Valid
	GW-RS0739-12	9 July 2012	1 Aug 2012 to 31 Jan 2013	Valid
	GW-RS0301-12	20 Mar 2012	21 Mar 2012 to 20 Sept 2012	Cancelled
	GW-RS0303-12	26 Mar 2012	27 Mar 2012 to 27 Sept 2012	Valid
	GW-RS0341-12	3 Apr 2012	28 Apr 2012 to 27 Oct 2012	Valid
	GW-RS0348-12	3 Apr 2012	10 Apr 2012 to 9 Oct 2012	Valid

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
	GW-RS0380-12	12 Apr 2012	1 May 2012 to 31 Oct 2012	Valid
	GW-RS0388-12	13 Apr 2012	1 May 2012 to 31 Oct 2012	Valid
	GW-RS0418-12	30 Apr 2012	23 May 2012 to 22 Nov 2012	Valid
	GW-RS0420-12	30 Apr 2012	18 May 2012 to 17 Nov 2012	Cancelled
	GW-RS0423-12	30 Apr 2012	19 May 2012 to 18 Nov 2012	Cancelled
	GW-RS0427-12	30 Apr 2012	23 May 2012 to 22 Nov 2012	Valid
	GW-RS0445-12	30 Apr 2012	1 May 2012 to 25 Sept 2012	Valid
	GW-RS0814-12	3 Aug 2012	6 Aug 2012 to 5 Dec 2012	Valid
	GW-RS0533-12	21 May 2012	21 May 2012 to 10 Nov 2012	Valid
	GW-RS0850-12	10 Aug 2012	14 Aug 2012 to 13 Feb 2013	Valid
	GW-RS0550-12	25 May 2012	7 June 2012 to 6 Dec 2012	Valid
	GW-RS0611-12	14 June 2012	15 Jun 2012 to 28 Nov 2012	Valid
	GW-RS0633-12	13 June 2012	16 Jun 2012 to 14 Dec 2012	Valid
Discharge Licence	WT00006249-2010	22 Mar 2010	31 Mar 2015	Valid
	WT00006436-2010	15 Apr 2010	30 Apr 2015	Valid
	WT00006673-2010	14 May 2010	31 Mar 2015	Cancelled
	WT00006757-2010	28 May 2010	31 May 2015	Valid
	WT00007129-2010	28 July 2010	31 Jul 2015	Valid
	WT00008982-2011	26 April 2011	30 April 2016	Valid
	WT00009691-2011	1 Aug 2011	31 July 2016	Valid
Billing Account under Waste Disposal Ordinance (Land)	7010255	10 Feb 2010	N/A	Valid
Billing Account under Waste Disposal Ordinance (Marine)	7011496	6 Oct 2010	N/A	Valid
Registration as Chemical Waste Producer (Wan Chai)	WPN5213-135-C3 593-01	10 Mar 2010	N/A	Valid
Registration as Chemical Waste Producer (TKO 137)	WPN5213-839-C3 593-02	22 Sep 2010	N/A	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/13015	25 May 2012	29 May 2012 to 28 Nov 2012	Valid
Dumping Permit (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine disposal)	EP/MD/13-046	27 July 2012	6 Aug 2012 to 5 Sept 2012	Valid

EP Condition	Submission	Date of Submission	
Condition 1.12	Commencement Date of Construction of Marine Works	8 April 2010	
Condition 2.6	Management Organization of Main Construction Companies	10 April 2010	
Condition 2.7	Works Schedule and Location Plans	8 April 2010	
	Silt Curtain Deployment Plan (Revision A)	20 April 2010	
	Silt Curtain Deployment Plan (Revision B)	25 May 2010	
	Silt Curtain Deployment Plan (Revision C)	14 Jun 2010	
Condition 2.8	Silt Curtain Deployment Plan (Revision H)	15 Feb 2011	
	Silt Curtain Deployment Plan (Revision I)	17 Nov 2011	
	Silt Curtain Deployment Plan (Revision J)	15 Feb 2012	
	Silt Curtain Deployment Plan (Revision K)	3 May 2012	
Condition 2.9	Silt Screen Deployment Plan	21 April 2010	
	Supplementary Information for Existing WSD Salt Water Intakes at Quarry Bay and Sai Wan Ho	5 Oct 2010	
	Silt Screen Deployment Plan (Revision B)	15 Feb 2012	
	Silt Screen Deployment Plan (Revision C)	3 May 2012	
Condition 2.17	Noise Management Plan	6 May 2010	
Condition 2.19	Landscape Plan (Decorative Screen Hoarding)	11 May 2010	
Condition 2.18	Landscape Plan (Control of Night Time Lighting)	2 June 2010	
	Landscape Plan (Combined Version)	20 July 2011	
	Landscape Plan (Combined Version)	5 Aug 2011	
	Acknowledge of Submission	22 Aug 2011	

Table 3.7 Summary of submission status under FEP-03/356/2009 Condition

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon Shelter</u> <u>Section)</u>

3.1.8. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HY/2009/15 under EP-356/2009 are shown in *Table 3.8* and *Table 3.9*.

Table 3.8 Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/15

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-04/356/2009	22 Nov 2010	N/A	Valid
	FEP-06/364/2009/A	22 Nov 2010	N/A	Valid
	FEP-01/416/2011	11 Nov 2011	N/A	Valid
Notification of Works Under APCO	321822	24 Sep 2010	N/A	Valid
Construction Noise Permit (CNP) for Filling and Diaphragm Wall Works at TS4/ME4	GW-RS0249-12	10 Feb 2012	9 Mar 2012 to 31 Aug 2012	Valid
Construction Noise Permit (CNP) for non-piling equipment	GW-RS0343-12	12 Apr 2012	13 Apr 2012 to 8 Oct 2012	Valid
Construction Noise Permit (CNP) for Removal Works at TS1	GW-RS0607-12	12 Jun 2012	13 Jun 2012 to 7 Dec 2012	Valid
Registration as a Chemical Waste Producer	WPN5213-147-C116 9-35	15 Nov 2010	N/A	Valid
Billing Account under Waste Disposal Ordinance	7011553	30 Sep 2010	27 Sep 2010 to 27 Jan 2016	Valid
	7011761	10 Jul 2012	17 Jul 2012 to 16 Oct 2012	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/13-018	6 Jun 2012	6 Jun 2012 to 5 Dec 2012	Valid
Dumping Permit (Type 1 – Open Sea Disposal (Dedicate Sites) &	EP/MD/13-048	30 Jul 2012	8 Aug 2012 to 7 Sep 2012	Valid
Type 2 – Confined Marine disposal)	EP/MD/13-037	3 Jul 2012	8 Jul 2012 to 7 Aug 2012	Expired

Table 3.9 Summary of submission status under FEP-04/356/2009 Condition

FEP Condition	Submission	Date of Submission
Condition 2.7	Works Schedule and Location Plans	27 Oct 2010
	Amendment for Works Schedule and Location Plans	12 Nov 2010
Condition 2.8	Silt Curtain Deployment Plan	30 Nov 2010
	Amendment for Silt Curtain Deployment Plan	24 Feb 2011
	Amendment for Silt Curtain Deployment Plan	11 May 2011
Condition 2.9	Silt Screen Deployment Plan	19 Oct 2010
	Amendment for Silt Screen Deployment Plan	18 Feb 2011

FEP Condition	Submission	Date of Submission	
	Amendment for Silt Screen Deployment Plan	15 Jun 2011	
Condition 2.18	Proposal for the Removal of Odorous Sediment and Slime	13 Jan 2011	
	Amendment for Proposal for the Removal of Odorous Sediment and Slime	8 Mar 2011	
	Amendment for Proposal for the Removal of Odorous Sediment and Slime	2 Aug 2011	
Condition 2.21	Landscape Plan	18 Feb 2011	
Condition 2.23	Noise Management Plan	20 Oct 2010	
	Amendment for Noise Management Plan	27 Jan 2011	

3.1.9. Implementation status of the recommended mitigation measures during this reporting period is presented in *Appendix 3.1*.

<u>Contract no. HK/2010/06 - Wan Chai Development Phase II – Central – Wanchai Bypass over</u> <u>MTR Tsuen Wan Line</u>

3.1.10. Summary of the current status on licences and/or permits on environmental protection pertinent and submission for contract no. HK/2010/06 under EP-356/2009 are shown in *Table 3.10* and *Table 3.11*.

Table 3.10Cumulative Summary of Valid Licences and Permits under Contract no.HK/2010/06

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP-05/356/2009	24 Mar 2011	N/A	Valid
	FEP-08/364//2009/A	15 June 2012	N/A	Valid
Notification of Works Under APCO	326344	18 Jan 2011	N/A	Valid
Construction Noise Permit (CNP) for piling equipment	PP-RS0012-12	18 June 2012	6 Jul 2012 to 5 Jan 2013	Valid
Construction Noise Permit (CNP)	GW-RS0313-12	27 Mar 2012	6 Apr to 5 Oct 2012	Valid
for non-piling equipment	GW-RS0658-12	21 June 2012	13 Jul 2012 to 12 Jan 2013	Valid
Billing Account under Waste Disposal Ordinance	7012338	16 Feb 2011	N/A	Valid
Registration as Chemical Waste Producer	WPN5213-134-G25 33-01	11 Feb 2011	N/A	Valid
Water Discharge Licence	WT00010905-2011	4 November 2011	31 July 2016	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/12-122	9 Feb 12	12 Feb 2012 to 11 Aug 2012	Expired

Table 3.11Summary of submission status under EP-356/2009 and FEP-05/356/2009Condition

EP Condition	Submission	Date of Submission
Condition 2.6	Management Organization of Main Construction Companies	24 October 2011
Condition 2.7	Works Schedule and Location Plans	11 March 2011
Condition 2.8	Revised Silt Curtain Deployment Plan	31 Aug 2011
Condition 2.9	Silt Screen Deployment Plan	11 April 2011
Condition 2.23	Noise Management Plan	11 March 2011

<u>Contract no. HY/2009/19 – Central- Wan Chai Bypass Tunnel (North Point Section) and Island</u> <u>Eastern Corridor Link</u>

3.1.11. Summary of the current status on licences and/or permits on environmental protection pertinent for contract no. HY/2009/19 is shown in *Table 3.12*.

Permit / Licence / Notification / Approval	Reference No.	Issued Date	Valid Period / Expiry date	Status
Further Environmental Permit	FEP-07/364/2009/A	25 Feb 2011	Granted	Valid
Notification of Works Under APCO	326160	24 Jan 2011	Notified	Valid
Construction Noise Permit (CNP)	GW-RS0180-12	22-Feb-12	26-Aug-12	Expired
(For D-wall construction)	GW-RS0871-12	27-Aug-12	26-Feb-13	Valid
Construction Noise Permit (CNP) (For Bored pile construction at Portion III)	or Bored pile construction at GW-RS0507-12 22-May-12		23-Nov-12	Cancelled
Construction Noise Permit (CNP) (For Bored pile construction at Portion III, V)	GW-RS0885-12	27-Aug-12	26-Feb-13	Valid
Construction Noise Permit (CNP) (For Watson Road)	GW-RS0589-12	18-Jun-12	17-Dec-12	Valid
Discharge Licence (Land)	WT00010093-2011	17 Aug 2012	30-Sept-16	Valid
Discharge Licence (Sea)	WT00010865-2011	03 Nov 2011	30-Nov-16	Valid
Registration as a Waste Producer	7012306	21 Jan 2011	Registered	-
C&D Waste Disposal	7012306	10 Feb 2011	Registered	-
Vessel Disposal	7013285	21 July 2011	Registered	-

<u>Table 3.12</u> Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/19

Permit / Licence / Notification / Approval	Notification / Reference No.		Valid Period / Expiry date	Status
Registration as Chemical Waste Producer	5213-151-C3654-01	24 Mar 2011	Registered	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/12-150	14-May-12	14-Nov-12	Valid

4. Monitoring Requirements

4.1 Noise Monitoring

NOISE MONITORING STATIONS

4.1.1. The noise monitoring stations for the Project are listed and shown in *Table 4.1* and *Figure 4.1*. <u>Appendix 4.1</u> shows the established Action/Limit Levels for the monitoring works.

Station	Description	
M1a	Harbour Road Sports Centre	
M2b	Noon Gun Area	
МЗа	Tung Lo Wan Fire Station	
M4b	Victoria Centre	
M5b	City Garden	
M6	HK Baptist Church Henrietta Secondary School	

Table 4.1 Noise Monitoring Station

REAL-TIME NOISE MONITORING STATIONS

4.1.2. The real-time noise monitoring stations for the Project are listed and shown in *Table 4.2* and *Figure 4.1*. *Appendix 4.1* shows the established Action/Limit Levels for the monitoring works.

District	Station	Description		
Tin Hau	RTN1	FEHD Hong Kong Transport Section Whitefield Depot		
North Point	RTN2	Oil Street Community Liaison Centre		

NOISE MONITORING PARAMETERS, FREQUENCY AND DURATION

- 4.1.3. The construction noise level shall be measured in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}). L_{eq (30 minutes)} shall be used as the monitoring parameter for the time period between 0700 and 1900 hours on normal weekdays. For all other time periods, L_{eq (5 minutes)} shall be employed for comparison with the Noise Control Ordinance (NCO) criteria. Supplementary information for data auditing, statistical results such as L10 and L90 shall also be obtained for reference.
- 4.1.4. Noise monitoring shall be carried out at all the designated monitoring stations. The monitoring frequency shall depend on the scale of the construction activities. The following is an initial guide on the regular monitoring frequency for each station on a weekly basis when noise generating activities are underway:
 - one set of measurements between 0700 and 1900 hours on normal weekdays.
- 4.1.5. If construction works are extended to include works during the hours of 1900 0700 as well as public holidays and Sundays, additional weekly impact monitoring shall be carried out during

respective restricted hours periods. Applicable permits under NCO shall be obtained by the Contractor.

MONITORING EQUIPMENT

- 4.1.6. As referred to in the Technical Memorandum [™] issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration level from before and after the noise measurement agree to within 1.0 dB.
- 4.1.7. Noise measurements shall not be made in fog, rain, wind with a steady speed exceeding 5 m/s or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

4.2 Air Monitoring

AIR QUALITY MONITORING STATIONS

4.2.1. The air monitoring stations for the Project are listed and shown in *Table 4.3* and *Figure 4.1*. *Appendix 4.1* shows the established Action/Limit Levels for the monitoring works.

Station ID	Monitoring Location	Description
CMA1b	Oil Street Community Liaison Centre	North Point
CMA2a	Causeway Bay Community Centre	Causeway Bay
CMA3a	CWB PRE Site Office *	Causeway Bay
CMA4a	Society for the Prevention of Cruelty to Animals	Wan Chai
CMA5a	Children Playgrounds opposite to Pedestrian Plaza	Wan Chai
CMA6a	WDII PRE Site Office *	Wan Chai

Table 4.3 Air Monitoring Station

* Remarks: As per the ENPC meeting in January 2011, the monitoring stations CMA3a - Future CWB site office at Wanchai Waterfront Promenade and CMA6a - Future AECOM site office at Work Area were renamed as remark.

AIR MONITORING PARAMETERS, FREQUENCY AND DURATION

- 4.2.2. One-hour and 24-hour TSP levels should be measured to indicate the impacts of construction dust on air quality. The 24-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.
- 4.2.3. All relevant data including temperature, pressure, weather conditions, elapsed-time meter reading for the start and stop of the sampler, identification and weight of the filter paper, and any other local atmospheric factors affecting or affected by site conditions, etc., shall be recorded down in detail.
- 4.2.4. For regular impact monitoring, the sampling frequency of at least once in every six-days, shall be strictly observed at all the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six-days should be undertaken when the highest dust impact occurs.

SAMPLING PROCEDURE AND MONITORING EQUIPMENT

- 4.2.5. High volume samplers (HVSs) in compliance with the following specifications shall be used for carrying out the 1-hour and 24-hour TSP monitoring:
 - 0.6 1.7 m3 per minute adjustable flow range;
 - equipped with a timing / control device with +/- 5 minutes accuracy for 24 hours operation;
 - installed with elapsed-time meter with +/- 2 minutes accuracy for 24 hours operation;
 - capable of providing a minimum exposed area of 406 cm2;
 - flow control accuracy: +/- 2.5% deviation over 24-hour sampling period;
 - equipped with a shelter to protect the filter and sampler;
 - incorporated with an electronic mass flow rate controller or other equivalent devices;
 - equipped with a flow recorder for continuous monitoring;
 - provided with a peaked roof inlet;
 - incorporated with a manometer;
 - able to hold and seal the filter paper to the sampler housing at horizontal position;
 - easily changeable filter; and
 - capable of operating continuously for a 24-hour period.
- 4.2.6. Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at bi-monthly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually. The concern parties such as IEC shall properly document the calibration data for future reference. All the data should be converted into standard temperature and pressure condition.

LABORATORY MEASUREMENT / ANALYSIS

4.2.7. A clean laboratory with constant temperature and humidity control, and equipped with necessary measuring and conditioning instruments to handle the dust samples collected, shall be available for sample analysis, and equipment calibration and maintenance. The laboratory should be HOKLAS accredited.

- 4.2.8. An alternative non-HOKLAS accredited laboratory was set-up for carrying out the laboratory analysis, the laboratory equipment was approved by the ER on 8 February 2011 and the measurement procedures were witnessed by the IEC. Any measurement performed by the laboratory was be demonstrated to the satisfaction of the ER and IEC. IEC shall regularly audit to the measurement performed by the laboratory to ensure the accuracy of measurement results.
- 4.2.9. Filter paper of size 8" x 10" shall be labelled before sampling. It shall be a clean filter paper with no pinholes, and shall be conditioned in a humidity-controlled chamber for over 24-hours and be pre-weighed before use for the sampling.
- 4.2.10. After sampling, the filter paper loaded with dust shall be kept in a clean and tightly sealed plastic bag. The filter paper shall then be returned to the laboratory for reconditioning in the humidity controlled chamber followed by accurate weighing by an electronic balance with readout down to 0.1 mg. The balance shall be regularly calibrated against a traceable standard.
- 4.2.11. All the collected samples shall be kept in a good condition for 6 months before disposal.

IMPACT MONITORING FOR ODOUR PATROL

- 4.2.12. Odour patrols along the shorelines of Causeway Bay Typhoon Shelter and ex-Wan Chai Public Cargo Working Area when there is temporary reclamation in Causeway Bay Typhoon Shelter and/or in the ex-Wan Chai Public Cargo Working Area, or when there is dredging of the odorous sediment and slime at the south-western corner of the Causeway Bay Typhoon Shelter. Odour patrols will be carried out at bi-weekly intervals during July, August and September by a qualified person of the ET who shall:
 - be at least 16 years of age;
 - be free from any respiratory illnesses; and
 - not be allowed to smoke, eat, drink (except water) or use chewing gum or sweets 30 min
 - before and during odour patrol
- 4.2.13. Odour patrol shall be conducted by independent trained personnel / competent persons patrolling and sniffing around the shore as shown in <u>Figure 4.1</u> to detect any odour at the concerned hours (afternoon is preferred for higher daily temperature).
- 4.2.14. The qualified person will use the nose (olfactory sensor) to sniff odours at different locations. The main odour emission sources and the areas to be affected by the odour nuisance will be identified.
- 4.2.15. The perceived odour intensity is to be divided into 5 levels which are ranked in the descending order as follows:
 - 0 Not detected. No odour perceived or an odour so weak that it cannot be easily characterized or described;
 - 1 Slight Identifiable odour, and slight chance to have odour nuisance;
 - 2 Moderate Identifiable odour, and moderate chance to have odour nuisance;
 - 3 Strong Identifiable, likely to have odour nuisance;
 - 4 Extreme Severe odour, and unacceptable odour level.

Lam Geotechnics Limited

- 4.2.16. The findings including odour intensity, odour nature and possible odour sources, and also the local wind speed and direction at each location will be recorded. In addition, some relevant meteorological and tidal data such as daily average temperature, and daily average humidity, on that surveyed day will be obtained from the Hong Kong Observatory Station for reference. The Action and Limit levels for odour patrol are shown in <u>Appendix 6.1.</u>
- 4.2.17. The qualified odour patrol member has individual n-butanol thresholds complied with the requirement of European Standard Method of Air Quality Determination of Odour Concentration by Dynamic Olfactometry (EN13725) in the range of 20 to 80 ppb. The certificate for the qualified odour panel member is shown in <u>Appendix 4.2.</u>

4.3 Water Quality Monitoring

- 4.3.1. The EIA Report has identified that the key water quality impact would be associated with the dredging works during the construction phase. Marine water quality monitoring for dissolved oxygen (DO), suspended solid (SS) and turbidity is therefore recommended to be carried out at selected WSD flushing water intakes. The impact monitoring should be carried out during the proposed dredging works to ensure the compliance with the water quality standards.
- 4.3.2. The updated EM&A Manual for EP-356/2009 (Version in March 2011) is approval by EPD on 29 April 2011. As such, the Action Level and Limit Level for the wet season (April September) will be effected and applied to the water quality monitoring data from 30 April 2011.

Water Quality Monitoring Stations

4.3.3. It is proposed to monitor the water quality at 9 WSD salt water intakes and 14 cooling water intakes along the seafront of the Victoria Harbour. The proposed water quality monitoring stations of the Project are shown in *Table 4.4* and *Figure 4.1*. *Appendix 4.1* shows the established Action/Limit Levels for the monitoring works.

Station Ref.	Location	Easting	Northing		
WSD Salt Water	WSD Salt Water Intake				
WSD7	Kowloon South	834150.0	818300.3		
WSD9	Tai Wan	837921.0	818330.0		
WSD10	Cha Kwo Ling	841900.9	817700.1		
WSD15	Sai Wan Ho	841110.4	816450.1		
WSD17	Quarry Bay	839790.3	817032.2		
WSD19	Sheung Wan	833415.0	816771.0		
WSD20	Kennedy Town	830750.6	816030.3		
WSD21	Wan Chai	836220.8	815940.1		
RW1	Wan Chai (Reprovision)	836188.8	815911.1		
Cooling Water Intake					
C1	HKCEC Extension	835885.6	816223.0		
C2	Telecom House	835647.9	815864.4		
C3	HKCEC Phase I	835836.2	815910.0		

 Table 4.4
 Marine Water Quality Stations for Water Quality Monitoring

Station Ref.	Location	Easting	Northing
C4e	Great Eagle Centre	835932.8	815888.2
C4w	Wan Chai Tower	835629.8	815889.2
C5e	Sun Hung Kai Centre (Eastern)	836250.1	815932.2
C5w	Sun Hung Kai Centre (Western)	836248.1	815933.2
C6	Excelsior Hotel	837009.6	815999.3
C7	Windsor House	837193.7	816150.0
C8	City Garden	837970.6	816957.3
C9	Provident Garden	838355.0	817116.6
RC1	Proposed HKAPA Extension	835487.7	815987.7
RC5	Sun Hung Kai Centre (Reprovision)	836291.4	816029.7
RC7	Windsor House (Temporary Dilution)	837245.2	816156.6

WATER QUALITY PARAMETERS

- 4.3.4. Monitoring of dissolved oxygen (DO), turbidity and suspended solids (SS) shall be carried out at WSD flushing water intakes and cooling water intakes. DO and Turbidity are measured in-situ while SS is determined in laboratory.
- 4.3.5. In association with the water quality parameters, other relevant data shall also be measured, such as monitoring location/position, time, sampling depth, water temperature, pH, salinity, dissolved oxygen (DO) saturation, weather conditions, sea conditions, tidal stage, and any special phenomena and work underway at the construction site etc.

SAMPLING PROCEDURES AND MONITORING EQUIPMENT

4.3.6. The interval between two sets of monitoring should not be less than 36 hours except where there are exceedances of Action and/or Limit Levels, in which case the monitoring frequency will be increased. *Table 4.5* shows the proposed monitoring frequency and water quality parameters. Duplicate in-situ measurements and water sampling should be carried out in each sampling event. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.

Activities	Monitoring Frequency ¹	Parameters ²
During the 4-week baseline monitoring period	Three days per week, at mid-flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity
During marine construction works	Three days per week, at mid-flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity
After completion of marine construction works	Three days per week, at mid-flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity
Notoo		

Table 1 5 Marine Wate	r Auglit	Monitoring	Eroquono	and Paramotors
Table 4.5 Marine Wate		/ wonitoring	rrequency	and Parameters

Notes:

1. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.

2. Turbidity should be measured in situ whereas SS should be determined by laboratory.

DISSOLVED OXYGEN AND TEMPERATURE MEASURING EQUIPMENT

- 4.3.7. The instrument should be a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and use a DC power source. It should be capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/l and 0-200% saturation
 - a temperature of 0-45 degree Celsius
- 4.3.8. It should have a membrane electrode with automatic temperature compensation complete with a cable. Sufficient stocks of spare electrodes and cables should be available for replacement where necessary. (e.g. YSI model 59 meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).
- 4.3.9. Should salinity compensation not be build-in in the DO equipment, in-situ salinity shall be measured to calibrate the DO equipment prior to each DO measurement.

TURBIDITY MEASUREMENT INSTRUMENT

4.3.10. The instrument should be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment should use a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU and be complete with a cable (e.g. Hach model 2100P or an approved similar instrument).

SAMPLER

4.3.11. A water sampler comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, and can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (e.g. Kahlsico Water Sampler or an approved similar instrument).

SAMPLE CONTAINER AND STORAGE

4.3.12. Water samples for suspended solids measurement should be collected in high-density polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. as soon as possible after collection for analysis.

WATER DEPTH DETECTOR

4.3.13. A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station. This unit can either be handheld or affixed to the bottom of the workboat, if the same vessel is to be used throughout the monitoring programme.

<u>SALINITY</u>

4.3.14. A portable salinometer capable of measuring salinity in the range of 0-40 ppt shall be provided for measuring salinity of the water at each of monitoring location.

MONITORING POSITION EQUIPMENT

4.3.15. A hand-held or boat-fixed type digital Global Positioning System (GPS) with waypoint bearing indication or other equivalent instrument of similar accuracy shall be provided and used during monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

CALIBRATION OF IN-SITU INSTRUMENTS

- 4.3.16. All in-situ monitoring instrument shall be checked, calibrated and certified by a laboratory accredited under HOKLAS or equivalent before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
- 4.3.17. For the on site calibration of field equipment by the ET, the BS 127:1993, "Guide to Field and on-site test methods for the analysis of waters" should be observed.
- 4.3.18. Sufficient stocks of spare parts should be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 4.3.19. Current calibration certificates of equipments are presented in *Appendix 4.2*.

LABORATORY MEASUREMENT / ANALYSIS

4.3.20. Analysis of suspended solids has been carried out in a HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd. Water samples of about 1L shall be collected at the monitoring stations for carrying out the laboratory SS determination. The SS determination work shall start within 24 hours after collection of the water samples. The SS determination shall follow APHA 19ed or equivalent methods subject to the approval of IEC and EPD.

ENHANCED WATER QUALITY MONITORING IN THE EX-WAN CHAI PUBLIC CARGO WORKING AREA AND THE CAUSEWAY BAY TYPHOON SHELTER

- 4.3.21. The enhanced water quality monitoring and audit programme is to avoid aggravation of odour nuisance from seawater arising from temporary reclamation in the ex-Wan Chai Public Cargo Working Area and the Causeway Bay Typhoon Shelter.
- 4.3.22. Dissolved oxygen monitoring at the intakes C6 and C7 in Causeway Bay Typhoon Shelter when there is temporary reclamation in Causeway Bay Typhoon Shelter and at the south-western and south-eastern corners of the ex-Wan Chai Public Cargo Working Area. The proposed water quality monitoring stations of the Project are shown in *Table 4.6* and <u>Figure</u> <u>4.1</u>.

Station	Location
C6	Excelsior Hotel
C7	Windsor House
Ex-WPCWA-SW	South-western of the ex-Wan Chai Public Cargo Working Area
Ex-WPCWA-SE	South-eastern of the ex-Wan Chai Public Cargo Working Area

 Table 4.6
 Marine Water Quality Stations for Enhanced Water Quality Monitoring

4.3.23. The monitoring of dissolved oxygen are to be carried out 3 days per week, at mid-flood and mid-ebb tides for 3 water depths (1m below water surface, mid-depth and 1m above sea bed, except where the water depth less than 6m, the mid-depth may be omitted. If the water depth be equal to or less than 3m, only the mid-depth will be monitored).

DAILY SS MONITORING AND 24 HOURS TURBIDITY MONITORING SYSTEM

- 4.3.24. During dredging of the sediment at the south-western corner of the Causeway Bay Typhoon Shelter, daily monitoring of suspended solids and 24 hour monitoring of turbidity at the cooling water intakes (C6 and C7) shall be conducted.
- 4.3.25. The 24 hours monitoring of turbidty at the cooling water intakes (C6 and C7) shall be established by setting up a continuous water quality monitoring station in front of the intakes during the dredging activities. The monitoring system include the turbidity sensor and data logger which is capable of data capturing at every 5 minutes. The data sahll be downloaded daily and compared with the Action and Limit level determined during the baseline water quality monitoring at the cooling water intake locations.

ADDITIONAL DISSOVLED OXYGEN MONITORING FOR CULVERT L WATER DISCHARGE FLOW

4.3.26. In response to the Condition 2.18 of the Environmental Permit no. EP-356/2009 requiring that a silt curtain / impermeable barrier system be installed to channel water discharge flow from Culvert L to locations outside the embayment area, a proposed replacement of the requirement with additional dissolved oxygen monitoring has been conducted at three monitoring stations, namely A, B and C between the eastern seawall of Central Reclamation Phase III and the HKCEC Extension since November 2011 under EP-356/2009 so that DO level between the eastern seawall of Central Reclamation Phase II and the HKCEC extension could be continuously monitored.

4.3.27. The propose	d DO monitoring stations of the Project are shown in <i>Table 4.7</i> and <i>Figure 4.1</i> .
Table 4.7	Marine Water Quality Stations for Additional DO Monitoring

Station	Easting	Northing
А	835468	815857
В	835572	815961
С	835659	816271

4.3.28. The monitoring of dissolved oxygen are to be carried out once per week, at mid-flood and mid-ebb tides for 3 water depths (1m below water surface, mid-depth and 1m above sea bed, except where the water depth less than 6m, the mid-depth may be omitted. If the water depth be equal to or less than 3m, only the mid-depth will be monitored).

5. Monitoring Results

- 5.0.1. The environmental monitoring will be implemented based on the division of works areas of each designed project managed under different contracts with separate FEP applied by individual contractors. Overall layout showing work areas of various contracts, latest status of work commencement and monitoring stations is shown in *Figure 2.1* and *Figure 4.1*. The monitoring results are presented in according to the Individual Contract(s).
- 5.0.2. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011.
- 5.0.3. The surrender of the Further Environmental Permit for HY/2009/11 withdrew by contractor on 14 February 2012. However, there is no work was conducted by the contractor.
- 5.0.4. In the reporting month, the concurrent contracts are as follows:
 - Contract no. HY/2009/11 Central Wan Chai Bypass North Point Reclamation;
 - Contract no. HK/2009/01 Wan Chai Development Phase II Central-Wan Chai Bypass at Hong Kong Convention and Exhibition Centre; and
 - Contract no. HK/2009/02 Wan Chai Development Phase II Central-Wan Chai Bypass at Wan Chai East
 - Contract no. HY/2009/15 Central-Wanchai Bypass Tunnel (Causeway Bay Typhoon Shelter Section)
 - Contract no. HK/2010/06 Wan Chai Development Phase II Central-Wan Chai Bypass over MTR Tsuen Wan Line
 - Contract no. HY/2009/19- Cental- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link
- 5.0.5. The environment monitoring schedules for reporting month and coming month are presented in *Appendix 5.1*.

5.1 Noise Monitoring Results

5.1.1. Due to the equipment repair, the noise monitoring at M4b and M6 were rescheduled from 23 August 2012 to 24 August 2012

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

- 5.1.2. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011 and the FEP-01/356/2009 was under application of surrender in this reporting period. The monitoring was temporary suspended since 5 January 2012.
- 5.1.3. The proposed division of noise monitoring stations for Contract no. HY/2009/11 are summarized in *Table 5.1* below:

 Station
 Description

 M4b
 Victoria Centre

 M5b
 City Garden

Table 5.1 Noise Monitoring Stations for Contract no. HY/2009/11

- 5.1.4. Day time and evening period noise monitoring was conducted at the City Garden and Victoria Centre in the reporting month.
- 5.1.5. Noise monitoring results measured in this reporting period are reviewed and summarized. No exceedance was recorded in reporting month. Details of noise monitoring results and graphical presentation can be referred in <u>Appendix 5.2</u>.

Contract no. HK/2009/01 - Wan Chai Development Phase II – Central –Wanchai Bypass at HKCEC, Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at WanChai East and Contract no. HK/2010/06 Wan Chai Development Phase II – Central-Wan Chai Bypass over MTR Tsuen Wan Line

5.1.6. The proposed division of noise monitoring stations are summarized in *Table 5.2* below.

Table 5.2Noise Monitoring Station for Contract nos. HK/2009/01, HK/2009/02 andHK/2010/06

Station	Description	
M1a	Harbour Road Sports Centre	

- **5.1.7.** Daytime and evening period noise monitoring was conducted at the Harbour Road Sport Centre in the reporting month.
- 5.1.8. No exceedance was recorded in this reporting period. Details of noise monitoring results and graphical presentation can be referred in *Appendix 5.2*

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon</u> <u>Shelter Section)</u>

5.1.9. The noise monitoring for HY/2009/15 was commenced on 10 November 2010. The proposed division of noise monitoring stations are summarized in *Table 5.3* below.

 Station
 Description

 M2b
 Noon Gun Area

 M3a
 Tung Lo Wan Fire Station

Table 5.3Noise Monitoring Station for Contract no. HY/2009/15

5.1.10. Noise monitoring results measured in the period of daytime and restricted hour are reviewed and summarized. No exceedance was recorded in this reporting period. Details of noise monitoring results and graphical presentation can be referred in <u>Appendix 5.2</u>

Contract no. HY/2009/19- Wan Chai Bypass Tunnal (North Point Section) and Island Eastern Corridor Link

5.1.11. The proposed division of noise monitoring stations are summarized in *Table 5.4* below.

Table 5.4Noise Monitoring Station for Contract no. HY/2009/19

Station	Description		
МЗа	Tung Lo Wan Fire Station		
M4b	Victoria Centre		
M5b	City Garden		
M6	HK Baptist Church Henrietta Secondary School		

5.1.12. One limit level exceedance was recorded at M6 on 24 August 2012. The limit level exceedance was considered as non-project related. Details of noise monitoring results and graphical presentation can be referred in *Appendix 5.2*

5.2 Real-time Noise Monitoring

Contract no. HY/2009/11 – Central – Wanchai Bypass, North Point Reclamation and Contract no. HY/2009/19 – Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

- 5.2.1. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011 and the FEP-01/356/2009 was under application of surrender in this reporting period.
- 5.2.2. Real-time noise monitoring at FEHD Hong Kong Transport Section Whitefield Depot commenced external wall renovation since 1 June 2012

Table 5.5 Real Time Noise Monitoring Station for Contract no. HY/2009/11 and HY/2009/19

District	Station	Description	
Tin Hau	RTN1	FEHD Hong Kong Transport Section Whitefield Depot	
North Point	RTN2	Oil Street Community Liaison Centre	

* Real time noise monitoring results and graphical presentation during night time period are for information only.

5.2.3. Exceedances were recorded at RTN2- Oil Street Community Liaison Centre, between 0700 and 1900 hours throughout the reporting month. Investigations found that no major noisy activities by the Contractor HY/2009/19 were being performed. The major noise impact was arising from the demolition works near Oil Street Community Liaison Center. As such, the exceedances were concluded as not project related. Details of real time noise monitoring results and graphical presentation can be referred to <u>Appendix 5.5.</u>

5.3 Air Monitoring Results

- 5.3.1. Due to extension of site boundary by contractor of HY/2009/19, location of air monitoring station CMA1b Oil Street Community Liaison Centre has been finely adjusted on 21 April 2012.
- 5.3.2. Due to lack of electricity supply, the 24-hr TSP monitoring at the following stations were rescheduled:

CMA1b: from 27 Jul and 20 August 2012 to 31 Jul and 21 August 2012 CMA2a: from 27 Jul and 8 August 2012 to 28 Jul and 10 August 2012

CMA5a: from 20 August 2012 to 21 August 2012 CMA6a: from 8 August 2012 to 9 August 2012

5.3.3. Due to adverse weather condition, the 1-hr TSP monitoring at the following stations were rescheduled:

CMA2a: from 9 August 2012 to 11 August 2012

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

- 5.3.4. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011and the FEP-01/356/2009 was valid in this reporting period. The monitoring for the contract was temporary suspended on 6 January 2012.
- 5.3.5. The proposed division air monitoring stations is summarized in *Table 5.6* below.

Table 5.6 Air Monitoring Stations for Contract no. HY/2009/11

Station	Description	
CMA1b	Oil Street Community Liaison Centre	
CMA2a	Causeway Bay Community Centre	

5.3.6. No exceedance was recorded in the reporting month. Details of air monitoring results and graphical presentation can be referred in <u>Appendix 5.3.</u>

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at HKCEC</u>

5.3.7. Air monitoring was commenced on 1 April 2011 in response to the commencement of the land-filling work for Contract no. HK/2009/01. The proposed divisions of air monitoring stations are summarized in *Table 5.7* below. No exceedance was recorded in the reporting month.

 Table 5.7
 Air Monitoring Stations for Contract no. HK/2009/01

Station	Description		
CMA5a	Children Playgrounds opposite to Pedestrian Plaza		
CMA6a	WDII PRE Site Office		

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> <u>WanChai East</u>

5.3.8. Air monitoring was commenced in mid-January 2011 for the land-filling work for Contract no. HK/2009/02. The proposed division of air monitoring stations are summarized in *Table 5.8* below. No exceedance was recorded in the reporting month.

Table 5.8Air Monitoring Station for Contract no. HK/2009/02

Station	Description
CMA4a	Society for the Prevention of Cruelty to Animals

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon</u> <u>Shelter Section)</u>

5.3.9. Air monitoring was commenced on 15 March 2011 for the land filling work for Contract no. HY/2009/15. The proposed division of air monitoring stations are summarized in *Table 5.9* below. No exceedance was recorded in the reporting month.

 Table 5.9
 Air Monitoring Station for Contract no. HY/2009/15

Station	Description
СМАЗа	CWB PRE Site Office

5.3.10. The odour patrol along the odour route with 7 sniffing locations was conducted by a qualified odour patrol member on 9 and 27 July 2012 at the concerned hours (afternoon for higher daily temperature). The odour intensity detected at OP4 was found to be level 2 on 9 and 27 July 2012 which triggered Action Level. After investigation, the exceedances were likely to be possible in relation to the sewage from outfall which was considered as not work-related under the Project. The details of the odour patrol results and meteorological conditions and on the date of odour patrol are shown in <u>Appendix 5.3.</u>

Contract no. HY/2009/19- Wan Chai Bypass Tunnal (North Point Section) and Island Eastern Corridor Link

5.3.11. The proposed division of air monitoring stations are summarized in Table 5.10 below. No exceedance was recorded in the reporting month.

Station	Description
CMA1b	Oil St Community Liaison Centre
CMA2a	Causeway Bay Community Centre

 Table 5.10 Air Monitoring Stations for Contract no. HY/2009/19

5.4 Water Monitoring Results.

- 5.4.1. Due to the adverse weather condition (e.g. Amber Rainstorm signal or Strong wind signal No.3 or above) were hoisted on 11 and 17 August 2012, water quality monitoring at ebb tide were cancelled.
- 5.4.2. WDII/RSS advised that the dredging works for submarine pipeline at Victoria Harbour had been completed in January 2012. Therefore, the concurrent dredging activities at Sewage Pipeline Zone and reclamation shoreline zone TCBR under the EP-356/2009 scenario 2B no longer exist. As such, with reference to Table 5.39 of the EIA Report for Wan Chai Development Phase II and Central-Wan Chai Bypass, the application of silt screen for cooling water intakes for Queensway Government Offices was suspended and the others remain unchanged.
- 5.4.3. Based on the joint inspection on 4 Jan 2012 for the NPR area, the 4-week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8, C9 to confirm no water deterioration with respect to NPR was commenced since 7 Jan 2012 and it was completed on 6 February 2012.

- 5.4.4. Water quality monitoring at WSD10 and WSD15 was temporary suspended while water quality monitoring at WSD9 and WSD17 was implemented with respect to HK/2009/02 from 8 Feb 12 onwards;
- 5.4.5. Water quality monitoring at C8 and C9 have been implemented with respect to HY/2009/19 since the marine bore piling work started on 28 Jan 12.
- 5.4.6. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Centre (C9) since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 to the closest accessible point prior to the completion of the external façade refurbishment work.
- 5.4.7. With respect to the trial dredging at WCR2 was scheduled on 20, 22, 24, 25 March and 1, 3, 11, 13, 15, 17, 19, 20 Apr and 3 May 2012, on-going water quality monitoring results at WSD21 during this period was checked and indicated that there was no contribution due to the trial dredging operation. Enhanced review of water quality around WCR2 was also implemented and no deterioration in the water quality was observed.
- 5.4.8. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.
- 5.4.9. Due to the dredging works for Cross Harbour Water Mains from Wan Chai to Tsim Sha Tsui-DP6 was completed on 26 March 2012, the temporary suspension of impact water quality monitoring at WSD7 and WSD20 after 27 April 2012 for the water quality monitoring at WSD7 and WSD20 have been monitored for 4-week period after the completion of DP6 to confirm no water deterioration.
- 5.4.10. During the weekly site inspection for HY/2009/15 on 10 July 2012 and further inspection on 11 July 2012, it was found that the seawall blocks on the south side of TCBR1E (TS1) have been removed before all dredging works have been completed. The contractor has immediately surrounded the seawall gap with silt curtains and stopped the relevant dredging works on 12 July 2012. No action or limit level exceedance was found during the water quality monitoring on 9 or 11 July 2012. The contractor has promised to provide double layer silt curtains and geotextile to act as temporary seawall and covered the sloping seawall with geotextile, and would provide a full incident report. A self water quality monitoring was conducted on 15 July 2012 to indicate the effectiveness of the double silt curtain layers and would perform each time during dredging operations. The results from the self water quality monitoring showed that the suspended solids, turbidity and dissolved oxygen level outside the double silt curtain layers.

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

- 5.4.11. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. The construction site was handed over to contractor HY/2009/19 on 31 December 2011 and the FEP-01/356/2009 was valid in this reporting period.
- 5.4.12. The proposed division of water monitoring stations for Contract no. HY/2009/11 are summarized in *Table 5.11* below:

Station Ref.	Location	Easting	Northing	
WSD Salt Water Intake				
WSD9	Tai Wan	837921.0	818330.0	
WSD10	Cha Kwo Ling	841900.9	817700.1	
WSD15	Sai Wan Ho	841110.4	816450.1	
WSD17	Quarry Bay	839790.3	817032.2	
Cooling Water Intake				
C8	City Garden	837970.6	816957.3	
C9	Provident Garden	838355.0	817116.6	

 Table 5.11
 Water Monitoring Stations for Contract no. HY/2009/11

Remarks: WSD9, WSD10, WSD15, WSD17, C8 and C9 water monitoring finished on 6 Feb 2012.

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at HKCEC</u>

5.4.13. Water monitoring for Contract no. HK/2009/01 was commenced on 23 July 2010. The proposed division of water monitoring stations are summarized in *Table 5.12* below.

Station Ref.	Location	Easting	Northing		
WSD Salt Water Intake					
WSD7	Kowloon South	834150.0	818300.3		
WSD19	Sheung Wan	833415.0	816771.0		
WSD20	Kennedy Town	830750.6	816030.3		
Cooling Water Inta	Cooling Water Intake				
C1	HKCEC Extension	835885.6	816223.0		
C2	Telecom House	835647.9	815864.4		
C3	HKCEC Phase I	835836.2	815910.0		
C4e	Great Eagle Centre	835932.8	815888.2		
C4w	Wan Chai Tower	835629.8	815889.2		

 Table 5.12
 Water Monitoring Stations for Contract no. HK/2009/01

Remarks:

- The water monitoring stations for the dredging works under Contract No. HK/2009/01 should also include WSD9, WSD17, WSD 21 and C5 if water quality monitoring at these locations have not been carried out by others. Similarly, the water monitoring stations for the dredging works under Contract No. HK/2009/02 should also include WSD7, WSD9, WSD17, WSD 19, C1, C2, C3 and C4 if water quality monitoring at these locations have not been carried out by others.

- WSD7 and WSD20 water quality monitoring were temporarily suspended since 27 Apr 2012.

<u>Contract no. HK/2009/02 - Wan Chai Development Wan Chai Development Phase II –</u> <u>Central – Wan Chai Bypass at WanChai East</u>

5.4.14. Water monitoring for Contract no. HK/2009/02 was commenced on 8 July 2010. The proposed division of water monitoring stations are summarized in *Table 5.13* below.

Station Ref.	Location	Easting	Northing					
WSD Salt Water Intake								
WSD21	Wan Chai	836220.8	815940.1					
WSD9	Tai Wan	837921.0	818330.0					
WSD17	Quarry Bay	839790.3	817032.2					
Cooling Water Inta	ke							
C5e	Sun Hung Kai Centre (Eastern)	836250.1	815932.2					
C5w	Sun Hung Kai Centre (Western)	836248.1	815933.2					

 Table 5.13
 Water Monitoring Stations for Contract no. HK/2009/02

Remarks:

- The water monitoring stations for the dredging works under Contract No. HK/2009/01 should also include WSD9, WSD17, WSD 21 and C5 if water quality monitoring at these locations have not been carried out by others. Similarly, the water monitoring stations for the dredging works under Contract No. HK/2009/02 should also include WSD7, WSD9, WSD17, WSD 19, C1, C2, C3 and C4 if water quality monitoring at these locations has not been carried out by others.
- Water quality monitoring at WSD9 and WSD 17 was implemented with respect to HK/2009/02 from 8 Feb 2012.

<u>Contract no. HK/2010/06 - Wan Chai Development Phase II – Central – Wanchai Bypass over</u> <u>MTR Tsuen Wan Line</u>

5.4.15. Water monitoring for Contract no. HK/2010/06 was commenced on 8 March 2011. The proposed division of water monitoring stations are summarized in *Table 5.14* below.

Table 5.14 Water Monitoring Stations for Contract no. HK/2010/06

Station Ref.	Location	Easting	Northing			
Cooling Water Intake						
C2	Telecom House	835647.9	815864.4			

Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon Shelter Section)

5.4.16. Due to the commencement of the maintenance dredging on 10 November 2010, water quality monitoring for Contract no. HY/2009/15 was commenced on 9 November 2010. The proposed division of water monitoring stations are summarized in *Table 5.15* below.

Table 5.15	Water Monitoring Stations for Contract no. HY/2009/15
------------	---

Station Ref.	Location	Easting	Northing				
Cooling Water Intake							
C6	Excelsior Hotel	837009.6	815999.3				
C7	Windsor House	837193.7	816150.0				

Remarks: - The cessation of seawater intake operation for C6 was confirmed on 17 May 2011, the water monitoring at C6 was then terminated since 17 May 2011.

Contract no. HY/2009/19 – Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

5.4.17. Due to the commencement of the marine bored piling on 28 Jan 2012, water quality monitoring for Contract no. HY/2009/19 was commenced on 28 Jan 2012. The proposed division of water monitoring stations are summarized in *Table 5.16* below.

Table 5.16Water Monitoring Stations for Contract no. HY/2009/19

	0					
Station Ref.	Location	Easting	Northing			
Cooling Water Intake						
C8	City Garden	837970.6	816957.3			
C9	Provident Garden	838355.0	817116.6			

Remarks: C8 and C9 monitoring commenced on 28 Jan 2012.

- 5.4.18. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Center (C9) between 9 January 2012 to 30 July 2012 which caused to the inaccessibility of sampling either land and marine since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 since 10 March 2012 to the closest accessible point prior to the completion of the external façade refurbishment work.
- 5.4.19. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.
- 5.4.20. As per the meeting with the representative of Excelsior Hotel and World Trade Centre on 17 May 2011, they confirmed that the seawater intake for The Excelsior was no longer in use and replaced by the connected permanent water supply from WSD pipelines since 11 January 2011. Thus, the impact water quality monitoring for the cooling intake - C6 was terminated effective from 26 May 2011.
- 5.4.21. 24 hours monitoring of turbidity at the cooling water intakes at C7 was conducted. With respect to the seawall collapsing at TS4 on 17 November 2011, the 24 hours turbidity monitoring and was kept in November 2011. Since the reinstating the seawall was completed on 13 January 2012 and no any water deterioration was performed, 24 hour turbidity monitoring was then suspended on 27 January 2012.
- 5.4.22. Water monitoring results measured in this reporting period are reviewed and summarized. Details of water quality monitoring results and graphical presentation can be referred in <u>Appendix 5.4.</u>

Γ				Mid-flood						Mid-ebb					
	Contract no.	Water Monitoring Station	D	0	Turt y	oidit	S	8	D	0	Turb	idity	S	S	
			AL	LL	AL	L	AL	LL	AL	LL	AL	LL	AL	LL	
ſ	HY/2009/11	WSD9	0	0	0	0	0	0	0	0	0	0	0	0	
	Monitoring finished on 6 Feb 2012	WSD10	0	0	0	0	0	0	0	0	0	0	0	0	

Table 5.17	Summary of Water Qu	alitv Monitorina E	Exceedances in Re	porting Month
				P • • • • · · · · · · · · · · · · · · ·

				Mid-	flood			Mid-ebb					
Contract no.	Water Monitoring	D	0	Turk y		S	S	D	0	Turb	oidity	S	S
	Station	AL	LL	AL	L	AL	LL	AL	LL	AL	LL	AL	LL
	WSD15	0	0	0	0	0	0	0	0	0	0	0	0
	WSD17	0	0	0	0	0	0	0	0	0	0	0	0
	C8	0	0	0	0	0	0	0	0	0	0	0	0
	C9	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/01	WSD19	0	0	0	0	1	0	0	0	0	0	0	0
	C1	0	0	0	0	0	0	0	0	0	0	0	0
	C3	0	0	0	0	1	0	0	0	0	0	0	0
	C4e	0	0	0	0	0	0	0	0	0	0	0	0
	C4w	1	0	0	0	0	0	0	0	0	0	0	0
Monitoring finished on	WSD20	0	0	0	0	0	0	0	0	0	0	0	0
27 April 2012	WSD7	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/01 & HK/2010/06	C2	0	0	0	0	0	0	0	0	0	0	0	0
HK/2009/02	C5e	0	0	0	0	0	0	0	0	0	0	0	0
	C5w	0	0	0	0	0	0	0	0	0	1	0	1
Monitoring started on	WSD21	0	0	0	0	2	0	1	0	0	0	0	0
8 Feb 2012	WSD9	0	0	0	0	0	0	0	0	0	0	0	0
	WSD17	0	0	0	0	0	0	0	0	0	0	0	0
HY/2009/15	C7	1	0	0	0	0	0	0	0	0	0	0	0
HY/2009/19 Monitoring started on	C8	0	0	0	0	0	0	0	0	0	1	1	1
28 Jan 2012	C9	0	0	0	0	0	0	0	0	0	0	0	0
Total		2	0	0	0	4	0	1	0	0	2	2	2

Remarks: - The cessation of seawater intake operation for C6 was confirmed on 17 May 2011, the water monitoring at C6 was then terminated since 17 May 2011.

- WSD9 and WSD17 were implemented with respect to HK/2009/02 from 8 Feb 2012.
- 4-week water quality monitoring at WSD9, WSD10, WSD15, WSD17, C8, C9 were completed on 6 Feb 2012.
- C8 and C9 were implemented with respect to HY/2009/19 from 28 Jan 2012.
- WSD7 and WSD20 were temporarily suspended from 27 Apr 2012
- 5.4.23. Enhanced DO monitoring at 4 monitoring stations in Causeway Bay Typhoon Shelter and Ex-Public Cargo Works Area was conducted three days per week during the reporting period. The action and limit level exceedances of water quality monitoring are summarized in *Table 5.18*.

Table 5.18Summary of Enhanced Dissolved Oxygen Monitoring Exceedances in
Reporting Month

Contract	Water Monitoring	Mid-flood	Mid-ebb
no.	Station	DO	DO

		AL	LL	AL	LL
	C6	0	0	0	0
	C7	2	0	0	0
HY/2009/15	Ex-WPCWA SW	0	0	0	4
	Ex-WPCWA SE	5	0	4	3
	Total	7	0	4	7

- 5.4.24. There were 11 action level exceedances and 7 limit level exceedances recorded in enhanced dissolved oxygen monitoring in this reporting period.
- 5.4.25. In response to the Condition 2.18 of the Environmental Permit no. EP-356/2009 requiring that a silt curtain / impermeable barrier system be installed to channel water discharge flow from Culvert L to locations outside the embayment area, a proposed replacement of the requirement with additional dissolved oxygen monitoring has been conducted at three monitoring stations, namely A, B and C between the eastern seawall of Central Reclamation Phase III and the HKCEC Extension since November 2011 under EP-356/2009 so that DO level between the eastern seawall of Central Reclamation Phase II and the HKCEC extension since November 2011 under EP-356/2009 so that DO level between the eastern seawall of Central Reclamation Phase II and the HKCEC extension since November 2011 under EP-356/2009 so that DO level between the eastern seawall of Central Reclamation Phase II and the HKCEC extension could be continuously monitored. Details of additional DO monitoring results can be referred in *Appendix 5.4a*.

5.5 Waste Monitoring Results

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

5.5.1. The major work activities for Contract no. HY/2009/11 was confirmed substantial complete by RSS on 4 January 2012. Therefore, no C&D waste was generated.

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at</u> <u>HKCEC</u>

5.5.2. Inert and non- inert C&D waste were disposed of in this reporting month. Details of the waste flow table are summarized in *Table 5.19.*

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds		
Inert C&D materials disposed, m ³	22.035	22245.415	TKO137, TM38		
Inert C&D materials recycled, m ³	355	4979.5	N/A		
Non-inert C&D materials disposed, m ³	57.1	942.88	SENT Landfill		
Non-inert C&D materials recycled, kg	483	151143	N/A		
Chemical waste disposed, kg	150	7200	N/A		

 Table 5.19
 Details of Waste Disposal for Contract no. HK/2009/01

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
*Marine Sediment (Type 1 – Open Sea Disposal), m ³	0 (Bulk Volume)	91164.2 (Bulk Volume)	South of Cheung Chau
* Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal), m ³	0 (Bulk Volume)	43018 (Bulk Volume)	East of Cha Chau
Dredged Sediment Requiring Type 3 – Special Treatment / Disposal contained in Geosynthetic Containers	0 (Bulk Volume)	5613 (Bulk Volume)	East of Cha Chau

Remarks: Contractor clarified and updated waste flow table for the reporting month of August

5.5.3. There were no marine sediments Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal disposed in the reporting month.

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> <u>WanChai East</u>

5.5.4. Inert and non- inert C&D waste were disposed of in this reporting month. Details of the waste flow table are summarized in *Table 5.20.*

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C&D materials disposed, m ³	1345	174298	TKO137 / TM 38
Inert C&D materials recycled, m ³	18161	18161	N/A
Non-inert C&D materials disposed, m ³	48	586	SENT Landfill
Non-inert C&D materials recycled, m ³	NIL	NIL	N/A
Chemical waste disposed, kg	NIL	4721	N/A
Marine Sediment (Type 1 – Open Sea Disposal), m ³	NIL	154,827 (Bulk volume)	South of Cheung Chau
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal), m ³	Nil	114464 (Bulk volume)	East of Sha Chau

Table 5.20Details of Waste Disposal for Contract no. HK/2009/02

5.5.5. There were no marine sediments Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal disposed in the reporting month.

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon</u> <u>Shelter Section)</u>

5.5.6. No inert and non- inert C&D waste were disposed of in this reporting month. Details of the waste flow table are summarized in *Table 5.21*

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C&D materials disposed,	NIL	141579.2	Tuen Mun Area 38
m ³	NIL	65216	TKO137 FB
Inert C&D materials recycled, m ³	NIL	184.0	To Contract HY/2009/11
	NIL	304	ex-PCWA
	NIL	111.9	TS4
Non-inert C&D materials disposed, m ³	NIL	252.2	SENT Landfill
Non-inert C&D materials recycled, kg	NIL	299361.5	N/A
Chemical waste disposed, kg	NIL	8,200	N/A
Marine Sediment (Type 1 – Open Sea Disposal), m ³	16,775	96,877 (Bulk Volume)	South of Cheung Chau
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal) , m ³	7,970	207,285 (Bulk Volume)	East of Sha Chau
Marine Sediment (Type 3 – Special Treatment / Disposal contained in Geosynthetic Containers)	NIL	7,050 (Bulk Volume)	East of Sha Chau

 Table 5.21
 Details of Waste Disposal for Contract no. HY/2009/15

There were marine sediments Type 1- Open Sea Disposal, Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal dredging from bore-piling casing in the reporting month.

<u>Contract no. HK/2010/06 - Wan Chai Development Phase II – Central – Wan Chai Bypass</u> over MTR Tsuen Wan Line

5.5.7. Inert C&D waste was recycled of in this reporting month. Details of the waste flow table are summarized in *Table 5.22.*

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C&D materials disposed, m ³	0	11027.83	TM38
Inert C&D materials recycled, m ³	266.8	266.8	HK/2009/01

 Table 5.22
 Details of Waste Disposal for Contract no. HK/2010/06

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Non-inert C&D materials disposed, m ³	NIL	NIL	N/A
Non-inert C&D materials recycled, kg	0	1374.5	N/A
Chemical waste disposed, L	0	600	N/A
Marine Sediment (Type 1 – Open Sea Disposal), m ³	0 (Bulk Volume)	3,694 (Bulk Volume)	South Cheung Chau
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal) , m ³	0 (Bulk Volume)	12,297 (Bulk Volume)	East Sha Chau

There were no marine sediments Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal dredging from bore-piling casing in the reporting month.

<u>Contract no. HY/2009/19 –Central- WanChai Bypass Tunnel (North Point Section) and Island</u> <u>Eastern Corridor Link</u>

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds
Inert C&D materials disposed, m ³	17610.48	36585.7	TM38
Inert C&D materials recycled, m ³	NIL	NIL	N/A
Non-inert C&D materials disposed, m ³	30.75	55.97	N/A
Non-inert C&D materials recycled, kg	NIL	NIL	N/A
Chemical waste disposed, L	NIL	0.29	N/A
Marine Sediment (Type 1 – Open Sea Disposal), m ³	NIL	NIL	South Cheung Chau
Marine Sediment (Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal), m ³	NIL	105	East Sha Chau

 Table 5.23 Details of Waste Disposal for Contract no. HY/2009/19

There was no marine sediment (Type 1- Open sea disposal) disposed of in this reporting month.

6. Compliance Audit

6.0.1. The Event Action Plan for construction noise, air quality and water quality are presented in *Appendix 6.1*.

6.1 Noise Monitoring

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

6.1.1 No exceedance was recorded in the reporting month.

Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at HKCEC

6.1.2 No exceedance was recorded in the reporting month.

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at</u> <u>WanChai East</u>

6.1.3 No exceedance was recorded in the reporting month.

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon</u> <u>Shelter Section)</u>

6.1.4 No exceedance was recorded in the reporting month.

Contract no. HK/2010/06 - Wan Chai Development Phase II – Central – Wanchai Bypass over MTR Tsuen Wan Line

6.1.5 No exceedance was recorded in the reporting month.

<u>Contract no. HY/2009/19 – Central – Wanchai Bypass Tunnel (North Point Section) and Island</u> Eastern Corridor Link under FEP-07/364/2009/A

6.1.6 One limit level exceedance was recorded at M6 on 24 August 2012. Checking with Contractor, no work was conducted during monitoring. The exceedance was possible in relation to the nearby traffic noise. The limit level exceedance was considered as non-project related.

6.2 Real-time noise Monitoring

6.2.1 Exceedances were recorded between 0700 and 1900 hours throughout the reporting month. Investigation found that no major noisy activities by Contractor HY/2009/19 were being performed. The major noise impact was arising from the demolition works near Oil Street Community Liaison Centre. As such, the exceedances were concluded as not project related.

6.3 Air Monitoring

- 6.3.1. No exceedance was recorded in 1-hr TSP and 24-hrs TSP monitoring in the reporting month.
- 6.3.2. No exceedance was recorded in Odour patrol monitoring in the reporting month.

6.4 Water Quality Monitoring

Contract no. HY/2009/11 - Central - Wanchai Bypass, North Point Reclamation

6.4.1 No exceedance was recorded in the reporting month.

Contract no. HK/2009/01 - Wan Chai Development Phase II – Central – Wanchai Bypass at HKCEC

- 6.4.2 SS exceedances at C3 were recorded on 6 August 2012 in this reporting month. Confirmed with Contractor, there was no work conducted on that day. The exceedances were possible in relation to the natural variation or changes of water quality and considered not related to project.
- 6.4.3 SS exceedance at WSD19 was recorded on 25 August 2012. Checking with contractor's work, rock filling inside the water channel was conducted on that day. In view that there was no exceedance at the monitoring stations within site area and the silt screen was in proper condition. The exceedance was considered non-project related.
- 6.4.4 DO exceedance at C4w was recorded on 20 August 2012. No odour nuisance was detected during DO monitoring. Checking with Contractor's work, there was no work conducted on that day. The exceedance was possible in relation to the natural variation or changes of water quality and considered not related to project.

Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at WanChai East

- 6.4.5 There were SS and Turbidity exceedances at mid-ebb recorded at C5w on 30 July 2012. After checking with Contractor, filling in WCR2 and substructure works for the New Ferry Pier were conducted on that day. Reviewing the results at the monitoring stations nearer than C5w, no exceedance was recorded. The exceedance was possible due to the materials from the cleaning screen panel at SHK unavoidably collected during monitoring.
- 6.4.6 There were SS exceedances at mid-flood recorded at WSD21 on 4 August 2012. After checking with Contractor, filling in WCR2 and substructure works for the New Ferry Pier were conducted on that day. Reviewing the results at the monitoring stations nearer than WSD21, no exceedance was recorded. The exceedance was possible due to the materials from the cleaning screen panel at Wan Chai WSD Pumping station unavoidably collected during monitoring.
- 6.4.7 There were occasionally SS exceedances recorded at WSD21 in this reporting month. No odour nuisance was noted during DO monitoring. Checking with Contractor's work, filling at WCR2 was conducted on these days. Reviewing the results at the monitoring stations within site area, no exceedance was recorded. The exceedances were possible in relation natural variation or changes of water quality in the vicinity of the water quality monitoring station and the exceedances considered not related to project.

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass – Tunnel (Causeway Bay Typhoon</u> <u>Shelter Section)</u>

6.4.8 There was DO exceedance at C7 recorded on 28 July 2012. After checking with Contractor, the deployed silt screen at intake and silt curtain were observed to be in proper condition for

TS1 removal work and TS2 dredging. Accumulation of floating debris near monitoring station was observed. The exceedance was possibly related to the accumulation of floating debris near monitoring station. Contractor was reminded the water quality near to the intake should be provided sufficient inspection and prevents the accumulation of floating debris. The exceedance was considered not related to the project works.

6.4.9 There were occasionally DO exceedances at Ex-WPCWA SE and Ex-WPCWA SW recorded in this reporting month. No odour nuisance was noted during DO monitoring. After checking with Contractor, there was no marine work undertaken at ex-WPCWA. The exceedances were possible in relation to the accumulation of organic particles discharge from culvert near monitoring station and considered not related to the Projects works.

Contract no. HK/2010/06 - Wan Chai Development Phase II – Central – Wanchai Bypass over MTR Tsuen Wan Line

6.4.10 No exceedance was recorded in this reporting month.

Contract no. HY/2009/19- Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

- 6.4.11 There were occasionally SS and turbidity exceedances at C8 recorded in this reporting month. Confirmed with Contractor, there was no marine work conducted near C8.The exceedances were possible in relation to the accumulation of particles discharged from outfalls near monitoring stations and not related to project.
- 6.4.12 Summary for notification of exceedances can be referred to <u>Appendix 6.2</u>.

6.5 Review of the Reasons for and the Implications of Non-compliance

- 6.5.1. During the reporting month of August 2012, contractor of HY/2009/15 has failed to demonstrate compliance with the conditions set in FEP-04/356/2009 and relevant conditions in EP-356/2009 for the temporary reclamation removal operations at TCBR1E (TS1). Contractor was unable to provide a proper method statement with respect to the change in works circumstance, and the Contractor was unable to effectively mitigate the impact due to non-compliance such that muddy boom recurrence occurred and dispersed into Victoria Harbour.
- 6.5.2. The observations and recommendations from site audits made in each individual site audit session were presented in Section 8.

6.6 Summary of action taken in the event of and follow-up on non-compliance

- 6.6.1. Warning letters from ETL regarding the situation at TS1 were issued to the contractor of HY/2009/15 on multiple occasions with recommended mitigation measures, and the contractor has immediately deployed silt curtains to conceal the seawall gaps.
- 6.6.2. As removal dredging and barge mooring operations were anticipated to be performed at the southern side of TS1, ETL requested that daily self water quality tests during removal dredging operations, also pilot test for mooring operations, to demonstrate the effectiveness of the mitigation measures during the operation and to demonstrate the operation itself would not cause substantial water quality impact, should be performed before the mooring operations.

These tests were requested to prove whether conditions set in FEP-04/356/2009 and relevant conditions EP-356/2009 are fully complied.

- 6.6.3. Water samplings for self water quality tests were collected at locations inside and outside the silt curtains during removal dredging operations. This was to demonstrate whether the double silt curtains could effectively hold back silty water during removal dredging operations.
- 6.6.4. Water samplings for pilot test were collected inside and outside the double silt curtains before and after the mooring operations. This was to demonstrate whether the double silt curtains could effectively hold back silty water during removal mooring operations, and if high turbid would be generated during the mooring operations.
- 6.6.5. On 15 July 2012, a successful self water quality test was performed by the contractor.
- 6.6.6. Pilot tests were carried out on 27 July, 2, 7 and 20 Aug 2012 to demonstrate the compliance of barge mooring operations with the conditions set in FEP-04/356/2009 and EP-356/2009, but none of the pilot test was successful.
- 6.6.7. It is concluded that the self water quality tests proved the effectiveness of the mitigation measures, but the pilot tests were a failure and the contractor cannot demonstrate their ability to comply with the conditions set in FEP-04/356/2009 and EP-356/2009.
- 6.6.8. ETL then strongly recommended the Contractor to follow the following points for future activities. First, the Contractor should request for RSS inspections for confirmation of implementation of mitigation measures before any commencement of work activities that are governed by the EP. Second, if there is any site mitigation measure not confirmed by RSS for fulfilling the agreed method statements, contractor shall not commence any environmentally sensitive construction activities (e.g. dredging, filling, mooring or any works related to temporary reclamation) unless such site mitigation measures have been properly reviewed by both ET and IEC. Third, the revised site mitigation measures should be reviewed and consented by both ET and IEC before implementation.
- 6.6.9. The Contractor and RSS agreed on the above points and the Contractor submitted Investigation Report regarding the incident at TS1, Rectification Plan, Preventive Action Plan and revised Method Statement on 7 September 2012.

7. Cumulative Construction Impact due to the Concurrent Projects

- 7.0.1. According to Condition 3.4 of the EP-356/2009, this section addresses the relevant cumulative construction impact due to the concurrent activities of the current projects including the Central Reclamation Phase III, Central-Wanchai Bypass and Island Eastern Corridor Link projects.
- 7.0.2. According to the Monthly EM&A report (July 2012) of Central Reclamation Phase III (CRIII), filling works, building construction works and pipe works were performed in the July 2012 reporting month. The water quality monitoring was completed in October 2011 and no exceedance was recorded for air and noise monitoring. It can be concluded that cumulative construction impact due to the concurrent activities of the current projects with the Central Reclamation Phase III (CRIII) was insignificant.
- 7.0.3. According to the construction programme of Wan Chai Development Phase II, Central-Wan Chai Bypass and Island Eastern Corridor Link projects, the major construction activities at Reclamation Shoreline Sub-zones under Wan Chai Development Phase II were the dredging and filling at HKCEC3w, dredging at submarine sewage pipelines, reinstatement of seawall block construction at TCBR1W and marine bored piling at MTR Tunnel Crossing in the reporting month. The major environmental impact was water quality impact at, Causeway Bay and Wan Chai.
- 7.0.4. The major environmental impacts generated from the reclamation work at Central Reclamation Phase III were only located along the coastline of Central and Admiralty. As no project related exceedance was recorded in the Project, it was considered no adverse environmental impact caused by the Project works. Thus, it is evaluated the cumulative construction impact was insignificant.

8. Environmental Site Audit

- 8.0.1. During this reporting month, weekly environmental site audits were conducted for Contracts no. HK/2009/01, HK/2009/02, HY/2009/15, HK/2010/06 and HY/2009/19. No non-conformance was identified during the site audits.
- 8.0.2. Four site inspections for Contract no. HK/2009/01 were carried out on 1, 8, 16 and 22 August 2012 in reporting month. Results of these inspections and outcomes are summarized in Table 8.1.

ltem	Date	Observations	Action taken by Contractor	Outcome
120801_01	1-Aug-12	The condition of tree protection fences for trees (T608, 061) should be improved (TST)	The tree protection fences condition was improved.	Completion as observed on 8-Aug-12
120801_02	1-Aug-12	The oil stain was observed on the ground which should be removed and disposed as chemical waste. (VIP area, Water Channel)	The oil stain was removed	Completion as observed on 8-Aug-12
120808_01	8-Aug-12	Watering during breaking should be provided for dust suppression	Watering during breaking should be provided for dust suppression	Completion as observed on 16-Aug-12
120816_01	16-Aug-12	Drip tray should be provided for chemical containers (VIP area)	Drip tray should be provided for chemical containers (VIP area)	Completion as observed on 22-Aug-12

 Table 8.1
 Summary of Environmental Inspections for Contract no. HK/2009/01

8.0.3. Four site inspections for Contract no. HK/2009/02 were carried out on 2, 9, 15 and 22 August 2012 during this reporting period. The results of these inspections and outcomes are summarized in *Table 8.2*.

 Table 8.2
 Summary of Environmental Inspections for Contract no. HK/2009/02

ltem	Date	Observations	Action taken by Contractor	Outcome
120802_01	2-Aug-12	The seepage of muddy water from the sheet pile was observed. Better protection should be provided to prevent seepage and the silt curtain should be deployed for protection. (Eastern sheetpile)	Silt curtain was provided.	Completion as observed on 9-Aug-12
120815_01	15-Aug-12	The tarpaulin sheet should be provided for the transfer of sediment to barge. (WCR1)	The tarpaulin sheet was provided.	Completion as observed on 22-Aug-12
120815_02	15-Aug-12	The condition of temporary drainage system should be improved to ensure its efficiency. (Gate 2)	The condition of temporary drainage system was improved.	Completion as observed on 22-Aug-12
120822_01	22-Aug-12	The stockpile should be covered by tarpaulin sheet (Next to SPCA, Small ex-pet	The stockpile was removed,	Completion as observed on 30-Aug-12

Lam Geotechnics Limited

ltem	Date	Observations	Action taken by Contractor	Outcome
		garden)		
120822_02	22-Aug-12	U-channel should be improved	U-channel was	Completion as observed on 30-Aug-12

8.0.4. Four site inspections for Contract no. HY/2009/15 were carried out on 31 July, 7, 14 and 21 August 2012 in reporting month. The results of these inspections and outcomes are summarized in *Table 8.3*.

 Table 8.3
 Summary of Environmental Inspections for Contract no. HY/2009/15

ltem	Date	Observations	Action taken by Contractor	Outcome
120731_01	31-Jul-12	The oil was observed on the water which should be removed and treated (TS1)	being removed as	
120807_01	7-Aug-12	Better maintenance of marine vessels to avoid oil leakage (TS1).	were maintained to avoid oil leakage.	observed on 14-Aug-12
120807_02	7-Aug-12	curtains to avoid holes and gaps (TS1).		observed on 14-Aug-12
120807_03	7-Aug-12	Oil leakage on ground should be removed (TS4).	cleared as	Completion as observed on 14-Aug-12
120807_04	7-Aug-12	Haul roads should be kept wet (TS4)	Water spraying on haul roads to	Completion as
120807_05	7-Aug-12	Muddy water was observed to be running into public manhole. Contractor should take actions to prevent runoff. (Gate of TS4/ME4)	maintenance of wheel wash area	
120807_06		Three side cover of grouting machine should be maintained to ensure three sides and top are covered (TPCWAE)	machine was no longer in use and three sides and top cover is provided for the new grouting machine.	observed on 14-Aug-12
120807_07	7-Aug-12	Chemical drums should be stored in approiate area (TPCWAE).	Drip trays were provided for chemical drums.	Completion as observed on 14-Aug-12
120807_08		Floating refuse should be collected more regularly	Floating refuse at TS1 and SW corner were collected	Completion as observed on 14-Aug-12
120814_01	14-Aug-12	The northern seawall has been removed to below high water		Completions as observed on

ltem	Date	Observations	Action taken by Contractor	
		mark, and muddy boom is observed going into the Victoria Harbour while seawall blocks are being removed. The contractor is strongly recommended to provide rectification measures to avoid muddy boom and violations to EP (TS1)	sloping seawall	21-Aug-12
120814_02		wastewater should be cleared from drip trays (TS1)	were removed.	observed on 21-Aug-12
120814_03	14-Aug-12	Oil leakage should be cleared as chemical waste (TS4 and TPCWAE)	cleared as chemical waste.	observed on 21-Aug-12
120814_04	14-Aug-12	Floating refuse should be collected (Western side of TPCWAE (landing steps))	was collected	Completions as observed on 21-Aug-12
120821_01	21-Aug-12	TS4 - Site drainage system shall be cleaned regularly and properly maintained such that it could be adequate to handle the runoff capacity.	channels were cleared of mud.	Completion as observed on 28-Aug-12
120821_02		reviewed and updated to tally with the discharge license requirement.	plan was provided that tally with the discharge license requirement.	observed on 28-Aug-12
120821_03		trimming/dredging at TS1.	and impermeable barriers were provided at TS1.	observed on 28-Aug-12
120821_04	21-Aug-12	trimming work at breakwater at	and impermeable	

8.0.5. Five site inspections for Contract no. HK/2010/06 was carried out on 30 July, 7, 16, 20 and 27 August 2012 in reporting month. The results of these inspections and outcomes are summarized in Table 8.4.

ltem	Date	Observations	Action taken by Contractor	Outcome
120730_01	30-Jul-12	The floating debris should be removed regularly. (2w)	The floating debris should be cleaned regularly	
120730_02	30-Jul-12	Chemical containers should be provided with drip tray or store into the designated storage area (2w)	containers were	Completion as observed on 7-August-12

Table 8.4 Summary of Environmental Inspections for Contract no. HK/2010/06

ltem	Date	Observations	Action taken by Contractor	Outcome
120807_01	7-Aug-12	Better protection should be provided at the edge of the platform to prevent surface runoff (2w)	The protection was provided	Completion as observed on 16-August-12
120807_02	7-Aug-12	The split was observed in U-channel which should be repaired immediately (2e)	The U-channel was repaired	Completion as observed on 16-August-12
120816_01	16-Aug-12	The oil stain was observed on the platform which should be removed and disposed as chemical waste (2w)	removed as	Completion as observed on 20-August-12
120816_02	16-Aug-12	accumulated in U-channel	The condition of U-channel was improved.	Completion as observed on 20-August-12
120816_03	16-Aug-12	Drip tray should be provided for oil drums (2w)	The oil drums were removed.	Completion as observed on 20-August-12
120820_01	20-Aug-12	observed. The contractor should review the adequacy of the sedimentation tank and provide the sand bags around the edge of the platform to prevent surface runoff (2w)	sedimentation tank was removed.	Completion as observed on 27-August-12
120820_02	20-Aug-12	The filter for oil intercepter should be replaced (2w)	The filter was cleaned.	Completion as observed on 3-September-12
120827_01	27-Aug-12	The condition of U-channel should be improved (2w)		Completion as observed on 3-September-12

8.0.6. Four site inspections for Contract no. HY/2009/19 were carried out on 1, 8, 15 and 23 August 2012 in reporting month. The results of these inspections and outcomes are summarized in *Table 8.5*.

Table 8.5 Summary of Environmental Inspections for Contract no. HY/2009/19

ltem	Date		Action taken by Contractor	Outcome
120823_01		drainage channel was observed at ferry pier 2, the	provided to improve site drainage.	Completion as observed on 30-Aug-12

ltem	Date	Observations	Action taken by Contractor	Outcome
		the site drainage is adequate.		
120823_02	23-Aug-12	Multiple oil stains were observed at Portion VII, the contractor should removed the oil stains as chemical waste and identify and treat at source.	removed.	Completion as observed on 30-Aug-12

9. Complaints, Notification of Summons and Prosecution

- 9.0.1. There was one complaint received in this reporting month.
- 9.0.2. A water impact complaint was received by ET on 21 August 2012 (ICC Ref. No.: 1-375813738 dated 20 August 2012, forwarded by RSS). The complaint was reported by Mr. Ho that turbid appearance in water quality generated from dredging operation at the exit of CBTS and lighthouse from two barges respectively in construction sites of CBTS on 18 and 19 August 2012 between 3:00 and 10:00pm. The complainant requested a follow-up and reply from relevant department.
- 9.0.3. ET confirmed with the Resident Site Staff that seawall blocks removal at north of TS1 and removal of amour rocks at tip of Eastern Breakwater for HY/2009/15 were conducted during the concerned period on 18 August 2012, and seawall blocks removal at north of TS1 during the concerned period on 19 August 2012.
- 9.0.4. After reviewing the results of water monitoring at C7 on 17 and 20 August 2012, no exceedance was recorded and the water quality parameters were all below action level. Site investigation for HY/2009/15 was conducted on 21 August 2012. The investigation found that inadequate silt curtain for protecting trimming work at northern side of TS1, impermeable barrier were observed inadequate to protect the removed seawall location for trimming and dredging at TS1 and inadequate silt curtain were observed for protecting trimming work at breakwater at TS1. Reviewing the photo records of the concerned areas provided by RSS and investigations by RSS, it was found that the silt curtains around the concerned areas of northern TS1 and Eastern Breakwater were inadequate, and the silt curtains provided at both ends of the derrick barge were not fully enclosed. Also, after work, the silt curtains were not properly maintained to surround the affected work areas, causing silt water leakage into the Victoria Harbour. RSS confirmed that seawall blocks removal at north of TS1 and removal of amour rocks at tip of Eastern Breakwater for HY/2009/15 were conducted during the concerned period on 18 August 2012, and seawall blocks removal at north of TS1 during the concerned period on 19 August 2012.
- 9.0.5. HyD made a reply to the complainant on 23 August 2012 by phone. HyD replied that there would be on-going activities in the north side of TS1 and the end tip of Eastern Breakwater included filling and rock removal works. HyD explained to the complainant that the Contractor has deployed silt curtain to safeguard the water quality in the vicinity, but the silt curtain deployment requires further improvement. RSS has immediately urged the Contractor to implement mitigation measures and also stepped up supervision on Contractor's work. RSS would continue to work with the Contractor on the effectiveness of the environmental mitigation measures implemented on site, and the Contractor would take into account of ET and IEC's recommendations to enhance the environmental mitigation measures. No further complaint was received after the response.
- 9.0.6. The details of cumulative complaint log and updated summary of complaints are presented in <u>Appendix 9.1.</u>
- 9.0.7. Cumulative statistic on complaints and successful prosecutions are summarized in *Table 9.1* and *Table 9.2* respectively.

Table 9.1 Cumulative Statistics on Complaints

Reporting Period	No. of Complaints
Commencement works (Mar 2010) to last reporting month	26
August 2012	1
Project-to-Date	27

Table 9.2 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this month (Offence Date)	Cumulative No. Project-to-Date
Air	Air - 0		0
Noise	-	0	0
Water	-	0	0
Waste	-	0	0
Total	-	0	0

10. Conclusion

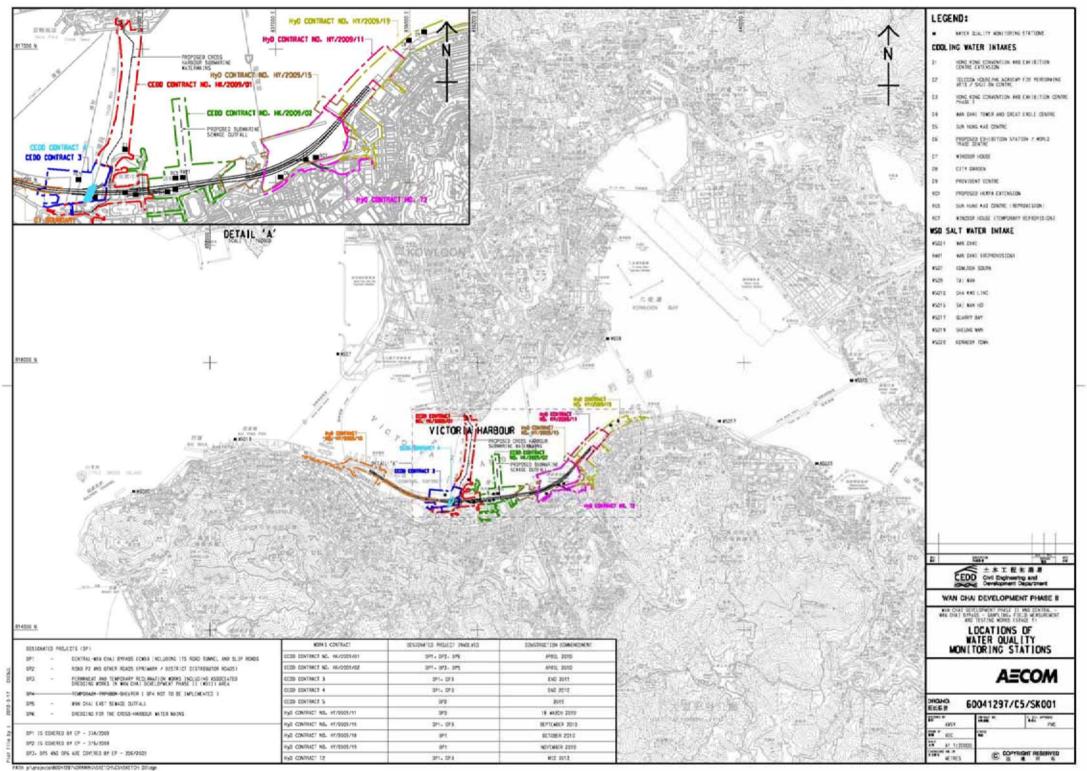
- 10.0.1. The EM&A programme was carried out in accordance with the EM&A Manual requirements, minor alterations to the programme proposed were made in response to changing circumstances.
- 10.0.2. WDII/RSS advised that the dredging works for submarine pipeline at Victoria Harbour had been completed in January 2012. Therefore, the concurrent dredging activities at Sewage Pipeline Zone and reclamation shoreline zone TCBR under the EP-356/2009 scenario 2B no longer exist. As such, with reference to Table 5.39 of the EIA Report for Wan Chai Development Phase II and Central-Wan Chai Bypass, the application of silt screen for cooling water intakes for Queensway Government Offices was suspended and the others were remains unchanged.
- 10.0.3. Water quality monitoring at WSD10 and WSD15 will be temporary suspended while water quality monitoring at WSD9 and WSD17 were implemented with respect to HK/2009/02 for the water quality monitoring scheduled on 8 Feb 12 onwards;
- 10.0.4. Water quality monitoring at C8 and C9 have been implemented with respect to HY/2009/19 since the marine bore piling work started on 28 January 2012.
- 10.0.5. Based on the safety concern when external façade refurbishment was conducted by contractor employed by Provident Centre (C9) between 9 January 2012 to 30 July 2012 which caused to the inaccessibility of sampling either land and marine since 3 Feb 2012, there is a fine adjustment of the sampling location of water quality monitoring at C9 since 10 March 2012 to the closest accessible point prior to the completion of the external façade refurbishment work.
- 10.0.6. Due to the access of water monitoring station at WSD19 was blocked by LCSD construction works from 3 April 2012 to 2 May 2012 and lead to the inaccessibility of sampling either land and marine, there is a fine adjustment of the sampling point of WSD 19 since 5 April 2012 to the closest accessible point prior to the completion of the construction activities.
- 10.0.7. With respect to the trial dredging at WCR2 was scheduled on 20, 22, 24, 25 March and 1, 3, 11, 13, 15, 17, 19, 20 Apr and 3 May 2012, on-going water quality monitoring results at WSD21 during this period was checked and indicated that there was no contribution due to the trial dredging operation. Enhanced review of water quality around WCR2 was also implemented and no deterioration in the water quality was observed.
- 10.0.8. Due to the dredging works for Cross Harbour Water Mains from Wan Chai to Tsim Sha Tsui-DP6 was completed on 26 March 2012, the temporary suspension of impact water quality monitoring at WSD7 and WSD20 after 27 April 2012 for the water quality monitoring at WSD7 and WSD20 have been monitored for 4-week period after the completion of DP6 to confirm no water deterioration.
- 10.0.9. The scheduled construction activities and the recommended mitigation measures for the coming month are listed in *Table 10.1*.

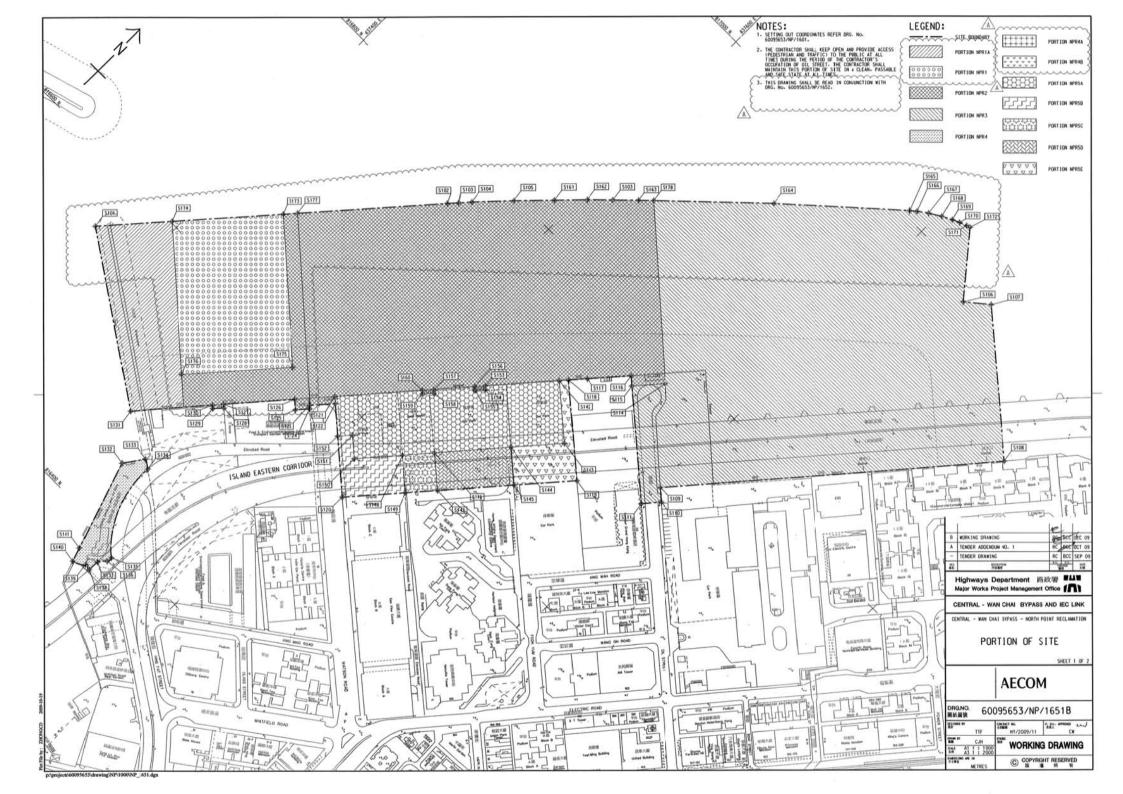
am

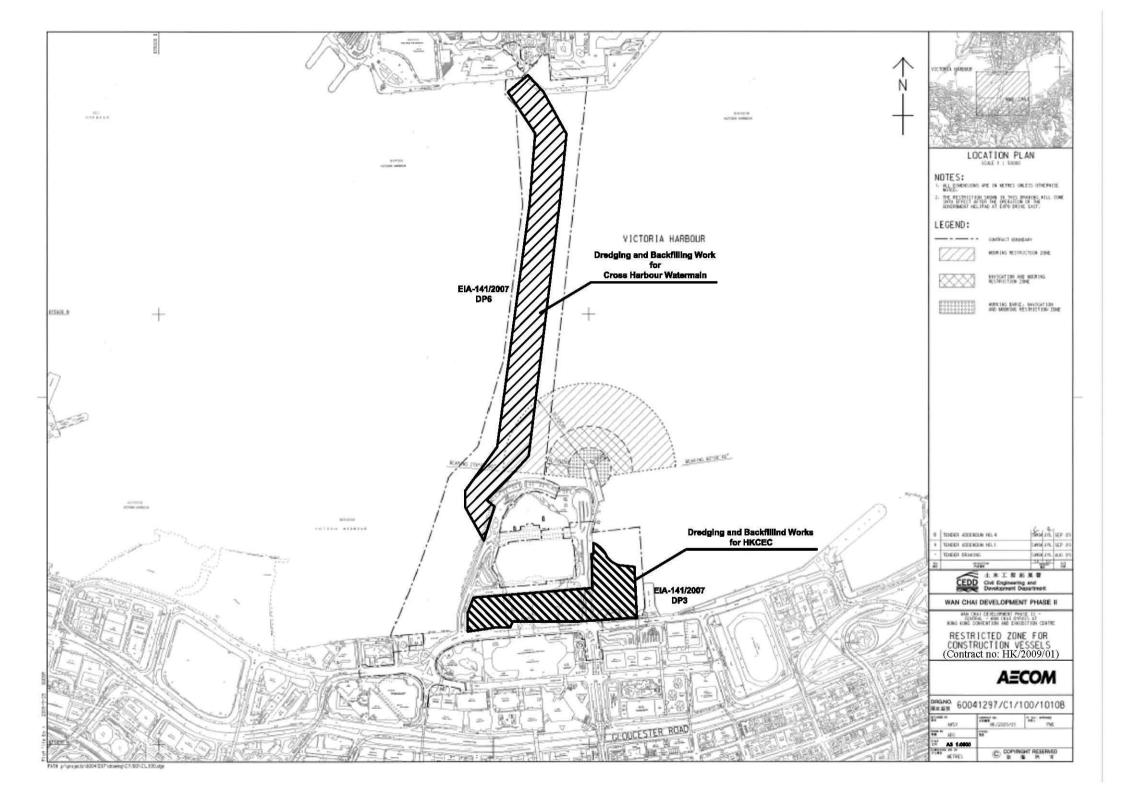
HK/2009/01 Marine Works (at Wan Chai) • Reclamation works within HKCEC Water Channel (from CH170 to CH220)	To conform the installation and
 Rockfilling for formation of rock bund within HKCEC Water Channel (from CH220 to CH230) Installation pipe pile wall for modification of vertical seawall near Expo Drive East Rockfilling at northeast of Area 9 and Area7 near Expo Drive East Bridge Demolition of Wan Chai West Ferry Pier Cross-Harbour Watermains Installation (CHA & CHB) Trust block construction, concrete coating for flange joint and rockfilling protection works for cross-harbour watermains in Victoria Harbour Reinstatement works at TST seashore including removal of silt screen and dismantling of jack-up barge Fresh Watermains, Cooling Watermains and Salt Watermains (On Land) Zone B1-5A, B2-1, B4-1A, B4-3, B5-1, B5-3, A1-1, A1-2, A1-3B, A2-2, A3-2A, A3-4B, A3-5B, A4-2A Mainlaying works at Zone B1-5A, B4-1A and B4-3 Mainlaying works at Zone B3-1 Mainlaying works at Zone B3-1 Mainlaying works at Convention Avenue in Zone A1-1, A1-2 and Zone A2-2 and the next TTA workfront for cross harbour watermains at Zone A1-2 CHWM) Mainlaying works at traffic island 	 setting as in the silt screen deployment plan Frequency spray water on the dry dusty road and on the surface of concrete breaking To cover the dusty material or stockpile by impervious sheet To space out noisy equipment and position as far as possible from sensitive receiver. To well maintain the mechanical equipments / machineries to avoid abnormal noise nuisance. Machines and plant that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum Daily visual inspection of silt screen and silt curtain to ensure its operation properly

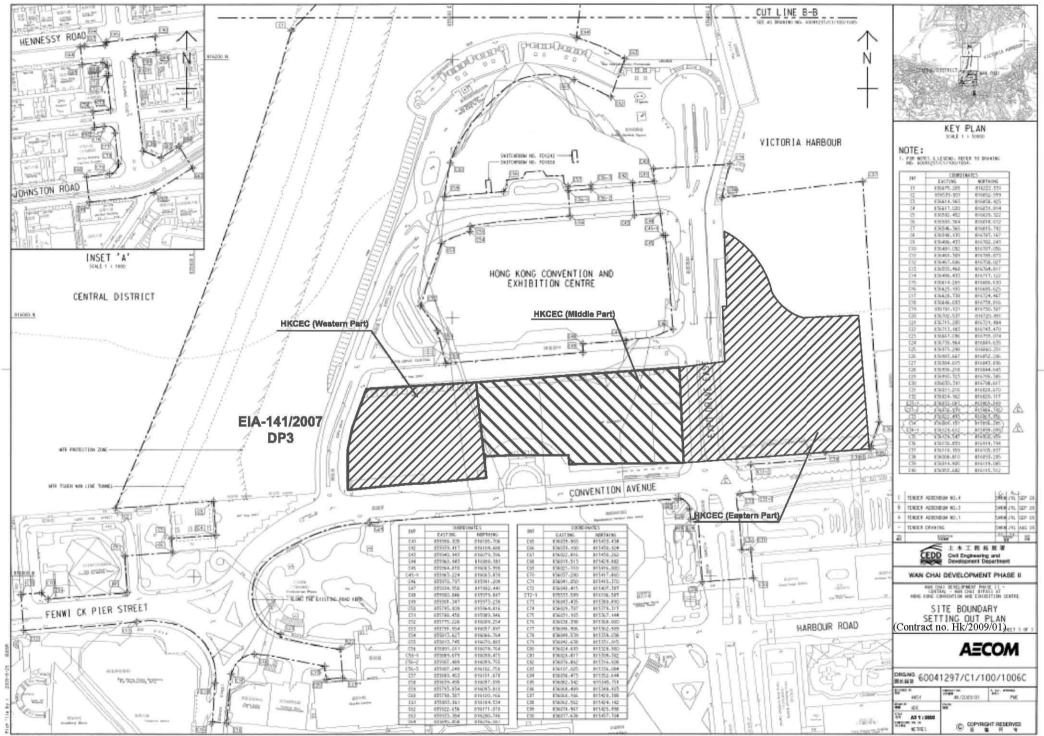
Table 10.1Construction Activities and Recommended Mitigation Measures in Coming
Reporting Month

Contract No.	Key Construction Works	Recommended Mitigation Measures
	Convention Avenue and Fenwick Pier Street	
	• Pipe laying works at Zone A3-2A would be completed and heading no. H1	
	Mainlaying works at Zone A3-5B of Fenwick Pier Street and A3-4B	
	No. H6C excavation works.	
	Pipe laying works for cross harbour watermains within HKCEC water channel	
HK/2009/02	Complete PTI modification works	To cover the dusty material or
	after completion of New Public	stockpile by impervious sheet;
	Toilet in East Island at Expo Drive East.	Frequency spray water on the dry dusty road and on the surface of concrete breaking
	 Complete the initial testing of P7, 	To well maintain the mechanical
	• Complete the initial testing of P7, P8 and P9 pumping station.	equipments / machineries to avoid
	Complete all cooling mains and	abnormal noise nuisance and dark smoke emission
	cabling works for P7, P8 & P9	• To conform the installation and
	Pumping Stations permanent	setting as in the silt screen and silt curtain deployment plan
	power-on and signal control.	Movable noise barrier shall be
	800MS pipe installation inside	deployed for demolition works
	Ex-pet Garden.	 Daily visual inspection of silt screen and silt curtain to ensure its
	ABWFs & E&M works of WSD	operation properly
	Salt Water Pumping Station.	Review silt screen deployment and silt curtain deployment and
	Conduct Fire Service Inspection	resubmit associate plans to EPD
	of WSD Salt Water Pumping Station	Implement silt screen and silt curtain in accordance with the
		associated plans submitted to EPD.
	Complete the finishing works of	
	WSD Salt Water Pumping Station.	
	Complete WSD intake A and	
	Intake B in-situ concrete work.	
	 Construction of Bay 1b – 2, Bay 	
	6 - 8 salt water intake culverts at	
	WCR1 area.	
	Continue construction salt water	
	intake culverts Bay 9 – 11 to	
	formation level at WCR1 area.	
	Commence salt water intake	

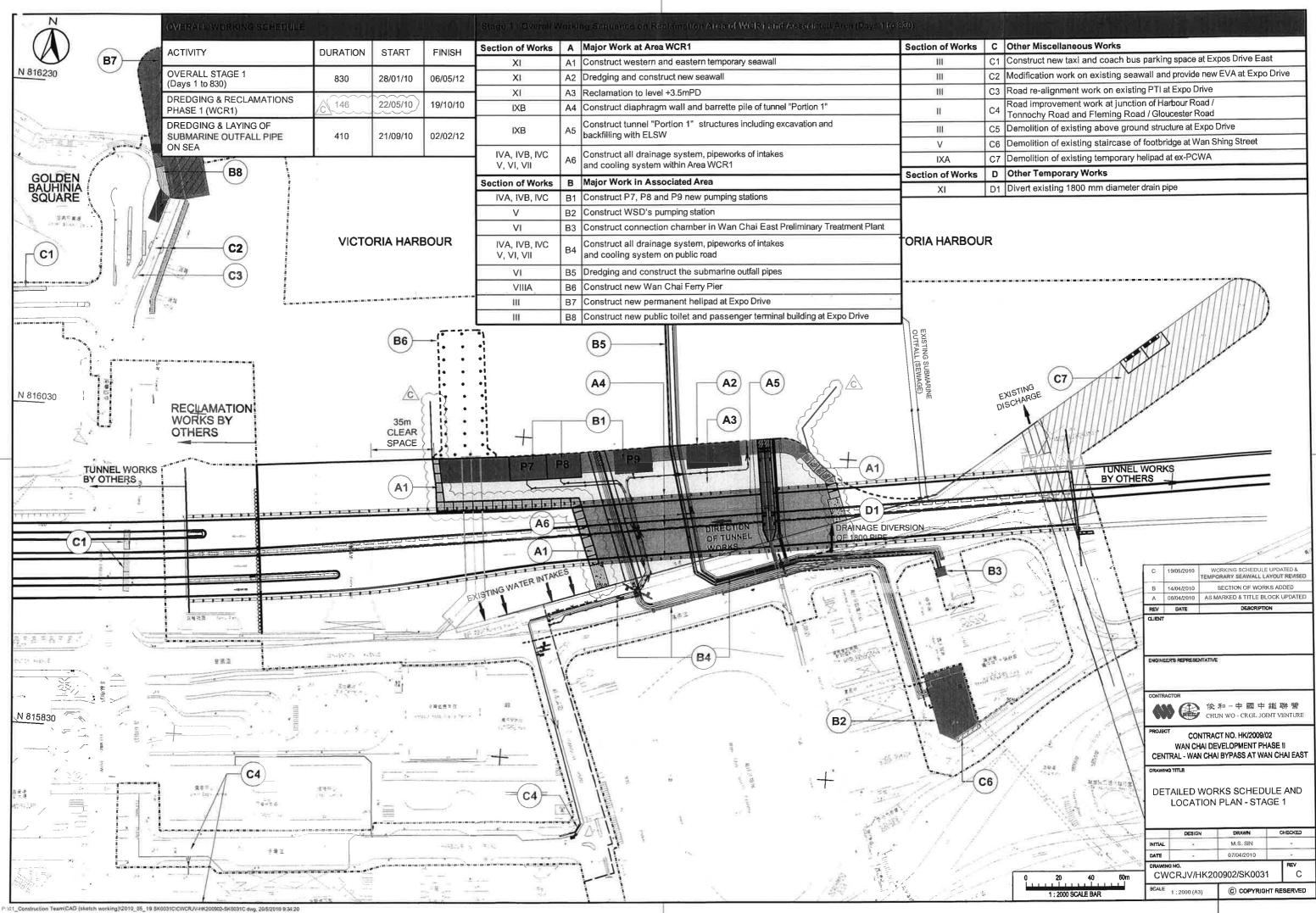


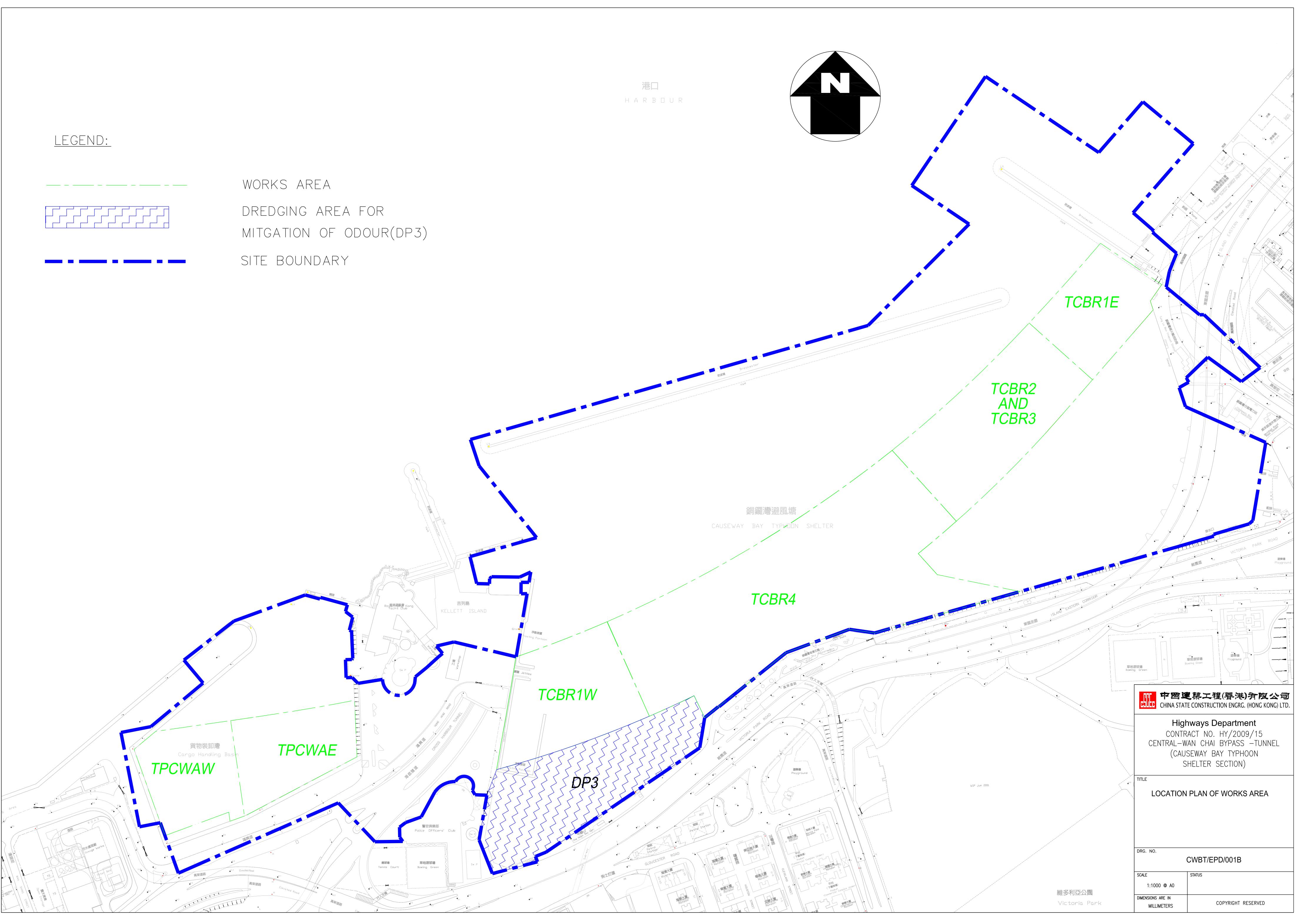

Contract No.	Key Construction Works	Recommended Mitigation Measures
Contract No.	 culvert at transition bays inside jacking pit and receiving pit. Continue remaining drainage works and reinstatement works along Wan Shing Street. Commence HDPE piping on UU Bridge and inside launching pit. Construction for Box Culvert N1 at WCR1 area. Complete concreting works for the Level 2 at the New Ferry Pier. Reclamation works at WCR2 area. Commence drainage work to suit TWCR4 construction. Diversion of uncharted drainage works at Box culvert "O". Continue trial excavation and 	Recommended Mitigation Measures
HY/2009/15	 preparation works for Hung Hing Road Diversion TZ1 reclamation works Seawall trench works at TS2 Formation of temporary seawall at TS2 Dredging at TS2 	 Watering any dust generating activities Checking all drip trays frequently and clear any stagnant water and mud inside it. Noise control measures shall be provided during restricted hours.
HK/2010/06	 Pile head breaking Sonic tube trimming 	 To conform the installation and setting as in the silt screen and silt curtain deployment plan To space out noisy equipment and position as far as possible from sensitive receiver. Daily visual inspection of silt screen and silt curtain to ensure its operation properly
HY/2009/19	 Marine bored piling Construction works for Box Culvert T 	• To conform the installation and setting as in the silt screen and silt curtain deployment plan

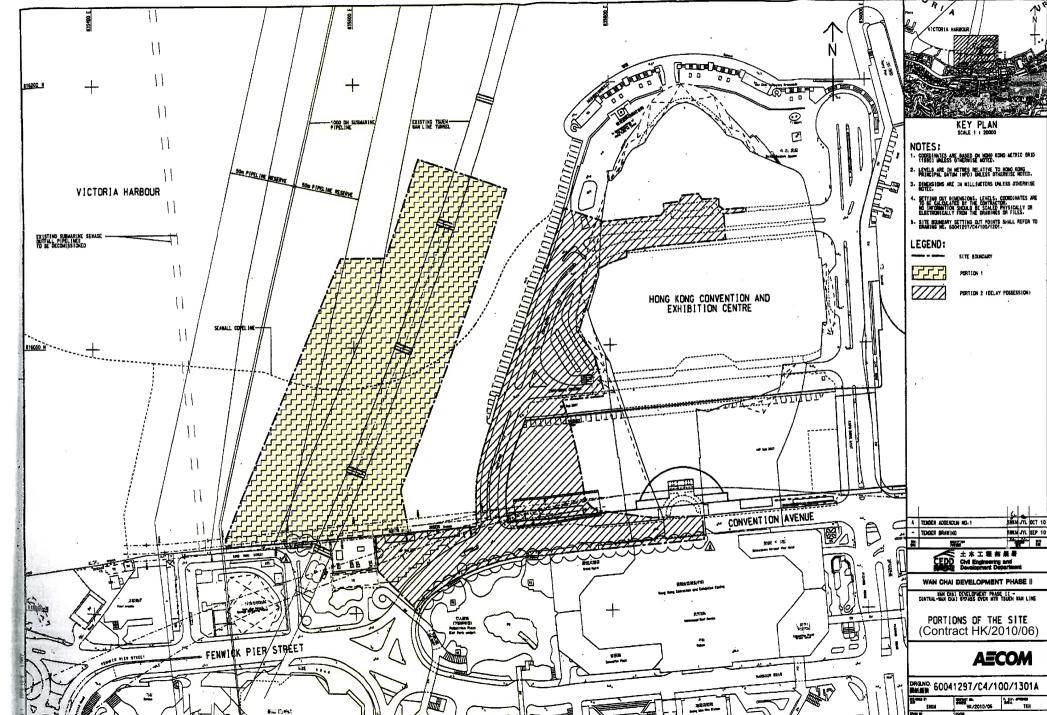



Figure 2.1

Project Layout







FATH prigrations/600482875/training/CATE/PCL.0085.eps

С	Other Miscellaneous Works
C1	Construct new taxi and coach bus parking space at Expos Drive East
C2	Modification work on existing seawall and provide new EVA at Expo Drive
C3	Road re-alignment work on existing PTI at Expo Drive
C4	Road improvement work at junction of Harbour Road / Tonnochy Road and Fleming Road / Gloucester Road
C5	Demolition of existing above ground structure at Expo Drive
C6	Demolition of existing staircase of footbridge at Wan Shing Street
C7	Demolition of existing temporary helipad at ex-PCWA
D	Other Temporary Works
D1	Divert existing 1800 mm diameter drain pipe

(,`

THE AT 111000

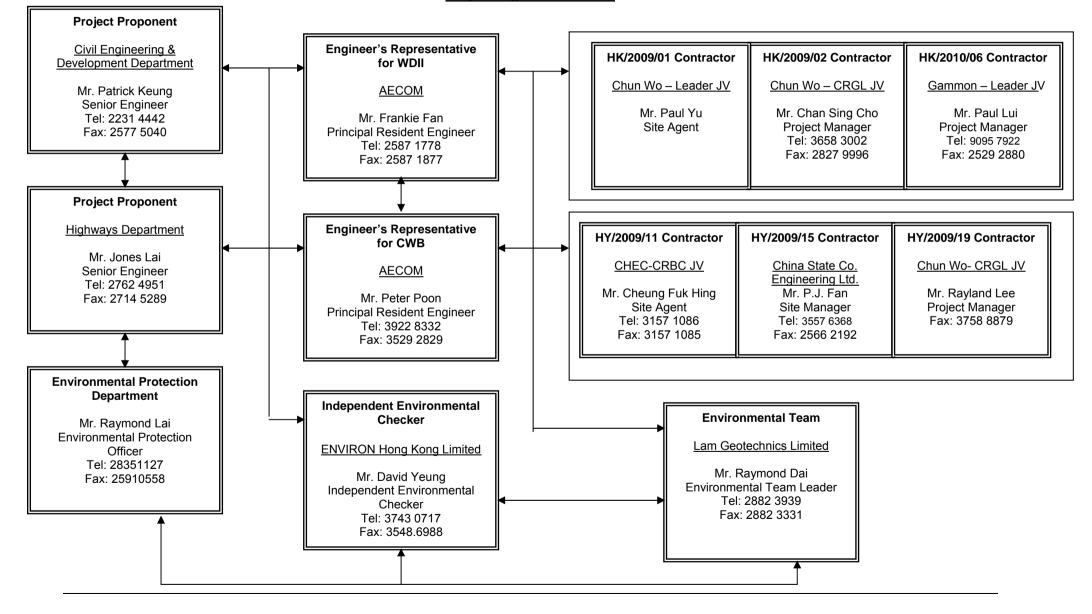
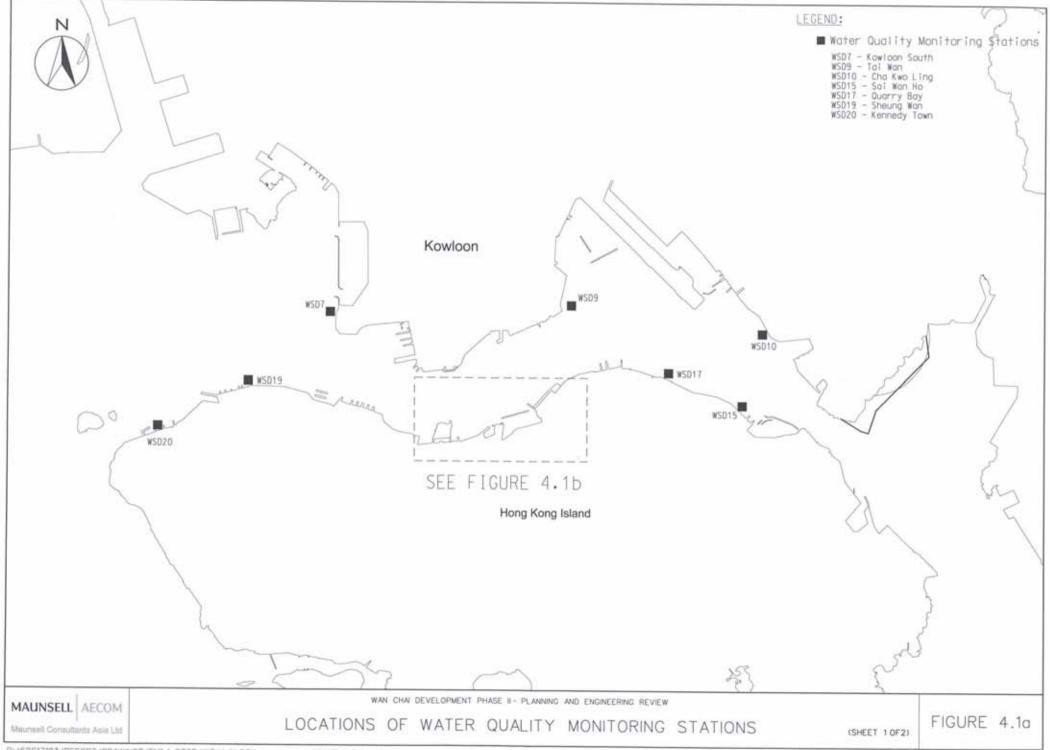
COPYRIGHT RESERVED

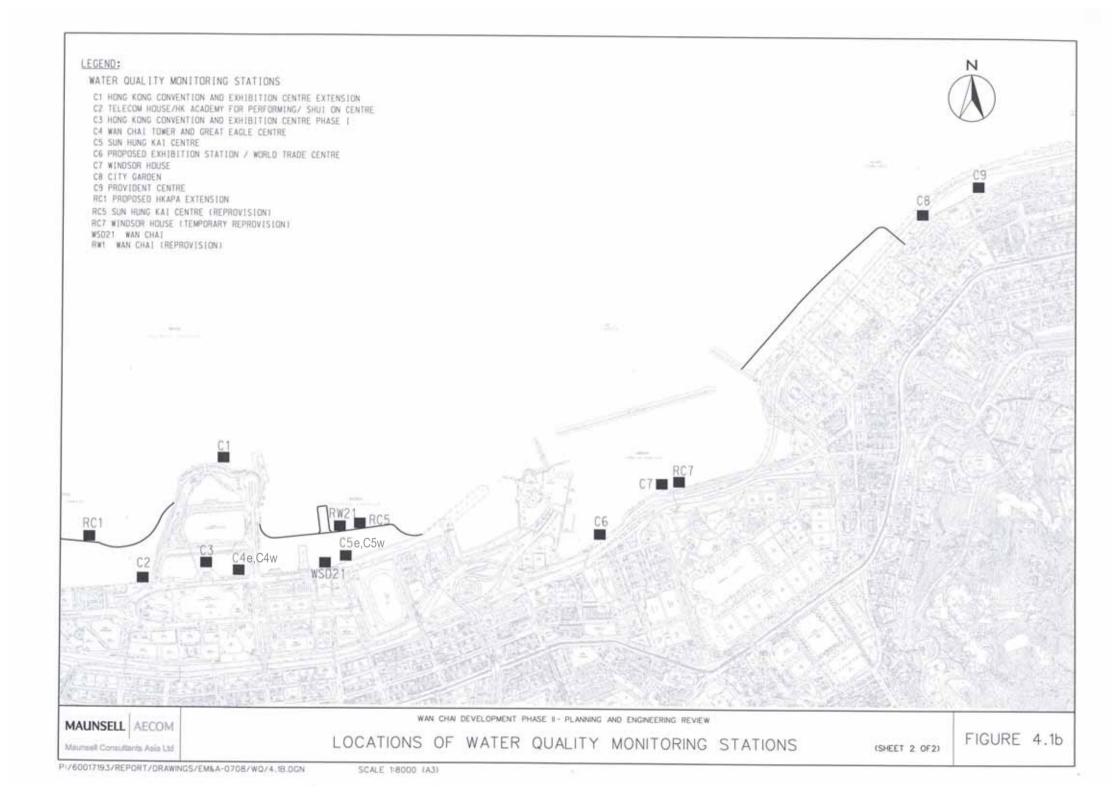
En Catta THE PERSONAL ADDR

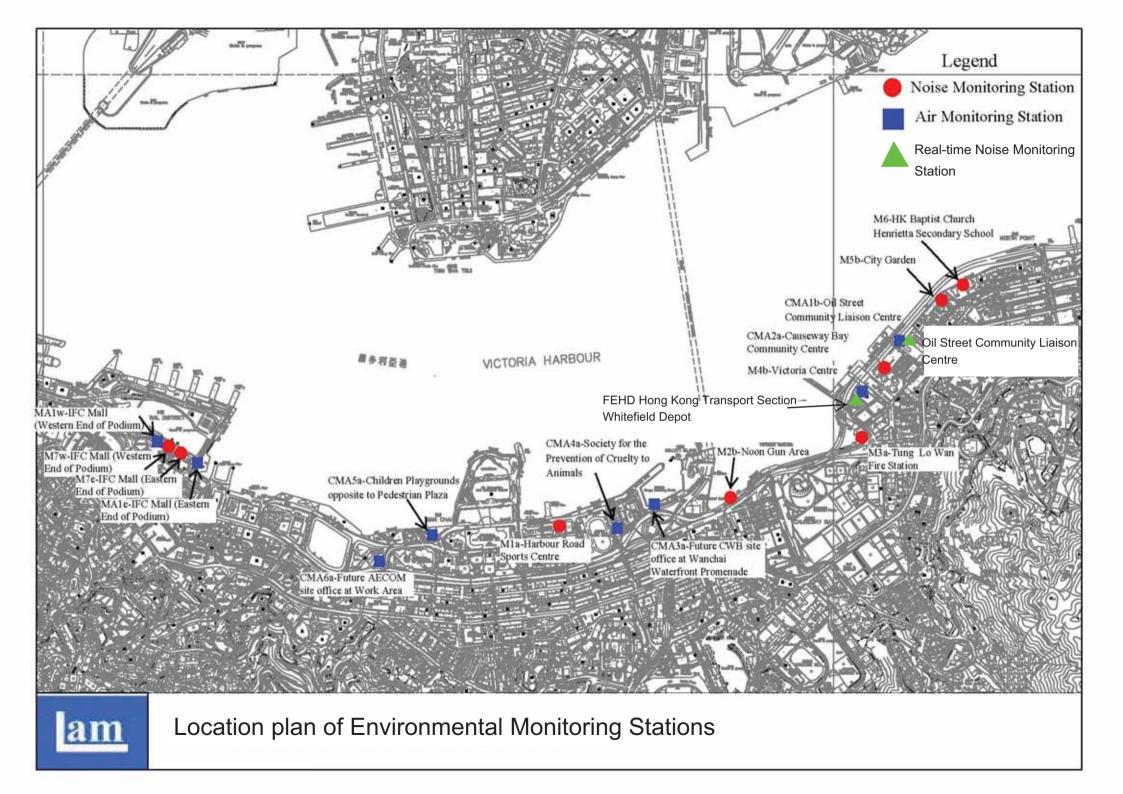
Figure 2.2

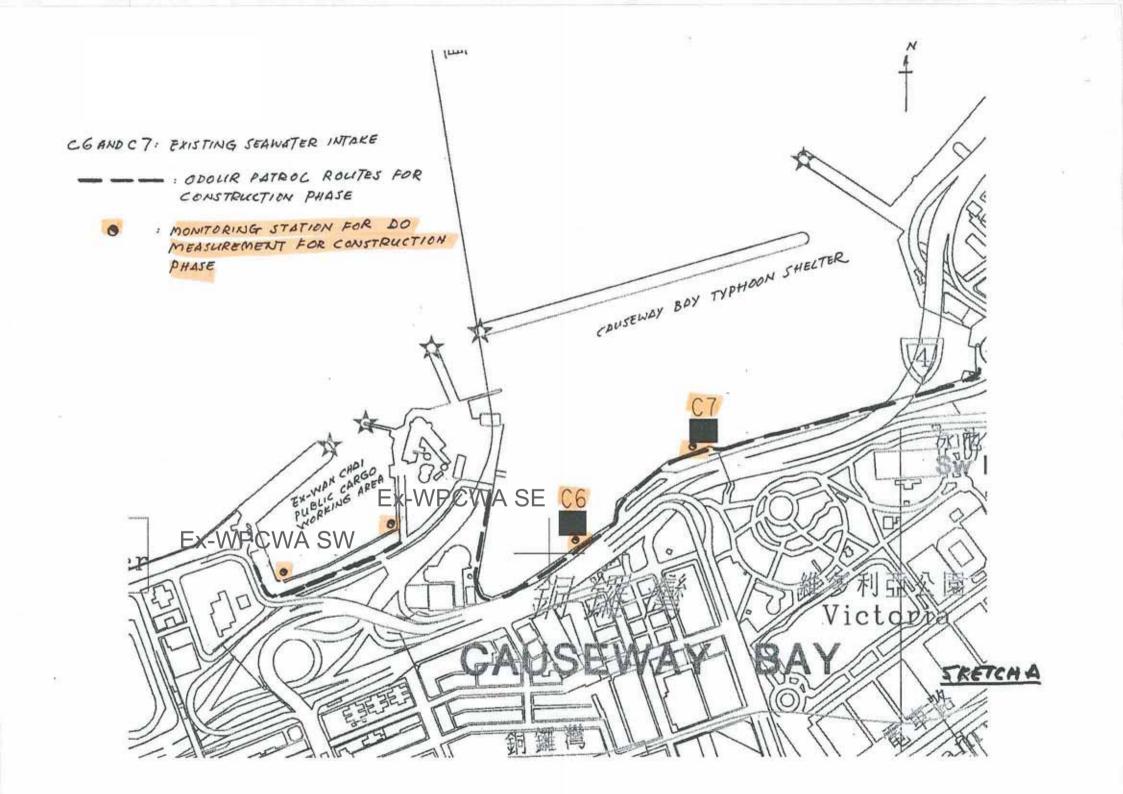
Project Organization Chart

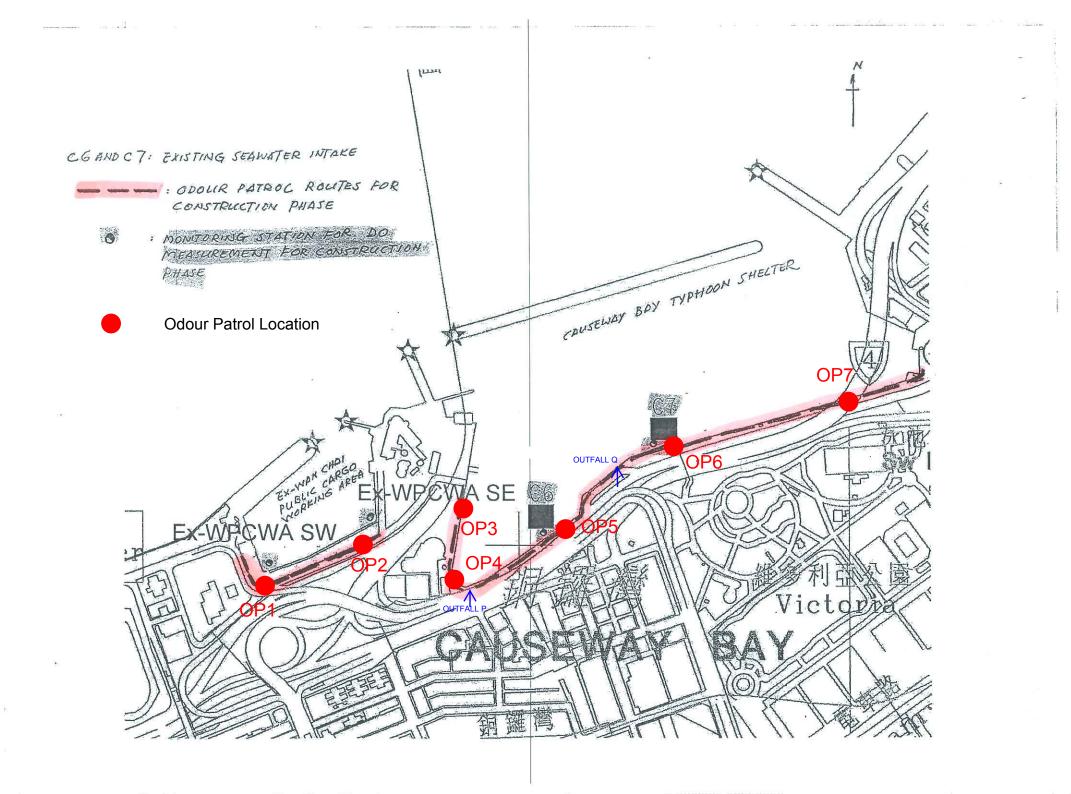
Project Organization Chart


Figure 2.3


Locations of Monitoring Stations




P:/60017193/REPORT/DRAWINGS/EM&A-0708/W0/4.1A.DGN

SCALE: N.T.S. (A3)

Appendix 3.1

Environmental Mitigation Implementation Schedule

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Implementation	Schedule for Ai	r Quality Control
----------------	-----------------	-------------------

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	tion / Timing Implementation	In		entati ges*	on	Relevant Legislation
			Agent	Des	С	0	Dec	and Guidelines
Constructio								
For the Wh								
\$3.6.5	Four times a day watering of the work site with active operations.	Work site / during construction	Contractor		V			EIAO-TM
S3.8.1	 Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimise cumulative dust impacts. Strictly limit the truck speed on site to below 10 km per hour and water spraying to keep the haul roads in wet condition; Watering during excavation and material handling; Provision of vehicle wheel and body washing facilities at the exit points of the site, combined with cleaning of public roads where necessary; and Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. 	Work site / during construction	Contractor		V			

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Implementation Stages*				Relevant Legislation
	Zivi omenu i receion irensu es / ringuion irenou es	Location / Thining	Agent	Des	С	0	Dec	and Guidelines
S3.5.6	For the dredging activities carried out in the vicinity of Police Officers' Club, the dredging operation will be restricted to only 1 small close grab dredger to minimise the odour impact during the dredging activity. The dredging rate should be reduced as much as practicable for the area in close proximity to the Police Officers' Club. The sediments contain highly contaminated mud which may be disposed with the use of geosynthetic containers (details shall refer to Section 6), grab dredger has to be used for filling up the geosynthetic containers on barges. the dredging rate for the removal of the sediments at the south-west corner of the typhoon shelter shall be slowed down or restricted to specific non-popular hours in weekdays when it is necessary during construction.	Corner of CBTS/implementation of harbour-front enhancement	CEDD <u>1</u>		1			EIAO-TM
S3.8.8	Carry out dredging at the corner of CBTS to remove the sediment and clean the slime attached on the CBTS shoreline seawall	Corner of CBTS & CBTS shoreline seawall/implementation of harbour-front enhancement	CEDD ²		V			EIAO-TM
Operation 1	Phase	L						
For the Wh								

¹ CEDD will identify an implementation agent.

² CEDD will identify an implementation agent.

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Implementation Stages*				Relevant Legislation
201100		Liotation / Thing	Agent	Des	С	0	Dec	and Guidelines
S3.10.2	Monthly (from July to September) monitoring of odour impacts, for a period of 5 years, is proposed during the operational phase of the Project to ascertain the effectiveness of the Enhancement Package over time, and to monitor any on- going odour impacts at the ASRs.	Planned ASRs (CBTS Breakwater)/First 5-year period of operation phase	CEDD ¹			V		EIAO-TM
For DP1 -	CWB (Within the Project Boundary)							
\$3.6.53 – \$3.6.54	The design parameters of the East and Central Ventilation Buildings as set in Tables 3.10 and 3.11	East and Central Ventilation Buildings / During operation of the Trunk Road	HyD			V		
\$3.10.2	Air quality monitoring for the operation performance of the East Ventilation Building and associated East Vent Shaft will be conducted.	East Vent Shaft / During operation of the East Ventilation Building and associated East Vent Shaft	HyD			V		EIAO-TM

• Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

Table A13.2 Implementation Schedule for Noise Control

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	In	1 .	entati ges*	Relevant Legislation	
				Des	С	0	Dec	and Guidelines
Construction Phase								
For the Whe	ole Project							

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation and Guidelines
		Location / Thining	Agent	Des	С	0	Dec	
S4.9.4	 Good Site Practice: Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program. Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program. Mobile plant, if any, shall be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use shall be shut down between works periods or shall be throttled down to a minimum. Plant known to emit noise strongly in one direction shall, 	Work Sites / During Construction	Contractor	Des	V	0	Dec	EIAO-TM, NCO
	 wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from onsite construction activities. 							

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
		8	Agent	Des	С	0	Dec	and Guidelines
\$4.8.3 – \$4.8.5	 Use of quiet powered mechanical equipment, movable noise barrier and temporary noise barrier for the following tasks: Slip road 8 tunnel Construction of diaphragm wall and substructures of the tunnel approach ramp Excavation Construction of slabs Backfill Demolition and construction of substructures for the IEC Demolition works of existing piers and crossheads of the marine section of the existing IEC Use of PME grouping for the following tasks: At-grade road construction Substructure for IECL connection 	Work Sites / During Construction	Contractor		V			EIAO-TM, NCO
For DP2 –	WDII Major Roads (Road P2)							
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment, movable noise barrier and temporary noise barrier for the following tasks: • Temporary road diversion • Resurfacing • At-grade roadwork	Work Sites / During Construction	Contractor		V			EIAO-TM, NCO
For DP3 -	Reclamation Works							
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment for the following task: Filling behind seawall Seawall construction	Work Sites / During Construction	Contractor		V			EIAO-TM, NCO

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	Relevant Legislation	
Lintitei	Environmental Protection Measures / Mitigation Measures	Location / Thining	Agent	Des	С	0	Dec	and Guidelines
For DP5 –	Wan Chai East Sewage Outfall							
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment for the following tasks: • Submarine pipelines (marine section)	Work Sites / During Construction	Contractor		V			EIAO-TM, NCO
	Use of quiet powered mechanical equipment and movable noise barrier for the following tasks:Installation of a new pipeline (land section)							
For DP6 -	Cross-Harbour Water Mains from Wan Chai to Tsim Sha Tsui							
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment for the following tasks: • Submarine pipelines (marine section) •	Work Sites / During Construction	Contractor					EIAO-TM, NCO

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
			Agent	Des	С	0	Dec	and Guidelines
Operation 1	Phase							
For DP1 –	CWB (Within the Project Boundary)							

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
			Agent	Des	С	0	Dec	and Guidelines
S4.8.14 – S4.8.18	 For Existing NSRs about 235m length of noise semi-enclosure with transparent panel covering the westbound slip road from the IEC about 230m length of noise semi-enclosure with transparent panel covering the main carriageways (eastbound and westbound) of the CWB and IEC about 135m length of 5.5m high cantilevered noise barrier with 3m cantilever inclined at 45° with transparent panel on the eastbound slip road to the IEC about 95m length of 5.5m high cantilevered noise barrier with 1m cantilever inclined at 45° with transparent panel on the eastbound slip road to the IEC about 95m length of 3.5m high vertical noise barrier with 1m cantilever inclined at 45° with transparent panel on the eastbound slip road to the IEC about 350m length of 3.5m high vertical noise barrier with transparent panel on the eastbound slip road to the IEC low noise road surfacing for the trunk road (except tunnel section and beneath the landscaped deck at the eastern portal area) with speed limit of 70 km/hour For Future/Planned NSRs about 265m length of noise semi-enclosure with transparent panel covering the westbound slip road from the IEC 	Near North Point / Before commencement of operation of road project In between the Electric Centre (next to City Garden) and CDA(1) site / Before occupation of Planned NSRs in CDA and CDA(1) sites.	HyD	1	√ √#	1		EIAO-TM

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	es / Mitigation Measures Location / Timing	Implementation	In	nplem Sta	entati ges*	Relevant Legislation	
			Agent	Des	С	0	Dec	and Guidelines
	• The openable windows of the temple, if any, should be	Near Causeway Bay Fire	Project					
	orientated so as to avoid direct line of sight to the existing	Station / During detailed	Proponent for					
	Victoria Park Road as far as practicable.	design of the re-	the					
		provisioned Tin Hau	re-provisioned					
		Temple	Tin Hau Temple					

* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

[#] Only the steel frame for this section of noise semi-enclosure would be erected in advance during the construction of the westbound slip road.

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Table A13.3 Implementation Schedule for Water Quality Control

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	Implement Stages			on	Relevant Legislation
		Timing	Agent	Des	С	0	Dec	and Guidelines
Constructio	on Phase							
For DP3 – Boundary)	Reclamation Works, DP5 (Wan Chai East Sewage Outfall), DP6 (Cross-Harbo	our Water Mains	from Wan Chai to T	Tsim Sh	a Tsu	i), DP.	1 - CW	B (within the Project
\$5.8	A phased reclamation approach is planned for the WDII. Containment of fill within each of the reclamation phases by seawalls is proposed, with the seawall constructed first (above high water mark) with filling carried out behind the completed seawalls. Any gaps that may need to be provided for marine access will be shielded by silt curtains to control sediment plume dispersion away from the site. Filling for seawall construction should be carried out behind the silt curtain	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
\$5.8	 Dredging shall be carried out by closed grab dredger for the following works: Seawall construction in all the reclamation areas; Construction of the CWB Tunnel Construction of the proposed WSD water mains; and Construction of the proposed Wan Chai East sewage outfall pipelines. 	Work site / During the construction period	Contractor		\checkmark			EIAO-TM, WPCO
S5.8, Figure 5.3	 Dredging for the Wan Chai East sewage outfall pipelines shall not be carried out concurrently with the following activities: Dredging along the proposed cross-harbour water mains; Dredging along the seawall in the Wan Chai Reclamation (WCR) zone (area between HKCEC Extension and PCWA). 	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / I	Mitigation M	Acasures		Location /	Implementation	In		entati ges*	ion	Relevant Legislation
	Environmental Frotection freusares /	sincigation is	icusuics		Timing	Agent	Des	С	0	Dec	and Guidelines
S5.8	The water body behind the temporary rec typhoon shelter shall not be fully enclose		ithin the o	Causeway Bay	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
S5.8	As a mitigation measure, to avoid the acc within the temporary embayment be impermeable barrier, suspended from a and extending down to the seabed, will the HKCEC1 commences. The bar discharge flows from Culvert L to the contractor will maintain this barrier HKCEC2W are carried out and the new 0	etween CRII floating boor be erected b rier will ch e outside of until the	II and I m on the by the cor- nannel the the emb reclamati	HKCEC1, an water surface ntractor before he stormwater ayment. The ion works in	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
S5.8, Figure 5.3	The total dredging rates in each of the marine works zones shall not be more than the maximum production rates stated in the table below. These are the production rates without considering the effect of silt curtain.				Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
	Reclamation Area	m ³ per day (fo		Maximum Dredging Rate (m ³ per week)							
	Dredging along seawall or breakwater										
	North Point Shoreline Zone (NPR)	6,000	375	42,000							
	Causeway Bay TBW	1,500	94	10,500							
	Shoreline Zone TCBR	6,000	375 313	42,000							
	PCWA Zone	5,000	313	35,000							

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures		Location /	Implementation	In		entati ges*	ion	Relevant Legislation		
EIA KU	Environmental Frotection Measures /	unugano	in wreasures		Timing	Agent	Des	С	0	Dec	and Guidelines
	Wan Chai Shoreline Zone (WCR)	6,000	375	42,000							
	HKCEC Shoreline Zone HKCEC Stage 1 & 3 (HKCEC) HKCEC Stage 2	1,500	94 375	10,500 42,000							
	Cross Harbour Water Mains	1.500	94	10,500							
	Wan Chai East Submarine Sewage Pipeline	1,500	94	10,500							
	Note: 1,500 m ³ per day shall be app seawall of WCR1.										
S5.8, Figure 5.3	Dredging along the seawall at WCF 1,500m ³ per day for construction of th proximity of the WSD intake), followed western seawall (above high water man much as possible from further dredging	e western by partial k) to pro	seawall (wh seawall con	nich is in close struction at the	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
S5.8, Figure 5.3	much as possible from further dredging activities. For dredging within the Causeway Bay typhoon shelter, seawall shall be partially constructed to protect the nearby seawater intakes from further dredging activities. For example, at TCBR1W, the southern and eastern seawalls shall be constructed first (above high water mark) so that the seawater intakes at the inner water would be protected from the impacts from the remaining dredging activities along the northern boundary.				Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
S5.8, Figure 5.3	Silt curtains shall be deployed aroun seawall dredging and seawall trench fi TCBR and NP.				Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
S5.8, Figure 5.3	Silt screens shall be applied to seawater as stated below: Interim Construction Stage Scenario 2A in early WSD saltway	pplicatio	ns	struction stages	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO
	2009 with concurrent Bay, Sheung dredging activities at Cooling wat	Wan, Wan er intakes	Chai, Kowloo for Hong Ko								

Appendix 3.1

Monthly EM&A Report

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Implementation Location / Implementation **Relevant Legislation** Stages* EIA Ref **Environmental Protection Measures / Mitigation Measures** Timing Agent and Guidelines Des С 0 Dec TBW, NP and Water Convention and Exhibition Centre Phase I, Telecom Mains Zone House / HK Academy for Performing Arts / Shun On Centre, Wan Chai Tower / Revenue Tower / Immigration Tower and Sun Hung Kai Centre **Scenario 2B** 2009/2010 in late WSD saltwater intakes at Sheung Wan, Wan Chai with Cooling water intakes for Queensway Government Offices, Excelsior Hotel, World Trade Centre and concurrent dredging activities Sewage Windsor House. at Zone Pipelines and TCBR. Scenario 2C in 2011 with WSD saltwater intakes at Sheung Wan and Reprovisioned WSD Wan Chai saltwater intake. concurrent dredging activities at HKCEC and Cooling water intakes for MTR South, Excelsion Hotel & World Trade Centre and reprovisioned TCBR. Windsor House. ProPECC PN 1/94; S5.8 Work site / Contractor $\sqrt{}$ Other mitigation measures include: WPCO (TM-DSS) During the mechanical grabs, if used, shall be designed and maintained to avoid ٠ construction spillage and sealed tightly while being lifted. For dredging of any period contaminated mud, closed watertight grabs must be used; all vessels shall be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; • all hopper barges and dredgers shall be fitted with tight fitting seals to their bottom openings to prevent leakage of material; construction activities shall not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds; loading of barges and hoppers shall be controlled to prevent splashing of dredged material into the surrounding water. Barges or hoppers shall not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation; and

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	In		entati ges*	on	Relevant Legislation and Guidelines
		Timing	Agent	Des	С	0	Dec	and Guidelines
	 before commencement of the reclamation works, the holder of Environmental Permit has to submit plans showing the phased construction of the reclamation, design and operation of the silt curtain. 							
S5.8	Silt screens are recommended to be deployed at the seawater intakes during the reclamation works period. Installation of silt screens at the seawater intake points may cause a potential for accumulation and trapping of pollutants, floating debris and refuse behind the silt screens and may lead to potential water quality deterioration at the seawater intake points. Major sources of pollutants and floating refuse include the runoff and storm water discharges from the nearby coastal areas. As a mitigation measure to avoid the pollutant and refuse entrapment problems and to ensure that the impact monitoring results are representative, regular maintenance of the silt screens and refuse collection shall be performed at the monitoring stations at regular intervals on a daily basis. The Contractor shall be responsible for keeping the water behind the silt screen free from floating rubbish and debris during the impact monitoring period.	Work site / During the construction period	Contractor		V			EIAO-TM, WPCO

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	Implementation Stages*				Relevant Legislation and Guidelines
		Timing	Agent	Des	С	0	Dec	and Guidelines
S5.8	Dredging of contaminated mud is recommended as a mitigation measures for control of operational odour impact from the Causeway Bay typhoon shelter. In recognition of the potential impacts caused by dredging activities close to the seawater intakes, only 1 small close grab dredger shall be operated within the typhoon shelter (for the dredging to mitigate odour impact) at any time to minimize the potential impact. Double silt curtains shall be deployed to fully enclose the closed grab dredger during the dredging operation. In addition, an impermeable barrier, suspended from a floating boom on the water surface and extended down to the seabed, shall be erected to isolate the adjacent intakes as much as possible from dredging activities. For example, if dredging is to be carried out at the southwest corner of the typhoon shelter, physical barriers shall be erected to west of the cooling water intake for Excelsior Hotel so that the intake would be shielded from most of the SS generated from the dredging operation to the west of the intake. For area in close proximity of the cooling water intake point, the dredging operations. Daily monitoring of SS at the cooling water intake shall be carried out, and 24 hour monitoring of turbidity at the intakes shall be implemented during the dredging activities. If the monitoring results indicate that the dredging operation has caused significant changes in water quality conditions at the seawater intakes, appropriate actions shall be taken to stop the dredging and mitigation measures such as slowing down the dredging rate shall be implemented.	Causeway Bay typhoon shelter/Imple mentation of harbour-front enhancement.	CEDD <u>3</u>					WPCO

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation Agent	In		entati ges*	ion	Relevant Legislation
EIA KU	Environmental Procedon Measures / Mitigation Measures	Timing		Des	С	0	Dec	and Guidelines
For the Wh	ole Project							
S5.8	Construction Runoff and Drainage	Work site	Contractor		\checkmark			ProPECC PN 1/94;
	 use of sediment traps, wheel washing facilities for vehicles leaving the site, and adequate maintenance of drainage systems to prevent flooding and overflow; 	/ During the constructi on period						WPCO (TM-DSS)
	• Permanent drainage channels shall incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities shall be based on the guidelines in Appendix A1 of ProPECC PN 1/94;	1						
	 a sediment tank constructed from pre-formed individual cells of approximately 6 - 8 m3 capacity can be used for settling ground water prior to disposal; 							
	• oil interceptors shall be provided in the drainage system for the tunnels and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor shall have a bypass to prevent flushing during periods of heavy rain;							
	 precautions and actions to be taken when a rainstorm is imminent or forecast, and during or after rainstorms. Particular attention shall be paid to the control of any silty surface runoff during storm events; 							
	 on-site drainage system shall be installed prior to the commencement of other construction activities. Sediment traps shall be installed in order to minimise the sediment loading of the effluent prior to discharge; 							
	 All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge shall be adequately designed for the controlled release of storm flows. All sediment control measures shall be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage shall be reinstated to its original condition when the construction work is finished or the temporary diversion is no longer 							

³ CEDD will identify an implementation agent.

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	In		entati ges*	on	Relevant Legislation
LIITIKI	Environmental Protection Measures / Mitigation Measures	Timing	Agent	Des	С	0	Dec	and Guidelines
	 required. All fuel tanks and store areas shall be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity. 							
	• Minimum distances of 100 m shall be maintained between the storm water discharges and the existing or planned WSD flushing water intakes during construction phase.							
\$5.8	Sewage from Construction Work Force Construction work force sewage discharges on site shall be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage shall be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor shall also be responsible for waste disposal and maintenance practices.	Work site / During the construction period	Contractor		V			ProPECC PN 1/94; WPCO (TM-DSS)
S5.8	<i>Floating Debris and Refuse</i> Collection and removal of floating refuse shall be performed at regular intervals on a daily basis. The contractor shall be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish.	Work site and adjacent water / During the construction period.	Contractor		\checkmark			WPCO

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	In	nplem Sta	entati ges*	Relevant Legislation	
		Timing	Agent	Des	С	0	Dec	and Guidelines
S5.8	Storm Water Discharges Minimum distances of 100 m shall be maintained between the existing or planned stormwater discharges and the existing or planned WSD flushing water intakes.	Work site and adjacent water / During the design and construction period.	Contractor	V	V			WPCO
Operation	Phase		I					
	B (within the Project Boundary)				I.		T	
S5.8	 For the operation of CWB, a surface water drainage system would be provided to collect road runoff. The following operation stage mitigation measures are recommended to ensure road runoff would comply with the TM under the WPCO: The drainage from tunnel sections shall be directed through petrol interceptors to remove oil and grease before being discharged to the nearby foul water manholes. 	CWB/During design and operational period	HyD/TD ³	V		V		WPCO
	• Petrol interceptors shall be regularly cleaned and maintained in good working condition.							
	 Oily contents of the petrol interceptors shall be properly handled and disposed of, in compliance with the requirements of the Waste Disposal Ordinance. 							
	• Sewage arising from ancillary facilities of CWB (for examples, car park,							

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location /	Implementation	In	nplem Stag		on	Relevant Legislation
		Timing	Agent	Des	С	0	Dec	and Guidelines
	 control room, ventilation and administration buildings and tunnel portals) shall be connected to public sewerage system. Sufficient capacity in public sewerage shall be made available to the proposed facilities. Road drainage shall also be provided with adequately designed silt trap to minimize discharge of silty runoff. The design of the operational stage mitigation measures for CWB shall take into account the guidelines published in ProPECC PN 5/93 "Drainage Plans subject to Comment by the EPD." All operational discharges from the CWB into drainage or sewerage systems are required to be licensed by EPD under the WPCO. 							

* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

³ if employ Management, Operation and Maintenance (MOM) Contract

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Table A13.4 Implementation Schedule for Waste Management

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	In	nplem Sta	entati ges*	ion	Relevant Legislation	
2		Location / Thinng		Des	С	0	Dec	and Guidelines	
Constructio	on Phase								
For DP3 –	Reclamation Works								
	Marine Sediments	Work site / During the construction period	Contractor		V			ETWB TCW No. 34/2002	
86.7.2	The dredged marine sediments would be loaded onto barges, transported to and disposed of at the designated disposal sites at South of Cheung Chau, East of Ninepin, East of Tung Lung Chau, South of Tsing Yi or East of Sha Chau to be allocated by the MFC depending on their level of contamination or at other disposal sites after consultation with the MFC and EPD. In accordance with the ETWB TCW No. 34/2002, the contaminated material must be dredged and transported with great care. The mitigation measures recommended in Section 5 of the EIA Report shall be incorporated. The dredged contaminated sediment must be effectively isolated from the environment upon final disposal and shall be disposed of at the Type 2 confined marine disposal contaminated mud pit.								
86.7.3	Based on the biological screening results, the Category H (>10xLCEL) sediment which failed the biological testing would require Type 3 special disposal. The volume of Category H sediment from the Causeway Bay typhoon shelter which would require special disposal arrangements is estimated to be approximately 0.05 Mm ³ . A feasible containment method is proposed whereby the dredged sediments are sealed in geosynthetic containers and, at the disposal site, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping, thereby meeting the requirements for fully confined mud disposal.								

Appendix 3.1

Monthly EM&A Report

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Implementation Implementation **Relevant Legislation** Stages* Environmental Protection Measures / Mitigation Measures EIA Ref Location / Timing and Guidelines Agent Des С 0 Dec S6.7.5 It will be the responsibility of the Contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, at least 3 months prior to the dredging contract being tendered During transportation and disposal of the dredged marine sediments requiring Type 1 and Type 2 disposal, the following measures shall be taken to minimise potential impacts on water S6.7.6 quality: Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage of material. Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Implementation Stages*			Relevant Legislation	
	Za nomentar i secono i reasures / mitigation measures	Lookidon / Thining	Agent	Des	С	0	Dec	and Guidelines
	 Monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. Barges or hopper barges shall not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation. 							
\$6.6.12	<i>Floating Refuse</i> During the construction phase, the project proponent's contractor will be responsible for the collection of any refuse within their works area. Floating booms will be provided on the water surface to confine the refuse from the working barges as well as to avoid the accumulation of pollutants within temporary embayment as mentioned in Table 13.3.	Work site / During the construction period	Contractor		V			

For the Whole Project

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing Implementation		Implementation Stages*				Relevant Legislation
	2	Lookiton, Thing	Agent	Des	С	0	Dec	and Guidelines
S6.7.7	 Good Site Practices Recommendations for good site practices during the construction activities include: nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site; training of site personnel in proper waste management and chemical waste handling procedures; provision of sufficient waste disposal points and regular collection for disposal; appropriate measures to minimise windblown litter and dust during transporting wastes in enclosed containers; regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and a recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites). 	Work site / During the construction period	Contractor		V			Waste Disposal Ordinance (Cap.354)

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	Relevant Legislation	
-		Location / Thining	Agent	Des	С	0	Dec	and Guidelines
S6.7.8	 Waste Reduction Measures Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; 	Work site / During planning and design stage, and construction stage	Contractor	V	V			
	 to encourage collection of aluminium cans, PET bottles and paper, separate labelled bins shall be provided to segregate these wastes from other general refuse generated by the work force; 							
	• any unused chemicals or those with remaining functional capacity shall be recycled;							
	 use of reusable non-timber formwork, such as in casting the tunnel box sections, to reduce the amount of C&D material. 							
	 prior to disposal of C&D waste, it is recommended that wood, steel and other metals shall be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; 							
	• proper storage and site practices to minimise the potential for damage or contamination of construction materials; and							
	 plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. 							

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	Implementation Stages*				Relevant Legislation
21111101		Location / Thinng	Agent	Des	С	0	Dec	and Guidelines
S6.7.10	General Refuse General refuse shall be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector shall be employed by the contractor to remove general refuse from the site, separately from C&D material. A collection area shall be provided where wastes can be stored and loaded prior to removal from site. An enclosed and covered area is recommended to reduce the occurrence of 'wind blow' light material.	Work site / During the construction period	Contractor		V			Public Health and Municipal Services Ordinance (Cap. 132)
\$6.7.11	Chemical Wastes After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) shall be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals shall be collected by a licensed collector for disposal at the CWTF or other licensed facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work site / During the construction period	Contractor		V			Waste Disposal (Chemical Waste) (General) Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes
\$6.7.12	Construction and Demolition Material C&D material shall be sorted on-site into inert C&D material (that is, public fill) and C&D waste. All the suitable inert C&D material shall be broken down to 250 mm in size for reuse as public fill in the WDII reclamation. C&D waste, such as wood, glass, plastic, steel and other metals shall be reused or recycled and, as a last resort, disposed of to landfill. A suitable area shall be designated to facilitate the sorting process and a temporary stockpiling area will be required for the separated materials.	Work site / During the construction period	Contractor		V			ETWB TCW No. 33/2002, 31/2004, 19/2005

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
Lint Kei	Environmental Protection Measures / Mitigation Measures	Location / Thinng	Agent	Des	С	0	Dec	and Guidelines
S6.7.13	In order to monitor the disposal of public fill and C&D waste at public filling facilities and landfills, respectively, and to control fly tipping, a trip-ticket system shall be included as one of the contractual requirements and implemented by the Environmental Team undertaking the environmental monitoring and audit work. An Independent Environment Checker shall be responsible for auditing the results of the system.	Work site / During the construction period	Contractor and Independent Environmental Checker		V			ETWB TCW No. 31/2004
S6.7.14	 Bentonite Shurry The disposal of residual used bentonite slurry shall follow the good practice guidelines stated in ProPECC PN 1/94 "Construction Site Drainage" and listed as follows: If the disposal of a certain residual quantity cannot be writed the used alorge when disposed of et the marine. 	Work site / During the construction period	Contractor		V			ProPECC PN 1/94
	avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis.							
	• If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewers, storm drains or the receiving waters as set out in the Technical Memorandum of Standards for Effluents Discharged into Drainage and Sewerage Systems, Inland and Coastal Waters.							
	 If the used bentonite slurry is intended to be disposed to public fill reception facilities, it will be mixed with dry soil on site before disposal. 							

* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

Table A13.5 Implementation Schedule for Land Contamination

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In		entati ges*	on	Relevant Legislation
Lint Kei	Environmental Protection Steasares / Shitigation Steasares	Location / Timing	Agent	Des	С	0	Dec	and Guidelines
Constructio	on Phase							
For the Wh	nole Project							
S.12.6	The contaminated site shall be cleaned up before commencement of site clearance and construction work at the concerned area which may disturb the ground.	A King Marine / Before commencement of construction activities at A King Marine.	Project proponent for the re- provisioned Tin Hau Temple	V				"Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repair/Dismantling Workshops" published by EPD, HKSAR EPD ProPECC Note No. 3/94
S7.10	 During soil remediation works, the Contractor for the excavation works shall take note of the following points for excavation: Excavation profiles must be properly designed and executed; In case the soil to be excavated is situated beneath the groundwater table, it may be necessary to lower the groundwater table by installing well points or similar means; Quantities of soil to be excavated must be estimated; It maybe necessary to split quantities of soil according to soil type, degree and nature of contamination. Temporary storage of soil at intermediate depot or on-site 	A King Marine / During soil remediation works	Contractor	V				Air Pollution Control Ordinance Noise Control Ordinance Waste Disposal Ordinance Waste Disposal (Chemical Waste) (General) Regulation

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	nplem Sta	entati ges*	on	Relevant Legislation and Guidelines
			Agent	Des	С	0	Dec	and Guidelines
	maybe required. The storage site shall include protection facilities for leaching into the ground. eg. Liner maybe required.							
	 Supply of suitable clean backfill materials is needed after excavation. Care must be taken of existing buildings and utilities. Precautions must be taken to control of ground settlement Speed controls for vehicles shall be imposed on dusty site areas. Vehicle wheel and body washing facilities at the site's exit points shall be established and used. The following environmental mitigation measures shall be strictly followed during the operation and/or maintenance of the CS/S facilities: 							Water Pollution Control Ordinance

Appendix 3.1

Monthly EM&A Report

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Implementation Implementation **Relevant Legislation** Stages* EIA Ref **Environmental Protection Measures / Mitigation Measures** Location / Timing and Guidelines Agent Des С 0 Dec Air Quality Mitigation Measures The loading, unloading, handling, transfer or storage of cement shall be carried out in an enclosed system. The loading, unloading, handling, transfer or storage of other materials which may generate airborne dust emissions such as untreated soil and oversize materials sorted out from the screening plant and stabilized soil stockpiled in the designated handling area, shall be carried out in such a manner to prevent or minimise dust emissions. These materials shall be adequately wetted prior to and during the loading, unloading and handling operations. All practicable measures, including speed controls for vehicles, shall be taken to prevent or minimize the dust emission caused by vehicle movement. Tarpaulin or low permeable sheet shall be put on dusty vehicle loads transported between site locations. Noise Mitigation Measures The mixing facilities shall be sited as far as practicable to the nearby noise sensitive receivers. Simultaneous operation of mixing facilities and other equipment shall be avoided. Mixing process and other associated material handling activities shall be properly scheduled to minimise potential cumulative noise impact on the nearby noise sensitive receivers. Construction Noise Permit shall be applied for the operation of powered mechanical equipment during restricted hours (if any).

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	Implementation Stages*			Relevant Legislation
	BB		Agent	Des	С	0	Dec	and Guidelines
	 <u>Water Quality Mitigation Measures</u> Stockpile of untreated soil shall be covered as far as 							
	practicable to prevent the contaminated material from leaching out. The leachate shall be discharged following							
	the requirements of WPCO.							
	Waste Mitigation Measures							
	• Treated oversize materials will be used as filling material							
	for backfilling within the site. Sorted materials of size							
	smaller than 5 cm will be collected and transferred to the							
	mixing plant for further decontamination treatment.							
	• Stabilized soils shall be broken into suitable size for backfilling or reuse on site.							
	• A high standard of housekeeping shall be maintained within the mixing plant area.							
	 If necessary, there shall be clear and separated areas for stockpiling of untreated and treated materials. 							

* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

Table A13.6 Implementation Schedule for Marine Ecology

EIA Ref	Environmental Protection Measures / Mitigation Measures	ronmental Protection Measures / Mitigation Measures Location / Timing		Implementation Stages*			on	Relevant Legislation	
	g		Agent	Des	С	0	Dec	and Guidelines	
Constructio	on Phase								
For the Wh	ole Project - Schedule 3 DP								
8.9.7.2	Alternative design of the Trunk Road constructed in tunnel shall be adopted to avoid permanent reclamation in CBTS and ex-PWCA Basin.	-	CEDD/HyD	V				EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.	
For DP3 –	Reclamation Works								
\$.9.7.3	Translocation of those potentially affected coral colonies to the nearby suitable habitats such as Junk Bay is recommended. A detailed translocation plan (including translocation methodology, monitoring of transplanted corals, etc.) should be drafted and approval by AFCD during the detailed design stage of the Project.	Ex-PCWA Basin and along seawall next to a public pier which is about 250 m away from the CBTS	CEDD/HyD	V				EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.	

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation	In	•	entati ges*	on	Relevant Legislation
		Liotation, Thing	Agent	Des	С	0	Dec	and Guidelines
S.9.7.4	 During dredging and filling operations, a number of mitigation measures to control water quality shall be adopted to confine sediment plume within reclamation area and protect marine fauna in proximity to the reclamation. The mitigation measures include the following: Installation of silt curtains during dredging activities Use of tightly-closed grab dredger Reduction of dredging rate Control of grab descending speed Construction of leading edges of seawall in the early stages of the reclamation works 	Work site / during construction phase	Contractor		V			EIAO TM Annex 16 (Section 8.4) & EIAO Guidance Note No. 3/2002.
	Adoption of multiple-phase construction schedule							

Appendix 3.1

Monthly EM&A Report

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Implementation **Relevant Legislation** Implementation Stages* EIA Ref **Environmental Protection Measures / Mitigation Measures** Location / Timing and Guidelines Agent Des С 0 Dec S.9.7.6 To minimize potential disturbance impacts on the foraging Work site during Contractor EIAO TM Annex 16 ardeid population in the CBTS, particularly in the area near the construction phase (Section 8.4) & EIAO A King Shipyard, appropriate mitigation measures shall be Guidance Note No. adopted particularly during the construction phase. The 3/2002 following measures are recommended: • Use of Quiet Mechanical Plant during the construction phase shall be adopted wherever possible. Adoption of multiple-phase construction schedule. • General measures to reduce noise generated during the construction phase (see noise impact assessment) shall be effectively implemented. S.9.7.7 Seawalls shall be constructed in advance around the Work site during EIAO TM Annex 16 Contractor $\sqrt{}$ reclamation areas within the area of the CBTS to screen (Section 8.4) & EIAO construction phase adjacent feeding ground from construction phase activities, Guidance Note No. reduce noise disturbance to the associated seabirds and also to 3/2002. restrict access to this habitat adjacent to works areas by ship traffic. S.9.7.8 Work site / during EIAO TM Annex 16 Loss of artificial seawall habitats shall be reinstated by the Contractor $\sqrt{}$ construction of about 1 km vertical wave absorbing seawall (Section 8.4) & EIAO construction phase along the coastlines of the new reclamation around the HKCEC Guidance Note No. and at North Point. The new seawalls are expected to provide 3/2002. large area of hard substrata for settlement and recruitment of intertidal fauna similar to those previously recorded from existing intertidal habitats.

*Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Wan Chai Development Phase II and Central-Wanchai Bypass - Sampling, Field Measurement and Testing Works (Stage 2)

Table A13.7 Implementation Schedule for Landscape and Visual

EIA Ref	Environmental Protection Measures / Mitigation Measures Location / T		Location / Timing	Implementation Agent	In		entati ges*	ion	Relevant Legislation and Guidelines
				0	Des	С	0	Dec	
Construction	Phase								
For the Whole	Project								
Table 10.5	CM1	Topsoil, where identified, shall be stripped and stored for re-use in the construction of the soft landscape works, where practical.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM2	Existing trees to be retained on site shall be carefully protected during construction.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM3	Trees unavoidably affected by the works shall be transplanted where practical.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM4	Compensatory tree planting shall be provided to compensate for felled trees.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM
Table 10.5	CM6	Erection of decorative screen hoarding compatible with the surrounding setting.	Work site / During Construction Phase	Contractor		V			EIAO TM
For DP1 - CV	VB (With	in the Project Boundary)							
Table 10.5	CM1	Topsoil, where identified, shall be stripped and stored for re-use in the construction of the soft landscape works, where practical.	Work site / During Construction Phase	Contractor		V			EIAO TM
Table 10.5	CM2	Existing trees to be retained on site shall be carefully protected during construction.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM3	Trees unavoidably affected by the works shall be transplanted where practical.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM4	Compensatory tree planting shall be provided to compensate for felled trees.	Work site / During Construction Phase	Contractor	V	V			EIAO TM
Table 10.5	CM5	Control of night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM

Appendix 3.1

Monthly EM&A Report

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref **Environmental Protection Measures / Mitigation Measures** Location / Timing Implementation Implementation **Relevant Legislation** and Guidelines Agent Stages³ Des С 0 Dec Table 10.5 CM6 Erection of decorative screen hoarding compatible with Work site / During Contractor EIAO TM the surrounding setting Construction Phase For DP2 – WDII Major Roads (Road P2) CM1 Topsoil, where identified, shall be stripped and stored for Work site / During EIAO TM Table 10.5 Contractor $\sqrt{}$ $\sqrt{}$ re-use in the construction of the soft landscape works, Construction Phase where practical. Work site / During EIAO TM Table 10.5 CM2 Existing trees to be retained on site shall be carefully Contractor $\sqrt{}$ $\sqrt{}$ protected during construction Construction Phase Table 10.5 CM3 Trees unavoidably affected by the works shall be $\sqrt{}$ $\sqrt{}$ EIAO TM Work site / During Contractor transplanted where practical. Construction Phase Table 10.5 CM4 Compensatory tree planting V EIAO TM shall be provided to Work site / During Contractor $\sqrt{}$ compensate for felled trees. Construction Phase Table 10.5 CM5 Control of night-time lighting. EIAO TM Work site / During Contractor $\sqrt{}$ Construction Phase Table 10.5 Erection of decorative screen hoarding compatible with $\sqrt{}$ EIAO TM CM6 Work site / During Contractor the surrounding setting. Construction Phase For DP3 – Reclamation Works EIAO TM Table 10.5 CM5 Control of night-time lighting. Work site / During Contractor V Construction Phase Table 10.5 CM6 Erection of decorative screen hoarding compatible with Work site / During Contractor $\sqrt{}$ EIAO TM the surrounding setting Construction Phase For DP5 – Wan Chai East Sewage Outfall Refer to EIA-CM2 Minimisation of works areas Work site / During Contractor V EIAO TM 058/2001 Construction Phase Table 10.13 Refer to EIA-CM3 Erection of decorative hoardings. Work site / During Contractor V EIAO TM 058/2001 Construction Phase Table 10.13

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing Implementation Agent		In		entati ges*		Relevant Legislation and Guidelines
				Des	С	0	Dec	
Refer to EIA- 058/2001 Table 10.13	CM4 Control night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM5 Minimisation of disruption to public by effective programming of the works.	Work site / During Construction Phase	Contractor		V			EIAO TM
For DP6 - Cros	ss-Harbour Water Mains from Wan Chai to Tsim Sha Tsui							
Refer to EIA- 058/2001 Table 10.13	CM2 Minimisation of works areas.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM3 Erection of decorative hoardings.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM4 Control night-time lighting.	Work site / During Construction Phase	Contractor		V			EIAO TM
Refer to EIA- 058/2001 Table 10.13	CM5 Minimisation of disruption to public by effective programming of the works.	Work site / During Construction Phase	Contractor		V			EIAO TM
Operation Pha	se							
	Project - Schedule 3 DP							
Table 10.6, Figure 10.5.1- 10.5.5	OM1 Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.	Work site / During Design Stage and Operation Phases	CEDD/HyD	\checkmark	V	\checkmark		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM2 Shrub and Climbing Plants to soften proposed structures.	Work site / During Design Stage and Operation Phases	CEDD/HyD	V	V	V		ETWB TCW 2/2004

Appendix 3.1

Contract no. HK/2011/07

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

Monthly EM&A Report

Image: Constraint of the section of	EIA Ref	Enviro	onmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	In	Sta	entati ges*	ion	Relevant Legislation and Guidelines
Figure 10.5.1- 10.5.5 and associated structures. Design Stage and Operation Phases CEDD ⁴ V V Table 10.6, Figure 10.5.1- 10.5.5 OM4 Aesthetic design of proposed waterfront promenade. Design Stage and Operation Phases CEDD ⁴ V V						Des	С	0	Dec	
10.5.5Operation PhasesCEDD4Table 10.6, Figure 10.5.1- 10.5.5OM4Aesthetic design of proposed waterfront promenade. Proposed waterfront promenade.Work site / During Design Stage and Operation PhasesCEDD4Table 10.6, Figure 10.5.1- 10.5.5OM5Aesthetic streetscape design.Work site / During Design Stage and Operation PhasesCEDD/HyDTable 10.6, Figure 10.5.1- 10.5.5OM6Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesCEDD/HyDTable 10.6, Figure 10.5.1- 10.5.5OM6Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.Work site / During Design Stage and Operation PhasesCEDD/HyDTable 10.6, Figure 10.5.1- 10.5.5OM1Aesthetic design of buildings, subways, footbridges and noise barriers and enclosure.Work site / During Design Stage and Operation PhasesHyDTable 10.6, 	Table 10.6,	OM3	Buffer Tree and Shrub Planting to screen proposed roads	Work site / During	CEDD/HyD/					ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5 OM4 Aesthetic design of proposed waterfront promenade. Work site / During Design Stage and Operation Phases CEDD_	Figure 10.5.1-		and associated structures.	Design Stage and						
Figure 10.5.1- 10.5.5OM5Aesthetic streetscape design.Design Stage and Operation PhasesCEDD/HyD \checkmark \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM6Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesCEDD/HyD \checkmark \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM6Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesCEDD/HyD \checkmark \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM1Aesthetic design of buildings and road-related structures, 	10.5.5			Operation Phases						
10.5.5 Operation Phases Operation Phases Image: CEDD/HyD operation Phases V V Table 10.6, Figure 10.5.1- 10.5.5 OM6 Aesthetic streetscape design. Work site / During Design Stage and Operation Phases CEDD/HyD V V V Table 10.6, Figure 10.5.1- 10.5.5 OM6 Aesthetic design of roadside amenity areas. Work site / During Design Stage and Operation Phases CEDD/HyD V V V Table 10.6, Figure 10.5.1- 10.5.5 OM6 Aesthetic design of roadside amenity areas. Work site / During Design Stage and Operation Phases CEDD/HyD V V V Table 10.6, Figure 10.5.1- 10.5.5 OM1 Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure. Work site / During Design Stage and Operation Phases HyD √ √ Table 10.6, Figure 10.5.1- 10.5.5 OM3 Buffer Tree and Shrub Planting to screen proposed structures Work site / During Design Stage and Operation Phases HyD √ √ √ Table 10.6, Figure 10.5.1- 10.5.5 OM3 Buffer Tree and Shrub Planting to screen proposed roads Work site / During Design Stage and Operation Phases HyD √ √ √ 10.5	Гable 10.6,	OM4	Aesthetic design of proposed waterfront promenade.	Work site / During	CEDD ⁴	\checkmark				ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5OM5 A esthetic streetscape design.Work site / During Design Stage and Operation PhasesCEDD/HyD \checkmark \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM6 A esthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesCEDD/HyD \checkmark \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM6 A esthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM1 and noise barriers and enclosure.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM3 and associated structures.Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM3 and associated structures.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM5 and associated structures.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark Table 10.6, Figure 10.5.1-OM5 and associated structures.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark Table 10.6, Figure 10.5.1-OM5 A esthetic streetscape design.Work site / During De										
Figure 10.5.1- 10.5.5OM6Aesthetic design of roadside amenity areas.Design Stage and Operation PhasesCEDD/HyD \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM6Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesCEDD/HyD \checkmark \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM1Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM2Shrub and Climbing Plants to soften proposed structures and associated structures.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM3Buffer Tree and Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM3Buffer Tree and Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM5Aesthetic streetscape design.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark Table 10.6, Figure 10.5.1- 10.5.5OM5Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesHyD \checkmark \checkmark <	10.5.5			Operation Phases						
10.5.5Operation PhasesOperation PhasesImage: CEDD/HyD $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM6Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesCEDD/HyD $\sqrt{1}$ $\sqrt{1}$ For DP1 - CWB (Within the Project Boundary)Table 10.6, Figure 10.5.1- including viaducts, vent buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM2Shrub and Climbing Plants to soften proposed structures and associated structures.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM3Buffer Tree and Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM3Aesthetic streetscape design.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM5Aesthetic streetscape design.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1-OM5Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1-OM5 <t< td=""><td>Table 10.6,</td><td>OM5</td><td>Aesthetic streetscape design.</td><td>Work site / During</td><td>CEDD/HyD</td><td></td><td></td><td></td><td></td><td>ETWB TCW 2/2004</td></t<>	Table 10.6,	OM5	Aesthetic streetscape design.	Work site / During	CEDD/HyD					ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5OM6Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesCEDD/HyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- and noise barriers and enclosure.OM1Aesthetic design of buildings and road-related structures, and noise barriers and enclosure.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM2Shrub and Climbing Plants to soften proposed structures and associated structures.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM3Buffer Tree and Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM3Buffer Tree and Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM5Aesthetic streetscape design.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM5Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ Table 10.6, Figure 10.5.1-OM6Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ <td>Figure 10.5.1-</td> <td></td> <td></td> <td>Design Stage and</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Figure 10.5.1-			Design Stage and						
Figure 10.5.1- 10.5.5Design Stage and Operation PhasesDesign Stage and Operation PhasesFor DP1 - CWB (Within the Project Boundary)Table 10.6, Figure 10.5.1-Table 10.6, Figure 10.5.1-Table 10.6, Figure 10.5.1-OM2Shrub and Climbing Plants to soften proposed structures and noise barriers and enclosure.Work site / During Design Stage and Operation PhasesTable 10.6, Figure 10.5.1- 10.5.5Table 10.6, Figure 10.5.1- and associated structures.OM3Buffer Tree and Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesIndication PhasesTable 10.6, Figure 10.5.1- 10.5.5OM3Buffer Tree and Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesTable 10.6, Figure 10.5.1-Table 10.6, Figure 10.5.1-OM5Aesthetic streetscape design.Work site / During Design Stage and Operation PhasesTable 10.6, Figure 10.5.1-OM5Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesTable 10.6, Figure 10.5.1-OM5Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesTable 10.6, Figure 10.5.4Table 10.6, Figure 10.5.5Table 10.6, Figure 10.5.6Table 10.6, Figure 10.5.7 <tr< td=""><td>10.5.5</td><td></td><td></td><td>Operation Phases</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	10.5.5			Operation Phases						
Operation PhasesID 5.5For DP1 - CWB (Within the Project Boundary)Table 10.6, Figure 10.5.1- 10.5.5OM1 including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM2Shrub and Climbing Plants to soften proposed structures and associated structures.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, 10.5.5OM3Buffer Tree and Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM3Buffer Tree and Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM5Aesthetic streetscape design.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$ Table 10.6, Figure 10.5.1- 10.5.5OM5Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ $\sqrt{1}$	Гable 10.6,	OM6	Aesthetic design of roadside amenity areas.	Work site / During	CEDD/HyD	\checkmark				ETWB TCW 2/2004
For DP1 – CWB (Within the Project Boundary)Table 10.6, Figure 10.5.1-OM1 including viaducts, vent buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ Table 10.6, Figure 10.5.1-OM2Shrub and Climbing Plants to soften proposed structures and associated structures.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ Table 10.6, Figure 10.5.1-OM3Buffer Tree and Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ Table 10.6, Figure 10.5.1-OM3Buffer Tree and Shrub Planting to screen proposed roads and associated structures.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ Table 10.6, Figure 10.5.1-OM5Aesthetic streetscape design.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$ Table 10.6, Figure 10.5.1-OM6Aesthetic design of roadside amenity areas.Work site / During Design Stage and Operation PhasesHyD $\sqrt{1}$	Figure 10.5.1-			Design Stage and						
Table 10.6, Figure 10.5.1- OM1 Los.5 Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure. Work site / During Design Stage and Operation Phases HyD √	10.5.5			Operation Phases						
Figure 10.5.1- 10.5.5 including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure. Design Stage and Operation Phases HyD √ √ Table 10.6, Figure 10.5.1- 10.5.5 OM2 Shrub and Climbing Plants to soften proposed structures and associated structures. Work site / During Design Stage and Operation Phases HyD √ √ √ Table 10.6, Figure 10.5.1- 10.5.5 OM3 Buffer Tree and Shrub Planting to screen proposed roads and associated structures. Work site / During Design Stage and Operation Phases HyD √ √ √ Table 10.6, Figure 10.5.1- 10.5.5 OM5 Aesthetic streetscape design. Work site / During Design Stage and Operation Phases HyD √ √ √ √ Table 10.6, Figure 10.5.1- 10.5.5 OM5 Aesthetic streetscape design. Work site / During Design Stage and Operation Phases HyD √ √ √ Table 10.6, Figure 10.5.1- 10.5.5 OM6 Aesthetic design of roadside amenity areas. Work site / During Work site / During HyD √ √ √	For DP1 – CWI	B (With	in the Project Boundary)							
10.5.5 and noise barriers and enclosure. Operation Phases Image: Construct of the second seco	Гable 10.6,	OM1			HyD	\checkmark				ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5 OM2 Shrub and Climbing Plants to soften proposed structures Work site / During Design Stage and Operation Phases HyD √ √ √ Table 10.6, Figure 10.5.1- 10.5.5 OM3 Buffer Tree and Shrub Planting to screen proposed roads and associated structures. Work site / During Design Stage and Operation Phases HyD √ √ √ Table 10.6, Figure 10.5.1- 10.5.5 OM3 Buffer Tree and Shrub Planting to screen proposed roads and associated structures. Work site / During Design Stage and Operation Phases HyD √ √ √ Table 10.6, Figure 10.5.1- 10.5.5 OM5 Aesthetic streetscape design. Work site / During Design Stage and Operation Phases HyD √ √ √ Table 10.6, Table 10.6, OM6 OM6 Aesthetic design of roadside amenity areas. Work site / During During HyD √ √ √										
Figure 10.5.1- 10.5.5 Design Stage and Operation Phases Image: Construct of the system of the syst										
10.5.5 Operation Phases Image: Constraint of the sector	Гable 10.6,	OM2	Shrub and Climbing Plants to soften proposed structures	Work site / During	HyD	\checkmark				ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5 OM3 Buffer Tree and Shrub Planting to screen proposed roads and associated structures. Work site / During Design Stage and Operation Phases HyD Table 10.6, Figure 10.5.1- 10.5.5 OM5 Aesthetic streetscape design. Work site / During Design Stage and Operation Phases HyD Table 10.6, Figure 10.5.1- Table 10.6, OM6 Aesthetic design of roadside amenity areas. Work site / During HyD										
Figure 10.5.1- 10.5.5 and associated structures. Design Stage and Operation Phases Image: Constraint of the structure o										
10.5.5 Operation Phases Table 10.6, Figure 10.5.1- 10.5.5 OM5 Aesthetic streetscape design. Work site / During Design Stage and Operation Phases Table 10.6, 10.5.5 OM6 Aesthetic design of roadside amenity areas. Work site / During HyD √		OM3		0	HyD	\checkmark				ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5 OM5 Aesthetic streetscape design. Work site / During Design Stage and Operation Phases HyD $\sqrt{1}$ Table 10.6, OM6 Aesthetic design of roadside amenity areas. Work site / During HyD $\sqrt{1}$			and associated structures.							
Figure 10.5.1- 10.5.5 Design Stage and Operation Phases Table 10.6, OM6 Aesthetic design of roadside amenity areas. Work site / During HyD $-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt$				1						
10.5.5 Operation Phases Table 10.6, OM6 Aesthetic design of roadside amenity areas. Work site / During HyD $-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt$	Гable 10.6,	OM5	Aesthetic streetscape design.	Work site / During	HyD	\checkmark				ETWB TCW 2/2004
Table 10.6, OM6 Aesthetic design of roadside amenity areas. Work site / During HyD $-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt$									1	
		OM6	Aesthetic design of roadside amenity areas.		HyD	\checkmark			1	ETWB TCW 2/2004
Figure 10.5.1- Design Stage and				Design Stage and					1	
10.5.5 Operation Phases Operation Phases				Operation Phases						

⁴ CEDD will identify an implementation agent

Wan Chai Development Phase II and Central-Wanchai Bypass

- Sampling, Field Measurement and Testing Works (Stage 2)

EIA Ref	Envir	onmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant Legislation and Guidelines
				_	Des	С	0	Dec	
Table 10.6, Figure 10.5.1- 10.5.5	OM1	Aesthetic design of buildings and road-related structures, including viaducts, vent buildings, subways, footbridges and noise barriers and enclosure.	Work site / During Design Stage and Operation Phases	CEDD/HyD		V	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM3	Buffer Tree and Shrub Planting to screen proposed roads and associated structures.	Work site / During Design Stage and Operation Phases	CEDD/HyD		V	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM5	Aesthetic streetscape design.	Work site / During Design Stage and Operation Phases	CEDD/HyD		V	V		ETWB TCW 2/2004
Table 10.6, Figure 10.5.1- 10.5.5	OM6	Aesthetic design of roadside amenity areas	Work site / During Design Stage and Operation Phases	CEDD/HyD		V	V		ETWB TCW 2/2004
For DP3 - Rec	lamation	n Works							
Table 10.6, Figure 10.5.1- 10.5.5	OM4	Aesthetic design of proposed waterfront promenade.	Work site / During Design Stage and Operation Phases	CEDD ⁵	V	V	V		ETWB TCW 2/2004

*Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

⁵ CEDD will identify an implementation agent

Appendix 3.1

Appendix 4.1

Action and Limit Level

Action and Limit Level

Action and Limit Level for Noise Monitoring

Time Period	Action Level	Limit Level
07:00 – 19:00 hours on normal weekdays	When one documented complaint is received.	75 dB(A) ^{Note 1}

Note 1:

70dB(A) and 65 dB(A) for schools during normal teaching periods and school examination periods, respectively.

- If works are to be carried out during the restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

Action and Limit Level for Air Monitoring

Monitoring Location	1-hour TSP Lev	el in μ g/m ³	24-hour TSP Le	evel in μ g/m ³
	Action Level	Limit Level	Action Level	Limit Level
CMA1b Note 2	320.1	500	176.7	260
CMA2a	323.4	500	169.5	260
CMA3a Note 2	311.3	500	171.0	260
CMA4a	312.5	500	171.2	260
CMA5a Note 2	332.0	500	181.0	260
CMA6a Note 2	300.1	500	187.3	260

Note 2:

- As per facing owner's rejection in allowing the implementation of long-term air quality impact monitoring at their premises, alternative monitoring stations and justification were proposed for IEC verification and EPD approval.

- The established Action and Limit Levels from the baseline air monitoring will be adopted to the alternative monitoring stations.

Action and Limit Level for Water Monitoring

Parameters	Dry Season		Wet Season			
Falameter 5	Action	Limit	Action	Limit		
WSD Salt Water Intake						
SS in mg L ⁻¹	13.00	14.43	16.26	19.74		
Turbidity in NTU	8.04	9.49	10.01	11.54		
DO in mg/L	3.66	3.28	3.17	2.63		
Cooling Water Intake						
SS in mg L ⁻¹	15.00	22.13	18.42	27.54		
Turbidity in NTU	9.10	10.25	11.35	12.71		
DO in mg/L	3.36	2.73	3.02	2.44		

Remarks:

- Action and Limit Level for the wet season are applied after the EPD approval of Updated EM&A Manual on 29 April 2011.

Parameters	Action	Limit
Odour Nuisance (from odour intensity analysis or odour patrol)	 When two documented complaint are received; or Odour Intensity of 2 is measured from odour intensity analysis. 	 Five or more consecutive genuine documented complaints within a week; or Odour Intensity of 3 or above is measured from odour intensity analysis.

Action and Limit Levels for Odour Patrol

Appendix 4.2

Copies of Calibration Certificates

Certificate No. 23166	Page 1 of 4 Pages	
Customer: Lam Geotechnics Limited		
Address : 11/F, Centre Point, 181-185 Gloucester Road	d, Wanchai, Hong Kong.	
Order No. : Q21208	Date of receipt : 24-May-	12
Item Tested		
Description : Precision Integrating Sound Level Meter		
Manufacturer : Rion		
Model : NL-14	Serial No. : 10303242	
Test Conditions		
Date of Test : 5-Jun-12	Supply Voltage :	
Ambient Temperature : (23 ± 3)°C	Relative Humidity : (50 ± 25) %	
Test Specifications		
Calibration check.		
Ref. Document/Procedure: Z01.		
Test Results		

All results were within the IEC 651 Type 1 or IEC 804 Type 1 specification after adjustment. The results are shown in the attached page(s).

Main Test equi	pment used:		
Equipment No.	Description	Cert. No.	Traceable to
S017	Multi-Function Generator	C101623	SCL-HKSAR
S024	Sound Level Calibrator	15136	NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

P. F. Wong

Calibrated by :

Approved by : **Dorothy Cheuk** 6-Jun-12 Date:

This Certificate is issued by: Hong Kong Calibration Ltd. Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street,Kwai Chung, NT,Hong Kong Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 23166

Page 2 of 4 Pages

Results :

1. SPL Accuracy

	UUT Set	ting			UUT Rea	
Level Range (dB)	Filter	Weight	Time Const.	Applied Value (dB)	Before adjust.	After adjust.
1000000000000000000000000000000000000	OFF	Lp	Fast	94.0		94.1
40 100	011	L _{PA}	Fast		*92.2	94.1
			Slow	-		94.1
		L _{PC}	Fast			94.1
60 - 120	OFF	Lp	Fast	94.0		94.0
00-120	L_{PA} Fast		<u>, 1990</u>	94.0		
		DFA	Slow			94.0
		L _{PC}	Fast			94.0
60 - 120	OFF	Lp	Fast	114.0		114.1
00-120	011	L _{PA}	Fast			114.1
		DPA	Slow			114.1
		L _{PC}	Fast			114.1

IEC 651 Type 1 Spec. : \pm 0.7 dB Uncertainty : \pm 0.2 dB

2. Level Stability : 0.1 dB

IEC 651 Type 1 Spec. : \pm 0.3 dB Uncertainty : \pm 0.01 dB

Certificate No. 23166

Page 3 of 4 Pages

3. Linearity

3.1 Level Linearity

UUT Range	Applied	UUT Reading	Variation	IEC 651 Type 1 Spec.
(dB)	Value (dB)	(dB)	(dB)	(Primary Indicator Range)
140	114.0	113.9	-0.1	$\pm 0.7 \text{ dB}$
130	104.0	103.9	-0.1	
120	94.0	94.0 (Ref.)		
110	84.0	84.0	0.0	
100	74.0	74.1	+0.1	_
90	64.0	64.1	+0.1	
80	54.0	54.2	+0.2	

Uncertainty : $\pm 0.1 \text{ dB}$

3.2 Differential level linearity

UUT Range (dB)	Applied Value (dB)	UUT Reading (dB)	Variation (dB)	IEC 651 Type 1 Spec.
120	84.0	84.1	+0.1	$\pm 0.4 \text{ dB}$
	94.0	94.0 (Ref.)		
	95.0	95.0	0.0	± 0.2 dB

Uncertainty : $\pm 0.1 \text{ dB}$

4. Frequency Weighting

A weighting

Frequency	Attenuation (dB)	IEC 651 Type 1 Spec.
31.5 Hz	-39.0	- 39.4 dB, ± 1.5 dB
63 Hz	-25.9	- 26.2 dB, ± 1.5 dB
125 Hz	-15.9	- 16.1 dB, ± 1 dB
250 Hz	-8.5	- 8.6 dB, ± 1 dB
500 Hz	-3.2	- 3.2 dB, ± 1 dB
1 kHz	0.0 (Ref)	$0 \text{ dB}, \pm 1 \text{ dB}$
2 kHz	+1.1	$+ 1.2 \text{ dB}, \pm 1 \text{ dB}$
4 kHz	+0.8	$+ 1.0 \text{ dB}, \pm 1 \text{ dB}$
8 kHz	-1.5	- 1.1 dB, + 1.5 dB ~ -3 dB
16 kHz	-7.2	- 6.6 dB, + 3 dB ~ - ∞

Uncertainty : $\pm 0.1 \text{ dB}$

Certificate No. 23166

Page 4 of 4 Pages

5. Time Averaging

Applied Burst duty Factor	Applied Leq Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	40.0	40.0	
1/10	40.0	39.9	± 0.5 dB
1/10 ²	40.0	39.7	
$1/10^{3}$	40.0	39.4	± 1.0 dB
$1/10^{4}$	40.0	39.3	

Uncertainty : $\pm 0.1 \text{ dB}$

Remark : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure : 1 000 hPa.
- 4. *Out of Specification

----- END -----

Certificate No. 23167			Page	Page 1 of 2 Pages		
Customer :	Lam Geotechnics Limited					
Address :	11/F, Centre Point, 181-185	Gloucester Road, W	anchai, Hong Kon	g.		
Order No. :	Q21208		Date of receip	ot :	24-May-12	
Item Tested						
Description : Manufacturer :	Sound Level Calibrator Rion					
Model :	NC-73		Serial No.	: 1046	5798	
Test Conditi	ons					
Date of Test :	6-Jun-12		Supply Volta	ge :		
Ambient Temp	erature : (23 ± 3)°C		Relative Hum	hidity : (50 ±	: 25) %	
Test Specifi	cations					
Calibration cheo Ref. Document	ck. /Procedure : F21, Z02.					
Test Results	5			6		
	within the manufacturer's sp shown in the attached page					
Main Test equi	pment used:					
Equipment No.	Description	Cert. No.		Traceabl		
S014	Spectrum Analyzer	13535		18 8824 C	C & SCL-HKSAR	
S024	Sound Level Calibrator	15136			C & SCL-HKSAR	
S041	Universal Counter	15610		SCL-HK		
S206	Sound Level Meter	16338		SCL-HK	SAR	

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

P. F. Wong

Calibrated by :

Appro	ved by :	Dorothy Cheuk
Data	6- lun-12	

This Certificate is issued by: Hong Kong Calibration Ltd. Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 23167

Page 2 of 2 Pages

Results :

1. Level Accuracy (at 1 kHz)

UUT Nominal Value	Measured Value	Mfr's Spec.
94 dB	94.43	± 1 dB

Uncertainty : $\pm 0.2 \text{ dB}$

2. Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's Spec.
1 kHz	0.982 kHz	±2 %

Uncertainty : ± 0.1 %

- **3.** Level Stability : 0.0 dB Uncertainty : ± 0.01 dB
- Total Harmonic Distortion : < 0.5 % Mfr's Spec. : < 3 % Uncertainty : ± 2.3 % of reading

Remark : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. The above measured values are the mean of 3 measurement.
- 4. Atmospheric Pressure : 1 000 hPa

----- END ------

Certificate No.	24235		Page	1 of 4 Pages
Customer :	Lam Geotechnics Limited			
Address :	11/F, Centre Point, 181-185 G	oucester Road, Wa	nchai, Hong Kong].
Order No. :	Q21745		Date of receip	t: 4-Jul-12
Item Tested				
Manufacturer :	Sound Level Meter B&K 2250		Serial No.	: 2722311
Test Conditi	ons			
Date of Test : Ambient Temp	6-Jul-12 erature : (23 ± 3)°C		Supply Voltag Relative Humi	je : idity : (50 ± 25) %
Test Specifi	cations			
Calibration cheo Ref. Document/	ck. /Procedure: Z01.			
Test Results	5			
The results are	within the IEC 651 Type 1, IEC shown in the attached page(s).	804 Type 1 & IEC 1	260 Class 1 spec	ification.
Main Test equip		Cort No		Tracable to
Equipment No. S017	Multi-Function Generator	<u>Cert. No.</u> C101623		<u>Traceable to</u> SCL-HKSAR
S024	Sound Level Calibrator	15136		NIM-PRC & SCL-HKSAR
will not include allow overloading, mis-ha	this Calibration Certificate only relate t wance for the equipment long term drift andling, or the capability of any other lai age resulting from the use of the equip	, variations with environr poratory to repeat the me	nental changes, vibrat	tion and shock during transportation,
	used for calibration are traceable to In by to the above Unit-Under-Test only	ternational System of Ur	nits (SI).	
Calibrated by	P. F. Wong	Ap	oproved by :	Dorothy Cheuk
This Certificate is issued I Hong Kong Calibration Ltd	•	Dat	te: 6-Jul-12	۱. ۱

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full,

Certificate No. 24235

Page 2 of 4 Pages

Results :

1. SPL

	UUT S	Setting				
				Applied	UUT Read	ling (dB)
Range	Freq. Wgt.	Time Const.	Center Freq.	Value (dB)	Before adjust	After adjust
20 - 140	A (SPL)	Fast		94.0	93.5	93.7
		Slow				93.7
	C (SPL)	Fast		94.0		93.7
	A (SPL)	Fast		114.0		113.8
		Slow				113.8
	C (SPL)	Fast		114.0		113.8
		1/1 - Oct/Fast	1 kHz	94.0		93.7
				114.0		113.8
		1/3 – Oct/Fast	1 kHz	94.0		93.6
				114.0		113.7

IEC 651 Type 1 Spec. : \pm 0.7 dB Uncertainty : \pm 0.1 dB

Level Stability : 0.0 dB
 IEC 651 Type 1 Spec. : ± 0.3 dB
 Uncertainty : ± 0.01 dB

3. Linearity

Differential level linearity

UUT Range (dB)	Applied Value (dB)	UUT Rdg (dB)	Variation (dB)	IEC 651 Type 1 Spec.
20~140	84.0	83.7	0.0	± 0.4 dB
	94.0	93.7 (Ref.)		
	95.0	94.7	0.0	± 0.2 dB

Uncertainty : $\pm 0.1 \text{ dB}$

Certificate No. 24235

Page 3 of 4 Pages

4. Frequency Weighting

A weighting

Frequency	Attenuation (dB)	IEC 651 Type 1 Spec.
31.5 Hz	-39.4	- 39.4 dB, ± 1.5 dB
63 Hz	-26.2	- 26.2 dB, ± 1.5 dB
125 Hz	-16.2	$-16.1 \text{ dB}, \pm 1 \text{ dB}$
250 Hz	-8.7	- $8.6 \text{ dB}, \pm 1 \text{ dB}$
500 Hz	-3.2	$- 3.2 \text{ dB}, \pm 1 \text{ dB}$
1 kHz	0.0 (Ref)	$0 \text{ dB}, \pm 1 \text{ dB}$
2 kHz	+1.2	$+ 1.2 \text{ dB}, \pm 1 \text{ dB}$
4 kHz	+0.9	$+ 1.0 \text{ dB}, \pm 1 \text{ dB}$
8 kHz	-1.5	- $1.1 \text{ dB}, +1.5 \text{ dB} \sim -3 \text{ dB}$
16 kHz	-6.1	$- 6.6 \text{ dB}, + 3 \text{ dB} \sim -\infty$

Uncertainty : $\pm 0.1 \text{ dB}$

5. Time Averaging

Applied Burst duty Factor	Applied Leq Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	40.0		
1/10	40.0	40.1	± 0.5 dB
$1/10^{2}$	40.0	40.1	
1/10 ³	40.0	40.1	± 1.0 dB
1/104	40.0	40.0	

 $Uncertainty:\pm 0.1 \ dB$

Certificate No. 24235

Page 4 of 4 Pages

6. Filter Characteristics

6.1 1/1 – Octave Filter

Frequency	Attenuation (dB)	IEC 1260 Class 1 Spec. (dB)
125 Hz	-74.5	<- 61
250 Hz	-53.2	<- 42
500 Hz	-24.0	<- 17.5
707 Hz	-4.8	- 2 ~ - 5
1 kHz (Ref)		
1.414 kHz	-2.8	- 2~- 5
2 kHz	-19.7	< - 17.5
4 kHz	-55.4	< - 42
8 kHz	-85.8	< - 61

Uncertainty : $\pm 0.25 \text{ dB}$

6.2 1/3 – Octave Filter

Frequency	Attenuation (dB)	IEC 1260 Class 1 Spec.(dB)
326 Hz	-67.7	<- 61
530 Hz	-50.7	<- 42
772 Hz	-24.3	< - 17.5
891 Hz	-4.1	+ 0.3 ~ - 5.0
1 kHz (Ref)		
1.122 kHz	-3.4	+ 0.3 ~ - 5.0
1.296 kHz	-23.0	< - 17.5
1.887 kHz	-47.7	<- 42
3.070 kHz	-69.2	< - 61

Uncertainty : $\pm 0.25 \text{ dB}$

Remarks : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric pressure : 1000 hPa.
- 4. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

----- END -----

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

 WORK ORDER:
 HK1213705

 LABORATORY:
 HONG KONG

 DATE RECEIVED:
 25/05/2012

 DATE OF ISSUE:
 29/05/2012

PROJECT:

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the

internal aceptance criteria of ALS will be followed.

Scope of Test:	Dissolved Oxygen, pH, Salinity and Temperature
Description:	YSI SONDE
Brand Name:	YSI
Model No.:	YSI Professional plus
Serial No.:	11F100421
Equipment No.:	
Date of Calibration:	29 May, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung HONG KONG
 Phone:
 8

 Fax:
 8

 Email:
 ho

852-2610 1044 852-2610 2021 <u>hongkong@alsglobal.com</u>

Mr Chan Kwok Fai, Godfrey Laboratory Manager Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: Client: HK1213705 29/05/2012 LAM GEOTECHNICS LIMITED

Description: Brand Name: Model No.: Serial No.:	YSI SONDE YSI YSI Professional plus 11F100421		
Equipment No.: Date of Calibration:	 29 May, 2012	Date of next Calibration:	29 August, 2012

Parameters:

Dissolved Oxygen	Method Ref: APHA (21st edition	on), 4500O: G	
	Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
	2.40	2.38	-0.02
	5.26	5.17	-0.09
	8.38	8.40	0.02
		Tolerance Limit (±mg/L)	0.20
pH Value	Method Ref: APHA (21st edition		
	Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.15	0.15
7.0 10.0	7.03 9.83	0.03
	Tolerance Limit (±unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)						
0	0.00							
10.0	9.90	-1.0						
20.0	19.47	-2.7						
30.0	30.29	1.0						
	Tolerance Limit (±%)	10.0						

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.									
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)							
11.0 21.5 40.0	11.0 21.1 39.6	0.0 -0.4 -0.4							
	Tolerance Limit (°C)	, 2.0							

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

佳力高試驗中心有限公司 CASTCO TESTING CENTRE LTD.

TEST REPORT Performance Check / Calibration of Turbidity Meter

Date of issue : 31-07-2012					
Page 1 of 1 page(s)	С	Castco LRN: EN0120726-13			
Sample details as supplied by customer:-					
Customer: Lam Geotechnics Ltd.		Customer Ref. No.:			
Address: 11/F., Centre Point, 181-185 Gloucester Rosd, Wanchai, Hong	g Kong	Contract No.:			
Job Title:					
Sample Identification No.:		Date Sampled:			
Laboratory Test Results:-					
Date of sample received: 26-07-2012	Test period:	27-07-2012			

Date of sample received: 26-07-2012

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	Method
0	0.06		
5	4.53	-9.4	
10	9.08	-9.2	ENV-WAT-TUR
50	46.0	-8.0	ENV-WAI-IUK
100	101	+1.0	
200	190	-5.0	

Remark(s):

- 1. Test results only relate to the specimen tested.
- 2. Compliance requirement : Tolerance Limit \pm 10.0%.
- 3. Turbidity meter model No.: HACH 2100P.
- 4. Turbidity meter serial No.: 931000003861.
- 5. Next Calibration due date: 27-10-2012.
- 6. Reference method: APHA 21st Ed. 2130B (Nephelometric method).

H.

Checked by :

T. MA

Form No. ENV CAL Tur T1 dd 26/06/2012

Certified by : **End of Report**

LEE STEPHEN SHU HANG Ph D Chief Chemist

Tel: 2677 2138 香港粉嶺安居街33號 33, On Kui Street, Fanling, Hong Kong. 香港粉嶺安全街29A號 29A, On Chuen Street, Fanling, Hong Kong. Fax: 2677 0351 E-mail: castco@netvigator.com Website: www.castco.com.hk

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ju	1 19, 2012	Rootsmeter	D / 1	138320	Ta (K) -	298
Operator	Tisch	Orifice I.I)005	Pa (mm) -	751.84
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1	NA	NA	1.00	1.3840	3.2	2.00
2	NA	NA	1.00	0.9760	6.4	4.00
3	NA	NA	1.00	0.8730	7.9	5.00
4	NA	NA	1.00	0.8340	8.8	5.50
5	NA	NA	1.00	0.6890	12.7	8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9850 0.9809 0.9788 0.9777 0.9725	0.7117 1.0050 1.1212 1.1723 1.4115	1.4066 1.9892 2.2240 2.3326 2.8132		0.9957 0.9915 0.9894 0.9883 0.9831	0.7194 1.0159 1.1333 1.1850 1.4268	0.8903 1.2591 1.4078 1.4765 1.7807
Qstd sloj intercep coeffici	t (b) =	2.01145 -0.02803 0.99995		Qa slop intercep coeffici	t (b) =	1.25953 -0.01774 0.99995
v axis =	SQRT [H20 ()	Pa/760) (298/	Ta)]	'y axis =	SQRT [H20 (1	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA1b	Calbration Date	:	15-Jun-12
Equipment no.	:	EL452	Calbration Due Dat	:	15-Aug-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		303		Kelvin	Pressure, P	a		1010	mmHg	
Orifice Transfer Standard Information										
Equipment No.		EL086		Slope, m _c	2.015	93	Intercept, b	c -0.039	978	
Last Calibration Date		11-Jul-1	1		(HxI	P _a / 101	13.3 x 298	/T _a) ^{1/2}		
Next Calibration Date		11-Jul-1	2		=	m _c x	$Q_{std} + b_c$			
Calibration of RSP										
Calibration	Mar	nometer R	eading	c	Q _{std}	Continu	uous Flow	IC		
Point	Н (inches of	water)	(m ³	/ min.)	Reco	order, W	(W(P _a /1013.3x298/	T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-	axis	(C	CFM)	Y-axis	;	
1	6.1	6.1	12.2	1.	7352		62	61.386	1	
2	5.0	5.0	10.0	1.	5728		54	53.465	3	
3	3.9	3.9	7.8	1.3	3914		45	44.554	4	
4	2.4	2.4	4.8	1.	0958		35	34.653	5	
5	1.5	1.5	3.0	0.	8704		26	25.742	6	
By Linear Regression of	Y on X									
Slope, m = 40.4				856	Int	ercept, b	=	10.0119		
Correlation Co	pefficient*	=	0.99	970						
Calibration Accepted = Yes/				No**						

* if Correlation Coefficient < 0.990, check and recalibration again.

**	De	lete	as	appr	opri	ate.
----	----	------	----	------	------	------

Remarks : _____

Calibrated by	:	Sam Lam	Checked by	 Derek Lo
Date	:	15-Jun-12	Date	 15-Jun-12

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA1b	Calbration Date :	13-Aug-12
Equipment no.	:	EL452	Calbration Due Dat :	13-Oct-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition											
Temperature, T _a		305		Kelvin	Kelvin Pressure, P a 1015 mmł						
Orifice Transfer Standard Information											
Equipment No.		EL086		Slope, m _c	2.011	45	Intercept, b	c -0.02	803		
Last Calibration Date		19-Jul-1	2		(HxI	P _a / 101	13.3 x 298	/T _a) ^{1/2}			
Next Calibration Date		19-Jul-1	3		=	m _c x	$Q_{std} + b_c$:			
Calibration of RSP											
Calibration	Mar	ometer R	eading	C	l _{std}	Continu	uous Flow	IC			
Point	Н (inches of	water)	(m ³	/ min.)	Reco	order, W	(W(P _a /1013.3x298/	(T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-	axis	(CFM)		Y-axis	\$		
1	6.0	6.0	12.0	1.	7177		60	59.357	2		
2	5.0	5.0	10.0	1.	5692		54	53.421	5		
3	4.0	4.0	8.0	1.	4050		47	46.496	5		
4	2.5	2.5	5.0	1.	1137		36	35.614	3		
5	1.5	1.5	3.0	0.	3658		24	23.742	:9		
By Linear Regression of	Y on X										
	Slope, m = 41.2				Int	ercept, b	=^	11.3427			
Correlation Coefficient* = 0.9				991							
Calibration Accepted = Yes				\o **							

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appro	priate.				
Remarks :					
Calibrated by	:	Fung	Checked by	:	Derek Lo
Date	:	13-Aug-12	Date	:	13-Aug-12

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA5a	Calbration Date	:	15-Jun-12
Equipment no.	:	EL380	Calbration Due Dat	:	15-Aug-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		303	3	Kelvin	Pressure, P	a		1010	mmHg	
Orifice Transfer Standard Information										
Equipment No.		EL086		Slope, m _c	2.015	93	Intercept, b	c -0.03	978	
Last Calibration Date		11-Jul-1	1		(HxI	P _a / 101	3.3 x 298	/T _a) ^{1/2}		
Next Calibration Date		11-Jul-1	2		=	m _c x	$Q_{std} + b_{c}$:		
			c	alibration	of RSP					
Calibration	Mar	Manometer Reading			l _{std}	Continu	uous Flow	IC		
Point	Н (H (inches of water)		(m ³	/ min.)	Reco	order, W	(W(P _a /1013.3x298	8/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-	axis	(C	CFM)	Y-axi	S	
1	6.0	6.0	12.0	1.1	7211		58	57.425	57	
2	5.0	5.0	10.0	1.5	5728		52	51.485	51	
3	3.7	3.7	7.4	1.:	3558		44	43.564	43	
4	2.4	2.4	4.8	1.0	0958		35	34.653	35	
5	1.4	1.4	2.8	0.8	3416		26	25.742	26	
By Linear Regression of	Y on X									
	Slope, m	=	35.7	743	Int	ercept, b	= -	4.5550	_	
Correlation Co	pefficient*	=	0.99	997						
Calibration	Accepted	=	Yes/	No**						

* if Correlation Coefficient < 0.990, check and recalibration again.

**	Delete	as	approp	oriate.
----	--------	----	--------	---------

Remarks : _____

Calibrated by	:	Sam Lam	Checked by	Derek Lo
Date	: _	15-Jun-12	Date :	 15-Jun-12

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA5a	Calbration Date	:	13-Aug-12
Equipment no.	:	EL380	Calbration Due Dat	:	13-Oct-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ambient Condition									
Temperature, T _a		305		Kelvin	Pressure, P	a		1015	mmHg	
	Orifice Transfer Standard Information									
Equipment No.		EL086		Slope, m _c	2.011	45	Intercept, b	c -0.02	803	
Last Calibration Date		19-Jul-1	2		(HxI	P _a / 101	13.3 x 298	$/T_{a})^{1/2}$		
Next Calibration Date		19-Jul-1	3		=	m _c x	$Q_{std} + b_c$			
	Calibration of RSP									
Calibration	Mar	Manometer Reading			Q _{std}	Continu	uous Flow	IC		
Point	H (inches of water)		(m ³	/ min.)	Reco	order, W	(W(P _a /1013.3x298	/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-	axis	(C	CFM)	Y-axis	5	
1	6.1	6.1	12.2	1.	7318		58	57.378	16	
2	5.0	5.0	10.0	1.	5692		52	51.442	29	
3	3.7	3.7	7.4	1.3	3519		44	43.528	16	
4	2.4	2.4	4.8	1.	0915		35	34.625	50	
5	1.4	1.4	2.8	0.	8369		26	25.721	5	
By Linear Regression of	Y on X									
	Slope, m	=	35.3	013	Int	ercept, b	=	3.9263	_	
Correlation Co	pefficient*	=	0.99	999						
Calibration	Accepted	=	Yes/	Vo**						

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :					
Calibrated by	:	Fung	Checked by	:	Derek Lo
Date	:	13-Aug-12	Date	:	13-Aug-12

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	15-Jun-12
Equipment no.	:	EL390	Calbration Due Dat	:	15-Aug-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		303		Kelvin	Pressure, P	а		1010	mmHg
Orifice Transfer Standard Information									
Equipment No.		EL086		Slope, m _c	2.015	93	Intercept, b	c -0.03	978
Last Calibration Date		11-Jul-1	1		(HxI	P _a / 101	3.3 x 298	/T _a) ^{1/2}	
Next Calibration Date		11-Jul-12	2		=	m _c x	$Q_{std} + b_c$		
	Calibration of RSP								
Calibration	Mar	Manometer Reading			Q _{std}	Continu	uous Flow	IC	
Point	H (inches of water)			(m ³	/ min.)	Reco	order, W	(W(P _a /1013.3x298/	(T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-	axis	(C	CFM)	Y-axis	5
1	5.9	5.9	11.8	1.	7068		60	59.405	9
2	4.9	4.9	9.8	1.	5572		53	52.475	2
3	3.5	3.5	7.0	1.3	3192		44	43.564	.3
4	2.4	2.4	4.8	1.	0958		35	34.653	5
5	1.4	1.4	2.8	0.	8416		26	25.742	6
By Linear Regression of	Y on X								
	Slope, m	=	38.7	214	Int	ercept, b	= -	7.3288	_
Correlation Co	pefficient*	=	0.99	992					
Calibration	Accepted	=	Yes/	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

**	Delete	as	appr	opriate.
----	--------	----	------	----------

Remarks :	•
ILCIIIAINS .	

Calibrated by	:	Sam Lam	Checked by	Derek Lo
Date	: _	15-Jun-12	Date :	 15-Jun-12

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	13-Aug-12
Equipment no.	:	EL390	Calbration Due Dat	:	13-Oct-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		305		Kelvin Pressure, P _a 1015 mmHg				mmHg	
	Orifice Transfer Standard Information								
Equipment No.	EL086			Slope, m _c	2.011	45	Intercept, b	c -0.028	803
Last Calibration Date		19-Jul-1	2		(HxH	P _a / 101	13.3 x 298	/T _a) ^{1/2}	
Next Calibration Date		19-Jul-1	3		=	m _c x	$Q_{std} + b_c$:	
	Calibration of RSP								
Calibration	Mar	nometer R	eading	c) _{std}	Continu	uous Flow	IC	
Point	Н (inches of	water)	(m ³ / min.) Recorder, W (W(P _a /1013.3x298/T _a) ^{1/2} /3			(T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-	axis	(C	CFM)	Y-axis	5
1	6.1	6.1	12.2	1.	7318		60	59.357	2
2	5.0	5.0	10.0	1.	5692		53	52.432	2
3	3.7	3.7	7.4	1.3	3519		45	44.517	9
4	2.5	2.5	5.0	1.	1137		36	35.614	3
5	1.4	1.4	2.8	0.	8369		26	25.721	5
By Linear Regression of	Y on X								
	Slope, m	=	37.3	619	Inte	ercept, b	= -	5.8154	
Correlation Co	pefficient*	=	0.99	996					
Calibration	Accepted	=	Yes/	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

13-Aug-12

:

Date

Calibrated by	:	Fung	Checked by
Remarks :			
** Delete as appro	opriate.		

13-Aug-12

:

:

Date

Derek Lo

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	СМАЗа	Calbration Date	:	15-Jun-12
Equipment no.	:	EL888	Calbration Due Dat	:	15-Aug-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		303		Kelvin Pressure, P a 1010 mmHg				mmHg	
	Orifice Transfer Standard Information								
Equipment No.		EL086		Slope, m _c	2.015	93	Intercept, b	c -0.03	978
Last Calibration Date		11-Jul-1	1		(HxH	P _a / 101	13.3 x 298	$/T_{a})^{1/2}$	
Next Calibration Date		11-Jul-12	2		=	m _c x	$Q_{std} + b_c$:	
	Calibration of RSP								
Calibration	Mar	ometer R	eading	C	۵ _{std}	Continu	uous Flow	IC	
Point	Н (і	inches of	water)	(m ³ / min.) Recorder			order, W	(W(P _a /1013.3x298	3/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X.	axis	(0	CFM)	Y-axi	s
1	6.0	6.0	12.0	1.	7211		48	47.524	47
2	4.7	4.7	9.4	1.	5255		41	40.594	40
3	3.8	3.8	7.6	1.	3737		34	33.663	34
4	2.4	2.4	4.8	1.	0958		24	23.762	24
5	1.6	1.6	3.2	0.	8983		15	14.851	15
By Linear Regression of	Y on X								
	Slope, m	=	39.5	332	Inte	ercept, b	= -2	20.2184	_
Correlation Co	pefficient*	=	0.99	991					
Calibration	Accepted	=	Yes/	No**					

* if Correlation Coefficient < 0.990, check and recalibration again.

**	Delete	as	appropriate.
----	--------	----	--------------

Checked by	:	Derek Lo
Date	:	15-Jun-12

am

Lam Geotechincs Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	СМАЗа	Calbration Date :	13-Aug-12
Equipment no.	:	EL888	Calbration Due Dat :	 13-Oct-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		305		Kelvin	Pressure, P	a		1015 mmHg
	Orifice Transfer Standard Information							
Equipment No.		EL086		Slope, m _c	2.011	45	Intercept, b	c -0.02803
Last Calibration Date		19-Jul-1	2		(HxI	P _a / 101	3.3 x 298	$(T_a)^{1/2}$
Next Calibration Date		19-Jul-1	3		=	m _c x	$Q_{std} + b_c$	
	Calibration of RSP							
Calibration	Mar	ometer R	eading	C) _{std}	Continu	ious Flow	IC
Point	Н (і	inches of	water)	(m ³ / min.) Recorder, W (W(P _a /1013.3x298/T _a) ^{1/2} /33			$(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$	
	(up)	(down)	(difference)	X-	axis	(C	FM)	Y-axis
1	6.0	6.0	12.0	1.1	7177		48	47.4858
2	4.7	4.7	9.4	1.	5219		41	40.5608
3	3.9	3.9	7.8	1.3	3875	:	36	35.6143
4	2.4	2.4	4.8	1.0	0915		24	23.7429
5	1.5	1.5	3.0	0.8	8658		15	14.8393
By Linear Regression of	Y on X							
	Slope, m = 38.5754 Intercept, b = -18.3502						8.3502	
Correlation Co	Correlation Coefficient* = 0.9997							
Calibration	Accepted	=	Yes/	\o **				

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :						
Calibrated by	:	Fung		Checked by	:	Derek Lo
Date	:	13-Aug-12	_	Date	:	13-Aug-12

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA2a	Calbration Date	:	15-Jun-12
Equipment no.	:	EL449	Calbration Due Dat	:	15-Aug-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		303		Kelvin	Pressure, P	a		1010 r	
			Orifice Tra	nsfer Stan	dard Informa	ation			
Equipment No.		EL086		Slope, m _c	2.015	93	Intercept, b	c -0.03	978
Last Calibration Date		11-Jul-1	1		(HxH	P _a / 101	13.3 x 298	/T _a) ^{1/2}	
Next Calibration Date		11-Jul-1	2		=	m _c x	$Q_{std} + b_c$:	
	Calibration of RSP								
Calibration	Mar	ometer R	eading	C	۵ _{std}	Continu	uous Flow	IC	
Point	H (inches of water)		(m ³	/ min.) Record		order, W	(W(P _a /1013.3x298	/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X.	axis	(0	CFM)	Y-axi	s
1	6.2	6.2	12.4	1.	7492		53	52.475	52
2	5.1	5.1	10.2	1.	5883		45	44.554	14
3	4.0	4.0	8.0	1.	4089		38	37.623	37
4	2.5	2.5	5.0	1.	1179		26	25.742	26
5	1.6	1.6	3.2	0.	8983		15	14.851	15
By Linear Regression of	Y on X								
	Slope, m	=	43.2	622	Inte	ercept, b	= -2	23.4638	_
Correlation Coefficient* = 0.9991									
Calibration	Accepted	=	Yes/	No**					

* if Correlation Coefficient < 0.990, check and recalibration again.

:

**	De	lete	as	ар	pro	pri	iate.	
----	----	------	----	----	-----	-----	-------	--

Remarks :	

Calibrated by	•	

Sam Lam 15-Jun-12 Checked by Date

Derek Lo

:

:

15-Jun-12

Date

am

Lam Geotechincs Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA2a	Calbration Date :	13-Aug-12
Equipment no.	:	EL449	Calbration Due Dat :	 13-Oct-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		305		Kelvin	Pressure, P	a		1015 mmH		
	Orifice Transfer Standard Information									
Equipment No.		EL086		Slope, m _c	2.011	45	Intercept, b	c -0.	02803	
Last Calibration Date		19-Jul-1	2		(HxI	P _a / 10 ⁻	13.3 x 298	$/T_{a})^{1/2}$		
Next Calibration Date		19-Jul-1	3		=	m _c x	$Q_{std} + b_c$:		
Calibration of RSP										
Calibration	Mar	nometer R	eading	C) _{std}	Contin	uous Flow	IC	•	
Point	Н (і	inches of	water)	(m ³	/ min.)	Reco	order, W	(W(P _a /1013.3x2	98/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	X-	axis	(0	CFM)	Y-a	xis	
1	6.0	6.0	12.0	1.1	7177		51	50.4	536	
2	5.0	5.0	10.0	1.	5692		44	43.5	286	
3	3.9	3.9	7.8	1.:	3875		36	35.6	143	
4	2.5	2.5	5.0	1.	1137		26	25.7	215	
5	1.4	1.4	2.8	0.8	8369		14	13.8	500	
By Linear Regression of	Y on X									
Slope, m = 40.8				952	Int	ercept, b	=	20.3530		
Correlation Coefficient* = 0.999				92						
Calibration Accepted = Yes/			Yes/	\o **						

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :						
Calibrated by	:	Fung		Checked by	:	Derek Lo
Date	:	13-Aug-12	_	Date	:	13-Aug-12

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	СМАба	Calbration Date	:	15-Jun-12
Equipment no.	:	EL448	Calbration Due Dat	:	15-Aug-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		303		Kelvin	Pressure, P	a		1010 mmHg	
	Orifice Transfer Standard Information								
Equipment No.		EL086		Slope, m _c	2.015	93	Intercept, b	c -0.03978	
Last Calibration Date		11-Jul-1	1		(HxI	P _a / 101	3.3 x 298	$/T_{a})^{1/2}$	
Next Calibration Date		11-Jul-1	2		=	m _c x	$Q_{std} + b_c$		
Calibration of RSP									
Calibration	Mar	nometer R	eading	c	Q _{std}	Continu	ious Flow	IC	
Point	H (inches of water)		(m ³	³ / min.) Record		rder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X.	axis	(C	FM)	Y-axis	
1	6.1	6.1	12.2	1.	7352		59	58.4158	
2	4.8	4.8	9.6	1.	5415		51	50.4950	
3	3.9	3.9	7.8	1.	3914		45	44.5544	
4	2.5	2.5	5.0	1.	1179		35	34.6535	
5	1.5	1.5	3.0	0.	8704		24	23.7624	
By Linear Regression of	Y on X								
	Slope, m	=	39.5	476	Int	ercept, b =	=1	0.2730	
Correlation Coefficient* = 0.9995									
Calibration Accepted = Yes/			No**						

* if Correlation Coefficient < 0.990, check and recalibration again.

:

**	Delete	as	approp	oriate.
----	--------	----	--------	---------

Remarks :	

Calibrated	by
------------	----

Date

Sam	Lam	

: 15-Jun-12

Checked by	
Date	

Derek Lo

:

:

•		

15-Jun-12

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	СМАба	Calbration Date	:	13-Aug-12
Equipment no.	:	EL448	Calbration Due Dat	:	13-Oct-12

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		305		Kelvin Pressure, P a				1015 mmHg	
	Orifice Transfer Standard Information								
Equipment No.	EL086			Slope, m _c	2.011	45	Intercept, b	c -0.028	803
Last Calibration Date		19-Jul-1	2		(HxI	P _a / 101	13.3 x 298	/T _a) ^{1/2}	
Next Calibration Date		19-Jul-1	3		=	m _c x	$Q_{std} + b_{c}$:	
			С	alibration	of RSP				
Calibration	Manometer Reading			G	l _{std}	Continu	uous Flow	IC	
Point	H (inches of water)			(m ³	/ min.)	Reco	order, W	(W(P _a /1013.3x298/	(T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-	CFN (CFN		CFM)	Y-axis	5
1	6.2	6.2	12.4	1.	7458	61		60.346	5
2	5.0	5.0	10.0	1.	5692	692 53		52.432	2
3	4.1	4.1	8.2	1.4	4223 46		45.507	2	
4	2.5	2.5	5.0	1.	.1137 34		34	33.635	8
5	1.5	1.5	3.0	0.	0.8658 24			23.742	9
By Linear Regression of Y on X									
	Slope, m	=	41.3	102	Int	ercept, b	=^	12.3623	_
Correlation Coefficient* = 0.9993									
Calibration Accepted = Yes/ No **									

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :						
Calibrated by	:	Fung		Checked by	:	Derek Lo
Date	:	13-Aug-12	_	Date	:	13-Aug-12

Certificate for a Qualified Odour Panel Member

Odour Research Laboratory The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Tel: (852) 2766 6011 Fax: (852) 2334 6389

25 June 2012

Re: A Certificate for a Qualified Odour Panel Member

This is to certify that Mr. Ng Kin-hung participated in a set of n-butanol screening tests in our laboratory between Nov 2011 - May 2012 and his odour threshold of n-butanol in nitrogen gas was found to be in the range of 20 - 80 ppb/v. According to the requirement of the European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725), he is qualified to participate olfactometry analysis to determine odour concentration.

Yours sincerely

Professor S. C. Lee Odour Research Laboratory at PolyU

Appendix 5.1

Monitoring Schedules for Reporting Month and Coming Reporting Month

Contract No. HK/2011/07 Wan Chai Development Phase II and Central-Wan Chai Bypass Sampling, Field Measurement and Testing Works (Stage2)

			August				
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
					27-Ju	1 2	28-J
					24hr TSP	24hr TSP (CMA2a)	
						1hr TSP	
29-Jul	30-Ju	1 31-Ju	I 1-A	ig 2-Au	g 3-Aug	1	4-Au
20 00.	0000			.9 2 7 65	0,449	,	
		Noise Monitoring					
		Noise Monitoring					
		24hr TSP (CMA1b)		24hr TSP			
					1hr TSP		
	Impact WQM		Impact WQM			Impact WQM	
	Mid-ebb: 10:00	6	Mid-ebb: 11:	13		Mid-ebb:	13:4
	Mid-flood: 17:30	1	Mid-flood: 18:	33		Mid-flood:	20:3
5 4					40.4		
5-Aug	6-Aug	g 7-Aug	9 8-A	ig 9-Aug	g 10-Aug	1	11-Au
		Noise Monitoring					
			04h- TOD	athe TOD/OMA (ca)	athe TOD (CMA an)		
			24hr TSP	24hr TSP(CMA 6a) 1hr TSP	24hr TSP (CMA 2a)	1hr TSP (CMA 2a)	
	Impact WQM		Impact WQM	IIII I SF	Impact WQM	THE TSP (CIVIA 2a)	
		_			Impact WQW		
	Mid-ebb: 14:5		Mid-ebb: 16:				
	Mid-flood: 21:33		Mid-flood: 22:		Mid-flood: 23:34		
12-Aug	13-Au	g 14-Aug	15-A	ıg 16-Au	g 17-Aug	1	18-Au
		Noise Monitoring					
		_					
		24hr TSP					
			1hr TSP				
	Impact WQM		Impact WQM		Impact WQM		
	Mid-ebb: 9:3		Mid-ebb: 10:				
	Mid-flood: 21:59		Mid-flood: 18:		Mid-flood: 18:52		
19-Aug	20-Aug	g 21-Aug	22-A	ıg 23-Au	24-Aug	2	25-Au
				Noine Menitoria	Noine Menitorin -		
				Noise Monitoring	Noise Monitoring		
					(M4b, M6)		
	24hr TSP	24hr TSP (CMA1b, CMA5a)				24hr TSP	
		1hr TSP					
		1111 13F				l	
	Impact WQM		Impact WQM			Impact WQM	
	Mid-ebb: 14:0	7	Mid-ebb: 15:	30		Mid-ebb:	6:20
	Mid-flood: 20:23	3	Mid-flood: 21:	36		Mid-flood:	13:2
	20.20	1	21.		1		10.2

Tentative Environmental Monitoring Schedule

Remarks: The result of 24-hr TSP on 27 July 2012 will be reported in Monthly Environmental Monitoring and Audit Report (August, 2012)

Contract No. HK/2011/07 Wan Chai Development Phase II and Central-Wan Chai Bypass Sampling, Field Measurement and Testing Works (Stage2)

	-			Septemb	er z		-		
Sunday	Monday	Tuesday		Wednesday		Thursday	Friday	Saturday	
26-Aug	27-Au	g	28-Aug	29-/	Aug	30-Aug	31-Aug	9	1-Se
		Noise Monitoring							
							24hr TSP	4. 700	
	1hr TSP			Impact WQM			Impact WQM	1hr TSP	
	Impact WQM Mid-ebb: 9:0	12			:43		Mid-ebb: 12:07	,	
	Mid-flood: 16:3				:49		Mid-flood: 18:50		
2-Sep	3-Se		4-Sep			6-Sep			8-Sep
2.000		ч [.]	4 000		JCP	0.001	1 00	, 	0.001
		Noise Monitoring							
		· · · · · ·							
					2	24hr TSP			
							1hr TSP		
	Impact WQM			Impact WQM			Impact WQM	Impact WQM	
	Mid-ebb: 13:5	3		Mid-ebb: 14	:57			Mid-ebb:	5:18
	Mid-flood: 20:0	18		Mid-flood: 21	:02		Mid-flood: 21:50		
9-Sep	10-Se	:p	11-Sep	12-5	Sep	13-Sep	14-Sep	,	15-Sep
		Noise Monitoring							
				24hr TSP					
					1	Ihr TSP			
	Impact WQM			Impact WQM			Impact WQM		
	Mid-ebb: 8:0				:39		Mid-ebb: 11:02		
16-Sep	Mid-flood: 20:3		10.0		:05	00.0	Mid-flood: 17:41		22-Sep
16-Sep	17-Se	p	18-Sep	19-5	Бер	20-Sep	21-Sep	2	22-Sep
		Noise Monitoring							
		Noise Monitoning							
		24hr TSP							
		-		1hr TSP					
	Impact WQM			Impact WQM				Impact WQM	
	Mid-ebb: 13:0	6		Mid-ebb: 14	:29			Mid-ebb:	4:35
	Mid-flood: 19:0	9		Mid-flood: 20	:20			Mid-flood:	11:48
23-Sep	24-Se	p	25-Sep	26-5	Sep	27-Sep			
					٢	Noise Monitoring			
	24hr TSP								
		1hr TSP							
	Impact WQM	-		Impact WQM					
	Mid-ebb: 7:2				:34				
	Mid-flood: 15:0	9		Mid-flood: 16	:39				

Tentative Environmental Monitoring Schedule September 2012

Remarks (Water)

1. Cut-off date is at the 27th of each reporting month.

- 2. Actual monitoring will subject to change due to any safety concern or adverse weather condition.
- 3. Water Quality Monitoring Stations corresponding to active contracts are sub-divided below:
- Contract HY/2009/11: WSD9, WSD10, WSD15, WSD17, C8, C9 (completed on 6 Feb 2012)
- Contract HY/2009/15: C6 and C7 (Commenced on 9 Nov 2010)
- Contract HK/2009/01: WSD7, WSD19, WSD20, C1, C2, C3, C4e, C4w (Commenced on 8 July 2010); Contract HK/2010/06 share station C2 from 23 Mar 2011 WSD7 and WSD20 were temporary suspended since 27 April 2012
- Contract HK/2009/02: WSD21, C5e, C5w (Commenced on 8 July 2010)

WSD9 and WSD17 (Commenced on 8 Feb 2012)

- Contract HY/2009/19: C8 and C9 (Commenced on 28 Jan 2012)

Remarks (Air)

- 1. Cut-off date is at the 27th of each reporting month.
- 2. Actual monitoring will subject to change due to any safety concern or adverse weather condition.
- 3. Air Quality Monitoring Stations corresponding to active contracts are sub-divided below:
- Contract HK/2009/01: CMA5a(Commenced and reported in Apr 2011)
- Contract HK/2009/02: CMA4a (Commenced and reported in Feb 2011)
- Contract HY/2009/17: CMA1b and CMA2a (Commenced on 17 Jun 2010)
- Contract HY/2009/19: CMA1b and CMA2a (Commenced on 17 Jun 2010, To be reported in Monthly report on 11 Aug 2010) and CMA2a (Commenced on 12 May 2010, To be reported in Monthly report o Due to the changing of land ownership at Oil Street Community Liaison Centre from Contractor to FEHD, the air quality monitoring at CMA1b was suspended on 18 September 2011. T
 - installation of HVS at temporary FEHD depot was obtained from the premises owner on early November 2011 and TSP monitoring at CMA1b was resumed on 14 November 2011.
- Contract HY/2009/15: CMA3a (Commenced and reported on 15 Mar 2011)

Remarks (Noise)

- 1. Cut-off date is at the 27th of each reporting month.
- 2. Actual monitoring will subject to change due to any safety concern or adverse weather condition.
- 3. Noise Quality Monitoring Stations corresponding to active contracts are sub-divided below:
- Contract HK/2009/01 and HK/2009/02: M1a (Commenced on 30 Mar 2010, To be reported in Monthly report on 6 July 2010)
- Contract HY/2009/19: M4b, M5b (Commenced on 23 Mar 2010 when dredging work starts), M6(Commenced on 10 May 2010) and M3a (Commenced on 10 May 2010, To be reported in Monthly report or
- Contract HY/2009/15: M2b(Commenced and reported on 10 Nov 2010) and M3a (Commenced on 10 May 2010, To be reported in Monthly report on 10 Nov 2010)
- 4. Day time noise will be monitored for Leq(30min) during the period between 07:00 and 19:00 for active contract(s).

Appendix 5.2

Noise Monitoring Results and Graphical Presentations

Noise Monitoring Result

Day Time (0700 - 1900hrs on normal weekdays)

Location: M1a - Harbour Road Sports Centre

Γ				Measur	ement Noi	se Level	Baseline Level	Construction Noise Level	Limit Level
	Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq
							Unit: dB(A), (30-min)	
	31/07/12	13:55	Fine	72.8	75.0	69.0	72	64	75
Γ	07/08/12	10:25	Fine	73.8	76.5	68.5	72	69	75
	14/08/12	10:30	Fine	74.7	77.0	71.0	72	71	75
Г	23/08/12	10:28	Fine	74.0 76.5		70.0	72	69	75

Location: M2b - Noon-day gun area

			Measure	ement Noi	se Level	Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq
						Unit: dB(A), (3		
31/07/12	13:02	Fine	71.0	72.0	69.5	68	68	75
07/08/12	11:20	Fine	69.8	70.5	68.0	68	66	75
14/08/12	11:30	Fine	71.1	71.1 72.5		68	69	75
23/08/12	11:17	Fine	71.6 72.0		70.0	68	69	75

Location: M3a - Tung Lo Wan Fire Station

				Measure	ement Noi	se Level	Baseline Level	Construction Noise Level	Limit Level
D	ate	Time	Weather	Leq	L10	L90	Leq	Leq	Leq
							Unit: dB(A), (3	30-min)	
31/	07/12	10:10	Fine	68.9	70.0	65.5	69	52	75
07/	08/12	13:00	Fine	69.2	70.1	65.4	69	59	75
14/	08/12	13:00	Fine	66.8	68.5	64.0	69	67	75
23/	08/12	13:15	Sunny	66.7 68.5		64.5	69	67	75

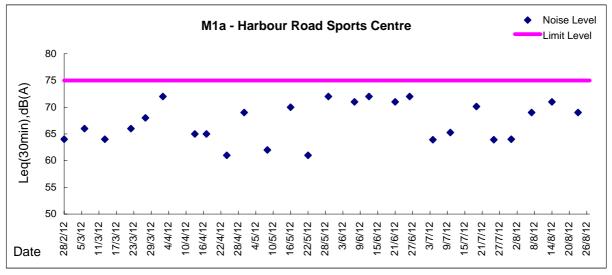
Location: M4b - Victoria Centre

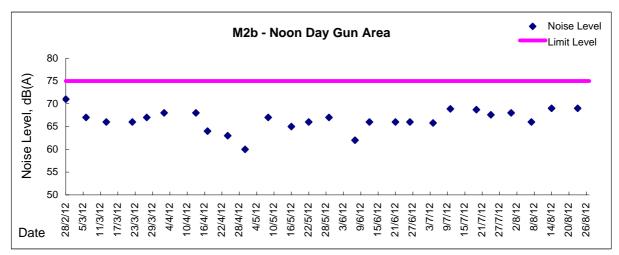
			Measure	ement Noi	se Level	Baseline Noise Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq	Leq L10		Leq	Leq	Leq
						Unit: dB(A), (30min)	
31/07/12	10:51	Fine	71.6	71.6 72.5		67	70	75
07/08/12	13:50	Fine	72.9	74.5	70.5	67	72	75
14/08/12	13:45	Fine	72.4	73.5	70.5	67	71	75
24/08/12	09:37	Fine	74.1 75.7 72		72.2	67	73	75

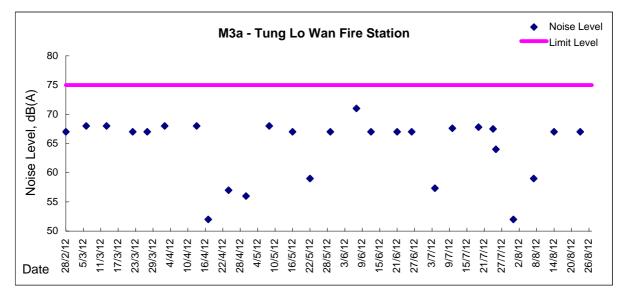
*Due to the equipment repair, the noise monitoring was rescheduled from 23 August 2012 to 24 August 2012

Location: M5b - City Garden

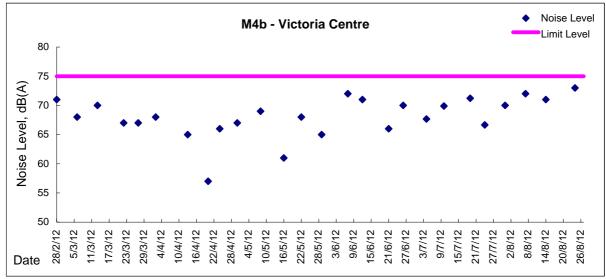
			Measur	ement Noi	se Level	Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq
						Unit: dB(A), (30min)	
31/07/12	08:26	Fine	69.7	70.5	68.0	68	65	75
07/08/12	14:50	Fine	70.6	72.0	68.5	68	67	75
14/08/12	14:30	Fine	71.8	72.5	69.0	68	69	75
23/08/12	14:25	Sunny	71.8	71.8 73.0		68	69	75

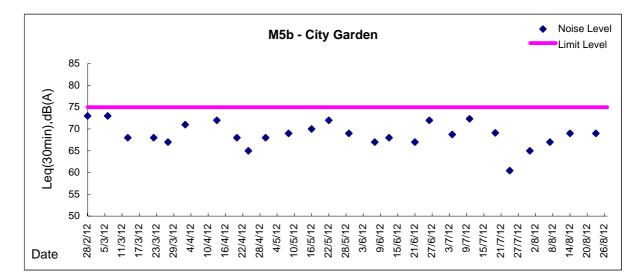

Location: M6 - HK Baptist Church Henrietta Secondary School

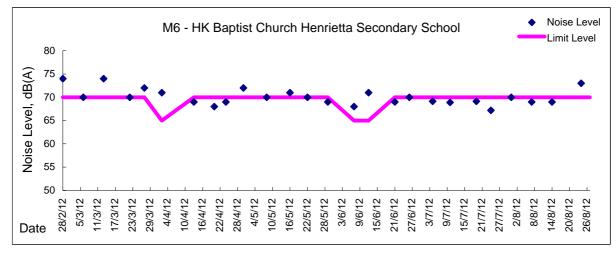

			Measur	ement Noi	se Level	Baseline Level	Construction Noise Level	Limit Level
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq
						Unit: dB(A), (3	30-min)	
31/07/12	09:10	Fine	73.4	74.5	71.5	71	70	70
07/08/12	15:29	Fine	72.9	74.0	71.0	71	69	70
14/08/12	15:13	Fine	73.1	73.8	72.7	71	69	70
24/08/12	10:25	Fine	75.2	76.4	73.3	71	73	70


*Due to the equipment repair, the noise monitoring was rescheduled from 23 August 2012 to 24 August 2012

Graphic Presentation of Noise Monitoring Result Day Time (0700 - 1900hrs on normal weekdays)







Graphic Presentation of Noise Monitoring Result Day Time (0700 - 1900hrs on normal weekdays)

Appendix 5.3

Air Quality Monitoring Results and Graphical Presentations, and odour Patrol Results

am

Location: CMA1b - Oil St Community Liaison Centre

Report on 24-hour TSP monitoring

Action Level (μ g/m3) - 176.7 Limit Level (μ g/m3) - 260

Date	Sampling	Weather	Filter	Filter Weight,	Filter Weight, g E		e, hr	Sampling	Flow Rate, m ³ /min			Total	TSP Level,
	Time	Condition	paper no.	Initial	Final	Initial	Final	Time, hr	Initial, Q_{si}	Final, Q_{sf}	Average	Volume, m ³	μg/m³
31-Jul-12	13:55	Haze	003694	2.7513	2.8666	1399.69	1423.69	24.00	1.18	1.18	1.18	1699	68
2-Aug-12	13:55	Fine	003679	2.7631	3.0047	1418.69	1442.69	24.00	1.18	1.18	1.18	1699	142
8-Aug-12	13:55	Fine	003674	2.7420	2.9486	1445.69	1469.69	24.00	1.23	1.23	1.23	1768	117
14-Aug-12	8:00	Fine	003644	2.7240	2.8372	1472.69	1496.68	23.99	1.15	1.15	1.15	1655	68
21-Aug-12	8:00	Sunny	003492	2.8223	2.9067	1508.65	1532.65	24.00	1.20	1.20	1.20	1728	49
25-Aug-12	8:00	Fine	003373	2.7670	2.9231	1532.65	1556.65	24.00	1.19	1.19	1.19	1714	91

* Due to lack of electricity supply, the 24 hr-TSP was rescheduled from 27 Jul and 20 Aug 12 to 31 Jul and 21 Aug 12

Report on 1-hour TSP monitoring

Action Level (μ g/m3) - 320.1

Limit Level ()	μg/m3) - 500
-----------------	--------------

Date	Sampling	Weather	Filter	Filter Weight,	g	Elapse Tim	ie, hr	Sampling	Flo	w Rate, m ³ /	min	Total	TSP Level,
	Time	Condition	paper no.	Initial	Final	Initial	Final	Time, hr	Initial, Q_{si}	Final, Q _{sf}	Average	Volume, m ³	μ g/m ³
28-Jul-12	8:00	Fine	002497	2.7316	2.7445	1387.95	1388.95	1.00	1.19	1.19	1.19	71	181
28-Jul-12	9:20	Fine	003344	2.7454	2.7517	1388.95	1389.95	1.00	1.19	1.19	1.19	71	88
28-Jul-12	10:22	Fine	003346	2.7556	2.7638	1389.95	1390.95	1.00	1.19	1.19	1.19	71	115
3-Aug-12	8:33	Fine	003678	2.7477	2.7685	1442.69	1443.69	1.00	1.18	1.18	1.18	71	294
3-Aug-12	9:40	Fine	003676	2.7438	2.7641	1443.69	1444.69	1.00	1.18	1.18	1.18	71	287
3-Aug-12	10:44	Fine	003675	2.7332	2.7527	1444.69	1445.69	1.00	1.18	1.18	1.18	71	275
9-Aug-12	10:50	Fine	003652	2.7268	2.7390	1469.69	1470.69	1.00	1.13	1.09	1.11	67	183
9-Aug-12	13:06	Fine	003642	2.7403	2.7515	1470.69	1471.69	1.00	1.04	0.99	1.02	61	183
9-Aug-12	14:10	Fine	003643	2.7224	2.7321	1471.69	1472.69	1.00	1.04	0.95	0.99	60	163
15-Aug-12	13:35	Fine	003645	2.7137	2.7204	1496.68	1497.68	1.00	1.15	1.15	1.15	69	97
15-Aug-12	14:42	Fine	003635	2.7164	2.7222	1497.68	1498.68	1.00	1.15	1.15	1.15	69	84
15-Aug-12	15:50	Fine	003203	2.7422	2.7510	1498.68	1499.68	1.00	1.17	1.17	1.17	70	125
21-Aug-12	8:17	Sunny	003481	2.8041	2.8101	1505.65	1506.65	1.00	1.10	1.10	1.10	66	91
21-Aug-12	9:23	Sunny	003484	2.8199	2.8239	1506.65	1507.65	1.00	1.20	1.20	1.20	72	56
21-Aug-12	10:26	Sunny	003487	2.7965	2.8000	1507.65	1508.65	1.00	1.24	1.20	1.22	73	48
27-Aug-12	8:40	Fine	003658	2.7283	2.7394	1556.65	1557.65	1.00	1.15	1.06	1.10	66	168
27-Aug-12	9:43	Fine	003648	2.7113	2.7233	1557.65	1558.65	1.00	1.10	1.06	1.08	65	185
27-Aug-12	10:46	Fine	003649	2.7400	2.7542	1558.65	1559.65	1.00	1.06	1.15	1.10	66	215

Location: CMA2a - Causeway Bay Community Centre

Report on 24-hour TSP monitoring Action Level (µg/m3) - 169.5 Limit Level (µg/m3) - 260

Date	Sampling	Weather	Filter paper				e, hr	Sampling	Flo	Flow Rate, m ³ /min			TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μ g/m ³
28-Jul-12	8:00	Fine	003349	2.7675	2.8333	11101.59	11125.59	24.00	1.38	1.38	1.38	1987	33
10-Aug-12	8:00	Fine	003653	2.7210	2.8170	11158.64	11182.64	24.00	1.46	1.47	1.47	2111	45
14-Aug-12	8:00	Fine	003663	2.7195	2.8012	11185.64	11209.64	24.00	1.48	1.47	1.47	2122	39
20-Aug-12	8:00	Sunny	003204	2.7368	2.8470	11212.64	11236.64	24.00	1.38	1.38	1.38	1987	55
25-Aug-12	8:00	Fine	003491	2.7953	3.0217	11239.64	11263.64	24.00	1.43	1.43	1.43	2059	110

* Due to lack of electricity supply, the 24 hr-TSP was rescheduled from 27 Jul and 8 Aug to 28 Jul and 10 Aug 12

Report on 1-hour TSP monitoring Action Level (µg/m3) - 323.4 Limit Level (µg/m3) - 500

Date	Sampling	Weather	Filter paper	Filter Weigh	it, g	Elapse Tim	e, hr	Sampling	Flo	w Rate, m ³ /ı	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m ³
28-Jul-12	8:00	Fine	002498	2.7354	2.7471	11098.59	11099.59	1.00	1.42	1.42	1.42	85	137
28-Jul-12	9:29	Fine	003345	2.7501	2.7588	11099.59	11100.59	1.00	1.42	1.42	1.42	85	102
28-Jul-12	10:31	Fine	003348	2.7648	2.7744	11100.59	11101.59	1.00	1.42	1.42	1.42	85	112
11-Aug-12	13:08	Fine	003877	2.7292	2.7373	11182.64	11183.64	1.00	1.47	1.47	1.47	88	92
11-Aug-12	14:12	Fine	003665	2.7413	2.7544	11183.64	11184.64	1.00	1.47	1.47	1.47	88	149
11-Aug-12	15:18	Fine	003664	2.7212	2.7329	11184.64	11185.64	1.00	1.47	1.47	1.47	88	133
15-Aug-12	11:00	Fine	003205	2.7433	2.7540	11209.64	11210.64	1.00	1.38	1.38	1.38	83	129
15-Aug-12	13:46	Fine	003207	2.7529	2.7625	11210.64	11211.64	1.00	1.45	1.47	1.46	88	110
15-Aug-12	14:58	Fine	003206	2.7460	2.7595	11211.64	11212.64	1.00	1.33	1.31	1.32	79	170
21-Aug-12	8:29	Sunny	003482	2.7965	2.8078	11236.64	11237.64	1.00	1.43	1.43	1.43	86	132
21-Aug-12	9:35	Sunny	003485	2.8055	2.8138	11237.64	11238.64	1.00	1.43	1.43	1.43	86	97
21-Aug-12	10:38	Sunny	003488	2.7992	2.8080	11238.64	11239.64	1.00	1.43	1.43	1.43	86	103
27-Aug-12	8:50	Fine	003201	2.7443	2.7663	11263.64	11264.64	1.00	1.47	1.47	1.47	88	249
27-Aug-12	9:53	Fine	003656	2.7349	2.7535	11264.64	11265.64	1.00	1.47	1.47	1.47	88	211
27-Aug-12	10:56	Fine	003646	2.7228	2.7453	11265.64	11266.64	1.00	1.47	1.47	1.47	88	255

* Due to lack of electricity supply, the 1 hr-TSP was rescheduled from 9 Aug to 11 Aug 12

Location: CMA3a - CWB PRE Site Office Area

Report on 24-hour TSP monitoring Action Level (µg/m3) - 171 Limit Level (µg/m3) - 260

Date	Sampling	Weather	Filter paper				e, hr	Sampling	Flo	w Rate, m³/i	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m ³
27-Jul-12	8:00	Cloudy	003343	2.7566	2.9087	11784.70	11808.70	24.00	1.43	1.43	1.43	2059	74
2-Aug-12	8:00	Fine	003210	2.7477	3.0794	11811.70	11835.70	24.00	1.42	1.42	1.42	2045	162
8-Aug-12	8:00	Fine	003666	2.7349	3.0686	11867.64	11891.64	24.00	1.61	1.47	1.54	2217	151
14-Aug-12	8:00	Fine	003847	2.7062	2.7707	11895.73	11919.73	24.00	1.51	1.51	1.51	2174	30
20-Aug-12	8:00	Sunny	003662	2.7320	2.8940	11922.73	11946.73	24.00	1.51	1.51	1.51	2174	75
25-Aug-12	8:00	Fine	003199	2.7414	3.0208	11949.73	11973.73	24.00	1.66	1.66	1.66	2390	117

Report on 1-hour TSP monitoring Action Level (μg/m3) - 311.3 Limit Level (μg/m3) - 500

Date	Sampling	Weather	Filter paper	Filter Weigh	it, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/r	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m ³
28-Jul-12	13:17	Fine	003350	2.7414	2.7552	11808.70	11809.70	1.00	1.48	1.48	1.48	89	156
28-Jul-12	14:21	Fine	003212	2.7444	2.7583	11809.70	11810.70	1.00	1.48	1.48	1.48	89	157
28-Jul-12	15:24	Fine	003211	2.7388	2.7556	11810.70	11811.70	1.00	1.48	1.48	1.48	89	190
3-Aug-12	13:00	Fine	003673	2.7513	2.7664	11835.70	11836.70	1.00	1.42	1.42	1.42	85	177
3-Aug-12	14:15	Fine	003670	2.7502	2.7687	11836.70	11837.70	1.00	1.42	1.42	1.42	85	217
3-Aug-12	15:22	Fine	003669	2.7410	2.7559	11837.70	11838.70	1.00	1.42	1.42	1.42	85	175
9-Aug-12	8:48	Fine	003875	2.7176	2.7363	11891.64	11892.64	1.00	1.52	1.52	1.52	91	206
9-Aug-12	9:59	Fine	003882	2.7239	2.7430	11892.64	11893.64	1.00	1.52	1.52	1.52	91	210
9-Aug-12	13:00	Fine	003880	2.7174	2.7360	11893.64	11894.64	1.00	1.52	1.52	1.52	91	205
15-Aug-12	13:00	Fine	003209	2.7506	2.7680	11919.73	11920.73	1.00	1.61	1.61	1.61	96	181
15-Aug-12	14:08	Fine	003850	2.6980	2.7146	11920.73	11921.73	1.00	1.61	1.61	1.61	96	172
15-Aug-12	16:10	Fine	003848	2.7088	2.7287	11921.73	11922.73	1.00	1.56	1.56	1.56	93	213
21-Aug-12	8:17	Sunny	003657	2.7409	2.7541	11946.73	11947.73	1.00	1.56	1.56	1.56	94	141
21-Aug-12	9:20	Sunny	003190	2.7434	2.7532	11947.73	11948.73	1.00	1.66	1.66	1.66	100	98
21-Aug-12	10:22	Sunny	003200	2.7438	2.7568	11948.73	11949.73	1.00	1.66	1.66	1.66	100	131
27-Aug-12	8:10	Fine	003261	2.7855	2.8099	11973.73	11974.73	1.00	1.61	1.61	1.61	96	253
27-Aug-12	9:44	Fine	003853	2.7062	2.7303	11974.73	11975.73	1.00	1.61	1.61	1.61	96	250
27-Aug-12	16:15	Fine	004034	2.7773	2.8001	11975.73	11976.73	1.00	1.61	1.61	1.61	96	237

Location: CMA4a - SPCA

Report on 24-hour TSP monitoring

Action Level (µg/m3) -Limit Level (µg/m3) -171.2 260

Date	Sampling	Weather	Filter paper				e, hr	Sampling	Flo	w Rate, m ³ /ı	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
27-Jul-12	8:00	Cloudy	003295	2.7852	2.8886	15310.13	15334.13	24.00	1.42	1.17	1.30	1872	55
2-Aug-12	8:00	Fine	003213	2.7491	3.0531	15337.13	15361.13	24.00	1.26	1.26	1.26	1814	168
8-Aug-12	8:00	Fine	003667	2.7354	2.9934	15364.13	15388.13	24.00	1.31	1.41	1.36	1960	132
14-Aug-12	8:00	Fine	003879	2.7165	2.8082	15391.12	15415.12	24.00	1.28	1.27	1.27	1835	50
20-Aug-12	8:00	Sunny	003846	2.7041	2.8378	15418.12	15442.12	24.00	1.28	1.28	1.28	1843	73
25-Aug-12	8:00	Fine	003186	2.7584	2.9702	15445.12	15469.12	24.00	1.27	1.27	1.27	1829	116

Report on 1-hour TSP monitoring Action Level (µg/m3) - 312. 312.5 500

Limit Level (µg/m3) -

Date	Sampling	Weather	Filter paper	Filter Weigh	nt, g	Elapse Tim	e, hr	Sampling	Flo	w Rate, m ³ /ı	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μ g/m ³
28-Jul-12	13:28	Fine	003185	2.7517	2.7649	15334.13	15335.13	1.00	1.22	1.22	1.22	73	180
28-Jul-12	14:33	Fine	003189	2.7642	2.7752	15335.13	15336.13	1.00	1.22	1.22	1.22	73	150
28-Jul-12	15:36	Fine	003188	2.7547	2.7651	15336.13	15337.13	1.00	1.17	1.17	1.17	70	148
3-Aug-12	13:00	Fine	003672	2.7419	2.7650	15361.13	15362.13	1.00	1.41	1.41	1.41	85	273
3-Aug-12	14:04	Fine	003671	2.7718	2.7948	15362.13	15363.13	1.00	1.41	1.41	1.41	85	272
3-Aug-12	15:42	Fine	003668	2.7439	2.7661	15363.13	15364.13	1.00	1.41	1.41	1.41	85	263
9-Aug-12	8:38	Fine	003876	2.7286	2.7465	15388.12	15389.12	1.00	1.31	1.31	1.31	79	227
9-Aug-12	9:45	Fine	003651	2.7235	2.7409	15389.12	15390.12	1.00	1.31	1.31	1.31	79	221
9-Aug-12	10:49	Fine	003881	2.7154	2.7323	15390.12	15391.12	1.00	1.31	1.31	1.31	79	215
15-Aug-12	10:10	Fine	003208	2.7347	2.7437	15415.12	15416.12	1.00	1.17	1.22	1.20	72	125
15-Aug-12	13:00	Fine	003654	2.7354	2.7413	15416.12	15417.12	1.00	1.17	1.22	1.20	72	82
15-Aug-12	14:15	Fine	003849	2.6924	2.7037	15417.12	15418.12	1.00	1.27	1.27	1.27	76	148
21-Aug-12	8:30	Sunny	003659	2.7322	2.7424	15442.12	15443.12	1.00	1.22	1.22	1.22	73	139
21-Aug-12	9:32	Sunny	003660	2.7205	2.7305	15443.12	15444.12	1.00	1.22	1.22	1.22	73	136
21-Aug-12	10:34	Sunny	003187	2.7577	2.7686	15444.12	15445.12	1.00	1.22	1.22	1.22	73	148
27-Aug-12	8:23	Fine	003851	2.6891	2.7040	15469.12	15470.12	1.00	1.27	1.27	1.27	76	195
27-Aug-12	9:32	Fine	003852	2.7044	2.7235	15470.12	15471.12	1.00	1.27	1.27	1.27	76	250
27-Aug-12	10:30	Fine	003857	2.7033	2.7268	15471.12	15472.12	1.00	1.27	1.27	1.27	76	308

Location: CMA5a - Children Garden opposite to Pedestrian Plaza

Report on 24-hour TSP monitoring Action Level (µg/m3) -Limit Level (µg/m3) -181

260

Date	Sampling	Weather	Filter paper	Filter Weigh	er Weight, g Ela		e, hr	Sampling	Flo	w Rate, m ³ /	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m ³
27-Jul-12	8:00	Cloudy	003680	2.7570	2.8610	16306.41	16330.41	24.00	1.46	1.46	1.46	2102	50
2-Aug-12	8:00	Fine	003366	2.7656	3.0904	16333.41	16357.41	24.00	1.45	1.45	1.45	2088	156
8-Aug-12	8:00	Fine	003883	2.7066	2.9698	16360.41	16384.41	24.00	1.45	1.45	1.45	2086	126
14-Aug-12	8:00	Fine	003870	2.7438	2.8657	16387.41	16411.41	24.00	1.46	1.45	1.46	2098	58
21-Aug-12	8:00	Sunny	003628	2.7194	2.8245	16423.03	16447.03	24.00	1.51	1.51	1.51	2174	48
25-Aug-12	8:00	Fine	004860	2.7528	2.9802	16447.03	16471.03	24.00	1.29	1.51	1.40	2016	113

Due to lack of electricity supply, the 24 hr-TSP was rescheduled from 20 Aug 12 to 21 Aug 12

Report on 1-hour TSP monitoring

Action Level (µg/m3) -332

Limit Level (µg/m3) -500

Date	Sampling	Weather	Filter paper	Filter Weigh	it, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m ³ /	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m ³
28-Jul-12	11:00	Fine	003361	2.7494	2.7599	16330.41	16331.41	1.00	1.46	1.46	1.46	88	120
28-Jul-12	13:00	Fine	003363	2.7500	2.7597	16331.41	16332.41	1.00	1.46	1.46	1.46	88	111
28-Jul-12	14:45	Fine	003367	2.7586	2.7714	16332.41	16333.41	1.00	1.46	1.46	1.46	88	146
3-Aug-12	8:00	Fine	003890	2.7350	2.7578	16357.41	16358.41	1.00	1.45	1.45	1.45	87	263
3-Aug-12	9:02	Fine	003885	2.7214	2.7446	16358.41	16359.41	1.00	1.45	1.45	1.45	87	267
3-Aug-12	10:04	Fine	003888	2.7232	2.7471	16359.41	16360.41	1.00	1.45	1.45	1.45	87	275
9-Aug-12	8:15	Fine	003874	2.7230	2.7446	16384.41	16385.41	1.00	1.45	1.40	1.42	85	253
9-Aug-12	9:29	Fine	003873	2.7228	2.7376	16386.41	16387.41	1.00	1.26	1.29	1.28	77	193
9-Aug-12	10:31	Fine	003872	2.7132	2.7323	16385.41	16386.41	1.00	1.45	1.45	1.45	87	220
15-Aug-12	10:00	Fine	003634	2.7315	2.7406	16411.41	16412.41	1.00	1.45	1.45	1.45	87	104
15-Aug-12	13:00	Fine	003631	2.7446	2.7545	16413.41	16414.41	1.00	1.40	1.45	1.43	86	116
15-Aug-12	17:00	Fine	003632	2.7155	2.7290	16412.41	16413.41	1.00	1.29	1.29	1.29	78	174
21-Aug-12	8:45	Sunny	004033	2.8142	2.8222	16420.02	16421.02	1.00	1.51	1.51	1.51	91	88
21-Aug-12	9:50	Sunny	002952	2.7643	2.7753	16422.02	16423.02	1.00	1.51	1.51	1.51	91	121
21-Aug-12	10:55	Sunny	004031	2.8084	2.8152	16421.02	16422.02	1.00	1.35	1.35	1.35	81	84
27-Aug-12	9:05	Fine	003627	2.7329	2.7586	16472.22	16473.22	1.00	1.45	1.45	1.45	87	295
27-Aug-12	10:50	Fine	003626	2.7334	2.7568	16474.22	16475.22	1.00	1.45	1.45	1.45	87	268
27-Aug-12	15:30	Fine	003622	2.7482	2.7766	16473.22	16474.22	1.00	1.45	1.45	1.45	87	326

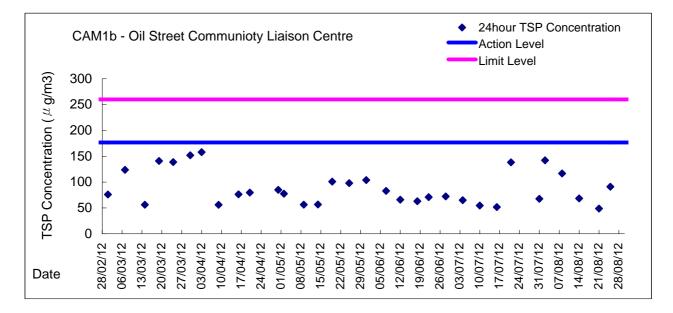
Location: CMA6a - WD2 PRE Office

Report on 24-hour TSP monitoring

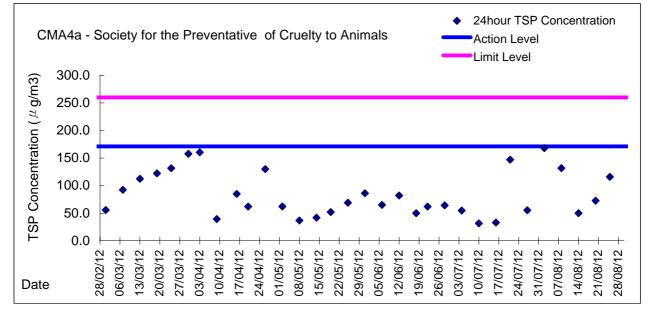
		· · · · · ·	
Action Level -	187.3	µg/m3	
Limit Level -	260	µg/m3	

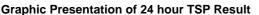
Date	Sampling	Weather	Filter paper	Filter Weigh	it, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/ı	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q_{sf}	Average	Volume, m ³	μg/m³
27-Jul-12	8:00	Cloudy	003360	2.7461	2.8173	14613.81	14637.81	24.00	1.23	1.22	1.23	1771	40
2-Aug-12	8:00	Fine	003368	2.7557	3.0816	14640.81	14664.81	24.00	1.26	1.26	1.26	1814	180
9-Aug-12	11:17	Fine	003638	2.7040	2.8072	14670.83	14694.83	24.00	1.26	1.26	1.26	1820	57
14-Aug-12	8:00	Fine	003399	2.7927	2.8812	14694.83	14718.83	24.00	1.27	1.26	1.27	1822	49
20-Aug-12	8:00	Sunny	003629	2.7425	2.8552	14721.85	14745.85	24.00	1.22	1.22	1.22	1757	64
25-Aug-12		Fine	003624	2.7425	2.8552	14748.85	14772.85	24.00	1.22	1.22	1.22	1757	64
* Due to lac	* Due to lack of electricity supply, the 24 hr-TSP was rescheduled from 8 Aug 12 to 9 Aug 12												

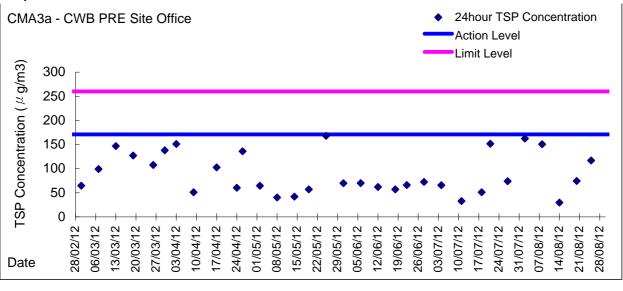
Report on 1-hour TSP monitoring

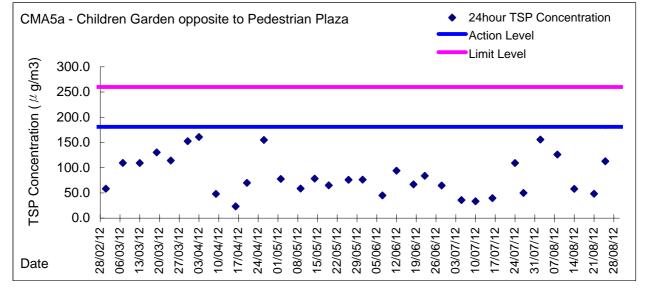

Action Level - 300.1 μ g/m³

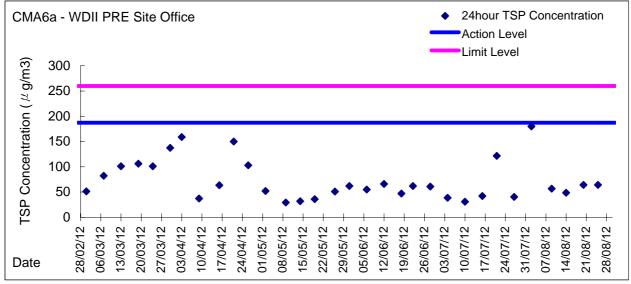

Limit Level - 500 μ g/m3

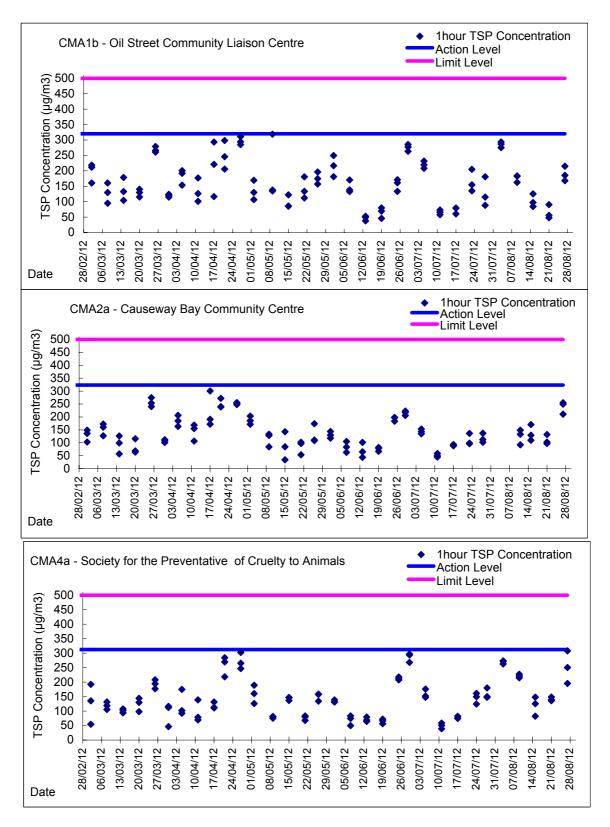

Date	Sampling	Weather	Filter paper	Filter Weigh	nt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m ³ /ı	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q_{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
28-Jul-12	10:40	Fine	003362	2.7551	2.7621	14637.81	14638.81	1.00	1.22	1.22	1.22	73	95
28-Jul-12	13:00	Fine	003364	2.7594	2.7670	14638.81	14639.81	1.00	1.27	1.27	1.27	76	100
28-Jul-12	14:15	Fine	003365	2.7565	2.7647	14639.81	14640.81	1.00	1.27	1.27	1.27	76	107
3-Aug-12	8:10	Fine	003889	2.7113	2.7252	14664.81	14665.81	1.00	1.31	1.31	1.31	79	177
3-Aug-12	9:13	Fine	003886	2.7315	2.7464	14665.81	14666.81	1.00	1.31	1.31	1.31	79	189
3-Aug-12	10:16	Fine	003887	2.7026	2.7174	14666.81	14667.81	1.00	1.31	1.31	1.31	79	188
9-Aug-12	8:00	Fine	003884	2.7129	2.7340	14667.81	14668.81	1.00	1.31	1.31	1.31	79	268
9-Aug-12	9:12	Fine	003639	2.7269	2.7473	14668.82	14669.82	1.00	1.31	1.31	1.31	79	259
9-Aug-12	10:15	Fine	003871	2.7170	2.7327	14669.82	14670.82	1.00	1.22	1.22	1.22	73	215
15-Aug-12	13:43	Fine	003635	2.7240	2.7332	14718.83	14719.83	1.00	1.22	1.26	1.24	74	124
15-Aug-12	14:50	Fine	003633	2.7208	2.7289	14719.83	14720.83	1.00	1.26	1.26	1.26	76	107
15-Aug-12	16:40	Fine	003630	2.7287	2.7422	14720.85	14721.85	1.00	1.22	1.22	1.22	73	185
21-Aug-12	8:50	Sunny	002938	2.7778	2.7850	14745.85	14746.85	1.00	1.22	1.22	1.22	73	98
21-Aug-12	9:55	Sunny	004032	2.8248	2.8300	14746.85	14747.85	1.00	1.22	1.22	1.22	73	71
21-Aug-12	10:58	Sunny	003681	2.7581	2.7652	14747.85	14748.85	1.00	1.22	1.22	1.22	73	97
27-Aug-12	8:30	Fine	003625	2.7208	2.7380	14772.85	14773.85	1.00	1.45	1.45	1.45	87	198
27-Aug-12	9:55	Fine	003624	2.7403	2.7564	14773.85	14774.85	1.00	1.45	1.45	1.45	87	186
27-Aug-12	10:58	Fine	003621	2.7418	2.7566	14774.85	14775.85	1.00	1.45	1.45	1.45	87	171

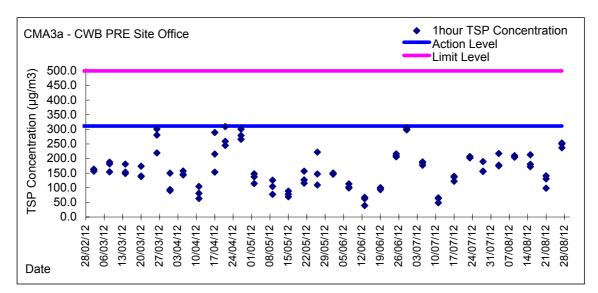

Graphic Presentation of 24 hour TSP Result

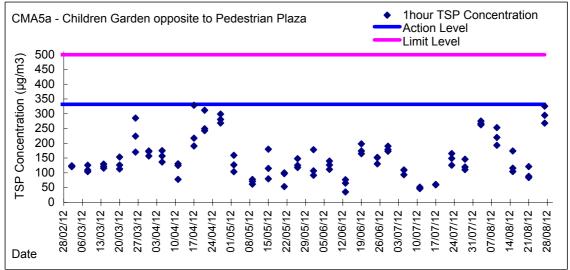


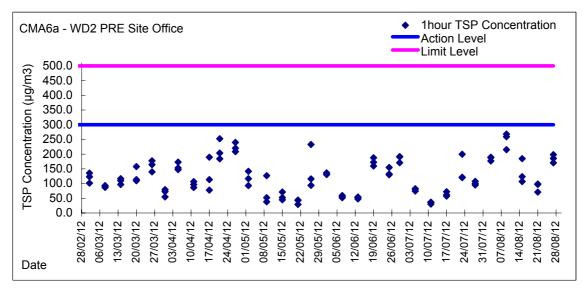









Graphic Presentation of 1 hour TSP Result



Graphic Presentation of 1 hour TSP Result

		Field Data Record S	<u>Sheet</u>		
Monitoring Date:	13-8-2012	Weather Condition:	Cloudy	Tidal	FLOOD
				Condition:	
Temperature:	28.8-29.5°C	Relative Humidity:	83-90%	<u>.</u>	

Location	Time	Temperature	Relative Humidity (%)	Odour Intensity	Odour Nature	Possible Odour Sources	Duration	Wind Speed(m/s)	Wind Direction	Remarks
OP7	14:10	29.7	75.0	1	Rotten Egg	Sea	Continuous	0.6	S	
OP6	14:20	31.4	67.2	0				2.3	S	
OP5	14:27	32.0	65.5	0				2.0	S	
OP4	14:35	31.2	69.0	1-2	Rotten Egg	Sea	Continuous	1.7	S	
OP3	14:40	31.0	70.5	0				0.9	S	
OP2	14"50	31.2	67.0	0				0.2	S	
OP1	15:03	28.9	73.0	1-2	Rotten Egg	Sea	Continuous	2.2	S	

Remarks for Odour Intensity:

The perceived odour intensity is to be divided into 5 levels which are ranked in the descending order as follows:

0 - Not detected. No odour perceived or an odour so weak that it cannot be easily characterised or described;

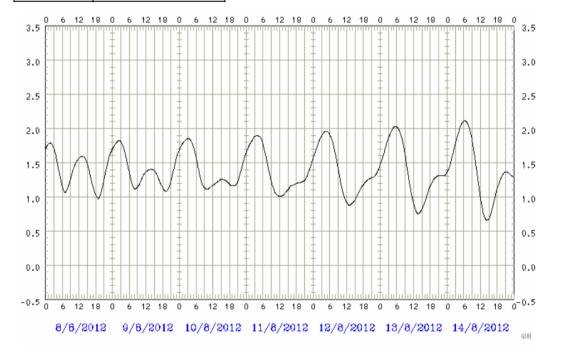
1 - Slight Identifiable odour, and slight chance to have odour nuisance;

2 – Moderate Identifiable odour, and moderate chance to have odour nuisance

3 - Strong Identifiable, likely to have odour nuisance;

4 - Extreme Severe odour, and unacceptable level

•


Meteorological Conditions on 13 August 2012

• Hong Kong Observatory Weather Station at Hong Kong Park Air Temperature: $25.4 - 30.1^{\circ}$ C

The tidal data at Quarry Bay Station

Tide Time	Tide Height (m)
05:25	2.0
13:46	0.8
-	-
-	-

		Field Data Record S	<u>Sheet</u>		
Monitoring Date:	23-8-2012	Weather Condition:	Cloudy	Tidal	Ebb
				Condition:	
Temperature:	30.4-31.0°C	Relative Humidity:	68-75%		

Location	Time	Temperature	Relative Humidity (%)	Odour Intensity	Odour Nature	Possible Odour Sources	Duration	Wind Speed(m/s)	Wind Direction	Remarks
OP7	14:05	31.2	67.5	0				0.4	Ν	
OP6	14:15	31.9	64.3	0				0.7	Ν	
OP5	14:21	31.9	64.7	0				2.8	N	
OP4	14:26	32.4	62.9	0				3.1	Ν	
OP3	14:32	32.7	61.4	0				0.6	Ν	
OP2	14:38	32.8	62.0	0				0.2	N	
OP1	14:43	32.7	61.7	0-1	Rotten Egg	Sea	Intermittent	0.8	N	

Remarks for Odour Intensity:

The perceived odour intensity is to be divided into 5 levels which are ranked in the descending order as follows:

0 - Not detected. No odour perceived or an odour so weak that it cannot be easily characterised or described;

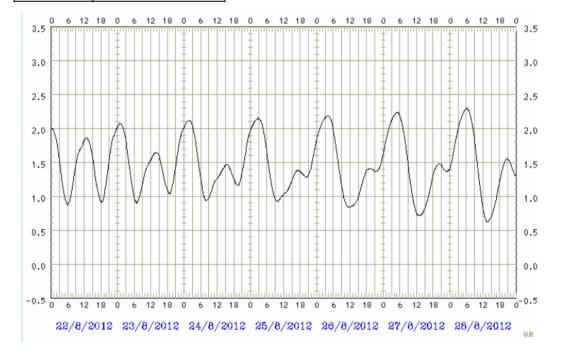
1 - Slight Identifiable odour, and slight chance to have odour nuisance;

2 – Moderate Identifiable odour, and moderate chance to have odour nuisance

3 - Strong Identifiable, likely to have odour nuisance;

4 - Extreme Severe odour, and unacceptable level

•


Contract No. HK/2011/07 Wanchai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement and testing Works (Stage 2) Proposal on Impact Monitoring for Odour Patrol along the shorelines of CBTS and ex-PCWA

Meteorological Conditions on 23 August 2012

- Hong Kong Observatory Weather Station at Hong Kong Observatory
 Air Temperature: 26.6 − 31.8°C
 Relative humidity: 64-86 %
- Hong Kong Observatory Weather Station at Hong Kong Park Air Temperature: $24.8 - 33.3^{\circ}$

The tidal data at Quarry Bay Station

Tide Time	Tide Height (m)
0:59	2.1
6:53	0.9
13:58	1.6
18:47	1

Appendix 5.4

Water Quality Monitoring Results and Graphical Presentations

Water Monitoring Result at WSD9 - Tai Wan Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp °C	perature		pН			Salini	ty	D	O Satur %	ation		DO mg/L			Turbic NTL		Suspende	
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va	ppt lue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Value	Average
28/7/2012	16:46	Fine	Middle	3.0	27.30	27.30	27.31	7.43	7.43	7.42	29.99	29.99	29.99	70.3	70.2	70.2	4.73	4.72	4.72	1.42	1.61	1.43	4	3.50
20/1/2012	16:48	1 110	Middle	3.0	27.31	27.31	27.01	7.41	7.41	1.42	29.98	29.98	20.00	70.1	70.1	10.2	4.71	4.71	4.72	1.33	1.36	1.40	3	0.00
30/7/2012	18:16	Fine	Middle	3.0	27.66	27.66	27.65	7.35	7.35	7.35	30.39	30.39	30.39	72.4	72.3	72.2	4.82	4.81	4.81	3.43	3.30	3.33	7	6.00
	18:18		Middle	3.0	27.63	27.63		7.34	7.34		30.38	30.38		72.2	72.0		4.80	4.80		3.26	3.34		5	
1/8/2012	17:01	Haze	Middle	2.0	29.90	29.90	29.90	7.99	7.99	7.99	30.54	30.54	30.54	87.9	88.1	87.3	5.61	5.63	5.58	0.19	0.24	0.20	4	3.50
	17:02		Middle	2.0	29.90	29.90		7.98	7.98		30.54	30.54		87.1	86.1		5.56	5.50		0.13	0.25		3	
4/8/2012	17:50	Cloudy	Middle	2.0	27.80	27.80	27.85	7.98	7.98	7.98	31.05	31.05	31.05	78.6	79.4	79.0	5.18	5.24	5.21	2.31	2.30	2.29	4	4.50
	17:51		Middle	2.0	27.90	27.90		7.98	7.98		31.05	31.05		79.4	78.6		5.23	5.18		2.33	2.20		5	<u> </u>
6/8/2012	19:37	Fine	Middle	2.5	28.40	28.40	28.40	7.89	7.89	7.89	30.67	30.67	30.67	76.3	78.3	77.5	5.00	5.13	5.08	1.12	0.93	0.99	4	3.50
	19:38		Middle	2.5	28.40	28.40		7.89	7.90		30.66	30.66		78.3	77.0		5.13	5.05		0.94	0.96		3	<u> </u>
8/8/2012	1:17	Haze	Middle	2.5	28.40	28.40	28.45	7.92	7.92	7.92	30.90	30.90	30.90	79.5	79.9	78.6	5.19	5.21	5.13	1.55	1.32	1.39	5	5.50
	1:18		Middle	2.5	28.50	28.50		7.91	7.91		30.90	30.90		78.0	77.0		5.09	5.02		1.34	1.33		6	<u> </u>
10/8/2012	23:30	Cloudy	Middle	2.5	28.60	28.60	28.60	8.13	8.13	8.13	29.53	29.53	29.53	97.3	98.0	97.4	6.39	6.43	6.40	2.87	2.84	2.69	6	6.00
	23:31		Middle	2.5	28.60	28.60		8.13	8.13		29.52	29.52		97.0	97.2		6.38	6.38		2.35	2.71		6	<u> </u>
13/8/2012	22:55	Cloudy	Middle	2.5	27.50	27.50	27.50	8.01	8.01	8.01	29.14	29.14	29.14	79.8	78.2	78.6	5.34	5.24	5.26	1.77	1.67	1.65	5	5.50
	22:56		Middle	2.5	27.50	27.50		8.01	8.01		29.14	29.14		78.3	78.0		5.24	5.20		1.57	1.58		6	<u> </u>
15/8/2012	17:05	Fine	Middle	2.0	29.30	29.30	29.30	8.23	8.23	8.25	28.48	28.48	28.48	98.5	97.6	97.1	6.42	6.36	6.33	1.21	1.26	1.19	6	6.00
	17:06		Middle	2.0	29.30	29.30		8.26	8.26		28.48	28.48		96.1	96.1		6.26	6.26		0.98	1.29		6	<u> </u>
17/8/2012	17:30	Cloudy	Middle	2.0	27.50	27.50	27.50	8.06	8.06	8.06	31.74	31.74	31.74	75.4	75.4	76.4	4.98	4.98	5.05	4.91	5.04	4.85	8	9.00
	17:31		Middle	2.0	27.50	27.50		8.06	8.06		31.74	31.74		77.6	77.1		5.13	5.10		4.81	4.64		10	<u> </u>
20/8/2012	17:55	Fine	Middle	2.0	28.30	28.30	28.33	7.98	7.98	7.98	30.40	30.40	30.40	80.1	81.1	80.1	5.44	5.33	5.31	2.79	2.66	2.63	5	5.50
	17:56		Middle	2.0	28.30	28.40		7.98	7.98		30.40	30.40		80.0	79.3		5.28	5.20		2.53	2.54		6	<u> </u>
22/8/2012	19:50	Cloudy	Middle	2.5	27.60	27.60	27.60	7.99	7.97	7.98	30.30	30.30	30.30	75.7	75.2	74.8	5.03	5.01	4.98	2.82	2.50	2.66	3	3.50
	19:51 15:22		Middle Middle	2.5 2.5	27.60 28.47	27.60 28.47		7.97	7.97		30.30 31.94	30.30 31.94		73.9 63.2	74.3 62.0		4.92 4.11	4.95 4.03		2.70	2.61 6.80		4	
25/8/2012	15:22	Fine	Middle	2.5	28.47	28.47	28.48	7.15	7.15 7.16	7.16	31.94	31.94	31.92	61.6	60.8	61.9	3.99	3.93	4.02	6.73 6.48	6.55	6.64	9	8.00
	15:24		Middle	2.5	28.48	28.46		7.16	7.16		31.90	31.90		94.0	93.5		6.11	5.93 6.07		3.59	3.58		8	
27/8/2012	16:42	Fine	Middle	2.5	28.53	28.53	28.50	7.28	7.28	7.29	32.00	32.00	32.01	94.0	93.5	93.5	6.10	6.01	6.07	3.39	3.48	3.51	6	7.00
	10.44		MIGUIE	2.0	20.03	20.03		1.20	1.20		32.01	32.01		93.0	92.0		0.10	0.01		3.31	3.40		U	

Water Monitoring Result at WSD17 - Quarry Bay Mid-Flood Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur %	ation		DO mg/L		-	Turbid NTU		Suspende	
			ſ	n	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
28/7/2012	15:15	Fine	Middle	2.0	27.52	27.52	27.53	7.39	7.39	7.38	30.18	30.18	30.17	68.5	68.2	68.1	4.56	4.55	4.54	2.33	2.33	2.28	4	4.00
	15:17		Middle	2.0	27.54	27.54		7.36	7.36		30.15	30.15		67.9	67.7		4.53	4.52		2.27	2.17		4	<u> </u>
30/7/2012	16:47	Fine	Middle	2.5	27.99	27.99	27.99	7.40	7.40	7.41	30.62	30.62	38.88	69.2	68.8	68.7	4.57	4.54	4.53	3.27	3.00	3.05	4	4.50
	16:49		Middle	2.5	27.99	27.99		7.41	7.41		30.63	63.63		68.4	68.2		4.51	4.50		2.91	3.02		5	<u> </u>
1/8/2012	19:35	Haze	Middle	2.5	28.80	28.80	28.75	8.02	8.02	8.02	31.69	31.71	31.73	86.0	86.1	86.3	5.58	5.60	5.61	0.91	0.93	0.90	2	3.50
	19:36		Middle Middle	2.5 3.0	28.70 27.50	28.70 27.50		8.02 7.99	8.02		31.76 31.35	31.75 31.35		86.5	86.7 75.2		5.61 4.97	5.64 4.96		0.84 3.25	0.92		5	<u> </u>
4/8/2012	20:06 20:07	Cloudy	Middle	3.0	27.60	27.60	27.55	7.99	7.99	7.99	31.35	31.35	31.35	75.3 76.4	77.1	76.0	5.04	5.09	5.02	3.13	3.25	3.29	6	5.50
	22:04		Middle	3.0	27.40	27.40		8.01	8.01		31.91	31.91		79.0	78.5		5.29	5.20		1.86	1.99		4	
6/8/2012	22:05	Fine	Middle	3.0	27.30	27.30	27.35	8.00	7.99	8.00	31.90	31.90	31.91	78.1	78.3	78.5	5.17	5.18	5.21	1.90	1.88	1.91	4	4.00
	23:22		Middle	3.0	28.20	28.20		7.93	7.93		30.30	30.40		76.0	76.6		4.98	5.04		0.99	1.76		3	<u> </u>
8/8/2012	23:23	Haze	Middle	3.0	28.20	28.20	28.20	7.93	7.93	7.93	30.40	30.40	30.38	74.9	74.3	75.5	4.93	4.89	4.96	1.19	1.20	1.29	3	3.00
	1:15		Middle	3.0	28.10	28.10		8.08	8.08		29.08	29.08		89.9	90.2		6.00	5.99		1.50	1.35		4	
10/8/2012	1:16	Cloudy	Middle	3.0	28.10	28.10	28.10	8.07	8.07	8.08	29.08	29.08	29.08	88.6	89.3	89.5	5.89	5.93	5.95	1.61	1.73	1.55	3	3.50
13/8/2012	1:05	Claudu	Middle	3.0	27.40	27.40	27.40	8.03	8.03	0.04	28.70	28.70	20.70	79.6	79.6	79.7	5.36	5.36	5.36	0.58	0.62	0.64	3	3.50
13/8/2012	1:06	Cloudy	Middle	3.0	27.40	27.40	27.40	8.04	8.04	8.04	28.70	28.70	28.70	79.6	79.8	79.7	5.36	5.37	5.30	0.66	0.69	0.64	4	3.50
15/8/2012	19:20	Fine	Middle	3.0	27.50	27.50	27.65	8.08	8.08	8.08	30.76	30.76	30.77	77.6	77.5	78.5	5.13	5.13	5.19	1.49	1.14	1.27	9	8.50
10/0/2012	19:21	1 110	Middle	3.0	27.80	27.80	21.00	8.07	8.07	0.00	30.78	30.78		79.7	79.1	10.0	5.27	5.23	0.10	1.18	1.25		8	0.00
17/8/2012	19:45	Cloudy	Middle	3.0	26.70	26.70	26.70	8.15	8.15	8.13	32.30	32.30	32.30	78.3	78.3	77.2	5.23	5.23	5.15	8.21	8.37	8.26	16	16.00
	19:46		Middle	3.0	26.70	26.70		8.11	8.11		32.30	32.30		76.0	76.0		5.07	5.07		8.39	8.08		16	
20/8/2012	20:05	Fine	Middle	3.0	27.80	27.80	27.80	8.00	8.00	8.00	31.31	31.31	31.31	72.1	73.2	72.6	4.75	4.82	4.79	3.66	3.47	3.52	7	7.50
	20:06		Middle	3.0	27.80	27.80		7.99	8.00		31.31	31.31		72.9	72.2		4.81	4.76		3.67	3.26		8	<u> </u>
22/8/2012	22:40	Cloudy	Middle	3.0	26.70	26.70	26.70	7.99	7.99	7.99	32.01	32.01	32.01	71.8	73.5	72.5	4.79	4.90	4.82	2.07	2.32	2.29	3	3.50
	22:41		Middle	3.0	26.70	26.70		7.99	7.99		32.01	32.01		72.4	72.3		4.74	4.83		2.38	2.37		4	<u> </u>
25/8/2012	13:42	Fine	Middle	2.0	28.93	28.93	28.93	6.88	6.88	6.88	30.64	30.64	30.65	70.2	70.0	70.0	4.57	4.56	4.56	2.16	2.06	2.18	5	4.00
	13:44		Middle	2.0	28.92	28.92		6.87	6.87		30.66	30.66		70.0	69.8		4.56	4.54		2.08	2.42		3	<u> </u>
27/8/2012	15:25 15:27	Fine	Middle Middle	2.5 2.5	28.05 28.05	28.05 28.05	28.05	7.15 7.14	7.15	7.15	32.08 32.04	32.08 32.04	32.06	70.9 70.7	70.7 70.1	70.6	4.64 4.62	4.63 4.58	4.62	3.31 3.45	3.38 3.33	3.37	6	6.00
	15:27		windule	2.0	20.05	20.05		1.14	1.14		32.04	32.04		10.1	70.1		4.02	4.00		J.45	3.33		U	

Water Monitoring Result at C9 - Provident Centre Mid-Flood Tide

Image: state s	Date	Time	Weater Condition		ng Depth	Wat	er Temp °C	erature	-	pH -		-	Salini ppt	ty	D	O Satur %	ation	-	DO mg/L			Turbid NTU		Suspend	led Solids a/L
Intro Intro </td <td></td> <td></td> <td></td> <td>r</td> <td>n</td> <td>Va</td> <td>lue</td> <td>Average</td> <td>Va</td> <td>lue</td> <td>Average</td> <td>Va</td> <td></td> <td>Average</td> <td>Va</td> <td></td> <td>Average</td> <td>Va</td> <td></td> <td>Average</td> <td>Va</td> <td></td> <td></td> <td></td> <td>Average</td>				r	n	Va	lue	Average	Va	lue	Average	Va		Average	Va		Average	Va		Average	Va				Average
1450 1450 1460 1460 2	28/7/2012	14:54	Fine	Middle	2.0	27.11	27.11	27 11	6.83	6.83	6.81	29.91	29.91	29.91	54.9	54.7	54.7	3.69	3.68	3.68	5.09	4.76	4.69	7	7.00
Image: state	20///2012	14:56	1 110	Middle	2.0	27.10	27.10	2	6.78	6.78	0.01	29.90	29.90	20.01	54.6	54.6	0	3.68	3.67	0.00	4.48	4.44		7	1.00
<table-container> 1 <th1< th=""> 1 1 1 <</th1<></table-container>	30/7/2012	16:15	Fine	Middle	1.5	28.07	28.07	28.08	6.76	6.76	6.77	29.82	29.82	29.81	64.3	64.0	63.9	4.26	4.23	4.22	4.06	4.04	4.14	9	9.00
198000 100		16:17		Middle	1.5	28.09	28.09		6.78	6.78		29.80	29.80		63.7	63.4		4.21	4.19		4.22	4.22		9	
442000 40000 40000 1.5 2.00 2.00 2.00 2.00 4.00 4.00 4.00 <t< td=""><td>1/8/2012</td><td>19:10</td><td>Haze</td><td>Middle</td><td>2.0</td><td>28.60</td><td>28.60</td><td>28.70</td><td>7.93</td><td>7.93</td><td>7.93</td><td>30.72</td><td>30.72</td><td>29.98</td><td>89.5</td><td>91.0</td><td>90.9</td><td>6.31</td><td>6.32</td><td>6.26</td><td>2.89</td><td>2.99</td><td>2.83</td><td>8</td><td>8.00</td></t<>	1/8/2012	19:10	Haze	Middle	2.0	28.60	28.60	28.70	7.93	7.93	7.93	30.72	30.72	29.98	89.5	91.0	90.9	6.31	6.32	6.26	2.89	2.99	2.83	8	8.00
Here Here <th< td=""><td></td><td>19:11</td><td></td><td>Middle</td><td>2.0</td><td>28.60</td><td>29.00</td><td></td><td>7.93</td><td>7.93</td><td></td><td>29.16</td><td>29.30</td><td></td><td>91.2</td><td>91.7</td><td></td><td>6.08</td><td>6.34</td><td></td><td>2.79</td><td>2.65</td><td></td><td>8</td><td></td></th<>		19:11		Middle	2.0	28.60	29.00		7.93	7.93		29.16	29.30		91.2	91.7		6.08	6.34		2.79	2.65		8	
6002012 1130 1100 2.0	4/8/2012	19:31	Cloudy	Middle	1.5	28.00	28.00	27.98	8.09	8.06	8.06	30.52	30.52	30.52	83.9	85.6	84.9	5.58	5.65	5.61	7.37	6.71	6.88	14	- 14.50
68/300 780		19:32		Middle	1.5	28.00	27.90		8.04	8.04		30.52	30.52		85.1	84.9		5.61	5.60		6.82	6.62		15	<u> </u>
1 1 <th1< th=""> 1 1 <</th1<>	6/8/2012	21:38	Fine	Middle	2.0	28.00	28.00	28.05	7.90	7.90	7.90	30.69	30.69	30.69	81.9	81.9	81.9	5.39	5.39	5.39	3.66	3.82	3.64	6	5.50
88/2012 25.9 Model 2.0 2.0 2.0 7.0 <th7< td=""><td></td><td>21:39</td><td></td><td>Middle</td><td>2.0</td><td>28.10</td><td>28.10</td><td></td><td>7.89</td><td>7.89</td><td></td><td>30.69</td><td>30.69</td><td></td><td>81.6</td><td>82.1</td><td></td><td>5.37</td><td>5.40</td><td></td><td>3.57</td><td>3.50</td><td></td><td>5</td><td><u> </u></td></th7<>		21:39		Middle	2.0	28.10	28.10		7.89	7.89		30.69	30.69		81.6	82.1		5.37	5.40		3.57	3.50		5	<u> </u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8/8/2012	22:58	Haze	Middle	2.0	28.40	28.40	28.40	7.89	7.89	7.89	29.87	29.87	29.87	77.0	77.8	77.6	5.07	5.10	5.10	2.89	2.75	2.82	5	4.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		22:59		Middle	2.0	28.40	28.40		7.89	7.89		29.87	29.87		78.1	77.5		5.13	5.09		2.92	2.71		3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10/8/2012		Cloudy	Middle	2.0	28.40	28.40	28.40	8.04	8.04	8.04	28.40	28.40	28.40	89.0	89.9	89.4	6.06	6.03	6.02	2.78	2.92	2.80	4	- 3.50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						28.40			8.04			28.40			89.1			6.00			2.86				<u> </u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13/8/2012		Cloudy					27.50			8.02			29.05			79.7			5.34			1.54		2.50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-										-										<u> </u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15/8/2012		Fine		-			28.60			8.13			28.82			90.2			5.91			2.19		6.50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17/8/2012		Cloudy					27.00			8.02			31.56			77.8			5.19			6.91		18.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																									<u> </u>
1 1	20/8/2012		Fine		-			28.10			7.89			30.25			80.0			5.28			7.34		12.50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	l																			<u> </u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	22/8/2012		Cloudy					27.50			8.00			30.01			81.2			5.42			4.32		5.00
25/8/2012 Fine Fine Middle 2.0 28.37 28.37 6.75 6.75 6.76 30.66 30.66 30.68 55.7 58.7 5.87 5.		-			-										-										<u> </u>
And the second secon	25/8/2012		Fine					28.36			6.77			30.68			59.0			3.86			5.58		7.50
27/8/2012 Fine 28.03 7.02 31.76 67.4 4.42 5.31 8.00																									<u> </u>
	27/8/2012	15:00	Fine	Middle	2.0	28.04	28.04	28.03	7.02	7.02	7.02	31.75	31.75	31.76	67.0	66.9	67.4	4.39	4.39	4.42	5.43	5.23	5.31	8	8.00

Water Monitoring Result at C8 - City Garden Mid-Flood Tide

Date	Time	Weater Condition		g Depth	Wate	er Temp °C	erature	-	pH			Salini ppt	ty	D	O Satur %	ation	-	DO ma/L		-	Turbid NTU		Suspende	
		Condition	n	n	Va		Average	Va	lue	Average	Va		Average	Va		Average	Va		Average	Va		Average		Average
	14:30	-	Middle	1.5	27.70	27.70	07 70	7.24	7.24	7.04	29.07	29.07		73.8	72.4	70.4	4.92	4.83		5.95	5.60	5.04	5	5.00
28/7/2012	14:32	Fine	Middle	1.5	27.70	27.70	27.70	7.23	7.23	7.24	29.04	29.04	29.06	71.3	70.9	72.1	4.75	4.73	4.81	5.96	5.84	5.84	5	5.00
30/7/2012	15:57	Fine	Middle	1.0	28.43	28.43	28.42	6.00	6.00	6.01	29.23	29.23	29.25	62.1	61.9	61.8	4.10	4.09	4.08	4.72	4.92	4.82	11	11.00
00/11/2012	15:59	Tille	Middle	1.0	28.41	28.41	20.42	6.02	6.02	0.01	29.26	29.26	20.20	61.7	61.5	01.0	4.08	4.06	4.00	4.90	4.73	4.02	11	11.00
1/8/2012	19:00	Haze	Middle	2.0	29.30	29.30	29.25	7.91	7.91	7.91	30.34	30.34	30.34	72.1	71.4	71.8	4.67	4.62	4.67	1.87	1.78	1.74	6	6.00
	19:01		Middle	2.0	29.20	29.20		7.90	7.90		30.34	30.34		71.5	72.0		4.62	4.75		1.63	1.67		6	
4/8/2012	19:20	Cloudy	Middle	1.5	27.90	27.90	27.90	7.92	7.92	7.92	30.10	30.10	30.10	67.7	68.3	67.3	4.48	4.52	4.46	6.18	6.05	6.04	7	7.50
	19:21	,	Middle	1.5	27.90	27.90		7.92	7.92	-	30.10	30.10		67.1	66.2		4.44	4.38		6.11	5.81		8	
6/8/2012	21:25	Fine	Middle	2.0	27.90	27.90	27.90	7.90	7.90	7.90	31.03	31.03	31.04	70.8	70.7	70.4	4.67	4.66	4.65	4.89	4.52	4.56	7	6.50
0,0,2012	21:26	1 110	Middle	2.0	27.90	27.90	21.00	7.90	7.90	1.00	31.04	31.04	0	70.2	70.0		4.63	4.62		4.33	4.49		6	0.00
8/8/2012	22:47	Haze	Middle	2.0	28.60	28.60	28.60	7.86	7.86	7.85	29.73	29.73	29.73	69.4	69.9	69.2	4.63	4.59	4.64	2.31	2.47	2.39	5	4.50
0,0,2012	22:48	T I III E E	Middle	2.0	28.60	28.60	20.00	7.84	7.84	1.00	29.73	29.73	20.10	69.4	67.9	00.2	4.86	4.49		2.44	2.32	2.00	4	
10/8/2012	0:37	Cloudy	Middle	2.0	28.50	28.50	28.50	8.08	8.07	8.07	28.60	28.60	28.60	87.4	86.9	86.8	6.08	5.77	5.81	2.70	2.53	2.47	5	4.50
10/0/2012	0:38	Cloudy	Middle	2.0	28.50	28.50	20.00	8.07	8.06	0.07	28.60	28.60	20.00	86.7	86.2	00.0	5.64	5.73	0.01	2.17	2.47	2.77	4	4.00
13/8/2012	0:34	Cloudy	Middle	2.0	27.30	27.30	27.35	7.96	7.96	7.96	29.16	29.16	29.16	70.2	70.9	70.7	4.72	4.79	4.76	1.41	1.36	1.42	3	4.00
	0:35		Middle	2.0	27.40	27.40		7.96	7.96		29.16	29.16		71.2	70.4		4.79	4.73		1.51	1.41		5	
15/8/2012	18:40	Fine	Middle	2.0	28.80	28.80	28.80	8.16	8.16	8.15	28.75	28.75	28.75	84.9	84.5	83.9	5.56	5.54	5.50	2.66	2.26	2.37	6	6.50
	18:41		Middle	2.0	28.80	28.80		8.13	8.13		28.75	28.75		83.3	83.0		5.45	5.44		2.22	2.32	-	7	
17/8/2012	19:05	Cloudy	Middle	2.0	26.80	26.80	26.80	8.00	8.00	8.00	31.54	31.54	31.54	64.4	66.9	66.6	4.42	4.77	4.59	6.27	6.18	6.18	13	12.50
	19:06		Middle	2.0	26.80	26.80		8.00	8.00		31.54	31.54		67.5	67.5		4.59	4.59		6.15	6.12		12	
20/8/2012	19:40	Fine	Middle	2.0	28.20	28.20	28.20	7.94	7.94	7.93	29.84	29.84	29.84	68.8	69.9	69.2	4.55	4.62	4.57	6.85	6.81	6.56	12	12.50
	19:41		Middle	2.0	28.20	28.20		7.91	7.91		29.84	29.84		69.4	68.5		4.58	4.52		6.38	6.21	-	13	
22/8/2012	22:00	Cloudy	Middle	2.0	27.50	27.50	27.50	8.02	8.02	8.01	29.71	29.71	29.71	69.3	69.1	68.8	4.63	4.62	4.60	4.82	4.84	4.84	6	6.50
	22:01		Middle	2.0	27.50	27.50		8.00	8.00		29.71	29.71		68.4	68.4		4.57	4.57		4.89	4.80	-	7	
25/8/2012	13:00	Fine	Middle	2.0	28.70	28.70	28.72	6.77	6.77	6.76	29.18	29.18	29.19	66.1	65.5	65.5	4.35	4.30	4.30	7.47	7.80	7.54	6	7.00
	13:02		Middle	2.0	28.74	28.74		6.75	6.75		29.20	29.20		65.2	65.0		4.28	4.27		7.42	7.45		8	
27/8/2012	14:53	Fine	Middle	2.0	28.66	28.66	28.71	7.12	7.13	7.12	31.41	31.41	31.40	62.5	62.3	62.3	4.06	4.05	4.05	8.28	8.26	8.13	11	11.00
	14:54		Middle	2.0	28.76	28.76		7.12	7.12		31.39	31.39		62.6	61.8		4.06	4.01		7.99	7.98		11	

Remarks: Single underline denotes exceedance over Action Level Double underline denotes exceedance over Limit Level

Water Monitoring Result at C7 - Windsor House Mid-Flood Tide

Date	Time	Weater Condition		ng Depth m	Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspende	
					Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
28/7/2012	14:11	Fine	Middle	1.5	27.87	27.87	27.88	6.62	6.62	6.60	27.83	27.83	27.84	38.6	38.1	38.0	2.70	2.65	<u>2.59</u>	1.71	1.60	1.59	5	4.50
	14:13		Middle	1.5	27.89	27.89		6.58	6.58		27.84	27.84		37.9	37.3		2.53	2.49		1.54	1.49		4	
30/7/2012	15:39	Fine	Middle	1.5	28.87	28.88	28.88	6.01	6.01	6.00	27.45	27.45	27.45	56.6	56.4	56.3	3.75	3.73	3.73	0.68	0.67	0.66	7	6.50
	15:41		Middle	1.5	28.89	28.89		5.98	5.98		27.45	27.45		56.1	55.9		3.72	3.70		0.64	0.65		6	
1/8/2012	18:20	Haze	Middle	1.0	28.80	28.80	28.80	7.77	7.77	7.77	28.42	28.42	28.42	69.3	69.5	68.8	4.55	4.56	4.52	0.18	0.12	0.13	2	2.00
	18:21		Middle	1.0	28.80	28.80		7.76	7.76		28.42	28.42		68.3	68.2		4.48	4.47		0.11	0.09		2	
4/8/2012	18:50	Cloudy	Middle	1.0	28.00	28.00	28.00	7.74	7.74	7.74	29.47	29.47	29.47	66.2	66.9	66.9	4.40	4.40	4.43	1.79	1.88	1.76	4	4.50
	18:50	,	Middle	1.0	28.00	28.00		7.74	7.74		29.47	29.47		67.4	67.0		4.48	4.45		1.65	1.73	_	5	
6/8/2012	20:44	Fine	Middle	1.5	28.20	28.20	28.20	7.75	7.75	7.75	29.30	29.30	29.30	70.8	71.9	71.4	4.69	4.76	4.73	1.71	1.72	1.72	3	3.00
	20:45		Middle	1.5	28.20	28.20		7.75	7.75	-	29.30	29.30		71.6	71.3		4.74	4.72		1.68	1.77		3	
8/8/2012	22:20	Haze	Middle	1.5	28.60	28.60	28.60	7.74	7.74	7.74	28.43	28.43	28.43	63.5	63.4	62.9	4.25	4.24	4.19	1.00	0.99	0.96	2	3.00
0,0,2012	22:21	TIGEO	Middle	1.5	28.60	28.60	20.00	7.74	7.74	1.14	28.43	28.43	20.40	62.7	62.1	02.0	4.15	4.10	4.10	0.90	0.93	0.00	4	0.00
10/8/2012	0:14	Cloudy	Middle	1.5	28.40	28.40	28.40	7.83	7.83	7.82	27.32	27.32	27.32	71.7	72.0	71.6	4.89	4.99	4.89	1.87	1.97	1.93	2	2.00
10/0/2012	0:15	Cloudy	Middle	1.5	28.40	28.40	20.40	7.81	7.81	1.02	27.32	27.32	21.02	71.7	71.1	11.0	4.89	4.80	4.00	1.92	1.94	1.00	2	2.00
13/8/2012	0:15	Cloudy	Middle	1.5	27.80	27.80	27.80	7.81	7.81	7.80	26.12	26.12	26.12	63.4	63.4	62.6	4.30	4.30	4.25	0.87	0.98	0.95	<2	<2
13/0/2012	0:16	Cloudy	Middle	1.5	27.80	27.80	27.00	7.79	7.79	7.00	26.11	26.11	20.12	62.1	61.6	02.0	4.21	4.17	4.23	0.94	1.01	0.00	<2	~2
15/8/2012	18:15	Fine	Middle	1.5	29.10	29.10	29.15	7.97	7.97	7.97	27.53	27.53	27.53	75.1	74.9	74.4	4.93	4.92	4.89	0.59	0.43	0.46	5	4.50
13/0/2012	18:16	T IIIC	Middle	1.5	29.20	29.20	23.13	7.97	7.97	1.51	27.53	27.53	27.00	72.9	74.8	14.4	4.79	4.91	4.00	0.40	0.41	0.40	4	4.50
17/8/2012	18:35	Cloudy	Middle	1.5	26.90	26.90	26.90	7.90	7.90	7.90	30.86	30.86	30.86	65.3	66.2	66.0	4.38	4.44	4.43	0.94	0.77	0.81	8	7.00
11/0/2012	18:36	Cloudy	Middle	1.5	26.90	26.90	20.30	7.90	7.90	7.50	30.86	30.86	30.00	66.5	65.9	00.0	4.46	4.42	4.40	0.79	0.73	0.01	6	1.00
20/8/2012	19:10	Fine	Middle	1.0	28.10	28.10	28.10	7.81	7.81	7.81	29.30	29.30	29.30	63.8	64.5	63.9	4.25	4.40	4.35	0.72	0.71	0.64	7	6.50
20/0/2012	19:11	1 1110	Middle	1.0	28.10	28.10	20.10	7.81	7.81	7.01	29.30	29.30	29.30	64.0	63.4	03.9	4.26	4.50	4.55	0.61	0.52	0.04	6	0.50
22/8/2012	21:25	Cloudy	Middle	1.5	27.50	27.50	27.50	7.74	7.74	7.74	27.84	27.84	27.84	63.2	64.0	63.3	4.27	4.33	4.28	1.08	1.16	1.16	2	2.00
22/0/2012	21:26	Cloudy	Middle	1.5	27.50	27.50	27.50	7.73	7.73	7.74	27.84	27.84	27.04	63.0	63.0	03.3	4.26	4.26	4.20	1.14	1.24	1.10	2	2.00
25/8/2012	12:43	Fine	Middle	1.5	28.96	28.96	28.97	6.69	6.69	6.67	28.30	28.30	28.20	47.1	46.7	46.6	3.10	3.08	2.07	2.76	2.56	2.66	7	7.00
20/0/2012	12:45	Fine	Middle	1.5	28.98	28.98	20.97	6.64	6.64	0.07	28.29	28.28	28.29	46.4	46.1	40.0	3.05	3.03	3.07	2.64	2.69	2.00	7	7.00
27/8/2012	14:35	Fine	Middle	1.5	29.19	29.19	29.19	6.67	6.67	6.67	30.00	30.00	30.01	50.1	49.8	50.0	3.25	3.23	3.24	1.31	1.38	1.35	4	3.50
21/0/2012	14:36	Fine	Middle	1.5	29.19	29.19	29.19	6.66	6.66	0.07	30.01	30.01	30.01	50.4	49.7	50.0	3.27	3.22	3.24	1.37	1.35	1.30	3	3.50

Water Monitoring Result at C1 - HKCEC Extension Mid-Flood Tide

Date	Time	Weater Condition	Samplin		Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur %	ation		DO mg/L			Turbid NTU	1	Suspend	led Solids q/L
			n	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va		Average	Va	lue	Average	Value	Average
28/7/2012	15:07	Fine	Middle	2.0	27.00	27.00	27.05	7.66	7.66	7.66	28.73	28.73	28.73	63.8	63.7	63.5	4.33	4.32	4.30	4.10	3.27	3.43	2	2.50
20/1/2012	15:09	1 1110	Middle	2.0	27.10	27.10	21.00	7.66	7.66	1.00	28.73	28.73	20.10	63.4	63.0	00.0	4.30	4.26		3.13	3.20	0.10	3	2.00
30/7/2012	16:42	Fine	Middle	2.0	27.10	27.10	27.15	7.44	7.44	7.44	28.84	28.84	28.84	59.4	57.4	61.2	4.04	3.88	4.14	2.10	2.54	2.29	3	3.50
	16:45		Middle	2.0	27.20	27.20		7.43	7.43		28.83	28.83		62.1	65.8		4.20	4.45		2.31	2.20		4	
1/8/2012	19:19	Haze	Middle	2.0	27.40	27.40	27.50	7.73	7.73	7.79	29.37	29.37	28.97	56.1	55.8	55.6	3.76	3.74	3.72	2.52	2.64	2.58	5	4.50
	19:22		Middle	2.0	27.60	27.60		7.85	7.85		28.56	28.56		55.5	55.0		3.70	3.66		2.80	2.35		4	
4/8/2012	20:03	Cloudy	Middle	2.0	27.50	27.50	27.55	7.70	7.70	7.71	29.01	29.01	29.02	70.3	71.0	70.6	4.71	4.76	4.73	6.94	6.81	6.86	10	10.00
	20:05	,	Middle	2.0	27.60	27.60		7.71	7.71		29.02	29.02		70.6	70.4		4.72	4.71		6.90	6.77		10	
6/8/2012	20:37	Fine	Middle	2.0	27.60	27.60	27.70	7.69	7.69	7.73	28.81	28.81	28.87	64.8	64.3	64.3	4.73	4.67	4.67	4.04	3.91	3.88	4	4.50
	20:39	-	Middle	2.0	27.80	27.80		7.77	7.77		28.92	28.92		64.1	63.9		4.64	4.62	-	3.80	3.77		5	
8/8/2012	22:31	Haze	Middle	2.0	28.10	28.10	28.05	7.82	7.82	7.83	28.55	28.55	28.55	80.0	80.1	80.4	5.29	5.30	5.32	3.80	3.73	3.72	4	3.50
	22:33		Middle	2.0	28.00	28.00		7.83	7.83		28.54	28.54		80.4	81.1		5.32	5.36		3.66	3.68		3	
10/8/2012	20:05	Cloudy	Middle	1.0	28.40	28.40	28.40	8.42	8.42	8.43	28.33	28.33	28.33	101.1	100.7	100.4	6.71	6.69	6.66	3.47	3.58	3.53	4	4.00
	20:07		Middle	1.0	28.40	28.40		8.43	8.43		28.33	28.33		99.9	99.7		6.64	6.61		3.43	3.62		4	
13/8/2012	22:15	Cloudy	Middle	2.0	27.66	27.66	27.67	8.18	8.18	8.19	28.46	28.46	28.47	71.7	71.6	71.7	4.81	4.80	4.81	3.01	2.87	2.87	2	2.50
	22:17		Middle	2.0	27.67	27.67		8.19	8.19		28.47	28.47	-	71.6	71.8		4.81	4.82	-	2.78	2.80	-	3	
15/8/2012	18:02	Fine	Middle	2.0	28.40	28.40	28.48	7.83	7.83	7.83	28.83	28.83	28.82	77.6	76.4	76.3	5.13	5.03	5.04	3.85	4.43	4.12	6	6.00
	18:04		Middle	2.0	28.55	28.55		7.83	7.83		28.81	28.81		75.7	75.3		5.00	4.98		4.65	3.54		6	
17/8/2012	17:05	Cloudy	Middle	2.0	26.64	26.64	26.64	7.86	7.86	7.86	30.53	30.53	30.54	79.0	78.5	79.0	5.33	5.30	5.33	5.35	4.87	5.36	9	9.00
	17:07	,	Middle	2.0	26.64	26.64		7.86	7.86		30.54	30.54		79.4	79.1		5.35	5.33		4.94	6.29		9	
20/8/2012	20:09	Fine	Middle	1.0	28.00	28.00	28.05	7.76	7.76	7.77	28.54	28.54	28.52	65.3	65.0	64.9	4.59	4.56	4.55	4.80	4.67	4.61	6	6.00
	20:11	-	Middle	1.0	28.10	28.10		7.77	7.77		28.50	28.50		64.7	64.5		4.53	4.50		4.73	4.24	-	6	
22/8/2012	20:15	Cloudy	Middle	1.5	27.40	27.40	27.40	7.74	7.74	7.74	28.27	28.27	28.27	57.6	57.5	58.4	3.90	3.89	3.96	3.44	3.39	3.43	5	4.50
	20:17		Middle	1.5	27.40	27.40		7.74	7.74		28.27	28.27	-	59.2	59.2		4.01	4.02		3.42	3.45		4	
25/8/2012	13:20	Fine	Middle	2.0	28.10	28.10	28.35	7.73	7.73	7.73	29.55	29.55	29.60	63.1	63.6	62.6	4.18	4.16	4.13	2.98	2.99	2.62	4	5.00
20,0,20.2	13:22		Middle	2.0	28.60	28.60	20.00	7.73	7.73		29.65	29.65	20.00	62.7	61.1	02.0	4.12	4.06		2.41	2.08	2.02	6	0.00
27/8/2012	17:03	Fine	Middle	2.5	27.50	27.50	27.60	7.89	7.89	7.87	30.15	30.15	30.16	68.5	67.8	68.2	4.54	4.49	4.52	3.80	3.81	3.87	7	6.00
	17:05		Middle	2.5	27.70	27.70		7.84	7.84		30.16	30.16		68.4	68.1		4.53	4.51		3.99	3.87		5	

am Water Monitoring Result at C2 - TH / APA / SOC Mid-Flood Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp °C	erature		pН			Salini ppt	ty	D	O Satur %	ation		DO mg/L			Turbid NTU		Suspende	led Solids
		Contaition	r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	ilue	Average	Va		Average	Va	lue	Average		Average
28/7/2012	14:50	Fine	Middle	1.0	27.20	27.20	27.25	7.64	7.64	7.64	28.76	28.76	28.79	64.6	64.4	64.1	4.35	4.34	4.27	2.64	2.23	2.33	3	3.00
20/1/2012	14:52	1 line	Middle	1.0	27.30	27.30	21.25	7.64	7.64	7.04	28.82	28.82	20.79	63.8	63.7	04.1	4.20	4.19	4.27	2.25	2.19	2.00	3	3.00
30/7/2012	17:50	Fine	Middle	1.5	27.60	27.60	27.65	7.63	7.63	7.63	28.95	28.95	28.95	65.3	65.5	65.4	4.58	4.60	4.59	3.10	3.08	3.07	4	3.00
30/1/2012	17:53	1 line	Middle	1.5	27.70	27.70	27.00	7.62	7.62	7.00	28.94	28.94	20.00	65.6	65.1	00.4	4.57	4.61	4.55	2.87	3.21	5.07	2	3.00
1/8/2012	17:31	Haze	Middle	1.0	28.40	28.40	28.50	7.28	7.28	7.28	27.07	27.07	27.01	63.3	62.5	62.5	4.57	4.52	4.52	3.16	2.57	2.55	3	3.00
170/2012	17:33	TIQLO	Middle	1.0	28.60	28.60	20.00	7.28	7.28	1.20	26.95	26.95	27.01	62.3	62.0	02.0	4.51	4.48	4.02	2.28	2.18	2.00	3	0.00
4/8/2012	20:35	Cloudy	Middle	1.5	27.50	27.50	27.45	7.68	7.68	7.69	29.15	29.15	29.16	71.4	71.3	71.8	4.79	4.78	4.82	6.28	6.88	6.48	8	- 7.50
4/0/2012	20:37	Cloudy	Middle	1.5	27.40	27.40	27.45	7.69	7.69	1.05	29.16	29.16	23.10	71.6	72.8	71.0	4.81	4.88	4.02	6.34	6.41	0.40	7	7.50
6/8/2012	20:22	Fine	Middle	1.0	28.00	28.00	28.05	7.64	7.64	7.64	29.15	29.15	28.99	61.8	61.0	60.9	4.38	4.30	4.29	2.27	2.07	2.11	4	4.00
0/0/2012	20:24	1 110	Middle	1.0	28.10	28.10	20.00	7.64	7.64	1.04	28.83	28.83	20.00	60.8	60.0	00.0	4.26	4.22	4.20	2.00	2.11	2.11	4	4.00
8/8/2012	22:46	Haze	Middle	1.5	28.20	28.20	28.25	7.71	7.71	7.71	28.39	28.39	28.40	73.4	72.1	72.4	5.37	4.82	4.96	2.66	2.44	2.54	3	3.00
0/0/2012	22:48	Tiaze	Middle	1.5	28.30	28.30	20.20	7.70	7.70	7.71	28.40	28.40	20.40	71.1	72.9	72.4	4.76	4.88	4.50	2.51	2.55	2.04	3	3.00
10/8/2012	19:45	Cloudy	Middle	1.0	28.20	28.20	28.20	8.38	8.38	8.38	28.41	28.41	28.41	97.4	97.5	97.4	6.48	6.49	6.49	4.77	4.96	4.84	5	4.50
10/0/2012	19:47	Cloudy	Middle	1.0	28.20	28.20	20.20	8.38	8.38	0.00	28.41	28.41	20.41	97.5	97.3	01.4	6.49	6.48	0.40	4.79	4.84	4.04	4	4.00
13/8/2012	22:25	Cloudy	Middle	1.5	27.94	27.94	27.94	8.18	8.18	8.19	28.74	28.74	28.75	65.8	65.5	65.4	4.41	4.38	4.38	1.83	1.90	1.93	3	2.50
10/0/2012	22:28	Cloudy	Middle	1.5	27.93	27.93	21.04	8.19	8.19	0.10	28.75	28.75	20.70	65.2	65.0	66.4	4.36	4.35	4.00	2.12	1.88	1.50	2	2.00
15/8/2012	17:48	Fine	Middle	1.0	28.95	28.95	28.98	8.37	8.37	8.37	28.12	28.12	28.15	88.2	87.3	87.4	5.81	5.75	5.75	2.14	3.04	2.40	7	7.50
10/0/2012	17:50	1 110	Middle	1.0	29.00	29.00	20.00	8.37	8.37	0.07	28.17	28.17	20.10	87.2	87.0	01.4	5.74	5.70	0.70	2.12	2.28	2.40	8	1.00
17/8/2012	18:05	Cloudy	Middle	2.0	27.29	27.29	27.29	7.63	7.63	7.63	30.85	30.85	30.85	56.4	56.7	56.7	3.69	3.78	3.76	4.42	4.09	4.37	10	10.00
1170/2012	18:07	Cloudy	Middle	2.0	27.29	27.29	21.20	7.63	7.63	1.00	30.85	30.85	00.00	56.9	56.7	00.7	3.80	3.78	0.70	4.38	4.57	1.07	10	10.00
20/8/2012	19:54	Fine	Middle	1.0	28.50	28.50	28.55	7.74	7.74	7.74	28.83	28.83	28.84	67.3	66.9	66.9	4.92	4.89	4.88	2.91	2.54	2.65	3	3.00
	19:56		Middle	1.0	28.60	28.60		7.74	7.74		28.85	28.85		66.7	66.5		4.87	4.85		2.71	2.45		3	
22/8/2012	20:00	Cloudy	Middle	1.0	27.40	27.40	27.40	7.80	7.80	7.80	28.00	28.00	28.00	62.4	59.0	61.0	4.25	4.02	4.15	5.20	5.43	5.30	5	4.50
	20:02		Middle	1.0	27.40	27.40		7.80	7.80		28.00	28.00		60.9	61.8		4.11	4.22		5.33	5.22		4	
25/8/2012	13:02	Fine	Middle	1.0	28.50	28.50	28.55	7.68	7.68	7.68	29.26	29.26	29.45	66.9	66.5	66.4	4.43	4.40	4.39	2.26	2.74	2.38	4	- 5.50
	13:04		Middle	1.0	28.60	28.60	0	7.68	7.68		29.63	29.63		66.3	66.0		4.38	4.35		2.35	2.17		7	
27/8/2012	15:53	Fine	Middle	1.0	27.70	27.70	27.75	7.88	7.88	7.87	30.74	30.74	30.74	70.6	71.6	71.5	4.66	4.72	4.71	4.59	4.64	4.42	3	- 3.50
2170/2012	15:55	1 1110	Middle	1.0	27.80	27.80	21.10	7.85	7.85	1.01	30.73	30.73	00.14	71.7	72.0		4.72	4.74	7.71	4.33	4.13	7.72	4	0.00

Remarks: Single underline denotes exceedance over Action Level Double underline denotes exceedance over Limit Level

Water Monitoring Result at C3 - HKCEC Phase I Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp °C	erature		pН			Salini ppt	ty	D	O Satur %	ation		DO ma/L			Turbid NTU			led Solids a/L
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Value	Average
28/7/2012	15:10	Fine	Middle	2.5	26.50	26.50	26.50	7.52	7.52	7.53	27.79	27.79	27.82	47.5	47.3	47.1	3.26	3.25	3.24	1.50	1.32	1.59	4	4.00
20/1/2012	15:12	T IIIC	Middle	2.5	26.50	26.50	20.00	7.54	7.54	1.00	27.84	27.84	21.02	47.0	46.6	47.1	3.23	3.20	0.24	1.85	1.67	1.00	4	4.00
30/7/2012	17:35	Fine	Middle	2.5	28.10	28.10	28.15	7.61	7.61	7.62	28.55	28.55	28.56	49.8	49.3	49.7	3.73	3.29	3.42	4.32	4.39	4.35	7	7.50
	17:38		Middle	2.5	28.20	28.20		7.62	7.62		28.56	28.56		49.5	50.1		3.32	3.34		4.37	4.31		8	
1/8/2012	18:00	Haze	Middle	2.5	28.60	28.60	28.60	7.70	7.70	7.68	28.43	28.43	28.32	48.1	47.9	47.8	3.30	3.28	3.25	2.53	2.80	2.73	6	6.00
	18:02		Middle	2.5	28.60	28.60		7.66	7.66		28.21	28.21		47.8	47.5		3.21	3.19		2.77	2.82		6	
4/8/2012	19:16	Cloudy	Middle	2.5	27.60	27.60	27.55	7.61	7.61	7.62	28.78	28.78	28.79	65.8	66.1	65.7	4.42	4.43	4.41	4.01	4.11	4.24	3	3.00
	19:18	,	Middle	2.5	27.50	27.50		7.62	7.62		28.79	28.79		65.3	65.4		4.38	4.39		4.44	4.40		3	
6/8/2012	21:54	Fine	Middle	2.0	28.30	28.30	28.30	7.61	7.61	7.62	28.01	28.01	28.06	53.4	53.1	52.9	3.59	3.56	3.54	8.87	8.51	8.23	24	23.00
	21:56		Middle	2.0	28.30	28.30		7.63	7.63		28.11	28.11		52.9	52.0		3.53	3.47		7.64	7.88		22	
8/8/2012	21:45	Haze	Middle	2.5	28.50	28.50	28.45	7.59	7.59	7.60	28.64	28.64	28.65	59.7	59.8	60.4	3.99	4.00	4.02	3.01	2.88	2.88	5	4.00
	21:47		Middle	2.5	28.40	28.40		7.60	7.60		28.65	28.65		61.5	60.7		4.06	4.02		2.90	2.73		3	
10/8/2012	21:05	Cloudy	Middle	2.0	28.60	28.60	28.60	8.00	8.00	8.00	28.99	28.99	28.99	57.0	57.3	57.3	3.77	3.79	3.79	4.31	4.43	4.38	7	7.00
	21:07		Middle	2.0	28.60	28.60		8.00	8.00		28.98	28.98		57.2	57.6		3.79	3.81		4.42	4.37		7	<u> </u>
13/8/2012	21:30	Cloudy	Middle	3.0	27.73	27.73	27.74	8.05	8.05	8.06	28.60	28.60	28.61	49.9	49.8	49.2	3.35	3.34	3.30	3.01	3.34	3.19	<2	<2
	21:33		Middle	3.0	27.74	27.74		8.06	8.06		28.61	28.61		48.4	48.7		3.25	3.27		3.17	3.23		<2	
15/8/2012	19:57	Fine	Middle	2.5	28.39	28.39	28.40	7.67	7.67	7.68	28.65	28.65	28.59	50.1	49.8	49.4	3.32	3.30	3.28	2.80	2.76	2.90	9	8.50
	19:59		Middle	2.5	28.41	28.41		7.68	7.68		28.53	28.53		49.0	48.7		3.25	3.23		3.19	2.85		8	<u> </u>
17/8/2012	17:50	Cloudy	Middle	2.5	27.43	27.43	27.43	7.63	7.63	7.63	30.82	30.82	30.82	51.2	51.7	51.6	3.42	3.45	3.45	6.02	5.08	5.65	9	9.00
	17:52		Middle	2.5	27.43	27.43		7.63	7.63		30.82	30.82		51.6	51.9		3.45	3.46		6.03	5.45		9	<u> </u>
20/8/2012	21:46	Fine	Middle	3.0	28.40	28.40	28.40	7.63	7.63	7.65	28.86	28.86	28.89	58.9	57.9	58.0	3.98	3.88	3.89	1.47	1.52	1.53	3	3.00
	21:48		Middle	3.0	28.40	28.40		7.66	7.66		28.91	28.91		57.6	57.4		3.85	3.83		1.66	1.48		3	<u> </u>
22/8/2012	22:00	Cloudy	Middle	3.0	28.00	28.00	28.00	7.65	7.65	7.65	28.17	28.17	28.17	51.3	51.9	51.9	3.43	3.49	3.48	3.09	3.73	3.47	3	3.50
	22:02		Middle	3.0	28.00	28.00		7.65	7.65		28.17	28.17		53.2	51.0		3.58	3.43		3.44	3.63		4	<u> </u>
25/8/2012	14:50	Fine	Middle	2.5	27.50	27.50	27.55	7.66	7.66	7.67	29.40	29.40	29.48	72.3	71.9	71.9	5.72	5.67	5.66	4.43	4.33	4.32	6	5.00
	14:52		Middle	2.5	27.60	27.60		7.67	7.67		29.56	29.56		71.7	71.5		5.64	5.62		4.22	4.28		4	
27/8/2012	16:18	Fine	Middle	2.5	28.10	28.10	28.10	7.83	7.83	7.83	29.49	29.49	29.50	61.5	61.6	61.7	4.05	4.05	4.06	4.33	4.78	4.35	6	6.00
	16:20		Middle	2.5	28.10	28.10		7.82	7.82		29.50	29.50		62.0	61.5		4.09	4.05		4.00	4.30		6	

am Monitoring Result at C4e - WCT / GEC

 Water Monitoring Result at C4e - WC1 /	G
Mid-Flood Tide	

Date	Time	Weater Condition	Sampling Depth		Wat	er Temp °C	erature	pH -			Salinity ppt			DO Saturation %			DO mg/L				Turbid NTU		Suspended Solids mg/L	
	Conducti		m		Value Average		Value Average		Average	Va	lue	Average	Va	lue	Average			Average	Value		Average	Value	Average	
28/7/2012	16:41	Fine	Middle	2.0	26.50	26.50 26.50 26.55	7.70	7.70	7.69	28.44	28.44	28.43	53.3	53.2	53.0	3.66	3.64	3.63	4.47	3.81	4.03	7	7.50	
	16:43		Middle	2.0	26.60	26.60		7.68	7.68		28.42	28.42		52.8	52.6	33.0	3.62	3.60		3.74	4.09	4.03	8	
30/7/2012	17:16	Fine	Middle	1.5	28.10	28.10	28.15	7.67	7.67	7.68	24.50	24.50	24.51	54.9 55.9	55.0	55.4	3.66	6.67	4.45	5.22	5.50	5.50	10	10.00
	17:19		Middle	1.5	28.20	28.20		7.68	7.68		24.51	24.51			55.6		3.74 3.71		5.59	5.68		10		
1/8/2012	17:47	Haze	Middle	2.0	28.60	28.60	28.65	7.69	7.69	7.67	28.67	28.67	28.80	54.4	54.0	53.8	3.65	3.61	3.59	7.82	7.69	7.65	10	10.00
	17:49		Middle	2.0	28.70	28.70		7.65	7.65		28.93	28.93		53.6	53.2		3.55	3.53		7.45	7.62		10	<u> </u>
4/8/2012	18:46	Cloudy	Middle	1.0	27.70	27.70	27.75	7.58	7.58	7.59	28.94	28.94	28.95	59.7	61.0	60.7	4.00	4.09	4.08	3.07	3.18	3.08	2	2.00
	18:48		Middle	1.0	27.80	27.80		7.59	7.59		28.95	28.95		59.9	62.0		4.08	4.16		3.00	3.08		2	<u> </u>
6/8/2012	21:37	Fine	Middle	1.0	28.00	28.00	27.95	7.63	7.63	7.63	28.93	28.93	28.96	53.0	53.4	53.2	3.54	3.59	3.57	1.68	1.76	1.72	4	4.00
	21:39 21:15		Middle Middle	1.0 1.0	27.90 28.60	27.90 28.60		7.63 7.57	7.63 7.57		28.99 28.15	28.99 28.15		53.3 62.6	53.0 63.5		3.56 4.34	3.60 4.45		1.74	1.69		4	+
8/8/2012	21:13	Haze	Middle	1.0	28.70	28.70	28.65	7.56	7.56	7.57	28.16	28.16	28.16	63.4	64.4	63.5	4.44	4.43	4.42	1.38	1.21	1.29	<2	<2
	20:45		Middle	2.0	28.60	28.60	 	8.01	8.01	8.01		28.83		63.1	63.0		4.17	4.16	<u> </u>	2.46	2.72		6	╞───┤
10/8/2012	20:47	Cloudy	Middle	2.0	28.60	2	28.60	8.01 8.01			28.83	28.83	28.83	62.8	62.7	62.9	4.15	4.14	4.16	2.17	2.36	2.43	4	5.00
	20:50		Middle	1.5	27.95	27.95		7.99	7.99	7.99	28.34	28.34		46.8	46.9	46.8	3.14	3.15		1.90	2.11		4	
13/8/2012	20:53	Cloudy	Middle	1.5	27.94	27.94	27.95	7.98	7.98		28.35	28.35	28.35	46.7	46.6		3.14	3.13	3.14	2.02	2.22	2.06	4	4.00
45/0/004.0	19:20	Fig.	Middle	2.0	28.06	28.06	7.74 7.74	7 75	28.95	28.95	20.02	56.0	55.7	FF 0	3.73	3.70	3.69	5.14	4.48	4.00	6			
15/8/2012	19:22	Fine	Middle	2.0	28.16	28.16	28.11	7.76	7.76	7.75	28.88	28.88	28.92	55.5	55.0	55.6	3.69	3.64	3.69	4.71 4.88	4.88	4.80	6	6.00
17/8/2012	17:40	Cloudy	Middle	2.0	27.43	27.43	27.43	7.50	30.82	30.82	30.82	54.7	55.8	55.2	3.64	3.72	3.68	6.69	5.86	5.88	9	9.50		
11/0/2012	17:42	Cloudy	Middle	2.0	27.43	27.43	27.45	7.50	7.50	7.00	30.83	30.82	30.02	54.9	55.3	55.2	3.66	3.69	5.00	5.52	5.43	5.00	10	5.50
20/8/2012	21:17	Fine	Middle	2.0	28.30	28.30	28.35	7.71	7.71	7.71	28.84	28.84	28.86	58.3	57.9	57.7	3.91	3.88	3.85	2.59	2.85	2.79	5	4.50
	21:19		Middle	2.0	28.40	28.40		7.71	7.71		28.87	28.87		57.4	57.1		3.82	3.80		2.85	2.86		4	
22/8/2012	21:45	Cloudy	Middle	2.0	27.80	27.80	27.80	7.71	7.71	7.71	28.22	28.22	28.26	54.8	55.9	55.4	3.69	3.76	3.73	3.78	3.54	3.58	2	2.50
	21:47		Middle	2.0	27.80	27.80		7.71	7.71		28.29	28.29		55.0	56.0		3.70	3.77		3.42	3.57		3	<u> </u>
25/8/2012	14:31	Fine	Middle	2.0	27.90	27.90	27.95	27.95 7.68 7.68 7.68	7.68	29.32	29.32	29.05	52.9	52.3	52.1	3.60	3.54	3.53	5.36	5.68	5.56	9	8.50	
	14:33		Middle	2.0	28.00	28.00		7.68	7.68		28.78	28.78		51.8	51.5		3.50			5.87	5.33	<u> </u>	8	<u> </u>
27/8/2012	16:09	Fine	Middle	2.0	28.00	28.00	28.05	7.86	7.86	7.85	30.21	30.21	30.21	60.9	60.7	61.3	4.01	4.00	4.04	6.15	6.26	6.15	8	8.00
16:1	16:11	1 110	Middle	2.0	28.10	28.10		5 7.84 7.84		30.20	30.20		61.6	61.9		4.06	4.08		6.08	6.09	0.15	8		

Water Monitoring Result at C4w - WCT / GEC Mid-Flood Tide

Date	Time	Weater Condition	Sampling Depth m		Water Temperature °C			pH -			Salinity ppt			DO Saturation %				DO mg/L			Turbid NTU		Suspended Solids mg/L		
					-		Average	Value Ave		Average			Average	Va	lue	Average	Value		Average	Value		Average	Value	Average	
28/7/2012	16:50	Fine	Middle	2.0	26.50		26.55	7.49	7.49	7.49	28.09	28.09	28.10	48.9	48.7	48.5	3.35	3.34	3.32	1.28	0.83	0.95	3	3.50	
20/1/2012	16:52	1 110	Middle	2.0	26.60	26.60	20.00	7.48	7.48		28.10	28.10	20110	48.2	48.0	1010	3.30	3.27	0.02	0.88	0.79	0.00	4	0.00	
30/7/2012	17:23	Fine	Middle	1.5	28.10	28.10	28.15	7.61	7.61	7.62	28.55	28.55	28.56	53.2 55.0	53.7	54.3	3.67	3.69	3.74	3.59	3.73	3.74	7	6.50	
00/1/2012	17:26	1 110	Middle	1.5	28.20	28.20		7.62	7.62		28.56	28.56	20.00		55.1	0 110	3.79 3.80	3.80	01	3.84	3.81	0.11	6	0.00	
1/8/2012	17:53	Haze	Middle	1.0	28.70	28.70	28.70	7.66	7.66	7.67	28.54	28.54	28.60	50.5	50.2	50.1	3.39	3.34	3.34	2.50	2.47	2.56	9	8.50	
	17:55		Middle	1.0	28.70	28.70		7.67	7.67		28.65	28.65		50.0	49.7		3.33	3.30		2.72	2.56		8		
4/8/2012	19:00	Cloudy	Middle	1.5	27.80	27.75	27 75	7.61	7.61	7.61	29.01	29.01	29.02	63.7	64.2	64.3	4.27	4.30	4.31	3.20	3.14	3.25	4	3.50	
1,0,2012	19:02	choudy	Middle	1.5	27.70		7.60	7.60		29.02	29.02	20102	64.7	64.6	0 110	4.33	4.32		3.37	3.30	0.20	3	0.00		
6/8/2012	21:45	Fine	Middle	1.0	28.40	28.40	28.45	7.54	7.54	7.54	28.90	28.90	28.91	52.6	52.8	53.4	3.49	3.52	3.56	1.14	1.42	1.02	4	4.00	
0,0,2012	21:47	1 110	Middle	1.0	28.50	28.50	20.10	7.54	7.54	1101	28.91	28.91		53.6	54.7	0011	3.57	3.66	0.00	0.88	0.63		4		
8/8/2012	21:30	Haze	Middle 1.5	1.5	28.70	28.70	28.70	7.66	7.66	7.66	28.52	28.52	28.53	65.5	65.7	66.0	4.33	4.34	4.37	2.01	2.14	2.17	<2	<2	
0/0/2012	21:32	Tiaze	Middle	1.5	28.70	28.70		7.65	7.65	7.00	28.53	28.53	20.00	66.4	4 66.4	00.0	4.39	4.40		2.20	2.32	2.17	<2	~2	
10/8/2012	20:55	Cloudy	Middle	2.0	28.70	28.70	28.70	7.92	7.92	7.92	29.00	29.00	29.00	53.2	54.3	54.4	3.72	3.58	3.64	3.25	3.05	3.13	6	4.50	
10/0/2012	20:57	choudy	Middle	2.0	28.70	28.70	2011 0	7.92	7.92	1102	29.00	29.00	20100	54.7	55.3	:	3.60	3.64	0.01	3.07	3.14	0.110	3		
13/8/2012	21:10	Cloudy	Middle	2.0	27.85	27.85	27.86	7.97	7.97	7.98	28.27	28.27	28.27	47.2 4	47.3	47.2	3.17	3.18	3.17	1.70	1.80	1.72	3	3.00	
10/0/2012	21:12	choudy	Middle	2.0	27.86	27.86	21.00	7.98	7.98		28.25	28.28	20121	47.0	47.1		3.15	3.16		1.71	1.65	2	3	0.00	
15/8/2012	19:32	Fine	Middle	2.0	28.64	28.64	28.68	7.76	7.76	7.76	28.66	28.66	28.75	55.2	54.6	52.0	3.65	3.61	3.60	4.27	4.67	4.56	6	6.00	
10/0/2012	19:34	1 110	Middle	2.0	28.72	28.72	20.00	7.76	7.76		28.83	28.83	20110	54.3	44.0	02.0	3.59	3.55	3.00	4.92	4.39	4.00	6	0.00	
17/8/2012	17:45	Cloudy	Middle	1.5	27.47	27.47	27.47	7.57	30.82	30.82	30.82	52.0	54.1	53.9	3.59	3.60	3.62	4.30	4.14	4.42	10	10.50			
	17:47	choudy	Middle	1.5	27.47	27.47		7.57	7.57		30.82	30.82	00102	54.5	54.9	00.0	3.63	3.65	0.02	4.70	4.53	2	11	10.00	
20/8/2012	21:30	Fine	Middle	1.5	28.70	28.70	28.70	7.58	7.58	7.58	28.80	28.80	28.80	43.3	42.9	42.9	2.93	2.85	2.86	1.05	0.98	1.13	5	5.00	
20/0/2012	21:32	1 110	Middle	1.5	28.70	28.70	20.10	7.58	7.58	1100	28.80	28.80	20100	42.7	42.6	1210	2.83	2.82		1.20	1.27		5	0.00	
22/8/2012	21:50	Cloudy	Middle	2.0	28.20	28.20	28.20	7.58	7.58	7.58	28.10	28.10	28.10	54.3	53.2	53.8	3.69	3.64	3.66	4.77	4.42	4.64	<2	<2	
22/0/2012	21:52	choudy	Middle	2.0	28.20	28.20	20.20	7.58	7.58	1100	28.10	28.10	20110	53.6	54.1	55.0	3.65	3.67	3.00	4.83	4.54		<2		
25/8/2012	14:38	Fine	Middle	1.5	1.5 27.70 27.70	27.75	7.55	7.55	7.56	29.11	29.11	29.14	52.4	51.9	51.5	3.60	3.59	3.51	1.89	1.63	1.74	4	5.00		
20/0/2012	14:40		Middle	1.5	27.80	27.80	2	7.57	7.57	06.1	29.16	29.16	29.14	50.9	50.7	51.5	3.43	3.40	0.01	1.71	1.73	1.74	6	0.00	
27/8/2012	16:12	Fine	Middle	2.0	28.20	28.20	28.20	7.83	7.83	7.83	30.28	30.28	30.29	62.4	62.3	62.7	4.11	4.11	4.13	4.45	4.69	4.59	6	6.00	
	16:14	Fine	Fine	Middle	2.0	28.20	28.20	0	7.83	7.83		30.30	30.30		63.8	62.4		4.20	4.11		4.30	4.90	4.59	6	

am

Water Monitoring Result at C5e - Sun Hung Kai Centre Mid-Flood Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur %	ation		DO mg/L			Turbid NTL		Suspende	
			r	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
28/7/2012	16:00	Fine	Middle	1.5	26.80	26.80	26.85	7.61	7.61	7.61	28.28	28.28	28.34	56.8	56.2	56.2	3.84	3.79	3.79	3.04	2.54	2.86	5	4.50
	16:02		Middle	1.5	26.90	26.90		7.60	7.60		28.39	28.39		55.9	55.7		3.78	3.76		3.16	2.69		4	
30/7/2012	15:00	Fine	Middle	1.0	30.22	30.22	30.22 6.86	6.86	6.86	29.66	29.66	29.66	63.6	63.3	63.0	4.08	4.06	4.04	3.29	3.36	3.44	6	7.00	
	15:02 18:27		Middle Middle	1.0	30.22 28.60	30.22 28.60	<u>├</u> ───┼	6.85 7.78	6.85 7.78		29.66 28.80	29.66 28.80		62.9 54.9	62.3 54.4		4.03 3.82	3.99 3.57		3.55 6.58	3.55 5.84		8	
1/8/2012	18:29	Haze	Middle	1.5	28.70	28.70	28.65	7.66	7.66	7.72	28.86	28.86	28.83	54.0	53.7	54.3	3.53	3.48	3.60	5.43	5.77	5.91	5	5.50
	18:24		Middle	1.5	28.36	28.36		7.85	7.85		29.98	29.98		58.4	58.0		3.85	3.83		2.93	2.74		8	
4/8/2012	18:26	Cloudy	Middle	1.5	28.35	28.35	28.36	7.82	7.82	7.84	29.99	29.99	29.99	57.9	57.8	58.0	3.82	3.81	3.83	2.77	2.54	2.75	7	7.50
	23:03		Middle	1.5	28.00	28.00	28.00 7.87 7.87	7.87		30.54	30.54		70.8	71.3		4.67	4.71		1.48	1.43		4		
6/8/2012	23:04	Fine	Middle	1.5	28.00	28.00		7.86	7.87	30.54	30.54	30.54	70.1	70.0	70.6	4.63	4.63	4.66	1.47	1.34	1.43	3	3.50	
8/8/2012	21:25	Haze	Middle	1.5	28.90	28.90	28.90	7.85	7.85	7.86	29.71	29.71	29.71	74.2	75.2	74.4	4.84	4.91	4.86	3.82	3.62	3.51	7	7.00
0/0/2012	21:26	паге	Middle	1.5	28.90	28.90	7.86 7.86	7.00	29.71	29.71	29.71	74.9	73.2	74.4	4.89	4.78	4.00	3.33	3.27	3.51	7	7.00		
10/8/2012	2:07	Cloudy	Middle	1.5	28.50	28.50	28.50	7.94	7.94	7.95	29.21	29.21	29.21	84.9	85.0	84.1	5.85	5.86	5.88	2.37	2.14	2.15	3	3.50
	2:08	,	Middle	1.5	28.50	28.50		7.95		29.21	29.21		83.8	82.8	-	5.95	5.87		2.06	2.01		4		
13/8/2012	23:18	Cloudy	Middle	1.5	27.90	27.90	27.90	7.89 7.89 7.89	29.11	29.11	29.11	77.3		77.6	5.15	5.22	5.17	1.13	1.17	1.24	5	4.50		
	23:19		Middle	1.5	27.90	27.90		7.89	7.89		29.11	29.11		77.5	77.4		5.16	5.15	<u> </u>	1.42	1.24		4	
15/8/2012	21:03	Fine	Middle	1.5	28.20	28.20	28.20	7.91	7.91	7.91	29.67	29.67	29.67	73.1	73.1	72.1	4.81	4.80	4.73	1.07	0.92	0.89	3	3.00
	21:04		Middle	1.5	28.20	28.20		7.91	7.91		29.67	29.67		72.0	70.0		4.70	4.60		0.78	0.77		3	
17/8/2012	21:10 21:11	Cloudy	Middle	1.5 1.5	27.10 27.10	27.10 27.10	27.10	8.00 8.00	8.00 8.00	8.00	31.49 31.49	31.49 31.49	31.49	73.3 73.0	73.4 73.0	73.2	5.18 5.13	5.25 5.13	5.17	2.15 2.21	2.16 2.13	2.16	7	7.50
	20:48		Middle	1.5	28.30	28.30		7.72	7.72		28.59	28.59		59.6	59.1		3.98	3.92		3.58	3.91		6	
20/8/2012	20:50	Fine	Middle	1.5	28.40	28.40	28.35	7.73	7.73	7.73	28.62	28.62	28.61	58.9	58.1	58.9	3.89	3.80	3.90	3.64	3.69	3.71	5	5.50
	21:42		Middle	2.0	27.90	27.90		7.69	7.69		28.33	28.33		53.8	55.3		3.67	3.71		5.77	5.32		13	
22/8/2012	21:44	Cloudy	Middle	2.0	27.90	27.90	27.90	7.69	7.69	7.69	28.33	28.33	28.33	55.0	56.3	55.1	3.69	3.79	3.72	4.94	4.83	5.22	12	12.50
25/0/2012	13:54	Fine	Middle	1.0	28.50	28.50	20.55	7.67	7.67	7.00	29.63	29.63	20.05	52.0	51.6	51.4	3.50	3.43	3.41	4.07	4.04	2.00	5	4.00
25/8/2012	13:56	Fine	Middle	1.0	28.60	28.60	28.55	7.68	7.68	7.68	29.66	29.66	29.65	51.3	50.6		3.40	3.32		3.94	3.53	3.90	3	4.00
27/8/2012	16:41	Fine	Middle	1.5	29.00	29.00	29.05	7.91	7.91	7.91	30.61	30.61	30.61	70.3	70.8	70.3	4.57	4.60	4.57	4.59	4.90	4.75	6	6.50
21/0/2012	16:43	1110	Middle	1.5	29.10	29.10	20.00	7.90	7.90	1.01	30.60	30.60	00.01	69.4	70.7	, 0.0	4.51	4.58	4.07	4.58	4.93	4.75	7	0.00

Remarks: Single underline denotes exceedance over Action Level Double underline denotes exceedance over Limit Level

Water Monitoring Result at C5w - Sun Hung Kai Centre Mid-Flood Tide

Date	Time	Weater Condition	Samplin		Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur %	ation		DO mg/L			Turbid NTL			led Solids a/L
			n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Value	Average
28/7/2012	16:15	Fine	Middle	1.5	27.00	27.00	27.05	7.56	7.56	7.56	28.07	28.07	27.99	57.5	56.8	56.5	3.90	3.85	3.83	3.71	3.38	3.48	6	6.50
20/1/2012	16:17	1 1110	Middle	1.5	27.10	27.10	21.00	7.55	7.55	1.00	27.90	27.90	21100	55.7	55.9	00.0	3.77	3.78	0.00	3.56	3.28	0.10	7	0.00
30/7/2012	15:04	Fine	Middle	1.0	29.09	29.09	29.09	6.51	6.51	6.51	29.36	29.36	29.36	67.6	67.6	67.7	4.42	4.43	4.43	6.02	6.06	6.00	6	7.00
	15:06		Middle	1.0	29.09	29.09		6.50	6.50		29.36	29.36		67.8	67.8	••••	4.43	4.43		5.80	6.13		8	
1/8/2012	18:33	Haze	Middle	1.5	28.50	28.50	28.55	7.65	7.65	7.65	28.76	28.76	28.73	54.1	53.9	53.7	3.60	3.58	3.56	3.29	3.57	3.32	5	5.50
	18:35		Middle	1.5	28.60	28.60		7.65	7.65		28.70	28.70		53.5	53.2		3.55	3.52		3.11	3.30		6	
4/8/2012	18:29	Cloudy	Middle	1.5	27.75	27.76	27.76	7.63	7.63	7.62	27.38	27.38	27.38	45.6	44.8	44.9	3.05	3.02	3.02	1.51	1.58	1.51	3	3.50
	18:31		Middle	1.5	27.76	27.76		7.60	7.60		27.37	27.37		44.6	44.5		3.01	3.00		1.45	1.48		4	
6/8/2012	23:10	Fine	Middle	1.5	28.00	28.00	28.00	7.86	7.86	7.86	30.49	30.49	30.49	73.8	73.7	73.4	4.87	4.86	4.85	1.96	2.02	1.99	4	4.00
	23:11		Middle	1.5	28.00	28.00		7.86	7.86		30.49	30.49		72.9	73.3		4.84	4.84		1.95	2.01		4	
8/8/2012	21:35	Haze	Middle	1.5	28.90	28.90	28.90	7.85	7.85	7.85	29.71	29.71	29.71	68.9	68.8	68.7	4.49	4.49	4.48	3.55	3.84	3.77	8	7.00
0,0,2012	21:36	Hazo	Middle	1.5	28.90	28.90	20.00	7.85	7.84	1.00	29.71	29.71	20111	68.2	68.8		4.45	4.48		4.01	3.68	0.11	6	
10/8/2012	2:15	Cloudy	Middle	1.5	28.50	28.50	28.50	7.93	7.93	7.94	29.35	29.35	29.35	76.6	77.8	77.5	5.37	5.60	5.44	2.68	2.44	2.61	4	4.00
	2:16		Middle	1.5	28.50	28.50		7.95	7.94		29.35	29.35		76.8	78.6		5.24	5.56		2.88	2.44		4	
13/8/2012	23:27	Cloudy	Middle	1.5	28.10	28.10	28.10	7.90	7.90	7.90	29.22	29.22	29.22	71.8	70.4	70.7	4.77	4.66	4.67	1.01	0.88	0.91	<2	<2
	23:28		Middle	1.5	28.10	28.10		7.89	7.89		29.22	29.22	-	70.1	70.6		4.56	4.69	-	0.86	0.88		<2	
15/8/2012	20:52	Fine	Middle	1.5	28.30	28.30	28.35	7.96	7.96	7.96	29.54	29.54	29.54	73.8	73.9	73.1	4.86	4.86	4.81	2.64	2.96	2.63	7	6.50
	20:53		Middle	1.5	28.40	28.40		7.95	7.95		29.54	29.54		72.4	72.3		4.76	4.75		2.43	2.47		6	
17/8/2012	21:18	Cloudy	Middle	1.5	27.00	27.00	27.05	7.97	7.97	7.97	31.44	31.44	31.44	73.0	73.1	73.4	4.89	4.89	4.91	2.00	1.91	1.77	5	5.50
	21:19		Middle	1.5	27.10	27.10		7.97	7.97		31.44	31.44		74.2	73.2		4.96	4.89		1.58	1.59		6	
20/8/2012	21:00	Fine	Middle	1.5	28.20	28.20	28.25	7.71	7.71	7.71	28.79	28.79	28.83	64.3	63.9	63.7	4.31	4.28	4.25	3.73	3.41	3.47	6	6.00
	21:02		Middle	1.5	28.30	28.30		7.71	7.71		28.86	28.86		63.3	63.1		4.22	4.20		3.38	3.34		6	
22/8/2012	21:47	Cloudy	Middle	2.0	28.10	28.10	28.10	7.67	7.67	7.67	27.61	27.61	27.61	56.4	52.2	55.4	3.79	3.46	3.71	4.43	4.73	4.75	5	4.50
	21:49	,	Middle	2.0	28.10	28.10		7.67	7.67		27.61	27.61		57.9	55.0		3.90	3.70	-	5.01	4.84	-	4	
25/8/2012	14:09	Fine	Middle	1.0	28.60	28.60	28.65	7.67	7.67	7.67	29.56	29.56	29.61	55.9	55.1	54.9	3.69	3.63	3.62	3.11	3.28	3.08	2	2.50
	14:11		Middle	1.0	28.70	28.70	0	7.67	7.67		29.66	29.66		54.4	54.1		3.58	3.56		2.87	3.05		3	
27/8/2012	16:46	Fine	Middle	1.5	29.10	29.10	29.10	7.79	7.79	7.79	30.21	30.21	30.21	64.4	64.2	63.7	4.18	4.17	4.14	2.96	2.64	2.54	7	8.00
21/0/2012	16:48		Middle	1.5	29.10	29.10	20110	7.79	7.79		30.20	30.20	00.21	63.2	63.0		4.10	4.09		2.24	2.31	2.0 .	9	0.00

Water Monitoring Result at WSD21 - Wan Chai Mid-Flood Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur %	ation		DO mg/L			Turbic NTU		Suspend	led Solids g/L
			r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	alue	Average	Value	Average
28/7/2012	15:37	Fine	Middle	1.5	27.10	27.10	27.20	7.64	7.64	7.63	28.48	28.48	28.56	49.7	49.5	49.3	3.36	3.34	3.33	2.93	3.11	2.85	4	4.50
	15:39		Middle	1.5	27.30	27.30		7.62	7.62		28.63	28.63		49.1	49.0		3.31	3.30		2.66	2.71		5	
30/7/2012	17:00	Fine	Middle	2.0	29.30	29.30	29.35	7.57	7.57	7.58	28.80	28.80	28.81	52.9	53.6	53.6	3.45	3.50	3.50	4.25	4.55	4.12	5	5.50
	17:03		Middle	2.0	29.40	29.40		7.58	7.58		28.81	28.81		53.8	53.9		3.51	3.52		3.95	3.71		6	
1/8/2012	18:17	Haze	Middle	1.5	28.90	28.90	28.90	7.63	7.63	7.63	28.82	28.82	28.79	49.5	49.3	48.9	3.25	3.23	3.21	1.75	1.37	1.36	2	2.00
	18:19		Middle	1.5	28.90	28.90		7.62	7.62		28.75	28.75		48.7	48.2		3.19	3.16		1.05	1.28		2	
4/8/2012	19:37	Cloudy	Middle	1.5	28.10	28.10	28.05	7.60	7.60	7.61	29.14	29.14	29.14	69.1	69.2	68.8	4.60	4.62	4.58	3.98	3.99	4.03	17	17.00
	19:39		Middle	1.5	28.00	28.00		7.61	7.61		29.13	29.13		67.9	69.0		4.52	4.59		4.04	4.11		17	
6/8/2012	21:15	Fine	Middle	2.0	28.10	28.10	28.20	7.62	7.62	7.63	29.32	29.32	29.22	58.1	57.6	57.6	4.53	4.50	4.49	3.21	2.49	2.89	17	<u>18.00</u>
	21:17		Middle	2.0	28.30	28.30		7.64	7.64		29.11	29.11		57.4	57.1		4.48	4.46		3.32	2.55		19	
8/8/2012	22:05	Haze	Middle	1.5	28.40	28.40	28.35	7.80	7.80	7.80	28.12	28.12	28.13	71.7	71.6	71.9	4.76	4.75	4.77	4.63	4.55	4.53	3	3.50
	22:07		Middle	1.5	28.30	28.30		7.79	7.79		28.13	28.13		72.1	72.2		4.78	4.79		4.44	4.50		4	
10/8/2012	20:30	Cloudy	Middle	1.5	28.60	28.60	28.60	8.32	8.32	8.32	28.91	28.91	29.16	84.1	83.9	83.8	5.44	5.33	5.41	4.93	5.01	4.93	13	13.50
	20:32		Middle	1.5	28.60	28.60		8.32	8.32		28.91	29.91		84.0	83.1		5.40	5.48		4.84	4.94		14	<u> </u>
13/8/2012	21:45	Cloudy	Middle	1.5	27.45	27.45	27.45	8.12	8.12	8.13	29.47	29.47	29.48	61.4	61.2	61.0	4.12	4.10	4.09	3.62	3.34	3.45	4	3.00
	21:48		Middle	1.5	27.44	27.44		8.13	8.13		29.48	29.48		60.8	60.6		4.08	4.06		3.59	3.24		2	
15/8/2012	18:34	Fine	Middle	1.5	29.08	29.08	29.14	8.20	8.20	8.08	28.78	28.78	28.78	77.0	76.8	76.3	5.05	5.03	5.01	4.94	5.05	5.09	3	2.50
	18:36		Middle	1.5	29.19	29.19		7.96	7.96		28.78	28.78		75.8	75.5		5.00	4.94		5.43	4.93		2	<u> </u>
17/8/2012	17:20	Cloudy	Middle	2.0	27.35	27.35	27.35	7.55	7.55	7.55	30.92	30.92	30.93	56.0	57.3	57.4	3.72	3.83	3.83	5.18	5.28	5.46	8	8.00
	17:22		Middle	2.0	27.35	27.35		7.55	7.55		30.93	30.93		58.0	58.3		3.86	3.89		5.74	5.63		8	
20/8/2012	20:29	Fine	Middle	2.0	28.30	28.30	28.30	7.73	7.73	7.74	31.30	31.30	30.13	56.7	56.3	56.2	4.31	4.28	4.27	3.70	3.10	3.47	5	5.50
	20:31		Middle	2.0	28.30	28.30		7.74	7.74		28.95	28.95		55.9	55.7		4.25	4.23		3.45	3.61		6	
22/8/2012	21:20	Cloudy	Middle	2.0	27.80	27.80	27.80	7.72	7.72	7.72	28.01	28.01	28.01	53.0	54.3	53.8	3.64	3.66	3.65	4.01	4.72	4.35	3	3.50
	21:22		Middle	2.0	27.80	27.80		7.72	7.72		28.01	28.01		53.9	54.0		3.64	3.65		4.03	4.63		4	
25/8/2012	13:35	Fine	Middle	1.0	28.50	28.50	28.65	7.69	7.69	7.69	29.71	29.71	29.71	54.4	54.1	53.9	3.56	3.54	3.53	4.87	4.35	4.17	5	6.00
	13:37		Middle	1.0	28.80	28.80		7.68	7.68		29.71	29.71		53.9	53.1		3.53	3.48		3.64	3.80		7	<u> </u>
27/8/2012	16:30	Fine	Middle	1.5	28.80	28.80	28.85	7.78	7.78	7.78	30.05	30.05	30.06	60.8	60.9	61.0	3.97	3.97	3.97	5.91	5.20	5.48	4	4.50
	16:32		Middle	1.5	28.90	28.90		7.78	7.78		30.06	30.06		61.9	60.4		4.03	3.92		5.15	5.66		5	

Water Monitoring Result at WSD19 - Sheung Wan Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp °C	erature		pН			Salini ppt	ty	D	O Satur %	ation		DO mg/L			Turbid NTU		Suspende	
		Condition	n	n	Va		Average	Va	- lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Value	Average
28/7/2012	13:10	Fine	Middle	2.5	27.05	27.05	27.06	7.27	7.27	7.27	29.69	29.69	29.68	71.0	70.9	70.9	4.77	4.77	4.77	3.02	2.86	3.03	9	9.00
20/1/2012	13:12		Middle	2.5	27.06	27.06	21.00	7.27	7.27		29.66	29.66	20.00	70.8	70.8		4.76	4.76		3.14	3.08	0.00	9	0.00
30/7/2012	14:25	Fine	Middle	2.0	28.32	28.32	28.31	7.01	7.01	7.01	29.33	29.33	29.33	74.0	73.8	73.7	4.88	4.87	4.87	4.34	4.38	4.45	13	13.50
	14:27		Middle	2.0	28.30	28.30		7.00	7.00		29.33	29.33		73.6	73.5		4.86	4.86		4.50	4.56		14	<u> </u>
1/8/2012	20:30	Haze	Middle	2.0	28.10	28.10	28.10	8.09	8.09	8.09	30.63	30.63	30.63	77.9	78.8	78.5	5.10	5.16	5.14	3.64	3.95	3.63	6	6.00
	20:31		Middle	2.0	28.10	28.10		8.08	8.08		30.63	30.63		78.7	78.7		5.15	5.15		3.42	3.49		6	<u> </u>
4/8/2012	17:25	Cloudy	Middle	2.5	27.94	27.94	27.95	7.59	7.59	7.58	29.82	29.82	29.81	75.6	75.5	75.5	5.01	5.01	5.01	5.99	5.56	5.74	14	13.50
	17:27		Middle	2.5	27.95	27.95		7.57	7.57		29.80	29.80		75.5	75.4		5.01	5.00		5.84	5.57		13	<u> </u>
6/8/2012	0:21	Fine	Middle	2.0	27.80	27.80	27.80	7.93	7.93	7.93	30.59	30.59	30.59	73.8	74.7	74.1	4.88	4.94	4.90	2.88	2.73	2.67	6	5.50
	0:22		Middle	2.0	27.80	27.80		7.93	7.93		30.58	30.58		74.4	73.4		4.92	4.86		2.52	2.54		5	<u> </u>
8/8/2012	20:40	Haze	Middle	2.0	29.40	29.40	29.40	7.94	7.94	7.94	29.46	29.46	29.46	81.0	80.0	79.9	5.25	5.19	5.18	3.59	3.29	3.29	4	4.00
	20:41		Middle	2.0	29.40	29.40		7.94	7.94		29.46	29.46		79.0	79.7		5.13	5.16		3.06	3.20		4	<u> </u>
10/8/2012	3:08	Cloudy	Middle	2.0	28.40	28.40	28.45	8.17	8.17	8.17	27.92	27.92	27.92	93.6	93.3	93.8	6.70	6.69	6.58	1.98	2.03	1.98	3	3.00
	3:09		Middle	2.0	28.50	28.50		8.17	8.17		27.92	27.92		93.7	94.6		6.47	6.47		2.04	1.87		3	<u> </u>
13/8/2012	1:55	Cloudy	Middle	2.0	27.60	27.60	27.60	8.31	8.31	8.31	27.71	27.71	27.71	85.0	87.0	86.5	5.73	5.87	5.83	0.99	1.20	1.07	3	3.00
	1:56		Middle	2.0	27.60	27.60		8.31	8.31		27.71	27.71		87.7	86.1		5.91	5.80		0.89	1.21		3	<u> </u>
15/8/2012	20:10 20:11	Fine	Middle	2.0	28.30 28.30	28.30 28.30	28.30	8.11 8.11	8.11 8.11	8.11	29.98 29.97	29.98 29.97	29.98	80.4 80.5	80.2 79.3	80.1	5.27 5.27	5.26 5.20	5.25	1.48 1.44	1.67 1.67	1.57	6 5	5.50
	20:26		Middle	2.0	26.80	26.80		8.02	8.02		31.51	31.51		72.3	73.3		4.84	4.77		3.82	3.81		12	<u> </u>
17/8/2012	20:20	Cloudy	Middle	2.0	26.80	26.80	26.80	8.01	8.01	8.02	31.52	31.52	31.52	70.4	70.1	71.0	4.71	4.69	4.75	3.57	3.58	3.70	13	12.50
	21:01		Middle	2.0	28.10	28.10		7.92	7.92		30.14	30.14		72.3	72.1		4.78	4.77		2.94	3.03		8	
20/8/2012	21:02	Fine	Middle	2.0	28.10	28.10	28.10	7.92	7.92	7.92	30.14	30.14	30.14	72.6	72.7	72.4	4.80	4.80	4.79	2.88	2.92	2.94	9	8.50
	20:25		Middle	2.0	27.80	27.80		7.91	7.91		29.23	29.23		76.4	76.0	L	5.11	5.07		4.90	4.62		6	
22/8/2012	20:26	Cloudy	Middle	2.0	27.80	27.80	27.80	7.91	7.91	7.91	29.23	29.23	29.23	76.4	75.1	76.0	5.11	5.01	5.08	4.48	4.26	4.57	7	6.50
	10:11		Middle	2.5	27.55	27.55		7.20	7.20		29.82	29.82		67.6	67.4		4.51	4.50		7.87	7.96		23	
25/8/2012	10:12	Fine	Middle	2.5	27.54	27.54	27.55	7.21	7.21	7.21	29.83	29.83	29.83	67.3	67.1	67.4	4.50	4.48	4.50	7.70	7.92	7.86	10	<u>16.50</u>
27/0/2042	17:33	Fine	Middle	2.0	28.16	28.16	20.47	6.99	6.99	7.00	31.84	31.84	24.04	70.2	70.0	70.0	4.59	4.57	4.50	3.06	3.16	2.40	5	5.50
27/8/2012	17:35	Fine	Middle	2.0	28.18	28.18	28.17	7.00	7.00	7.00	31.83	31.83	31.84	70.4	69.5	70.0	4.60	4.54	4.58	3.22	3.20	3.16	6	5.50

Water Monitoring Result at WSD9 - Tai Wan

Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	erature		pН			Salini ppt	ty	D	O Satur	ation		DO ma/L			Turbid NTU	ity	Suspende	
		Condition	m	n	Va	lue	Average	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va		Average	Va	lue	Average		Average
28/7/2012	6:25	Fine	Middle	3.0	25.77	25.77	25.78	8.06	8.06	8.06	29.60	29.60	29.60	78.8	78.8	78.9	5.43	5.43	5.44	2.12	1.96	1.97	4	3.50
20/1/2012	6:27	Tille	Middle	3.0	25.78	25.78	23.70	8.05	8.05	0.00	29.60	29.60	23.00	78.9	78.9	70.5	5.44	5.44	5.44	1.85	1.93	1.57	3	3.50
30/7/2012	8:24	Fine	Middle	3.0	27.06	27.06	27.06	7.91	7.91	7.91	30.19	30.19	30.20	79.4	79.2	79.1	5.34	5.32	5.32	1.81	1.73	1.77	4	4.00
00/1/2012	8:26		Middle	3.0	27.06	27.06	21.00	7.91	7.91		30.20	30.20	00.20	78.9	78.8		5.31	5.29	0.02	1.69	1.84		4	
1/8/2012	10:13	Cloudy	Middle	2.5	27.70	27.70	27.75	7.98	7.98	7.98	31.45	31.45	31.45	82.0	81.1	82.0	5.41	5.34	5.41	1.62	1.68	1.64	<2	<2
	10:15		Middle	2.5	27.80	27.80		7.98	7.98		31.45	31.45		82.3	82.7		5.42	5.45		1.65	1.61		<2	
4/8/2012	12:05	Cloudy	Middle	2.5	27.64	27.64	27.65	7.89	7.89	7.88	31.18	31.18	31.17	80.7	80.6	80.6	5.34	5.35	5.34	3.12	3.16	3.13	8	8.50
	12:07	,	Middle	2.5	27.65	27.65		7.86	7.86		31.15	31.15		80.5	80.4		5.33	5.32		2.95	3.30		9	
6/8/2012	13:10	Cloudy	Middle	2.5	28.45	28.45	28.46	7.70	7.70	7.71	33.14	33.14	33.15	78.2	77.4	77.7	5.04	5.00	5.02	2.19	2.23	2.22	6	6.00
	13:12		Middle	2.5	28.46	28.46		7.71	7.71		33.16	33.16		77.5	77.6		5.01	5.01		2.21	2.23		6	<u> </u>
8/8/2012	16:32	Fine	Middle	3.0	28.57	28.57	28.62	7.11	7.11	7.09	30.58	30.58	30.63	82.5	81.5	81.9	5.40	5.34	5.35	1.55	1.59	1.53	3	3.00
	16:34		Middle	3.0	28.66	28.66		7.06	7.06		30.67	30.67		82.3	81.2		5.36	5.30		1.45	1.51		3	ļ
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	<u> </u>
13/8/2012	8:20	Fine	Middle	2.5	27.40	27.40	27.40	7.85	7.85	7.85	28.54	28.54	28.55	79.5	79.3	79.7	5.36	5.35	5.38	1.68	1.54	1.72	3	3.50
	8:22		Middle	2.5	27.40	27.40		7.84	7.84		28.56	28.56		79.9	80.2		5.39	5.40		1.92	1.72		4	<u> </u>
15/8/2012	8:28	Fine	Middle	2.5	27.90	27.90	28.00	7.92	7.92	7.93	29.98	29.98	29.99	88.5	87.0	87.9	5.71	5.58	5.66	2.21	2.07	2.11	3	3.50
	8:30		Middle	2.5	28.10	28.10		7.94	7.94		30.00	30.00		88.8	87.4		5.73	5.61		2.06	2.10		4	<u> </u>
17/8/2012	-	Strong Wind Signal No.3	Middle Middle	-	-	-	-	-	-	-	-	-	· -	-	-	-	-	-	-	-	-	-	-	
	15:30		Middle	2.0	28.60	28.60		7.82	7.82		29.50	29.50		78.1	77.2		5.12	5.06		2.58	2.67		4	<u> </u>
20/8/2012	15:32	Fine	Middle	2.0	28.80	28.80	28.70	7.82	7.82	7.82	29.51	29.51	29.51	78.7	77.0	77.8	5.12	5.04	5.09	2.63	2.50	2.60	4	4.00
	16:10		Middle	2.0	27.80	27.80		7.93	7.93		30.43	30.43		77.6	76.4		5.13	5.05		2.68	2.66		5	<u> </u>
22/8/2012	16:12	Cloudy	Middle	2.0	27.90	27.90	27.85	7.94	7.94	7.94	30.36	30.36	30.40	78.4	76.8	77.3	5.18	5.08	5.11	2.59	2.62	2.64	5	5.00
	3:20		Middle	2.0	27.10	27.10		8.02	8.02		31.90	31.90		80.0	80.9		5.35	5.38		1.55	1.57		14	<u></u>
25/8/2012	3:21	Cloudy	Middle	2.0	27.10	27.10	27.10	8.02	8.02	8.02	31.90	31.90	31.90	81.2	80.3	80.6	5.39	5.34	5.37	1.35	1.43	1.48	12	13.00
	7:59		Middle	2.5	27.22	27.22		7.65	7.65		31.84	31.84	<u> </u>	76.2	76.0		5.06	5.05		2.09	2.04		3	
27/8/2012	8:01	Fine	Middle	2.5	27.21	27.21	27.22	7.63	7.63	7.64	31.85	31.85	31.85	75.8	75.6	75.9	5.03	5.02	5.04	2.14	2.08	2.09	3	3.00

Water Monitoring Result at WSD17 - Quarry Bay Mid-Ebb Tide

Date	Time	Weater Condition		g Depth	Wat	er Temp °C	erature		pH			Salini ppt	ty	D	O Satur	ation		DO mg/L			Turbid NTU	ity	Suspende	
		Condition	r	n	Va		Average	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
28/7/2012	7:49	Fine	Middle	3	25.89	25.89	25.90	8.14	8.14	8.13	27.62	27.62	27.62	79.1	78.9	78.8	5.50	5.47	5.48	1.59	1.56	1.58	4	3.50
	7:51		Middle	3	25.90	25.90		8.12	8.12		27.61	27.61		78.8	78.5		5.47	5.46		1.60	1.57		3	
30/7/2012	9:58	Fine	Middle	4	28.05	28.06	28.06	7.42	7.42	7.41	30.25	30.25	30.27	57.9	57.9	57.9	3.83	3.83	3.83	1.58	1.61	1.60	4	5.00
	10:00		Middle	4	28.07	28.07		7.40	7.40		30.28	30.28		57.9	57.9		3.83	3.83		1.66	1.53		6	
1/8/2012	11:35	Cloudy	Middle	3	28.60	28.60	28.70	7.96	7.96	7.95	30.39	30.39	30.41	67.5	67.8	67.5	4.40	4.42	4.40	1.75	1.74	1.75	3	3.00
170/2012	11:37	oloddy	Middle	3	28.80	28.80	20.70	7.94	7.94	1.00	30.42	30.42	66.41	67.9	66.6	01.0	4.43	4.34	4.40	1.72	1.77	1.70	3	0.00
4/8/2012	13:45	Cloudy	Middle	3	27.90	27.90	27.91	7.93	7.93	7.92	30.91	30.91	30.91	84.2	83.4	83.0	5.58	5.50	5.48	3.05	3.38	3.12	7	7.50
4/0/2012	13:47	Cloudy	Middle	3	27.92	27.92	27.51	7.91	7.91	1.52	30.90	30.90	50.51	82.3	82.0	00.0	5.43	5.40	3.40	3.07	2.97	0.12	8	7.50
6/8/2012	14:40	Claudy	Middle	4	28.40	28.40	28.39	7.36	7.36	7.36	32.54	32.54	32.54	82.3	82.1	82.1	5.34	5.33	5.33	2.13	2.09	2.08	4	3.50
0/0/2012	14:42	Cloudy	Middle	4	28.38	28.38	28.39	7.35	7.35	7.30	32.54	32.54	32.54	82.0	82.0	62.1	5.32	5.32	5.33	1.98	2.12	2.08	3	3.50
0/0/2012	15:17	Fine	Middle	3	28.84	28.84	28.87	6.81	6.81	6.81	30.54	30.54	30.51	72.0	71.7	72.2	4.68	4.67	4.69	1.92	1.97	1.96	3	2.00
8/8/2012	15:19	Fine	Middle	3	28.89	28.89	28.87	6.80	6.80	6.81	30.48	30.48	30.51	72.9	72.3	12.2	4.73	4.69	4.69	1.91	2.05	1.96	3	3.00
11/8/2012	-	And an Deinstein	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
13/8/2012	10:00	Fine	Middle	3	27.90	27.90	27.95	7.27	7.27	7.28	28.31	28.31	28.31	81.1	81.3	81.3	5.43	5.44	5.44	1.51	1.50	1.40	4	4.00
13/0/2012	10:02	1 iiie	Middle	3	28.00	28.00	21.95	7.28	7.28	7.20	28.31	28.31	20.51	81.4	81.3	01.5	5.45	5.44	3.44	1.28	1.31	1.40	4	4.00
15/8/2012	10:05	Fine	Middle	3	28.70	28.70	28.80	7.91	7.91	7.91	28.99	28.99	29.00	83.2	83.0	83.2	5.57	5.56	5.57	1.73	1.76	1.75	5	5.50
13/0/2012	10:07	T Ine	Middle	3	28.90	28.90	20.00	7.90	7.90	7.51	29.00	29.00	23.00	83.6	82.8	00.2	5.61	5.55	0.01	1.73	1.77	1.75	6	3.50
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	_	-	-		-	-		-	-	-	-	-		-	-	_	-	_
1170/2012	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
20/8/2012	14:00	Fine	Middle	3	28.50	28.50	28.55	7.76	7.76	7.76	29.29	29.29	29.29	65.8	64.1	65.4	4.34	4.23	4.32	4.58	4.61	4.49	7	6.50
20/0/2012	14:02		Middle	3	28.60	28.60	20.00	7.76	7.76	1.10	29.28	29.28	20.20	66.1	65.6	00.4	4.37	4.32	4.02	4.38	4.37	01.10	6	0.00
22/8/2012	14:14	Cloudy	Middle	3	27.70	27.70	27.75	7.85	7.85	7.86	30.86	30.86	30.87	73.0	72.2	72.8	4.83	4.77	4.81	3.43	3.62	3.52	4	F 00
22/0/2012	14:16	Cloudy	Middle	3	27.80	27.80	21.10	7.86	7.86	1.00	30.87	30.87	50.07	73.5	72.5	12.0	4.86	4.79	4.01	3.46	3.56	3.32	6	5.00
25/8/2012	5:50	Cloudy	Middle	3	26.80	26.80	26.80	7.99	7.99	7.98	31.03	31.03	31.03	72.9	75.6	74.7	4.91	5.08	5.01	1.37	1.69	1.55	15	13.50
23/0/2012	5:51	Cloudy	Middle	3	26.80	26.80	20.00	7.97	7.97	7.50	31.03	31.03	51.05	76.0	74.2	/4./	5.09	4.97	5.01	1.60	1.52	1.00	12	13.30
27/8/2012	9:30	Fine	Middle	2	27.89	27.89	27.90	7.47	7.47	7.46	32.07	32.07	32.08	66.3	66.1	66.0	4.36	4.35	4.35	3.35	3.32	3.35	7	7.50
21/0/2012	9:32	טווי ז	Middle	2	27.90	27.90	21.30	7.44	7.44	7.40	32.08	32.08	52.00	65.9	65.7	00.0	4.34	4.33	т.55	3.43	3.29	0.00	8	1.50

Water Monitoring Result at C9 - Provident Centre Mid-Ebb Tide

Date	Time	Weater Condition	Samplin		Wat	er Temp °C	erature		pH -			Salini [;] ppt	У	D	O Satur %	ation		DO mg/L			Turbid NTU	ity	Suspende	
			n	n	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
28/7/2012	10:10	Fine	Middle	2	26.31	26.31	26.33	7.77	7.77	7.77	29.56	29.56	29.56	72.5	72.4	72.4	4.95	4.94	4.94	3.18	3.30	3.31	8	8.00
	10:12		Middle	2	26.34	26.34		7.76	7.76		29.55	29.55		72.3	72.3		4.93	4.93		3.46	3.29		8	<u> </u>
30/7/2012	12:05	Fine	Middle	2	27.69	27.69	27.68	7.72	7.72	7.71	29.90	29.90	29.91	78.5	77.5	77.2	5.27	5.20	5.18	1.76	1.67	1.68	5	5.00
	12:07		Middle	2	27.67	27.67		7.70	7.70		29.91	29.91		76.7	76.0		5.14	5.09		1.61	1.66		5	<u> </u>
1/8/2012	11:10	Cloudy	Middle	3	27.80	27.80	27.85	7.71	7.71	7.71	28.95	28.95	28.96	72.0	72.1	71.8	4.80	4.81	4.78	3.39	3.31	3.46	8	7.50
	11:11		Middle	3	27.90	27.90		7.70	7.70		28.96	28.96		71.4	71.6		4.75	4.76		3.51	3.62		7	<u> </u>
4/8/2012	15:55	Cloudy	Middle	2	27.75	27.75	27.77	7.62	7.62	7.61	30.32	30.32	30.32	80.8	80.5	80.4	5.36	5.34	5.34	5.47	5.80	5.48	10	9.00
	15:47		Middle	2	27.78	27.78		7.60	7.60		30.31	30.31		80.3	79.9		5.33	5.31		5.60	5.05		8	<u> </u>
6/8/2012	17:30	Cloudy	Middle	2	28.30	28.30	28.31	7.60	7.60	7.59	30.98	30.98	30.97	76.2	75.8	75.7	4.98	4.95	4.95	3.01	3.24	3.07	6	5.00
	17:32	-	Middle	2	28.32	28.32		7.58	7.58		30.96	30.96		75.5	75.3		4.93	4.92		3.01	3.01		4	<u> </u>
8/8/2012	14:57	Fine	Middle	2	29.12	29.12	29.14	6.91	6.91	6.91	30.11	30.11	30.12	73.9	73.6	74.5	4.80	4.79	4.84	2.69	2.33	2.44	6	6.50
	14:58		Middle	2	29.15	29.15		6.90	6.90		30.12	30.12		75.9	74.6	-	4.93	4.85	-	2.38	2.34		7	
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
13/8/2012	12:28	Fine	Middle	2	27.63	27.63	27.64	7.86	7.86	7.86	27.29	27.29	27.28	82.9	82.8	82.8	5.61	5.60	5.60	4.80	4.91	4.89	8	8.50
	12:30		Middle	2	27.64	27.64		7.85	7.85		27.27	27.27	-	82.7	82.7		5.60	5.59		4.87	4.96		9	
15/8/2012	13:07	Fine	Middle	2	29.70	29.70	29.80	8.14	8.14	8.15	26.35	26.35	26.35	99.7	97.7	98.3	6.54	6.41	6.45	2.95	3.22	3.12	7	7.00
	13:08		Middle	2	29.90	29.90		8.15	8.15		26.35	26.35		98.8	97.1		6.47	6.36		3.18	3.11	-	7	
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
20/8/2012	13:41	Fine	Middle	2	28.20	28.20	28.25	7.79	7.79	7.79	29.18	29.18	29.18	71.4	70.9	70.8	4.73	4.70	4.68	5.82	5.73	5.71	10	9.50
	13:42		Middle	2	28.30	28.30		7.79	7.79		29.18	29.18		70.7	70.2		4.63	4.65		5.63	5.67		9	
22/8/2012	14:04	Cloudy	Middle	2	27.10	27.10	27.10	7.78	7.78	7.78	28.68	28.68	28.69	59.8	59.4	59.5	4.05	4.03	4.03	6.49	6.82	6.57	8	8.00
	14:06	,	Middle	2	27.10	27.10		7.77	7.77		28.70	28.70		59.3	59.3		4.02	4.02		6.47	6.50		8	
25/8/2012	5:35	Cloudy	Middle	2	27.10	27.10	27.10	7.90	7.90	7.90	30.90	30.90	30.90	69.2	69.1	68.3	4.64	4.61	4.56	1.10	1.09	1.06	5	4.50
	5:36	0.000,	Middle	2	27.10	27.10	1	7.90	7.90		30.90	30.90	00.00	67.8	66.9	00.0	4.53	4.47		1.11	0.93		4	
27/8/2012	12:10	Fine	Middle	2	27.77	27.77	27.78	6.71	6.71	6.71	31.58	31.58	31.57	70.0	69.6	69.5	4.60	4.57	4.56	4.13	4.20	4.22	5	5.00
2.7.572012	12:12		Middle	2	27.79	27.79	20	6.70	6.70	5.71	31.56	31.56	007	69.3	69.1	00.0	4.54	4.53		4.11	4.45	2	5	0.00

Remarks: Single underline denotes exceedance over Action Level Double underline denotes exceedance over Limit Level

Water Monitoring Result at C8 - City Garden Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	ng Depth	Wate	er Temp °C	erature		pН			Salini ppt	ty	D	O Satur	ation		DO mg/L			Turbid NTU	ity	Suspend	
		Condition	n	n	Va	lue	Average	Va	alue	Average	Va	alue	Average	Va	lue	Average	Va		Average	Va	lue	Average		Average
28/7/2012	9:56	Fine	Middle	2	26.25	26.25	26.26	7.69	7.69	7.68	29.29	29.29	29.27	65.4	63.7	63.7	4.41	4.36	4.34	4.84	4.40	4.39	7	7.50
20/1/2012	9:58	1110	Middle	2	26.26	26.26	20.20	7.66	7.66	1.00	29.25	29.25	20.21	62.8	62.7	00.1	4.29	4.29	4.04	4.22	4.11	4.00	8	1.00
30/7/2012	11:51	Fine	Middle	2	27.42	27.42	27.44	7.24	7.24	7.24	29.81	29.81	29.81	66.7	66.1	66.1	4.46	4.42	4.42	2.26	2.28	2.19	4	5.00
	11:53		Middle	2	27.45	27.45		7.23	7.23		29.80	29.80		65.9	65.8		4.41	4.40		2.10	2.13		6	
1/8/2012	11:00	Cloudy	Middle	2	27.80	27.80	27.80	7.70	7.70	7.71	26.70	26.70	26.71	64.7	66.5	65.4	4.31	4.40	4.35	5.91	5.50	5.76	6	6.50
	11:01	,	Middle	2	27.80	27.80		7.71	7.71		26.71	26.71		64.1	66.4		4.28	4.39		5.77	5.84		7	
4/8/2012	15:30	Cloudy	Middle	1	27.70	27.70	27.72	7.71	7.71	7.72	30.00	30.00	30.01	79.4	78.6	78.3	5.28	5.23	5.21	9.98	10.60	9.56	19	- 19.50
	15:32		Middle	1	27.73	27.73		7.72	7.72		30.01	30.01		77.9	77.3		5.18	5.14		8.97	8.67		20	
6/8/2012	17:15	Cloudy	Middle	2	29.87	29.87	29.87	7.59	7.59	7.58	30.13	30.13	30.12	70.7	67.1	67.5	4.68	4.42	4.46	8.13	8.41	8.50	15	14.50
	17:17		Middle	2	29.87	29.87		7.56	7.56		30.10	30.10		66.4	65.9		4.38	4.34		8.88	8.57		14	
8/8/2012	14:40	Fine	Middle	2	29.26	29.26	29.38	6.80	6.80	6.80	29.39	29.39	29.36	74.8	71.5	73.9	4.89	4.67	4.82	3.52	3.46	3.46	4	4.50
	14:41		Middle	2	29.49	29.49		6.80	6.80		29.32	29.32		75.0	74.2		4.87	4.83		3.44	3.41		5	
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	· -	-	-	-	-	-		-	-	-	-	-	-	-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
13/8/2012	12:00	Fine	Middle	2	27.72	27.72	27.73	7.79	7.79	7.82	26.10	26.10	26.09	78.8	78.4	78.1	5.36	5.33	5.31	7.89	7.88	7.99	7	7.00
	12:02		Middle	2	27.73	27.73		7.81	7.87		26.08	26.08		77.6	77.4		5.28	5.26		8.04	8.16		7	
15/8/2012	12:56	Fine	Middle	2	30.10	30.10	30.20	7.79	7.79	7.79	24.85	24.85	24.85	75.1	74.6	75.0	4.93	4.90	4.92	20.40	20.20	<u>19.75</u>	57	<u>57.50</u>
	12:57		Middle	2	30.30	30.30		7.78	7.78		24.85	24.85		75.5	74.7		4.95	4.90		19.70	18.70		58	
17/8/2012	-	Strong Wind Signal No.3	Middle Middle	-	-	-	-	-	-	· -	-	-	-	-	-	-	-	-	-	-	-	-	-	
	13:26		Middle	2	28.50	28.50		7.80	7.80		28.96	28.96		70.1	69.6		4.62	4.58		5.73	5.41		9	<u> </u>
20/8/2012	13:27	Fine	Middle	2	28.70	28.70	28.60	7.80	7.80	7.80	28.97	28.97	28.97	70.6	69.9	70.1	4.64	4.60	4.61	5.62	5.35	5.53	9	9.00
	14:09		Middle	2	27.60	27.60		7.78	7.78		28.60	28.60		60.2	59.9		4.07	4.04		6.30	6.67		6	<u> </u>
22/8/2012	14:11	Cloudy	Middle	2	27.40	27.40	27.50	7.78	7.78	7.78	28.58	28.58	28.59	60.3	60.7	60.3	4.08	4.10	4.07	6.67	6.28	6.48	4	5.00
	5:25		Middle	2	27.10	27.10		7.97	7.97		30.50	30.50		69.2	69.3		4.69	4.65		1.18	0.93		8	<u> </u>
25/8/2012	5:26	Cloudy	Middle	2	27.10	27.10	27.10	7.92	7.92	7.95	30.50	30.50	30.50	69.0	68.6	69.0	4.61	4.60	4.64	1.19	1.14	1.11	7	7.50
	11:55		Middle	2	27.96	27.96	<u> </u>	6.80	6.80		31.14	31.14	<u> </u>	66.7	66.2		4.39	4.35		7.15	7.93		9	<u> </u>
27/8/2012	11:57	Fine	Middle	2	28.00	28.00	27.98	6.80	6.80	6.80	31.12	31.12	31.13	65.8	65.4	66.0	4.33	4.30	4.34	7.32	7.97	7.59	8	8.50

Remarks: Single underline denotes exceedance over Action Level Double underline denotes exceedance over Limit Level

Water Monitoring Result at C7 - Windsor House Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	· ·	Wat	er Temp °C	erature		pH			Salini ppt	ty	D	O Satur	ation		DO mg/L		-	Turbidi NTU		Suspende	
		Condition	n	า	Va	ilue	Average	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	lue	Average	Va	llue	Average	Value	Average
28/7/2012	9:28	Fine	Middle	2	26.31	26.31	26.33	7.65	7.65	7.63	28.11	28.11	28.11	64.6	64.6	64.6	4.45	4.45	4.45	1.94	1.66	1.79	4	4.50
20/1/2012	9:30		Middle	2	26.34	26.34	20.00	7.61	7.61	1.00	28.11	28.11	20	64.6	64.6	0 110	4.45	4.45		1.85	1.70		5	
30/7/2012	11:24	Fine	Middle	2	28.54	28.54	28.53	6.90	6.90	6.89	27.02	27.02	27.01	57.2	56.2	55.9	3.80	3.74	3.72	0.83	0.68	0.69	3	3.50
30/1/2012	11:26	T ille	Middle	2	28.52	28.52	20.33	6.87	6.87	0.05	27.00	27.00	27.01	55.4	54.7	55.9	3.68	3.64	5.72	0.61	0.64	0.03	4	3.30
1/8/2012	12:01	Cloudy	Middle	2	28.30	28.30	28.30	7.58	7.58	7.59	27.32	27.62	27.41	55.4	55.6	55.6	3.70	3.72	3.72	2.62	2.72	2.69	4	3.50
1/0/2012	12:02	Cloudy	Middle	2	28.30	28.30	20.50	7.59	7.59	1.55	27.35	27.35	27.41	55.6	55.6	55.0	3.72	3.72	5.72	2.77	2.63	2.05	3	3.50
4/8/2012	15:16	Cloudy	Middle	1	27.90	27.90	27.90	7.63	7.63	7.62	29.11	29.11	29.12	65.9	65.7	65.6	4.39	4.38	4.37	2.06	2.15	2.08	6	5.50
4/0/2012	15:18	Cloudy	Middle	1	27.90	27.90	27.50	7.60	7.60	1.02	29.12	29.12	23.12	65.4	65.3	03.0	4.36	4.36	4.07	2.11	1.99	2.00	5	5.50
6/8/2012	17:00	Cloudy	Middle	2	28.74	28.74	28.75	6.97	6.97	6.97	29.36	29.36	29.34	60.1	60.0	60.0	3.94	3.94	3.94	2.10	1.73	1.87	4	3.50
0/0/2012	17:02	Cloudy	Middle	2	28.75	28.75	20.75	6.96	6.96	0.97	29.32	29.32	29.94	59.9	59.9	00.0	3.93	3.93	3.94	1.82	1.83	1.07	3	3.30
8/8/2012	14:20	Fine	Middle	2	29.56	29.56	29.67	6.36	6.36	6.36	29.80	29.80	29.81	68.9	66.6	67.9	4.49	4.34	4.42	1.82	1.95	1.79	<2	<2
0/0/2012	14:21	Fille	Middle	2	29.77	29.77	29.07	6.35	6.35	0.30	29.81	29.81	29.01	69.0	67.0	07.9	4.49	4.37	4.42	1.63	1.74	1.79	<2	<2
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-		-	-		-	-		-	-		-	-	-	-	
11/0/2012	-	Amber Rainstonn	Middle	-	-	-		-	-		-	-	_	-	-	_	-	-	-	-	-	_	-	
13/8/2012	11:35	Fine	Middle	2	27.88	27.88	27.88	7.71	7.71	7.71	25.12	25.12	25.12	65.7	65.4	65.2	4.48	4.46	4.45	1.42	1.40	1.48	<2	<2
13/0/2012	11:37	T nie	Middle	2	27.88	27.88	27.00	7.70	7.70	7.71	25.12	25.12	20.12	65.0	64.8	03.2	4.43	4.42		1.52	1.56	1.40	<2	~2
15/8/2012	12:38	Fine	Middle	2	29.70	29.70	29.80	7.75	7.75	7.75	26.39	26.39	26.39	62.9	62.1	62.1	4.12	4.07	4.07	2.50	2.58	2.50	8	8.00
10/0/2012	12:39	1 110	Middle	2	29.90	29.90	20.00	7.75	7.75	1.10	26.38	26.38	20.00	62.2	61.2	02.1	4.07	4.00	4.07	2.49	2.43	2.00	8	0.00
17/8/2012	-	,Strong Wind Signal No.3	Middle	-	-	-		-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	_
1110/2012	-	`	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
20/8/2012	13:00	Fine	Middle	2	28.50	28.50	28.60	7.72	7.72	7.72	27.30	27.30	27.30	54.5	54.1	54.4	3.62	3.59	3.62	2.00	1.89	1.91	7	6.00
20/0/2012	13:01	1 110	Middle	2	28.70	28.70	20.00	7.71	7.71	1.12	27.30	27.30	27.00	54.7	54.1	04.4	3.68	3.59	0.02	1.81	1.94	1.01	5	0.00
22/8/2012	14:31	Cloudy	Middle	2	27.60	27.60	27.55	7.69	7.69	7.68	28.61	28.61	28.62	53.2	53.7	53.0	3.64	3.67	3.62	3.80	3.45	3.69	2	2.00
22/0/2012	14:33	Cloudy	Middle	2	27.50	27.50	21.55	7.67	7.67	7.00	28.63	28.63	20.02	52.8	52.2	55.0	3.61	3.57	5.02	3.63	3.86	5.05	2	2.00
25/8/2012	4:41	Cloudy	Middle	2	27.30	27.30	27.30	7.77	7.77	7.77	27.90	27.90	27.90	65.9	65.9	66.3	4.48	4.48	4.51	1.44	1.40	1.39	5	4.00
23/0/2012	4:42	Cioudy	Middle	2	27.30	27.30	21.30	7.77	7.77		27.90	27.90	21.30	67.4	66.0	00.5	4.58	4.48	4.01	1.37	1.36	1.55	3	4.00
27/8/2012	11:28	Fine	Middle	2	28.49	28.49	28.47	6.63	6.63	6.63	30.17	30.17	30.19	59.3	59.1	58.9	3.89	3.88	3.87	2.07	2.05	2.05	3	3.00
21/0/2012	11:30	1 116	Middle	2	28.45	28.45	20.77	6.62	6.62	0.00	30.20	30.20	50.15	58.9	58.3	50.5	3.87	3.83	5.07	1.97	2.10	2.00	3	0.00

Water Monitoring Result at C1 - HKCEC Mid-Ebb Tide

Date	Time	Weater Condition		ig Depth	Wat	er Temp °C	erature		pH -			Salini ppt	ty	D	O Satur %	ation		DO mg/L			Turbid NTU		Suspende	
			r	n	Va	lue	Average	Va	alue	Average	Va	alue	Average	Va	lue	Average	Va		Average	Va	alue	Average		Average
28/7/2012	8:35	Fine	Middle	2.0	26.40	26.40	26.35	7.57	7.57	7.58	28.49	28.49	28.50	60.5	60.9	60.7	4.15	4.17	4.16	5.20	5.55	5.28	3	3.00
	8:37		Middle	2.0	26.30	26.30		7.58	7.58		28.50	28.50		60.4	60.8		4.14	4.17		5.17	5.21		3	
30/7/2012	10:12	Fine	Middle	2.5	27.10	27.10	27.15	7.68	7.68	7.71	28.88	28.88	28.39	68.7	68.3	68.3	4.75	4.63	4.64	3.64	3.76	3.48	4	4.00
	10:14		Middle	2.5	27.20	27.20		7.74	7.74		27.89	27.89		68.3	67.9		4.61	4.58	-	3.32	3.18		4	
1/8/2012	11:17	Cloudy	Middle	2.0	28.30	28.30	28.20	7.72	7.72	7.71	28.72	28.72	28.73	72.0	71.1	71.9	4.72	4.66	4.71	2.80	3.13	2.96	3	3.00
	11:19		Middle	2.0	28.10	28.10		7.70	7.70		28.74	28.74		72.3	72.2	-	4.74	4.73		2.89	3.01		3	
4/8/2012	13:45	Cloudy	Middle	2.5	28.00	28.00	28.05	7.69	7.69	7.69	29.21	29.21	29.18	75.5	75.3	75.0	5.00	4.98	4.97	4.66	4.01	4.44	8	7.00
	13:47		Middle	2.5	28.10	28.10		7.69	7.69		29.15	29.15		74.7	74.5		4.95	4.93		4.44	4.63		6	
6/8/2012	14:19	Cloudy	Middle	2.5	28.20	28.20	28.35	7.71	7.71	7.72	29.13	29.13	29.01	65.8	65.4	65.1	4.81	4.76	4.72	2.96	2.15	2.35	5	4.50
0/0/2012	14:21	eloudy	Middle	2.5	28.50	28.50	20.00	7.72	7.72	2	28.88	28.88	20101	64.7	64.5	0011	4.66	4.64		2.00	2.28	2.00	4	
8/8/2012	15:57	Fine	Middle	2.5	29.10	29.10	29.25	7.78	7.78	7.79	28.35	28.35	28.40	81.8	81.0	81.0	5.45	5.37	5.33	2.05	1.50	1.64	2	2.50
0/0/2012	15:59	T IIIe	Middle	2.5	29.40	29.40	23.25	7.79	7.79	1.15	28.44	28.44	20.40	80.7	80.5	01.0	5.27	5.24	0.00	1.52	1.47	1.04	3	2.00
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	_	-	-	_	-	-		-	-	-	-	-	-	-	_
11/0/2012	-	Amber Rainstonn	Middle	-	-	-		-	-	_	-	-		-	-		-	-	_	-	-		-	_
13/8/2012	10:17	Fine	Middle	1.0	27.73	27.73	27.74	8.10	8.10	8.07	26.72	26.72	26.73	88.2	87.9	87.7	6.04	6.02	5.98	1.57	1.20	1.21	7	7.50
10/0/2012	10:19	T ino	Middle	1.0	27.74	27.74	21.14	8.04	8.04	0.07	26.74	26.74	20.70	87.6	87.2	01.1	5.94	5.90	0.00	0.93	1.15	1.21	8	1.00
15/8/2012	11:38	Fine	Middle	2.5	29.79	29.79	29.53	7.57	7.57	7.47	26.87	26.87	26.85	105.8	103.7	103.8	6.99	6.86	6.85	1.02	0.98	0.98	7	6.50
10,0,2012	11:40		Middle	2.5	29.27	29.27	20.00	7.36	7.36		26.83	26.83	20100	103.0	102.5	10010	6.80	6.74	0.00	1.14	0.79	0.00	6	0.00
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
20/8/2012	14:02	Fine	Middle	2.5	28.19	28.19	28.25	7.30	7.30	7.30	29.81	29.81	29.82	71.8	71.6	71.5	4.74	4.72	4.72	6.50	6.51	6.19	7	7.50
	14:04		Middle	2.5	28.30	28.30		7.30	7.30		29.83	29.83		71.5	71.0		4.72	4.68		5.80	5.93		8	
22/8/2012	15:22	Cloudy	Middle	2.5	27.80	27.80	27.80	7.81	7.81	7.81	28.15	28.15	28.17	72.5	72.4	72.2	4.87	4.86	4.85	4.47	4.60	4.45	4	4.50
22,0/2012	15:24		Middle	2.5	27.80	27.80		7.80	7.80		28.18	28.18	20.11	71.9	72.0		4.81	4.84		4.61	4.12		5	
25/8/2012	5:35	Cloudy	Middle	1.5	26.80	26.80	26.80	7.81	7.81	7.81	29.10	29.10	29.10	59.2	60.4	58.0	4.03	4.11	3.95	3.15	3.06	3.11	7	7.00
20/0/2012	5:37	0.000	Middle	1.5	26.80	26.80	20.00	7.81	7.81	1.01	29.10	29.10	20.10	57.2	55.0	00.0	3.90	3.75	0.00	3.14	3.09	0.11	7	1.00
27/8/2012	9:21	Fine	Middle	2.5	26.90	26.90	26.85	7.85	7.85	7.86	30.40	30.40	30.41	72.9	72.6	72.5	5.04	5.01	4.99	3.46	3.80	3.66	6	5.50
21/0/2012	9:23	1 illo	Middle	2.5	26.80	26.80	20.00	7.87	7.87	1.00	30.41	30.41	50.41	72.3	72.0	12.5	4.97	4.95	ч.55	3.78	3.60	0.00	5	0.00

Water Monitoring Result at C2 - TH / APA / SOC Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	• •		er Temp °C	erature		pH -			Salinit ppt	у		O Satur	ation		DO mg/L			Turbidi NTU	ity	Suspende	
			n	I	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
28/7/2012	8:17	Fine	Middle	1.5	26.00	26.00	26.00	7.40	7.40	7.40	28.61	28.60	28.58	55.4	55.8	55.9	3.82	3.84	3.84	4.13	4.06	4.15	3	3.50
	8:19		Middle	1.5	26.00	26.00		7.39	7.39		28.51	28.58		55.9	56.3		3.84	3.87		4.12	4.27		4	<u> </u>
30/7/2012	9:50 9:52	Fine	Middle Middle	1.0	27.50 27.70	27.50 27.70	27.60	7.61 7.62	7.61 7.62	7.62	28.37 28.36	28.37 28.36	28.37	63.3 62.5	63.2 62.1	62.8	4.22 4.16	4.21 4.10	4.17	8.21 8.33	8.25 7.63	8.11	8	7.00
	9:36		Middle	1.5	27.00	27.00		7.58	7.58		29.22	29.22		60.6	60.8		4.10	4.10		2.11	2.02		3	<u> </u>
1/8/2012	9:38	Cloudy	Middle	1.5	27.00	27.00	27.00	7.60	7.60	7.59	29.22	29.22	29.23	60.4	60.6	60.6	4.10	4.11	4.10	2.04	2.02	2.04	2	2.50
	13:32		Middle	2.0	27.90	27.90		7.65	7.65		31.50	31.50		70.3	70.1		4.74	4.72		4.52	3.95		7	
4/8/2012	13:34	Cloudy	Middle	2.0	28.00	28.00	27.95	7.63	7.63	7.64	29.56	29.56	30.53	69.7	69.5	69.9	4.68	4.64	4.70	4.08	3.89	4.11	7	7.00
	13:45		Middle	1.5	29.00	29.00		7.72	7.72		28.92	28.93		61.4	61.2		4.60	4.58		1.92	2.10		3	
6/8/2012	13:47	Cloudy	Middle	1.5	29.10	29.10	29.05	7.70	7.70	7.71	29.13	29.13	29.03	60.8	60.2	60.9	4.35	4.50	4.51	2.03	2.55	2.15	3	3.00
	15:38		Middle	1.0	29.60	29.60		7.70	7.70		28.89	28.89		74.6	74.3		4.80	4.79		2.66	2.51		4	
8/8/2012	15:39	Fine	Middle	1.0	29.90	29.90	29.75	7.71	7.71	7.71	28.94	28.94	28.92	73.8	73.5	74.1	4.76	4.74	4.77	2.50	2.21	2.47	3	3.50
44/0/0040	-	Arch on Dising to ma	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	I	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/8/2012	10:03	Fine	Middle	1.0	27.31	27.31	27.29	8.42	8.42	8.42	26.82	26.82	26.81	79.4	78.7	78.7	5.42	5.37	5.36	1.88	0.98	1.48	7	7.00
10/0/2012	10:05		Middle	1.0	27.26	27.26	21.20	8.41	8.41	0.42	26.79	26.79	20.01	78.5	78.0	10.1	5.35	5.30	0.00	1.46	1.58	1.40	7	1.00
15/8/2012	11:20	Fine	Middle	1.0	28.24	28.24	28.25	7.81	7.81	7.82	27.57	27.57	27.62	99.6	99.3	98.6	6.78	6.74	6.79	2.37	1.91	1.93	6	7.00
	11:22	-	Middle	1.0	28.25	28.25		7.83	7.83		27.66	27.66		98.7	96.8		6.67	6.97		1.78	1.65		8	
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	<u> </u>
20/8/2012	13:44	Fine	Middle	1.0	27.63	27.63	27.69	7.70	7.70	7.78	29.60	29.60	29.61	66.8	66.4	66.3	4.45	4.42	4.41	3.38	3.57	3.56	7	7.50
	13:46		Middle	1.0	27.75	27.75		7.85	7.85		29.62	29.62		66.2	65.6		4.41	4.37		3.48	3.81		8	<u> </u>
22/8/2012	16:35	Cloudy	Middle	1.0	27.90	27.90	27.95	7.81	7.81	7.80	28.17	28.17	28.19	71.6	71.2	71.2	4.76	4.71	4.74	4.03	4.24	4.26	4	4.50
	16:37		Middle	1.0	28.00	28.00		7.79	7.79		28.20	28.20		71.0	71.1		4.74	4.75		4.62	4.14		5	<u> </u>
25/8/2012	5:20	Cloudy	Middle	1.5	26.70	26.70	26.70	7.57	7.57	7.57	29.00	29.00	29.00	50.1	51.9	52.0	3.43	3.56	3.57	3.17	3.43	3.29	7	7.00
	5:22 9:12		Middle Middle	1.5	26.70 27.00	26.70 27.00		7.57 7.71	7.57 7.71		28.99 30.11	28.99 30.11		52.9 70.8	53.2 70.3		3.63 4.79	3.65 4.72		3.24 3.40	3.33 3.49		4	
27/8/2012	9:12	Fine	Middle	1.0	27.00	27.00	27.05	7.71	7.71	7.76	30.11	30.11	30.49	70.8	70.3 69.8	70.3	4.79	4.72	4.72	3.40	3.49	3.60	4	4.00
	9:14		Widdle	1.0	27.10	27.10		7.81	7.81		30.86	30.86		70.1	69.8		4.70	4.68		3.66	3.86		4	<u>i </u>

Water Monitoring Result at C3 - HKCEC Phase I Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	ng Depth	Wat	er Temp	perature		pН			Salini	ty	D	O Satur	ation		DO			Turbid NTU		Suspende	
		Condition	r	m	Va	alue	Average	Va	lue -	Average	Va	ppt alue	Average	Va	lue	Average	Va	mg/L lue	Average	Va	alue	Average	mg Value	Average
28/7/2012	10:07	Fine	Middle	2.5	26.40	26.40	26.35	7.62	7.62	7.00	28.11	28.11	28.12	47.5	48.1	47.7	3.27	3.31	2.20	6.50	6.68	6.20	4	4.50
20/1/2012	10:09	Fine	Middle	2.5	26.30	26.30	20.33	7.62	7.62	7.62	28.13	28.13	20.12	47.9	47.3	47.7	3.29	3.25	3.28	6.35	6.02	6.39	5	4.50
30/7/2012	11:31	Fine	Middle	2.5	27.40	27.40	27.30	7.64	7.64	7.63	28.87	28.87	28.94	50.8	50.3	49.8	3.43	3.39	3.36	1.93	2.12	2.11	5	5.50
30/11/2012	11:33	Tine	Middle	2.5	27.20	27.20	27.30	7.62	7.62	7.00	29.01	29.01	20.34	49.9	48.3	43.0	3.36	3.27	0.00	2.14	2.24	2.11	6	0.00
1/8/2012	10:12	Cloudy	Middle	3.0	27.10	27.10	27.10	7.65	7.65	7.65	29.02	29.02	29.04	51.5	51.8	51.3	3.48	3.50	3.47	2.28	1.98	2.13	3	3.50
	10:14		Middle	3.0	27.10	27.10	20	7.65	7.65		29.05	29.05	20.01	50.5	51.5	0110	3.41	3.48	0.11	2.03	2.24	20	4	0.00
4/8/2012	14:31	Cloudy	Middle	2.5	27.70	27.70	27.70	7.68	7.68	7.68	28.74	28.74	29.13	52.4	52.7	52.2	3.51	3.63	3.52	3.69	3.16	3.49	5	5.50
	14:32	,	Middle	2.5	27.70	27.70		7.67	7.67		29.51	29.51		52.3	51.5		3.49	3.44		3.56	3.54		6	
6/8/2012	15:55	Cloudy	Middle	2.0	28.20	28.20	28.25	7.68	7.68	7.78	29.51	29.51	29.39	52.0	51.6	51.4	3.47	3.43	3.42	3.29	3.24	3.30	4	4.00
	15:57	,	Middle	2.0	28.30	28.30		7.87	7.87		29.26	29.26		51.3	50.8		3.40	3.38		3.32	3.33		4	<u> </u>
8/8/2012	17:07	Fine	Middle	2.0	28.90	28.90	29.00	7.66	7.66	7.66	28.86	28.86	28.95	55.3	54.9	54.6	3.73	3.69	3.66	4.37	3.91	4.06	4	5.00
	17:09		Middle	2.0	29.10	29.10		7.66	7.66		29.03	29.03		54.3	53.8		3.62	3.60		4.01	3.93		6	<u> </u>
11/8/2012	-	Amber Rainstorm	Middle	-	-	-		-	-		-	-	· -	-	-	-	-	-	-	-	-		-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
13/8/2012	11:32	Fine	Middle	2.0	28.14	28.14	28.15	7.77	7.77	7.78	26.81	26.81	26.83	56.1	58.9	58.0	3.78	3.76	3.75	3.51	3.17	3.16	8	8.00
	11:34		Middle	2.0	28.16	28.16		7.79	7.79		26.84	26.84		58.6	58.2		3.74	3.70		3.01	2.95		8	<u> </u>
15/8/2012	13:14	Fine	Middle	2.0	28.48	28.48	28.53	7.65	7.65	7.54	28.36	28.36	28.44	59.3	58.7	58.6	3.93	3.88	3.87	4.77	4.58	4.56	12	12.00
	13:16		Middle	2.0	28.57	28.57		7.43	7.43		28.52	28.52		58.5	57.9		3.85	3.80		4.58	4.32		12	<u> </u>
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-		-	-		-	-	· -	-	-	-	-	-	-	-	-		-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	<u> </u>
20/8/2012	15:39	Fine	Middle	2.0	28.33	28.33	28.34	7.09	7.09	7.09	30.00	30.00	30.01	60.0	59.5	59.4	3.95	3.92	3.91	3.55	3.95	3.64	6	6.50
	15:41		Middle	2.0	28.34	28.34		7.08	7.08		30.01	30.01		59.3	58.9		3.90	3.85		3.60	3.47		7	<u> </u>
22/8/2012	16:24	Cloudy	Middle	2.5	28.20	28.20	28.25	7.77	7.77	7.78	28.26	28.26	28.27	53.9	53.7	54.0	3.66	3.59	3.63	3.80	2.61	2.96	5	4.50
	16:26		Middle	2.5	28.30	28.30		7.78	7.78		28.28	28.28		54.2	54.2		3.63	3.64		2.68	2.75		4	<u> </u>
25/8/2012	6:45	Cloudy	Middle	2.5	26.70	26.70	26.70	7.63	7.63	7.63	29.15	29.15	29.15	49.9	52.8	52.9	3.42	3.60	3.61	2.17	2.17	2.23	10	10.00
	6:47		Middle	2.5	26.70	26.70		7.63	7.63		29.15	29.15		55.0	54.0		3.75	3.68		2.34	2.22		10	<u> </u>
27/8/2012	10:57	Fine	Middle	2.5	27.30	27.30	27.30	7.84	7.84	7.85	29.56	29.56	29.79	60.8	60.1	59.9	4.59	4.53	4.51	6.21	5.26	5.86	10	9.50
	10:59		Middle	2.5	27.30	27.30		7.85	7.85		30.01	30.01		59.4	59.1		4.49	4.44		6.31	5.67		9	

Water Monitoring Result at C4e - WCT / GEC

Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	g Depth	Wate	er Temp °C	erature		pН			Salini ppt	ty	D	O Satur %	ation		DO ma/L			Turbid NTU	ity	Suspend	led Solids
		Condition	n	า	Va	lue	Average	Va	lue -	Average	Va		Average	Va	lue	Average	Va		Average	Va	llue	Average		g/∟ Average
28/7/2012	9:49	Fine	Middle	1.5	26.50	26.50	26.45	7.75	7.75	7.75	27.87	27.87	27.87	44.7	44.5	45.0	3.07	3.05	3.09	7.29	7.72	7.54	5	5.50
20,172012	9:51		Middle	1.5	26.40	26.40	20.10	7.74	7.74		27.86	27.86	21.01	45.1	45.5	1010	3.10	3.13	0.00	7.50	7.66		6	0.00
30/7/2012	11:04	Fine	Middle	2.0	28.90	28.90	29.00	7.71	7.71	7.72	29.21	29.21	29.22	49.6	50.2	49.6	3.20	3.27	3.19	4.16	4.41	3.99	11	11.00
	11:06		Middle	2.0	29.10	29.10		7.72	7.72		29.22	29.22	-	49.5	48.9		3.19	3.10		3.65	3.73		11	
1/8/2012	9:57	Cloudy	Middle	2.5	27.40	27.40	27.45	7.68	7.68	7.68	28.98	28.98	28.99	59.0	59.5	58.9	3.95	3.99	3.95	3.67	3.31	3.59	4	5.00
	9:59		Middle	2.5	27.50	27.50		7.67	7.67		28.99	28.99		58.7	58.3		3.93	3.91		3.81	3.55		6	
4/8/2012	14:20	Cloudy	Middle	2.0	28.00	28.00	28.05	7.70	7.70	7.70	29.54	29.54	29.53	58.8	58.4	58.3	4.19	4.13	4.08	4.75	3.99	4.33	8	8.50
	14:22	-	Middle	2.0	28.10	28.10		7.70	7.70		29.52	29.52		58.3	57.8		4.11	3.90		4.40	4.19		9	
6/8/2012	15:34	Cloudy	Middle	2.0	28.60	28.60	28.65	7.79	7.79	7.75	29.16	29.16	29.24	55.1	54.9	54.6	3.63	3.61	3.60	3.49	3.53	3.49	5	4.50
	15:36		Middle	2.0	28.70	28.70		7.71	7.71		29.31	29.31		54.5	54.0		3.59	3.56		3.50	3.45		4	
8/8/2012	16:39	Fine	Middle	2.0	29.10	29.10	29.25	7.68	7.68	7.68	28.13	28.13	28.03	57.6	57.3	57.0	3.79	3.76	3.75	2.72	2.94	2.88	5	4.50
	16:41		Middle	2.0	29.40	29.40		7.67	7.67		27.93	27.93		57.0	56.2		3.74	3.70		2.82	3.04		4	
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	<u> </u>
13/8/2012	11:09	Fine	Middle	2.0	28.39	28.39	28.39	7.84	7.84	7.84	26.78	26.78	26.79	67.3	67.0	66.4	4.51	4.49	4.45	3.21	2.75	2.85	8	8.00
	11:11		Middle	2.0	28.39	28.39		7.83	7.83		26.79	26.79		65.7	65.6		4.40	4.39		2.82	2.62		8	<u> </u>
15/8/2012	12:48	Fine	Middle	1.5	29.35	29.35	29.51	7.04	7.04	7.03	28.23	28.23	28.26	76.3	75.8	75.3	5.03	4.99	4.94	2.76	2.51	2.65	11	10.50
	12:50		Middle	1.5	29.66	29.66		7.02	7.02		28.28	28.28		75.5	73.7		4.92	4.80		2.54	2.78		10	<u> </u>
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15:16		Middle	1.0	28.70	28.70		6.46	6.46		29.97	29.97		73.2	73.0		4.82	4.80		3.79	3.16		6	╄───┥
20/8/2012	15:18	Fine	Middle	1.0	28.71	28.71	28.71	6.34	6.34	6.40	30.03	30.03	30.00	72.7	72.4	72.8	4.76	4.74	4.78	3.33	3.00	3.32	7	6.50
	16:10		Middle	1.5	28.40	28.40		7.88	7.88		28.25	28.25		56.3	56.4		3.75	3.75		3.77	3.90		4	+
22/8/2012	16:12	Cloudy	Middle	1.5	28.40	28.40	28.40	7.85	7.85	7.87	28.27	28.27	28.26	56.3	56.6	56.4	3.74	3.77	3.75	3.58	3.54	3.70	4	4.00
	6:25		Middle	2.0	26.80	26.80		7.55	7.55		28.45	28.45		50.2	51.5		3.43	3.52		3.94	3.67		7	+
25/8/2012	6:27	Cloudy	Middle	2.0	26.80	26.80	26.80	7.55	7.55	7.55	28.45	28.45	28.45	52.4	52.6	51.7	3.58	3.59	3.53	3.84	3.52	3.74	6	6.50
	10:35		Middle	2.0	28.10	28.10		7.87	7.87		30.30	30.30	<u> </u>	69.3	68.9		4.75	4.71		3.90	3.85		8	+
27/8/2012	10:37	Fine	Middle	2.0	28.70	28.70	28.40	7.87	7.87	7.87	30.05	30.05	30.18	68.7	68.4	68.8	4.67	4.62	4.69	4.53	3.71	4.00	8	8.00

Water Monitoring Result at C4w - WCT / GEC

Mid-Ebb Tide

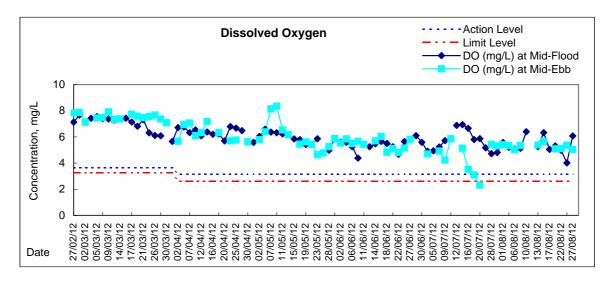
Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	erature		pН			Salini ppt	у	D	O Satur	ation		DO ma/L			Turbid NTU		Suspend	
		Condition	n	n	Va	alue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average		Average
28/7/2012	9:56	Fine	Middle	1.5	26.20	26.20	26.15	7.53	7.53	7.53	28.19	28.19	28.19	44.8	44.7	45.3	3.08	3.07	3.12	4.32	4.50	4.47	4	4.00
20/1/2012	9:58	T ille	Middle	1.5	26.10	26.10	20.13	7.53	7.53	7.55	28.18	28.18	20.19	46.7	45.0	45.5	3.21	3.10	5.12	4.81	4.24	4.47	4	4.00
30/7/2012	11:17	Fine	Middle	1.5	27.70	27.70	27.70	7.65	7.65	7.57	26.97	26.97	27.11	48.3	47.4	47.2	3.24	3.17	3.16	2.31	2.57	2.51	10	9.50
00/1/2012	11:19	T illo	Middle	1.5	27.70	27.70	21.10	7.49	7.49	1.01	27.25	27.25	27.11	46.8	46.3	11.2	3.13	3.10	0.10	2.35	2.81	2.01	9	0.00
1/8/2012	10:03	Cloudy	Middle	2.0	27.40	27.40	27.40	7.69	7.69	7.69	29.20	29.20	29.22	55.1	55.7	55.6	3.70	3.75	3.74	2.97	3.01	3.17	4	4.50
	10:05	cloudy	Middle	2.0	27.40	27.40	21110	7.69	7.69	1.00	29.23	29.23	20.22	55.9	55.7	00.0	3.75	3.74	0.1 1	3.44	3.24	0.111	5	
4/8/2012	14:25	Cloudy	Middle	1.5	27.90	27.90	28.00	7.63	7.63	7.62	28.32	28.32	28.27	52.8	52.6	52.4	3.60	3.58	3.55	3.14	3.46	3.10	6	6.00
	14:27	,	Middle	1.5	28.10	28.10		7.60	7.60		28.21	28.21		52.3	52.0		3.52	3.50		2.67	3.12		6	
6/8/2012	15:45	Cloudy	Middle	1.5	28.20	28.20	28.20	7.68	7.68	7.68	29.84	29.84	29.80	52.9	52.8	52.6	3.61	3.55	3.53	2.78	2.83	2.79	3	3.00
	15:47		Middle	1.5	28.20	28.20		7.67	7.67		29.75	29.75		52.5	52.1		3.51	3.46		2.77	2.78		3	
8/8/2012	16:56	Fine	Middle	1.5	28.90	28.90	28.95	7.66	7.66	7.66	28.76	28.76	28.80	55.0	54.6	54.4	3.86	3.79	3.76	3.70	2.79	2.97	7	7.00
	16:58		Middle	1.5	29.00	29.00		7.66	7.66		28.83	28.83		54.1	53.9		3.77	3.60		2.80	2.58		7	
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
13/8/2012	11:15	Fine	Middle	1.5	27.84	27.84	28.01	7.81	7.81	7.82	27.13	27.13	26.86	63.6	63.3	63.1	4.49	4.44	4.36	3.79	3.25	2.98	7	6.50
	11:17		Middle	1.5	28.17	28.17		7.82	7.82		26.59	26.59		62.8	62.5		4.30	4.22		2.52	2.37		6	<u> </u>
15/8/2012	12:58	Fine	Middle	1.5	28.96	28.96	28.97	7.41	7.41	7.32	28.24	28.24	28.26	66.8	66.1	66.0	4.40	4.35	4.35	2.75	2.40	2.57	12	12.00
	13:00		Middle	1.5	28.97	28.97		7.22	7.22		28.27	28.27		65.8	65.4		4.34	4.30		2.44	2.68		12	<u> </u>
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
	- 15:27		Middle Middle	- 1.0	- 28.23	- 28.23		-	6.65		- 29.96	- 29.96		-	-		- 4.39	-		-	- 3.45		-	
20/8/2012	15:27	Fine	Middle	1.0	28.29	28.29	28.26	6.65 6.71	6.71	6.68	29.90	29.90	29.97	65.8 63.0	65.3 62.3	64.1	4.39	4.31 4.11	4.24	3.20 3.31	3.43	3.25	8	8.50
	16:16		Middle	1.5	28.40	28.40		7.70	7.70		28.22	28.22		50.5	50.9		3.37	3.39		2.36	2.66		3	
22/8/2012	16:18	Cloudy	Middle	1.5	28.40	28.40	28.40	7.70	7.70	7.70	28.24	28.24	28.23	50.4	50.1	50.5	3.86	3.34	3.49	2.70	2.59	2.58	4	3.50
	6:30		Middle	2.0	27.30	27.30		7.53	7.53		29.42	29.42		51.3	53.1		3.47	3.60		1.74	1.88		4	
25/8/2012	6:32	Cloudy	Middle	2.0	27.30	27.30	27.30	7.53	7.53	7.53	29.42	29.42	29.42	50.4	51.4	51.6	3.40	3.47	3.49	1.67	1.83	1.78	5	4.50
	10:46		Middle	2.0	27.90	27.90		7.85	7.85		29.51	29.51		62.6	62.2		4.20	4.14		3.28	3.74		9	
27/8/2012	10:48	Fine	Middle	2.0	28.00	28.00	27.95	7.85	7.85	7.85	30.67	30.67	30.09	61.9	61.4	62.0	4.11	4.06	4.13	3.62	3.95	3.65	8	8.50

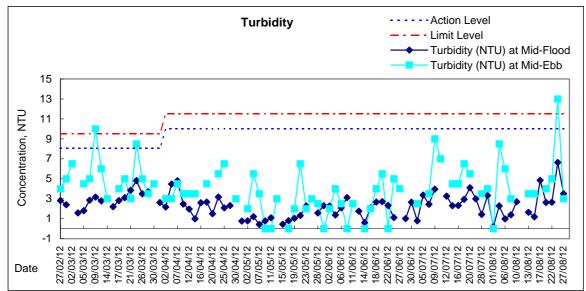
Water Monitoring Result at C5e - Sun Hung Kai Centre Mid-Ebb Tide

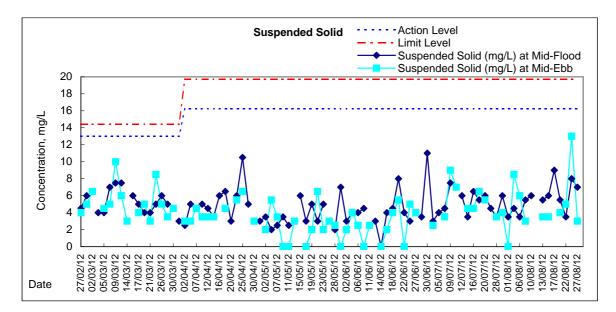
Date	Time	Weater Condition	Samplin	0 1	Wat	er Temp °C	erature		pH -			Salinit ppt	у	D	O Satura %	ation		DO mg/L			Turbidi NTU	ity	Suspende	
			n	1	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	lue	Average	Val	ue	Average	Va	lue	Average	Value	Average
28/7/2012	9:29	Fine	Middle	1.5	26.60	26.60	26.55	7.79	7.79	7.79	27.13	27.13	27.14	46.0	46.8	46.9	3.16	3.21	3.22	7.25	7.77	7.52	4	4.00
	9:31 12:21		Middle Middle	1.5	26.50 28.07	26.50 28.07		7.78 7.43	7.78 7.43		27.15 28.31	27.15 28.31		46.9 62.1	47.7 61.9		3.22 4.15	3.28 4.14		7.84 8.32	7.21 8.10		4 15	
30/7/2012	12:23	Fine	Middle	1.5	28.05	28.05	28.06	7.40	7.40	7.42	28.31	28.31	28.31	61.8	61.6	61.9	4.13	4.12	4.14	8.38	8.49	8.32	14	14.50
	10:47		Middle	1.0	27.70	27.70		7.78	7.78		28.65	28.65		60.3	60.2		4.01	4.00		5.54	5.60		8	
1/8/2012	10:49	Cloudy	Middle	1.0	27.70	27.70	27.70	7.78	7.78	7.78	28.64	28.64	28.65	60.0	60.6	60.3	3.98	4.02	4.00	5.98	5.56	5.67	8	8.00
4/8/2012	14:34	Cloudy	Middle	1.5	27.99	27.99	27.99	7.71	7.71	7.70	29.79	29.79	29.79	75.7	75.5	75.4	5.02	5.01	5.00	8.40	8.77	8.52	15	14.50
4/0/2012	14:36	Cloudy	Middle	1.5	27.98	27.98	21.55	7.68	7.68	1.10	29.79	29.79	29.19	75.3	75.0	75.4	4.99	4.98	5.00	8.59	8.33	0.52	14	14.50
6/8/2012	16:10	Cloudy	Middle	1.5	28.47	28.47	28.47	7.68	7.68	7.67	31.22	31.22	31.21	88.2	88.1	88.1	5.76	5.76	5.76	4.13	3.93	4.02	6	6.00
	16:12	,	Middle	1.5	28.47	28.47		7.65	7.68		31.20	31.20		88.1	88.1		5.75	5.75		3.95	4.08		6	
8/8/2012	13:35	Fine	Middle	1.5	30.08	30.08	30.10	6.62	6.62	6.56	30.22	30.22	30.22	75.4	74.4	73.9	4.82	4.76	4.73	2.22	2.45	2.28	3	3.00
	13:36		Middle	1.5	30.11	30.11		6.50	6.50		30.21	30.21		73.0	72.7		4.67	4.65		2.37	2.09		3	
11/8/2012	-	Amber Rainstorm	Middle Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	- 11:00		Middle	- 1.5	- 28.12	- 28.12		- 7.22	- 7.22		- 28.29	- 28.29		- 78.2	- 78.2		- 5.21	- 5.22		- 1.78	- 1.57		- 3	
13/8/2012	11:02	Fine	Middle	1.5	28.17	28.17	28.15	7.19	7.19	7.21	28.28	28.28	28.29	77.6	77.5	77.9	5.18	5.17	5.20	1.67	1.60	1.66	4	3.50
	11:30		Middle	1.0	29.50	29.50		7.85	7.85		29.14	29.14		79.9	79.0		5.22	5.12		5.24	5.44		12	
15/8/2012	11:31	Fine	Middle	1.0	29.80	29.80	29.65	7.85	7.85	7.85	29.11	29.11	29.13	79.7	78.9	79.4	5.17	5.10	5.15	5.24	5.33	5.31	13	12.50
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-		-	-		-	-	-	-	-		-	-	-	-	-		-	
17/8/2012	-	`	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20/8/2012	14:45	Fine	Middle	1.0	28.65	28.65	28.85	6.64	6.64	6.67	30.16	30.16	30.16	88.8	88.1	88.1	5.78	5.74	5.73	6.06	6.13	5.89	10	10.50
	14:47		Middle	1.0	29.05	29.05		6.70	6.70		30.15	30.15		87.8	87.5		5.72	5.69		5.63	5.72		11	
22/8/2012	15:51	Cloudy	Middle	1.0	27.70	27.70	27.75	7.75	7.75	7.75	28.70	28.70	28.71	79.4	79.7	79.3	5.33	5.34	5.32	7.47	7.09	7.41	4	4.50
	15:53		Middle	1.0	27.80	27.80		7.74	7.74		28.71	28.71		79.1	79.0		5.31	5.30		7.54	7.55		5	<u> </u>
25/8/2012	6:05	Cloudy	Middle	2.0	26.80	26.80	26.80	7.67	7.67	7.67	29.18	29.18	29.18	51.8	59.1 53.0	54.9	3.52 3.77	4.01	3.73	4.51 4.98	4.74	4.64	6 5	5.50
	6:07 10:09		Middle Middle	2.0	26.80 27.30	26.80 27.30		7.67 7.74	7.67		29.18 30.02	29.18 30.02		55.5 75.9	53.0 75.6		3.77 5.40	3.60 5.37		4.98 3.98	4.34 4.83		5	
27/8/2012	10:03	Fine	Middle	1.5	27.40	27.40	27.35	7.74	7.74	7.74	29.98	29.98	30.00	75.0	73.0	75.3	5.32	5.30	5.35	4.75	4.54	4.53	14	13.50

Water Monitoring Result at C5w - Sun Hung Kai Centre Mid-Ebb Tide

Date	Time	Weater Condition	Samplin		Wat	er Temp °C	erature		pH -			Salini [.] ppt	ty.	D	O Satur	ation		DO mg/L			Turbidi NTU	ity	Suspend	
			n	1	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
28/7/2012	9:35	Fine	Middle	1.5	26.40	26.40	26.35	7.76	7.76	7.76	27.29	27.29	27.30	45.4	46.1	45.9	3.14	3.18	3.17	6.86	6.73	6.75	7	7.50
	9:37		Middle	1.5	26.30	26.30		7.75	7.75		27.30	27.30		45.9	46.2		3.16	3.19	-	6.70	6.72		8	
30/7/2012	12:27	Fine	Middle	1.5	28.57	28.57	28.58	7.15	7.15	7.14	28.33	28.33	28.33	63.8	63.7	63.6	4.23	4.22	4.21	15.90	16.70	<u>16.40</u>	30	<u>30.50</u>
	12:29		Middle	1.5	28.59	28.59		7.13	7.13		28.33	28.33		63.4	63.4		4.20	4.20		16.70	16.30		31	
1/8/2012	10:54	Cloudy	Middle	1.0	27.90	27.90	28.00	7.81	7.81	7.81	28.64	28.64	28.65	56.3	58.5	58.0	3.74	4.01	3.94	4.82	4.98	4.75	7	7.00
	10:56	-	Middle	1.0	28.10	28.10		7.81	7.81		28.65	28.65		58.6	58.5		4.01	4.01		4.75	4.43		7	
4/8/2012	14:30	Cloudy	Middle	1.5	27.88	27.88	27.89	7.76	7.76	7.76	30.00	30.00	30.16	67.3	66.4	66.2	4.46	4.40	4.38	4.98	4.81	4.66	8	8.00
	14:32		Middle	1.5	27.89	27.89		7.75	7.75		30.31	30.31		65.7	65.3		4.35	4.32		4.43	4.42		8	
6/8/2012	16:14	Cloudy	Middle	1.5	28.34	28.34	28.35	7.47	7.47	7.46	31.13	31.13	31.13	81.3	80.7	80.7	5.32	5.28	5.28	6.23	6.49	6.48	7	7.50
	16:16		Middle	1.5	28.36	28.36		7.45	7.45		31.13	31.13		80.3	80.3		5.25	5.25		6.65	6.56		8	
8/8/2012	13:40	Fine	Middle	1.5	29.14	29.14	29.17	6.61	6.61	6.62	29.94	29.94	29.95	80.1	79.3	79.3	5.20	5.15	5.15	2.29	2.39	2.32	2	2.00
	13:41		Middle	1.5	29.19	29.19		6.62	6.62		29.96	29.96		79.2	78.5		5.15	5.10		2.47	2.13		2	<u> </u>
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
13/8/2012	11:04	Fine	Middle	1.5	28.12	28.12	28.12	7.15	7.15	7.15	#REF!	28.52	#REF!	28.5	80.1	54.0	5.31	5.26	5.25	5.26	2.82	4.06	16	17.00
	11:06		Middle	1.5	28.12	28.12		7.14	7.14		#REF!	28.51		28.5	78.7		5.22	5.19		5.19	2.98		18	
15/8/2012	11:36	Fine	Middle	1.0	28.90	28.90	29.00	7.81	7.81	7.81	29.08	29.08	29.08	69.4	68.4	69.1	4.56	4.47	4.53	3.74	3.86	3.85	13	11.50
	11:37		Middle	1.0	29.10	29.10		7.81	7.81		29.07	29.07		69.8	68.8		4.59	4.50		3.88	3.90		10	
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	- 14:54		Middle Middle	- 1.0	- 28.52	- 28.52		- 6.21	6.21		30.33	- 30.33		82.3	82.0		5.40	- 5.36		- 8.34	8.85		- 12	
20/8/2012	14:56	Fine	Middle	1.0	28.63	28.63	28.58	6.24	6.24	6.23	30.33	30.33	30.32	81.8	81.5	81.9	5.34	5.30	5.35	7.42	7.40	8.00	12	12.00
	15:55		Middle	1.0	27.80	27.80		7.69	7.69		28.73	28.73		66.4	66.5		4.44	4.45		6.56	6.01		<2	<u> </u>
22/8/2012	15:57	Cloudy	Middle	1.0	27.80	27.80	27.80	7.69	7.69	7.69	28.74	28.74	28.74	66.2	66.1	66.3	4.43	4.42	4.44	6.61	6.08	6.32	<2	<2
	6:10		Middle	2.0	27.10	27.10		7.65	7.65		29.06	29.06		56.5	53.5		4.01	3.61		3.54	3.84		6	<u> </u>
25/8/2012	6:12	Cloudy	Middle	2.0	27.10	27.10	27.10	7.65	7.65	7.65	29.06	29.06	29.06	54.9	59.1	56.0	3.73	4.04	3.85	4.23	3.95	3.89	6	6.00
	10:22		Middle	1.5	27.50	27.50		7.83	7.83		29.09	29.09		78.6	78.1		5.59	5.52		8.24	7.92		11	<u> </u>
27/8/2012	10:24	Fine	Middle	1.5	28.00	28.00	27.75	7.77	7.77	7.80	30.04	30.04	29.57	78.0	77.5	78.1	5.50	5.45	5.52	7.71	7.93	7.95	11	11.00

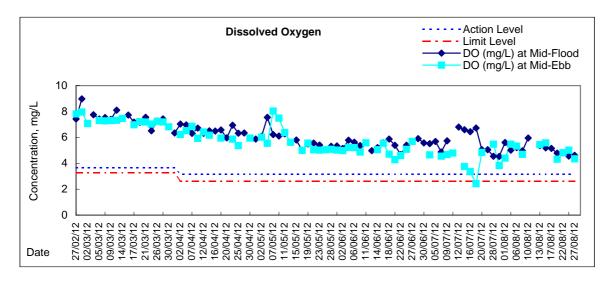

Water Monitoring Result at WSD 21 - Wan Chai Mid-Ebb Tide

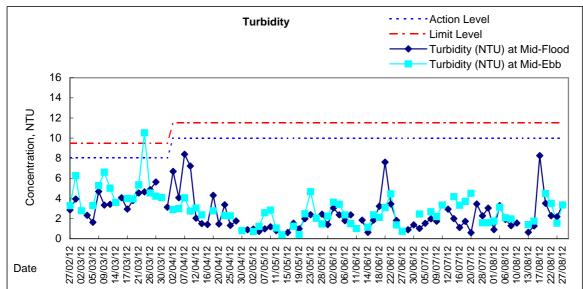

Date	Time	Weater Condition	Samplin		Wat	er Temp °C	erature		pH -			Salini [;] ppt	y	D	O Satur %	ation		DO mg/L			Turbid NTU		Suspend	led Solids g/L
			n	1	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	lue	Average	Val	ue	Average	Va	lue	Average	Value	Average
28/7/2012	9:15	Fine	Middle	1.5	26.50	26.50	26.45	7.83	7.83	7.83	26.76	26.76	26.77	44.9	45.6	45.3	3.10	3.15	<u>3.13</u>	6.27	6.50	6.43	3	2.50
	9:17		Middle	1.5	26.40	26.40		7.83	7.83		26.77	26.77		45.3	45.4		3.12	3.13		6.23	6.70		2	
30/7/2012	10:35	Fine	Middle	1.0	27.30	27.30	27.30	7.88	7.88	7.88	28.12	28.12	28.12	52.2	51.9	51.4	3.53	3.51	3.48	3.66	3.08	3.25	6	5.00
	10:37		Middle	1.0	27.30	27.30		7.87	7.87		28.11	28.11		51.2	50.2		3.47	3.40		3.13	3.14		4	
1/8/2012	10:34	Cloudy	Middle	2.0	27.50	27.50	27.50	7.75	7.75	7.75	29.11	29.11	29.12	53.9	54.4	54.4	3.61	3.65	3.65	5.71	5.99	5.47	7	6.50
	10:36	-	Middle	2.0	27.50	27.50		7.75	7.75		29.12	29.12		54.5	54.9		3.66	3.68		5.01	5.16		6	
4/8/2012	14:01	Cloudy	Middle	2.0	28.10	28.10	28.10	7.77	7.77	7.78	29.77	29.77	29.00	53.4	52.4	52.2	3.98	3.92	3.92	3.98	3.66	3.78	7	6.50
	14:03		Middle	2.0	28.10	28.10		7.78	7.78		28.23	28.23		52.0	51.1		3.90	3.89		3.67	3.79		6	
6/8/2012	15:06	Cloudy	Middle	2.0	28.60	28.60	28.65	7.77	7.77	7.75	29.47	29.47	29.44	57.4	57.1	56.8	3.75	3.73	3.71	4.85	5.13	4.85	4	4.50
	15:08		Middle	2.0	28.70	28.70		7.72	7.72	-	29.41	29.41	-	56.5	56.0		3.70	3.64	-	4.77	4.66		5	
8/8/2012	16:19	Fine	Middle	2.0	29.20	29.20	29.35	7.71	7.71	7.71	29.04	29.04	28.93	59.0	58.4	58.3	3.88	3.83	3.81	2.31	2.21	2.18	5	5.50
	16:21		Middle	2.0	29.50	29.50		7.70	7.70		28.82	28.82		58.0	57.7		3.79	3.75		1.89	2.32		6	
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
13/8/2012	10:44	Fine	Middle	1.5	29.09	29.09	29.04	7.82	7.82	7.82	27.31	27.31	27.32	52.9	52.4	52.4	3.50	3.46	3.46	1.23	1.34	1.37	4	3.50
	10:46		Middle	1.5	28.99	28.99		7.82	7.82	-	27.33	27.33		52.3	52.0	-	3.45	3.43		1.41	1.51		3	
15/8/2012	12:15	Fine	Middle	1.0	29.80	29.80	29.85	6.94	6.94	6.94	28.79	28.79	28.80	55.4	54.1	54.3	3.59	3.50	3.51	3.02	2.93	2.84	7	7.50
	12:17		Middle	1.0	29.90	29.90		6.93	6.93		28.80	28.80		54.0	53.8		3.49	3.46		2.75	2.65		8	
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
20/8/2012	14:27	Fine	Middle	2.0	28.93	28.93	29.01	7.07	7.07	6.96	29.87	29.87	29.88	54.0	53.3	53.5	3.53	3.48	3.47	3.47	3.03	3.18	8	8.00
	14:29		Middle	2.0	29.08	29.08		6.85	6.85		29.88	29.88		53.0	53.8		3.45	3.43		2.81	3.39		8	
22/8/2012	15:41	Cloudy	Middle	1.5	29.00	29.00	28.90	7.75	7.75	7.74	28.23	28.23	28.24	53.4	53.2	52.9	3.56	3.51	3.50	4.57	4.94	4.71	4	4.50
	15:43	,	Middle	1.5	28.80	28.80		7.73	7.73		28.25	28.25		52.8	52.2		3.48	3.44		4.45	4.89		5	
25/8/2012	5:55	Cloudy	Middle	2.0	27.10	27.10	27.10	7.59	7.59	7.59	28.64	28.64	28.65	50.1	52.7	52.2	3.54	3.66	3.63	3.68	3.46	3.56	5	6.00
	5:57	0.000,	Middle	2.0	27.10	27.10	2	7.59	7.59		28.66	28.66	20.00	51.5	54.3	02.12	3.61	3.71	0.00	3.78	3.30	0.00	7	0.00
27/8/2012	9:50	Fine	Middle	2.0	27.40	27.40	27.45	7.73	7.73	7.73	29.75	29.75	29.77	69.3	69.0	68.9	4.69	4.66	4.65	6.12	6.23	6.41	13	13.50
	9:52		Middle	2.0	27.50	27.50	20	7.73	7.73		29.78	29.78	2000	68.7	68.4	00.0	4.64	4.60		6.54	6.75		14	10.00

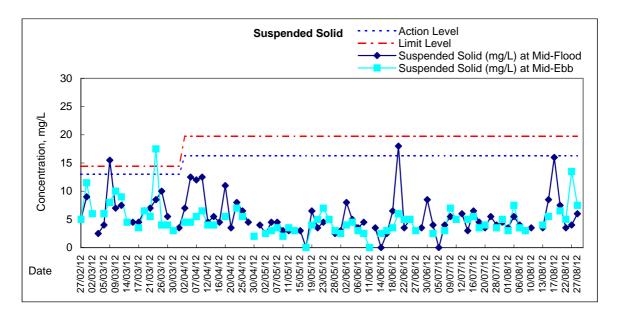

Water Monitoring Result at WSD19 - Sheung Wan Mid-Ebb Tide

Date	Time	Weater	Samplin	g Depth	Wat	er Temp	erature		pН			Salini	ty	D	O Satura	ation		DO			Turbidi NTU	ity	Suspende	
		Condition	r	n	Va	alue	Average	Va	- lue	Average	Va	ppt alue	Average	Va	% lue	Average	Va	mg/L lue	Average	Va	-	Average	mg Value	/∟ Average
	8:25		Middle	2.5	25.95	25.95		8.02	8.02		29.36	29.36		77.3	77.3		5.32	5.32	, i i i i i i i i i i i i i i i i i i i	2.25	2.32		4	
28/7/2012	8:27	Fine	Middle	2.5	25.96	25.96	25.96	8.00	8.00	8.01	29.36	29.36	29.36	77.3	77.3	77.3	5.32	5.31	5.32	2.15	2.18	2.23	5	4.50
30/7/2012	10:40	Fine	Middle	3.0	28.27	28.27	28.27	7.26	7.26	7.27	29.29	29.29	29.30	70.3	70.1	70.0	4.66	4.64	4.64	2.58	2.50	2.46	8	7.00
00/1/2012	10:42	1110	Middle	3.0	28.26	28.26	20.27	7.28	7.28	1.21	29.30	29.30	20.00	69.9	69.8	10.0	4.63	4.63	4.04	2.50	2.24	2.40	6	1.00
1/8/2012	12:14	Cloudy	Middle	2.0	29.20	29.20	29.25	7.98	7.98	7.98	29.71	29.71	29.71	80.3	77.7	79.3	5.21	5.04	5.14	1.48	1.50	1.49	3	3.50
	12:16		Middle	2.0	29.30	29.30		7.98	7.98		29.71	29.71		80.6	78.4		5.22	5.08		1.42	1.55		4	
4/8/2012	14:00	Cloudy	Middle	2.0	28.00	28.00	28.01	7.66	7.66	7.64	29.62	29.62	29.64	79.5	79.1	79.1	5.28	5.26	5.26	3.69	3.79	3.80	8	9.00
	14:02		Middle	2.0	28.01	28.01		7.62	7.62		29.65	29.65		79.0	78.9		5.25	5.25		4.02	3.70		10	
6/8/2012	15:17	Cloudy	Middle	2.5	28.18	28.18	28.19	6.98	6.98	6.98	30.57	30.57	30.56	73.1	73.0	73.0	4.81	4.80	4.80	3.14	3.04	3.09	5	5.00
	15:19	-	Middle	2.5	28.19	28.19		6.97	6.97		30.54	30.54		73.0	72.8		4.80	4.79		3.03	3.15		5	
8/8/2012	17:30	Fine	Middle	2.0	26.80	26.80	26.94	8.36	8.36	8.36	29.27	29.27	29.27	78.4	78.3	78.3	5.31	5.30	5.30	1.95	1.99	1.98	3	3.50
	17:32		Middle	2.0	27.07	27.07		8.35	8.35		29.26	29.26		78.3	78.2		5.29	5.28		2.03	1.93		4	
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-			-	
13/8/2012	10:36	Fine	Middle	3.0	28.40	28.40	28.40	7.48	7.48	7.48	27.05	27.05	27.06	64.5	63.6	64.0	4.29	4.26	4.28	1.98	1.90	1.97	3	3.00
	10:38		Middle	3.0	28.40	28.40		7.47	7.47		27.06	27.06		63.7	64.3		4.27	4.31		2.10	1.89		3	
15/8/2012	10:45	Fine	Middle	1.5	28.90	28.90	29.00	8.25	8.25	8.25	28.82	28.82	28.84	95.4	94.2	94.8	6.22	6.16	6.19	1.88	1.90	1.89	4	4.50
	10:47		Middle	1.5	29.10	29.10		8.24	8.24		28.85	28.85		95.1	94.4		6.20	6.17		1.82	1.95		5	
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	- 14:30		Middle	2.0	- 28.70	- 28.70		- 7.87	- 7.87		- 27.86	- 27.86		-	- 75.9		- 5.08	-		- 3.69	- 3.65		- 6	
20/8/2012	14:30	Fine	Middle	2.0	28.70	28.70	28.80	7.87	7.87	7.86	27.80	27.80	27.88	76.6 77.1	75.9	76.4	5.08	5.01 5.01	5.05	3.55	3.55	3.61	6	6.00
	14:52		Middle	2.0	28.10	28.10		8.11	8.11		29.05	29.05		78.6	78.0		5.22	5.18		4.09	4.14		4	
22/8/2012	14:54	Cloudy	Middle	2.0	28.20	28.20	28.15	8.10	8.10	8.11	29.05	29.05	29.05	79.2	78.3	78.5	5.33	5.20	5.23	4.03	4.14	4.08	5	4.50
	4:20		Middle	2.0	27.40	27.40		7.88	7.88		30.33	30.33		73.2	70.2		4.74	4.68		1.27	1.26		12	
25/8/2012	4:21	Cloudy	Middle	2.0	27.40	27.40	27.40	7.88	7.88	7.88	30.33	30.33	30.33	70.2	70.2	70.4	4.68	4.68	4.70	1.22	1.03	1.20	10	11.00
	10:24		Middle	2.0	27.84	27.84		7.19	7.19		31.60	31.60		67.0	66.6		4.41	4.38		3.50	3.47		7	
27/8/2012	10:26	Fine	Middle	2.0	27.87	27.87	27.86	7.17	7.17	7.18	31.56	31.56	31.58	66.2	66.1	66.5	4.36	4.35	4.38	3.13	3.00	3.28	8	7.50

Graphic Presentation of Water Quality Result of WSD9 - Tai Wan

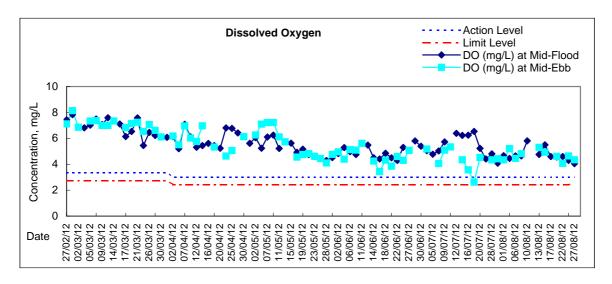


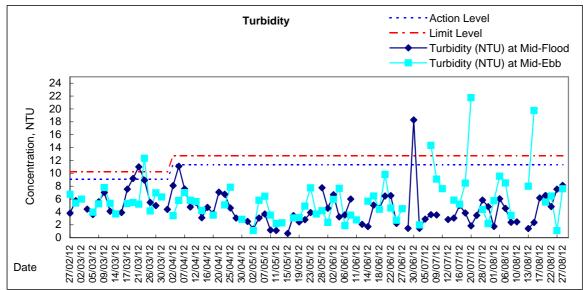


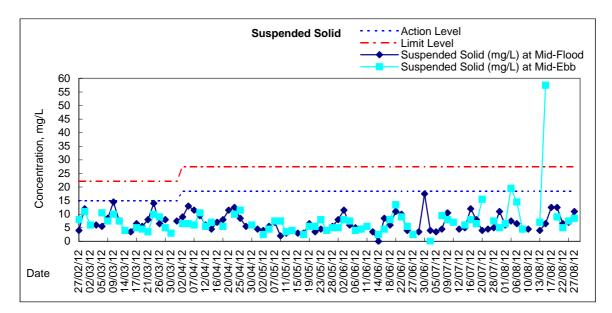


Remarks:

Graphic Presentation of Water Quality Result of WSD17 - Quarry Bay

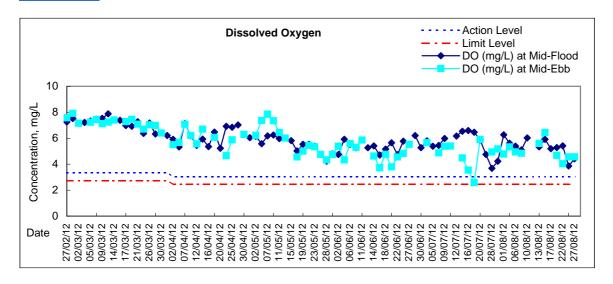


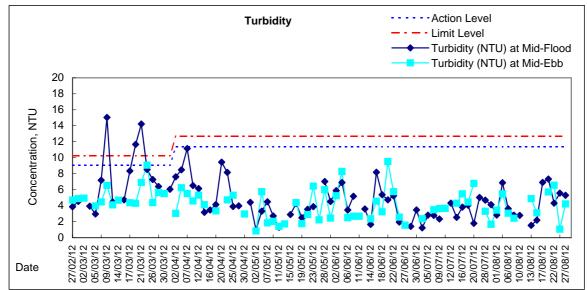

Remarks:

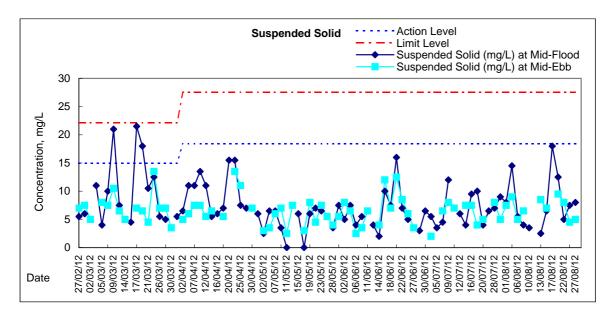

*Due to adverse weather condition (e.g. Amber rainstorm signal or Strong wind signal no.3 or above) were hoisted on 11 and 17 Aug 12 at ebb tide, WQM were cancelled

am

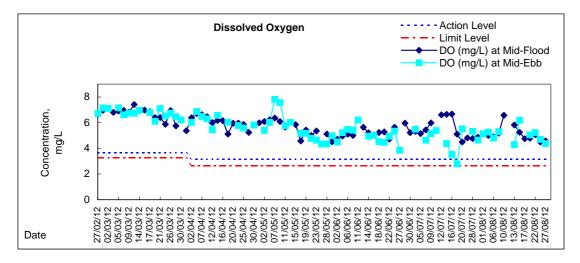
Graphic Presentation of Water Quality Result of C8 - City Garden

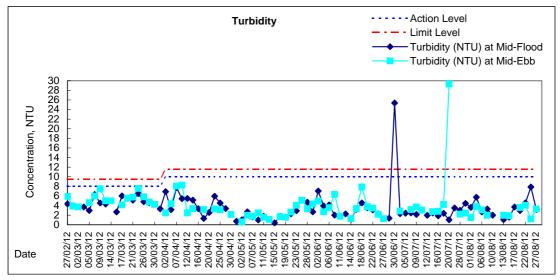


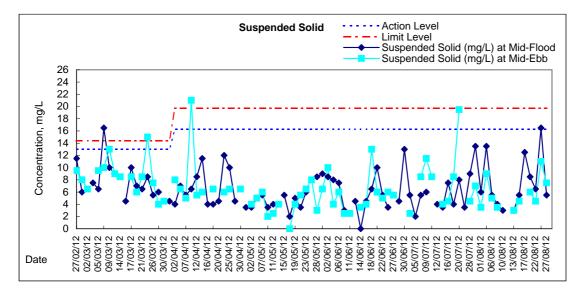




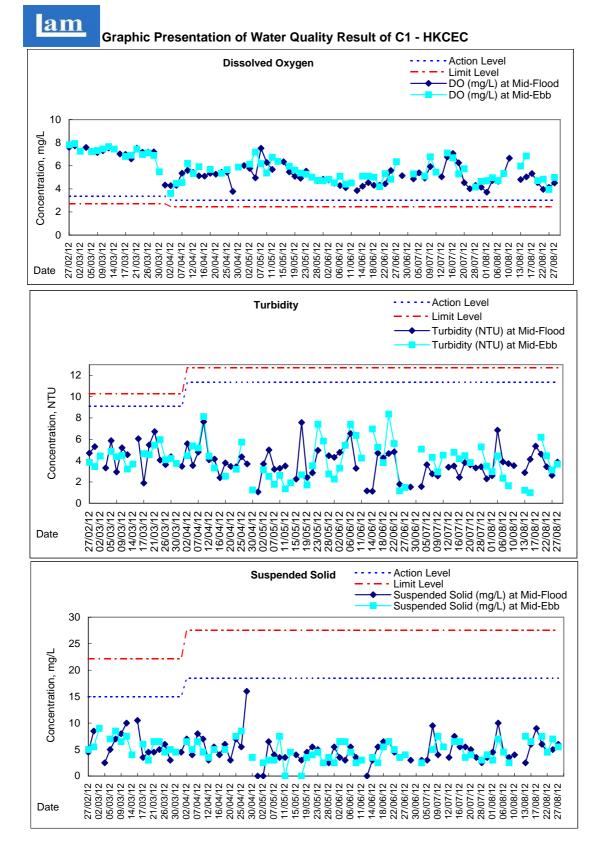
Remarks:

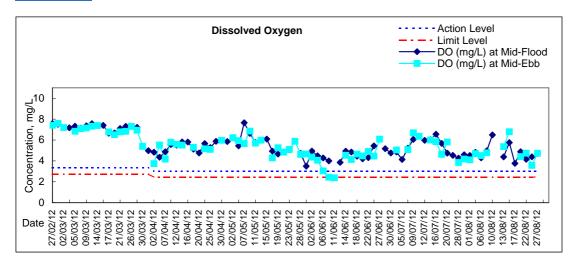

Graphic Presentation of Water Quality Result of C9 - Provident Centre

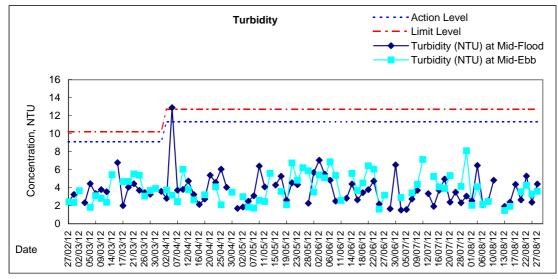


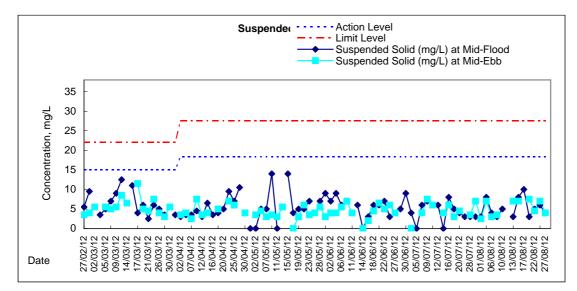


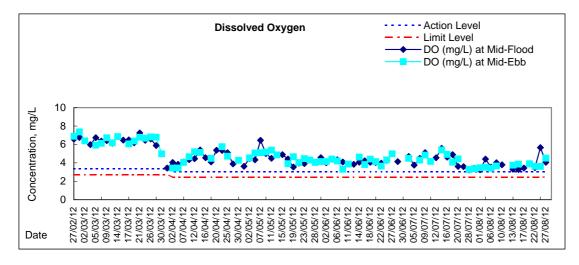
Remarks:

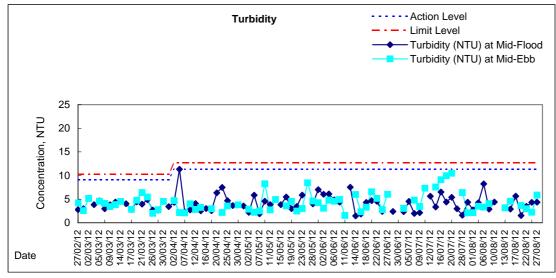


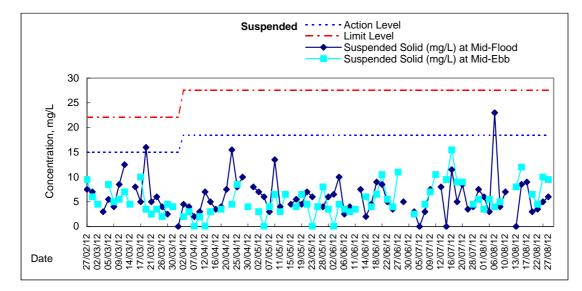



*Due to adverse weather condition (e.g. Amber rainstorm signal or Strong wind signal no.3 or above) were hoisted on 11 and 17 Aug 12 at ebb tide, WQM were cancelled

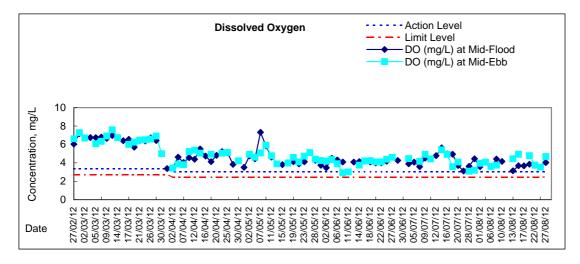

am

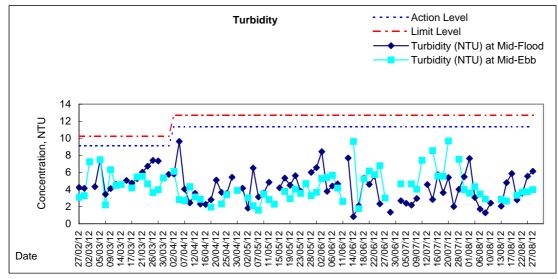


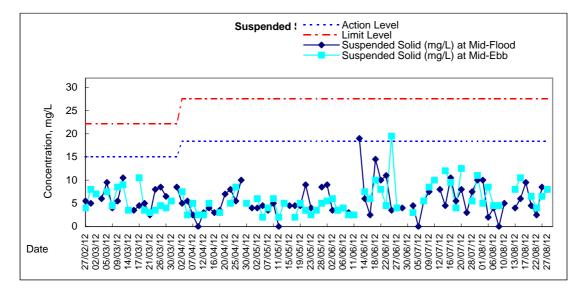




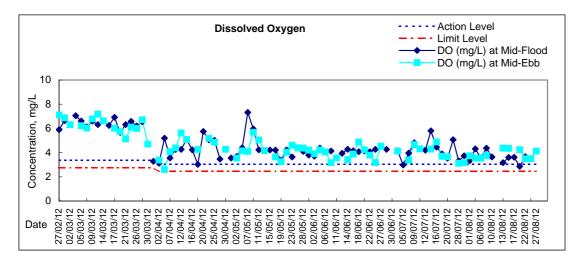
Graphic Presentation of Water Quality Result of C3 - WCT and GEC

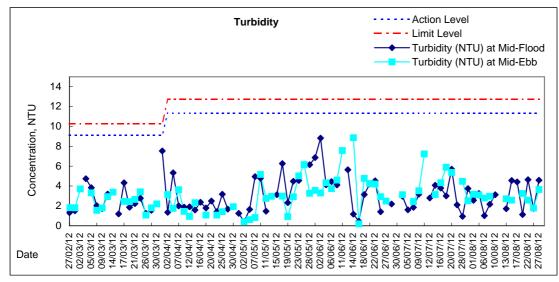


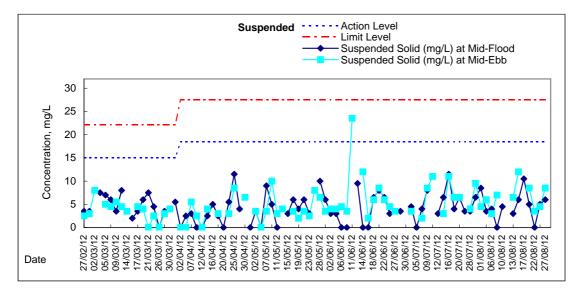



Remarks:

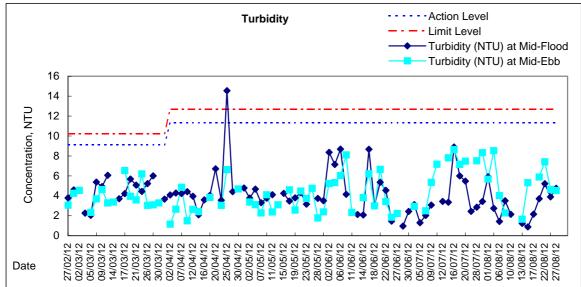
*Due to adverse weather condition (e.g. Amber rainstorm signal or Strong wind signal no.3 or above) were hoisted on 11 and 17 Aug 12 at ebb tide, WQM were cancelled

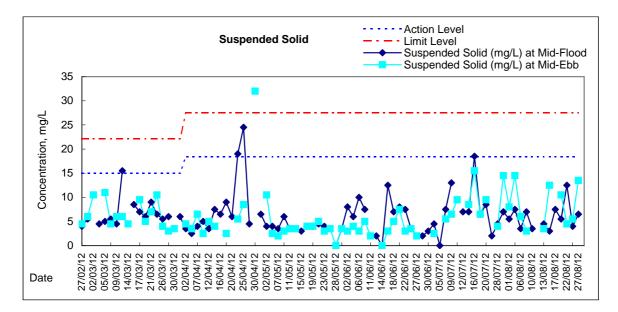

am





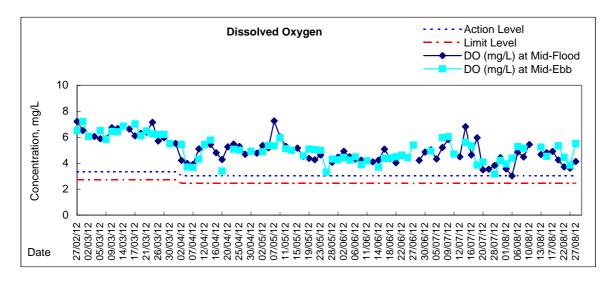
am

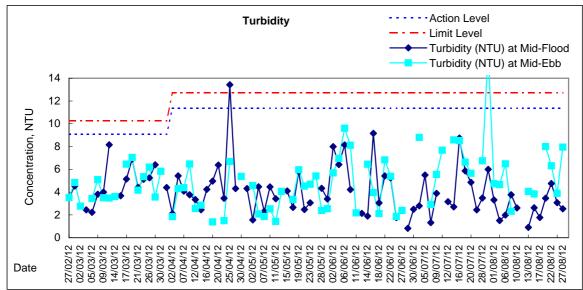


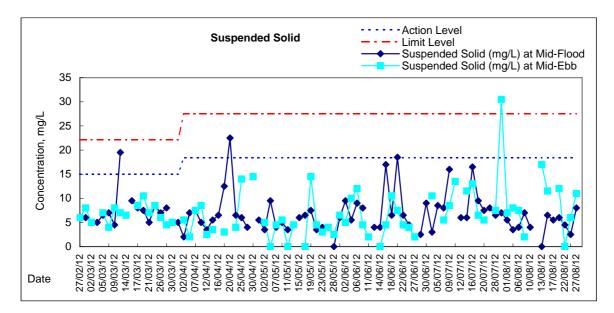

*Due to adverse weather condition (e.g. Amber rainstorm signal or Strong wind signal no.3 or above) were hoisted on 11 and 17 Aug 12 at ebb tide, WQM were cancelled

am

Graphic Presentation of Water Quality Result of C5e - SHKC (Eastern)

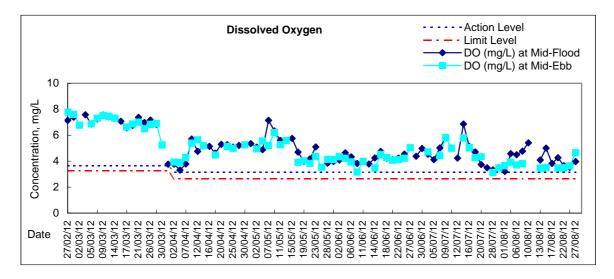


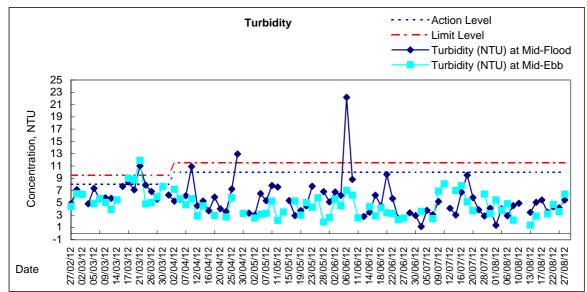


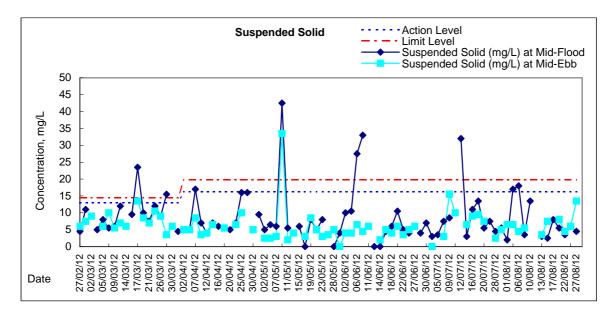


Remarks:

Graphic Presentation of Water Quality Result of C5w - SHKC (Western)

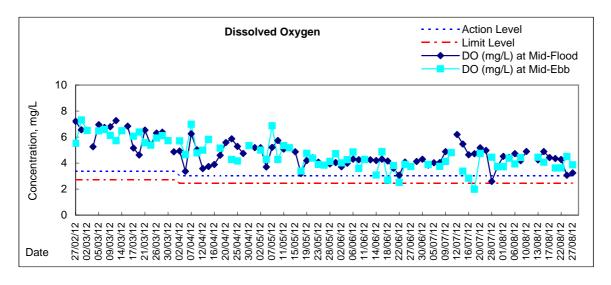


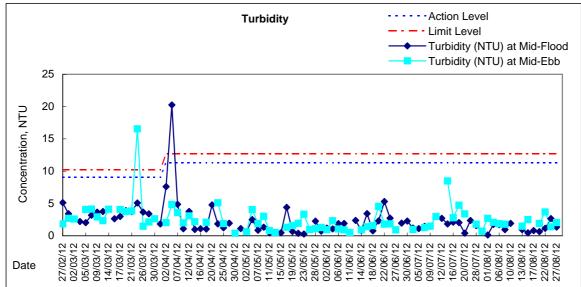


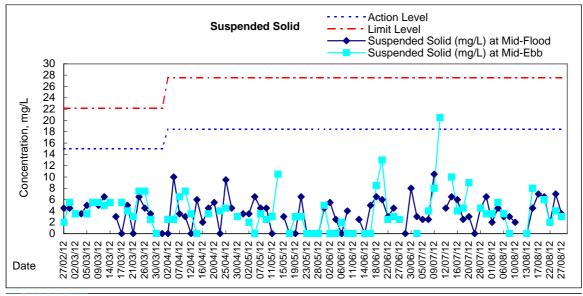


Remarks:

Graphic Presentation of Water Quality Result of WSD21 - Wan Chai




Remarks:


*Due to adverse weather condition (e.g. Amber rainstorm signal or Strong wind signal no.3 or above) were hoisted on 11 and 17 Aug 12 at ebb tide, WQM were cancelled

am

Graphic Presentation of Water Quality Result of C7 - Windsor House

Remarks:

Water Monitoring Result at C6 - Excelsior Hotel Mid-Flood Tide

Date	Time	Weater	Samplin	g Depth	Wat		perature		pН			Salinit	y	D	O Satur	ation		DO	
Build		Condition	n	n	Va	°C Ilue	Average	Va	- lue	Average	Va	ppt lue	Average	Va	% lue	Average	Va	mg/L lue	Average
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28/7/2012	13:57	Fine	Middle	1.5	26.79	26.79	26.8	6.55	6.55	6.6	28.21	28.21	28.2	57.0	56.4	56.7	3.88	3.84	3.86
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/7/2012	15:26	Fine	Middle	1.5	27.76	27.76	27.8	6.48	6.48	6.5	28.72	28.72	28.7	54.9	53.8	54.4	3.67	3.59	3.63
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1/8/2012	18:30	Haze	Middle	1.0	28.70	28.70	28.7	8.03	8.03	8.0	29.25	29.25	29.3	87.7	88.1	87.9	5.75	5.78	5.77
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/8/2012	19:00	Cloudy	Middle	1.0	27.90	27.90	27.9	7.90	7.90	7.9	30.00	29.99	30.0	82.7	83.9	83.3	5.48	5.55	5.52
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6/8/2012	21:00	Fine	Middle	1.5	28.10	28.10	28.1	7.82	7.82	7.8	29.35	29.35	29.4	80.0	80.1	80.1	5.39	5.38	5.39
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8/8/2012	22:30	Haze	Middle	1.5	28.70	28.70	28.7	7.85	7.85	7.9	28.43	28.43	28.4	75.1	76.2	75.7	4.97	5.04	5.01
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10/8/2012	23:52	Cloudy	Middle	1.5	28.50	28.50	28.5	7.96	7.96	8.0	27.67	27.67	27.7	80.8	81.0	80.9	5.49	5.40	5.45
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/8/2012	23:50	Cloudy	Middle	1.5	27.60	27.60	27.6	7.85	7.85	7.9	26.22	26.23	26.2	72.3	73.0	72.7	4.92	4.96	4.94
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15/8/2012	18:22	Fine	Middle	1.5	28.90	28.90	28.9	8.08	8.08	8.1	28.14	28.14	28.1	82.3	82.0	82.2	5.44	5.39	5.42
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/8/2012	18:45	Cloudy	Middle	1.5	27.00	27.00	27.0	8.04	8.04	8.0	30.92	30.92	30.9	77.8	79.9	78.9	5.22	5.35	5.29
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20/8/2012	19:19	Fine	Middle	1.0	28.10	28.10	28.1	7.96	7.96	8.0	29.33	29.33	29.3	78.5	79.7	79.1	5.22	5.28	5.25
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	- · ·	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
22/8/2012	21:39	Cloudy	Middle	1.5	27.60	27.60	27.6	7.99	7.99	8.0	28.68	28.68	28.7	79.0	79.7	79.4	5.31	5.35	5.33
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	- 1-	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25/8/2012	12:30	Fine	Middle	1.5	27.30	27.30	27.3	6.66	6.66	6.7	29.74	29.74	29.7	47.3	46.9	47.1	3.16	3.14	3.15
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
07/0/02 * 0	-	F 12	Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27/8/2012	14:20	Fine	Middle	1.5	28.16	28.16	28.2	6.64	6.64	6.6	31.09	31.09	31.1	62.0	61.8	61.9	4.06	4.05	4.06
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Remarks: Single underline denotes exceedance over Action Level. Double underline denotes exceedance over Limit Level.

Water Monitoring Result at C7 - Windsor House Mid-Flood Tide

Date	Time	Weater	Samplin	g Depth	Wat	er Temp °C	perature		pH -			Salini	ty	D	O Satu	ration		DO	
	_	Condition	n	n	Va	ilue	Average	Va	- lue	Average	Va	ppt lue	Average	Va	% ilue	Average	Va	mg/L lue	Average
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28/7/2012	14:11	Fine	Middle	1.5	27.87	27.87	27.9	6.62	6.62	6.6	27.83	27.83	27.8	38.6	38.1	38.4	2.70	2.65	<u>2.68</u>
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/7/2012	15:39	Fine	Middle	1.5	28.87	28.87	28.9	6.01	6.01	6.0	27.45	27.45	27.5	56.6	56.4	56.5	3.75	3.73	3.74
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1/8/2012	18:20	Haze	Middle	1.0	28.80	28.80	28.8	7.77	7.77	7.8	28.42	28.42	28.4	69.3	69.5	69.4	4.55	4.56	4.56
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/8/2012	18:50	Cloudy	Middle	1.0	28.00	28.00	28.0	7.74	7.74	7.7	29.47	29.47	29.5	66.2	66.9	66.6	4.40	4.40	4.40
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6/8/2012	20:44	Fine	Middle	1.5	28.20	28.20	28.2	7.75	7.75	7.8	29.30	29.30	29.3	70.8	71.9	71.4	4.69	4.76	4.73
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8/8/2012	22:20	Haze	Middle	1.5	28.60	28.60	28.6	7.74	7.74	7.7	28.43	28.43	28.4	63.5	63.4	63.5	4.25	4.24	4.25
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10/8/2012	0:14	Cloudy	Middle	1.5	28.40	28.40	28.4	7.83	7.83	7.8	27.32	27.32	27.3	71.7	72.0	71.9	4.89	4.99	4.94
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/8/2012	0:15	Cloudy	Middle	1.5	27.80	27.80	27.8	7.81	7.81	7.8	26.12	26.12	26.1	63.4	63.4	63.4	4.30	4.30	4.30
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15/8/2012	18:15	Fine	Middle	1.5	29.10	29.10	29.1	7.97	7.97	8.0	27.53	27.53	27.5	75.1	74.9	75.0	4.93	4.92	4.93
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/8/2012	18:35	Cloudy	Middle	1.5	26.90	26.90	26.9	7.90	7.90	7.9	30.86	30.86	30.9	65.3	66.2	65.8	4.38	4.44	4.41
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20/8/2012	19:10	Fine	Middle	1.0	28.10	28.10	28.1	7.81	7.81	7.8	29.30	29.30	29.3	63.8	64.5	64.2	4.25	4.40	4.33
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
22/8/2012	21:25	Cloudy	Middle	1.5	27.50	27.50	27.5	7.74	7.74	7.7	27.84	27.84	27.8	63.2	64.0	63.6	4.27	4.33	4.30
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25/8/2012	12:43	Fine	Middle	1.5	28.96	28.96	29.0	6.69	6.69	6.7	28.32	28.32	28.3	43.1	46.7	44.9	3.10	3.08	<u>3.09</u>
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27/8/2012	14:35	Fine	Middle	1.5	28.98	28.98	29.0	6.66	6.66	6.7	30.03	30.03	30.0	49.7	49.5	49.6	3.23	4.22	3.73
	-		Bottom	-				-	-	-	-	-	-	-	-	-	-	-	-
			- 5.0011		I														

Remarks:

Single underline denotes exceedance over Action Level. Double underline denotes exceedance over Limit Level.

Water Monitoring Result at Ex-WPCWA SW - South-western corners of ex-Public Cargo Works Area Mid-Flood Tide

Image: bordim															_					
Image	Date	Time	Weater Condition				°C						ppt			%				
						Va	lue	Average	Va		Average	Va			Va		Average	Va	lue	Average
Image Image <t< td=""><td>28/7/2012</td><td></td><td>Fino</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td>40.7</td><td>-</td><td>2.42</td><td>2.40</td></t<>	28/7/2012		Fino			-	-	-	-		-	-			-		40.7	-	2.42	2.40
1 1	20/1/2012		T IIIe																	
						1	-				-							-		
Image Image <t< td=""><td>00/7/0040</td><td></td><td>Fire e</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>	00/7/0040		F ire e				-				-							-		
Image Image <t< td=""><td>30/7/2012</td><td></td><td>Fine</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	30/7/2012		Fine																	
<table-container> Intro Intro</table-container>						1	1				-						-	-		
image image <td>1/0/2012</td> <td></td> <td>Liezo</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td>	1/0/2012		Liezo								-						-	-		
Image Image <th< td=""><td>1/0/2012</td><td>-</td><td>Haze</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	1/0/2012	-	Haze																	
14200 1420 1400 14						1	-				-						-	-		
Image Image <t< td=""><td>4/0/004.0</td><td></td><td>Olavata</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td></t<>	4/0/004.0		Olavata				-				-						-	-		
1 1	4/8/2012	-	Cloudy																	
<table-container> 1000 1000 100</table-container>											-						-	-		
indical <	0/0/0010		- 1-1								-						-	-		
n n	6/8/2012		⊢ine																	
144 144 144 144 144 145 240 240 240 240 240 250 250 550 550 550 570 <td></td> <td>[]</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		[]									-						-			
image image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>											-						-			
1 2 Surface 1<	8/8/2012		Haze			28.60	28.60	28.6	7.77	7.77	7.8	23.43	23.43	23.4			55.7	3.78		
10800 1040 1.50 <t< td=""><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>		-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ind ind <td></td> <td>-</td> <td></td> <td></td> <td></td>																	-			
10 11 21	10/8/2012	2:30	Cloudy	Middle	1.5	28.30	28.30	28.3	7.98	7.98	8.0	24.43	24.42	24.4	66.0	66.4	66.2	4.71	4.73	4.72
138/2014 23.38 Linduit 1.51 2.70 2.70 2.70 7.70 7.70 7.80 2.81		-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1 1																	-			
1 1	13/8/2012	23:38	Cloudy	Middle	1.5	27.70	27.70	27.7	7.77	7.77	7.8	23.81	23.82	23.8	54.2	55.1	54.7	3.73	3.80	3.77
158/2010 2116 Fine Mide 1.5 28.9 28.9 7.88 7.89 7.9 25.4 25.4 60.5 61.5 60.9 4.06 4.00 4.00 10 <td></td> <td>-</td> <td></td> <td>Bottom</td> <td>-</td>		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Image: style		-		Surface	-						-	-	-	-	-	-	-	-	-	-
10 10<	15/8/2012	21:16	Fine	Middle	1.5	28.90	28.90	28.9	7.88	7.88	7.9	25.41	25.42	25.4	60.5	61.3	60.9	4.06	4.10	4.08
17/8/2012 1/1 20/8/2012 18:48 Fine Surface 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Image with transformed problem state problem strans and transformed problem stransformed problem sta		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17/8/2012	21:30	Cloudy	Middle	1.5	26.70	26.70	26.7	8.01	8.01	8.0	26.04	26.04	26.0	62.5	62.4	62.5	4.33	4.32	4.33
1 1		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20/8/2012	18:48	Fine	Middle	1.0	28.10	28.10	28.1	7.85	7.85	7.9	26.23	26.24	26.2	54.5	54.9	54.7	3.68	3.70	3.69
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10.1 10.1 <th< td=""><td>22/8/2012</td><td>21:00</td><td>Cloudy</td><td>Middle</td><td>1.5</td><td>27.70</td><td>27.70</td><td>27.7</td><td>7.87</td><td>7.87</td><td>7.9</td><td>26.30</td><td>26.31</td><td>26.3</td><td>55.1</td><td>56.2</td><td>55.7</td><td>3.76</td><td>3.82</td><td>3.79</td></th<>	22/8/2012	21:00	Cloudy	Middle	1.5	27.70	27.70	27.7	7.87	7.87	7.9	26.30	26.31	26.3	55.1	56.2	55.7	3.76	3.82	3.79
25/8/2012 Initial		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Image: constraint of the state		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27/8/2012 14:08 Fine Middle 1.5 27.81 27.81 27.81 6.50 6.50 6.50 29.10 29.10 29.11 51.0 50.6 50.8 3.40 3.39	25/8/2012	10:51	Fine	Middle	1.5	27.46	27.40	27.4	7.20	7.20	7.2	29.98	29.98	30.0	54.6	53.8	54.2	3.59	3.54	3.57
27/8/2012 14:08 Fine Middle 1.5 27.81 27.81 27.8 6.50 6.50 6.5 29.10 29.1 51.0 50.6 50.8 3.40 3.37 3.39		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bottom	27/8/2012	14:08	Fine	Middle	1.5	27.81	27.81	27.8	6.50	6.50	6.5	29.10	29.10	29.1	51.0	50.6	50.8	3.40	3.37	3.39
		-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Remarks:

Single underline denotes exceedance over Action Level. Double underline denotes exceedance over Limit Level.

Water Monitoring Result at Ex-WPCWA SE - South-eastern corners of ex-Public Cargo Works Area Mid-Flood Tide

		ood lide																	
Date	Time	Weater	Samplin	ig Depth	Wat		perature		pН			Salini	ty	D	O Satur	ation		DO	
		Condition	r	n	Va	°C Ilue	Average	Va	- lue	Average	Va	ppt lue	Average	Va	% lue	Average	Va	mg/L lue	Average
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28/7/2012	13:40	Fine	Middle	1.5	26.62	26.63	26.6	7.36	7.31	7.3	25.01	24.99	25.0	47.2	46.4	46.8	3.29	3.23	<u>3.26</u>
	-		Bottom	-	-	-	-	-	-	-	-	-	-	•	-	-		-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/7/2012	15:11	Fine	Middle	1.0	28.09	28.09	28.1	6.23	6.23	6.2	23.34	23.34	23.3	54.4	54.1	54.3	3.73	3.71	3.72
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1/8/2012	18:06	Haze	Middle	1.0	28.20	28.20	28.2	7.84	7.84	7.8	27.83	27.83	27.8	62.9	62.6	62.8	4.20	4.18	4.19
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/8/2012	18:40	Cloudy	Middle	1.0	27.43	27.43	27.4	7.56	7.56	7.6	20.35	20.35	20.4	54.6	53.4	54.0	3.86	3.77	3.82
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6/8/2012	23:33	Fine	Middle	1.5	28.30	28.30	28.3	7.68	7.68	7.7	28.33	28.33	28.3	45.4	45.4	45.4	3.01	3.02	<u>3.02</u>
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8/8/2012	21:53	Haze	Middle	1.5	28.80	28.80	28.8	7.74	7.74	7.7	23.44	23.44	23.4	58.4	58.8	58.6	3.95	3.98	3.97
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10/8/2012	2:36	Cloudy	Middle	1.5	28.30	28.30	28.3	7.85	7.85	7.9	24.56	24.56	24.6	68.0	68.1	68.1	4.86	4.86	4.86
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/8/2012	23:43	Cloudy	Middle	1.5	27.60	27.60	27.6	7.74	7.74	7.7	23.61	23.61	23.6	49.3	49.5	49.4	3.40	3.41	<u>3.41</u>
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15/8/2012	21:21	Fine	Middle	1.5	28.20	28.20	28.2	7.86	7.86	7.9	25.32	25.32	25.3	58.0	58.6	58.3	3.91	3.96	3.94
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/8/2012	21:37	Cloudy	Middle	1.5	26.70	26.70	26.7	7.95	7.95	8.0	25.77	25.77	25.8	56.0	55.9	56.0	3.87	3.87	3.87
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20/8/2012	18:55	Fine	Middle	1.0	28.00	28.00	28.0	7.75	7.75	7.8	25.60	25.60	25.6	53.2	53.0	53.1	3.61	3.60	3.61
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
22/8/2012	21:07	Cloudy	Middle	1.5	27.70	27.70	27.7	7.83	7.83	7.8	26.22	26.22	26.2	61.2	60.0	60.6	4.16	4.08	4.12
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25/8/2012	10:46	Fine	Middle	1.5	27.52	27.52	27.5	7.18	7.18	7.2	30.04	30.04	30.0	44.6	43.4	44.0	3.03	2.97	<u>3.00</u>
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27/8/2012	14:05	Fine	Middle	1.5	28.71	28.71	28.7	6.20	6.20	6.2	29.50	29.50	29.5	54.5	53.2	53.9	3.56	3.47	<u>3.52</u>
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Remarks:

Single underline denotes exceedance over Action Level. Double underline denotes exceedance over Limit Level.

Water Monitoring Result at C6 - Excelsior Hotel Mid-Ebb Tide

		b Tide																	
Date	Time	Weater	Samplin	g Depth	Wat		perature		pН			Salini	ty	D	O Satur	ration		DO	
Date		Condition	n	n	Va	°C ilue	Average	Va	- Ilue	Average	Va	ppt lue	Average	Va	% lue	Average	Va	mg/L Ilue	Average
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28/7/2012	9:10	Fine	Middle	2	25.86	25.87	25.9	7.73	7.73	7.7	28.02	28.02	28.0	54.9	54.1	54.5	3.81	3.76	3.79
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/7/2012	11:29	Fine	Middle	1	27.23	27.23	27.2	7.20	7.20	7.2	28.75	28.75	28.8	56.5	55.2	55.9	3.80	3.71	3.76
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:13		Surface	1	27.70	27.70	27.7	7.61	7.61	7.6	27.39	27.39	27.4	56.7	57.5	57.1	3.82	3.86	3.84
1/8/2012	12:15	Fine	Middle	2	27.70	27.70	27.7	7.64	7.64	7.6	27.66	27.66	27.7	60.2	60.3	60.3	4.06	4.06	4.06
	12:17		Bottom	3	27.50	27.50	27.5	7.63	7.63	7.6	28.04	28.04	28.0	61.4	61.6	61.5	4.19	4.20	4.20
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/8/2012	15:03	Cloudy	Middle	2	27.35	27.35	27.4	7.50	7.50	7.5	29.87	29.87	29.9	83.9	83.7	83.8	5.62	5.61	5.62
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6/8/2012	16:45	Sunny	Middle	2	27.88	27.88	27.9	7.32	7.32	7.3	30.37	30.37	30.4	65.3	65.1	65.2	4.32	4.31	4.32
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8/8/2012	14:11	Fine	Middle	2	29.44	29.44	29.4	6.37	6.37	6.4	29.12	29.12	29.1	69.1	68.5	68.8	4.48	4.44	4.46
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/8/2012	11:30	Fine	Middle	2	27.95	27.95	28.0	7.74	7.74	7.7	25.76	25.76	25.8	73.9	73.6	73.8	5.02	5.00	5.01
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15/8/2012	12:26	Fine	Middle	1	27.70	27.70	27.7	7.90	7.90	7.9	27.51	27.51	27.5	49.0	48.9	49.0	3.31	3.30	3.31
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20/8/2012	12:49	Fine	Middle	2	27.60	27.60	27.6	7.74	7.74	7.7	28.69	28.69	28.7	45.3	43.6	44.5	3.05	2.93	2.99
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
22/8/2012	14:36	Fine	Middle	2	27.60	27.60	27.6	7.73	7.73	7.7	27.90	27.90	27.9	56.6	56.7	56.7	3.82	3.82	3.82
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25/8/2012	5:10	Cloudy	Middle	2	27.50	27.50	27.5	7.97	7.97	8.0	29.51	29.51	29.5	81.3	81.8	81.6	5.47	5.48	5.48
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27/8/2012	11:13	Fine	Middle	2	27.49	27.49	27.5	6.90	6.90	6.9	31.18	31.18	31.2	67.0	65.0	66.0	4.44	4.30	4.37
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

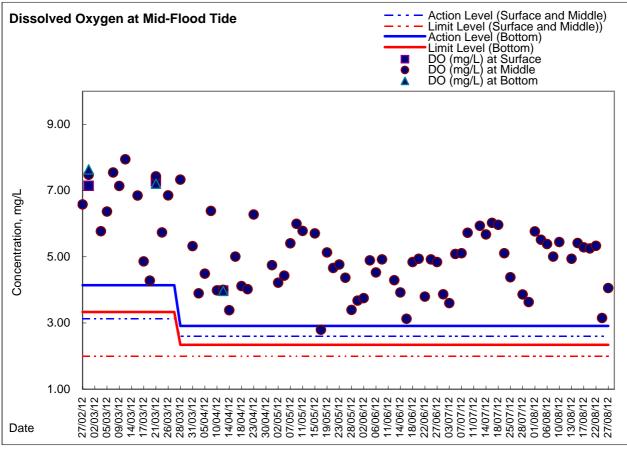
Remarks: Single underline denotes exceedance over Action Level. Double underline denotes exceedance over Limit Level.

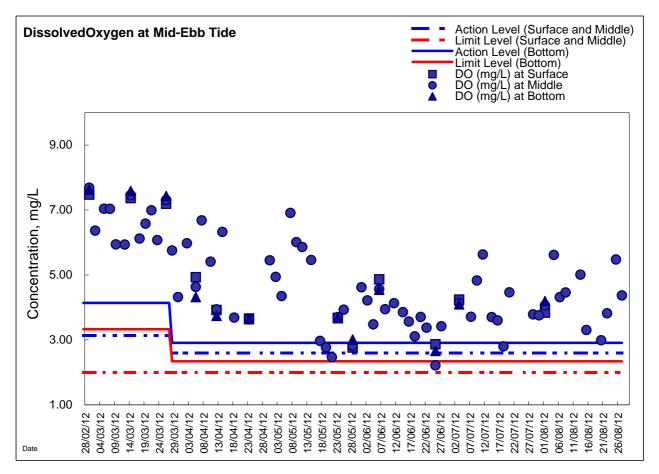
Water Monitoring Result at C7 - Windsor House Mid-Ebb Tide

		b lide																	
Date	Time	Weater Condition	Samplin	ig Depth	Wat	er Temp °C	erature		pH -			Salini ppt	ty	C	O Satur %	ation		DO mg/L	
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28/7/2012	9:28	Fine	Middle	2	26.31	26.31	26.3	7.65	7.65	7.7	28.11	28.11	28.1	64.6	64.6	64.6	4.45	4.45	4.45
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/7/2012	11:24	Fine	Middle	2	28.54	28.54	28.5	6.90	6.90	6.9	27.02	27.02	27.0	57.2	56.2	56.7	3.80	3.74	3.77
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1/8/2012	12:19	Fine	Middle	2	28.30	28.30	28.3	7.58	7.58	7.6	27.32	27.32	27.3	55.4	55.6	55.5	3.70	3.72	3.71
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/8/2012	15:16	Cloudy	Middle	1	27.90	27.90	27.9	7.63	7.63	7.6	29.11	29.11	29.1	65.9	65.7	65.8	4.39	4.38	4.39
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6/8/2012	17:00	Sunny	Middle	2	28.74	28.74	28.7	6.97	6.97	7.0	29.36	29.36	29.4	60.1	60.0	60.1	3.94	3.94	3.94
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8/8/2012	14:20	Fine	Middle	2	29.40	29.40	29.4	6.36	6.36	6.4	29.15	29.15	29.2	64.7	63.6	64.2	3.97	4.15	4.06
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/8/2012	11:35	Fine	Middle	2	27.88	27.88	27.9	7.71	7.71	7.7	25.12	25.12	25.1	65.7	65.4	65.6	4.48	4.46	4.47
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15/8/2012	12:38	Fine	Middle	2	29.20	29.20	29.2	7.77	7.77	7.8	26.39	26.39	26.4	61.6	61.3	61.5	4.06	4.03	4.05
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20/8/2012	13:00	Fine	Middle	2	28.90	28.90	28.9	7.70	7.70	7.7	27.30	27.30	27.3	55.5	53.5	54.5	3.69	3.54	3.62
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
22/8/2012	14:31	Fine	Middle	2	27.60	27.60	27.6	7.69	7.69	7.7	25.61	25.61	25.6	53.2	53.7	53.5	3.64	3.67	3.66
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25/8/2012	4:41	Cloudy	Middle	2	27.30	27.30	27.3	7.77	7.77	7.8	27.90	27.90	27.9	65.9	65.9	65.9	4.48	4.48	4.48
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27/8/2012	11:28	Fine	Middle	2	28.49	28.49	28.5	6.63	6.63	6.6	30.17	30.17	30.2	59.3	59.1	59.2	3.89	3.88	3.89
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

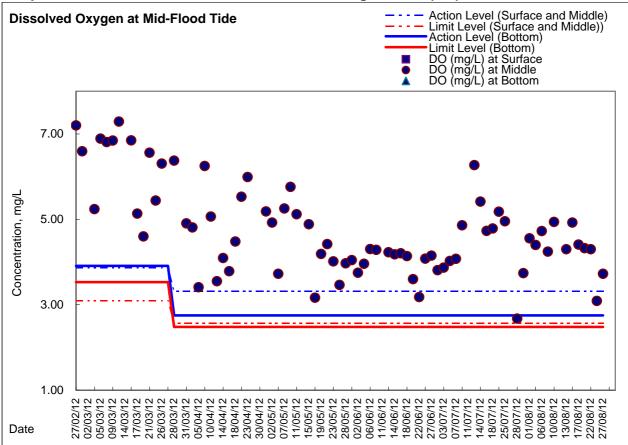
Water Monitoring Result at Ex-WPCWA SW - South-western corners of ex-Public Cargo Works Area Mid-Ebb Tide

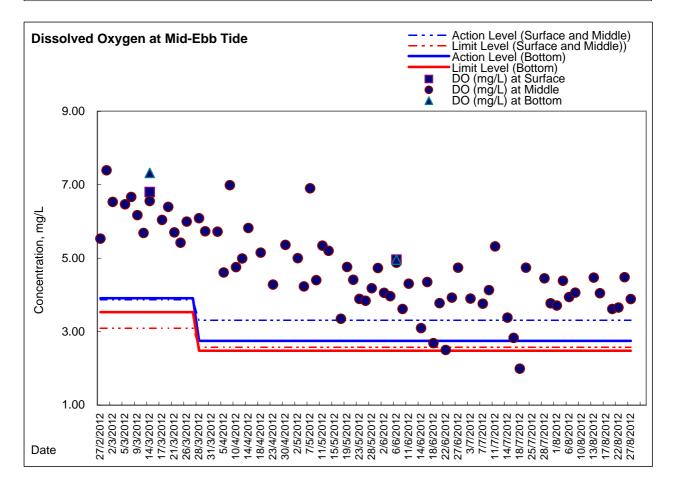
	MIG-EL	bb lide																	
Date	Time	Weater Condition	Samplin	• •	Wat	er Temp °C	perature		pH -			Salini ppt	ty	D	O Satur %	ration		DO mg/L	_
			n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	ilue	Average
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28/7/2012	9:01	Fine	Middle	1.5	25.73	25.73	25.7	7.59	7.59	7.6	24.24	24.24	24.2	71.6	71.5	71.6	5.09	5.08	5.09
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/7/2012	11:00	Fine	Middle	1.5	26.60	26.60	26.6	6.78	6.78	6.8	24.29	24.29	24.3	51.0	50.8	50.9	3.57	3.54	3.56
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:05		Surface	1.0	27.40	27.40	27.4	7.42	7.42	7.4	23.59	23.59	23.6	42.9	42.9	42.9	3.04	3.04	<u>3.04</u>
1/8/2012	12:07	Fine	Middle	2.0	27.30	27.30	27.3	7.50	7.50	7.5	23.94	23.94	23.9	42.4	43.9	43.2	2.93	3.04	<u>2.99</u>
	12:09		Bottom	3.0	27.30	27.30	27.3	7.51	7.51	7.5	23.93	23.93	23.9	44.1	44.8	44.5	3.05	3.09	<u>3.07</u>
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/8/2012	14:53	Cloudy	Middle	1.5	27.19	27.19	27.2	7.24	7.24	7.2	27.17	27.17	27.2	65.3	64.3	64.8	4.46	4.39	4.43
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6/8/2012	16:30	Sunny	Middle	1.5	27.39	27.39	27.4	6.89	6.89	6.9	28.37	28.37	28.4	65.7	65.2	65.5	4.44	4.40	4.42
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
8/8/2012	13:55	Fine	Middle	1.5	28.41	28.41	28.4	6.92	6.92	6.9	26.22	26.22	26.2	65.4	64.8	65.1	4.39	4.35	4.37
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/8/2012	11:25	Fine	Middle	1.5	27.89	27.89	27.9	7.69	7.69	7.7	18.76	18.76	18.8	64.9	64.6	64.8	4.58	4.56	4.57
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15/8/2012	12:13	Fine	Middle	1.5	27.90	27.90	27.9	7.94	7.94	7.9	26.33	26.33	26.3	66.8	67.2	67.0	4.55	4.57	4.56
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20/8/2012	12:44	Fine	Middle	1.5	27.20	27.20	27.2	7.68	7.68	7.7	29.02	29.02	29.0	32.9	33.0	33.0	2.23	2.23	<u>2.23</u>
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	14:45		Surface	1.0	27.50	27.50	27.5	7.73	7.73	7.7	26.02	26.02	26.0	51.0	51.0	51.0	3.48	3.47	3.48
22/8/2012	14:46	Fine	Middle	2.5	27.50	27.50	27.5	7.74	7.74	7.7	25.47	25.47	25.5	52.7	53.0	52.9	3.60	3.62	3.61
	14:47		Bottom	4.0	27.60	27.60	27.6	7.73	7.73	7.7	25.35	25.35	25.4	49.4	49.1	49.3	3.38	3.36	3.37
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25/8/2012	6:52	Cloudy	Middle	1.0	27.10	27.10	27.1	7.69	7.69	7.7	26.05	26.05	26.1	55.7	56.5	56.1	3.82	3.87	3.85
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27/8/2012	10:56	Fine	Middle	1.5	26.97	26.97	27.0	6.95	6.95	7.0	26.03	26.03	26.0	58.0	56.5	57.3	4.00	3.89	3.95
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

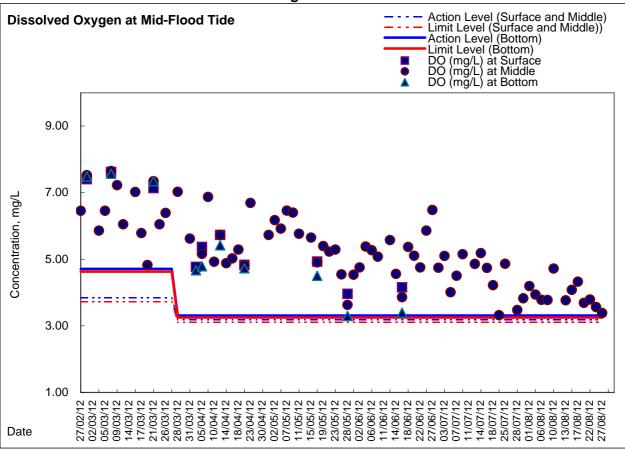


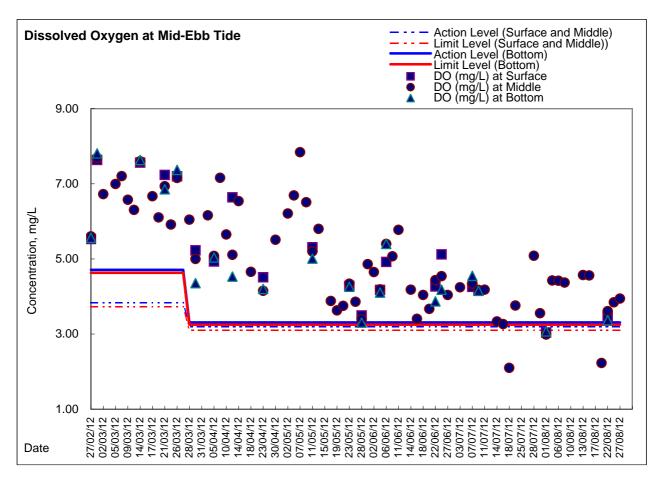

Water Monitoring Result at Ex-WPCWA SE - South-eastern corners of ex-Public Cargo Works Area Mid-Ebb Tide

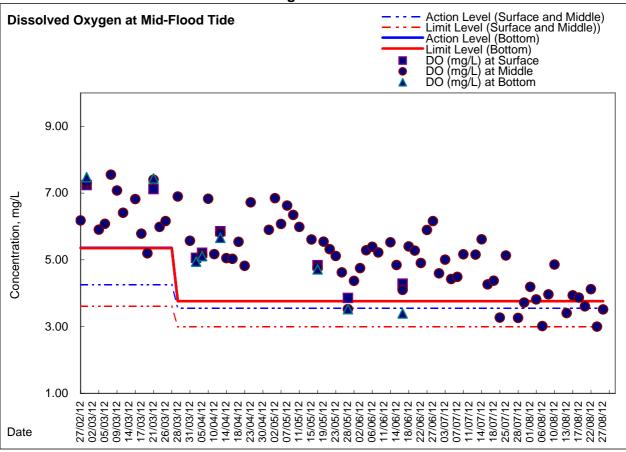
					1			1			1								
Date	Time	Weater	Samplin	g Depth	Wat	ter Temp °C	perature		pН			Salini	y	C	O Satur %	ation		DO	
		Condition	n	n	Va	alue	Average	Va	alue	Average	Va	ppt llue	Average	Va	lue %	Average	Va	mg/L ilue	Average
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28/7/2012	8:56	Fine	Middle	1.5	25.74	25.74	25.7	7.93	7.93	7.9	23.83	23.83	23.8	57.7	57.7	57.7	4.11	4.11	4.11
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30/7/2012	10:55	Fine	Middle	1.5	26.83	26.83	26.8	6.87	6.87	6.9	25.82	25.82	25.8	54.9	54.0	54.5	3.79	3.73	3.76
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:58		Surface	1.0	27.70	27.70	27.7	7.72	7.72	7.7	24.44	24.44	24.4	43.9	43.9	43.9	3.02	3.01	<u>3.02</u>
1/8/2012	12:00	Fine	Middle	2.0	27.50	27.50	27.5	7.50	7.50	7.5	22.74	22.74	22.7	44.8	44.9	44.9	3.11	3.12	<u>3.12</u>
	12:02		Bottom	3.0	27.50	27.50	27.5	7.52	7.52	7.5	26.94	26.94	26.9	41.3	41.4	41.4	2.80	2.81	<u>2.81</u>
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4/8/2012	14:48	Cloudy	Middle	1.5	27.28	27.28	27.3	7.34	7.34	7.3	29.31	29.31	29.3	80.7	80.9	80.8	5.43	5.44	5.44
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6/8/2012	16:25	Sunny	Middle	1.5	27.64	27.64	27.6	7.30	7.30	7.3	29.36	29.36	29.4	60.6	60.0	60.3	4.05	4.01	4.03
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8/8/2012	13:50	Fine	Middle	1.0	28.87	28.87	28.9	6.90	6.90	6.9	27.10	27.10	27.1	68.5	67.2	67.9	4.54	4.46	4.50
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11/8/2012	-	Amber Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13/8/2012	11:20	Fine	Middle	1.5	27.95	27.95	28.0	7.91	7.91	7.9	17.07	17.07	17.1	65.6	61.6	63.6	4.67	4.78	4.73
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15/8/2012	12:04	Fine	Middle	1.5	27.40	27.40	27.4	7.86	7.86	7.9	26.88	26.88	26.9	66.2	67.9	67.1	4.53	4.65	4.59
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17/8/2012	-	Strong Wind Signal No.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20/8/2012	12:39	Fine	Middle	1.5	27.20	27.20	27.2	7.73	7.73	7.7	29.03	29.03	29.0	42.5	42.5	42.5	2.87	2.87	2.87
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	14:40		Surface	1.0	27.50	27.50	27.5	7.79	7.79	7.8	22.98	22.98	23.0	51.5	50.7	51.1	3.57	3.52	3.55
22/8/2012	14:41	Fine	Middle	2.5	27.40	27.40	27.4	7.76	7.76	7.8	24.07	24.07	24.1	50.5	50.1	50.3	3.42	3.41	3.42
	14:42		Bottom	4.0	27.60	27.60	27.6	7.72	7.72	7.7	26.08	26.08	26.1	51.0	51.0	51.0	3.48	3.47	3.48
	-		Surface	-				-	-	-				-	-	-	-	-	-
25/8/2012	6:57	Cloudy	Middle	1.0	27.20	27.20	27.2	7.80	7.80	7.8	27.37	27.37	27.4	52.7	53.4	53.1	3.59	3.64	3.62
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
			Surface	-	_			_				_		_			L	_	
27/8/2012	- 10:51	Fine	Middle	-	- 27.27	- 27.27	27.3	6.95	6.95	7.0	- 31.15	- 31.15	31.2	49.6	- 50.5	50.1	3.37	3.37	3.37
21/0/2012		FINE	-									51.15		49.6					
	-		Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

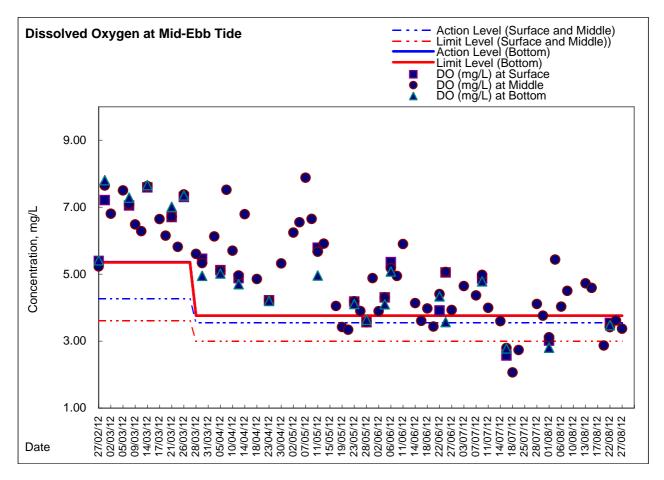

Graphic Presentation of Enhanced Water Monitoring Results (DO) at C6 - Excelsior Hotel




Graphic Presentation of Enhanced Water Monitoring Results (DO) at C7 - Windsor House




Graphic Presentation of Enhanced Water Monitoring Results (DO) at Ex-WPCWA SW - South-western corners of ex-Public Cargo Works Area



Graphic Presentation of Enhanced Water Monitoring Results (DO) at Ex-WPCWA SE - South-eastern corners of ex-Public Cargo Works Area

Appendix 5.4a

Additional Dissolved Oxygen Monitoring Results

Location: Station A Coordinate: 835468E, 815857N

Date	Time	Weater	Samplin	g Depth	Wat		perature		pН			Salinit	у	D	O Satur	ation		DO	
Duto		Condition	n	n	Va	°C lue	Average	Va	- lue	Average	Va	ppt lue	Average	Va	% lue	Average	Va	mg/L	Average
													~						Ŭ
	19:06		Surface	1.0	27.90	27.90	27.90	7.71	7.71	7.71	28.67	28.67	28.67	57.0	56.6	56.8	3.81	3.79	3.80
01-Aug-12	-	Fine	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	19:10		Bottom	3.0	27.80	27.80	27.80	7.71	7.71	7.71	28.84	28.84	28.84	57.5	57.1	57.3	3.85	3.81	3.83
	20:56		Surface	1.0	27.80	27.80	27.80	7.70	7.70	7.70	28.65	28.65	28.65	64.4	62.6	63.5	4.30	4.19	4.25
06-Aug-12	-	Fine	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20:58		Bottom	3.0	27.60	27.60	27.60	7.69	7.69	7.69	28.67	28.67	28.67	56.7	56.1	56.4	4.25	4.20	4.23
	16:50		Surface	1.0	26.78	26.78	26.78	7.62	7.62	7.62	28.21	28.21	28.21	76.9	75.2	76.1	5.30	5.14	5.22
17-Aug-12	-	Cloudy	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	16:52		Bottom	3.0	26.72	26.72	26.72	7.61	7.61	7.61	29.72	29.72	29.72	80.8	81.1	81.0	5.48	5.49	5.49
	21:00		Surface	1.0	28.10	28.10	28.10	7.67	7.67	7.67	27.79	27.79	27.79	59.7	58.0	58.9	4.74	4.60	4.67
22-Aug-12	-	Fine	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	21:02		Bottom	2.0	27.20	27.20	27.20	7.76	7.76	7.76	27.50	27.50	27.50	60.4	60.8	60.6	4.03	4.07	4.05

Location: Station B Coordinate: 835572E, 815961N

ocordinate.		,																	
Date	Time	Weater Condition		g Depth	Wat	er Temp °C	oerature		pН			Salinit	y	D	O Satur %	ation		DO	
		Condition	r	n	Va	lue	Average	Va	- lue	Average	Va	ppt ilue	Average	Va	lue	Average	Va	mg/L lue	Average
	18:59		Surface	1.0	27.90	27.90	27.90	7.71	7.71	7.71	28.89	28.89	28.89	58.1	58.0	58.1	3.87	3.87	3.87
01-Aug-12	19:02	Fine	Middle	5.0	27.60	27.60	27.60	7.71	7.71	7.71	28.52	28.52	28.52	57.2	56.5	56.9	3.72	3.68	3.70
	19:04		Bottom	9.0	27.20	27.20	27.20	7.71	7.71	7.71	29.14	29.14	29.14	53.7	53.6	53.7	3.63	3.61	3.62
	20:52		Surface	1.0	28.10	28.10	28.10	7.69	7.69	7.69	28.94	28.94	28.94	63.5	63.6	63.6	4.45	4.47	4.46
06-Aug-12	20:53	Fine	Middle	5.0	27.70	27.70	27.70	7.71	7.71	7.71	28.93	28.93	28.93	59.6	59.0	59.3	4.66	4.64	4.65
	20:54		Bottom	9.0	27.40	27.40	27.40	7.72	7.72	7.72	28.65	28.65	28.65	57.7	57.8	57.8	4.48	4.49	4.49
	16:45		Surface	1.0	26.40	26.40	26.40	7.84	7.84	7.84	30.11	30.11	30.11	88.3	87.4	87.9	5.99	5.93	5.96
17-Aug-12	16:46	Cloudy	Middle	5.0	26.50	26.50	26.50	7.80	7.80	7.80	30.16	30.16	30.16	85.2	83.0	84.1	5.77	6.09	5.93
	16:47		Bottom	9.0	26.50	26.50	26.50	7.52	7.52	7.52	30.51	30.51	30.51	76.6	74.0	75.3	5.19	5.01	5.10
	20:52		Surface	1.0	27.80	27.80	27.80	7.80	7.80	7.80	27.98	27.98	27.98	65.3	65.5	65.4	4.39	4.40	4.40
22-Aug-12	20:54	Fine	Middle	5.0	27.70	27.70	27.70	7.80	7.79	7.80	28.44	28.44	28.44	62.0	61.2	61.6	4.16	4.11	4.14
	20:56		Bottom	9.0	27.60	27.60	27.60	7.79	7.79	7.79	28.87	28.87	28.87	54.3	54.1	54.2	3.65	3.64	3.65

Location: Station C Coordinate: 835659E, 816271N

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp °C	erature		pН			Salinit ppt	y	D	O Satur %	ation		DO mg/L	
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average
	18:53		Surface	1.0	27.60	27.60	27.60	7.75	7.75	7.75	28.72	28.72	28.72	59.6	59.3	59.5	4.00	3.98	3.99
01-Aug-12	18:55	Fine	Middle	6.5	27.30	27.30	27.30	7.78	7.78	7.78	29.33	29.33	29.33	56.7	57.0	56.9	3.82	3.84	3.83
	18:57		Bottom	12.0	27.10	27.10	27.10	7.77	7.77	7.77	29.37	29.37	29.37	54.6	55.2	54.9	3.68	3.72	3.70
	20:47		Surface	1.0	27.50	27.50	27.50	7.74	7.74	7.74	29.14	29.14	29.14	59.9	58.8	59.4	4.72	4.64	4.68
06-Aug-12	20:48	Fine	Middle	6.5	27.40	27.40	27.40	7.74	7.74	7.74	29.16	29.16	29.16	59.1	59.0	59.1	3.97	3.96	3.97
	20:49		Bottom	12.0	27.30	27.30	27.30	7.75	7.74	7.75	28.77	28.77	28.77	58.1	58.4	58.3	4.04	4.07	4.06
	16:40		Surface	1.0	26.60	26.60	26.60	8.09	8.09	8.09	30.13	30.13	30.13	93.6	91.9	92.8	6.34	6.16	6.25
17-Aug-12	16:41	Cloudy	Middle	6.5	26.41	26.40	26.41	7.98	7.98	7.98	30.53	30.53	30.53	85.7	83.2	84.5	5.81	5.72	5.77
	16:42		Bottom	12.0	26.20	26.20	26.20	7.84	7.84	7.84	30.42	30.42	30.42	84.3	84.1	84.2	5.68	5.65	5.67
	20:45		Surface	1.0	27.70	27.70	27.70	8.01	8.01	8.01	27.77	27.77	27.77	68.1	69.6	68.9	4.73	4.75	4.74
22-Aug-12	20:47	Fine	Middle	7.0	27.60	27.60	27.60	7.82	7.82	7.82	28.45	28.45	28.45	62.0	62.4	62.2	4.17	4.20	4.19
	20:49	1	Bottom	13.0	27.70	27.70	27.70	7.80	7.80	7.80	28.36	28.36	28.36	62.7	62.3	62.5	4.21	4.19	4.20

Location: Station A Coordinate: 835468E, 815857N

			1		-														
Dete	Time	Weater	Samplin	g Depth	Wat		perature		pН			Salini	ty	D	O Satur	ation		DO	
Date		Condition	n	n		°C			-			ppt			%			mg/L	
					Va	lue	Average	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	lue	Average
	8:55		Surface	1.0	26.00	26.10	26.05	7.59	7.58	7.59	28.30	28.30	28.30	47.9	47.3	47.6	3.31	3.27	3.29
28-Jul-12	-	Cloudy	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8:56		Bottom	4.0	26.00	26.10	26.05	7.59	7.59	7.59	28.40	28.40	28.40	45.5	45.6	45.6	3.14	3.15	3.15
	11:47		Surface	1.0	27.60	27.60	27.60	7.69	7.69	7.69	27.22	27.22	27.22	62.1	63.6	62.9	4.18	4.27	4.23
01-Aug-12	11:49	Fine	Middle	3.0	27.60	27.60	27.60	7.68	7.68	7.68	27.84	27.84	27.84	63.1	63.6	63.4	4.25	4.27	4.26
	11:51		Bottom	5.0	27.60	27.60	27.60	7.68	7.68	7.68	29.04	29.04	29.04	67.2	67.4	67.3	4.49	4.50	4.50
	14:39		Surface	1.0	27.90	27.90	27.90	7.66	7.66	7.66	28.55	28.55	28.55	55.7	56.1	55.9	3.72	3.74	3.73
06-Aug-12	-	Sunny	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	14:40		Bottom	4.0	27.70	27.70	27.70	7.70	7.70	7.70	28.85	28.85	28.85	55.0	54.5	54.8	3.68	4.00	3.84
	15:10		Surface	1.0	27.90	27.90	27.90	7.72	7.72	7.72	25.29	25.29	25.29	55.7	55.8	55.8	3.80	3.81	3.81
22-Aug-12	-	Fine	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15:11		Bottom	3.0	27.90	27.90	27.90	7.77	7.77	7.77	28.11	28.11	28.11	66.0	65.0	65.5	4.43	4.36	4.40

Location: Station B Coordinate: 835572E, 815961N

Coordinate.		., 01000111																	
Date	Time	Weater Condition		g Depth	Wat	er Temp ℃	perature		pH -			Salini ppt	ty	D	O Satur %	ation		DO mg/L	
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average
	8:50		Surface	1.0	26.00	26.10	26.05	7.63	7.64	7.64	28.53	28.54	28.54	58.3	51.7	55.0	3.93	3.58	3.76
28-Jul-12	8:51	Cloudy	Middle	5.5	25.90	25.90	25.90	7.62	7.62	7.62	28.59	28.60	28.60	50.5	50.6	50.6	3.49	3.50	3.50
	8:52		Bottom	10.0	25.90	25.80	25.85	7.63	7.64	7.64	28.71	28.72	28.72	49.5	49.4	49.5	3.42	3.41	3.42
	11:33		Surface	1.0	27.50	27.50	27.50	7.72	7.72	7.72	26.43	26.43	26.43	68.4	68.5	68.5	4.61	4.62	4.62
01-Aug-12	11:35	Fine	Middle	5.0	27.30	27.30	27.30	7.71	7.71	7.71	28.84	28.84	28.84	68.7	70.0	69.4	4.63	4.71	4.67
	11:37		Bottom	9.0	27.30	27.30	27.30	7.71	7.71	7.71	28.48	28.48	28.48	68.1	68.2	68.2	4.59	4.60	4.60
	14:35		Surface	1.0	28.10	28.10	28.10	7.72	7.72	7.72	29.08	29.08	29.08	64.2	63.4	63.8	4.27	4.21	4.24
06-Aug-12	14:36	Sunny	Middle	5.5	27.70	27.70	27.70	7.72	7.72	7.72	29.19	29.19	29.19	59.5	59.2	59.4	3.98	3.95	3.97
	14:37		Bottom	10.0	27.60	27.60	27.60	7.72	7.72	7.72	29.22	29.22	29.22	59.8	60.2	60.0	4.01	4.02	4.02
	15:04		Surface	1.0	27.50	27.50	27.50	7.83	7.83	7.83	28.27	28.27	28.27	70.5	70.4	70.5	4.75	4.74	4.75
22-Aug-12	15:05	Fine	Middle	5.5	27.60	27.60	27.60	7.82	7.82	7.82	28.07	28.07	28.07	70.6	71.4	71.0	4.76	4.80	4.78
	15:06		Bottom	10.0	27.40	27.40	27.40	7.81	7.81	7.81	28.32	28.32	28.32	70.2	70.2	70.2	4.72	4.72	4.72

Location: Station C Coordinate: 835659E, 816271N

ocoramate		,																	
Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp ℃	oerature		pН			Salini ppt	ty	D	O Satur %	ation		DO mg/L	
		Condition	n	n	Va	ilue	Average	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	alue	Average
	8:46		Surface	1.0	25.90	25.80	25.85	7.61	7.62	7.62	28.57	28.58	28.58	56.0	56.4	56.2	3.82	3.90	3.86
28-Jul-12	8:47	Cloudy	Middle	7.0	25.90	25.90	25.90	7.66	7.67	7.67	25.67	25.68	25.68	53.8	53.2	53.5	3.72	3.68	3.70
	8:48		Bottom	13.0	25.90	25.90	25.90	7.70	7.71	7.71	29.15	29.14	29.15	48.9	48.1	48.5	3.38	3.32	3.35
	11:25		Surface	1.0	27.60	27.60	27.60	7.79	7.79	7.79	28.65	28.65	28.65	78.6	78.8	78.7	5.23	5.27	5.25
01-Aug-12	11:27	Fine	Middle	7.0	27.30	27.30	27.30	7.79	7.79	7.79	28.75	28.75	28.75	80.8	80.3	80.6	5.42	5.41	5.42
	11:29		Bottom	13.0	27.30	27.30	27.30	7.74	7.74	7.74	28.70	28.72	28.71	78.5	78.6	78.6	5.23	5.26	5.25
	14:29		Surface	1.0	27.60	27.60	27.60	7.89	7.89	7.89	28.85	28.85	28.85	67.4	66.6	67.0	4.52	4.47	4.50
06-Aug-12	14:30	Sunny	Middle	7.5	27.50	27.50	27.50	7.80	7.80	7.80	29.00	29.00	29.00	62.6	62.8	62.7	4.21	4.22	4.22
	14:31		Bottom	14.0	27.50	27.50	27.50	7.78	7.78	7.78	26.37	26.37	26.37	60.2	60.4	60.3	4.08	4.07	4.08
	14:57		Surface	1.0	27.60	27.60	27.60	7.86	7.86	7.86	27.86	27.86	27.86	79.2	78.5	78.9	5.36	5.33	5.35
22-Aug-12	14:58	Fine	Middle	7.5	27.60	27.60	27.60	7.83	7.83	7.83	28.14	28.14	28.14	71.7	72.8	72.3	4.82	4.90	4.86
	14:59		Bottom	14.0	27.60	27.60	27.60	7.83	7.83	7.83	28.17	28.17	28.17	72.7	72.6	72.7	4.86	4.86	4.86

Appendix 5.5

Real-time Noise Monitoring Results and Graphical Presentations

	2/8/2012 13:01 69.6	8/8/2012 8:01 67.3	13/8/2012 15:01 68.2	18/8/2012 10:01 69.4	23/8/2012 17:01 68.9
Normal Day 07:00-19:00	2/8/2012 13:31 70.3	8/8/2012 8:31 69.0	13/8/2012 15:31 68.1	18/8/2012 10:31 68.3	23/8/2012 17:31 67.9
28/7/2012 7:01 64.0	2/8/2012 14:01 70.6	8/8/2012 9:01 68.5	13/8/2012 16:01 68.3	18/8/2012 11:01 68.0	23/8/2012 18:01 67.6
28/7/2012 7:31 66.3	2/8/2012 14:31 69.5	8/8/2012 9:31 68.3	13/8/2012 16:31 67.7	18/8/2012 11:31 67.0	23/8/2012 18:31 65.7
28/7/2012 8:01 68.8	2/8/2012 15:01 69.0	8/8/2012 10:01 68.7	13/8/2012 17:01 67.9	18/8/2012 12:01 64.7	24/8/2012 7:01 66.1
28/7/2012 8:31 70.1	2/8/2012 15:31 68.9	8/8/2012 10:31 68.5	13/8/2012 18:01 66.4	18/8/2012 12:31 64.8	24/8/2012 7:31 67.7
28/7/2012 9:01 70.1	2/8/2012 16:01 70.6	8/8/2012 11:01 67.9		18/8/2012 13:01 66.8	24/8/2012 8:01 69.7
28/7/2012 9:31 69.9	2/8/2012 16:31 71.5	8/8/2012 11:31 68.0	13/8/2012 18:31 65.6	18/8/2012 13:31 67.7	24/8/2012 8:31 68.9
28/7/2012 10:01 69.2	2/8/2012 17:01 71.6	8/8/2012 12:01 67.4	14/8/2012 7:01 64.6	18/8/2012 14:01 67.7	24/8/2012 9:01 68.9
28/7/2012 10:31 69.4	2/8/2012 17:31 71.0	8/8/2012 12:31 67.2	14/8/2012 7:31 66.5	18/8/2012 14:31 67.5	24/8/2012 9:31 69.3
28/7/2012 11:01 68.6	2/8/2012 18:01 68.8	8/8/2012 13:01 68.6	14/8/2012 8:01 66.7	18/8/2012 15:01 67.3	24/8/2012 10:01 69.3
28/7/2012 11:31 66.2	2/8/2012 18:31 67.8	8/8/2012 13:31 69.4	14/8/2012 8:31 68.0	18/8/2012 15:31 67.9	24/8/2012 10:31 69.6
28/7/2012 12:01 64.7	3/8/2012 7:01 64.3	8/8/2012 14:01 69.6	14/8/2012 9:01 67.8	18/8/2012 16:01 67.4	24/8/2012 11:01 70.4
28/7/2012 12:31 65.0	3/8/2012 7:31 67.7	8/8/2012 14:31 70.4	14/8/2012 9:31 68.1	18/8/2012 16:31 67.0	24/8/2012 11:31 68.2
28/7/2012 13:01 67.7	3/8/2012 8:01 68.9	8/8/2012 15:01 70.6	14/8/2012 10:01 69.1	18/8/2012 17:01 67.4	24/8/2012 12:01 66.8
28/7/2012 13:31 68.9	3/8/2012 8:31 68.4	8/8/2012 15:31 69.7	14/8/2012 10:31 69.2	18/8/2012 17:31 67.2	24/8/2012 12:31 67.5
28/7/2012 14:01 70.0	3/8/2012 9:01 69.5	8/8/2012 16:01 70.1	14/8/2012 11:01 68.7	18/8/2012 18:01 65.9	24/8/2012 13:01 69.3
28/7/2012 14:31 69.9	3/8/2012 9:31 69.3	8/8/2012 16:31 70.6	14/8/2012 11:31 66.8	18/8/2012 18:31 65.1	24/8/2012 13:31 69.6
28/7/2012 15:01 69.1	3/8/2012 10:01 69.2	8/8/2012 17:01 69.7	14/8/2012 12:01 66.2	20/8/2012 7:01 65.3	24/8/2012 14:01 69.7
28/7/2012 15:31 67.5	3/8/2012 10:31 69.1	8/8/2012 17:31 68.7	14/8/2012 12:31 65.3	20/8/2012 7:31 67.0	24/8/2012 14:31 69.6
28/7/2012 16:01 69.1	3/8/2012 11:01 68.8	8/8/2012 18:01 68.5	14/8/2012 13:01 68.2	20/8/2012 8:01 66.3	24/8/2012 15:01 69.7
28/7/2012 16:31 69.7	3/8/2012 11:31 68.1	8/8/2012 18:31 67.7	14/8/2012 13:31 68.9	20/8/2012 8:31 67.1	24/8/2012 15:31 68.9
28/7/2012 17:01 68.9	3/8/2012 12:01 66.4	9/8/2012 7:01 64.1	14/8/2012 14:01 69.2	20/8/2012 9:01 67.7	24/8/2012 16:01 67.6
28/7/2012 17:31 68.0	3/8/2012 12:31 66.0	9/8/2012 7:31 67.7	14/8/2012 14:31 69.1	20/8/2012 9:31 69.4	24/8/2012 16:31 67.3
28/7/2012 18:01 67.2	3/8/2012 13:01 68.5	9/8/2012 8:01 68.1	14/8/2012 15:01 69.3	20/8/2012 10:01 70.0	24/8/2012 17:01 66.6
28/7/2012 18:31 64.8	3/8/2012 13:31 69.3	9/8/2012 8:31 68.5	14/8/2012 15:31 67.8	20/8/2012 10:31 69.5	24/8/2012 17:31 67.6
30/7/2012 7:01 64.2	3/8/2012 14:01 69.5	9/8/2012 9:01 69.3	14/8/2012 16:01 67.9	20/8/2012 11:01 69.1	24/8/2012 18:01 67.5
30/7/2012 7:31 65.9	3/8/2012 14:31 69.8	9/8/2012 9:31 69.1	14/8/2012 16:31 68.1	20/8/2012 11:31 68.4	24/8/2012 18:31 65.8
30/7/2012 8:01 68.2	3/8/2012 15:01 68.4	9/8/2012 10:01 70.0	14/8/2012 17:01 67.4	20/8/2012 12:01 66.9	25/8/2012 7:01 63.3
30/7/2012 8:31 68.5	3/8/2012 15:31 68.5	9/8/2012 10:31 69.4	14/8/2012 17:31 67.5	20/8/2012 12:31 66.4	25/8/2012 7:31 65.4
30/7/2012 9:01 68.4	3/8/2012 16:01 69.3	9/8/2012 11:01 69.7	14/8/2012 18:01 68.6	20/8/2012 13:01 68.3	25/8/2012 8:01 67.0
30/7/2012 9:31 69.0	3/8/2012 16:31 69.0	9/8/2012 11:31 68.0	14/8/2012 18:31 67.1	20/8/2012 13:31 69.6	25/8/2012 8:31 67.5
30/7/2012 10:01 68.6	3/8/2012 17:01 69.3	9/8/2012 12:01 67.7	15/8/2012 7:01 64.4	20/8/2012 14:01 68.7	25/8/2012 9:01 67.4
30/7/2012 10:31 67.7	3/8/2012 17:31 68.7	9/8/2012 12:31 68.9	15/8/2012 7:31 67.7	20/8/2012 14:31 69.0	25/8/2012 9:31 67.9
30/7/2012 11:01 68.2	3/8/2012 18:01 67.7	9/8/2012 13:01 67.8	15/8/2012 8:01 68.8	20/8/2012 15:01 68.0	25/8/2012 10:01 69.1
30/7/2012 11:31 66.1	3/8/2012 18:31 66.2	9/8/2012 13:31 68.3	15/8/2012 8:31 67.5	20/8/2012 15:31 68.2	25/8/2012 10:31 68.6
30/7/2012 12:01 64.8	4/8/2012 7:01 63.5	9/8/2012 14:01 70.9	15/8/2012 9:01 67.4	20/8/2012 16:01 69.2	25/8/2012 11:01 68.0
30/7/2012 12:31 64.9	4/8/2012 7:31 66.6	9/8/2012 14:31 69.3	15/8/2012 9:31 67.8	20/8/2012 16:31 68.4	25/8/2012 11:31 67.0
30/7/2012 13:01 68.0	4/8/2012 8:01 67.9	9/8/2012 15:01 68.4	15/8/2012 10:01 68.6	20/8/2012 17:01 68.4	25/8/2012 12:01 64.7
30/7/2012 13:31 69.6	4/8/2012 8:31 68.4	9/8/2012 15:31 69.2	15/8/2012 10:31 69.6	20/8/2012 17:31 67.6	25/8/2012 12:31 65.4
30/7/2012 14:01 68.8	4/8/2012 9:01 68.9	9/8/2012 16:01 69.9	15/8/2012 11:01 69.9	20/8/2012 18:01 66.3	25/8/2012 13:01 67.2
30/7/2012 14:31 69.0	4/8/2012 9:31 68.3	9/8/2012 16:31 70.3	15/8/2012 11:31 67.6	20/8/2012 18:31 64.6	25/8/2012 13:31 68.4
30/7/2012 15:01 68.6	4/8/2012 10:01 67.2	9/8/2012 17:01 68.9	15/8/2012 12:01 64.9	21/8/2012 7:01 63.9	25/8/2012 14:01 69.1
30/7/2012 15:31 67.8	4/8/2012 10:31 67.7	9/8/2012 17:31 68.3	15/8/2012 12:31 66.2	21/8/2012 7:31 66.8	25/8/2012 14:31 68.1
30/7/2012 16:01 68.6	4/8/2012 11:01 67.5	9/8/2012 18:01 68.0	15/8/2012 13:01 67.6	21/8/2012 8:01 66.9	25/8/2012 15:01 67.6
30/7/2012 16:31 69.0	4/8/2012 11:31 65.8	9/8/2012 18:31 65.7	15/8/2012 13:31 68.2	21/8/2012 8:31 66.8	25/8/2012 15:31 66.7
30/7/2012 17:01 69.0	4/8/2012 12:01 65.4	10/8/2012 7:01 63.8	15/8/2012 14:01 67.5	21/8/2012 9:01 68.1	25/8/2012 16:01 68.3
30/7/2012 17:31 68.3	4/8/2012 12:31 65.0	10/8/2012 7:31 66.8	15/8/2012 14:31 67.6	21/8/2012 9:31 67.7	25/8/2012 16:31 67.8
30/7/2012 18:01 68.9	4/8/2012 13:01 66.6	10/8/2012 8:01 67.3	15/8/2012 15:01 67.4	21/8/2012 10:01 68.2	25/8/2012 17:01 68.3
30/7/2012 18:31 69.0	4/8/2012 13:31 67.4	10/8/2012 8:31 68.6	15/8/2012 15:31 68.2	21/8/2012 10:31 68.6	25/8/2012 17:31 67.5
31/7/2012 7:01 63.2	4/8/2012 14:01 68.3	10/8/2012 9:01 69.0	15/8/2012 16:01 68.3	21/8/2012 11:01 68.4	25/8/2012 18:01 66.8
31/7/2012 7:31 64.4	4/8/2012 14:31 68.3	10/8/2012 9:31 68.1	15/8/2012 16:31 68.1	21/8/2012 11:31 67.9	25/8/2012 18:31 65.7
31/7/2012 8:01 64.6	4/8/2012 15:01 67.1	10/8/2012 10:01 67.5	15/8/2012 17:01 67.9	21/8/2012 12:01 64.4	27/8/2012 7:01 63.8
31/7/2012 8:31 67.6	4/8/2012 15:31 66.8	10/8/2012 10:31 68.7	15/8/2012 17:31 67.2	21/8/2012 12:31 64.3	27/8/2012 7:31 66.7
31/7/2012 9:01 67.0	4/8/2012 16:01 68.7	10/8/2012 11:01 68.3	15/8/2012 18:01 67.6	21/8/2012 13:01 67.3	27/8/2012 8:01 67.0
31/7/2012 9:31 68.9	4/8/2012 16:31 67.6	10/8/2012 11:31 67.4	15/8/2012 18:31 66.1	21/8/2012 13:31 68.0	27/8/2012 8:31 68.6
31/7/2012 10:01 70.6	4/8/2012 17:01 68.4	10/8/2012 12:01 65.2	16/8/2012 7:01 61.6	21/8/2012 14:01 69.1	27/8/2012 9:01 68.2
31/7/2012 10:31 70.6	4/8/2012 17:31 66.7		16/8/2012 7:31 63.0	21/8/2012 14:31 68.7	27/8/2012 9:31 68.6
31/7/2012 11:01 71.7	4/8/2012 18:01 64.9	10/8/2012 13:01 68.0	16/8/2012 8:01 63.0	21/8/2012 15:01 67.8	27/8/2012 10:01 68.5
31/7/2012 11:31 71.1	4/8/2012 18:31 63.1	10/8/2012 13:31 68.4	16/8/2012 8:31 63.6	21/8/2012 15:31 68.0	27/8/2012 10:31 68.6
31/7/2012 12:01 66.5	6/8/2012 7:01 63.2	10/8/2012 14:01 68.5	16/8/2012 9:01 64.5	21/8/2012 16:01 67.9	27/8/2012 11:01 68.5
31/7/2012 12:31 65.5	6/8/2012 7:31 64.1	10/8/2012 14:31 68.9	16/8/2012 9:31 65.2	21/8/2012 16:31 67.4	27/8/2012 11:31 68.5
31/7/2012 13:01 66.5	6/8/2012 8:01 65.4	10/8/2012 15:01 69.3	16/8/2012 10:01 65.9	21/8/2012 17:01 66.9	27/8/2012 12:01 66.8
31/7/2012 13:31 69.5	6/8/2012 8:31 68.4	10/8/2012 15:31 69.2	16/8/2012 10:31 66.4	21/8/2012 17:31 67.1	27/8/2012 12:31 65.9
31/7/2012 14:01 69.2	6/8/2012 9:01 68.3	10/8/2012 16:01 69.3	16/8/2012 11:01 66.3	21/8/2012 18:01 67.7	27/8/2012 13:01 67.7
31/7/2012 14:31 69.3	6/8/2012 9:31 69.8	10/8/2012 16:31 68.4	16/8/2012 11:31 67.8	21/8/2012 18:31 65.8	27/8/2012 13:31 69.9
31/7/2012 15:01 67.0	6/8/2012 10:01 69.8	10/8/2012 17:01 68.5	16/8/2012 12:01 65.6	22/8/2012 7:01 64.4	27/8/2012 14:01 68.8
31/7/2012 15:31 68.5	6/8/2012 10:31 70.5	10/8/2012 17:31 68.7	16/8/2012 12:31 65.5	22/8/2012 7:31 66.4	27/8/2012 14:31 68.5
31/7/2012 16:01 68.5	6/8/2012 11:01 69.5	10/8/2012 18:01 67.7	16/8/2012 13:01 65.6	22/8/2012 8:01 66.9	27/8/2012 15:01 68.6
31/7/2012 16:31 66.1	6/8/2012 11:31 67.0	10/8/2012 18:31 64.9	16/8/2012 13:31 66.2	22/8/2012 8:31 67.8	27/8/2012 15:31 67.7
31/7/2012 17:01 70.7	6/8/2012 12:01 64.8	11/8/2012 7:01 66.9	16/8/2012 14:01 68.5	22/8/2012 9:01 67.0	27/8/2012 16:01 68.3
31/7/2012 17:31 71.4	6/8/2012 12:31 65.2	11/8/2012 7:31 68.2	16/8/2012 14:31 67.6	22/8/2012 9:31 67.6	27/8/2012 16:31 68.2
31/7/2012 18:01 68.1	6/8/2012 13:01 68.4	11/8/2012 8:01 67.8	16/8/2012 15:01 69.3	22/8/2012 10:01 68.5	27/8/2012 17:01 67.2
31/7/2012 18:31 63.3	6/8/2012 13:31 69.7	11/8/2012 8:31 68.1	16/8/2012 15:31 68.8	22/8/2012 10:31 68.8	27/8/2012 17:31 67.2 27/8/2012 18:01 66.2
1/8/2012 7:01 64.1	6/8/2012 14:01 67.3	11/8/2012 9:01 67.8	16/8/2012 16:01 69.1	22/8/2012 11:01 68.2	27/8/2012 18:01 65.2
1/8/2012 7:31 67.0	6/8/2012 14:31 65.7	11/8/2012 9:31 67.4	16/8/2012 16:31 69.1	22/8/2012 11:31 67.0	
1/8/2012 8:01 69.0	6/8/2012 15:01 66.2	11/8/2012 10:01 67.3	16/8/2012 17:01 71.9	22/8/2012 12:01 65.5	Normal Day 19:00-23:00,
1/8/2012 8:31 69.1	6/8/2012 15:31 67.2	11/8/2012 10:31 68.1	16/8/2012 17:31 66.9	22/8/2012 12:31 65.2	
1/8/2012 9:01 70.5	6/8/2012 16:01 69.8	11/8/2012 11:01 67.7	16/8/2012 18:01 65.3	22/8/2012 13:01 67.4	Sunday & Holiday 07:00-23:00
1/8/2012 9:31 70.3	6/8/2012 16:31 70.7	11/8/2012 11:31 65.9	16/8/2012 18:31 64.0	22/8/2012 13:31 68.9	
1/8/2012 10:01 70.2	6/8/2012 17:01 70.2	11/8/2012 12:01 64.6	17/8/2012 7:01 65.2	22/8/2012 14:01 69.1	28/7/2012 19:01 64.2
1/8/2012 10:31 70.4	6/8/2012 17:31 69.5	11/8/2012 12:31 64.5	17/8/2012 7:31 65.7	22/8/2012 14:31 68.6	28/7/2012 19:06 63.2
1/8/2012 11:01 70.1	6/8/2012 18:01 63.9	11/8/2012 13:01 66.9	17/8/2012 8:01 64.8	22/8/2012 15:01 68.1	28/7/2012 19:11 63.1
1/8/2012 11:31 67.6	6/8/2012 18:31 63.8	11/8/2012 13:31 67.4	17/8/2012 8:31 64.5	22/8/2012 15:31 67.4	28/7/2012 19:16 63.0
1/8/2012 12:01 65.0	7/8/2012 7:01 64.8	11/8/2012 14:01 67.0	17/8/2012 9:01 64.7	22/8/2012 16:01 68.5	28/7/2012 19:21 62.0
1/8/2012 12:31 65.5	7/8/2012 7:31 65.9	11/8/2012 14:31 67.2	17/8/2012 9:31 65.5	22/8/2012 16:31 68.3	28/7/2012 19:26 62.2
1/8/2012 13:01 69.1	7/8/2012 8:01 66.8	11/8/2012 15:01 67.4	17/8/2012 10:01 66.3	22/8/2012 17:01 68.8	28/7/2012 19:31 62.8
1/8/2012 13:31 69.3	7/8/2012 8:31 69.2	11/8/2012 15:31 67.8	17/8/2012 10:31 66.9	22/8/2012 17:31 67.7	28/7/2012 19:36 62.9
1/8/2012 14:01 69.8	7/8/2012 9:01 68.8	11/8/2012 16:01 67.0	17/8/2012 11:01 67.5	22/8/2012 18:01 67.2	28/7/2012 19:41 64.2
1/8/2012 14:31 68.9	7/8/2012 9:31 69.1	11/8/2012 16:31 67.6	17/8/2012 11:31 66.8	22/8/2012 18:31 65.7	28/7/2012 19:46 63.7
1/8/2012 15:01 69.7	7/8/2012 10:01 71.4	11/8/2012 17:01 67.9	17/8/2012 12:01 64.0	23/8/2012 7:01 64.6	28/7/2012 19:51 63.7
1/8/2012 15:31 69.5	7/8/2012 10:31 72.3	11/8/2012 17:31 67.2	17/8/2012 12:31 64.6	23/8/2012 7:31 67.3	28/7/2012 19:56 63.9
1/8/2012 16:01 69.9	7/8/2012 11:01 71.1	11/8/2012 18:01 65.9	17/8/2012 13:01 67.2	23/8/2012 8:01 68.2	28/7/2012 20:01 63.9
1/8/2012 16:31 68.7	7/8/2012 11:31 70.5	11/8/2012 18:31 65.6	17/8/2012 13:31 69.1	23/8/2012 8:31 68.4	28/7/2012 20:06 63.6
1/8/2012 17:01 68.6	7/8/2012 12:01 71.8	13/8/2012 7:01 63.9	17/8/2012 14:01 68.6	23/8/2012 9:01 68.7	28/7/2012 20:11 63.8
1/8/2012 17:31 68.3	7/8/2012 12:31 68.0	13/8/2012 7:31 66.0	17/8/2012 14:31 67.8	23/8/2012 9:31 68.2	28/7/2012 20:16 64.1
1/8/2012 18:01 69.7	7/8/2012 13:01 68.2	13/8/2012 8:01 67.1	17/8/2012 15:01 67.5	23/8/2012 10:01 68.7	28/7/2012 20:21 63.9
1/8/2012 18:31 65.3	7/8/2012 13:31 68.7	13/8/2012 8:31 66.5	17/8/2012 15:31 67.8	23/8/2012 10:31 67.9	28/7/2012 20:26 63.5
2/8/2012 7:01 63.7	7/8/2012 14:01 70.7	13/8/2012 9:01 66.5	17/8/2012 16:01 67.3	23/8/2012 11:01 67.8	28/7/2012 20:31 63.6
2/8/2012 7:31 67.9	7/8/2012 14:31 69.7	13/8/2012 9:31 67.0	17/8/2012 16:31 68.2	23/8/2012 11:31 66.2	28/7/2012 20:36 63.7
2/8/2012 8:01 69.2	7/8/2012 15:01 69.3	13/8/2012 10:01 67.4	17/8/2012 17:01 67.3	23/8/2012 12:01 64.9	28/7/2012 20:41 63.2
2/8/2012 8:31 70.4	7/8/2012 15:31 69.6	13/8/2012 10:31 68.8	17/8/2012 17:31 66.9	23/8/2012 12:31 64.7	28/7/2012 20:46 63.5
	7/8/2012 16:01 68.7	13/8/2012 11:01 69.9	17/8/2012 18:01 65.5	23/8/2012 13:01 66.7	28/7/2012 20:51 63.3
2/8/2012 9:01 69.5	7/8/2012 16:31 69.3	13/8/2012 11:31 66.6	17/8/2012 18:31 65.5	23/8/2012 13:31 68.0	28/7/2012 20:56 63.7
2/8/2012 9:01 69.5 2/8/2012 9:31 71.4 2/8/2012 10:01 69.5	7/8/2012 17:01 67.4	13/8/2012 12:01 65.8	18/8/2012 7:01 63.6	23/8/2012 14:01 67.6	28/7/2012 21:01 63.4
2/8/2012 9:31 71.4 2/8/2012 10:01 69.5 2/8/2012 10:31 69.7	7/8/2012 17:01 67.4 7/8/2012 17:31 66.2	13/8/2012 12:01 65.8 13/8/2012 12:31 66.5	18/8/2012 7:31 66.5	23/8/2012 14:31 67.9	28/7/2012 21:06 63.3
2/8/2012 9:31 71.4 2/8/2012 10:01 69.5	7/8/2012 17:01 67.4	13/8/2012 12:01 65.8			

Real-time Noise Data R 28/7/2012 21:31 63.3	TN1 (FEHD Hong Kong Transpo 29/7/2012 14:41 68.2	30/7/2012 19:51 65.3	1/8/2012 21:01 63.3	3/8/2012 22:11 62.1	5/8/2012 12:21 64.1
28/7/2012 21:36 63.2	29/7/2012 14:46 66.9	30/7/2012 19:56 65.1	1/8/2012 21:06 63.0	3/8/2012 22:16 62.8	5/8/2012 12:26 63.9
28/7/2012 21:41 63.3 28/7/2012 21:46 63.5	29/7/2012 14:51 66.9 29/7/2012 14:56 66.0	30/7/2012 20:01 64.8 30/7/2012 20:06 64.8	1/8/2012 21:11 62.5 1/8/2012 21:16 62.4	3/8/2012 22:21 62.9 3/8/2012 22:26 62.8	5/8/2012 12:31 65.0 5/8/2012 12:36 65.1
28/7/2012 21:51 63.9	29/7/2012 15:01 65.3	30/7/2012 20:00 04:0	1/8/2012 21:21 63.1	3/8/2012 22:31 62.6	5/8/2012 12:41 66.9
28/7/2012 21:56 64.3	29/7/2012 15:06 66.4	30/7/2012 20:16 64.2	1/8/2012 21:26 62.6	3/8/2012 22:36 62.9	5/8/2012 12:46 65.2
28/7/2012 22:01 63.7 28/7/2012 22:06 62.8	29/7/2012 15:11 66.3 29/7/2012 15:16 66.1	30/7/2012 20:21 64.2 30/7/2012 20:26 64.5	1/8/2012 21:31 62.5 1/8/2012 21:36 63.2	3/8/2012 22:41 63.0 3/8/2012 22:46 62.8	5/8/2012 12:51 63.7 5/8/2012 12:56 65.8
28/7/2012 22:11 63.3	29/7/2012 15:21 65.5	30/7/2012 20:31 64.2	1/8/2012 21:41 62.6	3/8/2012 22:51 62.4	5/8/2012 13:01 64.2
28/7/2012 22:16 63.3 28/7/2012 22:21 63.2	29/7/2012 15:26 64.9 29/7/2012 15:31 64.9	30/7/2012 20:36 66.0 30/7/2012 20:41 64.1	1/8/2012 21:46 62.6 1/8/2012 21:51 63.2	3/8/2012 22:56 62.6 4/8/2012 19:01 63.0	5/8/2012 13:06 63.4 5/8/2012 13:11 63.5
28/7/2012 22:26 63.2	29/7/2012 15:36 63.9	30/7/2012 20:46 64.7	1/8/2012 21:56 62.5	4/8/2012 19:06 62.8	5/8/2012 13:16 63.8
28/7/2012 22:31 63.0	29/7/2012 15:41 64.7	30/7/2012 20:51 64.7	1/8/2012 22:01 62.8	4/8/2012 19:11 62.7	5/8/2012 13:21 63.3
28/7/2012 22:36 63.2 28/7/2012 22:41 63.3	29/7/2012 15:46 64.0 29/7/2012 15:51 63.1	30/7/2012 20:56 64.4 30/7/2012 21:01 64.3	1/8/2012 22:06 63.9 1/8/2012 22:11 63.1	4/8/2012 19:16 63.7 4/8/2012 19:21 63.3	5/8/2012 13:26 63.3 5/8/2012 13:31 64.0
28/7/2012 22:46 64.7	29/7/2012 15:56 63.1	30/7/2012 21:06 64.4	1/8/2012 22:16 62.5	4/8/2012 19:26 63.3	5/8/2012 13:36 63.6
28/7/2012 22:51 63.8 28/7/2012 22:56 62.5	29/7/2012 16:01 62.5 29/7/2012 16:06 64.6	30/7/2012 21:11 64.0 30/7/2012 21:16 64.0	1/8/2012 22:21 62.6 1/8/2012 22:26 63.0	4/8/2012 19:31 63.1 4/8/2012 19:36 63.1	5/8/2012 13:41 63.4 5/8/2012 13:46 63.5
29/7/2012 7:01 62.0	29/7/2012 16:00 64.6	30/7/2012 21:16 64.0 30/7/2012 21:21 63.7	1/8/2012 22:31 62.4	4/8/2012 19:41 63.0	5/8/2012 13:46 63.5 5/8/2012 13:51 64.5
29/7/2012 7:06 62.1	29/7/2012 16:16 63.9	30/7/2012 21:26 64.3	1/8/2012 22:36 62.6	4/8/2012 19:46 62.9	5/8/2012 13:56 63.2
29/7/2012 7:11 61.4 29/7/2012 7:16 61.3	29/7/2012 16:21 63.2 29/7/2012 16:26 64.6	30/7/2012 21:31 63.8 30/7/2012 21:36 64.2	1/8/2012 22:41 62.5 1/8/2012 22:46 62.4	4/8/2012 19:51 63.2 4/8/2012 19:56 63.3	5/8/2012 14:01 64.2 5/8/2012 14:06 63.2
29/7/2012 7:21 61.7	29/7/2012 16:31 63.3	30/7/2012 21:41 63.8	1/8/2012 22:51 62.4	4/8/2012 20:01 62.8	5/8/2012 14:11 63.2
29/7/2012 7:26 61.4 29/7/2012 7:31 62.9	29/7/2012 16:36 63.0 29/7/2012 16:41 63.6	30/7/2012 21:46 63.6 30/7/2012 21:51 64.6	1/8/2012 22:56 62.4 2/8/2012 19:01 66.3	4/8/2012 20:06 63.5 4/8/2012 20:11 64.9	5/8/2012 14:16 63.1 5/8/2012 14:21 62.6
29/7/2012 7:36 63.2	29/7/2012 16:46 64.3	30/7/2012 21:56 63.6	2/8/2012 19:06 66.0	4/8/2012 20:16 62.9	5/8/2012 14:26 63.8
29/7/2012 7:41 62.3	29/7/2012 16:51 63.9	30/7/2012 22:01 63.8	2/8/2012 19:11 67.0	4/8/2012 20:21 63.1	5/8/2012 14:31 63.3
29/7/2012 7:46 63.9 29/7/2012 7:51 61.6	29/7/2012 16:56 63.3 29/7/2012 17:01 64.1	30/7/2012 22:06 64.8 30/7/2012 22:11 64.3	2/8/2012 19:16 66.3 2/8/2012 19:21 66.4	4/8/2012 20:26 63.1 4/8/2012 20:31 62.5	5/8/2012 14:36 63.0 5/8/2012 14:41 62.5
29/7/2012 7:56 62.1	29/7/2012 17:06 63.9	30/7/2012 22:16 64.5	2/8/2012 19:26 66.6	4/8/2012 20:36 62.5	5/8/2012 14:46 63.5
29/7/2012 8:01 62.4 29/7/2012 8:06 62.6	29/7/2012 17:11 64.0 29/7/2012 17:16 63.4	30/7/2012 22:21 64.0 30/7/2012 22:26 64.3	2/8/2012 19:31 66.6 2/8/2012 19:36 66.6	4/8/2012 20:41 62.7 4/8/2012 20:46 62.4	5/8/2012 14:51 63.0 5/8/2012 14:56 63.8
29/7/2012 8:11 63.0	29/7/2012 17:21 63.5	30/7/2012 22:31 63.7	2/8/2012 19:30 60.0	4/8/2012 20:51 62.8	5/8/2012 15:01 62.8
29/7/2012 8:16 63.3	29/7/2012 17:26 63.5	30/7/2012 22:36 64.0	2/8/2012 19:46 66.5	4/8/2012 20:56 62.5	5/8/2012 15:06 62.2
29/7/2012 8:21 63.2 29/7/2012 8:26 63.8	29/7/2012 17:31 64.1 29/7/2012 17:36 64.1	30/7/2012 22:41 63.7 30/7/2012 22:46 63.1	2/8/2012 19:51 66.2 2/8/2012 19:56 66.7	4/8/2012 21:01 63.0 4/8/2012 21:06 63.2	5/8/2012 15:11 63.8 5/8/2012 15:16 65.4
29/7/2012 8:31 64.0	29/7/2012 17:41 63.8	30/7/2012 22:51 63.1	2/8/2012 20:01 66.1	4/8/2012 21:11 62.6	5/8/2012 15:21 64.3
29/7/2012 8:36 65.1	29/7/2012 17:46 64.1	30/7/2012 22:56 62.9	2/8/2012 20:06 66.1	4/8/2012 21:16 63.1	5/8/2012 15:26 64.2
29/7/2012 8:41 63.9 29/7/2012 8:46 64.1	29/7/2012 17:51 63.1 29/7/2012 17:56 63.7	31/7/2012 19:01 62.8 31/7/2012 19:06 62.3	2/8/2012 20:11 66.3 2/8/2012 20:16 66.0	4/8/2012 21:21 63.3 4/8/2012 21:26 62.7	5/8/2012 15:31 63.5 5/8/2012 15:36 64.4
29/7/2012 8:51 63.9	29/7/2012 18:01 64.0	31/7/2012 19:11 62.4	2/8/2012 20:21 66.2	4/8/2012 21:31 62.3	5/8/2012 15:41 64.4
29/7/2012 8:56 64.0 29/7/2012 9:01 64.5	29/7/2012 18:06 62.6 29/7/2012 18:11 63.1	31/7/2012 19:16 63.6 31/7/2012 19:21 63.7	2/8/2012 20:26 66.1 2/8/2012 20:31 66.4	4/8/2012 21:36 62.9 4/8/2012 21:41 62.3	5/8/2012 15:46 64.8 5/8/2012 15:51 65.0
29/7/2012 9:06 69.7	29/7/2012 18:16 62.8	31/7/2012 19:26 64.6	2/8/2012 20:36 65.8	4/8/2012 21:46 62.8	5/8/2012 15:56 64.9
29/7/2012 9:11 63.3	29/7/2012 18:21 62.7	31/7/2012 19:31 64.9	2/8/2012 20:41 65.8	4/8/2012 21:51 62.9	5/8/2012 16:01 65.2
29/7/2012 9:16 65.1 29/7/2012 9:21 65.3	29/7/2012 18:26 62.6 29/7/2012 18:31 62.5	31/7/2012 19:36 65.2 31/7/2012 19:41 64.6	2/8/2012 20:46 66.2 2/8/2012 20:51 66.0	4/8/2012 21:56 65.0 4/8/2012 22:01 62.6	5/8/2012 16:06 63.5 5/8/2012 16:11 63.6
29/7/2012 9:26 65.5	29/7/2012 18:36 62.7	31/7/2012 19:46 64.5	2/8/2012 20:56 66.3	4/8/2012 22:06 62.5	5/8/2012 16:16 63.8
29/7/2012 9:31 66.1 29/7/2012 9:36 65.8	29/7/2012 18:41 62.6 29/7/2012 18:46 62.7	31/7/2012 19:51 64.0 31/7/2012 19:56 63.9	2/8/2012 21:01 65.8 2/8/2012 21:06 66.0	4/8/2012 22:11 62.8 4/8/2012 22:16 62.7	5/8/2012 16:21 63.9 5/8/2012 16:26 63.7
29/7/2012 9:41 65.8	29/7/2012 18:51 62.9	31/7/2012 20:01 64.4	2/8/2012 21:11 66.1	4/8/2012 22:21 62.9	5/8/2012 16:31 64.0
29/7/2012 9:46 66.1	29/7/2012 18:56 62.3	31/7/2012 20:06 63.8	2/8/2012 21:16 66.0	4/8/2012 22:26 62.9	5/8/2012 16:36 62.9
29/7/2012 9:51 65.0 29/7/2012 9:56 65.7	29/7/2012 19:01 63.0 29/7/2012 19:06 62.7	31/7/2012 20:11 63.8 31/7/2012 20:16 63.9	2/8/2012 21:21 65.5 2/8/2012 21:26 65.6	4/8/2012 22:31 62.4 4/8/2012 22:36 62.8	5/8/2012 16:41 63.4 5/8/2012 16:46 63.3
29/7/2012 10:01 66.5	29/7/2012 19:11 62.8	31/7/2012 20:21 63.3	2/8/2012 21:31 65.5	4/8/2012 22:41 62.7	5/8/2012 16:51 63.7
29/7/2012 10:06 65.7 29/7/2012 10:11 65.2	29/7/2012 19:16 62.5 29/7/2012 19:21 62.9	31/7/2012 20:26 63.7 31/7/2012 20:31 63.6	2/8/2012 21:36 65.6 2/8/2012 21:41 65.5	4/8/2012 22:46 62.1 4/8/2012 22:51 63.8	5/8/2012 16:56 65.8 5/8/2012 17:01 66.2
29/7/2012 10:16 65.7	29/7/2012 19:26 62.8	31/7/2012 20:36 63.5	2/8/2012 21:46 65.4	4/8/2012 22:56 62.5	5/8/2012 17:06 66.4
29/7/2012 10:21 65.4	29/7/2012 19:31 62.7 29/7/2012 19:36 62.4	31/7/2012 20:41 63.6	2/8/2012 21:51 65.5	5/8/2012 7:01 64.1	5/8/2012 17:11 65.7
29/7/2012 10:26 65.7 29/7/2012 10:31 66.2	29/7/2012 19:30 62.4	31/7/2012 20:46 63.9 31/7/2012 20:51 63.8	2/8/2012 21:56 65.6 2/8/2012 22:01 65.6	5/8/2012 7:06 62.5 5/8/2012 7:11 62.7	5/8/2012 17:16 65.6 5/8/2012 17:21 65.9
29/7/2012 10:36 65.4	29/7/2012 19:46 63.4	31/7/2012 20:56 63.3	2/8/2012 22:06 65.5	5/8/2012 7:16 62.2	5/8/2012 17:26 65.2
29/7/2012 10:41 65.1 29/7/2012 10:46 65.6	29/7/2012 19:51 63.0 29/7/2012 19:56 62.3	31/7/2012 21:01 63.4 31/7/2012 21:06 63.4	2/8/2012 22:11 65.6 2/8/2012 22:16 65.8	5/8/2012 7:21 64.0 5/8/2012 7:26 62.5	5/8/2012 17:31 65.3 5/8/2012 17:36 65.1
29/7/2012 10:51 66.3	29/7/2012 20:01 62.6	31/7/2012 21:11 63.5	2/8/2012 22:21 65.4	5/8/2012 7:31 62.1	5/8/2012 17:41 65.0
29/7/2012 10:56 65.1	29/7/2012 20:06 62.1	31/7/2012 21:16 63.2	2/8/2012 22:26 65.6 2/8/2012 22:31 65.4	5/8/2012 7:36 63.0 5/8/2012 7:41 63.1	5/8/2012 17:46 65.9 5/8/2012 17:51 65.9
29/7/2012 11:01 65.6 29/7/2012 11:06 66.2	29/7/2012 20:11 62.5 29/7/2012 20:16 62.1	31/7/2012 21:21 63.2 31/7/2012 21:26 63.4	2/8/2012 22:31 65.4 2/8/2012 22:36 67.6	5/8/2012 7:41 63.1 5/8/2012 7:46 62.8	5/8/2012 17:51 65.9 5/8/2012 17:56 65.2
29/7/2012 11:11 65.2	29/7/2012 20:21 62.3	31/7/2012 21:31 63.7	2/8/2012 22:41 64.2	5/8/2012 8:51 64.8	5/8/2012 18:01 64.6
29/7/2012 11:16 65.8 29/7/2012 11:21 65.9	29/7/2012 20:26 61.3 29/7/2012 20:31 61.0	31/7/2012 21:36 63.2 31/7/2012 21:41 63.7	2/8/2012 22:46 64.3 2/8/2012 22:51 64.7	5/8/2012 8:56 64.6 5/8/2012 9:01 64.9	5/8/2012 18:06 64.4 5/8/2012 18:11 64.8
29/7/2012 11:26 65.6	29/7/2012 20:36 61.1	31/7/2012 21:46 62.5	2/8/2012 22:56 63.0	5/8/2012 9:06 64.5	5/8/2012 18:16 64.6
29/7/2012 11:31 65.6	29/7/2012 20:41 61.7	31/7/2012 21:51 64.4	3/8/2012 19:01 64.8	5/8/2012 9:11 64.5	5/8/2012 18:21 64.0
29/7/2012 11:36 64.6 29/7/2012 11:41 66.2	29/7/2012 20:46 61.2 29/7/2012 20:51 61.7	31/7/2012 21:56 63.4 31/7/2012 22:01 62.8	3/8/2012 19:06 64.1 3/8/2012 19:11 64.0	5/8/2012 9:16 64.5 5/8/2012 9:21 65.2	5/8/2012 18:26 64.8 5/8/2012 18:31 64.4
29/7/2012 11:46 65.9	29/7/2012 20:56 61.8	31/7/2012 22:06 63.1	3/8/2012 19:16 64.1	5/8/2012 9:26 65.0	5/8/2012 18:36 64.5
29/7/2012 11:51 62.5 29/7/2012 11:56 63.9	29/7/2012 21:01 61.5 29/7/2012 21:06 61.4	31/7/2012 22:11 62.8 31/7/2012 22:16 62.8	3/8/2012 19:21 63.4 3/8/2012 19:26 63.9	5/8/2012 9:31 65.3 5/8/2012 9:36 65.0	5/8/2012 18:41 64.5 5/8/2012 18:46 64.2
29/7/2012 11:00 62:0	29/7/2012 21:10 61.7	31/7/2012 22:21 62.8	3/8/2012 19:31 63.7	5/8/2012 9:41 65.3	5/8/2012 18:51 64.0
29/7/2012 12:06 62.8	29/7/2012 21:16 61.3	31/7/2012 22:26 62.8	3/8/2012 19:36 64.0	5/8/2012 9:46 65.5	5/8/2012 18:56 64.1
29/7/2012 12:11 62.6 29/7/2012 12:16 62.9	29/7/2012 21:21 61.4 29/7/2012 21:26 61.5	31/7/2012 22:31 62.8 31/7/2012 22:36 62.6	3/8/2012 19:41 64.1 3/8/2012 19:46 64.0	5/8/2012 9:51 65.0 5/8/2012 9:56 65.2	5/8/2012 19:01 64.4 5/8/2012 19:06 64.7
29/7/2012 12:21 61.9	29/7/2012 21:31 61.4	31/7/2012 22:41 62.9	3/8/2012 19:51 64.3	5/8/2012 10:01 64.8	5/8/2012 19:11 63.9
29/7/2012 12:26 62.7	29/7/2012 21:36 62.3	31/7/2012 22:46 62.4	3/8/2012 19:56 64.0	5/8/2012 10:06 64.9	5/8/2012 19:16 64.4
29/7/2012 12:31 62.4 29/7/2012 12:36 61.6	29/7/2012 21:41 63.6 29/7/2012 21:46 62.4	31/7/2012 22:51 62.8 31/7/2012 22:56 63.5	3/8/2012 20:01 64.7 3/8/2012 20:06 64.1	5/8/2012 10:11 62.8 5/8/2012 10:16 62.2	5/8/2012 19:21 64.5 5/8/2012 19:26 65.0
29/7/2012 12:41 61.5	29/7/2012 21:51 62.7	1/8/2012 19:01 62.9	3/8/2012 20:11 65.7	5/8/2012 10:21 64.3	5/8/2012 19:31 65.9
29/7/2012 12:46 62.0 29/7/2012 12:51 61.5	29/7/2012 21:56 62.7 29/7/2012 22:01 62.8	1/8/2012 19:06 63.8 1/8/2012 19:11 64.0	3/8/2012 20:16 63.9 3/8/2012 20:21 63.6	5/8/2012 10:26 66.7 5/8/2012 10:31 64.2	5/8/2012 19:36 64.9 5/8/2012 19:41 65.3
29/7/2012 12:56 61.0	29/7/2012 22:06 63.1	1/8/2012 19:11 64:0	3/8/2012 20:21 63:6	5/8/2012 10:36 66.4	5/8/2012 19:46 65.1
29/7/2012 13:01 61.8	29/7/2012 22:11 62.6	1/8/2012 19:21 64.2	3/8/2012 20:31 63.6	5/8/2012 10:41 64.3	5/8/2012 19:51 65.3
29/7/2012 13:06 63.8 29/7/2012 13:11 63.8	29/7/2012 22:16 62.7 29/7/2012 22:21 63.5	1/8/2012 19:26 64.2 1/8/2012 19:31 63.4	3/8/2012 20:36 63.6 3/8/2012 20:41 63.6	5/8/2012 10:46 65.5 5/8/2012 10:51 65.6	5/8/2012 19:56 64.6 5/8/2012 20:01 64.8
29/7/2012 13:16 64.7	29/7/2012 22:26 62.6	1/8/2012 19:36 63.7	3/8/2012 20:46 63.0	5/8/2012 10:56 66.6	5/8/2012 20:06 65.3
29/7/2012 13:21 64.6	29/7/2012 22:31 62.6	1/8/2012 19:41 62.9	3/8/2012 20:51 63.7 3/8/2012 20:56 63.4	5/8/2012 11:01 67.5 5/8/2012 11:06 67.6	5/8/2012 20:11 64.8
29/7/2012 13:26 64.5 29/7/2012 13:31 64.7	29/7/2012 22:36 62.8 29/7/2012 22:41 62.0	1/8/2012 19:46 63.1 1/8/2012 19:51 63.2	3/8/2012 20:56 63.4 3/8/2012 21:01 62.8	5/8/2012 11:06 67.6 5/8/2012 11:11 67.5	5/8/2012 20:16 65.4 5/8/2012 20:21 65.0
29/7/2012 13:36 64.3	29/7/2012 22:46 62.7	1/8/2012 19:56 63.1	3/8/2012 21:06 63.3	5/8/2012 11:16 66.9	5/8/2012 20:26 65.3
29/7/2012 13:41 63.4 29/7/2012 13:46 64.3	29/7/2012 22:51 62.4 29/7/2012 22:56 62.6	1/8/2012 20:01 65.7 1/8/2012 20:06 63.7	3/8/2012 21:11 63.5 3/8/2012 21:16 63.8	5/8/2012 11:21 67.7 5/8/2012 11:26 66.8	5/8/2012 20:31 65.4 5/8/2012 20:36 65.6
29/7/2012 13:46 64.3	30/7/2012 19:01 68.5	1/8/2012 20:06 63.7	3/8/2012 21:16 63.8	5/8/2012 11:31 66.1	5/8/2012 20:36 65.6 5/8/2012 20:41 65.3
29/7/2012 13:56 64.9	30/7/2012 19:06 66.0	1/8/2012 20:16 63.4	3/8/2012 21:26 62.8	5/8/2012 11:36 66.3	5/8/2012 20:46 65.2
29/7/2012 14:01 65.0 29/7/2012 14:06 65.2	30/7/2012 19:11 65.8 30/7/2012 19:16 65.6	1/8/2012 20:21 63.2 1/8/2012 20:26 63.2	3/8/2012 21:31 62.5 3/8/2012 21:36 63.2	5/8/2012 11:41 64.6 5/8/2012 11:46 65.3	5/8/2012 20:51 64.9 5/8/2012 20:56 65.2
29/7/2012 14:11 66.3	30/7/2012 19:21 67.0	1/8/2012 20:31 64.5	3/8/2012 21:41 62.9	5/8/2012 11:51 64.8	5/8/2012 21:01 65.1
29/7/2012 14:16 66.7	30/7/2012 19:26 65.9	1/8/2012 20:36 63.2	3/8/2012 21:46 62.6	5/8/2012 11:56 63.3	5/8/2012 21:06 65.2
29/7/2012 14:21 65.5 29/7/2012 14:26 67.0	30/7/2012 19:31 65.5 30/7/2012 19:36 66.6	1/8/2012 20:41 63.3 1/8/2012 20:46 63.2	3/8/2012 21:51 63.0 3/8/2012 21:56 62.9	5/8/2012 12:01 63.8 5/8/2012 12:06 63.1	5/8/2012 21:11 65.1 5/8/2012 21:16 64.9
29/7/2012 14:31 66.2	30/7/2012 19:41 65.5	1/8/2012 20:51 62.8	3/8/2012 22:01 62.8	5/8/2012 12:11 63.8	5/8/2012 21:21 65.1
29/7/2012 14:36 66.8	30/7/2012 19:46 65.6	1/8/2012 20:56 63.0	3/8/2012 22:06 62.8	5/8/2012 12:16 64.1	5/8/2012 21:26 64.5

Real-time Noise Data RTI	N1 (FEHD Hong Kong Transport	Section Whitefield Depot)			
5/8/2012 21:31 65.1	7/8/2012 22:41 63.2	10/8/2012 19:51 63.5	12/8/2012 10:01 65.1	12/8/2012 20:11 62.8	14/8/2012 21:21 66.9
5/8/2012 21:36 65.2	7/8/2012 22:46 63.0	10/8/2012 19:56 63.6	12/8/2012 10:06 64.3	12/8/2012 20:16 62.7	14/8/2012 21:26 65.2
5/8/2012 21:41 64.4	7/8/2012 22:51 62.9	10/8/2012 20:01 65.7	12/8/2012 10:00 64.3	12/8/2012 20:21 62.9	14/8/2012 21:31 64.6
5/8/2012 21:46 63.8	7/8/2012 22:56 62.8	10/8/2012 20:06 64.1	12/8/2012 10:16 65.0	12/8/2012 20:26 62.7	14/8/2012 21:36 64.8
5/8/2012 21:51 63.9	8/8/2012 19:01 64.9	10/8/2012 20:11 64.0	12/8/2012 10:21 64.3	12/8/2012 20:31 63.0	14/8/2012 21:41 64.1
5/8/2012 21:56 64.2	8/8/2012 19:06 65.7	10/8/2012 20:16 64.2	12/8/2012 10:26 64.0	12/8/2012 20:36 63.3	14/8/2012 21:46 64.5
5/8/2012 22:01 63.7	8/8/2012 19:11 65.2	10/8/2012 20:21 64.6	12/8/2012 10:31 64.0	12/8/2012 20:41 62.3	14/8/2012 21:51 64.4
5/8/2012 22:06 64.0	8/8/2012 19:16 64.6	10/8/2012 20:26 63.5	12/8/2012 10:36 64.1	12/8/2012 20:46 62.7	14/8/2012 21:56 64.1
5/8/2012 22:11 64.1	8/8/2012 19:21 65.4	10/8/2012 20:31 63.9	12/8/2012 10:41 64.9	12/8/2012 20:51 62.8	14/8/2012 22:01 64.0
5/8/2012 22:16 63.9	8/8/2012 19:26 64.8	10/8/2012 20:36 63.8	12/8/2012 10:46 63.3	12/8/2012 20:56 62.5	14/8/2012 22:06 64.5
5/8/2012 22:21 63.8	8/8/2012 19:31 64.4	10/8/2012 20:41 63.9	12/8/2012 10:51 63.3	12/8/2012 21:01 62.6	14/8/2012 22:11 63.8
5/8/2012 22:26 63.5	8/8/2012 19:36 65.2	10/8/2012 20:46 63.5	12/8/2012 10:56 63.0	12/8/2012 21:06 62.9	14/8/2012 22:16 64.7
5/8/2012 22:31 63.5	8/8/2012 19:41 65.3	10/8/2012 20:51 63.6	12/8/2012 11:01 63.7	12/8/2012 21:11 62.8	14/8/2012 22:21 64.1
5/8/2012 22:36 63.9	8/8/2012 19:46 65.6	10/8/2012 20:56 63.6 10/8/2012 21:01 63.4	12/8/2012 11:06 63.0	12/8/2012 21:16 63.0	14/8/2012 22:26 63.3
5/8/2012 22:41 63.4	8/8/2012 19:51 64.9	10/8/2012 21:06 65.6	12/8/2012 11:11 63.0	12/8/2012 21:21 63.0	14/8/2012 22:31 62.9
5/8/2012 22:46 63.2	8/8/2012 19:56 65.2		12/8/2012 11:16 63.6	12/8/2012 21:26 62.5	14/8/2012 22:36 63.1
5/8/2012 22:51 63.8	8/8/2012 20:01 65.2	10/8/2012 21:11 63.6	12/8/2012 11:21 63.1	12/8/2012 21:31 62.1	14/8/2012 22:41 63.5
5/8/2012 22:56 63.4	8/8/2012 20:06 64.6	10/8/2012 21:16 64.1	12/8/2012 11:26 63.1	12/8/2012 21:36 61.8	14/8/2012 22:46 63.2
6/8/2012 19:01 64.0	8/8/2012 20:11 64.7	10/8/2012 21:21 63.7	12/8/2012 11:31 63.6	12/8/2012 21:41 61.5	14/8/2012 22:51 62.4
6/8/2012 19:06 63.0	8/8/2012 20:16 64.6	10/8/2012 21:26 63.6	12/8/2012 11:36 63.1	12/8/2012 21:46 62.3	14/8/2012 22:56 63.8
6/8/2012 19:11 63.5	8/8/2012 20:21 65.0	10/8/2012 21:31 64.4	12/8/2012 11:41 63.4	12/8/2012 21:51 62.1	15/8/2012 19:01 64.7
6/8/2012 19:16 63.2	8/8/2012 20:26 64.7	10/8/2012 21:36 63.7	12/8/2012 11:46 63.7	12/8/2012 21:56 62.2	15/8/2012 19:06 64.7
6/8/2012 19:21 64.1	8/8/2012 20:31 64.3	10/8/2012 21:41 63.7	12/8/2012 11:51 63.5	12/8/2012 22:01 62.3	15/8/2012 19:11 66.1
6/8/2012 19:26 65.5	8/8/2012 20:36 64.2	10/8/2012 21:46 63.7	12/8/2012 11:56 62.8	12/8/2012 22:06 61.8	15/8/2012 19:16 64.9
6/8/2012 19:31 64.5	8/8/2012 20:41 64.3	10/8/2012 21:51 63.8	12/8/2012 12:01 63.5	12/8/2012 22:11 61.5	15/8/2012 19:21 65.3
6/8/2012 19:36 63.8	8/8/2012 20:46 63.7	10/8/2012 21:56 63.4	12/8/2012 12:06 62.5	12/8/2012 22:16 61.9	15/8/2012 19:26 64.9
6/8/2012 19:41 65.1	8/8/2012 20:51 64.0	10/8/2012 22:01 63.6	12/8/2012 12:11 62.9	12/8/2012 22:21 62.5	15/8/2012 19:31 65.3
6/8/2012 19:46 65.6	8/8/2012 20:56 64.0	10/8/2012 22:06 63.7	12/8/2012 12:16 63.5	12/8/2012 22:26 62.7	15/8/2012 19:36 64.6
6/8/2012 19:51 65.2	8/8/2012 21:01 63.9	10/8/2012 22:11 63.0	12/8/2012 12:21 63.5	12/8/2012 22:31 62.4	15/8/2012 19:41 64.8
6/8/2012 19:56 66.4	8/8/2012 21:06 63.5	10/8/2012 22:16 63.3	12/8/2012 12:26 63.3	12/8/2012 22:36 63.2	15/8/2012 19:46 64.5
6/8/2012 20:01 65.8	8/8/2012 21:11 64.6	10/8/2012 22:21 63.1	12/8/2012 12:31 63.4	12/8/2012 22:41 62.6	15/8/2012 19:51 65.4
6/8/2012 20:06 65.9	8/8/2012 21:16 64.4	10/8/2012 22:26 62.6	12/8/2012 12:36 62.9	12/8/2012 22:46 62.8	15/8/2012 19:56 64.7
6/8/2012 20:11 63.7	8/8/2012 21:21 63.6	10/8/2012 22:31 62.3	12/8/2012 12:41 63.2	12/8/2012 22:51 62.7	15/8/2012 20:01 64.3
6/8/2012 20:16 63.3	8/8/2012 21:26 63.6	10/8/2012 22:36 62.4	12/8/2012 12:46 63.2	12/8/2012 22:56 62.6	15/8/2012 20:06 65.4
6/8/2012 20:21 65.7	8/8/2012 21:31 63.9	10/8/2012 22:41 63.5	12/8/2012 12:51 63.5	13/8/2012 19:01 63.6	15/8/2012 20:11 65.5
6/8/2012 20:26 64.7	8/8/2012 21:36 64.5	10/8/2012 22:46 62.8	12/8/2012 12:56 63.8	13/8/2012 19:06 64.2	15/8/2012 20:16 65.6
6/8/2012 20:31 64.7	8/8/2012 21:41 63.8	10/8/2012 22:51 62.6	12/8/2012 13:01 63.2	13/8/2012 19:11 64.1	15/8/2012 20:21 65.6
6/8/2012 20:36 64.4	8/8/2012 21:46 63.7	10/8/2012 22:56 62.5	12/8/2012 13:06 63.0	13/8/2012 19:16 64.5	15/8/2012 20:26 64.6
6/8/2012 20:41 63.4	8/8/2012 21:51 63.7	11/8/2012 19:01 65.2	12/8/2012 13:11 62.7	13/8/2012 19:21 64.7	15/8/2012 20:31 64.5
6/8/2012 20:46 62.1	8/8/2012 21:56 63.5	11/8/2012 19:06 64.0	12/8/2012 13:16 63.3	13/8/2012 19:26 64.5	15/8/2012 20:36 64.7
6/8/2012 20:51 63.2	8/8/2012 22:01 63.4	11/8/2012 19:11 64.6	12/8/2012 13:21 63.3	13/8/2012 19:31 64.6	15/8/2012 20:41 64.3
6/8/2012 20:56 62.5	8/8/2012 22:06 63.4	11/8/2012 19:16 64.4	12/8/2012 13:26 64.0	13/8/2012 19:36 64.2	15/8/2012 20:46 64.4
6/8/2012 21:01 62.4	8/8/2012 22:11 63.7	11/8/2012 19:21 64.9	12/8/2012 13:31 63.3	13/8/2012 19:41 64.7	15/8/2012 20:51 64.4
6/8/2012 21:06 62.0	8/8/2012 22:16 63.7	11/8/2012 19:26 65.7	12/8/2012 13:36 63.9	13/8/2012 19:46 64.4	15/8/2012 20:56 64.4
6/8/2012 21:11 62.3	8/8/2012 22:21 63.2	11/8/2012 19:31 64.3	12/8/2012 13:41 63.7	13/8/2012 19:51 63.9	15/8/2012 21:01 64.5
6/8/2012 21:16 62.7	8/8/2012 22:26 63.3	11/8/2012 19:36 64.7	12/8/2012 13:46 63.6	13/8/2012 19:56 64.2	15/8/2012 21:06 64.6
6/8/2012 21:21 61.9	8/8/2012 22:31 63.3	11/8/2012 19:41 64.1	12/8/2012 14:51 64.1	13/8/2012 20:01 64.8	15/8/2012 21:11 64.4
6/8/2012 21:26 61.5	8/8/2012 22:36 63.2	11/8/2012 19:46 64.6	12/8/2012 14:56 64.2	13/8/2012 20:06 65.1	15/8/2012 21:16 64.4
6/8/2012 21:31 61.6	8/8/2012 22:41 63.1	11/8/2012 19:51 66.4	12/8/2012 15:01 64.0	13/8/2012 20:11 64.0	15/8/2012 21:21 64.2
6/8/2012 21:36 62.7	8/8/2012 22:46 63.0	11/8/2012 19:56 64.9	12/8/2012 15:06 63.5	13/8/2012 20:16 63.5	15/8/2012 21:26 64.3
6/8/2012 21:41 62.3	8/8/2012 22:51 63.4	11/8/2012 20:01 65.3	12/8/2012 15:11 64.7	13/8/2012 20:21 64.0	15/8/2012 21:31 64.0
6/8/2012 21:46 61.8	8/8/2012 22:56 62.5	11/8/2012 20:06 65.3	12/8/2012 15:16 66.3	13/8/2012 20:26 64.0	15/8/2012 21:36 64.0
6/8/2012 21:51 62.1	9/8/2012 19:01 64.3	11/8/2012 20:11 64.2	12/8/2012 15:21 64.6	13/8/2012 20:31 64.0	15/8/2012 21:41 63.3
6/8/2012 21:56 62.0	9/8/2012 19:06 65.4	11/8/2012 20:16 64.2	12/8/2012 15:26 65.2	13/8/2012 20:36 64.0	15/8/2012 21:46 63.7
6/8/2012 22:01 62.8	9/8/2012 19:11 65.0	11/8/2012 20:21 63.2	12/8/2012 15:31 64.7	13/8/2012 20:41 64.1	15/8/2012 21:51 63.7
6/8/2012 22:06 61.9	9/8/2012 19:16 65.3	11/8/2012 20:26 63.0	12/8/2012 15:36 64.3	13/8/2012 20:46 63.7	15/8/2012 21:56 63.4
6/8/2012 22:11 62.1	9/8/2012 19:21 64.4	11/8/2012 20:31 63.3	12/8/2012 15:41 64.3	13/8/2012 20:51 63.8	15/8/2012 22:01 63.9
6/8/2012 22:16 62.2	9/8/2012 19:26 65.0	11/8/2012 20:36 63.8	12/8/2012 15:46 63.7	13/8/2012 20:56 63.2	15/8/2012 22:06 63.6
6/8/2012 22:21 62.5	9/8/2012 19:31 64.4	11/8/2012 20:41 63.5	12/8/2012 15:51 64.2	13/8/2012 21:01 63.6	15/8/2012 22:11 63.7
6/8/2012 22:26 62.4	9/8/2012 19:36 64.7	11/8/2012 20:46 64.3	12/8/2012 15:56 65.2	13/8/2012 21:06 63.3	15/8/2012 22:16 63.4
6/8/2012 22:31 61.7	9/8/2012 19:41 66.2	11/8/2012 20:51 63.0	12/8/2012 16:01 64.2	13/8/2012 21:11 63.9	15/8/2012 22:21 63.3
6/8/2012 22:36 61.9	9/8/2012 19:46 64.3	11/8/2012 20:56 62.8	12/8/2012 16:06 64.6	13/8/2012 21:16 63.2	15/8/2012 22:26 63.3
6/8/2012 22:41 62.6	9/8/2012 19:51 64.0	11/8/2012 21:01 63.2	12/8/2012 16:11 64.4	13/8/2012 21:21 63.1	15/8/2012 22:31 63.5
6/8/2012 22:46 61.8	9/8/2012 19:56 64.3	11/8/2012 21:06 65.2	12/8/2012 16:16 64.9	13/8/2012 21:26 63.1	15/8/2012 22:36 63.5
6/8/2012 22:51 62.2	9/8/2012 20:01 64.7	11/8/2012 21:11 63.7	12/8/2012 16:21 64.9	13/8/2012 21:31 63.4	15/8/2012 22:41 63.7
6/8/2012 22:56 62.5	9/8/2012 20:06 64.2	11/8/2012 21:16 63.7	12/8/2012 16:26 64.7	13/8/2012 21:36 63.3	15/8/2012 22:46 63.7
7/8/2012 19:01 64.6	9/8/2012 20:11 65.0	11/8/2012 21:21 65.6	12/8/2012 16:31 64.7	13/8/2012 21:41 63.1	15/8/2012 22:51 63.3
7/8/2012 19:06 64.8	9/8/2012 20:16 64.5	11/8/2012 21:26 62.9	12/8/2012 16:36 64.0	13/8/2012 21:46 62.9	15/8/2012 22:56 63.4
7/8/2012 19:11 64.4	9/8/2012 20:21 65.6	11/8/2012 21:31 63.0	12/8/2012 16:41 64.6	13/8/2012 21:51 63.8	16/8/2012 19:01 61.8
7/8/2012 19:16 64.8	9/8/2012 20:26 64.1	11/8/2012 21:36 63.6	12/8/2012 16:46 64.7	13/8/2012 21:56 63.5	16/8/2012 19:06 62.1
7/8/2012 19:21 64.1	9/8/2012 20:31 64.7	11/8/2012 21:41 62.7	12/8/2012 16:51 65.8	13/8/2012 22:01 63.0	16/8/2012 19:11 62.5
7/8/2012 19:26 63.4	9/8/2012 20:36 64.6	11/8/2012 21:46 62.9	12/8/2012 16:56 65.8	13/8/2012 22:06 63.2	16/8/2012 19:16 62.7
7/8/2012 19:31 63.8	9/8/2012 20:41 64.6	11/8/2012 21:51 62.9	12/8/2012 17:01 64.6	13/8/2012 22:11 63.0	16/8/2012 19:21 63.5
7/8/2012 19:36 64.5	9/8/2012 20:46 64.3	11/8/2012 21:56 62.8	12/8/2012 17:06 64.9	13/8/2012 22:16 63.0	16/8/2012 19:26 62.5
7/8/2012 19:41 63.6	9/8/2012 20:51 64.0	11/8/2012 22:01 62.0	12/8/2012 17:11 65.1	13/8/2012 22:21 63.2	16/8/2012 19:31 62.7
7/8/2012 19:46 64.3	9/8/2012 20:56 63.9	11/8/2012 22:06 62.1	12/8/2012 17:16 64.7	13/8/2012 22:26 62.9	16/8/2012 19:36 62.8
7/8/2012 19:51 64.0	9/8/2012 21:01 64.2	11/8/2012 22:11 62.6	12/8/2012 17:21 65.2	13/8/2012 22:31 63.1	16/8/2012 19:41 62.4
7/8/2012 19:56 64.1	9/8/2012 21:06 63.7	11/8/2012 22:16 62.8	12/8/2012 17:26 64.6	13/8/2012 22:36 63.6	16/8/2012 19:46 62.3
7/8/2012 20:01 64.7	9/8/2012 21:11 63.8	11/8/2012 22:21 63.1	12/8/2012 17:31 64.4	13/8/2012 22:41 63.0	16/8/2012 19:51 62.1
7/8/2012 20:06 63.7	9/8/2012 21:16 63.7	11/8/2012 22:26 63.5	12/8/2012 17:36 64.4	13/8/2012 22:46 62.9	16/8/2012 19:56 63.8
7/8/2012 20:11 63.7	9/8/2012 21:21 63.6	11/8/2012 22:31 62.9	12/8/2012 17:41 65.2	13/8/2012 22:51 63.6	16/8/2012 20:01 62.7
7/8/2012 20:16 64.1	9/8/2012 21:26 63.8	11/8/2012 22:36 62.8	12/8/2012 17:46 65.4	13/8/2012 22:56 63.8	16/8/2012 20:06 61.5
7/8/2012 20:21 64.3	9/8/2012 21:31 64.1	11/8/2012 22:41 62.6	12/8/2012 17:51 65.4	14/8/2012 19:01 67.5	16/8/2012 20:11 61.8
7/8/2012 20:26 63.5	9/8/2012 21:36 64.2	11/8/2012 22:46 63.2	12/8/2012 17:56 65.4	14/8/2012 19:06 67.3	16/8/2012 20:16 61.2
7/8/2012 20:31 63.5	9/8/2012 21:41 63.4	11/8/2012 22:51 63.0	12/8/2012 18:01 64.8	14/8/2012 19:11 65.6	16/8/2012 20:21 61.8
7/8/2012 20:36 63.4	9/8/2012 21:46 64.1	11/8/2012 22:56 62.9	12/8/2012 18:06 65.4	14/8/2012 19:16 64.8	16/8/2012 20:26 62.0
7/8/2012 20:41 63.1	9/8/2012 21:51 64.6	12/8/2012 7:01 63.3	12/8/2012 18:11 63.7	14/8/2012 19:21 65.1	16/8/2012 20:31 61.8
7/8/2012 20:46 63.0	9/8/2012 21:56 63.7	12/8/2012 7:06 62.7	12/8/2012 18:16 64.1	14/8/2012 19:26 65.4	16/8/2012 20:36 61.7
7/8/2012 20:51 62.9	9/8/2012 22:01 63.7	12/8/2012 7:11 62.0	12/8/2012 18:21 63.6	14/8/2012 19:31 64.0	16/8/2012 20:41 62.3
7/8/2012 20:56 63.7	9/8/2012 22:06 64.0	12/8/2012 7:16 63.1	12/8/2012 18:26 63.7	14/8/2012 19:36 64.1	16/8/2012 20:46 63.1
7/8/2012 21:01 62.9	9/8/2012 22:11 64.0	12/8/2012 7:21 62.2	12/8/2012 18:31 63.6	14/8/2012 19:41 65.2	16/8/2012 20:51 62.4
7/8/2012 21:06 63.0	9/8/2012 22:16 64.3	12/8/2012 7:26 62.7	12/8/2012 18:36 63.2	14/8/2012 19:46 65.3	16/8/2012 20:56 62.8
7/8/2012 21:11 62.9	9/8/2012 22:21 63.5	12/8/2012 7:31 61.9	12/8/2012 18:41 63.2	14/8/2012 19:51 65.7	16/8/2012 21:01 61.5
7/8/2012 21:16 63.7	9/8/2012 22:26 63.9	12/8/2012 7:36 65.3	12/8/2012 18:46 63.1	14/8/2012 19:56 64.7	16/8/2012 21:06 61.7
7/8/2012 21:21 63.6	9/8/2012 22:31 63.3	12/8/2012 7:41 62.9	12/8/2012 18:51 62.7	14/8/2012 20:01 64.7	16/8/2012 21:11 61.8
7/8/2012 21:26 63.0	9/8/2012 22:36 63.4	12/8/2012 7:46 63.2	12/8/2012 18:56 63.0	14/8/2012 20:06 64.6	16/8/2012 21:16 61.9
7/8/2012 21:31 63.3	9/8/2012 22:41 63.7	12/8/2012 7:51 62.9	12/8/2012 19:01 63.0	14/8/2012 20:11 64.5	16/8/2012 21:21 61.8
7/8/2012 21:36 63.6	9/8/2012 22:46 63.4	12/8/2012 7:56 63.2	12/8/2012 19:06 62.7	14/8/2012 20:16 65.3	16/8/2012 21:26 61.7
7/8/2012 21:41 63.6	9/8/2012 22:51 63.3	12/8/2012 8:01 63.6	12/8/2012 19:11 62.9	14/8/2012 20:21 66.2	16/8/2012 21:31 61.8
7/8/2012 21:46 62.9	9/8/2012 22:56 63.4	12/8/2012 8:06 63.2	12/8/2012 19:16 63.0	14/8/2012 20:26 66.3	16/8/2012 21:36 62.0
7/8/2012 21:51 62.9	10/8/2012 19:01 63.9	12/8/2012 8:11 63.4	12/8/2012 19:21 63.1	14/8/2012 20:31 66.3	16/8/2012 21:41 61.5
7/8/2012 21:56 63.1	10/8/2012 19:06 63.4	12/8/2012 8:16 63.1	12/8/2012 19:26 63.1	14/8/2012 20:36 66.3	16/8/2012 21:46 61.9
7/8/2012 22:01 63.5	10/8/2012 19:11 63.9	12/8/2012 8:21 63.7	12/8/2012 19:31 63.0	14/8/2012 20:41 66.4	16/8/2012 21:51 61.8
7/8/2012 22:06 63.0	10/8/2012 19:16 63.3	12/8/2012 8:26 64.3	12/8/2012 19:36 63.1	14/8/2012 20:46 66.8	16/8/2012 21:56 61.5
7/8/2012 22:11 62.7	10/8/2012 19:21 63.2	12/8/2012 8:31 64.1	12/8/2012 19:41 62.6	14/8/2012 20:51 66.6	16/8/2012 22:01 61.6
7/8/2012 22:16 63.1	10/8/2012 19:26 63.2	12/8/2012 8:36 63.9	12/8/2012 19:46 62.3	14/8/2012 20:56 66.3	16/8/2012 22:06 62.0
7/8/2012 22:21 62.7	10/8/2012 19:31 63.6	12/8/2012 8:41 63.8	12/8/2012 19:51 63.2	14/8/2012 21:01 66.2	16/8/2012 22:11 62.3
7/8/2012 22:26 62.7	10/8/2012 19:36 63.0	12/8/2012 8:46 64.6	12/8/2012 19:56 63.4	14/8/2012 21:06 66.7	16/8/2012 22:16 63.2
7/8/2012 22:31 63.1	10/8/2012 19:41 62.8	12/8/2012 9:51 64.5	12/8/2012 20:01 62.7	14/8/2012 21:11 66.2	16/8/2012 22:21 62.0
7/8/2012 22:36 63.2	10/8/2012 19:46 62.9	12/8/2012 9:56 64.9	12/8/2012 20:06 62.8	14/8/2012 21:16 66.5	16/8/2012 22:26 61.8

16/8/2012 22:31 61.6	TN1 (FEHD Hong Kong Transpo 19/8/2012 7:41 63.0	19/8/2012 16:51 63.2	20/8/2012 22:01 63.0	23/8/2012 19:11 63.6	25/8/2012 20:21 64.7
16/8/2012 22:36 61.6	19/8/2012 7:46 61.6	19/8/2012 16:56 64.5	20/8/2012 22:06 62.9	23/8/2012 19:16 64.8	25/8/2012 20:26 65.3
16/8/2012 22:41 62.0	19/8/2012 7:51 62.2	19/8/2012 17:01 64.3	20/8/2012 22:11 62.6	23/8/2012 19:21 64.0	25/8/2012 20:31 64.6
16/8/2012 22:46 61.6	19/8/2012 7:56 63.3	19/8/2012 17:06 64.7	20/8/2012 22:16 62.7	23/8/2012 19:26 63.8	25/8/2012 20:36 64.1
16/8/2012 22:51 61.3	19/8/2012 8:01 61.7	19/8/2012 17:11 64.7	20/8/2012 22:21 62.7	23/8/2012 19:31 63.7	25/8/2012 20:41 63.3
16/8/2012 22:56 61.8	19/8/2012 8:06 62.8	19/8/2012 17:16 64.7	20/8/2012 22:26 62.9	23/8/2012 19:36 63.8	25/8/2012 20:46 64.8
17/8/2012 19:01 68.5	19/8/2012 8:11 62.3	19/8/2012 17:21 64.8	20/8/2012 22:31 62.6	23/8/2012 19:41 63.9	25/8/2012 20:51 64.9
17/8/2012 19:06 64.4	19/8/2012 8:16 62.9	19/8/2012 17:26 63.8	20/8/2012 22:36 63.2	23/8/2012 19:46 63.7	25/8/2012 20:56 64.7
17/8/2012 19:11 65.6	19/8/2012 8:21 62.5	19/8/2012 17:31 63.2	20/8/2012 22:41 62.8	23/8/2012 19:51 63.8	25/8/2012 21:01 64.4
17/8/2012 19:16 65.1	19/8/2012 8:26 63.3	19/8/2012 17:36 63.5	20/8/2012 22:46 62.2	23/8/2012 19:56 64.0	25/8/2012 21:06 63.9
17/8/2012 19:21 65.5	19/8/2012 8:31 63.9	19/8/2012 17:41 63.0	20/8/2012 22:51 62.5	23/8/2012 20:01 64.1	25/8/2012 21:11 63.4
17/8/2012 19:26 65.5	19/8/2012 8:36 63.9	19/8/2012 17:46 62.7	20/8/2012 22:56 62.6	23/8/2012 20:06 63.6	25/8/2012 21:16 64.3
17/8/2012 19:31 65.7	19/8/2012 8:41 63.0	19/8/2012 17:51 63.1	21/8/2012 19:01 64.4	23/8/2012 20:11 63.7	25/8/2012 21:21 63.4
17/8/2012 19:36 65.1	19/8/2012 8:46 63.7	19/8/2012 17:56 62.9	21/8/2012 19:06 64.9	23/8/2012 20:16 64.0	25/8/2012 21:26 63.0
17/8/2012 19:41 64.7	19/8/2012 8:51 63.9	19/8/2012 18:01 62.8	21/8/2012 19:11 64.7	23/8/2012 20:21 63.4	25/8/2012 21:31 62.7
17/8/2012 19:46 65.4	19/8/2012 8:56 62.9	19/8/2012 18:06 63.0	21/8/2012 19:16 64.5	23/8/2012 20:26 63.9	25/8/2012 21:36 62.5
17/8/2012 19:51 65.4	19/8/2012 9:01 63.4	19/8/2012 18:11 63.8	21/8/2012 19:21 64.0	23/8/2012 20:31 63.6	25/8/2012 21:41 63.3
17/8/2012 19:56 65.3	19/8/2012 9:06 63.8	19/8/2012 18:16 63.4	21/8/2012 19:26 64.5	23/8/2012 20:36 63.4	25/8/2012 21:46 62.7
17/8/2012 20:01 63.9	19/8/2012 9:11 63.5	19/8/2012 18:21 63.0	21/8/2012 19:31 64.0	23/8/2012 20:41 63.6	25/8/2012 21:51 63.9
17/8/2012 20:06 64.4	19/8/2012 9:16 64.9	19/8/2012 18:26 63.7	21/8/2012 19:36 63.6	23/8/2012 20:46 64.6	25/8/2012 21:56 64.2
17/8/2012 20:11 64.7	19/8/2012 9:21 65.8	19/8/2012 18:31 63.0	21/8/2012 19:41 63.6	23/8/2012 20:51 63.7	25/8/2012 22:01 63.5
17/8/2012 20:16 64.4	19/8/2012 9:26 64.8	19/8/2012 18:36 64.3	21/8/2012 19:46 63.7	23/8/2012 20:56 63.4	25/8/2012 22:06 63.4
17/8/2012 20:21 64.5	19/8/2012 9:31 66.2	19/8/2012 18:41 65.2	21/8/2012 19:51 64.3	23/8/2012 21:01 63.4	25/8/2012 22:11 63.6
17/8/2012 20:26 63.9	19/8/2012 9:36 65.8	19/8/2012 18:46 62.6	21/8/2012 19:56 63.2	23/8/2012 21:06 63.4	25/8/2012 22:16 63.4
17/8/2012 20:31 64.1	19/8/2012 9:41 66.1	19/8/2012 18:51 62.7	21/8/2012 20:01 64.0	23/8/2012 21:11 63.7	25/8/2012 22:21 63.6
17/8/2012 20:36 65.3	19/8/2012 9:46 65.7	19/8/2012 18:56 63.4	21/8/2012 20:06 65.8	23/8/2012 21:16 63.6	25/8/2012 22:26 63.5
17/8/2012 20:41 64.4 17/8/2012 20:46 64.5	19/8/2012 9:51 65.4	19/8/2012 19:01 62.4	21/8/2012 20:11 64.5	23/8/2012 21:21 63.3	25/8/2012 22:31 63.7
17/8/2012 20:51 64.4	19/8/2012 10:01 65.1	19/8/2012 19:06 63.2 19/8/2012 19:11 63.3	21/8/2012 20:16 63.6 21/8/2012 20:21 64.9	23/8/2012 21:26 63.2 23/8/2012 21:31 62.9	25/8/2012 22:36 64.5 25/8/2012 22:41 64.1
17/8/2012 20:56 64.1	19/8/2012 10:06 65.2	19/8/2012 19:16 62.8	21/8/2012 20:26 64.1	23/8/2012 21:36 63.4	25/8/2012 22:46 64.1
17/8/2012 21:01 63.6	19/8/2012 10:11 65.1	19/8/2012 19:21 62.9	21/8/2012 20:31 64.3	23/8/2012 21:41 64.6	25/8/2012 22:51 64.0
17/8/2012 21:06 64.3	19/8/2012 10:16 66.7	19/8/2012 19:26 62.8	21/8/2012 20:36 64.1	23/8/2012 21:46 63.1	25/8/2012 22:56 64.0
17/8/2012 21:11 64.2	19/8/2012 10:21 66.0	19/8/2012 19:31 64.5	21/8/2012 20:41 64.4	23/8/2012 21:51 62.8	26/8/2012 7:01 61.7
17/8/2012 21:16 64.5	19/8/2012 10:26 67.1	19/8/2012 19:36 63.4	21/8/2012 20:46 63.6	23/8/2012 21:56 63.7	26/8/2012 7:06 61.7
17/8/2012 21:21 64.3	19/8/2012 10:31 66.3	19/8/2012 19:41 62.6	21/8/2012 20:51 64.2	23/8/2012 22:01 64.0	26/8/2012 7:11 62.4
17/8/2012 21:26 63.9	19/8/2012 10:36 66.1	19/8/2012 19:46 63.1	21/8/2012 20:56 63.1	23/8/2012 22:06 63.4	26/8/2012 7:16 62.9
17/8/2012 21:31 64.2	19/8/2012 10:41 65.7	19/8/2012 19:51 63.4	21/8/2012 21:01 62.8	23/8/2012 22:11 63.1	26/8/2012 7:21 62.3
17/8/2012 21:36 64.5	19/8/2012 10:46 65.3	19/8/2012 19:56 62.8	21/8/2012 21:06 63.5	23/8/2012 22:16 63.2	26/8/2012 7:26 65.3
17/8/2012 21:41 64.3	19/8/2012 10:51 65.5	19/8/2012 20:01 63.0	21/8/2012 21:11 62.9	23/8/2012 22:21 63.2	26/8/2012 7:31 62.0
17/8/2012 21:46 64.2	19/8/2012 10:56 67.6	19/8/2012 20:06 62.5	21/8/2012 21:16 63.0	23/8/2012 22:26 63.2	26/8/2012 7:36 66.0
17/8/2012 21:51 63.7	19/8/2012 11:01 66.6	19/8/2012 20:11 62.8	21/8/2012 21:21 62.4	23/8/2012 22:31 63.0	26/8/2012 7:41 63.0
17/8/2012 21:56 64.4	19/8/2012 11:06 67.1	19/8/2012 20:16 63.4	21/8/2012 21:26 62.6	23/8/2012 22:36 63.9	26/8/2012 7:46 62.7
17/8/2012 22:01 63.8	19/8/2012 11:11 55.3	19/8/2012 20:21 64.2	21/8/2012 21:31 62.8	23/8/2012 22:41 62.6	26/8/2012 7:51 64.1
17/8/2012 22:06 63.7	19/8/2012 11:16 68.3	19/8/2012 20:26 64.8	21/8/2012 21:36 62.4	23/8/2012 22:46 63.6	26/8/2012 7:56 62.6
17/8/2012 22:11 63.5	19/8/2012 11:21 68.9	19/8/2012 20:31 65.6	21/8/2012 21:41 63.1	23/8/2012 22:51 62.7	26/8/2012 8:01 62.4
17/8/2012 22:16 63.8	19/8/2012 11:26 67.7	19/8/2012 20:36 64.8	21/8/2012 21:46 62.6	23/8/2012 22:56 63.1	26/8/2012 8:06 63.1
17/8/2012 22:21 63.4	19/8/2012 11:31 68.7	19/8/2012 20:41 65.0	21/8/2012 21:51 62.6	24/8/2012 19:01 64.8	26/8/2012 8:11 63.6
17/8/2012 22:26 64.0	19/8/2012 11:36 67.5	19/8/2012 20:46 64.9	21/8/2012 21:56 62.9	24/8/2012 19:06 64.5	26/8/2012 8:16 62.7
17/8/2012 22:31 63.8	19/8/2012 11:41 65.8	19/8/2012 20:51 65.0	21/8/2012 22:01 62.5	24/8/2012 19:11 64.0	26/8/2012 8:21 64.0
17/8/2012 22:36 63.7	19/8/2012 11:46 66.3	19/8/2012 20:56 64.1	21/8/2012 22:06 62.5	24/8/2012 19:16 63.9	26/8/2012 8:26 64.7
17/8/2012 22:41 63.5	19/8/2012 11:51 65.1	19/8/2012 21:01 64.9	21/8/2012 22:11 62.3	24/8/2012 19:21 63.8	26/8/2012 8:31 64.2
17/8/2012 22:46 63.2	19/8/2012 11:56 64.7	19/8/2012 21:06 64.7	21/8/2012 22:16 62.7	24/8/2012 19:26 63.8	26/8/2012 8:36 64.0
17/8/2012 22:51 63.1	19/8/2012 12:01 64.2	19/8/2012 21:11 64.5	21/8/2012 22:21 62.9	24/8/2012 19:31 64.8	26/8/2012 8:41 64.0
17/8/2012 22:56 62.7	19/8/2012 12:06 64.5	19/8/2012 21:16 64.8	21/8/2012 22:26 62.7	24/8/2012 19:36 63.8	26/8/2012 8:46 64.2
18/8/2012 19:01 63.4	19/8/2012 12:11 64.0	19/8/2012 21:21 63.9	21/8/2012 22:31 63.1	24/8/2012 19:41 63.3	26/8/2012 8:51 65.3
18/8/2012 19:06 63.8	19/8/2012 12:16 64.6	19/8/2012 21:26 64.1	21/8/2012 22:36 62.3	24/8/2012 19:46 63.9	26/8/2012 8:56 65.1
18/8/2012 19:11 62.8	19/8/2012 12:21 64.5	19/8/2012 21:31 65.2	21/8/2012 22:41 62.4	24/8/2012 19:51 63.6	26/8/2012 9:01 65.4
18/8/2012 19:16 62.8	19/8/2012 12:26 64.6	19/8/2012 21:36 63.9	21/8/2012 22:46 62.4	24/8/2012 19:56 65.1	26/8/2012 9:06 65.3
18/8/2012 19:21 64.0	19/8/2012 12:31 64.6	19/8/2012 21:41 64.6	21/8/2012 22:51 62.9	24/8/2012 20:01 64.8	26/8/2012 9:11 65.5
18/8/2012 19:26 63.8	19/8/2012 12:36 64.4	19/8/2012 21:46 64.7	21/8/2012 22:56 62.1	24/8/2012 20:06 65.6	26/8/2012 9:16 66.3
18/8/2012 19:31 63.6	19/8/2012 12:41 63.8	19/8/2012 21:51 64.2	22/8/2012 19:01 64.0	24/8/2012 20:11 63.7	26/8/2012 9:21 65.2
18/8/2012 19:36 63.0	19/8/2012 12:46 63.9	19/8/2012 21:56 64.2	22/8/2012 19:06 63.5	24/8/2012 20:16 63.5	26/8/2012 9:26 65.6
18/8/2012 19:41 62.7	19/8/2012 12:51 63.6	19/8/2012 22:01 64.0	22/8/2012 19:11 63.5	24/8/2012 20:21 63.9	26/8/2012 9:31 65.7
18/8/2012 19:46 62.3	19/8/2012 12:56 63.8	19/8/2012 22:06 64.9	22/8/2012 19:16 63.6	24/8/2012 20:26 62.9	26/8/2012 9:36 65.9
18/8/2012 19:51 62.8	19/8/2012 13:01 63.7	19/8/2012 22:11 64.3	22/8/2012 19:21 63.9	24/8/2012 20:31 62.8	26/8/2012 9:41 65.1
18/8/2012 19:56 63.1	19/8/2012 13:06 63.5	19/8/2012 22:16 63.7	22/8/2012 19:26 63.5	24/8/2012 20:36 64.6	26/8/2012 9:46 65.9
18/8/2012 20:01 63.7	19/8/2012 13:11 63.6	19/8/2012 22:21 63.9	22/8/2012 19:31 63.7	24/8/2012 20:41 63.3	26/8/2012 9:51 65.0
18/8/2012 20:06 63.2	19/8/2012 13:16 65.0	19/8/2012 22:26 64.5	22/8/2012 19:36 63.8	24/8/2012 20:46 63.4	26/8/2012 9:56 64.9
18/8/2012 20:11 63.5	19/8/2012 13:21 67.1	19/8/2012 22:31 64.1	22/8/2012 19:41 64.5	24/8/2012 20:51 64.8	26/8/2012 10:01 65.6
18/8/2012 20:16 64.1	19/8/2012 13:26 66.5	19/8/2012 22:36 64.0	22/8/2012 19:46 64.8	24/8/2012 20:56 64.9	26/8/2012 10:06 65.3
18/8/2012 20:21 63.8	19/8/2012 13:31 67.7	19/8/2012 22:41 65.1	22/8/2012 19:51 64.4	24/8/2012 21:01 64.9	26/8/2012 10:11 64.7
18/8/2012 20:26 63.5	19/8/2012 13:36 65.6	19/8/2012 22:46 63.8	22/8/2012 19:56 64.4	24/8/2012 21:06 63.8	26/8/2012 10:16 66.8
18/8/2012 20:31 63.2	19/8/2012 13:41 65.4	19/8/2012 22:51 63.4	22/8/2012 20:01 64.1	24/8/2012 21:11 63.9	26/8/2012 10:21 66.7
18/8/2012 20:36 62.9	19/8/2012 13:46 65.1	19/8/2012 22:56 63.6	22/8/2012 20:06 64.1	24/8/2012 21:16 64.7	26/8/2012 10:26 66.3
18/8/2012 20:41 62.9	19/8/2012 13:51 65.5	20/8/2012 19:01 64.0	22/8/2012 20:11 63.4	24/8/2012 21:21 64.2	26/8/2012 10:31 67.3
18/8/2012 20:46 63.8	19/8/2012 13:56 65.3	20/8/2012 19:06 63.0	22/8/2012 20:16 64.1	24/8/2012 21:26 64.6	26/8/2012 10:36 66.1
18/8/2012 20:51 63.7	19/8/2012 14:01 66.2	20/8/2012 19:11 62.8	22/8/2012 20:21 64.3	24/8/2012 21:31 64.1	26/8/2012 10:41 65.9
18/8/2012 20:56 63.5	19/8/2012 14:06 65.1	20/8/2012 19:16 63.3	22/8/2012 20:26 63.7	24/8/2012 21:36 64.3	26/8/2012 10:46 66.7
18/8/2012 21:01 63.6	19/8/2012 14:11 66.1	20/8/2012 19:21 64.5	22/8/2012 20:31 64.3	24/8/2012 21:41 64.2	26/8/2012 10:51 66.6
18/8/2012 21:06 63.6	19/8/2012 14:16 65.5	20/8/2012 19:26 63.1	22/8/2012 20:36 63.9	24/8/2012 21:46 64.0	26/8/2012 10:56 67.0
18/8/2012 21:11 63.1	19/8/2012 14:21 64.2	20/8/2012 19:31 62.6	22/8/2012 20:41 64.0	24/8/2012 21:51 63.8	26/8/2012 11:01 66.7
18/8/2012 21:16 62.7	19/8/2012 14:26 64.6	20/8/2012 19:36 64.0	22/8/2012 20:46 64.1	24/8/2012 21:56 63.7	26/8/2012 11:06 66.3
18/8/2012 21:21 62.8	19/8/2012 14:31 64.5	20/8/2012 19:41 63.7	22/8/2012 20:51 64.5	24/8/2012 22:01 64.2	26/8/2012 11:11 67.1
18/8/2012 21:26 62.5	19/8/2012 14:36 65.4	20/8/2012 19:46 63.1	22/8/2012 20:56 65.0	24/8/2012 22:06 64.2	26/8/2012 11:16 66.7
18/8/2012 21:31 62.8	19/8/2012 14:41 65.8	20/8/2012 19:51 63.8	22/8/2012 21:01 65.1	24/8/2012 22:11 63.5	26/8/2012 11:21 66.4
18/8/2012 21:36 63.0	19/8/2012 14:46 68.2	20/8/2012 19:56 63.8	22/8/2012 21:06 64.9	24/8/2012 22:16 64.8	26/8/2012 11:26 66.0
18/8/2012 21:41 62.9	19/8/2012 14:51 66.4	20/8/2012 20:01 63.7	22/8/2012 21:11 64.9	24/8/2012 22:21 64.0	26/8/2012 11:31 65.7
18/8/2012 21:46 63.0	19/8/2012 14:56 65.7	20/8/2012 20:06 63.5	22/8/2012 21:16 64.8	24/8/2012 22:26 64.0	26/8/2012 11:36 65.8
18/8/2012 21:51 63.1	19/8/2012 15:01 64.0	20/8/2012 20:11 63.9	22/8/2012 21:21 64.6	24/8/2012 22:31 64.6	26/8/2012 11:41 66.0
18/8/2012 21:56 62.4	19/8/2012 15:06 63.9	20/8/2012 20:16 66.0	22/8/2012 21:26 64.9	24/8/2012 22:36 64.1	26/8/2012 11:46 65.6
18/8/2012 22:01 62.7	19/8/2012 15:11 64.0	20/8/2012 20:21 64.1	22/8/2012 21:31 63.3	24/8/2012 22:41 63.9	26/8/2012 11:51 65.3
18/8/2012 22:06 62.9	19/8/2012 15:16 64.5	20/8/2012 20:26 63.7	22/8/2012 21:36 64.0	24/8/2012 22:46 63.8	26/8/2012 11:56 65.4
18/8/2012 22:11 62.5	19/8/2012 15:21 64.7	20/8/2012 20:31 64.1	22/8/2012 21:41 63.4	24/8/2012 22:51 64.0	26/8/2012 12:01 63.9
18/8/2012 22:16 63.5	19/8/2012 15:26 64.4	20/8/2012 20:36 63.9	22/8/2012 21:46 63.2	24/8/2012 22:56 64.2	26/8/2012 12:06 63.5
18/8/2012 22:21 62.4	19/8/2012 15:31 63.9	20/8/2012 20:41 63.5	22/8/2012 21:51 62.5	25/8/2012 19:01 65.2	26/8/2012 12:11 65.0
18/8/2012 22:26 61.6	19/8/2012 15:36 64.4	20/8/2012 20:46 63.4	22/8/2012 21:56 63.2	25/8/2012 19:06 65.8	26/8/2012 12:16 63.8
18/8/2012 22:31 62.5	19/8/2012 15:41 64.7	20/8/2012 20:51 63.6	22/8/2012 22:01 63.0	25/8/2012 19:11 66.2	26/8/2012 12:21 63.9
18/8/2012 22:36 61.5	19/8/2012 15:46 64.4	20/8/2012 20:56 63.0	22/8/2012 22:06 63.2	25/8/2012 19:16 66.0	26/8/2012 12:26 64.4
18/8/2012 22:41 61.3	19/8/2012 15:51 64.4	20/8/2012 21:01 63.2	22/8/2012 22:11 63.0	25/8/2012 19:21 66.1	26/8/2012 12:31 63.6
18/8/2012 22:46 62.2	19/8/2012 15:56 64.6	20/8/2012 21:06 63.7	22/8/2012 22:16 63.1	25/8/2012 19:26 66.2	26/8/2012 12:36 63.3
18/8/2012 22:51 62.4	19/8/2012 16:01 65.1	20/8/2012 21:11 64.3	22/8/2012 22:21 63.0	25/8/2012 19:31 66.4	26/8/2012 12:41 64.1
18/8/2012 22:56 61.7	19/8/2012 16:06 64.4	20/8/2012 21:16 63.2	22/8/2012 22:26 63.6	25/8/2012 19:36 65.8	26/8/2012 12:46 65.1
19/8/2012 7:01 62.8	19/8/2012 16:11 64.3	20/8/2012 21:21 63.3	22/8/2012 22:31 62.8	25/8/2012 19:41 65.5	26/8/2012 12:51 65.0
19/8/2012 7:06 61.5	19/8/2012 16:16 64.7	20/8/2012 21:26 63.1	22/8/2012 22:36 63.0	25/8/2012 19:46 65.1	26/8/2012 12:56 65.8
19/8/2012 7:11 61.2	19/8/2012 16:21 64.4	20/8/2012 21:31 63.1	22/8/2012 22:41 63.0	25/8/2012 19:51 65.4	26/8/2012 13:01 67.0
19/8/2012 7:16 62.0 19/8/2012 7:21 64.5	19/8/2012 16:26 65.1	20/8/2012 21:36 63.0	22/8/2012 22:46 63.3	25/8/2012 19:56 66.2	26/8/2012 13:06 66.4
	19/8/2012 16:31 64.9	20/8/2012 21:41 63.3	22/8/2012 22:51 62.5	25/8/2012 20:01 65.0	26/8/2012 13:11 66.3
19/8/2012 7:26 62.6	19/8/2012 16:36 64.6	20/8/2012 21:46 62.8	22/8/2012 22:56 62.9	25/8/2012 20:06 65.1	26/8/2012 13:16 66.5
19/8/2012 7:31 61.4	19/8/2012 16:41 65.1	20/8/2012 21:51 63.8	23/8/2012 19:01 63.9	25/8/2012 20:11 65.1	26/8/2012 13:21 66.9

	Real-time Noise Data RTN	N1 (FEHD Hong Kong Transport	Section Whitefield Depot			
		1		29/7/2012 5:41 60.6	30/7/2012 6:51 63.0	1/8/2012 0:01 62.2
	26/8/2012 13:36 66.9	26/8/2012 22:46 63.0	28/7/2012 4:36 59.8	29/7/2012 5:46 60.1	30/7/2012 6:56 63.5	1/8/2012 0:06 61.9
	26/8/2012 13:46 67.0	26/8/2012 22:56 64.1	28/7/2012 4:46 59.5	29/7/2012 5:56 59.7	30/7/2012 23:06 63.4	1/8/2012 0:16 62.3
	26/8/2012 14:01 65.7	27/8/2012 19:11 64.7		29/7/2012 6:11 60.7	30/7/2012 23:21 62.3	1/8/2012 0:31 61.0
	26/8/2012 14:11 66.5	27/8/2012 19:21 64.4	28/7/2012 5:11 60.4	29/7/2012 6:21 61.2	30/7/2012 23:31 62.2	1/8/2012 0:41 60.8
Biskort Liss: Discription Biskort Liss: Discription Biskort Liss: Discription						
BARDEN 164 BARDEN 164 BARDEN 164 BARDEN 16	26/8/2012 14:26 65.6	27/8/2012 19:36 63.9	28/7/2012 5:26 60.1	29/7/2012 6:36 61.5	30/7/2012 23:46 62.1	1/8/2012 0:56 61.0
BARKAND LANG BAL BARKAND LANG BAL BARKAND LANG BAL BALKAND LANG BAL BALKAND LANG BAL BALKAND LANG BAL BALKAND LANG BAL BAL BAL						
BARKAND KAN						
Bedesiti 15:1 Bed Bedesiti 2:5:1 Bedesiti 2:5:1 Bedesiti 2:5:1 Bedesiti 2:5:5	26/8/2012 14:51 66.2	27/8/2012 20:01 63.3	28/7/2012 5:51 61.3	29/7/2012 23:01 62.6	31/7/2012 0:11 62.8	1/8/2012 1:21 60.5
Alkebrich Bis Property 2:14 Bit Bit Property 2:14 Bit Bit Property 2:14 Bit Bit Property 2:14 Bit Bit <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
ANNOTE 1616 67. PARCENT 2017 BANNOTE 1610 BANNOTE 1510						
BARKANT LEGA F.T. BARKANT LEGA	26/8/2012 15:16 66.7	27/8/2012 20:26 63.1	28/7/2012 6:16 62.2	29/7/2012 23:26 62.0	31/7/2012 0:36 61.4	1/8/2012 1:46 59.6
Basebart						
Bescher Leiste Besch Stractis Ed.						
Bescher 1951 Bescher 1951<	26/8/2012 15:41 66.5	27/8/2012 20:51 63.0	28/7/2012 6:41 62.9	29/7/2012 23:51 62.2	31/7/2012 1:01 61.6	1/8/2012 2:11 60.0
Bit Net Intel Info Standbit Info						
Description Fit Description Status Status </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Big 2007 Description	26/8/2012 16:06 67.1	27/8/2012 21:16 64.1	28/7/2012 23:06 63.0	30/7/2012 0:16 61.5	31/7/2012 1:26 60.5	1/8/2012 2:36 59.2
Belesch 1: 1:2: 6:6: 278/0012 1:2:: 6:7 307/012 2:2:: 6:3 307/012 1:3:: 6:1 317/012 1:3:: 6:1 117/012 1:3:: 6:1						
Selector						
Beschert End Beschert Einstein Bischert	26/8/2012 16:31 66.2	27/8/2012 21:41 63.7	28/7/2012 23:31 62.8	30/7/2012 0:41 60.9	31/7/2012 1:51 60.9	1/8/2012 3:01 58.4
208001 16.5 6.6.6 27782012 22.01 6.3.6 27782012 22.01 6.3.6 27782012 22.01 6.3.6 27782012 22.01 6.3.6 1772012 21.01 1772012 21.01 1772012 22.01 6.3.6 1772012 22.01 6.3.6 1772012 22.01 6.3.6 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012 22.01 6.3.1 1772012<						
2000011 Control 27720012 2210 64.9 27720012 2210 64.9 2772012 2210 64.9 2772012 2210 64.9 2772012 2210 64.9 2772012 2210 64.9 2772012 2210 64.9 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 64.0 2772012 2210 2210 2772012 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 2210 22100 22100 221000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
BRBORD 12 17:16 64.6 Z78/2012 22:1 69.4 S07/2012 11:18 60.0 S17/2012 12:2 89.9 HB2012 3:11 89.7 BBBORD 12 17:11 64.5 Z78/2012 22:1 64.0 Z97/2012 0:1 62.0 S07/2012 1:31 89.3 S17/2012 2:4 89.7 HB2012 3:55 89.7 BBBORD 12 17:16 64.6 Z78/2012 2:55 64.5 Z97/2012 0:1 61.7 Z97/2012 0:1 61.6 Z97/2012 0:1 61.7	26/8/2012 16:56 65.4	27/8/2012 22:06 63.9	28/7/2012 23:56 62.2	30/7/2012 1:06 59.9	31/7/2012 2:16 59.0	1/8/2012 3:26 58.1
288/2012 2778/2012 2778/2012 2778/2012 278 7778/212 97.7 118/2012 98.1 11772012 98.1 11772012 98.1 118/2012 98.1 118/2012 98.1 118/2012 98.1 98.1 118/2012 98.1 118/2012 98.1 118/2012 98.1 118/2012 98.1 118/2012 98.1 118/2012 98.1 118/2012 118/2012 118/2012 118/2012 118/2012 118/2012 118/2012 118/2012 118/2012 118/2012 118/2012 118/2012 118/2012 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
288/2012 17:10 46.4 277/2012 61.0 307/2012 36.3 317/2012 46.1 118/2012 58.7 288/2012 17:36 64.7 278/2012 223 65.0 307/2012 16.0 317/2012 36.0 317/2012 58.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 118/2012 56.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012 30.0 317/2012	26/8/2012 17:11 65.9	27/8/2012 22:21 65.1	29/7/2012 0:11 62.0	30/7/2012 1:21 59.7	31/7/2012 2:31 59.7	1/8/2012 3:41 58.3
28/82/02 17:30 64.7 27/82/02 22:40 64.7 27/82/01 22:40 65.7 307/2012 2:41 85.7 317/2012 2:51 85.5 118/2012 4:01 65.0 2008/01 17:41 64.7 27/82/01 22:48 64.7 27/82/01 22:48 64.7 27/82/01 22:48 65.1 317/2012 2:51 85.3 117/2012 2:51 85.3 117/2012 2:51 85.3 117/2012 2:51 85.3 117/2012 2:51 85.3 117/2012 2:51 85.3 317/2012 2:51 85.3 117/2012 2:51 85.3 117/2012 3:51 85.3 117/2012 3:51 85.3 117/2012 3:51 85.3 117/2012 3:51 85.3 117/2012 3:51 85.3 117/2012 3:51 85.3 117/2012 3:51 85.3 117/2012 3:51 85.3 117/2012 3:31 85.1 118/2012 4:42 85.3 2008/2012 1:810 64.1 207/2012 0:8 62.7 207/2012 0:8 87.3 317/2012 3:31 86.1 118/2012 4:41 85.4 2008/2012 1:80 64.1 207/2012 0:8 63.2 207/2012 0:8 87.3 317/2012 3:31 87.3	26/8/2012 17:21 64.5	27/8/2012 22:31 64.0	29/7/2012 0:21 61.9	30/7/2012 1:31 59.3	31/7/2012 2:41 59.1	1/8/2012 3:51 58.7
28/82/02 17:41 64.4 27/82/01 2:256 63.4 27/72/01 2:04 61.8 307/72/01 2:15 68.8 317/72/11 2:01 68.8 118/2012 4:11 68.8 28/82/01 2:17.6 64.4 27/82/01 2:256 63.8 27/72/01 2:01 63.9 317/72/01 2:01 63.9 317/72/01 2:01 63.9 317/72/01 2:01 63.9 317/72/01 2:01 63.9 317/72/01 2:01 63.9 317/72/01 2:01 63.9 317/72/01 2:01 63.9 317/72/01 2:01 63.9 317/72/01 2:01 63.9 317/72/01 2:01 63.9 317/72/01 2:01 63.9 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/01 2:01 64.0 287/72/01 2:01 63.0 307/72/01 2:21 63.0 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/01 2:01 63.0 317/72/0						
28/80/21 (217:46 64.4 28/72/012 (2:66 61.4 307/2012 (2:6 58.9 11/2012 (2:6 11/2012 (2:6 11/2012 (2:6 11/2012 (2:6 11/2012 (2:6						
20/02/12 17:56 66.0 307/2012 2:06 80.0 317/2012 3:16 85.5 11/2012 3:46 85.5 11/2012 3:46 85.5 20/02/12 18:00 64.3 207/2012 10:01 61.9 307/2012 2:16 60.0 317/2012 3:16 80.8 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.5 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:46 68.7 11/2012 3:47	26/8/2012 17:46 64.4		29/7/2012 0:46 61.4	30/7/2012 1:56 58.9	31/7/2012 3:06 58.9	1/8/2012 4:16 58.6
26/8/2012 18/06 64.3 28/7/2012 0.01 62.8 28/7/2012 1.01 61.7 307/2012 2.21 68.9 317/2012 2.36 68.1 1//2012 2.41 69.1 26/8/2012 18/16 64.5 28/7/2012 0.01 62.8 29/7/2012 1.01 60.8 307/2012 2.31 64.9 317/2012 3.36 60.6 1//2012 2.41 63.0 26/8/2012 18/16 64.2 28/7/2012 0.01 62.8 29/7/2012 1.31 61.4 307/2012 2.41 63.8 317/2012 3.36 60.6 1//2012 2.41 63.8 26/8/2012 18/6 64.1 28/7/2012 0.21 62.0 29/7/2012 1.31 61.4 307/2012 2.46 63.3 317/2012 3.401 64.4 1//2012 5.16 63.8 26/8/2012 18/6 63.8 28/7/2012 0.31 62.2 29/7/2012 1.216 60.1 307/2012 2.31 63.4 317/2012 4.41 60.4 1//2012 6.21 53.4 26/8/2012 18/16 63.8 28/7/2012 0.46 63.8 37/7/2012 4.31 63.0 317/2012 4.41 60.4 1//2012 4.21 63.0 317/2012 4.41 63.0 44						
28/82/012 18:1 64.5 28/7/2012 0:0 62.8 28/7/2012 2:0 5:0 31/7/2012 3:0 0:0 18/2012 4:6 0:0 18/2012 4:6 0:0 18/2012 4:6 0:0 18/2012 4:6 0:0 18/2012 4:6 0:0 18/2012 </td <td></td> <td>Night-time 23:00-07:00</td> <td></td> <td></td> <td></td> <td></td>		Night-time 23:00-07:00				
26/80/21 28/82/21	26/8/2012 18:11 64.1		29/7/2012 1:11 60.5	30/7/2012 2:21 58.9	31/7/2012 3:31 58.1	1/8/2012 4:41 59.6
26/8/2012 18.3 64.1 28/7/2012 22.6 8.8 317/2012 35.6 60.7 1/8/2012 53.6 58.9 26/8/2012 18.8 63.7 28/7/2012 0.3 62.2 28/7/2012 22.6 58.9 317/2012 36.6 60.7 1/8/2012 51.6 58.9 26/8/2012 18.6 63.3 28/7/2012 16.6 52.2 28/7/2012 26.6 58.4 317/7/2012 41.6 53.7 317/7/2012 41.6 53.7 317/7/2012 41.6 53.7 317/7/2012 41.6 53.4 58.6 317/7/2012 41.6 53.4 58.6 317/7/2012 43.6 43.6 41.						
26/8/2012 28/8/2012 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
26/8/2012 15.46 63.4 28/7/2012 23.67 207/2012 16.9 307/2012 56.4 317/2012 16.4 18/2012 55.5 59.4 26/8/2011 15.6 63.7 28/7/2012 16.6 307/2012 15.6 59.4 18/2012 15.6 59.4 18/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 16.6 307/2012 317/2012 16.0 18/2012 16.0 307/2012 317/2012 46.6 18/2012 16.6 307/2012 36.6 307/2012 36.6 307/2012 46.6 18/2012 16.0 18/2012 18/2012 16.0 18/2012 16.0 307/2012 36.6 317/2012 46.6 18/2012 18/2012 16.0 18/2012	26/8/2012 18:36 64.1	28/7/2012 0:26 63.3	29/7/2012 1:36 61.4	30/7/2012 2:46 58.3	31/7/2012 3:56 60.7	1/8/2012 5:06 58.9
26/8/2012 19:66 28/7/2012 0:16 61.5 29/7/2012 2:16 60.6 30/7/2012 3:16 57.7 31/7/2012 4:21 69.4 11/8/2012 5:31 59.8 26/8/2012 19:06 63.8 26/7/2012 0:56 61.8 29/7/2012 2:16 60.6 31/7/2012 4:21 60.6 11/8/2012 5:31 59.8 26/8/2012 19:16 64.2 28/7/2012 1:16 61.9 29/7/2012 2:16 60.5 31/7/2012 4:31 66.5 11/8/2012 5:41 60.3 26/8/2012 19:16 64.3 28/7/2012 1:16 61.4 29/7/2012 2:16 60.8 30/7/2012 3:31 66.0 31/7/2012 4:41 69.9 11/8/2012 5:16 60.7 26/8/2012 19:31 66.3 28/7/2012 1:36 61.4 29/7/2012 2:46 60.0 31/7/2012 4:45 60.0 11/8/2012 5:66 60.1 11/8/2012 5:66 60.2 11/8/2012 5:66 60.2 11/8/2012 5:66 60.2 11/8/2012 5:66 60.2 11/8/2012 5:66 60.2 11/8/2012 5:66 60.2 11/8/2012 5:66 60.2 11/8/2012 5:66 60.7 28/7/2012 5:66 60.3 30/7/2012 4:66						
Belkerolz 19:00 64.0 287/2012 10:0 61.6 297/2012 2:01 60.1 307/2012 3:16 57.7 317/2012 4:26 60.4 118/2012 5:36 59.8 26/8/2012 10:01 64.2 287/2012 10:01 61.9 297/2012 2:16 60.1 307/2012 3:26 57.6 317/2012 4:36 60.3 118/2012 5:46 60.3 26/8/2012 11:01 61.4 297/2012 2:16 60.1 307/2012 3:26 57.6 317/2012 4:36 60.5 118/2012 5:46 60.3 26/8/2012 11:33 65.3 287/2012 1:16 61.0 297/2012 2:36 60.8 307/2012 3:46 60.0 317/2012 4:46 60.0 118/2012 6:60 60.3 26/8/2012 11:36 65.4 297/2012 1:36 61.4 297/2012 2:36 60.8 307/2012 3:46 60.0 317/2012 4:46 60.5 118/2012 6:60 60.3 307/2012 3:46 60.0 317/2012 3:46 60.0 317/2012 3:46 60.0 317/2012 3:46 60.0 317/2012 3:46 60.0 317/2012 3:46 60.0 307/2012 4:41 60.0 317/2012 3:46 <						
26/8/2012 19:11 65.7 28/7/2012 10:1 61.9 29/7/2012 2:11 60.5 30/7/2012 3:21 58.0 31/7/2012 4:31 60.5 1/8/2012 5:51 59.7 26/8/2012 19:21 64.9 28/7/2012 1:11 61.4 29/7/2012 2:36 68.6 31/7/2012 4:41 59.9 1/8/2012 5:55 59.7 26/8/2012 19:31 65.3 28/7/2012 1:1 61.6 29/7/2012 2:36 68.0 31/7/2012 4:56 60.9 1/8/2012 6:06 60.8 26/8/2012 19:31 65.3 28/7/2012 1:36 61.4 29/7/2012 2:36 68.0 31/7/2012 4:56 60.9 1/8/2012 6:01 60.5 1/8/2012 6:01 60.5 1/8/2012 6:01 61.6 28/7/2012 1:46 61.6 28/7/2012 1:46 61.3 30/7/2012 3:51 59.4 31/7/2012 5:05 59.3 1/8/2012 6:21 62.1 1/8/2012 6:21 62.1 28/7/2012 1:46 61.8 31/7/2012 5:05 59.1 1/8/2012 6:21 62.1 62/8/2012 6:21 62.1 62/8/2012 6:21 62.1 62/8/2012 6:21 62.1 62/8/2012 6:26 63.3 31/7/2012 5:05 63.1 1/8/2012 6:65 62.7	26/8/2012 19:01 64.0	28/7/2012 0:51 61.5	29/7/2012 2:01 60.6	30/7/2012 3:11 57.7	31/7/2012 4:21 60.4	1/8/2012 5:31 59.8
26/8/2012 19:21 64.9 28/7/2012 1:11 61.4 29/7/2012 2:21 60.1 30/7/2012 3:31 58.2 31/7/2012 4:41 59.9 1/8/2012 5:51 59.7 26/8/2012 19:31 65.3 28/7/2012 1:21 61.6 29/7/2012 2:31 60.3 307/2012 3:41 58.0 31/7/2012 4:51 60.0 1/8/2012 6:06 60.8 26/8/2012 19:31 65.3 28/7/2012 1:31 61.4 29/7/2012 2:41 58.8 307/2012 3:51 59.4 31/7/2012 5:01 60.2 1/8/2012 6:16 61.6 26/8/2012 19:51 66.4 28/7/2012 1:41 61.1 29/7/2012 2:56 63.3 307/2012 4:61 58.4 31/7/2012 5:61 59.4 1/8/2012 6:26 61.8 26/8/2012 0:01 65.5 28/7/2012 1:61 61.4 29/7/2012 3:01 60.0 307/2012 4:11 58.4 31/7/2012 5:21 59.1 1/8/2012 6:46 62.6 26/8/2012 0:01 65.5 28/7/2012 3:01 60.0 307/2012 4:21 57.7 31/7/2012 5:31 59.1 1/8/2012 6:6 62.7 26/8/2012 0:01	26/8/2012 19:11 65.7	28/7/2012 1:01 61.9	29/7/2012 2:11 60.5	30/7/2012 3:21 58.0	31/7/2012 4:31 60.3	1/8/2012 5:41 60.3
26/8/2012 19:26 64.9 28/7/2012 1:16 61.0 29/7/2012 2:26 60.8 30/7/2012 3:46 58.0 31/7/2012 4:46 60.5 1/8/2012 6:06 60.5 26/8/2012 19:36 55.3 28/7/2012 1:26 61.4 29/7/2012 2:36 60.0 307/2012 3:45 59.4 31/7/2012 4:56 60.0 1/8/2012 6:06 60.8 26/8/2012 19:36 55.5 28/7/2012 1:36 61.4 29/7/2012 2:56 59.7 31/7/2012 5:06 59.3 1/8/2012 6:16 61.6 61.6 26/8/2012 19:56 66.4 28/7/2012 1:46 61.3 29/7/2012 2:56 65.3 307/2012 4:16 58.4 31/7/2012 5:56 59.1 1/8/2012 6:26 61.8 26/8/2012 2:01 65.6 28/7/2012 1:56 61.0 307/2012 4:16 58.3 31/7/2012 5:56 59.1 1/8/2012 6:56 63.7 26/8/2012 2:01 65.6 28/7/2012 2:06 60.9 29/7/2012 3:16 58.0 31/7/2012 5:57 59.1 1/8/2012 6:56 63.3 26/8/2012 2:06 65.7 28/7/2012 2:06 60.9 29						
26/8/2012 19:36 65.3 28/7/2012 1:26 61.4 29/7/2012 2:46 58.0 31/7/2012 4:56 60.9 1/8/2012 6:06 60.8 26/8/2012 19:46 65.5 28/7/2012 1:36 61.4 29/7/2012 2:46 58.0 31/7/2012 5:06 69.3 1/8/2012 6:16 61.6 26/8/2012 19:56 65.4 28/7/2012 1:46 61.3 29/7/2012 2:56 59.3 30/7/2012 4:06 58.4 31/7/2012 5:26 59.1 1/8/2012 6:26 61.8 26/8/2012 19:56 65.6 28/7/2012 1:56 60.7 29/7/2012 3:01 60.3 30/7/2012 4:16 58.4 31/7/2012 5:26 59.1 1/8/2012 6:36 62.6 26/8/2012 2:006 65.5 28/7/2012 2:01 60.9 29/7/2012 3:01 59.3 30/7/2012 4:16 58.4 31/7/2012 5:26 59.1 1/8/2012 6:31 62.6 26/8/2012 2:016 65.7 28/7/2012 3:11 60.4 29/7/2012 3:16 60.0 30/7/2012 4:16 58.4 31/7/2012 5:36 59.1 1/8/2012 6:36 62.6 26/8/2012 2:016 65.7 28/7/2012 3:16 60.1 30/7/2012 4:16 58.4 31/7/2012 4:26 59.3	26/8/2012 19:26 64.9	28/7/2012 1:16 61.0	29/7/2012 2:26 60.8	30/7/2012 3:36 58.6	31/7/2012 4:46 60.5	1/8/2012 5:56 60.7
26/8/2012 19.46 65.5 28/7/2012 12:36 61.4 29/7/2012 22:45 60.3 30/7/2012 35:6 57.7 31/7/2012 5:11 59.3 11/8/2012 6:2.6 62.1 26/8/2012 19:56 65.4 28/7/2012 1:46 61.3 29/7/2012 2:56 60.3 30/7/2012 4:01 58.4 31/7/2012 5:21 59.4 11/8/2012 6:36 62.0 26/8/2012 20:06 65.6 28/7/2012 1:56 60.7 29/7/2012 3:11 59.4 30/7/2012 4:16 58.3 31/7/2012 5:31 59.1 11/8/2012 6:36 62.0 26/8/2012 20:16 65.6 28/7/2012 2:06 60.9 29/7/2012 3:11 59.4 30/7/2012 4:26 57.7 31/7/2012 5:31 59.1 11/8/2012 6:36 62.7 26/8/2012 20:16 65.6 28/7/2012 2:16 60.5 29/7/2012 3:26 59.9 30/7/2012 4:36 58.0 31/7/2012 5:46 59.7 11/8/2012 6:56 62.7 26/8/2012 20:16 65.3 28/7/2012 2:26 60.7 29/7/2012 3:36 59.8 30/7/2012 4:36 58.4 31/7/2012 5:46 59.7 11/8/2012 2:30 62.7 26/8/2012 20:16 65.1 28/7/2012 2:26 60.7	26/8/2012 19:36 65.3	28/7/2012 1:26 61.4	29/7/2012 2:36 60.0	30/7/2012 3:46 58.0	31/7/2012 4:56 60.9	1/8/2012 6:06 60.8
268/2012 19:51 66.4 28/7/2012 14:6 61.2 29/7/2012 55.9 307/2012 40:0 58.4 31/7/2012 51:1 69.9 14/8/2012 62:1 62.1 69.4 14/8/2012 61:1 89.9 14/8/2012 62:1 63.4 31/7/2012 55:1 69.4 14/8/2012 63:1 62:1 63:1 64:1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
26/8/2012 20:01 65.5 28/7/2012 1:56 60.7 29/7/2012 3:01 60.0 30/7/2012 4:11 58.6 31/7/2012 5:26 59.1 1/8/2012 6:31 6:2.0 26/8/2012 20:16 65.6 28/7/2012 2:06 60.9 29/7/2012 3:11 59.4 30/7/2012 4:21 57.7 31/7/2012 5:36 59.1 1/8/2012 6:41 6:2.1 26/8/2012 20:16 65.6 28/7/2012 2:01 60.8 29/7/2012 3:21 60.0 30/7/2012 4:36 58.0 31/7/2012 5:45 59.7 1/8/2012 6:46 6:2.7 26/8/2012 20:21 65.7 28/7/2012 2:21 60.6 29/7/2012 3:26 59.3 30/7/2012 4:45 59.0 31/7/2012 5:46 60.3 1/8/2012 6:56 62.7 26/8/2012 2:03 66.2 28/7/2012 2:26 60.7 29/7/2012 3:36 59.3 30/7/2012 4:46 58.3 31/7/2012 5:56 60.0 1/8/2012 2:30 61.9 26/8/2012 2:04 66.7 28/7/2012 2:36 60.7 29/7/2012 3:36 59.3 30/7/2012 4:46 58.3 31/7/2012 5:56 60.0 1/8/2012 3:21 62.6 26/8/2012 2:04 66.7 28/7/2012 2:36 60.6 29/7/2012 3:36 60.6 30/7/2012 4:56 8.3 31/7/2012 6:56 60.0 1/8/2012 3:21 62.6 26/8/2012 2:04 66.0 28/7/2012 2:36 60.6 29/7/2012 3:36 60.6 30/7/2012 5:66 58.3 31/7/2012 6:61 59.7 1/8/2012 3:21 62.6 26/8/2012 2:16 64.2 28/7/2012 2:46 61.0 29/7/2012 3:36 60.6 30/7/2012 5:66 58.3 31/7/2012 6:16 58.9 1/8/2012 3	26/8/2012 19:51 66.4	28/7/2012 1:41 61.2	29/7/2012 2:51 59.9	30/7/2012 4:01 58.4	31/7/2012 5:11 59.9	1/8/2012 6:21 62.1
268/2012 20:11 65.3 28/7/2012 2:01 60.9 29/7/2012 3:11 69.0 307/2012 4:21 57.7 31/7/2012 5:36 59.1 1/8/2012 6:41 62.7 26/8/2012 20:21 65.6 28/7/2012 2:11 60.8 29/7/2012 3:21 60.1 30/7/2012 4:31 58.0 31/7/2012 5:41 59.4 1/8/2012 6:66 62.7 26/8/2012 20:26 65.7 28/7/2012 2:16 60.6 29/7/2012 3:31 59.8 30/7/2012 4:31 58.0 31/7/2012 5:41 59.4 1/8/2012 6:66 62.7 26/8/2012 20:36 66.2 28/7/2012 2:36 60.7 29/7/2012 3:36 59.3 30/7/2012 4:45 58.3 31/7/2012 6:01 59.8 1/8/2012 2:316 62.1 26/8/2012 20:46 64.7 28/7/2012 2:36 60.6 29/7/2012 3:46 60.3 30/7/2012 4:45 57.9 31/7/2012 6:01 59.8 1/8/2012 2:316 62.1 26/8/2012 2:01 65.4 28/7/2012 2:36 60.6 29/7/2012 3:56 69.5 30/7/2012 4:56 57.9 31/7/2012 6:11 59.4 1/8/2012 2:36 62.1 <td>26/8/2012 20:01 65.5</td> <td>28/7/2012 1:51 61.4</td> <td>29/7/2012 3:01 60.0</td> <td>30/7/2012 4:11 58.6</td> <td>31/7/2012 5:21 59.2</td> <td>1/8/2012 6:31 62.0</td>	26/8/2012 20:01 65.5	28/7/2012 1:51 61.4	29/7/2012 3:01 60.0	30/7/2012 4:11 58.6	31/7/2012 5:21 59.2	1/8/2012 6:31 62.0
26/8/2012 20:16 65.6 28/7/2012 2::06 60.9 29/7/2012 3::16 60.0 307/2012 4::26 57.9 31/7/2012 5::41 59.4 18/2012 6::66 62.7 26/8/2012 20:26 65.7 28/7/2012 2::16 60.5 29/7/2012 3::16 59.9 307/2012 4::36 59.2 31/7/2012 5::16 60.3 11/8/2012 6::56 62.7 26/8/2012 20:26 65.7 28/7/2012 2::6 60.7 29/7/2012 3::36 59.3 307/2012 4::46 58.2 31/7/2012 5::6 60.0 11/8/2012 2::06 61.9 26/8/2012 20:46 64.7 28/7/2012 2::36 60.6 29/7/2012 3::41 59.3 307/2012 4::56 57.9 31/7/2012 6::06 60.2 11/8/2012 2::36 62.1 26/8/2012 20:56 65.4 28/7/2012 2::41 60.6 29/7/2012 3::51 60.6 307/2012 5::05 58.3 31/7/2012 6::16 59.9 31/7/2012 6:16 61.7 18/2012 2::36 62.1 26/8/2012 2::06 64.2 28/7/2012 2::66 60.2 29/7/2012 4::11 59.8 307/2012 5:16 58.9 31/7/2012 6::16 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	26/8/2012 20:16 65.6	28/7/2012 2:06 60.9		30/7/2012 4:26 57.9	31/7/2012 5:36 59.1	1/8/2012 6:46 62.7
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	26/8/2012 20:26 65.7	28/7/2012 2:16 60.5	29/7/2012 3:26 59.9	30/7/2012 4:36 58.2	31/7/2012 5:46 59.7	1/8/2012 6:56 62.7
26/8/2012 20:46 64.7 28/7/2012 2:36 60.6 29/7/2012 3:51 60.6 30/7/2012 4:56 57.9 31/7/2012 6:06 60.2 1/8/2012 23:12 62.1 26/8/2012 20:56 65.0 28/7/2012 2:46 61.0 29/7/2012 3:56 59.5 30/7/2012 5:06 58.3 31/7/2012 6:16 61.7 1/8/2012 23:31 62.0 26/8/2012 21:06 64.6 28/7/2012 2:56 60.8 29/7/2012 4:01 59.1 30/7/2012 5:16 58.3 31/7/2012 6:31 60.5 1/8/2012 23:36 62.0 26/8/2012 21:16 64.3 28/7/2012 3:06 60.2 29/7/2012 4:10 65.8 30/7/2012 5:16 58.9 31/7/2012 6:31 60.6 1/8/2012 23:36 62.0 26/8/2012 21:16 64.3 28/7/2012 3:06 60.2 29/7/2012 4:16 65.4 30/7/2012 5:26 59.1 31/7/2012 6:31 60.6 1/8/2012 23:46 61.7 26/8/2012 21:26 64.2 28/7/2012 3:16 60.3 29/7/2012 4:16 59.4 30/7/2012 5:36 59.5 31/7/2012 6:16 61.3 1/8/2012 23:46 62.0 26/8/2012 21:36 64.2 28/7/2012 3:16 60.5						
26/8/2012 20:51 65.4 28/7/2012 2:41 60.4 29/7/2012 3:51 60.6 30/7/2012 5:01 58.8 31/7/2012 6:11 59.9 1/8/2012 23:21 62.1 26/8/2012 21:01 64.6 28/7/2012 2:51 60.8 29/7/2012 3:51 59.5 30/7/2012 5:11 58.5 31/7/2012 6:16 61.7 1/8/2012 23:36 62.0 26/8/2012 21:06 64.2 28/7/2012 2:56 60.2 29/7/2012 4:06 59.8 30/7/2012 5:11 68.5 31/7/2012 6:26 61.5 1/8/2012 23:36 62.6 26/8/2012 21:16 64.3 28/7/2012 3:06 60.2 29/7/2012 4:16 59.4 30/7/2012 5:26 59.1 31/7/2012 6:31 60.3 1/8/2012 23:36 62.0 26/8/2012 21:26 64.7 28/7/2012 3:11 60.3 29/7/2012 4:21 59.5 30/7/2012 5:36 59.5 31/7/2012 6:41 61.3 1/8/2012 23:56 62.3 26/8/2012 21:36 64.2 28/7/2012 3:16 60.3 29/7/2012 4:21 59.5 30/7/2012 5:36 59.5 31/7/2012 6:46 61.3 1/8/2012 23:56 62.3 26/8/2012 21:36 64.2 28/7/2012 3:16 60.3						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26/8/2012 20:51 65.4	28/7/2012 2:41 60.4	29/7/2012 3:51 60.6	30/7/2012 5:01 58.8	31/7/2012 6:11 59.9	1/8/2012 23:21 62.6
26/8/2012 21:11 64.1 28/7/2012 3:01 60.0 29/7/2012 4:11 61.2 30/7/2012 5:21 59.0 31/7/2012 6:31 60.3 1/8/2012 23:41 62.3 26/8/2012 21:21 64.7 28/7/2012 3:06 60.2 29/7/2012 4:16 59.4 30/7/2012 5:31 59.4 31/7/2012 6:36 60.6 1/8/2012 23:46 61.7 26/8/2012 21:26 64.2 28/7/2012 3:16 60.3 29/7/2012 4:26 59.5 30/7/2012 5:31 59.4 31/7/2012 6:41 61.3 1/8/2012 23:56 62.0 26/8/2012 21:36 64.2 28/7/2012 3:21 60.5 29/7/2012 4:31 59.4 30/7/2012 5:46 59.8 31/7/2012 6:56 61.3 1/8/2012 23:56 62.0 26/8/2012 21:36 64.4 28/7/2012 3:31 60.2 29/7/2012 4:31 59.7 30/7/2012 5:46 59.8 31/7/2012 6:56 62.9 2/8/2012 0:16 61.8 26/8/2012 21:41 64.5 28/7/2012 3:31 60.2 29/7/2012 4:46 59.3 30/7/2012 5:51 59.9 31/7/2012 23:01 63.0 2/8/2012 0:16 61.9 26/8/2012 21:51 63.5 28/7/2012 3:36 60.6						
26/8/2012 21:16 64.3 28/7/2012 3:06 60.2 29/7/2012 4:16 59.4 30/7/2012 5:36 59.1 31/7/2012 6:36 60.6 1/8/2012 23:46 61.7 26/8/2012 21:21 64.7 28/7/2012 3:11 60.3 29/7/2012 4:21 59.8 30/7/2012 5:36 59.5 31/7/2012 6:46 61.3 1/8/2012 23:56 62.0 26/8/2012 21:31 64.4 28/7/2012 3:21 60.5 29/7/2012 4:31 59.4 30/7/2012 5:41 59.5 31/7/2012 6:46 61.3 1/8/2012 23:56 62.0 26/8/2012 21:31 64.4 28/7/2012 3:21 60.5 29/7/2012 4:36 59.7 30/7/2012 5:41 59.9 31/7/2012 6:56 62.9 2/8/2012 0:10 61.8 26/8/2012 21:46 64.6 28/7/2012 3:31 60.6 29/7/2012 4:46 59.3 30/7/2012 5:56 59.7 31/7/2012 3:01 63.0 2/8/2012 0:16 61.9 26/8/2012 21:56 64.0 28/7/2012 3:41 60.1 29/7/2012 4:56 59.7 31/7/2012 3:06 62.2 2/8/2012 0:16 61.9 26/8/2012 21:56 64.0 28/7/2012 3:36 60.6 30/7/2012 6:06 50.6 <						
26/8/2012 21:26 64.2 28/7/2012 3:16 60.3 29/7/2012 4:26 59.5 30/7/2012 5:36 59.5 31/7/2012 6:46 61.3 1/8/2012 23:56 62.0 26/8/2012 21:31 64.4 28/7/2012 3:21 60.5 29/7/2012 4:31 59.4 30/7/2012 5:46 59.5 31/7/2012 6:56 60.7 2/8/2012 0:01 61.8 26/8/2012 21:36 64.2 28/7/2012 3:31 60.2 29/7/2012 4:41 59.7 30/7/2012 5:51 59.9 31/7/2012 2:01 63.0 2/8/2012 0:16 61.6 26/8/2012 21:46 64.6 28/7/2012 3:31 60.2 29/7/2012 4:46 59.3 30/7/2012 5:51 59.9 31/7/2012 2:306 62.2 2/8/2012 0:16 61.9 26/8/2012 21:56 64.6 28/7/2012 3:46 60.6 29/7/2012 4:46 59.4 30/7/2012 6:01 59.6 31/7/2012 2:316 62.2 2/8/2012 0:16 61.9 26/8/2012 2:156 64.0 28/7/2012 3:46 60.2 29/7/2012 4:46 59.4 30/7/2012 6:01 59.6 31/7/2012 2:316 62.6 2/8/2012 0:16 61.5 26/8/2012 2:16 63.9 28/7/2012 3:46 60.2 <	26/8/2012 21:16 64.3	28/7/2012 3:06 60.2	29/7/2012 4:16 59.4	30/7/2012 5:26 59.1	31/7/2012 6:36 60.6	1/8/2012 23:46 61.7
26/8/2012 21:31 64.4 28/7/2012 3:21 60.5 29/7/2012 4:31 59.4 30/7/2012 5:41 59.9 31/7/2012 6:51 60.7 2/8/2012 0:01 61.8 26/8/2012 21:36 64.2 28/7/2012 3:26 59.9 29/7/2012 4:36 59.7 30/7/2012 5:51 59.9 31/7/2012 6:56 62.9 2/8/2012 0:06 61.6 26/8/2012 21:46 64.6 28/7/2012 3:36 60.6 29/7/2012 4:46 59.3 30/7/2012 5:51 59.9 31/7/2012 23:01 63.0 2/8/2012 0:16 61.9 26/8/2012 21:56 64.6 28/7/2012 3:36 60.6 29/7/2012 4:46 59.3 30/7/2012 5:56 59.7 31/7/2012 23:01 63.0 2/8/2012 0:16 61.9 26/8/2012 21:56 64.0 28/7/2012 3:46 60.2 29/7/2012 4:56 60.1 30/7/2012 6:06 60.6 31/7/2012 3:16 62.2 2/8/2012 0:26 61.5 26/8/2012 22:01 63.9 28/7/2012 3:56 60.4 29/7/2012 5:06 59.9 30/7/2012 6:11 61.1 31/7/2012 23:26 62.7 2/8/2012 0:36 69.9 26/8/2012 22:01 63.9 28/7/2012 3:56 60.4 <						
26/8/2012 21:41 64.5 28/7/2012 3:31 60.2 29/7/2012 4:41 59.7 30/7/2012 5:51 59.9 31/7/2012 23:01 63.0 2/8/2012 0:11 61.2 26/8/2012 21:46 64.6 28/7/2012 3:36 60.6 29/7/2012 4:46 59.3 30/7/2012 5:56 59.7 31/7/2012 23:01 63.0 2/8/2012 0:16 61.9 26/8/2012 21:56 63.5 28/7/2012 3:41 60.1 29/7/2012 4:46 59.4 30/7/2012 6:01 59.6 31/7/2012 23:11 63.2 2/8/2012 0:21 61.5 26/8/2012 21:56 64.0 28/7/2012 3:46 60.2 29/7/2012 4:56 60.1 30/7/2012 6:01 60.6 31/7/2012 23:16 62.6 2/8/2012 0:26 61.5 26/8/2012 22:06 62.9 28/7/2012 3:51 60.5 29/7/2012 5:01 59.4 30/7/2012 6:16 60.9 31/7/2012 23:26 62.6 2/8/2012 0:31 62.5 26/8/2012 22:16 62.6 28/7/2012 3:56 60.4 29/7/2012 5:01 59.7 30/7/2012 6:16 60.9 31/7/2012 23:31 62.9 2/8/2012 0:41 61.5 26/8/2012 22:16 62.6 28/7/2012 4:01 59.8	26/8/2012 21:31 64.4	28/7/2012 3:21 60.5	29/7/2012 4:31 59.4	30/7/2012 5:41 59.9	31/7/2012 6:51 60.7	2/8/2012 0:01 61.8
26/8/2012 21:51 63.5 28/7/2012 3:41 60.1 29/7/2012 4:51 59.4 30/7/2012 6:01 59.6 31/7/2012 23:11 63.2 2/8/2012 0:21 61.5 26/8/2012 21:56 64.0 28/7/2012 3:46 60.2 29/7/2012 4:56 60.1 30/7/2012 6:01 59.6 31/7/2012 23:16 62.6 2/8/2012 0:26 61.5 26/8/2012 22:06 62.9 28/7/2012 3:56 60.4 29/7/2012 5:01 59.9 30/7/2012 6:16 60.9 31/7/2012 32:16 62.6 2/8/2012 0:36 60.9 26/8/2012 22:06 62.9 28/7/2012 3:56 60.4 29/7/2012 5:16 59.7 30/7/2012 6:16 60.9 31/7/2012 3:31 62.9 2/8/2012 0:36 60.9 26/8/2012 22:16 62.6 28/7/2012 4:01 59.8 29/7/2012 5:16 59.7 30/7/2012 6:21 61.7 31/7/2012 3:31 62.9 2/8/2012 0:46 60.7 26/8/2012 22:16 62.6 28/7/2012 4:06 60.5 29/7/2012 5:16 59.7 30/7/2012 6:21 61.7 31/7/2012 3:31 62.2 2/8/2012 0:46 60.7 26/8/2012 22:21 62.3 28/7/2012 4:16 60.4 <	26/8/2012 21:41 64.5	28/7/2012 3:31 60.2	29/7/2012 4:41 59.7	30/7/2012 5:51 59.9	31/7/2012 23:01 63.0	2/8/2012 0:11 61.2
26/8/2012 21:56 64.0 28/7/2012 3:46 60.2 29/7/2012 4:56 60.1 30/7/2012 6:06 60.6 31/7/2012 23:16 62.6 2/8/2012 0:26 61.5 26/8/2012 22:01 63.9 28/7/2012 3:51 60.5 29/7/2012 5:01 59.9 30/7/2012 6:16 60.9 31/7/2012 3:21 62.6 2/8/2012 0:31 62.5 26/8/2012 22:06 62.9 28/7/2012 3:56 60.4 29/7/2012 5:01 59.4 30/7/2012 6:16 60.9 31/7/2012 23:26 62.7 2/8/2012 0:36 60.9 26/8/2012 22:11 63.2 28/7/2012 4:01 59.8 29/7/2012 5:16 59.7 30/7/2012 6:21 61.7 31/7/2012 23:31 62.9 2/8/2012 0:46 60.7 26/8/2012 22:16 62.6 28/7/2012 4:01 60.5 29/7/2012 5:16 59.7 30/7/2012 6:26 62.1 31/7/2012 23:46 62.2 2/8/2012 0:46 60.7 26/8/2012 22:21 62.3 28/7/2012 4:16 60.4 29/7/2012 5:21 60.1 30/7/2012 6:36 62.1 31/7/2012 3:46 62.3 2/8/2012 0:56 60						
26/8/2012 22:06 62.9 28/7/2012 3:56 60.4 29/7/2012 5:06 59.4 30/7/2012 6:16 60.9 31/7/2012 23:26 62.7 2/8/2012 0:36 60.9 26/8/2012 22:11 63.2 28/7/2012 4:01 59.8 29/7/2012 5:11 59.7 30/7/2012 6:21 61.7 31/7/2012 3:31 62.9 2/8/2012 0:41 61.5 26/8/2012 22:16 62.3 28/7/2012 4:01 60.5 29/7/2012 5:16 59.7 30/7/2012 6:26 62.1 31/7/2012 3:31 62.9 2/8/2012 0:41 61.5 26/8/2012 22:16 62.3 28/7/2012 4:16 60.4 29/7/2012 5:16 59.7 30/7/2012 6:31 62.4 31/7/2012 3:34 62.4 2/8/2012 0:51 60.7 26/8/2012 22:26 62.7 28/7/2012 4:16 60.4 29/7/2012 5:26 59.8 30/7/2012 6:36 62.1 31/7/2012 2:34 62.3 2/8/2012 0:56 60.7 26/8/2012 2:21 62.9 28/7/2012 4:16 60.4 29/7/2012 5:31 59.5 30/7/2012 6:41 63.1 31/7/2012 23:51 62.1 2/8/2012 0:51 60.7<	26/8/2012 21:56 64.0	28/7/2012 3:46 60.2	29/7/2012 4:56 60.1	30/7/2012 6:06 60.6	31/7/2012 23:16 62.6	2/8/2012 0:26 61.5
26/8/2012 22:16 62.6 28/7/2012 4:06 60.5 29/7/2012 5:16 59.7 30/7/2012 6:26 62.1 31/7/2012 23:36 62.2 2/8/2012 0:46 60.7 26/8/2012 22:21 62.3 28/7/2012 4:11 60.4 29/7/2012 5:21 60.1 30/7/2012 6:36 62.1 31/7/2012 23:46 62.3 2/8/2012 0:46 60.7 26/8/2012 22:26 62.7 28/7/2012 4:16 60.4 29/7/2012 5:21 59.8 30/7/2012 6:36 62.1 31/7/2012 33:46 62.3 2/8/2012 0:56 60.7 26/8/2012 22:26 62.9 28/7/2012 4:21 60.4 29/7/2012 5:31 59.5 30/7/2012 6:36 62.1 31/7/2012 33:46 62.3 2/8/2012 0:56 60.7 26/8/2012 22:31 62.9 28/7/2012 4:21 60.4 29/7/2012 5:31 59.5 30/7/2012 6:36 62.1 31/7/2012 23:46 62.3 2/8/2012 0:56 60.7 26/8/2012 22:31 62.9 28/7/2012 4:21 60.4 29/7/2012 5:31 59.5 30/7/2012 6:41 63.1 31/7/2012 23:51 62.1 2/8/2012 1:01	26/8/2012 22:06 62.9	28/7/2012 3:56 60.4	29/7/2012 5:06 59.4	30/7/2012 6:16 60.9	31/7/2012 23:26 62.7	2/8/2012 0:36 60.9
26/8/2012 22:21 62.3 28/7/2012 4:11 60.2 29/7/2012 5:21 60.1 30/7/2012 6:31 62.4 31/7/2012 23:41 62.4 2/8/2012 0:51 60.6 26/8/2012 22:26 62.7 28/7/2012 4:16 60.4 29/7/2012 5:26 59.8 30/7/2012 6:36 62.1 31/7/2012 23:46 62.3 2/8/2012 0:56 60.7 26/8/2012 22:31 62.9 28/7/2012 4:21 60.4 29/7/2012 5:31 59.5 30/7/2012 6:41 63.1 31/7/2012 23:51 62.1 2/8/2012 1:01 60.1	26/8/2012 22:16 62.6	28/7/2012 4:06 60.5	29/7/2012 5:16 59.7	30/7/2012 6:26 62.1	31/7/2012 23:36 62.2	2/8/2012 0:46 60.7
26/8/2012 22:31 62.9 28/7/2012 4:21 60.4 29/7/2012 5:31 59.5 30/7/2012 6:41 63.1 31/7/2012 23:51 62.1 2/8/2012 1:01 60.1						
20101201222.30 03.0]2011120124.20 00.3]2311120125.30 00.2]3011120125.40 02.1]31111201223:50 02.4]28/20121:06 60.9	26/8/2012 22:31 62.9	28/7/2012 4:21 60.4	29/7/2012 5:31 59.5	30/7/2012 6:41 63.1	31/7/2012 23:51 62.1	2/8/2012 1:01 60.1
	20/0/2012 22.00 03.0	20/1/2012 4.20 00.0	20/1/2012 3.30 00.2	JUITZUIZ 0.40 02.7	01/1/2012 20.00 02.4	12/0/2012 1.00 00.9

8/2012 1:11	<u>Data R1</u> 60.7	N1 (FEHD Hong Ko 3/8/2012 2:21	59.2	4/8/2012 3:31	59.8	5/8/2012 4:41	63.0	6/8/2012 5:51	61.2	7/8/2012 23:01	62.
8/2012 1:16	60.2	3/8/2012 2:26	59.7	4/8/2012 3:36	59.5	5/8/2012 4:46	63.1	6/8/2012 5:56	61.4	7/8/2012 23:06	62.
8/2012 1:21 8/2012 1:26	60.7 59.6	3/8/2012 2:31 3/8/2012 2:36	59.4 58.4	4/8/2012 3:41 4/8/2012 3:46	59.9 59.4	5/8/2012 4:51 5/8/2012 4:56	62.9 63.1	6/8/2012 6:01 6/8/2012 6:06	61.2 62.2	7/8/2012 23:11 7/8/2012 23:16	62. 62.
8/2012 1:31	60.2	3/8/2012 2:41	58.8	4/8/2012 3:51	60.0	5/8/2012 5:01	63.4	6/8/2012 6:11	62.0	7/8/2012 23:21	62.
8/2012 1:36	60.2	3/8/2012 2:46	58.6	4/8/2012 3:56	59.7	5/8/2012 5:06	64.0	6/8/2012 6:16	61.8	7/8/2012 23:26	62.
8/2012 1:41 8/2012 1:46	60.7 60.0	3/8/2012 2:51 3/8/2012 2:56	58.8 58.4	4/8/2012 4:01 4/8/2012 4:06	59.2 59.7	5/8/2012 5:11 5/8/2012 5:16	63.0 61.7	6/8/2012 6:21 6/8/2012 6:26	63.3 62.5	7/8/2012 23:31 7/8/2012 23:36	62. 62.
8/2012 1:51	60.0	3/8/2012 3:01	58.0	4/8/2012 4:11	59.8	5/8/2012 5:21	63.6	6/8/2012 6:31	63.3	7/8/2012 23:41	62.
8/2012 1:56	59.5	3/8/2012 3:06	58.7	4/8/2012 4:16	59.7	5/8/2012 5:26	63.7	6/8/2012 6:36	62.6	7/8/2012 23:46	61.
8/2012 2:01 8/2012 2:06	59.6 59.6	3/8/2012 3:11 3/8/2012 3:16	58.4 58.6	4/8/2012 4:21 4/8/2012 4:26	59.6 59.3	5/8/2012 5:31 5/8/2012 5:36	63.8 63.6	6/8/2012 6:41 6/8/2012 6:46	63.2 62.9	7/8/2012 23:51 7/8/2012 23:56	61. 61.
8/2012 2:11	59.7	3/8/2012 3:21	58.4	4/8/2012 4:31	59.4	5/8/2012 5:41	63.0	6/8/2012 6:51	62.4	8/8/2012 0:01	62.
8/2012 2:16	60.7 58.9	3/8/2012 3:26 3/8/2012 3:31	59.1 59.1	4/8/2012 4:36	59.2 59.6	5/8/2012 5:46 5/8/2012 5:51	62.7 62.6	6/8/2012 6:56 6/8/2012 23:01	63.2 61.6	8/8/2012 0:06 8/8/2012 0:11	62. 61.
8/2012 2:21 8/2012 2:26	58.9 59.1	3/8/2012 3:36	58.8	4/8/2012 4:41 4/8/2012 4:46	59.6	5/8/2012 5:56	63.1	6/8/2012 23:01	63.5	8/8/2012 0:16	60.
8/2012 2:31	59.3	3/8/2012 3:41	58.6	4/8/2012 4:51	59.3	5/8/2012 6:01	63.0	6/8/2012 23:11	63.7	8/8/2012 0:21	61.
8/2012 2:36 8/2012 2:41	59.4 59.0	3/8/2012 3:46 3/8/2012 3:51	59.3 59.2	4/8/2012 4:56 4/8/2012 5:01	59.5 59.4	5/8/2012 6:06 5/8/2012 6:11	62.9 63.1	6/8/2012 23:16 6/8/2012 23:21	62.7 64.2	8/8/2012 0:26 8/8/2012 0:31	61. 60.
8/2012 2:41	59.0 59.4	3/8/2012 3:56	58.3	4/8/2012 5:06	59.4 59.6	5/8/2012 6:16	63.0	6/8/2012 23:21	64.1	8/8/2012 0:36	61.
8/2012 2:51	59.4	3/8/2012 4:01	58.5	4/8/2012 5:11	59.4	5/8/2012 6:21	62.9	6/8/2012 23:31	62.9	8/8/2012 0:41	60.
8/2012 2:56 8/2012 3:01	58.7 58.6	3/8/2012 4:06 3/8/2012 4:11	58.9 59.0	4/8/2012 5:16 4/8/2012 5:21	60.7 59.8	5/8/2012 6:26 5/8/2012 6:31	63.6 62.9	6/8/2012 23:36 6/8/2012 23:41	64.0 64.0	8/8/2012 0:46 8/8/2012 0:51	60. 60.
8/2012 3:06	58.6	3/8/2012 4:16	59.0	4/8/2012 5:26	59.6	5/8/2012 6:36	61.5	6/8/2012 23:46	63.4	8/8/2012 0:56	60.
8/2012 3:11	58.6	3/8/2012 4:21	58.5	4/8/2012 5:31	60.3	5/8/2012 6:41	61.8	6/8/2012 23:51	63.3	8/8/2012 1:01	60.
3/2012 3:16 3/2012 3:21	59.2 58.7	3/8/2012 4:26 3/8/2012 4:31	58.4 58.3	4/8/2012 5:36 4/8/2012 5:41	59.1 59.2	5/8/2012 6:46 5/8/2012 6:51	61.6 62.8	6/8/2012 23:56 7/8/2012 0:01	63.5 63.9	8/8/2012 1:06 8/8/2012 1:11	60. 59.
8/2012 3:26	58.6	3/8/2012 4:36	58.7	4/8/2012 5:46	60.1	5/8/2012 6:56	62.8	7/8/2012 0:06	61.4	8/8/2012 1:16	60.
8/2012 3:31	60.0	3/8/2012 4:41	59.0	4/8/2012 5:51	61.0	5/8/2012 23:01	63.5	7/8/2012 0:11	61.8	8/8/2012 1:21	59.
8/2012 3:36 8/2012 3:41	59.5 58.9	3/8/2012 4:46 3/8/2012 4:51	58.4 59.0	4/8/2012 5:56 4/8/2012 6:01	60.6 61.3	5/8/2012 23:06 5/8/2012 23:11	63.6 64.1	7/8/2012 0:16 7/8/2012 0:21	62.1 61.6	8/8/2012 1:26 8/8/2012 1:31	59. 59.
8/2012 3:46	58.3	3/8/2012 4:56	58.3	4/8/2012 6:06	60.7	5/8/2012 23:16	63.1	7/8/2012 0:26	62.9	8/8/2012 1:36	60.
8/2012 3:51	58.3	3/8/2012 5:01	59.0	4/8/2012 6:11	60.3	5/8/2012 23:21	63.8	7/8/2012 0:31	62.2	8/8/2012 1:41	59.
8/2012 3:56 8/2012 4:01	58.9 59.0	3/8/2012 5:06 3/8/2012 5:11	59.5 59.6	4/8/2012 6:16 4/8/2012 6:21	61.2 61.3	5/8/2012 23:26 5/8/2012 23:31	64.0 64.2	7/8/2012 0:36 7/8/2012 0:41	61.4 61.3	8/8/2012 1:46 8/8/2012 1:51	59 59
8/2012 4:01 8/2012 4:06	59.0 58.7	3/8/2012 5:11	59.6 59.2	4/8/2012 6:21	61.4	5/8/2012 23:31	63.8	7/8/2012 0:41	61.8	8/8/2012 1:51	59 60
8/2012 4:11	57.9	3/8/2012 5:21	59.3	4/8/2012 6:31	61.8	5/8/2012 23:41	63.8	7/8/2012 0:51	61.6	8/8/2012 2:01	59
3/2012 4:16 3/2012 4:21	58.5 58.3	3/8/2012 5:26 3/8/2012 5:31	59.2 59.5	4/8/2012 6:36 4/8/2012 6:41	62.3 61.9	5/8/2012 23:46 5/8/2012 23:51	63.9 63.6	7/8/2012 0:56 7/8/2012 1:01	60.4 60.8	8/8/2012 2:06 8/8/2012 2:11	59 59
3/2012 4:21 3/2012 4:26	58.3 58.9	3/8/2012 5:31	59.5 60.2	4/8/2012 6:41 4/8/2012 6:46	61.9 62.6	5/8/2012 23:51 5/8/2012 23:56	63.6 63.6	7/8/2012 1:01 7/8/2012 1:06	60.8 60.7	8/8/2012 2:11 8/8/2012 2:16	59 58
8/2012 4:31	58.3	3/8/2012 5:41	60.2	4/8/2012 6:51	62.6	6/8/2012 0:01	63.5	7/8/2012 1:11	60.5	8/8/2012 2:21	59
8/2012 4:36 8/2012 4:41	58.1 58.1	3/8/2012 5:46 3/8/2012 5:51	60.4 60.1	4/8/2012 6:56 4/8/2012 23:01	62.3 62.4	6/8/2012 0:06 6/8/2012 0:11	63.5 64.3	7/8/2012 1:16 7/8/2012 1:21	61.1 61.1	8/8/2012 2:26 8/8/2012 2:31	58. 59.
8/2012 4:46	58.1	3/8/2012 5:56	60.1	4/8/2012 23:06	62.4	6/8/2012 0:16	63.9	7/8/2012 1:21	60.5	8/8/2012 2:36	58.
8/2012 4:51	58.5	3/8/2012 6:01	60.9	4/8/2012 23:11	62.5	6/8/2012 0:21	63.2	7/8/2012 1:31	59.9	8/8/2012 2:41	58.
8/2012 4:56	59.4	3/8/2012 6:06	61.3	4/8/2012 23:16	62.3	6/8/2012 0:26	64.2	7/8/2012 1:36	60.9	8/8/2012 2:46	58.
3/2012 5:01 3/2012 5:06	59.1 59.3	3/8/2012 6:11 3/8/2012 6:16	61.6 61.4	4/8/2012 23:21 4/8/2012 23:26	62.8 62.3	6/8/2012 0:31 6/8/2012 0:36	63.4 63.5	7/8/2012 1:41 7/8/2012 1:46	60.8 60.9	8/8/2012 2:51 8/8/2012 2:56	58 58
8/2012 5:11	59.4	3/8/2012 6:21	62.3	4/8/2012 23:31	62.7	6/8/2012 0:41	63.3	7/8/2012 1:51	60.9	8/8/2012 3:01	58.
8/2012 5:16	59.5	3/8/2012 6:26	61.6	4/8/2012 23:36	62.3	6/8/2012 0:46	63.2	7/8/2012 1:56	60.6	8/8/2012 3:06	58.
8/2012 5:21 8/2012 5:26	59.6 58.9	3/8/2012 6:31 3/8/2012 6:36	61.9 62.0	4/8/2012 23:41 4/8/2012 23:46	61.9 62.3	6/8/2012 0:51 6/8/2012 0:56	63.4 62.5	7/8/2012 2:01 7/8/2012 2:06	59.5 59.4	8/8/2012 3:11 8/8/2012 3:16	58. 58.
8/2012 5:31	59.6	3/8/2012 6:41	62.3	4/8/2012 23:51	61.8	6/8/2012 1:01	61.7	7/8/2012 2:11	59.5	8/8/2012 3:21	58.
8/2012 5:36	59.7 60.0	3/8/2012 6:46	62.6	4/8/2012 23:56 5/8/2012 0:01	62.9 62.4	6/8/2012 1:06	62.5	7/8/2012 2:16	59.6 60.1	8/8/2012 3:26 8/8/2012 3:31	58. 59.
8/2012 5:41 8/2012 5:46	59.1	3/8/2012 6:51 3/8/2012 6:56	63.0 62.7	5/8/2012 0:06	61.9	6/8/2012 1:11 6/8/2012 1:16	62.2 61.9	7/8/2012 2:21 7/8/2012 2:26	59.3	8/8/2012 3:36	58.
8/2012 5:51	60.4	3/8/2012 23:01	62.2	5/8/2012 0:11	62.0	6/8/2012 1:21	62.0	7/8/2012 2:31	59.5	8/8/2012 3:41	58.
8/2012 5:56 8/2012 6:01	60.0 60.2	3/8/2012 23:06 3/8/2012 23:11	63.2 62.2	5/8/2012 0:16 5/8/2012 0:21	62.1 61.6	6/8/2012 1:26 6/8/2012 1:31	62.2 62.1	7/8/2012 2:36 7/8/2012 2:41	60.0 59.7	8/8/2012 3:46 8/8/2012 3:51	58. 58.
8/2012 6:06	60.8	3/8/2012 23:16	62.2	5/8/2012 0:26	62.3	6/8/2012 1:36	62.0	7/8/2012 2:41	61.3	8/8/2012 3:56	58.
8/2012 6:11	60.6	3/8/2012 23:21	62.7	5/8/2012 0:31	62.0	6/8/2012 1:41	61.5	7/8/2012 2:51	60.4	8/8/2012 4:01	58.
8/2012 6:16 8/2012 6:21	61.6 62.0	3/8/2012 23:26 3/8/2012 23:31	62.3 62.9	5/8/2012 0:36 5/8/2012 0:41	61.8 61.5	6/8/2012 1:46 6/8/2012 1:51	62.0 61.9	7/8/2012 2:56 7/8/2012 3:01	59.9 59.6	8/8/2012 4:06 8/8/2012 4:11	58. 58.
8/2012 6:26	60.9	3/8/2012 23:36	65.0	5/8/2012 0:46	61.0	6/8/2012 1:56	61.9	7/8/2012 3:06	60.1	8/8/2012 4:16	59
8/2012 6:31	61.8	3/8/2012 23:41	62.2	5/8/2012 0:51	61.1	6/8/2012 2:01	61.7	7/8/2012 3:11	60.1	8/8/2012 4:21	58
8/2012 6:36 8/2012 6:41	61.6 63.1	3/8/2012 23:46 3/8/2012 23:51	62.4 62.4	5/8/2012 0:56 5/8/2012 1:01	61.2 61.0	6/8/2012 2:06 6/8/2012 2:11	61.2 61.5	7/8/2012 3:16 7/8/2012 3:21	59.6 59.6	8/8/2012 4:26 8/8/2012 4:31	58 58
B/2012 6:46	62.8	3/8/2012 23:56	62.8	5/8/2012 1:06	60.9	6/8/2012 2:16	61.5	7/8/2012 3:21	59.4	8/8/2012 4:36	58
8/2012 6:51	62.8	4/8/2012 0:01	62.4	5/8/2012 1:11	60.5	6/8/2012 2:21	61.4	7/8/2012 3:31	58.6	8/8/2012 4:41	58.
8/2012 6:56	62.9 62.1	4/8/2012 0:06	62.4 61.8	5/8/2012 1:16 5/8/2012 1:21	61.7 60.7	6/8/2012 2:26	61.3	7/8/2012 3:36 7/8/2012 3:41	59.6	8/8/2012 4:46 8/8/2012 4:51	58.
8/2012 23:01 8/2012 23:06	63.2	4/8/2012 0:11 4/8/2012 0:16	62.1	5/8/2012 1:26	60.4	6/8/2012 2:31 6/8/2012 2:36	61.5 60.4	7/8/2012 3:41	59.4 58.7	8/8/2012 4:56	59. 59.
8/2012 23:11	63.1	4/8/2012 0:21	61.8	5/8/2012 1:31	60.3	6/8/2012 2:41	61.3	7/8/2012 3:51	59.3	8/8/2012 5:01	59.
3/2012 23:16 3/2012 23:21	62.8 62.7	4/8/2012 0:26 4/8/2012 0:31	62.5 61.7	5/8/2012 1:36 5/8/2012 1:41	60.4 60.3	6/8/2012 2:46 6/8/2012 2:51	60.7 61.5	7/8/2012 3:56 7/8/2012 4:01	58.8 61.1	8/8/2012 5:06 8/8/2012 5:11	59 59
3/2012 23:21 3/2012 23:26	62.7 62.4	4/8/2012 0:31	63.8	5/8/2012 1:41	60.3 60.3	6/8/2012 2:51 6/8/2012 2:56	60.1	7/8/2012 4:01 7/8/2012 4:06	58.5	8/8/2012 5:11	59 59
3/2012 23:31	62.6	4/8/2012 0:41	62.0	5/8/2012 1:51	61.2	6/8/2012 3:01	61.6	7/8/2012 4:11	56.3	8/8/2012 5:21	59
3/2012 23:36 3/2012 23:41	62.4 62.6	4/8/2012 0:46 4/8/2012 0:51	61.9 61.8	5/8/2012 1:56 5/8/2012 2:01	60.2 60.5	6/8/2012 3:06 6/8/2012 3:11	60.6 61.4	7/8/2012 4:16 7/8/2012 4:21	57.3 56.7	8/8/2012 5:26 8/8/2012 5:31	60 60
2012 23:41	61.9	4/8/2012 0:56	62.0	5/8/2012 2:06	60.5	6/8/2012 3:16	61.1	7/8/2012 4:26	57.4	8/8/2012 5:36	60
/2012 23:51	62.5	4/8/2012 1:01	61.7	5/8/2012 2:11	60.2	6/8/2012 3:21	60.9	7/8/2012 4:31	56.5	8/8/2012 5:41	60
2012 23:56 2012 0:01	61.7 62.1	4/8/2012 1:06 4/8/2012 1:11	61.8 61.4	5/8/2012 2:16 5/8/2012 2:21	60.2 59.8	6/8/2012 3:26 6/8/2012 3:31	60.6 60.1	7/8/2012 4:36 7/8/2012 4:41	57.0 56.9	8/8/2012 5:46 8/8/2012 5:51	6 6
2012 0:06	61.9	4/8/2012 1:16	61.4	5/8/2012 2:26	59.8 59.7	6/8/2012 3:36	60.8	7/8/2012 4:46	57.2	8/8/2012 5:56	6
2012 0:11	61.8	4/8/2012 1:21	61.6	5/8/2012 2:31	59.8	6/8/2012 3:41	60.3	7/8/2012 4:51	56.8	8/8/2012 6:01	61
/2012 0:16 /2012 0:21	61.8 61.5	4/8/2012 1:26 4/8/2012 1:31	61.0 60.7	5/8/2012 2:36 5/8/2012 2:41	59.4 60.2	6/8/2012 3:46 6/8/2012 3:51	60.6 61.0	7/8/2012 4:56 7/8/2012 5:01	57.6 57.7	8/8/2012 6:06 8/8/2012 6:11	6 6
2012 0:21	61.5 61.8	4/8/2012 1:31 4/8/2012 1:36	60.7 61.3	5/8/2012 2:41 5/8/2012 2:46	60.2 61.2	6/8/2012 3:51 6/8/2012 3:56	61.0 60.6	7/8/2012 5:01 7/8/2012 5:06	57.7 57.3	8/8/2012 6:11 8/8/2012 6:16	62
2012 0:31	61.9	4/8/2012 1:41	61.0	5/8/2012 2:51	59.6	6/8/2012 4:01	59.8	7/8/2012 5:11	57.8	8/8/2012 6:21	62
/2012 0:36 /2012 0:41	62.1 61.4	4/8/2012 1:46	60.4 61.1	5/8/2012 2:56	59.9 59.9	6/8/2012 4:06	60.7	7/8/2012 5:16	58.1	8/8/2012 6:26	62
2012 0:41	61.4	4/8/2012 1:51 4/8/2012 1:56	61.1	5/8/2012 3:01 5/8/2012 3:06	59.9 59.7	6/8/2012 4:11 6/8/2012 4:16	60.1 60.5	7/8/2012 5:21 7/8/2012 5:26	58.2 59.0	8/8/2012 6:31 8/8/2012 6:36	63 63
/2012 0:51	60.6	4/8/2012 2:01	60.3	5/8/2012 3:11	59.0	6/8/2012 4:21	60.3	7/8/2012 5:31	58.8	8/8/2012 6:41	63
2012 0:56	61.0	4/8/2012 2:06	60.5	5/8/2012 3:16	59.4	6/8/2012 4:26	60.4	7/8/2012 5:36	59.1	8/8/2012 6:46	63
/2012 1:01 /2012 1:06	60.5 60.0	4/8/2012 2:11 4/8/2012 2:16	60.5 60.2	5/8/2012 3:21 5/8/2012 3:26	58.6 59.5	6/8/2012 4:31 6/8/2012 4:36	60.2 60.1	7/8/2012 5:41 7/8/2012 5:46	59.5 59.6	8/8/2012 6:51 8/8/2012 6:56	63 64
/2012 1:11	60.2	4/8/2012 2:21	60.8	5/8/2012 3:31	59.5	6/8/2012 4:41	60.0	7/8/2012 5:51	59.6	8/8/2012 23:01	63
/2012 1:16	61.4	4/8/2012 2:26	60.8	5/8/2012 3:36	59.8	6/8/2012 4:46	60.1	7/8/2012 5:56	59.4	8/8/2012 23:06	62
/2012 1:21 /2012 1:26	61.5 61.1	4/8/2012 2:31 4/8/2012 2:36	60.3 60.4	5/8/2012 3:41 5/8/2012 3:46	59.1 59.3	6/8/2012 4:51 6/8/2012 4:56	59.6 59.4	7/8/2012 6:01 7/8/2012 6:06	60.2 59.9	8/8/2012 23:11 8/8/2012 23:16	63 63
/2012 1:26	60.1	4/8/2012 2:36	60.4 60.5	5/8/2012 3:46	59.3 63.6	6/8/2012 4:56 6/8/2012 5:01	59.4 60.0	7/8/2012 6:06	59.9 62.0	8/8/2012 23:16	62
/2012 1:36	59.8	4/8/2012 2:46	59.8	5/8/2012 3:56	64.4	6/8/2012 5:06	60.2	7/8/2012 6:16	61.4	8/8/2012 23:26	62
/2012 1:41	60.7 61.0	4/8/2012 2:51	60.3	5/8/2012 4:01	63.9 63.3	6/8/2012 5:11 6/8/2012 5:16	60.3	7/8/2012 6:21	61.1	8/8/2012 23:31	62
/2012 1:46 /2012 1:51	61.0 59.2	4/8/2012 2:56 4/8/2012 3:01	60.0 59.9	5/8/2012 4:06 5/8/2012 4:11	63.3 63.9	6/8/2012 5:16 6/8/2012 5:21	59.9 60.6	7/8/2012 6:26 7/8/2012 6:31	64.0 61.9	8/8/2012 23:36 8/8/2012 23:41	62 61
/2012 1:56	61.0	4/8/2012 3:06	59.8	5/8/2012 4:16	63.0	6/8/2012 5:26	59.4	7/8/2012 6:36	62.3	8/8/2012 23:46	61
3/2012 2:01	61.0	4/8/2012 3:11	60.4	5/8/2012 4:21	63.2	6/8/2012 5:31	60.1	7/8/2012 6:41	63.2	8/8/2012 23:51	62
3/2012 2:06	59.9	4/8/2012 3:16 4/8/2012 3:21	59.6 59.2	5/8/2012 4:26 5/8/2012 4:31	63.2 62.9	6/8/2012 5:36 6/8/2012 5:41	61.1 60.4	7/8/2012 6:46 7/8/2012 6:51	63.3 63.8	8/8/2012 23:56 9/8/2012 0:01	61 62
3/2012 2:11	59.3										

Real-time Noise Data R	TN1 (FEHD Hong Kong Transpor	t Section Whitefield Depot)			
9/8/2012 0:11 61.6	10/8/2012 1:21 60.5	11/8/2012 2:31 60.7	12/8/2012 3:41 59.0	13/8/2012 4:51 58.4	14/8/2012 6:01 61.0
9/8/2012 0:16 61.7	10/8/2012 1:26 59.7	11/8/2012 2:36 60.8	12/8/2012 3:46 59.9	13/8/2012 4:56 59.0	14/8/2012 6:06 61.3
9/8/2012 0:21 61.8	10/8/2012 1:31 60.0	11/8/2012 2:41 61.2	12/8/2012 3:51 59.3	13/8/2012 5:01 58.6	14/8/2012 6:11 61.1
9/8/2012 0:26 61.5	10/8/2012 1:36 60.1	11/8/2012 2:46 60.5	12/8/2012 3:56 59.7	13/8/2012 5:06 58.8	14/8/2012 6:16 61.7
9/8/2012 0:31 61.4	10/8/2012 1:41 59.6	11/8/2012 2:51 60.2	12/8/2012 4:01 59.1	13/8/2012 5:11 59.1	14/8/2012 6:21 62.1
9/8/2012 0:36 61.2	10/8/2012 1:46 59.5	11/8/2012 2:56 61.5	12/8/2012 4:06 59.5	13/8/2012 5:16 59.5	14/8/2012 6:26 61.6
9/8/2012 0:41 61.2	10/8/2012 1:51 59.2	11/8/2012 3:01 60.5	12/8/2012 4:11 59.4	13/8/2012 5:21 59.6	14/8/2012 6:31 61.9
9/8/2012 0:46 60.8	10/8/2012 1:56 59.1	11/8/2012 3:06 60.0	12/8/2012 4:16 59.9	13/8/2012 5:26 59.6	14/8/2012 6:36 62.8
9/8/2012 0:51 60.7	10/8/2012 2:01 59.6	11/8/2012 3:11 60.1	12/8/2012 4:21 59.0	13/8/2012 5:31 59.7	14/8/2012 6:41 63.3
9/8/2012 0:56 60.9	10/8/2012 2:06 60.0	11/8/2012 3:16 60.3	12/8/2012 4:26 59.9	13/8/2012 5:36 59.7	14/8/2012 6:46 63.9
9/8/2012 1:01 60.3	10/8/2012 2:11 59.4	11/8/2012 3:21 59.6	12/8/2012 4:31 59.0	13/8/2012 5:41 60.0	14/8/2012 6:51 62.9
9/8/2012 1:06 60.1	10/8/2012 2:16 59.3	11/8/2012 3:26 59.9	12/8/2012 4:36 59.4	13/8/2012 5:46 60.2	14/8/2012 6:56 63.4 14/8/2012 23:01 63.7
9/8/2012 1:16 60.4	10/8/2012 2:26 59.4	11/8/2012 3:36 60.2	12/8/2012 4:41 59.1 12/8/2012 4:46 59.0	13/8/2012 5:56 59.8	14/8/2012 23:06 62.0
9/8/2012 1:21 60.8	10/8/2012 2:31 59.1	11/8/2012 3:41 61.8	12/8/2012 4:51 60.0	13/8/2012 6:01 63.0	14/8/2012 23:11 62.5
9/8/2012 1:26 60.2	10/8/2012 2:36 59.3	11/8/2012 3:46 62.0	12/8/2012 4:56 59.4	13/8/2012 6:06 64.8	14/8/2012 23:16 62.5
9/8/2012 1:31 60.3	10/8/2012 2:41 59.3	11/8/2012 3:51 63.9	12/8/2012 5:01 59.5	13/8/2012 6:11 63.3	14/8/2012 23:21 62.4
9/8/2012 1:36 59.9	10/8/2012 2:46 59.2	11/8/2012 3:56 61.8	12/8/2012 5:06 59.7	13/8/2012 6:16 62.8	14/8/2012 23:26 62.4
9/8/2012 1:41 59.7	10/8/2012 2:51 58.9	11/8/2012 4:01 64.7	12/8/2012 5:11 59.2	13/8/2012 6:21 63.0	14/8/2012 23:31 62.5
9/8/2012 1:46 59.5	10/8/2012 2:56 58.7	11/8/2012 4:06 64.2	12/8/2012 5:16 60.3	13/8/2012 6:26 62.0	14/8/2012 23:36 62.7
9/8/2012 1:51 60.2	10/8/2012 3:01 58.3	11/8/2012 4:11 62.7	12/8/2012 5:21 59.6	13/8/2012 6:31 63.1	14/8/2012 23:41 61.6
9/8/2012 1:56 59.5	10/8/2012 3:06 59.2	11/8/2012 4:16 60.8	12/8/2012 5:26 59.9	13/8/2012 6:36 63.1	14/8/2012 23:46 62.8
9/8/2012 2:01 59.1	10/8/2012 3:11 59.3	11/8/2012 4:21 60.7	12/8/2012 5:31 59.5	13/8/2012 6:41 63.4	14/8/2012 23:51 62.2
9/8/2012 2:06 58.8	10/8/2012 3:16 59.0	11/8/2012 4:26 63.8	12/8/2012 5:36 59.4	13/8/2012 6:46 63.8	14/8/2012 23:56 62.2
9/8/2012 2:11 59.4 9/8/2012 2:16 59.7	10/8/2012 3:21 58.5 10/8/2012 3:26 58.5	11/8/2012 4:31 64.8 11/8/2012 4:36 64.8	12/8/2012 5:41 59.5 12/8/2012 5:46 59.9	13/8/2012 6:51 63.5	15/8/2012 0:01 61.8
9/8/2012 2:21 59.4	10/8/2012 3:31 58.9	11/8/2012 4:41 64.9	12/8/2012 5:51 60.2	13/8/2012 23:01 63.1	15/8/2012 0:11 61.6
9/8/2012 2:26 59.2	10/8/2012 3:36 58.8	11/8/2012 4:46 62.3	12/8/2012 5:56 59.6	13/8/2012 23:06 62.7	15/8/2012 0:16 61.6
9/8/2012 2:31 59.7	10/8/2012 3:41 59.5	11/8/2012 4:51 62.1	12/8/2012 6:01 61.1	13/8/2012 23:11 63.1	15/8/2012 0:21 62.0
9/8/2012 2:36 58.5	10/8/2012 3:46 59.3	11/8/2012 4:56 62.4	12/8/2012 6:06 62.6	13/8/2012 23:16 62.6	15/8/2012 0:26 61.9
9/8/2012 2:41 61.1	10/8/2012 3:51 58.4	11/8/2012 5:01 61.4	12/8/2012 6:11 63.7	13/8/2012 23:21 62.2	15/8/2012 0:31 61.3
9/8/2012 2:46 58.7	10/8/2012 3:56 57.9	11/8/2012 5:06 62.0	12/8/2012 6:16 63.8	13/8/2012 23:26 64.9	15/8/2012 0:36 61.7
9/8/2012 2:51 58.8	10/8/2012 4:01 58.1	11/8/2012 5:11 61.8	12/8/2012 6:21 63.7	13/8/2012 23:31 62.0	15/8/2012 0:41 60.9
9/8/2012 2:56 59.0	10/8/2012 4:06 58.9	11/8/2012 5:16 61.8	12/8/2012 6:26 62.8	13/8/2012 23:36 61.9	15/8/2012 0:46 61.3
9/8/2012 3:01 58.8	10/8/2012 4:11 57.9	11/8/2012 5:21 63.0	12/8/2012 6:31 62.0	13/8/2012 23:41 62.4	15/8/2012 0:51 60.6
9/8/2012 3:06 59.1	10/8/2012 4:16 58.1	11/8/2012 5:26 63.0	12/8/2012 6:36 62.9	13/8/2012 23:46 62.3	15/8/2012 0:56 60.4
9/8/2012 3:11 58.7	10/8/2012 4:21 58.5	11/8/2012 5:31 63.5	12/8/2012 6:41 63.1	13/8/2012 23:51 62.3	15/8/2012 1:01 60.6
9/8/2012 3:16 59.0	10/8/2012 4:26 57.6	11/8/2012 5:36 64.2	12/8/2012 6:46 63.0	13/8/2012 23:56 61.8	15/8/2012 1:06 60.8
9/8/2012 3:21 58.8	10/8/2012 4:31 58.6	11/8/2012 5:41 64.7	12/8/2012 6:51 63.0	14/8/2012 0:01 62.1	15/8/2012 1:11 60.6
9/8/2012 3:26 58.7	10/8/2012 4:36 58.1	11/8/2012 5:46 64.8	12/8/2012 6:56 62.5	14/8/2012 0:06 61.9	15/8/2012 1:16 59.9
9/8/2012 3:31 58.6	10/8/2012 4:41 58.5	11/8/2012 5:51 64.1	12/8/2012 23:01 61.7	14/8/2012 0:11 62.6	15/8/2012 1:21 60.6
9/8/2012 3:36 58.9	10/8/2012 4:46 58.8	11/8/2012 5:56 63.8	12/8/2012 23:06 62.2	14/8/2012 0:16 61.6	15/8/2012 1:26 59.8
9/8/2012 3:41 59.0	10/8/2012 4:51 58.5	11/8/2012 6:01 64.7	12/8/2012 23:11 62.6	14/8/2012 0:21 62.6	15/8/2012 1:31 60.3
9/8/2012 3:46 58.4	10/8/2012 4:56 58.8	11/8/2012 6:06 64.7	12/8/2012 23:16 62.6	14/8/2012 0:26 61.7	15/8/2012 1:36 61.0
9/8/2012 3:51 58.9	10/8/2012 5:01 59.3	11/8/2012 6:11 64.8	12/8/2012 23:21 62.3	14/8/2012 0:31 61.4	15/8/2012 1:41 60.0
9/8/2012 3:56 58.6	10/8/2012 5:06 59.0	11/8/2012 6:16 64.8	12/8/2012 23:26 62.4	14/8/2012 0:36 61.2	15/8/2012 1:46 60.2
9/8/2012 4:01 58.5	10/8/2012 5:11 59.0	11/8/2012 6:21 64.9	12/8/2012 23:31 62.4	14/8/2012 0:41 60.9	15/8/2012 1:51 59.5
9/8/2012 4:06 58.5	10/8/2012 5:16 59.2	11/8/2012 6:26 64.3	12/8/2012 23:36 62.1	14/8/2012 0:46 60.9	15/8/2012 1:56 59.5
9/8/2012 4:11 58.8	10/8/2012 5:21 59.3	11/8/2012 6:31 63.9	12/8/2012 23:41 62.4	14/8/2012 0:51 60.8	15/8/2012 2:01 59.4
9/8/2012 4:16 58.3	10/8/2012 5:26 59.3	11/8/2012 6:36 64.8	12/8/2012 23:46 62.4	14/8/2012 0:56 61.3	15/8/2012 2:06 59.4
9/8/2012 4:21 58.3	10/8/2012 5:31 59.9	11/8/2012 6:41 64.3	12/8/2012 23:51 61.7	14/8/2012 1:01 61.4	15/8/2012 2:11 58.9
9/8/2012 4:26 59.1	10/8/2012 5:36 59.9	11/8/2012 6:46 64.7	12/8/2012 23:56 64.6	14/8/2012 1:06 59.9	15/8/2012 2:16 59.8
9/8/2012 4:31 58.8	10/8/2012 5:41 59.1	11/8/2012 6:51 64.5	13/8/2012 0:01 61.7	14/8/2012 1:11 59.6	15/8/2012 2:21 59.5
9/8/2012 4:36 58.4	10/8/2012 5:46 59.6	11/8/2012 6:56 64.5	13/8/2012 0:06 61.2	14/8/2012 1:16 60.6	15/8/2012 2:26 59.2
9/8/2012 4:41 58.4	10/8/2012 5:51 60.4	11/8/2012 23:01 62.6	13/8/2012 0:11 61.7	14/8/2012 1:21 60.6	15/8/2012 2:31 59.1
9/8/2012 4:46 59.3	10/8/2012 5:56 60.0	11/8/2012 23:06 62.6	13/8/2012 0:16 61.3	14/8/2012 1:26 60.5	15/8/2012 2:36 58.9
9/8/2012 4:51 58.1	10/8/2012 6:01 60.4	11/8/2012 23:11 62.7	13/8/2012 0:21 61.2	14/8/2012 1:31 60.4	15/8/2012 2:41 58.9
9/8/2012 4:56 58.5	10/8/2012 6:06 60.8	11/8/2012 23:16 62.6	13/8/2012 0:26 61.3	14/8/2012 1:36 61.1	15/8/2012 2:46 58.7
9/8/2012 5:01 59.5	10/8/2012 6:11 61.7	11/8/2012 23:21 62.5	13/8/2012 0:31 62.3	14/8/2012 1:41 59.8	15/8/2012 2:51 59.2
9/8/2012 5:06 58.8	10/8/2012 6:16 61.2	11/8/2012 23:26 62.6	13/8/2012 0:36 60.3	14/8/2012 1:46 60.0	
9/8/2012 5:11 58.8	10/8/2012 6:21 61.3	11/8/2012 23:31 63.1	13/8/2012 0:41 61.3	14/8/2012 1:51 60.1	15/8/2012 3:01 58.1
9/8/2012 5:16 58.9	10/8/2012 6:26 61.5	11/8/2012 23:36 63.2	13/8/2012 0:46 61.2	14/8/2012 1:56 59.7	15/8/2012 3:06 58.8
9/8/2012 5:21 58.7	10/8/2012 6:31 61.6	11/8/2012 23:41 62.6	13/8/2012 0:51 61.0	14/8/2012 2:01 59.7	15/8/2012 3:11 58.0
9/8/2012 5:26 59.4	10/8/2012 6:36 62.2	11/8/2012 23:46 62.6	13/8/2012 0:56 60.4	14/8/2012 2:06 59.2 14/8/2012 2:11 61.1	15/8/2012 3:16 58.4
9/8/2012 5:31 60.0	10/8/2012 6:41 62.6	11/8/2012 23:51 62.8	13/8/2012 1:01 60.4	14/8/2012 2:16 58.7	15/8/2012 3:21 58.8
9/8/2012 5:36 60.1	10/8/2012 6:46 62.4	11/8/2012 23:56 62.6	13/8/2012 1:06 60.0		15/8/2012 3:26 58.4
9/8/2012 5:41 59.5	10/8/2012 6:51 62.9	12/8/2012 0:01 62.5	13/8/2012 1:11 59.8	14/8/2012 2:21 59.4	15/8/2012 3:31 58.0
9/8/2012 5:46 60.4	10/8/2012 6:56 63.0	12/8/2012 0:06 62.6	13/8/2012 1:16 59.9	14/8/2012 2:26 59.4	15/8/2012 3:36 58.4
9/8/2012 5:51 60.2	10/8/2012 23:01 62.7	12/8/2012 0:11 61.8	13/8/2012 1:21 59.7	14/8/2012 2:31 59.4	15/8/2012 3:41 58.4
9/8/2012 5:56 60.5	10/8/2012 23:06 62.3	12/8/2012 0:16 62.8	13/8/2012 1:26 59.0	14/8/2012 2:36 59.5	15/8/2012 3:46 59.1
9/8/2012 6:01 60.7	10/8/2012 23:11 62.3	12/8/2012 0:21 61.5	13/8/2012 1:31 59.5	14/8/2012 2:41 59.5	15/8/2012 3:51 58.7
9/8/2012 6:06 60.7	10/8/2012 23:16 63.7	12/8/2012 0:26 62.9	13/8/2012 1:36 58.7	14/8/2012 2:46 59.0	15/8/2012 3:56 58.9
9/8/2012 6:11 60.5	10/8/2012 23:21 63.0	12/8/2012 0:31 61.9	13/8/2012 1:41 59.4	14/8/2012 2:51 60.2	15/8/2012 4:01 58.0
9/8/2012 6:16 61.7	10/8/2012 23:26 62.7	12/8/2012 0:36 61.9	13/8/2012 1:46 59.2	14/8/2012 2:56 58.8	15/8/2012 4:06 58.9
9/8/2012 6:21 61.9	10/8/2012 23:31 63.0	12/8/2012 0:41 61.8	13/8/2012 1:51 59.0	14/8/2012 3:01 59.0	15/8/2012 4:11 58.8
9/8/2012 6:26 61.2	10/8/2012 23:36 62.5	12/8/2012 0:46 61.9	13/8/2012 1:56 59.4	14/8/2012 3:06 59.5	15/8/2012 4:16 58.8
9/8/2012 6:31 62.0	10/8/2012 23:41 62.7	12/8/2012 0:51 61.4	13/8/2012 2:01 59.2	14/8/2012 3:11 60.5	15/8/2012 4:21 58.5
9/8/2012 6:36 62.9	10/8/2012 23:46 62.7	12/8/2012 0:56 61.5	13/8/2012 2:06 58.6	14/8/2012 3:16 60.5	15/8/2012 4:26 58.0
9/8/2012 6:41 63.3	10/8/2012 23:51 63.0	12/8/2012 1:01 60.9	13/8/2012 2:11 58.8	14/8/2012 3:21 58.7	15/8/2012 4:31 58.5
9/8/2012 6:46 63.3	10/8/2012 23:56 62.5	12/8/2012 1:06 61.0	13/8/2012 2:16 58.9	14/8/2012 3:26 58.6	15/8/2012 4:36 58.8
9/8/2012 6:51 62.3	11/8/2012 0:01 62.6	12/8/2012 1:11 61.0	13/8/2012 2:21 58.5	14/8/2012 3:31 58.9	15/8/2012 4:41 58.5
9/8/2012 6:56 63.0	11/8/2012 0:06 62.2	12/8/2012 1:16 61.4	13/8/2012 2:26 59.2	14/8/2012 3:36 60.0	15/8/2012 4:46 59.1
9/8/2012 23:01 63.6	11/8/2012 0:11 62.2	12/8/2012 1:21 61.1	13/8/2012 2:31 57.7	14/8/2012 3:41 58.3	15/8/2012 4:51 59.0
9/8/2012 23:06 63.3	11/8/2012 0:16 62.7	12/8/2012 1:26 61.1	13/8/2012 2:36 58.7	14/8/2012 3:46 58.7	15/8/2012 4:56 58.3
9/8/2012 23:11 62.9	11/8/2012 0:21 61.9	12/8/2012 1:31 60.7	13/8/2012 2:41 58.6	14/8/2012 3:51 59.2	15/8/2012 5:01 59.4
9/8/2012 23:16 63.2	11/8/2012 0:26 63.3	12/8/2012 1:36 60.5	13/8/2012 2:46 57.8	14/8/2012 3:56 58.6	15/8/2012 5:06 59.6
9/8/2012 23:21 62.9	11/8/2012 0:31 63.0	12/8/2012 1:41 60.8	13/8/2012 2:51 58.7	14/8/2012 4:01 58.2	15/8/2012 5:11 59.2
9/8/2012 23:26 62.2	11/8/2012 0:36 61.6	12/8/2012 1:46 60.4	13/8/2012 2:56 59.1	14/8/2012 4:06 58.3	15/8/2012 5:16 59.0
9/8/2012 23:31 62.4	11/8/2012 0:41 61.7	12/8/2012 1:51 60.4	13/8/2012 3:01 58.0	14/8/2012 4:11 58.2	15/8/2012 5:21 59.3
9/8/2012 23:36 63.6	11/8/2012 0:46 61.7	12/8/2012 1:56 60.1	13/8/2012 3:06 57.9	14/8/2012 4:16 59.0	15/8/2012 5:26 59.5
9/8/2012 23:41 63.2	11/8/2012 0:51 62.0	12/8/2012 2:01 62.3	13/8/2012 3:11 57.7	14/8/2012 4:21 59.3	15/8/2012 5:31 59.6
9/8/2012 23:46 62.0	11/8/2012 0:56 61.5	12/8/2012 2:06 60.8	13/8/2012 3:16 58.2	14/8/2012 4:26 58.6	15/8/2012 5:36 60.5
9/8/2012 23:51 61.6	11/8/2012 1:01 61.2	12/8/2012 2:11 60.2	13/8/2012 3:21 58.7	14/8/2012 4:31 58.9	15/8/2012 5:41 59.9
9/8/2012 23:56 62.7	11/8/2012 1:06 61.8	12/8/2012 2:16 60.4	13/8/2012 3:26 58.0	14/8/2012 4:36 59.4	15/8/2012 5:46 60.2
10/8/2012 0:01 62.2	11/8/2012 1:11 61.6	12/8/2012 2:21 60.5	13/8/2012 3:31 58.4	14/8/2012 4:41 58.3	15/8/2012 5:51 60.2
10/8/2012 0:06 61.8	11/8/2012 1:16 61.0	12/8/2012 2:26 61.4	13/8/2012 3:36 57.9	14/8/2012 4:46 59.2	15/8/2012 5:56 60.2
10/8/2012 0:11 61.5	11/8/2012 1:21 60.9	12/8/2012 2:31 60.6	13/8/2012 3:41 58.0	14/8/2012 4:51 59.1	15/8/2012 6:01 60.6
10/8/2012 0:16 62.8	11/8/2012 1:26 61.1	12/8/2012 2:36 59.8	13/8/2012 3:46 57.5	14/8/2012 4:56 59.2	15/8/2012 6:06 61.4
10/8/2012 0:21 61.9	11/8/2012 1:31 61.2	12/8/2012 2:41 60.1	13/8/2012 3:51 60.4	14/8/2012 5:01 59.2	15/8/2012 6:11 61.0
10/8/2012 0:26 61.2	11/8/2012 1:36 60.4	12/8/2012 2:46 59.6	13/8/2012 3:56 58.4	14/8/2012 5:06 59.7	15/8/2012 6:16 61.8
10/8/2012 0:31 61.7	11/8/2012 1:41 60.9	12/8/2012 2:51 59.7	13/8/2012 4:01 58.4	14/8/2012 5:11 59.6	15/8/2012 6:21 61.8
10/8/2012 0:36 61.1	11/8/2012 1:46 61.0	12/8/2012 2:56 60.3	13/8/2012 4:06 58.4	14/8/2012 5:16 60.1	15/8/2012 6:26 61.6
10/8/2012 0:41 61.3	11/8/2012 1:51 61.0	12/8/2012 3:01 59.9	13/8/2012 4:11 58.1	14/8/2012 5:21 59.1	15/8/2012 6:31 62.4
10/8/2012 0:46 61.2	11/8/2012 1:56 61.3	12/8/2012 3:06 59.7	13/8/2012 4:16 58.3	14/8/2012 5:26 59.3	15/8/2012 6:36 62.4
10/8/2012 0:51 60.6	11/8/2012 2:01 60.7	12/8/2012 3:11 59.5	13/8/2012 4:21 58.1	14/8/2012 5:31 59.1	15/8/2012 6:41 63.0
10/8/2012 0:56 60.6	11/8/2012 2:06 60.2	12/8/2012 3:16 59.7	13/8/2012 4:26 58.2	14/8/2012 5:36 59.7	15/8/2012 6:46 63.4
10/8/2012 1:01 60.5	11/8/2012 2:11 60.3	12/8/2012 3:21 59.8	13/8/2012 4:31 58.3	14/8/2012 5:41 60.8	15/8/2012 6:51 62.9
10/8/2012 1:06 60.3	11/8/2012 2:16 61.0	12/8/2012 3:26 59.4	13/8/2012 4:36 58.9	14/8/2012 5:46 60.5	15/8/2012 6:56 63.4
10/8/2012 1:11 60.8	11/8/2012 2:21 61.6	12/8/2012 3:31 59.6	13/8/2012 4:41 58.2	14/8/2012 5:51 61.1	15/8/2012 23:01 63.6
10/8/2012 1:16 60.0	11/8/2012 2:26 60.7	12/8/2012 3:36 60.5	13/8/2012 4:46 58.2	14/8/2012 5:56 60.9	15/8/2012 23:06 63.4

Real-time Noise Data RT	N1 (FEHD Hong Kong Transport	Section Whitefield Depot)			
15/8/2012 23:11 63.4	17/8/2012 0:21 60.1	18/8/2012 1:31 61.5	19/8/2012 2:41 59.9	20/8/2012 3:51 59.4 20/8/2012 3:56 58.9	21/8/2012 5:01 57.8
15/8/2012 23:16 63.0 15/8/2012 23:21 63.9	17/8/2012 0:26 61.9 17/8/2012 0:31 61.9	18/8/2012 1:36 61.2 18/8/2012 1:41 61.2	19/8/2012 2:46 59.3 19/8/2012 2:51 59.8	20/8/2012 4:01 58.5	21/8/2012 5:06 58.8 21/8/2012 5:11 59.8
15/8/2012 23:26 63.0	17/8/2012 0:36 62.0	18/8/2012 1:46 60.8	19/8/2012 2:56 59.8	20/8/2012 4:06 58.1	21/8/2012 5:16 59.2
15/8/2012 23:31 63.4	17/8/2012 0:41 60.5	18/8/2012 1:51 60.9	19/8/2012 3:01 60.1	20/8/2012 4:11 59.1	21/8/2012 5:21 59.1
15/8/2012 23:36 63.7	17/8/2012 0:46 60.8	18/8/2012 1:56 60.7	19/8/2012 3:06 59.9	20/8/2012 4:16 57.9	21/8/2012 5:26 59.0
15/8/2012 23:41 62.4	17/8/2012 0:51 61.2	18/8/2012 2:01 60.2	19/8/2012 3:11 59.2	20/8/2012 4:21 58.3	21/8/2012 5:31 59.2
15/8/2012 23:46 63.6	17/8/2012 0:56 60.3	18/8/2012 2:06 60.5	19/8/2012 3:16 59.5	20/8/2012 4:26 58.5	21/8/2012 5:36 58.7
15/8/2012 23:51 63.0	17/8/2012 1:01 60.6	18/8/2012 2:11 61.3	19/8/2012 3:21 59.1	20/8/2012 4:31 59.3	21/8/2012 5:41 60.1
15/8/2012 23:56 63.5	17/8/2012 1:06 60.7	18/8/2012 2:16 60.2	19/8/2012 3:26 59.1	20/8/2012 4:36 59.2	21/8/2012 5:46 59.9
16/8/2012 0:01 62.2	17/8/2012 1:11 59.0	18/8/2012 2:21 60.2	19/8/2012 3:31 58.8	20/8/2012 4:41 58.7	21/8/2012 5:51 60.1
16/8/2012 0:06 62.4	17/8/2012 1:16 61.2	18/8/2012 2:26 61.0	19/8/2012 3:36 59.4	20/8/2012 4:46 59.4	21/8/2012 5:56 60.1
16/8/2012 0:11 61.8	17/8/2012 1:21 60.0	18/8/2012 2:31 60.7	19/8/2012 3:41 58.9	20/8/2012 4:51 59.8	21/8/2012 6:01 60.2
16/8/2012 0:16 62.3	17/8/2012 1:26 58.4	18/8/2012 2:36 60.3	19/8/2012 3:46 59.9	20/8/2012 4:56 58.9	21/8/2012 6:06 61.5
16/8/2012 0:21 62.3	17/8/2012 1:31 61.2	18/8/2012 2:41 60.2	19/8/2012 3:51 59.3	20/8/2012 5:01 59.3	21/8/2012 6:11 60.8
16/8/2012 0:26 61.4	17/8/2012 1:36 61.1	18/8/2012 2:46 60.4	19/8/2012 3:56 58.9	20/8/2012 5:06 59.9	21/8/2012 6:16 61.2
16/8/2012 0:31 61.7	17/8/2012 1:41 58.4	18/8/2012 2:51 60.2	19/8/2012 4:01 58.8	20/8/2012 5:11 59.3	21/8/2012 6:21 61.2
16/8/2012 0:36 61.6	17/8/2012 1:46 59.9	18/8/2012 2:56 60.2	19/8/2012 4:06 59.2	20/8/2012 5:16 59.8	21/8/2012 6:26 62.5
16/8/2012 0:41 61.5	17/8/2012 1:51 58.5	18/8/2012 3:01 59.8	19/8/2012 4:11 59.4	20/8/2012 5:21 59.6	21/8/2012 6:31 61.8
16/8/2012 0:46 61.8	17/8/2012 1:56 59.1 17/8/2012 2:01 62.8	18/8/2012 3:06 60.8 18/8/2012 3:11 59.9	19/8/2012 4:16 59.6	20/8/2012 5:26 59.9 20/8/2012 5:31 60.2	21/8/2012 6:36 62.3
16/8/2012 0:56 60.5	17/8/2012 2:06 59.8	18/8/2012 3:16 59.7	19/8/2012 4:26 58.8	20/8/2012 5:36 60.1	21/8/2012 6:46 62.9
16/8/2012 1:01 61.1	17/8/2012 2:11 58.9	18/8/2012 3:21 60.1	19/8/2012 4:31 59.2	20/8/2012 5:41 59.9	21/8/2012 6:51 63.0
16/8/2012 1:06 61.2	17/8/2012 2:16 61.1	18/8/2012 3:26 59.2	19/8/2012 4:36 58.8	20/8/2012 5:46 61.4	21/8/2012 6:56 63.1
16/8/2012 1:11 60.5	17/8/2012 2:21 58.3	18/8/2012 3:31 59.8	19/8/2012 4:41 58.6	20/8/2012 5:51 61.0	21/8/2012 23:01 62.3
16/8/2012 1:16 60.0	17/8/2012 2:26 59.0	18/8/2012 3:36 59.7	19/8/2012 4:46 59.1	20/8/2012 5:56 61.3	21/8/2012 23:06 62.2
16/8/2012 1:21 59.6	17/8/2012 2:31 59.1 17/8/2012 2:36 59.2	18/8/2012 3:41 59.8	19/8/2012 4:51 59.5	20/8/2012 6:01 62.7	21/8/2012 23:11 62.3
16/8/2012 1:26 61.7 16/8/2012 1:31 60.8	17/8/2012 2:41 58.4	18/8/2012 3:51 59.1	19/8/2012 4:56 58.8 19/8/2012 5:01 58.8	20/8/2012 6:11 61.6	21/8/2012 23:16 62.1 21/8/2012 23:21 62.4
16/8/2012 1:36 59.7	17/8/2012 2:46 60.0	18/8/2012 3:56 59.3	19/8/2012 5:06 60.6	20/8/2012 6:16 62.7	21/8/2012 23:26 62.9
16/8/2012 1:41 59.5	17/8/2012 2:51 57.8	18/8/2012 4:01 59.3	19/8/2012 5:11 59.9	20/8/2012 6:21 62.6	21/8/2012 23:31 62.3
16/8/2012 1:46 59.9	17/8/2012 2:56 59.2	18/8/2012 4:06 59.2	19/8/2012 5:16 59.1	20/8/2012 6:26 62.7	21/8/2012 23:36 64.1
16/8/2012 1:51 60.7	17/8/2012 3:01 57.1	18/8/2012 4:11 59.3	19/8/2012 5:21 59.3	20/8/2012 6:31 63.1	21/8/2012 23:41 61.8
16/8/2012 1:56 60.9	17/8/2012 3:06 57.2	18/8/2012 4:16 59.6	19/8/2012 5:26 59.5	20/8/2012 6:36 63.8	21/8/2012 23:46 62.2
16/8/2012 2:01 60.1	17/8/2012 3:11 58.8	18/8/2012 4:21 59.2	19/8/2012 5:31 59.1	20/8/2012 6:41 63.6	21/8/2012 23:51 62.3
16/8/2012 2:06 59.7	17/8/2012 3:16 58.2	18/8/2012 4:26 58.9	19/8/2012 5:36 58.9	20/8/2012 6:46 64.7	21/8/2012 23:56 61.3
16/8/2012 2:11 60.6	17/8/2012 3:21 58.2	18/8/2012 4:31 59.4	19/8/2012 5:41 59.5	20/8/2012 6:51 64.6	22/8/2012 0:01 61.2
16/8/2012 2:16 60.2	17/8/2012 3:26 57.6	18/8/2012 4:36 59.4	19/8/2012 5:46 59.8	20/8/2012 6:56 64.1	22/8/2012 0:06 61.5
16/8/2012 2:21 59.4	17/8/2012 3:31 58.6	18/8/2012 4:41 59.2	19/8/2012 5:51 59.7	20/8/2012 23:01 62.2	22/8/2012 0:11 62.2
16/8/2012 2:26 58.5	17/8/2012 3:36 59.1	18/8/2012 4:46 60.2	19/8/2012 5:56 60.1	20/8/2012 23:06 62.8	22/8/2012 0:16 61.6
16/8/2012 2:31 59.3	17/8/2012 3:41 58.8	18/8/2012 4:51 59.4	19/8/2012 6:01 59.8	20/8/2012 23:11 62.2	22/8/2012 0:21 61.7
16/8/2012 2:36 58.1	17/8/2012 3:46 58.9	18/8/2012 4:56 59.1	19/8/2012 6:06 59.3	20/8/2012 23:16 63.0	22/8/2012 0:26 61.9
16/8/2012 2:41 59.5	17/8/2012 3:51 57.6	18/8/2012 5:01 59.0	19/8/2012 6:11 60.5	20/8/2012 23:21 63.5	22/8/2012 0:31 62.5
16/8/2012 2:46 59.2	17/8/2012 3:56 57.4	18/8/2012 5:06 60.0	19/8/2012 6:16 60.7	20/8/2012 23:26 62.2	22/8/2012 0:36 60.4
16/8/2012 2:51 59.0	17/8/2012 4:01 55.7	18/8/2012 5:11 59.7	19/8/2012 6:21 60.6	20/8/2012 23:31 62.0	22/8/2012 0:41 60.3
16/8/2012 2:56 59.2	17/8/2012 4:06 56.4	18/8/2012 5:16 59.5	19/8/2012 6:26 60.5	20/8/2012 23:36 61.8	22/8/2012 0:46 60.9
16/8/2012 3:01 58.8	17/8/2012 4:11 56.3	18/8/2012 5:21 60.1	19/8/2012 6:31 61.1	20/8/2012 23:41 61.9	22/8/2012 0:51 60.8
16/8/2012 3:06 58.6	17/8/2012 4:16 57.3	18/8/2012 5:26 59.9	19/8/2012 6:36 61.1	20/8/2012 23:46 61.9	22/8/2012 0:56 60.4
16/8/2012 3:11 58.1	17/8/2012 4:21 59.4	18/8/2012 5:31 60.2	19/8/2012 6:41 61.7	20/8/2012 23:51 61.8	22/8/2012 1:01 60.6
16/8/2012 3:16 58.1	17/8/2012 4:26 56.7	18/8/2012 5:36 59.3	19/8/2012 6:46 62.3	20/8/2012 23:56 61.7	22/8/2012 1:06 59.8
16/8/2012 3:21 60.0	17/8/2012 4:31 57.1	18/8/2012 5:41 60.4	19/8/2012 6:51 61.0	21/8/2012 0:01 61.3	22/8/2012 1:11 59.8
16/8/2012 3:26 58.4	17/8/2012 4:36 58.3	18/8/2012 5:46 60.2	19/8/2012 6:56 62.1	21/8/2012 0:06 61.9	22/8/2012 1:16 59.7
16/8/2012 3:31 59.2	17/8/2012 4:41 55.2	18/8/2012 5:51 60.3	19/8/2012 23:01 63.9	21/8/2012 0:11 61.8	22/8/2012 1:21 60.0
16/8/2012 3:36 57.9	17/8/2012 4:46 57.3	18/8/2012 5:56 60.2	19/8/2012 23:06 63.8	21/8/2012 0:16 61.6	22/8/2012 1:26 59.2
16/8/2012 3:41 58.1	17/8/2012 4:51 59.2	18/8/2012 6:01 61.1	19/8/2012 23:11 64.5	21/8/2012 0:21 61.6	22/8/2012 1:31 59.5
16/8/2012 3:46 58.1	17/8/2012 4:56 56.5	18/8/2012 6:06 60.8	19/8/2012 23:16 63.7	21/8/2012 0:26 61.7	22/8/2012 1:36 59.2
16/8/2012 3:51 57.7	17/8/2012 5:01 57.4	18/8/2012 6:11 61.3	19/8/2012 23:21 64.4	21/8/2012 0:31 60.8	22/8/2012 1:41 59.6
16/8/2012 3:56 58.0	17/8/2012 5:06 57.0	18/8/2012 6:16 60.8	19/8/2012 23:26 63.7	21/8/2012 0:36 61.0	22/8/2012 1:46 59.1
16/8/2012 4:01 58.7	17/8/2012 5:11 56.6	18/8/2012 6:21 61.5	19/8/2012 23:31 63.6	21/8/2012 0:41 60.6	22/8/2012 1:51 59.7
16/8/2012 4:06 58.7	17/8/2012 5:16 58.1	18/8/2012 6:26 62.1	19/8/2012 23:36 64.4	21/8/2012 0:46 60.2	22/8/2012 1:56 58.8
16/8/2012 4:11 59.6	17/8/2012 5:21 59.3	18/8/2012 6:31 61.3	19/8/2012 23:41 64.0	21/8/2012 0:51 60.4	22/8/2012 2:01 59.0
16/8/2012 4:16 58.8	17/8/2012 5:26 60.0	18/8/2012 6:36 62.9	19/8/2012 23:46 64.3	21/8/2012 0:56 60.3	22/8/2012 2:06 59.8
16/8/2012 4:21 59.4	17/8/2012 5:31 59.4	18/8/2012 6:41 62.0	19/8/2012 23:51 63.4	21/8/2012 1:01 59.7	22/8/2012 2:11 59.2
16/8/2012 4:26 59.5	17/8/2012 5:36 59.8	18/8/2012 6:46 62.4	19/8/2012 23:56 63.9	21/8/2012 1:06 60.1	22/8/2012 2:16 58.8
16/8/2012 4:31 58.2	17/8/2012 5:41 58.8	18/8/2012 6:51 62.6	20/8/2012 0:01 63.6	21/8/2012 1:11 59.6	22/8/2012 2:21 58.9
16/8/2012 4:36 58.8	17/8/2012 5:46 61.5	18/8/2012 6:56 62.6	20/8/2012 0:06 63.3	21/8/2012 1:16 60.2	22/8/2012 2:26 58.6
16/8/2012 4:41 58.4	17/8/2012 5:51 60.0	18/8/2012 23:01 62.1	20/8/2012 0:11 63.7	21/8/2012 1:21 59.6	22/8/2012 2:31 58.9
16/8/2012 4:46 58.6	17/8/2012 5:56 60.4	18/8/2012 23:06 62.0	20/8/2012 0:16 63.0	21/8/2012 1:26 60.4	22/8/2012 2:36 58.6
16/8/2012 4:51 58.8	17/8/2012 6:01 59.9	18/8/2012 23:11 62.4	20/8/2012 0:21 63.6	21/8/2012 1:31 60.0	22/8/2012 2:41 58.9
16/8/2012 4:56 58.5	17/8/2012 6:06 61.9	18/8/2012 23:16 62.9	20/8/2012 0:26 63.0	21/8/2012 1:36 59.7	22/8/2012 2:46 58.3
16/8/2012 5:01 60.7	17/8/2012 6:11 61.1	18/8/2012 23:21 62.2	20/8/2012 0:31 62.8	21/8/2012 1:41 60.0	22/8/2012 2:51 58.5
16/8/2012 5:06 59.7	17/8/2012 6:16 62.8	18/8/2012 23:26 62.9	20/8/2012 0:36 62.5	21/8/2012 1:46 59.9	22/8/2012 2:56 58.8
16/8/2012 5:11 58.1	17/8/2012 6:21 61.7	18/8/2012 23:31 62.1	20/8/2012 0:41 62.0	21/8/2012 1:51 58.9	22/8/2012 3:01 58.1
16/8/2012 5:16 58.3	17/8/2012 6:26 62.8	18/8/2012 23:36 62.3	20/8/2012 0:46 62.4	21/8/2012 1:56 59.1	22/8/2012 3:06 58.1
16/8/2012 5:21 58.5	17/8/2012 6:31 63.2	18/8/2012 23:41 62.1	20/8/2012 0:51 62.3	21/8/2012 2:01 59.5	22/8/2012 3:11 57.7
16/8/2012 5:26 59.4	17/8/2012 6:36 61.7	18/8/2012 23:46 62.1	20/8/2012 0:56 61.7	21/8/2012 2:06 60.0	22/8/2012 3:16 58.4
16/8/2012 5:31 58.4	17/8/2012 6:41 62.9	18/8/2012 23:51 62.1	20/8/2012 1:01 62.3	21/8/2012 2:11 59.2	22/8/2012 3:21 58.6
16/8/2012 5:36 58.3	17/8/2012 6:46 64.8	18/8/2012 23:56 63.2	20/8/2012 1:06 62.4	21/8/2012 2:16 59.2	22/8/2012 3:26 57.6
16/8/2012 5:41 59.4	17/8/2012 6:51 64.0	19/8/2012 0:01 62.6	20/8/2012 1:11 63.7	21/8/2012 2:21 59.3	22/8/2012 3:31 58.2
16/8/2012 5:46 58.9	17/8/2012 6:56 64.9	19/8/2012 0:06 62.1	20/8/2012 1:16 62.9	21/8/2012 2:26 59.3	22/8/2012 3:36 58.3
16/8/2012 5:51 58.7	17/8/2012 23:01 62.7	19/8/2012 0:11 62.0	20/8/2012 1:21 61.2	21/8/2012 2:31 58.4	22/8/2012 3:41 59.0
16/8/2012 5:56 58.7	17/8/2012 23:06 62.9	19/8/2012 0:16 61.8	20/8/2012 1:26 62.1	21/8/2012 2:36 58.8	22/8/2012 3:46 58.4
16/8/2012 6:01 59.4	17/8/2012 23:11 62.7	19/8/2012 0:21 62.2	20/8/2012 1:31 62.4	21/8/2012 2:41 58.6	22/8/2012 3:51 58.1
16/8/2012 6:06 59.5	17/8/2012 23:16 62.9	19/8/2012 0:26 62.2	20/8/2012 1:36 62.2	21/8/2012 2:46 58.2	22/8/2012 3:56 57.9
16/8/2012 6:11 58.8	17/8/2012 23:21 63.2	19/8/2012 0:31 62.8	20/8/2012 1:41 61.7	21/8/2012 2:51 58.4	22/8/2012 4:01 58.0
16/8/2012 6:16 59.8	17/8/2012 23:26 62.3	19/8/2012 0:36 61.5	20/8/2012 1:46 61.7	21/8/2012 2:56 58.3	22/8/2012 4:06 57.3
16/8/2012 6:21 60.0	17/8/2012 23:31 62.5	19/8/2012 0:41 62.4	20/8/2012 1:51 60.9	21/8/2012 3:01 58.0	22/8/2012 4:11 58.2
16/8/2012 6:26 59.7	17/8/2012 23:36 62.1	19/8/2012 0:46 61.9	20/8/2012 1:56 62.6	21/8/2012 3:06 58.4	22/8/2012 4:16 60.0
16/8/2012 6:31 59.1	17/8/2012 23:41 62.9	19/8/2012 0:51 61.5	20/8/2012 2:01 61.6	21/8/2012 3:11 58.9	22/8/2012 4:21 58.3
16/8/2012 6:36 60.5	17/8/2012 23:46 62.4	19/8/2012 0:56 61.5	20/8/2012 2:06 61.0	21/8/2012 3:16 58.8	22/8/2012 4:26 58.2
16/8/2012 6:41 59.0	17/8/2012 23:51 62.8	19/8/2012 1:01 62.3	20/8/2012 2:11 62.8	21/8/2012 3:21 57.8	22/8/2012 4:31 58.8
16/8/2012 6:46 60.3	17/8/2012 23:56 62.7	19/8/2012 1:06 61.7	20/8/2012 2:16 61.9	21/8/2012 3:26 57.7	22/8/2012 4:36 57.7
16/8/2012 6:51 59.7	18/8/2012 0:01 63.1	19/8/2012 1:11 61.7	20/8/2012 2:21 61.4	21/8/2012 3:31 58.2	22/8/2012 4:41 58.3
16/8/2012 6:56 59.7	18/8/2012 0:06 62.1	19/8/2012 1:16 60.9	20/8/2012 2:26 61.1	21/8/2012 3:36 58.4	22/8/2012 4:46 57.8
16/8/2012 23:01 61.0	18/8/2012 0:11 61.7	19/8/2012 1:21 61.5	20/8/2012 2:31 59.9	21/8/2012 3:41 58.1	22/8/2012 4:51 57.9
16/8/2012 23:06 62.0	18/8/2012 0:16 62.6	19/8/2012 1:26 60.7	20/8/2012 2:36 60.2	21/8/2012 3:46 58.2	22/8/2012 4:56 58.9
16/8/2012 23:11 61.4	18/8/2012 0:21 62.5	19/8/2012 1:31 61.1	20/8/2012 2:41 60.3	21/8/2012 3:51 58.3	22/8/2012 5:01 58.1
16/8/2012 23:16 62.2	18/8/2012 0:26 63.1	19/8/2012 1:36 60.8	20/8/2012 2:46 59.6	21/8/2012 3:56 57.8	22/8/2012 5:06 58.6
16/8/2012 23:21 64.9	18/8/2012 0:31 61.8	19/8/2012 1:41 60.4	20/8/2012 2:51 59.8	21/8/2012 4:01 58.5	22/8/2012 5:11 59.4
16/8/2012 23:26 64.2	18/8/2012 0:36 61.4	19/8/2012 1:46 59.8	20/8/2012 2:56 60.0	21/8/2012 4:06 58.2	22/8/2012 5:16 58.7
16/8/2012 23:31 64.1	18/8/2012 0:41 62.1	19/8/2012 1:51 60.5	20/8/2012 3:01 60.2	21/8/2012 4:11 58.7	22/8/2012 5:21 58.5
16/8/2012 23:36 64.6	18/8/2012 0:51 61.4	19/8/2012 1:56 60.4	20/8/2012 3:06 59.4	21/8/2012 4:16 58.9	22/8/2012 5:26 59.4
16/8/2012 23:41 62.6	18/8/2012 0:51 61.9	19/8/2012 2:01 59.9	20/8/2012 3:11 59.0	21/8/2012 4:21 58.4	22/8/2012 5:31 59.2
16/8/2012 23:46 63.3	18/8/2012 0:56 61.0	19/8/2012 2:06 59.6	20/8/2012 3:16 58.7	21/8/2012 4:26 58.0	22/8/2012 5:36 59.2
16/8/2012 23:51 64.3	18/8/2012 1:01 62.4	19/8/2012 2:11 60.2	20/8/2012 3:21 59.3	21/8/2012 4:31 58.3	22/8/2012 5:41 59.8
16/8/2012 23:56 62.2	18/8/2012 1:06 61.1	19/8/2012 2:16 60.0	20/8/2012 3:26 59.3	21/8/2012 4:36 57.9	22/8/2012 5:46 60.1
17/8/2012 0:01 63.1	18/8/2012 1:11 61.5	19/8/2012 2:21 60.6	20/8/2012 3:31 59.3	21/8/2012 4:41 58.6	22/8/2012 5:51 60.2
17/8/2012 0:06 61.3	18/8/2012 1:16 61.7	19/8/2012 2:26 59.7	20/8/2012 3:36 59.8	21/8/2012 4:46 57.9	22/8/2012 5:56 59.7
17/8/2012 0:10 62.5	18/8/2012 1:21 61.3	19/8/2012 2:31 59.5	20/8/2012 3:41 58.5	21/8/2012 4:51 58.1	22/8/2012 6:01 60.3
17/8/2012 0:16 62.1	18/8/2012 1:26 61.3	19/8/2012 2:36 60.4	20/8/2012 3:46 59.8	21/8/2012 4:56 58.5	22/8/2012 6:06 60.8
	1.0/0/2012 1.20 01.3	10/0/2012 2.00 00.4	20/0/2012 0.70 00.0	21/0/2012 7.00 00.0	122,0,2012 0.00 00.0

Real-time Noise Data	RTN1 (FEHD Hong Kong Transp			27/0/2012 2:51 50 2
22/8/2012 6:11 60.9 22/8/2012 6:16 61.0	23/8/2012 23:21 63.4 23/8/2012 23:26 62.3	25/8/2012 0:31 62.8 25/8/2012 0:36 62.7	26/8/2012 1:41 61.6 26/8/2012 1:46 61.7	27/8/2012 2:51 58.3 27/8/2012 2:56 58.3
22/8/2012 6:21 61.2	23/8/2012 23:31 63.0	25/8/2012 0:41 63.6	26/8/2012 1:51 61.5	27/8/2012 3:01 58.5
22/8/2012 6:26 61.4 22/8/2012 6:31 61.9	23/8/2012 23:36 62.1 23/8/2012 23:41 62.3	25/8/2012 0:46 62.3 25/8/2012 0:51 62.3	26/8/2012 1:56 61.9 26/8/2012 2:01 60.8	27/8/2012 3:06 57.6 27/8/2012 3:11 57.6
22/8/2012 6:36 63.1	23/8/2012 23:46 62.2	25/8/2012 0:56 62.4	26/8/2012 2:06 61.3	27/8/2012 3:16 58.1
22/8/2012 6:41 63.2 22/8/2012 6:46 62.8	23/8/2012 23:51 62.1 23/8/2012 23:56 61.5	25/8/2012 1:01 63.2 25/8/2012 1:06 61.9	26/8/2012 2:11 60.9 26/8/2012 2:16 61.3	27/8/2012 3:21 57.5 27/8/2012 3:26 58.0
22/8/2012 6:51 62.8	24/8/2012 0:01 62.2	25/8/2012 1:11 61.9	26/8/2012 2:21 60.9	27/8/2012 3:31 57.5
22/8/2012 6:56 62.7 22/8/2012 23:01 62.8	24/8/2012 0:06 62.4 24/8/2012 0:11 62.3	25/8/2012 1:16 61.9 25/8/2012 1:21 62.4	26/8/2012 2:26 61.4 26/8/2012 2:31 60.6	27/8/2012 3:36 58.4 27/8/2012 3:41 58.4
22/8/2012 23:06 62.3	24/8/2012 0:16 61.7	25/8/2012 1:26 61.2	26/8/2012 2:36 60.6	27/8/2012 3:46 58.0
22/8/2012 23:11 63.1 22/8/2012 23:16 62.5	24/8/2012 0:21 62.0 24/8/2012 0:26 62.0	25/8/2012 1:31 61.7 25/8/2012 1:36 61.6	26/8/2012 2:41 60.7 26/8/2012 2:46 60.5	27/8/2012 3:51 58.2 27/8/2012 3:56 57.3
22/8/2012 23:21 62.6	24/8/2012 0:31 62.2	25/8/2012 1:41 61.6	26/8/2012 2:51 60.8	27/8/2012 4:01 57.5
22/8/2012 23:26 62.6 22/8/2012 23:31 62.5	24/8/2012 0:36 61.2 24/8/2012 0:41 61.8	25/8/2012 1:46 61.8 25/8/2012 1:51 61.4	26/8/2012 2:56 60.9 26/8/2012 3:01 60.6	27/8/2012 4:06 57.7 27/8/2012 4:11 58.5
22/8/2012 23:36 62.3	24/8/2012 0:41 01:8	25/8/2012 1:56 61.4	26/8/2012 3:06 60.4	27/8/2012 4:11 58.5
22/8/2012 23:41 62.5	24/8/2012 0:51 61.2	25/8/2012 2:01 61.0	26/8/2012 3:11 60.8	27/8/2012 4:21 57.9
22/8/2012 23:46 62.7 22/8/2012 23:51 62.6	24/8/2012 0:56 60.9 24/8/2012 1:01 60.3	25/8/2012 2:06 61.4 25/8/2012 2:11 60.8	26/8/2012 3:16 60.8 26/8/2012 3:21 60.5	27/8/2012 4:26 57.6 27/8/2012 4:31 57.8
22/8/2012 23:56 62.4	24/8/2012 1:06 61.2	25/8/2012 2:16 60.9	26/8/2012 3:26 60.0	27/8/2012 4:36 58.3
23/8/2012 0:01 62.5 23/8/2012 0:06 62.8	24/8/2012 1:11 60.6 24/8/2012 1:16 60.6	25/8/2012 2:21 60.1 25/8/2012 2:26 61.3	26/8/2012 3:31 60.2 26/8/2012 3:36 60.6	27/8/2012 4:41 57.9 27/8/2012 4:46 57.4
23/8/2012 0:11 62.0	24/8/2012 1:21 60.5	25/8/2012 2:31 61.5	26/8/2012 3:41 60.2	27/8/2012 4:51 58.1
23/8/2012 0:16 62.3 23/8/2012 0:21 62.3	24/8/2012 1:26 60.2 24/8/2012 1:31 59.4	25/8/2012 2:36 60.9 25/8/2012 2:41 60.8	26/8/2012 3:46 60.1 26/8/2012 3:51 59.8	27/8/2012 4:56 58.3 27/8/2012 5:01 58.2
23/8/2012 0:26 62.0	24/8/2012 1:31 59.4	25/8/2012 2:41 60.6	26/8/2012 3:56 60.5	27/8/2012 5:06 58.9
23/8/2012 0:31 61.9	24/8/2012 1:41 59.9	25/8/2012 2:51 60.3	26/8/2012 4:01 59.5	27/8/2012 5:11 58.9
23/8/2012 0:36 62.1 23/8/2012 0:41 61.7	24/8/2012 1:46 60.1 24/8/2012 1:51 59.8	25/8/2012 2:56 60.1 25/8/2012 3:01 60.6	26/8/2012 4:06 60.0 26/8/2012 4:11 59.8	27/8/2012 5:16 59.1 27/8/2012 5:21 60.7
23/8/2012 0:46 60.8	24/8/2012 1:56 59.2	25/8/2012 3:06 60.7	26/8/2012 4:16 60.9	27/8/2012 5:26 58.5
23/8/2012 0:51 61.5 23/8/2012 0:56 60.5	24/8/2012 2:01 60.3 24/8/2012 2:06 59.7	25/8/2012 3:11 60.5 25/8/2012 3:16 60.0	26/8/2012 4:21 60.1 26/8/2012 4:26 60.0	27/8/2012 5:31 58.7 27/8/2012 5:36 59.6
23/8/2012 0:56 60.5 23/8/2012 1:01 60.8	24/8/2012 2:06 59.7	25/8/2012 3:16 60.0	26/8/2012 4:31 59.6	27/8/2012 5:36 59.6
23/8/2012 1:06 60.7	24/8/2012 2:16 60.9	25/8/2012 3:26 60.1	26/8/2012 4:36 59.8	27/8/2012 5:46 59.6
23/8/2012 1:11 61.8 23/8/2012 1:16 60.5	24/8/2012 2:21 59.5 24/8/2012 2:26 59.5	25/8/2012 3:31 59.7 25/8/2012 3:36 60.7	26/8/2012 4:41 60.2 26/8/2012 4:46 59.9	27/8/2012 5:51 60.1 27/8/2012 5:56 60.1
23/8/2012 1:21 60.4	24/8/2012 2:31 59.3	25/8/2012 3:41 60.3	26/8/2012 4:51 60.0	27/8/2012 6:01 60.1
23/8/2012 1:26 60.5 23/8/2012 1:31 60.1	24/8/2012 2:36 59.2 24/8/2012 2:41 59.1	25/8/2012 3:46 59.8 25/8/2012 3:51 59.7	26/8/2012 4:56 60.1 26/8/2012 5:01 60.5	27/8/2012 6:06 60.6 27/8/2012 6:11 61.1
23/8/2012 1:36 60.4	24/8/2012 2:46 59.0	25/8/2012 3:56 60.3	26/8/2012 5:06 60.7	27/8/2012 6:16 61.4
23/8/2012 1:41 59.9	24/8/2012 2:51 59.3	25/8/2012 4:01 59.8	26/8/2012 5:11 59.9	27/8/2012 6:21 61.8
23/8/2012 1:46 60.4 23/8/2012 1:51 59.7	24/8/2012 2:56 58.7 24/8/2012 3:01 58.5	25/8/2012 4:06 60.4 25/8/2012 4:11 60.2	26/8/2012 5:16 59.8 26/8/2012 5:21 59.8	27/8/2012 6:26 61.3 27/8/2012 6:31 62.2
23/8/2012 1:56 59.9	24/8/2012 3:06 59.1	25/8/2012 4:16 60.1	26/8/2012 5:26 60.3	27/8/2012 6:36 62.3
23/8/2012 2:01 59.7 23/8/2012 2:06 60.3	24/8/2012 3:11 58.6 24/8/2012 3:16 58.9	25/8/2012 4:21 59.9 25/8/2012 4:26 59.5	26/8/2012 5:31 59.8 26/8/2012 5:36 60.5	27/8/2012 6:41 62.7 27/8/2012 6:46 62.9
23/8/2012 2:11 60.0	24/8/2012 3:21 58.3	25/8/2012 4:31 59.9	26/8/2012 5:41 60.3	27/8/2012 6:51 62.9
23/8/2012 2:16 59.6	24/8/2012 3:26 58.4	25/8/2012 4:36 60.3	26/8/2012 5:46 60.5 26/8/2012 5:51 60.6	27/8/2012 6:56 63.2
23/8/2012 2:21 59.3 23/8/2012 2:26 59.8	24/8/2012 3:31 58.6 24/8/2012 3:36 58.9	25/8/2012 4:41 59.3 25/8/2012 4:46 60.0	26/8/2012 5:51 60.6 26/8/2012 5:56 60.4	
23/8/2012 2:31 59.6	24/8/2012 3:41 58.2	25/8/2012 4:51 59.9	26/8/2012 6:01 60.6	
23/8/2012 2:36 59.4 23/8/2012 2:41 58.7	24/8/2012 3:46 58.4 24/8/2012 3:51 58.3	25/8/2012 4:56 60.1 25/8/2012 5:01 59.5	26/8/2012 6:06 61.0 26/8/2012 6:11 62.3	
23/8/2012 2:46 58.7	24/8/2012 3:56 58.9	25/8/2012 5:06 60.3	26/8/2012 6:16 60.8	
23/8/2012 2:51 59.5 23/8/2012 2:56 59.1	24/8/2012 4:01 58.2 24/8/2012 4:06 58.6	25/8/2012 5:11 59.9 25/8/2012 5:16 60.3	26/8/2012 6:21 61.0 26/8/2012 6:26 62.7	
23/8/2012 3:01 59.0	24/8/2012 4:11 59.0	25/8/2012 5:21 60.0	26/8/2012 6:31 61.8	
23/8/2012 3:06 59.6	24/8/2012 4:16 59.6	25/8/2012 5:26 61.2	26/8/2012 6:36 61.5	
23/8/2012 3:11 60.0 23/8/2012 3:16 58.8	24/8/2012 4:21 58.5 24/8/2012 4:26 58.2	25/8/2012 5:31 59.9 25/8/2012 5:36 59.4	26/8/2012 6:41 62.8 26/8/2012 6:46 62.5	
23/8/2012 3:21 59.3	24/8/2012 4:31 59.1	25/8/2012 5:41 60.4	26/8/2012 6:51 62.9	
23/8/2012 3:26 57.9 23/8/2012 3:31 58.9	24/8/2012 4:36 58.7 24/8/2012 4:41 58.7	25/8/2012 5:46 60.6 25/8/2012 5:51 60.3	26/8/2012 6:56 62.7 26/8/2012 23:01 62.6	
23/8/2012 3:36 58.9	24/8/2012 4:46 59.2	25/8/2012 5:56 60.6	26/8/2012 23:06 62.3	
23/8/2012 3:41 58.9 23/8/2012 3:46 59.2	24/8/2012 4:51 58.9 24/8/2012 4:56 59.0	25/8/2012 6:01 60.5 25/8/2012 6:06 60.6	26/8/2012 23:11 62.3 26/8/2012 23:16 62.6	
23/8/2012 3:46 59.2 23/8/2012 3:51 58.7	24/8/2012 4:56 59.0 24/8/2012 5:01 58.5	25/8/2012 6:00 60.6	26/8/2012 23:21 63.2	
23/8/2012 3:56 58.6	24/8/2012 5:06 59.9	25/8/2012 6:16 61.0	26/8/2012 23:26 62.6	
23/8/2012 4:01 58.4 23/8/2012 4:06 59.5	24/8/2012 5:11 59.4 24/8/2012 5:16 59.1	25/8/2012 6:21 61.7 25/8/2012 6:26 62.2	26/8/2012 23:31 62.8 26/8/2012 23:36 62.6	
23/8/2012 4:11 58.3	24/8/2012 5:21 60.0	25/8/2012 6:31 61.8	26/8/2012 23:41 62.5	
23/8/2012 4:16 59.9 23/8/2012 4:21 58.4	24/8/2012 5:26 60.3 24/8/2012 5:31 59.7	25/8/2012 6:36 62.1 25/8/2012 6:41 62.5	26/8/2012 23:46 62.3 26/8/2012 23:51 62.6	
23/8/2012 4:26 58.8	24/8/2012 5:36 60.7	25/8/2012 6:46 62.8	26/8/2012 23:56 62.5	
23/8/2012 4:31 58.5	24/8/2012 5:41 60.3	25/8/2012 6:51 62.7	27/8/2012 0:01 62.0	
23/8/2012 4:36 58.2 23/8/2012 4:41 58.7	24/8/2012 5:46 60.7 24/8/2012 5:51 60.7	25/8/2012 6:56 62.2 25/8/2012 23:01 63.8	27/8/2012 0:06 62.2 27/8/2012 0:11 61.8	
23/8/2012 4:46 58.3	24/8/2012 5:56 60.8	25/8/2012 23:06 64.0	27/8/2012 0:16 62.4	
23/8/2012 4:51 58.7 23/8/2012 4:56 59.4	24/8/2012 6:01 61.1 24/8/2012 6:06 61.2	25/8/2012 23:11 63.9 25/8/2012 23:16 63.8	27/8/2012 0:21 62.4 27/8/2012 0:26 61.7	
23/8/2012 5:01 58.7	24/8/2012 6:11 63.1	25/8/2012 23:21 63.5	27/8/2012 0:31 61.3	
23/8/2012 5:06 59.3	24/8/2012 6:16 61.3	25/8/2012 23:26 62.9	27/8/2012 0:36 61.6	
23/8/2012 5:11 59.2 23/8/2012 5:16 59.2	24/8/2012 6:21 62.9 24/8/2012 6:26 62.8	25/8/2012 23:31 63.2 25/8/2012 23:36 63.5	27/8/2012 0:41 61.8 27/8/2012 0:46 60.7	
23/8/2012 5:21 59.1	24/8/2012 6:31 62.8	25/8/2012 23:41 63.3	27/8/2012 0:51 60.8	
23/8/2012 5:26 59.2 23/8/2012 5:31 60.5	24/8/2012 6:36 63.1 24/8/2012 6:41 63.5	25/8/2012 23:46 63.8 25/8/2012 23:51 63.5	27/8/2012 0:56 60.7 27/8/2012 1:01 61.2	
23/8/2012 5:36 59.5	24/8/2012 6:46 64.0	25/8/2012 23:51 63.5	27/8/2012 1:06 60.3	
23/8/2012 5:41 60.0	24/8/2012 6:51 63.8	26/8/2012 0:01 63.5	27/8/2012 1:11 60.5	
23/8/2012 5:46 59.9 23/8/2012 5:51 59.5	24/8/2012 6:56 64.5 24/8/2012 23:01 63.7	26/8/2012 0:06 63.4 26/8/2012 0:11 63.4	27/8/2012 1:16 59.9 27/8/2012 1:21 60.1	
23/8/2012 5:56 60.7	24/8/2012 23:06 64.1	26/8/2012 0:16 63.5	27/8/2012 1:26 60.3	
23/8/2012 6:01 60.2 23/8/2012 6:06 60.9	24/8/2012 23:11 63.6 24/8/2012 23:16 64.1	26/8/2012 0:21 63.2 26/8/2012 0:26 62.6	27/8/2012 1:31 61.1 27/8/2012 1:36 59.4	
23/8/2012 6:11 60.6	24/8/2012 23:21 63.8	26/8/2012 0:31 62.7	27/8/2012 1:41 59.1	
23/8/2012 6:16 61.2	24/8/2012 23:26 63.6	26/8/2012 0:36 62.3	27/8/2012 1:46 59.1	
23/8/2012 6:21 61.8 23/8/2012 6:26 62.2	24/8/2012 23:31 63.6 24/8/2012 23:36 63.5	26/8/2012 0:41 62.2 26/8/2012 0:46 62.7	27/8/2012 1:51 58.8 27/8/2012 1:56 59.2	
23/8/2012 6:31 62.3	24/8/2012 23:41 62.7	26/8/2012 0:51 62.4	27/8/2012 2:01 59.4	
23/8/2012 6:36 63.0	24/8/2012 23:46 64.0 24/8/2012 23:51 63.1	26/8/2012 0:56 62.7 26/8/2012 1:01 62.1	27/8/2012 2:06 58.8 27/8/2012 2:11 58.6	
Z3/8/ZUIZ N:41 N317	24/8/2012 23:56 63.0	26/8/2012 1:06 61.6	27/8/2012 2:16 58.6	
23/8/2012 6:41 63.0 23/8/2012 6:46 62.8				1
23/8/2012 6:46 62.8 23/8/2012 6:51 63.4	25/8/2012 0:01 63.1	26/8/2012 1:11 61.4	27/8/2012 2:21 59.6	
23/8/2012 6:46 62.8	25/8/2012 0:01 63.1 25/8/2012 0:06 62.5 25/8/2012 0:11 62.7	26/8/2012 1:11 61.4 26/8/2012 1:16 62.2 26/8/2012 1:21 61.8	27/8/2012 2:21 59.0 27/8/2012 2:26 58.8 27/8/2012 2:31 58.6	
23/8/2012 6:4662.823/8/2012 6:5163.423/8/2012 6:5663.7	25/8/2012 0:06 62.5	26/8/2012 1:16 62.2	27/8/2012 2:26 58.8	

Normal Day 07:00-19:00	CN2 (Oil Street Community Liais) 2/8/2012 13:31 74.0 2/8/2012 11:31 74.0	8/8/2012 8:31 74.2	13/8/2012 15:31 71.8	18/8/2012 10:31 66.6	23/8/2012 17:31 66.7
28/7/2012 7:01 63.6	2/8/2012 14:01 70.6	8/8/2012 9:01 74.2	13/8/2012 16:01 68.3	18/8/2012 11:01 67.6	23/8/2012 18:01 67.4
28/7/2012 7:31 64.8	2/8/2012 14:31 70.7	8/8/2012 9:31 72.3	13/8/2012 16:31 68.6	18/8/2012 11:31 66.0	23/8/2012 18:31 65.6
28/7/2012 8:01 69.0	2/8/2012 15:01 71.0	8/8/2012 10:01 72.5	13/8/2012 17:01 68.7	18/8/2012 12:01 66.1	24/8/2012 7:01 63.9
28/7/2012 8:31 72.0	2/8/2012 15:31 72.4	8/8/2012 10:31 73.2	13/8/2012 17:31 68.0	18/8/2012 12:31 66.9	24/8/2012 7:31 63.5
28/7/2012 9:01 76.3	2/8/2012 16:01 71.9	8/8/2012 11:01 68.5	13/8/2012 18:01 68.4	18/8/2012 13:01 68.0	24/8/2012 8:01 66.4
28/7/2012 9:31 78.0	2/8/2012 16:31 72.0	8/8/2012 11:31 68.8	13/8/2012 18:31 68.1	18/8/2012 13:31 68.7	24/8/2012 8:31 67.2
28/7/2012 10:01 76.9	2/8/2012 17:01 69.8	8/8/2012 12:01 63.7	14/8/2012 7:01 64.1	18/8/2012 14:01 67.9	24/8/2012 9:01 67.2
28/7/2012 10:31 76.8	2/8/2012 17:31 70.2	8/8/2012 12:31 63.2	14/8/2012 7:31 66.6	18/8/2012 14:31 67.7	24/8/2012 9:31 67.5
28/7/2012 11:01 68.8	2/8/2012 18:01 70.0	8/8/2012 13:01 59.6	14/8/2012 8:01 68.4	18/8/2012 15:01 67.2	24/8/2012 10:01 67.2
28/7/2012 11:31 71.5	2/8/2012 18:31 64.4	8/8/2012 13:31 69.4	14/8/2012 8:31 69.2	18/8/2012 15:31 68.9	24/8/2012 10:31 67.5
28/7/2012 12:01 65.5	3/8/2012 7:01 63.5	8/8/2012 14:01 62.4	14/8/2012 9:01 68.7	18/8/2012 16:01 67.4	24/8/2012 11:01 68.4
28/7/2012 12:31 66.7	3/8/2012 7:31 64.7	8/8/2012 14:31 70.5	14/8/2012 9:31 68.1	18/8/2012 16:31 70.5	24/8/2012 11:31 66.4
28/7/2012 13:01 68.8	3/8/2012 8:01 71.2	8/8/2012 15:01 72.4	14/8/2012 10:01 68.4	18/8/2012 17:01 62.4	24/8/2012 12:01 65.7
28/7/2012 13:31 72.9	3/8/2012 8:31 72.3	8/8/2012 15:31 70.2	14/8/2012 10:31 68.3	18/8/2012 17:31 65.2	24/8/2012 12:31 67.8
28/7/2012 14:01 70.9	3/8/2012 9:01 70.6	8/8/2012 16:01 75.7	14/8/2012 11:01 68.3	18/8/2012 18:01 63.4	24/8/2012 13:01 68.7
28/7/2012 14:31 66.9	3/8/2012 9:31 69.3	8/8/2012 16:31 71.9	14/8/2012 11:31 66.2	18/8/2012 18:31 64.0	24/8/2012 13:31 68.5
28/7/2012 15:01 69.2	3/8/2012 10:01 69.9	8/8/2012 17:01 73.4	14/8/2012 12:01 65.4	20/8/2012 7:01 63.3	24/8/2012 14:01 69.1
28/7/2012 15:31 71.6	3/8/2012 10:31 69.1	8/8/2012 17:31 64.2	14/8/2012 12:31 67.0	20/8/2012 7:31 64.1	24/8/2012 14:31 67.9
28/7/2012 16:01 73.9	3/8/2012 11:01 68.5	8/8/2012 18:01 66.7	14/8/2012 13:01 69.3	20/8/2012 8:01 67.4	24/8/2012 15:01 68.2
28/7/2012 16:31 69.8	3/8/2012 11:31 70.2	8/8/2012 18:31 63.1	14/8/2012 13:31 69.9	20/8/2012 8:31 67.0	24/8/2012 15:31 67.9
28/7/2012 17:01 71.2	3/8/2012 12:01 66.1	9/8/2012 7:01 63.7	14/8/2012 14:01 70.0	20/8/2012 9:01 67.2	24/8/2012 16:01 69.2
28/7/2012 17:31 57.3	3/8/2012 12:31 67.3	9/8/2012 7:31 65.8	14/8/2012 14:31 69.3	20/8/2012 9:31 66.8	24/8/2012 16:31 68.1
28/7/2012 18:01 67.1	3/8/2012 13:01 63.3	9/8/2012 8:01 71.2	14/8/2012 15:01 69.8	20/8/2012 10:01 67.5	24/8/2012 17:01 69.1
8/7/2012 18:31 65.9	3/8/2012 13:31 74.2	9/8/2012 8:31 67.0	14/8/2012 15:31 69.1	20/8/2012 10:31 68.2	24/8/2012 17:31 66.6
0/7/2012 7:01 63.8	3/8/2012 14:01 73.9	9/8/2012 9:01 74.0	14/8/2012 16:01 69.0	20/8/2012 11:01 68.3	24/8/2012 18:01 64.8
0/7/2012 7:31 66.4	3/8/2012 14:31 73.7	9/8/2012 9:31 74.0	14/8/2012 16:31 69.1	20/8/2012 11:31 68.4	24/8/2012 18:31 65.5
0/7/2012 8:01 69.7	3/8/2012 15:01 73.0	9/8/2012 10:01 73.4	14/8/2012 17:01 68.3	20/8/2012 12:01 66.7	25/8/2012 7:01 62.7
0/7/2012 8:31 67.9	3/8/2012 15:31 66.0	9/8/2012 10:31 72.7	14/8/2012 17:31 66.2	20/8/2012 12:31 66.1	25/8/2012 7:31 63.7
0/7/2012 9:01 66.0	3/8/2012 16:01 75.0	9/8/2012 11:01 74.0	14/8/2012 18:01 66.2	20/8/2012 13:01 68.2	25/8/2012 8:01 66.7
0/7/2012 9:31 64.9	3/8/2012 16:31 77.0	9/8/2012 11:31 73.9	14/8/2012 18:31 65.3	20/8/2012 13:31 69.6	25/8/2012 8:31 67.5
0/7/2012 10:01 71.8	3/8/2012 17:01 75.9	9/8/2012 12:01 66.4	15/8/2012 7:01 63.7	20/8/2012 14:01 68.7	25/8/2012 9:01 68.5
D/7/2012 10:31 69.5	3/8/2012 17:31 73.2	9/8/2012 12:31 67.8	15/8/2012 7:31 64.8	20/8/2012 14:31 69.0	25/8/2012 9:31 67.1
D/7/2012 11:01 63.6	3/8/2012 18:01 65.9	9/8/2012 13:01 68.8	15/8/2012 8:01 65.1	20/8/2012 15:01 68.0	25/8/2012 10:01 68.4
0/7/2012 11:31 71.3	3/8/2012 18:31 64.9	9/8/2012 13:31 75.9	15/8/2012 8:31 66.6	20/8/2012 15:31 68.2	25/8/2012 10:31 66.5
0/7/2012 12:01 63.9	4/8/2012 7:01 63.2	9/8/2012 14:01 79.2	15/8/2012 9:01 68.9	20/8/2012 16:01 69.2	25/8/2012 11:01 68.2
0/7/2012 12:31 64.4	4/8/2012 7:31 65.7	9/8/2012 14:31 78.2	15/8/2012 9:31 69.2	20/8/2012 16:31 68.4	25/8/2012 11:31 64.9
0/7/2012 13:01 70.0	4/8/2012 8:01 71.1	9/8/2012 15:01 80.9	15/8/2012 10:01 68.9	20/8/2012 17:01 68.4	25/8/2012 12:01 63.3
0/7/2012 13:31 70.1	4/8/2012 8:31 76.5	9/8/2012 15:31 78.6	15/8/2012 10:31 69.3	20/8/2012 17:31 67.6	25/8/2012 12:31 63.3
0/7/2012 14:01 72.0	4/8/2012 9:01 76.4	9/8/2012 16:01 77.2	15/8/2012 11:01 67.1	20/8/2012 18:01 66.3	25/8/2012 13:01 66.6
0/7/2012 14:31 70.5	4/8/2012 9:31 71.4	9/8/2012 16:31 80.6	15/8/2012 11:31 66.9	20/8/2012 18:31 64.6	25/8/2012 13:31 68.4
0/7/2012 15:01 71.5	4/8/2012 10:01 73.4	9/8/2012 17:01 77.2	15/8/2012 12:01 65.0	21/8/2012 7:01 63.9	25/8/2012 14:01 67.8
0/7/2012 15:31 71.4	4/8/2012 10:31 74.8	9/8/2012 17:31 67.8	15/8/2012 12:31 65.3	21/8/2012 7:31 66.8	25/8/2012 14:31 66.7
0/7/2012 16:01 73.1	4/8/2012 11:01 72.1	9/8/2012 18:01 65.8	15/8/2012 13:01 69.7	21/8/2012 8:01 66.9	25/8/2012 15:01 70.5
0/7/2012 16:31 70.6	4/8/2012 11:31 74.0	9/8/2012 18:31 65.7	15/8/2012 13:31 70.2	21/8/2012 8:31 66.8	25/8/2012 15:31 67.7
D/7/2012 17:01 68.3	4/8/2012 12:01 65.7	10/8/2012 7:01 62.9	15/8/2012 14:01 69.4	21/8/2012 9:01 68.1	25/8/2012 16:01 68.1
D/7/2012 17:31 69.8	4/8/2012 12:31 64.3	10/8/2012 7:31 64.2	15/8/2012 14:31 70.3	21/8/2012 9:31 67.7	25/8/2012 16:31 67.6
0/7/2012 18:01 70.8	4/8/2012 13:01 71.1	10/8/2012 8:01 68.5	15/8/2012 15:01 70.3	21/8/2012 10:01 68.2	25/8/2012 17:01 68.2
0/7/2012 18:31 66.8	4/8/2012 13:31 77.0	10/8/2012 8:31 52.4	15/8/2012 15:31 70.1	21/8/2012 10:31 68.6	25/8/2012 17:31 67.5
1/7/2012 7:01 64.6	4/8/2012 14:01 74.8	10/8/2012 9:01 70.3	15/8/2012 16:01 70.3	21/8/2012 11:01 68.4	25/8/2012 18:01 65.0
1/7/2012 7:31 66.4	4/8/2012 14:31 73.0	10/8/2012 9:31 70.9	15/8/2012 16:31 70.3	21/8/2012 11:31 67.9	25/8/2012 18:31 63.5
1/7/2012 8:01 72.0	4/8/2012 15:01 76.0	10/8/2012 10:01 71.8	15/8/2012 17:01 69.8	21/8/2012 12:01 64.4	27/8/2012 7:01 63.4
1/7/2012 8:31 71.2	4/8/2012 15:31 75.5	10/8/2012 10:31 81.6	15/8/2012 17:31 67.1	21/8/2012 12:31 64.3	27/8/2012 7:31 63.8
1/7/2012 9:01 71.3	4/8/2012 16:01 75.7	10/8/2012 11:01 77.7	15/8/2012 18:01 65.0	21/8/2012 13:01 67.3	27/8/2012 8:01 69.0
1/7/2012 9:31 71.4	4/8/2012 16:31 75.0	10/8/2012 11:31 81.0	15/8/2012 18:31 65.8	21/8/2012 13:31 68.0	27/8/2012 8:31 66.7
1/7/2012 10:01 72.1	4/8/2012 17:01 73.9	10/8/2012 12:01 64.3	16/8/2012 7:01 65.1	21/8/2012 14:01 69.1	27/8/2012 9:01 67.7
1/7/2012 11:01 73.5	4/8/2012 18:01 64.9	10/8/2012 13:01 76.6	16/8/2012 7:31 66.4 16/8/2012 8:01 68.1	21/8/2012 14:31 68.7 21/8/2012 15:01 67.8	27/8/2012 9:31 68.8 27/8/2012 10:01 68.1
1/7/2012 11:31 68.3	4/8/2012 18:31 64.1	10/8/2012 13:31 78.1	16/8/2012 8:31 68.2	21/8/2012 15:31 68.0	27/8/2012 10:31 67.7
1/7/2012 12:01 66.6	6/8/2012 7:01 64.2	10/8/2012 14:01 75.5	16/8/2012 9:01 67.7	21/8/2012 16:01 67.9	27/8/2012 11:01 69.0
1/7/2012 12:31 69.4	6/8/2012 7:31 65.4	10/8/2012 14:31 77.7	16/8/2012 9:31 68.1	21/8/2012 16:31 67.4	27/8/2012 11:31 67.5
1/7/2012 13:01 71.8	6/8/2012 8:01 70.3	10/8/2012 15:01 77.2	16/8/2012 10:01 70.1	21/8/2012 17:01 66.9	27/8/2012 12:01 64.7
1/7/2012 13:31 74.9	6/8/2012 8:31 77.3	10/8/2012 15:31 71.9	16/8/2012 10:31 71.8	21/8/2012 17:31 67.1	27/8/2012 12:31 64.4
1/7/2012 14:01 72.7	6/8/2012 9:01 77.7	10/8/2012 16:01 63.9	16/8/2012 11:01 70.7	21/8/2012 18:01 67.7	27/8/2012 13:01 66.6
1/7/2012 14:31 74.3	6/8/2012 9:31 76.8	10/8/2012 16:31 61.9	16/8/2012 11:31 68.9	21/8/2012 18:31 65.8	27/8/2012 13:31 68.5
1/7/2012 15:01 74.4	6/8/2012 10:01 77.8	10/8/2012 17:01 71.7	16/8/2012 12:01 66.4	22/8/2012 7:01 64.4	27/8/2012 14:01 68.3
1/7/2012 15:31 73.6	6/8/2012 10:31 76.0	10/8/2012 17:31 66.7	16/8/2012 12:31 67.1	22/8/2012 7:31 66.4	27/8/2012 14:31 67.8
1/7/2012 16:01 73.5	6/8/2012 11:01 76.6	10/8/2012 18:01 64.8	16/8/2012 13:01 69.5	22/8/2012 8:01 66.9	27/8/2012 15:01 67.6
1/7/2012 16:31 74.8	6/8/2012 11:31 70.9	10/8/2012 18:31 63.0	16/8/2012 13:31 70.3	22/8/2012 8:31 67.8	27/8/2012 15:31 66.7
1/7/2012 17:01 71.7	6/8/2012 12:01 65.7	11/8/2012 7:01 67.0	16/8/2012 14:01 70.2	22/8/2012 9:01 67.0	27/8/2012 16:01 68.9
1/7/2012 17:31 72.0	6/8/2012 12:31 66.3	11/8/2012 7:31 67.7	16/8/2012 14:31 70.0	22/8/2012 9:31 67.6	27/8/2012 16:31 68.4
1/7/2012 18:01 69.5	6/8/2012 13:01 72.9	11/8/2012 8:01 68.4	16/8/2012 15:01 70.3	22/8/2012 10:01 68.5	27/8/2012 17:01 67.8
1/7/2012 18:31 64.4	6/8/2012 13:31 73.9	11/8/2012 8:31 71.1	16/8/2012 15:31 69.8	22/8/2012 10:31 68.8	27/8/2012 17:31 67.4
/8/2012 7:01 64.5 /8/2012 7:31 65.8	6/8/2012 14:01 76.8	11/8/2012 9:01 63.2	16/8/2012 16:01 70.8	22/8/2012 11:01 68.2 22/8/2012 11:31 67.0	27/8/2012 18:01 66.4 27/8/2012 18:31 64.8
/8/2012 8:01 67.2	6/8/2012 15:01 75.9	11/8/2012 10:01 70.0	16/8/2012 16:31 71.6 16/8/2012 17:01 70.5	22/8/2012 12:01 65.5	
/8/2012 8:31 70.5	6/8/2012 15:31 75.9	11/8/2012 10:31 70.2	16/8/2012 17:31 71.4	22/8/2012 12:31 65.2	Normal Day 19:00-23:00,
/8/2012 9:01 72.9	6/8/2012 16:01 71.9	11/8/2012 11:01 74.6	16/8/2012 18:01 65.7	22/8/2012 13:01 67.4	Sunday & Holiday 07:00-23:0
/8/2012 9:31 71.3	6/8/2012 16:31 69.0	11/8/2012 11:31 70.0	16/8/2012 18:31 65.1	22/8/2012 13:31 68.9	
8/2012 10:01 73.3	6/8/2012 17:01 73.2	11/8/2012 12:01 64.4	17/8/2012 7:01 63.1	22/8/2012 14:01 68.9	28/7/2012 19:01 65.7
8/2012 10:31 71.9	6/8/2012 17:31 68.5	11/8/2012 12:31 65.1	17/8/2012 7:31 64.5	22/8/2012 14:31 68.5	28/7/2012 19:06 65.4
8/2012 11:01 73.0	6/8/2012 18:01 67.0	11/8/2012 13:01 64.6	17/8/2012 8:01 66.6	22/8/2012 15:01 68.3	28/7/2012 19:11 63.7
8/2012 11:31 73.1	6/8/2012 18:31 65.7	11/8/2012 13:31 53.4	17/8/2012 8:31 66.5	22/8/2012 15:31 68.3	28/7/2012 19:16 64.4
8/2012 12:01 67.5	7/8/2012 7:01 65.1	11/8/2012 14:01 63.9	17/8/2012 9:01 70.6	22/8/2012 16:01 68.3	28/7/2012 19:21 63.5
8/2012 12:31 67.4	7/8/2012 7:31 67.2	11/8/2012 14:31 61.9	17/8/2012 9:31 71.8	22/8/2012 16:31 69.2	28/7/2012 19:26 63.1
8/2012 13:01 73.3	7/8/2012 8:01 66.6	11/8/2012 15:01 74.8	17/8/2012 10:01 70.8	22/8/2012 17:01 68.2	28/7/2012 19:31 63.6
/8/2012 13:31 72.1	7/8/2012 8:31 73.3	11/8/2012 15:31 78.2	17/8/2012 10:31 68.9	22/8/2012 17:31 68.2	28/7/2012 19:36 63.2
/8/2012 14:01 72.9	7/8/2012 9:01 72.9	11/8/2012 16:01 73.2	17/8/2012 11:01 69.1	22/8/2012 18:01 66.4	28/7/2012 19:41 63.7
/8/2012 14:31 74.0	7/8/2012 9:31 64.7	11/8/2012 16:31 74.5	17/8/2012 11:31 66.4	22/8/2012 18:31 66.1	28/7/2012 19:46 63.8
8/2012 15:01 73.7	7/8/2012 10:01 68.9	11/8/2012 17:01 73.5	17/8/2012 12:01 65.5	23/8/2012 7:01 64.3	28/7/2012 19:51 63.5
8/2012 15:31 63.2	7/8/2012 10:31 71.6	11/8/2012 17:31 66.1	17/8/2012 12:31 66.9	23/8/2012 7:31 65.7	28/7/2012 19:56 63.8
8/2012 16:01 68.5	7/8/2012 11:01 73.1	11/8/2012 18:01 66.1	17/8/2012 13:01 67.2	23/8/2012 8:01 67.8	28/7/2012 20:01 64.2
/8/2012 16:31 73.0	7/8/2012 11:31 64.6	11/8/2012 18:31 66.3	17/8/2012 13:31 68.4	23/8/2012 8:31 68.0	28/7/2012 20:06 62.7
/8/2012 17:01 71.5	7/8/2012 12:01 65.6	13/8/2012 7:01 64.6	17/8/2012 14:01 68.6	23/8/2012 9:01 68.1	28/7/2012 20:11 62.8
/8/2012 17:31 69.4	7/8/2012 12:31 66.0	13/8/2012 7:31 66.1	17/8/2012 14:31 69.3	23/8/2012 9:31 68.5	28/7/2012 20:16 63.4
/8/2012 18:01 69.5	7/8/2012 13:01 70.2	13/8/2012 8:01 69.7	17/8/2012 15:01 68.4	23/8/2012 10:01 68.5	28/7/2012 20:21 62.8
/8/2012 18:31 66.0	7/8/2012 13:31 71.5	13/8/2012 8:31 61.7	17/8/2012 15:31 67.1	23/8/2012 10:31 67.6	28/7/2012 20:26 62.5
8/2012 7:01 63.1	7/8/2012 14:01 67.8	13/8/2012 9:01 71.7	17/8/2012 16:01 67.8	23/8/2012 11:01 68.3	28/7/2012 20:31 62.9
8/2012 7:31 64.5	7/8/2012 14:31 69.5	13/8/2012 9:31 66.6	17/8/2012 16:31 68.1	23/8/2012 11:31 68.4	28/7/2012 20:36 62.3
/8/2012 8:01 67.4	7/8/2012 15:01 70.7	13/8/2012 10:01 66.0	17/8/2012 17:01 68.3	23/8/2012 12:01 65.6	28/7/2012 20:41 62.3
/8/2012 8:31 74.3	7/8/2012 15:31 70.3	13/8/2012 10:31 68.8	17/8/2012 17:31 67.2	23/8/2012 12:31 64.7	28/7/2012 20:46 62.5
/8/2012 9:01 74.8	7/8/2012 16:01 73.3	13/8/2012 11:01 71.6	17/8/2012 18:01 66.0	23/8/2012 13:01 68.0	28/7/2012 20:51 63.4
/8/2012 9:31 74.6	7/8/2012 16:31 71.0	13/8/2012 11:31 70.2	17/8/2012 18:31 65.8	23/8/2012 13:31 67.6	28/7/2012 20:56 63.4
/8/2012 10:01 68.6	7/8/2012 17:01 67.2	13/8/2012 12:01 65.9	18/8/2012 7:01 63.4	23/8/2012 14:01 68.0	28/7/2012 21:01 63.6
/8/2012 10:31 73.6	7/8/2012 17:31 71.7	13/8/2012 12:31 66.7	18/8/2012 7:31 64.7	23/8/2012 14:31 68.5	28/7/2012 21:06 62.9
2/8/2012 11:01 73.2	7/8/2012 18:01 64.0	13/8/2012 13:01 66.0	18/8/2012 8:01 70.4	23/8/2012 15:01 69.6	28/7/2012 21:11 63.5
2/8/2012 11:31 64.1	7/8/2012 18:31 63.5	13/8/2012 13:31 73.7	18/8/2012 8:31 71.1	23/8/2012 15:31 70.7	28/7/2012 21:16 63.7
2/8/2012 12:01 66.6	8/8/2012 7:01 64.2	13/8/2012 14:01 72.9	18/8/2012 9:01 71.0	23/8/2012 16:01 67.2	28/7/2012 21:21 63.3
/8/2012 12:31 67.4	8/8/2012 7:31 64.9	13/8/2012 14:31 73.4	18/8/2012 9:31 72.0	23/8/2012 16:31 66.5	28/7/2012 21:26 63.2
	8/8/2012 8:01 69.0	13/8/2012 15:01 67.1	18/8/2012 10:01 67.1	23/8/2012 17:01 67.3	28/7/2012 21:31 63.8

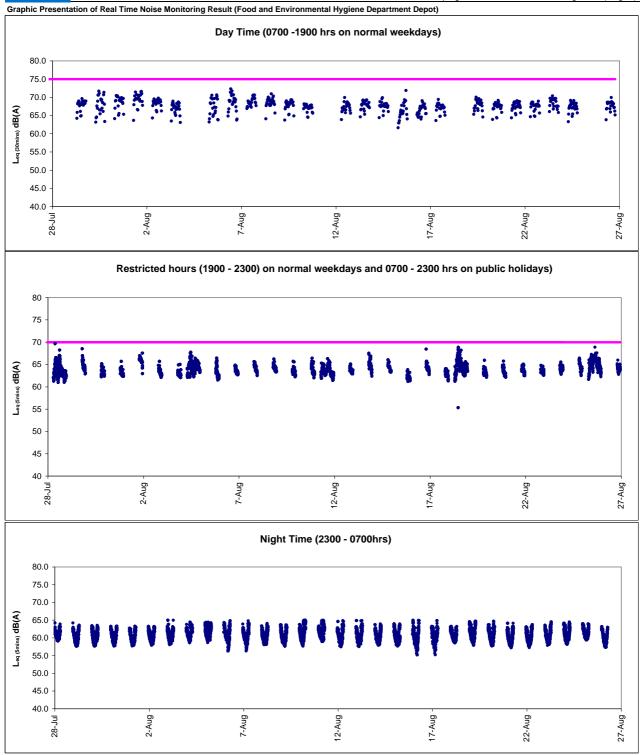
28/7/2012 21:36 63.6	N2 (Oil Street Community Liais 29/7/2012 14:46 63.5	30/7/2012 19:56 62.2	1/8/2012 21:01 62.2	3/8/2012 22:06 62.1	5/8/2012 12:16 64.0
28/7/2012 21:41 62.9	29/7/2012 14:51 63.1	30/7/2012 20:01 61.7	1/8/2012 21:06 61.5	3/8/2012 22:11 61.4	5/8/2012 12:21 64.7
28/7/2012 21:46 63.3	29/7/2012 14:56 62.7	30/7/2012 20:06 61.5	1/8/2012 21:11 61.6	3/8/2012 22:16 61.5	5/8/2012 12:26 64.3
28/7/2012 21:51 62.9	29/7/2012 15:01 63.9	30/7/2012 20:11 61.9	1/8/2012 21:16 61.7	3/8/2012 22:21 61.9	5/8/2012 12:31 63.7
28/7/2012 21:56 62.6	29/7/2012 15:06 65.3	30/7/2012 20:16 63.0	1/8/2012 21:21 62.2	3/8/2012 22:26 61.3	5/8/2012 12:36 64.9
28/7/2012 22:01 62.9	29/7/2012 15:11 63.7	30/7/2012 20:21 61.7	1/8/2012 21:26 61.7	3/8/2012 22:31 60.9	5/8/2012 12:41 64.3
28/7/2012 22:06 62.8	29/7/2012 15:16 62.5	30/7/2012 20:26 61.8	1/8/2012 21:31 61.5	3/8/2012 22:36 61.3	5/8/2012 12:46 64.6
28/7/2012 22:11 63.0	29/7/2012 15:21 62.1		1/8/2012 21:36 62.5	3/8/2012 22:41 61.3	5/8/2012 12:51 65.4
28/7/2012 22:16 62.2	29/7/2012 15:26 61.9	30/7/2012 20:31 62.9 30/7/2012 20:36 61.3	1/8/2012 21:41 61.6	3/8/2012 22:46 61.1	5/8/2012 12:51 65.4 5/8/2012 12:56 66.2
28/7/2012 22:21 62.2	29/7/2012 15:31 62.8	30/7/2012 20:41 61.8	1/8/2012 21:46 61.3	3/8/2012 22:51 60.7	5/8/2012 13:01 65.0
28/7/2012 22:26 63.2	29/7/2012 15:36 63.0	30/7/2012 20:46 61.5	1/8/2012 21:51 62.2	3/8/2012 22:56 61.7	5/8/2012 13:06 64.2
28/7/2012 22:31 63.5	29/7/2012 15:41 62.8	30/7/2012 20:51 62.1	1/8/2012 21:56 61.8	4/8/2012 19:01 62.7	5/8/2012 13:11 64.3
28/7/2012 22:36 62.9	29/7/2012 15:46 62.3	30/7/2012 20:56 62.1	1/8/2012 22:01 62.3	4/8/2012 19:06 62.5	5/8/2012 13:16 63.2
28/7/2012 22:41 62.2	29/7/2012 15:51 61.7	30/7/2012 21:01 63.0	1/8/2012 22:06 62.6	4/8/2012 19:11 62.1	5/8/2012 13:21 64.0
28/7/2012 22:46 64.5	29/7/2012 15:56 62.3	30/7/2012 21:06 62.1	1/8/2012 22:11 61.8	4/8/2012 19:16 62.3	5/8/2012 13:26 63.4
28/7/2012 22:51 62.1	29/7/2012 16:01 62.4	30/7/2012 21:11 62.0	1/8/2012 22:16 61.3	4/8/2012 19:21 61.7	5/8/2012 13:31 63.0
28/7/2012 22:56 62.1	29/7/2012 16:06 63.6	30/7/2012 21:16 62.7	1/8/2012 22:21 61.2	4/8/2012 19:26 62.0	5/8/2012 13:36 62.9
29/7/2012 7:01 62.3	29/7/2012 16:11 64.7	30/7/2012 21:21 61.8	1/8/2012 22:26 61.9	4/8/2012 19:31 61.9	5/8/2012 13:41 63.8
29/7/2012 7:06 61.7	29/7/2012 16:16 65.0	30/7/2012 21:26 61.5	1/8/2012 22:31 61.7	4/8/2012 19:36 62.0	5/8/2012 13:46 63.3
29/7/2012 7:11 62.6	29/7/2012 16:21 63.3	30/7/2012 21:31 60.9	1/8/2012 22:36 62.1	4/8/2012 19:41 62.4	5/8/2012 13:51 63.5
29/7/2012 7:16 62.8	29/7/2012 16:26 64.3	30/7/2012 21:36 61.1	1/8/2012 22:41 62.7	4/8/2012 19:46 62.0	5/8/2012 13:56 63.7
29/7/2012 7:21 63.0	29/7/2012 16:31 63.5	30/7/2012 21:41 61.4	1/8/2012 22:46 61.2	4/8/2012 19:51 61.7	5/8/2012 14:01 62.7
29/7/2012 7:26 62.3	29/7/2012 16:36 65.5	30/7/2012 21:46 61.6	1/8/2012 22:51 61.4	4/8/2012 19:56 62.6	5/8/2012 14:06 63.0
29/7/2012 7:31 62.5	29/7/2012 16:41 63.5	30/7/2012 21:51 61.0	1/8/2012 22:56 61.6	4/8/2012 20:01 60.8	5/8/2012 14:11 63.9
29/7/2012 7:36 61.9	29/7/2012 16:46 62.6	30/7/2012 21:56 62.3	1/8/2012 23:01 61.2	4/8/2012 20:06 62.0	5/8/2012 14:16 64.5
29/7/2012 7:41 61.7	29/7/2012 16:51 62.0	30/7/2012 22:01 61.3	2/8/2012 19:01 64.4	4/8/2012 20:11 62.9	5/8/2012 14:21 64.0
29/7/2012 7:46 63.9	29/7/2012 16:56 62.5	30/7/2012 22:06 60.9	2/8/2012 19:06 63.4	4/8/2012 20:16 61.7	5/8/2012 14:26 63.6
29/7/2012 7:51 61.0	29/7/2012 17:01 61.9	30/7/2012 22:11 61.3	2/8/2012 19:11 65.2	4/8/2012 20:21 61.7	5/8/2012 14:31 63.2
29/7/2012 7:56 61.9	29/7/2012 17:06 62.6	30/7/2012 22:16 61.3	2/8/2012 19:16 63.2	4/8/2012 20:26 61.2	5/8/2012 14:36 63.7
29/7/2012 8:01 64.5	29/7/2012 17:11 62.4	30/7/2012 22:21 61.4	2/8/2012 19:21 62.9	4/8/2012 20:31 60.8	5/8/2012 14:41 64.5
29/7/2012 8:06 65.4	29/7/2012 17:16 61.9	30/7/2012 22:26 61.7	2/8/2012 19:26 66.0	4/8/2012 20:36 61.0	5/8/2012 14:46 65.1
29/7/2012 8:11 64.2	29/7/2012 17:21 62.4	30/7/2012 22:31 61.5	2/8/2012 19:31 63.9	4/8/2012 20:41 61.5	5/8/2012 14:51 65.3
29/7/2012 8:16 64.5	29/7/2012 17:26 62.0	30/7/2012 22:36 61.3	2/8/2012 19:36 64.0	4/8/2012 20:46 62.0	5/8/2012 14:56 63.3
29/7/2012 8:21 63.7	29/7/2012 17:31 62.8	30/7/2012 22:41 61.1	2/8/2012 19:41 63.7	4/8/2012 20:51 61.9	5/8/2012 15:01 65.7
29/7/2012 8:26 62.6	29/7/2012 17:36 64.2	30/7/2012 22:46 61.1	2/8/2012 19:46 63.2	4/8/2012 20:56 61.3	5/8/2012 15:06 65.6
29/7/2012 8:31 63.5	29/7/2012 17:41 64.4	30/7/2012 22:51 61.1	2/8/2012 19:51 62.8	4/8/2012 21:01 60.8	5/8/2012 15:11 65.2
29/7/2012 8:36 63.6	29/7/2012 17:46 62.5	30/7/2012 22:56 61.5	2/8/2012 19:56 62.5	4/8/2012 21:06 61.8	5/8/2012 15:16 64.7
29/7/2012 8:41 62.5	29/7/2012 17:51 62.0	30/7/2012 23:01 61.3	2/8/2012 20:01 62.3	4/8/2012 21:11 61.3	5/8/2012 15:21 64.0
29/7/2012 8:46 63.4	29/7/2012 17:56 62.0	31/7/2012 19:01 63.9	2/8/2012 20:06 63.0	4/8/2012 21:16 61.7	5/8/2012 15:26 65.1
29/7/2012 8:51 63.1	29/7/2012 18:01 63.2	31/7/2012 19:06 63.2	2/8/2012 20:11 62.7	4/8/2012 21:21 60.8	5/8/2012 15:31 64.6
29/7/2012 8:56 65.4	29/7/2012 18:06 62.2	31/7/2012 19:11 63.3	2/8/2012 20:16 62.3	4/8/2012 21:26 61.1	5/8/2012 15:36 66.2
29/7/2012 9:01 68.0	29/7/2012 18:11 62.8	31/7/2012 19:16 64.1	2/8/2012 20:21 62.5	4/8/2012 21:31 60.7	5/8/2012 15:41 64.0
29/7/2012 9:06 66.7	29/7/2012 18:16 62.2	31/7/2012 19:21 65.0	2/8/2012 20:26 62.4	4/8/2012 21:36 61.2	5/8/2012 15:46 66.9
29/7/2012 9:11 66.7	29/7/2012 18:21 62.0	31/7/2012 19:26 64.7	2/8/2012 20:31 62.8	4/8/2012 21:41 61.0	5/8/2012 15:51 65.5
29/7/2012 9:16 65.4	29/7/2012 18:26 61.6 29/7/2012 18:31 63.6	31/7/2012 19:31 64.6 31/7/2012 19:36 64.6	2/8/2012 20:36 62.4 2/8/2012 20:41 62.0	4/8/2012 21:46 61.3 4/8/2012 21:51 61.5	5/8/2012 15:56 65.2
29/7/2012 9:21 64.6 29/7/2012 9:26 63.9	29/7/2012 18:36 62.5	31/7/2012 19:41 64.8	2/8/2012 20:46 61.8	4/8/2012 21:56 62.8	5/8/2012 16:01 66.4 5/8/2012 16:06 64.3
29/7/2012 9:31 64.7	29/7/2012 18:41 62.4	31/7/2012 19:46 64.0	2/8/2012 20:51 62.2	4/8/2012 22:01 61.3	5/8/2012 16:11 65.6
29/7/2012 9:36 64.6	29/7/2012 18:46 62.3	31/7/2012 19:51 63.7	2/8/2012 20:56 62.1	4/8/2012 22:06 60.7	5/8/2012 16:16 65.8
29/7/2012 9:41 64.8	29/7/2012 18:51 62.2	31/7/2012 19:56 63.9	2/8/2012 21:01 63.1	4/8/2012 22:11 61.5	5/8/2012 16:21 67.3
29/7/2012 9:46 64.8	29/7/2012 18:56 61.9	31/7/2012 20:01 64.2	2/8/2012 21:06 62.3	4/8/2012 22:16 61.8	5/8/2012 16:26 64.5
29/7/2012 9:51 64.0	29/7/2012 19:01 62.8	31/7/2012 20:06 64.5	2/8/2012 21:11 62.0	4/8/2012 22:21 61.8	5/8/2012 16:31 65.2
29/7/2012 9:56 64.2	29/7/2012 19:06 63.8	31/7/2012 20:11 64.4	2/8/2012 21:16 62.0	4/8/2012 22:26 62.0	5/8/2012 16:36 64.3
29/7/2012 10:01 64.8	29/7/2012 19:11 62.2	31/7/2012 20:16 65.2	2/8/2012 21:21 62.3	4/8/2012 22:31 61.4	5/8/2012 16:41 63.4
29/7/2012 10:06 64.7	29/7/2012 19:16 64.2	31/7/2012 20:21 63.2	2/8/2012 21:26 62.1	4/8/2012 22:36 61.3	5/8/2012 16:46 64.3
29/7/2012 10:11 66.2	29/7/2012 19:21 63.1	31/7/2012 20:26 63.9	2/8/2012 21:31 62.2	4/8/2012 22:41 60.8	5/8/2012 16:51 64.7
29/7/2012 10:16 66.1	29/7/2012 19:26 63.1	31/7/2012 20:31 63.7	2/8/2012 21:36 62.6	4/8/2012 22:46 62.2	5/8/2012 16:56 63.3
29/7/2012 10:21 65.0	29/7/2012 19:31 61.6	31/7/2012 20:36 63.6	2/8/2012 21:41 62.3	4/8/2012 22:51 63.5	5/8/2012 17:01 63.0
29/7/2012 10:26 64.3	29/7/2012 19:36 62.0	31/7/2012 20:41 63.6	2/8/2012 21:46 63.2	4/8/2012 22:56 62.5	5/8/2012 17:06 62.8
29/7/2012 10:31 67.0	29/7/2012 19:41 62.0	31/7/2012 20:46 63.8	2/8/2012 21:51 62.2	5/8/2012 7:01 61.3	5/8/2012 17:11 62.9
29/7/2012 10:36 65.7	29/7/2012 19:46 62.5	31/7/2012 20:51 64.0	2/8/2012 21:56 62.1	5/8/2012 7:06 62.6	5/8/2012 17:16 62.8
29/7/2012 10:41 65.2	29/7/2012 19:51 62.5	31/7/2012 20:56 63.4	2/8/2012 22:01 61.8	5/8/2012 7:11 62.1	5/8/2012 17:21 62.7
29/7/2012 10:46 65.2	29/7/2012 19:56 61.6	31/7/2012 21:01 62.9	2/8/2012 22:06 61.8	5/8/2012 7:16 62.6	5/8/2012 17:26 62.6
29/7/2012 10:51 66.8	29/7/2012 20:01 61.5	31/7/2012 21:06 62.9	2/8/2012 22:11 61.0	5/8/2012 7:21 61.7	5/8/2012 17:31 64.3
29/7/2012 10:56 65.3	29/7/2012 20:06 61.0	31/7/2012 21:11 63.4	2/8/2012 22:16 61.1	5/8/2012 7:26 62.1	5/8/2012 17:36 64.3
29/7/2012 11:01 65.1	29/7/2012 20:11 61.4	31/7/2012 21:16 63.3	2/8/2012 22:21 60.9	5/8/2012 7:31 62.1	5/8/2012 17:41 64.4
29/7/2012 11:06 66.5	29/7/2012 20:16 61.2	31/7/2012 21:21 63.1	2/8/2012 22:26 61.3	5/8/2012 7:36 60.0	5/8/2012 17:46 63.4
29/7/2012 11:11 65.6	29/7/2012 20:21 62.1	31/7/2012 21:26 62.9	2/8/2012 22:31 61.0	5/8/2012 7:41 62.2	5/8/2012 17:51 63.6
29/7/2012 11:16 64.8	29/7/2012 20:26 60.8	31/7/2012 21:31 63.5	2/8/2012 22:36 64.2	5/8/2012 7:46 61.0	5/8/2012 17:56 64.3
29/7/2012 11:21 64.7	29/7/2012 20:31 60.8	31/7/2012 21:36 63.2	2/8/2012 22:41 61.4	5/8/2012 8:51 64.2	5/8/2012 18:01 64.0
29/7/2012 11:26 63.7	29/7/2012 20:36 61.1	31/7/2012 21:41 63.0	2/8/2012 22:46 61.5	5/8/2012 8:56 66.0	5/8/2012 18:06 63.7
29/7/2012 11:31 63.4	29/7/2012 20:41 61.7	31/7/2012 21:46 62.5	2/8/2012 22:51 62.4	5/8/2012 9:01 67.3	5/8/2012 18:11 63.2
29/7/2012 11:36 62.9	29/7/2012 20:46 61.1	31/7/2012 21:51 63.6	2/8/2012 22:56 61.4	5/8/2012 9:06 64.9	5/8/2012 18:16 64.1
29/7/2012 11:41 63.3	29/7/2012 20:51 61.2	31/7/2012 21:56 63.1	3/8/2012 19:01 64.9	5/8/2012 9:11 65.0	5/8/2012 18:21 66.8
29/7/2012 11:46 62.0	29/7/2012 20:56 61.3	31/7/2012 22:01 63.1	3/8/2012 19:06 64.4	5/8/2012 9:16 65.6	5/8/2012 18:26 63.3
29/7/2012 11:51 61.2	29/7/2012 21:01 61.7	31/7/2012 22:06 62.8	3/8/2012 19:11 62.9	5/8/2012 9:21 64.7	5/8/2012 18:31 64.3
29/7/2012 11:56 60.3	29/7/2012 21:06 61.5	31/7/2012 22:11 62.6	3/8/2012 19:16 62.3	5/8/2012 9:26 65.3	5/8/2012 18:36 63.8
29/7/2012 12:01 60.9	29/7/2012 21:11 61.7	31/7/2012 22:16 62.2	3/8/2012 19:21 64.7	5/8/2012 9:31 65.0	5/8/2012 18:41 62.5
29/7/2012 12:06 61.1	29/7/2012 21:16 62.0	31/7/2012 22:21 62.1	3/8/2012 19:26 64.4	5/8/2012 9:36 65.5	5/8/2012 18:46 63.1
29/7/2012 12:11 60.8	29/7/2012 21:21 61.1	31/7/2012 22:26 62.2	3/8/2012 19:31 63.2	5/8/2012 9:41 65.1	5/8/2012 18:51 62.4
29/7/2012 12:16 60.7	29/7/2012 21:26 61.4	31/7/2012 22:31 62.3	3/8/2012 19:36 64.4	5/8/2012 9:46 65.6	5/8/2012 18:56 62.7
29/7/2012 12:21 60.7	29/7/2012 21:31 61.2	31/7/2012 22:36 61.9	3/8/2012 19:41 63.9	5/8/2012 9:51 65.3	5/8/2012 19:01 62.4
29/7/2012 12:26 60.2	29/7/2012 21:36 61.6	31/7/2012 22:41 62.3	3/8/2012 19:46 63.2	5/8/2012 9:56 65.3	5/8/2012 19:06 62.3
29/7/2012 12:31 60.9	29/7/2012 21:41 62.7	31/7/2012 22:46 62.1	3/8/2012 19:51 63.3	5/8/2012 10:01 64.8	5/8/2012 19:11 62.7
29/7/2012 12:36 59.9	29/7/2012 21:46 61.8	31/7/2012 22:51 62.3	3/8/2012 19:56 64.6	5/8/2012 10:06 64.8	5/8/2012 19:16 63.5
29/7/2012 12:41 60.6	29/7/2012 21:51 61.6	31/7/2012 22:56 62.6	3/8/2012 20:01 63.2	5/8/2012 10:11 65.2	5/8/2012 19:21 62.6
29/7/2012 12:46 60.2	29/7/2012 21:56 61.6	1/8/2012 19:01 64.1	3/8/2012 20:06 63.1	5/8/2012 10:16 66.0	5/8/2012 19:26 63.1
29/7/2012 12:51 60.8	29/7/2012 22:01 61.4	1/8/2012 19:06 62.8	3/8/2012 20:11 62.9	5/8/2012 10:21 65.4	5/8/2012 19:31 62.4
29/7/2012 12:56 59.7	29/7/2012 22:06 61.8	1/8/2012 19:11 63.6	3/8/2012 20:16 64.2	5/8/2012 10:26 66.0	5/8/2012 19:36 62.8
29/7/2012 13:01 60.5	29/7/2012 22:11 61.3	1/8/2012 19:16 64.1	3/8/2012 20:21 62.9	5/8/2012 10:31 65.8	5/8/2012 19:41 62.1
29/7/2012 13:06 61.0	29/7/2012 22:16 61.8	1/8/2012 19:21 64.8	3/8/2012 20:26 63.5	5/8/2012 10:36 65.0	5/8/2012 19:46 61.4
29/7/2012 13:11 61.1	29/7/2012 22:21 63.0	1/8/2012 19:26 64.4	3/8/2012 20:31 63.0	5/8/2012 10:41 65.4	5/8/2012 19:51 62.0
29/7/2012 13:16 66.3	29/7/2012 22:26 62.5	1/8/2012 19:31 65.2	3/8/2012 20:36 62.7	5/8/2012 10:46 67.5	5/8/2012 19:56 61.8
29/7/2012 13:21 64.6	29/7/2012 22:31 61.3	1/8/2012 19:36 65.9	3/8/2012 20:41 63.3	5/8/2012 10:51 64.8	5/8/2012 20:01 62.1
29/7/2012 13:26 65.8	29/7/2012 22:36 61.7	1/8/2012 19:41 64.5	3/8/2012 20:46 63.1	5/8/2012 10:56 64.9	5/8/2012 20:06 61.5
29/7/2012 13:31 63.7	29/7/2012 22:41 61.0	1/8/2012 19:46 64.0	3/8/2012 20:51 62.0	5/8/2012 11:01 64.9	5/8/2012 20:11 61.2
29/7/2012 13:36 62.8	29/7/2012 22:46 61.8	1/8/2012 19:51 63.8	3/8/2012 20:56 62.0	5/8/2012 11:06 65.6	5/8/2012 20:16 61.5
29/7/2012 13:41 62.9	29/7/2012 22:51 61.3	1/8/2012 19:56 63.8	3/8/2012 21:01 62.0	5/8/2012 11:11 65.0	5/8/2012 20:21 61.8
29/7/2012 13:46 63.4	29/7/2012 22:56 61.0	1/8/2012 20:01 64.5	3/8/2012 21:06 61.6	5/8/2012 11:16 65.5	5/8/2012 20:26 61.7
29/7/2012 13:51 62.9	30/7/2012 19:01 67.4	1/8/2012 20:06 64.1	3/8/2012 21:11 62.2	5/8/2012 11:21 66.0	5/8/2012 20:31 61.4
29/7/2012 13:56 63.2	30/7/2012 19:06 67.8	1/8/2012 20:11 62.9	3/8/2012 21:16 62.2	5/8/2012 11:26 65.6	5/8/2012 20:36 61.8
29/7/2012 14:01 64.2	30/7/2012 19:11 64.4	1/8/2012 20:16 62.0	3/8/2012 21:21 61.3	5/8/2012 11:31 65.7	5/8/2012 20:41 61.3
29/7/2012 14:06 64.2	30/7/2012 19:16 64.0	1/8/2012 20:21 61.7	3/8/2012 21:26 61.4	5/8/2012 11:36 65.7	5/8/2012 20:46 61.6 5/8/2012 20:51 62.0
29/7/2012 14:11 63.6 29/7/2012 14:16 66.1	30/7/2012 19:21 64.2 30/7/2012 19:26 62.8	1/8/2012 20:31 63.1	3/8/2012 21:36 61.5	5/8/2012 11:46 64.9	5/8/2012 20:56 61.8
29/7/2012 14:21 64.9	30/7/2012 19:31 63.2	1/8/2012 20:36 61.7	3/8/2012 21:41 61.3	5/8/2012 11:51 64.9	5/8/2012 21:01 61.7
29/7/2012 14:26 64.0	30/7/2012 19:36 62.7	1/8/2012 20:41 62.0	3/8/2012 21:46 61.2	5/8/2012 11:56 64.7	5/8/2012 21:06 62.2
29/7/2012 14:31 63.5 29/7/2012 14:36 64.7	30/7/2012 19:41 62.6	1/8/2012 20:46 61.5 1/8/2012 20:51 61.6	3/8/2012 21:51 61.3	5/8/2012 12:01 64.2	5/8/2012 21:11 61.6
	30/7/2012 19:46 62.3		3/8/2012 21:56 61.4	5/8/2012 12:06 63.6	5/8/2012 21:16 62.2

	TN2 (Oil Street Community Liais		12/8/2012 0:56 64 0	12/8/2012 20:06 62 2	14/9/2012 21:16 62 2
5/8/2012 21:26 61.1	7/8/2012 22:36 61.6	10/8/2012 19:46 62.6	12/8/2012 9:56 64.9	12/8/2012 20:06 62.3	14/8/2012 21:16 62.2
5/8/2012 21:31 61.1	7/8/2012 22:41 61.5	10/8/2012 19:51 63.4	12/8/2012 10:01 65.1	12/8/2012 20:11 62.5	14/8/2012 21:21 62.7
5/8/2012 21:36 61.6	7/8/2012 22:46 61.5	10/8/2012 19:56 63.2	12/8/2012 10:06 65.0	12/8/2012 20:16 62.4	14/8/2012 21:26 63.2
5/8/2012 21:41 61.1	7/8/2012 22:51 61.4	10/8/2012 20:01 63.1	12/8/2012 10:11 64.7	12/8/2012 20:21 63.7	14/8/2012 21:31 62.2
5/8/2012 21:46 61.6	7/8/2012 22:56 61.6	10/8/2012 20:06 63.2	12/8/2012 10:16 65.0	12/8/2012 20:26 62.8	14/8/2012 21:36 62.5
5/8/2012 21:51 60.8	8/8/2012 19:01 62.3	10/8/2012 20:11 62.3	12/8/2012 10:21 64.9	12/8/2012 20:31 62.2	14/8/2012 21:41 63.3
5/8/2012 21:56 60.6	8/8/2012 19:06 62.9	10/8/2012 20:16 62.5	12/8/2012 10:26 64.6	12/8/2012 20:36 62.2	14/8/2012 21:46 63.6
5/8/2012 22:01 62.0	8/8/2012 19:11 62.5	10/8/2012 20:21 62.9	12/8/2012 10:31 65.1	12/8/2012 20:41 61.5	14/8/2012 21:51 63.3
5/8/2012 22:06 61.2	8/8/2012 19:16 62.2	10/8/2012 20:26 62.2	12/8/2012 10:36 64.6	12/8/2012 20:46 63.0	14/8/2012 21:56 62.0
5/8/2012 22:11 61.1	8/8/2012 19:21 62.1	10/8/2012 20:31 62.2	12/8/2012 10:41 64.5	12/8/2012 20:51 61.9	14/8/2012 22:01 62.6
5/8/2012 22:16 62.8	8/8/2012 19:26 64.2	10/8/2012 20:36 62.3	12/8/2012 10:46 64.1	12/8/2012 20:56 61.4	14/8/2012 22:06 63.0
5/8/2012 22:21 61.9	8/8/2012 19:31 64.4	10/8/2012 20:41 62.5	12/8/2012 10:51 63.5	12/8/2012 21:01 62.3	14/8/2012 22:11 61.4
5/8/2012 22:26 62.3	8/8/2012 19:36 63.2	10/8/2012 20:46 62.3	12/8/2012 10:56 64.0	12/8/2012 21:06 62.5	14/8/2012 22:16 62.2
5/8/2012 22:31 61.3	8/8/2012 19:41 63.5	10/8/2012 20:51 62.1	12/8/2012 11:01 64.9	12/8/2012 21:11 62.8	14/8/2012 22:21 62.0
5/8/2012 22:36 61.6	8/8/2012 19:46 63.6	10/8/2012 20:56 62.1	12/8/2012 11:06 63.9 12/8/2012 11:11 63.8	12/8/2012 21:16 62.2	14/8/2012 22:26 61.8
5/8/2012 22:41 62.0	8/8/2012 19:51 63.2	10/8/2012 21:01 62.0	12/8/2012 11:11 63.8	12/8/2012 21:21 62.3	14/8/2012 22:31 61.9
5/8/2012 22:46 61.4	8/8/2012 19:56 62.5	10/8/2012 21:06 63.3	12/8/2012 11:16 63.2	12/8/2012 21:26 61.7	14/8/2012 22:36 62.2
5/8/2012 22:51 62.4	8/8/2012 20:01 62.6	10/8/2012 21:11 62.8	12/8/2012 11:21 64.3	12/8/2012 21:31 61.5	14/8/2012 22:41 62.0
5/8/2012 22:56 61.5	8/8/2012 20:06 62.2	10/8/2012 21:16 63.0	12/8/2012 11:26 64.5	12/8/2012 21:36 61.5	14/8/2012 22:46 61.9
6/8/2012 19:01 64.2	8/8/2012 20:11 63.4	10/8/2012 21:21 62.9	12/8/2012 11:31 64.3	12/8/2012 21:41 61.2	14/8/2012 22:51 61.5
6/8/2012 19:06 62.8	8/8/2012 20:16 63.7	10/8/2012 21:26 62.3	12/8/2012 11:36 62.9	12/8/2012 21:46 62.1	14/8/2012 22:56 61.6
6/8/2012 19:11 63.0	8/8/2012 20:21 62.7	10/8/2012 21:31 61.9	12/8/2012 11:41 63.0	12/8/2012 21:51 62.1	15/8/2012 19:01 64.6
6/8/2012 19:16 63.3	8/8/2012 20:26 63.6	10/8/2012 21:36 62.6	12/8/2012 11:46 63.7	12/8/2012 21:56 62.4	15/8/2012 19:06 64.1
6/8/2012 19:21 62.7	8/8/2012 20:31 62.2	10/8/2012 21:41 62.1	12/8/2012 11:51 63.7	12/8/2012 22:01 62.6	15/8/2012 19:11 63.7
6/8/2012 19:26 62.9	8/8/2012 20:36 61.9	10/8/2012 21:46 62.1	12/8/2012 11:56 64.0	12/8/2012 22:06 62.0	15/8/2012 19:16 63.9
6/8/2012 19:31 63.1	8/8/2012 20:41 61.6	10/8/2012 21:51 62.7	12/8/2012 12:01 64.7	12/8/2012 22:11 61.4	15/8/2012 19:21 64.4
6/8/2012 19:36 62.9	8/8/2012 20:46 61.4	10/8/2012 21:56 62.1	12/8/2012 12:06 63.6	12/8/2012 22:16 61.4	15/8/2012 19:26 64.3
6/8/2012 19:41 62.9	8/8/2012 20:51 61.5	10/8/2012 22:01 62.1	12/8/2012 12:11 64.5	12/8/2012 22:21 62.4	15/8/2012 19:31 64.9
6/8/2012 19:46 62.5	8/8/2012 20:56 61.3	10/8/2012 22:06 62.4	12/8/2012 12:16 63.6	12/8/2012 22:26 61.9	15/8/2012 19:36 64.1
6/8/2012 19:51 63.0	8/8/2012 21:01 61.4	10/8/2012 22:11 61.3	12/8/2012 12:21 64.3	12/8/2012 22:31 61.9	15/8/2012 19:41 64.4
6/8/2012 19:56 62.2	8/8/2012 21:06 61.2	10/8/2012 22:16 62.0	12/8/2012 12:26 64.4	12/8/2012 22:36 63.5	15/8/2012 19:46 64.0
6/8/2012 20:01 61.9	8/8/2012 21:11 61.9	10/8/2012 22:21 61.7	12/8/2012 12:31 64.3	12/8/2012 22:41 62.0	15/8/2012 19:51 64.2
6/8/2012 20:06 62.8	8/8/2012 21:16 62.0	10/8/2012 22:26 61.5	12/8/2012 12:36 64.6	12/8/2012 22:46 61.8	15/8/2012 19:56 64.2
6/8/2012 20:11 62.9	8/8/2012 21:21 61.3	10/8/2012 22:31 61.6	12/8/2012 12:41 65.6	12/8/2012 22:51 61.6	15/8/2012 20:01 64.0
6/8/2012 20:16 62.6	8/8/2012 21:26 61.8	10/8/2012 22:36 61.7	12/8/2012 12:46 65.2	12/8/2012 22:56 61.8	15/8/2012 20:06 63.7
6/8/2012 20:21 63.3	8/8/2012 21:31 62.1	10/8/2012 22:41 62.3	12/8/2012 12:51 65.1	13/8/2012 19:01 65.7	15/8/2012 20:11 64.3
6/8/2012 20:26 62.2	8/8/2012 21:36 62.7	10/8/2012 22:46 61.6	12/8/2012 12:56 65.5	13/8/2012 19:06 64.2	15/8/2012 20:16 64.3
6/8/2012 20:31 62.6	8/8/2012 21:41 61.9	10/8/2012 22:51 61.4	12/8/2012 13:01 65.2	13/8/2012 19:11 63.5	15/8/2012 20:21 64.1
6/8/2012 20:36 62.8	8/8/2012 21:46 62.0	10/8/2012 22:56 61.7	12/8/2012 13:06 65.5	13/8/2012 19:16 63.3	15/8/2012 20:26 64.9
6/8/2012 20:41 63.2	8/8/2012 21:51 61.8	11/8/2012 19:01 64.7	12/8/2012 13:11 65.2	13/8/2012 19:21 62.8	15/8/2012 20:31 64.6
6/8/2012 20:46 62.1	8/8/2012 21:56 62.1	11/8/2012 19:06 63.1	12/8/2012 13:16 64.8	13/8/2012 19:26 63.5	15/8/2012 20:36 64.8
6/8/2012 20:51 62.0	8/8/2012 22:01 62.3	11/8/2012 19:11 62.9	12/8/2012 13:21 65.2	13/8/2012 19:31 65.5	15/8/2012 20:41 64.3
6/8/2012 20:56 61.5	8/8/2012 22:06 62.2	11/8/2012 19:16 63.4	12/8/2012 13:26 65.8	13/8/2012 19:36 64.7	15/8/2012 20:46 64.3
6/8/2012 21:01 62.6	8/8/2012 22:11 62.1	11/8/2012 19:21 64.8	12/8/2012 13:31 65.3	13/8/2012 19:41 64.9	15/8/2012 20:51 63.6
6/8/2012 21:06 62.6	8/8/2012 22:16 61.9	11/8/2012 19:26 63.3	12/8/2012 13:36 65.3	13/8/2012 19:46 64.6	15/8/2012 20:56 63.5
6/8/2012 21:11 62.6	8/8/2012 22:21 62.0	11/8/2012 19:31 63.4	12/8/2012 13:41 65.2	13/8/2012 19:51 64.4	15/8/2012 21:01 64.2
6/8/2012 21:16 63.0 6/8/2012 21:21 62.1	8/8/2012 22:26 61.5	11/8/2012 19:36 64.1	12/8/2012 13:46 64.6	13/8/2012 19:56 64.4	15/8/2012 21:06 63.9
6/8/2012 21:21 62.1	8/8/2012 22:31 61.5	11/8/2012 19:41 63.2	12/8/2012 14:51 63.7	13/8/2012 20:01 64.2	15/8/2012 21:11 64.0
6/8/2012 21:26 62.4	8/8/2012 22:36 62.3	11/8/2012 19:46 62.9	12/8/2012 14:56 63.5	13/8/2012 20:06 65.4	15/8/2012 21:16 64.3
6/8/2012 21:31 62.2	8/8/2012 22:41 61.7	11/8/2012 19:51 64.1	12/8/2012 15:01 64.6	13/8/2012 20:11 63.6	15/8/2012 21:21 64.0
6/8/2012 21:36 62.8	8/8/2012 22:46 61.8	11/8/2012 19:56 63.3	12/8/2012 15:06 63.7	13/8/2012 20:16 63.9	15/8/2012 21:26 63.8
6/8/2012 21:41 64.1	8/8/2012 22:51 61.6	11/8/2012 20:01 63.4	12/8/2012 15:11 68.1	13/8/2012 20:21 64.2	15/8/2012 21:31 63.6
6/8/2012 21:46 62.4	8/8/2012 22:56 60.8	11/8/2012 20:06 65.1	12/8/2012 15:16 65.0	13/8/2012 20:26 64.5	15/8/2012 21:36 63.8
6/8/2012 21:51 62.6	9/8/2012 19:01 65.3	11/8/2012 20:11 65.0	12/8/2012 15:21 63.3	13/8/2012 20:31 64.3	15/8/2012 21:41 64.5
6/8/2012 21:56 62.6	9/8/2012 19:06 65.3	11/8/2012 20:16 63.6	12/8/2012 15:26 63.1	13/8/2012 20:36 64.5	15/8/2012 21:46 62.1
6/8/2012 22:01 63.0	9/8/2012 19:11 65.9	11/8/2012 20:21 64.8	12/8/2012 15:31 63.9	13/8/2012 20:41 64.5	15/8/2012 21:51 62.4
6/8/2012 22:06 61.7	9/8/2012 19:16 65.0	11/8/2012 20:26 64.3	12/8/2012 15:36 65.3	13/8/2012 20:46 64.2	15/8/2012 21:56 62.6
6/8/2012 22:11 61.3	9/8/2012 19:21 64.4	11/8/2012 20:31 63.8	12/8/2012 15:41 63.7	13/8/2012 20:51 63.7	15/8/2012 22:01 62.4
6/8/2012 22:16 61.8	9/8/2012 19:26 65.5	11/8/2012 20:36 64.3	12/8/2012 15:46 63.1	13/8/2012 20:56 63.6	15/8/2012 22:06 62.2
6/8/2012 22:21 62.3	9/8/2012 19:31 64.5	11/8/2012 20:41 63.4	12/8/2012 15:51 64.7	13/8/2012 21:01 65.0	15/8/2012 22:11 62.3
6/8/2012 22:26 62.4	9/8/2012 19:36 63.7	11/8/2012 20:46 64.0	12/8/2012 15:56 63.3	13/8/2012 21:06 64.3	15/8/2012 22:16 62.0
6/8/2012 22:31 61.5	9/8/2012 19:41 64.2	11/8/2012 20:51 63.4	12/8/2012 16:01 62.7	13/8/2012 21:11 64.8	15/8/2012 22:21 62.6
6/8/2012 22:36 61.5	9/8/2012 19:46 63.3	11/8/2012 20:56 63.5	12/8/2012 16:06 63.0	13/8/2012 21:16 63.3	15/8/2012 22:26 62.9
6/8/2012 22:41 61.2	9/8/2012 19:51 63.1	11/8/2012 21:01 63.6	12/8/2012 16:11 63.8	13/8/2012 21:21 64.2	15/8/2012 22:31 61.9
6/8/2012 22:46 61.2	9/8/2012 19:56 62.7	11/8/2012 21:06 65.2	12/8/2012 16:16 64.4	13/8/2012 21:26 64.1	15/8/2012 22:36 62.2
6/8/2012 22:51 61.4	9/8/2012 20:01 64.2	11/8/2012 21:11 63.5	12/8/2012 16:21 63.6	13/8/2012 21:31 64.4	15/8/2012 22:41 62.2
6/8/2012 22:56 62.0	9/8/2012 20:06 62.5	11/8/2012 21:16 63.2	12/8/2012 16:26 63.5	13/8/2012 21:36 64.4	15/8/2012 22:46 62.4
7/8/2012 19:01 63.4	9/8/2012 20:11 63.2	11/8/2012 21:21 64.1	12/8/2012 16:31 63.5	13/8/2012 21:41 64.1	15/8/2012 22:51 62.3
7/8/2012 19:06 64.4	9/8/2012 20:16 63.5	11/8/2012 21:26 62.3	12/8/2012 16:36 62.6	13/8/2012 21:46 63.3	15/8/2012 22:56 62.4
7/8/2012 19:11 64.3	9/8/2012 20:21 64.2	11/8/2012 21:31 63.1	12/8/2012 16:41 63.2	13/8/2012 21:51 63.1	16/8/2012 19:01 65.0
7/8/2012 19:16 63.2	9/8/2012 20:26 63.6	11/8/2012 21:36 63.7	12/8/2012 16:46 63.6	13/8/2012 21:56 62.9	16/8/2012 19:06 64.6
7/8/2012 19:21 63.2	9/8/2012 20:31 63.5	11/8/2012 21:41 63.2	12/8/2012 16:51 64.8	13/8/2012 22:01 62.8	16/8/2012 19:11 64.0
7/8/2012 19:26 63.3	9/8/2012 20:36 62.5	11/8/2012 21:46 62.9	12/8/2012 16:56 64.5	13/8/2012 22:06 63.2 13/8/2012 22:11 62.2	16/8/2012 19:16 64.1
7/8/2012 19:31 63.5	9/8/2012 20:41 63.9	11/8/2012 21:51 62.5	12/8/2012 17:01 64.5	13/8/2012 22:11 62.2	16/8/2012 19:21 63.7
7/8/2012 19:36 63.3	9/8/2012 20:46 63.3	11/8/2012 21:56 62.6	12/8/2012 17:06 64.0		16/8/2012 19:26 64.2
7/8/2012 19:41 62.4	9/8/2012 20:51 63.0	11/8/2012 22:01 61.9	12/8/2012 17:11 65.5	13/8/2012 22:21 62.7	16/8/2012 19:31 64.2
7/8/2012 19:46 61.8	9/8/2012 20:56 63.7	11/8/2012 22:06 62.4	12/8/2012 17:16 65.1	13/8/2012 22:26 62.0	16/8/2012 19:36 64.1
7/8/2012 19:51 61.8	9/8/2012 21:01 63.0	11/8/2012 22:00 02:4	12/8/2012 17:21 65.7	13/8/2012 22:31 62.7	16/8/2012 19:41 65.9
7/8/2012 19:56 63.1	9/8/2012 21:06 62.4	11/8/2012 22:16 61.8	12/8/2012 17:26 64.1	13/8/2012 22:36 63.6	16/8/2012 19:46 64.4
7/8/2012 20:01 63.7	9/8/2012 21:11 62.6	11/8/2012 22:21 62.5	12/8/2012 17:31 64.2	13/8/2012 22:41 62.2	16/8/2012 19:51 53.7
7/8/2012 20:06 63.6	9/8/2012 21:16 63.1	11/8/2012 22:26 62.8	12/8/2012 17:36 65.9	13/8/2012 22:46 62.1	16/8/2012 19:56 64.8
7/8/2012 20:11 64.2	9/8/2012 21:21 63.0	11/8/2012 22:31 62.6	12/8/2012 17:41 63.0	13/8/2012 22:51 62.9	16/8/2012 20:01 62.6
7/8/2012 20:16 64.3	9/8/2012 21:26 62.1	11/8/2012 22:36 62.7	12/8/2012 17:46 63.7	13/8/2012 22:56 62.8	16/8/2012 20:06 63.9
7/8/2012 20:21 63.8	9/8/2012 21:31 62.0	11/8/2012 22:41 61.9	12/8/2012 17:51 63.5	14/8/2012 19:01 63.6	16/8/2012 20:11 64.9
7/8/2012 20:26 63.8	9/8/2012 21:36 62.0	11/8/2012 22:46 62.6	12/8/2012 17:56 62.7	14/8/2012 19:06 63.9	16/8/2012 20:16 64.4
7/8/2012 20:31 62.8	9/8/2012 21:41 61.3	11/8/2012 22:51 62.5	12/8/2012 18:01 62.8	14/8/2012 19:11 64.9	16/8/2012 20:21 64.3
7/8/2012 20:36 62.8	9/8/2012 21:46 61.5	11/8/2012 22:56 62.9	12/8/2012 18:06 64.0	14/8/2012 19:16 64.2	16/8/2012 20:26 64.0
7/8/2012 20:41 62.3	9/8/2012 21:51 61.9	12/8/2012 7:01 62.2	12/8/2012 18:11 62.6	14/8/2012 19:21 64.3	16/8/2012 20:31 66.2
7/8/2012 20:46 62.6	9/8/2012 21:56 61.7	12/8/2012 7:06 63.2	12/8/2012 18:16 63.4	14/8/2012 19:26 65.5	16/8/2012 20:36 66.5
7/8/2012 20:51 62.6	9/8/2012 22:01 62.0	12/8/2012 7:11 61.9	12/8/2012 18:21 66.0	14/8/2012 19:31 66.5	16/8/2012 20:41 64.8
7/8/2012 20:56 62.6	9/8/2012 22:06 62.3	12/8/2012 7:16 63.4	12/8/2012 18:26 63.6	14/8/2012 19:36 66.0	16/8/2012 20:46 64.0
7/8/2012 21:01 62.7	9/8/2012 22:11 61.7	12/8/2012 7:21 61.9	12/8/2012 18:31 64.5	14/8/2012 19:41 65.1	16/8/2012 20:51 64.3
7/8/2012 21:06 62.8	9/8/2012 22:16 61.4	12/8/2012 7:26 62.4	12/8/2012 18:36 65.4	14/8/2012 19:46 65.5	16/8/2012 20:56 63.8
7/8/2012 21:11 62.6	9/8/2012 22:21 61.5	12/8/2012 7:31 62.3	12/8/2012 18:41 65.0	14/8/2012 19:51 65.7	16/8/2012 21:01 64.1
7/8/2012 21:16 62.0	9/8/2012 22:26 61.7	12/8/2012 7:36 63.8	12/8/2012 18:46 65.5	14/8/2012 19:56 65.4	16/8/2012 21:06 63.8
7/8/2012 21:21 63.1	9/8/2012 22:31 62.2	12/8/2012 7:41 62.5	12/8/2012 18:51 63.2	14/8/2012 20:01 65.9	16/8/2012 21:11 63.4
7/8/2012 21:26 63.4	9/8/2012 22:36 61.8	12/8/2012 7:46 64.1	12/8/2012 18:56 62.7	14/8/2012 20:06 66.3	16/8/2012 21:16 64.1
7/8/2012 21:31 63.7	9/8/2012 22:41 62.6	12/8/2012 7:51 63.0	12/8/2012 19:01 62.9	14/8/2012 20:11 65.3	16/8/2012 21:21 63.9
7/8/2012 21:36 63.3	9/8/2012 22:46 61.9	12/8/2012 7:56 63.5	12/8/2012 19:06 62.0	14/8/2012 20:16 66.0	16/8/2012 21:26 64.0
7/8/2012 21:41 63.6	9/8/2012 22:51 61.2	12/8/2012 8:01 63.9	12/8/2012 19:11 61.7	14/8/2012 20:21 65.6	16/8/2012 21:31 63.9
7/8/2012 21:46 63.0	9/8/2012 22:56 61.3	12/8/2012 8:06 63.9	12/8/2012 19:16 62.1	14/8/2012 20:26 65.3	16/8/2012 21:36 63.8
7/8/2012 21:51 63.3	10/8/2012 19:01 61.6	12/8/2012 8:11 63.5	12/8/2012 19:21 62.1	14/8/2012 20:31 64.1	16/8/2012 21:41 63.1
7/8/2012 21:56 62.3	10/8/2012 19:06 64.4	12/8/2012 8:16 63.1	12/8/2012 19:26 62.0	14/8/2012 20:36 64.0	16/8/2012 21:46 63.7
7/8/2012 22:01 62.8	10/8/2012 19:11 66.3	12/8/2012 8:21 63.6	12/8/2012 19:31 62.0	14/8/2012 20:41 64.5	16/8/2012 21:51 64.5
7/8/2012 22:06 62.6	10/8/2012 19:16 66.3 10/8/2012 19:21 64.8	12/8/2012 8:26 64.7	12/8/2012 19:36 62.1 12/8/2012 19:41 61.6	14/8/2012 20:46 64.5	16/8/2012 21:56 63.7
7/8/2012 22:16 61.8	10/8/2012 19:26 64.9	12/8/2012 8:36 64.5	12/8/2012 19:46 61.8	14/8/2012 20:51 62.4 14/8/2012 20:56 61.8	16/8/2012 22:01 63.0 16/8/2012 22:06 63.2
7/8/2012 22:21 62.1	10/8/2012 19:31 63.3	12/8/2012 8:41 64.8	12/8/2012 19:51 62.5	14/8/2012 21:01 62.5	16/8/2012 22:11 63.6
7/8/2012 22:26 63.1	10/8/2012 19:36 62.1	12/8/2012 8:46 65.1	12/8/2012 19:56 61.9	14/8/2012 21:06 62.6	16/8/2012 22:16 63.5
7/8/2012 22:31 62.0	10/8/2012 19:41 62.5	12/8/2012 9:51 64.9	12/8/2012 20:01 61.5	14/8/2012 21:11 61.9	16/8/2012 22:21 63.6

16/8/2012 22:31 65.2 16/8/2012 22:36 63.9 16/8/2012 22:41 63.4 16/8/2012 22:46 62.7 16/8/2012 22:51 62.4 16/8/2012 22:55 62.3 17/8/2012 19:01 64.3 17/8/2012 19:01 65.7	19/8/2012 7:41 63.0 19/8/2012 7:46 63.1 19/8/2012 7:51 63.8 19/8/2012 7:56 63.3	19/8/2012 16:51 64.4 19/8/2012 16:56 64.3	20/8/2012 22:01 63.0 20/8/2012 22:06 62.9	23/8/2012 19:11 64.1 23/8/2012 19:16 67.9	25/8/2012 20:21 61.4
16/8/2012 22:41 63.4 16/8/2012 22:46 62.7 16/8/2012 22:51 62.4 16/8/2012 22:51 62.3 17/8/2012 19:01 64.3 17/8/2012 19:01 62.6 17/8/2012 19:11 65.7	19/8/2012 7:51 63.8				25/8/2012 20:26 61.5
16/8/2012 22:51 62.4 16/8/2012 22:56 62.3 17/8/2012 19:01 64.3 17/8/2012 19:06 62.6 17/8/2012 19:11 65.7	19/8/2012 7:56 63.3	19/8/2012 17:01 63.6	20/8/2012 22:11 62.6	23/8/2012 19:21 65.3	25/8/2012 20:31 61.4
16/8/2012 22:5662.317/8/2012 19:0164.317/8/2012 19:0662.617/8/2012 19:1165.7		19/8/2012 17:06 64.3	20/8/2012 22:16 62.7	23/8/2012 19:26 52.7	25/8/2012 20:36 61.6
17/8/2012 19:06 62.6 17/8/2012 19:11 65.7	19/8/2012 8:01 62.4 19/8/2012 8:06 62.6	19/8/2012 17:11 63.9 19/8/2012 17:16 65.0	20/8/2012 22:21 62.7 20/8/2012 22:26 62.9	23/8/2012 19:31 67.3 23/8/2012 19:36 64.8	25/8/2012 20:41 61.0 25/8/2012 20:46 61.6
17/8/2012 19:11 65.7	19/8/2012 8:11 62.9	19/8/2012 17:21 63.8	20/8/2012 22:31 62.6	23/8/2012 19:41 65.0	25/8/2012 20:51 61.7
	19/8/2012 8:16 63.2 19/8/2012 8:21 63.0	19/8/2012 17:26 63.3 19/8/2012 17:31 63.7	20/8/2012 22:36 63.2 20/8/2012 22:41 62.8	23/8/2012 19:46 64.1 23/8/2012 19:51 62.6	25/8/2012 20:56 61.8 25/8/2012 21:01 61.5
17/8/2012 19:16 65.8	19/8/2012 8:26 63.6	19/8/2012 17:36 65.3	20/8/2012 22:46 62.2	23/8/2012 19:56 62.9	25/8/2012 21:06 61.2
17/8/2012 19:21 64.7 17/8/2012 19:26 65.1	19/8/2012 8:31 64.6 19/8/2012 8:36 63.2	19/8/2012 17:41 64.7 19/8/2012 17:46 66.9	20/8/2012 22:51 62.5 20/8/2012 22:56 62.6	23/8/2012 20:01 63.0 23/8/2012 20:06 63.3	25/8/2012 21:11 61.7 25/8/2012 21:16 62.7
17/8/2012 19:31 66.2	19/8/2012 8:41 63.0	19/8/2012 17:51 66.9	21/8/2012 19:01 64.4	23/8/2012 20:11 63.3	25/8/2012 21:21 62.8
17/8/2012 19:36 65.1	19/8/2012 8:46 62.9	19/8/2012 17:56 65.0	21/8/2012 19:06 64.9	23/8/2012 20:16 62.4	25/8/2012 21:26 61.6
17/8/2012 19:41 64.5 17/8/2012 19:46 64.8	19/8/2012 8:51 62.8 19/8/2012 8:56 62.2	19/8/2012 18:01 66.6 19/8/2012 18:06 68.0	21/8/2012 19:11 64.7 21/8/2012 19:16 64.5	23/8/2012 20:21 63.0 23/8/2012 20:26 62.7	25/8/2012 21:31 61.4 25/8/2012 21:36 61.5
17/8/2012 19:51 63.5	19/8/2012 9:01 62.6	19/8/2012 18:11 55.7	21/8/2012 19:21 64.0	23/8/2012 20:31 62.1	25/8/2012 21:41 61.2
17/8/2012 19:56 63.5 17/8/2012 20:01 63.7	19/8/2012 9:06 62.9 19/8/2012 9:11 62.7	19/8/2012 18:16 61.1 19/8/2012 18:21 64.1	21/8/2012 19:26 64.5 21/8/2012 19:31 64.0	23/8/2012 20:36 62.2 23/8/2012 20:41 62.5	25/8/2012 21:46 61.5 25/8/2012 21:51 62.6
17/8/2012 20:06 64.1	19/8/2012 9:16 62.4	19/8/2012 18:26 63.1	21/8/2012 19:36 63.6	23/8/2012 20:46 63.0	25/8/2012 21:56 62.0
17/8/2012 20:11 64.6 17/8/2012 20:16 64.4	19/8/2012 9:21 62.4 19/8/2012 9:26 62.6	19/8/2012 18:31 62.6 19/8/2012 18:36 62.6	21/8/2012 19:41 63.6 21/8/2012 19:46 63.7	23/8/2012 20:51 62.1 23/8/2012 20:56 62.1	25/8/2012 22:01 61.7 25/8/2012 22:06 61.7
17/8/2012 20:21 63.1	19/8/2012 9:31 62.7	19/8/2012 18:41 63.0	21/8/2012 19:51 64.3	23/8/2012 21:01 62.8	25/8/2012 22:11 61.5
17/8/2012 20:26 63.2 17/8/2012 20:31 64.0	19/8/2012 9:36 63.0 19/8/2012 9:41 62.7	19/8/2012 18:46 63.2 19/8/2012 18:51 63.8	21/8/2012 19:56 63.2 21/8/2012 20:01 64.0	23/8/2012 21:06 62.6 23/8/2012 21:11 63.0	25/8/2012 22:16 61.4 25/8/2012 22:21 61.8
17/8/2012 20:36 64.0	19/8/2012 9:46 62.8	19/8/2012 18:56 64.7	21/8/2012 20:06 65.8	23/8/2012 21:16 62.9	25/8/2012 22:26 61.9
17/8/2012 20:41 63.0 17/8/2012 20:46 63.0	19/8/2012 9:51 63.3 19/8/2012 9:56 62.9	19/8/2012 19:01 63.6 19/8/2012 19:06 62.0	21/8/2012 20:11 64.5	23/8/2012 21:21 62.4 23/8/2012 21:26 62.5	25/8/2012 22:31 61.4
17/8/2012 20:51 62.9	19/8/2012 9:56 62.9 19/8/2012 10:01 62.7	19/8/2012 19:00 62:0	21/8/2012 20:16 63.6 21/8/2012 20:21 64.9	23/8/2012 21:31 61.9	25/8/2012 22:36 61.8 25/8/2012 22:41 61.8
17/8/2012 20:56 62.5	19/8/2012 10:06 62.1	19/8/2012 19:16 62.1	21/8/2012 20:26 64.1 21/8/2012 20:31 64.3	23/8/2012 21:36 62.4 23/8/2012 21:41 63.5	25/8/2012 22:46 61.5
17/8/2012 21:01 62.3 17/8/2012 21:06 62.3	19/8/2012 10:11 62.9 19/8/2012 10:16 62.6	19/8/2012 19:21 61.9 19/8/2012 19:26 61.9	21/8/2012 20:31 64.3 21/8/2012 20:36 64.1	23/8/2012 21:41 63.5 23/8/2012 21:46 62.4	25/8/2012 22:51 62.7 25/8/2012 22:56 61.9
17/8/2012 21:11 62.3	19/8/2012 10:21 62.7	19/8/2012 19:31 61.7	21/8/2012 20:41 64.4	23/8/2012 21:51 62.6	26/8/2012 7:01 62.2
17/8/2012 21:16 62.3 17/8/2012 21:21 62.8	19/8/2012 10:26 62.6 19/8/2012 10:31 62.6	19/8/2012 19:36 62.2 19/8/2012 19:41 62.2	21/8/2012 20:46 63.6 21/8/2012 20:51 64.2	23/8/2012 21:56 62.7 23/8/2012 22:01 62.8	26/8/2012 7:06 62.1 26/8/2012 7:11 62.6
17/8/2012 21:26 62.1	19/8/2012 10:36 62.4	19/8/2012 19:46 62.5	21/8/2012 20:56 63.1	23/8/2012 22:06 62.4	26/8/2012 7:16 62.8
17/8/2012 21:31 63.4 17/8/2012 21:36 62.7	19/8/2012 10:41 62.8 19/8/2012 10:46 63.6	19/8/2012 19:51 61.6 19/8/2012 19:56 61.8	21/8/2012 21:01 62.8 21/8/2012 21:06 63.5	23/8/2012 22:11 61.9 23/8/2012 22:16 61.9	26/8/2012 7:21 62.0 26/8/2012 7:26 64.1
17/8/2012 21:41 62.2	19/8/2012 10:51 64.8	19/8/2012 20:01 64.0	21/8/2012 21:11 62.9	23/8/2012 22:21 62.2	26/8/2012 7:31 62.4
17/8/2012 21:46 62.4 17/8/2012 21:51 62.4	19/8/2012 10:56 64.4 19/8/2012 11:01 64.2	19/8/2012 20:06 65.7 19/8/2012 20:11 63.6	21/8/2012 21:16 63.0 21/8/2012 21:21 62.4	23/8/2012 22:26 61.7 23/8/2012 22:31 61.8	26/8/2012 7:36 64.2 26/8/2012 7:41 61.4
17/8/2012 21:56 62.4	19/8/2012 11:06 64.1	19/8/2012 20:16 62.3	21/8/2012 21:26 62.6	23/8/2012 22:36 62.8	26/8/2012 7:46 61.0
17/8/2012 22:01 62.6 17/8/2012 22:06 63.4	19/8/2012 11:11 64.3 19/8/2012 11:16 64.0	19/8/2012 20:21 61.8 19/8/2012 20:26 60.8	21/8/2012 21:31 62.8 21/8/2012 21:36 62.4	23/8/2012 22:41 61.5 23/8/2012 22:46 62.5	26/8/2012 7:51 62.5 26/8/2012 7:56 61.5
17/8/2012 22:11 61.6	19/8/2012 11:21 64.0	19/8/2012 20:31 62.2	21/8/2012 21:41 63.1	23/8/2012 22:51 61.3	26/8/2012 8:01 61.3
17/8/2012 22:16 61.6 17/8/2012 22:21 61.4	19/8/2012 11:26 64.7 19/8/2012 11:31 64.3	19/8/2012 20:36 62.3 19/8/2012 20:41 61.2	21/8/2012 21:46 62.6 21/8/2012 21:51 62.6	23/8/2012 22:56 61.7 24/8/2012 19:01 67.0	26/8/2012 8:06 62.3 26/8/2012 8:11 63.1
17/8/2012 22:26 62.0	19/8/2012 11:36 62.6	19/8/2012 20:46 62.9	21/8/2012 21:56 62.9	24/8/2012 19:06 65.2	26/8/2012 8:16 61.3
17/8/2012 22:31 61.9 17/8/2012 22:36 62.0	19/8/2012 11:41 63.7 19/8/2012 11:46 63.8	19/8/2012 20:51 62.2 19/8/2012 20:56 61.1	21/8/2012 22:01 62.5 21/8/2012 22:06 62.5	24/8/2012 19:11 64.5 24/8/2012 19:16 62.7	26/8/2012 8:21 61.6 26/8/2012 8:26 64.1
17/8/2012 22:41 61.9	19/8/2012 11:51 64.0	19/8/2012 21:01 61.4	21/8/2012 22:11 62.3	24/8/2012 19:21 62.4	26/8/2012 8:31 63.1
17/8/2012 22:46 62.1 17/8/2012 22:51 62.2	19/8/2012 11:56 64.5 19/8/2012 12:01 65.3	19/8/2012 21:06 61.5 19/8/2012 21:11 61.1	21/8/2012 22:16 62.7 21/8/2012 22:21 62.9	24/8/2012 19:26 61.8 24/8/2012 19:31 62.1	26/8/2012 8:36 63.4 26/8/2012 8:41 62.2
17/8/2012 22:56 61.7	19/8/2012 12:06 65.0	19/8/2012 21:16 61.9	21/8/2012 22:26 62.7	24/8/2012 19:36 61.9	26/8/2012 8:46 64.0
18/8/2012 19:01 62.9 18/8/2012 19:06 63.1	19/8/2012 12:11 62.9 19/8/2012 12:16 63.2	19/8/2012 21:21 61.9 19/8/2012 21:26 61.0	21/8/2012 22:31 63.1 21/8/2012 22:36 62.3	24/8/2012 19:41 61.8 24/8/2012 19:46 62.9	26/8/2012 8:51 64.9 26/8/2012 8:56 63.8
18/8/2012 19:11 62.7	19/8/2012 12:21 63.7	19/8/2012 21:31 62.7	21/8/2012 22:41 62.4	24/8/2012 19:51 61.9	26/8/2012 9:01 64.8
18/8/2012 19:16 62.9 18/8/2012 19:21 63.2	19/8/2012 12:26 64.3 19/8/2012 12:31 64.0	19/8/2012 21:36 62.5 19/8/2012 21:41 62.4	21/8/2012 22:46 62.4 21/8/2012 22:51 62.9	24/8/2012 19:56 61.2 24/8/2012 20:01 62.0	26/8/2012 9:06 65.4 26/8/2012 9:11 65.0
18/8/2012 19:26 63.4	19/8/2012 12:36 66.3	19/8/2012 21:46 61.6	21/8/2012 22:56 62.1	24/8/2012 20:06 60.4	26/8/2012 9:16 64.6
18/8/2012 19:31 62.4 18/8/2012 19:36 62.3	19/8/2012 12:41 65.6 19/8/2012 12:46 65.5	19/8/2012 21:51 61.5 19/8/2012 21:56 62.4	22/8/2012 19:01 63.5 22/8/2012 19:06 62.5	24/8/2012 20:11 64.0 24/8/2012 20:16 62.6	26/8/2012 9:21 64.1 26/8/2012 9:26 63.3
18/8/2012 19:41 61.9	19/8/2012 12:51 64.0	19/8/2012 22:01 62.4	22/8/2012 19:11 62.5	24/8/2012 20:21 61.8	26/8/2012 9:31 63.1
18/8/2012 19:46 62.0 18/8/2012 19:51 61.7	19/8/2012 12:56 63.5 19/8/2012 13:01 63.7	19/8/2012 22:06 62.6 19/8/2012 22:11 61.5	22/8/2012 19:16 61.9 22/8/2012 19:21 62.5	24/8/2012 20:26 61.9 24/8/2012 20:31 62.7	26/8/2012 9:36 63.0 26/8/2012 9:41 62.2
18/8/2012 19:56 62.1	19/8/2012 13:06 64.0	19/8/2012 22:16 61.7	22/8/2012 19:26 62.5	24/8/2012 20:36 60.2	26/8/2012 9:46 62.9
18/8/2012 20:01 62.8 18/8/2012 20:06 62.2	19/8/2012 13:11 63.8 19/8/2012 13:16 64.0	19/8/2012 22:21 61.7 19/8/2012 22:26 61.5	22/8/2012 19:31 62.3 22/8/2012 19:36 62.7	24/8/2012 20:41 60.5 24/8/2012 20:46 66.5	26/8/2012 9:51 63.0 26/8/2012 9:56 65.4
18/8/2012 20:11 62.4	19/8/2012 13:21 64.0	19/8/2012 22:31 61.1	22/8/2012 19:41 63.3	24/8/2012 20:51 60.5	26/8/2012 10:01 64.2
18/8/2012 20:16 62.1 18/8/2012 20:21 62.1	19/8/2012 13:26 63.6 19/8/2012 13:31 63.2	19/8/2012 22:36 61.7 19/8/2012 22:41 61.6	22/8/2012 19:46 64.1 22/8/2012 19:51 63.5	24/8/2012 20:56 60.7 24/8/2012 21:01 63.1	26/8/2012 10:06 63.2 26/8/2012 10:11 62.4
18/8/2012 20:26 61.7	19/8/2012 13:36 64.1	19/8/2012 22:46 61.9	22/8/2012 19:56 62.9	24/8/2012 21:06 61.7	26/8/2012 10:16 63.9
18/8/2012 20:31 61.9 18/8/2012 20:36 61.6	19/8/2012 13:41 64.0 19/8/2012 13:46 64.6	19/8/2012 22:51 62.1 19/8/2012 22:56 63.3	22/8/2012 20:01 62.9 22/8/2012 20:06 63.4	24/8/2012 21:11 62.2 24/8/2012 21:16 62.2	26/8/2012 10:21 55.1 26/8/2012 10:26 64.3
18/8/2012 20:41 62.0	19/8/2012 13:51 65.5	20/8/2012 19:01 64.0	22/8/2012 20:00 03:4	24/8/2012 21:21 61.2	26/8/2012 10:20 64.3
18/8/2012 20:46 62.5	19/8/2012 13:56 65.6	20/8/2012 19:06 63.0	22/8/2012 20:16 64.2	24/8/2012 21:26 62.0	26/8/2012 10:36 63.3
18/8/2012 20:51 62.0 18/8/2012 20:56 62.9	19/8/2012 14:01 64.3 19/8/2012 14:06 65.0	20/8/2012 19:11 62.8 20/8/2012 19:16 63.3	22/8/2012 20:21 63.4 22/8/2012 20:26 62.7	24/8/2012 21:31 61.6 24/8/2012 21:36 61.8	26/8/2012 10:41 63.9 26/8/2012 10:46 65.2
18/8/2012 21:01 61.9	19/8/2012 14:11 64.6	20/8/2012 19:21 64.5	22/8/2012 20:31 63.0	24/8/2012 21:41 62.6	26/8/2012 10:51 65.6
18/8/2012 21:06 62.1 18/8/2012 21:11 61.8	19/8/2012 14:16 63.3 19/8/2012 14:21 62.8	20/8/2012 19:26 63.1 20/8/2012 19:31 62.6	22/8/2012 20:36 66.2 22/8/2012 20:41 61.4	24/8/2012 21:46 62.3 24/8/2012 21:51 61.9	26/8/2012 10:56 64.4 26/8/2012 11:01 63.2
18/8/2012 21:16 61.7	19/8/2012 14:26 63.5	20/8/2012 19:36 64.0	22/8/2012 20:46 63.1	24/8/2012 21:56 61.6	26/8/2012 11:06 64.8
18/8/2012 21:21 61.8 18/8/2012 21:26 61.3	19/8/2012 14:31 63.8 19/8/2012 14:36 63.9	20/8/2012 19:41 63.7 20/8/2012 19:46 63.1	22/8/2012 20:51 63.4 22/8/2012 20:56 64.1	24/8/2012 22:01 61.6 24/8/2012 22:06 62.0	26/8/2012 11:11 63.1 26/8/2012 11:16 63.0
18/8/2012 21:31 61.5	19/8/2012 14:41 64.7	20/8/2012 19:51 63.8	22/8/2012 21:01 63.1	24/8/2012 22:11 62.0	26/8/2012 11:21 62.7
18/8/2012 21:36 62.1 18/8/2012 21:41 62.0	19/8/2012 14:46 66.1 19/8/2012 14:51 66.2	20/8/2012 19:56 63.8 20/8/2012 20:01 63.7	22/8/2012 21:06 62.8 22/8/2012 21:11 63.2	24/8/2012 22:16 62.1 24/8/2012 22:21 61.8	26/8/2012 11:26 67.5 26/8/2012 11:31 64.4
18/8/2012 21:46 61.9	19/8/2012 14:56 63.6	20/8/2012 20:06 63.5	22/8/2012 21:16 62.4	24/8/2012 22:26 61.7	26/8/2012 11:36 63.1
18/8/2012 21:51 62.4 18/8/2012 21:56 61.9	19/8/2012 15:01 62.7 19/8/2012 15:06 62.5	20/8/2012 20:11 63.9 20/8/2012 20:16 66.0	22/8/2012 21:21 62.9 22/8/2012 21:26 62.7	24/8/2012 22:31 62.6 24/8/2012 22:36 62.1	26/8/2012 11:41 63.1 26/8/2012 11:46 62.5
18/8/2012 22:01 62.0	19/8/2012 15:11 63.8	20/8/2012 20:21 64.1	22/8/2012 21:31 62.5	24/8/2012 22:41 61.8	26/8/2012 11:51 62.7
18/8/2012 22:06 61.7 18/8/2012 22:11 61.4	19/8/2012 15:16 63.8 19/8/2012 15:21 63.1	20/8/2012 20:26 63.7 20/8/2012 20:31 64.1	22/8/2012 21:36 63.0 22/8/2012 21:41 62.7	24/8/2012 22:46 61.9 24/8/2012 22:51 62.2	26/8/2012 11:56 63.0 26/8/2012 12:01 62.4
18/8/2012 22:16 62.5	19/8/2012 15:26 63.4	20/8/2012 20:36 63.9	22/8/2012 21:46 62.8	24/8/2012 22:56 62.4	26/8/2012 12:06 62.7
18/8/2012 22:21 62.1 18/8/2012 22:26 61.7	19/8/2012 15:31 64.9 19/8/2012 15:36 63.3	20/8/2012 20:41 63.5 20/8/2012 20:46 63.4	22/8/2012 21:51 62.0 22/8/2012 21:56 63.3	25/8/2012 19:01 64.2 25/8/2012 19:06 63.9	26/8/2012 12:11 64.6 26/8/2012 12:16 64.4
18/8/2012 22:31 62.6	19/8/2012 15:41 62.8	20/8/2012 20:51 63.6	22/8/2012 22:01 62.9	25/8/2012 19:11 63.4	26/8/2012 12:21 64.2
18/8/2012 22:36 62.1 18/8/2012 22:41 61.3	19/8/2012 15:46 63.2 19/8/2012 15:51 63.7	20/8/2012 20:56 63.0 20/8/2012 21:01 63.2	22/8/2012 22:06 62.8 22/8/2012 22:11 62.2	25/8/2012 19:16 61.7 25/8/2012 19:21 62.6	26/8/2012 12:26 64.7 26/8/2012 12:31 64.6
18/8/2012 22:46 61.9	19/8/2012 15:56 63.7	20/8/2012 21:06 63.7	22/8/2012 22:16 62.6	25/8/2012 19:26 63.1	26/8/2012 12:36 64.0
18/8/2012 22:51 61.9 18/8/2012 22:56 61.4	19/8/2012 16:01 65.5 19/8/2012 16:06 63.4	20/8/2012 21:11 64.3 20/8/2012 21:16 63.2	22/8/2012 22:21 61.9 22/8/2012 22:26 62.3	25/8/2012 19:31 62.7 25/8/2012 19:36 62.9	26/8/2012 12:41 64.5 26/8/2012 12:46 65.3
19/8/2012 7:01 63.2	19/8/2012 16:11 63.4	20/8/2012 21:21 63.3	22/8/2012 22:31 62.6	25/8/2012 19:41 62.4	26/8/2012 12:51 64.3
19/8/2012 7:06 61.8 19/8/2012 7:11 61.8	19/8/2012 16:16 64.3 19/8/2012 16:21 63.4	20/8/2012 21:26 63.1	22/8/2012 22:36 62.2	25/8/2012 19:46 62.2 25/8/2012 19:51 61.9	26/8/2012 12:56 64.8 26/8/2012 13:01 65.7
19/8/2012 7:16 63.2	19/8/2012 16:26 63.8	20/8/2012 21:31 63.1 20/8/2012 21:36 63.0	22/8/2012 22:41 62.4 22/8/2012 22:46 62.5	25/8/2012 19:56 62.9	26/8/2012 13:06 65.0
19/8/2012 7:21 64.6	19/8/2012 16:31 62.8 19/8/2012 16:36 62.9	20/8/2012 21:41 63.3 20/8/2012 21:46 62.8	22/8/2012 22:51 61.9 22/8/2012 22:56 63.0	25/8/2012 20:01 61.5 25/8/2012 20:06 61.6	26/8/2012 13:11 66.4 26/8/2012 13:16 65.0
19/8/2012 7:26 62.6	19/8/2012 16:41 63.8	20/8/2012 21:51 63.8	23/8/2012 19:01 66.3	25/8/2012 20:00 01:0	26/8/2012 13:21 65.1

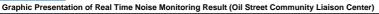
Poal time Noise Data PT	N2 (Oil Street Community Liaisor	Control			
Real-time Noise Data RT 26/8/2012 13:26 64.3	26/8/2012 22:36 61.2	28/7/2012 4:31 58.3	29/7/2012 5:41 60.4	30/7/2012 6:51 62.2	1/8/2012 0:01 62.2
26/8/2012 13:31 66.0	26/8/2012 22:41 61.8	28/7/2012 4:36 58.4	29/7/2012 5:46 61.1	30/7/2012 6:56 62.8	1/8/2012 0:06 61.0
26/8/2012 13:36 66.0	26/8/2012 22:46 61.3	28/7/2012 4:41 58.9	29/7/2012 5:51 59.4	30/7/2012 23:01 61.3	1/8/2012 0:11 61.4
26/8/2012 13:41 63.8	26/8/2012 22:51 60.7	28/7/2012 4:46 59.2	29/7/2012 5:56 59.3	30/7/2012 23:06 61.2	1/8/2012 0:16 61.3
26/8/2012 13:46 66.0	26/8/2012 22:56 63.0	28/7/2012 4:51 59.5	29/7/2012 6:01 60.3	30/7/2012 23:11 61.4	1/8/2012 0:21 60.6
26/8/2012 13:51 63.0	27/8/2012 19:01 64.6	28/7/2012 4:56 58.5	29/7/2012 6:06 60.1	30/7/2012 23:16 61.5	1/8/2012 0:26 61.1
26/8/2012 13:56 64.0	27/8/2012 19:06 63.7	28/7/2012 5:01 58.4	29/7/2012 6:11 59.6	30/7/2012 23:21 61.1	1/8/2012 0:31 60.3
26/8/2012 14:01 63.3	27/8/2012 19:11 64.1	28/7/2012 5:06 59.1	29/7/2012 6:16 59.5	30/7/2012 23:26 60.8	1/8/2012 0:36 61.3
26/8/2012 14:06 62.4	27/8/2012 19:16 65.8	28/7/2012 5:11 59.0	29/7/2012 6:21 60.2	30/7/2012 23:31 60.3	1/8/2012 0:41 59.5
26/8/2012 14:11 63.2	27/8/2012 19:21 66.5	28/7/2012 5:16 58.5	29/7/2012 6:26 61.2	30/7/2012 23:36 61.3	1/8/2012 0:46 60.2
26/8/2012 14:16 63.1	27/8/2012 19:26 66.1	28/7/2012 5:21 59.6	29/7/2012 6:31 60.8	30/7/2012 23:41 60.5	1/8/2012 0:51 60.2
26/8/2012 14:21 64.3	27/8/2012 19:31 66.0	28/7/2012 5:26 58.9	29/7/2012 6:36 60.7	30/7/2012 23:46 60.3	1/8/2012 0:56 60.1
26/8/2012 14:26 65.0	27/8/2012 19:36 64.8	28/7/2012 5:31 59.5	29/7/2012 6:41 61.1	30/7/2012 23:51 60.3	1/8/2012 1:01 59.2
26/8/2012 14:31 64.1	27/8/2012 19:41 64.2	28/7/2012 5:36 59.6	29/7/2012 6:46 61.5	30/7/2012 23:56 59.7	1/8/2012 1:06 60.0
26/8/2012 14:36 63.4	27/8/2012 19:46 64.8	28/7/2012 5:41 59.3	29/7/2012 6:51 62.3	31/7/2012 0:01 61.2	1/8/2012 1:11 59.9
26/8/2012 14:41 64.0	27/8/2012 19:51 64.4	28/7/2012 5:46 61.2	29/7/2012 6:56 61.1	31/7/2012 0:06 60.7	1/8/2012 1:16 59.8
26/8/2012 14:46 63.3	27/8/2012 19:56 64.0	28/7/2012 5:51 60.7	29/7/2012 23:01 62.2	31/7/2012 0:11 59.7	1/8/2012 1:21 59.7
26/8/2012 14:51 62.9	27/8/2012 20:01 64.2	28/7/2012 5:56 59.6	29/7/2012 23:06 61.8	31/7/2012 0:16 60.1	1/8/2012 1:26 59.2
26/8/2012 14:56 63.4	27/8/2012 20:06 64.4	28/7/2012 6:01 59.9	29/7/2012 23:11 61.9	31/7/2012 0:21 60.0	1/8/2012 1:31 59.4
	27/8/2012 20:11 64.5	28/7/2012 6:06 60.9	29/7/2012 23:16 62.0	31/7/2012 0:26 60.3	1/8/2012 1:36 58.7
26/8/2012 15:01 65.8 26/8/2012 15:06 63.4	27/8/2012 20:16 65.3	28/7/2012 6:11 60.4	29/7/2012 23:21 61.6	31/7/2012 0:31 59.9	1/8/2012 1:41 58.6
26/8/2012 15:11 62.7	27/8/2012 20:21 64.8	28/7/2012 6:16 61.4	29/7/2012 23:26 61.0	31/7/2012 0:36 59.8	1/8/2012 1:46 58.3
26/8/2012 15:16 62.4	27/8/2012 20:26 63.3	28/7/2012 6:21 61.3	29/7/2012 23:31 61.2	31/7/2012 0:41 60.0	1/8/2012 1:51 58.4
26/8/2012 15:21 63.1	27/8/2012 20:31 64.2	28/7/2012 6:26 61.0	29/7/2012 23:36 60.8	31/7/2012 0:46 59.3	1/8/2012 1:56 58.3
26/8/2012 15:26 63.2	27/8/2012 20:36 63.9	28/7/2012 6:31 61.6	29/7/2012 23:41 60.7	31/7/2012 0:51 59.6	1/8/2012 2:01 58.1
26/8/2012 15:31 63.0	27/8/2012 20:41 63.2	28/7/2012 6:36 62.2	29/7/2012 23:46 61.0	31/7/2012 0:56 59.1	1/8/2012 2:06 57.6
26/8/2012 15:36 63.4	27/8/2012 20:46 63.3	28/7/2012 6:41 62.3	29/7/2012 23:51 61.1	31/7/2012 1:01 58.7	1/8/2012 2:11 58.4
26/8/2012 15:41 64.0	27/8/2012 20:51 63.1	28/7/2012 6:46 61.7	29/7/2012 23:56 61.3	31/7/2012 1:06 58.9	1/8/2012 2:16 58.8
26/8/2012 15:46 64.2	27/8/2012 20:56 63.3	28/7/2012 6:51 62.6	30/7/2012 0:01 60.8	31/7/2012 1:11 58.2	1/8/2012 2:21 58.0
26/8/2012 15:51 63.1	27/8/2012 21:01 62.6	28/7/2012 6:56 63.1	30/7/2012 0:06 60.1	31/7/2012 1:16 58.2	1/8/2012 2:26 58.0
26/8/2012 15:56 62.7	27/8/2012 21:06 61.0	28/7/2012 23:01 62.0	30/7/2012 0:11 60.1	31/7/2012 1:21 59.3	1/8/2012 2:31 57.8
26/8/2012 16:01 63.3	27/8/2012 21:11 61.8	28/7/2012 23:06 62.0	30/7/2012 0:16 60.3	31/7/2012 1:26 58.0	1/8/2012 2:36 57.5
26/8/2012 16:06 63.1	27/8/2012 21:16 61.9	28/7/2012 23:11 62.0	30/7/2012 0:21 60.4	31/7/2012 1:31 57.6	1/8/2012 2:41 56.9
26/8/2012 16:11 63.0	27/8/2012 21:21 61.6	28/7/2012 23:16 62.6	30/7/2012 0:26 59.0	31/7/2012 1:36 57.7	1/8/2012 2:46 58.1
26/8/2012 16:16 63.7	27/8/2012 21:26 62.8	28/7/2012 23:21 63.5	30/7/2012 0:31 59.8	31/7/2012 1:41 58.2	1/8/2012 2:51 57.5
26/8/2012 16:21 63.6	27/8/2012 21:31 61.7	28/7/2012 23:26 63.2	30/7/2012 0:36 59.4	31/7/2012 1:46 57.9	1/8/2012 2:56 57.3
26/8/2012 16:26 63.3	27/8/2012 21:36 61.9	28/7/2012 23:36 62.0	30/7/2012 0:41 59.4	31/7/2012 1:51 57.7	1/8/2012 3:01 56.6
26/8/2012 16:31 64.4	27/8/2012 21:41 61.1		30/7/2012 0:46 59.2	31/7/2012 1:56 57.8	1/8/2012 3:06 56.7
26/8/2012 16:36 64.2	27/8/2012 21:46 61.5	28/7/2012 23:41 62.3	30/7/2012 0:51 59.1	31/7/2012 2:01 58.0	1/8/2012 3:11 56.6
26/8/2012 16:41 65.1	27/8/2012 21:51 61.4	28/7/2012 23:46 61.5	30/7/2012 0:56 58.8	31/7/2012 2:06 57.8	1/8/2012 3:16 56.4
26/8/2012 16:46 65.0	27/8/2012 21:56 61.4	28/7/2012 23:51 61.6	30/7/2012 1:01 58.6	31/7/2012 2:11 57.6	1/8/2012 3:21 56.3
26/8/2012 16:51 64.6	27/8/2012 22:01 62.7	28/7/2012 23:56 61.2	30/7/2012 1:06 58.0	31/7/2012 2:16 56.6	1/8/2012 3:26 56.3
26/8/2012 16:56 64.4	27/8/2012 22:06 61.6	29/7/2012 0:01 61.7	30/7/2012 1:11 58.5	31/7/2012 2:21 58.3	1/8/2012 3:31 56.8
26/8/2012 17:01 68.1	27/8/2012 22:11 62.3	29/7/2012 0:06 61.6	30/7/2012 1:16 60.4	31/7/2012 2:26 57.6	1/8/2012 3:36 58.1
26/8/2012 17:06 65.0	27/8/2012 22:16 61.6	29/7/2012 0:11 61.7	30/7/2012 1:21 64.9	31/7/2012 2:31 56.8	1/8/2012 3:41 56.8
26/8/2012 17:11 64.4	27/8/2012 22:21 61.5	29/7/2012 0:16 61.4	30/7/2012 1:26 62.4	31/7/2012 2:36 56.6	1/8/2012 3:46 57.0
26/8/2012 17:16 64.4	27/8/2012 22:26 60.8	29/7/2012 0:21 60.7	30/7/2012 1:31 59.1	31/7/2012 2:41 57.3	1/8/2012 3:51 58.0
26/8/2012 17:21 64.7	27/8/2012 22:31 61.5	29/7/2012 0:26 61.4	30/7/2012 1:36 57.5	31/7/2012 2:46 57.0	1/8/2012 3:56 58.3
26/8/2012 17:26 65.8	27/8/2012 22:36 61.3	29/7/2012 0:31 60.8	30/7/2012 1:41 56.8	31/7/2012 2:51 57.3	1/8/2012 4:01 58.0
26/8/2012 17:31 63.3	27/8/2012 22:41 61.4	29/7/2012 0:36 62.2	30/7/2012 1:46 57.1	31/7/2012 2:56 56.1	1/8/2012 4:06 58.4
26/8/2012 17:36 63.0	27/8/2012 22:46 61.5	29/7/2012 0:41 60.5	30/7/2012 1:51 57.0	31/7/2012 3:01 55.8	1/8/2012 4:11 58.2
26/8/2012 17:41 64.0	27/8/2012 22:51 61.3	29/7/2012 0:46 60.3	30/7/2012 1:56 56.6	31/7/2012 3:06 57.4	1/8/2012 4:16 57.6
26/8/2012 17:46 63.4	27/8/2012 22:56 62.1	29/7/2012 0:51 60.7	30/7/2012 2:01 56.7	31/7/2012 3:11 56.9	1/8/2012 4:21 56.6
26/8/2012 17:51 62.5	Night time: 23:00-07:00	29/7/2012 0:56 59.7	30/7/2012 2:06 57.6	31/7/2012 3:16 57.6	1/8/2012 4:26 56.7
26/8/2012 17:56 64.9		29/7/2012 1:01 60.6	30/7/2012 2:11 56.8	31/7/2012 3:21 55.6	1/8/2012 4:31 56.7
26/8/2012 18:01 64.3	28/7/2012 0:01 62.2	29/7/2012 1:06 60.3	30/7/2012 2:16 56.7	31/7/2012 3:26 56.7	1/8/2012 4:36 57.3
26/8/2012 18:06 63.1		29/7/2012 1:11 60.7	30/7/2012 2:21 57.2	31/7/2012 3:31 56.8	1/8/2012 4:41 58.1
26/8/2012 18:11 63.4	28/7/2012 0:06 62.1	29/7/2012 1:16 60.2	30/7/2012 2:26 56.5	31/7/2012 3:36 56.1	1/8/2012 4:46 57.2
26/8/2012 18:16 64.5 26/8/2012 18:21 63.2	28/7/2012 0:16 62.2	29/7/2012 1:21 60.3 29/7/2012 1:26 59.7	30/7/2012 2:31 56.1 30/7/2012 2:36 55.8	31/7/2012 3:46 55.4	1/8/2012 4:51 56.7 1/8/2012 4:56 57.0
26/8/2012 18:26 62.6	28/7/2012 0:21 61.7	29/7/2012 1:31 60.0	30/7/2012 2:41 57.9	31/7/2012 3:51 55.8	1/8/2012 5:01 56.8
26/8/2012 18:31 63.4	28/7/2012 0:26 62.4	29/7/2012 1:36 59.5	30/7/2012 2:46 56.2	31/7/2012 3:56 56.1	1/8/2012 5:06 58.8
26/8/2012 18:36 53.7	28/7/2012 0:31 62.1	29/7/2012 1:41 60.2	30/7/2012 2:51 56.8	31/7/2012 4:01 56.4	1/8/2012 5:11 58.4
26/8/2012 18:41 61.6	28/7/2012 0:36 62.3	29/7/2012 1:46 59.7	30/7/2012 2:56 56.3	31/7/2012 4:06 56.2	1/8/2012 5:16 59.2
26/8/2012 18:46 62.1	28/7/2012 0:41 61.9	29/7/2012 1:51 59.7	30/7/2012 3:01 55.9	31/7/2012 4:11 56.6	1/8/2012 5:21 58.5
26/8/2012 18:51 62.5	28/7/2012 0:46 61.6	29/7/2012 1:56 59.4	30/7/2012 3:06 56.2	31/7/2012 4:16 57.2	1/8/2012 5:26 58.1
26/8/2012 18:56 62.0	28/7/2012 0:51 60.8	29/7/2012 2:01 59.4	30/7/2012 3:11 55.5	31/7/2012 4:21 56.4	1/8/2012 5:31 58.6
26/8/2012 19:01 65.2	28/7/2012 0:56 61.0	29/7/2012 2:06 59.3	30/7/2012 3:16 55.9	31/7/2012 4:26 55.9	1/8/2012 5:36 61.3
26/8/2012 19:06 61.5	28/7/2012 1:01 61.4	29/7/2012 2:11 59.5	30/7/2012 3:21 56.1	31/7/2012 4:31 56.5	1/8/2012 5:41 59.1
26/8/2012 19:11 62.9	28/7/2012 1:06 61.7	29/7/2012 2:16 59.0	30/7/2012 3:26 54.4	31/7/2012 4:36 56.2	1/8/2012 5:46 59.2
26/8/2012 19:16 62.0	28/7/2012 1:11 60.9	29/7/2012 2:21 59.1	30/7/2012 3:31 55.6	31/7/2012 4:41 55.8	1/8/2012 5:51 58.8
26/8/2012 19:21 62.5	28/7/2012 1:16 60.4	29/7/2012 2:26 58.8	30/7/2012 3:36 56.1	31/7/2012 4:46 56.5	1/8/2012 5:56 59.3
26/8/2012 19:26 62.2	28/7/2012 1:21 61.2	29/7/2012 2:31 60.1	30/7/2012 3:41 55.1	31/7/2012 4:51 56.8	1/8/2012 6:01 59.3
26/8/2012 19:31 62.0	28/7/2012 1:26 60.7	29/7/2012 2:36 59.0	30/7/2012 3:46 55.6	31/7/2012 4:56 56.6	1/8/2012 6:06 59.9
26/8/2012 19:36 62.1	28/7/2012 1:31 61.0	29/7/2012 2:41 58.8	30/7/2012 3:51 56.5	31/7/2012 5:01 56.6	1/8/2012 6:11 60.0
26/8/2012 19:41 62.1	28/7/2012 1:36 61.0	29/7/2012 2:46 59.1	30/7/2012 3:56 55.3	31/7/2012 5:06 56.0	1/8/2012 6:16 60.8
26/8/2012 19:46 61.8	28/7/2012 1:41 60.3	29/7/2012 2:51 58.8	30/7/2012 4:01 55.5	31/7/2012 5:11 57.8	1/8/2012 6:21 61.1
26/8/2012 19:51 62.3	28/7/2012 1:46 60.6	29/7/2012 2:56 58.7	30/7/2012 4:06 55.6	31/7/2012 5:16 57.0	1/8/2012 6:26 60.5
26/8/2012 19:56 61.8	28/7/2012 1:51 60.8	29/7/2012 3:01 58.4	30/7/2012 4:11 55.4	31/7/2012 5:21 58.0	1/8/2012 6:31 61.3
26/8/2012 20:01 61.5	28/7/2012 1:56 59.9	29/7/2012 3:06 58.5	30/7/2012 4:16 55.7	31/7/2012 5:26 59.2	1/8/2012 6:36 62.2
26/8/2012 20:06 62.2	28/7/2012 2:01 60.4	29/7/2012 3:11 57.9	30/7/2012 4:21 54.9	31/7/2012 5:31 59.2	1/8/2012 6:41 62.1
26/8/2012 20:11 61.0	28/7/2012 2:06 60.3	29/7/2012 3:16 58.8	30/7/2012 4:26 55.5	31/7/2012 5:36 59.6	1/8/2012 6:46 62.7
26/8/2012 20:16 61.2	28/7/2012 2:11 60.1	29/7/2012 3:21 58.4	30/7/2012 4:31 55.0	31/7/2012 5:41 58.8	1/8/2012 6:51 63.1
26/8/2012 20:21 61.9	28/7/2012 2:16 59.8	29/7/2012 3:26 58.2	30/7/2012 4:36 56.0	31/7/2012 5:46 58.7	1/8/2012 6:56 62.8
26/8/2012 20:26 61.5	28/7/2012 2:21 59.5	29/7/2012 3:31 58.2	30/7/2012 4:41 55.1	31/7/2012 5:51 59.3	1/8/2012 23:01 61.2
26/8/2012 20:31 62.2	28/7/2012 2:26 60.0	29/7/2012 3:36 58.3	30/7/2012 4:46 57.8	31/7/2012 5:56 58.4	1/8/2012 23:06 61.5
26/8/2012 20:36 62.4	28/7/2012 2:31 59.6	29/7/2012 3:41 57.9	30/7/2012 4:51 57.3	31/7/2012 6:01 58.7	1/8/2012 23:11 61.7
26/8/2012 20:41 62.2	28/7/2012 2:36 59.8	29/7/2012 3:46 58.5	30/7/2012 4:56 55.8	31/7/2012 6:06 59.3	1/8/2012 23:16 61.7
26/8/2012 20:46 61.3	28/7/2012 2:41 59.8	29/7/2012 3:51 59.0	30/7/2012 5:01 56.0	31/7/2012 6:11 58.9	1/8/2012 23:21 61.9
26/8/2012 20:51 61.9	28/7/2012 2:46 60.3	29/7/2012 3:56 58.2	30/7/2012 5:06 56.0	31/7/2012 6:16 60.2	1/8/2012 23:26 60.9
26/8/2012 20:56 62.5	28/7/2012 2:51 59.8	29/7/2012 4:01 57.5	30/7/2012 5:11 56.0	31/7/2012 6:21 59.8	1/8/2012 23:31 61.1
26/8/2012 21:01 61.2	28/7/2012 2:56 59.3	29/7/2012 4:06 58.6	30/7/2012 5:16 56.8	31/7/2012 6:26 60.1	1/8/2012 23:36 61.3
26/8/2012 21:06 61.5	28/7/2012 3:01 58.7	29/7/2012 4:11 59.0	30/7/2012 5:21 59.3	31/7/2012 6:31 60.4	1/8/2012 23:41 60.6
26/8/2012 21:11 61.4	28/7/2012 3:06 59.7	29/7/2012 4:16 58.0	30/7/2012 5:26 57.0	31/7/2012 6:36 61.5	1/8/2012 23:46 60.3
26/8/2012 21:16 61.4	28/7/2012 3:11 59.4	29/7/2012 4:21 58.1	30/7/2012 5:31 57.4	31/7/2012 6:41 61.3	1/8/2012 23:51 60.7
26/8/2012 21:21 61.7	28/7/2012 3:16 60.0	29/7/2012 4:26 58.0	30/7/2012 5:36 58.0	31/7/2012 6:46 61.5	1/8/2012 23:56 60.8
26/8/2012 21:26 61.2	28/7/2012 3:21 59.4	29/7/2012 4:31 58.3	30/7/2012 5:41 58.1	31/7/2012 6:51 62.7	2/8/2012 0:01 60.7
26/8/2012 21:31 61.5	28/7/2012 3:26 59.1	29/7/2012 4:36 58.2	30/7/2012 5:46 58.2	31/7/2012 6:56 63.1	2/8/2012 0:06 60.0
26/8/2012 21:36 61.7	28/7/2012 3:31 59.1	29/7/2012 4:41 57.9	30/7/2012 5:51 58.4	31/7/2012 23:01 62.7	2/8/2012 0:11 59.7
26/8/2012 21:41 61.3	28/7/2012 3:36 59.6	29/7/2012 4:46 58.1	30/7/2012 5:56 58.3	31/7/2012 23:06 63.9	2/8/2012 0:16 60.5
26/8/2012 21:46 62.6	28/7/2012 3:41 58.7	29/7/2012 4:51 58.1	30/7/2012 6:01 58.3	31/7/2012 23:11 62.9	2/8/2012 0:21 60.3
26/8/2012 21:51 61.3	28/7/2012 3:46 58.7	29/7/2012 4:56 58.9	30/7/2012 6:06 58.8	31/7/2012 23:16 62.2	2/8/2012 0:26 60.1
26/8/2012 21:56 62.4	28/7/2012 3:51 59.4	29/7/2012 5:01 58.4	30/7/2012 6:11 59.6	31/7/2012 23:21 62.1	2/8/2012 0:31 60.3
26/8/2012 22:01 61.8	28/7/2012 3:56 59.0	29/7/2012 5:06 58.1	30/7/2012 6:16 60.4	31/7/2012 23:26 61.8	2/8/2012 0:36 59.5
26/8/2012 22:06 61.3	28/7/2012 4:01 58.6	29/7/2012 5:11 57.4	30/7/2012 6:21 60.1	31/7/2012 23:31 62.6	2/8/2012 0:41 59.9
26/8/2012 22:11 61.7	28/7/2012 4:06 59.4	29/7/2012 5:16 59.1	30/7/2012 6:26 60.7	31/7/2012 23:36 61.6	2/8/2012 0:46 59.0
26/8/2012 22:16 61.1	28/7/2012 4:11 59.5	29/7/2012 5:21 59.4	30/7/2012 6:31 60.6	31/7/2012 23:41 61.8	2/8/2012 0:51 59.2
26/8/2012 22:21 61.0	28/7/2012 4:16 58.7	29/7/2012 5:26 58.4	30/7/2012 6:36 61.0	31/7/2012 23:46 61.0	2/8/2012 0:56 59.4
26/8/2012 22:26 61.3	28/7/2012 4:21 59.5	29/7/2012 5:31 59.1	30/7/2012 6:41 61.6	31/7/2012 23:51 61.5	2/8/2012 1:01 59.1
26/8/2012 22:31 62.0	28/7/2012 4:26 59.1	29/7/2012 5:36 59.7	30/7/2012 6:46 61.6	31/7/2012 23:56 61.7	2/8/2012 1:06 59.3

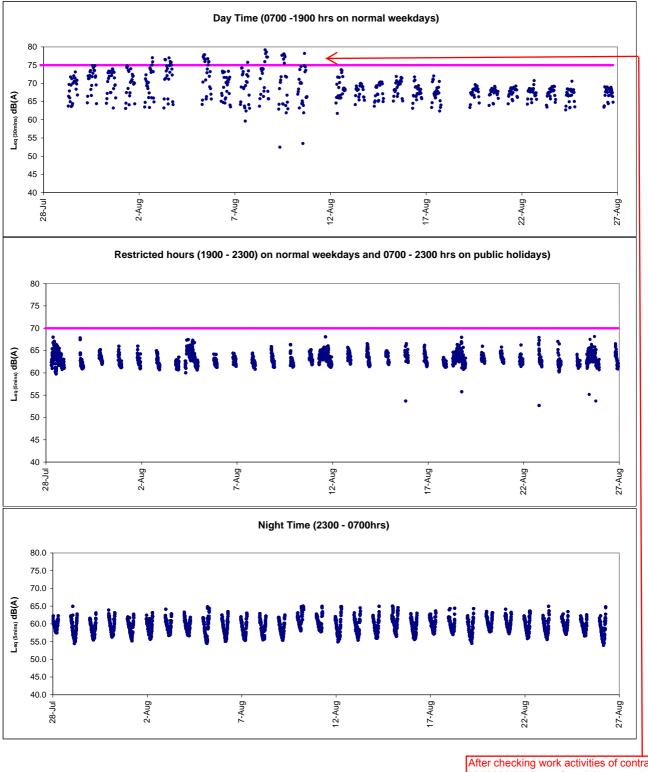
2/8/2012 1:11 2/8/2012 1:16	<u>Data R</u> 59.5 58.9	3/8/2012 2:21 3/8/2012 2:26	<u>munity Liaiso</u> 59.2 59.9	4/8/2012 3:31 4/8/2012 3:36	57.8 57.5	5/8/2012 4:41 5/8/2012 4:46	57.2 57.5	6/8/2012 5:51 6/8/2012 5:56	60.8 60.2	7/8/2012 23:01 7/8/2012 23:06	61.8 61.9
2/8/2012 1:21	59.5	3/8/2012 2:31	60.9	4/8/2012 3:41	57.8	5/8/2012 4:51	58.1	6/8/2012 6:01	61.2	7/8/2012 23:11	61.4
2/8/2012 1:26 2/8/2012 1:31	59.0 58.7	3/8/2012 2:36 3/8/2012 2:41	61.1	4/8/2012 3:46 4/8/2012 3:51	57.4	5/8/2012 4:56 5/8/2012 5:01	57.2 57.8	6/8/2012 6:06 6/8/2012 6:11	60.0 61.7	7/8/2012 23:16	
2/8/2012 1:36	60.1	3/8/2012 2:46	61.4 60.2	4/8/2012 3:56	57.6 57.4	5/8/2012 5:06	57.0	6/8/2012 6:16	61.2	7/8/2012 23:21 7/8/2012 23:26	61.9 61.0
2/8/2012 1:41	61.7	3/8/2012 2:51	58.2	4/8/2012 4:01	56.9	5/8/2012 5:11	57.4	6/8/2012 6:21	62.0	7/8/2012 23:31	60.8
2/8/2012 1:46 2/8/2012 1:51	60.0 58.5	3/8/2012 2:56 3/8/2012 3:01	58.4 58.6	4/8/2012 4:06 4/8/2012 4:11	57.4 57.7	5/8/2012 5:16 5/8/2012 5:21	57.7 56.6	6/8/2012 6:26 6/8/2012 6:31	61.4 61.4	7/8/2012 23:36 7/8/2012 23:41	60.6 60.7
2/8/2012 1:56	58.0	3/8/2012 3:06	59.2	4/8/2012 4:16	57.2	5/8/2012 5:26	57.5	6/8/2012 6:36	62.1	7/8/2012 23:46	61.1
2/8/2012 2:01 2/8/2012 2:06	57.7 58.2	3/8/2012 3:11 3/8/2012 3:16	57.5 57.2	4/8/2012 4:21 4/8/2012 4:26	57.3 56.8	5/8/2012 5:31 5/8/2012 5:36	60.3 60.5	6/8/2012 6:41 6/8/2012 6:46	63.5 63.3	7/8/2012 23:51 7/8/2012 23:56	61.0 60.8
2/8/2012 2:11	57.7	3/8/2012 3:21	57.0	4/8/2012 4:31	56.8	5/8/2012 5:41	58.4	6/8/2012 6:51	63.8	8/8/2012 0:01	60.1
2/8/2012 2:16 2/8/2012 2:21	57.8 57.4	3/8/2012 3:26 3/8/2012 3:31	56.0 55.8	4/8/2012 4:36 4/8/2012 4:41	57.1 57.4	5/8/2012 5:46 5/8/2012 5:51	59.8 58.1	6/8/2012 6:56 6/8/2012 23:01	64.4 62.5	8/8/2012 0:06 8/8/2012 0:11	60.6 60.1
2/8/2012 2:26	57.6	3/8/2012 3:36	56.0	4/8/2012 4:46	57.4	5/8/2012 5:56	58.6	6/8/2012 23:06	61.6	8/8/2012 0:16	60.5
2/8/2012 2:31	57.6	3/8/2012 3:41	56.1	4/8/2012 4:51	57.2	5/8/2012 6:01	58.8	6/8/2012 23:11	61.1	8/8/2012 0:21	60.3
2/8/2012 2:36 2/8/2012 2:41	57.4 57.1	3/8/2012 3:46 3/8/2012 3:51	56.7 56.6	4/8/2012 4:56 4/8/2012 5:01	57.2 56.9	5/8/2012 6:06 5/8/2012 6:11	59.0 59.8	6/8/2012 23:16 6/8/2012 23:21	61.6 61.8	8/8/2012 0:26 8/8/2012 0:31	60.4 59.9
2/8/2012 2:46	57.7	3/8/2012 3:56	55.6	4/8/2012 5:06	57.2	5/8/2012 6:16	60.8	6/8/2012 23:26	61.1	8/8/2012 0:36	59.1
2/8/2012 2:51 2/8/2012 2:56	58.5 56.8	3/8/2012 4:01 3/8/2012 4:06	55.8 56.7	4/8/2012 5:11 4/8/2012 5:16	56.9 58.1	5/8/2012 6:21 5/8/2012 6:26	60.9 60.1	6/8/2012 23:31 6/8/2012 23:36	61.9 61.1	8/8/2012 0:41 8/8/2012 0:46	59.4 59.6
2/8/2012 3:01	57.1	3/8/2012 4:11	57.1	4/8/2012 5:21	57.5	5/8/2012 6:31	61.2	6/8/2012 23:41	60.6	8/8/2012 0:51	59.3
2/8/2012 3:06 2/8/2012 3:11	57.2 56.4	3/8/2012 4:16 3/8/2012 4:21	56.9 56.5	4/8/2012 5:26 4/8/2012 5:31	57.6 58.0	5/8/2012 6:36 5/8/2012 6:41	60.6 60.2	6/8/2012 23:46 6/8/2012 23:51	60.6 60.8	8/8/2012 0:56 8/8/2012 1:01	58.6 58.2
2/8/2012 3:16	57.3	3/8/2012 4:26	55.9	4/8/2012 5:36	59.0	5/8/2012 6:46	61.2	6/8/2012 23:56	60.6	8/8/2012 1:06	58.6
2/8/2012 3:21 2/8/2012 3:26	56.2 56.4	3/8/2012 4:31 3/8/2012 4:36	56.5 57.1	4/8/2012 5:41 4/8/2012 5:46	58.3 60.9	5/8/2012 6:51 5/8/2012 6:56	61.8 60.7	7/8/2012 0:01 7/8/2012 0:06	60.5 60.1	8/8/2012 1:11 8/8/2012 1:16	59.1 58.8
2/8/2012 3:31	59.9	3/8/2012 4:41	56.1	4/8/2012 5:51	60.1	5/8/2012 23:01	61.8	7/8/2012 0:11	59.7	8/8/2012 1:21	58.6
2/8/2012 3:36 2/8/2012 3:41	57.8 56.9	3/8/2012 4:46 3/8/2012 4:51	55.9 56.7	4/8/2012 5:56 4/8/2012 6:01	59.0 59.3	5/8/2012 23:06 5/8/2012 23:11	61.3 61.7	7/8/2012 0:16 7/8/2012 0:21	59.6 60.3	8/8/2012 1:26 8/8/2012 1:31	58.5 58.0
2/8/2012 3:46	56.0	3/8/2012 4:56	57.6	4/8/2012 6:06	58.9	5/8/2012 23:16	61.3	7/8/2012 0:26	60.8	8/8/2012 1:36	58.0
2/8/2012 3:51 2/8/2012 3:56	56.1 57.2	3/8/2012 5:01 3/8/2012 5:06	57.1 58.2	4/8/2012 6:11 4/8/2012 6:16	59.4 60.3	5/8/2012 23:21 5/8/2012 23:26	61.0 61.3	7/8/2012 0:31 7/8/2012 0:36	59.7 59.0	8/8/2012 1:41 8/8/2012 1:46	58.0 58.3
2/8/2012 3:56 2/8/2012 4:01	56.7	3/8/2012 5:11	58.3	4/8/2012 6:21	60.5	5/8/2012 23:31	60.6	7/8/2012 0:41	59.7	8/8/2012 1:51	58.3
2/8/2012 4:06	56.6	3/8/2012 5:16	57.2	4/8/2012 6:26	60.3	5/8/2012 23:36	61.1 61.3	7/8/2012 0:46	59.7	8/8/2012 1:56 8/8/2012 2:01	56.8
2/8/2012 4:11 2/8/2012 4:16	55.6 56.3	3/8/2012 5:21 3/8/2012 5:26	56.4 56.4	4/8/2012 6:31 4/8/2012 6:36	62.4 60.9	5/8/2012 23:41 5/8/2012 23:46	61.3 60.7	7/8/2012 0:51 7/8/2012 0:56	59.3 59.4	8/8/2012 2:01 8/8/2012 2:06	57.5 57.0
2/8/2012 4:21	56.5	3/8/2012 5:31	59.1	4/8/2012 6:41	60.9	5/8/2012 23:51	60.3	7/8/2012 1:01	58.7	8/8/2012 2:11	57.6
2/8/2012 4:26 2/8/2012 4:31	56.6 55.9	3/8/2012 5:36 3/8/2012 5:41	59.9 59.2	4/8/2012 6:46 4/8/2012 6:51	62.1 62.8	5/8/2012 23:56 6/8/2012 0:01	60.5 60.4	7/8/2012 1:06 7/8/2012 1:11	58.7 58.4	8/8/2012 2:16 8/8/2012 2:21	58.4 56.8
2/8/2012 4:36	55.9	3/8/2012 5:46	60.6	4/8/2012 6:56	62.8	6/8/2012 0:06	60.4	7/8/2012 1:16	58.9	8/8/2012 2:26	56.7
2/8/2012 4:41 2/8/2012 4:46	55.2 55.6	3/8/2012 5:51 3/8/2012 5:56	59.2 57.9	4/8/2012 23:01 4/8/2012 23:06	62.8 63.1	6/8/2012 0:11 6/8/2012 0:16	60.5 60.2	7/8/2012 1:21 7/8/2012 1:26	58.4 58.3	8/8/2012 2:31 8/8/2012 2:36	57.7 57.9
2/8/2012 4:51	56.2	3/8/2012 6:01	58.7	4/8/2012 23:11	63.3	6/8/2012 0:21	59.8	7/8/2012 1:31	57.9	8/8/2012 2:41	56.3
2/8/2012 4:56 2/8/2012 5:01	56.9 57.2	3/8/2012 6:06 3/8/2012 6:11	59.8 59.7	4/8/2012 23:16 4/8/2012 23:21	62.2 62.6	6/8/2012 0:26 6/8/2012 0:31	60.0 59.8	7/8/2012 1:36 7/8/2012 1:41	58.3 58.2	8/8/2012 2:46 8/8/2012 2:51	56.5 57.0
2/8/2012 5:06	57.2	3/8/2012 6:16	59.8	4/8/2012 23:26	60.8	6/8/2012 0:36	60.4	7/8/2012 1:46	57.7	8/8/2012 2:56	58.5
2/8/2012 5:11 2/8/2012 5:16	57.2 57.1	3/8/2012 6:21 3/8/2012 6:26	60.9 61.8	4/8/2012 23:31 4/8/2012 23:36	61.6 60.9	6/8/2012 0:41 6/8/2012 0:46	58.9 59.0	7/8/2012 1:51 7/8/2012 1:56	57.7 58.2	8/8/2012 3:01 8/8/2012 3:06	57.2 55.7
2/8/2012 5:21	57.0	3/8/2012 6:31	60.8	4/8/2012 23:41	60.6	6/8/2012 0:51	58.5	7/8/2012 2:01	57.7	8/8/2012 3:11	55.6
2/8/2012 5:26 2/8/2012 5:31	57.4 57.4	3/8/2012 6:36 3/8/2012 6:41	62.2 61.7	4/8/2012 23:46 4/8/2012 23:51	61.1 60.6	6/8/2012 0:56 6/8/2012 1:01	58.9 58.0	7/8/2012 2:06 7/8/2012 2:11	57.2 57.9	8/8/2012 3:16 8/8/2012 3:21	56.6 55.9
2/8/2012 5:36	57.7	3/8/2012 6:46	63.0	4/8/2012 23:56	61.8	6/8/2012 1:06	58.4	7/8/2012 2:16	57.9	8/8/2012 3:26	56.1
2/8/2012 5:41 2/8/2012 5:46	59.1 60.0	3/8/2012 6:51 3/8/2012 6:56	63.1 62.1	5/8/2012 0:01 5/8/2012 0:06	62.1 60.8	6/8/2012 1:11 6/8/2012 1:16	57.9 57.4	7/8/2012 2:21 7/8/2012 2:26	57.7 57.5	8/8/2012 3:31 8/8/2012 3:36	55.9 56.3
2/8/2012 5:51	59.5	3/8/2012 23:01	61.6	5/8/2012 0:11	61.3	6/8/2012 1:21	58.5	7/8/2012 2:31	57.1	8/8/2012 3:41	56.3
2/8/2012 5:56 2/8/2012 6:01	59.2 59.1	3/8/2012 23:06 3/8/2012 23:11	62.2 62.3	5/8/2012 0:16 5/8/2012 0:21	61.2 60.4	6/8/2012 1:26 6/8/2012 1:31	58.1 58.4	7/8/2012 2:36 7/8/2012 2:41	56.8 56.8	8/8/2012 3:46 8/8/2012 3:51	56.3 56.1
2/8/2012 6:06	59.1 59.6	3/8/2012 23:16	61.8	5/8/2012 0:26	60.4 61.0	6/8/2012 1:36	57.6	7/8/2012 2:46	57.0	8/8/2012 3:56	55.7
2/8/2012 6:11	59.5	3/8/2012 23:21	61.6	5/8/2012 0:31	60.7	6/8/2012 1:41	57.2	7/8/2012 2:51	56.6	8/8/2012 4:01	56.1
2/8/2012 6:16 2/8/2012 6:21	60.7 60.8	3/8/2012 23:26 3/8/2012 23:31	60.6 60.8	5/8/2012 0:36 5/8/2012 0:41	60.2 60.2	6/8/2012 1:46 6/8/2012 1:51	57.2 57.3	7/8/2012 2:56 7/8/2012 3:01	56.0 55.9	8/8/2012 4:06 8/8/2012 4:11	56.3 56.4
2/8/2012 6:26	60.6	3/8/2012 23:36	64.1	5/8/2012 0:46	59.5	6/8/2012 1:56	56.3	7/8/2012 3:06	56.0	8/8/2012 4:16	55.7
2/8/2012 6:31 2/8/2012 6:36	60.5 60.1	3/8/2012 23:41 3/8/2012 23:46	60.5 60.6	5/8/2012 0:51 5/8/2012 0:56	59.7 59.5	6/8/2012 2:01 6/8/2012 2:06	56.2 56.7	7/8/2012 3:11 7/8/2012 3:16	55.6 55.1	8/8/2012 4:21 8/8/2012 4:26	56.2 55.7
2/8/2012 6:41	62.3	3/8/2012 23:51	60.5	5/8/2012 1:01	59.2	6/8/2012 2:11	56.7	7/8/2012 3:21	56.5	8/8/2012 4:31	55.8
2/8/2012 6:46 2/8/2012 6:51	62.7 61.9	3/8/2012 23:56 4/8/2012 0:01	61.5 61.0	5/8/2012 1:06 5/8/2012 1:11	59.3 58.8	6/8/2012 2:16 6/8/2012 2:21	56.7 56.4	7/8/2012 3:26 7/8/2012 3:31	56.5 57.7	8/8/2012 4:36 8/8/2012 4:41	55.3 56.2
2/8/2012 6:56	61.6	4/8/2012 0:06	60.5	5/8/2012 1:16	59.9	6/8/2012 2:26	56.3	7/8/2012 3:36	55.9	8/8/2012 4:46	56.4
2/8/2012 23:01 2/8/2012 23:06	61.4 61.3	4/8/2012 0:11 4/8/2012 0:16	60.2 60.3	5/8/2012 1:21 5/8/2012 1:26	59.0 59.0	6/8/2012 2:31 6/8/2012 2:36	56.9 56.1	7/8/2012 3:41 7/8/2012 3:46	56.3 55.7	8/8/2012 4:51 8/8/2012 4:56	56.2 57.0
2/8/2012 23:11	62.5	4/8/2012 0:21	59.9	5/8/2012 1:31	58.5	6/8/2012 2:41	55.4	7/8/2012 3:51	55.9	8/8/2012 5:01	55.7
2/8/2012 23:16 2/8/2012 23:21	61.5 61.2	4/8/2012 0:26 4/8/2012 0:31	60.6 60.3	5/8/2012 1:36 5/8/2012 1:41	59.0 58.7	6/8/2012 2:46 6/8/2012 2:51	56.3 55.8	7/8/2012 3:56 7/8/2012 4:01	55.1 55.7	8/8/2012 5:06 8/8/2012 5:11	56.8 57.3
2/8/2012 23:26	60.7	4/8/2012 0:36	60.9	5/8/2012 1:46	58.4	6/8/2012 2:56	55.2	7/8/2012 4:06	56.7	8/8/2012 5:16	57.0
2/8/2012 23:31 2/8/2012 23:36	61.3 60.4	4/8/2012 0:41 4/8/2012 0:46	60.7 60.3	5/8/2012 1:51 5/8/2012 1:56	59.5 58.5	6/8/2012 3:01 6/8/2012 3:06	54.8 56.0	7/8/2012 4:11 7/8/2012 4:16	56.0 56.3	8/8/2012 5:21 8/8/2012 5:26	56.6 57.6
2/8/2012 23:41	60.8	4/8/2012 0:51	60.1	5/8/2012 2:01	58.5	6/8/2012 3:11	55.2	7/8/2012 4:21	56.6	8/8/2012 5:31	57.6
2/8/2012 23:46	60.0 61.1	4/8/2012 0:56	59.6 61.0	5/8/2012 2:06	58.3	6/8/2012 3:16 6/8/2012 3:21	55.1 54.7	7/8/2012 4:26	56.3	8/8/2012 5:36 8/8/2012 5:41	58.7
2/8/2012 23:51 2/8/2012 23:56	61.1 60.2	4/8/2012 1:01 4/8/2012 1:06	61.0 60.2	5/8/2012 2:11 5/8/2012 2:16	58.5 58.4	6/8/2012 3:21 6/8/2012 3:26	54.7 54.6	7/8/2012 4:31 7/8/2012 4:36	55.8 56.6	8/8/2012 5:41 8/8/2012 5:46	59.9 60.2
3/8/2012 0:01	60.5	4/8/2012 1:11	59.3	5/8/2012 2:21	58.2	6/8/2012 3:31	56.0	7/8/2012 4:41	55.5	8/8/2012 5:51	61.4
3/8/2012 0:06 3/8/2012 0:11	60.3 60.2	4/8/2012 1:16 4/8/2012 1:21	60.8 59.7	5/8/2012 2:26 5/8/2012 2:31	57.9 57.7	6/8/2012 3:36 6/8/2012 3:41	55.9 56.1	7/8/2012 4:46 7/8/2012 4:51	56.1 56.9	8/8/2012 5:56 8/8/2012 6:01	58.8 61.4
3/8/2012 0:16	60.8	4/8/2012 1:26	59.2	5/8/2012 2:36	58.3	6/8/2012 3:46	55.2	7/8/2012 4:56	55.9	8/8/2012 6:06	60.4
3/8/2012 0:21 3/8/2012 0:26	59.8 59.8	4/8/2012 1:31 4/8/2012 1:36	59.1 59.5	5/8/2012 2:41 5/8/2012 2:46	58.5 59.8	6/8/2012 3:51 6/8/2012 3:56	55.4 55.7	7/8/2012 5:01 7/8/2012 5:06	58.1 57.1	8/8/2012 6:11 8/8/2012 6:16	59.5 59.9
3/8/2012 0:31	60.4	4/8/2012 1:41	59.2	5/8/2012 2:51	57.8	6/8/2012 4:01	54.5	7/8/2012 5:11	57.5	8/8/2012 6:21	61.4
3/8/2012 0:36 3/8/2012 0:41	60.0 59.6	4/8/2012 1:46 4/8/2012 1:51	58.3 59.3	5/8/2012 2:56 5/8/2012 3:01	58.3 58.2	6/8/2012 4:06 6/8/2012 4:11	55.2 55.2	7/8/2012 5:16 7/8/2012 5:21	57.6 57.2	8/8/2012 6:26 8/8/2012 6:31	60.4 63.0
3/8/2012 0:46	59.8	4/8/2012 1:56	58.9	5/8/2012 3:06	57.5	6/8/2012 4:16	56.4	7/8/2012 5:26	57.9	8/8/2012 6:36	62.0
3/8/2012 0:51 3/8/2012 0:56	59.3 59.3	4/8/2012 2:01 4/8/2012 2:06	58.5 58.6	5/8/2012 3:11 5/8/2012 3:16	57.8 57.6	6/8/2012 4:21 6/8/2012 4:26	54.9 55.2	7/8/2012 5:31 7/8/2012 5:36	57.6 60.8	8/8/2012 6:41 8/8/2012 6:46	62.3 62.9
3/8/2012 0:56 3/8/2012 1:01	58.7	4/8/2012 2:06	58.6 58.7	5/8/2012 3:21	56.8	6/8/2012 4:31	55.6	7/8/2012 5:41	58.5	8/8/2012 6:46	62.2
3/8/2012 1:06	58.4	4/8/2012 2:16	58.3	5/8/2012 3:26	57.2	6/8/2012 4:36	55.1	7/8/2012 5:46	58.5	8/8/2012 6:56	62.8
3/8/2012 1:11 3/8/2012 1:16	58.5 59.1	4/8/2012 2:21 4/8/2012 2:26	59.4 58.7	5/8/2012 3:31 5/8/2012 3:36	57.8 58.1	6/8/2012 4:41 6/8/2012 4:46	61.6 64.8	7/8/2012 5:51 7/8/2012 5:56	59.1 59.0	8/8/2012 23:01 8/8/2012 23:06	61.8 62.9
3/8/2012 1:21	58.9	4/8/2012 2:31	58.4	5/8/2012 3:41	58.2	6/8/2012 4:51	64.4	7/8/2012 6:01	59.6	8/8/2012 23:11	62.4
3/8/2012 1:26 3/8/2012 1:31	58.8 57.9	4/8/2012 2:36 4/8/2012 2:41	59.1 58.5	5/8/2012 3:46 5/8/2012 3:51	59.3 58.1	6/8/2012 4:56 6/8/2012 5:01	60.8 60.8	7/8/2012 6:06 7/8/2012 6:11	60.0 61.4	8/8/2012 23:16 8/8/2012 23:21	61.9 61.5
3/8/2012 1:36	57.8	4/8/2012 2:46	58.0	5/8/2012 3:56	57.8	6/8/2012 5:06	60.0	7/8/2012 6:16	60.4	8/8/2012 23:26	60.3
3/8/2012 1:41 3/8/2012 1:46	58.8 58.8	4/8/2012 2:51 4/8/2012 2:56	58.5 57.9	5/8/2012 4:01 5/8/2012 4:06	56.8 57.3	6/8/2012 5:11 6/8/2012 5:16	59.8 59.1	7/8/2012 6:21 7/8/2012 6:26	60.2 60.4	8/8/2012 23:31 8/8/2012 23:36	60.7 60.9
3/8/2012 1:51	56.9	4/8/2012 3:01	57.4	5/8/2012 4:11	57.6	6/8/2012 5:21	58.8	7/8/2012 6:31	60.7	8/8/2012 23:41	60.9
3/8/2012 1:56	58.6 57.9	4/8/2012 3:06 4/8/2012 3:11	57.7 58.0	5/8/2012 4:16 5/8/2012 4:21	57.6 57.9	6/8/2012 5:26 6/8/2012 5:31	58.6 59.0	7/8/2012 6:36 7/8/2012 6:41	62.1 63.1	8/8/2012 23:46 8/8/2012 23:51	60.4 60.6
		., .,									
3/8/2012 2:01 3/8/2012 2:06 3/8/2012 2:11	57.9 57.2	4/8/2012 3:16 4/8/2012 3:21	57.4 56.7	5/8/2012 4:26 5/8/2012 4:31	57.0 57.5	6/8/2012 5:36 6/8/2012 5:41	59.1 62.1	7/8/2012 6:46 7/8/2012 6:51	63.4 63.3	8/8/2012 23:56 9/8/2012 0:01	60.8 60.5


9/8/2012 0:11 9/8/2012 0:16	Data 60.4 60.1	RTN2 (Oil Street Community Liaiso 10/8/2012 1:21 58.6 10/8/2012 1:26 58.1	11/8/2012 2:31 58.8 11/8/2012 2:36 58.8	12/8/2012 3:41 58.3 12/8/2012 3:46 58.8	13/8/2012 4:51 56.7 13/8/2012 4:56 56.6	14/8/2012 6:01 61.3 14/8/2012 6:06 61.2
9/8/2012 0:21	60.5	10/8/2012 1:31 57.8	11/8/2012 2:41 58.9	12/8/2012 3:51 58.1	13/8/2012 5:01 56.4	14/8/2012 6:11 60.7
9/8/2012 0:26 9/8/2012 0:31	60.1 60.2	10/8/2012 1:36 58.5 10/8/2012 1:41 58.9	11/8/2012 2:46 58.5 11/8/2012 2:51 58.6	12/8/2012 3:56 58.3 12/8/2012 4:01 58.5	13/8/2012 5:06 56.8 13/8/2012 5:11 57.6	14/8/2012 6:16 60.7 14/8/2012 6:21 61.2
9/8/2012 0:36	60.3	10/8/2012 1:46 57.7	11/8/2012 2:56 59.9	12/8/2012 4:06 58.5	13/8/2012 5:16 57.7	14/8/2012 6:26 60.8
9/8/2012 0:41 9/8/2012 0:46	59.7 60.5	10/8/2012 1:51 57.3 10/8/2012 1:56 57.1	11/8/2012 3:01 58.7 11/8/2012 3:06 58.5	12/8/2012 4:11 58.2 12/8/2012 4:16 58.8	13/8/2012 5:21 59.0 13/8/2012 5:26 58.6	14/8/2012 6:31 61.1 14/8/2012 6:36 62.4
9/8/2012 0:40	58.6	10/8/2012 2:01 58.0	11/8/2012 3:11 58.2	12/8/2012 4:10 58.8	13/8/2012 5:31 59.0	14/8/2012 6:41 62.7
9/8/2012 0:56	58.8	10/8/2012 2:06 58.3	11/8/2012 3:16 58.7	12/8/2012 4:26 58.7	13/8/2012 5:36 59.6	14/8/2012 6:46 62.9
9/8/2012 1:01 9/8/2012 1:06	58.1 58.4	10/8/2012 2:11 57.7 10/8/2012 2:16 57.2	11/8/2012 3:21 58.0 11/8/2012 3:26 58.2	12/8/2012 4:31 57.9 12/8/2012 4:36 58.6	13/8/2012 5:41 59.0 13/8/2012 5:46 59.6	14/8/2012 6:51 64.5 14/8/2012 6:56 63.6
9/8/2012 1:11	58.6	10/8/2012 2:21 57.2	11/8/2012 3:31 58.6	12/8/2012 4:41 57.8	13/8/2012 5:51 60.6	14/8/2012 23:01 62.3
9/8/2012 1:16 9/8/2012 1:21	58.7 59.0	10/8/2012 2:26 57.3 10/8/2012 2:31 56.8	11/8/2012 3:36 58.5 11/8/2012 3:41 58.3	12/8/2012 4:46 58.1 12/8/2012 4:51 59.0	13/8/2012 5:56 59.6 13/8/2012 6:01 61.2	14/8/2012 23:06 62.2 14/8/2012 23:11 61.9
9/8/2012 1:26	58.5	10/8/2012 2:36 57.1	11/8/2012 3:46 60.1	12/8/2012 4:56 58.2	13/8/2012 6:06 64.7	14/8/2012 23:16 61.7
9/8/2012 1:31 9/8/2012 1:36	58.4 57.9	10/8/2012 2:41 57.2 10/8/2012 2:46 57.2	11/8/2012 3:51 64.8 11/8/2012 3:56 64.4	12/8/2012 5:01 60.1 12/8/2012 5:06 58.5	13/8/2012 6:11 64.8 13/8/2012 6:16 63.2	14/8/2012 23:21 61.6 14/8/2012 23:26 61.2
9/8/2012 1:41	57.5	10/8/2012 2:51 56.9	11/8/2012 4:01 64.8	12/8/2012 5:11 58.0	13/8/2012 6:21 63.1	14/8/2012 23:31 61.1
9/8/2012 1:46	57.4	10/8/2012 2:56 56.8	11/8/2012 4:06 64.8	12/8/2012 5:16 59.2	13/8/2012 6:26 62.3	14/8/2012 23:36 61.1
9/8/2012 1:51 9/8/2012 1:56	58.2 56.9	10/8/2012 3:01 56.4 10/8/2012 3:06 56.3	11/8/2012 4:11 64.6 11/8/2012 4:16 62.1	12/8/2012 5:21 58.4 12/8/2012 5:26 58.8	13/8/2012 6:31 63.0 13/8/2012 6:36 63.3	14/8/2012 23:41 60.6 14/8/2012 23:46 61.4
9/8/2012 2:01	56.8	10/8/2012 3:11 56.0	11/8/2012 4:21 60.6	12/8/2012 5:31 58.2	13/8/2012 6:41 63.4	14/8/2012 23:51 60.9
9/8/2012 2:06 9/8/2012 2:11	56.7 57.6	10/8/2012 3:16 58.4 10/8/2012 3:21 56.1	11/8/2012 4:26 63.5 11/8/2012 4:31 63.8	12/8/2012 5:36 57.8 12/8/2012 5:41 58.5	13/8/2012 6:46 64.5 13/8/2012 6:51 64.9	14/8/2012 23:56 60.7 15/8/2012 0:01 60.6
9/8/2012 2:16	57.2	10/8/2012 3:26 56.1	11/8/2012 4:36 63.7	12/8/2012 5:46 60.0	13/8/2012 6:56 64.2	15/8/2012 0:06 60.6
9/8/2012 2:21 9/8/2012 2:26	57.3 57.0	10/8/2012 3:31 57.3 10/8/2012 3:36 56.8	11/8/2012 4:41 63.6 11/8/2012 4:46 63.6	12/8/2012 5:51 59.0 12/8/2012 5:56 58.8	13/8/2012 23:01 62.5 13/8/2012 23:06 62.5	15/8/2012 0:11 60.4 15/8/2012 0:16 60.3
9/8/2012 2:31	57.8	10/8/2012 3:41 57.1	11/8/2012 4:51 63.0	12/8/2012 6:01 62.1	13/8/2012 23:11 63.1	15/8/2012 0:21 60.6
9/8/2012 2:36	56.2	10/8/2012 3:46 57.0	11/8/2012 4:56 62.9	12/8/2012 6:06 62.9	13/8/2012 23:16 61.8	15/8/2012 0:26 60.5
9/8/2012 2:41 9/8/2012 2:46	57.5 56.6	10/8/2012 3:51 55.8 10/8/2012 3:56 55.8	11/8/2012 5:01 62.9 11/8/2012 5:06 62.6	12/8/2012 6:11 64.8 12/8/2012 6:16 64.5	13/8/2012 23:21 61.2 13/8/2012 23:26 61.3	15/8/2012 0:31 60.2 15/8/2012 0:36 60.3
9/8/2012 2:51	56.9	10/8/2012 4:01 55.4	11/8/2012 5:11 62.1	12/8/2012 6:21 64.9	13/8/2012 23:31 61.3	15/8/2012 0:41 59.6
9/8/2012 2:56 9/8/2012 3:01	56.0 56.1	10/8/2012 4:06 56.5 10/8/2012 4:11 55.6	11/8/2012 5:16 61.2 11/8/2012 5:21 63.2	12/8/2012 6:26 63.1 12/8/2012 6:31 62.2	13/8/2012 23:36 61.7 13/8/2012 23:41 61.2	15/8/2012 0:46 60.4 15/8/2012 0:51 59.7
9/8/2012 3:06	56.7	10/8/2012 4:16 55.6	11/8/2012 5:26 64.9	12/8/2012 6:36 62.9	13/8/2012 23:46 61.2	15/8/2012 0:56 58.8
9/8/2012 3:11 9/8/2012 3:16	55.8 56.4	10/8/2012 4:21 55.4 10/8/2012 4:26 55.6	11/8/2012 5:31 64.8 11/8/2012 5:36 64.6	12/8/2012 6:41 63.0 12/8/2012 6:46 62.8	13/8/2012 23:51 61.4 13/8/2012 23:56 60.7	15/8/2012 1:01 59.0 15/8/2012 1:06 59.0
9/8/2012 3:21	55.5	10/8/2012 4:31 56.5	11/8/2012 5:41 64.1	12/8/2012 6:51 63.0	14/8/2012 0:01 60.9	15/8/2012 1:11 58.7
9/8/2012 3:26 9/8/2012 3:31	56.1 56.0	10/8/2012 4:36 55.7 10/8/2012 4:41 56.6	11/8/2012 5:46 64.8 11/8/2012 5:51 64.5	12/8/2012 6:56 63.4 12/8/2012 23:01 61.0	14/8/2012 0:06 60.8 14/8/2012 0:11 60.9	15/8/2012 1:16 58.0 15/8/2012 1:21 58.8
9/8/2012 3:36	56.7	10/8/2012 4:46 56.6	11/8/2012 5:56 64.9	12/8/2012 23:06 61.6	14/8/2012 0:16 60.3	15/8/2012 1:26 58.1
9/8/2012 3:41 9/8/2012 3:46	56.5 55.6	10/8/2012 4:51 56.4 10/8/2012 4:56 58.1	11/8/2012 6:01 64.3 11/8/2012 6:06 65.0	12/8/2012 23:11 62.0 12/8/2012 23:16 61.9	14/8/2012 0:21 60.8 14/8/2012 0:26 61.2	15/8/2012 1:31 58.6 15/8/2012 1:36 59.6
9/8/2012 3:51	56.5	10/8/2012 5:01 57.5	11/8/2012 6:11 64.7	12/8/2012 23:21 61.5	14/8/2012 0:31 60.4	15/8/2012 1:41 58.2
9/8/2012 3:56	55.6	10/8/2012 5:06 56.4	11/8/2012 6:16 64.9	12/8/2012 23:26 61.2	14/8/2012 0:36 60.0	15/8/2012 1:46 59.1
9/8/2012 4:01 9/8/2012 4:06	55.8 55.8	10/8/2012 5:11 57.1 10/8/2012 5:16 57.3	11/8/2012 6:21 64.3 11/8/2012 6:26 64.2	12/8/2012 23:31 61.2 12/8/2012 23:36 61.0	14/8/2012 0:41 59.7 14/8/2012 0:46 59.9	15/8/2012 1:51 58.3 15/8/2012 1:56 57.9
9/8/2012 4:11	56.6	10/8/2012 5:21 56.4	11/8/2012 6:31 64.5	12/8/2012 23:41 61.3	14/8/2012 0:51 59.4	15/8/2012 2:01 57.4
9/8/2012 4:16 9/8/2012 4:21	56.0 58.2	10/8/2012 5:26 57.2 10/8/2012 5:31 57.7	11/8/2012 6:36 64.5 11/8/2012 6:41 64.7	12/8/2012 23:46 61.5 12/8/2012 23:51 60.6	14/8/2012 0:56 59.4 14/8/2012 1:01 59.7	15/8/2012 2:06 57.6 15/8/2012 2:11 57.3
9/8/2012 4:26	59.1	10/8/2012 5:36 57.9	11/8/2012 6:46 64.3	12/8/2012 23:56 60.9	14/8/2012 1:06 58.4	15/8/2012 2:16 57.8
9/8/2012 4:31 9/8/2012 4:36	59.1 58.2	10/8/2012 5:41 58.0 10/8/2012 5:46 58.0	11/8/2012 6:51 64.2 11/8/2012 6:56 64.0	13/8/2012 0:01 60.4 13/8/2012 0:06 60.1	14/8/2012 1:11 58.0 14/8/2012 1:16 59.3	15/8/2012 2:21 58.5 15/8/2012 2:26 57.5
9/8/2012 4:41	57.9	10/8/2012 5:51 58.8	11/8/2012 23:01 62.3	13/8/2012 0:11 60.4	14/8/2012 1:21 59.6	15/8/2012 2:31 57.1
9/8/2012 4:46 9/8/2012 4:51	59.2 58.8	10/8/2012 5:56 59.2 10/8/2012 6:01 60.1	11/8/2012 23:06 62.2 11/8/2012 23:11 62.8	13/8/2012 0:16 60.2 13/8/2012 0:21 59.9	14/8/2012 1:26 59.3 14/8/2012 1:31 59.0	15/8/2012 2:36 58.1 15/8/2012 2:41 57.4
9/8/2012 4:56	55.7	10/8/2012 6:06 59.8	11/8/2012 23:16 62.2	13/8/2012 0:26 59.7	14/8/2012 1:36 59.5	15/8/2012 2:46 56.7
9/8/2012 5:01 9/8/2012 5:06	56.6 55.7	10/8/2012 6:11 59.9 10/8/2012 6:16 59.9	11/8/2012 23:21 61.7 11/8/2012 23:26 62.4	13/8/2012 0:31 60.9 13/8/2012 0:36 58.8	14/8/2012 1:41 58.5 14/8/2012 1:46 58.2	15/8/2012 2:51 57.2 15/8/2012 2:56 59.5
9/8/2012 5:11	56.4	10/8/2012 6:21 59.8	11/8/2012 23:31 62.0	13/8/2012 0:41 59.3	14/8/2012 1:51 58.2	15/8/2012 3:01 56.0
9/8/2012 5:16 9/8/2012 5:21	56.6 55.9	10/8/2012 6:26 60.0 10/8/2012 6:31 60.2	11/8/2012 23:36 62.4 11/8/2012 23:41 61.9	13/8/2012 0:46 59.3 13/8/2012 0:51 59.2	14/8/2012 1:56 58.4 14/8/2012 2:01 58.1	15/8/2012 3:06 57.0 15/8/2012 3:11 56.0
9/8/2012 5:26	59.3	10/8/2012 6:36 61.8	11/8/2012 23:46 61.8	13/8/2012 0:56 59.1	14/8/2012 2:06 57.8	15/8/2012 3:16 56.8
9/8/2012 5:31 9/8/2012 5:36	59.6 58.2	10/8/2012 6:41 61.8 10/8/2012 6:46 61.4	11/8/2012 23:51 62.0 11/8/2012 23:56 61.4	13/8/2012 1:01 58.9 13/8/2012 1:06 58.5	14/8/2012 2:11 59.5 14/8/2012 2:16 57.2	15/8/2012 3:21 56.6 15/8/2012 3:26 56.6
9/8/2012 5:41	58.4	10/8/2012 6:51 62.2	12/8/2012 0:01 62.3	13/8/2012 1:11 58.3	14/8/2012 2:21 57.8	15/8/2012 3:31 56.2
9/8/2012 5:46 9/8/2012 5:51	58.8 59.0	10/8/2012 6:56 62.5 10/8/2012 23:01 62.1	12/8/2012 0:06 62.1 12/8/2012 0:11 61.0	13/8/2012 1:16 58.4 13/8/2012 1:21 58.4	14/8/2012 2:26 58.0 14/8/2012 2:31 57.0	15/8/2012 3:36 57.2 15/8/2012 3:41 56.2
9/8/2012 5:56	59.0 58.2	10/8/2012 23:01 62:1	12/8/2012 0:16 61.9	13/8/2012 1:26 57.4	14/8/2012 2:36 57.9	15/8/2012 3:41 56.2 15/8/2012 3:46 57.2
9/8/2012 6:01	59.6	10/8/2012 23:11 62.1	12/8/2012 0:21 61.5	13/8/2012 1:31 58.7	14/8/2012 2:41 57.8	15/8/2012 3:51 56.4
9/8/2012 6:06 9/8/2012 6:11	59.2 59.2	10/8/2012 23:16 62.9 10/8/2012 23:21 63.1	12/8/2012 0:26 62.0 12/8/2012 0:31 61.2	13/8/2012 1:36 57.0 13/8/2012 1:41 57.9	14/8/2012 2:46 56.9 14/8/2012 2:51 57.6	15/8/2012 3:56 56.9 15/8/2012 4:01 56.2
9/8/2012 6:16	59.8	10/8/2012 23:26 62.5	12/8/2012 0:36 61.2	13/8/2012 1:46 57.4	14/8/2012 2:56 57.0	15/8/2012 4:06 56.6
9/8/2012 6:21 9/8/2012 6:26	60.2 60.2	10/8/2012 23:31 62.1 10/8/2012 23:36 61.2	12/8/2012 0:41 60.8 12/8/2012 0:46 61.0	13/8/2012 1:51 57.3 13/8/2012 1:56 57.8	14/8/2012 3:01 57.0 14/8/2012 3:06 57.9	15/8/2012 4:11 57.4 15/8/2012 4:16 58.1
9/8/2012 6:31	60.7	10/8/2012 23:41 61.0	12/8/2012 0:51 61.1	13/8/2012 2:01 57.7	14/8/2012 3:11 59.1	15/8/2012 4:21 57.4
9/8/2012 6:36 9/8/2012 6:41	61.1 61.7	10/8/2012 23:46 61.8 10/8/2012 23:51 61.3	12/8/2012 0:56 61.1 12/8/2012 1:01 60.4	13/8/2012 2:06 56.4 13/8/2012 2:11 57.3	14/8/2012 3:16 60.3 14/8/2012 3:21 56.5	15/8/2012 4:26 55.9 15/8/2012 4:31 56.2
9/8/2012 6:46	61.9	10/8/2012 23:56 61.7	12/8/2012 1:06 60.0	13/8/2012 2:16 56.5	14/8/2012 3:26 56.1	15/8/2012 4:36 56.4
)/8/2012 6:51)/8/2012 6:56	62.0 62.2	11/8/2012 0:01 61.3 11/8/2012 0:06 61.1	12/8/2012 1:11 60.3 12/8/2012 1:16 60.1	13/8/2012 2:21 56.6 13/8/2012 2:26 57.1	14/8/2012 3:31 56.5 14/8/2012 3:36 58.7	15/8/2012 4:41 56.2 15/8/2012 4:46 57.4
9/8/2012 23:01	61.8	11/8/2012 0:11 61.1	12/8/2012 1:21 60.3	13/8/2012 2:31 54.9	14/8/2012 3:41 56.1	15/8/2012 4:51 57.3
/8/2012 23:06	61.8	11/8/2012 0:16 61.2	12/8/2012 1:26 60.3	13/8/2012 2:36 56.7	14/8/2012 3:46 56.6 14/8/2012 3:51 56.7	15/8/2012 4:56 56.5
9/8/2012 23:11 9/8/2012 23:16	61.5 61.5	11/8/2012 0:21 60.9 11/8/2012 0:26 61.5	12/8/2012 1:31 59.7 12/8/2012 1:36 59.8	13/8/2012 2:41 56.7 13/8/2012 2:46 55.5	14/8/2012 3:51 56.7 14/8/2012 3:56 55.9	15/8/2012 5:01 58.1 15/8/2012 5:06 57.7
9/8/2012 23:21	61.6	11/8/2012 0:31 61.8	12/8/2012 1:41 60.1	13/8/2012 2:51 56.4	14/8/2012 4:01 56.1	15/8/2012 5:11 59.3
9/8/2012 23:26 9/8/2012 23:31	60.9 60.6	11/8/2012 0:36 60.5 11/8/2012 0:41 61.1	12/8/2012 1:46 59.6 12/8/2012 1:51 59.7	13/8/2012 2:56 55.9 13/8/2012 3:01 55.3	14/8/2012 4:06 55.9 14/8/2012 4:11 55.4	15/8/2012 5:16 57.5 15/8/2012 5:21 57.5
9/8/2012 23:36	61.7	11/8/2012 0:46 60.4	12/8/2012 1:56 59.1	13/8/2012 3:06 55.8	14/8/2012 4:16 56.6	15/8/2012 5:26 57.4
9/8/2012 23:41 9/8/2012 23:46	61.6 61.2	11/8/2012 0:51 60.4 11/8/2012 0:56 60.1	12/8/2012 2:01 60.5 12/8/2012 2:06 60.1	13/8/2012 3:11 55.1 13/8/2012 3:16 55.3	14/8/2012 4:21 57.8 14/8/2012 4:26 56.8	15/8/2012 5:31 57.6 15/8/2012 5:36 60.3
/8/2012 23:51	59.7	11/8/2012 1:01 60.0	12/8/2012 2:11 59.4	13/8/2012 3:21 56.5	14/8/2012 4:31 56.2	15/8/2012 5:41 59.4
0/8/2012 23:56	60.6 60.9	11/8/2012 1:06 60.3 11/8/2012 1:11 60.5	12/8/2012 2:16 59.9 12/8/2012 2:21 59.5	13/8/2012 3:26 55.7 13/8/2012 3:31 55.9	14/8/2012 4:36 56.9 14/8/2012 4:41 56.1	15/8/2012 5:46 58.7 15/8/2012 5:51 59.4
10/8/2012 0:01 10/8/2012 0:06	60.9 60.6	11/8/2012 1:11 60.5 11/8/2012 1:16 59.6	12/8/2012 2:21 59.5 12/8/2012 2:26 59.9	13/8/2012 3:31 55.9 13/8/2012 3:36 55.6	14/8/2012 4:41 56.1	15/8/2012 5:51 59.4 15/8/2012 5:56 60.8
0/8/2012 0:11	59.9	11/8/2012 1:21 59.8	12/8/2012 2:31 59.7	13/8/2012 3:41 55.8	14/8/2012 4:51 57.8	15/8/2012 6:01 60.6
10/8/2012 0:16 10/8/2012 0:21	60.9 60.4	11/8/2012 1:26 59.5 11/8/2012 1:31 59.8	12/8/2012 2:36 58.8 12/8/2012 2:41 58.2	13/8/2012 3:46 55.9 13/8/2012 3:51 57.7	14/8/2012 4:56 57.6 14/8/2012 5:01 56.8	15/8/2012 6:06 60.6 15/8/2012 6:11 60.4
10/8/2012 0:26	60.0	11/8/2012 1:36 59.1	12/8/2012 2:46 58.5	13/8/2012 3:56 56.7	14/8/2012 5:06 57.7	15/8/2012 6:16 61.2
10/8/2012 0:31 10/8/2012 0:36	60.0 59.9	11/8/2012 1:41 59.7 11/8/2012 1:46 59.5	12/8/2012 2:51 58.8 12/8/2012 2:56 59.5	13/8/2012 4:01 56.2 13/8/2012 4:06 56.0	14/8/2012 5:11 56.8 14/8/2012 5:16 58.4	15/8/2012 6:21 60.6 15/8/2012 6:26 60.9
10/8/2012 0:41	60.0	11/8/2012 1:51 59.3	12/8/2012 3:01 58.9	13/8/2012 4:11 56.4	14/8/2012 5:21 57.3	15/8/2012 6:31 62.1
10/8/2012 0:46 10/8/2012 0:51	59.6 58.7	11/8/2012 1:56 59.3 11/8/2012 2:01 59.0	12/8/2012 3:06 58.7 12/8/2012 3:11 58.5	13/8/2012 4:16 56.3 13/8/2012 4:21 55.7	14/8/2012 5:26 57.5 14/8/2012 5:31 57.2	15/8/2012 6:36 62.7 15/8/2012 6:41 62.0
0/8/2012 0:56	58.7	11/8/2012 2:06 58.7	12/8/2012 3:16 58.8	13/8/2012 4:26 56.4	14/8/2012 5:36 58.2	15/8/2012 6:46 64.9
10/8/2012 1:01	59.2	11/8/2012 2:11 58.7	12/8/2012 3:21 58.4	13/8/2012 4:31 56.7	14/8/2012 5:41 60.5	15/8/2012 6:51 62.6
0/8/2012 1:06	58.3 59.7	11/8/2012 2:16 59.3 11/8/2012 2:21 60.0	12/8/2012 3:26 58.5 12/8/2012 3:31 58.7	13/8/2012 4:36 57.5 13/8/2012 4:41 56.1	14/8/2012 5:46 60.4 14/8/2012 5:51 60.6	15/8/2012 6:56 63.4 15/8/2012 23:01 61.4
10/8/2012 1:11	58.3	11/8/2012 2:26 58.8	12/8/2012 3:36 59.7	13/8/2012 4:46 56.4	14/8/2012 5:56 60.4	15/8/2012 23:06 61.4

Pool time Noise Data PTN	V2 (Oil Street Community Liaisor	Control			
Real-time Noise Data RTN 15/8/2012 23:11 61.4	17/8/2012 0:21 60.1	18/8/2012 1:31 60.7	19/8/2012 2:41 58.6	20/8/2012 3:51 55.1	21/8/2012 5:01 57.8
15/8/2012 23:16 62.2	17/8/2012 0:26 60.4	18/8/2012 1:36 59.9	19/8/2012 2:46 58.0	20/8/2012 3:56 55.0	21/8/2012 5:06 58.8
15/8/2012 23:21 62.4	17/8/2012 0:31 59.8	18/8/2012 1:41 59.9	19/8/2012 2:51 58.5	20/8/2012 4:01 55.0	21/8/2012 5:11 59.8
15/8/2012 23:26 61.9	17/8/2012 0:36 60.7	18/8/2012 1:46 59.1	19/8/2012 2:56 58.4	20/8/2012 4:06 56.9	21/8/2012 5:16 59.2
15/8/2012 23:31 61.7	17/8/2012 0:41 60.7	18/8/2012 1:51 59.9	19/8/2012 3:01 58.2	20/8/2012 4:11 55.1	21/8/2012 5:21 59.1
15/8/2012 23:36 62.1	17/8/2012 0:46 59.2	18/8/2012 1:56 60.2	19/8/2012 3:06 58.3	20/8/2012 4:16 56.7	21/8/2012 5:26 59.0
15/8/2012 23:41 61.0	17/8/2012 0:51 60.0	18/8/2012 2:01 59.0	19/8/2012 3:11 57.8	20/8/2012 4:21 55.9	21/8/2012 5:31 59.2
15/8/2012 23:46 60.9	17/8/2012 0:56 58.4	18/8/2012 2:06 59.4	19/8/2012 3:16 57.9	20/8/2012 4:26 56.1	21/8/2012 5:36 58.7
15/8/2012 23:51 60.6	17/8/2012 1:01 59.2	18/8/2012 2:11 59.9	19/8/2012 3:21 57.7	20/8/2012 4:31 55.6	21/8/2012 5:41 60.1
15/8/2012 23:56 60.7	17/8/2012 1:06 58.2	18/8/2012 2:16 59.5	19/8/2012 3:26 57.7	20/8/2012 4:36 54.5	21/8/2012 5:46 59.9
16/8/2012 0:01 65.0	17/8/2012 1:11 58.6	18/8/2012 2:21 59.0	19/8/2012 3:31 57.6	20/8/2012 4:41 55.6	21/8/2012 5:51 60.1
16/8/2012 0:06 64.9	17/8/2012 1:16 58.4	18/8/2012 2:26 59.3	19/8/2012 3:36 57.9	20/8/2012 4:46 55.9	21/8/2012 5:56 60.1
16/8/2012 0:11 64.8	17/8/2012 1:21 58.5	18/8/2012 2:31 60.7	19/8/2012 3:41 57.3	20/8/2012 4:51 56.0	21/8/2012 6:01 60.2
16/8/2012 0:16 64.7	17/8/2012 1:26 58.4	18/8/2012 2:36 59.0	19/8/2012 3:46 58.4	20/8/2012 4:56 56.2	21/8/2012 6:06 61.5
16/8/2012 0:21 64.8	17/8/2012 1:31 57.8	18/8/2012 2:41 58.6	19/8/2012 3:51 57.7	20/8/2012 5:01 58.3	21/8/2012 6:11 60.8
16/8/2012 0:26 64.3	17/8/2012 1:36 58.0	18/8/2012 2:46 58.9	19/8/2012 3:56 57.5	20/8/2012 5:06 57.2	21/8/2012 6:16 61.2
16/8/2012 0:31 63.8	17/8/2012 1:41 58.3	18/8/2012 2:51 58.8	19/8/2012 4:01 57.4	20/8/2012 5:11 56.6	21/8/2012 6:21 61.2
16/8/2012 0:36 63.2	17/8/2012 1:46 58.5	18/8/2012 2:56 58.3	19/8/2012 4:06 57.7	20/8/2012 5:16 56.9	21/8/2012 6:26 62.5
16/8/2012 0:41 61.8	17/8/2012 1:51 60.4	18/8/2012 3:01 58.0	19/8/2012 4:11 57.4	20/8/2012 5:21 56.2	21/8/2012 6:31 61.8
16/8/2012 0:46 60.9	17/8/2012 1:56 60.4	18/8/2012 3:06 59.1	19/8/2012 4:16 57.5	20/8/2012 5:26 57.5	21/8/2012 6:36 62.3
16/8/2012 0:51 61.4	17/8/2012 2:01 58.1	18/8/2012 3:11 58.6	19/8/2012 4:21 58.0	20/8/2012 5:31 57.5	21/8/2012 6:41 63.1
16/8/2012 0:56 60.5	17/8/2012 2:06 57.1	18/8/2012 3:16 58.3	19/8/2012 4:26 57.7	20/8/2012 5:36 60.3	21/8/2012 6:46 62.9
16/8/2012 1:01 60.6	17/8/2012 2:11 59.9	18/8/2012 3:21 58.3	19/8/2012 4:31 57.6	20/8/2012 5:41 60.1	21/8/2012 6:51 63.0
16/8/2012 1:06 60.3	17/8/2012 2:16 57.4	18/8/2012 3:26 57.4	19/8/2012 4:36 57.6	20/8/2012 5:46 59.9	21/8/2012 6:56 63.1
16/8/2012 1:11 60.4	17/8/2012 2:21 57.2	18/8/2012 3:31 58.1	19/8/2012 4:41 57.0	20/8/2012 5:51 59.2	21/8/2012 23:01 62.3
16/8/2012 1:16 60.8	17/8/2012 2:26 56.0	18/8/2012 3:36 58.0	19/8/2012 4:46 59.1	20/8/2012 5:56 60.7	21/8/2012 23:06 62.2
16/8/2012 1:21 60.4	17/8/2012 2:31 56.9	18/8/2012 3:41 58.1	19/8/2012 4:51 58.2	20/8/2012 6:01 58.9	21/8/2012 23:11 62.3
16/8/2012 1:26 60.2	17/8/2012 2:36 57.5	18/8/2012 3:46 58.7	19/8/2012 4:56 57.6	20/8/2012 6:06 58.7	21/8/2012 23:16 62.1
16/8/2012 1:31 59.8	17/8/2012 2:41 56.2	18/8/2012 3:51 58.0	19/8/2012 5:01 59.3	20/8/2012 6:11 60.2	21/8/2012 23:21 62.4
16/8/2012 1:36 60.1	17/8/2012 2:46 56.2	18/8/2012 3:56 57.6	19/8/2012 5:06 58.4	20/8/2012 6:16 60.4	21/8/2012 23:26 62.9
16/8/2012 1:41 59.7	17/8/2012 2:51 59.1	18/8/2012 4:01 57.2	19/8/2012 5:11 58.6	20/8/2012 6:21 60.6	21/8/2012 23:31 62.3
16/8/2012 1:46 60.1	17/8/2012 2:56 57.0	18/8/2012 4:06 58.0	19/8/2012 5:16 57.6	20/8/2012 6:26 61.6	21/8/2012 23:36 64.1
16/8/2012 1:51 60.0	17/8/2012 3:01 57.3	18/8/2012 4:11 57.7	19/8/2012 5:21 57.9	20/8/2012 6:31 61.0	21/8/2012 23:41 61.8
16/8/2012 1:56 59.9	17/8/2012 3:06 56.9	18/8/2012 4:16 57.7	19/8/2012 5:26 58.1	20/8/2012 6:36 61.8	21/8/2012 23:46 62.2
16/8/2012 2:01 60.4	17/8/2012 3:11 56.5	18/8/2012 4:21 57.5	19/8/2012 5:31 57.8	20/8/2012 6:41 61.6	21/8/2012 23:51 62.3
16/8/2012 2:06 59.5	17/8/2012 3:16 56.4	18/8/2012 4:26 57.1	19/8/2012 5:36 58.5	20/8/2012 6:46 62.9	21/8/2012 23:56 61.3
16/8/2012 2:11 60.2	17/8/2012 3:21 56.2	18/8/2012 4:31 57.4	19/8/2012 5:41 59.8	20/8/2012 6:51 62.9	22/8/2012 0:01 61.2
16/8/2012 2:16 59.6	17/8/2012 3:26 56.5	18/8/2012 4:36 57.5	19/8/2012 5:46 59.4	20/8/2012 6:56 64.3	22/8/2012 0:06 61.5
16/8/2012 2:21 59.3	17/8/2012 3:31 56.1	18/8/2012 4:41 57.4	19/8/2012 5:51 58.4	20/8/2012 23:01 62.2	22/8/2012 0:11 62.2
16/8/2012 2:26 58.4	17/8/2012 3:36 56.1	18/8/2012 4:46 59.7	19/8/2012 5:56 59.0	20/8/2012 23:06 62.8	22/8/2012 0:16 61.6
16/8/2012 2:31 59.5	17/8/2012 3:41 56.3	18/8/2012 4:51 58.5	19/8/2012 6:01 58.7	20/8/2012 23:11 62.2	22/8/2012 0:21 61.7
16/8/2012 2:36 57.9	17/8/2012 3:46 55.6	18/8/2012 4:56 57.6	19/8/2012 6:06 57.9	20/8/2012 23:16 63.0	22/8/2012 0:26 61.9
16/8/2012 2:41 58.3	17/8/2012 3:51 56.0	18/8/2012 5:01 57.2	19/8/2012 6:11 59.3	20/8/2012 23:21 63.5	22/8/2012 0:31 62.5
16/8/2012 2:46 58.6	17/8/2012 3:56 57.0 17/8/2012 4:01 56.6	18/8/2012 5:06 59.0 18/8/2012 5:11 57.9	19/8/2012 6:16 59.4	20/8/2012 23:26 62.2 20/8/2012 23:31 62.0	22/8/2012 0:36 60.4
16/8/2012 2:56 57.7	17/8/2012 4:06 56.8	18/8/2012 5:16 57.8	19/8/2012 6:26 59.3	20/8/2012 23:36 61.8	22/8/2012 0:46 60.9
16/8/2012 3:01 57.9	17/8/2012 4:11 56.3	18/8/2012 5:21 58.4	19/8/2012 6:31 60.0	20/8/2012 23:41 61.9	22/8/2012 0:51 60.8
16/8/2012 3:06 58.0	17/8/2012 4:16 56.7	18/8/2012 5:26 58.4	19/8/2012 6:36 60.2	20/8/2012 23:46 61.9	22/8/2012 0:56 60.4
16/8/2012 3:11 57.3	17/8/2012 4:21 56.9	18/8/2012 5:31 60.0	19/8/2012 6:41 61.2	20/8/2012 23:51 61.8	22/8/2012 1:01 60.6
16/8/2012 3:16 57.8	17/8/2012 4:26 55.7	18/8/2012 5:36 60.2	19/8/2012 6:46 62.7	20/8/2012 23:56 61.7	22/8/2012 1:06 59.8
16/8/2012 3:21 57.5	17/8/2012 4:31 56.1	18/8/2012 5:41 61.9	19/8/2012 6:51 60.9	21/8/2012 0:01 61.3	22/8/2012 1:11 59.8
16/8/2012 3:26 57.3	17/8/2012 4:36 56.5	18/8/2012 5:46 60.3	19/8/2012 6:56 64.4	21/8/2012 0:06 61.9	22/8/2012 1:16 59.7
16/8/2012 3:31 58.1	17/8/2012 4:41 56.2	18/8/2012 5:51 59.9	19/8/2012 23:01 61.6	21/8/2012 0:11 61.8	22/8/2012 1:21 60.0
16/8/2012 3:36 57.6	17/8/2012 4:46 56.2	18/8/2012 5:56 59.1	19/8/2012 23:06 61.4	21/8/2012 0:16 61.6	22/8/2012 1:26 59.2
16/8/2012 3:41 59.1	17/8/2012 4:51 56.1	18/8/2012 6:01 60.0	19/8/2012 23:11 61.7	21/8/2012 0:21 61.6	22/8/2012 1:31 59.5
16/8/2012 3:46 57.7	17/8/2012 4:56 56.4	18/8/2012 6:06 60.4	19/8/2012 23:16 62.0	21/8/2012 0:26 61.7	22/8/2012 1:36 59.2
16/8/2012 3:51 57.4	17/8/2012 5:01 56.6	18/8/2012 6:11 60.7	19/8/2012 23:21 62.3	21/8/2012 0:31 60.8	22/8/2012 1:41 59.6
16/8/2012 3:56 57.4	17/8/2012 5:06 56.4	18/8/2012 6:16 60.4	19/8/2012 23:26 60.5	21/8/2012 0:36 61.0	22/8/2012 1:46 59.1
16/8/2012 4:01 56.9	17/8/2012 5:11 57.2	18/8/2012 6:21 60.6	19/8/2012 23:31 60.3	21/8/2012 0:41 60.6	22/8/2012 1:51 59.7
16/8/2012 4:06 57.6	17/8/2012 5:16 56.1	18/8/2012 6:26 61.0	19/8/2012 23:36 60.3	21/8/2012 0:46 60.2	22/8/2012 1:56 58.8
16/8/2012 4:11 56.8	17/8/2012 5:21 56.8	18/8/2012 6:31 60.4	19/8/2012 23:41 60.5	21/8/2012 0:51 60.4	22/8/2012 2:01 59.0
16/8/2012 4:16 58.0	17/8/2012 5:26 56.9	18/8/2012 6:36 62.0	19/8/2012 23:46 60.3	21/8/2012 0:56 60.3	22/8/2012 2:06 59.8
16/8/2012 4:21 57.5	17/8/2012 5:31 56.7	18/8/2012 6:41 62.0	19/8/2012 23:51 59.9	21/8/2012 1:01 59.7	22/8/2012 2:11 59.2
16/8/2012 4:26 57.6	17/8/2012 5:36 56.8	18/8/2012 6:46 63.6	19/8/2012 23:56 60.6	21/8/2012 1:06 60.1	22/8/2012 2:16 58.8
16/8/2012 4:31 56.5	17/8/2012 5:41 57.6	18/8/2012 6:51 63.0	20/8/2012 0:01 60.0	21/8/2012 1:11 59.6	22/8/2012 2:21 58.9
16/8/2012 4:36 56.9	17/8/2012 5:46 57.4	18/8/2012 6:56 63.1	20/8/2012 0:06 60.2	21/8/2012 1:16 60.2	22/8/2012 2:26 58.6
16/8/2012 4:41 56.9	17/8/2012 5:51 59.2	18/8/2012 23:01 61.8	20/8/2012 0:11 60.3	21/8/2012 1:21 59.6	22/8/2012 2:31 58.9
16/8/2012 4:46 56.4	17/8/2012 5:56 58.5	18/8/2012 23:06 61.6	20/8/2012 0:16 60.3	21/8/2012 1:26 60.4	22/8/2012 2:36 58.6
16/8/2012 4:51 57.0	17/8/2012 6:01 59.5	18/8/2012 23:11 61.7	20/8/2012 0:21 59.5	21/8/2012 1:31 60.0	22/8/2012 2:41 58.9
16/8/2012 4:56 58.7	17/8/2012 6:06 60.1	18/8/2012 23:16 61.6	20/8/2012 0:26 59.4	21/8/2012 1:36 59.7	22/8/2012 2:46 58.3
16/8/2012 5:01 58.9	17/8/2012 6:11 59.7	18/8/2012 23:21 61.9	20/8/2012 0:31 61.2	21/8/2012 1:41 60.0	22/8/2012 2:51 58.5
16/8/2012 5:06 60.0	17/8/2012 6:16 59.7	18/8/2012 23:26 61.9	20/8/2012 0:36 60.5	21/8/2012 1:46 59.9	22/8/2012 2:56 58.8
16/8/2012 5:11 60.2	17/8/2012 6:21 59.9	18/8/2012 23:31 61.6	20/8/2012 0:41 59.6	21/8/2012 1:51 58.9	22/8/2012 3:01 58.1
16/8/2012 5:16 60.4	17/8/2012 6:26 60.4	18/8/2012 23:36 61.5	20/8/2012 0:46 58.6	21/8/2012 1:56 59.1	22/8/2012 3:06 58.1
16/8/2012 5:21 58.7	17/8/2012 6:31 61.2	18/8/2012 23:41 61.0	20/8/2012 0:51 58.1	21/8/2012 2:01 59.5	22/8/2012 3:11 57.7
16/8/2012 5:26 59.7	17/8/2012 6:36 60.6	18/8/2012 23:46 61.1	20/8/2012 0:56 59.2	21/8/2012 2:06 60.0	22/8/2012 3:16 58.4
16/8/2012 5:31 59.1	17/8/2012 6:41 61.4	18/8/2012 23:51 60.8	20/8/2012 1:01 58.4	21/8/2012 2:11 59.2	22/8/2012 3:21 58.6
16/8/2012 5:36 59.7 16/8/2012 5:41 59.7	17/8/2012 6:51 63.0	18/8/2012 23:56 63.9 19/8/2012 0:01 61.1	20/8/2012 1:06 57.8 20/8/2012 1:11 57.7	21/8/2012 2:21 59.3	22/8/2012 3:26 57.6 22/8/2012 3:31 58.2
16/8/2012 5:46 61.0	17/8/2012 6:56 62.3	19/8/2012 0:06 60.8	20/8/2012 1:16 58.2	21/8/2012 2:26 59.3	22/8/2012 3:36 58.3
16/8/2012 5:51 61.4	17/8/2012 23:01 61.7	19/8/2012 0:11 61.0	20/8/2012 1:21 57.9	21/8/2012 2:31 58.4	22/8/2012 3:41 59.0
16/8/2012 5:56 60.8	17/8/2012 23:06 62.3	19/8/2012 0:16 61.3	20/8/2012 1:26 58.2	21/8/2012 2:36 58.8	22/8/2012 3:46 58.4
16/8/2012 6:01 61.4	17/8/2012 23:11 62.5	19/8/2012 0:21 61.3	20/8/2012 1:31 57.5	21/8/2012 2:41 58.6	22/8/2012 3:51 58.1
16/8/2012 6:06 63.6	17/8/2012 23:16 62.2	19/8/2012 0:26 61.3	20/8/2012 1:36 58.2	21/8/2012 2:46 58.2	22/8/2012 3:56 57.9
16/8/2012 6:11 61.3	17/8/2012 23:21 62.3	19/8/2012 0:31 61.8	20/8/2012 1:41 57.1	21/8/2012 2:51 58.4	22/8/2012 4:01 58.0
16/8/2012 6:16 61.4	17/8/2012 23:26 61.0	19/8/2012 0:36 61.6	20/8/2012 1:46 56.5	21/8/2012 2:56 58.3	22/8/2012 4:06 57.3
16/8/2012 6:21 62.4	17/8/2012 23:31 61.2	19/8/2012 0:41 61.8	20/8/2012 1:51 57.1	21/8/2012 3:01 58.0	22/8/2012 4:11 58.2
16/8/2012 6:26 63.1	17/8/2012 23:36 62.0	19/8/2012 0:46 60.6	20/8/2012 1:56 57.3	21/8/2012 3:06 58.4	22/8/2012 4:16 60.0
16/8/2012 6:31 63.0	17/8/2012 23:41 62.7	19/8/2012 0:51 60.5	20/8/2012 2:01 57.6	21/8/2012 3:11 58.9	22/8/2012 4:21 58.3
16/8/2012 6:36 62.8	17/8/2012 23:46 61.6	19/8/2012 0:56 64.3	20/8/2012 2:06 57.0	21/8/2012 3:16 58.8	22/8/2012 4:26 58.2
16/8/2012 6:41 63.9	17/8/2012 23:51 62.6	19/8/2012 1:01 60.3	20/8/2012 2:11 56.7	21/8/2012 3:21 57.8	22/8/2012 4:31 58.8
16/8/2012 6:46 63.7	17/8/2012 23:56 61.7	19/8/2012 1:06 60.8	20/8/2012 2:16 58.0	21/8/2012 3:26 57.7	22/8/2012 4:36 57.7
16/8/2012 6:51 63.6	18/8/2012 0:01 62.1	19/8/2012 1:11 60.0	20/8/2012 2:21 56.7	21/8/2012 3:31 58.2	22/8/2012 4:41 58.3
16/8/2012 6:56 64.5	18/8/2012 0:06 61.0	19/8/2012 1:16 59.6	20/8/2012 2:26 57.0	21/8/2012 3:36 58.4	22/8/2012 4:46 57.8
16/8/2012 23:01 61.6	18/8/2012 0:11 60.8	19/8/2012 1:21 60.2	20/8/2012 2:31 57.0	21/8/2012 3:41 58.1	22/8/2012 4:51 57.9
16/8/2012 23:06 62.7	18/8/2012 0:16 61.3	19/8/2012 1:26 59.7	20/8/2012 2:36 56.5	21/8/2012 3:46 58.2	22/8/2012 4:56 58.9
16/8/2012 23:11 62.9	18/8/2012 0:21 62.7	19/8/2012 1:31 60.3	20/8/2012 2:41 55.5	21/8/2012 3:51 58.3	22/8/2012 5:01 58.1
16/8/2012 23:16 61.9	18/8/2012 0:26 62.0	19/8/2012 1:36 59.9	20/8/2012 2:46 56.4	21/8/2012 3:56 57.8	22/8/2012 5:06 58.6
16/8/2012 23:21 61.1	18/8/2012 0:31 61.0	19/8/2012 1:41 59.4	20/8/2012 2:51 56.7	21/8/2012 4:01 58.5	22/8/2012 5:11 59.4
16/8/2012 23:26 61.6	18/8/2012 0:36 60.8	19/8/2012 1:46 58.9	20/8/2012 2:56 55.7	21/8/2012 4:06 58.2	22/8/2012 5:16 58.7
16/8/2012 23:31 61.7	18/8/2012 0:41 60.9	19/8/2012 1:51 59.7	20/8/2012 3:01 56.5	21/8/2012 4:11 58.7	22/8/2012 5:21 58.5
16/8/2012 23:36 61.2	18/8/2012 0:46 60.5	19/8/2012 1:56 59.3	20/8/2012 3:06 55.7	21/8/2012 4:16 58.9	22/8/2012 5:26 59.4
16/8/2012 23:41 60.7	18/8/2012 0:51 60.6	19/8/2012 2:01 59.4	20/8/2012 3:11 55.7	21/8/2012 4:21 58.4	22/8/2012 5:31 59.2
16/8/2012 23:46 61.0	18/8/2012 0:56 59.4	19/8/2012 2:06 59.1	20/8/2012 3:16 56.1	21/8/2012 4:26 58.0	22/8/2012 5:36 59.2
16/8/2012 23:51 60.4	18/8/2012 1:01 61.2	19/8/2012 2:11 58.8	20/8/2012 3:21 55.7	21/8/2012 4:31 58.3	22/8/2012 5:41 59.8
16/8/2012 23:56 61.9 17/8/2012 0:01 60.0	18/8/2012 1:11 60.3	19/8/2012 2:21 59.7	20/8/2012 3:31 55.3	21/8/2012 4:41 58.6	22/8/2012 5:51 60.2
17/8/2012 0:06 61.4	18/8/2012 1:16 61.5	19/8/2012 2:26 58.4	20/8/2012 3:36 55.6	21/8/2012 4:46 57.9	22/8/2012 5:56 59.7
17/8/2012 0:11 60.4	18/8/2012 1:21 60.8	19/8/2012 2:31 58.3	20/8/2012 3:41 55.9	21/8/2012 4:51 58.1	22/8/2012 6:01 60.3
17/8/2012 0:16 61.3	18/8/2012 1:26 60.7	19/8/2012 2:36 59.0	20/8/2012 3:46 55.3	21/8/2012 4:56 58.5	22/8/2012 6:06 60.8

22/8/2012 6:11	Data RTN 60.9	2 (Oil Street Comm 23/8/2012 23:21	61.8	25/8/2012 0:31	60.7	26/8/2012 1:41	59.3	27/8/2012 2:51	55.7
22/8/2012 6:16 22/8/2012 6:21	61.0 61.2	23/8/2012 23:26 23/8/2012 23:31		25/8/2012 0:36 25/8/2012 0:41	60.7 62.7	26/8/2012 1:46 26/8/2012 1:51	59.8 59.5	27/8/2012 2:56 27/8/2012 3:01	55.6 55.7
22/8/2012 6:26	61.4	23/8/2012 23:36		25/8/2012 0:46	61.0	26/8/2012 1:56	58.4	27/8/2012 3:06	55.2
22/8/2012 6:31 22/8/2012 6:36	61.9 63.1	23/8/2012 23:41 23/8/2012 23:46	61.0 61.1	25/8/2012 0:51 25/8/2012 0:56	60.3 60.1	26/8/2012 2:01 26/8/2012 2:06	58.4 59.4	27/8/2012 3:11 27/8/2012 3:16	54.9 56.2
22/8/2012 6:41	63.2	23/8/2012 23:51		25/8/2012 1:01	60.6	26/8/2012 2:11	58.4	27/8/2012 3:21	54.7
22/8/2012 6:46	62.8 62.8	23/8/2012 23:56 24/8/2012 0:01	60.3 60.6	25/8/2012 1:06	59.7 59.5	26/8/2012 2:16 26/8/2012 2:21	58.9 58.5	27/8/2012 3:26	55.1 54.9
22/8/2012 6:51 22/8/2012 6:56	62.8	24/8/2012 0:01	60.6	25/8/2012 1:11 25/8/2012 1:16	59.5 59.7	26/8/2012 2:21	58.5 58.4	27/8/2012 3:31 27/8/2012 3:36	54.9 55.5
22/8/2012 23:01	62.2 61.4	24/8/2012 0:11	61.0	25/8/2012 1:21	60.4	26/8/2012 2:31	57.6	27/8/2012 3:41	55.4 55.4
22/8/2012 23:06 22/8/2012 23:11	62.2	24/8/2012 0:16 24/8/2012 0:21	60.7 60.4	25/8/2012 1:26 25/8/2012 1:31	59.4 59.6	26/8/2012 2:36 26/8/2012 2:41	57.8 58.2	27/8/2012 3:46 27/8/2012 3:51	55.4 54.9
22/8/2012 23:16		24/8/2012 0:26	60.9	25/8/2012 1:36	59.4	26/8/2012 2:46	58.4	27/8/2012 3:56	54.8
22/8/2012 23:21 22/8/2012 23:26	61.4 61.5	24/8/2012 0:31 24/8/2012 0:36	61.5 59.7	25/8/2012 1:41 25/8/2012 1:46	59.4 59.2	26/8/2012 2:51 26/8/2012 2:56	59.3 58.5	27/8/2012 4:01 27/8/2012 4:06	53.9 55.0
22/8/2012 23:31		24/8/2012 0:41	60.4	25/8/2012 1:51	59.4	26/8/2012 3:01	58.0	27/8/2012 4:11	56.4
22/8/2012 23:36 22/8/2012 23:41	61.2 61.4	24/8/2012 0:46 24/8/2012 0:51	59.2 59.9	25/8/2012 1:56 25/8/2012 2:01	59.2 59.0	26/8/2012 3:06 26/8/2012 3:11	57.8 58.3	27/8/2012 4:16 27/8/2012 4:21	55.8 55.8
22/8/2012 23:46	61.8	24/8/2012 0:56	60.0	25/8/2012 2:06	59.2	26/8/2012 3:16	58.3	27/8/2012 4:26	54.9
22/8/2012 23:51 22/8/2012 23:56	61.1 60.9	24/8/2012 1:01 24/8/2012 1:06	58.5 59.6	25/8/2012 2:11 25/8/2012 2:16	59.2 58.8	26/8/2012 3:21 26/8/2012 3:26	58.7 57.9	27/8/2012 4:31 27/8/2012 4:36	54.8 55.5
3/8/2012 0:01	61.3	24/8/2012 1:11	58.8	25/8/2012 2:21	58.1	26/8/2012 3:31	57.7	27/8/2012 4:41	55.3
3/8/2012 0:06 3/8/2012 0:11	61.6 60.9	24/8/2012 1:16 24/8/2012 1:21	59.3 58.7	25/8/2012 2:26 25/8/2012 2:31	58.3 59.3	26/8/2012 3:36 26/8/2012 3:41	58.0 57.5	27/8/2012 4:46 27/8/2012 4:51	54.5 55.6
23/8/2012 0:16	61.0	24/8/2012 1:26	58.7	25/8/2012 2:36	58.6	26/8/2012 3:46	58.0	27/8/2012 4:56	58.2
23/8/2012 0:21 23/8/2012 0:26	61.1 60.7	24/8/2012 1:31 24/8/2012 1:36	57.9 58.9	25/8/2012 2:41 25/8/2012 2:46	58.8 58.4	26/8/2012 3:51 26/8/2012 3:56	57.0 57.9	27/8/2012 5:01 27/8/2012 5:06	56.6 58.8
3/8/2012 0:20	60.2	24/8/2012 1:41	58.3	25/8/2012 2:51	58.7	26/8/2012 3:56	56.5	27/8/2012 5:00	56.3
3/8/2012 0:36	60.6	24/8/2012 1:46	58.2	25/8/2012 2:56	57.7	26/8/2012 4:06	57.1	27/8/2012 5:16	57.1
3/8/2012 0:41 3/8/2012 0:46	60.6 59.7	24/8/2012 1:51 24/8/2012 1:56	58.1 57.7	25/8/2012 3:01 25/8/2012 3:06	58.1 58.4	26/8/2012 4:11 26/8/2012 4:16	56.8 57.9	27/8/2012 5:21 27/8/2012 5:26	60.6 55.8
3/8/2012 0:51	60.3	24/8/2012 2:01	58.3	25/8/2012 3:11	58.4	26/8/2012 4:21	57.5	27/8/2012 5:31	56.8
23/8/2012 0:56 23/8/2012 1:01	59.1 59.5	24/8/2012 2:06 24/8/2012 2:11	57.8 57.9	25/8/2012 3:16 25/8/2012 3:21	58.1 57.9	26/8/2012 4:26 26/8/2012 4:31	56.9 57.9	27/8/2012 5:36 27/8/2012 5:41	58.3 58.5
3/8/2012 1:06	59.3	24/8/2012 2:16	58.4	25/8/2012 3:26	57.9	26/8/2012 4:36	57.9 57.3	27/8/2012 5:46	58.2
23/8/2012 1:11	60.4 50.2	24/8/2012 2:21	58.1	25/8/2012 3:31	57.4	26/8/2012 4:41	57.3	27/8/2012 5:51	59.8
23/8/2012 1:16 23/8/2012 1:21	59.2 58.9	24/8/2012 2:26 24/8/2012 2:31	58.1 57.1	25/8/2012 3:36 25/8/2012 3:41	58.2 58.2	26/8/2012 4:46 26/8/2012 4:51	57.2 57.1	27/8/2012 5:56 27/8/2012 6:01	58.7 58.3
3/8/2012 1:26	59.3	24/8/2012 2:36	57.6	25/8/2012 3:46	57.3	26/8/2012 4:56	57.2	27/8/2012 6:06	58.6
3/8/2012 1:31 3/8/2012 1:36	58.5 58.9	24/8/2012 2:41 24/8/2012 2:46	57.1 56.9	25/8/2012 3:51 25/8/2012 3:56	57.4 57.9	26/8/2012 5:01 26/8/2012 5:06	58.1 58.2	27/8/2012 6:11 27/8/2012 6:16	60.3 61.4
3/8/2012 1:41	58.1	24/8/2012 2:51	57.4	25/8/2012 4:01	57.1	26/8/2012 5:11	57.6	27/8/2012 6:21	60.9
23/8/2012 1:46	58.5 58.2	24/8/2012 2:56	56.3 56.7	25/8/2012 4:06	57.7 57.5	26/8/2012 5:16	57.0 57.1	27/8/2012 6:26	60.0 61.8
23/8/2012 1:51 23/8/2012 1:56	58.5	24/8/2012 3:01 24/8/2012 3:06	57.2	25/8/2012 4:11 25/8/2012 4:16	57.3	26/8/2012 5:21 26/8/2012 5:26	57.7	27/8/2012 6:31 27/8/2012 6:36	60.9
3/8/2012 2:01	58.2	24/8/2012 3:11	56.7	25/8/2012 4:21	58.2	26/8/2012 5:31	56.6	27/8/2012 6:41	61.5
3/8/2012 2:06 3/8/2012 2:11	58.0 57.9	24/8/2012 3:16 24/8/2012 3:21	57.5 56.4	25/8/2012 4:26 25/8/2012 4:31	57.3 57.5	26/8/2012 5:36 26/8/2012 5:41	58.1 58.5	27/8/2012 6:46 27/8/2012 6:51	62.7 64.8
3/8/2012 2:16	57.8	24/8/2012 3:26	56.3	25/8/2012 4:36	57.4	26/8/2012 5:46	59.4	27/8/2012 6:56	64.5
23/8/2012 2:21 23/8/2012 2:26	57.3 58.0	24/8/2012 3:31 24/8/2012 3:36	57.0 56.7	25/8/2012 4:41 25/8/2012 4:46	57.0 57.5	26/8/2012 5:51 26/8/2012 5:56	59.1 58.2		
23/8/2012 2:31	57.4	24/8/2012 3:41	56.5	25/8/2012 4:51	58.9	26/8/2012 6:01	60.1	*Exceedance rec	orded during
23/8/2012 2:36	57.5 57.0	24/8/2012 3:46	56.3 56.0	25/8/2012 4:56 25/8/2012 5:01	59.0 58.7	26/8/2012 6:06	58.5 59.7	monitoring comp with NCO.	liance check
23/8/2012 2:41 23/8/2012 2:46	56.7	24/8/2012 3:51 24/8/2012 3:56	56.7	25/8/2012 5:06	59.3	26/8/2012 6:11 26/8/2012 6:16	59.7 59.2	WITINCO.	
23/8/2012 2:51	57.6	24/8/2012 4:01	56.1	25/8/2012 5:11	60.3	26/8/2012 6:21	59.3		
23/8/2012 2:56 23/8/2012 3:01	57.4 57.2	24/8/2012 4:06 24/8/2012 4:11	55.7 56.0	25/8/2012 5:16 25/8/2012 5:21	57.8 58.1	26/8/2012 6:26 26/8/2012 6:31	60.3 59.6		
23/8/2012 3:06	56.9	24/8/2012 4:16	57.1	25/8/2012 5:26	59.8	26/8/2012 6:36	59.5		
23/8/2012 3:11 23/8/2012 3:16	58.6 56.6	24/8/2012 4:21 24/8/2012 4:26	56.3 55.6	25/8/2012 5:31 25/8/2012 5:36	58.6 58.1	26/8/2012 6:41 26/8/2012 6:46	62.5 61.2		
23/8/2012 3:21	57.8	24/8/2012 4:31	56.8	25/8/2012 5:41	58.8	26/8/2012 6:51	61.5		
23/8/2012 3:26 23/8/2012 3:31	55.9 56.9	24/8/2012 4:36 24/8/2012 4:41	56.5 57.5	25/8/2012 5:46 25/8/2012 5:51	59.2 58.7	26/8/2012 6:56 26/8/2012 23:01	62.0 61.6		
3/8/2012 3:36	56.9	24/8/2012 4:41	60.8	25/8/2012 5:56	59.7	26/8/2012 23:06			
3/8/2012 3:41	56.7	24/8/2012 4:51	58.3	25/8/2012 6:01	58.6	26/8/2012 23:11			
23/8/2012 3:46 23/8/2012 3:51	56.5 56.6	24/8/2012 4:56 24/8/2012 5:01	56.7 57.0	25/8/2012 6:06 25/8/2012 6:11	58.9 59.4	26/8/2012 23:16 26/8/2012 23:21			
3/8/2012 3:56	56.6	24/8/2012 5:06	57.2	25/8/2012 6:16	59.6	26/8/2012 23:26	60.8		
23/8/2012 4:01 23/8/2012 4:06	56.5 56.9	24/8/2012 5:11 24/8/2012 5:16	57.0 57.2	25/8/2012 6:21 25/8/2012 6:26	60.3 60.7	26/8/2012 23:31 26/8/2012 23:36			
3/8/2012 4:11	56.0	24/8/2012 5:21	58.1	25/8/2012 6:31	60.2	26/8/2012 23:41			
3/8/2012 4:16 3/8/2012 4:21	57.9 56.5	24/8/2012 5:26 24/8/2012 5:31	57.7 57.4	25/8/2012 6:36 25/8/2012 6:41	60.4 61.1	26/8/2012 23:46 26/8/2012 23:51			
3/8/2012 4:26	56.8	24/8/2012 5:36	60.8	25/8/2012 6:46	62.3	26/8/2012 23:56			
3/8/2012 4:31	56.6	24/8/2012 5:41	60.2	25/8/2012 6:51	63.4	27/8/2012 0:01	59.6		
3/8/2012 4:36 3/8/2012 4:41	56.1 56.2	24/8/2012 5:46 24/8/2012 5:51	58.5 59.0	25/8/2012 6:56 25/8/2012 23:01	62.1 62.2	27/8/2012 0:06 27/8/2012 0:11	59.8 59.3		
3/8/2012 4:46	56.2	24/8/2012 5:56	58.4	25/8/2012 23:06	61.1	27/8/2012 0:16	60.5		
23/8/2012 4:51 23/8/2012 4:56	56.3 57.8	24/8/2012 6:01 24/8/2012 6:06	59.4 58.8	25/8/2012 23:11 25/8/2012 23:16		27/8/2012 0:21 27/8/2012 0:26	62.3 59.3		
3/8/2012 5:01	56.7	24/8/2012 6:11	61.3	25/8/2012 23:21	61.6	27/8/2012 0:31	59.2		
3/8/2012 5:06 3/8/2012 5:11	57.5 57.2	24/8/2012 6:16 24/8/2012 6:21	64.9 61.3	25/8/2012 23:26 25/8/2012 23:31		27/8/2012 0:36 27/8/2012 0:41	59.1 59.0		
23/8/2012 5:16	57.3	24/8/2012 6:26	61.0	25/8/2012 23:36		27/8/2012 0:46	58.9		
3/8/2012 5:21	57.7	24/8/2012 6:31	61.1	25/8/2012 23:41		27/8/2012 0:51	58.9		
23/8/2012 5:26 23/8/2012 5:31	59.5 62.1	24/8/2012 6:36 24/8/2012 6:41	61.4 63.0	25/8/2012 23:46 25/8/2012 23:51		27/8/2012 0:56 27/8/2012 1:01	58.2 59.1		
3/8/2012 5:36	59.3	24/8/2012 6:46	63.7	25/8/2012 23:56	61.5	27/8/2012 1:06	58.1		
3/8/2012 5:41 3/8/2012 5:46	60.7 60.3	24/8/2012 6:51 24/8/2012 6:56	63.6 62.5	26/8/2012 0:01 26/8/2012 0:06	60.8 60.8	27/8/2012 1:11 27/8/2012 1:16	57.8 57.6		
3/8/2012 5:51	58.6	24/8/2012 23:01		26/8/2012 0:11	61.0	27/8/2012 1:21	57.9		
3/8/2012 5:56	63.5	24/8/2012 23:06	62.0	26/8/2012 0:16	61.3	27/8/2012 1:26	58.4		
23/8/2012 6:01 23/8/2012 6:06	59.1 61.6	24/8/2012 23:11 24/8/2012 23:16		26/8/2012 0:21 26/8/2012 0:26	60.7 60.3	27/8/2012 1:31 27/8/2012 1:36	58.6 57.0		
23/8/2012 6:11	59.2	24/8/2012 23:21	62.0	26/8/2012 0:31	60.4	27/8/2012 1:41	56.9		
3/8/2012 6:16 3/8/2012 6:21	63.1 61.0	24/8/2012 23:26 24/8/2012 23:31		26/8/2012 0:36 26/8/2012 0:41	60.4 60.0	27/8/2012 1:46 27/8/2012 1:51	56.7 56.7		
23/8/2012 6:21	61.0 62.1	24/8/2012 23:31 24/8/2012 23:36		26/8/2012 0:41 26/8/2012 0:46	60.0 60.5	27/8/2012 1:51 27/8/2012 1:56	56.7 56.6		
23/8/2012 6:31	62.7	24/8/2012 23:41	60.6	26/8/2012 0:51	60.0	27/8/2012 2:01	56.5		
23/8/2012 6:36 23/8/2012 6:41	63.0 63.6	24/8/2012 23:46 24/8/2012 23:51		26/8/2012 0:56 26/8/2012 1:01	59.9 59.8	27/8/2012 2:06 27/8/2012 2:11	56.2 55.7		
3/8/2012 6:46	62.9	24/8/2012 23:56	60.7	26/8/2012 1:06	59.5	27/8/2012 2:16	55.9		
23/8/2012 6:51	63.2 63.5	25/8/2012 0:01	60.9	26/8/2012 1:11	59.3	27/8/2012 2:21	58.0		
23/8/2012 6:56 23/8/2012 23:01	63.5 61.4	25/8/2012 0:06 25/8/2012 0:11	60.4 60.6	26/8/2012 1:16 26/8/2012 1:21	59.9 60.0	27/8/2012 2:26 27/8/2012 2:31	56.3 55.8		
23/8/2012 23:06	62.3	25/8/2012 0:16 25/8/2012 0:21	61.1 60.6	26/8/2012 1:26 26/8/2012 1:31	60.1 59.4	27/8/2012 2:36 27/8/2012 2:41	55.7		
23/8/2012 23:11					59.7	27/08/2012/20/11	56.4		


am


Contract no. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass Sampling, Field Measurement and Testing Works (Stage 2)

Contract no. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass Sampling, Field Measurement and Testing Works (Stage 2)

After checking work activities of contractor HY/2009/19, it was found that no major noisy activities were being performed. Exceedances were considered to be contributed by demolition works near the Oil Street Community Liaison Centre.

Appendix 6.1

Event Action Plans

Event/Action Plan for Construction Noise

EVENT		A	CTION	
	ET	IEC	ER	CONTRACTOR
Action Level being exceeded	 Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals. (The above actions should be taken within 2 working days after the exceedance is identified)

EVENT		AC	CTION	
	ET	IEC	ER	CONTRACTOR
Limit Level being exceeded	 Inform IEC, ER, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified) 	actions; 2. Review Contractor's remedial actions whenever necessary to	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

Event / Action Plan for Construction Air Quality

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Check monitoring data submitted by ET; Check Contractor's working method. (The above actions should be taken within 2 working days after the exceedance is identified) 	Notify Contractor. (The above actions should be taken within 2 working days after the exceedance is identified)	 Rectify any unacceptable practice; Amend working methods if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
2. Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
LIMIT LEVEL				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
2. Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

Event and Action Plan for Marine Water Quality

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next working day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Limit level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC, contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3working days; Implement the agreed mitigation measures; As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities. (The above actions should be taken within 1 working day after the exceedance is identified)

Event and Action Plan for Odour Patrol

Event		ACTION
	Person-in-charge of Odour Monitoring	Implementation Agent Identified by CEDD
Action Level		
Exceedance of Action Level	 Identify source/reason of exceedance; Repeat odour patrol to confirm finding. 	 Carry out investigation to identify the source/reason of exceedance; Rectify any unacceptable practice Implement more mitigation measures if necessary; Inform EPD or MD if exceedance is considered to be caused by expedient connections or floating debris.
Limit Level		
Exceedance of Limit Level	 Identify source / reason of exceedance; Repeat odour patrol to confirm findings; Increase odour patrol frequency; If exceedance stops, cease additional odour patrol. 	 Carry out investigation to identify the source/reason of exceedance. Investigation shall be completed within 2 weeks; Rectify any unacceptable practice; Formulate remedial actions; Ensure remedial actions properly implemented; If exceedance continues, consider what more/enhanced mitigation measures shall be implemented; Inform EPD or MD if exceedance is considered to be caused by expedient connections or floating debris.

Appendix 6.2

Summary for Notification of Exceedance

Ref. No.	Date	Time	Location	Construction Noise Level	Unit	Action Level	Limit Level	Follow-up action	
X_10N096	24-Aug-12	10:25	M6 - HK baptist Church henrietta Secondary School	71	Leq(30-min)	when one documented complaint	-	Possible reason:	No construction activity and traffic nearby was observed during monitoring. Traffic noise contributed as a major noise source during monitoring.
						was received.		Remarks / Other Obs:	Reviewed the trend of noise measurement results and analysis of contractor's working procedure. Review the basline noise level at this monitoring station. No construction work for Contract no. HY/2009/19 was conducted during the measurement; it is concluded that the exceedance was not due to the Project but to traffic noise nearby.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Leve	Limit Level	Follow-up action	
X_10C406	28-Jul-12	Mid-Flood	C7	DO (mg/L) Turbidity (NTU)	<u>2.59</u> 1.59	3.02 11.35	12.71	taken:	Accumulation of floating debris near monitoring station Checking with Contractor's records, TS2 dredging and TS1 removal work were conducted on that day. Floating debris near to intake was observed during monitoring. Checking with the Contractor and RSS daily records, the silt screen and silt curtain were in proper condition.
				SS (mg/L)	4.50	18.42	27.54	Remarks / Other Obs:	No further exceedance was recorded in the next consecutive monitoring. In view that silt curtains for dredging works were in proper condition and no odour was detected during monitoring, the exceedance was possibly related to the accumulation of floating debris near monitoring station. Contractor was reminded the water quality near to the intake should be provided sufficient inspection and prevent the accumulation of floating rubbish. The exceedance was considered not project related.
X_10C407	30-Jul-12	Mid-Ebb	C5w	DO (mg/L)	4.21	3.02	2.44	Possible reason:	Possible in relation to cleaning of screen panels at SHK and Wan Chai WSD Pumping Station was recorded on 30 Jul.
				Turbidity (NTU)	16.40	11.35	12.71	Action taken / to be taken:	Checking with Contractor's records, filling in WCR2 and substructure works for the New Ferry Pier were conducted on that day. Reviewing the results at the monitoing stations nearer than C5w, no exceedance was recorded. Checking with the Contractor and RSS daily records, the silt screen was in proper condition.
				SS (mg/L)	30.50	18.42	27.54	Remarks / Other Obs:	The exceedances was possibly due to cleaning of screen panels at the pumping station. Materials from the cleaning of screen panels was unavoidably collected during monitoring. The exceedance was considered as not project related.
X_10C408	4-Aug-12	Mid-Ebb	C8	DO (mg/L)	5.21	3.02	2.44	Possible reason:	Accumulation of particles discharged from outfalls near monitoring station
				Turbidity (NTU)	9.56	11.35	12.71	Action taken / to be taken:	Immediate repeated measurement to confirm the exceedance. Confirmed with Contractor, no marine work was conducted on that day.
				SS (mg/L)	19.50	18.42	27.54	Remarks / Other Obs:	No further exceedance was recorded in the next consecutive monitoring. In view that reclamation work by contractor HY/2009/11 was confirmed completed by RSS on 4 Jan 2012 and contractor of HY/2009/19 confirmed that no related marine construction activity was performed during time of monitoring, the exceedance was considered to be caused from the accumulation of particles discharged from the outfalls near monitoring station and not related to the Project works.
X_10C409	6-Aug-12	Mid-Flood	C3	DO (mg/L)	3.54	3.02	2.44	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station
				Turbidity (NTU)	8.23	11.35	12.71	Action taken / to be taken:	Checking the work conducted near the monitoring station, no filling at HKCEC water channel was conducted on that day. Checking with the Contractor and RSS daily records, the silt screen and silt curtain were observed in proper condition.
				SS (mg/L)	23.00	18.42	27.54	Remarks / Other Obs:	No further exceedance was observed in the next consecutive monitoring. In view that no marine work was conducted on that day and the silt screen was in proper condition, the exceedance was considered not project related.
X_10C410	15-Aug-12	Mid-Ebb	C8	DO (mg/L)	4.92	3.02	2.44	Possible reason:	Accumulation of particles discharged from outfalls near monitoring station
				Turbidity (NTU)	19.75	11.35	12.71	Action taken / to be taken:	Immediate repeated measurement to confirm the exceedance. Confirmed with Contractor, no marine work was conducted on that day.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Leve	Limit Level	Follow-up action	
				SS (mg/L)	57.50	18.42	27.54	Remarks / Other Obs:	No further exceedance was recorded in the next consecutive monitoring. In view that reclamation work by contractor HY/2009/11 was confirmed completed by RSS on 4 Jan 2012 and contractor of HY/2009/19 confirmed that no related marine work was performed during time of monitoring, the exceedance was considered to be caused from the accumulation of particles discharged from the outfalls near monitoring station and not related to the Project works.
X_10C411	20-Aug-12	Mid-Flood	C4w	DO (mg/L)	2.86	3.02	2.44	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station
				Turbidity (NTU)	1.13	11.35		Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedance. Repeated the measurement to confirm the result. No odour nuisance was detected during DO monitoring. Checked with contractor works, no marine work was conducted on that day.
				SS (mg/L)	5.00	18.42	27.54	Remarks / Other Obs:	No further DO exceedance was recorded in the next consecutive monitoring. In view that there was no marine work and no odour was detected during monitoring, it was considered not related to Project works.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measure	Action Leve	Limit Level	Follow-up action	
X_W332	28-Jul-12	Mid-Ebb	WSD21	DO (mg/L)	3.13	3.17		Possible reason:	Possible in relation to the low flow and low water depth during ebb tide
				Turbidity	6.43	10.01	11.54	Action taken / to be taken:	Immediate repeated in-situ measurements had conducted to confirm the exceedances. No odour nuisance was noted during DO monitoring. Checked with Contractor's work on 28 July, filling gap besides well A and sea wall block at WSD pumping station was conducted on that day. Checking with contractor's inspection record, the silt screen was in proper condition on that
				Suspended Solid	2.50	16.26	19.74	Remarks / Other Obs:	day. No dredging work was conducted on that day. In view that the silt screen was in proper condition and no odour was detected during monitoring, it was considered not related to Project works.
X_W333	4-Aug-12	Mid-Flood	WSD21	DO (mg/L)	4.58	3.17	2.63	Possible reason:	Possible in relation to cleaning of screen panels at SHK and Wan Chai WSD Pumping Station was recorded on 4 Aug.
				Turbidity	4.03	10.01	11.54	Action taken / to be taken:	 Checking with contractor's works on 4 Aug, the marine works below were undertaken: Filling at WCR2 Substructure works in New Ferry Pier Reviewing the results at the monitoring stations nearer than WSD 21, no exceedance was recorded. Checking with the contractor's inspection record, the silt screen was in proper condition on 4 Aug 12.
				Suspended Solid	17.00	16.26	19.74	Remarks / Other Obs:	The exceedances was possibly due to cleaning of screen panels at the pumping station. Materials from the cleaning of screen panels was unavoidably collected during monitoring. The exceedance was considered as not project related.
X_W334	6-Aug-12	Mid-Flood	WSD21	DO (mg/L)	4.49	3.17	2.63	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality
				Turbidity	2.89	10.01	11.54	Action taken / to be taken:	monitoring station Checking with contractor's works on 6 Aug, WCR2 reclamation was conducted on that day. Checking with contractor's inspection record, the silt screen was in proper condition on 6 Aug 12. Reviewing the results at the monitoring stations nearer than WSD21, no exceedance was recorded.
				Suspended Solid	18.00	16.26	19.74	Remarks / Other Obs:	No further exceedance was observed in the next consecutive monitoring In view that the water quality at monitoring stations located nearest the marine work site were well below the Action level and the silt screen was in proper condition, the exceedances was considered not project related.
X_W335	25-Aug-12	Mid-Flood	WSD19	DO (mg/L)	4.50	3.17	2.63	Possible reason:	Natural variation or changes of water quality in the vicinity of the water quality monitoring station
				Turbidity	7.86	10.01	11.54	Action taken / to be taken:	Checking with contractor's works on 24 Aug, rockfilling in water channel was conducted on that day. Checking with contractor's inspection record, the silt screen was in proper condition on 25 Aug 12. Reviewing the results at the monitoring stations nearer than WSD19, no exceedance was recorded.
				Suspended Solid	16.50	16.26	19.74	Remarks / Other Obs:	No further exceedance was observed in the next consecutive monitoring. Ir view that the water quality at monitoring stations located nearest the marine work site were well below the Action level and the silt screen was in proper condition, the exceedances was considered not project related.

Action Level - Value highlight in blue colour Limit Level - Value highlight in red colour

Ref no.	Date	Tidal	Location	Depth	Parameters (Unit)	Measured	Action Level	Limit Level	Follow-up action	
X_10D63	28-Jul-12	Mid-Flood	Ex-WPCWA SE	Middle	DO (mg/L)	3.26	3.55	3	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert
										near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted
										during the DO monitoring. Checked with Contractor's works, there was no marine
									Domarka / Other Ohai	works undertaken at ex-WPCWA on 28 July 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X 10D64	28-Jul-12	Mid-Flood	C7	Middle	DO (mg/L)	2.68	3.31	2 57	Possible reason:	Accumulation of floating debris near monitoring station
X_10201	20 001 12	inia i loca	01	inidalo	00 (mg/L)	2.00	0.01		Action taken / to be taken:	Checking with Contractor's records, TS2 dredging and TS1 removal work were
										conducted on that day. Floating debris near to intake was observed during
										monitoring.
										Checking with the Contractor and RSS daily records, the silt screen and silt curtain
										were in proper condition.
									Remarks / Other Obs:	No further exceedance was recorded in the next consecutive monitoring. In view that
										silt curtains for dredging works were in proper condition and no odour was detected
										during monitoring, the exceedance was possibly related to the accumulation of floating debris near monitoring station. Contractor was reminded the water quality
										near to the intake should be provided sufficient inspection and prevent the
										accumulation of floating rubbish. The exceedance was considered not project
										related.
X_10D65	1-Aug-12	Mid-Ebb	Ex-WPCWA SW	Surface	DO (mg/L)	3.04	3.19	3.1	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert
										near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted
										during the DO monitoring. Checked with Contractor's works, there was no marine works undertaken at ex-WPCWA on 1 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not
										related to Project works.
X_10D66	1-Aug-12	Mid-Ebb	Ex-WPCWA SE	Surface	DO (mg/L)	3.02	3.55	3	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert
										near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted
										during the DO monitoring. Checked with Contractor's works, there was no marine works undertaken at ex-WPCWA on 1 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not
										related to Project works.
X_10D67	1-Aug-12	Mid-Ebb	Ex-WPCWA SW	Middle	DO (mg/L)	2.99	3.19	3.1	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert
										near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted
										during the DO monitoring. Checked with Contractor's works, there was no marine
									Remarks / Other Obs:	works undertaken at ex-WPCWA on 1 Aug 2012. In view that there was no marine activities at ex-WPCWA, it was considered not
									Remarks / Other Obs.	related to Project works.
X 10D68	1-Aug-12	Mid-Ebb	Ex-WPCWA SE	Middle	DO (mg/L)	3.12	3.55	3	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert
_	Ŭ				, <i>, ,</i>			-		near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted
										during the DO monitoring. Checked with Contractor's works, there was no marine
										works undertaken at ex-WPCWA on 1 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not
X 10D69	1-Aug-12	Mid-Ebb	Ex-WPCWA SW	Bottom	DO (mg/L)	3.07	3.31	3 25	Possible reason:	related to Project works. Possible in relation to the accumulation of organic particles discharged from culvert
<u></u>	17.0g-12			Dottom	50 (mg/L)	3.07	0.01	5.25		near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted
										during the DO monitoring. Checked with Contractor's works, there was no marine
										works undertaken at ex-WPCWA on 1 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not
										related to Project works.

Ref no.	Data	Tislal	Lesster	Dauth	Demonstere (11:10)	Manageral				
	Date	Tidal	Location	Depth	Parameters (Unit)					Describle in relation to the account dation of annualization which a discharge discharge address
X_10D70	1-Aug-12	Mid-Ebb	Ex-WPCWA SE	Bottom	DO (mg/L)	2.81	3.76		Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contractor's works, there was no marine
										works undertaken at ex-WPCWA on 1 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D71	6-Aug-12	Mid-Flood	Ex-WPCWA SE	Middle	DO (mg/L)	3.02	3.55	3	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contractor's works, there was no marine
										works undertaken at ex-WPCWA on 6 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D72	13-Aug-12	Mid-Flood	Ex-WPCWA SE	Middle	DO (mg/L)	3.41	3.55	3	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert
									Action taken / to be taken:	near monitoring station Repeated the measurement to confirm the result. No odour nuisance was noted
									Action taken / to be taken.	during the DO monitoring. Checked with Contractor's works, there was no marine works undertaken at ex-WPCWA on 13 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not
										related to Project works.
X_10D73	20-Aug-12	Mid-Ebb	Ex-WPCWA SW	Middle	DO (mg/L)	2.23	3.19	3.1	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert
										near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contractor's works, there was no marine works undertaken at ex-WPCWA on 20 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not
										related to Project works.
X_10D74	20-Aug-12	Mid-Ebb	Ex-WPCWA SE	Middle	DO (mg/L)	2.87	3.55	3	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contractor's works, there was no marine
										works undertaken at ex-WPCWA on 20 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not
										related to Project works.
X_10D75	22-Aug-12	Mid-Ebb	Ex-WPCWA SE	Middle	DO (mg/L)	3.42	3.55	3	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert
									Action taken / to be taken:	near monitoring station Repeated the measurement to confirm the result. No odour nuisance was noted
										during the DO monitoring. Checked with Contractor's works, there was no marine
										works undertaken at ex-WPCWA on 22 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D76	22-Aug-12	Mid-Ebb	Ex-WPCWA SE	Bottom	DO (mg/L)	3.48	3.76	3.76	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted
										during the DO monitoring. Checked with Contractor's works, there was no marine works undertaken at ex-WPCWA on 22 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D77	25-Aug-12	Mid-Flood	C7	Middle	DO (mg/L)	3.09	3.31	2.57	Possible reason:	Possible in relation to the low flow and low water depthduring ebb tide
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted
	1									during the DO monitoring. Checked with Contractor's works, TS2 dredging and
										rockfilling and removal rocks in eastern breakwater were conducted on that day. Checked with Contractor inspection's record, silt screen and silt curtain were in
										proper condition.
	I	1	1		1	1 1	I			h .h

Ref no.	Date	Tidal	Location	Depth	Parameters (Unit)	Measured	Action Level L	imit Level	Follow-up action	
									Remarks / Other Obs:	No further DO exceedance was recorded in the next consecutive monitoring. In view that silt curtains for dredging works were in proper condition and no odour was detected during monitoring. The exceedance was considered not related to Project works.
X_10D78	25-Aug-12	Mid-Flood	Ex-WPCWA SE	Middle	DO (mg/L)	3.00	3.55	3	Possible reason: Action taken / to be taken:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contractor's works, there was no marine works undertaken at ex-WPCWA on 25 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D79	27-Aug-12	Mid-Flood	Ex-WPCWA SE	Middle	DO (mg/L)	3.52	3.55	3	Possible reason: Action taken / to be taken:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contractor's works, there was no marine works undertaken at ex-WPCWA on 27 Aug 2012.
									Remarks / Other Obs:	In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.
X_10D80	27-Aug-12	Mid-Ebb	Ex-WPCWA SE	Middle	DO (mg/L)	3.37	3.55	3	Possible reason:	Possible in relation to the accumulation of organic particles discharged from culvert near monitoring station
									Action taken / to be taken:	Repeated the measurement to confirm the result. No odour nuisance was noted during the DO monitoring. Checked with Contract works, there was no marine works undertaken at ex-WPCWA on 27 Aug 2012.
									Remarks / Other Obs:	No further DO exceedance was recorded in the next consecutive monitoring. In view that there was no marine activities at ex-WPCWA, it was considered not related to Project works.

Appendix 7.1

Complaint Log

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	tcome	Status
100321a	21/3/2010	ICC Case no. 1-224618029, Ms. Tsang	Location near Tin Hau	Complaint regarding the loud noise and dark smoke in the course of dredging works on 21 March 2010 (Sunday).		A valid Construction Noise Permit no. GW-RS0119-10 was granted from EPD since 18 th Feb. 2010 for the dredging works which carry out at area for North Point Reclamation.	Closed
					2)	Officer from Marine Department, Police and EPD's officer attended the scene for inspection and investigation.	
					3)	The Contractor (CHEC-CRBC JV) strictly comply all the conditions in CNP and take all mitigation measures in order to minimize the potential impacts to surrounding sensitive receivers. A formal letter was issued out by CHEC-CRBC JV and to explain the status of the recent construction activities.	
					4)	No limit level exceedance was recorded on the noise measurement during day time and evening time noise measurement on 23 March 2010. Additional restrict hours noise monitoring at Causeway Bay Community and City Garden was conducted on 5 April 2010 (Public Holiday). No limit level exceedance was recorded in the monitoring.	
					5)	No further complaints were received from Mr. Tsang in the reporting month. The complaint is considered closed.	
100321b	21/3/2010	Unknown		from dredging activities on 21/3/2010 (Sunday) until 2220 hours and between 1920-1946 hours in the evening of 22 March		A valid Construction Noise Permit no. GW-RS0119-10 was granted from EPD since 18 th Feb. 2010 for the dredging works at area for North Point Reclamation during general holidays including Sunday between 0700-2300 hours and any day not being a general holiday between 1900-2300hours. It is complied with the condition of CNP.	Closed
				2010(Monday).	2)	Officer from Marine Department, Police and EPD's officer attended the scene for inspection and investigation.	
					3)	No limit level exceedance was recorded on the noise measurement during day time and evening time noise measurement on 23 March 2010. Additional restrict hours noise monitoring at Causeway Bay Community and City Garden was conducted on 5 April 2010 (Public Holiday). No limit level exceedance was recorded in the monitoring.	
					4)	No further complaints were received in the reporting month. The complaint is considered closed.	

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	tcome	Status
100504	4/5/2010	Public complainant received by ICC (ICC case: 1- 233384048)	Watson Road	Complaint on the noise nuisance due to the large scale of dredging machine (face to Island East Corridor) in particular the hours 1900 to 0800 and request to reduce the noise level.	1) 2)	Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0119-10 for their dredging works. Contractor has implemented mitigation measures to reduce the working hour not later than 2230. According to RSS 's record, no more daytime and night time dredging since the departure of the split hopper barge	Closed
					3)	from the workplace on 29 April 2010 at 1900 hrs to 5 May 2010. No further complaints were received in the reporting	
					-,	month. The complaint is considered closed.	
100731	31/7/2010	by ICC (CC Case:	Oil Street to Watson Road	due to the dredging works.	,	Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0371-10 for their dredging works.	Closed
		1-250702681)		operated concurrently.	2)	There was only 1 grab dredger operated by Contractor within NPR project site area for dredging works.	
					3)	No noise exceedance was recorded at noise monitoring station at Victoria Centre on 27 July and 3 August 2010 during daytime and evening time period.	
					4)	It is considered as invalid from the EP and CNP point of view.	
100812	12/8/2010	Mr. Wong, Harbour Heights (Management) Ltd.	Harbour Heights	Management office received their resident complained on the noise nuisance from the dredging works at the marine	1)	Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0371-10 for their dredging works. Contractor has implemented mitigation measures to reduce the working hour not later than 2230.	Closed
			1	works area adjacent to the Harbour Height during the period from 0700 to 2200.	2)	No noise exceedance was recorded at noise monitoring station at Victoria Centre on 10 and 17 August 2010 during daytime and evening time period.	
						It is considered as invalid complaint. No further complaints were received in the reporting month. The complaint is considered closed.	

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Ou	tcome	Status
101108	8/11/2010	Mr. Nip received by ICC (CC Case)	Sai Wan Ho	Visual concern around the seaside silt screen outside the WSD freshwater intake pump at Sai Wan Ho (Monitoring station ref no WSD15)	1) 2)	Contractor for HY/2009/11has been regular checked of condition and removal of trapped rubbish before the dismantling of the floating silt screen to be replaced by wall mount silt screen. Follow-up action had been immediately carried out to check and clear the floating refuse around the seaside silt screen after receipt of the complaint.	Closed
					3)	Removal of seaside silt screen outside the WSD freshwater intake (WSD15) by contractor HY/2009/11 was checked and confirmed dated 9 November 2010. Silt screen has been deployed into the existing steel frame at WSD15 for the protection of WSD salt water intake.	
101110	10/11/2010	Mr. Wong, Harbour Heights (Management) Ltd.	Harbour Heights	Management office received their resident complained on the noise nuisance from the power mechanical equipment during the 0700 to 2200hrs	,	Contractor for HY/2009/11 was granted valid Construction Noise Permit no. GW-RS0870-10 for their dredging works during evening time. Contractor has implemented mitigation measures to reduce the working hour not later than 2230.	Closed
					2)	No noise exceedance was recorded at noise monitoring station at Victoria Centre on 4 and 10 November 2010 during daytime and evening time period.	
					3)	It is considered as invalid complaint. No further complaints were received in the reporting month. The complaint is considered closed.	
101203	3/12/2010, 01:45a.m.	The resident of Block 11, City Garden by ICC referral from Marine	North Point	Bad odour was generated from the dredging plant off North Point	1)	The first investigation was carried out by Marine Department patrol in the morning on 3 Dec 2010 at around 10:00 and revealed that a few working barges were anchoring in the vicinity without carrying out dredging work.	Closed
		Department			2)	A further specific investigation inspection on contractor's backhoe barge in the vicinity of City Garden was jointly conducted with Engineer Representatives (AECOM/RSS), and ET on 8 Dec 2010 at 11:30. No bad odour was noted during the investigation.	
					3)	Routine dredging operation of the backhoe barge was performed during the jointed investigation inspection and it was revealed that no bad odour was attributed by the dredged materials inspected.	
101206	6/12/2010	Ms Lui, the resident of 27/F, Block 10, City		Two barges were generating noise at 22:00 on 6 December 2010 in which the noise from	1)	ET confirmed the following information with resident site staff on the complaint: • It was referred to the filling operation at North Point	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
		Garden by ICC (ICC case: 1- 266039336)		filling operation was louder than the traffic noise & visual impact was generated due to the spot- light pointing directly to the complainant flat, suspected the filling operation was part of Wanchai Development Phase II; Complainant also raised the same complaint to District Councillor, Mr. Hui on 7 Dec 2010 regarding the night-time noise and suspected earlier start of work at 06:30. Complaint also requested for limiting the plant operating hours from 09:00- 21:00.	 Reclamation of Central Wan Chai Bypass site area instead of part of Wanchai Development Phase II; Two derrick barges were in operation at the time of complaint for placing 400 rockfill onto the excavation trench and for levelling the formation level to receive the pre-cast caisson seawall; Flood light on the control mast of derrick barge have no lighting shields for the prevention of glare of flood lights; No starting work on 7 Dec 2010 at 0630hours. PME used in restricted hours were checked and confirmed compliant with valid CNP no. GW-RS0870-10. The noise level recorded on 6 Dec 2010 was complied with the noise criteria during restricted hour; It was found that the occasional noise nuisance might be caused by the hitting or scratching onto the Grade 400 rockfill; The absence of the lighting shields at flood light results in visual glare to the complainant at night-time. Contractor was advised to minimize the finishing time of placing Grade 400 rockfill at 2100hrs and switch off all unnecessary flood lights apart from the light for the safety and security purpose; No further complaint was received after implementation of proposed measures 	
110415	15/04/2011	The resident, Mr Law at Victoria Centre by ICC (ICC#1- 281451236)	North Point	A dust generation and a concern of mosquitoes breeding complaint in which suspected the filling operation was part of North Point Reclamation.	 The concerned stockpile was a working stockpile under Contract HY/209/15 and was covered at night time after work. Water spraying on the haul road and potential dust generating material at least 4 times a day was conducted by contractor that complies with the requirement. It is considered invalid but preventive actions can be taken because the stockpile is relatively large and easily visible by complainant. It was recommended that increasing the frequency of water spraying shall be conducted to all potential dust generating materials and activities. Besides, Contractor should consider to cover the idle part of the stockpile The concern of mosquitoes breeding is out the scope of EM&A, the follow-up action is not reported in this monthly EM&A report. 	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	come	Status
110419	19/04/2011	Ms Chiu at Victoria Centre at Victoria Centre by ICC (ICC# 1- 272874759)		The episode of night noise on 19/4/11 and 20/4/11 at 2:50 am and the noise lasted for 30 minutes per night.	2)	According to the RSS's record, there was no construction works undertaken under the EP-356/2009 during the concern time period. There was no abnormal real-time noise monitoring data recorded in RTN1 - FEHD Hong Kong Transport Section Whitefield Depot which is next to the Victoria Centre.	Closed
110617	9/06/2011	Mr. Law from Victoria Centre Management Office	North Point	An odour nuisance suspected generating from the discharge point – Channel T at Watson Road in part of the site area was related to CWB under Contract no. HY/2009/11	.,	It is considered as invalid complaint under this Project. The complaint was received by ET on 13 Jun 2011. During the weekly site inspection on 7 and 17 June 2011, there was no any odour impact detected in the site area. According to the site record, there was muddy water discharged from the unknown source at upstream of Channel T during heavy rainstorm. No any site surface runoff to the Channel T and out of site boundary was observed in the inspection. In order to prevent muddy water washing out to the water body under heavy rainstorm, a silt curtain was installed at the outfall of the channel by Contractor. ET confirmed with the Resident Site Staff that a silt curtain was installed at the outfall of the channel to prevent muddy water washing out to the water body under heavy rainstorm. Besides, regular cleaning of refuse in the channel has been conducted by Contractor.	Closed
					5)	Channel T and no source of odour nuisance was identified at site. As such, it was concluded that the source of odour nuisance was not related to the Project works. Although no source of odour nuisance was identified at site, the muddy water and dirt from the unknown source at upstream of Channel T may cause a potential smell during low tide and low water flow. Contractor was reminded to remove the silt curtain at the channel on non-rainy day so as to avoid the accumulation of the sediment and dirt in the water channel.	

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	tcome	Status
110709	09/07/2011	Mr. Au from City Garden Management Office	North Point	A complaint letter to Contractor HY/2009/11 was raised by Cayley Property Management Limit on 9 July 2011 regarding a series of pump breakdown events at seawater intake of City Garden on 4, 6, 7 and 8 July 2011. A lot of rubbish such as plastic bags, nylon bags, nylon- wire mesh was observed sucking from the seawater intake at the seawater front of Block 7 of City Garden affecting the operation of seawater pump plant.	2)	Contractor conducted formation works for installation of caisson seawall at C27, C28, C29 and C30 on 4, 6, 7 and 8 July 2011 and no dredging work was conducted during this time period Water mitigation measures of an 80m long silt curtain at the site boundary in front of City Garden Relocation of silt curtain and silt curtain at the outfall of the channel were provided and maintained to accommodate the site works. All vessels are equipped with rubbish collection facilities and disposed the rubbish regularly. Also, daily cleaning actions had been taken by contractor to minimize floating refuse within the site boundary. Moreover, it has been reported several times that discharged from outfall pipeline outside the site boundary near the intake of the pump maybe considered as another source of rubbish generation. Referring to the record provided by Cayley Property	Closed
					4)	Management Limit, the trapped rubbish was unlikely generated from the construction works. It was considered that complaint is invalid and not related to project.	
110710	09/07/2011	Complainant by ICC (ICC no. 1- 301520309	North Point	It was received at 00:56 on 10 July 2011. There was complained a derrick barge unloading rockfill material off the shore facing the Harbour Grant HK Hotel causing noise nuisance.	,	ET confirmed with the Resident Site Staff that the complaint was referred to Contract HY/2009/15 for the loading and unloading of fill material at two barges operation in the sea at around 300m adjacent to Island Eastern Corridor (Oil Street Chainage) where is outside the Site of HY/2009/15 in the period of around 19:45 on 9 July to 1:00 on 10 July 2011.	Closed
					2)	The material loading and unloading operation processed in restricted hours was checked without a valid CNP. It was found that the operation was due to an unexpected water leakage of the hopper barge and considered an incident.	
					3)	According to the incident report provided from RSS on 20 July 2011, around 7:30 pm the barge S22 was inclined slightly and slightly water leakage might occur. Due to marine safety concern, the hopper barge would open the hopper to release the contained materials in order to reduce the weight and stabilize the barge. In consider of slight water leakage, the operator decided to use the nearby Derrick Barge ST32 to help for unload the general fill materials first and the unloading operation was started at around 7:45pm, and end at around 1:00 am. Contractor was reminder to provide frequent check of vessel condition	

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	come	Status
						so as to prevent recurrent by barge defect	
110723a	23/07/2011	Ms. Law at Victoria Centre by ICC no. 1- 303887687		She concerned that Highways Department published a notice in their Management Office about construction works will be conducted from 0700 hours to 2300 hours during July to December 2011 including	1) 2)	It was referred by AECOM to ET on 28 July 2011 RSS confirmed that the notice was prepared by Victoria Centre's Management office to their resident and the advice was only given on the extension construction works (for Contract HY/2009/15) to 7am-9pm from Monday to Saturday except Public Holidays and Sundays.	
				Saturday, Sunday and public holiday.	3)	As a mitigation measure to minimize the noise nuisance in the vicinity of the residents, rock breaking activities will be started at 8am and is expected to be completed by mid- August 2011.	Closed
					4)	No noise exceedance was recorded at construction noise monitoring station at Victoria Centre on 19 and 25 July 2011 during daytime while breaking and excavation works were undertaken during monitoring.	
				5	5)	In conclusion, it was related to the construction works under Contract HY/2009/15 and mitigation measure was provided. The complainant was satisfied with the arrangement and no further complaint was received after proposed measures.	
110723b	23/07/2011	Ms. Yau at Block 2, Victoria Centre by ICC no. 1- 304013959	North Point	Reclamation work was conducted at Causeway Bay Typhoon Shelter at 7am on 23 July 2011. She complained that the works shall be started later to minimize the noise nuisance	1) 2)	It was referred by AECOM to ET on 8 August 2011 With reference to the construction noise monitoring at Vitoria Centre, no exceedance was recorded on 19 and 25 July 2011 during daytime while breaking and excavation works were undertaken during monitoring	
				to the vicinity of the residents in early morning	3)	As a mitigation measure to minimize the noise nuisance in the vicinity of the residents, rock breaking activities will be started at 8am and is expected to be completed by mid- August 2011.	Closed
					4)	In conclusion, it was related to the construction works under Contract HY/2009/15 and mitigation measure was provided. The complainant was satisfied with the arrangement and no further complaint was received after proposed measures.	
110727a	27/07/2011	Mr. Law from Victoria Centre Management Office by ICC no. 1-304616162	North Point	It was complained by Mr. Law from Victoria Centre Management Office on 27 July 2011 regarding construction noise generated by the construction operations of	2)	It was referred by AECOM to ET on 28 July 2011 RSS confirmed to start the rock breaking activities for Contract HY/2009/15 at 8am as a mitigation measure to minimize the noise nuisance in the vicinity of the residents. No noise exceedance was recorded at construction noise	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Ou	tcome	Status
				Central-Wanchai Bypass at noon rather than in morning at 7am.		monitoring station at Victoria Centre on 25 July and 4 August 2011 during daytime while breaking and excavation works were undertaken during monitoring.	
					4)	In conclusion, it was related to the construction works under Contract HY/2009/15 and mitigation measure was provided. No further complaint from complainant was received after proposed the mitigation measure.	
110727b	27/07/2011	Ms. Chiu by ICC	North Point	Noise nuisance from the excavation works for the	1)	It was referred by AECOM to ET on 28 July 2011	
		no.1-304615409		Highways Department adjacent to the Victoria Centre was conducted from 7am	2)	With reference to the construction noise monitoring at Vitoria Centre, no exceedance was recorded on 25 July and 4 and 10 August 2011 during daytime while breaking and excavation works were undertaken during monitoring.	
					3)	As a mitigation measure to minimize the noise nuisance in the vicinity of the residents, rock breaking activities will be started at 8am.	
	08/08/2011				4)	However, complainant did not satisfy with the response on the noise nuisance from the rock-breaking during morning in front of Victoria Centre and then further complaint via 1823 on 7 August 2011.	Closed
					5)	Highways contacted the complainant on 15 August 2011 that the noisy rock breaking operation had been completed.	
					Re	marks: There will be counted as two complaints in this complaint log.	
110810	10/08/2011	Mr. Yip by ICC	North Point	Muddy water was discharged	1)	It was referred by AECOM to ET on 17 August 2011.	Closed
		no. 1 – 306740207		from work site to the seafront near Oil Street during heavy rain. The environmental protection measures were not good enough and are needed to rectify.	2)	Confirmed with RE, Muddy water was caused by a heap of earth being washed to the sea by heavy rain. The heap of earth was referred as a small stockpile placed close to the seafront in front of Oil Street within the site area under handover transition period from contract HY/2009/11 to contract HY/2009/19. The necessary mitigation measures to protect the small stockpile against rainfall were missing at the time of complaint.	
					3)	Due to the missing of mitigation measures to protect the small stockpile during handover transition period, loose material was washed into the harbour when heavy rain came. Muddy water was formed and dispersed in the sea that caused the water quality and visual concern to the public. The complaint was considered as valid. Contractors were advised to relocate the loose materials	

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	come	Status
						away from the coastline as far as practicable. Any loose material placed which needed to be placed near the coastline shall be properly compacted or covered as appropriate. To avoid any further environmental deficiency, Contractors shall ensure all necessary environmental mitigation measures will not be missing during site area handover.	
110826	26/08/2011	Grand Hyatt and a complainant by ICC	Wan Chai	Construction noise and vibration nuisance generated from the works at Convention Avenue and inside the HKCEC1 reclamation area.	1) 2)	Confirmed with the Resident Site Staff that the construction works were referred to the Contractor HK/2009/01. The Excavator mounted breaker at Convention Avenue and Drilling rig at HKCEC1 reclamation area were the dominant construction noise source during this period.	
					3)	The drilling rig at HKCEC1 reclamation area and excavator mounted breaker at Convention Avenue were then temporary suspended after received the complaint.	
					4)	Investigation revealed that the erected noise barrier (4m cantilevered movable noise barrier for the drilling rig and 1m movable noise barrier for the excavator mounted breaker) were not located close to the plants to provide adequate noise screening.	Closed
					5)	Contractor was advised to avoid concurrent operation of construction plants at site. Further enhancement of movable noise barriers at HKCEC1 and providing noise enclosure for the excavator mounted breaker at Convention Avenue are needed.	
					6)	Further site investigation and checking on 31 August and 7 September 2011 revealed that the implemented noise mitigation measures were in proper and minimize the noise impact.	
110826A	26/08/2011	A complaint letter from Mr. Au of Cayley Property of City Garden	North Point	Harbor front adjacent to their cooling water intake suction which caused 3 times of system breakdown of the sea water pump on 9, 22 and 25 August 2011.	1)	 It was referred by AECOM to ET on 29 August 2011. Confirmed with the Resident Site Staff that the construction works were referred to the Contractors HY/2009/11 and HY/2009/19. The pump is located on the site area of HY/2009/19 A temporary garbage defender was installed on 23 July 2011 by HY/2009/11 and the shape of the defender was adjusted on 8 August 2011 in order to excluse the outfall. 	Closed
						 An ad hoc inspection of the effectiveness of garbage defender was conducted with RSS (CWB project 	

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Out	come	Status
						team), contractor of HY/200911 and HY/2009/19 and IECon 29 August 2011. Inspection report of it was submitted to RSS on 19 September 2011.	
						 Daily cleaning near the water intake was conducted twice a day by contractor HY/2009/19. 	
						 In response to City Garden request, the contractors have set up the temporary garbage defender in function and collect the floating refuses, but cannot eliminate all refuses, in particular the refuse coming from the seabed 	
					2)	According to the complaint letter from Cayley Property, the outcomes of the preventive measures were not complying wih their expectation.	
					3)	During on-site inspection, floating refuses observed occasionally outside the garbage defender. No conclusion could be made for the source of these floating refuses. On the other hand, some of the refuses were observed floating behind the garbage defender during investigation.	
					4)	All daily cleaning actions had been taken by contractor to minimize floating refuse inside the construction site.	
					5)	It was noted that the cooling water intake was accessible to the public. As such, fish breeding and fishing activities were observed even though a notice has already hoisted. Also, tripping of rubbish by the passers-by could result in a lot of rubbish accumulated around the intake point.	
					6)	Referring to the record provided by CPML, there were a lot of nylon/ plastic bags and nylon wire mesh that matched those rubbishes generated from the public activities.	
					7)	Contractors have fulfilled the requirement of site cleanness and no exceedance was recorded during Water Quality Monitoring. It is consider the cause of this complaint is not related to project and environmental issue in this project as well. No more complaint received after ad-hoc inspection	
111014	14/10/2011	The complainant, Ms. Tam complained via hotline 1823	Wan Chai	The polluted fumes and exhaust from the excavation by sub-contractor of CEDD on pedestrian way outside no.25 Harbour Road (in front of the Harbour Centre)	1) 2)	RSS notified ET to carry out investigation on 17 October 2011. ET confirmed with the Resident Site Staff that the location of the excavator was within site area of Contract no. HK/2009/02 undertaking the water cooling main reprovision works along the Harbour Road. The plants including the excavator have been checked before using	Closed

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
-					 at the site. However, the polluted fumes and exhausted from the excavator was caused due to insufficient maintenance of the plant after using at site. 3) After receiving the complaint, the excavator was then removal off-site for checking and maintenance works on 17 October 2011. 4) Contractor was reminded to enhance regular checking and maintenance to all plants at site. 5) RSS has replied to the complainant on the arrangement of the measures taken on 17 October 2011. Complainant was satisfied with the response and follow-up action taken by the Contractor. 	
111104	04/11/2011	Mr. Liu from LCSD complained via Contractor Complaint Hotline	Wan Chai	Complain about a tree near the site of pipe installation works outside Wan Chai Swimming Pool at Harbour Road, the status is not healthy and roof ball of two trees inside the site near Renaissance Hong Kong Harbour View Hotel at Convention Avenue were half cut.	 ET confirmed with the Resident Site Staff that A tree near the site of pipe installation works outside Wan Chai Swimming Pool at Harbour Road is the Tree no. TA1122 under Contract no. HK/2009/02. Leaves of a branch of this tree were shrivelled. Two trees inside the site near Renaissance Hong Kong Harbour View Hotel at Convention Avenue are the tree nos. A160 and A161 under Contract no. HK/2009/01. Part of roof ball of these two trees was covered by the metal plate. Independent Tree Specialists for these two inspected the trees. Contractor HK/2009/01 has taken the measure as recommend downgrading the soil level around the trunk base. Reinstating of the ground works will be conducted in mid-December 2011. For the tree no. TA1122 under Contract no. HK/2009/02, the brown leaves were removed and fenced the tree with orange net is provided to prevent damage of tree trunk by construction works. The distance between the tree and the edge of the trench is kept approximate 2m. Two Contractors were reminded to carry out regular watering to the trees within their site area. 	Waiting RSS respond
111106	06/11/2011	Police officer	Wan Chai	Construction noise generated from the site at about 6:30 a.m on 6 November 2011 and require to stop the machine operation	 According to the information reported by Contractor, one BC cutter and hoist were operated for Diaphragm Wall construction of Shatin-Central Link to inspect bentonite pipes and ensure no damages and all the joints are tightened in good position. Then, the subcontractor for Diaphragm wall, SAMBO Korean foreman stopped the engine of the BC cutter immediately. The police officer recorded the details and HKID number of the foreman and then left. Due to the different language communication between the police officer and the Korean foreman, no 	Keep in view for three months from the date of complaint recevied

Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
				was also raised out by RSS at about 7:00 same day. Besides, it was confirmed that there	a.m on the e is no valid
				HK/2009/01 and their Korean Sub-contractor, I Sub-contractor had not notified to Contractor b carrying out the inspection of the BC cutter, ho bentonite pipes at about 6:00a.m to ensure no	Korean efore ists and damages
				between Contractor and sub-contractor and pr sufficient environmental training to all foreman operators on restricted hour operation. Futhern Construction Noise Permit should be checked	ovide and nore, and in
				conducted construction works during restricted without valid Construction Noise Permit. No mo construction works were conducted during nigh period. The construction works will be conduct accordance with the time period stated in valid complaint will be kept in view of any follow-up a	hours ore at time ed in CNP. This
05/04/2012	N/A	North Point	noise from construction sites of CBTS was observed daily before	 RSS notified ET on 5 April 2012. ET confirmed with the Resident Site Staff th works were performed during the concerned performed during the concerned performed during the concerned performed during the results of noise monitorin M3a), no exceedance was recorded during da and the noise level was below 75dB(A). Site in HY/2009/15 was conducted on 10 April 2 condition of noise mitigation measures around found satisfactory. RSS confirmed that no performed during the concerned period. The included drilling, diaphragm wall constr excavations. HyD made a reply to the complainant on 16 A 	eriod. g (M2b and ytime period ispection for 2012. The d CBTS was pilings were major works uction and pril 2012 via CBTS were
	Complaint	Complaint and Received By	Complaint and Received By Complainant	Complaint and Received By Complainant 05/04/2012 N/A North Point A complaint regarding excessive noise from construction sites of CBTS was observed daily before 7:30am except on public holidays, and the noise source was mainly from piling works. The complainant requested that construction works should start after 8:30am to avoid nuisance to nearby residents and a speedy follow-up and reply.	Complaint and Received By Complainant CNP was checked by the police officer. CNP was checked by the police officer. 2) ET confirmed with the Resident Site Staff that was also raised out by RSS at about 7:00, same day. Besides, it was confirmed that there Construction Noise Permit for the conducted or works in the period between 2300 and 0700. 3) Due to insufficient communication between Construction Noise Permit for the conducted or works in the period between 2300 and 0700. 4) Due to insufficient communication between Construction Noise Permit thou the Contractor between 2300 and 0700. 5) Due to insufficient communication between Construction Noise Permit thou the Contractor and prosition. 4) Contractor was advised to enhance the communication between Construction works during restricted nour operators on restricted hour operation. Furthern Construction works during restricted place for the construction works during restricted place for the construction works were conducted during night period. The construction works were permit. Nome construction works were performed during the conduct accordance with the Ime period stated in valid complaint regarding excessive in the Ime period stated in valid complaint regarating necessites in the Staff

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
120820	20/8/2012	Mr.Ho via hotline	The exit of Causeway	A complaint regarding turbid	 from the above works, the Contractor had erected temporary noise barriers and provided noise blankets of plants. RSS would continue to work with the Contractor of the effectiveness of the environmental mitigation measure implemented on site. No further complaint was received after the response. 1) RSS notified ET on 21 August 2012 	n n s
120820	20/0/2012	1823	The exit of Causeway Bay typhoon Shelter and lighthouse	appearance in water quality generated from dredging operation at the exit of CBTS and lighthouse from two barges respectively in construction sites of CBTS on 18 and 19 August 2012 between 3:00 and 10:00pm. The complainant requested a follow-up and reply from relevant department.	 ET confirmed with the Resident Site Staff that seawall blocks removal at north of TS1 and removal of amour rocks at tip of Eastern Breakwater for HY/2009/15 were conducted during the concerned period on 18 August 2012, and seawall blocks removal at north of TS1 during the concerned period on 19 August 2012. 	1

Complaint Log No.	Date of Complaint	Received From and Received By	Location of Complainant	Nature of Complaint	Outcome	Status
					requires further improvement. RSS has immediately urged the Contractor to implement mitigation measures and also stepped up supervision on Contractor's work. RSS would continue to work with the Contractor on the effectiveness of the environmental mitigation measures implemented on site, and the Contractor would take into account of ET and IEC's recommendations to enhance the environmental mitigation measures. No further complaint was received after the response.	

Appendix 8.1

Construction Programme of Individual Contracts

eclamation in	NPR3 ver.9.5 2011_11_21	Executive	Summary		Data Date: 2	Data Date: 21-Nov-11							
tivity ID	Activity Name		Remaining		Finish	Total		2011					
		Duration	Duration			Float	Sep O	oct N	Nov	De			
Reclam	nation in NPR3 ver.9.5 2011_11_21	115	23	21-Jul-11 A	19-Dec-11	-39							
Landsid	de	115	23	05-Aug-11 A	19-Dec-11	-39			-				
Installat	ion Seawall Blocks to B6 and B7	55	0	13-Aug-11 A	18-Oct-11 A	_		▼					
Constru	ct the Concrete Coping at B6 and B7	82	0	13-Aug-11 A	07-Nov-11 A								
Laying C	Geotextile & Filter Material	86	0	05-Aug-11 A	14-Nov-11 A		1	·	▼	1			
Constru	ict Open Channel U under IEC	33	0	23-Sep-11 A	30-Oct-11 A								
Constru	ct Open Channel U outside IEC	32	20	30-Sep-11 A	15-Dec-11	-36							
Constru	ict the Drainage Pipeline at West of Open Channel U	34	0	30-Sep-11 A	31-Oct-11 A			—					
Constru	Ict the Drainage Pipeline at East of Open Channel U	28	17	01-Nov-11 A	15-Dec-11	-31		-	-				
Unloadii	ng Sorted Public Fill behind new seawall	53	0	15-Aug-11 A	20-Nov-11 A		1	·	-	j.			
Reclama	ation	98	23	13-Aug-11 A	19-Dec-11	-39		·	_				
Seaside	e	100	23	21-Jul-11 A	19-Dec-11	-39			-				
Constru	uction of Outlet Pipe from City Garden	54	20	12-Oct-11 A	19-Dec-11	-34	•		-				
Constru	uction of B8	13	13	15-Nov-11 A	09-Dec-11	-31							

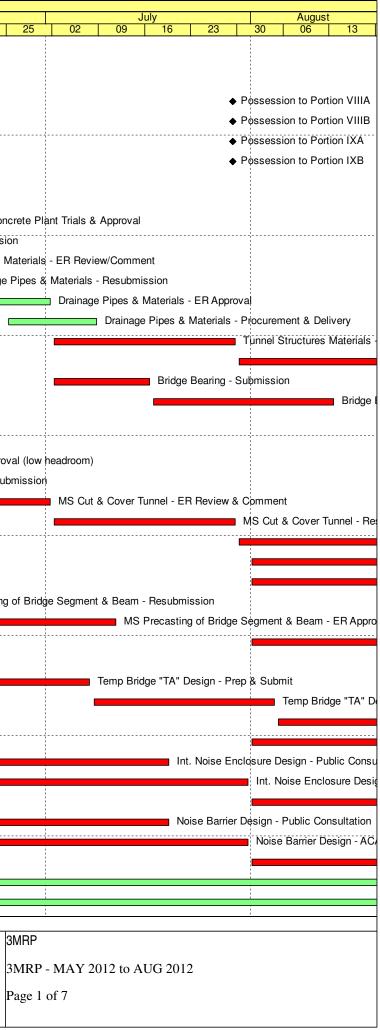
Contract No. HK/2009/01

Contract Title : Wan Chai Development Phase II - Central - Wan Chai Bypass at HKCEC

Working Programme for Marine Works (Dredging and Backfilling)

ACTIVITY	START	FINISH	2010	2011	2012	2013
	START	FINISH	Fet MalApiMa Jun Jul Au Sep Oct No De	Jan Feb Ma Api Ma Jun Jul Au Sep Oct No De	Jan Feb Ma Api Ma Jun Jul Au Sep Oct No De	Jan Feb Ma Api Ma Jun Jul Au Sep Oct No D
Submissions before Works Commencement						
Submit silt curtain deployment plan	31/3/10	31/3/10	•			
Submit silt screen deployment plan	31/3/10	31/3/10	•			
Submit measures to mitigate noise impact	31/3/10	31/3/10	•			
Cross Harbour Watermains from WCN to TST (DP6)						
Trench dredging for marine watermains installation	29/4/10	28/10/10				
Backfilling for watermain	28/1/11	14/12/11				
Reclamation Works at HKCEC Water Channel (DP3)						
Dredging at HKCEC Water Channel (Western Part)	1/6/10	1/8/10				
Backfilling to +3.5mPD (Western Part)	17/8/10	6/2/11				
Dredging at HKCEC Water Channel (Middle Part)	2/8/10	6/1/11				
Backfilling to +3.5mPD (Middle Part)	21/2/11	1/6/11				
Dredging at HKCEC Water Channel (Eastern Part)	1/12/12	31/12/12				
Backfilling to +3.5mPD (Eastern Part)	16/1/13	30/4/13				

K/2009/02-Marine & Reclamation Works	Duration	Start	2010	2011 2012 2	013 2014 2015
	2008 d	Thu 28/1/10	04 01 02 03 04 01 0	2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2	2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3
Contract Commencement	0 d	Thu 28/1/10	•		
General	1879 d	Mon 22/2/10			
Submission & obtain approval for marine GI	21 d	Mon 22/2/10			
Stage 1 Marine GI for reclamation					
			and the second sec		•
					9
					-
			~~	-18	
		the second se			
	10000				
			1 1 1 1 1 1 1		
			-	1	
				-	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-	
				-	
	Section 1.		1	2	
			1		1
		and the second			
			1		_
			1		1
					-
Construction of Permanent Seawall Blocks for curved coastline					
	Stage 1 Marine GI for reclamation Engineer's Design review for Dredging of WCR1, WCR2 & WCR4 Relocation of New Star Ferry Pier Demolition of Existing Star Ferry Pier Stage 2 Marine GI for Reclamation Engineer's Design review for Dredging of WCR3 Complete Diversion of Hung Hing Road Traffic Back to Original Excavate & remove top of d-wall for permanet seawall construction Submarine Outfall Dredging, Laying and Backfilling of Submarine Outfall Pipe at Sea Phase 1 - WCR1 Mobilization of plants Seabed dredging Bedding Filling and Permanent seawall (precast cassion) Bulk reclamation Phase 2 - WCR2 Mobilization of plants Temp seawall and Seabed dredging Bulk reclamation Phase 3 - TWCR4 & WCR4 Mobilization of plants Temp Seawall and Seabed dredging Bulk temp reclamation Phase 4 - WCR3 Mobilization of plants Seabed dredging for Permanent Seawall Backfill and permanent seawall (precast cassion) Bulk reclamation Phase 5 - Construct Permanent Seawall Backfill and permanent seawall (precast cassion) Bulk reclamation Phase 5 - Construct Permanent Seawall Backfill and permanent seawall (precast cassion) Bulk reclamation Phase 5 - Construct Permanent Seawall Backfill and permanent seawall (precast cassion) Bulk reclamation Phasee 5 - Construct Permanent Seawall Blocks along curved coastline & Remove TWCR4	Engineer's Design review for Dredging of WCR1, WCR2 & WCR430 dRelocation of New Star Ferry Pier0 dDemolition of Existing Star Ferry Pier100 dStage 2, Marine GI for Reclamation14 dEngineer's Design review for Dredging of WCR321 dComplete Diversion of Hung Hing Road Traffic Back to Original20 dExcavate & remove top of d-wall for permanet seawall construction50 dSubmarine Outfall500 dDredging, Laying and Backfilling of Submarine Outfall Pipe at Sea500 dPhase 1 - WCR1158 dMobilization of plants1 dSeabed dredging63 dBedding Filling and Permanent seawall (precast cassion)60 dBulk reclamation37 dPhase 2 - WCR2149 dMobilization of plants1 dTemp seawall and Seabed dredging77 dBulk reclamation73 dPhase 3 - TWCR4 & WCR498 dMobilization of plants1 dTemp Seawall and Seabed dredging75 dBulk & temp reclamation24 dPhase 4 - WCR3294 dMobilization of plants1 dSeabed dredging for Permanent Seawall12 dSeabed dredging for Permanent Seawall12 dPhase 5 - Construct Permanent Seawall Blocks along curved coastline & Remove TWCR4105 dMobilization of plants1 dDredging and Filling for permanent Seawall Blocks for curved coastline50 d	Engineer's Design review for Dredging of WCR1, WCR2 & WCR430 dMon 22/3/10Relocation of New Star Ferry Pier0 dTue 18/3/14Demolition of Existing Star Ferry Pier10 dTue 18/3/14Stage 2 Marine GI for Reclamation14 dTue 18/3/14Engineer's Design review for Dredging of WCR321 dTue 25/3/14Complete Diversion of Hung Hing Road Traffic Back to Original20 dFri 6/2/15Excavate & remove top of d-wall for permanet seawall construction50 dWed 25/2/15Submarine Outfall500 dTue 21/9/10Dredging, Laying and Backfilling of Submarine Outfall Pipe at Sea500 dTue 21/9/10Mobilization of plants1 dWed 21/4/10Seabed dredging63 dWed 21/4/10Bedding Filling and Permanent seawall (precast cassion)60 dTue 22/6/10Buk reclamation37 dFri 20/8/10Phase 2 - WCR2149 dThu 1/3/12Mobilization of plants1 dThu 1/3/12Temp seawall and Seabed dredging77 dThu 1/3/12Buk reclamation73 dWed 16/5/12Phase 3 - TWCR4 & WCR498 dSat 28/4/12Mobilization of plants1 dTue 18/3/14Seabed dredging for Permanent Seawall11 dTue 18/3/14Mobilization of plants1 d <t< td=""><td>Engineer's Design review for Dredging of WCR1, WCR2 & WCR430 dMon 22/3/10Relocation of New Star Ferry Pier0 dTue 18/3/14Demolition of Existing Star Ferry Pier100 dTue 18/3/14Stage 2 Marine GI for Reclamation14 dTue 18/3/14Engineer's Design review for Dredging of WCR321 dTue 25/3/14Complete Diversion of Hung Hing Road Traffic Back to Original20 dFri 6/2/15Submarine Outfall500 dTue 21/9/10Dredging, Laying and Backfilling of Submarine Outfall Pipe at Sea500 dTue 21/9/10Phase 1 - WCR1158 dWed 21/4/10Mobilization of plants1 dWed 21/4/10Seabed dredging63 dWed 21/4/10Bulk reclamation37 dFri 20/8/10Phase 2 - WCR2149 dThu 1/3/12Mobilization of plants1 dThu 1/3/12Bulk reclamation77 dThu 1/3/12Phase 3 - WCR4 & WCR498 dSat 28/4/12Mobilization of plants1 dSat 28/4/12Temp Seawall and Seabed dredging75 dSat 28/4/12Phase 4 - WCR3294 dTue 18/3/14Mobilization of plants1 dTue 8/3/14Bulk reclamation108 dTue 8/3/14Phase 4 - WCR3294 dTue 8/3/14Mobilization of plants1 dTue 8/3/14Bulk terclamation108 dTue 8/3/14Mobilization of plants1 dTue 8/3/14Bulk terclamation108 dTue 8/3/14Phase 5 - Construct Perm</td><td>Engineer's Design review for Dredging of WCR1, WCR2 & WCR430 dMon 22/3/10Relocation of New Star Ferry Pier0 dTue 18/3/14Stage 2 Marine GI for Reclamation14 dTue 18/3/14Engineer's Design review for Dredging of WCR321 dTue 25/3/14Complete Diversion of Hung Hing Road Traffic Back to Original20 dFri 6/2/15Excavate & remove top of d-wall for permanet seawall construction50 dWed 25/2/15Submarine Outfall500 dTue 21/9/10Dredging, Laving and Backfilling of Submarine Outfall Pipe at Sea500 dTue 21/9/10Phase 1 - WCR1158 dWed 21/4/10Mobilization of plants1 dWed 21/4/10Bedding Filling and Permanent seawall (precast cassion)63 dWed 21/4/10Bulk reclamation37 dFri 20/8/10Phase 2 - WCR21 dThu 1/3/12Mobilization of plants1 dThu 1/3/12Temp seawall and Seabed dredging77 dThu 1/3/12Bulk reclamation75 dSat 28/4/12Phase 3 - TWCR4 & WCR496 dSat 28/4/12Mobilization of plants1 dTue 18/3/14Mobilization of plants1 dTue 18/3/14Mobilization of plants1 dSat 28/4/12Phase 4 - WCR3294 dTue 18/3/14Mobilization of plants1 dTue 18/3/14Bulk reclamation75 dSat 28/4/12Phase 4 - WCR310 dTue 18/3/14Mobilization of plants1 dTue 18/3/14Seabed dredging for</td></t<>	Engineer's Design review for Dredging of WCR1, WCR2 & WCR430 dMon 22/3/10Relocation of New Star Ferry Pier0 dTue 18/3/14Demolition of Existing Star Ferry Pier100 dTue 18/3/14Stage 2 Marine GI for Reclamation14 dTue 18/3/14Engineer's Design review for Dredging of WCR321 dTue 25/3/14Complete Diversion of Hung Hing Road Traffic Back to Original20 dFri 6/2/15Submarine Outfall500 dTue 21/9/10Dredging, Laying and Backfilling of Submarine Outfall Pipe at Sea500 dTue 21/9/10Phase 1 - WCR1158 dWed 21/4/10Mobilization of plants1 dWed 21/4/10Seabed dredging63 dWed 21/4/10Bulk reclamation37 dFri 20/8/10Phase 2 - WCR2149 dThu 1/3/12Mobilization of plants1 dThu 1/3/12Bulk reclamation77 dThu 1/3/12Phase 3 - WCR4 & WCR498 dSat 28/4/12Mobilization of plants1 dSat 28/4/12Temp Seawall and Seabed dredging75 dSat 28/4/12Phase 4 - WCR3294 dTue 18/3/14Mobilization of plants1 dTue 8/3/14Bulk reclamation108 dTue 8/3/14Phase 4 - WCR3294 dTue 8/3/14Mobilization of plants1 dTue 8/3/14Bulk terclamation108 dTue 8/3/14Mobilization of plants1 dTue 8/3/14Bulk terclamation108 dTue 8/3/14Phase 5 - Construct Perm	Engineer's Design review for Dredging of WCR1, WCR2 & WCR430 dMon 22/3/10Relocation of New Star Ferry Pier0 dTue 18/3/14Stage 2 Marine GI for Reclamation14 dTue 18/3/14Engineer's Design review for Dredging of WCR321 dTue 25/3/14Complete Diversion of Hung Hing Road Traffic Back to Original20 dFri 6/2/15Excavate & remove top of d-wall for permanet seawall construction50 dWed 25/2/15Submarine Outfall500 dTue 21/9/10Dredging, Laving and Backfilling of Submarine Outfall Pipe at Sea500 dTue 21/9/10Phase 1 - WCR1158 dWed 21/4/10Mobilization of plants1 dWed 21/4/10Bedding Filling and Permanent seawall (precast cassion)63 dWed 21/4/10Bulk reclamation37 dFri 20/8/10Phase 2 - WCR21 dThu 1/3/12Mobilization of plants1 dThu 1/3/12Temp seawall and Seabed dredging77 dThu 1/3/12Bulk reclamation75 dSat 28/4/12Phase 3 - TWCR4 & WCR496 dSat 28/4/12Mobilization of plants1 dTue 18/3/14Mobilization of plants1 dTue 18/3/14Mobilization of plants1 dSat 28/4/12Phase 4 - WCR3294 dTue 18/3/14Mobilization of plants1 dTue 18/3/14Bulk reclamation75 dSat 28/4/12Phase 4 - WCR310 dTue 18/3/14Mobilization of plants1 dTue 18/3/14Seabed dredging for


ID	Cal		Orig	Early	Early	2010 2011 2012 2013 2014 2015 2016 2017
BRIE (T	1. 1. 0.	Description	Dur	Start	Finish	2010 2011 2012 2013 2014 2015 2016 2017
105	1	TCBR1E(TS1)-dredging+rockfill(prep. for seawall)		00050404	learnau	
110	1			03DEC10*	26FEB11	TCBR1E(TS1)-dredging+rockfill(prep. for seawall)
		TCBR1E (TS1)-temporary reclamation		28JAN11*	06APR11	TCBR1E (TS1)-temporary reclamation
155	1	TCBR1E (TS1)- removal of temporary reclamation	27	30JAN12*	25FEB12	TCBR1E (TS1)- removal of temporary reclamation
BR4						
100		Maintenance dredging for navigation safety for	7	20NOV10*	26NOV10	Maintenance dredging for navigation safety for relocation of RHKYC mooring at Area B
		TS2 Area)	_			
115	1	TCBR2&TCBR3(TS2)- Maintenance dredging for	-	15NOV10*	19NOV10	ITCBR2&TCBR3(TS2)- Maintenance dredging for navigation safety at Area A for relocation of commercial v
117	1	TCBR2&TCBR3(TS2)-dredge+rockfill seabed	64	16DEC11*	17FEB12	TCBR2&TCBR3(TS2)-dredge+rockfill seabed (preparation for seawall)
120	1	TCBR2&TCBR3(TS2)temporary reclamation	115	26FEB12*	19JUN12	TCBR2&TCBR3(TS2)temporary reclamation
160	1	TCBR2&TCBR3(TS2-removal temporary reclamation	57	18AUG13*	130CT13	TCBR2&TCBR3(TS2-removal temporary reclamation
BR1W (T	_					
125	1	TCBR1W(TS4)-dredging+rockfill(prep. for seawall)	40	19DEC10*	27JAN11	TCBR1W(TS4)-dredging+rockfill(prep. for seawall)
130	1	TCBR1W(TS4)temporary reclamation	68	28JAN11	05APR11	TCBR1W(TS4) temporary reclamation
165	1	TCBR1W(TS4)removal temporary reclamation	26	270CT13*	21NOV13	TCBR1W(TS4)removal temporary reclamation
CWAE						
135	1	TPCWAE-dredging+rockfill(prep. for seawall)	55	03DEC10*	26JAN11	TPCWAE-dredging+rockfill(prep. for seawall)
140	1	TPCWAEtemporary reclamation	77	27JAN11	13APR11	TPCWAE temporary reclamation
170	1	TPCWAEremoval temporary reclamation		28SEP13*	25OCT13	TPCWAEremoval temporary reclamation
CWAW					AV.	
145	1	TPCWAW-dredging+rockfill(prep. for seawall)	47	280CT13*	13DEC13	TPCWAW-dredging+rockfill(prep. for seawall)
150	1	TPCWAWtemporary reclamation		14DEC13	06MAR14	TPCWAWtemporary reclamation
175	1	TPCWAWremoval temporary reclamation		02JUL15*	20AUG15	TPCWAW-removal temporary reclamation
		Early Bar Progress Bar Critical Activity		CONT	RACT NO. HY/	RUCTION ENGG LTD Sheet 1 of 1 Prepared based on IWP Rev. 0 2009/15: CENTRAL NNEL (CBTS SECTION) Date Prepared: 28 Oct 2010

Act ID	Description	Orig Early Dur Start	Early Finish	JAN FEB I	MAR APR	MAY JUN	2011 JUL AUG	SEP	OCT N	OV DEC	JAN	FEB MAR	APR	MAY	201 JUN	12 JUL	AUG	SEP	ост	NOV	DEC	JAN	2013 FEB MAR F
Section I																							
Contract C	bligation																						
		1 1																					
1000	Commencement of Section I of works	0 20JAN11 *	•	Commerice	ment of Sectio	on I of works				+++++		+++++++++++++++++++++++++++++++++++++++				1 1 1 1							+++++++
	KS																						
1050	Apply Marine notice to Marine Department	30 21JAN11	19FEB11	Арр	ly Marine notic	e to Marine E	Department (dre	edg)															
1060	Apply Marine notice to Marine Dept. Piling	30 18FEB11	19MAR11		🗖 Apply Marir	ne notice to N	larine Dept. Pil	ing															
1080	Apply FEP under EP356/2009	21 28FEB11	20MAR11	1	Apply FEP	under EP356	/2009																
1081	Submission of Works Schedule for FEP	14 05MAR11	21MAR11		💻 Submissior	n of Works Sch	nedule for FEP																
1082	Submission of Location Plan for FEP	14 05MAR11	21MAR11	- 1	Submission		ロビビントレントン														<u></u>		
1083	Submission of Silt Curtain Deployment	14 05MAR11	21MAR11				in Deployment																
1084	Submission of Silt Screen Deployment Plan	14 05MAR11	21MAR11				n Deployment	Plan															
1085	Submission Noise Management Plan	14 05MAR11	21MAR11		Submission Apply Dum		gement Plan																
1090	Apply Dumping Permit	30 18FEB11	19MAR11 01MAR11		pply CNP											1111							
1100	Apply CNP Apply C&D waste disposal	30 31JAN11 30 20JAN11	18FEB11		ly C&D waste d	isposal		+++++++++++++++++++++++++++++++++++++++		-+++++				+ +			+ + + +						
1110	Apply C&D waste disposal Apply Discharge licence	30 20JAN11 30 18FEB11	18FEB11 19MAR11		Apply Disch																		
1130	Notification of chemical waste Producer	30 20JAN11	18FEB11		fication of cher		roducer																
1140	Notification to Labor Dept-Works	30 20JAN11	18FEB11			and a share of a	Commenceme	nt															
1150	Submit Risk Ass to MTR	21 28FEB11	20MAR11	1 🗄 🗄 🗄	🔲 Submit Ris	k Ass to MTR																	
1260	Erect Hoarding	30 28FEB11	29MAR11	ti i chi chi bi	Erect Ho	arding		i i i i i i i		- † † † † † † †	11111		+ † † † † -	11111			+ + + + + + + + + + + + + + + + + + +	; ; ; ; ; -	1-1-11		† † † † † 	1111	
1270	Demarcation of Marine Site Boundary	21 01MAR11	21MAR11	1 +	💻 Demarcatio	on of Marine S	Site Boundary																
1280	Working Site Office establishment	14 27JAN11	09FEB11	🔲 Workin	g Site Office e	stablishment																	
Monitoring	1																						
						monitoring sys	rtom from C1																
1160 1180	Takeover monitoring system from C1 Commence Monitoring- ADMS.etc	0 21MAR11 0 21MAR11	-		i i she she she	e Monitoring-	de el el el el el el éta de la compañía de la comp																
Dredging	•	0 21MARTI																					
Dicuging	TORS																						
1070	Submit Dredging MS	30 18FEB11	19MAR11		Submit Dre	dging MS																	
1075	Accpetance of Dredging MS	0	19MAR11		Accpetanc	e of Dredging	MS																
1078	Initial Hydrographic Survey	1 20MAR11	20MAR11			ographic Surv																	
1200	Initial Dredging Works for Piling	15 22MAR11	05APR11		💻 Initial 🛙	Dredging Worl	ks for Piling																
1210	Final Hydrographic survey	3 07MAY12			·			+					++++-	Final I							++++		
1220	Final Dredging Works	7 10MAY12												Fina	I Dredg	ing Wor		tion Hydi					
1230	Confirmation Hydrographic survey	70 17MAY12	25JUL12												+ + + +		Jiiiiiia		lographin	c survey			
Piling Wor	N3																						
1240	Submit stage platform MS	30 10FEB11	11MAR11		Submit stage	platform MS																	
1250	Submit piling MS	30 10FEB11	11MAR11		Submit piling	MS																	
P1000	Erect temporary Piling Platform	120 06APR11	03AUG11				Erec	t tempora	ry Piling Pl	atform													
P1020	Pre-drilling	150 06JUN11	02NOV11						P	e-drilling													
P1040	Bored Piles Construction and Testing	250 06JUL11	11MAR12		· - + + + + + + + + + + + + + + + + + +		+	+++++++++++++++++++++++++++++++++++++++			<u> </u>	and and any local law law law law	the second second	Construct	and and the large large	- ter ter ter af		; ; ; ; ; ;			i i i i i i	+ +	
P1060	Drive Sheet piles along Bored piles	140 03NOV11	21MAR12										1 1 1 1	et piles a									
P1080	Dismantle Temporary Piling Platform	50 25FEB12 90 17JAN12	14APR12											mantle Te									
P1100 P1120	Dive sheet piles beyond precast seawall Trim pilehead to cut-off level	90 17JAN12 210 29SEP11	15APR12 25APR12										<u>tii</u> .	Trim pile	1111								
P1140	Cut steel casing of bore piles	210 293EF11 210 06OCT11	02MAY12										li i i i	Cut stee	and the latest sector of the s	a card							
P1160	Cut sheet piles to design level for box units	120 08JAN12	06MAY12															for box	units		+++-		
Act			Early Finish																				ليتبتني
ID	Description	Orig Early Dur Start	Finish	JAN FEB I	MAR APR	MAY JUN	JUL AUG 2011	SEP	OCT N	OV DEC	JAN	FEB MAR	APR	MAY	JUN 201		AUG	SEP	OCT	NOV	DEC	JAN	FEB MAR F 2013
																							ľ
	20JAN11																					arly ba	
Data date 2	19DEC12 20JAN11					G	AMMON-LE	EADER .	v							Works	Schedu	le of Ma	rine Wor	rks for		Progress Critical b	
	05MAR11																		EP-356	/2009		Summar	y bar
© Primavera S		entral-Wan Chai By p	oass over MTR T	suen Wan Line																			estone point ilestone point
L	1																						

tivity ID	Activity Name	Rem	Start	Finish	May						2012		
		Dur			23	30 0	7 14	21	28	04	June 11	18	25
3MRP - MA	Y 2012 to AUG 2012					I					-		
01 - CONTRA	ACT DATES												
01.2 - Possess	sion of Site												:
0120-2600	Possession to Portion VIIIA	0	29-Jul-12*										
0120-2700	Possession to Portion VIIIB	0	29-Jul-12*										
0120-2800	Possession to Portion IXA	0	29-Jul-12*										
0120-2900	Possession to Portion IXB	0	29-Jul-12*										
02 - PRE-CO	DNSTRUCTION WORKS												
02.2 - Contrac	tor's Submission												
0220-1250	Concrete Ready Mix/Design Mix - Concrete Plant Trials & Approval	8	04-Aug-11 A	28-May-12					Conci	rete Ready	Mix/Desigr	Mix - Conc	rete Pl
0220-1260	Drainage Pipes & Materials - Submission	7	15-Sep-11 A	27-May-12					🔲 Draina	ge Pipes &	Materials	Submission	n
0220-1270	Drainage Pipes & Materials - ER Review/Comment	14	28-May-12	10-Jun-12							Drainage	Pipes & Ma	aterials
0220-1280	Drainage Pipes & Materials - Resubmission	7	11-Jun-12	17-Jun-12								Drainage F	vipes 8
0220-1290	Drainage Pipes & Materials - ER Approval	14	18-Jun-12	01-Jul-12									
0220-1300	Drainage Pipes & Materials - Procurement & Delivery	14	25-Jun-12	08-Jul-12									
0220-1360	Tunnel Structures Materials - Submission	28	02-Jul-12*	29-Jul-12									
0220-1370	Tunnel Structures Materials - ER Review/Comment	28	30-Jul-12	26-Aug-12									
0220-1460	Bridge Bearing - Submission	15	10-Oct-11 A	16-Jul-12									
0220-1470	Bridge Bearing - ER Review/Comment	28	17-Jul-12	13-Aug-12									
02.3 - Method	Statement / Shop Drawings												
0230-1133	MS Marine Piling - Resubmission (low headroom)	0	19-Apr-12 A	11-May-12 A			MS Marine	Piling - I	Resubmiss	ion (low hea	adroom)		
0230-1134	MS Marine Piling - ER Approval (low headroom)	14	12-May-12 A	03-Jun-12						MS Mar	ine Piling -	ER Approva	al (low
0230-1260	MS Cut & Cover Tunnel - Submission	14	21-Mar-12 A	03-Jun-12						MS Cut	& Cover T	unnel - Subr	nissior
0230-1270	MS Cut & Cover Tunnel - ER Review & Comment	28	04-Jun-12	01-Jul-12									
0230-1280	MS Cut & Cover Tunnel - Resubmission	28	02-Jul-12	29-Jul-12									
0230-1290	MS Cut & Cover Tunnel - ER Approval	28	30-Jul-12	26-Aug-12									
0230-1340	MS Pre-cast Segment Bridge - Submission	28	01-Aug-12*	28-Aug-12									
0230-1460	MS Stressing/Destressing Tendons - Submission	28	01-Aug-12*	28-Aug-12									
0230-1560	MS Precasting of Bridge Segment & Beam - Resubmission	24	07-May-12 A	13-Jun-12							MS	Precasting of	of Bride
0230-1570	MS Precasting of Bridge Segment & Beam - ER Approval	28	14-Jun-12	11-Jul-12									
0230-1700	MS Temporary Bridge TA - Submission	28	01-Aug-12*	28-Aug-12									!
	tor's Design and Build Items		3	3									
0240-1010	Temp Bridge "TA" Design - Prep & Submit	48	16-Dec-11 A	07-Jul-12									
0240-1020	Temp Bridge "TA" Design - ER review and comment	28	08-Jul-12	04-Aug-12									
0240-1030	Temp Bridge "TA" Design - Resubmission	60	05-Aug-12	03-Oct-12									
0240-1041	Temp Bridge "TD" Design - Prep & Submit	120	01-Aug-12*	28-Nov-12									
0240-1090	Int. Noise Enclosure Design - Public Consultation	60	29-Jul-11 A	19-Jul-12									
0240-1095	Int. Noise Enclosure Design - ACABAS/ER Consultation/Submission	72	16-Dec-11 A	31-Jul-12									
0240-1100	Int. Noise Enclosure Design - ER review & comment	28	01-Aug-12	28-Aug-12									
0240-1120	Noise Barrier Design - Public Consultation	60	29-Jul-11 A	19-Jul-12									
0240-1122	Noise Barrier Design - ACABAS/ER Consultation/Submission	72	16-Dec-11 A	31-Jul-12									
0240-1124	Noise Barrier Design - ER review & comment	28	01-Aug-12	28-Aug-12									
0240-1124	Perm. Noise Enclosure Design - Public Consultation	150	14-Feb-12 A	17-Oct-12									
0240-1135	Perm. Noise Enclosure Design - ACABAS/ER Consulatation/Submission	90	13-Jun-12	10-Sep-12									

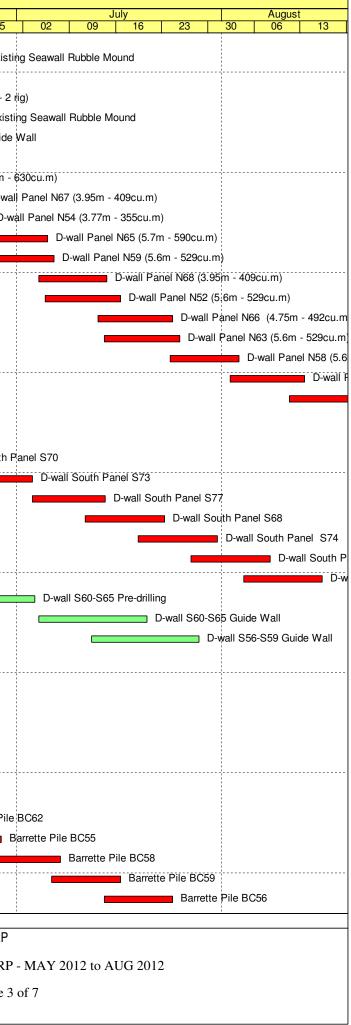
Actual Work

- Remaining Work Critical Remaining Work
- Milestone

Activity ID	Activity Name	Rem	Start	Finish			2012
		Dur			23 30 07 14	21 28	June 3 04 11 18 25
0240-1260	Landscaping Design - Public Consultation	180	12-Aug-12	07-Feb-13			
02.5 - Bridge Se	egment/Beam Off-site Precasting						
0250-1010	Segment/Beam - Procurement of Precasting Yard	0	27-Feb-12 A	30-Apr-12 A	Segment/Beam - Procurem	ent of Precasting	y Yard
0250-1020	Segment/Beam - Precast Yard Site Clearance	0	02-May-12 A	20-May-12 A		Segment/Beam	- Precast Yard Site Clearance
0250-1030	Segment/Beam - Precast Yard Establishment Works	42	21-May-12	01-Jul-12			
0250-1100	Segment/Beam - Geometry Control Design Approval	48	14-Dec-11 A	07-Jul-12			
0250-1050	Segment/Beam - Mould Fabrication	42	08-Jun-12	19-Jul-12			
0250-1040	Segment/Beam - Precast Yard Set-up Survey Station	18	14-Jun-12	01-Jul-12			
0250-1060	Segment/Beam - Precasting of 1st Segment / Trial Segment	12	20-Jul-12	31-Jul-12			
0250-1500	Ready for Mass Production of Bridge Segment/Beam	0		31-Jul-12			
0250-1600	Bridge Precast Segment Casting & Delivery for E/B Bridge	280	01-Aug-12	07-May-13			
05 - SECTION	I 2 & 2A OF THE WORKS						
	ver Tunnel Ch 4855-4932 (APS Footprint)						
05.1.1 - D-Wall Co							
0511-1010	Site Survey & Setting Out (Portion VIIIA and IXA)	3	30-Jul-12	01-Aug-12			
0511-1020	Site Establishment (Portion VIIIA and IXA)	28	30-Jul-12	30-Aug-12			
0511-1030	D-wall N46-N51 Pre-drilling (6 nos@6d - 3 rigs)	12	31-Jul-12	13-Aug-12			
0511-1060	D-wall S48-S55 + BC39 Pre-drilling (9 nos@3d - 3 rigs)	15	31-Jul-12	16-Aug-12	-		
	ver Tunnel Ch 4932-5149	10		10,109,12			
05.2 - Cut & Co							
0521-1790.10	D-wall Panel N74A (6m - 590cu.m)	10	01-Jun-12*	12-Jun-12			D-wall Panel N74A (6m
0521-1790.10	Existing Utilities Diversion for S81 to S84	15	21-May-12	06-Jun-12			Existing Utilities Diversion for S
0521-1990.63	Guide Wall Construction for S81 to S84	9	07-Jun-12	16-Jun-12			Guide Wall Const
0521-1990.03	D-wall South Panel S100	9	21-Apr-12 A		D-wall South Pa	inel S100	
0521-1990.12	D-wall South Panel S100	0	11-Apr-12 A	08-May-12 A 03-May-12 A	D-wall South Panel S95		
0521-1990.13	D-wall South Panel S112				D-wall South Panel S112		
0521-1990.14	D-wall South Panel S112 D-wall South Panel S106	0	05-Apr-12 A 23-Mar-12 A	24-Apr-12 A	D-wall South Panel S106		
		0		27-Apr-12 A		h Panel S113	
0521-1990.16	D-wall South Panel S113	0	26-Apr-12 A	11-May-12 A		D-wall South Par	
0521-1990.21	D-wall South Panel S92	0	24-Apr-12 A	19-May-12 A			
0521-1990.22	D-wall South Panel S86	0	17-Apr-12 A	04-May-12 A	D-wall South Panel S		
0521-1990.23	D-wall South Panel S90	0	20-Apr-12 A	15-May-12 A	D-wai	South Panel S9	
0521-1990.29	D-wall South Panel S85	7	14-May-12 A	28-May-12		D-1	vall South Panel S85
0521-1990.25	D-wall South Panel S93	9	26-May-12	05-Jun-12			D-wall South Panel S93
0521-1990.28	D-wall South Panel S88	9	02-Jun-12	12-Jun-12			D-wall South Panel S88
0521-1990.26	D-wall South Panel S89	9	13-Jun-12	22-Jun-12			D-wall So
0521-1990.33	D-wall South Panel S81	9	20-Jun-12	30-Jun-12			
0521-1990.20	D-wall South Panel S83	9	03-Jul-12	12-Jul-12			
0521-1990.27	D-wall South Panel S84	9	11-Jul-12	20-Jul-12			
0521-1990.24	D-wall South Panel S82	9	19-Jul-12	28-Jul-12			
0521-1945.10	Temp Bulk Headhead TBW1	6	03-Jul-12	09-Jul-12			
0521-1945.15	Temp Bulk Headhead TBW3	6	10-Jul-12	16-Jul-12			
0521-1945.20	Temp Bulk Headhead TBW5	6	17-Jul-12	23-Jul-12			
0521-1945.25	Temp Bulk Headhead TBW2	6	24-Jul-12	30-Jul-12			
0521-1945.30	Temp Bulk Headhead TBW4	6	31-Jul-12	06-Aug-12			
Demoising Laws				O a t			3MRP
Remaining Leve Actual Level of B				Cont	ract HY/2009/19		BMRP
Actual Work							3MRP

Actual Level of Effe
Actual Work

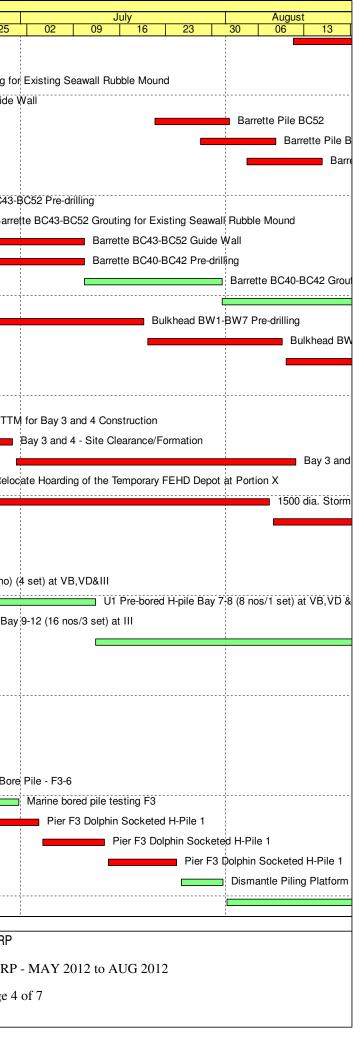
Remaining Work


Critical Remaining Work

Milestone

Object - 450 - 20 Deal MSA-707 Pre-triling Gines - 1 rg/Bistroom, 0 0.42, -12A 0.94, April 2A	tivity ID	Activity Name	Rem	Start	Finish	May		2012 June
9011100 Deal HAD NF Gentry to Series Sector 14 7.4 pr 7.4 05.4 n 10 9211100 Deal HAD NF Gentry to Sector Sector 0 0 for 72.4 05.4 n 10 9211100 Deal HAD NF Gentry to Sector Sector 0 0 for 72.4 05.4 n 10 9211100 Deal HAD NF Gentry to Sector Sector 0 0 for 72.4 05.4 n 10 9211100 Deal HAD NF Gentry to Sector Name 0 0 for 72.4 05.4 n 10 9211100 Deal HAD NF Gentry to Sector Name 0 0 for 72.4 0 for 72.4 0 for 72.4 9211100.10 Deal HAD NF Gentry to Sector Name 0 0 for 72.4 0 for 72.4 0 for 72.4 9211100.10 Deal HAD NF Gentry to Sector Name 0 0 for 72.4 0 for 72.4 0 for 72.4 9211100.10 Deal HAD NF Gentry to Sector Name 0 0 for 72.4 0 for 72.4 0 for 72.4 9211100.10 Deal HAD NF Gentry to Sector Name 0 0 for 72.4 0 for 72.4 0 for 72.4 9211100.20 Deal HAD NF Gentry to Sector Name 0 0 for 72.4								8 04 11 18 25
1999 Deal MAN Datak Wall 14 0.4 pt 124 05.4 n 12 1001 1004 Max Max Data Share ding (r noghod 2 ng) 0 004 Max Max Datak Max Dat					-		D-Wall N65-N/U	
0001 0001 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
021 1880 Deadl 1824 856 0mlars for fasting Somal Rubbs Mound 14 08 May 12A 05 Jun 12 022 1880 Deadl 1824 852 0mla Wal 12 3 May 12A 13 Jul 12 0 May 12A 13 Jul 12 022 1880.10 Deadl Farin M Sign (Firiting) 10 0 May 12A 13 Jul 12 12 Jul 12				'				1
0521 H0000-with XNASD Guide Viral1231 Kury 1231 Kury 1203 Lun 120521 H0010-with XNA KDB Guide Viral1100-Mark 240 Hoke 25 Lun 120 Hoke 25 Lun 120521 H0010-with XNA KDB Guide Viral11013 Lun 120 Hoke 25 Lun 120 Hoke 25 Lun 120521 H0010-with XNA KDB Guide Viral KDB Guide Viral11012 Lun 120 Hoke 25 Lun 120521 H0010-with XNA KDB Guide Viral KDB Guide Viral11012 Lun 120 Hoke 25 Lun 120521 H0010-with XNA KDB Guide Viral KDB GUIDE VI			9					
Control Control <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
021-103.0 0-wait Panet N79 (km - 4300.m) 10 0-1.012 12.5.012 022-103.0.1 0-wait Panet N67 (km - 4300.m) 10 14.1.un - 2 25.b.un - 2 022-103.0.2 0-wait Panet N67 (km - 4300.m) 10 24.1.un - 2 25.b.un - 2 022-103.0.2 0-wait Panet N67 (km - 4300.m) 10 24.1.un - 2 06.1.1.4 022-103.0 0-wait Panet N67 (km - 4300.m) 10 64.1.1.2 14.1.un - 2 022-103.0.2 0-wait Panet N67 (km - 4300.m) 10 15.4.1.1.2 25.4.1.1.2 022-103.0.2 0-wait Panet N67 (km - 4300.m) 10 15.4.1.1.2 25.4.1.1.2 022-103.0.2 0-wait Panet N67 (km - 4300.m) 10 15.4.1.1.2 25.4.1.1.2 022-103.0.2 0-wait Panet N67 (km - 4300.m) 10 15.4.1.1.2 25.4.1.1.2 022-103.0.2 0-wait Panet N67 (km - 4300.m) 10 15.4.1.1.2 25.4.1.1.2 022-103.0.2 0-wait Panet N67 (km - 4300.m) 10 16.4.1.1.2 25.4.1.1.2 022-103.0.2 0-wait Soxth Panet S7 10 16.4.1.1.2 25.4.1.1.2 022-103.0.2 0-wait Soxth Panet S7 10 1			12					D-wall N52-N58 Guide
62211832.500 scall Paral Né? (3567 - 406cu,m)101 4 Jun 122 5 Jun 126251183.500 scall Paral Né? (5.77 - 350cu,m)102 2 Jun 126 Jul 126251185.510 scall Paral Né? (5.57 - 350cu,m)106 Sul 1426 Jul 126251185.520 scall Paral Né? (5.57 - 350cu,m)106 Sul 1426 Jul 126251185.520 scall Paral Né? (5.67 - 450cu,m)106 Sul 1422 Sul 1426251185.520 scall Paral Né? (5.67 - 450cu,m)1014 Jul 122 Sul 126251185.530 scall Paral Né? (5.67 - 550cu,m)101014 Jul 122 Sul 126251185.530 scall Paral Né? (5.67 - 550cu,m)101014 Jul 122 Sul 126251185.540 scall Paral Né? (5.66 - 550cu,m)101014 Jul 122 Sul 126251185.540 scall Paral Né? (5.66 - 550cu,m)101014 Jul 122 Sul 126251185.540 scall Paral Né? (5.66 - 550cu,m)101011 Jul 122 Sul 126251185.540 scall Paral Né? (5.66 - 550cu,m)10101011 Jul 126251185.540 scall Paral S7101011 Jul 122 Sul 126251185.540 scall Paral S71011 Jul 1213 Jul 126251185.540 scall Paral S71011 Jul 122 Sul 126251185.540 scall Paral S71011 Jul 122 Sul 126251195.240 scall Paral S61011 Jul 122 Sul 126251195.240 scall Paral S710 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>• • • • • • • • • • • • • • • • • • • •</td><td></td></t<>							• • • • • • • • • • • • • • • • • • • •	
d221-165.0D-wall Panel Net (3.7/m - 355cu m)101-4 Jun (22-5 Jun (2)00 <t< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td>1</td></t<>			10					1
d221 180.35Dwall Panel NS5 (5m. 508cu m)1022 Jun 1205 Jul 120651 1553.50Dwall Panel NS5 (5m508cu m)1065 Jul 1214 Jul 120521 1553.20Dwall Panel NS5 (5m508cu m)101015 Jul 1216 Jul 120521 1553.20Dwall Panel NS5 (5m508cu m)101014 Jul 1225 Jul 120521 1553.20Dwall Panel NS5 (5m508cu m)101014 Jul 1225 Jul 120521 1553.20Dwall Panel NS5 (5m508cu m)101014 Jul 1225 Jul 120521 1553.20Dwall Panel NS5 (5m508cu m)101024 Jul 1223 Jul 120521 1553.20Dwall Panel NS5 (5m508cu m)101024 Jul 1223 Jul 120521 1553.20Dwall Sch 3m Statu man 13/5101026 Jul 1214 Jul 120521 1503.20Dwall Sch 7m Jul 20101027 Jul 1210 Jul 120521 1503.20Dwall Sch Panel S7101010 Jul 1213 Jul 120521 1503.20Dwall Sch Panel S71010 Jul 1213 Jul 120521 1503.20Dwall Sch Panel S71010 Jul 1213 Jul 120521 1503.20 <td></td> <td></td> <td>10</td> <td></td> <td>25-Jun-12</td> <td></td> <td></td> <td>D-wa</td>			10		25-Jun-12			D-wa
0521-1035.150-wail Panel N89 (56m - 528cum)100-41.01 2 <th0.01 2<="" th=""><th0< td=""><td>0521-1835.10</td><td>D-wall Panel N54 (3.77m - 355cu.m)</td><td>10</td><td>14-Jun-12</td><td>26-Jun-12</td><td></td><td></td><td> D-м</td></th0<></th0.01>	0521-1835.10	D-wall Panel N54 (3.77m - 355cu.m)	10	14-Jun-12	26-Jun-12			D-м
0521-160.20 Owall Panel N88 (3.6m - 408m) 10 0.4l./2 14Jul./2 24Jul./2 0521-163.50 Owall Panel N68 (1.7m - 402m) 10 14Jul./2 24Jul./2 0.4Jul./2	0521-1830.35	D-wall Panel N65 (5.7m - 590cu.m)	10	22-Jun-12	05-Jul-12			
0521-1055 20 0-wall Parel MS2 (5.8m - 528cu.m) 10 0.50.14-12 24.50.14-2 0521-1035 20 0-wall Parel MS6 (5.6m - 528cu.m) 10 14.50.12 255.00.12 0521-1035 20 0-wall Parel MS6 (5.6m - 528cu.m) 10 0.40.12 24.50.12 0521-1035 20 0-wall Parel MS6 (5.6m - 528cu.m) 10 0.40.12 24.50.12 0521-1035 40 0-wall Parel MS6 (5.6m - 528cu.m) 10 0.40.12 24.50.12 0521-1035 40 0-wall Soch Farel S75 0.00 0.70.11 10.40.12 10.40.12 0521-1035 40 0-wall Soch Parel S77 0.00 0.70.12 10.40.12 10.40.12 10.40.12 0521-1090 40 0-wall Soch Parel S77 0.00 0.70.12 10.40.12 20.40.12 20.40.12 20.40.12 0521-1090 30 0-wall Soch Parel S74 0.0 0.70.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12 20.40.12	0521-1835.15	D-wall Panel N59 (5.6m - 529cu.m)	10	25-Jun-12	06-Jul-12			
0621 1830 00Uvail Parel N86 (4,75m - 482cum)1013 Jul -1224 Jul -1205 Jul -1207 Jul -1407 Jul -14	0521-1830.20	D-wall Panel N68 (3.95m - 409cu.m)	10	04-Jul-12	14-Jul-12			
0521-1352 52 Uwail Panel N83 (5.6m - 528cu.m) 10 14.Jul-12 02.Jul-12 0521-1353 50 Dwail Panel N83 (5.6m - 528cu.m) 10 02.Jul-12 03.Jul-12 03.Jul-12 0521-1353 50 Dwail Panel N85 (5.6m - 528cu.m) 10 11.Aug 12 22.Aug 12 0521-1353 50 Dwail Sce 577 Guide Mail 10 07.Jul 12 02.Jul-12 02.Jul-12 0521-1353 50 Dwail Sch Pro Box 575 0.10 10 07.Jul 12 19.Jul 12 03.Jul-12 0521-1903 50 Dwail Sch Pro Box 575 0.10 10 07.Jul 12 19.Jul 12 03.Jul-12	0521-1835.20	D-wall Panel N52 (5.6m - 529cu.m)	10	05-Jul-12	16-Jul-12			
0621-1835.30Dwall Panel NSG (5.6n - 5280cum)1024-Jul-1203-Aug-12 <td>0521-1830.30</td> <td>D-wall Panel N66 (4.75m - 492cu.m)</td> <td>10</td> <td>13-Jul-12</td> <td>24-Jul-12</td> <td></td> <td></td> <td></td>	0521-1830.30	D-wall Panel N66 (4.75m - 492cu.m)	10	13-Jul-12	24-Jul-12			
0521-1835.40 D-wall Panel M62 (5 6m - 629cum) 10 024-0g-12 22-Aug-12 22-Aug-12 0521-1835.40 D-wall Sech 72 Guide Wall 10 11-May-12 22-Aug-12 22-Aug-12 D-wall Sech 77 Guide Wall	0521-1835.25	D-wall Panel N63 (5.6m - 529cu.m)	10	14-Jul-12	25-Jul-12			
0521-1835.40 Dwall Panel M55 (5.6m - 528cu.m) 10 11.4ug 12 22 Aug 12 0521-2070 Dwall Souh Panel S77 Our Mill 0 26 Mun 12 07 Jun 12 07 Jun 12 07 Jun 12 07 Jun 12 08 Jun 12	0521-1835.30	D-wall Panel N58 (5.6m - 529cu.m)	10	24-Jul-12	03-Aug-12			
0521 2070 Dwall S68 577 Guide Wall 11 16 May 12A 02 Jun 12 0521 1990.42 Dwall South Panel S75 10 26 May 12 07 Jun 12 19 Jun 12 0521 1990.43 Dwall South Panel S70 10 07 Jun 12 19 Jun 12 09 Jul 12 0521 1990.44 Dwall South Panel S77 10 03 Jul 12 14 Jul 12 23 Jul 12 0521 1990.44 Dwall South Panel S77 10 11 Jul 12 23 Jul 12 11 Jul 12 23 Jul 12 0521 1990.40 Dwall South Panel S76 10 11 Jul 12 23 Jul 12 11 Jul 12 23 Jul 12 11 Jul 12 12 Jul 12	0521-1835.35	D-wall Panel N62 (5.6m - 529cu.m)	10	02-Aug-12	13-Aug-12			
Construction Devide South Panel S75 Orall South Panel S75 Ora	0521-1835.40	D-wall Panel N55 (5.6m - 529cu.m)	10	11-Aug-12	22-Aug-12			
Biol South So	0521-2070	D-wall S66-S77 Guide Wall	11	16-May-12 A	02-Jun-12			D-wall S66-S77 Guide Wall
Science Science <t< td=""><td>0521-1990.42</td><td>D-wall South Panel S75</td><td>10</td><td>26-May-12</td><td>07-Jun-12</td><td></td><td></td><td>D-wall South Panel S75</td></t<>	0521-1990.42	D-wall South Panel S75	10	26-May-12	07-Jun-12			D-wall South Panel S75
0621-1990.43 Dwall South Panel S77 10 0.3 Jul-12 14 Jul-12 23 Jul-12 0521-1990.44 Dwall South Panel S68 10 11 Jul-12 23 Jul-12 0.0 Jul-12	0521-1990.36	D-wall South Panel S70	10	07-Jun-12	19-Jun-12	-		D-wall South I
Obs21-1990.34 D-wail South Panel S68 10 11-Jul-12 23-Jul-12 31-Jul-12 31-Jul-12 0521-1990.40 D-wail South Panel S74 10 27-Jul-12 06-Aug-12 06-Aug-12 0521-1990.35 D-wail South Panel S69 10 27-Jul-12 06-Aug-12 06-Aug-12 0521-1990.38 D-wail South Panel S72 10 04-Aug-12 20-Jul-12 06-Aug-12 0521-1990.38 D-wail S60-S65 Cuide Wail 16 04-Jul-12 20-Jul-12 20-Jul-12 0521-2100 D-wail S60-S65 Cuide Wail 15 04-Jul-12 20-Jul-12 20-Jul-12 0522-2210.64 Barrette Pile BC64 0 12-Apr-12A 09-May-12A 28-Jul-12 Barrette Pile BC64 0522-2210.64 Barrette Pile BC63 0 2-Jul-12 30-Apr-12A 30-Apr-12A 30-Apr-12A Barrette Pile BC63 Barrette Pile BC64 0 2-Jul-12 30-Apr-12A 30-Apr-12A 30-Apr-12A Barrette Pile BC63 Barrette Pile BC65 Barrette Pile BC63 Barrette Pile BC63 Barrette Pile BC63 Barrette Pile BC63 Barrette Pile BC6	0521-1990.39	D-wall South Panel S73	10	19-Jun-12	03-Jul-12			
0521-1990.40D-wall South Panel S7410019-Jul-1231-Jul-1208-Aug-120521-1990.38D-wall South Panel S691004/Aug-1216-Aug-1216-Aug-120521-2000D-wall Soo S65 Pre-dilling1827-Feb-12 A03-Jul-1220-Jul-120521-2100D-wall Soo S65 Sed uide Wall1504-Jul-1220-Jul-1220-Jul-120521-2103D-wall Soo S65 Sed uide Wall1504-Jul-1220-Jul-1220-Jul-12052-210.46Barrette Pile BC64012-Apr-12A09-May-12A09-May-12A0522-2210.68Barrette Pile BC64012-Apr-12A09-May-12A30-Apr-12A0522-2210.64Barrette Pile BC63029-Mar-12A30-Apr-12A30-Apr-12A0522-2210.68Barrette Pile BC63119-Mar-12A25-May-1230-May-12A0522-2210.68Barrette Pile BC63119-Mar-12A25-May-1230-May-12A0522-2210.68Barrette Pile BC63119-Mar-12A25-May-1230-May-12A0522-2210.68Barrette Pile BC63119-Mar-1225-May-1230-May-12A0522-2210.68Barrette Pile BC63119-Mar-1225-May-1230-May-12A0522-2210.68Barrette Pile BC63119-Mar-1225-May-1230-May-12A0522-2210.68Barrette Pile BC63119-Mar-1225-May-1230-May-12A0522-2210.68Barrette Pile BC63119-Mar-1225-May-1230-May-12A0522-2210.68Barrette Pile BC63 </td <td>0521-1990.43</td> <td>D-wall South Panel S77</td> <td>10</td> <td>03-Jul-12</td> <td>14-Jul-12</td> <td></td> <td></td> <td></td>	0521-1990.43	D-wall South Panel S77	10	03-Jul-12	14-Jul-12			
0521-1990.35 Owall South Panel S69 10 27.Jul-12 08.Aug-12 16.Aug-12	0521-1990.34	D-wall South Panel S68	10	11-Jul-12	23-Jul-12			
0521-1990.38Dwall South Panel S721004-Aug-1216-Aug	0521-1990.40	D-wall South Panel S74	10	19-Jul-12	31-Jul-12			
521-2090 D-wall S60-S65 Pre-drilling 18 27-Feb-12 A 03-Jul-12 20-Jul-12 20-Jul-12 <td>0521-1990.35</td> <td>D-wall South Panel S69</td> <td>10</td> <td>27-Jul-12</td> <td>08-Aug-12</td> <td></td> <td></td> <td></td>	0521-1990.35	D-wall South Panel S69	10	27-Jul-12	08-Aug-12			
OS21-2100 Dwall S60-S65 Guide Wall 15 0.4 Jul-12 20.Jul-12 20.Jul-12 0521-2130 Dwall S56-S59 Guide Wall 15 12.Jul-12 28.Jul-12 28.Jul-12 28.Jul-12 28.Jul-12 28.Jul-12 28.Jul-12 28.Jul-12 28.Jul-12 28.Jul-12 30.Apr-12 A	0521-1990.38	D-wall South Panel S72	10	04-Aug-12	16-Aug-12			
0521-2130D-wall S56-S59 Guide Wall1512-Jul-1228-Jul-1228-Jul-120522-210.64Barrette Pile BC64012-Apr.12A09-May-12A30-Apr.12ABarrette Pile BC630522-2210.64Barrette Pile BC68029-Mar.12A30-Apr.12A30-Apr.12ABarrette Pile BC680522-2210.64Barrette Pile BC67507-May-12A25-May-1230-May-1230-May-12A0522-2210.61Barrette Pile BC63921-May-1230-May-1230-May-120522-2210.63Barrette Pile BC63924-May-1230-May-1230-May-120522-2210.65Barrette Pile BC65924-May-1202-Jun-1211-Jun-120522-2210.66Barrette Pile BC66901-Jun-1211-Jun-1211-Jun-120522-2210.65Barrette Pile BC65901-Jun-1211-Jun-1211-Jun-120522-2210.65Barrette Pile BC65909-Jun-1220-Jun-1211-Jun-120522-2210.65Barrette Pile BC65909-Jun-1220-Jun-1211-Jun-120522-2210.65Barrette Pile BC65909-Jun-1220-Jun-1211-Jun-120522-2210.55Barrette Pile BC55918-Jun-1228-Jun-1228-Jun-120522-2210.59Barrette Pile BC58906-Jul-1216-Jul-120522-2210.59Barrette Pile BC58906-Jul-1216-Jul-120522-2210.59Barrette Pile BC58906-Jul-1216-Jul-120522-2210.59Barrette Pile BC58906-Jul	0521-2090	D-wall S60-S65 Pre-drilling	18	27-Feb-12 A	03-Jul-12			
052-2 - Barrette Construction 0 12-Apr-12A 09-May-12A Barrette Pile BC64 Barrette Pile BC64 0522-2210.64 Barrette Pile BC68 0 29-Mar-12A 30-Apr-12A 30-Apr-12A Barrette Pile BC68 0522-2210.64 Barrette Pile BC67 5 07-May-12A 30-Apr-12A 30-Apr-12A Barrette Pile BC68 Barrette Pile BC63 Barrette Pile BC65 Barrette Pile	0521-2100	D-wall S60-S65 Guide Wall	15	04-Jul-12	20-Jul-12			
0522-2210.64 Barrette Pile BC64 0 12-Apr-12A 09-May-12A Barrette Pile BC64 0522-2210.68 Barrette Pile BC68 0 29-Mar-12A 30-Apr-12A 30-Apr-12A 30-Apr-12A Barrette Pile BC68 0522-2210.61 Barrette Pile BC61 9 21-May-12 30-May-12A 25-May-12 Barrette Pile BC68 Barrette Pile BC63 Barrette Pile BC63 0522-2210.63 Barrette Pile BC63 1 19-Mar-12A 21-May-12 30-May-12 Barrette Pile BC68 Barrette Pile BC63 0522-2210.65 Barrette Pile BC63 1 19-Mar-12A 21-May-12 02-Jun-12 11-Jun-12 Barrette Pile BC63 B	0521-2130	D-wall S56-S59 Guide Wall	15	12-Jul-12	28-Jul-12			
Access Access<	05.2.2 - Barrette C	Construction	I.					
Additional of the conditional of th	0522-2210.64	Barrette Pile BC64	0	12-Apr-12 A	09-May-12 A	Barrette Pile E	8 <mark>0</mark> 64	
OSEAL FLOORDarkte Pile BC61So Kins FLODarkte Pile BC61Barrette Pile BC610522-2210.63Barrette Pile BC63119-Mar-12 A21-May-1202-Jun-120522-2210.65Barrette Pile BC65924-May-1202-Jun-1202-Jun-120522-2210.66Barrette Pile BC66901-Jun-1211-Jun-12Barrette Pile BC630522-2210.70Barrette Pile BC621009-Jun-1220-Jun-1211-Jun-120522-2210.55Barrette Pile BC55918-Jun-1228-Jun-1228-Jun-120522-2210.58Barrette Pile BC58906-Jul-12107-Jul-1207-Jul-120522-2210.59Barrette Pile BC59906-Jul-1216-Jul-1216-Jul-12	0522-2210.68	Barrette Pile BC68	0	29-Mar-12 A	30-Apr-12 A	Barrette Pile BC68		
OSCEL 22.10.61Cannot Construct on BootConstruct on Boot <t< td=""><td>0522-2210.57</td><td>Barrette Pile BC57</td><td>5</td><td>07-May-12 A</td><td>25-May-12</td><td></td><td>Barrett</td><td>e Pile BC57</td></t<>	0522-2210.57	Barrette Pile BC57	5	07-May-12 A	25-May-12		Barrett	e Pile BC57
Octa 11 Note 1Definition in the bookDefinition in the book<	0522-2210.61	Barrette Pile BC61	9	21-May-12	30-May-12			Barrette Pile BC61
0522-2210.65Barrette Pile BC65924-May-1202-Jun-120522-2210.66Barrette Pile BC66901-Jun-1211-Jun-120522-2210.70Barrette Pile BC621009-Jun-1220-Jun-120522-2210.55Barrette Pile BC55918-Jun-1228-Jun-120522-2210.58Barrette Pile BC58927-Jun-1207-Jul-120522-2210.59Barrette Pile BC59906-Jul-1216-Jul-12	0522-2210.63	Barrette Pile BC63	1	19-Mar-12 A	21-May-12		Barrette Pile	BC63
0522-2210.70 Barrette Pile BC62 10 09-Jun-12 20-Jun-12 0522-2210.55 Barrette Pile BC55 9 18-Jun-12 28-Jun-12 0522-2210.58 Barrette Pile BC58 9 27-Jun-12 07-Jul-12 0522-2210.59 Barrette Pile BC59 9 06-Jul-12 16-Jul-12 16-Jul-12	0522-2210.65	Barrette Pile BC65	9	24-May-12	02-Jun-12			Barrette Pile BC65
OSE2 E21010 Sandter nie Sos2 Sou Sou <td>0522-2210.66</td> <td>Barrette Pile BC66</td> <td>9</td> <td>01-Jun-12</td> <td>11-Jun-12</td> <td></td> <td></td> <td>Barrette Pile BC66</td>	0522-2210.66	Barrette Pile BC66	9	01-Jun-12	11-Jun-12			Barrette Pile BC66
O522-2210.58 Barrette Pile BC58 9 27-Jun-12 07-Jul-12 0522-2210.59 Barrette Pile BC59 9 06-Jul-12 16-Jul-12	0522-2210.70	Barrette Pile BC62	10	09-Jun-12	20-Jun-12			Barrette Pile
0522-2210.59 Barrette Pile BC59 9 06-Jul-12 16-Jul-12	0522-2210.55	Barrette Pile BC55	9	18-Jun-12	28-Jun-12			F
	0522-2210.58	Barrette Pile BC58	9	27-Jun-12	07-Jul-12			
	0522-2210.59	Barrette Pile BC59	9	06-Jul-12	16-Jul-12			

•			
•	◆ Milestone		
	Critical Remaining Work		Page 3 of
	Remaining Work		Dogo 2 of
	Actual Work	Three Month Rolling Programme (21 MAY 2012 to 20 AUG 2012)	3MRP - N
	Actual Level of Effort		
	Remaining Level of Effort	Contract HY/2009/19	3MRP

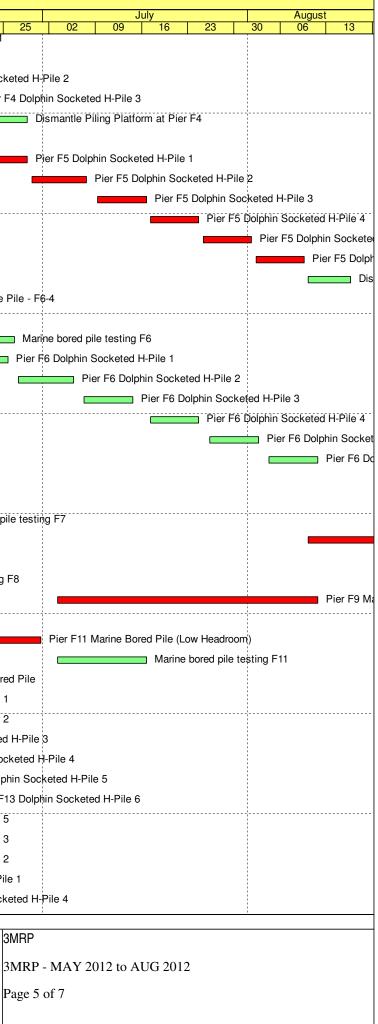


vity ID	Activity Name	Rem	Start	Finish	May			2012
		Dur			May 	21 28	June 3 04 11	9 18 25
0522-2210.54	Barrette Pile BC54	9	11-Aug-12	21-Aug-12				
0522-2185	Barrette BC54 Pre-drilling	6	21-May-12*	26-May-12		Barre	te BC54 Pre-drilling	
0522-2190	Barrette BC54-BC56 Grouting for Existing Seawall Rubble Mound	9	28-May-12	06-Jun-12				4-BC56 Grouting fo
0522-2200	Barrette BC54-BC56 Guide Wall	9	31-May-12	09-Jun-12			Barrette	BC54-BC56 Guide
0522-2210.52	Barrette Pile BC52	10	21-Jul-12	01-Aug-12				
0522-2210.50	Barrette Pile BC50	10	28-Jul-12	08-Aug-12				
0522-2210.51	Barrette Pile BC51	10	04-Aug-12	15-Aug-12				
0522-2240	Barrette BC57-BC68 Guide Wall	10	23-Mar-12 A	31-May-12			Barrette BC57-BC68 C	
0522-2270	Barrette BC43-BC52 Pre-drilling	25	21-May-12	18-Jun-12	•			Barrette BC43-
0522-2280	Barrette BC43-BC52 Grouting for Existing Seawall Rubble Mound	12	11-Jun-12	25-Jun-12				Barre
0522-2290	Barrette BC43-BC52 Guide Wall	12	26-Jun-12	10-Jul-12				
0522-2320	Barrette BC40-BC42 Pre-drilling	17	09-Apr-12 A	10-Jul-12				
0522-2330	Barrette BC40-BC42 Grouting for Existing Seawall Rubble Mound	18	10-Jul-12	31-Jul-12				
0522-2340	Barrette BC40-BC42 Guide Wall	18	31-Jul-12	21-Aug-12				
0522-2360	Bulkhead BW1-BW7 Pre-drilling	25	19-Jun-12	19-Jul-12				
0522-2370	Bulkhead BW1-BW7 Grouting for Existing Seawall Rubble Mound	18	20-Jul-12	09-Aug-12				
0522-2380	Bulkhead BW1-BW7 Guide Wall	12	10-Aug-12	23-Aug-12				
05.3 - Box Culver	rt T1		1					
0530-3010	Bay 5 Road Reinstatement	0	28-Mar-12 A	25-Apr-12 A	Bay 5 Road Reinstatement			
0530-3020	TTM for Bay 3 and 4 Construction	9	15-Jun-12*	26-Jun-12			-	TTI
0530-3030	Bay 3 and 4 - Site Clearance/Formation	3	27-Jun-12	29-Jun-12				
0530-3040	Bay 3 and 4 - Trench excavation	36	30-Jun-12	11-Aug-12				
0530-3210	Relocate Hoarding of the Temporary FEHD Depot at Portion X	18	04-Jun-12*	25-Jun-12				Relo
0530-3220	1500 dia. Storm Drain - Sheetpiles	36	26-Jun-12	07-Aug-12				
0530-3230	1500 dia. Storm Drain - Excavation S79 to S94	15	08-Aug-12	24-Aug-12				
6 - SECTION	3 OF THE WORKS							
06.2 - Box Culver	rt U1							
0620-2340	U1 Pre-drilling for piling for U1 (48no) (4 set) at VB,VD&III	12	10-Jan-12 A	02-Jun-12	C		U1 Pre-drilling for p	iling for U1 (48no)
0620-2345	U1 Pre-bored H-pile Bay 7-8 (8 nos/1 set) at VB,VD & III	43	12-Apr-12 A	12-Jul-12				
0620-2355	U1 Pre-bored H-pile Bay 9-12 (16 nos/3 set) at III	20	05-Apr-12 A	12-Jun-12			U1 P	re-bored H-pile Bay
0620-2350	U1 Pre-bored H-pile Bay 1-6 (24 nos/3 set) at VB	46	12-Jul-12	04-Sep-12				
0 - SECTION	X OF THE WORKS		<u> </u>					
	es (Bridge D, E and F)							
10.1.1 - Marine Pie								
Pier F03 to F15								
1011-1760.60	Pier F3 Marine Bore Pile - F3-6	0	26-Mar-12 A	25-Apr-12 A	Pier F3 Marine Bore Pile - F3-6			
1011-1760.70	Pier F3 Marine Bore Pile - F3-1	9	26-Apr-12 A	30-May-12			Pier F3 Marine Bore Pil	le - F3-1
1011-1760.80	Pier F3 Marine Bore Pile - F3-6	14	31-May-12	15-Jun-12				Pier F3 Marine Bor
1011-2090	Marine bored pile testing F3	12	16-Jun-12	30-Jun-12				
1011-1750.10	Pier F3 Dolphin Socketed H-Pile 1	9	21-Jun-12	03-Jul-12	-			
1011-1750.20	Pier F3 Dolphin Socketed H-Pile 1	9	04-Jul-12	13-Jul-12	-			
1011-1750.30	Pier F3 Dolphin Socketed H-Pile 1	9	14-Jul-12	24-Jul-12				
1011-1990	Dismantle Piling Platform at Pier F3	6	25-Jul-12	31-Jul-12				
1011-2150	F3 Pile Cap Construction	18	01-Aug-12	21-Aug-12				
Remaining Level	of Effort			Cont	ract HY/2009/19			3MRP
Actual Level of Ef				South				3MRP
Actual Work				ng Progra				

Milestone

Critical Remaining Work

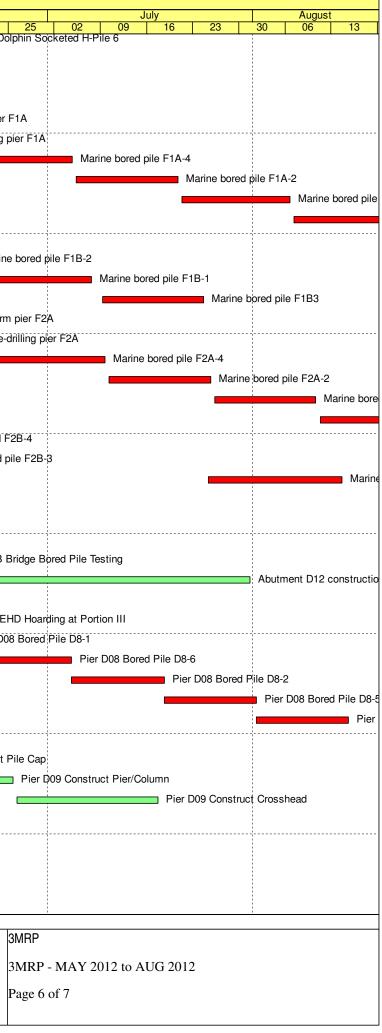
Page 4 of



vity ID	Activity Name	Rem	Start	Finish		2012		
		Dur			23	30	May 07 14	June 21 28 04 11 18
1011-1850.10	Pier F4 Dolphin Socketed H-Pile 1	9	21-May-12*	30-May-12		00		Pier F4 Dolphin Socketed H-Pile 1
1011-2095	Marine bored pile testing F4	12	21-May-12	02-Jun-12				Marine bored pile testing F4
1011-1850.20	Pier F4 Dolphin Socketed H-Pile 2	9	31-May-12	09-Jun-12				Pier F4 Dolphin Socket
1011-1850.30	Pier F4 Dolphin Socketed H-Pile 3	9	11-Jun-12	20-Jun-12				Pier F4
1011-2000	Dismantle Piling Platform at Pier F4	6	21-Jun-12	28-Jun-12				
1011-2100	Marine bored pile testing F5	12	21-May-12	02-Jun-12				Marine bored pile testing F5
1011-1810.10	Pier F5 Dolphin Socketed H-Pile 1	7	20-Jun-12	28-Jun-12				
1011-1810.20	Pier F5 Dolphin Socketed H-Pile 2	7	29-Jun-12	07-Jul-12				
1011-1810.30	Pier F5 Dolphin Socketed H-Pile 3	7	09-Jul-12	16-Jul-12				
1011-1810.40	Pier F5 Dolphin Socketed H-Pile 4	7	17-Jul-12	24-Jul-12				
1011-1810.50	Pier F5 Dolphin Socketed H-Pile 5	7	25-Jul-12	01-Aug-12				
1011-1810.60	Pier F5 Dolphin Socketed H-Pile 6	7	02-Aug-12	09-Aug-12				
1011-2010	Dismantle Piling Platform at Pier F5	6	10-Aug-12	16-Aug-12				
1011-1800.30	Pier F6 Marine Bore Pile - F6-4	18	28-Feb-12 A	09-Jun-12				Pier F6 Marine Bore Pi
1011-1800.40	Pier F6 Marine Bore Pile - F6-1	0	25-Apr-12 A	19-May-12 A			F	ier F6 Marine Bore Pile - F6-1
1011-2105	Marine bored pile testing F6	12	12-Jun-12	26-Jun-12				
1011-1790.10	Pier F6 Dolphin Socketed H-Pile 1	7	16-Jun-12	25-Jun-12				
1011-1790.20	Pier F6 Dolphin Socketed H-Pile 2	7	27-Jun-12	05-Jul-12				
1011-1790.30	Pier F6 Dolphin Socketed H-Pile 3	7	07-Jul-12	14-Jul-12				
1011-1790.40	Pier F6 Dolphin Socketed H-Pile 4	7	17-Jul-12	24-Jul-12				
	•							
1011-1790.50	Pier F6 Dolphin Socketed H-Pile 5	7	26-Jul-12	02-Aug-12				
	Pier F6 Dolphin Socketed H-Pile 6	7	04-Aug-12	11-Aug-12				Pier F7 Marine Bored Pile F7-1
1011-1920.30	Pier F7 Marine Bored Pile F7-1	9	11-Apr-12 A	30-May-12			Bio	F7 Marine Bored Pile F7-3
1011-1920.40	Pier F7 Marine Bored Pile F7-3	0	03-May-12 A	17-May-12 A				Marine bored pile
1011-2110	Marine bored pile testing F7	12	31-May-12	13-Jun-12				
1011-1910	Pier F7 Dolphin Socketed H-Pile (6 nos.)	42	10-Aug-12	27-Sep-12				
1011-1864.40	Pier F8 Marine Bored Pile F8-3	3	31-Mar-12 A	23-May-12				Pier F8 Marine Bored Pile F8-3
1011-2115	Marine bored pile testing F8	12	23-May-12	06-Jun-12				Marine bored pile testing F8
1011-1806	Pier F9 Marine Bored Pile (Low Headroom)	35	03-Jul-12	11-Aug-12				
1011-1780	Pier F11 Marine Bored Pile	0	07-May-12 A	18-May-12 A		I	Pi	er F11 Marine Bored Pile
1011-1781	Pier F11 Marine Bored Pile (Low Headroom)	35	21-May-12	30-Jun-12				
1011-2130	Marine bored pile testing F11	12	03-Jul-12	16-Jul-12				
1011-1825	Pier F12 Marine Bored Pile	18	21-May-12	09-Jun-12				Pier F12 Marine Bored
1011-1890.10	Pier F13 Dolphin Socketed H-Pile 1	9	25-Apr-12 A	30-May-12				Pier F13 Dolphin Socketed H-Pile 1
1011-1890.20	Pier F13 Dolphin Socketed H-Pile 2	9	14-May-12 A	30-May-12				Pier F13 Dolphin Socketed H-Pile 2
1011-1890.30	Pier F13 Dolphin Socketed H-Pile 3	7	29-May-12	05-Jun-12				Pier F13 Dolphin Socketed H
1011-1890.40	Pier F13 Dolphin Socketed H-Pile 4	7	02-Jun-12	09-Jun-12				Pier F13 Dolphin Socke
1011-1890.50	Pier F13 Dolphin Socketed H-Pile 5	7	07-Jun-12	14-Jun-12				Pier F13 Dolphir
1011-1890.60	Pier F13 Dolphin Socketed H-Pile 6	7	12-Jun-12	19-Jun-12				Pier F13
1011-1782.10	Pier F14 Dolphin Socketed H-Pile 5	9	02-Apr-12 A	30-May-12				Pier F14 Dolphin Socketed H-Pile 5
1011-1782.20	Pier F14 Dolphin Socketed H-Pile 3	9	07-Apr-12 A	30-May-12				Pier F14 Dolphin Socketed H-Pile 3
1011-1782.30	Pier F14 Dolphin Socketed H-Pile 2	9	14-Apr-12 A	30-May-12				Pier F14 Dolphin Socketed H-Pile 2
1011-1782.40	Pier F14 Dolphin Socketed H-Pile 1	7	25-May-12	01-Jun-12				Pier F14 Dolphin Socketed H-Pile
1011-1782.50	Pier F14 Dolphin Socketed H-Pile 4	7	01-Jun-12	08-Jun-12				Pier F14 Dolphin Socket
1011-1762.00								

 Remaining Level of Enort
Actual Level of Effort
Actual Work
Remaining Work

Critical Remaining Work


Milestone

tivity ID	Activity Name	Rem Dur	Start	Finish	May		2012 June
1011-1782.60	Pier F14 Dolphin Socketed H-Pile 6	7	08-Jun-12	15-Jun-12	23 30 07 14	21 28	04 11 18 25 Pier F14 Dolphin Sc
Pier F01 to F02	·····						
1011-2580	Erect Piling Platform pier F1B	0	06-Feb-12 A	03-May-12 A	Erect Piling Platform pie	r F1B	
1011-2620	Pre-drilling pier F1B	0	04-May-12 A	18-May-12 A	Pr	e-drilling pier F1B	
1011-2590	Erect Piling Platform pier F1A	14	16-Apr-12 A	05-Jun-12			Erect Piling Platform pier F1A
1011-2630	Pre-drilling pier F1A	9	06-Jun-12	15-Jun-12			Pre-drilling pier F1A
1011-2750	Marine bored pile F1A-4	14	16-Jun-12	04-Jul-12			
1011-2751	Marine bored pile F1A-2	14	05-Jul-12	20-Jul-12			
1011-2752	Marine bored pile F1A-1	14	21-Jul-12	06-Aug-12			
1011-2753	Marine bored pile F1A-3	14	07-Aug-12	22-Aug-12			
1011-2780	Marine bored pile F1B-4	12	19-May-12 A	02-Jun-12		Ma	arine bored pile F1B-4
1011-2781	Marine bored pile F1B-2	14	04-Jun-12	19-Jun-12			Marine bored
1011-2782	Marine bored pile F1B-1	14	20-Jun-12	07-Jul-12			
1011-2783	Marine bored pile F1B3	14	09-Jul-12	24-Jul-12			
1011-2570	Erect Piling Platform pier F2A	18	05-Apr-12 A	09-Jun-12			Erect Piling Platform pier F2
1011-2610	Pre-drilling pier F2A	9	11-Jun-12	20-Jun-12			Pre-drilling p
1011-2740	Marine bored pile F2A-4	14	21-Jun-12	09-Jul-12			
1011-2741	Marine bored pile F2A-2	14	10-Jul-12	25-Jul-12			
1011-2742	Marine bored pile F2A-1	14	26-Jul-12	10-Aug-12			
1011-2743	Marine bored pile F2A-3	14	11-Aug-12	27-Aug-12			
1011-2770	Marine bored pile F2B-1, F2B-2 and F2B-4	7	28-Mar-12 A	28-May-12		Marine bo	red pile F2B-1, F2B-2 and F2B-4
1011-2772	Marine bored pile F2B-3	14	29-May-12	13-Jun-12			Marine bored pile F2B
1011-2790	Marine bored pile testing F1B and F2B	18	25-Jul-12	14-Aug-12			
10.1.2 - Land Pier		-		- 3			
Abutment D12							
1012-1074	Abutment E/B Bridge Bored Pile D12-4	0	18-Apr-12 A	27-Apr-12 A	Abutment E/B Bridge Bored Pil	e D12-4	
1012-1090	Abutment D12 E/B Bridge Bored Pile Testing	18	21-May-12	09-Jun-12			Abutment D12 E/B Bridge B
1012-1220	Abutment D12 construction (E/B Bridge)	42	11-Jun-12	31-Jul-12			
Pier D08 to D11	(0 /						
1012-1030.05	Complete Relocation of FEHD Hoarding at Portion III	0		04-Jun-12*		•	Complete Relocation of FEHD Hoar
1012-1030.10	Pier D08 Bored Pile D8-1	12	04-Jun-12	18-Jun-12			Pier D08 Bored
1012-1030.20	Pier D08 Bored Pile D8-6	12	18-Jun-12	04-Jul-12			
1012-1030.30	Pier D08 Bored Pile D8-2	12	04-Jul-12	18-Jul-12			
1012-1030.40	Pier D08 Bored Pile D8-5	12	18-Jul-12	01-Aug-12			
1012-1030.50	Pier D08 Bored Pile D8-3	12	01-Aug-12	15-Aug-12			
1012-1040.60	Pier D09 Bored Pile D9-6	0	16-Apr-12 A	27-Apr-12 A	Pier D09 Bored Pile D9-6		
1012-1130	Pier D09 Construct Pile Cap	18	21-May-12	09-Jun-12			Pier D09 Construct Pile Cap
1012-1140	Pier D09 Construct Pier/Column	12	11-Jun-12	25-Jun-12			Pier I
1012-1150	Pier D09 Construct Crosshead	12	26-Jun-12	17-Jul-12			
1012-1050.50	Pier D10 Bored Pile D10-1	0	16-Apr-12 A	27-Apr-12 A	Pier D10 Bored Pile D10-1		
1012-1050.60	Pier D10 Bored Pile D10-4	0	28-Apr-12 A	12-May-12 A	Pier D10 E	ored Pile D10-4	
1012-1060.40	Pier D11 Bored Pile D11-6	0	14-Apr-12 A	27-Apr-12 A	Pier D11 Bored Pile D11-6		
1012-1060.50	Pier D11 Bored Pile D11-4	0	28-Apr-12 A	11-May-12 A		ed Pile D11-4	
1012-1060.60	Pier D11 Bored Pile D11-3	0	07-May-12 A	17-May-12 A		D11 Bored Pile D11-3	
1012-1000.00		0	07-iviay-12 A	TT-Way-12 A			
Remaining Level of	of Effort			Cont	ract HY/2009/19		3MRP
Actual Level of Ef				Sont	uvt / £VVJ/ J		
Actual Work		T I			amme (21 MAY 2012 t		3MRP

	Ren	naining	Work
	~ …		

Critical Remaining Work
Milestone

tivity ID	Activity Name	Rem	Start	Finish									2012			
		Dur				May					June					
1012-1190	Diar D11 Canatrust Dila Can	10	11-Jun-12	03-Jul-12	23	30	07	14	21	28	04	11	18	25		
	Pier D11 Construct Pile Cap	18														
1012-1200	Pier D11 Construct Pier/Column	12	04-Jul-12	17-Jul-12												
1012-1210	Pier D11 Construct Crosshead	18	18-Jul-12	07-Aug-12												
Pier D05 to D07			,													
1012-1290.20	Pier D05 Bored Pile D05-1	13	02-Dec-11 A	30-Jul-12												
1012-1300	Pier D05/D06/D07 Bored Piles Testing	18	30-Jul-12	20-Aug-12	-											
1012-1270	Pier D07 Bored Piles (6 piles)	108	03-Jul-12*	07-Nov-12												
10.1.3 - E/B Brid	ge Construction															
Bridge D3																
1013-1000.10	Segment and Beam Launching - Procurement of Sub-contractor	14	21-Jan-12 A	05-Jun-12					_		Segr	ment and E	Beam Laur	nching - I		
1013-1000.20	Segment and Beam Launching - Submit Design Launching Girder	26	14-May-12 A	19-Jun-12					_				Segn	ment and		
1013-1000.30	Segment and Beam Launching - Approve Design Launching Girder	28	20-Jun-12	24-Jul-12												
1013-1010	Segment and Beam Launching - Fabricate & Deliver Launching Girder	98	25-Jul-12	17-Nov-12												
10.3 - Middle Bi	ridge (Bridge F)															
10.3.1 - Pier Con	istruction															
Abutment D12																
1031-1040	Bored Piles (4 nos) at D12 at III (for F1B1)	47	07-May-12 A	16-Jul-12					-							

Remaining Level of Effort
Actual Level of Effort
Actual Work
Remaining Work
Critical Remaining Work
♦ Milestone

Contract HY/2009/19

3MRP 3MRP - MAY 2012 to AUG 2012 Page 7 of 7

	July			August	
	02 09 16 23	3	30	06	13
	Pier D11 Construct Pile Cap				
	Pier D11 Co	netruct	Pior/C	olumn	
		/iistiuct	1 101/0	olumn	
				Pier D	011 Constru
			Pier D0	5 Bored P	ile D05-1
		-			
- P	rocurement of Sub-contractor				
- 1		-			
nd E	Beam Launching - Submit Design Lau	inching	Girder		
	S	eament	and Be	am Laun	ching - App
		oginoin	and B		oning ripp
	Bored Piles (4 nos) i	at D12	at III (for F	-1B1)
		i			